
Institut für Parallele und Verteilte Systeme
Abteilung Anwendersoftware

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Fachstudie Nr. 141

Vergleich von Technologien und
Systemen für das

Datenmanagement bei
wissenschaftlichen Prozessen

Michael Hahn Michael Schneidt

Studiengang: Softwaretechnik

Prüfer: PD. Dr. rer. nat. Holger Schwarz

Betreuer: Dipl.-Inf. Peter Reimann

begonnen am: 20. Juli 2011

beendet am: 17. Februar 2012

CR-Klassifikation: H.2.5, H.2.8, H.4.1

Inhaltsverzeichnis

1 Einleitung 9

2 Beschreibung der Systeme 11
2.1 OGSA-DAI . 11

2.1.1 Komponenten . 12

Ressourcen . 12

Aktivitäten . 13

Workflows . 14

2.1.2 Ausführung von Workflows . 15

2.2 SDMCenter . 17

2.2.1 Datenmanagement Ebenen . 18

2.2.2 Technologien . 19

ROMIO . 19

Parallel-NetCDF . 20

PVFS . 20

ADIOS . 20

SRM-Lite . 20

R . 21

ProRata . 21

Sapphire . 21

FastBit . 21

eSimMon . 21

Kepler . 21

2.3 SIMPL . 23

2.3.1 Architektur von SIMPL . 23

Eclipse Plug-Ins . 24

Apache ODE . 24

Apache Axis2 . 25

2.3.2 SIMPL Funktionalität und Erweiterbarkeit 25

SIMPL Core . 25

Resource Management . 27

3 Kriterien für die Evaluation 29
3.1 Allgemeines . 29

3.1.1 Anwendungsbereich . 29

3.1.2 Bedienbarkeit, Einfachheit . 29

3.1.3 Installation und Administration . 29

3

3.1.4 Abhängigkeiten von anderer Software . 30

3.1.5 Dokumentation . 30

3.2 Softwarequalität . 30

3.2.1 Portabilität/Plattformunabhängigkeit . 30

3.2.2 Erweiterbarkeit . 30

3.3 Funktionsumfang . 31

3.3.1 Datenquellen . 31

3.3.2 Datenformate . 31

3.3.3 Datenzugriffstechnologien . 31

3.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns 32

3.3.5 Flexibilität zur Deploymentzeit . 32

3.3.6 Flexibilität zur Laufzeit . 33

3.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren 33

3.3.8 Transparenz der Datenbereitstellung und des Datenmanagements . . . 33

3.4 Leistungsfähigkeit . 33

3.4.1 Performanz des Datenzugriffs . 34

3.4.2 Performanz der Datenverarbeitung . 34

3.4.3 Performanz des Datentransfers . 34

3.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung 34

3.5 Anbindung und Integration . 35

3.5.1 Integration von Werkzeugunterstützung 35

3.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste 35

3.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln . . . 35

4 Evaluation von OGSA-DAI 37
4.1 Allgemeines . 37

4.1.1 Anwendungsbereich . 37

4.1.2 Bedienbarkeit, Einfachheit . 37

4.1.3 Installation und Administration . 38

4.1.4 Abhängigkeiten von anderer Software . 39

4.1.5 Dokumentation . 40

4.2 Softwarequalität . 40

4.2.1 Portabilität/Plattformunabhängigkeit . 40

4.2.2 Erweiterbarkeit . 40

4.3 Funktionsumfang . 42

4.3.1 Datenquellen . 42

4.3.2 Datenformate . 42

4.3.3 Datenzugriffstechnologien . 43

4.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns 44

4.3.5 Flexibilität zur Deploymentzeit . 44

4.3.6 Flexibilität zur Laufzeit . 45

4.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren 45

4.3.8 Transparenz der Datenbereitstellung und des Datenmanagements . . . 45

4.4 Leistungsfähigkeit . 46

4.4.1 Performanz des Datenzugriffs . 46

4

4.4.2 Performanz der Datenverarbeitung . 46

4.4.3 Performanz des Datentransfers . 47

4.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung 48

4.5 Anbindung und Integration . 48

4.5.1 Integration von Werkzeugunterstützung 48

4.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste 48

4.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln . . . 48

5 Evaluation von SDMCenter 49
5.1 Allgemeines . 49

5.1.1 Anwendungsbereich . 49

5.1.2 Installation und Administration . 50

5.1.3 Bedienbarkeit, Einfachheit . 50

5.1.4 Abhängigkeiten von anderer Software . 50

5.1.5 Dokumentation . 50

5.2 Softwarequalität . 51

5.2.1 Portabilität/Plattformunabhängigkeit . 51

5.2.2 Erweiterbarkeit . 51

5.3 Funktionsumfang . 52

5.3.1 Datenquellen . 52

5.3.2 Datenformate . 52

5.3.3 Datenzugriffstechnologien . 52

5.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns 53

5.3.5 Flexibilität zur Deploymentzeit . 53

5.3.6 Flexibilität zur Laufzeit . 53

5.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren 53

5.3.8 Transparenz der Datenbereitstellung und des Datenmanagements . . . 53

5.4 Leistungsfähigkeit . 54

5.4.1 Performanz des Datenzugriffs . 54

5.4.2 Performanz der Datenverarbeitung . 54

5.4.3 Performanz des Datentransfers . 54

5.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung 54

5.5 Anbindung und Integration . 55

5.5.1 Integration von Werkzeugunterstützung 55

5.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste 55

5.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln . . . 55

6 Fazit für SIMPL 57
6.1 Stärken von SIMPL . 57

6.1.1 Datenquellen (siehe Kapitel 5.3.1) . 57

6.1.2 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns (siehe
Kapitel 4.3.4 und Kapitel 5.3.4) . 57

6.1.3 Flexibilität zur Deploymentzeit (siehe Kapitel 4.3.5 und Kapitel 5.3.5) . 58

6.1.4 Flexibilität zur Laufzeit (siehe Kapitel 4.3.6 und Kapitel 5.3.6) 58

5

6.1.5 Möglichkeit Anforderungen an Datenqualität zu formulieren (siehe
Kapitel 4.3.7) und Kapitel 5.3.7 . 58

6.1.6 Performanz des Datentransfers (siehe Kapitel 5.4.3) 58

6.1.7 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung (siehe
Kapitel 4.4.4 und Kapitel 5.4.4) . 58

6.1.8 Integration von Werkzeugunterstützung (siehe Kapitel 4.5.1 und Kapi-
tel 5.5.1) . 59

6.2 Identifizierte Erweiterungsmöglichkeiten für SIMPL 59

6.2.1 In Bezug auf OGSA-DAI . 59

6.2.2 In Bezug auf SDMCenter . 60

7 Zusammenfassung und Ausblick 63

Literaturverzeichnis 65

6

Abbildungsverzeichnis

2.1 Datenintegration mithilfe von OGSA-DAI (vgl. [CEMP11]) 11

2.2 Struktur einer Aktivität in OGSA-DAI (vgl. [CEMP11]) 14

2.3 Ausführung eines Workflows mit OGSA-DAI (vgl. [CEMP11]) 17

2.4 Datenmanagement Ebenen vgl. [SDM] . 18

2.5 Kepler Workflow Komponenten . 22

2.6 SIMPL Architektur . 23

2.7 SIMPL Funktionalität und Erweiterbarkeit . 26

3.1 Datenmanagement-Pattern-Hierarchie (vgl. [RM11]) 32

4.1 SQLQuery auf mehreren verteilten relationalen Datenbanken mit DQP (vgl.
[CEMP11]) . 47

Tabellenverzeichnis

4.1 Datenmanagement-Patterns und OGSA-DAI Aktivitäten 44

Verzeichnis der Listings

2.1 Beispiel einer Workflowbeschreibung aus [CEMP11] 16

4.1 Beispiel einer Konfigurationsdatei aus [CEMP11] 39

4.2 Schema des Konfigurationsaufrufs mit Apache Ant aus [CEMP11] 39

4.3 Beispiel einer Data Resource Konfigurationsdatei aus [CEMP11] 41

4.4 Von OGSA-DAI unterstützte Datenquellen aus [CEMP11] 43

7

1 Einleitung

Im wissenschaftlichen Umfeld werden für Simulationen und Analysen Systeme und Tech-
nologien benötigt, mit denen sich Abläufe des Datenmanagements in Form von Prozessen
bzw. Workflows modellieren und automatisieren lassen. Dabei ist hauptsächlich wichtig,
dass die Systeme und eingesetzten Technologien eine heterogene Datenquellenlandschaft
unterstützen bzw. entsprechend erweitert werden können sowie mit großen Datenmengen
effizient arbeiten können. Weiterhin ist die Abstraktionsunterstützung für den Anwender
wichtig, da dieser meist ein Wissenschaftler oder Ingenieur und daher kein ausgewiesener
IT-Experte ist.

Diese Fachstudie evaluiert zwei der frei erhältlichen Datenmanagementsysteme für wissen-
schaftliche Prozesse nach zuvor festgelegten Kriterien bezüglich wichtiger Eigenschaften
und Anforderungen solcher Systeme. Bei den zwei Systemen handelt es sich um Open Grid
Services Architecture Data Access and Integration (OGSA-DAI, Kapitel 2.1) sowie das Scientific
Data Management Center (SDMCenter, Kapitel 2.2). Die Evaluierung wird mit dem Hinter-
grund durchgeführt, dass das vom IAAS und IPVS gemeinsam entwickelte Rahmenwerk
SIMPL (SimTech – Information Management, Processes, and Languages), das den Zugriff
auf externe Daten in Simulationsworkflows ermöglicht, verbessert werden soll.

Zunächst werden in Kapitel 2 alle Systeme und ihre Funktionsweise beschrieben. Anschlie-
ßend werden in Kapitel 3 die Kriterien für die nachfolgenden Evaluierungen der Systeme
in Kapitel 4 und 5 festgelegt. In Kapitel 6 werden dann, als Fazit, die Vorteile der evaluier-
ten Systeme hinsichtlich der Verbesserungsmöglichkeiten für SIMPL beschrieben und ggf.
Umsetzungsvorschläge gemacht, sowie die Vorteile von SIMPL hinsichtlich einiger Kriterien
aufgezeigt. Eine Zusammenfassung der Arbeit und einen Ausblick auf weitere Themen
liefert abschließend Kapitel 7.

9

2 Beschreibung der Systeme

In diesem Kapitel werden zwei verschiedene Datenbereitstellungssysteme beschrieben, die
im weiteren Verlauf des Dokuments anhand von Kriterien untersucht werden. Weiterhin
wird das Datenbereitstellungssystem SIMPL beschrieben, für das durch die Evaluation der
zwei anderen Systeme Verbesserungen und Erweiterungen identifiziert werden sollen.

2.1 OGSA-DAI

Open Grid Services Architecture Data Access and Integration (OGSA-DAI) ist ein generisches
erweiterbares Rahmenwerk zur Realisierung verteilter Datenzugriffe und verteiltem Daten-
management. Im Vordergrund steht dabei die Unterstützung von Datenintegration und
Datenverarbeitung in Grid- und Cloud-Umgebungen, da gerade dort große, verteilte, hetero-
gene Datenmengen von einer Vielzahl unterschiedlicher Komponenten (Rechner, Services,
...) gleichzeitig genutzt und verarbeitet werden.

Abbildung 2.1 zeigt die Datenintegration mithilfe von OGSA-DAI. OGSA-DAI fungiert dabei
als Middleware zwischen Clients (Benutzern) und einer Vielzahl verschiedener realer als
auch virtueller Datenquellen. Virtuelle Datenquellen können durch die Integration mehrerer

Abbildung 2.1: Datenintegration mithilfe von OGSA-DAI (vgl. [CEMP11])

11

2 Beschreibung der Systeme

realer Datenquellen in OGSA-DAI definiert werden. OGSA-DAI unterstützt bereits eine
Reihe verschiedener Datenquellen, wie z.B. relationale und XML-Datenbanken, Webservices
oder auch strukturierte Dateien. Diese Auswahl kann über einen Erweiterungsmechanismus
um weitere Datenquellen ergänzt werden.

In den nachfolgenden Abschnitten wird auf die einzelnen Komponenten von OGSA-DAI
und deren Verwendung näher eingegangen. Als Quelle wurde dafür [CEMP11] verwendet.

2.1.1 Komponenten

OGSA-DAI basiert auf drei zentralen Komponenten, mithilfe derer der verteilte Datenzugriff
und das Datenmanagement realisiert werden.

Dazu gehören:

Ressourcen Diese abstrahieren konkrete reale Datenquellen in einer für OGSA-DAI kompa-
tiblen Form und können so in Aktivitäten referenziert werden.

Aktivitäten Diese kapseln einzelne konkrete Aufgaben, wie z.B. den Zugriff auf Daten, das
Aktualisieren, Kombinieren oder Transformieren von Daten.

Workflows Dies sind komplexe OGSA-DAI Anfragen, die durch strukturiert verbundene
Aktivitäten modelliert werden. Listing 2.1 auf Seite 16 zeigt die eXtensible Markup Lan-
guage (XML)-Repräsentation eines solchen Workflows, der drei verbundene Aktivitäten
enthält.

Diese drei Komponenten werden nachfolgend näher beschrieben.

Ressourcen

OGSA-DAI arbeitet nicht direkt mit konkreten physischen Datenquellen, sondern nutzt
OGSA-DAI-kompatible Abstraktionen dieser. Diese Abstraktionen werden als OGSA-DAI
Ressourcen bzw. Ressourcen bezeichnet. Eine Ressource kapselt dabei beispielsweise nicht
nur eine konkrete physische Datenquelle, sondern auch noch weitere zugehörige Daten, wie
z.B. Authentifizierungsinformationen, die verwendet werden, um eine physische Verbindung
mit der konkreten Datenquelle aufzubauen. Alle Ressourcen besitzen einen eindeutigen logi-
schen Namen, mithilfe dessen die Ressourcen identifiziert und beispielsweise in Aktivitäten
referenziert werden können.

OGSA-DAI stellt fünf Typen von Ressourcen bereit, die den Zugriff auf die Funktionalität von
OGSA-DAI ermöglichen. Diese fünf Ressourcentypen werden nachfolgend beschrieben.

Data Request Execution Resource (DRER) Eine DRER bildet die zentrale Schnittstelle von
OGSA-DAI und initiiert die Ausführung von Anfragen und Workflows. Bei synchronem
Aufruf liefert die DRER den Ausführungsstatus an den Client zurück bzw. eine Referenz
auf eine Request Resource bei asynchronen Aufruf. Ein OGSA-DAI Server besitzt
mindestens eine DRER, um Anfragen und Workflows bearbeiten zu können.

12

2.1 OGSA-DAI

Data Resource Data Resources sind die zentralen Ressourcen in OGSA-DAI. Sie bilden eine
OGSA-DAI-spezifische Abstraktion konkreter Datenquellen und ermöglichen dadurch
den Zugriff auf physische Datenquellen in OGSA-DAI. Data Resources sind darüber
hinaus noch ein wichtiger Erweiterungspunkt in OGSA-DAI, da durch die Bereitstel-
lung neuer Typen von Data Resources weitere Arten von Datenquellen in OGSA-DAI
verwendet werden können. So kann beispielsweise mit einer bereits mitgelieferten
MySQL-DataResource auf MySQL-Datenbanken aus OGSA-DAI zugegriffen werden.

Data Sink Resource Eine Data Sink Resource ist eine OGSA-DAI Ressource, die Clients
erlaubt Daten auf dem Server zu hinterlegen und anderen Clients oder auch Workflows
zur Verfügung zu stellen. Datensenken sind eine Möglichkeit für den asynchronen
Datenaustausch über OGSA-DAI.

Data Source Resource Eine Data Source Resource erlaubt es Clients hinterlegte Daten von
einem OGSA-DAI Server abzufragen. Sie bildet das Gegenstück zur Data Sink Resource
zur Realisierung von asynchronem Datenaustausch.

Session Resource Eine Session Resource verhält sich wie ein Statuscontainer, der mit einer
Reihe von Workflows verknüpft ist und deren Status für alle enthaltenen Workflows
sichtbar macht. So kann der Status eines Workflows mit anderen Workflows geteilt und
alle mit der Session Resource assoziierten Workflows korreliert werden. Dadurch lässt
sich beispielsweise erreichen, dass ein Workflow B erst startet, sobald ein Workflow A
beendet wurde.

Request Resource Eine Request Resource ermöglicht die Verwaltung einer laufenden An-
frage bzw. eines momentan bearbeiteten Workflows. Über die Request Resource kann
der Client z.B. den Status der Ausführung oder am Ende deren Ergebniss abfragen
oder auch den Workflow ggf. terminieren.

Aktivitäten

Wie schon weiter oben erwähnt, kapseln Aktivitäten einzelne Funktionen bzw. Aufgaben
und können so einfach durch Zusammenfügen zu komplexen Datenabfragen (Workflows)
kombiniert werden. Eine Aktivität kann dabei das Zugreifen, Aktualisieren, Kombinieren,
Transformieren oder Transportieren von Daten umfassen. Aktivitäten können, müssen aber
nicht immer, auf Ressourcen zugreifen. So greift beispielsweise die SQLQuery-Aktivität
in Abbildung 2.3 auf Seite 17 auf eine MySQL-Data Resource zu, um Daten aus einer
Datenbanktabelle auszulesen. Andererseits arbeitet die TupleToWebRowSetCharArrays-
Aktivität lediglich auf den Ausgabedaten der SQLQuery-Aktivität und nicht mit den Daten
einer Ressource.

Die grundlegende Struktur einer OGSA-DAI Aktivität zeigt Abbildung 2.2. Aktivitäten besit-
zen dabei immer keine bis mehrere Ein- und Ausgänge und können eine Referenz auf eine
Ressource enthalten. Alle Eingänge einer Aktivität müssen immer belegt sein, d.h. entweder
mit dem Ausgang einer anderen Aktivität verknüpft oder durch einen Initialwert durch
den Client belegt werden. Eine entscheidende Stärke von OGSA-DAI ist der pipeline-artige

13

2 Beschreibung der Systeme

Abbildung 2.2: Struktur einer Aktivität in OGSA-DAI (vgl. [CEMP11])

Datenfluss zwischen den Aktivitäten. So ist es beispielsweise möglich, dass während noch
Daten aus einer Ressource gelesen werden, die schon eingelesenen Daten durch nachfolgen-
de Aktivitäten bereits weiter verarbeitet werden. Dies ist möglich, da eine Aktivität immer
automatisch startet, sobald alle ihre Eingänge mit einem Wert belegt sind, anschließend
die Eingaben verarbeitet, die Ergebnisse an die verknüpften Aktivitäten weiterleitet und so
oft diesen Ablauf wiederholt bis keine Eingabedaten mehr vorliegen. Alle nachfolgenden
Aktivitäten verhalten sich ebenso und arbeiten so alle auf unterschiedlichen Teilen eines
gemeinsamen Datenstroms. Dies führt zu effizienteren Ausführungszeiten und reduziert die
Speicherauslastung, da nicht alle Eingabedaten zur selben Zeit im selben Speicherknoten
liegen.

Aktivitäten sind ebenfalls ein wichtiger Erweiterungspunkt in OGSA-DAI und ermögli-
chen beispielsweise die Bereitstellung von benutzerspezifischen Funktionen, die dann in
Workflows als Aktivitäten verwendet werden können.

Workflows

Wie schon angesprochen repräsentieren Workflows komplexere OGSA-DAI Anfragen, die
durch das Zusammenfügen von Aktivitäten oder auch weiteren Workflows modelliert
werden.

Listing 2.1 zeigt wie ein solcher Workflow mithilfe von XML modelliert wird. Darin werden
drei Aktivitäten modelliert, die Daten aus einer Datenbank auslesen, diese transformieren
und an den Client zurückliefern. Jede der Aktivitäten enthält einen eindeutigen Namen
(instanceName) und den Namen der Klasse (name), die die Implementierung bereitstellt.
Die SQLQuery-Aktivität enthält weiterhin noch eine Referenz auf die zu verwendende
MySQLResource (resource), die die konkrete MySQL-Datenbank kapselt. Als nächstes wird
der Datenfluss zwischen den Aktivitäten modelliert. Dazu werden alle initialen Eingabewerte
fest zugewiesen (siehe Input von SQLQuery-Aktivität). Der Datenfluss innerhalb des Work-
flows zwischen den Aktivitäten wird mithilfe von Input- und Output-Streams über Pipes

14

2.1 OGSA-DAI

modelliert. Dazu werden die Ergebnisse der SQLQuery-Aktivität auf einen Output-Stream
mit dem Namen „data” auf die Pipe „pipe1” gelegt. Die nachfolgende Aktivität kann die
Ergebnisdaten dann mittels eines Input-Streams von derselben Pipe lesen. So werden die
Daten zwischen den Aktivitäten weitergeleitet und können auch von mehreren Aktivitäten
gleichzeitig genutzt werden.

Alle drei Aktivitäten sind in ein pipeline-Element eingebunden, dies ist der Standard-Typ
für Workflows. Es gibt noch zwei weitere Workflow-Typen, die die Ausführungsweise von
Workflows beeinflussen, die weitere Workflows enthalten. Nachfolgend werde alle drei Typen
aufgezeigt und kurz beschrieben.

Pipeline workflow Ein Pipeline Workflow enthält eine Menge von verketteten Aktivitäten,
die alle parallel ausgeführt werden.

Sequence workflow Ein Sequence Workflow enthält eine Menge von Sub-Workflows, die
sequentiell ausgeführt werden. Dies wird z.B. verwendet, wenn der erste Sub-Workflow
Daten lädt, die im zweiten Sub-Workflow erst nach dem vollständigen Laden verwendet
werden können.

Parallel workflow Ein Parallel Workflow enthält eine Menge von Sub-Workflows, die alle
parallel ausgeführt werden.

2.1.2 Ausführung von Workflows

In diesem Kapitel wird die Ausführung eines Workflows mit OGSA-DAI anhand eines
Beispiels erklärt. Den zugrundeliegenden Beispiel-Workflow zeigt Listing 2.1 auf der nächsten
Seite. Abbildung 2.3 auf Seite 17 zeigt alle Komponenten, die für die Ausführung des
Workflows von Bedeutung sind und dient als Basis für die nachfolgenden Beschreibungen.

Ein Client schickt den Beispiel-Workflow als XML-Dokument an den Data Request Execution
Service (DRES) des OGSA-DAI Servers. Der DRES ist ein Web-Service, der den Zugriff
auf einen DRER (siehe Kapitel 2.1.1 auf Seite 12) realisiert. Der DRER sorgt dann für die
Ausführung des Workflows, dabei werden folgende Schritte durchlaufen:

1. Einlesen der Workflow-Datei (workflow.xml)
2. Instanziierung aller modellierten Aktivitäten
3. Verknüpfung der Aktivitäten mit den referenzierten Ressourcen
4. Ausführung des Workflows
5. Erstellen eines Request Status
6. Übermittlung des Request Status an den Client

Je nachdem ob der Workflow synchron oder asynchron ausgeführt wird, unterscheidet
sich der Ausführungsablauf etwas. Bei synchron ausgeführten Workflows wird, wie oben
beschrieben, am Ende der Ausführung ein Request Status generiert und an den Client
übermittelt. Der Request Status enhält den Status der Ausführung jeder Aktivität, den Status
des gesamten Workflows und eventuell einige Ergebnisdaten. Bei asynchron ausgeführten
Workflows wird, direkt nachdem der Workflow gestartet wurde, eine Request Resource

15

2 Beschreibung der Systeme

Listing 2.1 Beispiel einer Workflowbeschreibung aus [CEMP11]
1 <?xml version="1.0" encoding="UTF-8"?>

2 <ns1:request xmlns:ns1="http://ogsadai.org.uk/namespaces/2007/04/types">

3 <ns1:workflow>

4 <ns1:pipeline>

5 <ns1:activity instanceName="SQLQuery" name="uk.org.ogsadai.SQLQuery"

resource="MySQLResource">

6 <ns1:inputs>

7 <ns1:input name="expression">

8 <ns1:inputLiteral>

9 <ns1:string>SELECT * FROM littleblackbook WHERE id<100</ns1:string>

10 </ns1:inputLiteral>

11 </ns1:input>

12 </ns1:inputs>

13 <ns1:outputs>

14 <ns1:outputStream name="data" pipe="pipe1"/>

15 </ns1:outputs>

16 </ns1:activity>

17 <ns1:activity instanceName="TupleToWRS"

name="uk.org.ogsadai.TupleToWebRowSetCharArrays">

18 <ns1:inputs>

19 <ns1:input name="data">

20 <ns1:inputStream pipe="pipe1"/>

21 </ns1:input>

22 </ns1:inputs>

23 <ns1:outputs>

24 <ns1:outputStream name="result" pipe="pipe2"/>

25 </ns1:outputs>

26 </ns1:activity>

27 <ns1:activity instanceName="DeliverToRequestStatus"

name="uk.org.ogsadai.DeliverToRequestStatus">

28 <ns1:inputs>

29 <ns1:input name="input">

30 <ns1:inputStream pipe="pipe2"/>

31 </ns1:input>

32 </ns1:inputs>

33 <ns1:outputs/>

34 </ns1:activity>

35 </ns1:pipeline>

36 </ns1:workflow>

37 </ns1:request>

16

2.2 SDMCenter

Abbildung 2.3: Ausführung eines Workflows mit OGSA-DAI (vgl. [CEMP11])

(siehe Kapitel 2.1.1 auf Seite 13) und ein Request Status generiert. Der Request Status enthält
eine ID, die die Request Resource identifiziert, und wird an den Client zurückgeliefert.
Dieser kann nun über den Request Management Service auf die Request Resource zugreifen
und den Status der Workflow-Ausführung abfragen oder auch wie bereits beschrieben die
Ausführung beispielsweise beenden. Sobald der Workflow beendet wurde, stehen dann dem
Client über die Request Resource auch die abschließenden Ergebnisdaten bzw. alle gespei-
cherten Teilergebnisse, bei vorzeitiger Terminierung durch den Benutzer, des Workflows zur
Verfügung.

2.2 SDMCenter

Scientific Data Management Center (SDMCenter) [SDM] ist eine Organisation, die aus dem
Scientific Discovery through Advanced Computing (SciDAC) [SCI] Programm des U.S.
Department of Energy entstanden ist. Ihr Ziel ist es für das Datenmanagement im wissen-
schaftlichen Umfeld einen ganzheitlichen Ansatz zu verfolgen und den Wissenschaftler
auf allen Ebenen des Datenmanagements zu unterstützen. Dabei stehen vor allem die Per-
formanz und die Skalierbarkeit bei sehr großen Datenmengen im Vordergrund, aber auch
eine einfache Modellierung und weitreichende datenverarbeitende und datenanalytische

17

2 Beschreibung der Systeme

Abbildung 2.4: Datenmanagement Ebenen vgl. [SDM]

Möglichkeiten. In den folgenden Kapiteln werden die verschiedenen Ebenen und die darin
angesiedelten Technologien beschrieben.

2.2.1 Datenmanagement Ebenen

Die Anforderungen an das Datenmanagement werden, wie in Abbildung 2.4 dargestellt,
von SDMCenter in drei Ebenen unterteilt, die aufeinander aufbauen und in denen jeweils
verschiedene Technologien zur Verfügung stehen bzw. entwickelt werden.

Storage Efficient Access Die Storage Efficient Access (SEA) Ebene bildet die erste Ebene,
die unmittelbar auf der Hardware, Betriebssystemen oder Speichersystemen aufsetzt

18

2.2 SDMCenter

und einen effizienten Zugriff auf Daten ermöglicht, ohne dass Simulationen, Visua-
lisierungen oder Analysen dabei beeinträchtig werden. Dafür werden parallele Zu-
griffstechnologien verwendet, die einen transparenten Zugriff auf die Datenspeicher
ermöglichen.

Data Mining and Analysis Die Data Mining and Analysis (DMA) Ebene bildet die zweite
Ebene und baut auf der SEA-Ebene auf. Sie bietet Technologien für parallele statistische
Analysen, Datenanalyse und Data Mining sowie Indexierung von Daten, bei der eine
Zuordnung zwischen Daten und Speicherressource erstellt wird, um Daten effizienter
zu finden.

Scientific Process Automation Die dritte Ebene ist die Scientific Process Automation (SPA)
Ebene, in der die Komponenten aus der DMA-Ebene über generische Workflow Kom-
ponenten zu einem Workflow zusammengesetzt werden können, der letztendlich auf
einer Workflow-Engine automatisiert ausgeführt werden kann. Die Modellierung und
Ausführung des Workflows kann dabei auch in wissenschaftliche Dashboards integriert
sein, die eine Interaktion zwischen Wissenschaftlern ermöglichen um zum Beispiel
Modelle, Daten und Ergebnisse auszutauschen.

2.2.2 Technologien

Jede Ebene bietet verschiedene Technologien, die einzeln aber auch kombiniert in wis-
senschaftlichen Anwendungen verwendet werden können. Die zentralen Technologien, in
Abbildung 2.4 in Klammern stehend, werden in den folgenden Abschnitten kurz beschrieben
und ihre Funktionsweise erklärt. Auf die relevanten Technologien für diese Fachstudie wird
im späteren Verlauf noch detaillierter eingegangen.

ROMIO

ROMIO [ROM] ist eine High-Performance Implementierung des Message-Passing Interface
Standards (MPI) [MPIa], der den Datenaustausch über Nachrichten zwischen parallelen
Prozessen in verteilten Systemen beschreibt. Dabei handelt es sich um eine Programm-
bibliothek, die für verschiedene Plattformen, Betriebssysteme und Dateisysteme für die
Programmiersprachen C und Fortran zur Verfügung steht. ROMIO unterstützt Linux Be-
triebssysteme und verschiedene Hardware-Plattformen. Neuere Versionen sind allerdings
nicht mehr als unabhängiges Paket verfügbar, sondern werden als Teil von MPICH2 [MPIb]
ausgeliefert. MPICH2 unterstützt auch andere Betriebssysteme und weitere Plattformen wie
Computer-Cluster und High-Speed-Netzwerke, außerdem enthält es ein Binding für die
Programmiersprache C++.

19

2 Beschreibung der Systeme

Parallel-NetCDF

Parallel-NetCDF [PNE] ist eine Bibliothek, die einen hochperformanten Zugriff auf Dateien
im NetCDF-Format ermöglicht. NetCDF [NET] ist ein selbstbeschreibendes, maschinenu-
nabhängiges Dateiformat für den Austausch von wissenschaftlichen Daten. Die NetCDF-
Programmbibliothek ist allerdings nur für den seriellen Zugriff ausgelegt und verhindert da-
mit einen hochperformanten Zugriff, der nur parallel erreicht werden kann. Parallel-NetCDF
erweitert die NetCDF-Programmbibliothek dahingehend, dass eine MPI-Implementierung
mit I/O-Unterstützung (MPI-IO) wie z.B. ROMIO verwendet werden kann, um die Zugriffe
zu parallelisieren.

PVFS

PVFS [PVF] ist ein virtuelles, hochperformantes, ausfallsicheres und hardwareunabhängiges
Dateisystem, das dafür ausgelegt ist riesige verteilte Datenmengen im Petabyte-Bereich
unter sehr hohen Zugriffsraten zu bewältigen. Es unterstützt außerdem ROMIO für den
direkten Datenzugriff ohne Umweg über das Betriebssystem und lässt sich leicht installieren.
Allerdings kann es nur unter Linux eingesetzt werden.

ADIOS

ADIOS [ADI] ist ein anpassungsfähiges IO-System, das dem Wissenschaftler eine einfache
und flexible Verarbeitung von Daten in Simulationsprogrammen ermöglicht, ohne dass
bestehender Programmcode geändert werden muss. Das System ist für die Programmier-
sprachen C und Fortran erhältlich und stellt dafür entsprechende Standard-IO-Routinen
zur Verfügung, die im Programmcode verwendet werden können. Die Funktionsweise der
Routinen, wie zum Beispiel die synchrone oder asynchrone Verarbeitung, kann dann, je nach
Anforderung an die Simulation, in einer externen XML-Datei konfiguriert werden. Die Kon-
figuration bietet dabei einen sehr hohen Detailgrad und ermöglicht die Kontrolle auf Basis
von Datenelementen und Datentypen. Dadurch können Anwendungen einfach und flexibel
an verschiedene Infrastrukturen angepasst werden, ohne Änderungen am Programmcode
vorzunehmen.

SRM-Lite

SRM-Lite [SRM] ist ein leichtgewichtiger, kommandozeilenbasierter Storage Resource Mana-
ger, der die Protokolle http, https, ftp, gridftp, srm und scp zur Datenübertragung unterstützt.
Damit können Daten zuverlässig und sicher zwischen verschiedenen Speicherorten bewegt
werden. Eine Verwaltung der Datenquellen bzw. Metdaten der Datenquellen wird von
SRM-Lite nicht unterstützt.

20

2.2 SDMCenter

R

R [RPR] ist ein System für statistische Berechnungen, Datenbearbeitung und grafische
Darstellung von Daten. Es besitzt eine eigene Programmiersprache und ein Kommandozei-
leninterface und steht für Linux und Windows zur Verfügung.

ProRata

ProRata [PRO] ist eine Software zur quantitativen Datenanalyse der Proteinzusammenset-
zung des Proteoms, der Gesamtheit aller Proteine eines Lebewesens.

Sapphire

Sapphire [SAP] ist eine Software für das Data Mining bei komplexen, mehrdimensionalen
wissenschaftlichen Daten. Dafür werden Konzepte des Data Mining, der Video- und Bildver-
arbeitung und der Mustererkennung angewendet und skalierbare Algorithmen entwickelt.

FastBit

FastBit [FAS] ist eine Open Source Bibliothek zur Datenverwaltung, die das NoSQL-Konzept
auf Grundlage komprimierter Bitmap Indexe verfolgt und damit eine sehr schnelle Suche
von Daten ermöglicht.

eSimMon

eSimMon [ESS] ist ein kollaboratives webbasiertes System für das Monitoring und die
Analyse von Simulationen. Die Simulationsdaten können über eine PHP-API in das System
eingespeist werden, es ist aber auch möglich das System über eine C-API direkt mit einer
Simulation zu verbinden. Das System basiert auf Adobe Flash [ADO], speziell wegen
der Möglichkeiten zur grafischen Darstellung von Vektorgrafiken und dreidimensionalen
Inhalten.

Kepler

Kepler [KEP] ist ein Open Source Workflow Management System für die Modellierung und
Analyse von wissenschaftlichen Daten, das Wissenschaftlern und Analysten beim interdiszi-
plinären Austausch von Daten, Modellen und Analysen unterstützen soll. Das System basiert
auf Java und besteht aus einer Workflow Engine, einer grafischen Benutzeroberfläche (GUI)
sowie einem Kommandozeileninterface und benutzt R zur Datenanalyse und grafischen
Darstellung von Daten.

21

2 Beschreibung der Systeme

Abbildung 2.5: Kepler Workflow Komponenten

Kepler besitzt bereits eine Bibliothek mit über 350 einsatzfertigen Workflow-Komponenten,
die aber beliebig um eigene Komponenten erweitert werden kann, die auch mit anderen
Benutzern geteilt werden können. Die verschiedenen Workflow-Komponenten von Kepler
und ihre Beziehungen werden in Abbildung 2.5 dargestellt. Es gibt drei verschiedene Ar-
ten von Workflow-Komponenten: Direktoren (directors), Aktoren (actors) und Parameter
(parameters). Die Aktoren können über Anschlüsse (ports) und Kanäle (channels) sowie
Verbindungen (relations) miteinander in Beziehung gebracht werden können. Direktoren
steuern den Ablauf des Workflows und teilen den Aktoren mit, wann sie in Aktion treten
sollen, ob sie beispielsweise sequentiell oder parallel ausgeführt werden. Aktoren überneh-
men dagegen die eigentlichen Aufgaben des Datenmanagements, der Datenverarbeitung,
der Datenanalyse oder der Darstellung von Daten. Die Daten werden über Kanäle als Tokens
übertragen und können über Verbindungen an mehrere Aktoren verteilt werden. Parameter
sind konfigurierbare Werte, die an Workflows, an Aktoren oder an Direktoren angehängt
werden können und deren Verhalten beeinflussen. Es gibt bereits Aktoren für den Zugriff
auf verschiedene Datenquellen wie z.B. Datenbanken, Dateisysteme und Grid Systeme, und
es werden verschiedene Datenformate unterstützt, insbesondere die Ecological Metadata
Language (EML) [EML]. Außerdem gibt es einen Web Service Aktor, um Daten von einem
Web Service abzurufen und weitere XML-verarbeitende Aktoren, um die angeforderten
Daten zu verarbeiten.

22

2.3 SIMPL

Abbildung 2.6: SIMPL Architektur

2.3 SIMPL

In diesem Kapitel wird das Rahmenwerk SIMPL (SimTech - Information Management,
Processes and Languages) beschrieben, das die Möglichkeit bietet aus BPEL (Business
Process Execution Language)-Workflows auf beliebige Datenquellen zuzugreifen.

Zunächst wird ein Überblick über die Architektur von SIMPL gegeben und anschließend
auf das Datenmanagement sowie die Funktionsweise und Erweiterungsmöglichkeiten des
SIMPL Core eingegangen, der den Zugriff auf die Datenquellen ermöglicht.

2.3.1 Architektur von SIMPL

Die Architektur von SIMPL, die in Abbildung 2.6 dargestellt ist, besteht zum einen aus der
Modellierungsumgebung Eclipse, in der Workflows mit Datenquellenzugriffen modelliert
werden können, und zum anderen aus der Laufzeitumgebung Apache Tomcat, mit der die
modellierten Workflows ausgeführt werden können und in der der Zugriff auf die Daten-
quellen (Data Sources) realisiert wird. SIMPL erweitert dazu Eclipse für die Modellierung
um Datenmanagement-Aktivitäten und die Laufzeitumgebung für die Ausführung dieser
Aktivitäten. Die Laufzeitumgebung Apache Tomcat teilt sich dabei in die zwei Bereiche Apache
ODE und Apache Axis2, die beide ein Container für Web Services bereitstellen bzw. darstellen.
Es ist daher grundsätzlich möglich die Komponenten, die unter Apache Axis2 dargestellt sind,
im Apache ODE Container als Web Service, sowie direkt im Klassenpfad von Apache ODE
bereitzustellen, um die Performance bei der Interaktion dieser Komponenten zu erhöhen.
Mit der Darstellung soll aber klar gezeigt werden, dass es sich bei den Komponenten unter

23

2 Beschreibung der Systeme

Apache Axis2 um grundsätzlich unabhängige Komponenten zu den Komponenten in Apache
ODE handelt, die auch in anderen Laufzeitumgebungen als Web Service bereitgestellt werden
können.

Eclipse Plug-Ins

SIMPL besteht aus den folgenden Eclipse Plug-Ins.

SIMPL BPEL-DM Plug-In Das SIMPL BPEL-DM Plug-In erweitert den Eclipse BPEL Designer
um zusätzliche Datenmanagement-Aktivitäten, mit denen Zugriffe auf Datenquellen
modelliert werden können. Jede Aktivität definiert dabei eine Datenquelle und einen
Befehl, in der von der Datenquelle unterstützten Befehlssprache. Bei der Ausführung
der Aktivität, wird der Befehl an die Datenquelle geschickt, wo er ausgeführt wird. Die
Datenmanagement-Aktivitäten umfassen den Abruf von Daten, das Zurückschreiben
von Daten, den Transfer von Daten und das Absetzen von Datenmanipulations- und
Datendefinitions-Befehlen auf der Datenquelle und können um beliebige weitere
Aktivitäten erweitert werden.

SIMPL Eclipse Plug-Ins Die SIMPL Eclipse Plug-Ins sind mehrere Plug-Ins für die Kommuni-
kation zwischen Eclipse und den SIMPL Komponenten sowie die Konfiguration dieser
Komponenten. Dazu gehören z.B. eine erweiterbare Adminkonsole für die Konfigurati-
on des SIMPL Core, zusätzliche Eclipse Einstellungen für die Adressen der SIMPL Web
Services und eine Übersicht der verfügbaren Datenquellen im Resource Management.

Apache ODE

Die BPEL-Engine Apache ODE ist für die Ausführung der Workflows zuständig und unter-
stützt das BPEL-Erweiterungskonzept der Extension Activities, mit denen eigene Aktivitäten
in Workflows definiert werden können. Die in Apache ODE laufenden Komponenten von
SIMPL werden in den folgenden Abschnitten beschrieben.

SIMPL BPEL-DM Extension Activities Die SIMPL BPEL-DM Extension Activities implemen-
tieren die Ausführungslogik für die vom SIMPL BPEL-DM Plug-In definierten
Datenmanagement-Aktivitäten, damit diese zur Laufzeit erkannt und ausgeführt wer-
den können. Das Senden der Befehle an die Datenquellen läuft dabei über den SIMPL
Core.

SIMPL Core Der SIMPL Core ist die Kernkomponente von SIMPL. Über ihn laufen alle
Zugriffe auf Datenquellen und er lässt sich durch ein Plug-In-Schnittstellen (Extension
Points) um beliebige Datenquellen und Datenquellen-Typen erweitern. Eine genauere
Beschreibung des SIMPL Core und sein Zusammenspiel mit den Komponenten Resource
Management, Resource Discovery und Data Transformation Services liefert das Kapitel 2.3.2.

24

2.3 SIMPL

Apache Axis2

Apache Axis2 (Apache eXtensible Interaction System 2) ist ein Web Service Framework,
mit dem weitere SIMPL-Komponenten als Web Services bereitgestellt werden, die in den
folgenden Abschnitten beschrieben werden.

Resource Management Das Resource Management verwaltet zentral Metadaten zur Beschrei-
bung aller Ressourcen von SIMPL in einer PostgreSQL Datenbank. Zu den Ressourcen
gehören die zur Verfügung stehenden Datenquellen, Plug-Ins und Services.

Resource Discovery SIMPL unterstützt auch das Late Binding von Datenquellen, die zur
Laufzeit noch nicht festgelegt sind. Es können damit bei Datenquellen Eigenschaften
hinterlegt werden, die erst zur Laufzeit mit den vom Workflow-Modellierer festgelegten
Anforderungen verglichen werden, um eine passende Datenquelle ausfindig zu machen.
Für die Suche nach einer passenden Datenquelle ist die Resource Discovery zuständig,
die dafür verschiedene Strategien unterstützt wie zum Beispiel das Finden des ersten
Ergebnisses bei kompletter Übereinstimmung zwischen Datenquellen-Eigenschaften
und festgelegten Anforderungen.

Data Transformation Services SIMPL verwendet für unterschiedliche Datenquellentypen
unterschiedliche XML-Datenformate, um abgerufene Daten im Workflow verarbei-
tungsfähig zu machen. Mit den Data Transformation Services ist es außerdem möglich
zwischen diesen verschiedenen Datenformaten zu konvertieren und somit Daten zwi-
schen Datenquellen unterschiedlichen Typs auszutauschen. Damit ist es z.B. möglich
Daten von einer relationalen Datenbank abzurufen und in eine Datei auf ein Dateisys-
tem zu schreiben.

2.3.2 SIMPL Funktionalität und Erweiterbarkeit

Dieses Kapitel beschreibt die Funktionalität und Erweiterbarkeit von SIMPL und das Zusam-
menspiel der beteiligten Komponenten (siehe Abbildung 2.3.2).

SIMPL Core

Der SIMPL Core besteht aus verschiedenen Diensten (Services) und Erweiterungspunkten
(Extension Points), die in den folgenden Abschnitten beschrieben werden.

SIMPL Core Service Der SIMPL Core Service ist für den Zugriff auf Datenquellen zuständig
und besitzt Extension Points, über die der Zugriff um weitere Datenquellen erweitert
werden kann.

Über den Connector Extension Point können Connector Plug-Ins für verschiedene Da-
tenquellentypen und Anfragesprachen erstellt werden, die die direkte Verbindung
zu den Datenquellen herstellen und darauf Operationen wie z.B. den Abruf von Da-
ten ausführen können. Damit abgerufene Daten in einem Workflow weiterverarbeitet

25

2 Beschreibung der Systeme

Abbildung 2.7: SIMPL Funktionalität und Erweiterbarkeit

werden können, müssen die Daten vom Connector-Datenformat, wie z.B. ein JDBC-
ResultSet, in ein XML-Datenformat konvertiert werden. Ebenso müssen Daten, die aus
dem Workflow in eine Datenquelle geschrieben werden, zuvor in ein entsprechendes
Connector-Datenformat konvertiert werden, wie z.B. eine Liste von SQL Statements, die
entsprechende Änderungs- bzw. Einfüge-Operationen in einer Datenbank durchführen.
Zur Realisierung dieser Datenformatkonvertierungen können über den Data Converter
Extension Point Data Converter erstellt werden, die auch von mehreren Connectoren
verwendet werden können.

Falls Daten zwischen verschiedenen Datenquellentypen ausgetauscht werden, kann
der SIMPL Core Service zusätzlich auf Data Transformation Services zurückgreifen, um
zwischen den verschiedenen XML-Datenformaten zu konvertieren, die von den ent-
sprechenden Data Convertern verstanden werden.

Die Datenquellen werden im Workflow beim statischen Binden über einen eindeutigen
Namen referenziert, der vom SIMPL Core Service zur Laufzeit über das Resource Mana-
gement aufgelöst wird. Beim dynamischen Binden, dem Late Binding, wendet sich der
SIMPL Core Service an die Resource Discovery, um Datenquellen ausfindig zu machen,
die den Anforderungen genügen.

Über ein Web Service Interface steht der SIMPL Core Service auch anderen Anwendungen
oder Workflow-Engines zur Verfügung.

26

2.3 SIMPL

SIMPL Core Administration Service Der SIMPL Core Administration Service verwaltet die
internen Einstellungen des SIMPL Core in einer eingebetteten Datenbank. Er besitzt
außerdem ein Web Service Interface, über die die Einstellungen von der Adminkonsole
(siehe Kapitel 2.3.1) in Eclipse abgerufen und gespeichert werden können.

Resource Management

Im Resource Management werden die verfügbaren Connector Plug-Ins, Data Converter Plug-Ins
des SIMPL Core Service sowie Data Transformation Services und Datenquellen registriert und
verwaltet. Dabei wird jedem Connector ein passender Data Converter zugewiesen und
jeder Datenquelle ein passender Connector. Die SIMPL Komponenten können benötigte
Resourcen direkt auf Klassenebene vom Resource Management abrufen, sowie über ein Web
Service Interface. Für die Verwaltung durch einen Administrator gibt es zusätzlich ein Web-
Interface.

27

3 Kriterien für die Evaluation

In diesem Kapitel werden die Kriterien definiert und beschrieben, die zur Evaluation und
dem Vergleich der Systeme verwendet werden.

3.1 Allgemeines

Dieser Abschnitt enthält alle Kriterien, mit denen allgemeine Anforderungen an die Systeme
untersucht werden.

3.1.1 Anwendungsbereich

In diesem Punkt wird geprüft, für welchen Anwendungsbereich das untersuchte System
entworfen wurde und weswegen es sich dafür besonders eignet.

3.1.2 Bedienbarkeit, Einfachheit

Eine einfache und intuitive Bedienung sowie ein geringer Einarbeitungsaufwand stellen
zentrale Punkte in der Verwendung von Software dar. Im Zusammenhang mit Datenbereitstel-
lungsystemen ist dies besonders wichtig, da diese von einer Vielzahl von Benutzergruppen
für die unterschiedlichsten Anwendungsfälle eingesetzt werden.

3.1.3 Installation und Administration

Die Komplexität und der Aufwand der Installation und Administration sind entscheidende
Kriterien für die Akzeptanz und Verbreitung eines Systems. Dabei sind beispielsweise die
Möglichkeit einer automatischen Installation, die Komplexität einer manuellen Installation
oder die Qualität der Installationsanleitung entscheidend. Ebenso gilt es zu prüfen, wie
komplex bzw. aufwendig die Administration der Systeme ist und ob der Nutzer dabei z.B.
durch eine entsprechende Benutzeroberfläche unterstützt wird.

29

3 Kriterien für die Evaluation

3.1.4 Abhängigkeiten von anderer Software

In diesem Punkt wird betrachtet, ob das untersuchte System Abhängigkeiten von weiterer
Software besitzt und inwieweit sich diese auf die Verwendung des Systems auswirken.

3.1.5 Dokumentation

Eine fehlende oder unzureichende bzw. qualitativ schlechte Dokumentation schränkt den
Benutzer in der Verwendung des Systems stark ein und erschwert oder verhindert sogar
den Einstieg in die Verwendung des Systems. Die Dokumentation spielt vor allem beim
Ausschöpfen des vollen Potentials eines Systems oder auch bei einer Erweiterung des Systems
um mögliche benutzerspezifische Komponenten eine entscheidende Rolle, da diese ohne
Dokumentation nur schwer realisierbar sind.

3.2 Softwarequalität

Dieser Abschnitt beschreibt einige Kriterien, die sich mit der Qualität der Softwaresysteme
befassen.

3.2.1 Portabilität/Plattformunabhängigkeit

Gerade im wissenschaftlichen Bereich ist die Plattformunabhängigkeit und damit auch
die Portabilität ein wichtiges Kriterium, da viele wissenschaftliche Softwaresysteme an
eine bestimmte Plattform gebunden sind und damit gewissen Einschränkungen unterliegen.
Durch ein plattformunabhängiges und portables Datenbereitstellungssystem kann zumindest
die Datenbereitstellung über verschiedene Plattformen hinaus vereinheitlicht werden. Dies
wirkt sich auch auf die Verbreitung und Akzeptanz des Systems aus, da es auf einheitliche
Weise in verschiedenen Umgebungen verwendet werden kann.

3.2.2 Erweiterbarkeit

In diesem Punkt wird geprüft, wie erweiterbar ein System ist. Der Fokus liegt dabei auf
der Erweiterbarkeit des Systems in Bezug auf die Anbindung weiterer Datenquellen, die
Definition weiterer Datenformate oder auch die Erweiterung der Datenverarbeitung. Dabei
spielt es auch eine Rolle, wie genau die Erweiterungen realisiert werden können, welche
Anforderungen dafür an den Nutzer gestellt werden und mit welchem Aufwand dies
verbunden ist.

30

3.3 Funktionsumfang

3.3 Funktionsumfang

In diesem Abschnitt wird auf Kriterien im Zusammenhang mit dem Funktionsumfang der
Systeme eingegangen.

3.3.1 Datenquellen

Die Funktionalität zur Anbindung von möglichst vielen verschiedenen, heterogenen Daten-
quellen bildet den Kern eines Datenbereitstellungssystems. Dabei ist nicht nur die Anzahl
der unterstützten Datenquellen oder Datenquellentypen zu beachten, sondern auch deren
Integrationsgrad. D.h. inwieweit auf datenquellenspezifische Funktionen zugegriffen oder
besondere Merkmale der jeweiligen Datenquelle ausgenutzt werden können. Dabei ist eben-
falls zu prüfen, wie (flexibel) die Datenquellen konkret an das System angebunden werden
und wie die Authentifizierung abgewickelt wird.

3.3.2 Datenformate

In diesem Punkt wird untersucht, welche Datenformate das System in welchem Umfang
unterstützt. Dabei sollen alle Arten von Datenformaten betrachtet werden. Dies sind z.B.
interne Datenformate des Systems, lokale Datenformate der unterstützten Datenquellen oder
auch Datenformate, die für die Übertragung von Daten genutzt werden. Hierbei ist eben-
falls zu untersuchen inwieweit die (automatische) Transformation zwischen verschiedenen
Datenformaten möglich ist und welche Einschränkungen dabei eventuell gelten.

3.3.3 Datenzugriffstechnologien

Die Unterstützung verschiedener Datenzugriffstechnologien erweitert bzw. verringert glei-
chermaßen die Palette der unterstützten Datenquellen. So sichert beispielsweise die Ver-
wendung der Java Database Connectivity (JDBC) API in Java bzw. der Open Database
Connectivity (ODBC) API in C++ die Anbindung aller Datenquellen, die einen entspre-
chenden Treiber für diese APIs bereithalten. Eine andere Datenzugriffstechnologie bilden
z.B. Web Services, die eine programmiersprachen- und plattformunabhängige Schnittstelle
bereitstellen, über die Daten abgerufen, verarbeitet oder gespeichert werden können. In der
konkreten Implementierung der Web Services wird der Datenzugriff dann in einer konkreten
Programmiersprache mithilfe entsprechender APIs (z.B. JDBC) realisiert, dies ist aber nach
außen durch die einheitliche Schnittstelle nicht sichtbar.

31

3 Kriterien für die Evaluation

Abbildung 3.1: Datenmanagement-Pattern-Hierarchie (vgl. [RM11])

3.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns

Abbildung 3.1 zeigt eine Hierarchie von Datenmanagement-Patterns, die typische
Datenverarbeitungs- bzw. Datenbereitstellungsschritte in Simulationsprozessen darstellt.
In diesem Punkt wird geprüft, welche Ebenen dieser Hierarchie in welchem Umfang durch
die untersuchten Systeme unterstützt werden. Die Ebene „ETL Patterns / ETL Operations”
beinhaltet Extract, Transform, Load (ETL) -Patterns, die Bestandteile von ETL-Prozessen sind,
mit denen Daten aus mehreren unterschiedlichen Datenquellen extrahiert, diese dann in das
Datenformat der Zieldatenquelle transformiert und schließlich in die Zieldatenquelle geladen
werden können. Typische Patterns aus dieser Ebene sind Selektion (Selection), Projektion
(Projection), Verbund (Join) sowie die Aggregation (Aggregation) und das Anreichern von
Daten (Enrichment). Die Ebene „Basic Data Management Patterns” setzt auf der ETL-Ebene
auf und enthält abstraktere Patterns, wie beispielsweise das Verschieben von Daten zwischen
zwei Datencontainern (Container-to-Container Data Transfer), das Auftrennen (Data Split) und
Zusammenfügen von Daten (Data Merge) sowie das Iterieren über Daten (Data Iteration).
Die nächst höhere Ebene „Composite Data Management Patterns” enthält Patterns, die
mehrere Patterns der „Basic Data Management Patterns”-Ebene miteinander verknüpfen.
So wird beispielsweise durch die Verknüpfung der Patterns Data Split und Data Merge ein
neues Pattern Split-Merge. Die Ebene „Application-oriented Patterns / Use Cases” bildet
die höchste Ebene der Hierarchie und stellt anwendungsspezifische Patterns bereit, die
aus Kombinationen von Patterns der darunterliegenden Ebenen bestehen. Dazu gehören
im wissentschaftlichen Bereich beispielsweise Multi-Tool, Multi-Domain, Multi-Physics und
Multi-Scale Anwendungsfälle.

3.3.5 Flexibilität zur Deploymentzeit

Die Flexibilität zur Deploymentzeit bestimmt die Möglichkeiten, die ein Benutzer hat, um
zur Deploymentzeit Einfluss auf einen Prozess zu nehmen. Dazu gehört beispielsweise die

32

3.4 Leistungsfähigkeit

Möglichkeit eine bestimmte Datenquelle für den Datenzugriff beim Deployment festzulegen,
die bei der Modellierung noch nicht bekannt ist.

3.3.6 Flexibilität zur Laufzeit

Die Flexibilität zur Laufzeit bestimmt die Möglichkeiten, die ein Benutzer hat, um zur
Laufzeit Einfluss auf einen Prozesses zu nehmen. Dazu gehört beispielsweise die Möglichkeit
eine Datenquelle über bei der Modellierung formulierte Anforderungen erst zur Laufzeit
ausfindig zu machen.

3.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren

In diesem Punkt wird geprüft, inwieweit es dem Nutzer möglich ist Anforderungen an die
Qualität von Daten zu stellen und inwieweit diese Anforderungen auch evaluiert werden.
Ein Beispiel hierfür wäre eine Anforderung an die Aktualität der Daten, d.h. der Nutzer
kann zusammen mit der Datenquellen-Anfrage formulieren, wie „frisch” die gelieferten
Daten sein müssen, damit sie verwendet werden können. Weitere Informationen dazu liefert
[RBD+

11].

3.3.8 Transparenz der Datenbereitstellung und des Datenmanagements

In diesem Punkt wird geprüft, inwieweit die Systeme den Nutzer beim Überwachen (Monito-
ring), beim Nachvollziehen (Provenance) und beim Protokollieren (Auditing) der ausgeführ-
ten Datenbereitstellungs- und Datenverarbeitungs-Operationen unterstützen. Beim Auditing
werden dabei nur die reinen Ereignisdaten protokolliert. Für die Provenance werden zusätz-
liche Information, wie beispielsweise der Zustand einer Datenquelle, welche Operationen
auf welchen Daten konkret ausgeführt wurden und welche Datenbewegungen zwischen
welchen Ressourcen stattgefunden haben, protokolliert. Alternativ können die zusätzlichen
Informationen für die Provenance auch auf explizitem oder implizitem Wissen beruhen. Die-
ses Wissen kann z.B. direkt aus den ausgeführten Prozessen gewonnen werden, wenn darin
die Operationen und die Informationen, auf welche Datenquellen wann und wie zugegriffen
wird, direkt sichtbar sind. Das Monitoring sorgt für die Aufbereitung der Auditing-Daten in
eine für den Nutzer verständliche Form. Gerade bei komplexen Operationen auf eventuell
mehreren Datenquellen ist es für die Fehlersuche nahezu unumgänglich, dass zumindest die
Ereignisdaten dem Nutzer zur Verfügung stehen.

3.4 Leistungsfähigkeit

Dieser Abschnitt beschreibt einige Kriterien, die sich mit der Leistungsfähigkeit der Systeme
befassen.

33

3 Kriterien für die Evaluation

3.4.1 Performanz des Datenzugriffs

In diesem Punkt wird untersucht, wie performant der Datenzugriff durch die Systeme
realisiert ist. Kriterien dafür sind beispielsweise die Anzahl der physischen Zugriffe auf die
Datenquelle während der Ausführung einer Anfrage, ob für jeden Datenquellenzugriff eine
neue physische Verbindung zur Datenquelle hergestellt und dann wieder verworfen wird
oder ob Verbindungen in einem Connection-Pool gehalten und wiederverwendet werden.

3.4.2 Performanz der Datenverarbeitung

Hier wird festgestellt, wie performant die Datenverarbeitungsmöglichkeiten sind, ob zum
Beispiel die Verarbeitung bereits auf Datenquellenseite stattfindet oder zur Verarbeitung
mehr Daten als nötig in das zu untersuchende System übertragen werden.

3.4.3 Performanz des Datentransfers

Beim Transfer von großen Datenmengen gibt es oft die Möglichkeit Referenzen auf die Daten
zu verschicken, die nur an Stellen aufgelöst werden, an denen die Daten konkret benötigt
werden. Oder es gibt Möglichkeiten die Daten komprimiert zu transferieren. Dieser Punkt
untersucht die Möglichkeiten, die ein System bietet, um den Datentransfer zu optimieren.
Dabei soll auch untersucht werden, ob für den Transfer der Daten effiziente Transport-
Protokolle (auf der Ebene von HTTP oder SSH) genutzt werden können.

3.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung

Hier wird untersucht, inwieweit Datenverarbeitungsschritte durch die Systeme optimiert
werden. Eine Möglichkeit zur Optimierung ist die Restrukturierung von Workflow-Modellen,
die entsprechende Datenquellenabfragen und Datenverarbeitungsschritte enthalten, zur
Erreichung bestimmter Optimierungsziele. Die automatische Zusammenfassung mehrerer
Datenzugriffe zu einem Datenzugriff während der Modellierungszeit ist z.B. ein solches
Optimierungsziel. Dies wird in [VSS+07] näher beschrieben. Die Flexibilitätsaspekte aus den
Kapiteln 3.3.5 und 3.3.6 können auch zur Optimierung genutzt werden. Dies könnte beispiels-
weise so aussehen, dass für bestimmte Datenmengen, die richtige Datenquelle zur Laufzeit
mithilfe definierter Kriterien gefunden wird, in der die Daten bei einem Datentransfer gespei-
chert werden können. Mögliche Kriterien können dann sein, dass die Datenquelle überhaupt
genug Speicherplatz aufweist oder dass die nachgelagerten Operationen (DM-Operationen
oder Berechnungen) auf dieser Datenquelle bzw. einer dahinterliegenden Ressource (z.B.
dem Rechner) effizient durchgeführt werden können. Das in Kapitel 3.3.8 erwähnte impli-
zite und explizite Wissen über auszuführende Prozesse (enthaltene DM-Operationen und
benötigte Datenquellen) kann ebenfalls für die Optimierung hilfreich sein [RRS+11].

34

3.5 Anbindung und Integration

3.5 Anbindung und Integration

In diesem Abschnitt wird auf Kriterien im Zusammenhang mit der Anbindung und Integra-
tion der Systeme eingegangen.

3.5.1 Integration von Werkzeugunterstützung

Die Werkzeugunterstützung ist ein entscheidendes Kriterium, da sie die Bedienbarkeit eines
Systems erleichtert und einen einfacheren Zugang dazu liefert. Wichtig hierbei ist auch
die Art der Werkzeugunterstützung, d.h. ob verschiedene Module bzw. Funktionalitäten in
einem integrierten Werkzeug zur Verfügung gestellt werden oder ob es eine Vielzahl von
Werkzeugen gibt, die dem Nutzer jeweils nur Teile des Systems zugänglich machen.

3.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste

In diesem Punkt wird geprüft, welche Anbindungsmöglichkeiten die untersuchten Datenbe-
reitstellungssysteme anderen Systemen oder Diensten zur Nutzung der Datenbereitstellungs-
systeme bieten. Die Anbindung kann dabei beispielsweise über ein vom Datenbereitstellungs-
system mitgelieferten Application Programming Interface (API) und einen entsprechenden
Quellcode zur Einbindung dessen in das System bzw. den Dienst erfolgen. Die Anbindung
kann auch über einen Client zur Verwendung einer bereitgestellten Web Service Schnittstelle
erfolgen.

3.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln

Software zur Durchführung von wissenschaftlichen Simulationen ist meist benutzerspe-
zifisch oder problemspezifisch implementiert und wenig standardisiert. Beinahe jede Si-
mulationssoftware verwendet daher eigene Datenformate für die Ein- und Ausgabedaten
oder Zwischenergebnisse einer Simulation. Demgegenüber steht das Interesse verschiedene
Simulationen und damit auch die entsprechende Software zu koppeln. Die so bereitgestellten
gekoppelten Simulationen erlauben es Simulationen auf mehreren Skalen (multi-scale), in
mehreren Domänen (multi-domain) und verschiedenen Bereichen der Physik (multi-physics)
durchzuführen. Damit dies funktionieren kann, benötigt man ein entsprechendes Datenbe-
reitstellungssystem, das die Datenintegration zwischen den verschiedenen Datenformaten
realisiert, damit die Ausgabedaten der einen Simulation als Eingabedaten einer anderen Simu-
lation verwendet werden können. In diesem Punkt werden dafür die Ergebnisse bestimmter
Kriterien (siehe z.B. Kapitel 3.2.2, 3.3.1, 3.3.2 und 3.3.3) noch einmal zusammengefasst, die
bestimmen, inwieweit sich die untersuchten Systeme für eine solche Kopplung eignen.

35

4 Evaluation von OGSA-DAI

In diesem Kapitel wird OGSA-DAI anhand der in Kapitel 3 definierten Kriterien unter-
sucht.

4.1 Allgemeines

Dieser Abschnitt enthält die Evaluation der Kriterien, mit denen allgemeine Anforderungen
an die Systeme untersucht wurden.

4.1.1 Anwendungsbereich

Das primäre Ziel bei der Entwicklung von OGSA-DAI ist die Bereitstellung einer einheitli-
chen Schnittstelle für das Datenmanagement und die Datenintegration in Anwendungen.
Weiterhin soll durch OGSA-DAI der Austausch von heterogenen Daten zur Informations-
gewinnung vereinfacht und vor allem der Zugriff auf und die Verarbeitung von verteilten
Daten, d.h. Daten aus verschiedenen Datenquellen, erleichtert werden. OGSA-DAI bietet
dazu entsprechende Webservice-Schnittstellen, die die Anbindung an Anwendungen in
verschiedensten Umgebungen ermöglichen soll. So kann OGSA-DAI beispielsweise problem-
los für die Datenintegration und das Datenmanagement in Grid- und Cloud-Umgebungen
eingesetzt werden.

4.1.2 Bedienbarkeit, Einfachheit

Für OGSA-DAI wird momentan noch kein umfassendes Graphical User Interface (GUI)
bereitgestellt. Es existieren lediglich einige Beispiel-Clients, die auch zum Teil als Java-Applet
eine GUI besitzen. Der Funktionsumfang ist dabei allerdings sehr beschränkt und wirklich
nur für Testzwecke ausreichend. Für die Modellierung der OGSA-DAI Workflows wird
ebenfalls noch keine GUI bereitgestellt. Diese müssen von Hand in einem Texteditor erstellt
werden. Gerade bei hochgradig verschachtelten Workflows kann dies unter Umständen sehr
kompliziert und unübersichtlich werden. Einige Informationen über die bereitgestellten
Aktivitäten und Ressourcen eines OGSA-DAI-Servers können über den Aufruf entspre-
chender Webseiten angezeigt werden. Dies ist vor allem für die Modellierung von Hand
hilfreich, da man so eine Liste der nutzbaren Aktivitäten, Ressourcen und Datenquellen
erhält. Die Konfiguration und Administration des Servers verläuft ebenfalls vollständig ohne

37

4 Evaluation von OGSA-DAI

GUI durch Konfigurationsdateien und Kommandozeilenaufrufe. Dies wird im nächsten
Abschnitt ausführlicher beschrieben.

4.1.3 Installation und Administration

OGSA-DAI wird in zwei Versionen bereitgestellt, zum einen mit Apache Axis [AXI] und
zum anderen mit dem Globus Toolkit (GT) [GLO]. Die Axis-Distribution ist im Grunde
die Standardversion von OGSA-DAI. Die GT-Distribution bringt durch das Globus Toolkit
noch einige Grid-Funktionalitäten mit sich, wie beispielsweise die Komponente GridFTP.
Diese stellt einen schnellen, sicheren und zuverlässigen FTP-Server bereit, der über einen
Web Services Resource Framework (WSRF)-konformen Webservice verwendet werden kann.
Beide Distributionen müssen zur Verwendung in einem Apache Tomcat [TOM] Server
deployed werden. Die Installation muss weitgehend manuell, meist über die Kommandozeile,
ausgeführt werden. Dank einer guten und detaillierten Installationsanleitung stellt das aber
kein größeres Problem dar. Bevor OGSA-DAI allerdings installiert werden kann, müssen eine
Java Runtime Environment (JRE), Apache Tomcat und Apache Ant installiert worden sein.
Bei der Installation des Apache Tomcat Servers ist darauf zu achten, dass keine Leerzeichen
im Installationspfad enthalten sind, da sonst OGSA-DAI nicht automatisch installiert werden
kann. Apache Ant [ANTb] ist ein Kommandozeilenwerkzeug, mithilfe dessen in sogenannten
Build-Dateien beschriebene Prozesse ausgeführt werden können. Es wird vornehmlich beim
Compilieren und Erstellen von Java-Applikationen verwendet, kann aber im Grunde für die
Ausführung von beliebig definierten Prozessen verwendet werden. Im Fall von OGSA-DAI
wird die Installation und Administration zu großen Teilen mithilfe von Apache Ant realisiert.
Sobald die benötigte Software installiert und alle entsprechenden Umgebungsvariablen
gesetzt wurden, kann mittels ant -Dtomcat.dir=%CATALINA_HOME% deploy OGSA-DAI auf dem
vorhandenen Tomcat-Server automatisch deployed werden. Damit ist die Installation von
OGSA-DAI auch schon abgeschlossen und der Tomcat-Server kann gestartet werden.

Die Administration von OGSA-DAI erfolgt über die manuelle Anpassung von Einstellungs-
dateien im OGSA-DAI-Verzeichnis des Tomcat-Servers (//Tomcat7/webapps/dai/) sowie
über die Erstellung von sogenannten Konfigurationsdateien und deren Verarbeitung mittels
Apache Ant. Listing 4.1 zeigt eine Konfigurationsdatei, mit der eine neue Data Resource
erstellt und konfiguriert wird. Dabei wird in Zeile 1 definiert, dass eine neue Java Database
Connectivity (JDBC)-Ressource über den Befehl deployMySQL mit dem Namen MySQLResource
und der URL jdbc:mysql://myhost:3306/daitest erstellt werden soll. In Zeile 2 wird anschließend
noch der Zugriff auf die in Zeile 1 erstellte Ressource definiert. Dabei wird in diesem Fall
eine einfache Authentifizierung mittels Benutzername und Passwort festgelegt. D.h. wenn
später diese Ressource verwendet wird, werden automatisch die in Zeile 2 hinterlegten
Informationen zur Authentifizierung für jeden Client genutzt. Möchte man dies nicht, kann
man den Platzhalter ANY durch die Angabe entsprechender Attribute oder eindeutiger
Namen ersetzen. Diese werden dann zur Authentifizierung des Clients gegenüber OGSA-
DAI verwendet und anschließend zur Authentifizierung auf der Datenquelle durch die
hinterlegten Benutzernamen und Passwörter ersetzt. Hat man nun die Konfigurationsdatei
erstellt, muss diese mittels Apache Ant ausgeführt werden. Listing 4.2 zeigt das Schema

38

4.1 Allgemeines

Listing 4.1 Beispiel einer Konfigurationsdatei aus [CEMP11]
1 JDBC deployMySQL MySQLResource jdbc:mysql://myhost:3306/daitest

2 Login permit MySQLResource ANY myUser myPassword

Listing 4.2 Schema des Konfigurationsaufrufs mit Apache Ant aus [CEMP11]
ant -Dtomcat.dir=%CATALINA_HOME% -Dconfig.file=CONFIG-FILE [-Djar.dir=JAR-DIRECTORY]

[-Dstart.line=LINE] configure

des entsprechenden Kommandozeilenbefehls zur Verarbeitung der Konfigurationsdatei-
en. Der Inhalt der Konfigurationsdatei hat dabei keinen Einfluss auf den Befehl. Dieser
gliedert sich in folgende Teile: Mittels ant wird Apache Ant gestartet und die nachfolgen-
den Angaben als Parameter zur Abarbeitung der hinterlegten Build-Datei gekennzeichnet.
Über -Dtomcat.dir=%CATALINA_HOME% kann das Tomcat-Verzeichnis angegeben werden. Da eine
entsprechende Umgebungsvariable gesetzt wurde, kann der Pfad über diese Umgebungsva-
riable (%CATALINA_HOME%) angegeben werden. Mittels -Dconfig.file=CONFIG-FILE muss der relative
Pfad zur Konfigurationsdatei sowie deren Namen angegeben werden. Optional kann über
-Djar.dir=JAR-DIRECTORY ein Ordner mit benötigten Java-Archiven (JARs) angegeben werden.
Dies wird beispielsweise bei der Registrierung von selbst-implementierten Aktivitäten oder
Ressourcen benötigt. Durch Angabe des optionalen Parameters -Dstart.line=LINE kann noch
eine Zeilennummer angegeben werden, ab welcher die Konfigurationsdatei verarbeitet wer-
den soll. Dies ist hilfreich, falls Angaben am Anfang der Datei ignoriert werden sollen oder
in einer Datei mehrere Konfigurationsschritte enthalten sind, die nacheinander über mehrere
Ant-Aufrufe abgearbeitet werden sollen. Zu guter Letzt wird durch die Angabe von configure

der anzustoßende Prozess ausgewählt. Bei der Installation wurde so analog dazu mit einem
ähnlichen Befehl der deploy-Prozess angestoßen. Auf diese Art und Weise lassen sich alle
vorhandenen Aktivitäten und Ressourcen konfigurieren sowie neue Aktivitäten und Res-
sourcen bereitstellen. Dabei sind die Änderungen des OGSA-DAI-Servers sofort aktiv und
erfordern keinen Neustart des Servers. Dagegen muss nach der Änderung von Einstellungs-
dateien immer ein Neustart des Servers durchgeführt werden, da die Einstellungsdateien
nur während des Startvorgangs neu eingelesen werden.

4.1.4 Abhängigkeiten von anderer Software

OGSA-DAI benötigt mindestens Apache Tomcat Version 5.5 oder höher, JRE Version 1.6
oder höher sowie Apache Ant Version 1.6 oder höher. Zur graphischen Visualisierung
der Ausführung von Workflows in einem bereitgestellten Beispiel-Client wird Graphviz
[GRA] benötigt. Diese Abhängigkeiten haben keinerlei Implikationen auf die Verwendung
von OGSA-DAI, da die abhängigen Tools alle plattformunabhängig sind und OGSA-DAI
selbst über eine abstrakte Webservice-Schnittstelle genutzt wird, die die entsprechende
Integration im Hintergrund kapselt. Lediglich die Verwendung des Globus Toolkits bzw.
der entsprechenden OGSA-DAI Distribution schränkt die Verwendung von OGSA-DAI auf
Unix-Plattformen ein, da das Globus Toolkit nur auf diesen Plattformen verwendet werden
kann.

39

4 Evaluation von OGSA-DAI

4.1.5 Dokumentation

Die Dokumentation ist sehr gut strukturiert und enthält detaillierte Informationen zur
Installation, Administration, Nutzung und Erweiterung von OGSA-DAI. Die grundlegende
Struktur ist dabei so angelegt, dass der Leser zuerst eine Einführung in die Grundlagen
von OGSA-DAI erhält. Anschließend folgt eine Installationsanleitung sowie detaillierte
Anleitungen zur Nutzung und Erweiterung von OGSA-DAI. Diese sind jeweils sowohl
aus Sicht der Nutzer als auch für Entwickler vorhanden. So können sich Nutzer über
die Verwendung von OGSA-DAI und den zugehörigen Clients informieren, und auch
Entwickler erhalten so benötigte Informationen zur Erweiterung von OGSA-DAI und zur
Entwicklung von Clients. Weiterhin finden sich auf der Homepage von OGSA-DAI (http:
//sourceforge.net/apps/trac/ogsa-dai/wiki) eine Vielzahl weiterer Hilfestellungen wie
FAQs, Mailinglisten oder bekannte Bugs und Fixes.

4.2 Softwarequalität

Dieser Abschnitt enthält die Evaluationsergebnisse einiger Kriterien, die sich mit der Qualität
der Softwaresysteme befassen.

4.2.1 Portabilität/Plattformunabhängigkeit

OGSA-DAI selbst ist plattformunabhängig, da es vollständig in Java realisiert ist und Java
die Plattformunabhängigkeit gewährleistet. Apache Tomcat und Apache Ant sind ebenfalls
plattformunabhängig und schränken so die Portabilität von OGSA-DAI nicht ein. Lediglich
das Globus Toolkit ist an Unix-Plattformen gebunden und kann daher zusammen mit
OGSA-DAI nur auf Unix-Systemen eingesetzt werden.

4.2.2 Erweiterbarkeit

OGSA-DAI stellt eine Menge von Erweiterungsmöglichkeiten über die Implementierung
definierter Schnittstellen bereit. So können z.B. neue Aktivitäten, Data Resources, Security-
Funktionalität oder auch eine komplett neue Präsentationsschicht implementiert und
in OGSA-DAI angebunden werden. Die Dokumentation liefert dazu detaillierte Anlei-
tungen mit einigen Beispielen und Tipps. Nachfolgend wollen wir uns die Erweite-
rung von OGSA-DAI am Beispiel einer selbst implementierten MySQL Data Resource
exemplarisch ansehen. Um eine neue Data Resource zu erstellen, muss das Interface
uk.org.ogsadai.resource.dataresource.DataResource implementiert werden. Dieses Interfaces defi-
niert die zu implementierende Funktionalität einer Data Resource wie beispielsweise das
Öffnen und Schließen von Verbindungen zur physischen Datenquelle oder die Bereitstel-
lung von Metadaten einer Datenquelle für Aktivitäten. Eine detaillierte Beschreibung liefert
[CEMP11] (Part IV, Chapter 111). Sobald die Implementierung abgeschlossen ist, muss

40

http://sourceforge.net/apps/trac/ogsa-dai/wiki
http://sourceforge.net/apps/trac/ogsa-dai/wiki

4.2 Softwarequalität

Listing 4.3 Beispiel einer Data Resource Konfigurationsdatei aus [CEMP11]
id=MyResource

type=uk.org.ogsadai.DATA_RESOURCE

creationTime=null

terminationTime=null

PROPERTIES

END

CONFIG

dai.driver.class=org.gjt.mm.mysql.Driver

dai.data.resource.uri=jdbc:mysql://myhost:3306/daitest

dai.login.provider=uk.org.ogsadai.LOGIN_PROVIDER

END

ACTIVITIES

uk.org.ogsadai.SQLQuery=uk.org.ogsadai.SQLQuery

END

dataResourceClass=org.mydomain.MyDataResource

für die neue Data Resource eine Konfigurationsdatei erstellt werden. Diese wird später
auf den OGSA-DAI Server deployed und wird zur Laufzeit zur Instanziierung von ent-
sprechenden Data Resource Objekten genutzt. Listing 4.3 zeigt ein Beispiel einer solchen
Ressourcen-Konfigurationsdatei. Dabei ist wichtig, dass die angegebene Ressourcen-ID und
der Dateiname der Konfigurationsdatei identisch sind. Ebenfalls wichtig ist die Angabe des
Ressourcen-Typs. Dabei stehen die in Kapitel 2.1.1 beschriebenen sechs Ressourcen-Typen
zur Verfügung. Weiterhin muss für relationale Datenquellen eine JDBC-Treiberklasse, die
Datenbank-URL und die zu nutzende Login-Provider-Implementierung angegeben werden.
Zu guter Letzt kann noch eine Liste mit Aktivitäten angegeben werden, die mit dieser Da-
tenquelle als Ressource ausgeführt werden können. Diese Ressourcen-Konfigurationsdateien
haben dabei immer dasselbe Schema und erlauben so die detaillierte Konfiguration jeglicher
Ressourcen, auch solcher, die nicht selbst implementiert wurden. Die in Listing 4.1 in Kapitel
4.1.3 aufgezeigte Konfigurationsdatei enthält eine Reihe abstrakterer Angaben, die dem Nut-
zer das Deployment neuer Standard-OGSA-DAI Ressourcen vereinfachen. Im Hintergrund
wird aus diesen Angaben allerdings wieder eine Ressourcen-Konfigurationsdatei, nach dem
in Listing 4.3 dargestellten Schema erstellt. Die ausführliche Konfiguration stellt dabei mehr
Möglichkeiten bereit. So lassen sich beispielsweise auch Lese- und Schreibzugriffe einer
Datenquelle einschränken. In Listing 4.3 wurde dazu nur eine lesende Aktivität (SQLQuery)
angegeben, dadurch ist es später keinem Client möglich Daten der definierten Datenbank zu
ändern oder Daten in diese einzufügen.

Die erstellte Data Resource Implementierung kann nun mithilfe der Ressourcen-
Konfigurationsdatei (MyResource.txt) in OGSA-DAI deployed werden. Dazu muss eine
weitere Konfigurationsdatei (deployResource.txt) erstellt werden, die eine entsprechende
Zeile (Resource deployResource MyNewResource MyResource.txt) enthält, um die neue Data Resour-
ce zusammen mit ihrer Konfigurationsdatei (MyResource.txt) auf dem Server zu deployen.
Anschließend muss diese zweite Konfigurationsdatei (deployResource.txt), wie bereits in
Kapitel 4.1.3 aufgezeigt, mittels Apache Ant ausgeführt werden. Hierbei ist darauf zu achten,
dass im Ant-Befehl der Ordner angegeben wird, in dem die JAR mit der Data Resour-

41

4 Evaluation von OGSA-DAI

ce Implementierung liegt (ant -Dtomcat.dir=%CATALINA_HOME% -Dconfig.file=deployResource.txt

-Djar.dir=JAR-DIRECTORY configure).

4.3 Funktionsumfang

In diesem Abschnitt wird auf die Evaluationsergebnisse der Kriterien im Zusammenhang
mit dem Funktionsumfang von OGSA-DAI eingegangen.

4.3.1 Datenquellen

Grundlegend können durch die Erweiterbarkeit von OGSA-DAI (siehe Kapitel 4.2.2) alle
Datenquellen angebunden werden, die eine entsprechende Java-API bereitstellen oder durch
eine solche erreichbar sind. Im Moment werden bereits standardmäßig folgende Datenquellen
unterstützt:

relationale Datenbanken MySQL, PostgreSQL, Oracle, Microsoft SQLServer und IBM DB2

XML-Datenbanken eXist

Dateisysteme Alle Dateisysteme, die über Java zugänglich sind

Remote-Datenquellen Datenquellen, die an andere OGSA-DAI-Server angebunden sind

Resource Description Framework (RDF)-Datenquellen JenaDB und SPARQL-Endpunkte

Sonstige Über entsprechende Aktivitäten können weitere Datenquellen genutzt werden. So
können z.B. Dateien von FTP-Servern abgerufen oder auf diese übertragen werden.
Ebenfalls möglich ist der Abruf von Dateien über eine URL mittels HTTP oder auch
das Versenden von Daten per E-Mail über einen SMTP-Server.

Dabei können Datenquellen, für die es einen entsprechenden JDBC-Treiber gibt, problemlos
ohne Implementierung über Konfigurationsdateien in OGSA-DAI eingebunden werden
(siehe Kapitel 4.1.3 und 4.2.2). Zur Authentifizierung auf Datenquellenseite werden die
in der Data Resource bzw. einer Aktivität hinterlegten Authentifizierungsinformationen
(Benutzername und Passwort) genutzt.

4.3.2 Datenformate

OGSA-DAI nutzt die Java Basis-Datentypen sowie einige OGSA-DAI-
spezifische Datentypen zur Verarbeitung von Daten und Datenquellen-
Metadaten. Listing 4.4 zeigt die von OGSA-DAI unterstützten Datenty-
pen. Die Datentypen uk.org.ogsadai.activity.io.ControlBlock.LIST_BEGIN und
uk.org.ogsadai.activity.io.ControlBlock.LIST_END werden dabei zur Identifizierung des
Anfangs und Endes von Listen verwendet. Diese sind notwendig, damit zur Laufzeit

42

4.3 Funktionsumfang

Listing 4.4 Von OGSA-DAI unterstützte Datenquellen aus [CEMP11]
java.lang.String

char[]

byte[]

java.sql.Blob

java.sql.Clob

java.lang.Boolean

java.lang.Float

java.lang.Integer

java.lang.Long

java.lang.Double

java.lang.Date

java.lang.Calendar

uk.org.ogsadai.activity.io.ControlBlock.LIST_BEGIN

uk.org.ogsadai.activity.io.ControlBlock.LIST_END

uk.org.ogsadai.tuple.Tuple

uk.org.ogsadai.tuple.TupleMetadata

uk.org.ogsadai.tuple.MetadataWrapper

org.w3c.dom.Node

auch bei der parallelen Verarbeitung von mehrfach verschachtelten Listen immer klar ist,
wann eine Liste fertig abgearbeitet wurde und die nächste Liste beginnt. Die Datentypen
Tuple und TupleMetadata vereinfachen die Verarbeitung und Bereitstellung von relationalen
Daten (Tuple) und deren Metadaten (TupleMetadata). Der Datentyp MetadataWrapper
ermöglicht die Kapselung von Objekten, die als Metadaten angesehen werden sollen (wie
beispielsweise TupleMetadata). So können anwendungsspezifische Metadaten innerhalb
von OGSA-DAI bereitgestellt und verarbeitet werden. XML-Daten werden durch die
Klasse org.w3c.dom.Node repräsentiert. Da die internen Datentypen von OGSA-DAI sich
stark an denen von Java orientieren oder sogar meist die identischen Datentypen genutzt
werden, muss meistens keine Transformation der Daten stattfinden. Eine Ausnahme bildet
das Tuple-Datenformat. Dieses wird nur intern von OGSA-DAI verwendet, während
JDBC ein ResultSet-Datentyp für das Ergebnis einer Datenquellenanfrage nutzt. Die
Konvertierung zwischen Tuple- und ResultSet-Datentyp übernimmt OGSA-DAI allerdings
automatisch in beide Richtungen. Der Nutzer hat aber auch die Möglichkeit über die
Nutzung entsprechender Aktivitäten Daten explizit in andere Formate zu transformieren.
So ist beispielsweise mit der TupleToWebRowSetCharArrays-Aktivität die Konvertierung
von Daten im Tuple-Datenformat in eine entsprechende XML-Repräsentation möglich.
Eine Übersicht der verfügbaren Aktivitäten liefert die Activities Reference aus [CEMP11]
(URL: http://ogsa-dai.sourceforge.net/documentation/ogsadai4.1/ogsadai4.1-axis/
ActivitiesReference.html).

4.3.3 Datenzugriffstechnologien

OGSA-DAI nutzt JDBC als Datenzugriffstechnologie für alle relationalen und XML-
Datenbanken. Der Zugriff auf Dateisysteme wird über die JavaIO API realisiert. Über

43

http://ogsa-dai.sourceforge.net/documentation/ogsadai4.1/ogsadai4.1-axis/ActivitiesReference.html
http://ogsa-dai.sourceforge.net/documentation/ogsadai4.1/ogsadai4.1-axis/ActivitiesReference.html

4 Evaluation von OGSA-DAI

Ebene Pattern OGSA-DAI-Aktivitäten

ETL Patterns /
ETL Operations

Selektion SQLQuery, SQLNestedInClauseQuery, SQLParameterisedQuery,
TupleSelect, ReadFromFile, XPathQuery, XQuery,
EPRQuery und RDFDBQuery

Projektion TupleProjection und TupleProjectByIDS
Verbund GenericTupleJoinActivity, SQLNestedInClauseJoin, TupleJoin,

TupleMergeJoin und TupleSemiJoin
Kreuzprodukt TupleProduct, ListMultiply

Basic Data
Management
Patterns

Data Split Split, RandomSplit, ListRandomSplit und TupleSplit
Data Merge TupleSimpleMerge, ListConcatenate, TupleUnionAll
Data Iteration alle Aktivitäten iterieren automatisch über eingehende Daten

Tabelle 4.1: Datenmanagement-Patterns und OGSA-DAI Aktivitäten

Webservices können lediglich die Datenquellen entfernter OGSA-DAI-Server abgefragt wer-
den. Dazu werden die von einem entfernten OGSA-DAI-Server verwalteten Datenquellen
als sogenannte Remote Resources im lokalen OGSA-DAI-Server deployed. Durch Angabe der
URL des enternten OGSA-DAI-Servers und der dort vergebenen Ressourcen-ID kann so
zur Laufzeit die entsprechende Datenquellen-Anfrage an den entfernten OGSA-DAI-Server
(Webservice-Schnittstelle) weitergeleitet, dort verarbeitet und das Ergebnis zurückgeliefert
werden.

4.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns

Durch entsprechende Aktivitäten werden einige der Datenmanagement-Patterns der Ebenen
„ETL Patterns / ETL Operations” und „Basic Data Management Patterns” unterstützt.
Natürlich können durch die Modellierung und Ausführung entsprechender (Sub-)Workflows
mithilfe dieser Aktivitäten auch Patterns höherer Ebenen realisiert werden. Dies kann
ebenso durch die Implementierung weiterer Aktivitäten erreicht werden. Tabelle 4.1 gibt
einen Überblick über die jeweiligen Patterns und möglichen Aktivitäten, die diese Patterns
unterstützen. Einige Aktivitäten unterliegen dabei gewissen Einschränkungen. Beispielsweise
kann nicht angegeben werden, wie ein Datenstrom durch eine Split-Aktivität aufgeteilt
werden soll, sondern der Datenstrom wird automatisch über ein Round-Robin-Verfahren
aufgeteilt. Auf die Einschränkungen der einzelnen Aktivitäten wird allerdings im Rahmen
dieses Dokuments nicht näher eingegangen. Detaillierte Informationen dazu liefert die
Activities Reference aus [CEMP11].

4.3.5 Flexibilität zur Deploymentzeit

OGSA-DAI bietet derzeit keine Möglichkeit auf den in Kapitel 2.1.2 beschriebenen
Deployment-Prozess (Einlesen der Workflow-Datei, Instanziierung aller modellierten Aktivitä-

44

4.3 Funktionsumfang

ten, Verknüpfung der Aktivitäten mit den referenzierten Ressourcen) Einfluss zu nehmen. Alle
Aktivitäten und Ressourcen werden statisch über ihre ID im Workflow referenziert und von
OGSA-DAI zur Instanziierung identifiziert. Durch entsprechende Anpassungen könnte man
den Deployment-Mechanismus beispielsweise so erweitern, dass einem Workflow erst zur
Deploymentzeit konkrete Ressourcen zugeordnet werden. So ließe sich eine Wiederverwen-
dung von Workflow-Modellen in verschiedenen OGSA-DAI Umgebungen realisieren, da ein
Workflow nicht mehr direkt an konkrete Ressource-IDs gebunden wäre.

4.3.6 Flexibilität zur Laufzeit

Konzepte für die Flexibilität zur Laufzeit werden momentan ebenfalls noch nicht unterstützt.
Allerdings wäre auch hier eine entsprechende Erweiterung möglich. Beispielsweise könnte
eine Late-Binding Funktionalität implementiert werden, die anhand von im Workflow angege-
benen Kriterien zur Laufzeit automatisch eine passende Datenquelle auswählt und anbindet.
Eventuell lässt sich dies vielleicht sogar über die Implementierung einer entsprechenden
Data Resource realisieren, die bei ihrer Instanziierung eine passende Datenquelle ausfindig
macht und dann eine entsprechende Verbindung zu dieser Datenquelle bereitstellt.

4.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren

OGSA-DAI bietet derzeit keine Möglichkeit Anforderungen an Datenqualität zu formu-
lieren. Allerdings könnte diese Funktionalität durch die Implementierung entsprechender
Aktivitäten bereitgestellt werden. Diese Aktivitäten könnten dann in Workflows genutzt
werden, um die Qualität der Daten anhand von definierten Kriterien während der Laufzeit
zu evaluieren.

4.3.8 Transparenz der Datenbereitstellung und des Datenmanagements

Durch entsprechende Konfiguration des OGSA-DAI-Servers kann die Ausführung von
Workflows aufgezeichnet werden. Über eine Java Server Page (JSP) (dai-trace.jsp) kann
anschließend die Aufzeichnung der Ausführung aktiviert bzw. deaktiviert werden. Die
Aufzeichnungen werden dabei in Dateien in einem Ordner auf dem Server gespeichert.
Die so aufgezeichneten Daten werden über dieselbe JSP visualisiert. Zur Visualisierung des
Workflow-Graphen wird dabei Graphviz [GRA] benötigt. Dieser Mechanismus ist allerdings
eher für den Test und die Fehlerbehebung von komplexen Workflows gedacht und nicht
für das Monitoring der Ausführung. Dafür stellt OGSA-DAI eine entsprechende Schnittstel-
le (uk.org.ogsadai.monitoring.MonitoringFramework) bereit. Durch die Implementierung dieser
Schnittstelle können EventListener registriert werden, die von Aktivitäten, Pipelines und
Ressourcen emittierte Events sammeln und für das Auditing, die Provenance oder das
Monitoring eines Workflows bereitstellen. OGSA-DAI liefert hierfür bereits eine Beispiel-
Implementierung (uk.org.ogsadai.monitoring.example.EventListMonitoringFramework), die einfach
alle emittierten Events sammelt und in einer Liste im Arbeitsspeicher hält.

45

4 Evaluation von OGSA-DAI

4.4 Leistungsfähigkeit

Dieser Abschnitt beschreibt die Evaluationsergebnisse bzgl. der Kriterien, die sich mit der
Leistungsfähigkeit der Systeme befassen. In den nachfolgenden Punkten wird dabei nicht
mehr auf die in Kapitel 2.1.1 bereits beschriebene Optimierungsmöglichkeit des pipeline-
artigen Datenflusses eingegangen, sondern weitere Konzepte zur Erhöhung der Leistungsfä-
higkeit von OGSA-DAI aufgezeigt.

4.4.1 Performanz des Datenzugriffs

OGSA-DAI unterstützt die Verwendung von Datenbankverbindungspools (Connection-Pools)
für relationale Datenbanken. Dabei wird mithilfe von Apache Commons DBCP [DBC] für
jede registrierte relationale Ressource ein konfigurierbarer Connection-Pool bereitgestellt.

4.4.2 Performanz der Datenverarbeitung

Mithilfe von Distributed Query Processing (DQP) ermöglicht OGSA-DAI die Ausführung von
Abfragen (Queries) auf Tabellen mehrerer verteilter relationaler Datenbanken über SQL, so als
ob die Tabellen in einer gemeinsamen Datenbank liegen würden. Dazu wird eine sogenannte
DQP Resource erstellt, die zur Laufzeit eine virtuelle Datenbank bereitstellt, deren Schema
aus der Vereinigung der Schemen aller referenzierten verteilten Datenbanken generiert
wird. Dadurch sind über die generierte virtuelle Datenbank alle Tabellen der referenzierten
Datenbanken verfügbar und es können SQL-Abfragen an die virtuelle Datenbank gestellt
werden. Die Tabellen erhalten dabei als Präfix die Ressourcen-ID der relationalen Ressource,
in der sie liegen. Der entscheidende Vorteil von DQP liegt darin, dass keinerlei Daten
lokal zwischengespeichert werden, sondern die Abfragen direkt auf den referenzierten
relationalen Datenbanken ausgeführt und nur die Abfrageergebnisse zurückgeliefert werden.
Abbildung 4.1 zeigt ein Beispiel-Szenario, in dem eine SQL-Abfrage auf einer DQP Resource
ausgeführt wird. MyDQPResource referenziert dabei die beiden relationalen Ressourcen
MySQLResource und PostgreSQLResource. Diese enthalten jeweils eine Tabelle, die in der
Abfrage durch die Ressourcen-ID und den Tabellennamen (z.B. MySQLResource_TabelleA)
angesprochen werden kann. Die relationalen Ressourcen können dabei auch auf mehreren
verschiedenen OGSA-DAI-Servern liegen.

OGSA-DAI bietet weiterhin die Möglichkeit Aktivitäten auf ganze Gruppen von Ressourcen
(Resource Group) auszuführen. So kann beispielsweise eine SQL-Abfrage auf mehreren
relationalen Datenbanken mithilfe der SQLBag-Aktivität ausgeführt werden. Dies wird
realisiert, indem ein Subworkflow, der die SQL-Abfrage auf einer einzigen relationalen
Ressource ausführt, für jede in der Resource Group enthaltene Ressource generiert und
ausgeführt wird. Alle Subworkflows laufen dabei wieder parallel ab, so dass auch hier eine
hohe Performanz gewährleistet wird. Das Ergebnis aller Subworkflows wird dann als Liste
von Tuple-Daten (Ergebnis eines Subworkflows) bereitgestellt.

46

4.4 Leistungsfähigkeit

Abbildung 4.1: SQLQuery auf mehreren verteilten relationalen Datenbanken mit DQP (vgl.
[CEMP11])

Für Dateisysteme bietet OGSA-DAI die Möglichkeit an Dateien bzw. deren Inhalt zu indizie-
ren, um diese effizienter durchsuchen zu können. Zur Bereitstellung dieser Funktionalität
nutzt OGSA-DAI Apache Lucene [LUC], eine java-basierte Bibliothek für die Indizierung
und Volltextsuche.

4.4.3 Performanz des Datentransfers

Die Nutzung von expliziten Referenzen auf Daten ist in OGSA-DAI nicht möglich. Es wird
allerdings ein referenz-ähnlicher Mechanismus bereitgestellt. OGSA-DAI erlaubt es die
Ergebnisse einer Abfrage asynchron zu übertragen. D.h. die Ergebnis-Daten der Abfrage
werden nicht direkt an den Client zurückgeliefert, sondern auf dem OGSA-DAI-Server in
einer neu erstellten Data Resource gehalten und dem Client lediglich die ID dieser Ressource
übermittelt. Dadurch kann der Client selbst irgendwann die Daten vom OGSA-DAI-Server
abfragen oder auch die Ressourcen-ID zusammen mit der OGSA-DAI-Server URL an eine
andere Anwendung weiterleiten. Die Ressourcen-ID kann daher als eine Referenz auf die
Daten angesehen werden und direkt von der Anwendung aufgelöst werden, die die Daten
tatsächlich benötigt.

47

4 Evaluation von OGSA-DAI

4.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung

OGSA-DAI bietet im Moment keine integrierten Optimierungsmöglichkeiten an. Allerdings
besteht die Möglichkeit eingehende Workflows vor ihrer Ausführung auf dem Server zu trans-
formieren. Dazu können benutzerspezifische Transformatoren implementiert und registriert
werden. Über diese könnten dann entsprechende Anpassungen oder auch Optimierungen
des Workflows durchgeführt werden.

4.5 Anbindung und Integration

In diesem Abschnitt wird auf die Evaluationsergebnisse bzgl. der Kriterien im Zusammen-
hang mit der Anbindung und Integration der Systeme eingegangen.

4.5.1 Integration von Werkzeugunterstützung

Der Grundgedanke von OGSA-DAI ist die Bereitstellung einer standardisierten Schicht
zwischen Anwendungen und Datenquellen. Anwendungen können dadurch die Dateninte-
gration und das Datenmanagement über OGSA-DAI realisieren, indem sie entsprechende
Ressourcen definieren und Workflows zur Verarbeitung ihrer Daten bereitstellen. Daher
existieren im Moment noch keine Werkzeuge die OGSA-DAI integrieren. Ein Werkzeug
zur graphischen Modellierung und für den Test von OGSA-DAI Workflows wäre sicherlich
trotzdem sinnvoll.

4.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste

OGSA-DAI bietet eine Webservice-Schnittstelle an, die über entsprechende Clients in anderen
Systemen/Diensten eingebunden werden kann. Ebenso möglich ist die Anbindung von
OGSA-DAI über eine bereitgestellte Representational State Transfer (REST)-Schnittstelle.
Diese ermöglicht die Integration über HTTP und erlaubt so sogar die Anbindung von
OGSA-DAI in Webseiten. Über diese beiden Schnittstellen kann OGSA-DAI in nahezu jede
Anwendung völlig plattformunabhängig integriert werden.

4.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln

Die effiziente Kopplung von (wissenschaftlichen) Anwendungen ist eines der Hauptziele
von OGSA-DAI. Entscheidend dafür sind die Bereitstellung von standardisierten platt-
formunabhängigen Schnittstellen (siehe Kapitel 4.5.2), die Unterstützung einer Vielzahl
von Datenformaten (siehe Kapitel 4.3.2) und Datenquellen (siehe Kapitel 4.3.1) sowie die
Erweiterbarkeit (siehe Kapitel 4.2.2) von OGSA-DAI.

48

5 Evaluation von SDMCenter

Dieses Kapitel beschreibt das System SDMCenter nach den in Kapitel 3 festgelegten Kriterien.
Da sich SDMCenter in mehrere Technologien und Systeme für die verschiedenen Ebenen
des Datenmanagements aufgliedert, wurden für die Untersuchung nur die Technologien
und Systeme betrachtet, die mit den anderen untersuchten Systemen vergleichbar sind
und insbesondere für eine Verbesserung und Erweiterung von SIMPL relevant sind. Das
einzige vergleichbare System von SDMCenter ist Kepler. Daher beziehen sich die folgenden
Abschnitte ausschließlich auf Kepler und nicht auf SDMCenter als Gesamtsystem. Auf weitere
Technologien und Systeme von SDMCenter, die für eine Verbesserung und Erweiterung von
SIMPL relevant sind, wird ggf. bei der Beschreibung der Kriterien bzw. abschließend in
Kapitel 6 eingegangen.

5.1 Allgemeines

Dieser Abschnitt enthält die Evaluation anhand der Kriterien, mit denen allgemeine Anfor-
derungen an die Systeme untersucht wurden.

5.1.1 Anwendungsbereich

Die Zielgruppe von Kepler sind Wissenschaftler und Analysten, um diesen die Modellierung
von wissenschaftlichen Workflows für Simulationen und Analysen zu ermöglichen. Dabei
spezialisiert sich Kepler auf die Modellierung des Datenflusses und die Visualisierung von
Simulations- und Analyse-Ergebnissen.

Mit Kepler ist es möglich auf Daten von verschiedenen Datenrepositories wie z.B. ökologische
Daten von Feldstationen oder Daten von Geowissenschaftlern oder Museen zuzugreifen
und diese zu verarbeiten. Dazu wird Kepler bereits mit einer Vielzahl von Aktoren für
verschiedene Datenbereitstellungssysteme ausgeliefert (siehe Kapitel 5.3.1).

Kepler fördert außerdem den Austausch zwischen Wissenschaftlern, indem es Möglichkeiten
bietet, erstellte Workflows über Online-Repositories auszutauschen.

49

5 Evaluation von SDMCenter

5.1.2 Installation und Administration

Für die Installation existiert ein Installer, der den Benutzer durch den Installationsprozess
führt und diesen dadurch sehr einfach gestaltet.

Die Administration von Kepler erfolgt über eine zentrale GUI (Graphical User Interface), die
Zugriff auf alle Funktionen von Kepler bietet. Zusätzlich gibt es ein extra Management-Tool
für die Verwaltung und Aktualisierung der Module von Kepler, über das auch die Installation
weiterer öffentlich angebotener Module über das Internet möglich ist. Dadurch kann Kepler
beispielsweise um eine Provenance-Funktionalität erweitert werden.

5.1.3 Bedienbarkeit, Einfachheit

Die GUI von Kepler ist sehr schlicht gehalten und bietet schnellen Zugriff auf wichtige
Funktionen über eine konfigurierbare Toolbar und auf alle weiteren Funktionen über eine
Menüleiste. Sie teilt sich in drei Bereiche auf, wobei es einen Bereich zur Auswahl der
Elemente wie z.B. Aktoren und Direktoren gibt, einen Arbeitsbereich, in den die Elemente
per Drag&Drop gezogen werden können, sowie eine Mini-View des Workflows, um auch
bei größeren Workflows die Übersicht zu behalten. Technische Details zur Ausführung
des Workflows werden vor dem Benutzer versteckt. Die Elemente bieten oft umfangreiche
Möglichkeiten konfiguriert zu werden und es ist daher oft schwierig zwischen wichtigen
und unwichtigen bzw. speziellen Einstellungen zu unterscheiden. Oft stehen auch interne
Einstellungen der Elemente, die die Implementierung betreffen, mit zur Auswahl. Dadurch
wird man selbst bei einfachen Vorhaben gezwungen sehr viel Dokumentation zu lesen.
Für eine bessere Übersicht über die Ausführung gibt es ein extra Runtime-Fenster, in
dem die Workflow-Steuerung, die Einstellungen der Direktoren und die Ausgabebereiche
zusammengefasst werden. Außerdem lässt sich die Ausführung animiert darstellen, so dass
gerade aktive Aktoren optisch hervorgehoben werden. Zur besseren Übersicht des Workflows
gibt es einen Outline-Bereich, in dem alle Elemente des Workflows mit Ports, Attributen und
Beziehungen in einer Baumstruktur dargestellt werden.

5.1.4 Abhängigkeiten von anderer Software

Kepler ist weitestgehend unabhängig von anderer Software und benötigt nur eine Laufzeit-
umgebung für Java (JRE - Java Runtime Environment). Die einzige Abhängigkeit besteht bei
der statistischen Analyse, für die eine Installation von R benötigt wird, damit entsprechende
Ausdrücke in R in Kepler ausgewertet werden können.

5.1.5 Dokumentation

Die Dokumentation von Kepler ist sehr umfangreich und bietet verschiedene PDF Doku-
mente. Neben einem User Guide und einer Actor Reference, die alle Aktoren erklärt, gibt es
auch einen Getting Started Guide, der sich direkt an Wissenschaftler richtet und anhand von

50

5.2 Softwarequalität

mehreren Beispielen eine Schritt-für-Schritt-Anleitung für verschiedene Anwendungsfälle
bietet. Dazu gibt es außerdem einige Beispiel-Workflows, die geladen und angepasst werden
können, so dass für bestimmte Anwendungsfälle ein schneller Start möglich ist. Für das
Ecological Niche Modeling (ENM) gibt es zudem einen extra Guide. Die Dokumentation ist
auch aus dem Programm heraus erreichbar und steht zum Teil auch als Online-Hilfe zur
Verfügung.

5.2 Softwarequalität

Dieser Abschnitt beschreibt einige Kriterien, die sich mit der Qualität der Softwaresysteme
befassen.

5.2.1 Portabilität/Plattformunabhängigkeit

Da Kepler in Java geschrieben ist, kann es auf jedem Betriebssystem eingesetzt werden, für
das eine JRE existiert. Dies ist für alle gängigen Betriebssysteme der Fall. Grundsätzlich kann
Kepler auf andere Systeme portiert werden und ist dort lauffähig. Allerdings werden benut-
zerspezifische Daten in den jeweiligen Anwenderprofilen des Betriebssystems hinterlegt, die
ebenfalls portiert werden müssen.

5.2.2 Erweiterbarkeit

Kepler ist ein Open Source Projekt und kann daher prinzipiell an alle Bedürfnisse angepasst
werden. Zudem gibt es die Möglichkeit eigene Module und Aktoren für Kepler in Java zu
schreiben, um die Funktionalität sowie den Umfang der Modellierungsmöglichkeiten zu
erweitern. Dazu stehen die folgenden Erweiterungspunkte zur Verfügung.

Configuration System Kepler verfügt über eine zentrale Verwaltung aller Einstellungen
des Systems. Über eine API kann diese von Aktoren und Modulen benutzt werden.
Dadurch können z.B. die Einstelllungen eines Moduls modulübergreifend bereitgestellt
werden und sind von beliebigen Stellen aus abrufbar und änderbar.

Menu System Über diesen Erweiterungspunkt können Menüs und Kontextmenüs erweitert
werden.

Event-State Ermöglicht die Inter-Modulare Kommunikation über Events.

ViewPane und TabPane Über diese beiden Erweiterungspunkte kann die GUI von Kepler
erweitert werden.

KAREntryHandler Erlaubt Modulen das Handling von KAR-Dateien, dem Dateiformat von
Kepler-Workflows.

51

5 Evaluation von SDMCenter

Authentication Framework Für die Authentifizierung und Autorisierung der Aktoren ge-
genüber der von ihnen eingebundenen Systeme, steht ein allgemeines und zentrales
Authentication Framework zur Verfügung.

5.3 Funktionsumfang

In diesem Abschnitt wird auf die Evaluation der Kriterien im Zusammenhang mit dem
Funktionsumfang des SDMCenter bzw. Kepler eingegangen.

5.3.1 Datenquellen

Bei der Installation von Kepler werden bereits eine Vielzahl von Aktoren mitgeliefert, mit
denen auf gängige Datenquellen wie Datenbanken, Dateisysteme, FTP-Server, SSH-Server
und Web Services zugegriffen werden kann. Es werden auch spezialisierte Systeme unter-
stützt die im wissenschaftlichen Bereich Anwendung finden, wie z.B. DiGIR (Distributed
Generic Information Retrieval) [DIG], RBNB (Ring Buffer Network Bus) DataTurbine [RBN],
Antelope ORB (Object Ring Buffer) [ANTa] und SDSC (Storage Resource Broker) Systeme.

5.3.2 Datenformate

Die unterstützten Datenformate variieren je nach Aktor und müssen vom Benutzer, je nach
Anwendungsfall und verwendeter Aktoren zur Weiterverarbeitung, selbst ausgewählt wer-
den. Somit können Daten von einer relationalen Datenbank beispielsweise als Arraystruktur,
als Record oder als XML-Format abgerufen werden. Manche Aktoren bieten auch die Mög-
lichkeit eigene Ports zu definieren. So können beispielsweise Aktoren realisiert werden, die
mehrere verschiedene Datenformate zur gleichen Zeit unterstützen.

5.3.3 Datenzugriffstechnologien

Die unterstützten Datenzugriffstechnologien werden durch die Aktoren gekapselt und
sind für den Benutzer nicht transparent. Durch die mitgelieferten Aktoren werden bereits
verschiedene gängige Datenzugriffstechnologien unterstützt. Dazu gehören ODBC für Da-
tenbanken, Web Services zur Integration verschiedenster Datenzugriffstechnologien, Zugriff
auf Dateisysteme (lokal, per FTP und SSH) und der Zugriff auf spezialisierte Systeme über
standardisierte Protokolle wie z.B. HTTP.

52

5.3 Funktionsumfang

5.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns

Die Aktoren von Kepler unterstützen in der Regel direkt die jeweilige Anfragesprache der
unterstützten Datenquelle wie z.B. die Anfragesprache SQL bei relationalen Datenbanken.
Daher hängt die Unterstützung der Datenmanagement-Patterns hauptsächlich von der Mäch-
tigkeit der jeweiligen Anfragesprache bzw. der Unterstützung der jeweiligen Datenquelle
ab. In der Regel werden für die verschiedenen Datenquellen grundlegende ETL-Patterns
unterstützt, mit denen sich übergeordnete Patterns realisieren lassen. Zu diesem Zweck las-
sen sich in Kepler die Aktoren zu einem CompositeActor aggregieren, der wie ein einfacher
Aktor für die Modellierung verwendet werden kann. Es können solche Patterns aber auch
über Sub-Workflows realisiert werden. Für manche Datenquellen gibt es auch Aktoren mit
Basic Data Management Patterns, wie z.B. den „Data Grid File Transfer“-Aktor, für den
Transfer von Dateien zwischen lokalen und entfernten Dateisystemen.

5.3.5 Flexibilität zur Deploymentzeit

Modellierte Workflows müssen in Kepler nicht explizit deployt werden. Es gibt in der Toolbar
eine Workflow-Steuerung, mit der sich der Workflow starten, pausieren und stoppen lässt.
Der Ablauf des Workflows hängt dabei von den verwendeten Direktoren ab, die sich vor
dem Starten bezüglich des Ablaufs einstellen lassen, wie z.B. das Festlegen der Anzahl von
Iterationen.

5.3.6 Flexibilität zur Laufzeit

Eine Flexibilität zur Laufzeit ist in Kepler nicht gegeben, kann aber durch Erweiterungen
realisiert werden. So können zum Beispiel Anforderungen an eine Datenquelle bei der
Modellierung als Parameter eines Aktors definiert werden, die dann vom Aktor zur Laufzeit
ausgewertet werden, um eine passende Datenquelle ausfindig zu machen.

5.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren

Kepler bietet keine Möglichkeit, Anforderungen an die Datenqualität zu formulieren. Dies
lässt sich aber ebenfalls durch Erweiterungen realisieren.

5.3.8 Transparenz der Datenbereitstellung und des Datenmanagements

Die Transparenz der Datenbereitstellung und des Datenmanagements kann in Kepler über
ein extra Provenance-Modul nachgerüstet werden, wird aber standardmäßig nicht unterstützt.
Ebenfalls gibt es ein Reporting-Modul für das Monitoring, das nachgerüstet werden kann.
Beide Module sind in einer Reporting-Suite für Kepler enthalten, die auch noch andere

53

5 Evaluation von SDMCenter

Module enthält, mit denen Workflows für das Reporting semantisch getaggt (annotiert)
werden können und Reportdokumente erstellt werden können.

5.4 Leistungsfähigkeit

Dieser Abschnitt beschreibt die Evaluation der Kriterien, die sich mit der Leistungsfähigkeit
des SDMCenter bzw. Kepler befassen.

5.4.1 Performanz des Datenzugriffs

Verbindungen zu Datenquellen lassen sich bei der Modellierung durch Querverbindungen
der Beziehungen zwischen den entsprechenden Aktoren wiederverwenden. Inwiefern da-
bei offene Verbindungen tatsächlich wiederverwendet werden und ob diese z.B. in einem
Connection-Pool gehalten werden, lässt sich dabei nicht feststellen. Aktoren für den Verbin-
dungsaufbau können aber grundsätzlich mit solchen Performance-Maßnahmen ausgerüstet
werden.

5.4.2 Performanz der Datenverarbeitung

Die Performanz der Datenverarbeitung lässt sich bei Kepler nicht feststellen und ist stark
vom Modellierer und der Implementierung der verwendeten Aktoren abhängig. Bei Aktoren,
die DM-Befehle bzw. DM-Operationen direkt von den Datenquellen ausführen lassen, hängt
die Performanz aber prinzipiell von der jeweiligen Datenquelle ab. Über entsprechende
Aktoren ist hier auch ein direkter Transfer zwischen zwei Datenquellen realisierbar.

5.4.3 Performanz des Datentransfers

Eine Referenzierung von Daten wird von Kepler nicht unterstützt, ebenso gibt es keine
Möglichkeit Daten explizit zu komprimieren. Die Performanz des Datentransfers hängt
somit von der Implementierung und der Konfigurationsmöglichkeiten der verwendeten
Aktoren ab.

5.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung

Kepler bietet keine Optimierungsmöglichkeiten der Datenbereitstellung.

54

5.5 Anbindung und Integration

5.5 Anbindung und Integration

In diesem Abschnitt wird auf die Evaluation der Kriterien im Zusammenhang mit der
Anbindung und Integration des SDMCenter bzw. Kepler eingegangen.

5.5.1 Integration von Werkzeugunterstützung

Kepler integriert alle Werkzeuge, die zur Modellierung, Ausführung und Auswertung
von Workflows notwendig sind. Weitere Werkzeuge können über Erweiterungen realisiert
werden.

5.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste

Durch die hohe Integration aller Werkzeuge in Kepler, gibt es keine Möglichkeit einzelne
Teile von Kepler bzw. Kepler selbst an andere Systeme und Dienste anzubinden. Bei den
Aktoren und Modulen handelt es sich jedoch um Java-Komponenten, die unter Umständen
von anderen Java Anwendungen wiederverwendet werden können. Eine Zugriffsmöglichkeit
auf Workflows von Außen, z.B. über eine Web Service Schnittstelle, ist nicht vorhanden.

5.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln

Mit den Erweiterungsmöglichkeiten von Kepler ist es möglich Kepler mit jeder Art von
wissenschaftlichen Programmen zu koppeln, die über eine Art von API verfügen. Es können
Aktoren mit entsprechenden Konfigurationsmöglichkeiten für den Zugriff auf die Systeme
realisiert werden, und ebenfalls Aktoren zur Datenverarbeitung und -transformation.

55

6 Fazit für SIMPL

In diesem Kapitel werden die untersuchten Systeme mit SIMPL anhand der in Kapitel 4 und
5 aufgezeigten Evaluationsergebnisse verglichen. Anhand der Evaluationsergebnisse sollen
so die bereits vorhandenen Stärken von SIMPL sowie eventuelle Erweiterungsmöglichkeiten
aufgezeigt werden.

6.1 Stärken von SIMPL

Um eine einheitliche Struktur beizubehalten, orientiert sich der nachfolgende Vergleich
wieder an den Kriterien aus Kapitel 3. Dabei werden allerdings die Kategorien und Kriterien
ausgeblendet, in denen es keine nennenswerte Unterschiede zwischen SIMPL und den
beiden untersuchten Systemen gibt.

6.1.1 Datenquellen (siehe Kapitel 5.3.1)

SIMPL bietet im Vergleich zu Kepler eine generische Lösung für die Aktivitäten. Diese
generische Lösung ermöglicht einen abstrahierten Zugriff auf die verschiedenen Daten-
quellen. Eine Erweiterung für eine neue Art von Datenquelle bedarf daher keiner weiteren
Aktivitäten bzw. Aktoren, wie das bei Kepler der Fall ist. Dadurch bleiben die erstellten
Workflows weitestgehend datenquellenunabhängig und ein Workflow kann beispielsweise
durch einfache Konfiguration der Aktivitäten auf eine andere Art von Datenquelle umgestellt
werden, ohne den Workflow selbst zu verändern, wie das bei neuen Aktivitäten bzw. Aktoren
in Kepler der Fall wäre.

6.1.2 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns (siehe
Kapitel 4.3.4 und Kapitel 5.3.4)

OGSA-DAI ermöglicht momentan nur die Verarbeitung von Daten, die in OGSA-DAI oder
einer Anwendung, die OGSA-DAI integriert, geladen wurden. D.h. Daten können nicht
direkt von einer physischen Ressource zu einer anderen physischen Ressource ohne den
Umweg über OGSA-DAI übertragen werden. Bei SIMPL beziehen sich die Datenmanagement-
Patterns hauptsächlich auf die Verarbeitung von externen Daten. D.h. sofern es möglich ist,
werden die Daten immer direkt, also ohne in SIMPL geladen zu werden, zwischen Ressourcen
übertragen. In SIMPL werden Datenmanagement-Patterns weiterhin als integraler Bestandteil

57

6 Fazit für SIMPL

des Rahmenwerks betrachtet, dies erlaubt im Gegensatz zu OGSA-DAI und dem SDMCenter
eine abstraktere und einfachere Modellierung von Datenmanagement-Patterns.

6.1.3 Flexibilität zur Deploymentzeit (siehe Kapitel 4.3.5 und Kapitel 5.3.5)

Dadurch dass SIMPL an eine Workflow-Engine angebunden ist, liefert die Workflow-
Technologie hier einige implizite Vorteile für die Flexibilität zur Deploymentzeit von SIMPL.
So lassen sich beispielsweise zur Deploymentzeit des Workflows noch modellierte Daten-
quellenabfragen ändern.

6.1.4 Flexibilität zur Laufzeit (siehe Kapitel 4.3.6 und Kapitel 5.3.6)

Analog zum vorherigen Punkt bringt auch hier die Nutzung der Workflow-Technologie
einige Vorteile mit sich, wie z.B. Late Binding von Datenquellen (siehe Kapitel 2.3).

6.1.5 Möglichkeit Anforderungen an Datenqualität zu formulieren (siehe Kapitel
4.3.7) und Kapitel 5.3.7

Auch in diesem Punkt liefert die Workflow-Technologie einige Vorteile. So kann beispiels-
weise sehr einfach ein Datenqualitäts-Framework (siehe [RBD+

11]) in die Workflow-Engine
integriert und so dessen Funktionalität in SIMPL genutzt werden.

6.1.6 Performanz des Datentransfers (siehe Kapitel 5.4.3)

SIMPL bietet, im Vergleich zu den anderen Systemen, die Möglichkeit zur Referenzierung
von Daten in Verbindung mit einem Reference Resolution System (RRS), das in [WGSL09]
beschrieben wird. Ebenfalls möglich ist die Referenzierung von Datenquellen über Data Source
Reference Variables und die Referenzierung von Datencontainern über Data Container Reference
Variables. Ein Datencontainer ist eine identifizierbare Sammlung von Daten, wie beispielsweise
eine Tabelle in einer Datenbank oder eine Datei in einem Dateisystem [RRS+11].

6.1.7 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung (siehe
Kapitel 4.4.4 und Kapitel 5.4.4)

In SIMPL gibt es entsprechende integrierte Optimierungsmöglichkeiten bzw. solche können
durch SIMPL genutzt werden (siehe [VSS+07]).

58

6.2 Identifizierte Erweiterungsmöglichkeiten für SIMPL

6.1.8 Integration von Werkzeugunterstützung (siehe Kapitel 4.5.1 und Kapitel
5.5.1)

Die Integration von SIMPL in ein Standardtool wie Eclipse (siehe Kapitel 2.3) stellt einen
entscheidenden Vorteil gegenüber OGSA-DAI und SDMCenter bzw. Kepler dar. Eclipse
liefert einen riesigen Fundus an Tools bzw. kann um weitere Tools ergänzt werden, die
dadurch auch für SIMPL genutzt werden können, z.B. kann so ein SQL-Editor aus Eclipse
für die Modellierung der SQL-Abfragen für SIMPL genutzt werden.

6.2 Identifizierte Erweiterungsmöglichkeiten für SIMPL

In den folgenden Kapiteln werden die identifizierten Erweiterungsmöglichkeiten für SIMPL
beschrieben, die sich für SIMPL in Bezug auf die evaluierten Systeme herausgestellt haben.

6.2.1 In Bezug auf OGSA-DAI

SIMPL besitzt derzeit kein eigenes Event-Modell, sondern emittiert Ereignisdaten über das
durch die Workflow-Engine bereitgestellte BPEL-Event-Modell. Das BPEL-Event-Modell lie-
fert ein weitgehend ausreichendes Event-Modell für die Workflow-interne Datenverarbeitung
(Verarbeitung der Workflow-Variablen). Hier wäre die Bereitstellung eines SIMPL-Event-
Modells für das externe Datenmanagement (z.B. Datenquellenzugriffe, Datenquellenver-
bindungen oder Datenquellenabfragen) von Vorteil, das auf die Datenintegration und das
Datenmanagement zugeschnitten ist und detaillierte Informationen liefern kann. Dazu gehört
ebenfalls die Implementierung eines entsprechenden Event-Frameworks, das SIMPL-Events
verarbeitet, persistiert und für Anwendungen, die SIMPL integrieren, zugänglich macht. Dies
würde die Transparenz von SIMPL erhöhen und Ereignisdaten unabhängig von der Integra-
tion von SIMPL machen. D.h. die Ereignisdaten stehen sowohl einer Workflow-Engine als
auch einer klassischen Java-Anwendung über ein und dieselbe Schnittstelle zur Verfügung.

Zur (asynchronen) Ausführung von komplexen OGSA-DAI Daten-Workflows könnte OGSA-
DAI an SIMPL angebunden werden. So könnten beispielsweise die Vorbereitungsschritte
einer Simulation (Datenabfragen, Erstellung von Containern (Dateien, Tabellen, ...), Da-
tentransfer, ...), die Transformation großer Datenmengen oder auch der Transfer großer
Datenmengen asynchron zum Kontrollfluss der Ausführung der Workflow-Instanz (BPEL)
realisiert werden. Ein entsprechender Anwendungsfall wäre beispielsweise die in [Dor11]
beschriebenen Kopplung der Simulationsanwendungen PANDAS (Porous Media Adaptive
Nonlinear finite element solver based on Differential Algebraic Systems, [PAN]) und Matlab.
So könnte man z.B. die Daten, die PANDAS generiert, über OGSA-DAI Workflows an die
Rechner übertragen, auf denen die einzelnen Matlab-Instanzen ausgeführt werden, und
natürlich auch umgekehrt die Ergebnisdaten der Matlab-Instanzen zurück zu PANDAS
übertragen. SIMPL könnte dabei zwischen dem Nutzer und OGSA-DAI vermitteln, so dass
die meisten Informationen, die OGSA-DAI als Eingabe benötigt, durch SIMPL generiert
oder geliefert werden könnten, ohne die vorhandene Schnittstelle zum Nutzer ändern zu

59

6 Fazit für SIMPL

müssen. Analog dazu könnte man natürlich auch direkt durch den Nutzer modellierte
OGSA-DAI Workflows über SIMPL zur Verarbeitung an OGSA-DAI weiterleiten. So könnten
beispielsweise die Stärken der workflow-basierten Simulationsausführung sowie von SIMPL
und OGSA-DAI kombiniert werden. In [Age11] wurde das System Champagne, ein System
für die Propagation von Datenänderungen, als weitere Möglichkeit zur Verwendung für
einen solchen Einsatzzweck vorgeschlagen. Hierzu könnte man beide Systeme (OGSA-DAI
und Champagne) sowie die herkömmliche Variante über den expliziten Kontrollfluss der
BPEL-Workflows vergleichen (siehe [Dor11]).

Ebenfalls eine interessante Erweiterungsmöglichkeit für SIMPL wäre die in Kapitel 4.4.2
beschriebene Integration von Apache Lucene, um Dateien bzw. deren Inhalt zu indizieren
und Dateien so effizienter durchsuchen zu können.

Die in Kapitel 4.2.2 beschriebene Möglichkeit zur Registrierung neuer Datenquellen und
zum automatischen Deployment deren Treiber zur Laufzeit des Servers wäre auch für SIMPL
eine interessante Erweiterung. Im Moment müssen die Treiber noch von Hand deployed und
Apache Tomcat jedesmal neu gestartet werden. Stattdessen könnte man die Registrierung
der Datenquellen im Web Interface des Resource Management vereinfachen. Über das Web
Interface könnte man so z.B. bei SQL-Datenbanken die Pfade zu den entsprechenden JAR-
Dateien der JDBC-Treiber angeben, und dann werden diese automatisch in Apache Tomcat
deployed.

6.2.2 In Bezug auf SDMCenter

Einen Vorteil gegenüber SIMPL bietet Kepler bei der Auswahl an unterstützten Datenforma-
ten. So können an einem Aktor mehrere Output-Ports mit unterschiedlichen Datenformaten
definiert werden und dadurch parallel verschiedene Datenformate weiterverarbeitet werden.
Das ist z.B. in XML, als Record, oder als Arraystruktur möglich. In SIMPL ist das Datenfor-
mat einer Datenmanagement-Aktitäten ausschließlich ein XML-Datenformat, das von dem
zuständigen Connector und Converter der in der Datenmanagement-Aktivität ausgewählten
Datenquelle, abhängig ist. Dies ist immer der Fall, egal ob man die Daten in die Workflow-
Engine lädt oder ob man sie im SIMPL Core bzw. im Service Bus verarbeitet. Da auch große
Datenmengen in SIMPL in ein XML-Datenformat transformiert werden könnten, kann an
dieser Stelle SIMPL verbessert werden, indem man Möglichkeiten schafft mit den im SIMPL
Core bzw. im Service Bus nativen Datenformaten (Java-Datentypen) der Connectoren zu
arbeiten und nur bei Bedarf, also bei der Verarbeitung der Daten innerhalb des Workflows,
diese in ein XML-Datenformat zu transformieren.

Kepler und SIMPL bieten beide ein zentrales Konfigurationsmanagement. Kepler bietet
zudem ein zentrales, allgemeines Authentifizierungs-Framework, das es Aktoren ermöglicht
und erleichtert, sich gegenüber den zu integrierenden Systemen zu authentifizieren und zu
autorisieren. In SIMPL wird dagegen die Funktionalität der Authentifizierung und Autori-
sierung in den Connectoren realisiert, was spätestens bei der Unterstützung verschiedener
Authentifizierungs- und Autorisierungstechnologien zu einer hohen Anzahl von redun-
danten und schwer wartbaren Implementierungen führt. Hier müsste man untersuchen, in

60

6.2 Identifizierte Erweiterungsmöglichkeiten für SIMPL

wie weit sich SIMPL an das Authentifizierungs- und Autorisierungsframework von Kep-
ler koppeln lässt, oder ein eigenes Authentifizierungs-Framework, z.B. über das Resource
Management, realisieren lässt.

SIMPL fehlen außerdem Möglichkeiten der Datenanalyse, die durch entsprechende
Datenmanagement-Patterns und BPEL-Erweiterungs-Aktivitäten, für die Analyse geschaffen
werden könnten.

Die weiteren Technologien von SDMCenter der DMA- und SEA-Datenmanagementebene
sind für eine Verwendung in SIMPL größtenteils nicht geeignet, sondern finden viel mehr
Anwendung in Systemen, die an SIMPL als Datenquelle angebunden werden können. Eine
Technologie der DMA-Datenmanagementebene, die in SIMPL eingesetzt werden könnte, ist
FastBit. Mit FastBit können die Daten des Resource Managements noch effizienter verwaltet
werden, um auch für eine Vielzahl an Ressourcen vorbereitet zu sein und weiterhin einen
schnellen Zugriff auf diese gewährleisten zu können.

61

7 Zusammenfassung und Ausblick

Die Evaluationen von OGSA-DAI und SDMCenter und der Vergleich mit SIMPL haben
gezeigt, dass SIMPL ein gleichwertiges bzw. in einigen Aspekten sogar ein besseres Daten-
managementsystem ist. Durch die Nutzung der Workflow-Technologie bringt SIMPL einige
implizite Vorteile für Erweiterbarkeit und die Flexibilität zur Deploymentzeit und Laufzeit
mit sich. Ein weiterer Vorteil von SIMPL ist Betrachtung der Datenmanagement-Patterns als
integraler Bestandteil des Rahmenwerks. Dies erlaubt im Gegensatz zu OGSA-DAI und dem
SDMCenter eine abstraktere und einfachere Modellierung von Datenmanagement-Patterns.
Ebenfalls ein entscheidender Vorteil ist die Werkzeugunterstützung von SIMPL durch Eclipse.
Die „Defizite“ von SIMPL im Bezug auf die beiden untersuchten Systeme liegen lediglich an
dessen Funktionsumfang. So ist beispielsweise die Auswahl an unterstützten Datenformaten
geringer oder die Registrierung neuer Datenquellen in SIMPL nicht zur Laufzeit möglich.
Die fehlende Funktionalität lässt sich aber relativ einfach durch die modulare Architektur
von SIMPL einbinden, indem einfach neue Komponenten an SIMPL angebunden werden,
die eine entsprechende Funktionalität liefern.

Ausblick

Die beiden untersuchten Systeme sind sehr umfangreich und teilweise auch komplex, daher
gibt es eine Reihe weiterer Aspekte, die detaillierter untersucht und mit SIMPL verglichen
werden könnten. Beispielsweise die Bereitstellung und Registrierung von Ressourcen in
OGSA-DAI oder die Definition neuer Aktoren in SDMCenter. Dabei wäre vor allem auch die
Mächtigkeit des gewählten Ansatzes (Ressourcen in OGSA-DAI bzw. Aktoren in SDMCenter)
und dessen Einschränkungen interessant. Ein weiterer Aspekt, der detaillierter untersucht
werden sollte, ist die Anbindung von Systemen für das Datenmanagement und die Datenbe-
reitstellung an SIMPL. Interessant wäre vor allem, in welchen Szenarien eine Anbindung
sinnvoll ist und wann eine Anbindung sich nicht lohnt. Ein entsprechendes Beispielszenario
für die Anbindung von OGSA-DAI oder auch Champagne wurde in Kapitel 6 aufgezeigt.
Dabei geht es um die Kopplung der Simulationsanwendungen PANDAS und Matlab. Mithil-
fe von SIMPL und OGSA-DAI oder Champagne könnte man z.B. die Daten, die PANDAS
generiert, über OGSA-DAI Workflows an die Rechner übertragen, auf denen die einzelnen
Matlab-Instanzen ausgeführt werden, und natürlich auch umgekehrt die Ergebnisdaten der
Matlab-Instanzen zurück zu PANDAS übertragen.

Da es noch eine Reihe weiterer Systeme für das Datenmanagement und die Datenbereitstel-
lung gibt, könnten analog zu dieser Fachstudie weitere Systeme wie beispielsweise Microsoft
Trident [TRI] untersucht werden.

63

Literaturverzeichnis

[ADI] ADIOS. URL http://www.olcf.ornl.gov/center-projects/adios/. (Zitiert auf
Seite 20)

[ADO] Adobe Flash. URL http://www.adobe.com/de/products/flash.html. (Zitiert
auf Seite 21)

[Age11] C. Ageu. Kombination von SIMPL mit einem Ansatz zur Propagation von
Datenänderungen. Studienarbeit: Universität Stuttgart, Institut für Parallele
und Verteilte Systeme, Anwendersoftware, 2011. URL http://www2.informatik.

uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2328&engl=0.
(Zitiert auf Seite 60)

[ANTa] Antelope ORB. URL http://eqinfo.ucsd.edu/faq/antelope.php. (Zitiert auf
Seite 52)

[ANTb] Apache Ant. URL http://ant.apache.org/. (Zitiert auf Seite 38)

[AXI] Apache Axis. URL http://axis.apache.org/. (Zitiert auf Seite 38)

[CEMP11] I. B. M. Corporation, T. U. of Edinburgh, U. P. de Madrid, K. Pradeeban.
OGSA-DAI 4.1 Documentation, 2011. URL http://ogsa-dai.sourceforge.net/

documentation/ogsadai4.1/ogsadai4.1-axis/. (Zitiert auf den Seiten 7, 11, 12,
14, 16, 17, 39, 40, 41, 43, 44 und 47)

[DBC] Apache Commons DBCP. URL http://commons.apache.org/dbcp/. (Zitiert auf
Seite 46)

[DIG] DiGIR. URL http://digir.net/. (Zitiert auf Seite 52)

[Dor11] R. Dormien. Service-Bus-Erweiterung um Pandas-basierte Simulationen in Workflows
zu nutzen. Diplomarbeit, Universität Stuttgart, Fakultät Informatik, Elektrotechnik
und Informationstechnik, Deutschland, 2011. URL http://www2.informatik.

uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3127&engl=0.
(Zitiert auf den Seiten 59 und 60)

[EML] EML. URL http://knb.ecoinformatics.org/software/eml/. (Zitiert auf Sei-
te 22)

[ESS] eSimMon. URL http://www.olcf.ornl.gov/center-projects/esimmon/. (Zi-
tiert auf Seite 21)

[FAS] FastBit. URL https://sdm.lbl.gov/fastbit/. (Zitiert auf Seite 21)

65

http://www.olcf.ornl.gov/center-projects/adios/
http://www.adobe.com/de/products/flash.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2328&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=STUD-2328&engl=0
http://eqinfo.ucsd.edu/faq/antelope.php
http://ant.apache.org/
http://axis.apache.org/
http://ogsa-dai.sourceforge.net/documentation/ogsadai4.1/ogsadai4.1-axis/
http://ogsa-dai.sourceforge.net/documentation/ogsadai4.1/ogsadai4.1-axis/
http://commons.apache.org/dbcp/
http://digir.net/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3127&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3127&engl=0
http://knb.ecoinformatics.org/software/eml/
http://www.olcf.ornl.gov/center-projects/esimmon/
https://sdm.lbl.gov/fastbit/

Literaturverzeichnis

[GLO] Globus Toolkit. URL http://www.globus.org/toolkit/. (Zitiert auf Seite 38)

[GRA] Graphviz - Graph Visualization Software. URL http://www.graphviz.org/.
(Zitiert auf den Seiten 39 und 45)

[KEP] Kepler. URL https://kepler-project.org/. (Zitiert auf Seite 21)

[LUC] Apache Lucene. URL http://lucene.apache.org/. (Zitiert auf Seite 47)

[MPIa] MPI. URL http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.

0-sf/mpi2-report.htm. (Zitiert auf Seite 19)

[MPIb] MPICH2. URL http://www.mcs.anl.gov/research/projects/mpich2/. (Zitiert
auf Seite 19)

[NET] NetCDF. URL http://www.unidata.ucar.edu/software/netcdf/. (Zitiert auf
Seite 20)

[PAN] PANDAS. URL http://www.mechbau.uni-stuttgart.de/pandas/index.php.
(Zitiert auf Seite 59)

[PNE] Parallel-NetCDF. URL http://trac.mcs.anl.gov/projects/parallel-netcdf/.
(Zitiert auf Seite 20)

[PRO] ProRata. URL http://code.google.com/p/prorata/. (Zitiert auf Seite 21)

[PVF] PVFS. URL http://www.pvfs.org/. (Zitiert auf Seite 20)

[RBD+
11] M. Reiter, U. Breitenbücher, S. Dustdar, D. Karastoyanova, F. Leymann, H.-L.

Truong. A Novel Framework for Monitoring and Analyzing Quality of Data
in Simulation Workflows. In 2011 Seventh IEEE International Conference on eS-
cience. IEEE, 2011. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/

NCSTRL/NCSTRL_view.pl?id=INPROC-2011-77&engl=0. (Zitiert auf den Seiten 33

und 58)

[RBN] RBNB DataTurbine. URL http://www.dataturbine.org/. (Zitiert auf Seite 52)

[RM11] P. Reimann, B. Mitschang. Data Provisioning for Scientific Workflows. Poster-
Präsentation im 4. SimTech Status Seminar, Bad Boll, Deutschland, 21.-23. No-
vember 2011. (Zitiert auf den Seiten 7 und 32)

[ROM] ROMIO. URL http://www.mcs.anl.gov/romio/. (Zitiert auf Seite 19)

[RPR] R. URL http://www.r-project.org/. (Zitiert auf Seite 21)

[RRS+11] P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, F. Leymann. SIMPL
- A Framework for Accessing External Data in Simulation Workflows. In
G. für Informatik (GI), editor, Datenbanksysteme für Business, Technologie und
Web (BTW 2011), 14. Fachtagung des GI-Fachbereichs „Datenbanken und Informa-
tionssysteme“ (DBIS), Proceedings, 02.-04. März 2011, Kaiserslautern, Deutschland,
Series of the Gesellschaft für Informatik (GI), pp. 534–553. Lecture Notes in Infor-
matics (LNI), 2011. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/

66

http://www.globus.org/toolkit/
http://www.graphviz.org/
https://kepler-project.org/
http://lucene.apache.org/
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0-sf/mpi2-report.htm
http://www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0-sf/mpi2-report.htm
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.unidata.ucar.edu/software/netcdf/
http://www.mechbau.uni-stuttgart.de/pandas/index.php
http://trac.mcs.anl.gov/projects/parallel-netcdf/
http://code.google.com/p/prorata/
http://www.pvfs.org/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-77&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-77&engl=0
http://www.dataturbine.org/
http://www.mcs.anl.gov/romio/
http://www.r-project.org/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-07&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-07&engl=

Literaturverzeichnis

NCSTRL/NCSTRL_view.pl?id=INPROC-2011-07&engl=. (Zitiert auf den Seiten 34

und 58)

[SAP] Sapphire. URL https://computation.llnl.gov/casc/sapphire/. (Zitiert auf
Seite 21)

[SCI] SciDAC. URL http://www.scidac.gov/. (Zitiert auf Seite 17)

[SDM] SDMCenter. URL https://sdm.lbl.gov/sdmcenter/. (Zitiert auf den Seiten 7,
17 und 18)

[SRM] SRM-Lite. URL https://sdm.lbl.gov/srmlite/. (Zitiert auf Seite 20)

[TOM] Apache Tomcat. URL http://tomcat.apache.org/. (Zitiert auf Seite 38)

[TRI] Microsoft Trident. URL http://research.microsoft.com/en-us/

collaboration/tools/trident.aspx. (Zitiert auf Seite 63)

[VSS+07] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Maier,
T. Kraft. An Approach to Optimize Data Processing in Business Pro-
cesses. In Proc. of the 33rd International Conference on Very Large Da-
ta Bases (VLDB 2007), Vienna, Austria, September 23-28, 2007, pp. 615–
626. 2007. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/

NCSTRL_view.pl?id=INPROC-2007-28&engl=. (Zitiert auf den Seiten 34 und 58)

[WGSL09] M. Wieland, K. Görlach, D. Schumm, F. Leymann. Towards Reference Passing
in Web Service and Workflow-based Applications. In Proceedings of the 13th
IEEE Enterprise Distributed Object Conference (EDOC 2009), pp. 109–118. IEEE,
Auckland, New Zealand, 2009. URL http://www2.informatik.uni-stuttgart.

de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-52&engl=0. (Zitiert auf
Seite 58)

Alle URLs wurden zuletzt am 14.02.2012 geprüft.

67

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-07&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2011-07&engl=
https://computation.llnl.gov/casc/sapphire/
http://www.scidac.gov/
https://sdm.lbl.gov/sdmcenter/
https://sdm.lbl.gov/srmlite/
http://tomcat.apache.org/
http://research.microsoft.com/en-us/collaboration/tools/trident.aspx
http://research.microsoft.com/en-us/collaboration/tools/trident.aspx
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2007-28&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2007-28&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-52&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-52&engl=0

Erklärung

Hiermit versichern wir, diese Arbeit
selbständig verfasst und nur die angegebenen
Quellen benutzt zu haben.

(Michael Hahn Michael Schneidt)

	1 Einleitung
	2 Beschreibung der Systeme
	2.1 OGSA-DAI
	2.1.1 Komponenten
	Ressourcen
	Aktivitäten
	Workflows

	2.1.2 Ausführung von Workflows

	2.2 SDMCenter
	2.2.1 Datenmanagement Ebenen
	2.2.2 Technologien
	ROMIO
	Parallel-NetCDF
	PVFS
	ADIOS
	SRM-Lite
	R
	ProRata
	Sapphire
	FastBit
	eSimMon
	Kepler

	2.3 SIMPL
	2.3.1 Architektur von SIMPL
	Eclipse Plug-Ins
	Apache ODE
	Apache Axis2

	2.3.2 SIMPL Funktionalität und Erweiterbarkeit
	SIMPL Core
	Resource Management

	3 Kriterien für die Evaluation
	3.1 Allgemeines
	3.1.1 Anwendungsbereich
	3.1.2 Bedienbarkeit, Einfachheit
	3.1.3 Installation und Administration
	3.1.4 Abhängigkeiten von anderer Software
	3.1.5 Dokumentation

	3.2 Softwarequalität
	3.2.1 Portabilität/Plattformunabhängigkeit
	3.2.2 Erweiterbarkeit

	3.3 Funktionsumfang
	3.3.1 Datenquellen
	3.3.2 Datenformate
	3.3.3 Datenzugriffstechnologien
	3.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns
	3.3.5 Flexibilität zur Deploymentzeit
	3.3.6 Flexibilität zur Laufzeit
	3.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren
	3.3.8 Transparenz der Datenbereitstellung und des Datenmanagements

	3.4 Leistungsfähigkeit
	3.4.1 Performanz des Datenzugriffs
	3.4.2 Performanz der Datenverarbeitung
	3.4.3 Performanz des Datentransfers
	3.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung

	3.5 Anbindung und Integration
	3.5.1 Integration von Werkzeugunterstützung
	3.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste
	3.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln

	4 Evaluation von OGSA-DAI
	4.1 Allgemeines
	4.1.1 Anwendungsbereich
	4.1.2 Bedienbarkeit, Einfachheit
	4.1.3 Installation und Administration
	4.1.4 Abhängigkeiten von anderer Software
	4.1.5 Dokumentation

	4.2 Softwarequalität
	4.2.1 Portabilität/Plattformunabhängigkeit
	4.2.2 Erweiterbarkeit

	4.3 Funktionsumfang
	4.3.1 Datenquellen
	4.3.2 Datenformate
	4.3.3 Datenzugriffstechnologien
	4.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns
	4.3.5 Flexibilität zur Deploymentzeit
	4.3.6 Flexibilität zur Laufzeit
	4.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren
	4.3.8 Transparenz der Datenbereitstellung und des Datenmanagements

	4.4 Leistungsfähigkeit
	4.4.1 Performanz des Datenzugriffs
	4.4.2 Performanz der Datenverarbeitung
	4.4.3 Performanz des Datentransfers
	4.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung

	4.5 Anbindung und Integration
	4.5.1 Integration von Werkzeugunterstützung
	4.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste
	4.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln

	5 Evaluation von SDMCenter
	5.1 Allgemeines
	5.1.1 Anwendungsbereich
	5.1.2 Installation und Administration
	5.1.3 Bedienbarkeit, Einfachheit
	5.1.4 Abhängigkeiten von anderer Software
	5.1.5 Dokumentation

	5.2 Softwarequalität
	5.2.1 Portabilität/Plattformunabhängigkeit
	5.2.2 Erweiterbarkeit

	5.3 Funktionsumfang
	5.3.1 Datenquellen
	5.3.2 Datenformate
	5.3.3 Datenzugriffstechnologien
	5.3.4 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns
	5.3.5 Flexibilität zur Deploymentzeit
	5.3.6 Flexibilität zur Laufzeit
	5.3.7 Möglichkeit Anforderungen an Datenqualität zu formulieren
	5.3.8 Transparenz der Datenbereitstellung und des Datenmanagements

	5.4 Leistungsfähigkeit
	5.4.1 Performanz des Datenzugriffs
	5.4.2 Performanz der Datenverarbeitung
	5.4.3 Performanz des Datentransfers
	5.4.4 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung

	5.5 Anbindung und Integration
	5.5.1 Integration von Werkzeugunterstützung
	5.5.2 Anbindungsmöglichkeiten an andere Systeme/Dienste
	5.5.3 Fähigkeit verschiedene wissenschaftliche Programme zu koppeln

	6 Fazit für SIMPL
	6.1 Stärken von SIMPL
	6.1.1 Datenquellen (siehe Kapitel 5.3.1)
	6.1.2 Datenverarbeitungsmöglichkeiten / Datenmanagement-Patterns (siehe Kapitel 4.3.4 und Kapitel 5.3.4)
	6.1.3 Flexibilität zur Deploymentzeit (siehe Kapitel 4.3.5 und Kapitel 5.3.5)
	6.1.4 Flexibilität zur Laufzeit (siehe Kapitel 4.3.6 und Kapitel 5.3.6)
	6.1.5 Möglichkeit Anforderungen an Datenqualität zu formulieren (siehe Kapitel 4.3.7) und Kapitel 5.3.7
	6.1.6 Performanz des Datentransfers (siehe Kapitel 5.4.3)
	6.1.7 Potentielle Optimierungsmöglichkeiten der Datenbereitstellung (siehe Kapitel 4.4.4 und Kapitel 5.4.4)
	6.1.8 Integration von Werkzeugunterstützung (siehe Kapitel 4.5.1 und Kapitel 5.5.1)

	6.2 Identifizierte Erweiterungsmöglichkeiten für SIMPL
	6.2.1 In Bezug auf OGSA-DAI
	6.2.2 In Bezug auf SDMCenter

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

