
Institut für Softwaretechnologie
Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Fachstudie Nr. 147

Leichtgewichtige
Java-OR-Mapping-Werkzeuge

ChristianBuchgraber, PhilippGildein, Philipp Pirrung

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. rer. nat. Jochen Ludewig

Betreuer: Daniel Kulesz, M.Sc.

begonnen am: 1. Juni 2011

beendet am: 24. November 2011

CR-Klassifikation: D.2.3

Zusammenfassung

OR-Mapper (objektrelationale Mapper) sind heutzutage eine wichtige Abstraktions-
schicht, um objektorientierte Konzepte in die Welt der relationalen Datenbanken zu
bringen. Diese Werkzeuge bieten aber weit mehr als nur die Vermittlung zwischen den
beiden Konzepten. Sie versuchen auch viele weitere Hilfestellungen zu leisten, von denen
der Entwickler oftmals nur Bruchteile benötigt. So werden große Werkzeuge eingesetzt,
um ein für den Entwickler kleines Problem zu lösen. Dieses Problem greift die Klasse
der leichtgewichtigen objektrelationalen Mapper an. Durch ein kleineres Repertoire an
Fähigkeiten und weniger externer Abhängigkeiten versuchen sie, einen schlankeren Lö-
sungsansatz zu bieten.

In dieser Fachstudie soll ein Blick auf eben diese Klasse von Werkzeugen geworfen wer-
den, um für ein konkretes, leichtgewichtiges Nutzungsszenario das am besten passende
Werkzeug zu finden. Dazu wird zuerst ein genereller Überblick über die am Markt an-
gebotenen OR-Mapper erstellt. Aus diesen werden dann leichtgewichtige Kandidaten
ausgesucht und gemäß dem Nutzungsszenario evaluiert, um die für das spezielle Pro-
blem beste Lösung zu finden.

Abstract

Leightweight Java OR Mapping Tools

In today’s world, OR mappers (object-relational mappers) form an important layer of
abstraction used to integrate object-oriented concepts into relational databases. These
tools offer a much broader range of features than merely the connection between the
two concepts as they try to assist the user with many more problems. Developers ge-
nerally only need a small part of the supplied features, hence using large-scale tools for
small-scale problems. This issue is dealt with by the class of lightweight object-relational
mappers. By offering a less extensive selection of features as well as fewer external de-
pendencies, they aim for a slimmer approach towards the issue.

In the context of this study, this class of tools will be focused in an attempt to find
the best-fitting tool for a specific lightweight user scenario. For this purpose an overview
of OR mappers currently on the market will be created. The lightweight candidates will
then be isolated and evaluated according to the user scenario. This finally results in a
fitting tool for the specific problem.

Inhaltsverzeichnis

1 Einleitung 1
1.1 Begriffe . 1
1.2 Entstehungsgeschichte . 1
1.3 Wichtige Anforderungen . 2
1.4 Aufbau des Dokumentes . 2

2 Ablauf der Fachstudie 3
2.1 Phasen . 3
2.2 Zeitlicher Verlauf . 4

3 Marktüberblick 5

4 Nutzungsszenario 15
4.1 Mengengerüst . 16

5 Bewertungskriterien 17
5.1 K.O.-Kriterien . 17

5.1.1 Lizenzierung . 17
5.1.2 Leichtgewichtigkeit/Abhängigkeiten 17
5.1.3 Status der Entwicklung . 18
5.1.4 Unterstützung des Datenbankmanagementsystems 18

5.2 Weitere relevante Kriterien . 19
5.2.1 Performanz der INSERT-Abfragen 19
5.2.2 Dokumentation/Support . 19
5.2.3 Simplizität des Abspeicherns . 20
5.2.4 Generierung des Datenbankschemas 20
5.2.5 Anlegen von Datenbanken . 21
5.2.6 Einarbeitungsaufwand . 21
5.2.7 Form der Modelldefinition . 21
5.2.8 Community . 22
5.2.9 Vielfältiger Einsatz . 22
5.2.10 Syntax von Abfragen . 23
5.2.11 Umgang mit INSERT- und UPDATE-Abfragen 23
5.2.12 Vererbungsstrukturen zwischen Datenmodellen 23
5.2.13 Transaktionen . 24
5.2.14 Antwort bei Fehlschlägen . 24
5.2.15 Entity-Manager . 24
5.2.16 Unterstützung bei Schemamigration 25
5.2.17 Unterstützung bei Datenmigration 25

5.3 Irrelevante Kriterien . 25

6 Evaluation 26

6.1 Voruntersuchung . 26
6.2 Bewertungsschema . 28
6.3 Werkzeuge . 31

6.3.1 Apache Cayenne . 31
6.3.2 DataNucleus . 34
6.3.3 ORMLite . 37
6.3.4 Persist . 40
6.3.5 Siena . 43

6.4 Resultat . 45

7 Empfehlung 46

A Versionshistorie 47

B Abkürzungsverzeichnis 48

C Abbildungsverzeichnis 49

D Tabellenverzeichnis 49

E Quellenverzeichnis 49

1. Einleitung Leichtgewichtige Java-OR-Mapping-Werkzeuge

1 Einleitung

In der heutigen Softwareentwicklung sind objektorientierte Programmiersprachen kaum
noch wegzudenken. Auf Sprachkonzepte wie Information Hiding oder Vererbung möch-
ten nur die wenigsten bei der Entwicklung moderner Anwendungen verzichten. Ebenso
sind relationale Datenbanken seit Jahrzehnten die erste Wahl für die persistente Da-
tenspeicherung. Das Problem, dass sich objektorientierte Datenstrukturen nicht direkt
in allen Aspekten mit relationalen Datenbanken abbilden lassen, wurde in den 1990er
Jahren als Object-relational Impedance Mismatch [Ors06, Sch10] bekannt. Hierzu existie-
ren verschiedene Lösungsansätze, um den konzeptionellen Widerspruch aufzulösen oder
zumindest zu mildern. Ein Ansatz sind die sogenannten objektrelationalen Mapper, um
die es in dieser Fachstudie geht.

1.1 Begriffe

OR-Mapper

Ein objektrelationaler Mapper (
”
OR-Mapper“) ist nach [Rus08] eine Abstraktionsschicht,

die das Objektmodell einer Anwendung mit einer relationalen Datenbank verbindet. Ein
OR-Mapper lässt Datenbankzugriffe auf eine objektorientierte Weise zu und kümmert
sich um die Zuordnung zwischen den Objekten der Anwendung und den Tabellen der
Datenbank. Die OR-Zuordnung ist für den Entwickler unsichtbar.

Leichtgewichtigkeit

Im Kontext dieser Arbeit ist mit Leichtgewichtigkeit gemeint, dass wenige Abhängigkei-
ten zu externen Bibliotheken vorhanden sein dürfen.

1.2 Entstehungsgeschichte

2010 entwickelten studentische Hilfskräfte im Auftrag der Abteilung Software Enginee-
ring am Institut für Softwaretechnologie (ISTE) die Bibliothek AdoHive, die auf den ers-
ten Blick stark an einen OR-Mapper erinnert. AdoHive übernimmt zwar einige Aufgaben
eines OR-Mappers, schreibt aber das Datenmodell fest vor, weil die Bibliothek speziell
für das Softwarepraktikum (SoPra) im selben Jahr entstanden ist. Die Teilnehmer des
SoPras hatten die Aufgabe, ein Verwaltungssystem für die Hilfskräfte am Institutsver-
bund Informatik zu entwickeln und sollten zur Datenverwaltung auf die spezifische API
von AdoHive zurückgreifen, sodass alle Datenbankzugriffe durch die Bibliothek gekap-
selt werden. Dadurch mussten sich die Studenten nicht in die Konzepte von relationalen
Datenbanken einarbeiten, sondern konnten sich von Beginn an auf die Anwendungslogik
und Benutzeroberfläche ihres Verwaltungssystems konzentrieren.

Als Teilnehmer an diesem Softwarepraktikum entwickelten wir die Software aidGer
[BGP11], die bei der Abnahme als eines der Siegerprojekte gekürt wurde. Nach einer
Evaluationsphase und der Migration der Daten aus dem vorherigen Verwaltungssystem
ist die Software seitdem erfolgreich beim Kunden im Einsatz. Neue Anforderungen ver-

1 von 51

1.3 Wichtige Anforderungen Leichtgewichtige Java-OR-Mapping-Werkzeuge

langen es nun, den Unterbau von aidGer anzupassen. Da sich AdoHive bei der Weiterent-
wicklung an aidGer als äußerst unflexibel offenbarte und die Wartung der Anwendung
erschwerte, haben wir gemeinsam mit dem Kunden die Entscheidung getroffen, AdoHi-
ve durch einen frei verfügbaren OR-Mapper in der nächsten, stabilen Version zu ersetzen.

Zur selben Zeit suchte die Cinovo AG mit Sitz in Stuttgart ebenfalls einen OR-Mapper
für ein neues Software-Projekt. Der gesuchte OR-Mapper soll dabei auf einem Gerät zum
Einsatz kommen, das wenige Ressourcen zur Verfügung stellt. Durch diese Anforderung
unterscheiden sich die Szenarien der beiden Projekte und können nicht von demselben
Blickwinkel aus begutachtet werden. Daher konzentriert sich diese Fachstudie auf das
Nutzungsszenario der Cinovo AG. Allerdings hoffen wir, dass uns die Erkenntnisse der
Arbeit für eine Entscheidungsfindung bei der Wahl eines geeigneten OR-Mappers für das
Verwaltungssystem aidGer weiterhelfen.

1.3 Wichtige Anforderungen

Die leistungsschwache Hardware erfordert einen speziellen OR-Mapper. Der Industrie-
partner stellt die folgenden Anforderungen an das gesuchte Werkzeug:

. Der gesuchte OR-Mapper muss in der Programmiersprache Java geschrieben sein.

. Der gesuchte OR-Mapper muss leichtgewichtig sein (s. 1.1).

. Der gesuchte OR-Mapper muss mit der Datenbank umgehen können, die bereits
erfolgreich in anderen Software-Projekten des Unternehmens im Einsatz ist. Kon-
kret handelt es sich um das DBMS PostgreSQL [PT11].

. Der gesuchte OR-Mapper muss aktiv weiterentwickelt werden und stabil laufen.

. Die Lizenz des gesuchten OR-Mappers darf den kommerziellen Einsatz nicht un-
tersagen. Eine Open-Source-Lizenz wird vom Industriepartner bevorzugt.

1.4 Aufbau des Dokumentes

Kapitel 2 geht auf den generellen Ablauf der Fachstudie ein. Es werden die einzelnen Pha-
sen der Studie beschrieben und diese auf einer Zeitachse eingeordnet. Einen Überblick
über die momentan am Markt verfügbaren OR-Mapper liefert Kapitel 3. Das darauffol-
gende Kapitel behandelt das Nutzungsszenario der Cinovo AG und stellt das geforderte
Mengengerüst vor. Die zur Bewertung herangezogenen Kriterien werden anschließend
in Kapitel 5 genauer erläutert. Daraufhin trifft das sechste Kapitel eine Vorauswahl an
OR-Mappern und definiert ein Bewertungsschema. Das restliche Kapitel zeigt die Ergeb-
nisse der Evaluation, wobei jedes Werkzeug zunächst einzeln vorgestellt wird. In Kapitel
7 geben wir schließlich beruhend auf den Erkenntnissen aus der Evaluationsphase eine
Empfehlung für die Cinovo AG ab.

2 von 51

2. Ablauf der Fachstudie Leichtgewichtige Java-OR-Mapping-Werkzeuge

2 Ablauf der Fachstudie

Nachfolgend wird der Ablauf dieser Arbeit vorgestellt, die in knapp sechs Monaten vom
01.06.2011 bis 24.11.2011 durchgeführt wurde.

2.1 Phasen

Beginn der Fachstudie

Die Fachstudie begann am 1. Juni 2011 mit einem Kick-Off-Meeting in den Geschäfts-
räumen der Cinovo AG in Stuttgart-Mitte. Nach einer kurzen Vorstellung der Cinovo AG
schilderten uns zwei Vertreter des Unternehmens die momentane Situation und ihr Pro-
blem hinsichtlich der Auswahl eines geeigneten OR-Mappers. Da wir im Vorfeld Analy-
sefragen vorbereitet hatten, konnten wir uns in der anschließenden Fragerunde ein erstes
Bild über die Anforderungen an die von der Cinovo AG angestrebte Werkzeug-Lösung
machen.

Projektplan und Recherche

Im Anschluss haben wir aus den Erkenntnissen des Kundengesprächs zum einen den
Ablauf der Fachstudie geplant, zum anderen den Markt nach geeigneten OR-Mappern
untersucht. Nachdem der erste Überblick verschaffen war, haben wir in einem ersten
Schritt eine Liste der vielversprechenden OR-Mappern erstellt. Diese enthält zu jedem
Werkzeug relevante Informationen wie beispielsweise dessen Lizenz und fasst Hersteller-
aussagen stichwortartig zusammen.

Analyse der Bewertungskriterien

In einem späteren Treffen wurden wichtige Bewertungskriterien mit unserem Ansprech-
partner bei der Cinovo AG erörtert und festgehalten. Auch wurde die Relevanz der Kri-
terien angesprochen und diese auf einer Ordinalskala eingestuft. Darüber hinaus wurden
konkrete Anforderungen für die Erfüllung des jeweiligen Kriteriums vereinbart. Es stell-
te sich bei der Diskussion heraus, dass einige Kriterien unter allen Umständen erfüllt
sein müssten. Diese Kriterien wurden deshalb als K.O.-Kriterien eingestuft und bei der
Bewertung als solche behandelt.

Voruntersuchung

In einer Voruntersuchung wurden alle gefundenen Werkzeuge auf die vereinbarten K.O.-
Kriterien hin geprüft und mit Hilfe einer Tabelle diejenigen Werkzeuge bestimmt, die
alle K.O.-Kriterien erfüllen. Durch dieses Vorgehen konnte im weiteren Verlauf der Fokus
auf einen kleinen Teil der Werkzeuge (sog. Shortlist) gelegt werden.

3 von 51

2.2 Zeitlicher Verlauf Leichtgewichtige Java-OR-Mapping-Werkzeuge

Definition eines Bewertungsschemas

Um eine Vergleichsbasis zwischen den Werkzeugen zu schaffen, wurde von uns als Nächs-
tes ein Bewertungsschema festgelegt, das auf einem einfachen, mathematischen Verfah-
ren basiert und jedem untersuchten OR-Mapper eine Punktzahl sowie eine zugehörige
Endnote zuordnet.

Evaluation der Werkzeuge

In der Evaluationsphase haben wir die in der Voruntersuchung ausgewählten Werkzeuge
auf alle weiteren Bewertungskriterien überprüft und je nach Erfüllungsgrad des jewei-
ligen Kriteriums bewertet bzw. auf der Ordinalskala eingestuft. Daraus ließ sich eine
Gesamtpunktzahl und schließlich eine Endnote für jedes Werkzeug berechnen.

Erarbeitung der Empfehlung

Da die Endnoten der OR-Mapper auf Basis eines mathematischen Verfahrens entstan-
den sind, wurde im letzten Schritt die Plausibilität der Ergebnisse überprüft. Dabei
wurden Vor- und Nachteile der einzelnen OR-Mapper unter Berücksichtigung des Nut-
zungsszenarios des Industriepartners abgewägt. Auch der subjektive Eindruck floss bei
der Plausibilitätsüberprüfung mit ein.

Abgabe und Ende der Fachstudie

Im November wurde die Fachstudie mit der Abgabe dieser Ausarbeitung und der Prä-
sentation der Ergebnisse in einem Abschlussvortrag beendet.

2.2 Zeitlicher Verlauf

Das nachfolgende Gantt-Diagramm zeigt den zeitlichen Verlauf der zuvor beschriebenen
Phasen und die erreichten Meilensteine.

Abbildung 1: Verlauf der Fachstudie

4 von 51

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

3 Marktüberblick

Dieses Kapitel stellt einen Überblick über die aktuell verfügbaren OR-Mapping-Werkzeuge
auf dem Markt dar. Jeder OR-Mapper wird stichwortartig vorgestellt. Alle Aussagen
stammen von den Herstellern und können darum mehr versprechen, als der OR-Mapper
tatsächlich leistet.

Active Objects
Untersuchte Version

0.8.2 (22.04.08)

Lizenz

Apache 2.0

Webseite

activeobjects.java.net

. Ausgelegt auf Einfachheit und leichte Bedienung

. Performanz ist kein primäres Ziel

. Leichte Integration in existierendes Produkt

. Einsatz des bestehenden Datenbankschemas möglich

. Automatische Generierung des Datenbankschemas

. Unterstützt Lazy-Loading und Caching-Mechanismen

Active JDBC
Untersuchte Version

1.2 (10.08.11)

Lizenz

Apache 2.0

Webseite

code.google.com/p/jdbc

. Implementierung des Active-Record-Entwurfsmusters

. Inspiriert von ActiveRecord aus Ruby on Rails

. Paradigma: Konvention vor Konfiguration

. Leichte Bedienung und Leichtgewichtigkeit

. Reduzierung des Codes auf das Minimum

. Kenntnisse in Datenbanksprache SQL erforder-
lich

5 von 51

http://activeobjects.java.net
http://code.google.com/p/activejdbc/

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Ammentos

Untersuchte Version

1.3.7 (24.11.08)

Lizenz

GPL

Webseite

ammentos.org

. Auf Leichtgewichtigkeit und Einfachheit ausgelegt

. Verwendung von JDK5-Annotationen

. Keine Installation und Konfiguration erforderlich

. Keine Abhängigkeiten (Stand-Alone-Library)

. Hersteller bietet eine Support-Lizenz an

Apache Cayenne

Untersuchte Version

3.0.2 (21.06.11)

Lizenz

Apache 2.0

Webseite

cayenne.apache.org

. Portabilität zwischen Datenbanken mit JDBC-
Schnittstelle

. SQL-Kenntnisse sind nicht erforderlich

. Einfacher Code zur Validierung der Datenmodelle

. Lazy-Loading und Caching zur Performanzsteige-
rung

. GUI-Tool zur Modellierung des Datenbanksche-
mas

Apache JDO

Untersuchte Version

3.0 (08.04.10)

Lizenz

Apache 2.0

Webseite

db.apache.org/jdo

. Implementierung des JDO-Standards

. Transparente Persistenz der POJOs

. Unterstützt nicht-relationale Datenbanken

. Leichte Bedienung

6 von 51

http://www.ammentos.org
http://cayenne.apache.org
http://db.apache.org/jdo

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Apache ObjectRelationalBridge

Untersuchte Version

1.0.4 (01.01.06)

Lizenz

Apache 2.0

Webseite

db.apache.org/ojb

. Unterstützung verschiedener Persistenz-APIs

. Einfache Bedienung und Leichtgewichtigkeit

. Einfache Integration in bestehenden Code

. Transparente Persistenz: Freie Vererbungshierarchie

. OR-Mapping mittels XML-Repository

. Mehrere Datenbanken einsetzbar

Apache OpenJPA

Untersuchte Version

2.1.1 (27.07.11)

Lizenz

Apache 2.0

Webseite

openjpa.apache.org

. Implementierung des JPA-Standards

. Verwendung der Datenbanksprache JPQL

. Konfiguration über XML-Dateien

. Unterstützt Datenbanktransaktionen

. Früher Apache Kodo genannt

Apache Torque

Untersuchte Version

3.3.1 (18.02.11)

Lizenz

Apache 2.0

Webseite

db.apache.org/torque

. Zugriff auf User-Klassen über XML-Schemata an-
statt Reflection

. Generierung der Modelle aus bestehender Datenbank
möglich

. Verbirgt Implementierungsdetails der Datenbanken

. Ursprünglich Teil des Turbine-Frameworks

7 von 51

http://db.apache.org/ojb
http://openjpa.apache.org
http://db.apache.org/torque

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Athena Framework

Untersuchte Version

2.0.0 (20.03.11)

Lizenz

LGPL

Webseite

athenasource.org

. Bietet Unterstützung für Cloud-Applikationen an

. Auf hohe Usability ausgelegt

. Verwendung der Datenbanksprache EJBQL

. Konfiguration über XML-Dateien

. Unterstützt Multitenancy (Mandantenfähigkeit)

. Verfügt über eine GUI zur Änderung des Datenbank-
schemas

. Stellt Hilfsmittel zur Datenmigration bereit

. Kostenpflichtiger Support erhältlich

Carbonado

Untersuchte Version

1.2.2 (10.12.10)

Lizenz

Apache 2.0

Webseite

carbonado.sf.net

. Erweiterbar und hochperformant

. Verwendung von Java-Annotationen

. Unterstützung von nicht-SQL-konformen Datenban-
ken

. Definition der Datenmodelle über Schnittstellen oder
abstrakte Klassen

. Keine externe Konfigurationsdateien

. Einsatz eines Repositories (Datenbank-Gateway)

. Gebrauch des Transaktionskonzepts

. Ursprünglich von Amazon entwickelt

8 von 51

http://athenasource.org/
http://carbonado.sf.net

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Castor
Untersuchte Version

1.3.2 (29.03.11)

Lizenz

Apache 2.0

Webseite

castor.org

. Verwendung einer XML-basierenden Mapping-Datei

. Code-Generierung anhand existierender XML-Schemen

. Implementierung eines Daten-Caches

. Verwendung der Datenbanksprache OQL

. Unterstützt Datenbanktransaktionen

. Integration in andere Frameworks möglich

DataNucleus

Untersuchte Version

3.0.0 (01.08.11)

Lizenz

Apache 2.0

Webseite

datanucleus.org

. Implementiert offene Persistenzstandards wie JDO
und JPA

. Features sind einzelne Plug-Ins

. Datenbankabfragen mit Hilfe verschiedener Abfrage-
sprachen

. Unterstützt nicht-relationale Datenbanken

. Basiert auf OSGi-Technologie

Dozer

Untersuchte Version

5.3.2 (15.02.11)

Lizenz

Apache 2.0

Webseite

dozer.sf.net

. Java Bean nach Java-Bean-Mapper

. Bereitstellung eines Eclipse-Plug-Ins

. Konfiguration über Property-Datei

. Verwendung von XML-Dateien sowie Annotatio-
nen

9 von 51

http://www.castor.org
http://www.datanucleus.org
http://dozer.sf.net

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Ebean
Untersuchte Version

2.7.3 (23.03.11)

Lizenz

LGPL

Webseite

avaje.org

. Einfachere API als JPA-Standard

. Konfiguration über Property-Datei

. Verwendung von Java-Annotationen

. Kombination der JPA-Merkmale und
”
Relational“-

Merkmale (z.B. aus IBatis)

EclipseLink

Untersuchte Version

2.2.1 (29.07.11)

Lizenz

Eclipse Public License

Webseite

eclipse.org/eclipselink

. Referenzimplementierung des JPA-Standards

. Ausgelegt auf Vollständigkeit, Verständlichkeit und
Vielseitigkeit

. Unterstützung von einigen Persistenzstandards (z.B.
JPA, JAXB)

. Konfiguration über XML-Dateien

. Automatische Generierung des Datenbankschemas

. Verwendung von Caching-Mechanismen

. Interaktion mit verschiedenen Datensystemen

. Unterstützt Lazy-Loading

. Migration von anderen OR-Mapping-Werkzeugen

Enterprise Objects Framework (EOF)
Untersuchte Version

5.2.3 (01.12.08)

Lizenz

Proprietär

Webseite

apple.com/webobjects

. Bestandteil von WebObjects (Applikationsserver)

. GUI-Tool zum OR-Mapping

. Benutzung vorhandener Datenbankschemas

. Existenz diverser Open-Source-Implementierungen

. Vertrieb durch Apple

10 von 51

http://avaje.org
http://www.eclipse.org/eclipselink
http://www.apple.com/webobjects

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Floggy

Untersuchte Version

1.4.0 (09.02.11)

Lizenz

Apache 2.0

Webseite

floggy.sf.net

. Für J2ME-/MIDP-Anwendungen entwickelt

. Fokus auf Performanz gelegt

. Leichtgewichtig (Entwicklung für mobile Geräte)

. Definition der Datenmodelle über Schnittstellen

. Unterstützt Lazy-Loading

. Stellt Hilfsmittel zur Datenmigration bereit

. Übersichtliche Dokumentation

Hibernate

Untersuchte Version

3.6.6 (21.07.11)

Lizenz

LGPL

Webseite

hibernate.org

. Implementierung des JPA-Standards

. Integration in Applikationsserver und Servlet-
Engines

. Abfragesprache: Hibernate Query Language (HQL)

. OR-Mapping mittels XML-Datei oder Annotationen

. Unterstützung von Vererbungsbeziehungen

. Kompatibilität mit verschiedenen Datenbanken

. Einsatz in mehr als 10.000 Java-Projekten

Java Ultra-Lite Persistence
Untersuchte Version

3.0.1 (09.06.11)

Lizenz

GPL

Webseite

julp.sf.net

. Leichtgewichtig (kleine Dateigröße, Stand-Alone)

. Unterstützung von Vererbung

. Unterstützt Lazy-Loading und Caching-Mechanismen

11 von 51

http://floggy.sf.net
http://www.hibernate.org
http://julp.sf.net

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

JPMapper

Untersuchte Version

0.7.1Beta (28.12.10)

Lizenz

LGPL

Webseite

jpmapper.sf.net

. Fokus auf Schnelligkeit und Flexibilität gelegt

. Einfache Bedienung

. SQL-Statements sind nicht erforderlich

. Implementiert das Facade-Entwurfsmuster

. Konfiguration über Property-Dateien

Oracle TopLink

Untersuchte Version

11.1.1.4.0 (01.11)

Lizenz

Oracle License

Webseite

oracle.com/.../toplink

. Implementierung des JPA-Standards 1.0 und 2.0

. Fokus auf hohe Performanz, Skalierbarkeit und Fle-
xibilität gelegt

. Verwendet Komponenten von EclipseLink

ORMLite
Untersuchte Version

4.25 (22.08.11)

Lizenz

Eigene OS-Lizenz

Webseite

ormlite.com

. Speziell als leichtgewichtiges Werkzeug entwickelt

. Unterstützt die Android Mobile Plattform

. Konfiguration der Klassen mittels Java-Annotationen

. Flexibler Query-Builder wird bereitgestellt

. Unterstützt Datenbanktransaktionen

. Generierung von Datenbanktabellen

12 von 51

http://jpmapper.sf.net
http://www.oracle.com/technology/products/ias/toplink
http://ormlite.com

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Persist
Untersuchte Version

1.1.1 (03.02.11)

Lizenz

BSD

Webseite

github.com/rufiao/persist

. Stellt minimale Mapping-Funktionalität bereit

. Auf hohe Performanz, einfache Benutzbarkeit und
Integration ausgelegt

. Keine Konfigurationsdateien

. Definition des Datenmodells über Annotationen

. Verwendung der Datenbanksprache SQL

. Benötigt nahezu kein explizites Mapping

Prevayler
Untersuchte Version

2.3 (08.06.06)

Lizenz

BSD

Webseite

prevayler.org

. Zeichnet sich durch Einfachheit, Schnelligkeit und
Fehlertoleranz aus

. Objekte werden im Arbeitsspeicher gehalten

. Dump auf ein nichtflüchtiges Medium in regelmäßi-
gen Abständen

QuickDB

Untersuchte Version

1.3-Beta2 (03.07.10)

Lizenz

LGPL

Webseite

code.google.com/quickdb

. Ausgelegt auf Einfachheit

. Wenig Konfigurationsaufwand

. Unterstützung von Vererbungshierarchien der Da-
tenmodelle

. Generierung von Datenbanktabellen

13 von 51

https://github.com/rufiao/persist
http://www.prevayler.org
http://code.google.com/p/quickdb

3. Marktüberblick Leichtgewichtige Java-OR-Mapping-Werkzeuge

Siena
Untersuchte Version

1.0.0-b5 (24.06.11)

Lizenz

Apache 2.0

Webseite

sienaproject.com

. Ausgelegt auf Leichtgewichtigkeit

. Einfache Bedienung

. Keine externen Abhängigkeiten

. Verwendung von Annotationen

. Unterstützung von nicht-relationalen Datenbanken

. Implementierung des Active-Record-Entwurfsmusters

. Als Modul im Play!-Framework verfügbar

SimpleORM

Untersuchte Version

3.11 (22.08.09)

Lizenz

Apache 1.1

Webseite

simpleorm.org

. Keine externen Abhängigkeiten

. Einfache Konfiguration

. Kein Gebrauch von Reflection, XML und Annotatio-
nen

. Vermeidung exotischer Technologien wie Byte Code
Generation

. Ausgestattet mit einer einfachen Objektstruktur und
Architektur

Speedo

Untersuchte Version

1.4.5 (22.05.06)

Lizenz

LGPL

Webseite

speedo.ow2.org

. Open-Source-Implementierung des JDO-Standards
1.0.1

. Caching von persistenten Objekten

. Generierung des Datenbankschemas

. Abhängigkeiten zu einigen OW2-Frameworks

14 von 51

http://www.sienaproject.com
http://www.simpleorm.org
http://speedo.ow2.org

4. Nutzungsszenario Leichtgewichtige Java-OR-Mapping-Werkzeuge

4 Nutzungsszenario

Bei der Cinovo AG [Cin11] handelt es sich um ein Unternehmen, das in erster Linie
Software für Börsenhändler entwickelt und vertreibt. Diese Software basiert auf einem
Java-Applikationsserver und nutzt für die Verwaltung der Daten die vorhandene OR-
Mapper-Bibliothek Hibernate. Da für den Betrieb der Anwendung leistungsstarke Ser-
ver bzw. Workstations verwendet werden, wurde weniger Wert auf Leichtgewichtigkeit
gelegt, sondern mehr auf die Funktionalität und die Möglichkeit, komplexe Strukturen
darzustellen, geachtet.

Um die Kompetenzen des Unternehmens auszubauen, wird ein neuer Geschäftsbereich
aufgebaut. Ziel des Geschäftsbereichs ist es, Dienstleistungen und Produkte für die Au-
tomobilindustrie zu vertreiben. Als erstes Projekt wird ein sogenannter Car-PC (s. Ab-
bildung 2) entwickelt. Der Car-PC wird über einen Anschluss mit dem Auto verbunden
und zeichnet während der gesamten Betriebszeit Daten auf. Nach dem Abschluss einer
Fahrt können diese Daten auf einem anderen Rechner ausgewertet werden, um so Auf-
schluss über das Verhalten des Autos im Betrieb zu erhalten.

Bei den Daten handelt es sich um Messdaten, die das Auto zur Verfügung stellt und
die mehrmals pro Sekunde in der Datenbank gespeichert werden sollen sowie um GPS-
Koordinaten, die einmal pro Sekunde eingetragen werden. Da das Produkt auf dem
Car-PC nur Daten in eine Datenbank schreibt und keine ausliest, hat dies starke Aus-
wirkungen auf die Bewertungskriterien.

Zudem verfügt der verwendete Car-PC nur über eine eingeschränkte Leistungsfähig-
keit. Daher eignet sich hier eine schwergewichtige und komplexe Lösung wie beim ersten
Produkt der Cinovo AG nicht. Stattdessen wird eine leichtgewichtige Lösung bevorzugt,
die mit den vorhandenen Ressourcen sparsam umgeht. Diese Einschränkung hat aber
keine Auswirkungen auf die Software, die später zur Auswertung verwendet werden soll.

Da bei allen bisherigen Produkten der Cinovo AG das freie Datenbankmanagementsys-
tem PostgreSQL zum Einsatz kommt und das Unternehmen mit diesem DBMS bislang
gute Erfahrungen gemacht hat, möchte der Industriepartner auch bei der Entwicklung
der Software für den Car-PC auf dieses DBMS setzen. Darum muss der gesuchte OR-
Mapper in der Lage sein, mit PostgreSQL ohne Probleme umgehen zu können.

15 von 51

4.1 Mengengerüst Leichtgewichtige Java-OR-Mapping-Werkzeuge

Abbildung 2: Abbild eines Car-PCs

4.1 Mengengerüst

Bei der Anwendung für den Car-PC kommen drei verschiedene Modelle zum Einsatz,
um die zu messenden Daten des Autos abzuspeichern:

. Ein Device ist eine Komponente des Autos, die Daten an die Anwendung sendet.

. Ein Measurement ist ein solches Datenpaket.

. Ein PositionFix speichert Position, Geschwindigkeit und ähnliche Daten zu einem
bestimmten Zeitpunkt ab.

In einem Auto gibt es etwa 40 Device-Objekte, die für die Anwendung relevant sind.
Sie liefern pro Sekunde zwischen 1 und 5 Datenpakete, die in Measurement-Objekten
abgespeichert werden. Zudem wird einmal pro Sekunde mit Hilfe eines GPS-Adapters
ein PositionFix -Objekt erstellt.

16 von 51

5. Bewertungskriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5 Bewertungskriterien

Dieses Kapitel stellt die Kriterien vor, die mit dem Industriepartner abgesprochen wur-
den. Die Skala eines Kriteriums dient dazu, den Vergleich zwischen den verschiedenen
Werkzeugen zu ermöglichen. Ein Werkzeug wird auf einer Stufe der Skala eingeordnet,
wenn es die Anforderung des Industriepartners für diese Stufe erfüllt.

5.1 K.O.-Kriterien

Das gesuchte Werkzeug muss wichtige Anforderungen unbedingt erfüllen. Diese spiegeln
sich in den nachfolgenden K.O.-Kriterien wieder.

5.1.1 Lizenzierung

Beschreibung

Dieses K.O.-Kriterium beschäftigt sich damit, unter welcher Lizenz das zu bewertende
Werkzeug zur Verfügung gestellt wurde.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Das Werkzeug wurde unter einer Open-Source-Lizenz veröffentlicht.

. Die Lizenz erlaubt eine kommerzielle Nutzung.

. Die Lizenz enthält keine starke Copyleft-Klausel.

Beispiele

. Apache 2.0 von der Apache Software Foundation

. LGPL von der Free Software Foundation

5.1.2 Leichtgewichtigkeit/Abhängigkeiten

Beschreibung

In diesem K.O.-Kriterium geht es darum, dass das zu bewertende Werkzeug leichtge-
wichtig sein muss (s. 1.1).

Skala

⊕ / 	

Anforderung des Industriepartners

. Es dürfen maximal 5 externe Bibliotheken vom Werkzeug eingebunden werden.
Der JDBC-Treiber wird hierbei nicht berücksichtigt.

17 von 51

5.1 K.O.-Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.1.3 Status der Entwicklung

Beschreibung

Alle Werkzeuge, die aktiv weiterentwickelt werden, sich offiziell nicht mehr in der Test-
phase befinden und bereits seit längerer Zeit auf dem Markt sind, genügen diesem K.O.-
Kriterium.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Das letzte stabile Release des Werkzeugs liegt nicht länger als 9 Monate zurück.

. Die letzte Entwicklungsaktivität (HEAD-Revision im Repository) ist nicht länger
als 4 Monate her.

. Es ist ersichtlich, dass die Weiterentwicklung nicht eingestellt wurde bzw. in kur-
zer Zeit eingestellt wird.

. Das Werkzeug befindet sich nach Herstellerangaben nicht mehr in der Testphase.

. Der Startpunkt der Entwicklung (erste Revision im Repository) ist länger als 12
Monate her.

5.1.4 Unterstützung des Datenbankmanagementsystems

Beschreibung

Das zu bewertende Werkzeug muss nativ das zu verwendende Datenbankmanagement-
system (DBMS) unterstützen.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Das Werkzeug bietet nach Herstellerangaben Unterstützung für PostgreSQL an.

. Die Verbindung zu PostgreSQL wurde vom Hersteller getestet und ist von uns
als stabil einzustufen.

18 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.2 Weitere relevante Kriterien

Zur Beurteilung der Werkzeuge tragen maßgeblich weitere Kriterien bei. Diese werden
absteigend nach ihrer Relevanz in diesem Abschnitt charakterisiert.

5.2.1 Performanz der INSERT-Abfragen

Beschreibung

Das Werkzeug muss Daten performant in die Datenbank schreiben können, sodass die
maximale Last des Mengengerüsts (s. 4.1) verarbeitet werden kann.

Für den Lasttest haben wir ein Skript entwickelt, das einen zehnminütigen Testlauf auf
einem Car-PC durchführt. Das Skript ermittelt zunächst in einem Brute-Force-Verfahren
die maximale Anzahl der INSERT-Befehle und führt anschließend basierend auf dem
Mengengerüst ein Testlauf durch, der die realistischen Bedingungen besser simuliert.
Diese Simulation bezieht sich auf die maximale Last: Alle 200 Millisekunden müssen 40
Measurement-Objekte sowie jede Sekunde ein PositionFix -Objekt gespeichert werden.
Hochgerechnet müssen demnach 120.000 Measurement-Instanzen und 600 PositionFix -
Objekte in 10 Minuten persistiert werden. Falls das Brute-Force-Verfahren deutlich mehr
Datensätze in dieser Zeit speichert, als es das Mengengerüst vorschreibt, kann sich das
Werkzeug während der Durchführung des Lasttests auch im Leerlauf befinden.

Skala

⊕ / � / 	

Anforderungen des Industriepartners

⊕ Das Werkzeug verbringt während der Durchführung des Performanztests 20 oder
mehr Prozent der Zeit im Leerlauf und kann mühelos mit dem Mengengerüst
umgehen. Dies zeigt sich auch daran, dass im Brute-Force-Verfahren deutlich
mehr Objekte gespeichert werden können, als es das Mengengerüst fordert.

� Das Werkzeug arbeitet das Mengengerüst in der vorgegebenen Zeit zuverlässig
ab, d.h. alle zu speichernden Datensätze wurden persistiert und es wurden nur
vereinzelnd Durchläufe nicht in der vorgeschriebenen Zeit erledigt.

	 Das Werkzeug kann mit der maximalen Last nicht umgehen. Dies zeigt sich darin,
dass mehr als 10 Prozent der Durchläufe nicht in dem vorgegebenen Zeitintervall
(200ms) erledigt werden konnten.

5.2.2 Dokumentation/Support

Beschreibung

Es ist gefordert, dass die Dokumentation des Werkzeugs zumindest aus einem
”
Getting

Started“-Dokument besteht, damit sich der Benutzer in kurzer Zeit einen Überblick über
den Funktionsumfang des Werkzeugs machen kann und sich nicht langwierig durch eine

19 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

API-Dokumentation oder im schlimmsten Fall durch den Quellcode selbst kämpfen muss.
Support durch den Hersteller muss nicht gewährleistet sein.

Skala

⊕ / � / 	

Anforderungen des Industriepartners

⊕ Es existiert eine ausführliche Dokumentation, die maßgeblich über ein
”
Getting

Started“-Dokument hinausgeht.

� Der Hersteller stellt mindestens ein für die Einarbeitung hilfreiches
”
Getting

Started“-Dokument bereit.

	 In allen anderen Fällen.

5.2.3 Simplizität des Abspeicherns

Beschreibung

Das Abspeichern der Modelle sollte möglichst einfach gestaltet sein. Darunter fällt unter
anderem, ob mehr als ein Funktionsaufruf benötigt wird, um das Modell zu speichern
bzw. mehr als ein Persistenzmanager verwendet wird. Ein Peristenzmanager ist eine
Komponente, die persistente Objekte verwaltet und Datenbankoperationen durchführt.

Skala

⊕ / � / 	

Anforderungen des Industriepartners

⊕ Falls ein Persistenzmanager verwendet wird, so sollte die Speicherung mit einem
einzigen Manager möglich sein. Wird ein solcher nicht verwendet, muss das Ab-
speichern in einem selbsterklärenden Aufruf erfolgen.

� Das Abspeichern ist mit Hilfe eines einzigen Aufrufes möglich.

	 Der Aufruf zum Abspeichern besteht aus mehreren Operationen.

5.2.4 Generierung des Datenbankschemas

Beschreibung

Aus der Definition der Modelle sollte sich das Datenbankschema für das zu verwendende
DBMS generieren lassen.

Skala

⊕ / 	

20 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

Anforderungen des Industriepartners

. Das Datenbankschema kann auf Basis der Modelldefinitionen auf der Konsole
oder in einer eigenen Datei im SQL-Format ausgegeben werden.

5.2.5 Anlegen von Datenbanken

Beschreibung

Falls vor dem eigentlichen Start des Produkts zunächst eine neue Datenbank mitsamt
des Datenbankschemas erstellt werden muss, sollte das Aufsetzen der Grundstruktur der
Datenbank vom Werkzeug selbst automatisch durchgeführt werden.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Das Werkzeug kann beim Start mit einer leeren Datenbank alle Tabellen selbst
anlegen.

5.2.6 Einarbeitungsaufwand

Beschreibung

Es wird verlangt, dass das Werkzeug keinen langwierigen Einarbeitungsaufwand erfor-
dert. Der Einarbeitungsaufwand wird dadurch gemessen, wie lange ein Entwickler be-
nötigt, um mit dem Werkzeug ohne größere Probleme umgehen zu können. Hierbei ist
unser subjektive Eindruck, der beim Implementieren eines Beispieles entsteht, ausschlag-
gebend.

Skala

⊕ / � / 	

Anforderungen des Industriepartners

⊕ Die Einarbeitung entspricht der Komplexität des Problems.

� Die Einarbeitung ist mit kleineren Problemen verbunden.

	 Während der Einarbeitung kommt es zu größeren Problemen.

5.2.7 Form der Modelldefinition

Beschreibung

Es sollte möglich sein, die Datenbankmodelle im Java-Code in Form von Annotationen
zu definieren.

Skala

⊕ / � / 	

21 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

Anforderungen des Industriepartners

⊕ Die Datenbankmodelle können über Java-Annotationen beschrieben werden.

	 Die Datenbankmodelle können lediglich über XML-Dateien oder vergleichbaren
Konfigurationsmöglichkeiten spezifiziert werden.

5.2.8 Community

Beschreibung

Spezifische Fragen bezüglich des Werkzeugs sollen von einer Internet-Community beant-
wortbar sein. Als Teil der Community gelten hierbei Foren, Mailing-Listen und Chats
wie z.B. ein IRC-Kanal oder direkte Kontaktmöglichkeiten zu den Entwicklern.

Skala

⊕ / � / 	

Anforderungen des Industriepartners

⊕ Die Community ist sehr aktiv und beantwortet Fragen schnell und zuverlässig.

� Es existiert eine Community, die Fragen über das Werkzeug sporadisch beant-
wortet.

	 Für das Werkzeug ist keine aktive Community vorhanden.

5.2.9 Vielfältiger Einsatz

Beschreibung

Da das Werkzeug unter Umständen auch nach dem Ablauf der Fachstudie für andere
Softwareprojekte eingesetzt werden soll, ist es von entscheidendem Vorteil, wenn das
Werkzeug nicht zu sehr auf das zu entwickelnde Produkt zugeschnitten ist.

Skala

⊕ / � / 	

Anforderungen des Industriepartners

⊕ Das Werkzeug ist modular aufgebaut und demnach erweiterbar.

� Es werden SELECT-Befehle sowie weitere DBMS unterstützt.

	 In allen anderen Fällen.

22 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.2.10 Syntax von Abfragen

Beschreibung

Der Syntax von Datenbankabfragen sollte nicht ausschließlich von SQL oder einer ande-
ren vergleichbaren Datenbanksprache vorgegeben werden. Das Werkzeug soll eine Mög-
lichkeit vorsehen, die Syntax von Abfragen auch oder nur über Klassen und deren Funk-
tionen bilden zu können.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Es werden zur Erstellung von Abfragen Funktionen bzw. Klassen zur Verfügung
gestellt, sodass der Nutzer kein SQL oder ähnliche Datenbanksprachen verwenden
muss.

5.2.11 Umgang mit INSERT- und UPDATE-Abfragen

Beschreibung

Es soll vom zu bewertenden Werkzeug keine Unterscheidung zwischen dem Speichern
eines neuen Datenbankeintrags mittels einer INSERT-Abfrage und dem Ändern eines al-
ten Datenbankeintrags mittels einer UPDATE-Abfrage im Java-Programmcode gemacht
werden.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Zum Einfügen und Ändern von Datenbankeinträgen wird derselbe Befehl verwen-
det.

5.2.12 Vererbungsstrukturen zwischen Datenmodellen

Beschreibung

Das zu bewertende Werkzeug soll in der Lage sein, mit Vererbungsstrukturen zwischen
Datenmodellen umzugehen.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Ein konzipiertes Codebeispiel, bei dem ein Datenmodell von einem anderen erbt,
lässt sich mit Hilfe des Werkzeugs auf die relationale Datenbank abbilden.

23 von 51

5.2 Weitere relevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.2.13 Transaktionen

Beschreibung

Die Sicherstellung der Datenintegrität durch Transaktionen ist ein Feature heutiger Da-
tenbanken und sollte vom Werkzeug unterstützt werden.

Skala

⊕ / � / 	

Anforderungen des Industriepartners

⊕ Transaktionen sind möglich, müssen jedoch nicht genutzt werden.

� Transaktionen sind möglich und müssen genutzt werden.

	 Transaktionen werden nicht unterstützt.

5.2.14 Antwort bei Fehlschlägen

Beschreibung

Falls es beim Speichern eines Datensatzes zu einem Fehler kommt, sollte vom Werkzeug
anstelle einer Exception ein Boolean-Wert zurückgeliefert werden.

Skala

⊕ / � / 	

Anforderungen des Industriepartners

⊕ Das Rückgabeverhalten beim Auftreten eines Fehlers ist einstellbar.

� Ein Rückgabewert meldet fehlerhafte Datenbankzugriffe.

	 Fehler bei Datenbankzugriffen werden dem Aufrufer mittels Exceptions mitge-
teilt.

5.2.15 Entity-Manager

Beschreibung

Das Werkzeug soll nicht zwangsweise fordern, jedes Datenmodell von einer Basisklasse
ableiten zu müssen.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Es kann ein Entity-Manager verwendet werden, um selbst noch Ableitungen im
Datenmodell einsetzen zu können.

24 von 51

5.3 Irrelevante Kriterien Leichtgewichtige Java-OR-Mapping-Werkzeuge

5.2.16 Unterstützung bei Schemamigration

Beschreibung

Bei Änderungen im Datenmodell ist eine Unterstützung seitens des Werkzeugs bei der
Migration des bestehenden Datenbankschemas hilfreich.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Das Werkzeug unterstützt den Entwickler bei der Schemamigration mit Hilfe
einer technischen Vorrichtung.

5.2.17 Unterstützung bei Datenmigration

Beschreibung

Eine Unterstützung seitens des zu bewertenden Werkzeugs bei der Migration von Daten
auf ein neues Datenbankschema ist ein hilfreiches Feature, das das Werkzeug anbieten
sollte.

Skala

⊕ / 	

Anforderungen des Industriepartners

. Das Werkzeug unterstützt den Entwickler bei der Datenmigration mit Hilfe einer
technischen Vorrichtung.

5.3 Irrelevante Kriterien

Einige von uns vorgeschlagenen Kriterien spielten für den Industriepartner keine Rolle.
Diese irrelevanten Kriterien sind der Vollständigkeit halber hier aufgelistet.

. Visuelle Tools: GUI-Tools, die Hilfe beim Erstellen des Datenbankschemas leis-
ten, sind nicht von Bedeutung, da das Schema über die Datenmodelle definiert
wird.

. Extraktion des Schemas: Die automatische Erstellung von Modellen aus einem
existierenden Datenbankschema ist nicht erforderlich.

. Validierung: Die Validierung der Daten eines Modells ist nicht notwendig.

. Lazy-Loading: Das dynamische Nachladen von Daten beziehungsweise Verknüp-
fungen ist nicht gefordert.

. Caching: Da Daten direkt in die Datenbank gespeichert werden sollen, um Da-
tenverluste zu vermeiden, wird kein Caching benötigt.

25 von 51

6. Evaluation Leichtgewichtige Java-OR-Mapping-Werkzeuge

6 Evaluation

6.1 Voruntersuchung

Vor der eigentlichen Evaluationsphase fand eine Voruntersuchung statt, in der diejenigen
Werkzeuge aussortiert wurden, die von vorneherein nicht den Wünschen des Industrie-
partners entsprachen. Die gekürzte Liste (Shortlist) enthält darum nur noch Werkzeuge,
die alle K.O.-Kriterien erfüllen.

Die Vorauswahl geschah mit Hilfe einer Matrix (Tabelle 1 auf der nächsten Seite).
Sie stellt dar, welche K.O.-Kriterien von den Werkzeugen erfüllt wurden. Bei einigen
Werkzeugen mussten K.O.-Kriterien nicht näher untersucht werden, da bereits andere
K.O.-Kriterien vom Werkzeug nicht erfüllt wurden.

Erklärung der Legende

Erfüllt (⊕) Alle Anforderungen des Kriteriums sind erfüllt.

Nicht erfüllt () Mindestens eine Anforderung des Kriteriums ist nicht
erfüllt.

Nicht überprüft (?) Das Kriterium wurde im Rahmen der Fachstudie nicht
überprüft.

Erklärung der Kürzel

LIZ Lizenz des Werkzeugs

DEP Anzahl der externen Abhängigkeiten

REL Letztes stabiles Release

ACT Letzte Entwicklungsaktivität

TES Werkzeug in Testphase

STA Startpunkt des Projekts

DBMS Unterstützung des Datenbankmanagementsystems

26 von 51

6.1 Voruntersuchung Leichtgewichtige Java-OR-Mapping-Werkzeuge

Name LIZ DEP
Status der Entwicklung

DBMS
REL ACT TES STA

Active Objects ⊕ ? 	 	 ? ? ?

Active JDBC ⊕ ⊕ ⊕ ⊕ 	 ⊕ ⊕
Ammentos 	 ? 	 ? ? ? ?

Apache Cayenne ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Apache JDO ⊕ ⊕ 	 ? ⊕ ? 	
Apache ORB ⊕ ? 	 ? ? ? ?

Apache OpenJPA ⊕ 	 ⊕ ⊕ ⊕ ? ⊕
Apache Torque ⊕ ? 	 ? ? ? ?

Athena ⊕ 	 ⊕ ? ⊕ ? 	
Carbonado ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 	
Castor ⊕ 	 ⊕ ⊕ ⊕ ⊕ ⊕
DataNucleus ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Dozer ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 	
Ebean ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 	
EclipseLink ⊕ 	 ⊕ ⊕ ⊕ ? ⊕
EOF ? ? 	 ? ? ? ?

Floggy ⊕ ⊕ ⊕ 	 ⊕ ⊕ 	
Hibernate ⊕ 	 ⊕ ⊕ ⊕ ? ⊕
Java Ultra-Lite 	 ? ⊕ ? ? ? ?

JPMapper ⊕ ? ⊕ ? 	 ? ?

Oracle TopLink 	 	 ⊕ ? ⊕ ? ⊕
ORMLite ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Persist ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Prevayler ⊕ ? 	 ? ? ? ?

QuickDB ⊕ ? 	 	 ? ? ?

Siena ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
SimpleORM ⊕ ⊕ 	 ⊕ ⊕ ⊕ ⊕
Speedo ⊕ ? 	 ? ? ? ?

Legende Erfüllt: ⊕ | Nicht erfüllt: 	 | Nicht überprüft: ?

Tabelle 1: Shortlist aus der Voruntersuchung

27 von 51

6.2 Bewertungsschema Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.2 Bewertungsschema

Grundsätzliches Vorgehen für ein Werkzeug

Sind alle Kriterien eines Werkzeugs bewertet, werden die Punktzahlen mit ihrer Gewich-
tung multipliziert und daraufhin aufsummiert. Die Summe wird durch die Gesamtan-
zahl der möglichen Punkten dividiert und das Werkzeug bekommt schließlich anhand
des Quotienten eine Endnote zugewiesen.

Mathematisch gesprochen ist der Quotient QW für ein Werkzeug W definiert durch

QW =
1

Pg

∑
i

gipi

Hierbei ist

i ein Kriterium aus Kapitel 5.2,

gi die Gewichtung des Kriteriums i nach Absprache mit dem Industriepartner,

pi die Punktzahl des Kriteriums i anhand der Evaluationsergebnisse,

Pg die maximal erreichbare Punktzahl.

Die Punktzahlen, Gewichtungen und Endnoten können mit Hilfe der nachfolgenden Ta-
bellen ermittelt werden.

Punktzahlen

Ein Werkzeug wird auf einer Stufe der Skala eingeordnet, wenn es die Anforderung
des Industriepartners für diese Stufe erfüllt und kann eine Punktzahl zwischen 0 und 2
Punkten für dieses Kriterium bekommen.

Ergebnis Punktzahl Bedeutung im Allgemeinen

⊕ 2 Punkte Die Anforderung wird vollständig erfüllt.

� 1 Punkt Die Anforderung wird teilweise erfüllt.

	 0 Punkte Das Werkzeug wird der Anforderung nicht gerecht.

28 von 51

6.2 Bewertungsschema Leichtgewichtige Java-OR-Mapping-Werkzeuge

Gewichtungen

Alle möglichen Gewichtungen befinden sich auf der Ordinalskala [0, 5]. Die Gewichtung
gi = 0 repräsentiert die irrelevanten Kriterien, die für die Evaluation keine Rolle spielen.

Kriterium i gi

Performanz der INSERT-Abfragen 5

Dokumentation/Support 5

Simplizität des Abspeicherns 5

Generierung des Datenbankschemas 5

Anlegen von Datenbanken 5

Einarbeitungsaufwand 4

Form der Modelldefinition 4

Community 4

Vielfältiger Einsatz 4

Syntax von Abfragen 4

Umgang mit INSERT- und UPDATE-Abfragen 4

Vererbungsstrukturen zwischen Datenmodellen 4

Transaktionen 3

Antwort bei Fehlschlägen 3

Entity-Manager 2

Unterstützung bei Schemamigration 1

Unterstützung bei Datenmigration 1

Tabelle 2: Gewichtung der Bewertungskriterien

29 von 51

6.2 Bewertungsschema Leichtgewichtige Java-OR-Mapping-Werkzeuge

Endnoten

Aus den maximal erreichbaren Punkten und den Gewichtungen ergibt sich eine Gesamt-
punktzahl Pg von 126 Punkten.

QW [%]
Benötigte
Punkte

Endnote

100-95 119 1+

95-90 113 1

90-85 107 1-

85-80 100 2+

80-75 94 2

75-70 88 2-

70-65 81 3+

65-60 75 3

60-55 69 3-

55-50 63 4+

50-45 56 4

45-0 0 5

Tabelle 3: Endnote anhand der erreichten Punktzahl

30 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3 Werkzeuge

6.3.1 Apache Cayenne

Untersuchte Version

3.0.2 (21.06.11)

Lizenz

Apache 2.0

Webseite

cayenne.apache.org

Apache Cayenne [Cay11] bewirbt sich unter anderem
damit, dass für die Verwendung keine XML- oder
Annotation-basierte Konfiguration des Werkzeugs not-
wendig ist. Dies trifft nach eingehender Begutachtung
jedoch nur zu, falls die mitgelieferte GUI-Anwendung
zur Konfiguration und Modellierung verwendet wird.
Will man auf eine GUI-basierte Modellierung verzich-
ten, ist man dazu gezwungen, die Modellierung in
XML-Form anzugeben. Das Werkzeug ist auch allge-
mein stark auf die Benutzung der GUI-Anwendung ausge-
legt und bietet viele Funktionen ausschließlich in selbiger
an.

<data -map [...]>

<db-entity name=" device" schema =" public">

<db-attribute name=" description" type=" VARCHAR" length ="256"/ >

<db-attribute name="id" type=" INTEGER" isPrimaryKey ="true"

isMandatory ="true" length ="10"/ >

<db-attribute name="name" type=" VARCHAR" length ="256"/ >

<db-attribute name="type" type=" VARCHAR" length ="256"/ >

<db-attribute name="urn" type=" VARCHAR" length ="256"/ >

</db-entity >

</data -map >

Listing 1: Auszug aus der XML-Definition des Device-Modells

Die Dokumentation von Apache Cayenne ist ausführlich und nach etwas Einarbeitungs-
zeit auch verständlich, jedoch existieren zum Teil noch Sektionen, die als

”
Draft“ gekenn-

zeichnet sind. Es gibt nicht nur ein
”
Getting Started“-Tutorial und eine JavaDoc-API,

sondern auch weitere Informationen zu einzelnen Teilen des Werkzeugs sowie ein Leitfa-
den zur Einarbeitung in den Cayenne Modeler und die Erweiterung für Remote Clients.
Da das Werkzeug allerdings recht umfangreich ist und man sich sowohl in die Modelling-
UI als auch in die Verwendung von Apache Cayenne an sich einarbeiten muss, kann es
bei der Einarbeitung durchaus zu kleineren Problemen kommen. Sollte versucht werden,
auf den Cayenne Modeler zu verzichten, wäre dies nicht ohne erheblichen Einarbeitungs-
aufwand möglich.

Die Community von Apache Cayenne besteht im Wesentlichen aus einer Mailing-Liste,
die anfallende Fragen in der Regel innerhalb weniger Tage beantwortet und bei der Lö-
sung auftretender Probleme hilft. Weitere vom Entwickler unterstützte Foren oder Chats
konnten nicht gefunden werden, jedoch bieten zwei der Hauptentwickler von Apache Ca-
yenne einen kommerziellen Support an, der von persönlicher Beratung bei der Erstellung
von Projekten über das Entwickeln von kundenspezifischen Features bis hin zu direktem

31 von 51

http://cayenne.apache.org

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Kontakt mit den Entwicklern zur Fehlerbehebung reicht.
Datenbankabfragen werden in Apache Cayenne gänzlich ohne SQL-Syntax formuliert,
was es auch Entwicklern ohne SQL-Kenntnisse erlaubt, effizient mit dem Werkzeug um-
zugehen. Über die Persistenzklassen, die von dem mitgelieferten Cayenne Modeler ge-
neriert werden können, werden die Änderungen an einem Objekt an den zugehörigen
Persistenzmanager übergeben, der diese dann an die Datenbank übermittelt. Hierbei
werden neue, gelöschte und geänderte Objekte gleich behandelt, was für eine übersicht-
lichere Strukturierung der Query-Syntax sorgt. Auch SELECT-Abfragen müssen nicht
in SQL-Syntax formuliert werden, sondern können über Funktionen, die auf einem der
Datenmodelle basieren, durchgeführt werden.
Speziell für SELECT-Abfragen verfügt Cayenne über einige performanzsteigernde Op-
timierungen. Hierzu gehören Caching, Lazy-Loading und Prefetching von relationalen
Daten. Prefetching ermöglicht es im Gegensatz zum Lazy-Loading, durch einen einzigen
Query-Aufruf mehr als nur einen Objekttyp aus der Datenbank zu lesen. Das hat den
Vorteil, dass auf der Datenbank intern erheblich wenigere Abfragen ausgeführt werden
müssen.

Abbildung 3: Cayenne Modeler

32 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Datenmodelle, die von Apache Cayenne persistiert werden sollen, müssen alle von der
internen Klasse CayenneDataObject abgeleitet werden. Die daraus resultierende Klassen-
struktur ist nicht sehr übersichtlich, besonders, da die Dokumentation dringend davon
abrät, vom Cayenne Modeler erzeugte Klassen zu verändern, da diese bei erneuter Ge-
nerierung gänzlich überschrieben werden. Dies erfordert, dass die bereits abgeleiteten
Klassen ein weiteres Mal abgeleitet werden müssen.

Die GUI-Anwendung von Apache Cayenne, namentlich Cayenne Modeler, stellt Möglich-
keiten zur Modellierung des Datenbankschemas, Konfiguration des Werkzeugs, Migration
von vorhandenen Datenbankschemata sowie zur Generierung der Persistenzklassen zur
Verfügung. Durch die für den Cayenne Modeler separat existierende Dokumentation ist
die Einarbeitung in den Cayenne Modeler einfach und die angebotenen Funktionen sind
nach kurzer Zeit verständlich.

Die Verwaltung von Datenbankschemata ist dank des Cayenne Modelers simpel gehal-
ten. So kann über wenige Mausklicks ein bestehendes Datenbankschema nachgebaut
und als Datenmodell verwendet werden. Bei Änderungen am Datenmodell oder am Da-
tenbankschema bietet Apache Cayenne eine Migrationshilfe an. Der Nutzer kann da-
bei entscheiden, welche Änderungen auf Datenmodell und Datenbankschema angewandt
werden sollen. Zudem stellt Apache Cayenne mehrere Möglichkeiten zur Verfügung, das
erstellte Datenmodell als Schema auf die Datenbank abzubilden. Zum einen kann der
Nutzer sich im Cayenne Modeler die SQL-Befehle zur Erstellung des Schemas anzeigen
lassen, sie als Datei speichern oder direkt ausführen lassen. Zum anderen kann er eine
Schema-Update-Strategie wählen, die das Schema automatisch zur Laufzeit erstellt, falls
die Datenbank kein Schema enthält.

In Bezug auf die Leichtgewichtigkeit liegt Apache Cayenne mit drei externen Abhängig-
keiten ohne JDBC im Mittelfeld der untersuchten Werkzeuge. Mit diesen Abhängigkeiten
lässt sich auch die volle Funktionalität des Werkzeugs erreichen.

PRO CONTRA

⊕ Simple Syntax 	 Mapping über XML-Dateien

⊕ Unterstützung bei der Migration
des Schemas

	 Vererbung von Basisklasse an
Datenmodelle erforderlich

33 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3.2 DataNucleus

Untersuchte Version

3.0.0 (01.08.11)

Lizenz

Apache 2.0

Webseite

datanucleus.org

Als einziger OR-Mapper in der näheren Auswahl implemen-
tiert DataNucleus [Dat11] die offenen Persistenzstandards
Java Data Objects (JDO) und Java Persistence API (JPA).
Dies ermöglicht es, das Werkzeug bei Bedarf ohne große
Probleme gegen ein anderes Werkzeug auszutauschen. Kan-
didaten, die mindestens einen der genannten Standards im-
plementieren und daher als Ersatz für DataNucleus fungie-
ren können sind beispielsweise OpenJPA, EclipseLink oder
auch Hibernate, die jedoch alle drei nicht den Anspruch auf
einen leichtgewichtigen Mapper haben und folglich im Rah-
men der Voruntersuchung aus der näheren Auswahl entfernt
wurden.

Aufgrund der Unterstützung dieser und weiterer Standards ist es auch das Werkzeug, das
die meisten externen Abhängigkeiten benötigt und kann nur dann als leichtgewichtig im
Sinne dieser Fachstudie bezeichnet werden, wenn der Entwickler zum Verwalten seiner
Datenobjekte ausschließlich den JDO-Standard verwendet. Aus diesem Grund wurde im
Rahmen der Fachstudie die Implementierung des JPA-Standards von DataNucleus nicht
weiter untersucht, da dieser laut Herstellerangaben auf den JDO-Standard aufbaut und
deshalb sowohl dessen Referenzen zusätzlich zu den eigenen Abhängigkeiten benötigt als
auch einen Persistenzmanager vorschreibt.

DataNucleus basiert auf der OSGi-Technologie und ist daher modular aufgebaut. Dem
Werkzeug lassen sich so auf einfache Weise weitere Features als Modul bzw. Plug-In
hinzufügen. Diese können vom Entwickler selbst programmiert werden oder aus einer
großen Auswahl entnommen werden.

Zur Erstellung des Schemas bietet DataNucleus ein externes Programm namens Sche-
maTool sowie einen eigenen Byte-Code-Enhancer an, die beide durch eine weitere JAR-
Datei in die Anwendung eingebunden werden können. Der Byte-Code-Enhancer nimmt
dabei die Datenmodelle in Form von Java-Klassen als Eingabe und produziert daraus
vorkompilierte Objekte, die von DataNucleus persistiert werden können. Da diese Um-
wandlung je nach Anzahl der zu kompilierenden Java-Klassen lange dauern könnte, ist es
empfehlenswert, die Konvertierung als Pre-Build-Schritt vor der eigentlichen Ausführung
der Software durchführen zu lassen. Das SchemaTool kann anhand der Datenmodelle das
Schema der angegeben Datenbank erstellen oder auch wieder aus der Datenbank löschen.
Hilfreich kann hierbei die Validate-Funktion von SchemaTool sein, die ein existierendes
Schema auf Kompatibilität mit dem derzeitigen Datenmodell prüft und Abweichungen
feststellt. Des Weiteren kann mit dem SchemaTool das zu erstellende Datenbankschema
im SQL-Format in einer Datei ablegt werden.

Falls die Entwicklung mit Hilfe von Eclipse erfolgt, bietet DataNucleus hierfür ein

34 von 51

http://www.datanucleus.org

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Eclipse-Plug-In an, das dem Entwickler manche Arbeiten im Umgang mit DataNucleus
abnimmt. So sind der Enhancer wie auch das SchemaTool direkt in die Oberfläche von
Eclipse integriert und können ohne viel Konfigurationsaufwand auf ein bestehendes Java-
Projekt angewandt werden. Alternativ können die Build-Systeme Ant oder Maven zur
Konfiguration von DataNucleus eingesetzt werden, falls der Entwickler auf eine Java-
IDE verzichtet, die das Erstellen der Software übernimmt.

Hervorzuheben ist die ausführliche Dokumentation, die auf den Webseiten des Werkzeugs
zu finden ist. So bietet das

”
Getting Started“-Dokument einen ersten Überblick über die

Funktionalitäten des Werkzeugs. Für die weiteren Einzelheiten wird der Leser je nach
Wahl des Persistenzstandards auf ein weiterführendes Tutorial verwiesen, das Schritt
für Schritt mit Hilfe eines konkreten Beispiels die Grundfunktionen des Werkzeugs be-
schreibt. Darüber hinaus hat das Werkzeug eine aktive Community, die im Wesentlichen
aus einem Forum besteht, das DataNucleus-spezifische Fragen in den meisten Fällen zü-
gig beantwortet. Falls diese Hilfe nicht ausreichen sollte, können je nach Bedarf diverse
Supportverträge mit den Entwicklern abgeschlossen werden. Es ist außerdem möglich,
DataNucleus-Schulungen gegen Entgelt zu besuchen.

Das Werkzeug kann individuell konfiguriert werden. Die Konfiguration kann entweder
direkt im Java-Code erfolgen oder über eine Properties-Datei angegeben werden. Bei-
spielsweise ist es möglich, das Caching der Objekte zu verbieten, bevor diese in der
Datenbank abgespeichert werden. Über eine Einstellung lässt sich zudem das Schema
automatisch beim Start des Programms erstellen. Das Mapping an sich kann über Java-
Annotationen oder wahlweise auch über eine XML-Datei, die über eine Property dem
Werkzeug mitgeteilt wird, erfolgen.

In der JDO-Implementierung von DataNucleus ist es vom Hersteller empfohlen, Interak-
tionen mit der Datenbank mittels Transaktionen zu verarbeiten. Falls auf Transaktionen
verzichtet wird, haben wir beobachtet, dass neue Datensätze direkt in die Datenbank
geschrieben werden, sobald die Objekte persistiert wurden. Gemäß der DataNucleus-
Dokumentation werden Datensätze aktualisiert, sobald der Persistenzmanager geschlos-
sen wird.

Datenbankabfragen können mit verschiedenen Abfragesprachen durchgeführt werden;
der Entwickler hat die Wahl zwischen SQL, JDOQL, JPOXSQL und JPQL. Das Werk-
zeug kann außerdem in der JDO-Implementierung mit Vererbungsstrukturen in den Da-
tenmodellen umgehen und bietet dem Entwickler einige Vererbungsstrategien an, die
festlegen, auf welche Art und Weise die Vererbung in der relationalen Datenbank ab-
gebildet werden soll. Nennenswert ist ebenfalls, dass DataNucleus nicht nur relationale
Datenbanken, sondern mit entsprechenden Plug-Ins auch nicht-relationale Datenbanken,
unterstützt. Beispielsweise können Datensätze in objektbasierten Datenbanken wie db4o
oder auch in XML-Dokumenten persistiert werden.
Die größte Schwäche von DataNucleus ist die unzureichende INSERT-Performanz bei
der Verarbeitung der maximalen Last des Mengengerüsts. In den von uns durchgeführten

35 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Messungen auf dem Car-PC waren 70% der Speichervorgänge nicht in der vorgesehenen
Zeit geschehen, weswegen nicht alle erforderlichen Operationen auf der Datenbank in
der Gesamtzeit ausgeführt werden konnten (siehe Listing 2). Leider hatten auch einige
Performanz-Tweaks (z.B. kein L2-Caching) keinen spürbaren Effekt und brachten zum
Teil eine noch schlechtere Performanz als der Testlauf ohne jegliche Optimierungen.

|-------------------|-------|---------|-------|---------|-------------|

| Measurement Point | # | Average | Min | Max | Total |

|-------------------|-------|---------|-------|---------|-------------|

| Datapoint Insert | 95200 | 6.174 | 3.952 | 236.894 | 587 ,766.950 |

|-------------------|-------|---------|-------|---------|-------------|

| Position Insert | 476 | 6.469 | 4.234 | 21.685 | 3 ,079.440 |

|-------------------|-------|---------|-------|---------|-------------|

Listing 2: Ergebnis des Testlaufs (vgl. Kriterium Performanz der INSERT-Abfragen)

Durch die vielen Funktionen und Eigenarten von DataNucleus wie beispielsweise die Ein-
führung eines Enhancers bedarf es vergleichsweise viel Zeit bis das Werkzeug lauffähig
ist und der Entwickler sich eingearbeitet hat. Auch die Konformität zum JDO-Standard
wirkt sich negativ auf die Einarbeitungszeit aus.

Die Query-Syntax ist darüber hinaus nicht einheitlich. So werden INSERT- und UPDATE-
Befehle über Funktionen realisiert; für SELECT-Abfragen hingegen muss sich der Ent-
wickler mit einer Datenbanksprache wie JDOQL befassen. Das Einfügen und Bearbeiten
von Datensätzen werden über denselben Befehl durchgeführt, wobei beim Bearbeiten der
Datensatz zunächst vom Entity-Manager über den Primärschlüssel angefordert werden
muss.

Falls der Java-Code von der Datenbasis abweicht, muss sich der Entwickler selbst um das
Anpassen der Datenbank kümmern. DataNucleus bietet keine speziellen Mechanismen
für die Migration des Schemas oder die Daten an. Ferner ist es mit DataNucleus nicht
möglich, die Antwort bei Datenbankfehlern festzulegen. Sollte ein unerwarteter Fehler
auftreten, wird dieser dem Entwickler stets über Exceptions mitgeteilt.

Kurz gesagt bietet DataNucleus zwar zahlreiche Features für Entwickler an, die man
bei anderen Kandidaten vermisst, kommt aber nicht an deren Performanz heran.

PRO CONTRA

⊕ Großer Funktionsumfang 	 Schlechte INSERT-Performanz

⊕ Unterstützung von
Persistenzstandards

	 Hoher Einarbeitungsaufwand

36 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3.3 ORMLite

Untersuchte Version

4.25 (22.08.11)

Lizenz

Eigene OS-Lizenz

Webseite

ormlite.com

Bei ORMLite [ORM11] wurde vom einzigen Entwickler be-
reits während der Entwicklung großen Wert auf einen leicht-
gewichtigen OR-Mapper gelegt. Das Resultat ist ein Werk-
zeug, das außer dem eigentlichen Kern nur eine zusätzliche
Bibliothek zur Unterstützung der Datenbank durch einen
JDBC-Treiber benötigt. Komplexe Features wie die Migrati-
on von existierenden Schemas sind nicht implementiert und
es wurde von Anfang an darauf geachtet, dass kein großer
Ballast durch Komplexität, wie man ihn beispielsweise bei
Hibernate vorfindet, anfällt. Dennoch bietet ORMLite trotz
des kleinen Kerns eine Reihe von nützlichen Funktionen.

ORMLite richtet sich nach dem Entwurfsmuster Data Access Object (DAO) [Bou11],
das durch die Kapselung von Datenbankzugriffen das Austauschen der zugrundeliegen-
den Datenbank ermöglicht, ohne dabei den aufrufenden Java-Code dabei verändern zu
müssen. Die eigentliche Programmlogik wird hierbei strikt von den technischen Details
der Datenspeicherung getrennt; die Datenbankoperationen werden isoliert von der Pro-
grammlogik ausgeführt, wodurch diese flexibel einsetzbar ist. Jedes DAO bietet in ORM-
Lite Methoden zum Anlegen, Löschen und Bearbeiten von Datensätzen an und wickelt
in einem einzigen Objekt alle Datenbankinteraktionen pro Klasse ab (siehe Listing 3 für
ein Code-Beispiel). Der Entwickler verwaltet daher die Datenspeicherung bei mehreren
Modellen auch mit unterschiedlichen Entity-Managern.

S t r i n g c s = ”j d b c : p o s t g r e s q l : / / l o c a l h o s t :5432/ ORMLite ” ;
J d b c C o n n e c t i o n S o u r c e j d b c = new J d b c C o n n e c t i o n S o u r c e (cs , ”u s e r ” , ”pw ”) ;
Dao<Device , Long> dao = DaoManager . c reateDao (jdbc , D e v i c e . c l a s s) ;
dao . c r e a t e (new D e v i c e ()) ;

Listing 3: Speichern eines Device-Objekts mit Hilfe eines DAOs

Die Dokumentation von ORMLite macht auf den ersten Blick einen unzureichenden Ein-
druck. So ist das

”
Getting-Started“-Dokument zu kurz und man vermisst wichtige De-

tails; sucht man aber konkrete Stichworte, zeigt sich schnell, dass alle relevanten Aspekte
ausreichend und auf verständliche Weise beschrieben werden. Ein große Community über
das Werkzeug lässt sich nicht ausmachen: Es ist eine Mailing-Liste vorhanden, auf der
gelegentlich Fragen auch innerhalb weniger Tage beantwortet werden. Im Schnitt muss
man jedoch länger warten um eine Antwort zu erhalten. Auch ein umfangreicher Sup-
port kann nicht erwartet werden, da es sich bei dem Autor der Software im Gegensatz
zu manchen Konkurrenzwerkzeugen um eine einzelne Person handelt. Selbstverständlich
steht es jedem frei, den Autor des OR-Mappers direkt zu kontaktieren.

Die Abbildung der Datenmodelle auf die relationale Datenbank erfolgt standardmä-
ßig mit Hilfe von Java-Annotationen, wie es beispielsweise in Listing 4 für das Device-

37 von 51

http://ormlite.com

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Modell gemacht wurde. Alternativ lässt sich das Mapping der Java-Klassen auch direkt
im Quellode vollziehen. Wer das Spring-Framework verwendet, findet auf den Seiten von
ORMLite zusätzlich einige Beispiele, die zeigen, wie die Mapping-Konfiguration anhand
der XML-Dateien des Spring-Frameworks erfolgen kann.

@DatabaseTable
c l a s s D e v i c e {

// p r imary key
@ D a t a b a s e F i e l d (g e n e r a t e d I d = true)
p r i v a t e long i d ;

@ D a t a b a s e F i e l d
p r i v a t e S t r i n g urn ;

@ D a t a b a s e F i e l d
p r i v a t e S t r i n g name ;

@ D a t a b a s e F i e l d
p r i v a t e S t r i n g d e s c r i p t i o n ;

@ D a t a b a s e F i e l d
p r i v a t e Type t y p e ;

/∗ . . . ∗/
}

Listing 4: OR-Mappings des Device-Modells mit Java-Annotationen

Weiterhin steht dem Entwickler eine so genannte
”
Query-Builder“-Klasse zur Verfügung,

mit dem SELECT-Abfragen ohne eine Abfragesprache auf der Datenbank ausgeführt
werden können. Dabei geht die Flexibilität von gewöhnlichen SELECT-Abfragen im
SQL-Format nicht verloren. Das Anlegen und Bearbeiten von Datensätzen eines Mo-
dells geschieht dabei über verschiedene Methoden eines Data Access Objects. Darüber
hinaus können

”
rohe“ SQL-Abfragen direkt auf der Datenbank ausgeführt werden, falls

der Funktionsumfang des Query-Builders nicht ausreichen sollte.

Es gibt bei ORMLite ferner eine Reihe von Werkzeugen, die bei der Erstellung des Sche-
mas und der Tabellen helfen. Zum einen kann mit Hilfe der createTable-Methode aus der
TableUtils-Klasse die benötigten Tabellen automatisch generiert werden, zum anderen
kann durch den Aufruf einer anderen Methode derselben Klasse das SQL-Schema auf
der Konsole ausgegeben werden. Ein weiterer Pluspunkt ist, dass das Werkzeug einfache
Vererbungsstrukturen im Datenmodell auf eine relationale Datenbank abbilden kann,
indem das Werkzeug alle Basisklassen prüft und die gefundenen Attribute in die Tabelle
der Unterklasse aufnimmt.

Außerdem erleichtert ORMLite die Java-Entwicklung auf Android-Betriebssystemen, in-

38 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

dem es eine spezielle Bibliothek anbietet, die direkt auf die Android-Datenbank-API zu-
greift und so als OR-Mapper auf mobilen Endgeräten zum Einsatz kommen kann. Diese
spezielle Bibliothek ist dabei unabhängig von der JDBC-Schnittstelle zu benutzen, da
standardmäßig auf Android-Endgeräten keine JDBC-Treiber vorhanden sind und diese
speziell auf die Android-Runtime angepasst werden müssen.

Bei der Entwicklung der Anwendung muss auf manche Besonderheiten des OR-Mapping-
Werkzeugs ORMLite geachtet werden. Beispielsweise ist zu berücksichtigen, dass vom
Werkzeug stets ein Konstruktor ohne Parameter für jedes definierte Datenmodell gefor-
dert ist. Außerdem gab es beim Testen des Werkzeugs mit einer PostgreSQL-Datenbank
Probleme mit dem BigDecimal -Typ, der erst gesondert behandelt werden musste, be-
vor eine persistente Speicherung des gesamten Modells möglich war. Des Weiteren muss
beachtet werden, dass nur Attribute mit nicht primitiven Typen als Fremdschlüssel de-
klariert werden können. Die automatische Vergabe einer ID erfolgt bei ORMLite über
die Option generatedId der DatabaseField -Annotation.
Wer zudem Abweichungen zwischen Modell und Datenbank hat, muss diese selbst in der
Datenbank beheben, da ORMLite keine Unterstützung bei der Migration des Schemas
und der Daten anbietet. Bei Abweichungen und bei Fehlern im Allgemeinen werden stets
Exceptions geworfen. Ein Rückgabeverhalten im Fehlerfall lässt sich mit der ORMLite-
API folglich nicht einstellen.

Insgesamt betrachtet macht ORMLite einen stabilen Eindruck und ist durch die Unter-
stützung zahlreicher DBMS vielfältig einsetzbar. Der Funktionsumfang hingegen kann
die Ansprüche des Industriepartners nicht völlig zufriedenstellen. Weitere Funktionalitä-
ten lassen sich bei ORMLite nur direkt im Quellcode einbauen. Das speziell auf Leicht-
gewichtigkeit ausgelegte Werkzeug kann im Gegensatz zu DataNucleus ohne Probleme
mit der maximalen Last des Mengengerüsts umgehen.

PRO CONTRA

⊕ Fokus auf Leichtgewichtigkeit 	 Geringer Funktionsumfang

⊕ Schnelle Inbetriebnahme 	 Kleine Community und nur ein
Entwickler

39 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3.4 Persist

Untersuchte Version

1.1.1 (03.02.11)

Lizenz

BSD

Webseite

github.com/rufiao/persist

Persist [Per11] wurde von Beginn an als minimalistischer
und schlanker OR-Mapper konzipiert. Der Code umfasst
deshalb insgesamt nur 12 Klassen und verwendet oftmals
Java-Standardklassen anstatt eigene Methoden bereitzustel-
len. Dadurch sollen eine hohe Performanz, einfache Benutz-
barkeit und leichte Integrierbarkeit erreicht werden. Ein wei-
terer Vorteil davon ist, dass keine weiteren Abhängigkeiten
entstehen. Außer der Kernbibliothek wird nur der Daten-
banktreiber benötigt, um Persist in Betrieb zu nehmen.

Die Dokumentation von Persist beschränkt sich auf eine einzige README-Datei, die
nur noch durch die selbst zu erstellende JavaDoc-API-Dokumentation erweitert wird.
Durch den minimalistischen Ansatz ist jedoch nicht viel mehr nötig, um die Funktionali-
tät zu verstehen. Innerhalb weniger Minuten hat man die erste persistente Klasse erstellt
und die Daten in der Datenbank gespeichert.
Außer dem in der Web-Entwicklungsplattform GitHub1 vorhandenen Issue-Tracker be-
schränkt sich die Community auf eine kaum verwendete Mailing-Liste und selbst dort
scheint der Support durch den einzigen Entwickler auf Grund langer Antwortzeiten und
wenig Aktivität durch andere Mitglieder eher eingeschränkt zu sein.

Die Integration von Persist ist denkbar einfach. Die Verbindung zur Datenbank wird
über die Java-Standardklasse Connection aufgebaut, die nach erfolgreicher Verbindung
nur noch an Persist übergeben werden muss. Danach kann man mit einem einzelnen
Funktionsaufruf die Daten einer Klasse in der Datenbank speichern. Voraussetzung dafür
ist jedoch, dass man das Schema der Datenbank der Klasse entsprechend bereits manuell
angelegt hat, da Persist den Benutzer in dieser Richtung nicht unterstützt. Besitzt die
Klasse keine automatisch aufsteigenden IDs, so kommt Persist ganz ohne Annotationen
oder XML-Konfiguration aus. Sollte eine solche ID benötigt werden, so kann mit Hilfe
einer einzigen Annotation diese Funktion hinzugefügt werden. Dadurch ist der Übergang
von einer Anwendung ohne Datenbankpersistenz hin zum Speichern der Daten in der
Datenbank schnell und simpel zu bewältigen.

1http://www.github.com

40 von 51

https://github.com/rufiao/persist
http://www.github.com

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Eine kompakte Beispielanwendung könnte zum Beispiel folgendermaßen aussehen:

c l a s s D e v i c e {

p r i v a t e long i d ;
p r i v a t e S t r i n g urn ;
p r i v a t e S t r i n g name ;
p r i v a t e S t r i n g d e s c r i p t i o n ;
p r i v a t e Type t y p e ;

@Column (a u t o G e n e r a t e d=true)
p u b l i c long g e t I d () {

return i d ;
}

p u b l i c s t a t i c void main (S t r i n g [] a r g s) {
D e v i c e dev ;
/∗ Dev ice e r s t e l l e n und Daten e i n f ü g e n ∗/

t r y {
C l a s s . forName (”org . p o s t g r e s q l . D r i v e r ”) ;

} catch (j a v a . l a n g . C l a s s N o t F o u n d E x c e p t i o n e) { }

C o n n e c t i o n c o n n e c t i o n ;
t r y {

c o n n e c t i o n = Dr iverManager . g e t C o n n e c t i o n (
”j d b c : p o s t g r e s q l : / / l o c a l h o s t :5432/ p e r s i s t ” , ”p o s t g r e s ” , ”orm ”) ;

} catch (j a v a . s q l . SQLExcept ion e) {}

P e r s i s t p e r s i s t = new P e r s i s t (c o n n e c t i o n) ;
p e r s i s t . s a v e (dev) ;

}

/∗ . . . ∗/
}

Listing 5: Beispielanwendung mit Persist

Um Datenbankabfragen durchzuführen, verwendet Persist Standard-SQL, gibt jedoch
auf Wunsch nicht nur komplette Klassen zurück, sondern kann die erhaltenen Daten
auch automatisch in HashMap-Listen einsetzen. Auch einzelne Werte können direkt ab-
gefragt werden. Zudem beschränkt sich die Verwendung von SQL nicht auf Abfragen.
Es dürfen auch andere SQL-Befehle direkt über Persist an den Server gesendet werden.

Als eines von wenigen fortgeschrittenen Features unterstützt Persist immerhin Trans-
aktionen. Dazu muss das Werkzeug allerdings erst in einen speziellen Modus versetzt
werden, in dem man automatische Commits deaktiviert. Dadurch wirkt dieses Feature
im Vergleich mit anderen Werkzeugen etwas unintuitiv.

41 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

Viele weitere Features wie zum Beispiel die Unterstützung bei der Schemagenerierung
oder die Unterstützung von Vererbungsstrukturen fielen der Minimalität zum Opfer. Da-
durch kann Persist nur über seine Einfachheit und Performanz mit den anderen Werk-
zeugen konkurrieren.

PRO CONTRA

⊕ Einfache Integration 	 Wenige Features

⊕ Hohe Performanz 	 Keine Community und nur ein
Entwickler

42 von 51

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.3.5 Siena

Untersuchte Version

1.0.0-b5 (24.06.11)

Lizenz

Apache 2.0

Webseite

sienaproject.com

Siena [Sie11] wurde nicht nur für die Verwendung mit SQL-
Datenbanken ausgelegt, sondern soll mit demselben Code
auch No-SQL-Datenbanken unterstützen. Momentan wird
dabei unter anderem die Google App Engine unterstützt.
Es wird zur Zeit jedoch daran gearbeitet, auch andere Da-
tenbanken zu unterstützen. Um die Möglichkeiten, die diese
Datenbanken bieten, ausnutzen zu können, ist es jedoch zum
Teil notwendig, kleinere Anpassungen vorzunehmen bzw. ab
und zu direkt auf den Datenbanktreiber zuzugreifen.

Ein weiteres Alleinstellungsmerkmal ist die Möglichkeit, Daten sowohl über einen Per-
sistenzmanager in der Datenbank zu speichern als auch das Active-Record-Pattern zu
verwenden. Bei letzterem muss die Klasse, die die Daten enthält, von der von Siena be-
reitgestellten Model -Klasse abgeleitet werden. Die Verwendung des Persistenzmanagers
erhöht den Aufwand jedoch ein wenig, da für jede persistente Klasse eine eigene Instanz
des Persistenzmanagers verwendet werden muss und man deshalb bei einer hohen Anzahl
von Klassen schnell den Überblick verliert oder sich noch Behelfsfunktionen schreiben
muss. Die Model -Klasse bietet zudem noch einige Komfortfunktionen wie z.B. bereits
implementierte equals- und hashCode-Funktionen, die die persistenten Felder nutzen,
um z.B. zwei Instanzen einer Klasse zu vergleichen.
In beiden Betriebsarten bietet Siena einige Annotationen an, um Relationen zwischen
verschiedenen Tabellen darzustellen, unter anderem Many-to-many, One-to-many und
One-to-one. Auch Vererbungsstrukturen stellen kein Problem dar. Für jede Subklasse
und die Oberklasse benutzt Siena dabei eine einzelne Tabelle.

Die von Siena bereitgestellte Query-Klasse bietet Methoden, um Datenbankabfragen
zusammenzustellen. Dabei wird durch eine Verkettung von Funktionsaufrufen die Syn-
tax von SQL nachgestellt. Dies erlaubt auch komplexe Abfragen, ohne Kenntnisse von
SQL beim Entwickler vorauszusetzen .
Um zum Beispiel ein bestimmtes Device-Objekt aus der Datenbank zu bekommen, könn-
te der Code folgendermaßen aussehen:

Query<Device> q = D e v i c e . a l l (D e v i c e . c l a s s) ;
D e v i c e dev = q . s e a r c h (”d e v i c e key ” , ”u i n ”) . g e t () ;

Listing 6: Beispielquery mit Siena

Eine rudimentäre Unterstützung bietet Siena bei der Generierung des Schemas. Dazu
werden jedoch zum einen die Apache DdlUtils2 und deren Abhängigkeiten benötigt,
zum anderen ist einiges an Handarbeit notwendig, um das Schema zu erstellen. Darüber

2http://db.apache.org/ddlutils/

43 von 51

http://www.sienaproject.com

6.3 Werkzeuge Leichtgewichtige Java-OR-Mapping-Werkzeuge

hinausgehende Funktionen müssten direkt über die DdlUtils programmiert werden.

Zur Verbindungsaufnahme mit der Datenbank nutzt Siena eine Properties-Datei, die
alle Einstellungen wie Treiber, Host, Username und Passwort enthält. Diese Datei muss
Teil der JAR-Datei sein, was die Konfigurierung zur Laufzeit erschwert. Dafür muss in-
nerhalb des Programmcodes keinerlei Konfiguration durchgeführt werden. Wird zudem
noch das Active-Record-Pattern verwendet, so kann sofort mit dem Abspeichern oder
Holen von Daten begonnen werden, ohne extra eine Verbindung mit der Datenbank auf-
bauen zu müssen.

Die Community von Siena nutzt unter anderem eine Mailing-Liste und von GitHub
zur Verfügung gestellte Tools wie den Issue-Tracker und das Wiki. Auf der Mailing-Liste
ist nicht nur der Hauptentwickler aktiv, sondern auch weitere Entwickler und Nutzer.
Auf Fragen erhält man schnell eine Antwort.
Über das Wiki lässt sich am einfachsten auf die Dokumentation von Siena zugreifen. Die-
se ist momentan jedoch in einer Umgestaltungsphase und enthält deshalb noch nicht alle
Informationen. Eine per JavaDoc generierte API-Dokumentation existiert nicht. Würde
man sie selbst generieren, so wäre sie jedoch auch nicht vollständig, da viele Funktionen
über keinerlei oder nur wenige Kommentare verfügen.

In unseren Tests stellte sich das vom Entwickler angegebene Feature, dass keine weiteren
Abhängigkeiten eingebunden werden müssten, als falsch heraus. Ohne eine Bibliothek
aus dem Fundus von Apache Commons gaben unsere Laufversuche Fehler über nicht
gefundene Klassen aus. Nach deren Einbindung war das weitere Einrichten von Siena
einfach zu bewerkstelligen, eine solche falsche Information ist für Einsteiger jedoch sehr
irritierend.

PRO CONTRA

⊕ Sowohl Entity-Manager als auch
Active-Record

	 Externe Bibliothek nötig

⊕ Einfache Abfragen 	 Schemagenerierung unnötig
kompliziert

44 von 51

6.4 Resultat Leichtgewichtige Java-OR-Mapping-Werkzeuge

6.4 Resultat

Die vorherige Beschreibung der OR-Mapper spiegelt das Resultat der Evaluationsphase
wieder. Dieses kann in kompakter Form der nachfolgenden Tabelle entnommen werden.

Kriterium C
ay
en
ne

D
at
aN

uc
le
us

O
R
M
Li
te

P
er
si
st

Si
en
a

Performanz der INSERT-Abfragen ⊕ 	 ⊕ ⊕ ⊕
Dokumentation/Support ⊕ ⊕ ⊕ � �
Simplizität des Abspeicherns ⊕ ⊕ � ⊕ �
Generierung des Datenbankschemas ⊕ ⊕ ⊕ 	 ⊕
Anlegen von Datenbanken ⊕ ⊕ ⊕ 	 ⊕
Einarbeitungsaufwand � 	 ⊕ 	 �
Form der Modelldefinition 	 ⊕ ⊕ ⊕ ⊕
Community � ⊕ � 	 �
Vielfältiger Einsatz � ⊕ � � �
Syntax von Abfragen ⊕ 	 ⊕ 	 ⊕
Umgang mit INSERT- und UPDATE-Abfragen ⊕ ⊕ 	 	 ⊕
Vererbungsstrukturen zwischen Datenmodellen ⊕ ⊕ ⊕ 	 ⊕
Transaktionen ⊕ ⊕ ⊕ ⊕ ⊕
Antwort bei Fehlschlägen 	 	 	 ⊕ 	
Entity-Manager 	 ⊕ ⊕ ⊕ ⊕
Unterstützung bei Schemamigration ⊕ 	 	 	 ⊕
Unterstützung bei Datenmigration 	 	 	 	 	

Gesamtpunktzahl 94 90 95 53 96

Endnote 2 2- 2 5 2

Tabelle 4: Resultat der Evaluation auf einen Blick

45 von 51

7. Empfehlung Leichtgewichtige Java-OR-Mapping-Werkzeuge

7 Empfehlung

Das Endergebnis unserer Untersuchung ist sehr eng. Mit drei Werkzeugen, die jeweils
nur einen Punkt auseinander- und damit alle auf derselben Note liegen und einem wei-
teren Werkzeug, das nur auf Grund seiner mangelhaften Performanz ausschied, ist das
Teilnehmerfeld sehr eng beieinander. Einziger Ausreißer ist der OR-Mapper Persist, der
aufgrund seines geringen Funktionsumfangs viele Anforderungen nicht erfüllen konnte.

Für das Nutzungsszenario der Cinovo AG wird von uns Siena als Werkzeug empfohlen.
Es ist zum einen das Werkzeug mit der höchsten Punktzahl, zum anderen das mit der
geringsten Anzahl an nicht erfüllten Kriterien.

Durch die Möglichkeit, sowohl Persistenzmanager als auch das Active-Record-Pattern
zu verwenden, bietet es eine größere Flexibilität als die anderen untersuchten Lösun-
gen. Neue Modelle sind leicht ohne die Hilfe eines GUI-Editors zu erstellen. Ein solcher
wird beispielsweise bei Apache Cayenne vorausgesetzt. Durch die Unterstützung von No-
SQL-Datenbanken ist Siena auch zukunftssicher, da solche Datenbanken in immer mehr
Bereichen eingesetzt werden. Außer Siena bietet nur DataNucleus über Erweiterungen ei-
ne solche Unterstützung an. Im Gegensatz zu diesem Werkzeug ist Siena jedoch eines der
schnellsten was die für das Szenario relevante Performanz von INSERT-Abfragen angeht.

Eine der wenigen Schwachstellen stellt die Dokumentation dar, die sich momentan in
einer Überarbeitungsphase befindet und ständig verbessert wird. Hier konnten die ande-
ren Werkzeuge besser punkten. Durch die einfache Syntax und gute

”
Getting Started“-

Dokumente wird dieser Punkt jedoch großteils ausgeglichen und Lücken in der Doku-
mentation finden sich hauptsächlich bei komplexeren Themen wie Relations.

Siena bot insgesamt das rundeste Angebot der fünf untersuchten Werkzeuge und ist
deshalb unsere Empfehlung.

Abbildung 4: Die Siegertreppe unserer Fachstudie

46 von 51

A Versionshistorie

Version 1.0 (24.11.2011)

. Erarbeitung der Empfehlung (7)

. Syntaktische und stilistische Korrektur des gesamten Dokuments

Version 0.4 (29.10.2011)

. Steckbriefe zu allen Werkzeugen erstellt (6.3)

. Ermittlung der Endnoten aller begutachteten Werkzeuge (6.4)

. Verbesserungen an der Beschreibung des Bewertungsschemas (6.2)

. Erstellung eines Abkürzungsverzeichnisses (B)

Version 0.3 (21.09.2011)

. Beschreibung des Nutzungsszenarios verbessert (4)

. Mengengerüst des Industriepartners aufgenommen (4.1)

. Überarbeitung der Bewertungskriterien (5)

. Grundstruktur des Kapitels Evaluation festgelegt (6)

. Beschreibungstext zur Voruntersuchung erstellt (6.1)

. Erklärungen zur Shortlist-Matrix aufgenommen (6.1)

. Bewertungsschema erstellt (6.2)

. Vorlagen für die Steckbriefe erstellt (6.3)

. Erste Resultate der Evaluation aufgenommen (6.4)

Version 0.2 (20.08.2011)

. Vervollständigen der Titelseite und Korrektur der Seitennummerierung

. Neues Layout des Marktüberblicks inklusive Logos (3)

. Überarbeitung des Nutzungsszenarios (4)

. Exaktere Definitionen und Ergänzungen der Bewertungskriterien (5)

. Aufnahme von irrelevanten Bewertungskriterien (5.3)

. Erstellung der Shortlist auf Basis der K.O.-Kriterien (6.1)

Version 0.1.1 (30.07.2011)

. Ganzheitliche Korrekturen an der Dokumentstruktur

. Grobe Skizzierung der Nutzungsszenarios (4)

. Einbinden des Kriterienkatalogs (5)

. Ausformulieren von relevanten Bewertungskriterien und K.O.-Kriterien (5)

Version 0.1 (30.06.2011)

. Erstellen der ersten Fassung der Ausarbeitung

. Einbinden eines tabellarischen Marktüberblicks über die vorhandenen OR-Mapping-
Werkzeuge (3)

B Abkürzungsverzeichnis

API Application Programming Interface

DAO Data Access Object

DBMS Datenbankmanagementsystem

ERM Entity-Relationship-Modell

GUI Graphical User Interface

JAR Java Archive

J2ME Java Platform Micro Edition

JDBC Java Database Connectivity

JDK Java Development Kit

JDO Java Data Objects

JPA Java Persistence API

OR Object-Relational

ORM Object-Relational Mapping

POJO Plain Old Java Object

Shortlist Engere Auswahl von Werkzeugen für die Evaluationsphase

SoPra Softwarepraktikum

SQL Structured Query Language

XML Exstensible Markup Language

C Abbildungsverzeichnis

1 Verlauf der Fachstudie . 4
2 Abbild eines Car-PCs . 16
3 Cayenne Modeler . 32
4 Die Siegertreppe unserer Fachstudie . 46

D Tabellenverzeichnis

1 Shortlist aus der Voruntersuchung . 27
2 Gewichtung der Bewertungskriterien . 29
3 Endnote anhand der erreichten Punktzahl 30
4 Resultat der Evaluation auf einen Blick 45

E Quellenverzeichnis

[Amb03] Ambler, Scott W.: Agile Database Techniques. John Wiley & Sons, 2003

[BGP11] Buchgraber, Christian ; Gildein, Philipp ; Pirrung, Philipp: aidGer -
Hilfskraftmittelverwaltungssystem. http://www.aidger.de. Version: 2011

[Bou11] Boughton, Alex: Object Relational Database Mapping, Computer Science,
University of Colorado at Boulder, Vereinigte Staaten von Amerika, 2011

[Cay11] Apache Cayenne. http://cayenne.apache.org. Version: 13. Oktober 2011

[Cin11] Cinovo AG. http://www.cinovo.de. Version: 22. November 2011

[Dat11] DataNucleus. http://www.datanucleus.org. Version: 23. September 2011

[ORM11] ORMLite. http://www.ormlite.com. Version: 28. Oktober 2011

[Ors06] Orsag, Jaroslav: Object-Relational Mapping, Comenius University, Bratisla-
va, Slovakia, Diplomarbeit, 2006

[Per11] Persist. https://github.com/rufiao/persist. Version: 13. September 2011

[PT11] PostgreSQL-Team: PostgreSQL - DBMS. http://www.postgresql.org.
Version: 26. August 2011

[Rus08] Russell, Craig: Bridging the object-relational divide. In: ACM Queue 6
(2008), 07, Nr. 3, S. 18–28

[Sch10] Scheit, Philipp: Analyse und Lösungen für den Object-relational Impedance
Mismatch, Goethe-Universität, Frankfurt am Main, Diplomarbeit, 2010

[Sie11] Siena. http://www.sienaproject.com. Version: 10. November 2011

http://www.aidger.de
http://cayenne.apache.org
http://www.cinovo.de
http://www.datanucleus.org
http://www.ormlite.com
https://github.com/rufiao/persist
http://www.postgresql.org
http://www.sienaproject.com

Erklärung

Hiermit versichern wir, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Christian Buchgraber, Philipp Gildein, Philipp Pirrung)

	Einleitung
	Begriffe
	Entstehungsgeschichte
	Wichtige Anforderungen
	Aufbau des Dokumentes

	Ablauf der Fachstudie
	Phasen
	Zeitlicher Verlauf

	Marktüberblick
	Nutzungsszenario
	Mengengerüst

	Bewertungskriterien
	K.O.-Kriterien
	Lizenzierung
	Leichtgewichtigkeit/Abhängigkeiten
	Status der Entwicklung
	Unterstützung des Datenbankmanagementsystems

	Weitere relevante Kriterien
	Performanz der INSERT-Abfragen
	Dokumentation/Support
	Simplizität des Abspeicherns
	Generierung des Datenbankschemas
	Anlegen von Datenbanken
	Einarbeitungsaufwand
	Form der Modelldefinition
	Community
	Vielfältiger Einsatz
	Syntax von Abfragen
	Umgang mit INSERT- und UPDATE-Abfragen
	Vererbungsstrukturen zwischen Datenmodellen
	Transaktionen
	Antwort bei Fehlschlägen
	Entity-Manager
	Unterstützung bei Schemamigration
	Unterstützung bei Datenmigration

	Irrelevante Kriterien

	Evaluation
	Voruntersuchung
	Bewertungsschema
	Werkzeuge
	Apache Cayenne
	DataNucleus
	ORMLite
	Persist
	Siena

	Resultat

	Empfehlung
	Versionshistorie
	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Quellenverzeichnis

