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Abstract

Storing and analyzing large amounts of data are growing in importance since the fourth
industrial revolution. As more devices are becoming “smart” and are equipped with
sensors in today’s world, the amount of data that can be stored and analyzed grows.
Insights from this data are important for several industries, e. g., energy companies for
controlling smart grids.

Traditional Relational Database Management Systems (RDBMS) have reached their lim-
its with such huge amounts of data, which resulted in a new database type, the NoSQL
Database Management Systems (DBMS). NoSQL DBMS are specialized in handling
huge amounts of data with the help of distribution and weaker consistency. Between
these two a new type arose: Time Series Database (TSDB), which is specialized for
storing and querying time series data.

The amount of existing TSDBs is big, whereby for this thesis 75 TSDBs have been
found. 42 of them are open source, the remaining TSDBs are commercial. Many
of the found open source TSDBs are under ongoing development. The challenge is
the selection of one TSDB for a given scenario or problem. Benchmarks that have
the ability to compare several TSDBs for a specific scenario or in general are hardly
existing. This currently makes a choice based on performance only possible if TSDBs
are manually compared in a test environment or with a self-written benchmark.

In this thesis, a feature comparison with 19 criteria in five groups between ten of these
TSDB is presented and discussed. After presenting metrics, scenarios, and requirements
for a benchmark, a benchmark for TSDB, TSDBBench, is presented. TSDBBench uses
an Elastic Infrastructure (EI) and alterable workloads to measure the query latency and
space consumption in different scenarios that include an alterable cluster setup. All
benchmarking steps are automated, so that no user interaction is required after starting
the benchmark. It also uses an adapted version of Yahoo Cloud Server Benchmark
(YCSB) that is named Yahoo Cloud Server Benchmark for Time Series (YCSB-TS) for
creating and measuring the queries of a workload, which is also presented in this thesis.
For the performance part of the comparison, two scenarios are compared between the
ten TSDBs with the use of TSDBBench. The results of the performance comparison
are presented and discussed afterward. The thesis concludes with a discussion of the
results from the feature and performance comparison.






Contents

1 Introduction 11
2 Background and Related Work 17
2.1 Preliminary Findings . . . . .. .. . ... ... .. ... ... 17
2.2 Benchmarks . . . . . . . ... 21
23 Data . . ... e 23
3 Time Series Databases 25
3.1 Definition, Search, and Grouping . . . ... ... ... ... ...... 25
3.2 Group 1: TSDBs with a Requirement on NoSQLDBMS . ... ... .. 28
3.3 Group 2: TSDBs with no Requirement on any DBMS . . ... ... .. 31
3.4 Group3:RDBMS . . . . . . .. 33
3.5 Group4: Proprietary . . . . . . . . ..o e e e e e e 36
3.6 Feature Comparisonof TSDBs . . . . . . . ... ... ... ....... 36
4 Concept of a Time Series Database Benchmark 45
4.1 MetriCS. . . . o v o i e e e e e e e e e e e e e 45
4.2 SCENATIOS .« . « v v v v e e e e e e e e e e e e e e e e e e 49
4.3 Requirements on the Benchmark . . ... ... ............. 52
4.4 COMPONENLS . + v v v v v v v e e e e e e e e e e e e e e e e e e e 54
4.4.1 An Application for Measurement and Execution of Workloads . 54
4.4.2 An EI Platform that runs multiple VMs . . . . . . ... ... .. 56
4.4.3 An Application to deploy and provision VMsonanEI . . . . . . 57

4.4.4 An Application that starts a Measurement, waits for its Termina-
tion, and collects and processes the Results afterward . . . . . . 58
4.5 Architecture . . . . . . . .. e e e 59
4.6 Benchmark . . ... ... ... ... ... ... .. 65
4.7 Peculiarities . . . . . . ... e e e e e 71
4.7.1 Group 1: TSDBs with a Requirement on NoSQL DBMS . . . . . 71
4.7.2 Group 2: TSDBs with no Requirement on any DBMS . . .. .. 72
4.7.3 Group3:RDBMS . . . . .. ... .. 73



5 Measurements and Results
5.1 Scenario 1: 1,000 READ Queries . . ... ..
5.1.1 One Node Cluster with a RF of One . .
5.1.2 Five Node Cluster with a RF of One . .
5.1.3 Five Node Cluster with a RF of Two . .
5.1.4 Five Node Cluster with a RF of Five . .

..............

..............

5.2 Scenario 2: 250 SCAN, AVG, SUM, and CNT Queries .. ... .. ..

5.2.1 One Node Cluster with a RF of One . .
5.2.2 Five Node Cluster with a RF of One . .
5.2.3 Five Node Cluster with a RF of Two . .
5.2.4 Five Node Cluster with a RF of Five . .

6 Discussion
7 Conclusion and Outlook

A Appendix

Al Listof TSDBs . .. ... ............
A.1.1 Requirement on NoSQL DBMS . . ..
A.1.2 Requirement on NoSQL DBMS . . ..
A.1.3 Proprietary . .. ... .........
Al4 RDBMS ... ... ...........

A.2 Time series datain RDBMS . ... ......

A.3 Google search for popularity ranking of TSDBs

A.4 Python Modules and Tools . . . . .. ... ..
A41 TSDBs . .. ... ... ... ......
A.4.2 Java client libraries . . . . ... .. ..

A.5 Hardware and VM Settings . . ... ... ..

A.6 Supported functions by the compared TSDBs

List of Abbreviations

Bibliography

..............

..............

..............

..............

75
76
76
80
84
88
91
91
97
102
107

113

121

125
125
125
125
126
127
128
131
133
133
134
134
136

137

139



List of Figures

4.1 Overview of benchmark architecture . . ... ... ........... 60
4.2 Overview of benchmark process as BPMN diagram. . .. ... ... .. 63
5.1 Query latency results for INS queries in a one node cluster with a RF of

ONE. © v vttt ottt e e e e e e e e e e e e e e e e e e e e e e e 77
5.2 Query latency results for READ queries in a one node cluster with a RF

ofone. . . . .. e e 78
5.3 Space consumption results for a one node cluster with a RF of one. . . 79
5.4 Query latency results for INS queries in a five node cluster with a RF of

03 0 1< 81
5.5 Query latency results for READ queries in a five node cluster with a RF

ofone. . . . .. e e e 82
5.6 Space consumption results for a five node cluster with a RF of one. . . 83
5.7 Query latency results for INS queries in a five node cluster with a RF of

EWO. . o o e e e e e e e e 85
5.8 Query latency results for READ queries in a five node cluster with a RF

of tWo. . . . . e e e e e e 86
5.9 Space consumption results for a five node cluster with a RF of two. . . 87
5.10 Query latency results for INS queries in a five node cluster with a RF of

five. . . e 89
5.11 Query latency results for READ queries in a five node cluster with a RF

of five. . . . . . e e 90
5.12 Space consumption results for a five node cluster with a RF of five. . . 91
5.13 Query latency results for SCAN queries in a one node cluster with a RF

ofone. . . . ... e 92
5.14 Query latency results for AVG queries in a one node cluster with a RF

ofone. . . . .. e e e 93
5.15 Query latency results for SUM queries in a one node cluster with a RF

ofone. . . . ... e 95
5.16 Query latency results for CNT queries in a one node cluster with a RF

ofone. . . . .. e 96



5.17 Query latency results for SCAN queries in a five node cluster with a RF



List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2

4.3
4.4

6.1
6.2

Al
A2

Comparison of criteria group 1: Distribution/Clusterability. . . . . . . . 37
Comparison of criteria group 2: Functions and Long-term storage. . . . 39
Comparison of criteria group 3: Granularity. . . . ... ... ... ... 40
Comparison of criteria group 4: Interfaces and Extensibility. . . . . . . 41
Comparison of criteria group 5: Support and License. . . . . ... ... 43
Example of the data that is used in both measurement scenarios. . .. 50
A assignment of used Python modules and tools to the tasks described

inSection4.4.4. . . . ... e 59
Options in the Coreworkload of YCSB-TS and their default values. . . . 68
Deleted options in the Coreworkload of YCSB whilst extending it to

YCSB-TS. . . . e e 71
Overview over the three best results of each measurement in Chapter 5. 114
Ranking of TSDBs with points based on Table 6.1. . . . . . .. ... .. 118
A list of http://www.google.com results for each TSDB. . . . . ... .. 131
Comparison of supported functions by the compared TSDBs in this thesis.136


http://www.google.com




1 Introduction

The importance of sensors has been growing in the last years as the fourth industrial
revolution! began [BPV14; CBA+15; CON12; Han15]. Part of it are two concepts,
among others [WCZ15], that demand for more senors: Internet of Things (IoT) and
Cyber-Physical Systems (CPS). The first one describes the idea of smart objects that
can collect data from their environment and exchange it via the internet. The latter
one describes embedded systems that benefit from the connection between objects
and manufacturing machines. As the borders between both concepts are fluent, most
concepts take parts of both ideas and there exists no exact assignment.

An example for the intensified use of sensors are energy grids that need to be controlled
smarter and on a much finer granularity as before. Increasing amounts of renewable
energy, like solar panels, and smart meters are forcing a change in existing energy
markets [BF12]. The traditional producer (e. g., power plant) and consumer structure
changes because with solar panels there exist more consumers that are also small
energy producers, for example. Additionally, higher amounts of renewable energy
result in a more area and time dependent electricity generation (e. g., wind power is
mostly used in advantageous areas and solar power can only produce electricity by
day) [THK+15; XWWC10]. Smart meters help to control the energy flow on a finer
granularity by reporting energy consumption of each household back to the energy
provider. This can lead to a better prediction of energy consumption, which results in
smaller costs and other advantages for energy providers [Ele11; Unil4]. In a future
scenario, it could be possible to automatically control when a periodically running
machine is started (e. g., washing machine) [EM10]. This would help lessen peaks
in energy grids and distribute load over a day. Additionally, it can be forced by using
different prices based on time (e. g., off-peak electricity, which was popular in Germany
in the 70s), which in return could lessen energy costs for private end users.

The intensified use of sensors leads to an increased amount of sensor data that
needs to be stored and processed. As an example, for a smaller city that is fully
provided with smart meters, we can use 200,000 million voltage measurements each

1Also called “Industrie 4.0” [HR15].
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1 Introduction

month [SZGA15]. To handle that amount of data, it is necessary to scale the Database
Management System (DBMS) accordingly, which means distribution across several
nodes with the possibility to increase further when the city grows. There are different
views on the question if traditional Relational Database Management Systems (RDBMS)
can handle such amount of data. On one side, distributing writes in a relational model,
whilst keeping full consistency and the same level of query latencies, is not easily
possible [Abal2; PA13]. On the other hand, MySQL Community Server [Oral5f], a
traditional RDBMS, has been used to ingest 332,000 values per second into it, running
on three Amazon Web Services (AWS) Elastic Compute Cloud (EC2) servers [Vivl5].
This shows that, with enough effort and considering the use case, RDBMS can be used
for time series data.

NoSQL DBMS provide a solution with greater possibilities for distribution by weakening
relations and consistencies [Cat11; GHTC13]. Knowing that sensor data has most of
the time a timestamp attached to it and can therefore be used as an index, a trade-off
between RDBMS and NoSQL DBMS arose: TSDBs. The boundaries between NoSQL
DBMS and TSDBs are fluent, as there exists no precisely defined boundary between
them.

The term “TSDBs” is not accurate, as it is used as an abbreviation for “time series
database”, but is used in the meaning of “time series database management system”.
Normally a Database System (DBS) consists of a Database (DB) and a DBMS. While
“DB” describes a collection of data, “DBMS” describes the software that is used to
define, process, administrate, and analyze the data in a “DB” [HarO1; Mit13]. Most
literature uses the term “DBMS” (like RDBMS) instead of “DBS”. In this thesis DBMS,
RDBMS, and TSDB will be used in this non-accurate way.

A typical TSDB can store a combination of a timestamp and a value. Several timestamps
are grouped together in a metric. Most TSDB add further possibilities like adding
tags for finer relations and functions for aggregation (e.g., GROUP BY, CNT) and
mathematical calculation (e. g., average). TSDBs can be used for making decisions
(e. g., business intelligence [CLS09]), controlling complex systems (e. g., smart grids
[BDMO7; LLL+11; PA13; Stil4]), or creating benefits in some way by storing and
analyzing time series data. As it seems not feasible to store continuously every data
from any sensor everywhere forever, a trade-off is needed. Since each scenario has
different requirements, it should be possible to decide which sensor data can be stored
in an aggregated? way. An energy grid, for example, needs recent data on a very fine
granular basis for energy flow control decisions. Data that is only needed for long term

2E. g., storing the data of a sensor for one day in the available resolution and older data as one average
value per hour.
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decisions, can be stored it on a lower granularity (e. g., by using averaging or only
storing results) while deleting all fine granular data that is not needed anymore.

During this thesis, 42 open source and 34 commercial TSDBs have been found (see
Section 3.1), which makes the decision for a specific TSDB not straight forward.
Ongoing development and the launch of new TSDBs are also problematic. There are
many factors that can be compared between each TSDB for choosing one of them. In
this thesis 19 different criteria grouped in five groups (see Section 3.6) together with
the benchmark results were used for comparison (see Chapter 5).

Some TSDBs are more like a “dump” storage, while others can do complex calculations
besides storing data, which in itself changes the development of a project and its
performance. As there is no standard set of features or even a standardized query
language for TSDBs, it is needed to compare offered features of different TSDBs closely.
There are “inner” and “outer” features that need to be considered. The “inner” ones
decide which calculation can be done inside the TSDB and how (e. g., with which
granularity) your data is stored. The “outer” features decide how a cluster of a TSDB
is built and maintained, e. g., how to achieve High Availability (HA), how many nodes
can form a cluster, or if clustering is even possible.

Another aspect is the performance of a TSDB, which is divided into two parts: queries
and storage. The first part means how fast a TSDB can execute the queries passed to
it by an application. The type of a query is important here, as there is a difference if
an application uses simple READ queries, or INS queries (see below for explanation
of queries), or uses more complex queries. Performance can also be affected by the
amount of data already stored inside and being continuously written to the TSDB.
Storing data can also be more or less effective, as it can be stored as much compressed
as possible or in a very space consuming way, which makes the second part of the
performance aspect: storage.

Not only companies might consider costs as an important factor, as they might want to
know what the use of a specific TSDB costs in long term. Costs for acquiring a new
software consist of two parts: Initial costs and periodical costs [Kon13]. Most of open
source TSDBs are free to use, whereas most of the commercial alternatives are not.
Besides the price for buying the TSDB itself, additional software and the amount and
complexity of the development needed highers the initial costs. After the first setup
and development, there are periodical costs that can vary depending on the existence
of a support contract or if one or more employees are required to keep the TSDB in a
running state.

Development is another point to consider when choosing a TSDB. On one side, there
are TSDBs that are continuously developed, and on the other side, there are TSDBs

13



1 Introduction

that have not been in development for years. For a commercial product one pays to get
support and continuous development, but most open source alternatives do not offer
any kind of paid commercial support. Some do not even release or support a stable
or Long Term Support (LTS) version, which in result leads to the need of frequent
non-stable® updates. Another point is code quality and documentation, the lesser both
are, the higher can the costs for development and maintenance be, which should be
carefully considered.

Scientific comparisons or benchmark-results of TSDBs are rarely found or, if existing,
made for a specific purpose (e.g., showing that a new TSDB it better than a few
others). There are two existing benchmarks for TSDBs (see Section 2.2), but both
of them support only a subset of TSDBs. One uses a specific scenario (financial time
series data) and the other one is closed source. This thesis presents a comparison
between ten TSDBs, including a solution for an extensible benchmark for TSDBs with
variable workloads. The benchmark is called TSDBBench (see Section 4.5) and uses
an extended version of Yahoo Cloud Server Benchmark (YCSB) that is called Yahoo
Cloud Server Benchmark for Time Series (YCSB-TS) (see Section 4.6).

In the remaining part of this thesis, nine different queries will be used for comparison
and explanation: Insertion (INS), Updating (UPDATE), Reading (READ), Scanning
(SCAN), Averaging (AVG), Summarization (SUM), Counting (CNT), Maximization
(MAX), and Minimization (MIN). The resulting data inside a TSDB of one single INS,
that was successfully executed, is called row (of data), or record. A TSDB can store
several metrics, each metric consists of a name and several rows of data. It is used to
group rows of data together on a higher level than tags *. A row of data consists of
a timestamp®, a value®, and optional tag values. A tag can be imagined as a column
of a table in which each row can place a tag value. A tag can be used to group rows
together (e. g., each row consists of sensor values and a tag is named “room” and
the tag values are room numbers). Both the tag values and the name of the tag are
alphanumeric.

3A non-stable upgrade can require client side changes. Stable updates do not change Application
Programming Interfaces (APIs) or interfaces (e. g., a REST interface), only when a security issue (or
other important issues) require such changes.

4A metric is comparable to a table in RDBMS, e. g., storing voltage values from several sensors, grouped
by tags, in a metric called “voltages”.

A timestamp expresses a specific point in time. The finest granularity in a TSDB is used to describe
this point exactly, usually milliseconds.

6Usually floating point with double or single precision.
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The queries are described as follows: INS is a query that inserts one single row into a
DBMS. UPDATE’ updates one or more rows with a specific timestamp. READ reads
one or more rows with a specific timestamp or in the smallest time range possible.
SCAN reads one or more rows that are in a specific time range. AVG calculates the
average over several values in a specific time range. SUM summarizes several values
in a specific time range. CNT counts the amount of existing values in a specific time
range. Deletion (DEL)® deletes one or more row(s) with a specific timestamp. MAX®
and MIN? search for the maximum, respective minimum, value of several values in a
specific time range.

A time range can also be a timestamp. A granularity defines the distance between two
timestamps, and is usually used to describe a guaranteed granularity for storing rows
of data ([guaranteed] storage granularity)!® or a granularity with which rows of data
are received!!. Each query can have additional tags for grouping rows together (e. g.,
a tag is used to identify all values of a sensor). AVG, SUM, CNT, MAX and MIN are
aggregating queries, which means that the results can be grouped together in time
ranges (e. g., querying the maximum value of each day in a year). These descriptions
are very general and the exact definition depends on the DBMS in context.

A set of queries can be grouped together to a workload, which is usually fitted to some
scenario. A workload is called alterable, when the parameters or set of queries can be
changed to fit a new scenario (e. g., increasing the amount of queries). This definition
will be refined in Section 4.2.

For understanding this thesis, knowledge in the concepts of cloud computing are
required, see [FLR+14] for further reading.

The structure of the remaining thesis is organized as follows: In Chapter 2, previous
benchmark results, existing benchmarks for TSDBs, metrics, and other background for
understanding this thesis are presented. Chapter 3 introduces the existing TSDBs and
the search process used for finding them. Afterward, a subset of TSDBs is introduced

7This query is not used for comparing TSDBs in this thesis or with YCSB-TS, but is needed for Chapter 2.

8This query is not used for comparing TSDBs in this thesis or with YCSB-TS, but is needed for
Appendix A.6.

This query is not used for comparing TSDBs in this thesis, but is used in YCSB-TS as a replacement
for missing functions. See Section 4.2.

101n Section 3.6 storage granularity is used to describe the granularity with which rows of data can
be inserted, and guaranteed storage granularity describes the storage granularity that a TSDB
guarantees at least.

"Which can be different from the granularity used to store it.
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1 Introduction

more detailed and compared using 19 criteria. In Chapter 4, TSDBBench and YCSB-TS
are presented and explained in detail. This includes the benchmark architecture itself,
the requirements used, the problems that needed to be solved, and which scenarios
were used. In Chapter 5, ten TSDBs are measured in the scenarios from Chapter 4 and
the results are shown and discussed. Chapter 6 combines the results from Chapter 5
with the comparison from Chapter 3 to present and discuss an overall result and
give recommendations for different use cases. Chapter 7 completes the thesis with a
conclusion and points out problems and improvement potentials for future work.

16



2 Background and Related Work

This chapter presents background and related work and is structured as follows:
Section 2.1 summarizes the found scientific publications around TSDBs as background
for this thesis. Section 2.2 presents found benchmarks for TSDBs and NoSQL DBMS.
Section 2.3 presents time series datasets.

2.1 Preliminary Findings

Previous publications are motivated by releases of new TSDBs or the comparison of
any kind of DBMS for processing or storing time series data. Before TSDBs were widely
known, Pungila, Fortis, and Aritoni [PFAQ9] tried to find a fitting database for a set of
households with smart meters. For reaching their goal, they compared three RDBMS,
one TSDB, and three NoSQL DBMS in two scenarios. Both scenarios used a different
amount of INS (10,000,000 and 4,000,000) and READ queries over time periods with
sorted results. Each scenario was tested at different insertion rates. They came to the
conclusion that there are three possible DBMS for their scenario, depending whether
the focus lies on INS queries, READ queries, or both.

Bushik [Bus12] benchmarkes four NoSQL DBMS and one RDBMS (as a cluster and as a
sharded version) with the help of YCSB [CST+10] using the six given default workloads
of YCSB and one additional workload. Each workload runs on 1,000,000,000 records.
Bushik comes to the conclusion that there is no NoSQL DBMS that fits all needs and
that the choice depends on the queries used.

Deri, Mainardi, and Fusco [DMF12] present tsdb as a compressed TSDB that handles
large time series better than three existing solutions. They discovered OpenTSDB
[LSKD15a] as only available open source TSDB, but do not compare it to tsdb. The
reason is the architecture of OpenTSDB, which is not suitable for their setup. Deri,
Mainardi, and Fusco compare tsdb to MySQL! [Oral5f], RRDtool [Oet15] and Re-

!Deri, Mainardi, and Fusco do not specify which version of MySQL is used.
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2 Background and Related Work

dis [San15] instead, with the result that the append/search performance of tsdb is
best out of the four compared DBMS. A comparison to a TSDB that supports distri-
bution, like OpenTSDB, would have been interesting because the only other TSDB in
this comparison was RRDTool which has no distribution or scalability features (see
Section 3.1).

Wlodarczyk [Wlo12] compares four solutions for storing and processing time series
data. The results are that OpenTSDB is the best solution if advanced analysis is needed,
and that TempolQ (formerly TempoDB) [Tem15] can be a better choice if a hosted
solution is desired. No benchmark results are provided, only a feature comparison is
done.

Busemann et al. [BGG+13] propose a Service-oriented Architecture (SOA) for energy
monitoring and prediction. Busemann et al. use PostgreSQL [PGD15a] as storage in
their backend and evaluate its performance in two scenarios. PostgreSQL can execute
140 INS queries per second with no other queries running in parallel. After adding
SELECT queries? with varying rate and keeping the INS queries constant at 60 queries
per second, PostgreSQL can still handle the INS queries but more than 100 SELECT
queries per second cannot be completed in parallel to the them. The response time
is also varying dependent on the rate of queries, but both SELECT queries and INS
queries lie below 100 milliseconds. When the SELECT queries reach their maximum
at 100 queries per second, a doubled response time, with a few peaks with tenfold
response time, are observable.

Nelubin and Engber [NE13] extend YCSB to measure a specific scenario consisting of
a key-value database with “extremely high throughput” and “low latency” as require-
ments. The major idea is to provide an answer to one scenario instead of trying to
measure a greater set of scenarios like Bushik; Cooper et al. [Bus12; CST+10] do.
Nelubin and Engber also use Solid State Disks (SSDs) instead of Hard Disk Drives
(HDDs). They measure Cassandra [ASF15a], HBase [ASF15d], MongoDB [Mon15f],
and Aerospike [Aer15] with two different types of datasets, one with 50 million records
in memory, the other one with 500 million records on SSDs. They also measure two
workloads, one with balanced amounts of READ and UPDATE queries and one with
5% UPDATE queries. Their conclusion is, that Aerospike is the fastest competitor,
despite the fact that it ensures ACID properties, but on the other hand Cassandra and
MongoDB have more features. Other aspects like recoverability or performance on a
Elastic Infrastructure (EI)® needs to be tested and considered in future tests.

2These queries are generated by HTTP requests and not described any further.

3An El is a platform that uses virtualization to abstract RAM, CPU, storage, network and other hardware
from the physical hardware to run multiple Virtual Machines (VMs) on it.
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2.1 Preliminary Findings

Prasad and Avinash [PA13] propose NoSQL DBMS and TSDBs as better long-term
choices than RDBMS for the analytics of smart meter data. Prasad and Avinash
present a solution consisting of OpenTSDB, HBase, and Hadoop [ASF15c], mentioning
technical benefits and impacts on business value, when using their solution instead of
a RDBMS. They conclude that there can be an advantage for service providers, when
using open source NoSQL DBMS or TSDBs, but there is also skepticism for using them
instead of a RDBMS. The reasons for the skepticism are due to their novelty, as learning
and understanding these new technologies costs time and training. In addition, smart
meter data can not be fed directly to OpenTSDB and needs a conversion beforehand.
The tradeoffs when using a NoSQL DBMS like Cassandra or HBase (which OpenTSDB
uses) in consistency compared to a RDBMS must also be considered.

Abramova, Bernardino, and Furtado [ABF14] compare, with the help of YCSB, how
different cluster sizes affect the performance of Cassandra. After testing several
workloads, each with LOAD phases of 1 million, 10 million and 100 million INS
queries, Abramova, Bernardino, and Furtado come to the conclusion that adding more
nodes does not always result in a performance increase. INS or READ queries, for
example, benefit less than SCAN queries* from having more nodes available. The
reason is the insensitivity of INS and READ queries to amount of data stored in the
cluster. A higher amount of nodes results in fewer data per node, but also increased
communication between nodes that equalizes possible benefits from the fewer data
per node.

Goldschmidt et al. [GJK+14] benchmark OpenTSDB [LSKD15a], KairosDB [Kail5b],
and Databus [Lin15]. The aim of the work is to proof the question if any of these
TSDBs can scale linearly, handle industrial workloads, scale workload independent,
tolerate the crash of two nodes, and has an independent read/write performance. After
measuring two workloads on different cluster sizes, they conclude that only KairosDB
fulfills all their hypotheses and would be able to handle 6 million smart meters with
24 nodes. The tests of OpenTSDB are problematic, as the results are not repeatable.

Huang et al. [HCC+14] present Operational Data Historian (ODH) as a combination of
a TSDBs with complex queries in SQL. In this approach it is possible to query relational
and time series data with the same interface, as time series data is represented in virtual
tables. They also present IoT-X°, an IoT benchmark with two different workloads, with
which they show that ODH has a higher write performance as a commercial RDBMS

4Mainly when using a higher amounts of data, e. g., 100 million.

SHuang et al. plan to release IoT-X as an open source benchmark.
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2 Background and Related Work

and MySQL Community Server [Oral5f] by an order of magnitude and has an equal
read performance.

The End Point Corporation [End15] use a customized YCSB to compare Cassandra,
Couchbase [COU15], HBase and MongoDB with five different workloads. Each work-
load run at a maximum of 9 million queries. Each node has 500 million records.
Cassandra has the highest throughput and lowest latency over all workloads. The sec-
ond position is not clear, as it depends on the workload, whether HBase or Couchbase
performs second best. Although the results are obvious, the authors suggest doing a
fitted benchmarking for each scenario and that there is not one database that suits
every use case.

Strohbach et al. [SZGA15] describe Hadoop as a better choice as a RDBMS in a
smart grid scenario. The main reason is the easier achievable scalability because
less development is required. Strohbach et al. make their assumption based on the
experience and the data from the Peer Energy Cloud (PEC) [PEC15], that uses a micro
grid consisting of 100 households in Saarlouis. They extrapolate the data to a full
rollout that would result in 200,000 million voltage measurements each month and
360,000 energy-related measurements every second®. Each household can produce
2 million energy-related measurements a day and 18 energy-related measurements
every second®.

Taowen [Tao15] searches for an agile TSDBs and compares several DBMS. An “agile”
TSDB aggregates data in two steps: during ingestion and during querying. This two-
step aggregation helps to get different two-dimensional views on multidimensional data
in a faster way than with one-step or no aggregation. With two-step aggregation, there
is no need to run each query on the unaggregated data that was originally ingested,
but instead they are running on already aggregated data (that was aggregated after
ingestion). All DBMS are grouped into four groups: 1) “Old school” (e. g., RRDtool,
Graphite [Dav15]), 2) Fast key-value (e. g., OpenTSDB, KairosDB), 3) Aggregating
(e. g., Elasticsearch [Elal5], Druid [YTL+14]), and 4) Future (e. g., VectorWise [Act15],
Alenka [Ant15]). Not all of these DBMS are TSDBs, but can be adopted. Taowen
concludes that RDBMS and group two (fast key-value) can be a good choice if the
queries are well known beforehand and the data can fit into a “metric name centric”
data model. As this is not fitting for his requirements, a mapping for Elasticsearch is
build to use it as a TSDB.

As a summary it can be concluded that there is not one single database that suits every
use case. Benchmarking needs to be done depending on the scenario with a fitted

6Including voltage measurements.
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workload. Other features such as scalability need to be considered when choosing a
solution for storing and processing time series data.

2.2 Benchmarks

To evaluate the performance of a TSDB, a software that measures performance in-
dicating parameters in a controllable and defined environment, is needed. Such a
software is called a “benchmark”, which usually consists of at least two parts: A initial
set of records and a set of queries that are executed and measured on that initial set of
records. The initial set can be empty.

From the related work (see Section 2.1) it can be concluded that a benchmark that
can run and measure different scenarios, is required. It is needed to measure the
performance depending on a scenario as it seems impossible to give a unique solution
for every scenario. The main idea is that a workload, fitted for a scenario, can be run
and gives performance insights that help to decide which TSDB to use for the given
scenario. This leads to the need of alterable workloads. It is also needed to support
different TSDBs, which leads to the need of an extensible client interface. Furthermore,
the benchmark should be accessible, extensible and runnable by everyone that can
provide the hardware to run it. It is not expected that results are comparable between
different systems (meaning hardware). There are only few existing benchmarks espe-
cially for TSDBs or time series data. After extending the search for such benchmarks
that are related to TSDBs, time series data, cloud databases, or NoSQL DBMS, it was
possible to find more.

There are only two existing benchmarks for time series data: STAC-M3 Benchmark
Suite [STA15] and FinTime [Kail5a]. The first one is a closed source benchmark that
tries to measure performance of TSDB that can run analysis on time series data. There
is no possibility to get the specification or other materials of the benchmark without
being a council member. There seems to be support for only two TSDBs. The support
of different workloads or development of clients for new TSDBs is not appreciable. As
a result this benchmark is not fitting for the needs of this thesis because it supports
two TSDBs and is not accessible without being a council member.

FinTime is an open source benchmark for financial time series data. It uses two
different models and three metrics to determine the performance of a database in a
realistic financial setup with time series data. Its models do not match modern TSDB
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structures (Metric, Value, Tags)” and every query has to be run with ACID properties.
Considering this, its age of 16 years and the fact that the source code is not even
available for download anymore, it is not fitting for this thesis.

Taking benchmarks related to TSDBs into consideration, it was possible to find four
more: YCSB [CST+10], Transaction Processing Performance Council (TPC) [Tral5a],
Benchw [Kirl5], and APB-1 [Cou98].

YCSB is a benchmark for NoSQL DBMS, consisting of a framework and a six standard
workloads. The framework itself consists of three parts: A client that connects to
a database and runs queries on it, a workload generator that generates the queries
defined by the workload, and a core that does measuring, logging, as well as starting
and stopping different phases of the benchmark. The main idea is that the clients,
workload generator, and the workloads are alterable. The source code is open source
and actively maintained. YCSB is sometimes even considered as a standard benchmark
for NoSQL DBMS [Kam15; Rog14]. It seems that YCSB fits all criteria for this thesis,
as it has alterable workloads for running different scenarios, an extensible client and
is open source.

TPC has several benchmarks for measuring the performance of different business
scenarios. TPC-C [Tral5b] uses an Online Transaction Processing (OLTP) workload
that emulates a wholesale company. TPC-DI [Tral5c] benchmarks the integration
of data from different sources into one database, sometimes referred to as Extract,
Transform, Load (ETL) or Data Integration (DI). TPC-DS [Tral5d] emulates a decision
support system for a retail product supplier. TPC-E [Tral5e] uses a brokerage company
as a model and emulates OLTP transactions on its customer account database to
reproduce a interaction between the company and its customers. TPC-H [Tral5f]
emulates a decision support scenario, where the queries are more complex than OLTP
queries and therefore are inclined to have a long execution time. TPC-VMS [Tral5g]
tries to benchmark the performance of a database when running in a virtualized
environment. It takes one benchmark of TPC-C, TPC-E, TPC-H, and TPC-DS and runs
it three times parallel on three identical VMs. TPCx-HS [Tral5h] is a stress test for
systems that use Hadoop, HDFS [Bor15] and MapReduce [DGO08]. Although all TPC
benchmarks are clearly specified and open source implementations are available for
most of them, none of them is suiting for this thesis because all of them describe
single scenarios in a business environment and therefore are not able to run alterable
workloads.

’See Chapter 1.
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Benchw uses queries that emulate a business warehouse to measure the performance
of a database. Its intention is to be more easy runnable than the TPC-C, TPC-H and
TPC-R (deprecated) and measuring query performance like TPC-H. It supports eight
different RDBMS. Considering the same arguments used against the TPC benchmarks,
its age of 11 years, and a stale development, Benchw is not a fitting benchmark for
this thesis.

APB-1 was released by the OLAP council in 1998. It uses a business scenario to
measure the Online Analytical Processing (OLAP) performance of a database. The
scenario includes bulk loading, aggregation, time series analysis, complex queries, and
ad hoc queries. The same arguments against TPC can also be used again APB-1: The
lack of an alterable workload. It is also unclear if the OLAP council exists anymore, as
its homepage and the last release of APB-1 are from 1998.

2.3 Data

For benchmarking a TSDB it is necessary to insert data into it, so that the INS queries
themselves or some other queries, running on that data, can be measured afterward.
There are two possibilities for data: using existing “real world” data or generating
data.

For time series data, there were three sources for “real world” data found:
* The DEBS Grand Challenge 2014 [JZ14] and 2015 [JZ15],

* Awesome Public Datasets (a list of publicly available data sources) [Chel5b],
and

e UCR Time Series Classification Archive [CKH+15].

Some of the above data would be fitting for the presented benchmark (DEBS 2014
[JZ14] and some of the energy datasets from [Che15b]), while the rest is not fitting
because of the structure of the data® (DEBS 2015 [JZ15]) or the small size (UCR Time
Series? [CKH+15]). The main problem of using precaptured or precalculated data is

8DEBS 2015 uses reports of taxi trips as data (see Whong [Who14]) that containts 18 values (e. g.,
starting time, ending time, starting and ending longitude/latitude) per trip. The data is not usable
for TSDB as the values are not based on a timestamp (e. g., a sensor value) and have therefore no
time series character.

9Chen et al. offers several time series dataset, all of them below 10,000.
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that it is only fitting for one specific scenario. Furthermore, not all these datasets are
publicly available with a defined license (e. g., DEBS 2014, 2015).

The other idea is to use generated data for each benchmark run. The method for
generating data must be the same for each benchmark run. A benchmark needs settings
that determine exactly how data is generated, so that there are equal conditions®
between two runs that use the same settings. Randomly generated data with several
eligible distributions can be used in the generation method. The advantage is that
this method can be easily distributed and adjusted to fit a specific scenario. It can be
argued that there is a difference between each run when using random data because
the data generated on each run is slightly different due to the randomization (e.g.
every String is different). The structure of the data stays the same.

The presented benchmark in this thesis will use both methods, the main method will
be generated data but it is possible to use predefined data sets. The reasons for this is
that it should be possible to distribute the benchmark freely to everybody who wants
to run it for its specific scenario with fitting generated data. If there is existing data for
a scenario then there should be the possibility to use it to get possibly better results.

0For the generated data.
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This chapter presents the method of searching for TSDBs, the selection and grouping
of the compared TSDBs. It is structured as follows: Section 3.1 presents the method
of searching for TSDBs and how the compared TSDBs are selected and grouped.
Sections 3.2 to 3.5 present the four identified groups and representative of each group.
Section 3.6 compares these representatives with 19 criteria in five groups.

3.1 Definition, Search, and Grouping

For comparing TSDBs, it is necessary to define which databases belong to this group as
the term “TSDB” is not precisely defined or used. For this work, a DBMS that can (i)
store a record that consists of timestamp, value, and optional tags, (ii) store multiple
records grouped together!, (iii) can query for records and (iv) can contain time ranges
in a query is called TSDB. A further constraint is, that it must be possible to store more
than one value per timestamp with different tags and to make queries that contain
a time range (SCAN). This means that the “timeseries”’-character of the DBMS must
inherently exist, it must be possible to do queries by timestamps and time ranges
without modeling it on another structure (as done for two RDBMS in this thesis). A
RDBMS with a timestamp as primary key would be easy to think of as a TSDB, but
it is necessary to have the possibility to store more than one entry per primary key?.
Most TSDBs also provide some functions for querying like AVG, SUM, CNT and the
possibility to use a granularity. The use of granularity helps to retrieve results with
other time steps than originally stored: e. g., storing a sensor value every millisecond
but retrieving an AVG value for each second.

The process of finding TSDBs was done as follows:

IE. g., in a metric.

2This problem was solved by using an additional auto-incrementing primary key in the JDBC (SQL)
part of YCSB-TS, see Appendix A.2.
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4.
5.

Search with Google for “"time series database" OR "timeseries database"”
OR "tsdb"” resulted in 284,000 results®. The first ten pages with together 100
results were considered and each result individually searched for TSDBs.

Search with “any field” and “matches any” operators for “("time series
database" "timeseries database" "tsdb")” for papers in ACM Digital Library
resulted in 44 results*. Each result was individually considered and searched for
TSDBs.

Search with “((("time series database") OR "timeseries database") OR
"tsdb")” in “Metadata Only” for papers in IEEE Xplore / Electronic Library
Online (IEL) resulted in 54 results®. Each result was individually considered and
searched for TSDBs.

Searching “Time series database” article on Wikipedia (English)®.

Following further pointers found in step 1, 2, 3, and 4.

As a result, 75 TSDBs were found, 42 of them open source and the rest are proprietary.
Discussion of every single TSDB extends the scope of this thesis, but while using
different TSDBs it was found that some of them have similarities. These made it
possible to group them into four groups and discuss a smaller number of each group
in detail. The following groups were identified:

* Requirement on NoSQL DBMS

* No requirement on any DBMS

* RDBMS

* Proprietary

3The search URL was: https://www.google.com/search?q=%22time +series+database%22+OR+
%22timeseries+database%22 +OR+%22tsdb%22&pws=0&gws_rd=cr%2Cssl&gl=us&inurl=
https&btnG=Google+Search&hl=en.

4The search URL was: http://dl.acm.org/results.cfm?query= (%22time%20series%20database%22%
20%22timeseries%20database%22%20%22tsdb%22) &within=owners.owner=ACM&filtered=
&dte=&bfr=.

5The search URL was: http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&sortType=
&rowsPerPage =&searchField=Search All&matchBoolean=true&queryText= (((.QT.time%
20series%20database.QT.)%200R%20.QT.timeseries%20database.QT.)%200R%20.QT.tsdb.QT.).

SURL: https://en.wikipedia.org/wiki/Time_series_database#Example TSDB_Systems.
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3.1 Definition, Search, and Grouping

The first group exists of TSDBs that depend on an already existing NoSQL DBMS’. In
the second group are TSDBs, which can run completely independent of other DBMS.
The third group encloses RDBMS or RDBMS-based TSDBs. Some TSDBs can fit in
more than one group, for example such that can optionally use a DBMS. In this case
the decision in which group a TSDB is put depends on how the main part of it looks
like. For example: Is it a cluster system in which some parts can use other DBMS (e. g.,
Druid) or a client written for an existing NoSQL DBMS (e. g., Rhombus). The three
first groups contain open source TSDBs and DBMS only, as the main factor of the thesis
is on them. As last group, Proprietary contains all commercially or freely available
TSDBs that are not open source.

For each of the first three groups, there were TSDBs/RDBMS chosen based on popular-
ity. Popularity was decided by the amount of results in Google search, see Appendix A.3
for further explanation and results. Based on the results in Table A.1, there should be
at least three more TSDBs/RDBMS in this list: Prometheus [Pro15b], RRDtool [Oet15]
and MySQL Cluster [Oral5e]. In a discussion with the supervisors [BKF15], it has
been decided to additionally use Blueflood in this comparison.

Prometheus is a monitoring solution based on a pull-based model®, hence the pop-
ularity. Prometheus mainly uses pull-based INS queries instead of push-based INS
queries. It can do push-based INS queries, but needs a second component, called
Prometheus Pushgateway [Prol5c], for push-based INS queries. The data that was
pushed to the Pushgateway by one or more clients, is regularly pulled (“scraped”) by
Promotheus. Promotheus normally replaces the timestamps of the pushed data with
a new timestamp at the time of scraping. This can be avoided by setting an explicit
timestamp field, which is considered not useful in most use cases (See [Pro15d]). In a
discussion with the supervisors [BKF15], it has been decided against using Promotheus
in this comparison.

RRDtool is one of the oldest tools for storing time series data. It uses a Round Robin
Database (RRD) for storing data of a specific time range (e.g., a RRD that holds
one year of data) and can aggregate data automatically (consolidation). As it has
no client-server structure, lacks distribution and scalability, and has a problematic
high Input/Output load factor when running updates [Car15], it is not considered for
comparison.

’E. g., Cassandra, HBase, CouchDB.

8pull-based means that Prometheus periodically asks for data.
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MySQL Cluster is a MySQL variant® that has more features for a better scalability and
distribution than MySQL Community Server. With MySQL Community Server there is
already one of the most popular RDBMS (see Appendix A.3) used for comparison and
since RDBMS are not the main aspect of the comparison, MySQL Cluster was not used
in comparison.

Examining a TSDB was done in the following order°:
1. Architecture and dependencies
2. Initialization of the TSDB, metric and client

3. Functions (see Chapter 1) and Restrictions (e. g., no use of tags, cannot add
metrics while ingestion)

4. User Interface (UI)!!, Graphical User Interface (GUI)!? and clusterability aspects
(e.g., HA, scalability)

The following sections introduce each group and two or more representatives of each
group. In the following section, a feature comparison between them is done. A full list
of all TSDBs found can be found in Appendix A.1.

3.2 Group 1: TSDBs with a Requirement on NoSQL DBMS

There are twelve existing TSDBs that belong to the first group. In this thesis five TSDBs
of this group were taken into comparison. All of them depend on Cassandra [ASF15a]
or HBase [ASF15d] for storing their time series data.

Blueflood is a “multi-tenant distributed metric processing system” [Racl5a] that uses
Cassandra for storing its time series data. Blueflood consists of a server and a client
component, both written in Java. Zookeeper [ASF15i] is optional used to coordinate
locking on different shards while performing rollups. Elasticsearch [Elal5] is optionally
used to search for metrics. Blueflood uses log4j [ASF15f] for logging and can optionally

?MySQL Cluster and MySQL Community Server are both products of the Oracle Corporation.

101t is not always adhered to the order as, for example, Druid requires more explanation than other
TSDBs.

"Every non-graphical endpoint for user interaction with the TSDB is considered an UI, for example a
REST interface via HTTP or a Command-Line Interface (CLI) tool. A library is not considered an UL

12Every graphical endpoint for user interaction with the TSDB is considered a GUI, for example a
webpage via HTTP.
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use Coda Hale Metrics [Cod15] and JMX [Oral5c] for performance monitoring. It
supports rollups every 5, 20, 60, 240, and 1440 minutes that calculate minimum,
maximum, variance, and average data for further, more space efficient, storage. The
use of tags is not possible in Blueflood, but is in development [Rac15b]. Metrics
can be added “on the fly” while ingesting data. SUM is not implemented, but MAX,
CNT, AVG, and MIN are. Granularities can be used in the same steps as rollups, with
the insertion granularity as sixth alternative [Rac15c]. Blueflood does not provide
any UI besides itself as a set of Java classes that can be executed via CLI. HA is
possible by using more than one node per shard with coordination via Zookeeper.
Scalability and load balancing do not exist beyond the existing abilities of Cassandra.
An interface for JSON via HTTP, Kafka [ASF15e], Cloudfiles [Rac15d], StatsD [Ets15],
Graphite [Dav15] (performance metrics only), and the possibility to ingest via UDP
are provided.

KairosDB [Kail5b] uses H2 [Miil15] or Cassandra as a storage for time series data and
describes itself as “Fast Time Series Database on Cassandra” [Kail5b]. H2 is considered
as slow and only recommended for testing or development purposes (See [Mer15a]).
HBase was also supported, but support was dropped due to missing features'3. In the
results in the rest of this chapter, Cassandra was used as the backend for KairosDB.
Replication Factor (RF) and cluster information can to be configured in a configuration
file. CNT, AVG, and SUM are supported'*. Granularity can be chosen, but must be at
least one millisecond. One cannot pick an exact point in time because a time range
with at least one millisecond has to be provided, even for READ. No dependencies are
required when using H2, otherwise Cassandra is required. An Ul is provided in form
of a HTTP interface. A Java library as well as REST, graphite, and telnet interfaces are
provided.

NewTS [Eval5] is a “time-series data store based on Cassandra”. It consists of a server
and client, which both are written in Java. The given schema manager always creates
keyspaces with a RF of one, which means that the RF must be changed afterward or
the keyspace must be created by hand before the schema is applied. Queries can use
AVG, MIN, and MAX as aggregating functions, but CNT and SUM are not available.
Granularity can be chosen but must be at least two milliseconds for every aggregating
function. It is not possible to query for tags and time range (or timestamp) at the
same time. Filtering for tags is possible when not using aggregating functions. No
other dependencies than Cassandra are needed. An Ul is provided in form of a HTTP

13The KairosDB homepage still documents configuration options for HBase, but is says that support was
dropped [Kail5c].

4There are more aggregating functions supported, this list is not extensive.
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interface. SLF4J [Giil15] is used for logging. NewTS does not provide any approaches
for HA, load balancing, or scalability other than already exist in Cassandra. A Java API
as well as REST and graphite interfaces are provided.

OpenTSDB [LSKD15a] is a TSDB that uses HBase for storing its time series data.
HBase uses Zookeeper for coordination between nodes. Before OpenTSDB can be
started, HBase tables must be created. A metric can be created before ingestion
but OpenTSDB can also be set to generated metrics automatically at first ingestion
on a new metric. CNT!>, AVG, and SUM are supported!*. Granularity can be one
millisecond or second, but storage is only guaranteed on a granularity of one second.
It is not possible to ingest data with millisecond-level granularity. Every query needs
an aggregating function, which results in no possibility to perform a READ on a
timestamp without any aggregating function, which means that values on the same
timestamp and on the same metric must be distinguishable by tag values. HBase and
Gnuplot are required as dependencies. HBase needs Zookeeper as dependency. An
Ul is provided in form of a HTTP interface that draws graphs with Gnuplot. A REST
interface is provided. Compression for HBase (LZO) in productive use is advised,
but must be compiled manually [LSKD15b]. HA and scalability can be achieved by
using more than one OpenTSDB instance and the abilities of HBase. Load balancing
is possible by using Domain Name System (DNS) Round Robin, HAProxy [Tar15], or
Varnish Cache [Var15]. The latter one can load balance READ queries only.

The last member of this group, Rhombus [Par15b], is a client for Cassandra, written
in Java [Oral5b], and comes with a schema for writing “Keyspace Defintions”. The
“Keyspace Defintions” are a set of definitions that used by Rhombus to create a metric
inside Cassandra. Each metric has a set of fields, every field has a type (e. g., varchar,
int)'%. For each metric indexes must be defined. Each index needs a sharding strategy
and one or more fields. They describe which fields are possible to query in the later
used queries. A query on one or more keys without an existing and fitting index is
not possible. It is impossible to create metrics or add support for a higher number
of tags “on the fly” while ingesting data. Rhombus supports CNT as function, AVG
and SUM are not available. Setting a granularity or resolution for queries is not
supported. Combining tags with Boolean algebra is poorly supported, as it is only
possible to define an index on one or more fields for combining them. That can be
used as a Boolean “AND”. It has no other dependencies than the one to Cassandra.
Since Rhombus is a client only and there is no server part, it is possible to bypass any

150nly supported in version 2.2.0, which is not yet stable (2015-11-29).

16The fields describe all components of a time series row: timestamp, value and tags. For the rest of
this paragraph, the term “fields” is used with this definition.
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limitations or develop missing features by directly using Cassandra Query Language
(CQL). Rhombus does not provide any Ul or approaches for HA, load balancing, or
scalability other than already existing in Cassandra. As Rhombus is a Java client, there
is no other possibility for connecting than using its Java API.

3.3 Group 2: TSDBs with no Requirement on any DBMS

The second group consists of 12 TSDBs that all follow different approaches, but have
in common that they have optional dependencies on other DBMS for storing time
series data only. Some of them need other DBMS for storing metadata. Three of them
were taken into comparison in this thesis.

The first member of this group is Druid [YTL+14], which describes itself as a “fast
column-oriented distributed data store”. Druid uses a RDBMS like Derby, MySQL
Community Server, or PostgreSQL as metadata storage and Zookeeper for coordination.
It also needs a distributed storage like HDFS, S3 [AWS15], Cassandra, or Azure
[Mic15a], but can be run with a local filesystem for testing purposes.

Druid configuration is more complex in comparsion to other regarded systems, since it
has five different node types that need to be configured: Historical, Coordinator, Broker,
Realtime, and Indexing Service. Each of them serves a specific purpose: Historical
nodes load segments of (compressed) time series data from the distributed storage
if a query requests it. New segments are assigned by the Coordinator node, which
is responsible for assignment, distribution, load balancing, replication, and erasure
of segments. Every segment is announced via Zookeeper. Segments are used by the
Broker node to answer a query in a setup with more than one node (cluster). It uses
the announcements of segments to route the queries to the fitting nodes and merges
the results afterward.

Druid knows two different node types for data ingestion: Realtime nodes receive time
series data and index it in realtime. This means that this data is immediately available
for queries and is handed over to historical nodes in segments of a configured time
span. Endpoints, called Firehoses, for different sources, like Kafka, S3, Azure, Spritzer,
RabbitMQ, etc., are available. This type of ingestion is called “Realtime Ingestion”.

The other approach, which is called “Batch Ingestion”, uses an Indexing Service that
consists of three node components: Overlord, Middle Manager and Peon. If a client
wants to ingest data via the Indexing Service, it needs to contact the Overlord for
creating a task on a Middle Manager. The Overlord is responsible for coordination
(locking, distribution, etc.) of these tasks. A Middle Manager creates a locally running
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Peon that creates an endpoint to which the client can continuously send its data. This
Peon component segments the data and passes the segments to the historical node.
Middle Managers and their Peons typically run on the same machine, while an Overlord
can be on another node. An Overlord can also be used as Middle Manager in a small
scenario, for example. There is also the possibility to replace the Indexing Service with
a task called HadoopDruidIndexer that uses Hadoop to replace the Indexing Service.
An Indexing Service can be used to ingest data from stream processors like Samza
[ASF15g] or Storm [ASF15h] via the Tranquility API [Mer15b]. Despite the misleading
names, “Batch Ingestion” is preferred over “Realtime Ingestion” if it is required to
continuously ingest real time data into Druid. The reason behind this preference is
that “Realtime Ingestion” was developed first, but Kafka, which is one of the most
popular messaging systems, can hardly achieve HA [YTL+15a]. As a result, “batch
ingestion” was developed.

Druid supports replication for backup and HA purposes. Improvement in perfor-
mance by replication may exist, but was not the main reason for replication in Druid
[Yan14]. CNT, AVG, and SUM are supported'*. Self-written functions as aggregators
in JavaScript are also possible. Granularity can be chosen, but must be at least one
millisecond. Ingested data can be stored aggregated with a given granularity for saving
space, which is called “rollup”. Uls are provided in form of several HTTP interfaces.
HA, scalability, and load balancing can be achieved by increasing the replication factor
and the amount of existing nodes per type. For querying data, a REST interface, which
uses JSON, is available. There are several firehoses for ingestion available, see the two
paragraphs above.

InfluxDB [Inf15b] is a TSDB that does not depend on any other DBMS. Before data
can be ingested, a database must be created. A database can then accept different
metrics without the need of creating each metric. InfluxDB uses two protocols for
data ingestion: a text based protocol called “Line Protocol” and a deprecated JSON
protocol [Inf15e]. For every other query it uses a Structured Query Language (SQL)-
like syntax called InfluxDB Query Language (InfluxQL). CNT, AVG, and SUM are
supported!*. Granularity can be chosen, but must be at least one millisecond and
must be chosen cautious because the GROUP BY statement is only allowed to create
100,000 buckets at maximum [Bec15b]. Each bucket of a calculation contains the
aggregated result of a certain part of the given time range. This leads to a problem if
a function calculates over a time range exceeding 100,000 milliseconds and groups
the result in milliseconds, for example. It is possible to run functions automatically
at certain periods (named “continuous query” [Inf15d]) that can be used for “rollup”
(see Section 3.3), for example. An Ul is provided in form of a HTTP interface and
a CLI client. Performance metrics are internally logged. Interfaces for querying via
HTTP, UDP, OpenTSDB, Graphite, and Collectd [For15b] are provided. HA, load
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balancing and scalability can be achieved by using more than one InfluxDB instance'’.
Using more than one instance as a cluster is an experimental feature [Inf15c]. A
cluster can consist of several nodes, where the first started node together with the two
first connected (to the first node) nodes are “raft nodes”, which means they are able
to perform decision processes. All other nodes are called “data nodes” and cannot
participate in decisions.

MonetDB is a “column store” [Mon15a] that uses SQL as query language. MonetDB
does not depend on any other DBMS. Before data can be ingested, a database and
a table must be created. While most TSDBs use metrics or any related concept,
MonetDB uses databases and tables, which is typically used by most SQL-based RDBMS.
Every SQL statement is internally translated to a MonetDB Assembly Language (MAL)
statement. The differences between the SQL dialect of MonetDB and other RDBMS are
described by Wikibooks [Wik15] and Mon2015a. There are MonetDB SQL bindings
for different interfaces existing: Java Database Connectivity (JDBC), Open Database
Connectivity (ODBC), PHP, Perl, Ruby, Node.js, Python, and Mapi (C binding). CNT,
AVG and SUM are supported!#. It is possible to ingest data with millisecond-level
granularity'®. No Ul is provided besides a CLI client. Load balancing and scalability
can be achieved by using “merged tables” together with more than one MonetDB
instance. For doing so, existing tables must be manually grouped together to “merged
tables”, which results in a horizontally split table. No UPDATE or INS can be run
on a “merged table” and need to be run on one of the single tables instead. As a
result, achieving load balance and scalability is not an automated process. Since 2015
it is also possible to span “merged tables” across different databases [Mon15b]. An
approach for achieving HA by using “Transaction Replication” exists as an experimental
feature [Mon15d].

3.4 Group 3: RDBMS

The third group consists of five RDBMS. There are many more RDBMS existing, this
is a exemplary list. Two of them are used in this comparison. Both are compared
to gain insight how “traditional” RDBMS perform against TSDBs in a time series
environment.

17The Java client can only connect to one node, which may interfere with HA and load balancing, see
[Maj15].

8Depending on the table schema.
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For adopting RDBMS, a table structure that consists of an automatically incrementing
primary key, a timestamp, a floating point value, and several tags are used. See
Appendix A.2 for further details on the structure. At first, a table structure with the
timestamp as primary key was used, but that led to a problem: A TSDB can contain
more than one entry with the same timestamp (e. g., two sensors that are separated by
tags) and the primary key needs to be unique. For solving this problem, a new column
with an automatically incrementing primary key, called “id”, was added. Another
option is to use a combined primary key that consists of the value, all tag values
and the timestamp. This option was not used due to two reasons: First, tag values
are optional, which means that a row can have zero tag values. When two sensors
insert the same value at the same time, both have the same primary key. When two
rows have the same primary key, the unique criteria of a primary key is not fulfilled
anymore. Secondly, because it requires more calculation steps than an automatically
incrementing counter as for a new entry a combined key must be generated and
checked if it is unique by the DBMS'?.

MySQL Community Server [Oral5f] is a popular RDBMS, which does not depend on
any other DBMS. Before data can be ingested, a database and a table must be created.
The schema described above was used in MySQL SQL dialect that can be seen in
listing Listing A.2. Since MySQL Community Server is very popular, there are many
bindings for different interfaces existing: ODBC, JDBC, J, Python, C+, C, and more.
CNT, AVG, and SUM are supported!*. It is possible to ingest data with millisecond-
level granularity?°. No Ul is provided besides a CLI client?!. Performance metrics are
internally logged. Load balancing and HA for READ queries can be achieved by using
several nodes with master to slave replication and DNS Round Robin or third-party
load balancing software like Varnish Cache or HAProxy. Load balancing and HA for
write queries and scalability for all queries cannot be achieved as MySQL Community
Server is not able to perform master to master replication [Oral5g]. This does not
lead to scalability like it would when adding nodes to a TSDB, as every node needs to
store all tables completely. As a result, it is possible to gain performance for answering
queries faster or more queries at the same time, but every write has to be replicated to
all nodes, which may decrease performance. Additionally, the size of all databases can

191t must be considered that every primary key is checked if it is unique by the DBMS, even if it as an
automatically incrementing primary key. It is assumed that this check requires more calculation steps
for a combined key than for a automatically incrementing key, as several rows must be compared
instead of one.

20Depending on the table schema.

21 There exist many popular third-party Uls like phpMyAdmin [php15a], for example.
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not increase, compared to running on a single node because it must still fit on every
node. Possible solutions include the usage of MySQL Cluster [Oral5e].

PostgreSQL [PGD15a] is another popular RDBMS that does not depend on any other
DBMS. Before data can be ingested, a database and a table must be created. The
schema described above was used in PostgreSQL SQL dialect that can be seen in
listing Listing A.3. Since PostgreSQL is very popular, there are many bindings for
different interfaces existing: JDBC, Python, C+, C, and more??. CNT, AVG, and SUM
are supported'*. It is possible to ingest data with millisecond-level granularity?3.
No Ul is provided besides a CLI client?*. Performance metrics are internally logged.
Load balancing, scalability, and HA can be achieved by using several nodes that run
PostgreSQL. The problem is synchronization between the nodes that run PostgreSQL.
The main ideas to solve this problem and the resulting disadvantages are the same as
for MySQL Community Server (see above). PostgreSQL supports only master to slave
replication and also offers dividing the data into two or more partitions that are put
onto two or more nodes [PGD15b]. If an application needs data from one partition,
it can only connect to the specific instance. If it needs data from both partitions, it
needs to connect to both databases. This approach leads to the possibility to increase
the storage by adding nodes. There are, however, several drawbacks as the “logic” is
shifted from the database to the client: Each client must know every partition on any
instance. If a new instance is added, it must be made public to every client. Every
client also needs rules to choose the correct node for storing data for keeping a load
balancing strategy. These rules also need to be updated when a instance is added. The
last drawback is the resulting overhead when there are queries used, that span across
nodes: For each query, a query to all needed nodes must be made and the results must
be merged by the client. A solution to this is the use of master to slave replication of
each node on each node, which results in a lack of scalability: Each node would need
to store all data, which makes more free space by adding nodes impossible.

22Some of them are third-party software.
ZDepending on the table schema.

24There exist many popular third-party Uls like phpPgAdmin [php15b] or pgAdmin III [pgA15], for
example.
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3.5 Group 4: Proprietary

This group consists of proprietary TSDBs and services that offer storage and/or analysis
for time series data. Because this thesis focuses on open source DBMS, this group is
not described any further than listing group members in Appendix A.1.

3.6 Feature Comparison of TSDBs

The TSDBs from the first three groups are compared in this section. The criteria are
grouped into five groups:

1. Distribution/Clusterability
Functions and Long-term storage
Granularity

Interfaces and Extensibility

o H Wb

Support and License

The first group compares the following Distribution and Clusterability features: HA,
scalability, and load balancing.

HA gives the possibility to compensate unexpected node failures and network parti-
tioning. To compensate means that a query must be answered under the mentioned
circumstances, but it is not expected that the given answer is always consistent®°.
It is expected that a client needs to know more than one entry point (e. g., IP) to
compensate a node failure of an entry node.

Scalability is the ability to increase storage or performance by adding more nodes. The
ability must exist in the server part of the TSDB, otherwise adding a second TSDB and
giving the client side the possibility to use two TSDBs in parallel would also result in
scalability and a increased performance?S.

Load balancing is the possibility to equally distribute queries across nodes in a TSDB,
so that the workload of each node has just about the same level. If a TSDB uses another

251t is expected that the DBMS uses eventual consistency at least.

26Depending on the queries. If all queries only use the same node, then no performance increase is
possible for these queries.
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DBMS, it is checked if only the DBMS or the TSDB or both have these features. As
seen in Table 3.1, Druid the only TSDB fulfilling all three criteria without restrictions.
Both RDBMS do not fulfill any criteria, the remaining DBMS do with restrictions (e. g.,

fulfill them only for s

ome parts).

TSDB HA Scalability \ Load balancing
Group 1: TSDBs with a Requirement on NoSQL DBMS
Blueflood available available®® available®®
KairosDB available®® available®® available®®
NewTS available®® available®® available®®
OpenTSDB available available not available?’
Rhombus available®® available®® available®®
Group 2: TSDBs with no Requirement on any DBMS
Druid available available available
InfluxDB available??-3° available3° available?930
MonetDB available available with available with
(experimental)3! restrictions®? restrictions®?
Group 3: RDBMS
MySQL not available®? not available not available3?
Community Server
PostgreSQL not available3* not available not available3*

Table 3.1: Comparison of criteria group 1: Distribution/Clusterability.

27possible to achieve with DNS Round Robin or external tools like Varnish Cache (only for READ
queries) or HAProxy.

280nly for the Cassandra part.

29The Java client can only connect to one node which may interfere with HA and load balancing, see
[Maj15].

30Clustering is an experimental feature [Inf15c].
3l“Transaction Replication” is an experimental feature [Mon15d]. See Section 3.3.
32 Available with “merged tables” that cannot run INS or READ queries. See Section 3.3.

33Possible to achieve for READ queries with DNS Round Robin or external tools like Varnish Cache or
HAProxy, see Section 3.4.

34Possible to achieve for READ queries with DNS Round Robin or external tools like Varnish Cache or
HAProxy, see Section 3.4.
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Continuous calculation, the availability of AVG, SUM, CNT functions, and long-term
storage are compared in group 2: Functions and Long-term storage. Continuous calcu-
lation means that a TSDB, having this feature, can continuously calculate functions
based on the input data and stores the results. An example is the calculation of an
average per hour. As YCSB-TS uses AVG, SUM, and CNT as aggregating functions
(see Section 4.2), it is checked if these three are available. See Appendix A.6 for a
more detailed list of supported functions for each TSDB. It is also checked if tags
are available as these are needed to differentiate different sources (e. g., different
sensors). A solution for long-term storage is needed for huge amounts of data, as it is
challenging to store every value in full resolution over a longer period, considering the
city from Chapter 1 with 360,000 values per second (on a full rollout) as an example.
Solutions could range from throwing away old data to storing aggregated values of
old data (e.g., storing only an average over a minute instead of values for every
millisecond). Solutions that are running outside the TSDB are not considered (e. g.,
a periodic process that runs queries to aggregate and destroy old data). As seen in
Table 3.2, no DBMS fulfills any criteria without restrictions. Druid and InfluxDB can
fulfill them with small restrictions on long-term storage and continuous calculation.
Three DBMS do not fully support AVG, SUM, and CNT, one does not offer tags.

In group 3 “Granularity”, downsampling, the smallest possible granularities that can
be used for functions and storage, as well as the smallest guaranteed granularity
for storage, are compared. When using queries with functions, most TSDBs have
the ability to use downsampling for fitting the results when a result over a greater
period of time is wanted (e. g., an average for every day of a month and not every
millisecond). Downsampling does not mean that you can choose a period of time
and get one value for that period. For downsampling two periods must be chosen

35See [Racl5b].

36Filtering for tag values can not used in combination with time ranges or aggregation functions, which
results in a limited tag functionality, see Section 3.2.

37Versions above or equal 2.2.
38Boolean algebra is only poorly supported which results in a limited tag functionality, see Section 3.2.

39Druid uses an immediate “rollup” (see Section 3.3) to store ingested data at a given granularity which
helps for long-term storage but there are no further “rollups” after the initial “roll-up”. This can
be used in combination with rules for data retention and kill tasks (see [YTL+15b]) to achieve
long-term storage.

40Gee [Inf15d].
#1Using coninuous queries for downsampling and retention policies [Bec15a; Inf15d].

42Via triggers or views.
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TSDB Continuous Tags | AVG | SUM | CNT Long-term
calculation storage
Group 1: TSDBs with a Requirement on NoSQL DBMS
Blueflood n.a. na®| av n.a. av. av.
KairosDB n.a. av. av. av. av. n.a.
NewTS av. av’® | av. | na. | na. n.a.
OpenTSDB n.a. av. av. av. | av¥ n.a.
Rhombus n.a. av.®® | n.a. | na. av. n.a.
Group 2: TSDBs with no Requirement on any DBMS
Druid av. av. av. av. av. av.?
InfluxDB av.* av. av. av. av. av."
MonetDB av.*? av. av. av. av. n.a.
Group 3: RDBMS
MySQL av.+? av. av. av. av. na.
Community Server
[Oral5f]
PostgreSQL av.* av. av. av. av. na.

Table 3.2: Comparison of criteria group 2: Functions and Long-term storage (av. =
available, n.a. = not available).

and a value for each smaller period within the bigger period must be returned. The
smaller period is called sample interval. Granularity describes the smallest possible
distance between two timestamps, see Chapter 1. When inserting data into a TSDB,
the granularity of the input data can be higher than the storage granularity that a
TSDB guarantees to store safely. Some TSDB accept data in a smaller granularity than
they can store under all circumstances, which leads to aggregated or dropped data.
For TSDBs that use other DBMS for storing their data, some of the compared aspects
can be implemented manually with direct queries to the DBMS. Such solutions are
not considered. As seen in Table 3.3, eight DBMS support downsampling without
restrictions, six support sample intervals, storage granularities and guaranteed storage
granularities down to one millisecond. Two DBMS do not support downsampling,
another does only guarantee to store in second-level granularity, and one cannot use
time ranges smaller than two milliseconds.

43See [LSKD15c].

44 Depends on the types used in keyspace definition.
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TSDB Down- Smallest Smallest Smallest
sampling sample granularity | guaranteed
interval for storage granularity
for storage
Group 1: TSDBs with a Requirement on NoSQL DBMS
Blueflood not available | not available 1 ms 1 ms
KairosDB available 1 ms 1 ms 1 ms
NewTS available 2 ms 1 ms 1 ms
OpenTSDB available 1 ms 1 ms 1000 ms*?
Rhombus not available | not available 1 ms* 1 ms*
Group 2: TSDBs with no Requirement on any DBMS
Druid available 1 ms 1 ms 1 ms
InfluxDB available 1 ms* 1 ms 1 ms
MonetDB available*® 1 ms* 1 ms? 1 ms?
Group 3: RDBMS
MySQL available*® 1 ms*® 1 ms? 1 ms*
Community
Server
PostgreSQL available*® 1 ms*® 1 ms* 1 ms*

Table 3.3: Comparison of criteria group 3: Granularity.

The fourth group, Interfaces and Extensibility, compares APIs, interfaces, client libraries,
and plugins. In this group, available APIs, interfaces and client libraries, that are not
third-party, are listed*®. It was also checked if an interface for plugins exists. As seen
in Table 3.4, six DBMS support different APIs and interfaces like CLI, HTTP, etc., three
only support a CLI interface, and one does not offer support via any API or interface.
Seven DBMS offer client libraries in Java, four in more languages, and three do not
offer any client library. Plugins are supported by six DBMS.

4> Amount of resulting intervals (bucket) is limited to 100,000, see [Bec15b].
46Implemented via SQL with WHERE ... AND ... BETWEEN query.

4’Depends on the types used in table definition.

48Except for PostgreSQL, as it is not clear who developed the libraries.
49A set of executable Java classes.

SO0Experimental feature.
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TSDB APIs and Client libraries Plugins
interfaces
Group 1: TSDBs with a Requirement on NoSQL DBMS
Blueflood CLI*, HTTP not available not available
(JSON), Kafka,
statsD°°, Graphite,
UDP
KairosDB CLI, HTTP(REST + Java available
JSON, GUI),
graphite, telnet
NewTS HTTP(REST + Java not available
JSON, GUI)
OpenTSDB CLI, HTTP(REST + | not available®! available
JSON, GUI), Kafka,
S3, Azure, Spritzer,
RabbitMQ,
Rhombus not available Java not available
Group 2: TSDBs with no Requirement on any DBMS
Druid CLL, HTTP(REST + | Python, R, Java®? available
JSON, GUI),
Storm°?, Samza®?,
Spark>2
InfluxDB CLI, not available available
HTTP(InfluxQL,
GUI), UDP,
OpenTSDB>3,
Graphite®3,
Collectd>®
MonetDB CLI Java (JDBQC), not available
ODBC, PHP, Perl,
Ruby, Node.js,
Python and Mapi
(C binding)
Group 3: RDBMS
MySQL CLI Java (JDBQ), available
Community Server ODBC, J, Python,
C+,C,...>"
PostgreSQL CLI Java (JDBQC), available

ODBC, Tcl, Python,
C+, C, ...

Table 3.4: Comparison of criteria group 4: Interfaces and Extensibility.
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Support and License is the fifth and last group and compares the availability of a stable
version (LTS) and commercial support, as well as the license used. When using any
TSDB it might be important to have a “stable” branch , that only receives security
and bug fixing updates over a longer period, while there are newer versions (which
are not “stable”) released. Updates normally contain security and bug fixes and new
features, which can lead to changes that must be made to ones program. This requires
development and testing for every update. A “stable” version guarantees that an update
does not change anything that requires development or testing in ones program, which
can be cost saving in the long term, as there is less development required®®. If a issue
in a TSDB is encountered, it needs to be solved by internal or external developers.
In a situation where defined reaction times are required, that cannot be achieved
internal, or when an internal development team is “stuck”, commercial support is
very helpful. It might also save costs, when it is cheaper to outsource required TSDB
development. Only commercial support from the manufacturer/developer(s) of a TSDB
are considered. When developing or using an open source TSDB, it is important with
which license the TSDB is released. A license regulates how and by whom a product
can be used and what modifications are allowed to it. It also gives long term safety, as
it is clear on which rules a TSDB can be used, which can be problematic if a TSDB does
not have a license. As seen in Table 3.5, only the two RDBMS offer stable/LTS versions.
Commercial support is available for three DBMS. All DBMS are released under licenses
like GNU Lesser General Public License version 2.1 (LGPLv2.1)°7 [Fre99], GNU General
Public License version 2 (GPLv2)°” [Fre91], GNU General Public License version 3
(GPLv3)®>” [Fre07], Massachusetts Institute of Technology (MIT) [Mas88], or Apache
2.0 [ASF04], two use custom licenses. There are difference between those licensese. g.,
GPLv2 requires to provide modified and released source code of the complete system
where the code is part of. MIT or Apache 2.0 do not have copyleft guidelines and
products released under those licenses are better suited for this purpose [Spi03].

S1There are many clients made by other users.
52Via Tranquility.

>3Via plugin.

>4This listing is not extensive.

>>Some of them are third-party software.

>6Depending on the issue(s), “stable” updates can also include API or interface changes that require
development.

S7A suffixed plus sign indicates that later versions of this license can be used to license this software.

58Their “normal” releases are called “stable releases”, but are not what is considered “stable” in this
thesis as every release is called like that after it has passed several release candidate stages.
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TSDB LTS/stable Commerecial License
version support
Group 1: TSDBs with a Requirement on NoSQL DBMS
Blueflood not available not available Apache 2.0
KairosDB not available not available Apache 2.0
NewTS not available not available Apache 2.0
OpenTSDB not available not available LGPLv2.1+,
GPLv3+
Rhombus not available not available MIT
Group 2: TSDBs with no Requirement on any DBMS
Druid not available®® not available Apache 2.0
InfluxDB not available available®® MIT
MonetDB not available available® MonetDB Public
License Version®!
Group 3: RDBMS
MySQL available®? available® GPLv2
Community Server
PostgreSQL available® not available® The PostgreSQL
License®®

Table 3.5: Comparison of criteria group 5: Support and License.

In conclusion of the feature comparison, Druid seems to be the best choice, as it
fulfilled any of the criteria from the four groups besides having a stable/LTS version
and commercial support. Druid is complexer than other TSDB and it requires more
effort to get it running. A less complex DBMS like OpenTSDB or InfluxDB can be a

59See [Infl15a].
60Gee [Mon15e].

61«This License is a derivative of the Mozilla Public License (MPL) Version 1.1, where the difference is
that all references to ‘Mozilla’ and ‘Netscape’ have been changed to ‘MonetDB’, and that the License
has been made subject to the laws of The Netherlands” [Mon15c].

62Gee [Oral5d].
63Gee [Oral5h].
64See [PGD15¢].
65Several commercial support companies are listed on the PostgreSQL homepage, see [PGD15d].
66See [PGD15c].
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better choice. Both do not offer a client library or stable/LTS versions, OpenTSDB
additionally guarantees only second based storage granularity and cannot perform
load balancing. InfluxDB has clustering as an experimental feature only, but offers
commercial support. RDBMS can be an alternative as they offer a stable/LTS version,
but they lack the abilities for distribution and clustering and thus can be problematic
when scalability is needed. They also have many client libraries due to their long
history and wide popularity. MonetDB does also offer many client libraries and
distribution as well as clustering features with restrictions. Six of seven DBMS that do
not offer many client libraries, do offer many interfaces or APIs instead, which can be
an alternative. When using a modified DBMS in a commercial product, a license that
requires strong copyleft, should be avoided when it is not desired to release the source
code of the product under the same license. In Chapter 5 a performance comparison
using YCSB-TS between these ten DBMS is done. Four recommendations for different
requirements based on this feature comparison:

1. If fulfillment of all criteria of groups 1 and 2, a granularity of 1 ms, but no
commercial support, and no stable/LTS version is required, Druid is the best
choice.

2. If all criteria, commercial support, no stable/LTS version, no existing client
libraries are required, and experimental features are tolerated, InfluxDB is the
best choice.

3. If not all criteria, but a stable/LTS version is required, then one of the two
RDBMS are the best choice.

4. If not all criteria, but many client libraries and distribution as well as clustering
features are required, MonetDB is the best choice if the restrictions in clustering
and distribution can be tolerated.

These criteria excluded a performance comparison with the metrics of Section 4.1. If
these metrics have to be taken into account, a benchmark is required. This is presented
in the next chapter.
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Benchmark

This chapter presents the metrics and scenarios used for benchmarking TSDBs, as well
es the requirements on the benchmark, and the benchmark used in this thesis which is
named TSDBBench. It is structured as follows: Section 4.1 describes metrics for a per-
formance comparison between TSDBs. Section 4.2 presents the scenarios and metrics
used for benchmarking TSDBs. Section 4.3 describes the requirements for the TSDB
benchmark used in this thesis. These requirements are used in Section 4.4 to introduce
the components that are used to fulfill them. Section 4.5 presents the architecture of
TSDBBench. Section 4.6 describes the benchmark used inside TSDBBench which is
named YCSB-TS. Section 4.7 concludes this chapter with peculiarities for each TSDB
(if existing) that were necessary to avoid.

4.1 Metrics

For benchmarking it is necessary to define what should be measured and how to
evaluate the results for creating a ranking and distinguish between different results.
For doing so, a performance metric must be specified. YCSB-TS uses two metrics: query
latency and space consumption. Both are interesting if a TSDB needs to be chosen, as
they give an answer for the question how fast different queries are executed and how
space-efficient data is stored.

A single query is the smallest part in the interaction between a client and a database.
It is measured how long a query is executed from start, which is the event of sending
the query to the database, until a result is returned and received by the client. A query
needs to be executed successfully and completely, which means that a correct result
must be returned. A query that returns any kind of error or has not completed must be
ignored because it cannot be used in the result for comparison!. Measuring only one

!t is unclear how the latency of a uncompleted or erroneous query compares to a completed query.
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single query could be affected by random events created by network, by the operating
system or by hardware (e. g., the linux kernel flushes pages or different network queue
scheduling). It is necessary to repeatedly measure the same query type to average out
such events.

With query latency as a metric, it is possible to divide the results into different query
types so that it is possible to compare how fast each candidate ran each type 2. Other
benchmarks like YCSB and STAC-M3 Benchmark Suite also use query latency as a
performance metric.

Query latency is measured for a query type in a set of queries with the following
aggregating functions: Minimum, maximum, average, 95th percentage and 99th
percentage values. All values are measured in microseconds. The values are defined as
follows: Minimum latency is the latency of a query in a set of queries that required the
smallest amount of time to complete. Maximum latency is the latency of a query in a
set of queries that required the highest amount of time to complete. Average latency
is the latency of all queries in a set of queries divided by the amount of queries in
the set of queries. 95th percentage latency is the latency below or equal 95th percent
of the latencies of all queries in a set of queries are. 99th percentage latency is the
latency below or equal 99th percent of the latencies of all queries in a set of queries
are. Amount of time to complete means the time elapsed between sending a query to
the TSDB and receiving a successfully generated?® result. For each definition, a set of
queries consists of the same query type.

Space consumption is chosen as second metric as it is interesting if there is any differ-
ence in space efficiency between TSDBs when storing the same data. For measuring
space consumption, the used space in a system is measured before and after a set of
queries is run. The difference between both values gives the space consumption for
the measured TSDB for this set of queries. Although the system is forced to write all
data out of its buffers to hard drive before measurements are taken, it is not easy to
precisely measure the space consumption due to two problems: Caching inside the
TSDB and complexity of some TSDBs. Most TSDBs use some sort of internal caches,
which are hard to measure and thus are not measured. Some TSDBs are complex
systems that only transfer data after a given amount of time to another node for
long-term storage. Exactly predicting this moment when this happens is not easy and
therefore YCSB-TS ignores that. Knowing those inaccuracies, space consumption is
considered less valuable in this thesis than query latency.

2Section 4.2 presents the query types used.

3See Section 4.1.
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Space consumption is measured in bytes. The measurement is done with “df”*on
all folders used by a TSDB. The results of all folders of a TSDB are summarized
afterward.

After choosing those two metrics it is necessary to determine if they are a good perfor-
mance metrics. There are six characteristics of a good performance metric: linearity,
reliability, repeatability, easiness of measurement, consistency, and independence
[LilO5]. In the following, the two metrics are evaluated whether they fulfill each
characteristic.

A TSDB, that executes queries with half latency than another TSDB executes them,
can run the double amount of queries in the same time as the other one. Query
latency is therefore considered linear. Query latency is not reliable, as a result for a
specific query type or set of queries cannot guarantee that this result holds for other
query types or other types of circumstances. Query latency is repeatable because when
running a query under the same circumstances twice (or more), the resulting latency
stays the same®. Additionally, by running queries of the same type multiple times and
therefore averaging out random events, query latency is more likely to be repeatable,
as random events have less influence. How easy a metric is measurable depends on
the point of view, but as query latency only requires two timestamps, it is considered
as easily measurable. Results are not expected to be comparable between different
systems or sets of workloads (queries), since query latency is expected to depend on
the underlying hardware and the actual amount of data inside the TSDB®, therefore
query latency is not consistent. Because no manufacturer has influence on this metric,
it is considered independent.

Space consumption is also linear, as a TSDB that stores the same data (without any
loss) with half the space consumption than another one, stores it twice as efficient.
Space consumption is not reliable, as it is not guaranteed that a result for a specific
query or set of queries is true for all other types or other sets of queries. It is clear
that space consumption is not precise in some circumstances (see above), but it is
also considered repeatable as the same set of queries is expected to consume the
same amount of space when executed again under the same circumstances. For this
imprecise approach it is only necessary to execute commands for getting the actual
used space and syncing buffers to hard disk before and after queries are executed. It is

4A Linux tool for measuring space consumption in a folder.
SProvided that the TSDB used behaves the same with unchanged circumstances.

%It is expected that a TSDB has a different performance with zero rows of data in comparison with
e.g.,1,000,000,000 rows of data.
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therefore considered to be easily measurable. It is not as easy when the measurement
must be precise. As space consumption for the same data differs between filesystems,
space consumption is not consistent. Using the same arguments as for query latency, it
is considered as independent.

The given metrics do not satisfy all characteristics suggested by [Lil05]. As these
suggestions are not requirements, most of the better known performance metrics
(e.g., MIPS, SPEC) are not fulfilling all characteristics and still considered useful and
are used for comparison. These two given metrics are considered as a good choice
regardless because there are not many alternatives:

As an alternative, it is possible to not measure the latency and space consumption of
an alterable set of queries, and measure it for an exactly defined workload instead.
As a result, it is not possible to execute a workload suited for a specific scenario. It is
also be possible to run a specific workload to determine how many queries a system
can handle per second and to use that result to calculate a “unified” result, which
would be free of any system-depending artifacts. Such a result would be comparable
between different systems (hardware platforms). The issue is to measure how fast
a system is and satisfying (most of) the six characteristics of a good performance
metric (see [Lil05]). As it is not required for the presented benchmark, as its primary
use is to determine a result for a specific scenario on one system, system-depending
artefacts are acceptable as long as specific scenarios can be run. It is important that
the system-depending artifacts equally affect all measured TSDBs of a comparison.

It is also possible to use a pseudometric (see [LL13]) that takes all measured values
as well as some other values (that can also be not directly measurable) and creates a
new resulting value. This way, for example, every result could be expressed in costs
per query or costs per workload, which could be useful for determining the cheapest
solution for a company. As a result, a pseudometric would also be more specific than
considering all metrics individual, as the result clearly depends on how weights are
put on different values. Since this thesis should give a base overview over different
TSDBs, no pseudometric is used and the two metrics are considered individually and a
feature comparison between the measured TSDB is done.
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4.2 Scenarios

For comparison of the ten chosen TSDBs from Section 3.6, a performance evaluation is
done’. In this section, the two chosen scenarios for this evaluation are presented. As
mentioned in Chapter 2, when benchmarking TSDBs for finding a TSDB for a given use
case (e. g., a set of sensor data with a set of repetitive queries) it should be done in a
specific scenario. In this thesis exists no use case beyond the performance comparison,
which leads to the problem that one or more scenarios are required for comparison,
but all of them must be general or artificial as there is no given use case from which
they can be derived.

The reason for the performance comparison is to get an overview over the performance
of the compared TSDBs. Two simple scenarios have been chosen, which means that
every function is measured on a reasonable sized data set, without fitting to any
specific use case. Despite the missing use case, both scenarios have been designed
with an energy related setup in mind that contains a large number of sensors that are
grouped together in three categories (e. g., area, building and room). Furthermore,
these two scenarios show the possibilities of TSDBBench, which is designed to compare
different scenarios.

The comparison of the TSDBs is done using three different amounts of nodes in both
scenarios: one, two and five nodes®. This means that each scenario run three times
for each TSDB for examining any performance effects from distribution, which is also
called Elastic Speedup [CST+10] or Speedup [DeW91].

For running any other queries than INS without an empty result, a set of data inside
the used TSDB is required. For both scenarios, 1,000,000 rows of data are ingested into
one metric. Each row consists of a timestamp between August 10, 2015 09:10:05:00 PM
(UTC) and August 22, 2015 10:56:45:00 pm (UTC) (range is exactly 1,000,000,000
milliseconds). Each timestamp is chosen deterministic in ascending order from the
starting point in time to the end point in time in steps of 1000 milliseconds, which
results in a row of data every second. Each row of data has a floating-point® value that
was chosen uniformly at random between 0 and 10,000.

Before the data is generated, a set of 1,000 predefined tag values are generated. A tag
value is a alphanumeric string that has a fixed length of ten characters, consisting of

’See Chapter 5 for the results

8MySQL, MonetDB and PostgreSQL are only compared in one node setups, due to the restricted
distribution and clusterability features, see Section 3.6.

"With dobule precision.
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uniformly at random chosen alphanumeric characters. For each row of data, three tag
values are chosen'® uniformly at random from this set. See Table 4.1 for example data

Trows.

Timestamp Value TAGO TAG1 TAG2
1439241005000 | 6174.26568... | Wh64HSALAU dXannLxHhW | wbzkfQzt4z
1439241006000 | 9382.65704... | NlIesvVgVw 8GCHATrQzS nlnrv3cQQ5
1439241007000 | 4129.19188... | BMNGSOATXW dWLbGdatQY | wTRxjOtNW9
1440241005000'% | 1595.94873... | TjKaU8X1ly0 dWLbGdatQY dgvOwrz51n

Table 4.1: Example of the data that is used in both measurement scenarios.

The ingestion of the rows is done with INS queries, which give an overview how
fast data can be ingested into a TSDB. Each row of data is inserted with one INS to
simulate a group of sensors, with each of them sending data. This means that there
were no block based insert methods used that pass a set of INS to the TSDB.

The set of data was chosen with energy sensors in mind. Most energy sensors, like
voltage sensors, deliver floating point values with timestamps. Sensor values can
be grouped together with tags and therefore every value has three tag values (e. g.,
considering a energy related setup: a sensor delivers a voltage measurement every
second and is grouped into an area, a street and a building). 1,000,000 rows of data
were chosen because the data requires to be loaded in ten TSDBs in two scenarios with
querying afterward, which must be possible to load and execute in a reasonable time.
In a realistic scenario, the amount of rows can be much higher (see Section 2.1 for an
example).

SCAN, AVG, SUM, CNT, MIN, and MAX queries are the more complex queries found
in most of the compared TSDBs, see Appendix A.6 for a comparison. The first four
were chosen for YCSB-TS, MIN, and MAX queries are not used, only if one of the three
used types of aggregating queries (AVG, SUM, and CNT queries) is not available.

One workload is used for each scenario. A workload consists of a load phase and a run
phase. This initial group of INS queries is the load phase of both workloads, which

100ne for each tag.
1Equal to August 10, 2015 09:10:05:00 pM (UTC).
12Equal to August 22, 2015 10:56:45:00 pM (UTC).
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only consists of INS queries. The run phase consists of INS, READ, SCAN, SUM, CNT,
and AVG queries, that are executed on the data created by the load phase. The two
run phases of both workloads use two different groups of queries: group one consists
of READ queries, group two consists of SCAN, AVG, SUM, and CNT queries.

The queries in group one emulate the simplest form of TSDB queries: Return every
value at a specific timestamp. Timestamps are chosen uniformly at random between
the start timestamp and the end timestamp. The READ queries do not use any filtering
for specific tag values. This group is used to get an overview how fast values at a
single timestamp can be read out of a TSDB. It is expected that some applications
require to read data from a TSDB, which makes it a useable scenario®>. READ queries
are one way to read data from a TSDB, others are measured in the second group. As
READ queries are the simplest form of queries for reading data, they are used to get
an overview over the READ performance of the compared TSDBs. It is possible that
some TSDBs perform worse in group one and better in group two, so it is necessary to
measure all query types.

Group two uses SCAN, AVG, SUM, and CNT queries in combination with a period
of time and a given set of tags. Each type should be used in equal proportions, not
considering the initial INS queries. The idea behind these queries is, to emulate
queries that return an average, a sum, the amount or all data from a set of sensors
(e.g., an area) in a specific period of time. The period of time is chosen uniformly at
random between 1,000 and 10,000 milliseconds. The starting point of time of a period
is chosen uniformely at random between the start timestamp and the end timestamp
subtracted by the chosen period of time. Without the subtraction, it would be possible
that parts of the chosen period lie after the chosen end timestamp. Additionally, there
are one to five tag values from each of the three predefined group of tags added,
all chosen uniformly at random. This can result in an empty match, which means
that there is no row in this period of time that has one tag of each group of tags.
This is interesting because differences can exist in duration for such “non-matching”
queries.

Both groups used 1000 queries each, which results in 1000 measured READ, 250
SCAN, 250 AVG, 250 SUM, and 250 CNT queries per TSDB. Additionally, 1,000,000
INS queries were used to fill each TSDB. The latency, which is the duration between
sending a query and retrieving a result, was measured for each query. From these
measurements it was possible to calculate average and 99th percentage values, which
in return help to minimize effects from discordant values due to random effects. The

130therwise, when no application requires to read data from a TSDB, data would only be stored without
further usage.

51



4 Concept of a Time Series Database Benchmark

execution time of each phase of a workload was measured, which is used to calculate
how many queries are executed per second in each phase. See Section 4.1 for further
details on 99th percentage and average values. Additionally, the space occupancy
before, between and after both phases of a workload are measured to recognize
differences in storage efficiency. See Section 4.1 for further details on measurement of
space consumption.

These two scenarios are chosen for giving an overview over the performance of ten
TSDBs and are only a subset of the scenarios that are measurable with TSDBBench. As
explained in Section 2.1, alterable workloads are required for the benchmark presented
in this thesis. To fit other scenarios, it is necessary that the first phase of a workload
can have different amounts of INS queries than used in these two scenarios, and
the second phase can have any combination of READ, SCAN, AVG, SUM, and CNT
queries.

Not only the amount of data ingested in the first phase must be alterable, but also the
data itself. The period of time, the range of the values and the amount and length
of tags and tag values requires to be changeable. It must also be possible to add a
random amount of tag values to each value instead of a constant amount. In the two
scenarios above, randomization is also done uniformly, but can also be done in other
distributions, e. g., with emphasize on the newest value. It is important to have flexible
workloads to fit many scenarios, but instead of describing every required changeable
aspect of a workload here, a description of the workloads used in YCSB-TS is given in
Section 4.6.

4.3 Requirements on the Benchmark

In this section, requirements for a TSDB benchmark are presented. First of all, as
presented in Section 3.1, there have been 71 TSDBs found. Despite the fact that this
number is growing, most of those TSDBs are still in development and therefore are
changing frequently. The benchmark used in this thesis should have the possibility to
support most of existing and future TSDBs. As a result, there must be the possibility to
add a client for unsupported TSDBs (R1).

Regarding the fast development of some TSDBs, the results can change frequently.
Changes in other software (e.g., operating system, software that is a dependency
for a TSDB) are also expected to affect results. As a result, the benchmark must be
repeatable (R2), which means that it is possible to execute a workload again with
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another version (e. g., newer) of a TSDB'* and compare the results between both
versions.

For comparing different TSDBs, it is required that the results are comparable if created
on the same environment. The environment consists of the EI together with the
hardware it is running on and the used operating system and non-TSDB-specific soft-
ware. It is also required that each TSDB executes the workload with equal conditions,
which means that the benchmark used does not give advantages or disadvantages to
any TSDB (R3). It is not expected that results between different environments (e. g.,
measuring TSDB A on system A and TSDB B on system B) are comparable.

Section 4.2 presents a motivation for alterable workloads. This forms requirement
R4.

Most of the TSDBs can run on more than one node. Depending on the scenario, it can
be necessary to compare results between different amount of nodes, which helps to
find the necessary amount of nodes required to handle the scenario. Additionally, for
sending queries at least one second node is required, otherwise (when running on the
same node with a TSDB) the results could be affected by the generation of queries and
data®. If one node is not enough for saturating the TSDB, there are more nodes for
sending queries required. Both arguments lead to the requirement of additional nodes,
either physical or by virtualization (R5).

To compare several TSDBs in a user friendly way, automated deployment and provision-
ing of the nodes (VMs) is required (R6). Otherwise, every node must be provisioned by
hand which is not very user friendly, as it is expected to compare a workload between
several TSDBs (e. g., consider ten TSDBs with 5 nodes each, which would mean that
50 nodes must be deployed and provisioned by hand). Automatic deployment means
that VMs are automatically created with a specific operating system running on them
and automatic provisioning installs all necessary software and configurations for a
specific TSDB. This two-step process, deployment and provisioning, makes it easy to
derive each VM from a base VM or image (deployment) and install specific software
and configuration for each TSDB afterward (provisioning). A base image contains an
installation of an operation system prepared for further installation. Appendix A.5
presents the hardware specifications used for TSDB VMs and generator VM. In the rest
of this chapter, it is only referred to “base image”, without naming base VM explicitly.

14API changes of the TSDB not considered.
S>Which both requires a part of the available CPU cycles and RAM.
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As last requirement, it is necessary to execute a benchmark, gather, prepare and
visualize the results automatically to complete the automation (R7). Executing a
benchmark means that a workload and the measurement for each TSDB is started
automatically and the benchmark waits until the workload is completed. Afterward,
it receives the results, and prepares tables and graphs for visualization of the results.
This step is repeated for each compared TSDB and an overall result with graphs is
generated afterward. With this amount of automation, a benchmark run requires to be
initiated and the user can look at the prepared and visualized results later, without
provisioning, deploying VMs, or starting/stopping a benchmark manually for every
TSDB.

4.4 Components

From the requirements from the previous section at least four required components
can be derived:

1. An application for measurement and execution of workloads.
2. A EI that runs multiple VMs.
3. An application to deploy and provision VMs on an EI'6,

4. An application, that starts a measurement'’, waits for its termination, and collects
and processes the results afterward.

4.4.1 An Application for Measurement and Execution of Workloads

The first component is the “real” or “inner” benchmark!®, as this is the part of TS-
DBBench, that executes workloads and measures query latencies. First of all, it is
necessary to define what this application should be able to do:

* Support of an alterable workload with help of a workload definition!® (required
for R4), that can change at least the following:

16The EI from item 2.
17This means starting the application from item 1.
18See Section 4.4.4 for an explanation on the use of “benchmark”.

19E. g., in form of a file.

54



4.4 Components

Amount of queries used in each phase.

Combination of queries used in phase two (e. g., 25% of all query types).
If tag values are predefined or randomly on-the-fly created.

Amount of tags per row.

Range of time used.

Range of values used.

Increasing or randomized timestamps.

Distribution of randomization values (e. g., uniform, emphasis on the newest
inserts).

Amount of rows per timestamp.

* Executing a workload based on a workload definition (required for R2 and R3),
which includes the following steps:

Creating tags according to the workload definition.
Setup connection to a TSDB.
Start measurement of duration.

Start executing phase one of the workload, which means generating and
execution of INS queries to create the initial data set. The latency of each
query must to be measured. Every query must be checked if it has failed.

After all INS queries are finished, note the duration of phase one.

Start executing phase two of the workload, which means generating and
execution of INS, READ, SCAN, AVG, SUM, and CNT queries. The latency
of each query must be measured. Every query must be checked if it has
failed®°.

After all queries of phase two are finished, note the duration of phase two
and stop measurement of duration.

* Calculate averages and other arithmetic values for both phases (e. g., average,
min, max) (required for R7).

20Under some circumstances, like no existing matching rows, failed queries are accepted if an empty
result is considered erroneous by the TSDB or its client.
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Creating and closing the connection to different TSDBs (required for R7).

* Saving the results (required for R7).2!

Usage of the same conditions for each TSDB (required for R3).

Clients for new TSDBs must be addable (required for R1).

Creating a completely new benchmark that fulfills all necessary requirements leaves
the scope of this thesis, therefore an existing benchmark was adopted. In Section 2.2,
two benchmarks for TSDBs, and four that are related to TSDBs, are presented. Only
one benchmark has been found that is open-source, not “outdated”®?, and supports
alterable workloads: YCSB.

The basic idea behind YCSB is to measure latencies of basic?® queries, among others.
Support of alterable workloads, as well as extensible database bindings, is build-in.
The source code of YCSB is open source, which made it possible to extend YCSB to
YCSB-TS for satisfying our requirements (from the list above) in measuring TSDBs, as
YCSB cannot naturally benchmark TSDBs. See Section 4.6 for further details.

4.4.2 An EI Platform that runs multiple VMs

To run multiple VMs, an EI is considered as requirement (required for R5, R6 and
R7). Otherwise every node must be setup manually on physical hardware and tests
with different cluster sizes would not be possible in an automated way. There exist
several virtualization solutions out of which we can choose. The only requirement is an
existing vagrant provider or the possibility to create one by using an API. The first idea
is the use of VirtualBox [Oral5a], as Vagrant has support for it built-in. VirtualBox,
however, is mainly a single-host solution, it cannot provide the resources required for
setting up a cluster of VMs without being a possible performance bottleneck. When
choosing an existing commercial EI, AWS [AWS15] or Microsoft Azure [Micl5a] are
preferable, due to the low price per performance to Google Cloud [Goo15] and IBM
SoftLayer?* [Sof15] [Hugl5]. In Section 4.4.3, Vagrant is presented as solution for
deploying VMs in a EI. Both preferable Els have vagrant providers available and can be

21E. g., in a file

22If a benchmark has not received any development since more than five years, it was considered
“outdated”.

23YCSB names them Create, Read, Update, Delete (CRUD) queries.

24Tested in two versions: “bare metal” and “virtual”.
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used in combination with Vagrant [Has15b; Mic15c]. For this thesis access to two other
popular Els, one propriety and one open-source, was available: vSphere [VMw15b]
and OpenStack [Opel5b]. It was chosen to support both of these, to reach a wider
audience of possible users, instead of other commercial Els. Vagrant has providers for
both of these [Gial5; VMw15a]. Integrating another EI is possible, it is only necessary
to install the provider in vagrant and setup the configuration accordingly, as the code
in TSDBBench is not EI specific.

4.4.3 An Application to deploy and provision VMs on an EI

For deploying and provisioning VMs (required for R6 and R7) three possible approaches
have been found: Vagrant [Has15a], Docker [Doc15] or direct usage of the API of an
EL In the preferred programming language for this thesis, Python, bindings to all three
of them are available [DeL15; Fuh15; VMw15a].

An API of a specific EI requires extra code for each supported EI. This increases
the effort for integrating new Els compared to more abstracted and loosely coupled
approaches, like Vagrant and Docker, that separates EI specific code from TSDBBench.
It is therefore beneficial to use Vagrant or Docker to decrease the effort for integration
of new EIs by making use of already existing EI providers.

Since knowledge in using Vagrant was already existing, it has been decided to use it
for deploying and provisioning VMs. That leads to advantages when choosing an EI:
Vagrant has different providers and the possibility to add a new one for an unsupported
EL In this case, supplying a fitting Vagrant provider for the chosen EI is necessary.

For provisioning there are also solutions such as Puppet (see [pup15]) or Chef (see
[Chel5a]), which supports recurring configuration tasks beyond the capabilities of
Vagrant. Both provisioning tools are used to continuously manage (e.g., change
configuration, install software) a greater amount (e. g., 500,000, see [Chel5a]) of
nodes. For our architecture the capabilities of Vagrant are sufficient for running install
tasks and configuration tasks after the start of a VM, without the requirement of
continuous management2°. That leads to a decision against Puppet or Chef, which
would only increase the complexity of the architecture of TSDBBench without real
benefit.

25No changes are required after setup.
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4.4.4 An Application that starts a Measurement, waits for its
Termination, and collects and processes the Results afterward

After the possibility to deploy, provision and benchmark TSDBs on a EI, the last
component must be some sort of controller, that must manage the other parts to work
together (required for R2 and R7). It also fetches and processes the results after
finishing a benchmark run. The following tasks must be executed by the controller:

* Deploying and provisioning a set of VMs with Vagrant

* Running a chosen workload with YCSB-TS

* Fetching and processing the results after YCSB-TS has finished

* Repeating those steps for several TSDBs2® (optional)

* Creating a combined result from all results?® (optional)

* Generating plots and tables for single and (optional) combined results?’
* Making sure that there was not error in any of those steps

A tool that supports these tasks is described in Section 4.5. It is called TSDBBench.
To be consistent to Section 4.4.1, benchmark always refers to a “hole” benchmark
application, e. g., TSDBBench if not stated otherwise. This can be confusing because
TSDBBench, which is a benchmark, uses an adopted version of YCSB, which itself is a
benchmark as well.

Existing solutions where chosen for some of these tasks?®, see Table 4.2. Existing
solutions where chosen for some of these tasks. A mapping is presented in Table 4.2.
Pyhton-vagrant [DeL15] is a Python module that provides a Vagrant API. Bokeh
[Anal5] is a Python module for generating plots. Wkhtml-topdf [KT15] is a tool for
creating PDF files from HTML files. Fabric [For15a] is a Python module (also includes
a command-line tool) for running remote and local tasks.

261f more than one TSDB was chosen to be measured.
27These plots and tables are written to HTML and PDF files.

28More Python modules and tools were used for smaller tasks overall.
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Name of the task

Python-

vagrant

Bokeh

Wkhtml-
topdf

Fabric

Deploying and

X

provisioning a set of VMs
with Vagrant
Running a chosen X
workload with YCSB-TS
Fetching and processing X
the results after YCSB-TS
has finished
Repeating those steps for
several TSDBs2®
(optional)
Creating a combined
result from all results?®
(optional)
Generating plots and X X
tables for single and
(optional) combined
results
Making sure that there
was not error in any of
those steps

Table 4.2: A assignment of used Python modules and tools to the tasks described in
Section 4.4.4.

4.5 Architecture

The architecture of TSDBBench consists of two main parts, a node that is called
controller?® and an EI*? that contains all VMs as seen in Fig. 4.1. The controller can
create and destroy VMs on the EI and can interact with every VM on it. Interacting

means that the controller can send data, see the status and run processes on every
VM.

29Can also run on a VM inside the EL.

301n this thesis, vSphere and OpenStack are used as Els, see Section 4.4.2.
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Figure 4.1: Overview of benchmark architecture

The controller consists of two main parts: TSDBBench and Vagrant. TSDBBench
consists of three parts: TSDBBench.py, ProcessYcsbLog.py, and RunWorkload.py. It is
used to create all VMs required for running a workload, starting a workload, waiting
for it to finish and collect, as well as process, the results. For each supported TSDB
there is a set of Vagrantfiles that describe the deployment and provision process of all
required generator and TSDB VMs.

For every TSDB there must be VMs provisioned after deployment. There are three
possible solutions:

1. Full installation including the installation of the operating system.

2. Deriving from a base image that contains the operating system and only installing
TSDB-specific software afterward.

3. Creating an image for every TSDB and only derive VMs from the base images.

Option 1 consumes the most time during the test, as the operating system must be
installed for every node for every TSDB. Option 2 consumes less time than Option 1,
but it is necessary to distribute a base image or instructions how to create it. Option 3
is the fastest solutions, but requires the most space, as for every node type (e. g., master
and slave) for every TSDB an image must be created. These images or instructions how
to create them must also be distributed. Option 2 was used for TSDBBench as it was
chosen to be the best tradeoff between the time necessary to setup a measurement and
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the effort to distribute and use TSDBBench. Option 1 was not chosen because the time
to install an operating system (at least 15 minutes) is much more than deriving a new
VM from an image (approx. 2 minutes). Option 3 was not chosen because distributing
approx. 15 images was considered using too much space (e. g., one gigabyte per image
multiplied by 15) and bandwidth (when downloading) compared to Option 2. Even
when only distributing instructions for generation in Option 3, the space and time
required to create the images was considered too high. For comparison: Creating an
image takes about 30-45 minutes, deriving a VM from an image approx. 2 minutes
and installing TSDB specific software usually takes less than five minutes®' and is
done for each node in parallel. If Option 3 was used, then a new user must wait 7.5
hours until at least ten images are generated and a first measurement can be done.
It would save five minutes per measurement, which seems unfavorable, considering
long measurement durations (e. g., over an hour), future integration of more TSDBs
and the effort to update the operating system (recreation of each image instead of one
image).

For benchmarking a TSDB, two VMs types are required within the EI: generator VMs
and TSDB VMs. Both types can be instantiated multiple times in TSDBBench, but for
the scenarios described in Section 4.2, one generator VM and multiple TSDB VMs are
required. Multiple generator VMs are usable for further measurements if the limits
of one generator VM are exceeded (e. g., when saturation of the measured TSDB is
required but not possible with one generator VM).

A generator VM contains an operating system, derived from a base image, and two com-
ponents: RunWorkload.py and YCSB-TS. RunWorkload.py does further provisioning
and starts YCSB-TS. Further provisioning is required because this is the first situation
where all IP-addresses are known and can be given to each TSDB VM for further
initialization and setup®2. Since YCSB-TS cannot measure space consumption, Run-
Workload.py measures it for every TSDB in its specific TSDB folder before and after
the workload. It also measures the space consumption between the two phases of
YCSB-TS. See Appendix A.5 for the hardware specifications used for generator VM.

The latter one can run a given workload against a given TSDB whilst measuring
different values like query throughput, latency and duration (see Section 4.6 for a
more detailed explanation of YCSB-TS).

31Depending on the TSDB and its required software.

32E. g., each TSDB VM requires at least one IP-addresses of another TSDB VM to create the connections
between them.
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4 Concept of a Time Series Database Benchmark

TSDB VMs consist of everything that is required for that specific TSDB to run properly
in the given scenario, which means an operation system, that is derived from a base
image, and additional TSDB specific software. See Section 4.5 for further details on
the creation process of a TSDB VM and Appendix A.5 for the hardware specifications
used for TSDB VMs. After deployment and provisioning are finished, they are ready to
receive queries.

The steps from the initial request to the final measuring results rendered in diagrams
is presented using BPMN in Fig. 4.2. Each component is rendered as pool. The steps
are rendered as tasks and the communication between the scripts is rendered as BPMN
messages. Data exchange is done via files on the HDD and SCP commands.
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4 Concept of a Time Series Database Benchmark

The process of benchmarking a workload on a TSDB is executed in following steps
(see Fig. 4.2):

1. TSDBBench.py is started with at least one given TSDB and a workload as param-
eters

2. Deploy and provision generator VM(s)
3. For each TSDB:
1. Deploy and provision TSDB VM(s)
2. Execute and measure workload
3. Collect results after workload has finished
4. After termination destroy TSDB VM(s)
4. Destroy generator VM(s)
5. Generate HTML and PDF files for the result of each TSDB
6. Generate HTML and PDF files for a combined result (optional)

Deploying and provisioning TSDB VM(s) is done as follows:
1. For every Vagrantfile for the given database do:
1. Derive a VM from a given base image.

2. Run every given instruction in the Vagrantfile for provisioning it (e.g.,
installing software, configuring, ..)

2. Start RunWorkload.py on the first generator VM which executes further provi-
sioning®?
Executing and measuring a workload for one TSDB is done as follows:

1. TSDBBench.py starts RunWorkload.py on the first generator VM and waits for
the first TSDB VM to stop

2. RunWorkload.py measures space consumption on each TSDB VM

3. RunWorkload.py starts YCSB-TS in load phase with the given workload

33This step is required because this is the first situation where the IP-adresses of all TSDB VMs are
known.
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4. YCSB-TS creates, exutes, and measures (query latency) the queries of the load
phase

5. RunWorkload.py measures space consumption on each TSDB VM
6. RunWorkload.py starts YCSB-TS in run phase with the given workload

7. YCSB-TS creates, exutes, and measures (query latency) the queries of the run
phase

8. RunWorkload.py measures space consumption on each TSDB VM
9. RunWorkload.py stop the TSDB VM(s)
10. TSDBBench.py receives the results of the measurement
Generation of HTML and PDF files is done as follows:

1. ProcessYcsbLog.py is started by TSDBBench.py with the results from all measured
TSDB

2. ProcessYcsbLog.py performs the following steps for each result:
1. Parse collected log file to create a single compressed ydc file 3*
2. Generate HTML file that contains results and plots
3. Generate PDF file HTML file

3. Create HTML and PDF files with combined results (optional if more than one
TSDB was measured)

4.6 Benchmark

YCSB [CST+10] 0.4.0 was extended to YCSB-TS to run and measure workloads on
TSDBs. This section describes the necessary changes to YCSB.

YCSB uses CRUD queries®® for benchmarking NoSQL databases. Those queries are not
fitting for TSDBs due to the row schema and the missing support for delete and update
queries in most TSDBs. Of the ten compared TSDBs six support delete queries and five

34A type of file that contains the same information as the log file but has different syntax and is
compressed.

35INS is used for “Create”.
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support update queries (see Appendix A.6). Two of them are RDBMS and therefore
not counted as real TSDBs in this summation. As a result, real TSDBs support these
query types, and therefore these two query types are not usable for comparing TSDBs.
To support the typical queries of TSDBS (see Section 4.2), SCAN, AVG, SUM, and
CNT queries have been added to YCSB-TS.

The original row schema in YCSB uses a primary key with additional fields, all of
them alphanumeric®®. As this does not fit for TSDBs due to the missing timestamp
and floating point value, the schema was extended to consist of the following: a
timestamp, a floating point value and additional alphanumeric tags. To save the
timestamp, a floating point value with double precision (long), that describes the
elapsed milliseconds since January 1, 1970 00:00:00:00 am (UTC), was internally
used. Not all TSDB clients directly use this format, some need conversions to a specific
time format, which were performed accordingly.

Timestamps can be generated in ascending order or uniformly at random in a given
range®’. Values are generated uniformly at random in a given range. The amount of
tag values can be constant or uniformly at random in a given range. The tag values
are generated with constant or random?®® length, consisting of uniformly at random
chosen alphanumeric characters. A set of tag values can be generated for each tag
before the run phase. Tag values are then chosen uniformly at random from that set
of tag values each time a tag value is required. This helps when tag values are used
for querying, otherwise it is hardly possible to hit an existing row of data because it is
unlikely that a uniformly at random generated tag value exists. To read predefined
values and tag values, a threaded reader with variable buffer size for CSV files was
added. See Section 4.6 for further details on workload options.

None of the provided clients in YCSB were suitable for any TSDB. Clients for Blueflood,
Druid, InfluxDB, KairosDB, NewTS, OpenTSDB and Rhombus were added. The JDBC
client in YCSB was adopted for testing SQL based databases® that were used as TSDBs.
The non-suitable clients were dropped.

36The workload provided by YCSB, CoreWorkload, uses ten fields with 100 bytes length each as a
default.

371t is possible to create an uniformely at random amount of rows for each timestamp in a given
range, or pick a timestamp uniformely at random in a given range for each new row of data (see
Section 4.6).

38With different distributions: uniform, zipfian, and histogram.
39In this thesis, JDBC was used for PostgreSQL, MySQL Community Server and MonetDB.
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To determine the best possible result without any interaction with a TSDB, a test
mode for every client was implemented. In this test mode, the workload is executed
the same way as without test mode, but every TSDB interaction (e. g., connection,
querying) is not performed. This test mode helps to see what negative performance
effects are introduced due to use of YCSB-TS and what would be the lowest latency
possible. It also helps to determine the impact on each TSDB because every TSDB
should be provided with conditions as equal as possible. Exact equal conditions are
not possible due to the different client used for each TSDB and their internal handling
of the queries.

The provided default workload in YCSB (named CoreWorkload) required changes to
fit the new row schema and to support different TSDB scenarios. Table 4.3 describes
old and new options for query generation in Coreworkload. For the options that were
dropped from YCSB whilst extending it to YCSB-TS, see Table 4.4.
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Table 4.3: Options in the Coreworkload of YCSB-TS and their default values.

Name of the Option Description Default Values
insertstart The first timestamp in the time range 1439241005000
used for queries.
insertend The last timestamp in the time range 1439242005000
used for queries, must be before insert-
start.
metric The name of the metric used in every usermetric
TSDB.
tagcount The amount of tags used for every row. | 3
tagvaluelength- The distribution used to choose the constant
distribution length of each tag value. Possible val-
ues are constant*’, uniform*!, zipfian*?
and histogram®*3,
tagvaluelength The maximum or constant tag value 10
length.
tagprefix Prefix of the tag names. A increasing TAG
number, beginning from zero, is added
to this prefix.
randomtag- If set to true, between zero to tag- false
amount amount tag values are added to each
row. Otherwise, a constant amount of
tag values, given in tagamount, is used.
predefinedtag- If set to true a set of predefined tag val- | true
values ues for each tag is generated and tag
values from these sets are picked. Other-
wise, every tag value will be generated
randomly.
predefinedtag- This number describes how many pre- 100
valueamount defined tag values will be generated for

each tag.

49Same length for every tag value.

#lUniformely at random chosen length between 1 and tagvaluelength.

42Random with preference for short lengths between 1 and tagvaluelength.

43Read distribution from file defined in taglengthhistogram.
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Added options in the Coreworkload of YCSB-TS and their default values. (continued)

Name of the Option

Description

Default Values

predefinedtag- The name of the file in witch the prede- | predefinedtags.txt
storagefile fined tag values are stored for passing
them from load phase to run phase.
predefinedtag- Only store used tag value combina- true
storeused tions**, which means that a query can
only miss by timestamp or range.
valuemax Highest possible value. 10000
valuemin Lowest possible value. 0
taglength- Name of the histogram file used when hist.txt
histogram tagvaluelengthdistribution is set to his-
togram.
avgproportion Proportion of AVG in run phase. 0
countproportion Proportion of CNT in run phase. 0
sumproportion Proportion of SUM in run phase. 0
timevalue The granularity or bucket size passed to | 0
aggregating functions (e. g., aggegrate
over each day). O is interpreted as the
hugest possible bucket (e. g., return one
aggregated value over the given range
of time).
timeunit Unit for timevalue. ms
maxscanlength Maximum time span of a SCAN in mil- | 1000
liseconds.
minscanlength Minimum time span of a SCAN in mil- | 1000
liseconds.
scanlengthdistri- Distribution with which the scan length | uniform
bution is chosen. Possible are uniform* and
zipfian*®.
maxrecordsperts This value describes how many rows per | 10

timestamp are allowed.

44A tag value combination consists one chosen tag value for each tag.

4>Uniformely at random between minscanlength and maxscanlength.

46Random between minscanlength and maxscanlength with preference on shorter values.
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Added options in the Coreworkload of YCSB-TS and their default values. (continued)

Name of the Option Description Default Values
randomamount- Desribes how multiple rows per times- | constant
perts tamp are distributed. Can be constant*’,
random*® or tsrandom®.
randomfloor- When randomamountperts is set to false
filling tsrandom, make sure there is at least
one row per timestamp.
querymaxtag- This value describes how many tag val- | 10
values ues at maximum should be given for
each tag when using filtering for tags.
The amount is chosen uniformely at ran-
dom between one and this value.
notagsforread If true: Do not use filterfing for tags true
when performing READ.
readfromcsv If true: Do not generate data, read it false
from CSV file defined in csvfile.
csvfile Name of the CSV file when readfromcsv | values.csv
is set to true.
csvbuffersize This value describes the size of the 100000
buffer used to read a CSV file.
description Description of the workload. Testworkload
timeresolution The size of one time step in milliseconds | 1000
between two rows (e. g., a value of 1000
means that each value is one second
apart from each other.).

47Constant amount of rows per timestamp.

48Between 1 and maxrecordsperts rows per timestamp, the amount(!) per timestamp is chosen

uniformely at random.

49Chose timestamp for each row randomly, maxrecordsperts is ignored, lowest amount per timestamp

is zero rows.
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Name of the option

Reason

fieldcount Replaced by tagcount.

fieldlength Replaced by tagvaluelength.

readallfields Not used for TSDBs.

writeallfields Not used for TSDBs.

fieldlengthdistribution Replaced by tagvaluelengthdistribution.
updateproportion Not used forTSDBs, UPDATE is not implemented.

readmodifywriteproportion

Not used forTSDBs.

insertorder

Not used for TSDBs.

hotspotdatafraction Not used for TSDBs.
hotspotopnfraction Not used for TSDBs.
table Replaced by metric.
columnfamily Not used for TSDBs.

Table 4.4: Deleted options in the Coreworkload of YCSB whilst extending it to YCSB-
TS.

4.7 Peculiarities

Some of the compared TSDBs needed special treatments or setups to be usable in this
performance comparison. This section presents these peculiarities for each TSDB (if
existing) and the solutions used. Each of the TSDBs is presented in Chapter 3.

4.7.1 Group 1: TSDBs with a Requirement on NoSQL DBMS

Blueflood does not support tags, SUM queries and freely chosen granularities. See
Section 3.2 for more details. As a result, all queries are without tags, SUM is replaced
by MIN and the given granularity steps are used. As a result, the results of Blueflood
must be compared with caution, as it has advantages in the second scenario. If the
queries of the second scenario (SCAN, CNT, AVG, and SUM) do not need to search
for tag combinations and need to filter for timestamp only, a faster result is possible.
It is also unknown how easier or harder MIN is executable compared to SUM. The
queries of the second scenario use granularities, which they set to one value over the
chosen timestamp for a query. Blueflood supports the granularity that was used when
data was ingested or 5, 60, 240, or 1440 minutes. As a solution 1440 minutes was
used to use as coarse granularity as possible.
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KairosDB requires a time range of 1 millisecond for READ, which was used. It is unclear
how this affects comparability. KairosDB is the only TSDB that is compared with two
backend: Cassandra and H2. While KairosDB with Cassandra is compared with all
cluster setups, KairosDB with H2 is only used in single node setups in Chapter 5.

NewTsS has several limitations when filtering for tag values is used. It cannot filter for
tag values and timestamp or time range together, which means that it is impossible
to filter for values in a time range with one or more tag values. When filtering for
tag values, there is no possibility to use Boolean logic, instead it is possible to pass a
group of tag values to NewTS only. It can be chosen if all tag values must be fitting or
only one of them. To chose a correlation which of the chosen tag values must fit on
which tag is not possible. Filtering for tag values cannot be used in combination with
aggregating functions. As a result, filtering for tag values is not used. NewTs does not
support CNT and SUM, as replacements are MIN and MAX used. Granularity must be
at least two milliseconds. It cannot be chosen to return one aggregated value over the
whole time range (for receiving one aggregated value). As a result, granularity was
chosen to be one year. The argumentation that comparability is not known is the same
as for Blueflood.

OpenTSDB requires a time range of 1 millisecond for READ, which is used. MIN is
used as aggregator for READ, due to OpenTSDB requiring an aggreating function for
every query’. It is unclear how both affect comparability.

Rhombus does not support AVG and SUM. CNT is used as replacement. Rhombus
does not support granularity. It is unclear if Rhombus benefits from not having to
group values in a given granularity and only using CNT as aggregating function.

4.7.2 Group 2: TSDBs with no Requirement on any DBMS

Druid supports several endpoints for querying and ingestion. Tranquility (Finagle API)
is used for ingestion in YCSB-TS. In the scenarios used for comparison, a specific time
range is used for all TSDBs. It was not possible to use a time range in the past when
using Druid, even when the window period is set accordingly®!. The time range is
shifted to the actual time as solution, while keeping the range at the same size. MySQL

>00ther TSDBs in this comparison do not use an aggregator for READ.

>1The window period is used by Druid to decide how far back values are accepted. Values outside that
period are automatically dropped instead of ingested.
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Community Server was used as metadata storage for Druid in the comparisons in
Chapter 5.

InfluxDB has no peculiarities in the scenarios used. For ingesting data the “Line
Protocol” is used. See Section 3.3 for more details.

MonetDB shares the same peculiarities as MySQL Community Server and PosteSQL.
These are described in the next subsection.

4.7.3 Group 3: RDBMS

As MySQL Community Server, PostgreSQL and MonetDB share the same peculiarities,
due to their SQL based languages and table structures, the following applies for all
of them: For creating tables and queries similar the other TSDBs, a relational schema
is used, see Appendix A.2 for the tables and queries. Due to their restrictions in
clusterability and distribution features (see Section 3.6), all three are compared in
single node setups on Chapter 5 only.

The benchmark presented in this chapter is used to create the performance comparison
between the ten compared TSDBs in the two presented scenarios from Section 4.2.
The results of the performance comparison are presented in the following chapter.
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This chapter presents the result from the benchmarks of the two scenarios described in
Section 4.2. It is structured as follows: Section 5.1 presents the results from Scenario 1
(1,000 READ queries). Section 5.2 presents the results from Scenario 2 (250 SCAN,
AVG, SUM, and CNT queries).

Both sections are divided in four different setups, each presented in its own subsection.
In the first subsection, each TSDB has one node! only. The three subsequent subsections
present the usage of a cluster of five nodes for each TSDB, with changing Replication
Factor (RF) (1, 2, and 5). Both sections present query latency results. Section 5.1
presents aditional space consumption results. Query latency results of INS queries and
Space consumption results are omitted in Section 5.2 because both scenarios use the
same data? and there are no differences in the results identifiable. Section 4.1 presents
details on the metrics used. The lowest possible resolution for measuring query latency
with YCSB-TS is 1 us. For 99™ percentile query latency® the lowest possible resolution
is ms, see [Wak15]. Due to logarithmic scaling of the plots, bars can be missing, which
means that the value is below one ms for 99 percentile values and one us for average
values*. 99" percentile values are named “99thPercentile” and average values are
named “AVG”. All given values in the text are rounded half way. Query latencies are
shown in ms.

MonetDB, MySQL Community Server, PostgreSQL and KairosDB with H2° are only
benchmarked in a one node setup, due to their limited distribution and clusterability
features. Section 3.6 presents further details.

1“Node” is equally used with “VM” in this chapter.

2Values and tag values are randomly generated, which means that they are not exactly the same, see
Section 2.3 for further details.

3And for 95 percent query latency, which is integrated into YCSB-TS, but not used for this thesis. Both
values are reported in us by YCSB-TS, but are calculated in ms internally.

4The latter one does not occur on any of the presented results.

5See Section 3.2.
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In both scenarios, 99" percentile and average query latencies, denoted in ms, are used
for query latency, and mebibytes (MiB)® are used for measuring space consumption. In
all plots, each name of a TSDB has a suffix “ cIN”, where N is a number, and another
suffix “ rfM”, where M is a number. “ cIN” stands for cluster size N, e. g., “ cl1” means
a cluster consisting of one VM, “ cl5” means a cluster consisting of five VMs. “ rfN”
stands for RF N, e. g., “ rf1” means a RF of one, “ rf5” means a RF of five.

«

5.1 Scenario 1: 1,000 READ Queries

5.1.1 One Node Cluster with a RF of One
5.1.1.1 Query Latency for INS Queries

Figure 5.1 presents the results for INS queries in a one node cluster with a RF of one.
There are no 99" percentile values shown for Blueflood and OpenTSDB because both
values lie below one ms.

The result of this measurement is that in a one node cluster with a RF of one, OpenTSDB
has the best query latency for INS queries measured with a 99 percentile value below
1ms and an average value of 0.210 ms. Blueflood follows with an average value of
0.532ms. The next three following TSDBs are Druid, Rhombus, and PostgreSQL. Druid
has a higher 99 percentile value than its average value, which means that is must
have had a small amount (below one percent) of queries with a lower latency than
the remaining queries. The worst result for INS queries have InfluxDB, preceded by
MonetDB, and KairosDB with H2.

5.1.1.2 Query Latency for READ Queries

Figure 5.2 presents the results for READ queries in a one node cluster with a RF of
one. The four TSDBs with the fastest query latencies are Blueflood, NewTS, Rhombus,
and MonetDB. All four of them are very close to each other, with Rhombus having
the fastest average value of 1.7 ms. MonetDB has with 2.3 ms the best 99" percentile
value. The worst result for READ queries has KairosDB with H2 and with Cassandra,
both are over an order of magnitude worse than the remaining TSDBs. This is an

6See [Int15] for further information.
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Figure 5.1: Query latency results for INS queries in a one node cluster with a RF
of one. There are no 99 percentile values shown for Blueflood and
OpenTSDB because both values lie below one ms.

interesting result for KairosDB with Cassandra because other TSDBs that use Cassandra
have better results.

5.1.1.3 Space Consumption
Figure 5.3 presents the difference in space consumption in a one node cluster with a RF

of one when 1,000,000 INS queries are executed. The space consumption is measured
before and after the execution. Druid uses with 63.4 MiB the fewest amount of all
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Figure 5.2: Query latency results for READ queries in a one node cluster with a RF of
one.
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compared TSDBs, followd by OpenTSDB with 74 MiB, and InfluxDB with 79.9 MiB.
Rhombus uses with 2503.7 MiB the most space.
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5.1.2 Five Node Cluster with a RF of One
5.1.2.1 Query Latency for INS Queries

Figure 5.4 presents the results for INS queries in a five node cluster with a RF of one.
There is no 99" percentile value shown for OpenTSDB because the value lies below one
ms. One of the results from this measurement is that OpenTSDB has the lowest 99
percentile value and the lowest average value of 0.212 ms. The second fastest TSDB is
not clear, Druid has the second best average value with 0.61 ms, and Rhombus has
the second best 99" percentile value with one ms. Blueflood has the second smallest
average query latency in Section 5.1.1.1 with 0.532 ms, which increased to 0.935 ms
in this measurement. As a result, Blueflood is placed in the midfield. This is interesting
because other TSDBs show a slightly decreased average query latency with five nodes
compared to one node, e. g., OpenTSDB which increaed from 0.210 to 0.212 ms. The
worst result achieved InfluxDB. Compared to the results in Section 5.1.1.1, none of
the TSDBs could benefit significantly from having four more nodes.

5.1.2.2 Query Latency for READ Queries

Figure 5.5 presents the results for READ queries in a five node cluster with a RF
of one. Rhombus has the best 99" percentile value with 2 ms and the best average
value with 1.97 ms. The next best three TSDBs are NewTS, Blueflood, and InfluxDB,
none of them is the best in both, the 99 percentile and the average, values. The
worst result for READ queries has KairosDB (with Cassandra), they are around two
orders of magnitude worse than the remaining TSDBs. Compared to the results in
Section 5.1.1.2, none of the TSDBs could benefit significantly from having four more
nodes.

5.1.2.3 Space Consumption

Figure 5.6 presents the difference in space consumption in a five node cluster with
a RF of one when 1,000,000 INS queries are executed. The space consumption is
measured before and after the execution. An increase in space consumption is not
expected compared to Section 5.1.1.3, as with a RF of one still only one value is stored.
A slight increase might occur due to overhead.

Druid uses with 63.4 MiB the fewest amount of all compared TSDBs, followd
by OpenTSDB with 74.6 MiB, and InfluxDB with 80.7 MiB. Rhombus uses with
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Figure 5.4: Query latency results for INS queries in a five node cluster with a RF of
one. There is no 99" percentile value shown for OpenTSDB because the
value lies below one ms.

2,287.6 MiB the most space. Compared to Section 5.1.1.3, the space consumption only
increased slightly for most TSDBs. Rhombus, for example, uses slightly less space, but
still the most.

81



5 Measurements and Results

100,000
- blueflood_cI5_rfl mmmmm
kairosdb_cl5_rfl
newts_cl5_rfl =
opentsdb_cl5_rfl ===
rhombus_cl5_rfl 3
druid_clI5_rfl mmmm
influxdb_cl5_rfl /3

10,000

1,000

Latency in ms

100

10

99thPercentile AVG

Type of query latency

Figure 5.5: Query latency results for READ queries in a five node cluster with a RF of
one.
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Figure 5.6: Space consumption results for a five node cluster with a RF of one.
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5.1.3 Five Node Cluster with a RF of Two
5.1.3.1 Query Latency for INS Queries

Figure 5.7 presents the results for INS queries in a five node cluster with a RF of two,
which means that one value is stored on two nodes. There is no 99™ percentile value
shown for OpenTSDB because the value lies below one ms. One of the results from this
measurement is that OpenTSDB has the lowest 99" percentile value and the lowest
average value of 0.223 ms. The second fastest TSDB is Druid, which has an average
value of 0.438 ms and a 99" percentile value of one ms. Blueflood has the third best
average query latency with 0.808 ms, which is faster than the value of 0.935 ms from
Section 5.1.2.1. The worst 99" percentile value achieves NewTS, the worst average
value achieves InfluxDB.

5.1.3.2 Query Latency for READ Queries

Figure 5.8 presents the results for READ queries in a five node cluster with a RF
of two. Rhombus has the best 99" percentile value with 2 ms and the best average
value with 1.94 ms. Compared to Section 5.1.2.2 with one replication for each value,
Rhombus slightly decreased its average query latency when using the double amount
of replications. NewTS has the second best result, with a 99" percentile value of
7ms and an average value of 3.01 ms. NewTS has slightly decreased its latencies
compared to Section 5.1.2.2. The next best two TSDBs are Blueflood and InfluxDB,
none of them is the best in both, the 99" percentile and the average, values. The worst
result for READ queries has KairosDB (with Cassandra), they are around two orders
of magnitude worse than the remaining TSDBs.

5.1.3.3 Space Consumption

Figure 5.9 presents the difference in space consumption in a five node cluster with
a RF of two when 1,000,000 INS queries are executed. The space consumption is
measured before and after the execution. An increase in space consumption is expected
compared to Section 5.1.2.3, as with a RF of two, two values must be stored, which
uses more space than storing one value.

Druid uses with 58.8 MiB the fewest amount of all compared TSDBs, followd by
OpenTSDB with 149.1 MiB, and InfluxDB with 160 MiB. Rhombus uses with 4,919 MiB
the most space. Compared to Section 5.1.2.3, the space consumption approximately
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Figure 5.7: Query latency results for INS queries in a five node cluster with a RF of
two. There is no 99" percentile value shown for OpenTSDB because the
value lies below one ms.

doubles for all TSDBs, except Druid. Druid uses less space than in Section 5.1.2.3,
which is unexpected. Three reasons are possible: First, due to the limitation to five
nodes, which means that only one type of each node exists’, Druid probably stores all
copies on the same node or does not even produce a copy. Second, Druid has enough
space allocated and did not need additional space for another segment of data. Third,

’Druid has five types of nodes, which are explained in Section 3.3.
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Figure 5.8: Query latency results for READ queries in a five node cluster with a RF of
two.

Druid caches the data in RAM a long time and due to its complex architecture was not
measured.
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Figure 5.9: Space consumption results for a five node cluster with a RF of two.
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5.1.4 Five Node Cluster with a RF of Five

Figure 5.10 presents the results for INS queries in a five node cluster with a RF of two,
which means that one value is stored on five nodes. There is no 99 percentile value
shown for OpenTSDB because the value lies below one ms. One of the results from this
measurement is that OpenTSDB has the lowest 99" percentile value and the lowest
average value of 0.290 ms. The second fastest TSDB is Druid, which has an average
value of 0.542ms and a 99" percentile value of one ms. Blueflood has the third best
average query latency with 0.707 ms, which is faster than the value of 0.808 ms from
Section 5.1.3.1. The worst 99" percentile value achieves NewTS, the worst average
value achieves InfluxDB. The 99" percentile value seems to be increasing when a
higher RF is used, compared to Section 5.1.3.1 and Section 5.1.2.1.

5.1.4.1 Query Latency for INS Queries
5.1.4.2 Query Latency for READ Queries

Figure 5.11 presents the results for READ queries in a five node cluster with a RF
of five. Rhombus has the best 99" percentile value with 2 ms and the best average
value with 1.85 ms. Compared to Section 5.1.3.2 with two replications for each value,
Rhombus slightly decreased its average query latency when using five replications.
Blueflood has the second best result, with a 99" percentile value of 3ms and an
average value of 2.95 ms. NewTS has lost its second place that it has in Section 5.1.3.2
and has the third best result with a 99" percentile value of 5 ms and an average value
of 3.8 ms. The worst result for READ queries has KairosDB (with Cassandra), they
are around two orders of magnitude worse than the remaining TSDBs. Compared to
Section 5.1.3.2 and Section 5.1.2.2, the latency of the READ queries of KairosDB (with
Cassandra) did increase with a RF of five..

5.1.4.3 Space Consumption

Figure 5.12 presents the difference in space consumption in a five node cluster with
a RF of five when 1,000,000 INS queries are executed. The space consumption is
measured before and after the execution. An increase in space consumption is expected
compared to Section 5.1.3.3, as with a RF of five, five values must be stored, which
uses more space than storing one or two values.
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Figure 5.10: Query latency results for INS queries in a five node cluster with a RF of
five. There is no 99" percentile value shown for OpenTSDB because the
value lies below one ms.

Druid uses with 49.4 MiB the fewest amount of all compared TSDBs, followd
by OpenTSDB with 373 MiB, and InfluxDB with 397.7 MiB. Rhombus uses with
12,854.9 MiB the most space. Compared to Section 5.1.3.3, the space consumption
has increased by a factor of approximately 2.5 (e. g., OpenTSDB 2.50, Rhombus 2.61,
and InfluxDB 2.49) for all TSDBs, except Druid. Druid uses less space than in Sec-
tion 5.1.3.3, which is unexpected. In Section 5.1.3.3 the space consumption of Druid
has been discussed. It was pointed out that druid possibly does not directly write data
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Figure 5.11: Query latency results for READ queries in a five node cluster with a RF
of five.

or does not have enough nodes to replications. Therefore, the space consumption is
lower here than expected.
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Figure 5.12: Space consumption results for a five node cluster with a RF of five.

5.2 Scenario 2: 250 SCAN, AVG, SUM, and CNT Queries

5.2.1 One Node Cluster with a RF of One
5.2.1.1 Query Latency for SCAN Queries

Figure 5.13 presents the results for SCAN queries in a one node cluster with a RF of
one. The result of this measurement is that Rhombus has the best query latency for
SCAN queries measured with a 99" percentile value of 8 ms and an average value of
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1.55ms. The second best result has MonetDB with a 99 percentile value of 20 ms
and an average value of 9.98 ms. The average value is nearly an order of magnitude
away from Rhombus. The third best results has Druid. KairosDB with H2 has the worst
result, preceded by itself in combination with Cassandra.

100,000
r blueflood_cl1_rfl mmmm -
kairosdb_h2_cl1_rfl s
kairosdb_cl1 _rfl s
newts_cll_rfl ===
opentsdb_cll1_rfl
rhombus_cl1_rfl /3 |
druid_cl1_rfl m
influxdb_cl1_rfl 3
monetdb_cl1_rfl .
mysql_cl1l_rfl o
postgres_cll_rfl ——3

10,000

1,000

Latency in ms

100

10

99thPercentile AVG

Type of query latency

Figure 5.13: Query latency results for SCAN queries in a one node cluster with a RF
of one.

5.2.1.2 Query Latency for AVG Queries

Figure 5.14 presents the results for AVG queries in a one node cluster with a RF of
one. The results of Rhombus are omitted because AVG queries are not supported,
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see Section 4.7 and Appendix A.6. The result of this measurement is that MonetDB
has the best query latency for AVG queries measured with a 99™ percentile value of
15 ms and an average value of 6.49 ms. The second best result has Druid with a 99
percentile value of 39 ms and an average value of 15.2 ms. The third best result has
InfluxDB. KairosDB with H2 has the worst result, preceded by itself in combination
with Cassandra.
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Figure 5.14: Query latency results for AVG queries in a one node cluster with a RF of
one.
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5.2.1.3 Query Latency for SUM Queries

Figure 5.15 presents the results for SUM queries in a one node cluster with a RF of
one. The results of Blueflood, NewTS, and Rhombus are omitted because SUM queries
are not supported, see Section 4.7 and Appendix A.6. The result of this measurement
is that MonetDB has the best query latency for SUM queries measured with a 99
percentile value of 14 ms and an average value of 6.28 ms. The second best result
has Druid with a 99™ percentile value of 12.7 ms and an average value of 25 ms. The
third best average value has OpenTSDB and the third best 99" percentile value has
InfluxDB. KairosDB with H2 has the worst result, preceded by itself in combination
with Cassandra.

5.2.1.4 Query Latency for CNT Queries

Figure 5.16 presents the results for CNT queries in a one node cluster with a RF
of one. The results of NewTS are omitted because CNT queries are not supported,
see Section 4.7 and Appendix A.6. The result of this measurement is that Rhombus
has the best query latency for CNT queries measured with a 99" percentile value of
1.41ms and an average value of 6 ms. The second best result has MonetDB with a 99
percentile value of 13 ms and an average value of 6.11 ms. The third best result has
Druid. KairosDB with H2 has the worst result, preceded by itself in combination with
Cassandra.
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Figure 5.15: Query latency results for SUM queries in a one node cluster with a RF of
one.
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Figure 5.16: Query latency results for CNT queries in a one node cluster with a RF of
one.
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5.2.2 Five Node Cluster with a RF of One
5.2.2.1 Query Latency for SCAN Queries

Figure 5.17 presents the results for SCAN queries in a five node cluster with a RF of
one. The result of this measurement is that Rhombus has the best query latency for
SCAN queries measured with a 99 percentile value of 29 ms and an average value of
2.94ms. The second best result has Druid with a 99™ percentile value of 41 ms and
an average value of 14.7 ms. The third best result has OpenTSDB. KairosDB (with
Cassandra) has the worst result.

5.2.2.2 Query Latency for AVG Queries

Figure 5.18 presents the results for AVG queries in a five node cluster with a RF of
one. The result of Rhombus is omitted because AVG queries are not supported, see
Section 4.7 and Appendix A.6. The result of this measurement is that Druid has the
best query latency for AVG queries measured with a 99 percentile value of 36 ms and
an average value of 16.5ms. The second best 99™ percentile value has InfluxDB with
14 ms and the second best average value has OpenTSDB with 25.4 ms. KairosDB (with
Cassandra) has the worst result.

5.2.2.3 Query Latency for SUM Queries

Figure 5.19 presents the results for SUM queries in a five node cluster with a RF of one.
The results of Blueflood, NewTS, and Rhombus are omitted because SUM queries are
not supported, see Section 4.7 and Appendix A.6. The result of this measurement is
that Druid has the best query latency for SUM queries measured with a 99 percentile
value of 28 ms and an average value of 13.6ms. The second best 99" percentile
value has InfluxDB with 58 ms and the second best average value has OpenTSDB with
26.7 ms. KairosDB (with Cassandra) has the worst result.

5.2.2.4 Query Latency for CNT Queries

Figure 5.20 presents the results for CNT queries in a five node cluster with a RF of one.
The result of NewTS is omitted because CNT queries are not supported, see Section 4.7
and Appendix A.6. The result of this measurement is that Rhombus has the best query
latency for CNT queries measured with a 99 percentile value of 16 ms and an average
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Figure 5.17: Query latency results for SCAN queries in a five node cluster with a RF
of one.

value of 2.95ms. The second best result has Druid with a 99 percentile value of
38 ms and an average value of 13.8 ms. The third best average value has OpenTSDB
and the third best 99" percentile value has InfluxDB. KairosDB (with Cassandra) has
the worst result.
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Figure 5.18: Query latency results for AVG queries in a five node cluster with a RF of
one.
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Figure 5.19: Query latency results for SUM queries in a five node cluster with a RF of
one.
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Figure 5.20: Query latency results for CNT queries in a five node cluster with a RF of
one.
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5.2.3 Five Node Cluster with a RF of Two
5.2.3.1 Query Latency for SCAN Queries

Figure 5.21 presents the results for SCAN queries in a five node cluster with a RF of
two. The result of this measurement is that Rhombus has the best query latency for
SCAN queries measured with a 99" percentile value of 31 ms and an average value of
2.34ms. The second best result has Druid with a 99™ percentile value of 49 ms and
an average value of 15.6 ms. The third best average value has OpenTSDB and the
third best 99" percentile value has InfluxDB. KairosDB (with Cassandra) has the worst
result.

5.2.3.2 Query Latency for AVG Queries

Figure 5.22 presents the results for AVG queries in a five node cluster with a RF of
two. The result of Rhombus is omitted because AVG queries are not supported, see
Section 4.7 and Appendix A.6. The result of this measurement is that Druid has the
best query latency for AVG queries measured with a 99 percentile value of 35 ms and
an average value of 13.3 ms. The second best 99" percentile value has InfluxDB with
56 ms and the second best average value has OpenTSDB with 26.4 ms. KairosDB (with
Cassandra) has the worst result.

5.2.3.3 Query Latency for SUM Queries

Figure 5.23 presents the results for SUM queries in a five node cluster with a RF of two.
The results of Blueflood, NewTS, and Rhombus are omitted because SUM queries are
not supported, see Section 4.7 and Appendix A.6. The result of this measurement is
that Druid has the best query latency for SUM queries measured with a 99 percentile
value of 26 ms and an average value of 12.1 ms. The second best result has InfluxDB
with a 99 percentile value of 54 ms and an average value of 26.7 ms. The third best
result has OpenTSDB. KairosDB (with Cassandra) has the worst result.

5.2.3.4 Query Latency for CNT Queries

Figure 5.24 presents the results for CNT queries in a five node cluster with a RF of
two. The result of NewTS is omitted because CNT queries are not supported, see
Section 4.7 and Appendix A.6. The result of this measurement is that Rhombus has the
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Figure 5.21: Query latency results for SCAN queries in a five node cluster with a RF
of two.

best query latency for CNT queries measured with a 99 percentile value of 10 ms and
an average value of 2.23 ms. The second best result has Druid with a 99* percentile
value of 30 ms and an average value of 12.2ms. The third best result has OpenTSDB.
KairosDB (with Cassandra) has the worst result.

103



5 Measurements and Results

100,000
- blueflood_cI5_rf2 mmmmm
kairosdb_cl5_rf2
newts_cl5_rf2
opentsdb_cl5_rf2 ===
druid_cl5_rf2 s
influxdb_cl5_rf2 3 |

10,000

1,000

Latency in ms

100

10

99thPercentile AVG

Type of query latency

Figure 5.22: Query latency results for AVG queries in a five node cluster with a RF of
two.
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Figure 5.23: Query latency results for SUM queries in a five node cluster with a RF of
two.
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Figure 5.24: Query latency results for CNT queries in a five node cluster with a RF of
two.

106



5.2 Scenario 2: 250 SCAN, AVG, SUM, and CNT Queries

5.2.4 Five Node Cluster with a RF of Five
5.2.4.1 Query Latency for SCAN Queries

Figure 5.25 presents the results for SCAN queries in a five node cluster with a RF of
five. The result of this measurement is that Rhombus has the best query latency for
SCAN queries measured with a 99" percentile value of 20 ms and an average value
of 2.2 ms. The second best result has Druid with a 99" percentile value of 44 ms and
an average value of 11.8 ms. The third best result has OpenTSDB. KairosDB (with
Cassandra) has the worst result.

5.2.4.2 Query Latency for AVG Queries

Figure 5.26 presents the results for AVG queries in a five node cluster with a RF of
five. The result of Rhombus is omitted because AVG queries are not supported, see
Section 4.7 and Appendix A.6. The result of this measurement is that Druid has the
best query latency for AVG queries measured with a 99" percentile value of 46 ms and
an average value of 12.2ms. The second best 99™ percentile value has InfluxDB with
63 ms and the second best average value has OpenTSDB with 26.4 ms. KairosDB (with
Cassandra) has the worst result.

5.2.4.3 Query Latency for SUM Queries

Figure 5.27 presents the results for SUM queries in a five node cluster with a RF of five.
The results of Blueflood, NewTS, and Rhombus are omitted because SUM queries are
not supported, see Section 4.7 and Appendix A.6. The result of this measurement is
that Druid has the best query latency for SUM queries measured with a 99 percentile
value of 32 ms and an average value of 11.2 ms. The second best result has InfluxDB
with a 99 percentile value of 57 ms and an average value of 29.1 ms®. The third best
result has OpenTSDB. KairosDB (with Cassandra) has the worst result.

80penTSDB has a slightly higher average value of 30 ms, which is not obvious in Figure 5.27.

107



5 Measurements and Results

100,000
- blueflood_cI5_rf5 mmmmm
kairosdb_cl5_rf5 mmmmm
newts_cl5_rf5 mmmm
opentsdb_cl5_rf5 =
rhombus_cl5_rf5 3
druid_clI5_rf5 |
influxdb_cl5_rf5 —3

10,000

1,000

Latency in ms

100

10

99thPercentile AVG

Type of query latency

Figure 5.25: Query latency results for SCAN queries in a five node cluster with a RF
of five.

5.2.4.4 Query Latency for CNT Queries

Figure 5.28 presents the results for CNT queries in a five node cluster with a RF of five.
The result of NewTS is omitted because CNT queries are not supported, see Section 4.7
and Appendix A.6. The result of this measurement is that Rhombus has the best query
latency for CNT queries measured with a 99* percentile value of 8 ms and an average
value of 1.7 ms. The second best result has Druid with a 99 percentile value of 50 ms
and an average value of 13 ms. The third best 99" percentile value has InfluxDB and
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5.2 Scenario 2: 250 SCAN, AVG, SUM, and CNT Queries
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Figure 5.26: Query latency results for AVG queries in a five node cluster with a RF of
five.

the second best average value has OpenTSDB. KairosDB (with Cassandra) has the
worst result.

The performance comparison, presented in this chapter, is used in combination with the
feature comparison from Section 3.6 to discuss the results between the ten compared
TSDBs in the following chapter.
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5 Measurements and Results
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Figure 5.27: Query latency results for SUM queries in a five node cluster with a RF of
five.
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5.2 Scenario 2: 250 SCAN, AVG, SUM, and CNT Queries
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Figure 5.28: Query latency results for CNT queries in a five node cluster with a RF of
five.

111






6 Discussion

In this chapter, the results of the feature comparison in Section 3.6 and the performance
comparison in Chapter 5 are discussed. Afterward, TSDBs for different use cases are
recommended.

For a better comparison of the performance results in Chapter 5, the best, second
best, and third best results from each measurement type are listed in Table 6.1. If
a placement is not conclusive, all qualified TSDBs are listed in the order they occur
in the result description. From this table, a point based ranking is presented in
Table 6.2. In this ranking, every best result from Table 6.1 receives three points, every
second best result two points and every third best result one point. The remaining
results of a measurement do not receive points. If a placement is not conclusive,
all qualified TSDBs receive the amount of points for this placement. The points are
summarized afterward for each TSDB. The ranking is grouped in four groups: 1) space
consumption, 2) INS queries, 2) READ, 3) SCAN, AVG, SUM, and CNT queries, and
4) total points.

Group 1, space consumption, shows which TSDB is best in storage efficiency. Group 2,
INS queries, helps in determining the TSDB that can handle INS queries with shortest
latency. Group 3, READ, SCAN, AVG, SUM, and CNT queries, shows which TSDB
handles non-writing queries with shortest latency. Group 4, total points, summarizes
all points from the three previous groups and helps to determine an overall “best”
TSDB.
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6 Discussion

Table 6.1: Overview over the three best results of each measurement in Chapter 5. CL

stands for Clustersize (e. g., CL1 = Cluster with one node). If a placement
is not conclusive, all qualified TSDBs are listed in the order they occur in
the result description.

Measurement TSDB with best TSDB with TSDB with third
result second best best result
result
Scenario 1: 1,000 READ Queries
CL1, RF1, INS OpenTSDB Blueflood Druid, Rhombus,
queries and PostgreSQL
(Section 5.1.1.1)
CL1, RF1, READ | Blueflood, NewTsS, InfluxDB Druid
queries Rhombus, and
(Section 5.1.1.2) MonetDB
CL1, RF1, space Druid OpenTSDB InfluxDB
consumption
(Section 5.1.1.3)
CL5, RF1, INS OpenTSDB Druid and Blueflood
queries Rhombus
(Section 5.1.2.1)
CL5, RF1, READ Rhombus NewTS, Blueflood, Druid
queries and InfluxDB
(Section 5.1.2.2)
CL5, RF1, space Druid OpenTSDB InfluxDB
consumption
(Section 5.1.2.3)
CL5, RF2, INS OpenTSDB Druid Blueflood
queries
(Section 5.1.3.1)
CL5, RF2, READ Rhombus NewTS Blueflood and
queries InfluxDB
(Section 5.1.3.2)
CL5, RF2, space Druid OpenTSDB InfluxDB

consumption
(Section 5.1.3.3)

114



Overview over the three best results of each measurement in Chapter 5. CL stands for
Clustersize (e. g., CL1 = Cluster with one node). If a placement is not conclusive, all
qualified TSDBs are listed in the order they occur in the result description. (continued)

consumption
(Section 5.1.4.3)

Measurement TSDB with best TSDB with TSDB with third
result second best best result
result
CL5, RF5, INS OpenTSDB Druid Blueflood
queries
(Section 5.1.4)
CL5, RF5, READ Rhombus Blueflood NewTS
queries
(Section 5.1.4.2)
CL5, RF5, space Druid OpenTSDB InfluxDB

Scenario 2: 250 SCAN, AV

G, SUM, and CNT Queries

CL1, RF1, SCAN
queries
(Section 5.2.1.1)

Rhombus

MonetDB

Druid

CL1, RF1, AVG
queries
(Section 5.2.1.2)

MonetDB

Druid

InfluxDB

CL1, RF1, SUM
queries
(Section 5.2.1.3)

MonetDB

Druid

OpenTSDB and
InfluxDB

CL1, RF1, CNT
queries
(Section 5.2.1.4)

Rhombus

MonetDB

Druid

CL5, RF1, SCAN
queries
(Section 5.2.2.1)

Rhombus

Druid

OpenTSDB

CL5, RF1, AVG
queries
(Section 5.2.2.2)

Druid

InfluxDB and
OpenTSDB

Blueflood
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6 Discussion

Overview over the three best results of each measurement in Chapter 5. CL stands for
Clustersize (e. g., CL1 = Cluster with one node). If a placement is not conclusive, all
qualified TSDBs are listed in the order they occur in the result description. (continued)

Measurement TSDB with best TSDB with TSDB with third
result second best best result
result
CL5, RF1, SUM Druid InfluxDB and KairosDB!
queries OpenTSDB
(Section 5.2.2.3)
CL5, RF1, CNT Rhombus Druid OpenTSDB and
queries InfluxDB
(Section 5.2.2.4)
CL5, RF2, SCAN Rhombus Druid OpenTSDB and
queries InfluxDB
(Section 5.2.3.1)
CL5, RF2, AVG Druid InfluxDB and Blueflood
queries OpenTSDB
(Section 5.2.3.2)
CL5, RF2, SUM Druid InfluxDB OpenTSDB
queries
(Section 5.2.3.3)
CL5, RF2, CNT Rhombus Druid OpenTSDB
queries
(Section 5.2.3.4)
CL5, RF5, SCAN Rhombus Druid OpenTSDB
queries
(Section 5.2.4.1)
CL5, RF5, AVG Druid InfluxDB and Blueflood
queries OpenTSDB
(Section 5.2.4.2)
CL5, RF5, SUM Druid InfluxDB OpenTSDB
queries
(Section 5.2.4.3)

lwith Cassandra.
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Overview over the three best results of each measurement in Chapter 5. CL stands for
Clustersize (e. g., CL1 = Cluster with one node). If a placement is not conclusive, all
qualified TSDBs are listed in the order they occur in the result description. (continued)

queries
(Section 5.2.4.4)

Measurement TSDB with best TSDB with TSDB with third
result second best best result
result
CL5, RF5, CNT Rhombus Druid InfluxDB and

OpenTSDB
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6 Discussion

Table 6.2: Ranking of TSDBs with points based on Table 6.1. For each result, the TSDB
with the best result receives three points, the TSDB with the second best
two points, and the TSDB with the third best three points. If a placement
is not conclusive, all qualified TSDBs receive the amount of points for this
placement. The points are summarized afterward for each TSDB. TSDBs
with zero points are omitted. Points are in descending order.

TSDB | Points
Space Consumption
Druid 12
OpenTSDB 9
InfluxDB 6
INS Queries
OpenTSDB 12
Druid 7
Blueflood 5
Rhombus 3
PostgreSQL 1
READ, SCAN, AVG, SUM, and CNT Queries
Druid 38
Rhombus 36
InfluxDB 22
OpenTSDB 17
MonetDB 13
Blueflood 11
NewTS 8
KairosDB? 1
Total
Druid 57
Rhombus 39
OpenTSDB 38
InfluxDB 28
Blueflood 16
MonetDB 13

2With Cassandra.

118



Ranking of TSDBs with points based on Table 6.1. For each result, the TSDB with the
best result receives three points, the TSDB with the second best two points, and the
TSDB with the third best three points. If a placement is not conclusive, all qualified
TSDBs receive the amount of points for this placement. The points are summarized
afterward for each TSDB. TSDBs with zero points are omitted. Points are in descending
order. (continued)

TSDB Points
NewTS 8
KairosDB? 1
PostgreSQL 1

From Table 6.2 it is now possible to give recommendations based on the performance
comparison:

1. If the focus lies on lowest space consumption or non-writing queries like READ,
SCAN, AVG, SUM, and CNT queries, Druid is the best choice, but it is only
second best choice for INS queries.

2. If the focus lies on INS queries, OpenTSDB is the best choice, but is only second
best in lowest space consumption and fourth best in non-writing queries like
READ, SCAN, AVG, SUM, and CNT queries.

3. If there is no specific focus, Druid is the best choice, followed by Rhombus and
OpenTSDB.

It must be considered that TSDBs that were only used in one node setups like MySQL,
MonetDB, PostgreSQL and KairosDB with H2, are disadvantaged because they cannot
get as many points as other TSDBs that can score in all measurements. This also
means that they cannot get maximum possible points. In addition to that, TSDBs that
miss some functions (e. g., Rhombus) also cannot achieve maximum points. When
looking at the “total” category, it must also be known that TSDBs that perform well
in non-writing queries like READ, SCAN, AVG, SUM, and CNT queries can achieve
more points than TSDBs that perform well in INS queries or in space consumption.

Combining these results with the feature comparison of Section 3.6, the following
recommendations can be given:

3With Cassandra.
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6 Discussion

If fulfillment of all criteria of groups 1 (see Section 3.2) and 2 (see Section 3.3), a
granularity of 1 ms, but no commercial support, no stable/LTS version is required,
and the performance focus lies on lowest space consumption, non-writing queries,
or there is no focus at all, Druid is the best choice.

If all criteria, commercial support, no stable/LTS version, no existing client
libraries from Section 3.6 are required, and experimental features are tolerated,
and the performance criteria of Item 1 are required, InfluxDB is the best choice.

If not all criteria from Section 3.6 are required and the focus lies on the perfor-
mance of INS queries, OpenTSDB is the best choice.

If not all criteria from Section 3.6, but a stable/LTS version is required, then one
of the two RDBMS are the best choice.

If not all criteria, but many client libraries and distribution as well as clustering
features are required, MonetDB is the best choice if the restrictions in clustering
and distribution can be tolerated.

It can be concluded that for the comparison in this thesis, Druid is the best choice,
if no commercial support, no stable/LTS version, not many client libraries, and not
the best performance of INS queries are required. When one of these requirements
must be fulfilled, other choices are better suited, as shown in the list above. It must
be considered that this list only shows a few use cases, but a selection can depend
on other factors that must be chosen from the comparisons in Section 3.6 and in
Chapter 5.

After discussing the results of the feature and the performance comparison, the fol-
lowing chapter completes the thesis with a conclusion and points out problems and
improvement potentials for future work.
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7 Conclusion and Outlook

In Chapter 2, benchmark results and benchmarks for DBMS related to time series
data, as well as possible data sets for benchmarks are presented. In the subsequent
Chapter 3, after defining the search process that resulted in 75 found TSDBs, the
42 open source TSDBs are grouped into four groups and representatives of each are
chosen by popularity and presented more detailed. The ten chosen representatives
are compared in 17 criteria (grouped in five criteria groups). The feature comparison
concluded with Druid being the best choice, if all criteria besides having a stable/LTS
version and commercial support, must be fulfilled. Other TSDBs like OpenTSDB or
MonetDB can be a better choice if stable/LTS versions or commercial support are
required.

For the performance part of the comparison, a benchmark is required. Metrics and two
scenarios for a performance comparison, as well as requirements on a benchmark are
presented in Chapter 4. Both scenarios use 1,000,000 INS queries to create a initial
set of data inside each TSDB. The first scenario is used to measure the query latency
and space consumption of the initial 1,000,000 INS queries and 1,000 READ queries
afterward. The second scenario measures the query latency and space consumption
of 250 SCAN, AVG, SUM, and CNT queries. Afterward, an extensible benchmark
for TSDBs with variable workloads, is presented. It is called TSDBBench and uses
YCSB-TS, which is a extension of YCSB for running and measuring workloads on
TSDBs.

In Chapter 5, the measurement results of the two scenarios defined in Chapter 4 are
presented. There are four measurement setups used for each of the two scenarios
used: a cluster consisting of one node with a RF of one, a cluster consisting of five
nodes with RFs of one, three and five.

The conclusion in Chapter 6 from the measurement results are, that if there is focus on
lowest space consumption or non-writing queries like READ, SCAN, AVG, SUM, and
CNT queries, Druid is the best choice, but it is only second best choice for INS queries.
If the focus lies on INS queries, OpenTSDB is the best choice with the shortest average
INS query latency, which is approximately 2.5 times faster than the other TSDBs. It
is is only second best in lowest space consumption and fourth best in non-writing
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7 Conclusion and Outlook

queries. The chapter concludes with a combined result, consisting of the feature
comparison and the performance comparison. It suggests Druid as an overall solution
if no commercial support, no stable/LTS version is required, and the performance
focus lies on lowest space consumption, non-writing queries, or there is no focus at all.
If one of the aspects is required, then other TSDBs might be better suited.

In this thesis, TSDBBench is presented and a performance comparison is done for
getting an overview over the performance of the most popular TSDBs. As the perfor-
mance comparison has only an “overview” character, there are several points that give
possibilities for future work.

The two scenarios used are very general and unspecific. More fitted workloads are
required if results for real-world scenarios must be given. The size of the data used in
this thesis is not very big (1,000,000 rows of data) and therefore measurements with
much more data should be done. More data could give results which show that some
TSDBs are more suitable for “realworld” scenarios that use great amounts of data.

For the performance comparison in this thesis, no statistic methods other than inte-
grated into YCSB are used. As Kalibera and Jones [KJ13] points out, statistic methods,
like confidence intervals or ANOVA tests, should be used to create more qualified
results. This however requires many repeating benchmark runs, which use a lot of
time. Taking the two scenarios from this thesis, with a runtime of approximately two
days for each!, as a base and, for example, 1,000 repetitions, a runtime of approx-
imately 11 years would be required to complete all repetitions for both scenarios.
There are thinkable solutions for faster benchmark runs when using an EI with higher
performance or multiple Els. Parallel benchmarking on the same EI is possible, but it
should be shown this has no influence on the results first.

Due to limited time, it was not possible to tune every TSDB to its maximum perfor-
mance for the two scenarios. Obvious tips were used, but no fine tuning was done.
With fine tuning other results may be possible. When TSDBBench is released to public,
it is expected that the integrated TSDB settings are getting fine tuned over the time
for better results, as developers and more experienced users can add their knowledge.
In addition to that, fine tuning of the VM settings can also be done. For this thesis,
reasonable settings, based in experience were used. As van Zanten [Zan12] and Lim
et al. [LHY+13] show, even the correct amount of vCPUs can be problematic. On the
other hand, no TSDBs should benefit more than others from a specific setting.

!Appendix A.5 lists the hardware that is used in this thesis.
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For this thesis, ten TSDBs were added to TSDBBench. From the 75 TSDBs found in
this thesis, 42 are open source and could be integrated for measuring a wider field
of TSDBs. The remaining part consists of commercial solutions, which could also be
integrated. Integrating TSDBs that do not run under linux or must run outside of an
EI (e. g., a remote site) is not considered yet and could be developed. Support for
additional Els is also possible for reaching a wider field of users. The integration of
provisioning tools like Chef or Puppet was not necessary yet but can be necessary for
future TSDB if the provisioning features of vagrant are not sufficient.

YCSB-TS measures query latencies for determining the performance of a TSDB. As
support for multiple generator VM is integrated in TSDBBench, it would be interesting
to use multiple VMs to measure the saturation point of a TSDB. This means that the
rate of parallel queries is increased until the TSDB cannot handle the queries anymore.
Such a scenario could help to get more insights in the maximum performance of the
benchmarked TSDBs.

Operational Data Historians (ODHs) is a new type of DBMS that combines TSDBs and
RDBMS features for avoiding copies from TSDBs to RDBMS that are necessary when
data must be analyzed. It could be possible to integrate ODHs into TSDBBench for
comparisons between TSDBs and ODHs.
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A Appendix

A.1 List of TSDBs

Section 3.1 presented the search process for TSDBs. In the following, the 75 identified
TSDBs are listed.

A.1.1 Requirement on NoSQL DBMS

* Apache Chukwa [ASF15b]
e Arctic [Manl5]

e BlueFlood [Rac15a]

* Cube [Squl5]

* Energy Databus [Bufl5]

e Gorilla! [PFT+15]

* Kairos [Agol5]

e KairosDB [Kail5b]

e Newts [Eval5]

* OpenTSDB [LSKD15a]

¢ Rhombus [Par15b]

e SiteWhere [Sit15]

* Sky? [Joh15]

* tsdb: A Compressed Database for Time Series® [DMF12]

A.1.2 Requirement on NoSQL DBMS
e Akumuli [Laz15]

No source code is available, but since a describing paper is available, it is considered open source.
2Development stopped, dependencies show that it uses Leveldb.

3Uses BerkleyDB, which is not a typical key-value database, but stores key-value data.
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e Atlas [Netl5]

* BEMOSS* [Rah15]

e BlinkDB [AIP+12; AMP+13]
e Bolt [Mic15d]

¢ DalmatinerDB [Prol5a]

e Druid® [YTL+14]

* Gnocchi [Opel5a]

e GridMW [YKP+11]

e InfluxDB [Inf15b]

e MonetDB [Monl5a]

e NilmDB [PDL14]

* Node-tsdb [Wan15]

¢ Prometheus [Prol5b]

¢ RRDtool [Oetl5]

e SciDB [Parl5a]

* Seriesly [Sall5a]

* TSDB: Time Series Database [Dugl5]
e TimeStore [Stil5]

» TsTables® [Fiel5b; Hill5]

¢ Vaultaire [Anc15]

* Whisper (Graphite) [GP15]
e YAWNDB [Grol5]

A.1.3 Proprietary

e Acunu’ [Acul5]

Aerospike [Aer15]

Axibase Time Series Database [Axil5]
Cityzen Data [Citl5]

DataStax Enterprise [Dat15]

e Databus® [Lin15]

4Uses an internal simple Measurement and Actuation Profile (sMAP) [Daw15] server for storing time
series data.

>Can use other databases for some parts of its nodes, but still considered a stand-alone solution.
SFormerly “Time Series Database” [Fiel5a].
’Does not exist anymore because it was bought by Apple Inc. around March, 2015 [Cam15].

80pen source, but uses Oracle Database.
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* eXtremeDB Financial Edition [McO15]
* FoundationDB? [Foul5]

e Geras [12415]

e IBM Informix [IBM15]

e kdb+ [Kx15]

e Kerf [Kerl5]

* Mesap [Sev15]

* Microsoft SQL Server [Mic15b]

* New Relic Insights [New15]

* ONETick Time-Series Tick Database [Onel5]
e OSIsoft PI [OSI15]

e QOracle Database [Oral5i]

e ParStream!® [Cis15]

* Polyhedra IMDB [Enel5]

* Prognoz Platform [JSC15]

e PulsarTSDB [DOT15]

e Riak TS [Bas15]

e SAP HANA [SAP15]

» SkySpark [Sky15]

* Splunk [BGSZ10; Spl15]

* Sqrrl [Sqrl5]

* Squwk!! [Serl5]

e TempolQ!? [Tem15]

* TimeScape EDM+!? [Xen15]

e TimeSeries.Guru [WW15]

e Treasure Data [Trel5]

* Uniformance Process History Database (PHD) [Hon15]

A.1.4 RDBMS

* MySQL Cluster [Oral5e]
* MySQL Community Server [Oral5f]

?Does not exist anymore because it was bought by Apple Inc. around March, 2015 [Pan15].
10Bought by Cisco Systems, Inc. around October, 2015 [Sal15b].
1Squwk (http://www.squwk.com) does not exist anymore. Previously named Aspen.
2Formerly TempoDB.

13Contains TimeScape XDB for handling time series data.
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* PostgreSQL TS'* [Ber14]
* PostgreSQL [PGD15a]
e TimeTravel'® [KFPL12]

We also tried to include SensorDB, but there is nothing other than a Python API to be
found. The RDBMS group contains only the two actually used ones, there exist several
more RDBMS.

A.2 Time series data in RDBMS

For storing time series data in RDBMS, a schema consisting of 13 fields'® was used.
The first field is an automatically incrementing ID that is used as primary key (see
Section 3.4 for a more detailed explanation). Following the primary key, there are a
timestamp, a floating point!’ value, and ten tags. Every metric is represented as one
table. See listings Listing A.1, Listing A.2, Listing A.3, and Listing A.4 for the different
implementations in SQL, MySQL Community Server, PostgreSQL and MonetDB.

Listing A.1 Used schema for time series data in SQL

CREATE TABLE usermetric(
ID INT IDENTITY(1,1) PRIMARY KEY,
YCSB_KEY TIMESTAMP,
VALUE DOUBLE PRECISION,
TAGO VARCHAR, TAGl VARCHAR,
TAG2 VARCHAR, TAG3 VARCHAR,
TAG4 VARCHAR, TAG5 VARCHAR,
TAG6 VARCHAR, TAG7 VARCHAR,
TAG8 VARCHAR, TAG9 VARCHAR);

when querying for data, the following queries are used:

For INS the following query is used:
INSERT INTO usermetric (YCSB_KEY ,VALUE[,<Tags>]) VALUES
(<Timestampl>,<Value>[,<Tag Values>]);.

4Default PostgreSQL with the timeseries approach of Robert Berry.
15No other sources than the paper available.

16The amount of tags is limited to ten values for this example. If a scenario requires more tags,
additional fields must be defined.

7With double precision.
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A.2 Time series data in RDBMS

Listing A.2 Used schema for time series data in MySQL Community Server

CREATE TABLE test.usermetric(
ID INT AUTO_INCREMENT PRIMARY KEY,
YCSB_KEY TIMESTAMP,
VALUE DOUBLE,
TAGO TEXT, TAGl TEXT,
TAG2 TEXT, TAG3 TEXT,
TAG4 TEXT, TAG5 TEXT,
TAG6 TEXT, TAG7 TEXT,
TAG8 TEXT, TAGY9 TEXT);

Listing A.3 Used schema for time series data in PostgreSQL

CREATE TABLE usermetric(
ID SERIAL PRIMARY KEY,
YCSB_KEY TIMESTAMP,
VALUE DOUBLE PRECISION,
TAGO TEXT, TAG1l TEXT,
TAG2 TEXT, TAG3 TEXT,
TAG4 TEXT, TAG5 TEXT,
TAG6 TEXT, TAG7 TEXT,
TAG8 TEXT, TAGY9 TEXT);

Listing A.4 Used schema for time series data in MonetDB

CREATE TABLE test.usermetric(
ID INT AUTO_INCREMENT PRIMARY KEY,
YCSB_KEY TIMESTAMP,
VALUE DOUBLE,
TAGO TEXT, TAG1l TEXT,

TAG2 TEXT,
TAG4 TEXT,
TAG6 TEXT,
TAG8 TEXT,

TAG3 TEXT,
TAG5 TEXT,
TAG7 TEXT,
TAGY TEXT);

For READ the following query is used:

SELECT * FROM usermetric WHERE [<TagQuery>](YCSB_KEY = <Timestampl>);.

For SCAN the following query is used:

SELECT * FROM usermetric WHERE [<TagQuery>] YCSB_KEY BETWEEN <Timestampl>

AND <Timestamp2>;.

For AVG the following query is used:

SELECT AVG(VALUE) as VALUE FROM usermetric WHERE [<TagQuery>] YCSB_KEY
BETWEEN <Timestampl> AND <Timestamp2> GROUP BY YCSB_KEY;.
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For CNT the following query is used:
SELECT COUNT(*) as VALUE FROM usermetric WHERE [<TagQuery>] YCSB_KEY
BETWEEN <Timestampl> AND <Timestamp2> GROUP BY YCSB_KEY;.

For SUM the following query is used:
SELECT SUM(VALUE) as VALUE FROM usermetric WHERE [<TagQuery>] YCSB_KEY
BETWEEN <Timestampl> AND <Timestamp2> GROUP BY YCSB_KEY;.

Parts of a query in [] are optional and parts in <> are variables that must be filled.
<Timestampl> and <Timestamp2> are different timestamps. <Value> is the actual value
that is inserted. Some values are strings (e. g., tag values) and must be inserted with
" which are omitted here.

When tags are inserted, <Tags> is defined as <Tagl>, <Tag2>, <Tag3>, ... and <Tag
Values> as <TagValuel>, <TagValue2>, <TagValue3>, .... <TagN>is the name of a
tag, <TagValueN> is the value of tag, N is a number.

When querying for tags, <TagQuery> is defined like this: ((<TagOrQueryl>) AND
(<TagOrQuery2>) AND (<TagOrQuery3>) ...) AND. <TagOrQueryN>, N is a number,
is defined as follows: <Tagl> = <TaglValuel> OR <Tagl> = <TaglValue2> OR <Tagl>
= <TaglValue3> ... where <TagMValueN> (M and N are numbers) is a tag value.
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A.3 Google search for popularity ranking of TSDBs

A.3 Google search for popularity ranking of TSDBs

For ranking the found open source TSDBs from Appendix A.1 by popularity, a Google
search for each open source TSDB was performed. The TSDB name in combination with
“time series” was used as search string, e. g., “"OpenTSDB" "time series"”. A TSDB
with more results was considered more popular than one with lesser results. Some
TSDBs names are very common terms like “Cube”, “Whisper”, “Gorilla”, “Arctic”
or “TimeTravel”. Some of these terms needed “time series database” as additional
term because “time series” as additional term found many results unrelated to TSDBs
(e.g., “Arctic” in combination with “time series” finds many arctic ice time series).
“Kairos” and “KairosDB” are also problematic, as the first one is often used as a short
form for the latter one. PostgreSQL TS was not searched because it is no official name.
It was tried to fit the results as close as possible to only match entries that are related
to the TSDBs, but it is expected that the results are not exactly precise.

The American version of Google, http://www.google.com, was used for each search.
The search was performed December 14, 2015 between 01:10 and 01:38 PM UTC+1.
A typical search URL looked like this: https://www.google.com/search?gl=us&hl=
en&btnG=Google+Search&pws=0&q=%220penTSDB%22+%22time +series%22&
inurl=https&gws_rd=cr%2Cssl. See table Table A.1 for the results.

Table A.1: A list of http://www.google.com results for each TSDB. TSDBs used in
YCSB-TS are highlighted.

TSDB Search string Results
GridMW "GridMw" "time series" 7
NilmDB "NilmDB" "time series" 9
Node-tsdb "node-tsdb" "time series" 34
BEMOSS "BEMOSS" "time series" 100

DalmatinerDB "DalmatinerDB" "time 103
series"

Bolt "Bolt" "time series" 169

"Data Management for
Connected Homes"

Cube "Square, Inc." "Cube" 191
"time series”
Tsdb: A Compressed Database "Tsdb" "A Compressed 195
for Time Series Database for Time Series"

"time series"
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A list of http://www.google.com results for each TSDB. TSDBs used in YCSB-TS are
highlighted. (continued)

TSDB Search string Results
Energy Databus "Energy Databus" "time 239
series"
SiteWhere "SiteWhere" "time series" 274
SkyDB "SkyDB" "time series" 288
Apache Chukwa "Apache Chukwa" "time 336
series"
Kairos "Kairos" "time series" 361
-"KairosDB" "redis"
"agoragames"
TimeStore "TimeStore" "time series" 547
Akumuli "Akumuli" "time series" 558
YAWNDB "YAWNDB" "time series" 563
TimeTravel "TimeTravel" "dbms" "time 687
series"
Arctic "Arctic" "time series 922
database" -"ice"
Vaultaire "Vaultaire" "time series" 971
Gorilla "Gorilla" "time series 1,380
database" -"pound"
TSDB: Time Series Database "TSDB" "Time Series 1,430
Database" "time series"
-"OpenTSDB"
TsTables "TsTables" "time series" 1,480
BlueFlood!® "BlueFlood" "time series" 1,630
BlinkDB "BlinkDB" "time series" 1,810
Seriesly "Seriesly" "time series" 1,880
SciDB "SciDB" "time series" 3,940
Gnocchi "Gnocchi" "time series" 4,260
Whisper "Whisper" "graphite" 5,060
"time series"

8The reason for using this TSDB for comparison is explained in Section 3.1.
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A list of http://www.google.com results for each TSDB. TSDBs used in YCSB-TS are

highlighted. (continued)

TSDB Search string Results
Atlas "Atlas" "time series 6,140
database"
KairosDB "Kairos" "time series" 6,310
-"redis" -"agoragames"

Newts "Newts" "time series" 7,330
MonetDB "MonetDB" "time series" 8,270
Rhombus "Rhombus" "time series" 11,500
OpenTSDB "OpenTSDB" "time series" 12,800

MySQL Cluster*? "MySQL Cluster" "time 20,500
series"

Druid "Druid" "time series" 24,000
InfluxDB "InfluxDB" "time series" 24,000
RRDtool'? "RRDtool" "time series" 26,500

Prometheus'® "Prometheus" "time 32,000
series" -"IMDB" -"Movie"
PostgreSQL "PostgreSQL" "time 113,000
series"
MySQL Community Server "MySQL"?® "time series" 289,000

A.4 Python Modules and Tools

A list of used Java client libraries and TSDBs on Debian 8.1 x64 ‘Jessie”. All Java
applications used OpenJDK Java 7 JRE with version 7u91-2.6.3-1deb8ul.

A.4.1 TSDBs
¢ Blueflood 2.0.0-SNAPSHOT with Cassandra 2.1.12

9The reason for not using this TSDB for comparison is explained in Section 3.1.

20"MlySQL Server" has 57,400 results. As the term "MySQL Community Server" is very unpopular und
not used (only 923 results), "MySQL" was used.
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* Druid 0.8.1 with MySQL Server 5.5.46-0+deb8ul

* InfluxDB 0.10.0-nightly-72c6a51

* KairosDB 1.0.0-1 with Cassandra 2.1.12

* KairosDB 1.0.0-1 with h2 1.3.170

* MonetDB Server 11.21.11

* MySQL Server 5.5.46-0+deb8ul

* NewTS 1.3.1 with Cassandra 2.1.12

* OpenTSDB 2.2.0RC1 with HBase 1.1.2 and Hadoop 2.7.1
* PostgreSQL 9.4.5-0+deb8ul

A.4.2 Java client libraries

* httpclient 4.5 and json 20140107 for Blueflood and OpenTSDB

* tranquility 2.10 0.5.1, httpclient 4.5, and json 20140107 for Druid
* influxdb-java 2.0-GIT for InfluxDB

* monetdb-jdbc 2.18 for MonetDB

* client 2.0 for KairosDB

* newts-cassandra 1.3.1 and newts-cassandra-search 1.3.1 for NewTS
* rhombus 2.0.12-SNAPSHOT for Rhombud

* libmysql-java 5.1.32-1 for MySQL

* libpostgresql-jdbc-java 9.2-1002-1 for PostgreSQL

A.5 Hardware and VM Settings

TSDBBench used vSphere as an EI, which has three Supermicro SuperServer SYS-
6027R-TRF servers, of which each has the following hardware:

* Six Intel Xeon E5-2640 CPUs with six physical cores, each running with 2.5 GHz.
Twelve threads are available with Hyperthreading.

* 192 gigabyte RAM, consisting of 24 8 Gigabyte ECC registered RAM modules
(RAM-R31608ER)

* Two EMU-OCE11102-NX network adapters (copper)

* One 8 gigabyte SATA Embedded Module (DOM) with SLC Flash (ATP-AF8GSSEI)

VSphere used the following hardware as storage:

* Two Intel Xeon E5-2609 CPUs with four physical cores, each running with 2.4
GHz.
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* 16 gigabyte RAM, consisting of eight 2 gigabyte ECC registered RAM modules
(RAM-R31602ER)
* Open-E DSS V7 with Open-E Active-Active

The storage uses several storage modules, each of them uses the following hardware:

* 4-channel SAS 6 GBit/s Dual Core RAID-Controller (LSI-SAS9271-41-SG)

* Four internal SATA+SAS ports

e LSI SAS2208 Dual Core ROC, 800 MHZ PowerPC

* 1 gigabyte DDR3 Cache

* LSI CVMO1 Cachevault Kit FA1/4R for MEGARAID SAS 9266 series

* Two Intel 520 SSDs with 120 GB MLC flash each (SSD-INT-SC2CW120A310)

* 22 1 terabyte HDDs with 7,200 RPM and 64 megabyte cache each (HDD-
25521000-07)

* Two dual port 10 gigabit network adapters (EMU-OCE11102-NT)

* One 8-channel 6 SATA+SAS host bus adapter (LSI-SAS9207-8E-SGL)

The following settings are used for all TSDB VMs:

Eight vCPUs with maximum frequency set to “unlimited”.
16,384 megabyte RAM

50 gigabyte HDD

Debian 8.1 x64 ‘Jessie” as operating system

The following settings are used for all generator VMs:

* Four vCPUs with maximum frequency set to “unlimited”.
* 8,192 megabyte RAM

* 50 gigabyte HDD

* Debian 8.1 x64 ‘Jessie” as operating system
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A.6 Supported functions by the compared TSDBs

Table A.2 presents a comparison of supported functions of the ten compared TSDBs in
this thesis, see Section 4.2 for more details.

TSDB INS| READ| SCAN| AVG| SUM| CNT| MAX| MIN| UP- | DEL
DATE
Group 1: TSDBs with a requirement on NoSQL DBMS
Blueflood X x2! X X X X X
KairosDB X x2! X X X X X X X
NewTS?* X X X X X X
OpenTSDB?? | x x2! X X X x23 X X
Rhombus?* | x X X X X X
Group 2: TSDBs with no requirement on any DBMS
Druid® X x21 X x%6 X X X X
InfluxDB X X X X X X X X x%7 X
MonetDB X X X X X X X X X X
Group 3: RDBMS
MySQL X X X X X X X X X X
Community
Server
PostgreSQL X X X X X X X X X X

Table A.2: Comparison of supported functions by the compared TSDBs in this thesis.

21Uses SCAN with the smallest possible range.

22DEL can be substituted with a command-line tool and HBase functions.

23Since OpenTSDB version 2.2.

24Some unsupported functions can be substituted with own CQL statements.

25Missing functions can be substituted with re-ingestion through a IngestSegmentFirehose.
26Uses SCAN and CNT.

27possible to overwrite with INS when setting resolution to milliseconds, see [Sha14].
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List of Abbreviations

Abbreviation Meaning First occurrence
UPDATE Updating 14
API Application Programming Interface 14
AVG Averaging 14
AWS Amazon Web Services 12
CLI Command-Line Interface 28
CNT Counting 14
CPS Cyber-Physical Systems 11
CQL Cassandra Query Language 31
CRUD Create, Read, Update, Delete 56
DB Database 12
DBMS Database Management System 3
DBS Database System 12
DEL Deletion 15
DI Data Integration 22
DNS Domain Name System 30
EC2 Elastic Compute Cloud 12
El Elastic Infrastructure 3
ETL Extract, Transform, Load 22
FCS Frame Check Sequence 3
GPLv2 GNU General Public License version 2 42
GPLv3 GNU General Public License version 3 42
GUI Graphical User Interface 28
HA High Availability 13
HDD Hard Disk Drive 18
InfluxQL InfluxDB Query Language 32
INS Insertion 14
IoT Internet of Things 11
JDBC Java Database Connectivity 33

137



List of Abbreviations

(continued)

Abbreviation Meaning First occurrence
LGPLv2.1 GNU Lesser General Public License version 2.1 42
LTS Long Term Support 14
MAL MonetDB Assembly Language 33
MAX Maximization 14
MIN Minimization 14
MIT Massachusetts Institute of Technology 42
MPL Mozilla Public License 43
ODBC Open Database Connectivity 33
ODH Operational Data Historian 19
OLAP Online Analytical Processing 23
OLTP Online Transaction Processing 22
PEC Peer Energy Cloud 20
RDBMS Relational Database Management System 3
READ Reading 14
RF Replication Factor 29
RRD Round Robin Database 27
SCAN Scanning 14
sMAP simple Measurement and Actuation Profile 126
SOA Service-oriented Architecture 18
SQL Structured Query Language 32
SSD Solid State Disk 18
SUM Summarization 14
TPC Transaction Processing Performance Council 22
TSDB Time Series Database 3
UI User Interface 28
VM Virtual Machine 18
YCSB Yahoo Cloud Server Benchmark 3
YCSB-TS Yahoo Cloud Server Benchmark for Time Series 3
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