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Kurzfassung

Für die computergestützte Analyse planarer Hochfrequenzschaltungen wird mit 3D-
Modellen gearbeitet anhand derer die elektrischen Eigenschaften simuliert werden können.
Diese 3D-Modelle werden auf Basis von Bildern, die mit Computertomographen erstellt
wurden, angefertigt.
Dieser Prozess wurde bisher meistens mühsam von Hand durchgeführt. Deshalb werden
Algorithmen gesucht, die dabei helfen einfache Strukturen wie Leiterbahnen, Bonddrähte,
Lötkugeln und Bohrungen automatisch zu erkennen. Dazu werden im folgenden einige
potentielle algorithmische Ansätze vorgestellt und bewertet.
Zu Beginn der Studie werden einige Hilfsverfahren (z.B. Canny-Edge-Detektor) vorgestellt,
die anschließend an verschiedenen Stellen eingesetzt werden. Anschließend untersuchen die
Autoren verschiedene Möglichkeiten zweidimensionale „Slices“ aus den dreidimensionalen
Voxeldatensätzen zu extrahieren. Das Ziel dabei ist es, möglichst aussagekräftige Bilder für
den Einsatz der, im folgenden vorgestellten, zweidimensionalen Objekterkennungsverfahren
zu finden. Es stellt sich heraus, dass verschiedene zweidimensionale Verfahren, aufgrund der
Struktur des zu untersuchenden Datensatzes, für Bohrungen und Leiterbahnen gut geeignet
sind und größtenteils brauchbare Resultate liefern.
Für andere Objekte, wie Kugeln und Bonddrähte, wird der nichtdeterministische RANSAC-
Algorithmus und ein auf das Problem zugeschnittener, selbstgewählter Ansatz untersucht.
Im letzten Abschnitt werden nun die betrachteten Verfahren einander gegenübergestellt und
anschließend eine Empfehlung bezüglich des Einsatzes in der Praxis geggeben.
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1 Einleitung

Das Forschungsthema des Aufgabenstellers befasst sich mit der computergestützten Analyse
von aufgebauten, passiven und planaren Hochfrequenzschaltungen. Dies geschieht mit Hilfe
von höchst präzisen 3D Modellen, die auf Basis von Messungen mit einem Computertomo-
graphen erstellt werden.
Da die Ausgaben des digitalen Röntgendetektors in Form von diskreten Voxeldaten vorliegen,
werden von den derzeit eingesetzten Algorithmen zur Objekterzeugung nur Objekte mit
rauen und kantigen Oberflächen erzeugt. Leider führt dies bei der Analyse zu Nachteilen
bei der Bestimmung der elektrischen Hochfrequenzeigenschaften.
Um diesen Nachteil zu umgehen werden die Modelle zur Zeit größenteils von Hand erstellt.
Leider stellt die manuelle Konstruktion einen nicht unerheblichen zusätzlichen Zeitaufwand
dar. Deshalb wären Algorithmen wünschenswert, die die relevanten Bauteile einer solchen
Schaltung weitestgehend autonom erkennen und abstrahieren können.
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2 Problemstellung

Eine Möglichkeit der Verfälschung der erkannten Objekte zu begegnen ist die Ersetzung bzw.
Approximierung dieser durch einfachere Objekte (z.B. Zylinder, Kugel oder Quader). Im
Rahmen der Fachstudie sollten deshalb Algorithmen ausfindig gemacht werden mit denen
ausgewählte Objekte innerhalb der Bilddaten erkannt werden können. Anhand einfacher
Teststrukturen sollte eine Auswahl vielversprechender Algorithmen getestet und miteinander
verglichen werden. Die Ergebnisse wurden protokolliert und bewertet.
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3 Beschreibung der zu untersuchenden Daten

Die Ergebnisse der Messungen werden in zwei verschiedenen Formaten untersucht:

1. 3D-Voxeldaten
In ihrer ursprünglichen Form liegen die Daten in Form von dreidimensionalen Ras-
tergrafiken, zusammengesetzt aus volumetrischen Pixeln, vor. Diese Pixel werden
üblicherweise als Voxel bezeichnet und sind Teil eines Voxelgitters. Jeder Voxel besitzt
einen Wert, der seine Opazität wiedergibt. Der Wert dieser Opazität leitet sich direkt
aus der beim CT gemessenen Reflektanzwert ab.

Abbildung 3.1: 3D-Voxeldatensatz in myVGL
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3 Beschreibung der zu untersuchenden Daten

2. 2D-Slices
Die zweidimensionalen Slices werden auf Basis der 3D-Voxeldaten berechnet. Dabei
wird eine Schicht des Voxelgitters extrahiert und auf Basis der Opazitätswerte eine
Rastergrafik erstellt, wobei jeder Pixel eindeutig einem Voxel zugeordnet werden kann.
Durch diese Umformung können bei der Objekterkennung auch 2D-Verfahren genutzt
werden.

Abbildung 3.2: 2D-Slice aus einem 3D-Voxeldatensatz
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3.1 Zu erkennende Objekte

3.1 Zu erkennende Objekte

Abbildung 3.3: Typischer 2D-Slice mit Leiterbahnen (rot) und Bohrpunkten (grün)

3.1.1 Bohrpunkte

Die Bohrpunkte sind die wohl am einfachsten zu erkennenden Objekte. Ihre Größe ist
meistens durchweg identisch. Häufig münden Leiterbahnen in Bohrpunkten, manchmal
befinden sie sich auch dazwischen, entlang des Körpers der Leiterbahn. Für die Erkennung
bietet es sich an auf den zweidimensionalen Slices zu arbeiten, weil die Bohrpunkte dort als
schwarze, ausgefüllte Kreise leichter auszumachen sind.

3.1.2 Leiterbahnen

Die Leiterbahnen sind elektrisch leitende Verbindungen mit zweidimensionalem Verlauf.
Aufgrund diesr Eigenschaft bietet es sich an wie bei den Bohrpunkten auf zweidimensionale
Erkennungsverfahren zurückzugreifen. Da sie in den allermeisten Fällen an einem Bohrpunkt
starten und auch wieder enden können diese gegebenenfalls auch als Ausgangspunkte für
die Erkennung genutzt werden.
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3 Beschreibung der zu untersuchenden Daten

Abbildung 3.4: In der Mitte zu sehen: Bonddrähte und Lötkugeln

3.1.3 Lötkugeln

Die Lötkugeln sind die Objekte, die sich durch ihren Reflektanzwert am deutlichsten von
anderen Objekten abheben. Deshalb können sie durch Filterung mit Threshholds sehr einfach
vorisoliert werden. Die Herausforderung besteht demnach darin die isolierten Voxel-Mengen
auf Kugel-Eigenschaften zu untersuchen und gegebenenfalls als Lötkugel zu klassifizieren.
Es sind allerdings auch Verfahren im zweidimensionalen denkbar, da die Kugelen auch auf
den Slices sehr gut sichtbar sind. Dann wäre es allerdings nötig Schicht für Schicht, also Slice
für Slice, vorzugehen und den Vorteil eines zusammenhängenden Objektes zu verwerfen.

3.1.4 Bonddrähte

Die Bonddrähte verbinden die Schichten der Platine, sie sind dünn und lang. Sie zeigen nicht
unbedingt alle in die gleiche Richtung und weisen auch alle eine unterschiedliche Länge
auf. Da sie im zweidimensionalen durch ihre geringe Größe und Erstreckung über mehrere
Slices kaum erkennbar sind, müssen dreidimensinale Verfahren eingesetzt werden. Durch
ihre undankbaren Eigenschaften sind sie die am schwersten zu erkennenden Objekte.
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4 Allgemeine Verfahren

Die Allgemeinen Verfahren sind unterstützende Algorithmen mit denen die zu analysieren-
den Daten für komplexere Erkennungsverfahren vorverarbeitet werden. Meistens filtern sie
unnötige oder störende Informationen heraus oder modifizieren die Daten so, dass sich die
zu erkennenden Objekte besser von den unbrauchbaren Daten abheben.

4.0.5 Canny-Edge-Detektor

Der Canny-Edge Operator [Can86] is ein von John Canny 1986 entwickelter Algorithmus
zur Kantendetektion. Er liefert für ein Grauwertbild idealerweise alle zusammenhängenden
Kanten. Der Algorithmus gliedert sich dabei im Wesentlichen in zwei Schritte:

1. Kantenhervorhebung

2. Erzeugung von Kantenzügen

Zunächst wird das Bild mit einem zweidimensionalen Gaußkern gefaltet:1 2 1
2 4 2
1 2 1


Dieser sorgt dafür, dass gröbere Störungen und Rauschen beseitigt werden. Das gefilterte

Bild wird nun auf Kanten hin untersucht. Während Flächen und Segmente in Bildern meist
homogene Grauwerte besitzen, stellen Kanten große Grauwertsprünge dar. Um diese Grau-
wertsprünge zu detektieren, verwendet man den Sobeloperator, ein Filter, der die partiellen
Ableitungen eines Pixels in x- und y-Richtung liefert.
Die Struktur eines 1D Sobelfilters ergibt sich dabei aus der finiten Differenz (hier: Zentraldif-
ferenz) an der Stelle x:

δg(x)
dx

=
g(x + ∆x)− g(x− ∆x)

2 · ∆x

wobei ∆x = 1. Damit hat der diskrete 1D Filter S die Struktur

S =
[
1 0 −1

]
Erweitert auf einen zweidimensionalen Filter ergibt sich
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4 Allgemeine Verfahren

S(x) =

1 0 −1
2 0 −2
1 0 −1

 , S(y) =

 1 2 1
0 0 0
−1 −2 −1


in x-, bzw. y-Richtung.
Die Anwendung der Filter auf das Ausgangsbild liefert die partiellen Ableitungen Gx und
Gy. Aus diesen partiellen Ableitungen lässt sich die Gradientenrichtung d einer Kante
berechnen:

d(x, y) = arctan(
Gy(x, y)
Gx(x, y)

)

Anschließend wird aus den partiellen Ableitungen ein Bild der absoluten Kantenstärke
berechnet:

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2

Im nächsten Schritt wird eine Technik names “Non-maximum suppression” angewandt,
um sicherzustellen, dass Kanten nicht breiter als ein Pixel sind. Dabei wird für jedes Pixel
dessen 8-Nachbarschaft untersucht. Befindet sich in der Nachbarschaft des zu untersuchen-
den Pixels ein Pixel, dass einen höheren Grauwert aufweist, so wird der Grauwert des zu
untersuchenden Pixels auf 0 gesetzt, es sei denn, das Pixel mit dem größeren Grauwert
befindet sich entlang der Gradientenrichtung.

Im letzten Schritt des Verfahrens werden die Pixel zu Kantenzügen zusammengefasst.
Dabei verwendet man zwei Schwellwerte L1 < L2. Zunächst wird nach einem Pixel gesucht,
dessen Grauwert größer als L2 ist. Dieses Pixel wird zum Startpixel des Kantenzugs erklärt.
Nun wird die Kante in beiden Richtungen nach Pixel mit einem Grauwert größer L1 abge-
sucht, welche dem Kantenzug hinzugefügt werden. Werden keine Pixel gefunden, die diese
Bedingung erfüllen, bricht die Suche ab, und des wird ein neues Startpixel gesucht. Das
Verfahren endet, sobald kein unmarkiertes Pixel mit einem Grauwert größer L2 gefunden
wird.

Als Resultat des Verfahrens entsteht ein Bild, das eine Menge von Pixeln enthält, die
idealerweise genau die Kantenpixel des Ausgangsbilds enthält.
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Abbildung 4.1: Resultat nach der Anwendung des Canny-Edge-Detektors

4.0.6 Posterisation

Abbildung 4.2: Posterisation eines 2D-Slices mit Artefakten im Hintergrund

Posterisierte Bilder benutzen eine eingeschränkte Farbpalette. Es gibt keine kontinuierlichen
Farbverläufe, alle Farbübergänge sind abrupt. Durch Posterisation können die Bilddaten für
die Objekterkennung vorbereitet werden. So kann beispielsweise anschließend durch ein
einfaches Template-Matching nach Objekten gesucht werden.
Durch die Eigenschaften der Slices bietet sich die Posterisation als Verfahren für die Separa-
tion von Objekten und Hintergrund an. So können beispielsweise auf qualitativ guten Slices
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4 Allgemeine Verfahren

nach der Posterisation durch Template Matching die meisten Bohrpunkte erkannt werden.
Das große Problem der Posterisation sind die nicht perfekten CT-Scans. Die Platinen liegen
meistens nicht perfekt ausgerichtet in der Aufnahme und somit kommt es vor allem im
idealerweise gleichmäßigen Hintergrund zu leichten Artefakten wie z.B. Farbverläufen, die
die Posterisation so stark stören, dass das Ergebnis häufig nicht sinnvoll weiterverwerdent
werden kann.
Es gibt mehrere Möglichkeiten ein Bild zu posterisieren, eine davon ist die sogenannte
Farbreduktion. Dafür werden Algorithmen benutzt, die die n besten Farben für das zu
posterisierende Bild ermitteln. Das gebräuchlichste Vorgehen betrachtet die Farbreduktion
als ein Cluster-Problem im dreidimensionalen Raum, wobei die Achsen die drei Farbkanäle
rot, grün und blau repräsentieren.

Median-Schnitt-Algorithmus

Der Median-Schnitt [Kru94] ist ein Sortierverfahren für n-dimensionale Daten und der
meistbenutzte Farbreduktions-Algorithmus. Er unterteilt die Farbwerte anhand des Medians
iterativ in Gruppen ähnlicher Werte. Nach der Lokalisation der Gruppen werden deren
Farbwerte typischerweise gemittelt um den repräsentierenden Farbwert zu erhalten. Bei
der Farbreduktion wird dies so oft wiederholt bis die Anzahl der Gruppen der Anzahl
der gewünschten Farben entspricht. Der Median wird mit Hilfe der euklidischen Distanz
berechnet:

d(a, b) =
√
(aR − bR)2 + (aG − bG)2 + (aB − bB)2

4.0.7 Floodfill-Algorithmus

Floodfill ist ein Algorithmus, der in multi-dimensionalen Arrays zusammenhängende Felder
erkennen und färben kann. Ob Felder zusammenhängen ist abhängig davon, ob sie iden-
tische Eigenschaften aufweisen. Bei den hier verwendeten Bilddaten wird dafür die Farbe
der Pixel/Voxel verwendet. Ausgehend von einem Startpunkt durchsucht der Algorithmus
“flutartig” das Array und ändert die Suchrichtung, sobald eine Eigenschaft nicht mehr erfüllt
ist.
Der Algorithmus betrachtet ausgehend von einem Startpunkt rekursiv alle benachbarten Fel-
der und färbt diese gegebenenfalls. Ausgehend davon wie viele der Nachbarfelder betrachtet
werden spricht man z.B. im zweidimensionalen von “fill4” (oben, unten, links, rechts) oder
“fill8” (alle Nachbarn).

Alle eingesetzten Verfahren arbeiten auf dem Resultat eines Canny-Edge-Detektors. Zu-
sätzlich wurde bei den Verfahren, die auf einem gefärbten Bild arbeiten, eine Färbung
zusammenhängender schwarzer Flächen nach folgendem Prinzip durchgeführt:

for x in xrange(0, width, 3): # stepsize ist 3

for y in xrange(0, height, 3):

fill8(img, x, y, (0,0,0), randomColor, resimg)
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Der implementierte "fill8" -Algorithmus entspricht dem Floodfill-Algorithmus mit einer
8-Pixel Nachbarschaft, welcher im vorigen Abschnitt beschrieben wurde. Dabei wurde der
Algorithmus derart modifiziert, dass zuerst in der 8er-Umgebung geprüft wurde ob ein
weißer Pixel an den zu untersuchenden Pixel angrenzt und anschließend die 4er-Umgebung
auf den Stack gelegt wurde, falls die Prüfung negativ ausgefallen ist. Durch diesen Trick
wird verhindert, dass der Algorithmus durch kleinere Lücken (bis 2 Pixel) des Canny-Bildes,
welche aufgrund von von fehlerhafter Erkennung entstehen, hindurch läuft.

Abbildung 4.3: fill4 färbt ausgehend vom Mittelpunkt die zentrale, weiße Fläche.

4.0.8 Houghtransformation

Die Houghtransformation [BFRR95] baut auf der Kantendetektion auf: Sie sucht Formen,
die von Kantenpunkten gebildet werden. Die Houghtransformation ist sehr allgemein ver-
wendbar; Formen können im einfachsten Fall Geraden oder Kreise sein, es können aber
auch Ellipsen und andere geometrische Figuren detektiert werden, es handelt sich bei der
Houghtransformation also um eine modellbasiertes Verfahren.
Mit der verallgemeinerten Houghtransformation können sogar beliebige Formen gefunden
werden. Die Houghtransformation benutzt ein einfaches Grundprinzip: Man untersucht alle
Kantenpunkte auf Hinweise auf eine gegebene Form, die man detektieren möchte. Diese
Hinweise werden in einem Akkumulatorraum (Parameterraum) gespeichert. Nachdem alle
Kantenpunkte untersucht wurden, wertet man die gesammelten Hinweise im Akkumulator-
raum aus.
Die Untersuchung der Kantenpunkte und die Dimension des Akkumulatorraums hängen
dabei von der Form ab, die man detektieren will.

Houghtransformation zur Erkennung von Geraden

Wendet man auf ein Bild die üblichen Kantenfilter an (Sobel-Operator, Canny-Edge-Detektor)
zeigt sich, dass diese Verfahren zwar eine Menge von Punkten liefern, die auf Kanten, bzw.
Geraden liegen, die Gruppierung dieser Punkte zu echten Kanten allerdings fehlt. Hier setzt
die Houghtransformation an, indem es ein zusammenhängendes Geradenstück auf einen
Punkt im Akkumulatorraum abbildet.
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4 Allgemeine Verfahren

Eine Gerade, beschrieben durch die Gleichung y = mx + b würde also auf einen Punkt im
zweidimensionalen Akkumulatorraum, der durch m und b aufgespannt wird, abgebildet
werden. Dadurch können allerdings senkrechte Geraden, die keine Steigung besitzen, nicht
mehr korrekt in den Akkumulatorraum abgebildet werden.
Daher verwendet man die Hessesche Normalform zur Darstellung der Geraden:

r = x · cos(θ) + y · sin(θ), θ ∈ [0, 2π]

Die Gerade ist also die Menge aller Punkte (x, y), die diese Gleichung erfüllen. θ sei der
Winkel zwischen der y-Achse und der Geraden, r ∈ D der Abstand der Geraden zum
Ursprung, wobei D die Diagonallänge des Bildes sei.

Der zugehörige Akkumulatorraum A wird damit von θ und r aufgespannt.

Zunächst wird das Ausgangsbild mit einem Gradientenoperator gefiltert (z.B. mit dem Sobel-
Filter), woraus sich eine Matrix der Gradientenstärke G(x, y) und der Gradientenrichtung
φ(x, y) berechnen lässt (siehe Canny-Edge-Detektor).
Auf G(x, y) wird nun ein Schwellwert G∗ angewandt, um die N Pixel zu erhalten, die nicht
durch kleinere Grauwertschwankungen im Ausgangsbild verursacht wurden. Man erhält die
Menge

M = {(x, y)|G(x, y) ≥ G∗} , |M| = N.

Im nächsten Schritt "votiert" jedes Element (x, y) ∈ M für einen Punkt (θ, r) im Akkumula-
torraum, indem der Wert um 1 erhöht wird:

∀(x, y) ∈ M :

1. Bilde r = x · cos(θ) + y · sin(θ) aus x, y und φ(x, y)

2. Erhöhe (θ, r) um 1

Abbildung 4.4: Abbildung der Geraden in den Akkumulatorraum
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Alle Punkte, die auf einer Geraden liegen, votieren somit für den gleichen Punkt in A.
Allerdings werden Punkte einer Geraden aufgrund von Ungenauigkeiten nicht exakt für
den selben Punkt votieren, sondern einen Cluster bilden. Daher genügt es nicht, im Akku-
mulatorraum nach großen Werten zu suchen, sondern es ist zusätzlich eine Clusteranalyse
notwendig, um alle Punkte auf der Geraden zu „erwischen“.

Abbildung 4.5: Dreiecksgeraden werden in den Akkumulatorraum projeziert

Houghtransformation Erkennung von Kreisen

Die Houghtransformation [Har09] kann auch zur Erkennung von Kreisen eingesetzt werden.
Auch hier werden „Hinweise“, auf die gesuchte Form im Akkumulatorraum gesammelt. Aus-
gehend von einem Kantenbild wird jeder Pixel einer Kante als von Kreisen mit beliebigem
(oder festgelegtem) Radius erzeugt angesehen. Die Transformation in den Akkumulator-
raum funktioniert so, dass man dort alle Kreismittelpunkte einträgt, die Kreise erzeugen
könnten, auf denen der Pixel liegen würde. Es wird also der entsprechende Punktpixel im
Akkumulatorraum um 1 erhöht.
Falls nebenbei zu jedem Kantenpixel die zugehörigen Kantenrichtung bekannt ist, kann
diese Information genutzt werden und es bleiben nur noch zwei möglich Kreise übrig.
Wenn nun die Punkte im Kantenbild einen Kreis repräsentieren, ist an der zum Mittelpunkt
gehörenden Stelle im Akkumulatorraum ein besonders hoher Wert eingetragen, da dort
sehr viele Kantenpixel des Kreises für den Mittelpunkt abgestimmt haben. Die Maxima im
Akkumulatorraum repräsentieren also die Kreismittelpunkte.
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4 Allgemeine Verfahren

Abbildung 4.6: Suche nach Kreise mit bekanntem Radius:
Ein Kreis mit Radius r0 kann durch seinen Mittelpunkt (x0, y0) charakteri-
siert werden. In der Abbildung sieht man einen Kantenpunkt (dargestellt
durch ein Kreuz). Die Mittelpunkte der Kreise mit Radius r0, zu denen dieser
Punkt gehören könnte (zwei davon sind gestrichelt eingezeichnet), liegen
auf einem Kreis mit Radius r0 um ihn herum.

Die ersten zwei Dimensionen des Hough-Raums entsprechen hier also denen des Bildraums,
da die (x,y)-Koordinaten in die Lage des Kreismittelpunktes beschreiben. Zusätzlich dazu ist
laut der Kreisgleichung x2 + y2 = r2 der Radius r der dritte Parameter, der beachtet werden
sollte, wenn man nach Kreisen mit beliebigen Radius sucht. Falls letzteres nicht der Fall
ist, kann der Parameter weggelassen werden, was im zweidimensionalen Fall einen einfach
darzustellenden und anschaulichen Hough-Raum liefert.
Anschließend muss natürlich auch hier, wie auch im Fall von Geraden, der Akkumulatorraum
auf lokale Maxima untersucht werden.
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5 Selektion gut detektierbarer Bilder

Um aus dem beschriebenen Bilderstack möglichst gut detektierbare Einzelbilder zu erhalten,
werden hier verschiedene Verfahren vorgestellt, die weitestgehend automatisch eine Auswahl
von Bildern erstellt, die für die weitere Objekterkennung gut geeignet sind.
Da der gescannte Mikrochip aus vier Leiterbahnschichten besteht, muss der beim Scannen
entstehende Bilderstack in vier Intervalle eingeteilt werden, welches jeweils eine Leiterbahn-
schicht repräsentiert.

... ... ...

Abbildung 5.1: Einteilung des Bilderstacks in vier Intervalle

Ziel der unten vorgestellten Verfahren besteht darin, um für jedes Intervall das Bild zu finden,
dass die Leiterbahnschicht am genausten repräsentiert. Die aus den Verfahren gewonnen
Bilder werden anschließend weiterverwendet, d.h. es werden die 2D Objekterkennungsver-
fahren darauf angewandt und bewertet, wie gut die ausgewählten Bilder für die einzelnen
Verfahren geeignet sind, und ob für jedes Intervall tatsächlich das am besten detektierbare
Bild gefunden wurde.

Um die aufgeführten Verfahren miteinander vergleichen zu können, wird für jedes Intervall
das „Best Match“ vor dem Vergleich ausgewählt. Dabei handelt es sich um jenes Bild, in
dem die Objekte am besten sichtbar sind. Für die vier Intervalle sind dies folgende Bilder:
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5 Selektion gut detektierbarer Bilder

Abbildung 5.2: Best Match des ersten Intervalls

Abbildung 5.3: Best Match des zweiten Intervalls
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Abbildung 5.4: Best Match des dritten Intervalls

Abbildung 5.5: Best Match des vierten Intervalls

Diese Best Matches haben im Bilderstack jeweils die Indizes

1. Intervall 1: Index27

2. Intervall 2: Index61
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5 Selektion gut detektierbarer Bilder

3. Intervall 3: Index83

4. Intervall 4: Index96

Die Ergebnisse der einzelnen Verfahren werden mit diesen Best Matches verglichen, indem
die durschnittliche Distanz der Ergebnisse zu den Best Matches im Bilderstack ermittelt
wird.

5.1 Binärbilder

Bei diesem Verfahren werden zunächst alle Bilder in Binärbilder umgewandelt. Als binärer
Schwellwert wird dabei der Wert 70 gewählt, d.h. alle Pixel, deren Grauwert größer als 70 ist,
wird der Grauwert 255 zugewiesen, allen Pixeln die einen Grauwert kleiner, bzw. gleich 70

besitzen, wird der Grauwert 0 zugewiesen. Anschließend wird das Bild ausgewählt, welches
die maximale Anzahl an weißen Pixeln (Pixel mit dem Grauwert 255) besitzen.

Die Idee, die hinter diesem Verfahren steckt, ist, dass Bilder, die eine möglichst große Anzahl
von Pixeln mit maximalen Grauwert besitzen, viele Objekte enthalten, die detektiert werden
können.
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5.1 Binärbilder

5.1.1 Ergebnis

Die Ergebnisse des Verfahrens für die vier Intervalle:

Abbildung 5.6: Ergebnisse des Binärbildverfahrens

Für die einzelnen Intervalle sind dies die Bilder mit folgenden Indizes:

1. Interval l1: Index 9 , Differenz zum Best Match: 18

2. Intervall 2: Index 59, Differenz zum Best Match: 2

3. Intervall 3: Index 82, Differenz zum Best Match: 1

4. Intervall 4: Index 98, Differenz zum Best Match: 2

Dies führt zu einer durchschnittlichen Distanz von 5,75 vom Best Match.
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5 Selektion gut detektierbarer Bilder

5.2 Canny-Edge-Bilder

Bei diesem Verfahren werden die einzelnen Bilder der Intervalle zunächst mit dem Canny-
Edge Operator in die entsprechenden Kantenbilder überführt. Anschließend werden die
Kantenpixeln in den Kantenbildern gezählt, wobei für jedes Intervall das Bild ausgewählt
wird, dass die meisten Kantenpixel besitzt.

Der Ansatz hierbei ist, dass Bilder, die viele einzelne Objekte enthalten, mehr Kantenpixel
liefern, als Bilder, in denen wenige Objekte enthalten sind.
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5.2 Canny-Edge-Bilder

5.2.1 Ergebnis

Die Ergebnisse des Verfahrens für die vier Intervalle:

Abbildung 5.7: Ergebnisse des Canny-Edge-Verfahrens
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5 Selektion gut detektierbarer Bilder

Die zugehörigen Katenbilder:

Abbildung 5.8: Kantenbilder der Ergebnisse des Canny-Edge-Verfahrens

Für die einzelnen Intervalle sind dies die Bilder mit folgenden Indizes:

1. Intervall 1: Index 27, Differenz zum Best Match: 0

2. Intervall 2: Index 60, Differenz zum Best Match: 1

3. Intervall 3: Index 83, Differenz zum Best Match: 0

4. Intervall 4: Index 95, Differenz zum Best Match: 1

Dies führt zu einer durchschnittlichen Distanz von 0,5 vom Best Match.
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5.3 Hough-Transformation

5.3 Hough-Transformation

Dieses Verfahren ziehlt darauf ab, die Bilder in den Intervallen zu finden, die möglichst gut
detektierbare Kantenverläufe, und somit möglichst gut erkennbare Leiterbahnen enthalten.
Dafür werden aus den Bildern mit Hilfe der Houghtransformation die Kanten extrahiert und
anschließend gezählt. Das Maximum für jedes Intervall ist jenes Bild, welches die meisten
zählbaren Kanten enthält.

5.3.1 Ergebnis

Die Ergebnisse des Verfahrens für die vier Intervalle:

Abbildung 5.9: Ergebnisse des Houghtransformationsverfahrens
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5 Selektion gut detektierbarer Bilder

Für die einzelnen Intervalle sind dies die Bilder mit folgenden Indizes:

1. Intervall 1: Index 26, Differenz zum Best Match: 1

2. Intervall 2: Index 60, Differenz zum Best Match: 1

3. Intervall 3: Index 83, Differenz zum Best Match: 0

4. Intervall 4: Index 95, Differenz zum Best Match: 1

Dies führt zu einer durchschnittlichen Distanz von 0,75 vom Best Match.

5.4 Vergleich

Es ist deutlich zu erkennen, dass das Binärbildverfahren deutlich schlechtere Ergebnisse
(durchschnittliche Distanz: 5, 75) liefert, als das Canny-Edge-Verfahren (durchschnittliche
Distanz: 0, 5) und das Houghtransformationsverfahren (durchschnittliche Distanz: 0, 75).
Dies liegt vor allem daran, dass Störpixel, bzw. für die weitere Verarbeitung irrelevante
Informationen, in Form von nicht defninierten Objekten einen starken Einfluss auf die Menge
der weißen Pixel nehmen. Beim Canny-Edge-Verfahren werden primär „echte“ Objekte, also
Objekte, die aus zusammenhängenden Kanten bestehen, extrahiert, während Störpixel bei
der Überführung der Bilder in Kantenbilder gefiltert werden.
Ein minimal schlechteres Ergebniss liefert das Houghtransformationsverfahren, da dieses
Verfahren eine gute Detektierbarkeit der Leiterbahnen berücksichtigt, Bohrpunkte allerdings
außer Acht lassen.
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6 2D - Verfahren

6.1 SIFT

SIFT (Scale-invariant feature transform [Low04]) ist ein von David Lowe 1999 vorgestelltes
Verfahren zur Extraktion von lokalen Merkmalen aus Bildern. Die mit diesem Verfahren
gefundene Merkmale haben die Eingeschaft, dass sie robust gegenüber Rotation, Translation
und Skalierung sind, und damit zuverlässig in anderen Bilder wiedererkannt werden können.
Um Objekte in Bildern mit SIFT erkennen und lokalisieren zu können, sind also zwei Schritte
nötig:

1. Extraktion und Beschreibung von Merkmalen (Features) des gesuchten Objekts

2. Lokalisation der Merkmale im Suchbild

6.1.1 Extraktion und Beschreibung von Merkmalen (Features) des gesuchten
Objekts

Der Algorithmus zur Extraktion und Beschreibung der Merkmale besteht dabei aus vier
Verarbeitungsstufen:

Ermittlung potentieller Merkmale in DoG-Pyramiden

Um Merkmale zu ermitteln, die robust gegenüber Skalierung sind, kommt das Verfahren der
DoG (Difference of Gaussians) Pyramiden zum Einsatz. Dabei werden aus dem Ausgangsbild
zunächst n Gaußpyramiden berechnet. Eine Pyramide besteht dabei aus fortlaufend stärker
geglätteten Bildern des Ausgangsbildes g. Zur Glättung kommt dabei ein Gaußfilter G zum
Einsatz:

g(x, y) ∗ Gϑ(x, y) = g(x, y) ∗ ( 1√
2πϑ2

· e−
x2+y2

2ϑ2 )
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6 2D - Verfahren

Abbildung 6.1: DoG-Pyramiden

Im Anschluss wird das letzte Bild der Pyramide um 50% verkleinert, und daraus durch
erneute fortlaufende Glättung mit dem Gaußfilter eine neue Pyramide erzeugt. Je zwei
benachbarte Bilder einer Gaußpyramide werden nun voneinander subtrahiert. Aus den
Resultaten entstehen dabei die DoG-Pyramiden:

Die dadurch erzeugten DoG-Pyramiden werden nun auf minimale und maximale Pixelwerte
untersucht. Ein Maximum ist gefunden, wenn der Grauwert eines Pixels größer als der
seiner 26 Nachbarn ist. Nachbarschaft eines Pixels ergibt sich dann aus seinen acht Nachbarn
der selben Ebene, sowie aus den jeweils neun Nachbarn der benachbarten Ebenen in der
DoG-Pyramide. Die Suche nach Minima erfolgt auf die selbe Art und Weise. Die Informati-
on, auf welcher Skalierung die potentiellen Merkmalspunkte liegen, wird dabei ebenfalls
gespeichert.
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6.1 SIFT

Abbildung 6.2: Nachbarschaft eines Pixels

Filterung und Lokalisation potentieller Merkmalspunkte

Das oben genannte Verfahren liefert neben den robusten Merkmalspunkten eine große
Menge von instabilen, für die weitere Verarbeitung nicht zu gebrauchende Merkmale. Daher
werden die gefundenen Merkmalspunkte anhand von Stabilitätskriterien gefiltert. Im ersten
Schritt werden dabei alle Merkmalspunkte entfernt, die einen DoG-Wert von weniger als
0.03, und somit einen relativ niedrigen Kontrast besitzen. Merkmalspunkte, die auf Ecken
liegen sind „prägnanter“ (und somit staibler) als solche, die auf einer Kante liegen, daher
werden alle Merkmalspunkte entfernt, die auf einer Kante, aber nicht auf einer Ecke liegen.
Dies geschieht unter Anwendung der Hesse-Matrix.

Bestimmung der Hauptorientierungen

Um Invarianz der verbleibenden Merkmalspunkte gegenüber Rotation zu erreichen, wird für
jeden Merkmalspunkt dessen Hauptorientierung berechnet. Dafür nutzt man das gaußgefil-
terte Bild, welches der Skalierung des zu untersuchenden Merkmalspunktes am nächsten
kommt. In diesem Bild werden nun innerhalb einer festen Region um den Merkmalspunkt
herum die Gradientenlängen m(x, y) und die Gradientenorientierungen θ(x, y) bezüglich
eines Punktes g(x, y) berechnet, wobei

m(x, y) =
√
(g(x + 1, y)− g(x− 1, y))2 + (g(x, y + 1)− g(x, y− 1))2

und
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6 2D - Verfahren

θ(x, y) = tan−1 · g(x + 1, y)− g(x− 1, y)
g(x, y + 1)− g(x, y− 1)

Die so ermittelten Gradientenorientierungen werden nun anhand ihrer Gradientenlängen
gewichtet. Dadurch haben Gradientenrichtungen mit großer Gradientenlänge einen größeren
Einfluss auf die Hauptorientierung als Gradientenrichtungen mit niedriger Gradientenlänge.
Danach werden die Gradientenorientierungen zusätzlich anhand ihrer Entfernung zum
Merkmalspunkt gewichtet, um Gradientenrichtungen, die sich näher am Merkmalspunkt
befinden stärker zu gewichten.

Aus den gewichteten Gradientenorientierungen wird nun ein Orientierungshistogramm
erstellt. Dieses Histogramm ist in 36 Winkelbereiche eingeteilt und hat somit eine Klassen-
breite von 10 ◦. Jede Gradientenorientierung wird dabei anhand ihrer Gewichtung an der
passenden Stelle im Histogramm aufaddiert.
Nach der Erstellung des Histogramms kann aus diesem die Gradientenlänge mmax abgelesen
werden (Winkelbereich mit der größten Summe). Die Hauptorientierung des Merkmalspunk-
tes setzt sich dabei aus mmax, sowie der zugehörigen Gradientenorientierung θmax zusammen.
Für den Fall, dass eine weitere Orientierung mit der Gradientenlänge mi > 0, 8mmax existiert,
wie es bei Eckpunkten häufig der Fall ist, wird an der Stelle (x, y) ein weiterer Merkmal-
spunkt mit der Hauptorientierung (mi, θi) erstellt.

6.1.2 Lokalisation der Merkmale im Suchbild

Wurden nun im ersten Schritt die robusten Merkmale des gesuchten Objekts extrahiert, kön-
nen diese im Suchbild wiedererkannt werden. Dies geschieht, in dem man die extrahierten
Merkmale des Objekts mit denen im Suchbild auf Übereinstimmung hin untersucht.
Der dafür am häufigsten verwendete Ansatz ist der Vergleich anhand des euklidischen
Abstands der Merkmalsvektoren.

e =

√
n

∑
i=1

(V1i −V2i)

6.2 Einsatz von SURF zur Erkennung von Bohrpunkten

Um in den Beispieldatensätzen Bohrpunkte auf möglichst effiziente Art und Weise erkennen
zu können, wird hier SURF (SpeededUpRobustFeatures), eine leicht veränderte Variante des
SIFT-Verfahrens, verwendet.
Der Unterschied zum hier vorgestellen SIFT Verfahrens besteht darin, dass statt der Gaußfilter
Mittelwertfilter zum Einsatz kommen. Dadurch wird das Verfahren signifikant beschleunigt,
ohne die Erkennungsrate nennenswert zu beeinflussen. [BTG05]
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6.2 Einsatz von SURF zur Erkennung von Bohrpunkten

Um Bohrpunkte mithilfe des SURF Verfahrens zu detektieren, wird zunächst ein Modell
des Bohrpunktes auf dessen Merkmale hin untersucht. Dazu wird ein Template eines
Bohrpunktes aus einem Bild im Bilderstack ausgeschnitten.

Abbildung 6.3: Modell eines Bohrpunktes (Vergrößert)

Auf dieses Template wird nun der besprochene SURF Algorithmus angewandt, um die
Merkmalsvektoren des Bohrpunktes zu extrahieren. Das Template wurde dabei bewusst
so klein gewählt, dass das Verfahren genau einen Merkmalsvektor liefert, welcher den
Bohrpunkt repräsentiert:

Abbildung 6.4: Bohrpunkt mit eingezeichnetem Merkmalsvektor (Vergrößert)
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6 2D - Verfahren

Im nächsten Schritt werden die Merkmalsvektoren im Suchbild extrahiert, wobei wieder der
SURF-Algorithmus zum Einsatz kommt, und eine Liste mit Merkmalsvektoren liefert. Zur
Illustration werden auch hier die Orte der Merkmalsvektoren in das Suchbild gezeichnet:

Abbildung 6.5: Suchbild mit eingezeichneten Merkmalsvektoren

Anschließend wird für den Merkmalsvektor des Templates nach Übereinstimmungen in der
Liste der Merkmalsvektoren des Suchbildes gesucht, d.h. es wird nach Merkmalsvektoren
gesucht, die dem des Templates möglichst ähnlich sind. Ähnlich bedeutet hier, dass die
Komponenten zweier Merkmalsvektoren eine hohe Übereinstimmung haben, was genau
dann der Fall ist, wenn beide Merkmalsvektoren einen geringen Abstand im Merkmalsraum
haben.
Daher wird der euklidische Abstand des Merkmalsvektors des Templates mit jedem Merk-
malsvektor der Liste berechnet. Ist der Abstand dabei kleiner als 0, 45 im Merkmalsraum,
wird eine Übereinstimmung der beiden Merkmalsvektoren angenommen.
Dabei werden folgende übereinstimmende Merkmalsvektoren gefunden:
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6.3 Erweiterung der Merkmalssuche

Abbildung 6.6: Suchbild mit eingezeichneten übereinstimmenden Merkmalsvektoren

Wie deutlich zu sehen ist, werden Bohrpunkte, die visuell dem Template entsprechen
(Bohrpunkt mit äußerer Isolierschicht) fehlerfrei erkannt. Allerdings werden die Bohrpunkte
ohne Isolierschicht nicht erkannt. Dieser Umstand lässt sich durch eine Modifikation des
Suchverfahrens verbessern.

6.3 Erweiterung der Merkmalssuche

Wie im vorigen Abschnitt gezeigt wurde, erkennt das Verfahren des Matchings mit von
SIFT-Merkmalen bei einem einzelnen Bild nicht zufriedenstellend, da die Merkmale der
Bohrpunkte ohne Isolierschicht nicht eine zu große Distanz zum Merkmalsvektor des Tem-
plates im Merkmalsraum haben.
Allerdings zeigt sich, dass in Bilder, die sich im Bilderstack nahe am im vorigen Kapitel un-
tersuchten Bild befinden, diese Bohrpunkte erkannt werden. Daher beschränkt man hier die
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6 2D - Verfahren

Merkmalssuche nicht auf ein einzelnes Bild, sondern erweitert die Suche auf eine Teilmenge
des Bilderstacks. Dabei werden jeweils die 20 Bilder des Bilderstacks untersucht, die dem
Ausgangsbild am nächsten sind.
Die in diesen 20 Bildern gefundenen Merkmalsvektoren werden anschließend gemerged, d.h.
Merkmalsvektoren die mehrfach vorkommen, werden verworfen, so dass von ihnen jeweils
nur ein Merkmalsvektor übrig bleibt. Dieses Merging wird wieder mithilfe des euklidischen
Abstands im Merkmalsraum vollzogen: Ist der Abstand zweier Merkmalsvektoren im Merk-
malsraum geringer als eine bestimmt Schwelle, werden diese als gleich angesehen und ein
Merkmalsvektor wird verworfen. Die Orte der verbleibenden Merkmalsvektoren werden
wieder im Bild markiert:

Abbildung 6.7: Suchbild mit eingezeichneten gemergeten Merkmalsvektoren

6.3.1 Bewertung:

Bis auf einiger Fehler in Form von Merkmalsvektoren, die keine Bohrpunkte beschreiben,
wurde im getesteten Bild auf diese Art und Weise alle Bohrpunkte, egal ob mit oder ohne
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6.4 Template Matching

Isolierschicht, erkannt. Das Verfahren wurde jedoch nur für das gezeigte Testbild eingehend
untersucht, daher können keine Aussagen über die Fehlerhäufigkeit bei Bildern mit einer
komplexeren Struktur getroffen werden.
Es hat sich gezeigt, dass die Kombination der einzelnen Szenenbilder bemerkenswerte
Verbesserungen erbracht hat. Dieses Verfahren eignet sich somit vor allem dann, wenn
mehrere unterschiedliche Bilder der gleichen Szene existieren (was in dem zu untersuchenden
Bilderstack der Fall ist).

6.4 Template Matching

Template Matching ist ein Verfahren, bei dem ein prototypisches Modell einer Struktur im
Bild gesucht wird. Das Template ist dabei selbst ein kleines Bild, welches wie ein Filterkern
über das Bild wandert.

Abbildung 6.8: Template eines Bohrpunktes (Vergrößert)

Dabei wird in jedem Punkt (x, y) ein Änhlichkeitsmaß des Templates gegenüber dem Bild
berechnet. Ein häufig verwendetes Änglichkeitsmaß ist dabei Mean Absolute Difference
(MAD). Dieses Änhlichkeitsmaß bezeichnet die mittlere Differenz der Grauwerte des Bildes
g und des Templates T:

MAD(x, y) =
1

M · N ∑
ij
|g(x + i, y + j)− T(i, j)|
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6 2D - Verfahren

Befindet sich bei der Suche das Template genau über der gesuchten Struktur, ist MAD(x, y)
minimal, während bei keiner Übereinstimmung des Templates und des Bildausschnittes
MAD(x, y) groß ist. Dadurch sind im resultierenden Bild, in dem das Änhlichkeitsmaß
abgebildet wird, lokale Minima die Orte, in denen sich die Struktur des Templates befindet.

Abbildung 6.9: Lokale Minima

Um die genaue Position der Bohrpunkte zu ermitteln, müssen diese Minima detektiert
werden.
Der einfachste Ansatz dafür ist ein Schwellwert zu benutzen, so dass nach der Schwellwert-
bildung lediglich die lokalen Minima übrig bleiben.
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6.4 Template Matching

Abbildung 6.10: Lokale Minima nach der Schwellwertbildung

Ein Problem bei diesem Verfahren ist den richtigen Schwellwert zu treffen. Ein zu niedriger
Schwellwert lässt die lokalen Minima verschwinden. Ein zu hoher Schwellwert führt zu
einem „auslaufen“ der lokalen Minima in die angrenzenden Regionen.

Abbildung 6.11: Auslaufen der lokalen Minima bei zu hohem Schwellwert
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6 2D - Verfahren

6.4.1 Bewertung:

Die Unterschiede bei den lokalen Minima, welche durch die Wahl des Templates, Helligkeits-
und Farbunterschiede im Suchbild oder geringer Formunterschiede der Bohrungen und
ihrer Umgebung entstehen, machen eine automatisierte Suche nach den lokalen Minima sehr
schwierig. Sowohl das Template als auch der Algorithmus zur Extraktion der lokalen Minima
muss heuristisch optimiert werden, um bessere Ergebnisse zu erzielen. Da es im Umfang
der Fachstudie nicht gelungen dies effektiv zu atomatisieren, muss der Templatematching-
Algorithmus für die hier betrachteten Daten als ungeeignet eingestuft werden.

6.5 Einsatz der Houghtransformation zur Erkennung von
Bohrpunkten

Da gleichartige Bohrungen wohl auf der kompletten Platine den gleichen Radius (mit einer
kleinen Toleranz) besitzen, kann auf 2d-Slices explizit nach Kreisen mit diesem Radius ge-
sucht werden. Dies ergibt für Houghtransformation für Kreise mit Radius = 5 beispielsweise
folgendes Bild im Akkumulatorraum:
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6.5 Einsatz der Houghtransformation zur Erkennung von Bohrpunkten

Abbildung 6.12: Akkumulatorraum für Kreise mit Radius = 5

Da die Radien jedoch leicht schwanken, was insbesondere durch die geringe Auflösung
bedingt ist, kann beispielsweise noch der Raum für Kreise mit Radius 4 hinzuaddiert werden,
um ein klareres Bild zu erhalten.
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6 2D - Verfahren

Abbildung 6.13: Akkumulatorraum für Kreise mit r=4 und r=5

In diesem Raum müssen nun die lokalen Maxima gefunden werden. Dies ist keine triviale
Aufgabe, da ein lokales Maxima in einem anderen Bildbereich eher zum oberen Durchschnitt
gehört. Es bietet sich hier der Einfachheit halber dennoch an alle Pixel oberhalb eines
Schwellwertes (z.B 0.6 · globMax) zu Clustern zusammenfassen und aus diesen jeweils den
Mittelpunkt als Bohrung zu speichern.
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6.5 Einsatz der Houghtransformation zur Erkennung von Bohrpunkten

Abbildung 6.14: Pixel mit höherem Wert als 0.6 · globMax

Wendet man ein solches Schwellwertverfahren an, so müsste der Schwellwert heuristisch
optimiert werden, um möglichst viele Punkte zu „erwischen“, da Bohrungen ohne umliegen-
de Kanten (bspw. Isoliermaterial) generell schwächer in den Akkumulatorraum abgebildet
werden.
Um dieses Bild zu verbessern, hat man natürlich die Möglichkeit den Akkumulatorraum
mit verschiedenen Filtern zu falten, um damit zum Beispiel alle kreisförmigen Maxima zu
verstärken.
Ansonsten könnte man beispielsweise verschiedene „Hill-Climbing“-Algorithmen einsetzen,
wobei hier zu beachten ist, dass ein lokales Maximum nur dann als Hinweis für eine Boh-
rung interpretiert werden darf, wenn die Menge zusammenhängender, umgebender Pixel
mit ähnlich hohem Wert lokal relativ beschränkt ist. Dadurch werden nur „punktförmige“
Maxima gefunden.
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6 2D - Verfahren

Im Anschluss müssen natürlich noch die einzelnen Cluster jeweils zu Bohrpunkten zusam-
mengefasst werden.

6.5.1 Bewertung:

Die Unterschiede bei den lokalen Minima, welche durch Größen- und Formunterschiede
der Bohrungen und ihrer Umgebung entstehen, machen eine automatisierte Suche nach
den lokalen Minima sehr schwierig. Da sich die Houghtransformation jedoch nur auf die
Resultate des Canny-Edge-Detektores stützt, fallen die Unterschiede der lokalen Minima
kleiner aus als beim Template-Matching. Daher ist es auch mit dem einfachen Schwellwert-
Verfahren bereits möglich die meisten Bohrungen in der Platine ausfindig zu machen.

6.6 Alternativer Algorithmus zur Erkennung von Bohrpunkten auf
Grundlage einer Färbung

Die Houghtransformation für Kreise ist relativ rechenintensiv und schließlich muss der
Akkumulatorraum noch ausgewertet werden. Auch das Templatematching arbeitet mit Fil-
terkernen, die so groß sind wie die gesuchten Kreise. Dies motivierte dazu einen schnelleren
Algorithmus zu entwickeln, zur Not auch auf Kosten der Universalität. Eine sehr einfache
und effiziente Möglichkeit Kreise in einem Canny-Edge Bild zu finden ist die folgende:

procedure FindCircles(Bild img, Radius r, Toleranz t)
for all Pixel p ∈ img do

if p ist weiß then
Folge der zugehörigen weißen Linie l ungefähr n Schritte lang
, wobei n <= int(2 · π · (r + t))
for all Mittelpunkte mp do // Geschätzt aus der Position von p.

if ∃lp ∈ l : dist(mp, lp) < r− t ∨ dist(mp, lp) > r + t then
Abbrechen

end if
if Die Linie umschließt den Mittelpunkt (z.B. Quadrantencheck) then

l sei ein Kreis; continue in äußerer Schleife
end if

end for
end if

end for
end procedure
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6.6 Alternativer Algorithmus zur Erkennung von Bohrpunkten auf Grundlage einer Färbung

Abbildung 6.15: Ein Resultat des Algorithmus (gefundene Bohrungen sind rot markiert)

6.6.1 Bewertung:

Der Algorithmus ist extrem schnell und erkannte in sämtlichen Testbildern ohne Probleme
alle gesuchten Kreise. Falls die Kantendetektion einen Fehler gemacht hat und der Kreis
eine kleinere Lücke beinhaltet, so wird der Kreis im allgemeinen dennoch erkannt (Falls die
Lücke nicht zu groß ist).
Problematisch könnte selbstverständlich die Verallgemeinerung auf die gleichzeitige Suche
von Kreisen beliebiger Radien werden. Diesbezüglich wurden noch keine Anstrengungen
unternommen, da hierfür noch keine Notwendigkeit bestand.
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6 2D - Verfahren

6.7 Einsatz der Houghtransformation zur Erkennung von
Leiterbahnen

Die Houghtransformation ist nicht direkt geeignet für das Erkennen von Leiterbahnen, da
ausschließlich Geradenstücke erkannt werden. Aus diesen lässt sich jedoch nicht schließen,
ob es sich um eine Leiterbahn handelt oder nicht (es könnte z.B. auch Teil vom Isoliermaterial
sein).
Die Kurven der Bahnen werden nicht erkannt, somit müsste man die Geradenstücke ma-
nuell verlinken und anschließend noch jeweils 2 Kanten (Bahnränder) zu einer Leiterbahn
zusammenfassen. Zudem müssten andere, im Bild vorkommenden Geraden ausgeschlossen
werden.
Dieses Anpassungsverfahren scheint also relativ kompliziert zu sein, da es einfachere Wege
gibt die Bahnen zu finden.

6.8 Alternativer Algorithmus zu Erkennung von Leiterbahnen auf
Grundlage einer Färbung

Bohrungen sind relativ einfach zu finden, weil es sich um einigermaßen simple geometrische
Objekte handelt. Da alle Leiterbahnen schließlich in einer Bohrung enden, motiviert die
Idee einen Algorithmus zu schreiben, der bei bereits erkannten Bohrungen prüft, ob eine
Leiterbahn in sie mündet.
Ein Beispiel für einen solchen Algorithmus wäre folgendes Verfahren:

1. Man zeichne einen Kreis k1, dessen Radius etwas größer ist als der Abstand vom
Mittelpunkt der Bohrung bis zum äußeren Ende der umgebenden Isolierschicht.
Da die gefundenen Bohrpunkte nicht immer perfekt in der Mitte liegen, untersucht
man auch die Umgebungen jedes Bohrpunktes.

2. Falls in diesem Kreis ausgenommen von „weiß“ und „schwarz“ nur zwei Farben
vorkommen, so weiß man, dass es sich entweder um eine Bohrung mit Leiterbahn
handelt, oder aus Versehen eine „fremde“ Region geschnitten wurde.

3. Betrachtet man das Vorkommen der selteneren Farbe in einem Kreis k2, dessen Radius
etwas kleiner ist, als der Radius von k1, so kann man anhand eines einfachen Vergleichs
des Mengenverhältnisses in k1 und k2 schätzen, dass es sich um ein Leiterbahn handeln
kann.
Dies liegt daran, dass die Farbe der Leiterbahn in beiden Kreisen in ungefähr gleich
vielen Pixeln auftauchen muss (im inneren Kreis evtl. etwas häufiger).
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6.8 Alternativer Algorithmus zu Erkennung von Leiterbahnen auf Grundlage einer Färbung

Abbildung 6.16: Eingezeichnete Kreise (bei roten Kreisen ist bereits das Kriterium aus Schritt
zwei verletzt.)
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6 2D - Verfahren

Abbildung 6.17: Ein Resultat des Algorithmus (gefundene Leiterbahnen sind schwarz mar-
kiert)

6.8.1 Bewertung:

Der Algorithmus ist relativ schnell, da er nur die bereits gegebenen Bohrungen untersucht
und nicht daher nicht das komplette Bild durchforstet.
Gegenüber Fehlern im „Canny“-Bild ist der Algorihtmus nur insofern robust wie es der
verwendete Färbealgorithmus ist.
Problematisch ist natürlich auch hier, dass der Algorithmus speziell auf das Problem zuge-
schnitten wurde und daher an Universalität einbüßt.
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6.9 Weiterer alternativer Algorithmus zu Erkennung von Leiterbahnen

6.9 Weiterer alternativer Algorithmus zu Erkennung von
Leiterbahnen

Da der vorherige Algorithmus von Robustheit des Färbealgorithmus abhängt und daher
im Allgemeinen anfällig ist für Fehler des Canny-Edge-Detektors, wäre ein Algorithmus
interessant, welcher ohne Färbung auskommt.
Da die Bohrungen bisher zuverlässig erkannt wurden und es das Verfahren extrem beschleu-
nigt, soll auch hier wieder von den gefundenen Bohrungen ausgegangen werden.
Der hier vorgeschlagene, auf das Problem abgestimmte Algorithmus sucht im Wesentlichen
die Kante(n) einer eventuellen Leiterbahn und untersucht ihr Verhalten bezüglich der Um-
rundung des Bohrpunktes:

1. Man zeichne wieder einen Kreis, dessen Radius etwas größer ist als der Abstand vom
Mittelpunkt der Bohrung bis zum äußeren Ende der umgebenden Isolierschicht.
Da die gefundenen Bohrpunkte nicht immer perfekt in der Mitte liegen, untersucht
man auch die Umgebungen jedes Bohrpunktes.

2. Falls es auf dem Kreis genau zwei weiße Cluster gibt und deren euklidischer Abstand
im Toleranzbereich der Breite einer Leiterbahn liegt, so kann man sagen, dass es sich
entweder um die beiden Seiten der Leiterbahn handelt oder keine Leiterbahn von
der Bohrung ausgeht und zufällig zwei fremde Punkte mit dem richtigen Abstand
gefunden wurden.

3. Um letzteren Fall mit hoher Wahrscheinlichkeit auszuschließen könnte man beispiels-
weise jeweils der zugehörigen weißen Linie eines Clusters folgen und schließlich
untersuchen, ob die Vereinigung der beiden Linien den Bohrpunkt umrundet (bspw.
Quadrantencheck: Liegen in jedem Quadranten um den Bohrpunkt min. x Pixel?).
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6 2D - Verfahren

Abbildung 6.18: Beispiel zu Verdeutlichung: Der in Schritt 1 gezeichnete Kreis ist blau;
Die gefundenen Cluster sind gelb; Der gemessene Abstand ist braun; Die
Vereinigung der beiden Linien grün.

Um nun die tatsächliche Leiterbahn zu extrahieren könnte man beispielsweise den Floodfill
Algorithmus auf der braunen Linie im Bild starten und somit alle Pixel der Leiterbahn finden.
Das würde jedoch dem Vorhaben widersprechen, ohne Färbung und der damit verbunden,
bereits angesprochenen Schwäche auszukommen.
Daher bietet es sich beispielsweise folgendes Verfahren zur Extraktion der Leiterbahnen an
(Vorraussetzung: Die Leiterbahnen machen keine scharfen Kurven):

1. Man schießt einen Strahl, ausgehend vom Bohrpunkt in Richtung Leiterbahn, dh. durch
die Mitte der gezeichneten, braunen Linie.

2. Der Strahl wird am Punkt p gestoppt, und zwar n Pixel vor einer weißen Linie.

3. Anschließend vergleicht man n mit nlinks und nrechts, welche entstehen, wenn man,
anstatt von p geradeaus zu gehen um 45◦ nach links bzw. nach rechts geht.

4. Den längsten der drei Wege wählt man als neuen Startweg, halbiert den Winkel
und macht weiter bei Schritt 3. Durch diesen Trick wird bei den Leiterbahnen für
jeden aktuellen Punkt p der längste Weg in die richtige Richtung gefunden (siehe
nachfolgende Grafik).

5. Wenn man den längsten Strahl ausgehend vom Punkt p gefunden hat, dann wird p
neu gesetzt, indem man mit diesem Strahl wieder bei Schritt 2 weitermacht. Falls kein
neuer Strahl gefunden wurde ist man fertig.
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6.9 Weiterer alternativer Algorithmus zu Erkennung von Leiterbahnen

Abbildung 6.19: Zwei Iterationsschritte zu Verdeutlichung: Der grüne Weg ist jeweils der
längste und wird daher als Ausgangsrichtung für die nächste Winkelhal-
bierung gesetzt.

Dieses Vorgehen führt dazu, kleinere Lücken im Kantenbild mit einigermaßen hoher Wahr-
scheinlichkeit übersprungen werden, insbesondere dann, wenn sie auf einem langen, ge-
radlinigen Abschnitt auftauchen. Dieser Vorteil ist im folgenden Bild zu sehen, in welchem
auch die Leiterbahn gefunden wurde, welche beim vorherigen Verfahren aufgrund der
fehlerhaften Färbung nicht erkannt wurde.
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6 2D - Verfahren

Abbildung 6.20: Ein Resultat des Algorithmus (gefundene Leiterbahnen sind rot markiert).
Es wurden zusätzlich Leiterbahnen, welche zwischen zwei Bohrungen
verlaufen kombiniert.
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6.9 Weiterer alternativer Algorithmus zu Erkennung von Leiterbahnen

Abbildung 6.21: Ein anderes Resultat des Algorithmus (gefundene Leiterbahnen sind rot
markiert). Außerdem wurden Leiterbahnen, welche zwischen n Bohrungen
verlaufen zu einem Graph kombiniert.

6.9.1 Bewertung:

Durch die beidseitige Verfolgung der von den Clustern ausgehenden Linien und dem an-
schließenden Check deren Vereinigung bezüglich dem Quadrantenkriterium hat sich das
Verfahren für die Erkennung von Leiterbahnen auch bei Lücken im Canny-Edge-Bild be-
währt.
Das Verfahren zur nachfolgenden Extraktion der Leiterbahnen hat in den getesteten Szenari-
en gut funktioniert und ist einigermaßen einfach zu implementieren.
Wenn ein Strahl jedoch zufällig durch eine Lücke im Kantenbild springt, dann hat das unab-
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6 2D - Verfahren

sehbare Konsequenzen und die Leiterbahn muss aus der Liste gestrichen werden. Ersteres
ist wiederum einem Algorithmus nicht auf trivialem Wege ersichtlich und diesbezüglich
müssen weitere Anstrengungen unternommen werden.
Auch dieser Algorithmus ist extrem schnell und dürfte keinerlei Performanz-Probleme
bereiten.
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7 3D - Verfahren

7.1 RANSAC

RANSAC (RAndom SAmple Consensus) [RCB81] ist ein iteratives Verfahren zur Schätzung
eines mathematischen Models anhand von Beobachtungsdaten mit Ausreißern. Der Algorith-
mus ist nicht-deterministisch, da ihm probabilistische Ansätze zu Grund liegen. Aufgrund
seiner Robustheit wird er häufig im Bereich des maschinellen Sehens eingesetzt.

Abbildung 7.1: In einen Datensatz mit vielen Ausreißern wird eine Linie eingepasst.

7.1.1 Der Algorithmus

Für das zu erkennende Objekt wird ein parameterabhäniges Modell erstellt. Danach werden
die Daten iterativ auf mögliche Vorkommnisse eines auf das Modell passenden Objekts ge-
testet, dafür werden iterativ zufällige Punkte aus den Daten selektiert und als hypothetische
Einlieger des Objekts betrachtet und das Modell an diese Punkte angepasst. Für eine Linie
wären dies zwei Punkte um sie ausreichend zu beschreiben. Nun wird das Modell getestet:

1. Alle anderen Punkte werden gegen das Modell getestet und falls sie dazu passen
ebenfalls als mögliche Einlieger gespeichert.

2. Das Modell wird akzeptiert wenn genug Einlieger gefunden werden.
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7 3D - Verfahren

3. Das Modell auf Basis aller gefundenen Einlieger neu berechnet und evaluiert.

Nach ausreichend vielen Iterationen wird das beste Modell benutzt um alle Punkte des
Objekts zu identifizieren. Anschließend wird das gefundene Objekt aus den Daten gelöscht
und gegebenenfalls nach weiteren Vorkommnissen gesucht.

Abbildung 7.2: In einem per Threshhold-Verfahren vorverarbeiteten Datensatz wird anhand
eines einfachen Modells eine Kugel identifiziert.

7.1.2 Bewertung

Der Algorithmus eignet sich sehr gut um in großen Datenmengen schnell Instanzen von
Modellen zu finden. Für den diskutierten Anwendungsfall ist er leider vergleichsweise
langsam. Der Grund dafür ist, dass die zu suchenden Objekte schon durch einen Dichte-
Threshhold sehr gut vor-isoliert werden können. Man kann sich deshalb direkt darauf
konzentrieren einzelne Punktmengen auf bestimmte Eigenschaften hin zu untersuchen.
Der große Vorteil von RANSAC schnell mögliche Kandidaten zu entdecken wird deshalb
negiert.

7.2 Alternativer Algorithmus zur Erkennung von Lötkugeln und
Bonddrähten

Der wohl am naheliegenste Ansatz Objekte in einem Datensatz zu finden, ist den Datensatz
in einem hinreichend kleinen Raster abzusuchen und an jedem Punkt das damit verbundene
Objekt auf die Ähnlichkeit mit den gesuchten Objekten hin zu untersuchen. Ein solcher
Ansatz ist insbesonere bei den großen und einigermaßen wohlgeformten Lötkugeln sehr
intuitiv, wie in der folgenden Abbildung zu sehen ist.
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7.2 Alternativer Algorithmus zur Erkennung von Lötkugeln und Bonddrähten

Abbildung 7.3: Die gesuchten Kugels sind hier ab einem bestimmten Reflektions-
Schwellwert sehr einfach zu identifizieren, die Bonddrähte sind dagegen
eher schwierig unter einen Hut zu bringen.
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7 3D - Verfahren

Das Vorgehen bei einem solchen Algorithmus zur Suche der gezeigten Lötkugeln könnte
also im einfachen Fall wie folgt aussehen:

procedure FindSpheres(int radius, 3DUniformVoxelgrid g)
searchStep = int(

√
2 · radius)

for all Voxel v ∈ g by Step searchStep do // Kurzform für die 3 Schleifen.
value = getValue(v)
if value > 40000 then

if v /∈ investigated then
res = getFlood f ill3D(v, value, tolerance = 8000)
investigated = investigated ∪ res
if isApproxSpheric(res.min, res.max) then f ound = f ound ∪ res

end if
end if

end for
end procedure

Hierbei sei als einfache Approximation nachfolgender Check gegeben (ggf. sollten hier
Ansätze gewählt werden, die etwas durchdachter sind):

procedure isApproxSpheric(int min, int max)
if max[1] ∨max[2] ∨max[3] = 0 then return False
xy = 0.65 < |min[0]−max[0]|/|min[1]−max[1]| < 1.35
xz = 0.65 < |min[0]−max[0]|/|min[2]−max[2]| < 1.35
zy = 0.65 < |min[2]−max[2]|/|min[1]−max[1]| < 1.35
return xy ∧ xz ∧ zy // „bounding box“ ist näherungsweise kubisch.

end procedure

Für die Suche nach Bonddrähten reicht es, im obigen Algorithmus die Schrittweite, den
Schwellwert und den Approximationscheck zu ersetzen. Letzterer könnte im einfachen Fall
beispielsweise wie folgt aussehen:

procedure isLongEnough(int min, int max)
return 40 <

√
|min[0]−max[0]|2 + |min[1]−max[1]|2 + |min[2]−max[2]|2

end procedure

Wie in nachfolgender Abbildung zu sehen ist, kann selbst ein derart einfacher Test reichen
um die, durch den Schwellwert ohnehin schon gefilterten Objekte, perfekt einzuschränken.
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7.2 Alternativer Algorithmus zur Erkennung von Lötkugeln und Bonddrähten

Abbildung 7.4: Der Algorithmus erkennt im Beispieldatensatz alle Bonddrähte und Kugeln
(hier nicht eingezeichnet). Durch die automatische Interpolation des Viewers
sind die dargestellten Drähte etwas verwaschen.

7.2.1 Bewertung

Das Vorgehen des Algorithmus ist sehr intuitiv und einfach. Bei allen Tests reichten außerdem
unkomplizierte Approximationsbedingungen, um die gesuchten und ausschließlich die
gesuchten Objekte zu extrahieren. Besonders einfach zu beschreibende geometrische Objekte,
wie beispielsweise Kugeln, sind sehr leicht zu finden.
Um den Algorithmus auf ein Objekt zu eichen muss lediglich die Schrittweite und der
Schwellwert angepasst werden und das vom Floodfill-Algorithmus zurückgegebene Objekt
in den abschließenden Bedingungen hinreichend genau beschrieben werden.
Ein Datensatz kann bei räumlich ausgedehnten Objekten schnell den Datensatz durchsuchen,
da bei weitem nicht jeder Voxel untersucht werden muss (Bei Kugeln reicht beispielsweise
eine Schrittweise von b

√
2 · rc). Die Geschwindigkeit ist selbstverständlich abhängig von der

Größe und dem Vorkommen der gesuchten (und ähnlicher) Objekte.
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8 Zusammenfassung und Empfehlung

In dieser Fachstudie wurden Verfahren zur Erkennung von Objekten in CT-Scans plana-
rer Hochfrequenzschaltungen untersucht. Da die zu suchenden Objekten begrenzt und
sehr unterschiedlich waren sind auch die behandelten Algorithmen in Funktionsweise und
Einsatzgebiet stark verschieden. Manche der algorithmischen Ansätze wurden auch spe-
zifisch für die Erkennung einer Art von Objekt konzipiert. Deshalb macht es kaum Sinn
einen globalen Vergleich durchzuführen und wir haben uns entschieden unterteilt nach den
Objektgruppen jeweils ein einzelnes Fazit zu ziehen.

8.1 Bohrpunkte

Zur Erkennung von Bohrpunkten sind 3d-Verfahren grundsätzlich geeignet, wobei nun eben
nach Zylindern gesucht werden muss. Es wurden jedoch keine Verfahren untersucht, die
einen solchen Ansatz implementieren. Stattdessen wurden hier ausschließlich 2d-Verfahren
eingesetzt und bewertet.
Das SURF Verfahren als Variante des SIFT erzielte gute Resultat und erkannte alle Bohrungen.
Jedoch wurden einige Merkmalsvektoren irrtümlich als Bohrung identifiziert.
Sowohl das untersuchte Verfahren zum Template-Matching als auch die Houghtransfor-
mation hatten das Problem, dass die lokalen Minima nach der Faltung sich zueinander
unterschiedlich stark ausgeprägt hatten. Das eingesetzte Schwellwert-Verfahren lieferte bei
der Houghtransformation jedoch wesentlich bessere Resultate.
Am erfolgreichsten stellte sich jedoch der selbst implementierte, auf das Problem zugeschnit-
tene Algorithmus zur Erkennung von Kreisen in Kantenbildern heraus.
Er erkannte ohne Fehler alle Bohrpunkte in allen getesteten Bildern, was selbstverständlich
auch an den fast fehlerfreien Resultaten des Canny-Edge-Detektors liegt.
Dabei handelt es sich zusätzlich um den (mit Abstand) schnellsten Algorithmus, da er ohne
Faltung auskommt.

8.2 Leiterbahnen

Da Leiterbahnen einen zweidimensionalen Verlauf besitzen boten die dreidimensionalen
Verfahren keinen nennenswerten Vorteil, weil keine zusätzlichen Informationen verarbeitet
werden konnten. Deswegen wurden für die Erkennung von Leiterbahnen auch keine dreidi-
mensionalen Verfahren behandelt, sondern ausschließlich auf 2D-Slices gearbeitet.
Das zuerst untersuchte Verfahren war die Houghtransformation für Linien. Es stellte sich

65



8 Zusammenfassung und Empfehlung

allerdings schnell heraus, dass die Geradenerkennung nur bedingt für die Erfassung von Lei-
terbahnen geeignet war. Der Grund dafür war der unregelmäßige Verlauf der Leiterbahnen
mit vielen Kurven und Mündungen in Bohrpunkten, welches zu Unmengen unverknüpfter
Graden führte.
Da eine Leiterbahn zwar aus einer begrenzten Zahl von Bauteilen besteht, diese aber quasi
frei kombiniert sein können, eigneten sich SIFT/SURF und Template-Matching selbstver-
ständlich auch nicht zur Erkennung. Für diese Verfahren müsste das zu erkennende Objekt
immer die gleichen äußerlichen Eigenschaften aufweisen.
Die zwei alternativen Algorithmen erwiesen sich als ausgezeichnet bei der Leiterbahner-
kennung. Durch die Ausnutzung objektspezifischer Eigenschaften, wie der Mündung in
Bohrpunkten, und der meist hohen Qualität der Kantenerkennung konnten quasi perfekte
Erkennungsraten erreicht werden. Der zweite Algorithmus verbesserte dabei das schon sehr
gute Ergebnis der ersten Alternative noch einmal. Die Abhängigkeit von FloodFill wurde
eleminiert und gleichzeitig die Anfälligkeit gegenüber Fehlern im Canny-Bild weiter gesenkt.
Der zweiter Alternativ-Algorithmus stellt damit die beste gefundene Lösung für das Problem
dar und ist auch einer der performantesten der getesteten Algorithmen.

8.3 Lötkugeln

Bei der Erkennung der Lötkugeln stellte sich erneut die Frage, ob nur eine Klasse von
Verfahren behandelt werden sollte. Durch ihren hohen Reflektanzwert sind die Lötkugeln
sowohl auf den Slices als auch in den Voxeldaten leicht zu isolieren. Der größte Vorteil der
dreidimensionalen Algorithmen ist, dass mit dem Objekt als Ganzes gearbeitet werden kann.
Arbeitet man hingegen nur mit den Slices, so müssen die erkannten Teil-Kreise erst wieder zu
einem Ganzen zusammengeführt werden. Dadurch stellen sich zahlreiche neue Probleme, die
in ihrer Menge schlussendlich dazu führten, dass ausschließlich dreidimensionale Verfahren
getestet wurden.
Eines der bekanntesten Verfahren zur Erkennung von Objekten in verrauschten Daten ist der
RANSAC-Algorithmus. Da sich für eine Kugel sehr leicht ein Modell erstellen lässt, konnten
mit RANSAC zuverlässig Lötkugeln gefunden werden. Leider relativierte die Möglichkeit die
Kugeln durch Thresholds vorzuisolieren den Geschwindigkeitsvorteil, den RANSAC durch
die schnelle Untersuchung möglicher Kandidaten erzielt. Insgesamt war die Perfomanz
leider enttäuschend.
Der intuitive Algorithmus, welcher den Datensatz in einem hinreichend engen Raster durch-
sucht und getroffene Objekte auf ihre Kugelförmigkeit überprüft, scheint einen guten Ansatz
darzustellen, solange die Akzeptanzbedingung fein genug definiert wird.
Der Algorithmus ist extrem schnell und erkannte alle gesuchten Objekte, da es sich bei
diesen um sehr einfache geometrische Objekte handelt, die hier leicht abgegrenzt werden
können.
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8.4 Bonddrähte

Den Bonddrähten, als schwierigste zu erkennende Objekte, wurde insgesamt eher wenig
Zeit gewidmet, da kein Algorithmus wirklich geeignet erschien.
Die Effektivität zweidimensionaler Verfahren wurde gar nicht erst untersucht, da es spontan
äußerst schwierig erschien entsprechende Slices oder Projektionen zu extrahieren.
Der bei Kugeln eingesetzte RANSAC-Algorithmus ist theoretisch natürlich geeignet, jedoch
könnte es sich aufgrund der Vielfalt der Drähte als problematisch herausstellen ein geeigne-
tes Modell zu konstruieren.
Der einzige Algorithmus der tatsächlich zur Erkennung von Bonddrähten eingesetzt wurde,
war der intuitive, das Bild rasterartig durchsuchende Algorithmus auf Basis des dreidimen-
sionalen Floodfill.
Dieser erkannte alle Bonddrähte die lang genug waren und bereitete im Test keine Perfor-
manzprobleme. Dennoch ist seine universelle Einsatzfähigkeit eher fraglich, zumindest ohne
die Akzeptanzbedingung zu verfeinern.
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