Abstract

In vielen industriellen Anwendungsgebieten sind mgetsische Packungsprobleme zu lésen, so
mdchte man zum Beispiel bei der Verarbeitung vacBIlden Verschnitt minimieren:

Gegeben ist eine Menge von Blechteilen, von dengégliohst viele auf einem grél3eren Blech ver-
teilt werden. Die verbleibenden Blechreste sollanrdnoch von der Arbeitsflache entfernt werden.
Typischerweise geschieht dies durch ,Wegstanzen“Bliechreste. Es stehen hierflr verschieden
Stanzkopfe zur Verfugung. Ziel ist es, mit moglichenig Stanzvorgangen und moglichst wenig
Wechseln des Stanzkopfes alle Blechreste zu estiern

Hierbei gilt es zwei Dinge zu beachten:

» die verbleibende Restflache sollte aus Stabilitétsden zusammenhangend bleiben

* beim Stanzvorgang muss mindestens die Halfte derzBopfflache auch wirklich mit Ma-
terial unterlegt sein (d.h. Ausschliel3liche Benatzules grol3ten Stanzkopfes ist nicht im-
mer moglich)

Im Rahmen dieser Diplomarbeit wurde von Grund anf\erfahren entwickelt, welches dieses
Problem zu l6sen versucht. Um die Komplexitat desbms zu reduzieren wurden einige Ein-
schrankungen beziigliche der Probleminstanzen vorgeren. So wurde festgelegt, dass nur poly-
gonale Wertstlicke vom Blech entfernt werden dided die Form der zur Auswahl stehenden
Stanzkopfe muss rund sein.

Der Hauptaugenmerk der Arbeit liegt auf der Beaottder Nebenbedingungen. Vor allem fir die
Sicherstellung des Zusammenhangs der Flache wudism entwickelt um umgesetzt. Hierbei
spielt die mediale Achse eine besondere Rolle,nndie als Grundlage fur einen Grol3teil der vor-
gestellten Verfahren eingesetzt wird. Neben dens&mfur die Konnektivitatstest dient sie zusatz-
lich als Struktur fir eine vereinfachte Darstellger Flache. Besondere Merkmale des zu Uberde-
ckenden Gebiets kbnnen so besser erkannt und geverten.
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1 Einleitung

Wie in den meisten Bereichen der Industrie wirdhaloei der Verarbeitung von Blechen danach ge-
strebt, das menschliche Eingreifen in den Ablau#pss zu minimieren. So wird beispielsweise
beim Einsatz von Stanzmaschinen versucht, die Batewy der Stanzpositionen und Stanzschritte
komplett in die Hand der Maschine zu legen. Diegirioe bei der Berechnung einer moglichst opti-
malen Packung der Bauteile, sodass die Versclstdtnminimiert werden und endet bei der voll-
standig maschinellen Entsorgung dieser Reste, dincdtanzen der tGbrigen Flache.

Beide Probleme kénnen als Optimierungsprobleme dbert werden und sind eng miteinander
verwandt. Beim Packungsproblem wird versucht, notgl viele Formen auf einer Flache unterzu-
bringen, die sich nicht gegenseitig tiberschneidéed (Maximierungsproblem). Beim Uberde-
ckungsproblem hingegen muss die komplette Flacleediélokt werden, wobei versucht wird die
Anzahl der Schritte so gering wie mdoglich zu halfstinimierungsproblem). Der Zusammenhang
der beiden Verfahren wird klar, wenn man eine jésweptimale Lésung der beiden Probleme be-
trachtet. Beim Packungsproblem ware eine Lésungnaptwenn die komplette Flache durch die
Werkstlicke abgedeckt werden konnte. Wenn nun ellendeten Formen die gleiche Grdl3e besit-
zen, ist diese Losung auch optimal fiir das Ubengleggproblem.

Als Vorbereitung auf diese Arbeit wurde eine Stadideit angefertigt, die sich mit dem ersten Teil
des Prozessablaufs befasst, dem Packungsprobldédnlii In dieser Arbeit wird der zweite Teill,
also das Uberdeckungsproblem behandelt.

Im folgenden Beispiel wurden zunachst die weil3ale Bais der Flache ausgestanzt. Ziel ist es, den
schwarzen Bereich mit méglichst wenig StanzvorgangeB. eines kreisférmigen Stanzkopfes, in
verschiedenen Groéf3en, zu entfernen.

Abb. 1: Bsp. einer Probleminstanz fiir einen Uberdeckungsalgorithmus



Uberdeckungsprobleme:

Allgemein formuliert wird bei einem Uberdeckungdpiem die Frage gestellt, ob eine, aus
kleinere Teilen zusammengesetzte Menge oder Struihe andere, groRere Menge oder
Struktur komplett abdeckt. Ziel der Optimierungddtion ist es, eine moglichst kleine Anzahl

von Teilmengen oder Teilstrukturen zu finden, fig dies zutrifft.

Uberdeckungsprobleme (engl. covering problems) gehéur Klasse der NP-vollstandigen
Probleme. Dies bedeutet, es gibt keinen effizie®tkgorithmus (Polynomialzeit-Algorith-
mus), der in jedem Fall eine optimale Lésung fitgtejdProbleminstanz liefern kann, es sei
denn, es kann bewiesen werden, dass die Komplekagse NP gleich der Komplexitatsklas-
se P ist. Bisher gibt es weder einen Beweis fuiGleachheit noch einen dagegen. Da fur kei-
nes der vielen bekannten NP-schweren Problemengiga effizienter Algorithmus gefun-
den worden ist, liegt die Vermutung jedoch nahesddie Komplexitatsklassen nicht gleich
sind [VaziO1].

Ein oft eingesetztes Verfahren bei Optimierungslenoien ist die lineare Programmierung.
Hier besteht eine interessante Beziehung zu Ubkudgsproblemen. So kann jedes Integer
Lineare Programm mit ausschlie3lich positiven Camsts und einer positiven Optimierungs-
funktion als ein Uberdeckungsproblem betrachteti@vaziO1l].

Literatur:

Das wohl bekannteste Uberdeckungsproblem ist da€@&eer Problem, bei dem eine Menge
U und eine bestimme Anzahl von Teilmengernvdn U gegeben sind. Hierbei gilt es, eine
madglichst kleine Anzahl von Teilmengenduszuwahlen, sodass alle Elemente aus U in min-
destens einer der ausgewahlten Teilmengen vorhasiden

Das hier vorgestellte Problem kann, sofern die Radohgungen keine Bericksichtigung fin-
den, als ein solches Set Cover Problem dargegtettien. Jeder Punkt der zu Uberdeckenden
Flache qilt hierbei als Element der Menge U. Didniengen T stellen hierbei die bei einem
glltigen Stanzschritt Gberdeckten Punkte dar. DuliehEinfihrung der Randbedingungen
lassen sich die zahlreichen fir das Set Cover Pmoldntwickelten Algorithmen [VaziO1l]
[Card14] jedoch nicht Gbertragen.

Ein ebenfalls sehr verwandtes und viel beachteteklém ist das ,Polygon Covering” Pro-
blem. Hierbei muss eine polygonale Grundflache hilieinere Polygone tGberdeckt werden.
In der Literatur beschrankt man sich hierbei maigteinfache Formen wie Uberdeckung ei-
nes rechtwinkligen Polygons mit Quadraten [Bar98hes rechtwinkligen Polygons mit
Rechtecken [Hein07] oder eines Polygons ohne Spifirdkel (alle grofRer 90°) mit Rechte-
cken oder Quadraten [Levco97]. Fur die Losung vesohderen Klassen dieses Problems
wurden bereits Linearzeit-Verfahren entwickelt [82j
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Besondere Aspekte dieser Arbeit:

Wie oben bereits erwahnt, besteht die zentrale #dgn der Uberdeckung der Restflache,
die zurtickbleibt, nachdem die Werkstlicke aus deectBherausgestanzt wurden. Es handelt
sich demnach um eine Flachenuberdeckung verglaianitadem ,Polygon Covering“. Da
die Aufgabe aber in Anlehnung an das praktischélEno im Bezug auf Stanzmaschinen be-
trachtet wird, sind einige zusatzliche Nebenbedggm zu beachten, welche eine zentrale
Rolle in dieser Arbeit spielen werden:

* Minimieren der Stanzkopfwechsel
* Mindestens die Halfte des Stanzkopfes muss tais&ahit Material unterlegt sein

* Die zu Uberdeckende Flache muss aus Stabilitatdgninu jedem Zeitpunkt zusam-
menhangend bleiben.

Die erste Bedingung dient dazu, einen moglichshelkén Prozessablauf zu erméglichen. Je-
der Wechsel eines Stanzkopfes wirkt sich hier megatf die Arbeitszeit aus. Aus Griinden
der Sicherheit wurde die zweite Bedingung eingdfubm ein mdgliches Abknicken des
Blechs zu verhindern. Der dritte Punkt dient ebkhfder Prozesssicherheit, wobei hier das
eventuelle Verrutschen von kleinen, losen TeilenRiestflache verhindert werden soll.

Um die Komplexitat des Problems im Rahmen zu haltemden einige Vereinfachungen vor-
genommen. So wird die zu Uberdeckende Flache alst& definiert, aus welchem Polygo-
ne entfernt werden. Dadurch wird gewdahrleistetsdas Beginn des Algorithmus keine ge-
krimmten Kanten existieren. Aul3erdem wird die Ausivean Stanzkdpfen auf ausschlief3lich
runde Stanzkopfe beschrankt.

Der vorgestellte Algorithmus soll also eine gegebEtiche, bestehend aus einem Rechteck
mit polygonalen Lochern, mithilfe von runden Stabylen abdecken. Dabei sind die oben
genannten Nebenbedingungen zu beachten.
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2 Grundlagen

In diesem Kapitel wird die Durchfiihrung des eigehttn Uberdeckungsalgorithmus vorbereitet.
Zunéchst werden die Parameter des Programms degfialso diejenigen Informationen, die der

Nutzer eingeben muss, um ein Problem zu beschrevbelches vom Algorithmus gelést werden

soll. Des weiteren wird auf einen zentralen Aspeltegyegangen, der durch die diskretisierte Dar-
stellung der Probleminstanz entsteht, und es wevideverarbeitungsschritte beschrieben, die es-
senziell fur die Durchfihrung des Algorithmus sisthlie3lich wird auch noch auf den Umgang

mit der zentralen Randbedingung, der Konnektivaitgegangen.

2.1 Erstellung der Probleminstanz

Bevor das eigentliche Uberdeckungsproblem gelostieve kann, muss ein Blick auf die Proble-
minstanz geworfen werden. Unter einer Problemirzstgind hier eine zu Uberdeckende Flache so-
wie eine Menge an Stanzkopfen, die der Algorithmutzen kann, verstanden.

Die zu Uberdeckende Flache wird, wie bereits bésloln, auf Basis einer rechteckigen Grundfla-
che definiert. Zunachst muss deshalb die GroRed®rsindflache bestimmt werden. Da diese eine
rechteckige Form haben soll, genlgt es, hier digddhnung in x- und in y-Richtung anzugeben.
Die Flache wird durch ein Rastergitter diskretisiargestellt, wobei die angegebenen Werte als
Anzahl der Gitterzellen in die jeweilige Richtungrstanden wird. Die Distanzwerte werden an-
hand der Manhattan-Distanz [Royer01] berechnet.

Weiter wird nun die Form und die Position aller Wégiicke bendtigt, die im vorangegangenen Ar-
beitsschritt aus dieser rechteckigen Grundflacheusgestanzt wurden. Die Darstellung dieser
Werkstiicke als Polygone erlaubt hier die Ubergaledrarer Punktlisten, von welchen jede die
Eckpunkte eines Polygons in der richtigen Reihgyg@dieinhaltet.

Mit Hilfe der Grundflache und den Polygone kann rdia initiale Restflache bestimmt werden,
welche es vom Algorithmus zu Uberdecken gilt.

Definition Restflache

Die Restflache beschreibt denjenigen Teil der Giléobde, welcher noch von Material be-
deckt ist, das es vom Algorithmus zu entfernen gilt

Fur das Entfernen der Polygone von der Grundflagbede ein kleiner Algorithmus erstellt, der
speziell auf die hier gegebenen Bedingungen zugésah wurde. Da dieser nicht direkt mit der
Problemstellung in Verbindung steht, wird hier zthmgt nicht naher darauf eingegangen. Eine de-
taillierte Beschreibung des Algorithmus findet sictKapitel 6.

Wie bereits erwahnt, werden zunachst nur rundez&tgoie zugelassen. Der Nutzer kann hier, ab-
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hangig von der GroRRer der Grundflache, verschidtiatien auswahlen. Der grof3tmdgliche
Radius wird dabei immer so festgelegt, dass ca.Qu¥drate mit einer Seitenléange, die die-
sem Radius entspricht, komplett auf der Grundflaoheergebracht werden kdénnen. Der
kleinste Radius wird immer Null sein, wobei ein r&tieopf mit diesem Radius genau einen
Punkt der diskretisierten Flache Uberdeckt. Dandtlciufzeit im Rahmen bleibt, wird die
maximale Anzahl der Stanzképfe auf 20 reduziert.

2.2 Nachbarschaftsbeziehung

Durch die Diskretisierung der Flache durch ein Bwastter kann die Nachbarschaft zweier
Punkte nicht eindeutig definiert werden. Es stelien zwei alternative Definitionen zur Ver-
fugung, die beide in den vorgestellten Algorithnvemwendet werden.

Definition Vierer-Nachbarschatt
Wird die Vierer-Nachbarschaft zu Grunde gelegtiegelzwei Punkte als benachbart,
wenn sie sich eine gemeinsame Kante in der Gittatstr teilen. Abgesehen von den
Randpunkten besitzt somit jeder Punkt genau viehNarpunkte.

Definition Achter-Nachbarschaft

Wird die Achter-Nachbarschaft zu Grunde gelegtiegekzwei Punkte als benachbart,
wenn sich ihre Gitterzellen an einem oder an mehr&unkten berihren. Abgesehen
von den Randpunkten hat somit jeder Punkt genauNaxthbarpunkte.

L] LI H Ausgangspunkt p
NEN SEN
] | ] B Nachbarpunkte von p

Abb. 2: Bsp. Nachbarschaftsdefinition; links Vierer-, rechts Achter-Nachbarschaft

2.3 Mediale Achse

Eines der ersten Probleme, das sich bei ndhereadd¢ting der Aufgabenstellung zeigt, stellt
die zu Uberdeckende Restflache dar. Diese Flache keehr oder weniger beliebige Formen
annehmen, was ein systematisches Vorgehen naheziglioh macht. Der menschliche Be-
trachter kann in einer Flache womdoglich Regelmé&ditgkh oder Strukturen feststellen, wel-
che fur den Algorithmus wichtig oder zumindestigi€h sein kénnten. Diese Strukturen exis-
tieren aber in den allermeisten Fallen auf eindrehén Ebene, sodass es sehr schwer, wenn
nicht gar unmaglich ist, diese auf algorithmischéleg zu erfassen.
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Der erste Schritt ist deshalb, die Flache auf emdglichst einfache und intuitive Form abzu-
bilden, welche auch maschinell verarbeitet werdamk Die Medial Achse, die im Jahr 1967
von Harry Blum [Blum67] zuerst vorgestellt wurdegtet sich hier an.

Definition mediale Achse nach Blum

In einer zweidimensionalen Flache F, besteht didiate Achse MA aus den Mittel-
punkten aller maximaler Kreise in F. Ein Kreis Kgenau dann ein maximaler Kreis in
F, wenn er vollstandig in F liegt und an mindestansi Stellen tangential den Rand der
Flache berihrt.

Die mediale Achse kann demnach als eine Art Mittektlinie eines zweidimensionalen Ge-
bietes bezeichnet werden. Um sie ein wenig ansich@ulzu machen, wird nun die dritte Di-
mension zur Hilfe genommen. Man stelle sich eirsefAplatte in Form der Flache F vor. Auf
dieser Tischplatte soll nun sehr feiner, trockeé®@nd aufgeschuttet werden, und zwar so viel
wie mdglich. Die daraus resultierende Bergstrukiesitzt in einer perfekten Umgebung die
Eigenschaft, das die HOhe des Sandes proportiomdztfernung vom Rand der Flache ist.
Genau an den Stellen, an denen die Entfernung zama Richt eindeutig definiert ist, ver-
zeichnet diese Bergstruktur eine Gratlinie. Wirda Werlauf all dieser Gratlinien nun senk-
recht auf die Tischplatte projiziert, bilden sieakikden Verlauf der medialen Achse nach. Aus
diesem Grund werden die Teilsegmente der mediatdis@im folgenden oft auch als Gratli-
nien bezeichnet.

Mit der medialen Achse besitzt man nun ein Hilfsehjtwelches die Struktur der Flache sehr
schon wiedergibt und algorithmisch wesentlich esh& zu handhaben ist. Hat die Flache
beispielsweise eine spitze Ecke, so wird dieseldden Endpunkt einer Gratlinie definiert.
Werden zusatzlich die Distanzwerte zum Rand gebp#icso lasst sich anhand der medialen
Achse ebenfalls ablesen, wie breit die Flache afedesiligen Stelle ist.

Sucht man nun fir die Flache geeignete Punktesidieals Positionen flr einen Stanzschritt
anbieten, so kommt man ebenfalls nicht umhin, degliale Achse zu beachten. Somit wird
mit dieser Struktur eine sehr einleuchtende Vorad\an moglichen Stanzpositionen mitge-
liefert. Zuséatzlich bietet sie, unter bestimmtenadssetzungen, ein Hilfsmittel fir den Kon-
nektivitatstest, welcher im Endeffekt einen Groldieir Laufzeit des vorgestellten Algorith-
mus ausmachen wird.

2.3.1 Diskretisierte mediale Achse

Durch die Diskretisierung der Flache kann die medichse nicht exakt dargestellt werden.
Deshalb wird im folgenden eine Definition fur dieediale Achse gegeben, die mit der Dis-
kretisierung des Feldes vereinbar ist. Gleichzeitigl uns eine intuitive Mdglichkeit fir die
Berechnung der medialen Achse mitgeliefert.

Definition mediale Achse (alternativ)

Ein Punkt, der Teil der medialen Achse Mder Flache F ist, besitzt keinen eindeutig
definierten kiurzesten Pfad P zum Rand der Flachexkstieren immer mindestens zwei
solcher Pfade. Ein Pfad ist hier zunachst als eradgs Liniensegment definiert.

Der Zusammenhang der beiden Definitionen ist elnfac erkennen, indem der Radius eines

maximalen Kreises um den Punkt P mit der Langekiggesten Pfades von P zum Rand
gleichgesetzt wird. Da der Kreis den Rand der Retté an mindestens zwei Stellen berihrt,
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gibt es auch mindestens zwei kiirzeste Pfade.

Nun gilt es, die mediale Achse flr eine diskretisid-lache zu bestimmen. Hierzu muss zu-
nachst eine Definition fir einen kurzester Pfackimer diskretisierten Flache gegeben wer-
den.

Definition kiirzester Pfad in einer diskretisierter Flache

In einer diskretisierten Flache wird ein Pfad P \Rumkt A nach Punkt B durch eine
Liste von Punkten dargestellt, fur die gil{z& = A, Pusy = B, Ry und R, stehen in
Vierer-Nachbarschaft zueinander. Ein Pfad P hditdster Pfad, wenn fir alle Pfade Q
gilt, dass die Lange von Qder Lange von P ist.

Die Kombination der beiden letzten Definitionenchgijedoch noch nicht aus. Zunachst kann
festgestellt werden, dass sehr viele Punkte dehEl&lschlicherweise als Teil der medialen
Achse erkannt werden konnen. In Abb.3 stellen devarzen Punkte ein diskretisiertes Lini-
ensegment dar. Die grinen Punkte werden nach skeeriigen Definition alle als Punkte der
medialen Achse erkannt, da fur jeden der Punkta kikeeste Pfade berechnet werden kon-
nen. Diese Pfade verlaufen genau gleich, bis aenrBunkt der eine Pfad nach unten weiter
l&uft, wahrend der andere Pfad nach rechts gebselProblem lasst sich umgehen, indem ge-
fordert wird, dass die Endpunkte der Pfade zu soteedlichen Randsegmenten gehdren
mussen.

Abb. 3: Bsp. fiir eine falsch erkannte mediale Achse

Ein weiteres Problem ergibt sich, wenn die medéalese genau zwischen zwei diskretisier-
ten Punkten verlauft, da keiner der beiden Punlkt@eil der medialen Achse erkannt werden
kann. Um die mediale Achse sinnvoll nutzen zu kinwelarf sie jedoch keine Licken aufwei-

sen. In solchen Fallen muss also einer der beidektP in die mediale Achse aufgenommen
werden. Da nicht einheitlich definiert werden kawe)cher der beiden Punkte aufgenommen
wird, kann dies zu Schlangenlinien fihren, wie wbAd illustriert wird.

HEEEEEEEEEEEEEEEEEEE Punkte mit Distanzwert 1
ENEEEEEEEEEEEEEE

.-.-..-.-..-.- Punkte mit Distanzwert 2
[ | |

.... Punkte mit Distanzwert 3

B Berechnete Gratlinie

.... . Entfernte Punkte
EEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEE

Abb. 4: Berechnete Gratlinie verlduft in Schlangenlinien aufgrund der Diskretisierung
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2.3.2 Berechnung der medialen Achse

Fur die Berechnung der medialen Achse wird hierawfrdie alternative Definition zurtickge-
griffen. Ein Punkt ist demnach also genau danndieger Achse, wenn er zwei kiirzeste Pfa-
de zu unterschiedlichen Randsegmenten besitzjeB&n Punkt der Restflache muss deshalb
die Lange des kirzesten Pfades zum Rand gesperatieren. Hierflr definieren wir den Di-
stanzwert eines Punktes.

Definition Distanzwert eines Punktes

Der Distanzwert eines Punktes ist gleich der Lahgge klrzesten Pfades zum Rand der
Flache.

Es bieten sich zwei alternative Methoden fiir dieeBenung der mediale Achse an: Eine glo-
bale und eine lokale. Bei der globalen Methodedwlie mediale Achse fur die gesamte Fla-
che im Ganzen berechnet. Da sich bei einer lokAtaterung der Flache die mediale Achse
auch nur lokal andert, kann eine komplette Neultenaicg vermieden werden, indem eine
Methode zur lokalen Berechnung verwendet wird. ieser Arbeit wird die globale Berech-
nung nur einmal bei der Initialisierung der recktgen Grundflache durchgefuhrt. Das macht
diese Berechnung sehr einfach, weshalb hier nieltewdarauf eingegangen wird. Alle sons-
tigen Anderungen an der medialen Achse werdenakat berechnet.

Wird nun also ausgehend von einem neu initialisrefeeld oder einer sonstigen beliebigen
Restflache eine Figur herausgestanzt, andern setbDdtanzwerte von genau denjenigen
Punkten, die ndher an dieser Figur liegen als amebigen Rand der Restflache. Da die Di-
stanzwerte dieser Punkte ohnehin geandert werdesanjibietet sich folgendes Vorgehen an:
Vom Rand der Figur ausgehend wird Schritt fir Stmach aul3en gearbeitet und die Di-
stanzwerte der Punkte werden so lange aktualifisrtjer Algorithmus an einem Punkt ange-
langt ist, an dem der nachste Nachbarpunkt eiredrigeren Distanzwert aufweist als der ak-
tuelle Punkt. In diesem Fall wird der aktuelle Puals Gratpunkt gekennzeichnet und der
entsprechende Nachbarpunkt nicht weiter bearbémeEalle eines Stanzvorgangs mit einem
konvexen Stanzkopf ist hiermit alles getan.

Bei nicht konvexen Polygonen hingegen existierekpbdokte am Polygon, deren Innenwin-
kel groRer als 180° ist. Dementsprechend besieztRéistflache an dieser Stelle eine spitze
Ecke, an der ein Endpunkt einer Gratlinie liegerssnDie dazugehdrige Gratlinie wird aller-
dings beim bisherigen Vorgehen nicht bericksichigts Problem hierbei ist, dass das Poly-
gon als Einheit betrachtet wird und nicht zwiscliem einzelnen Segmenten des Polygons
unterschieden werden kann. Aus diesem Grund wirel @ratlinie, die von zwei unterschied-
lichen Segmenten des selben Polygons definiert, wmch Algorithmus nicht als solche er-
kannt. Ein nicht konvexes Polygon muss demnachrgiesobetrachtet werden.

2.3.3 Vollendung der Gratlinien bei nicht konvexen P olygonen

Die Vollendung der Gratlinien kann in zwei Schritieterteilt werden. Im ersten Schritt mus-
sen zunachst alle Eckpunkte des Polygons mit eime@nwinkel groRer als 180° gefunden
werden, da in jedem dieser Eckpunkte der Endpuinier €sratlinie liegen wird. Von diesen
Eckpunkten ausgehend konnen die Gratlinien nunrsekiberechnet werden, indem der
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Nachbarpunkt mit dem héchsten Distanzwert als nachiaunkt der Gratlinie gewahlt wird.
Dies wird fortgeftihrt, bis ein bereits berechné&ankt der medialen Achse erreicht wird oder
kein Nachbarpunkt gefunden werden kann, desserarinatert groRer oder gleich dem des
aktuellen Punktes ist.

Durch die Diskretisierung des Feldes kann jedochtimmer ein eindeutiger Nachbarpunkt
gefunden werden. Deshalb wird zusatzlich die Rieptun der die Gratlinie verlauft, eine
entscheidende Rolle bei der Bestimmung des néclisiaktes spielen. Mit Hilfe der Rich-
tung und der Distanzwerte kann nun ein eindeutigehster Gratpunkt bestimmt werden,
womit jedoch noch nicht alle Falle abgedeckt sind.

Hat das Polygon beispielsweise die Form eines Rinder an einer Stelle durchtrennt und
leicht auseinander gebogen wurde, sodass ein biggeeich im Innern entsteht, der nur
durch einen engen Flaschenhals mit dem Rest ddfld&®bg verbunden ist, so wird dieser
Ausgang meist nicht gefunden.

Abb. 5: Polygone mit engen Offnungen, farbige Eckpunkt-Paare definieren Engstelle

Die Idee zur Lésung dieses Problems ist, dass stahe Engstelle immer von einem oder
mehreren Eckpunkt-Paaren des Polygons definied. Wiird also festgestellt, dass die Gratli-
nien mit der obigen Methode nicht vollendet werédénnen, missen diese Engstellen gefun-
den werden. Hierzu werden nun Verbindungsliniensgiven allen Punkten des Polygons ge-
zogen, sofern diese Linien nicht durch das Inne® Rolygons verlaufen. Es genigt hierbei
nur Punkte mit einem Innenwinkel von weniger al®°18u betrachten. Jede dieser Verbin-
dungslinien muss per Definition eine Gratlinie seiden. Ist dies nicht der Fall, kann entlang
der Linie derjenige Punkt mit dem hochsten Distagrzwals ein Punkt der Gratlinie definiert
werden. Sobald dann die Richtung der Gratliniei@seim Punkt bestimmt ist, kann von hier
ausgehend, nach dem oben beschriebenen, rekuRiveaip, in beide Richtungen die Gratli-
nie gezeichnet werden.

2.4 Randbedingung Konnektivitat

Eine der zentralen Randbedingung, welche in dikdmit betrachtet wurde, ist die Konnekiti-
vitat. Es gibt hierbei zwei mdgliche Betrachtungssa, welche beide ihre Berechtigung ha-
ben. Entweder soll die Restflache zu jedem Zeitpumkinem Stiick zusammenhangend sein
oder die Umgebung des Feldes wird als Teil derflRReke betrachtet, womit die Bedingung
der Konnektivitat darauf reduziert werden kann,sdasn jedem Punkt der Restflache eine
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Verbindung zum Rand des Feldes existieren musgdigenden wurde Letztere als Konnek-
tivitatsbedingung verwendet. Die Algorithmen konroen Bedarf allerdings relativ einfach so
abgeandert werden, dass sie flr die alternativenBadg anwendbar sind. Da aufgrund der
Wahl der Konnektivitatsbedingung die zu bearbeiteRéstflache nicht mehr zwangslaufig an
einem Stick sein muss wird, nun ein Teilgebietrdeft.

Definition Teilgebiet

Eine Teilgebiet TG ist ein zusammenhangender Tailvam Algorithmus zu lUberde-

ckenden Restflache. Teilgebiete miussen vollstaselig, dass heil3t, es darf kein Pfad,
entlang noch existierender Punkte der Restflachischen zwei unterschiedlichen Teil-

gebieten existieren. Alle Teilgebiete zusammengenemergeben die Menge der Punk-
te, die noch Uberdeckt werden muss.

Als Ausgangsbedingung wird angenommen, dass di#l&#® zusammenhangend ist. Dies
bedeutet, dass fur alle Teilgebiete eine Verbindtunmg Rand des Feldes existiert. Sollte dies
nicht der Fall sein, kénnen die einzelnen, niclgaznmenhéangenden Restflachen getrennt von
einander betrachtet werden.

Der in dieser Arbeit vorgestellte Algorithmus wiehdenbasiert ablaufen. Da die Konnektivi-
tat zu Beginn gegeben ist, gilt es fir jeden Esaalitt zu zeigen, dass dessen Durchfiihrung
die Konnektivitat der Restflache nicht zerstort. &a solcher Einzelschritt nur lokale Veran-
derungen bewirkt, gentgt es in manchen Fallendaarlokale Umfeld zu betrachten, um die
Konnektivitat zu garantieren. Somit muss nur in destlichen Fallen die komplette Restfla-
che untersucht werden.

Es wurden hierfur zwei sehr dhnliche Algorithmermplementiert. Der Algorithmus basierend
auf der medialen Achse bietet, vor allem bei daggm Féllen, bei denen das lokale Umfeld
keine Schlusse uber die Konnektivitat zulasst,reereblichen Performance-Vorteil. Gleich-
zeitig werden hier jedoch einige Forderungen arPdableminstanz gestellt, die vor allem bei
eventuellen Erweiterungen nicht mehr unbedingt deleistet werden konnen. In Kapitel 7
wird hierauf naher eingegangen.

2.4.1 Algorithmus ohne mediale Achse

Zunachst wird eine lokale Bedingung gesucht, deeKbnnektivitat nach einem Stanzschritt
gewahrleistet. Hierfur definieren wir eine MengenvBunkten, die noch existierenden Nach-
barpunkte.

Definition noch existierender Nachbarpunkt

Ein noch existierender Nachbarpunkt NEN ist ein KRuder beztligliche der Achter-
Nachbarschaft am Stanzkopf anliegt und nach demzStaritt noch Teil der Restflache
sein wird.

Da nur runde Stanzkoépfe benutzt werden, bilderNdi&l Kreissegmenten entlang des Stanz-
kopfrandes. Nun lasst sich sagen, dass die Rdstflédigch nach dem Stanzschritt zusammen-
hangend bleiben wird, wenn sich alle NEN zu einegmzigen Kreissegment zusammenfligen
lassen. Sofern die Konnektivitdt vor dem Stanzsichicht verletzt war, kann sie auch nach
danach nicht verletzt sein, da alle NEN zum glaicheilgebiet gehdren.
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Aufgrund der Festlegung der Konnektivitatsbedinggrig es hierbei einen kleinen Sonder-
fall zu beachten. Obwohl die lokale Bedingung niotitietzt wurde und alle NEN zum glei-
chen Teilgebiet gehdren, kann es geschehen, dasls den Stanzschritt die einzige Verbin-
dung dieses Teilgebiets zum Rand gekappt wird. dDi€all kann dann eintreten, wenn ein
kompletter Randabschnitt vom Stanzkopf Uberdeckd wsollte der Stanzkopf also tUber den
Rand hinausragen, muss die lokale Suche erweitstten.

Ist einer der Punkte, die bei diesem Stanzschifeet werden, ein Randpunkt der Grundfla-
che, so muss zusatzlich sichergestellt werden, aé@sdestens einer der NEN ebenfalls ein
Randpunkt der Grundflache ist. Sollte dies nichtkel sein ist klar, dass ein Randabschnitt
komplett entfernt wurde. Dies bedeutet dann, dasdds entsprechende Teilgebiet eine ande-
re Verbindung zum Rand existieren muss, damit diertektivitat erhalten bleibt.

Kommt es nun zu einer Situation, in der die lok&delingung verletzt wird, kdnnen drei Falle
unterschieden werden:

1) Die nicht zusammenhangenden Kreissegmente, dahdlie NEN definiert werden,
gehdren immer noch zum gleichen Teilgebiet

2) Durch den Stanzschritt wurde eine Teilgebietweizoder mehrere Teilgebiete aufge-
spalten, sodass die Kreissegmente zu verschiedeilgebieten gehoren.

3) Der Sonderfall ist eingetreten, sodass ein Teilgeandglicherweise keine Verbindung
mehr zum Rand besitzt

Nun gilt es eine globale Bedingung festzulegen figiealle drei Falle anwendbar ist. Klar ist,
dass von jedem NEN eine Verbindung zum Rand den@ldche existieren muss. Da jedoch
die NEN bereits zu Kreissegmenten zusammengefluglemy gendgt es, fur jedes der Kreis-
segmente eine solche Verbindung zu finden. Sodtalieser Suche, zusatzlich zum Rand der
Grundflache, eines der anderen Kreissegmente gefuwerden, so muss fir dieses naturlich
keine eigene Suche mehr gestartet werden.

2.4.2 Algorithmus basierend auf der medialen Achse

Wie bereits erwdhnt, kann die mediale Achse alfshittel verwendet werden, um die Kon-
nektivitat der Flache zu gewahrleisten. Um die Kkiineit der Idee zu verstehen, betrachten
wir zunachst, welche Formen die Teilgebiete detfRete annehmen kdnnen.

Definition Extremitat der Restflache

Als eine Extremitat der Restflache wird ein zusamin@mgender Teil dieser Flache be-
zeichnet, der durch einen Schnitt entlang einera@sn, die vollstandig innerhalb der
Restflache verlauft, vom Rest der Restlache abgetreerden kann.

Es gilt nun zu zeigen, dass es in keinem Fall Exteemitat der Flache geben kann, welche
nicht von einer Gratlinie durchlaufen wird. Zu Begihaben wir gefordert, dass das Feld nur
polygonale Locher enthalten darf. Ergo sind allgi®azungen der Restflache zunachst gera-
de Segmente. Die einzigen Extremitaten der Rek#l&ecerden also definiert durch die Eck-
punkte der Grundflache, sowie durch diejenigen Hokpe der Polygone mit einem Innen-
winkel von mehr als 180°. Fur beide Félle wird vaAlgorithmus eine Gratlinie erstellt.
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Solange nun alle verwendeten Stanzkdpfe eine k@enkexm besitzen, was im Falle von aus-
schlie3lich runden Stanzképfen der Fall ist, konneune ,Extremitaten” der Restflache nur an
Stellen entstehen, an denen ein Stanzkopf Ubeakleellen Rand der Restflache hinausragt.
Da auch an diesen Stellen eine Gratlinie erzeugt,vst die geforderte Bedingung zu jeder
Zeit erfillt. Aufgrund dieser Eigenschaft der Rigthe und der Tatsache, dass nur konvexe
Stanzkopfe genutzt werden, lasst sich nun eindddkannektivitdtsbedingung wie folgt for-
mulieren:

1) Liegt kein Punkt, der Teil der medialen Achse istter dem Stanzkopf, bleibt die
Konnektivitat erhalten.

2) Liegt der Stanzkopf Uber der medialen Achse, gees, entlang der Nachbarpunkte
des Stanzkopfs eine Verbindung zwischen denjenigfeN zu finden, die bisher Teil
der medialen Achse waren. Alle anderen Nachbarpumkissen in diesem Fall nicht
mehr beachtet werden.

Zu 1) : Der Zusammenhang der Restflache wird gelzeun zerstort, wenn ein Teil der Rest-
flache vom Rest abgetrennt wird. Um dies mit ein@mvexen Stanzkopf zu erreichen muss
es sich bei dem abgetrennten Bereich um eine Eiéteder Flache handeln. Da alle Extre-
mitéten von einer Gratlinie durchlaufen werden,rkéei einem Stanzschritt, bei dem keine
Gratlinie durchtrennt wurde, auch nichts abgetreverden.

Zu 2) : Tritt dieser Fall ein, wurden eine oder mezl Gratlinien durchtrennt. Es kdnnte somit
sein, dass der Stanzschritt die Verbindung zu eifeinder Restflache, welche durch eine
dieser Gratlinien definiert wurde, komplett dureimint hat. Existiert allerdings entlang der
Nachbarpunkte eine Verbindung zwischen den NENTdieder medialen Achse sind, bleibt
auch in diesem Fall die Konnektivitat gewahrt, Ha &ratlinien zum selben Teilgebiet geho-
ren.

Der selbe Sonderfall, der beim einfachen Algoriterbereits erwéhnt wurde, muss auch hier
beachtet werden. Die Lésung hierfur lasst sich gadeins zu eins Ubertragen, sodass nicht
weiter darauf eingegangen werden muss.

Wird bei 2) keine Verbindung gefunden oder tritt &nderfall ein, muss, genau wie beim
anderen Algorithmus, eine globale Suche gestarsgtien. Hier kommt nun der eigentliche
Vorteil der Gratlinien zum tragen. Wahrend beimfathen Algorithmus die komplette Rest-
flache durchsucht werden muss, hat man nun mitGtatlinien einen vorgezeichneten Weg
und ist in der Lage, wesentlich effizienter einebiledung zum Rand zu finden, falls eine sol-
che existiert.

2.4.3 Anderung der Konnektivitatsbedingung

Sollte die alternative Konnektivitatsbedingung bewgt werden, missen die Algorithmen
leicht abgeéndert werden. Bei der lokalen Beding@ingdert sich nichts, abgesehen vom be-
schriebenen Sonderfall, welcher hier keine Rollémsgpielt.

Bei der globalen Suche sieht dies jedoch andersCmrsRand gilt nun nicht mehr als Teil der
Restflache und spielt daher keine Rolle mehr. Ebemsd die Definition der Teilgebiete
Uberflissig, da die Konnektivitatsbedingung nun moch ein solches Teilgebiet zuldsst, was
per Definition genau der Restflache entspricht.
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Beim Algorithmus ohne Gratlinien kann die lokaledBgyung tGbertragen werden auf die glo-
bale Suche. Ziel ist es, eine Verbindung zwischHiem &NEN zu finden. Kann dies lokal nicht
erreicht werden, wird global nach einer solchenugets

Beim Algorithmus basierend auf der medialen Achsesgsen auch hier nur die Punkte der
Gratlinien betrachtet werden. Die globale Bedinglanget nun, dass entlang der Gratlinien,
von jedem NEN, der Teil der medialen Achse ist,Weg zu jedem anderen von diesen NEN
gefunden werden muss.
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3 Uberdeckungsalgorithmus

In diesem Kapitel wird der eigentliche Uberdeckuaigsrithmus vorgestellt. Zunachst wird
die Grundidee fiur das Vorgehen néher beleuchtetaErawird auf den Ablauf des Algorith-
mus eingegangen und die einzelnen Schritte werdgillcert beschrieben.

3.1 Greedy Strategie

Als Ausgangspunkt fur den Lésungsalgorithmus wwetdee Greedy-Strategie gewahlt. Der
zentrale Aspekt einer solchen Strategie ist, dakstsveise immer derjenige Folgezustand
ausgewahlt wird, der zum aktuellen Zeitpunkt dedl3¢ggn Gewinn verspricht. Um dies um-
setzten zu kdnnen, miussen also Zustande und Zsstaerddnge definiert werden. Zusatzlich
wird fur die Entscheidung, welcher Folgezustand geifiten Gewinn verspricht, noch eine
Bewertungsfunktion benotigt.

Definition Zustand

Ein zustand wird hier durch die Form der Restflauhd den zuletzt benutzten Stanz-
kopf bestimmt. Zu Beginn des Algorithmus wird angemmen, dass der grof3tmogliche
Stanzkopf zuletzt benutzt wurde. Ein Zustand idtigijiwenn die Restflache, entspre-
chend der gewahlten Konnektivitatsbedingung, zusanin@éngend ist.

Definition Zustandsiibergang

Ein Zustandsibergang ist ein Stanzschritt, derldangsen Stanzkopf und dessen Positi-
on auf der Grundflache bestimmt wird. Ein solchestandslibergang ist giltig, wenn er
einen gultigen Zustand in einen andern gultigentahd tberfuhrt und wenn mindes-
tens 50% der vom Stanzkopf Giberdeckten Flache heitlder Restflache ist.

Ausgehend von einem gultigen Zustand sollten ngerglich alle méglichen Nachfolgezu-
stande, die durch einen beliebigen gultigen Stdmizs@rreichbar sind, miteinander vergli-
chen werden. Es ist abzusehen, dass die Zahl diuesdrfolgezustande, abhangig von der
GroR3e der Grundflache und der Anzahl der moglicReamzschritte, sehr grof3 werden kann.
Damit die Laufzeit des Algorithmus im annehmbarehiRen bleibt, muss deshalb fur jeden
Zustand eine Vorauswahl unter den giltigen Zustisimelgangen getroffen werden.

Der nachste Schritt besteht nun in der Bewertumgrdigjlichen Folgezustande. Hierbei mus-

sen also alle Restflachen, die diesen Zustandeprechen, untersucht werden.
Betrachtet man jedoch die Stanzschritte, so féfit dass diese nur lokale Anderungen an der
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Restflache vornehmen. Daher scheint es auch sinmeol die lokalen Veranderungen zu be-
werten, anstatt jedes mal aufs neue die kompletstflache zu betrachtet. Aus diesem Grund
wird hier vom eigentlichen Vorgehen eines Greedgetithmus abgewichen, indem NICHT
die Zustande, sondern die Zustandsibergange béwentgen. Dies birgt zwar das Problem,
dass Anderungen an verschiedenen Ecken der RéstfEzhwierig miteinander zu verglei-
chen sind, der bendtigte Zeitaufwand fur die Bewmgtlasst sich auf diese Weise jedoch
stark reduzieren, da nur noch diejenigen PunkteHied werden missen, die unter dem
Stanzkopf oder in dessen direkten Nachbarschagiie

Da nur eine kleine Region, ndmlich die Stanzpasisielbst, betrachtet werden muss, mussen
fur die Bewertung auch keine Anderungen an derflRebe vorgenommen werden. Es ge-
nigt, die aktuelle Beschaffenheit der Flache aarembglichen Position zu betrachten.

3.2 Ablauf des Uberdeckungsalgorithmus

Mit Hilfe der nun getatigten Voruberlegungen karer dblauf des Algorithmus angegeben
werden. Es wird sich hierbei um ein rundenbasieviegehen handeln. Jede Runde stellt
hierbei einen einzelnen Stanzschritt dar und kardrei Abschnitte unterteilt werden :

1) Suchen des Stanzschritts, der den grof3ten Brévgpricht.
2) Durchfihrung des Stanzschritts.

3) Uberpriifung der Restflache auf mogliche Probleffest und Beseitigung dieser Stel-
len.

Der dritte Punkt ist eine Notwendigkeit, die siaksaler Anderung der Bewertungsfunktion,
hin zur Bewertung der Zustandsiibergange ergibtdBeBeschreibung der Bewertungsfunk-
tion wird hierauf naher eingegangen.

Der Algorithmus wird nun diese drei Schritte solardrchlaufen, bis die komplette Restfla-
che entfernt wurde.

3.2.1 Finden des erfolgversprechendsten Stanzschritt  es

Die Vorauswahl der mdglichen Stanzschritte wird zovei Faktoren bestimmt. Wie bereits
erwahnt, bieten sich die Gratlinien als méglichan@positionen an, da sie eine Art ,Mitte"
der Flache darstellen. Deshalb wird sich der Athonus auf die Punkte der medialen Achse
als mogliche Stanzpositionen beschranken.

Wenn die mediale Achse die Mitte der Flache ddtstal stellen die Endpunkte dieser Linien
ebenfalls eine besondere Klasse von Punkten dachlRlie diversen Forderungen an die Pro-
bleminstanz sind diese Punkte namlich genau dggenEckpunkte der Restflache, an denen
die Randsegmente einen Innenwinkel der Flache vemger als 180° definieren. Ein sehr
nahe liegender Gedanke ist nun, die RestflachedeonEcken ausgehend Stiick fur Stick zu
verkleinern. Aus diesem Grund wird eine weiteredeoung aufgestellt, dass namlich immer
ein solcher Eckpunkt der Restflache, also der Enkipeiner Gratlinie, unter dem Stanzkopf
zu liegen hat.
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Fur jeden maoglichen Stanzschritt, der nicht von\@eauswahl eliminiert wurde, missen nun
folgende Dinge uberpruft werden:

* Handelt es sich hierbei um einen gultigen Stanas¢Austandsibergang)
* Welche Bewertung erhéalt dieser Stanzschritt

Mit Blick auf die Laufzeit wird hierbei der Gultigktstest flr einen Stanzschritt unterteilt. Zu-
nachst wird gepruft, ob gentigen Material unter daanzkopf liegt. Bevor jedoch getestet
wird, ob es sich beim entstehenden Nachfolgezustemdeinen gultigen Zustand handelt,
wird die Bewertung der Stanzposition berechnet. Wenn die Bewertung besser ist als die
von allen anderen bis dato getesteten gultigernzStamitte, wird der Nachfolgezustand naher
betrachtet.

Der Test, ob gentigend Material unter einem StarfZieyt, ist trivial und wird deshalb nicht
naher ausgefuhrt. Fur die Bestimmung der Glltigegies Zustandes wird der Konnektivi-
tatstest bendtigt, der bereits in Kapitel 2.4 nédbetrachtet wurde. Es fehlt somit nur noch
eine Bewertungsfunktion fur die VervollstandigungsdAlgorithmus, welche im Folgenden
Schritt fir Schritt aufgebaut wird.

3.2.1.1 Bewertungsfunktion

Angefangen bei der einfachsten Idee, werden magkiobleme nacheinander betrachtet und
es wird versucht, die Funktion so abzuandern, des® umgangen werden kdnnen.

Der Ausgangspunkt der Funktion ergibt sich durcktrd&ten der Problemstellung. Je mehr
Flache pro Arbeitsschritt Gberdeckt wird, desto myenArbeitsschritte werden benétigt, um
die komplette Flache zu entfernen. Daher bietetigdsan, zunachst die Summe aller Punkte,
die bei einem Stanzschritt entfernt werden, als@awmwg zu wahlen.

Fur die Betrachtung des Problems ohne Nebenbedyeguscheint dieses Vorgehen sehr er-
folgversprechend. Werden die Nebenbedingungen fedoteinbezogen, zeigen sich schnell
einige offensichtliche Schwachen. Es wird nach Nibddeit mit dem grof3ten zur Verfiigung
stehenden Stanzkopf irgendwo auf der Restflacheageiswerden, sodass die Flache unter
dem Stanzkopf moglichst vollstdndig mit Materiatlbekt ist. Aufgrund der Konnektivitats-
bedingung muissen allerdings am Rand dieser Staitipposnmer kleine Stege zurtickblei-
ben, damit auch die Eckpunkte der Restflache mmt Best zusammenhangend bleiben. Auf-
grund der zweiten Randbedingung werden diese Stage am Ende des Algorithmus mit
wesentlich kleineren Stanzképfen entfernt werdessai, was sehr viele Stanzschritte erfor-
dern wird.

Y

Abb. 6: Einfache Bewertungsfunktion (ohne Beachtung von Gratlinien-Endpunkten)
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Durch die Vorbedingung, dass immer ein Gratliniemdiginkt unter dem Stanzkopf liegen
muss, wird diesem Problem bereits entgegengewit&tein weiteres Mittel zur Vermeidung
dieser Artefakte bietet es sich an, die Entfernumig Randpunkten zu belohnen. So soll eine
Stanzposition, die am Rand der Restflache liegtdiagen sogar etwas Uberschneidet, besser
bewertet werden als eine Position in der Mitte,hawenn in der Mitte mehr Flache wegge-
stanzt wird. Hierbei hilft die Information tber distanz eines Punktes zum Rand der Rest-
flache, welche beim Erstellen der Gratlinien ber&érechnet wurde. Anstatt die entfernten
Punkte einfach zu zahlen, kénnen diese je nach llage gewichtet werden. Je néher ein
Punkt am Rand liegt, desto ,wertvoller soll errsei

Die eben bereits genutzte Vorbedingung kann zusktmbch verstérkt werden, indem End-
punkte von Gratlinien zusatzlich in der Bewertunggtion belohnt werden. Es ist dann fur
eine Stanzposition von besonderem Vorteil, weniclylenehrere dieser Punkte weggestanzt
und somit ganze Randsegmente auf einmal entfemutene

Eine weitere Degeneration des Feldes, die es waiglich zu verhindern gilt, sind lange
enge ,Schlauche®, wie in Abb.7 illustriert.

Abb. 7: Langer, enger Bereich der Restfliche, mit Ausgang rechts

Um solche zu erkennen, werden Gratpunkte mit setinger Distanz zum Rand der Restfla-
che besonders gekennzeichnet und auch hier beti@hrlgorithmus das Entfernen solcher
Punkte. Leider genugt dies nicht, um all diesed-all vermeiden. Deshalb gilt es zusatzlich
herauszufinden, wie ein solcher ,Schlauch® entstatenn. Zwei unterschiedliche Falle kon-
nen hierbei unterschieden werden.

Abb. 8: Spitze Zunge der Restflache
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1. Fall:

Nach einem Stanzschritt bleibt eine sehr spitaggliéhe Zunge stehen (Abb.8). Es ist Klar,
dass ein Stanzschritt, der diese Zunge entfermtgddrebisherigen Bewertungsmethode sehr
schlecht abschneiden wird. Zwar sind die Punkte alhe am Rand, bekommen demnach
eine hohe Bewertung und die Gratpunkte haben elleafae geringe Distanz, dies kann aber
kaum ausgleichen, dass hier nur mit einem sehnéieStanzkopf gestanzt werden kann und
dementsprechend nur wenige Punkte entfernt werdandn. Es bleibt die Mdglichkeit, an
den bisherigen Schrauben zu drehen, um das Emtfawieher Zungen fir den Algorithmus
attraktiv zu machen. Ab einem bestimmten Punkt wicth dies allerdings auf das Gesamter-
gebnis sehr negativ auswirken, da die Belohnungdég Entfernen von maoglichst vielen
Punkten im Vergleich zu den Belohnungen fir dieralsneregelungen untergehen wird. Der
Algorithmus wirde in diesem Fall nur mit kleinerasten am Rand der Restflache arbeiten
und nicht versuchen, mdglichst grol3e Flachen auhal zu entfernen. Deshalb wird ange-
strebt, eine solche Situation friihzeitig zu erkenord sie unabhangig von der Bewertungs-
funktion zu entfernen. Sie muss deshalb hier mahter beriicksichtigt werden.

2. Fall:
Die zweite Moglichkeit, wie ein solcher ,Schlauatritstehen kann, ist nicht so einfach zu er-

kennen. Er tritt ein, wenn eine breite Stelle destRache durch einen Stanzschritt verengt
wird.

Abb. 9: Entstehung einer Engstelle (griin), neue Gratlinien-Endpunkte (gelb)

Es ist klar, dass eine solcher Stanzschritt grualisi nicht schlecht bewertet werden wird.
Es werden viele Punkte entfernt und dabei auch sotithe, die nahe am Rand liegen, wenn
auch nicht ganz am Rand. Auf beiden Seiten der tElgdinden sich nun gro3ere Teile der
Restflache und nattrlich erzeugt der Stanzschuittj@der Seite der Engstelle einen neuen
Gratlinien-Endpunkt. In ungtinstigen Fallen kanmes geschehen, dass diese Engstelle ver-
langert wird, indem an einem der neu erzeugten &mkte weitergearbeitet wird.

Abb. 10: Verldngerung der Engstelle (griin)
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Um einen solchen Fall frihzeitig zu erkennen und/etindern, wird eine neue Bedingung

eingefuhrt: Fur jeden Stanzschritt missen die AhdahPunkte mit der Distanz i grof3er sein

als die Anzahl der Punkte mit der Distanz i+1. el einer Verletzung dieser Bedingung,

fur kleine i, die Bewertung des Stanzschrittesksterunter gesetzt, wird die Wahrscheinlich-
keit der Entstehung einer solchen Engstelle reduZdes weiteren sorgt diese Bedingung da-
fur, dass sehr spitze Ecken, die entstehen konfals eine Stanzpostition zu weit innerhalb

der Restflache liegt, verhindert werden.

Eine alternative oder zuséatzliche Bedingung, die aiolche Entwicklung verhindern kénnte,

ware folgende: Klar ist, dass bei einem Stanzdcldetr die Restflache verengen wird, relativ
viel ,neuer’ Rand entsteht. Der Algorithmus soliteshalb wenn mdglich den Rand verkuir-
zen, anstatt ihn zu verlangern. Somit kann einZ&Shritt zusatzlich nach der Grol3e der neu
entstehenden Randsegmente bewertet werden.

Zusammenfassend sollten folgende Punkte in die Bang eines Stanzschrittes einflie3en:

* Mit jedem Stanzschritt sollte so viel Material wigglich von der Restflache entfernt
werden.

* Der Stanzkopf sollte méglichst selten gewechsettiese.

* Die Restflache sollte so breit wie méglich gehaltesrden.

* Sehr spitz zulaufende Ecken sollten wenn moglichnexden werden.

* Wird trotzdem eine spitz zulaufende Ecke erkannissrsie sofort beseitigt werden.

Die ersten beiden Punkte sind durch die Aufgab#uste gegeben, die anderen lassen sich,
wie oben beschrieben, aus der ersten Forderungeable

Klar ist, dass sich die meisten dieser Regeln gagjeg beeinflussen. Da jede Probleminstanz
anders ist, wird sich keine optimale Gewichtung Regeln finden lassen, fur die immer ein
sehr gutes Ergebnis berechnet wird. Fir jede Awgggmosition wird eine andere Gewichtung
die optimale sein. Eine L6sung hierfur wére, dasgfamm mehrfach mit unterschiedlichen
Gewichtungen zu starten und das beste Ergebnisahlew In Kapitel 7 wird ein mdglicher
Lésungsvorschlag kurz angesprochen.

3.2.2 Durchflhrung des Stanzschrittes

Ist der bestmogliche nachste Stanzschritt berechnet dieser durchgefuhrt. Die Punkte der
Restflache, die unterhalb es Stanzkopfes liegerjemeentfernt und die in Kapitel 2.3 vorge-
stellte Funktion zur Aktualisierung der Distanzvweeund der medialen Achse wird durchlau-
fen.
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3.2.3 Suche nach potenziellen Problemstellen

Wie in Kapitel 3.2.1 bereits angedeutet soll hidqaant werden, wenn die Gefahr besteht,
dass eine spitz zulaufende Ecke der Restflacheormalen Bewertungssystem keine Beach-
tung mehr findet. Wird ein solcher Fall erkanntijteadiese Ecke umgehend beseitigt werden.
Dies muss geschehen, bevor die nachste Stanzposdith den regularen Regeln des Algo-
rithmus ermittelt wird, damit die Situation bergjnist, bevor sie sich im schlechtesten Fall
noch verschlimmern kann.

Die hier umgesetzte Idee basiert auf den Endpurdeei@ratlinien. Logischerweise muss am
aul3ersten Ende einer spitz zulaufenden Ecke eamesoEndpunkt liegen. Kann ein solcher
Punkt nicht mehr durch einen Mittelgrof3en Stanzlepyfernt werden, gilt er und seine Um-
gebung als gefahrdet. FUr den nun folgenden Sthnitsgilt, dass dieser Endpunkt entfernt
werden muss. Es ist somit nicht nétig, die kompldRestflache nach dem bestméglichen
Stanzschritt zu durchsuchen, es genlgt die ndhexgebung des Punktes zu betrachten. Die
Bewertungsfunktion hingegen bleibt die selbe.
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4 Implementierung

Nachdem die grundlegenden Ideen erklart wurderd imirfolgenden etwas mehr ins Detail gegan-
gen und es werden einige zentrale Aspekte der gaéierung vorgestellt.

Als Programmiersprache wurde C++ verwendet uné&ataicklungsumgebung kam der QtCreator
zum Einsatz, welcher sich aufgrund seines GUI-Desig und der Qt-Klassenbibliotheken fir das
Arbeiten mit geometrischen Strukturen angeboten hat

Im folgenden wird die Darstellung der Problemingté&arz n&her besprochen, bevor einige Funk-
tionen und Algorithmen im Detail betrachtet werden.

4.1 Probleminstanz

Zur Darstellung der Arbeitsflache wurde ein zweiditeionales Feld verwendet. Die daraus resul-
tierende Diskretisierung der Flache auf ein Ragtergoirgt einige Probleme, auf die bereits in Ka-
pitel 2 eingegangen wurde, ist aber einfach zu halpen und ein intuitives Modell. Auf eine alter-
native Loésung zur Diskretisierung wird in Kapiteh&her eingegangen.

Fir jeden Punkt der Flache werden nun folgendenmdtionen gespeichert:

bool exist
bool akt;
int dis;

boolisGrat
bool lowGratPoint
bool gratEndPoint

Die Variable ,exist" gibt dartiber Auskunft, ob deunkt noch zur Restflache gehért oder ob er be-
reits entfernt wurde. ,akt“ wird bendtigt um zu kerdern, dass ein Punkt beim Durchsuchen der
Flache mehrfach besucht wird. ,dis" gibt den Digiaart eines Punktes an.

Die anderen Werte werden fur die Darstellung dediaten Achse verwendet. Ist ein Punkt Teil der
medialen Achse (,isGrat" = true), wird zusatzlicoch vermerkt, ob es sich bei dem Punkt um
einen Gratpunkt mit sehr niedrigem Distanzwert\ratPoint“) oder gar um einen Endpunkt ei-
ner Gratlinie (,gratEndPoint”) handelt.
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Bei der Initialisierung des Feldes wird ein zweidimsionaler Array erstellt, in dem alle Punk-
te zunachst noch existieren. Als Distanzwert deejegen Punkte wird die minimale Distanz
zum Rand des Feldes gewahlt. Hierbei ist klar, das®Pistanzwerte zweier Nachbarpunkte,
basierend auf der Vierer-Nachbarschaft, sich h@clssatm eins unterscheiden.

Die Gratlinien werden hier zunachst im 45° Winkehvden Eckpunkten weglaufen. Zwi-
schen den Stellen, an denen sich jeweils zwei di@satlinien treffen, wird zusatzlich noch
ein senkrechtes oder ein waagerechtes Gratlinigm&et liegen, sofern das Feld keine qua-
dratische Form besitzt. In einem Quadrat werdem alie vier von den Eckpunkten ausgehen-
den Linien in einem Punkt in der Mitte treffen.

Nachdem dann alle Werkstiicke nacheinander entfeunden, existieren auf dem Feld nur
noch diejenigen Punkte, die Teil der initialen Réshe sind.

Da alle verwendeten Stanzkdpfe rund sein werdeniggn fur ihre Darstellung im Pro-
gramm der Mittelpunkt, welcher auch gleichzeitig #losition eines Stanzkopfes angibt, so-
wie der Radius. Mit diesen beiden Werten kann Werecwerden, ob ein diskretisierter Punkt
P vom Stanzkopf Uberdeckt wird oder nicht. Dabedvdie euklidische Distanz zwischen P
und dem Mittelpunkt mit dem Radius verglichen.ds Distanz kleiner als der Radius, liegt
der Punkt innerhalb des Kreises, sonst nicht. ZAcluen ist hierbei die Rundung. Wird ohne
Rundung verglichen, besitzen die Kreise (vor alldeine Kreise) eine etwas merkwirdige
Form. Aus diesem Grund wird die euklidische Distgamundet und erst dann mit dem Radius
verglichen, welcher per Definition bereits ganzmaidt.

Abb. 11: Kreise mit Radien 2, 6 und 15; links mit Rundung, rechts ohne

4.2 Aktualisierung der medialen Achse

Hier wird nun ein detaillierter Blick auf die Aktlisierung der Distanzwerte geworfen. Diese
Funktion liefert gleichzeitig die neu entstehen@atlinien, die zwischen den verschiedenen
herausgestanzten Figuren verlaufen.

Beim Entfernen einer geometrischen Figur von dem@fiache werden die Randpunkte der-
selben in einer Liste gespeichert, welche die Biéisidiese Funktion darstellt. In einem FiFo-
Verfahren (First in - First out) wir diese Listemnabgearbeitet. Dabei wird bei jedem Durch-
lauf zunachst das erste Element aus der Listeranhtfied sein Distanzwert ermittelt (disA).
Daraufhin werden alle seine Nachbarpunkte bestirdvidhtig ist hierbei, dass nur diejenigen
Nachbarpunkte bearbeitet werden, die im Laufe désellen Stanzschrittes noch nicht be-
trachtet wurden. Auf diese Weise wird sichergestéliss nur vom Stanzkopf ausgehend nach
aulBen gearbeitet wird. Je nach Distanzwert eineh micht betrachteten Nachbarpunks
(disN) werden nun 3 Falle Unterschieden:
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1. Fall : disA < disN

Tritt dieser Fall ein, bedeutet dies, dass dieddstdes Nachbarpunktes zum neuen Rand klei-
ner oder gleich seiner Distanz zum alten RandDist. Distanzwert des Punktes wird in die-
sem Fall aktualisiert und auf disA + 1 gesetzt.d2a Distanzwert des Punktes vom neuen
Rand bestimmt wird, muss mit ihm weitergearbeitetden. Deshalb wird er hinten an die
Liste angehangt.

2. Fall : disA = disN

Da bereits sichergestellt ist, dass der Nachbatpuméh nicht bearbeitet wurde, ist klar, dass
sein Distanzwert von einem alten Randpunkt ausrbegtworden ist. Die Distanz des aktu-
ellen Punktes hingegen wurde vom neuen Rand autedtn8ind beide Distanzwerte gleich
bedeutet dies, dass die eigentliche Gratlinie zZwvesalen beiden Punkten verlaufen muss. Fir
einen solchen Fall wurde festgelegt, dass einebeiden Punkte zu einem Punkt der diskreti-
sierten medialen Achse bestimmt werden muss. E8 wer immer der aktuelle Punkt ge-
wahlt.

Zusatzlich muss eine kleine Besonderheit beacheetlen. Da alle Randpunkte der Figur in
der Liste gespeichert wurden, kann es vorkommess diam Nachbarpunkt N eines Randpunk-
tes A bereits in einem friheren Schritt entferntaeu Da der Punkt N noch nicht als bearbei-
tet markiert ist und, genau wie der Punkt A, eiastanzwert von Null besitzt, wird der
Punkt A vom Algorithmus als Gratpunkt erkannt, wastrlich nicht der Fall sein sollte. Aus
diesem Grund wird eine Ausnahme eingefiihrt, sodas$-all disA = disP = 0 einfach tber-
gangen wird.

3. Fall : disA > disN

Fur diesen Fall muss gezeigt werden, dass die lGieq
disA=disN + 1

immer wahr ist:

Das Feld wird so initialisiert, dass sich die Disteverte eines auf Basis der Vierer-Nachbar-
schaft benachbarten Punktpaares um hochstens mmscheidet. Diese Bedingung soll nun
nach jedem Stanzschritt erfullt sein. Im Verlau$ édégorithmus werden die Distanzwerte nur
durch das Entfernen eines Punktes (Distanzwert adfd\ull gesetzt) und durch die aktuell
besprochene Funktion geandert. Indem alle Randpwiker Figur, nach dem Entfernen der-
selben, an diese Funktion Ubergeben werden, oldegtlein ihr dafir zu garantieren, dass
die obige Bedingung auch nach dem Stanzschrittewvigdltig ist.

Zunachst kann festgestellt werden, dass es einetXang der Bedingung nur entlang derjeni-
gen Punkte geben kann, die in der hier verwendatta gespeichert sind. Gleichzeitig gilt,
dass bei einer solchen Verletzung der Punkt aud.idex stets den kleineren der beiden Di-
stanzwerte besitzt. Wird eine Verletzung vom Algorius erkannt, wird sie aufgehoben, in-
dem der Distanzwert des Nachbarpunktes verringed (giehe 1.Fall). Somit wird sich der
Distanzwerte eines Punktes niemals erhéhen. Fanj@dinkt, der neu in die Liste aufgenom-
men wird, gilt demnach, dass sein Distanzwert \@rAlfnahme grol3er oder gleich seinem
neuen Distanzwert ist.
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Nehmen wir nun an wir befinden uns im 3.Fall undjiéts
disA > disN + 1.

Wir wissen, dass der Distanzwert des aktuellen fsnkor seiner Aufnahme in die Liste gro-
Ber oder gleich dem jetzigen Distanzwert war.

disA < disA_alt

Weiter wissen wir, dass sich die alte Distanz umhistens eins von der Distanz seines Nach-
barpunktes unterschieden hat.

disA_alt < disN + 1
Aus diesen beiden Gleichungen ergibt sich:

disA < disN + 1,
was ein Widerspruch zur getéatigten Annahme ist. iSistgezeigt, dass die Gleichung
disA=disN + 1

fur den dritten Fall immer zutreffend ist und diestanz des aktuelle Punktes zum alten Rand
genau der Distanz zum neuen Rand entspricht. Dieieldd Punkt ist somit ein eindeutiger
Punkt der medialen Achse.

4.2.1 Sonderfall nicht konvexe Polygone

Nun mussen noch diejenigen Gratlinien berechnetiererdie von verschiedenen Segmenten
eines einzelnen Polygons definiert werden. Wie iteefestgestellt wurde, werden diese Grat-
linien immer in einem Eckpunkt des Polygons endi@ssen Innenwinkel grol3er als 180° ist.
Es bietet sich deshalb an, alle diese Eckpunkté’dBgyons zu suchen und von diesen ausge-
hend die Gratlinien zu berechnen.

Die Eckpunkte lassen sich einfach bestimmen, indettang der Segmente des Polygons ge-
laufen und fir jeden Punkt berechnet wird, ob dandRdes Polygons hier einen Links- oder
einen Rechtsknick beschreibt. Wird im Uhrzeigergietaufen, werden diejenigen Eckpunkte
gespeichert, die einen Linksknick beschreiben, aridks die Eckpunkte mit einem Rechts-
knick.

Fir jeden der so ermittelten Punkte muss als négltse Richtung bestimmt werden, in die
die hier endende Gratlinie verlauft. Hierzu wird deiRenwinkel des Polygons am Eckpunkt
P betrachtet, welcher naturlich kleiner als 180f seuss. Dieser Winkel wird von den beiden
Segmenten des Polygons definiert, die sich in feetre Die zu diesem Winkel gehdrende
Winkelhalbierende bestimmt genau die Mitte zwisckdem Segmenten und definiert somit
auch die Richtung der Gratlinie. Der erste Punét,alf dieser Winkelhalbierenden liegt und
noch Teil der Restflache ist, ist demnach der Enkpder Gratlinie. Zusatzlich zum End-
punkt wird noch dessen Vorganger in Richtung dégttcktes des Polygons gespeichert, wo-
mit die Richtung der Gratlinie implizit festgehaltevird. Ist der Winkel relativ grof3, wird die-
ser zweite Punkt der Eckpunkt selbst sein. Beinklen Winkeln ist dies jedoch nicht
zwangslaufig der Fall.
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Abb. 12: Bestimmung des ersten Punktpaares an den Eckpunkten eines Polygons

Diese beiden Punkte bilden nun ein Paar, welches @nvollendete Gratlinie definiert. Der
Algorithmus berechnet zunéchst alle diese Paaeeyat einem der Eckpunkte des Polygons
definiert werden und speichert diese in einer Listor damit begonnen wird die Gratlinien
zu zeichnen.

Sind alle Ecken des Polygons bearbeitet worderq wdie Liste der Punktpaare Schritt fur
Schritt abgearbeitet. Mit Hilfe eines solchen Paddsst sich der weitere Verlauf der Gratlinie
abschatzen. Da eine solche Gratlinie grundsatX’aihe plotzlichen Richtungsanderungen
aufweist, kann davon ausgegangen werden, dassdgnelrei, dem richtungsbestimmenden
Punkt gegeniberliegenden Punkte, die FortsetzunGdlinie sein wird.

Punkt zum bestimmen

der Richtung . Letzter Gratpunkt . Méogliche Positionen des nichsten Gratpunktes

Abb. 13: Bestimmung des nédchsten Gratpunktes
Es gilt demnach herauszufinden, welcher der Pumktevahrscheinlichsten ein Gratpunkt ist.
Hierzu werden die Distanzwerte dieser Punkte eeitiitlisL, disM und disR. Es werden nun
folgende Falle unterschieden:
1. Fall : Einer der Distanzwerte ist echt grol3erdaé beiden anderen

In diesem Fall wird der Punkt mit dem hochsten &ngtvert als neuer Gratpunkt ge-
wahlt.

2. Fall : Alle Distanzwerte sind gleich grof3
Hier wird der mittlere Punkt als nachster Gratpuhédiniert werden.
3. Fall : (disM < disL) und (disM < disR)

Hier wird die Gratlinie gespalten und es werdenizveeie Punktpaare erzeugt.
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4. Fall : disR = disM > disL

Hier wird der rechte Punkt als neuer Gratpunktibest. Da disL echt kleiner als disM
ist, kann die Gratlinie nicht direkt durch den terttn Punkt laufen. Sie verlauft also
entweder zwischen dem mittleren und dem rechterktRagrer sie verlauft direkt tber
den rechten Punkt. In beiden Fallen ist die Benegrdes rechten Punktes korrekt.

5. Fall : disL = disM > disR

Hier wird der nachste Gratpunkt der linke Punkhsaufgrund der selben Uberlegung
wie im vierten Fall.

Nun kann mit dem neuen Punktpaar, bestehend aierteGratpunkt und neu berechnetem
Gratpunkt, das beschriebene Verfahren rekursivueragfgerufen werden. Dies wird so lange
wiederholt, bis einer der in Frage kommenden nduankte bereits ein Gratpunkt ist. In die-
sem Fall ist die Gratlinie fertig gezeichnet.

Wichtig ist allerdings zu erwahnen, dass eine @iatinur dann fortgefuhrt werden darf,
wenn der Distanzwert des neu berechneten Punktdiegioder gleich dem des aktuellen
Punktes ist. Wird dies nicht beachtet kdnnen votatsche Gratlinien entstehen, wie in
Abb.14 gezeigt wird.

Abb. 14: Falsch berechnete Gratlinie wegen Nadelohr

Aufgrund dieser Einschrankung ist klar, dass dialiale Achse in Abb.14 nicht vollendet
werden kann, da der Ausgang bei B einem Nadeldiclgl und die Gratlinie, die dort hin-
durchfuhrt, kleinere Distanzwerte aufweist als @ratlinie bei A. Man wird folglich mit dem
bisherigen Vorgehen nie von A nach B gelangen.digses Problem gilt es also noch eine L6-
sung zu finden. Zuvor wird jedoch ein weiterer Sakall untersucht.

In Abb.15 kann man erkennen, dass an der Stellee ASdatlinie, die von unten nach oben
verlauft, senkrecht auf die horizontale Gratlini#tt Wird die senkrechte Gratlinie nun zuerst
berechnet, wird der Algorithmus an dieser Stellbrabhen, da alle Nachbarpunkte, die fir
die Fortfihrung der Gratlinie in Betracht gezogesrdaen, einen zu kleinen Distanzwert besit-
zen. Der Algorithmus wird deshalb mit den Gratimger beiden anderen Eckpunkte des Po-
lygons fortfahren. Hat er sich nun bis zum Punkiofgearbeitet, erkennt er dort einen bereits
existierenden Gratpunkt und bricht seine Such@lalwphl die Gratlinie eigentlich nach links
fortgefuhrt werden sollte.
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Abb. 15: Senkrecht zueinander stehende Gratlinien

Aus diesem Grund wird eine zusatzliche Abfragedén Fall einer Gratlinie eingefuhrt, die
senkrecht auf einer anderen Gratlinie steht.

Findet der Algorithmus in der vorgegebenen Richtikemen neuen Gratpunkt wird Uber-
pruft, ob an dieser Stelle eine Gratlinie im Winkeh 90° kreuzt. Hierzu wird fur die beiden
Nachbarpunkte links und rechts vom aktuellen Pgekéstet ob sie als Gratpunkt in der ent-
sprechenden Richtung in Frage kommen. Ist died-dir werden zwei neue Punktpaare er-
stellt und in die Liste der nicht vollendeten Graén geschrieben. Sie werden somit erst am
Ende bearbeitet, nachdem alle Eckpunkte des Patybereits abgearbeitet sind. Auf diese
Weise wird stets vom Rand in Richtung Mitte dertRé&she gearbeitet, womit Komplikatio-
nen vermieden werden konnen.

Kommen wir nun zur Uberbriickung des Nadel6hrs. Bdieeits beschrieben, wird entlang der
Verbindungslinien zwischen allen Eckpunkten dey/dmhs nach moglichen Gratpunkten ge-
sucht. Bei einer sehr grol3en Steigung wird dasiNdumgssegment hierbei in y-Richtung ab-
gelaufen, um eine moglichst feine Abtastung zu mfa@een. Fir jeden Punkt auf diesen Ver-
bindungslinien wird getestet, ob es sich um einéglichen Gratpunkt handelt. Falls ja, wird
er gespeichert.

Abb. 16: Mogliche Punkte der noch nicht gezeichneten medialen Achse (griin)

Nun werden die eben gefundenen Punkte einer navhatkeleren heraus gepickt und unter-
sucht. Ist der Punkt selbst oder einer seiner Naxchbereits ein Gratpunkt, wird er ignoriert
und ein weiterer Punkt wird gewabhlt. Ist dies nidet Fall, wird die Richtung der Gratlinie
bestimmt, die durch diesen Punkt verlauft. Diesatie wird dann vom Punkt ausgehend in
beide Richtungen gezeichnet, bis eine bereitsiesgside Linie erreicht wird. Auf diese Wei-
se werden alle Punkte abgearbeitet. Die meistektBuler Liste werden hierbei jedoch igno-
riert werden, da in den meisten Fallen nur ein Pbeko6tigt wird um die Linie zu zeichnen.
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4.2.2 Erkennen eines Gratpunktes / Bestimmung der Ri  chtung einer
Gratlinie

Bisher wurde nicht darauf eingegangen, wie ein gt als solcher erkannt werden kann
und wie sich die Richtung der Gratlinie durch eifmkt bestimmen lasst. Hierfir muss die
Umgebung des Punktes abgetastet werden. AngenomendPunkt P ist Teil einer Gratlinie.
Wird nun eine Gerade durch P gezogen, die im Wiakal 90° zur Gratlinie liegt, so missen
alle Punkte auf dieser Geraden Distanzwerte hatierkleiner oder gleich dem Distanzwert
von P sind. Um die Bedingung mdglichst lokal festaghen betrachten wir nur finf auf die-
ser Geraden nebeneinander liegende Punkte, wothei mittlere der finf sein soll. Um nun
zu verhindern, dass auch falsche Punkte als m@gfBratpunkte erkannt werden, gentgt die
Forderung nach ,kleiner-gleich” fur die vier Punktieht mehr. Fir die beiden Punkte im Ab-
stand eins zu P bleibt die Forderung bestehendi&iPunkte im Abstand zwei wird jedoch
das ,kleiner-gleich® in ein ,echt kleiner* umgewagitl (Abb.17). Es werden hierbei acht
madgliche Richtungen unterschieden.

| | | | |
| L || || | | |
ENENEE EEn | | | | | L]
| O | || L | |
| | | [ |
[ maéglicher Gratpunkt [ Distanzwert "kleiner-gleich” [l Distanzwert "echt kleiner”

Abb. 17: Alle acht moglichen Richtungen fiir den Gratlinien-Test

Mit diesem Hilfsmittel kbnnen nun beide noch offerferagen gelost werden. Gilt es heraus-
zufinden, ob ein Punkt Teil einer Gratlinie istravifiir alle acht Richtungen geprift ob die
oben genannte Bedingung zutrifft. Ist dies fur nesténs eine Richtung der Fall, ist der Punkt
ein Gratpunkt.

Indem wir uns die Richtung merken, haben wir gle@tig auch eine Antwort auf die Frage
nach der Richtung der Gratlinie. Hierbei muss dlleys beachtet werden, dass in den aller-
meisten Fallen mehrere Richtungen ein positivegliirg zurickgeben. Um die Richtung mit
Sicherheit bestimmen zu kénnen, werden die beidsrhbarpunkte, die in Richtung der ver-
meintlichen Gratlinie liegen bestimmt und es wiatastet, ob es sich bei ihnen ebenfalls um
Gratpunkte handelt. Falls nicht werden die andenéglichen Richtungen tberprift, bis die
Richtige gefunden wurde.

4.2.3 Endpunkte von Gratlinien / niedrige Gratlinien

Fur die Bewertungsfunktion und fir die Einschrankwes Suchraums sind die Endpunkte
der Gratlinien, sowie Stellen, an denen die PudkteGratlinien sehr niedrige Distanzwerte
aufweisen, von zentraler Bedeutung. Wie diese erkand verwaltet werden, wurde bisher
allerdings noch nicht angesprochen.

Niedrige Gratpunkte kdnnen wahrend der BerechnwergGtatlinien sehr einfach ermittelt
werden. Wird ein Gratpunkt als solcher erkanntdvgein Distanzwert UGberprift. Ist dieser
klein genug, wird der Punkt als niedriger Gratpumirkiert.

Etwas schwieriger gestaltet sich die Sache allgedbeim ermitteln der Endpunkte von Grat-
linien. Klar ist, dass ein Endpunkt gleichzeitign @iiedriger Gratpunkt sein muss, da er am
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Rand der Restflache liegt und somit einen Distamzwen eins besitzt. Da jedoch nicht alle

Gratpunkte mit Distanzwert eins auch gleichzeitngigunkte von Gratlinien sind, kann dieses
Kriterium nur zur Einschrankung der Kandidaten dremnd es muss ein weiteres Kriterium

gefunden werden, um die Nicht-Endpunkte auszusertieDer entscheidende Unterschied
besteht schlicht und einfach darin, dass der Erkipeiner Gratlinie, im Gegensatz zu allen

anderen Punkten, nur einen Liniennachbarn beStrnit muss die Achter-Nachbarschatft je-
des der mdglichen Kandidaten untersucht werdend Wiehr als ein Gratpunkt entdeckt han-
delt es sich nicht um einen Endpunkt der Gratlumid er kann aussortiert werden.

Auch diese Methode deckt aber noch nicht alle netbgh Falle ab, da bei der hier vorgestell-
ten Berechnung der Gratlinien eine Situation widli.18 dargestellt eintreten kann. In die-

sem Spezialfall wird der Endpunkt nicht als solchddannt. Dies kann sogar dazu fihren,
dass der Algorithmus nicht korrekt terminiert, dase¢ Ecke der Restflache nicht als solche
erkannt wird und deshalb nie entfernt werden kann.

Abb. 18: Nicht erkannter Gratlinien-Endpunkt

Es qilt also eine weitere Moglichkeit zu findenj der auch dieser Spezialfall als ein End-
punkt erkannt wird. Zunachst kann festgestellt wardlass eine solche Situation bei der In-
itialisierung des Feldes und bei der Betrachtung) Sienderfalls fur nicht konvexe Polygone
nicht entstehen kann. Er kann demnach nur dontetémt, wo sich zwei oder mehrere unter-
schiedliche Stanzpositionen berthren. Betrachtemwn einen Fall, in dem ein neuer Stanz-
schritt einen alteren Uberlappt.

In diesem Fall entstehen nur an denjenigen Stedlenjenen sich altes und neues Randseg-
ment treffen neue Eckpunkte der Flache und demesdispnd auch neue Endpunkte von
Gratlinien. Diese Eckpunkte liegen offensichtlichdirekter Nachbarschaft zum Stanzkopf.
Wie bereits bei den Konnektivitatstests kann auehder den Stanzkopf umschliel3ende Ring
betrachtet werden. Ebenfalls sind hier diejenigeaidsegmente des Ringes interessant, die
noch Teil der Restflache sind, da sie eine neuesl$&mment der Restflache definieren. An
beiden Enden eines solchen Segments wird die Relséfleinen neuen Eckpunkt erhalten und
dementsprechend wird an diesen Stellen auch dgyuskd einer Gratlinie liegen.

Zur Bestimmung dieser Punkte werden zunéachst aitkté der neuen Randsegmente ermit-
telt. Daraufhin wird ein beliebiger Punkt ausgewdlmd von ihm ausgehend entlang des
Randsegments in beide Richtungen gelaufen, bi€ddaen des Segments erreicht werden.
Diese Enden werden als Gratlinien-Endpunkte markied es wird, sofern vorhanden, mit
dem n&chsten Segment fortgefahren.

Mit Hilfe der beiden vorgestellten Methoden kénmam alle Endpunkte der Gratlinien er-
kannt werden. Die vier Eckpunkte des Feldes webdzaits bei dessen Initialisierung als sol-
che definiert. Wahrend nun bei der Entfernung dewtBile die Endpunkte mit Hilfe des zu-
erst beschriebenen Prinzips ermittelt werden, kormmtLaufe des eigentlichen Uberde-
ckungsalgorithmus die letztere Methode zur Anweigdun
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4.3 Umsetzung der Konnektivitatstest

Wie bereits in Kapitel 2 beschrieben, wurden zuviteiraative Funktionen fir den Konnektivi-
tatstest geschrieben. Da dieser fir viele mogltamzpositionen durchgefihrt werden muss,
war ein zentraler Aspekt, dass mdglichst keine Méedungen auf dem Feld vorgenommen
werden, die im Nachhinein wieder riickgangig gemaehtden mussen. Deshalb wird zu-
nachst eine Kopie der Umgebung der Stanzpositistelér Das Interesse gilt hierbei aus-
schlie3lich den NEN (noch existierenden Nachbarpemk welche die durch den Stanzschritt
neu entstehenden Randsegmente darstellen. DiekéeRuerden im kopierten Feld markiert.
Existiert kein solcher Punkt, kann die Konnektivitler Restflache nicht verletzt und die
Funktion beendet werden. Dieser Schritt wird flrdbevorgestellte Algorithmen durchge-
fuhrt.

4.3.1 Algorithmus ohne mediale Achse

Lokale Suche:

In der erzeugten Kopie des Feldausschnitts gittueszu testen, ob die markierten Punkte ein
zusammenhangendes Kreissegment bilden oder nigiziHwird ein Stack erstellt, der im
LiFo (Last in - First out) Verfahren abgearbeitetdy Zunéachst wird einer der markierten
Punkte ausgewahlt, auf den Stack geschrieben und Btarkierung entfernt. Nun wird der
Stack abgearbeitet, indem immer der oberste Purtfdrat wird und fir alle Nachbarpunkte
(Vierer-Nachbarschaft) tberprift wird, ob diese krext sind oder nicht. Zu beachten ist, dass
fur den zuerst gewahlten Punkt maximal zwei Naghinakte markiert sein kdnnen, fir alle
weiteren jeweils nur einer. Diese gefundenen, neaidin Punkte werden vom Feld entfernt
und auf den Stack geschrieben. Ist der Stack abeieir bedeutet dies, dass ein Kreissegment
komplett von der Kopie entfernt wurde. Existieramrkeine markierte Positionen mehr, be-
deutet dies, dass der komplette neu entstehendg Raindes selben Randsegments ist und
die lokale Suche die Konnektivitat garantieren kdfalls noch markierte Punkte existieren,
muss jedoch eine globale Suche durchgefihrt werden.

Das Ziel der globalen Suche wird lauten, eine Vetbng der einzelnen Kreissegmente zum
Rand des Feldes zu finden. Es geniigt hierbei,efdeg der Kreissegmente einen einzelnen
Punkt als Reprasentant zu wahlen. Hierfur kanriakale Suche erweitert werden. Das oben
beschriebene Verfahren wird einfach so lange fedt, bis alle Kreissegmente bearbeitet
wurden, wobei der jewelils erste gewdahlte PunktReprasentant fir das Kreissegment ge-
speichert wird.

Globale Suche:

Hierbei handelt es sich um eine einfache, stackbasTiefensuche. Zunachst wird einer der
Reprasentanten gewahlt und auf den Stack geschrigélbieh hier wird der Stack abgearbei-
tet, indem der oberste Punkt vom Stack herunteorgemen wird und alle seine Nachbar-
punkte untersucht werden. Ist ein solcher Nachlipooch Teil der Restflache, wird er auf
den Stack geschrieben.

Um keine Kopie des kompletten Feldes erstellen #asen, wird diese Suche auf dem origi-
nalen Feld durchgefuhrt. Hierbei wird es nétig seie Punkte des Feldes, die bereits besucht
wurden, als solche zu markieren, da der Algorithreosst in einer Endlosschleife landen
wirde, indem er zwischen Punkten hin und her spridbgse Markierung wird am Ende des
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Tests fur das komplette Feld wieder aufgehoben.

FUr jeden neu vom Stack genommenen Punkt wird &liniob dieser ein Randpunkt des Fel-
des ist, oder ob es gar einer der Reprasentarnies anderen Kreissegments ist. Wird ein sol-
cher Reprasentant gefunden, wird dieser aus déz Her Reprasentanten entfernt, da keine
extra Suche fur ihn durchgefiihrt werden muss. Wirdjegen ein Randpunkt erreicht, war
die Suche fir das Kreissegment erfolgreich.

Auf diese Weise mussen alle Reprasentanten abggearberden. Entweder es wird eine
Randsuche flr sie gestartet, oder sie werden wdltenRandsuche fur einen anderen Punkt
geschluckt.

Wird jede Suche erfolgreich abgeschlossen, waKdanektivitatstest erfolgreich, falls nicht,
bedeutet dies, dass der getestete Stanzschrittgiittly ist.

4.3.2 Algorithmus basierend auf der medialer Achse

FUr den Konnektivitatstest mit medialer Achse smetlie Gratpunkte natirlich die zentrale

Rolle. Wird beim Kopieren der Flachenausschnittstgestellt, dass kein Gratpunkt vom

Stanzkopf Uberdeckt wird, kann hier die Funktionelis beendet werden. Andernfalls muss,
zusatzlich zur Kopie, eine Liste (gratList) erdt@lerden. In dieser Liste werden diejenigen
Punkte gespeichert, die in der Kopie des Feldansised als Teil der neuen Randsegmente
markiert wurden und gleichzeitig Punkte der medi#ehse sind.

Lokale Suche:

Die lokale Suche wird nach dem selben Muster ablawfie oben beschrieben. Der Unter-
schied besteht jedoch darin, dass nicht von eingialiigen Punkt aus gesucht wird, sondern
an einem der Punkte aus der gratList begonnen wemiess. Es ist hierbei auch nicht wich-
tig, dass alle markierten Punkte erreicht werdendsrn es missen nur alle Punkte aus der
gratList erreicht werden kdonnen. Wurden also aifér&ge in der gratList gefunden, kann die
Funktion beendet werden. Ist der Stack jedoch abgéat und es sind noch Punkte in der
gratList Gbrig, muss die globale Suche durchgefid@rden.

Globale Suche:

Bei der globalem Suche besteht der Unterschiedueme aus Kleinigkeiten. Was beim oben
beschriebenen Algorithmus die Reprasentanten dess@gmente waren, sind nun die Punkte
aus der gratList. Diese stellen die losen EndenGtatlinien dar, fur die Verbindungen zum
Rand gefunden werden mussen. Wie bisher wird aigchtit einem Stack gearbeitet. Anstatt
jedoch die komplette Restflache als Suchraum zahtiamfen, wird hier nur entlang der Grat-
linien gegangen, was den Laufzeit-Unterschied @atdn Verfahren bewirkt.
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5 Analyse der Algorithmen

In diesem Kapitel wird die Laufzeit des Algorithmiostrachtet. Hierbei werden die einzelnen Teile
miteinander verglichen um zu erkennen, an welchetef noch Optimierungspotenzial liegt. Zu-

satzlich werden einige zuféllige Probleminstanzetrdzhtet und es wird die Auswirkung verschie-
dener Gewichtungen in der Bewertungsfunktion asfEladergebnis getestet.

5.1 Laufzeit

Zunachst muss hier festgehalten werden, dass ib&essamt-Laufzeit des Algorithmus keine Aus-
sage getatigt werden kann. Diese hangt im Grundetbachlich davon ab, wie viele Durchlaufe
bendtigt werden, bis die komplette Flache Uberdestkt

Da in jedem Durchlauf die Anzahl der mdglichen 3tasitionen ebenfalls stark variieren kann,
kann auch hier keine allgemeingiltige Aussage ffetroverden. Somit mussen flur die Laufzeit-
Analyse die Funktionen auf unterster Ebene heramggaz werden. Da die Zeitdauer fir deren Be-
rechnung jedoch GrofR3tenteils im Mikrosekunden-Béréegt, welcher sehr anféllig auf Stérungen
durch andere Prozesse oder die Zeitmessung se#ugert, kann im wesentlichen nur mit statisti-
schen Durchschnittswerten argumentiert werden.

Im folgenden wird von oben nach unten gearbeitehdchst wird ein kompletter Stanzschritt unter
die Lupe genommen. Danach wird jeweils derjenigisdleritt n&her betrachtet, der den grof3ten
Anteil der Zeit in Anspruch nimmt.

5.1.1 Vergleich zwischen Suchen und Stanzen:

Der komplette Stanzschritt besteht im wesentlicnendrei Teilen, wie in Kapitel 3.2 beschrieben:

* Zuné&chst die Suche nach dem erfolgversprechen8saezschritt

* Durchfihrung des Stanzschrittes

* Suche nach méglichen Problemstellen.
Die Suche nach moglichen Problemstellen ist hiegbaiauso zu vernachlassigen wie die Durchfiih-
rung des Stanzschrittes. Diese nehmen ungefahre2%enotigten Zeit in Anspruch. Hierbei wird

die Beseitigung einer Problemstelle als Suche eaodm optimalen Stanzschritt gewertet, da kaum
ein Unterschied bei den beiden Vorgangen existii€epitel 3.2.3).
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5.1.2 Vergleich zwischen Bewertung und Glltigkeitste st

Die Suche nach einem mdglichst optimalen Stanzsdéisst sich ebenfalls aus 3 Teile unter-
teilen.

» Befindet sich die Position auf einem Punkt der raketi Achse
* Bewertung eines Stanzschrittes
* Testen der Giiltigkeit eines Stanzschrittes.

Hierbei ist zu beachten, dass es sich um ein Setexterfahren handelt. Jeder Teil der Funk-
tion sortiert einen Teil der mdglichen Stanzscardts, welche dann die anderen Funktions-
teile nicht mehr durchlauft.

Bei insgesamt 238 Mio. Aufrufen der Funktion wurdmreits Gber 98% der Falle durch den
Positionstest herausgenommen. Da dieser Test suziaer einzigen Abfrage besteht, konnte
hier keine verninftige Zeitmessung durchgefiuhrtdear

Von den verbliebenen 3,678 Mio. mdglichen Stanztehrwurden weitere 55% aussortiert,
da ihre Bewertung schlechter war als die einesitsdverechneten gultigen Stanzschritts. Die
Zeitkosten fur die Bewertung beliefen sich hierdngi knapp 23% der Gesamtzeit.

Die restlichen 77% der Zeit wurden demnach vondé89 Mio. durchgefuhren Gultigkeits-
tests bendotigt.

Mit Hilfe der Zeit und der Anzahl der Schritte léssch auch ein Durchschnittswert fur die
Teilfunktionen berechnen.

Die Bewertung eines einzigen maoglichen Stanzsehdigtuert demnach 4,21 Mikrosekunden.
Ein einzelner Gultigkeitstest hingegen 77,33 Miklashden.

5.1.3 Glltigkeitstest

Diese Funktion ist &hnlich aufgebaut wie die voideer Es kdnnen erneut drei Teile unter-
schieden werden, wobei bei jedem der Teile einigglithe Kandidaten aussortiert werden.
Die Teilschritte behandeln hier die Fragen:

* Liegt ein Gratlinien-Endpunkt unter dem Stanzkopf?

» Liegt gentugend Material unter dem Stanzkopf?

* \Verletzt der Stanzschritt die Konnektivitatsbeding@
Bei den Abfragen nach den Gratlinien-Endpunkten deddMenge der vom Stanzkopf tber-
deckten Flache wurden hierbei von den 1,689 Mioglialben Stanzschritten zunachst 13%
und dann noch einmal 92% der Falle aussortiert. 2Mi@rwarten war, hielt sich der hierfur
bendtigte Zeitaufwand, mit knapp 7% in Grenzen.

Obwonhl nur fir 114.000 mdgliche Stanzschritte eonKektivitatstest durchgefiihrt wurde be-
anspruchten diese die restlichen 93% der Zeit.
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In absoluten Zahlen bedeutet dies fur die Konne#ktstest, eine durchschnittliche Zeitdauer
von 93 Mikrosekunden. Dies ist die bei weitem gedReitspanne, die eine einzelne Funktion
des Algorithmus bendétigt.

5.1.4 Vergleich der Konnektivitatstests

Aufgrund der obigen Zeitmessungen lasst sich satgsy die Konnektivitatstests die meiste
Zeit in Anspruch nehmen. Die zu testenden moglicBemzschritte werden deshalb so weit
es geht reduziert, damit diese Funktion nicht zwaofgerufen werden muss.

Bei den obigen Messungen wurde ausschlie3lich dengktivitatstes basierend auf der me-
dialen Achse verwendet. Der Intuition folgende nigisies der schnellere der beiden Algo-
rithmen sein. Im folgenden wird nun ein detaillerBlick auf die beiden Funktionen gewor-
fen, um mdgliches Optimierungspotenzial zu erkennen

Beide Funktionen werden zunachst in vier Teileeggrl

* Kopieren der Stanzkopf-Umgebung

Lokale Suche

Globale Suche
* Lo6schen der Kopie und bereinigen des Feldes

Bereinigen des Feldes bedeutet hier die Zuricksgtzer ,bearbeitet Markierung, welche
fur die globale Suche bendtigt wurde.

In den beiden Tabellen werden nun die berechnetemeVflir die beiden Funktionen darge-
stellt.

Funktion mit medialer Achse Prozentualer Anteil aer Absolutwert fur einmaligen
kompletten Zeit Durchlauf in Mikrosekunden

Kopie erstellen 11,72 33,14

Lokale Suche 2,65 7,49

Globale Suche 41,94 122,13

Léschen und Bereinigen 43,69 123,53
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Funktion ohne mediale Achse Prozentualer Anteil agr| Absolutwert fur einmaligen
kompletten Zeit Durchlauf in Mikrosekunden

Kopie erstellen 3,92 15,44

Lokale Suche 3,87 15,26

Globale Suche 56,55 228,8

Ldschen und Bereinigen 35,66 140,46

Die Anzahl der Falle, in denen die lokale Sucheeiakt halt sich hierbei in Grenzen. Nur in
knapp 3% der Fallen kann so die Zeitaufwendigea®Buche vermieden werden.

Da das Erstellen der Kopie, sowie das Ldschen libensaind das Zuriicksetzten des Feldes
nahezu komplett auf die globale Suche zuriickgefitertlen kann, bietet sich hier die Uber-
legung nach einer alternativen Implementierung Kamn ein Verfahren gefunden werden,
welches Anderungen am Feld vermeiden kann konetesichon ein GroRteil der Zeit einge-
spart werden.

5.2 Auswirkung von verschiedenen Gewichtungen auf Pr o-
blembeispiele

Es wird nun anhand von einigen Beispielen gezaiigt,sich Anderungen in der Gewichtung
der in Kapitel 3.2.1 vorgestellten ,Stellschraubdiit die Bewertungsfunktion auswirken
kénnen.

Beispiel 1 :

Abb. 19: Bsp. 1: Unterschied durch Ausnahmeregel

Hier handelt es sich um ein Problem, bei dem died€dehandlung von Entscheidender Be-
deutung ist. Bei Abb.19 wurde links zunéchst dakearkzichtet und man kann sehr schon er-
kennen, wo die engen ,Schlauche” entstanden simaviiEden fir die Losung hier 362 Stanz-
schritte bendtigt. Rechts wurde die Sonderbehagdkingefihrt und man erkennt, das zu-
mindest der mittlere Bereich viel schoner abgedeektlen konnte. Somit konnte die Anzahl
der Stanzschritte so auf 245 reduziert werden.
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Durch eine Erhdhung fur die Belohnung von niedri@atlinien war es mdglich das Ergeb-
nis weiter zu verbessert, sodass in der linken hgswn Abb.20 nur noch 222 Stanzschritte
erforderlich waren. Durch die Anderung der Bedingiir die Sonderbehandlung, sodass
diese bereits friiher Eintritt, konnte noch einmakeReduktion auf 140 Stanzschritte erreicht
werden (Abb.20, Rechts). Hierbei ist jedoch aucleennen, dass die rechte Seite der Pro-
bleminstanz vor dieser Anderung besser iberdecidevu

Abb. 20: Bsp. 1: Anderung durch Bewertung niedrige Gratpunkte (links), Anderung Ausnahme (rechts)

Beispiel 2 :

An diesem Beispiel kann schon gezeigt werden, igle die oben durchgefiihrte Anderung an
der Bedingung der Ausnahme negativ auswirken kinAbb.21 links sieht man die Losung
ohne Anderung (206 Stanzschritte), rechts mit Amdgr(391 Stanzschritte). Es wéare hier
auch moglich komplett auf die Ausnahmeregelung ezighten, da das Ergebnis nur unwe-
sentlich schlechter ausféllt (218 Stanzschritte).

Abb. 22: Bsp. 2 : Ohne Bewertung niedriger Gratpunkten (links), Ohne Belohnung fiir Randentfernung (rechts)
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Auch kleine Anderungen an den Parametern konneBegtmswirkungen auf die Ergebnisse
haben. Wird die Bewertung der niedrigen Gratlimein geringfligig geéndert werden aus 206
Stanzschritten plotzlich 387. Wird bestraft, dashmPunkte mit Distanz 3 als mit Distanz 4
unter einem Stanzkopf liegen, so verbessert sishEdgebnis von 289 auf 196 Stanzschritte.
Die besten Ergebnisse lassen sich in diesem Bei@elen, wenn die Belohnung, fur die

Entfernung von maglichst viel Rand komplett weggetn wird.

Beispiel 3 :

5((02

=
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Abb. 23: Verschieden Gewichtungen fiir Beispiel 3

In Abb.23 werden vier mogliche Ergebnisse fur B#i8igezeigt. Ausgehend vom Linken (54
Stanzschritte) wurden folgende Gewichtungen ge&nder

zweites von links: Anderung der Ausnahmebeding®3gStanzschritte)

zweites von rechts: Bedingung wurde herausgenomuoesy mehr kleine Distanzwerte als
grof3e enthalten sein sollen (58 Stanzschritte)

rechts : Vergleich der Randlange bevor und nach Stamzschritt wurde hinzugenommen (51
Stanzschritte).

Beispiel 4 :

> (F)

ADbb. 24: Verschiedene Gewichtungen fiir Beispiel 4

Hier wird gleich vorgegangen wie bei Beispiel 3nks die Ausgangskonfiguration (110
Stanzschritte), die fur die anderen Ergebnisséti@bgeandert wurde.

Zweites von links: Verstarkung der Bedingung fie Biandverkirzung (77 Stanzschritte)
Zweites von rechts: Die Belohnung fur das Entferniedlriger Gratlinien wurde erhéht. (134
Stanzschritte)

Rechts: Bestrafung wenn mehr Punkte mit hohen bastarten als Puntke mit niedrigen Di-
stanzwerten entfernt werden (209 Stanzschritte).
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6 Entfernen eines Polygons von der Grundflache

Um alle Punkte, die innerhalb der Polygone liegan.entfernen missen diese Punkte zu-
nachst berechnet werden. Ein einfacher Algorithmus 16sen dieses Problems sieht wie
folgt aus:

Zeichne durch einen Punkt P eine Gerade mit bglteigung. Beispielsweise eine waage-
rechte Gerade (Steigung = 0). Laufe nun entlangsg@eaden, beginnend bei P in eine beliebi-
ge Richtung und zahle die Anzahl der Segmente dégyéhs, die von dieser Geraden ge-

schnitten werden. Ist diese Anzahl gerade liegtRigrkt auRerhalb des Polygons, ist er unge-
rade liegt der Punkt innerhalb.

Bei diesem Algorithmus muss fir jeden getestetemkPjedes Segment des Polygons lber-
pruft werden. Die Laufzeit betragt also O(k*n) ¥i= Anzahl der zu testenden Punkte und

n = Anzahl der Segmente des Polygons.

Da im vorliegenden Fall, mit diesem Verfahren, &lenkte des Polygons sowie alle umlie-

genden getestet werden mussen, ist dieses Vorgettereu empfehlen.

Es bietet sich hier an, das Polygon als ganzesemadhten, wodurch nicht mehr einzelne

Punkte getestet werden mussen.

6.1 Grundlegende Idee

Die Idee ist, von links nach rechts eine senkrethie tUber das Polygon zu ziehen, eine so-
genannte Sweepline. Fur jeden x-Wert kdnnen so@en mehrere y-Wert-Intervalle berech-
net werden. Alle Punkte, die innerhalb dieser \rabie liegen, kdnnen somit auf einmal von
der Flache entfernt werden.

ull FTIIIIII e

—
Abb. 25: Beispiel fiir senkrechte Sweepline

Fur die Berechnung der Intervalle muss das Polymmréchst in Dreiecke zerlegt werden. Da
hier nur simple Polygone, also Polygone ohne Ldbetrachtet werden, ist dieses Problem
in O (n log n) lésbar, wenn auch hier ein Sweephigorithmus zum Einsatz kommt [Ber-
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g00]. Im Jahr 1988 wurde von Tarjan und Van Wyk@(n log log n) Algorithmus entwickelt
[Tarj88], woraufhin ein Jahr spater schon ein Odg*l n) Verfahren vorgestellt wurde
[Clark89]. 1991 zeigte schliel3lich Bernard Chazedlass jedes simple Polygon in Linearzeit
trianguliert werden kann [Chaz91]. Mit abnehmenidanfzeit werden diese Algorithmen je-
doch immer komplizierter, sodass sich die Umsetaliager Verfahren in den wenigsten Fal-
len lohnt.

Da eine solche Zerlegung beim vorliegenden Probiaint allzu oft berechnet werden muss
wurde hier nur ein einfacher ,ear clipping“-Algdnihus mit der Laufzeit von O(n3) imple-
mentiert. Die Idee dabei ist, dass es in einemd@olymit mindestens vier Knoten immer ein
sogenanntes ,ear" gibt.

Definition ,ear”

Ein ,ear” ist ein Dreieck, dessen Eckpunkte aus doéeinander folgenden Punkte ei-
nes Polygons bestehen. Hierbei muss die kompléfieh& dieses Dreiecks innerhalb
des Polygons liegen.

FUr jedes mdgliche ,ear” entlang des Polygonsaglinun zu testen, ob dieses ,ear”, beste-
hend aus den direkt aufeinander folgenden Polygtkpdinkten pl, p2 und p3, komplett im
Polygon enthalten ist. Hierfur wird fur alle andefeckpunkt des Polygons gepriift, ob einer
davon innerhalb des von p1, p2 und p3 aufgesparrieiecks liegt.

P1
P2

P3

P1 P3

P3 P2 P2 P1
Abb. 26: Links: giiltiges "ear"; Mitte und Rechts: kein giiltiges "ear"

Wird kein solcher Eckpunkt gefunden, ist das Uk#tprDreieck ein gesuchtes ,ear" und

kann vom Polygon entfernt werden. Dieser Schritthsio lange wiederholt, bis vom Polygon

nur noch ein Dreieck Ubrig bleibt.

Fur jedes der entfernten Dreiecke, einschliel3listhdas am Ende Ubrig bleibende, werden
nun von rechts nach links die entsprechenden y-Wtetvalle berechnet. Alle Punkte, die in-

nerhalb dieser Intervalle liegen kdnnen dann varFtiche entfernt werden.

Fur die Aktualisierung der Distanzwerte werden mlg# jedoch noch alle Randpunkte des
Polygons bendtigt. Diese kdnnen beim besprocheeeiahfen nicht automatisch mitgeliefert

werden. Deshalb werden zum Ende nun nocheinmaRalesegmente des Polygons abge-
laufen und die besuchten Punkte als Randpunkteegpnsot.
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6.2 Zerlegung des Polygons

Der erste Schritt ist die Zerlegung des PolygonBrieiecke. Hierzu wird, wie oben bereits
beschrieben, das Polygon Schritt fur Schritt venidd, indem ein geeignetes Dreieck gesucht
und entfernt wird (ear-clipping).

Hat ein Eckpunkt pdes Polygons einen Innenwinkel von weniger als’ 188nn er genauer
untersucht werden. Es wird eine imaginare Verbiigdonischen seinen beiden Nachbarpunk-
ten, p. und p.1, gezogen, womit das zu untersuchende Dreieck idgfiist. Fur jeden ande-
ren Punkt des Polygons wird nun die Lage zu denSsgmenten des Dreiecks bestimmit.
Hierbei werden die Segmente in derjenigen Richtoetgachtet, in der sie bei einer Umrun-
dung des Dreiecks entlanggelaufen werden. LiegPeinkt fir alle Segmente auf der selben
Seite, also entweder links von allen oder rechts alten, so befindet er sich innerhalb des
Dreiecks, welches demnach kein gultiges ,ear”Iistdiesem Fall muss der jeweils nachste
Eckpunkt des Polygons untersucht werden. Liegtged@iner der Punkte innerhalb des Drei-
ecks, so kann der Punktaus dem Polygon entfernt werden. Fir das Dreiggkip p-: gilt

es dann noch die entsprechenden Intervalle zu trezac

6.3 Bestimmung der Intervalle

Fur die Bestimmung der Intervalle werden die dr@nle des Dreiecks in x-Richtung sor-
tiert, p1, p2, p3. Es miussen nun alle x-Werte Zwaacpl und p3 durchlaufen und fir jeden
dieser x-Werte ein Intervall bestimmt werden. Dakeiden entweder die min-Werte oder die
max-Werte vom Segment plp3 bestimmt und die jevagitderen Werte von den Segmenten
plp2 und p2p3. Daraus ergibt sich eine logischettkitung der Funktion in zwei Teile. Teil
eins bearbeitet die x-Werte von p1 bis p2 und Zeiti diejenigen von p2 bis p3. Mit Hilfe
der Steigung eines Segments kann fur jeden x-Viferzieggehoriger y-Wert flr das Segment
berechnet werden. Fur den ersten Teil setzt sishlmarvall demnach aus den Werten der
Segmente plp2 und plp3 zusammen, fir den zweitewii@ dann das Segment p1p2 durch
p2p3 ersetzt.

Auch hier spielt die Rundung fur das Aussehen uaddrrektheit der Figuren eine wichtige
Rolle. Ziel hierbei sollte es sein, dass ein Pyg&tau dann Teil des Segments ist, wenn die
Distanz zwischen dem y-Wert des Segments zum y-Wéer Punkts an der Stelle x kleiner
als 0,5 ist.

Bei genauerer Betrachtung lasst sich hier jedochPedblem erkennen. Da die Segmente bis-
her nur in x-Richtung diskretisiert werden, also jiéden x-Wert ein entsprechender y-Wert
berechnet wird, werden Segmente mit einer Steiguder eins weniger genau abgetastet als
diejenigen mit einer Steigung kleiner eins. Voeall bei sehr grol3en Steigungen wirkt sich
dies deutlich aus.
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Aus diesem Grund sollten Segmente mit einer Stgiglie grol3er als eins ist in y-Richtung
abgetastet werden. Auch hier gilt logischerweiseatien geforderte Regel fir die Rundung,
allerdings mit vertauschten Koordinatenachsen. d&eiIntegration dieses Vorgehens in die
aktuelle Funktion mussen einige Kleinigkeiten beectverden. Um mit bisherigen Schleifen,
die Uber die x-Werte definiert wurden, weiteraréeizu konnen und trotzdem die Segmente
in y-Richtung abzutasten, muss eine geschachteliei® eingefiihrt werden. Fir einen fes-
ten x-Wert soll nun solange entlang des SegmentsRithtung gelaufen werden, bis sich der
Funktionswert (x-Wert) andert. Erst dann kann diB&ie Schleife einen Schritt weitergehen.

Bei diesem Vorgehen gilt es jedoch zusatzlich zacheen, ob es sich um eine linke oder um
ein rechte Kante des Dreiecks handelt. Um zu essenwarum dies wichtig ist betrachten
wir ein Segment mit einer positiven Steigung vomi i

Beginnend am Ursprung ist dieser logischerweiskedBs Segments. Bevor die aul3ere Schlei-
fe (x-Richtung) von 0 auf 1 springen kann, lauf dinere Schleife (y-Richtung), wie oben
beschrieben, entlang des Segments, bis sich détibaswert (x-Wert) andert. Dies wird bei
y=3 der Fall sein, da der Funktionswert hier O,6ilmamt. Fir x = O gibt es also 3 Punkte, die
zum Segment gehoren: (0/0), (0/1), (0/2). Stedsds Segment nun die obere Kante des Drei-
ecks dar, muss logischerweise der zuletzt besualge,der obere Punkt (0/2) als max-Wert
gewahlt werden. Ist es jedoch die untere KanteOtegecks, ist der erste (der untere) Punkt
(0/0) der Wichtige.

| [ | al
... .-- -- -- Startpunkte
HEE BN " Bu | HE EE

[ | | [ | [ | [ segmente mit positiver
[ | [ | Steigung
| |
|| [ | Segmente mit negativer
[ | [ | | Steigung

[ | [ | |

| [ | [l Entscheidende Punkte

[ ] ][] EEEE fiir das Interval

Abb. 27: Unterscheidung linkes und rechtes Segment

Der Zusammenhang, obere Kante - zuletzt besuchiektPbzw. untere Kante - zuerst be-
suchter Punkt, stimmt allerdings nur, solange dagntnt eine positive Steigung hat. Ist die
Steigung negativ, dreht sich dieser ZusammenhangDandie Reihenfolge der besuchten
Punkte vom Algorithmus vorgegeben wird, werden dadvdie Informationen tber das Vor-
zeichen der Steigung, als auch tber die Lage (bbdsre Kante) des Segments benétigt, um
feststellen zu kénnen, ob der zuerst oder der Zubetsuchte Punkt wichtig ist. Diese Infor-
mationen lassen sich jedoch zusammenfassen, indeinage des Segments in x-Richtung
bestimmt wird. So ist sowohl ein oberes Segmentpasitiver Steigung, als auch ein unteres
Segment mit negativer Steigung eine linke Kantel@lesecks. Somit werden die beiden Falle
in denen der zuerst besuchte Punkt von Bedeuttiladpgedeckt. Die anderen beiden Falle, in
denen der zuletzt besuchte Punkt der entscheidsdeand demnach dann rechten Kanten.
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6.4 Bestimmung der Randpunkte

Fur die Bestimmung der Randpunkte muss beachtetenedass nur solche Punkte als Rand-
punkte erkannt werden, die auch als Punkte degyBo$yerkannt und von der Restflache ent-
fernt wurden. Es wird schnell klar, dass die Segmenit einer flachen Steigung nach dem
normalen Muster bearbeitet werden konnen. Begowmehbeim weiter links liegenden End-
punkt und es wird fur jeden x-Wert ein y-Wert béneet.

Da die Richtung, in die gearbeitet werden muss hient mehr vorgegeben ist, kdnnten die
Segmente, deren Steigung einen Absolutwert vonegrald eins besitzen, mit einer Vertau-
schung der Koordinatenachsen genau gleich bearbesteen, vorausgesetzt, dass durch die
Veranderung der Berechnung keine anderen Ergebarzssgt werden. Betrachtet man hier
nun die geschachtelten Schleifen bei der Berechdendntervalle, so fallt auf, dass in der in-
neren Schleife alle relevanten y-Werte genau eiuathlaufen werden. Die Position der &u-
Beren Schleife gibt dabei den korrekt gerundet®¥ext wieder, der bei einer Bearbeitung in
y-Richtung berechnet werden wirde. Somit ist ldass die Berechnung wie geplant durch-
gefuhrt werden kann.
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7 Mdgliche Erweiterungen

Im Rahmen einer Diplomarbeit kann ein solch komggeRroblem nattrlich nicht bin ins letzte De-

tail bearbeitet werde. Im folgenden sollen einigmi®e umrissen werden, auf die in dieser Arbeit
nicht mehr eingegangen werden konnte, denen jeBeethtung geschenkt werden sollte, da sie
teilweise fur eine reale Anwendung essenziell sider zumindest einiges an Optimierungspotenzi-
al versprechen.

7.1 Essenzielle Erweiterungen

Weiter Stanzkopfe zulassen :

Dies ist wohl eine der Erweiterungen, die zwingantivendig sein werden fur eine mogliche Nut-
zung der Algorithmen in der Praxis. Um eine Erweitgy der Stanzkopfauswahl mdglichst einfach
zu gestalten, wurde die Verwaltung der Stanzkdpfeits in eine extra Klasse (Tool) ausgelagert.
Sofern darauf geachtet wird, dass neue Stanzkapdéekenvexe Form besitzen, sollte deren Einbet-
tung in die Algorithmen kein grol3es Problem dalstelSollen allerdings auch nicht konvexe For-
men zugelassen werden, wird es zwangslaufig zulétmam kommen, vor allem was den Umgang
mit der medialen Achse anbelangt. Bei der Aktualisig derselben nach einem Stanzschritt wer-
den dann die gleichen Sonderfélle zu beachten digirhisher nur beim Entfernen von nicht konve-
xen Polygonen von Bedeutung waren. Weitere Schgketien sind nicht auszuschlie3en.

Des weiteren wird der Konnektivitatstest basieranfider medialen Achse in seiner jetzigen Form
nicht mehr anwendbar sein, da durch nicht konverazkopfe auch Bereiche abgetrennt werden
konnen, die nicht durch eine Gratlinie definiertrden.

Umgang mit noch nicht entfernten Werkstiicken :

Auch dieser Fall wird in der Praxis sicherlich vBadeutung sein. Sollten die ausgestanzten Werk-
stiicke noch nicht entfernt worden sein, so wirchasirlich von entscheidender Bedeutung sein,
dass sich die Stanzkdpfe beim Zerstanzen nichtemtWerkstticke tberlappen. Manche Randseg-
mente der Restflache spielen somit eine entschaégdBolle und dirfen nicht vom Stanzkopf tber-
schritten werden. Bei der Verwendung von aussdidieBunden Stanzkodpfen ware eine solche Be-
dingung fatal, da vor allem die geraden Randsegenmitteiner sehr gro3en Anzahl an Stanzhiben,
mit sehr kleinen Stanzkdpfen, entfernt werden naissSomit ist die Erweiterung der Stanzkopf-
auswabhl eine Voraussetzung fir diese Randbedingung.
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Abgerundete Bauteile :

Die Beschrankung auf polygonale Werkstlcke istde#i meisten praktischen Anwendungs-
bereichen wohl nicht méglich. Fir die Zulassungeaad Werkstiicke missen jedoch einige
Dinge berucksichtigt werden. Das Hauptproblem laelilegt erneut bei der medialen Achse.
Bisher wurde angenommen, dass jede ,Extremitat“Rkstflache durch eine Gratlinie defi-
niert wird, die bis zum Rand der Flache verlauferéén jedoch abgerundete Werkstiicke zu-
gelassen, kann dies nicht mehr garantiert werdanbeal einer runden Ausbuchtung keine
wirkliche Ecke der Restflache definiert ist und stoder Endpunkt der entsprechenden Gratli-
nie irgendwo im Innern der Flache liegt. Dies flgutverschiedenen Problemen.

H [ |
ENEEEEEEEEEEEEEEEEEEn
Abb. 28: Mediale Achse bei runder Flichenausbuchtung

Zunachst betrifft dies die Vorauswahl der moglicH&tanzpositionen. Die Endpunkte der
Gratlinien wurden bisher als Eckpunkte der Regti#&betrachtet und boten eine gute Aus-
wabhl fur eine mogliche nachste Stanzposition. Ifevie Gratlinien-Endpunkte, die mitten im
Feld liegen, hier Beachtung finden sollten musssereoch geklart werden.

Des weiteren wird auch hier die Korrektheit des Kektivitatstests basierend auf der media-
len Achse ausgehebelt. Eine runde ,Extremitat* wircht bis zum Rand von einer Gratlinie
durchzogen, womit die zentrale Bedingung des Atborus verletzt wird.

7.2 Erweiterungen mit Optimierungspotenzial

Umsortierung der Stanzschritte :

Der Algorithmus wurde bisher in erster Linie aué dinzahl der Stanzschritte optimiert. Die
Randbedingung, dass die Stanzkopfwechsel minimiertlen sollen, wurde zwar in die Be-
wertungsfunktion integriert, findet sonst aber kaBeachtung. Eine Idee, die es moglicher-
weise lohnen kénnte weiterzuverfolgen, wére einehlaarbeitung des Stanzplanes. Sofern
zwei aufeinander Folgende Stanzschritte Unabhawgrgeinander sind, kénnen diese ver-
tauscht werden. Eine Abhangigkeit zwischen dendreigesteht dann, wenn sich die Stanz-
kopfe Uberlappen oder wenn der zweite Stanzsdfiiie den ersten nicht Ausfihrbar ist, da
sonst die Konnektivitat beim zweiten verletzt werdeiirde. Vor allem bei kleineren Stanz-
kopfen liegt die Vermutung nahe, dass hier einggeSpielraum existiert.

Durch solche Vertauschungen lasst sich moglicheeveine Reihenfolge der Stanzschritte
finden, bei der einige Wechsel des Stanzkopfes ieelen werden kdnnen.
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Verscharfte Vorauswahl :

Die Testlaufe wurden bisher auf einem recht Ubensicaren Feld von der Grof3e 100*100
durchgefuhrt. Die Stanzkopfradien waren begrenttOali0. Selbst bei solchen, doch recht
kleinen Probleminstanzen lag die Laufzeit des Atgorus im Bereich von 20-30 Sekunden,
um die 80-200 Stanzpositionen zu berechnen. FildegedFelder, und damit auch eine gréRe-
re Menge an unterschiedlichen Stanzkdpfen, wird dgfzeit des vorgestellten Algorithmus
sehr schnell aus dem Ruder laufen.

Ziel muss es sein, die Anzahl der Stanzkdpfe uret/die Anzahl der méglichen Stanzposi-
tionen zu verringern. Hier scheint eine verscharftauswahl die beste Alternative zu sein.

Alternative Diskretisierung :
Eine alternative Losung zur Diskretisierung desiéglware die Verwendung eine Bienenwa-

ben-Struktur, wodurch sich Liniensegmente, die nsgimkrechte oder waagerechte sind, bes-
ser darstellen liel3en.

Abb. 29:

>

lternative Diskretisierung, Bienenwabemnu&tur

Ein weiterer grol3er Vorteil einer solchen Darstajuvére, dass eine eindeutige Nachbar-
schaftsbeziehung zwischen zwei Punkten existiegimBrerwendeten Modell gibt es hierfur
zwei mogliche Betrachtungen. Da jeder Punkt voremirQuadrat reprasentiert wird, hat er
vier Nachbarn, mit denen er Kante an Kante liegt.ekistieren allerdings nocheinmal vier
Nachbarn, welche nur Uber die Eckpunkte benactdvadt Somit kdnnen einerseits nur die
vier Punkte als Nachbarn bezeichnet werden, dig¢ekam Kante mit dem Ausgangspunkt lie-
gen, andererseits konnen auch die an den Eckpumakiegenden Punkte mit dazu gezéhlt
werden. In diesem Fall wéaren es acht Nachbarpubkéese Unterscheidung kann zu Proble-
men fuhren, wie im folgenden Beispiel deutlich wird

Bei einer Bienenwaben-Struktur hingegen ist die Macschaft eindeutig geregelt. Jeder
Punkt hat genau sechs Nachbarpunkte, womit einléholwie das obere nicht entstehen
kann.

Ein weiterer Vorteil ist, dass alle sechs Nachbakpel genau die gleiche Distanz zum Aus-
gangspunkt haben, was bei einer Achter-Nachbarsoldhit der Fall ist und was in manchen
Fallen beachtet werden muss.

Da das Arbeiten mit diese Struktur allerdings kameiter und weniger intuitiv ist, wurde
hier darauf verzichtet.

Mogliche Einbettung in einen evolutionaren Algoniths :
Bei der Bewertung der mdglichen Stanzschritte hihregesich um eine Funktion mit vielen

Parametern. Die meisten davon stehen direkt odisrekt in Beziehung zueinander und be-
einflussen sich gegenseitig. Eine optimale Gewinfptder Parameter, sodass der Algorithmus
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fur jede Probleminstanz sehr gute Ergebnisse graigd es wohl nicht geben. Somit scheint
es sinnvoll zu sein, den Algorithmus mehrfach natschiedenen Gewichtungen laufen zu
lassen, um am Ende eine gré3ere Chance auf eingugeh_dsung zu erhalten.

Da die Beziehungen der Parameter untereinandeieBéaltig sind und die Moéglichkeiten fur
Veranderungen so zahlreich, ist es nur bedingt wwibglie Gewichtungen durch rationale
Uberlegungen zu optimieren. Hier eignet sich désta Einbettung des Programms in einen
evolutionaren Algorithmus. Mit Hilfe des Zufalls didurch die Bewertung der bereits getes-
teten Gewichtungen wird ein solches Vorgehen zugshein lokales Maximum des Such-
raums finden.

Erweiterung der Bewertungsfunktion :

Schlussendlich gibt es natirlich auch noch die Mbogkit, die Bewertungsfunktion zu erwei-
tern und zu optimieren. Auch hierfir werden nocleizBeispiele genannt. Zunachst kann die
bisher getroffene Einschrankung auf ausschlie3lgéteachtung des Bereichs um den Stanz-
kopf aufgehoben werden. Hier kénne beispielsweise Arte Gratlinien-Lange eingeflihrt
werden, welche fur jeden Punkt der medialen Acheeéedtfernung zum Rand der Grundfla-
che angibt. Mit Entfernung ist hier die Lange désdes entlang der medialen Achse gemeint.
Dies wirde zwar mit der lokalen Berechnung der alediAchse in Konflikt stehen, es kénn-
te jedoch auch die Entstehung von sehr langgezaggereichen mit dieser Information ver-
hindert werden, indem Regionen, die sehr weit vaandRentfernt liegen, bevorzugt bearbei-
tet wirden.

Ein weiteres Beispiel bezieht die Betrachtung déiseren Umfeldes um den Stanzkopf mit
ein. Hiermit ware ein weitaus effektiveres Hilfstaitzur Vermeidung von Engstellen gege-
ben. Zusatzlich konnte die Umgebung dahingehendiffeperden, ob sich hier eine weitere
gute Position findet, die durch den aktuellen Séahatt zerstort wird.
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