Universitat Stuttgart

Institut fiir Visualisierung und Interaktive Systeme

Kognitionsframeworks |l

Ausarbeitung
Fachstudie (5S11)

Betreuer: Michael Raschke, Prof. Thomas Ertl

Stephan Engelhardt, Paul Hummel, Oliver Schmidtmer

Stuttgart, 1. August 2011

Inhaltsverzeichnis

1 Einleitung 7
2 Kognition 9
2.1 Das Gehirn oL 9
2.1.1 Kiinstliche Neuronale Netze 12

2.1.2 Konnektionistischer Ansatz 13

2.2 Wissensreprisentation Lo oo 14
2.2.1 Semantische Netze 0oL 16

2.2.2 Scripts 17

2.2.3 Bildhafte Vorstellung L. 18

2.2.4 Symbolischer Ansatz L. 18

2.3 Informationsverarbeitung Lo L 19
2.3.1 Aufmerksamkeit L 19

2.3.2 Verhalten 21

233 Reflexe 23

2.3.4 Problemlésung und Verarbeitung 23

2.4 Grenzen der Kognitionssimulation 25
241 Bewusstseino 25

2.4.2 Ethik und Emotionen 25

2.4.3 Kreativitdt Lo 26

3 Kiinstliche Intelligenz 27
3.1 Suchprobleme 27
3.2 Expertensysteme L 28
3.3 General Problem Solver 29
4 Kognitive Kiinstliche Intelligenz 31
4.1 Die ,Hardware” 31
4.2 Die ,Software® 32
5 Kognitionsframeworks 35
5.1 Begriffsklarung 35
5.2 FEinsatzmoglichkeiten der Kognitionsframeworks 36
5.3 Getestete Frameworks 36
6 Framework ACT-R 39
6.1 Aufbau/Architektur Lo 39
6.2 FEinsatzgebiete. L 43
6.3 Ergebnisvisualisierung oL oo 44
6.4 Grenzen i e e e 46
6.5 Inbetriebnahme oo 46
6.6 Fazit 48

7 Framework Apex

7.1 Aufbau/Architektur Lo
7.2 Einsatzgebiete. Lo
7.3 Ergebnisvisualisierung Lo L
T4 Grenzen o e
7.5 Inbetriecbnahme Lo oo
7.6 Fazit e
8 Framework Soar
8.1 Aufbau/Architektur o
8.2 FEinsatzgebiete
8.3 Ergebnisvisualisierung oL
8.4 Grenzen e
8.5 Imbetriebnahme oo
8.6 Fazit

9 Vergleich und Bewertung der Frameworks

10 Fazit

51
51
53
o4
56
o7
59

61
61
66
67
69
70
71

73

77

Kurzbeschreibung

Diese Fachstudie beschéftigt sich mit der Untersuchung und dem Vergleich der kogniti-
ven Frameworks ACT-R, Apex und Soar. Dazu wird eine Einfiihrung in die Grundlagen
der Kognitionswissenschaft und der KI gegeben. Sowohl der Gehirnaufbau als auch ver-
schiedene Modelle der Wissensreprasentation und der Informationsverarbeitung werden
aufgezeigt. Im Anschluss legen die Autoren Architektur, Einsatzgebiete, Ergebnisvisua-
lisierung und Grenzen der untersuchten Frameworks dar. Abschlieend werden die Fra-
meworks bewertet und ein Ausblick in die weitere Entwicklung gegeben.

Abstract

This paper presents the research and comparison of the cognitive architectures ACT-R,
Apex and Soar. This includes an introduction in the basics of cognitive science and Al.
Authors show the structure of brain as well as several models of knowledge representation
and information processing. Afterwards the authors point out the structure, applications,
result visualization and the limits of cognitive architectures. Finally this paper evaluates
the frameworks and gives an outlook for the development in the future.

1 Einleitung

Bereits die alten Griechen hatten Visionen von Maschinen, welche automatisch mathe-
matische Berechnungen durchfithren kénnen. Damals war es das Ziel, eine Maschine
zu entwickeln, welche einfache arithmetische Rechnungen 16st. Bis heute ist unter den
meisten Menschen die Meinung weit verbreitet, dass Personen, die schnell komplizierte
Rechnungen im Kopf 16sen koénnen, sehr intelligent sind. Ironischerweise ist jedoch ge-
nau das die Stdrke von heutigen Computern und kaum einer wiirde diesen deshalb als
besonders intelligent bezeichnen.

Nach und nach setzten die Menschen die Ziele, was ein Computer leisten soll, immer
hoher. Man glaubte, ein Programm, welches einen Schachspieler simuliert, wére eine
intelligente Leistung. Auch dies ist heutzutage kein Problem mehr und gilt deshalb in
den Augen vieler Menschen nicht mehr als intelligent.

Wird es jemals ein intelligentes Programm geben, wenn Menschen die Anforderungen
an einen Computer immer hoher stecken und bisher Erreichtes nicht als intelligent be-
zeichnen? Damit sich ein Programm menschenéhnlich verhélt, muss es mdoglicherweise
ghnlich einem Gehirn aufgebaut sein. Nicht nur das Resultat, sondern auch der Lésungs-
weg miisste wahrscheinlich dem des menschlichen Denkprozesses dhneln. Um also typisch
menschliches Verhalten kiinstlich zu erzeugen, geniigen keine biniren Entscheidungen -
der Weg muss Emotionen und Unschérfen enthalten.

Um den Zielen ndher zu kommen, arbeiten Informatiker seit einiger Zeit mit Ko-
gnitionswissenschaftlern zusammen und versuchen herauszufinden, wie das menschliche
Gehirn arbeitet, um intelligente Programme fiir verschiedene Einsatzgebiete zu entwer-
fen.

Diese Fachstudie gibt einen Einblick in die Funktionsweise des Gehirns und beschéf-
tigt sich mit der Frage, was Kognition bedeutet. Mit der Vorstellung einiger Modelle,
wird erklért, wie Wissen im Gehirn abgespeichert und dadurch Entscheidungen getroffen
werden. Im Weiteren werden Unterschiede zwischen der klassischen kiinstlichen und der
kognitiven kiinstlichen Intelligenz erldutert und Grenzen der Simulation solcher Algo-
rithmen aufgezeigt.

Im zweiten Teil des Dokuments gibt es einen Einblick in verschiedene Kognitionsfra-
meworks, welche einige Probleme der kognitiven kiinstlichen Intelligenz behandeln. Dazu
werden sowohl der Aufbau der verschiedenen Architekturen, als auch die Einsatzgebiete
der einzelnen Frameworks genauer untersucht und zuletzt miteinander verglichen.

2 Kognition

Wie denkt ein Mensch? Psychologen, Neurologen und Informationswissenschaftler gehen
dieser Frage nach und arbeiten gemeinsam, um neue Erkenntnisse iiber das komplexe
System des Denkens zu gewinnen. Man nennt diese interdisziplindre Wissenschaft ,, Ko-
gnitionswissenschaft“. Sie beschéftigt sich damit, welche neuronalen Vorgénge zwischen
der Wahrnehmung von Reizen und den Reaktionen auf diese stattfinden. Diese Vor-
gidnge nennt man ,kognitiv® und ,,Kognition® ist der ganze Prozess, der diese Vorgéinge
beschreibt.

Eine weitere spannende Frage, die sich stellt, ist: Wie weit ist es moglich, die kogniti-
ven Fihigkeiten eines Menschen durch einen Rechner zu simulieren? Auch die Autoren
dieser Ausarbeitung setzten sich damit auseinander. Doch bevor man sich damit beschéf-
tigen kann, muss man die grundlegenden Prozesse im Gehirn kennenlernen. Im folgenden
Unterkapitel wird der grundlegende Aufbau des menschlichen Gehirns auf Makro- und
Mikroebene vorgestellt. Danach beschreibt die Ausarbeitung, wie das Wissen im Gehirn
représentiert werden kann. Des Weiteren wird auf die Moglichkeiten der Informationsver-
arbeitung, wie sie im Gehirn stattfinden kénnte, eingegangen. Und anschlielend werden
Grenzen der Kognitionssimulation mit Rechnern aufgezeigt.

2.1 Das Gehirn

Es steht aufler Frage, dass das Hauptdenkorgan des Menschen das Gehirn ist. Um sei-
ne genaue Funktion besser zu verstehen, muss man sich zunéchst mit seinem Aufbau
auseinandersetzen. Dieses Unterkapitel stellt einige Gehirnbereiche vor.

Das menschliche Gehirn kann man grob in zwei Teile einteilen: die linke Hirnhélfte und
die rechte (Abbildung 2). Sie werden Hemisphéren, griechisch fiir ,,Halbkugel®, genannt.
Die Wahrnehmungen werden, je nach Seite woher der Reiz kam, von der gegeniiber-
liegenden Hirnhélfte verarbeitet. Zum Beispiel werden Signale vom linken Auge an die
rechte Hirnhélfte und vom rechten Auge an die linke geleitet (Abbildung 3).

Die zwei Gehirnhilften sind nicht komplett voneinander getrennt, denn es existiert
eine Verbindung, die durch den Balken (Corpus callosum, Abbildung 1) erméglicht
wird. Somit ist die Kommunikation in der Wahrnehmung und der Verarbeitung der
Informationen zwischen den Hemisphéren sichergestellt.

Auf der Oberfliche der Hirnhilften befindet sich die Grof8hirnrinde (Zerebraler Kor-
tez, Abbildung 1, auch Neocortex genannt). Eine hochentwickelte Grofhirnrinde ist ein
Merkmal der Siugetiere. Sie ist fiir ,,intelligente*! Handlungsweisen der Menschen zustéin-
dig. Dort findet das bewusste Denken statt [39]. Man darf nicht auler Acht lassen, dass
einzelne Gehirnteile ohne die anderen nicht funktionieren kénnen, da es immer wichtige
Verbindungen zu anderen Teilen des Gehirns gibt. Das heifit, es muss ein Gehirnteil, das
fiir Motorik (z. B. Bogenschieflen) zusténdig ist, mit einem anderen Gehirnteil, das fiir
die menschlichen Triebe (z. B. Verlangen nach Essen) verantwortlich ist, kommunizieren,
um den Menschen dazu zu bringen, jagen zu gehen. Beim Jagen muss er seine Umwelt

'Bs gibt keine eindeutige und abgegrenzte Beschreibung, was Intelligenz ist und welche Handlungsweisen
als intelligent zu bezeichnen sind.

zerebraler Kortex Thalamus
(= GroBhirnrinde, steuert das Denken und die (gibt die sensorischen Informationen

sensorischen Funktionen an den zerebralen Kortex weiter)
sowie die willkirliche Bewegung)

Mittelhirn
(retikuldres Aktivierungssystem:
Trager von Nachrichten
uber Schlaf und Erregung)

Corpus callosum
(= Balken, tauscht Informationen
zwischen den beiden
Hemispharen aus)
Pons
(= Briicke, tauscht
Informationen zwischen
zerebralem Kortex und
Kleinhirn aus)

Hypothalamus
(reguliert Kérper-
temperatur, Essen, Schlafen
und das endokrine System)

Hypophyse

(= Hirnanhangdrise,
Hauptdrise des

endokrinen Systems)

Zerebellum
(= Kleinhirn, koordiniert
die Feinmotorik und
das Gleichgewicht)

Medulla oblongata

(= verldngertes Rickenmark,

steuert den Herzschlag
und die Atmung)

Riickenmark
(tauscht Nervenimpulse
zwischen Gehirn und Korper
aus, steuert einfache Reflexe)

Abbildung 1: Aufbau des menschlichen Gehirns. Man erkennt die grobe Struktur mit
verschiedenen Gehirnregionen und ihren Zusténdigkeiten [39]

Abbildung 2: Ein 3D-Modell eines menschlichen Gehirns, an dem die Gehirnhélften deut-
lich sichtbar sind [34]

10

|
Linke Seite | Rechte Seite

©.! ©

—_—

Abbildung 3: Signale werden immer von der gegeniiberliegenden Gehirnhélfte verarbei-
tet. Hier am Beispiel von visuellen Reizen dargestellt.

wahrnehmen, weshalb der Perzeptions-Gehirnteil mitwirken muss. So ergibt sich, dass
bei jedem Verarbeitungsvorgang im Gehirn immer mehrere Bereiche beteiligt sind.

Das oben erwiihnte Gehirnteil fiir Motorik ist das Kleinhirn (Zerebellum, Abbildung
1). Der Begriff ,,Motorik* umfasst Bewegungsausfithrungen, Koordination dieser und das
Halten des Gleichgewichts [47].

Im Thalamus (siche Abbildung 1) werden alle sensorischen Signale gesammelt, um
von anderen Gehirnteilen weiterverarbeitet zu werden. Dadurch, dass er direkten Einfluss
auf den Hormonhaushalt des Menschen nimmt, ist er ein wichtiger Vermittler zwischen
dem vegetativen Nervensystem? und dem Hormonsystem. Seine weiteren Aufgaben sind
Schlaf- und Kérpertemperatur-Steuerung, sowie Schmerzempfindung. [47]

Das verlingerte Riickenmark (Medulla oblongata, Abbildung 1) ist fiir automatisch
ablaufende Vorgéinge verantwortlich. Dazu z#éhlt unter anderem: [47]

e Stoffwechselsteuerung
e Herzschlagsteuerung
e Atmungssteuerung

e Schluckreflex

2Das vegetative Nervensystem ist ein Teil des gesamten Nervensystems, welches fiir die Aufrechterhal-
tung der lebenswichtigen Vorgénge, wie zum Beispiel des Herzschlags, zustandig ist.

11

e Hustreflex
e Lidschlussreflex

Der Hirnstamm, bestehend aus Medulla oblongata (verliangertes Riickenmark), Pons
(Briicke) und Mittelhirn [18] (Abbildung 1), ist der grundlegende Teil des menschlichen
Gehirns und wird umgangssprachlich Reptilienhirn genannt, weil es, aus der Sicht der
Evolutionstheorie, bereits bei Reptilien vorzufinden ist und im Laufe der Evolution er-
halten blieb. Der Hirnstamm steuert reflexartige und instinktive Verhaltensweisen, und
verarbeitet teilweise die dafiir notwendigen Sinneseindriicke [47]. Teilweise, weil es keine
scharfe Trennung der Zustidndigkeitsbereiche gibt. Das heifit Gehirnteile haben Haupt-
aufgaben, was nicht ausschliefit, dass nebenliegende Regionen am Verarbeitungsprozess
mitbeteiligt sind.

Die oben genannten Gehirnteile sind bei der Strukturbetrachtung auf der Makroebene
des Gehirns zu erkennen. Auf der Mikroebene besteht das Gehirn aus neuronalen Netzen,
mit denen sich das néchste Unterkapitel auseinandersetzt.

2.1.1 Kinstliche Neuronale Netze

Im Gesamten bilden Gehirnteile ein riesiges neuronales Netz - ein Konstrukt aus Milli-
arden von Neuronen.

)

° Microtubulus

Neurotransmitter

Dendriten

synaptische Vesikel
Synapse (axoaxonal)

synaptischer Spalt }

Axonterminale

raues ER

Polyribosomen Ranvier-Schnirring

Ribosomen T '
Golgi-Apparat J/ ES ’)
] , AN :
\ U (.
Nucleolus : ,' N

Zellmembran Qﬁw =
Microtubuli & 2 =

s <S4
ondrium \/ 5

glattes ER

I Synapse o ‘

(axodendriti:

Myelinscheide
(Schwann-Zelle)

Nucleus

~U
A)

Abbildung 4: Aufbau eines Neurons [19]. Zu ndheren Beschreibung siehe Kapitel 2.1.1

Ein Neuron besitzt einen Zellkérper und ist mit bis zu 10.000 anderen Neuronen iiber
Dendriten verbunden. Einige dieser Neuronen sind spezielle Eingangsneuronen, welche

12

mit Sinnesorganen wie den Augen oder der Haut verbunden sind. Andere Neuronen er-
halten von diesen Eingangsneuronen mehrere elektrische Impulse unterschiedlicher Span-
nungen, welche hauptséichlich jeweils von der Dicke der Dendriten zwischen ihnen ab-
héngen. Gleichzeitig eintreffende Impulse summieren sich in einem Neuron zu einem
Gesamtpotenzial auf. Ubersteigt dieses einen bestimmten Wert, so ,feuert* das Neuron.
,Feuern“ bedeutet, dass das Neuron an all seine Nachbarneuronen mit denen es verbun-
den ist einen ca. 0,2 ms andauernden elektrischen Impuls von 0,1 V weitergibt [15]. Ob
und mit welcher Spannung ein Neuron feuert, ist also vollig unabhéngig davon, ob das
Eingangspotenzial iiberstiegen wird - es gilt das Alles-oder-Nichts-Gesetz [37]. Verbin-
det man drei Neuronen, lassen sich bereits logische UND- und ODER-Gatter simulieren.
Koppelt man jedoch viele tausend Neuronen zusammen, kénnen duflerst komplexe, logi-
sche Entscheidungen getroffen werden.

Die ,,Einstellmoglichkeiten* eines solchen Netzes sind an nur sehr wenigen Stellen mo6g-
lich. Die grofiten Faktoren sind die Verbindungen zwischen den einzelnen Neuronen, also
welche Neuronen miteinander verbunden sind und wie dick die jeweiligen Dendriten sind.
Somit kann man sagen, dass das Wissen in den Verbindungen zwischen den Neuronen
steckt.

Inspiriert von dieser Hypothese, wurde der konnektionistische Ansatz entwickelt.

2.1.2 Konnektionistischer Ansatz

Das Gehirn ist bei weitem nicht vollstéindig erforscht. Verfechter des konnektionistischen
Ansatzes, wie zum Beispiel Warren McCulloch und Walter Pitts haben im Jahre 1943
jedoch gezeigt, dass einige Funktionen des Gehirns durch Simulation der neuronalen
Aktivitdten nachgebaut werden kénnen [22]. Ein Beispiel dafiir ist die optische Muste-
rerkennung.

Diese Forschungen zeigen, dass es eine Moglichkeit gibt, Informationen in Form eines
neuronalen Netzes abzuspeichern. Dies bildet eine Grundlage fiir den konnektionistischen
Ansatz, in dem es darum geht, Probleme und Aufgaben mit Hilfe einer computergestiitz-
ten Simulation des Neuronenverhaltens zu l6sen.

Im Gehirn finden unzahlige asynchrone Kommunikationen zwischen einzelnen Neuro-
nen statt. Es werden atomare Informationseinheiten in chemischer und elektrischer Form
ausgetauscht, die fiir sich keine Bedeutung haben, jedoch in ihrem Zusammenspiel das
Ergebnis fiir ein Problem liefern kénnen.

Neurone beeinflussen sich anregend oder hemmend [39]. Anregend heifit, dass das
ankommende Signal bei einem Neuron verstarkt weitergegeben wird. Hemmend bedeutet,
dass das ankommende Signal abgeschwiicht durchgeleitet wird oder sogar, dass das Signal
das Feuern des Neurons unterbindet.

Auch wenn man meint, dass Menschen regelbasiert handeln (zum Beispiel: ,,Ich fiihle
Hunger, also gehe ich zum Kiihlschrank®), findet jedes Mal eine komplexe Auswertung
der Eindriicke statt, zum Beispiel kann ein Mensch Hunger auf einen Apfel bekommen,
der nicht im Kiihlschrank liegt. Das Gehirn hélt keine Listen, die je nach Reizart und
Reizkonfiguration Schritt fiir Schritt, wie ein Regelbuch, abgearbeitet werden. Das Ge-
hirn ist sehr stark parallelisiert, denn jedes Neuron bildet eine eigene Recheneinheit,

13

und bei Auswahl der angemessenen Reaktion auf einen Reiz trigt jedes einzelne akti-
ve Neuron zur Entscheidung bei. Es ist vergleichbar mit einer Jazz-Band, bei der jeder
einzelne Musiker improvisiert, wihrend viele Instrumente gleichzeitig und nicht nach-
einander spielen. Bei jeder der neuen Jamsession mit derselben Hauptmelodie entsteht
ein minimal abgewandeltes, neues Musikstiick. So ist es auch im Gehirn: Bei dhnlichen
Randbedingungen kommen Entscheidungen heraus, die &hnlich, aber nicht zwangsweise
gleich sind.

Die neuronalen Netze sind formalisierbar, also konnen sie im Rechner gespeichert und
simuliert werden. Im néchsten Abschnitt wird untersucht, wie Informationen im Gehirn
reprisentiert werden kénnen.

2.2 Wissensreprasentation

Es stellt sich die Frage, wie das Wissen im Gehirn gespeichert wird. Dazu wird die Spei-
cherart des Gehirns zunédchst auf Neuronenbasis betrachtet. Davon wird in den néchsten
Unterkapiteln abstrahiert und verschiedene Modelle fiir die Wissensreprisentation vorge-
stellt. Zuerst folgt jedoch ein Beispiel, warum diese verschiedenen Ebenen Sinn ergeben.

Die Zahl 3 konnte ebenso als abstraktes mathematisches Modell, als auch als Bild
des Zeichens ,,3“ oder gar als Vorstellung von drei Apfeln, welche auf einer griinen Wiese
liegen, im Gedéchtnis verankert sein. Natiirlich wére es auch denkbar, alle drei Représen-
tationen abgespeichert zu haben und je nach Kontext die eine oder andere Darstellung
zu wihlen. Um hervorzuheben, dass es sehr wohl einen Unterschied macht, welche Repré-
sentation fiir einen bestimmten Fall gewahlt wird, soll hier eine kleine Aufgabe dienen:

Wir haben ein Quadrat mit der Kantenlénge n. Dieses Quadrat ist in m
kleinere Quadrate aufgeteilt, wobei die Anzahl der kleinen Quadrate an einer
Kante des grofien Quadrats gerade ist. Auflerdem bekommen wir beliebig vie-
le Dominosteine, welche jeweils die Fliache von genau zwei kleinen Quadraten
abdecken.

Die Aufgabe besteht nun darin, das grofle Quadrat komplett mit Dominosteinen zu be-
fiillen, sodass keine freie Stelle mehr iibrig bleibt. Dies ist eine ziemlich einfache Aufgabe,
da man Reihe fiir Reihe mit Dominosteinen bis zum Ende auffiillen kann (Abbildung 5).

14

Abbildung 5: Dominosteine lassen sich auf einem quadratischem Gitter mit gerader Zel-
lenanzahl leicht so verteilen, dass das komplette Gitter abgedeckt ist.

Nun wird das grofle Quadrat etwas abgewandelt: Zwei diagonal gegeniiberliegende
kleine Quadrate in den Ecken des grofien Quadrats werden entfernt. Die Aufgabe bleibt
dieselbe. Fénge man jetzt ohne zu iiberlegen an, die Steine zu verteilen (Abbildung 6),
wiirde man schon bald meinen, dass es nur eine Moéglichkeit oder einen speziellen Trick
gibt.

Abbildung 6: Ohne die zwei Diagonalquadrate ist es unmoglich, mit Hilfe der Domino-
steine das Gitter komplett abzudecken.

Ersetzt man jedoch die Représentation des Quadrats gedanklich durch ein Schachbrett
(Abbildung 7), wird der Fall viel leichter losbar. Die beiden entfernten Quadrate sind
beide entweder weifl oder schwarz. Auf dem Schachbrett befinden sich jetzt auf jeden Fall
ungleich viele schwarze wie weifle Felder. Ein Dominostein auf einem Schachbrett belegt
aber immer genau ein schwarzes und ein weifles Feld. Aus dieser Reprisentation ldsst sich
nun schlieffen, dass man die Dominosteine hichstens so weit hinlegen kann, bis letztlich
zwei gleichfarbige Felder iibrig bleiben. Nur nach sehr langem Herumprobieren wéare
irgendwann die Vermutung gekommen, dass das Problem nicht l6sbar ist, wobei man erst
nach allen M6glichkeiten die sichere Gewissheit dariiber gehabt hétte. Wire die Aufgabe
gewesen, den Umfang des Quadrats anzugeben, wire die Schachbrett-Reprasentation

15

sicherlich komplizierter gewesen als die mathematische Vorstellung eines Quadrats. Dies
verdeutlicht also, dass das Wissen in mehreren Formen (in diesem Beispiel ein einfaches
Quadrat und ein Schachbrett) redundant vorhanden zu sein scheint und entsprechend
der Fragestellung die Form ins Bewusstsein gerufen wird, mit der das Problem mit dem
geringsten Aufwand gelost werden kann.

Abbildung 7: Mit Hilfe eines Schachbretts und etwas Nachdenkens erkennt man schnell,
dass das im Text beschriebene Problem nicht 16sbar ist.

Im Folgenden werden einige Modelle fiir die Repréisentation von Wissen vorgestellt und
ndher betrachtet.

2.2.1 Semantische Netze

Die Vorstellung, dass das Wissen allein in den Verbindungen zwischen den einzelnen
Neuronen gespeichert ist, ist fiir das weitere Verstdndnis zu komplex. Es macht viel
mehr Sinn, jeweils viele Neuronen als ein Ganzes zu betrachten, so dass diese jeweils
eine groflere logische Einheit bilden. So kénnte man mit dem Begriff ,Vogel“ tausende
Durchmesser von bestimmten Dendriten (siehe Kapitel 2.1.1) beschreiben oder eben nur
einige Gruppierungen von Neuronen meinen, welche verschiedene Eigenschaften oder
Reprisentationen eines Vogels besitzen und miteinander verbunden sind. M. Ross Quil-
lian [30] hat dazu ein Geddchtnismodell entwickelt, welches diesen Zusammenhang sehr
einfach visualisiert.

16

e — | Wirbeltier |

hat Federn— — { VOge| ‘ ‘ Fisch % — —hat Kiemen
kann fliegen— — # XXX ‘ ‘ Lanvogel ‘
—s-A
kann singen— — # Kanarienvoge| ‘ ‘ Kranich ‘ ‘ Straul ‘ — — —Has-Prop

Abbildung 8: Semantisches Netz, welches verschiedene Wirbeltiere beschreibt [13].

Abbildung 8 zeigt das Beispiel eines Ausschnittes eines semantischen Netzes, in wel-
chem Wirbeltiere beschrieben werden. Ein semantisches Netz besteht immer aus Knoten,
welche Objekte enthalten. Diese Knoten sind durch ,Ist-Ein”(,Is-A%)-Bezichung mit-
einander verbunden. Diese Beziehungen beschreiben eine Ober-/Unterkonzept-Relation.
AuBerdem gibt es noch die ,Hat-Eigenschaft“(, Has-Prop*)-Beziechungen, welche den ein-
zelnen Objekten zusétzliche Eigenschaften zuweisen. Mit Hilfe eines solchen Netzes ldsst
sich umfangreiches, komplexes Wissen abspeichern. Dass dieses Modell der Realitit ziem-
lich nahe kommt, zeigt folgendes Beispiel: Werden einer Versuchsperson zuerst der Begriff
WVogel“ und kurz darauf der Begriff ,,Straufl“ genannt, so stellt diese sofort den Zusam-
menhang beider Worter her und geht von einem Vogelstrau3 aus. Kaum eine Person
wiirde sagen, dass ein Blumenstraufl gemeint war. Viel erstaunlicher ist noch, dass die
Versuchsperson einige Zeit nach den genannten Begriffen fest der Meinung ist, dass der
Begriff ,Vogelstraufl* genannt wurde.

Nicht alles, was iiber Sinnesorgane aufgenommen wird, wird komplett genauso abge-
speichert. Vielmehr wird immer wieder eine Art Zeiger auf vorhandenes Wissen gesetzt.
In diesem Beispiel verschwindet also z. B. die Information, dass eigentlich zwei Begriffe
genannt wurden - die Referenz auf den Vogelstraufl geniigt dem Gehirn.

2.2.2 Scripts

Das natiirliche Verhalten eines Menschen, wie bei den genannten Begriffen in Kapitel
2.2.1, ist auch bei den sogenannten Scripts sehr deutlich zu sehen [13]. Scripts sind wie
eine Art Drehbuch, welches im Gehirn abgespeichert ist, zu verstehen. In einem Versuch
werden einer Person mehrere zusammenhéngende Ereignisse, bzw. Aktionen in logischer
Reihenfolge erzéhlt. Das Interessante ist nun, dass diese Person kurze Zeit danach von
Ereignissen erzdhlt, welche gar nicht in der Geschichte genannt wurden. Dazu ein kleines
Beispiel:

1. Sie gehen in ein Restaurant.

2. Ein Kellner weist Thnen einen Platz zu.

17

3. Der Kellner nimmt Thre Bestellung auf.
4. Der Kellner bringt das Essen.
5. Sie bezahlen.

6. Sie verlassen das Restaurant.

In dieser Ereignis-Abfolge wurden viele Ereignisse, die wihrend des Essens normalerweise
stattfinden, nicht erwdhnt, wie z. B. dass der Gast das Essen isst oder der Kellner nach-
fragt, ob das Essen schmeckt und ob neue Getrinke gebracht werden sollen. Trotzdem
wird sich nach kurzer Zeit kaum noch jemand an jeden einzelnen Punkt in der Geschichte
erinnern kénnen und ist der festen Uberzeugung, dass das gebrachte Essen auch gegessen
wurde. Dies zeigt, dass der bekannte Restaurantbesuch ohne Details bereits im Gehirn
gespeichert war.

2.2.3 Bildhafte Vorstellung

Von allen Sinnen iiberwiegt die visuelle Wahrnehmung mit ca. 10 Mio. Shannon [36] vor
dem Tasten (1 Mio. Shannon), Héren (100.000 Shannon), Riechen (100.000 Shannon)
und Schmecken (1.000 Shannon) [3]. Allein durch das Sehen kann man sich schon nahezu
perfekt durch die Umgebung bewegen und orientieren. Demnach ist es kaum verwunder-
lich, dass sich Menschen von vielen Dingen zuerst ein ,,Bild“ im Kopf machen. Sowohl
die einzelnen Ereignisse beim Restaurantbesuch, als auch das Quadrat, welches mit Do-
minosteinen verdeckt werden soll (siehe Abb. 5), wird zuallererst als mentales Bild ins
Gehirn projiziert. Welchen Vorteil das haben kann, erkennt man in folgender Aufgabe
[28]:

,Die schwarze Kugel liegt direkt hinter der weiflen Kugel. Die griine Kugel ist
rechts von der weiflen Kugel und zwischen den beiden liegt die rote Kugel.*

Die Frage hierzu konnte lauten: ,In welcher Richtung meiner Sichtlinie liegt die weifle
Kugel, wenn sich die rote Kugel zwischen mir und der schwarzen Kugel befindet?“ Die
wenigsten Menschen wiirden hier z. B. mathematisch vorgehen und sich ein Koordina-
tensystem mit Vektoren vorstellen. Man versetzt sich vielmehr in die Situation hinein,
dass man die Kugeln mit den entsprechenden Farben vor sich hat und ,,sieht“ dann, dass
die weile Kugel eindeutig schrig links vor einem liegt. Die bildhafte Vorstellung findet
jedoch auch bei sehr abstrakten Dingen statt, wie z. B. die anfangs erwéihnte Zahl ,,3“ als
drei Apfel, die auf einer griinen Wiese liegen. Somit bringt die visuelle Vorstellungskraft
selbst bei nicht durch die Augen wahrgenommenen Bildern oft Vorteile.

Ein Modell, wie die bildhafte Vorstellung in den Rechner iibertragen werden kann,
wird im néchsten Abschnitt beschrieben.

2.2.4 Symbolischer Ansatz

Bei dem symbolischen Ansatz geht man davon aus, dass das Gehirn Informationen in
Form von Symbolen abspeichert und es geht darum, die Daten in symbolhafter Darstel-
lung zu verarbeiten. So werden alle real existierende Objekte mit ihren Figenschaften

18

als Symbole gehandhabt. Diese Symbole kénnen miteinander semantisch oder struktu-
rell zusammenhingen. Ein semantischer Zusammenhang wire zum Beispiel: Apfel sind
Essen. Ein struktureller Zusammenhang wére zum Beispiel: Ein Hocker setzt sich aus
Beinen und einer Sitzfliche zusammen.

Symbole, die zwangsweise diskret sind, werden mit Algorithmen ausgewertet. Dies
entspricht Computerprogrammen, die Symbole (z. B. Zahlen oder Zeichenketten) ver-
arbeiten. Dabei versucht man in Simulationen physikalische und logische Gesetze von
mentalen Prozessen zu beachten, um Ergebnisse zu erhalten, die durch psychologische,
empirische Experimente validiert werden konnen. [45]

Der symbolische Ansatz beriicksichtigt auch die Moglichkeit zu lernen. Dabei entste-
hen aus Symbolen und logischen Schlussfolgerungen neue Symbole. Man bezeichnet das
als ,,deduktive Logik“. Die neu erzeugten Symbole kénnen durch Algorithmen genauso
verwertet werden, wie die vorgegebenen. Deduktion der Schlussfolgerungen ist beim sym-
bolischen Ansatz wichtig, denn es diirfen keine Ergebnisse durch naives Durchprobieren
aller Moglichkeiten erzielt werden. [45]

2.3 Informationsverarbeitung

Die Informationsverarbeitung beschéftigt sich damit, wie die im Gehirn ankommenden
Sensordaten vom Gehirn verarbeitet werden. Auf die Verarbeitung der Daten folgt das
Resultat, sprich die verarbeiteten Daten rufen Aktionen hervor. Um die Daten zu erfas-
sen, die von Sensoren kommen, wird die Aufmerksamkeit benotigt.

2.3.1 Aufmerksamkeit

Die menschliche Wahrnehmung liefert viele sensorische Daten, die verarbeitet werden
miissen. Wenn man alleine die Abtastrate und die Auflésungen der Audio-Visuellen-
Wahrnehmung betrachtet, stellt man fest, dass die Menge enorm ist. Angenommen ein
Mensch sieht einen farbigen® Full-HD-Film mit der Auflésung von 1920x1080 und der
Framerate von 25 Frames pro Sekunde, dann nimmt er 1920 - 1080 - 3 - 25 = 155.520.000
Reize pro Sekunde mit jeweils einem Auge wahr. Bei der Abtastrate des Schalls von 20
kHz, was der Breite des Horspektrums entspricht, nimmt er 20.000 weitere Reize in jeder
Sekunde pro Ohr wahr. In der Summe sind es 311.080.000, d. h. iiber 300 Millionen Reize
pro Sekunde*. Hinzu kommen noch taktile (Tastsinn), gustatorische (Geschmackssinn)
und olfaktorische (Geruchssinn) Reize. Das menschliche Gehirn ist nicht in der Lage
all die Informationen vollsténdig zu verarbeiten. Deshalb werden Filter angewandt, um
relevante Inhalte auszuwéhlen.

3Ein Mensch ohne Sehbehinderung nimmt drei Informationseinheiten pro Punkt auf. Das sind: 1. Blau-
gelb-Anteile, 2. Rot-griin-Anteile, 3. Hell-dunkel-Anteile. Deshalb muss man jeden dargestellten Pixel
mit drei multiplizieren.

4 Amplituden (Farbtiefe und Lautstirke) werden analog von einzelnen Perzeptronen wahrgenommen.
Das heifit, die Wahrnehmung eines Perzeptrons lauft iiber einen einzigen analogen Eingang, nicht
iiber mehrere digitalen Eingédnge. Deshalb findet keine Multiplikation mit Farbtiefe von 8 Bit pro
Farbe und Lautstérkeunterschied von 16 Bit pro Abtasteinheit statt.

19

Ein Mensch kann gleichzeitig ungefihr 742 Chunks (im Kurzzeitgedéchtnis merkbare
Teile) fokussieren [23]. Entsprechend konnen die meisten Menschen ohne Anwenden von
speziellen Mnemotechniken beim ,,Koffer packen“-Spiel fiinf bis neun Objekte vollstandig
und in der richtigen Reihenfolge aufzéhlen.

Damit Menschen die Informationsflut ihrer Sinne auf iibersichtliche 7 Chunks redu-
zieren konnen, wihlt das Gehirn zuerst einen der fiinf Sinne (Sehen, Horen, Tasten etc.)
aus und dann ein ausgewihltes Sehfeld.

Dies kann mit einem einfachen Selbsttest belegt werden. Man muss nur versuchen die
Oberflachenbeschaffenheit von einem verdeckten Objekt mit der Hand zu untersuchen,
wéhrend man ein Bild betrachtet. Man wird merken, dass die bildhafte Wahrnehmung
unterbrochen wird und nur die Eindriicke dieser Hand wahrgenommen werden, aber
nicht die der anderen Hand.

Das heifit, im entspannten, unkonzentrierten Zustand ,,wartet* ein Mensch auf Rei-
ze. Zum Beispiel springt ein Mensch plotzlich auf die Gegenfahrbahn und erscheint im
Blickwinkel des Autofahrers. Beim konzentrierten Betrachten erkennt er, dass es ein
Mensch aus seinem Bekanntenkreis ist und verwirft gleichzeitig die Reize des Autoradi-
os. Ein anderer Fall wire: Der Autofahrer fihrt ein neues Auto und bemerkt, dass der
Schaltkniippel aus Leder ist. Wihrend er die Struktur der Oberfliche genau ertastet,
vergisst er alles um sich herum. Robert Solso bezeichnet dieses Phénomen als selektive
Aufmerksamkeit [39)].

Die selektive Aufmerksamkeit hat den Vorteil, dass Ressourcen des Denkvermogens,
z. B. die ,,Rechenleistung” dynamisch verteilt werden kann. So kann ein Mensch seine
Umgebung mit einem Offnungswinkel von ca. betrachten (Abbildung 9), um mdogliche
Gefahren zu erkennen. Er kann seine Aufmerksamkeit auf einen Punkt konzentrieren,
um ein unbekanntes oder schlecht sichtbares Objekt genau zu untersuchen.

Abbildung 9: Das Sichtfeld eines Menschen. Der Offnungswinkel des Sichtfeldes ist un-
gefahr 7.

20

Manche Menschen behaupten, dass sie ,,multitaskingfahig® sind und somit ihre Auf-
merksamkeit nicht auf einen, sondern auf mehrere Sehfelder gleichzeitig lenken kénnen.
In Wirklichkeit ist es ein schnelles Hin-und-Her-Lenken der Aufmerksamkeit zwischen
verschiedenen Sehfeldern [12].

Doch worauf richten Menschen ihre Aufmerksamkeit? Meistens sind es unbekannte,
interessante und bunte Gegenstinde. Allgemein sind es die Objekte, die bei Menschen
Emotionen hervorrufen. Dies ist auch in der Werbebranche bekannt. Dort versucht man
je nach Thema auf verschiedenste Gefithle der Zielgruppe einzugehen. Dies bestétigt
Anja Miiller[24]: ,Eine emotional starke Marke schaltet nicht nur den Verstand aus,
sondern kann auch andere Marken verdrangen. Und auch die Preisgestaltung als Teil des
Marketings hat einen Einfluss auf die Vorgéinge im Gehirn, zeigt die Neuro-Okonomin
Hilke Plassmann, die seit sieben Jahren unter anderem am renommierten California
Institute of Technology und nun im franzosischen Insead forscht.“

Die Aufmerksamkeit erlaubt es also einem Menschen, die fiir ihn relevanten Informa-
tionen herauszufiltern. Diese Informationen werden anschliefend vom Menschen verar-
beitet, was durch seine Reaktionen, also sein Verhalten begleitet wird.

2.3.2 Verhalten

Wenn Menschen Aufgaben erledigen, handeln sie. Dabei wéhlen sie ein Verhalten, um das
Problem zu 16sen. Eine besondere Herausforderung stellt die Entwicklung der autonomen
Agenten® dar, weil sie selbststéindig mit anderen Agenten und der Umgebung interagieren
und somit ein komplexes Verhaltensmodell haben. In diesem Abschnitt wird ein Modell
fiir die Abldufe der Informationsverarbeitung innerhalb eines autonomen Agenten vor-
gestellt.

Michael Schanz[33] beschreibt Vorgénge in autonomen, d. h. selbststéindig handelnden
Agenten in seiner Vorlesung , Einfithrung in die Verteilte Kiinstliche Intelligenz*“ anhand
eines Modells des Autonomie-Zyklus. Seine Sichtweise mit Schwerpunkt Robotik kann
man vollstdndig auf Menschen {ibertragen, denn Menschen interagieren mit der Umwelt
ebenfalls autonom, haben Sensoren, Aktuatoren, und verfiigen iiber ein Weltmodell und
Planungsvermogen.

In Abbildung 10 erkennt man zwei Bereiche: A und B. Der Bereich A reprisentiert das
Untersystem ,,autonomer Agent®, der Bereich B - seine Umwelt. Der autonome Agent hat
vier Wissensteile: ,, Weltmodell“, ,Pline", ,Zustinde“ und ,,Aktionen“. Diese Wis-
sensteile konnen durch die Aktionen: ,, Planung®, ,, Entscheidung®, ,, Auswirkung®, ,,Mo-
difikation”, ,, Verhalten®, ,Kontrolle“, ,Handlung” und ,, Beobachtung“ aktualisiert und
gedndert werden. Aktionen sind im Bild durch dicke Pfeile mit Bezeichnungen visuali-
siert.

Das Weltmodell enthilt Wissen iiber die Umwelt, ihre Eigenschaften und mogli-
che Zusténde. Durch eine Planung der Aktionen entstehen Pline, was Wissen iiber
mogliche und sinnvolle Handlungsweisen darstellt. Nachdem die Entscheidung getroffen
wurde, welcher Plan ausgefiihrt werden soll, wird das Wissen iiber die Ansteuerung der

®Jedes biologische und maschinelle Lebewesen kann als Agent beschrieben werden. Zum Beispiel:
Mensch, Katze, Bakterie, Mars-Roboter, Roboterarm etc.

21

Planung .
Weltmodell Pliine
<
g D 2
5 & é
Y =3
b= N o,
E S e
s) &
. Auswirkung .
Zustinde [<=—1 Aktionen
T Beobachtung Handlung
Y
Umgebung

Abbildung 10: Symmetrischer Autonomie—Zyklus [33]. Die moglichen Abldufe innerhalb
von einem autonomen Agenten (Bereich A) und seiner Umgebung (Be-
reich B) sind durch die dicken Pfeile gekennzeichnet.

Aktuatoren (z. B. Handbewegung) verwendet, d. h. eine Aktion wird durchgefiihrt und
jede Aktion hat Auswirkungen auf den aktuellen Zustand. Es ist oft notwendig zu kon-
trollieren, ob der gewdhlte Plan der richtige war und ob das Produkt zufriedenstellend
ist. Da die Ablédufe in diesem Modell einen Regelkreis bilden, wird das aktuelle Weltmo-
dell stéindig modifiziert. So kann ein autonomer Agent lernen und sich an die Umgebung
anpassen.

Findet durch eine Handlung des Agenten eine Interaktion mit der Umwelt statt, so
muss die Reaktion der Umgebung durch Sensoren wahrgenommen, d. h. beobachtet
werden, bevor sie im Zustand des Agenten abgespeichert (siehe dazu Kapitel 2.2) werden
kann.

Aus diesem Modell ergeben sich zwei Zyklen: ein interner und ein externer Zyklus.
Der interne Zyklus (Abbildung 11, dargestellt durch gepunktete Pfeile) wird bei einem
Menschen z. B. beim Denken durchlaufen, wenn er durch logische Riickschliisse neue
Erkenntnisse gewinnt. Bei einem Roboter wére es z. B. das Priifen des Ladezustands
seiner Batterie und das Entscheiden ob sie aufgeladen werden soll. Der externe Zyklus
wird jedes Mal durchlaufen wenn die Umgebung beeinflusst wird (Abbildung 11, darge-
stellt durch gestrichelte Pfeile). Ein Beispiel wére das Fertigen eines Werkstiicks durch
einen Roboterarm: Eine Beeinflussung der Umgebung findet bei jeder Bewegung des
Roboterarms und des Werkstiicks statt.

Menschen planen nicht immer bevor sie handeln. Sie nutzen zusétzlich zur Planungs-
fahigkeit die Moglichkeit, auch ohne Plan richtig zu handeln. Solche Handlungsweisen

22

Planung .
Weltmodell F=———% == Pline
L. _
= AM % "1 o
ST Z 2
- 0 w
S 2 | &
=1 N N <t
s | &] g
| < ywy
. Auswirkung .
Zustinde [®— Aktionen
+ |
| | Beobachtung ! Handlung
|T vY
Umgebung

Abbildung 11: Symmetrischer Autonomie—Zyklus [33]. Ein interner Zyklus wird durch
gepunktete Pfeile und ein externer kognitiver Zyklus durch gestrichelte
Pfeile reprasentiert.

bezeichnet man als reflexartig. Diese werden im néchsten Abschnitt beleuchtet.

2.3.3 Reflexe

Reflexe sind plotzliche Reaktionen auf bestimmte Reize. Zum Beispiel: ein Mensch ent-
fernt die Hand von der heiflen Herdplatte. Dies macht er unverziiglich. Reflexe haben
den Zweck, Lebewesen vor Gefahren zu schiitzen. Damit eine Reaktion schnell ausgefiihrt
wird, ist es wichtig, dass der Verarbeitungsweg kurz ist. Nach einem Reiz der Sensoren
wird die Planungsphase fiir eine Aktion {ibersprungen und reaktives Verhalten anhand
eines Verhaltensmusters, das angeboren oder im Laufe des Lebens erlernt wurde, aus-
gefithrt. Ist ein Verhaltensmuster nicht vorhanden oder ist der Reiz nicht stark genug
einen Reflex hervorzurufen, dann wird zwangsweise eine Planung angestoflen.

2.3.4 Probleml6ésung und Verarbeitung

Die Planungsphase des oben beschriebenen Modells ist die komplizierteste. In dieser
Phase wird eine sinnvolle Handlungsweise ausgearbeitet, um Probleme zu l16sen.

In dieser Ausarbeitung wird Bezug auf humanoide Robotik genommen, denn diese
Wissenschaft beschéftigt sich damit Roboter zu erschaffen, die Menschen méglichst gut
abbilden. So kann man priifen, ob man mit Annahmen in der Kognitionswissenschaft
richtig liegt, indem man die Erkenntnisse, die man in der Forschung gewonnen hat, auf
einem Roboter umsetzt. Die Validitétspriifung zeigt, ob die Annahmen richtig waren.

23

Es gibt Probleme, die immer wieder in gleicher Form vorkommen, wie z. B. ,, T{irme von
Hanoi“[41]® oder ,,Optical Character Recognition“[42]7, und es gibt solche Probleme, bei
denen ein neuer Losungsansatz erarbeitet werden muss (vgl. Roboter-Bombe-Batterie-
Problem [8]®).

Grundsiétzlich geht ein Roboter bei beiden Arten von Problemen von einem Modell aus.
Ein Modell beschreibt die Umwelt des Roboters und seine Méglichkeiten. Die Umwelt
eines Sachspiel-Roboters kann z. B. ein Schachbrett sein, und seine Moglichkeiten wéren
die Regeln, nach denen er die Figuren verschieben darf. Ein Sachspiel-Roboter ist in der
Lage gut Schach zu spielen, aber er ist nicht fahig Tic-Tac-Toe zu gewinnen, weil das
Modell die anderen Spielregeln nicht vorsieht. Somit beschrinkt sich das Kénnen des
Roboters auf sein Modell.

Es stellt sich als sehr schwer heraus, ein umfangreiches Modell zu erstellen. Deshalb
ist es auch schwierig Roboter fiir einen universellen, alltdglichen Einsatz auszubauen.

Wie es im Unterkapitel 2.2 beschrieben ist, bilden neuronale Netze die Funktionsweise
des menschlichen Gehirns nach. Die neuronalen Netze kénnen zwar selbststéindig, ohne
Eingabe von Soll-Resultaten lernen, z. B. Gesichter auf Fotos wiedererkennen [20], aber
sie sind noch nicht in der Lage, wie ein Mensch, verniinftige neuronale Reorganisationen
durchzufiithren, um komplexere Sachverhalte zu erlernen.

Es gibt Versuche, das Modell-Problem zu umgehen, indem man Roboter das Modell
im Laufe ihrer Existenz selbststdndig erweitern ldsst wie es neugeborene Lebewesen tun.
Wenn man versucht einen Roboter zu erschaffen, der sich wie ein kleines Kind entwickelt,
dann st6f3t man auf extrem grofle Hindernisse. Es wurde herausgefunden, dass Kinder
bereits seit der Geburt iiber einige wichtige kognitive Féhigkeiten verfiigen [20], die
aber schwer nachzubauen, d. h. in ein Modell zu iiberfithren, sind. Manuela Lenzen [20]
schreibt: ,,Aus der Kleinkindforschung ist bekannt, dass schon Neugeborene in der Lage
sind, Gesichter als solche zu erkennen und Gesichtsausdriicke, etwa das Herausstrecken
der Zunge oder das Offnen des Mundes, nachzuahmen.*

Man kann eine Stufe in der Kognitionswissenschaft herauszoomen und versuchen eine
primitive Bakterie statt einen Menschen nachzubauen. Sie muss in der realen Umgebung
existieren, nicht als eine Computersimulation, sprich sie muss mechanisch-elektrisch sein.
Léasst man sie zu einem elektrischen Menschen evolutionieren, kann man deren elektro-
nische und informationelle Struktur untersuchen, um die internen Abldufe im Gehirn
eines biologischen Menschen nachzuvollziehen. So wire es denkbar das Modell-Problem
zu l6sen.

In Tiirme von Hanoi geht es darum, einen vorgegebenen Turm, der aus Scheiben besteht, moglichst
effizient zu bewegen, in dem man nur die Scheiben ab- und aufstapelt.

"Mit Optical Character Recognition (OCR) ist es moglich einzelne Buchstaben in einem eingescannten
Dokument zu erkennen.

8Beim Roboter-Bombe-Batterie-Problem wird ein Roboter mit einer Situation konfrontiert, in der er
seine Batterie, die neben einer tickenden Bombe liegt, retten muss. Er muss dazu selbststéndig eine
Losung finden.

24

2.4 Grenzen der Kognitionssimulation

Mit der Vision einer vollstdndigen Kognitionssimulation, lassen sich drei Bereiche her-
ausarbeiten, bei denen diese an ihre Grenzen st68t. Dies ist die Nachbildung eines Be-
wusstseins, von Ethik und Emotionen, sowie von Kreativitat. Zwar haben diese Bereiche
keine direkte Notwendigkeit, um Probleme zu l6sen, aber sie beeinflussen Entscheidun-
gen und Handlungsweisen beim Menschen doch mafigeblich. Daher werden diese drei
Bereiche im Folgenden auf ihre Problematik bei der Simulation untersucht.

2.4.1 Bewusstsein

Mit dem Stand der heutigen Technik ist es moglich, in begrenzten Bereichen, intelligentes
Verhalten zu simulieren. Dies ist jedoch nach wie vor beschriankt auf die zugrunde liegen-
den, vorher implementierten Algorithmen. Die Entwicklung eines eigenen Bewusstseins,
welches sich eigene Ziele setzt und eigene Entscheidungen trifft, ist noch weit entfernt.
Dazu muss die Komplexitét der Systeme erst noch deutlich steigen.

Auch stellt sich die Frage, ob dies wirklich gewollt ist. Eine ausreichende Menge me-
dialer Produktionen beschreibt eine sehr negative Sichtweise. Ein Beispiel wéren die
unterhalb Zitierten ,Drei Gesetzte der Robotik* von Isaac Asimov [4]. Auch wenn es
sich dabei um eine Erfindung aus der Science-Fiction handelt, werden diese immer wie-
der gerne verwendet und sind vermutlich jedem, der im Gebiet der Robotik forscht oder
entwickelt, bekannt. Betrachtet man diese Gesetze einmal genauer, stellt man fest, dass
diese dazu dienen, die Fihigkeiten einer Kiinstlichen Intelligenz einzuschrianken auf die
Ebene eines Sklaven. Vor allem um einen Schutz davor aufzubauen, dass sich die Ma-
schinen gegen ihre Schopfer wenden. Dies spiegelt sich auch neben den Gesetzen selbst
immer wieder in seinen Geschichten wieder.

1. Ein Roboter darf kein menschliches Wesen verletzen oder durch Un-
tatigkeit gestatten, dass einem menschlichen Wesen Schaden zugefiigt
wird.

2. Ein Roboter muss den ihm von einem Menschen gegebenen Befehlen
gehorchen — es sei denn, ein solcher Befehl wiirde mit Regel eins kolli-
dieren.

3. Ein Roboter muss seine Existenz beschiitzen, solange dieser Schutz nicht
mit Regel eins oder zwei kollidiert.

Isaac Asimov [4]

2.4.2 Ethik und Emotionen

Ist die erste Hiirde des Bewusstseins genommen, kann auf die Begriindung von Zielen
und Handlungen eines intelligenten Wesens eingegangen werden. Viele Handlungsweisen
unter Menschen lassen sich nicht einfach in richtig oder falsch einteilen und logisch
begriinden. Somit sind sie nur schwer modellierbar. Tatséchlich widersprechen immer
wieder rein logisch richtige Entscheidungen jeder moralisch vertretbaren Entscheidung.

25

Hier gelangen wir an das ethische Versténdnis, welches sich nicht allein durch Algorithmik
darstellen lasst.

Dabei ist zu beachten, dass das ethische Verstdndnis auch von Emotionen gebildet wird
und viele Entscheidungen mafigeblich durch Emotionen beeinflusst werden. Ein recht
einfaches Beispiel hierfiir ist der Kauf eines Autos. Die Entscheidung wird hier meist
weitgehend subjektiv nach dem ,,Bauchgefiihl getroffen und die objektiven Merkmale
werden vernachléssigt.

2.4.3 Kreativitat

Richtige Kreativitdt und Kunst basiert nicht nur auf Zufall, sondern auf bewusstem und
unterbewusstem Verarbeiten von Sinneseindriicken und Wissen. Ahnlich wie dies beim
Trdumen geschieht.

Systeme, welche heutzutage automatisch Kunst erzeugen, basieren noch auf einem von
zwei Ansédtzen. Beim ersten Ansatz erzeugt ein System mit reinem Zufall Ergebnisse,
in welche der Mensch selbst Deutungen hinein interpretiert, da unser Verstand immer
versucht in unseren Beobachtungen Muster zu erkennen. Der andere Ansatz ist, dass
zwar wirklich komplexe Ergebnisse mit einem deutbaren Inhalt entstehen - und nicht nur
vom Menschen so interpretiert werden -, dies aber aufgrund aufwindiger Algorithmen
geschieht. Somit liegt die Kreativitéit also beim Entwickler und nicht bei der Kiinstlichen
Intelligenz. Die KI ist immer auf die Verarbeitungsmaoglichkeiten beschrinkt, welche ihr
bei der Programmierung mitgegeben wurden.

Poetron [14] zum Beispiel erzeugt aus Wortlisten und Templates algorithmisch Ge-
dichte. Interessanterweise lassen sich die Ergebnisse dieses simplen Gedichtgenerators
durchaus mit Werken von so manchen modernen Kiinstlern vergleichen.

Eine Huldigung an die Kunst Maschinenwesen.

Ach kreatives Wesen du!
Kunst, mein wolkiger Streit.
Jenseits von Eden in Future und Past!
Erzeugt!

Denkt!

Welch faszinierendes Erbeben!
Maschinenwesen du.

Heiss in zeitloser Galaxy.
Kunst zwischen Wiegen und Denken.
Maschinenwesen meist ach so breit.

|¢¢

Poetron [14] mit den Stichworten ,Maschinenwesen®, ,Kunst!“, ,erzeugen®,

nHkreativ®

Echte Kreativitit, die nicht Ergebnisse aus Algorithmen und Templates erzeugt, son-
dern wirklich frei einen eigenen Stil findet, wurde noch nicht erreicht.

26

3 Kiinstliche Intelligenz

Nach der Untersuchung der Kognition ist auch die technische Seite zu betrachten. Hier
geht es darum, wie mit technischen Mitteln Probleme gelost werden oder kognitive F-
higkeiten simuliert werden kénnen. Allgemein sind Probleme Aufgabenstellungen, welche
einer Losung bediirfen.

Die klassische kiinstliche Intelligenz (KI) befasst sich ausschlieBlich mit formalisierba-
ren Problemen. Dabei werden alle Regeln und Verhaltensweisen in Formeln ausgedriickt
und bei der Problemlésung entsprechende Algorithmen verwendet. Diese Art Probleme
zu betrachten fillt auch unter den Begriff des symbolischen Ansatzes (Kapitel 2.2.4), im
Gegensatz zum konnektionistischen Ansatz (Kapitel 2.1.2). Die Konsequenz aus dieser
Art der Problembetrachtung ist, dass eine KI dieser Art nur schlecht mit unerwarte-
ten Situationen umgehen kann, wenn diese nicht in den Regeln der modellierten Welt
vorgesehen sind.

Klassische Beispiele fiir auf diese Art lésbare Probleme sind Spiele mit einer statischen
Welt, wie beispielsweise Schach. Reale-Welt-Probleme dagegen sind nicht vollsténdig be-
obachtbar und beinhalten zu viele Einfliisse und Aspekte, um diese symbolisch darzu-
stellen.

Im Folgenden wird anhand oberer Beispiele darauf eingegangen, wie formalisierbare
Probleme gelost werden kénnen.

3.1 Suchprobleme

In der klassischen KI werden diese formalisierbaren Probleme oft als Suchprobleme in
Zustandsbdumen dargestellt, da fiir diese diskrete Wege zur Losungsfindung existieren.
Als Beispiel, wie ein Problem als Baum dargestellt werden kann, kann man wieder
einfach an Schach denken. Der Wurzelknoten des Baumes ist der Anfangszustand des
Spielbrettes, mit dem Standort aller Figuren und welcher Spieler an der Reihe ist. Die
Kanten zu den Kindern des Wurzelknotens stellen die méglichen Ziige dar und die Kind-
knoten somit den Spielstand nach dem Zug. Auf diese Art werden wieder fiir jeden
Kindknoten weitere Kinder gebildet bis zu den Zusténden, an welchen das Spiel zu Ende
ist. Abbildung 12 zeigt einen vereinfachten Zustandsbaum fiir ein Tic-Tac-Toe-Spiel.

Bei den Suchalgorithmen unterscheidet man zwischen zwei Gruppen: der ,,uninfor-
mierten Suche“ und der ,informierten Suche®.

Die uninformierte Suche betrachtet nur die bis zum jeweiligen Knoten angefallenen
Pfadkosten. Diese Kosten geben den Aufwand an, der notig ist um den jeweiligen Knoten
von der Wurzel aus zu erreichen. Die Suchstrategien unterscheiden sich hierbei darin,
in welcher Reihenfolge die Knoten abgesucht werden. Grundstrategien sind hierbei die
Tiefensuche und die Breitensuche.

Im Gegensatz zur uninformierten Suche arbeitet die informierte Suche mit Heuristi-
ken, welche zu jedem Knoten eine Vermutung der Kosten bis zum Ziel aufstellen. Dies
wire zum Beispiel bei der Suche eines Weges durch einen Stralenplan eine Angabe der
Luftlinienentfernung zum Ziel (Abbildung 15). Auf diese Weise lésst sich beim Durch-
suchen des Baumes leichter zwischen giinstigen und ungiinstigen Pfaden unterscheiden

N\

™
-

Y
k4

Y
-

Y
A

Abbildung 12: Zustandsbaum fiir ein Tic-Tac-Toe-Spiel mit moglichen Ziigen der Spieler.
Gepunktete Linien bedeuten, dass der Baum hier gekiirzt wird.

und schneller eine Lésung finden.

Solche Heuristiken sind besonders in der kognitiven kiinstlichen Intelligenz von beson-
derer Bedeutung. Dies wird in Kapitel 4 weiter ausgefiihrt.

3.2 Expertensysteme

Fiir Probleme wie Schach ist der Ansatz einer einfachen Baumsuche jedoch nicht aus-
reichend. Um mit (guten) menschlichen Spielern mitzuhalten, muss die KI die Ziige fiir
einige Runden voraussehen, wenn dies schon nicht bis zum Spielende versucht wird. Zu-
sammen mit der groflen Zahl der moglichen Ziige in jeder Runde, ergibt sich daraus ein
komplexer Suchbaum, welcher unmoglich komplett durchsucht werden kann.

Bei einem Verzweigungsfaktor von etwa 35 moglichen Ziigen und durchschnittlich 100
Halbziigen (50 Runden) pro Spiel, sind dies 35'%°, also 10'°* Zust#inde, welche durchsucht
werden miissen.

Hier kommen so genannte Expertensysteme zum Einsatz. Diese sind nicht dazu ge-
dacht allgemeine Probleme zu 1sen. Dafiir 16sen sie effizient und hoch spezialisiert sehr
eng eingegrenzte Aufgaben. Auf diese Weise wird das Losen solch komplexer Aufgaben,
in akzeptabler Geschwindigkeit, iiberhaupt erst moglich.

Im Beispiel eines Expertensystems fiir Schach bedeutet dies, dass unter anderem Da-
tenbanken von Spielsituationen, Strategien und Fachwissen von Schachgrofimeistern in
das System eingepflegt werden.

28

3.3 General Problem Solver

Der Gegensatz zu diesen hoch spezialisierten Systemen sind so genannte allgemeine Pro-
blemléser. Ein Vorstof in diese Richtung ist der ,General Problem Solver (GPS) von
Herbert Simon und Allen Newell [27]. Beim Losen von Problemen zerlegt dieser die
Probleme in kleinere Teilprobleme mit leichter zu erfiillenden Teilzielen. Dieses Prinzip
wird Problemreduktion genannt. Letztendlich stellte sich heraus, dass auch der GPS
keineswegs allgemein Probleme 16sen konnte, sondern nur formalisierte Probleme aus
beispielsweise den Bereichen Logik und Geometrie.

Die Schwierigkeiten und das Scheitern von Versuchen echte allgemeine Problemléser zu
entwickeln, fithrte dazu, dass vorwiegend Expertensysteme entwickelt werden. Aus dem
GPS Paradigma wurde jedoch spéter das Kognitionsframework Soar entwickelt (Mehr
zu Soar im Kapitel 8).

29

4 Kognitive Kiinstliche Intelligenz

Be rational
Get real.

Ocopyright 2007 GJCaulkins www.mightywombat.com

Abbildung 13: Rationalitét ist nicht immer die Losung [48]

Auch wenn der Begriff der kognitiven kiinstlichen Intelligenz in der Literatur nicht
auftaucht, wird hier dennoch eine Spezialisierung der reinen kiinstlichen Intelligenz vor-
genommen, da so verdeutlicht werden soll, dass damit ein grofleres Augenmerk auf die
natiirlichen Denkprozesse im menschlichen Gehirn gelegt wird. Die einzelnen Algorith-
men werden in der Kognitiven kiinstlichen Intelligenz grundsétzlich nicht nur so entwor-
fen, dass die Losung an sich korrekt ist, sondern auch der Weg dorthin dem menschlichen
Denkprozess dhnelt. Dabei diirfen die Losungen sowohl rational als auch emotional ge-
pragt sein. Um diesen Prozess simulieren zu kénnen, ist es im Hinblick auf die kognitive
kiinstliche Intelligenz notwendig, auch die Hardware in einem Computer dhnlich einem
Gehirn in einzelne Komponenten zu unterteilen. Die Software eines Computers, bzw. die
Kommunikation zwischen den Hardwarekomponenten {ibernimmt dabei eine Metaebene,
welche ebenfalls in jedem Gehirn zu sein scheint.

4.1 Die ,Hardware"

Ein wichtiges Element des menschlichen Gehirns ist das Kurzzeitgedéchtnis. Der Grofiteil
dessen, was im Kurzzeitgedéchtnis gespeichert ist, ist dem Menschen aktuell bewusst.
Es ist somit naheliegend, dass das Kurzzeitgedéchtnis unter anderem das Bewusstsein
beschreiben konnte. Alles andere, was in der Zeit linger zuriickliegt oder aktuell nicht
benétigt wird, gilt als unterbewusst und befindet sich zum Grofiteil im Langzeitgedécht-
nis. Wichtig ist, dass einem Menschen nie alles gleichzeitig bewusst ist, sondern dass man
kleine Wissens-Pakete zuerst aus dem Unterbewusstsein ,Jaden® muss. Kein Mensch wird
z. B. stdndig bewusst daran denken, wo er sich gerade befindet. Fragt man ihn jedoch
danach, wird er dieses Wissen ,laden” und sofort auf die Frage antworten kénnen. Auch
verschwindet dieses Wissen aus dem Kurzzeitgedéchtnis nicht sofort, sondern bleibt noch
kurze Zeit danach bestehen.

31

Abstrahiert man nun dieses Modell, erkennt man einen groflen Bezug zur Computer-
Hardware. Das Kurzzeitgedichtnis ist der Arbeitsspeicher, das Langzeitgedéichtnis die
Festplatte und das ,,Nachglithen“ von gerade ins Bewusstsein geholtem, welches eventuell
kurz darauf wieder benttigt werden konnte, ist der Cache. Die Steuerung dieses Ablaufs
im Gehirn erfolgt durch eine Ebene, welche sich auflerhalb der einzelnen Komponenten
befindet. Diese ,Metaebene” kann z. B. als der Geist interpretiert werden. Im Hinblick
auf einen Computer wiirde sie dem Abarbeiten eines Softwareprogramms gleich kommen.

Bewusstsein Unterbewusstsein

O O
O O

O o)
o) O
Kurzzeitgedachtnis Langzeitgedachtnis
: : :
| | |
| | |
(:/Arbeitsspeicher 1) { Cache) /\/ Festplatte

—_ — = - -~ _ - - I

Abbildung 14: ,Ladevorgang® vom Unterbewusstsein ins Bewusstsein: Unterbewuss-
te Gedanken, welche im Langzeitgeddchtnis (Festplatte) gespeichert
sind, werden iiber den ,Cache“ ins Bewusstsein (Kurzzeitgedédchtnis/Ar-
beitsspeicher) geholt.

4.2 Die ,Software"

Im Bereich der reinen kiinstlichen Intelligenz besteht Software meist nur aus Algorith-
men, welche Probleme auf sehr rationaler Ebene l6sen und dabei keinerlei Bezug auf
die Denkweise des Menschen nehmen. Allerdings kénnen nicht alle kognitiven Prozesse
rational beschrieben werden. Im Bereich der Mathematik beispielsweise ist nicht aus-
schliellich der Verstand gewinnbringend. Da es z. B. keinen allgemeinen Algorithmus
gibt, welcher mathematische Beweise fithren kann [35], spielt Intuition eine sehr grofle
Rolle. Ein Mathematiker, der lange an der Lésung eines Problems arbeitet, kann plétz-
lich wiahrend eines Spaziergangs die bisher fehlende Idee haben. Hierbei ist es schwierig
die Grenze zwischen Rationalitdt und Intuition zu ziehen. Aufgrund der vielen dufleren

32

Einfliissse und Wahrnehmungen bei einem Spaziergang (frische Luft, Beobachten von Tie-
ren...) ,verschwimmt® die Rationalitéit, sodass von Intuition geredet werden kann. Sitzt
der Mathematiker hingegen vor seinem Schreibtisch und ist nur in seinen Beweis vertieft,
tendiert das Gehirn aufgrund der geringen &ufleren Einfliisse zu rationalem Handeln.

Auch wenn die Wissenschaft noch weit davon entfernt ist, das intuitive Handeln von
Lebewesen zu verstehen, so gibt es dennoch ein paar Ansatzpunkte. Als Beispiel be-
trachtet man dazu eine Landkarte. Lautet die Aufgabe, einen moglichst kurzen Weg von
einer Stadt zur néchsten zu finden, so beginnt man fiir gewhnlich rein intuitiv, einen
moglichst kurzen Weg nachzuzeichnen. Die Frage ist nun, was dies fiir eine , Intuition® ist
an der sich die Person festhélt? Sehr wahrscheinlich wird die Versuchsperson sagen, dass
sie sich an der Luftlinienentfernung orientiert hat oder bekannte kiirzeste Strecken zwi-
schen je zwei Orten nutzt (Abbildung 15). Genau diese Intuition wird auch in heutigen
Navigationsgeriten eingesetzt. Dort wird oft der sogenannte A*-Algorithmus verwendet,
in welchem die Luftlinienentfernungen miteinbezogen werden [16]. In der Algorithmik
wird die hier erwéhnte Intuition allgemein als ,,Heuristik* bezeichnet.

Heimsheim | Rutesheim

453

y Bad
SChnen Sessenneim 50t A Sres Herrenalb Dovs! B =5
Sehamberg Neunausen
Obechofien-sur-Moder o2 Bad
-y s A Lievenzet -
e e o e wiohcer Femingen' . B2
Stadt

= Rhemminster ~ SHZNEIM Bad Widbad ¥
Opareichencasn £ 6 |
Herrisneim |4} penay 3 Wersenbach 294 Fil
arshem Calw AN Gretenau g ngelfingen Cal
482 A 4
o Bad Teinach Cechingen Echterdingen
Boherial Forach. Aidingen Elingen 2
Otiersweler Enzkiostere Ne lach 296 J
a Wantzenau o Newweiler eubuloct Ehningéf Schonaich Filderstadt
3n Deckenpfronn
s Achem o ‘5’“":‘?" Holzgedngen \yaidenbuch Wolfsel
o~ i, Widberg Nt Aldort e
Sasbachwalaen e / Wil Im
3 2 Detienhausen
gheim ‘Schanbuch
Kappelr Seewald 53 Hemrgfiberg
Renchen | Kappelrodeck P L o Neckartenz
el G Sromsaent o Jeringans &) Naturpare
) Grenhotenim - 500 Wornersber Sehgnbuch Pliczhausen
Schwarzwald 2 Nagoid! JG#ifeiden [EXI Ammerauch
Wilstitt Appenweier, b
fenstaden 462 Ptalzgraferweser Haiterbach ingen.
Ed 7, Lautznoaen 2 9en’ Bondorf Tabingen . YuSEdgen L
- Baiersbronn 53 = Wenmel
Qubach v Waldachtal Eutingen Rottenburg Reutlingen
Sz S imGau _Hevstetten am Neckar =
Offenburg T AR [Plullinger
Neuried, Schultenyald {onenborg DUBINSEN . G ommeringen. s
B [5] Ohisbach ek Starzach Vo,
- Horoerg Biriog SR e Lcties
Gengenbach Massingen
Nordrach Empfingen
3 g e 3 M Somnenbehl
Friesenheim 3] Oberamersbach Schapoach Suizam
Neckar Haigerioch
Lanr/ Zellam e
Schwarzwald Harmersbach Alpirs - 83 2
Biberach Viinges Grosselinge Jungingen
) Quervorreen
Seelbach Biingen Trachtell
(A e Stenacn Woltach Fliom | Obemdorl _ [Z1] d e
Haslachim am Neckar Rosenfeld 4 Burladingen
3 Mahbera Kinzigtal '8 & Salingen 3131
Schuttertal =0 Aichhaiden 2 2
Henheim Holstetien | Muhlenbach Eptendort Gammerings
) Biz
ngsheim Bosingen
Latieracn
eim
Horfherg Seramberd | punnngen Albstadt Hetlinge:
villngendort
s 52 Dietingen n 1 -
Elzadh J GIEd T 2 MeBstetien Winterlingen veringenstadt
Getpat . ob Roweil Rottweil et
Martercingen Windeg 2
im Exfal Wellengingen \Wehingen
51 JEmkT]
Somarouda et . Nasslingen Stoton am
ningen Gutachyi chwarzwal Fritiingen Gosheim Kalten Markt
Emmendingen B Niedereachach
igen Breigfau St Geargen im o
a o Simonswald 200 e crwarziald Menchweler Deitingen ' Denkingen Serwenningen
WalgKirch) Schanwald Im Davehingen Aidingen
Reute | 3 Schwarzwald 2 Sigmaringer
o chwarzwal Untarkirnach TroSSINgEN spaeningen o Naturpark
h e F ¢ rmdort Obere Donay| nzigkofen
v 4 TCl Villngen 2 Durcheim | olningen gy Sigmaringendc
Gundelfifgen o Vohrenbach. R Leibertingen E3E
Gurensacn Baa Mihiheim an
uningen
A St Peter 00 Durrheim T3 Sefingen-Oberflacht gl ciogc o0 Krauche
FreilBham - Srgtbaal ot
b Bre| U & m 523 Waringen, MeBkirch m
Stegen h Tuttingen Nechausen | 399

Abbildung 15: Die Luftlinie zwischen Stuttgart und Freiburg (blau). Die kiirzeste Strecke
auf Straflen orientiert sich an dieser Linie (blau). (Bild: Google Maps [11])

Da der A*-Algorithmus allein durch diese Anwendung jedoch noch viel zu langsam
wére, wird zusétzlich die Heuristik der gespeicherten kiirzesten Wege verwendet. In ei-

33

nem Navigationsgerét sind diese zwischen grofien Stiadten fest eingespeichert, auf welche
jederzeit zugegriffen werden kann.

Aufgrund von mehr Regeln, ist das Simulieren eines Schachspielers viel schwieriger als
das Finden des kiirzesten Weges beim Navigationsgerét. Theoretisch konnte das Schach-
programm zu jedem Zeitpunkt alle Moglichkeiten des Gegners und fiir diese, alle sei-
ne eigenen Moglichkeiten vorberechnen. So kénnte das Programm jederzeit den Schritt
durchfiihren, der langfristig gedacht den hoéchsten Gewinn erbringen wird. Allerdings
gibt es da ein grofles Problem: Wie bereits in Kapitel 3.2 angemerkt, gibt es eine enorm
grole Menge an Spielmdoglichkeiten. Alle Wege auszuprobieren wiirde also viel zu lange
dauern. Die Frage ist jedoch, wie es sein kann, dass einige Schachweltmeister scheinbar
mehr Schritte vorausdenken kénnen als die meisten Schachcomputer. Auch hier liegt die
Antwort wieder in der Intuition. Ein Mensch mit Schachspiel-Erfahrung wird niemals
alle Moglichkeiten durchdenken, sondern nur die, die seiner ,,Heuristik“ nach den hochs-
ten Gewinn versprechen. Wie in Kapitel 2.3 beschrieben, kann man die durchdachten
Moglichkeiten beim Schach auch als ,,Chunks® bezeichnen und daraus schlieflen, dass es
weit weniger Moglichkeiten pro Spielzug sind, die ein Schachspieler ausprobiert als ein
Computerprogramm [23].

Ein weiteres Beispiel wire eine grafische Benutzeroberfliche. Der Benutzer wird beim
Suchen der Druckfunktion zuerst ein halbes Dutzend Buttons im linken, oberen Bereich
des Programms ins Auge fassen bevor er, falls nicht gefunden, die anderen Bereiche nach
dem entsprechenden Druck-Button durchsucht. Diese Heuristik lédsst sich auf die Lese-
richtung der lateinischen Schrift zuriickfithren und dementsprechend auch teilweise in
intelligenten Programmen umsetzen. Viel komplizierter ist das bei der Schach-Heuristik.
Heutzutage ist es noch nicht moglich, vollstdndig zu beschreiben, welche Chunks in wel-
chem Schritt ausgewéihlt und weiterverfolgt werden miissen. Eine der grofiten Herausfor-
derungen der kognitiven kiinstlichen Intelligenz ist es also, fiir alle moglichen Aufgaben
Heuristiken zu finden, welche dem menschlichen Denkprozess dhneln und damit in an-
gemessener Zeit zu sinnvollen Losungen fiihren.

Um der Losung etwas ndher zu kommen und man sich nicht bei jedem Problem erneut
Gedanken machen muss, verwendet man hiufig sogenannte Kognitionsframeworks. Drei
davon werden im folgenden Kapitel ndher beschrieben und miteinander verglichen.

34

5 Kognitionsframeworks

Wir betrachteten in den Kapiteln 3 und 4 die Intelligenz aus verschiedenen Sichtweisen.
Nun geht es darum, das menschliche Verhalten mit technischen Hilfsmitteln zu simulie-
ren. Dabei miissen die Denkweise und die Vorgénge im menschlichen Gehirn mdoglichst
realitdtsnah abgebildet werden.

Zunéchst muss gekldrt werden was Frameworks sind. Nach der Begriffskldrung wird
auf die Einsatzmoglichkeiten der Kognitionsframeworks eingegangen und anschlieend
wird vorgestellt, welche Frameworks in dieser Ausarbeitung untersucht wurden.

5.1 Begriffskldrung

Ein Framework ist etwas Ahnliches wie ein Entwurf, eine Attrappe des zu simulieren-
den Wesens. Ein Framework schreibt vor, wie einzelne Eingaben zu verarbeiten sind, in
welcher Form Wissen gespeichert wird und wie die Ausgabe der Ergebnisse stattfindet.

Es gibt Frameworks, die nur als eine Theorie oder ein Konzept existieren, aber keine
Implementierung haben. Zum Beispiel ist ,Society of Mind“ ein solches Framework. Push
Singh[38] schreibt iiber das ,Society of Mind“ von Marvin Minsky: ,Despite the great
popularity of the book The Society of Mind, there have been few attempts to implement
very much of the theory. One difficulty is that Minsky presents the theory in fragments
and at a variety of levels, and the more 'mechanical’ aspects of the theory are largely
distributed throughout the text, and only specially distinguished in the glossary.*

Alle Frameworks, die diese Fachstudie untersucht, verfiigen iiber eine ausfithrbare
Implementierung. Dies erlaubt eine Ergebnisbasierte Bewertung der Frameworks.

Kognitionsframeworks kénnen nicht nur Menschen und Tiere simulieren. Man kann mit
ihnen ein neues Wesen mit einer komplett anderen Denkweise, Gehirnstruktur und Ko-
gnitionsfihigkeit simulieren. Denkbar ist auch eine Simulation mit neuartigen Neuronen,
deren Aufbau vom aktuellen Forschungsstand abweicht. So kann man mit Frameworks
auch Neuronenforschung betreiben und untersuchen wie sich Wesen mit einer weiterent-
wickelten, oder vollstéandig neuen Art der Neuronen und neuronalen Netzen verhalten.
Dies eroffnet Wissenschaftlern neue Moglichkeiten, das Gehirn zu verstehen.

Es gibt Frameworks, die den konnektionistischen Ansatz (siehe Kapitel 2.1.2) verfol-
gen (z. B. Leabra), sowie die, die den symbolischen Ansatz (siehe Kapitel 2.2.4) um-
setzen (z. B. Soar, Kapitel 8). Bei manchen Frameworks werden die beiden Ansitze
auch kombiniert. Entsprechend dem Aufbau der Frameworks unterscheiden sie sich in
ihrem Einsatzgebiet. So eignen sich konnektionistische Frameworks fiir Kognition und
die symbolischen Frameworks fiir die algorithmischen, logischen und mathematischen
Aufgaben.

Was die einzelnen Einsatzbereiche der Kognitionsframeworks bereits heute sind, wird
im n#chsten Abschnitt erklért.

5.2 Einsatzmdéglichkeiten der Kognitionsframeworks

Das grundlegende Ziel der Kognitionsframeworks ist das menschliche Gehirn zu simulie-
ren. In der Theorie kann man mit Hilfe eines Frameworks einer Maschine die mensch-
lichen kognitiven Féhigkeiten verleihen. Dies bedeutet, dass der Einsatz von kognitiven
Frameworks sehr vielfiltig sein kann. Im Kapitel 9 werden wir feststellen, dass die Frame-
works in der Praxis die menschlichen kognitiven Fahigkeiten nur ansatzweise simulieren
konnen. Das heifit, dass die Anwendungsgebiete in der Praxis weniger vielfaltig, aber
dennoch enorm sind.

Kognitive Frameworks finden zurzeit grofitenteils Anwendung in der Forschung und
das sogar in einer Art, die man nicht sofort erwarten wiirde. So werden einige davon
dafiir benutzt, die Funktionsweise des Gehirns zu verstehen und nicht nur formalisierte
Probleme zu l6sen. Dazu werden Programme erstellt, welche den vermuteten Abldufen
im Gehirn im Rahmen des dabei verwendeten kognitiven Modells &hneln. Stimmen die
Ergebnisse der Simulation mit denen von menschlichen Probanden {iberein, kann man
daraus schlieflen, dass das Gehirn dhnlich arbeitet. Im néichsten Schritt kann man in der
Richtung weiterforschen, um auch andere psychologische Verhaltensweisen verstehen zu
konnen. Man konnte sich vorstellen, dass menschliche Probanden bei einigen Versuchen
tiberfliissig werden, da deren Verhalten komplett simuliert werden kann. Daraus wiirde
dann z. B. die Werbebranche sehr profitieren.

Jedoch gibt es auch weitere Bereiche, wie die Spiele- und Unterhaltungsbranche. So
konnen Video-Spiele und Avatare der Unterhaltungsanwendungen mit einem menschen-
oder tieréihnlichen Verhalten versehen werden, was Produkte fiir Kunden noch attraktiver
machen wiirde.

Ein Beispiel fiir ein erfolgreiches Spielzeug ist der Roboter-Hund ,,Aibo“ von Sony
(Abbildung 16). Aibo zeigt fiir Hunde typische Verhaltensweisen. Er ist lernfihig und
kann zudem mit der Auenwelt durch Schall und Aktuatoren kommunizieren. In die-
sem Spielzeug wird ein Kognitionsframework der Carnegie Mellon University , Tekkotsu“
verwendet [44].

Um tieferes Versténdnis der Materie zu erhalten, wurden im Rahmen dieser Fachstudie
Kognitionsframeworks im praktischen Einsatz erprobt. Es wurden drei Kognitionsframe-
works ausgewéhlt, untersucht und miteinander verglichen.

5.3 Getestete Frameworks

Die drei Kognitionsframeworks, die fiir die praktische Untersuchung gewéhlt wurden,
sind:

e ACT-R¥ (siehe Kapitel 6)
e Apex“ (siehe Kapitel 7)
e ,Soar* (siche Kapitel 8)

Bei der Wahl wurde auf die Diversitét der Eigenschaften (wie z. B. Einsatzberei-
che und Architektur) von Frameworks geachtet, damit ein moglichst breites Wissen des

36

Abbildung 16: Roboterhund Aibo von Sony. [40] Sein kognitives Kénnen hat er dem
Framework Tekkotsu zu verdanken.

praktischen Einsatzes gewonnen wird. Des Weiteren hat jedes kognitive Framework seine
eigenen Stérken, die sich bei den ausgewéhlten Frameworks kaum iiberlappen.

Es wurden Frameworks getestet, die nicht nur theoretisch existieren, sondern auch
iiber eine Implementierung verfiigen und auf einem PC ausfithrbar sind. Wichtig ist
auch, dass sie immer noch entwickelt werden oder ihre Entwicklung erst vor kurzem
eingestellt wurde, um die Aktualitéit sicherzustellen.

So wird ACT-R oft in der Literatur referenziert und gilt als ein méchtiges Werkzeug,
um kognitive Prozesse zu simulieren. Es ist universell im Einsatz und l6st ein breites
Spektrum an formalisierbaren Problemtypen.

Dagegen befasst sich Apex verstirkt mit der Entwicklung von autonomen Systemen
auf Basis von Agenten und nur in Randbereichen mit kognitiven Prozessen. Apex wird
von NASA entwickelt und eingesetzt.

Auch Soar wird ebenfalls haufig in der Literatur erwéhnt und gilt als Vorbild fiir
ACT-R. Es wird auch in einem groflen Bereich eingesetzt, jedoch hat dieses Framework
andere Stirken (siehe Kapitel 9).

Der Startpunkt der Untersuchungen (siehe Kapitel 6, 7 und 8) ist die Beschreibung des
Aufbaus des Frameworks, was den theoretischen Hintergrund beleuchtet. Die praktische
Anwendung der einzelnen Frameworks ist im Unterkapitel zu Einsatzgebieten beschrie-
ben. Die Frameworks haben Ein- und Ausgabeschnittstellen, welche Auskunft iiber die
Vorgénge innerhalb des Kognitionsframeworks geben oder sie beeinflussen. Da Frame-
works auch ihre Schwachstellen/Grenzen haben, sind diese ebenfalls im Text beschrieben.
Bevor die Frameworks in der Praxis eingesetzt werden kénnen, miissen sie installiert wer-
den, weshalb fiir jedes Framework eine kurze Anleitung fiir die Inbetriebnahme gegeben
ist.

Die néchsten drei Kapitel beschreiben nun die einzelnen Kognitionsframeworks aus-
fiihrlich.

37

6 Framework ACT-R

ACT-R ist ein Kognitionsframework, das Ende der 90er Jahre entstanden ist und haupt-
séchlich von John Robert Anderson (Abbildung 17) geprigt wurde. Seine Inspiration
dafiir war der Kognitionswissenschaftler Allen Newell. [46]

-

i

Abbildung 17: Foto von J. R. Anderson, dem Entwickler des Kognitionsframeworks
ACT-R [2]

Dieses Kognitionsframework verwendet ein Dialekt der Programmiersprache Lisp [7].
Es ist modular aufgebaut. Es gibt Module, die bestimmte Aufgaben haben; Man kann sie
mit Gehirnregionen vergleichen. Die Verbindung zwischen Modulen wird durch Buffer
sichergestellt. Buffer sind Kanéle, durch die Informationseinheiten transportiert werden.

Eine Besonderheit von ACT-R ist, dass es Metriken beim Arbeiten erstellt. Zum Bei-
spiel kann man nach der Ausfithrung eines ACT-R-Programms einsehen wann eine be-
stimmte Aktion zum ersten Mal ausgefiihrt wurde. Deshalb konnen die Arbeitsergebnisse
von ACT-R und die Ergebnisse der Messung eines physischen Experiments verglichen
werden, um die Validitédt der Simulation zu priifen.

ACT-R verfiigt iiber eine grafische Oberflache, die Zugriff auf alle Programmfunktio-
nen bereitstellt. Es empfiehlt sich, eine hohe Bildschirmauflésung zu verwenden, damit
alle GUI-Elemente dargestellt werden koénnen, ansonsten fehlt der Zugriff auf einige
Funktionen (Abbildung 18).

6.1 Aufbau/Architektur

Die Architektur von ACT-R besteht aus der Wissensspeicherung, die von Modulen durch
Buffer verwaltet wird. Der pattern matcher erméoglicht das sinnvolle Verwalten des Wis-

39

7é listener (=Nl 7& Control Panel S|E0 R

-

;i: ACT-R Standalone Environment version 1.4 [r958s]
Current Model

No Model
Model

Load Model
Open Model: | Existing —
Save Model
Close Model
R ing

unnin;
Reset | Reload
Stepper
Inspecting
Declarative viewer

Frocedural viewer
Buffer viewer
Buffer Status viewer
Wisicon

Audicon

H

Tracing

Horiz. Buffer Trace
ert. Buffer Trace

Production History

Retrieval History

Buffer History

BOLD tools
Buffer graph ﬂ

2D brain

- 3D brain

Command: Run-time 30 brain

Abbildung 18: Oberflache des Kognitionsframeworks ACT-R. Die Bedienung erfolgt iiber
Buttons im ,,Control Panel“ und iiber Kommandos im ,Listener*.

sens. Der hybride Ansatz gibt dem Framework mehr Freiheitsgrade. Und mit Hilfe der
Wissensproduktion ist ACT-R lernfihig.

Deklaratives und prozedurales Wissen ACT-R unterscheidet zwei Arten von Wissen:
deklaratives und prozedurales Wissen. So werden Fakten im deklarativen und Regeln im
prozeduralen Gedéchtnis gespeichert. [6]

Das deklarative Wissen wird in ACT-R durch so genannte Chunks reprisentiert.
Diese Chunks verfiigen {iber einen individuellen Namen, den Typ, der angibt zu welcher
Kategorie der Chunk gehort und die Slots, die Attribute in Form von ,,Key-Value-Paaren“
speichern (Abbildung 19) [6].

Das prozedurale Wissen wird durch WENN-DANN Regeln reprisentiert, z. B.:
WENN ,Erde trocken® DANN ,giefle Pflanze“. Ist der Bedingungsteil erfiillt, so wird

40

Chunk

Name

Thonetstuhl14 Kategorie

isa: Stuhl
Beine: 4
Material: Holz

Attribute

Abbildung 19: Grafische Darstellung eines Chunks. Er enthilt seinen Namen, seine Ka-
tegorie, sowie Attribute, die ein Objekt beschreiben.

der Schlussfolgerungsteil ausgefiihrt. Eine solche Bedingungsanweisung wird als ,,Pro-
duktion® bezeichnet [6]. Tabelle 1 stellt einige Produktionsregeln tabellarisch dar.

’ Bedingung ‘ Schlussfolgerung ‘

Erde trocken Giefle Pflanze
Raum ist dunkel | Mache Licht an
Akku fast leer Akku aufladen

Tabelle 1: Tabelle mit beispielhaften Produktionen. Jede Zeile ist eine Produktion mit
zwei Teilen: dem WENN-Teil und dem DANN-Teil.

Module und Buffer Zur ACT-R-Theorie gehtren Module und Buffer. Module verar-
beiten die einzelnen kognitiven Aufgaben oder simulieren die Arbeitsweise eines ganzen
Gehirnbereichs. So existieren Module fiir das prozedurale, deklarative Wissen, sowie fiir
die Verarbeitung der Perzeption und Motorik. Es ist moglich weitere Module anzuschlie-
Ben, die ACT-R erweitern. [6]

Einzelne Module fiir sich sind wie Inseln. Sie brauchen eine Verbindung zueinander,
um Informationen auszutauschen und zusammenarbeiten zu kénnen. Dafiir gibt es Buf-
fer. So kann ein Chunk im Buffer zwischen zwei Modulen iibergeben werden, was den
Informationsaustausch ermoglicht. [6]

Pattern matcher Der Pattern matcher betrachtet den aktuellen Zustand des ausge-
fithrten Modells, also die einzelnen Eintrédge in Buffern und sucht nach einer zu diesem
Zustand passenden Produktion und fithrt diese aus [7]. Es kann immer nur eine Produk-
tion pro Zeitschritt ausgefithrt werden. Wenn eine Produktion feuert (ausgefithrt wird),
verindert sich der Zustand des Modells und es muss neu entschieden werden, welche

41

Abbildung 20: Darstellung der Kommunikationsstruktur der Module, Buffer und
Chunks. Die Struktur hangt von den verwendeten Modulen ab.

Produktion die passende fiir den neuen Zustand ist.

Hybride Vorgehensweise ACT-R arbeitet auf Basis des symbolischen Ansatzes, indem
es konkrete Objekteigenschaften und Regeln verwendet. ACT-R verwendet zusétzlich
zum symbolischen Ansatz den ,subsymbolischen Ansatz“, mit dem die konnektionisti-
sche Komponente (siche ,,Konnektionistischer Ansatz“ in Kapitel 2.1.2) durch eine pro-
babilistische, bzw. kombinatorische Komponente simuliert wird. Sie sorgt dafiir, dass al-
le moglichen Produktionen mit Wahrscheinlichkeiten versehen werden. Die Produktion
mit der héchsten Wahrscheinlichkeit wird letztendlich ausgefithrt. Die Wahrscheinlich-
keit setzt sich aus der Bewertung des Gewinns, der Erfolgswahrscheinlichkeit? und des
Rauschens (fiir Nichtdeterminismus) zusammen [7] [21].

Wissensproduktion Das Wissen wird in Chunks gespeichert. Ein Mensch kann neues
Wissen gewinnen, indem er lernt. Ein Lernprozess wurde auch bei ACT-R implementiert.

ACT-R kann beim Ausfiihren der Produktionen neue Chunks erzeugen, sodass sie beim
Ausfiithren der nichsten Produktion verwendet werden konnen. Der Lernprozess sieht es
nicht vor, neue Produktionsregeln zu erzeugen, was dazu fithrt, dass das simulierte Gehirn
neue Abldufe nicht erlernen kann. Der Lernprozess kann nur faktenbasiertes Wissen
erweitern. Das heifit, dass das Gehirn zum Beispiel Eigenschaften der neuartigen Objekte
erlernt, aber keine neuen Umgangsweisen.

9Die Erfolgswahrscheinlichkeit wird vom Modul ,, goal module® geschétzt. Die Basis fiir Schétzung ist
das in Produktionsregeln angegebene Ziel. [32]

42

6.2 Einsatzgebiete

Der Einsatz von ACT-R findet in verschiedensten Wissenschaften statt. Das Framework
wird in der Psychologie, den Neurowissenschaften, der Bildung und Robotik, sowie in
dem Bereich der Mensch-Maschine-Interaktion angewendet (Abbildung 21).

Education

Cognitive tutars

..--"""'r,
ACT-R Appiications

Cognitive Psychology

Computer-gensarated forces
Percaption and
attentian

Learning Prablem sakving
and memary and decisian making

Language and |ndiyidual differsnces
cammunicatian

Cognitive agents
far training environments

Cognitive dEVEh%II-'nﬂ%tﬂ f

Uzar Models Fradictions of BOLD respanse

Interface evaluation Intarpretation of neumimaging data

Human-computer interaction

Meuroscience

Abbildung 21: Grafische Darstellung der Einsatzgebiete von ACT-R [7]. Die einzelnen
Einsatzgebiete, dargestellt als Ovale enthalten konkrete Anwendungsbe-
reiche.

Zum Beispiel konnen mit ACT-R folgende Simulationen durchgefiihrt werden: [7]
e Lernen und Merken von Wortlisten oder Texten
e Sprache und Kommunikation (Sprachverstehen)
e Flugzeugsteuerung
e Problemlésen und Urteilen (z. B. Tiirme von Hanoi)
e Wahrnehmung und Aufmerksamkeit beim Menschen
e Kognitive Entwicklung von Schiilern
e Bedienung verschiedener Schnittstellen zum PC
e Probleme, die beim Verstehen des Lernstoffes auftreten kénnen

e Neurologische Vorginge beim Menschen

43

Neben den Simulationen selbst bietet ACT-R auch einen Einblick in die Abldufe der
Simulationsprozesse. Dies er6ffnet neue Moglichkeiten, wie zum Beispiel das Untersuchen
der GUI-Prototypen, um menschliches Verhalten vorherzusagen. Aus der Untersuchung
dieser Simulationen kann man bessere Bedienungsanleitungen fiir Programme schreiben
und diese anschlieBend mit ACT-R und menschlichen Probanden gegentesten. Deswei-
teren kann man die Verstédndnisprobleme von Schiilern lokalisieren und im Unterricht
speziell darauf eingehen, weil der Verstdndnisprozess dem Lehrer offenbart wird. Auch
die Sprachforschung profitiert, indem Forscher die Aussprache der Muttersprachler mit
Leuten, die diese Sprache erlernen wollen, vergleichen und untersuchen. [46]

6.3 Ergebnisvisualisierung

Der Ablauf und Endzustand der Simulation kénnen auf verschiedene Weisen dargestellt
werden. So gibt es die Moglichkeit das deklarative und prozedurale Gedéchtnis als Text
darzustellen.

ol
Filter:l none
fitst-goal-0 “|Declarative parameters for chunk B: A
first-goal tActivation 0.000
f :Permanent-Noise 0.000
I iBase-Level 0.000
d :Last-Retrieval-Activation NIL
C :Last-Retrieval-Time NIL
E

I3A COUNT-ORDER

FIRST 1

SECOND 2

| =

Abbildung 22: Darstellung der Chunks als Text. Links sind die einzelnen Chunks, rechts
die Metriken und Inhalte des gewéhlten Chunks abgebildet.

So wird das deklarative Gedéchtnis, also die einzelnen Chunks so dargestellt, wie sie in
dem zu simulierendem Modell beschrieben werden. Die erzeugten Chunks erhalten Na-
men wie ,b“, | c“ ,d“ und so weiter. Links in der Liste kann man einen Chunk auswéhlen
und im rechten Teil des Fensters werden die Einzelheiten zu dem gewihlten Chunk ange-
zeigt (Abbildung 22). Es wird nicht nur der Inhalt des Chunks angezeigt, sondern auch
zusitzliche Daten, z. B. wann wurde das letzte Mal auf den Chunk zugegriffen.

Das prozedurale Gedéchtnis wird im Laufe der Simulation nicht verédndert, aber man
kann einsehen zu welcher Zeit sie zum ersten Mal ausgefiihrt wurde. Links in der Liste
kann man eine Produktion auswihlen und rechts werden ndhere Informationen iiber die
Produktion angezeigt (Abbildung 23).

Des Weiteren ermoglicht die ACT-R-Oberflache eine grafische Darstellung der aktiven
Gehirnregionen beim Ausfiithren von Produktionen (Abbildung 24 und 25).

44

i

Why not? |
“lParameters for production START: :J
it ettt rutility 0.000
stop HE 0.000
rat 0,050
(P START
=GOAL>

ISA COUNT-FRCM
START =NTM1
COUNT NIL
==

=G0AT
COUNT =NUM1

+RETRIEVAL>
I5A COUNT-ORDER
FIRST =NTM1

| o

Abbildung 23: Darstellung des prozeduralen Gedéchtnisses. Links sind die Produktionen,
rechts Metriken und der Inhalte der gewéahlten Produktion.

Die Oberflache fiir die 2D-Darstellung bietet 25 Felder mit jeweils einem Léngsschnitt
des Gehirns (Abbildung 24). Die aktiven Gehirnregionen werden durch farbige Kéastchen
reprisentiert. Je stirker eine Region angesprochen wird, desto heller wird das K&stchen.
Wird ein Gehirnteil nicht angesprochen, dann ist das Késtchen schwarz. Mit dem Schie-
beregler kann man in der Simulation zeitlich vor und zuriick gehen. Die Intensitét der
Aktivitdt von Gehirnregionen wird entsprechend dem gewéhlten Zeitpunkt dargestellt.

Die Oberfldche der dreidimensionalen Darstellung bietet die Moglichkeit die Gehirn-
aktivititen anhand eines Drahtgittermodells des Gehirns darzustellen (Abbildung 25).
Auch hier gibt es einen Schieberegler fiir die Zeitangabe und die Késtchen, die je nach
Gehirnaktivitit heller oder dunkler sein kénnen. Je heller das Késtchen, desto aktiver ist
die Gehirnregion. Den Betrachtungswinkel kann man mit der Maus verédndern, indem der
Benutzer auf das Bild klickt und die Maus bei gedriickter linken Maustaste verschiebt.
So erhélt man einen rdumlichen Eindruck vom Gehirn.

Die Aktivitdt der Gehirnregionen kann auch als ein Liniendiagramm dargestellt wer-
den. Es wird die Intensitit der Aktivierung abhéngig von der Zeit visualisiert (Abbildung
26). Im linken Teil des Fensters hat der Benutzer die Wahl zwischen einzelnen Gehirn-
regionen, fiir die das Diagramm erstellt werden soll.

Damit der Benutzer sich einen Uberblick iiber die gesamte Gehirnaktivitit verschaffen
kann, hat er die Moglichkeit die Aktivitét einzelner Gehirnregionen gesammelt in einem
Diagramm einzusehen (Abbildung 27). Auf der Y-Achse sind die einzelnen Gehirnregio-
nen aufgelistet und auf der X-Achse befindet sich die Zeit.

45

=latx

I™ Showbox borders

procedural

0 66

Abbildung 24: 2D-Darstellung des Gehirns in ACT-R als 25 Léngsschnitte des Gehirns
mit aktiven Regionen, die mit farbigen Késtchen gekennzeichnet sind [5].

6.4 Grenzen

Das Framework ACT-R kann zwar neues Faktenwissen erlernen, jedoch ist es nicht in der
Lage sich iiber das vorgegebene prozedurale Wissen hinaus zu entwickeln. Es kann keine
neuen Verhaltensmuster erlernen oder selbst entwickeln. Somit st6ft es automatisch auf
das im Kapitel 2.3.4 beschriebene ,,Modell-Problem*.

6.5 Inbetriebnahme

Um ACT-R auf einem PC zum Laufen zu bringen, benttigt man zuerst das Programm
selbst. Es kann auf der offiziellen Homepage unter http://act-r.psy.cmu.edu/actr6/
heruntergeladen werden. Der Kern der Anwendung besteht aus einer Lisp-Dateisammlung
und einer vorkompillierten EXE-Datei. Die GUI kann optional hinzugeschaltet werden.
Hier wird der ,einfache* Weg mit der Standalone-Version beschrieben. Die Standalone-
Version bringt auch einen Lisp-Prozessor mit sich, was eine zusétzliche Installation von
einem Lisp-Interpreter iiberfliissig macht. Nach dem Herunterladen und dem Entpacken
des Archivs, wird die Anwendung mit ,Start Environment.exe* gestartet. Es erscheint
die grafische Benutzeroberfliche, die das Bedienen des Programms ab sofort moglich

46

http://act-r.psy.cmu.edu/actr6/

3d BOLD viewer {paired)

Abbildung 25: 3D-Darstellung des Gehirns in ACT-R als Drahtgittermodell mit farbigen
Kistchen, die aktive Regionen darstellen [5]

macht.

Mit dem Knopf ,,Load Model* kann man ein Lisp-Programm laden, was deklaratives
und prozedurales Wissen enthélt. Mit einem Befehl (run 5), den man im Fenster , Lis-
tener eingeben muss, kann man die Simulation fiir maximal 5 Sekunden laufen lassen.
Die Simulation stoppt frither, wenn keine Produktionen mehr feuern kénnen.

Mit der Buttongruppe ,,Inspecting” kann man Inhalte der einzelnen Buffern, des dekla-
rativen und des prozeduralen Wissens anzeigen lassen. Mit den Buttons ,,2D Brain“ und
,»,3D Brain“ werden Gehirndarstellungen angezeigt. Und mit dem Button ,,Horiz. Buffer
Trace“ bekommt der Benutzer eine Ubersicht iiber die Aktivitéiten der Gehirnregionen.
Alle Hilfsansichten bis auf ,Declarative viewer“ und ,,Procedural viewer* benotigen spe-
zielle Lisp-Anweisungen im geladenen Modell. Sind diese Anweisungen im Modell nicht
vorhanden, bleiben die Fenster leer. Die richtige Verwendung dieser Anweisungen ist
im Handbuch der ACT-R-Bedienoberfliche [5] beschrieben. Um eine eigene Simulati-
on mit ACT-R durchzufiihren oder eine Simulation genau zu inspizieren, werden gute
Kenntnisse der Sprache Lisp und der ACT-R-Architektur benétigt.

47

BOLD Graphs (paired)

¥ Scale actoss regons Redisplay

Start Stop e I - |

lproduction

risual-location
pural-location
temporal

.........................

hd R | C

Abbildung 26: Diagramm fiir die Gehirnaktivitéit einzelner Gehirnregionen [5]. Man er-
kennt, dass die visuelle Region (als blaue Linie dargestellt), im Gegensatz
zum Wissensabruf (als rote Linie dargestellt), kaum Aktivitéit zeigt.

6.6 Fazit

Hinter ACT-R steht ein einfacher Grundgedanke. Das Framework besteht grob aus Mo-
dulen und Buffern, deklarativem und prozeduralen Wissen. Auf dieser Basis wird mit
Hilfe von komplexen Modulen die Gehirnsimulation erméglicht. Dadurch, dass ACT-R
Metriken iiber Chunks und Produktionen erstellt, kann man durch Vergleich der Si-
mulationen die Validitidt des Frameworks und des programmierten Modells iiberpriifen.
Die Ergebnisse der Simulationen werden auf verschiedenste Weisen dargestellt: Text,
Diagramme, 2D-Gehirnansicht und 3D-Gehirnansicht. Jedoch ist es nicht moglich das
Framework als Universalwerkzeug zu verwenden, weil es keine neuen Verhaltensweisen
erlernen kann. Neues Wissen wird in Form von neuen Objekten abgespeichert. Die In-
betriebnahme ist relativ einfach, wenn man sich mit der Lisp-Sprache und der ACT-R-
Architektur gut auskennt.

48

Horizontal Graphic Trace (zbrodoff) -0l x|

retrieval ||||| ||||| |||||||||
i 0 [I

- olEHR !

imaginal-action
production |, , I I | I | I I " ' | I I I I | I" , | I I I I | | I | I | " , I

UL il 00 o0

A o

Hotes:

Gettrace | Redisplay [Remove Te| Save 1P | Save mult. | Save data | Read data |
Done

Rnnge:l to‘

Abbildung 27: Diagramm fiir die Gehirnaktivitiit einzelner Gehirnregionen als Ubersicht
[5]. Die Gehirnregion, die fiir Sprache zusténdig ist (als pinke Kistchen
dargestellt), zeigt die meiste Aktivitdt. Dabei sieht man, dass die Pro-
duktionen sténdig feuern (als braune Kistchen dargestellt). Dies deutet
auf eine Simulation der Sprachausgabe.

49

7 Framework Apex

Apex ist ein Framework, welches zur Entwicklung von autonomen, intelligenten Agenten
und deren Simulation dient. Es bietet ein Sprachframework zur Definition der Verhal-
tensweisen und Tools zur Uberpriifung und Visualisierung der Vorginge.

Das Framework wurde von der NASA Intelligent Systems Division am Ames Research
Center entwickelt. Die Webseite!? des Projektes wurde im Laufe der Erstellung dieses
Dokumentes offline genommen. Da Apex jedoch ein Open-Source-Projekt ist, ist es noch
auf der zum Projekt gehorende SourceForge Seite!! zu finden. Versffentlicht wurde das
Framework unter dem ,NASA Open Source Agreement®. Da das letzte Release im August
2006 stattfand, liegt die Vermutung nahe, dass die Weiterentwicklung eingestellt wurde.

7.1 Aufbau/Architektur

Lisp Server

Apex Sherpa
P Gu

A
A

Simulations Engine

.

Simulationen

Abbildung 28: Apex Architektur: ,Apex* Simulationsumgebung in einer Lisp-
Serverumgebung und die Benutzeroberfliche ,,Sherpa‘“.

Das Framework besteht aus zwei Teilprogrammen (Abbildung 28). Das Erste ist Apex
selbst und beinhaltet die Simulations-Engine. Es lduft auf einem Lisp Server (Abbil-
dung 29) und ist dem entsprechend in Lisp implementiert. Mit der Simulator-Engine
enthilt Apex auch einen Interpreter fiir die ,,Procedure Definition Language* (PDL),
mit welcher die Verhaltensweisen der Agenten modelliert werden. Diese ist eine ebenso

auf Lisp basierende Schnittstelle zu Apex und bietet drei verschiedene Simulationsmo-
delle:

Native simulation applications sind vollstindig in Apex eingebettet und verwenden die
interne Simulationsengine. Dieser Anwendungstyp ist eine ereignisgesteuerte Simu-
lation, wobei Ereignisse diskrete Aktionen sind. Hierbei kénnen Agenten miteinan-
der oder mit ihrer Umgebung interagieren. Die Simulation ist in keiner Weise an
die Echtzeit gekoppelt, sondern hiangt von der Komplexitit der Anwendung und
der Verarbeitungsgeschwindigkeit des Systems ab.

Ohttp:/ /ti.arc.nasa.gov/projects/apex/
Hhttp://sourceforge.net/projects/apex-autonomy/

o1

Real-time applications verwenden die interne Simulationsengine dagegen nicht. Agen-
ten arbeiten in Echtzeit, welche durch den Systemtakt gemessen wird. Damit kon-
nen Beispielsweise autonome Fahrzeuge gesteuert werden, welche ein Interface fiir
Apex anbieten.

Foreign simulation applications dienen dazu, Apex mit externen Simulationsumgebun-
gen zu verbinden, wodurch in Apex implementierte Agenten mit externen Simula-
tionen interagieren kénnen. Im letzten Stand der Software war dieser Anwendungs-
typ noch in der Entwicklung und wurde daher wie die ,Real-time applications®
gehandhabt. Ein Beispiel fiir diesen Anwendungstyp ist die Interaktion mit dem
Flugsimulator X-Plane. Dabei steuert ein Apex-Agent ein Flugzeug iiber die von
X-Plane bereitgestellte API. Beispielanwendungen hierzu liegen Apex bei.

Sollten diese drei Grundtypen nicht ausreichen, kénnen auch noch eigene Anwendungs-
typen definiert werden.
Innerhalb des Rahmens, der von den Schnittstellen der Simulationsumgebung vorge-
gebenen wird, lassen sich die Anwendungen frei programmieren. Sie sind also nicht auf
Zuweisungsregeln der Art ,JF A THEN B, C“ beschrankt.

Ez Allegro Commen Lisp Conscle - [apex.dxl] o | E S

Welcome
Current

Uersion
Apex is

International Allegro CL Enterprise Edition
6.2 [Windows] (May 15, 2886 13:56)
Copyright (C) 1985-2002, Franz Inc., Berkeley, CA, USA. All Rights Res

This standard runtime copy of Allegro CL was built by:
[TC9389] HASA Ames Research Center

to Apex?
PrintCase=downcase

3.8 Beta, Copyright {C) 2883 HASA Ames Research Center
built on Allegro Common Lisp (R}, by Franz, Inc.started sherpa

=xx If you started Apex from Emacs, please enter {emacs)
at the prompt to complete the connection. =xx

CL-USER{1):

UL 3

e

-

Abbildung 29: Lisp / Serverumgebung von Apex: Auf dieser werden die Simulationen

durchgefiihrt.

Zur Steuerung der Simulationen wird Sherpa (Abbildung 30) verwendet. Dies ist ein
auf Java basierender Client, welcher auch auf anderen Systemen gestartet werden kann,

52

als die Simulationsumgebung selbst. Mit diesem kann der Ablauf einer Simulation Schritt

fiir Schritt iberwacht werden. So kénnen die simulierten Vorgédnge analysiert und auf
Fehler iiberpriift werden.

r Y
@ Sherpa - connected to Oliver o &@g
File View Trace Inspect Window Help n I

el 2B K » £z =
Back Forward

2 ¥ < =a M

Diagram Inspect PERT Agenda POL

StateVar
Focal Object:

Agex

a)

Usable Autonomy

version 3.0

Sherpa

State I Time! I

——————————

Abbildung 30: Sherpa, die zu Apex gehoérende GUI, mit dem Bereich fiir den Objekt-

baum (a), der Werkzeugleiste fiir Simulationsablauf und Analyse (b), so-
wie dem Arbeitsbereich (c)

7.2 Einsatzgebiete

Die Apex Website listet unterschiedliche Anwendungsszenarien auf, fiir welche Apex
bereits erfolgreich verwendet wurde:

53

e Bei der Flugsteuerung und dem Missionsmanagement eines autonomen Helikopters,
der ein Gebiet iiberfliegt und beobachtet.

e Bei der Simulation des Mars Rovers, um Parameter der autonomen Steuerung zu
untersuchen.

e Bei der Simulation von menschlichen Fluglotsen und Piloten, um festzustellen wie
sich Anderungen in der Ausriistung oder den Verfahren auswirken kénnten. (,Vir-
tual Airspace Modeling and Simulation Project (VAMS) [26])

e Bei der Vorhersage von Dauer und Abfolge routineméfiger menschlicher Verhal-
tensweisen. (,,Cognitive, Perceptual, and Motor - Goals, Operators, Methods, and
Selection* CPM-GOMS [25])

e An Universitdten zur Lehre der Bereiche , kognitive Architekturen“ und ,,Human-
System Engineering“. HSE beschéftigt sich mit Charakteristiken von Menschen,
bezogen auf Organisation, Sozialverhalten und Kognition in der Verbindung mit
technischen Systemen [43].

e Als ein intelligentes Entscheidungsfindungsmodell unter einem Dialog-Management-
System.

e In einem kollaborativen Entscheidungsfindungsexperiment. Als kiinstliches mensch-
liches Subjekt.

e Als programmierbarer, menschlicher Agent in einer Luftraumsimulation.

e Bei der Modellierung und Untersuchung des Verhaltens von Astronauten bei der
Entscheidungsfindung in kritischen Situationen, wie der Startphase eines Space
Shuttle Fluges.

Fiir die Projekte zur Entscheidungsfindung sind jedoch leider keine weiteren Informa-
tionen hinterlegt, wie diese mit Apex durchgefiihrt wurde.

7.3 Ergebnisvisualisierung

Apex bietet Moglichkeiten, um die Aktionen der Agenten genau zu beobachten. Der Si-
mulationsablauf selbst kann jedoch nur in Einzelschritten beobachtet werden, wenn diese
durch die Anwendung unterstiitzt werden. Entsprechendes ist bei ,Real-time applicati-
ons“ nicht moglich, da diese zwingend auf den Zeitablauf reagieren konnen miissen. Im
Folgenden werden die einzelnen Oberflichen, welche der Analyse dienen, aufgefiihrt:

Trace Ein Log mit Zeitangabe, wann welche Aktionen von welchem Agenten durch-
gefithrt wurden. So kann die Reihenfolge der Abldufe und die Kommunikation
zwischen den Agenten beobachtet werden (Abbildung 31).

o4

r Y
@ Sherpa - Roshambo 8 @M

File Wiew Trace Inspect Window Help

=8 K » £
E| Forward Reload Reset Run E| Trace Diagram Inspect PERT Agenda POL StateVar
Focal Object: native-sim-application-1/locale-1 M

E)-4a. Roshambo 3 {native-sim-applicat] Select Columns = Settings |Default] ¥ ‘ Displaying 17 of 158 events “~7 Float
- GAMEROOM {locale-1} " 12 Settings | «|||# ¥ § |ospaying =

B L F € a M

=B JACK {agent-2}
“Resources {resource-set-2 | Timestamp % |[sgent |[EventType |TaskID _|[Description |
genda {task-agenda-2} | [g it task-started |2 (play roshambo 4 times with jack)
rocedures {procedure-set |p liack |task-started |4 (play roshambo 4 imes with jill)
. E-Monitors {monitor-array-2} | [in task-stated |5 (play roshambo with jack)
=Bl JILL {agent-1} 0 il task-started |9 {find agent jack)
-Resources {resource-set-1) | Jjin task-started |11 (choose gesture)
genda {task-agenda-1} | [g il task-started |10 (prime)
rocedures {procedure-set |p jil task-started |19 (gesture priming)
E-Manitors {monitor-array-1} | fp jack |task-started |7 (play roshambo with jill
~VISUAL-ROUTER {ps-router-2} |fp jack |task-started |21 {find agent il
~AUDITORY-ROUTER {ps-router-1j [jack task-started |23 (choose gesture)
0 jack task-started (22 (prime)
0 jack task-started |30 (gesture priming)
0 jack task-started |28 (prim choose gesture)
0 jill task-started |16 (choose gesture randomly)
500 |jiII task-started |12 (gesture rock)
500 |jack task-started |24 (gesture rock)
1000 |jack task-started |25 (determine winner {agent-2 jack} rock {agen...

4 T | b

State PAUSED |T|me 1000 | | B

Abbildung 31: Apex, Trace-Ansicht, mit der Anzeige der von den Agenten durchgefiihr-
ten Aktionen.

Diagramm Zeigt die néchste Ebene von Objekten unter dem momentan aktiven Objekt
(Abbildung 32). Das Diagramm ist navigierbar und springt beim Auswéhlen von
Knoten auf die ndchste Ebene. Zu den Objekten in den verschiedenen Ebenen
gehoren die Simulationsumgebung, die Agenten und deren Eigenschaften.

PERT Zeigt ein PERT Chart bzw. eine Art Gantt Diagramm der bereits abgelaufenen
Aktionen im zeitlichen Verlauf. Die Aktionen werden dabei auch in Unteraktionen
und Abhéngigkeiten eingeteilt (Abbildung 33).

Agenda Zeigt eine Liste der Aufgaben der Agenten und deren Status an. Also ob die

95

7 ~

@ Sherpa - Roshambo & =NREE X

File View Trace Inspect Window Help

F} =2 | KIl# 5B L F <€

For. Reload Reset Pause |.. Trace |Diagram | Inspect PERT Agend,

Focal Object: |native-sim-application-1/locale-1/agent-1 m
P ——

(- 44 Roshambo 8 {native-sim-ap| | Ij Float

== GAMEROOM {locale-1}

EI Bl JACK {agent-2}

. [#-Resources {resource
. E-Agenda {task-agenda-
[#-Procedures {procedur
~Monitors {monitor-arrg
=@

+-Resources {resource-
[+-Agenda {task-agenda
[#-Procedures {procedur
~Maonitors {monitor-arra
= VISUAL-ROUTER {ps-router-
- AUDITORY-ROUTER {ps-rou

Procedures
Resources

4 | i | 3

State FINISHED |Time 10000 ‘ ‘ B

Abbildung 32: Apex, Diagramm-Ansicht des Objektbaums. Dabei werden die Objekte
gezeigt, welche dem momentan aktiven Objekt untergeordnet sind.

Aufgaben bereits ausgefiithrt wurden, in Bearbeitung sind oder noch nicht gestartet
wurden (Abbildung 34).

PDL Eine Auflistung der Prozeduren, die ein Agent beinhaltet. Es handelt sich um
eine baumartige Darstellung des PDL Sourcecodes (Abbildung 35). Dabei wird die
Aufrufhierarchie der Prozeduren dargestellt.

Inspect und Statevar Beide Ansichten zeigen verschiedene Informationen iiber die Agen-
ten an, sowie die momentane Belegung diverser Statusvariablen.

7.4 Grenzen

Die Hauptaufgabe von Apex liegt in der Entwicklung und Simulation der Steuerung
komplexer, autonomer Systeme. Daher ist die Fahigkeit von Apex, die menschliche Ko-
gnition zu simulieren, nur sehr eingeschrinkt. Das Unterprojekt CPM-GOMS [25] geht
in diese Richtung. Es wird benutzt, um die nach auflen sichtbaren Handlungsweisen von
Menschen und deren Dauer zu simulieren. Dies wird verwendet, um die Auswirkungen
von Umgebungsidnderungen auf den Menschen zu simulieren und wie sich diese auf den
Arbeitsablauf auswirken. Ein Beispiel hierzu ist die Simulation von Anderungen in der
Ausriistung der Flugsicherung und die Auswirkung auf das Arbeitsverhalten der Flug-

56

r B
@ Sherpa - Ocean World E@g

File View Trace Inspect Window Help

«.=> _ | K Il #._

B P F £ a v

o Y o A 1L
Back Forward Reload Reset Fause Siep Trace Diagram Inspect PERT Agenda PDL StateVar
Focal Object: |native-sim-application-1/locale-1/mother-ship-1 |m
@ s Ocean World {native-sim{4 | — .
© @ OCEAN{locale-1} |" >4 o = A = =0 fio% | rddRecouce [F
COMM-FIELD {ps-router-3 :
AUD-FIELD {ps-router-2} §§
VIS-FIELD {ps-router-1} |
thrusters
cameras
State FINISHED ITime 18202 I I I.

Abbildung 33: Apex, PERT Diagramm eines Agenten iiber die bereits ausgefiihrten Ak-
tionen. Dabei werden auch die Abhéngigkeiten durch Verbindungen zwi-
schen den Aktionen gezeigt.

lotsen (Projekt VAMS [26]). Das Projekt kann jedoch nicht die internen Vorgéinge beim
menschlichen Denken simulieren.

7.5 Inbetriebnahme

Apex benotigt keine Installation. Unter Windows kann das Paket einfach entpackt und
gestartet werden. Dabei muss zuerst die LISP Umgebung (Apex.exe) gestartet werden
und erst danach die Benutzeroberfliche Sherpa, die sich dann mit der LISP Umgebung
verbindet.

Anschliefend kann eine Anwendung geladen werden. Apex liefert zur Einfithrung
iiber den Anwendungsaufbau einige Beispiele mit. Der folgende PDL-Code (Listing 1)
zeigt einen Ausschnitt aus einem Beispiel fiir Agenten, welche das Spiel ,,Schere-Stein-
Papier” spielen. ,primitive* Funktionen sind die grundlegenden Aktionen, welche ein
Agent durchfithren kann. Im Beispiel werden bei diesen auch immer ,duration“ Angaben
gemacht, um die Dauer der Aktion anzugeben. ,,procedure* Funktionen kénnen umfang-
reichere Ablidufe beinhalten. Das ,step* Keyword dient zur Definition von Einzelschritte,
welche parallel durchgefiihrt werden, sofern nicht durch , waitfor zwingende Sequenzen
oder Vorbedingungen definiert wurden.

Fiir die Kommunikation zwischen den Agenten dienen ,router®. An diesen registrieren
sich die Agenten und versenden Ereignisse. Router sind in diesem Ausschnitt aber nicht

o7

a8 ™Y
@ Sherpa - Ocean World E@g

File View Trace Inspect Window Help

c.o [B K u £, B O ¥ £ m 7

Back ard Reload Reset Fause Step Trace Diagram Inspect PERT Agenda FPDL StateVar

Focal Object: |native—sim—application—ﬂlocale—‘h’mother—ship—‘l |m

@ .4 Ocean World {native-sirm{4
& @ OCEAN {locale-13 |"| SelectColumns [Float
Eggjgl_;:fé?p{;;[ﬂs:g Task Task 1D|Monitor State Task_State Resources(Time in State
VIS-FIELD {ps-router-1} @ (initialize-and-listen) task-2 -Jng-:!mg 18202
@ (initialize) task-5 terminated 18202
@ (listen) task-6 |satisfied ongoing 18002
(notify (i got (i explored (125 50 70)) fritask-24 |satisfied terminated 5492
(notify (i got (report — (object #thermatask-48 |satisfied terminated 5482
(notify (i got (signing off) from #{aur-1 [task-49|satisfied terminated 5472
(notify (i got ?body from ?from)) task-50(unsatisfied |pending 0
(terminate +this-task+ success == nil) |task-7 |unsatisfied |pending 0
State FINISHED ITime 18202 I I Ii

Abbildung 34: Apex, Agenda mit den Aufgaben eines Agenten. Dabei wird deren Bear-
beitungsstatus gezeigt.

gezeigt.

Listing 1: Ausschnitt aus roshambo8.lisp, mit zwei Aktionen (primitive) fiir eine Zufillige
oder gezielte Gestenauswahl und der Hauptprozedur (procedure), welche unter
den Vorbedingungen eine der der beiden Aktionen durchfiihrt.

(primitive (choose gesture randomly)
(profile brain)
(duration (500 ms))
(return (random—elt ’(rock paper scissors))))

(primitive (choose gesture by last ?last)
(profile brain)
(duration (500 ms))
(return (ecase 7last (rock ’paper) (paper ’'scissors)
(scissors ’'rock))))

(procedure (choose gesture)
(step sl (choose gesture randomly => 7gesture)
(waitfor (:not (:measurement (game—gesture opponent = 7)
stimestamp (> 0)))))
(step s2 (choose gesture by last 7last => 7gesture)

o8

’
@ Sherpa - Ocean World

=)

File View Trace Inspect Window Help

VIS-FIELD {ps-router-1}

@ (initialize)
(start-cameras)

§ (listen)
(notify (i got ?body from ?from))

v A

«_=2> | K Il £ _|E L &£ £ a v
Back Forward Reload Reset Pause Step Trace Diagram Inspect PERT Agenda FDL StateVar
Focal Object native-sim-application-1/locale-1/mother-ship-1 |m
@ 4a Ocean World {native-sim{4 .
© [@ OCEAN {locale-1} ' Call Graph ¥ | Hide Colors |: Float
COMM-FIELD {ps-router- —— A
AUD-FIELD {ps-rauter-2} |- @ (initialize-and-listen) (primitive

(index (start-engines))

i| (profile thrusters)
i| (duration (100 ms))
i (on-completion (start-activity +=elf+ (quote movement)
locomotion-resource (find-resource +self+

(quote thrusters)) :goal-location (location +zelf+)
:| :update-interval 100)))

State FINISHED | Time

18202 |

L]

Abbildung 35: Apex, PDL Ansicht mit einer baumartigen Darstellung des PDL Source-

codes.

(waitfor (:measurement (game—gesture opponent

(step (termina
(waitfor

7.6 Fazit

7last)

:estimation (:persist))))

te >> 7gesture)
(ror 7s1 7s2))))

Apex bietet ein Framework zur Entwicklung und Simulation von autonomen Agenten.
Wie im Unterkapitel ,Einsatzgebiete” beschrieben umfasst es dabei weit mehr, als die au-
tonome Steuerung von Robotern. Gerade durch erweiternde Unterprojekte, wie VAMS
[26] und CPM-GOMS [25], wird es auch zur Verhaltensanalyse in definierten Umge-
bungen und der Lehre eingesetzt. Detaillierte, interne kognitive Vorgidnge und deren
Untersuchung sind dabei nicht das Ziel von Apex, wie dies dagegen bei den anderen
untersuchten Frameworks das Ziel ist.

Die Bedienung von Apex lésst sich leicht erlernen und bietet eine Vielzahl an Moglich-
keiten, um die Agenten in der Simulation zu untersuchen. Mit der Hilfe der mitgelieferten
Beispiele und der Dokumentation lidsst sich auch die Entwicklung der Agenten ebenso
leicht erlernen und bietet mit PDL als Lisp-Dialekt eine gut lesbare Sprache.

99

8 Framework Soar

Soar wurde 1983 an der Carnegie Mellon Universitéit von John Laird, Allen Newell, und
Paul Rosenbloom erstellt und wird fortwahrend weiterentwickelt. Der Kern von Soar ist
in C geschrieben und als BSD-Lizenz verfiigbar. Es besteht die Moglichkeit fiir grofiere
Projekte den Soar-Debugger zu benutzen, welcher in Java geschrieben ist. Dieser De-
bugger und der Soar-Kern befinden sich in der ,,Soar Suite®, welche mittlerweile (Stand:
03.06.2011) in der Version 9.3.0 verfiigbar ist. Mit Hilfe einer Schnittstelle und Bibliothe-
ken fiir C++4, Java, C# und Tecl ldsst sich Soar mit verschiedenen Programmiersprachen
ansteuern und somit in beliebige Programme integrieren.

8.1 Aufbau/Architektur

()
Produktionsspeicher Entscheidungsfindung
—
Zustandserzeugung

—
— Lernen

\ J

()

Arbeitsspeicher

’_A

£\

\. J

Abbildung 36: Die Architektur von Soar ist in 3 Teile gegliedert: Im Produktionsspei-
cher wird das dauerhafte Wissen in Form von Produktionen gespeichert,
der Arbeitsspeicher beschreibt den aktuellen Zustand und im dritten Teil
befinden sich die Algorithmen fiir Entscheidungsfindung, Zustandserzeu-
gung, Lernen usw. [17]

61

Soar ist grob in drei Komponenten zu unterteilen. Diese sind einerseits Produktions-
und Arbeitsspeicher, welche sich zur Wissensreprésentation zusammenfassen lassen. Der
andere Teil enthélt die eigentliche Verarbeitungslogik, welche unter anderem die Ent-
scheidungsfindung und den Lernprozess berechnet (Abbildung 36). Im Produktionsspei-
cher speichert Soar dauerhaftes Wissen in Form von sogenannten ,,Produktionsregeln®.
Der Arbeitsspeicher enthélt, wie der Name schon sagt, temporires Wissen, welches fiir
die aktuelle Verarbeitung benétigt wird in Form von sogenannten ,,Objekten®.

Produktionsregeln Die Produktionsregeln im Produktionsspeicher sind in Soar immer
nach folgender Syntax aufgebaut:

Listing 2: Produktionsregel in Soar
sp {Name
(Bedingungl)
(Bedingung?2)
—>
(Aktionl)
(Aktion2)

-}

Eine Produktionsregel beginnt immer mit ,,sp* (,,Soar production®), gefolgt von einer
offnenden geschweiften Klammer, in welcher sich der ,,Korper” der Regel befindet. Die-
ser Korper besteht aus einem beliebigen Namen und einer oder mehreren Bedingungen,
welche jeweils in runden Klammern stehen miissen. Auflerdem folgt daraufhin ein ,,—>“,
welches, wie in einer If-Bedingung, als die Trennung zum ,then“-Teil gesehen werden
kann. Nach einer oder mehreren Aktionen, welche wie die Bedingungen, ebenfalls in
Klammern stehen miissen, wird die Produktionsregel mit einer geschlossenen geschweif-
ten Klammer abgeschlossen. Allgemein kann also gesagt werden, dass Produktionsregeln
die If-Bedingungen in Soar darstellen.

Objekte Ein Objekt ist in etwa gleichzusetzen mit einer instanziierten Klasse in objek-
torientierten Programmiersprachen. Ein Objekt besitzt demnach eine Menge von Eigen-
schaften, welche wiederum Objekte mit Eigenschaften sein kénnen.

62

Abbildung 37: Zwei Holzblocke (A und B) auf einem Tisch zur Verdeutlichung der Dar-
stellung von Objekten in Soar [17]

Die in Abbildung 37 gezeigten Bausteine kénnten in Soar als Objekte folgendermafien
beschrieben werden:

Listing 3: Objektbeschreibung der Bausteine in Soar
sl “baustein bl “baustein b2 “tisch t1)
bl “farbe blau "name A “auf b2 “typ baustein)
b2 “farbe gelb "name B “auf t1 “typ baustein)
t1 “farbe grau “name Tisch “typ tisch)

N N N /N

Alle Bezeichnungen hierbei sind frei wéhlbar und sollten so gew#hlt werden, dass die
Semantik leicht zu erkennen bleibt. ,s1¢ beschreibt z. B. einen Zustand, welcher die
Bausteine ,,b1%, ,,b2“ und den Tisch ,,t1* enthélt. Der Baustein ,,b1“ hat dabei die Farbe
,blau“, den Namen ,,A“, den Typ ,baustein“ und liegt auf ,b2“. Die Bezeichnung eines
Parameters wird immer mit einem vorgestellten ,,"“ geschrieben. Der Wert des Parame-
ters ist ein einfacher String, welcher durch weitere Beschreibung in einem zusétzlichen
Tupel automatisch zu einem Objekt werden kann.

Diese Zusammenhénge lassen sich nun auch folgendermafien in einem Graph darstellen:

63

Ablock block

Ablock /@

tisch

Abbildung 38: Beschreibung des Zustands s1, welcher in Abbildung 37 zu sehen ist, in
Form eines Graphs [17]

64

S.N.

Abbildung 39: Alle Zustéinde, in die vom Startzustand aus gelangt werden kann, spannen
einen Problemraum auf. Die Darstellung als Dreieck verdeutlicht, dass
sich die Zahl der moglichen Zusténde in jedem Schritt vergrofiern kann.
Die griinen Zusténde zeigen den Losungsweg von sl nach Z.

Soar kann nun mit Hilfe der Produktionsregeln und Objekte theoretisch alle Probleme
l6sen (siehe General Problem Solver 3.3) bei denen von einem definierten Anfangszustand
zu einem definierten Endzustand gelangt werden kann (Abbildung 39). Dazu wendet
es entsprechende Produktionsregeln als einen Operator auf den aktuellen Zustand an,
woraus durch die Manipulation in der jeweiligen Produktionsregel ein anderer Zustand
resultiert. Dies wiederholt Soar so lang, bis es den vorgegebenen Endzustand erreicht hat.
Waihrend dieses Vorgehens gibt es meist mehrere mogliche Operatoren zwischen denen
Soar entscheiden muss. Dazu durchlduft Soar einen sich stdndig wiederholenden Zyklus,
der entscheidet, welcher Operator in dem aktuellen Zustand der beste ist (Abbildung
40).

Eingabe Mogllche Operatoren Opere_l_tor Operator Ausgabe
r finden auswahlen anwenden —‘

Abbildung 40: Der Ablaufzyklus in Soar. Nachdem Eingaben von Auflen gesammelt wur-
den, werden alle Operatoren gesucht, deren Bedingungen mit dem aktu-
ellen Zustand iibereinstimmen. Aufgrund von Préferenzen wird daraufhin
entschieden, welcher Operator ausgefiithrt wird. Danach wird der entspre-
chende Operator angewandt und der daraus resultierende Zustand aus-
gegeben.

Beim ersten Durchlauf wird, sofern der Programmierer keine Préferenzen vergeben
hat, rein zufiillig entschieden, welcher Operator ausgefithrt wird. Gelangt Soar in eine
Sackgasse, also in einem Zustand aus dem es nicht mehr entweichen kann, wird zu dem

65

letzten Zustand zuriickgesprungen und durch Anwendung anderer Operatoren die Sack-
gasse umgangen. Jedes Mal, wenn dies erfolgreich war, speichert Soar diesen Zwischenweg
in so genannten ,,Chunks* mit hoherer Priferenz ab. Wiederholt sich diese Situation in
einem weiteren Durchlauf, so ,feuert” der zuvor generierte Chunk sofort und sorgt dafiir,
dass Soar kein zweites Mal in diese Sackgasse lduft. Auf diese Weise findet in Soar ein
Lernvorgang statt.

8.2 Einsatzgebiete

Abbildung 41: Die Einsatzgebiete von Soar sind vielseitig: a) Raumfahrt [31], b) Com-
puterspiele [29] und c¢) Militéar [1]

Soar findet in vielen Bereichen Anwendung: von der Psychologie, iiber Roboterkon-
trollarchitekturen und dem Militarbereich bis hin zu Computerspielen. So wird Soar
z. B. in dem bekannten Ego-Shooter ,Quake II“ fiir die Steuerung der Bots benutzt
[10]. Sehr umfangreichen Einsatz findet die Architektur jedoch in militérischen Projek-
ten. Laut [17] sind die beiden Programme ,TacAir-Soar* und ,RWA-Soar* daraufhin
programmiert, menschliche Piloten zu ersetzen und autonome Flugmissionen inklusive
Einhaltung der Kommandostruktur zu absolvieren. Ein weiteres Projekt namens ,Soar
Moutbot“ simuliert individuelle menschliche Gegner in Kriegsgebieten und hat dadurch
einige besondere Fiahigkeiten, wie z. B. reaktive Aktionen und die Kommunikation mit
anderen ,,Soar Moutbots“. Auch die NASA nutzt Soar in dem Projekt ,,NTD-Soar*, wel-
ches Space-Shuttles vor dem Start testet und mit dem Raketenstartteam kommuniziert

66

17].

8.3 Ergebnisvisualisierung

POUR(3:0,5:3) -]
E:2 2:0
197: 0: 0415 {empty)
EMPTY (5}

E:-0 3:0
198: 0: 0417 (fill)
FILL(3)

5:0 3:3
199 0: 0413 (fill})
FILL{S})

5:5 3:3
200: 0: 0422 {empty)
EMPTY (G}

E:0 2:3
£01: 0: 04F4 (pour)
POUR(Z:2,5:00
POUR(Z:0,5:3)

5:3 3:0
Z0Z: 0: 0425 (empuy)
EMPTY (5}

5:0 3:0
E03: 0: 0427 (fill)
FILL{2}

E:0 2:3
£04: 0: 0430 (pour)
POUR({Z:3, E:-0)
POUR(Z:0,5:3)

5:3 3:0
Z205: 0: 0434 (fill)
FILL{3}

5:3 3:3
206: 0: 0436 (pour)
POUR{2:3,E:3)
POUR{2:1,E:E)

E:E5 3:1

The problem has been solwed.

Interrupt receiwved.

This Agent halted.

Ain agent halted during the run.
i v

Abbildung 42: Die textuelle Ausgabe von Soar Debugger. In diesem Beispiel wurde die
mitgelieferte Demo ,, water-jug® ausgefiihrt. Die Ausgabe beschreibt, wel-
cher Krug in welchen gefiillt (fill), bzw. geleert (empty) wird.

Das mit Soar ausgelieferte Tool ,,Soar Debugger® bietet die Mo6glichkeit, in Soar ge-
schriebene Programme auszufithren und wéhrenddessen zu iiberwachen. So gibt es eine
textuelle Ausgabe (Abbildung 42), welche einfache Textausgaben, die in dem jeweiligen
Soar-Programm an einzelnen Stellen vermerkt sind, anzeigen kann.

I prink <sz

b Lef

(51 ~epmem E1 "io Il “jug I4 “jug J1 “name water—jug “operator 0442 +
“operator 0440 + “operator 0441 + “operator 0438 + “reward-link Rl
“smem 32 “superstate nil “type state)

T

Kl
state |nparatnr| stack matchesl DDJ)FEFI stats I input nutputl

Abbildung 43: Die Anzeige des aktuellen Zustands nach Ausfithrung der ,water-jug“-
Demo. Unten befinden sich verschiedene Tabs, von denen in dieser Ab-
bildung ,state* ausgewdhlt ist. Dadurch beschreibt der obere Teil des
Fensters den aktuellen Zustand des Soar-Programms.

67

AuBlerdem bietet der Soar-Debugger die Moglichkeit, zusétzliche Eigenschaften wih-
rend des Programmablaufs abzurufen. So kann man sich beispielsweise den aktuellen
Zustand, die angewandten Operatoren sowie den Ausfithrungsstack oder statistische In-
formationen anzeigen lassen (Abbildung 43).

Moutput-link

Ainput-link

Abbildung 44: Jeder Zustand hat automatisch iiber das Attribute ,io* ein Objekt (I1),
welches durch zwei weitere Objekte mit Ein- (I3) und Ausgabedaten (12)
versehen ist.

Zu den selbst einprogrammierten Objekten, vergibt Soar zusétzlich jedem Zustand,
ein weiteres Objekt. Dieses Objekt hat die beiden Attribute ,output-link“ und ,input-
link“, welche fiir die Ein- und Ausgabe zu anderen Programmen verantwortlich sind
(Abbildung 44). Durch diese Schnittstelle lassen sich beliebige Oberflichen programmie-
ren, welche auf Soar zugreifen und die Ergebnisse visualisieren kénnen. Das in der Soar
Suite mitgelieferte Demo-Programm ,, Eaters® stellt ein solches komplexeres Beispiel mit
grafischer Oberfliche dar (Abbildung 45).

68

[i

File ™Map Help

—Map: random-walls, bxt Sirnulation
EEEEEEENEE RN [o | s [

e H ¢ ¢ H ¢ ¢ O ¢ ¢ 0 ¢ & O ¢ .

Map—————

. CoUe o L O ... e . Food remaining: 186
. * H ¢ ¢+ H ¢+ ¢ @ ¢+ ¢+ E ¢+ + 0 ¢+ . Pairks remaining: 1500
| KN Kl EENY | | | EEEECECE (et
. * . $« & @EH + % H & &+ @EH * + @H * . Change Map
H:---HN: - -HENE---H Gorse s |
. e m ’ ¢ B ¢ & W ¢ ¢ H ¢ & H * . [~ Agents
. + B * H ¢+ ¢ H + * H + . Mew I Clone |Destr0y| Reload |
. + B ¢+ ¢+ B + * H + + & .. m e . = E—
Weveoes oo ofeesnsens]| [0
. * . *« & @H + @ . * @ . * & @H * .
. . . * o m . . * ¢ 0 + ¢+ H ¢ .
.0.00.00.0.....0.
. « H + & H + & H + &+ H *+ + @H *
. e m ¢ H ¢+ ¢ 0 ¢ ¢ 0 ¢« ¢ @ ¢ . Lacation: -
I.II.II.IIIIIIIII

Peady

Abbildung 45: Demo-Programm FEaters: Die Figuren miissen in moglichst kurzer Zeit
das Futter der gesamten Map auffressen.

8.4 Grenzen

Soar verwendet zur Problemlésung Chunks und vorgegebene Produktionsregeln, mit wel-
chen es bei einer Aufgabenstellung im Prinzip alle Moglichkeiten durchprobiert. Die Fra-
ge ist, ob man dies als Intelligent bezeichnen kann? Soar lernt zwar nach jedem Durchlauf
hinzu und optimiert die durchzuprobierenden Wege. Ob es dabei jedoch ,,weifl* was es tut
sei zu bezweifeln. Neue Aufgaben kénnen ebenfalls nicht von Soar selbst erlernt werden,
sondern miissen mit Hilfe der Produktionsregeln zuerst einprogrammiert werden.

Das Durchprobieren aller Moglichkeiten erkennt man gut an der in der Soar Sui-
te mitgelieferten Demo ,,Missionaries and Cannibals“. In dem Beispiel gilt es fiir drei
Missionare und drei Kannibalen, welche auf der einen Seite eines Flusses stehen, an das
Ufer auf der anderen Seite zu gelangen. Dazu gibt es ein Boot, welches maximal zwei
Personen transportieren kann. Die Schwierigkeit ist nun, dass an jeder Stelle (die beiden
Ufer und das Boot) jeweils mindestens gleich viele Missionare wie Kannibalen sein miis-
sen. Zur Losung des Problems fiihrt Soar mit jedem Klick auf den Button ,,Step“ eine
scheinbar beliebige Aktion durch. So kann es vorkommen, dass sogar mehrmals dieselbe
Aktion ausgefiihrt und wieder riickgéngig gemacht wird. Da der Quellcode des Java-
Programms den Autoren nicht zugénglich war und es mehrere Soar-Implementierungen
des ,Missionaries and Cannibals“-Problems gibt (im Installationsverzeichnis von Soar:
share/soar/Demos/mac/*.soar), welche teilweise die Lernfihigkeit in Soar deaktivieren
(leran —off), wurde dort wahrscheinlich solch eine Implementierung eingebunden. Somit
kann es vorkommen, dass das Programm statt der mindestens elf, 100 oder noch mehr
Schritte bis zum Ziel benttigt. Mit dieser Einstellung macht Soar nicht den Eindruck
von Intelligenz, sondern von reinem ,,trial and error*.

69

8.5 Inbetriebnahme

Soar kann unter http://sitemaker.umich.edu/soar/home heruntergeladen werden. Auf-
grund der Plattformunabhéngigkeit durch Java lduft Soar sowohl unter Windows, OS
X als auch Linux. Eine Installation ist nicht nétig. Es geniigt, die heruntergeladene Da-
tei in einen Ordner zu entpacken und z. B. das Programm ,SoarJavaDebugger.jar® im
Ordner ,bin“ zu starten. Im Hauptverzeichnis befinden sich einige Demo-Programme.
Das folgende Beispiel initialisiert die Zustdnde des bekannten Problems der Tiirme von

Hanoi und befindet sich ebenfalls in dem Ordner:

Listing 4: Initialisierung der Zusténde fiir die Tiirme von Hanoi in Soar

sp {towers—of—hanoixapplyxinitialize

(state <s> "operator.name initialize)

—>

(<s> “disk <disk—1> <disk—2> <disk—3> <disk—4>
<disk —5> <disk —6> <disk—7> <disk—8>
<disk —9> <disk —10> <disk —11>

"peg <peg—a> <peg—b> <peg—c>
“holds <hl> <h2> <h3> <h4> <h5> <h6> <h7>
<h8> <h9> <h10> <hll>
"last —disk1l—peg <peg—b>

“last —disk—moved <disk —2>)

(<hl> "disk <disk—1> "above
(<h2> “disk <disk—2> “above
(<h3> “disk <disk—3> “above
(<h4> “disk <disk—4> “above
(<h5> “disk <disk—5> "above
(<h6> “disk <disk—6> "above
(<h7> “disk <disk—7> "above
(<h8> "disk <disk—8> “above
(<h9> “disk <disk—9> "above
(<h10> “disk <disk—10>
<peg—a>)

(<hll> “disk <disk—-11>
(<disk—1> "name 1 “size 1)
(<disk—2> "name 2 “size 2)
(<disk—3> "name 3 “size 3)
(<disk—4> "name 4 “size 4)
(<disk —=5> "name 5 “size 5)
(<disk—6> "name 6 “size 6)
(<disk—7> "name 7 “size 7)
(<disk—8> "name 8 “size)
(<disk—9> "name 9 “size 9)
(

<disk —2>
<disk —3>
<disk —4>
<disk —5>
<disk —6>
<disk —7>
<disk —8>
<disk —9>

~

on
on
on
on
on
on
“on

~

on

<peg—a>)
<peg—a>)
<peg—a>)
<peg—a>)
<peg—a>)
<peg—a>)
<peg—a>)
<peg—a>)

<disk —10> “on <peg—a>)

<disk —10> “name 10 “size 10)

70

“above <disk—11>

on

“above none “on <peg—a>)

(<disk—11> “"name 11 “size 11)

(<peg—a> "name |A])

(<peg—b> "name |B])

(<peg—c> "name |C|)

(<s> “desired <dl> <d2> <d3> <d4> <d5> <d6> <d7>
<d8> <d9> <d10> <dl11>)

(<dl> “disk <disk—1> “above <disk—2> “on <peg—c>)

(<d2> “disk <disk—2> “above <disk—3> “on <peg—c>)

(<d3> "disk <disk—3> “above <disk—4> “on <peg—c>)

(<d4> “disk <disk—4> “above <disk—5> “on <peg—c>)

(<db> “disk <disk—5> “above <disk—6> “on <peg—c>)

(<d6> "disk <disk—6> “above <disk—7> “on <peg—c>)

(<d7> “disk <disk—7> “above <disk—8> “on <peg—c>)

(<d8> "“disk <disk—8> “above <disk—9> “on <peg—c>)

(<d9> “disk <disk—9> “above <disk—10> “on <peg—c>)

(<d10> "disk <disk—10> “above <disk—11> “on
<peg—c>)

(<d11> "disk <disk—11> “above none “on <peg—c>)}

In dieser Form wére das Programm nicht ausfithrbar, bzw. wiirde in eine Endlosschleife
geraten. Da nur eine Produktionsvorschrift existiert und kein Endzustand definiert wur-
de, wird die Produktionsregel nach jedem Schritt ausgefithrt ohne eine Anderung der
aktuellen Zustidnde. Damit das Programm anhélt, miisste am Ende der Befehl , (halt)*
aufgerufen werden.

8.6 Fazit

Der Ansatz der Aufteilung in Produktions- und Arbeitsspeicher sowie einer Logikeinheit
erscheint zunéchst sinnvoll und dem menschlichen Gehirn dhnlich (siehe Kapitel 4). Das
anfinglich unkoordinierte Herumprobieren, um ein Problem zu 16sen, mag eventuell auch
einem Kleinkind dhnlich sein. Mit deaktivierter Lernfihigkeit erscheint Soar absolut nicht
mehr intelligent. Schaltet man diese Funktion jedoch ein, ergeben sich schon nach kurzer
Zeit erstaunlich kurze Wege durch den entsprechenden Problemraum.

Das Schreiben eines Soar-Programms ist relativ kompliziert, da ausschliefilich Pro-
duktionsregeln erstellt werden und somit der Uberblick iiber die eigentliche Funktion
der einzelnen Zeilen fehlt und sie somit nicht sehr intuitiv sind. Der Code erinnert an
ein Assembler-Programm. Um mit Soar iiberhaupt umgehen zu kennen, ist ein sehr fun-
diertes Wissen iiber die Architektur und Arbeitsweise notig.

71

9 Vergleich und Bewertung der Frameworks

In diesem Kapitel werden die Frameworks, ihre Ideen sowie Schwéchen und Stérken
miteinander verglichen.

Auch wenn Kognitionsframeworks das gleiche Ziel verfolgen, ndmlich die menschli-
che Kognition zu simulieren, sind ihre Einsatzgebiete unterschiedlich (Abbildung 46).
So bietet ACT-R beste Voraussetzungen fiir die Forschung der Laufzeitmessungen von
Aktivitaten des Gehirns. Apex vertritt menschliche Steuerung von autonomen Vehikeln
und die Soar-Autoren versuchen das urspriingliche Ziel des General Problem Solvers zu
erreichen.

7
o
Qp o

Abbildung 46: ACT-R bietet viele Visualisierungsmoglichkeiten, was fiir Gehirnfor-
schung besonders wichtig ist. Apex wird fiir Robotersteuerung vewendet
und Soar ist ein Nachfolger des GPS.

ACT-R ist ein Modulbasiertes Framework, was symbolischen und subsymbolischen An-
satz miteinander vereint. In dieser Arbeit wird er als hybrid gewertet, auch wenn es
keinen echten konnektionistischen Ansatz implementiert. Dieses Framework lisst sich
einfach mit einem Doppelklick starten und verfiigt iiber eine GUI, die die Bedienung des
Programms erheblich erleichtert. Die GUI macht es auch moglich, simulierte Vorgéinge
im menschlichen Gehirn, grafisch darzustellen. ACT-R verfiigt iiber ein breites Spektrum
an Einsatzgebieten.

Dennoch gibt es einige Schwéchen. So war es erst nach langer Recherche moglich, ei-
ne der mitgelieferten Simulationen zu bedienen. Es zeigt, dass ACT-R aufgrund seiner
hohen Komplexitét fiir Anfinger nicht geeignet ist. Ein weiterer Punkt ist die Lernbar-
keit des Frameworks. ACT-R kann die chunkbasierte, aber nicht die prozeduralbaiserte

73

Wissensbasis erweitern.

Apex ist ein Framework, welches eine Plattform fiir die Entwicklung von autonomen
Systemen bietet. Damit besteht, im Gegensatz zu ACT-R oder Soar, seine Hauptaufgabe
nicht in der Simulation von Gehirnfunktionen. Es bietet jedoch ein breites Einsatzspek-
trum in der Autonomie. Des Weiteren erschlieBen sich mit auf Apex arbeitenden Projek-
ten weitere Einsatzbereiche. Beispielsweise befasst sich ein Projekt mit der Simulation
von menschlichen Verhaltensweisen, um in bestimmten Einsatzbereichen Anderungen in
der Umgebung auf deren Auswirkungen zu analysieren.

Die Bedienung von Apex lisst sich leicht anhand der mitgelieferten Beispiele erlernen.
Dies gilt ebenso fiir die Sprache, in der die Simulationen entwickelt werden.

Soar verwendet wie ACT-R einen symbolischen Ansatz zur Wissensreprisentation und
-verarbeitung. Es arbeitet ebenso mit anfangs fest einprogrammierten Regeln, welche
sowohl in ACT-R, als auch in Soar als ,,Produktionen® bezeichnet und dhnlich verwendet
werden.

Der Begriff ,,Chunk“ hat in ACT-R und Soar eine vollig unterschiedliche Bedeutung.
In Soar sind Chunks Produktionsregeln. Diese werden durch Lernvorgéinge automatisch
generiert und bei jedem Problem zuvor anzuwenden versucht.

Der bei Soar mitgelieferte Debugger in Form einer grafischen Oberfliche lasst auch
dieses Framework leicht bedienen und bietet somit fiir den Einsteiger beste Vorausset-
zungen. Die vielen verschiedenen Einsatzgebiete zeigen, dass Soar sehr flexibel und fiir
alle moglichen Bereiche anwendbar ist.

Tabellenrepresentation Tabelle 2 beschreibt nochmals die wichtigsten Eigenschaften
der untersuchten Frameworks.

74

SYIOMOUIRI] USONSISNUN Iop YOIO[BI0A g O[[qRL,

Awouojne-xade /s1o0loxd
/1euragi1ojeonos/ /:dyyy

Ie0s /npo xodwe /s100l01d g130% /nponuo Asd 1
orum oyeurays/ /:dyi /ao08-eseurore1y//:dyg -1ov/ /:dy 9JTOSCIM
1%, owrtreIdeI(] ‘9%, Iop[g ‘owrtreIder(] ‘1Xo], | SUNLISISI[eNSIASIU]ISIH
woo[q
-u9sOY 'J ‘[[PMON Y ‘PIe ‘[| I0JU0)) [oIessoy sowy VSV N uosmopuy ‘Y ‘r U210y
OSI[OqUIAS YOSI[OqUIAS [osI[oquIAsqns ‘YoSIOqUIAS zyesuy
I[N SUNYDSIO ‘JIyRjUNRY]
‘oprdsiondwo) ‘yrgeymwmney | 23 -Jn ‘Uojuedy oewouojny | oypeidg ‘N11oqoy ‘Sunyosioq 910193z esuly
D /eaep dsrg dsr oyoerdg
JuouI
dsd | o018y 9omog wd) VSVN TdOT 2uoZl']
zeog | xody | U-LOV | Jtomoure |

75

10 Fazit

Ever since the first computers, there
have always been ghosts in the
machine.

Alfred Lanning, Film ,I, Robot*

Ziel dieser Ausarbeitung war es, verschiedene kognitive Frameworks niher zu unter-
suchen und zu vergleichen. Dazu sollte darauf eingegangen werden, in welchen verschie-
denen Bereichen die jeweiligen Frameworks Anwendung finden und worin ihre Stérken
und ihre Schwéchen liegen. Um die Funktionsweise der Frameworks besser zu verste-
hen, war dazu eine kurze Einfithrung in die Grundlagen der Kognitionswissenschaft und
kiinstlichen Intelligenz verlangt. Auflerdem sollte so festgestellt werden, wo die grund-
sdtzlichen Grenzen von bestehenden kognitiven Architekturen liegen und ein Ausblick
auf zukiinftige Entwicklungen vorgestellt werden.

In diesem letzten Kapitel wird aus allen Informationen das Sieger-Framework heraus-
gestellt und ein Ausblick in die weitere Entwicklung gegeben.

Das Vorgehen bei der Erstellung der Fachstudie, war zuerst zu untersuchen, was Ko-
gnition ist und welche Bereiche die Kognition umfasst. AnschlieBend wurden Techniken
zur Kiinstlichen Intelligenz untersucht, sowohl klassisch als auch kognitionsbasiert. Somit
waren die Grundlagen gelegt um die Frameworks auf ihre Eigenschaften zu untersuchen.
Dabei wurden die Frameworks ACT-R, Apex und Soar untersucht und anschlieend
verglichen.

ACT-R ist ein populires Framework mit einem breiten Spektrum an Einsatzgebie-
ten und Ergebnisvisualisierungsmethoden, was aber nur schwer zu bedienen ist. Apex
dagegen spezialisiert sich auf autonome Roboter und ist leicht erlernbar. Soar hat eine
Ahnlichkeit zu ACT-R. Es ist universell einsetzbar und implementiert den symbolischen
Ansatz. Ein gravierender Unterschied ist, dass Chunks generierte Produktionen und kei-
ne Informationselemente fiir den subsymbolischen Ansatz sind. Die Bedienung ist mit
Hilfe des Debuggers einsteigerfreundlich und erlaubt den Einblick in die ablaufenden
Prozesse.

Je nach Anwendungsfall eignet sich eher das eine oder das andere Framework bes-
ser. Soll das jeweilige Framework eher in der Kognitionsforschung eingesetzt und z. B.
die Aktivitdten der einzelnen Gehirnregionen bei unterschiedlichen Aktionen untersucht
werden, so ist ACT-R die beste Wahl. Fiir den praktischen Einsatz in der Robotik eig-
net sich Apex am besten, da in diesem Bereich damit bereits viel Erfahrung gesammelt
wurde und die Uberwachung der einzelnen Abldufe in der Ergebnisvisualisierung klar
dargestellt werden konnen. Ist der Einsatzbereich eher allgemein und soll eine einfache
Programmiersprache eingesetzt werden, so iiberzeugt Soar damit, dass es praktisch in

7

allen Anwendungsbereichen verwendet wird und mit vielen unterschiedlichen Program-
miersprachen (C++, Java, C#, Tcl) angesteuert werden kann. Soar ist aulerdem sehr
gut strukturiert und dokumentiert und einfach aufgebaut. Diese Punkte machen Soar zu
einem optimalen Framework in den meisten Bereichen, wodurch es als Gewinner dieser
Ausarbeitung hervorgeht.

Die hier untersuchten Frameworks und die Vielfalt weiterer Frameworks, welche die
Autoren hier nicht ausfithrlich untersuchen konnten, zeigen wie weit die Entwicklung
in einigen Teilbereichen bis heute fortgeschritten ist. Denn auch die Forscher der In-
formatik sind an der tatséchlichen Funktion des Gehirns interessiert, um Algorithmen
zu entwerfen, welche effizienter arbeiten als bisherige. Die Forschung auf diesem Gebiet
entwickelt sich immer weiter. Somit konnte es in Zukunft moglich sein, dass Computer
Probleme noch schneller und besser 16sen kénnen als wir Menschen und, dass im End-
effekt Maschinen tatséchlich unsere Hausarbeit iibernehmen. Es wére moglich Software
fiir einen Roboter zu bauen, der im Haushalt Dinge wie Staubsaugen, Spiilen oder sogar
Aufrdumen kann.

Vermutlich wird auch die Hardware-Entwicklung in den n&chsten Jahren mit immer
komplexeren Werkzeugen verbessert, die wiederum die Entwicklung noch komplexerer
Werkzeuge und Systeme ermoglichen. In der modernen Prozessorentwicklung mit meh-
reren hundert Millionen Transistoren ist schon lange keine Entwicklung auf unteren
Ebenen, wie mit einzelnen Logik-Gattern, mehr moéglich und ebenso ergeht es in der
Software-Entwicklung. Eines Tages werden wir es dann mit Robotern wie ,Data“ aus
,Star Trek - The Next Generation“ zu tun haben, welche erst mit Fortschritten auf
beiden Seiten ermdglicht werden.

Interessant wire auch die Moglichkeit, kiinstlich intelligente Haustiere bauen zu kén-
nen, welche dann z. B. genauso reagieren wie ein Hund es tut und nicht mehr von
biologischen Tieren zu unterscheiden sind. Der Erfolg des Spielzeughunds Aibo zeigt,
dass das Nachbilden der Lebewesen, obwohl nur rudimentéir, moglich ist. Schon heute
zeigt sich die Akzeptanz in der Bevolkerung fiir kiinstliche Lebewesen!?. Noch weiter
konnte man gehen, wenn Roboter irgendwann jede Arbeit fiir uns erledigen und wir sie
nur noch kontrollieren wie im Film ,,I, Robot*.

2Mehr zu diesem Thema in der Fachstudie ,, Avatar-Frameworks“[9]

78

Literatur

1]

2]

[11]

[12]

[13]

[14]

ABENDBLATT.DE: Hamburger Abendblatt. http://www.abendblatt.de.
Version: 2011. — [Online; Stand 25. April 2011]

ANDERSON, John R.: Foto. http://act-r.psy.cmu.edu/people/ja/ja.jpg.
Version: 2011. — [Online; Stand 2. Mai 2011]

ANZEIGER, Gieflener: Giefiener Anzeiger - Vortragsreihe Physik im Blick wid-
met sich dem Thema Sinne. http://www.giessener-anzeiger.de/lokales/
hochschule/9882978.htm. Version:2011. — [Online; Stand 30. Mai 2011]

Asivov, Isaac: Meine Freunde, die Roboter. Uberarb. Neuausg. Heyne Verlag,
2002. — ISBN 978-3453215313

BorHELL, Dan: ACT-R FEnvironment Manual. http://act-r.psy.cmu.edu/
actr6/EnvironmentManual.pdf. — [Online; accessed 3-July-2011]

BRrUssow, Sven ; Hovr, Daniel: FEinfihrung in die kognitive Modellierung
mit ACT-R. http://www.psychologie.uni-heidelberg.de/ae/allg/mitarb/
sb/www/actr/seminar/folien/actr-2007-10-24.pdf, Abruf: 30.04.2011

Bubpiu, Raluca: About ACT-R. http://act-r.psy.cmu.edu/about/, Abruf:
05.05.2011

DENNETT, D.: Cognitive Wheels: The Frame Problem of AL http:
//www.uibk.ac.at/psychologie/mitarbeiter/leidlmair/cognitive-wheels_
leopold-meuer_thomas-rieger.pdf, Abruf: 18.03.2011

DuscHEK, Alexander ; SCHUSTER, Philipp ; Tu, Xi: Fachstudie: Avatar-
Frameworks. Universitiat Stuttgart, 2011

GHOLAMSAGHAEE, Ehsan: SOAR. www.dfki.de/ kipp/seminar/folien/Ehsan_
SOAR.pdf. Version: 2011. — [Online; Stand 3. Juni 2011]

GOOGLE ; INC.: Google Maps. http://maps.google.de. Version: 2011. — [Online;
Stand 11. April 2011]

GORLICK, Adam: Media multitaskers pay mental price, Stan-
ford study shows. http://news.stanford.edu/news/2009/august24/
multitask-research-study-082409.html, Abruf: 02.03.2011

GORz, Glnther: Finfiihrung in die kiinstliche Intelligenz. 2. Auflage. Addison
Wesley, 1995. — ISBN 978-3893198580

GUNTER GEHL: Poetron. http://www.poetron-zone.de, Abruf: 02.03.2011

http://www.abendblatt.de
http://act-r.psy.cmu.edu/people/ja/ja.jpg
http://www.giessener-anzeiger.de/lokales/hochschule/9882978.htm
http://www.giessener-anzeiger.de/lokales/hochschule/9882978.htm
http://act-r.psy.cmu.edu/actr6/EnvironmentManual.pdf
http://act-r.psy.cmu.edu/actr6/EnvironmentManual.pdf
http://www.psychologie.uni-heidelberg.de/ae/allg/mitarb/sb/www/actr/seminar/folien/actr-2007-10-24.pdf
http://www.psychologie.uni-heidelberg.de/ae/allg/mitarb/sb/www/actr/seminar/folien/actr-2007-10-24.pdf
http://act-r.psy.cmu.edu/about/
http://www.uibk.ac.at/psychologie/mitarbeiter/leidlmair/cognitive-wheels_leopold-meuer_thomas-rieger.pdf
http://www.uibk.ac.at/psychologie/mitarbeiter/leidlmair/cognitive-wheels_leopold-meuer_thomas-rieger.pdf
http://www.uibk.ac.at/psychologie/mitarbeiter/leidlmair/cognitive-wheels_leopold-meuer_thomas-rieger.pdf
www.dfki.de/~kipp/seminar/folien/Ehsan_SOAR.pdf
www.dfki.de/~kipp/seminar/folien/Ehsan_SOAR.pdf
http://maps.google.de
http://news.stanford.edu/news/2009/august24/multitask-research-study-082409.html
http://news.stanford.edu/news/2009/august24/multitask-research-study-082409.html
http://www.poetron-zone.de

[15]

80

HOFFMEISTER, H.: Impulsfortleitung an der Nervenzelle. http://de.wikipedia.
org/w/index.php?title=Datei:Impulsfortleitung_an_der_Nervenzelle.
png&filetimestamp=20101201105237. Version:2005. — [Online; Stand 15. Juli
2011]

JuriA PortL, Christoph H.: Softwarepraktikum: A-Stern Algorithmus. http://
pille2.iwr.uni-heidelberg.de/~astar01/. Version:2011. — [Online; Stand 24.
Juni 2011]

KACZMARCZYK, Peter P.: SOAR Eine Kognitive Architektur. www.dfki.de/ kipp/
seminar_ws0607/reports/Soar.pdf. Version:2011. — [Online; Stand 22. April
2011]

KuHL, Matthias: Anatomie wund Physiologie des Gehirns. cgi.server.
uni-frankfurt.de/fb05/fspsych/modules.php?name=Downloads&d_op=
getit&lid=20. Version:2011. — [Online; Stand 05. Juni 2011]

LabpyorHATs ; NEUROTIKER: Complete mneuron cell diagram. http:
//commons .wikimedia.org/w/index.php?title=File:Complete_neuron_cell_
diagram_de.svg&oldid=32050250&uselang=de. Version:2007. — [Online; Stand
21. Juni 2011]

LENZEN, Manuela: Natirliche und kiinstliche Intelligenz. Frankfurt/Main : Campus,
2002

LiADAL, Terese: ACT-R: A cognitive architecture. http://www.dfki.de/ kipp/
seminar_ws0607/reports/ActR.pdf, Abruf: 29.06.2011

MAJOR, David: Geschichte des Konnektionismus. http://www.logic.at/lvas/
185170/13-Major.pdf. Version: 2004. — [Online; Stand 16. Mai 2011]

MILLER, George A.: The Magical Number Seven, Plus or Minus Two
- Some Limits on OQOur Capacity for Processing Information. http:
//www.psych.utoronto.ca/users/peterson/psy430s2001/Miller’,20GA%
20Magical%20Seveny20Psych)20Review’201955.pdf, Abruf: 04.06.2011

MULLER, Anja: Im Hirn gelandet. http://www.handelsblatt.com/politik/
oekonomie/nachrichten/im-hirn-gelandet/3253500.html. Version: 2009. —
[Online; Stand 23. Mai 2011]

NASA: Human-Computer Interaction Analysis (CPM-GOMS). http://ti.arc.
nasa.gov/projects/apex/projectHCI.php, Abruf: 7.5.2011

NASA: Virtual Airspace Modeling and Simulation Project (VAMS). http://ti.
arc.nasa.gov/projects/apex/projectVAMS.php, Abruf: 7.5.2011

NEWELL, Allen ; SIMON, H. A.: Computers € thought. Cambridge, MA, USA : MIT
Press, 1995

http://de.wikipedia.org/w/index.php?title=Datei:Impulsfortleitung_an_der_Nervenzelle.png&filetimestamp=20101201105237
http://de.wikipedia.org/w/index.php?title=Datei:Impulsfortleitung_an_der_Nervenzelle.png&filetimestamp=20101201105237
http://de.wikipedia.org/w/index.php?title=Datei:Impulsfortleitung_an_der_Nervenzelle.png&filetimestamp=20101201105237
http://pille2.iwr.uni-heidelberg.de/~astar01/
http://pille2.iwr.uni-heidelberg.de/~astar01/
www.dfki.de/~kipp/seminar_ws0607/reports/Soar.pdf
www.dfki.de/~kipp/seminar_ws0607/reports/Soar.pdf
cgi.server.uni-frankfurt.de/fb05/fspsych/modules.php?name=Downloads&d_op=getit&lid=20
cgi.server.uni-frankfurt.de/fb05/fspsych/modules.php?name=Downloads&d_op=getit&lid=20
cgi.server.uni-frankfurt.de/fb05/fspsych/modules.php?name=Downloads&d_op=getit&lid=20
http://commons.wikimedia.org/w/index.php?title=File:Complete_neuron_cell_diagram_de.svg&oldid=32050250&uselang=de
http://commons.wikimedia.org/w/index.php?title=File:Complete_neuron_cell_diagram_de.svg&oldid=32050250&uselang=de
http://commons.wikimedia.org/w/index.php?title=File:Complete_neuron_cell_diagram_de.svg&oldid=32050250&uselang=de
http://www.dfki.de/~kipp/seminar_ws0607/reports/ActR.pdf
http://www.dfki.de/~kipp/seminar_ws0607/reports/ActR.pdf
http://www.logic.at/lvas/185170/13-Major.pdf
http://www.logic.at/lvas/185170/13-Major.pdf
http://www.psych.utoronto.ca/users/peterson/psy430s2001/Miller%20GA%20Magical%20Seven%20Psych%20Review%201955.pdf
http://www.psych.utoronto.ca/users/peterson/psy430s2001/Miller%20GA%20Magical%20Seven%20Psych%20Review%201955.pdf
http://www.psych.utoronto.ca/users/peterson/psy430s2001/Miller%20GA%20Magical%20Seven%20Psych%20Review%201955.pdf
http://www.handelsblatt.com/politik/oekonomie/nachrichten/im-hirn-gelandet/3253500.html
http://www.handelsblatt.com/politik/oekonomie/nachrichten/im-hirn-gelandet/3253500.html
http://ti.arc.nasa.gov/projects/apex/projectHCI.php
http://ti.arc.nasa.gov/projects/apex/projectHCI.php
http://ti.arc.nasa.gov/projects/apex/projectVAMS.php
http://ti.arc.nasa.gov/projects/apex/projectVAMS.php

[28]

[29]

[30]

[42]

OBERMAIER, Claudia: Mentale Modelle und kognitive Tduschungen.
http://www.uni-koblenz.de/ beckert/Lehre/Seminar-LogikaufAbwegen/
obermaier_ausarbeitung.pdf, Abruf: 28.02.2011

PugH, David: Player’s Choice Video Game Superstore. http://wuw.
playerschoicegames.com. Version:2011. — [Online; Stand 25. April 2011]

QUILLIAN, M. R.: Semantic Information Processing. 1. Auflage. Marvin L. Minsky;,
1969. — ISBN 978-0262130448

REUBENBARTON: Shuttle profiles. http://commons.wikimedia.org/w/index.
php?title=File:Shuttle_profiles.jpg&oldid=54672297. Version: 2005. — [On-
line; Stand 21. Juni 2011]

SAawvucct, Dario D. ; KUSHLEYEVA, Yelena ; LEE, Frank J.: Toward an ACT-
R General Executive for Human Multitasking. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.71.1378&rep=repl&type=pdf. — [Online; acces-
sed 29-June-2011]

SCHANZ, Michael: Einfiihrung in die Verteilte Kinstliche Intelligenz. 05.11.2008

SCHWABE, Willmar: Anatomie des Gehirns. http://www.
mental-aktives-lernen.de/typo3temp/pics/f6bbdb6e40. jpg, Abruf:
27.05.2011

SCHONING, Uwe: Theoretische Informatik - kurz gefasst. 5. Auflage. Spektrum
Akademischer Verlag, 2008. — ISBN 978-3-8274-1824-1

SHANNON, C. E.: A Mathematical Theory of Communication. http://cm.
bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf, Abruf: 04.06.2011

SIEGFRIED BREHME, Irmtraut M.: Wissensspeicher Biologie. Cornelsen Verlag,
1998. — ISBN 978-3-06-011731-+4

SINGH, Push: Ezamining the Society of Mind. http://web.media.mit.edu/ push/
ExaminingSOM.html, Abruf: 15.07.2011

SOLSO ; ROBERT, L.: Kognitive Psychologie. Heidelberg : Springer, 2005

SONY: AIBO ERS-7 (MIND 3) Produktbroschiire. http://support.sony-europe.
com/aibo/downloads/de/AIBO_MIND3_DE.pdf, Abruf: 19.04.2011

SURER, Fatma: Der Turm von Hanoi und Turm von London auf dem Tablet-PC:
Untersuchung des Problemldoseverhaltens von gesunden Kontrollpersonen und von
Patienten mit umschriebenen Hirnldsionen. http://edoc.ub.uni-muenchen.de/
10637/1/Suerer_Fatma.pdf, Abruf: 18.03.2011

TANCHOCO, Jose M.: Optical Character Recognition. http://cobweb.ecn.purdue.
edu/"tanchoco/MHE/ADC-is/0CR/main.shtml, Abruf: 18.03.2011

81

http://www.uni-koblenz.de/~beckert/Lehre/Seminar-LogikaufAbwegen/obermaier_ausarbeitung.pdf
http://www.uni-koblenz.de/~beckert/Lehre/Seminar-LogikaufAbwegen/obermaier_ausarbeitung.pdf
http://www.playerschoicegames.com
http://www.playerschoicegames.com
http://commons.wikimedia.org/w/index.php?title=File:Shuttle_profiles.jpg&oldid=54672297
http://commons.wikimedia.org/w/index.php?title=File:Shuttle_profiles.jpg&oldid=54672297
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.1378&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.1378&rep=rep1&type=pdf
http://www.mental-aktives-lernen.de/typo3temp/pics/f6bbdb6e40.jpg
http://www.mental-aktives-lernen.de/typo3temp/pics/f6bbdb6e40.jpg
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://web.media.mit.edu/~push/ExaminingSOM.html
http://web.media.mit.edu/~push/ExaminingSOM.html
http://support.sony-europe.com/aibo/downloads/de/AIBO_MIND3_DE.pdf
http://support.sony-europe.com/aibo/downloads/de/AIBO_MIND3_DE.pdf
http://edoc.ub.uni-muenchen.de/10637/1/Suerer_Fatma.pdf
http://edoc.ub.uni-muenchen.de/10637/1/Suerer_Fatma.pdf
http://cobweb.ecn.purdue.edu/~tanchoco/MHE/ADC-is/OCR/main.shtml
http://cobweb.ecn.purdue.edu/~tanchoco/MHE/ADC-is/OCR/main.shtml

[43]

[44]

82

TECHNOLOGY, Massachusetts 1.: Human-Systems Engineering (HSE). http://
esd.mit.edu/hse/, Abruf: 7.7.2011

TOURETZKY, David S. ; TIRA-THOMPSON, Ethan J.: Tekkotsu: A Fra-
mework for AIBO Cognitive Robotics. http://wuw.tekkotsu.org/media/
CogRobotics-Touretzky-AAATIO5.pdf. Version: 2005. — [Online; accessed 21-June-
2011]

WAGNER, Martin: Symbolic vs Connectionist? http://www.logic.at/lvas/
185170/16-Wagner.pdf. Version:2004. — [Online; accessed 11-June-2011]

WIKIPEDIA: ACT-R — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=ACT-R&01did=422243095. Version:2011. — [Online; ac-
cessed 4-May-2011]

WIKIPEDIA: Gehirn — Wikipedia, Die freie Enzyklopddie. http://de.wikipedia.
org/w/index.php?title=Gehirn&oldid=87206693. Version:2011. — [Online;
Stand 9. April 2011]

WowmBAT, Mighty: Mighty Wombat. http://www.mightywombat. com.
Version: 2011. — [Online; Stand 11. April 2011]

http://esd.mit.edu/hse/
http://esd.mit.edu/hse/
http://www.tekkotsu.org/media/CogRobotics-Touretzky-AAAI05.pdf
http://www.tekkotsu.org/media/CogRobotics-Touretzky-AAAI05.pdf
http://www.logic.at/lvas/185170/16-Wagner.pdf
http://www.logic.at/lvas/185170/16-Wagner.pdf
http://en.wikipedia.org/w/index.php?title=ACT-R&oldid=422243095
http://en.wikipedia.org/w/index.php?title=ACT-R&oldid=422243095
http://de.wikipedia.org/w/index.php?title=Gehirn&oldid=87206693
http://de.wikipedia.org/w/index.php?title=Gehirn&oldid=87206693
http://www.mightywombat.com

	Einleitung
	Kognition
	Das Gehirn
	Künstliche Neuronale Netze
	Konnektionistischer Ansatz

	Wissensrepräsentation
	Semantische Netze
	Scripts
	Bildhafte Vorstellung
	Symbolischer Ansatz

	Informationsverarbeitung
	Aufmerksamkeit
	Verhalten
	Reflexe
	Problemlösung und Verarbeitung

	Grenzen der Kognitionssimulation
	Bewusstsein
	Ethik und Emotionen
	Kreativität

	Künstliche Intelligenz
	Suchprobleme
	Expertensysteme
	General Problem Solver

	Kognitive Künstliche Intelligenz
	Die „Hardware“
	Die „Software“

	Kognitionsframeworks
	Begriffsklärung
	Einsatzmöglichkeiten der Kognitionsframeworks
	Getestete Frameworks

	Framework ACT-R
	Aufbau/Architektur
	Einsatzgebiete
	Ergebnisvisualisierung
	Grenzen
	Inbetriebnahme
	Fazit

	Framework Apex
	Aufbau/Architektur
	Einsatzgebiete
	Ergebnisvisualisierung
	Grenzen
	Inbetriebnahme
	Fazit

	Framework Soar
	Aufbau/Architektur
	Einsatzgebiete
	Ergebnisvisualisierung
	Grenzen
	Inbetriebnahme
	Fazit

	Vergleich und Bewertung der Frameworks
	Fazit

