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Kurzbeschreibung

Kognitions-Frameworks stellen einen interessanten Ansatz dar, um die Prozesse des
menschlichen Gehirns im Computer nachzubilden. Eine Suche im Internet fördert ei-
ne Vielzahl an verschiedenen Frameworks zu Tage, welche sich mehr oder weniger stark
auf bestimmte Einsatzbereiche spezialisieren oder auch den Anspruch haben, beliebige
Probleme zu simulieren.

Diese Fachstudie untersucht die beiden Frameworks ACT-R und CogTool und prüft die-
se, auf deren Einsetzbarkeit zur Interaktionsanalyse eines Benutzer mit einer GUI oder
Visualisierung. Dabei werden zunächst die beiden Frameworks im Detail vorgestellt,
während anschließend herausgearbeitet wird, welche grundlegende Eigenschaften für ein
Framework nötig sind, um kognitive Prozesse beim Arbeiten mit GUIs und Visualisie-
rungen simulieren zu können.

Abstract

Cognition-Framworks are an interesting approach to simulate the processes of the human
mind. The internet offers a huge amount of different frameworks. Some of them are more
specialized to a certain field of application, while others claim to simulate arbitrary
problems.

The goal of this work was to evaluate the cognition frameworks ACT-R and CogTool.
These two frameworks were analyzed for a simulation of cognitive processes while working
with a GUI or visualization. First, both frameworks will be presented in detail. Then,
fundamental properties of GUIs and visualization will be given, which are neccessary for
using a cognitive framework to simulate cognitive processes while working with GUIs
and visualization.
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1. Einleitung

Die Fachstudie untersucht die Einsetzbarkeit von Kognitions-Frameworks im Hinblick
auf die Interaktionsanalyse eines Benutzers mit GUIs und Visualisierungen. Es geht also
um die Frage, wie mentale Prozesse simuliert werden können, die ein menschlicher Be-
trachter bei der Verwendung einer GUI oder Visualisierung durchläuft. Das Thema trifft
hierbei die Gebiete künstliche Intelligenz, Kognitionswissenschaft und Visualisierung.
Der Nutzen, die Kognitionsframeworks unter dieser Fragestellung anzuwenden, besteht
zum einen darin, unterschiedliche GUIs oder Visualisierungen automatisch bewerten zu
können, was bisher meist nur unter Durchführung aufwendiger Benutzerstudien möglich
war. Zusätzlich bieten die Frameworks einen Ansatzpunkt, um die Frage

”
Wie gut ist

eine GUI/Visualisierung?“ auf Basis wissenschaftlicher Erkenntnisse der Perzeption und
Kognition fundierter bzw. objektiver zu beantworten.

Hierfür werden in Kapitel 2 zunächst einige Grundlagen, insbesondere in Bezug auf die
menschliche Perzeption und Kognition, als auch allgemeine Grundlagen zu Visualisie-
rungen an sich erläutert.

Kapitel 3 stellt anschließend ausgewählte Vertreter der Kognitions-Frameworks vor:

”
ACT-R“ als allgemeines Kognitions-Framework, mit dem Anspruch beliebige Szenarien

durch Modelle abbilden zu können. Weiterhin
”
CogTool“, als spezialisiertes, auf ACT-R

aufbauendes Framework zur Interaktionsanalyse mit GUIs. Zuletzt folgt ein Blick auf

”
CAEVA“, eine Architektur zur Auswertung von Visualisierungsanwendungen.

Kapitel 4 entfernt sich nun wieder etwas von den konkreten Frameworks und versucht
die Informationen aus den Frameworks zu abstrahieren, zu der Frage, was ist eigentlich
allgemein nötig, um eine GUI oder Visualisierung kognitiv simulieren zu können? Hierbei
ist auch die maschinelle Zugänglichkeit von GUIs und Visualisierungen ein wichtiger
Punkt. Inbesondere der benötigte Grad der Zugänglichkeit spielt dabei eine wichtige
Rolle.

Zuletzt fasst Kapitel 5 die Ergebnisse zusammen und zieht ein Fazit der Recherchen.

Einen visuellen Überblick über den Inhalt bietet die folgende Abbildung 1.
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Abbildung 1: Überblick der behandelten Themen
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2. Grundlagen

Das Thema der Fachstudie steht interdisziplinär zwischen den Themen künstliche Intel-
ligenz, Kognitionswissenschaft und Visualisierung. Zu allen Bereichen sollen in diesem
Kapitel zunächst einige grundlegende Aspekte, die wir für das weitere Verständnis als
wichtig erachten, erläutert werden.

2.1. Wahrnehmung und Kognition

Zur Simulation der Wahrnehmung einer GUI oder Visualisierung durch einen Menschen,
stellen sich zunächst einige Frage:

• Wie nimmt ein Mensch seine Umgebung auf kognitiver Ebene wahr?

• Wie werden Sinneseindrücke weiter verarbeitet?

• Wie entstehen aus der eingehenden
”
Datenflut“ der Sinnesorgane semantische En-

titäten, die ein Mensch auf abstrakter Ebene wahrnehmen, kategorisieren, verar-
beiten und bewerten kann?

Das Kapitel stellt ausgewählte Aspekte dieses Verarbeitungsprozesses vor, wobei sich
diese zum Teil überlappen bzw. ergänzen, da es kein geschlossenes

”
Standardmodell“ der

Perzeption bzw. Kognition gibt. Das Kapitel umfasst ein dreistufiges Phasenmodell der
menschlichen Wahrnehmungsverarbeitung, einen Abschnitt über sogenannte sensorische
und arbiträre Symbole, ein Kapitel zu

”
Features und Feature Maps“, sowie

”
Guided

Search“ und zuletzt einen Abschnitt über Norman’s seven stages.

2.1.1. Model of Perceptual Processing

Das Modell entstammt [31] (S.20 - S.22) und wird in diesem Kapitel zusammengefasst.
Es unterteilt die menschliche Wahrnehmung in drei Phasen, die jeweils nacheinander ab-
laufen und einen ansteigenden Grad der Informationsabstraktion aufweisen. Abbildung
2 zeigt hierzu den grundlegenden Ablauf, wobei pro Stufe die eingehende Informations-
menge reduziert wird und gleichzeitig der Abstraktionsgrad von primitiven Features bis
hin zu größeren Objekten ansteigt.

Phase 1: Parallelverarbeitung
Beteiligt sind Milliarden von Nervenzellen im Auge und im visuellen Kortex des Gehirns.
Jede Nervenzelle ist dabei auf die Erkennung eines bestimmten Merkmals ausgerichtet,
z.B. die Orientierung von Kanten, Erkennung von einzelnen Farben und einzelne Be-
standteile von Texturen, oder die Erkennung von Bewegungen. Die Verarbeitung ist

3



Abbildung 2: Three-Stage Modell der menschlichen Informationsverarbeitung. In Phase
1 werden gleichzeitig sehr viele, jedoch nur primitive Features wahrge-
nommen, während in den weiteren Phasen diese Features zu komplexeren
Objekten kombiniert werden, wovon nur noch wenige im Arbeitsgedächtnis
gehalten werden können [31].

dabei ein massiv paralleler Prozess aller Nervenzellen, der ständig abläuft und nicht
von der Aufmerksamkeit des Menschen auf bestimmte Bereiche des visuellen Sichtfelds
abhängt. Aufgrund der schnellen Parallelverarbeitung ist es für Visualisierungen beson-
ders interessant diese Phase der Perzeption anzusprechen, um eine besonders effiziente
Informationsvermittlung zu ermöglichen.

Phase 2: Mustererkennung
Die zweite Phase unterteilt das Sichtfeld in Regionen, also unterschiedliche Bereiche,
und Muster. Dies können beispielsweise kontinuerliche Umrisse oder ganze Texturen
sein. Die Phase ist sehr flexibel, da sie auf den großen Informationsbestand der ersten
Phase zugreift, als auch die Aufmerksamkeit des Menschen beachtet. Aufmerksamkeit
bezeichnet in diesem Zusammenhang nicht den Fokus-Punkt der Augen beim Betrachten,
sondern den

”
Fokus-Punkt“ der Gedanken, also die Fragestellung unter der die visuellen

Informationen durch das Gehirn ausgewertet werden (auch
”
Visual Queries“ genannt,

[31] S.22). Die Verarbeitung verläuft im Gegensatz zur ersten Phase sequentiell und
stellt einen Kreuzungspunkt zwischen den Informationsflüssen aus der ersten Phase und
den abstrakten Aufmerksamkeitsmechanismen der dritten Phase dar.
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Phase 3: Zielorientierte Verarbeitung
Repräsentiert die höchste Ebene der Perzeption, auf der die Objekte des visuellen Ar-
beitsgedächtnisses liegen, von denen nur wenige gleichzeitig gehalten bzw. erzeugt wer-
den können (in der Größenordnung von 3-5 Objekten, [31] S.188). Ein Objekt ist das
Ergebnis einer Fragestellung, die sich aus der Aufmerksamkeit des Menschen ergibt. Be-
antwortet wird die Fragestellung durch eine Sequenz aus

”
Visual Queries“, die mit Hilfe

der Mustererkennung der zweiten Phase gelöst werden. Als Beispiel könnte für ein Ob-
jekt des Arbeitsgedächtnisses die Frage nach einer Route auf einer Karte stehen. Die
zugehörige Visual Query entspricht demnach einer möglichen Straße, welche zwei Städte
miteinander verbindet (Abbildung 3).

Abbildung 3: Route zwischen zwei Städten: ein Objekt im Arbeitsgedächtnis, zusam-
mengesetzt durch eine Visual Query.

Die Konsequenz des Verarbeitungsmodells, im Hinblick auf die Effizienz einer Visua-
lisierung und in Bezug auf einen Betrachter, ist nun vor allem die Fragestellung, wie
stark eine Visualisierung die unterschiedlichen Phasen fordert. Einfach ausgedrückt: ein
menschlicher Betrachter sollte demnach besonders schnell eine Fragestellung beantworten
können, wenn möglichst wenige Objekte des visuellen Arbeitsgedächtnisses und wenige
Visual Queries benötigt werden, da diese der sequentiellen Verarbeitung unterliegen.
Noch weiter abstrahiert könnte man sagen, dass die Erkennung der Elemente einer Vi-
sualisierung auf einer möglichst niedrigen Stufe des Verarbeitungsmodells stattfinden
sollte.

2.1.2. Sensory vs. Arbitrary Symbols

Das Kapitel stellt eine Zusammenfassung von [31] (S.10 - S.20) dar. Inhalt ist eine
Taxonomie visueller Repräsentationen in zwei Kategorien: Sensorische Symbole, die rein
aus den Perzeptionsmechanismen des Gehirns semantisch erkannt werden können und
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arbiträre Symbole, deren semantische Erkennung erlernt werden muss. Ein Beispiel für
beide Kategorien liefert Abbildung 4.

Abbildung 4: Sensorisches Symbol: Visualisierung der Form eines Schädels, unterstützt
durch Beleuchtung, Schattierung, Verdeckung [44]. Arbiträre Symbole: ja-
panische Schriftzeichen [37].

Sensorische Symbole:
Grundlage der sensorischen Symbole ist die Annahme, dass das visuelle System des Men-
schen aus der Evolution heraus, als Werkzeug zur Wahrnehmung der Umgebung entstan-
den ist. Umgebung bezeichnet dabei die typische physikalische Umgebung in der sich ein
Mensch befindet. Sie unterliegt den physikalischen Gesetzen (z.B. der Art wie sich Licht
ausbreitet) und hat

”
typische“ Eigenschaften, wie z.B. Gegenstände, die sich durch ihre

Oberflächen, bzw. der Übertragung der Informationen darüber (in Form von Lichtwellen)
dem menschlichen visuellen System bemerkbar machen. Das menschliche Gehirn wird
in dieser Unterscheidung als ein Zentrum spezialisierter, paralleler Verarbeitungsmaschi-
nen dargestellt. Da die Spezialisierung auf die Wahrnehmung der

”
typischen“ Umgebung

eines Menschen ausgerichtet ist und evolutionär begründet wird, ist die Konsequenz dar-
aus, dass alle Menschen im Prinzip das gleiche visuelle System haben und auf die gleiche
Art

”
sehen“, also die Verarbeitung von eintreffenden Lichtstrahlen im Auge bis zum Sin-

neseindruck im Allgemeinen gleich verläuft und somit relativ einheitliche Begriffe, wie

”
Farbe“ oder

”
Form“ entstehen.

Ein sensorisches Symbol stellt eine visuelle Entität dar, die ohne, dass die Erkennungs-
merkmale des Symbols vorab erlernt werden mussten, durch das visuelle System des
Menschen erkannt werden können. Ein Beispiel dafür wäre eine 3D-Darstellung eines
Objekts, inklusive Schattierung und Beleuchtung, unter der Voraussetzung dass es die
Form des Objekts selbst ist, die visualisiert und erkannt werden soll. Das Objekt selbst
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muss nichts alltägliches darstellen, trotzdem kann bei der Erkennung das volle Potenzial
der Oberflächen- bzw. Objekterkennung des visuellen Systems zum Einsatz kommen.
Sensorische Symbole sind für alle Menschen gleich effektiv, ihre Erkennung kann nicht
einfach durch Willen oder Anweisungen verhindert werden. Sie sind oft unabhängig von
Individuen, Kulturen und Zeit ([31], S.10). Dies bedeutet aber nicht, dass auf ein sensori-
sches Symbol auch immer eine gleiche, fest aufgesetzte Bedeutung trifft. Die Zuordnung
einer Bedeutung zu einem sensorischen Symbol ist sehr wohl abhängig von Kultur bzw.
Konvention.

Arbiträre Symbole:
Ein visuelles Symbol ist arbiträr, wenn seine Repräsentation nicht aus einer perzeptuel-
len Basis heraus entstanden ist. Ein Beispiel für arbiträre Symbole ist Schrift. Arbiträre
Symbole leiten sich aus einer Kultur ab, bzw. sind in diese eingebettet. Sie sind schwer zu
erlernen und leicht zu vergessen, außer sie werden exzessiv wiederholt und die Verwen-
dung trainiert. Aufgrund der Einbettung in eine Kultur lassen sich diese Symbole nicht
einfach verändern. Dafür besitzen sie aber das Potenzial, abstrakte Konzepte zu trans-
portieren. Bei der Erschaffung neuer Symbole kann die Darstellung frei erstellt werden,
insofern sie sich nicht ungünstig mit existierenden Symbolen überschneidet.

Bei einer Bewertung eines Symbols bezüglich dem Eignungsgrad als visuelles Informa-
tionstransportmittel innerhalb einer Visualisierung müsste theoretisch zunächst die Ka-
tegorie unterschieden werden. Bei der Analyse eines sensorischen Symbols kann die Be-
wertung danach erfolgen, wie gut die Erkennung im Sinne des menschlichen visuellen
Systems geschieht. Bei einem arbiträren Symbol muss die Effektivität primär danach
bewertet werden, wie gut sich das Symbol an bzw. in die Konventionen des Kultur-
kreises des Betrachters integriert (

”
Culture influences cognition“, [31], S.17). Demnach

benötigt die Bewertung eines arbiträren Symbols einen
”
Referenzbetrachter“, während

bezüglich eines sensorischen Symbols lediglich von einem menschlichen Betrachter ausge-
gangen werden muss, ggf. unter Beachtung von Abweichungen wie z.B. Farbenblindheit.
Erschwert wird die Bewertung einer Visualisierung dadurch, das praktisch die meisten
Visualisierungen hybrid aufgebaut sind und Elemente beider Kategorien enthalten. Folg-
lich besitzen die meisten Repräsentationen sowohl Aspekte, die gelernten Konventionen
zuzuordnen sind, als auch Bereiche, die von der visuellen Verarbeitung im Gehirn ab-
hängig sind.
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Abbildung 5: Hybride Visualisierung: In diesem Beispiel werden visuelle Entitäten mit-
tels durchgehenden Konturen verbunden (sensorische Symbole) und mittels
Schrift identifiziert (arbiträre Symbole).

2.1.3. Lenkung der Aufmerksamkeit

Die Lenkung der Aufmerksamkeit auf bestimmte Stimuli ist ein wichtiger Schritt bei
der Erkennung von Objekten. Ohne Lenkung der Aufmerksamkeit auf einen Stimulus ist
dessen bewusste Wahrnehmung gar nicht erst möglich. Hierzu unterscheidet Posner in
[23]: Das Ausrichten der Aufmerksamkeit auf einen Stimulus als Orientieren und dem
bewussten Wahrnehmen eines Stimulus als Detektieren. Das Orientieren kann sowohl
von einer externen Kontrolle, als auch vom zentralen Nervensystem des Subjekts selbst
beeinflusst werden. Damit lässt sich erklären, dass wir uns von Äußerungen wie

”
Guck

mal da!“ beeinflussen lassen und unsere Aufmerksamkeit in die angezeigte Richtung
lenken.

2.1.4. Features und Feature Maps

Features sind die Eigenschaften von Objekten im Sichtfeld, zum Beispiel Farbe, Grö-
ße oder Richtung. Die Erkennung von einzelnen Features kann über große Teile des
Sichtfelds parallel durchgeführt werden, da für jedes Feature ein eigener Teil des Wahr-
nehmungssystems zuständig ist (siehe [30]). Werden die erkannten Features mit ihrer
Position im Sichtfeld verknüpft, dann entstehen Feature Maps. Diese sind für die Er-
kennung von Objekten nötig, die einer Kombination bestimmter Features an der selben
Position entsprechen. Diese gleichzeitige Suche nach verschieden Eigenschaften eines Ob-
jektes wird auch Conjunction Search genannt.

8



2.1.5. Guided Search 2.0

Abbildung 6: Architektur von Guided Search 2.0: unterteilt die Wahrnehmung von Ob-
jekten in zwei Schritte.

Das Guided Search 2.0 Modell [47] beschreibt die Suche nach Objekten in zwei Schritten.
Der erste Schritt ist die hoch parallel ablaufende Erkennung von Features und Erstellung
von Feature Maps. Der zweite Schritt ist die seriell oder zumindest begrenzt parallel
ablaufende Suche anhand einer Activation Map. Die Activation Map gibt die Wahr-
scheinlichkeit an, ob sich das gesuchte Objekt an einer bestimmten Stelle im Sichtfeld
befindet, und kann somit für die Lenkung der Aufmerksamkeit auf relevante Objekte im
Sichtfeld genutzt werden. Die Activation Map setzt ich aus zwei Teilen zusammen: Der
Bottom-Up-Activation und der Top-Down-Activation.

Mit der Bezeichnung
”
2.0“ möchte Wolfe ausdrücklich darauf hinweisen, dass sich dieses

Modell der Wahrnehmung weiterentwickelt und mittlerweile schon die erste Überarbei-
tung hinter sich hat.
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Bottom-Up-Activation:

Die Bottom-Up-Activation ist ein Maß für die Ungewöhnlichkeit eines Features an einer
Position im aktuellen Kontext. Je mehr sich ein Feature an einer Position von seiner
Umgebung abhebt, desto höher ist seine Aktivierung. Da sich die Bottom-Up-Activation
nur darauf bezieht, wie sehr sich ein Feature an einer Position von seiner Umgebung
abhebt, ist sie unabhängig vom Ziel und Wissen des Betrachters über das Problem und
das Ziel.

Top-Down-Activation:

Die Top-Down-Activation eines Features wird von dem Ziel beeinflusst, das der Betrach-
ter verfolgt. Diese zweite Art der Aktivierung existiert, um Objekte auch dann noch
zu finden, wenn alle Features im Sichtfeld gleich ungewöhnlich sind, also die Bottom-
Up-Activation für alle Positionen ungefähr gleich ist, und, um zu vermeiden, dass den
Objekten, denen die Aufmerksamkeit zugeteilt wird, der Bezug zum eigentlichen Ziel
des Betrachters fehlt. Beispielsweise ist die Top-Down-Activation für ein grünes Objekte
gering, wenn der Benutzer tatsächlich nach einem roten Objekt sucht, auch wenn sich
das grüne Objekt inmitten von blauen Objekten befindet. In Guided Search 2.0 wird die
Top-Down-Activation dazu benutzt, die Werte der Bottom-Up-Activation bezüglich der
Relevanz für das Ziel des Betrachters zu gewichten.

Feature-Kanäle

Aktuelle Forschungen ([12], [13], [48]) haben gezeigt, dass sich die Aktivierung eines
bestimmten Features für die Suche besser verstehen lässt, wenn man annimmt, dass
einige Features, wie zum Beispiel Farbe oder Ausrichtung, in verschiedene Kanäle geteilt
sind. So gibt es laut Wolfe für das Feature Farbe die Kanäle Rot, Gelb, Grün und Blau.
In Abbildung 6 sind diese als Input Channels gekennzeichnet. Die Bottom-Up-Activation
wird innerhalb dieser Kanäle bestimmt. So hat ein orangefarbenes Objekt, umgeben von
gelben Objekten im Kanal Gelb, nur eine sehr geringe, im Kanal Rot dagegen eine sehr
hohe Bottom-Up-Activation. Durch die Top-Down-Activation würde dann für die Suche
nach einem orangefarbenen Objekt der Kanal Rot stärker gewichtet werden, als der
Kanal Gelb.

2.1.6. Norman’s seven stages of the user activity

Die
”
Seven Stages of Action“ sind ein Modell des Usability-Wissenschaftlers Donald

Norman. Das Modell versucht die Bewältigung einer Aufgabe durch eine Person anhand
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von 7 Phasen zu beschreiben. Es wurde erstmals 1990 in Normans Buch
”
The Design of

Everyday Things“ [22] veröffentlicht.

Abbildung 7: Norman’s seven stages of the user activity. Abbildung enstammt [32], Ka-
pitel 2.2

Die Phasen haben dabei folgende Bedeutung

1. Intention: Was soll getan werden?

2. Action Specification: Wie soll dies geschehen?

3. Execution: Ausführung des Plans (Mental)

4. Physical Activity: Ausführung des Plans (Physisch)

5. Perception: Wahrnehmung der Ausführung

6. Interpretation (der Ausführung)

7. Evaluation: Stimmt die Ausführung mit den Erwartungen überein?

Die 7 Phasen aus Normans Modell lassen sich im Allgemeinen drei Bereichen der mensch-
lichen Informationsverarbeitung zuordnen. Die Zuordnung geschieht über die vorherige
Nummerierung ([32], Kapitel 2.3).
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• Perzeption: Informationsaquise mittels Sinnesorganen (Norman: 5)

• Kognition (Norman 1,2,3,6,7):

– Gedächtnis: Speichern von Informationen

– Kommunikation: Austausch von Informationen

– Denken/Entscheiden: Verarbeiten von Informationen

• Motorische Funktionen: Ausführen und Manipulation der Umwelt (Norman: 4)

Das Gedächtnis des Gehirns, wird in drei Bereiche unterteilt ([32], Kapitel 2.3):

• Sensorisches Gedächtnis: Kurzzeitiger Speicher für eingehende sensorische Infor-
mationen. Hohe Kapazität, aber aufgrund ständiger Aktualisierung nur sehr kurze
Speicherdauer (im Millisekunden-Bereich).

• Kurzzeitgedächtnis: Speicher für symbolische Informationen. Speicherdauer unge-
fähr 15 Sekunden. Kapazität ungefähr 7 +/- 2 Elemente.

• Langzeitgedächtnis: Speicher für semantische, lang vorgehaltene Informationen.
Hohe Kapazität, aber langsamer Zugriff.

2.2. Was macht eine gute Visualisierung aus?

Eine Datenmenge lässt sich auf nahezu beliebige Art und Weise in eine Visualisierung
überführen, wobei manche Darstellungen besser geeignet sind als andere. In diesem
Kapitel soll darauf eingegangen werden, welche grundsätzlichen Möglichkeiten es gibt
Visualisierungen zu erzeugen. Abschnitt 2.2.1 zeigt typische Visualisierungstechniken
abhängig von den zugrunde liegenden Daten auf, in 2.2.2 wird der Visualisierungspro-
zess dargestellt, welcher die Schritte aufzeigt, um Daten in eine graphische Darstellung
zu überführen und in 2.2.3 welche Optionen dabei zur Verfügung stehen. Abschließend
werden vorhandene Standards und Richtlinien für die Erstellung grafischer Oberflächen
behandelt (2.2.4), welche als Basis für eine Bewertung verwendet werden können.
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2.2.1. Einführung zu Visualisierungen
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Abbildung 8: Klassifizierung von Visualisierungstechniken: Das Modell unterteilt Visua-
lisierungstechniken nach den zu visualisierenden Daten. [11]

Visualisierungen lassen sich nach dem Schema aus Abbildung 8 einteilen [11]. Dieses
Modell klassifiziert Visualisierung auf der ersten Ebene nach den darunter liegenden
Daten, wobei hier zwischen

• kontinuierlichen

• diskreten

Daten unterschieden wird. Dann werden die jeweils typischen Visualisierungstechniken
eingeordnet:

• kontinuierliche Datenmodelle:

– Liniengraphen

– Isolinien

– Volumenrendering

– Glyphendarstellungen

– Tensorvisualisierungen
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• diskrete Datenmodelle:

– Graph- und Baumvisualsierungen

– 2D- / 3D-Scatterplots

– Parallele Koordinaten

Betrachten wir den kontinuierlichen Fall, dabei wird die Dimension der Daten (Spalten in
Abb. 8) mit der Dimension des Anwendungsbereichs (Zeilen in Abb. 8) gegenübergestellt.
So gibt es z.B. bei einer Landkarte mit Höhenlinien zu jedem Gitterpunkt einen skalaren
Wert, die Höhe, welche auf einer zweidimensionalen Karte durch Linien aus Punkten
mit dem selben Höhenwert dargestellt werden (Abb. 9 links). Für skalare Daten im
3D Anwendungsbereich werden Techniken des Volumenrenderings eingesetzt. Typischer
Einsatz dieser Technik ist z.B. die Visualisierung von Daten aus medizinischen Scan-
Verfahren wie Magnetresonanztomographie oder Computertomographie (Abb. 9 mitte).
Vektorwertige Daten treten hauptsächlich in der Strömungsvisualisierung auf, wobei das
Bewegungsverhalten von Gasen und Flüssigkeiten untersucht wird (Abb. 9 rechts).

Abbildung 9: Beispiele unterschiedlicher Visualisierungstechniken mit kontinuierlichen
Daten: Höhenfeldlinien einer Landkarte (links) [14], Visualisierung eines
CT-Scans (Mitte) [11], Strömungsvisualisierung (rechts) [11]

Die Kategorie der diskreten Daten lässt sich in zwei Bereiche unterteilen, wobei unter-
schieden wird, ob die einzelnen Datenpunkte miteinander verbunden oder nicht verbun-
den sind. Im ersten Fall können hauptsächlich Graph- und Hierarchie-Visualisierungen
eingesetzt werden, worunter z.B. Treemaps fallen, wie sie auch in Abbildung 11 zu sehen
sind. Dabei wird die Baumstruktur durch ineinander geschachtelte Rechtecke dargestellt.
Das äußerste Rechteck stellt die Wurzel dar, wobei dessen Fläche entsprechend der Hier-
archie weiter unterteilt wird. Nicht mehr weiter unterteilte Flächen stehen für die Blätter,
bzw. in einem Dateisystem für Dateien.
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Die zweite Unterkategorie gruppiert Visualisierungstechniken, deren Datenpunkte unter-
einander nicht verbunden sind. Eine sehr häufig eingesetzte Technik sind hierbei Scatter
Plots (Abbildung 11), welche direkt die Datenwerte in einem zweidimensionalen oder
auch dreidimensionalen Diagramm darstellen, um so Korrelationen in den Datensätzen
erkennen zu können. Für höher dimensionale Daten eignen sich Verfahren wie Parallele
Koordinaten oder Glyphen Darstellungen. Parallele Koordinaten besitzen entsprechend
der Dimension der Daten mehrere nebeneinander angeordnete Achsen, wobei sich die
Skalen auf den Achsen auch unterscheiden können. Pro Datensatz wird der Wert auf je-
der Achse eingetragen und über eine Profillinie mit benachbarten Achsen verbunden, so
dass die Zugehörigkeit der einzelnen Werte zu einem Datum erkennbar bleibt (Abb. 10
links). Bei Glyphen dagegen werden mehrere Datenattribute auf ein graphisches Objekt
abgebildet. So könnte z.B. ein Verkäufer seine Absatzmärkte mit Hilfe von Glyphen vi-
sualisieren (Abb. 10 rechts) [31]: Hierbei könnten die Glyphen entsprechend den Ländern
auf einer Karte positioniert werden, das geschätzte Einkommen der potentiellen Käufer
wird über die Größe der Glyphen kodiert und die Farbe könnte den durchschnittlichen
Bildungsgrad anzeigen (siehe auch 2.2.3).

Abbildung 10: Visualisierung hochdimensionaler Daten: Visualisierung eines Autodaten-
satzen über Parallele Koordinaten (links) [21], Glyphenvisualisierung der
Absatzmärkte eines Verkäufers (rechts).

Diese Klassifizierung kann als Grundlage für die Einteilung des Visualisierungsgebiets in
Informations- und Wissenschaftliche Visualisierung gesehen werden:

Informationsvisualisierung

Die Daten im Bereich der Informationsvisualisierung bestehen typischerweise aus dis-
kreten Datenpunkten, welche exakt vorliegen bzw. erfasst werden können, also keine
Interpolation erfordern. Es gibt keinen räumlichen Bezug und oftmals besitzen die Da-
ten sehr viele Dimensionen. Verbindungen oder Hierarchien in den Daten werden oft
durch Graph- oder Baumstrukturen dargestellt [11].

Wichtige Anforderungen an eine Visualisierung sind unter anderem die Expressivität
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Abbildung 11: Beispiele unterschiedlicher Visualisierungstechniken mit diskreten Daten:
Visualisierung eines Dateisystems als Treemap (links) [46], Scatterplot-
Visualisierung der Eruptionsdauer und -abstände eines Geiser im Yellow-
stone Nationalpark (rechts) [39].

und Effektivität [28, 36]. Von einer expressiven Visualisierung wird gefordert, dass keine
Informationen dargestellt werden, welche nicht in den Daten enthalten sind, also keine
falschen Annahmen daraus abgeleitet werden können. Wohingegen die Effektivität an-
gibt, wie schnell sich der Betrachter in einer Visualisierung zurecht findet und sein Ziel
damit erreichen kann.

Anwendungsbereiche sind unter anderem die Visualisierung von Dateisystemen (Ab-
bildung 11), Softwarekomponenten oder auch Netzwerkverbindungen im Internet. Die
bekanntesten Darstellungen im Bereich Softwarevisualisierung sind UML-Diagramme.
Diese decken ein recht breites Spektrum zur Darstellung von Softwarekomponenten ab,
wie z.B. Komponentendiagramme, welche die Architektur eines Softwaresystems auf ei-
ner sehr abstrakten Ebene beschreiben. Einen etwas detaillierteren Blick auf die Struktur
einer Software geben Klassendiagramme, worüber sich Beziehungen und Eigenschaften
von einzelnen Klassen darstellen lassen. Für noch tiefere Einblicke eignen sich z.B. Ak-
tivitätsdiagramme, um den Ablauf eines Algorithmus graphisch darzustellen.

Wissenschaftliche Visualisierung

Der Bereich der wissenschaftlichen Visualisierung beschäftigt sich hauptsächlich mit kon-
tinuierlichen Datenmodellen. Bedingt durch eine begrenzte Anzahl an Sensoren erfolgt
die Datenerfassung räumlich und zeitlich diskret, sodass für eine kontinuierliche Dar-
stellung die Daten zusätzlich interpoliert werden müssen. Der Anwendungsbereich be-
schränkt sich hier meist auf zwei oder drei Dimensionen und besteht in der Regel aus
mehr Datenpunkten als in der Informationsvisualisierung [11].
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Abbildung 12: Beispiele wissenschaftlicher Visualisierungen: Visualisierung des Asteroi-
dengürtels im inneren Sonnensystems (links) [40], Tornado Simulation
(Mitte) [40], Wellensimulation auf einer Wasseroberfläche (rechts) [40]

2.2.2. Visualisierungspipeline

Die Visualisierungspipeline (Abbildung 13) beschreibt den Prozess, der durchlaufen wird,
um eine Datenmenge in eine visuelle Darstellung zu überführen [11]:

simulation data data bases sensor measurements

data acquisition

raw data

filtering
processes

data
visualization data

mapping

flow

pp g

renderable representation

rendering

visualizations (images, videos)( g , )

Abbildung 13: Visualisierungspipeline: Die Pipeline beschreibt den zu durchlaufenden
Prozess, um eine Menge an Rohdaten in eine Visualisierung zu überfüh-
ren. [11]
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1. Data Acquisition: Der erste Schritt in der Pipeline beschreibt die Erfassung der Da-
ten. Diese können von einer beliebigen Quelle stammen und sich stark in ihrer
Größe unterscheiden. So können z.B. Ereignisse aus der realen Welt, wie Wetterda-
ten, astronomische Beobachtungen oder seismische Aktivitäten verwendet werden.
Im theoretischen Bereich lassen sich Daten über Computersimulationen, wie Mo-
lekülmodellierung oder aus CAD Anwendungen gewinnen. Riesige Datenmengen
bietet auch das Internet selbst oder die Daten zu Aktienmärkten. So beträgt die
Datenmenge aus medizinischen Scannern einige Megabytes, während sich astrono-
mische Beobachtungen schnell im Terrabyte-Bereich bewegen können.

2. Filtering: Das Filtering beschreibt eine Daten-zu-Daten Abbildung. Hierbei werden
die Rohdaten der ersten Stufen verwendet, um daraus die zu visualisierenden Daten
zu erstellen. Mögliche Transformationen, die hier durchgeführt werden sind unter
anderem die Interpolation bzw. Approximation der Daten. Dies ist oft nötig, da
Sensoren entsprechende Werte nur an diskreten Gitterpunkten erfassen können,
die Visualisierung aber ein kontinuierliches Bild darstellen soll. Weiterhin können
hier nicht benötigte Daten verworfen werden oder das Format der Daten kann in
eine für die Visualisierung besser geeignete Darstellung konvertiert werden.

3. Mapping: Im dritten Schritt werden die Visualisierungsdaten durch das Mapping auf
graphische Primitive abgebildet. Dies können abhängig von der Dimension Punkte,
Linien, Flächen oder auch Volumenelemente sein, wobei diese zusätzlich Attribute
für Farbe und Texturen erhalten.

4. Rendering: Zum Schluss werden die graphischen Primitive gerendert, wobei noch zu-
sätzlicher Realismus eingefügt werden kann, wie z.B. Beleuchtungseffekte, Schatten
oder Schraffierungen.

2.2.3. Visuelle Variablen

Im Mapping-Schritt der Visualisierungspipeline 2.2.2 werden die zu visualisierenden Da-
ten auf graphische Elemente abgebildet. Hierfür lassen sich verschiedene visuelle Varia-
blen identifizieren, auf welche die Daten abgebildet werden können [11]:

• Position x, y, (z)

• Größe

• Orientierung

• Form

• Helligkeit
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Abbildung 14: Abstrakte Visualisierung: Beispiel für die Kombination mehrerer visuel-
le Variablen. Die Gitterstruktur legt die Position im dreidimensionalen
Raum fest, über den Farbverlauf wird ein skalarer Wert kodiert und zu-
sätzlich zeigen Glyphen über ihre Orientierung und Größe weitere Daten
an. [11]

• Farbe

• Textur

Die Effektivität der einzelnen Variablen, in Bezug auf die Wahrnehmungsfähigkeit des
Benutzers, hängt stark von den Daten ab, welche visualisiert werden sollen. So ist die
Position allgemein eine sehr effektive Variable und eignet sich für quantitative als auch für
ordinale Daten sehr gut. Dies findet z.B. Anwendung bei Scatter Plots, wie in Abbildung
11 zu sehen ist. Während z.B. die Farbe schlecht geeignet ist, um quantitative Daten
unterscheiden zu können, eignet sie sich für nominale Daten dagegen sehr gut. Zudem
lässt sich Farbe mit den meisten anderen Techniken kombinieren, da sie bei gezieltem
Einsatz, also sofern die Darstellung nicht zu überladen wird, als Warnsignal oder zur
Gruppierung von Elementen eingesetzt werden kann.

Abbildung 14 zeigt eine Visualisierung, in der mehrere dieser Variablen kombiniert wur-
den. So wird durch die Gitterstruktur die Position im dreidimensionalen Raum festgelegt.
Über eine Regenbogen-Farbtabelle wird ein zusätzlicher Wert pro Datenpunkt darge-
stellt, welcher sich von der Höhe unterscheidet. Zusätzlich befinden sich auf der Fläche
Glyphen, welche eine unterschiedliche Orientierung besitzen und sich in ihrer Größe und
ihrem Helligkeitswert unterscheiden.
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2.2.4. Design-Richtlinien

Mögliche Bewertungskriterien für graphische Benutzungsoberflächen oder auch Visuali-
sierungen lassen sich aus bereits vorhandenen Richtlinien bzw. Gesetzmäßigkeiten der
menschlichen Wahrnehmung ableiten. Allgemein sollen diese Richtlinien bei der Erstel-
lung einer graphischen Ausgabe helfen, um Fähigkeiten der Wahrnehmung zu unterstüt-
zen. Damit lässt sich auch eine bereits vorhandene GUI bzw. Visualisierung evaluieren.
Im Folgenden werden einige dieser Standards näher betrachtet:

Shneidermans 8 Goldene Regeln

Die 8 Goldenen Regeln der Dialoggestaltung [17] von Ben Shneiderman umfassen:

1. Streben nach Konsistenz

2. Abkürzungen für erfahrene Benutzer anbieten

3. Informatives Feedback

4. Abgeschlossenheit von Dialogen

5. Einfache Fehlerbehandlung

6. Einfache Umkehrbarkeit von Aktionen

7. Kontrolle des Systems durch den Benutzer

8. Belastungen des Kurzzeitgedächtnisses reduzieren

Shneiderman konzentriert sich mit seinen 8 Goldenen Regeln hauptsächlich auf das De-
sign von GUIs. Die meisten dieser Regeln beziehen sich auf die Interaktion mit einer
graphischen Oberfläche. So besagt z.B. die erste Regel Streben nach Konsistenz, dass
ähnliche Situationen durch eine Folge von konsistenten Aktionen behandelt werden kön-
nen, oder Aktionen, die zum selben Ergebnis führen auch gleich benannt werden sollten.
Die Regeln berücksichtigen sowohl Anfänger als auch fortgeschrittene Benutzer gleicher-
maßen. So besagt die zweite Regel Abkürzungen für erfahrene Benutzer anbieten, dass
häufig benutzte Funktionen über Abkürzungen erreichbar sein sollten, um so die Effizienz
zu erhöhen. Die Funktionen müssen aber dennoch über den normalen Weg aufgerufen
werden können. Weitere Regeln gehen auf informatives Feedback, einfache Fehlerbe-
handlung oder auch die Umkehrung von Aktionen ein. Als interessant stellt sich noch
die achte Regel dar, welche besagt, dass die Oberfläche möglichst einfach und übersicht-
lich gehalten und nicht mit unnötigen Komponenten oder gar Animationen überladen
werden sollte.
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Die 8 Goldenen Regeln sind alle sehr allgemein gehalten. So stellt es sich wohl als schwie-
rig heraus, automatisch zu überprüfen, ob ein bestimmter Dialog nun ausreichend Rück-
meldung auf ein Problem gibt oder nicht. Selbst bei der Evaluation durch einen Men-
schen, hängt eine solche Beurteilung noch stark von dessen Vorwissen und Erfahrung
ab. So kann für einen IT-Experten die Anzeige eines Fehlercodes bereits ausreichend
sein, während ein anderer Endanwender detaillierte Anweisungen benötigt, um fortfah-
ren zu können. Weitere Regeln, wie die Abgeschlossenheit von Dialogen, lassen noch viel
Spielraum für eine konkrete Umsetzung bzw. Bewertung.

ISO 9241-110 Grundsätze der Dialoggestaltung

Eine weitere wichtige Richtlinie stellt der Standard ISO 9241-110 Grundsätze der Dia-
loggestaltung [17] dar. Darin werden insgesamt sieben Grundsätze definiert, welche das
Design von Dialogsystemen unterstützen soll:

1. Aufgabenangemessenheit

2. Selbstbeschreibungsfähigkeit

3. Steuerbarkeit

4. Erwartungskonformität

5. Fehlertoleranz

6. Individualisierbarkeit

7. Lernförderlichkeit

Die Aufgabenangemessenheit besagt, dass die graphische Oberfläche entsprechend der
Arbeitsaufgabe aufgebaut sein soll. Dabei steht nicht primär im Vordergrund wie et-
was technisch gelöst werden könnte, sondern wie es vom Benutzer nachvollzogen werden
kann. Zudem sollte der Benutzer bei seiner Aufgabe unterstützt werden, um schnell und
effektiv arbeiten zu können. Ein weiterer Grundsatz ist die Selbstbeschreibungsfähig-
keit, wonach jeder Dialog Auskunft geben muss, welche Aktionen von diesem ausführbar
sind. Die Steuerbarkeit von Dialogabläufen, beschreibt die Möglichkeit, dass Benutzer die
Richtung und Geschwindigkeit beeinflussen können. Ein Dialogsystem ist Erwartungs-
konform, sofern es sich an allgemein anerkannte Konventionen hält. Zusätzlich sollte das
System fehlertolerant sein und dem Benutzer die Möglichkeit bieten, bei falschen Einga-
ben eine Korrektur vorzunehmen, ohne mit der Dateneingabe von Neuem beginnen zu
müssen. Die Individualisierbarkeit beschreibt die Anpassung der Darstellung an indivi-
duelle Fähigkeiten und Bedürfnisse. Eine GUI ist lernförderlich, sofern sie den Benutzer
bei der Interaktion unterstützt und anleitet.
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Allgemein lassen sich hier sehr viele Parallelen zu den Regeln von Shneiderman erkennen.
So deckt sich z.B. der Grundsatz zur Erwartungskonformität mit der ersten Regel Streben
nach Konsistenz von Shneiderman. Analoges gilt für die Fehlertoleranz oder auch die
Selbstbeschreibungsfähigkeit. Daher können hier, in Bezug auf die Evaluation einer GUI
dieselben Aussagen, wie bereits oben aufgeführt getroffen werden.

Für eine GUI geben diese Regeln gute Richtlinien vor, an die man sich beim Entwerfen
halten sollte. Allerdings sind diese für eine Visualisierung nicht mehr ausreichend. Hier
könnte der Punkt Selbstbeschreibungsfähigkeit entsprechend erweitert werden, welcher
das Effektivitäts-Kriterium (siehe 2.2.1) berücksichtigt und damit Auskunft gibt, wie
schnell der Benutzer die Absicht der Visualisierung erkennen kann. Ein weiteres Kri-
terium, welches vor allem bei dreidimensionalen Visualisierungen zum tragen kommt,
ist das Verdeckungsproblem. So kann es sein, dass unter bestimmten Betrachtungswin-
keln wichtige Informationen im Hintergrund liegen und von davor liegenden Objekten
verdeckt werden, wodurch falsche Annahmen getroffen werden können. Andererseits ver-
lieren auch manche Punkte, welche bei GUIs wichtig sind, hier an Bedeutung. Bei einer
Visualisierung ist z.B. die Fehlertoleranz oder Individualisierbarkeit nebensächlich. Die
Dateneingabe in einer Visualisierung beschränkt sich hauptsächlich auf die Auswahl von
bestimmten Werten oder Bereichen, da die eigentlichen Daten bereits durch die Filtering-
Stufe (siehe 2.2.2) eingegeben wurden.

Gestaltgesetze

Das Kapitel stellt eine Zusammenfassung von [31], S.189 - 198 dar.

Einen wesentlichen Beitrag zur Beschreibung der Wahrnehmung von Mustern lieferten
Max Westheimer, Kurt Koffka und Wolfgang Kohler in den sogenannten

”
Gestaltgeset-

zen“. Die folgenden Phänomene beschreiben unterschiedliche Muster, die vom menschli-
chen visuellen System erkannt werden können.

Nähe: Das visuelle System gruppiert visuelle Entitäten, die räumlich nah beieinander
liegen und es gruppiert Regionen mit vergleichbarer Elementdichte. Die räumliche
Nähe stellt das einfachste, aber gleichzeitig effizienteste Mittel dar, um Beziehungen
zwischen visuellen Elementen auszudrücken. Siehe Abbildung 15.
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Abbildung 15: Gestaltgesetz: Gruppierung durch Nähe [31], S.189

Ähnlichkeit: Ähnliche Elemente erscheinen gruppiert. Die
”
Ähnlichkeit“ kann über un-

terschiedliche Dimensionen erfolgen, z.B. Form, Farbe oder Textur. Auch ist es
möglich mehrere Dimensionen zu überlagern. Siehe Abbildung 16.

Abbildung 16: Gestaltgesetz: Gruppierung durch Ähnlichkeit [32]

Verbundene Elemente: Elemente, die visuell verbunden sind, z.B. durch Linien, erschei-
nen gruppiert. Je nach Art der Verbindung kann diese sogar stärker wirken als Nähe
oder Ähnlichkeit. Siehe Abbildung 17.

Abbildung 17: Gestaltgesetz: Gruppierung durch Verbundenheit [31], S.192

Kontinuität: Visuelle Elemente werden stärker als eine Entität wahrgenommen, wenn
ihre Form fließend verläuft, als jene deren Form abrupte Richtungswechsel bein-
halten. Siehe Abbildung 18.
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Abbildung 18: Gestaltgesetz Kontinuität: Die Linie wird als eigenständiges, dem Recht-
eck überlagertes Objekt wahrgenommen [31], S.192

Symmetrie: Symmetrie zwischen Formen, oder auch Abweichungen in der Symmetrie
können gut erkannt werden. Ein Beispiel dafür ist eine Altersstrukturpyramide,
getrennt nach Geschlecht, in der man sehr leicht erkennt in welchen Altersgruppen
ähnliche Mengen vorhanden sind und wo besonders große Abweichungen sind. Siehe
Abbildung 19.

Abbildung 19: Gestaltgesetz Symmetrie: Abweichungen zwischen beiden Gruppen wer-
den leicht erkannt [33]

Geschlossenheit: Eine geschlossene Kontur wird sehr wahrscheinlich als einzelnes Ob-
jekt wahrgenommen. Zusätzlich gibt es eine perzeptionelle Tendenz, visuelle Re-
gionen durch geschlossene Konturen in

”
Außen“ und

”
Innen“ zu unterteilen. Ein

offensichtliches Beispiel hierfür ist das Fenster-Konzept in Benutzungsschnittstel-
len. Diese werden oft auch mehrfach geschachtelt. Siehe Abbildung 20.
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Abbildung 20: Gestaltgesetz: Geschlossene Formen [31], S.195

Relative Größe: Im Allgemeinen werden kleine Teile von Mustern stärker als Objekt
wahrgenommen als große. Siehe Abbildung 21.

Abbildung 21: Gestaltgesetz Relative Größe: Die schwarzen Bereiche sind kleiner als die
weißen und werden eher als Objekt wahrgenommen [31], S.197

Gestalt und Hintergrund: Visuelle Objekte, die als solche erkannt werden, scheinen eher
im Vordergrund zu liegen. Siehe Abbildung 22.
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Abbildung 22: Gestaltgesetz zu Gestalt und Hintergrund: Sieht man die Köpfe, scheint
die schwarze Fläche kein definiertes Objekt zu sein. Sieht man umgekehrt
die Vase, sind die Köpfe nur noch eine weiße Fläche im Hintergrund [31],
S.198

Die Gestaltgesetze sind abstrakt genug, um sie auf die meisten Klassen von Visualisie-
rungen anzuwenden.

”
Abstrakt“ soll in diesem Sinne bedeuten, dass sich für beliebige

visuelle Objekte ein Zusammenhang nach einem Gestaltgesetz überprüfen lässt, ohne,
dass diese in einen bestimmten Kontext eingebettet sein müssen. Es ist egal, ob die
visuellen Objekte nun Teil eines technischen Diagramms, eines Gemäldes oder einer Vo-
lumenvisualisierung sind. Diese

”
Kontextfreiheit“ ist aber nicht völlig problemfrei. Für

uns ist primär die Analyse einer Visualisierung nach den Gesetzen, primär Nähe, Ähn-
lichkeit, Verbundenheit und Kontinuität von Interesse. Eine grundsätzliche Frage ist
hierbei: Angenommen eine Visualisierung ist vorgegeben, ließe sich durch Prüfung der
Gestaltgesetze entscheiden, ob zwischen zwei visuellen Elementen eine Relation zum Aus-
druck gebracht wird? Der Nachweis einer solchen Relation bedeutet aber nicht, dass die
Relation auch semantisch korrekt in Bezug auf eine vorgegebene Fragestellung bezüg-
lich der Visualisierung ist, ob der dargestellte Zusammenhang also überhaupt korrekt
ist. Eine Prüfung macht demnach nur Sinn, wenn maschinell entscheidbar ist, ob die
Relation korrekt ist. Folglich ist es schwer eine Visualisierung maschinell bewerten zu
wollen, wenn nicht schon vorher zumindest auf abstrakter Ebene beschreibbar ist, welche
Zusammenhänge Sinn ergeben.

Braths Metriken und Richtlinien

Brath stellt in [5] und [6] Metriken und Richtlinien für die Entwicklung von effizien-
ten Visualisierungen vor, die auf seinen Erfahrungen aus ca. 130 Projekten aufbauen.
Vorschläge für Metriken sind zum Beispiel die Anzahl der gleichzeitig dargestellten Di-
mensionen, die Anzahl der dargestellten Datenpunkte oder das Verhältnis von verdeckten
Datenpunkten zu den sichtbaren. All diese Metriken können zur Bewertung der Komple-
xität einer Visualisierung herangezogen werden, wobei Brath davon ausgeht, dass eine
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komplexe Visualisierung schwerer zu verstehen ist. Brath rät diese Metriken nicht unre-
flektiert einzusetzen, weil die Aussagekraft nicht für alle Visualisierungen gleich gegeben
ist und sogar für einige Visualisierungen das Gegenteil der Realität widerspiegeln.

Braths Richtlinien orientieren sich an den Grundlagen der Perzeption, wie sie weiter oben
beschrieben wurden. Ein wichtiger Punkt in diesen Richtlinien ist die möglichst intensive
Nutzung der frühen Stadien der Perzeption, weil diese hoch-parallel arbeiten und durch
effiziente Nutzung eine Suche in (nahezu) konstanter Zeit ermöglichen. Diese frühen
Stadien der Perzeption würden im Guided-Search-Modell von Wolfe der Erkennung von
Features und der Erstellung der Activation-Map entsprechen. Für die Richtlinien von
Brath bedeutet das also, dass die Features der einzelnen Objekte so gewählt werden
sollten, dass die Aktivierung an den Stellen am höchsten ist, an denen die interessanten
Dinge in der Visualisierung passieren. Eine Richtlinie, die sich daraus ableitet ist zum
Beispiel:

”
Use the most general form, color, orientation and texture to represent the

typical or expected case. Use derivation from the general case to draw attention to the
unexpected or unique information.“ ([6], S. 25).

Beim Einsatz von Braths Metriken und Richtlinien ist außerdem zu beachten, dass die-
se für statische 3D-Informationsvisualisierungen gedacht sind. Weiterhin wird spezielle
Hardware, bzw. Anzeigetechniken außen vor gelassen, zum Beispiel stereoskopische Dar-
stellungen und Eingabegeräte wie Datenhandschuhe. Die Beschränkung auf statische
Visualisierungen kommt daher, dass viele Visualisierungen auch ausgedruckt oder als
Screenshot verteilt werden und auf diesen Wegen die Möglichkeit der Navigation in der
Visualisierung verloren geht.

2.2.5. Fazit

Zusammenfassend, auf die Fragestellung
”
Was macht eine gute Visualisierung aus?“

lassen sich folgende Punkte aus den oben behandelten Themen gewinnen:

• Eine Fragestellung zu einer Visualisierung lässt sich um so schneller beantworten,
je weniger Objekte im Arbeitsgedächtnis gehalten werden müssen und je weniger
Visual Queries benötigt werden (siehe 2.1.1).

• Da die Effektivität von arbiträren Symbolen stark vom Kulturkreis abhängt, muss
stets die Zielgruppe im Auge behalten werden (siehe 2.1.2).

• Die Eignung unterschiedlicher visueller Variablen hängt stark vom Datentyp ab. Im
Allgemeinen lässt sich sagen, dass nominale Daten sich gut auf Farben abbilden
lassen, während quantitative Daten besser über Positionsunterschiede abgelesen
werden können (siehe 2.2.3).

• Die Visualisierung sollte nicht überladen werden, um somit das Kurzzeitgedächtnis
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nicht zu stark zu belasten (siehe Shneidermans 8 Goldene Regeln in 2.2.4 und 2.1.1).

• Beachten der Gestaltgesetze, um so den Wahrnehmungsprozess zu unterstützen
(siehe Gestaltgesetze in 2.2.4).
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3. Frameworks

Eine Suche im Internet fördert eine Vielzahl verschiedener kognitiver Frameworks, Theo-
rien und Architekturen zu Tage. Bei einer genaueren Betrachtung stellt sich dann aber
heraus, dass zu den meisten Theorien und Architekturen keine oder nur eine veralte-
te Implementierung existiert, wodurch sie sich für den praktischen Einsatz im Umfeld
dieser Fachstudie weniger eignen. Bei bestehenden Frameworks haben wir festgestellt,
dass es zwei Extrema gibt. Das eine Extrem sind Frameworks, die schon seit einiger Zeit
im praktischen Einsatz etabliert sind, sich aber auf die Lösung spezieller Probleme be-
schränken, beispielsweise Frameworks zur Steuerung von Robotern. Das andere Extrem
sind Frameworks, deren Ziel es ist, den menschlichen Verstand zu simulieren, die sich
aber noch in der Konzeptionsphase oder am Beginn der Implementierung befinden. Es
gibt wenige Frameworks, die für die Lösung einer großen Menge von Problemen geeignet
sind und deren Implementierung sich in einem Stadium befindet, in dem sie für reale An-
wendungen benutzbar sind, und deren Entwicklung immer noch weitergeführt wird. Die
bekanntesten dieser Frameworks sind ACT-R (Adaptive Control of Thought-Rational)
und Soar (füher SOAR, als Akronym für State, Operator, Apply, Result).

Im Folgenden wird die kognitive Architektur ACT-R im Detail vorgestellt, wobei die dar-
in verwendeten Konzepte und praktische Beispiele aufgezeigt werden. In Kapitel 3.3 wird
CogTool behandelt, welches eine Anwendung ist, mit der sich GUI-Prototypen erstellen
und anschließend automatisiert evaluieren lassen. Hierfür setzt CogTool auf ACT-R auf,
wobei die kognitive Simulation der GUI-Prototypen von ACT-R übernommen wird. Die
Architektur Soar wird in der Parallelfachstudie Kognitions-Frameworks II von unseren
Kommilitonen untersucht.

3.1. Prinzipielle Möglichkeiten für die kognitive Simulation

Kognitive Architekturen

Computerinspiriert

Produktionssysteme

Informationsverarbeitungstheorie

Repräsentative SystemeAssoziativ

Abbildung 23: Hierarchie der verschiedenen Klassen von kognitiven Architekturen

Kognitive Architekturen lassen sich in zwei Arten unterteilen (siehe Abbildung 23): Die
computerinspirierten Architekturen und die assoziativen Architekturen [45]. Moderne
Architekturen vereinen Ansätze aus beiden Arten und werden daher als hybride Archi-
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tekturen bezeichnet.

3.1.1. Computerinspirierte Kognitive Architekturen

Computerinspirierte kognitive Architekturen sind nach dem Vorbild eines von-Neumann-
Rechners aufgebaut. Daher bestehen diese Architekturen aus einer zentralen Verarbei-
tungseinheit, Speicher und Eingabe- und Ausgabeeinheiten.

Die erste und bekannteste Klasse dieser Art von kognitiven Architekturen sind die soge-
nannten Produktionssysteme (Production Systems). In Produktionssystemen wird der
menschliche Verstand als ein System modelliert, das aus einem Arbeitsspeicher und einer
großen Menge von Produktions- und Prioritätsregeln, die die Reihenfolge der Produkti-
onsregeln vorgeben, besteht. Eine Produktionsregel besteht dabei aus einer Bedingung
und einer Aktion, die ausgeführt werden soll, wenn die Bedingung wahr wird. In jedem
Verarbeitungsschritt werden alle Produktionsregeln bestimmt, bei denen die Bedingung
wahr wird und die Aktion derjenigen ausgeführt, die nach den Prioritätsregeln an ers-
ter Stelle kommt. Eine solche Aktion modifiziert im Allgemeinen den Zustand des Ar-
beitsspeichers. Neuere Produktionssysteme sind innerhalb solcher Aktionen in der Lage,
auch die Produktionsregeln zu verändern, neue hinzuzufügen oder bestehende zu löschen.
Damit wird es möglich Lernprozesse in Produktionssystemen abzubilden. Beispiele für
Produktionssysteme sind EPIC und SOAR.

Die zweite Klasse der computerinspirierten kognitiven Architekturen ist die Informati-
onsverarbeitungstheorie. Sie geht davon aus, dass Informationen im menschlichen Ge-
hirn die Verarbeitungsschritte Eingabe, Kodieren, Abspeichern, Auslesen und Ausga-
be durchlaufen. Dabei interessieren insbesondere die Abläufe innerhalb der einzelnen
Schritte. Eine kognitive Architektur, die sich ausschließlich auf die Informationsverar-
beitungstheorie stützt ist uns nicht bekannt, aber man findet Teile davon zum Beispiel
in CHREST wieder.

Die dritte Klasse der computerinspirierten kognitiven Architekturen sind die repräsenta-
tiven Systeme. Sie konzentriert sich auf die wahrheitsgemäße Abbildung der Struktur des
menschlichen Wissens. In solchen Architekturen kommen komplexe Datenformate zum
Einsatz, um das Wissen zu organisieren. Dabei wird angenommen, dass es zwei Arten
von Speicher gibt. Den Arbeitsspeicher und einen Speicher für die strukturierten Daten.
Beispiele solcher Datenformate sind Frames und Skripte. Im Allgemeinen können die
Datenformate mittels Variablen von Objekten abstrahieren und Beziehungen zwischen
Klassen repräsentieren. Weiterhin können sie in sich selbst eingebettet werden, also hier-
archisch organisiert werden, und dadurch die Welt in verschiedenen Abstraktionsebenen
repräsentieren. Ein solches repräsentatives System ist zum Beispiel PreACT.
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3.1.2. Assoziative Kognitive Architekturen

Assoziative kognitive Architekturen basieren auf der Annahme, dass die Verarbeitung im
Gehirn durch viele parallel arbeitende Einheiten geschieht, die Teil-Ganzes-Beziehungen
herzustellen. Wurde zum Beispiel der erste Teil eines bestimmten Ablaufs erkannt und
besteht für diesen Teil eine Assoziation mit dem gesamten Ablauf, dann lässt sich von
dem Teil auf den gesamten Ablauf schließen. Die Architekturen an sich unterscheiden
sich hauptsächlich darin, zwischen welchen Objekten sie die Assoziationen abbilden. Ein
Beispiel für assoziative kognitive Architekturen sind neuronale Netze.

3.2. ACT-R

ACT-R (Adaptive Control of Thought-Rational) [2] ist eine kognitive Architektur, wel-
che auf der Theorie Adaptive Control of Thought (ACT) aufbaut. Ziel dieses Projekts
ist es, die Prozesse der menschlichen Kognition nachzubilden. ACT-R stellt hierfür ein
Framework bereit, mit dem kognitive Modelle, bestehend aus Regeln und Fakten, erstellt
und ausgeführt werden können. Die Regeln lassen sich testen, indem die Ergebnisse des
Modells mit den Ergebnissen von Menschen verglichen werden, welche die selbe Aufga-
be ausgeführt haben. Die Ergebnisse können hierbei aus folgenden Messungen bestehen
(Beispiel-Setup siehe 3.2.3):

• Benötigte Zeit, um eine bestimmte Aufgabe durchzuführen

• Genauigkeit, die beim Durchführen der Aufgabe erreicht wurde

• Vergleich mit neurologischen Daten, welche aus FMRI gewonnen wurden

Der Vorteil von ACT-R ist hierbei, dass aus der Simulation quantitative Werte gewonnen
werden können, welche sich direkt mit den Messungen aus Experimenten mit Menschen
vergleichen lassen.

Anwendungsbereiche von ACT-R sind die Untersuchung von Problemlösungs- und Ent-
scheidungsfindungsaufgaben, Lernen und Erinnern, Verstehen von natürlicher Sprache
oder allgemeine kognitive Aufgaben. Konkrete Einsatzbereiche finden sich z.B. in der
Mensch-Rechner-Interaktion, um verschiedene GUIs zu beurteilen (siehe Kapitel 3.3)
oder im Bildungsbereich (Cognitive Tutoring System), wobei die Schwierigkeiten einer
bestimmten Aufgabe abgeschätzt werden können, um so den Studenten gezielte Hilfe-
stellungen geben zu können [2].
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3.2.1. Aufbau von ACT-R

ACT-R ist in mehrere Module aufgeteilt, wobei jedes dieser Module auf eine bestimmte
Informationsart, wie z.B. visuelle oder akustische Reize spezialisiert ist [18]. Abbildung
24 zeigt hierzu die grundlegende Architektur mit einigen Modulen des Systems. Die
Theorie zu ACT-R trifft allerdings keine Aussage, wie viele Module existieren müssen.
Einige sind schon implementiert und Teil des Frameworks. Für eine komplette Liste der
implementierten Module mit ihren entsprechenden Puffern, siehe Abschnitt 3.2.2.

Im Folgenden werden die vier wichtigsten Module näher betrachtet:

• Perceptual Motor System: Besteht aus dem Visual und Manual Modul und
ermöglicht die Interaktion mit der Umgebung.

• Goal Module: beinhaltet das aktuell zu erreichende Ziel.

• Declarative Memory Module: um Informationen aus dem Speicher abzurufen.

• Procedural Memory Module: Das Kernsystem von ACT-R. Hält Regeln für
die Übergänge zwischen Zuständen.

Diesen Module lassen sich folgende Phasen aus Norman’s seven stages zuordnen (siehe
Abschnitt 2.1.6):

• Goal Module ⇔ Phase 1 - Intention

• Declarative Memory Module ⇔ Phase 2 - Action Specification

• Procedural Memory Module ⇔ Phase 3 - Execution (Mental)

• Perceptual Motor System⇔ Phase 4 - Physical Activity und Phase 5 - Perception

Alle diese spezialisierten Module werden über das zentrale Produktionssystem integriert
(siehe Abbildung 24 Productions), um ein bestimmtes Verhalten zu erzeugen. Das Kern-
system kann jedoch nicht auf beliebige Informationen aus den Modulen zugreifen, son-
dern zwischen jedem Modul und dem Kern befindet sich ein Puffer, welcher nur eine
begrenzte Informationsmenge aufnehmen kann (auch Chunk genannt). Dieses Prinzip
ist dem Menschen nachempfunden, da dieser sich zu einem bestimmten Zeitpunkt auch
nicht über alle Informationen, welche in seinem Langzeitgedächtnis gespeichert sind be-
wusst ist. Analoges gilt für Objekte im visuellen Feld. Hier wird meist auch nur ein
kleiner Teil der vorhandenen Objekte wahrgenommen, welche gerade als relevant erach-
tet werden. Der Informationsaustausch erfolgt somit nur über diese Puffer, wobei das
Produktionssystem diese verwendet, um Muster in den Daten zu erkennen oder Ände-
rungen an ein entsprechendes Modul weiterzuleiten. Dies kann z.B. auch das Absetzen

32



Abbildung 24: Grundlegende Architektur von ACT-R. ACT-R ist in mehrere Modu-
le aufgeteilt, welche alle über das Procedural Memory Modul integriert
werden. [18]

eines Kommandos an den Manual Puffer sein, um somit das Durchführen einer Aktion
im Manual Module anzustoßen.

Den einzelnen Komponenten des Systems können bestimmte Regionen des menschlichen
Gehirns zugewiesen werden. In Abbildung 24 sind jeweils in Klammern die entsprechen-
den Areale angegeben, welche nach [18] am Besten dazu passen. So hält z.B. der Goal
Puffer den aktuellen Zustand, um ein Problem zu lösen. Dieser wird mit dem Dorso-
lateral Prefrontal Cortex (DLPFC) assoziiert, welcher den Brodmann Arealen 9 und
46 entspricht (Abbildung 25). Die Funktionen des DLPFC umfassen unter anderem die
Planung und Organisation von motorischen Fähigkeiten, Integration von sensorischen
Informationen und er wird außerdem als Arbeitsgedächtnis genutzt. Der Manual Puffer
ist zuständig für die Bewegungen der Hände und wird mit motorischen und somatosen-
sorischen Regionen verknüpft. Diese entsprechen den Brodmann-Arealen 1-4. Für eine
detailliertere Beschreibung der einzelnen Brodmann-Areale, siehe [35]. Das Kernsystem
von ACT-R wird mit den Basalganglien des Gehirns in Verbindung gebracht. Diese sind
Gehirnareale, welche unterhalb der Großhirnrinde liegen und wichtige Funktionen im
Bereich Motorik, Kognition und limbische Regelungen (Verarbeitung von Emotionen)
erfüllen [34].
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Abbildung 25: Regionen des menschlichen Gehirns: die Nummern entsprechen der Un-
terteilung der Gehirnareale nach Brodmann, [35]

Das Produktionssystem wird in drei Schritte unterteilt: das Matching dient zur Muste-
rerkennung und sucht nach Produktionsregeln, welche zum aktuellen Zustand passend
sind. Der Zustand von ACT-R ist hierbei der Inhalt aller Puffer zu einem bestimmten
Zeitpunkt. Anschließend agiert der Selection-Schritt, um Konflikte zu erkennen und auf-
zulösen. Zum Schluss kontrolliert der Execution-Schritt die Ausführung der geplanten
Aktionen. Eine wichtige Funktion der Produktionsregeln ist es, die Puffer zu aktualisie-
ren, damit diese mit neuem Inhalt im nächsten Zyklus wiederverwendet werden können.
ACT-R geht davon aus, dass die Durchführung eines solchen Zyklus 50 ms dauert. Diese
Zahl hat sich im Laufe der Zeit entwickelt und wird auch in anderen kognitiven Archi-
tekturen wie Soar oder EPIC verwendet [18].

Die Architektur von ACT-R ist eine Mischung aus paralleler und serieller Verarbeitung.
Zwischen den Modulen lässt sich ein hoher Grad an Parallelität erreichen, da z.B. das
Visual Modul das Sichtfeld abarbeiten kann, während das Declarative Modul eine par-
allele Suche in verschiedenen Speichern durchführt. Dennoch gibt es zwei serialisierende
Faktoren im System. Zum einen sind die Puffer begrenzt auf genau einen Chunk, sodass
zu einem gegebenen Zeitpunkt immer nur genau eine Einheit verarbeitet werden kann.
Zum anderen wird im Kernsystem immer nur genau eine Produktionsregel pro Zyklus
ausgewählt und ausgeführt.

Im Folgenden werden die Komponenten aus Abbildung 24 im Detail vorgestellt:
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Perceptual Motor System

Das Wahrnehmungs- und Handlungssystem in ACT-R ist der Model Human Proces-
sor Theorie aus [29] nachempfunden (siehe Abbildung 26) und wird auch erfolgreich in
der kognitiven Architektur EPIC [20] eingesetzt. Dabei wird der menschliche Verstand
als ein informationsverarbeitendes System aufgefasst. Ähnlich wie ein IT-Experte ein
PC-System, mit Speicherkomponenten, Prozessor und den Verbindungen dazwischen,
beschreiben würde, unterteilt das Modell den menschlichen Verstand in drei Komponen-
ten:

1. Perceptual System (entspricht dem Visual-Module in Abbildung 24)

2. Cognitive System (entspricht dem Produktionssystem in Abbildung 24)

3. Motor System (entspricht dem Manual-Module in Abbildung 24)

Das Perceptual System (1) nimmt über Sensoren visuelle und akustische Signale wahr
und speichert diese symbolisch in Puffern ab. Das Cognitive System (2) greift nun auf
diese Informationen zu und verknüpft diese mit Inhalten aus dem Langzeitgedächtnis,
um daraus Entscheidungen zu treffen. Aus diesen Entscheidungen werden Reaktionen
generiert, welche an das Motor System (3) übergeben und dort ausgeführt werden. Hier-
bei wird abhängig von der Aufgabe unterschieden, ob diese Komponenten seriell oder
parallel verschaltet sind. So wäre z.B. das Betätigen eines Lichtschalters infolge von zu
wenig wahrgenommenem Licht eine serielle Ausführung, während Aufgaben wie Tippen,
Lesen und Übersetzen gleichzeitig durchgeführt werden können.

Perceptual System

visuell audio

Cognitive System LZG

Motor System

A1
A2

A3 Handlungsalternativen

symbolische Puffer

Sensoren

Abbildung 26: Schematische Darstellung der Model Human Processor Theorie. Dabei
wird der menschliche Verstand in die drei Komponenten Perceptual Sys-
tem, Cognitive System und Motor System unterteilt.
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Das Perceptual-Motor System stellt das Interface zur realen Welt dar. In ACT-R wird
dies durch das Visual- und Manual-Modul abgedeckt. Das Visual-Modul ist nach der
Two Stream Hypothesis [43] in zwei Subsysteme unterteilt, wobei jeweils ein eigener
Puffer existiert. Die Two Stream Hypothesis unterteilt die visuelle Wahrnehmung in zwei
Pfade: das dorosal System ist zuständig für die Erkennung der Position von Objekten
im Raum (Wo-Dimension), während das ventral System Objekte eindeutig identifizieren
kann (Was-Dimension).

Der Visual-Location-Puffer stellt die Wo-Dimension und der Visual-Object-Puffer die
Was-Dimension dar. Wird z.B. auf einem Display ein grünes Objekt in einer Menge
von blauen Objekten angezeigt, so ist die Zeit um die Position des grünen Objekts zu
erkennen konstant, unabhängig von der Anzahl der blauen Objekte (Abbildung 27).

Abbildung 27: Die Position des grünen Objekts kann in konstanter Zeit ermittelt werden.

Das Produktionssystem kann über den Visual-Location-Puffer Einschränkungen ange-
ben, welche das Suchfeld reduzieren (vgl. Abbildung 28). Diese Einschränkungen beste-
hen aus Attribut-Wert-Paaren, welche visuelle Eigenschaften der Objekte beschreiben,
wie z.B. color:green oder vertical:bottom. ACT-R hat somit Wissen über die Position der
Objekte, also wo diese sich befinden, und deren grundlegenden Eigenschaften. Um je-
doch ein Objekt genau zu identifizieren, muss das Produktionssystem noch eine Anfrage
an das Was-System stellen. Die Anfrage enthält dabei die Position des Objekts, sodass
das System seine Aufmerksamkeit dorthin richten und das dort befindliche Objekt ver-
arbeiten kann. Aus diesem Objekt wird nun ein Chunk in deklarativer Form erstellt. Für
den Wechsel der Aufmerksamkeit werden zwei Modelle unterstützt: Beim Ersten wird
von einer konstanten Zeit von 185 ms pro Objekt ausgegangen, was ähnlich zur Guided
Search Theorie von Wolfe ist (siehe 2.1.5). Im zweiten Ansatz wird EMMA (Eye Move-
ments and Movement of Attention), eine Theorie über Augenbewegungen implementiert.
In EMMA ist die Zeit, die Aufmerksamkeit auf ein anderes Objekt zu lenken, davon ab-
hängig, wie weit dieses Objekt vom aktuell fokussierten Punkt entfernt ist (siehe auch
Abschnitt EMMA in 3.3) [18].

36



Visual-Module
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Abbildung 28: Ablauf der Erkennung eines Objekts im Perceptual System von ACT-R.

Goal Module

Das Goal Module hält die aktuellen Ziele, welche mit den wahrgenommenen Daten ver-
folgt werden. Werden z.B. die Zahlen 85 und 43 wahrgenommen, so könnten diese ad-
diert, subtrahiert oder auf einem Telefon gewählt werden. Die menschliche Fähigkeit
unterschiedlich auf diese Eingabe zu reagieren hängt also sehr stark von dem jeweili-
gen Ziel ab. Sollen die Zahlen addiert werden, so werden in der Regel eine Reihe von
Schritten durchlaufen, wobei weitere Teilziele und Zwischenergebnisse anfallen, wie z.B.
die Einerstellen zu addieren und anschließend die Zehner mit eventuellem Übertrag.
Ein weiteres Beispiel sind die Türme von Hanoi (Abbildung 29). Hier werden sehr viele
Teilziele erzeugt, wie z.B.

”
um Scheibe 4 auf Sockel C zu verschieben, muss zuerst Schei-

be 3 auf Sockel B verschoben werden, und dafür Scheibe 2 auf C usw.“ um schließlich
das Gesamtziel zu erreichen. Bei Versuchen wurde hierbei gezeigt, dass die Genauigkeit
und Latenz eine solche Aufgabe durchzuführen sehr stark mit der Anzahl der Teilziele
korreliert.
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Abbildung 29: Türme von Hanoi: Der Turm muss vollständig auf den rechten Sockel
verschoben werden, wobei nie eine kleinere Scheibe unter einer größeren
liegen darf [42].

Declarative Memory Module

Das deklarative Gedächtnismodul bildet zusammen mit dem prozeduralen Gedächtnis-
modul den Kern von ACT-R und ist für die Speicherung und das Abrufen von sym-
bolischem Wissen zuständig und gewährleistet, dass das gezeigte Verhalten über die
Zeit konsistent bleibt. Der Zugriff auf das deklarative Gedächtnis benötigt Zeit, die von
verschiedenen Faktoren beeinflusst wird.

Das deklarative Gedächtnis kann große Mengen von Informationen halten, wodurch es
unmöglich wird diese alle gleichzeitig für die Lösung einer Aufgabe heranzuziehen, zumal
Chunks sich gegenseitig ausschließen können oder für die Lösung irrelevant sein können.
Pylyshyn hat dies als das sogenannte Roboter-Dilemma bezeichnet [24]. Daher muss eine
Auswahl der wichtigsten Informationen getroffen werden. In ACT-R wird diese Auswahl
als Chunk-Aktivierung Ai bezeichnet und ist abhängig von der allgemeinen Nützlichkeit
bei der Lösung vergangener Probleme Bi und der Relevanz im aktuellen Kontext. Die
Relevanz eines Elementes j im aktuellen Kontext ist von der Aufmerksamkeitsgewichtung
Wj und der Assoziationsstärke Sij mit dem Chunk abhängig.

Ai = Bi +

ni∑
j=1

WijSij

Dabei gilt, je mehr Elemente an der Aktivierung eines Chunks beteiligt sind, desto
geringer ist die Aufmerksamkeitsgewichtung eines einzelnen Elements und mit je mehr
Chunks ein Element assoziiert ist, desto geringer ist die Assoziationsstärke des Elements
mit einem einzelnen dieser Chunk.

Wij =
1

ni
Sij = S − ln (fanj)
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wobei fanj die Anzahl der Fakten ist, die mit dem Element j assoziiert sind, und S ein
Parameter, der im Allgemeinen ungefähr 2 ist. Die allgemeine Nützlichkeit ist maßgebend
vom Potenzgesetz des Vergessens geprägt, das besagt, dass ein Chunk für die Lösung
eines Problems umso irrelevanter ist, je weiter die letzte Aktivierung in der Vergangenheit
liegt. Im Gegensatz dazu wird ein Chunk allerdings umso relevanter, je öfter er aktiviert
wurde.

Bi = ln

(
mi∑
k=1

t−dk

)

1

2

3

1 2 3 4 5 6 7 8 t

Bi

b

b
b b

b

b
b

b b b b b

Abbildung 30: Bi in Abhängigkeit von der Zeit. Blau: Allgemeine Nützlichkeit Bi eines
Chunks nach Aktivierungen zu den Zeitpunkten 1, 2, 4 und 7. Rot: All-
gemeine Nützlichkeit Bi jeweils eine Zeiteinheit nach den Aktivierungen.
Grün: Allgemeine Nützlichkeit Bi jeweils eine Zeiteinheit nach den Ak-
tivierungen wenn der Chunk im Abstand von einer Zeiteinheit aktiviert
wird.

wobei tk die Zeit ist, die seit der k-ten Aktivierung vergangen ist und d ein Parameter für
die Vergessensrate, für den sich 0.5 als guter Wert für eine große Menge an Problemen
herausgestellt hat. Damit würde sich die Aktivierung wie folgt berechnen:

Ai = ln

(
mi∑
k=1

t−dk

)
+

ni∑
j=1

1

ni
· (S − ln (fanj))

Die Aktivierung eines Chunks beeinflusst nun die Abrufwahrscheinlichkeit Pi und die
Abrufverzögerung Ti für diesen Chunk. Dabei wird angenommen, dass Chunks erst ab
einer bestimmten Aktivierung überhaupt abgerufen werden können. Ist dieser Schwell-
wert τ überschritten, so verhält sich die Abrufwahrscheinlichkeit in Abhängigkeit von
der Aktivierung nach einer logistischen Funktion und die Abrufverzögerung nimmt invers
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exponentiell zur Aktivierung ab.

Pi =
1

1 + e−
Ai−τ
s

Ti = Fe−Ai

wobei s das Rauschen in den Aktivierungsleveln kontrolliert und üblicherweise um 0.4
liegt und F der Latenzfaktor ist, der zum Aktivierungsschwellwert τ in folgender Bezie-
hung steht:

F ≈ 0.35eτ

was bedeutet, dass die Abrufverzögerung bei einer Aktivierung in der Größe des Schwell-
werts (Ai = τ) ca. 0.35 Sekunden entspricht.

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 3 Ai

Ti

Pi

τ = 1 τ = 1.5 τ = 0.5

Abbildung 31: Pi und Ti in Abhängigkeit von Ai für verschiedene τ .

Procedural Memory Module

Das prozedurale Gedächtnismodul hält Regeln für die Übergänge zwischen Zuständen
bereit. Technisch werden diese Zustände in ACT-R mittels Puffern zu den verschiedenen
anderen Modulen realisiert und die Regeln geben an, wann sie angewendet werden können
und wie die Puffer durch die Anwendung der Regel verändert werden. Diese Regeln
heißen Produktionen. Ziel ist es dann, durch Anwendung von Produktionen von einem
Startzustand in einen Endzustand zu gelangen.

Das grundlegende Problem dabei ist, dass zu einem beliebigen Zeitpunkt mehrere Pro-
duktionen angewendet werden können. Damit ACT-R hier eine Produktion auswäh-

40



len kann wird für Produktionen ein Nutzen Ui bestimmt, ähnlich der Aktivierung für
Chunks.

Ui = PiG− Ci
wobei Pi ein Schätzwert für die Wahrscheinlichkeit ist, dass das derzeitige Ziel erreicht
wird, wenn die Produktion gewählt wird, G der Wert des derzeitigen Ziels ist und Ci
ein Schätzwert für die Kosten (typischerweise die Zeit) ist, um das derzeitige Ziel zu
erreichen. Pi und Ci unterliegen einem Lernprozess, der diese anhand von früheren Er-
fahrungen mit der Produktion anpasst.

Der Nutzen von Produktionen ist großen Schwankungen unterworfen, was dazu führt,
dass eine Produktion in einigen Versuchen einen zufällig höheren Nutzen hat als eine
andere und daher nicht immer die selbe Produktion gewählt wird.

Die Wahrscheinlichkeit, dass eine Produktion gewählt wird, kann dann mit folgender
Formel bestimmt werden:

Πi =
e
Ui
t∑

j∈P
e
Uj
t

mit P = {j | Produktion j kann angewendet werden}

für alle Produktionen j, die angewendet werden können, wobei der Parameter t die
Schwankungen in den Nutzen reguliert und üblicherweise um 0.5 gewählt wird.

Die Pi als Schätzwerte für die Erfolgswahrscheinlichkeit werden einfach durch das Ver-
hältnis von Anzahl der erfolgreichen Anwendung (m) zur Summe aus den Anzahlen der
erfolgreichen und fehlgeschlagenen Anwendungen (m+ n) bestimmt.

Pi =
m

m+ n

Ein Problem ergibt sich dabei allerdings zu Beginn der Berechnungen, wo m und n üb-
licherweise 0 sind und Pi daher nicht definiert ist. Ebenso würde Pi nach der ersten
Anwendung zu einem der Extrema 1 (100% erfolgreich) oder 0 (gar nicht erfolgreich)
ausschlagen. Um diese Probleme zu umgehen, wird ein vorheriger Wert θ festgelegt, der
die Anzahl der erfolgreichen zu θV + m und die Anzahl der fehlgeschlagenen Anwen-
dungen zu (1− θ)V + n verändert, wobei V die Stärke des Einflusses von θ auf spätere
Schätzwerte angibt. Damit startet Pi bei θ und konvergiert mit der Zeit gegen m

m+n .

Pi =
θV +m

θV +m+ (1− θ)V + n
=

θV +m

V +m+ n

Ist kein Vorwissen über die Wahrscheinlichkeiten vorhanden, so sollte θ = 0.5 und V = 2
angesetzt werden. Für Ci wird analog verfahren.

41



0.5

1.0

1 2 3 4 5 6 7 8 9 10m + n

Pi

m = n, θ = 0.5, V = 2
m = 0, θ = 0.5, V = 2
n = 0, θ = 0.5, V = 2
m = n, θ = 0, V = 1
m = n, θ = 0, V = 10

Abbildung 32: Vergleich der beiden Versionen für Pi. Diese Funktionen sind eigentlich
diskret, weil m und n jeweils ganzzahlig sind, aber hier wurde für eine bes-
sere Visualisierung der Effekte eine kontinuierliche Darstellung gewählt.

3.2.2. ACT-R Software

ACT-R liegt derzeit in der Version 6 vor und kann als Standalone-Anwendung oder
als Archiv mit Quellcodedateien bezogen werden [2]. Die Standalone Varianten sind
für Windows und Mac OS X verfügbar und können ohne Installation direkt verwendet
werden. Um die Quellcodedateien verwenden zu können, muss Common Lisp auf dem
System installiert sein, wodurch sich ACT-R auch auf Linux/Unix Systemen verwenden
lässt. ACT-R 6 wird unter LGPL zur Verfügung gestellt. Im Folgenden wird von der
Standalone-Variante für Windows ausgegangen, welche als Zip-Archiv verfügbar ist und
lediglich entpackt werden muss, um ACT-R zu verwenden. Beschreibungen den Quellcode
zu kompilieren sind unter [2] vorhanden.

In ACT-R 6 stehen folgende Puffer zur Verfügung, welche jeweils ein entsprechendes
Modul in ACT-R integrieren (eine Beschreibung der wichtigsten Module ist im Abschnitt
3.2.1 zu finden):

• visual-location: Teil des Perceptual Systems für die Wo-Dimension (3.2.1).

• visual: Teil des Perceptual Systems für die Was-Dimension (3.2.1).

• manual: Nimmt Befehle zur Steuerung von Händen und Fingern entgegen.
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• retrieval: Schnittstelle zum Declarative Memory Modul.

• goal: Hält das aktuelle Ziel.

• production: Dient nur zur Analyse des Zustands des Production-Moduls, erlaubt
es nicht Chunks darin zu platzieren.

• imaginal: Hält visuelles Bild des Problemzustands. Ähnlich zum Goal-Puffer, je-
doch vergeht hier eine bestimmte Zeit beim Manipulieren von Chunks.

• imaginal-action: Kann vom Benutzer verwendet werden, um das Imaginal-Modul
zu erweitern. Standardmäßig keine Funktionalität darin implementiert.

• temporal: Gibt den Zählerstand aus dem Temporal-Modul an, wodurch Zeitab-
schnitte gemessen werden können.

• vocal: Schnittstelle zur rudimentär implementierten Sprachausgabe (Funktions-
weise analog zum Manual-Modul).

• aural-location: Lokalisierung von Sound Ereignissen anhand bestimmter Bedin-
gungen, wie z.B. Tonhöhe.

• aural: Lenkt Aufmerksamkeit auf eine bestimmte Sound-Quelle, verarbeitet den
Sound und erzeugt daraus einen Chunk.

Die Oberfläche von ACT-R ist aus mehreren separaten Fenstern aufgebaut, die wichtigs-
ten davon werden in Abbildung 33 gezeigt1:

• Control Panel: Bietet Zugang zu sämtlichen Funktionen von ACT-R.

• Stepper: Ermöglicht die Ausführung eines Modells Schritt-für-Schritt durchzuge-
hen.

• Listener: Gibt Statusinformationen auf der Konsole aus und ermöglicht Befehle
einzugeben.

Das Control Panel stellt den Einstiegspunkt zu allen weiteren Funktionen von ACT-R
dar und ist in mehrere Bereiche unterteilt: als erstes wird dort das aktuell geladene Mo-
dell angezeigt, welches sich über die entsprechenden Buttons direkt darunter laden lässt.
Durch Öffnen des Steppers lässt sich das geladene Modell Schritt-für-Schritt ausführen,
wobei der Stepper alle möglichen Produktionsregeln aufzeigt, welche zum aktuellen Zu-
stand passen und zusätzlich Variablenbelegungen darstellt. Im Bereich Inspecting des
Control Panels lassen sich über entsprechende Buttons die Inhalte der Declarative und

1Eine detaillierte Beschreibung über alle Funktionen von ACT-R befindet sich auch in der mitgelieferten
Dokumentation EnvironmentManual.doc des Zip-Archivs.
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Abbildung 33: Hauptfenster von ACT-R 6: Control Panel (links), Stepper (rechts oben),
Kommandozeilenein- und -ausgabe (rechts unten).

Procedural Memories, sowie aller vorhandenen Puffer anzeigen. Im Abschnitt Tracing
lassen sich über Buffer Traces graphische Darstellungen zum Ablauf anzeigen und über
diverse History-Buttons können Pufferbelegungen zu einzelnen Zeitabschnitten während
der Ausführung abgerufen werden. Die BOLD Tools (Blood Oxygen Level Dependent)
stellen eine graphische Repräsentation von BOLD Response Prediction Daten dar, wo-
bei die einzelnen Puffer visuell auf Gehirnbereiche abgebildet werden und die Aktivität
darin anzeigen (Abbildung 34).
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Abbildung 34: BOLD Viewer aus ACT-R: zeigt die Gehirnregionen der einzelnen Puffer
an und deren Aktivität während der Ausführung eines Modells.

3.2.3. Beispiel-Modell

Im Folgenden wird ein Beispielmodell vorgestellt, welches in ACT-R geladen und ausge-
führt werden kann. Es ist den Tutorials von ACT-R entnommen, welche bereits Teil des
Standalone-Archivs sind (tutorial/unit1/count.lisp). Dieses Modell zählt von 2 bis 4 und
gibt dabei eine Einführung in grundlegende Konstrukte wie Chunks und Produktionen.
Hierfür werden die beiden Puffer Retrieval und Goal verwendet.

ACT-R unterteilt die Wissenrepräsentation in zwei Typen: Deklaratives Wissen stellt
Faktenwissen dar, wie z.B. 2 ist der Nachfolger von 1, welches über Chunks repräsentiert
wird. Prozedurales Wissen dagegen wirkt sich auf das Verhalten aus und wird nicht
bewusst wahrgenommen, wie z.B. die Syntax von natürlichen Sprachen. Der zweite Typ
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an Wissen wird in ACT-R durch Produktionsregeln dargestellt.

Chunks
Chunks stellen Elemente des deklarativen Wissens dar und bestehen aus einem Chunk-
type und mehreren Slots. Ein Chunk-type kann als eine Kategorie angesehen werden und
Slots stellen die Attribute einer Kategorie dar. Die Deklaration eines Chunk-Types sieht
wie folgt aus:

(chunk-type count-order first second)

Da ACT-R Lisp für die Beschreibung des Modells verwendet, müssen sämtliche Befehle
in Klammern gesetzt werden. Das erste Argument chunk-type gibt an, um welchen Befehl
es sich handelt, gefolgt von einer Anzahl an Parametern. Der erste Parameter count-order
gibt dem Chunk-Type einen Namen, alle danach folgenden Parameter stellen Slots dar,
welche mit genau einem Wert belegt werden können.

Um nun Wissen in ACT-R zu hinterlegen, muss der Chunk-Type durch eine Menge von
Chunks instanziiert und dem Declarative Memory über den Befehl add-dm hinzugefügt
werden:

( add−dm
(b ISA count−order f i r s t 1 second 2)
( c ISA count−order f i r s t 2 second 3)
. . . )

Jeder Chunk erhält einen eindeutigen Namen - hier b und c. Auf den Namen folgt eine
Liste aus Paaren von Slotname und initialer Wert. Der erste Slot ISA ist ein spezieller
Slot, den jeder Chunk besitzt und welcher den Typ eines Chunks angibt. Dieser kann
nicht mehr verändert werden. Alle weiteren können in beliebiger Reihenfolge spezifiziert
und mit Anfangswerten versehen werden. Wird einem Slot kein Wert zugewiesen, so
bleibt dieser leer und wird durch das Lisp Symbol nil dargestellt.

Produktionsregeln
Eine Produktionsregel kann als eine IF-THEN Anweisung gesehen werden. Hierbei stellt
die Bedingung die aktuelle Belegung von bestimmten Puffern dar. Wenn die Bedingung
erfüllt ist, dann kann die Produktion feuern und Änderungen an den Puffern durchführen.
Die Bedingungen werden auch als left-hand side (LHS) und die Aktionen als right-hand
side (RHS) bezeichnet. Eine Produktionsregel in ACT-R könnte wie folgt aussehen:

(p s t a r t
=goal> ; ; LHS

ISA count−from
s t a r t =num1
count n i l

==>
=goal> ; ; RHS
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count =num1
+r e t r i e v a l>

ISA count−order
f i r s t =num1

)

Jede Produktionsregel beginnt mit dem Befehl p, gefolgt von einem Namen der Pro-
duktionsregel - hier start. Weiterhin unterteilt sich der Befehl in einen LHS- und einen
RHS-Bereich, wobei beide Teile durch ein ==>-Zeichen voneinander getrennt werden.
Wie bereits erwähnt steht der LHS-Bereich für die Bedingung, welche erfüllt sein muss,
damit eine Produktion ausgewählt werden kann. Diese enthält eine Liste von Puffern mit
jeweils einem vorgegebenen Muster, welches gegen die aktuellen Pufferbelegungen getes-
tet wird. Stimmen die Werte aller spezifizieren Puffer mit den vorgegebenen Mustern
überein, so ist die Produktionsregel passend und kann ausgewählt werden. Da es jedoch
vorkommen kann, dass mehrere Produktionsregeln auf einen bestimmten Zustand pas-
send sind, wird zunächst eine Konfliktauflösung durchgeführt, welche genau eine Regel
auswählt (siehe Procedural Memory Module in 3.2.1).

In der oben dargestellten Produktionsregel werden nur Bedingungen an den Goal-Puffer
gestellt, alle anderen können einen beliebigen Inhalt aufweisen, um diese Produktion zu
aktivieren. Ein Chunk im Goal-Puffer muss hierbei vom Chunk-Type count-from sein,
welches durch den ISA-Slot angegeben wird. Weiterhin muss im Start-Slot ein Wert
stehen, welcher innerhalb der Produktionsregel über die Variable num1 angesprochen
werden kann. Der Slot Count muss leer sein.

Variablen werden durch das Präfix
”
=“ dargestellt, wobei diese sich für folgende zwei

Möglichkeiten einsetzen lassen. Zum einen können diese in der Bedingung verwendet
werden, um die Werte von verschiedenen Slots zu vergleichen, ohne alle möglichen Kom-
binationen wissen zu müssen. Außerdem lassen sie sich einsetzen, um Werte in Slots des
Aktionenbereichs zu kopieren. Eine Variable ist jedoch nur innerhalb des Produktions-
befehls gültig.

Um einen Puffer zu spezifizieren, wird die selbe Syntax wie bei Variablen verwendet, wie
z.B. =goal. Hierbei handelt es sich genauso um Variablen, welche den Chunk repräsen-
tieren, der im entsprechenden Puffer steht. Diese können, wie jede andere Variable auch,
verwendet werden, um bestimmte Werte zu testen oder um den Chunk innerhalb einer
Aktion zu kopieren.

Der Aktionsbereich (RHS) einer Produktionsregel ist ähnlich aufgebaut wie die Bedin-
gung. Es werden ebenfalls die Puffer angegeben sowie die Slots, auf welchen Änderungen
durchzuführen sind. Hier stehen drei Typen von Aktionen zur Verfügung, welche sich
pro Puffer durchführen lassen:

• Buffer Modification: Direkte Änderung des Chunks, welcher sich momentan im
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Puffer befindet. Der Name des Puffers erhält hierbei das Präfix
”
=“.

• Buffer Request: Stellt eine Anfrage an das entsprechende Modul, einen Chunk
mit entsprechenden Eigenschaften im Puffer bereitzustellen. Der Puffername er-
hält hier das Präfix

”
+“. Im obigen Beispiel wird eine Anfrage an das Declarative

Module gestellt, einen Chunk zu finden, welcher vom Typ count-order ist und im
Slot

”
First“ den Wert stehen hat, welcher zuvor im Goal-Puffer im Slot

”
Start“

stand.

• Buffer Clearing: Löscht den aktuellen Chunk aus dem angegebenen Puffer, indem
der Puffername das Präfix

”
-“ erhält.

Das vollständige Modell count.lisp zählt von 1 bis 4 und sieht wie folgt aus (aus den
ACT-R Tutorials entnommen):

( c l e a r−a l l )

( de f ine−model count

( sgp : e s c t : l f . 05 : t race−d e t a i l high )

( chunk−type count−order f i r s t second )
( chunk−type count−from s t a r t end count )

( add−dm
(b ISA count−order f i r s t 1 second 2)
( c ISA count−order f i r s t 2 second 3)
(d ISA count−order f i r s t 3 second 4)
( e ISA count−order f i r s t 4 second 5)
( f ISA count−order f i r s t 5 second 6)
( f i r s t −goa l ISA count−from s t a r t 2 end 4)
)

(p s t a r t
=goal>

ISA count−from
s t a r t =num1
count n i l

==>
=goal>

count =num1
+r e t r i e v a l>

ISA count−order
f i r s t =num1

)

(P increment
=goal>

ISA count−from
count =num1

− end =num1
=r e t r i e v a l>

ISA count−order
f i r s t =num1
second =num2

==>
=goal>
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count =num2
+r e t r i e v a l>

ISA count−order
f i r s t =num2

! output ! (=num1)
)

(P stop
=goal>

ISA count−from
count =num
end =num

==>
−goal>
! output ! (=num)

)

( goal−f o cu s f i r s t −goa l )
)

Listing 1: Vollständiges Modell count.lisp

Nachdem das Model in ACT-R geladen wurde, lässt es sich durch Eingabe des Befehls
(run 1) im Fenster listener ausführen. Der Parameter 1 gibt an, wie lange das Modell
maximal ausgeführt werden soll; hier also maximal eine Sekunde. Ist der Stepper ge-
öffnet und der Befehl run wird eingegeben, so lässt sich das Modell Schritt-für-Schritt
ausführen, wobei die Belegungen der Puffer sowie die möglichen Produktionsregeln zu
einem Zeitpunkt beobachtet werden können.

Die Ausgabe des Modells sieht wie folgt aus:

> ( run 1)
0 .000 GOAL SET−BUFFER−CHUNK GOAL FIRST−GOAL REQUESTED NIL
0.000 PROCEDURAL CONFLICT−RESOLUTION
0.000 PROCEDURAL PRODUCTION−SELECTED START
0.000 PROCEDURAL BUFFER−READ−ACTION GOAL
0.050 PROCEDURAL PRODUCTION−FIRED START
0.050 PROCEDURAL MOD−BUFFER−CHUNK GOAL
0.050 PROCEDURAL MODULE−REQUEST RETRIEVAL
0.050 PROCEDURAL CLEAR−BUFFER RETRIEVAL
0.050 DECLARATIVE START−RETRIEVAL
0.050 PROCEDURAL CONFLICT−RESOLUTION
0.100 DECLARATIVE RETRIEVED−CHUNK C
0.100 DECLARATIVE SET−BUFFER−CHUNK RETRIEVAL C
0.100 PROCEDURAL CONFLICT−RESOLUTION
0.100 PROCEDURAL PRODUCTION−SELECTED INCREMENT
0.100 PROCEDURAL BUFFER−READ−ACTION GOAL
0.100 PROCEDURAL BUFFER−READ−ACTION RETRIEVAL
0.150 PROCEDURAL PRODUCTION−FIRED INCREMENT

2
0.150 PROCEDURAL MOD−BUFFER−CHUNK GOAL
0.150 PROCEDURAL MODULE−REQUEST RETRIEVAL
0.150 PROCEDURAL CLEAR−BUFFER RETRIEVAL
0.150 DECLARATIVE START−RETRIEVAL
0.150 PROCEDURAL CONFLICT−RESOLUTION
0.200 DECLARATIVE RETRIEVED−CHUNK D
0.200 DECLARATIVE SET−BUFFER−CHUNK RETRIEVAL D
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0 .200 PROCEDURAL CONFLICT−RESOLUTION
0.200 PROCEDURAL PRODUCTION−SELECTED INCREMENT
0.200 PROCEDURAL BUFFER−READ−ACTION GOAL
0.200 PROCEDURAL BUFFER−READ−ACTION RETRIEVAL
0.250 PROCEDURAL PRODUCTION−FIRED INCREMENT

3
0.250 PROCEDURAL MOD−BUFFER−CHUNK GOAL
0.250 PROCEDURAL MODULE−REQUEST RETRIEVAL
0.250 PROCEDURAL CLEAR−BUFFER RETRIEVAL
0.250 DECLARATIVE START−RETRIEVAL
0.250 PROCEDURAL CONFLICT−RESOLUTION
0.250 PROCEDURAL PRODUCTION−SELECTED STOP
0.250 PROCEDURAL BUFFER−READ−ACTION GOAL
0.300 DECLARATIVE RETRIEVED−CHUNK E
0.300 DECLARATIVE SET−BUFFER−CHUNK RETRIEVAL E
0.300 PROCEDURAL PRODUCTION−FIRED STOP

4
0.300 PROCEDURAL CLEAR−BUFFER GOAL
0.300 PROCEDURAL CONFLICT−RESOLUTION
0.300 −−−−−− Stopped because no events l e f t to p roce s s

Listing 2: ACT-R Ausgabe des Modells count.lisp

Die Ausgabe ist dabei in drei Spalten aufgeteilt. Zuerst wird die Zeit in Sekunden an-
gezeigt, zu welcher ein entsprechendes Ereignis aufgetreten ist, gefolgt von dem Modul,
welches das Ereignis auslöste und anschließend noch Details. Zwischen mehreren Ereig-
nissen sind die Ergebnisse zu sehen, wie ACT-R von 2 bis 4 zählt.

In der ersten Ausgabezeile ist zu sehen, dass das initiale Ziel in den Goal-Puffer geschrie-
ben wird (SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL). Dies wird durch den
Befehl goal-focus in der Modellbeschreibung ausgelöst, welche den entsprechenden
Chunk in den Puffer schreibt. Anschließend wird eine Konfliktauflösung durchgeführt
(CONFLICT-RESOLUTION), um eine passende Produktion auszuwählen. Hier ist aktuell
nur die Regel start passend, welche, wie in der nächsten Zeile zu sehen ist, ausgewählt
wurde (PRODUCTION-SELECTED START). Diese testet zunächst, ob ihre Bedingung er-
füllt ist, indem sie den aktuellen Chunk im Goal-Puffer überprüft (BUFFER-READ-ACTION
GOAL). Danach kann die Produktion gefeuert werden (PRODUCTION-FIRED START), wo-
bei im Procedural System ein Parameter hinterlegt ist, welcher angibt, dass hierbei
genau 50 ms vom Auswählen bis zum Feuern einer Produktion vergehen. Die nächsten
beiden Zeilen zeigen die durchgeführten Aktionen der Produktion an. Diese definiert
im RHS-Bereich den Count-Slot des Goal-Puffers zu aktualisieren (MOD-BUFFER-CHUNK
GOAL) und stellt eine Anfrage an den Retrieval-Puffer einen entsprechenden Chunk be-
reitzustellen (MODULE-REQUEST RETRIEVAL). Nachdem das Declarative-Module die An-
frage bearbeitet hat, wird erneut eine Konfliktauflösung durchgeführt, wobei nun die
increment-Produktionsregel ausgewählt wird (PRODUCTION-SELECTED INCREMENT), wel-
che den eigentlichen Zählschritt durchführt, das Ziel anpasst und schließlich den aktu-
ellen Wert schreibt. Anschließend beginnt dies erneut für die nächste Zahl, jedoch ohne
die start-Produktion, da die increment-Regel bereits das Ziel für den nächsten Schritt
festlegt.
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Abbildung 35: Erkennung eines Buchstabens von ACT-R. Der rote Kreis zeigt den Be-
reich an, auf welchen das Modell momentan seine Aufmerksamkeit richtet.

Weiterführendes Modell: Interaktion mit der Umgebung

Im Folgenden wird ein Modell vorgestellt, in welchem ein Buchstabe auf dem Bild-
schirm angezeigt wird, dieser vom Benutzer erkannt und anschließend über die Tasta-
tur eingegeben wird (siehe Abbildung 35). Das Model ist zu finden unter tutorial/u-

nit2/demo2.lisp. Das Experiment kann entweder von einem Menschen durchgeführt
werden (indem dieser den Buchstaben selbst eingibt), oder ACT-R kann die Durch-
führung des Experiments simulieren (hierfür muss im Modell die Zeile (setf *actr-

enabled-p* nil) nach (setf *actr-enabled-p* t) abgeändert werden). Das Experi-
ment lässt sich mit dem Befehl

(do-experiment)

ausführen.

Die Erkennung des angezeigten Buchstabens erfolgt über das Visual -Modul (auch Vision-
Modul genannt). Dieses enthält bereits Mechanismen, um Text zu parsen, oder einfache
visuelle Objekte auf einem Fenster zu erkennen. Hierbei werden die Objekte durch ein
oder mehrere Features repräsentiert, aus welchen anschließend, durch das Visual-Modul
Chunks in deklarativer Form erstellt werden. Für die Erkennung von Buchstaben ste-
hen mehrere Möglichkeiten zur Verfügung. Die Standardvariante ist die Darstellung von
Buchstaben entsprechend einer LED-Anzeige. Buchstaben werden dabei in Linien zer-
legt, sodass die Features eines Buchstabens den dafür benötigten LED-Segmenten ent-
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sprechen. Im folgenden Beispiel ist auf der linken Seite eine LED-Anzeige mit Kodierung
der Liniensegmente in Zahlen dargestellt. Während auf der rechten Seite die Features
für den Buchstaben E ausgewählt wurden und dessen Kodierung als Chunk gezeigt wird
[1]:

− − 1 2 − −
| \ | / | 3 4 5 6 7 | ( l e t t e r− e
− − 8 9 − − i s a a b s t r a c t− l e t t e r
| / | \ | 10 11 12 13 14 | value ”E”
− − 15 16 − − l ine−pos (1 2 3 8 9 10 15 16))

Zusätzlich wird ein Interface bereitgestellt, um die Fähigkeiten des Moduls nach eigenen
Bedürfnissen zu erweitern. Das Vision-Modul besitzt zwei Puffer: Zum einen den Visual
Puffer, der einen Chunk hält, um das aktuelle Objekt zu repräsentieren und zum ande-
ren den Visual-Location-Puffer, welcher über einen Chunk die Position des Objekts im
visuellen Sichtfeld (das Fenster) speichert.

Um nun ein Objekt zu erkennen, wird zunächst eine Anfrage in den Visual-Location-
Puffer geschrieben, welcher das Vision-Modul dazu veranlasst, die Position eines Objekts
im visuellen Feld zu ermitteln. Falls das Modul ein entsprechendes Objekt findet, erzeugt
es für dessen Position einen Chunk und schreibt ihn zurück in den Puffer. Folgender
Chunk wird hierfür beim Ausführen des Modells erzeugt:

VISUAL−LOCATION0−0−1
ISA VISUAL−LOCATION
SCREEN−X 130
SCREEN−Y 160
DISTANCE 15 .0
KIND TEXT
COLOR BLACK
VALUE TEXT
HEIGHT 10
WIDTH 7
SIZE 0.19999999

Anschließend wird eine Anfrage im Visual Puffer platziert, welche das Visual Modul
anweist seine Aufmerksamkeit auf einen bestimmten Punkt zu richten. Hierfür werden
die Bildschirmkoordinaten des Objekts, welche im Chunk des Visual-Location-Puffers
gespeichert sind, verwendet. Das Visual Modul erzeugt nun einen Chunk aus dem Objekt,
welches es an der entsprechenden Position vorfindet und schreibt diesen zurück in den
Visual Puffer.

Nachdem nun der angezeigte Buchstabe im Fenster erkannt wurde, muss noch das
Drücken der entsprechenden Taste auf der Tastatur simuliert werden. In ACT-R wird
dies durch das Motor -Modul übernommen. Standardmäßig werden hier nur Handbewe-
gungen unterstützt, um z.B. Tasten zu drücken oder eine Maus zu bewegen. Jedoch ist es
auch hier wieder möglich eigene Erweiterungen einzubauen. Das Motor-Modul wird über
den Manual -Puffer angesprochen, wobei hier keine Chunks durch das Modul erzeugt wer-
den, sondern der Puffer nur verwendet wird, um Befehle an das Motor-Modul zu senden.
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Um einen Tastendruck auszulösen, wird ein Chunk vom Typ press-key übermittelt,
welcher im Slot key die zu drückende Taste enthält. Im Modell wird davon ausgegangen,
dass sich die Hände in der Grundstellung über der Tastatur befinden, die Taste drücken
und danach wieder zur Ausgangsstellung zurückkehren.

Übersicht über Beispielmodelle in ACT-R 6

Tabelle 1 gibt eine kurze Übersicht zu den Modellen, welche ACT-R 6 in der Standalone-
Variante bereits mitliefert. Die entsprechenden Dateien sind im tutorial -Ordner des zip-
Archivs zu finden, worunter sich auch jeweils detaillierte Beschreibungen zu den Modellen
befinden.

Lerneinheit Beschreibung

unit 1 Bietet eine Einführung in Chunks und Produktionsregeln.
Enthält u.a. Modelle fürs Zählen und Addieren.

unit 2 Beschreibt wie die Interaktion mit der realen Welt stattfindet.
Der Standardmechanismus erlaubt es mit dem Computer zu
interagieren, wie z.B. visuelle Objekte wahrnehmen, Tasten-
drücke zu simulieren oder Mausbewegungen durchzuführen.

unit 3 Weiterführendes zur Funktionsweise der visuellen Aufmerk-
samkeit.

unit 4 Behandelt die Aktivierung von Chunks sowie Lern-
mechanismen.

unit 5 Abrufen von Informationen aus dem deklarativen Speicher.

unit 6 Auswählen von Produktionsregeln anhand errechneter Utility-
Werte.

unit 7 Erlernen von neuen Produktionsregeln.

Tabelle 1: Überblick über Beispielmodelle aus ACT-R

3.2.4. jACT-R

jACT-R [15] ist eine Implementierung von ACT-R in Java. Es baut auf der Eclipse
Rich Client Plattform auf, ist also eine Sammlung von Eclipse-Plugins. Zusätzlich zu
der Implementierung des ACT-R bietet jACT-R auch eine Entwicklungsumgebung für
Modelle an, ebenfalls auf Basis von Eclipse. Die Modelle werden in jACT-R im Gegensatz
zum original ACT-R in XML geschrieben. Hierbei gibt es für alle Elemente aus der

53



LISP-Beschreibung eine XML-Entsprechung. jACT-R bietet auch einen Übersetzer, der
zwischen beiden Sprachen konvertieren kann. Eine XML Übersetzung zum Beispielmodell
count.lisp aus 3.2.3 ist im Anhang B zu finden.

jACT-R bietet vier verschiedene Schnittstellen zur Simulation.

Module: Module erweitern den Funktionsumfang des Modells in einer theoretisch un-
termauerten Weise. Das Perceptual-Motor-Modul ist ein solches Modul.

Erweiterung: Erweiterungen tragen zu einem Modell bei, sind aber nicht theoretisch un-
termauert. Erweiterungen werden für Integrations- oder Berechnungszwecke ver-
wendet, zum Beispiel zur Verbesserung der Performance.

Instrumentierungen: Mit Instrumentierungen lässt sich der Status des Modells während
der Simulation überwachen und abfragen.

Sensoren: Sensoren bieten die Möglichkeit jACT-R-Modelle in andere System einzubet-
ten.

Der Autor Anthony Harrison möchte, dass jACT-R weitestgehend theoretisch kompati-
bel mit ACT-R bleibt, also die zugrunde liegenden Gleichungen und Schlüsselverhalten
erhalten bleiben. Trotzdem unterscheidet sich jACT-R in einigen Implementierungsde-
tails von ACT-R [16], was aber nach Aussagen Harrisons keinen Einfluss auf den Ausgang
der Simulation hat. Aufgrund dieser Unterschiede sieht auch das oben gezeigte Beispiel
an einigen Stellen anders gegenüber dem original ACT-R Beispiel aus.

Die IDE bietet unter anderem die Möglichkeit, während der Laufzeit das Log und die
Pufferzustände zu inspizieren.

3.2.5. Fazit

ACT-R hat gezeigt, dass es sich für ein großes Spektrum von Problemen einsetzen lässt.
Zudem stellt das Perceptual-Motor System einen interessanten Ansatz in Bezug auf GUIs
und Visualisierungen dar, worüber ACT-R bereits visuelle Informationen wahrnehmen,
verarbeiten und anschließend über das Manual Modul manipulieren kann. Dem gegen-
über stehen jedoch auch einige Hindernisse: So steht beim Erstellen eines neuen Modells
ein recht hoher Einarbeitungsaufwand bevor, um sich mit allen Konzepten von ACT-R
vertraut zu machen. Zudem sind in der derzeitigen Version meist nur einfache Mecha-
nismen implementiert, wie z.B. das Erkennen von Buchstaben oder einfachen visuellen
Features. ACT-R bietet hier zwar stets die Möglichkeit an, die Module mit eigenen Im-
plementierungen zu erweitern, jedoch muss überlegt werden, ob hierfür der Aufwand für
die Einarbeitung in die Sprache Lisp erbracht werden will. Eine mögliche Alternative zu
Lisp stellt jACT-R dar, wobei hier modernere Sprachen wie Java und XML verwendet
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werden. Allerdings befindet sich jACT-R noch in einer recht frühen Entwicklungsphase.

3.3. CogTool

CogTool ist eine Anwendung zum Erstellen von UI-Prototypen, mit der Besonderheit,
das Abläufe innerhalb der Prototypen definiert werden können und die Anwendung au-
tomatisch quantitative Aussagen über den Ablauf generiert. Genauer: Die Anwendung
simuliert die Durchführung vorgegebener Abläufe durch einen Benutzer und liefert Aus-
sagen über die Dauer einzelner Schritte und in der Summe über den gesamten Ablauf
([3], Kapitel 1.1). Dabei wird das kognitive, perzeptuelle und motorische Verhalten des
Benutzers mit Hilfe des ACT-R Frameworks simuliert.

Dieses Kapitel bietet einen groben Überblick zu CogTool und geht anschließend genauer
auf die Zusammenarbeit zwischen CogTool und ACT-R ein.

3.3.1. Überblick

Ein konkreter Ablauf in CogTool basiert auf einem sogenannten
”
Design“. Ein Design

besteht aus einer Menge von
”
Frames“, sowie Übergängen zwischen den Frames (

”
Tran-

sitions“).

Ein Frame stellt eine Ansicht einer Anwendung dar. Dies kann eine, mittels den in Cog-
Tool eingebauten Standard-Widgets erstellte Oberfläche sein. Alternativ genügt CogTool
aber auch ein Screenshot einer Oberfläche, auf den lediglich auf alle Objekte, die für den
Interaktionsablauf relevant sind, Widgets gesetzt werden. Transitions repräsentieren Be-
nutzeraktionen, die zum Wechsel der Ansicht führen. Die Standardübergänge sind hierbei
Tastatureingaben und Mausaktionen (Klicks, sowie Drag & Drop). Eine Transition be-
steht somit aus drei Elementen: Dem Widget von dem sie ausgeht (z.B. Klick auf einen
konkreten Button, Texteingabe in ein Feld), der Art der Interaktion (Maus, Tastatur)
und dem Frame, zu dessen Wechsel die Interaktion hinführt. Dies kann auch der Frame
sein, von dem die Transition ausgeht (

”
Self-Transitions“). Somit ist es auch möglich,

mehrere sequentielle Aktionen auf denselben Frame zu definieren.
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Abbildung 36: Ein CogTool Design mit mehreren Frames und Transitions

Ein Design stellt in CogTool die Basis eines konkreten Ablaufs dar. Vervollständigt wird
der Ablauf durch Definition eines

”
Tasks“. Innerhalb eines Tasks wird ein Design durch

eine
”
Demonstration“ komplettiert. Hierbei durchläuft der Benutzer das mit dem Task

assoziierte Design und legt dabei z.B. die konkrete Reihenfolge von Aktionen innerhalb
eines Frames fest. Diese sind fest an die Transitions des Designs gebunden. Der Benutzer
hat die Möglichkeit, zusätzliche Sonderaktionen, wie das Betrachten von Widgets oder

”
Denken“, im Ablauf festzuhalten. Dies bedeutet in der Berechnung nichts anderes, als

eine Pause mit einer vom Benutzer vordefinierten Dauer einzulegen.

Das Resultat einer Demonstration ist ein automatisch generiertes ACT-R Modell des
Tasks, welches wiederum als Eingabe für das ACT-R Framework dient. Die quantitative
Vorhersage, wie lange ein Benutzer für die Durchführung der vordefinierten Aufgabe
benötigt, basiert nun ausschließlich auf dem generierten Script, das ACT-R verwendet.
Im Folgenden wird vorgestellt, wie CogTool den definierten Task in das ACT-R Modell
umsetzt.

3.3.2. Erzeugung des ACT-R Modell

Den Task, der auf einem Design ausgeführt wird, setzt CogTool in einem Verfahren
ähnlich dem

”
Keystroke-Level-Model“ um, welches wiederum durch ein ACT-R Modell

repräsentiert wird. Konkret ist ein ACT-R Modell eine Lisp-Datei mit Produktionsregeln,
die durch das ACT-R Framework ausgeführt werden kann und als Ergebnis die geschätzte
Dauer des im Modell beschriebenen Vorgangs liefert. Im Folgenden werden zunächst die
Grundlagen zu KLM und EMMA erläutert und anschließend beschrieben, wie diese von
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CogTool verwendet werden.

Keystroke-Level-Model

Das Keystroke-Level-Model (KLM) [10] wurde 1983 von Card, Moran und Newell ent-
wickelt [8]. Es soll die Dauer der Interaktion zur Erledigung einer Aufgabe mit einem
Informationssystem auf dem

”
Keystroke-Level“ beschreiben. Dies bedeutet, dass alle In-

teraktionen in etwa auf der Abstraktionsebene mit dem Drücken einer Taste vergleichbar
sein sollen. Demnach wäre z.B.

”
Im System einloggen“ eine zu grobe Interaktion. Das

KLM definiert folgende Interaktionen, auch
”
Operatoren“ genannt:

• K - Drücken einer Taste auf der Tastatur (0.28 Sekunden)

• T(n) - Eingabe von n Zeichen. T(n) = K * n

• P - Den Mauszeiger auf einen Punkt auf dem Bildschirm führen (1.10 Sekunden)

• B - Drücken der Maustaste oder Loslassen der Taste (0.10 Sekunden)

• BB - Ein Mausklick. Drücken und Loslassen der Maustaste (0.20 Sekunden)

• H - Hand wechselt zwischen Tastatur und Maus (0.40 Sekunden)

• M - Mentale Vorbereitung (1.20 Sekunden)

• W(t) - t Sekunden auf Berechnungen des Systems warten

Die Zeitangaben beruhen auf experimentellen Werten [8] und stellen die durchschnittliche
Dauer der genannten Aktionen dar.

Zur manuellen Anwendung des Modells auf eine Aufgabe müsste diese nun so lange auf
feinere Stufen aufgelöst und geordnet werden, bis sie durch eine Sequenz der Operatoren
ausgedrückt werden kann. Eine besondere Herausforderung ist dabei die Platzierung des

”
Mentalen Operators“ bzw.

”
mentale Vorbereitung“ in der Operatorenauflistung. Dieser

sollte immer dann in die Sequenz eingesetzt werden, wenn der Proband während der
Durchführung der Aufgabe einen Moment lang nachdenken müsste, z.B. zum Orientieren
innerhalb der Programmoberfläche.

EMMA

Alle Informationen dieses Abschnitts sind [9] entnommen.
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EMMA ist ein Modell, das Augenbewegungen und visuelle Aufmerksamkeit beschreibt.
Es ist in die kognitive Architektur ACT-R als Teil der perzeptuell-motorischen Kompo-
nenten integriert und wird von CogTool dafür verwendet, um die Bewegungen der Augen
beim Erledigen eines Tasks zu beschreiben. Da das KLM für CogTool insbesondere um
diese Aspekte erweitert werden muss, soll an dieser Stelle zunächst EMMA erläutert
werden, bevor das für CogTool erweiterte KLM vorgestellt wird.

Visuelle Aufmerksamkeit besteht zunächst aus dem Befehl, die Aufmerksamkeit auf ein
bestimmtes visuelles Objekt zu lenken. Zeitgleich beginnt der

”
Codierungsprozess“ des

visuellen Objekts: Der Prozess, der die visuelle Repräsentation des Objekts erkennt und
in eine abstrakte Form des deklarativen Gedächtnisses überführt (Chunk). Die Dauer des
Codierungsprozesses hängt davon ab, wie oft das Objekt im Sichtfeld vorkommt. Auch
die Entfernung des Fokuspunktes der Augen zum Objekt, in Bezug auf den Sehwinkel,
wird einbezogen.

Augenbewegungen werden durch das Verschieben der visuellen Aufmerksamkeit initi-
iert. Dabei werden zwei Phasen unterschieden: Vorbereitung und Ausführung. Die Un-
terscheidung resultiert aus der Tatsache, dass Menschen trotz einer Verschiebung der
Aufmerksamkeit die Augenbewegung zum neuen Aufmerksamkeitspunkt je nach Situa-
tion abbrechen, falls die Aufmerksamkeit in der Zwischenzeit nochmals umgelenkt wurde.
Die Dauer der Augenbewegung errechnet sich aus einem fixen und einem dynamischen
Anteil, in Abhängigkeit des zu überbrückenden Sehwinkels.

Die Berechnung der visuellen Aufmerksamkeit und der Augenbewegung wird zusätzlich
mit einer

”
Unschärfe“ ausgestattet, indem die statischen Anteile der Dauer mit Hilfe

eines Mittelwerts und einer Standard-Abweichung variiert werden. Zusätzlich wird der
eigentliche Ziel-Fokuspunkt des Auges mittels einer Gauss-Verteilung um das eigentliche
Ziel gestreut, um ein realitätsnäheres Verhalten des virtuellen Auges zu erzielen.

Der Kontrollfluss des EMMA-Modells lässt sich durch 4 Bereiche beschreiben:

• Kognition: Steuert die Verschiebung der Aufmerksamkeit

• Sicht: Verschiebt die Aufmerksamkeit und codiert visuelle Objekte

• Augenbewegung - Vorbereitung: Bereitet eine Augenbewegung vor

• Augenbewegung - Ausführung: Motorische Ausführung der Bewegung
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Abbildung 37: Visualisierung des (zum Teil) parallelen Ablaufs der 4 Bereiche ([9], S.4).
Siehe Text im Kapitel EMMA.

Unterschiedliche Fälle führen nun zu unterschiedlichen Abläufen (Abbildung 37). Dauert
die Codierung (Linie

”
Vision“) genauso lange wie die Augenbewegung, läuft beides exakt

parallel (Fall a). Sendet die Kognition während der Codierung den
”
Befehl“, wieder die

Aufmerksamkeit zu verschieben, wird die Augenbewegung unterbrochen und der neue
Vorgang angestoßen (Fall b). Ist die Augenbewegung im gleichen Falle bereits eingeleitet,
wird die Bewegung allerdings nicht abgebrochen, trotzdem wird ein neuer Vorbereitungs-
und Codierungsprozess parallel eingeleitet (Fall c). Dauert der Codierungsprozess länger
als die Augenbewegung, wird der Codierungsprozess nach der Bewegung erneut angesto-
ßen (Fall d). Dieser wird nun aber schneller Ablaufen, da das Auge das zu codierende
Objekt exakt fokussiert (es liegt also eine minimale Sehwinkeldifferenz zwischen dem
Fokuspunkt der Augen und dem Fokus der Aufmerksamkeit).

KLM, CogTool und ACT-R, in Bezug aufeinander

CogTool verwendet ein Modell, das dem KLM ähnelt. Es definiert folgende Operationen
([3], Kapitel 5.5):

• Eye Movement Preparation - Vorbereitung der Augen, sich auf ein Objekt auf dem
Bildschirm zu fixieren (siehe EMMA)

• Eye Movement Execution - Die Augen fixieren ein Objekt auf dem Bildschirm
(siehe EMMA)

• Vision Encoding - Repräsentiert das
”
Codieren“ wahrgenommener visueller Objekte

in eine mentale Repräsentation (siehe EMMA)
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• System Wait - Entspricht W in KLM

• Cognition - Entspricht M in KLM

• Press Key - Entspricht K in KLM

• Move Cursor - Entspricht P in KLM

• Click Mouse - Entspricht B bzw. BB in KLM

• Hand to Home / Hand to Mouse - Entspricht H in KLM

CogTool erweitert das KLM um mehrere Aspekte. Zum einen wird das Spektrum der
Operationen auf die Bewegung der Augen erweitert, z.B. das Fixieren eines Widgets vor
der Interaktion mit diesem. Dies erfordert die Einführung von parallelen Operationen.
Während im KLM alle Aktionen inhärent sequentiell sind, wäre es unrealistisch, dass
Aktionen der Augen und der Hände nur nacheinander ablaufen. Zusätzlich verwendet
CogTool im Gegensatz zum KLM keine pauschalen Zeitangaben für Operationen. Die
Berechnung der Zeiten ist leider nur über den Quellcode nachvollziehbar.

Beim Berechnen eines Tasks werden die Frames und Transitions des Designs nun automa-
tisch in eine Sequenz der oben genannten Operationen überführt, wobei nun Operationen
auch parallel verlaufen können. Insbesondere die Platzierung des

”
Cognition“ Operators

stellt dabei eine Herausforderung dar. Für diese wurde eine eigene Heuristik in CogTool
entwickelt, siehe [4], Abschnitt

”
Rules for placing mental operators“. CogTool bietet die

Möglichkeit, die Übersetzung des Tasks in Operatoren zu visualisieren (siehe Abbildung
38):
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Abbildung 38: Visualisierung der Operatoren eines Tasks in CogTool. Einzelne Blö-
cke stehen für einzelne Operationen, entsprechend der obigen Katego-
risierung. Die Linien zwischen einzelnen Blöcken drücken Anfang-Ende-
Abhängigkeiten zwischen den Operationen aus. Dabei laufen mechanische
Aktionen der Hände (

”
Left Hand“,

”
Right Hand“), sowie die Aktionen der

Augen (
”
Eye Move - Exec“,

”
Eye Move - Prep“) jeweils innerhalb der eige-

nen Zeitlinien sequentiell ab. Gegeneinander und gegenüber
”
Cognition“

gibt es jedoch Überlappungen, also parallele Abläufe.

Während die Platzierung der Operatoren von CogTool vorgenommen wird, ist die Dauer
der Berechnung der einzelnen Operationen nun die Aufgabe von ACT-R. Jede Operati-
on wird in eine Reihe von Produktionsregeln für ACT-R übersetzt. Hier hebt sich das
Modell von KLM ab, da für die Berechnung nun keine pauschalen Zeitangaben verwen-
det werden. Durch den Einsatz des Zwischenspiels aus motorischen, perzeptuellen und
kognitiven Modulen in ACT-R

”
erbt“ CogTool die Validität des ACT-R Modells (vgl.

[4], Abschnitt
”
Tools for easy predictive modeling“). Beispielsweise greift ACT-R für Be-

wegungen auf Fitts Law zurück und besitzt eine
”
Preparation Theory“ separat von den

Ausführungen, was z.B. dazu führt, dass ein wiederholtes Drücken einer Taste schneller
geschieht als ein erstmaliges Drücken, da die Aktion nicht neu vorbereitet werden muss.
Auf die Lernfähigkeiten von ACT-R wird durch CogTool jedoch nicht zurückgegriffen,
was sich jedoch im Einklang damit befindet, dass CogTool einen erfahrenen Benutzer
simulieren soll, der durch die Benutzung der simulierten Anwendung keine Effizienzstei-
gerung erfährt.
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3.3.3. Erweiterbarkeit

Zu CogTool existiert bereits eine Erweiterung, die die Einbindung von UI Prototypen
unterstützt, die nicht in CogTool selbst erstellt worden sind [7]. Die Beschreibung der
Erweiterung offenbart hierbei, das im Endeffekt immer eine Abbildung der externen GUI
bzw. Widgets auf den vordefinierten Satz an CogTool-internen Widgets vorgenommen
werden muss. Es ist somit nicht möglich, Widgets zu definieren die nicht bereits in Cog-
Tool vorhanden sind, außer sie ließen sich als Zusammensetzung der CogTool-Widgets
beschreiben. Da die

”
atomaren“ Objekte von CogTool aber z.B. Elemente wie

”
Button“,

”
Label“ oder

”
Menü“ sind, lassen sich keine ausgefallenen Elemente beschreiben, erst

recht keine Visualisierungen.

3.3.4. Fazit

Bezüglich unserer Fragestellung nach einer automatischen qualitativen Analyse von GUIs
und Visualisierungen sind die Ergebnisse aus CogTool ernüchternd. Das einzige Maß
dafür, wie gut eine GUI laut CogTool ist, ist die errechnete Durchlaufzeit einer vor-
definierten Aufgabenstellung. Das Design der GUI ist ausschließlich als Hilfsmittel zur
Definition der Aufgabe genutzt. Wie der Benutzer eine Aufgabe erledigt, und somit auch,
wie er mit der GUI interagiert, muss bereits detailliert und komplett manuell in der Auf-
gabendefinition festgelegt werden. Wie der Benutzer die GUI wahrnimmt, wird bei der
Analyse nicht tiefgreifend in Betracht gezogen. So ist z.B. das Ausfüllen eines Formulars
aus Sicht von CogTool lediglich eine vordefinierte Abfolge von Maus und Tastaturein-
gaben, wobei das einzige qualitative Maß der Widgets ihre Größe und Entfernung von
der Mausposition ist. Es hat somit zwar Auswirkungen, wenn Widgets sehr weit von-
einander entfernt sind. Ob die GUI aber mit zu vielen Widgets überfrachtet ist, ob die
Widgets mit Ausnahme der Entfernung voneinander sinnvoll platziert sind, ob die GUI
durch schlechte Farbwahl schwer zu bedienen ist und schlecht wahrgenommen wird, sind
Aspekte, die CogTool nicht analysieren kann. Da die Aufgabendefinition in CogTool be-
reits durch den

”
Weg zum Ziel“ vorgegeben werden muss, wird auch außer acht gelassen,

wie und ob der Benutzer diesen Weg in der GUI überhaupt intuitiv erkennen könnte.

Im Bezug auf die Analyse einer Visualisierung stellt CogTool folglich auch keine wirk-
liche Ausgangsbasis dar, da Visualisierungen eben nicht aus einer kleinen Anzahl stark
standardisierter Widgets bestehen, die durch eine Größe und Position ausreichend be-
schrieben sind.

Was CogTool maßgeblich fehlt, in Bezug auf unsere Fragestellung, sind Wahrnehmungs-
aspekte bezüglich den Widgets selbst. Unter der Annahme, dass eine Visualisierung
mit komplett individuell erstellten Darstellungselementen arbeitet, müsste ein entspre-
chendes Framework zur qualitativen Analyse eine Möglichkeit bieten, ein Modell der
angewandten Darstellungselemente nachzubilden. Aufgrund der vielen unterschiedlichen
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Arten von Visualisierungen müssten diese Elemente sehr generisch sein, was wiederum
die Komplexität beim Abbilden der Widgets oder anderer Elemente drastisch erhöhen
würde. Gleichzeitig stellt sich die Frage, wie viele solcher Basiselement nötig wären.
Vergleicht man z.B. eine 3D-Volumen-Visualisierung mit einem 2D-Kuchendiagramm,
scheint eine Beschreibung beider Visualisierungen mit gleichen

”
Mitteln“ fragwürdig.

Verwirft man den Anspruch, möglichst alles beschreiben zu können, wäre es eventuell
realistischer eine Hierarchie bzw. Gruppierung von ausgewählten Visualisierungsarten zu
erstellen, welche unter dem Aspekt der Wahrnehmung möglichst nah miteinander ver-
wandt sind und für die sich pro Gruppe eine Reihe von Basiselementen zur einheitlichen
Beschreibung finden lässt.

3.4. Tools für Visualisierungen

Das bisher vorgestellte CogTool wurde zur Evaluierung von GUIs entwickelt und es hat
sich gezeigt, dass die dort verwendeten Prinzipien sich nur sehr schwierig auf Visualisie-
rungen übertragen lassen. Im Folgenden wird eine kognitive Architektur vorgestellt, die
Visualisierungsanwendungen auswerten kann.

3.4.1. CAEVA

CAEVA [19] ist eine kognitive Architektur zur Auswertung von Visualisierungsanwen-
dungen. CAEVA simuliert einen Benutzer einer Visualisierungsanwendung mittels eines
kognitiven Modells. CAEVA besteht aus einem kognitiven Modell und einem Interopera-
bilitätsmodell zur Verbindung mit der Visualisierungsanwendung. Über diese Verbindung
ist CAEVA sowohl in der Lage die Anwendung zu manipulieren, also Benutzeraktionen
zu simulieren, als auch den Status der Anwendung zu erfassen.
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Kognitives Modell

Abbildung 39: Aufteilung des Kognitiven Modells von CAEVA in einen domain-
abhängigen und einen domain-unabhängigen Teil für die einfachere Wie-
derverwendbarkeit des deklarativen und prozeduralen Wissens.

CAEVA benutzt ACT-R zur Implementierung des kognitiven Modells. Dabei besteht das
kognitive Modell aus einem domain-unabhängigen Teil und einem domain-abhängigen
Teil.

Der domain-abhängige Teil enthält Regeln über den Aufbau von Visualisierungen. Dazu
gehören auch Heuristiken, die bei der Erstellung von Visualisierungen zum Einsatz kom-
men, zum Beispiel für die Auswahl der Visualisierungsart. Der domain-unabhängige Teil
beinhaltet Regeln darüber, wie Anwender Daten analysieren, zum Beispiel Art und Um-
fang der Aggregation der Daten. Für das domain-unabhängige Modell versucht CAEVA
eine umfassende Implementierung zu bieten, die für alle Anwendungen gültig ist und im
Idealfall nicht angepasst werden muss.

Der domain-abhängige Teil des kognitiven Modells enthält Regeln darüber, wie Menschen
das Domainwissen einsetzen, um die Analyse durchzuführen, zum Beispiel welche der
Datensätze relevant für die Beantwortung einer Frage sind. Dieser Teil muss an die
jeweilige Anwendung angepasst werden.
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Interoperabilitätsmodell

Abbildung 40: Das kognitive Modell und die Visualisierungsanwendung kommunizie-
ren in CAEVA mittels XML-Nachrichten. Dafür muss die Visualisie-
rungsanwendung einen Command-Server implementieren, der die XML-
Nachrichten verarbeiten kann.

Die Kommunikation zwischen dem kognitiven Modell und der Visualisierungsanwendung
geschieht durch XML-Nachrichten, die in der Richtung vom Modell zur Anwendung die
verschiedenen Benutzerinteraktionen kodieren und in der Richtung von der Anwendung
zum Modell den aktuellen Anwendungsstatus an das Modell übermitteln. Dafür muss
die Visualisierungsanwendung einen Command-Server implementieren, der die XML-
Nachrichten verarbeiten kann.

Von CAEVA wurde zwar ein Prototyp entwickelt, allerdings ist dieser nicht verfügbar.
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4. Kognitive Simulation von GUIs und Visualisierungen

Abbildung 41: 42 Kreise und ein Quadrat. Für einen Betrachter dauert es länger die
Kreise zu zählen, als zu bestimmen, ob ein Quadrat zu sehen ist.

Unter kognitiver Simulation von GUIs und Visualisierungen verstehen wir den Einsatz
von kognitiven Architekturen zur Evaluation der Effizienz der grafischen Darstellung zur
Erreichung eines bestimmten Ziels. Dabei ist zunächst erst einmal die Definition des Ziels
wichtig. Dieses kann zum Beispiel sein, in den visualisierten Daten neue Zusammenhänge
zu erkennen oder eine vorgegebene These zu bestätigen. Ein Simulationsdurchlauf mit
einer kognitiven Architektur wie ACT-R kann nun bestimmen, wie lange ein Mensch
benötigen würde, um das vorgegebene Ziel zu erreichen. Je schneller das Ziel erreicht
wird, desto effizienter ist die Visualisierung zur Erreichung des Ziels. Wichtig ist dabei,
dass diese Aussage nur bezüglich des festgelegten Ziels gültig ist. Dass diese Einschrän-
kung nötig ist, lässt sich mit folgendem Beispiel nachvollziehen: Angenommen wir haben
eine Visualisierung, die sehr viele (o.B.d.A. 42) Kreise und ein Quadrat zeigt und wir
müssten zur Erreichung des Ziels die Anzahl der Kreise bestimmen, dann würde dies
länger dauern, als wenn es ausreichen würde zur Erreichung des Ziels zu bestimmen, ob
in der Visualisierung ein Quadrat vorhanden ist (Abbildung 41).
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4.1. Was ist nötig, um GUIs / Visualisierungen kognitiv simulieren zu
können ?

Zunächst benötigt die Simulation eine Repräsentation der GUI oder der Visualisierung.
Diese kann als Bild oder als Beschreibung in maschinenlesbarer Form vorliegen. Dann
benötigt die Simulation Wissen über Visualisierungen. Sie muss wissen, welches Element
welche Bedeutung hat, bzw. haben könnte und wie diese miteinander zu der Visuali-
sierung verknüpft werden. Außerdem muss das Wissen so umfangreich sein, dass es für
die Simulation möglich ist festzustellen, ob und wie das aktuelle Ziel mit der Visualisie-
rung erreicht werden kann. Diese Bedingungen lassen sich in folgender Architektur nach
Raschke [25] zusammenfassen:
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Abbildung 42: Architektur eines Systems zur kognitiven Simulation von Visualisierun-
gen nach Raschke. Ein kognitives Modell dient zur Effizienzbewertung
einer Visualisierung. Das Modell wird anhand von Eye-Tracking-Daten
verifiziert.

Die Architektur abstrahiert von der eigentlichen Visualisierung, indem diese nur als Mo-
dell hinterlegt wird. Die Visualisierung wird also in einer Beschreibungssprache erstellt
und aus vordefinierten Elementen zusammengesetzt. Solche Elemente sind zum Beispiel
Achsen. Ein Renderer erzeugt aus diesem Modell dann ein Abbild für ein virtuelles Auge.
Dieses Abbild muss nicht unbedingt ein gerastertes 2D-Bild sein. Weitere Möglichkeiten
werden im Abschnitt 4.3.3 gezeigt. Das virtuelle Auge dient als Schnittstelle für das
Kognitionsframework, um die Visualisierung betrachten zu können. In die kognitive Si-
mulation geht auch das mit der Visualisierung verfolgte Ziel ein, damit eine Bewertung
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der Effizienz bezüglich diesem möglich wird. Das kognitive Modell muss so viel Wissen
enthalten, dass es mit der Visualisierung, die das virtuelle Auge sieht, umgehen kann.
Es muss also Wissen über Visualisierungen im Allgemeinen, aber auch Wissen über die
Domain der Daten enthalten.

Die Güte und Plausibilität der kognitiven Simulation wird anhand von Vergleichen der
Daten aus den Simulationen mit Eye-Tracking-Daten ermittelt.

4.2. Visualisierungstechniken, die sich gut simulieren lassen

Abbildung 43: Ein kleines rotes Viereck verdeckt durch ein großes grünes Viereck. Das
rote Viereck ist für einen menschlichen Betrachter nicht sichtbar. Ein vir-
tuelles Auge, das die Überdeckung nicht beachtet, würde das rote Viereck
sehen.

Cog-Tool hat gezeigt, dass sich Abläufe innerhalb von Benutzeroberflächen kognitiv si-
mulieren lassen. Cog-Tool greift dabei auf die Tatsache zurück, dass die zur Erstellung
benutzten Widgets klar abgegrenzte Entitäten, sowohl auf dem Bildschirm, als auch in
der Beschreibung der Benutzeroberfläche sind. Es besteht also im Allgemeinen bei Benut-
zeroberflächen keine Diskrepanz zwischen beschriebenen und dargestellten Elementen.
Dies ist bei Visualisierungen unter Umständen nicht gegeben, wenn sich zum Beispiel
beschriebene Elemente überdecken können. Deshalb lassen sich Visualisierungstechni-
ken, die mit klar abgegrenzten Entitäten arbeiten und diese überdeckungsfrei anordnen,
besonders einfach kognitiv simulieren, weil hier die Beschreibung der Visualisierung und
die Darstellung der Visualisierung keine Diskrepanz aufweisen. Visualisierungen müssen
aber nicht unbedingt überdeckungsfrei sein, um kognitiv simuliert werden zu können. Es
ist ausreichend, wenn sich Überdeckungen bestimmen lassen und diese auch in die Simu-
lation einfließen. Betrachten wir dazu folgendes Beispiel: Wir haben ein großes grünes
Viereck, das ein kleines rotes Viereck vollständig überdeckt. Beide Vierecke sind jeweils
durch die Koordinaten ihrer Eckpunkte gegeben. Wird jetzt in der Simulation davon
ausgegangen, dass der Benutzer beide Vierecke gleichermaßen sieht, dann führt diese zu
falschen Ergebnissen. Zum Beispiel, dass der Benutzer erkennt, dass ein rotes Viereck
vorhanden ist, obwohl die real betrachtete Darstellung diesen Schluss gar nicht zulässt
(siehe Abbildung 43). Da wir aber die Koordinaten der Vierecke kennen und die Erken-
nung einer Überdeckung bei Vierecken durch diese Koordinaten möglich ist, können wir
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das Ergebnis verbessern, indem wir diese Erkenntnis in die Simulation einfließen lassen.

4.3. Maschinelle Zugänglichkeit

Im Folgenden werden einzelne Aspekte der unter 4.1 vorgestellten Architektur auf Um-
setzungsmöglichkeiten näher untersucht.

4.3.1. Vorbild Semantic Web?

Das Semantic Web ist ein semantisches Netz für das Internet. Ein semantisches Netz ist
ein formales Modell von Begriffen und ihren Beziehungen [41]. Dieses Modell kann zur
Wissensrepräsentation genutzt werden. Das semantische Netz wird auch als Graph inter-
pretiert, in dem die Begriffe Knoten und die Relationen Kanten sind. Für das Semantic
Web steht als Notation das Resource Description Framework (RDF) zur Verfügung.
Das RDF definiert Relationen zwischen Ressourcen mittels Tripeln nach dem Subjekt-
Prädikat-Objekt-Muster. Eine Ressource im Semantic Web ist alles, was durch eine URI
eindeutig bezeichnet werden kann. Diese muss dabei nicht zwangsläufig im Internet er-
reichbar sein. Außerdem gibt es Ontologie-Beschreibungssprachen, mit denen auf den
Ressourcen und Relationen des Semantic Web Ontologien definiert werden können.

Annotationen nach dem Vorbild des Semantic Web sind aus unserer Sicht für die Anno-
tation von Visualisierungen geeignet. Man müsste nur eine geeignete Ontologie erstellen,
da es unseres Wissens bisher noch keine Ontologie für Visualisierungen im Semantic
Web gibt. Eine Entscheidung für das Semantic Web hätte darüber hinaus auch den Vor-
teil, dass man bestehende Ontologien mit der Ontologie für Visualisierungen verknüpfen
könnte. Es geht also nicht darum, in welcher Sprache man das Wissen aufschreibt, son-
dern wie man das Wissen in das kognitive Modell bekommt. Man müsste also für jede
Sprache, für die man sich entscheidet, eine Art Übersetzer bauen.

Eine direkte Übersetzung der Relationen in einem semantischen Netz in Chunks für
ACT-R könnte zum Beispiel wie folgt aussehen:

<?xml ve r s i on =”1.0” encoding=”UTF−8” ?>
<rd f :RDF xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns : dc=”http :// pur l . org /dc/ e lements /1.1/”>
<rd f : De s c r ip t i on

rd f : about=”http :// de . w ik iped ia . org /wik i /Resource Descr ipt ion Framework”>
<dc : t i t l e >Resource Desc r ip t i on Framework</dc : t i t l e >
<dc : pub l i sher>Wikipedia − Die f r e i e Enzyklopädie</dc : pub l i sher>

</rd f : Descr ipt ion>
</rd f :RDF>

Listing 3: Relationen in RDF, Beispiel aus [38]
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( chunk−type semantic−web−relation sub j e c t p r ed i c a t e ob j e c t )
(add−dm

( t i t l e ISA semantic−web−relation
sub j e c t ”http :// de . w ik iped ia . org /wik i /Resource Descr ipt ion Framework ”
p r ed i c a t e ”http :// pur l . org /dc/ e lements /1 .1/ t i t l e ”
ob j e c t ”Resource Desc r ip t i on Framework ”)

( pub l i s h e r ISA semantic−web−relation
sub j e c t ”http :// de . w ik iped ia . org /wik i /Resource Descr ipt ion Framework ”
p r ed i c a t e ”http :// pur l . org /dc/ e lements /1 .1/ pub l i s h e r ”
ob j e c t ”Wikipedia − Die f r e i e Enzyklopädie ” ) )

Listing 4: Abbildung der Relationen in Chunks

Das hier gezeigte Beispiel ist stark vereinfacht und müsste für den Einsatz sicher noch
erweitert werden, zum Beispiel muss die Simulation noch Regeln enthalten, dass Subjekte
mit der gleichen URI auch das gleiche Objekt referenzieren. Ebenso fehlen die Aussagen
über die zugrundeliegene Ontologie, die sich auf ähnliche Weise wie Relationen abbilden
lassen, da sie ebenfalls in einem XML-Dialekt geschrieben sind. Unklar ist außerdem
noch, ob sich eine solche direkte Abbildung überhaupt für eine kognitive Simulation
eignet.

Der erfolgreiche Einsatz von ACT-R in CAEVA hat gezeigt, dass es möglich ist, das Wis-
sen über Visualisierungen im deklarativen Gedächtnis abzulegen und für die Simulation
zugänglich zu machen, allerdings beschreibt [19] leider nicht wie dies erreicht wurde und
welchen Umfang dieses Wissen hatte.

Die semantische Repräsentation einer Visualisierung dient in bisherigen Anwendungen
dazu, die Darstellung der Visualisierung von ihrer Beschreibung zu trennen ([27], [26]),
ähnlich wie bei HTML und CSS. Dadurch wird es möglich die Darstellung der Visuali-
sierung anzupassen, ohne die Visualisierung verändern zu müssen.

4.3.2. Zugänglichkeit von GUIs

GUIs, die auf Widget-Toolkits basieren, können in der Regel ohne Anpassungen von Ma-
schinen verarbeitet werden. Diese GUIs können als externe beschreibende Dateien, z.B.
XAML für WPF, oder direkt als Quellcode in einer Programmiersprache, z.B. Java für
SWT, vorliegen. In beiden Fällen liegt es in der Natur der Sache, dass die GUIs aus diesen
Beschreibungen erzeugt werden. Das bedeutet also, dass wir durch die Benutzung eines
Widget-Toolkits den Bereichen in der Benutzeroberfläche schon eine semantische Bedeu-
tung in Form eines Widgets zuweisen, die wir auch in der Simulation nutzen können.
In der Regel werden für die jeweiligen Widgets in der Beschreibung auch Interaktions-
möglichkeiten und Reaktionen definiert, die aber nur begrenzt automatisch ausgewertet
werden können, da hier beliebige Seiteneffekte implementiert werden können. Das heißt,
an dieser Stelle muss für die vollautomatische Auswertung noch ein wenig Arbeit hin-
eingesteckt werden. Dies kann mit einem externen Werkzeug, wie zum Beispiel Cog-Tool
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oder als Annotation direkt in der Beschreibung der GUI geschehen.

4.3.3. Zugänglichkeit von Visualisierungen

Möchte man den Ansatz für die maschinelle Zugänglichkeit von GUIs direkt auf Visuali-
sierungen übertragen, dann muss man sich im klaren darüber sein, dass eine Annotation
von Visualisierungen immer auch eine Implikation über den Benutzer enthält, dass er die
annotierten Elemente auch so erkennt, wie sie die Annotation beschreibt. Wir können
zum Beispiel eine Kugel mit

”
Erde“ annotieren und der Simulation vorgeben, dass der

Benutzer jetzt die Erde auf dem Bildschirm sieht, bekommen aber Probleme, wenn ein
realer Benutzer bei dem selben Bild nur eine Kugel erkennen würde, da hier in der Anno-
tation zu viele Informationen impliziert werden. Dieses Problem tritt bei GUIs nicht auf,
da es dort allgemein anerkannte Standard-Widgets gibt, die auf jedem Betriebssystem
und in jedem Widget-Toolkit ähnlich aussehen und die gleichen Funktionalität haben,
solange man sich auf die Standard-Widgets beschränkt und deren Aussehen nicht zu
stark verändert. Bei Visualisierungen kann zum Beispiel eine Linie eine Koordinaten-
achse sein, oder aber auch die Verbindung zwischen zwei Punkten. Sie sehen auf dem
Bildschirm für einen realen Nutzer gleich aus und es kann daher nicht automatisch davon
ausgegangen werden, dass der Benutzer diese korrekt unterscheidet.

Insgesamt haben wir für die maschinelle Zugänglichkeit von Visualisierungen folgende
Möglichkeiten:

Computer Vision: Die Simulation sieht genau das gleiche Bild wie der Benutzer. Die
ganze Perzeption muss in der Simulation implementiert sein. Diese Variante wird
im Allgemeinen nicht nötig sein, da für die Perzeption nachgewiesene Gesetzmä-
ßigkeiten existieren (siehe Kapitel 2)

Annotation geometrischer Objekte: Das Bild wird für die Simulation aufbereitet, in-
dem aus den annotierten geometrischen Objekten die Features für die Weiterver-
arbeitung extrahiert werden.

Annotation von Fachobjekten: Die Annotationen geben ähnlich den Widgets für GUIs
typische Fachobjekte vor. Diese können dann in der Simulation als erkannt voraus-
gesetzt werden. Als Fachobjekte verstehen wir Teile der Visualisierung, die benannt
werden können und denen eine Bedeutung zugewiesen werden kann, zum Beispiel
Achsen oder Datenpunkte.

Der Renderer aus der Architektur von Raschke (Abbildung 42) könnte nun diese maschi-
nell zugängliche Visualisierung mit Koordinaten verknüpfen und dem virtuellen Auge zur
Verfügung stellen. Im Falle der Computer Vision erzeugt der Renderer direkt ein 2D-
Bild, anstatt die Annotation um Koordinaten zu erweitern. Wenn das virtuelle Auge
nicht auf Computer Vision basiert, dann muss der Renderer auch dafür sorgen, dass für
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das virtuelle Auge erkennbar ist, welche Elemente verdeckt sind.

4.4. Einschränkungen von symbolischen Kognitionsframeworks

ACT-R ist darauf ausgelegt möglichst umfassend die Entstehung von Intelligenz im
menschlichen Gehirn zu simulieren. Die Simulation in ACT-R nutzt als Grundlage den
symbolischen Ansatz der künstlichen Intelligenz und erweitert ihn um einige konnektio-
nistische Techniken. Allerdings gibt es mit dem symbolischen Ansatz einige Probleme, die
sich zunächst im Gebiet der künstlichen Intelligenz für Roboter gezeigt haben. Das erste
Problem ist das sogenannte Symbol Grounding Problem. Dabei steht die Überlegung im
Raum, dass der symbolische Ansatz zwar Symbole (Chunks in ACT-R) und Produktio-
nen definiert, mit denen die Symbole verknüpft werden können, aber diese Umformung
ohne Wissen über die eigentliche Bedeutung der Symbole und Regeln vorgenommen wer-
den können. Vereinfacht ausgedrückt würde das bedeuten, dass wir eine Aufgabe durch
Anwendung von definierten Regeln lösen könnten, ohne genau zu verstehen, was wir
eigentlich gemacht haben. Computerprogramme und kognitive Simulationen nach dem
symbolischen Ansatz gehen ähnlich vor. Sie wenden auf Daten immer wieder vordefinier-
te Regeln an und lösen damit Probleme. Dabei müssen sie die Regeln und die Bedeutung
der Daten nicht verstehen, sondern die Regeln nur anwenden und die Struktur der Daten
analysieren können.

Das zweite Problem ist, dass symbolische kognitive Simulationen nicht mehr richtig funk-
tionieren, wenn etwas unvorhergesehenes passiert und dafür keine Regel vorhanden ist.
Das menschliche Gehirn kann allerdings solche Varianz relativ gut berücksichtigen. Das
gleiche gilt für Ausfälle eines Teilsystems. Beispielsweise kann ein Computer ein Pro-
gramm nicht ausführen, wenn eine Bibliothek nicht geladen werden konnte, selbst wenn
sie für die gerade gewünschte Funktionalität irrelevant wäre. Ein Mensch dagegen kann
sich sehr wohl noch bewegen, auch wenn die Region im Gehirn, die für die Sprache
zuständig ist, defekt ist.

Als drittes Problem beschreibt das sogenannte Roboter-Dilemma [24], dass die naive
Umsetzung einer kognitiven Simulation nicht echtzeitfähig ist. Eine solche naive Umset-
zung würde zum Beispiel zunächst alle Chunks und Produktionen bewerten und dann
eine Entscheidung treffen. Das ist im Allgemeinen sehr umfangreich und dauert wegen
der großen Wissensbasis lange. Das heißt, eine kognitive Simulation, die echtzeitfähig
sein soll, muss die Relevanz von Chunks wesentlich schneller bewerten können, als heute
existierende Systeme. Die Berechnungsdauer durch immer schnellere Rechner auf Echt-
zeit zu senken ist nur für einfache Probleme möglich und daher nicht praxistauglich. Als
weiterer Aspekt der Ressourcenbegrenzung kommt noch hinzu, dass man nicht beliebig
viel Wissen speichern kann, also das deklarative Gedächtnis wegen begrenzter Speicher-
kapazität nicht beliebig viele Chunks enthalten kann.
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5. Fazit

ACT-R bietet aufgrund der langen Zeit, die es sich schon in Entwicklung befindet, und
seiner aktiven und großen Community einen guten Einstiegspunkt für kognitive Simu-
lationen. Außerdem ist ACT-R bei Bedarf erweiterbar, sodass auch eine Nutzung über
die derzeitigen Einsatzszenarien hinaus möglich ist. Mit den vorgestellten Techniken ist
ein erster Schritt in Richtung der Nutzung von kognitiven Simulationen zur Effizienz-
bewertung von Visualisierungen getan. Als nächsten Schritt müssen diese Techniken im
Praxiseinsatz erprobt werden.

Die vorgestellten Einschränkungen sind für die kognitiven Simulationen zur Effizienzbe-
wertung von Visualisierungen aus unserer Sicht zunächst weniger relevant. Das Symbol
Grounding Problem spielt keine Rolle, weil die Simulation die Visualisierung nicht ver-
stehen muss, sondern nur das Verständnis eines Menschen nachbilden muss. Dies ist aus
unserer Sicht mit einem kognitiven Modell hinreichend abbildbar. Der Umgang mit Un-
schärfe und vagen Informationen lässt sich mit einem gewissen Grad an Genauigkeit auf
Kosten der Geschwindigkeit aus unserer Sicht auch in einem kognitiven Modell emulie-
ren. Die Ressourcenbeschränkungen sollten für erste Versuche keine Rolle spielen, da es
sich um ein zwar großes, aber immer noch beschränktes Wissensgebiet handelt und eine
Simulation in Echtzeit zunächst nicht im Vordergrund steht.

Die größte Lücke, die uns während unserer Recherchen aufgefallen ist, besteht darin, wie
ein entsprechendes kognitives Modell aussehen soll. Dazu gehört:

• Die Abbildung von formal definierten Wissenstrukturen in Chunks für das dekla-
rative Gedächtnis (4.3.1), sodass diese auch in der Simulation sinnvoll verwendet
werden können.

• Erstellung eines Modells der Datendomain.

• Je nach Eingabe für das virtuelle Auge, Abbildung der Perzeption und Aggregation
von Objekten zu einem für die Simulation verständlichen Modell der Visualisierung
(4.3.3).

In Zukunft wird auch die Echtzeitfähigkeit der Simulation eine zunehmende Rolle spielen,
sodass sich damit beschäftigt werden muss, wie die Performance der kognitiven Simula-
tion verbessert werden kann. Ein weiteres Feld wäre neben der Analyse der Perzeption
von statischen Visualisierungen die Analyse der Interaktion mit Visualisierungen.
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A. Glossar

Chunk Elementare Informationseinheit des Gedächtnis. Wird in mentalen Prozessen als
einzelne Entität gesehen. Ein Wort kann z.B. ein Chunk sein.

Fitts Law Model menschlicher Bewegungen, das die benötigte Zeit um möglichst schnell
auf eine Zielfläche zu zeigen, als Funktion der Distanz zum Zielbereich, sowie der
Größe des Zielbereichs ausdrückt.

Framework Programmiergerüst, das Entwicklern Fähigkeiten anbietet, die sie selbst wie-
derum beim Entwickeln von Anwendungen einsetzen können.

GUI Graphical User Interface. Die graphische Oberfläche einer Anwendung.

kognitive Architektur, Kognitionsframework Kann zur Implementierung von kogniti-
ven Modellen auf Computern benutzt werden. Kognitive Architekturen können
auf anderen kognitiven Architekturen aufbauen.

Kognitives Modell Beschreibt die menschliche Kognition in einem Modell. Ein kogniti-
ves Modell basiert auf einer kognitiven Theorie.

Kognitive Theorie Erklärt die menschliche Kognition mittels einer Theorie.

Millersche Zahl 7 +- 2. Größenordnung, wie viele Chunks gleichzeitig im Kurzzeitge-
dächtnis gehalten werden können.

Nominale Daten Daten, die keine natürliche Ordnung besitzen. Es kann lediglich ent-
schieden werden, ob ein Datum zu einer bestimmten Kategorie gehört oder nicht.

Ontologie Formal geordnete Darstellungen einer Menge von Begrifflichkeiten und der
zwischen ihnen bestehenden Beziehungen in einem bestimmten Gegenstandsbe-
reich.

Ordinale Daten Daten, die eine inhärente Ordnung besitzen.

Perzeption Alle Vorgänge, die mit der Wahrnehmung assoziiert sind.

UI Abkürzung für User Interface. Die Benutzerschnittstelle über die der Benutzer mit
einer Anwendung interagiert.

Visual Query Eine
”
Anfrage“ der Kognition an die Perzeption. Es soll ein sichtbarer

Gegenstand durch die Perzeption verarbeitet werden, um durch die Kognition in
eine mentale Repräsentation überführt zu werden.
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Visualisierung Die Überführung von (abstrakten) Daten in eine visuelle Form. Bezeich-
net sowohl den Prozess, als auch das Ergebnis.

Visuelles Sichtfeld Alles was durch das Auge zu einem bestimmten Moment wahrge-
nommen werden kann, begrenzt durch einen horizontalen und vertikalen Winkel-
bereich.

Volume Rendering Darstellung von volumetrischen Daten mit speziell dafür entwickel-
ten Techniken.

Widget Komponente eines grafischen Fenstersystems
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B. jACT-R Beispiel count.xml

<actr>

<model name="Unit1 Count" >

<!--

    the modules section allows you to specify what modules you

    want included in this model. Modules not includ ed aren't even

    loaded, the fewer the modules, the faster the m odel will execute.

    Each module has a set of parameters which are e xcluded here for

    brevity. The first two are the bare minimum, bu t you'll be hard

    pressed to write a model without goals or retri evals.

    The latencyFactor below has been set to 0.05 to  be consistent

    with the Lisp tutorial. It just makes the retri evals complete

    really fast.

    -->

<modules>

<module class ="org.jactr.core.module.declarative.six.DefaultDecla rativeModule6" />

<module class ="org.jactr.core.module.procedural.six.DefaultProced uralModule6" />

<module class ="org.jactr.core.module.goal.six.DefaultGoalModule6" />

<module class ="org.jactr.core.module.retrieval.six.DefaultRetriev alModule6" >

<parameters>

<parameter name="LatencyFactor" value ="0.05" />

</parameters>

</module>

</modules>

<!--

     the declarative memory section contains chunk and chunktype definitions.

    -->

<declarative-memory>

<!--

      count order supports counting on your fingers

      lisp : (chunk-type count-order first second)

      -->

<chunk-type name="count-order" >

<slot name="first" equals ="nil" />

<slot name="second" equals ="nil" />

</chunk-type>

<!--

      count-from is our basic goal.

      lisp : (chunk-type count-from start end count )

      -->

<chunk-type name="count-from" >

<slot name="start" equals ="nil" />

<slot name="end" equals ="nil" />

<slot name="count" equals ="nil" />

</chunk-type>

<!--

      add all the chunks we'll need

      lisp :

      (add-dm

 (b ISA count-order first 1 second 2)

 (c ISA count-order first 2 second 3)

 (d ISA count-order first 3 second 4)
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 (e ISA count-order first 4 second 5)

 (f ISA count-order first 5 second 6)

 (first-goal ISA count-from start 2 end 4)

 )

      -->

<chunk type ="count-order" name="b" >

<slot name="first" equals ="1" />

<slot name="second" equals ="2" />

</chunk>

<chunk type ="count-order" name="c" >

<slot name="first" equals ="2" />

<slot name="second" equals ="3" />

</chunk>

<chunk type ="count-order" name="d" >

<slot name="first" equals ="3" />

<slot name="second" equals ="4" />

</chunk>

<chunk type ="count-order" name="e" >

<slot name="first" equals ="4" />

<slot name="second" equals ="5" />

</chunk>

<chunk type ="count-order" name="f" >

<slot name="first" equals ="5" />

<slot name="second" equals ="6" />

</chunk>

<chunk type ="count-from" name="first-goal" >

<slot name="start" equals ="2" />

<slot name="end" equals ="4" />

</chunk>

</declarative-memory>

<!--

     procedural memory contains all the productions

    -->

<procedural-memory>

<!--

      lisp :

(p start

   =goal>

      ISA         count-from

      start       =num1

      count       nil

 ==>

   =goal>

      count       =num1

   +retrieval>

      ISA         count-order

      first       =num1

)

      -->

<production name="start" >
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<conditions>

<match buffer ="goal" type ="count-from" >

<slot name="start" equals ="=num1" />

<slot name="count" equals ="nil" />

</match>

<!-- for completeness, I am checking that retrieval  is free unlike the lisp -->

<query buffer ="retrieval" >

<slot name="state" equals ="free" />

</query>

</conditions>

<actions>

<modify buffer ="goal" >

<slot name="count" equals ="=num1" />

</modify>

<add buffer ="retrieval" type ="count-order" >

<slot name="first" equals ="=num1" />

</add>

<output> "Searching for something starting at =num1" </output>

</actions>

</production>

<!-- failed isn't included in the lisp, but its alw ays good

      to model defensively in case of retrieval fai lures

      -->

<production name="failed" >

<conditions>

<match buffer ="goal" type ="count-from" >

<slot name="start" equals ="=num" />

<slot name="count" equals ="=num" />

</match>

<query buffer ="retrieval" >

<slot name="state" equals ="error" />

</query>

</conditions>

<actions>

<remove buffer ="goal" />

<remove buffer ="retrieval" />

<output>  "Awh crap, I can't retrieve anything starting with  =num " </output>

</actions>

</production>

<!--

 lisp :

 (P increment

   =goal>

      ISA         count-from

      count       =num1

    - end         =num1

   =retrieval>

      ISA         count-order

      first       =num1

      second      =num2

 ==>

   =goal>

      count       =num2

   +retrieval>

      ISA         count-order

      first       =num2

   !output!       (=num1)

)
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      -->

<production name="increment" >

<conditions>

<match buffer ="goal" type ="count-from" >

<slot name="count" equals ="=num1" />

<slot name="end" not ="=num1" />

</match>

<match buffer ="retrieval" type ="count-order" >

<slot name="first" equals ="=num1" />

<slot name="second" equals ="=num2" />

</match>

</conditions>

<actions>

<modify buffer ="goal" >

<slot name="count" equals ="=num2" />

</modify>

<add buffer ="retrieval" type ="count-order" >

<slot name="first" equals ="=num2" />

</add>

<output> "=num1" </output>

</actions>

</production>

<!--

  lisp :

(P stop

   =goal>

      ISA         count-from

      count       =num

      end         =num

 ==>

   -goal>

   !output!       (=num)

)

     -->

<production name="stop" >

<conditions>

<match buffer ="goal" type ="count-from" >

<slot name="end" equals ="=num" />

<slot name="count" equals ="=num" />

</match>

</conditions>

<actions>

<remove buffer ="goal" />

<output> "Answer =num" </output>

</actions>

</production>

</procedural-memory>

<!--

    outside of the procedural memory section, we ha ve the buffers

    where you can set buffer parameters or contents .

    -->

<buffer name="goal" chunk ="first-goal" />

79



<!--

    these are model parameters. cycle skipping allo ws the model to

    fast-forward through time if it can't fire a pr oduction to the

    next event that may permit production firing.

    peristent execution controls whether or not the  model will quit

    once the goal buffer is empty. It's much easier  to set this to

    true than to artificially force the model to ke ep running by

    queueing spurious events

    -->

<parameters>

<parameter name="EnableUnusedCycleSkipping" value ="true" />

<parameter name="EnablePersistentExecution" value ="false" />

</parameters>

</model>

</actr>
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