Institut fiir Softwaretechnologie
Universitat Stuttgart
UniversitatsstraBe 38

D-70569 Stuttgart

Fachstudie Nr. 147

Leichtgewichtige

Java-OR-Mapping-Werkzeuge

Christian Buchgraber, Philipp Gildein, Philipp Pirrung

Studiengang:

Priifer:

Betreuer:

begonnen am:

beendet am:

CR-Klassifikation:

Softwaretechnik

Prof. Dr. rer. nat. Jochen Ludewig

Daniel Kulesz, M.Sc.

1. Juni 2011

24. November 2011

D.23

Zusammenfassung

OR-Mapper (objektrelationale Mapper) sind heutzutage eine wichtige Abstraktions-
schicht, um objektorientierte Konzepte in die Welt der relationalen Datenbanken zu
bringen. Diese Werkzeuge bieten aber weit mehr als nur die Vermittlung zwischen den
beiden Konzepten. Sie versuchen auch viele weitere Hilfestellungen zu leisten, von denen
der Entwickler oftmals nur Bruchteile benétigt. So werden grofle Werkzeuge eingesetzt,
um ein fiir den Entwickler kleines Problem zu l6sen. Dieses Problem greift die Klasse
der leichtgewichtigen objektrelationalen Mapper an. Durch ein kleineres Repertoire an
Fahigkeiten und weniger externer Abhingigkeiten versuchen sie, einen schlankeren Lo-
sungsansatz zu bieten.

In dieser Fachstudie soll ein Blick auf eben diese Klasse von Werkzeugen geworfen wer-
den, um fiir ein konkretes, leichtgewichtiges Nutzungsszenario das am besten passende
Werkzeug zu finden. Dazu wird zuerst ein genereller Uberblick iiber die am Markt an-
gebotenen OR-Mapper erstellt. Aus diesen werden dann leichtgewichtige Kandidaten
ausgesucht und geméfl dem Nutzungsszenario evaluiert, um die fiir das spezielle Pro-
blem beste Losung zu finden.

Abstract

Leightweight Java OR Mapping Tools

In today’s world, OR mappers (object-relational mappers) form an important layer of
abstraction used to integrate object-oriented concepts into relational databases. These
tools offer a much broader range of features than merely the connection between the
two concepts as they try to assist the user with many more problems. Developers ge-
nerally only need a small part of the supplied features, hence using large-scale tools for
small-scale problems. This issue is dealt with by the class of lightweight object-relational
mappers. By offering a less extensive selection of features as well as fewer external de-
pendencies, they aim for a slimmer approach towards the issue.

In the context of this study, this class of tools will be focused in an attempt to find
the best-fitting tool for a specific lightweight user scenario. For this purpose an overview
of OR mappers currently on the market will be created. The lightweight candidates will
then be isolated and evaluated according to the user scenario. This finally results in a
fitting tool for the specific problem.

Inhaltsverzeichnis

1 Einleitung
1.1 Begriffe
1.2 Entstehungsgeschichte
1.3 Wichtige Anforderung

(510

1.4 Aufbau des Dokumentes

2 Ablauf der Fachstudie
2.1 Phasen.
2.2 Zeitlicher Verlauf . .

3 Marktiiberblick

4 Nutzungsszenario
4.1 Mengengeriist

5 Bewertungskriterien
5.1 K.O.-Kriterien . . .
5.1.1 Lizenzierung

5.1.2 Leichtgewichtigkeit/Abhéngigkeiten
5.1.3 Status der Entwicklung 0oL

5.1.4 Unterstiitzung
5.2 Weitere relevante Krit

des Datenbankmanagementsystems
ErieN e

5.2.1 Performanz der INSERT-Abfragen
5.2.2 Dokumentation/Supporto

5.2.3 Simplizitéit des

Abspeicherns L.

5.2.4 Generierung des Datenbankschemas

5.2.5 Anlegen von D

atenbanken oL

5.2.6 Einarbeitungsaufwand 00
5.2.7 Form der Modelldefinition

5.2.8 Community .

5.2.9 Vielfdltiger Einsatzo o 0oL

5.2.10 Syntax von Ab

fragen

5.2.11 Umgang mit INSERT- und UPDATE-Abfragen
5.2.12 Vererbungsstrukturen zwischen Datenmodellen

5.2.13 Transaktionen

5.2.14 Antwort bei Fehlschlagen

5.2.15 Entity-Manage

5.2.16 Unterstiitzung

5.2.17 Unterstiitzung
5.3 Irrelevante Kriterien

6 Evaluation

T oo e e
bei Schemamigration
bei Datenmigration

15
16

17
17
17
17
18
18
19
19
19
20
20
21
21
21
22
22
23
23
23
24
24
24
25
25
25

26

-~

o n W >

6.1 Voruntersuchung

6.2 Bewertungsschema

6.3 Werkzeuge oL
6.3.1 Apache Cayenne
6.3.2 DataNucleus
6.3.3 ORMLite
6.3.4 Persist e
6.3.0 Sienao

6.4 Resultat e

Empfehlung

Versionshistorie

Abkiirzungsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis

Quellenverzeichnis

47
48
49
49

49

1. Einleitung Leichtgewichtige Java-OR-Mapping-Werkzeuge

1 Einleitung

In der heutigen Softwareentwicklung sind objektorientierte Programmiersprachen kaum
noch wegzudenken. Auf Sprachkonzepte wie Information Hiding oder Vererbung moch-
ten nur die wenigsten bei der Entwicklung moderner Anwendungen verzichten. Ebenso
sind relationale Datenbanken seit Jahrzehnten die erste Wahl fiir die persistente Da-
tenspeicherung. Das Problem, dass sich objektorientierte Datenstrukturen nicht direkt
in allen Aspekten mit relationalen Datenbanken abbilden lassen, wurde in den 1990er
Jahren als Object-relational Impedance Mismatch [Ors06, Sch10] bekannt. Hierzu existie-
ren verschiedene Losungsansétze, um den konzeptionellen Widerspruch aufzulésen oder
zumindest zu mildern. Ein Ansatz sind die sogenannten objektrelationalen Mapper, um
die es in dieser Fachstudie geht.

1.1 Begriffe

OR-Mapper

Ein objektrelationaler Mapper (,OR-Mapper®) ist nach [Rus08] eine Abstraktionsschicht,
die das Objektmodell einer Anwendung mit einer relationalen Datenbank verbindet. Ein
OR-Mapper ldsst Datenbankzugriffe auf eine objektorientierte Weise zu und kiimmert
sich um die Zuordnung zwischen den Objekten der Anwendung und den Tabellen der
Datenbank. Die OR-~-Zuordnung ist fiir den Entwickler unsichtbar.

Leichtgewichtigkeit

Im Kontext dieser Arbeit ist mit Leichtgewichtigkeit gemeint, dass wenige Abhéngigkei-
ten zu externen Bibliotheken vorhanden sein diirfen.

1.2 Entstehungsgeschichte

2010 entwickelten studentische Hilfskréfte im Auftrag der Abteilung Software Enginee-
ring am Institut fiir Softwaretechnologie (ISTE) die Bibliothek AdoHive, die auf den ers-
ten Blick stark an einen OR-Mapper erinnert. AdoHive iibernimmt zwar einige Aufgaben
eines OR-Mappers, schreibt aber das Datenmodell fest vor, weil die Bibliothek speziell
fiir das Softwarepraktikum (SoPra) im selben Jahr entstanden ist. Die Teilnehmer des
SoPras hatten die Aufgabe, ein Verwaltungssystem fiir die Hilfskréifte am Institutsver-
bund Informatik zu entwickeln und sollten zur Datenverwaltung auf die spezifische API
von AdoHive zuriickgreifen, sodass alle Datenbankzugriffe durch die Bibliothek gekap-
selt werden. Dadurch mussten sich die Studenten nicht in die Konzepte von relationalen
Datenbanken einarbeiten, sondern konnten sich von Beginn an auf die Anwendungslogik
und Benutzeroberfldche ihres Verwaltungssystems konzentrieren.

Als Teilnehmer an diesem Softwarepraktikum entwickelten wir die Software aidGer
[BGP11], die bei der Abnahme als eines der Siegerprojekte gekiirt wurde. Nach einer
Evaluationsphase und der Migration der Daten aus dem vorherigen Verwaltungssystem
ist die Software seitdem erfolgreich beim Kunden im Einsatz. Neue Anforderungen ver-

1 von 51

1.3 Wichtige Anforderungen Leichtgewichtige Java-OR-Mapping-Werkzeuge

langen es nun, den Unterbau von aidGer anzupassen. Da sich AdoHive bei der Weiterent-
wicklung an aidGer als duflerst unflexibel offenbarte und die Wartung der Anwendung
erschwerte, haben wir gemeinsam mit dem Kunden die Entscheidung getroffen, AdoHi-
ve durch einen frei verfiighbaren OR-Mapper in der néchsten, stabilen Version zu ersetzen.

Zur selben Zeit suchte die Cinovo AG mit Sitz in Stuttgart ebenfalls einen OR-Mapper
flir ein neues Software-Projekt. Der gesuchte OR-Mapper soll dabei auf einem Gerét zum
Einsatz kommen, das wenige Ressourcen zur Verfiigung stellt. Durch diese Anforderung
unterscheiden sich die Szenarien der beiden Projekte und kénnen nicht von demselben
Blickwinkel aus begutachtet werden. Daher konzentriert sich diese Fachstudie auf das
Nutzungsszenario der Cinovo AG. Allerdings hoffen wir, dass uns die Erkenntnisse der
Arbeit fiir eine Entscheidungsfindung bei der Wahl eines geeigneten OR-Mappers fiir das
Verwaltungssystem aidGer weiterhelfen.

1.3 Wichtige Anforderungen

Die leistungsschwache Hardware erfordert einen speziellen OR-Mapper. Der Industrie-
partner stellt die folgenden Anforderungen an das gesuchte Werkzeug:

> Der gesuchte OR-Mapper muss in der Programmiersprache Java geschrieben sein.
> Der gesuchte OR-Mapper muss leichtgewichtig sein (s. 1.1).

> Der gesuchte OR-Mapper muss mit der Datenbank umgehen kénnen, die bereits
erfolgreich in anderen Software-Projekten des Unternehmens im Einsatz ist. Kon-
kret handelt es sich um das DBMS PostgreSQL [PT11].

> Der gesuchte OR-Mapper muss aktiv weiterentwickelt werden und stabil laufen.

> Die Lizenz des gesuchten OR-Mappers darf den kommerziellen Einsatz nicht un-
tersagen. FKine Open-Source-Lizenz wird vom Industriepartner bevorzugt.

1.4 Aufbau des Dokumentes

Kapitel 2 geht auf den generellen Ablauf der Fachstudie ein. Es werden die einzelnen Pha-
sen der Studie beschrieben und diese auf einer Zeitachse eingeordnet. Einen Uberblick
tiber die momentan am Markt verfiigharen OR-Mapper liefert Kapitel 3. Das darauffol-
gende Kapitel behandelt das Nutzungsszenario der Cinovo AG und stellt das geforderte
Mengengeriist vor. Die zur Bewertung herangezogenen Kriterien werden anschlieflend
in Kapitel 5 genauer erldutert. Darauthin trifft das sechste Kapitel eine Vorauswahl an
OR-Mappern und definiert ein Bewertungsschema. Das restliche Kapitel zeigt die Ergeb-
nisse der Evaluation, wobei jedes Werkzeug zunéchst einzeln vorgestellt wird. In Kapitel
7 geben wir schlieilich beruhend auf den Erkenntnissen aus der Evaluationsphase eine
Empfehlung fiir die Cinovo AG ab.

2 von 51

2. Ablauf der Fachstudie Leichtgewichtige Java-OR-Mapping-Werkzeuge

2 Ablauf der Fachstudie

Nachfolgend wird der Ablauf dieser Arbeit vorgestellt, die in knapp sechs Monaten vom
01.06.2011 bis 24.11.2011 durchgefiihrt wurde.

2.1 Phasen

Beginn der Fachstudie

Die Fachstudie begann am 1. Juni 2011 mit einem Kick-Off-Meeting in den Geschéfts-
rdumen der Cinovo AG in Stuttgart-Mitte. Nach einer kurzen Vorstellung der Cinovo AG
schilderten uns zwei Vertreter des Unternehmens die momentane Situation und ihr Pro-
blem hinsichtlich der Auswahl eines geeigneten OR-Mappers. Da wir im Vorfeld Analy-
sefragen vorbereitet hatten, konnten wir uns in der anschliefenden Fragerunde ein erstes
Bild iiber die Anforderungen an die von der Cinovo AG angestrebte Werkzeug-Losung
machen.

Projektplan und Recherche

Im Anschluss haben wir aus den Erkenntnissen des Kundengesprichs zum einen den
Ablauf der Fachstudie geplant, zum anderen den Markt nach geeigneten OR-Mappern
untersucht. Nachdem der erste Uberblick verschaffen war, haben wir in einem ersten
Schritt eine Liste der vielversprechenden OR-Mappern erstellt. Diese enthélt zu jedem
Werkzeug relevante Informationen wie beispielsweise dessen Lizenz und fasst Hersteller-
aussagen stichwortartig zusammen.

Analyse der Bewertungskriterien

In einem spéteren Treffen wurden wichtige Bewertungskriterien mit unserem Ansprech-
partner bei der Cinovo AG erortert und festgehalten. Auch wurde die Relevanz der Kri-
terien angesprochen und diese auf einer Ordinalskala eingestuft. Dariiber hinaus wurden
konkrete Anforderungen fiir die Erfiillung des jeweiligen Kriteriums vereinbart. Es stell-
te sich bei der Diskussion heraus, dass einige Kriterien unter allen Umsténden erfiillt
sein miissten. Diese Kriterien wurden deshalb als K.O.-Kriterien eingestuft und bei der
Bewertung als solche behandelt.

Voruntersuchung

In einer Voruntersuchung wurden alle gefundenen Werkzeuge auf die vereinbarten K.O.-
Kriterien hin gepriift und mit Hilfe einer Tabelle diejenigen Werkzeuge bestimmt, die
alle K.O.-Kriterien erfiillen. Durch dieses Vorgehen konnte im weiteren Verlauf der Fokus
auf einen kleinen Teil der Werkzeuge (sog. Shortlist) gelegt werden.

3 von 51

2.2 Zeitlicher Verlauf Leichtgewichtige Java-OR-Mapping-Werkzeuge

Definition eines Bewertungsschemas

Um eine Vergleichsbasis zwischen den Werkzeugen zu schaffen, wurde von uns als Néchs-
tes ein Bewertungsschema festgelegt, das auf einem einfachen, mathematischen Verfah-
ren basiert und jedem untersuchten OR-Mapper eine Punktzahl sowie eine zugehorige
Endnote zuordnet.

Evaluation der Werkzeuge

In der Evaluationsphase haben wir die in der Voruntersuchung ausgewéhlten Werkzeuge
auf alle weiteren Bewertungskriterien iiberpriift und je nach Erfiilllungsgrad des jewei-
ligen Kriteriums bewertet bzw. auf der Ordinalskala eingestuft. Daraus lief sich eine
Gesamtpunktzahl und schliellich eine Endnote fiir jedes Werkzeug berechnen.

Erarbeitung der Empfehlung

Da die Endnoten der OR-Mapper auf Basis eines mathematischen Verfahrens entstan-
den sind, wurde im letzten Schritt die Plausibilitdt der Ergebnisse tiberpriift. Dabei
wurden Vor- und Nachteile der einzelnen OR-Mapper unter Beriicksichtigung des Nut-
zungsszenarios des Industriepartners abgewéigt. Auch der subjektive Eindruck floss bei
der Plausibilitdtsiiberpriifung mit ein.

Abgabe und Ende der Fachstudie

Im November wurde die Fachstudie mit der Abgabe dieser Ausarbeitung und der Pra-
sentation der Ergebnisse in einem Abschlussvortrag beendet.

2.2 Zeitlicher Verlauf

Das nachfolgende Gantt-Diagramm zeigt den zeitlichen Verlauf der zuvor beschriebenen
Phasen und die erreichten Meilensteine.

Muni 2011 Juli 2011 PAugust 2011 September 2011 Oktober 2011 Movernber 2011

project

\J]

22 |23 |24 |25 ‘25 ‘27 125 ‘29 ‘30 Bl B2 ‘33 |34 |35 ‘35 37 |3E! ‘39 ‘AD 41 |112 ‘43 |1111 |115 ‘AE ‘47

Kick-Off Meeting
Recherche [1
Warktiberblick
Kriterienanalyse | E—
Kriterienkatalog
Erstellung Shorlist —
Shortlist
Defiition Bewertungsschema |]
Bewertungsschema
Vorbereitung Vorirag []
Zwischenvortrag
Bewertung Werkzeuge []

Erarbeitung Empfehlung | —
Erstellung Schritliche Ausarbeitung |
Vorbereitung Abschlussvortrag —
Abschlussvortrag
Korrekiur Schrifiliche Ausarbeitung [
Schrifliche Ausarbeitung

Abbildung 1: Verlauf der Fachstudie

4 von 51

3. Marktiiberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

3 Marktuberblick

Dieses Kapitel stellt einen Uberblick iiber die aktuell verfiigharen OR-Mapping-Werkzeuge
auf dem Markt dar. Jeder OR-Mapper wird stichwortartig vorgestellt. Alle Aussagen
stammen von den Herstellern und kénnen darum mehr versprechen, als der OR-Mapper
tatséchlich leistet.

Active Objects
Untersuchte Version

> Ausgelegt auf Einfachheit und leichte Bedienung 0.8.2 (22.04.08)

> Performanz ist kein priméres Ziel Lizenz

> Leichte Integration in existierendes Produkt Apache 2.0
Webseite

> Einsatz des bestehenden Datenbankschemas mdglich
activeobjects.java.net
> Automatische Generierung des Datenbankschemas

> Unterstiitzt Lazy-Loading und Caching-Mechanismen

Active JDBC
Untersuchte Version
> Implementierung des Active-Record-Entwurfsmusters 1.2 (10.08.11)
> Inspiriert von ActiveRecord aus Ruby on Rails Lizenz
> Paradigma: Konvention vor Konfiguration Apache 2.0

> Leichte Bedienung und Leichtgewichtigkeit Webseite

code.google.com/p/jdbc
> Reduzierung des Codes auf das Minimum

> Kenntnisse in Datenbanksprache SQL erforder-
lich

5 von 51

http://activeobjects.java.net
http://code.google.com/p/activejdbc/

3. Marktiiberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Ammentos

> Auf Leichtgewichtigkeit und Einfachheit ausgelegt
> Verwendung von JDK5-Annotationen

> Keine Installation und Konfiguration erforderlich
> Keine Abhéngigkeiten (Stand-Alone-Library)

> Hersteller bietet eine Support-Lizenz an

Apache Cayenne

> Portabilitdt zwischen Datenbanken mit JDBC-
Schnittstelle

> SQL-Kenntnisse sind nicht erforderlich
> Kinfacher Code zur Validierung der Datenmodelle

> Lazy-Loading und Caching zur Performanzsteige-
rung

> GUI-Tool zur Modellierung des Datenbanksche-
mas

Apache JDO

> Implementierung des JDO-Standards
> Transparente Persistenz der POJOs
> Unterstiitzt nicht-relationale Datenbanken

> Leichte Bedienung

Untersuchte Version
1.3.7 (24.11.08)

Lizenz

GPL
Webseite

ammentos.org

CAYENNE
- .meﬁ

Untersuchte Version
3.0.2 (21.06.11)

Lizenz

Apache 2.0
‘Webseite

cayenne.apache.org

JDO

Tl Data Osiects

Untersuchte Version
3.0 (08.04.10)

Lizenz
Apache 2.0

Webseite
db.apache.org/jdo

6 von 51

http://www.ammentos.org
http://cayenne.apache.org
http://db.apache.org/jdo

3. Marktiiberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Apache ObjectRelationalBridge

> Unterstiitzung verschiedener Persistenz-APIs
> KEinfache Bedienung und Leichtgewichtigkeit
> Einfache Integration in bestehenden Code

> Transparente Persistenz: Freie Vererbungshierarchie

v

OR-Mapping mittels XML-Repository

> Mehrere Datenbanken einsetzbar

Apache OpenJPA

> Implementierung des JPA-Standards

> Verwendung der Datenbanksprache JPQL
> Konfiguration iiber XML-Dateien

> Unterstiitzt Datenbanktransaktionen

> Frither Apache Kodo genannt

Apache Torque

> Zugriff auf User-Klassen {iber XML-Schemata an-
statt Reflection

> Generierung der Modelle aus bestehender Datenbank
moglich

> Verbirgt Implementierungsdetails der Datenbanken

> Urspriinglich Teil des Turbine-Frameworks

object/relational bridge
Untersuchte Version
1.0.4 (01.01.06)

Lizenz
Apache 2.0

Webseite
db.apache.org/ojb

(@®)penJPA

Untersuchte Version

2.1.1 (27.07.11)

Lizenz

Apache 2.0
Webseite

openjpa.apache.org

: .

Untersuchte Version

3.3.1 (18.02.11)

Lizenz

Apache 2.0

Webseite
db.apache.org/torque

7 von 51

http://db.apache.org/ojb
http://openjpa.apache.org
http://db.apache.org/torque

3. Marktiiberblick

Leichtgewichtige Java-OR-Mapping-Werkzeuge

Athena Framework

Bietet Unterstiitzung fiir Cloud-Applikationen an
Auf hohe Usability ausgelegt

Verwendung der Datenbanksprache EJBQL
Konfiguration iiber XML-Dateien

Unterstiitzt Multitenancy (Mandantenfiahigkeit)

Verfiigt iiber eine GUI zur Anderung des Datenbank-
schemas

Stellt Hilfsmittel zur Datenmigration bereit

Kostenpflichtiger Support erhéltlich

Carbonado

Erweiterbar und hochperformant
Verwendung von Java-Annotationen

Unterstiitzung von nicht-SQL-konformen Datenban-
ken

Definition der Datenmodelle iiber Schnittstellen oder
abstrakte Klassen

Keine externe Konfigurationsdateien
Einsatz eines Repositories (Datenbank-Gateway)
Gebrauch des Transaktionskonzepts

Urspriinglich von Amazon entwickelt

&; athena framework

Untersuchte Version
2.0.0 (20.03.11)

Lizenz

LGPL
‘Webseite

athenasource.org

¢ Carbonado

Untersuchte Version
1.2.2 (10.12.10)

Lizenz

Apache 2.0
‘Webseite

carbonado.sf.net

8 von 51

http://athenasource.org/
http://carbonado.sf.net

3. Marktiiberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Castor
Untersuchte Version

> Verwendung einer XML-basierenden Mapping-Datei 1.3.2 (29.03.11)

> Code-Generierung anhand existierender XML-Schemen Lizenz

> Implementierung eines Daten-Caches Apache 2.0
> Verwendung der Datenbanksprache OQL Webseite
castor.org

> Unterstiitzt Datenbanktransaktionen

v

Integration in andere Frameworks mdoglich

DataNucleus

@ DataNucleus

> Implementiert offene Persistenzstandards wie JDO

und JPA
Untersuchte Version

> Features sind einzelne Plug-Ins 3.0.0 (01.08.11)

> Datenbankabfragen mit Hilfe verschiedener Abfrage-

, Lizenz
sprachen
P Apache 2.0

> Unterstiitzt nicht-relationale Datenbanken Webseite

> Basiert auf OSGi-Technologie datanucleus.org
Dozer

> Java Bean nach Java-Bean-Mapper w

> Bereitstellung eines Eclipse-Plug-Ins Untersuchte Version

> Konfiguration iiber Property-Datei 5.3.2 (15.02.11)
> Verwendung von XML-Dateien sowie Annotatio- Lizenz
nen Apache 2.0
Webseite

dozer.sf.net

9 von 51

http://www.castor.org
http://www.datanucleus.org
http://dozer.sf.net

3. Marktiiberblick

Leichtgewichtige Java-OR-Mapping-Werkzeuge

Ebean

>

>

>

>

Einfachere API als JPA-Standard
Konfiguration iiber Property-Datei
Verwendung von Java-Annotationen

Kombination der JPA-Merkmale und ,Relational®-
Merkmale (z.B. aus IBatis)

EclipseLink

>

>

Referenzimplementierung des JPA-Standards

Ausgelegt auf Vollstandigkeit, Verstindlichkeit und
Vielseitigkeit

Unterstiitzung von einigen Persistenzstandards (z.B.
JPA, JAXB)

Konfiguration iiber XML-Dateien

Automatische Generierung des Datenbankschemas
Verwendung von Caching-Mechanismen
Interaktion mit verschiedenen Datensystemen
Unterstiitzt Lazy-Loading

Migration von anderen OR-Mapping-Werkzeugen

Enterprise Objects Framework (EOF)

>

>

v

Bestandteil von WebObjects (Applikationsserver)
GUI-Tool zum OR-Mapping

Benutzung vorhandener Datenbankschemas
Existenz diverser Open-Source-Implementierungen

Vertrieb durch Apple

Untersuchte Version
2.7.3 (23.03.11)

Lizenz

LGPL
‘Webseite

avaje.org

eclipse)link

Untersuchte Version
2.2.1 (29.07.11)
Lizenz

Eclipse Public License
Webseite

eclipse.org/eclipselink

Untersuchte Version
5.2.3 (01.12.08)

Lizenz

Proprietar

Webseite

apple.com/webobjects

10 von 51

http://avaje.org
http://www.eclipse.org/eclipselink
http://www.apple.com/webobjects

3. Marktiiberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Floggy
> Fiir J2ME-/MIDP-Anwendungen entwickelt
> Fokus auf Performanz gelegt
> Leichtgewichtig (Entwicklung fiir mobile Geriite)
> Definition der Datenmodelle iiber Schnittstellen
> Unterstiitzt Lazy-Loading
> Stellt Hilfsmittel zur Datenmigration bereit

Ubersichtliche Dokumentation

v

Hibernate

> Implementierung des JPA-Standards

> Integration in Applikationsserver und Servlet-
Engines

> Abfragesprache: Hibernate Query Language (HQL)
> OR-Mapping mittels XML-Datei oder Annotationen
> Unterstiitzung von Vererbungsbeziechungen

> Kompatibilitdt mit verschiedenen Datenbanken

> Kinsatz in mehr als 10.000 Java-Projekten

Java Ultra-Lite Persistence

> Leichtgewichtig (kleine Dateigrofie, Stand-Alone)
> Unterstiitzung von Vererbung

> Unterstiitzt Lazy-Loading und Caching-Mechanismen

% FLOGGY

Untersuchte Version
1.4.0 (09.02.11)

Lizenz
Apache 2.0

Webseite
floggy.sf.net

#,HIBER

Untersuchte Version
3.6.6 (21.07.11)

Lizenz
LGPL

Webseite

hibernate.org

Untersuchte Version
3.0.1 (09.06.11)

Lizenz

GPL

‘Webseite
julp.sf.net

11 von 51

http://floggy.sf.net
http://www.hibernate.org
http://julp.sf.net

3. Marktiiberblick

Leichtgewichtige Java-OR-Mapping-Werkzeuge

JPMapper

> Fokus auf Schnelligkeit und Flexibilitédt gelegt
> Kinfache Bedienung

> SQL-Statements sind nicht erforderlich

> Implementiert das Facade-Entwurfsmuster

> Konfiguration tiber Property-Dateien

Oracle TopLink

> Implementierung des JPA-Standards 1.0 und 2.0

> Fokus auf hohe Performanz, Skalierbarkeit und Fle-
xibilitat gelegt

> Verwendet Komponenten von EclipseLink

ORMLite

> Speziell als leichtgewichtiges Werkzeug entwickelt
> Unterstiitzt die Android Mobile Plattform

> Konfiguration der Klassen mittels Java-Annotationen

v

Flexibler Query-Builder wird bereitgestellt
> Unterstiitzt Datenbanktransaktionen

> Generierung von Datenbanktabellen

PMapper

Untersuchte Version
0.7.1Beta (28.12.10)

Lizenz
LGPL

Webseite
jpmapper.sf.net

ORACLE’
TOPLINK

Untersuchte Version
11.1.1.4.0 (01.11)

Lizenz

Oracle License
Webseite
Untlereuthte/ Velsibn
4.25 (22.08.11)

Lizenz

Eigene OS-Lizenz
Webseite

ormlite.com

12 von 51

http://jpmapper.sf.net
http://www.oracle.com/technology/products/ias/toplink
http://ormlite.com

3. Marktiiberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Persist
Untersuchte Version
> Stellt minimale Mapping-Funktionalitédt bereit 1.1.1 (03.02.11)
> Auf hohe Performanz, einfache Benutzbarkeit und Lizenz
Integration ausgelegt BSD
> Keine Konfigurationsdateien Webseite
> Definition des Datenmodells iiber Annotationen github.com /rufiao/persist

> Verwendung der Datenbanksprache SQL

v

Benotigt nahezu kein explizites Mapping

Prevayler
Untersuchte Version

> Zeichnet sich durch Einfachheit, Schnelligkeit und 2.3 (08.06.06)
Fehlertoleranz aus

Lizenz
> Objekte werden im Arbeitsspeicher gehalten BSD
> Dump auf ein nichtfliichtiges Medium in regelmafi- Webseite

gen Absténden
prevayler.org

QuickDB

> Ausgelegt auf Einfachheit %C@%

> Wenig Konfigurationsaufwand Untersuchte Version

> Unterstiitzung von Vererbungshierarchien der Da- 1.3-Beta2 (03.07.10)

tenmodelle .
Lizenz

> Generierung von Datenbanktabellen LGPL

Webseite
code.google.com/quickdb

13 von 51

https://github.com/rufiao/persist
http://www.prevayler.org
http://code.google.com/p/quickdb

3. Marktiiberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Siena

v

Ausgelegt auf Leichtgewichtigkeit

> Kinfache Bedienung

> Keine externen Abhéngigkeiten

> Verwendung von Annotationen

> Unterstiitzung von nicht-relationalen Datenbanken
> Implementierung des Active-Record-Entwurfsmusters

> Als Modul im Play!-Framework verfiighar

SimpleORM

> Keine externen Abhéngigkeiten

> Kinfache Konfiguration

v

Kein Gebrauch von Reflection, XML und Annotatio-
nen

> Vermeidung exotischer Technologien wie Byte Code
Generation

v

Ausgestattet mit einer einfachen Objektstruktur und
Architektur

Speedo

> Open-Source-Implementierung des JDO-Standards
1.0.1

> Caching von persistenten Objekten
> Generierung des Datenbankschemas

> Abhéngigkeiten zu einigen OW2-Frameworks

Untersuchte Version
1.0.0-b5 (24.06.11)

Lizenz

Apache 2.0
‘Webseite

sienaproject.com

@0

Untersuchte Version
3.11 (22.08.09)

Lizenz
Apache 1.1

‘Webseite

simpleorm.org

S\}‘Speedo

Untersuchte Version
1.4.5 (22.05.06)

Lizenz

LGPL
‘Webseite

speedo.ow2.org

14 von 51

http://www.sienaproject.com
http://www.simpleorm.org
http://speedo.ow2.org

4. Nutzungsszenario Leichtgewichtige Java-OR-Mapping-Werkzeuge

4 Nutzungsszenario

Bei der Cinovo AG [Cinll] handelt es sich um ein Unternehmen, das in erster Linie
Software fiir Borsenhéndler entwickelt und vertreibt. Diese Software basiert auf einem
Java-Applikationsserver und nutzt fiir die Verwaltung der Daten die vorhandene OR-
Mapper-Bibliothek Hibernate. Da fiir den Betrieb der Anwendung leistungsstarke Ser-
ver bzw. Workstations verwendet werden, wurde weniger Wert auf Leichtgewichtigkeit
gelegt, sondern mehr auf die Funktionalitit und die Moglichkeit, komplexe Strukturen
darzustellen, geachtet.

Um die Kompetenzen des Unternehmens auszubauen, wird ein neuer Geschéftsbereich
aufgebaut. Ziel des Geschéftsbereichs ist es, Dienstleistungen und Produkte fiir die Au-
tomobilindustrie zu vertreiben. Als erstes Projekt wird ein sogenannter Car-PC (s. Ab-
bildung 2) entwickelt. Der Car-PC wird iiber einen Anschluss mit dem Auto verbunden
und zeichnet wihrend der gesamten Betriebszeit Daten auf. Nach dem Abschluss einer
Fahrt konnen diese Daten auf einem anderen Rechner ausgewertet werden, um so Auf-
schluss iiber das Verhalten des Autos im Betrieb zu erhalten.

Bei den Daten handelt es sich um Messdaten, die das Auto zur Verfiigung stellt und
die mehrmals pro Sekunde in der Datenbank gespeichert werden sollen sowie um GPS-
Koordinaten, die einmal pro Sekunde eingetragen werden. Da das Produkt auf dem
Car-PC nur Daten in eine Datenbank schreibt und keine ausliest, hat dies starke Aus-
wirkungen auf die Bewertungskriterien.

Zudem verfiligt der verwendete Car-PC nur iiber eine eingeschrinkte Leistungsfihig-
keit. Daher eignet sich hier eine schwergewichtige und komplexe Losung wie beim ersten
Produkt der Cinovo AG nicht. Stattdessen wird eine leichtgewichtige Losung bevorzugt,
die mit den vorhandenen Ressourcen sparsam umgeht. Diese Einschrinkung hat aber
keine Auswirkungen auf die Software, die spéter zur Auswertung verwendet werden soll.

Da bei allen bisherigen Produkten der Cinovo AG das freie Datenbankmanagementsys-
tem PostgreSQL zum Einsatz kommt und das Unternehmen mit diesem DBMS bislang
gute Erfahrungen gemacht hat, mochte der Industriepartner auch bei der Entwicklung
der Software fiir den Car-PC auf dieses DBMS setzen. Darum muss der gesuchte OR-
Mapper in der Lage sein, mit PostgreSQL ohne Probleme umgehen zu kénnen.

15 von 51

4.1 Mengengeriist Leichtgewichtige Java-OR-Mapping-Werkzeuge

Abbildung 2: Abbild eines Car-PCs

4.1 Mengengeriist

Bei der Anwendung fiir den Car-PC kommen drei verschiedene Modelle zum Einsatz,
um die zu messenden Daten des Autos abzuspeichern:

> Ein Device ist eine Komponente des Autos, die Daten an die Anwendung sendet.
> Ein Measurement ist ein solches Datenpaket.

> Kin PositionFiz speichert Position, Geschwindigkeit und &hnliche Daten zu einem
bestimmten Zeitpunkt ab.

In einem Auto gibt es etwa 40 Device-Objekte, die fiir die Anwendung relevant sind.
Sie liefern pro Sekunde zwischen 1 und 5 Datenpakete, die in Measurement-Objekten
abgespeichert werden. Zudem wird einmal pro Sekunde mit Hilfe eines GPS-Adapters
ein PositionFiz-Objekt erstellt.

16 von 51

5. Bewertungskriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5 Bewertungskriterien

Dieses Kapitel stellt die Kriterien vor, die mit dem Industriepartner abgesprochen wur-
den. Die Skala eines Kriteriums dient dazu, den Vergleich zwischen den verschiedenen
Werkzeugen zu erméglichen. Ein Werkzeug wird auf einer Stufe der Skala eingeordnet,
wenn es die Anforderung des Industriepartners fiir diese Stufe erfiillt.

5.1 K.O.-Kriterien

Das gesuchte Werkzeug muss wichtige Anforderungen unbedingt erfiillen. Diese spiegeln
sich in den nachfolgenden K.O.-Kriterien wieder.

5.1.1 Lizenzierung

Beschreibung

Dieses K.O.-Kriterium beschéftigt sich damit, unter welcher Lizenz das zu bewertende
Werkzeug zur Verfiigung gestellt wurde.

Skala
®/ 6
Anforderungen des Industriepartners
> Das Werkzeug wurde unter einer Open-Source-Lizenz verotffentlicht.

> Die Lizenz erlaubt eine kommerzielle Nutzung.

> Die Lizenz enthilt keine starke Copyleft-Klausel.

Beispiele

> Apache 2.0 von der Apache Software Foundation

> LGPL von der Free Software Foundation

5.1.2 Leichtgewichtigkeit/Abhangigkeiten

Beschreibung

In diesem K.O.-Kriterium geht es darum, dass das zu bewertende Werkzeug leichtge-
wichtig sein muss (s. 1.1).

Skala
® /O
Anforderung des Industriepartners

> Es diirfen maximal 5 externe Bibliotheken vom Werkzeug eingebunden werden.
Der JDBC-Treiber wird hierbei nicht beriicksichtigt.

17 von 51

5.1 K.O.-Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.1.3 Status der Entwicklung

Beschreibung

Alle Werkzeuge, die aktiv weiterentwickelt werden, sich offiziell nicht mehr in der Test-
phase befinden und bereits seit ldngerer Zeit auf dem Markt sind, gentigen diesem K.O.-
Kriterium.

Skala
®/0
Anforderungen des Industriepartners

> Das letzte stabile Release des Werkzeugs liegt nicht langer als 9 Monate zuriick.

> Die letzte Entwicklungsaktivitéit (HEAD-Revision im Repository) ist nicht linger
als 4 Monate her.

> Ks ist ersichtlich, dass die Weiterentwicklung nicht eingestellt wurde bzw. in kur-
zer Zeit eingestellt wird.

> Das Werkzeug befindet sich nach Herstellerangaben nicht mehr in der Testphase.

> Der Startpunkt der Entwicklung (erste Revision im Repository) ist ldnger als 12
Monate her.

5.1.4 Unterstiitzung des Datenbankmanagementsystems

Beschreibung

Das zu bewertende Werkzeug muss nativ das zu verwendende Datenbankmanagement-
system (DBMS) unterstiitzen.

Skala
®/6e
Anforderungen des Industriepartners

> Das Werkzeug bietet nach Herstellerangaben Unterstiitzung fiir PostgreSQL an.

> Die Verbindung zu PostgreSQL wurde vom Hersteller getestet und ist von uns
als stabil einzustufen.

18 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.2 Weitere relevante Kriterien

Zur Beurteilung der Werkzeuge tragen mafigeblich weitere Kriterien bei. Diese werden
absteigend nach ihrer Relevanz in diesem Abschnitt charakterisiert.

5.2.1 Performanz der INSERT-Abfragen

Beschreibung

Das Werkzeug muss Daten performant in die Datenbank schreiben kénnen, sodass die
maximale Last des Mengengeriists (s. 4.1) verarbeitet werden kann.

Fiir den Lasttest haben wir ein Skript entwickelt, das einen zehnminiitigen Testlauf auf
einem Car-PC durchfiihrt. Das Skript ermittelt zunéichst in einem Brute-Force-Verfahren
die maximale Anzahl der INSERT-Befehle und fiihrt anschlieBend basierend auf dem
Mengengeriist ein Testlauf durch, der die realistischen Bedingungen besser simuliert.
Diese Simulation bezieht sich auf die maximale Last: Alle 200 Millisekunden miissen 40
Measurement-Objekte sowie jede Sekunde ein PositionFiz-Objekt gespeichert werden.
Hochgerechnet miissen demnach 120.000 Measurement-Instanzen und 600 PositionFiz-
Objekte in 10 Minuten persistiert werden. Falls das Brute-Force-Verfahren deutlich mehr
Datensiitze in dieser Zeit speichert, als es das Mengengeriist vorschreibt, kann sich das
Werkzeug wihrend der Durchfithrung des Lasttests auch im Leerlauf befinden.

Skala
®/06 /6
Anforderungen des Industriepartners

® Das Werkzeug verbringt wihrend der Durchfithrung des Performanztests 20 oder
mehr Prozent der Zeit im Leerlauf und kann miihelos mit dem Mengengeriist
umgehen. Dies zeigt sich auch daran, dass im Brute-Force-Verfahren deutlich
mehr Objekte gespeichert werden konnen, als es das Mengengeriist fordert.

® Das Werkzeug arbeitet das Mengengeriist in der vorgegebenen Zeit zuverlissig
ab, d.h. alle zu speichernden Datensétze wurden persistiert und es wurden nur
vereinzelnd Durchldufe nicht in der vorgeschriebenen Zeit erledigt.

&) Das Werkzeug kann mit der maximalen Last nicht umgehen. Dies zeigt sich darin,
dass mehr als 10 Prozent der Durchldufe nicht in dem vorgegebenen Zeitintervall
(200ms) erledigt werden konnten.

5.2.2 Dokumentation/Support

Beschreibung

Es ist gefordert, dass die Dokumentation des Werkzeugs zumindest aus einem ,,Getting
Started“-Dokument besteht, damit sich der Benutzer in kurzer Zeit einen Uberblick iiber
den Funktionsumfang des Werkzeugs machen kann und sich nicht langwierig durch eine

19 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

API-Dokumentation oder im schlimmsten Fall durch den Quellcode selbst kimpfen muss.
Support durch den Hersteller muss nicht gewéhrleistet sein.

Skala
®/0/6
Anforderungen des Industriepartners

<) Es existiert eine ausfiihrliche Dokumentation, die mafigeblich iiber ein ,,Getting
Started“-Dokument hinausgeht.

® Der Hersteller stellt mindestens ein fiir die Einarbeitung hilfreiches ,,Getting
Started“-Dokument bereit.

&) In allen anderen Féllen.

5.2.3 Simplizitat des Abspeicherns

Beschreibung

Das Abspeichern der Modelle sollte moglichst einfach gestaltet sein. Darunter fallt unter
anderem, ob mehr als ein Funktionsaufruf benétigt wird, um das Modell zu speichern
bzw. mehr als ein Persistenzmanager verwendet wird. Ein Peristenzmanager ist eine
Komponente, die persistente Objekte verwaltet und Datenbankoperationen durchfiihrt.

Skala
®/0/6
Anforderungen des Industriepartners

&) Falls ein Persistenzmanager verwendet wird, so sollte die Speicherung mit einem
einzigen Manager moglich sein. Wird ein solcher nicht verwendet, muss das Ab-
speichern in einem selbsterkldrenden Aufruf erfolgen.

® Das Abspeichern ist mit Hilfe eines einzigen Aufrufes moglich.

) Der Aufruf zum Abspeichern besteht aus mehreren Operationen.

5.2.4 Generierung des Datenbankschemas

Beschreibung

Aus der Definition der Modelle sollte sich das Datenbankschema fiir das zu verwendende
DBMS generieren lassen.

Skala
® /O

20 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

Anforderungen des Industriepartners

> Das Datenbankschema kann auf Basis der Modelldefinitionen auf der Konsole
oder in einer eigenen Datei im SQL-Format ausgegeben werden.

5.2.5 Anlegen von Datenbanken

Beschreibung

Falls vor dem eigentlichen Start des Produkts zunéchst eine neue Datenbank mitsamt
des Datenbankschemas erstellt werden muss, sollte das Aufsetzen der Grundstruktur der
Datenbank vom Werkzeug selbst automatisch durchgefiihrt werden.

Skala
® /6
Anforderungen des Industriepartners

> Das Werkzeug kann beim Start mit einer leeren Datenbank alle Tabellen selbst
anlegen.

5.2.6 Einarbeitungsaufwand

Beschreibung

Es wird verlangt, dass das Werkzeug keinen langwierigen Einarbeitungsaufwand erfor-
dert. Der Einarbeitungsaufwand wird dadurch gemessen, wie lange ein Entwickler be-
notigt, um mit dem Werkzeug ohne groflere Probleme umgehen zu kénnen. Hierbei ist
unser subjektive Eindruck, der beim Implementieren eines Beispieles entsteht, ausschlag-
gebend.

Skala

®/0/6

Anforderungen des Industriepartners
<) Die Einarbeitung entspricht der Komplexitidt des Problems.
O] Die Einarbeitung ist mit kleineren Problemen verbunden.

e Wihrend der Einarbeitung kommt es zu gréferen Problemen.

5.2.7 Form der Modelldefinition

Beschreibung

Es sollte moglich sein, die Datenbankmodelle im Java-Code in Form von Annotationen
zu definieren.

Skala
®/06/6

21 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

Anforderungen des Industriepartners

b Die Datenbankmodelle konnen iiber Java-Annotationen beschrieben werden.

e Die Datenbankmodelle kénnen lediglich iiber XML-Dateien oder vergleichbaren
Konfigurationsmoglichkeiten spezifiziert werden.

5.2.8 Community
Beschreibung

Spezifische Fragen beziiglich des Werkzeugs sollen von einer Internet-Community beant-
wortbar sein. Als Teil der Community gelten hierbei Foren, Mailing-Listen und Chats
wie z.B. ein IRC-Kanal oder direkte Kontaktmdoglichkeiten zu den Entwicklern.

Skala
®/06/6

Anforderungen des Industriepartners

&) Die Community ist sehr aktiv und beantwortet Fragen schnell und zuverléssig.

® Es existiert eine Community, die Fragen iiber das Werkzeug sporadisch beant-
wortet.

e Fiir das Werkzeug ist keine aktive Community vorhanden.

5.2.9 Vielfdltiger Einsatz

Beschreibung

Da das Werkzeug unter Umsténden auch nach dem Ablauf der Fachstudie fiir andere
Softwareprojekte eingesetzt werden soll, ist es von entscheidendem Vorteil, wenn das
Werkzeug nicht zu sehr auf das zu entwickelnde Produkt zugeschnitten ist.

Skala

®/0/6

Anforderungen des Industriepartners
&) Das Werkzeug ist modular aufgebaut und demnach erweiterbar.
© Es werden SELECT-Befehle sowie weitere DBMS unterstiitzt.

o In allen anderen Féllen.

22 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.2.10 Syntax von Abfragen

Beschreibung

Der Syntax von Datenbankabfragen sollte nicht ausschliefilich von SQL oder einer ande-
ren vergleichbaren Datenbanksprache vorgegeben werden. Das Werkzeug soll eine Mog-
lichkeit vorsehen, die Syntax von Abfragen auch oder nur tiber Klassen und deren Funk-
tionen bilden zu kénnen.

Skala
® /O
Anforderungen des Industriepartners

> Es werden zur Erstellung von Abfragen Funktionen bzw. Klassen zur Verfiigung
gestellt, sodass der Nutzer kein SQL oder dhnliche Datenbanksprachen verwenden
muss.

5.2.11 Umgang mit INSERT- und UPDATE-Abfragen

Beschreibung

Es soll vom zu bewertenden Werkzeug keine Unterscheidung zwischen dem Speichern
eines neuen Datenbankeintrags mittels einer INSERT-Abfrage und dem Andern eines al-
ten Datenbankeintrags mittels einer UPDATE-Abfrage im Java-Programmcode gemacht
werden.

Skala
®/0
Anforderungen des Industriepartners

> Zum Einfiigen und Andern von Datenbankeintrigen wird derselbe Befehl verwen-
det.

5.2.12 Vererbungsstrukturen zwischen Datenmodellen

Beschreibung

Das zu bewertende Werkzeug soll in der Lage sein, mit Vererbungsstrukturen zwischen
Datenmodellen umzugehen.

Skala
®/6
Anforderungen des Industriepartners

> Kin konzipiertes Codebeispiel, bei dem ein Datenmodell von einem anderen erbt,
ldsst sich mit Hilfe des Werkzeugs auf die relationale Datenbank abbilden.

23 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.2.13 Transaktionen

Beschreibung

Die Sicherstellung der Datenintegritéit durch Transaktionen ist ein Feature heutiger Da-
tenbanken und sollte vom Werkzeug unterstiitzt werden.

Skala
®/0/6

Anforderungen des Industriepartners

&) Transaktionen sind mdglich, miissen jedoch nicht genutzt werden.
O] Transaktionen sind moglich und miissen genutzt werden.
o Transaktionen werden nicht unterstiitzt.

5.2.14 Antwort bei Fehlschldagen

Beschreibung

Falls es beim Speichern eines Datensatzes zu einem Fehler kommt, sollte vom Werkzeug
anstelle einer Exception ein Boolean-Wert zuriickgeliefert werden.

Skala

®/0/6

Anforderungen des Industriepartners
S5 Das Riickgabeverhalten beim Auftreten eines Fehlers ist einstellbar.
® Ein Riickgabewert meldet fehlerhafte Datenbankzugriffe.

) Fehler bei Datenbankzugriffen werden dem Aufrufer mittels Exceptions mitge-
teilt.

5.2.15 Entity-Manager

Beschreibung

Das Werkzeug soll nicht zwangsweise fordern, jedes Datenmodell von einer Basisklasse
ableiten zu miissen.

Skala
®/6o
Anforderungen des Industriepartners

> Es kann ein Entity-Manager verwendet werden, um selbst noch Ableitungen im
Datenmodell einsetzen zu konnen.

24 von 51

5.3 Irrelevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.2.16 Unterstiitzung bei Schemamigration

Beschreibung

Bei Anderungen im Datenmodell ist eine Unterstiitzung seitens des Werkzeugs bei der
Migration des bestehenden Datenbankschemas hilfreich.

Skala
® /O
Anforderungen des Industriepartners

> Das Werkzeug unterstiitzt den Entwickler bei der Schemamigration mit Hilfe
einer technischen Vorrichtung.

5.2.17 Unterstiitzung bei Datenmigration

Beschreibung

FEine Unterstiitzung seitens des zu bewertenden Werkzeugs bei der Migration von Daten
auf ein neues Datenbankschema ist ein hilfreiches Feature, das das Werkzeug anbieten
sollte.

Skala
®/6
Anforderungen des Industriepartners

> Das Werkzeug unterstiitzt den Entwickler bei der Datenmigration mit Hilfe einer
technischen Vorrichtung.
5.3 Irrelevante Kriterien

FEinige von uns vorgeschlagenen Kriterien spielten fiir den Industriepartner keine Rolle.
Diese irrelevanten Kriterien sind der Vollstéindigkeit halber hier aufgelistet.

> Visuelle Tools: GUI-Tools, die Hilfe beim Erstellen des Datenbankschemas leis-
ten, sind nicht von Bedeutung, da das Schema iiber die Datenmodelle definiert
wird.

> Extraktion des Schemas: Die automatische Erstellung von Modellen aus einem
existierenden Datenbankschema ist nicht erforderlich.

> Validierung: Die Validierung der Daten eines Modells ist nicht notwendig.

> Lazy-Loading: Das dynamische Nachladen von Daten beziehungsweise Verkniip-
fungen ist nicht gefordert.

> Caching: Da Daten direkt in die Datenbank gespeichert werden sollen, um Da-
tenverluste zu vermeiden, wird kein Caching bené&tigt.

25 von 51

6. Evaluation Leichtgewichtige Java-OR-Mapping-Werkzeuge

6 Evaluation

6.1 Voruntersuchung

Vor der eigentlichen Evaluationsphase fand eine Voruntersuchung statt, in der diejenigen
Werkzeuge aussortiert wurden, die von vorneherein nicht den Wiinschen des Industrie-
partners entsprachen. Die gekiirzte Liste (Shortlist) enthilt darum nur noch Werkzeuge,
die alle K.O.-Kriterien erfiillen.

Die Vorauswahl geschah mit Hilfe einer Matrix (Tabelle 1 auf der nichsten Seite).
Sie stellt dar, welche K.O.-Kriterien von den Werkzeugen erfiillt wurden. Bei einigen
Werkzeugen mussten K.O.-Kriterien nicht ndher untersucht werden, da bereits andere
K.O.-Kriterien vom Werkzeug nicht erfiillt wurden.

Erkldrung der Legende

Erfullt (@) Alle Anforderungen des Kriteriums sind erfiillt.

Nicht erfiillt (©) Mindestens eine Anforderung des Kriteriums ist nicht
erfiillt.

Nicht tiberpriift (?) Das Kriterium wurde im Rahmen der Fachstudie nicht
iiberpriift.

Erklarung der Kiirzel

LIZ Lizenz des Werkzeugs

DEP Anzahl der externen Abhéingigkeiten

REL Letztes stabiles Release

ACT Letzte Entwicklungsaktivitét

TES Werkzeug in Testphase

STA Startpunkt des Projekts

DBMS Unterstiitzung des Datenbankmanagementsystems

26 von 51

6.1

Voruntersuchung

Leichtgewichtige Java-OR-Mapping-Werkzeuge

Name

=
—
N

DEP

Status der Entwicklung

REL

ACT

TES

STA

DBMS

Active Objects

S)

?

Active JDBC

S

S

S)

S

Ammentos

-~

?

?

-~

Apache Cayenne

Apache JDO

Apache ORB

~ | DD

~ | DD

~ O | D

Apache OpenJPA

Apache Torque

0=8) @

Athena

Carbonado

Castor

DataNucleus

Dozer

Ebean

EclipseLink

EOF

~ D D D D D D D D D D D DD D|D

~ O |D | DD O DD

~| DD | D DD D

> D DD D D DD

|| DD DD D

AR EORIONECRISSREON)

Floggy

Hibernate

Java Ultra-Lite

~ | D | D

JPMapper

~[0| e

~|~|e o

Oracle TopLink

||| DD

|| | | D

ORMLite

Persist

Prevayler

~ | D | D

QuickDB

~ || DD O

> 2D |D | DD

| DD | D

Siena

SimpleORM

Speedo

(D D D D D|D|O|D O D D

~ | D | D

OO | D OO D D D D D D DO D D D D D D D O D OO S| O DO

~ (D | |OD

~ (DD

~ (DD

~ (DD

Legende

Erfiillt: @ | Nicht erfiillt: © | Nicht tiberpriift: ?

Tabelle 1: Shortlist aus der Voruntersuchung

27 von 51

6.2 Bewertungsschema Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.2 Bewertungsschema
Grundsatzliches Vorgehen fiir ein Werkzeug

Sind alle Kriterien eines Werkzeugs bewertet, werden die Punktzahlen mit ihrer Gewich-
tung multipliziert und daraufthin aufsummiert. Die Summe wird durch die Gesamtan-
zahl der moglichen Punkten dividiert und das Werkzeug bekommt schliefflich anhand
des Quotienten eine Endnote zugewiesen.

Mathematisch gesprochen ist der Quotient Qyy fiir ein Werkzeug W definiert durch

1
Qw = ?Zgipi
9

Hierbei ist

1 ein Kriterium aus Kapitel 5.2,
Gi die Gewichtung des Kriteriums ¢ nach Absprache mit dem Industriepartner,
Di die Punktzahl des Kriteriums ¢ anhand der Evaluationsergebnisse,

P, die maximal erreichbare Punktzahl.

Die Punktzahlen, Gewichtungen und Endnoten kénnen mit Hilfe der nachfolgenden Ta-
bellen ermittelt werden.

Punktzahlen

Ein Werkzeug wird auf einer Stufe der Skala eingeordnet, wenn es die Anforderung
des Industriepartners fiir diese Stufe erfiillt und kann eine Punktzahl zwischen 0 und 2
Punkten fiir dieses Kriterium bekommen.

Ergebnis Punktzahl | Bedeutung im Allgemeinen
@ 2 Punkte Die Anforderung wird vollsténdig erfiillt.
® 1 Punkt Die Anforderung wird teilweise erfiillt.
e 0 Punkte Das Werkzeug wird der Anforderung nicht gerecht.

28 von 51

6.2 Bewertungsschema

Leichtgewichtige Java-OR-Mapping-Werkzeuge

Gewichtungen

Alle moglichen Gewichtungen befinden sich auf der Ordinalskala [0, 5]. Die Gewichtung
gi = 0 représentiert die irrelevanten Kriterien, die fiir die Evaluation keine Rolle spielen.

Kriterium 1

°

Performanz der INSERT-Abfragen

Dokumentation/Support

Simplizitdt des Abspeicherns

Generierung des Datenbankschemas

Anlegen von Datenbanken

Einarbeitungsaufwand

Form der Modelldefinition

Community

Vielfaltiger Einsatz

Syntax von Abfragen

Umgang mit INSERT- und UPDATE-Abfragen

Vererbungsstrukturen zwischen Datenmodellen

Transaktionen

Antwort bei Fehlschligen

Entity-Manager

N | W | W || & &]C | ot Ot | Ot Ot

Unterstiitzung bei Schemamigration

Unterstiitzung bei Datenmigration

Tabelle 2: Gewichtung der Bewertungskriterien

29 von 51

6.2 Bewertungsschema Leichtgewichtige Java-OR-Mapping-Werkzeuge

Endnoten

Aus den maximal erreichbaren Punkten und den Gewichtungen ergibt sich eine Gesamt-
punktzahl P, von 126 Punkten.

Qw [%] B;Eitkitg;e Endnote
100-95 119 1+
95-90 113 1
90-85 107 1-
85-80 100 2+
80-75 94 2
75-70 88 2-
70-65 81 3+
65-60 75 3
60-55 69 3-
55-50 63 4+
50-45 56 4

45-0 0 5

Tabelle 3: Endnote anhand der erreichten Punktzahl

30 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3 Werkzeuge
6.3.1 Apache Cayenne

Apache Cayenne [Cayll] bewirbt sich unter anderem

damit, dass fiir [die V]erwendung keine XML- oder CAYENNE
Annotation-basierte Konfiguration des Werkzeugs not- -
wendig ist. Dies trifft nach eingehender Begutachtung
jedoch nur zu, falls die mitgelieferte GUI-Anwendung
zur Konfiguration und Modellierung verwendet wird. 3-0.2 (21.06.11)
Will man auf eine GUl-basierte Modellierung verzich-
ten, ist man dazu gezwungen, die Modellierung in
XML-Form anzugeben. Das Werkzeug ist auch allge-
mein stark auf die Benutzung der GUI-Anwendung ausge- Webseite
legt und bietet viele Funktionen ausschlieffilich in selbiger
an.

Untersuchte Version

Lizenz
Apache 2.0

cayenne.apache.org

<data-map [...]1>
<db-entity name="device" schema="public">
<db-attribute name="description" type="VARCHAR" length="256"/>
<db-attribute name="id" type="INTEGER" isPrimaryKey="true"
isMandatory="true" length="10"/>
<db-attribute name="name" type="VARCHAR" length="256"/>
<db-attribute name="type" type="VARCHAR" length="256"/>
<db-attribute name="urn" type="VARCHAR" length="256"/>
</db-entity>
</data-map>

Listing 1: Auszug aus der XML-Definition des Device-Modells

Die Dokumentation von Apache Cayenne ist ausfiihrlich und nach etwas Einarbeitungs-
zeit auch versténdlich, jedoch existieren zum Teil noch Sektionen, die als ,,Draft“ gekenn-
zeichnet sind. Es gibt nicht nur ein ,,Getting Started“-Tutorial und eine JavaDoc-API,
sondern auch weitere Informationen zu einzelnen Teilen des Werkzeugs sowie ein Leitfa-
den zur Einarbeitung in den Cayenne Modeler und die Erweiterung fiir Remote Clients.
Da das Werkzeug allerdings recht umfangreich ist und man sich sowohl in die Modelling-
UI als auch in die Verwendung von Apache Cayenne an sich einarbeiten muss, kann es
bei der Einarbeitung durchaus zu kleineren Problemen kommen. Sollte versucht werden,
auf den Cayenne Modeler zu verzichten, wére dies nicht ohne erheblichen Einarbeitungs-
aufwand moglich.

Die Community von Apache Cayenne besteht im Wesentlichen aus einer Mailing-Liste,
die anfallende Fragen in der Regel innerhalb weniger Tage beantwortet und bei der Lo-
sung auftretender Probleme hilft. Weitere vom Entwickler unterstiitzte Foren oder Chats
konnten nicht gefunden werden, jedoch bieten zwei der Hauptentwickler von Apache Ca-
yenne einen kommerziellen Support an, der von personlicher Beratung bei der Erstellung
von Projekten iiber das Entwickeln von kundenspezifischen Features bis hin zu direktem

31 von 51

http://cayenne.apache.org

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Kontakt mit den Entwicklern zur Fehlerbehebung reicht.

Datenbankabfragen werden in Apache Cayenne génzlich ohne SQL-Syntax formuliert,
was es auch Entwicklern ohne SQL-Kenntnisse erlaubt, effizient mit dem Werkzeug um-
zugehen. Uber die Persistenzklassen, die von dem mitgelieferten Cayenne Modeler ge-
neriert werden konnen, werden die Anderungen an einem Objekt an den zugehdrigen
Persistenzmanager iibergeben, der diese dann an die Datenbank tibermittelt. Hierbei
werden neue, geloschte und geéinderte Objekte gleich behandelt, was fiir eine iibersicht-
lichere Strukturierung der Query-Syntax sorgt. Auch SELECT-Abfragen miissen nicht
in SQL-Syntax formuliert werden, sondern kénnen iiber Funktionen, die auf einem der
Datenmodelle basieren, durchgefiihrt werden.

Speziell fiir SELECT-Abfragen verfiigt Cayenne iiber einige performanzsteigernde Op-
timierungen. Hierzu gehtren Caching, Lazy-Loading und Prefetching von relationalen
Daten. Prefetching ermdoglicht es im Gegensatz zum Lazy-Loading, durch einen einzigen
Query-Aufruf mehr als nur einen Objekttyp aus der Datenbank zu lesen. Das hat den
Vorteil, dass auf der Datenbank intern erheblich wenigere Abfragen ausgefiihrt werden
miissen.

_,./ CayenneMaodeler - C\Cayenng\cayenne xml l‘:' =] ﬂ_hj

File Edit Project Tools Help

Cjelm] (=] [+[m[a [¢[v][s]o]+] (m[m] e/ea[-]]

& Cayenne Main \Adapter\ Password Encoder‘\‘
- CayenneMap
. (@ Device DataNode Configuration
(® Measurement

(& PositionFix
] device Schema Update Strategy: |apache.cayenne.access.dbsynC.CreatelNoSchemaStrategy[']

DataMode Name: |CayenneN0de |

D measurement “You can enter custom class implementing SchemallpdateStrateqgy
[positionfix

Local DataSource (opt.): [Selec’[DataSource for Local Work... '] []
=8
[Y CayenneMap DataSource Factory: |org.apache.cayenne.conf.DriverDataSourceFactont [']
JDBC Configuration

JDBC Driver: |org.postgresql.Driver

DB URL: |jdbn::postgresqI:.f.flocalhost:5432JCayenne

Username: |postgres |

Passwaord: |.u

Min Connections:
Max Connections:

Sync with Local

Abbildung 3: Cayenne Modeler

32 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Datenmodelle, die von Apache Cayenne persistiert werden sollen, miissen alle von der
internen Klasse CayenneDataObject abgeleitet werden. Die daraus resultierende Klassen-
struktur ist nicht sehr iibersichtlich, besonders, da die Dokumentation dringend davon
abrit, vom Cayenne Modeler erzeugte Klassen zu verédndern, da diese bei erneuter Ge-
nerierung génzlich iiberschrieben werden. Dies erfordert, dass die bereits abgeleiteten
Klassen ein weiteres Mal abgeleitet werden miissen.

Die GUI-Anwendung von Apache Cayenne, namentlich Cayenne Modeler, stellt Moglich-
keiten zur Modellierung des Datenbankschemas, Konfiguration des Werkzeugs, Migration
von vorhandenen Datenbankschemata sowie zur Generierung der Persistenzklassen zur
Verfiigung. Durch die fiir den Cayenne Modeler separat existierende Dokumentation ist
die Einarbeitung in den Cayenne Modeler einfach und die angebotenen Funktionen sind
nach kurzer Zeit versténdlich.

Die Verwaltung von Datenbankschemata ist dank des Cayenne Modelers simpel gehal-
ten. So kann iiber wenige Mausklicks ein bestehendes Datenbankschema nachgebaut
und als Datenmodell verwendet werden. Bei Anderungen am Datenmodell oder am Da-
tenbankschema bietet Apache Cayenne eine Migrationshilfe an. Der Nutzer kann da-
bei entscheiden, welche Anderungen auf Datenmodell und Datenbankschema angewandt
werden sollen. Zudem stellt Apache Cayenne mehrere Moglichkeiten zur Verfiigung, das
erstellte Datenmodell als Schema auf die Datenbank abzubilden. Zum einen kann der
Nutzer sich im Cayenne Modeler die SQL-Befehle zur Erstellung des Schemas anzeigen
lassen, sie als Datei speichern oder direkt ausfithren lassen. Zum anderen kann er eine
Schema-Update-Strategie wihlen, die das Schema automatisch zur Laufzeit erstellt, falls
die Datenbank kein Schema enthélt.

In Bezug auf die Leichtgewichtigkeit liegt Apache Cayenne mit drei externen Abhéingig-
keiten ohne JDBC im Mittelfeld der untersuchten Werkzeuge. Mit diesen Abhéingigkeiten
lasst sich auch die volle Funktionalitéit des Werkzeugs erreichen.

PRO CONTRA

@ Simple Syntax © Mapping iiber XML-Dateien

@ Unterstiitzung bei der Migration | © Vererbung von Basisklasse an
des Schemas Datenmodelle erforderlich

33 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3.2 DataNucleus

Als einziger OR-Mapper in der niheren Auswahl implemen-

tiert DataNucleus [Datll1] die offenen Persistenzstandards “"*‘\\\DataNUdEUS
Java Data Objects (JDO) und Java Persistence API (JPA). S

Dies ermdglicht es, das Werkzeug bei Bedarf ohne grofie
Probleme gegen ein anderes Werkzeug auszutauschen. Kan-
didaten, die mindestens einen der genannten Standards im- 3.0.0 (01.08.11)
plementieren und daher als Ersatz fiir DataNucleus fungie-
ren konnen sind beispielsweise OpenJPA, EclipseLink oder
auch Hibernate, die jedoch alle drei nicht den Anspruch auf
einen leichtgewichtigen Mapper haben und folglich im Rah- Webseite
men der Voruntersuchung aus der ndheren Auswahl entfernt
wurden.

Untersuchte Version

Lizenz
Apache 2.0

datanucleus.org

Aufgrund der Unterstiitzung dieser und weiterer Standards ist es auch das Werkzeug, das
die meisten externen Abhingigkeiten bendtigt und kann nur dann als leichtgewichtig im
Sinne dieser Fachstudie bezeichnet werden, wenn der Entwickler zum Verwalten seiner
Datenobjekte ausschliefllich den JDO-Standard verwendet. Aus diesem Grund wurde im
Rahmen der Fachstudie die Implementierung des JPA-Standards von DataNucleus nicht
weiter untersucht, da dieser laut Herstellerangaben auf den JDO-Standard aufbaut und
deshalb sowohl dessen Referenzen zusétzlich zu den eigenen Abhéngigkeiten bendtigt als
auch einen Persistenzmanager vorschreibt.

DataNucleus basiert auf der OSGi-Technologie und ist daher modular aufgebaut. Dem
Werkzeug lassen sich so auf einfache Weise weitere Features als Modul bzw. Plug-In
hinzufiigen. Diese kénnen vom Entwickler selbst programmiert werden oder aus einer
groflen Auswahl entnommen werden.

Zur Erstellung des Schemas bietet DataNucleus ein externes Programm namens Sche-
maTool sowie einen eigenen Byte-Code-Enhancer an, die beide durch eine weitere JAR-
Datei in die Anwendung eingebunden werden kénnen. Der Byte-Code-Enhancer nimmt
dabei die Datenmodelle in Form von Java-Klassen als Eingabe und produziert daraus
vorkompilierte Objekte, die von DataNucleus persistiert werden kénnen. Da diese Um-
wandlung je nach Anzahl der zu kompilierenden Java-Klassen lange dauern kénnte, ist es
empfehlenswert, die Konvertierung als Pre-Build-Schritt vor der eigentlichen Ausfithrung
der Software durchfiihren zu lassen. Das SchemaTool kann anhand der Datenmodelle das
Schema der angegeben Datenbank erstellen oder auch wieder aus der Datenbank 16schen.
Hilfreich kann hierbei die Validate-Funktion von SchemaTool sein, die ein existierendes
Schema auf Kompatibilitdt mit dem derzeitigen Datenmodell priift und Abweichungen
feststellt. Des Weiteren kann mit dem SchemaTool das zu erstellende Datenbankschema
im SQL-Format in einer Datei ablegt werden.

Falls die Entwicklung mit Hilfe von Eclipse erfolgt, bietet DataNucleus hierfiir ein

34 von 51

http://www.datanucleus.org

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Eclipse-Plug-In an, das dem Entwickler manche Arbeiten im Umgang mit DataNucleus
abnimmt. So sind der Enhancer wie auch das SchemaTool direkt in die Oberfliche von
Eclipse integriert und kénnen ohne viel Konfigurationsaufwand auf ein bestehendes Java-
Projekt angewandt werden. Alternativ kénnen die Build-Systeme Ant oder Maven zur
Konfiguration von DataNucleus eingesetzt werden, falls der Entwickler auf eine Java-
IDE verzichtet, die das Erstellen der Software iibernimmt.

Hervorzuheben ist die ausfiihrliche Dokumentation, die auf den Webseiten des Werkzeugs
zu finden ist. So bietet das ,Getting Started“-Dokument einen ersten Uberblick iiber die
Funktionalitéiten des Werkzeugs. Fiir die weiteren Einzelheiten wird der Leser je nach
Wahl des Persistenzstandards auf ein weiterfithrendes Tutorial verwiesen, das Schritt
fiir Schritt mit Hilfe eines konkreten Beispiels die Grundfunktionen des Werkzeugs be-
schreibt. Dariiber hinaus hat das Werkzeug eine aktive Community, die im Wesentlichen
aus einem Forum besteht, das DataNucleus-spezifische Fragen in den meisten Féllen zii-
gig beantwortet. Falls diese Hilfe nicht ausreichen sollte, kénnen je nach Bedarf diverse
Supportvertrige mit den Entwicklern abgeschlossen werden. Es ist auflerdem moglich,
DataNucleus-Schulungen gegen Entgelt zu besuchen.

Das Werkzeug kann individuell konfiguriert werden. Die Konfiguration kann entweder
direkt im Java-Code erfolgen oder iiber eine Properties-Datei angegeben werden. Bei-
spielsweise ist es moglich, das Caching der Objekte zu verbieten, bevor diese in der
Datenbank abgespeichert werden. Uber eine Einstellung lésst sich zudem das Schema
automatisch beim Start des Programmes erstellen. Das Mapping an sich kann iiber Java-
Annotationen oder wahlweise auch iiber eine XML-Datei, die iiber eine Property dem
Werkzeug mitgeteilt wird, erfolgen.

In der JDO-Implementierung von DataNucleus ist es vom Hersteller empfohlen, Interak-
tionen mit der Datenbank mittels Transaktionen zu verarbeiten. Falls auf Transaktionen
verzichtet wird, haben wir beobachtet, dass neue Datensétze direkt in die Datenbank
geschrieben werden, sobald die Objekte persistiert wurden. Gem#fl der DataNucleus-
Dokumentation werden Datensitze aktualisiert, sobald der Persistenzmanager geschlos-
sen wird.

Datenbankabfragen koénnen mit verschiedenen Abfragesprachen durchgefiihrt werden;
der Entwickler hat die Wahl zwischen SQL, JDOQL, JPOXSQL und JPQL. Das Werk-
zeug kann auflerdem in der JDO-Implementierung mit Vererbungsstrukturen in den Da-
tenmodellen umgehen und bietet dem Entwickler einige Vererbungsstrategien an, die
festlegen, auf welche Art und Weise die Vererbung in der relationalen Datenbank ab-
gebildet werden soll. Nennenswert ist ebenfalls, dass DataNucleus nicht nur relationale
Datenbanken, sondern mit entsprechenden Plug-Ins auch nicht-relationale Datenbanken,
unterstiitzt. Beispielsweise kénnen Datensétze in objektbasierten Datenbanken wie db4o
oder auch in XML-Dokumenten persistiert werden.

Die grofite Schwiche von DataNucleus ist die unzureichende INSERT-Performanz bei
der Verarbeitung der maximalen Last des Mengengeriists. In den von uns durchgefiihrten

35 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Messungen auf dem Car-PC waren 70% der Speichervorgéinge nicht in der vorgesehenen
Zeit geschehen, weswegen nicht alle erforderlichen Operationen auf der Datenbank in
der Gesamtzeit ausgefiithrt werden konnten (siehe Listing 2). Leider hatten auch einige
Performanz-Tweaks (z.B. kein L2-Caching) keinen spiirbaren Effekt und brachten zum
Teil eine noch schlechtere Performanz als der Testlauf ohne jegliche Optimierungen.

I |
| Measurement Point | # | Average | Min | Max | Total |
[-==m [====--- [-==mm--- |-===--- [-===m--- |-===mm- |
| Datapoint Insert | 95200 | 6.174 | 3.952 | 236.894 | 587,766.950 |
[-==--mmmmmmm - [====--- [-==------ |-===--- |-===----- [-===mm- |
| Position Insert | 476 | 6.469 | 4.234 | 21.685 | 3,079.440 |
| |

| == mmmmmmm e |==mmmm- |==mmmmmee | == === === mmmm e [m e |
Listing 2: Ergebnis des Testlaufs (vgl. Kriterium Performanz der INSERT-Abfragen)

Durch die vielen Funktionen und Eigenarten von DataNucleus wie beispielsweise die Ein-
fithrung eines Enhancers bedarf es vergleichsweise viel Zeit bis das Werkzeug lauffahig
ist und der Entwickler sich eingearbeitet hat. Auch die Konformitéit zum JDO-Standard
wirkt sich negativ auf die Einarbeitungszeit aus.

Die Query-Syntax ist dariiber hinaus nicht einheitlich. So werden INSERT- und UPDATE-
Befehle iiber Funktionen realisiert; fiir SELECT-Abfragen hingegen muss sich der Ent-
wickler mit einer Datenbanksprache wie JDOQL befassen. Das Einfiigen und Bearbeiten
von Datensétzen werden tiber denselben Befehl durchgefiihrt, wobei beim Bearbeiten der
Datensatz zunéchst vom Entity-Manager iiber den Primérschliissel angefordert werden
muss.

Falls der Java-Code von der Datenbasis abweicht, muss sich der Entwickler selbst um das
Anpassen der Datenbank kiimmern. DataNucleus bietet keine speziellen Mechanismen
fiir die Migration des Schemas oder die Daten an. Ferner ist es mit DataNucleus nicht
moglich, die Antwort bei Datenbankfehlern festzulegen. Sollte ein unerwarteter Fehler
auftreten, wird dieser dem Entwickler stets iiber Exceptions mitgeteilt.

Kurz gesagt bietet DataNucleus zwar zahlreiche Features fiir Entwickler an, die man
bei anderen Kandidaten vermisst, kommt aber nicht an deren Performanz heran.

PRO CONTRA

@ Grofler Funktionsumfang © Schlechte INSERT-Performanz
@ Unterstiitzung von © Hoher Einarbeitungsaufwand
Persistenzstandards

36 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3.3 ORMLite

Bei ORMLite [ORM11] wurde vom einzigen Entwickler be- S
reits wiahrend der Entwicklung groflen Wert auf einen leicht- ij &= T ||
gewichtigen OR-Mapper gelegt. Das Resultat ist ein Werk- o — .
zeug, das aufler dem eigentlichen Kern nur eine zusétzliche
Bibliothek zur Unterstiitzung der Datenbank durch einen
JDBC-Treiber benotigt. Komplexe Features wie die Migrati- 4.25 (22.08.11)
on von existierenden Schemas sind nicht implementiert und
es wurde von Anfang an darauf geachtet, dass kein grofier
Ballast durch Komplexitét, wie man ihn beispielsweise bei
Hibernate vorfindet, anfillt. Dennoch bietet ORMLite trotz Webseite
des kleinen Kerns eine Reihe von niitzlichen Funktionen.

Untersuchte Version

Lizenz

Eigene OS-Lizenz

ormlite.com

ORMLite richtet sich nach dem Entwurfsmuster Data Access Object (DAO) [Boull],
das durch die Kapselung von Datenbankzugriffen das Austauschen der zugrundeliegen-
den Datenbank ermoglicht, ohne dabei den aufrufenden Java-Code dabei verédndern zu
miissen. Die eigentliche Programmlogik wird hierbei strikt von den technischen Details
der Datenspeicherung getrennt; die Datenbankoperationen werden isoliert von der Pro-
grammlogik ausgefiihrt, wodurch diese flexibel einsetzbar ist. Jedes DAO bietet in ORM-
Lite Methoden zum Anlegen, Loschen und Bearbeiten von Datenséitzen an und wickelt
in einem einzigen Objekt alle Datenbankinteraktionen pro Klasse ab (siehe Listing 3 fiir
ein Code-Beispiel). Der Entwickler verwaltet daher die Datenspeicherung bei mehreren
Modellen auch mit unterschiedlichen Entity-Managern.

String cs = "jdbc:postgresql://localhost:5432/ORMLite";
JdbcConnectionSource jdbc = new JdbcConnectionSource(cs, "user”,"pw”);
Dao<Device ,Long> dao = DaoManager.createDao(jdbc, Device.class);
dao.create (new Device());

Listing 3: Speichern eines Device-Objekts mit Hilfe eines DAOs

Die Dokumentation von ORMLite macht auf den ersten Blick einen unzureichenden Ein-
druck. So ist das ,Getting-Started“-Dokument zu kurz und man vermisst wichtige De-
tails; sucht man aber konkrete Stichworte, zeigt sich schnell, dass alle relevanten Aspekte
ausreichend und auf verstédndliche Weise beschrieben werden. Ein grofie Community iiber
das Werkzeug lasst sich nicht ausmachen: Es ist eine Mailing-Liste vorhanden, auf der
gelegentlich Fragen auch innerhalb weniger Tage beantwortet werden. Im Schnitt muss
man jedoch ldnger warten um eine Antwort zu erhalten. Auch ein umfangreicher Sup-
port kann nicht erwartet werden, da es sich bei dem Autor der Software im Gegensatz
zu manchen Konkurrenzwerkzeugen um eine einzelne Person handelt. Selbstverstindlich
steht es jedem frei, den Autor des OR-Mappers direkt zu kontaktieren.

Die Abbildung der Datenmodelle auf die relationale Datenbank erfolgt standardmé-
Big mit Hilfe von Java-Annotationen, wie es beispielsweise in Listing 4 fiir das Deuvice-

37 von 51

http://ormlite.com

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Modell gemacht wurde. Alternativ lasst sich das Mapping der Java-Klassen auch direkt
im Quellode vollziehen. Wer das Spring-Framework verwendet, findet auf den Seiten von
ORMLite zusétzlich einige Beispiele, die zeigen, wie die Mapping-Konfiguration anhand
der XML-Dateien des Spring-Frameworks erfolgen kann.

@DatabaseTable
class Device {

// primary key
@DatabaseField(generatedld = true)
private long id;

©@DatabaseField
private String urn;

©@DatabaseField
private String name;

@DatabaseField
private String description;

@DatabaseField
private Type type;

S w/

Listing 4: OR-Mappings des Device-Modells mit Java-Annotationen

Weiterhin steht dem Entwickler eine so genannte ,,Query-Builder“-Klasse zur Verfiigung,
mit dem SELECT-Abfragen ohne eine Abfragesprache auf der Datenbank ausgefiihrt
werden konnen. Dabei geht die Flexibilitdt von gewohnlichen SELECT-Abfragen im
SQL-Format nicht verloren. Das Anlegen und Bearbeiten von Datensétzen eines Mo-
dells geschieht dabei iiber verschiedene Methoden eines Data Access Objects. Dariiber
hinaus koénnen ,rohe*“ SQL-Abfragen direkt auf der Datenbank ausgefiihrt werden, falls
der Funktionsumfang des Query-Builders nicht ausreichen sollte.

Es gibt bei ORMLite ferner eine Reihe von Werkzeugen, die bei der Erstellung des Sche-
mas und der Tabellen helfen. Zum einen kann mit Hilfe der createTable-Methode aus der
TableUtils-Klasse die benotigten Tabellen automatisch generiert werden, zum anderen
kann durch den Aufruf einer anderen Methode derselben Klasse das SQL-Schema auf
der Konsole ausgegeben werden. Ein weiterer Pluspunkt ist, dass das Werkzeug einfache
Vererbungsstrukturen im Datenmodell auf eine relationale Datenbank abbilden kann,
indem das Werkzeug alle Basisklassen priift und die gefundenen Attribute in die Tabelle
der Unterklasse aufnimmt.

Auflerdem erleichtert ORMLite die Java-Entwicklung auf Android-Betriebssystemen, in-

38 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

dem es eine spezielle Bibliothek anbietet, die direkt auf die Android-Datenbank-API zu-
greift und so als OR-Mapper auf mobilen Endgeréiten zum Einsatz kommen kann. Diese
spezielle Bibliothek ist dabei unabhéingig von der JDBC-Schnittstelle zu benutzen, da
standardméfig auf Android-Endgeréten keine JDBC-Treiber vorhanden sind und diese
speziell auf die Android-Runtime angepasst werden miissen.

Bei der Entwicklung der Anwendung muss auf manche Besonderheiten des OR-Mapping-
Werkzeugs ORMLite geachtet werden. Beispielsweise ist zu beriicksichtigen, dass vom
Werkzeug stets ein Konstruktor ohne Parameter fiir jedes definierte Datenmodell gefor-
dert ist. Aulerdem gab es beim Testen des Werkzeugs mit einer PostgreSQL-Datenbank
Probleme mit dem BigDecimal-Typ, der erst gesondert behandelt werden musste, be-
vor eine persistente Speicherung des gesamten Modells moglich war. Des Weiteren muss
beachtet werden, dass nur Attribute mit nicht primitiven Typen als Fremdschliissel de-
klariert werden konnen. Die automatische Vergabe einer ID erfolgt bei ORMLite iiber
die Option generatedld der DatabaseField-Annotation.

Wer zudem Abweichungen zwischen Modell und Datenbank hat, muss diese selbst in der
Datenbank beheben, da ORMLite keine Unterstiitzung bei der Migration des Schemas
und der Daten anbietet. Bei Abweichungen und bei Fehlern im Allgemeinen werden stets
Exceptions geworfen. Ein Riickgabeverhalten im Fehlerfall 14sst sich mit der ORMLite-
API folglich nicht einstellen.

Insgesamt betrachtet macht ORMLite einen stabilen Eindruck und ist durch die Unter-
stiitzung zahlreicher DBMS vielfiltig einsetzbar. Der Funktionsumfang hingegen kann
die Anspriiche des Industriepartners nicht véllig zufriedenstellen. Weitere Funktionalité-
ten lassen sich bei ORMLite nur direkt im Quellcode einbauen. Das speziell auf Leicht-
gewichtigkeit ausgelegte Werkzeug kann im Gegensatz zu DataNucleus ohne Probleme
mit der maximalen Last des Mengengeriists umgehen.

PRO CONTRA

@ Fokus auf Leichtgewichtigkeit & Geringer Funktionsumfang

@ Schnelle Inbetriebnahme 6 Kleine Community und nur ein
Entwickler

39 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3.4 Persist

Persist [Perll] wurde von Beginn an als minimalistischer
und schlanker OR-Mapper konzipiert. Der Code umfasst
deshalb insgesamt nur 12 Klassen und verwendet oftmals 1.1.1 (03.02.11)
Java-Standardklassen anstatt eigene Methoden bereitzustel- Lizenz
len. Dadurch sollen eine hohe Performanz, einfache Benutz-

barkeit und leichte Integrierbarkeit erreicht werden. Ein wei- BSD

terer Vorteil davon ist, dass keine weiteren Abhéngigkeiten Webseite
entstehen. Aufler der Kernbibliothek wird nur der Daten-
banktreiber benétigt, um Persist in Betrieb zu nehmen.

Untersuchte Version

github.com/rufiao/persist

Die Dokumentation von Persist beschrinkt sich auf eine einzige README-Datei, die
nur noch durch die selbst zu erstellende JavaDoc-API-Dokumentation erweitert wird.
Durch den minimalistischen Ansatz ist jedoch nicht viel mehr nétig, um die Funktionali-
tat zu verstehen. Innerhalb weniger Minuten hat man die erste persistente Klasse erstellt
und die Daten in der Datenbank gespeichert.

AuBer dem in der Web-Entwicklungsplattform GitHub! vorhandenen Issue-Tracker be-
schriinkt sich die Community auf eine kaum verwendete Mailing-Liste und selbst dort
scheint der Support durch den einzigen Entwickler auf Grund langer Antwortzeiten und
wenig Aktivitit durch andere Mitglieder eher eingeschriankt zu sein.

Die Integration von Persist ist denkbar einfach. Die Verbindung zur Datenbank wird
iiber die Java-Standardklasse Connection aufgebaut, die nach erfolgreicher Verbindung
nur noch an Persist iibergeben werden muss. Danach kann man mit einem einzelnen
Funktionsaufruf die Daten einer Klasse in der Datenbank speichern. Voraussetzung dafiir
ist jedoch, dass man das Schema der Datenbank der Klasse entsprechend bereits manuell
angelegt hat, da Persist den Benutzer in dieser Richtung nicht unterstiitzt. Besitzt die
Klasse keine automatisch aufsteigenden IDs, so kommt Persist ganz ohne Annotationen
oder XML-Konfiguration aus. Sollte eine solche ID benétigt werden, so kann mit Hilfe
einer einzigen Annotation diese Funktion hinzugefiigt werden. Dadurch ist der Ubergang
von einer Anwendung ohne Datenbankpersistenz hin zum Speichern der Daten in der
Datenbank schnell und simpel zu bewéltigen.

"http://www.github. com

40 von 51

https://github.com/rufiao/persist
http://www.github.com

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Eine kompakte Beispielanwendung kénnte zum Beispiel folgendermaflen aussehen:

class Device {

private long id;

private String urn;

private String name;
private String description;
private Type type;

@Column(autoGenerated=true)
public long getld() {
return id;

}

public static void main(String[] args) {
Device dev;
/x Device erstellen und Daten einfiigen x/

try {
Class.forName("org.postgresql.Driver");

} catch (java.lang.ClassNotFoundException e) { }

Connection connection;

try {
connection = DriverManager.getConnection (
"jdbc: postgresql://localhost:5432/ persist”, "postgres”, "orm");
} catch (java.sql.SQLException e) {}
Persist persist = new Persist(connection);
persist.save(dev);
}

}

Listing 5: Beispielanwendung mit Persist

Um Datenbankabfragen durchzufiihren, verwendet Persist Standard-SQL, gibt jedoch
auf Wunsch nicht nur komplette Klassen zuriick, sondern kann die erhaltenen Daten
auch automatisch in HashMap-Listen einsetzen. Auch einzelne Werte konnen direkt ab-
gefragt werden. Zudem beschréankt sich die Verwendung von SQL nicht auf Abfragen.
Es diirfen auch andere SQL-Befehle direkt iiber Persist an den Server gesendet werden.

Als eines von wenigen fortgeschrittenen Features unterstiitzt Persist immerhin Trans-
aktionen. Dazu muss das Werkzeug allerdings erst in einen speziellen Modus versetzt
werden, in dem man automatische Commits deaktiviert. Dadurch wirkt dieses Feature
im Vergleich mit anderen Werkzeugen etwas unintuitiv.

41 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Viele weitere Features wie zum Beispiel die Unterstiitzung bei der Schemagenerierung
oder die Unterstiitzung von Vererbungsstrukturen fielen der Minimalitdt zum Opfer. Da-
durch kann Persist nur iiber seine Einfachheit und Performanz mit den anderen Werk-
zeugen konkurrieren.

PRO CONTRA

@ Einfache Integration © Wenige Features

@ Hohe Performanz 6 Keine Community und nur ein
Entwickler

42 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3.5 Siena

Siena [Siell] wurde nicht nur fiir die Verwendung mit SQL-
Datenbanken ausgelegt, sondern soll mit demselben Code
auch No-SQL-Datenbanken unterstiitzen. Momentan wird 1.0.0-b5 (24.06.11)
dabei unter anderem die Google App Engine unterstiitzt. Lizenz
Es wird zur Zeit jedoch daran gearbeitet, auch andere Da-

tenbanken zu unterstiitzen. Um die Méglichkeiten, die diese Apache 2.0
Datenbanken bieten, ausnutzen zu kénnen, ist es jedoch zum Webseite
Teil notwendig, kleinere Anpassungen vorzunehmen bzw. ab
und zu direkt auf den Datenbanktreiber zuzugreifen.

Untersuchte Version

sienaproject.com

Ein weiteres Alleinstellungsmerkmal ist die Moglichkeit, Daten sowohl {iber einen Per-
sistenzmanager in der Datenbank zu speichern als auch das Active-Record-Pattern zu
verwenden. Bei letzterem muss die Klasse, die die Daten enthélt, von der von Siena be-
reitgestellten Model-Klasse abgeleitet werden. Die Verwendung des Persistenzmanagers
erhoht den Aufwand jedoch ein wenig, da fiir jede persistente Klasse eine eigene Instanz
des Persistenzmanagers verwendet werden muss und man deshalb bei einer hohen Anzahl
von Klassen schnell den Uberblick verliert oder sich noch Behelfsfunktionen schreiben
muss. Die Model-Klasse bietet zudem noch einige Komfortfunktionen wie z.B. bereits
implementierte equals- und hashCode-Funktionen, die die persistenten Felder nutzen,
um z.B. zwei Instanzen einer Klasse zu vergleichen.

In beiden Betriebsarten bietet Siena einige Annotationen an, um Relationen zwischen
verschiedenen Tabellen darzustellen, unter anderem Many-to-many, One-to-many und
One-to-one. Auch Vererbungsstrukturen stellen kein Problem dar. Fiir jede Subklasse
und die Oberklasse benutzt Siena dabei eine einzelne Tabelle.

Die von Siena bereitgestellte Query-Klasse bietet Methoden, um Datenbankabfragen
zusammenzustellen. Dabei wird durch eine Verkettung von Funktionsaufrufen die Syn-
tax von SQL nachgestellt. Dies erlaubt auch komplexe Abfragen, ohne Kenntnisse von
SQL beim Entwickler vorauszusetzen .
Um zum Beispiel ein bestimmtes Device-Objekt aus der Datenbank zu bekommen, kénn-
te der Code folgendermaflen aussehen:

Query<Device> q = Device. all (Device.class);
Device dev = q.search("device key", "uin").get();

Listing 6: Beispielquery mit Siena

Fine rudimentire Unterstiitzung bietet Siena bei der Generierung des Schemas. Dazu
werden jedoch zum einen die Apache DdIUtils? und deren Abhingigkeiten benétigt,
zum anderen ist einiges an Handarbeit notwendig, um das Schema zu erstellen. Dariiber

http://db.apache.org/ddlutils/

43 von 51

http://www.sienaproject.com

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

hinausgehende Funktionen miissten direkt {iber die DdlUtils programmiert werden.

Zur Verbindungsaufnahme mit der Datenbank nutzt Siena eine Properties-Datei, die
alle Einstellungen wie Treiber, Host, Username und Passwort enthélt. Diese Datei muss
Teil der JAR-Datei sein, was die Konfigurierung zur Laufzeit erschwert. Dafiir muss in-
nerhalb des Programmcodes keinerlei Konfiguration durchgefithrt werden. Wird zudem
noch das Active-Record-Pattern verwendet, so kann sofort mit dem Abspeichern oder
Holen von Daten begonnen werden, ohne extra eine Verbindung mit der Datenbank auf-
bauen zu miissen.

Die Community von Siena nutzt unter anderem eine Mailing-Liste und von GitHub
zur Verfiigung gestellte Tools wie den Issue-Tracker und das Wiki. Auf der Mailing-Liste
ist nicht nur der Hauptentwickler aktiv, sondern auch weitere Entwickler und Nutzer.
Auf Fragen erhélt man schnell eine Antwort.

Uber das Wiki lisst sich am einfachsten auf die Dokumentation von Siena zugreifen. Die-
se ist momentan jedoch in einer Umgestaltungsphase und enthé< deshalb noch nicht alle
Informationen. Eine per JavaDoc generierte API-Dokumentation existiert nicht. Wiirde
man sie selbst generieren, so wire sie jedoch auch nicht vollsténdig, da viele Funktionen
iiber keinerlei oder nur wenige Kommentare verfiigen.

In unseren Tests stellte sich das vom Entwickler angegebene Feature, dass keine weiteren
Abhéngigkeiten eingebunden werden miissten, als falsch heraus. Ohne eine Bibliothek
aus dem Fundus von Apache Commons gaben unsere Laufversuche Fehler iiber nicht
gefundene Klassen aus. Nach deren Einbindung war das weitere Einrichten von Siena
einfach zu bewerkstelligen, eine solche falsche Information ist fiir Einsteiger jedoch sehr
irritierend.

PRO CONTRA

@ Sowohl Entity-Manager als auch © Externe Bibliothek nétig
Active-Record

@ Einfache Abfragen © Schemagenerierung unnotig
kompliziert

44 von 51

6.4 Resultat

Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.4 Resultat

Die vorherige Beschreibung der OR-Mapper spiegelt das Resultat der Evaluationsphase
wieder. Dieses kann in kompakter Form der nachfolgenden Tabelle entnommen werden.

Kriterium

&)
2

<

d;.

Performanz der INSERT-Abfragen

Dokumentation/Support

Simplizitdt des Abspeicherns

Generierung des Datenbankschemas

Anlegen von Datenbanken

Einarbeitungsaufwand

Form der Modelldefinition

Community

Vielfiltiger Einsatz

Syntax von Abfragen

Umgang mit INSERT- und UPDATE-Abfragen

Vererbungsstrukturen zwischen Datenmodellen

Transaktionen

Antwort bei Fehlschlagen

Entity-Manager

Unterstiitzung bei Schemamigration

Unterstiitzung bei Datenmigration

O D OO D DD D IO|IO|IO| O |D|D|D|D|D

O O DO D D D O D D D O D D D D O

(ORKORES R EOR KSR KSR KON KSR KON KON KS> R KSo R NS> N s> N ON NS> R NS5

(ORKORESSRESSRESSRORKOROR FORKOR ISSREOR KON KON SN FOR IS5

O D DO D D D D IO|IO|D O|D|D O|O|D

Gesamtpunktzahl

Ne)
=

Ne)
)

N
ot

ot
w

o
(=]

Endnote

2

2-

2

t

[\

Tabelle 4: Resultat der Evaluation auf einen Blick

45 von 51

7. Empfehlung Leichtgewichtige Java-OR-Mapping-Werkzeuge

7 Empfehlung

Das Endergebnis unserer Untersuchung ist sehr eng. Mit drei Werkzeugen, die jeweils
nur einen Punkt auseinander- und damit alle auf derselben Note liegen und einem wei-
teren Werkzeug, das nur auf Grund seiner mangelhaften Performanz ausschied, ist das
Teilnehmerfeld sehr eng beieinander. Einziger Ausreifier ist der OR-Mapper Persist, der
aufgrund seines geringen Funktionsumfangs viele Anforderungen nicht erfiillen konnte.

Fiir das Nutzungsszenario der Cinovo AG wird von uns Siena als Werkzeug empfohlen.
Es ist zum einen das Werkzeug mit der hochsten Punktzahl, zum anderen das mit der
geringsten Anzahl an nicht erfiillten Kriterien.

Durch die Moglichkeit, sowohl Persistenzmanager als auch das Active-Record-Pattern
zu verwenden, bietet es eine grofiere Flexibilitéit als die anderen untersuchten Losun-
gen. Neue Modelle sind leicht ohne die Hilfe eines GUI-Editors zu erstellen. Ein solcher
wird beispielsweise bei Apache Cayenne vorausgesetzt. Durch die Unterstiitzung von No-
SQL-Datenbanken ist Siena auch zukunftssicher, da solche Datenbanken in immer mehr
Bereichen eingesetzt werden. Aufler Siena bietet nur DataNucleus iiber Erweiterungen ei-
ne solche Unterstiitzung an. Im Gegensatz zu diesem Werkzeug ist Siena jedoch eines der
schnellsten was die fiir das Szenario relevante Performanz von INSERT-Abfragen angeht.

Fine der wenigen Schwachstellen stellt die Dokumentation dar, die sich momentan in
einer Uberarbeitungsphase befindet und sténdig verbessert wird. Hier konnten die ande-
ren Werkzeuge besser punkten. Durch die einfache Syntax und gute ,,Getting Started*-
Dokumente wird dieser Punkt jedoch grofiteils ausgeglichen und Liicken in der Doku-
mentation finden sich hauptséchlich bei komplexeren Themen wie Relations.

Siena bot insgesamt das rundeste Angebot der fiinf untersuchten Werkzeuge und ist
deshalb unsere Empfehlung.

Siena

2 3

ORMLite Apache Cayenne

Abbildung 4: Die Siegertreppe unserer Fachstudie

46 von 51

A Versionshistorie

Version 1.0 (24.11.2011)

>

>

Erarbeitung der Empfehlung (7)

Syntaktische und stilistische Korrektur des gesamten Dokuments

Version 0.4 (29.10.2011)

>

>

>

>

Steckbriefe zu allen Werkzeugen erstellt (6.3)
Ermittlung der Endnoten aller begutachteten Werkzeuge (6.4)
Verbesserungen an der Beschreibung des Bewertungsschemas (6.2)

Erstellung eines Abkiirzungsverzeichnisses (B)

Version 0.3 (21.09.2011)

>

>

>

>

Beschreibung des Nutzungsszenarios verbessert (4)
Mengengeriist des Industriepartners aufgenommen (4.1)
Uberarbeitung der Bewertungskriterien (5)
Grundstruktur des Kapitels Evaluation festgelegt (6)
Beschreibungstext zur Voruntersuchung erstellt (6.1)
Erklarungen zur Shortlist-Matrix aufgenommen (6.1)
Bewertungsschema erstellt (6.2)

Vorlagen fiir die Steckbriefe erstellt (6.3)

Erste Resultate der Evaluation aufgenommen (6.4)

Version 0.2 (20.08.2011)

>

>

v

Vervollstédndigen der Titelseite und Korrektur der Seitennummerierung
Neues Layout des Marktiiberblicks inklusive Logos (3)

Uberarbeitung des Nutzungsszenarios (4)

Exaktere Definitionen und Ergénzungen der Bewertungskriterien (5)
Aufnahme von irrelevanten Bewertungskriterien (5.3)

Erstellung der Shortlist auf Basis der K.O.-Kriterien (6.1)

Version 0.1.1 (30.07.2011)

> Ganzheitliche Korrekturen an der Dokumentstruktur

> Grobe Skizzierung der Nutzungsszenarios (4)

> Einbinden des Kriterienkatalogs (5)

> Ausformulieren von relevanten Bewertungskriterien und K.O.-Kriterien (5)
Version 0.1 (30.06.2011)

> Erstellen der ersten Fassung der Ausarbeitung

> KEinbinden eines tabellarischen Marktiiberblicks {iber die vorhandenen OR-Mapping-
Werkzeuge (3)

B Abkiirzungsverzeichnis

API Application Programming Interface
DAO Data Access Object

DBMS Datenbankmanagementsystem
ERM Entity-Relationship-Modell
GUI Graphical User Interface
JAR Java Archive

J2ME Java Platform Micro Edition
JDBC Java Database Connectivity
JDK Java Development Kit

JDO Java Data Objects

JPA Java Persistence API

OR Object-Relational

ORM Object-Relational Mapping

POJO Plain Old Java Object

Shortlist Engere Auswahl von Werkzeugen fiir die Evaluationsphase
SoPra Softwarepraktikum

SQL Structured Query Language

XML Exstensible Markup Language

C Abbildungsverzeichnis

1
2
3
4

Verlauf der Fachstudie 4
Abbild eines Car-PCs e 16
Cayenne Modeler L 32
Die Siegertreppe unserer Fachstudie 46

D Tabellenverzeichnis

O R

Shortlist aus der Voruntersuchung 27
Gewichtung der Bewertungskriterien 29
Endnote anhand der erreichten Punktzahl 30
Resultat der Evaluation auf einen Blick 45

E Quellenverzeichnis

[Amb03] AMBLER, Scott W.: Agile Database Techniques. John Wiley & Sons, 2003

[BGP11] BUCHGRABER, Christian ; GILDEIN, Philipp ; PIRRUNG, Philipp: aidGer -

[Boull]

[Cayl1]
[Cinl1]
[Dat11]

Hilfskraftmittelverwaltungssystem. http://wuw.aidger.de. Version: 2011

BouGgHTON, Alex: Object Relational Database Mapping, Computer Science,
University of Colorado at Boulder, Vereinigte Staaten von Amerika, 2011

Apache Cayenne. http://cayenne.apache.org. Version: 13. Oktober 2011
Cinovo AG. http://www.cinovo.de. Version:22. November 2011

DataNucleus. http://www.datanucleus.org. Version:23. September 2011

[ORM11] ORMLite. http://www.ormlite.com. Version:28. Oktober 2011

[Ors06]

[Per11]
[PT11]

[Rus08]

[Sch10]

[Siell]

ORSAG, Jaroslav: Object-Relational Mapping, Comenius University, Bratisla-
va, Slovakia, Diplomarbeit, 2006

Persist. https://github.com/rufiao/persist. Version: 13. September 2011

POSTGRESQL-TEAM: PostgreSQL - DBMS. http://www.postgresql.org.
Version: 26. August 2011

RusseLL, Craig: Bridging the object-relational divide. In: ACM Queue 6
(2008), 07, Nr. 3, S. 1828

ScHEIT, Philipp: Analyse und Lisungen fiir den Object-relational Impedance
Mismatch, Goethe-Universitéit, Frankfurt am Main, Diplomarbeit, 2010

Siena. http://www.sienaproject.com. Version: 10. November 2011

http://www.aidger.de
http://cayenne.apache.org
http://www.cinovo.de
http://www.datanucleus.org
http://www.ormlite.com
https://github.com/rufiao/persist
http://www.postgresql.org
http://www.sienaproject.com

Erkldrung

Hiermit versichern wir, diese Arbeit selbstandig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Christian Buchgraber, Philipp Gildein, Philipp Pirrung)

	Einleitung
	Begriffe
	Entstehungsgeschichte
	Wichtige Anforderungen
	Aufbau des Dokumentes

	Ablauf der Fachstudie
	Phasen
	Zeitlicher Verlauf

	Marktüberblick
	Nutzungsszenario
	Mengengerüst

	Bewertungskriterien
	K.O.-Kriterien
	Lizenzierung
	Leichtgewichtigkeit/Abhängigkeiten
	Status der Entwicklung
	Unterstützung des Datenbankmanagementsystems

	Weitere relevante Kriterien
	Performanz der INSERT-Abfragen
	Dokumentation/Support
	Simplizität des Abspeicherns
	Generierung des Datenbankschemas
	Anlegen von Datenbanken
	Einarbeitungsaufwand
	Form der Modelldefinition
	Community
	Vielfältiger Einsatz
	Syntax von Abfragen
	Umgang mit INSERT- und UPDATE-Abfragen
	Vererbungsstrukturen zwischen Datenmodellen
	Transaktionen
	Antwort bei Fehlschlägen
	Entity-Manager
	Unterstützung bei Schemamigration
	Unterstützung bei Datenmigration

	Irrelevante Kriterien

	Evaluation
	Voruntersuchung
	Bewertungsschema
	Werkzeuge
	Apache Cayenne
	DataNucleus
	ORMLite
	Persist
	Siena

	Resultat

	Empfehlung
	Versionshistorie
	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Quellenverzeichnis

