
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3709

Grafischer Webeditor für
Compliance-Anforderungen

Philipp Gildein

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Frank Leymann

Betreuer/in: Dipl.-Inf. Falko Kötter
Dipl.-Inf. Christoph Fehling

Beginn am: 01. Dezember 2014

Beendet am: 02. Juni 2015

CR-Nummer: H.4.1, H.5.2

Kurzfassung

Durch gesetzliche Regelungen wie den Sarbanes-Oxley Act (SOX), das europäische Äquivalent
EURO-SOX oder BASEL II herrscht immer größerer Druck auf Unternehmen, dafür Sorge zu
tragen, dass Regularien eingehalten werden, um kostspielige Verletzungen und PR-Schäden zu
vermeiden. Für das Kerngeschäft der Unternehmen werden oftmals bereits Geschäftsprozesse
eingesetzt, um für korrekte Abläufe zu Sorgen. Die dafür verwendeten Werkzeuge lassen jedoch
oftmals die Unterstützung der sogenannten Compliance-Anforderungen außen vor, mit denen
zusätzlich die Einhaltung von internen und externen Regel überprüft und sichergestellt werden
kann. Da das Wechseln von bereits eingesetzten Werkzeugen kostenintensiv ist, werden Verfahren
gesucht, die bestehende Prozesse um Compliance-Anforderungen erweitern und ein Gesamtkonzept
aus Funktionalität und Benutzerfreundlichkeit bieten.

Diese Arbeit erweitert ein bestehendes Konzept zur Erstellung und Validierung von Compliance-
Anforderungen, den Compliance Descriptor, um ein grafisches Modell sowie einen dazugehörigen
Editor. Einen großen Funktionsumfang hat dieser zwar bereits geboten, durch eine grafische
Darstellung wird die Umsetzung der Anforderungen jedoch deutlich vereinfacht und auch für
Mitarbeiter ohne technische Ausbildung möglich. Zudem können Informationen über den Zusam-
menhang der Anforderungen besser ausgetauscht werden.
Um zusätzlich Erweiterungen des Konzepts für die Zukunft zu evaluieren, wird ein mobiler Editor
prototypisiert. Dieser soll es ermöglichen auch mit Smartphones und Tablets am Compliance
Descriptor zu arbeiten.

3

Inhaltsverzeichnis

Tabellenverzeichnis 7

Abbildungsverzeichnis 7

1. Einleitung 9
1.1. Motivation und Aufgabenstellung . 9
1.2. Gliederung der Arbeit . 10

2. Grundlagen 11
2.1. Geschäftsprozess . 11

2.1.1. Definition . 11
2.1.2. Modellierung . 12

2.2. Compliance . 13
2.2.1. Definition . 13
2.2.2. Business Process Compliance . 13

2.3. Business Process Model and Notation (BPMN) 14
2.3.1. Elemente . 14
2.3.2. Diagramme . 17
2.3.3. Austauschformat . 19

3. State of the Art 21
3.1. BPMN-Q . 21

3.1.1. Abfragesprache . 21
3.1.2. Erweiterungen . 22
3.1.3. Validierung . 24
3.1.4. Graphischer Editor . 25

3.2. SeaFlows . 25
3.2.1. Compliance Rule Graph (CRG) . 26
3.2.2. Validierung . 27
3.2.3. Grafischer Editor . 29

3.3. CoReL . 30
3.3.1. Grafisches Modell . 30
3.3.2. Validierung . 31

3.4. Compliance Descriptor . 32
3.4.1. Funktionalität . 32
3.4.2. Validierung . 33

3.5. Zusammenfassung . 35

4. Erstellung des grafischen Modells 37
4.1. Bestandteile des Compliance Descriptors . 37

4.1.1. Anforderung . 38
4.1.2. Regel . 38

5

4.1.3. Bindung . 39
4.1.4. Gesetz . 40
4.1.5. Einheit . 40
4.1.6. Verbindung . 40
4.1.7. Gesetzesverbindung . 40

4.2. Anforderungen . 41
4.3. Das grafische Modell . 41

4.3.1. Regel . 42
4.3.2. Bindung . 42
4.3.3. Anforderung . 42
4.3.4. Gesetz . 42
4.3.5. Einheit . 43
4.3.6. Verbindung . 43
4.3.7. Gesetzesverbindung . 43

4.4. Überprüfung der Anforderungen . 44

5. Erstellung des grafischen Editors 45
5.1. Der Oryx-Editor . 45

5.1.1. Backend . 45
5.1.2. Frontend . 46
5.1.3. Erweiterbarkeit . 47
5.1.4. Verwendete Version . 47

5.2. Anforderungen . 48
5.3. Implementierung des grafischen Editors . 48

5.3.1. Stencilset . 48
5.3.2. Plugins . 50

5.4. Überprüfung der Anforderungen . 52

6. Beispiel aus der Versicherungsbranche 55
6.1. Der Prozess . 55
6.2. Compliance-Anforderungen . 56
6.3. Implementierung mit Hilfe des Editors . 56

7. Mobiler Prototyp 59
7.1. Aufbau des Prototypen . 61
7.2. Verwendete Bibliotheken . 63
7.3. Implementierung der mobilen Anwendung . 66
7.4. Beispiel aus der Versicherungsbranche in der mobilen Anwendung 67

8. Zusammenfassung und Ausblick 69

Literatur 70

A. Anhang 73
A.1. Code-Listings . 73

A.1.1. Compliance Descriptor aus Kapitel 6 . 73

6

Tabellenverzeichnis

Tabellenverzeichnis

3.1. Überblick über die Verfahren . 35

Abbildungsverzeichnis

2.1. Ereignisse . 15
2.2. Aktivitäten . 15
2.3. Gateways . 16
2.4. Pool mit zwei Swimlanes . 16
2.5. Verbindungen . 17
2.6. Artefakte . 17
2.7. Konver- sations- diagramm . 18
2.8. Choreographie- diagramm . 18

3.1. a) BPMN Elemente b) BPMN-Q Elemente (aus [1]) 22
3.2. Oryx-Editor mit BPMN-Q Graph (aus [4]) . 25
3.3. Bestandteile des Compliance Rule Graphen (aus [26]) 26
3.4. Beispiele des Compliance Rule Graphen (aus [26]) 27
3.5. SeaFlows Graphical Editor (aus [26]) . 29
3.6. CoReL Beispielgraph (aus [14]) . 30

4.1. Compliance Descriptor Struktur . 37
4.2. Regel inklusive Bindung . 42
4.3. Anforderung . 42
4.4. Gesetz . 42
4.5. Einheit . 43
4.6. Verbindung und Gesetzesverbindung . 43
4.7. Minimaler Beispielgraph . 44

5.1. Oryx-Editor mit BPMN-Stencilset . 46
5.2. Abkürzungsfunktionalität an einem Anforderungselement 49
5.3. Die Plugins in der Werkzeugleiste . 50
5.4. Ausdruckeditor . 50
5.5. Fehlgeschlagene Validierung . 51

6.1. BPMN-Graph des Geschäftsprozesses . 56
6.2. Compliance Descriptor . 57

7.1. Oryx-Editor auf einem iPhone der ersten Generation 59
7.2. Mockup der Mobile App . 62
7.3. Komponenten der mobilen Anwendung . 66
7.4. Compliance Descriptor und Elementdialog auf mobilem Endgerät 68

7

1. Einleitung

1.1. Motivation und Aufgabenstellung

In den letzten 15 Jahren stieg die Anzahl der Regeln und Gesetze, die Unternehmen einhalten
und beachten müssen, stetig an. Zudem kommt eine immer größere werdende Menge an internen
Richtlinien. Beispiele dafür sind BASEL II, der Sarbanes-Oxley Act (SOX) [36] in den USA oder
EURO-SOX in der EU [11]. Deren Verletzung kann sowohl zu hohen Strafen als auch zu großen
PR-Schäden führen. Das Einhalten dieser Anforderungen wird dadurch zu einer der wichtigsten
Aufgaben von Unternehmen und bedarf kompetenter Mitarbeiter, deren Aufgabe es ist, sich um
neuste Gesetzeslagen und Richtlinien sowie deren Einhaltung zu kümmern [17].
Gleichzeitig nimmt der Einsatz von Software zur Entwicklung und Ausführung von Geschäftspro-
zessen immer mehr an Bedeutung zu, mit Hilfe deren Abläufe im Geschäftsbetrieb modelliert
werden können. Da die meisten der sogenannten Compliance-Anforderungen während dieser
Abläufe geprüft werden könnten, bietet sich eine Kombination von Geschäftsprozessen und
deren Überprüfung an. Dies findet jedoch bisher nur in sehr wenigen Fällen statt, da dafür
entsprechende Softwarelösungen am Markt fehlen oder noch unausgereift sind.

Eine weitere Schwierigkeit stellt die Vielzahl der Fachgebiete dar, in die die Compliance her-
einreicht. Geschäftsprozesse werden meist von betriebswirtschaftlich orientierten Abteilungen
erstellt, während zu deren Ausführung Hilfsmittel von informationstechnischen Abteilungen zur
Verfügung gestellt werden. Greift der Prozess zudem in die Produktion, den Kundenservice
oder Support ein, kommen schnell zahlreiche Beteiligte zusammen. Dadurch ist Compliance ein
fachgebietsübergreifendes Thema und bedarf der Zusammenarbeit verschiedener Abteilungen [19].
Ohne eine leicht verständliche Darstellung wird es für technisch weniger versierte Mitarbeiter
jedoch schwierig mitzuwirken, weshalb dies im Blick behalten werden muss.

In der vorliegenden Arbeit soll deshalb ein bereits existierender Ansatz, der Compliance Des-
criptor [23], um ein grafisches Modell und einen Editor, der dieses Modell verwendet, erweitert
werden. Bisher ist dieser nur durch ein Dateiformat sowie diverse Semantiken und Validierungen
beschrieben. Daher geht es in dieser Arbeit insbesondere um eine benutzerfreundliche Darstellung
und Bedienung des Editors.
Zusätzlich soll ein Prototyp einer mobilen Anwendung entwickelt werden, der die Funktionalitäten
des Editors auf mobilen Endgeräten liefert. Dieser würde die Einstiegshürde in die Modellierung
von Compliance-Anforderungen deutlich verringern.

9

1. Einleitung

1.2. Gliederung der Arbeit

Die Gliederung der vorliegenden Arbeit wird im Folgenden erläutert. Sie orientiert sich dabei an
der Vorgehensweise der Entwicklung und strukturiert sich folgendermaßen:

Kapitel 1 - Einleitung: Kapitel 1 beschreibt die Aufgabenstellung und Gliederung der Arbeit
und gibt einen kurzen Überblick über das Thema.

Kapitel 2 - Grundlagen: Kapitel 2 stellt einige wichtige Begriff vor und bietet einen Einblick
in die Beschreibungssprache Business Process Model and Notation (BPMN).

Kapitel 3 - State of the Art: Kapitel 3 enthält einen Überblick über aktuelle Entwicklungen
aus dem Umfeld der Compliance- und Geschäftsprozessvalidierung und stellt die Verfahren vor.

Kapitel 4 - Erstellung des grafischen Modells: Kapitel 4 analysiert den Compliance Descriptor
und stellt die dafür entwickelte grafische Darstellung vor.

Kapitel 5 - Erstellung des grafischen Editors: Kapitel 5 zeigt die Umsetzung der grafischen
Darstellung mit Hilfe des Oryx-Editors und die Implementierung von benutzerfreundlichen
Erweiterungen

Kapitel 6 - Beispiel aus der Versicherungsbranche: Kapitel 6 stellt ein Beispiel für einen
Geschäftsprozess aus der Versicherungsbranche vor und implementiert die daran gestellten
Complianceanforderungen mit Hilfe des grafischen Editors.

Kapitel 7 - Mobiler Prototyp: Kapitel 7 beschreibt die Konzeption, Architektur und Erstellung
des mobilen Prototypen und zeigt die Erstellung des Beispiels aus Kapitel 6 in einer mobilen
Anwendung.

Kapitel 8 - Zusammenfassung und Ausblick: Kapitel 8 fasst den Inhalt dieser Arbeit zusammen
und bietet einen Ausblick auf potenzielle Erweiterungen der entwickelten Editoren.

10

2. Grundlagen

In diesem Kapitel soll auf ein paar wichtige Begriffe und Technologien eingegangen werden,
die die Grundlage für den weiteren Verlauf der Arbeit bilden. Dafür werden in den ersten
beiden Abschnitten die Begriffe ”Geschäftsprozessünd ”Compliance”definiert. Abschließend wird
in Abschnitt 2.3 auf die Business Process Model and Notation (kurz: BPM) eingegangen, eine
grafische Beschreibungssprache für Geschäftsprozesse.

2.1. Geschäftsprozess

2.1.1. Definition

Ein Geschäftsprozess ist eine Anzahl von Einzeltätigkeiten, die in einer definierten Reihenfolge
ausgeführt werden, um ein Ziel zu erreichen.
Das Gabler Wirtschaftslexikon enthält folgende Definition:

”Folge von Wertschöpfungsaktivitäten mit einem oder mehreren Inputs und einem
Kundennutzen stiftenden Output. Geschäftsprozesse können auf verschiedenen Aggre-
gationsebenen betrachtet werden, z.B. für die Gesamtunternehmung, einzelne Sparten-
oder Funktionalbereiche”[34]

Eine weitere Definition stammt von Bernd Oestereich:

”Ein Geschäftsprozess ist eine Zusammenfassung einer Menge fachlich verwand-
ter Geschäftsanwendungsfälle. Dadurch bildet ein Geschäftsprozess gewöhnlich eine
Zusammenfassung von organisatorisch eventuell verteilten, fachlich jedoch zusam-
menhängenden Aktivitäten, die notwendig sind, um einen Geschäftsvorfall (z.B.
einen konkreten Antrag) ergebnisorientiert zu bearbeiten. Die Aktivitäten eines Ge-
schäftsprozesses stehen gewöhnlich in zeitlich und logischer Abhängigkeit zueinander.”
[28]

Geschäftsprozesse lassen sich in drei Gruppen einteilen:

• Managementprozesse
Strategische Prozesse, die die höchste Ebene des Unternehmens betreffen.

• Operative Prozesse
Prozesse, die das Kerngeschäft des Unternehmens betreffen und die meist in Zusammenhang
mit dem Kunden stehen.

11

2. Grundlagen

• Unterstützende Prozesse
Prozesse, die der Unterstützung interner Abläufe, wie z.B. bei Einstellungsverfahren, oder
der Einhaltung von Richtlinien, beispielsweise beim Umgang mit persönlichen Daten, dienen.

Neben der Modellierung von Prozessen, die im zweiten Teil dieser Definition erläutert wird,können
diese Prozesse auch um Ausführungssemantiken erweitert werden. Dadurch lässt sich ein Prozess
von einem sogenannten Arbeitsablaufsystem ausführen. Dieses kontrolliert die einzelnen Schritte,
leitet die entsprechenden Folgeschritte ein und kümmer sich um das Senden und Empfangen von
Nachrichten.

Ein beliebtes Beispiel für einen Geschäftsprozess, in diesem Fall einen operativen Prozess, ist die
Einrichtung eines Konto bei einer Bank. Dabei gibt es klar definierte Start- und Endpunkte (der
Antrag des neuen Kunden und die erfolgte Einrichtung) sowie Zwischenschritte, die zwischen diesen
beiden Punkten liegen. An Zweigstellen kann es durch Überprüfungen und Entscheidungen zu
unterschiedlichen Verläufen kommen, z.B. durch die Prüfung der Kreditwürdigkeit des Kunden.

2.1.2. Modellierung

Für die Modellierung von Geschäftsprozessen gibt es verschiedene Möglichkeiten. Unterscheiden
lassen sich dabei prinzipiell graphische und textuelle Repräsentationen. Der gewählte Ansatz hängt
dabei oftmals vom Einsatzgebiet sowie von der Erfahrung des Erstellers und des Zielpublikums
ab.

Die Vorteile einer graphischen Modellierung liegen bei der Einfachheit der Erstellung und der
Interpretation des dabei entstandenen Modells. So gibt es dafür meist Editoren, die dem Anwender
viele Hilfeleistungen an die Hand geben und dadurch die Eingabe des Prozesses simplifizieren.
Zudem zeigt die graphische Darstellung die Verbindungen und Abhängigkeiten klarer auf.
Dadurch eignet sich diese Darstellungsform sehr gut zum Austausch zwischen verschiedenen Abtei-
lungen eines Unternehmens. Auch weniger erfahrene Mitarbeiter können so den Geschäftsprozess
verstehen.

Auch die textuelle Repräsentation hat einige Vorteile. So verstecken graphische Darstellungen
oftmals die Komplexitäten der dahinter liegenden Datenstrukturen. Deshalb können mit einer
Textdarstellung theoretisch komplexere und ausführlichere Prozesse erstellt werden. Das ist
auch der Grund, weshalb vor allem bei ausführbaren Geschäftsprozessen textuelle Modelle den
graphischen bisher vorgezogen werden.

Während sich die meisten Standards bei Geschäftsprozessen auf eine der beiden Repräsentatio-
nen konzentrieren, gibt es vermehrt Bemühungen, beide Formen innerhalb eines Standards zu
unterstützen. Ein großes Problem der graphischen Repräsentation ist nämlich, dass sich reine
Graphiken schlecht aus einem Programm exportieren und in ein anderes Programm importieren
lassen. Textformate haben dieses Problem nicht.

Im Abschnitt 2.3 wird eine grafische Darstellungsform von Geschäftsprozessen in Form der
Business Process Model and Notation (BPMN) vorgestellt.

12

2.2. Compliance

2.2. Compliance

2.2.1. Definition

Compliance, oder zu deutsch Regeltreue, bezeichnet die Einhaltung von Gesetzen, Richtlinien und
Standards in Unternehmen. Compliance-Anforderungen können sowohl von außen vorgegeben
sein als auch intern festgelegt werden. Eine weitere Definition von Eberhard Krügler verdeutlich
dies:

”Der Begriff Compliance steht für die Einhaltung von gesetzlichen Bestimmungen,
regulatorischen Standards und Erfüllung weiterer, wesentlicher und in der Regel vom
Unternehmen selbst gesetzter ethischer Standards und Anforderungen.”[24]

Geprägt wurde der Begriff der Compliance vor allem in der amerikanischen Finanzwirtschaft.
Nach finanziellen Skandalen um Firmen wie den Ölkonzern Enron wurden dort weitreichende
Änderungen an der Finanzgesetzgebung vorgenommen, um das Vertrauen der Anleger in Aktien
von Unternehmen wieder zu erhöhen. Dazu wurde 2002 der Sarbanes-Oxley Act (kurz: SOX)
entworfen und in Kraft gesetzt. Dieser sieht eine deutlich höhere Dokumentationspflicht für
Unternehmen, die in den USA tätig sind, vor.
Im europäischen Raum wurde analog dazu die Abschlussprüfungs-Richtlinie verabschiedet, auch
kurz EURO-SOX genannt, sowie die Eigenkapitalvorschrift BASEL II. Auch diese stellen deutlich
höhere Anforderungen an die Dokumentation von Unternehmen und stellen bei Verletzung hohe
Strafen in Aussicht.

Compliance wird deshalb eine immer wichtiger werdende Aufgabe von Unternehmen und be-
schäftigt sie bis in die höchsten Ebenen. So definiert der Deutsche Corporate Governance Kodex,
ein freiwilliges Regelwerk, dass sich vor allem an im DAX gelistete Unternehmen richtet, die
Aufgabe des Vorstandes so:

”Der Vorstand hat für die Einhaltung der gesetzlichen Bestimmungen und der un-
ternehmensinternen Richtlinien zu sorgen und wirkt auf deren Beachtung durch die
Konzernunternehmen hin (Compliance).”[20]

2.2.2. Business Process Compliance

Da viele Firmen bereits Geschäftsprozesse definiert haben, um wichtige Prozesse ihres Kernge-
schäfts zu beschreiben und korrekt auszuführen, werden diese oftmals mit der Überprüfung von
Compliance-Anforderungen kombiniert. Die Kombination von Geschäftsprozess und Compliance
wird auch als Business Process Compliance (BPC) [33] bezeichnet. Durch entsprechende Softwa-
relösungen können dann die Compliance-Anforderungen gesammelt und modelliert werden. Bei
der Entwicklung und Ausführung der Geschäftsprozesse können sie dann validiert werden.
Eine Alternative stellt die Überprüfung der Anforderungen nach Ende des Geschäftsprozesses dar.
Dabei werden während der Ausführung relevante Daten gesammelt, analysiert und ein Bericht
daraus generiert.
In Kapitel 3 werden vier verschiedene Verfahren vorgestellt, die Funktionen zur Erstellung und
Validierung von Compliance in Geschäftsprozessen zur Verfügung stellen.

13

2. Grundlagen

2.3. Business Process Model and Notation (BPMN)

Business Process Model and Notation (BPMN) [16] ist eine graphische Notation zur Beschreibung
von Geschäftsprozessen. Die Arbeit an BPMN wurde 2001 von Stephen A. White, einem IBM-
Mitarbeiter, begonnen und 2004 in der Version 1.0 von der Business Process Management Initiative
(BPMI) veröffentlicht. Im Juni 2005 übernahm die Object Management Group (OMG), die unter
anderem auch die Unified Modeling Language (UML) entwickelt hat, die Weiterentwicklung und
Pflege des Standards.

2011 wurden mit der Veröffentlichung der Version 2.0 [16] die ersten größeren Änderungen
am Standard veröffentlicht. Mit der neuen Version beschreibt BPMN nicht nur die graphische
Darstellung sondern auch ein XML [37]-basiertes Austauschformat, mit dem BPMN-Modelle
zwischen verschiedenen Programmen ausgetauscht werden können. Seit Mitte 2013 ist BPMN in
der Version 2.0.1 zudem ein internationaler Standard (ISO/IEC 19510:2013).

Bei der Modellierung von Prozessen wird von BPMN ein graph-basierter Ansatz gewählt. Dies
bedeutet, dass ein Prozess mit Hilfe von Knoten und Kanten beschrieben wird, jedoch ergänzt
um weitere graphische Elemente, die es ermöglichen komplexere Abläufe darzustellen.

BPMN in der ersten Version besteht aus vier Kategorien solcher Elemente, die im folgenden
näher beschrieben werden. Es enthält zudem drei verschiedene Diagrammtypen, die ebenfalls kurz
veranschaulicht werden. Da das Hinzufügen eines Austauschformats eine der größten Änderungen
in der Geschichte von BPMN war, soll auch dieses kurz angerissen werden.

2.3.1. Elemente

Vier Gruppen von Objekten mit insgesamt 23 Elementen stellen die Hauptbausteine von BPMN
dar und sollen in diesem Abschnitt beschrieben und durch Bilder illustriert werden.

2.3.1.1. Flussobjekte

Flussobjekte repräsentieren alle Aktionen die innerhalb eines Geschäftsprozesses dessen Verhalten
spezifizieren. Es gibt drei verschiedene Arten von Flussobjekten: Ereignisse, Aktivitäten und
Gateways.

Ereignisse

Ereignisse können in drei verschiedenen Formen auftreten: als Startereignis, das den Ausgangs-
punkt eines Flusses markiert, als Zwischenereignis, welches entweder Informationen empfangen
oder senden kann, oder als Endereignis, das das Ende eines Flusses markiert. Ein Zwischenereignis
unterbricht dabei den Ablauf des Prozesses.

14

2.3. Business Process Model and Notation (BPMN)

Abbildung 2.1.: Ereignisse

Dargestellt werden Ereignisse als Kreis. Ist das Ereignis von einem
speziellen Typ, wie zum Beispiel eine Nachricht, dann wird zusätzlich
ein Symbol im Kreis angezeigt.
Je nach Art des Ereignisses werden der Kreis und das Symbol unter-
schiedlich dargestellt. Bei einem Startereignis wird ein dünner Kreis
gezeichnet, bei einem Zwischenereignis ein doppelter Kreis und bei
einem Endereignis ein doppelter, gefüllter Kreis.
Ein nicht ausgefülltes Symbol steht dabei für ein eingehendes Ereig-

nis, während es bei einem ausgehenden Ereignis ausgefüllt ist. Ausgehende Ereignisse sind dabei
alle Endereignisse sowie manche Zwischenereignisse.

Aktivitäten

Auszuführende Tätigkeiten im Prozess werden durch Aktivitäten beschrieben. Dabei kann
eine Aktivität aus mehreren Arbeitsschritten bestehen. Von BPMN werden vier verschiedene
Haupttypen definiert: eine Aufgabe, die eine Arbeitseinheit darstellt, eine Transaktion, die logisch
zusammenhängende Aktivitäten verknüpft, ein Teilprozess, der zu einem übergeordneten Prozess
gehört und von diesem entweder parallel ausgeführt werden kann oder unterbricht, und eine
Aufruf-Aktivität, die die Kontrolle über den Prozess an einen global definierten Aufruf abgibt.

Aktivitäten werden als Rechteck mit abgerundeten Ecken dargestellt. Ein Teilprozess enthält
zusätzlich ein + in einem Quadrat, um den Inhalt des Teilprozesses aufklappen zu können.
Transaktionen verwenden einen doppelten Rand, während eine Aufruf-Aktivität über einen
dickeren Rand verfügt.

Abbildung 2.2.: Aktivitäten

Ergänzt werden können Aufgaben und Teilprozesse durch Markierun-
gen, die sich graphisch im unteren Teil des Elementes befinden. Beiden
gemeinsam sind dabei die Schleife, die die Aktivität bis zur Erfüllung
einer Bedingung wiederholt, die multiple Instanz, die die Aktivität
mehrmals parallel oder sequentiell ausführt sowie die Kompensation,
die einen Ausgleich (z.B. Lohn oder Gebühren) für vorhergehende
Aktivitäten auszahlt.
Aufgaben können die Kompensation zusätzlich in einer Schleife aus-
führen. Ein Teilprozess kann zusätzlich eine Ad Hoc-Markierung er-
halten, die Aktivitäten dieses Teilprozesses in beliebiger Reihenfolge
ausführt.

Um Aufgaben noch genauer spezifizieren zu können, kann darauf
aufsetzend auch noch ein Typ angegeben werden. Dieser wird als
Symbol in der linken oberen Ecke angezeigt. Dadurch kann eine Aufgabe
als händisch oder durch einen Benutzer auszuführend markiert, ein
Skript ausgeführt, eine Nachricht empfangen oder gesendet, oder ein
automatisierter Service verwendet werden.

Gateways

Das dritte und letzte Flussobjekt ist das Gateway-Element, dass Kanten
im Sequenzfluss aufteilt und wieder zusammenfügt. Gateways werden durch eine Raute dargestellt,
die je nach Verzweigungsart ein Symbol enthalten.

15

2. Grundlagen

Abbildung 2.3.: Gateways

Fünf solcher Verzweigungsarten werden von BPMN definiert: ein
exklusives Gateway, welches auf Grund einer angegebenen Bedin-
gung eine der Kanten aktiviert, ein ereignisbasiertes Gateway, bei
dem das nächste Element ein Ereignis sein muss und die Kante
des zuerst aktivierten Ereignisses aktiviert wird, ein paralleles
Gateway, bei dem alle Kanten aktiviert werden und erst zusam-
mengeführt werden, wenn alle abgeschlossen haben, ein inklusives
Gateway, bei dem je nach Bedingung eine oder mehrere Kanten
aktiviert werden können, sowie ein komplexes Gateway, mit dem
komplizierte Bedingungen gekennzeichnet werden können.
Dabei werden exklusive Gateways mit einem X markiert, ereig-
nisbasierte mit einem Fünfeck in einem doppelten Kreis, parallele
mit einem +, inklusive mit einem O und komplexe mit einem ∗.

2.3.1.2. Pools und Swimlanes

Pools und Swimlanes (oder kurz Lanes) erlauben eine bessere
Organisation von Geschäftsprozessen. Die Pools dienen dabei zur

Abgrenzung der am Prozess beteiligten Parteien und repräsentieren meist eine Organisation,
während die Lanes dabei helfen, die Struktur dieser Organisation abzubilden.

Abbildung 2.4.: Pool mit zwei
Swimlanes

Ein Pool ist unterteilt in eine oder mehrere Lanes, die alle
Aktivitäten enthalten. Dargestellt werden Pools in zwei
Orientierungen, einer horizontalen und einer vertikalen.
Dabei befindet sich der Titel des Pools am linken oder
oberen Ende eines Rechtecks und enthält daneben bzw.
darunter die einzelnen Lanes.
Ein Sonderfall sind sogenannte Black-Box-Pools oder
eingeklappte Pools. Diese enthalten keinen Prozess und
beschränken sich rein auf den Nachrichtenaustausch mit
anderen Pools.

Lanes unterteilen die Pools und enthalten die Flussob-
jekte des Graphen. Ihre Darstellung ist gleich der der
Pools. Sie haben jedoch keinen eigenen Rand, sondern
fügen sich in den umgebenden Pool ein.
Eine Lane kann auch noch in weitere Unterlanes aufge-
teilt werden, um die Struktur feiner darzustellen.

2.3.1.3. Verbindungsobjekte

Verbindungsobjekte sind die Kanten im Graphen. Sie verbinden die Flussobjekte. Zwischen zwei
Aktivitäten ist die normale Verbindung ein Sequenzfluss, eine schwarze durchgezogene Linie mit
ausgefülltem Pfeil.
Ausgenommen davon sind Verbindungen zwischen Aktivitäten zweier verschiedener Pools, bei
denen ein Nachrichtenfluss verwendet werden muss. Dieser ist eine gestrichelte Linie mit nicht
ausgefülltem Pfeil am Ende und einem leeren Kreis am Anfang.

16

2.3. Business Process Model and Notation (BPMN)

Zur Verbindung von Flussobjekten und Artefakten gibt es zudem eine assoziative Verbindung,
die aus einer gestrichelten Linie ohne Anfangs- oder Endpunkte besteht.

Abbildung 2.5.: Verbindungen

Der normale Sequenzfluss kann zudem noch mit Bedingungen
verknüpft werden. Dazu gibt es zum Einen den bedingten
Fluss, der mit einer Raute beginnt und eine Bedingung ent-
hält, zum Anderen den Standardfluss, dessen Strich an einer
Stelle durchgestrichen ist und der aktiviert wird, wenn alle
anderen Bedingungen nicht zutreffen.

2.3.1.4. Artefakte

Artefakte werden verwendet um zusätzliche Informationen
im Geschäftsprozess unterzubringen, die für den eigentlich

Ablauf nicht benötigt werden.

Abbildung 2.6.: Artefakte

Mit einer Anmerkung kann ein Beschreibungstext zu einem Flussobjekt
verfasst werden und mit einer assoziativen Verbindung an diesem
angebunden werden. Sie wird mit einem halben Rechteck dargestellt.

Mit Hilfe einer Gruppe können Aktivitäten thematisch gruppiert wer-
den, ohne dabei Auswirkungen auf deren Ausführung zu haben. Diese
werden durch eine abwechselnd gepunktete und gestrichelte Linie mit
runden Ecken gekennzeichnet.

Datenobjekte bieten die Möglichkeit Daten zu lesen und zu schrei-
ben. Ein normales Datenobjekt, repräsentiert durch das Symbol eines
Dokumentes, repräsentiert dabei eine Information. Erweitert um drei
Striche, wird daraus ein Listen-Datenobjekt, das eine Liste von Infor-
mationen enthalten kann. Um Daten aus externen Quellen zu erhalten,
kann ein Datenobjekt mit einem nicht ausgefüllten Pfeil verwendet
werden. Für die Ausgabe von Daten wird der Pfeil ausgefüllt, um ein
Datenoutput-Objekt zu erhalten. Zur Verbindung von Datenobjekten
und Flussobjekten wird zudem noch eine Datenassoziation hinzugefügt,
die die assoziative Verknüpfung um eine Pfeilspitze erweitert.

Letzter Bestandteil der Artefakte ist die Datenbank. Sie erlaubt sowohl
lesenden als auch schreibenden Zugriff auf Daten und ihre Daten sind auch nach Beendigung des
Prozesses weiter verfügbar. Dargestellt wird Sie durch eine versinnbildlichte Datenbank.

2.3.2. Diagramme

Die vorgestellten Elemente werden in drei verschiedenen Diagrammtypen verwendet. Diese
enthalten zum Teil noch weitere Elemente, die dann aber spezifisch für diese Diagramme sind.

17

2. Grundlagen

2.3.2.1. Kollaborationsdiagramm

Das Kollaborationsdiagramm ist das Standarddiagramm von BPMN und seit der ersten Version
Teil der Spezifikation. Es kann alle bereits vorgestellten Elemente enthalten und bildet daraus
einen Prozessgraphen, der die Kollaboration zwischen verschiedenen Organisationen und deren
Unterorganisationen abbildet. Dazu enthalten sie meist mehr als einen Pool um die einzelnen
Teilnehmer am Prozess modellieren zu können.

2.3.2.2. Konversationsdiagramm

Abbildung 2.7.: Konver-
sations-
diagramm

Mit Version 2.0 kam das Konversationsdiagramm neu hinzu. Es be-
schreibt die Verbindungen zwischen verschiedenen Organisationen wäh-
rend eines Prozesses auf einer höheren Ebene als das Kollaborations-
diagramm. Dadurch kann es als simple Übersicht dienen, während
ein weiteres Diagramm die Details des Prozesses genauer beschreibt.
Teilnehmer des Prozesses werden dabei als Black-Box-Pools darge-
stellt. Um die Konversationen darstellen zu können, werden drei neue
Elemente eingeführt.

Ein Konversationsknoten ist ein Hexagon mit einer Beschriftung und
beschreibt die Art der Konversation. Besteht das Hexagon aus einer
dicken Linie, so ist dies eine global definierte Konversation, enthält es
ein + so ist es eine Teilkonversation, die im aufgeklappten Zustand
genauer definiert werden kann. Mit Hilfe einer Konversationsverbindung werden diese mit den
beteiligten Pools verbunden. Die Verbindung wird durch eine doppelte Linie dargestellt.

2.3.2.3. Choreographiediagramm

Abbildung 2.8.: Choreographie-
diagramm

Das zweite Diagramm, das mit Version 2.0 eingeführt wurde,
ist das Choreographiediagramm. Es konzentriert sich auf die
Interaktionen zwischen verschiedenen Prozessen und dem
Nachrichtenfluss zwischen ihnen. Dabei liegt der Fokus auf
den versendeten und empfangenen Nachrichten und deren
Inhalt. Dazu werden für dieses Diagramm vier neue Elemente
definiert.

Eine Choreographieaufgabe ist ein Schritt einer Choreogra-
phie und enthält Absender, Empfänger und Titel der Nach-

richt. Dazu wird die Darstellung einer normalen Aufgabe in drei Teile aufgeteilt, von denen jeder
jeweils einen Part der Nachricht enthält. Um ein + in einem Quadrat erweitert, ergibt sich daraus
ein Teilprozess, der die Choreographie verfeinern kann. Mit einem dicken Rand wird daraus eine
Aufrufchoreographie, die global im Prozess definiert ist.
Ein Briefsymbol, das mit einer gepunkteten Linie mit einer Choreographieaufgabe verbunden ist,
enthält den Inhalt der Nachricht und kann je nachdem, ob sein Inneres ausgefüllt oder leer ist,
ausgehender oder eingehender Art sein.

18

2.3. Business Process Model and Notation (BPMN)

2.3.3. Austauschformat

Seit der BPMN-Version 2.0 enthält der Standard neben der graphischen Notation auch ein
XML-basiertes Austauschformat. Während zuvor von den BPMN-Werkzeugen verschiedene
Eigenentwicklungen verwendet wurden, die miteinander zumeist nicht kompatibel waren, kann
seit dem derselbe Graph in so gut wie jedem Programm verwendet werden. Dadurch wurde auch
der direkte Einsatz in beliebigen Ausführungsprogrammen ermöglicht.

Das XML-Format besteht prinzipiell aus zwei verschiedenen Teilen. Im ersten Teil wird der Prozess
und seine Eigenschaften beschrieben, während im zweiten Teil die Anzeige der einzelnen Knoten
und Kanten des Prozessgraphen beschrieben wird. Der Hauptknoten der XML-Datei ist ein
definitions-Tag, der den Prozess innerhalb eines process-Tags und die graphische Beschreibung
in einem BPMNDiagram-Tag enthält.

Im process-Tag werden die einzelnen Elemente des Prozesses aufgelistet. Dabei enthält jedes
Element zumindest ein id-Attribut, das spätestens im BPMNDiagram verwendet wird. Flussob-
jekte erhalten zudem noch ein name-Attribut, das einen Klarnamen enthält. Verbindungsobjekte
enthalten dafür sourceRef - und targetRef -Attribute, die die Identifizierer ihrer Anfangs- und
Endpunkte enthält.

Die Beschreibung der graphischen Darstellung innerhalb des BPMNDiagram-Tags besteht
dagegen nur aus wenigen Elementen:
Mit einer BPMNPlane können verschiedene Ebenen dargestellt werden. Darin befinden sich
BPMNShape-Tags, die über ihr bpmnElement-Attribut auf ein Element verweisen und über
einen enthaltenen Bounds-Tag die Position auf der Zeichenebene angeben. Ebenfalls enthalten
sind BPMNEdge-Tags, die die Positionierung der Kanten im Graphen angeben. Über das
bpmnElement-Attribut kann der Identifizierer der entsprechenden Kante des Prozesses angegeben
werden. Um nicht nur gerade Linien zu erhalten können innerhalb ein oder mehrere Waypoint-
Tags angegeben werden, die Punkte zwischen den Elementen enthalten.

19

3. State of the Art

Im dritten Kapitel soll ein Überblick über momentan aktuelle Entwicklungen bei Ansätzen zur
Validierung von Compliance-Anforderungen gegeben werden. Dabei ist das Hauptkriterium für
die Auswahl der Verfahren das Vorhandensein einer grafischen Darstellung, da die Erstellung einer
solchen das Ziel dieser Arbeit darstellt. Einzige Ausnahme davon ist der Compliance Descriptor,
der im vierten Abschnitt dieses Kapitels behandelt wird und momentan noch über keine solche
Darstellung verfügt. Davor wird im ersten Abschnitt eine Erweiterung für die Abfragesprache
BPMN-Q vorgestellt, der zweite Abschnitt beschäftigt sich mit einer weiteren Abfragesprache,
SeaFlows, während im dritten Abschnitt mit CoReL direkt Anforderungen formuliert werden.
Ein Vergleich der Ansätze findet am Ende des Kapitels statt.

3.1. BPMN-Q

BPMN-Q[1] ist eine am Hasso-Plattner-Institut in Potsdam entwickelte graphische Abfragesprache,
die einen Abfragegraphen mit einem oder mehreren Prozessgraphen vergleicht. Dabei wird eine
zu BPMN sehr ähnliche Darstellung gewählt, um die Erstellung von Abfragen für Anwender von
BPMN möglichst simpel zu halten.
In [2][3][4] wird die Sprache dazu verwendet, um Compliance-Anforderungen zu modellieren
und Prozessmodelle auf deren Einhaltung hin zu überprüfen. Dazu werden einige Erweiterungen
für BPMN-Q spezifiziert, die dabei helfen die Ausführungsreihenfolge und die Auswirkung von
Datenkonditionen besser abfragen zu können.

3.1.1. Abfragesprache

Bei der Anwendung eines BPMN-Q-Graphen auf ein Prozessmodell wird die Abfrage mit Hilfe
eines Abfrageverarbeiters interpretiert und das Modell durchsucht. War die Abfrage erfolgreich
wird der gefundene Teilgraph zurückgegeben.
Um die Zahl der möglichen Anfragen zu erhöhen, wird das Arsenal an BPMN-Elementen um
einige abfragespezifische Elemente erweitert:

21

3. State of the Art

Abbildung 3.1.: a) BPMN Elemente b) BPMN-Q Elemente (aus [1])

• Generisches Element Findet jeden beliebigen Typ von Element. Dazu werden bei der
Ausführung des Graphens alle möglichen Elemente an dieser Stelle eingesetzt und geprüft.

• Split Generisches Element, das alle möglichen Arten von Gateways findet. Das Split-
Element findet dabei den Beginn einer Aufspaltung.

• Join
Als Gegenstück zum Split-Element findet es das Ende einer Aufspaltung.

• Anonyme Aktivität
Beginnt der Name einer Aktivität mit einem @-Zeichen, so ist dies eine unspezifizierte oder
anonyme Aktivität. Die Abfrage liefert dafür alle Aktivitäten, die sich an entsprechender
Stelle im Graph befinden, zurück.

• Kante mit Ausschluss
Schließt die spezifizierte Aktivität davon aus, am Ende der Kante positioniert zu sein.

• Pfad
Das Pfad-Element sucht nicht nach einer Aktivität, sondern nach allem, was sich im
Prozessmodell zwischen dem Anfang des Pfads im Abfragegraph und seines Endes befindet.
Verbindet die Pfadabfrage z.B. eine Aktivität A mit einer Aktivität B, so gibt die Suche
alle Elemente, die zwischen A und B liegen sowie deren Verknüpfungen zurück.

• Pfad mit Ausschluss
Wie das bereits bekannte Pfad-Element, schließt jedoch bei der Pfadabfrage alle Pfade aus,
die die ausgeschlossene Aktivität enthält.

Wie dieser Graph bei der Anwendung umgewandelt und ausgeführt wird, wird im Abschnitt
”Validierung”näher beschrieben.

3.1.2. Erweiterungen

Pfaderweiterungen

Wenn mit BPMN-Q Compliance-Anforderungen formuliert werden, ist durch das erfolgreiche
Finden eines Subgraphen noch nicht garantiert, dass die Anforderung auch wirklich erfüllt wurde.

22

3.1. BPMN-Q

So ist noch nicht sichergestellt, dass der gefundene Pfad auch bei jedem möglichen Szenario
ausgeführt wird, da die Ausführung von Kontrollknoten im Prozessmodel nicht von BPMN-Q
abgedeckt wird.
Zum Zweiten wird für die Abdeckung aller Möglichkeiten von Complianceanforderungen die
Fähigkeit benötigt, die Ausführungsrichtung zweier Aktivitäten angeben zu können. Auch dies
wird von Standard-BPMN-Q nicht bereitgestellt.

Um das erste Problem zu lösen wird ein Modellüberprüfer eingesetzt, der den Subgraph, der
nach Anwendung des BPMN-Q Graphen entsteht, überprüft.
Durch die Einführung zweier Erweiterungen kann das zweite Problem gelöst werden:

• � precedes�
Gibt an, dass eine Aktivität vor der anderen ausgeführt werden muss.

• � leads to�
Gibt an, dass eine Aktivität auf jeden Fall nach der anderen ausgeführt werden muss.

Auch wenn beide Erweiterungen auf den ersten Blick ziemlich gleich wirken gibt es doch einen
wichtigen Unterschied: wenn z.B. A und B durch ein Oder-Gateway getrennt sind, dann geht
zwar A B voraus (precedes), A führt aber nicht zu B (leads to), da nicht garantiert ist, dass B
auch ausgeführt wird.

Diese Erweiterungen werden zu Pfaden hinzugefügt, weshalb zusätzlich die Regeln dieses Pfades
gelten. A und B müssen also nicht direkt aufeinander folgen, sondern müssen nur entlang eines
Pfades des Prozessmodells liegen.

Datenkonditionen

Um auch die Auswirkung von Datenkonditionen auf die Einhaltung von Compliance-
Anforderungen überprüfen zu können, muss dieser Aspekt von BPMN auch in BPMN-Q integriert
werden [3]. Dazu werden zwei verschiedene Typen von Datenkonditionen hinzugefügt, die zu vier
verschiedenen Überprüfungen führen. Der erste Typ ist eine eingehende Verbindung von einer
Datenkondition zu einer Aktivität, der Zweite eine ausgehende Verbindung von einer Aktivität
zu einer Datenkondition.
Die vier dadurch möglichen Überprüfungen sind:

• Datenregel
Eine eingehende Verbindung von einer Datenkondition zu einer Aktivität. Die Kondition
muss erfüllt sein, bevor die verbundene Aktivität ausgeführt wird, um die Regel erfüllen zu
können.

• Bedingtes leads to
Dazu muss die Aktivität zu Beginn des leads to eine ausgehende Verbindung zu einer
Datenkondition haben. Dies bedeutet, dass nur wenn die Kondition erfüllt ist, die Aktivität
am Ende des leads to ausgeführt werden muss.

• Bedingtes precedes
Analog zum bedingten leads to muss hier die Kondition einmal zugetroffen haben, bevor
die Aktivität am Ende der Kante ausgeführt wird. Dabei darf sich die Kondition auch vor
der Ausführung dieser Aktivität wieder ändern.

23

3. State of the Art

• Bedingter Ausschluss
Analog zu den zwei bedingten Varianten trifft hier eine Datenkondition auf eine Kante, die
die Ausführung einer oder mehrer Aktivitäten ausschließt. Dadurch kann ausgeschlossen
werden, dass eine Aktivität nicht ausgeführt wird, sobald eine Datenkondition erfüllt wird.

3.1.3. Validierung

Um ein Prozessmodell durch einen BPMN-Q-Graphen validieren zu können, muss im ersten Schritt
natürlich der Abfragenverarbeiter aufgerufen werden. Dadurch sollte man für jede BPMN-Q-
Abfrage einen Subgraphen erhalten. Ist dies für eine Abfrage nicht der Fall wurde die Compliance-
Anforderung nicht erfüllt.

Um für die übrigen Validierungsschritte die Komplexität zu verringern wird im zweiten Schritt der
erhaltene Graph reduziert. Dazu werden als erstes alle Aktivitäten entfernt, die für die Abfrage
der Regel nicht betrachtet werden, also nicht im BPMN-Q Graphen enthalten sind. Anschließend
werden leere und nicht benötigte Gateways und Schleifen, nicht benötigte Startaktivitäten sowie
einige BPMN-spezifische Aktivitäten entfernt.

Im dritten Schritt wird der BPMN-Q-Graph und die leads to und precedes Erweiterungen in
einen Linear Temporal Logic (LTL) Ausdruck umgewandelt. Linear Temporal Logic besteht aus
atomaren Ausdrücken und den logischen Konnektoren ¬, ∧, ∨, →, ⇔ und erweitert das Ganze
um temporale Ausdrücke wie immer, eventuell, nächstes und bis. Die Past Linear Temporal
Logic (PLTL), die hierbei verwendet wird, kehrt diese temporalen Ausdrücke zusätzlich in
die Vergangenheit um und fügt die Ausdrücke immer in der Vergangenheit, einmal in der
Vergangenheit, letztes und seit hinzu.
Bei der Umwandlung wird der gesamte Ausdruck mit dem Equivalent von immer umgeben und
innerhalb davon werden alle Pfadkonstrukte mit ∧ verknüpft. Ein A leads toB Pfad wird zu B
folgt eventuell auf A und ein AprecedesB wird zu A kam einmal in der Vergangenheit vor B.

Im nächsten Schritt wird aus dem reduzierten Graphen eine endliche Zustandsmaschine generiert.
Sie wird für die spätere Modellüberprüfung benötigt. Dafür wird ein Ansatz aus [10] verwendet,
um zuerst ein Petrinetz zu erstellen, aus welchem danach die Zustandsmaschine erstellt wird.
Zur Erstellung des Petrinetzes werden Teile des BPMN-Graphen auf Teile eines Petrinetzes
abgebildet, wobei Datenkonditionen zu eigenen Zuständen im Netz führen, die extra betrach-
tet werden müssen. Über den Erreichbarkeitsgraphen des Petrinetzes wird anschließend die
Zustandsmaschine generiert.

Als letzter Schritt wird die Modellüberprüfung mit Hilfe der endlichen Zustandsmaschine und des
PLTL-Ausdrucks durchgeführt. Dazu wird bei diesem Ansatz NuSMV1 verwendet, ein Prüfer,
der an der Carnegie Mellon University entwickelt wurde.

1http://nusmv.fbk.eu/

24

http://nusmv.fbk.eu/

3.2. SeaFlows

3.1.4. Graphischer Editor

Abbildung 3.2.: Oryx-Editor mit BPMN-Q Graph (aus [4])

Um den BPMN-Q Graphen zu gestalten, wurde eine Erweiterung für den Oryx-Editor entwickelt,
die neben der Erstellung von Anfragen auch die Validierung der Graphen und die Anzeige der
gefundenen Fehler erlaubt.
Oryx wurde ebenfalls am Hasso-Plattner-Institut zur Erstellung von BPMN-Diagrammen entwi-
ckelt. Da große Teile dieser Arbeit ebenfalls auf dem Oryx-Editor aufbauen, wird darauf später
eingegangen.

3.2. SeaFlows

SeaFlows [26][18][25] war ein Forschungsprojekt an der Universität Ulm, das in den Jahren 2005
bis 2011 durchgeführt wurde. Es wurden in dessen Rahmen Werkzeuge für die Überprüfung von
Compliance-Anforderungen in Geschäftsprozessen entwickelt und zwar sowohl grafische Tools
zur Modellierung der Anforderungen als auch zu deren Validierung. Grafisch dargestellt wird
das Ganze mit Hilfe des sogenannten Compliance Rule Graph (CRG). Dessen Validierung kann
während der Erstellung des Geschäftsprozesses durchgeführt werden.

25

3. State of the Art

Um Compliance-Anforderungen zu formulieren, wird von SeaFlows der CRG definiert, welcher im
folgenden Abschnitt beschrieben wird. Auf die Validierung des CRG wird im zweiten Abschnitt
eingegangen. Seine Anwendung durch den grafischen Editor auf Basis von Eclipse wird im dritten
Abschnitt näher betrachtet.

3.2.1. Compliance Rule Graph (CRG)

Abbildung 3.3.: Bestandteile des Compliance Rule Graphen (aus [26])

Der CRG besteht aus sechs verschiedenen Bestandteilen, deren Anordnung die erwünschte
Reihenfolge ihrer Ausführung angibt. Ein CRG besteht dabei aus mehreren Subgraphen, die jeweils
eine Regel formulieren. Die Elemente des Graphen verweisen auf Aktivitäten des Businessprozesses
und werden durch (Nicht-)Ausführung bzw. die An- oder Abwesenheit des Elements aktiviert:

• Vorangehendes Auftreten
Die durch das Element angegebene Aktivität muss zur Aktivierung der Regel aufgetreten
sein.

• Vorangehende Abwesenheit
Als Negierung des vorherigen Elementes wird die Regel hier durch die Abwesenheit der
angegebenen Aktivität aktiviert.

• Auftretende Auswirkung
Nach der Aktivierung einer Regel muss diese Aktivität auftreten bzw. nach Ende der Regel
aufgetreten sein.

• Abwesende Auswirkung
Negiert das vorherige Element, was bedeutet, dass die Auswirkung während der Regel nicht
aufgetreten sein darf.

• Ordnungsrelation
Gibt durch die Richtung des Pfeiles die Reihenfolge an, in denen die Aktivitäten im Prozess
auftreten müssen bzw. abwesend sein müssen.

• Datenkondition
Erweitern das Auftreten einer Aktivität bzw. die Auswirkung eines Teilgraphen um eine
Kondition. Sie enthalten dazu einen booleschen Ausdruck, der bei Erreichen des Elements

26

3.2. SeaFlows

ausgewertet werden kann. Dadurch können vor allem die Einstiegs- und Auswirkungsbe-
dingungen genauer spezifiziert werden. So können Subgraphen beispielweise nur evaluiert
werden, wenn ein bestimmter Grenzwert erreicht wird.

Abbildung 3.4.: Beispiele des Compliance Rule Graphen (aus [26])

Abbildung 3.4 zeigt 4 Beispielgraphen, anhand derer sich das Prinzip des CRG recht einfach
zeigen lässt:
Die Regel c3 bedeutet, dass zwischen der Bestätigung der Bestellung und der Verstandbestätigung
die Ausführung der zwei Aktivitäten ”Prepare goods”(Vorbereitung der Güter) und SShip
goods”(Versand der Güter) stattfinden muss. Sie wird dabei durch das Auftreten der Bestätigungen
aktiviert, woraufhin das Auftreten der beiden anderen Aktivitäten kontrolliert werden kann.
c4 zeigt, dass bei einer Regel nicht das erste Element zur Aktivierung führen muss. Dabei wird
überprüft, dass wenn Premiumstatus angeboten wird, die Zahlungsfähigkeit des Kunden zuerst
geprüft werden muss.
c7 beinhaltet sowohl ein negiertes Element als auch eine Datenkondition. Damit wird beschrieben,
dass beim Versand von weniger als 80.000 Teilen (pn) keine Versandversicherung abgeschlossen
werden muss.
Regel c8 zeigt auf beiden Seiten Datenkonditionen. Hier wird geprüft, dass bei einer Bestellung
von mehr als 40.000 Teilen (pn) zuerst eine Bestätigung (a) vom Kunden geholt werden muss
und auf eine positive Antwort überprüft wird.

3.2.2. Validierung

Um die Validierung von Prozessmodellen gegen den CRG durchzuführen, werden von SeaFlows
zwei verschiedene Verfahren angewendet. Die Ausführungsreihenfolge und Struktur des Modells
wird mit Hilfe eines strukturellen Complianceprüfers geprüft. Für die Prüfung der Auswir-
kung von Datenkonditionen und Daten generell wird ein verhaltensbezogener Complianceprüfer
eingesetzt.

27

3. State of the Art

Struktureller Complianceprüfer

Zur strukturellen Prüfung wird der CRG im ersten Schritt automatisch um fünf Strukturkriterien
ergänzt. Dazu werden die einzelnen Elemente des Graphen und deren Relation zueinander
analysiert.
Die fünf Kriterien sind:

• Enthält A
Das Prozessmodell muss die Aktivität A enthalten.

• A schließt B aus
Überprüft das Prozessmodell auf die Position von A und B. Dieses Kriterium trifft zu,
wenn sich beide auf unterschiedlichen Zweigen eines exklusiven Knoten beziehen.

• A impliziert B
Für alle Vorkommnisse von A und B im Prozessmodell muss gegeben sein, dass sich beide
immer auf derselben Seite von Zweigen eines exklusiven Knoten befinden.

• A impliziert B1, B2, ..., Bn

Überprüft das Prozessmodell auf diesselbe Weise wie das vorhergehende Kriterium. Dabei
werden jedoch nicht nur zwei Aktivitäten überprüft, sondern eine Liste von Aktivitäten.

• A geht B voran
Bei diesem Kriterium wird überprüft, ob es einen gerichteten Pfad von A nach B im
Prozessmodell gibt.

Im zweiten Schritt wird das Prozessmodell auf die gefundenen Kriterien hin untersucht. Fehler
werden anschließend in einem dritten Schritt gesammelt und für den Ersteller des Prozesses
aufbereitet und dargestellt. Dieser kann auf Grundlage der Fehlermeldungen entscheiden, wie er
die Einhaltung der Complianceanforderungen innerhalb des Prozesses gewährleistet.

Verhaltensbezogener Complianceprüfer

Während der strukturelle Prüfer das Vorhandensein und die Reihenfolge von Elementen prüfen
kann, untersucht der verhaltensbezogene Prüfer den Einfluss von Daten auf das Verhalten des
Prozessmodells und damit auch dessen Einfluss auf den CRG.
Daten haben in zweierlei Hinsicht Einfluss auf den CRG: Zum einen können Elemente des
CRG Datenkonditionen enthalten, die von Daten des Prozessmodells beeinflusst werden. Zum
anderen können auch Elemente ohne Datenkondition von Daten beeinflusst werden, indem z.B.
die verknüpfte Aktivität im Modell hinter einem durch Daten beeinflussten Knoten sitzt.

Um bei der Überprüfung nicht das komplette Modell durchsuchen zu müssen, wird ein abstraktes
Prozessmodell sowie ein abstrakter CRG erstellt. Dieses ist, was Daten angeht, kompakter
und somit leichter überprüfbar. Dazu werden zuerst die Daten identifiziert, die für den CRG
relevant sind und die für datenbasierte Knoten benötigt werden. Um das Prüfen dieser Daten zu
vereinfachen wird zudem deren Dimension reduziert. Statt z.B. bei einer Zahl x auf jede mögliche
Zahl 1, 2, ..., n zu prüfen, wird eine Regel erstellt, die dies auf Grundlage der vorgefundenen
Konditionen z.B. auf x > 5 ∧ x < 10 vereinfacht.

28

3.2. SeaFlows

Mit Hilfe von Modellüberprüfungstechniken wird anschließend die Prüfung des Modells durchge-
führt. Im Falle von SeaFlows wird der SAL (Symbolic Analysis Laboratory) Modellüberprüfer[5]
verwendet, der vom Stanford Research Institute entwickelt wurde.

3.2.3. Grafischer Editor

Abbildung 3.5.: SeaFlows Graphical Editor (aus [26])

Um den CRG leichter modellieren zu können, wird von SeaFlows ein Editor zur Verfügung gestellt.
Dieser wurde auf Basis des Eclipse Modeling Framework2 und des Eclipse Graphical Modeling
Framework3 entwickelt und ermöglicht es, Aktivitäten aus dem Businessprozess auszuwählen und
im CRG zu verwenden. Im Editor werden zuerst die Konditionen der Regel, die zur Aktivierung
führen, definiert und anschließend mit den Auswirkungen im zweiten Teil des Editors verbunden.
Nach Fertigstellung eines Graphens werden einzelne XML-Dateien für jeden Subgraphen erstellt
und exportiert.

Integriert wird zudem die kommerzielle Prozessmanagementlösung AristaFlow BPM Suite4.
Damit werden zum einen die Aktivitäten ausgelesen, die bei der Erstellung eines CRG ausgewählt
werden können, zum anderen wird auch die Validierung des Prozesses durchgeführt und es werden
die entsprechenden Fehlermeldungen angezeigt.

2https://www.eclipse.org/modeling/emf/
3https://www.eclipse.org/modeling/gmp/
4http://www.aristaflow.com

29

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/gmp/
http://www.aristaflow.com

3. State of the Art

3.3. CoReL

Die Compliance Representation Language (CoReL)[14][13] ist eine grafische Modellierungsspra-
che für Compliance-Anforderungen, die an den Universitäten von Luxemburg und Osnabrück
entwickelt wurde und 2011 zum ersten Mal veröffentlicht wurde.
Die Sprache kann sowohl während der Modellierung von Geschäftsprozessen als auch während
deren Ausführung evaluiert werden. Diese Evaluierung wird auf Grund von Regeln durchgeführt,
die in einer Vielzahl von Sprachen formuliert werden. Durch diese Flexibilität sollen sich möglichst
viele verschiedene Arten von Anforderungen formulieren lassen.

Trotz Verwendung eines grafischen Modells ist kein grafischer Editor für CoReL bekannt. Zudem
wurde kein Austauschformat definiert, dass das Modell zwischen Editor und einem Validierungs-
system transportieren könnte.

3.3.1. Grafisches Modell

Abbildung 3.6.: CoReL Beispielgraph (aus [14])

Das Hauptkonzept von CoReL ist das Regelwerk. Es modelliert eine Complianceregel als Ent-
scheidung, ob eine Aktion erlaubt, forciert oder verboten werden soll. Das Regelwerk hat einen
einzigartigen Identifizierer und kann über Metadaten zusätzliche Informationen enthalten.

Ein sogenanntes ASE-Tripel (ASE steht dabei für Action, Subject, Entity) verbindet CoReL mit
Aktivitäten eines BPMN-Geschäftsprozesses. Während die Aktion ein Pflichtfeld ist, können die

30

3.3. CoReL

beiden anderen Felder auch leer gelassen werden, da es sich dabei auch um eine automatisch
ausgeführte Aktivität handeln könnte. Durch Verbindungen mit einem oder mehreren Regelwerken
können Konditionen für die Ausführung der Aktion gestellt werden.

Um ein Regelwerk zu beschreiben, können vier verschiedene Typen von Modellen verwendet
werden. Alle vier enthalten dabei zumindest eine Beschreibung, die die enthaltenen Regeln in
Klartext wiedergeben. Drei Modelle enthalten zusätzlich Regeln, die in einer nahezu beliebigen
Sprache formuliert werden können. Dazu wird die Sprache im Namen der Regel angegeben. Dieser
folgt dem Schema R<Name>

<Sprache>.

Die vier Modelle sind:

• Kontext
Das Kontext-Modell, modelliert den Zustand, in dem das System sein muss, damit das
Regelwerk angewendet werden kann bzw. muss.

• Kontrolle
Kontroll-Modelle werden dazu verwendet, um durch Regeln die Complianceanforderungen
zu formulieren.

• Verletzung
Verletzungen der Anforderung können explizit modelliert werden. Dazu kann in der Regel
auch das Ergebnis von Kontroll-Modellen abgefragt werden. Trifft die Regel zu, so kann
durch das Verletzungs-Modell ein angegebener Wert gesetzt werden. Dadurch können zum
Beispiel verschiedene Stufen von Verletzungen eingeführt werden.

• Behandlung
Das Behandlungs-Modell wird verwendet, um auf Verletzungen der Anforderung reagieren
zu können. Dabei sind sowohl positive als auch negative Behandlungen möglich. Zur
Unterscheidung wird die Randfarbe des Symbols verändert, rot für negativ, grün für
positiv.

Dadurch, dass zur Formulierung von Regeln auf bereits definierte Sprachen gesetzt wird, ist
das grafische Modell weniger komplex als in den zwei vorherigen Verfahren. Das hat aber den
Vorteil, dass Anforderungen und Konsequenzen im gleichen Graph modelliert werden und die
Zusammenhänge der einzelnen Regeln klarer werden.

3.3.2. Validierung

Zur Validierung verwendet CoReL zwei verschiedene Ansätze:
Um während der Modellierung eines Geschäftsprozesses eine Validierung durchzuführen, wird
eine statische Prüfung durchgeführt. Diese läuft analog zu den Verfahren ab, die in den Kapiteln
3.1 und 3.2 beschrieben wurden. Durch die Vielzahl der unterstützten Sprachen wird versucht,
diese auf gemeinsames Modell herunterzubrechen. Dazu werden die enthaltenen Regeln mit
Hilfe entsprechender Serialisierer in das Metamodell übertragen und anschließend mit einem
Modellüberprüfer validiert.

Auf die Validierung während des Ablaufens des Geschäftsprozesses wird hier ein größerer Wert
gelegt. Dazu wird ein Überprüfungssystem definiert, dass in die Arbeitsablaufausführung integriert

31

3. State of the Art

wird.
Während der Arbeitsablauf stattfindet, wartet es auf das Eintreten bestimmter Konditionen, die
durch die ASE-Tripel definiert wurden. Ist dies der Fall, so werden die Kontexte der verbundenen
Regelwerke überprüft. Evaluiert der Kontext zu wahr, dann werden als nächstes die Regeln der
Kontroll-Modelle überprüft.
Auf Grund deren Resultate werden als nächstes die Verletzungen kontrolliert und eventuelle
Behandlungen durchgeführt. Je nach Resultat aller Überprüfungen wird ein Ergebnis an die
Arbeitsablaufausführung geliefert.
Waren alle Kontrollen erfolgreich, so wird der Prozess fortgeführt. Trat eine Verletzung auf, so
ist die Fortführung abhängig von der Konfiguration und des Wertes der Verletzung. Gibt es
beispielsweise die Werte Warnung und Fehler, so könnten Verletzungen mit dem Wert Warnung
ignoriert werden und der Prozess weiterlaufen.

3.4. Compliance Descriptor

Der Compliance Descriptor[23][22][15] wurde bis 2015 an der Universität Stuttgart und am
Fraunhofer Institut für Arbeitswissenschaft und Organisation (IAO) im Rahmen des ”Compliance
Management in Adaptive Business Processes”(Co.M.B)-Projektes entwickelt.

Der Compliance Descriptor hebt sich durch seine Flexiblität hervor. Er soll für möglichst
viele Anwendungsfälle einsetzbar sein. Während andere vorgestellte Verfahren nur während der
Designphase oder während der Ausführung des Geschäftsprozesses angewendet werden können,
kann der Compliance Descriptor auch während der Auslieferung der verwendeten Anwendungen
und deren Infrastruktur zum Einsatz kommen. Es besteht zudem die Möglichkeit später weitere
Phasen hinzuzufügen.
Dazu werden beim Compliance Descriptor, ähnlich wie bei CoReL, keine Abfragen formuliert,
sondern die Compliance-Anforderungen an sich. Die eigentlichen Regeln können in verschiedenen
Sprachen geschrieben werden. Im momentanen Zustand korrespondiert eine Sprache mit einer
Phase, die überprüft werden soll.

Ein weiterer Unterschied stellt die Einbindung von Gesetzes- und Anforderungstexten direkt in
den Compliance Descriptor dar. Dadurch kann sowohl beim Editieren als auch beim Validieren
direkt Bezug auf die relevanten Texte genommen werden.

Im Gegensatz zu den bereits vorgestellten Verfahren hat der Compliance Descriptor noch kein
grafisches Modell und verfügt deshalb auch noch über keinen Editor. Deswegen wird hier nur
auf die durch das XML-Format zur Verfügung gestellte Funktionalität sowie deren Validierung
eingegangen.

3.4.1. Funktionalität

Einstiegspunkt beim Compliance Descriptor sind die sogenannten Anforderungen. Diese stel-
len die Compliance-Anforderungen dar, die vom Geschäftsprozess erfüllt werden sollen. Dafür
enthalten Anforderungen sogenannte Compliance Expressions, mit deren Hilfe die Compliance-
Anforderungen formuliert werden. Die Ausdrücke enthalten Regeln und Einheiten und verknüpfen
diese mit Operatoren.

32

3.4. Compliance Descriptor

Einheiten sind indirekte Verweise auf Teile eines Prozesses. Dies kann eine Aktivität des Ge-
schäftsprozesses, ein Teil der Infrastruktur oder ähnliches sein. Über ihren Namen und Typ
werden sie verbunden.

Regeln sind dabei als Teil von Anforderungen zu verstehen. Dazu werden die Compliance-
Anforderungen in individuelle und einzeln zu prüfende Teile getrennt und jeweils als Regel
implementiert. Über einstellbare Phasen und Sprachen kann beeinflusst werden, wann und wie
Regeln ausgeführt werden. Dadurch lassen sich die Regeln einer Anforderung über mehrere
Phasen verteilen und in mehreren Anforderungen verwendet werden.
Zudem können Regeln einen Variability Descriptor[27] enthalten. Dieser wurde ebenfalls an
der Universität Stuttgart entwickelt und dient dazu, abstrakte Regeln formulieren zu können.
Wird z.B. von einer Regel der zeitliche Abstand zwischen zwei Aktivitäten im Geschäftsprozess
gemessen und geprüft, so kann diese Regel formuliert werden ohne den genauen Abstand bzw. die
genauen Aktivitäten zu kennen. Diese können der Regel beim Aufruf als Parameter übergeben
oder als Konstante gesetzt werden und werden durch den Variability Descriptor an der korrekten
Stelle eingesetzt.

Um diese sogenannten Variability Points einsetzen zu können, werden innerhalb der Regel
Bindungen definiert. Diese enthalten neben dem zu ersetzenden Punkt den einzusetzenden Wert
bzw. die Nummer des Parameters der dafür verwendet werden soll. Parameter werden der Regel
innerhalb der Compliance Expression übergeben.

Abgeschlossen wird der Compliance Descriptor durch das Gesetz. Es enthält den kompletten Text
eines Gesetzes, einer Anordnung oder einer Richtlinie als XHTML-Dokument. Dadurch kann mit
einem XPath[39]-Ausdruck, einer Abfragesprache für XML-Dateien, auf einzelne Absätze des
Dokuments verwiesen werden. Diese sind Teil der Anforderung.

3.4.2. Validierung

Um die Validierung eines Geschäftsprozesses durchführen zu können, wird eine Reihe von Tech-
nologien eingesetzt. Diese unterscheiden sich je nach eingesetzter Sprache und der Phase, in der
sie überprüft werden sollen.
Während generell Compliance-Anforderungen und damit auch Anforderungen des Compliance
Descriptors überprüft werden sollen, können diese Regeln aus verschiedenen Phasen kombinieren
und lassen sich deshalb nicht gleichzeitig prüfen. Deshalb werden Regeln einzeln überprüft und
dafür an ihre entsprechende Komponente übergeben, um zur korrekten Zeit geprüft werden
zu können. Dazu werden die Compliance Expressions aller Anforderungen auf Regeln durch-
sucht und alle einzigartigen Kombinationen von Regel und Parametern gesammelt. Von diesen
Kombinationen wird die finale Regel durch Auflösen des Variability Descriptors erstellt. Da zu
diesem Zeitpunkt alle Parameter bekannt sind, können die variablen Punkte einfach durch ihre
Werte ersetzt werden. Anschließend werden alle so erstellten finalen Regeln an ihre entsprechende
Komponente übergeben.

Um einen kompletten Bericht über die Einhaltung der Compliance-Anforderungen zu erhalten,
muss abgewartet werden, bis der Geschäftsprozess beendet ist. Dies ist meist nicht erwünscht, da
so Fehler während der Modellierung erst spät auffallen würden. Deshalb können vom Compliance
Descriptor drei verschiedene Arten von Berichten generiert werden:

33

3. State of the Art

• Lebenszyklusschritt-Bericht
Generiert einen Bericht nach dem Abschluss eines bestimmten Schritts im Lebenszyklus
des Geschäftsprozesses. So lässt sich beispielsweise ein Bericht während oder nach der
Designphase erstellen, mit Hilfe dessen Modellierungsfehler rechtzeitig korrigiert werden
können. Dafür werden die Resultate aller noch nicht validierten Regeln als wahr interpretiert
um ein Ergebnis zu erhalten, dass sich rein auf den betreffenden Schritt bezieht.

• Zwischenbericht
Wird generiert, während noch nicht alle Regeln validiert wurden. Dadurch kann bereits
gesehen werden welche Anforderungen fehlschlugen und welche noch gar nicht oder nur
teilweise ausgeführt wurden. Regeln, die noch nicht validiert wurde, werden als unbekannt
interpretiert. Das Ergebnis von nicht vollständig fertiggestellten Anforderungen ist deshalb
ebenfalls unbekannt.

• Vollständiger Bericht
Nach Abschluss des gesamten Geschäftsprozesses wird ein vollständiger Bericht generiert,
der das Ergebnis aller Regeln beinhaltet.

Um den Geschäftsprozess während der Designphase zu testen, wird die Linear Temporal Logic
(LTL) verwendet, wie sie bereits in Kapitel 3.1 und 3.3 beschrieben wurde. Analog dazu findet
auch die Validierung des Geschäftsprozesses statt.

Für die Überprüfung der Auslieferung wird Topology and Orchestration Specification for Cloud
Applications (TOSCA)[6] verwendet, ein Industriestandard, der es erlaubt, Applikationen unab-
hängig von der gewählten Cloudplattform zu beschreiben und auszuliefern. Mit einer Erweiterung
die TOSCA um Regelwerke ergänzt [41], können Anforderungen an die Auslieferung gestellt
werden. Dadurch lässt sich z.B. der Ort des Rechenzentrums, an die die Auslieferung stattfinden
soll, einschränken. Für die Überprüfung wird ein solches Regelwerk generiert und bei Auslieferung
von TOSCA angewendet.

Zur Validierung während der Laufzeit des Geschäftsprozesses wird die Process Goal Modeling
Language (ProGoalML) [21] verwendet. Mit Hilfe von ProGoalML lassen sich Geschäftsprozesse
um Messpunkte erweitern, mit denen Key Performance Indicators (KPI) berechnet und Ziele
definiert werden können. Durch das Verwenden der Ziele zur Überprüfung von KPIs kann
ProGoalML damit zur Validierung von Complianceanforderungen verwendet werden. Für das
Aufzeichnen und Überwachen der von ProGoalML benötigten Werte wird aPro verwendet, eine
Monitoringlösung, die als Webanwendung ausgeliefert werden kann und den Geschäftsprozess
überwacht und über die Verletzung eines Ziels informieren kann.

34

3.5. Zusammenfassung

3.5. Zusammenfassung

BPMN-Q SeaFlows CoReL Compliance
Descriptor

Modellierungs-
sprachen

BPMN BPMN BPMN BPMN

Regelsprachen PLTL Eigene / CRG LTL, CTL, FCL,
...

LTL, ProGoalML,
TOSCA, ...

Verknüpfte
Gesetze/Regeln

7 7 7 3

Austauschformat XML XML 7 XML

Modellierungsart Abfrage Abfrage Anforderungen Anforderungen

Grafisches
Modell

3 3 3 7

Grafischer
Editor

3 3 7 7

Validierung

Designphase 3 3 3 3

Auslieferung 7 7 7 3

Laufzeit 7 7 3 3

Tabelle 3.1.: Überblick über die Verfahren

In diesem Kapitel wurden vier verschiedene Verfahren zur Validierung von Geschäftsprozessen in
Hinsicht auf Compliance-Anforderungen vorgestellt. Tabelle 3.1 zeigt einen Vergleich der Ansätze
im Hinblick auf ihre Features.

Alle vier Verfahren eignen sich gut dafür, eigene Prozesse während der Modellierung zu überprüfen.
Soll jedoch mehr als nur diese eine Phase validiert werden, so reduziert sich die Nützlichkeit von
BPMN-Q und SeaFlows deutlich.

Von den zwei verbleibenden Ansätzen hat CoReL das Problem, dass noch recht wenige Teile
spezifiziert sind. Es gibt weder ein Austauschformat noch einen Editor dafür.
Auch dem Compliance Descriptor fehlen noch zwei wichtige Teile: ein grafisches Modell und
ein Editor. Die Entwicklung dieser beiden Punkte ist Aufgabe dieser Arbeit und diese damit
nach deren Abschluss vorhanden. Der Compliance Descriptors bietet zudem die Möglichkeit,

35

3. State of the Art

auch die Auslieferung des Prozesses und dessen Infrastruktur zu beeinflussen. Ein Feature, dass
keines der konkurrierenden Verfahren ermöglicht. Des weiteren können dort als als einziges die
Anforderungen mit den Gesetzes- oder Regularientexten verbunden werden, auf denen diese
basieren. Dadurch wird vor allem Mitarbeitern ohne technische Ausbildung die Arbeit mit und
an den Anforderungen erleichtert, da direkt auf den Text Bezug genommen werden kann.

36

4. Erstellung des grafischen Modells

In diesem Kapitel wird ein grafisches Modell für den Compliance Descriptor erstellt. Dafür wird
zuerst der Descriptor genauer untersucht. Dazu werden die Anforderungen an dieses Modell
zusammengetragen, anschließend wird der Descriptor auf seine Bestandteile hin untersucht,
um daraus im dritten Abschnitt des Kapitels das eigentliche Modell zu entwerfen. Der vierte
Abschnitt dient der Überprüfung der Anforderungen in Bezug auf das entworfene Modell.

4.1. Bestandteile des Compliance Descriptors

Den einzigen Anhaltspunkt über die kompletten Bestandteile des Compliance Descriptor liefert
eine XSD-Datei. XSD[40] steht für XML Schema Definition und definiert, wie eine XML-Datei
auszusehen hat. Sie beschreibt das Austauschformat, das zu diesem Zeitpunkt die Hauptmethode
zur Erstellung eines Compliance Descriptors darstellt. Aus diesem Schema lassen sich die folgenden
Typen und Beziehungen zwischen diesen Typen extrahieren:

Abbildung 4.1.: Compliance Descriptor Struktur

Pfeile mit durchgezogenen Linien geben dabei die Struktur innerhalb des Schemas wieder, wohin-
gegen die gestrichelten Pfeile die indirekten Verbindungen darstellen. Die indirekten Verbindungen
werden dabei über einzigartige Identifizierer wie den Namen hergestellt. Für das grafische Modell
sind gerade diese indirekten Verbindungen interessant, da sie die Zusammenhänge deutlich besser
veranschaulichen als die Verbindungen innerhalb der XML-Datei.
Die fünf Elemente des Compliance Descriptors sowie die zwei verschiedenen Verbindungsarten
werden in den nächsten Abschnitten näher beschrieben.

37

4. Erstellung des grafischen Modells

4.1.1. Anforderung

Anforderungen sind die kodifizierten Voraussetzungen, die von Gesetzen und Vorschriften gestellt
und von Prozessen eingehalten werden sollen. Dazu enthalten sie neben einem Namen einen
Compliance-Ausdruck, in dem auf verknüpfte Regeln und Einheiten verwiesen wird, um Aussagen
über die Einhaltung der Anforderung treffen zu können. Die Regeln können darin mit Hilfe
von AND- und OR-Operatoren verknüpft werden und mit Hilfe einer Klammerung strukturiert
werden. Ein Beispielausdruck könnte folgendermaßen aussehen:

WirdNacheinanderAusgefuehrt("Aktivitaet1", "Aktivitaet2") AND

DauertNichtLaengerAls("Aktivitaet1", 15)

In diesem Ausdruck könnte z.B. überprüft werden, dass zwei Aktivitäten in der korrekten
Reihenfolge ausgeführt werden und dass die Ausführung der ersten Aktivität nicht länger als 15
Minuten dauert.

Durch eine Verknüpfung mit einem Gesetzelement kann zusätzlich zur Formulierung der Anfor-
derung im Ausdruck auch noch ein Verweis auf den entsprechenden Gesetzestext hinzugefügt
werden. Ein XPath-Ausdruck kann verwendet werden um nicht nur auf den gesamten Text zu
verweisen, sondern direkt auf den entsprechenden Paragraphen.

Anforderungen enthalten die folgenden Eigenschaften:

• ID: Der einzigartige Identifizierer der Anforderung, die zur Verknüpfung verwendet werden
kann.

• Beschreibung: Eine Beschreibung der Anforderung in einem kurzen Text.

• Compliance Ausdruck: Eine Kombination von Regeln, die zur Validierung der Anforde-
rung ausgewertet werden müssen.

4.1.2. Regel

Um Anforderungen kompakt zu halten, werden diese aus Regeln zusammengesetzt. Diese sind
allgemein gehalten und können in mehreren Anforderungen verwendet werden.

Durch die Wahl der Sprache sowie der Phase, in der die Regel angewendet werden soll, ist es
möglich verschiedene Aspekte des Prozesses zu überprüfen. Mit Hilfe von LTL lässt sich die
Ausführungsreihenfolge von Aktivitäten bereits in der Designphase überprüfen, während durch
Unterstützung von TOSCA die Möglichkeit besteht die Auslieferung des Prozesses zu beeinflussen.
Läuft der Prozess bereits, können mit ProGoalML KPIs und die Einhaltung von Grenzwerten
überwacht werden.

Regeln enthalten dazu entweder einen Regelausdruck, der in der gewählten Sprache die Regel
beschreibt, oder einen Verweis auf eine Regel in einem anderen Dokument.

Zusätzlich kann eine Regel einen Variability Descriptor enthalten, der mögliche Veränderungen
am Prozess beschreibt. Dazu wird das XML-Dokument des Variability Descriptors direkt in den

38

4.1. Bestandteile des Compliance Descriptors

Compliance Descriptor eingebunden. Bei der Validierung des Compliance Descriptors werden die
Bindungen aufgelöst und mit Hilfe des Variability Descriptors in die abstrakte Regel eingesetzt
um eine ausführ- und validierbare Regel zu erhalten.

Regeln enthalten die folgenden Eigenschaften:

• ID: Der einzigartige Identifizierer der Regel, der zur Verknüpfung verwendet werden kann.

• Beschreibung: Eine Beschreibung der Regel in einem kurzen Text.

• Sprache: Die Sprache, in der die Regel geschrieben wurde, z.B. LTL.

• Phase: Die Phase, in der die Regel ausgeführt werden soll. Bei LTL wäre dies z.B. während
der Designphase.

• Regel: Die eigentliche Regel; kann entweder als Ausdruck übergeben werden oder über
eine URL eingebunden werden.

• Bindungsstrategie: Die Strategie, mit der Bindungen beim Variability Descriptor einge-
bunden werden.

4.1.3. Bindung

Bindungen sind Teil einer Regel und beschreiben die Variabilitätspunkte der Regel. Sie enthalten
den Namen des Punktes sowie entweder einen konstanten Wert oder die Position des Parameters
in der Regel. Im Regelausdruck der Anforderung werden Regeln ähnlich wie Funktionen in
anderen Sprachen verwendet, und es können ihnen auch Parameter übergeben werden. Ein
solcher Aufruf kann zum Beispiel so aussehen:

NameDerRegel("Name der Aktivitaet")

Dabei wäre der erste Parameter der Regel der Name der Aktivität und könnte in einer Bindung
verwendet werden.

Eine Bindung enthält die folgenden Eigenschaften:

• Variabilitätspunkt: Der Name des Variabilitätspunktes; sollte innerhalb der Regel ein-
zigartig sein.

• Konstante: Gibt den konstanten Wert der Bindung an.

• Parameter: Gibt die Nummer des Parameters an, der für diese Bindung verwendet werden
soll. Entweder eine Konstante oder ein Parameter muss gesetzt sein.

39

4. Erstellung des grafischen Modells

4.1.4. Gesetz

Gesetzesobjekte sind reine Inhaltsobjekte. Sie enthalten den vollständigen Text des Gesetzes bzw.
der Vorschrift als XHTML- oder XML-Dokument. Dadurch kann der Text direkt in das XML-
Dokument des Compliance Descriptor eingebettet werden und Anforderungen direkt auf einzelne
Paragraphen des Texte verweisen. So sind die Compliance-Anforderungen sowohl in Form eines
Compliance-Ausdrucks als auch in Textform verfügbar. Dies kann sowohl bei der Erstellung des
Compliance Descriptors zum Nachschlagen als auch bei der Meldung von Compliance-Verstößen
hilfreich sein und dem Nutzer bei der Verwendung des Compliance Descriptors helfen.

Gesetze enthalten die folgenden beiden Eigenschaften:

• Titel: Der Titel des Gesetzes; wird zum Verknüpfen innerhalb der XML-Datei verwendet
und sollte deshalb einzigartig sein.

• Inhalt: Der Gesetzestext als XHTML- oder XML-Dokument.

4.1.5. Einheit

Einheiten sind indirekte Verweise auf Teile des Geschäftsprozesses. Dies kann z.B. eine Aktivität
des Prozesses oder ein Teil der Infrastruktur sein. Über den Namen der Einheit und ihres Typs
wird sie mit der entsprechenden Einheit implizit verknüpft.

Eine Einheit enthält die folgenden Eigenschaften:

• Name: Der Name der Einheit

• Typ: Der damit verbundene Typ von Objekt.

• Beschreibung: Eine Beschreibung der Einheit. Kann beispielsweise bei der Erstellung
eines Prozesses dazu verwendet werden, um genau zu beschreiben, welche Einheit vom
Compliance Descriptor erwartet wird.

4.1.6. Verbindung

Die Verbindung stellt eine einfache Verknüpfung zweier Elemente dar. Sie besteht zwischen einer
Anforderung und einer Regel oder einer Einheit. Eine Verbindung enthält keine Eigenschaften.

4.1.7. Gesetzesverbindung

Ein Spezialfall bei den Verbindungen zwischen Elementen ist die Verbindung zwischen einer
Anforderung und einem Gesetz. Hierbei muss noch die Möglichkeit bestehen, einen XPath-
Ausdruck unterzubringen um auf einen bestimmten Paragraphen des Gesetzes verweisen zu
können. XPath-Ausdrücke sind Anfragen an das XML-Dokument, um Teile von diesem auf
Grund von Tags und Attributen zu finden und zurückzuliefern.

Deshalb enthält die Gesetzesverbindung eine Eigenschaft:

• XPath: Der XPath-Ausdruck, der auf den betroffenen Abschnitt im Text des Gesetzes
verweist.

40

4.2. Anforderungen

4.2. Anforderungen

Im dritten Kapitel wurden drei Ansätze mit einem existierenden grafischen Modell vorgestellt
und analysiert. Dabei wurden auch einige Nachteile entdeckt, die nun im Modell des Compliance
Descriptors vermieden werden sollen.
Zu technisch komplexe Darstellungen oder Regeldefinitionen durch das Modell schrecken unerfah-
rene Anwender durch die hohe Einarbeitungszeit ab und verhindern es, einen schnellen Überblick
über das Diagramm zu erhalten. Trotzdem soll möglichst wenig von der Funktionalität eingebüßt
werden, um alle Möglichkeiten des Compliance Descriptors auszunutzen. Von BPMN-Q wurden
pro Anforderung oder Regel eine eigene Abfrage in einem eigenen Dokument formuliert. Da
dabei für den Benutzer die Zusammenhänge schlecht nachvollziehbar sind und die gesamten
Anforderungen an den Prozess schlecht sichtbar sind, sollte dies vermieden werden.
Der Compliance Descriptor richtet sich vor allem an Anwender von BPMN-Geschäftsprozessen.
Deshalb wäre es von Vorteil die Darstellung möglichst nah am BPMN-Modell zu halten.

Aus diesen Einsichten werden die vier folgenden Anforderungen formuliert:

1. Simple Darstellung
Eine simple Darstellung soll den Inhalt des Diagramms schnell erfassbar und auch für
weniger technikaffine Nutzer lesbar machen.

2. Komplexität ermöglichen
Für erfahrene Anwender sollen möglichst alle Funktionen des Compliance Descriptors
zugänglich sein.

3. Darstellung aller Elemente in einem Diagramm
Das Diagramm soll nicht in unterschiedliche Abschnitte oder einzelne Anforderungen
aufgeteilt werden. Dadurch lassen sich Elemente mehrmals verwenden und können als ein
Gesamtkonzept verstanden werden.

4. BPMN-inspirierte Formen
Durch die Orientierung an BPMN-Elementen sollen die Formen des Modells für den Nutzer
bekannt und damit leicht verständlich sein.

4.3. Das grafische Modell

Nachdem in den vorhergehenden Abschnitten bereits der Compliance Descriptor beschrieben
wurde und die Anforderungen definiert wurden, soll nun das daraus erstellte grafische Modell
vorgestellt werden. Dabei wird auf die einzelnen Elemente des Descriptors eingegangen und dann
ein minimaler Beispielgraph gezeigt.

41

4. Erstellung des grafischen Modells

4.3.1. Regel

Abbildung 4.2.: Regel inklusive
Bindung

Eine Regel des Compliance Descriptors wird ähnlich wie ei-
ne Aktivität im BPMN-Diagramm dargestellt. Beide haben
die Gemeinsamkeit, dass sie die Hauptelemente des jewei-
ligen Diagrammtyps sind. Aus diesem Grund wurde diese
Darstellungsweise gewählt. Die ID der Regel wird im oberen
Bereich des Regelelements dargestellt. Weitere Eigenschaften
der Regel lassen sich leider nicht direkt im Element anzeigen,
ohne die Komplexität der Ansicht deutlich zu erhöhen. Diese
müssen über andere Möglichkeiten bei der Implementierung
zugänglich gemacht werden.

4.3.2. Bindung

Da Bindungen ein Teil einer Regel sind, werden sie innerhalb der Regel dargestellt. Grafisch
sind sie deutlich schlanker, haben aber eine generell ähnlichen Form wie die Regel. Der Name
des Variabilitätspunktes wird innerhalb des Elementes zur Kennzeichnung verwendet. Da im
Variability Descriptor die Namen der einzelnen Punkte mit einem Dollarzeichen beginnen, um
sie klar als Variablen zu kennzeichnen, beginnt auch der Name des Punktes in der Bindung mit
einem Dollarzeichen.

4.3.3. Anforderung

Abbildung 4.3.: Anforderung

Anforderungen vereinen mehrere Regeln in sich, um daraus
einen Compliance-Ausdruck zu bauen. Deshalb werden sie
ähnlich einer Regel dargestellt, ihr Rand ist jedoch doppelt
ausgeführt um damit die Kombination mehrerer Regeln auszu-
drücken. Die ID der Anforderung wird innerhalb des Elements
dargestellt. Der Compliance-Ausdruck wird in der grafischen
Darstellung zwar nicht angezeigt, jedoch sind die Bestandteile
des Ausdrucks durch die Verbindungen von der Anforderung
zu den anderen Elementen sichtbar. Die genaue Komposition
muss dann durch die Implementierung des Editors zugänglich
gemacht werden.

4.3.4. Gesetz

Abbildung 4.4.: Gesetz

Ein Gesetz wird ähnlich einer Regel dargestellt, wird jedoch um das
Paragraphzeichen ergänzt um zu verdeutlichen, dass es sich dabei um
ein Gesetz handelt. Der Titel des Gesetzes oder der Richtlinie wird
innerhalb des Elements dargestellt, während der Inhalt des Elements
nicht angezeigt wird. Die Anzeige oder Bearbeitung eines Dokuments
mit vielen Seiten innerhalb des Diagramms ist jedoch nicht praktikabel
möglich.

42

4.3. Das grafische Modell

4.3.5. Einheit

Abbildung 4.5.: Einheit

Die Einheit wird pillenförmig dargestellt. Als einzige Form findet man sie nicht in einem BPMN-
Diagramm. Der Name der Einheit wird mittig in der Form angezeigt. Der Typ und die Beschrei-
bung sind nicht enthalten ist.

4.3.6. Verbindung

Eine Verbindung wird als schwarze Linie mit gefüllter Pfeilspitze dargestellt.

Abbildung 4.6.: Verbindung und Gesetzesverbindung

4.3.7. Gesetzesverbindung

Eine Gesetzesverbindung wird ähnlich der normalen Verbindung dargestellt, es wird jedoch in
der Mitte der Linie ein zusätzliches Paragraphzeichen angezeigt um den Unterschied zwischen
den beiden Verbindungstypen zu kennzeichnen. Zudem wird der XPath-Ausdruck unterhalb der
Linie angezeigt, um direkt Informationen über den gewählten Paragraphen zu erhalten.

43

4. Erstellung des grafischen Modells

Abbildung 4.7.: Minimaler Beispielgraph

4.4. Überprüfung der Anforderungen

Bisher wurde der Compliance Descriptor genauer untersucht, vier Anforderungen aus der State
of the Art Analyse extrahiert und das grafische Modell vorgestellt. Im letzten Schritt sollen jetzt
die gestellten Anforderungen aus Abschnitt 4.2 überprüft werden:

1. Simple Darstellung 3
Durch reduzierte Informationen und klare Linien sollte es gelungen sein, eine simple
Darstellung anzubieten.

2. Komplexität ermöglichen 7
Die ganze Funktionalität des Compliance Descriptors kann mit diesem grafischen Modell
nicht dargestellt werden. Jedoch besteht immer noch die Möglichkeit, dies durch den Editor
auszugleichen und dort die restlichen Funktionen abzubilden.

3. Darstellung aller Elemente in einem Diagramm 3
Mehrere Anforderungen können in einem Diagramm modelliert werden und Regeln können
in verschiedenen Anforderungen eingesetzt werden.

4. BPMN-inspirierte Formen 3
Bis auf ein Element orientieren sich alle der gewählten Formen an BPMN, und der einzige
Ausreißer ist nicht sehr weit entfernt.

Drei der vier Anforderungen konnten bereits vom grafischen Modell erfüllt werden. Die verblei-
bende Anforderung kann jedoch während der Implementierung des Editors noch erfüllt werden.
Dies wird im folgenden Kapitel verdeutlicht.

44

5. Erstellung des grafischen Editors

Die grafische Darstellung, die im vorherigen Kapitel erstellt wurde, soll nun umgesetzt werden.
Dafür wird der Oryx-Editor verwendet und erweitert. Dieser wird im ersten Abschnitt dieses
Kapitels vorgestellt. Im zweiten Abschnitt werden die Anforderungen an die Umsetzung des
grafischen Editors zusammengestellt. Der dritte Abschnitt erklärt die Implementierung der
einzelnen Teile, die für die volle Funktionalität des Editors benötigt werden, und der letzte
Abschnitt überprüft die Umsetzung der Anforderungen durch die Implementierung.

5.1. Der Oryx-Editor

Der Oryx-Editor ist ein grafischer Webeditor, der am Hasso-Plattner-Institut (HPI) in Potsdam
entwickelt wurde, um BPMN-Diagramme zu erstellen. Die Arbeit daran begann 2006 mit drei
zusammenhängenden Bachelorarbeiten[8][35][32], in deren Rahmen eine erste Version des Editors
entwickelt wurde. Durch die Veröffentlichung unter einer Open Source-Lizenz und einem regen
Entwicklungsfortschritt wurde der Oryx-Editor von vielen Universitäten und Unternehmen gut
angenommen. Als 2009 die ursprünglichen Entwickler am HPI daraus ein kommerzielles Produkt
unter dem Namen SSignavio”1 entwickelten wurde die Weiterentwicklung von Oryx allerdings
eingestellt.

Oryx gliedert sich in zwei verschiedene Teile, das Backend, das auf dem Server läuft und sich
vor allem um die Datenhaltung kümmert, und das Frontend, d.h. die Webapplikation mit der
Diagramme modelliert werden können.

5.1.1. Backend

Als Backend setzt Oryx auf einen Java-Server, der mit Hilfe eines Applikationsserver ausgeführt
wird. Um Daten und erstellte Diagramme zu speichern wird PostgreSQL2 als Datenbank eingesetzt.
Durch die Verwendung von sogenannten Servlets[30], kleinen Programmen die über eine URL
aufgerufen werden können, ist das Backend sehr modular aufgebaut und kann leicht um weitere
Endpunkte erweitert werden.

Neben der Datenhaltung kümmert sich das Backend auch um die Authentifizierung der Benutzer.
Sie findet mit Hilfe von OpenID[29], einem Standard für dezentrale Authentifizierung, statt.
Dabei kann sich der Benutzer mit einer URL anmelden und wird dann auf die Seite seines
OpenID-Anbieters weitergeleitet. Nach erfolgreicher Anmeldung wird er zurückgeleitet und ist
dann authentifiziert. Durch Verwendung von OpenID erspart man sich so, Daten der Benutzer

1http://www.signavio.com
2http://www.postgresql.org/

45

http://www.signavio.com
http://www.postgresql.org/

5. Erstellung des grafischen Editors

wie Passwörter speichern zu müssen. Für den Benutzer besteht zudem der Vorteil, dass er sich
nicht für jeden Account bei einem Webdienst einen neuen Benutzername und ein neues Passwort
merken muss.

5.1.2. Frontend

Das Frontend von Oryx besteht aus zwei verschiedenen Teilen: Das sogenannte Process Repository
dient als Einstieg in die Anwendung. Dort können neue Diagramme erstellt und bereits vorhandene
durchsucht und geöffnet werden. Durch das Öffnen eines Diagramms wird der zweite Teil des
Frontends, der Editor, in einem neuen Browsertab geöffnet.

Abbildung 5.1.: Oryx-Editor mit BPMN-Stencilset

Die Benutzeroberfläche des Editors ist in vier Abschnitte gegliedert: Am oberen Rand des Editors
befindet sich die Werkzeugleiste, die eine Reihe von Knöpfen mit Symbolen enthält. Durch
das Klicken auf einen Knopf kann die entsprechende Funktionalität aktiviert werden. Beispiele
für Knöpfe sind z.B. der Speichern-Knopf, der Exportieren-Knopf oder der Validierungs-Knopf.
Der rechte Rand enthält das Shape Repository, welches die vom momentanen Diagrammtyp
unterstützten Formen enthält. Diese können durch Drag and Drop, also das Ziehen mit dem
Mauszeiger, auf die gewünschte Stelle im eigentlichen Editorbereich gezogen werden.
Dieser befindet sich in der Mitte des Fensters und nimmt den Großteil des verfügbaren Platzes
ein. Dort lassen sich die Elemente ebenfalls per Drag and Drop bewegen. Zusätzlich gibt es
noch die Möglichkeit eine Abkürzungsfunktion zu verwenden. Nach dem Klicken auf ein Element
werden rechts davon leicht durchsichtig andere Elemente und Kanten angezeigt mit denen dieses
Element verbunden sein kann. Wird eines davon per Klick verschoben, so wird automatisch das
entsprechende Element inklusive einer Verbindung zwischen den Beiden erstellt.
Am rechten Rand des Editors befinden sich die Eigenschaften. Klickt man auf eines der Elemente,
werden dort die Eigenschaften des gewählten Elements angezeigt und können bearbeitet werden.

46

5.1. Der Oryx-Editor

Der Webeditor wurde mit den Standard-Webtechnologien HTML, CSS und Javascript geschrieben.
Um nicht alle Funktionen selbst schreiben zu müssen, baut Oryx auf einigen verbreiteten
Bibliotheken auf: Ext.js wird verwendet, um Funktionalität und Aussehen einer normalen
Desktopanwendung nachzubilden. Dafür bietet Ext.js3 viele Elemente, die dynamisch initialisiert
und angezeigt werden können. Zudem wird Prototype.js4 verwendet, eine Bibliothek die Javascript
um eine Art Klasse und Klassenvererbung erweitert, sowie Funktionen für Anfragen an den Server
und das Auswählen von Elementen des Editors erlaubt.

5.1.3. Erweiterbarkeit

Da in dieser Arbeit der Oryx-Editor um ein neues grafisches Modell und damit verbundene
Plugins erweitert werden soll, ist die Erweiterbarkeit von Oryx entscheidend.
Der Server lässt sich einfach durch das Hinzufügen neuer Servlets erweitern. Dadurch dass diese
kleine eigenständige Programme sind müssen sie nur dem Applikationsserver bekannt gemacht
werden um zu funktionieren.
Für den Editor gibt es verschiedene Möglichkeiten zur Erweiterung. Sogenannte Stencilsets[31]
werden verwendet um Diagrammtypen zu definieren. Sie bestehen aus einer JavaScript Object
Notation (JSON)[12]-Datei, einem Dateiformat, das den Objekttypen aus Javascript verwendet
um Daten zu kodieren, sowie Scalable Vector Graphic (SVG)[38]-Dateien, einem auf XML
aufbauenden Format für skalierbare Vektorgrafiken. SVG wird von Oryx dazu verwendet um die
Graphen darzustellen. Da es auf XML aufbaut, kann es direkt in die (X)HTML-Seite integriert
werden und biete viele Funktionen zum Zeichnen. Die einzelnen SVG-Dateien beschreiben das
Aussehen der einzelnen Elemente des Diagramms, während die JSON-Datei diese verwendet
und um semantische Informationen erweitert. Darunter fallen unter anderem die Eigenschaften
des Elements, die anzuzeigenden Namen und mögliche Verknüpfungen zwischen den einzelnen
Elementen. Der Oryx-Editor ist modular aufgebaut. Die meiste Funktionalität wird von Plugins
implementiert. Durch die Entwicklung eigener Plugins kann also der Funktionsumfang von Oryx
erweitert werden.

5.1.4. Verwendete Version

Da die Weiterentwicklung von Oryx eingestellt wurde und es auch aus den Reihen der Nutzer
nicht mehr zur (öffentlichen) Weiterentwicklung kommt, werden einige Versionen von unter-
schiedlichsten Institutionen nicht-öffentlich weiterentwickelt. Eine solche Version wird auch vom
Institut für Architektur von Anwendungssystemen (IAAS) und vom Fraunhofer Institut für
Arbeitswissenschaft und Organisation (IAO) unterhalten und weiterentwickelt. Sie wurde dabei
in aPro integriert und um Erweiterungen zur Arbeit mit aPro ergänzt.

aPro ist eine Monitoringlösung, die Oryx zur Modellierung von Geschäftsprozessen verwendet
und die entstandenen Prozesse als eigenständige Webanwendungen starten und überwachen kann.
Oryx stellt dabei das Hauptinterface dar und wurde dazu durch zahlreiche Plugins erweitert.
Aufbauend auf der aktuellsten Version von aPro und dem darin enthaltenen Oryx-Editor wird in
diesem Kapitel die Implementierung des grafischen Webeditors aufgezeigt.

3http://www.sencha.com/products/extjs/
4http://prototypejs.org/

47

http://www.sencha.com/products/extjs/
http://prototypejs.org/

5. Erstellung des grafischen Editors

5.2. Anforderungen

Auch in diesem Kapitel sollen wieder Anforderungen formuliert werden, die durch die Imple-
mentierung des grafischen Editors erfüllt werden sollen. Eine der Anforderungen wird dabei aus
dem vorherigen Kapitel übernommen, da sie dort ja nicht voll erfüllt werden konnte. Die meisten
Anforderungen ergeben sich allerdings aus der Aufgabenstellung dieser Arbeit. Daraus ergeben
sich die fünf folgenden Anforderungen:

1. Komplexität ermöglichen
Diese Anforderung konnte im vorherigen Kapitel nicht voll erfüllt werden. Deshalb sollte
sie durch den Editor nun erfüllt werden.

2. Darstellung und Editierbarkeit des grafischen Modells
Das grafische Modell soll voll dargestellt werden und im Editor bearbeitbar sein.

3. Nutzung der Abkürzungsfunktionalität
Die Abkürzungsfunktionalität von Oryx soll voll ausgenutzt werden. Ausgehend von einer
Anforderung sollte es möglich sein, darüber alle verknüpften Elemente zu erstellen.

4. Editor für Compliance-Ausdrücke
Ein Ausdruckeditor soll die Erstellung von Compliance-Ausdrücken vereinfachen. Dazu
sollen zahlreiche Hilfestellungen geliefert werden, wie das schnelle Hinzufügen relevanter
Operatoren, Regeln oder Einheiten.

5. Validierung des Modells
Mit einer Validierungsfunktion soll überprüft werden können, ob das Modell auch wirk-
lich ein korrekter Compliance Descriptor ist. Sollte dies nicht der Fall sein, so sollten
Fehlermeldungen an den entsprechenden Elementen angezeigt werden.

6. Export der XML-Datei
Ist das grafische Modell valide, so soll es möglich sein eine XML-Datei mit dem Compliance
Descriptor herunterzuladen und diese in weiteren Anwendungen zu nutzen oder selber noch
bearbeiten zu können.

5.3. Implementierung des grafischen Editors

Die Implementierung des grafischen Editors findet in zwei Abschnitten statt. Im ersten Schritt
wird das sogenannte Stencilset erstellt, das die Darstellung des Modells im Editor regelt. Danach
wird in einem zweiten Schritt eine Reihe von Plugins entwickelt, die den Editor um nützliche
Funktionen bei der Erstellung eines Compliance Descriptors ergänzen.

5.3.1. Stencilset

Stencilsets beschreiben die Struktur und das Aussehen eines grafischen Modells im Oryx-Editor.
Dazu bestehen sie aus einer JSON-Datei, die die Struktur enthält, und einigen SVG-Dateien, die
das Aussehen der einzelnen Elementen beschreiben. Die JSON-Datei wird dabei als erstes erstellt,
da sie einen größeren Einfluss auf die Funktionalität des Editors hat und das Aussehen jederzeit
noch geändert werden kann. Strukturell besteht die Datei aus drei verschiedenen Bereichen:

48

5.3. Implementierung des grafischen Editors

• Der Kopfbereich:
Hier werden ein paar grundlegende Eigenschaften des Diagramms gesetzt, wie der Name
des Typs.

• Der Stencil-Bereich:
Im Stencil-Bereich werden die einzelnen Elemente, von Oryx Stencil genannt, definiert.
Dazu wird als Erstes ein Hauptelement definiert, dass den kompletten Inhalt des Diagramms
enthält. Es wird jedoch nicht als Element im Editor angezeigt. Trotzdem hat es eine einzige
Eigenschaft, den Namen des gesamten Diagramms, der vom Benutzer gesetzt werden kann.
Als Nächstes werden die restlichen Elemente mit den bereits bekannten Eigenschaften
definiert. Bei der Definition der Eigenschaften kann neben dem Namen u.a. auch ein Typ
angegeben werden. Dadurch lässt sich der Werte z.B. auf wenige bekannte und vorgegebene
Werte einschränken. Dies wird beispielsweise bei der Sprache und Phase einer Regel genutzt.

• Der Regel-Bereich:
In diesem Bereich können Regeln, die die Bearbeitung des Diagramms beeinflussen, definiert
werden. Dazu ist dieser Bereich noch einmal in mehrere Unterbereich unterteilt. Mit Ver-
bindungsregeln kann definiert werden, welche Elemente durch welche Art von Verbindung
miteinander verbunden werden kann. Im Falle des Compliance Descriptor gehen normale
Verbindung von einer Anforderung zu einer Regel oder Einheit, während Gesetzesverbindun-
gen von einer Anforderung zu einem Gesetz gehen. Durch Containmentregeln kann bestimmt
werden, welche Elemente andere Elemente aufnehmen können. Da das Diagramm an sich
selbst ein Element ist, muss hier definiert werden, dass alle Elemente bis auf die Bindung
enthalten sein können. Bindungen dürfen dafür Bestandteile von Regeln sein. Kardinaliäts-
regeln erlauben es die Anzahl an aus- oder eingehenden Verbindungen zu beschränken. Mit
Layoutregeln kann die Positionierung von ein- und ausgehenden Verbindungen verändert
werden. Und als Letztes können mit Morphingregeln mögliche Veränderungen definiert
werden. Ein Beispiel dafür sind Ereignisse bei BPMN, deren exakter Typ dadurch noch
verändert werden kann. Leere Morphingregeln für Elemente werden zudem benötigt, damit
Abkürzungen zu Elementen hinzugefügt werden, die mit diesen verbunden werden können.

Abbildung 5.2.: Abkürzungsfunktionalität
an einem
Anforderungselement

Nach Fertigstellung des Stencilsets, kann mit den SVG-
Grafiken begonnen werden. Dafür wird für jedes Element
eine eigene Grafik angelegt und mit einem Vektorgrafik-
programm erstellt. Anschließend sollte die SVG-Datei
noch um einige von Oryx vorgegebene Tags und Attri-
bute erweitert werden. Dadurch kann unter anderem
angegeben werden, an welchen Stellen sich Verbindun-
gen an das Element andocken lassen oder wie sich das
Element bei einer Veränderung der Größe verändert und
in welchen Bereichen dies überhaupt stattfinden darf.

Um das Ganze noch ein wenig aufzuhübschen können
zudem noch Icons hinzugefügt werden, die im Shape Re-
pository sowie im Process Repository angezeigt werden.
Diese sollen auf kleinem Raum möglichst deutlich den Typ des Elements darstellen.

Nach Fertigstellung des Stencilsets muss dieses noch bei Oryx registriert werden, wozu ein
einfacher Eintrag in einer XML-Konfigurationsdatei ausreicht.

49

5. Erstellung des grafischen Editors

5.3.2. Plugins

Abbildung 5.3.: Die Plugins in der
Werkzeugleiste

Das grafische Modell ist mit dem Stencilset bereits benutzbar,
doch erst durch die mit Plugins hinzugefügte Funktionalität
wird es auch für die spätere Anwendung bei der Validierung
von Geschäftsprozessen interessant. Davor ist es noch zu ein-
fach möglich einen inkorrekten Compliance Descriptor zu
erstellen und dies erst spät im Entwicklungsprozess festzu-
stellen.
Dafür werden insgesamt vier verschiedene Plugins integriert,
die fünf Funktionen und damit Knöpfe in der Werkzeugleiste
zur Verfügung stellen.

Von links nach rechts sind dies der Ausdruckeditor, die Validierung, der JSON-Import, der JSON-
Export und der XML-Export. Der JSON-Im-/Export ist zwar nicht durch eine Anforderung
gefordert, wird aber für die Implementierung des mobilen Prototypen in Kapitel 7 benötigt.
Da dieser nicht direkt auf die Daten in Oryx zugreifen kann, müssen sie auf diesem Wege zum
mobilen Editor und von ihm zurück kopiert werden können.

Plugins werden mit Hilfe von Javascript entwickelt und als jeweils einzelne Klassen erstellt.
Um sie Oryx bekannt zu machen müssen sie in einer XML-Datei registriert werden und in ein
Profil eingebunden werden. Profile beschreiben die verwendeten Plugins eines Stencilsets. Da
das Standardprofil bereits sehr voll ist und zudem einige Funktionalitäten enthält die für den
Compliance Descriptor nicht benötigt werden, wird deshalb ein eigenes Profil erstellt, das nur die
nötigsten Plugins enthält.

5.3.2.1. Ausdruckeditor

Abbildung 5.4.: Ausdruckeditor

Der Ausdruckeditor kann durch das Auswählen einer Anforderung und dem anschließend Drücken
des Formeleditor-Knopfes in der Werkzeugleiste geöffnet werden. In ihm kann der Compliance-
Ausdruck deutlich effizienter bearbeitet werden als im normalerweise zur Verfügung gestellten

50

5.3. Implementierung des grafischen Editors

Textfeld.
Das oberste Element des Editors ist ebenfalls ein normales Texteingabefeld, in dem der Ausdruck
wie üblich editiert werden kann. Darunter befinden sich fünf verschiedene Werkzeugleisten, die
jeweils verschiedene Funktionen zur Verfügung stellen: Mit Hilfe der ersten Werkzeugleiste lassen
sich die Operatoren AND, OR sowie öffnende und schließende Klammern an die momentan
ausgewählte Stelle platzieren. Die zweite Leiste enthält nur eine Abkürzung für einen konstanten
Text. Dabei wird jedoch zusätzlich noch ein Fragezeichen zwischen die beiden Anführungszeichen
gesetzt, das zugleich selektiert wird. Dadurch werden Stellen markiert an denen noch Eintra-
gungen durchzuführen sind. Für die dritte Reihe werden alle mit der Anforderung verbundenen
Regeln gesammelt und angezeigt. Wird eine solche Regel eingefügt, werden eventuell vorhandene
Parameter ebenfalls mit einem Fragezeichen markiert eingesetzt. Verbundene Einheiten werden
mit den Knöpfen in der vierten Leiste hinzugefügt. Die letzte Leiste fügt nichts hinzu sondern
bietet einige erweiterte Funktionalitäten. Mit dem ersten Knopf kann die gesamte Formel gelöscht
werden, der Zweite selektiert automatisch das nächste Fragezeichen um es zu ersetzen und der
Dritte bewegt die Selektierung im Textfeld zum Ende des momentanen Ausdrucks.

Schlussendlich kann mit den zwei Knöpfen am unteren Rand des Editors dieser wieder geschlossen
werden. Beim Ersten werden dabei alle Änderungen verworfen und nur durch Drücken des zweiten
Knopfes gespeichert.

5.3.2.2. Validierung

Abbildung 5.5.: Fehlgeschlagene Validierung

Für die Validierung ist die wichtigste Komponente ein Servlet, das die Backendkomponente von
Oryx erweitert. An dieses Servlet wird die JSON-Repräsentation des momentanen Diagramms
geschickt. Auf Serverseite wird dieses auf Fehler überprüft, u.a. auf leere Pflichtfelder, ins Leere
führende Verbindungen oder inkorrekte XPath-Ausdrücke oder URLs. Wurden Fehler gefunden, so
werden diese zusammen mit den einzigartigen Identifizierern der inkorrekten Elemente zurück an
den Browser gesendet. Diese werden dort mit einem roten Kreuz und rotem Text (falls vorhanden)
markiert. Bleibt man mit dem Mauszeiger kurz über diesem Kreuz wird zudem die Fehlermeldung
angezeigt. Dadurch wird diese nur wenn nötig angezeigt und nimmt dem eigentlichen Diagramm
keinen Platz weg. Wird ein zweites Mal auf den Validierungsknopf gedrückt, so verschwinden die
Markierungen wieder.

51

5. Erstellung des grafischen Editors

5.3.2.3. Import

Der JSON-Import ist das schlankeste Plugin. Es enthält nur einen Knopf in der Werkzeugleiste
und die dahinter liegende Funktion zeigt auf Klick ein großes Textfeld an, in das der JSON-Code
hineinkopiert werden kann. Mit Drücken des Bestätigen-Knopfes wird anschließend das aktuelle
Diagramm geleert und durch das neu importierte Diagramm ersetzt.

5.3.2.4. Export

Das Export-Plugin fügt der Werkzeugleiste zwei verschiedene Knöpfe hinzu. Der JSON-Export
zeigt dabei ein simples Textfeld an, aus dem der JSON-Code des momentanen Diagramms kopiert
werden kann. Für den XML-Export ist etwas mehr Aufwand nötig. Dem Server wird dazu ein
neues Servlet hinzugefügt, dass das aktuelle Diagramm als JSON erhält, dieses in die Compliance
Descriptor Klassen aus der Bibliothek umwandelt und anschließend als XML exportiert. Davor
wird jedoch noch ein kurzer Validierungslauf durchgeführt, um zu verhindern das inkorrekte
Daten an das Export-Servlet geschickt werden. Die entstandene Datei wird anschließend an den
Benutzer zurückgeliefert, der sie herunterladen kann.

5.4. Überprüfung der Anforderungen

Wie bereits im letzten Kapitel werden die Anforderungen nach Ende der Umsetzung überprüft.
Die fünf Anforderungen waren:

1. Komplexität ermöglichen 3
Diese Anforderung konnte bei der letzten Überprüfung nicht erfüllt werden. Nach Abschluss
des Editors kann auch sie nun abgehakt werden. Alle Eigenschaften von Elementen des
Descriptors können über die Eigenschaftenleiste des Editors editiert werden und damit
auch alle Möglichkeiten voll ausgeschöpft werden.

2. Darstellung und Editierbarkeit des grafischen Modells 3
Das grafische Modell wurde vollständig im Editor implementiert.

3. Nutzung der Abkürzungsfunktionalität 3
Durch Verwendung der Morphingregeln kann auch die Abkürzungsfunktionalität genutzt
werden. Dadurch lassen sich neue Anforderungen schnell zusammenklicken.

4. Editor für Compliance-Ausdrücke 3
Ein Ausdruckeditor wurde als Plugin hinzugefügt und vereinfacht die Arbeit mit Compliance-
Ausdrücken.

5. Validierung des Modells 3
Eine Validierungsfunktion wurde zum Oryx-Server hinzugefügt und diese markiert inkorrekte
Elemente im Browser.

6. Export der XML-Datei 3
XML-Dateien können mit einem Knopfdruck exportiert werden.

52

5.4. Überprüfung der Anforderungen

Diesmal konnten alle fünf Anforderungen erfüllt werden. Zudem konnten noch zwei weitere
Funktionen implementiert werden, die vom mobilen Prototypen benötigt werden. Die Verwendung
des Editors wird im folgenden Kapitel erläutert.

53

6. Beispiel aus der Versicherungsbranche

In diesem Kapitel soll an Hand eines beispielhaften Geschäftsprozesses aus der Versicherungs-
branche und einigen damit verbundenen Compliance-Anforderungen die Modellierung eines
Compliance Descriptors gezeigt werden. Dafür wird das grafische Modell und der Editor verwen-
det, die in den vorherigen beiden Kapiteln beschrieben wurden.
Im ersten Abschnitt wird dazu der Geschäftsprozess beschrieben. Der zweite Abschnitt zeigt die
damit verbundenen Compliance-Anforderungen und im dritten Abschnitt wird die Modellierung
des Compliance Descriptors im Editor gezeigt.

6.1. Der Prozess

Einer der wichtigsten Geschäftsprozesse in der Versicherungsbranche stellt das Verwalten und
Bearbeiten von Versicherungsansprüchen dar. Der im Folgenden verwendete, aus vier Schritten
bestehende Prozess ist eine stark vereinfachte Version davon. Er besteht aus den folgenden vier
Schritten:

1. Eingang des Anspruchs:
Ein Versicherungsanspruch geht per Post, Fax, etc. bei der Versicherung ein, wird in ein
strukturiertes Datenformat konvertiert und in der Kundendatenbank unter dem jeweiligen
Kunden gespeichert.

2. Bearbeitung des Anspruchs:
Der Anspruch wird automatisch von einem Programm oder einem Mitarbeiter auf Glaub-
haftigkeit und Plausibilität untersucht.

3. Entscheidung des Anspruchs:
Der Anspruch wird auf Grund des Untersuchungsergebnisses akzeptiert oder zurückgewiesen.

4. Beantwortung des Anspruchs:
Eine Nachricht mit dem Ergebnis der Entscheidung über den Anspruch wird an den Kunden
versendet.

Die folgende Grafik zeigt einen entsprechenden BPMN-Graphen, der diesen Geschäftsprozess
abbildet.

55

6. Beispiel aus der Versicherungsbranche

Abbildung 6.1.: BPMN-Graph des Geschäftsprozesses

6.2. Compliance-Anforderungen

Reguliert werden die Schritte des Prozesses durch den Code of Conduct des GDV (Gesamtverband
der Deutschen Versicherungswirtschaft e.V.), der das Verhalten von Versicherungen im Umgang
mit ihren Versicherten reguliert, und das Bundesdatenschutzgesetz, das das Speichern, die Ansicht
und das Weitergeben von Kundendaten reguliert.

Aus diesen lassen sich die folgenden Anforderungen extrahieren:

• Der GDV Code of Conduct [9] sieht vor, dass der Anspruchinhaber frühzeitig informiert
wird, ob seine Daten für Marketingzwecke verwendet werden. Dies kann der Fall sein sobald
der Anspruch in der Datenbank eingepflegt wurde. Da diese Benachrichtigung nicht extra
versendet werden soll, wird sie mit dem Ergebnis des Anspruchs versendet. Dadurch ergibt
sich eine Anforderung an die Gesamtlänge des Prozesses. Dieser sollte innerhalb von 14
Tagen beendet und die Benachrichtigung sowie das Ergebnis versendet sein.

• Das Bundesdatenschutzgesetz [7] reguliert unter anderem die Speicherung der Daten und
gibt vor, dass die personenbezogenen Daten Deutschland nicht verlassen dürfen. Deshalb
gibt es die Anforderung, dass sich die Kundendatenbank innerhalb von Deutschland befinden
muss und die Daten auch beim Transport nicht das Land verlassen.

6.3. Implementierung mit Hilfe des Editors

Die beiden Anforderungen aus dem letzten Abschnitt können nur mit Hilfe des Editors nachge-
bildet werden. Dazu werden zuerst die beiden Anforderungen und die jeweils relevanten Gesetze
erstellt. Dafür kann die Abkürzungsfunktion des Editors verwendet werden. Beide Gesetze sind
bereits in HTML-Form erhältlich und können in das entsprechende Textfeld kopiert werden.
Über XPath-Ausdrücke auf der Gesetzesverbindung wird auf die jeweils relevanten Paragraphen
verwiesen.

Im nächsten Schritt werden die relevanten Komponenten des BPMN-Geschäftsprozesses extrahiert
und als Einheiten in den Descriptor eingepflegt. Dies sind die Kundendatenbank sowie die beiden
Aktivitäten Ëingang des Anspruchsünd ”Beantwortung des Anspruchs”.

56

6.3. Implementierung mit Hilfe des Editors

Nun können die Regeln integriert werden. Für die erste Anforderung werden dafür zwei Stück
benötigt. Die erste Regel ”gefolgtVon”̈uberprüft die Reihenfolge der ihr übergebenen Aktivitäten.
Dabei muss die erste Aktivität vor der Zweiten kommen. Sie kann bereits während der Designphase
validiert werden. Die zweite Regel ”maxZeitZwischenAktivitäten”kann dagegen erst während der
Ausführung überprüft werden und misst dazu die Zeit, die zwischen den Ausführungen der zwei
Aktivitäten verstreicht. Ist die Zeitspanne zu groß, schlägt die Validierung der Regel fehl. Die
zweite Anforderungen benötigt für ihre Funktion nur eine Regel. Mit äuslieferungsort”wird der
Ort der Auslieferung überprüft. Dazu wird eine Komponente und ein Ort übergeben. Bei der
Auslieferung wird überprüft ob der Ort an den die Auslieferung der Komponente stattfindet,
durch den übergebenen Parameter abgedeckt wird.

Im letzten Schritt werden die Compliance-Ausdrücke der Anforderungen geschrieben. Mit Hilfe des
Ausdruckseditor können dazu einfach die entsprechenden Regeln und Einheiten zusammengeklickt
werden. Das Endresult zeigt das folgende Bild:

Abbildung 6.2.: Compliance Descriptor

Das dazugehörige XML-Dokument, das durch die Export-Funktion des Editors erstellt wurde,
befindet sich im Anhang dieser Arbeit (A.1.1)

57

7. Mobiler Prototyp

Der Anteil der Menschen, die statt eines Laptops oder PCs lieber eine portablere Alternative
wie ein Tablet oder Smartphone verwenden, wird immer größer. Diesen Anforderungen sollte ein
Editor daher heute genügen.
Oryx war jedoch nie für die Verwendung auf kleinen Bildschrimen konzipiert und ist dort auch
nicht gut verwendbar. Als Beispiel zeigen die zwei folgenden Bilder die Ansicht des Editors auf
einem iPhone der ersten Generation.

Abbildung 7.1.: Oryx-Editor auf einem iPhone der ersten Generation

Der Inhalt des Compliance Descriptors ist nur mit langwierigem Scrollen oder in weit herausge-
zoomten Zustand sichtbar. Elemente lassen sich zwar auswählen, das Verschieben von Elementen
ist jedoch nicht möglich. Deshalb lassen sich auch keine neuen Elemente hinzufügen oder zwei
Elemente verbinden. Die Eigenschaften von Elementen lassen sich bearbeiten, durch die kleine
Darstellung von Eingabefeldern und Knöpfen ist es jedoch sehr schwierig die korrekten Felder zu
selektieren.
Die Toolbar am oberen Rand enthält so viele Elemente, dass diese auf fünf Seiten verteilt sind.
Sowohl die Toolbarknöpfe als auch die Knöpfe zum Wechseln der Toolbarseiten sind mit dem
Finger nicht ausreichend genau zu bedienen.

59

7. Mobiler Prototyp

Auf Grund dieser Nachteile des Oryx-Editors und um auch für diesen Anwendungsfall gerüstet zu
sein, soll neben dem grafischen Webeditor auf Basis von Oryx noch eine Alternative für mobile
Endgeräte zumindest prototypisch implementiert werden.
Um nicht für jede mobile Plattform eine komplette Implementierung durchführen zu müssen,
soll dies mit Hilfe einer plattformübergreifenden Lösung entwickelt werden. Dabei steht eine
Vielzahl von Lösungen zur Verfügung, durch eine Vorselektierung wurde die Auswahl jedoch auf
die folgenden vier reduziert:

• Xamarin Platform1

Auf der Programmiersprache C# und der Laufzeitumgebung Mono aufsetzendes Produkt,
das die Generierung von Anwendungen für alle drei großen Plattformen erlaubt. Wäh-
rend die Benutzeroberfläche für jede Plattform einzeln entwickelt werden kann, um die
unterschiedlichen Gepflogenheiten einhalten zu können, können alle gemeinsam genutzen
Funktionalitäten in Bibliotheken für alle Anwendungen zusammengefasst werden. Für An-
wendungszwecke die über einfache Anwendung herausgehen und einfach auf Smartphones
installiert werden können, müssen für Xamarin monatliche Gebühren bezahlt werden.

• Adobe PhoneGap / Apache Cordova2

Mit HTML, CSS und Javascript erstellte Webseiten verpackt PhoneGap zusammen mit
plattformspezifischen Code zu Apps. Während der Entwicklung kann deshalb das Meiste im
Browser getestet werden ohne einen Emulator oder ein Smartphone verwenden zu müssen.
Eigene Javascript-Bibliotheken sowie Plugins erlauben den Zugriff auf die Kamera, die
Orientierungssensoren oder den Kompass des Handys. PhoneGap ist frei unter der Apache
License erhältlich und damit Open Source.

• Appcelerator Titanium3

Ein auf Javascript aufbauendes Framework, das durch eine eigene XML-basierte Frontend-
sprache native Designelemente verwenden kann. Unterschiede zwischen den Plattformen
können durch spezifischen Code implementiert werden. Dadurch werden nicht alle Teile
des Codes auf allen Plattformen wiederverwendet. Zusätzlich bietet Titanium eine eigene
MVC (Model-View-Controller) Implementierung und ein Framework zur Erstellung eines
Datenbackends sowie für Pushnachrichten. Weite Teile der Appcelerator Angebote sind
Open Source und unter der Apache License freigegeben.

• Adobe AIR4

Basierend auf dem Flash Player und der Action Script Programmiersprache erweitert AIR
die Reichweite von Flash auf mobile Endgeräte. Das Layout wird hierbei mit XML-Dateien
beschrieben und mit Flash programmiert. Der Code ist auf allen unterstützten Plattformen
ohne Änderungen einsetzbar, es lassen sich jedoch auch Plugins nutzen, die dem Code native
Funktionalitäten zur Verfügung stellen. Für die Entwicklung von AIR Anwendungen wird
ein Abonnement der Adobe Creative Cloud benötigt, das monatliche Kosten verursacht.

Da der Fokus dieser Diplomarbeit auf der Entwicklung eines grafischen Webeditors liegt, ist
es naheliegend hier ebenfalls auf die Webtechnologien HTML, CSS und Javascript zu setzen.
Damit scheiden bereits zwei Lösungen, Xamarin und AIR, direkt aus. Im Vergleich der zwei
verbleibenden Technologien stellt sich die Frage, mit welchen Bibliotheken man bereits vertraut

1http://xamarin.com/platform
2http://www.phonegap.com
3https://www.appcelerator.com/product/
4http://www.adobe.com/products/air/

60

7.1. Aufbau des Prototypen

ist. PhoneGap lässt einem komplett freie Wahl bei den verwendeten Bibliotheken, während
Appcelerator Titanium dabei in großen Teilen auf die Verwendung der eigenen mitgelieferten
Bibliotheken besteht.
Durch die Verwendung von PhoneGap ergibt sich dadurch ein schnellerer Einstieg. Da nur ein
Prototyp entwickelt werden soll, sollte dieser Faktor hierbei nicht unterschätzt werden.

7.1. Aufbau des Prototypen

Bestehen wird der Prototyp aus nur einem Screen, dem Editor für das Compliance Descriptor
Diagramm.
Dieser Editor nimmt dabei auch den Großteil der Fläche ein. Er wird ergänzt durch eine
Navigationsleiste am oberen Rand sowie eine Schaltfläche am unteren Rand, die das Hinzufügen
von neuen Elementen ermöglicht. Die Navigationsleiste enthält auf großen Bildschirmen drei
verschiedene Knöpfe:

• Import
Erlaubt das Importieren von Diagrammen aus dem Oryx-Editor im JSON-Format. Eine
entsprechende Export-Funktion wurde dem Oryx-Editor in Kapitel X hinzugefügt.

• Export
Exportiert das bearbeitete Diagramm wieder in das JSON-Format. Es kann daraufhin im
Oryx-Editor über die ebenfalls hinzugefügte Import-Funktion wieder importiert werden
kann.

• Einstellungen
Hier können die globalen Einstellungen des Diagramms, wie z.B. dessen Name, bearbeitet
werden.

Auf kleinen Bildschirmen sind diese Knöpfe versteckt und können durch einen Klick bzw. eine
Berührung des Menüknopfes angezeigt werden.

61

7. Mobiler Prototyp

Abbildung 7.2.: Mockup der Mobile App

Alle Knöpfe öffnen sogenannte modale Dialoge. Diese Dialoge sperren den Rest der Anwendung,
während sie angezeigt werden. Das ist für die kleinen Bildschirme der mobilen Endgeräte, mit
denen diese App verwendet werden soll ideal, da sich der Benutzer so auf den Inhalt des Dialogs
konzentrieren kann, während der Rest der Applikation ausgeblendet bzw. im Hintergrund ist.
Die Dialoge enthalten im Hauptteil meist ein Formular und zwei Buttons am unteren Ende um
die Aktion abzubrechen oder sie abzuschließen. Folgende modale Dialoge sind Bestandteile der
Anwendung:

• Importdialog
Öffnet sich nach Betätigen des Importknopfes in der Navigationsleiste und enthält ein
Textfeld um den JSON-Export aus dem Oryx-Editor einzufügen. Nach der Bestätigung mit
dem ÏmportButton wird das momentane Diagramm geleert und durch das, aus dem Inhalt
des Textfeldes, geladene Diagramm ersetzt.

• Exportdialog
Durch Drücken des Exportknopfes öffnet sich dieser Dialog. Er enthält wie der Import-Dialog
ein Textfeld. Dieses ist mit dem aus dem aktuellen Diagramm generierten JSON-Export
gefüllt.

• Einstellungsdialog
Der dritte Navigationsleistenknopf öffnet den Einstellungsdialog. Dieser erlaubt die Ver-
änderung der globalen Diagrammeinstellungen. Momentan lässt sich dort der Name des
Compliance Descriptor Diagrammes ändern.

62

7.2. Verwendete Bibliotheken

• Hinzufügendialog
Der am unteren Bildschirmrand befindliche Hinzufügenknopf öffnet einen Dialog mit
fünf Knöpfen, je einen für jeden Typ von Elementen des Compliance Descriptors. Durch
Drücken eines dieser Knöpfe lässt sich ein Element des entsprechenden Typs zum Diagramm
hinzufügen.
Sie werden standardmäßig am oberen linken Bildschirmrand platziert und können vom
Benutzer per Drag and Drop an die korrekte Stelle im Diagramm gezogen werden. Ihre
Eigenschaften sind zu Beginn leer und müssen durch den Benutzer gesetzt werden.

• Bindungsdialog
Einen Spezialfall gibt es für das Hinzufügen einer neuen Bindung. Wird dieses Element im
Hinzufügendialog ausgewählt, so öffnet sich ein zweiter Dialog, der die Auswahl der Regel,
zu der diese Bindung gehört, erlaubt.

• Elementdialog
Per Klick auf ein Element im Diagramm öffnet sich der Elementdialog. Er enthält die
Eigenschaften des jeweiligen Elementes und erlaubt es diese zu bearbeiten. Durch Bestätigen
des Dialogs werden diese anschließend abgespeichert und stehen im Export zur Verfügung.
Zudem besteht die Möglichkeit, durch Drücken des Löschen-Knopfes das Element aus dem
Diagramm zu entfernen. Dadurch werden auch eventuell bestehende Verbindungen und
enthaltene Elemente gelöscht.

Der wichtigste Bestandteil der Anwendung ist der Editorbereich. In diesem werden alle aktiven
Elemente des Compliance Descriptor Diagramms angezeigt und können bearbeitet werden. Durch
Drag and Drop lässt sich ihre Position und mit Hilfe des oben beschriebenen Elementdialog ihre
Eigenschaften verändern. Neue Verbindungen zwischen einer Anforderung und einem zweiten
Element sollen sich ebenfalls per Drag and Drop erstellen lassen. Dazu wird es ein spezielles
Element geben, von dem aus sich Verbindungen ziehen lassen werden. Der Spezialfall der
Bindungen wird zwar ebenfalls durch eine Verbindung dargestellt, diese kann aber nur beim
Hinzufügen eines Elements durch die Auswahl einer Regel im Bindungsdialog erstellt werden.
Durch Klicken auf eine Verbindung kann diese zudem wieder entfernt werden. Besteht die
Verbindung zwischen einer Regel und einer Bindung, so entfernt diese auch die Bindung, da es
sonst ohne eine Verbindung im Diagramm liegen würde.

7.2. Verwendete Bibliotheken

PhoneGap stellt keine Anforderungen an die von uns verwendeten Bibliotheken, sondern erfordert
nur, dass sich am Ende alle verwendeten Dateien in einem Verzeichnis befinden und die index.html -
Datei den Einstieg in die Anwendung darstellt.

Die Verwaltung der verwendeten Bibliotheken sowie deren Versionen und Abhängigkeiten verein-
facht bower5. Bower ist ein Paketmanagementtool, das für CSS- und Javascript-Abhängigkeiten
konzipiert wurde, also genau diesen Anwendungsfall trifft.
Dafür wird im Hauptverzeichnis der Anwendung eine bower.json-Datei angelegt, die im JSON-
Format die Abhängigkeiten der App und deren Versionen enthält. Mit einem Aufruf von bower
install werden diese in das bower components-Verzeichnis installiert und können anschließend in
der index.html -Datei eingebunden werden.

5http://www.bower.io

63

http://www.bower.io

7. Mobiler Prototyp

CSS

Um für die Gestaltung der Anwendung ein solides Grundgerüst zu erhalten, wird Bootstrap6

verwendet, ein CSS-Framework, das 2011 von Twitter-Entwicklern ins Leben gerufen wurde und
inzwischen von vielen Webseiten verwendet wird. Für den Prototypen benötigt man nur einen
Bruchteil der Funktionalität von Bootstrap, es bildet jedoch ein passendes Fundament, auf dem
die Funktionalitäten aufbauen können.

Erweitert wird das Ganze um die Positionierung von Navigation und Hinzufügen-Button und
den Style der einzelnen Elemente des Compliance Descriptors. Dieser ist möglichst nahe am Stil
des Stencilsets im Oryx-Editor gehalten.

Javascript

Die Basis für den Javascript-Code bildet beim Prototypen Backbone.js7 (im weiteren Verlauf
Backbone genannt). Diese Bibliothek stellt vier simple Klassen zur Verfügung, die vom Benutzer
erweitert werden können.
Models enthalten die Daten und simple Businesslogik und werden in Collections gesammelt, die im
Vergleich zu normalen Arrays erweiterte Funktionalitäten sowie Events beim Hinzufügen, Ändern
und Löschen zur Verfügung stellen. Views helfen dabei Teile der Webseite zu dynamisieren. Sie
vereinfachen das Rendern und Hinzufügen neuer Elemente sowie das Abfangen von Events.

Model und View bilden den Model-View Teil des Model-View-Controller Konzeptes ab, eine
Controllerkomponente ist bei Backbone nicht vorgesehen. Normalerweise vom Controller übernom-
mene Aufgaben werden deshalb im View oder vom zusätzlich integrierten Router übernommen, der
sich um die Übergänge zwischen verschiedenen Seiten kümmert. Da die Mobilanwendung nur über
eine Seite verfügen wird, kommt sie ohne einen Router aus und kann die Controllerfunktionalität
dem View übergeben.

Backbone hat zwei Abhängigkeiten, die von der App ebenfalls verwendet werden um die Ent-
wicklungsarbeit zu vereinfachen. jQuery8 ist die wahrscheinlich am weitesten verbreitete Javas-
criptbibliothek. Sie stellt Funktionen zur Selektierung von Elementen, zur Manipulation dieser
Elemente und für Anfragen an den Server zur Verfügung.
Die zweite Abhängigkeit ist Underscore.js9, eine Bibliothek desselben Entwicklers, die zum
einen Funktionen neuerer Javascriptstandards für alte Browser nachimplementiert, zum an-
deren Komfortfunktionen z.B. für kürzere Abfragen oder Objekt- und Arraymanipulationen
hinzufügt.

Erweitert wird Backbone durch Backbone.Relational, einer Bibliothek die es erlaubt Beziehungen
zwischen verschiedenen Modellen zu definieren. Beim Einlesen der Daten werden diese bekannten
Beziehungen dazu genutzt, automatisch die korrekte Collection zu verwenden und diese mit den
korrekten Modellinstanzen zu befüllen. Ohne diese Funktion müsste man jedes Model einzeln
instanziieren und mit den richtigen Modellen in Verbindung bringen.

6http://www.getbootstrap.com
7http://backbonejs.org
8http://www.jquery.com
9http://underscorejs.org

64

http://www.getbootstrap.com
http://backbonejs.org
http://www.jquery.com
http://underscorejs.org

7.2. Verwendete Bibliotheken

Wichtigstes Element der mobilen Anwendung ist der Diagrammeditor. Dafür wird jsPlumb10

verwendet, eine Bibliothek die auf die Darstellung und Veränderung von Graphen spezialisiert ist.
Um das Diagramm darzustellen werden HTML-Elemente innerhalb des Editor-Containers erstellt,
die jeweils ein Element repräsentieren. Eine Funktion verbindet diese Elemente anschließend
über ihre Identifizierer und erstellt den entsprechenden Code um diese Verbindungen im Browser
darzustellen.
jsPlumb integriert zudem eine Drag and Drop-Funktionalität, über die die Elemente verschoben
werden können. Dazu wird jQuery UI11 als Abhängigkeit eingebunden und dessen draggable-
Modul verwendet.

Um die Touchfähigkeit der mobilen Endgeräte nutzen zu können, werden zudem Tocca.js12

und jQuery TouchPunch13 eingebunden. Während Tocca.js die vom Browser erstellten Events
erweitert, um neben dem Klicken mit der Maus auch das Berühren des Bildschirms abzufangen,
fügt TouchPunch diese Funktionen zu jQuery UI hinzu. Teile davon werden von jsPlumb verwendet
um die Drag and Drop-Funktionalität zur Verfügung zu stellen. Dadurch ist das Verschieben der
Elemente nach dem Einbinden von TouchPunch auch auf dem Smartphone möglich.

Drei kleinere Bibliotheken ergänzen die Auswahl an Bibliotheken. Diese fügen jeweils eine einzelne
Funktion hinzu.
multiline14 ermöglicht einfachere, mehrzeilige Zeichenketten. In älteren Javascriptversionen
waren diese nur durch das Konkatenieren mehrerer einzeiliger Zeichenketten möglich. Neuere
Versionen unterstützen dies zwar ohne Konkatenation, es muss jedoch am Ende jeder Zeile ein
Rückwärtsschrägstrich stehen. multiline umgeht das Problem, indem die Möglichkeit Funktionen
in Zeichenketten umwandeln zu können clever ausgenutzt wird. Wird dem multiline()-Aufruf
eine Funktion übergeben, deren einziger Inhalt ein mehrzeiliger Kommentar ist, so wird der
Inhalt des Kommentars als Zeichenkette zurückgegeben.
Da Oryx einzigartige Identifizierer generiert um Elemente des Diagramms unterscheiden zu
können, muss auch die mobile Anwendung die Möglichkeit haben solche zu generieren. Oryx
nutzt dabei sogenannte UUIDs, kurz für Universally Unique Identifier, in der Version 4 und
stellt diesen einen oryx -Prefix voran. Version 4 bedeutet dabei, dass die UUIDs zufällig oder
pseudo-zufällig generiert wurden und nicht wie z.B. bei Version 1 auf Grundlage von Zeitstempeln
generiert wurden.
Mit Hilfe von node-uuid15 können diese zufälligen UUIDs generiert werden und anschließend für
neue Elemente oder Verbindungen genutzt werden.
Die letzte der drei Bibliotheken, underscore.deepExtend16, erweitert Underscore.js um eine
neue Funktion, die die bereits existierende Funktion extend abwandelt. extend erweitert ein
Javascriptobjekt (der erste übergebene Parameter) um eine Kopie der Inhalte der weiteren
Parameter (ebenfalls Javascriptobjekte). Dabei iteriert die Funktion jedoch nur über die erste
Ebene und übernimmt so Referenzen auf Objekte in der zweiten Ebene, anstatt diese ebenfalls zu
kopieren. deepExtend geht dabei, wie der Name schon sagt, tiefer und kopiert auch alle weiteren
Ebenen der Objekte. Dadurch verhindert man, versehentlich Teile von referenzierten Objekten
zu ändern, die an anderer Stelle zu Fehlern führen könnten.

10http://www.jsplumb.org
11http://www.jqueryui.com
12https://gianlucaguarini.github.io/Tocca.js/
13http://touchpunch.furf.com/
14https://github.com/sindresorhus/multiline
15https://github.com/broofa/node-uuid
16https://github.com/mateusmaso/underscore.deepextend

65

http://www.jsplumb.org
http://www.jqueryui.com
https://gianlucaguarini.github.io/Tocca.js/
http://touchpunch.furf.com/
https://github.com/sindresorhus/multiline
https://github.com/broofa/node-uuid
https://github.com/mateusmaso/underscore.deepextend

7. Mobiler Prototyp

7.3. Implementierung der mobilen Anwendung

Abbildung 7.3.: Komponenten der mobilen Anwendung

Die einzelnen Formen des Compliance Descriptor Diagramms werden durch die Shape-Klasse, die
vom Backbone-Model erbt, repräsentiert. Mit Hilfe von Backbone.Relational werden die jeweils
enthaltenen Formen direkt eingebunden und können über die Relation abgefragt werden. Eine
Collection dieser Shapes enthält das gesamte Diagramm.

Um die Ansichten der mobilen Anwendung zu implementieren, werden die Views von Backbone
verwendet und ineinander geschachtelt. So enthält der Main-View den Chart-View, welcher
wiederum viele Shape-Views enthält.
Der Main-View kümmert sich zudem um die von der Navigation sowie dem Hinzufügen-Knopf
generierten Events. Auf Grund dieser Events werden modale Dialoge erzeugt, die alle auf der
Modal-Klasse aufbauen, die ebenfalls von einem View erbt. Diese enthält speziellen Code, um die
Darstellung und das Schließen des modalen Dialogs zu vereinheitlichen und damit die einzelnen
Klassen der Dialoge deutlich schlanker zu machen. Darin muss noch der Inhalt des Dialogs
angegeben werden und falls nötig, ein Event, der durch das Drücken des Bestätigen-Buttons
ausgelöst wird, abgefangen werden. In dieser Funktion kann dann z.B. der Import des Diagramms
aus dem eingegebenen JSON ausgelöst werden.
Eine Besonderheit stellt der Element-Modal dar, der durch das Klicken auf ein Element des
Diagramms angezeigt wird. Dieser Dialog ist deutlich komplexer, da dabei die vorhandenen
Eigenschaften des betroffenen Models ausgelesen werden müssen und als Formularfelder im Dialog
angezeigt werden. Dabei wird anhand des jeweiligen Feldnamens entschieden, was für ein Feld im
Formular angezeigt werden soll. Nach Bestätigen des Speichern-Buttons werden die Werte aus
diesen Feldern wieder ausgelesen und zurück in das Model gespeichert.

Hauptaufgabe des Chart-View ist das Initialisieren von jsPlumb sowie das Anzeigen und die
Eventverarbeitung des Diagramms. Um die Datenverarbeitung dabei möglichst nahe an der

66

7.4. Beispiel aus der Versicherungsbranche in der mobilen Anwendung

grafischen Repräsentation zu halten, kümmert sich der Chart-View auch um den Im- und Export
des Diagramms und initialisiert zu Beginn sowohl die Shape-Collection, die das Diagramm enthält,
als auch ein Array, das deren Views enthält.

Das grafische Äquivalent des Shape-Models ist der Shape-View. Für jedes Model wird beim
Import ein entsprechender View erstellt. Während beim Shape-Model nur eine Variante existiert,
gibt es vom Shape-View für jede Form eine eigene Abwandlung der Klasse. Dadurch passt sich
auch die Anzeige der entsprechenden Elemente im Diagramm an.
Da eine automatische Ausrichtung der Elemente an der vorhandenen Anzeigefläche von jsPlumb
leider nicht zur Verfügung gestellt wird, muss die Position der Elemente aus dem Oryx-Editor
verwendet werden. Nach dem Verschieben eines Elementes muss diese auch wieder zurückgespei-
chert werden, damit die Darstellung zwischen den zwei Applikationen möglichst wenig abweicht.
Um die Anzeige von Elementen innerhalb der Anzeigefläche gewährleisten zu können, wird zudem
eine Abweichung errechnet und beim Anzeigen und Speichern berücksichtigt werden. Dazu wird
die minimale Position aller Elemente berechnet, um einen Mindestabstand verringert und bei der
Anzeige von allen Positionen abgezogen werden.

7.4. Beispiel aus der Versicherungsbranche in der mobilen
Anwendung

Um die Arbeit mit der mobilen Anwendung zu veranschaulichen, wird das Beispiel aus Kapitel 6
hier noch einmal verwendet und im mobilen Editor neu erstellt. Auch diesmal werden die beiden
Anforderungen zuerst erstellt. Dazu wird der Hinzufügenknopf am unteren Bildschirmrand und
der danach aufgehende Dialog verwendet. Der Name der Anforderungen muss anschließend über
den Elementdialog gesetzt werden.

Mit Hilfe von Copy and Paste klappt auch das Hinzufügen der Gesetze und ihrer Texte ohne Pro-
bleme. Nach Herstellen der Verbindung zwischen Anforderung und Gesetz, kann im Elementdialog
der Anforderung der XPath-Ausdruck gesetzt werden.

Analog dazu werden auch die drei Einheiten und die drei Regeln wieder erstellt. Beim Hinzufü-
gen der Bindungen zeigt sich ein kleiner Unterschied, da hier nach dem Hinzufügen noch der
Bindungsdialog aufgeht und die Auswahl einer Regel erfordert.

Das Erstellen der Compliance-Ausdrücke ist am mobilen Prototypen leider deutlich weniger
benutzerfreundlich als im Oryx-Editor. Alle Teile des Ausdrucks müssen von Hand eingegeben
werden. Und durch die nicht vorhandene Validierung kann auch danach die Korrektheit nicht
überprüft werden. Das Endresultat der Arbeit zeigen die zwei folgenden Bildschirmfotos:

67

7. Mobiler Prototyp

Abbildung 7.4.: Compliance Descriptor und Elementdialog auf mobilem Endgerät

Als letzter Schritt wurde zum Test zudem ein Export des Diagramms durchgeführt und mit Hilfe
des JSON-Imports im Oryx-Editor wieder importiert. Dies funktioniert bis auf kleinere Darstel-
lungsunterschiede exzellent, ändert jedoch nichts an der korrekten Umsetzung des Compliance
Descriptors.

68

8. Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden aktuelle Verfahren zur grafischen Darstellung und Modellierung
von Compliance-Anforderungen vorgestellt und untersucht. Basierend auf dem Compliance Des-
criptor wurde zudem eine solche Darstellung erstellt und mit Hilfe des Oryx-Editors implementiert.
Für die komfortable Bedienung des Editors wurden zudem vier Erweiterungen hinzugefügt, die
den Benutzer bei der Erstellung der Descriptoren unterstützen. Dadurch ist es jetzt möglich sich
einen Compliance Descriptor einfach im Editor zusammenzuklicken und -zuziehen.
Zusätzlich wurde die Möglichkeit untersucht komplexe Diagrammeditoren auch auf mobilen
Endgeräten zu nutzen und dazu der Prototyp einer mobilen Anwendung erstellt.

Sowohl der Oryx-Editor als auch der mobile Prototyp bieten noch einige Möglichkeiten Verbes-
serungen und Komfortfunktionen hinzuzufügen. So wären direkt verbundene Editoren für den
Variability Descriptor oder LTL-Regeln, die Oryx prinzipiell bereits unterstützt, eine willkommene
Hilfe beim Erstellen eines Compliance Descriptors. Auch die Auswahl von Gesetzesparagraphen
über einen XPath-Editor ist vorstellbar.

Die mobile Anwendung bietet sicherlich die größten Weiterentwicklungsmöglichkeiten. Eine
direkte Integration mit Oryx wäre dabei sicherlich am hilfreichsten. Dadurch könnten Modelle
direkt am Oryx-Backend abgeholt und dort wieder gespeichert werden. Auch eine Anbindung an
die Validierungs- und XML-Export-Schnittstellen wäre denkbar. Zudem wäre der Formeleditor
auch auf Smartphones implementierbar und sogar nützlicher als am PC.

69

Literatur

[1] A. Awad.
”
BPMN-Q: A Language to Query Business Processes“. In: In Proceedings of

EMISA’07. 2007, S. 115–128.

[2] A. Awad, G. Decker und M. Weske.
”
Efficient Compliance Checking Using BPMN-Q and

Temporal Logic“. In: In BPM ’08: Proceedings of the 6th International Conference on
Business Process Management. 2008, S. 326–341.

[3] A. Awad, M. Weidlich und M. Weske.
”
Specification, Verification and Explanation of

Violation for Data Aware Compliance Rules“. English. In: Service-Oriented Computing.
Hrsg. von L. Baresi, C. Chi und J. Suzuki. Bd. 5900. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, S. 500–515. isbn: 978-3-642-10382-7.

[4] A. Awad, M. Weidlich und M. Weske.
”
Visually specifying compliance rules and explaining

their violations for business processes“. In: Journal of Visual Languages and Computing
22.1 (2011). Special Issue on Visual Languages and Logic, S. 30–55. issn: 1045-926X.

[5] S. Bensalem u. a.
”
An Overview of SAL“. In: LFM 2000: Fifth NASA Langley Formal

Methods Workshop. Hrsg. von M. Holloway. NASA Langley Research Center. Hampton,
VA, 2000, S. 187–196.

[6] T. Binz u. a.
”
TOSCA: Portable Automated Deployment and Management of Cloud

Applications“. In: Advanced Web Services. Springer, 2014, S. 527–549. isbn: 978-1-4614-
7534-7.

[7] Bundesdatenschutzgesetz(BDSG). 1990. url: http://www.gesetze-im-internet.de/
bundesrecht/bdsg_1990/gesamt.pdf.

[8] M. Czuchra.
”
Bachelorarbeit: Oryx-Embedding Business Process Data Into the Web“. In:

Final bachelor’s paper, Hasso Plattner Institute at the University of Potsdam (2007).

[9] Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV). GDV - Code of Conduct.
2012. url: http:// www.gdv.de/wp- content/uploads/ 2013/03/GDV_Code- of-

Conduct_Datenschutz_2012.pdf.

[10] R. Dijkman, M. Dumas und C. Ouyang.
”
Semantics and Analysis of Business Process

Models in BPMN“. In: Inf. Softw. Technol. 50.12 (2008), S. 1281–1294.

[11] BITKOM und DIN.
”
Kompass der IT-Sicherheitsstandards“. In: (2009). url: http://www.

din.de/sixcms_upload/media/2896/Kompass%20der%20IT-Sicherheitsstandards.

pdf.

[12] European Computer Manufacturers Association (ECMA). The JSON Data Interchange
Format. 2013. url: http://www.ecma-international.org/publications/files/ECMA-
ST/ECMA-404.pdf.

[13] M. El Kharbili.
”
CoReL: Compliance Representation Language“. In: (2012).

[14] M. El Kharbili u. a.
”
Corel: Policy-based and model-driven regulatory compliance manage-

ment“. In: Enterprise Distributed Object Computing Conference (EDOC), 2011 15th IEEE
International. IEEE. 2011, S. 247–256.

70

http://www.gesetze-im-internet.de/bundesrecht/bdsg_1990/gesamt.pdf
http://www.gesetze-im-internet.de/bundesrecht/bdsg_1990/gesamt.pdf
http://www.gdv.de/wp-content/uploads/2013/03/GDV_Code-of-Conduct_Datenschutz_2012.pdf
http://www.gdv.de/wp-content/uploads/2013/03/GDV_Code-of-Conduct_Datenschutz_2012.pdf
http://www.din.de/sixcms_upload/media/2896/Kompass%20der%20IT-Sicherheitsstandards.pdf
http://www.din.de/sixcms_upload/media/2896/Kompass%20der%20IT-Sicherheitsstandards.pdf
http://www.din.de/sixcms_upload/media/2896/Kompass%20der%20IT-Sicherheitsstandards.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Literatur

[15] C. Fehling, F. Koetter und F. Leymann. Compliance Modeling - Formal Descriptors and
Tools. Techn. Ber. 2014.

[16] Object Management Group. Business Process Model And Notation (BPMN) Version 2.0.
2011. url: http://www.omg.org/spec/BPMN/2.0/.

[17] A. Halfmann.
”
Siemens versiebenfacht Zahl der Compliance-Mitarbeiter“. In: (2009). url:

http://www.dnwe.de/news-cg-extern/items/siemens-versiebenfacht-zahl-der-

compliance-mitarbeiter.html.

[18] D. Knuplesch u. a.
”
On Enabling Data-aware Compliance Checking of Business Process

Models“. In: Proceedings of the 29th International Conference on Conceptual Modeling.
ER’10. Vancouver, BC, Canada: Springer-Verlag, 2010, S. 332–346. isbn: 3-642-16372-6,
978-3-642-16372-2.

[19] M. Kochanowski u. a.
”
Compliance in BPM today - an insight into experts’ views and

industry challenges“. In: Informatik 2014. Big Data - Komplexität meistern. 2014.

[20] Regierungskommission Deutscher Corporate Governance Kodex. Deutscher Corporate
Governance - Kodex. 2014. url: http://www.dcgk.de//files/dcgk/usercontent/de/
download/kodex/D_CorGov_Endfassung_2014.pdf.

[21] F. Koetter und M. Kochanowski.
”
Goal-Oriented Model-Driven Business Process Monito-

ring Using ProGoalML“. In: Business Information Systems. Hrsg. von W. Abramowicz,
D. Kriksciuniene und V. Sakalauskas. Bd. 117. Lecture Notes in Business Information
Processing. Springer Berlin Heidelberg, 2012, S. 72–83. isbn: 978-3-642-30358-6.

[22] Falko Koetter u. a.
”
Unifying Compliance Requirements across Business and IT“. In:

Proceedings of the IEEE EDOC Conference. IEEE, 2014, S. 1–10.

[23] F. Koetter u. a.
”
Unifying Compliance Management in Adaptive Environments through

Variability Descriptors (Short Paper)“. In: 2013 IEEE 6th International Conference on
Service-Oriented Computing and Applications. 2013.

[24] E. Krügler.
”
Compliance - ein Thema mit vielen Facetten“. In: VDI UmweltMagazin,

7-8/2011 (2011). url: http://www.hlfp.de/fileadmin/redaktion/1._Aktuelles/
Fachartikel/Compliance_-_ein_Thema_mit_vielen_Facetten.pdf.

[25] Linh Thao Ly.
”
SeaFlows - A Compliance Checking Framework for Supporting the Process

Lifecycle“. 2013.

[26] L. Ly u. a.
”
SeaFlows Toolset – Compliance Verification Made Easy for Process-Aware

Information Systems“. English. In: Information Systems Evolution. Hrsg. von P. Soffer
und E. Proper. Bd. 72. Lecture Notes in Business Information Processing. Springer Berlin
Heidelberg, 2011, S. 76–91. isbn: 978-3-642-17721-7.

[27] R. Mietzner u. a.
”
Variability modeling to support customization and deployment of multi-

tenant-aware Software as a Service applications“. In: Proceedings of the 2009 ICSE Workshop
on Principles of Engineering Service Oriented Systems. IEEE Computer Society. 2009,
S. 18–25.

[28] B. Oestereich u. a.
”
Objektorientierte Geschäftsprozessmodellierung mit der UML“. In: Test,

2003, S. 223.

[29] OpenID. OpenID Authentication 2.0. 2007. url: https://openid.net/specs/openid-
authentication-2_0.html.

[30] Oracle. javax.servlet.Servlet. 2011. url: http://docs.oracle.com/javaee/7/api/javax/
servlet/Servlet.html.

71

http://www.omg.org/spec/BPMN/2.0/
http://www.dnwe.de/news-cg-extern/items/siemens-versiebenfacht-zahl-der-compliance-mitarbeiter.html
http://www.dnwe.de/news-cg-extern/items/siemens-versiebenfacht-zahl-der-compliance-mitarbeiter.html
http://www.dcgk.de//files/dcgk/usercontent/de/download/kodex/D_CorGov_Endfassung_2014.pdf
http://www.dcgk.de//files/dcgk/usercontent/de/download/kodex/D_CorGov_Endfassung_2014.pdf
http://www.hlfp.de/fileadmin/redaktion/1._Aktuelles/Fachartikel/Compliance_-_ein_Thema_mit_vielen_Facetten.pdf
http://www.hlfp.de/fileadmin/redaktion/1._Aktuelles/Fachartikel/Compliance_-_ein_Thema_mit_vielen_Facetten.pdf
https://openid.net/specs/openid-authentication-2_0.html
https://openid.net/specs/openid-authentication-2_0.html
http://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html
http://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html

Literatur

[31] N. Peters.
”
Oryx Stencil Set Specification“. In: Final bachelor’s paper, Hasso Plattner

Institute at the University of Potsdam (2007).

[32] D. Polak.
”
Bachelorarbeit: Oryx - BPMN Stencil Set Implementation“. In: Final bachelor’s

paper, Hasso Plattner Institute at the University of Potsdam (2007).

[33] S. Sadiq, G. Governatori und K. Naimiri.
”
Modeling control objectives for business process

compliance“. In: In Proceedings of BPM 2007. 2007.

[34] Prof. Dr. Gerhard Schewe. Gabler Wirtschaftslexikon, Stichwort: Geschäftsprozess. 2015.
url: http://wirtschaftslexikon.gabler.de/Archiv/5598/geschaeftsprozess-

v11.html.

[35] W. Tscheschner.
”
Bachelorarbeit: Oryx Dokumentation“. In: Final bachelor’s paper, Hasso

Plattner Institute at the University of Potsdam (2007).

[36] United States Code. Sarbanes-Oxley Act of 2002, PL 107-204, 116 Stat 745. Codified
in Sections 11, 15, 18, 28, and 29 USC. 2002. url: http://files.findlaw.com/news.
findlaw.com/cnn/docs/gwbush/sarbanesoxley072302.pdf.

[37] World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.1 (Second
Edition). 2006. url: http://www.w3.org/TR/2006/REC-xml11-20060816/.

[38] World Wide Web Consortium (W3C). Scalable Vector Graphics (SVG) 1.1. W3C Recom-
mendation. 2011. url: http://www.w3.org/TR/SVG11/.

[39] World Wide Web Consortium (W3C). W3C XML Path Language Version 2.0. W3C
Recommendation. 2010. url: http://www.w3.org/TR/xpath20/.

[40] World Wide Web Consortium (W3C). W3C XML Schema Definition Language (XSD) 1.1.
W3C Recommendation. 2004. url: http://www.w3.org/TR/xmlschema11-1/.

[41] T. Waizenegger u. a.
”
Policy4TOSCA: A Policy-Aware Cloud Service Provisioning Approach

to Enable Secure Cloud Computing“. In: On the Move to Meaningful Internet Systems:
OTM 2013 Conferences. Bd. 8185. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, S. 360–376. isbn: 978-3-642-41029-1.

Alle Links wurden zuletzt am 01.06.2015 überprüft.

72

http://wirtschaftslexikon.gabler.de/Archiv/5598/geschaeftsprozess-v11.html
http://wirtschaftslexikon.gabler.de/Archiv/5598/geschaeftsprozess-v11.html
http://files.findlaw.com/news.findlaw.com/cnn/docs/gwbush/sarbanesoxley072302.pdf
http://files.findlaw.com/news.findlaw.com/cnn/docs/gwbush/sarbanesoxley072302.pdf
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlschema11-1/

A. Anhang

A.1. Code-Listings

A.1.1. Compliance Descriptor aus Kapitel 6

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <compliancedescriptor name="Versicherungsanspruch"

xmlns="http://comb.iao.fraunhofer.de">↪→

3 <rules>

4 <rule id="gefolgtVon">

5 <language>LTL</language>

6 <phase>design-time</phase>

7 <ruleExpression>

8 <expression>([]($aktivitaet1 -> <>

$aktivitaet2)))</expression>↪→

9 </ruleExpression>

10 <bindings parameter="1" variabilityPoint="$aktivitaet1"/>

11 <bindings parameter="1" variabilityPoint="$aktivitat2"/>

12 </rule>

13 <rule id="auslieferungsort">

14 <language>TOSCA</language>

15 <phase>deployment</phase>

16 <ruleExpression>

17 <expression>...</expression>

18 </ruleExpression>

19 <bindings parameter="1" variabilityPoint="$komponente"/>

20 <bindings parameter="2" variabilityPoint="$ort"/>

21 </rule>

22 <rule id="maxZeitZwischenAktivitaeten">

23 <language>ProgoalML</language>

24 <phase>run-time</phase>

25 <ruleExpression>

26 <expression>...</expression>

27 </ruleExpression>

28 <bindings parameter="1" variabilityPoint="$aktivitaet1"/>

29 <bindings parameter="2" variabilityPoint="$aktivitaet2"/>

30 <bindings parameter="3" variabilityPoint="$maxZeitDazwischen"/>

31 </rule>

32 </rules>

33 <requirements>

73

A. Anhang

34 <requirement id="Benachrichtigung des Kunden">

35 <lawURLs>

36 <law>GDV Code of Conduct</law>

37 <paragraphReference>

38 <xpath>/html/body/p[1]</xpath>

39 </paragraphReference>

40 </lawURLs>

41 <complianceExpression>gefolgtVon("Eingang des Anspruchs" ,

"Beantwortung des Anspruchs") AND

maxZeitZwischenAktivitaeten("Eingang des Anspruchs" ,

"Beantwortung des Anspruchs" , "14 Tage"

)</complianceExpression>

↪→

↪→

↪→

↪→

42 </requirement>

43 <requirement id="Ort der Kundendatenbank">

44 <lawURLs>

45 <law>Bundesdatenschutzgesetz</law>

46 <paragraphReference>

47 <xpath>/html/body/p[17]</xpath>

48 </paragraphReference>

49 </lawURLs>

50 <complianceExpression>auslieferungsort("Kundendatenbank",

"Deutschland")</complianceExpression>↪→

51 </requirement>

52 </requirements>

53 <laws>

54 <law title="Bundesdatenschutzgesetz">

55 <html>...</html>

56 </law>

57 <law title="GDV Code of Conduct">

58 <html>...</html>

59 </law>

60 </laws>

61 <entities>

62 <entities type="Component" name="Kundendatenbank"/>

63 <entities type="Activity" name="Eingang des Anspruchs"/>

64 <entities type="Activity" name="Beantwortung des Anspruchs"/>

65 </entities>

66 </compliancedescriptor>

74

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen be-
nutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet. Weder
diese Arbeit noch wesentliche Teile daraus waren bisher Ge-
genstand eines anderen Prüfungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

	Tabellenverzeichnis
	Abbildungsverzeichnis
	Einleitung
	Motivation und Aufgabenstellung
	Gliederung der Arbeit

	Grundlagen
	Geschäftsprozess
	Definition
	Modellierung

	Compliance
	Definition
	Business Process Compliance

	Business Process Model and Notation (BPMN)
	Elemente
	Diagramme
	Austauschformat

	State of the Art
	BPMN-Q
	Abfragesprache
	Erweiterungen
	Validierung
	Graphischer Editor

	SeaFlows
	Compliance Rule Graph (CRG)
	Validierung
	Grafischer Editor

	CoReL
	Grafisches Modell
	Validierung

	Compliance Descriptor
	Funktionalität
	Validierung

	Zusammenfassung

	Erstellung des grafischen Modells
	Bestandteile des Compliance Descriptors
	Anforderung
	Regel
	Bindung
	Gesetz
	Einheit
	Verbindung
	Gesetzesverbindung

	Anforderungen
	Das grafische Modell
	Regel
	Bindung
	Anforderung
	Gesetz
	Einheit
	Verbindung
	Gesetzesverbindung

	Überprüfung der Anforderungen

	Erstellung des grafischen Editors
	Der Oryx-Editor
	Backend
	Frontend
	Erweiterbarkeit
	Verwendete Version

	Anforderungen
	Implementierung des grafischen Editors
	Stencilset
	Plugins

	Überprüfung der Anforderungen

	Beispiel aus der Versicherungsbranche
	Der Prozess
	Compliance-Anforderungen
	Implementierung mit Hilfe des Editors

	Mobiler Prototyp
	Aufbau des Prototypen
	Verwendete Bibliotheken
	Implementierung der mobilen Anwendung
	Beispiel aus der Versicherungsbranche in der mobilen Anwendung

	Zusammenfassung und Ausblick
	Literatur
	Anhang
	Code-Listings
	Compliance Descriptor aus Kapitel 6

