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Kurzfassung

Fir die computergestiitzte Analyse planarer Hochfrequenzschaltungen wird mit 3D-
Modellen gearbeitet anhand derer die elektrischen Eigenschaften simuliert werden kénnen.
Diese 3D-Modelle werden auf Basis von Bildern, die mit Computertomographen erstellt
wurden, angefertigt.

Dieser Prozess wurde bisher meistens mithsam von Hand durchgefiihrt. Deshalb werden
Algorithmen gesucht, die dabei helfen einfache Strukturen wie Leiterbahnen, Bonddréhte,
Lotkugeln und Bohrungen automatisch zu erkennen. Dazu werden im folgenden einige
potentielle algorithmische Ansédtze vorgestellt und bewertet.

Zu Beginn der Studie werden einige Hilfsverfahren (z.B. Canny-Edge-Detektor) vorgestellt,
die anschlieffend an verschiedenen Stellen eingesetzt werden. Anschlieffend untersuchen die
Autoren verschiedene Moglichkeiten zweidimensionale ,,Slices” aus den dreidimensionalen
Voxeldatensédtzen zu extrahieren. Das Ziel dabei ist es, moglichst aussagekriftige Bilder fiir
den Einsatz der, im folgenden vorgestellten, zweidimensionalen Objekterkennungsverfahren
zu finden. Es stellt sich heraus, dass verschiedene zweidimensionale Verfahren, aufgrund der
Struktur des zu untersuchenden Datensatzes, fiir Bohrungen und Leiterbahnen gut geeignet
sind und grofitenteils brauchbare Resultate liefern.

Fiir andere Objekte, wie Kugeln und Bonddréhte, wird der nichtdeterministische RANSAC-
Algorithmus und ein auf das Problem zugeschnittener, selbstgewiéhlter Ansatz untersucht.
Im letzten Abschnitt werden nun die betrachteten Verfahren einander gegeniibergestellt und
anschlieffend eine Empfehlung beziiglich des Einsatzes in der Praxis geggeben.
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1 Einleitung

Das Forschungsthema des Aufgabenstellers befasst sich mit der computergestiitzten Analyse
von aufgebauten, passiven und planaren Hochfrequenzschaltungen. Dies geschieht mit Hilfe
von hochst prazisen 3D Modellen, die auf Basis von Messungen mit einem Computertomo-
graphen erstellt werden.

Da die Ausgaben des digitalen Rontgendetektors in Form von diskreten Voxeldaten vorliegen,
werden von den derzeit eingesetzten Algorithmen zur Objekterzeugung nur Objekte mit
rauen und kantigen Oberfldchen erzeugt. Leider fiihrt dies bei der Analyse zu Nachteilen
bei der Bestimmung der elektrischen Hochfrequenzeigenschaften.

Um diesen Nachteil zu umgehen werden die Modelle zur Zeit grofienteils von Hand erstellt.
Leider stellt die manuelle Konstruktion einen nicht unerheblichen zusatzlichen Zeitaufwand
dar. Deshalb wéren Algorithmen wiinschenswert, die die relevanten Bauteile einer solchen
Schaltung weitestgehend autonom erkennen und abstrahieren konnen.






2 Problemstellung

Eine Moglichkeit der Verfalschung der erkannten Objekte zu begegnen ist die Ersetzung bzw.
Approximierung dieser durch einfachere Objekte (z.B. Zylinder, Kugel oder Quader). Im
Rahmen der Fachstudie sollten deshalb Algorithmen ausfindig gemacht werden mit denen
ausgewdhlte Objekte innerhalb der Bilddaten erkannt werden konnen. Anhand einfacher
Teststrukturen sollte eine Auswahl vielversprechender Algorithmen getestet und miteinander
verglichen werden. Die Ergebnisse wurden protokolliert und bewertet.






3 Beschreibung der zu untersuchenden Daten

Die Ergebnisse der Messungen werden in zwei verschiedenen Formaten untersucht:

1. 3D-Voxeldaten
In ihrer urspriinglichen Form liegen die Daten in Form von dreidimensionalen Ras-
tergrafiken, zusammengesetzt aus volumetrischen Pixeln, vor. Diese Pixel werden
iiblicherweise als Voxel bezeichnet und sind Teil eines Voxelgitters. Jeder Voxel besitzt
einen Wert, der seine Opazitat wiedergibt. Der Wert dieser Opazitit leitet sich direkt
aus der beim CT gemessenen Reflektanzwert ab.

Abbildung 3.1: 3D-Voxeldatensatz in myVGL
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3 Beschreibung der zu untersuchenden Daten

2.

2D-Slices
Die zweidimensionalen Slices werden auf Basis der 3D-Voxeldaten berechnet. Dabei

wird eine Schicht des Voxelgitters extrahiert und auf Basis der Opazitdtswerte eine
Rastergrafik erstellt, wobei jeder Pixel eindeutig einem Voxel zugeordnet werden kann.
Durch diese Umformung konnen bei der Objekterkennung auch 2D-Verfahren genutzt

werden.

Abbildung 3.2: 2D-Slice aus einem 3D-Voxeldatensatz
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3.1 Zu erkennende Objekte

3.1 Zu erkennende Objekte

Abbildung 3.3: Typischer 2D-Slice mit Leiterbahnen (rot) und Bohrpunkten (griin)

3.1.1 Bohrpunkte

Die Bohrpunkte sind die wohl am einfachsten zu erkennenden Objekte. Ihre Grofie ist
meistens durchweg identisch. Haufig miinden Leiterbahnen in Bohrpunkten, manchmal
befinden sie sich auch dazwischen, entlang des Korpers der Leiterbahn. Fiir die Erkennung
bietet es sich an auf den zweidimensionalen Slices zu arbeiten, weil die Bohrpunkte dort als
schwarze, ausgefiillte Kreise leichter auszumachen sind.

3.1.2 Leiterbahnen

Die Leiterbahnen sind elektrisch leitende Verbindungen mit zweidimensionalem Verlauf.
Aufgrund diesr Eigenschaft bietet es sich an wie bei den Bohrpunkten auf zweidimensionale
Erkennungsverfahren zuriickzugreifen. Da sie in den allermeisten Fillen an einem Bohrpunkt
starten und auch wieder enden konnen diese gegebenenfalls auch als Ausgangspunkte fiir
die Erkennung genutzt werden.
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3 Beschreibung der zu untersuchenden Daten

Abbildung 3.4: In der Mitte zu sehen: Bonddrédhte und Lotkugeln

3.1.3 Loétkugeln

Die Lotkugeln sind die Objekte, die sich durch ihren Reflektanzwert am deutlichsten von
anderen Objekten abheben. Deshalb koénnen sie durch Filterung mit Threshholds sehr einfach
vorisoliert werden. Die Herausforderung besteht demnach darin die isolierten Voxel-Mengen
auf Kugel-Eigenschaften zu untersuchen und gegebenenfalls als Lotkugel zu klassifizieren.
Es sind allerdings auch Verfahren im zweidimensionalen denkbar, da die Kugelen auch auf
den Slices sehr gut sichtbar sind. Dann wire es allerdings notig Schicht fiir Schicht, also Slice
fiir Slice, vorzugehen und den Vorteil eines zusammenhédngenden Objektes zu verwerfen.

3.1.4 Bonddrahte

Die Bonddréhte verbinden die Schichten der Platine, sie sind diinn und lang. Sie zeigen nicht
unbedingt alle in die gleiche Richtung und weisen auch alle eine unterschiedliche Lange
auf. Da sie im zweidimensionalen durch ihre geringe Grofie und Erstreckung iiber mehrere
Slices kaum erkennbar sind, miissen dreidimensinale Verfahren eingesetzt werden. Durch
ihre undankbaren Eigenschaften sind sie die am schwersten zu erkennenden Objekte.
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4 Allgemeine Verfahren

Die Allgemeinen Verfahren sind unterstiitzende Algorithmen mit denen die zu analysieren-
den Daten fiir komplexere Erkennungsverfahren vorverarbeitet werden. Meistens filtern sie
unnotige oder storende Informationen heraus oder modifizieren die Daten so, dass sich die
zu erkennenden Objekte besser von den unbrauchbaren Daten abheben.

4.0.5 Canny-Edge-Detektor

Der Canny-Edge Operator [Can86] is ein von John Canny 1986 entwickelter Algorithmus
zur Kantendetektion. Er liefert fiir ein Grauwertbild idealerweise alle zusammenhédngenden
Kanten. Der Algorithmus gliedert sich dabei im Wesentlichen in zwei Schritte:

1. Kantenhervorhebung
2. Erzeugung von Kantenziigen

Zunichst wird das Bild mit einem zweidimensionalen Gaufikern gefaltet:

—_ N
N = DN
— N =

Dieser sorgt dafiir, dass grobere Storungen und Rauschen beseitigt werden. Das gefilterte
Bild wird nun auf Kanten hin untersucht. Wahrend Flachen und Segmente in Bildern meist
homogene Grauwerte besitzen, stellen Kanten grofie Grauwertspriinge dar. Um diese Grau-
wertspriinge zu detektieren, verwendet man den Sobeloperator, ein Filter, der die partiellen
Ableitungen eines Pixels in x- und y-Richtung liefert.

Die Struktur eines 1D Sobelfilters ergibt sich dabei aus der finiten Differenz (hier: Zentraldif-
ferenz) an der Stelle x:
0g(x)  g(x+Ax) —g(x — Ax)

dx 2 Ax
wobei Ax = 1. Damit hat der diskrete 1D Filter S die Struktur

s=[1 0 -1

Erweitert auf einen zweidimensionalen Filter ergibt sich
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4 Allgemeine Verfahren

10 -1 1 2 1
Sx)=12 0 —2|,Sw)=|0 0 o0
10 -1 ~1 -2 -1

in x-, bzw. y-Richtung.

Die Anwendung der Filter auf das Ausgangsbild liefert die partiellen Ableitungen G, und
Gy. Aus diesen partiellen Ableitungen lasst sich die Gradientenrichtung d einer Kante
berechnen:

d(x,y) = arctan(

Anschlieflend wird aus den partiellen Ableitungen ein Bild der absoluten Kantenstarke
berechnet:

Glx,y) = /Ga(x,y)2 + Gy (x,y)?

Im néchsten Schritt wird eine Technik names “Non-maximum suppression” angewandyt,
um sicherzustellen, dass Kanten nicht breiter als ein Pixel sind. Dabei wird fiir jedes Pixel
dessen 8-Nachbarschaft untersucht. Befindet sich in der Nachbarschaft des zu untersuchen-
den Pixels ein Pixel, dass einen hoheren Grauwert aufweist, so wird der Grauwert des zu
untersuchenden Pixels auf o gesetzt, es sei denn, das Pixel mit dem grofieren Grauwert
befindet sich entlang der Gradientenrichtung.

Im letzten Schritt des Verfahrens werden die Pixel zu Kantenziigen zusammengefasst.
Dabei verwendet man zwei Schwellwerte L; < L,. Zundchst wird nach einem Pixel gesucht,
dessen Grauwert grofier als L ist. Dieses Pixel wird zum Startpixel des Kantenzugs erklart.
Nun wird die Kante in beiden Richtungen nach Pixel mit einem Grauwert grofier L; abge-
sucht, welche dem Kantenzug hinzugefiigt werden. Werden keine Pixel gefunden, die diese
Bedingung erfiillen, bricht die Suche ab, und des wird ein neues Startpixel gesucht. Das
Verfahren endet, sobald kein unmarkiertes Pixel mit einem Grauwert grofser L, gefunden
wird.

Als Resultat des Verfahrens entsteht ein Bild, das eine Menge von Pixeln enthilt, die
idealerweise genau die Kantenpixel des Ausgangsbilds enthalt.

16



Abbildung 4.1: Resultat nach der Anwendung des Canny-Edge-Detektors

4.0.6 Posterisation

Abbildung 4.2: Posterisation eines 2D-Slices mit Artefakten im Hintergrund

Posterisierte Bilder benutzen eine eingeschriankte Farbpalette. Es gibt keine kontinuierlichen
Farbverldufe, alle Farbiibergdange sind abrupt. Durch Posterisation konnen die Bilddaten fiir
die Objekterkennung vorbereitet werden. So kann beispielsweise anschliefSend durch ein
einfaches Template-Matching nach Objekten gesucht werden.

Durch die Eigenschaften der Slices bietet sich die Posterisation als Verfahren fiir die Separa-
tion von Objekten und Hintergrund an. So konnen beispielsweise auf qualitativ guten Slices
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4 Allgemeine Verfahren

nach der Posterisation durch Template Matching die meisten Bohrpunkte erkannt werden.
Das grofse Problem der Posterisation sind die nicht perfekten CT-Scans. Die Platinen liegen
meistens nicht perfekt ausgerichtet in der Aufnahme und somit kommt es vor allem im
idealerweise gleichméfiigen Hintergrund zu leichten Artefakten wie z.B. Farbverldufen, die
die Posterisation so stark storen, dass das Ergebnis hdufig nicht sinnvoll weiterverwerdent
werden kann.

Es gibt mehrere Moglichkeiten ein Bild zu posterisieren, eine davon ist die sogenannte
Farbreduktion. Daftir werden Algorithmen benutzt, die die n besten Farben fiir das zu
posterisierende Bild ermitteln. Das gebrauchlichste Vorgehen betrachtet die Farbreduktion
als ein Cluster-Problem im dreidimensionalen Raum, wobei die Achsen die drei Farbkanile
rot, griin und blau représentieren.

Median-Schnitt-Algorithmus

Der Median-Schnitt [Krug4] ist ein Sortierverfahren fiir n-dimensionale Daten und der
meistbenutzte Farbreduktions-Algorithmus. Er unterteilt die Farbwerte anhand des Medians
iterativ in Gruppen dhnlicher Werte. Nach der Lokalisation der Gruppen werden deren
Farbwerte typischerweise gemittelt um den reprasentierenden Farbwert zu erhalten. Bei
der Farbreduktion wird dies so oft wiederholt bis die Anzahl der Gruppen der Anzahl
der gewiinschten Farben entspricht. Der Median wird mit Hilfe der euklidischen Distanz
berechnet:

d(a,b) = \/(ag — br)? + (ag — bc)? + (ap — bp)?

4.0.7 Floodfill-Algorithmus

Floodfill ist ein Algorithmus, der in multi-dimensionalen Arrays zusammenhéngende Felder
erkennen und farben kann. Ob Felder zusammenhéngen ist abhdngig davon, ob sie iden-
tische Eigenschaften aufweisen. Bei den hier verwendeten Bilddaten wird dafiir die Farbe
der Pixel/Voxel verwendet. Ausgehend von einem Startpunkt durchsucht der Algorithmus
“flutartig” das Array und dndert die Suchrichtung, sobald eine Eigenschaft nicht mehr erfiillt
ist.

Der Algorithmus betrachtet ausgehend von einem Startpunkt rekursiv alle benachbarten Fel-
der und farbt diese gegebenenfalls. Ausgehend davon wie viele der Nachbarfelder betrachtet
werden spricht man z.B. im zweidimensionalen von “fill4” (oben, unten, links, rechts) oder
“fill8” (alle Nachbarn).

Alle eingesetzten Verfahren arbeiten auf dem Resultat eines Canny-Edge-Detektors. Zu-
sdtzlich wurde bei den Verfahren, die auf einem gefarbten Bild arbeiten, eine Farbung
zusammenhédngender schwarzer Flachen nach folgendem Prinzip durchgefiihrt:

for x in xrange(0, width, 3): # stepsize ist 3
for y in xrange(O, height, 3):
£i118(img, x, y, (0,0,0), randomColor, resimg)
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Der implementierte "fill8"-Algorithmus entspricht dem Floodfill-Algorithmus mit einer
8-Pixel Nachbarschaft, welcher im vorigen Abschnitt beschrieben wurde. Dabei wurde der
Algorithmus derart modifiziert, dass zuerst in der 8er-Umgebung gepriift wurde ob ein
weifSer Pixel an den zu untersuchenden Pixel angrenzt und anschlieffend die 4er-Umgebung
auf den Stack gelegt wurde, falls die Priifung negativ ausgefallen ist. Durch diesen Trick
wird verhindert, dass der Algorithmus durch kleinere Liicken (bis 2 Pixel) des Canny-Bildes,
welche aufgrund von von fehlerhafter Erkennung entstehen, hindurch lauft.

Abbildung 4.3: fill4 farbt ausgehend vom Mittelpunkt die zentrale, weifse Fldche.

4.0.8 Houghtransformation

Die Houghtransformation [BFRRg5] baut auf der Kantendetektion auf: Sie sucht Formen,
die von Kantenpunkten gebildet werden. Die Houghtransformation ist sehr allgemein ver-
wendbar; Formen konnen im einfachsten Fall Geraden oder Kreise sein, es konnen aber
auch Ellipsen und andere geometrische Figuren detektiert werden, es handelt sich bei der
Houghtransformation also um eine modellbasiertes Verfahren.

Mit der verallgemeinerten Houghtransformation konnen sogar beliebige Formen gefunden
werden. Die Houghtransformation benutzt ein einfaches Grundprinzip: Man untersucht alle
Kantenpunkte auf Hinweise auf eine gegebene Form, die man detektieren mochte. Diese
Hinweise werden in einem Akkumulatorraum (Parameterraum) gespeichert. Nachdem alle
Kantenpunkte untersucht wurden, wertet man die gesammelten Hinweise im Akkumulator-
raum aus.

Die Untersuchung der Kantenpunkte und die Dimension des Akkumulatorraums hangen
dabei von der Form ab, die man detektieren will.

Houghtransformation zur Erkennung von Geraden

Wendet man auf ein Bild die tiblichen Kantenfilter an (Sobel-Operator, Canny-Edge-Detektor)
zeigt sich, dass diese Verfahren zwar eine Menge von Punkten liefern, die auf Kanten, bzw.
Geraden liegen, die Gruppierung dieser Punkte zu echten Kanten allerdings fehlt. Hier setzt
die Houghtransformation an, indem es ein zusammenhéangendes Geradenstiick auf einen
Punkt im Akkumulatorraum abbildet.
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4 Allgemeine Verfahren

Eine Gerade, beschrieben durch die Gleichung y = mx + b wiirde also auf einen Punkt im
zweidimensionalen Akkumulatorraum, der durch m und b aufgespannt wird, abgebildet
werden. Dadurch konnen allerdings senkrechte Geraden, die keine Steigung besitzen, nicht
mehr korrekt in den Akkumulatorraum abgebildet werden.

Daher verwendet man die Hessesche Normalform zur Darstellung der Geraden:

r=x-cos(0) +y-sin(0), 6 € [0, 271

Die Gerade ist also die Menge aller Punkte (x,y), die diese Gleichung erfiillen. 6 sei der
Winkel zwischen der y-Achse und der Geraden, r € D der Abstand der Geraden zum
Ursprung, wobei D die Diagonalldnge des Bildes sei.

Der zugehorige Akkumulatorraum A wird damit von 6 und r aufgespannt.

Zunidchst wird das Ausgangsbild mit einem Gradientenoperator gefiltert (z.B. mit dem Sobel-
Filter), woraus sich eine Matrix der Gradientenstarke G(x,y) und der Gradientenrichtung
¢(x,y) berechnen lisst (siehe Canny-Edge-Detektor).

Auf G(x,y) wird nun ein Schwellwert G* angewandt, um die N Pixel zu erhalten, die nicht
durch kleinere Grauwertschwankungen im Ausgangsbild verursacht wurden. Man erhélt die
Menge

M= {(x,¥)|G(x,y) > G'},IM| = N.

Im néchsten Schritt "votiert" jedes Element (x,y) € M fiir einen Punkt (6, r) im Akkumula-
torraum, indem der Wert um 1 erhoht wird:

V(x,y) e M:
1. Bilde r = x - cos(0) +y - sin(0) aus x,y und ¢(x,y)
2. Erhohe (6,7) um 1

YA " A

Abbildung 4.4: Abbildung der Geraden in den Akkumulatorraum
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Alle Punkte, die auf einer Geraden liegen, votieren somit fiir den gleichen Punkt in A.
Allerdings werden Punkte einer Geraden aufgrund von Ungenauigkeiten nicht exakt fiir
den selben Punkt votieren, sondern einen Cluster bilden. Daher gentigt es nicht, im Akku-
mulatorraum nach groflen Werten zu suchen, sondern es ist zusitzlich eine Clusteranalyse
notwendig, um alle Punkte auf der Geraden zu ,erwischen”.

Abbildung 4.5: Dreiecksgeraden werden in den Akkumulatorraum projeziert

Houghtransformation Erkennung von Kreisen

Die Houghtransformation [Harog] kann auch zur Erkennung von Kreisen eingesetzt werden.
Auch hier werden , Hinweise”, auf die gesuchte Form im Akkumulatorraum gesammelt. Aus-
gehend von einem Kantenbild wird jeder Pixel einer Kante als von Kreisen mit beliebigem
(oder festgelegtem) Radius erzeugt angesehen. Die Transformation in den Akkumulator-
raum funktioniert so, dass man dort alle Kreismittelpunkte eintrdgt, die Kreise erzeugen
konnten, auf denen der Pixel liegen wiirde. Es wird also der entsprechende Punktpixel im
Akkumulatorraum um 1 erhoht.

Falls nebenbei zu jedem Kantenpixel die zugehorigen Kantenrichtung bekannt ist, kann
diese Information genutzt werden und es bleiben nur noch zwei moglich Kreise tibrig.
Wenn nun die Punkte im Kantenbild einen Kreis reprasentieren, ist an der zum Mittelpunkt
gehorenden Stelle im Akkumulatorraum ein besonders hoher Wert eingetragen, da dort
sehr viele Kantenpixel des Kreises fiir den Mittelpunkt abgestimmt haben. Die Maxima im
Akkumulatorraum représentieren also die Kreismittelpunkte.
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4 Allgemeine Verfahren

Abbildung 4.6: Suche nach Kreise mit bekanntem Radius:
Ein Kreis mit Radius ro kann durch seinen Mittelpunkt (xo, yo) charakteri-
siert werden. In der Abbildung sieht man einen Kantenpunkt (dargestellt
durch ein Kreuz). Die Mittelpunkte der Kreise mit Radius ry, zu denen dieser
Punkt gehoren konnte (zwei davon sind gestrichelt eingezeichnet), liegen
auf einem Kreis mit Radius g um ihn herum.

Die ersten zwei Dimensionen des Hough-Raums entsprechen hier also denen des Bildraums,
da die (x,y)-Koordinaten in die Lage des Kreismittelpunktes beschreiben. Zusatzlich dazu ist
laut der Kreisgleichung x? + y? = r? der Radius r der dritte Parameter, der beachtet werden
sollte, wenn man nach Kreisen mit beliebigen Radius sucht. Falls letzteres nicht der Fall
ist, kann der Parameter weggelassen werden, was im zweidimensionalen Fall einen einfach
darzustellenden und anschaulichen Hough-Raum liefert.

Anschlieflend muss natiirlich auch hier, wie auch im Fall von Geraden, der Akkumulatorraum
auf lokale Maxima untersucht werden.
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5 Selektion gut detektierbarer Bilder

Um aus dem beschriebenen Bilderstack moglichst gut detektierbare Einzelbilder zu erhalten,
werden hier verschiedene Verfahren vorgestellt, die weitestgehend automatisch eine Auswahl
von Bildern erstellt, die fiir die weitere Objekterkennung gut geeignet sind.

Da der gescannte Mikrochip aus vier Leiterbahnschichten besteht, muss der beim Scannen
entstehende Bilderstack in vier Intervalle eingeteilt werden, welches jeweils eine Leiterbahn-
schicht reprasentiert.

Abbildung 5.1: Einteilung des Bilderstacks in vier Intervalle

Ziel der unten vorgestellten Verfahren besteht darin, um fiir jedes Intervall das Bild zu finden,
dass die Leiterbahnschicht am genausten représentiert. Die aus den Verfahren gewonnen
Bilder werden anschliefiend weiterverwendet, d.h. es werden die 2D Objekterkennungsver-
fahren darauf angewandt und bewertet, wie gut die ausgewdhlten Bilder fiir die einzelnen
Verfahren geeignet sind, und ob fiir jedes Intervall tatsdchlich das am besten detektierbare
Bild gefunden wurde.

Um die aufgefiihrten Verfahren miteinander vergleichen zu kénnen, wird fiir jedes Intervall
das ,,Best Match” vor dem Vergleich ausgewéhlt. Dabei handelt es sich um jenes Bild, in
dem die Objekte am besten sichtbar sind. Fiir die vier Intervalle sind dies folgende Bilder:
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5 Selektion gut detektierbarer Bilder

z

k. o

Abbildung 5.2: Best Match des ersten Intervalls

Abbildung 5.3: Best Match des zweiten Intervalls
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Abbildung 5.4: Best Match des dritten Intervalls

Abbildung 5.5: Best Match des vierten Intervalls

Diese Best Matches haben im Bilderstack jeweils die Indizes
1. Intervall 1: Index27

2. Intervall 2: Index61
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5 Selektion gut detektierbarer Bilder

3. Intervall 3: Index83
4. Intervall 4: Index96

Die Ergebnisse der einzelnen Verfahren werden mit diesen Best Matches verglichen, indem
die durschnittliche Distanz der Ergebnisse zu den Best Matches im Bilderstack ermittelt
wird.

5.1 Binarbilder

Bei diesem Verfahren werden zunéchst alle Bilder in Bindrbilder umgewandelt. Als bindrer
Schwellwert wird dabei der Wert 70 gewéhlt, d.h. alle Pixel, deren Grauwert grofier als 7o ist,
wird der Grauwert 255 zugewiesen, allen Pixeln die einen Grauwert kleiner, bzw. gleich 70
besitzen, wird der Grauwert o zugewiesen. Anschlieflend wird das Bild ausgewahlt, welches
die maximale Anzahl an weifien Pixeln (Pixel mit dem Grauwert 255) besitzen.

Die Idee, die hinter diesem Verfahren steckt, ist, dass Bilder, die eine moglichst grofse Anzahl
von Pixeln mit maximalen Grauwert besitzen, viele Objekte enthalten, die detektiert werden
konnen.
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5.1 Binarbilder

5.1.1 Ergebnis

Die Ergebnisse des Verfahrens fiir die vier Intervalle:

Abbildung 5.6: Ergebnisse des Bindrbildverfahrens

Fiir die einzelnen Intervalle sind dies die Bilder mit folgenden Indizes:
1. Interval 11: Index 9 , Differenz zum Best Match: 18
2. Intervall 2: Index 59, Differenz zum Best Match: 2
3. Intervall 3: Index 82, Differenz zum Best Match: 1
4. Intervall 4: Index 98, Differenz zum Best Match: 2

Dies fiihrt zu einer durchschnittlichen Distanz von 5,75 vom Best Match.
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5 Selektion gut detektierbarer Bilder

5.2 Canny-Edge-Bilder

Bei diesem Verfahren werden die einzelnen Bilder der Intervalle zundchst mit dem Canny-
Edge Operator in die entsprechenden Kantenbilder tiberfithrt. AnschliefSend werden die
Kantenpixeln in den Kantenbildern gezahlt, wobei fiir jedes Intervall das Bild ausgewahlt
wird, dass die meisten Kantenpixel besitzt.

Der Ansatz hierbei ist, dass Bilder, die viele einzelne Objekte enthalten, mehr Kantenpixel
liefern, als Bilder, in denen wenige Objekte enthalten sind.
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5.2 Canny-Edge-Bilder

5.2.1 Ergebnis

Die Ergebnisse des Verfahrens fiir die vier Intervalle:

fScc clooosnaiclvstn

i_.V

Abbildung 5.7: Ergebnisse des Canny-Edge-Verfahrens
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5 Selektion gut detektierbarer Bilder

Die zugehorigen Katenbilder:

Abbildung 5.8: Kantenbilder der Ergebnisse des Canny-Edge-Verfahrens

Fiir die einzelnen Intervalle sind dies die Bilder mit folgenden Indizes:
1. Intervall 1: Index 27, Differenz zum Best Match: o
2. Intervall 2: Index 60, Differenz zum Best Match: 1
3. Intervall 3: Index 83, Differenz zum Best Match: o
4. Intervall 4: Index 95, Differenz zum Best Match: 1

Dies fiihrt zu einer durchschnittlichen Distanz von 0,5 vom Best Match.
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5.3 Hough-Transformation

5.3 Hough-Transformation

Dieses Verfahren ziehlt darauf ab, die Bilder in den Intervallen zu finden, die moglichst gut
detektierbare Kantenverldufe, und somit moglichst gut erkennbare Leiterbahnen enthalten.
Dafiir werden aus den Bildern mit Hilfe der Houghtransformation die Kanten extrahiert und
anschlieffend gezahlt. Das Maximum fiir jedes Intervall ist jenes Bild, welches die meisten
zdhlbaren Kanten enthilt.

5.3.1 Ergebnis

Die Ergebnisse des Verfahrens fiir die vier Intervalle:

z z
L y 00533 L y

Abbildung 5.9: Ergebnisse des Houghtransformationsverfahrens
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5 Selektion gut detektierbarer Bilder

Fiir die einzelnen Intervalle sind dies die Bilder mit folgenden Indizes:
1. Intervall 1: Index 26, Differenz zum Best Match: 1
2. Intervall 2: Index 60, Differenz zum Best Match: 1
3. Intervall 3: Index 83, Differenz zum Best Match: o
4. Intervall 4: Index 95, Differenz zum Best Match: 1

Dies fiihrt zu einer durchschnittlichen Distanz von 0,75 vom Best Match.

5.4 Vergleich

Es ist deutlich zu erkennen, dass das Bindrbildverfahren deutlich schlechtere Ergebnisse
(durchschnittliche Distanz: 5,75) liefert, als das Canny-Edge-Verfahren (durchschnittliche
Distanz: 0,5) und das Houghtransformationsverfahren (durchschnittliche Distanz: 0,75).
Dies liegt vor allem daran, dass Storpixel, bzw. fiir die weitere Verarbeitung irrelevante
Informationen, in Form von nicht defninierten Objekten einen starken Einfluss auf die Menge
der weifien Pixel nehmen. Beim Canny-Edge-Verfahren werden primaér ,,echte” Objekte, also
Objekte, die aus zusammenhidngenden Kanten bestehen, extrahiert, wahrend Storpixel bei
der Uberfiihrung der Bilder in Kantenbilder gefiltert werden.

Ein minimal schlechteres Ergebniss liefert das Houghtransformationsverfahren, da dieses
Verfahren eine gute Detektierbarkeit der Leiterbahnen berticksichtigt, Bohrpunkte allerdings
aufler Acht lassen.
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6 2D - Verfahren

6.1 SIFT

SIFT (Scale-invariant feature transform [Lowo4]) ist ein von David Lowe 1999 vorgestelltes
Verfahren zur Extraktion von lokalen Merkmalen aus Bildern. Die mit diesem Verfahren
gefundene Merkmale haben die Eingeschaft, dass sie robust gegeniiber Rotation, Translation
und Skalierung sind, und damit zuverldssig in anderen Bilder wiedererkannt werden kénnen.
Um Objekte in Bildern mit SIFT erkennen und lokalisieren zu konnen, sind also zwei Schritte
notig:

1. Extraktion und Beschreibung von Merkmalen (Features) des gesuchten Objekts

2. Lokalisation der Merkmale im Suchbild

6.1.1 Extraktion und Beschreibung von Merkmalen (Features) des gesuchten
Objekts

Der Algorithmus zur Extraktion und Beschreibung der Merkmale besteht dabei aus vier
Verarbeitungsstufen:

Ermittlung potentieller Merkmale in DoG-Pyramiden

Um Merkmale zu ermitteln, die robust gegeniiber Skalierung sind, kommt das Verfahren der
DoG (Difference of Gaussians) Pyramiden zum Einsatz. Dabei werden aus dem Ausgangsbild
zundchst n Gaufspyramiden berechnet. Eine Pyramide besteht dabei aus fortlaufend starker
geglatteten Bildern des Ausgangsbildes g. Zur Glattung kommt dabei ein Gaufifilter G zum
Einsatz:

1 x2 +y2

27r9?

e 207 )

g(x,y) x Go(x,y) = g(x,y) * (
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6 2D - Verfahren

Scale
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Abbildung 6.1: DoG-Pyramiden

Im Anschluss wird das letzte Bild der Pyramide um 50% verkleinert, und daraus durch
erneute fortlaufende Glattung mit dem Gaufifilter eine neue Pyramide erzeugt. Je zwei
benachbarte Bilder einer Gaufipyramide werden nun voneinander subtrahiert. Aus den
Resultaten entstehen dabei die DoG-Pyramiden:

Die dadurch erzeugten DoG-Pyramiden werden nun auf minimale und maximale Pixelwerte
untersucht. Ein Maximum ist gefunden, wenn der Grauwert eines Pixels grofler als der
seiner 26 Nachbarn ist. Nachbarschaft eines Pixels ergibt sich dann aus seinen acht Nachbarn
der selben Ebene, sowie aus den jeweils neun Nachbarn der benachbarten Ebenen in der
DoG-Pyramide. Die Suche nach Minima erfolgt auf die selbe Art und Weise. Die Informati-
on, auf welcher Skalierung die potentiellen Merkmalspunkte liegen, wird dabei ebenfalls
gespeichert.
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6.1 SIFT

Abbildung 6.2: Nachbarschaft eines Pixels

Filterung und Lokalisation potentieller Merkmalspunkte

Das oben genannte Verfahren liefert neben den robusten Merkmalspunkten eine grofse
Menge von instabilen, fiir die weitere Verarbeitung nicht zu gebrauchende Merkmale. Daher
werden die gefundenen Merkmalspunkte anhand von Stabilitdtskriterien gefiltert. Im ersten
Schritt werden dabei alle Merkmalspunkte entfernt, die einen DoG-Wert von weniger als
0.03, und somit einen relativ niedrigen Kontrast besitzen. Merkmalspunkte, die auf Ecken
liegen sind , pragnanter” (und somit staibler) als solche, die auf einer Kante liegen, daher
werden alle Merkmalspunkte entfernt, die auf einer Kante, aber nicht auf einer Ecke liegen.
Dies geschieht unter Anwendung der Hesse-Matrix.

Bestimmung der Hauptorientierungen

Um Invarianz der verbleibenden Merkmalspunkte gegeniiber Rotation zu erreichen, wird fiir
jeden Merkmalspunkt dessen Hauptorientierung berechnet. Dafiir nutzt man das gaufsgefil-
terte Bild, welches der Skalierung des zu untersuchenden Merkmalspunktes am nédchsten
kommt. In diesem Bild werden nun innerhalb einer festen Region um den Merkmalspunkt
herum die Gradientenldngen m(x,y) und die Gradientenorientierungen 6(x, y) beziiglich
eines Punktes ¢(x, y) berechnet, wobei

m(x,y) = \/(g(x+1,y) —8(x—Ly)?+ (gly+1) —g(x,y—1))?

und
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6 2D - Verfahren

glx+1y)—glx—1Ly)

0(x,y) = tan" ' -
() glx,y+1)—gx,y—1)

Die so ermittelten Gradientenorientierungen werden nun anhand ihrer Gradientenldngen
gewichtet. Dadurch haben Gradientenrichtungen mit grofSer Gradientenldnge einen grofieren
Einfluss auf die Hauptorientierung als Gradientenrichtungen mit niedriger Gradientenldnge.
Danach werden die Gradientenorientierungen zusétzlich anhand ihrer Entfernung zum
Merkmalspunkt gewichtet, um Gradientenrichtungen, die sich ndher am Merkmalspunkt
befinden stdrker zu gewichten.

Aus den gewichteten Gradientenorientierungen wird nun ein Orientierungshistogramm
erstellt. Dieses Histogramm ist in 36 Winkelbereiche eingeteilt und hat somit eine Klassen-
breite von 10°. Jede Gradientenorientierung wird dabei anhand ihrer Gewichtung an der
passenden Stelle im Histogramm aufaddiert.

Nach der Erstellung des Histogramms kann aus diesem die Gradientenldnge 1,,,, abgelesen
werden (Winkelbereich mit der grofiten Summe). Die Hauptorientierung des Merkmalspunk-
tes setzt sich dabei aus 1.y, sowie der zugehorigen Gradientenorientierung 6,,,, zusammen.
Fiir den Fall, dass eine weitere Orientierung mit der Gradientenldnge m; > 0, 81,y existiert,
wie es bei Eckpunkten hiufig der Fall ist, wird an der Stelle (x,y) ein weiterer Merkmal-
spunkt mit der Hauptorientierung (m;, 6;) erstellt.

6.1.2 Lokalisation der Merkmale im Suchbild

Wurden nun im ersten Schritt die robusten Merkmale des gesuchten Objekts extrahiert, kon-
nen diese im Suchbild wiedererkannt werden. Dies geschieht, in dem man die extrahierten
Merkmale des Objekts mit denen im Suchbild auf Ubereinstimmung hin untersucht.

Der dafiir am hdufigsten verwendete Ansatz ist der Vergleich anhand des euklidischen
Abstands der Merkmalsvektoren.

n

e= /Y (Vii— V)

i=1

6.2 Einsatz von SURF zur Erkennung von Bohrpunkten

Um in den Beispieldatensidtzen Bohrpunkte auf moglichst effiziente Art und Weise erkennen
zu konnen, wird hier SURF (SpeededUpRobustFeatures), eine leicht veranderte Variante des
SIFT-Verfahrens, verwendet.

Der Unterschied zum hier vorgestellen SIFT Verfahrens besteht darin, dass statt der Gaufsfilter
Mittelwertfilter zum Einsatz kommen. Dadurch wird das Verfahren signifikant beschleunigt,
ohne die Erkennungsrate nennenswert zu beeinflussen. [BTGos]

36



6.2 Einsatz von SURF zur Erkennung von Bohrpunkten

Um Bohrpunkte mithilfe des SURF Verfahrens zu detektieren, wird zundchst ein Modell
des Bohrpunktes auf dessen Merkmale hin untersucht. Dazu wird ein Template eines
Bohrpunktes aus einem Bild im Bilderstack ausgeschnitten.

Abbildung 6.3: Modell eines Bohrpunktes (Vergroflert)

Auf dieses Template wird nun der besprochene SURF Algorithmus angewandt, um die
Merkmalsvektoren des Bohrpunktes zu extrahieren. Das Template wurde dabei bewusst

so klein gewdhlt, dass das Verfahren genau einen Merkmalsvektor liefert, welcher den
Bohrpunkt représentiert:

Abbildung 6.4: Bohrpunkt mit eingezeichnetem Merkmalsvektor (Vergrofsert)
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6 2D - Verfahren

Im nédchsten Schritt werden die Merkmalsvektoren im Suchbild extrahiert, wobei wieder der
SURF-Algorithmus zum Einsatz kommt, und eine Liste mit Merkmalsvektoren liefert. Zur
Ilustration werden auch hier die Orte der Merkmalsvektoren in das Suchbild gezeichnet:

Abbildung 6.5: Suchbild mit eingezeichneten Merkmalsvektoren

Anschliefend wird fiir den Merkmalsvektor des Templates nach Ubereinstimmungen in der
Liste der Merkmalsvektoren des Suchbildes gesucht, d.h. es wird nach Merkmalsvektoren
gesucht, die dem des Templates moglichst dhnlich sind. Ahnlich bedeutet hier, dass die
Komponenten zweier Merkmalsvektoren eine hohe Ubereinstimmung haben, was genau
dann der Fall ist, wenn beide Merkmalsvektoren einen geringen Abstand im Merkmalsraum
haben.

Daher wird der euklidische Abstand des Merkmalsvektors des Templates mit jedem Merk-
malsvektor der Liste berechnet. Ist der Abstand dabei kleiner als 0,45 im Merkmalsraum,
wird eine Ubereinstimmung der beiden Merkmalsvektoren angenommen.

Dabei werden folgende iibereinstimmende Merkmalsvektoren gefunden:
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6.3 Erweiterung der Merkmalssuche

{5cenelcoordinatelsystem;

Abbildung 6.6: Suchbild mit eingezeichneten iibereinstimmenden Merkmalsvektoren

Wie deutlich zu sehen ist, werden Bohrpunkte, die visuell dem Template entsprechen
(Bohrpunkt mit dufserer Isolierschicht) fehlerfrei erkannt. Allerdings werden die Bohrpunkte
ohne Isolierschicht nicht erkannt. Dieser Umstand ldsst sich durch eine Modifikation des
Suchverfahrens verbessern.

6.3 Erweiterung der Merkmalssuche

Wie im vorigen Abschnitt gezeigt wurde, erkennt das Verfahren des Matchings mit von
SIFT-Merkmalen bei einem einzelnen Bild nicht zufriedenstellend, da die Merkmale der
Bohrpunkte ohne Isolierschicht nicht eine zu grofie Distanz zum Merkmalsvektor des Tem-
plates im Merkmalsraum haben.

Allerdings zeigt sich, dass in Bilder, die sich im Bilderstack nahe am im vorigen Kapitel un-
tersuchten Bild befinden, diese Bohrpunkte erkannt werden. Daher beschréankt man hier die
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6 2D - Verfahren

Merkmalssuche nicht auf ein einzelnes Bild, sondern erweitert die Suche auf eine Teilmenge
des Bilderstacks. Dabei werden jeweils die 20 Bilder des Bilderstacks untersucht, die dem
Ausgangsbild am néichsten sind.

Die in diesen 20 Bildern gefundenen Merkmalsvektoren werden anschlieffend gemerged, d.h.
Merkmalsvektoren die mehrfach vorkommen, werden verworfen, so dass von ihnen jeweils
nur ein Merkmalsvektor tibrig bleibt. Dieses Merging wird wieder mithilfe des euklidischen
Abstands im Merkmalsraum vollzogen: Ist der Abstand zweier Merkmalsvektoren im Merk-
malsraum geringer als eine bestimmt Schwelle, werden diese als gleich angesehen und ein
Merkmalsvektor wird verworfen. Die Orte der verbleibenden Merkmalsvektoren werden
wieder im Bild markiert:

Bﬁmﬂﬁmﬁhmﬁm
25Z w0

Abbildung 6.7: Suchbild mit eingezeichneten gemergeten Merkmalsvektoren
6.3.1 Bewertung:

Bis auf einiger Fehler in Form von Merkmalsvektoren, die keine Bohrpunkte beschreiben,
wurde im getesteten Bild auf diese Art und Weise alle Bohrpunkte, egal ob mit oder ohne
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6.4 Template Matching

Isolierschicht, erkannt. Das Verfahren wurde jedoch nur fiir das gezeigte Testbild eingehend
untersucht, daher konnen keine Aussagen tiber die Fehlerhdufigkeit bei Bildern mit einer
komplexeren Struktur getroffen werden.

Es hat sich gezeigt, dass die Kombination der einzelnen Szenenbilder bemerkenswerte
Verbesserungen erbracht hat. Dieses Verfahren eignet sich somit vor allem dann, wenn

mehrere unterschiedliche Bilder der gleichen Szene existieren (was in dem zu untersuchenden
Bilderstack der Fall ist).

6.4 Template Matching

Template Matching ist ein Verfahren, bei dem ein prototypisches Modell einer Struktur im
Bild gesucht wird. Das Template ist dabei selbst ein kleines Bild, welches wie ein Filterkern
tiber das Bild wandert.

Abbildung 6.8: Template eines Bohrpunktes (Vergrofiert)

Dabei wird in jedem Punkt (x,y) ein Anhlichkeitsmaf3 des Templates gegeniiber dem Bild
berechnet. Ein haufig verwendetes Anglichkeitsmaf ist dabei Mean Absolute Difference
(MAD). Dieses Anhlichkeitsmaf} bezeichnet die mittlere Differenz der Grauwerte des Bildes
g und des Templates T:

1 o -
MAD(x,y) = ) Ig(x + i,y +j) = T(i,j)]
M-N&
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6 2D - Verfahren

Befindet sich bei der Suche das Template genau iiber der gesuchten Struktur, ist MAD(x,y)
minimal, wihrend bei keiner Ubereinstimmung des Templates und des Bildausschnittes
MAD(x,y) groB ist. Dadurch sind im resultierenden Bild, in dem das Anhlichkeitsmaf3
abgebildet wird, lokale Minima die Orte, in denen sich die Struktur des Templates befindet.

Lokale Minima sind im
Mittelpunkt der gesuchten Struktur

Abbildung 6.9: Lokale Minima

Um die genaue Position der Bohrpunkte zu ermitteln, miissen diese Minima detektiert
werden.

Der einfachste Ansatz dafiir ist ein Schwellwert zu benutzen, so dass nach der Schwellwert-
bildung lediglich die lokalen Minima tibrig bleiben.
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6.4 Template Matching

Abbildung 6.10: Lokale Minima nach der Schwellwertbildung

Ein Problem bei diesem Verfahren ist den richtigen Schwellwert zu treffen. Ein zu niedriger
Schwellwert lisst die lokalen Minima verschwinden. Ein zu hoher Schwellwert fiihrt zu
einem ,auslaufen” der lokalen Minima in die angrenzenden Regionen.

Abbildung 6.11: Auslaufen der lokalen Minima bei zu hohem Schwellwert
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6 2D - Verfahren

6.4.1 Bewertung:

Die Unterschiede bei den lokalen Minima, welche durch die Wahl des Templates, Helligkeits-
und Farbunterschiede im Suchbild oder geringer Formunterschiede der Bohrungen und
ihrer Umgebung entstehen, machen eine automatisierte Suche nach den lokalen Minima sehr
schwierig. Sowohl das Template als auch der Algorithmus zur Extraktion der lokalen Minima
muss heuristisch optimiert werden, um bessere Ergebnisse zu erzielen. Da es im Umfang
der Fachstudie nicht gelungen dies effektiv zu atomatisieren, muss der Templatematching-
Algorithmus fiir die hier betrachteten Daten als ungeeignet eingestuft werden.

6.5 Einsatz der Houghtransformation zur Erkennung von
Bohrpunkten

Da gleichartige Bohrungen wohl auf der kompletten Platine den gleichen Radius (mit einer
kleinen Toleranz) besitzen, kann auf 2d-Slices explizit nach Kreisen mit diesem Radius ge-
sucht werden. Dies ergibt fiir Houghtransformation fiir Kreise mit Radius = 5 beispielsweise
folgendes Bild im Akkumulatorraum:
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6.5 Einsatz der Houghtransformation zur Erkennung von Bohrpunkten

Abbildung 6.12: Akkumulatorraum fiir Kreise mit Radius = 5

Da die Radien jedoch leicht schwanken, was insbesondere durch die geringe Auflosung
bedingt ist, kann beispielsweise noch der Raum fiir Kreise mit Radius 4 hinzuaddiert werden,
um ein klareres Bild zu erhalten.
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6 2D - Verfahren

Abbildung 6.13: Akkumulatorraum fiir Kreise mit r=4 und r=5

In diesem Raum mdiissen nun die lokalen Maxima gefunden werden. Dies ist keine triviale
Aufgabe, da ein lokales Maxima in einem anderen Bildbereich eher zum oberen Durchschnitt
gehort. Es bietet sich hier der Einfachheit halber dennoch an alle Pixel oberhalb eines
Schwellwertes (z.B 0.6 - globMax) zu Clustern zusammenfassen und aus diesen jeweils den
Mittelpunkt als Bohrung zu speichern.
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6.5 Einsatz der Houghtransformation zur Erkennung von Bohrpunkten

Abbildung 6.14: Pixel mit hoherem Wert als 0.6 - globMax

Wendet man ein solches Schwellwertverfahren an, so miisste der Schwellwert heuristisch
optimiert werden, um moglichst viele Punkte zu , erwischen”, da Bohrungen ohne umliegen-
de Kanten (bspw. Isoliermaterial) generell schwécher in den Akkumulatorraum abgebildet
werden.

Um dieses Bild zu verbessern, hat man natiirlich die Moglichkeit den Akkumulatorraum
mit verschiedenen Filtern zu falten, um damit zum Beispiel alle kreisformigen Maxima zu
verstarken.

Ansonsten konnte man beispielsweise verschiedene , Hill-Climbing”-Algorithmen einsetzen,
wobei hier zu beachten ist, dass ein lokales Maximum nur dann als Hinweis fiir eine Boh-
rung interpretiert werden darf, wenn die Menge zusammenhéngender, umgebender Pixel
mit dhnlich hohem Wert lokal relativ beschrankt ist. Dadurch werden nur ,punktférmige”
Maxima gefunden.
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Im Anschluss miissen natiirlich noch die einzelnen Cluster jeweils zu Bohrpunkten zusam-
mengefasst werden.

6.5.1 Bewertung:

Die Unterschiede bei den lokalen Minima, welche durch Grofsen- und Formunterschiede
der Bohrungen und ihrer Umgebung entstehen, machen eine automatisierte Suche nach
den lokalen Minima sehr schwierig. Da sich die Houghtransformation jedoch nur auf die
Resultate des Canny-Edge-Detektores stiitzt, fallen die Unterschiede der lokalen Minima
kleiner aus als beim Template-Matching. Daher ist es auch mit dem einfachen Schwellwert-
Verfahren bereits moglich die meisten Bohrungen in der Platine ausfindig zu machen.

6.6 Alternativer Algorithmus zur Erkennung von Bohrpunkten auf
Grundlage einer Farbung

Die Houghtransformation fiir Kreise ist relativ rechenintensiv und schliefslich muss der
Akkumulatorraum noch ausgewertet werden. Auch das Templatematching arbeitet mit Fil-
terkernen, die so grofs sind wie die gesuchten Kreise. Dies motivierte dazu einen schnelleren
Algorithmus zu entwickeln, zur Not auch auf Kosten der Universalitét. Eine sehr einfache
und effiziente Moglichkeit Kreise in einem Canny-Edge Bild zu finden ist die folgende:

procedure FINDCIrRCLES(Bild img, Radius r, Toleranz t)
for all Pixel p € img do
if p ist weifs then
Folge der zugehorigen weifsen Linie | ungefdahr n Schritte lang
, wobein <=int(2-7-(r+1t))

for all Mittelpunkte mp do // Geschitzt aus der Position von p.
if Alp €1 :dist(mp,lp) < r—tVdist(mp,lp) > r+t then
Abbrechen
end if

if Die Linie umschliefit den Mittelpunkt (z.B. Quadrantencheck) then
1 sei ein Kreis; continue in duflerer Schleife
end if
end for
end if
end for
end procedure
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6.6 Alternativer Algorithmus zur Erkennung von Bohrpunkten auf Grundlage einer Farbung

Abbildung 6.15: Ein Resultat des Algorithmus (gefundene Bohrungen sind rot markiert)

6.6.1 Bewertung:

Der Algorithmus ist extrem schnell und erkannte in simtlichen Testbildern ohne Probleme
alle gesuchten Kreise. Falls die Kantendetektion einen Fehler gemacht hat und der Kreis
eine kleinere Liicke beinhaltet, so wird der Kreis im allgemeinen dennoch erkannt (Falls die
Liicke nicht zu grof3 ist).

Problematisch konnte selbstverstandlich die Verallgemeinerung auf die gleichzeitige Suche
von Kreisen beliebiger Radien werden. Diesbeziiglich wurden noch keine Anstrengungen
unternommen, da hierfiir noch keine Notwendigkeit bestand.
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6 2D - Verfahren

6.7 Einsatz der Houghtransformation zur Erkennung von
Leiterbahnen

Die Houghtransformation ist nicht direkt geeignet fiir das Erkennen von Leiterbahnen, da
ausschliefilich Geradenstiicke erkannt werden. Aus diesen lédsst sich jedoch nicht schliefien,
ob es sich um eine Leiterbahn handelt oder nicht (es konnte z.B. auch Teil vom Isoliermaterial
sein).

Die Kurven der Bahnen werden nicht erkannt, somit miisste man die Geradenstiicke ma-
nuell verlinken und anschlieflend noch jeweils 2 Kanten (Bahnrénder) zu einer Leiterbahn
zusammenfassen. Zudem miissten andere, im Bild vorkommenden Geraden ausgeschlossen
werden.

Dieses Anpassungsverfahren scheint also relativ kompliziert zu sein, da es einfachere Wege
gibt die Bahnen zu finden.

6.8 Alternativer Algorithmus zu Erkennung von Leiterbahnen auf
Grundlage einer Farbung

Bohrungen sind relativ einfach zu finden, weil es sich um einigermafsen simple geometrische
Objekte handelt. Da alle Leiterbahnen schliefslich in einer Bohrung enden, motiviert die
Idee einen Algorithmus zu schreiben, der bei bereits erkannten Bohrungen priift, ob eine
Leiterbahn in sie miindet.

Ein Beispiel fiir einen solchen Algorithmus wire folgendes Verfahren:

1. Man zeichne einen Kreis k1, dessen Radius etwas grofier ist als der Abstand vom
Mittelpunkt der Bohrung bis zum dufleren Ende der umgebenden Isolierschicht.
Da die gefundenen Bohrpunkte nicht immer perfekt in der Mitte liegen, untersucht
man auch die Umgebungen jedes Bohrpunktes.

2. Falls in diesem Kreis ausgenommen von ,weifs” und ,schwarz” nur zwei Farben
vorkommen, so weifs man, dass es sich entweder um eine Bohrung mit Leiterbahn
handelt, oder aus Versehen eine ,fremde” Region geschnitten wurde.

3. Betrachtet man das Vorkommen der selteneren Farbe in einem Kreis k2, dessen Radius
etwas kleiner ist, als der Radius von k1, so kann man anhand eines einfachen Vergleichs
des Mengenverhdltnisses in k1 und k2 schitzen, dass es sich um ein Leiterbahn handeln
kann.

Dies liegt daran, dass die Farbe der Leiterbahn in beiden Kreisen in ungefahr gleich
vielen Pixeln auftauchen muss (im inneren Kreis evtl. etwas hdufiger).
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6.8 Alternativer Algorithmus zu Erkennung von Leiterbahnen auf Grundlage einer Farbung

Abbildung 6.16: Eingezeichnete Kreise (bei roten Kreisen ist bereits das Kriterium aus Schritt
zwei verletzt.)
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6 2D - Verfahren

Abbildung 6.17: Ein Resultat des Algorithmus (gefundene Leiterbahnen sind schwarz mar-
kiert)

6.8.1 Bewertung:

Der Algorithmus ist relativ schnell, da er nur die bereits gegebenen Bohrungen untersucht
und nicht daher nicht das komplette Bild durchforstet.

Gegeniiber Fehlern im , Canny”-Bild ist der Algorihtmus nur insofern robust wie es der
verwendete Farbealgorithmus ist.

Problematisch ist nattirlich auch hier, dass der Algorithmus speziell auf das Problem zuge-
schnitten wurde und daher an Universalitdt einbtifst.
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6.9 Weiterer alternativer Algorithmus zu Erkennung von Leiterbahnen

6.9 Weiterer alternativer Algorithmus zu Erkennung von
Leiterbahnen

Da der vorherige Algorithmus von Robustheit des Farbealgorithmus abhiangt und daher
im Allgemeinen anféllig ist fiir Fehler des Canny-Edge-Detektors, ware ein Algorithmus
interessant, welcher ohne Farbung auskommt.

Da die Bohrungen bisher zuverldssig erkannt wurden und es das Verfahren extrem beschleu-
nigt, soll auch hier wieder von den gefundenen Bohrungen ausgegangen werden.

Der hier vorgeschlagene, auf das Problem abgestimmte Algorithmus sucht im Wesentlichen
die Kante(n) einer eventuellen Leiterbahn und untersucht ihr Verhalten beziiglich der Um-
rundung des Bohrpunktes:

1. Man zeichne wieder einen Kreis, dessen Radius etwas grofier ist als der Abstand vom
Mittelpunkt der Bohrung bis zum dufleren Ende der umgebenden Isolierschicht.
Da die gefundenen Bohrpunkte nicht immer perfekt in der Mitte liegen, untersucht
man auch die Umgebungen jedes Bohrpunktes.

2. Falls es auf dem Kreis genau zwei weifse Cluster gibt und deren euklidischer Abstand
im Toleranzbereich der Breite einer Leiterbahn liegt, so kann man sagen, dass es sich
entweder um die beiden Seiten der Leiterbahn handelt oder keine Leiterbahn von
der Bohrung ausgeht und zufillig zwei fremde Punkte mit dem richtigen Abstand
gefunden wurden.

3. Um letzteren Fall mit hoher Wahrscheinlichkeit auszuschlieflen konnte man beispiels-
weise jeweils der zugehorigen weifSen Linie eines Clusters folgen und schlieflich
untersuchen, ob die Vereinigung der beiden Linien den Bohrpunkt umrundet (bspw.
Quadrantencheck: Liegen in jedem Quadranten um den Bohrpunkt min. x Pixel?).
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6 2D - Verfahren

Abbildung 6.18: Beispiel zu Verdeutlichung: Der in Schritt 1 gezeichnete Kreis ist blau;
Die gefundenen Cluster sind gelb; Der gemessene Abstand ist braun; Die
Vereinigung der beiden Linien griin.

Um nun die tatsdchliche Leiterbahn zu extrahieren konnte man beispielsweise den Floodfill
Algorithmus auf der braunen Linie im Bild starten und somit alle Pixel der Leiterbahn finden.
Das wiirde jedoch dem Vorhaben widersprechen, ohne Fiarbung und der damit verbunden,
bereits angesprochenen Schwiche auszukommen.

Daher bietet es sich beispielsweise folgendes Verfahren zur Extraktion der Leiterbahnen an
(Vorraussetzung: Die Leiterbahnen machen keine scharfen Kurven):

1. Man schiefst einen Strahl, ausgehend vom Bohrpunkt in Richtung Leiterbahn, dh. durch
die Mitte der gezeichneten, braunen Linie.

2. Der Strahl wird am Punkt p gestoppt, und zwar n Pixel vor einer weifien Linie.

3. Anschlieffend vergleicht man n mit 1y, und 1,45, welche entstehen, wenn man,
anstatt von p geradeaus zu gehen um 45° nach links bzw. nach rechts geht.

4. Den ldangsten der drei Wege wihlt man als neuen Startweg, halbiert den Winkel
und macht weiter bei Schritt 3. Durch diesen Trick wird bei den Leiterbahnen fiir
jeden aktuellen Punkt p der lingste Weg in die richtige Richtung gefunden (siehe
nachfolgende Grafik).

5. Wenn man den liangsten Strahl ausgehend vom Punkt p gefunden hat, dann wird p
neu gesetzt, indem man mit diesem Strahl wieder bei Schritt 2 weitermacht. Falls kein
neuer Strahl gefunden wurde ist man fertig.
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6.9 Weiterer alternativer Algorithmus zu Erkennung von Leiterbahnen

Abbildung 6.19: Zwei Iterationsschritte zu Verdeutlichung: Der griine Weg ist jeweils der

langste und wird daher als Ausgangsrichtung fiir die ndchste Winkelhal-
bierung gesetzt.

Dieses Vorgehen fiihrt dazu, kleinere Liicken im Kantenbild mit einigermafien hoher Wahr-
scheinlichkeit tibersprungen werden, insbesondere dann, wenn sie auf einem langen, ge-
radlinigen Abschnitt auftauchen. Dieser Vorteil ist im folgenden Bild zu sehen, in welchem

auch die Leiterbahn gefunden wurde, welche beim vorherigen Verfahren aufgrund der
fehlerhaften Farbung nicht erkannt wurde.
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6 2D - Verfahren

Abbildung 6.20: Ein Resultat des Algorithmus (gefundene Leiterbahnen sind rot markiert).
Es wurden zusétzlich Leiterbahnen, welche zwischen zwei Bohrungen
verlaufen kombiniert.
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6.9 Weiterer alternativer Algorithmus zu Erkennung von Leiterbahnen

Abbildung 6.21: Ein anderes Resultat des Algorithmus (gefundene Leiterbahnen sind rot
markiert). Auflerdem wurden Leiterbahnen, welche zwischen n Bohrungen
verlaufen zu einem Graph kombiniert.

6.9.1 Bewertung:

Durch die beidseitige Verfolgung der von den Clustern ausgehenden Linien und dem an-
schlieflenden Check deren Vereinigung beziiglich dem Quadrantenkriterium hat sich das
Verfahren fiir die Erkennung von Leiterbahnen auch bei Liicken im Canny-Edge-Bild be-
wahrt.

Das Verfahren zur nachfolgenden Extraktion der Leiterbahnen hat in den getesteten Szenari-
en gut funktioniert und ist einigermafien einfach zu implementieren.

Wenn ein Strahl jedoch zufillig durch eine Liicke im Kantenbild springt, dann hat das unab-
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6 2D - Verfahren

sehbare Konsequenzen und die Leiterbahn muss aus der Liste gestrichen werden. Ersteres
ist wiederum einem Algorithmus nicht auf trivialem Wege ersichtlich und diesbeziiglich
miissen weitere Anstrengungen unternommen werden.

Auch dieser Algorithmus ist extrem schnell und diirfte keinerlei Performanz-Probleme
bereiten.



7 3D - Verfahren

7.1 RANSAC

RANSAC (RAndom SAmple Consensus) [RCB81] ist ein iteratives Verfahren zur Schitzung
eines mathematischen Models anhand von Beobachtungsdaten mit Ausreiflern. Der Algorith-
mus ist nicht-deterministisch, da ihm probabilistische Ansitze zu Grund liegen. Aufgrund
seiner Robustheit wird er hadufig im Bereich des maschinellen Sehens eingesetzt.

. bt ° .
- [
. * ' [ [ ®
*
. ‘ ¢ ] ¢ ¢
. L]
. e ®
. ® * P ] .
. . »
L]
b ° L] L[] e
L . é
* [ ]
. . . o ° [ ]
. ] o’
L] . [ °
L ] Y L
L] ® o L
. ° [
] - > L]
. L]
L] »® L
.
. .
.
[
o ®
.
[ ] ¢ o . [ ]
. * ol

Abbildung 7.1: In einen Datensatz mit vielen Ausreifiern wird eine Linie eingepasst.

7.1.1 Der Algorithmus

Fiir das zu erkennende Objekt wird ein parameterabhéniges Modell erstellt. Danach werden
die Daten iterativ auf mogliche Vorkommnisse eines auf das Modell passenden Objekts ge-
testet, dafiir werden iterativ zuféllige Punkte aus den Daten selektiert und als hypothetische
Einlieger des Objekts betrachtet und das Modell an diese Punkte angepasst. Fiir eine Linie
wiéren dies zwei Punkte um sie ausreichend zu beschreiben. Nun wird das Modell getestet:

1. Alle anderen Punkte werden gegen das Modell getestet und falls sie dazu passen
ebenfalls als mogliche Einlieger gespeichert.

2. Das Modell wird akzeptiert wenn genug Einlieger gefunden werden.
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7 3D - Verfahren

3. Das Modell auf Basis aller gefundenen Einlieger neu berechnet und evaluiert.

Nach ausreichend vielen Iterationen wird das beste Modell benutzt um alle Punkte des
Objekts zu identifizieren. Anschlieflend wird das gefundene Objekt aus den Daten geltscht
und gegebenenfalls nach weiteren Vorkommnissen gesucht.

Abbildung 7.2: In einem per Threshhold-Verfahren vorverarbeiteten Datensatz wird anhand
eines einfachen Modells eine Kugel identifiziert.

7.1.2 Bewertung

Der Algorithmus eignet sich sehr gut um in grofsen Datenmengen schnell Instanzen von
Modellen zu finden. Fiir den diskutierten Anwendungsfall ist er leider vergleichsweise
langsam. Der Grund dafiir ist, dass die zu suchenden Objekte schon durch einen Dichte-
Threshhold sehr gut vor-isoliert werden konnen. Man kann sich deshalb direkt darauf
konzentrieren einzelne Punktmengen auf bestimmte Eigenschaften hin zu untersuchen.
Der grof3e Vorteil von RANSAC schnell mogliche Kandidaten zu entdecken wird deshalb
negiert.

7.2 Alternativer Algorithmus zur Erkennung von Létkugeln und
Bonddrahten

Der wohl am naheliegenste Ansatz Objekte in einem Datensatz zu finden, ist den Datensatz
in einem hinreichend kleinen Raster abzusuchen und an jedem Punkt das damit verbundene
Objekt auf die Ahnlichkeit mit den gesuchten Objekten hin zu untersuchen. Ein solcher
Ansatz ist insbesonere bei den grofien und einigermafien wohlgeformten Lotkugeln sehr
intuitiv, wie in der folgenden Abbildung zu sehen ist.
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7.2 Alternativer Algorithmus zur Erkennung von Létkugeln und Bonddréhten

- L/

Abbildung 7.3: Die gesuchten Kugels sind hier ab einem bestimmten Reflektions-
Schwellwert sehr einfach zu identifizieren, die Bonddréhte sind dagegen
eher schwierig unter einen Hut zu bringen.
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7 3D - Verfahren

Das Vorgehen bei einem solchen Algorithmus zur Suche der gezeigten Lotkugeln konnte
also im einfachen Fall wie folgt aussehen:

procedure FINDSPHERES(int radius, 3DUniformVoxelgrid g)
searchStep = int(\/2 - radius)
for all Voxel v € g by Step searchStep do // Kurzform fiir die 3 Schleifen.
value = getValue(v)
if value > 40000 then
if v € investigated then
res = getFlood fill3D (v, value, tolerance = 8000)
investigated = investigated U res
if isApproxSpheric(res.min, res.max) then found = found U res
end if
end if
end for
end procedure

Hierbei sei als einfache Approximation nachfolgender Check gegeben (ggf. sollten hier
Ansédtze gewdhlt werden, die etwas durchdachter sind):

procedure 1SAPPROXSPHERIC(int min, int max)
if max[1] V max[2] V max[3] = O then return False
xy = 0.65 < |min[0] — max[0]|/|min[1] — max[1]| < 1.35

xz = 0.65 < |min[0] — max[0]|/|min[2] — max[2]| < 1.35
zy = 0.65 < |min[2] — max[2]|/|min[1] — max[1]| < 1.35
return xy A xz A zy // ,bounding box” ist ndherungsweise kubisch.

end procedure

Fiir die Suche nach Bonddréhten reicht es, im obigen Algorithmus die Schrittweite, den
Schwellwert und den Approximationscheck zu ersetzen. Letzterer konnte im einfachen Fall
beispielsweise wie folgt aussehen:

procedure 1sSLONGENOUGH(int min, int max)
return 40 < \/|min[0] — max[0]|? + |min[1] — max[1]|? + |min[2] — max[2]|?
end procedure

Wie in nachfolgender Abbildung zu sehen ist, kann selbst ein derart einfacher Test reichen
um die, durch den Schwellwert ohnehin schon gefilterten Objekte, perfekt einzuschranken.
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7.2 Alternativer Algorithmus zur Erkennung von Létkugeln und Bonddréhten

kf

Abbildung 7.4: Der Algorithmus erkennt im Beispieldatensatz alle Bonddrihte und Kugeln
(hier nicht eingezeichnet). Durch die automatische Interpolation des Viewers
sind die dargestellten Drahte etwas verwaschen.

7.2.1 Bewertung

Das Vorgehen des Algorithmus ist sehr intuitiv und einfach. Bei allen Tests reichten aufierdem
unkomplizierte Approximationsbedingungen, um die gesuchten und ausschliefllich die
gesuchten Objekte zu extrahieren. Besonders einfach zu beschreibende geometrische Objekte,
wie beispielsweise Kugeln, sind sehr leicht zu finden.

Um den Algorithmus auf ein Objekt zu eichen muss lediglich die Schrittweite und der
Schwellwert angepasst werden und das vom Floodfill-Algorithmus zuriickgegebene Objekt
in den abschlieffenden Bedingungen hinreichend genau beschrieben werden.

Ein Datensatz kann bei raumlich ausgedehnten Objekten schnell den Datensatz durchsuchen,
da bei weitem nicht jeder Voxel untersucht werden muss (Bei Kugeln reicht beispielsweise
eine Schrittweise von |v/2 - 7). Die Geschwindigkeit ist selbstverstandlich abhingig von der
Grofse und dem Vorkommen der gesuchten (und dhnlicher) Objekte.






8 Zusammenfassung und Empfehlung

In dieser Fachstudie wurden Verfahren zur Erkennung von Objekten in CT-Scans plana-
rer Hochfrequenzschaltungen untersucht. Da die zu suchenden Objekten begrenzt und
sehr unterschiedlich waren sind auch die behandelten Algorithmen in Funktionsweise und
Einsatzgebiet stark verschieden. Manche der algorithmischen Ansédtze wurden auch spe-
zifisch fiir die Erkennung einer Art von Objekt konzipiert. Deshalb macht es kaum Sinn
einen globalen Vergleich durchzufiithren und wir haben uns entschieden unterteilt nach den
Objektgruppen jeweils ein einzelnes Fazit zu ziehen.

8.1 Bohrpunkte

Zur Erkennung von Bohrpunkten sind 3d-Verfahren grundsitzlich geeignet, wobei nun eben
nach Zylindern gesucht werden muss. Es wurden jedoch keine Verfahren untersucht, die
einen solchen Ansatz implementieren. Stattdessen wurden hier ausschliefslich 2d-Verfahren
eingesetzt und bewertet.

Das SURF Verfahren als Variante des SIFT erzielte gute Resultat und erkannte alle Bohrungen.
Jedoch wurden einige Merkmalsvektoren irrtiimlich als Bohrung identifiziert.

Sowohl das untersuchte Verfahren zum Template-Matching als auch die Houghtransfor-
mation hatten das Problem, dass die lokalen Minima nach der Faltung sich zueinander
unterschiedlich stark ausgeprigt hatten. Das eingesetzte Schwellwert-Verfahren lieferte bei
der Houghtransformation jedoch wesentlich bessere Resultate.

Am erfolgreichsten stellte sich jedoch der selbst implementierte, auf das Problem zugeschnit-
tene Algorithmus zur Erkennung von Kreisen in Kantenbildern heraus.

Er erkannte ohne Fehler alle Bohrpunkte in allen getesteten Bildern, was selbstverstiandlich
auch an den fast fehlerfreien Resultaten des Canny-Edge-Detektors liegt.

Dabei handelt es sich zusétzlich um den (mit Abstand) schnellsten Algorithmus, da er ohne
Faltung auskommt.

8.2 Leiterbahnen

Da Leiterbahnen einen zweidimensionalen Verlauf besitzen boten die dreidimensionalen
Verfahren keinen nennenswerten Vorteil, weil keine zuséitzlichen Informationen verarbeitet
werden konnten. Deswegen wurden fiir die Erkennung von Leiterbahnen auch keine dreidi-
mensionalen Verfahren behandelt, sondern ausschliefdlich auf 2D-Slices gearbeitet.

Das zuerst untersuchte Verfahren war die Houghtransformation fiir Linien. Es stellte sich

65



8 Zusammenfassung und Empfehlung

allerdings schnell heraus, dass die Geradenerkennung nur bedingt fiir die Erfassung von Lei-
terbahnen geeignet war. Der Grund dafiir war der unregelméfige Verlauf der Leiterbahnen
mit vielen Kurven und Miindungen in Bohrpunkten, welches zu Unmengen unverkniipfter
Graden fiihrte.

Da eine Leiterbahn zwar aus einer begrenzten Zahl von Bauteilen besteht, diese aber quasi
frei kombiniert sein konnen, eigneten sich SIFT/SURF und Template-Matching selbstver-
standlich auch nicht zur Erkennung. Fiir diese Verfahren miisste das zu erkennende Objekt
immer die gleichen duflerlichen Eigenschaften aufweisen.

Die zwei alternativen Algorithmen erwiesen sich als ausgezeichnet bei der Leiterbahner-
kennung. Durch die Ausnutzung objektspezifischer Eigenschaften, wie der Miindung in
Bohrpunkten, und der meist hohen Qualitit der Kantenerkennung konnten quasi perfekte
Erkennungsraten erreicht werden. Der zweite Algorithmus verbesserte dabei das schon sehr
gute Ergebnis der ersten Alternative noch einmal. Die Abhéngigkeit von FloodFill wurde
eleminiert und gleichzeitig die Anfélligkeit gegeniiber Fehlern im Canny-Bild weiter gesenkt.
Der zweiter Alternativ-Algorithmus stellt damit die beste gefundene Losung fiir das Problem
dar und ist auch einer der performantesten der getesteten Algorithmen.

8.3 Lotkugeln

Bei der Erkennung der Lotkugeln stellte sich erneut die Frage, ob nur eine Klasse von
Verfahren behandelt werden sollte. Durch ihren hohen Reflektanzwert sind die Lotkugeln
sowohl auf den Slices als auch in den Voxeldaten leicht zu isolieren. Der grofite Vorteil der
dreidimensionalen Algorithmen ist, dass mit dem Objekt als Ganzes gearbeitet werden kann.
Arbeitet man hingegen nur mit den Slices, so miissen die erkannten Teil-Kreise erst wieder zu
einem Ganzen zusammengefiihrt werden. Dadurch stellen sich zahlreiche neue Probleme, die
in ihrer Menge schlussendlich dazu fiihrten, dass ausschliefilich dreidimensionale Verfahren
getestet wurden.

Eines der bekanntesten Verfahren zur Erkennung von Objekten in verrauschten Daten ist der
RANSAC-Algorithmus. Da sich fiir eine Kugel sehr leicht ein Modell erstellen ldsst, konnten
mit RANSAC zuverldssig Lotkugeln gefunden werden. Leider relativierte die Moglichkeit die
Kugeln durch Thresholds vorzuisolieren den Geschwindigkeitsvorteil, den RANSAC durch
die schnelle Untersuchung moglicher Kandidaten erzielt. Insgesamt war die Perfomanz
leider enttduschend.

Der intuitive Algorithmus, welcher den Datensatz in einem hinreichend engen Raster durch-
sucht und getroffene Objekte auf ihre Kugelformigkeit tiberpriift, scheint einen guten Ansatz
darzustellen, solange die Akzeptanzbedingung fein genug definiert wird.

Der Algorithmus ist extrem schnell und erkannte alle gesuchten Objekte, da es sich bei
diesen um sehr einfache geometrische Objekte handelt, die hier leicht abgegrenzt werden
konnen.
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8.4 Bonddrahte

Den Bonddréhten, als schwierigste zu erkennende Objekte, wurde insgesamt eher wenig
Zeit gewidmet, da kein Algorithmus wirklich geeignet erschien.

Die Effektivitat zweidimensionaler Verfahren wurde gar nicht erst untersucht, da es spontan
duflerst schwierig erschien entsprechende Slices oder Projektionen zu extrahieren.

Der bei Kugeln eingesetzte RANSAC-Algorithmus ist theoretisch natiirlich geeignet, jedoch
konnte es sich aufgrund der Vielfalt der Dréhte als problematisch herausstellen ein geeigne-
tes Modell zu konstruieren.

Der einzige Algorithmus der tatsdchlich zur Erkennung von Bonddrihten eingesetzt wurde,
war der intuitive, das Bild rasterartig durchsuchende Algorithmus auf Basis des dreidimen-
sionalen Floodfill.

Dieser erkannte alle Bonddrdhte die lang genug waren und bereitete im Test keine Perfor-
manzprobleme. Dennoch ist seine universelle Einsatzfahigkeit eher fraglich, zumindest ohne
die Akzeptanzbedingung zu verfeinern.
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