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Kurzbeschreibung

Kognitions-Frameworks stellen einen interessanten Ansatz dar, um die Prozesse des
menschlichen Gehirns im Computer nachzubilden. Eine Suche im Internet fordert ei-
ne Vielzahl an verschiedenen Frameworks zu Tage, welche sich mehr oder weniger stark
auf bestimmte Einsatzbereiche spezialisieren oder auch den Anspruch haben, beliebige
Probleme zu simulieren.

Diese Fachstudie untersucht die beiden Frameworks ACT-R und CogTool und priift die-
se, auf deren Einsetzbarkeit zur Interaktionsanalyse eines Benutzer mit einer GUI oder
Visualisierung. Dabei werden zunéchst die beiden Frameworks im Detail vorgestellt,
wéihrend anschlielend herausgearbeitet wird, welche grundlegende Eigenschaften fiir ein
Framework nétig sind, um kognitive Prozesse beim Arbeiten mit GUIs und Visualisie-
rungen simulieren zu kénnen.

Abstract

Cognition-Framworks are an interesting approach to simulate the processes of the human
mind. The internet offers a huge amount of different frameworks. Some of them are more
specialized to a certain field of application, while others claim to simulate arbitrary
problems.

The goal of this work was to evaluate the cognition frameworks ACT-R and CogTool.
These two frameworks were analyzed for a simulation of cognitive processes while working
with a GUI or visualization. First, both frameworks will be presented in detail. Then,
fundamental properties of GUIs and visualization will be given, which are neccessary for
using a cognitive framework to simulate cognitive processes while working with GUIs
and visualization.
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1. Einleitung

Die Fachstudie untersucht die Einsetzbarkeit von Kognitions-Frameworks im Hinblick
auf die Interaktionsanalyse eines Benutzers mit GUIs und Visualisierungen. Es geht also
um die Frage, wie mentale Prozesse simuliert werden koénnen, die ein menschlicher Be-
trachter bei der Verwendung einer GUI oder Visualisierung durchliuft. Das Thema trifft
hierbei die Gebiete kiinstliche Intelligenz, Kognitionswissenschaft und Visualisierung.
Der Nutzen, die Kognitionsframeworks unter dieser Fragestellung anzuwenden, besteht
zum einen darin, unterschiedliche GUIs oder Visualisierungen automatisch bewerten zu
kénnen, was bisher meist nur unter Durchfithrung aufwendiger Benutzerstudien moglich
war. Zusétzlich bieten die Frameworks einen Ansatzpunkt, um die Frage ,Wie gut ist
eine GUI/Visualisierung?“ auf Basis wissenschaftlicher Erkenntnisse der Perzeption und
Kognition fundierter bzw. objektiver zu beantworten.

Hierfiir werden in Kapitel 2 zunéchst einige Grundlagen, insbesondere in Bezug auf die
menschliche Perzeption und Kognition, als auch allgemeine Grundlagen zu Visualisie-
rungen an sich erlautert.

Kapitel 3 stellt anschlielend ausgewéhlte Vertreter der Kognitions-Frameworks vor:
»ACT-R* als allgemeines Kognitions-Framework, mit dem Anspruch beliebige Szenarien
durch Modelle abbilden zu kénnen. Weiterhin ,,CogTool“, als spezialisiertes, auf ACT-R
aufbauendes Framework zur Interaktionsanalyse mit GUIs. Zuletzt folgt ein Blick auf
»CAEVA“ eine Architektur zur Auswertung von Visualisierungsanwendungen.

Kapitel 4 entfernt sich nun wieder etwas von den konkreten Frameworks und versucht
die Informationen aus den Frameworks zu abstrahieren, zu der Frage, was ist eigentlich
allgemein nétig, um eine GUI oder Visualisierung kognitiv simulieren zu kénnen? Hierbei
ist auch die maschinelle Zuginglichkeit von GUIs und Visualisierungen ein wichtiger
Punkt. Inbesondere der benétigte Grad der Zuginglichkeit spielt dabei eine wichtige
Rolle.

Zuletzt fasst Kapitel 5 die Ergebnisse zusammen und zieht ein Fazit der Recherchen.

Einen visuellen Uberblick iiber den Inhalt bietet die folgende Abbildung 1.
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2. Grundlagen

Das Thema der Fachstudie steht interdisziplinédr zwischen den Themen kiinstliche Intel-
ligenz, Kognitionswissenschaft und Visualisierung. Zu allen Bereichen sollen in diesem
Kapitel zunédchst einige grundlegende Aspekte, die wir fiir das weitere Versténdnis als
wichtig erachten, erldutert werden.

2.1. Wahrnehmung und Kognition

Zur Simulation der Wahrnehmung einer GUI oder Visualisierung durch einen Menschen,
stellen sich zunéchst einige Frage:

e Wie nimmt ein Mensch seine Umgebung auf kognitiver Ebene wahr?
e Wie werden Sinneseindriicke weiter verarbeitet?

e Wie entstehen aus der eingehenden ,,Datenflut® der Sinnesorgane semantische En-
titédten, die ein Mensch auf abstrakter Ebene wahrnehmen, kategorisieren, verar-
beiten und bewerten kann?

Das Kapitel stellt ausgewihlte Aspekte dieses Verarbeitungsprozesses vor, wobei sich
diese zum Teil iiberlappen bzw. ergénzen, da es kein geschlossenes ,,Standardmodell“ der
Perzeption bzw. Kognition gibt. Das Kapitel umfasst ein dreistufiges Phasenmodell der
menschlichen Wahrnehmungsverarbeitung, einen Abschnitt {iber sogenannte sensorische
und arbitrire Symbole, ein Kapitel zu ,Features und Feature Maps®, sowie ,Guided
Search® und zuletzt einen Abschnitt tiber Norman’s seven stages.

2.1.1. Model of Perceptual Processing

Das Modell entstammt [31] (S.20 - S.22) und wird in diesem Kapitel zusammengefasst.
Es unterteilt die menschliche Wahrnehmung in drei Phasen, die jeweils nacheinander ab-
laufen und einen ansteigenden Grad der Informationsabstraktion aufweisen. Abbildung
2 zeigt hierzu den grundlegenden Ablauf, wobei pro Stufe die eingehende Informations-
menge reduziert wird und gleichzeitig der Abstraktionsgrad von primitiven Features bis
hin zu grofleren Objekten ansteigt.

Phase 1: Parallelverarbeitung

Beteiligt sind Milliarden von Nervenzellen im Auge und im visuellen Kortex des Gehirns.
Jede Nervenzelle ist dabei auf die Erkennung eines bestimmten Merkmals ausgerichtet,
z.B. die Orientierung von Kanten, Erkennung von einzelnen Farben und einzelne Be-
standteile von Texturen, oder die Erkennung von Bewegungen. Die Verarbeitung ist
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Abbildung 2: Three-Stage Modell der menschlichen Informationsverarbeitung. In Phase
1 werden gleichzeitig sehr viele, jedoch nur primitive Features wahrge-
nommen, wihrend in den weiteren Phasen diese Features zu komplexeren
Objekten kombiniert werden, wovon nur noch wenige im Arbeitsgedédchtnis
gehalten werden konnen [31].

dabei ein massiv paralleler Prozess aller Nervenzellen, der stindig abléuft und nicht
von der Aufmerksamkeit des Menschen auf bestimmte Bereiche des visuellen Sichtfelds
abhéngt. Aufgrund der schnellen Parallelverarbeitung ist es fiir Visualisierungen beson-
ders interessant diese Phase der Perzeption anzusprechen, um eine besonders effiziente
Informationsvermittlung zu ermdoglichen.

Phase 2: Mustererkennung

Die zweite Phase unterteilt das Sichtfeld in Regionen, also unterschiedliche Bereiche,
und Muster. Dies konnen beispielsweise kontinuerliche Umrisse oder ganze Texturen
sein. Die Phase ist sehr flexibel, da sie auf den groflen Informationsbestand der ersten
Phase zugreift, als auch die Aufmerksamkeit des Menschen beachtet. Aufmerksamkeit
bezeichnet in diesem Zusammenhang nicht den Fokus-Punkt der Augen beim Betrachten,
sondern den , Fokus-Punkt* der Gedanken, also die Fragestellung unter der die visuellen
Informationen durch das Gehirn ausgewertet werden (auch ,Visual Queries“ genannt,
[31] S.22). Die Verarbeitung verlduft im Gegensatz zur ersten Phase sequentiell und
stellt einen Kreuzungspunkt zwischen den Informationsfliissen aus der ersten Phase und
den abstrakten Aufmerksamkeitsmechanismen der dritten Phase dar.



Phase 3: Zielorientierte Verarbeitung

Reprisentiert die hochste Ebene der Perzeption, auf der die Objekte des visuellen Ar-
beitsgedéchtnisses liegen, von denen nur wenige gleichzeitig gehalten bzw. erzeugt wer-
den konnen (in der Groflenordnung von 3-5 Objekten, [31] S.188). Ein Objekt ist das
Ergebnis einer Fragestellung, die sich aus der Aufmerksamkeit des Menschen ergibt. Be-
antwortet wird die Fragestellung durch eine Sequenz aus ,Visual Queries“, die mit Hilfe
der Mustererkennung der zweiten Phase gelost werden. Als Beispiel konnte fiir ein Ob-
jekt des Arbeitsgedédchtnisses die Frage nach einer Route auf einer Karte stehen. Die
zugehorige Visual Query entspricht demnach einer moglichen Strafle, welche zwei Stédte
miteinander verbindet (Abbildung 3).
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Abbildung 3: Route zwischen zwei Stddten: ein Objekt im Arbeitsgeddchtnis, zusam-
mengesetzt durch eine Visual Query.

Die Konsequenz des Verarbeitungsmodells, im Hinblick auf die Effizienz einer Visua-
lisierung und in Bezug auf einen Betrachter, ist nun vor allem die Fragestellung, wie
stark eine Visualisierung die unterschiedlichen Phasen fordert. Einfach ausgedriickt: ein
menschlicher Betrachter sollte demnach besonders schnell eine Fragestellung beantworten
konnen, wenn moglichst wenige Objekte des visuellen Arbeitsgedichtnisses und wenige
Visual Queries benttigt werden, da diese der sequentiellen Verarbeitung unterliegen.
Noch weiter abstrahiert konnte man sagen, dass die Erkennung der Elemente einer Vi-
sualisierung auf einer moglichst niedrigen Stufe des Verarbeitungsmodells stattfinden
sollte.

2.1.2. Sensory vs. Arbitrary Symbols

Das Kapitel stellt eine Zusammenfassung von [31] (S.10 - S.20) dar. Inhalt ist eine
Taxonomie visueller Représentationen in zwei Kategorien: Sensorische Symbole, die rein
aus den Perzeptionsmechanismen des Gehirns semantisch erkannt werden kénnen und



arbitrdre Symbole, deren semantische Erkennung erlernt werden muss. Ein Beispiel fiir
beide Kategorien liefert Abbildung 4.
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Abbildung 4: Sensorisches Symbol: Visualisierung der Form eines Schéidels, unterstiitzt
durch Beleuchtung, Schattierung, Verdeckung [44]. Arbitrdre Symbole: ja-
panische Schriftzeichen [37].

Sensorische Symbole:

Grundlage der sensorischen Symbole ist die Annahme, dass das visuelle System des Men-
schen aus der Evolution heraus, als Werkzeug zur Wahrnehmung der Umgebung entstan-
den ist. Umgebung bezeichnet dabei die typische physikalische Umgebung in der sich ein
Mensch befindet. Sie unterliegt den physikalischen Gesetzen (z.B. der Art wie sich Licht
ausbreitet) und hat ,typische* Eigenschaften, wie z.B. Gegenstinde, die sich durch ihre
Oberfléichen, bzw. der Ubertragung der Informationen dariiber (in Form von Lichtwellen)
dem menschlichen visuellen System bemerkbar machen. Das menschliche Gehirn wird
in dieser Unterscheidung als ein Zentrum spezialisierter, paralleler Verarbeitungsmaschi-
nen dargestellt. Da die Spezialisierung auf die Wahrnehmung der ,,typischen“ Umgebung
eines Menschen ausgerichtet ist und evolutionér begriindet wird, ist die Konsequenz dar-
aus, dass alle Menschen im Prinzip das gleiche visuelle System haben und auf die gleiche
Art ,sehen”, also die Verarbeitung von eintreffenden Lichtstrahlen im Auge bis zum Sin-
neseindruck im Allgemeinen gleich verlduft und somit relativ einheitliche Begriffe, wie
,Farbe“ oder ,Form“ entstehen.

Ein sensorisches Symbol stellt eine visuelle Entitdt dar, die ohne, dass die Erkennungs-
merkmale des Symbols vorab erlernt werden mussten, durch das visuelle System des
Menschen erkannt werden koénnen. Ein Beispiel dafiir wire eine 3D-Darstellung eines
Objekts, inklusive Schattierung und Beleuchtung, unter der Voraussetzung dass es die
Form des Objekts selbst ist, die visualisiert und erkannt werden soll. Das Objekt selbst



muss nichts alltdgliches darstellen, trotzdem kann bei der Erkennung das volle Potenzial
der Oberflichen- bzw. Objekterkennung des visuellen Systems zum Einsatz kommen.
Sensorische Symbole sind fiir alle Menschen gleich effektiv, ihre Erkennung kann nicht
einfach durch Willen oder Anweisungen verhindert werden. Sie sind oft unabhéngig von
Individuen, Kulturen und Zeit ([31], S.10). Dies bedeutet aber nicht, dass auf ein sensori-
sches Symbol auch immer eine gleiche, fest aufgesetzte Bedeutung trifft. Die Zuordnung
einer Bedeutung zu einem sensorischen Symbol ist sehr wohl abhéngig von Kultur bzw.
Konvention.

Arbitrire Symbole:

Ein visuelles Symbol ist arbitrir, wenn seine Représentation nicht aus einer perzeptuel-
len Basis heraus entstanden ist. Ein Beispiel fiir arbitrare Symbole ist Schrift. Arbitrare
Symbole leiten sich aus einer Kultur ab, bzw. sind in diese eingebettet. Sie sind schwer zu
erlernen und leicht zu vergessen, aufler sie werden exzessiv wiederholt und die Verwen-
dung trainiert. Aufgrund der Einbettung in eine Kultur lassen sich diese Symbole nicht
einfach verdndern. Dafiir besitzen sie aber das Potenzial, abstrakte Konzepte zu trans-
portieren. Bei der Erschaffung neuer Symbole kann die Darstellung frei erstellt werden,
insofern sie sich nicht ungiinstig mit existierenden Symbolen iiberschneidet.

Bei einer Bewertung eines Symbols beziiglich dem Eignungsgrad als visuelles Informa-
tionstransportmittel innerhalb einer Visualisierung miisste theoretisch zunéchst die Ka-
tegorie unterschieden werden. Bei der Analyse eines sensorischen Symbols kann die Be-
wertung danach erfolgen, wie gut die Erkennung im Sinne des menschlichen visuellen
Systems geschieht. Bei einem arbitrdren Symbol muss die Effektivitdt primér danach
bewertet werden, wie gut sich das Symbol an bzw. in die Konventionen des Kultur-
kreises des Betrachters integriert (,Culture influences cognition®, [31], S.17). Demnach
benétigt die Bewertung eines arbitrdren Symbols einen ,Referenzbetrachter”, wihrend
beziiglich eines sensorischen Symbols lediglich von einem menschlichen Betrachter ausge-
gangen werden muss, ggf. unter Beachtung von Abweichungen wie z.B. Farbenblindheit.
Erschwert wird die Bewertung einer Visualisierung dadurch, das praktisch die meisten
Visualisierungen hybrid aufgebaut sind und Elemente beider Kategorien enthalten. Folg-
lich besitzen die meisten Repréisentationen sowohl Aspekte, die gelernten Konventionen
zuzuordnen sind, als auch Bereiche, die von der visuellen Verarbeitung im Gehirn ab-
héngig sind.
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Abbildung 5: Hybride Visualisierung: In diesem Beispiel werden visuelle Entitéiten mit-
tels durchgehenden Konturen verbunden (sensorische Symbole) und mittels
Schrift identifiziert (arbitrdre Symbole).

2.1.3. Lenkung der Aufmerksamkeit

Die Lenkung der Aufmerksamkeit auf bestimmte Stimuli ist ein wichtiger Schritt bei
der Erkennung von Objekten. Ohne Lenkung der Aufmerksamkeit auf einen Stimulus ist
dessen bewusste Wahrnehmung gar nicht erst moglich. Hierzu unterscheidet Posner in
[23]: Das Ausrichten der Aufmerksamkeit auf einen Stimulus als Orientieren und dem
bewussten Wahrnehmen eines Stimulus als Detektieren. Das Orientieren kann sowohl
von einer externen Kontrolle, als auch vom zentralen Nervensystem des Subjekts selbst
beeinflusst werden. Damit lisst sich erkliren, dass wir uns von AuBerungen wie ,Guck
mal dal“ beeinflussen lassen und unsere Aufmerksamkeit in die angezeigte Richtung
lenken.

2.1.4. Features und Feature Maps

Features sind die Eigenschaften von Objekten im Sichtfeld, zum Beispiel Farbe, Gro-
Be oder Richtung. Die Erkennung von einzelnen Features kann iiber grofle Teile des
Sichtfelds parallel durchgefiihrt werden, da fiir jedes Feature ein eigener Teil des Wahr-
nehmungssystems zusténdig ist (siehe [30]). Werden die erkannten Features mit ihrer
Position im Sichtfeld verkniipft, dann entstehen Feature Maps. Diese sind fiir die Er-
kennung von Objekten notig, die einer Kombination bestimmter Features an der selben
Position entsprechen. Diese gleichzeitige Suche nach verschieden Eigenschaften eines Ob-
jektes wird auch Conjunction Search genannt.



2.1.5. Guided Search 2.0
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Abbildung 6: Architektur von Guided Search 2.0: unterteilt die Wahrnehmung von Ob-
jekten in zwei Schritte.

Das Guided Search 2.0 Modell [47] beschreibt die Suche nach Objekten in zwei Schritten.
Der erste Schritt ist die hoch parallel ablaufende Erkennung von Features und Erstellung
von Feature Maps. Der zweite Schritt ist die seriell oder zumindest begrenzt parallel
ablaufende Suche anhand einer Activation Map. Die Activation Map gibt die Wahr-
scheinlichkeit an, ob sich das gesuchte Objekt an einer bestimmten Stelle im Sichtfeld
befindet, und kann somit fiir die Lenkung der Aufmerksamkeit auf relevante Objekte im
Sichtfeld genutzt werden. Die Activation Map setzt ich aus zwei Teilen zusammen: Der
Bottom-Up-Activation und der Top-Down-Activation.

Mit der Bezeichnung ,,2.0“ méchte Wolfe ausdriicklich darauf hinweisen, dass sich dieses
Modell der Wahrnehmung weiterentwickelt und mittlerweile schon die erste Uberarbei-
tung hinter sich hat.



Bottom-Up-Activation:

Die Bottom-Up-Activation ist ein Maf fiir die Ungewdhnlichkeit eines Features an einer
Position im aktuellen Kontext. Je mehr sich ein Feature an einer Position von seiner
Umgebung abhebt, desto hoher ist seine Aktivierung. Da sich die Bottom-Up-Activation
nur darauf bezieht, wie sehr sich ein Feature an einer Position von seiner Umgebung
abhebt, ist sie unabhéngig vom Ziel und Wissen des Betrachters iiber das Problem und
das Ziel.

Top-Down-Activation:

Die Top-Down-Activation eines Features wird von dem Ziel beeinflusst, das der Betrach-
ter verfolgt. Diese zweite Art der Aktivierung existiert, um Objekte auch dann noch
zu finden, wenn alle Features im Sichtfeld gleich ungewo6hnlich sind, also die Bottom-
Up-Activation fiir alle Positionen ungefihr gleich ist, und, um zu vermeiden, dass den
Objekten, denen die Aufmerksamkeit zugeteilt wird, der Bezug zum eigentlichen Ziel
des Betrachters fehlt. Beispielsweise ist die Top-Down-Activation fiir ein griines Objekte
gering, wenn der Benutzer tatséchlich nach einem roten Objekt sucht, auch wenn sich
das griine Objekt inmitten von blauen Objekten befindet. In Guided Search 2.0 wird die
Top-Down-Activation dazu benutzt, die Werte der Bottom-Up-Activation beziiglich der
Relevanz fiir das Ziel des Betrachters zu gewichten.

Feature-Kanile

Aktuelle Forschungen ([12], [13], [48]) haben gezeigt, dass sich die Aktivierung eines
bestimmten Features fiir die Suche besser verstehen ldsst, wenn man annimmt, dass
einige Features, wie zum Beispiel Farbe oder Ausrichtung, in verschiedene Kaniile geteilt
sind. So gibt es laut Wolfe fiir das Feature Farbe die Kanile Rot, Gelb, Griin und Blau.
In Abbildung 6 sind diese als Input Channels gekennzeichnet. Die Bottom-Up-Activation
wird innerhalb dieser Kanile bestimmt. So hat ein orangefarbenes Objekt, umgeben von
gelben Objekten im Kanal Gelb, nur eine sehr geringe, im Kanal Rot dagegen eine sehr
hohe Bottom-Up-Activation. Durch die Top-Down-Activation wiirde dann fiir die Suche
nach einem orangefarbenen Objekt der Kanal Rot stérker gewichtet werden, als der
Kanal Gelb.

2.1.6. Norman'’s seven stages of the user activity

Die ,,Seven Stages of Action“ sind ein Modell des Usability-Wissenschaftlers Donald
Norman. Das Modell versucht die Bewéaltigung einer Aufgabe durch eine Person anhand
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von 7 Phasen zu beschreiben. Es wurde erstmals 1990 in Normans Buch ,, The Design of
Everyday Things* [22] veroffentlicht.

.

Action
Specification

Interpretation
@ Mental Activity

| Physical [ —"
Activity

Abbildung 7: Norman’s seven stages of the user activity. Abbildung enstammt [32], Ka-

pitel 2.2

Die Phasen haben dabei folgende Bedeutung

1.

2.

3.

4.

D.

6.

7.

Intention: Was soll getan werden?

Action Specification: Wie soll dies geschehen?
Execution: Ausfithrung des Plans (Mental)
Physical Activity: Ausfithrung des Plans (Physisch)
Perception: Wahrnehmung der Ausfithrung
Interpretation (der Ausfiihrung)

Evaluation: Stimmt die Ausfithrung mit den Erwartungen iiberein?

Die 7 Phasen aus Normans Modell lassen sich im Allgemeinen drei Bereichen der mensch-
lichen Informationsverarbeitung zuordnen. Die Zuordnung geschieht iiber die vorherige
Nummerierung ([32], Kapitel 2.3).
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e Perzeption: Informationsaquise mittels Sinnesorganen (Norman: 5)
e Kognition (Norman 1,2,3,6,7):

— Gedéichtnis: Speichern von Informationen

— Kommunikation: Austausch von Informationen

— Denken/Entscheiden: Verarbeiten von Informationen

e Motorische Funktionen: Ausfiihren und Manipulation der Umwelt (Norman: 4)
Das Gedéchtnis des Gehirns, wird in drei Bereiche unterteilt ([32], Kapitel 2.3):

e Sensorisches Geddchtnis: Kurzzeitiger Speicher fiir eingehende sensorische Infor-
mationen. Hohe Kapazitéit, aber aufgrund stindiger Aktualisierung nur sehr kurze
Speicherdauer (im Millisekunden-Bereich).

o Kurzzeitgeddchtnis: Speicher fiir symbolische Informationen. Speicherdauer unge-
fihr 15 Sekunden. Kapazitéit ungefihr 7 +/- 2 Elemente.

e Langzeitgeddchtnis: Speicher fiir semantische, lang vorgehaltene Informationen.
Hohe Kapazitét, aber langsamer Zugriff.

2.2. Was macht eine gute Visualisierung aus?

Eine Datenmenge lésst sich auf nahezu beliebige Art und Weise in eine Visualisierung
iiberfithren, wobei manche Darstellungen besser geeignet sind als andere. In diesem
Kapitel soll darauf eingegangen werden, welche grundséitzlichen Moglichkeiten es gibt
Visualisierungen zu erzeugen. Abschnitt 2.2.1 zeigt typische Visualisierungstechniken
abhingig von den zugrunde liegenden Daten auf, in 2.2.2 wird der Visualisierungspro-
zess dargestellt, welcher die Schritte aufzeigt, um Daten in eine graphische Darstellung
zu iiberfithren und in 2.2.3 welche Optionen dabei zur Verfiigung stehen. Abschlielend
werden vorhandene Standards und Richtlinien fiir die Erstellung grafischer Oberflichen
behandelt (2.2.4), welche als Basis fiir eine Bewertung verwendet werden kénnen.
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2.2.1. Einfithrung zu Visualisierungen

Visualization
N
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Abbildung 8: Klassifizierung von Visualisierungstechniken: Das Modell unterteilt Visua-

lisierungstechniken nach den zu visualisierenden Daten. [11]

Visualisierungen lassen sich nach dem Schema aus Abbildung 8 einteilen [11]. Dieses
Modell klassifiziert Visualisierung auf der ersten Ebene nach den darunter liegenden

Daten, wobei hier zwischen

e kontinuierlichen

e diskreten

Daten unterschieden wird. Dann werden die jeweils typischen Visualisierungstechniken

eingeordnet:

e kontinuierliche Datenmodelle:

— Liniengraphen

— Isolinien

— Vol

umenrendering

— Glyphendarstellungen

— Tensorvisualisierungen
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e diskrete Datenmodelle:
— Graph- und Baumvisualsierungen
— 2D- / 3D-Scatterplots
— Parallele Koordinaten

Betrachten wir den kontinuierlichen Fall, dabei wird die Dimension der Daten (Spalten in
Abb. 8) mit der Dimension des Anwendungsbereichs (Zeilen in Abb. 8) gegeniibergestellt.
So gibt es z.B. bei einer Landkarte mit Hohenlinien zu jedem Gitterpunkt einen skalaren
Wert, die Hohe, welche auf einer zweidimensionalen Karte durch Linien aus Punkten
mit dem selben Hohenwert dargestellt werden (Abb. 9 links). Fiir skalare Daten im
3D Anwendungsbereich werden Techniken des Volumenrenderings eingesetzt. Typischer
Finsatz dieser Technik ist z.B. die Visualisierung von Daten aus medizinischen Scan-
Verfahren wie Magnetresonanztomographie oder Computertomographie (Abb. 9 mitte).
Vektorwertige Daten treten hauptséchlich in der Stromungsvisualisierung auf, wobei das
Bewegungsverhalten von Gasen und Fliissigkeiten untersucht wird (Abb. 9 rechts).

—l

Abbildung 9: Beispiele unterschiedlicher Visualisierungstechniken mit kontinuierlichen
Daten: Hohenfeldlinien einer Landkarte (links) [14], Visualisierung eines
CT-Scans (Mitte) [11], Stromungsvisualisierung (rechts) [11]

Die Kategorie der diskreten Daten lédsst sich in zwei Bereiche unterteilen, wobei unter-
schieden wird, ob die einzelnen Datenpunkte miteinander verbunden oder nicht verbun-
den sind. Im ersten Fall konnen hauptsichlich Graph- und Hierarchie-Visualisierungen
eingesetzt werden, worunter z.B. Treemaps fallen, wie sie auch in Abbildung 11 zu sehen
sind. Dabei wird die Baumstruktur durch ineinander geschachtelte Rechtecke dargestellt.
Das duflerste Rechteck stellt die Wurzel dar, wobei dessen Fliache entsprechend der Hier-
archie weiter unterteilt wird. Nicht mehr weiter unterteilte Flichen stehen fiir die Blatter,
bzw. in einem Dateisystem fiir Dateien.
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Die zweite Unterkategorie gruppiert Visualisierungstechniken, deren Datenpunkte unter-
einander nicht verbunden sind. Eine sehr hiufig eingesetzte Technik sind hierbei Scatter
Plots (Abbildung 11), welche direkt die Datenwerte in einem zweidimensionalen oder
auch dreidimensionalen Diagramm darstellen, um so Korrelationen in den Datensétzen
erkennen zu kénnen. Fiir hoher dimensionale Daten eignen sich Verfahren wie Parallele
Koordinaten oder Glyphen Darstellungen. Parallele Koordinaten besitzen entsprechend
der Dimension der Daten mehrere nebeneinander angeordnete Achsen, wobei sich die
Skalen auf den Achsen auch unterscheiden kénnen. Pro Datensatz wird der Wert auf je-
der Achse eingetragen und iiber eine Profillinie mit benachbarten Achsen verbunden, so
dass die Zugehorigkeit der einzelnen Werte zu einem Datum erkennbar bleibt (Abb. 10
links). Bei Glyphen dagegen werden mehrere Datenattribute auf ein graphisches Objekt
abgebildet. So kénnte z.B. ein Verkaufer seine Absatzmérkte mit Hilfe von Glyphen vi-
sualisieren (Abb. 10 rechts) [31]: Hierbei kénnten die Glyphen entsprechend den Léndern
auf einer Karte positioniert werden, das geschétzte Einkommen der potentiellen Kéufer
wird iiber die Gréfle der Glyphen kodiert und die Farbe kénnte den durchschnittlichen
Bildungsgrad anzeigen (siehe auch 2.2.3).

46.6 230.0

. 3.0 A 1613.0 70.
MPG Cylinders Horsepower Weight Year

Abbildung 10: Visualisierung hochdimensionaler Daten: Visualisierung eines Autodaten-
satzen iiber Parallele Koordinaten (links) [21], Glyphenvisualisierung der
Absatzmiérkte eines Verkédufers (rechts).

Diese Klassifizierung kann als Grundlage fiir die Einteilung des Visualisierungsgebiets in
Informations- und Wissenschaftliche Visualisierung gesehen werden:

Informationsvisualisierung

Die Daten im Bereich der Informationsvisualisierung bestehen typischerweise aus dis-
kreten Datenpunkten, welche exakt vorliegen bzw. erfasst werden konnen, also keine
Interpolation erfordern. Es gibt keinen rdumlichen Bezug und oftmals besitzen die Da-
ten sehr viele Dimensionen. Verbindungen oder Hierarchien in den Daten werden oft
durch Graph- oder Baumstrukturen dargestellt [11].

Wichtige Anforderungen an eine Visualisierung sind unter anderem die Expressivitét
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Abbildung 11: Beispiele unterschiedlicher Visualisierungstechniken mit diskreten Daten:
Visualisierung eines Dateisystems als Treemap (links) [46], Scatterplot-
Visualisierung der Eruptionsdauer und -abstédnde eines Geiser im Yellow-
stone Nationalpark (rechts) [39].

und Effektivitét [28, 36]. Von einer expressiven Visualisierung wird gefordert, dass keine
Informationen dargestellt werden, welche nicht in den Daten enthalten sind, also keine
falschen Annahmen daraus abgeleitet werden konnen. Wohingegen die Effektivitit an-
gibt, wie schnell sich der Betrachter in einer Visualisierung zurecht findet und sein Ziel
damit erreichen kann.

Anwendungsbereiche sind unter anderem die Visualisierung von Dateisystemen (Ab-
bildung 11), Softwarekomponenten oder auch Netzwerkverbindungen im Internet. Die
bekanntesten Darstellungen im Bereich Softwarevisualisierung sind UML-Diagramme.
Diese decken ein recht breites Spektrum zur Darstellung von Softwarekomponenten ab,
wie z.B. Komponentendiagramme, welche die Architektur eines Softwaresystems auf ei-
ner sehr abstrakten Ebene beschreiben. Einen etwas detaillierteren Blick auf die Struktur
einer Software geben Klassendiagramme, woriiber sich Beziehungen und FEigenschaften
von einzelnen Klassen darstellen lassen. Fiir noch tiefere Einblicke eignen sich z.B. Ak-
tivitdtsdiagramme, um den Ablauf eines Algorithmus graphisch darzustellen.

Wissenschaftliche Visualisierung

Der Bereich der wissenschaftlichen Visualisierung beschéftigt sich hauptséchlich mit kon-
tinuierlichen Datenmodellen. Bedingt durch eine begrenzte Anzahl an Sensoren erfolgt
die Datenerfassung rdumlich und zeitlich diskret, sodass fiir eine kontinuierliche Dar-
stellung die Daten zusétzlich interpoliert werden miissen. Der Anwendungsbereich be-
schriankt sich hier meist auf zwei oder drei Dimensionen und besteht in der Regel aus
mehr Datenpunkten als in der Informationsvisualisierung [11].
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Abbildung 12: Beispiele wissenschaftlicher Visualisierungen: Visualisierung des Asteroi-
dengiirtels im inneren Sonnensystems (links) [40], Tornado Simulation
(Mitte) [40], Wellensimulation auf einer Wasseroberfliche (rechts) [40]

2.2.2. Visualisierungspipeline

Die Visualisierungspipeline (Abbildung 13) beschreibt den Prozess, der durchlaufen wird,
um eine Datenmenge in eine visuelle Darstellung zu iiberfiithren [11]:

| simulation data | |data bases | | sensor measurements
L 1 ]

K ]
[ data acquisition ]

processes
[ fitering |
data
| flow | visualization data |

[ ma%ping ]

| renderable representation |

[ rendering ]
]

|visua|izations (images, videos) |

Abbildung 13: Visualisierungspipeline: Die Pipeline beschreibt den zu durchlaufenden
Prozess, um eine Menge an Rohdaten in eine Visualisierung zu iiberfiih-
ren. [11]
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1. Data Acquisition: Der erste Schritt in der Pipeline beschreibt die Erfassung der Da-

ten. Diese konnen von einer beliebigen Quelle stammen und sich stark in ihrer
Grofle unterscheiden. So kénnen z.B. Ereignisse aus der realen Welt, wie Wetterda-
ten, astronomische Beobachtungen oder seismische Aktivitdten verwendet werden.
Im theoretischen Bereich lassen sich Daten iiber Computersimulationen, wie Mo-
lekiilmodellierung oder aus CAD Anwendungen gewinnen. Riesige Datenmengen
bietet auch das Internet selbst oder die Daten zu Aktienmirkten. So betrégt die
Datenmenge aus medizinischen Scannern einige Megabytes, wéhrend sich astrono-
mische Beobachtungen schnell im Terrabyte-Bereich bewegen koénnen.

2. Filtering: Das Filtering beschreibt eine Daten-zu-Daten Abbildung. Hierbei werden

die Rohdaten der ersten Stufen verwendet, um daraus die zu visualisierenden Daten
zu erstellen. Mogliche Transformationen, die hier durchgefithrt werden sind unter
anderem die Interpolation bzw. Approximation der Daten. Dies ist oft notig, da
Sensoren entsprechende Werte nur an diskreten Gitterpunkten erfassen konnen,
die Visualisierung aber ein kontinuierliches Bild darstellen soll. Weiterhin kénnen
hier nicht benétigte Daten verworfen werden oder das Format der Daten kann in
eine fiir die Visualisierung besser geeignete Darstellung konvertiert werden.

3. Mapping: Im dritten Schritt werden die Visualisierungsdaten durch das Mapping auf

graphische Primitive abgebildet. Dies konnen abhéngig von der Dimension Punkte,
Linien, Fldchen oder auch Volumenelemente sein, wobei diese zusétzlich Attribute
fiir Farbe und Texturen erhalten.

4. Rendering: Zum Schluss werden die graphischen Primitive gerendert, wobei noch zu-

sétzlicher Realismus eingefiigt werden kann, wie z.B. Beleuchtungseffekte, Schatten
oder Schraffierungen.

2.2.3. Visuelle Variablen

Im Mapping-Schritt der Visualisierungspipeline 2.2.2 werden die zu visualisierenden Da-
ten auf graphische Elemente abgebildet. Hierfiir lassen sich verschiedene visuelle Varia-
blen identifizieren, auf welche die Daten abgebildet werden kénnen [11]:

Position x, vy, (z)
Grofie
Orientierung
Form

Helligkeit
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Abbildung 14: Abstrakte Visualisierung: Beispiel fiir die Kombination mehrerer visuel-
le Variablen. Die Gitterstruktur legt die Position im dreidimensionalen
Raum fest, tiber den Farbverlauf wird ein skalarer Wert kodiert und zu-
sétzlich zeigen Glyphen iiber ihre Orientierung und Grofie weitere Daten
an. [11]

e Farbe

o Textur

Die Effektivitéit der einzelnen Variablen, in Bezug auf die Wahrnehmungsfihigkeit des
Benutzers, hingt stark von den Daten ab, welche visualisiert werden sollen. So ist die
Position allgemein eine sehr effektive Variable und eignet sich fiir quantitative als auch fiir
ordinale Daten sehr gut. Dies findet z.B. Anwendung bei Scatter Plots, wie in Abbildung
11 zu sehen ist. Wahrend z.B. die Farbe schlecht geeignet ist, um quantitative Daten
unterscheiden zu konnen, eignet sie sich fiir nominale Daten dagegen sehr gut. Zudem
ldsst sich Farbe mit den meisten anderen Techniken kombinieren, da sie bei gezieltem
Einsatz, also sofern die Darstellung nicht zu iiberladen wird, als Warnsignal oder zur
Gruppierung von Elementen eingesetzt werden kann.

Abbildung 14 zeigt eine Visualisierung, in der mehrere dieser Variablen kombiniert wur-
den. So wird durch die Gitterstruktur die Position im dreidimensionalen Raum festgelegt.
Uber eine Regenbogen-Farbtabelle wird ein zusitzlicher Wert pro Datenpunkt darge-
stellt, welcher sich von der Hohe unterscheidet. Zusétzlich befinden sich auf der Fliche
Glyphen, welche eine unterschiedliche Orientierung besitzen und sich in ihrer Gréfle und
ihrem Helligkeitswert unterscheiden.
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2.2.4. Design-Richtlinien

Mogliche Bewertungskriterien fiir graphische Benutzungsoberflichen oder auch Visuali-
sierungen lassen sich aus bereits vorhandenen Richtlinien bzw. GesetzméfBigkeiten der
menschlichen Wahrnehmung ableiten. Allgemein sollen diese Richtlinien bei der Erstel-
lung einer graphischen Ausgabe helfen, um Fihigkeiten der Wahrnehmung zu unterstiit-
zen. Damit ldsst sich auch eine bereits vorhandene GUI bzw. Visualisierung evaluieren.
Im Folgenden werden einige dieser Standards niaher betrachtet:

Shneidermans 8 Goldene Regeln

Die 8 Goldenen Regeln der Dialoggestaltung [17] von Ben Shneiderman umfassen:
1. Streben nach Konsistenz
2. Abkiirzungen fiir erfahrene Benutzer anbieten
3. Informatives Feedback
4. Abgeschlossenheit von Dialogen
5. Einfache Fehlerbehandlung
6. Einfache Umkehrbarkeit von Aktionen
7. Kontrolle des Systems durch den Benutzer
8. Belastungen des Kurzzeitgedéchtnisses reduzieren

Shneiderman konzentriert sich mit seinen 8 Goldenen Regeln hauptséchlich auf das De-
sign von GUIs. Die meisten dieser Regeln beziehen sich auf die Interaktion mit einer
graphischen Oberfliche. So besagt z.B. die erste Regel Streben nach Konsistenz, dass
ghnliche Situationen durch eine Folge von konsistenten Aktionen behandelt werden kon-
nen, oder Aktionen, die zum selben Ergebnis fithren auch gleich benannt werden sollten.
Die Regeln beriicksichtigen sowohl Anfianger als auch fortgeschrittene Benutzer gleicher-
maflen. So besagt die zweite Regel Abkiirzungen fiir erfahrene Benutzer anbieten, dass
héufig benutzte Funktionen iiber Abkiirzungen erreichbar sein sollten, um so die Effizienz
zu erhohen. Die Funktionen miissen aber dennoch {iber den normalen Weg aufgerufen
werden konnen. Weitere Regeln gehen auf informatives Feedback, einfache Fehlerbe-
handlung oder auch die Umkehrung von Aktionen ein. Als interessant stellt sich noch
die achte Regel dar, welche besagt, dass die Oberfliche moglichst einfach und iibersicht-
lich gehalten und nicht mit unnotigen Komponenten oder gar Animationen iiberladen
werden sollte.

20



Die 8 Goldenen Regeln sind alle sehr allgemein gehalten. So stellt es sich wohl als schwie-
rig heraus, automatisch zu iiberpriifen, ob ein bestimmter Dialog nun ausreichend Riick-
meldung auf ein Problem gibt oder nicht. Selbst bei der Evaluation durch einen Men-
schen, hingt eine solche Beurteilung noch stark von dessen Vorwissen und Erfahrung
ab. So kann fiir einen I'T-Experten die Anzeige eines Fehlercodes bereits ausreichend
sein, wihrend ein anderer Endanwender detaillierte Anweisungen benotigt, um fortfah-
ren zu kénnen. Weitere Regeln, wie die Abgeschlossenheit von Dialogen, lassen noch viel
Spielraum fiir eine konkrete Umsetzung bzw. Bewertung.

1ISO 9241-110 Grundsdtze der Dialoggestaltung

Fine weitere wichtige Richtlinie stellt der Standard ISO 9241-110 Grundsdtze der Dia-
loggestaltung [17] dar. Darin werden insgesamt sieben Grundsitze definiert, welche das
Design von Dialogsystemen unterstiitzen soll:

1. Aufgabenangemessenheit

2. Selbstbeschreibungsfiahigkeit
3. Steuerbarkeit

4. Erwartungskonformitét

5. Fehlertoleranz

6. Individualisierbarkeit

7. Lernforderlichkeit

Die Aufgabenangemessenheit besagt, dass die graphische Oberfliche entsprechend der
Arbeitsaufgabe aufgebaut sein soll. Dabei steht nicht primér im Vordergrund wie et-
was technisch gelost werden kénnte, sondern wie es vom Benutzer nachvollzogen werden
kann. Zudem sollte der Benutzer bei seiner Aufgabe unterstiitzt werden, um schnell und
effektiv arbeiten zu konnen. Ein weiterer Grundsatz ist die Selbstbeschreibungsfihig-
keit, wonach jeder Dialog Auskunft geben muss, welche Aktionen von diesem ausfiihrbar
sind. Die Steuerbarkeit von Dialogabldufen, beschreibt die Moglichkeit, dass Benutzer die
Richtung und Geschwindigkeit beeinflussen kénnen. Ein Dialogsystem ist Erwartungs-
konform, sofern es sich an allgemein anerkannte Konventionen hélt. Zusétzlich sollte das
System fehlertolerant sein und dem Benutzer die Moglichkeit bieten, bei falschen Einga-
ben eine Korrektur vorzunehmen, ohne mit der Dateneingabe von Neuem beginnen zu
miissen. Die Individualisierbarkeit beschreibt die Anpassung der Darstellung an indivi-
duelle Fahigkeiten und Bediirfnisse. Eine GUI ist lernforderlich, sofern sie den Benutzer
bei der Interaktion unterstiitzt und anleitet.
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Allgemein lassen sich hier sehr viele Parallelen zu den Regeln von Shneiderman erkennen.
So deckt sich z.B. der Grundsatz zur Erwartungskonformitdt mit der ersten Regel Streben
nach Konsistenz von Shneiderman. Analoges gilt fiir die Fehlertoleranz oder auch die
Selbstbeschreibungsfihigkeit. Daher konnen hier, in Bezug auf die Evaluation einer GUI
dieselben Aussagen, wie bereits oben aufgefiihrt getroffen werden.

Fiir eine GUI geben diese Regeln gute Richtlinien vor, an die man sich beim Entwerfen
halten sollte. Allerdings sind diese fiir eine Visualisierung nicht mehr ausreichend. Hier
konnte der Punkt Selbstbeschreibungsfihigkeit entsprechend erweitert werden, welcher
das Effektivitdts-Kriterium (siehe 2.2.1) beriicksichtigt und damit Auskunft gibt, wie
schnell der Benutzer die Absicht der Visualisierung erkennen kann. Ein weiteres Kri-
terium, welches vor allem bei dreidimensionalen Visualisierungen zum tragen kommt,
ist das Verdeckungsproblem. So kann es sein, dass unter bestimmten Betrachtungswin-
keln wichtige Informationen im Hintergrund liegen und von davor liegenden Objekten
verdeckt werden, wodurch falsche Annahmen getroffen werden kénnen. Andererseits ver-
lieren auch manche Punkte, welche bei GUIs wichtig sind, hier an Bedeutung. Bei einer
Visualisierung ist z.B. die Fehlertoleranz oder Individualisierbarkeit nebenséchlich. Die
Dateneingabe in einer Visualisierung beschrinkt sich hauptséchlich auf die Auswahl von
bestimmten Werten oder Bereichen, da die eigentlichen Daten bereits durch die Filtering-
Stufe (siehe 2.2.2) eingegeben wurden.

Gestaltgesetze

Das Kapitel stellt eine Zusammenfassung von [31], S.189 - 198 dar.

Finen wesentlichen Beitrag zur Beschreibung der Wahrnehmung von Mustern lieferten
Max Westheimer, Kurt Koffka und Wolfgang Kohler in den sogenannten ,Gestaltgeset-
zen“. Die folgenden Phénomene beschreiben unterschiedliche Muster, die vom menschli-
chen visuellen System erkannt werden kénnen.

Nahe: Das visuelle System gruppiert visuelle Entitéten, die rdumlich nah beieinander
liegen und es gruppiert Regionen mit vergleichbarer Elementdichte. Die raumliche
Nihe stellt das einfachste, aber gleichzeitig effizienteste Mittel dar, um Beziehungen
zwischen visuellen Elementen auszudriicken. Siehe Abbildung 15.
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Abbildung 15: Gestaltgesetz: Gruppierung durch Néhe [31], S.189

Ahnlichkeit: Ahnliche Elemente erscheinen gruppiert. Die ,,Ahnlichkeit* kann iiber un-
terschiedliche Dimensionen erfolgen, z.B. Form, Farbe oder Textur. Auch ist es
moglich mehrere Dimensionen zu iiberlagern. Siehe Abbildung 16.

oooo

Abbildung 16: Gestaltgesetz: Gruppierung durch Ahnlichkeit [32]

Verbundene Elemente: Elemente, die visuell verbunden sind, z.B. durch Linien, erschei-
nen gruppiert. Je nach Art der Verbindung kann diese sogar stérker wirken als Nahe
oder Ahnlichkeit. Siehe Abbildung 17.

Abbildung 17: Gestaltgesetz: Gruppierung durch Verbundenheit [31], S.192

Kontinuitdt: Visuelle Elemente werden stérker als eine Entitét wahrgenommen, wenn
ihre Form flielend verlauft, als jene deren Form abrupte Richtungswechsel bein-
halten. Siehe Abbildung 18.
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Abbildung 18: Gestaltgesetz Kontinuitéit: Die Linie wird als eigensténdiges, dem Recht-
eck iiberlagertes Objekt wahrgenommen [31], S.192

Symmetrie: Symmetrie zwischen Formen, oder auch Abweichungen in der Symmetrie
konnen gut erkannt werden. Ein Beispiel dafiir ist eine Altersstrukturpyramide,
getrennt nach Geschlecht, in der man sehr leicht erkennt in welchen Altersgruppen
ghnliche Mengen vorhanden sind und wo besonders grofie Abweichungen sind. Siehe
Abbildung 19.
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Abbildung 19: Gestaltgesetz Symmetrie: Abweichungen zwischen beiden Gruppen wer-
den leicht erkannt [33]

Geschlossenheit: Eine geschlossene Kontur wird sehr wahrscheinlich als einzelnes Ob-
jekt wahrgenommen. Zusétzlich gibt es eine perzeptionelle Tendenz, visuelle Re-
gionen durch geschlossene Konturen in ,,Auflen“ und ,Innen“ zu unterteilen. Ein
offensichtliches Beispiel hierfiir ist das Fenster-Konzept in Benutzungsschnittstel-
len. Diese werden oft auch mehrfach geschachtelt. Siehe Abbildung 20.
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Abbildung 20: Gestaltgesetz: Geschlossene Formen [31], S.195

Relative GroBe: Im Allgemeinen werden kleine Teile von Mustern stérker als Objekt
wahrgenommen als grofle. Siehe Abbildung 21.

Abbildung 21: Gestaltgesetz Relative Grofle: Die schwarzen Bereiche sind kleiner als die
weiBen und werden eher als Objekt wahrgenommen [31], S.197

Gestalt und Hintergrund: Visuelle Objekte, die als solche erkannt werden, scheinen eher
im Vordergrund zu liegen. Siehe Abbildung 22.
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Abbildung 22: Gestaltgesetz zu Gestalt und Hintergrund: Sieht man die Kopfe, scheint
die schwarze Fléche kein definiertes Objekt zu sein. Sieht man umgekehrt

die Vase, sind die Kopfe nur noch eine weifie Fldche im Hintergrund [31],
S.198

Die Gestaltgesetze sind abstrakt genug, um sie auf die meisten Klassen von Visualisie-
rungen anzuwenden. ,,Abstrakt® soll in diesem Sinne bedeuten, dass sich fiir beliebige
visuelle Objekte ein Zusammenhang nach einem Gestaltgesetz iiberpriifen lidsst, ohne,
dass diese in einen bestimmten Kontext eingebettet sein miissen. Es ist egal, ob die
visuellen Objekte nun Teil eines technischen Diagramms, eines Geméldes oder einer Vo-
lumenvisualisierung sind. Diese ,, Kontextfreiheit* ist aber nicht vollig problemfrei. Fiir
uns ist primér die Analyse einer Visualisierung nach den Gesetzen, primér Nihe, Ahn-
lichkeit, Verbundenheit und Kontinuitdt von Interesse. Eine grundsétzliche Frage ist
hierbei: Angenommen eine Visualisierung ist vorgegeben, liefle sich durch Priifung der
Gestaltgesetze entscheiden, ob zwischen zwei visuellen Elementen eine Relation zum Aus-
druck gebracht wird? Der Nachweis einer solchen Relation bedeutet aber nicht, dass die
Relation auch semantisch korrekt in Bezug auf eine vorgegebene Fragestellung beziig-
lich der Visualisierung ist, ob der dargestellte Zusammenhang also iiberhaupt korrekt
ist. Eine Priifung macht demnach nur Sinn, wenn maschinell entscheidbar ist, ob die
Relation korrekt ist. Folglich ist es schwer eine Visualisierung maschinell bewerten zu
wollen, wenn nicht schon vorher zumindest auf abstrakter Ebene beschreibbar ist, welche
Zusammenhénge Sinn ergeben.

Braths Metriken und Richtlinien

Brath stellt in [5] und [6] Metriken und Richtlinien fiir die Entwicklung von effizien-
ten Visualisierungen vor, die auf seinen Erfahrungen aus ca. 130 Projekten aufbauen.
Vorschldge fiir Metriken sind zum Beispiel die Anzahl der gleichzeitig dargestellten Di-
mensionen, die Anzahl der dargestellten Datenpunkte oder das Verhiltnis von verdeckten
Datenpunkten zu den sichtbaren. All diese Metriken konnen zur Bewertung der Komple-
xitét einer Visualisierung herangezogen werden, wobei Brath davon ausgeht, dass eine
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komplexe Visualisierung schwerer zu verstehen ist. Brath rét diese Metriken nicht unre-
flektiert einzusetzen, weil die Aussagekraft nicht fiir alle Visualisierungen gleich gegeben
ist und sogar fiir einige Visualisierungen das Gegenteil der Realitdt widerspiegeln.

Braths Richtlinien orientieren sich an den Grundlagen der Perzeption, wie sie weiter oben
beschrieben wurden. Ein wichtiger Punkt in diesen Richtlinien ist die moglichst intensive
Nutzung der frithen Stadien der Perzeption, weil diese hoch-parallel arbeiten und durch
effiziente Nutzung eine Suche in (nahezu) konstanter Zeit ermoglichen. Diese frithen
Stadien der Perzeption wiirden im Guided-Search-Modell von Wolfe der Erkennung von
Features und der Erstellung der Activation-Map entsprechen. Fiir die Richtlinien von
Brath bedeutet das also, dass die Features der einzelnen Objekte so gewéhlt werden
sollten, dass die Aktivierung an den Stellen am hdchsten ist, an denen die interessanten
Dinge in der Visualisierung passieren. Eine Richtlinie, die sich daraus ableitet ist zum
Beispiel: ,,Use the most general form, color, orientation and texture to represent the
typical or expected case. Use derivation from the general case to draw attention to the
unexpected or unique information.“ ([6], S. 25).

Beim Einsatz von Braths Metriken und Richtlinien ist auflerdem zu beachten, dass die-
se fiir statische 3D-Informationsvisualisierungen gedacht sind. Weiterhin wird spezielle
Hardware, bzw. Anzeigetechniken auflen vor gelassen, zum Beispiel stereoskopische Dar-
stellungen und Eingabegerite wie Datenhandschuhe. Die Beschrinkung auf statische
Visualisierungen kommt daher, dass viele Visualisierungen auch ausgedruckt oder als
Screenshot verteilt werden und auf diesen Wegen die Moglichkeit der Navigation in der
Visualisierung verloren geht.

2.2.5. Fazit

Zusammenfassend, auf die Fragestellung ., Was macht eine gute Visualisierung aus?“
lassen sich folgende Punkte aus den oben behandelten Themen gewinnen:

e Eine Fragestellung zu einer Visualisierung lésst sich um so schneller beantworten,
je weniger Objekte im Arbeitsgeddchtnis gehalten werden miissen und je weniger
Visual Queries benttigt werden (siehe 2.1.1).

e Da die Effektivitdt von arbitrdren Symbolen stark vom Kulturkreis abhéngt, muss
stets die Zielgruppe im Auge behalten werden (siehe 2.1.2).

e Die Eignung unterschiedlicher visueller Variablen héngt stark vom Datentyp ab. Im
Allgemeinen lésst sich sagen, dass nominale Daten sich gut auf Farben abbilden
lassen, wiahrend quantitative Daten besser iiber Positionsunterschiede abgelesen
werden konnen (siehe 2.2.3).

e Die Visualisierung sollte nicht iiberladen werden, um somit das Kurzzeitgedéchtnis
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nicht zu stark zu belasten (siche Shneidermans 8 Goldene Regeln in 2.2.4 und 2.1.1).

e Beachten der Gestaltgesetze, um so den Wahrnehmungsprozess zu unterstiitzen
(siehe Gestaltgesetze in 2.2.4).
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3. Frameworks

Eine Suche im Internet férdert eine Vielzahl verschiedener kognitiver Frameworks, Theo-
rien und Architekturen zu Tage. Bei einer genaueren Betrachtung stellt sich dann aber
heraus, dass zu den meisten Theorien und Architekturen keine oder nur eine veralte-
te Implementierung existiert, wodurch sie sich fiir den praktischen Einsatz im Umfeld
dieser Fachstudie weniger eignen. Bei bestehenden Frameworks haben wir festgestellt,
dass es zwei Extrema gibt. Das eine Extrem sind Frameworks, die schon seit einiger Zeit
im praktischen Einsatz etabliert sind, sich aber auf die Losung spezieller Probleme be-
schrianken, beispielsweise Frameworks zur Steuerung von Robotern. Das andere Extrem
sind Frameworks, deren Ziel es ist, den menschlichen Verstand zu simulieren, die sich
aber noch in der Konzeptionsphase oder am Beginn der Implementierung befinden. Es
gibt wenige Frameworks, die fiir die Losung einer groflen Menge von Problemen geeignet
sind und deren Implementierung sich in einem Stadium befindet, in dem sie fiir reale An-
wendungen benutzbar sind, und deren Entwicklung immer noch weitergefiithrt wird. Die
bekanntesten dieser Frameworks sind ACT-R (Adaptive Control of Thought-Rational)
und Soar (fither SOAR, als Akronym fiir State, Operator, Apply, Result).

Im Folgenden wird die kognitive Architektur ACT-R im Detail vorgestellt, wobei die dar-
in verwendeten Konzepte und praktische Beispiele aufgezeigt werden. In Kapitel 3.3 wird
CogTool behandelt, welches eine Anwendung ist, mit der sich GUI-Prototypen erstellen
und anschlieflend automatisiert evaluieren lassen. Hierfiir setzt CogTool auf ACT-R auf,
wobei die kognitive Simulation der GUI-Prototypen von ACT-R iibernommen wird. Die
Architektur Soar wird in der Parallelfachstudie Kognitions-Frameworks II von unseren
Kommilitonen untersucht.

3.1. Prinzipielle Méglichkeiten fiir die kognitive Simulation

Produktionssysteme

-

Computerinspiriert Informationsverarbeitungstheorie
N
Kognitive Architekturen \
\ . . .. .
Assoziativ Représentative Systeme

Abbildung 23: Hierarchie der verschiedenen Klassen von kognitiven Architekturen

Kognitive Architekturen lassen sich in zwei Arten unterteilen (siehe Abbildung 23): Die
computerinspirierten Architekturen und die assoziativen Architekturen [45]. Moderne
Architekturen vereinen Ansétze aus beiden Arten und werden daher als hybride Archi-
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tekturen bezeichnet.

3.1.1. Computerinspirierte Kognitive Architekturen

Computerinspirierte kognitive Architekturen sind nach dem Vorbild eines von-Neumann-
Rechners aufgebaut. Daher bestehen diese Architekturen aus einer zentralen Verarbei-
tungseinheit, Speicher und Eingabe- und Ausgabeeinheiten.

Die erste und bekannteste Klasse dieser Art von kognitiven Architekturen sind die soge-
nannten Produktionssysteme (Production Systems). In Produktionssystemen wird der
menschliche Verstand als ein System modelliert, das aus einem Arbeitsspeicher und einer
grolen Menge von Produktions- und Priorititsregeln, die die Reihenfolge der Produkti-
onsregeln vorgeben, besteht. Eine Produktionsregel besteht dabei aus einer Bedingung
und einer Aktion, die ausgefiihrt werden soll, wenn die Bedingung wahr wird. In jedem
Verarbeitungsschritt werden alle Produktionsregeln bestimmt, bei denen die Bedingung
wahr wird und die Aktion derjenigen ausgefiihrt, die nach den Prioritédtsregeln an ers-
ter Stelle kommt. Eine solche Aktion modifiziert im Allgemeinen den Zustand des Ar-
beitsspeichers. Neuere Produktionssysteme sind innerhalb solcher Aktionen in der Lage,
auch die Produktionsregeln zu veréindern, neue hinzuzufiigen oder bestehende zu l6schen.
Damit wird es moglich Lernprozesse in Produktionssystemen abzubilden. Beispiele fiir
Produktionssysteme sind EPIC und SOAR.

Die zweite Klasse der computerinspirierten kognitiven Architekturen ist die Informati-
onsverarbeitungstheorie. Sie geht davon aus, dass Informationen im menschlichen Ge-
hirn die Verarbeitungsschritte Eingabe, Kodieren, Abspeichern, Auslesen und Ausga-
be durchlaufen. Dabei interessieren insbesondere die Abldufe innerhalb der einzelnen
Schritte. Eine kognitive Architektur, die sich ausschlieBlich auf die Informationsverar-
beitungstheorie stiitzt ist uns nicht bekannt, aber man findet Teile davon zum Beispiel
in CHREST wieder.

Die dritte Klasse der computerinspirierten kognitiven Architekturen sind die reprisenta-
tiven Systeme. Sie konzentriert sich auf die wahrheitsgeméfle Abbildung der Struktur des
menschlichen Wissens. In solchen Architekturen kommen komplexe Datenformate zum
Finsatz, um das Wissen zu organisieren. Dabei wird angenommen, dass es zwei Arten
von Speicher gibt. Den Arbeitsspeicher und einen Speicher fiir die strukturierten Daten.
Beispiele solcher Datenformate sind Frames und Skripte. Im Allgemeinen kénnen die
Datenformate mittels Variablen von Objekten abstrahieren und Beziehungen zwischen
Klassen représentieren. Weiterhin kénnen sie in sich selbst eingebettet werden, also hier-
archisch organisiert werden, und dadurch die Welt in verschiedenen Abstraktionsebenen
reprisentieren. Ein solches reprisentatives System ist zum Beispiel PreACT.
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3.1.2. Assoziative Kognitive Architekturen

Assoziative kognitive Architekturen basieren auf der Annahme, dass die Verarbeitung im
Gehirn durch viele parallel arbeitende Einheiten geschieht, die Teil-Ganzes-Beziehungen
herzustellen. Wurde zum Beispiel der erste Teil eines bestimmten Ablaufs erkannt und
besteht fiir diesen Teil eine Assoziation mit dem gesamten Ablauf, dann ldsst sich von
dem Teil auf den gesamten Ablauf schliefen. Die Architekturen an sich unterscheiden
sich hauptséichlich darin, zwischen welchen Objekten sie die Assoziationen abbilden. Ein
Beispiel fiir assoziative kognitive Architekturen sind neuronale Netze.

3.2. ACT-R

ACT-R (Adaptive Control of Thought-Rational) [2] ist eine kognitive Architektur, wel-
che auf der Theorie Adaptive Control of Thought (ACT) aufbaut. Ziel dieses Projekts
ist es, die Prozesse der menschlichen Kognition nachzubilden. ACT-R stellt hierfiir ein
Framework bereit, mit dem kognitive Modelle, bestehend aus Regeln und Fakten, erstellt
und ausgefiithrt werden kénnen. Die Regeln lassen sich testen, indem die Ergebnisse des
Modells mit den Ergebnissen von Menschen verglichen werden, welche die selbe Aufga-
be ausgefiithrt haben. Die Ergebnisse konnen hierbei aus folgenden Messungen bestehen
(Beispiel-Setup siehe 3.2.3):

e Bendtigte Zeit, um eine bestimmte Aufgabe durchzufiihren
e Genauigkeit, die beim Durchfiihren der Aufgabe erreicht wurde
e Vergleich mit neurologischen Daten, welche aus FMRI gewonnen wurden

Der Vorteil von ACT-R ist hierbei, dass aus der Simulation quantitative Werte gewonnen
werden konnen, welche sich direkt mit den Messungen aus Experimenten mit Menschen
vergleichen lassen.

Anwendungsbereiche von ACT-R sind die Untersuchung von Problemlésungs- und Ent-
scheidungsfindungsaufgaben, Lernen und Erinnern, Verstehen von natiirlicher Sprache
oder allgemeine kognitive Aufgaben. Konkrete Einsatzbereiche finden sich z.B. in der
Mensch-Rechner-Interaktion, um verschiedene GUIs zu beurteilen (siehe Kapitel 3.3)
oder im Bildungsbereich (Cognitive Tutoring System), wobei die Schwierigkeiten einer
bestimmten Aufgabe abgeschétzt werden kdnnen, um so den Studenten gezielte Hilfe-
stellungen geben zu kénnen [2].
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3.2.1. Aufbau von ACT-R

ACT-R ist in mehrere Module aufgeteilt, wobei jedes dieser Module auf eine bestimmte
Informationsart, wie z.B. visuelle oder akustische Reize spezialisiert ist [18]. Abbildung
24 zeigt hierzu die grundlegende Architektur mit einigen Modulen des Systems. Die
Theorie zu ACT-R trifft allerdings keine Aussage, wie viele Module existieren miissen.
Einige sind schon implementiert und Teil des Frameworks. Fiir eine komplette Liste der
implementierten Module mit ihren entsprechenden Puffern, siehe Abschnitt 3.2.2.

Im Folgenden werden die vier wichtigsten Module ndher betrachtet:

e Perceptual Motor System: Besteht aus dem Visual und Manual Modul und
ermoglicht die Interaktion mit der Umgebung.

e Goal Module: beinhaltet das aktuell zu erreichende Ziel.
e Declarative Memory Module: um Informationen aus dem Speicher abzurufen.

e Procedural Memory Module: Das Kernsystem von ACT-R. Halt Regeln fiir
die Ubergéinge zwischen Zustéinden.

Diesen Module lassen sich folgende Phasen aus Norman’s seven stages zuordnen (siehe
Abschnitt 2.1.6):

e Goal Module < Phase 1 - Intention

e Declarative Memory Module < Phase 2 - Action Specification

e Procedural Memory Module < Phase 3 - Execution (Mental)

e Perceptual Motor System < Phase 4 - Physical Activity und Phase 5 - Perception

Alle diese spezialisierten Module werden iiber das zentrale Produktionssystem integriert
(siehe Abbildung 24 Productions), um ein bestimmtes Verhalten zu erzeugen. Das Kern-
system kann jedoch nicht auf beliebige Informationen aus den Modulen zugreifen, son-
dern zwischen jedem Modul und dem Kern befindet sich ein Puffer, welcher nur eine
begrenzte Informationsmenge aufnehmen kann (auch Chunk genannt). Dieses Prinzip
ist dem Menschen nachempfunden, da dieser sich zu einem bestimmten Zeitpunkt auch
nicht tiber alle Informationen, welche in seinem Langzeitgedéichtnis gespeichert sind be-
wusst ist. Analoges gilt fiir Objekte im visuellen Feld. Hier wird meist auch nur ein
kleiner Teil der vorhandenen Objekte wahrgenommen, welche gerade als relevant erach-
tet werden. Der Informationsaustausch erfolgt somit nur iiber diese Puffer, wobei das
Produktionssystem diese verwendet, um Muster in den Daten zu erkennen oder Ande-
rungen an ein entsprechendes Modul weiterzuleiten. Dies kann z.B. auch das Absetzen
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Abbildung 24: Grundlegende Architektur von ACT-R. ACT-R ist in mehrere Modu-
le aufgeteilt, welche alle iiber das Procedural Memory Modul integriert
werden. [18]

eines Kommandos an den Manual Puffer sein, um somit das Durchfiihren einer Aktion
im Manual Module anzustofien.

Den einzelnen Komponenten des Systems kénnen bestimmte Regionen des menschlichen
Gehirns zugewiesen werden. In Abbildung 24 sind jeweils in Klammern die entsprechen-
den Areale angegeben, welche nach [18] am Besten dazu passen. So hilt z.B. der Goal
Puffer den aktuellen Zustand, um ein Problem zu l6sen. Dieser wird mit dem Dorso-
lateral Prefrontal Cortex (DLPFC) assoziiert, welcher den Brodmann Arealen 9 und
46 entspricht (Abbildung 25). Die Funktionen des DLPFC umfassen unter anderem die
Planung und Organisation von motorischen Fihigkeiten, Integration von sensorischen
Informationen und er wird auflerdem als Arbeitsgeddchtnis genutzt. Der Manual Puffer
ist zusténdig fiir die Bewegungen der Hénde und wird mit motorischen und somatosen-
sorischen Regionen verkniipft. Diese entsprechen den Brodmann-Arealen 1-4. Fiir eine
detailliertere Beschreibung der einzelnen Brodmann-Areale, siehe [35]. Das Kernsystem
von ACT-R wird mit den Basalganglien des Gehirns in Verbindung gebracht. Diese sind
Gehirnareale, welche unterhalb der Grofhirnrinde liegen und wichtige Funktionen im
Bereich Motorik, Kognition und limbische Regelungen (Verarbeitung von Emotionen)
erfiillen [34].
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Abbildung 25: Regionen des menschlichen Gehirns: die Nummern entsprechen der Un-
terteilung der Gehirnareale nach Brodmann, [35]

Das Produktionssystem wird in drei Schritte unterteilt: das Matching dient zur Muste-
rerkennung und sucht nach Produktionsregeln, welche zum aktuellen Zustand passend
sind. Der Zustand von ACT-R ist hierbei der Inhalt aller Puffer zu einem bestimmten
Zeitpunkt. Anschlieffend agiert der Selection-Schritt, um Konflikte zu erkennen und auf-
zuldsen. Zum Schluss kontrolliert der Execution-Schritt die Ausfithrung der geplanten
Aktionen. Eine wichtige Funktion der Produktionsregeln ist es, die Puffer zu aktualisie-
ren, damit diese mit neuem Inhalt im nachsten Zyklus wiederverwendet werden kénnen.
ACT-R geht davon aus, dass die Durchfiihrung eines solchen Zyklus 50 ms dauert. Diese
Zahl hat sich im Laufe der Zeit entwickelt und wird auch in anderen kognitiven Archi-
tekturen wie Soar oder EPIC verwendet [18].

Die Architektur von ACT-R ist eine Mischung aus paralleler und serieller Verarbeitung.
Zwischen den Modulen lésst sich ein hoher Grad an Parallelitdt erreichen, da z.B. das
Visual Modul das Sichtfeld abarbeiten kann, wihrend das Declarative Modul eine par-
allele Suche in verschiedenen Speichern durchfiihrt. Dennoch gibt es zwei serialisierende
Faktoren im System. Zum einen sind die Puffer begrenzt auf genau einen Chunk, sodass
zu einem gegebenen Zeitpunkt immer nur genau eine Einheit verarbeitet werden kann.
Zum anderen wird im Kernsystem immer nur genau eine Produktionsregel pro Zyklus
ausgewéhlt und ausgefiihrt.

Im Folgenden werden die Komponenten aus Abbildung 24 im Detail vorgestellt:

34



Perceptual Motor System

Das Wahrnehmungs- und Handlungssystem in ACT-R ist der Model Human Proces-
sor Theorie aus [29] nachempfunden (siehe Abbildung 26) und wird auch erfolgreich in
der kognitiven Architektur EPIC [20] eingesetzt. Dabei wird der menschliche Verstand
als ein informationsverarbeitendes System aufgefasst. Ahnlich wie ein IT-Experte ein
PC-System, mit Speicherkomponenten, Prozessor und den Verbindungen dazwischen,
beschreiben wiirde, unterteilt das Modell den menschlichen Verstand in drei Komponen-
ten:

1. Perceptual System (entspricht dem Visual-Module in Abbildung 24)
2. Cognitive System (entspricht dem Produktionssystem in Abbildung 24)
3. Motor System (entspricht dem Manual-Module in Abbildung 24)

Das Perceptual System (1) nimmt {iber Sensoren visuelle und akustische Signale wahr
und speichert diese symbolisch in Puffern ab. Das Cognitive System (2) greift nun auf
diese Informationen zu und verkniipft diese mit Inhalten aus dem Langzeitgedéchtnis,
um daraus Entscheidungen zu treffen. Aus diesen Entscheidungen werden Reaktionen
generiert, welche an das Motor System (3) iibergeben und dort ausgefiithrt werden. Hier-
bei wird abhingig von der Aufgabe unterschieden, ob diese Komponenten seriell oder
parallel verschaltet sind. So wiire z.B. das Betétigen eines Lichtschalters infolge von zu
wenig wahrgenommenem Licht eine serielle Ausfiihrung, wihrend Aufgaben wie Tippen,
Lesen und Ubersetzen gleichzeitig durchgefiihrt werden konnen.

Sensoren

‘ Perceptual System ‘

g [TTTTTITITT1T1] symbolische Puffer
y
‘ Cognitive System ‘<—>

‘ Motor System ‘

@ @ @ Handlungsalternativen

Abbildung 26: Schematische Darstellung der Model Human Processor Theorie. Dabei
wird der menschliche Verstand in die drei Komponenten Perceptual Sys-
tem, Cognitive System und Motor System unterteilt.
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Das Perceptual-Motor System stellt das Interface zur realen Welt dar. In ACT-R wird
dies durch das Visual- und Manual-Modul abgedeckt. Das Visual-Modul ist nach der
Two Stream Hypothesis [43] in zwei Subsysteme unterteilt, wobei jeweils ein eigener
Puffer existiert. Die Two Stream Hypothesis unterteilt die visuelle Wahrnehmung in zwei
Pfade: das dorosal System ist zustédndig fiir die Erkennung der Position von Objekten
im Raum (Wo-Dimension), wihrend das ventral System Objekte eindeutig identifizieren
kann (Was-Dimension).

Der Visual-Location-Puffer stellt die Wo-Dimension und der Visual-Object-Puffer die
Was-Dimension dar. Wird z.B. auf einem Display ein griines Objekt in einer Menge
von blauen Objekten angezeigt, so ist die Zeit um die Position des griinen Objekts zu
erkennen konstant, unabhéngig von der Anzahl der blauen Objekte (Abbildung 27).

L1 I

A

Abbildung 27: Die Position des griinen Objekts kann in konstanter Zeit ermittelt werden.

Das Produktionssystem kann iiber den Visual-Location-Puffer Einschrinkungen ange-
ben, welche das Suchfeld reduzieren (vgl. Abbildung 28). Diese Einschrinkungen beste-
hen aus Attribut-Wert-Paaren, welche visuelle Eigenschaften der Objekte beschreiben,
wie z.B. color:green oder vertical:bottom. ACT-R hat somit Wissen iiber die Position der
Objekte, also wo diese sich befinden, und deren grundlegenden Eigenschaften. Um je-
doch ein Objekt genau zu identifizieren, muss das Produktionssystem noch eine Anfrage
an das Was-System stellen. Die Anfrage enthilt dabei die Position des Objekts, sodass
das System seine Aufmerksamkeit dorthin richten und das dort befindliche Objekt ver-
arbeiten kann. Aus diesem Objekt wird nun ein Chunk in deklarativer Form erstellt. Fiir
den Wechsel der Aufmerksamkeit werden zwei Modelle unterstiitzt: Beim Ersten wird
von einer konstanten Zeit von 185 ms pro Objekt ausgegangen, was dhnlich zur Guided
Search Theorie von Wolfe ist (siehe 2.1.5). Im zweiten Ansatz wird EMMA (Eye Move-
ments and Movement of Attention), eine Theorie iiber Augenbewegungen implementiert.
In EMMA ist die Zeit, die Aufmerksamkeit auf ein anderes Objekt zu lenken, davon ab-
hingig, wie weit dieses Objekt vom aktuell fokussierten Punkt entfernt ist (siehe auch
Abschnitt EMMA in 3.3) [18].
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Abbildung 28: Ablauf der Erkennung eines Objekts im Perceptual System von ACT-R.

Goal Module

Das Goal Module hilt die aktuellen Ziele, welche mit den wahrgenommenen Daten ver-
folgt werden. Werden z.B. die Zahlen 85 und 43 wahrgenommen, so kénnten diese ad-
diert, subtrahiert oder auf einem Telefon gewihlt werden. Die menschliche Fahigkeit
unterschiedlich auf diese Eingabe zu reagieren hingt also sehr stark von dem jeweili-
gen Ziel ab. Sollen die Zahlen addiert werden, so werden in der Regel eine Reihe von
Schritten durchlaufen, wobei weitere Teilziele und Zwischenergebnisse anfallen, wie z.B.
die Einerstellen zu addieren und anschlieBend die Zehner mit eventuellem Ubertrag.
Ein weiteres Beispiel sind die Tiirme von Hanoi (Abbildung 29). Hier werden sehr viele
Teilziele erzeugt, wie z.B. ,,um Scheibe 4 auf Sockel C zu verschieben, muss zuerst Schei-
be 3 auf Sockel B verschoben werden, und dafiir Scheibe 2 auf C usw.“ um schliefllich
das Gesamtziel zu erreichen. Bei Versuchen wurde hierbei gezeigt, dass die Genauigkeit
und Latenz eine solche Aufgabe durchzufithren sehr stark mit der Anzahl der Teilziele
korreliert.
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Abbildung 29: Tiirme von Hanoi: Der Turm muss vollstdndig auf den rechten Sockel
verschoben werden, wobei nie eine kleinere Scheibe unter einer gréfleren
liegen darf [42].

Declarative Memory Module

Das deklarative Gedédchtnismodul bildet zusammen mit dem prozeduralen Gedéchtnis-
modul den Kern von ACT-R und ist fiir die Speicherung und das Abrufen von sym-
bolischem Wissen zustéindig und gewéhrleistet, dass das gezeigte Verhalten iiber die
Zeit konsistent bleibt. Der Zugriff auf das deklarative Gedéchtnis bendtigt Zeit, die von
verschiedenen Faktoren beeinflusst wird.

Das deklarative Gedéchtnis kann grofle Mengen von Informationen halten, wodurch es
unmoglich wird diese alle gleichzeitig fiir die Losung einer Aufgabe heranzuziehen, zumal
Chunks sich gegenseitig ausschliefen kénnen oder fiir die Losung irrelevant sein kénnen.
Pylyshyn hat dies als das sogenannte Roboter-Dilemma bezeichnet [24]. Daher muss eine
Auswahl der wichtigsten Informationen getroffen werden. In ACT-R wird diese Auswahl
als Chunk-Aktivierung A; bezeichnet und ist abhéngig von der allgemeinen Niitzlichkeit
bei der Losung vergangener Probleme B; und der Relevanz im aktuellen Kontext. Die
Relevanz eines Elementes j im aktuellen Kontext ist von der Aufmerksamkeitsgewichtung
W; und der Assoziationsstéirke S;; mit dem Chunk abhéngig.

A; = B; + ZZ WijSij

Jj=1

Dabei gilt, je mehr Elemente an der Aktivierung eines Chunks beteiligt sind, desto
geringer ist die Aufmerksamkeitsgewichtung eines einzelnen Elements und mit je mehr
Chunks ein Element assoziiert ist, desto geringer ist die Assoziationsstéirke des Elements
mit einem einzelnen dieser Chunk.

1

Sij =S—1In (fanj)
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wobei fan; die Anzahl der Fakten ist, die mit dem Element j assoziiert sind, und S ein
Parameter, der im Allgemeinen ungefiahr 2 ist. Die allgemeine Niitzlichkeit ist mafigebend
vom Potenzgesetz des Vergessens gepragt, das besagt, dass ein Chunk fiir die Losung
eines Problems umso irrelevanter ist, je weiter die letzte Aktivierung in der Vergangenheit
liegt. Im Gegensatz dazu wird ein Chunk allerdings umso relevanter, je 6fter er aktiviert

wurde.
m;
Bi=In (Z t,;d>
k=1

o, | | | | |
hd T T T T T

|
T
1 2 3 4 5 6 7 8t
Abbildung 30: B; in Abhéngigkeit von der Zeit. Blau: Allgemeine Niitzlichkeit B; eines
Chunks nach Aktivierungen zu den Zeitpunkten 1, 2, 4 und 7. Rot: All-
gemeine Niitzlichkeit B; jeweils eine Zeiteinheit nach den Aktivierungen.
Griin: Allgemeine Niitzlichkeit B; jeweils eine Zeiteinheit nach den Ak-
tivierungen wenn der Chunk im Abstand von einer Zeiteinheit aktiviert
wird.

wobei t;, die Zeit ist, die seit der k-ten Aktivierung vergangen ist und d ein Parameter fiir
die Vergessensrate, fiir den sich 0.5 als guter Wert fiir eine grofle Menge an Problemen
herausgestellt hat. Damit wiirde sich die Aktivierung wie folgt berechnen:

A;i=In (Z tkd> + Z nl - (S — In (fany))
k=1 j=1""

Die Aktivierung eines Chunks beeinflusst nun die Abrufwahrscheinlichkeit P; und die
Abrufverzégerung T; fiir diesen Chunk. Dabei wird angenommen, dass Chunks erst ab
einer bestimmten Aktivierung iiberhaupt abgerufen werden kénnen. Ist dieser Schwell-
wert 7 iiberschritten, so verhilt sich die Abrufwahrscheinlichkeit in Abhéngigkeit von
der Aktivierung nach einer logistischen Funktion und die Abrufverzégerung nimmt invers
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exponentiell zur Aktivierung ab.

1
P =

A, —T

1+e s
Ty = Fe

wobei s das Rauschen in den Aktivierungsleveln kontrolliert und iiblicherweise um 0.4
liegt und F' der Latenzfaktor ist, der zum Aktivierungsschwellwert 7 in folgender Bezie-
hung steht:

F ~ 0.35¢”

was bedeutet, dass die Abrufverzégerung bei einer Aktivierung in der Groéfle des Schwell-

werts (A; = 7) ca. 0.35 Sekunden entspricht.
1.6 +
14
1.2
1.0
0.8
0.6
0.4

0.2

T
1 2 3 Ai
Abbildung 31: P; und T; in Abhéngigkeit von A; fiir verschiedene 7.

Procedural Memory Module

Das prozedurale Gedichtnismodul hilt Regeln fiir die Uberginge zwischen Zusténden
bereit. Technisch werden diese Zusténde in ACT-R mittels Puffern zu den verschiedenen
anderen Modulen realisiert und die Regeln geben an, wann sie angewendet werden kénnen
und wie die Puffer durch die Anwendung der Regel verindert werden. Diese Regeln
heilen Produktionen. Ziel ist es dann, durch Anwendung von Produktionen von einem
Startzustand in einen Endzustand zu gelangen.

Das grundlegende Problem dabei ist, dass zu einem beliebigen Zeitpunkt mehrere Pro-
duktionen angewendet werden koénnen. Damit ACT-R hier eine Produktion auswéh-
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len kann wird fiir Produktionen ein Nutzen U; bestimmt, &hnlich der Aktivierung fiir
Chunks.
U, =PG—-C;

wobei P; ein Schétzwert fiir die Wahrscheinlichkeit ist, dass das derzeitige Ziel erreicht
wird, wenn die Produktion gewihlt wird, G der Wert des derzeitigen Ziels ist und C;j
ein Schétzwert fiir die Kosten (typischerweise die Zeit) ist, um das derzeitige Ziel zu
erreichen. P; und C; unterliegen einem Lernprozess, der diese anhand von fritheren Er-
fahrungen mit der Produktion anpasst.

Der Nutzen von Produktionen ist groflen Schwankungen unterworfen, was dazu fiihrt,
dass eine Produktion in einigen Versuchen einen zufillig hoheren Nutzen hat als eine
andere und daher nicht immer die selbe Produktion gew&hlt wird.

Die Wahrscheinlichkeit, dass eine Produktion gewihlt wird, kann dann mit folgender
Formel bestimmt werden:

U
et

_Ze

JjeP

IT;

7 mit P = {j | Produktion j kann angewendet werden}
t

fiir alle Produktionen j, die angewendet werden konnen, wobei der Parameter ¢ die
Schwankungen in den Nutzen reguliert und iiblicherweise um 0.5 gewahlt wird.

Die P; als Schitzwerte fiir die Erfolgswahrscheinlichkeit werden einfach durch das Ver-
héltnis von Anzahl der erfolgreichen Anwendung (m) zur Summe aus den Anzahlen der
erfolgreichen und fehlgeschlagenen Anwendungen (m + n) bestimmt.

m

P, =
m+n
Ein Problem ergibt sich dabei allerdings zu Beginn der Berechnungen, wo m und n iib-
licherweise 0 sind und P; daher nicht definiert ist. Ebenso wiirde P; nach der ersten
Anwendung zu einem der Extrema 1 (100% erfolgreich) oder 0 (gar nicht erfolgreich)
ausschlagen. Um diese Probleme zu umgehen, wird ein vorheriger Wert 6 festgelegt, der
die Anzahl der erfolgreichen zu 8V + m und die Anzahl der fehlgeschlagenen Anwen-
dungen zu (1 — 0) V + n verdndert, wobei V' die Stérke des Einflusses von 6 auf spitere

Schitzwerte angibt. Damit startet P; bei 8 und konvergiert mit der Zeit gegen m”_?_n

. OV +m OV 4m
WV AEm+ (1 -0 V4En VEemtn

Ist kein Vorwissen iiber die Wahrscheinlichkeiten vorhanden, so sollte # = 0.5 und V = 2
angesetzt werden. Fiir C; wird analog verfahren.
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Abbildung 32: Vergleich der beiden Versionen fiir P;. Diese Funktionen sind eigentlich
diskret, weil m und n jeweils ganzzahlig sind, aber hier wurde fiir eine bes-
sere Visualisierung der Effekte eine kontinuierliche Darstellung gewéhlt.

3.2.2. ACT-R Software

ACT-R liegt derzeit in der Version 6 vor und kann als Standalone-Anwendung oder
als Archiv mit Quellcodedateien bezogen werden [2]. Die Standalone Varianten sind
fiir Windows und Mac OS X verfiigbar und kénnen ohne Installation direkt verwendet
werden. Um die Quellcodedateien verwenden zu kénnen, muss Common Lisp auf dem
System installiert sein, wodurch sich ACT-R auch auf Linux/Unix Systemen verwenden
lasst. ACT-R 6 wird unter LGPL zur Verfiigung gestellt. Im Folgenden wird von der
Standalone-Variante fiir Windows ausgegangen, welche als Zip-Archiv verfiigbar ist und
lediglich entpackt werden muss, um ACT-R zu verwenden. Beschreibungen den Quellcode
zu kompilieren sind unter [2] vorhanden.

In ACT-R 6 stehen folgende Puffer zur Verfiigung, welche jeweils ein entsprechendes
Modul in ACT-R integrieren (eine Beschreibung der wichtigsten Module ist im Abschnitt
3.2.1 zu finden):

e visual-location: Teil des Perceptual Systems fiir die Wo-Dimension (3.2.1).

e visual: Teil des Perceptual Systems fiir die Was-Dimension (3.2.1).

e manual: Nimmt Befehle zur Steuerung von Hénden und Fingern entgegen.
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e retrieval: Schnittstelle zum Declarative Memory Modul.
e goal: Hilt das aktuelle Ziel.

e production: Dient nur zur Analyse des Zustands des Production-Moduls, erlaubt
es nicht Chunks darin zu platzieren.

e imaginal: Hilt visuelles Bild des Problemzustands. Ahnlich zum Goal-Puffer, je-
doch vergeht hier eine bestimmte Zeit beim Manipulieren von Chunks.

e imaginal-action: Kann vom Benutzer verwendet werden, um das Imaginal-Modul
zu erweitern. StandardméBig keine Funktionalitdt darin implementiert.

e temporal: Gibt den Zihlerstand aus dem Temporal-Modul an, wodurch Zeitab-
schnitte gemessen werden kénnen.

e vocal: Schnittstelle zur rudimentér implementierten Sprachausgabe (Funktions-
weise analog zum Manual-Modul).

e aural-location: Lokalisierung von Sound Ereignissen anhand bestimmter Bedin-
gungen, wie z.B. Tonhohe.

e aural: Lenkt Aufmerksamkeit auf eine bestimmte Sound-Quelle, verarbeitet den
Sound und erzeugt daraus einen Chunk.

Die Oberfliche von ACT-R ist aus mehreren separaten Fenstern aufgebaut, die wichtigs-
ten davon werden in Abbildung 33 gezeigt!:

e Control Panel: Bietet Zugang zu sdmtlichen Funktionen von ACT-R.

e Stepper: Ermoglicht die Ausfithrung eines Modells Schritt-fiir-Schritt durchzuge-
hen.

e Listener: Gibt Statusinformationen auf der Konsole aus und ermdoglicht Befehle
einzugeben.

Das Control Panel stellt den Einstiegspunkt zu allen weiteren Funktionen von ACT-R
dar und ist in mehrere Bereiche unterteilt: als erstes wird dort das aktuell geladene Mo-
dell angezeigt, welches sich iiber die entsprechenden Buttons direkt darunter laden l&sst.
Durch Offnen des Steppers lisst sich das geladene Modell Schritt-fiir-Schritt ausfiihren,
wobei der Stepper alle moglichen Produktionsregeln aufzeigt, welche zum aktuellen Zu-
stand passen und zusétzlich Variablenbelegungen darstellt. Im Bereich Inspecting des
Control Panels lassen sich iiber entsprechende Buttons die Inhalte der Declarative und

'Eine detaillierte Beschreibung iiber alle Funktionen von ACT-R befindet sich auch in der mitgelieferten
Dokumentation EnvironmentManual.doc des Zip-Archivs.
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Abbildung 33: Hauptfenster von ACT-R 6: Control Panel (links), Stepper (rechts oben),
Kommandozeilenein- und -ausgabe (rechts unten).

Procedural Memories, sowie aller vorhandenen Puffer anzeigen. Im Abschnitt Tracing
lassen sich iiber Buffer Traces graphische Darstellungen zum Ablauf anzeigen und iiber
diverse History-Buttons kénnen Pufferbelegungen zu einzelnen Zeitabschnitten wihrend
der Ausfiihrung abgerufen werden. Die BOLD Tools (Blood Oxygen Level Dependent)
stellen eine graphische Repréasentation von BOLD Response Prediction Daten dar, wo-
bei die einzelnen Puffer visuell auf Gehirnbereiche abgebildet werden und die Aktivitat
darin anzeigen (Abbildung 34).
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Abbildung 34: BOLD Viewer aus ACT-R: zeigt die Gehirnregionen der einzelnen Puffer
an und deren Aktivitdt wiahrend der Ausfithrung eines Modells.

3.2.3. Beispiel-Modell

Im Folgenden wird ein Beispielmodell vorgestellt, welches in ACT-R. geladen und ausge-
fithrt werden kann. Es ist den Tutorials von ACT-R entnommen, welche bereits Teil des
Standalone-Archivs sind (tutorial /unitl/count.lisp). Dieses Modell zihlt von 2 bis 4 und
gibt dabei eine Einfithrung in grundlegende Konstrukte wie Chunks und Produktionen.
Hierfiir werden die beiden Puffer Retrieval und Goal verwendet.

ACT-R unterteilt die Wissenreprisentation in zwei Typen: Deklaratives Wissen stellt
Faktenwissen dar, wie z.B. 2 ist der Nachfolger von 1, welches iiber Chunks reprisentiert
wird. Prozedurales Wissen dagegen wirkt sich auf das Verhalten aus und wird nicht
bewusst wahrgenommen, wie z.B. die Syntax von natiirlichen Sprachen. Der zweite Typ
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an Wissen wird in ACT-R durch Produktionsregeln dargestellt.

Chunks

Chunks stellen Elemente des deklarativen Wissens dar und bestehen aus einem Chunk-
type und mehreren Slots. Ein Chunk-type kann als eine Kategorie angesehen werden und
Slots stellen die Attribute einer Kategorie dar. Die Deklaration eines Chunk-Types sieht
wie folgt aus:

(chunk-type count-order first second)

Da ACT-R Lisp fiir die Beschreibung des Modells verwendet, miissen sdmtliche Befehle
in Klammern gesetzt werden. Das erste Argument chunk-type gibt an, um welchen Befehl
es sich handelt, gefolgt von einer Anzahl an Parametern. Der erste Parameter count-order
gibt dem Chunk-Type einen Namen, alle danach folgenden Parameter stellen Slots dar,
welche mit genau einem Wert belegt werden koénnen.

Um nun Wissen in ACT-R zu hinterlegen, muss der Chunk-Type durch eine Menge von
Chunks instanziiert und dem Declarative Memory iiber den Befehl add-dm hinzugefiigt
werden:

(add—dm
(b ISA count—order first 1 second 2)
(¢ ISA count—order first 2 second 3)

)

Jeder Chunk erhélt einen eindeutigen Namen - hier b und ¢. Auf den Namen folgt eine
Liste aus Paaren von Slotname und initialer Wert. Der erste Slot ISA ist ein spezieller
Slot, den jeder Chunk besitzt und welcher den Typ eines Chunks angibt. Dieser kann
nicht mehr verdndert werden. Alle weiteren konnen in beliebiger Reihenfolge spezifiziert
und mit Anfangswerten versehen werden. Wird einem Slot kein Wert zugewiesen, so
bleibt dieser leer und wird durch das Lisp Symbol nil dargestellt.

Produktionsregeln

Eine Produktionsregel kann als eine IF-THEN Anweisung gesehen werden. Hierbei stellt
die Bedingung die aktuelle Belegung von bestimmten Puffern dar. Wenn die Bedingung
erfiillt ist, dann kann die Produktion feuern und Anderungen an den Puffern durchfiihren.
Die Bedingungen werden auch als left-hand side (LHS) und die Aktionen als right-hand
side (RHS) bezeichnet. Eine Produktionsregel in ACT-R kénnte wie folgt aussehen:

(p start
=goal> ;; LHS
ISA count—from
start =numl
count nil
-
=goal> ;; RHS
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count =numl
+retrieval >

ISA count—order

first =numl

Jede Produktionsregel beginnt mit dem Befehl p, gefolgt von einem Namen der Pro-
duktionsregel - hier start. Weiterhin unterteilt sich der Befehl in einen LHS- und einen
RHS-Bereich, wobei beide Teile durch ein ==>-Zeichen voneinander getrennt werden.
Wie bereits erwdhnt steht der LHS-Bereich fiir die Bedingung, welche erfiillt sein muss,
damit eine Produktion ausgewéhlt werden kann. Diese enthéilt eine Liste von Puffern mit
jeweils einem vorgegebenen Muster, welches gegen die aktuellen Pufferbelegungen getes-
tet wird. Stimmen die Werte aller spezifizieren Puffer mit den vorgegebenen Mustern
iiberein, so ist die Produktionsregel passend und kann ausgewéhlt werden. Da es jedoch
vorkommen kann, dass mehrere Produktionsregeln auf einen bestimmten Zustand pas-
send sind, wird zunéchst eine Konfliktauflosung durchgefiihrt, welche genau eine Regel
auswéhlt (siehe Procedural Memory Module in 3.2.1).

In der oben dargestellten Produktionsregel werden nur Bedingungen an den Goal-Puffer
gestellt, alle anderen kénnen einen beliebigen Inhalt aufweisen, um diese Produktion zu
aktivieren. Ein Chunk im Goal-Puffer muss hierbei vom Chunk-Type count-from sein,
welches durch den ISA-Slot angegeben wird. Weiterhin muss im Start-Slot ein Wert
stehen, welcher innerhalb der Produktionsregel iiber die Variable num! angesprochen
werden kann. Der Slot Count muss leer sein.

Variablen werden durch das Prifix ,=“ dargestellt, wobei diese sich fiir folgende zwei
Moglichkeiten einsetzen lassen. Zum einen kénnen diese in der Bedingung verwendet
werden, um die Werte von verschiedenen Slots zu vergleichen, ohne alle méglichen Kom-
binationen wissen zu miissen. Auflerdem lassen sie sich einsetzen, um Werte in Slots des
Aktionenbereichs zu kopieren. Eine Variable ist jedoch nur innerhalb des Produktions-
befehls giiltig.

Um einen Puffer zu spezifizieren, wird die selbe Syntax wie bei Variablen verwendet, wie
z.B. =goal. Hierbei handelt es sich genauso um Variablen, welche den Chunk représen-
tieren, der im entsprechenden Puffer steht. Diese konnen, wie jede andere Variable auch,
verwendet werden, um bestimmte Werte zu testen oder um den Chunk innerhalb einer
Aktion zu kopieren.

Der Aktionsbereich (RHS) einer Produktionsregel ist &hnlich aufgebaut wie die Bedin-
gung. Es werden ebenfalls die Puffer angegeben sowie die Slots, auf welchen Anderungen
durchzufiihren sind. Hier stehen drei Typen von Aktionen zur Verfiigung, welche sich
pro Puffer durchfiihren lassen:

e Buffer Modification: Direkte Anderung des Chunks, welcher sich momentan im
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Puffer befindet. Der Name des Puffers erhilt hierbei das Préfix ,,=*.

e Buffer Request: Stellt eine Anfrage an das entsprechende Modul, einen Chunk
mit entsprechenden Eigenschaften im Puffer bereitzustellen. Der Puffername er-
hélt hier das Prifix ,,+“. Im obigen Beispiel wird eine Anfrage an das Declarative
Module gestellt, einen Chunk zu finden, welcher vom Typ count-order ist und im
Slot ,First“ den Wert stehen hat, welcher zuvor im Goal-Puffer im Slot ,,Start“
stand.

e Buffer Clearing: Loscht den aktuellen Chunk aus dem angegebenen Puffer, indem
der Puffername das Prafix ,-“ erhilt.

Das vollstéindige Modell count.lisp zéhlt von 1 bis 4 und sieht wie folgt aus (aus den
ACT-R Tutorials entnommen):

(clear—all)
(define —model count
(sgp :esc t :1f .05 :trace—detail high)

(chunk—type count—order first second)
(chunk—type count—from start end count)

(add—dm

(b ISA count—order first 1 second 2)
(¢ ISA count—order first 2 second 3)
(d ISA count—order first 3 second 4)
(e ISA count—order first 4 second 5)
(f ISA count—order first 5 second 6)

(first —goal ISA count—from start 2 end 4)

)

(p start
=goal>
ISA count—from
start =numl
count nil
-
=goal>
count =numl
+retrieval >
ISA count—order
first =numl

)

(P increment

=goal>
ISA count—from
count =numl

— end =numl

=retrieval >
ISA count—order
first =numl
second =num?2

—
=goal>
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count =num2
+retrieval >

ISA count—order
first =num?2
loutput! (=numl)
)
(P stop
=goal>
ISA count—from
count =num
end =num
-
—goal>
loutput! (=num)

)

(goal—focus first —goal)

)

Listing 1: Vollsténdiges Modell count.lisp

Nachdem das Model in ACT-R geladen wurde, lasst es sich durch Eingabe des Befehls
(run 1) im Fenster listener ausfithren. Der Parameter 1 gibt an, wie lange das Modell
maximal ausgefithrt werden soll; hier also maximal eine Sekunde. Ist der Stepper ge-
Offnet und der Befehl run wird eingegeben, so lidsst sich das Modell Schritt-fiir-Schritt
ausfiihren, wobei die Belegungen der Puffer sowie die mo6glichen Produktionsregeln zu
einem Zeitpunkt beobachtet werden kénnen.

Die Ausgabe des Modells sieht wie folgt aus:

> (run

0.

(=N e No NN lNo NN No o N oo Nl

QOO OO OO

1)
000
.000
.000
.000
.050
.050
.050
050
.050
.050
.100
.100
.100
.100
100
.100
.150

.150
.150
.150
150
.150
.200
.200

GOAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
DECLARATIVE
PROCEDURAL
DECLARATIVE
DECLARATIVE
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL
PROCEDURAL

PROCEDURAL
PROCEDURAL
PROCEDURAL
DECLARATIVE
PROCEDURAL
DECLARATIVE
DECLARATIVE

SET-BUFFER-CHUNK GOAL FIRST-GOAL REQUESTED NIL
CONFLICT-RESOLUTION
PRODUCTION-SELECTED START
BUFFER-READ-ACTION GOAL
PRODUCTION-FIRED START
MOD-BUFFER-CHUNK GOAL
MODULE-REQUEST RETRIEVAL
CLEAR-BUFFER RETRIEVAL
START-RETRIEVAL
CONFLICT-RESOLUTION
RETRIEVED-CHUNK C
SET-BUFFER-CHUNK RETRIEVAL C
CONFLICT-RESOLUTION
PRODUCTION-SELECTED INCREMENT
BUFFER-READ-ACTION GOAL
BUFFER-READ-ACTION RETRIEVAL
PRODUCTION-FIRED INCREMENT

MOD-BUFFER-CHUNK GOAL
MODULE-REQUEST RETRIEVAL
CLEAR-BUFFER RETRIEVAL
START-RETRIEVAL
CONFLICT-RESOLUTION
RETRIEVED-CHUNK D
SET-BUFFER-CHUNK RETRIEVAL D
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0.200 PROCEDURAL CONFLICT-RESOLUTION
0.200 PROCEDURAL PRODUCTION-SELECTED INCREMENT
0.200 PROCEDURAL BUFFER-READ-ACTION GOAL
0.200 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
0.250 PROCEDURAL PRODUCTION-FIRED INCREMENT
3
0.250 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.250 PROCEDURAL MODULE-REQUEST RETRIEVAL
0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.250 DECLARATIVE START-RETRIEVAL
0.250 PROCEDURAL CONFLICT-RESOLUTION
0.250 PROCEDURAL PRODUCTION-SELECTED STOP
0.250 PROCEDURAL BUFFER-READ-ACTION GOAL
0.300 DECLARATIVE RETRIEVED-CHUNK E
0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL E
0.300 PROCEDURAL PRODUCTION-FIRED STOP
4
0.300 PROCEDURAL CLEAR-BUFFER GOAL
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.300 Stopped because no events left to process

Listing 2: ACT-R Ausgabe des Modells count.lisp

Die Ausgabe ist dabei in drei Spalten aufgeteilt. Zuerst wird die Zeit in Sekunden an-
gezeigt, zu welcher ein entsprechendes Ereignis aufgetreten ist, gefolgt von dem Modul,
welches das Ereignis ausloste und anschliefend noch Details. Zwischen mehreren Ereig-
nissen sind die Ergebnisse zu sehen, wie ACT-R von 2 bis 4 z&hlt.

In der ersten Ausgabezeile ist zu sehen, dass das initiale Ziel in den Goal-Puffer geschrie-
ben wird (SET—BUFFER—CHUNK GOAL FIRST-GOAL REQUESTED NIL). Dies wird durch den
Befehl goal-focus in der Modellbeschreibung ausgeltst, welche den entsprechenden
Chunk in den Puffer schreibt. Anschlieffend wird eine Konfliktauflésung durchgefiihrt
(CONFLICT-RESOLUTION), um eine passende Produktion auszuwihlen. Hier ist aktuell
nur die Regel start passend, welche, wie in der néchsten Zeile zu sehen ist, ausgewé&hlt
wurde (PRODUCTION-SELECTED START). Diese testet zunichst, ob ihre Bedingung er-
fiillt ist, indem sie den aktuellen Chunk im Goal-Puffer iiberpriift (BUFFER-READ-ACTION
GOAL). Danach kann die Produktion gefeuert werden (PRODUCTION-FIRED START), wo-
bei im Procedural System ein Parameter hinterlegt ist, welcher angibt, dass hierbei
genau 50 ms vom Auswéhlen bis zum Feuern einer Produktion vergehen. Die niichsten
beiden Zeilen zeigen die durchgefiihrten Aktionen der Produktion an. Diese definiert
im RHS-Bereich den Count-Slot des Goal-Puffers zu aktualisieren (MOD-BUFFER-CHUNK
GOAL) und stellt eine Anfrage an den Retrieval-Puffer einen entsprechenden Chunk be-
reitzustellen (MODULE-REQUEST RETRIEVAL). Nachdem das Declarative-Module die An-
frage bearbeitet hat, wird erneut eine Konfliktauflosung durchgefithrt, wobei nun die
increment-Produktionsregel ausgewihlt wird (PRODUCTION-SELECTED INCREMENT), wel-
che den eigentlichen Z&ahlschritt durchfithrt, das Ziel anpasst und schliellich den aktu-
ellen Wert schreibt. Anschliefend beginnt dies erneut fiir die néchste Zahl, jedoch ohne
die start-Produktion, da die increment-Regel bereits das Ziel fiir den néchsten Schritt
festlegt.
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i Letter recognitio EE |

Abbildung 35: Erkennung eines Buchstabens von ACT-R. Der rote Kreis zeigt den Be-
reich an, auf welchen das Modell momentan seine Aufmerksamkeit richtet.

Weiterfithrendes Modell: Interaktion mit der Umgebung

Im Folgenden wird ein Modell vorgestellt, in welchem ein Buchstabe auf dem Bild-
schirm angezeigt wird, dieser vom Benutzer erkannt und anschlieffend iiber die Tasta-
tur eingegeben wird (siehe Abbildung 35). Das Model ist zu finden unter tutorial/u-
nit2/demo2.lisp. Das Experiment kann entweder von einem Menschen durchgefiihrt
werden (indem dieser den Buchstaben selbst eingibt), oder ACT-R kann die Durch-
fithrung des Experiments simulieren (hierfiir muss im Modell die Zeile (setf *actr-
enabled-p* nil) nach (setf *actr-enabled-px t) abgeiindert werden). Das Experi-
ment ldsst sich mit dem Befehl

(do-experiment)

ausfiithren.

Die Erkennung des angezeigten Buchstabens erfolgt iiber das Visual-Modul (auch Vision-
Modul genannt). Dieses enthélt bereits Mechanismen, um Text zu parsen, oder einfache
visuelle Objekte auf einem Fenster zu erkennen. Hierbei werden die Objekte durch ein
oder mehrere Features reprisentiert, aus welchen anschliefend, durch das Visual-Modul
Chunks in deklarativer Form erstellt werden. Fiir die Erkennung von Buchstaben ste-
hen mehrere Moglichkeiten zur Verfiigung. Die Standardvariante ist die Darstellung von
Buchstaben entsprechend einer LED-Anzeige. Buchstaben werden dabei in Linien zer-
legt, sodass die Features eines Buchstabens den dafiir benttigten LED-Segmenten ent-
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sprechen. Im folgenden Beispiel ist auf der linken Seite eine LED-Anzeige mit Kodierung
der Liniensegmente in Zahlen dargestellt. Wahrend auf der rechten Seite die Features
fiir den Buchstaben E ausgewahlt wurden und dessen Kodierung als Chunk gezeigt wird

[1]:

_ _ 1 92 _ _
[\]/] 34567 | (letter—e

— — 8 9 - — isa abstract—letter

[/1\] 10 11 12 13 14 | value "E”

- = 15 16 - = line—pos (1 2 3 8 9 10 15 16))

Zusétzlich wird ein Interface bereitgestellt, um die Fahigkeiten des Moduls nach eigenen
Bediirfnissen zu erweitern. Das Vision-Modul besitzt zwei Puffer: Zum einen den Visual
Puffer, der einen Chunk hélt, um das aktuelle Objekt zu reprisentieren und zum ande-
ren den Visual-Location-Puffer, welcher iiber einen Chunk die Position des Objekts im
visuellen Sichtfeld (das Fenster) speichert.

Um nun ein Objekt zu erkennen, wird zunéchst eine Anfrage in den Visual-Location-
Puffer geschrieben, welcher das Vision-Modul dazu veranlasst, die Position eines Objekts
im visuellen Feld zu ermitteln. Falls das Modul ein entsprechendes Objekt findet, erzeugt
es fiir dessen Position einen Chunk und schreibt ihn zuriick in den Puffer. Folgender
Chunk wird hierfiir beim Ausfithren des Modells erzeugt:

VISUAL-LOCATION(O—-0—1
ISA VISUAL-LOCATION
SCREEN-X 130
SCREEN-Y 160
DISTANCE 15.0
KIND TEXT
COLOR BLACK
VALUE TEXT
HEIGHT 10
WIDTH 7
SIZE 0.19999999

Anschlieflend wird eine Anfrage im Visual Puffer platziert, welche das Visual Modul
anweist seine Aufmerksamkeit auf einen bestimmten Punkt zu richten. Hierfiir werden
die Bildschirmkoordinaten des Objekts, welche im Chunk des Visual-Location-Puffers
gespeichert sind, verwendet. Das Visual Modul erzeugt nun einen Chunk aus dem Objekt,
welches es an der entsprechenden Position vorfindet und schreibt diesen zuriick in den
Visual Puffer.

Nachdem nun der angezeigte Buchstabe im Fenster erkannt wurde, muss noch das
Driicken der entsprechenden Taste auf der Tastatur simuliert werden. In ACT-R wird
dies durch das Motor-Modul iibernommen. Standardméfig werden hier nur Handbewe-
gungen unterstiitzt, um z.B. Tasten zu driicken oder eine Maus zu bewegen. Jedoch ist es
auch hier wieder moglich eigene Erweiterungen einzubauen. Das Motor-Modul wird iiber
den Manual-Puffer angesprochen, wobei hier keine Chunks durch das Modul erzeugt wer-
den, sondern der Puffer nur verwendet wird, um Befehle an das Motor-Modul zu senden.
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Um einen Tastendruck auszuldsen, wird ein Chunk vom Typ press-key iibermittelt,
welcher im Slot key die zu driickende Taste enthélt. Im Modell wird davon ausgegangen,
dass sich die Héande in der Grundstellung {iber der Tastatur befinden, die Taste driicken
und danach wieder zur Ausgangsstellung zuriickkehren.

Ubersicht iiber Beispielmodelle in ACT-R 6

Tabelle 1 gibt eine kurze Ubersicht zu den Modellen, welche ACT-R 6 in der Standalone-
Variante bereits mitliefert. Die entsprechenden Dateien sind im tutorial-Ordner des zip-

Archivs zu finden, worunter sich auch jeweils detaillierte Beschreibungen zu den Modellen
befinden.

Lerneinheit | Beschreibung
unit 1 Bietet eine Einfithrung in Chunks und Produktionsregeln.
Enthilt u.a. Modelle fiirs Z&hlen und Addieren.

unit 2 Beschreibt wie die Interaktion mit der realen Welt stattfindet.
Der Standardmechanismus erlaubt es mit dem Computer zu
interagieren, wie z.B. visuelle Objekte wahrnehmen, Tasten-
driicke zu simulieren oder Mausbewegungen durchzufiihren.

unit 3 Weiterfithrendes zur Funktionsweise der visuellen Aufmerk-
samkeit.

unit 4 Behandelt die Aktivierung von Chunks sowie Lern-
mechanismen.

unit 5 Abrufen von Informationen aus dem deklarativen Speicher.

unit 6 Auswihlen von Produktionsregeln anhand errechneter Utility-
Werte.

unit 7 Erlernen von neuen Produktionsregeln.

Tabelle 1: Uberblick iiber Beispielmodelle aus ACT-R

3.2.4. JACT-R

JACT-R [15] ist eine Implementierung von ACT-R in Java. Es baut auf der Eclipse
Rich Client Plattform auf, ist also eine Sammlung von Eclipse-Plugins. Zusétzlich zu
der Implementierung des ACT-R bietet jJACT-R auch eine Entwicklungsumgebung fiir
Modelle an, ebenfalls auf Basis von Eclipse. Die Modelle werden in JACT-R im Gegensatz
zum original ACT-R in XML geschrieben. Hierbei gibt es fiir alle Elemente aus der
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LISP-Beschreibung eine XML-Entsprechung. jACT-R bietet auch einen Ubersetzer, der
zwischen beiden Sprachen konvertieren kann. Eine XML Ubersetzung zum Beispielmodell
count.lisp aus 3.2.3 ist im Anhang B zu finden.

JACT-R bietet vier verschiedene Schnittstellen zur Simulation.

Module: Module erweitern den Funktionsumfang des Modells in einer theoretisch un-
termauerten Weise. Das Perceptual-Motor-Modul ist ein solches Modul.

Erweiterung: Erweiterungen tragen zu einem Modell bei, sind aber nicht theoretisch un-
termauert. Erweiterungen werden fiir Integrations- oder Berechnungszwecke ver-
wendet, zum Beispiel zur Verbesserung der Performance.

Instrumentierungen: Mit Instrumentierungen ldsst sich der Status des Modells wiahrend
der Simulation iiberwachen und abfragen.

Sensoren: Sensoren bieten die Moglichkeit jACT-R-Modelle in andere System einzubet-
ten.

Der Autor Anthony Harrison méchte, dass jJACT-R weitestgehend theoretisch kompati-
bel mit ACT-R bleibt, also die zugrunde liegenden Gleichungen und Schliisselverhalten
erhalten bleiben. Trotzdem unterscheidet sich JACT-R in einigen Implementierungsde-
tails von ACT-R [16], was aber nach Aussagen Harrisons keinen Einfluss auf den Ausgang
der Simulation hat. Aufgrund dieser Unterschiede sieht auch das oben gezeigte Beispiel
an einigen Stellen anders gegeniiber dem original ACT-R Beispiel aus.

Die IDE bietet unter anderem die Moglichkeit, wiéhrend der Laufzeit das Log und die
Pufferzustédnde zu inspizieren.

3.2.5. Fazit

ACT-R hat gezeigt, dass es sich fiir ein groles Spektrum von Problemen einsetzen ldsst.
Zudem stellt das Perceptual-Motor System einen interessanten Ansatz in Bezug auf GUIs
und Visualisierungen dar, woriiber ACT-R. bereits visuelle Informationen wahrnehmen,
verarbeiten und anschlieend iiber das Manual Modul manipulieren kann. Dem gegen-
tiber stehen jedoch auch einige Hindernisse: So steht beim Erstellen eines neuen Modells
ein recht hoher Einarbeitungsaufwand bevor, um sich mit allen Konzepten von ACT-R
vertraut zu machen. Zudem sind in der derzeitigen Version meist nur einfache Mecha-
nismen implementiert, wie z.B. das Erkennen von Buchstaben oder einfachen visuellen
Features. ACT-R bietet hier zwar stets die Moglichkeit an, die Module mit eigenen Im-
plementierungen zu erweitern, jedoch muss iiberlegt werden, ob hierfiir der Aufwand fiir
die Einarbeitung in die Sprache Lisp erbracht werden will. Eine mégliche Alternative zu
Lisp stellt JACT-R dar, wobei hier modernere Sprachen wie Java und XML verwendet

54



werden. Allerdings befindet sich JACT-R noch in einer recht frithen Entwicklungsphase.

3.3. CogTool

CogTool ist eine Anwendung zum Erstellen von Ul-Prototypen, mit der Besonderheit,
das Ablaufe innerhalb der Prototypen definiert werden kénnen und die Anwendung au-
tomatisch quantitative Aussagen iiber den Ablauf generiert. Genauer: Die Anwendung
simuliert die Durchfithrung vorgegebener Abléufe durch einen Benutzer und liefert Aus-
sagen iiber die Dauer einzelner Schritte und in der Summe iiber den gesamten Ablauf
([3], Kapitel 1.1). Dabei wird das kognitive, perzeptuelle und motorische Verhalten des
Benutzers mit Hilfe des ACT-R Frameworks simuliert.

Dieses Kapitel bietet einen groben Uberblick zu CogTool und geht anschlieBend genauer
auf die Zusammenarbeit zwischen CogTool und ACT-R ein.

3.3.1. Uberblick

Ein konkreter Ablauf in CogTool basiert auf einem sogenannten ,Design“. Ein Design
besteht aus einer Menge von ,Frames®, sowie Ubergingen zwischen den Frames (,, Tran-
sitions“).

Ein Frame stellt eine Ansicht einer Anwendung dar. Dies kann eine, mittels den in Cog-
Tool eingebauten Standard-Widgets erstellte Oberfléiche sein. Alternativ geniigt CogTool
aber auch ein Screenshot einer Oberfliche, auf den lediglich auf alle Objekte, die fiir den
Interaktionsablauf relevant sind, Widgets gesetzt werden. Transitions représentieren Be-
nutzeraktionen, die zum Wechsel der Ansicht fithren. Die Standardiibergéinge sind hierbei
Tastatureingaben und Mausaktionen (Klicks, sowie Drag & Drop). Eine Transition be-
steht somit aus drei Elementen: Dem Widget von dem sie ausgeht (z.B. Klick auf einen
konkreten Button, Texteingabe in ein Feld), der Art der Interaktion (Maus, Tastatur)
und dem Frame, zu dessen Wechsel die Interaktion hinfiihrt. Dies kann auch der Frame
sein, von dem die Transition ausgeht (,Self-Transitions“). Somit ist es auch moglich,
mehrere sequentielle Aktionen auf denselben Frame zu definieren.
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Abbildung 36: Ein CogTool Design mit mehreren Frames und Transitions

Ein Design stellt in CogTool die Basis eines konkreten Ablaufs dar. Vervollstédndigt wird
der Ablauf durch Definition eines , Tasks“. Innerhalb eines Tasks wird ein Design durch
eine ,Demonstration komplettiert. Hierbei durchliuft der Benutzer das mit dem Task
assoziierte Design und legt dabei z.B. die konkrete Reihenfolge von Aktionen innerhalb
eines Frames fest. Diese sind fest an die Transitions des Designs gebunden. Der Benutzer
hat die Mdoglichkeit, zusétzliche Sonderaktionen, wie das Betrachten von Widgets oder
,Denken®, im Ablauf festzuhalten. Dies bedeutet in der Berechnung nichts anderes, als
eine Pause mit einer vom Benutzer vordefinierten Dauer einzulegen.

Das Resultat einer Demonstration ist ein automatisch generiertes ACT-R Modell des
Tasks, welches wiederum als Eingabe fiir das ACT-R Framework dient. Die quantitative
Vorhersage, wie lange ein Benutzer fiir die Durchfithrung der vordefinierten Aufgabe
bendétigt, basiert nun ausschlieflich auf dem generierten Script, das ACT-R verwendet.
Im Folgenden wird vorgestellt, wie CogTool den definierten Task in das ACT-R Modell
umsetzt.

3.3.2. Erzeugung des ACT-R Modell

Den Task, der auf einem Design ausgefithrt wird, setzt CogTool in einem Verfahren
ghnlich dem , Keystroke-Level-Model* um, welches wiederum durch ein ACT-R Modell
reprisentiert wird. Konkret ist ein ACT-R Modell eine Lisp-Datei mit Produktionsregeln,
die durch das ACT-R Framework ausgefiithrt werden kann und als Ergebnis die geschétzte
Dauer des im Modell beschriebenen Vorgangs liefert. Im Folgenden werden zunéchst die
Grundlagen zu KLM und EMMA erldutert und anschlieflend beschrieben, wie diese von
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CogTool verwendet werden.

Keystroke-Level-Model

Das Keystroke-Level-Model (KLM) [10] wurde 1983 von Card, Moran und Newell ent-
wickelt [8]. Es soll die Dauer der Interaktion zur Erledigung einer Aufgabe mit einem
Informationssystem auf dem ,, Keystroke-Level“ beschreiben. Dies bedeutet, dass alle In-
teraktionen in etwa auf der Abstraktionsebene mit dem Driicken einer Taste vergleichbar
sein sollen. Demnach wire z.B. ,Im System einloggen“ eine zu grobe Interaktion. Das
KLM definiert folgende Interaktionen, auch ,,Operatoren genannt:

e K - Driicken einer Taste auf der Tastatur (0.28 Sekunden)

e T(n) - Eingabe von n Zeichen. T(n) = K * n

e P - Den Mauszeiger auf einen Punkt auf dem Bildschirm fithren (1.10 Sekunden)
e B - Driicken der Maustaste oder Loslassen der Taste (0.10 Sekunden)

e BB - Ein Mausklick. Driicken und Loslassen der Maustaste (0.20 Sekunden)

e H - Hand wechselt zwischen Tastatur und Maus (0.40 Sekunden)

e M - Mentale Vorbereitung (1.20 Sekunden)

e W(t) - t Sekunden auf Berechnungen des Systems warten

Die Zeitangaben beruhen auf experimentellen Werten [8] und stellen die durchschnittliche
Dauer der genannten Aktionen dar.

Zur manuellen Anwendung des Modells auf eine Aufgabe miisste diese nun so lange auf
feinere Stufen aufgelost und geordnet werden, bis sie durch eine Sequenz der Operatoren
ausgedriickt werden kann. Eine besondere Herausforderung ist dabei die Platzierung des
»,2Mentalen Operators” bzw. ,mentale Vorbereitung® in der Operatorenauflistung. Dieser
sollte immer dann in die Sequenz eingesetzt werden, wenn der Proband wéhrend der
Durchfiithrung der Aufgabe einen Moment lang nachdenken miisste, z.B. zum Orientieren
innerhalb der Programmoberfléache.

EMMA

Alle Informationen dieses Abschnitts sind [9] entnommen.
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EMMA ist ein Modell, das Augenbewegungen und visuelle Aufmerksamkeit beschreibt.
Es ist in die kognitive Architektur ACT-R als Teil der perzeptuell-motorischen Kompo-
nenten integriert und wird von CogTool dafiir verwendet, um die Bewegungen der Augen
beim Erledigen eines Tasks zu beschreiben. Da das KLM fiir CogTool insbesondere um
diese Aspekte erweitert werden muss, soll an dieser Stelle zunidchst EMMA erldutert
werden, bevor das fiir CogTool erweiterte KLM vorgestellt wird.

Visuelle Aufmerksamkeit besteht zunéchst aus dem Befehl, die Aufmerksamkeit auf ein
bestimmtes visuelles Objekt zu lenken. Zeitgleich beginnt der ,,Codierungsprozess® des
visuellen Objekts: Der Prozess, der die visuelle Représentation des Objekts erkennt und
in eine abstrakte Form des deklarativen Gedéchtnisses iiberfiihrt (Chunk). Die Dauer des
Codierungsprozesses hiangt davon ab, wie oft das Objekt im Sichtfeld vorkommt. Auch
die Entfernung des Fokuspunktes der Augen zum Objekt, in Bezug auf den Sehwinkel,
wird einbezogen.

Augenbewegungen werden durch das Verschieben der visuellen Aufmerksamkeit initi-
iert. Dabei werden zwei Phasen unterschieden: Vorbereitung und Ausfithrung. Die Un-
terscheidung resultiert aus der Tatsache, dass Menschen trotz einer Verschiebung der
Aufmerksamkeit die Augenbewegung zum neuen Aufmerksamkeitspunkt je nach Situa-
tion abbrechen, falls die Aufmerksamkeit in der Zwischenzeit nochmals umgelenkt wurde.
Die Dauer der Augenbewegung errechnet sich aus einem fixen und einem dynamischen
Anteil, in Abhéngigkeit des zu iiberbriickenden Sehwinkels.

Die Berechnung der visuellen Aufmerksamkeit und der Augenbewegung wird zusétzlich
mit einer ,,Unschérfe* ausgestattet, indem die statischen Anteile der Dauer mit Hilfe
eines Mittelwerts und einer Standard-Abweichung variiert werden. Zusétzlich wird der
eigentliche Ziel-Fokuspunkt des Auges mittels einer Gauss-Verteilung um das eigentliche

Ziel gestreut, um ein realitdtsniheres Verhalten des virtuellen Auges zu erzielen.

Der Kontrollfluss des EMMA-Modells ldsst sich durch 4 Bereiche beschreiben:

e Kognition: Steuert die Verschiebung der Aufmerksamkeit
e Sicht: Verschiebt die Aufmerksamkeit und codiert visuelle Objekte
e Augenbewegung - Vorbereitung: Bereitet eine Augenbewegung vor

e Augenbewegung - Ausfithrung: Motorische Ausfithrung der Bewegung
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Abbildung 37: Visualisierung des (zum Teil) parallelen Ablaufs der 4 Bereiche ([9], S.4).
Siehe Text im Kapitel EMMA.

Unterschiedliche Félle fithren nun zu unterschiedlichen Abldufen (Abbildung 37). Dauert
die Codierung (Linie ,Vision“) genauso lange wie die Augenbewegung, lduft beides exakt
parallel (Fall a). Sendet die Kognition wihrend der Codierung den ,,Befehl“, wieder die
Aufmerksamkeit zu verschieben, wird die Augenbewegung unterbrochen und der neue
Vorgang angestofien (Fall b). Ist die Augenbewegung im gleichen Falle bereits eingeleitet,
wird die Bewegung allerdings nicht abgebrochen, trotzdem wird ein neuer Vorbereitungs-
und Codierungsprozess parallel eingeleitet (Fall ¢). Dauert der Codierungsprozess linger
als die Augenbewegung, wird der Codierungsprozess nach der Bewegung erneut angesto-
Ben (Fall d). Dieser wird nun aber schneller Ablaufen, da das Auge das zu codierende
Objekt exakt fokussiert (es liegt also eine minimale Sehwinkeldifferenz zwischen dem
Fokuspunkt der Augen und dem Fokus der Aufmerksamkeit).

KLM, CogTool und ACT-R, in Bezug aufeinander

CogTool verwendet ein Modell, das dem KLM &hnelt. Es definiert folgende Operationen
([3], Kapitel 5.5):

e Eye Movement Preparation - Vorbereitung der Augen, sich auf ein Objekt auf dem
Bildschirm zu fixieren (siche EMMA)

e Eye Movement Execution - Die Augen fixieren ein Objekt auf dem Bildschirm
(sieche EMMA)

e Vision Encoding - Représentiert das ,,Codieren” wahrgenommener visueller Objekte
in eine mentale Reprisentation (siehe EMMA)
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System Wait - Entspricht W in KLM

Cognition - Entspricht M in KLM

Press Key - Entspricht K in KLM

Move Cursor - Entspricht P in KLM

Click Mouse - Entspricht B bzw. BB in KLM

Hand to Home / Hand to Mouse - Entspricht H in KLM

CogTool erweitert das KLM um mehrere Aspekte. Zum einen wird das Spektrum der
Operationen auf die Bewegung der Augen erweitert, z.B. das Fixieren eines Widgets vor
der Interaktion mit diesem. Dies erfordert die Einfithrung von parallelen Operationen.
Wihrend im KLM alle Aktionen inhdrent sequentiell sind, wire es unrealistisch, dass
Aktionen der Augen und der Hdnde nur nacheinander ablaufen. Zusétzlich verwendet
CogTool im Gegensatz zum KLM keine pauschalen Zeitangaben fiir Operationen. Die
Berechnung der Zeiten ist leider nur iiber den Quellcode nachvollziehbar.

Beim Berechnen eines Tasks werden die Frames und Transitions des Designs nun automa-
tisch in eine Sequenz der oben genannten Operationen iiberfithrt, wobei nun Operationen
auch parallel verlaufen konnen. Insbesondere die Platzierung des ,,Cognition“ Operators
stellt dabei eine Herausforderung dar. Fiir diese wurde eine eigene Heuristik in CogTool
entwickelt, siehe [4], Abschnitt ,Rules for placing mental operators“. CogTool bietet die
Mboglichkeit, die Ubersetzung des Tasks in Operatoren zu visualisieren (sieche Abbildung
38):
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5 Loading file C\Users'Chris\AppDatall «
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Eye Move - Prep RANDOM-MODULE module
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TRACE-FILTER NIL  default NI
TRACE-DETAIL HIGH default

MODEL*WARNINGS T default
“SHOW-ALL-SLOTS NIL defeutt -
< [l b

Frame

PRINTING-MODULE module

Right Hand

Abbildung 38: Visualisierung der Operatoren eines Tasks in CogTool. Einzelne Blo-
cke stehen fiir einzelne Operationen, entsprechend der obigen Katego-
risierung. Die Linien zwischen einzelnen Blocken driicken Anfang-Ende-
Abhéngigkeiten zwischen den Operationen aus. Dabei laufen mechanische
Aktionen der Hénde (,,Left Hand“, ,Right Hand"), sowie die Aktionen der
Augen (,,Eye Move - Exec®, ,, Eye Move - Prep“) jeweils innerhalb der eige-
nen Zeitlinien sequentiell ab. Gegeneinander und gegeniiber ,,Cognition®
gibt es jedoch Uberlappungen, also parallele Abliufe.

Wiéhrend die Platzierung der Operatoren von CogTool vorgenommen wird, ist die Dauer
der Berechnung der einzelnen Operationen nun die Aufgabe von ACT-R. Jede Operati-
on wird in eine Reihe von Produktionsregeln fiir ACT-R {ibersetzt. Hier hebt sich das
Modell von KLM ab, da fiir die Berechnung nun keine pauschalen Zeitangaben verwen-
det werden. Durch den Einsatz des Zwischenspiels aus motorischen, perzeptuellen und
kognitiven Modulen in ACT-R ,jerbt“ CogTool die Validitit des ACT-R Modells (vgl.
[4], Abschnitt ,, Tools for easy predictive modeling®). Beispielsweise greift ACT-R fiir Be-
wegungen auf Fitts Law zuriick und besitzt eine ,,Preparation Theory“ separat von den
Ausfithrungen, was z.B. dazu fiihrt, dass ein wiederholtes Driicken einer Taste schneller
geschieht als ein erstmaliges Driicken, da die Aktion nicht neu vorbereitet werden muss.
Auf die Lernfahigkeiten von ACT-R wird durch CogTool jedoch nicht zuriickgegriffen,
was sich jedoch im Einklang damit befindet, dass CogTool einen erfahrenen Benutzer
simulieren soll, der durch die Benutzung der simulierten Anwendung keine Effizienzstei-
gerung erfahrt.
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3.3.3. Erweiterbarkeit

Zu CogTool existiert bereits eine Erweiterung, die die Einbindung von UI Prototypen
unterstiitzt, die nicht in CogTool selbst erstellt worden sind [7]. Die Beschreibung der
Erweiterung offenbart hierbei, das im Endeffekt immer eine Abbildung der externen GUI
bzw. Widgets auf den vordefinierten Satz an CogTool-internen Widgets vorgenommen
werden muss. Es ist somit nicht moglich, Widgets zu definieren die nicht bereits in Cog-
Tool vorhanden sind, aufler sie lieen sich als Zusammensetzung der CogTool-Widgets
beschreiben. Da die ,,atomaren“ Objekte von CogTool aber z.B. Elemente wie ,,Button®,
,Label“ oder ,Menii“ sind, lassen sich keine ausgefallenen Elemente beschreiben, erst
recht keine Visualisierungen.

3.3.4. Fazit

Beziiglich unserer Fragestellung nach einer automatischen qualitativen Analyse von GUIs
und Visualisierungen sind die Ergebnisse aus CogTool erniichternd. Das einzige Maf}
dafiir, wie gut eine GUI laut CogTool ist, ist die errechnete Durchlaufzeit einer vor-
definierten Aufgabenstellung. Das Design der GUI ist ausschlieflich als Hilfsmittel zur
Definition der Aufgabe genutzt. Wie der Benutzer eine Aufgabe erledigt, und somit auch,
wie er mit der GUI interagiert, muss bereits detailliert und komplett manuell in der Auf-
gabendefinition festgelegt werden. Wie der Benutzer die GUI wahrnimmt, wird bei der
Analyse nicht tiefgreifend in Betracht gezogen. So ist z.B. das Ausfiillen eines Formulars
aus Sicht von CogTool lediglich eine vordefinierte Abfolge von Maus und Tastaturein-
gaben, wobei das einzige qualitative Mafl der Widgets ihre Gréfle und Entfernung von
der Mausposition ist. Es hat somit zwar Auswirkungen, wenn Widgets sehr weit von-
einander entfernt sind. Ob die GUI aber mit zu vielen Widgets tiberfrachtet ist, ob die
Widgets mit Ausnahme der Entfernung voneinander sinnvoll platziert sind, ob die GUI
durch schlechte Farbwahl schwer zu bedienen ist und schlecht wahrgenommen wird, sind
Aspekte, die CogTool nicht analysieren kann. Da die Aufgabendefinition in CogTool be-
reits durch den ,Weg zum Ziel“ vorgegeben werden muss, wird auch aufler acht gelassen,
wie und ob der Benutzer diesen Weg in der GUI iiberhaupt intuitiv erkennen konnte.

Im Bezug auf die Analyse einer Visualisierung stellt CogTool folglich auch keine wirk-
liche Ausgangsbasis dar, da Visualisierungen eben nicht aus einer kleinen Anzahl stark
standardisierter Widgets bestehen, die durch eine Gréfle und Position ausreichend be-
schrieben sind.

Was CogTool maflgeblich fehlt, in Bezug auf unsere Fragestellung, sind Wahrnehmungs-
aspekte beziiglich den Widgets selbst. Unter der Annahme, dass eine Visualisierung
mit komplett individuell erstellten Darstellungselementen arbeitet, miisste ein entspre-
chendes Framework zur qualitativen Analyse eine Moglichkeit bieten, ein Modell der
angewandten Darstellungselemente nachzubilden. Aufgrund der vielen unterschiedlichen
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Arten von Visualisierungen miissten diese Elemente sehr generisch sein, was wiederum
die Komplexitidt beim Abbilden der Widgets oder anderer Elemente drastisch erhchen
wiirde. Gleichzeitig stellt sich die Frage, wie viele solcher Basiselement notig wéren.
Vergleicht man z.B. eine 3D-Volumen-Visualisierung mit einem 2D-Kuchendiagramm,
scheint eine Beschreibung beider Visualisierungen mit gleichen ,Mitteln“ fragwiirdig.
Verwirft man den Anspruch, moglichst alles beschreiben zu kénnen, wire es eventuell
realistischer eine Hierarchie bzw. Gruppierung von ausgewéhlten Visualisierungsarten zu
erstellen, welche unter dem Aspekt der Wahrnehmung mdoglichst nah miteinander ver-
wandt sind und fiir die sich pro Gruppe eine Reihe von Basiselementen zur einheitlichen
Beschreibung finden ldsst.

3.4. Tools fiir Visualisierungen

Das bisher vorgestellte CogTool wurde zur Evaluierung von GUIs entwickelt und es hat
sich gezeigt, dass die dort verwendeten Prinzipien sich nur sehr schwierig auf Visualisie-
rungen iibertragen lassen. Im Folgenden wird eine kognitive Architektur vorgestellt, die
Visualisierungsanwendungen auswerten kann.

3.4.1. CAEVA

CAEVA [19] ist eine kognitive Architektur zur Auswertung von Visualisierungsanwen-
dungen. CAEVA simuliert einen Benutzer einer Visualisierungsanwendung mittels eines
kognitiven Modells. CAEVA besteht aus einem kognitiven Modell und einem Interopera-
bilitdtsmodell zur Verbindung mit der Visualisierungsanwendung. Uber diese Verbindung
ist CAEVA sowohl in der Lage die Anwendung zu manipulieren, also Benutzeraktionen
zu simulieren, als auch den Status der Anwendung zu erfassen.
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Kognitives Modell

Domain- Domain-Dependent
Independent Model Model

Model About Design of Visualizations
Model About Data Analysis Model About Data Domain Knowledge

Abbildung 39: Aufteilung des Kognitiven Modells von CAEVA in einen domain-
abhéngigen und einen domain-unabhéngigen Teil fiir die einfachere Wie-
derverwendbarkeit des deklarativen und prozeduralen Wissens.

CAEVA benutzt ACT-R zur Implementierung des kognitiven Modells. Dabei besteht das
kognitive Modell aus einem domain-unabhéngigen Teil und einem domain-abhingigen
Teil.

Der domain-abhéngige Teil enthélt Regeln iiber den Aufbau von Visualisierungen. Dazu
gehoren auch Heuristiken, die bei der Erstellung von Visualisierungen zum Einsatz kom-
men, zum Beispiel fiir die Auswahl der Visualisierungsart. Der domain-unabhéngige Teil
beinhaltet Regeln dariiber, wie Anwender Daten analysieren, zum Beispiel Art und Um-
fang der Aggregation der Daten. Fiir das domain-unabhéngige Modell versucht CAEVA
eine umfassende Implementierung zu bieten, die fiir alle Anwendungen giiltig ist und im
Idealfall nicht angepasst werden muss.

Der domain-abhéngige Teil des kognitiven Modells enthélt Regeln dariiber, wie Menschen
das Domainwissen einsetzen, um die Analyse durchzufiithren, zum Beispiel welche der
Datensiitze relevant fiir die Beantwortung einer Frage sind. Dieser Teil muss an die
jeweilige Anwendung angepasst werden.
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Interoperabilitatsmodell

XML-Command

Visualization

Cognitive Model Application

XML-State

Abbildung 40: Das kognitive Modell und die Visualisierungsanwendung kommunizie-
ren in CAEVA mittels XML-Nachrichten. Dafiir muss die Visualisie-
rungsanwendung einen Command-Server implementieren, der die XML-
Nachrichten verarbeiten kann.

Die Kommunikation zwischen dem kognitiven Modell und der Visualisierungsanwendung
geschieht durch XML-Nachrichten, die in der Richtung vom Modell zur Anwendung die
verschiedenen Benutzerinteraktionen kodieren und in der Richtung von der Anwendung
zum Modell den aktuellen Anwendungsstatus an das Modell iibermitteln. Dafiir muss
die Visualisierungsanwendung einen Command-Server implementieren, der die XML-
Nachrichten verarbeiten kann.

Von CAEVA wurde zwar ein Prototyp entwickelt, allerdings ist dieser nicht verfiigbhar.
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4. Kognitive Simulation von GUIs und Visualisierungen
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Abbildung 41: 42 Kreise und ein Quadrat. Fiir einen Betrachter dauert es linger die
Kreise zu zéhlen, als zu bestimmen, ob ein Quadrat zu sehen ist.

Unter kognitiver Simulation von GUIs und Visualisierungen verstehen wir den Einsatz
von kognitiven Architekturen zur Evaluation der Effizienz der grafischen Darstellung zur
Erreichung eines bestimmten Ziels. Dabei ist zunéchst erst einmal die Definition des Ziels
wichtig. Dieses kann zum Beispiel sein, in den visualisierten Daten neue Zusammenhénge
zu erkennen oder eine vorgegebene These zu bestétigen. Ein Simulationsdurchlauf mit
einer kognitiven Architektur wie ACT-R kann nun bestimmen, wie lange ein Mensch
benétigen wiirde, um das vorgegebene Ziel zu erreichen. Je schneller das Ziel erreicht
wird, desto effizienter ist die Visualisierung zur Erreichung des Ziels. Wichtig ist dabei,
dass diese Aussage nur beziiglich des festgelegten Ziels giiltig ist. Dass diese Einschrin-
kung notig ist, ldsst sich mit folgendem Beispiel nachvollziehen: Angenommen wir haben
eine Visualisierung, die sehr viele (0.B.d.A. 42) Kreise und ein Quadrat zeigt und wir
miissten zur Erreichung des Ziels die Anzahl der Kreise bestimmen, dann wiirde dies
langer dauern, als wenn es ausreichen wiirde zur Erreichung des Ziels zu bestimmen, ob
in der Visualisierung ein Quadrat vorhanden ist (Abbildung 41).
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4.1. Was ist n6tig, um GUIs / Visualisierungen kognitiv simulieren zu
konnen ?

Zunéchst bendtigt die Simulation eine Représentation der GUI oder der Visualisierung.
Diese kann als Bild oder als Beschreibung in maschinenlesbarer Form vorliegen. Dann
benétigt die Simulation Wissen iiber Visualisierungen. Sie muss wissen, welches Element
welche Bedeutung hat, bzw. haben konnte und wie diese miteinander zu der Visuali-
sierung verkniipft werden. Auflerdem muss das Wissen so umfangreich sein, dass es fiir
die Simulation moglich ist festzustellen, ob und wie das aktuelle Ziel mit der Visualisie-
rung erreicht werden kann. Diese Bedingungen lassen sich in folgender Architektur nach
Raschke [25] zusammenfassen:

Ontolgies

Structure Structure

Rendering

with the aid of
Eye-Tracking \C‘él’ @ Cognitive Task
Analysis ‘ i Simulation
-
3
Q
=]
m
<
2

Visualization

virtual eye

Teaching / Monitoring

Abbildung 42: Architektur eines Systems zur kognitiven Simulation von Visualisierun-
gen nach Raschke. Ein kognitives Modell dient zur Effizienzbewertung
einer Visualisierung. Das Modell wird anhand von Eye-Tracking-Daten
verifiziert.

Die Architektur abstrahiert von der eigentlichen Visualisierung, indem diese nur als Mo-
dell hinterlegt wird. Die Visualisierung wird also in einer Beschreibungssprache erstellt
und aus vordefinierten Elementen zusammengesetzt. Solche Elemente sind zum Beispiel
Achsen. Ein Renderer erzeugt aus diesem Modell dann ein Abbild fiir ein virtuelles Auge.
Dieses Abbild muss nicht unbedingt ein gerastertes 2D-Bild sein. Weitere Moglichkeiten
werden im Abschnitt 4.3.3 gezeigt. Das virtuelle Auge dient als Schnittstelle fiir das
Kognitionsframework, um die Visualisierung betrachten zu kénnen. In die kognitive Si-
mulation geht auch das mit der Visualisierung verfolgte Ziel ein, damit eine Bewertung
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der Effizienz beziiglich diesem moglich wird. Das kognitive Modell muss so viel Wissen
enthalten, dass es mit der Visualisierung, die das virtuelle Auge sieht, umgehen kann.
Es muss also Wissen iiber Visualisierungen im Allgemeinen, aber auch Wissen iiber die
Domain der Daten enthalten.

Die Giite und Plausibilitdt der kognitiven Simulation wird anhand von Vergleichen der
Daten aus den Simulationen mit Eye-Tracking-Daten ermittelt.

4.2. Visualisierungstechniken, die sich gut simulieren lassen

Abbildung 43: Ein kleines rotes Viereck verdeckt durch ein grofies griines Viereck. Das
rote Viereck ist fiir einen menschlichen Betrachter nicht sichtbar. Ein vir-
tuelles Auge, das die Uberdeckung nicht beachtet, wiirde das rote Viereck
sehen.

Cog-Tool hat gezeigt, dass sich Abldufe innerhalb von Benutzeroberflichen kognitiv si-
mulieren lassen. Cog-Tool greift dabei auf die Tatsache zuriick, dass die zur Erstellung
benutzten Widgets klar abgegrenzte Entitédten, sowohl auf dem Bildschirm, als auch in
der Beschreibung der Benutzeroberfldche sind. Es besteht also im Allgemeinen bei Benut-
zeroberflichen keine Diskrepanz zwischen beschriebenen und dargestellten Elementen.
Dies ist bei Visualisierungen unter Umstidnden nicht gegeben, wenn sich zum Beispiel
beschriebene Elemente iiberdecken koénnen. Deshalb lassen sich Visualisierungstechni-
ken, die mit klar abgegrenzten Entitidten arbeiten und diese {iberdeckungsfrei anordnen,
besonders einfach kognitiv simulieren, weil hier die Beschreibung der Visualisierung und
die Darstellung der Visualisierung keine Diskrepanz aufweisen. Visualisierungen miissen
aber nicht unbedingt iiberdeckungsfrei sein, um kognitiv simuliert werden zu kénnen. Es
ist ausreichend, wenn sich Uberdeckungen bestimmen lassen und diese auch in die Simu-
lation einfliefen. Betrachten wir dazu folgendes Beispiel: Wir haben ein grofles griines
Viereck, das ein kleines rotes Viereck vollstindig {iberdeckt. Beide Vierecke sind jeweils
durch die Koordinaten ihrer Eckpunkte gegeben. Wird jetzt in der Simulation davon
ausgegangen, dass der Benutzer beide Vierecke gleichermaflen sieht, dann fithrt diese zu
falschen Ergebnissen. Zum Beispiel, dass der Benutzer erkennt, dass ein rotes Viereck
vorhanden ist, obwohl die real betrachtete Darstellung diesen Schluss gar nicht zulédsst
(siehe Abbildung 43). Da wir aber die Koordinaten der Vierecke kennen und die Erken-
nung einer Uberdeckung bei Vierecken durch diese Koordinaten maglich ist, kénnen wir
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das Ergebnis verbessern, indem wir diese Erkenntnis in die Simulation einflielen lassen.

4.3. Maschinelle Zuginglichkeit

Im Folgenden werden einzelne Aspekte der unter 4.1 vorgestellten Architektur auf Um-
setzungsmoglichkeiten ndher untersucht.

4.3.1. Vorbild Semantic Web?

Das Semantic Web ist ein semantisches Netz fiir das Internet. Ein semantisches Netz ist
ein formales Modell von Begriffen und ihren Beziehungen [41]. Dieses Modell kann zur
Wissensreprisentation genutzt werden. Das semantische Netz wird auch als Graph inter-
pretiert, in dem die Begriffe Knoten und die Relationen Kanten sind. Fiir das Semantic
Web steht als Notation das Resource Description Framework (RDF) zur Verfiigung.
Das RDF definiert Relationen zwischen Ressourcen mittels Tripeln nach dem Subjekt-
Pradikat-Objekt-Muster. Eine Ressource im Semantic Web ist alles, was durch eine URI
eindeutig bezeichnet werden kann. Diese muss dabei nicht zwangsldufig im Internet er-
reichbar sein. Auflerdem gibt es Ontologie-Beschreibungssprachen, mit denen auf den
Ressourcen und Relationen des Semantic Web Ontologien definiert werden kénnen.

Annotationen nach dem Vorbild des Semantic Web sind aus unserer Sicht fiir die Anno-
tation von Visualisierungen geeignet. Man miisste nur eine geeignete Ontologie erstellen,
da es unseres Wissens bisher noch keine Ontologie fiir Visualisierungen im Semantic
Web gibt. Eine Entscheidung fiir das Semantic Web hétte dariiber hinaus auch den Vor-
teil, dass man bestehende Ontologien mit der Ontologie fiir Visualisierungen verkniipfen
konnte. Es geht also nicht darum, in welcher Sprache man das Wissen aufschreibt, son-
dern wie man das Wissen in das kognitive Modell bekommt. Man miisste also fiir jede
Sprache, fiir die man sich entscheidet, eine Art Ubersetzer bauen.

Eine direkte Ubersetzung der Relationen in einem semantischen Netz in Chunks fiir
ACT-R konnte zum Beispiel wie folgt aussehen:

<?xml version="1.0" encoding="UTF-8” 7>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#”
xmlns:dc="http://purl.org/dc/elements/1.1/7>
<rdf:Description
rdf:about="http://de. wikipedia.org/wiki/Resource_Description_Framework”>
<dc:title >Resource Description Framework</dc:title>
<dc:publisher >Wikipedia — Die freie Enzyklopiddie</dc:publisher>
</rdf:Description>
</rdf:RDF>

Listing 3: Relationen in RDF, Beispiel aus [3§]
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(chunk—type semantic—web—relation subject predicate object)
(add—dm
(title ISA semantic—web—relation
subject "http://de.wikipedia.org/wiki/Resource_Description_Framework”
predicate "http://purl.org/dc/elements/1.1/title”
object ”Resource_Description Framework”)
(publisher ISA semantic—web—relation
subject “http://de.wikipedia.org/wiki/Resource_Description_Framework”
predicate "http://purl.org/dc/elements/1.1/publisher”
object ”Wikipedia_—_Die _freie _Enzyklopddie”))

Listing 4: Abbildung der Relationen in Chunks

Das hier gezeigte Beispiel ist stark vereinfacht und miisste fiir den Einsatz sicher noch
erweitert werden, zum Beispiel muss die Simulation noch Regeln enthalten, dass Subjekte
mit der gleichen URI auch das gleiche Objekt referenzieren. Ebenso fehlen die Aussagen
tiber die zugrundeliegene Ontologie, die sich auf dhnliche Weise wie Relationen abbilden
lassen, da sie ebenfalls in einem XML-Dialekt geschrieben sind. Unklar ist auflerdem
noch, ob sich eine solche direkte Abbildung {iberhaupt fiir eine kognitive Simulation
eignet.

Der erfolgreiche Einsatz von ACT-R in CAEVA hat gezeigt, dass es moglich ist, das Wis-
sen {iber Visualisierungen im deklarativen Gedéchtnis abzulegen und fiir die Simulation
zugénglich zu machen, allerdings beschreibt [19] leider nicht wie dies erreicht wurde und
welchen Umfang dieses Wissen hatte.

Die semantische Représentation einer Visualisierung dient in bisherigen Anwendungen
dazu, die Darstellung der Visualisierung von ihrer Beschreibung zu trennen ([27], [26]),
dhnlich wie bei HTML und CSS. Dadurch wird es moglich die Darstellung der Visuali-

sierung anzupassen, ohne die Visualisierung verdndern zu miissen.

4.3.2. Zuginglichkeit von GUIs

GUlIs, die auf Widget-Toolkits basieren, kénnen in der Regel ohne Anpassungen von Ma-
schinen verarbeitet werden. Diese GUIs konnen als externe beschreibende Dateien, z.B.
XAML fiir WPF, oder direkt als Quellcode in einer Programmiersprache, z.B. Java fiir
SWT, vorliegen. In beiden Féllen liegt es in der Natur der Sache, dass die GUIs aus diesen
Beschreibungen erzeugt werden. Das bedeutet also, dass wir durch die Benutzung eines
Widget-Toolkits den Bereichen in der Benutzeroberfléche schon eine semantische Bedeu-
tung in Form eines Widgets zuweisen, die wir auch in der Simulation nutzen kénnen.
In der Regel werden fiir die jeweiligen Widgets in der Beschreibung auch Interaktions-
moglichkeiten und Reaktionen definiert, die aber nur begrenzt automatisch ausgewertet
werden konnen, da hier beliebige Seiteneffekte implementiert werden kénnen. Das heifit,
an dieser Stelle muss fiir die vollautomatische Auswertung noch ein wenig Arbeit hin-
eingesteckt werden. Dies kann mit einem externen Werkzeug, wie zum Beispiel Cog-Tool
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oder als Annotation direkt in der Beschreibung der GUI geschehen.

4.3.3. Zuganglichkeit von Visualisierungen

Mochte man den Ansatz fiir die maschinelle Zugénglichkeit von GUIs direkt auf Visuali-
sierungen iibertragen, dann muss man sich im klaren dariiber sein, dass eine Annotation
von Visualisierungen immer auch eine Implikation iiber den Benutzer enthélt, dass er die
annotierten Elemente auch so erkennt, wie sie die Annotation beschreibt. Wir kénnen
zum Beispiel eine Kugel mit ,Erde“ annotieren und der Simulation vorgeben, dass der
Benutzer jetzt die Erde auf dem Bildschirm sieht, bekommen aber Probleme, wenn ein
realer Benutzer bei dem selben Bild nur eine Kugel erkennen wiirde, da hier in der Anno-
tation zu viele Informationen impliziert werden. Dieses Problem tritt bei GUIs nicht auf,
da es dort allgemein anerkannte Standard-Widgets gibt, die auf jedem Betriebssystem
und in jedem Widget-Toolkit &hnlich aussehen und die gleichen Funktionalitéit haben,
solange man sich auf die Standard-Widgets beschrinkt und deren Aussehen nicht zu
stark verdndert. Bei Visualisierungen kann zum Beispiel eine Linie eine Koordinaten-
achse sein, oder aber auch die Verbindung zwischen zwei Punkten. Sie sehen auf dem
Bildschirm fiir einen realen Nutzer gleich aus und es kann daher nicht automatisch davon
ausgegangen werden, dass der Benutzer diese korrekt unterscheidet.

Insgesamt haben wir fiir die maschinelle Zugénglichkeit von Visualisierungen folgende
Moglichkeiten:

Computer Vision: Die Simulation sieht genau das gleiche Bild wie der Benutzer. Die
ganze Perzeption muss in der Simulation implementiert sein. Diese Variante wird
im Allgemeinen nicht nétig sein, da fiir die Perzeption nachgewiesene Gesetzmé-
Bigkeiten existieren (siehe Kapitel 2)

Annotation geometrischer Objekte: Das Bild wird fiir die Simulation aufbereitet, in-
dem aus den annotierten geometrischen Objekten die Features fiir die Weiterver-
arbeitung extrahiert werden.

Annotation von Fachobjekten: Die Annotationen geben dhnlich den Widgets fiir GUIs
typische Fachobjekte vor. Diese koénnen dann in der Simulation als erkannt voraus-
gesetzt werden. Als Fachobjekte verstehen wir Teile der Visualisierung, die benannt
werden konnen und denen eine Bedeutung zugewiesen werden kann, zum Beispiel
Achsen oder Datenpunkte.

Der Renderer aus der Architektur von Raschke (Abbildung 42) kénnte nun diese maschi-
nell zugéngliche Visualisierung mit Koordinaten verkniipfen und dem virtuellen Auge zur
Verfiigung stellen. Im Falle der Computer Vision erzeugt der Renderer direkt ein 2D-
Bild, anstatt die Annotation um Koordinaten zu erweitern. Wenn das virtuelle Auge
nicht auf Computer Vision basiert, dann muss der Renderer auch dafiir sorgen, dass fiir
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das virtuelle Auge erkennbar ist, welche Elemente verdeckt sind.

4.4. Einschrdankungen von symbolischen Kognitionsframeworks

ACT-R ist darauf ausgelegt moglichst umfassend die Entstehung von Intelligenz im
menschlichen Gehirn zu simulieren. Die Simulation in ACT-R nutzt als Grundlage den
symbolischen Ansatz der kiinstlichen Intelligenz und erweitert ihn um einige konnektio-
nistische Techniken. Allerdings gibt es mit dem symbolischen Ansatz einige Probleme, die
sich zun#chst im Gebiet der kiinstlichen Intelligenz fiir Roboter gezeigt haben. Das erste
Problem ist das sogenannte Symbol Grounding Problem. Dabei steht die Uberlegung im
Raum, dass der symbolische Ansatz zwar Symbole (Chunks in ACT-R) und Produktio-
nen definiert, mit denen die Symbole verkniipft werden kénnen, aber diese Umformung
ohne Wissen iiber die eigentliche Bedeutung der Symbole und Regeln vorgenommen wer-
den konnen. Vereinfacht ausgedriickt wiirde das bedeuten, dass wir eine Aufgabe durch
Anwendung von definierten Regeln 16sen konnten, ohne genau zu verstehen, was wir
eigentlich gemacht haben. Computerprogramme und kognitive Simulationen nach dem
symbolischen Ansatz gehen dhnlich vor. Sie wenden auf Daten immer wieder vordefinier-
te Regeln an und l6sen damit Probleme. Dabei miissen sie die Regeln und die Bedeutung
der Daten nicht verstehen, sondern die Regeln nur anwenden und die Struktur der Daten
analysieren kénnen.

Das zweite Problem ist, dass symbolische kognitive Simulationen nicht mehr richtig funk-
tionieren, wenn etwas unvorhergesehenes passiert und dafiir keine Regel vorhanden ist.
Das menschliche Gehirn kann allerdings solche Varianz relativ gut beriicksichtigen. Das
gleiche gilt fiir Ausfille eines Teilsystems. Beispielsweise kann ein Computer ein Pro-
gramm nicht ausfithren, wenn eine Bibliothek nicht geladen werden konnte, selbst wenn
sie fiir die gerade gewiinschte Funktionalitéit irrelevant wére. Ein Mensch dagegen kann
sich sehr wohl noch bewegen, auch wenn die Region im Gehirn, die fiir die Sprache
zusténdig ist, defekt ist.

Als drittes Problem beschreibt das sogenannte Roboter-Dilemma [24], dass die naive
Umsetzung einer kognitiven Simulation nicht echtzeitfahig ist. Eine solche naive Umset-
zung wiirde zum Beispiel zunéchst alle Chunks und Produktionen bewerten und dann
eine Entscheidung treffen. Das ist im Allgemeinen sehr umfangreich und dauert wegen
der groflen Wissensbasis lange. Das heifit, eine kognitive Simulation, die echtzeitfahig
sein soll, muss die Relevanz von Chunks wesentlich schneller bewerten kénnen, als heute
existierende Systeme. Die Berechnungsdauer durch immer schnellere Rechner auf Echt-
zeit zu senken ist nur fiir einfache Probleme mdoglich und daher nicht praxistauglich. Als
weiterer Aspekt der Ressourcenbegrenzung kommt noch hinzu, dass man nicht beliebig
viel Wissen speichern kann, also das deklarative Gedéchtnis wegen begrenzter Speicher-
kapazitét nicht beliebig viele Chunks enthalten kann.
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5. Fazit

ACT-R bietet aufgrund der langen Zeit, die es sich schon in Entwicklung befindet, und
seiner aktiven und groflen Community einen guten Einstiegspunkt fiir kognitive Simu-
lationen. Aulerdem ist ACT-R bei Bedarf erweiterbar, sodass auch eine Nutzung iiber
die derzeitigen Einsatzszenarien hinaus moglich ist. Mit den vorgestellten Techniken ist
ein erster Schritt in Richtung der Nutzung von kognitiven Simulationen zur Effizienz-
bewertung von Visualisierungen getan. Als nichsten Schritt miissen diese Techniken im
Praxiseinsatz erprobt werden.

Die vorgestellten Einschrankungen sind fiir die kognitiven Simulationen zur Effizienzbe-
wertung von Visualisierungen aus unserer Sicht zunéchst weniger relevant. Das Symbol
Grounding Problem spielt keine Rolle, weil die Simulation die Visualisierung nicht ver-
stehen muss, sondern nur das Verstindnis eines Menschen nachbilden muss. Dies ist aus
unserer Sicht mit einem kognitiven Modell hinreichend abbildbar. Der Umgang mit Un-
schérfe und vagen Informationen lésst sich mit einem gewissen Grad an Genauigkeit auf
Kosten der Geschwindigkeit aus unserer Sicht auch in einem kognitiven Modell emulie-
ren. Die Ressourcenbeschriankungen sollten fiir erste Versuche keine Rolle spielen, da es
sich um ein zwar grofles, aber immer noch beschranktes Wissensgebiet handelt und eine
Simulation in Echtzeit zunéchst nicht im Vordergrund steht.

Die grofite Liicke, die uns wihrend unserer Recherchen aufgefallen ist, besteht darin, wie
ein entsprechendes kognitives Modell aussehen soll. Dazu gehort:

e Die Abbildung von formal definierten Wissenstrukturen in Chunks fiir das dekla-
rative Gedéchtnis (4.3.1), sodass diese auch in der Simulation sinnvoll verwendet
werden konnen.

e Erstellung eines Modells der Datendomain.

e Je nach Eingabe fiir das virtuelle Auge, Abbildung der Perzeption und Aggregation
von Objekten zu einem fiir die Simulation verstédndlichen Modell der Visualisierung
(4.3.3).

In Zukunft wird auch die Echtzeitfahigkeit der Simulation eine zunehmende Rolle spielen,
sodass sich damit beschéftigt werden muss, wie die Performance der kognitiven Simula-
tion verbessert werden kann. Ein weiteres Feld wére neben der Analyse der Perzeption
von statischen Visualisierungen die Analyse der Interaktion mit Visualisierungen.
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A. Glossar
Chunk Elementare Informationseinheit des Gedachtnis. Wird in mentalen Prozessen als
einzelne Entitéit gesehen. Ein Wort kann z.B. ein Chunk sein.

Fitts Law Model menschlicher Bewegungen, das die benétigte Zeit um moglichst schnell
auf eine Zielfliche zu zeigen, als Funktion der Distanz zum Zielbereich, sowie der
Grofle des Zielbereichs ausdriickt.

Framework Programmiergeriist, das Entwicklern Féhigkeiten anbietet, die sie selbst wie-
derum beim Entwickeln von Anwendungen einsetzen kdnnen.

GUI Graphical User Interface. Die graphische Oberfliche einer Anwendung.

kognitive Architektur, Kognitionsframework Kann zur Implementierung von kogniti-
ven Modellen auf Computern benutzt werden. Kognitive Architekturen kénnen
auf anderen kognitiven Architekturen aufbauen.

Kognitives Modell Beschreibt die menschliche Kognition in einem Modell. Ein kogniti-
ves Modell basiert auf einer kognitiven Theorie.

Kognitive Theorie Erklirt die menschliche Kognition mittels einer Theorie.

Millersche Zahl 7 +- 2. Groflenordnung, wie viele Chunks gleichzeitig im Kurzzeitge-
déachtnis gehalten werden kénnen.

Nominale Daten Daten, die keine natiirliche Ordnung besitzen. Es kann lediglich ent-
schieden werden, ob ein Datum zu einer bestimmten Kategorie gehort oder nicht.

Ontologie Formal geordnete Darstellungen einer Menge von Begrifflichkeiten und der
zwischen ihnen bestehenden Beziehungen in einem bestimmten Gegenstandsbe-
reich.

Ordinale Daten Daten, die eine inhirente Ordnung besitzen.

Perzeption Alle Vorginge, die mit der Wahrnehmung assoziiert sind.

Ul Abkiirzung fiir User Interface. Die Benutzerschnittstelle iiber die der Benutzer mit
einer Anwendung interagiert.

Visual Query Eine ,Anfrage“ der Kognition an die Perzeption. Es soll ein sichtbarer

Gegenstand durch die Perzeption verarbeitet werden, um durch die Kognition in
eine mentale Représentation iiberfithrt zu werden.
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Visualisierung Die Uberfiihrung von (abstrakten) Daten in eine visuelle Form. Bezeich-
net sowohl den Prozess, als auch das Ergebnis.

Visuelles Sichtfeld Alles was durch das Auge zu einem bestimmten Moment wahrge-
nommen werden kann, begrenzt durch einen horizontalen und vertikalen Winkel-
bereich.

Volume Rendering Darstellung von volumetrischen Daten mit speziell dafiir entwickel-
ten Techniken.

Widget Komponente eines grafischen Fenstersystems
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B. JACT-R Beispiel count.xml

<actr>
<model

<l--
the modules section allows you to specify what
want included in this model. Modules not includ
loaded, the fewer the modules, the faster the m
Each module has a set of parameters which are e
brevity. The first two are the bare minimum, bu
pressed to write a model without goals or retri

name="Unitl Count" >

The latencyFactor below has been set to 0.05 to
with the Lisp tutorial. It just makes the retri
really fast.
>
<modules>
<module
<module
<module class
<module class
<parameters>
<parameter
</parameters>
</module>
</modules>

class
class

name="LatencyFactor"

<l--
the declarative memory section contains chunk
>
<declarative-memory>
<l--
count order supports counting on your fingers
lisp : (chunk-type count-order first second)

>
<chunk-type = name="count-order" >
<slot name="first" equals ="nil"
<slot name="second" equals ="nil"
</chunk-type>
<l--
count-from is our basic goal.
lisp : (chunk-type count-from start end count
-—>
<chunk-type = name="count-from" >
<slot name="start" equals ="nil"
<slot name="end" equals ="nil" />
<slot name="count" equals ="nil"

</chunk-type>

<I--
add all the chunks we'll need
lisp :
(add-dm
(b ISA count-order first 1 second 2)
(c ISA count-order first 2 second 3)
(d ISA count-order first 3 second 4)

="org.jactr.core.module.declarative.six.DefaultDecla

="org.jactr.core.module.procedural.six.DefaultProced
="org.jactr.core.module.goal.six.DefaultGoalModule6" />
="org.jactr.core.module.retrieval.six.DefaultRetriev

modules you

ed aren't even
odel will execute.
xcluded here for
tyou'll be hard
evals.

be consistent
evals complete

rativeModule6" />
uralModule6" />

alModule6" >

value ="0.05" />

/>
/>

/>

/>

76

and chunktype definitions.



(e ISA count-order first 4 second 5)
(f ISA count-order first 5 second 6)
(first-goal ISA count-from start 2 end 4)

)

-

<chunk type ="count-order" name="b" >
<slot name="first" equals ="1" />
<slot name="second" equals ="2" />

</chunk>

<chunk type ="count-order" name="c"
<slot name="first" equals ="2" />
<slot name="second" equals ="3" />

</chunk>

<chunk type ="count-order" name="d"
<slot name="first" equals ="3" />
<slot name="second" equals ="4" />

</chunk>

<chunk type ="count-order" name="e"
<slot name="first" equals ="4" />
<slot name="second" equals ="5" />

</chunk>

<chunk type ="count-order" name="f"
<slot name="first" equals ="5" />
<slot name="second" equals ="6" />

</chunk>

<chunk type ="count-from" name="first-goal"
<slot name="start" equals ="2" />
<slot name="end" equals ="4" />

</chunk>

</declarative-memory>

<l--
procedural memory contains all the productions
-—>

<procedural-memory>

<l--
lisp :
(p start
=goal>
ISA count-from
start =numl
count nil
==>
=goal>
count =numl
+retrieval>
ISA count-order
first =numl

>

<production name="start" >
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<conditions>
<match buffer ="goal" type =

count-from" >

<slot name="start" equals ="=numl" />
<slot name="count" equals ="nil" />
</match>
<!-- for completeness, | am checking that retrieval is free unlike the lisp -->
<query buffer ="retrieval" >
<slot name="state" equals ="free" />
</query>
</conditions>
<actions>

<modify buffer ="goal" >
<slot name="count" equals ="=numl" />

</modify>
<add buffer ="retrieval" type ="count-order" >
<slot name="first" equals ="=numl" />
</add>
<output> "Searching for something starting at =num1" </output>
</actions>
</production>
<l-- failed isn't included in the lisp, but its alw ays good
to model defensively in case of retrieval fai lures

-—>
<production name="failed" >
<conditions>
<match buffer ="goal" type ="count-from" >

<slot name="start" equals ="=num" />
<slot name="count" equals ="=num" />
</match>
<query buffer ="retrieval" >
<slot name="state" equals ="error" />
</query>
</conditions>
<actions>
<remove buffer ="goal" />
<remove buffer ="retrieval" />
<output> "Awh crap, | can't retrieve anything starting with =num " </output>
</actions>
</production>
<l--
lisp :
(P increment
=goal>
ISA count-from
count =num1l
-end =numl
=retrieval>
ISA count-order
first =numl
second  =num2
==>
=goal>
count =num2
+retrieval>
ISA count-order
first =num2
loutput! (=num1)
)
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-—>
<production
<conditions>

name="increment" >

<match buffer ="goal" type ="count-from" >
<slot name="count" equals ="=numl" />
<slot name="end" not ="=numl" />
</match>
<match buffer ="retrieval" type ="count-order" >
<slot name="first" equals ="=numl" />
<slot name="second" equals ="=num2" />
</match>
</conditions>
<actions>
<modify buffer ="goal" >
<slot name="count" equals ="=num2" />
</modify>
<add buffer ='"retrieval" type ="count-order" >
<slot name="first" equals ="=num2" />
</add>
<output> "=num1l" </output>
</actions>

</production>

outside of the procedural memory section, we ha
where you can set buffer parameters or contents
-—>

<buffer ~ name="goal" chunk ="first-goal"

>

<l--
lisp :
(P stop
=goal>
ISA count-from
count =num
end =num
==>
-goal>
loutput! (=num)
)
-—>
<production name="stop" >
<conditions>
<match buffer ="goal" type ="count-from"
<slot name="end" equals ="=num" />
<slot name="count" equals ="=num" />
</match>
</conditions>
<actions>
<remove buffer ="goal" />
<output> "Answer =num" </output>
</actions>
</production>
</procedural-memory>
<I--
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<!--
these are model parameters. cycle skipping allo ws the model to
fast-forward through time if it can't fire a pr oduction to the
next event that may permit production firing.

peristent execution controls whether or not the model will quit
once the goal buffer is empty. It's much easier to set this to
true than to artificially force the model to ke ep running by
queueing spurious events
>
<parameters>
<parameter name="EnableUnusedCycleSkipping" value ="true" />
<parameter name="EnablePersistentExecution" value ="false" />
</parameters>
</model>
</actr>
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