Institut fiir Architektur von Anwendungssystemen
Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3709

Grafischer Webeditor fiir
Compliance-Anforderungen

Philipp Gildein
Studiengang: Softwaretechnik
Priifer/in: Prof. Dr. Frank Leymann
Betreuer/in: Dipl.-Inf. Falko Kotter

Dipl.-Inf. Christoph Fehling

Beginn am: 01. Dezember 2014

Beendet am: 02. Juni 2015

CR-Nummer: H4.1, H5.2

Kurzfassung

Durch gesetzliche Regelungen wie den Sarbanes-Oxley Act (SOX), das européische Aquivalent
EURO-SOX oder BASEL II herrscht immer grofierer Druck auf Unternehmen, dafiir Sorge zu
tragen, dass Regularien eingehalten werden, um kostspielige Verletzungen und PR-Schiden zu
vermeiden. Fiir das Kerngeschéft der Unternehmen werden oftmals bereits Geschiéftsprozesse
eingesetzt, um fiir korrekte Abldufe zu Sorgen. Die dafiir verwendeten Werkzeuge lassen jedoch
oftmals die Unterstiitzung der sogenannten Compliance-Anforderungen aufien vor, mit denen
zusitzlich die Einhaltung von internen und externen Regel iiberpriift und sichergestellt werden
kann. Da das Wechseln von bereits eingesetzten Werkzeugen kostenintensiv ist, werden Verfahren
gesucht, die bestehende Prozesse um Compliance-Anforderungen erweitern und ein Gesamtkonzept
aus Funktionalitdt und Benutzerfreundlichkeit bieten.

Diese Arbeit erweitert ein bestehendes Konzept zur Erstellung und Validierung von Compliance-
Anforderungen, den Compliance Descriptor, um ein grafisches Modell sowie einen dazugehorigen
Editor. Einen groflen Funktionsumfang hat dieser zwar bereits geboten, durch eine grafische
Darstellung wird die Umsetzung der Anforderungen jedoch deutlich vereinfacht und auch fiir
Mitarbeiter ohne technische Ausbildung méglich. Zudem kénnen Informationen iiber den Zusam-
menhang der Anforderungen besser ausgetauscht werden.

Um zusétzlich Erweiterungen des Konzepts fiir die Zukunft zu evaluieren, wird ein mobiler Editor
prototypisiert. Dieser soll es ermoglichen auch mit Smartphones und Tablets am Compliance
Descriptor zu arbeiten.

Inhaltsverzeichnis

Tabellenverzeichnis

Abbildungsverzeichnis

1. Einleitung

1.1. Motivation und Aufgabenstellung
1.2. Gliederung der Arbeit

2. Grundlagen

2.1. Geschiftsprozess e
2.1.1. Definition
2.1.2. Modellierung

2.2. Compliance

2.2.1. Definition e
2.2.2. Business Process Compliance
2.3. Business Process Model and Notation (BPMN)
2.3.1. Elemente e
2.3.2. Diagramme
2.3.3. Austauschformat

3. State of the Art
3.1. BPMN-Q .

3.1.1. Abfragesprache
3.1.2. Erweiterungen e
3.1.3. Validierung
3.1.4. Graphischer Editoro Lo

3.2. SeaFlows .

3.2.1. Compliance Rule Graph (CRG)
3.2.2. Validierung
3.2.3. Grafischer Editor L oo

3.3. CoReL . . .

3.3.1. Grafisches Modell
3.3.2. Validierung
3.4. Compliance Descriptor
3.4.1. Funktionalitdt
3.4.2. Validierung
3.5, Zusammenfassungo L

4. Erstellung des grafischen Modells
4.1. Bestandteile des Compliance Descriptors
4.1.1. Anforderung

4.1.2. Regel

10

11
11
11
12
13
13
13
14
14
17
19

21
21
21
22
24
25
25
26
27
29
30
30
31
32
32
33
35

37
37
38
38

4.1.3.
4.1.4.
4.1.5.
4.1.6.
4.1.7.

Bindung
GESELZ o
Einheit
Verbindung L L
Gesetzesverbindung oL Lo

4.2. Anforderungen L
4.3. Das grafische Modell

4.3.1.
4.3.2.
4.3.3.
4.3.4.
4.3.5.
4.3.6.
4.3.7.

Regel o
Bindung
Anforderung
Gesetz L
Einheit
Verbindung L
Gesetzesverbindung oL oL

4.4. Uberpriifung der Anforderungen,

5. Erstellung des grafischen Editors
5.1. Der Oryx-Editor

5.1.1.
5.1.2.
5.1.3.
5.1.4.

Backend e e
Frontend
Erweiterbarkeit
Verwendete Version e

5.2. Anforderungen
5.3. Implementierung des grafischen Editors

5.3.1.
5.3.2.

Stencilset e
Plugins o

5.4. Uberpriifung der Anforderungen

6. Beispiel aus der Versicherungsbranche
6.1. Der Prozess e
6.2. Compliance-Anforderungen L L
6.3. Implementierung mit Hilfe des Editors

7. Mobiler Prototyp
7.1. Aufbau des Prototypen
7.2. Verwendete Bibliotheken o oo
7.3. Implementierung der mobilen Anwendung L.
7.4. Beispiel aus der Versicherungsbranche in der mobilen Anwendung

8. Zusammenfassung und Ausblick

Literatur

A. Anhang

A1, Code-Listings

Al.1.

Compliance Descriptor aus Kapitel 6

45
45
45
46
47
47
48
48
48
50
92

55
55
o6
56

59
61
63
66
67

Tabellenverzeichnis

Tabellenverzeichnis

3.1.

Uberblick iiber die Verfahren o v i 35

Abbildungsverzeichnis

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

o.1.
5.2.
5.3.
5.4.
9.5.

6.1.
6.2.

7.1
7.2.
7.3.
7.4.

Ereignisseo 15
Aktivitdten L L 15
Gateways e 16
Pool mit zwei Swimlanes L L oL oL 16
Verbindungen 17
Artefakte 17
Konver- sations- diagramm Lo o 18
Choreographie- diagramm L o 18
a) BPMN Elemente b) BPMN-Q Elemente (aus [1]) 22
Oryx-Editor mit BPMN-Q Graph (aus [4]) 25
Bestandteile des Compliance Rule Graphen (aus [26]) 26
Beispiele des Compliance Rule Graphen (aus [26]) 27
SeaFlows Graphical Editor (aus [26]) 29
CoReL Beispielgraph (aus [14]) oo 30
Compliance Descriptor Struktur. oL 37
Regel inklusive Bindung o 42
Anforderung L 42
GeSetz e 42
Einheit o 43
Verbindung und Gesetzesverbindung Lo 43
Minimaler Beispielgraph L 44
Oryx-Editor mit BPMN-Stencilset 46
Abkiirzungsfunktionalitit an einem Anforderungselement 49
Die Plugins in der Werkzeugleiste oo oo oL 50
Ausdruckeditor 50
Fehlgeschlagene Validierung L o oL 51
BPMN-Graph des Geschéftsprozesses 56
Compliance Descriptor 57
Oryx-Editor auf einem iPhone der ersten Generation 59
Mockup der Mobile App 62
Komponenten der mobilen Anwendung 66
Compliance Descriptor und Elementdialog auf mobilem Endgerdt 68

1. Einleitung

1.1. Motivation und Aufgabenstellung

In den letzten 15 Jahren stieg die Anzahl der Regeln und Gesetze, die Unternehmen einhalten
und beachten miissen, stetig an. Zudem kommt eine immer gréflere werdende Menge an internen
Richtlinien. Beispiele dafiir sind BASEL II, der Sarbanes-Oxley Act (SOX) [36] in den USA oder
EURO-SOX in der EU [11]. Deren Verletzung kann sowohl zu hohen Strafen als auch zu grofien
PR-Schéden fithren. Das Einhalten dieser Anforderungen wird dadurch zu einer der wichtigsten
Aufgaben von Unternehmen und bedarf kompetenter Mitarbeiter, deren Aufgabe es ist, sich um
neuste Gesetzeslagen und Richtlinien sowie deren Einhaltung zu kiimmern [17].

Gleichzeitig nimmt der Einsatz von Software zur Entwicklung und Ausfithrung von Geschéftspro-
zessen immer mehr an Bedeutung zu, mit Hilfe deren Abléufe im Geschéftsbetrieb modelliert
werden konnen. Da die meisten der sogenannten Compliance-Anforderungen wihrend dieser
Abldufe gepriift werden kénnten, bietet sich eine Kombination von Geschéftsprozessen und
deren Uberpriifung an. Dies findet jedoch bisher nur in sehr wenigen Fillen statt, da dafiir
entsprechende Softwarelosungen am Markt fehlen oder noch unausgereift sind.

Eine weitere Schwierigkeit stellt die Vielzahl der Fachgebiete dar, in die die Compliance her-
einreicht. Geschéftsprozesse werden meist von betriebswirtschaftlich orientierten Abteilungen
erstellt, wihrend zu deren Ausfithrung Hilfsmittel von informationstechnischen Abteilungen zur
Verfiigung gestellt werden. Greift der Prozess zudem in die Produktion, den Kundenservice
oder Support ein, kommen schnell zahlreiche Beteiligte zusammen. Dadurch ist Compliance ein
fachgebietsiibergreifendes Thema und bedarf der Zusammenarbeit verschiedener Abteilungen [19].
Ohne eine leicht verstdndliche Darstellung wird es fiir technisch weniger versierte Mitarbeiter
jedoch schwierig mitzuwirken, weshalb dies im Blick behalten werden muss.

In der vorliegenden Arbeit soll deshalb ein bereits existierender Ansatz, der Compliance Des-
criptor [23], um ein grafisches Modell und einen Editor, der dieses Modell verwendet, erweitert
werden. Bisher ist dieser nur durch ein Dateiformat sowie diverse Semantiken und Validierungen
beschrieben. Daher geht es in dieser Arbeit insbesondere um eine benutzerfreundliche Darstellung
und Bedienung des Editors.

Zusétzlich soll ein Prototyp einer mobilen Anwendung entwickelt werden, der die Funktionalitéten
des Editors auf mobilen Endgeriten liefert. Dieser wiirde die Einstiegshiirde in die Modellierung
von Compliance-Anforderungen deutlich verringern.

1. Einleitung

1.2. Gliederung der Arbeit

Die Gliederung der vorliegenden Arbeit wird im Folgenden erldutert. Sie orientiert sich dabei an
der Vorgehensweise der Entwicklung und strukturiert sich folgendermafien:

Kapitel 1 - Einleitung: Kapitel 1 beschreibt die Aufgabenstellung und Gliederung der Arbeit
und gibt einen kurzen Uberblick iiber das Thema.

Kapitel 2 - Grundlagen: Kapitel 2 stellt einige wichtige Begriff vor und bietet einen Einblick
in die Beschreibungssprache Business Process Model and Notation (BPMN).

Kapitel 3 - State of the Art: Kapitel 3 enthilt einen Uberblick iiber aktuelle Entwicklungen
aus dem Umfeld der Compliance- und Geschiéiftsprozessvalidierung und stellt die Verfahren vor.

Kapitel 4 - Erstellung des grafischen Modells: Kapitel 4 analysiert den Compliance Descriptor
und stellt die dafiir entwickelte grafische Darstellung vor.

Kapitel 5 - Erstellung des grafischen Editors: Kapitel 5 zeigt die Umsetzung der grafischen
Darstellung mit Hilfe des Oryx-Editors und die Implementierung von benutzerfreundlichen
Erweiterungen

Kapitel 6 - Beispiel aus der Versicherungsbranche: Kapitel 6 stellt ein Beispiel fiir einen
Geschiftsprozess aus der Versicherungsbranche vor und implementiert die daran gestellten
Complianceanforderungen mit Hilfe des grafischen Editors.

Kapitel 7 - Mobiler Prototyp: Kapitel 7 beschreibt die Konzeption, Architektur und Erstellung
des mobilen Prototypen und zeigt die Erstellung des Beispiels aus Kapitel 6 in einer mobilen
Anwendung.

Kapitel 8 - Zusammenfassung und Ausblick: Kapitel 8 fasst den Inhalt dieser Arbeit zusammen
und bietet einen Ausblick auf potenzielle Erweiterungen der entwickelten Editoren.

10

2. Grundlagen

In diesem Kapitel soll auf ein paar wichtige Begriffe und Technologien eingegangen werden,
die die Grundlage fiir den weiteren Verlauf der Arbeit bilden. Dafiir werden in den ersten
beiden Abschnitten die Begriffe "Geschéftsprozessiind "Compliance”definiert. Abschliefend wird
in Abschnitt 2.3 auf die Business Process Model and Notation (kurz: BPM) eingegangen, eine
grafische Beschreibungssprache fiir Geschéftsprozesse.

2.1. Geschaftsprozess

2.1.1. Definition

Ein Geschiftsprozess ist eine Anzahl von Einzeltétigkeiten, die in einer definierten Reihenfolge
ausgefiihrt werden, um ein Ziel zu erreichen.
Das Gabler Wirtschaftslexikon enthélt folgende Definition:

"Folge von Wertschopfungsaktivitdten mit einem oder mehreren Inputs und einem
Kundennutzen stiftenden Output. Geschéftsprozesse konnen auf verschiedenen Aggre-
gationsebenen betrachtet werden, z.B. fiir die Gesamtunternehmung, einzelne Sparten-
oder Funktionalbereiche”[34]

Eine weitere Definition stammt von Bernd Oestereich:

"Ein Geschéftsprozess ist eine Zusammenfassung einer Menge fachlich verwand-
ter Geschiftsanwendungsfille. Dadurch bildet ein Geschéftsprozess gewohnlich eine
Zusammenfassung von organisatorisch eventuell verteilten, fachlich jedoch zusam-
menhéngenden Aktivitéiten, die notwendig sind, um einen Geschiftsvorfall (z.B.
einen konkreten Antrag) ergebnisorientiert zu bearbeiten. Die Aktivitéiten eines Ge-
schéftsprozesses stehen gewohnlich in zeitlich und logischer Abhéngigkeit zueinander.”
28]

Geschéftsprozesse lassen sich in drei Gruppen einteilen:

¢ Managementprozesse
Strategische Prozesse, die die hochste Ebene des Unternehmens betreffen.

e Operative Prozesse
Prozesse, die das Kerngeschéift des Unternehmens betreffen und die meist in Zusammenhang
mit dem Kunden stehen.

11

2. Grundlagen

e Unterstiitzende Prozesse
Prozesse, die der Unterstiitzung interner Ablaufe, wie z.B. bei Einstellungsverfahren, oder
der Einhaltung von Richtlinien, beispielsweise beim Umgang mit personlichen Daten, dienen.

Neben der Modellierung von Prozessen, die im zweiten Teil dieser Definition erldutert wird, kénnen
diese Prozesse auch um Ausfiihrungssemantiken erweitert werden. Dadurch lésst sich ein Prozess
von einem sogenannten Arbeitsablaufsystem ausfiihren. Dieses kontrolliert die einzelnen Schritte,
leitet die entsprechenden Folgeschritte ein und kiimmer sich um das Senden und Empfangen von
Nachrichten.

Ein beliebtes Beispiel fiir einen Geschéftsprozess, in diesem Fall einen operativen Prozess, ist die
Einrichtung eines Konto bei einer Bank. Dabei gibt es klar definierte Start- und Endpunkte (der
Antrag des neuen Kunden und die erfolgte Einrichtung) sowie Zwischenschritte, die zwischen diesen
beiden Punkten liegen. An Zweigstellen kann es durch Uberpriifungen und Entscheidungen zu
unterschiedlichen Verldufen kommen, z.B. durch die Priifung der Kreditwiirdigkeit des Kunden.

2.1.2. Modellierung

Fiir die Modellierung von Geschéftsprozessen gibt es verschiedene Moglichkeiten. Unterscheiden
lassen sich dabei prinzipiell graphische und textuelle Reprasentationen. Der gewéhlte Ansatz héingt
dabei oftmals vom Einsatzgebiet sowie von der Erfahrung des Erstellers und des Zielpublikums
ab.

Die Vorteile einer graphischen Modellierung liegen bei der Einfachheit der Erstellung und der
Interpretation des dabei entstandenen Modells. So gibt es dafiir meist Editoren, die dem Anwender
viele Hilfeleistungen an die Hand geben und dadurch die Eingabe des Prozesses simplifizieren.
Zudem zeigt die graphische Darstellung die Verbindungen und Abhéingigkeiten klarer auf.
Dadurch eignet sich diese Darstellungsform sehr gut zum Austausch zwischen verschiedenen Abtei-
lungen eines Unternehmens. Auch weniger erfahrene Mitarbeiter kénnen so den Geschéftsprozess
verstehen.

Auch die textuelle Représentation hat einige Vorteile. So verstecken graphische Darstellungen
oftmals die Komplexitdten der dahinter liegenden Datenstrukturen. Deshalb kénnen mit einer
Textdarstellung theoretisch komplexere und ausfiihrlichere Prozesse erstellt werden. Das ist
auch der Grund, weshalb vor allem bei ausfithrbaren Geschéftsprozessen textuelle Modelle den
graphischen bisher vorgezogen werden.

Wihrend sich die meisten Standards bei Geschéftsprozessen auf eine der beiden Repréisentatio-
nen konzentrieren, gibt es vermehrt Bemiithungen, beide Formen innerhalb eines Standards zu
unterstiitzen. Ein grofles Problem der graphischen Repréisentation ist ndmlich, dass sich reine
Graphiken schlecht aus einem Programm exportieren und in ein anderes Programm importieren
lassen. Textformate haben dieses Problem nicht.

Im Abschnitt 2.3 wird eine grafische Darstellungsform von Geschéftsprozessen in Form der
Business Process Model and Notation (BPMN) vorgestellt.

12

2.2. Compliance

2.2. Compliance

2.2.1. Definition

Compliance, oder zu deutsch Regeltreue, bezeichnet die Einhaltung von Gesetzen, Richtlinien und
Standards in Unternehmen. Compliance-Anforderungen kénnen sowohl von aufien vorgegeben
sein als auch intern festgelegt werden. Eine weitere Definition von Eberhard Kriigler verdeutlich
dies:

"Der Begriff Compliance steht fiir die Einhaltung von gesetzlichen Bestimmungen,
regulatorischen Standards und Erfiillung weiterer, wesentlicher und in der Regel vom
Unternehmen selbst gesetzter ethischer Standards und Anforderungen.”[24]

Gepragt wurde der Begriff der Compliance vor allem in der amerikanischen Finanzwirtschaft.
Nach finanziellen Skandalen um Firmen wie den Olkonzern Enron wurden dort weitreichende
Anderungen an der Finanzgesetzgebung vorgenommen, um das Vertrauen der Anleger in Aktien
von Unternehmen wieder zu erhéhen. Dazu wurde 2002 der Sarbanes-Oxley Act (kurz: SOX)
entworfen und in Kraft gesetzt. Dieser sieht eine deutlich hohere Dokumentationspflicht fiir
Unternehmen, die in den USA tétig sind, vor.

Im européischen Raum wurde analog dazu die Abschlusspriifungs-Richtlinie verabschiedet, auch
kurz EURO-SOX genannt, sowie die Eigenkapitalvorschrift BASEL II. Auch diese stellen deutlich
hohere Anforderungen an die Dokumentation von Unternehmen und stellen bei Verletzung hohe
Strafen in Aussicht.

Compliance wird deshalb eine immer wichtiger werdende Aufgabe von Unternehmen und be-
schéftigt sie bis in die hochsten Ebenen. So definiert der Deutsche Corporate Governance Kodex,
ein freiwilliges Regelwerk, dass sich vor allem an im DAX gelistete Unternehmen richtet, die
Aufgabe des Vorstandes so:

"Der Vorstand hat fiir die Einhaltung der gesetzlichen Bestimmungen und der un-
ternehmensinternen Richtlinien zu sorgen und wirkt auf deren Beachtung durch die
Konzernunternehmen hin (Compliance).”[20]

2.2.2. Business Process Compliance

Da viele Firmen bereits Geschéftsprozesse definiert haben, um wichtige Prozesse ihres Kernge-
schéfts zu beschreiben und korrekt auszufithren, werden diese oftmals mit der Uberpriifung von
Compliance-Anforderungen kombiniert. Die Kombination von Geschéftsprozess und Compliance
wird auch als Business Process Compliance (BPC) [33] bezeichnet. Durch entsprechende Softwa-
relosungen konnen dann die Compliance-Anforderungen gesammelt und modelliert werden. Bei
der Entwicklung und Ausfiihrung der Geschéftsprozesse konnen sie dann validiert werden.

Eine Alternative stellt die Uberpriifung der Anforderungen nach Ende des Geschiftsprozesses dar.
Dabei werden wihrend der Ausfithrung relevante Daten gesammelt, analysiert und ein Bericht
daraus generiert.

In Kapitel 3 werden vier verschiedene Verfahren vorgestellt, die Funktionen zur Erstellung und
Validierung von Compliance in Geschéftsprozessen zur Verfiigung stellen.

13

2. Grundlagen

2.3. Business Process Model and Notation (BPMN)

Business Process Model and Notation (BPMN) [16] ist eine graphische Notation zur Beschreibung
von Geschiftsprozessen. Die Arbeit an BPMN wurde 2001 von Stephen A. White, einem IBM-
Mitarbeiter, begonnen und 2004 in der Version 1.0 von der Business Process Management Initiative
(BPMI) verdffentlicht. Im Juni 2005 iibernahm die Object Management Group (OMG), die unter
anderem auch die Unified Modeling Language (UML) entwickelt hat, die Weiterentwicklung und
Pflege des Standards.

2011 wurden mit der Verdffentlichung der Version 2.0 [16] die ersten groSeren Anderungen
am Standard veroffentlicht. Mit der neuen Version beschreibt BPMN nicht nur die graphische
Darstellung sondern auch ein XML [37]-basiertes Austauschformat, mit dem BPMN-Modelle
zwischen verschiedenen Programmen ausgetauscht werden koénnen. Seit Mitte 2013 ist BPMN in
der Version 2.0.1 zudem ein internationaler Standard (ISO/IEC 19510:2013).

Bei der Modellierung von Prozessen wird von BPMN ein graph-basierter Ansatz gewéhlt. Dies
bedeutet, dass ein Prozess mit Hilfe von Knoten und Kanten beschrieben wird, jedoch ergénzt
um weitere graphische Elemente, die es ermdglichen komplexere Abldufe darzustellen.

BPMN in der ersten Version besteht aus vier Kategorien solcher Elemente, die im folgenden
naher beschrieben werden. Es enthilt zudem drei verschiedene Diagrammtypen, die ebenfalls kurz
veranschaulicht werden. Da das Hinzufiigen eines Austauschformats eine der groften Anderungen
in der Geschichte von BPMN war, soll auch dieses kurz angerissen werden.

2.3.1. Elemente

Vier Gruppen von Objekten mit insgesamt 23 Elementen stellen die Hauptbausteine von BPMN
dar und sollen in diesem Abschnitt beschrieben und durch Bilder illustriert werden.

2.3.1.1. Flussobjekte

Flussobjekte représentieren alle Aktionen die innerhalb eines Geschéftsprozesses dessen Verhalten
spezifizieren. Es gibt drei verschiedene Arten von Flussobjekten: Ereignisse, Aktivitéiten und
Gateways.

Ereignisse

Ereignisse konnen in drei verschiedenen Formen auftreten: als Startereignis, das den Ausgangs-
punkt eines Flusses markiert, als Zwischenereignis, welches entweder Informationen empfangen
oder senden kann, oder als Endereignis, das das Ende eines Flusses markiert. Ein Zwischenereignis
unterbricht dabei den Ablauf des Prozesses.

14

2.3. Business Process Model and Notation (BPMN)

Dargestellt werden Ereignisse als Kreis. Ist das Ereignis von einem

speziellen Typ, wie zum Beispiel eine Nachricht, dann wird zusétzlich
© ein Symbol im Kreis angezeigt.

Je nach Art des Ereignisses werden der Kreis und das Symbol unter-
schiedlich dargestellt. Bei einem Startereignis wird ein diinner Kreis

gezeichnet, bei einem Zwischenereignis ein doppelter Kreis und bei
Abbildung 2.1.: Ereignisse einem Endereignis ein doppelter, gefiillter Kreis.

Ein nicht ausgefiilltes Symbol steht dabei fiir ein eingehendes Ereig-
nis, wihrend es bei einem ausgehenden Ereignis ausgefiillt ist. Ausgehende Ereignisse sind dabei
alle Endereignisse sowie manche Zwischenereignisse.

Aktivitdten

Auszufithrende Tiétigkeiten im Prozess werden durch Aktivitdten beschrieben. Dabei kann
eine Aktivitdt aus mehreren Arbeitsschritten bestehen. Von BPMN werden vier verschiedene
Haupttypen definiert: eine Aufgabe, die eine Arbeitseinheit darstellt, eine Transaktion, die logisch
zusammenhingende Aktivitdten verkniipft, ein Teilprozess, der zu einem iibergeordneten Prozess
gehort und von diesem entweder parallel ausgefithrt werden kann oder unterbricht, und eine
Aufruf-Aktivitit, die die Kontrolle iiber den Prozess an einen global definierten Aufruf abgibt.

Aktivitdten werden als Rechteck mit abgerundeten Ecken dargestellt. Ein Teilprozess enthélt
zusétzlich ein + in einem Quadrat, um den Inhalt des Teilprozesses aufklappen zu kénnen.
Transaktionen verwenden einen doppelten Rand, widhrend eine Aufruf-Aktivitdt iiber einen
dickeren Rand verfiigt.

Ergénzt werden konnen Aufgaben und Teilprozesse durch Markierun-
gen, die sich graphisch im unteren Teil des Elementes befinden. Beiden
gemeinsam sind dabei die Schleife, die die Aktivitéit bis zur Erfiillung
einer Bedingung wiederholt, die multiple Instanz, die die Aktivitat
mehrmals parallel oder sequentiell ausfithrt sowie die Kompensation,
die einen Ausgleich (z.B. Lohn oder Gebiihren) fiir vorhergehende
Aktivitdten auszahlt. Teilprozess
Aufgaben kénnen die Kompensation zusétzlich in einer Schleife aus-

[
Aufgabe

fithren. Ein Teilprozess kann zusétzlich eine Ad Hoc-Markierung er-
halten, die Aktivitdten dieses Teilprozesses in beliebiger Reihenfolge
ausfiihrt. Transaktion
Um Aufgaben noch genauer spezifizieren zu kénnen, kann darauf
aufsetzend auch noch ein Typ angegeben werden. Dieser wird als)
Symbol in der linken oberen Ecke angezeigt. Dadurch kann eine Aufgabe Aufrotaktvitst
als héndisch oder durch einen Benutzer auszufithrend markiert, ein

N

Skript ausgefiihrt, eine Nachricht empfangen oder gesendet, oder ein
automatisierter Service verwendet werden.

Abbildung 2.2.: Aktivititen

Gateways

Das dritte und letzte Flussobjekt ist das Gateway-Element, dass Kanten
im Sequenzfluss aufteilt und wieder zusammenfiigt. Gateways werden durch eine Raute dargestellt,
die je nach Verzweigungsart ein Symbol enthalten.

15

2. Grundlagen

Fiinf solcher Verzweigungsarten werden von BPMN definiert: ein
exklusives Gateway, welches auf Grund einer angegebenen Bedin-
gung eine der Kanten aktiviert, ein ereignisbasiertes Gateway, bei
dem das néchste Element ein Ereignis sein muss und die Kante
des zuerst aktivierten Ereignisses aktiviert wird, ein paralleles
Gateway, bei dem alle Kanten aktiviert werden und erst zusam-

@ mengefithrt werden, wenn alle abgeschlossen haben, ein inklusives

Gateway, bei dem je nach Bedingung eine oder mehrere Kanten

aktiviert werden kénnen, sowie ein komplexes Gateway, mit dem

komplizierte Bedingungen gekennzeichnet werden konnen.

Dabei werden exklusive Gateways mit einem X markiert, ereig-
@ nisbasierte mit einem Fiinfeck in einem doppelten Kreis, parallele

mit einem +, inklusive mit einem O und komplexe mit einem .

Abbildung 2.3.: Gateways 2 3.1.2. Pools und Swimlanes

Pools und Swimlanes (oder kurz Lanes) erlauben eine bessere

Organisation von Geschéftsprozessen. Die Pools dienen dabei zur
Abgrenzung der am Prozess beteiligten Parteien und repréisentieren meist eine Organisation,
wéhrend die Lanes dabei helfen, die Struktur dieser Organisation abzubilden.

Ein Pool ist unterteilt in eine oder mehrere Lanes, die alle
Aktivitdten enthalten. Dargestellt werden Pools in zwei
Orientierungen, einer horizontalen und einer vertikalen.
Dabei befindet sich der Titel des Pools am linken oder Swimlane 2 [Swimlane 1
oberen Ende eines Rechtecks und enthélt daneben bzw.
darunter die einzelnen Lanes.

Ein Sonderfall sind sogenannte Black-Box-Pools oder
eingeklappte Pools. Diese enthalten keinen Prozess und
beschrianken sich rein auf den Nachrichtenaustausch mit
anderen Pools.

Pool

Lanes unterteilen die Pools und enthalten die Flussob-
jekte des Graphen. Thre Darstellung ist gleich der der
Pools. Sie haben jedoch keinen eigenen Rand, sondern
fiigen sich in den umgebenden Pool ein.

Eine Lane kann auch noch in weitere Unterlanes aufge- Abbildung 2.4.: Pool mit zweil
teilt werden, um die Struktur feiner darzustellen. Swimlanes

2.3.1.3. Verbindungsobjekte

Verbindungsobjekte sind die Kanten im Graphen. Sie verbinden die Flussobjekte. Zwischen zwei
Aktivitédten ist die normale Verbindung ein Sequenzfluss, eine schwarze durchgezogene Linie mit
ausgefiilltem Pfeil.

Ausgenommen davon sind Verbindungen zwischen Aktivitéiten zweier verschiedener Pools, bei
denen ein Nachrichtenfluss verwendet werden muss. Dieser ist eine gestrichelte Linie mit nicht
ausgefiilltem Pfeil am Ende und einem leeren Kreis am Anfang.

16

2.3. Business Process Model and Notation (BPMN)

Zur Verbindung von Flussobjekten und Artefakten gibt es zudem eine assoziative Verbindung,
die aus einer gestrichelten Linie ohne Anfangs- oder Endpunkte besteht.

Der normale Sequenzfluss kann zudem noch mit Bedingungen

I verkniipft werden. Dazu gibt es zum Einen den bedingten
Ormermmmmenees s Fluss, der mit einer Raute beginnt und eine Bedingung ent-
"""""""" hélt, zum Anderen den Standardfluss, dessen Strich an einer
o> Stelle durchgestrichen ist und der aktiviert wird, wenn alle
— anderen Bedingungen nicht zutreffen.

Abbildung 2.5.: Verbindungen 2.3.1.4. Artefakte

Artefakte werden verwendet um zusétzliche Informationen
im Geschéftsprozess unterzubringen, die fiir den eigentlich
Ablauf nicht benéttigt werden.

Mit einer Anmerkung kann ein Beschreibungstext zu einem Flussobjekt
verfasst werden und mit einer assoziativen Verbindung an diesem
angebunden werden. Sie wird mit einem halben Rechteck dargestellt. ~+]Anmerkung

Mit Hilfe einer Gruppe konnen Aktivitdten thematisch gruppiert wer- e]
den, ohne dabei Auswirkungen auf deren Ausfithrung zu haben. Diese i |
werden durch eine abwechselnd gepunktete und gestrichelte Linie mit '

i

runden Ecken gekennzeichnet. e —
Datenobjekte bieten die Moglichkeit Daten zu lesen und zu schrei- = o
ben. Ein normales Datenobjekt, reprisentiert durch das Symbol eines .77 Daten

Il

Dokumentes, repriisentiert dabei eine Information. Erweitert um drei
Striche, wird daraus ein Listen-Datenobjekt, das eine Liste von Infor-
mationen enthalten kann. Um Daten aus externen Quellen zu erhalten,
kann ein Datenobjekt mit einem nicht ausgefiillten Pfeil verwendet
werden. Fiir die Ausgabe von Daten wird der Pfeil ausgefiillt, um ein
Datenoutput-Objekt zu erhalten. Zur Verbindung von Datenobjekten
und Flussobjekten wird zudem noch eine Datenassoziation hinzugefiigt, Abbildung 2.6.: Artefakte
die die assoziative Verkniipfung um eine Pfeilspitze erweitert.

i

Datenbank

Letzter Bestandteil der Artefakte ist die Datenbank. Sie erlaubt sowohl
lesenden als auch schreibenden Zugriff auf Daten und ihre Daten sind auch nach Beendigung des
Prozesses weiter verfiigbar. Dargestellt wird Sie durch eine versinnbildlichte Datenbank.

2.3.2. Diagramme

Die vorgestellten Elemente werden in drei verschiedenen Diagrammtypen verwendet. Diese
enthalten zum Teil noch weitere Elemente, die dann aber spezifisch fiir diese Diagramme sind.

17

2. Grundlagen

2.3.2.1. Kollaborationsdiagramm

Das Kollaborationsdiagramm ist das Standarddiagramm von BPMN und seit der ersten Version
Teil der Spezifikation. Es kann alle bereits vorgestellten Elemente enthalten und bildet daraus
einen Prozessgraphen, der die Kollaboration zwischen verschiedenen Organisationen und deren
Unterorganisationen abbildet. Dazu enthalten sie meist mehr als einen Pool um die einzelnen
Teilnehmer am Prozess modellieren zu kénnen.

2.3.2.2. Konversationsdiagramm

Mit Version 2.0 kam das Konversationsdiagramm neu hinzu. Es be-

schreibt die Verbindungen zwischen verschiedenen Organisationen wah- <:>
rend eines Prozesses auf einer hoheren Ebene als das Kollaborations-

diagramm. Dadurch kann es als simple Ubersicht dienen, wihrend

ein weiteres Diagramm die Details des Prozesses genauer beschreibt. ﬂ
Teilnehmer des Prozesses werden dabei als Black-Box-Pools darge-
stellt. Um die Konversationen darstellen zu kénnen, werden drei neue

Elemente eingefiihrt.

Ein Konversationsknoten ist ein Hexagon mit einer Beschriftung und Abbildung 2.7.: Konver-
beschreibt die Art der Konversation. Besteht das Hexagon aus einer sations-
dicken Linie, so ist dies eine global definierte Konversation, enthilt es diagramm
ein + so ist es eine Teilkonversation, die im aufgeklappten Zustand

genauer definiert werden kann. Mit Hilfe einer Konversationsverbindung werden diese mit den
beteiligten Pools verbunden. Die Verbindung wird durch eine doppelte Linie dargestellt.

2.3.2.3. Choreographiediagramm

Das zweite Diagramm, das mit Version 2.0 eingefiihrt wurde,
ist das Choreographiediagramm. Es konzentriert sich auf die
- Titel peeeeeeeee [Interaktionen zwischen verschiedenen Prozessen und dem
Nachrichtenfluss zwischen ihnen. Dabei liegt der Fokus auf
den versendeten und empfangenen Nachrichten und deren
Inhalt. Dazu werden fiir dieses Diagramm vier neue Elemente
definiert.

Absender

Empfanger

Abbildung 2.8.: Choreographie-

diagramm Eine Choreographieaufgabe ist ein Schritt einer Choreogra-

phie und enthélt Absender, Empfinger und Titel der Nach-

richt. Dazu wird die Darstellung einer normalen Aufgabe in drei Teile aufgeteilt, von denen jeder
jeweils einen Part der Nachricht enthélt. Um ein + in einem Quadrat erweitert, ergibt sich daraus
ein Teilprozess, der die Choreographie verfeinern kann. Mit einem dicken Rand wird daraus eine
Aufrufchoreographie, die global im Prozess definiert ist.
Ein Briefsymbol, das mit einer gepunkteten Linie mit einer Choreographieaufgabe verbunden ist,
enthélt den Inhalt der Nachricht und kann je nachdem, ob sein Inneres ausgefiillt oder leer ist,
ausgehender oder eingehender Art sein.

18

2.3. Business Process Model and Notation (BPMN)

2.3.3. Austauschformat

Seit der BPMN-Version 2.0 enthélt der Standard neben der graphischen Notation auch ein
XML-basiertes Austauschformat. Wiahrend zuvor von den BPMN-Werkzeugen verschiedene
Eigenentwicklungen verwendet wurden, die miteinander zumeist nicht kompatibel waren, kann
seit dem derselbe Graph in so gut wie jedem Programm verwendet werden. Dadurch wurde auch
der direkte Einsatz in beliebigen Ausfithrungsprogrammen ermdoglicht.

Das XML-Format besteht prinzipiell aus zwei verschiedenen Teilen. Im ersten Teil wird der Prozess
und seine Eigenschaften beschrieben, wihrend im zweiten Teil die Anzeige der einzelnen Knoten
und Kanten des Prozessgraphen beschrieben wird. Der Hauptknoten der XML-Datei ist ein
de finitions-Tag, der den Prozess innerhalb eines process-Tags und die graphische Beschreibung
in einem BPM N Diagram-Tag enthélt.

Im process-Tag werden die einzelnen Elemente des Prozesses aufgelistet. Dabei enthélt jedes
Element zumindest ein id-Attribut, das spétestens im BPM N Diagram verwendet wird. Flussob-
jekte erhalten zudem noch ein name-Attribut, das einen Klarnamen enthélt. Verbindungsobjekte
enthalten dafiir sourceRef- und target Re f-Attribute, die die Identifizierer ihrer Anfangs- und
Endpunkte enthélt.

Die Beschreibung der graphischen Darstellung innerhalb des BPM N Diagram-Tags besteht
dagegen nur aus wenigen Elementen:

Mit einer BPM N Plane konnen verschiedene Ebenen dargestellt werden. Darin befinden sich
BPM N Shape-Tags, die iiber ihr bpmnElement-Attribut auf ein Element verweisen und iiber
einen enthaltenen Bounds-Tag die Position auf der Zeichenebene angeben. Ebenfalls enthalten
sind BPM N Edge-Tags, die die Positionierung der Kanten im Graphen angeben. Uber das
bpmnElement-Attribut kann der Identifizierer der entsprechenden Kante des Prozesses angegeben
werden. Um nicht nur gerade Linien zu erhalten kénnen innerhalb ein oder mehrere Waypoint-
Tags angegeben werden, die Punkte zwischen den Elementen enthalten.

19

3. State of the Art

Im dritten Kapitel soll ein Uberblick iiber momentan aktuelle Entwicklungen bei Ansitzen zur
Validierung von Compliance-Anforderungen gegeben werden. Dabei ist das Hauptkriterium fiir
die Auswahl der Verfahren das Vorhandensein einer grafischen Darstellung, da die Erstellung einer
solchen das Ziel dieser Arbeit darstellt. Einzige Ausnahme davon ist der Compliance Descriptor,
der im vierten Abschnitt dieses Kapitels behandelt wird und momentan noch iiber keine solche
Darstellung verfiigt. Davor wird im ersten Abschnitt eine Erweiterung fiir die Abfragesprache
BPMN-Q vorgestellt, der zweite Abschnitt beschiftigt sich mit einer weiteren Abfragesprache,
SeaFlows, wihrend im dritten Abschnitt mit CoReL direkt Anforderungen formuliert werden.
Ein Vergleich der Ansétze findet am Ende des Kapitels statt.

3.1. BPMN-Q

BPMN-Q[1] ist eine am Hasso-Plattner-Institut in Potsdam entwickelte graphische Abfragesprache,
die einen Abfragegraphen mit einem oder mehreren Prozessgraphen vergleicht. Dabei wird eine
zu BPMN sehr dhnliche Darstellung gewihlt, um die Erstellung von Abfragen fiir Anwender von
BPMN moglichst simpel zu halten.

In [2][3][4] wird die Sprache dazu verwendet, um Compliance-Anforderungen zu modellieren
und Prozessmodelle auf deren Einhaltung hin zu iiberpriifen. Dazu werden einige Erweiterungen
fir BPMN-Q spezifiziert, die dabei helfen die Ausfiihrungsreihenfolge und die Auswirkung von
Datenkonditionen besser abfragen zu kénnen.

3.1.1. Abfragesprache

Bei der Anwendung eines BPMN-Q-Graphen auf ein Prozessmodell wird die Abfrage mit Hilfe
eines Abfrageverarbeiters interpretiert und das Modell durchsucht. War die Abfrage erfolgreich
wird der gefundene Teilgraph zuriickgegeben.
Um die Zahl der moglichen Anfragen zu erhchen, wird das Arsenal an BPMN-Elementen um
einige abfragespezifische Elemente erweitert:

21

3. State of the Art

>
>
X >

@Variable
X
1

>

O &
O © [o=]
O %

SACRO

(a) (b)

Abbildung 3.1.: a) BPMN Elemente b) BPMN-Q Elemente (aus [1])

Generisches Element Findet jeden beliebigen Typ von Element. Dazu werden bei der
Ausfithrung des Graphens alle moglichen Elemente an dieser Stelle eingesetzt und gepriift.

Split Generisches Element, das alle moglichen Arten von Gateways findet. Das Split-
Element findet dabei den Beginn einer Aufspaltung.

Join
Als Gegenstiick zum Split-Element findet es das Ende einer Aufspaltung.

Anonyme Aktivitit

Beginnt der Name einer Aktivitdt mit einem @-Zeichen, so ist dies eine unspezifizierte oder
anonyme Aktivitdt. Die Abfrage liefert dafiir alle Aktivitdten, die sich an entsprechender
Stelle im Graph befinden, zuriick.

Kante mit Ausschluss
Schliefit die spezifizierte Aktivitdt davon aus, am Ende der Kante positioniert zu sein.

Pfad

Das Pfad-Element sucht nicht nach einer Aktivitét, sondern nach allem, was sich im
Prozessmodell zwischen dem Anfang des Pfads im Abfragegraph und seines Endes befindet.
Verbindet die Pfadabfrage z.B. eine Aktivitdt A mit einer Aktivitdt B, so gibt die Suche
alle Elemente, die zwischen A und B liegen sowie deren Verkniipfungen zuriick.

Pfad mit Ausschluss
Wie das bereits bekannte Pfad-Element, schliefit jedoch bei der Pfadabfrage alle Pfade aus,
die die ausgeschlossene Aktivitit enthilt.

Wie dieser Graph bei der Anwendung umgewandelt und ausgefiihrt wird, wird im Abschnitt
"Validierung™nédher beschrieben.

3.1.2. Erweiterungen

Pfaderweiterungen

Wenn mit BPMN-Q Compliance-Anforderungen formuliert werden, ist durch das erfolgreiche
Finden eines Subgraphen noch nicht garantiert, dass die Anforderung auch wirklich erfiillt wurde.

22

3.1. BPMN-Q

So ist noch nicht sichergestellt, dass der gefundene Pfad auch bei jedem moglichen Szenario
ausgefiithrt wird, da die Ausfiihrung von Kontrollknoten im Prozessmodel nicht von BPMN-Q
abgedeckt wird.

Zum Zweiten wird fiir die Abdeckung aller Moglichkeiten von Complianceanforderungen die
F#higkeit benotigt, die Ausfithrungsrichtung zweier Aktivititen angeben zu kénnen. Auch dies
wird von Standard-BPMN-(Q nicht bereitgestellt.

Um das erste Problem zu 16sen wird ein Modelliiberpriifer eingesetzt, der den Subgraph, der
nach Anwendung des BPMN-Q Graphen entsteht, iiberpriift.
Durch die Einfithrung zweier Erweiterungen kann das zweite Problem gel6st werden:

o K precedes >
Gibt an, dass eine Aktivitdt vor der anderen ausgefiihrt werden muss.

o K leadsto >
Gibt an, dass eine Aktivitdt auf jeden Fall nach der anderen ausgefiihrt werden muss.

Auch wenn beide Erweiterungen auf den ersten Blick ziemlich gleich wirken gibt es doch einen
wichtigen Unterschied: wenn z.B. A und B durch ein Oder-Gateway getrennt sind, dann geht
zwar A B voraus (precedes), A fiithrt aber nicht zu B (leadsto), da nicht garantiert ist, dass B
auch ausgefiithrt wird.

Diese Erweiterungen werden zu Pfaden hinzugefiigt, weshalb zusétzlich die Regeln dieses Pfades
gelten. A und B miissen also nicht direkt aufeinander folgen, sondern miissen nur entlang eines
Pfades des Prozessmodells liegen.

Datenkonditionen

Um auch die Auswirkung von Datenkonditionen auf die Einhaltung von Compliance-
Anforderungen iiberpriifen zu kénnen, muss dieser Aspekt von BPMN auch in BPMN-Q integriert
werden [3]. Dazu werden zwei verschiedene Typen von Datenkonditionen hinzugefiigt, die zu vier
verschiedenen Uberpriifungen fithren. Der erste Typ ist eine eingehende Verbindung von einer
Datenkondition zu einer Aktivitit, der Zweite eine ausgehende Verbindung von einer Aktivitét
zu einer Datenkondition.

Die vier dadurch méglichen Uberpriifungen sind:

e Datenregel
Eine eingehende Verbindung von einer Datenkondition zu einer Aktivitdt. Die Kondition
muss erfiillt sein, bevor die verbundene Aktivitat ausgefiihrt wird, um die Regel erfiillen zu
konnen.

e Bedingtes lecadsto
Dazu muss die Aktivitdt zu Beginn des leadsto eine ausgehende Verbindung zu einer
Datenkondition haben. Dies bedeutet, dass nur wenn die Kondition erfiillt ist, die Aktivitit
am Ende des leads to ausgefiithrt werden muss.

e Bedingtes precedes
Analog zum bedingten leadsto muss hier die Kondition einmal zugetroffen haben, bevor
die Aktivitdt am Ende der Kante ausgefiihrt wird. Dabei darf sich die Kondition auch vor
der Ausfithrung dieser Aktivitdt wieder &ndern.

23

3. State of the Art

e Bedingter Ausschluss
Analog zu den zwei bedingten Varianten trifft hier eine Datenkondition auf eine Kante, die
die Ausfithrung einer oder mehrer Aktivititen ausschliefit. Dadurch kann ausgeschlossen
werden, dass eine Aktivitat nicht ausgefithrt wird, sobald eine Datenkondition erfiillt wird.

3.1.3. Validierung

Um ein Prozessmodell durch einen BPMN-Q-Graphen validieren zu kénnen, muss im ersten Schritt
natiirlich der Abfragenverarbeiter aufgerufen werden. Dadurch sollte man fiir jede BPMN-Q-
Abfrage einen Subgraphen erhalten. Ist dies fiir eine Abfrage nicht der Fall wurde die Compliance-
Anforderung nicht erfiillt.

Um fiir die {ibrigen Validierungsschritte die Komplexitit zu verringern wird im zweiten Schritt der
erhaltene Graph reduziert. Dazu werden als erstes alle Aktivitéiten entfernt, die fiir die Abfrage
der Regel nicht betrachtet werden, also nicht im BPMN-(Q Graphen enthalten sind. Anschlieflend
werden leere und nicht benétigte Gateways und Schleifen, nicht bendtigte Startaktivitdten sowie
einige BPMN-spezifische Aktivitéiten entfernt.

Im dritten Schritt wird der BPMN-Q-Graph und die leads to und precedes Erweiterungen in
einen Linear Temporal Logic (LTL) Ausdruck umgewandelt. Linear Temporal Logic besteht aus
atomaren Ausdriicken und den logischen Konnektoren —, A, V, —, < und erweitert das Ganze
um temporale Ausdriicke wie immer, eventuell, ndchstes und bis. Die Past Linear Temporal
Logic (PLTL), die hierbei verwendet wird, kehrt diese temporalen Ausdriicke zusétzlich in
die Vergangenheit um und fiigt die Ausdriicke immer in der Vergangenheit, einmal in der
Vergangenheit, letztes und seit hinzu.

Bei der Umwandlung wird der gesamte Ausdruck mit dem Equivalent von immer umgeben und
innerhalb davon werden alle Pfadkonstrukte mit A verkniipft. Ein Aleadsto B Pfad wird zu B
folgt eventuell auf A und ein A precedes B wird zu A kam einmal in der Vergangenheit vor B.

Im n&chsten Schritt wird aus dem reduzierten Graphen eine endliche Zustandsmaschine generiert.
Sie wird fiir die spitere Modelliiberpriifung benétigt. Dafiir wird ein Ansatz aus [10] verwendet,
um zuerst ein Petrinetz zu erstellen, aus welchem danach die Zustandsmaschine erstellt wird.
Zur Erstellung des Petrinetzes werden Teile des BPMN-Graphen auf Teile eines Petrinetzes
abgebildet, wobei Datenkonditionen zu eigenen Zusténden im Netz fithren, die extra betrach-
tet werden miissen. Uber den Erreichbarkeitsgraphen des Petrinetzes wird anschliefend die
Zustandsmaschine generiert.

Als letzter Schritt wird die Modelliiberpriifung mit Hilfe der endlichen Zustandsmaschine und des
PLTL-Ausdrucks durchgefiihrt. Dazu wird bei diesem Ansatz NuSMV! verwendet, ein Priifer,
der an der Carnegie Mellon University entwickelt wurde.

'http://nusmv. fbk.eu/

24

http://nusmv.fbk.eu/

3.2. SeaFlows

3.1.4. Graphischer Editor

= @ 0 [P[reputorycprotect orgjoryxfeditorefautmodeinas? 7% - (28] oogie .

2 ryn-Editor - oryx = s

ORsX d
HE&LXe 4dDhlx o - &) 4 %
Shape Repository = Properties (Path)
5 BPMNG Proparties
 activities Narne Value

mps 3 Often used

“+! Variable Activity Exclude
Temporal Prope Precedes
&} Generic Shape

4 More Properties

4 Gateways
@ artifacts
Startevents

nte e Events
" - Rating
on ects [accepted]
/" Sequence flow

A
A" Negative Sequence flow
/7 Path

-
#7 Negative Path

n Undirected
= S Review Open
Respondent Bank — = = Correspondent
= rating Account
" Association Bidrectional 8 <<Precedes>>

Association Behavioral

Feedback = d |

& Wednesday, 7:3tpm | Done

»
[4° [@ oretonhutr [@)] Now:partly Sunmy, 185C | wed: z0°C

Abbildung 3.2.: Oryx-Editor mit BPMN-Q Graph (aus [4])

Um den BPMN-Q Graphen zu gestalten, wurde eine Erweiterung fiir den Oryx-Editor entwickelt,
die neben der Erstellung von Anfragen auch die Validierung der Graphen und die Anzeige der
gefundenen Fehler erlaubt.

Oryx wurde ebenfalls am Hasso-Plattner-Institut zur Erstellung von BPMN-Diagrammen entwi-
ckelt. Da grofle Teile dieser Arbeit ebenfalls auf dem Oryx-Editor aufbauen, wird darauf spéter

eingegangen.

3.2. SeaFlows

SeaFlows [26][18][25] war ein Forschungsprojekt an der Universitéit Ulm, das in den Jahren 2005
bis 2011 durchgefithrt wurde. Es wurden in dessen Rahmen Werkzeuge fiir die Uberpriifung von
Compliance-Anforderungen in Geschéftsprozessen entwickelt und zwar sowohl grafische Tools
zur Modellierung der Anforderungen als auch zu deren Validierung. Grafisch dargestellt wird
das Ganze mit Hilfe des sogenannten Compliance Rule Graph (CRG). Dessen Validierung kann
wihrend der Erstellung des Geschiftsprozesses durchgefiihrt werden.

25

3. State of the Art

Um Compliance-Anforderungen zu formulieren, wird von SeaFlows der CRG definiert, welcher im
folgenden Abschnitt beschrieben wird. Auf die Validierung des CRG wird im zweiten Abschnitt
eingegangen. Seine Anwendung durch den grafischen Editor auf Basis von Eclipse wird im dritten
Abschnitt ndher betrachtet.

3.2.1. Compliance Rule Graph (CRG)

Antecedent patbem Consequence patbern
Antecedent e ANtecedent — Consequence . COnseguence
I:l ocoumence . absence | | occumence ; absence
(AnteQcc) {AnteAbs) — (ConsOcc) © (ConsAbs)

E Data condition

—— Ordering relation

Abbildung 3.3.: Bestandteile des Compliance Rule Graphen (aus [26])

Der CRG besteht aus sechs verschiedenen Bestandteilen, deren Anordnung die erwiinschte
Reihenfolge ihrer Ausfithrung angibt. Ein CRG besteht dabei aus mehreren Subgraphen, die jeweils
eine Regel formulieren. Die Elemente des Graphen verweisen auf Aktivitdten des Businessprozesses
und werden durch (Nicht-)Ausfithrung bzw. die An- oder Abwesenheit des Elements aktiviert:

26

Vorangehendes Auftreten
Die durch das Element angegebene Aktivitat muss zur Aktivierung der Regel aufgetreten
sein.

Vorangehende Abwesenheit
Als Negierung des vorherigen Elementes wird die Regel hier durch die Abwesenheit der
angegebenen Aktivitdt aktiviert.

Auftretende Auswirkung
Nach der Aktivierung einer Regel muss diese Aktivitét auftreten bzw. nach Ende der Regel
aufgetreten sein.

Abwesende Auswirkung
Negiert das vorherige Element, was bedeutet, dass die Auswirkung wahrend der Regel nicht
aufgetreten sein darf.

Ordnungsrelation
Gibt durch die Richtung des Pfeiles die Reihenfolge an, in denen die Aktivitdten im Prozess
auftreten miissen bzw. abwesend sein miissen.

Datenkondition
Erweitern das Auftreten einer Aktivitit bzw. die Auswirkung eines Teilgraphen um eine
Kondition. Sie enthalten dazu einen booleschen Ausdruck, der bei Erreichen des Elements

3.2. SeaFlows

ausgewertet werden kann. Dadurch kénnen vor allem die Einstiegs- und Auswirkungsbe-
dingungen genauer spezifiziert werden. So kénnen Subgraphen beispielweise nur evaluiert
werden, wenn ein bestimmter Grenzwert erreicht wird.

Compliance rule c; Compliance rule c,
- ol \ ,-’—'I:\ \:’ Antecedent
Ty T -
Confirm order 4 f—— [~ Confirm shipping Check solvency Offer pccumence
— — premium status e Antecedent
Prepare goods Ship goods I | absence

Compliance rule ¢; Compliance rule c; Consequence

—
________ - > el
—— . - \ Aoooccumence
/ -: ,D pn <80,000) Uue’:lkﬁr, N * o ‘“’h’[’“ -

\ ! . Consequence
absence

Assess order Canfirm order

Shipping Ship goods ;
insurance

Abbildung 3.4.: Beispiele des Compliance Rule Graphen (aus [26])

Abbildung 3.4 zeigt 4 Beispielgraphen, anhand derer sich das Prinzip des CRG recht einfach
zeigen ldsst:

Die Regel c3 bedeutet, dass zwischen der Bestétigung der Bestellung und der Verstandbestétigung
die Ausfithrung der zwei Aktivitdten "Prepare goods”(Vorbereitung der Giiter) und SShip
goods”(Versand der Giiter) stattfinden muss. Sie wird dabei durch das Auftreten der Bestétigungen
aktiviert, woraufhin das Auftreten der beiden anderen Aktivitdten kontrolliert werden kann.

c4 zeigt, dass bei einer Regel nicht das erste Element zur Aktivierung fithren muss. Dabei wird
iiberpriift, dass wenn Premiumstatus angeboten wird, die Zahlungsfihigkeit des Kunden zuerst
gepriift werden muss.

c7 beinhaltet sowohl ein negiertes Element als auch eine Datenkondition. Damit wird beschrieben,
dass beim Versand von weniger als 80.000 Teilen (pn) keine Versandversicherung abgeschlossen
werden muss.

Regel cg zeigt auf beiden Seiten Datenkonditionen. Hier wird gepriift, dass bei einer Bestellung
von mehr als 40.000 Teilen (pn) zuerst eine Bestétigung (a) vom Kunden geholt werden muss
und auf eine positive Antwort iiberpriift wird.

3.2.2. Validierung

Um die Validierung von Prozessmodellen gegen den CRG durchzufiihren, werden von SeaFlows
zwei verschiedene Verfahren angewendet. Die Ausfithrungsreihenfolge und Struktur des Modells
wird mit Hilfe eines strukturellen Compliancepriifers gepriift. Fiir die Priifung der Auswir-
kung von Datenkonditionen und Daten generell wird ein verhaltensbezogener Compliancepriifer
eingesetzt.

27

3. State of the Art

Struktureller Compliancepriifer

Zur strukturellen Priifung wird der CRG im ersten Schritt automatisch um fiinf Strukturkriterien
erginzt. Dazu werden die einzelnen Elemente des Graphen und deren Relation zueinander
analysiert.

Die fiinf Kriterien sind:

e Enthilt A
Das Prozessmodell muss die Aktivitdt A enthalten.

e A schlief3t B aus
Uberpriift das Prozessmodell auf die Position von A und B. Dieses Kriterium trifft zu,
wenn sich beide auf unterschiedlichen Zweigen eines exklusiven Knoten beziehen.

e A impliziert B
Fiir alle Vorkommnisse von A und B im Prozessmodell muss gegeben sein, dass sich beide
immer auf derselben Seite von Zweigen eines exklusiven Knoten befinden.

e A impliziert By, Bo, ..., B,
Uberpriift das Prozessmodell auf diesselbe Weise wie das vorhergehende Kriterium. Dabei
werden jedoch nicht nur zwei Aktivitédten iiberpriift, sondern eine Liste von Aktivitéten.

e A geht B voran
Bei diesem Kriterium wird iiberpriift, ob es einen gerichteten Pfad von A nach B im
Prozessmodell gibt.

Im zweiten Schritt wird das Prozessmodell auf die gefundenen Kriterien hin untersucht. Fehler
werden anschlieffend in einem dritten Schritt gesammelt und fiir den Ersteller des Prozesses
aufbereitet und dargestellt. Dieser kann auf Grundlage der Fehlermeldungen entscheiden, wie er
die Einhaltung der Complianceanforderungen innerhalb des Prozesses gewiihrleistet.

Verhaltensbezogener Compliancepriifer

Wihrend der strukturelle Priifer das Vorhandensein und die Reihenfolge von Elementen priifen
kann, untersucht der verhaltensbezogene Priifer den Einfluss von Daten auf das Verhalten des
Prozessmodells und damit auch dessen Einfluss auf den CRG.

Daten haben in zweierlei Hinsicht Einfluss auf den CRG: Zum einen kénnen Elemente des
CRG Datenkonditionen enthalten, die von Daten des Prozessmodells beeinflusst werden. Zum
anderen koénnen auch Elemente ohne Datenkondition von Daten beeinflusst werden, indem z.B.
die verkniipfte Aktivitdt im Modell hinter einem durch Daten beeinflussten Knoten sitzt.

Um bei der Uberpriifung nicht das komplette Modell durchsuchen zu miissen, wird ein abstraktes
Prozessmodell sowie ein abstrakter CRG erstellt. Dieses ist, was Daten angeht, kompakter
und somit leichter iiberpriifbar. Dazu werden zuerst die Daten identifiziert, die fiir den CRG
relevant sind und die fiir datenbasierte Knoten benétigt werden. Um das Priifen dieser Daten zu
vereinfachen wird zudem deren Dimension reduziert. Statt z.B. bei einer Zahl x auf jede mogliche
Zahl 1,2,...,n zu priifen, wird eine Regel erstellt, die dies auf Grundlage der vorgefundenen
Konditionen z.B. auf x > 5 A ¢ < 10 vereinfacht.

28

3.2. SeaFlows

Mit Hilfe von Modelliiberpriifungstechniken wird anschliefend die Priifung des Modells durchge-
fihrt. Im Falle von SeaFlows wird der SAL (Symbolic Analysis Laboratory) Modelliiberpriifer[5]

verwendet, der vom Stanford Research Institute entwickelt wurde.

3.2.3. Grafischer Editor

@ SeaFlows Graphical Editor

File Edit Disgram ‘Window Help Run Validate Wiew Search

‘B I A~ — v || BB B

. c3sged 3 cdsged £3
)
= | |condition 4| | condition
B
canfirm arder

confirm shipping offer premium status

@ (2]
contirm shipping

] Consequence Part

confirm order

|/ consequence Part

A A =
<4 <)
& check solvency | &
- prepare goods ship goods |Dﬂel’ premium status

o7 sged 58 cB.sged £

’n—| : e]
100% ¥ ConverttoLTL © Q4 = © Pun Template r=0 hd

GCondition || Consegquence Part 4 Condition |17] Conseguence Part
pn = 80000 pn = 80000 o = 40000 L& pn = 40000
[] assess order <
124} !
i] @ outa = TRUE @
ship goods Ishipping insurance | ¢ confirm arder
i [e confirm order
el < by Lo 4 inpn = 40000 a=TRUE

| Consequence Part
(== Condition €0

Activity Ocourrence
Conclition Variable

A Activit Non
== Consequence el

LA Activity Ocourrence
Consequence
Variable

(= Data Condition €0

25 Palette
NEEI=E ~

|7 Consequence Part

=4

= Condition el

Aptivity Occurrence
Candtion Variable

AL ActivityMon

- T =

Abbildung 3.5.: SeaFlows Graphical Editor (aus [26])

Um den CRG leichter modellieren zu kénnen, wird von SeaFlows ein Editor zur Verfiigung gestellt.
Dieser wurde auf Basis des Eclipse Modeling Framework? und des Eclipse Graphical Modeling
Framework? entwickelt und erméglicht es, Aktivititen aus dem Businessprozess auszuwéhlen und
im CRG zu verwenden. Im Editor werden zuerst die Konditionen der Regel, die zur Aktivierung
fithren, definiert und anschliefend mit den Auswirkungen im zweiten Teil des Editors verbunden.
Nach Fertigstellung eines Graphens werden einzelne XML-Dateien fiir jeden Subgraphen erstellt

und exportiert.

Integriert wird zudem die kommerzielle Prozessmanagementlosung AristaFlow BPM Suite?.
Damit werden zum einen die Aktivitdten ausgelesen, die bei der Erstellung eines CRG ausgewéhlt
werden konnen, zum anderen wird auch die Validierung des Prozesses durchgefiithrt und es werden

die entsprechenden Fehlermeldungen angezeigt.

’https://www.eclipse.org/modeling/emf/
3https://www.eclipse.org/modeling/gmp/
“http://www.aristaflow.com

29

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/gmp/
http://www.aristaflow.com

3. State of the Art

3.3. CoReL

Die Compliance Representation Language (CoReL)[14][13] ist eine grafische Modellierungsspra-
che fiir Compliance-Anforderungen, die an den Universitdten von Luxemburg und Osnabriick

entwickelt wurde und 2011 zum ersten Mal veroffentlicht wurde.

Die Sprache kann sowohl wihrend der Modellierung von Geschéftsprozessen als auch wihrend
deren Ausfithrung evaluiert werden. Diese Evaluierung wird auf Grund von Regeln durchgefiihrt,
die in einer Vielzahl von Sprachen formuliert werden. Durch diese Flexibilitédt sollen sich moglichst

viele verschiedene Arten von Anforderungen formulieren lassen.

Trotz Verwendung eines grafischen Modells ist kein grafischer Editor fiir CoReL bekannt. Zudem
wurde kein Austauschformat definiert, dass das Modell zwischen Editor und einem Validierungs-

system transportieren kénnte.

3.3.1. Grafisches Modell

i Legend ‘
: (Action) SControl 7 COREL |!
| Poli (" Subject) ViolationValue: Model !
! olicy Entity Rule: [Rule: — |[Ri Action: '
Regulation Policy CR3

Action: PrintFile
Subject: User
Entity: File

Cpolicy,cm % Policy CR1_2)
D) Policy_CR2

(Policy,CRS)

Policy,cR4>

Policy CR4

Violation_V3_1 D>

(Policy_CR3 Context X1 I—
Description: User is
Internal Student
Rule:

Internal_Student(Subject)
Control T3 1 l

Description: Check on the last day of
the month whether the Student used

less than 280 pages.
ViolationValue: PrintRewardDeg2
Rule: (Control_T3_1 == True) && (Exists

d:Day | LastDayOfMonth(d) &&
Printed(Subject, 280))

is 400 pages a Month

Rule: Printed(Subject, 400

Policy_CR4

~__ Control T4_—

Description: Less than 2000
pages a month

Context_X4

=
ip

the student at university.

Description: Pages Credit |

Violation V3 2

>

: Eirst month of

Description: Credit printing reward

for first month at the university.

ViolationValue: PrintRewardDeg1

Rule: (Control_T3_2 == True,
Reward_R3_2

Reward_R3_1

Rule:

User is Facuity

F ionDate(Subject,
Date) && CurrentMonth

Date;

D iption: Add 50 free pages || Description: Send electronic
to the printing credit. 25 euro voucher.
Action: PrintCredit(Subject, -50) || Action: Voucher(Swimming, 5)

Subject

Violation_V4

Description: Check every month if the
faculty user exceeded his pages credit with
200 pages.

ViolationValue: DefaultViolation
Rule: (Control_T4 == False) &&
(Exists d:Day | LastDayOfMonth(d)
=> Printed(Subject, 2200

Rule: Printed(Subject, 2000
Penalty_R4
< >

Description:

ing_email to user
and admin, AND remove 200
pages from his account.
Action: email(User, admin,
warning);
Action: Change(pages, user,

month, -200)

Policy CR2

T

Policy CR1.X |

CPoIicy,CmJ) (Policy_CR1_2)

Context_X1
Description:
User is Internal
Student
Rule:
Internal_Student
Subject)

Rule:

nt(Sul

Context X1'

= Control_T1
Description: D T)
User is External | Description: Policy_CR2
Prohibit.
Student
Rule: False

(External_Stude

Description: Students
can't execute the action.
Rule: !Student(Subject,

bject;

Rule: Today(date)
&8& Weekend(date;

Abbildung 3.6.: CoReL Beispielgraph (aus [14])

Das Hauptkonzept von CoReL ist das Regelwerk. Es modelliert eine Complianceregel als Ent-
scheidung, ob eine Aktion erlaubt, forciert oder verboten werden soll. Das Regelwerk hat einen
einzigartigen Identifizierer und kann iiber Metadaten zusétzliche Informationen enthalten.

Ein sogenanntes ASE-Tripel (ASE steht dabei fiir Action, Subject, Entity) verbindet CoReL mit
Aktivitidten eines BPMN-Geschiiftsprozesses. Wahrend die Aktion ein Pflichtfeld ist, kénnen die

3.3. CoReL

beiden anderen Felder auch leer gelassen werden, da es sich dabei auch um eine automatisch
ausgefithrte Aktivitdt handeln kénnte. Durch Verbindungen mit einem oder mehreren Regelwerken
konnen Konditionen fiir die Ausfithrung der Aktion gestellt werden.

Um ein Regelwerk zu beschreiben, konnen vier verschiedene Typen von Modellen verwendet
werden. Alle vier enthalten dabei zumindest eine Beschreibung, die die enthaltenen Regeln in
Klartext wiedergeben. Drei Modelle enthalten zusétzlich Regeln, die in einer nahezu beliebigen
Sprache formuliert werden kénnen. Dazu wird die Sprache im Namen der Regel angegeben. Dieser

folgt dem Schema Rigﬁgﬁfey

Die vier Modelle sind:

e Kontext
Das Kontext-Modell, modelliert den Zustand, in dem das System sein muss, damit das
Regelwerk angewendet werden kann bzw. muss.

e Kontrolle
Kontroll-Modelle werden dazu verwendet, um durch Regeln die Complianceanforderungen
zu formulieren.

e Verletzung
Verletzungen der Anforderung kénnen explizit modelliert werden. Dazu kann in der Regel
auch das Ergebnis von Kontroll-Modellen abgefragt werden. Trifft die Regel zu, so kann
durch das Verletzungs-Modell ein angegebener Wert gesetzt werden. Dadurch kénnen zum
Beispiel verschiedene Stufen von Verletzungen eingefiihrt werden.

e Behandlung
Das Behandlungs-Modell wird verwendet, um auf Verletzungen der Anforderung reagieren
zu kénnen. Dabei sind sowohl positive als auch negative Behandlungen moglich. Zur
Unterscheidung wird die Randfarbe des Symbols verdndert, rot fiir negativ, griin fiir
positiv.

Dadurch, dass zur Formulierung von Regeln auf bereits definierte Sprachen gesetzt wird, ist
das grafische Modell weniger komplex als in den zwei vorherigen Verfahren. Das hat aber den
Vorteil, dass Anforderungen und Konsequenzen im gleichen Graph modelliert werden und die
Zusammenhinge der einzelnen Regeln klarer werden.

3.3.2. Validierung

Zur Validierung verwendet CoReL zwei verschiedene Ansétze:

Um wéhrend der Modellierung eines Geschéftsprozesses eine Validierung durchzufiithren, wird
eine statische Priifung durchgefiihrt. Diese [duft analog zu den Verfahren ab, die in den Kapiteln
3.1 und 3.2 beschrieben wurden. Durch die Vielzahl der unterstiitzten Sprachen wird versucht,
diese auf gemeinsames Modell herunterzubrechen. Dazu werden die enthaltenen Regeln mit
Hilfe entsprechender Serialisierer in das Metamodell iibertragen und anschliefend mit einem
Modelliiberpriifer validiert.

Auf die Validierung wihrend des Ablaufens des Geschiéiftsprozesses wird hier ein groflerer Wert
gelegt. Dazu wird ein Uberpriifungssystem definiert, dass in die Arbeitsablaufausfiithrung integriert

31

3. State of the Art

wird.

Wihrend der Arbeitsablauf stattfindet, wartet es auf das Eintreten bestimmter Konditionen, die
durch die ASE-Tripel definiert wurden. Ist dies der Fall, so werden die Kontexte der verbundenen
Regelwerke iiberpriift. Evaluiert der Kontext zu wahr, dann werden als néichstes die Regeln der
Kontroll-Modelle iiberpriift.

Auf Grund deren Resultate werden als néichstes die Verletzungen kontrolliert und eventuelle
Behandlungen durchgefiihrt. Je nach Resultat aller Uberpriifungen wird ein Ergebnis an die
Arbeitsablaufausfithrung geliefert.

Waren alle Kontrollen erfolgreich, so wird der Prozess fortgefiihrt. Trat eine Verletzung auf, so
ist die Fortfiihrung abhéngig von der Konfiguration und des Wertes der Verletzung. Gibt es
beispielsweise die Werte Warnung und Fehler, so konnten Verletzungen mit dem Wert Warnung
ignoriert werden und der Prozess weiterlaufen.

3.4. Compliance Descriptor

Der Compliance Descriptor[23][22][15] wurde bis 2015 an der Universitéit Stuttgart und am
Fraunhofer Institut fiir Arbeitswissenschaft und Organisation (IAO) im Rahmen des "Compliance
Management in Adaptive Business Processes”(Co.M.B)-Projektes entwickelt.

Der Compliance Descriptor hebt sich durch seine Flexiblitéit hervor. Er soll fiir mdglichst
viele Anwendungsfille einsetzbar sein. Wahrend andere vorgestellte Verfahren nur wéhrend der
Designphase oder wihrend der Ausfithrung des Geschiéiftsprozesses angewendet werden kénnen,
kann der Compliance Descriptor auch wéhrend der Auslieferung der verwendeten Anwendungen
und deren Infrastruktur zum Einsatz kommen. Es besteht zudem die Moglichkeit spéter weitere
Phasen hinzuzufiigen.

Dazu werden beim Compliance Descriptor, &hnlich wie bei CoReL, keine Abfragen formuliert,
sondern die Compliance-Anforderungen an sich. Die eigentlichen Regeln kénnen in verschiedenen
Sprachen geschrieben werden. Im momentanen Zustand korrespondiert eine Sprache mit einer
Phase, die iiberpriift werden soll.

Ein weiterer Unterschied stellt die Einbindung von Gesetzes- und Anforderungstexten direkt in
den Compliance Descriptor dar. Dadurch kann sowohl beim Editieren als auch beim Validieren
direkt Bezug auf die relevanten Texte genommen werden.

Im Gegensatz zu den bereits vorgestellten Verfahren hat der Compliance Descriptor noch kein
grafisches Modell und verfiigt deshalb auch noch iiber keinen Editor. Deswegen wird hier nur
auf die durch das XML-Format zur Verfiigung gestellte Funktionalitit sowie deren Validierung
eingegangen.

3.4.1. Funktionalitit

Einstiegspunkt beim Compliance Descriptor sind die sogenannten Anforderungen. Diese stel-
len die Compliance-Anforderungen dar, die vom Geschéftsprozess erfiillt werden sollen. Dafiir
enthalten Anforderungen sogenannte Compliance Expressions, mit deren Hilfe die Compliance-
Anforderungen formuliert werden. Die Ausdriicke enthalten Regeln und Einheiten und verkniipfen
diese mit Operatoren.

32

3.4. Compliance Descriptor

Einheiten sind indirekte Verweise auf Teile eines Prozesses. Dies kann eine Aktivitit des Ge-
schiftsprozesses, ein Teil der Infrastruktur oder dhnliches sein. Uber ihren Namen und Typ
werden sie verbunden.

Regeln sind dabei als Teil von Anforderungen zu verstehen. Dazu werden die Compliance-
Anforderungen in individuelle und einzeln zu priifende Teile getrennt und jeweils als Regel
implementiert. Uber einstellbare Phasen und Sprachen kann beeinflusst werden, wann und wie
Regeln ausgefiihrt werden. Dadurch lassen sich die Regeln einer Anforderung iiber mehrere
Phasen verteilen und in mehreren Anforderungen verwendet werden.

Zudem konnen Regeln einen Variability Descriptor[27] enthalten. Dieser wurde ebenfalls an
der Universitidt Stuttgart entwickelt und dient dazu, abstrakte Regeln formulieren zu kénnen.
Wird z.B. von einer Regel der zeitliche Abstand zwischen zwei Aktivitdten im Geschéftsprozess
gemessen und gepriift, so kann diese Regel formuliert werden ohne den genauen Abstand bzw. die
genauen Aktivitdten zu kennen. Diese konnen der Regel beim Aufruf als Parameter iibergeben
oder als Konstante gesetzt werden und werden durch den Variability Descriptor an der korrekten
Stelle eingesetzt.

Um diese sogenannten Variability Points einsetzen zu kénnen, werden innerhalb der Regel
Bindungen definiert. Diese enthalten neben dem zu ersetzenden Punkt den einzusetzenden Wert
bzw. die Nummer des Parameters der dafiir verwendet werden soll. Parameter werden der Regel
innerhalb der Compliance Expression iibergeben.

Abgeschlossen wird der Compliance Descriptor durch das Gesetz. Es enthélt den kompletten Text
eines Gesetzes, einer Anordnung oder einer Richtlinie als XHTML-Dokument. Dadurch kann mit
einem XPath[39]-Ausdruck, einer Abfragesprache fiir XML-Dateien, auf einzelne Absétze des
Dokuments verwiesen werden. Diese sind Teil der Anforderung.

3.4.2. Validierung

Um die Validierung eines Geschéftsprozesses durchfithren zu kénnen, wird eine Reihe von Tech-
nologien eingesetzt. Diese unterscheiden sich je nach eingesetzter Sprache und der Phase, in der
sie iiberpriift werden sollen.

Wihrend generell Compliance-Anforderungen und damit auch Anforderungen des Compliance
Descriptors iiberpriift werden sollen, kénnen diese Regeln aus verschiedenen Phasen kombinieren
und lassen sich deshalb nicht gleichzeitig priifen. Deshalb werden Regeln einzeln iiberpriift und
dafiir an ihre entsprechende Komponente iibergeben, um zur korrekten Zeit gepriift werden
zu konnen. Dazu werden die Compliance Expressions aller Anforderungen auf Regeln durch-
sucht und alle einzigartigen Kombinationen von Regel und Parametern gesammelt. Von diesen
Kombinationen wird die finale Regel durch Auflésen des Variability Descriptors erstellt. Da zu
diesem Zeitpunkt alle Parameter bekannt sind, konnen die variablen Punkte einfach durch ihre
Werte ersetzt werden. Anschlieend werden alle so erstellten finalen Regeln an ihre entsprechende
Komponente iibergeben.

Um einen kompletten Bericht iiber die Einhaltung der Compliance-Anforderungen zu erhalten,
muss abgewartet werden, bis der Geschéftsprozess beendet ist. Dies ist meist nicht erwiinscht, da
so Fehler wiahrend der Modellierung erst spat auffallen wiirden. Deshalb kénnen vom Compliance
Descriptor drei verschiedene Arten von Berichten generiert werden:

33

3. State of the Art

e Lebenszyklusschritt-Bericht
Generiert einen Bericht nach dem Abschluss eines bestimmten Schritts im Lebenszyklus
des Geschiéftsprozesses. So ldsst sich beispielsweise ein Bericht widhrend oder nach der
Designphase erstellen, mit Hilfe dessen Modellierungsfehler rechtzeitig korrigiert werden
konnen. Dafiir werden die Resultate aller noch nicht validierten Regeln als wahr interpretiert
um ein Ergebnis zu erhalten, dass sich rein auf den betreffenden Schritt bezieht.

e Zwischenbericht
Wird generiert, wihrend noch nicht alle Regeln validiert wurden. Dadurch kann bereits
gesehen werden welche Anforderungen fehlschlugen und welche noch gar nicht oder nur
teilweise ausgefiihrt wurden. Regeln, die noch nicht validiert wurde, werden als unbekannt
interpretiert. Das Ergebnis von nicht vollstdndig fertiggestellten Anforderungen ist deshalb
ebenfalls unbekannt.

e Vollstéindiger Bericht
Nach Abschluss des gesamten Geschéftsprozesses wird ein vollstéindiger Bericht generiert,
der das Ergebnis aller Regeln beinhaltet.

Um den Geschéftsprozess wahrend der Designphase zu testen, wird die Linear Temporal Logic
(LTL) verwendet, wie sie bereits in Kapitel 3.1 und 3.3 beschrieben wurde. Analog dazu findet
auch die Validierung des Geschéftsprozesses statt.

Fiir die Uberpriifung der Auslieferung wird Topology and Orchestration Specification for Cloud
Applications (TOSCA)[6] verwendet, ein Industriestandard, der es erlaubt, Applikationen unab-
héngig von der gewihlten Cloudplattform zu beschreiben und auszuliefern. Mit einer Erweiterung
die TOSCA um Regelwerke ergénzt [41], kénnen Anforderungen an die Auslieferung gestellt
werden. Dadurch lésst sich z.B. der Ort des Rechenzentrums, an die die Auslieferung stattfinden
soll, einschriinken. Fiir die Uberpriifung wird ein solches Regelwerk generiert und bei Auslieferung
von TOSCA angewendet.

Zur Validierung wahrend der Laufzeit des Geschéftsprozesses wird die Process Goal Modeling
Language (ProGoalML) [21] verwendet. Mit Hilfe von ProGoalML lassen sich Geschéftsprozesse
um Messpunkte erweitern, mit denen Key Performance Indicators (KPI) berechnet und Ziele
definiert werden kénnen. Durch das Verwenden der Ziele zur Uberpriifung von KPIs kann
ProGoalML damit zur Validierung von Complianceanforderungen verwendet werden. Fiir das
Aufzeichnen und Uberwachen der von ProGoalML benétigten Werte wird aPro verwendet, eine
Monitoringlosung, die als Webanwendung ausgeliefert werden kann und den Geschéftsprozess
iiberwacht und {iber die Verletzung eines Ziels informieren kann.

34

3.5. Zusammenfassung

3.5. Zusammenfassung

BPMN-Q SeaFlows CoReL Compliance
Descriptor
Modellierungs- BPMN BPMN BPMN BPMN
sprachen
Regelsprachen PLTL Eigene / CRG LTL, CTL, FCL, | LTL, ProGoalML,
TOSCA, ...
Verkniipfte X X X v
Gesetze/Regeln
Austauschformat XML XML X XML
Modellierungsart Abfrage Abfrage Anforderungen Anforderungen
Grafisches v v v X
Modell
Grafischer v v X X
Editor
Validierung
Designphase v v v v
Auslieferung X X X v
Laufzeit X X v v

Tabelle 3.1.: Uberblick iiber die Verfahren

In diesem Kapitel wurden vier verschiedene Verfahren zur Validierung von Geschéftsprozessen in
Hinsicht auf Compliance-Anforderungen vorgestellt. Tabelle 3.1 zeigt einen Vergleich der Ansétze
im Hinblick auf ihre Features.

Alle vier Verfahren eignen sich gut dafiir, eigene Prozesse wihrend der Modellierung zu iiberpriifen.
Soll jedoch mehr als nur diese eine Phase validiert werden, so reduziert sich die Niitzlichkeit von
BPMN-Q und SeaFlows deutlich.

Von den zwei verbleibenden Ansétzen hat CoRel. das Problem, dass noch recht wenige Teile
spezifiziert sind. Es gibt weder ein Austauschformat noch einen Editor dafiir.
Auch dem Compliance Descriptor fehlen noch zwei wichtige Teile: ein grafisches Modell und
ein Editor. Die Entwicklung dieser beiden Punkte ist Aufgabe dieser Arbeit und diese damit
nach deren Abschluss vorhanden. Der Compliance Descriptors bietet zudem die Mdoglichkeit,

35

3. State of the Art

auch die Auslieferung des Prozesses und dessen Infrastruktur zu beeinflussen. Ein Feature, dass
keines der konkurrierenden Verfahren erméglicht. Des weiteren kénnen dort als als einziges die
Anforderungen mit den Gesetzes- oder Regularientexten verbunden werden, auf denen diese
basieren. Dadurch wird vor allem Mitarbeitern ohne technische Ausbildung die Arbeit mit und
an den Anforderungen erleichtert, da direkt auf den Text Bezug genommen werden kann.

36

4. Erstellung des grafischen Modells

In diesem Kapitel wird ein grafisches Modell fiir den Compliance Descriptor erstellt. Dafiir wird
zuerst der Descriptor genauer untersucht. Dazu werden die Anforderungen an dieses Modell
zusammengetragen, anschliefend wird der Descriptor auf seine Bestandteile hin untersucht,
um daraus im dritten Abschnitt des Kapitels das eigentliche Modell zu entwerfen. Der vierte
Abschnitt dient der Uberpriifung der Anforderungen in Bezug auf das entworfene Modell.

4.1. Bestandteile des Compliance Descriptors

Den einzigen Anhaltspunkt iiber die kompletten Bestandteile des Compliance Descriptor liefert
eine XSD-Datei. XSD[40] steht fiir XML Schema Definition und definiert, wie eine XML-Datei
auszusehen hat. Sie beschreibt das Austauschformat, das zu diesem Zeitpunkt die Hauptmethode
zur Erstellung eines Compliance Descriptors darstellt. Aus diesem Schema lassen sich die folgenden
Typen und Beziehungen zwischen diesen Typen extrahieren:

Einheit

Anforderung

oo

O.n c- L0un RRREE R

Regel Gesetz

0.n

0.n V “0..n

Bindung

Abbildung 4.1.: Compliance Descriptor Struktur

Pfeile mit durchgezogenen Linien geben dabei die Struktur innerhalb des Schemas wieder, wohin-
gegen die gestrichelten Pfeile die indirekten Verbindungen darstellen. Die indirekten Verbindungen
werden dabei iiber einzigartige Identifizierer wie den Namen hergestellt. Fiir das grafische Modell
sind gerade diese indirekten Verbindungen interessant, da sie die Zusammenhénge deutlich besser
veranschaulichen als die Verbindungen innerhalb der XML-Datei.

Die fiinf Elemente des Compliance Descriptors sowie die zwei verschiedenen Verbindungsarten
werden in den néchsten Abschnitten ndher beschrieben.

37

4. Erstellung des grafischen Modells

4.1.1. Anforderung

Anforderungen sind die kodifizierten Voraussetzungen, die von Gesetzen und Vorschriften gestellt
und von Prozessen eingehalten werden sollen. Dazu enthalten sie neben einem Namen einen
Compliance-Ausdruck, in dem auf verkniipfte Regeln und Einheiten verwiesen wird, um Aussagen
iiber die Einhaltung der Anforderung treffen zu konnen. Die Regeln konnen darin mit Hilfe
von AN D- und OR-Operatoren verkniipft werden und mit Hilfe einer Klammerung strukturiert
werden. Ein Beispielausdruck koénnte folgendermafien aussehen:

WirdNacheinanderAusgefuehrt ("Aktivitaetl", "Aktivitaet2") AND
DauertNichtLaengerAls("Aktivitaetl", 15)

In diesem Ausdruck koénnte z.B. iiberpriift werden, dass zwei Aktivitdten in der korrekten
Reihenfolge ausgefiihrt werden und dass die Ausfithrung der ersten Aktivitét nicht linger als 15
Minuten dauert.

Durch eine Verkniipfung mit einem Gesetzelement kann zusétzlich zur Formulierung der Anfor-
derung im Ausdruck auch noch ein Verweis auf den entsprechenden Gesetzestext hinzugefiigt
werden. Ein XPath-Ausdruck kann verwendet werden um nicht nur auf den gesamten Text zu
verweisen, sondern direkt auf den entsprechenden Paragraphen.

Anforderungen enthalten die folgenden Eigenschaften:

e ID: Der einzigartige Identifizierer der Anforderung, die zur Verkniipfung verwendet werden
kann.

e Beschreibung: Eine Beschreibung der Anforderung in einem kurzen Text.

e Compliance Ausdruck: Eine Kombination von Regeln, die zur Validierung der Anforde-
rung ausgewertet werden miissen.

4.1.2. Regel

Um Anforderungen kompakt zu halten, werden diese aus Regeln zusammengesetzt. Diese sind
allgemein gehalten und kénnen in mehreren Anforderungen verwendet werden.

Durch die Wahl der Sprache sowie der Phase, in der die Regel angewendet werden soll, ist es
moglich verschiedene Aspekte des Prozesses zu iiberpriifen. Mit Hilfe von LTL lisst sich die
Ausfithrungsreihenfolge von Aktivitdten bereits in der Designphase iiberpriifen, wahrend durch
Unterstiitzung von TOSCA die Moglichkeit besteht die Auslieferung des Prozesses zu beeinflussen.
Léuft der Prozess bereits, konnen mit ProGoalML KPIs und die Einhaltung von Grenzwerten
iiberwacht werden.

Regeln enthalten dazu entweder einen Regelausdruck, der in der gewahlten Sprache die Regel
beschreibt, oder einen Verweis auf eine Regel in einem anderen Dokument.

Zusétzlich kann eine Regel einen Variability Descriptor enthalten, der mogliche Verdnderungen
am Prozess beschreibt. Dazu wird das XML-Dokument des Variability Descriptors direkt in den

38

4.1. Bestandteile des Compliance Descriptors

Compliance Descriptor eingebunden. Bei der Validierung des Compliance Descriptors werden die
Bindungen aufgelost und mit Hilfe des Variability Descriptors in die abstrakte Regel eingesetzt
um eine ausfiithr- und validierbare Regel zu erhalten.

Regeln enthalten die folgenden Eigenschaften:
e ID: Der einzigartige Identifizierer der Regel, der zur Verkniipfung verwendet werden kann.
e Beschreibung: Eine Beschreibung der Regel in einem kurzen Text.
e Sprache: Die Sprache, in der die Regel geschrieben wurde, z.B. LTL.

e Phase: Die Phase, in der die Regel ausgefiihrt werden soll. Bei LTL wire dies z.B. wihrend
der Designphase.

e Regel: Die eigentliche Regel; kann entweder als Ausdruck iibergeben werden oder iiber
eine URL eingebunden werden.

e Bindungsstrategie: Die Strategie, mit der Bindungen beim Variability Descriptor einge-
bunden werden.

4.1.3. Bindung

Bindungen sind Teil einer Regel und beschreiben die Variabilitétspunkte der Regel. Sie enthalten
den Namen des Punktes sowie entweder einen konstanten Wert oder die Position des Parameters
in der Regel. Im Regelausdruck der Anforderung werden Regeln &hnlich wie Funktionen in
anderen Sprachen verwendet, und es konnen ihnen auch Parameter iibergeben werden. Ein
solcher Aufruf kann zum Beispiel so aussehen:

NameDerRegel ("Name der Aktivitaet")

Dabei wire der erste Parameter der Regel der Name der Aktivitdt und konnte in einer Bindung
verwendet werden.

Eine Bindung enthélt die folgenden Eigenschaften:

e Variabilitdtspunkt: Der Name des Variabilitdtspunktes; sollte innerhalb der Regel ein-
zigartig sein.

e Konstante: Gibt den konstanten Wert der Bindung an.

e Parameter: Gibt die Nummer des Parameters an, der fiir diese Bindung verwendet werden
soll. Entweder eine Konstante oder ein Parameter muss gesetzt sein.

39

4. Erstellung des grafischen Modells

4.1.4. Gesetz

Gesetzesobjekte sind reine Inhaltsobjekte. Sie enthalten den vollstéindigen Text des Gesetzes bzw.
der Vorschrift als XHTML- oder XML-Dokument. Dadurch kann der Text direkt in das XML-
Dokument des Compliance Descriptor eingebettet werden und Anforderungen direkt auf einzelne
Paragraphen des Texte verweisen. So sind die Compliance-Anforderungen sowohl in Form eines
Compliance-Ausdrucks als auch in Textform verfiighbar. Dies kann sowohl bei der Erstellung des
Compliance Descriptors zum Nachschlagen als auch bei der Meldung von Compliance-Verstofien
hilfreich sein und dem Nutzer bei der Verwendung des Compliance Descriptors helfen.

Gesetze enthalten die folgenden beiden Eigenschaften:

e Titel: Der Titel des Gesetzes; wird zum Verkniipfen innerhalb der XML-Datei verwendet
und sollte deshalb einzigartig sein.

e Inhalt: Der Gesetzestext als XHTML- oder XML-Dokument.

4.1.5. Einheit

Einheiten sind indirekte Verweise auf Teile des Geschiéftsprozesses. Dies kann z.B. eine Aktivitét
des Prozesses oder ein Teil der Infrastruktur sein. Uber den Namen der Einheit und ihres Typs
wird sie mit der entsprechenden Finheit implizit verkniipft.

Eine Einheit enthélt die folgenden Eigenschaften:
e Name: Der Name der Einheit
e Typ: Der damit verbundene Typ von Objekt.

e Beschreibung: Eine Beschreibung der Einheit. Kann beispielsweise bei der Erstellung
eines Prozesses dazu verwendet werden, um genau zu beschreiben, welche Einheit vom
Compliance Descriptor erwartet wird.

4.1.6. Verbindung

Die Verbindung stellt eine einfache Verkniipfung zweier Elemente dar. Sie besteht zwischen einer
Anforderung und einer Regel oder einer Einheit. Eine Verbindung enthilt keine Eigenschaften.

4.1.7. Gesetzesverbindung

Fin Spezialfall bei den Verbindungen zwischen Elementen ist die Verbindung zwischen einer
Anforderung und einem Gesetz. Hierbei muss noch die Moglichkeit bestehen, einen XPath-
Ausdruck unterzubringen um auf einen bestimmten Paragraphen des Gesetzes verweisen zu
konnen. XPath-Ausdriicke sind Anfragen an das XML-Dokument, um Teile von diesem auf
Grund von Tags und Attributen zu finden und zuriickzuliefern.

Deshalb enthilt die Gesetzesverbindung eine Eigenschaft:

e XPath: Der XPath-Ausdruck, der auf den betroffenen Abschnitt im Text des Gesetzes
verweist,.

40

4.2. Anforderungen

4.2. Anforderungen

Im dritten Kapitel wurden drei Ansdtze mit einem existierenden grafischen Modell vorgestellt
und analysiert. Dabei wurden auch einige Nachteile entdeckt, die nun im Modell des Compliance
Descriptors vermieden werden sollen.

Zu technisch komplexe Darstellungen oder Regeldefinitionen durch das Modell schrecken unerfah-
rene Anwender durch die hohe Einarbeitungszeit ab und verhindern es, einen schnellen Uberblick
iiber das Diagramm zu erhalten. Trotzdem soll méglichst wenig von der Funktionalitit eingebiifit
werden, um alle Moglichkeiten des Compliance Descriptors auszunutzen. Von BPMN-Q wurden
pro Anforderung oder Regel eine eigene Abfrage in einem eigenen Dokument formuliert. Da
dabei fiir den Benutzer die Zusammenhénge schlecht nachvollziehbar sind und die gesamten
Anforderungen an den Prozess schlecht sichtbar sind, sollte dies vermieden werden.

Der Compliance Descriptor richtet sich vor allem an Anwender von BPMN-Geschéftsprozessen.
Deshalb wire es von Vorteil die Darstellung moglichst nah am BPMN-Modell zu halten.

Aus diesen Einsichten werden die vier folgenden Anforderungen formuliert:

1. Simple Darstellung
Eine simple Darstellung soll den Inhalt des Diagramms schnell erfassbar und auch fiir
weniger technikaffine Nutzer lesbar machen.

2. Komplexitidt erméglichen
Fiir erfahrene Anwender sollen mdoglichst alle Funktionen des Compliance Descriptors
zugénglich sein.

3. Darstellung aller Elemente in einem Diagramm
Das Diagramm soll nicht in unterschiedliche Abschnitte oder einzelne Anforderungen
aufgeteilt werden. Dadurch lassen sich Elemente mehrmals verwenden und kénnen als ein
Gesamtkonzept verstanden werden.

4. BPMN-inspirierte Formen
Durch die Orientierung an BPMN-Elementen sollen die Formen des Modells fiir den Nutzer
bekannt und damit leicht versténdlich sein.

4.3. Das grafische Modell

Nachdem in den vorhergehenden Abschnitten bereits der Compliance Descriptor beschrieben
wurde und die Anforderungen definiert wurden, soll nun das daraus erstellte grafische Modell
vorgestellt werden. Dabei wird auf die einzelnen Elemente des Descriptors eingegangen und dann
ein minimaler Beispielgraph gezeigt.

41

4. Erstellung des grafischen Modells

4.3.1. Regel

Regel

($Bindung)

Abbildung 4.2.: Regel inklusive
Bindung

4.3.2. Bindung

Eine Regel des Compliance Descriptors wird dhnlich wie ei-
ne Aktivitidt im BPMN-Diagramm dargestellt. Beide haben
die Gemeinsamkeit, dass sie die Hauptelemente des jewei-
ligen Diagrammtyps sind. Aus diesem Grund wurde diese
Darstellungsweise gewahlt. Die ID der Regel wird im oberen
Bereich des Regelelements dargestellt. Weitere Eigenschaften
der Regel lassen sich leider nicht direkt im Element anzeigen,
ohne die Komplexitit der Ansicht deutlich zu erhéhen. Diese
miissen iiber andere Moglichkeiten bei der Implementierung
zugénglich gemacht werden.

Da Bindungen ein Teil einer Regel sind, werden sie innerhalb der Regel dargestellt. Grafisch
sind sie deutlich schlanker, haben aber eine generell dhnlichen Form wie die Regel. Der Name
des Variabilitdtspunktes wird innerhalb des Elementes zur Kennzeichnung verwendet. Da im
Variability Descriptor die Namen der einzelnen Punkte mit einem Dollarzeichen beginnen, um
sie klar als Variablen zu kennzeichnen, beginnt auch der Name des Punktes in der Bindung mit

einem Dollarzeichen.

4.3.3. Anforderung

Anforderungen vereinen mehrere Regeln in sich, um daraus
einen Compliance-Ausdruck zu bauen. Deshalb werden sie
dhnlich einer Regel dargestellt, ihr Rand ist jedoch doppelt

ausgefithrt um damit die Kombination mehrerer Regeln auszu-
driicken. Die ID der Anforderung wird innerhalb des Elements

Anforderung

dargestellt. Der Compliance-Ausdruck wird in der grafischen
Darstellung zwar nicht angezeigt, jedoch sind die Bestandteile
des Ausdrucks durch die Verbindungen von der Anforderung
zu den anderen Elementen sichtbar. Die genaue Komposition Abbildung 4.3.: Anforderung
muss dann durch die Implementierung des Editors zugéinglich

gemacht werden.

4.3.4. Gesetz
Ein Gesetz wird dhnlich einer Regel dargestellt, wird jedoch um das
§ Paragraphzeichen ergénzt um zu verdeutlichen, dass es sich dabei um
ein Gesetz handelt. Der Titel des Gesetzes oder der Richtlinie wird
Gesetz innerhalb des Elements dargestellt, wihrend der Inhalt des Elements

nicht angezeigt wird. Die Anzeige oder Bearbeitung eines Dokuments
mit vielen Seiten innerhalb des Diagramms ist jedoch nicht praktikabel

moglich.

Abbildung 4.4.: Gesetz

42

4.3. Das grafische Modell

4.3.5. Einheit

Abbildung 4.5.: Einheit

Die Einheit wird pillenfoérmig dargestellt. Als einzige Form findet man sie nicht in einem BPMN-
Diagramm. Der Name der Einheit wird mittig in der Form angezeigt. Der Typ und die Beschrei-
bung sind nicht enthalten ist.

4.3.6. Verbindung

Eine Verbindung wird als schwarze Linie mit gefiillter Pfeilspitze dargestellt.

§

fxpath

Abbildung 4.6.: Verbindung und Gesetzesverbindung

4.3.7. Gesetzesverbindung

FEine Gesetzesverbindung wird dhnlich der normalen Verbindung dargestellt, es wird jedoch in
der Mitte der Linie ein zusétzliches Paragraphzeichen angezeigt um den Unterschied zwischen
den beiden Verbindungstypen zu kennzeichnen. Zudem wird der XPath-Ausdruck unterhalb der
Linie angezeigt, um direkt Informationen iiber den gewahlten Paragraphen zu erhalten.

43

4. Erstellung des grafischen Modells

Regel

($Bindung)

L vy

Anforderung

Gesetz

Abbildung 4.7.: Minimaler Beispielgraph

4.4. Uberpriifung der Anforderungen

Bisher wurde der Compliance Descriptor genauer untersucht, vier Anforderungen aus der State
of the Art Analyse extrahiert und das grafische Modell vorgestellt. Im letzten Schritt sollen jetzt
die gestellten Anforderungen aus Abschnitt 4.2 iiberpriift werden:

1. Simple Darstellung v
Durch reduzierte Informationen und klare Linien sollte es gelungen sein, eine simple
Darstellung anzubieten.

2. Komplexitit ermoglichen X
Die ganze Funktionalitéit des Compliance Descriptors kann mit diesem grafischen Modell
nicht dargestellt werden. Jedoch besteht immer noch die Méglichkeit, dies durch den Editor
auszugleichen und dort die restlichen Funktionen abzubilden.

3. Darstellung aller Elemente in einem Diagramm v/
Mehrere Anforderungen koénnen in einem Diagramm modelliert werden und Regeln kénnen
in verschiedenen Anforderungen eingesetzt werden.

4. BPMN-inspirierte Formen v
Bis auf ein Element orientieren sich alle der gewéahlten Formen an BPMN, und der einzige
Ausreifler ist nicht sehr weit entfernt.

Drei der vier Anforderungen konnten bereits vom grafischen Modell erfiillt werden. Die verblei-

bende Anforderung kann jedoch wihrend der Implementierung des Editors noch erfiillt werden.
Dies wird im folgenden Kapitel verdeutlicht.

44

5. Erstellung des grafischen Editors

Die grafische Darstellung, die im vorherigen Kapitel erstellt wurde, soll nun umgesetzt werden.
Dafiir wird der Oryx-Editor verwendet und erweitert. Dieser wird im ersten Abschnitt dieses
Kapitels vorgestellt. Im zweiten Abschnitt werden die Anforderungen an die Umsetzung des
grafischen Editors zusammengestellt. Der dritte Abschnitt erklidrt die Implementierung der
einzelnen Teile, die fiir die volle Funktionalitit des Editors bendtigt werden, und der letzte
Abschnitt tiberpriift die Umsetzung der Anforderungen durch die Implementierung.

5.1. Der Oryx-Editor

Der Oryx-Editor ist ein grafischer Webeditor, der am Hasso-Plattner-Institut (HPI) in Potsdam
entwickelt wurde, um BPMN-Diagramme zu erstellen. Die Arbeit daran begann 2006 mit drei
zusammenhéngenden Bachelorarbeiten([8][35][32], in deren Rahmen eine erste Version des Editors
entwickelt wurde. Durch die Verdffentlichung unter einer Open Source-Lizenz und einem regen
Entwicklungsfortschritt wurde der Oryx-Editor von vielen Universitdten und Unternehmen gut
angenommen. Als 2009 die urspriinglichen Entwickler am HPI daraus ein kommerzielles Produkt
unter dem Namen SSignavio™ entwickelten wurde die Weiterentwicklung von Oryx allerdings
eingestellt.

Oryx gliedert sich in zwei verschiedene Teile, das Backend, das auf dem Server lduft und sich
vor allem um die Datenhaltung kiimmert, und das Frontend, d.h. die Webapplikation mit der
Diagramme modelliert werden kénnen.

5.1.1. Backend

Als Backend setzt Oryx auf einen Java-Server, der mit Hilfe eines Applikationsserver ausgefiihrt
wird. Um Daten und erstellte Diagramme zu speichern wird PostgreSQL? als Datenbank eingesetzt.
Durch die Verwendung von sogenannten Servlets[30], kleinen Programmen die iiber eine URL
aufgerufen werden konnen, ist das Backend sehr modular aufgebaut und kann leicht um weitere
Endpunkte erweitert werden.

Neben der Datenhaltung kiimmert sich das Backend auch um die Authentifizierung der Benutzer.
Sie findet mit Hilfe von OpenlD|[29], einem Standard fiir dezentrale Authentifizierung, statt.
Dabei kann sich der Benutzer mit einer URL anmelden und wird dann auf die Seite seines
OpenlD-Anbieters weitergeleitet. Nach erfolgreicher Anmeldung wird er zuriickgeleitet und ist
dann authentifiziert. Durch Verwendung von OpenlD erspart man sich so, Daten der Benutzer

"Mttp://www.signavio.com
2http://www.postgresql.org/

45

http://www.signavio.com
http://www.postgresql.org/

5. Erstellung des grafischen Editors

wie Passworter speichern zu miissen. Fiir den Benutzer besteht zudem der Vorteil, dass er sich
nicht fiir jeden Account bei einem Webdienst einen neuen Benutzername und ein neues Passwort
merken muss.

5.1.2. Frontend

Das Frontend von Oryx besteht aus zwei verschiedenen Teilen: Das sogenannte Process Repository
dient als Einstieg in die Anwendung. Dort kénnen neue Diagramme erstellt und bereits vorhandene
durchsucht und gesffnet werden. Durch das Offnen eines Diagramms wird der zweite Teil des
Frontends, der Editor, in einem neuen Browsertab getfinet.

HE&+ e 2ddAlasSasl\2 gl Gel@6-HH% @ b
Shape Repository % Properties (EPMN-Diagram) »
=l BPMN 2.0 |BPMN 2.0 Goal E: = Fragment Repository

= Activities [Task

D Task

Properties -

E] Collapsed Subprocess Name Value

E] Expanded Subprocess 3 Often used

:n: Collapsed Event- Name
Subprocess Documentat...

:: Event-Subprocess H More Properties

H Gateways

+ Swimlanes

H Artifacts

Data Objects

H start Events

H Catching Intermediate Events
4 Throwing Intermediate Events

“: b

Abbildung 5.1.: Oryx-Editor mit BPMN-Stencilset

Die Benutzeroberfliche des Editors ist in vier Abschnitte gegliedert: Am oberen Rand des Editors
befindet sich die Werkzeugleiste, die eine Reihe von Knépfen mit Symbolen enthélt. Durch
das Klicken auf einen Knopf kann die entsprechende Funktionalitat aktiviert werden. Beispiele
fiir Knopfe sind z.B. der Speichern-Knopf, der Exportieren-Knopf oder der Validierungs-Knopf.
Der rechte Rand enthélt das Shape Repository, welches die vom momentanen Diagrammtyp
unterstiitzten Formen enthélt. Diese kénnen durch Drag and Drop, also das Ziehen mit dem
Mauszeiger, auf die gewiinschte Stelle im eigentlichen Editorbereich gezogen werden.

Dieser befindet sich in der Mitte des Fensters und nimmt den Grofiteil des verfiigbaren Platzes
ein. Dort lassen sich die Elemente ebenfalls per Drag and Drop bewegen. Zusétzlich gibt es
noch die Moglichkeit eine Abkiirzungsfunktion zu verwenden. Nach dem Klicken auf ein Element
werden rechts davon leicht durchsichtig andere Elemente und Kanten angezeigt mit denen dieses
Element verbunden sein kann. Wird eines davon per Klick verschoben, so wird automatisch das
entsprechende Element inklusive einer Verbindung zwischen den Beiden erstellt.

Am rechten Rand des Editors befinden sich die Eigenschaften. Klickt man auf eines der Elemente,
werden dort die Eigenschaften des gewihlten Elements angezeigt und kénnen bearbeitet werden.

46

5.1. Der Oryx-Editor

Der Webeditor wurde mit den Standard-Webtechnologien HTML, CSS und Javascript geschrieben.
Um nicht alle Funktionen selbst schreiben zu miissen, baut Oryx auf einigen verbreiteten
Bibliotheken auf: Ext.js wird verwendet, um Funktionalitit und Aussehen einer normalen
Desktopanwendung nachzubilden. Dafiir bietet Ext.js® viele Elemente, die dynamisch initialisiert
und angezeigt werden konnen. Zudem wird Prototype.js* verwendet, eine Bibliothek die Javascript
um eine Art Klasse und Klassenvererbung erweitert, sowie Funktionen fiir Anfragen an den Server
und das Auswéhlen von Elementen des Editors erlaubt.

5.1.3. Erweiterbarkeit

Da in dieser Arbeit der Oryx-Editor um ein neues grafisches Modell und damit verbundene
Plugins erweitert werden soll, ist die Erweiterbarkeit von Oryx entscheidend.

Der Server lésst sich einfach durch das Hinzufiigen neuer Servlets erweitern. Dadurch dass diese
kleine eigenstédndige Programme sind miissen sie nur dem Applikationsserver bekannt gemacht
werden um zu funktionieren.

Fiir den Editor gibt es verschiedene Moglichkeiten zur Erweiterung. Sogenannte Stencilsets[31]
werden verwendet um Diagrammtypen zu definieren. Sie bestehen aus einer JavaScript Object
Notation (JSON)[12]-Datei, einem Dateiformat, das den Objekttypen aus Javascript verwendet
um Daten zu kodieren, sowie Scalable Vector Graphic (SVG)[38]-Dateien, einem auf XML
aufbauenden Format fiir skalierbare Vektorgrafiken. SVG wird von Oryx dazu verwendet um die
Graphen darzustellen. Da es auf XML aufbaut, kann es direkt in die (X)HTML-Seite integriert
werden und biete viele Funktionen zum Zeichnen. Die einzelnen SVG-Dateien beschreiben das
Aussehen der einzelnen Elemente des Diagramms, wihrend die JSON-Datei diese verwendet
und um semantische Informationen erweitert. Darunter fallen unter anderem die Eigenschaften
des Elements, die anzuzeigenden Namen und mogliche Verkniipfungen zwischen den einzelnen
Elementen. Der Oryx-Editor ist modular aufgebaut. Die meiste Funktionalitdt wird von Plugins
implementiert. Durch die Entwicklung eigener Plugins kann also der Funktionsumfang von Oryx
erweitert werden.

5.1.4. Verwendete Version

Da die Weiterentwicklung von Oryx eingestellt wurde und es auch aus den Reihen der Nutzer
nicht mehr zur (6ffentlichen) Weiterentwicklung kommt, werden einige Versionen von unter-
schiedlichsten Institutionen nicht-6ffentlich weiterentwickelt. Eine solche Version wird auch vom
Institut fiir Architektur von Anwendungssystemen (IAAS) und vom Fraunhofer Institut fiir
Arbeitswissenschaft und Organisation (IAO) unterhalten und weiterentwickelt. Sie wurde dabei
in aPro integriert und um Erweiterungen zur Arbeit mit aPro erginzt.

aPro ist eine Monitoringlosung, die Oryx zur Modellierung von Geschéftsprozessen verwendet
und die entstandenen Prozesse als eigenstindige Webanwendungen starten und iiberwachen kann.
Oryx stellt dabei das Hauptinterface dar und wurde dazu durch zahlreiche Plugins erweitert.
Aufbauend auf der aktuellsten Version von aPro und dem darin enthaltenen Oryx-Editor wird in
diesem Kapitel die Implementierung des grafischen Webeditors aufgezeigt.

3http://wuw.sencha.com/products/extjs/
‘http://prototypejs.org/

47

http://www.sencha.com/products/extjs/
http://prototypejs.org/

5. Erstellung des grafischen Editors

5.2. Anforderungen

Auch in diesem Kapitel sollen wieder Anforderungen formuliert werden, die durch die Imple-
mentierung des grafischen Editors erfiillt werden sollen. Eine der Anforderungen wird dabei aus
dem vorherigen Kapitel {ibernommen, da sie dort ja nicht voll erfiillt werden konnte. Die meisten
Anforderungen ergeben sich allerdings aus der Aufgabenstellung dieser Arbeit. Daraus ergeben
sich die fiinf folgenden Anforderungen:

1. Komplexitit erméglichen
Diese Anforderung konnte im vorherigen Kapitel nicht voll erfiillt werden. Deshalb sollte
sie durch den Editor nun erfiillt werden.

2. Darstellung und Editierbarkeit des grafischen Modells
Das grafische Modell soll voll dargestellt werden und im Editor bearbeitbar sein.

3. Nutzung der Abkiirzungsfunktionalitét
Die Abkiirzungsfunktionalitdt von Oryx soll voll ausgenutzt werden. Ausgehend von einer
Anforderung sollte es moglich sein, dariiber alle verkniipften Elemente zu erstellen.

4. Editor fiir Compliance-Ausdriicke
FEin Ausdruckeditor soll die Erstellung von Compliance-Ausdriicken vereinfachen. Dazu
sollen zahlreiche Hilfestellungen geliefert werden, wie das schnelle Hinzufiigen relevanter
Operatoren, Regeln oder Einheiten.

5. Validierung des Modells
Mit einer Validierungsfunktion soll {iberpriift werden kénnen, ob das Modell auch wirk-
lich ein korrekter Compliance Descriptor ist. Sollte dies nicht der Fall sein, so sollten
Fehlermeldungen an den entsprechenden Elementen angezeigt werden.

6. Export der XML-Datei
Ist das grafische Modell valide, so soll es moglich sein eine XML-Datei mit dem Compliance
Descriptor herunterzuladen und diese in weiteren Anwendungen zu nutzen oder selber noch
bearbeiten zu kénnen.

5.3. Implementierung des grafischen Editors

Die Implementierung des grafischen Editors findet in zwei Abschnitten statt. Im ersten Schritt
wird das sogenannte Stencilset erstellt, das die Darstellung des Modells im Editor regelt. Danach
wird in einem zweiten Schritt eine Reihe von Plugins entwickelt, die den Editor um niitzliche
Funktionen bei der Erstellung eines Compliance Descriptors ergédnzen.

5.3.1. Stencilset

Stencilsets beschreiben die Struktur und das Aussehen eines grafischen Modells im Oryx-Editor.
Dazu bestehen sie aus einer JSON-Datei, die die Struktur enthélt, und einigen SVG-Dateien, die
das Aussehen der einzelnen Elementen beschreiben. Die JSON-Datei wird dabei als erstes erstellt,
da sie einen grofleren Einfluss auf die Funktionalitdt des Editors hat und das Aussehen jederzeit
noch gedndert werden kann. Strukturell besteht die Datei aus drei verschiedenen Bereichen:

48

5.3. Implementierung des grafischen Editors

e Der Kopfbereich:
Hier werden ein paar grundlegende Eigenschaften des Diagramms gesetzt, wie der Name
des Typs.

Der Stencil-Bereich:

Im Stencil-Bereich werden die einzelnen Elemente, von Oryx Stencil genannt, definiert.
Dazu wird als Erstes ein Hauptelement definiert, dass den kompletten Inhalt des Diagramms
enthélt. Es wird jedoch nicht als Element im Editor angezeigt. Trotzdem hat es eine einzige
Eigenschaft, den Namen des gesamten Diagramms, der vom Benutzer gesetzt werden kann.
Als Néchstes werden die restlichen Elemente mit den bereits bekannten Eigenschaften
definiert. Bei der Definition der Eigenschaften kann neben dem Namen u.a. auch ein Typ
angegeben werden. Dadurch l&sst sich der Werte z.B. auf wenige bekannte und vorgegebene
Werte einschrénken. Dies wird beispielsweise bei der Sprache und Phase einer Regel genutzt.

Der Regel-Bereich:

In diesem Bereich kénnen Regeln, die die Bearbeitung des Diagramms beeinflussen, definiert
werden. Dazu ist dieser Bereich noch einmal in mehrere Unterbereich unterteilt. Mit Ver-
bindungsregeln kann definiert werden, welche Elemente durch welche Art von Verbindung
miteinander verbunden werden kann. Im Falle des Compliance Descriptor gehen normale
Verbindung von einer Anforderung zu einer Regel oder Einheit, wihrend Gesetzesverbindun-
gen von einer Anforderung zu einem Gesetz gehen. Durch Containmentregeln kann bestimmt
werden, welche Elemente andere Elemente aufnehmen kénnen. Da das Diagramm an sich
selbst ein Element ist, muss hier definiert werden, dass alle Elemente bis auf die Bindung
enthalten sein konnen. Bindungen diirfen dafiir Bestandteile von Regeln sein. Kardinalifts-
regeln erlauben es die Anzahl an aus- oder eingehenden Verbindungen zu beschrianken. Mit
Layoutregeln kann die Positionierung von ein- und ausgehenden Verbindungen verédndert
werden. Und als Letztes konnen mit Morphingregeln mogliche Verdnderungen definiert
werden. Ein Beispiel dafiir sind Ereignisse bei BPMN, deren exakter Typ dadurch noch
verdndert werden kann. Leere Morphingregeln fiir Elemente werden zudem bendétigt, damit
Abkiirzungen zu Elementen hinzugefiigt werden, die mit diesen verbunden werden koénnen.

Nach Fertigstellung des Stencilsets, kann mit den SVG-
Grafiken begonnen werden. Dafiir wird fiir jedes Element
eine eigene Grafik angelegt und mit einem Vektorgrafik-
programm erstellt. Anschlieflend sollte die SVG-Datei
noch um einige von Oryx vorgegebene Tags und Attri-
bute erweitert werden. Dadurch kann unter anderem
angegeben werden, an welchen Stellen sich Verbindun-
gen an das Element andocken lassen oder wie sich das
Element bei einer Verdnderung der Grofle veréndert und
in welchen Bereichen dies {iberhaupt stattfinden darf.

Um das Ganze noch ein wenig aufzuhiibschen kénnen
zudem noch Icons hinzugefiigt werden, die im Shape Re-
pository sowie im Process Repository angezeigt werden.

Abbildung 5.2.: Abkiirzungsfunktionalitat
an einem
Anforderungselement

Diese sollen auf kleinem Raum mdoglichst deutlich den Typ des Elements darstellen.

Nach Fertigstellung des Stencilsets muss dieses noch bei Oryx registriert werden, wozu ein
einfacher Eintrag in einer XML-Konfigurationsdatei ausreicht.

49

5. Erstellung des grafischen Editors

5.3.2. Plugins

Das grafische Modell ist mit dem Stencilset bereits benutzbar,
doch erst durch die mit Plugins hinzugefiigte Funktionalitét
[wird es auch fiir die spitere Anwendung bei der Validierung
f ,-_I ?:'_,3"’; kﬂ L@ I-'-}Zl von Geschéftsprozessen interessant. Davor ist es noch zu ein-
fach moglich einen inkorrekten Compliance Descriptor zu
Abbildung 5.3.: Die Plugins in der erstellen und dies erst spit im Entwicklungsprozess festzu-
Werkzeugleiste stellen.
Dafiir werden insgesamt vier verschiedene Plugins integriert,
die fiinf Funktionen und damit Knopfe in der Werkzeugleiste
zur Verfiigung stellen.
Von links nach rechts sind dies der Ausdruckeditor, die Validierung, der JSON-Import, der JSON-
Export und der XML-Export. Der JSON-Im-/Export ist zwar nicht durch eine Anforderung
gefordert, wird aber fiir die Implementierung des mobilen Prototypen in Kapitel 7 benétigt.
Da dieser nicht direkt auf die Daten in Oryx zugreifen kann, miissen sie auf diesem Wege zum
mobilen Editor und von ihm zuriick kopiert werden koénnen.

Plugins werden mit Hilfe von Javascript entwickelt und als jeweils einzelne Klassen erstellt.
Um sie Oryx bekannt zu machen miissen sie in einer XML-Datei registriert werden und in ein
Profil eingebunden werden. Profile beschreiben die verwendeten Plugins eines Stencilsets. Da
das Standardprofil bereits sehr voll ist und zudem einige Funktionalitdten enthélt die fiir den
Compliance Descriptor nicht benétigt werden, wird deshalb ein eigenes Profil erstellt, das nur die
notigsten Plugins enthalt.

5.3.2.1. Ausdruckeditor

Requirements Wizard for Anforderung

Regel1(“Einheit') AND Regel2()

AND | OR | (|)
Regell Reget2

Einheit

Clear Formula: | Next | Goto End

Close without Save | | Save and Close

Abbildung 5.4.: Ausdruckeditor

Der Ausdruckeditor kann durch das Auswéhlen einer Anforderung und dem anschliefend Driicken
des Formeleditor-Knopfes in der Werkzeugleiste geéffnet werden. In ihm kann der Compliance-
Ausdruck deutlich effizienter bearbeitet werden als im normalerweise zur Verfiigung gestellten

50

5.3. Implementierung des grafischen Editors

Textfeld.

Das oberste Element des Editors ist ebenfalls ein normales Texteingabefeld, in dem der Ausdruck
wie {iblich editiert werden kann. Darunter befinden sich fiinf verschiedene Werkzeugleisten, die
jeweils verschiedene Funktionen zur Verfiigung stellen: Mit Hilfe der ersten Werkzeugleiste lassen
sich die Operatoren AND, OR sowie 6ffnende und schlieende Klammern an die momentan
ausgewihlte Stelle platzieren. Die zweite Leiste enthélt nur eine Abkiirzung fiir einen konstanten
Text. Dabei wird jedoch zusétzlich noch ein Fragezeichen zwischen die beiden Anfiithrungszeichen
gesetzt, das zugleich selektiert wird. Dadurch werden Stellen markiert an denen noch Eintra-
gungen durchzufithren sind. Fiir die dritte Reihe werden alle mit der Anforderung verbundenen
Regeln gesammelt und angezeigt. Wird eine solche Regel eingefiigt, werden eventuell vorhandene
Parameter ebenfalls mit einem Fragezeichen markiert eingesetzt. Verbundene Einheiten werden
mit den Knopfen in der vierten Leiste hinzugefiigt. Die letzte Leiste fiigt nichts hinzu sondern
bietet einige erweiterte Funktionalitdten. Mit dem ersten Knopf kann die gesamte Formel geloscht
werden, der Zweite selektiert automatisch das néchste Fragezeichen um es zu ersetzen und der
Dritte bewegt die Selektierung im Textfeld zum Ende des momentanen Ausdrucks.

Schlussendlich kann mit den zwei Knopfen am unteren Rand des Editors dieser wieder geschlossen
werden. Beim Ersten werden dabei alle Anderungen verworfen und nur durch Driicken des zweiten
Knopfes gespeichert.

5.3.2.2. Validierung

Abbildung 5.5.: Fehlgeschlagene Validierung

Fiir die Validierung ist die wichtigste Komponente ein Servlet, das die Backendkomponente von
Oryx erweitert. An dieses Servlet wird die JSON-Représentation des momentanen Diagramms
geschickt. Auf Serverseite wird dieses auf Fehler {iberpriift, u.a. auf leere Pflichtfelder, ins Leere
fithrende Verbindungen oder inkorrekte XPath-Ausdriicke oder URLs. Wurden Fehler gefunden, so
werden diese zusammen mit den einzigartigen Identifizierern der inkorrekten Elemente zuriick an
den Browser gesendet. Diese werden dort mit einem roten Kreuz und rotem Text (falls vorhanden)
markiert. Bleibt man mit dem Mauszeiger kurz iiber diesem Kreuz wird zudem die Fehlermeldung
angezeigt. Dadurch wird diese nur wenn notig angezeigt und nimmt dem eigentlichen Diagramm
keinen Platz weg. Wird ein zweites Mal auf den Validierungsknopf gedriickt, so verschwinden die
Markierungen wieder.

ol

5. Erstellung des grafischen Editors

5.3.2.3. Import

Der JSON-Import ist das schlankeste Plugin. Es enthélt nur einen Knopf in der Werkzeugleiste
und die dahinter liegende Funktion zeigt auf Klick ein grofies Textfeld an, in das der JSON-Code
hineinkopiert werden kann. Mit Driicken des Bestétigen-Knopfes wird anschliefend das aktuelle
Diagramm geleert und durch das neu importierte Diagramm ersetzt.

5.3.2.4. Export

Das Export-Plugin fiigt der Werkzeugleiste zwei verschiedene Knépfe hinzu. Der JSON-Export
zeigt dabei ein simples Textfeld an, aus dem der JSON-Code des momentanen Diagramms kopiert
werden kann. Fiir den XML-Export ist etwas mehr Aufwand nétig. Dem Server wird dazu ein
neues Servlet hinzugefiigt, dass das aktuelle Diagramm als JSON erhilt, dieses in die Compliance
Descriptor Klassen aus der Bibliothek umwandelt und anschlieflend als XML exportiert. Davor
wird jedoch noch ein kurzer Validierungslauf durchgefiihrt, um zu verhindern das inkorrekte
Daten an das Export-Servlet geschickt werden. Die entstandene Datei wird anschliefend an den
Benutzer zuriickgeliefert, der sie herunterladen kann.

5.4. Uberpriifung der Anforderungen

Wie bereits im letzten Kapitel werden die Anforderungen nach Ende der Umsetzung iiberpriift.
Die fiinf Anforderungen waren:

1. Komplexitit erméglichen v/
Diese Anforderung konnte bei der letzten Uberpriifung nicht erfiillt werden. Nach Abschluss
des Editors kann auch sie nun abgehakt werden. Alle Eigenschaften von Elementen des
Descriptors kénnen iiber die Eigenschaftenleiste des Editors editiert werden und damit
auch alle Moglichkeiten voll ausgeschopft werden.

2. Darstellung und Editierbarkeit des grafischen Modells v/
Das grafische Modell wurde vollstéindig im Editor implementiert.

3. Nutzung der Abkiirzungsfunktionalitiit v/
Durch Verwendung der Morphingregeln kann auch die Abkiirzungsfunktionalitit genutzt
werden. Dadurch lassen sich neue Anforderungen schnell zusammenklicken.

4. Editor fiir Compliance-Ausdriicke Ve
Ein Ausdruckeditor wurde als Plugin hinzugefiigt und vereinfacht die Arbeit mit Compliance-
Ausdriicken.

5. Validierung des Modells v
FEine Validierungsfunktion wurde zum Oryx-Server hinzugefiigt und diese markiert inkorrekte
Elemente im Browser.

6. Export der XML-Datei v/
XML-Dateien kénnen mit einem Knopfdruck exportiert werden.

52

5.4. Uberpriifung der Anforderungen

Diesmal konnten alle fiinf Anforderungen erfiillt werden. Zudem konnten noch zwei weitere
Funktionen implementiert werden, die vom mobilen Prototypen benétigt werden. Die Verwendung
des Editors wird im folgenden Kapitel erlautert.

93

6. Beispiel aus der Versicherungsbranche

In diesem Kapitel soll an Hand eines beispielhaften Geschiftsprozesses aus der Versicherungs-
branche und einigen damit verbundenen Compliance-Anforderungen die Modellierung eines
Compliance Descriptors gezeigt werden. Dafiir wird das grafische Modell und der Editor verwen-
det, die in den vorherigen beiden Kapiteln beschrieben wurden.

Im ersten Abschnitt wird dazu der Geschéftsprozess beschrieben. Der zweite Abschnitt zeigt die
damit verbundenen Compliance-Anforderungen und im dritten Abschnitt wird die Modellierung
des Compliance Descriptors im Editor gezeigt.

6.1. Der Prozess

Einer der wichtigsten Geschéftsprozesse in der Versicherungsbranche stellt das Verwalten und
Bearbeiten von Versicherungsanspriichen dar. Der im Folgenden verwendete, aus vier Schritten
bestehende Prozess ist eine stark vereinfachte Version davon. Er besteht aus den folgenden vier
Schritten:

1. Eingang des Anspruchs:
Ein Versicherungsanspruch geht per Post, Fax, etc. bei der Versicherung ein, wird in ein
strukturiertes Datenformat konvertiert und in der Kundendatenbank unter dem jeweiligen
Kunden gespeichert.

2. Bearbeitung des Anspruchs:
Der Anspruch wird automatisch von einem Programm oder einem Mitarbeiter auf Glaub-
haftigkeit und Plausibilitéit untersucht.

3. Entscheidung des Anspruchs:
Der Anspruch wird auf Grund des Untersuchungsergebnisses akzeptiert oder zuriickgewiesen.

4. Beantwortung des Anspruchs:

Eine Nachricht mit dem Ergebnis der Entscheidung iiber den Anspruch wird an den Kunden
versendet.

Die folgende Grafik zeigt einen entsprechenden BPMN-Graphen, der diesen Geschéftsprozess
abbildet.

95

6. Beispiel aus der Versicherungsbranche

Kundendatenbank

1

Beantwortung
des Anspruchs

=

Eingang des
Anspruchs

Entscheidung

Bearbeituna
5 des Anspruchs

des Anspruc

Abbildung 6.1.: BPMN-Graph des Geschéftsprozesses

6.2. Compliance-Anforderungen

Reguliert werden die Schritte des Prozesses durch den Code of Conduct des GDV (Gesamtverband
der Deutschen Versicherungswirtschaft e.V.), der das Verhalten von Versicherungen im Umgang
mit ihren Versicherten reguliert, und das Bundesdatenschutzgesetz, das das Speichern, die Ansicht
und das Weitergeben von Kundendaten reguliert.

Aus diesen lassen sich die folgenden Anforderungen extrahieren:

e Der GDV Code of Conduct [9] sieht vor, dass der Anspruchinhaber friihzeitig informiert
wird, ob seine Daten fiir Marketingzwecke verwendet werden. Dies kann der Fall sein sobald
der Anspruch in der Datenbank eingepflegt wurde. Da diese Benachrichtigung nicht extra
versendet werden soll, wird sie mit dem Ergebnis des Anspruchs versendet. Dadurch ergibt
sich eine Anforderung an die Gesamtlinge des Prozesses. Dieser sollte innerhalb von 14
Tagen beendet und die Benachrichtigung sowie das Ergebnis versendet sein.

e Das Bundesdatenschutzgesetz [7] reguliert unter anderem die Speicherung der Daten und
gibt vor, dass die personenbezogenen Daten Deutschland nicht verlassen diirfen. Deshalb
gibt es die Anforderung, dass sich die Kundendatenbank innerhalb von Deutschland befinden
muss und die Daten auch beim Transport nicht das Land verlassen.

6.3. Implementierung mit Hilfe des Editors

Die beiden Anforderungen aus dem letzten Abschnitt kénnen nur mit Hilfe des Editors nachge-
bildet werden. Dazu werden zuerst die beiden Anforderungen und die jeweils relevanten Gesetze
erstellt. Dafiir kann die Abkiirzungsfunktion des Editors verwendet werden. Beide Gesetze sind
bereits in HTML-Form erhiltlich und kénnen in das entsprechende Textfeld kopiert werden.
Uber XPath-Ausdriicke auf der Gesetzesverbindung wird auf die jeweils relevanten Paragraphen
verwiesen.

Im n#chsten Schritt werden die relevanten Komponenten des BPMN-Geschéiftsprozesses extrahiert
und als Einheiten in den Descriptor eingepflegt. Dies sind die Kundendatenbank sowie die beiden
Aktivitdten Eingang des Anspruchsiind "Beantwortung des Anspruchs”.

26

6.3. Implementierung mit Hilfe des Editors

Nun koénnen die Regeln integriert werden. Fiir die erste Anforderung werden dafiir zwei Stiick
bendtigt. Die erste Regel "gefolgt Voniiberpriift die Reihenfolge der ihr iibergebenen Aktivitéten.
Dabei muss die erste Aktivitét vor der Zweiten kommen. Sie kann bereits wihrend der Designphase
validiert werden. Die zweite Regel "maxZeitZwischenAktivitdten’kann dagegen erst wiahrend der
Ausfithrung iiberpriift werden und misst dazu die Zeit, die zwischen den Ausfiihrungen der zwei
Aktivitdten verstreicht. Ist die Zeitspanne zu grof}, schlidgt die Validierung der Regel fehl. Die
zweite Anforderungen benétigt fiir ihre Funktion nur eine Regel. Mit duslieferungsort”wird der
Ort der Auslieferung iiberpriift. Dazu wird eine Komponente und ein Ort {ibergeben. Bei der
Auslieferung wird tiberpriift ob der Ort an den die Auslieferung der Komponente stattfindet,
durch den iibergebenen Parameter abgedeckt wird.

Im letzten Schritt werden die Compliance-Ausdriicke der Anforderungen geschrieben. Mit Hilfe des
Ausdruckseditor kénnen dazu einfach die entsprechenden Regeln und Einheiten zusammengeklickt
werden. Das Endresult zeigt das folgende Bild:

§

Bundesdatenschutzgesetz

§

GDV Code of Conduct

Beantwortung des Anspruchs

Eingang des Anspruchs Benachrichtigung des Kunden Ort der Kundendatenbank Kundendatenbank

gefolgtvVon maxZeitZwischenAktivitaten auslieferungsort

$aktivitatl $aktivitatl) $aktivitat2 $komponente
$aktivitat2 $maxZeitDazwischen $ort

wn

[11d/Apoa/jway/
/htmi/body/p[17]

Abbildung 6.2.: Compliance Descriptor

Das dazugehorige XML-Dokument, das durch die Export-Funktion des Editors erstellt wurde,
befindet sich im Anhang dieser Arbeit (A.1.1)

o7

7. Mobiler Prototyp

Der Anteil der Menschen, die statt eines Laptops oder PCs lieber eine portablere Alternative
wie ein Tablet oder Smartphone verwenden, wird immer gréfler. Diesen Anforderungen sollte ein
Editor daher heute geniigen.

Oryx war jedoch nie fiir die Verwendung auf kleinen Bildschrimen konzipiert und ist dort auch
nicht gut verwendbar. Als Beispiel zeigen die zwei folgenden Bilder die Ansicht des Editors auf
einem iPhone der ersten Generation.

= httgs:/fa = httgs:/fa
1AD 1AD

e mm el r 4 HreB® el d

Shape Repository < |} Diagram) ¥

*
¥
*

= Compliance Descriptor
What? [requirement Value

y, @ T ties
[Rule

= Binding

d O entity
Y /" Edge

/'g Edge to Law

/_‘

Ent

Abbildung 7.1.: Oryx-Editor auf einem iPhone der ersten Generation

Der Inhalt des Compliance Descriptors ist nur mit langwierigem Scrollen oder in weit herausge-
zoomten Zustand sichtbar. Elemente lassen sich zwar auswihlen, das Verschieben von Elementen
ist jedoch nicht moglich. Deshalb lassen sich auch keine neuen Elemente hinzufiigen oder zwei
Elemente verbinden. Die Eigenschaften von Elementen lassen sich bearbeiten, durch die kleine
Darstellung von Eingabefeldern und Knopfen ist es jedoch sehr schwierig die korrekten Felder zu
selektieren.

Die Toolbar am oberen Rand enthélt so viele Elemente, dass diese auf fiinf Seiten verteilt sind.
Sowohl die Toolbarknopfe als auch die Knopfe zum Wechseln der Toolbarseiten sind mit dem
Finger nicht ausreichend genau zu bedienen.

99

7. Mobiler Prototyp

Auf Grund dieser Nachteile des Oryx-Editors und um auch fiir diesen Anwendungsfall geriistet zu
sein, soll neben dem grafischen Webeditor auf Basis von Oryx noch eine Alternative fiir mobile

Endgerite zumindest prototypisch implementiert werden.

Um nicht fiir jede mobile Plattform eine komplette Implementierung durchfithren zu miissen,
soll dies mit Hilfe einer plattformiibergreifenden Losung entwickelt werden. Dabei steht eine
Vielzahl von Losungen zur Verfiigung, durch eine Vorselektierung wurde die Auswahl jedoch auf
die folgenden vier reduziert:

e Xamarin Platform!

Auf der Programmiersprache C# und der Laufzeitumgebung Mono aufsetzendes Produkt,
das die Generierung von Anwendungen fiir alle drei grofien Plattformen erlaubt. Wah-
rend die Benutzeroberfliche fiir jede Plattform einzeln entwickelt werden kann, um die
unterschiedlichen Gepflogenheiten einhalten zu kénnen, kénnen alle gemeinsam genutzen
Funktionalitidten in Bibliotheken fiir alle Anwendungen zusammengefasst werden. Fiir An-
wendungszwecke die iiber einfache Anwendung herausgehen und einfach auf Smartphones
installiert werden kénnen, miissen fiir Xamarin monatliche Gebiihren bezahlt werden.

Adobe PhoneGap / Apache Cordova?

Mit HTML, CSS und Javascript erstellte Webseiten verpackt PhoneGap zusammen mit
plattformspezifischen Code zu Apps. Wiahrend der Entwicklung kann deshalb das Meiste im
Browser getestet werden ohne einen Emulator oder ein Smartphone verwenden zu miissen.
Eigene Javascript-Bibliotheken sowie Plugins erlauben den Zugriff auf die Kamera, die
Orientierungssensoren oder den Kompass des Handys. PhoneGap ist frei unter der Apache
License erhéltlich und damit Open Source.

Appcelerator Titanium?

Ein auf Javascript aufbauendes Framework, das durch eine eigene XML-basierte Frontend-
sprache native Designelemente verwenden kann. Unterschiede zwischen den Plattformen
kénnen durch spezifischen Code implementiert werden. Dadurch werden nicht alle Teile
des Codes auf allen Plattformen wiederverwendet. Zusétzlich bietet Titanium eine eigene
MVC (Model-View-Controller) Implementierung und ein Framework zur Erstellung eines
Datenbackends sowie fiir Pushnachrichten. Weite Teile der Appcelerator Angebote sind
Open Source und unter der Apache License freigegeben.

Adobe AIR?

Basierend auf dem Flash Player und der Action Script Programmiersprache erweitert AIR
die Reichweite von Flash auf mobile Endgeréte. Das Layout wird hierbei mit XML-Dateien
beschrieben und mit Flash programmiert. Der Code ist auf allen unterstiitzten Plattformen
ohne Anderungen einsetzbar, es lassen sich jedoch auch Plugins nutzen, die dem Code native
Funktionalitdten zur Verfiigung stellen. Fiir die Entwicklung von AIR Anwendungen wird
ein Abonnement der Adobe Creative Cloud benétigt, das monatliche Kosten verursacht.

Da der Fokus dieser Diplomarbeit auf der Entwicklung eines grafischen Webeditors liegt, ist
es naheliegend hier ebenfalls auf die Webtechnologien HTML, CSS und Javascript zu setzen.
Damit scheiden bereits zwei Losungen, Xamarin und AIR, direkt aus. Im Vergleich der zwei
verbleibenden Technologien stellt sich die Frage, mit welchen Bibliotheken man bereits vertraut

'http://xamarin.com/platform
http://www.phonegap.com

3https:/ /www.appcelerator.com /product /
*http://www.adobe.com /products/air/

60

7.1. Autbau des Prototypen

ist. PhoneGap liasst einem komplett freie Wahl bei den verwendeten Bibliotheken, wihrend
Appcelerator Titanium dabei in groffen Teilen auf die Verwendung der eigenen mitgelieferten
Bibliotheken besteht.

Durch die Verwendung von PhoneGap ergibt sich dadurch ein schnellerer Einstieg. Da nur ein
Prototyp entwickelt werden soll, sollte dieser Faktor hierbei nicht unterschétzt werden.

7.1. Aufbau des Prototypen

Bestehen wird der Prototyp aus nur einem Screen, dem Editor fiir das Compliance Descriptor
Diagramm.

Dieser Editor nimmt dabei auch den Grofiteil der Flache ein. Er wird ergéinzt durch eine
Navigationsleiste am oberen Rand sowie eine Schaltfliche am unteren Rand, die das Hinzufiigen
von neuen Elementen ermoglicht. Die Navigationsleiste enthéalt auf groflen Bildschirmen drei
verschiedene Knopfe:

e Import
Erlaubt das Importieren von Diagrammen aus dem Oryx-Editor im JSON-Format. Eine
entsprechende Export-Funktion wurde dem Oryx-Editor in Kapitel X hinzugefiigt.

e Export
Exportiert das bearbeitete Diagramm wieder in das JSON-Format. Es kann daraufhin im
Oryx-Editor iiber die ebenfalls hinzugefiigte Import-Funktion wieder importiert werden
kann.

e Einstellungen
Hier kénnen die globalen Einstellungen des Diagramms, wie z.B. dessen Name, bearbeitet
werden.

Auf kleinen Bildschirmen sind diese Knopfe versteckt und kénnen durch einen Klick bzw. eine
Beriihrung des Meniiknopfes angezeigt werden.

61

7. Mobiler Prototyp

SNacD

Compliance Descriptor

Import

Export

Settings

Bequirement

L

Law Rule

+ Add element

=1

Abbildung 7.2.: Mockup der Mobile App

Alle Knopfe 6ffnen sogenannte modale Dialoge. Diese Dialoge sperren den Rest der Anwendung,
wihrend sie angezeigt werden. Das ist fiir die kleinen Bildschirme der mobilen Endgerite, mit
denen diese App verwendet werden soll ideal, da sich der Benutzer so auf den Inhalt des Dialogs
konzentrieren kann, wihrend der Rest der Applikation ausgeblendet bzw. im Hintergrund ist.
Die Dialoge enthalten im Hauptteil meist ein Formular und zwei Buttons am unteren Ende um
die Aktion abzubrechen oder sie abzuschliefen. Folgende modale Dialoge sind Bestandteile der
Anwendung;:

e Importdialog
Offnet sich nach Betiitigen des Importknopfes in der Navigationsleiste und enthilt ein
Textfeld um den JSON-Export aus dem Oryx-Editor einzufiigen. Nach der Bestéitigung mit
dem ITmportButton wird das momentane Diagramm geleert und durch das, aus dem Inhalt
des Textfeldes, geladene Diagramm ersetzt.

¢ Exportdialog
Durch Driicken des Exportknopfes 6ffnet sich dieser Dialog. Er enthélt wie der Import-Dialog
ein Textfeld. Dieses ist mit dem aus dem aktuellen Diagramm generierten JSON-Export
gefiillt.

¢ Einstellungsdialog
Der dritte Navigationsleistenknopf 6ffnet den Einstellungsdialog. Dieser erlaubt die Ver-
dnderung der globalen Diagrammeinstellungen. Momentan ldsst sich dort der Name des
Compliance Descriptor Diagrammes dndern.

62

7.2. Verwendete Bibliotheken

e Hinzufiigendialog

Der am unteren Bildschirmrand befindliche Hinzufiigenknopf 6ffnet einen Dialog mit
fiinf Knopfen, je einen fiir jeden Typ von Elementen des Compliance Descriptors. Durch
Driicken eines dieser Knopfe lésst sich ein Element des entsprechenden Typs zum Diagramm
hinzufiigen.

Sie werden standardméfig am oberen linken Bildschirmrand platziert und kénnen vom
Benutzer per Drag and Drop an die korrekte Stelle im Diagramm gezogen werden. Thre
Eigenschaften sind zu Beginn leer und miissen durch den Benutzer gesetzt werden.

e Bindungsdialog
Einen Spezialfall gibt es fiir das Hinzufiigen einer neuen Bindung. Wird dieses Element im
Hinzufiigendialog ausgewihlt, so 6ffnet sich ein zweiter Dialog, der die Auswahl der Regel,
zu der diese Bindung gehort, erlaubt.

¢ Elementdialog
Per Klick auf ein Element im Diagramm 6ffnet sich der Elementdialog. FEr enthélt die
Eigenschaften des jeweiligen Elementes und erlaubt es diese zu bearbeiten. Durch Bestétigen
des Dialogs werden diese anschlieflend abgespeichert und stehen im Export zur Verfiigung.
Zudem besteht die Moglichkeit, durch Driicken des Loschen-Knopfes das Element aus dem
Diagramm zu entfernen. Dadurch werden auch eventuell bestehende Verbindungen und
enthaltene Elemente geloscht.

Der wichtigste Bestandteil der Anwendung ist der Editorbereich. In diesem werden alle aktiven
Elemente des Compliance Descriptor Diagramms angezeigt und kénnen bearbeitet werden. Durch
Drag and Drop lésst sich ihre Position und mit Hilfe des oben beschriebenen Elementdialog ihre
Eigenschaften verdndern. Neue Verbindungen zwischen einer Anforderung und einem zweiten
Element sollen sich ebenfalls per Drag and Drop erstellen lassen. Dazu wird es ein spezielles
Element geben, von dem aus sich Verbindungen ziehen lassen werden. Der Spezialfall der
Bindungen wird zwar ebenfalls durch eine Verbindung dargestellt, diese kann aber nur beim
Hinzufiigen eines Elements durch die Auswahl einer Regel im Bindungsdialog erstellt werden.
Durch Klicken auf eine Verbindung kann diese zudem wieder entfernt werden. Besteht die
Verbindung zwischen einer Regel und einer Bindung, so entfernt diese auch die Bindung, da es
sonst ohne eine Verbindung im Diagramm liegen wiirde.

7.2. Verwendete Bibliotheken

PhoneGap stellt keine Anforderungen an die von uns verwendeten Bibliotheken, sondern erfordert
nur, dass sich am Ende alle verwendeten Dateien in einem Verzeichnis befinden und die index. htmi-
Datei den Einstieg in die Anwendung darstellt.

Die Verwaltung der verwendeten Bibliotheken sowie deren Versionen und Abhéingigkeiten verein-
facht bower®. Bower ist ein Paketmanagementtool, das fiir CSS- und Javascript-Abhingigkeiten
konzipiert wurde, also genau diesen Anwendungsfall trifft.

Dafiir wird im Hauptverzeichnis der Anwendung eine bower.json-Datei angelegt, die im JSON-
Format die Abhéngigkeiten der App und deren Versionen enthélt. Mit einem Aufruf von bower
install werden diese in das bower_components-Verzeichnis installiert und kénnen anschlielend in
der index.html-Datei eingebunden werden.

Shttp://www.bower.io

63

http://www.bower.io

7. Mobiler Prototyp

CSS

Um fiir die Gestaltung der Anwendung ein solides Grundgeriist zu erhalten, wird Bootstrap®
verwendet, ein CSS-Framework, das 2011 von Twitter-Entwicklern ins Leben gerufen wurde und
inzwischen von vielen Webseiten verwendet wird. Fiir den Prototypen benétigt man nur einen
Bruchteil der Funktionalitit von Bootstrap, es bildet jedoch ein passendes Fundament, auf dem
die Funktionalititen aufbauen kénnen.

Erweitert wird das Ganze um die Positionierung von Navigation und Hinzufiigen-Button und
den Style der einzelnen Elemente des Compliance Descriptors. Dieser ist moglichst nahe am Stil
des Stencilsets im Oryx-Editor gehalten.

Javascript

Die Basis fiir den Javascript-Code bildet beim Prototypen Backbone.js” (im weiteren Verlauf
Backbone genannt). Diese Bibliothek stellt vier simple Klassen zur Verfiigung, die vom Benutzer
erweitert werden konnen.

Models enthalten die Daten und simple Businesslogik und werden in Collections gesammelt, die im
Vergleich zu normalen Arrays erweiterte Funktionalitéiten sowie Events beim Hinzufiigen, Andern
und Loschen zur Verfiigung stellen. Views helfen dabei Teile der Webseite zu dynamisieren. Sie
vereinfachen das Rendern und Hinzufiigen neuer Elemente sowie das Abfangen von Events.

Model und View bilden den Model-View Teil des Model-View-Controller Konzeptes ab, eine
Controllerkomponente ist bei Backbone nicht vorgesehen. Normalerweise vom Controller iibernom-
mene Aufgaben werden deshalb im View oder vom zusétzlich integrierten Router iibernommen, der
sich um die Ubergéinge zwischen verschiedenen Seiten kiimmert. Da die Mobilanwendung nur iiber
eine Seite verfiigen wird, kommt sie ohne einen Router aus und kann die Controllerfunktionalitit
dem View iibergeben.

Backbone hat zwei Abhéngigkeiten, die von der App ebenfalls verwendet werden um die Ent-
wicklungsarbeit zu vereinfachen. jQuery® ist die wahrscheinlich am weitesten verbreitete Javas-
criptbibliothek. Sie stellt Funktionen zur Selektierung von Elementen, zur Manipulation dieser
Elemente und fiir Anfragen an den Server zur Verfiigung.

Die zweite Abhingigkeit ist Underscore.js”, eine Bibliothek desselben Entwicklers, die zum
einen Funktionen neuerer Javascriptstandards fiir alte Browser nachimplementiert, zum an-
deren Komfortfunktionen z.B. fiir kiirzere Abfragen oder Objekt- und Arraymanipulationen
hinzufiigt.

Erweitert wird Backbone durch Backbone.Relational, einer Bibliothek die es erlaubt Beziehungen
zwischen verschiedenen Modellen zu definieren. Beim Einlesen der Daten werden diese bekannten
Beziehungen dazu genutzt, automatisch die korrekte Collection zu verwenden und diese mit den
korrekten Modellinstanzen zu befiillen. Ohne diese Funktion miisste man jedes Model einzeln
instanziieren und mit den richtigen Modellen in Verbindung bringen.

Shttp://www.getbootstrap.com
"http://backbonejs.org
Shttp://www.jquery.com
®http://underscorejs.org

64

http://www.getbootstrap.com
http://backbonejs.org
http://www.jquery.com
http://underscorejs.org

7.2. Verwendete Bibliotheken

Wichtigstes Element der mobilen Anwendung ist der Diagrammeditor. Dafiir wird jsPlumb!?
verwendet, eine Bibliothek die auf die Darstellung und Verdnderung von Graphen spezialisiert ist.
Um das Diagramm darzustellen werden HTML-Elemente innerhalb des Editor-Containers erstellt,
die jeweils ein Element reprisentieren. Eine Funktion verbindet diese Elemente anschlieBend
itber ihre Identifizierer und erstellt den entsprechenden Code um diese Verbindungen im Browser
darzustellen.

jsPlumb integriert zudem eine Drag and Drop-Funktionalitéit, iiber die die Elemente verschoben
werden koénnen. Dazu wird jQuery UI'! als Abhingigkeit eingebunden und dessen draggable-
Modul verwendet.

Um die Touchfihigkeit der mobilen Endgerite nutzen zu kénnen, werden zudem Tocca.js'?
und jQuery TouchPunch!? eingebunden. Wihrend Tocca.js die vom Browser erstellten Events
erweitert, um neben dem Klicken mit der Maus auch das Beriihren des Bildschirms abzufangen,
fiigt TouchPunch diese Funktionen zu jQuery UI hinzu. Teile davon werden von jsPlumb verwendet
um die Drag and Drop-Funktionalitit zur Verfiigung zu stellen. Dadurch ist das Verschieben der
Elemente nach dem Einbinden von TouchPunch auch auf dem Smartphone moglich.

Drei kleinere Bibliotheken ergénzen die Auswahl an Bibliotheken. Diese fiigen jeweils eine einzelne
Funktion hinzu.

multiline!* ermoglicht einfachere, mehrzeilige Zeichenketten. In ilteren Javascriptversionen
waren diese nur durch das Konkatenieren mehrerer einzeiliger Zeichenketten moglich. Neuere
Versionen unterstiitzen dies zwar ohne Konkatenation, es muss jedoch am Ende jeder Zeile ein
Riickwartsschragstrich stehen. multiline umgeht das Problem, indem die Méglichkeit Funktionen
in Zeichenketten umwandeln zu kénnen clever ausgenutzt wird. Wird dem multiline()-Aufruf
eine Funktion iibergeben, deren einziger Inhalt ein mehrzeiliger Kommentar ist, so wird der
Inhalt des Kommentars als Zeichenkette zuriickgegeben.

Da Oryx einzigartige Identifizierer generiert um Elemente des Diagramms unterscheiden zu
kénnen, muss auch die mobile Anwendung die Moglichkeit haben solche zu generieren. Oryx
nutzt dabei sogenannte UUIDs, kurz fiir Universally Unique Identifier, in der Version 4 und
stellt diesen einen oryz_-Prefix voran. Version 4 bedeutet dabei, dass die UUIDs zufillig oder
pseudo-zufillig generiert wurden und nicht wie z.B. bei Version 1 auf Grundlage von Zeitstempeln
generiert wurden.

Mit Hilfe von node-uuid'® koénnen diese zufiilligen UUIDs generiert werden und anschliefend fiir
neue Elemente oder Verbindungen genutzt werden.

Die letzte der drei Bibliotheken, underscore.deepExtend'®, erweitert Underscore.js um eine
neue Funktion, die die bereits existierende Funktion extend abwandelt. extend erweitert ein
Javascriptobjekt (der erste iibergebene Parameter) um eine Kopie der Inhalte der weiteren
Parameter (ebenfalls Javascriptobjekte). Dabei iteriert die Funktion jedoch nur tiber die erste
Ebene und iibernimmt so Referenzen auf Objekte in der zweiten Ebene, anstatt diese ebenfalls zu
kopieren. deepExtend geht dabei, wie der Name schon sagt, tiefer und kopiert auch alle weiteren
Ebenen der Objekte. Dadurch verhindert man, versehentlich Teile von referenzierten Objekten
zu dndern, die an anderer Stelle zu Fehlern fithren konnten.

Ohttp://www. jsplumb.org

Yhttp://www. jqueryui.com
https://gianlucaguarini.github.io/Tocca.js/
Bhttp://touchpunch.furf.com/
Yhttps://github.com/sindresorhus/multiline
https://github.com/broofa/node-uuid
https://github. com/mateusmaso/underscore.deepextend

65

http://www.jsplumb.org
http://www.jqueryui.com
https://gianlucaguarini.github.io/Tocca.js/
http://touchpunch.furf.com/
https://github.com/sindresorhus/multiline
https://github.com/broofa/node-uuid
https://github.com/mateusmaso/underscore.deepextend

7. Mobiler Prototyp

7.3. Implementierung der mobilen Anwendung

— 1 Backbone View [}———— Backbone Model Backbone Collection
Modal View Chart View Shape Views |------% Shape Model ————=Cs Shape Collection
Modale Dialoge Main View

Abbildung 7.3.: Komponenten der mobilen Anwendung

Die einzelnen Formen des Compliance Descriptor Diagramms werden durch die Shape-Klasse, die
vom Backbone-Model erbt, représentiert. Mit Hilfe von Backbone.Relational werden die jeweils
enthaltenen Formen direkt eingebunden und kénnen iiber die Relation abgefragt werden. Eine
Collection dieser Shapes enthilt das gesamte Diagramm.

Um die Ansichten der mobilen Anwendung zu implementieren, werden die Views von Backbone
verwendet und ineinander geschachtelt. So enthilt der Main-View den Chart-View, welcher
wiederum viele Shape-Views enthélt.

Der Main-View kiimmert sich zudem um die von der Navigation sowie dem Hinzufiigen-Knopf
generierten Events. Auf Grund dieser Events werden modale Dialoge erzeugt, die alle auf der
Modal-Klasse aufbauen, die ebenfalls von einem View erbt. Diese enthélt speziellen Code, um die
Darstellung und das Schlieflen des modalen Dialogs zu vereinheitlichen und damit die einzelnen
Klassen der Dialoge deutlich schlanker zu machen. Darin muss noch der Inhalt des Dialogs
angegeben werden und falls nétig, ein Event, der durch das Driicken des Bestédtigen-Buttons
ausgelost wird, abgefangen werden. In dieser Funktion kann dann z.B. der Import des Diagramms
aus dem eingegebenen JSON ausgelost werden.

Eine Besonderheit stellt der Element-Modal dar, der durch das Klicken auf ein Element des
Diagramms angezeigt wird. Dieser Dialog ist deutlich komplexer, da dabei die vorhandenen
Eigenschaften des betroffenen Models ausgelesen werden miissen und als Formularfelder im Dialog
angezeigt werden. Dabei wird anhand des jeweiligen Feldnamens entschieden, was fiir ein Feld im
Formular angezeigt werden soll. Nach Bestétigen des Speichern-Buttons werden die Werte aus
diesen Feldern wieder ausgelesen und zuriick in das Model gespeichert.

Hauptaufgabe des Chart-View ist das Initialisieren von jsPlumb sowie das Anzeigen und die
Eventverarbeitung des Diagramms. Um die Datenverarbeitung dabei moéglichst nahe an der

66

7.4. Beispiel aus der Versicherungsbranche in der mobilen Anwendung

grafischen Reprisentation zu halten, kiimmert sich der Chart-View auch um den Im- und Export
des Diagramms und initialisiert zu Beginn sowohl die Shape-Collection, die das Diagramm enthélt,
als auch ein Array, das deren Views enthilt.

Das grafische Aquivalent des Shape-Models ist der Shape-View. Fiir jedes Model wird beim
Import ein entsprechender View erstellt. Wiahrend beim Shape-Model nur eine Variante existiert,
gibt es vom Shape-View fiir jede Form eine eigene Abwandlung der Klasse. Dadurch passt sich
auch die Anzeige der entsprechenden Elemente im Diagramm an.

Da eine automatische Ausrichtung der Elemente an der vorhandenen Anzeigefliche von jsPlumb
leider nicht zur Verfiigung gestellt wird, muss die Position der Elemente aus dem Oryx-Editor
verwendet werden. Nach dem Verschieben eines Elementes muss diese auch wieder zuriickgespei-
chert werden, damit die Darstellung zwischen den zwei Applikationen moglichst wenig abweicht.
Um die Anzeige von Elementen innerhalb der Anzeigefliche gewihrleisten zu kénnen, wird zudem
eine Abweichung errechnet und beim Anzeigen und Speichern berticksichtigt werden. Dazu wird
die minimale Position aller Elemente berechnet, um einen Mindestabstand verringert und bei der
Anzeige von allen Positionen abgezogen werden.

7.4. Beispiel aus der Versicherungsbranche in der mobilen
Anwendung

Um die Arbeit mit der mobilen Anwendung zu veranschaulichen, wird das Beispiel aus Kapitel 6
hier noch einmal verwendet und im mobilen Editor neu erstellt. Auch diesmal werden die beiden
Anforderungen zuerst erstellt. Dazu wird der Hinzufiigenknopf am unteren Bildschirmrand und
der danach aufgehende Dialog verwendet. Der Name der Anforderungen muss anschlieflend iiber
den Elementdialog gesetzt werden.

Mit Hilfe von Copy and Paste klappt auch das Hinzufiigen der Gesetze und ihrer Texte ohne Pro-
bleme. Nach Herstellen der Verbindung zwischen Anforderung und Gesetz, kann im Elementdialog
der Anforderung der XPath-Ausdruck gesetzt werden.

Analog dazu werden auch die drei Einheiten und die drei Regeln wieder erstellt. Beim Hinzufii-
gen der Bindungen zeigt sich ein kleiner Unterschied, da hier nach dem Hinzufiigen noch der
Bindungsdialog aufgeht und die Auswahl einer Regel erfordert.

Das Erstellen der Compliance-Ausdriicke ist am mobilen Prototypen leider deutlich weniger
benutzerfreundlich als im Oryx-Editor. Alle Teile des Ausdrucks miissen von Hand eingegeben
werden. Und durch die nicht vorhandene Validierung kann auch danach die Korrektheit nicht
iiberpriift werden. Das Endresultat der Arbeit zeigen die zwei folgenden Bildschirmfotos:

67

7. Mobiler Prototyp

Compliance Descriptor
Element

GDV Code of Conduct
Name

Beantwortung des Anspruchs

Type

Activity

Description

Benachrichtigung des Kunden
Yz

Cancel Save

Ly

maxZeitZwischenAktivitaten

Saktivitat1 $aktivitat2
= Hinzufugen

Abbildung 7.4.: Compliance Descriptor und Elementdialog auf mobilem Endgerit

Als letzter Schritt wurde zum Test zudem ein Export des Diagramms durchgefiihrt und mit Hilfe
des JSON-Imports im Oryx-Editor wieder importiert. Dies funktioniert bis auf kleinere Darstel-
lungsunterschiede exzellent, dndert jedoch nichts an der korrekten Umsetzung des Compliance
Descriptors.

68

8. Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden aktuelle Verfahren zur grafischen Darstellung und Modellierung
von Compliance-Anforderungen vorgestellt und untersucht. Basierend auf dem Compliance Des-
criptor wurde zudem eine solche Darstellung erstellt und mit Hilfe des Oryx-Editors implementiert.
Fiir die komfortable Bedienung des Editors wurden zudem vier Erweiterungen hinzugefiigt, die
den Benutzer bei der Erstellung der Descriptoren unterstiitzen. Dadurch ist es jetzt moglich sich
einen Compliance Descriptor einfach im Editor zusammenzuklicken und -zuziehen.

Zusétzlich wurde die Moglichkeit untersucht komplexe Diagrammeditoren auch auf mobilen
Endgeréten zu nutzen und dazu der Prototyp einer mobilen Anwendung erstellt.

Sowohl der Oryx-Editor als auch der mobile Prototyp bieten noch einige Méglichkeiten Verbes-
serungen und Komfortfunktionen hinzuzufiigen. So wiren direkt verbundene Editoren fiir den
Variability Descriptor oder LTL-Regeln, die Oryx prinzipiell bereits unterstiitzt, eine willkommene
Hilfe beim Erstellen eines Compliance Descriptors. Auch die Auswahl von Gesetzesparagraphen
iiber einen XPath-Editor ist vorstellbar.

Die mobile Anwendung bietet sicherlich die gréfiten Weiterentwicklungsmoglichkeiten. Eine
direkte Integration mit Oryx wére dabei sicherlich am hilfreichsten. Dadurch kénnten Modelle
direkt am Oryx-Backend abgeholt und dort wieder gespeichert werden. Auch eine Anbindung an
die Validierungs- und XML-Export-Schnittstellen wire denkbar. Zudem wére der Formeleditor
auch auf Smartphones implementierbar und sogar niitzlicher als am PC.

69

Literatur

1]

70

A. Awad. ,BPMN-Q: A Language to Query Business Processes®. In: In Proceedings of
EMISA’07. 2007, S. 115-128.

A. Awad, G. Decker und M. Weske. , Efficient Compliance Checking Using BPMN-Q and
Temporal Logic®. In: In BPM ’08: Proceedings of the 6th International Conference on
Business Process Management. 2008, S. 326-341.

A. Awad, M. Weidlich und M. Weske. ,Specification, Verification and Explanation of
Violation for Data Aware Compliance Rules“. English. In: Service-Oriented Computing.
Hrsg. von L. Baresi, C. Chi und J. Suzuki. Bd. 5900. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, S. 500-515. 1SBN: 978-3-642-10382-7.

A. Awad, M. Weidlich und M. Weske. ,,Visually specifying compliance rules and explaining
their violations for business processes“. In: Journal of Visual Languages and Computing
22.1 (2011). Special Issue on Visual Languages and Logic, S. 30-55. 1sSN: 1045-926X.

S. Bensalem u.a. ,An Overview of SAL“. In: LFM 2000: Fifth NASA Langley Formal
Methods Workshop. Hrsg. von M. Holloway. NASA Langley Research Center. Hampton,
VA, 2000, S. 187-196.

T. Binz u.a. ,TOSCA: Portable Automated Deployment and Management of Cloud
Applications“. In: Advanced Web Services. Springer, 2014, S. 527-549. 1SBN: 978-1-4614-
7534-7.

Bundesdatenschutzgesetz(BDSG). 1990. URL: http://www.gesetze-im-internet.de/
bundesrecht/bdsg_1990/gesamt . pdf.

M. Czuchra. ,Bachelorarbeit: Oryx-Embedding Business Process Data Into the Web“. In:
Final bachelor’s paper, Hasso Plattner Institute at the University of Potsdam (2007).

Gesamtverband der Deutschen Versicherungswirtschaft e.V. (GDV). GDV - Code of Conduct.
2012. URL: http://www.gdv .de/wp- content /uploads/2013/03/GDV _Code - of -
Conduct_Datenschutz_2012.pdf.

R. Dijkman, M. Dumas und C. Ouyang. ,Semantics and Analysis of Business Process
Models in BPMN*. In: Inf. Softw. Technol. 50.12 (2008), S. 1281-1294.

BITKOM und DIN. , Kompass der IT-Sicherheitsstandards®. In: (2009). URL: http://www.
din.de/sixcms_upload/media/2896/Kompass’%20der’%20IT-Sicherheitsstandards.
pdf.

European Computer Manufacturers Association (ECMA). The JSON Data Interchange
Format. 2013. URL: http://www.ecma-international.org/publications/files/ECMA-
ST/ECMA-404 . pdf.

M. El Kharbili. ,,CoReL: Compliance Representation Language®. In: (2012).

M. El Kharbili u. a. ,,Corel: Policy-based and model-driven regulatory compliance manage-
ment“. In: Enterprise Distributed Object Computing Conference (EDOC), 2011 15th IEEE
International. IEEE. 2011, S. 247-256.

http://www.gesetze-im-internet.de/bundesrecht/bdsg_1990/gesamt.pdf
http://www.gesetze-im-internet.de/bundesrecht/bdsg_1990/gesamt.pdf
http://www.gdv.de/wp-content/uploads/2013/03/GDV_Code-of-Conduct_Datenschutz_2012.pdf
http://www.gdv.de/wp-content/uploads/2013/03/GDV_Code-of-Conduct_Datenschutz_2012.pdf
http://www.din.de/sixcms_upload/media/2896/Kompass%20der%20IT-Sicherheitsstandards.pdf
http://www.din.de/sixcms_upload/media/2896/Kompass%20der%20IT-Sicherheitsstandards.pdf
http://www.din.de/sixcms_upload/media/2896/Kompass%20der%20IT-Sicherheitsstandards.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Literatur

[22]

[23]

[24]

[25]

[26]

C. Fehling, F. Koetter und F. Leymann. Compliance Modeling - Formal Descriptors and
Tools. Techn. Ber. 2014.

Object Management Group. Business Process Model And Notation (BPMN) Version 2.0.
2011. URL: http://www.omg.org/spec/BPMN/2.0/.

A. Halfmann. ,Siemens versiebenfacht Zahl der Compliance-Mitarbeiter“. In: (2009). URL:
http://www.dnwe.de/news-cg-extern/items/siemens-versiebenfacht-zahl-der-
compliance-mitarbeiter.html.

D. Knuplesch u. a. ,,On Enabling Data-aware Compliance Checking of Business Process
Models“. In: Proceedings of the 29th International Conference on Conceptual Modeling.
ER’10. Vancouver, BC, Canada: Springer-Verlag, 2010, S. 332-346. 1SBN: 3-642-16372-6,
978-3-642-16372-2.

M. Kochanowski u.a. ,Compliance in BPM today - an insight into experts’ views and
industry challenges®. In: Informatik 2014. Big Data - Komplexitit meistern. 2014.

Regierungskommission Deutscher Corporate Governance Kodex. Deutscher Corporate
Governance - Kodex. 2014. URL: http://www.dcgk.de//files/dcgk/usercontent/de/
download/kodex/D_CorGov_Endfassung_2014.pdf.

F. Koetter und M. Kochanowski. ,,Goal-Oriented Model-Driven Business Process Monito-
ring Using ProGoalML*“. In: Business Information Systems. Hrsg. von W. Abramowicz,
D. Kriksciuniene und V. Sakalauskas. Bd. 117. Lecture Notes in Business Information
Processing. Springer Berlin Heidelberg, 2012, S. 72-83. 1SBN: 978-3-642-30358-6.

Falko Koetter u.a. ,Unifying Compliance Requirements across Business and IT“. In:
Proceedings of the IEEE EDOC Conference. IEEE, 2014, S. 1-10.

F. Koetter u. a. ,,Unifying Compliance Management in Adaptive Environments through
Variability Descriptors (Short Paper)®. In: 2013 IEEE 6th International Conference on
Service-Oriented Computing and Applications. 2013.

E. Kriigler. ,Compliance - ein Thema mit vielen Facetten“. In: VDI UmweltMagazin,
7-8/2011 (2011). URL: http://www.hlfp.de/fileadmin/redaktion/1._Aktuelles/
Fachartikel/Compliance_-_ein_Thema_mit_vielen_Facetten.pdf.

Linh Thao Ly. ,SeaFlows - A Compliance Checking Framework for Supporting the Process
Lifecycle®. 2013.

L. Ly u.a. ,,SeaFlows Toolset — Compliance Verification Made Easy for Process-Aware
Information Systems“. English. In: Information Systems Evolution. Hrsg. von P. Soffer
und E. Proper. Bd. 72. Lecture Notes in Business Information Processing. Springer Berlin
Heidelberg, 2011, S. 76-91. 1SBN: 978-3-642-17721-7.

R. Mietzner u. a. ,,Variability modeling to support customization and deployment of multi-
tenant-aware Software as a Service applications®. In: Proceedings of the 2009 ICSE Workshop
on Principles of Engineering Service Oriented Systems. IEEE Computer Society. 2009,
S. 18-25.

B. Oestereich u. a. ,,Objektorientierte Geschéftsprozessmodellierung mit der UML®. In: Test,
2003, S. 223.

OpenlD. OpenID Authentication 2.0. 2007. URL: https://openid.net/specs/openid-
authentication-2_0.html.

Oracle. javaz.servlet.Servlet. 2011. URL: http://docs.oracle.com/javaee/7/api/javax/
servlet/Servlet.html.

71

http://www.omg.org/spec/BPMN/2.0/
http://www.dnwe.de/news-cg-extern/items/siemens-versiebenfacht-zahl-der-compliance-mitarbeiter.html
http://www.dnwe.de/news-cg-extern/items/siemens-versiebenfacht-zahl-der-compliance-mitarbeiter.html
http://www.dcgk.de//files/dcgk/usercontent/de/download/kodex/D_CorGov_Endfassung_2014.pdf
http://www.dcgk.de//files/dcgk/usercontent/de/download/kodex/D_CorGov_Endfassung_2014.pdf
http://www.hlfp.de/fileadmin/redaktion/1._Aktuelles/Fachartikel/Compliance_-_ein_Thema_mit_vielen_Facetten.pdf
http://www.hlfp.de/fileadmin/redaktion/1._Aktuelles/Fachartikel/Compliance_-_ein_Thema_mit_vielen_Facetten.pdf
https://openid.net/specs/openid-authentication-2_0.html
https://openid.net/specs/openid-authentication-2_0.html
http://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html
http://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html

Literatur

[31]
[32]
[33]

[34]

[35]

[36]

72

N. Peters. ,,Oryx Stencil Set Specification“. In: Final bachelor’s paper, Hasso Plattner
Institute at the University of Potsdam (2007).

D. Polak. ,Bachelorarbeit: Oryx - BPMN Stencil Set Implementation“. In: Final bachelor’s
paper, Hasso Plattner Institute at the University of Potsdam (2007).

S. Sadiq, G. Governatori und K. Naimiri. ,Modeling control objectives for business process
compliance®. In: In Proceedings of BPM 2007. 2007.

Prof. Dr. Gerhard Schewe. Gabler Wirtschaftslexikon, Stichwort: Geschdiftsprozess. 2015.
URL: http://wirtschaftslexikon . gabler . de/Archiv /5598 /geschaeftsprozess -
vil.html.

W. Tscheschner. ,,Bachelorarbeit: Oryx Dokumentation®. In: Final bachelor’s paper, Hasso
Plattner Institute at the University of Potsdam (2007).

United States Code. Sarbanes-Oxley Act of 2002, PL 107-204, 116 Stat 745. Codified
in Sections 11, 15, 18, 28, and 29 USC. 2002. URL: http://files.findlaw.com/news.
findlaw.com/cnn/docs/gwbush/sarbanesoxley072302. pdf.

World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.1 (Second
Edition). 2006. URL: http://www.w3.org/TR/2006/REC-xm111-20060816/.

World Wide Web Consortium (W3C). Scalable Vector Graphics (SVG) 1.1. W3C Recom-
mendation. 2011. URL: http://www.w3.org/TR/SVG11/.

World Wide Web Consortium (W3C). W3C XML Path Language Version 2.0. W3C
Recommendation. 2010. URL: http://www.w3.org/TR/xpath20/.

World Wide Web Consortium (W3C). W3C XML Schema Definition Language (XSD) 1.1.
W3C Recommendation. 2004. URL: http://www.w3.org/TR/xmlschemall-1/.

T. Waizenegger u. a. ,PolicydTOSCA: A Policy-Aware Cloud Service Provisioning Approach
to Enable Secure Cloud Computing®. In: On the Move to Meaningful Internet Systems:
OTM 2013 Conferences. Bd. 8185. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, S. 360-376. 1SBN: 978-3-642-41029-1.

Alle Links wurden zuletzt am 01.06.2015 tiberpriift.

http://wirtschaftslexikon.gabler.de/Archiv/5598/geschaeftsprozess-v11.html
http://wirtschaftslexikon.gabler.de/Archiv/5598/geschaeftsprozess-v11.html
http://files.findlaw.com/news.findlaw.com/cnn/docs/gwbush/sarbanesoxley072302.pdf
http://files.findlaw.com/news.findlaw.com/cnn/docs/gwbush/sarbanesoxley072302.pdf
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlschema11-1/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

A. Anhang

A.1. Code-Listings

A.1.1. Compliance Descriptor aus Kapitel 6

<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<compliancedescriptor name="Versicherungsanspruch"
< xmlns="http://comb.iao.fraunhofer.de">
<rules>
<rule id="gefolgtVon">
<language>LTL</language>
<phase>design-time</phase>
<ruleExpression>
<expression>([] ($aktivitaetl -> <>
— $aktivitaet2)))</expression>
</ruleExpression>
<bindings parameter="1" variabilityPoint="$aktivitaetl"/>
<bindings parameter="1" variabilityPoint="$aktivitat2"/>
</rule>
<rule id="auslieferungsort">
<language>TOSCA</language>
<phase>deployment</phase>
<ruleExpression>
<expression>...</expression>
</ruleExpression>
<bindings parameter="1" variabilityPoint="$komponente"/>
<bindings parameter="2" variabilityPoint="$ort"/>
</rule>
<rule id="maxZeitZwischenAktivitaeten">
<language>ProgoalML</language>
<phase>run-time</phase>
<ruleExpression>
<expression>...</expression>
</ruleExpression>
<bindings parameter="1" variabilityPoint="$aktivitaetl"/>
<bindings parameter="2" variabilityPoint="$aktivitaet2"/>
<bindings parameter="3" variabilityPoint="$maxZeitDazwischen"/>
</rule>
</rules>
<requirements>

73

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

A. Anhang

<requirement id="Benachrichtigung des Kunden">
<lawURLs>
<law>GDV Code of Conduct</law>
<paragraphReference>
<xpath>/html/body/p[1]</xpath>
</paragraphReference>
</lawURLs>
<complianceExpression>gefolgtVon("Eingang des Anspruchs" ,
< "Beantwortung des Anspruchs") AND
— maxZeitZwischenAktivitaeten("Eingang des Anspruchs" ,

— "Beantwortung des Anspruchs" , "14 Tage"
<)</complianceExpression>
</requirement>

<requirement id="Ort der Kundendatenbank">
<lawURLs>
<law>Bundesdatenschutzgesetz</law>
<paragraphReference>
<xpath>/html/body/p[17]</xpath>
</paragraphReference>
</lawURLs>
<complianceExpression>auslieferungsort ("Kundendatenbank",
— "Deutschland")</complianceExpression>
</requirement>
</requirements>
<laws>
<law title="Bundesdatenschutzgesetz'>
<html>...</html>
</law>
<law title="GDV Code of Conduct">
<html>...</html>
</law>
</laws>
<entities>
<entities type="Component" name="Kundendatenbank"/>
<entities type="Activity" name="Eingang des Anspruchs"/>
<entities type="Activity" name="Beantwortung des Anspruchs"/>
</entities>
</compliancedescriptor>

74

Erklidrung

Ich versichere, diese Arbeit selbststindig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen be-
nutzt und alle wortlich oder sinngeméfl aus anderen Werken
iibernommene Aussagen als solche gekennzeichnet. Weder
diese Arbeit noch wesentliche Teile daraus waren bisher Ge-
genstand eines anderen Priifungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollstdndig versffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren iiberein.

Ort, Datum, Unterschrift

	Tabellenverzeichnis
	Abbildungsverzeichnis
	Einleitung
	Motivation und Aufgabenstellung
	Gliederung der Arbeit

	Grundlagen
	Geschäftsprozess
	Definition
	Modellierung

	Compliance
	Definition
	Business Process Compliance

	Business Process Model and Notation (BPMN)
	Elemente
	Diagramme
	Austauschformat

	State of the Art
	BPMN-Q
	Abfragesprache
	Erweiterungen
	Validierung
	Graphischer Editor

	SeaFlows
	Compliance Rule Graph (CRG)
	Validierung
	Grafischer Editor

	CoReL
	Grafisches Modell
	Validierung

	Compliance Descriptor
	Funktionalität
	Validierung

	Zusammenfassung

	Erstellung des grafischen Modells
	Bestandteile des Compliance Descriptors
	Anforderung
	Regel
	Bindung
	Gesetz
	Einheit
	Verbindung
	Gesetzesverbindung

	Anforderungen
	Das grafische Modell
	Regel
	Bindung
	Anforderung
	Gesetz
	Einheit
	Verbindung
	Gesetzesverbindung

	Überprüfung der Anforderungen

	Erstellung des grafischen Editors
	Der Oryx-Editor
	Backend
	Frontend
	Erweiterbarkeit
	Verwendete Version

	Anforderungen
	Implementierung des grafischen Editors
	Stencilset
	Plugins

	Überprüfung der Anforderungen

	Beispiel aus der Versicherungsbranche
	Der Prozess
	Compliance-Anforderungen
	Implementierung mit Hilfe des Editors

	Mobiler Prototyp
	Aufbau des Prototypen
	Verwendete Bibliotheken
	Implementierung der mobilen Anwendung
	Beispiel aus der Versicherungsbranche in der mobilen Anwendung

	Zusammenfassung und Ausblick
	Literatur
	Anhang
	Code-Listings
	Compliance Descriptor aus Kapitel 6

