
Abstract

In  vielen  industriellen  Anwendungsgebieten  sind  geometrische Packungsprobleme zu lösen,  so
möchte man zum Beispiel bei der Verarbeitung von Blech den Verschnitt minimieren:  
Gegeben ist eine Menge von Blechteilen, von denen möglichst viele auf einem größeren Blech ver-
teilt werden. Die verbleibenden Blechreste sollen dann noch von der Arbeitsfläche entfernt werden.
Typischerweise geschieht dies durch „Wegstanzen“ der Blechreste. Es stehen hierfür verschieden
Stanzköpfe zur Verfügung. Ziel ist es, mit möglichst wenig Stanzvorgängen und möglichst wenig
Wechseln des Stanzkopfes alle Blechreste zu entfernen.
Hierbei gilt es zwei Dinge zu beachten:

• die verbleibende Restfläche sollte aus Stabilitätsgründen zusammenhängend bleiben

• beim Stanzvorgang muss mindestens die Hälfte der Stanzkopffläche auch wirklich mit Ma-
terial unterlegt sein (d.h. Ausschließliche Benutzung des größten Stanzkopfes ist nicht im-
mer möglich)

Im Rahmen dieser Diplomarbeit wurde von Grund auf ein Verfahren entwickelt, welches dieses
Problem zu lösen versucht. Um die Komplexität des Problems zu reduzieren wurden einige Ein-
schränkungen bezügliche der Probleminstanzen vorgenommen. So wurde festgelegt, dass nur poly-
gonale Wertstücke vom Blech entfernt werden dürfen und die Form der zur Auswahl stehenden
Stanzköpfe muss rund sein. 
Der Hauptaugenmerk der Arbeit liegt auf der Beachtung der Nebenbedingungen. Vor allem für die
Sicherstellung des Zusammenhangs der Fläche wurden Ideen entwickelt  um umgesetzt.  Hierbei
spielt die mediale Achse eine besondere Rolle, indem sie als Grundlage für einen Großteil der vor-
gestellten Verfahren eingesetzt wird. Neben dem Einsatz für die Konnektivitätstest dient sie zusätz-
lich als Struktur für eine vereinfachte Darstellung einer Fläche. Besondere Merkmale des zu überde-
ckenden Gebiets können so besser erkannt und genutzt werden.
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1 Einleitung

Wie in den meisten Bereichen der Industrie wird auch bei der Verarbeitung von Blechen danach ge-
strebt, das menschliche Eingreifen in den Ablaufprozess zu minimieren. So wird beispielsweise
beim Einsatz von Stanzmaschinen versucht, die Berechnung der Stanzpositionen  und Stanzschritte
komplett in die Hand der Maschine zu legen. Dies beginnt bei der Berechnung einer möglichst opti-
malen Packung der Bauteile, sodass die Verschnittreste minimiert werden und endet bei der voll-
ständig maschinellen Entsorgung dieser Reste, durch zerstanzen der übrigen Fläche. 
Beide Probleme können als Optimierungsprobleme formuliert  werden und sind eng miteinander
verwandt. Beim Packungsproblem wird versucht, möglichst viele Formen auf einer Fläche unterzu-
bringen, die sich nicht gegenseitig überschneiden dürfen (Maximierungsproblem). Beim Überde-
ckungsproblem hingegen muss die komplette Fläche überdeckt werden, wobei versucht wird die
Anzahl der Schritte so gering wie möglich zu halten (Minimierungsproblem). Der Zusammenhang
der beiden Verfahren wird klar, wenn man eine jeweils optimale Lösung der beiden Probleme be-
trachtet. Beim Packungsproblem wäre eine Lösung optimal, wenn die komplette Fläche durch die
Werkstücke abgedeckt werden könnte. Wenn nun alle verwendeten Formen die gleiche Größe besit-
zen, ist diese Lösung auch optimal für das Überdeckungsproblem.
Als Vorbereitung auf diese Arbeit wurde eine Studienarbeit angefertigt, die sich mit dem ersten Teil
des Prozessablaufs befasst, dem Packungsproblem [Hildi14]. In dieser Arbeit wird der zweite Teil,
also das Überdeckungsproblem behandelt.

Im folgenden Beispiel wurden zunächst die weißen Teile aus der Fläche ausgestanzt. Ziel ist es, den
schwarzen Bereich mit möglichst wenig Stanzvorgängen, z.B. eines kreisförmigen Stanzkopfes, in
verschiedenen Größen, zu entfernen.
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Überdeckungsprobleme:

Allgemein formuliert wird bei einem Überdeckungsproblem die Frage gestellt, ob eine, aus
kleinere Teilen zusammengesetzte Menge oder  Struktur  eine andere,  größere Menge oder
Struktur komplett abdeckt. Ziel der Optimierungsfunktion ist es, eine möglichst kleine Anzahl
von Teilmengen oder Teilstrukturen zu finden, für die dies zutrifft.

Überdeckungsprobleme (engl. covering problems) gehören zur Klasse der NP-vollständigen
Probleme. Dies bedeutet, es gibt  keinen effizienten Algorithmus (Polynomialzeit-Algorith-
mus), der in jedem Fall eine optimale Lösung für jede Probleminstanz liefern kann, es sei
denn, es kann bewiesen werden, dass die Komplexitätsklasse NP gleich der Komplexitätsklas-
se P ist. Bisher gibt es weder einen Beweis für die Gleichheit noch einen dagegen. Da für kei-
nes der vielen bekannten NP-schweren Probleme bislang ein effizienter Algorithmus gefun-
den worden ist, liegt die Vermutung jedoch nahe, dass die Komplexitätsklassen nicht gleich
sind [Vazi01].
Ein oft eingesetztes Verfahren bei Optimierungsproblemen ist die lineare Programmierung.
Hier besteht eine interessante Beziehung zu Überdeckungsproblemen. So kann jedes Integer
Lineare Programm mit ausschließlich positiven Constraints und einer positiven Optimierungs-
funktion als ein Überdeckungsproblem betrachtet werde [Vazi01].  

Literatur:

Das wohl bekannteste Überdeckungsproblem ist das Set Cover Problem, bei dem eine Menge
U und eine bestimme Anzahl von Teilmengen Ti von U gegeben sind. Hierbei gilt es, eine
möglichst kleine Anzahl von Teilmengen Ti auszuwählen, sodass alle Elemente aus U in min-
destens einer der ausgewählten Teilmengen vorhanden sind.
Das hier vorgestellte Problem kann, sofern die Randbedingungen keine Berücksichtigung fin-
den, als ein solches Set Cover Problem dargestellt werden. Jeder Punkt der zu überdeckenden
Fläche gilt hierbei als Element der Menge U. Die Teilmengen Ti stellen hierbei die bei einem
gültigen Stanzschritt  überdeckten Punkte dar. Durch die Einführung der Randbedingungen
lassen sich die zahlreichen für das Set Cover Problem entwickelten Algorithmen [Vazi01]
[Card14] jedoch nicht übertragen.
Ein ebenfalls sehr verwandtes und viel beachtetes Problem ist das „Polygon Covering“ Pro-
blem. Hierbei muss eine polygonale Grundfläche durch kleinere Polygone überdeckt werden.
In der Literatur beschränkt man sich hierbei meist auf einfache Formen wie Überdeckung ei-
nes  rechtwinkligen  Polygons  mit  Quadraten  [Bar98],  eines  rechtwinkligen  Polygons  mit
Rechtecken [Hein07] oder eines Polygons ohne Spitze Winkel (alle größer 90°) mit Rechte-
cken oder Quadraten [Levco97]. Für die Lösung von besonderen Klassen dieses Problems
wurden bereits Linearzeit-Verfahren entwickelt [Bar98]. 
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Besondere Aspekte dieser Arbeit:

Wie oben bereits erwähnt, besteht die zentrale Aufgabe in der Überdeckung der Restfläche,
die zurückbleibt, nachdem die Werkstücke aus dem Blech herausgestanzt wurden. Es handelt
sich demnach um eine Flächenüberdeckung vergleichbar mit dem „Polygon Covering“. Da
die Aufgabe aber in Anlehnung an das praktische Problem im Bezug auf Stanzmaschinen be-
trachtet wird, sind einige zusätzliche Nebenbedingungen zu beachten, welche eine zentrale
Rolle in dieser Arbeit spielen werden:

• Minimieren der Stanzkopfwechsel

• Mindestens die Hälfte des Stanzkopfes muss tatsächlich mit Material unterlegt sein

• Die zu überdeckende Fläche muss aus Stabilitätsgründen zu jedem Zeitpunkt zusam-
menhängend bleiben.

Die erste Bedingung dient dazu, einen möglichst schnellen Prozessablauf zu ermöglichen. Je-
der Wechsel eines Stanzkopfes wirkt sich hier negativ auf die Arbeitszeit aus. Aus Gründen
der Sicherheit  wurde die zweite Bedingung eingeführt,  um ein mögliches Abknicken des
Blechs zu verhindern. Der dritte Punkt dient ebenfalls der Prozesssicherheit, wobei hier das
eventuelle Verrutschen von kleinen, losen Teilen der Restfläche verhindert werden soll.

Um die Komplexität des Problems im Rahmen zu halten, wurden einige Vereinfachungen vor-
genommen. So wird die zu überdeckende Fläche als Rechteck definiert, aus welchem Polygo-
ne entfernt werden. Dadurch wird gewährleistet, dass zu Beginn des Algorithmus keine ge-
krümmten Kanten existieren. Außerdem wird die Auswahl an Stanzköpfen auf ausschließlich
runde Stanzköpfe beschränkt. 
Der vorgestellte Algorithmus soll also eine gegebene Fläche, bestehend aus einem Rechteck
mit polygonalen Löchern, mithilfe von runden Stanzköpfen abdecken. Dabei sind die oben
genannten Nebenbedingungen zu beachten.
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2 Grundlagen

In diesem Kapitel wird die Durchführung des eigentlichen Überdeckungsalgorithmus vorbereitet.
Zunächst werden die Parameter des Programms definiert, also diejenigen Informationen, die der
Nutzer eingeben muss, um ein Problem zu beschreiben, welches vom Algorithmus gelöst werden
soll. Des weiteren wird auf einen zentralen Aspekte eingegangen, der durch die diskretisierte Dar-
stellung der Probleminstanz entsteht, und es werden Vorverarbeitungsschritte beschrieben, die es-
senziell für die Durchführung des Algorithmus sind. Schließlich wird auch noch auf den Umgang
mit der zentralen Randbedingung, der Konnektivität, eingegangen.

2.1 Erstellung der Probleminstanz

Bevor das eigentliche Überdeckungsproblem gelöst werden kann, muss ein Blick auf die Proble-
minstanz geworfen werden. Unter einer Probleminstanz wird hier eine zu überdeckende Fläche so-
wie eine Menge an Stanzköpfen, die der Algorithmus nutzen kann, verstanden. 
Die zu überdeckende Fläche wird, wie bereits beschrieben, auf Basis einer rechteckigen Grundflä-
che definiert. Zunächst muss deshalb die Größe dieser Grundfläche bestimmt werden. Da diese eine
rechteckige Form haben soll, genügt es, hier die Ausdehnung in x- und in y-Richtung anzugeben.
Die Fläche wird durch ein Rastergitter diskretisiert dargestellt, wobei die angegebenen Werte als
Anzahl der Gitterzellen in die jeweilige Richtung verstanden wird. Die Distanzwerte werden an-
hand der Manhattan-Distanz [Royer01] berechnet.
Weiter wird nun die Form und die Position aller Werkstücke benötigt, die im vorangegangenen Ar-
beitsschritt  aus dieser  rechteckigen Grundfläche herausgestanzt  wurden.  Die  Darstellung dieser
Werkstücke als Polygone erlaubt hier die Übergabe mehrerer Punktlisten, von welchen jede die
Eckpunkte eines Polygons in der richtigen Reihenfolge beinhaltet.
Mit Hilfe der Grundfläche und den Polygone kann nun die initiale Restfläche bestimmt werden,
welche es vom Algorithmus zu überdecken gilt.

Definition  Restfläche

Die Restfläche beschreibt denjenigen Teil der Grundfläche, welcher noch von Material be-
deckt ist, das es vom Algorithmus zu entfernen gilt.

Für das Entfernen der Polygone von der Grundfläche wurde ein kleiner Algorithmus erstellt, der
speziell auf die hier gegebenen Bedingungen zugeschnitten wurde. Da dieser nicht direkt mit der
Problemstellung in Verbindung steht, wird hier zunächst nicht näher darauf eingegangen. Eine de-
taillierte Beschreibung des Algorithmus findet sich in Kapitel 6.
Wie bereits erwähnt, werden zunächst nur runde Stanzköpfe zugelassen. Der Nutzer kann hier, ab-
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hängig von der Größer der Grundfläche, verschieden Radien auswählen. Der größtmögliche
Radius wird dabei immer so festgelegt, dass ca. 100 Quadrate mit einer Seitenlänge, die die-
sem Radius  entspricht,  komplett  auf  der  Grundfläche untergebracht  werden  können.  Der
kleinste Radius wird immer Null sein, wobei ein Stanzkopf mit diesem Radius genau einen
Punkt der diskretisierten Fläche überdeckt. Damit die Laufzeit im Rahmen bleibt, wird die
maximale Anzahl der Stanzköpfe auf 20 reduziert. 

2.2 Nachbarschaftsbeziehung

Durch die Diskretisierung der Fläche durch ein Rastergitter kann die Nachbarschaft zweier
Punkte nicht eindeutig definiert werden. Es stehen hier zwei alternative Definitionen zur Ver-
fügung, die beide in den vorgestellten Algorithmen verwendet werden.

Definition  Vierer-Nachbarschaft

Wird die Vierer-Nachbarschaft zu Grunde gelegt, gelten zwei Punkte als benachbart,
wenn sie sich eine gemeinsame Kante in der Gitterstruktur teilen. Abgesehen von den
Randpunkten besitzt somit jeder Punkt genau vier Nachbarpunkte.

Definition  Achter-Nachbarschaft

Wird die Achter-Nachbarschaft zu Grunde gelegt, gelten zwei Punkte als benachbart,
wenn sich ihre Gitterzellen an einem oder an mehreren Punkten berühren. Abgesehen
von den Randpunkten hat somit jeder Punkt genau acht Nachbarpunkte.

2.3 Mediale Achse

Eines der ersten Probleme, das sich bei näherer Betrachtung der Aufgabenstellung zeigt, stellt
die zu überdeckende Restfläche dar. Diese Fläche kann mehr oder weniger beliebige Formen
annehmen, was ein systematisches Vorgehen nahezu unmöglich macht. Der menschliche Be-
trachter kann in einer Fläche womöglich Regelmäßigkeiten oder Strukturen feststellen, wel-
che für den Algorithmus wichtig oder zumindest hilfreich sein könnten. Diese Strukturen exis-
tieren aber in den allermeisten Fällen auf einer höheren Ebene, sodass es sehr schwer, wenn
nicht gar unmöglich ist, diese auf algorithmischem Weg zu erfassen. 
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Der erste Schritt ist deshalb, die Fläche auf eine möglichst einfache und intuitive Form abzu-
bilden, welche auch maschinell verarbeitet werden kann. Die Medial Achse, die im Jahr 1967
von Harry Blum [Blum67] zuerst vorgestellt wurde, bietet sich hier an.

Definition  mediale Achse nach Blum

In einer zweidimensionalen Fläche F, besteht die mediale Achse MAF aus den Mittel-
punkten aller maximaler Kreise in F. Ein Kreis K ist genau dann ein maximaler Kreis in
F, wenn er vollständig in F liegt und an mindestens zwei Stellen tangential den Rand der
Fläche berührt. 

Die mediale Achse kann demnach als eine Art Mittelpunktlinie eines zweidimensionalen Ge-
bietes bezeichnet werden. Um sie ein wenig anschaulicher zu machen, wird nun die dritte Di-
mension zur Hilfe genommen. Man stelle sich eine Tischplatte in Form der Fläche F vor. Auf
dieser Tischplatte soll nun sehr feiner, trockener Sand aufgeschüttet werden, und zwar so viel
wie möglich. Die daraus resultierende Bergstruktur besitzt in einer perfekten Umgebung die
Eigenschaft, das die Höhe des Sandes proportional zur Entfernung vom Rand der Fläche ist.
Genau an den Stellen, an denen die Entfernung zum Rand nicht eindeutig definiert ist, ver-
zeichnet diese Bergstruktur eine Gratlinie. Wird der Verlauf all dieser Gratlinien nun senk-
recht auf die Tischplatte projiziert, bilden sie exakt den Verlauf der medialen Achse nach. Aus
diesem Grund werden die Teilsegmente der medialen Achse im folgenden oft auch als Gratli-
nien bezeichnet.
Mit der medialen Achse besitzt man nun ein Hilfsmittel, welches die Struktur der Fläche sehr
schön wiedergibt und algorithmisch wesentlich einfacher zu handhaben ist. Hat die Fläche
beispielsweise eine spitze Ecke, so wird diese durch den Endpunkt einer Gratlinie definiert.
Werden zusätzlich die Distanzwerte zum Rand gespeichert, so lässt sich anhand der medialen
Achse ebenfalls ablesen, wie breit die Fläche an der jeweiligen Stelle ist.
Sucht man nun für die Fläche geeignete Punkte, die sich als Positionen für einen Stanzschritt
anbieten, so kommt man ebenfalls nicht umhin, die mediale Achse zu beachten. Somit wird
mit dieser Struktur eine sehr einleuchtende Vorauswahl an möglichen Stanzpositionen mitge-
liefert. Zusätzlich bietet sie, unter bestimmten Voraussetzungen, ein Hilfsmittel für den Kon-
nektivitätstest, welcher im Endeffekt einen Großteil der Laufzeit des vorgestellten Algorith-
mus ausmachen wird. 

2.3.1 Diskretisierte mediale Achse

Durch die Diskretisierung der Fläche kann die mediale Achse nicht exakt dargestellt werden.
Deshalb wird im folgenden eine Definition für die mediale Achse gegeben, die mit der Dis-
kretisierung des Feldes vereinbar ist. Gleichzeitig wird uns eine intuitive Möglichkeit für die
Berechnung der medialen Achse mitgeliefert. 

Definition  mediale Achse (alternativ)

Ein Punkt, der Teil der medialen Achse MAF der Fläche F ist, besitzt keinen eindeutig
definierten kürzesten Pfad P zum Rand der Fläche. Es existieren immer mindestens zwei
solcher Pfade. Ein Pfad ist hier zunächst als ein gerades Liniensegment definiert.

Der Zusammenhang der beiden Definitionen ist einfach zu erkennen, indem der Radius eines
maximalen Kreises um den Punkt P mit der Länge des Kürzesten Pfades von P zum Rand
gleichgesetzt wird. Da der Kreis den Rand der Restfläche an mindestens zwei Stellen berührt,
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gibt es auch mindestens zwei kürzeste Pfade.
Nun gilt es, die mediale Achse für eine diskretisierte Fläche zu bestimmen. Hierzu muss zu-
nächst eine  Definition für einen kürzester Pfad in einer diskretisierten Fläche gegeben wer-
den.

Definition  kürzester Pfad in einer diskretisierter Fläche

In einer diskretisierten Fläche wird ein Pfad P von Punkt A nach Punkt B durch eine
Liste von Punkten dargestellt, für die gilt: P(First) = A, P(Last) = B, P(i+1) und P(i) stehen in
Vierer-Nachbarschaft zueinander. Ein Pfad P heißt kürzester Pfad, wenn für alle Pfade Q
gilt, dass die Länge von Q ≥ der Länge von P ist.

Die Kombination der beiden letzten Definitionen reicht jedoch noch nicht aus. Zunächst kann
festgestellt werden, dass sehr viele Punkte der Fläche fälschlicherweise als Teil der medialen
Achse erkannt werden können. In Abb.3 stellen die schwarzen Punkte ein diskretisiertes Lini-
ensegment dar. Die grünen Punkte werden nach der bisherigen Definition alle als Punkte der
medialen Achse erkannt, da für jeden der Punkte zwei kürzeste Pfade berechnet werden kön-
nen. Diese Pfade verlaufen genau gleich, bis am roten Punkt der eine Pfad nach unten weiter
läuft, während der andere Pfad nach rechts geht. Diese Problem lässt sich umgehen, indem ge-
fordert  wird,  dass die Endpunkte der  Pfade zu unterschiedlichen Randsegmenten gehören
müssen.

Ein weiteres Problem ergibt sich, wenn die mediale Achse genau zwischen zwei diskretisier-
ten Punkten verläuft, da keiner der beiden Punkte als Teil der medialen Achse erkannt werden
kann. Um die mediale Achse sinnvoll nutzen zu können, darf sie jedoch keine Lücken aufwei-
sen. In solchen Fällen muss also einer der beiden Punkte in die mediale Achse aufgenommen
werden. Da nicht einheitlich definiert werden kann, welcher der beiden Punkte aufgenommen
wird, kann dies zu Schlangenlinien führen, wie in Abb.4 illustriert wird.
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2.3.2 Berechnung der medialen Achse

Für die Berechnung der medialen Achse wird hier nun auf die alternative Definition zurückge-
griffen. Ein Punkt ist demnach also genau dann Teil dieser Achse, wenn er zwei kürzeste Pfa-
de zu unterschiedlichen Randsegmenten besitzt. Für jeden Punkt der Restfläche muss deshalb
die Länge des kürzesten Pfades zum Rand gespeichert werden. Hierfür definieren wir den Di-
stanzwert eines Punktes.

Definition  Distanzwert eines Punktes

Der Distanzwert eines Punktes ist gleich der Länge des kürzesten Pfades zum Rand der
Fläche.

Es bieten sich zwei alternative Methoden für die Berechnung der mediale Achse an: Eine glo-
bale und eine lokale. Bei der globalen Methode, wird die mediale Achse für die gesamte Flä-
che im Ganzen berechnet. Da sich bei einer lokalen Änderung der Fläche die mediale Achse
auch nur lokal ändert, kann eine komplette Neuberechnung vermieden werden, indem eine
Methode zur lokalen Berechnung verwendet wird. In dieser Arbeit wird die globale Berech-
nung nur einmal bei der Initialisierung der rechteckigen Grundfläche durchgeführt. Das macht
diese Berechnung sehr einfach, weshalb hier nicht weiter darauf eingegangen wird. Alle sons-
tigen Änderungen an der medialen Achse werden nur lokal berechnet.

Wird nun also ausgehend von einem neu initialisierten Feld oder einer sonstigen beliebigen
Restfläche eine Figur herausgestanzt,  ändern sich die Distanzwerte von genau denjenigen
Punkten, die näher an dieser Figur liegen als am bisherigen Rand der Restfläche. Da die Di-
stanzwerte dieser Punkte ohnehin geändert werden müssen, bietet sich folgendes Vorgehen an:
Vom Rand der Figur ausgehend wird Schritt für Schritt nach außen gearbeitet und die Di-
stanzwerte der Punkte werden so lange aktualisiert, bis der Algorithmus an einem Punkt ange-
langt ist, an dem der nächste Nachbarpunkt einen niedrigeren Distanzwert aufweist als der ak-
tuelle Punkt. In diesem Fall wird der aktuelle Punkt als Gratpunkt gekennzeichnet und der
entsprechende Nachbarpunkt nicht weiter bearbeitet. Im Falle eines Stanzvorgangs mit einem
konvexen Stanzkopf ist hiermit alles getan. 

Bei nicht konvexen Polygonen hingegen existieren Eckpunkte am Polygon, deren Innenwin-
kel größer als 180° ist. Dementsprechend besitzt die Restfläche an dieser Stelle eine spitze
Ecke, an der ein Endpunkt einer Gratlinie liegen muss. Die dazugehörige Gratlinie wird aller-
dings beim bisherigen Vorgehen nicht berücksichtigt. Das Problem hierbei ist, dass das Poly-
gon als Einheit betrachtet wird und nicht zwischen den einzelnen Segmenten des Polygons
unterschieden werden kann. Aus diesem Grund wird eine Gratlinie, die von zwei unterschied-
lichen Segmenten des selben Polygons definiert wird, vom Algorithmus nicht als solche er-
kannt. Ein nicht konvexes Polygon muss demnach gesondert betrachtet werden.

2.3.3 Vollendung der Gratlinien bei nicht konvexen P olygonen

Die Vollendung der Gratlinien kann in zwei Schritte unterteilt werden. Im ersten Schritt müs-
sen zunächst alle Eckpunkte des Polygons mit einem Innenwinkel größer als 180° gefunden
werden, da in jedem dieser Eckpunkte der Endpunkt einer Gratlinie liegen wird. Von diesen
Eckpunkten  ausgehend  können die  Gratlinien  nun rekursiv  berechnet  werden,  indem der

17



Nachbarpunkt mit dem höchsten Distanzwert als nächster Punkt der Gratlinie gewählt wird.
Dies wird fortgeführt, bis ein bereits berechneter Punkt der medialen Achse erreicht wird oder
kein Nachbarpunkt gefunden werden kann, dessen Distanzwert größer oder gleich dem des
aktuellen Punktes ist. 
Durch die Diskretisierung des Feldes kann jedoch nicht immer ein eindeutiger Nachbarpunkt
gefunden werden. Deshalb wird zusätzlich die Richtung, in der die Gratlinie verläuft, eine
entscheidende Rolle bei der Bestimmung des nächsten Punktes spielen. Mit Hilfe der Rich-
tung und der Distanzwerte kann nun ein eindeutiger nächster Gratpunkt bestimmt werden,
womit jedoch noch nicht alle Fälle abgedeckt sind.

Hat das Polygon beispielsweise die Form eines Ringes, der an einer Stelle durchtrennt und
leicht  auseinander gebogen wurde, sodass ein  breiter Bereich im Innern entsteht,  der nur
durch einen engen Flaschenhals mit dem Rest der Restfläche verbunden ist, so wird dieser
Ausgang meist nicht gefunden.

Die Idee zur Lösung dieses Problems ist, dass eine solche Engstelle immer von einem oder
mehreren Eckpunkt-Paaren des Polygons definiert wird. Wird also festgestellt, dass die Gratli-
nien mit der obigen Methode nicht vollendet werden können, müssen diese Engstellen gefun-
den werden. Hierzu werden nun Verbindungslinien zwischen allen Punkten des Polygons ge-
zogen, sofern diese Linien nicht durch das Innere des Polygons verlaufen. Es genügt hierbei
nur Punkte mit einem Innenwinkel von weniger als 180° zu betrachten. Jede dieser Verbin-
dungslinien muss per Definition eine Gratlinie schneiden. Ist dies nicht der Fall, kann entlang
der Linie derjenige Punkt mit dem höchsten Distanzwert als ein Punkt der Gratlinie definiert
werden. Sobald dann die Richtung der Gratlinie in diesem Punkt bestimmt ist, kann von hier
ausgehend, nach dem oben beschriebenen, rekursiven Prinzip, in beide Richtungen die Gratli-
nie gezeichnet werden.

2.4 Randbedingung Konnektivität

Eine der zentralen Randbedingung, welche in dieser Arbeit betrachtet wurde, ist die Konnekti-
vität. Es gibt hierbei zwei mögliche Betrachtungsweisen, welche beide ihre Berechtigung ha-
ben. Entweder soll die Restfläche zu jedem Zeitpunkt in einem Stück zusammenhängend sein
oder die Umgebung des Feldes wird als Teil der Restfläche betrachtet, womit die Bedingung
der Konnektivität darauf reduziert werden kann, dass von jedem Punkt der Restfläche eine
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Verbindung zum Rand des Feldes existieren muss. Im Folgenden wurde Letztere als Konnek-
tivitätsbedingung verwendet. Die Algorithmen können bei Bedarf allerdings relativ einfach so
abgeändert werden, dass sie für die alternative Bedingung anwendbar sind. Da aufgrund der
Wahl der Konnektivitätsbedingung die zu bearbeitende Restfläche nicht mehr zwangsläufig an
einem Stück sein muss wird, nun ein Teilgebiet definiert.

Definition  Teilgebiet

Eine Teilgebiet TG ist ein zusammenhängender Teil der vom Algorithmus zu überde-
ckenden Restfläche. Teilgebiete müssen vollständig sein, dass heißt, es darf kein Pfad,
entlang noch existierender Punkte der Restfläche, zwischen zwei unterschiedlichen Teil-
gebieten existieren. Alle Teilgebiete zusammengenommen ergeben die Menge der Punk-
te, die noch überdeckt werden muss.

Als Ausgangsbedingung wird angenommen, dass die Restfläche zusammenhängend ist. Dies
bedeutet, dass für alle Teilgebiete eine Verbindung zum Rand des Feldes existiert. Sollte dies
nicht der Fall sein, können die einzelnen, nicht zusammenhängenden Restflächen getrennt von
einander betrachtet werden. 
Der in dieser Arbeit vorgestellte Algorithmus wird rundenbasiert ablaufen. Da die Konnektivi-
tät zu Beginn gegeben ist, gilt es für jeden Einzelschritt zu zeigen, dass dessen Durchführung
die Konnektivität der Restfläche nicht zerstört. Da ein solcher Einzelschritt nur lokale Verän-
derungen bewirkt, genügt es in manchen Fällen, nur das lokale Umfeld zu betrachten, um die
Konnektivität zu garantieren. Somit muss nur in den restlichen Fällen die komplette Restflä-
che untersucht werden. 
Es wurden hierfür zwei sehr ähnliche Algorithmen implementiert. Der Algorithmus basierend
auf der medialen Achse bietet, vor allem bei denjenigen Fällen, bei denen das lokale Umfeld
keine Schlüsse über die Konnektivität zulässt, einen erheblichen Performance-Vorteil. Gleich-
zeitig werden hier jedoch einige Forderungen an die Probleminstanz gestellt, die vor allem bei
eventuellen Erweiterungen nicht mehr unbedingt gewährleistet werden können. In Kapitel 7
wird hierauf näher eingegangen.

2.4.1 Algorithmus ohne mediale Achse

Zunächst wird eine lokale Bedingung gesucht, die die Konnektivität nach einem Stanzschritt
gewährleistet. Hierfür definieren wir eine Menge von Punkten, die noch existierenden Nach-
barpunkte.

Definition  noch existierender Nachbarpunkt

Ein noch existierender Nachbarpunkt NEN ist ein Punkt, der bezügliche der Achter-
Nachbarschaft am Stanzkopf anliegt und nach dem Stanzschritt noch Teil der Restfläche
sein wird. 

Da nur runde Stanzköpfe benutzt werden, bilden die NEN Kreissegmenten entlang des Stanz-
kopfrandes. Nun lässt sich sagen, dass die Restfläche auch nach dem Stanzschritt zusammen-
hängend bleiben wird, wenn sich alle NEN zu einem einzigen Kreissegment zusammenfügen
lassen. Sofern die Konnektivität vor dem Stanzschritt nicht verletzt war, kann sie auch nach
danach nicht verletzt sein, da alle NEN zum gleichen Teilgebiet gehören.
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Aufgrund der Festlegung der Konnektivitätsbedingung gibt es hierbei einen kleinen Sonder-
fall zu beachten. Obwohl die lokale Bedingung nicht verletzt wurde und alle NEN zum glei-
chen Teilgebiet gehören, kann es geschehen, dass durch den Stanzschritt die einzige Verbin-
dung dieses Teilgebiets zum Rand gekappt wird. Dieser Fall kann dann eintreten, wenn ein
kompletter Randabschnitt vom Stanzkopf überdeckt wird. Sollte der Stanzkopf also über den
Rand hinausragen, muss die lokale Suche erweitert werden. 
Ist einer der Punkte, die bei diesem Stanzschritt entfernt werden, ein Randpunkt der Grundflä-
che, so muss zusätzlich sichergestellt werden, dass mindestens einer der NEN ebenfalls ein
Randpunkt der Grundfläche ist. Sollte dies nicht der Fall sein ist klar, dass ein Randabschnitt
komplett entfernt wurde. Dies bedeutet dann, dass für das entsprechende Teilgebiet eine ande-
re Verbindung zum Rand existieren muss, damit die Konnektivität erhalten bleibt.

Kommt es nun zu einer Situation, in der die lokale Bedingung verletzt wird, können drei Fälle
unterschieden werden:

1) Die nicht zusammenhängenden Kreissegmente, die durch die NEN definiert werden,
gehören immer noch zum gleichen Teilgebiet

2) Durch den Stanzschritt wurde eine Teilgebiet in zwei oder mehrere Teilgebiete aufge-
spalten, sodass die Kreissegmente zu verschiedenen Teilgebieten gehören.

3) Der Sonderfall ist eingetreten, sodass ein Teilgebiet möglicherweise keine Verbindung
mehr zum Rand besitzt

Nun gilt es eine globale Bedingung festzulegen, die für alle drei Fälle anwendbar ist. Klar ist,
dass von jedem NEN eine Verbindung zum Rand der Grundfläche existieren muss. Da jedoch
die NEN bereits zu Kreissegmenten zusammengefügt wurden, genügt es, für jedes der Kreis-
segmente eine solche Verbindung zu finden. Sollte bei dieser Suche, zusätzlich zum Rand der
Grundfläche, eines der anderen Kreissegmente gefunden werden, so muss für dieses natürlich
keine eigene Suche mehr gestartet werden. 

2.4.2 Algorithmus basierend auf der medialen Achse

Wie bereits erwähnt, kann die mediale Achse als Hilfsmittel verwendet werden, um die Kon-
nektivität der Fläche zu gewährleisten. Um die Korrektheit der Idee zu verstehen, betrachten
wir zunächst, welche Formen die Teilgebiete der Restfläche annehmen können. 

Definition  Extremität der Restfläche

Als eine Extremität der Restfläche wird ein zusammenhängender Teil dieser Fläche be-
zeichnet, der durch einen Schnitt entlang einer Geraden, die vollständig innerhalb der
Restfläche verläuft, vom Rest der Restläche abgetrennt werden kann.

 
Es gilt nun zu zeigen, dass es in keinem Fall eine Extremität der Fläche geben kann, welche
nicht von einer Gratlinie durchlaufen wird. Zu Beginn haben wir gefordert, dass das Feld nur
polygonale Löcher enthalten darf. Ergo sind alle Begrenzungen der Restfläche zunächst gera-
de Segmente. Die einzigen Extremitäten der Restfläche werden also definiert durch die Eck-
punkte der Grundfläche, sowie durch diejenigen Eckpunkte der Polygone mit einem Innen-
winkel von mehr als 180°. Für beide Fälle  wird vom Algorithmus eine Gratlinie erstellt. 
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Solange nun alle verwendeten Stanzköpfe eine konvexe Form besitzen, was im Falle von aus-
schließlich runden Stanzköpfen der Fall ist, können neue „Extremitäten“ der Restfläche nur an
Stellen entstehen, an denen ein Stanzkopf über den aktuellen Rand der Restfläche hinausragt.
Da auch an diesen Stellen eine Gratlinie erzeugt wird, ist die geforderte Bedingung zu jeder
Zeit erfüllt. Aufgrund dieser Eigenschaft der Restfläche und der Tatsache, dass nur konvexe
Stanzköpfe genutzt werden, lässt sich nun eine lokale Kennektivitätsbedingung wie folgt for-
mulieren: 

1) Liegt kein Punkt, der Teil  der medialen Achse ist, unter dem Stanzkopf, bleibt die
Konnektivität erhalten.

2) Liegt der Stanzkopf über der medialen Achse, genügt es, entlang der Nachbarpunkte
des Stanzkopfs eine Verbindung zwischen denjenigen NEN zu finden, die bisher Teil
der medialen Achse waren. Alle anderen Nachbarpunkte müssen in diesem Fall nicht
mehr beachtet werden. 

Zu 1) : Der Zusammenhang der Restfläche wird genau dann zerstört, wenn ein Teil der Rest-
fläche vom Rest abgetrennt wird. Um dies mit einem konvexen Stanzkopf zu erreichen muss
es sich bei dem abgetrennten Bereich um eine Extremität der Fläche handeln. Da alle Extre-
mitäten von einer Gratlinie durchlaufen werden, kann bei einem Stanzschritt, bei dem keine
Gratlinie durchtrennt wurde, auch nichts abgetrennt werden.

Zu 2) : Tritt dieser Fall ein, wurden eine oder mehrere Gratlinien durchtrennt. Es könnte somit
sein, dass der Stanzschritt die Verbindung zu einem Teil der Restfläche, welche durch eine
dieser Gratlinien definiert wurde, komplett durchtrennt hat. Existiert allerdings entlang der
Nachbarpunkte eine Verbindung zwischen den NEN, die Teil der medialen Achse sind, bleibt
auch in diesem Fall die Konnektivität gewahrt, da alle Gratlinien zum selben Teilgebiet gehö-
ren.
Der selbe Sonderfall, der beim einfachen Algorithmus bereits erwähnt wurde, muss auch hier
beachtet werden. Die Lösung hierfür lässt sich jedoch eins zu eins übertragen, sodass nicht
weiter darauf eingegangen werden muss. 

Wird bei 2) keine Verbindung gefunden oder tritt der Sonderfall ein, muss, genau wie beim
anderen Algorithmus, eine globale Suche gestartet werden. Hier kommt nun der eigentliche
Vorteil der Gratlinien zum tragen. Während beim einfachen Algorithmus die komplette Rest-
fläche durchsucht werden muss, hat man nun mit den Gratlinien einen vorgezeichneten Weg
und ist in der Lage, wesentlich effizienter eine Verbindung zum Rand zu finden, falls eine sol-
che existiert.

2.4.3 Änderung der Konnektivitätsbedingung

Sollte die alternative Konnektivitätsbedingung bevorzugt werden, müssen die Algorithmen
leicht abgeändert werden. Bei der lokalen Bedingung ändert sich nichts, abgesehen vom be-
schriebenen Sonderfall, welcher hier keine Rolle mehr spielt. 
Bei der globalen Suche sieht dies jedoch anders aus. Der Rand gilt nun nicht mehr als Teil der
Restfläche und spielt  daher  keine Rolle mehr.  Ebenso wird die Definition der Teilgebiete
überflüssig, da die Konnektivitätsbedingung nun nur noch ein solches Teilgebiet zulässt, was
per Definition genau der Restfläche entspricht.
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Beim Algorithmus ohne Gratlinien kann die lokale Bedingung übertragen werden auf die glo-
bale Suche. Ziel ist es, eine Verbindung zwischen allen NEN zu finden. Kann dies lokal nicht
erreicht werden, wird global nach einer solchen gesucht.
Beim Algorithmus basierend auf der medialen Achse müssen auch hier nur die Punkte der
Gratlinien betrachtet werden. Die globale Bedingung lautet nun, dass entlang der Gratlinien,
von jedem NEN, der Teil der medialen Achse ist, ein Weg zu jedem anderen von diesen NEN
gefunden werden muss.
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3 Überdeckungsalgorithmus

In diesem Kapitel wird der eigentliche Überdeckungsalgorithmus vorgestellt. Zunächst wird
die Grundidee für das Vorgehen näher beleuchtet. Danach wird auf den Ablauf des Algorith-
mus eingegangen und die einzelnen Schritte werden detailliert beschrieben. 

3.1 Greedy Strategie

Als Ausgangspunkt für den Lösungsalgorithmus wurde eine Greedy-Strategie gewählt. Der
zentrale Aspekt einer solchen Strategie ist, dass schrittweise immer derjenige Folgezustand
ausgewählt wird, der zum aktuellen Zeitpunkt den größten Gewinn verspricht. Um dies um-
setzten zu können, müssen also Zustände und Zustandsübergänge definiert werden. Zusätzlich
wird für die Entscheidung, welcher Folgezustand den größten Gewinn verspricht, noch eine
Bewertungsfunktion benötigt.

Definition  Zustand

Ein zustand wird hier durch die Form der Restfläche und den zuletzt benutzten Stanz-
kopf bestimmt. Zu Beginn des Algorithmus wird angenommen, dass der größtmögliche
Stanzkopf zuletzt benutzt wurde. Ein Zustand ist gültig, wenn die Restfläche, entspre-
chend der gewählten Konnektivitätsbedingung, zusammenhängend ist.

Definition  Zustandsübergang

Ein Zustandsübergang ist ein Stanzschritt, der durch einen Stanzkopf und dessen Positi-
on auf der Grundfläche bestimmt wird. Ein solcher Zustandsübergang ist gültig, wenn er
einen gültigen Zustand in einen andern gültigen Zustand überführt und wenn mindes-
tens 50% der vom Stanzkopf überdeckten Fläche noch Teil der Restfläche ist.

Ausgehend von einem gültigen Zustand sollten nun eigentlich alle möglichen Nachfolgezu-
stände, die durch einen beliebigen gültigen Stanzschritt erreichbar sind, miteinander vergli-
chen werden. Es ist abzusehen, dass die Zahl dieser Nachfolgezustände, abhängig von der
Größe der Grundfläche und der Anzahl der möglichen Stanzschritte, sehr groß werden kann.
Damit die Laufzeit des Algorithmus im annehmbaren Rahmen bleibt, muss deshalb für jeden
Zustand eine Vorauswahl unter den gültigen Zustandsübergängen getroffen werden. 

Der nächste Schritt besteht nun in der Bewertung der möglichen Folgezustände. Hierbei müs-
sen also alle Restflächen, die diesen Zuständen entsprechen, untersucht werden. 
Betrachtet man jedoch die Stanzschritte, so fällt auf, dass diese nur lokale Änderungen an der
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Restfläche vornehmen. Daher scheint es auch sinnvoll, nur die lokalen Veränderungen zu be-
werten, anstatt jedes mal aufs neue die komplette Restfläche zu betrachtet. Aus diesem Grund
wird hier vom eigentlichen Vorgehen eines Greedy-Algorithmus abgewichen, indem NICHT
die Zustände, sondern die Zustandsübergänge bewertet werden. Dies birgt zwar das Problem,
dass Änderungen an verschiedenen Ecken der Restfläche schwierig miteinander zu verglei-
chen sind, der benötigte Zeitaufwand für die Bewertung lässt sich auf diese Weise jedoch
stark  reduzieren,  da nur  noch diejenigen Punkte  beachtet  werden müssen,  die unter  dem
Stanzkopf oder in dessen direkten Nachbarschaft liegen.
Da nur eine kleine Region, nämlich die Stanzposition selbst, betrachtet werden muss, müssen
für die Bewertung auch keine Änderungen an der Restfläche vorgenommen werden. Es ge-
nügt, die aktuelle Beschaffenheit der Fläche an einer möglichen Position zu betrachten.

3.2 Ablauf des Überdeckungsalgorithmus

Mit Hilfe der nun getätigten Vorüberlegungen kann der Ablauf des Algorithmus angegeben
werden. Es wird sich hierbei um ein rundenbasiertes Vorgehen handeln. Jede Runde stellt
hierbei einen einzelnen Stanzschritt dar und kann in drei Abschnitte unterteilt werden :

1) Suchen des Stanzschritts, der den größten Erfolg verspricht.

2) Durchführung des Stanzschritts.

3) Überprüfung der Restfläche auf mögliche Problemstellen und Beseitigung dieser Stel-
len.

Der dritte Punkt ist eine Notwendigkeit, die sich aus der Änderung der Bewertungsfunktion,
hin zur Bewertung der Zustandsübergänge ergibt. Bei der Beschreibung der Bewertungsfunk-
tion wird hierauf näher eingegangen. 
Der Algorithmus wird nun diese drei Schritte solange durchlaufen, bis die komplette Restflä-
che entfernt wurde. 

3.2.1 Finden des erfolgversprechendsten Stanzschritt es

Die Vorauswahl der möglichen Stanzschritte wird von zwei Faktoren bestimmt. Wie bereits
erwähnt, bieten sich die Gratlinien als mögliche Stanzpositionen an, da sie eine Art „Mitte“
der Fläche darstellen. Deshalb wird sich der Algorithmus auf die Punkte der medialen Achse
als mögliche Stanzpositionen beschränken. 
Wenn die mediale Achse die Mitte der Fläche darstellt, so stellen die Endpunkte dieser Linien
ebenfalls eine besondere Klasse von Punkten dar. Durch die diversen Forderungen an die Pro-
bleminstanz sind diese Punkte nämlich genau diejenigen Eckpunkte der Restfläche, an denen
die Randsegmente einen Innenwinkel der Fläche von weniger als 180° definieren. Ein sehr
nahe liegender Gedanke ist nun, die Restfläche von den Ecken ausgehend Stück für Stück zu
verkleinern. Aus diesem Grund wird eine weitere Forderung aufgestellt, dass nämlich immer
ein solcher Eckpunkt der Restfläche, also der Endpunkt einer Gratlinie, unter dem Stanzkopf
zu liegen hat.
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Für jeden möglichen Stanzschritt, der nicht von der Vorauswahl eliminiert wurde, müssen nun
folgende Dinge überprüft werden:

• Handelt es sich hierbei um einen gültigen Stanzschritt (Zustandsübergang)

• Welche Bewertung erhält dieser Stanzschritt

Mit Blick auf die Laufzeit wird hierbei der Gültigkeitstest für einen Stanzschritt unterteilt. Zu-
nächst wird geprüft, ob genügen Material unter dem Stanzkopf liegt. Bevor jedoch getestet
wird, ob es sich beim entstehenden Nachfolgezustand um einen gültigen Zustand handelt,
wird die Bewertung der Stanzposition berechnet. Nur wenn die Bewertung besser ist als die
von allen anderen bis dato getesteten gültigen Stanzschritte, wird der Nachfolgezustand näher
betrachtet. 
Der Test, ob genügend Material unter einem Stanzkopf liegt, ist trivial und wird deshalb nicht
näher ausgeführt. Für die Bestimmung der Gültigkeit eines Zustandes wird der Konnektivi-
tätstest benötigt, der bereits in Kapitel 2.4 näher betrachtet wurde. Es fehlt somit nur noch
eine Bewertungsfunktion für die Vervollständigung des Algorithmus, welche im Folgenden
Schritt für Schritt aufgebaut wird.

3.2.1.1 Bewertungsfunktion

Angefangen bei der einfachsten Idee, werden mögliche Probleme nacheinander betrachtet und
es wird versucht, die Funktion so abzuändern, dass diese umgangen werden können. 
Der Ausgangspunkt der Funktion ergibt sich durch Betrachten der Problemstellung. Je mehr
Fläche pro Arbeitsschritt überdeckt wird, desto weniger Arbeitsschritte werden benötigt, um
die komplette Fläche zu entfernen. Daher bietet es sich an, zunächst die Summe aller Punkte,
die bei einem Stanzschritt entfernt werden, als Bewertung zu wählen. 
Für die Betrachtung des Problems ohne Nebenbedingungen scheint dieses Vorgehen sehr er-
folgversprechend. Werden die Nebenbedingungen jedoch mit einbezogen, zeigen sich schnell
einige offensichtliche Schwächen. Es wird nach Möglichkeit mit dem größten zur Verfügung
stehenden Stanzkopf irgendwo auf der Restfläche gestanzt werden, sodass die Fläche unter
dem Stanzkopf möglichst vollständig mit Material bedeckt ist. Aufgrund der Konnektivitäts-
bedingung müssen allerdings am Rand dieser Stanzposition immer kleine Stege zurückblei-
ben, damit auch die Eckpunkte der Restfläche mit dem Rest zusammenhängend bleiben. Auf-
grund der zweiten Randbedingung werden diese Stege dann am Ende des Algorithmus mit
wesentlich kleineren Stanzköpfen entfernt werden müssen, was sehr viele Stanzschritte erfor-
dern wird.
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Durch die Vorbedingung, dass immer ein Gratlinien-Endpunkt unter dem Stanzkopf liegen
muss, wird diesem Problem bereits entgegengewirkt. Als ein weiteres Mittel zur Vermeidung
dieser Artefakte bietet es sich an, die Entfernung von Randpunkten zu belohnen. So soll eine
Stanzposition, die am Rand der Restfläche liegt und diesen sogar etwas überschneidet, besser
bewertet werden als eine Position in der Mitte, auch wenn in der Mitte mehr Fläche wegge-
stanzt wird. Hierbei hilft die Information über die Distanz eines Punktes zum Rand der Rest-
fläche, welche beim Erstellen der Gratlinien bereits berechnet wurde. Anstatt die entfernten
Punkte einfach zu zählen, können diese je nach ihrer Lage gewichtet werden. Je näher ein
Punkt am Rand liegt, desto „wertvoller“ soll er sein.
Die eben bereits genutzte Vorbedingung kann zusätzlich noch verstärkt werden, indem End-
punkte von Gratlinien zusätzlich in der Bewertungsfunktion belohnt werden. Es ist dann für
eine Stanzposition von besonderem Vorteil, wenn gleich mehrere dieser Punkte weggestanzt
und somit ganze Randsegmente auf einmal entfernt werden.

Eine weitere Degeneration des Feldes, die es wenn möglich zu verhindern gilt, sind lange
enge „Schläuche“, wie in Abb.7 illustriert. 

Um solche zu erkennen, werden Gratpunkte mit sehr geringer Distanz zum Rand der Restflä-
che besonders gekennzeichnet und auch hier belohnt der Algorithmus das Entfernen solcher
Punkte. Leider genügt dies nicht, um all diese Fälle zu vermeiden. Deshalb gilt es zusätzlich
herauszufinden, wie ein solcher „Schlauch“ entstehen kann. Zwei unterschiedliche Fälle kön-
nen hierbei unterschieden werden.
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1. Fall:

Nach einem Stanzschritt bleibt eine sehr spitze, längliche Zunge stehen (Abb.8). Es ist klar,
dass ein Stanzschritt, der diese Zunge entfernt, bei der bisherigen Bewertungsmethode sehr
schlecht abschneiden wird. Zwar sind die Punkte alle nahe am Rand, bekommen demnach
eine hohe Bewertung und die Gratpunkte haben ebenfalls eine geringe Distanz, dies kann aber
kaum ausgleichen, dass hier nur mit einem sehr kleinen Stanzkopf gestanzt werden kann und
dementsprechend nur wenige Punkte entfernt werden können. Es bleibt die Möglichkeit, an
den bisherigen Schrauben zu drehen, um das Entfernen solcher Zungen für den Algorithmus
attraktiv zu machen. Ab einem bestimmten Punkt wird sich dies allerdings auf das Gesamter-
gebnis sehr negativ auswirken, da die Belohnung für das Entfernen von möglichst vielen
Punkten im Vergleich zu den Belohnungen für die Ausnahmeregelungen untergehen wird. Der
Algorithmus würde in diesem Fall nur mit kleinen Stanzen am Rand der Restfläche arbeiten
und nicht versuchen, möglichst große Flächen auf einmal zu entfernen. Deshalb wird ange-
strebt, eine solche Situation frühzeitig zu erkennen und sie unabhängig von der Bewertungs-
funktion zu entfernen. Sie muss deshalb hier nicht weiter berücksichtigt werden. 

2. Fall:

Die zweite Möglichkeit, wie ein solcher „Schlauch“ entstehen kann, ist nicht so einfach zu er-
kennen. Er tritt ein, wenn eine breite Stelle der Restfläche durch einen Stanzschritt verengt
wird.

Es ist klar, dass eine solcher Stanzschritt grundsätzlich nicht schlecht bewertet werden wird.
Es werden viele Punkte entfernt und dabei auch noch solche, die nahe am Rand liegen, wenn
auch nicht ganz am Rand. Auf beiden Seiten der Engstelle finden sich nun größere Teile der
Restfläche und natürlich erzeugt der Stanzschritt auf jeder Seite der Engstelle einen neuen
Gratlinien-Endpunkt. In ungünstigen Fällen kann es nun geschehen, dass diese Engstelle ver-
längert wird, indem an einem der neu erzeugten Endpunkte weitergearbeitet wird. 
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Um einen solchen Fall frühzeitig zu erkennen und zu verhindern, wird eine neue Bedingung
eingeführt: Für jeden Stanzschritt müssen die Anzahl der Punkte mit der Distanz i größer sein
als die Anzahl der Punkte mit der Distanz i+1. Wird bei einer Verletzung dieser Bedingung,
für kleine i, die Bewertung des Stanzschrittes stark herunter gesetzt, wird die Wahrscheinlich-
keit der Entstehung einer solchen Engstelle reduziert. Des weiteren sorgt diese Bedingung da-
für, dass sehr spitze Ecken, die entstehen könnten, falls eine Stanzpostition zu weit innerhalb
der Restfläche liegt, verhindert werden.
Eine alternative oder zusätzliche Bedingung, die eine solche Entwicklung verhindern könnte,
wäre folgende: Klar ist, dass bei einem Stanzschritt, der die Restfläche verengen wird, relativ
viel „neuer“ Rand entsteht. Der Algorithmus sollte deshalb wenn möglich den Rand verkür-
zen, anstatt ihn zu verlängern. Somit kann ein Stanzschritt zusätzlich nach der Größe der neu
entstehenden Randsegmente bewertet werden.

Zusammenfassend sollten folgende Punkte in die Bewertung eines Stanzschrittes einfließen: 

• Mit jedem Stanzschritt sollte so viel Material wie möglich von der Restfläche entfernt
werden.

• Der Stanzkopf sollte möglichst selten gewechselt werden.

• Die Restfläche sollte so breit wie möglich gehalten werden.

• Sehr spitz zulaufende Ecken sollten wenn möglich vermieden werden.

• Wird trotzdem eine spitz zulaufende Ecke erkannt, muss sie sofort beseitigt werden.

Die ersten beiden Punkte sind durch die Aufgabenstellung gegeben, die anderen lassen sich,
wie oben beschrieben, aus der ersten Forderung ableiten. 
Klar ist, dass sich die meisten dieser Regeln gegenseitig beeinflussen. Da jede Probleminstanz
anders ist, wird sich keine optimale Gewichtung der Regeln finden lassen, für die immer ein
sehr gutes Ergebnis berechnet wird. Für jede Ausgangsposition wird eine andere Gewichtung
die optimale sein. Eine Lösung hierfür wäre, das Programm mehrfach mit unterschiedlichen
Gewichtungen zu starten und das beste Ergebnis zu wählen. In Kapitel 7 wird ein möglicher
Lösungsvorschlag kurz angesprochen.

3.2.2 Durchführung des Stanzschrittes

Ist der bestmögliche nächste Stanzschritt berechnet, wird dieser durchgeführt. Die Punkte der
Restfläche, die unterhalb es Stanzkopfes liegen, werden entfernt und die in Kapitel 2.3 vorge-
stellte Funktion zur Aktualisierung der Distanzwerte und der medialen Achse wird durchlau-
fen.
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3.2.3 Suche nach potenziellen Problemstellen 

Wie in Kapitel 3.2.1 bereits angedeutet soll hier erkannt werden, wenn die Gefahr besteht,
dass eine spitz zulaufende Ecke der Restfläche im normalen Bewertungssystem keine Beach-
tung mehr findet. Wird ein solcher Fall erkannt, sollte diese Ecke umgehend beseitigt werden.
Dies muss geschehen, bevor die nächste Stanzposition nach den regulären Regeln des Algo-
rithmus ermittelt wird, damit die Situation bereinigt ist, bevor sie sich im schlechtesten Fall
noch verschlimmern kann.
Die hier umgesetzte Idee basiert auf den Endpunkten der Gratlinien. Logischerweise muss am
äußersten Ende einer spitz zulaufenden Ecke ein solcher Endpunkt liegen. Kann ein solcher
Punkt nicht mehr durch einen Mittelgroßen Stanzkopf entfernt werden, gilt er und seine Um-
gebung als gefährdet. Für den nun folgenden Stanzschritt gilt, dass dieser Endpunkt entfernt
werden muss. Es ist somit nicht nötig, die komplette Restfläche nach dem bestmöglichen
Stanzschritt zu durchsuchen, es genügt die nähere Umgebung des Punktes zu betrachten. Die
Bewertungsfunktion hingegen bleibt die selbe.
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4 Implementierung

Nachdem die grundlegenden Ideen erklärt wurden, wird im folgenden etwas mehr ins Detail gegan-
gen und es werden einige zentrale Aspekte der Implementierung vorgestellt. 
Als Programmiersprache wurde C++ verwendet und als Entwicklungsumgebung kam der QtCreator
zum Einsatz, welcher sich aufgrund seines GUI-Designers und der Qt-Klassenbibliotheken für das
Arbeiten mit geometrischen Strukturen angeboten hat.
Im folgenden wird die Darstellung der Probleminstanz kurz näher besprochen, bevor einige Funk-
tionen und Algorithmen im Detail betrachtet werden.  

4.1 Probleminstanz

Zur Darstellung der Arbeitsfläche wurde ein zweidimensionales Feld verwendet. Die daraus resul-
tierende Diskretisierung der Fläche auf ein Rastergitter birgt einige Probleme, auf die bereits in Ka-
pitel 2 eingegangen wurde, ist aber einfach zu handhaben und ein intuitives Modell. Auf eine alter-
native Lösung zur Diskretisierung wird in Kapitel 7 näher eingegangen.

Für jeden Punkt der Fläche werden nun folgende Informationen gespeichert:

    bool exist;
    bool akt;
    int dis;

    bool isGrat;
    bool lowGratPoint;
    bool gratEndPoint;

Die Variable „exist“ gibt darüber Auskunft, ob der Punkt noch zur Restfläche gehört oder ob er be-
reits entfernt wurde. „akt“ wird benötigt um zu verhindern, dass ein Punkt beim Durchsuchen der
Fläche mehrfach besucht wird. „dis“ gibt den Distanzwert eines Punktes an. 
Die anderen Werte werden für die Darstellung der medialen Achse verwendet. Ist ein Punkt Teil der
medialen Achse („isGrat“ = true), wird zusätzlich noch vermerkt, ob es sich bei dem Punkt um
einen Gratpunkt mit sehr niedrigem Distanzwert („lowGratPoint“) oder gar um einen Endpunkt ei-
ner Gratlinie („gratEndPoint“) handelt.
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Bei der Initialisierung des Feldes wird ein zweidimensionaler Array erstellt, in dem alle Punk-
te zunächst noch existieren. Als Distanzwert der jeweiligen Punkte wird die minimale Distanz
zum Rand des Feldes gewählt. Hierbei ist klar, dass die Distanzwerte zweier Nachbarpunkte,
basierend auf der Vierer-Nachbarschaft, sich höchstens um eins unterscheiden. 
Die Gratlinien werden hier zunächst im 45° Winkel von den Eckpunkten weglaufen. Zwi-
schen den Stellen, an denen sich jeweils zwei dieser Gratlinien treffen, wird zusätzlich noch
ein senkrechtes oder ein waagerechtes Gratlinien-Segment liegen, sofern das Feld keine qua-
dratische Form besitzt. In einem Quadrat werden sich alle vier von den Eckpunkten ausgehen-
den Linien in einem Punkt in der Mitte treffen.
Nachdem dann alle Werkstücke nacheinander entfernt wurden, existieren auf dem Feld nur
noch diejenigen Punkte, die Teil der initialen Restfläche sind.

Da alle verwendeten Stanzköpfe rund sein werden, genügen für  ihre Darstellung im Pro-
gramm der Mittelpunkt, welcher auch gleichzeitig die Position eines Stanzkopfes angibt, so-
wie der Radius. Mit diesen beiden Werten kann berechnet werden, ob ein diskretisierter Punkt
P vom Stanzkopf überdeckt wird oder nicht. Dabei wird die euklidische Distanz zwischen P
und dem Mittelpunkt mit dem Radius verglichen. Ist die Distanz kleiner als der Radius, liegt
der Punkt innerhalb des Kreises, sonst nicht. Zu beachten ist hierbei die Rundung. Wird ohne
Rundung verglichen, besitzen die Kreise (vor allem kleine Kreise) eine etwas merkwürdige
Form. Aus diesem Grund wird die euklidische Distanz gerundet und erst dann mit dem Radius
verglichen, welcher per Definition bereits ganzzahlig ist. 

4.2 Aktualisierung der medialen Achse

Hier wird nun ein detaillierter Blick auf die Aktualisierung der Distanzwerte geworfen. Diese
Funktion liefert gleichzeitig die neu entstehenden Gratlinien, die zwischen den verschiedenen
herausgestanzten Figuren verlaufen. 
Beim Entfernen einer geometrischen Figur von der Grundfläche werden die Randpunkte der-
selben in einer Liste gespeichert, welche die Basis für diese Funktion darstellt. In einem FiFo-
Verfahren (First in - First out) wir diese Liste nun abgearbeitet. Dabei wird bei jedem Durch-
lauf zunächst das erste Element aus der Liste entfernt und sein Distanzwert ermittelt (disA).
Daraufhin werden alle seine Nachbarpunkte bestimmt. Wichtig ist hierbei, dass nur diejenigen
Nachbarpunkte bearbeitet werden, die im Laufe des aktuellen Stanzschrittes noch nicht be-
trachtet wurden. Auf diese Weise wird sichergestellt, dass nur vom Stanzkopf ausgehend nach
außen  gearbeitet  wird.  Je  nach  Distanzwert  eines  noch  nicht  betrachteten  Nachbarpunks
(disN) werden nun 3 Fälle Unterschieden:
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1. Fall : disA < disN

Tritt dieser Fall ein, bedeutet dies, dass die Distanz des Nachbarpunktes zum neuen Rand klei-
ner oder gleich seiner Distanz zum alten Rand ist. Der Distanzwert des Punktes wird in die-
sem Fall aktualisiert und auf disA + 1 gesetzt. Da der Distanzwert des Punktes vom neuen
Rand bestimmt wird, muss mit ihm weitergearbeitet werden. Deshalb wird er hinten an die
Liste angehängt.

2. Fall : disA = disN

Da bereits sichergestellt ist, dass der Nachbarpunkt noch nicht bearbeitet wurde, ist klar, dass
sein Distanzwert von einem alten Randpunkt aus bestimmt worden ist. Die Distanz des aktu-
ellen Punktes hingegen wurde vom neuen Rand aus ermittelt. Sind beide Distanzwerte gleich
bedeutet dies, dass die eigentliche Gratlinie zwischen den beiden Punkten verlaufen muss. Für
einen solchen Fall wurde festgelegt, dass einer der beiden Punkte zu einem Punkt der diskreti-
sierten medialen Achse bestimmt werden muss. Es wird hier immer der aktuelle Punkt ge-
wählt. 
Zusätzlich muss eine kleine Besonderheit beachtet werden. Da alle Randpunkte der Figur in
der Liste gespeichert wurden, kann es vorkommen, dass ein Nachbarpunkt N eines Randpunk-
tes A bereits in einem früheren Schritt entfernt wurde. Da der Punkt N noch nicht als bearbei-
tet markiert ist und, genau wie der  Punkt A, einen Distanzwert von Null besitzt, wird der
Punkt A vom Algorithmus als Gratpunkt erkannt, was natürlich nicht der Fall sein sollte. Aus
diesem Grund wird eine Ausnahme eingeführt, sodass der Fall disA = disP = 0 einfach über-
gangen wird.

3. Fall : disA > disN

Für diesen Fall muss gezeigt werden, dass die Gleichung 

disA = disN + 1

immer wahr ist: 

Das Feld wird so initialisiert, dass sich die Distanzwerte eines auf Basis der Vierer-Nachbar-
schaft benachbarten Punktpaares um höchstens eins unterscheidet. Diese Bedingung soll nun
nach jedem Stanzschritt erfüllt sein. Im Verlauf des Algorithmus werden die Distanzwerte nur
durch das Entfernen eines Punktes (Distanzwert wird auf Null gesetzt) und durch die aktuell
besprochene Funktion geändert. Indem alle Randpunkte einer Figur, nach dem Entfernen der-
selben, an diese Funktion übergeben werden, obliegt es allein ihr dafür zu garantieren, dass
die obige Bedingung auch nach dem Stanzschritt wieder gültig ist. 
Zunächst kann festgestellt werden, dass es eine Verletzung der Bedingung nur entlang derjeni-
gen Punkte geben kann, die in der hier verwendeten Liste gespeichert sind. Gleichzeitig gilt,
dass bei einer solchen Verletzung der Punkt aus der Liste stets den kleineren der beiden Di-
stanzwerte besitzt. Wird eine Verletzung vom Algorithmus erkannt, wird sie aufgehoben, in-
dem der Distanzwert des Nachbarpunktes verringert wird (siehe 1.Fall). Somit wird sich der
Distanzwerte eines Punktes niemals erhöhen. Für jeden Punkt, der neu in die Liste aufgenom-
men wird, gilt demnach, dass sein Distanzwert vor der Aufnahme größer oder gleich seinem
neuen Distanzwert ist. 
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Nehmen wir nun an wir befinden uns im 3.Fall und es gilt:

disA > disN + 1. 

Wir wissen, dass der Distanzwert des aktuellen Punktes vor seiner Aufnahme in die Liste grö-
ßer oder gleich dem jetzigen Distanzwert war. 

disA  ≤  disA_alt

Weiter wissen wir, dass sich die alte Distanz um höchstens eins von der Distanz seines Nach-
barpunktes unterschieden hat. 

disA_alt  ≤  disN + 1
Aus diesen beiden Gleichungen ergibt sich:

disA  ≤  disN + 1,

was ein Widerspruch zur getätigten Annahme ist. Somit ist gezeigt, dass die Gleichung 

disA = disN + 1

für den dritten Fall immer zutreffend ist und die Distanz des aktuelle Punktes zum alten Rand
genau der Distanz zum neuen Rand entspricht. Der aktuelle Punkt ist somit ein eindeutiger
Punkt der medialen Achse.

4.2.1 Sonderfall nicht konvexe Polygone

Nun müssen noch diejenigen Gratlinien berechnet werden, die von verschiedenen Segmenten
eines einzelnen Polygons definiert werden. Wie bereits festgestellt wurde, werden diese Grat-
linien immer in einem Eckpunkt des Polygons enden, dessen Innenwinkel größer als 180° ist.
Es bietet sich deshalb an, alle diese Eckpunkte des Polygons zu suchen und von diesen ausge-
hend die Gratlinien zu berechnen. 
Die Eckpunkte lassen sich einfach bestimmen, indem entlang der Segmente des Polygons ge-
laufen und für jeden Punkt berechnet wird, ob der Rand des Polygons hier einen Links- oder
einen Rechtsknick beschreibt. Wird im Uhrzeigersinn gelaufen, werden diejenigen Eckpunkte
gespeichert, die einen Linksknick beschreiben, andernfalls die Eckpunkte mit einem Rechts-
knick. 
Für jeden der so ermittelten Punkte muss als nächstes die Richtung bestimmt werden, in die
die hier endende Gratlinie verläuft. Hierzu wird der Außenwinkel des Polygons am Eckpunkt
P betrachtet, welcher natürlich kleiner als 180° sein muss. Dieser Winkel wird von den beiden
Segmenten des Polygons definiert, die sich in P treffen. Die zu diesem Winkel gehörende
Winkelhalbierende bestimmt genau die Mitte zwischen den Segmenten und definiert somit
auch die Richtung der Gratlinie. Der erste Punkt, der auf dieser Winkelhalbierenden liegt und
noch Teil der Restfläche ist, ist demnach der Endpunkt der Gratlinie. Zusätzlich zum End-
punkt wird noch dessen Vorgänger in Richtung des Eckpunktes des Polygons gespeichert, wo-
mit die Richtung der Gratlinie implizit festgehalten wird. Ist der Winkel relativ groß, wird die-
ser  zweite  Punkt  der  Eckpunkt  selbst  sein.  Bei  kleineren  Winkeln  ist  dies  jedoch  nicht
zwangsläufig der Fall. 
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Diese beiden Punkte bilden nun ein Paar, welches eine unvollendete Gratlinie definiert. Der
Algorithmus berechnet zunächst alle diese Paare, die von einem der Eckpunkte des Polygons
definiert werden und speichert diese in einer Liste, bevor damit begonnen wird die Gratlinien
zu zeichnen.

Sind alle Ecken des Polygons bearbeitet worden, wird die Liste der Punktpaare Schritt für
Schritt abgearbeitet. Mit Hilfe eines solchen Paares lässt sich der weitere Verlauf der Gratlinie
abschätzen. Da eine solche Gratlinie grundsätzlich keine plötzlichen Richtungsänderungen
aufweist, kann davon ausgegangen werden, dass einer der drei, dem richtungsbestimmenden
Punkt gegenüberliegenden Punkte, die Fortsetzung der Gratlinie sein wird. 

Es gilt demnach herauszufinden, welcher der Punkte am wahrscheinlichsten ein Gratpunkt ist.
Hierzu werden die Distanzwerte dieser Punkte ermittelt: disL, disM und disR. Es werden nun
folgende Fälle unterschieden:

1. Fall : Einer der Distanzwerte ist echt größer als die beiden anderen

In diesem Fall wird der Punkt mit dem höchsten Distanzwert als neuer Gratpunkt ge-
wählt.

2. Fall : Alle Distanzwerte sind gleich groß

Hier wird der mittlere Punkt als nächster Gratpunkt definiert werden.

3. Fall : (disM < disL) und (disM < disR)

Hier wird die Gratlinie gespalten und es werden zwei neue Punktpaare erzeugt.
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4. Fall : disR = disM > disL

Hier wird der rechte Punkt als neuer Gratpunkt bestimmt. Da disL echt kleiner als disM
ist, kann die Gratlinie nicht direkt durch den mittleren Punkt laufen. Sie verläuft also
entweder zwischen dem mittleren und dem rechten Punkt oder sie verläuft direkt über
den rechten Punkt. In beiden Fällen ist die Benennung des rechten Punktes korrekt.

5. Fall : disL = disM > disR

Hier wird der nächste Gratpunkt der linke Punkt sein, aufgrund der selben Überlegung
wie im vierten Fall.

Nun kann mit dem neuen Punktpaar, bestehend aus letztem Gratpunkt und neu berechnetem
Gratpunkt, das beschriebene Verfahren rekursiv erneut aufgerufen werden. Dies wird so lange
wiederholt, bis einer der in Frage kommenden neuen Punkte bereits ein Gratpunkt ist. In die-
sem Fall ist die Gratlinie fertig gezeichnet. 

Wichtig ist  allerdings zu erwähnen, dass eine Gratlinie nur dann fortgeführt  werden darf,
wenn der Distanzwert des neu berechneten Punktes größer oder gleich dem des aktuellen
Punktes  ist.  Wird  dies  nicht  beachtet  können völlig falsche  Gratlinien  entstehen,  wie  in
Abb.14 gezeigt wird.

Aufgrund dieser Einschränkung ist klar, dass die mediale Achse in Abb.14 nicht vollendet
werden kann, da der Ausgang bei B einem Nadelöhr gleicht und die Gratlinie, die dort hin-
durchführt, kleinere Distanzwerte aufweist als die Gratlinie bei A. Man wird folglich mit dem
bisherigen Vorgehen nie von A nach B gelangen. Für dieses Problem gilt es also noch eine Lö-
sung zu finden. Zuvor wird jedoch ein weiterer Spezialfall untersucht. 

In Abb.15 kann man erkennen, dass an der Stelle A die Gratlinie, die von unten nach oben
verläuft, senkrecht auf die horizontale Gratlinie trifft. Wird die senkrechte Gratlinie nun zuerst
berechnet, wird der Algorithmus an dieser Stelle abbrechen, da alle Nachbarpunkte, die für
die Fortführung der Gratlinie in Betracht gezogen werden, einen zu kleinen Distanzwert besit-
zen. Der Algorithmus wird deshalb mit den Gratlinien der beiden anderen Eckpunkte des Po-
lygons fortfahren. Hat er sich nun bis zum Punkt A vorgearbeitet, erkennt er dort einen bereits
existierenden Gratpunkt und bricht seine Suche ab, obwohl die Gratlinie eigentlich nach links
fortgeführt werden sollte. 
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Aus diesem Grund wird eine zusätzliche Abfrage für den Fall einer Gratlinie eingeführt, die
senkrecht auf einer anderen Gratlinie steht.
Findet der Algorithmus in der vorgegebenen Richtung keinen neuen Gratpunkt wird über-
prüft, ob an dieser Stelle eine Gratlinie im Winkel von 90° kreuzt. Hierzu wird für die beiden
Nachbarpunkte links und rechts vom aktuellen Punkt getestet ob sie als Gratpunkt in der ent-
sprechenden Richtung in Frage kommen. Ist dies der Fall, werden zwei neue Punktpaare er-
stellt und in die Liste der nicht vollendeten Gratlinien geschrieben. Sie werden somit erst am
Ende bearbeitet, nachdem alle Eckpunkte des Polygons bereits abgearbeitet sind. Auf diese
Weise wird stets vom Rand in Richtung Mitte der Restfläche gearbeitet, womit Komplikatio-
nen vermieden werden können.

Kommen wir nun zur Überbrückung des Nadelöhrs. Wie bereits beschrieben, wird entlang der
Verbindungslinien zwischen allen Eckpunkten des Polygons nach möglichen Gratpunkten ge-
sucht. Bei einer sehr großen Steigung wird das Verbindungssegment hierbei in y-Richtung ab-
gelaufen, um eine möglichst feine Abtastung zu garantieren. Für jeden Punkt auf diesen Ver-
bindungslinien wird getestet, ob es sich um einen möglichen Gratpunkt handelt. Falls ja, wird
er gespeichert.

Nun werden die eben gefundenen Punkte einer nach dem anderen heraus gepickt und unter-
sucht. Ist der Punkt selbst oder einer seiner Nachbarn bereits ein Gratpunkt, wird er ignoriert
und ein weiterer Punkt wird gewählt. Ist dies nicht der Fall, wird die Richtung der Gratlinie
bestimmt, die durch diesen Punkt verläuft. Diese Gratlinie wird dann vom Punkt ausgehend in
beide Richtungen gezeichnet, bis eine bereits existierende Linie erreicht wird. Auf diese Wei-
se werden alle Punkte abgearbeitet. Die meisten Punkte der Liste werden hierbei jedoch igno-
riert werden, da in den meisten Fällen nur ein Punkt benötigt wird um die Linie zu zeichnen.
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4.2.2 Erkennen eines Gratpunktes / Bestimmung der Ri chtung einer
Gratlinie

Bisher wurde nicht darauf eingegangen, wie ein Gratpunkt als solcher erkannt werden kann
und wie sich die Richtung der Gratlinie durch einen Punkt bestimmen lässt. Hierfür muss die
Umgebung des Punktes abgetastet werden. Angenommen der Punkt P ist Teil einer Gratlinie.
Wird nun eine Gerade durch P gezogen, die im Winkel von 90° zur Gratlinie liegt, so müssen
alle Punkte auf dieser Geraden Distanzwerte haben, die kleiner oder gleich dem Distanzwert
von P sind. Um die Bedingung möglichst lokal festzumachen betrachten wir nur fünf auf die-
ser Geraden nebeneinander liegende Punkte, wobei P der mittlere der fünf sein soll. Um nun
zu verhindern, dass auch falsche Punkte als mögliche Gratpunkte erkannt werden, genügt die
Forderung nach „kleiner-gleich“ für die vier Punkte nicht mehr. Für die beiden Punkte im Ab-
stand eins zu P bleibt die Forderung bestehen, für die Punkte im Abstand zwei wird jedoch
das „kleiner-gleich“  in  ein  „echt  kleiner“  umgewandelt  (Abb.17).  Es werden hierbei  acht
mögliche Richtungen unterschieden.

Mit diesem Hilfsmittel können nun beide noch offenen Fragen gelöst werden. Gilt es heraus-
zufinden, ob ein Punkt Teil einer Gratlinie ist, wird für alle acht Richtungen geprüft ob die
oben genannte Bedingung zutrifft. Ist dies für mindestens eine Richtung der Fall, ist der Punkt
ein Gratpunkt. 

Indem wir uns die Richtung merken, haben wir gleichzeitig auch eine Antwort auf die Frage
nach der Richtung der Gratlinie. Hierbei muss allerdings beachtet werden, dass in den aller-
meisten Fällen mehrere Richtungen ein positives Ergebnis zurückgeben. Um die Richtung mit
Sicherheit bestimmen zu können, werden die beiden Nachbarpunkte, die in Richtung der ver-
meintlichen Gratlinie liegen bestimmt und es wird getestet, ob es sich bei ihnen ebenfalls um
Gratpunkte handelt. Falls nicht werden die anderen möglichen Richtungen überprüft, bis die
Richtige gefunden wurde.

4.2.3 Endpunkte von Gratlinien / niedrige Gratlinien

Für die Bewertungsfunktion und für die Einschränkung des Suchraums sind die Endpunkte
der Gratlinien, sowie Stellen, an denen die Punkte der Gratlinien sehr niedrige Distanzwerte
aufweisen, von zentraler Bedeutung. Wie diese erkennt und verwaltet werden, wurde bisher
allerdings noch nicht angesprochen. 
Niedrige Gratpunkte können während der Berechnung der Gratlinien sehr einfach ermittelt
werden. Wird ein Gratpunkt als solcher erkannt, wird sein Distanzwert überprüft. Ist dieser
klein genug, wird der Punkt als niedriger Gratpunkt markiert.
Etwas schwieriger gestaltet sich die Sache allerdings beim ermitteln der Endpunkte von Grat-
linien. Klar ist, dass ein Endpunkt gleichzeitig ein niedriger Gratpunkt sein muss, da er am

38



Rand der Restfläche liegt und somit einen Distanzwert von eins besitzt. Da jedoch nicht alle
Gratpunkte mit Distanzwert eins auch gleichzeitig Endpunkte von Gratlinien sind, kann dieses
Kriterium nur zur Einschränkung der Kandidaten dienen und es muss ein weiteres Kriterium
gefunden werden, um die Nicht-Endpunkte auszusortieren. Der entscheidende Unterschied
besteht schlicht und einfach darin, dass der Endpunkt einer Gratlinie, im Gegensatz zu allen
anderen Punkten, nur einen Liniennachbarn besitzt. Somit muss die Achter-Nachbarschaft je-
des der möglichen Kandidaten untersucht werden. Wird mehr als ein Gratpunkt entdeckt han-
delt es sich nicht um einen Endpunkt der Gratlinie und er kann aussortiert werden.
Auch diese Methode deckt aber noch nicht alle möglichen Fälle ab, da bei der hier vorgestell-
ten Berechnung der Gratlinien eine Situation wie in Abb.18 dargestellt eintreten kann. In die-
sem Spezialfall wird der Endpunkt nicht als solcher erkannt. Dies kann sogar dazu führen,
dass der Algorithmus nicht korrekt terminiert, da diese Ecke der Restfläche nicht als solche
erkannt wird und deshalb nie entfernt werden kann.

Es gilt also eine weitere Möglichkeit zu finden, bei der auch dieser Spezialfall als ein End-
punkt erkannt wird. Zunächst kann festgestellt werden, dass eine solche Situation bei der In-
itialisierung des Feldes und bei der Betrachtung des Sonderfalls für nicht konvexe Polygone
nicht entstehen kann. Er kann demnach nur dort eintreten, wo sich zwei oder mehrere unter-
schiedliche Stanzpositionen berühren. Betrachten wir nun einen Fall, in dem ein neuer Stanz-
schritt einen älteren überlappt.
In diesem Fall entstehen nur an denjenigen Stellen, an denen sich altes und neues Randseg-
ment treffen neue Eckpunkte der Fläche und dementsprechend auch neue Endpunkte von
Gratlinien. Diese Eckpunkte liegen offensichtlich in direkter Nachbarschaft zum Stanzkopf.
Wie bereits bei den Konnektivitätstests kann auch hier der den Stanzkopf umschließende Ring
betrachtet werden. Ebenfalls sind hier diejenigen Kreissegmente des Ringes interessant, die
noch Teil der Restfläche sind, da sie eine neues Randsegment der Restfläche definieren. An
beiden Enden eines solchen Segments wird die Restfläche einen neuen Eckpunkt erhalten und
dementsprechend wird an diesen Stellen auch der Endpunkt einer Gratlinie liegen. 
Zur Bestimmung dieser Punkte werden zunächst alle Punkte der neuen Randsegmente ermit-
telt.  Daraufhin wird ein beliebiger Punkt ausgewählt und von ihm ausgehend entlang des
Randsegments in beide Richtungen gelaufen, bis die Enden des Segments erreicht werden.
Diese Enden werden als Gratlinien-Endpunkte markiert und es wird, sofern vorhanden, mit
dem nächsten Segment fortgefahren.

Mit Hilfe der beiden vorgestellten Methoden können nun alle Endpunkte der Gratlinien er-
kannt werden. Die vier Eckpunkte des Feldes werden bereits bei dessen Initialisierung als sol-
che definiert. Während nun bei der Entfernung der Bauteile die Endpunkte mit Hilfe des zu-
erst  beschriebenen  Prinzips  ermittelt  werden,  kommt im  Laufe  des  eigentlichen  Überde-
ckungsalgorithmus die letztere Methode zur Anwendung.
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4.3 Umsetzung der Konnektivitätstest

Wie bereits in Kapitel 2 beschrieben, wurden zwei alternative Funktionen für den Konnektivi-
tätstest geschrieben. Da dieser für viele mögliche Stanzpositionen durchgeführt werden muss,
war ein zentraler Aspekt, dass möglichst keine Veränderungen auf dem Feld vorgenommen
werden, die im Nachhinein wieder rückgängig gemacht werden müssen. Deshalb wird zu-
nächst eine Kopie der Umgebung der Stanzposition erstellt. Das Interesse gilt hierbei aus-
schließlich den NEN (noch existierenden Nachbarpunkten), welche die durch den Stanzschritt
neu entstehenden Randsegmente darstellen. Diese Punkte werden im kopierten Feld markiert.
Existiert  kein solcher Punkt, kann die Konnektivität der Restfläche nicht verletzt  und die
Funktion beendet werden. Dieser Schritt wird für beide vorgestellte Algorithmen durchge-
führt.

4.3.1 Algorithmus ohne mediale Achse

Lokale Suche:

In der erzeugten Kopie des Feldausschnitts gilt es nun zu testen, ob die markierten Punkte ein
zusammenhängendes Kreissegment bilden oder nicht. Hierzu wird ein Stack erstellt, der im
LiFo (Last in - First out) Verfahren abgearbeitet wird. Zunächst wird einer der markierten
Punkte ausgewählt, auf den Stack geschrieben und seine Markierung entfernt. Nun wird der
Stack abgearbeitet, indem immer der oberste Punkt entfernt wird und für alle Nachbarpunkte
(Vierer-Nachbarschaft) überprüft wird, ob diese markiert sind oder nicht. Zu beachten ist, dass
für den zuerst gewählten Punkt maximal zwei Nachbarpunkte markiert sein können, für alle
weiteren jeweils nur einer. Diese gefundenen, markierten Punkte werden vom Feld entfernt
und auf den Stack geschrieben. Ist der Stack abgearbeitet bedeutet dies, dass ein Kreissegment
komplett von der Kopie entfernt wurde. Existieren nun keine markierte Positionen mehr, be-
deutet dies, dass der komplette neu entstehende Rand Teil des selben Randsegments ist und
die lokale Suche die Konnektivität garantieren kann. Falls noch markierte Punkte existieren,
muss jedoch eine globale Suche durchgeführt werden. 
Das Ziel der globalen Suche wird lauten, eine Verbindung der einzelnen Kreissegmente zum
Rand des Feldes zu finden. Es genügt hierbei, für jedes der Kreissegmente einen einzelnen
Punkt als Repräsentant zu wählen. Hierfür kann die lokale Suche erweitert werden. Das oben
beschriebene Verfahren wird einfach so lange fortgesetzt, bis alle Kreissegmente bearbeitet
wurden, wobei der jeweils erste gewählte Punkt als Repräsentant für das Kreissegment ge-
speichert wird. 

Globale Suche:

Hierbei handelt es sich um eine einfache, stackbasierte Tiefensuche. Zunächst wird einer der
Repräsentanten gewählt und auf den Stack geschrieben. Auch hier wird der Stack abgearbei-
tet, indem der oberste Punkt vom Stack herunter genommen wird und alle seine Nachbar-
punkte untersucht werden. Ist ein solcher Nachbarpunkt noch Teil der Restfläche, wird er auf
den Stack geschrieben. 
Um keine Kopie des kompletten Feldes erstellen zu müssen, wird diese Suche auf dem origi-
nalen Feld durchgeführt. Hierbei wird es nötig sein, die Punkte des Feldes, die bereits besucht
wurden, als solche zu markieren, da der Algorithmus sonst in einer Endlosschleife landen
würde, indem er zwischen Punkten hin und her springt. Diese Markierung wird am Ende des
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Tests für das komplette Feld wieder aufgehoben. 
Für jeden neu vom Stack genommenen Punkt wird ermittelt, ob dieser ein Randpunkt des Fel-
des ist, oder ob es gar einer der Repräsentanten eines anderen Kreissegments ist. Wird ein sol-
cher Repräsentant gefunden, wird dieser aus der Liste der Repräsentanten entfernt, da keine
extra Suche für ihn durchgeführt werden muss. Wird hingegen ein Randpunkt erreicht, war
die Suche für das Kreissegment erfolgreich. 
Auf diese Weise müssen alle Repräsentanten abgearbeitet  werden. Entweder es wird eine
Randsuche für sie gestartet, oder sie werden während der Randsuche für einen anderen Punkt
geschluckt. 
Wird jede Suche erfolgreich abgeschlossen, war der Konnektivitätstest erfolgreich, falls nicht,
bedeutet dies, dass der getestete Stanzschritt nicht gültig ist.

4.3.2 Algorithmus basierend auf der medialer Achse

Für den Konnektivitätstest mit medialer Achse spielen die Gratpunkte natürlich die zentrale
Rolle.  Wird  beim Kopieren  der  Flächenausschnitts  festgestellt,  dass  kein  Gratpunkt  vom
Stanzkopf überdeckt wird, kann hier die Funktion bereits beendet werden. Andernfalls muss,
zusätzlich zur Kopie, eine Liste (gratList) erstellt werden. In dieser Liste werden diejenigen
Punkte gespeichert, die in der Kopie des Feldausschnittes als Teil der neuen Randsegmente
markiert wurden und gleichzeitig Punkte der medialen Achse sind.

Lokale Suche:

Die lokale Suche wird nach dem selben Muster ablaufen wie oben beschrieben. Der Unter-
schied besteht jedoch darin, dass nicht von einem beliebigen Punkt aus gesucht wird, sondern
an einem der Punkte aus der gratList begonnen werden muss. Es ist hierbei auch nicht wich-
tig, dass alle markierten Punkte erreicht werden, sondern es müssen nur alle Punkte aus der
gratList erreicht werden können. Wurden also alle Einträge in der gratList gefunden, kann die
Funktion beendet werden. Ist der Stack jedoch abgearbeitet und es sind noch Punkte in der
gratList übrig, muss die globale Suche durchgeführt werden.

Globale Suche:

Bei der globalem Suche besteht der Unterschied erneut nur aus Kleinigkeiten. Was beim oben
beschriebenen Algorithmus die Repräsentanten der Kreissegmente waren, sind nun die Punkte
aus der gratList. Diese stellen die losen Enden der Gratlinien dar, für die Verbindungen zum
Rand gefunden werden müssen. Wie bisher wird auch hier mit einem Stack gearbeitet. Anstatt
jedoch die komplette Restfläche als Suchraum zu durchlaufen, wird hier nur entlang der Grat-
linien gegangen, was den Laufzeit-Unterschied der beiden Verfahren bewirkt. 
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5 Analyse der Algorithmen

In diesem Kapitel wird die Laufzeit des Algorithmus betrachtet. Hierbei werden die einzelnen Teile
miteinander verglichen um zu erkennen, an welchen Stellen noch Optimierungspotenzial liegt. Zu-
sätzlich werden einige zufällige Probleminstanzen betrachtet und es wird die Auswirkung verschie-
dener Gewichtungen in der Bewertungsfunktion auf das Endergebnis getestet. 

5.1 Laufzeit

Zunächst muss hier festgehalten werden, dass über die Gesamt-Laufzeit des Algorithmus keine Aus-
sage getätigt werden kann. Diese hängt im Grunde hauptsächlich davon ab, wie viele Durchläufe
benötigt werden, bis die komplette Fläche überdeckt ist. 
Da in jedem Durchlauf die Anzahl der möglichen Stanzpositionen ebenfalls stark variieren kann,
kann auch hier keine allgemeingültige Aussage getroffen werden. Somit müssen für die Laufzeit-
Analyse die Funktionen auf unterster Ebene herangezogen werden. Da die Zeitdauer für deren Be-
rechnung jedoch Größtenteils im Mikrosekunden-Bereich liegt, welcher sehr anfällig auf Störungen
durch andere Prozesse oder die Zeitmessung selbst reagiert, kann im wesentlichen nur mit statisti-
schen Durchschnittswerten argumentiert werden.
Im folgenden wird von oben nach unten gearbeitet. Zunächst wird ein kompletter Stanzschritt unter
die Lupe genommen. Danach wird jeweils derjenige Teilschritt näher betrachtet, der den größten
Anteil der Zeit in Anspruch nimmt.

5.1.1 Vergleich zwischen Suchen und Stanzen:

Der komplette Stanzschritt besteht im wesentlichen aus drei Teilen, wie in Kapitel 3.2 beschrieben: 

• Zunächst die Suche nach dem erfolgversprechendsten Stanzschritt

• Durchführung des Stanzschrittes 

• Suche nach möglichen Problemstellen. 

Die Suche nach möglichen Problemstellen ist hierbei genauso zu vernachlässigen wie die Durchfüh-
rung des Stanzschrittes. Diese nehmen ungefähr 2% der benötigten Zeit in Anspruch. Hierbei wird
die Beseitigung einer Problemstelle als Suche nach einem optimalen Stanzschritt gewertet, da kaum
ein Unterschied bei den beiden Vorgängen existiert. (Kapitel 3.2.3). 
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5.1.2 Vergleich zwischen Bewertung und Gültigkeitste st

Die Suche nach einem möglichst optimalen Stanzschritt lässt sich ebenfalls aus 3 Teile unter-
teilen. 

• Befindet sich die Position auf einem Punkt der medialen Achse

• Bewertung eines Stanzschrittes

• Testen der Gültigkeit eines Stanzschrittes.

Hierbei ist zu beachten, dass es sich um ein Selektionsverfahren handelt. Jeder Teil der Funk-
tion sortiert einen Teil der möglichen Stanzschritte aus, welche dann die anderen Funktions-
teile nicht mehr durchläuft.
Bei insgesamt 238 Mio. Aufrufen der Funktion wurden bereits über 98% der Fälle durch den
Positionstest herausgenommen. Da dieser Test nur aus einer einzigen Abfrage besteht, konnte
hier keine vernünftige Zeitmessung durchgeführt werden.
Von den verbliebenen 3,678 Mio. möglichen Stanzschritten wurden weitere 55% aussortiert,
da ihre Bewertung schlechter war als die eines bereits berechneten gültigen Stanzschritts. Die
Zeitkosten für die Bewertung beliefen sich hierbei auf knapp 23% der Gesamtzeit.
Die restlichen 77% der Zeit wurden demnach von den 1,689 Mio. durchgeführen Gültigkeits-
tests benötigt.

Mit Hilfe der Zeit und der Anzahl der Schritte lässt sich auch ein Durchschnittswert für die
Teilfunktionen berechnen. 
Die Bewertung eines einzigen möglichen Stanzschritts dauert demnach 4,21 Mikrosekunden.
Ein einzelner Gültigkeitstest hingegen 77,33 Mikrosekunden.

5.1.3 Gültigkeitstest

Diese Funktion ist ähnlich aufgebaut wie die vorherige. Es können erneut drei Teile unter-
schieden werden, wobei bei jedem der Teile einige mögliche Kandidaten aussortiert werden.
Die Teilschritte behandeln hier die Fragen: 

• Liegt ein Gratlinien-Endpunkt unter dem Stanzkopf?

• Liegt genügend Material unter dem Stanzkopf?

• Verletzt der Stanzschritt die Konnektivitätsbedingung?

Bei den Abfragen nach den Gratlinien-Endpunkten und der Menge der vom Stanzkopf über-
deckten Fläche wurden hierbei von den 1,689 Mio. möglichen Stanzschritten zunächst 13%
und dann noch einmal 92% der Fälle aussortiert. Wie zu erwarten war, hielt sich der hierfür
benötigte Zeitaufwand, mit knapp 7% in Grenzen. 
Obwohl nur für 114.000 mögliche Stanzschritte ein Konnektivitätstest durchgeführt wurde be-
anspruchten diese die restlichen 93% der Zeit.

44



 In absoluten Zahlen bedeutet dies für die Konnektivitätstest, eine durchschnittliche Zeitdauer
von 93 Mikrosekunden. Dies ist die bei weitem größte Zeitspanne, die eine einzelne Funktion
des Algorithmus benötigt.

5.1.4 Vergleich der Konnektivitätstests

Aufgrund der obigen Zeitmessungen lässt sich sagen, dass die Konnektivitätstests die meiste
Zeit in Anspruch nehmen. Die zu testenden möglichen Stanzschritte werden deshalb so weit
es geht reduziert, damit diese Funktion nicht zu oft aufgerufen werden muss. 
Bei den obigen Messungen wurde ausschließlich der Konnektivitätstes basierend auf der me-
dialen Achse verwendet. Der Intuition folgende müsste dies der schnellere der beiden Algo-
rithmen sein. Im folgenden wird nun ein detaillierter Blick auf die beiden Funktionen gewor-
fen, um mögliches Optimierungspotenzial zu erkennen.

Beide Funktionen werden zunächst in vier Teile zerlegt:

• Kopieren der Stanzkopf-Umgebung

• Lokale Suche

• Globale Suche

• Löschen der Kopie und bereinigen des Feldes

Bereinigen des Feldes bedeutet hier die Zurücksetzung der „bearbeitet“ Markierung, welche
für die globale Suche benötigt wurde. 

In den beiden Tabellen werden nun die berechneten Werte für die beiden Funktionen darge-
stellt.

Funktion mit medialer Achse Prozentualer  Anteil  an  der
kompletten Zeit

Absolutwert  für  einmaligen
Durchlauf in Mikrosekunden

Kopie erstellen 11,72 33,14

Lokale Suche 2,65 7,49

Globale Suche 41,94 122,13

Löschen und Bereinigen 43,69 123,53
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Funktion ohne mediale Achse Prozentualer  Anteil  an  der
kompletten Zeit

Absolutwert  für  einmaligen
Durchlauf in Mikrosekunden

Kopie erstellen 3,92 15,44

Lokale Suche 3,87 15,26

Globale Suche 56,55 228,8

Löschen und Bereinigen 35,66 140,46

Die Anzahl der Fälle, in denen die lokale Suche ausreicht hält sich hierbei in Grenzen. Nur in
knapp 3% der Fällen kann so die Zeitaufwendige globale Suche vermieden werden.

Da das Erstellen der Kopie, sowie das Löschen derselben und das Zurücksetzten des Feldes
nahezu komplett auf die globale Suche zurückgeführt werden kann, bietet sich hier die Über-
legung nach einer alternativen Implementierung an. Kann ein Verfahren gefunden werden,
welches Änderungen am Feld vermeiden kann könnte hier schon ein Großteil der Zeit einge-
spart werden.

5.2 Auswirkung von verschiedenen Gewichtungen auf Pr o-
blembeispiele

Es wird nun anhand von einigen Beispielen gezeigt, wie sich Änderungen in der Gewichtung
der  in  Kapitel  3.2.1 vorgestellten „Stellschrauben“ für  die Bewertungsfunktion auswirken
können.

Beispiel 1 :

Hier handelt es sich um ein Problem, bei dem die Sonderbehandlung von Entscheidender Be-
deutung ist. Bei Abb.19 wurde links zunächst darauf verzichtet und man kann sehr schön er-
kennen, wo die engen „Schläuche“ entstanden sind. Es wurden für die Lösung hier 362 Stanz-
schritte benötigt. Rechts wurde die Sonderbehandlung eingeführt und man erkennt, das zu-
mindest der mittlere Bereich viel schöner abgedeckt werden konnte. Somit konnte die Anzahl
der Stanzschritte so auf 245 reduziert werden.
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Durch eine Erhöhung für die Belohnung von niedrigen Gratlinien war es möglich das Ergeb-
nis weiter zu verbessert, sodass in der linken Lösung von Abb.20 nur noch 222 Stanzschritte
erforderlich waren. Durch die Änderung der Bedingung für die Sonderbehandlung, sodass
diese bereits früher Eintritt, konnte noch einmal eine Reduktion auf 140 Stanzschritte erreicht
werden (Abb.20, Rechts). Hierbei ist jedoch auch zu erkennen, dass die rechte Seite der Pro-
bleminstanz vor dieser Änderung besser überdeckt wurde.

Beispiel 2 : 

An diesem Beispiel kann schön gezeigt werden, wie sich die oben durchgeführte Änderung an
der Bedingung der Ausnahme negativ auswirken kann. In Abb.21 links sieht man die Lösung
ohne Änderung (206 Stanzschritte), rechts mit Änderung (391 Stanzschritte). Es wäre hier
auch möglich komplett auf die Ausnahmeregelung zu verzichten, da das Ergebnis nur unwe-
sentlich schlechter ausfällt (218 Stanzschritte).
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Auch kleine Änderungen an den Parametern können große Auswirkungen auf die Ergebnisse
haben. Wird die Bewertung der niedrigen Gratlinien nur geringfügig geändert werden aus 206
Stanzschritten plötzlich 387. Wird bestraft, dass mehr Punkte mit Distanz 3 als mit Distanz 4
unter einem Stanzkopf liegen, so verbessert sich das Ergebnis von 289 auf 196 Stanzschritte.
Die besten Ergebnisse lassen sich in diesem Beispiel erzielen, wenn die Belohnung, für die
Entfernung von möglichst viel Rand komplett weggelassen wird.

Beispiel 3 :

In Abb.23 werden vier mögliche Ergebnisse für Beisiel 3 gezeigt. Ausgehend vom Linken (54
Stanzschritte) wurden folgende Gewichtungen geändert:
zweites von links: Änderung der Ausnahmebedingung (93 Stanzschritte)
zweites von rechts: Bedingung wurde herausgenommen, dass mehr kleine Distanzwerte als
große enthalten sein sollen (58 Stanzschritte)
rechts : Vergleich der Randlänge bevor und nach dem Stanzschritt wurde hinzugenommen (51
Stanzschritte).

Beispiel 4 :

Hier  wird  gleich vorgegangen wie bei  Beispiel  3.  Links  die  Ausgangskonfiguration  (110
Stanzschritte), die für die anderen Ergebnisse leicht abgeändert wurde.
Zweites von links: Verstärkung der Bedingung für die Randverkürzung (77 Stanzschritte)
Zweites von rechts: Die Belohnung für das Entfernen niedriger Gratlinien wurde erhöht. (134
Stanzschritte)
Rechts: Bestrafung wenn mehr Punkte mit hohen Distanzwerten als Puntke mit niedrigen Di-
stanzwerten entfernt werden (209 Stanzschritte).
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6 Entfernen eines Polygons von der Grundfläche

Um alle Punkte, die innerhalb der Polygone liegen, zu entfernen müssen diese Punkte zu-
nächst berechnet werden. Ein einfacher Algorithmus zum lösen dieses Problems sieht wie
folgt aus: 
Zeichne durch einen Punkt P eine Gerade mit beliebiger Steigung. Beispielsweise eine waage-
rechte Gerade (Steigung = 0). Laufe nun entlang der Geraden, beginnend bei P in eine beliebi-
ge Richtung und zähle die Anzahl der Segmente des Polygons, die von dieser Geraden ge-
schnitten werden. Ist diese Anzahl gerade liegt der Punkt außerhalb des Polygons, ist er unge-
rade liegt der Punkt innerhalb.
Bei diesem Algorithmus muss für jeden getesteten Punkt jedes Segment des Polygons über-
prüft werden. Die Laufzeit beträgt also O(k*n) für k = Anzahl der zu testenden Punkte und
n = Anzahl der Segmente des Polygons. 
Da im vorliegenden Fall, mit diesem Verfahren, alle Punkte des Polygons sowie alle umlie-
genden getestet werden müssen, ist dieses Vorgehen nicht zu empfehlen. 
Es bietet sich hier an, das Polygon als ganzes zu betrachten, wodurch nicht mehr einzelne
Punkte getestet werden müssen.

6.1 Grundlegende Idee

Die Idee ist, von links nach rechts eine senkrechte Linie über das Polygon zu ziehen, eine so-
genannte Sweepline. Für jeden x-Wert können so ein oder mehrere y-Wert-Intervalle berech-
net werden. Alle Punkte, die innerhalb dieser Intervalle liegen, können somit auf einmal von
der Fläche entfernt werden.

Für die Berechnung der Intervalle muss das Polygon zunächst in Dreiecke zerlegt werden. Da
hier nur simple Polygone, also Polygone ohne Löcher, betrachtet werden, ist dieses Problem
in O (n log n) lösbar, wenn auch hier ein Sweepline Algorithmus zum Einsatz kommt [Ber-
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g00]. Im Jahr 1988 wurde von Tarjan und Van Wyk ein O(n log log n) Algorithmus entwickelt
[Tarj88],  woraufhin  ein  Jahr  später  schon  ein  O(n  log*  n)  Verfahren  vorgestellt  wurde
[Clark89]. 1991 zeigte schließlich Bernard Chazelle, dass jedes simple Polygon in Linearzeit
trianguliert werden kann [Chaz91]. Mit abnehmender Laufzeit werden diese Algorithmen je-
doch immer komplizierter, sodass sich die Umsetzung dieser Verfahren in den wenigsten Fäl-
len lohnt.
Da eine solche Zerlegung beim vorliegenden Problem nicht allzu oft berechnet werden muss
wurde hier nur ein einfacher „ear clipping“-Algorithmus mit der Laufzeit von O(n³) imple-
mentiert. Die Idee dabei ist, dass es in einem Polygon mit mindestens vier Knoten immer ein
sogenanntes „ear“ gibt. 

Definition  „ear“

Ein „ear“ ist ein Dreieck, dessen Eckpunkte aus drei aufeinander folgenden Punkte ei-
nes Polygons bestehen. Hierbei muss die komplette Fläche dieses Dreiecks innerhalb
des Polygons liegen.

Für jedes mögliche „ear“ entlang des Polygons gilt es nun zu testen, ob dieses „ear“, beste-
hend aus den direkt aufeinander folgenden Polygon-Eckpunkten p1, p2 und p3, komplett im
Polygon enthalten ist. Hierfür wird für alle anderen Eckpunkt des Polygons geprüft, ob einer
davon innerhalb des von p1, p2 und p3 aufgespannten Dreiecks liegt.

Wird kein solcher Eckpunkt gefunden, ist  das überprüfte Dreieck ein gesuchtes „ear“ und
kann vom Polygon entfernt werden. Dieser Schritt wird so lange wiederholt, bis vom Polygon
nur noch ein Dreieck übrig bleibt.
Für jedes der entfernten Dreiecke, einschließlich für das am Ende übrig bleibende, werden
nun von rechts nach links die entsprechenden y-Wert-Intervalle berechnet. Alle Punkte, die in-
nerhalb dieser Intervalle liegen können dann von der Fläche entfernt werden. 

Für die Aktualisierung der Distanzwerte werden zusätzlich jedoch noch alle Randpunkte des
Polygons benötigt. Diese können beim besprochenen Verfahren nicht automatisch mitgeliefert
werden. Deshalb werden zum Ende nun nocheinmal alle Randsegmente des Polygons abge-
laufen und die besuchten Punkte als Randpunkte gespeichert.
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6.2 Zerlegung des Polygons

Der erste Schritt ist die Zerlegung des Polygons in Dreiecke. Hierzu wird, wie oben bereits
beschrieben, das Polygon Schritt für Schritt verkleinert, indem ein geeignetes Dreieck gesucht
und entfernt wird (ear-clipping). 
Hat ein Eckpunkt pi des Polygons einen Innenwinkel von weniger als 180°, kann er genauer
untersucht werden. Es wird eine imaginäre Verbindung zwischen seinen beiden Nachbarpunk-
ten, pi-1 und pi+1, gezogen, womit das zu untersuchende Dreieck definiert ist. Für jeden ande-
ren Punkt des Polygons wird nun die Lage zu den drei Segmenten des Dreiecks bestimmt. 
Hierbei werden die Segmente in derjenigen Richtung betrachtet, in der sie bei einer Umrun-
dung des Dreiecks entlanggelaufen werden. Liegt ein Punkt für alle Segmente auf der selben
Seite, also entweder links von allen oder rechts von allen, so befindet er sich innerhalb des
Dreiecks, welches demnach kein gültiges „ear“ ist. In diesem Fall muss der jeweils nächste
Eckpunkt des Polygons untersucht werden. Liegt jedoch keiner der Punkte innerhalb des Drei-
ecks, so kann der Punkt pi aus dem Polygon entfernt werden. Für das Dreieck pi, pi-1, pi+1 gilt
es dann noch die entsprechenden Intervalle zu berechnen.

6.3 Bestimmung der Intervalle

Für die Bestimmung der Intervalle werden die drei Punkte des Dreiecks in x-Richtung sor-
tiert, p1, p2, p3. Es müssen nun alle x-Werte zwischen p1 und p3 durchlaufen und für jeden
dieser x-Werte ein Intervall bestimmt werden. Dabei werden entweder die min-Werte oder die
max-Werte vom Segment p1p3 bestimmt und die jeweils anderen Werte von den Segmenten
p1p2 und p2p3. Daraus ergibt sich eine logische Unterteilung der Funktion in zwei Teile. Teil
eins  bearbeitet die x-Werte von p1 bis p2 und Teil zwei diejenigen von p2 bis p3. Mit Hilfe
der Steigung eines Segments kann für jeden x-Wert ein zugehöriger y-Wert für das Segment
berechnet werden. Für den ersten Teil setzt sich das Intervall demnach aus den Werten der
Segmente p1p2 und p1p3 zusammen, für den zweiten Teil wird dann das Segment p1p2 durch
p2p3 ersetzt.
Auch hier spielt die Rundung für das Aussehen und die Korrektheit der Figuren eine wichtige
Rolle. Ziel hierbei sollte es sein, dass ein Punkt genau dann Teil des Segments ist, wenn die
Distanz  zwischen dem y-Wert des Segments zum y-Wert des Punkts an der Stelle x kleiner
als 0,5 ist.

Bei genauerer Betrachtung lässt sich hier jedoch ein Problem erkennen. Da die Segmente bis-
her nur in x-Richtung diskretisiert werden, also für jeden x-Wert ein entsprechender y-Wert
berechnet wird, werden Segmente mit einer Steigung größer eins weniger genau abgetastet als
diejenigen mit einer Steigung kleiner eins. Vor allem bei sehr großen Steigungen wirkt sich
dies deutlich aus.
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Aus diesem Grund sollten Segmente mit einer Steigung die größer als eins ist in y-Richtung
abgetastet werden. Auch hier gilt logischerweise die oben geforderte Regel für die Rundung,
allerdings mit vertauschten Koordinatenachsen. Bei der Integration dieses Vorgehens in die
aktuelle Funktion müssen einige Kleinigkeiten beachtet werden. Um mit bisherigen Schleifen,
die über die x-Werte definiert wurden, weiterarbeiten zu können und trotzdem die Segmente
in y-Richtung abzutasten, muss eine geschachtelte Schleife eingeführt werden. Für einen fes-
ten x-Wert soll nun solange entlang des Segments in y-Richtung gelaufen werden, bis sich der
Funktionswert (x-Wert) ändert. Erst dann kann die äußere Schleife einen Schritt weitergehen.
 
Bei diesem Vorgehen gilt es jedoch zusätzlich zu beachten, ob es sich um eine linke oder um
ein rechte Kante des Dreiecks handelt. Um zu erkennen, warum dies wichtig ist betrachten
wir ein Segment mit einer positiven Steigung von fünf. 
Beginnend am Ursprung ist dieser logischerweise Teil des Segments. Bevor die äußere Schlei-
fe (x-Richtung) von 0 auf 1 springen kann, läuft die innere Schleife (y-Richtung), wie oben
beschrieben, entlang des Segments, bis sich der Funktionswert (x-Wert) ändert. Dies wird bei
y=3 der Fall sein, da der Funktionswert hier 0,6 annimmt. Für x = 0 gibt es also 3 Punkte, die
zum Segment gehören: (0/0), (0/1), (0/2). Stellt dieses Segment nun die obere Kante des Drei-
ecks dar, muss logischerweise der zuletzt besuchte, also der obere Punkt (0/2) als max-Wert
gewählt werden. Ist es jedoch die untere Kante des Dreiecks, ist der erste (der untere) Punkt
(0/0) der Wichtige.

Der Zusammenhang, obere Kante - zuletzt besuchter Punkt, bzw. untere Kante - zuerst be-
suchter Punkt, stimmt allerdings nur, solange das Segment eine positive Steigung hat. Ist die
Steigung negativ, dreht sich dieser Zusammenhang um. Da die Reihenfolge der besuchten
Punkte vom Algorithmus vorgegeben wird, werden sowohl die Informationen über das Vor-
zeichen der Steigung, als auch über die Lage (obere/untere Kante) des Segments benötigt, um
feststellen zu können, ob der zuerst oder der zuletzt besuchte Punkt wichtig ist. Diese Infor-
mationen lassen sich jedoch zusammenfassen, indem die Lage des Segments in x-Richtung
bestimmt wird. So ist sowohl ein oberes Segment mit positiver Steigung, als auch ein unteres
Segment mit negativer Steigung eine linke Kante des Dreiecks. Somit werden die beiden Fälle
in denen der zuerst besuchte Punkt von Bedeutung ist abgedeckt. Die anderen beiden Fälle, in
denen der zuletzt besuchte Punkt der entscheidende ist, sind demnach dann rechten Kanten.
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6.4 Bestimmung der Randpunkte

Für die Bestimmung der Randpunkte muss beachtet werden, dass nur solche Punkte als Rand-
punkte erkannt werden, die auch als Punkte des Polygons erkannt und von der Restfläche ent-
fernt wurden. Es wird schnell klar, dass die Segmente mit einer flachen Steigung nach dem
normalen Muster bearbeitet werden können. Begonnen wird beim weiter links liegenden End-
punkt und es wird für jeden x-Wert ein y-Wert berechnet.
Da die Richtung, in die gearbeitet werden muss hier nicht mehr vorgegeben ist, könnten die
Segmente, deren Steigung einen Absolutwert von größer als eins besitzen, mit einer Vertau-
schung der Koordinatenachsen genau gleich bearbeitet werden, vorausgesetzt, dass durch die
Veränderung der Berechnung keine anderen Ergebnisse erzielt werden. Betrachtet man hier
nun die geschachtelten Schleifen bei der Berechnung der Intervalle, so fällt auf, dass in der in-
neren Schleife alle relevanten y-Werte genau einmal durchlaufen werden. Die Position der äu-
ßeren Schleife gibt dabei den korrekt gerundeten x-Wert wieder, der bei einer Bearbeitung in
y-Richtung berechnet werden würde. Somit ist klar, dass die Berechnung wie geplant durch-
geführt werden kann.
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7 Mögliche Erweiterungen

Im Rahmen einer Diplomarbeit kann ein solch komplexes Problem natürlich nicht bin ins letzte De-
tail bearbeitet werde. Im folgenden sollen einige Punkte umrissen werden, auf die in dieser Arbeit
nicht mehr eingegangen werden konnte, denen jedoch Beachtung geschenkt werden sollte, da sie
teilweise für eine reale Anwendung essenziell sind oder zumindest einiges an Optimierungspotenzi-
al versprechen. 

7.1 Essenzielle Erweiterungen

Weiter Stanzköpfe zulassen :

Dies ist wohl eine der Erweiterungen, die zwingend notwendig sein werden für eine mögliche  Nut-
zung der Algorithmen in der Praxis. Um eine Erweiterung der Stanzkopfauswahl möglichst einfach
zu gestalten, wurde die Verwaltung der Stanzköpfe bereits in eine extra Klasse (Tool) ausgelagert. 
Sofern darauf geachtet wird, dass neue Stanzköpfe eine konvexe Form besitzen, sollte deren Einbet-
tung in die Algorithmen kein großes Problem darstellen. Sollen allerdings auch nicht konvexe For-
men zugelassen werden, wird es zwangsläufig zu Problemen kommen, vor allem was den Umgang
mit der medialen Achse anbelangt. Bei der Aktualisierung derselben nach einem Stanzschritt wer-
den dann die gleichen Sonderfälle zu beachten sein, die bisher nur beim Entfernen von nicht konve-
xen Polygonen von Bedeutung waren. Weitere Schwierigkeiten sind nicht auszuschließen. 
Des weiteren wird der Konnektivitätstest basierend auf der medialen Achse in seiner jetzigen Form
nicht mehr anwendbar sein, da durch nicht konvexe Stanzköpfe auch Bereiche abgetrennt werden
können, die nicht durch eine Gratlinie definiert werden. 

Umgang mit noch nicht entfernten Werkstücken : 

Auch dieser Fall wird in der Praxis sicherlich von Bedeutung sein. Sollten die ausgestanzten Werk-
stücke noch nicht entfernt worden sein, so wird es natürlich von entscheidender Bedeutung sein,
dass sich die Stanzköpfe beim Zerstanzen nicht mit den Werkstücke überlappen. Manche Randseg-
mente der Restfläche spielen somit eine entscheidende Rolle und dürfen nicht vom Stanzkopf über-
schritten werden. Bei der Verwendung von ausschließlich runden Stanzköpfen wäre eine solche Be-
dingung fatal, da vor allem die geraden Randsegmente mit einer sehr großen Anzahl an Stanzhüben,
mit sehr kleinen Stanzköpfen, entfernt werden müssten. Somit ist die Erweiterung der Stanzkopf-
auswahl eine Voraussetzung für diese Randbedingung. 
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Abgerundete Bauteile :

Die Beschränkung auf polygonale Werkstücke ist bei den meisten praktischen Anwendungs-
bereichen wohl nicht möglich. Für die Zulassung anderer Werkstücke müssen jedoch einige
Dinge berücksichtigt werden. Das Hauptproblem hierbei liegt erneut bei der medialen Achse.
Bisher wurde angenommen, dass jede „Extremität“ der Restfläche durch eine Gratlinie defi-
niert wird, die bis zum Rand der Fläche verläuft. Werden jedoch abgerundete Werkstücke zu-
gelassen, kann dies nicht mehr garantiert  werden, da bei einer runden Ausbuchtung keine
wirkliche Ecke der Restfläche definiert ist und somit der Endpunkt der entsprechenden Gratli-
nie irgendwo im Innern der Fläche liegt. Dies führt zu verschiedenen Problemen.

 
Zunächst  betrifft  dies die Vorauswahl  der  möglichen Stanzpositionen.  Die Endpunkte der
Gratlinien wurden bisher als Eckpunkte der Restfläche betrachtet und boten eine gute Aus-
wahl für eine mögliche nächste Stanzposition. Inwiefern Gratlinien-Endpunkte, die mitten im
Feld liegen, hier Beachtung finden sollten müsste erst noch geklärt werden.
Des weiteren wird auch hier die Korrektheit des Konnektivitätstests basierend auf der media-
len Achse ausgehebelt. Eine runde „Extremität“ wird nicht bis zum Rand von einer Gratlinie
durchzogen, womit die zentrale Bedingung des Algorithmus verletzt wird.

7.2 Erweiterungen mit Optimierungspotenzial

Umsortierung der Stanzschritte :

Der Algorithmus wurde bisher in erster Linie auf die Anzahl der Stanzschritte optimiert. Die
Randbedingung, dass die Stanzkopfwechsel minimiert werden sollen, wurde zwar in die Be-
wertungsfunktion integriert, findet sonst aber kaum Beachtung. Eine Idee, die es möglicher-
weise lohnen könnte weiterzuverfolgen, wäre eine Nachbearbeitung des Stanzplanes. Sofern
zwei  aufeinander Folgende Stanzschritte Unabhängig voneinander sind, können diese ver-
tauscht werden. Eine Abhängigkeit zwischen den beiden besteht dann, wenn sich die Stanz-
köpfe überlappen oder wenn der zweite Stanzschritt ohne den ersten nicht Ausführbar ist, da
sonst die Konnektivität beim zweiten verletzt werden würde. Vor allem bei kleineren Stanz-
köpfen liegt die Vermutung nahe, dass hier einiges an Spielraum existiert.
Durch solche Vertauschungen lässt sich möglicherweise eine Reihenfolge der Stanzschritte
finden, bei der einige Wechsel des Stanzkopfes vermieden werden können.
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Verschärfte Vorauswahl :

Die Testläufe wurden bisher auf einem recht überschaubaren Feld von der Größe 100*100
durchgeführt. Die Stanzkopfradien waren begrenzt auf 0-10. Selbst bei solchen, doch recht
kleinen Probleminstanzen lag die Laufzeit des Algorithmus im Bereich von 20-30 Sekunden,
um die 80-200 Stanzpositionen zu berechnen. Für größere Felder, und damit auch eine größe-
re Menge an unterschiedlichen Stanzköpfen, wird die Laufzeit des vorgestellten Algorithmus
sehr schnell aus dem Ruder laufen. 
Ziel muss es sein, die Anzahl der Stanzköpfe und/oder die Anzahl der möglichen Stanzposi-
tionen zu verringern. Hier scheint eine verschärfte Vorauswahl die beste Alternative zu sein.

Alternative Diskretisierung : 

Eine alternative Lösung zur Diskretisierung des Feldes wäre die Verwendung eine Bienenwa-
ben-Struktur, wodurch sich Liniensegmente, die nicht senkrechte oder waagerechte sind, bes-
ser darstellen ließen. 

Ein weiterer großer Vorteil  einer solchen Darstellung wäre, dass eine eindeutige Nachbar-
schaftsbeziehung zwischen zwei Punkten existiert. Beim verwendeten Modell gibt es hierfür
zwei mögliche Betrachtungen. Da jeder Punkt von einem Quadrat repräsentiert wird, hat er
vier Nachbarn, mit denen er Kante an Kante liegt. Es existieren allerdings nocheinmal vier
Nachbarn, welche nur über die Eckpunkte benachbart sind. Somit können einerseits nur die
vier Punkte als Nachbarn bezeichnet werden, die Kante an Kante mit dem Ausgangspunkt lie-
gen, andererseits können auch die an den Eckpunkten anliegenden Punkte mit dazu gezählt
werden. In diesem Fall wären es acht Nachbarpunkte. Diese Unterscheidung kann zu Proble-
men führen, wie im folgenden Beispiel deutlich wird. 
Bei  einer  Bienenwaben-Struktur  hingegen  ist  die  Nachbarschaft  eindeutig  geregelt.  Jeder
Punkt  hat  genau sechs Nachbarpunkte,  womit  ein Problem wie das obere nicht  entstehen
kann. 
Ein weiterer Vorteil ist, dass alle sechs Nachbarpunkte genau die gleiche Distanz zum Aus-
gangspunkt haben, was bei einer Achter-Nachbarschaft nicht der Fall ist und was in manchen
Fällen beachtet werden muss.
Da das Arbeiten mit diese Struktur allerdings komplizierter und weniger intuitiv ist, wurde
hier darauf verzichtet.

Mögliche Einbettung in einen evolutionären Algorithmus : 

Bei der Bewertung der möglichen Stanzschritte handelt es sich um eine Funktion mit vielen
Parametern. Die meisten davon stehen direkt oder indirekt in Beziehung zueinander und be-
einflussen sich gegenseitig. Eine optimale Gewichtung der Parameter, sodass der Algorithmus

57

Abb. 29: Alternative Diskretisierung, Bienenwaben-Struktur



für jede Probleminstanz sehr gute Ergebnisse erzielt, wird es wohl nicht geben. Somit scheint
es sinnvoll zu sein, den Algorithmus mehrfach mit verschiedenen Gewichtungen laufen zu
lassen, um am Ende eine größere Chance auf eine sehr gute Lösung zu erhalten. 
Da die Beziehungen der Parameter untereinander so vielfältig sind und die Möglichkeiten für
Veränderungen so zahlreich, ist es nur bedingt möglich die Gewichtungen durch rationale
Überlegungen zu optimieren. Hier eignet sich deshalb die Einbettung des Programms in einen
evolutionären Algorithmus. Mit Hilfe des Zufalls und durch die Bewertung der bereits getes-
teten Gewichtungen wird ein solches Vorgehen zumindest ein lokales Maximum des Such-
raums finden.

Erweiterung der Bewertungsfunktion :

Schlussendlich gibt es natürlich auch noch die Möglichkeit, die Bewertungsfunktion zu erwei-
tern und zu optimieren. Auch hierfür werden noch zwei Beispiele genannt. Zunächst kann die
bisher getroffene Einschränkung auf ausschließliche Betrachtung des Bereichs um den Stanz-
kopf aufgehoben werden. Hier könne beispielsweise eine Arte Gratlinien-Länge eingeführt
werden, welche für jeden Punkt der medialen Achse die Entfernung zum Rand der Grundflä-
che angibt. Mit Entfernung ist hier die Länge des Pfades entlang der medialen Achse gemeint.
Dies würde zwar mit der lokalen Berechnung der medialen Achse in Konflikt stehen, es könn-
te jedoch auch die Entstehung von sehr langgezogenen Bereichen mit dieser Information ver-
hindert werden, indem Regionen, die sehr weit vom Rand entfernt liegen, bevorzugt bearbei-
tet würden.
Ein weiteres Beispiel bezieht die Betrachtung des näheren Umfeldes um den Stanzkopf mit
ein. Hiermit wäre ein weitaus effektiveres Hilfsmittel zur Vermeidung von Engstellen gege-
ben. Zusätzlich könnte die Umgebung dahingehend geprüft werden, ob sich hier eine weitere
gute Position findet, die durch den aktuellen Stanzschritt zerstört wird.
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