
Institut für Softwaretechnologie
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Fachstudie Nr. 157

Marktanalyse
Quellcodeverwaltung

Jakob Jarosch Tobias Kuhn Patrick Strobel

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Stefan Wagner

Betreuer: Dipl.-Ing. Jan-Peter Ostberg
Markus Schmidt (flexis AG)

begonnen am: 23. April 2012

beendet am: 23. Oktober 2012

CR-Klassifikation: D.2.7

Zusammenfassung

Mit Hilfe einer Quellcodeverwaltung lassen sich Dateien bequem versionieren und sichern.
Allerdings entwickeln sich auch Quellcodeverwaltungs-Werkzeug mit der Zeit weiter, wor-
aus sich entscheidende Unterschiede entwickelt haben; zum Beispiel die Unterscheidung
zwischen verteilten und zentralen Systemen. Der Industriepartner, die Flexis AG, setzt zur
Zeit das zentrale Subversion als Lösung ein. Flexis vermutet aber, dass eine andere Lösung
möglicherweise besser die gewünschte Arbeitsweise unterstützt. Daher beschäftigt sich diese
Fachstudie mit einer Analyse der meisten auf dem Markt befindlichen Werkzeuge für die
Quellcodeverwaltung. Anhand der Anforderungen des Industriepartners wird zunächst eine
Vorauswahl getroffen und die relevantesten Werkzeuge detailliert bewertet. Abschließend
wird eine Empfehlung für Flexis ausgesprochen.

Abstract

Files can be versioned and secured with the aid of a source code management. However,
source code management tools advance over time. Therefore, significant differences have
evolved, for example the distinction between distributed and centralized systems. The
industry partner, the Flexis AG, is currently using the centralized Subversion as a solution.
But Flexis assumes that other solutions might possibly support the desired work process
better. Therefore this study deals with an analysis of most source code management tools in
the market. By means of the requirements of the industry partner initially a pre-selection is
made and the most relevant tools are rated in greater detail. Finally, a recommendation for
Flexis is made.

3

Inhaltsverzeichnis

1 Einleitung 7

2 Grundlagen 9
2.1 Begriffe . 9

2.2 Themenüberblick . 9

2.3 Vorgehen . 10

3 Marktübersicht 11
3.1 Zentrale Quellcodeverwaltung . 11

3.2 Verteilte Quellcodeverwaltung . 12

4 Momentan verwendetes System 15
4.1 Mitarbeiterbefragung . 15

5 Bewertungskriterien 17
5.1 K. O.-Kriterien . 17

5.1.1 JIRA-Integration . 17

5.1.2 GUI-Unterstützung . 17

5.1.3 IDE-Plugin . 18

5.1.4 Betriebssysteme . 18

5.1.5 Teilweises Auschecken . 18

5.1.6 Externals . 19

5.1.7 Export . 19

5.1.8 Benutzerfreundlichkeit . 19

5.1.9 Konversion von Subversion . 20

5.2 Entscheidungskriterien . 21

5.2.1 Lizenz . 21

5.2.2 Dateiberechtigungen . 21

5.2.3 Keywords . 21

5.2.4 File-Lock . 22

5.2.5 Sammeln bzw. Zwischenspeichern von Commits 22

5.2.6 Suchen von Changesets . 23

5.2.7 Effizienz . 23

6 Auswertung 25
6.1 Bewertungsübersicht . 25

5

6.2 In Frage kommende Werkzeuge . 26

6.2.1 AccuRev SCM . 28

6.2.2 Bazaar . 30

6.2.3 Darcs . 31

6.2.4 Fossil SCM . 35

6.2.5 Git . 37

6.2.6 IBM Rational Team Concert . 40

6.2.7 Mercurial . 42

6.2.8 Perforce . 45

6.2.9 Plastic SCM . 47

7 Empfehlung 51
7.1 Übersicht . 51

7.2 Diskussion . 51

7.3 Einführungsstrategie . 52

7.4 Mögliche Probleme bei der Umstellung . 52

8 Zusammenfassung und Ausblick 53

Literaturverzeichnis 55

6

1 Einleitung

Der Industriepartner, die Flexis AG, ist von der bisherigen Lösung für die Quellcodever-
waltung nicht vollständig überzeugt. Aus diesem Grund interessiert sich Flexis für einen
Vergleich zu den Werkzeugen, die auf dem Markt auch verfügbar wären. Diese sollen auf
die Kompatibilität zum gewünschten Umgang mit der Quellcodeverwaltung bei Flexis un-
tersucht werden. Hierfür werden die Anforderungen von Flexis an ein solches Werkzeug
ermittelt, um passende Werkzeuge ermitteln und bewerten zu können. Daran schließt sich
eine Empfehlung an.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen erklärt die Ausgangslage der Fachstudie und fasst die notwendigen
Grundbegriffe zusammen, die nachfolgend verwendet werden.

Kapitel 3 – Marktübersicht zeichnet einen groben Überblick über die auf dem Markt befind-
lichen Quellcodeverwaltungswerkzeuge.

Kapitel 4 – Momentan verwendetes System beschreibt den aktuellen Ist-Zustand beim In-
dustriepartner Flexis AG.

Kapitel 5 – Bewertungskriterien erklärt die einzelnen Bewertungskriterien, die an die neue
Lösung gestellt werden.

Kapitel 6 – Auswertung wertet die ausgewählten Werkzeuge konkret an den zuvor erklärten
Bewertungskriterien aus.

Kapitel 7 – Empfehlung spricht eine Empfehlung aus, welches Vorgehen bezüglich der Quell-
codeverwaltung bei Flexis empfehlenswert erscheint.

Kapitel 8 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Anknüpfungspunkte vor.

7

2 Grundlagen

2.1 Begriffe

Quellcodeverwaltung ist ein Werkzeug, das es ermöglicht, Text-Dateien mit mehreren Ver-
sionen zu verwalten. Typischerweise wird zu einer Änderung protokolliert, wer diese
durchgeführt hat und warum. Tatsächlich gibt es für den Begriff diverse Synonyme,
wie z. B. Revisionskontrolle, Versionskontrolle, (Software-)Konfigurationsverwaltung oder
Quellcodekontrolle. Obwohl diese eigentlich näher zu unterscheiden wären, macht es
für die Praxis keinen Sinn, sie genauer zu unterscheiden [O’S09]. Auf alle im Weiteren
betrachteten Werkzeuge treffen alle Begrifflichkeiten zu, sodass diese im Rahmen dieser
Arbeit austauschbar verwendet werden.

Repository ist das Behältnis in einer Quellcodeverwaltung, das alle Dateien und Versionen
eines Projekts enthält. Typischerweise ist ein Repository ein bestimmter Ordner, in dem
alle Dateien des Projekts mit der Versionskontrolle verwaltet werden können. [O’S09]

Zentralisierte Quellcodeverwaltung ist eine Quellcodeverwaltung, die ein einzelnes, kano-
nisches Repository beinhaltet. Dabei arbeiten alle Mitarbeiter an diesem einen Reposi-
tory. [AS09]

Verteilte Quellcodeverwaltung ist eine Quellcodeverwaltung, die kein von vornherein zen-
trales Repository mehr enthält. Prinzipiell hat jeder Mitarbeiter sein eigenes, vollständi-
ges Repository. Es kann allerdings trotzdem möglich sein, ein nicht-verteiltes Vorgehen
nachzubilden. [AS09]

Revision (oft auch Changeset oder Commit) bezeichnet eine konkrete Version innerhalb einer
Quellcodeverwaltung. [O’S09]

Merge bezeichnet die Operation einer Quellcodeverwaltung, die mehrere gleichzeitige Än-
derungen an einer Datei wieder zusammenfügt. Können nur zwei Dateien miteinander
verglichen werden, spricht man von einem Zwei-Wege-Merge; wird zusätzlich noch
die Elterdatei, an der beide Änderungen durchgeführt wurden, einbezogen, so wird
das Vorgehen Drei-Wege-Merge genannt. [Men02]

2.2 Themenüberblick

Für die Software-Entwicklung ist heutzutage eine Quellcodeverwaltung nicht mehr weg-
zudenken. Im Kleinen ermöglicht sie es, Änderungen sicher abzuspeichern und zu doku-

9

2 Grundlagen

mentieren. Ebenso erlaubt eine Konfigurationsverwaltung es, bei Bedarf ältere Versionen
wiederherzustellen oder zu vergleichen. Insbesondere im Großen, wenn mehrere Entwickler
koordiniert werden müssen, dient eine Quellcodeverwaltung dazu, die Übersicht zu wahren
und vermeidet Datenverluste, da Änderungen nicht einfach „verloren gehen“ können.

Die Flexis AG verwendet bisher das zentralisierte Quellcodeverwaltungs-Werkzeug „Subver-
sion“. Allerdings ist Flexis nicht vollständig sicher, ob diese Lösung voll überzeugen kann.
Deswegen soll der Markt auf für Flexis nutzbare Quellcodeverwaltungen untersucht werden.
Dabei sollen natürlich die spezifischen Anforderungen bei Flexis einfließen, um passende
Werkzeuge zu finden und zu bewerten. Abschließend soll eine Empfehlung ausgesprochen
werden.

2.3 Vorgehen

Um einen generellen Überblick über den Bedarf bei Flexis zu gewinnen, haben wir zunächst
von unserem Ansprechpartner bei Flexis die groben Anforderungen skizziert bekommen.
Hiermit ließ sich ein grober Marktüberblick gewinnen, bei dem wir zunächst 17 Werkzeuge
herausgefiltert haben. Anschließend haben wir diese Werkzeuge näher betrachtet und auf-
grund einiger Kriterien 9 davon auswählen können, die den Kreis der detailliert erläuterten
Werkzeuge in dieser Arbeit bilden.

Anschließend haben wir einen Fragebogen entworfen, mit dessen Hilfe wir bei Flexis etwa
20 Mitarbeiter interviewen konnten. Dabei haben wir sowohl gezielt nach Funktionalität
als auch offen nach Wünschen und Anregungen gefragt. Mit diesen Ergebnissen war es
uns möglich, die tatsächlichen Anforderungen bei Flexis zu erfassen und die in Frage
kommenden Werkzeuge detailliert zu analysieren.

Erste Zwischenresultate wurden in einem Zwischenvortrag zur Diskussion gestellt. Durch
die Auswertung aller Werkzeuge konnten wir uns individuell eine Meinung zur besten
denkbaren Lösung bilden. Die individuellen Meinungen wurden dann in der Gruppe aus-
diskutiert, um zu einem gemeinsamen Konsens zu gelangen, welcher in dieser Ausarbeitung
dokumentiert wurde.

10

3 Marktübersicht

Der Mark der Versionskontrollsysteme lässt sich grob nach deren Architektur unterteilen:
Während zentrale Versionsverwaltungssysteme auf einer Client-Server-Architektur basie-
ren, bei denen die Repositorys auf einem separaten (Server-)System gespeichert werden,
werden die Repositorys bei verteilten Versionsverwaltungssystemen auf jedem Arbeitsplatz
dupliziert. Diese Kapitel soll einen kurzen Überblick über die Entwicklung der Versionskon-
trollsysteme bieten und einige der bekanntesten bzw. verbreitetsten System, nach Architektur
unterteilt, vorstellen.

Auf dem Markt befinden sich neben Open-Source- auch kommerzielle Systeme, bei denen die
Lizenzierung meist nach Anzahl der Benutzer erfolgt. Die Gebühren bewegen sich hierbei
zwischen, einmalig oder jährlich, wenigen 100e bis hin zu einigen 1.000e. Aufgrund der
nicht unerheblichen Lizenzkosten werden die kommerziellen Systeme hauptsächlich bei der
Entwicklung kommerzieller Produkte eingesetzt.

3.1 Zentrale Quellcodeverwaltung

Der Siegeszug der Versionsverwaltungssysteme in der Softwareentwicklung begann haupt-
sächlich mit der Entwicklung von CVS, dem „Concurrent Versions System“. Die Entwicklung
von CVS begann 1989 mit der Zielsetzung, in einem Repository mehrere Dateien speichern
zu können und damit RCS („Revision Control System“) abzulösen, bei dem dies nicht
möglich ist. Insbesondere da in CVS das Einchecken von Änderungen, das Committen,
nicht atomar in einer Transaktion ausgeführt wird, ist der Einsatz des Systems mit einigen
Risiken verbunden. Durch diese Schwachstelle können Daten korrumpiert werden, wenn
Änderungen durch zwei oder mehr Benutzer gleichzeitigen eingecheckt werden oder die
Verbindung während der Datenübertragung abbricht. [MB03]

Um die Quellcodeverwaltung zu vereinfachen und hierbei die genannten Risiken zu mini-
mieren, begann im Jahr 2000 die Entwicklung von Subversion (meist mit SVN abgekürzt) bei
CollabNet. Dabei orientierte man sich beim Bedienkonzept am damals sehr populären CVS –
denn man wollte hierfür einen Ersatz schaffen. Gleichzeitig wurde u. A. durch Hinzufügen
von Transaktionen (also atomaren Commits) bewusst versucht, die bekannten Probleme
und Risiken auszumerzen [BCS11]. Die Rechnung ging auf und Subversion konnte CVS
zunehmend ersetzen. Mittlerweile zählt Subversion zu dem Versionsverwaltungssystem mit
der größten Verbreitung und wird bei zahlreichen Open-Source- und proprietären Projekte
verwendet. Einer Untersuchung zufolge betrug der Marktanteil von Subversion 2010 rund

11

3 Marktübersicht

33,4 %, wohingegen der Anteil von CVS auf 11,9 % schrumpfte [Ham10]. Da Subversio-
nen einen guten Ersatz für CVS bietet, lässt sich mutmaßen, dass dessen Marktanteil in
Zukunft weiter zurückgehen wird. Subversion wird von einer großen Anzahl bekannter
Open-Source-Projekte aber auch bei vielen Firmen eingesetzt [Sub].

Während es sich bei den bereits genannten Systemen – RCS, CVS und Subversion – um
Open-Source-Projekte handelt, befinden sich auch einige kommerzielle Produkte auf dem
Markt. Einen nennenswerten Anteil konnten dabei Visual SourceSafe (12,5 %) und Team
Foundation Server (8,5 %) von Microsoft sowie Perforce der Perforce Software Inc. (6,1 %) und
IBM’s ClearCase (5,4 %) erlangen (Stand 2010 nach [Ham10]). Diese werden nicht nur bei
der jeweiligen Herstellerfirma selbst eingesetzt, sondern auch bei Organisation wie Google
(Perforce) [Men10] oder Siemens (ClearCase) [SKY07].

Die kommerziellen Versionsverwaltungssysteme werden in der Regel mit einer grafischen
Benutzeroberfläche ausgeliefert. Um eine grafische Oberfläche bei den ansonsten über die
Kommandozeile zu bedienenden Open-Source-Systeme nachrüsten zu können, stehen für
viele solche Oberflächen zur Verfügung. Sehr verbreitet sind hier die TortoiseX-Projekte,
wobei X für das Kürzel des jeweiligen System steht (z. B. TortoiseCVS, TortoiseSVN etc.).

3.2 Verteilte Quellcodeverwaltung

Erste Vertreter der verteilten Versionsverwaltungssysteme waren die Open-Source-Systeme
GNU Arch und Monotone. Arch erschien erstmals 2001, gilt seit 2009 offiziell als veraltet und
hat keinen nennenswerten Marktanteil mehr. Stattdessen konzentriert sich die Weiterentwick-
lung auf den Arch-Fork Bazaar [Wikc]. Monotone konnte sich ebenfalls nicht mehr am Markt
behaupten und wurde von neueren Systeme verdrängt [Ham10]. David Roundy begann 2002

die Arbeit an einem neuen Format zur Speicherung der Daten in GNU Arch. Die Ergebnisse
flossen zwar nicht in Arch ein, führten aber zur Entwicklung des Patch-basierten Versions-
kontrollsystems Darcs, das schließlich 2003 veröffentlicht wurde [Wikb]. Wohl aufgrund
der unkonventionelle Funktionsweise von Darcs, die zwar einige besondere Möglichkeiten
bietet aber Probleme mit sich bringt, konnte dieses System auch bis 2010 keinen besonderen
Marktanteil erlangen [Ham10]. Weitere Information zum internen Aufbau und den Folgen
daraus finden sich in Abschnitt 6.2.3 auf Seite 31.

Einen großen Einfluss auf die Entwicklung nachfolgender Open-Source-Versionsverwaltungs-
systeme hatte das kommerzielle Produkt BitKeeper. BitKeeper wurde 2000 veröffentlicht
und wurde anschließend auch zur Versionierung des Linux-Kernels eingesetzt. Dies war
möglich, da die Herstellerfirma BitMover Inc. zum damaligen Zeitpunkt eine kostenfreie
Nutzung ihres Systems für Open-Source-Projekte ermöglichte. Das zugrunde liegende
Lizenzmodell wurde im Jahr 2005 umgestellt. Ab diesem Zeitpunkt war eine kostenfreie
Nutzung der Software nicht mehr möglich – für den Linux-Kernel musste daher ein neues
Quellcodeverwaltungs-Werkzeug gefunden werden. [Wika]

Da für dieses Projekt kein geeignetes System auf dem Markt gefunden werden konnte,
begann Linus Torvalds mit der Entwicklung von Git. Eine erste Version des auf den Be-

12

3.2 Verteilte Quellcodeverwaltung

dürfnissen der Kernel-Entwickler zugeschnittenen Gits erschien bereits im gleichen Jahr
(2005). [ITWa] Seitdem konnte die Software viele Anhänger gewinnen und wird nicht nur
bei vielen Projekten im Linux-Umfeld verwendet [Gitc]. Der Marktanteil betrug 2010 etwa
2,7 % [Ham10].

Zu etwa der selben Zeit, zu der Torvalds mit der Entwicklung von Git begann, startete
Matt Mackall die Entwicklung des ebenfalls quelloffenen Mercurial. Das verfolgte Ziel
war auch diesmal, eine Alternative zu BitKeeper zu schaffen. [ITWb] Neben Projekten im
Linux-Umfeld verwendet u. A. Mozilla Mercurial [Merg].

Im Bereich der kommerziellen Versionsverwaltungssysteme konnten sich neben BitKeeper
noch AccuRev SCM von AccuRev Inc. (0,4 %) und Rational Team Concert der IBM durchsetzen
(0,3 %) (Stand 2010 nach [Ham10]).

Wie bei den zentralen Quellcodeverwaltungsystemen verfügen auch, zumindest die letztge-
nannten kommerziellen Produkte, über eine grafische Benutzeroberfläche. Bei den quellof-
fenen Systemen lässt sich auch hier mit weiteren Open-Source-Projekten (z. B. TortoiseGit,
TortoiseHg) eine grafischen Oberfläche installieren.

13

4 Momentan verwendetes System

Die Flexis AG setzt seit einigen Jahren Subversion als Versionsverwaltungssytem ein. Dabei
wird der Quelltext in zwei verschiedenen Respositorys gespeichert, auf die sich ca. 10

Gigabyte an Quelltext und Binärdateien verteilen.

In den Repositorys sind alle Projekte abgelegt; wird an einem Projekt gearbeitet so wird
dieses aus dem Repository ausgecheckt. Da viele Projekte die gleiche Codebasis verwenden,
wird das svn:externals-Feature genutzt, um diese Codebasis in das Projekt einzubinden.
Außerdem wird Keyword-Expansion eingesetzt, um Dateien mit der aktuellen Version
kennzeichnen zu können und so beim Kunden die Möglichkeit zu haben, feststellen zu
können welche Version aktuell eingesetzt wird. Aktuell treten beim Committen von Dateien
ins Repository regelmäßig Konflikte auf.

Da viele Mitarbeiter keine weitgehende Kenntnis von Kommandozeilen-Tools haben, werden
in der Firma hauptsächlich grafische Oberflächen wie TortoiseSVN zur Verwaltung des
Repositorys eingesetzt; einige setzen aber auch die Kommandozeile ein. Manche Mitarbeiter
arbeiten auch von zuhause aus über eine VPN-Verbindung. Deshalb ist es wichtig, dass die
Kommunikation zwischen Repository-Server und Client möglichst ressourcensparend ist.

4.1 Mitarbeiterbefragung

Viele Mitarbeiter sind keine studierten Softwareentwickler sondern in die Softwareentwick-
lung „reingerutscht“. Die Akzeptanz des aktuellen Systems ist sehr hoch, da alles zumindest
für den alltäglichen Bedarf einigermaßen funktioniert. Die Kenntnis der einzelnen Mitar-
beiter unterscheidet sich dabei sehr stark. Manche Mitarbeiter nutzen nur die Konsole, um
ihre Arbeit mit Subversion zu erledigen, andere können mit dem Repository nur über eine
grafische Oberfläche arbeiten und wären ohne diese Unterstützung eher hilflos.

Für Mitarbeiter, die nicht so tief in der Materie stecken wie die anderen, ist ein Wechsel auf
ein neues System nur schwer vorstellbar, vor allem weil das aktuelle System in ihren Augen
eigentlich ausreichend ist. Sie würden einen Wechsel allerdings nicht ablehnen, sondern,
tatsächliche Verbesserungen vorausgesetzt, akzeptieren und auch versuchen sich in das neue
System, mit erhoffter Unterstützung, einzuarbeiten.

Mitarbeiter, die eher ein Interesse für die Technik hinter der Softwareentwicklung zeigen,
wünschen sich ein System, welches mehr Möglichkeiten bietet, um unabhängig voneinander
zu arbeiten und Code untereinander zu tauschen. Vor allem auch mehrere Repositorys für

15

4 Momentan verwendetes System

unterschiedliche Zwecke wie Entwicklung, Test und Deployment aufzusetzen, gehörte zu
den vorgeschlagenen Ideen.

Fast alle Mitarbeiter bemängelten die schlechte Behandlung von Konflikten in Subversion
und würden sich wünschen, dass diese effektiver funktioniert.

Je nach Abteilung unterscheidet sich auch die Art der Nutzung. Im Marketing beispiels-
weise ist das aktuelle System schon „kompliziert genug“ und eine Verschlechterung der
Benutzerfreundlichkeit wäre nicht gewünscht.

Einige Mitarbeiter schlugen vor, dass eine Kombination aus bestehendem und neuem System
vielleicht die beste Lösung sein könnte, sodass sich jeder Mitarbeiter langsam an den Umstieg
gewöhnen kann.

16

5 Bewertungskriterien

In diesem Kapitel wird auf die Kriterien eingegangen, die Einfluss auf die Wahl eines
geeigneten Versionsverwaltungssystems haben. Im Rahmen der Mitarbeiterbefragung (siehe
Abschnitt 4.1 auf Seite 15) wurden die Bedürfnisse der Mitarbeit näher untersucht, um
hieraus die Gewichtung der Kriterien ableiten zu können. Hierbei kristallisierten sich einige
K. O.-Kriterien heraus, die von den Mitarbeitern oder der Firmenleitung als unverzichtbar
angesehen werden.

Die nachfolgend genannten Funktionen orientieren sich an Subversion, dem bei der Flexis
AG bisher verwendeten System. Da die Mitarbeiter mit Subversion vertraut sind, ist davon
auszugehen, dass diese von Subversion angebotenen Funktionen intensiv verwendet werden
oder für die Arbeit zwingend erforderlich sind.

5.1 K. O.-Kriterien

In diesem Abschnitt werden alle Kriterien aufgelistet, die als unverzichtbar gelten bzw.
zwingend erforderlich sind.

5.1.1 JIRA-Integration

Zur Verwaltung der Projekte und zur Aufgabenverteilung wird die kommerzielle
Projektmanagement-Software JIRA der australischen Firma Atlassian verwendet. Eine In-
tegration der Versionsverwaltung in JIRA ist somit zwingend erforderlich. Beim bisher
verwendeten System ist dies der Fall.

Die Integration in JIRA findet über Plugins statt, so dass für jedes in Frage kommende
Versionsverwaltungssystems das Vorhandensein eines solchen Plugins zu prüfen ist. Das
Fehlen eine entsprechenden Plugins gilt damit als Ausschlusskriterium.

5.1.2 GUI-Unterstützung

Gerade Open-Source-Versionsverwaltungssysteme verfügen standardmäßig nur über einen
Kommandozeileninterpreter. Um eine komfortablere Bedienung zu ermöglichen, sind für vie-
le verbreitete Versionsverwaltungssysteme grafischer Benutzeroberflächen (GUIs) entstanden,
die sich meist in den Dateimanager des Betriebssystems integrieren. Die Mitarbeiterbe-
fragung ergab, dass für Subversion die Oberfläche „TortoiseSVN“ auf den Arbeitsplätzen

17

5 Bewertungskriterien

installiert ist. Von der Mehrheit der befragten Mitarbeiter wird die grafische Oberfläche
bevorzugt verwendet und als ein äußerst wichtiges Kriterium angesehen, da es ihren Ar-
beitsablauf vereinfacht. Insbesondere wird das Beheben von Merge-Konflikten durch die
Oberfläche erleichtert.

Da bisher eine grafische Benutzeroberfläche verwendet wird und die Mitarbeiter an eine
solche gewöhnt sind, muss für alle in Frage kommenden Systeme eine selbige verfügbar
sein. In diesem Zusammenhang ist das verwendete Betriebssystem von Bedeutung, da die
grafischen Oberflächen meist nur für Microsoft Windows verfügbar sind. Da die bisherige
grafische Benutzeroberfläche nur für Microsoft Windows verfügbar ist und die Mitarbeiter
hauptsächlich dieses Betriebssystem verwenden (siehe Abschnitt 5.1.4), muss für die in Frage
kommenden Systeme mindestens für Windows eine grafische Oberfläche verfügbar sein.

Von den Mitarbeitern, die ebenfalls unter Linux arbeiten, wird eine grafische Oberfläche
nicht als zwingend, allerdings als interessante Zusatzfunktion angesehen. Damit kann die
Verfügbarkeit einer GUI unter Linux als Entscheidungshilfe angesehen werden.

5.1.3 IDE-Plugin

Neben einer eigenständigen Benutzeroberfläche (siehe Abschnitt 5.1.2 auf der vorherigen
Seite) gaben einige Mitarbeiter an, dass sie unter der integrierten Entwicklungsumgebung
(IDE) Eclipse das Subversion-Plugin verwenden. Da sie dieses Plugin als unverzichtbar
ansehen, muss auch für alle in Frage kommenden alternativen Systeme ein Plugin für die
Entwicklungsumgebung verfügbar sein.

5.1.4 Betriebssysteme

Für die Quellcodeverwaltung selbst ist das verwendete Betriebssystem in der Regel von
untergeordneter Bedeutung, da die Systeme im Allgemeinen für die gängigsten Betriebs-
systeme verfügbar sind. Auf den Firmenarbeitsplätzen wird Microsoft Windows eingesetzt,
wobei einige Mitarbeiter auch unter Linux arbeiten. Somit müssen alle in Frage kommenden
Versionsverwaltungssysteme sowohl für Linux als auch für Windows verfügbar sein.

5.1.5 Teilweises Auschecken

Da die eingesetzten Repositorys gegenwärtig sehr groß sind (mehrere Gigabytes, siehe Kapi-
tel 4 auf Seite 15) ist das vollständige Herunterladen des Repositorys, wie es bei verteilten
Systemen typisch ist, zu vermeiden. Da von den Mitarbeitern auch von einem Heimarbeits-
platz oder bei einem Kunden auf das Repository zugegriffen wird, ist es unzumutbar, dass
für die Aktualisierung des Repositorys Daten heruntergeladen werden, die vom Mitarbeiter
nicht benötigt werden.

Um die für die Aktualisierung benötigte Zeit kurz zu halten, muss daher vom Versions-
verwaltungssystem die Möglichkeit geboten werden, nur tatsächlich benötigte Teile des

18

5.1 K. O.-Kriterien

Repositorys herunterzuladen bzw. zu aktualisieren. Alternativ kann diesem Problem begeg-
net werden, sofern das System mit geringem Aufwand das Aufteilen der Repositorys in
kleinere Teilrepositorys unterstützt (wodurch nur jeweils ein kleineres, benötigtes Repository
heruntergeladen oder aktualisiert werden muss). In diesem Fall muss das System jedoch
Funktionen anbieten, die die durch das Aufteilen verlorenen Beziehungen innerhalb des
ehemaligen Repositorys nachbilden.

5.1.6 Externals

Subversion bietet über die s. g. „Externals“ die Möglichkeit, Verzeichnisse aus anderen
Repositorys in ein eigenes Repository einzubinden. Ändern sich die Daten im eingebundenen
Repository, werden diese im eigenen automatisch ebenfalls aktualisiert. Diese auch als
„Vendor Branches“ bekannte Funktion wird daher oft dazu verwendet, Komponenten von
Drittfirmen und Zulieferern in das firmeninterne Repository zu übernehmen und aktuell zu
halten – so auch bei der Flexis AG.

Von alternativen Systemen wird daher eine Funktionalität erwartet, mit der sich die genann-
ten Beziehungen zwischen verschiedenen Repositorys nachbilden lassen.

5.1.7 Export

Die Konfiguration und der Zustand der Arbeitskopie der Repositorys wird bei vielen Versi-
onsverwaltungssystemen meist in besonderen Konfigurationsverzeichnissen oder -dateien
gespeichert. Diese befinden sich oft im Hauptverzeichnis der Arbeitskopie, gelegentlich
aber auch (etwa bei Verwendung eines älteren Subversion-Clients) in jedem Verzeichnis
der Arbeitskopie. Gerade in letztgenanntem Fall ist das Erstellen einer sauberen Kopie
der Daten, etwa zur Auslieferung oder für den Build-Prozess, mit nicht unerheblichem
Aufwand verbunden, wenn diese Konfigurationsverzeichnisse bzw. -dateien manuell aus der
angelegten Kopie entfernt werden müssen.

Um das Erstellen einer Kopie der versionierten Daten zu erleichtern, existiert in Subversion
die Export-Funktion, die zu einer gegebenen Revisions-Nummer eine Kopie der zugehörigen
Daten erstellt. Unter Verwendung dieser Funktion lassen sich zudem diverse Prozess-Schritte
automatisieren. Da dies bei der Flexis AG der Fall ist, müssen alternative Systeme eine
ähnlich einfache Möglichkeit bieten, über entsprechende Kommandos oder alternativ über
Zusatzprogramme eine solche, saubere Kopie zu generieren.

5.1.8 Benutzerfreundlichkeit

Schon in Abschnitt 5.1.2 auf Seite 17 ist klar geworden, dass viele Benutzer wert auf
eine möglichst simple, verständliche und grafische Benutzerführung legen. Konkret wurde
von vielen Mitarbeitern gefordert, dass die Benutzerführung mindestens so einfach wie
in Subversion sein soll. Das bedeutet z. B. auch, dass gewöhnte Arbeitsweisen sich im

19

5 Bewertungskriterien

neuen Werkzeug möglichst ähnlich wiederfinden sollten ohne den Prozess übermäßig
kompliziert zu machen. Da die Benutzer bisher hauptsächlich über den Dateimanager
Windows-Explorer auf die Versionsverwaltung zugreifen, müssen sich auch alternative
Systeme in den Dateimanager integrieren und hierüber zumindest auf die geläufigsten
Funktionen Zugriff gewähren. Ebenfalls problematisch ist der Fall, wenn zwar eine grafische
Unterstützung existiert, die große Mehrheit der Benutzer oder Dokumentation aber die
Arbeit über die Konsole forciert.

5.1.9 Konversion von Subversion

Ein logischer Schritt in der Erwägung eines anderen Versionskontrollsystems ist natürlich
die Frage, wie gut sich das vorhandene System in das neue umwandeln lässt. Fehlt diese
Möglichkeit, kämen die Konsequenzen einem Datenverlust gleich – schließlich müsste
jede alte Änderung separat in Subversion begutachtet werden oder es käme zu Konflikten
zwischen alt und neu. Allerdings kann auch diese Konversion nicht ganz ideal sein, bspw.
wenn sie nur Teile aus dem alten Repository übernimmt, z. B. wenn nur die Revisionen, nicht
aber die Commit-Beschreibungen konvertiert würden.

20

5.2 Entscheidungskriterien

5.2 Entscheidungskriterien

Bei den in diesem Abschnitt genannten Kriterien handelt es sich um Anforderungen, die von
einigen Mitarbeitern oder Firmenleitung genannt und gewünscht, jedoch nicht als zwingend
angesehen wurden. Damit erleichtern es diese Kriterien, zwischen zwei Systemen, die beide
die K. O.-Kriterien erfüllen, zu entscheiden.

5.2.1 Lizenz

Beim bisher verwendeten Versionsverwaltungssystem „Subversion“ und der dazugehörigen
Benutzeroberfläche „TortoiseSVN“ handelt es sich um Open-Source-Projekte, wodurch sich
die Anwendungen unentgeltlich einsetzen lassen. Für die Mitarbeiter von untergeordneter
Rolle, für die Firmenleitung aber umso wichtiger, ist daher die Frage nach der Lizenz, unter
der die Systeme verwendet werden dürfen.

Prinzipiell wurde uns mitgeteilt, dass für die Flexis AG sowohl Open-Source- als auch
kommerzielle Systeme in Frage kommen. Aus dem finanziellen Gesichtspunkt wird jedoch
eine Open-Source-Lösung bevorzugt. Bei der Untersuchung der kommerziellen Systeme
spielen die Lizenzkosten (Grundkosten und Kosten je Arbeitsplatz, ggf. pro Jahr) daher eine
wichtige Rolle. Durch eine Hochrechnung der anfallenden Kosten bei Ausrüstung aller Ar-
beitsplätze (ca. 100 laut Befragung, siehe Abschnitt 4.1 auf Seite 15) mit dem entsprechenden
Versionsverwaltungssystem ergibt sich ein Überblick über den finanziellen Aufwand einer
etwaigen Umrüstung. Eine Entscheidung soll sich damit erleichtern lassen.

5.2.2 Dateiberechtigungen

Da besonders unter Linux Dateiberechtigungen eine wichtige Position einnehmen, wird
eine Mitversionierung dieser Berechtigungen von den Mitarbeitern, die auch unter Linux
arbeiten, als wünschenswert angesehen. Dieser Wunsch bezieht sich dabei hauptsächlich auf
die Speicherung des Executable-Bits, d. h. der Kennzeichnung einer Datei als ausführbare
Anwendung.

5.2.3 Keywords

Über die Subversion-Funktion „Keyword Expansion“ lassen sich in Text-Dateien (Quellcode
etc.) definierte Schlüsselwörter durch Informationen aus dem Repository ersetzen. Ein
gängiger Anwendungsfall ist etwa die Verwendung des Schlüsselworts „ID“ welches
beim Aktualisieren der Arbeitskopie automatisch durch Informationen über die zugehörige
Datei (u. a. Revisionsnummer der letzten Änderung und Benutzer, der diese Änderung
durchgeführt hat) ersetzt wird.

Von den Mitarbeitern wird diese Funktion aufgrund einiger mit einhergehender Probleme
kontrovers diskutiert, da etwa beim automatischen Vergleichen der Daten identische Dateien

21

5 Bewertungskriterien

durch eine unterschiedlicher Ersetzung der Schlüsselworte als verschieden markiert werden.
Da diese Funktion dennoch von einigen Mitarbeitern verwendet wird, sollte sie auch von
alternativen Systemen unterstützt werden.

5.2.4 File-Lock

Durch das Setzen von File-Locks auf eine Datei kann der Benutzer in Subversion verhindern,
dass diese Datei von einem anderen Benutzer geändert werden kann. Erst durch eine
explizite Freigabe der Sperre lässt sich die Datei durch andere Benutzer verändern. Da diese
Funktion damit dem zugrunde liegenden Gedanken einer Versionsverwaltung, nämlich dem
gleichzeitigen Arbeiten an den versionierten Daten, darunter eben auch das gleichzeitige
Arbeiten an ein und derselben Datei, widerspricht, wird diese Funktion hauptsächlich
nur verwendet, wenn ein gleichzeitiges Bearbeiten einer Datei nicht möglich ist. Dies ist
typischerweise bei Binär-Dateien der Fall.

Da in den Repositorys der Flexis AG nur wenige Binär-Dateien gespeichert sind und
diese zudem nur selten geändert werden, wird diese Funktion von keinem der befragten
Mitarbeitern verwendet. Daher wird von den alternativen Systemen das Vorhandensein einer
Lock-Funktion nicht verlangt.

5.2.5 Sammeln bzw. Zwischenspeichern von Commits

Um die in den Repositorys gespeicherten Quelldaten lauffähig zu halten, sind die Mitarbeiter
bestrebt, durchgeführte Änderungen erst hochzuladen, wenn diese möglichst fehlerfrei sind.
Gleichzeit entsteht aber auch der Wunsch, bereits kleinere Änderungen in die Versions-
verwaltung einzuchecken (etwa um nach nicht zufriedenstellenden Änderungen auf einen
definierten Zwischenstand zurückspringen zu können).

Um beide Seiten vereinen zu können, erweist es sich als wünschenswert, wenn von al-
ternativen Versionsverwaltungssystemen die Möglichkeit geboten wird, das Einchecken
von Änderungen und das finale Hochladen dieser in ein zentrale Repository zu trennen.
Das heißt die Fähigkeit, Commits zwischenzuspeichern und die gesammelten Commits
schließlich in das Repository einzustellen

Ebenfalls bieten einige Systeme die Möglichkeit, Änderungen in einem eigenen lokalen
Bereich zwischenzuspeichern. Hierdurch lässt sich weiterhin das lokale Repository bzw. die
Arbeitskopie aktualisieren, ohne das nicht eingecheckte Änderungen verloren gehen oder zu
Konflikten während des Vorgangs führen.

Da beide Funktionen die Arbeit mit kleineren lokalen oder trotz kleinerer lokaler Änderungen
erleichtern, kann deren Verfügbarkeit zur Entscheidungshilfe bei der Wahl eines alternativen
Systems herangezogen werden.

22

5.2 Entscheidungskriterien

5.2.6 Suchen von Changesets

Gelegentlich entsteht der Bedarf, nach einem Changeset zu suchen, in dem eine bestimmte
Änderung an einer Datei vorgenommen wurde. Ein solcher Fall stellt beispielsweise die Suche
nach dem betreffenden Changeset dar, in dem ein bestimmter Fehler in die Anwendung
eingefügt wurde.

Die befragten Mitabeiter gaben an, dass die Suche einer bestimmten Revision gelegentlich
vorkommt. In diesem Fall bedienen sie sich des Logs der betreffenden Datei und durchsuchen
dieses manuell nach der betreffenden Änderung. Einige Versionsverwaltungssysteme bieten
hierfür Funktionen an, die den Aufwand bei dieser Suche verringern können. Somit handelt
es sich bei dieser Suche um eine wünschenswerte Funktion.

5.2.7 Effizienz

Auf die Frage nach der Effizienz erhielten wir von den befragten Mitarbeitern meist die
Antwort, dass das bisherige System (d. h. Subversion) ausreichend schnell sei. Dies lässt
sich z. T. auch darauf zurückführen, da hauptsächlich innerhalb des Firmengebäudes, somit
innerhalb des lokalen Netzes, auf die Repositorys zugegriffen werden. Der durch Subversion
benötigte Speicherplatz stellte ebenfalls kein Problem dar.

Für alternative Systeme bedeutet dies, dass ihre Effizienz mindesten auf Subversion-Niveau
sein muss.

23

6 Auswertung

6.1 Bewertungsübersicht

Zu jedem in Frage kommenden Werkzeug wird eine kurze Übersichtsgrafik dargestellt, die
möglichst schnell repräsentieren soll, ob eine aus Kapitel 5 relevante Anforderung voll erfüllt
(), gar nicht erfüllt (#) oder teilweise erfüllt (G#) wird.

Dabei wurde platzbedingt versucht, die Kategorien durch kleine Symbole und Abkürzungen
darzustellen. K. O.-Kriterien sind unterstrichen. Die Verweise auf die zugehörigen Bewer-
tungskritieren finden sich hochgestellt dahinter. Eine solche Grafik sieht z. B. so aus:

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
#

JIRA steht für die Integration in Atlassian JIRA, wie in Abschnitt 5.1.1 beschrieben.

GUI steht für die Unterstützung einer graphischen Benutzeroberfläche, wie in Abschnitt 5.1.2
beschrieben.

IDE steht für das Vorhandensein einer IDE-Integration, wie in Abschnitt 5.1.3 beschrieben.

OS steht für die Unterstützung der Betiebssysteme, wie in Abschnitt 5.1.4 beschrieben.

Q steht für ein teilweises Auschecken von Repositorys, wie in Abschnitt 5.1.5 beschrieben.

on steht für die Unterstützung einer SVN-externals-artigen Einbindung von Dritt-Repositorys,
wie in Abschnitt 5.1.6 beschrieben.

⇒ steht für die Möglichkeit eines sauberen Exportierens, wie in Abschnitt 5.1.7 beschrieben.

© steht für die Einschätzung, dass das Werkzeug sehr benutzerfreundlich ist, wie in Ab-
schnitt 5.1.8 beschrieben.

 steht für die Möglichkeit, ein vorhandenes SVN-Repository in ein Repository des genann-
ten Werkzeugs zu überführen, wie in Abschnitt 5.1.9 beschrieben.

c© steht für eine möglichst günstige Lizenz, wie in Abschnitt 5.2.1 beschrieben.

rwx steht für die Speicherung von Dateiberechtigungen, wie in Abschnitt 5.2.2 beschrieben.

Keywords steht für die Unterstützung von Keyword Expansion, wie in Abschnitt 5.2.3
beschrieben.

25

6 Auswertung

6H steht für die Möglichkeit, Commits lokal zwischenzuspeichern und zu bearbeiten, wie in
Abschnitt 5.2.5 beschrieben.

Suchen steht für die Möglichkeit, Commits effizient zu suchen, wie in Abschnitt 5.2.6
beschrieben.

� steht für die Effizenz des Werkzeugs, wie in Abschnitt 5.2.7 beschrieben.

6.2 In Frage kommende Werkzeuge

Wie in Kapitel 3 erläutert, befinden sich unzählige Quellcodeverwaltungs-Systeme auf dem
Markt. In diesem Kapitel werden deshalb nur Systeme vorgestellt die trotz einer Vorauswahl
weiterhin in Frage kommen.

AccuRev SCM ist ein kommerzielles Produkt der AccuRev Inc. Die of-
fizielle Webseite befindet sich auf www.accurev.com/accurev.html.

Bazaar ist ein Open-Source-Projekt und unter der GPL v2-Lizenz
veröffentlicht. Die offizielle Webseite befindet sich auf ba-
zaar.canonical.com.

Darcs ist ein Open-Source-Projekt und unter der GPL-Lizenz veröffent-
licht. Die offizielle Webseite befindet sich auf www.darcs.net.

26

http://www.accurev.com/accurev.html
http://bazaar.canonical.com
http://bazaar.canonical.com
http://www.darcs.net

6.2 In Frage kommende Werkzeuge

Fossil ist ein Open-Source-Projekt und unter der BSD-Lizenz veröffent-
licht. Die offizielle Webseite befindet sich auf www.fossil-scm.org.

Git ist ein Open-Source-Projekt und unter der GPL v2-Lizenz veröffent-
licht. Die offizielle Webseite befindet sich auf www.git-scm.org.

IBM Rational Team Concert ist ein kommerzielles Produkt der IBM Cor-
poration. Die offizielle Webseite befindet sich auf
ibm.com/software/rational/products/rtc/.

Mercurial ist ein Open-Source-Projekt und unter der GPL v2-Lizenz
veröffentlicht. Die offizielle Webseite befindet sich auf mercuri-
al.selenic.com.

Perforce ist ein kommerzielles Produkt der Perforce Software Inc. Die
offizielle Webseite befindet sich auf www.perforce.com.

Plastic SCM ist ein kommerzielles Produkt von Codice Software. Die
offizielle Webseite befindet sich auf www.plasticscm.com.

27

http://www.fossil-scm.org/
http://www.git-scm.org
http://ibm.com/software/rational/products/rtc/
http://mercurial.selenic.com
http://mercurial.selenic.com
http://www.perforce.com
http://www.plasticscm.com/

6 Auswertung

6.2.1 AccuRev SCM

AccuRev SCM ist ein kommerzielles Versionsverwaltungssystem der AccuRev Inc. Es wird
seit 2002 stetig weiterentwickelt und von namhaften Firmen wie der NASA, Siemens oder
Sony eingesetzt.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
 G# # #

System

Bei AccuRev SCM handelt es sich um ein kommerzielles Produkt, für dessen Einsatz eine
kostenpflichtige Lizenzierung erforderlich ist [Acca]. Pro Nutzer (Lizenz) fällt eine einmalige
Gebühr in Höhe von 1.151,81e ($1.500) an. Auf 100 Benutzer hochgerechnet entspricht dies
Kosten in Höhe von ca. 115.181e. Die Integration von AccuRev in JIRA kostet pro Server
764,03e ($995).

Im Gegensatz zu den meisten anderen vorgestellten Systeme verfolgt AccuRev, wie Subver-
sion, den zentralen Ansatz. Die gesamte Kommunikation geschieht über einen zentralen
Server. Trotzdem ist es möglich in kleinen Teams in einer Kopie, getrennt vom Rest des
Repositorys, in sogenannten Streams zu arbeiten und anschließend die Ergebnisse wieder
im Haupt-Stream zu integrieren. Außerdem kann man lokale Änderungen mit dem Server
synchronisieren ohne diese einzuchecken, damit ist beispielsweise das Weiterarbeiten an
einem anderen PC möglich (Private Checkin).

AccuRev SCM bietet für JIRA ein Plugin namens „AccuSync“ an, mit welchem die Versions-
verwaltung direkt in JIRA integriert werden kann.

Außerdem gibt es sowohl für das Kontextmenü des Explorers unter Windows (ähnlich zu
„TortoiseSVN“) als auch für Eclipse eine Erweiterung, die das Arbeiten mit dem Reposi-
tory sehr einfach möglich machen soll. Das Eclipse-Plugin wird direkt von AccuRev SCM
angeboten und ist kostenlos.

Das Herzstück des AccuRev-Versionsverwaltungssystem ist der eigenständige Client. Mit
diesem können alle Funktionen, die das AccuRev-System beherrscht, ausgeführt werden.
Trotz allem unterstützt AccuRev auch das Arbeiten mit der Konsole.

Funktionsumfang

AccuRev Inc. bewerben ihr Produkt als leistungsstarkes Konzept zur mehrstufigen kontinuier-
lichen Integration. Damit ist gemeint, dass AccuRev SCM die Möglichkeit bietet, Änderungen
am Quelltext über mehrere Ebenen zu verwalten und so je nach Entwicklungsfortschritt
verschiedene Repositorys zu nutzen.

28

6.2 In Frage kommende Werkzeuge

Außerdem bietet es nativ die Unterstützung zum einfachen lokalen Branchen und Mergen.
Das bedeutet, dass man lokal Änderungen vornehmen kann und diese dann nach ausgiebigen
Tests wieder zurück in den Hauptzweig des Repositorys mergt.

Laut Webseite ist auch eine sehr komfortable Verwaltung mehrerer Versionen mög-
lich [Accb].

Mit AccuRev ist durch den zentralen Ansatz auch ein teilweises Auschecken des Repositorys
möglich.

Es ist nur möglich das Execution-Bit der Dateiberechtigungen zu setzen, alle anderen
Berechtigungseinstellungen werden vom AccuRev-System ignoriert. Außerdem wird eine
Keyword-Expansion wie in Subversion unterstützt.

Der Export einer bestimmten Revision ist nach dem Checkout der Revision durch einfaches
Kopieren des Ordners möglich. Eine binäre Suche nach Revisionen ist hingegen nicht
möglich.

Einen direkten Externals-Support wie Subversion bietet AccuRev nicht. Es kann aber mit ein-
fachen symbolischen Links, die AccuRev mit in das Repository einchecken kann, gearbeitet
werden um ein sehr ähnliches Verhalten zu erreichen.

29

6 Auswertung

6.2.2 Bazaar

Bei Bazaar, auch kurz bzr, handelt es sich um ein frei verfügbares, unter der GPL lizenziertes,
verteiltes Konfigurationsverwaltungs-Werkzeug, das von Canonical Ltd. gefördert wird.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
G# G# # #

System

Als GPL-Werkzeug ist Bazaar frei verfügbar. Bazaar selbst wirbt mit Anpassungsfähigkeit an
verschiedene Arbeitsmodelle, Effizienz, Flexibilität und besonderer Benutzerfreundlichkeit.
Zahlreiche Features werden in Bazaar über Plugins realisiert. Trotz der Tatsache, dass Bazaar
u. a. mit seiner Community wirbt und schon seit längerer Zeit existiert, soll sich ein Buch
darüber nur „in Entwicklung“ befinden. [Bzrc]

Bazaar steht für diverse Betriebssysteme zur Verfügung, u. a. für Linux und für Win-
dows [Bzra]. Es gibt auch ein Plugin für Eclipse, allerdings kann dies zu einem Absturz von
Eclipse führen, wenn auf der Kommandozeile Authentifizierungsinformationen abgefragt
werden [Bzrh]. Es gibt eine Tortoise-GUI namens TortoiseBzr, die sich ähnlich wie Tortoi-
seSVN verhält [Bzri]. Dazu kommt auch ein JIRA-Plugin [Bzrg], dessen Dokumentation
allerdings eher spärlich ausfällt und das seit 2008 auch nicht mehr weiterentwickelt wurde.

Mit Hilfe von bzr-svn [Bzrf] lassen sich Subversion-Repositorys von Bazaar aus bearbeiten,
so als würde es sich um Bazaar-Repositorys handeln. Ebenso lassen sich damit auch SVN-
Repositorys nach Bazaar konvertieren.

Funktionsumfang

Als verteiltes Versionskontrollsystem besitzt jeder Entwickler in Bazaar ein lokales Repository,
in das er zunächst committen kann. Die Änderungen müssen dann gesondert je nach Kolla-
borationsstil entweder an die Repositorys anderer Entwickler oder das Haupt-Repository
weitergeleitet werden. Dafür ist ein teilweiser Checkout nicht möglich. [Bzra]

Bazaar kennt ein zu Subversion vergleichbares Export-Kommando, mit dem Teile des Re-
positorys in beliebiger Form (Verzeichnisstruktur oder Archiv) exportiert werden können.
Als Dateiberechtigung wird nur das Execution Bit, also die Erlaubnis zur Ausführung,
mitversioniert. [Bzra]

Keyword-Expansion [Bzre], Externals [Bzrd] und Bisect [Bzrb], also die schnelle, binäre Suche
nach einem bestimmten Commit, stehen in Bazaar ebenfalls als Plugins zur Verfügung.

30

6.2 In Frage kommende Werkzeuge

6.2.3 Darcs

Darcs, hierbei handelt es sich um ein Akronym für „Darcs adavanced revision control
system“, zählt zu den verteilten Systemen.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
G# G# G# G# G# # #

System

Darcs kann für alle gängigen Betriebssysteme (darunter auch Windows und Linux) von
der Homepage heruntergeladen werden [Dara]. Hierin enthalten ist allerdings nur der
Kommandozeilen-Interpreter. Die Kommandos die zur Bedienung des Systems benötigt
werden, wurden möglichst einfach und intuitiv gehalten: Werden den Kommandos nicht
alle benötigten Parameter übergeben, so wird der Benutzer interaktiv abgefragt, wie das
Kommando ausgeführt werden soll (beim Einchecken von Änderungen wird der Benutzer
bei fehlender Angabe von Parametern etwa für jede geänderte Datei gefragt, ob er diese mit
Einchecken möchte). Da es sich um ein Open-Source-Projekt handelt, fallen für die Nutzung
keine Gebühren an.

Zur Integration in den Windows Explorer und als eigenständige Benutzeroberfläche lässt
sich gegenwärtig lediglich das Open-Source-Projekt „TortoiseDarcs“ [HT] finden, bei dem
die ähnlich lautende CVS-Oberfläche übernommen und an Darcs angepasst wurde. Die
Benutzeroberfläche integriert sich in den Windows Explorer und ähnelt im Bedienkonzept der
in der Firma verwendeten Oberfläche „TortoiseSvn“. Zwar steht für Darcs auf der Homepage
ein eigenes Wiki und eine ausführliches Handbuch [Rou] zur Verfügung, die Beschreibungen
orientieren sich jedoch ausschließlich an der Verwendung der Kommandozeile. Da die
neuste Veröffentlichung der grafischen Oberfläche zudem aus dem Jahr 2006 stammt, ist
davon auszugehen, dass diese mit der Weiterentwicklung von Darcs nicht schritthalten
wird. Für Eclipse 3.x existiert zur Integration von Darcs das Plugin „EclipseDarcs“ [FG],
das im Gegensatz zur zuvor erwähnten Benutzeroberfläche eine höhere Entwickleraktivität
aufweist.

Die Suche nach einem Darcs-Plugin für das Projektmanagementsystem JIRA im Atlassian
Marktplatz [Atlc] sowie eine allgemeine Internetsuche nach eben diesem ergab keine Treffer
– eine Integration des Versionsverwaltungssystems ist damit ohne Weiteres nicht möglich.

Darcs hebt sich insbesondere durch seinen internen Aufbau von den meisten Versionsver-
waltungssytemen ab: Diese speichern die Änderungen meist intern in einem Baum. Werden
Änderungen in das System eingecheckt, so wird dem Baum ein neuer Eintrag mit den
betreffenden Änderungen angehängt. Hierdurch stehen alle Änderungen, und damit auch
die gespeicherten Versionen, in einer chronologischen Folge. Darcs hingegen fußt auf der
Patch-Theorie [Rou]. Für jede eingecheckte Änderung wird eine Patch-Datei generiert, in
der die durchgeführten Änderungen gespeichert werden. Somit existiert für jeden Commit,
in Darcs als record bezeichnet, ein eigener Patch. Die Reihenfolge des Eincheckens selbst, d. h.

31

6 Auswertung

die chronologische Abfolge, wird vom System nicht gespeichert. Damit existieren zwischen
den verschiedenen Patches per se keine zeitliche Abhängigkeiten.

Wurden die Änderungen via record eingecheckt, können diese an ein anderes (z. B. zentrales
Repository) übertragen werden (push). Patches, die auf einem externen Repository liegen,
jedoch noch nicht in das eigene, lokale Repository übernommen wurden, lassen sich mit
dem Befehl pull in dieses herunterladen und damit die Arbeitskopie aktualisieren. Da es
sich somit um ein verteiltes Versionsverwaltungssystem handelt, ist das Einchecken von
Änderungen und das Zurverfügungstellen dieser von Haus aus getrennt.

Da wie eingangs beschrieben zwischen den Patches keine Reihenfolge definiert ist, wer-
den von Darcs während des Herunterladens die Abhängigkeiten zwischen den einzelnen
Patches berechnet um sicherstellen zu können, dass alle Dateien korrekt wiederhergestellt
werden. Dies führt dazu, dass die Patches in einer Reihenfolge angewendet werden, die der
Reihenfolge des Eincheckens nicht mehr zwingend entspricht.

Funktionsumfang

Dank des patch-zentrierten Aufbaus und dem Nicht-Vorhandensein einer strikten Reihenfol-
ge zwischen den Patches bietet Darcs im Vergleich zu anderen Quellcodeverwaltungssyste-
men einige besondere Funktionen, die die tägliche Arbeit erleichtern können. Gleichzeitig
kann die durch die Patches entstehende Komplexität zu Problemen führen. Diese Aspekte
sollen nachfolgend, vor allem in Bezug auf die Bewertungskriterien (siehe Kapitel 5 auf
Seite 17), näher betrachtet werden.

Darcs bietet beim initialen Kopieren bzw. Herunterladen eines Repositorys auf das lokale
System mit dem Kommando get die Möglichkeit an, eine „lazy copy“ des Repositorys
zu erstellen [Hö11]. Hierbei werden durch Angabe des Parameters lazy nur diejenigen
Patches aus dem externen Repository geladen, die zum Generieren einer Arbeitskopie mit
den aktuellsten Daten benötigt werden. Werden weitere Patches benötigt (z. B. um einen
älteren Arbeitsstand einer Datei wiederherzustellen), werden diese vom System bei Bedarf
automatisch heruntergeladen.

Bereits aus dem internen Aufbau heraus stehen die s. g. spontaneous Branches zur Verfügung.
Dabei wird der Namen der Patches (d. h. die beim Record angegebene Beschreibung) zur
Generierung von Branches verwendet [Hö11]. Um die Funktion nutzen zu können, muss die
Benennung nach einem bestimmten Schema erfolgen, wobei alle zusammengehörigen Pat-
ches (alle Patches, die einen Brach repräsentieren sollen) etwa mit dem selben Namensanfang
beginnen müssen. Über einen zusätzlichen Parameter kann nun beim Aktualisieren des Re-
positorys (pull) oder beim Übertragen der Daten an ein externes Repository (push) angegeben
werden, dass ausschließlich Patches mit einem bestimmten Namensanfang heruntergeladen
und auf die Arbeitskopie angewendet bzw. hochgeladen werden sollen.

Beide Funktionen ließen sich etwa wie folgt anwenden, um dem Problem der bei der Flexis
AG verwendeten, sehr großen Repositories zu begegnen: Soll das Repository vollständig auf
einen Arbeitsplatz übertragen werden, um mit einer vollständige Arbeitskopie arbeiten zu

32

6.2 In Frage kommende Werkzeuge

können, so lässt sich mit einem „lazy-get“ die zu übertragende Datenmenge reduzieren, weil
nicht die vollständige Historie heruntergeladen werden muss. Werden zudem alle Patches
konsequent so benannt, dass deren Name stets mit dem Namen bzw. Kürzel des Teilprojekts
beginnen, zu dem sie gehören, lässt sich die zu übertragende Datenmenge weiter reduzieren,
wenn nur die Daten zu einem bestimmten Teilprojekt benötigt werden. Hierbei genügt
es dann, beim Aktualisieren bzw. beim Übertragen des Repositories, eben diesen Namen
anzugeben, wodurch nur die nötigsten Patches heruntergeladen werden.

Aufgrund der nicht vorhandenen Chronologie erlaubt Darcs es, Patches und somit die Daten
aus verschiedenen Repositorys in ein eigenes Repository zu laden. Bei diesem Vorgang
wird standardmäßig die Vereinigungsmenge der Patches gebildet, wodurch alle Daten der
verschiedenen Repositorys gemeinsam zur Verfügung stehen. Dieses Verfahren lässt sich
damit zur Einbindung von Fremdrepositorys (also Externals bzw. Vendor Branches, siehe
Abschnitt 5.1.6 auf Seite 19) verwenden. Neben der Vereinigungsmenge lässt sich alternativ
auch die Schnitt- oder die Komplementärmenge bilden (siehe auch die Beschreibung des pull
Kommandos in [Rou]). Zur Einbindung externer Repositpories sind diese beiden allerdings
unbedeutend. Damit externe Repositories eingebunden werden können, müssen diese ver-
ständlicherweise als Darcs-Repositories geführt werden. Hierfür bietet sich das Open-Source
Tool „Tailor“ an, mit dem sich Repositorys verschiedener Systeme ineinander konvertieren
lassen [Tai]. Liegt das externe Repository somit nicht als Darcs-Repository vor, muss dieses
zunächst mittels Tailor in ein Darcs Repository umgewandelt werden. Zwar lässt es sich
nun in das eigene Repository einbinden, durch die manuell durchgeführte Konvertierung
werden am original Repository durchgeführte Änderungen später aber nicht übernommen,
da hierfür eine erneute Konvertierung nötig wäre. Sollen Änderungen also automatisch
übernommen werden, so kann eine Lösung darin bestehen, die Konvertierung regelmäßig
automatisch zu wiederholen und das konvertierte Repository auf einem eigenen Server zur
Einbindung bereitzustellen.

Da es sich um ein verteiltes Versionsverwaltungssystem handelt, ist für das Einchecken
von Änderungen (also das Generieren von Patches) und das Betrachten der Historie ohne
Netzwerkkommunikation möglich. Dadurch ist Darcs im Vergleich zu Subversion bei den
häufigsten Anweisungen und bei kleineren Repositorys oft schneller. Bei größeren Reposito-
rys schneidet Darcs hingegen, insbesondere wenn die Kommunikation zwischen Subversion
Client und Server über eine schnelle Netzwerkverbindung stattfindet, schlechter ab [Darb].
Beim Herunterladen und Mergen von Änderungen (also beim Zusammenführen mehrerer
Patches, in denen Änderungen an einer gleichen Datei vorgenommen wurden) über das
pull-Kommando kam es insbesondere vor der Version 2 häufig zu einem von der Anzahl
der Konflikte abhängigen exponentiellen Laufzeitverhalten. Das Durchführen der Aktuali-
sierung konnte dabei über eine Stunde dauern [Thr]. Dieses Problem konnte mit Darcs-2
abgeschwächt werden, wo dieses Verhalten seltener zu Tage tritt. Gänzlich verhindern lies es
sich jedoch nicht [Darc].

Mit dem dist Kommando lassen sich der aktuelle Zustand oder ältere Zustände des Re-
positorys in ein tar-Archive exportieren. Nicht eingecheckte Änderungen und das Darcs-
Konfigurationsverzeichnis werden dabei nicht übernommen.

33

6 Auswertung

Das Setzen von Dateiberechtigungen auf einzelne Datei wird von Darcs nicht unterstützt.
Ebenso wird das automatische Ersetzen von Schlüsselwörtern (Keyword Expansion) nicht
unterstützt.

Mit dem Kommando trackdown stellt Darcs die Möglichkeit zur Verfügung, die Patches
des Repositorys nach einer bestimmten Änderung zu durchsuchen. Durch Angabe des
Parameters bisec führt das System statt der linearen Suche eine binäre Suche durch, womit
sich die benötigte Zeit reduzieren lässt. Das Kommando selbst wurde absichtlich recht
einfach gehalten: Für die Suche wird dem Kommando für den benötigten Vergleich lediglich
ein gültiger Kommandozeilenbefehl oder ein Skript übergeben. Die Suche wird nun solange
durchgeführt, bis der erste Patch gefunden wurde, bei der der Befehl bzw. das Skript einen
Erfolg zurückmeldet. Um z. B. die letzte Version der Datei „Record.lhs“ zu finden, in der
diese noch den Eintrag „FIXME“ enthält, könnte das Kommando in der Form darcs trackdown
’grep FIXME Record.lhs’ verwendet werden. Dieses und weitere Beispiele finden sich im Darcs
Benutzerhandbuch [Rou].

Die Konvertierung eines Subversion-Repositorys nach Darcs ist nur über die Zusatz-
Anwendung „Tailor“ (Open-Source) möglich. Bei der Konvertierung scheint Tailor jedoch
Probleme mit Dateien und Verzeichnissen zu haben, die mit dem Subversion-Kommando
move verschoben wurden. In einem Wiki-Artikel [Dard] wird beschrieben, wie die Konvertie-
rung durchgeführt und dieses Problem umgangen werden kann.

34

6.2 In Frage kommende Werkzeuge

6.2.4 Fossil SCM

Das Versionsverwaltungssystem Fossil ist ein verteiltes System welches von D. Richard
Hipp, der auch Autor der SQLite-Datenbank ist, entwickelt wurde. Fossil vereint neben der
Versionsverwaltung auch einen Bug-Tracker und eine Wiki-Software.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
G# G# #

System

Fossil ist unter der BSD Open-Source-Lizenz veröffentlicht und kann auf allen gängigen
Betriebssystemen genutzt werden. Fossil bietet neben dem Modul der Versionsverwaltung
einen Webservice an der das Repository direkt über das HTTP-Protokoll verfügbar macht.
So kann ein Server sehr einfach mit nur einem Befehl eingerichtet werden. Die Konfiguration
des Repositorys geschieht dann über eine Weboberfläche.

Weitere Features, die Fossil von anderen Versionsverwaltungssystemen wie Git abhebt, sind,
dass in Fossil direkt ein Bug-Tracker integriert ist, der auch über den Webservice erreichbar
ist. Außerdem lässt sich auch ein Wiki-System, das in das Versionsverwaltungssystem
integriert ist, über den Webservice anzeigen.

Fossil bietet im Gegensatz zu Subversion kein zentrales Repository an, sondern erlaubt es
dem Nutzer ein eigenes Repository aufzubauen, das dann in ein anderes Repository gepusht
werden kann. Unter Pushen versteht man das Übertragen des eigenen Entwicklungsstand in
ein anderes Repository. Nach einem abgeschlossenen Push sind die beiden Repositorys dann
auf dem gleichen Stand. Dadurch bietet sich im Vergleich zu Subversion die Möglichkeit
über mehrere Instanzen eine Änderung von einem Test-Repository in ein Repository mit
stabilen Versionen zu übertragen.

Fossil erlaubt dadurch auch kein „Auschecken“ mehr, sondern nur das komplette Klonen
eines bestehenden Repositorys. Dadurch ist auch kein partieller Checkout möglich, was aber
durch eine laut [Fosc] sehr effiziente Kompression des Repositorys kompensiert werden
kann.

Fossil bietet durch den direkt integrierten Bug-Tracker kaum Anbindungen an andere Ticket-
Systeme, das betrifft auch das nicht vorhandene JIRA-Plugin. Eine Integration in Eclipse
bietet Fossil auch nicht, dafür gibt es eine GUI, die eine sehr einfache Verwaltung des
Fossil-Repositorys erlauben soll [Fosb]. Außerdem gibt es den bereits erwähnten Webservice,
der auch eine sehr umfangreiche Verwaltung des Repositorys zulässt.

Laut Internetseite wird Fossil von einigen größeren Projekten wie SQLite und TCL genutzt.
Die Repositorys dieser Projekte sind mehrere GB groß und sollen der Webseite nach trotzdem
noch sehr performant laufen, was dann die Anforderungen an die Effizienz erfüllt.

35

6 Auswertung

Eine weitere gute Funktion, die Fossil bietet, ist die automatische Synchronisation des
Repositorys mit einem anderen Repository. So werden mögliche Konflikte frühzeitig erkannt
und können dadurch einfacher behoben werden.

Die Speicherung des Fossil-Repositorys wird in einer SQLite-Datenbank vorgenommen.
Dies erlaubt atomare Änderungen (Commits) und durch automatische Checks wird eine
unbemerkte Korrumpierung der Datenbank verhindert.

Funktionsumfang

Fossil bietet die Möglichkeit, das Execute-Flag der Dateiberechtigungen im Repository zu
speichern. Weitere Flags der Dateien werden aber nicht übernommen.

Fossil bietet keine Export-Funktion, um einzelne Revisionen zu exportieren. Es kann aber
einfach der aktuelle Checkout kopiert werden, da im Vergleich zu alten Subversion-Versionen
keine Ordner oder Ähnliches angelegt werden. Eine Keyword-Expansion ist hingegen nicht
vorhanden und Fossil bietet dafür auch keinen Alternativ-Mechanismus.

Fossil bietet auf der Kommandozeile den Befehl bisect. Mit dessen Hilfe kann man eine
binäre Suche starten, um für eine gesuchte Änderung einen Commit zu finden, in der zum
Beispiel ein Bug zum ersten Mal aufgetreten ist. Damit kann in logarithmischer Zeit der
Commit gefunden werden, in dem das Verhalten zum ersten Mal aufgetreten ist.

Um ein bestehendes Subversion-Repository nach Fossil zu portieren benötigt es einen
Zwischenschritt über ein Git-Repository, da Fossil von Haus aus nur aus Git importieren
kann. Des Weiteren werden der Anleitung nach auch nur „einfache“ Subversion-Repositorys
unterstützt [Fosa].

36

6.2 In Frage kommende Werkzeuge

6.2.5 Git

Das verteilte Versionsverwaltungssystem Git oder auch git wurde ursprünglich von Linus
Torvalds für die Entwicklung des Linux-Kernels geschrieben, wobei das Hauptaugenmerk
auf Geschwindigkeit lag.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
 # G# G# G# G#

System

Als Linux-Werkzeug ist Git unter einer Open-Source-Lizenz verfügbar. Git ist prinzipiell
nur verteilt, ermöglicht aber verschiedene Workflows. Zum Beispiel lässt sich auch verteilt
ein „Subversion-Style Workflow“ mit einem einzigen zentralen Repository nachbilden,
aber auch eine hierarchische Staffelung von verschiedenen Repositorys ist möglich. Ein
„Integration Manager“ kann z. B. nur bestimmte Änderungen in ein ‚hochheiliges‘ Repository
übernehmen. [Gita]

Dabei tritt ein sehr markantes Merkmal von Git zu Tage: Es gibt kein „Auschecken“ im
herkömmlichen Sinne mehr, die einzige Möglichkeit besteht darin, das Repository zu klonen.
Da somit ein lokales Git-Repository immer eine vollständige Kopie mit allen Commits
beinhaltet, ist auch kein partielles Auschecken möglich. Allerdings wird dies von Git selbst
explizit als Feature gewertet, da somit bei jedem Entwickler stets ein vollständiges Backup
bereitsteht. Ebenso sollen ganze Git-Repositorys durch Kompression nicht erheblich größer
sein als ein ausgechecktes Subversion-Repository. [Gita]

Git ist auf vielen Betriebsystemen verfügbar, wozu auch die geforderten zählen. Es existieren
diverse GUIs für den Umgang mit Git, darunter auch TortoiseGit [Tora], das TortoiseSVN
nachempfunden ist. Mit EGit [EGi] existiert auch ein Eclipse-Plugin für Git. Es sollte aller-
dings erwähnt werden, dass sich, bedingt durch die Herkunft, z. B. viele Erklärungen zu
Git auf Konsolenein- und ausgaben beziehen. Atlassian bietet selbst ein Werkzeug für die
direkte Verwaltung von Git für „Enterprise-Teams“ an, welches für 100 Lizenzen etwa 6000

US-$ kostet [Atla]. Es gibt allerdings auch sowohl kostenfreie [JIRb] als auch kommerziell
betreute [JIRa] Addons für JIRA, hier lägen die Kosten um 1000 US-$.

Git versteht sich selbst als ein Versionskontrollsystem, in dem Branchen und Mergen be-
sonders einfach und schnell funktioniert. Dadurch soll es im Prinzip erleichtert werden,
Änderungen auszuprobieren ohne mit Konsequenzen für die Lauffähigkeit des Projekts
rechnen zu müssen. Hierfür unterstützt Git fünf verschiede Merge-Strategien, die gezielt
konfiguriert werden können. Weiterhin stechen zwei Features von Git stechen dabei hervor:
Es gibt zunächst eine sogenannte Staging Area, in der ein Commit nach Belieben zusammen-
gebaut und geändert werden kann, bevor er letztendlich tatsächlich durchgeführt wird. Es
muss nicht mal ein vollständiger Commit durchgeführt werden, sondern die Änderungen
können auch in einen lokalen Stash zwischengespeichert werden, um temporär zurück zum
Originalzustand zu gelangen und z. B. erst einmal andere Änderungen zu begutachten. Auch

37

6 Auswertung

wenn er durchgeführt wird, gelangt ein Commit auch nur in das lokale Repository, und muss
erst mittels pushen, in ein fremdes Repository, oder pullen, von einem anderen Repository
aus, verteilt werden. [Gita]

Git kennt keine Revisionen, sondern nur Commits, die auch nicht inkrementell nummeriert
werden, sondern über ihre Hashsumme identifiziert werden. Dies hat mehrere Vorteile, wie
z. B. wird dadurch die Integrität der Daten sichergestellt: Der Repository-Inhalt kann nicht
korrumpiert werden ohne, dass sich dabei die Commit-Hashes ändern. Dabei basiert der
Hash nicht nur auf dem Inhalt, der sich im Repository befindet, sondern auch auf allen
vorangegangenen Commits. [Gita]

Da Git für den Linux-Kernel entwickelt wurde, der selbst kein kleines Repository darstellt,
war die Geschwindigkeit, mit der Git arbeitet, ein zentraler Aspekt. Durch die „Trennung“
der Repositorys wird die Übertragung von Daten im Vergleich zu Subversion minimiert,
womit viele Operationen wesentlich schneller durchgeführt werden können, als wenn die
Informationen erst vom zentralen Server abgerufen werden müssten. Git wirbt allerdings
damit, dass fast alle Operationen schneller sind als in Subversion – bis auf das initiale
Klonen. [Gita]

Funktionsumfang

Für einen detaillierteren Einstieg in Git empfiehlt sich ein Blick in das kostenfrei online
verfügbare „Pro Git“ [Cha09]. Dort wird auch der Befehl bisect erklärt, mit dessen Hilfe
eine binäre Suche nach einem bestimmten Commit durchgeführt werden kann, in der bspw.
erstmals ein Bug aufgetreten ist. Dabei ist es nur nötig, den Suchraum einzugrenzen und
eine logarithmische Anzahl von Commits als „gut“ oder „schlecht“ zu bewerten, damit Git
automatisch den Commit ausfindig macht, in dem das schlechte Verhalten zum ersten Mal
aufgetreten ist.

Ebenfalls findet sich dort eine Erläuterung von Externals für Git, die dort Submodules
heißen und nativ unterstützt werden. Dabei wird der exakte Commit des Submoduls im
übergeordneten Repository mitgespeichert, sodass sich die Umgebung exakt wiederherstellen
lässt. Um ein fremdes Repository einbinden zu können, muss dieses als Git-Repository
angeboten werden. Daher ist es ggf. nötig, die „Git-Version“ eines nicht in Git verwalteten
Repositorys nach dessen Konvertierung an einem zentralen Punkt anzubieten [Sta].

Etwas anders sieht es bei der Keyword-Expansion aus: Diese wird von Git nicht unterstützt,
da Git Dateien wie Commits über einen eindeutigen Hash identifiziert. Git bildet den Hash
einer Datei aber vor dem Commit, wobei der Commit-Hash auch wieder vom Hash der
Datei abhängt. Das prinzipielle Verhalten lässt sich aber mit Git Attributes nachbilden, wobei
hier während des Aus- bzw. Eincheckens die Information hinzugefügt bzw. gelöscht werden.
Somit werden Änderungen nicht mitversioniert, aber die tatsächlich verwendeten Dateien
enthalten nützliche Informationen. [Cha09]

Es existiert keine beliebige Export-Funktionalität in Git. Es gibt allerdings diverse Konso-
lenbefehle und Skripte, die ähnliche Ergebnisse erzielen. TortoiseGit unterstützt die native

38

6.2 In Frage kommende Werkzeuge

Export-Funktion, mit deren Hilfe die gesamte ausgecheckte Verzeichnisstruktur mit Dateien
in ein ZIP-Archiv exportiert werden kann.

Git erlaubt nur zwei Arten von Datei-Berechtigungen: Entweder Lesen und Schreiben für
den Besitzer, Nur-Lesen für alle anderen („644“1), oder für jeden zusätzlich noch ausführen
(„755“). Dabei werden vorhandene Berechtigungen immer in eine der beiden umgewandelt.

Mit git-svn unterstützt Git die Konversion eines Subversion-Repositorys. Eine umfangreiche
Erklärung zur Konversion findet sich nicht direkt, aber z. B. in Internet-Blogs [Alb10].
Allerdings unterstützt git-svn auch den bidirektionalen Fluss von Änderungen von und zu
Subversion und kann somit selbst quasi als Subversion-Client genutzt werden [Cha09]. Dies
würde auch ein einfacheres Testen und eine reibungsärmere Übergangsphase ermöglichen,
da Git so schrittweise angetestet bzw. eingeführt werden könnte, ohne, dass ein vorhandenes
Repository kopiert und ein neuer Server aufgesetzt werden müsste.

1
chmod-Notation, siehe z. B. [chm]

39

6 Auswertung

6.2.6 IBM Rational Team Concert

Bei IBM Rational Team Concert handelt es sich um ein kommerzielles kollaborations- und
integrationsunterstützendes Werkzeug. Die Version „RTC Developer“ bietet dabei eine
verteilte Quellcodeverwaltung.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
 # # # G# # # ?

System

IBM Rational Team Concert steht für Windows und Linux zur Verfügung und unterstützt
auch Eclipse. Ebenso lässt sich JIRA bidirektional integrieren. [IBM]

Viele Informationen zu Rational Team Concert finden sich auf den Hilfeseiten von IBM oder
bei Jazz [Jaz], auf dem Rational Team Concert aufsetzt.

Rational Team Concert wird über den Browser oder IDE-Plugins gesteuert, sodass hier auch
eine benutzerfreundliche GUI zur Verfügung steht. Es ist möglich, ein Subversion-Repository
für Rational Team Concert zu übernehmen. [Jaz]

Laut Angaben der IBM-Webseite kostet eine Einzelplatzlizenz zwischen 2000 und 5000 US-$,
was höchstwahrscheinlich über dem Investitionsrahmen von Flexis liegen dürfte. Dafür
handelt es sich um ein volles Kollaborationswerkzeug mit seinen eigenen Funktionen, die
aber weder Bestandteil dieser Analyse waren noch zum Prozess von Flexis passen müssen.

Funktionsumfang

Rational Team Concert ermöglicht es, Änderung aus dem aktuellen Bearbeitungsstand,
der Sand Box, zunächst in einem eigenen Repository Workspace zu speichern, das allerdings
auch auf dem Server gespeichert wird. Von dort aus kann dann der Code an einen Stream
übergeben werden, sodass ihn andere bearbeiten können. Streams sind mit Branches aus den
gängigen Versionskontrollsystemen vergleichbar. Ebenso definiert Rational Team Concert
einige weitere eigene Begriffe wie Baseline/Snapshot für Tags und Change Set für Revisi-
on. [Jaz]

Es ist für Entwickler möglich, nur gewisse Komponenten zur Bearbeitung zu „laden“,
was sinngemäß bedeutet, dass Repositoryinhalte teilweise ausgecheckt werden können.
Eine Unterstützung für ein „Externals“-artiges Verhalten scheint zwar in Planung zu sein,
aber derzeit nicht zu existieren. Keyword Expansion wird nicht unterstützt. Bezüglich der
Berechtigungen erfasst Rational Team Concert nur das Benutzer-Executable-Bit. [Jaz]

40

6.2 In Frage kommende Werkzeuge

Zum effizienten Suchen von bestimmten Änderungen und zum teilweisen Export ließen sich
keine vertrauenswürdigen Quellen finden, weswegen wir annehmen, dass diese Funktio-
nalität nicht vorhanden ist. Auch zur Effizienz lassen sich keine vergleichbaren Aussagen
treffen.

41

6 Auswertung

6.2.7 Mercurial

Bei dem in Python implementierten Mercurial handelt es sich um ein verteiltes Versionsver-
waltungssystem, das oft auch mit „hg“ abgekürzt wird; Hg steht im Periodensystem der
Elemente für Quecksilber, im Englischen „Mercury“.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
 G# G# G#

System

Von der offiziellen Homepage [Mera] lässt sich die Software für alle verbreiteten Betriebs-
systeme herunterladen, da bei der Entwicklung ein großer Augenmerk auf Plattformunab-
hängigkeit gelegt wurde. Da es sich um ein Open-Source Projekt handelt, kann Merurial
unentgeltlich genutzt werden. Für gängige Linux Distributionen steht Mercurial in deren
eingebauten Paketverwaltungen zur Verfügung. Unter Windows bietet sich der Download
der Installationsdatei mit integrierter Benutzeroberfläche „TortoiseHg“ an [Torb]. Die In-
stallation beinhaltet u. a. einen Python-Interpreter, so dass zur Ausführung keine weiteren
Komponenten installiert werden müssen.

TortoiseHg lässt sich wie das verwandte TortoiseSvn bedienen und integriert sich ebenfalls
in den Windows Explorer. Von TortoiseHg existiert neben einer Windows-Version auch eine
Version für Linux und Mac OS X, wobei sie sich unter Linux in den Dateimanager „Nautilus“
integriert und hierin den selben Funktionsumfang bietet wie unter Windows.

Bei der Entwicklung von Mercurial wurde auf eine möglichst einfache Bedienung geachtet.
Beispielsweise wird für alle Kommandos ein einheitlicher Aufbau verwendet und soweit
möglich die selben Parameter. Das System verfügt über einen eingebauten Webserver, der
über das Kommando server gestartet wird und über HTTP einen Zugriff auf die Repositorys
ohne Installation eines separaten Webserver ermöglicht. Über CGI lässt sich aber auch ein
separater Webserver (Apache HTTPD etc.) zum Zugriff auf Mercurial Repositorys einrichten.
Alternativ kann auf die Repositorys auch über SSH zugegriffen werden. Einen guten Einstieg
in die Benutzung und die Administration von Mercurial bietet das Buch „Mercurial: The
Definitive Guide“ [O’S09].

Zur Integration in die Entwicklungsumgebung Eclipse bietet sich das Plugin „MercurialE-
clipse“ an [Merb]. Das Plugin gilt als ausgereift und bietet Zugriff auf alle Funktionen von
Mecurial [Gen11].

Eine Integration in das Projektmanagementsystem JIRA kann auf zwei Wegen erfolgen:
Atlassian bietet mit dem kommerziellen Produkt „FishEye“ eine Oberfläche, mit der sich
Repositorys durchsuchen und überwachen lassen. FishEye lässt sich in JIRA integrieren und
unterstützt neben Subversion unter Anderem auch Mercurial [Atlb]. Alternativ findet sich
im Atlassian Marktplatz ein Plugin, über das ein Zugriff auf Mercurial Repositorys ohne
FishEye möglich ist [Cus].

42

6.2 In Frage kommende Werkzeuge

Funktionsumfang

Zur Einbindung externer Repositorys unterstützt Mercurial s. g. „Subrepositories“. Hiermit
lassen sich fremde Repositorys innerhalb eines selbst festgelegten Verzeichnisses in ein
eigenes Repository einhängen – damit entspricht es weitestgehend der Externals-Funktion in
Subversion. Neben Mercurial-Repositorys lassen sich mit der Subrepository-Funktion auch
Git- und Subversion-Repositories einbinden. In [ara] wird die Verwendung dieser Funktion
detailliert beschrieben.

Leider zählen Subrepository zu den „Features of Last Resort“ [Merc]. Es handelt sich also
um Funktionen, die möglichst vermieden werden sollten. Die Gründe hierfür liegen u. a.
im nicht ausreichend definierten Verhalten von rekursiven Mercurial-Kommandos, also
Kommandos die eigenständig auf dem gesamten Repository inklusive der eingebundenen
Subrepositorys operieren (wie etwa das Kommando status zur Anzeige der geänderten
Daten). Darüber hinaus versucht das push Kommando zuallererst die eingebundenen Repo-
sitorys zu aktualisieren. Sollten diese zeitweise nicht erreichbar sein, schlägt push somit fehl.
Um diese Probleme zu vermeiden wird empfohlen, keine Fremdrepositorys in Repositorys
einzubinden, die Quelldateien enthalten. Stattdessen sollte ein „Master Repository“ angelegt
werden in dem ausschließlich mittels Subrepositorys sowohl die eigenen Repositorys als
auch die Repositorys aus fremden Quellen eingebunden werden. [Merh]

Mercurial bietet keine Funktion, um nur Teile eines Repositorys auf das lokale System herun-
terzuladen. Um zu vermeiden, dass das vollständige Repository zur Arbeit heruntergeladen
werden muss, bietet sich die Verwendung der bereits vorgestellten Subrepositorys an. Um
den oben erwähnten Problemen auszuweichen, empfiehlt es sich auch hier, ähnlich wie bei
der Einbindung fremder Repositorys vorzugehen: Nachdem das große Repository in mehre-
re kleinere aufgeteilt wurde (etwa nach Projekten oder Komponenten), wird anschließend
ein „Master Repository“ angelegt, in dem die zuvor angelegten, kleineren Teilrepositorys
eingebunden werden. Durch diese Vorgehensweise lässt sich das sehr große Repository
aufteilen, ohne die Beziehungen der Projekte bzw. Komponenten untereinander zu verlieren.
Gleichzeitig genügt es, nur das Repository herunterzuladen oder zu aktualisieren, das die
für die Arbeit benötigten Daten enthält.

Ein unter Linux gesetztes Executable-Bit wird von Mercurial mitversioniert. Da sich dieses
Bit allerdings nur mit dem entsprechenden Unix-Befehl, nicht aber mit einem Mercurial-
Kommando ändern lässt, ist eine Änderung der Berechtigung unter Windows nicht möglich.
Weitere Dateiberechtigungen werden allerdings nicht versioniert. [Mere]

Mit archive lassen sich die Daten der aktuellsten oder eine älteren Revision exportieren.
Als Exportziel werden dabei neben einem Verzeichnis auch verschiedene Archivtypen
unterstützt.

Ebenso zu den „Features of Last Resort“ [Merc] zählt das automatische Ersetzen von Schlüs-
selwörtern – die Keyword-Expansion – aufgrund der mit dieser Funktion einhergehenden
Probleme (siehe hierzu auch Abschnitt 5.2.3 auf Seite 21). Sollte diese Funktion dennoch
benötigt werden, lässt sie sich nach dem Aktivieren der bei der Installation von Mercurial
bereits mitgelieferten Keyword-Erweiterung verwenden. In der Konfigurationsdatei des

43

6 Auswertung

betreffenden Repositorys lassen sich nun die Dateien festlegen, in denen die Schlüsselwor-
tersetzung durchgeführt werden sollen. Standardmäßig unterstützt die Erweiterung die aus
CVS bekannten Schlüsselwörter, wie etwa Id oder $Revision$. Bei Bedarf können jedoch
auch weitere Schlüsselwörter und deren Zieltext in der Konfigurationsdatei des Reposito-
rys definiert werden. Weitere Informationen hierzu und zur allgemeinen Verwendung der
Erweiterung finden sich in der Mercurial Wiki [Merd].

Bei Einsatz von TortoiseHg ist der Zugriff auf das Repository direkt aus dem Dateimanager
möglich. TortoiseHg bietet Zugriff auf alle für die Arbeit benötigten Funktionen von Mer-
curial. Beim Aktualisieren des Repositorys oder bei einem manuellen Merge von Branches
versucht Mercurial, soweit möglich, die verschiedenen Dateirevision automatisch mit einem
Drei-Wege-Merge zusammenzuführen. Sollte das automatische Zusammenführen nicht ge-
lingen, wird zur Behebung des Konflikts ein grafische Drei-Wege-Merge-Werkzeug gestartet.
Zur vereinfachten Behebung von auftretenden Konflikten beim Mergen wird auch aus der
Kommandozeile heraus, sofern installiert, standardmäßig ein grafisches Tool gestartet. Unter
Linux und Windows (zumindest bei installiertem TortoiseHg) wird zur Konfliktbehebung
das Werkzeug kdiff3 verwendet. Zu TortoiseHg wird im Internet eine umfangreiche Doku-
mentation [Be] angeboten, die die Arbeit mit Mercurial über diese Oberfläche erläutert.

Durch die Architektur ist das Einchecken von Änderungen und das Teilen dieser mit anderen
Mitarbeitern bereits getrennt. Um zusätzlich private Änderungen zwischenspeichern zu
können, etwa um das lokale Repository mit einem Pull aktualisieren zu können ohne das
Konflikte mit den nicht eingecheckten Dateien entstehen, wurde die Shelve-Erweiterung
entwickelt [Merf]. Die Erweiterung erlaubt es, lokale Änderungen in einem geschützten Be-
reich zwischenzuspeichern und innerhalb der Arbeitskopie die entsprechende Datei auf eine
gespeicherte Version zurückzusetzen. Bei Bedarf lassen sich unterschiedliche Dateiversionen
in verschieden benannten Shelves sichern.

Mit bisec ist eine binäre Suche nach Changesets möglich, die bereits nach wenigen Durch-
läufen ein Ergebnis liefert. Diesem Kommando wird dafür über einen Parameter bei jedem
Aufruf mitgeteilt, ob sich die gesuchte Änderung in der momentan in der Arbeitskopie
angezeigten Changeset enthalten ist. Im Anschluss wechselt das Kommando die Arbeitskopie
auf ein anderes Changeset. Dieser Vorgang wird solange wiederholt, bis das Changeset
gefunden wurde, in dem die gesuchte Änderung eingefügt wurde. [O’S09]

Bryan O’Sullivan hat die Geschwindigkeit von Mercurial mit Subversion verglichen und
im Abschnitt „Mercurial Compared with Other Tools“ seines Buches [O’S09] die Ergebnis-
se beschrieben. Bei den durchgeführten Tests schnitt Mercurial bei allen durchgeführten
Operationen besser ab als Subversion.

Mercurial wird mit einer Erweiterung installiert, die mit dem Kommando convert das
Importieren der Daten und Historie u. A. aus Subversion erlaubt. Auch eine inkrementelle
Konvertierung ist möglich, bei der nur die Daten konvertiert werden, die sich seit der letzten
Ausführung des Kommandos geändert haben.

44

6.2 In Frage kommende Werkzeuge

6.2.8 Perforce

Perforce ist ein Versionsverwaltungssystem, das von Perforce Software, Inc. entwickelt wird.
Es wird von Firmen wie EADS, IBM oder SAP eingesetzt.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
 # G# G# # #

System

Bei Perforce handelt es sich um ein kommerzielles Produkt, für dessen Einsatz auf mehr als 20

Arbeitsplätzen oder mehr als 20 Workspaces eine kostenpflichtige Lizenzierung erforderlich
ist [Perc]. Zur Lizenzierung bietet Perforce Software zwei Modelle an: Eine normale Lizenz,
oder eine Lizenz inkl. Support, welche in den ersten 12 Monaten obligatorisch ist. Pro Nutzer
fällt eine jährliche Gebühr in Höhe von 490,99e ($640) an. Auf 100 Benutzer hochgerechnet
entspricht dies jährlichen Kosten in Höhe von ca. 49.098e. Für den ab dem 2. Jahr optionalen
Support fallen jährlich weitere 122,74e ($160) je Nutzer an. Was dann im ersten Jahr
ca. 61.372e entspricht.

Ein Plugin für JIRA („FishEye“) ist auch als kommerzielles Produkt erhältlich, welches
einmalig 3.068,66e ($4.000) kostet und ein Jahr Support bietet, jedes weitere Jahr Support
kostet 1.534,33e ($2.000).

Es existiert für alle gängigen Betriebssysteme eine GUI- als auch eine Konsolenversion des
Clients, über den alle Operationen, die das System unterstützt, ausgeführt werden können.
Für Windows werden sogar zwei unterschiedliche grafische Oberflächen angeboten. Des
Weiteren gibt es für alle Plattformen auch einen Administrations-Client, der die Workspaces
verwalten kann.

Es werden auch Plugins für Eclipse und Visual Studio angeboten, welche wie Subclipse das
Versionverwaltungssystem direkt in die IDE integrieren [Perb].

Peforce selbst ist mehr ein zentrales Versionsverwaltungssystem als ein verteiltes. Es gibt
allerdings die Möglichkeit, Repositorys über mehrere Server zu verteilen, um die Last besser
zu verteilen oder auch Repositorys je nach Standort nur dort verfügbar zu machen. Die
Repositorys können automatisch zwischen den Servern synchronisiert werden.

Die Daten des Repositorys sind in zwei Teile aufgeteilt. Zum einen gibt es eine proprietäre
Datenbank, in der alle Informationen über Versionierung, Konfiguration, Nutzer, Commit-
Nachrichten, etc. gespeichert werden. Und zum anderen gibt es ein Verzeichnis auf dem
Server, in dem alle eingecheckten Dateien abgelegt werden. Deltas der Dateien werden
im RCS-Format gespeichert. Die Datenkbank ist über MD5-Prüfsummen mit den Dateien
verknüpft. Außerdem bietet die Datenbank, sofern konfiguriert, eine Wiederherstellungs-
funktion an, um im Falle eines Hardwaredefekts diese wiederherstellen zu können.

Ein Import des bestehenden SVN-Repositorys ist mittels des Scripts SVN2P4 mög-
lich [Perd].

45

6 Auswertung

Funktionsumfang

Trotz des zentralen Ansatzes bietet Perforce mittels P4Sandbox dem Nutzer die Möglichkeit,
eigene private Repositorys zu erstellen und dort auch nur lokale Branches zu erstellen und
somit unter anderem nur lokal zu committen.

Perforce bietet keine direkte zu SVN-Externals äquivalente Funktion an. Es gibt allerdings
die Möglichkeit in einem Workspace Teile von mehreren Repositorys einzubinden. So kann,
wenn die Externals-Quelle in einem Repository vorhanden ist, diese direkt in den Workspace
eingebunden werden [Pera].

Wie Subversion bietet Perforce eine Keyword-Expansion an, die es ermöglicht in eingecheck-
ten Dateien automatisch Revision, Datum, etc. zu ergänzen.

Perforce biete keine Möglichkeit nur einen Teil des Repositorys auszuchecken. Durch die
Verwendung von Workspaces ist es allerdings möglich ein großes Repository in mehrere
kleine logisch getrennte Teil-Repositorys zu unterteilen, die dann mittels des Workspaces
wieder zusammengefasst werden.

46

6.2 In Frage kommende Werkzeuge

6.2.9 Plastic SCM

Das Versionsverwaltungssystem Plastic SCM wird von der spanischen Firma „Codice Soft-
ware“ entwickelt und vertrieben.

JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
 G# G# G# # # # G# # G#

System

Plastic SCM lässt sich aufgrund seiner Architektur als hybrides Versionsverwaltungssystem
bezeichnen, das sich sowohl zentral als auch verteilt verwenden lässt. Eine Kombination
beider Ansätze ist ebenfalls möglich. Das System verwendet eine Client-Server-Architektur,
die der Architektur typischer zentralisierter Systeme (wie etwa Subversion) stark ähnelt. Die
Repositorys und deren verschiedene Revisionen werden dabei von einem Server-Prozess
in einer SQL-Datenbank verwaltet. Je nach Anforderungen an die Datenbank lassen sich
verschiedene Datenbanksysteme einsetzten. Die Klienten erhalten über eine Netzwerkver-
bindung Zugriff auf die gespeicherten Daten bzw. Revisionen [Cod12c]. Im Gegensatz zu
typischen rein zentralisierten Systemen bietet Plastic SCM jedoch Funktionen, mit denen
sich die auf einem Server gespeicherten Repositorys leicht replizieren lassen, wobei sich die
Entwickler bei diesen Funktionen an den verteilter Systeme orientiert haben.

Dies zeigt sich nicht nur in der gleichlautenden Benennung der Befehle (push, pull), sondern
auch im ähnlichen Vorgehen beim Beheben von Konflikten, die beim Replizieren entste-
hen können (typischerweise wenn eine Datei des selben Branches auf beiden Servern auf
unterschiedlich Art geändert wurde). So werden etwa die bei einem pull heruntergelade-
nen Changesets in einem Teilbranch abgelegt, der anschließend mit dem Hauptbranche
zusammengeführt (via merge) werden muss. Während bei verteilten Versionsverwaltungs-
systemen aber meist das vollständige Repository repliziert wird, erlaubt Plastic SCM es,
lediglich bestimmte Branches auf einen anderen Server zu übertragen oder mit diesem
abzugleichen. [Cod12a]

Diese Kombination aus einem Serverprozess, der allein für die Verwaltung der Repositorys
zuständig ist, und den angebotenen Funktionen zur Replikation erlauben die Verwendung
verschiedener Server-Topologien: Wird lediglich ein Server-Prozess verwendet, auf den
alle Klienten über eine Netzwerkverbindung zugreifen, lässt sich das System ähnlich wie
Subversion einsetzten. Alternativ ist es jedoch auch möglich, auf jedem Arbeitsplatz neben
der Client-Version auch einen (eingebetteten) Server zu installieren. In diesem Fall können
die Benutzer ein auf dem zentralen Server abgelegtes Repository in ihren lokalen Server
replizieren und haben somit auch ohne eine bestehende Netzwerkverbindung Zugriff auf alle
Revisionen und Funktionen des Versionsverwaltungssystems. Das System lässt sich dann also
wie ein verteiltes Versionsverwaltungssystem einsetzten. Auch verschiedene Zwischenformen
(z. B. mehrere Server an verschiedenen Standorten) sind möglich.

47

6 Auswertung

Die Herstellerfirma von Plastic SCM, Codice Software, bietet im Atlassian Marktplatz
ein Plugin an, mit dem sich die Versionsverwaltung in JIRA integrieren lässt. Von der
Herstellerfirma wird ebenfalls ein Plugin zur Integration in die Entwicklungsumgebung
Eclipse angeboten [Cod12b]. Sowohl Client als auch Server des Versionsverwaltungssystems
sind sowohl in einer Windows-Version als auch in einer Linux-Version verfügbar. Die
grafische Benutzeroberfläche von Plastic SCM ist zentraler Bestandteil des Systems. Es
existiert zwar auch ein Kommandozeileninterpreter, über den sich das System bedienen
lässt, die Bedienung konzentriert sich aber auf das Verwenden der grafischen Oberfläche, die
unter Windows und Linux die selben Funktionen bietet [Cod12c]. Während der Installation
wird auf Wunsch eine Integration in den Windows Explorer mit installiert, die Zugriff auf
die wichtigsten Funktionen des Systems bietet.

Bei Plastic SCM handelt es sich um ein kommerzielles Produkt, für dessen Einsatz auf
mehr als 15 Arbeitsplätzen eine kostenpflichtige Lizenzierung erforderlich ist [Cod]. Zur
Lizenzierung bietet Codice Software zwei Modelle an: Abonnement oder unbefristete Lizenz.
Beim Abonnement fällt pro Nutzer eine jährliche Gebühr in Höhe von 222,45e ($279) an. Auf
100 Benutzer hochgerechnet entspricht dies jährlichen Kosten in Höhe von ca. 22.245e. Die
Kosten der unbefristeten Lizenz betragen einmalig bei 51 bis 100 Nutzern (da Mengenrabatt)
426,55e je Benutzer. Für den optionalen Support fallen ab dem zweiten Jahr jährlich weitere
94,88e ($119) je Nutzer an. Für die unbefristete Lizenz fallen somit bei 100 Benutzern
einmalig etwa 42.655e sowie ggf. weitere jährliche Gebühren in Höhe von ca. 9.488e für
den (optionalen) Support an.

Funktionsumfang

Das Anlegen einer Arbeitskopie und das Übertragen der Daten in diese Kopie ist in Plastic
SCM getrennt. In eine neu erstellte Arbeitskopie werden die Daten über die update-Funktion
heruntergeladen. Nach Auswahl des zur Arbeit benötigten Changesets werden nur die Daten
übertragen, die in dem zugehörigen Branch enthalten sind. Der Hersteller Codice Software
empfiehlt, für jedes Arbeitspaket einen eigenen Branch zu erstellen („Branch per Task“).
Wurde die Arbeit an diesem Paket und damit an dem Branch beendet, solle der Branch
wieder in den Hauptbranch integriert (merge) werden. Wird dieser Empfehlung gefolgt, lässt
sich die auf die Arbeitsstation zu übertragende Datenmenge reduzieren, sofern der benötigte
Branch alle für die Arbeit benötigten Daten enthält. Da wie weiter oben beschrieben das
Replizieren auf Branch-Ebene stattfindet – d. h. beim Klonen des Repositorys mit pull lässt
sich der zu replizierende Branch auswählen – lässt sich auch hierbei die Datenmenge durch
geeignetes Anlegen von Branches reduzieren.

Um zu vermeiden, dass Dateien in die Arbeitskopie geladen werden, die für die durchzu-
führende Arbeit nicht benötigt werden oder von denen sich bereits eine ältere Revision in
der Arbeitskopie befindet, die zur Arbeit genügt, lassen sich Dateien und Verzeichnisse in
eine cloak-Datei eintragen. Alle darin gelistete Dateien werden beim Update ignoriert und
somit vom Server nicht mehr übertragen.

48

6.2 In Frage kommende Werkzeuge

Mit der Funktion xlink besteht die Möglichkeit, externe Repositorys (in Subversion als
Externals bezeichnet, siehe Abschnitt 5.1.6 auf Seite 19) in ein anderes Repository einzuhän-
gen [Cod12d]. Von xlink werden allerdings ausschließlich externe Plastic SCM Repositorys
unterstützt. Sollen Repsitorys eingebunden werden, die nicht mit Plastic SCM verwaltet
werden, müssen diese zuvor konvertiert und als Plastic SCM Repository bereitgestellt werden.
Dieses Vorgehen führt jedoch dazu, dass Änderungen an den Fremdrepositorys nicht auto-
matisch übernommen werden, weil hierzu die Konvertierung erneut durchgeführt werden
muss. Es bietet sich in diesem Fall an, die Konvertierung in regelmäßigen Abständen automa-
tisiert auf einem Serversystem durchzuführen, um einen möglichst aktuellen Datenbestand
zu gewährleisten.

Zur Konvertierung eines Repositorys bedient sich Plastic SCM dem in Git verwendeten
fast-export Format [Cod12c]. Mit dem Werkzeug „svn-all-fast-export“ [Mac] ist das Erstellen
einer solchen Exportdatei aus Subversion heraus möglich. Anschließend kann die erstellte
Datei über die Kommandozeile mit dem fast-import Kommando in ein Plastic SCM Repository
importiert werden. Sofern das Ausgangs-Versionsverwaltungssystem das Erstellen einer
inkrementellen Export-Datei unterstützt (hierbei wird anstelle der vollständigen Historie
nur die Historie ab einer bestimmten Revision exportiert), lässt sich ein bereits konvertiertes
Repository mit geringerem Aufwand auf den aktuellen Stand bringen.

Plastic SCM verfügt über ein recht ausführliches Rechtesystem, über das sich der Zugriff
auf die Dateien des Repositorys steuern lässt [Cod12c]. So lässt sich beispielsweise festlegen,
welcher Benutzer eine neue Revision einer Datei in das Repository einchecken darf. All diese
Rechte finden jedoch auf der Ebene der Versionsverwaltung statt und sind unabhängig von
den im Dateisystem des Betriebssystems gesetzten Dateiberechtigungen. Auf das Versionieren
dieser Dateiberechtigungen geht die Dokumentation des Versionsverwaltungssystems nicht
ein. Auch ließen sich außerhalb der Dokumentation keine Hinweise auf eine Speicherung
der Berechtigungen finden und im Test wurde nach dem Ändern einer Berechtigung die
betreffende Datei nicht als geändert markiert. Somit ist davon auszugehen, dass dies von
Plastic SCM nicht unterstützt wird.

Ebenso konnten keine Hinweise auf eine Export-Funktion in der Dokumentation gefunden
werden. Auch in der praktischen Erprobung des Versionsverwaltung konnte eine solche
Funktion nicht gefunden werden. Anzumerken ist allerdings, dass das System lediglich im
Hauptverzeichnis der Arbeitskopie einen Konfigurationsverzeichnis („.plastic“) anlegt, was
das manuelle Exportieren erleichtert. Von Plastic SCM ebenfalls nicht unterstützt ist das
automatische Ersetzen von Schlüsselwörtern [Pos11].

Wie zu Beginn des Abschnittes beschriebe, ist die grafische Benutzeroberfläche ein zentraler
Bestandteil von Plastic SCM. In die Oberfläche integriert ist eine grafische Darstellung der
Changesets und Branches sowie deren Beziehungen zueinander. Hierin lässt sich durch
Auswahl eines Changesets im gewünschten Branch leicht ein weiterer Unterbranch anlegen
oder dieser mit einem anderen Branch zusammenführen (merge). Beim Mergen versucht die
Versionsverwaltung Konflikte soweit möglich automatisch zu lösen. Ist dies nicht möglich,
wird ein integriertes grafisches Drei-Wege-Merge-Werkzeug geöffnet, in dem der Konflikt
behoben werden kann.

49

6 Auswertung

In einem als Shelves bezeichneten Bereich lassen sich in Plastic SCM die an einer Datei
durchgeführten Änderungen lokal zwischenspeichern. Die Änderungen werden damit auch
ohne Einchecken der Dateien gesichert und es lässt sich somit bei Bedarf eine gesicherte
Version wiederherstellen. Da beim Einchecken (Commit) die Daten grundsätzlich an einen
Server übertragen werden, ist ein lokales Zwischenspeichern bzw. Trennen von Commits
und deren Upload, nur möglich, wenn auf dem lokalen System neben dem Client auch der
Plastic SCM Server installiert ist (siehe auch die Erläuterung der Architektur im Abschnitt
„System“). Wurde das System auf diese weise Eingerichtet und befindet sich eine Kopie
des Repositorys im lokalen System, können Änderungen auch ohne Netzwerkverbindung
eingecheckt und später gemeinsam übertragen werden. Die Arbeitsweise entspricht damit
derer klassischer verteilter Versionsverwaltungssysteme.

Eine binäre Suche nach Änderungen und den zugehörigen Changesets wird von dem
Versionsverwaltungssystem nicht unterstützt. Eine solche Funktion wird weder in der
Dokumentation erwähnt, noch konnte sie bei der Erprobung von Plastic SCM gefunden
werden.

50

7 Empfehlung

7.1 Übersicht

In der folgenden Tabelle werden nochmals alle Bewertungen grob zusammengefasst, sodass
ein schneller Überblick möglich ist. Für die Bedeutung siehe Kapitel 6.

Name JIRA GUI IDE OS Q on ⇒ © c© rwx Keywords 6H Suchen �
AccuRev G# # #
Bazaar G# G# # #
Darcs # G# G# G# G# G# # # #
Fossil # # # # G# G# #

Git # G# G# G# G#
IBM RTC # # # G# # # ?
Mercurial G# G# G#
Perforce # G# G# # #
Plastic G# G# G# # # # G# # G#

7.2 Diskussion

Betrachtet man die Bewertungen der Werkzeuge in vertikaler Richtung, fällt sehr schnell auf,
dass alle Werkzeuge auf den gewünschten Betriebssystemen verfügbar sind und fast alle,
zumindest teilweise, lokal committen und von SVN importieren können. Auch bietet jedes
Werkzeug mehr oder weniger eine grafische Unterstützung.

Horizontal gesehen erfüllen nur wenige Werkzeuge wirklich alle K. O.-Kriterien. Erstaunlich
ist dabei, dass die kommerziellen Werkzeuge nicht unbedingt mehr Anforderungen erfüllen
als die frei verfügbaren.

Weiterhin ist uns bei der Auswertung aufgefallen, dass die Keyword Expansion von vielen
Werkzeugen sehr kritisch gesehen wird. Gerade in verteilten Systemen gibt es oft parallele
Versionen, die nicht einheitlich sequentiell wie bei Subversion durchnummeriert werden
können. Dazu stört das Einsetzen von zusätzlichen Informationen die Erfassung der tatsäch-
lichen Änderungen, weswegen die allgemeine Empfehlung dahingeht, die Informationen
während des Builds hinzuzufügen und nicht im Quellcodemanagement.

Am besten schneidet eindeutig Mercurial ab, das sowohl alle Kriterien wenigstens teilweise
erfüllt als auch frei verfügbar ist. Als zweite Alternative würden wir Git hervorheben, das
lediglich das teilweise Auschecken nicht unterstützt, was sich aber ähnlich wie bei Mercurial

51

7 Empfehlung

(aber komplizierter) umgehen lässt und in einem verteilten System fast unumgänglich ist.
Dazu kommt, dass Git ebenso wie Mercurial kostenfrei erhältlich ist und ansonsten auch
alle Kriterien erfüllt. Als einziges Werkzeug neben Mercurial erfüllt AccuRev zwar alle
K. O.-Kriterien, allerdings muss dafür auf die binäre Suche verzichtet werden und ein nicht
unerheblicher Preis gezahlt werden, weswegen es vermutlich die dritte Wahl darstellt.

Mercurial und Git haben auch den Vorteil, dass sich, da sie frei verfügbar sind, allgemein
auch mehr Informations- und Dokumentationsquellen dazu finden. Ebenso ermöglicht dies
eine größere Auswahl an Dritthersteller-Software und Erweiterungen, die bei proprietären
Systemen oft nur gegen weitere Gebühren beim Hersteller zu erhalten sind.

Die beiden Alternativen zwischen Mercurial und Git stellt gewissermaßen auch eine Art
Glaubensfrage dar. Während Git meistens schneller ist und zahlreiche komplexe Möglichkei-
ten und Funktionen bietet, ist Mercurial wesentlich benutzerfreundlicher und die Repositorys
meistens etwas kleiner. [Gitb, Git10]

7.3 Einführungsstrategie

Um ein neues System einzuführen sind wieder Mercurial und Git im Vorteil, da diese
nicht nur ein kontinuierliches Konvertieren ermöglichen, sondern auch (bei Mercurial als
Erweiterung) als Subversion-Client benutzt werden können, sodass ein bidirektionales
Austesten möglich ist. Sollte sich kein neues System durchsetzen können, könnte sich bereits
diese Arbeitsweise für technisch mehr versierte Mitarbeiter als Lösung anbieten.

Dabei kann man sich mit der Bedienung der Werkzeuge vertraut machen. Unter Umstän-
den sollte testweise ein Repository erst konvertiert werden, bevor Geschwindigkeit und
Größe beim Auschecken verglichen werden. Dadurch lässt sich die individuelle Präferenz
herausfinden.

Funktioniert dies zufriedenstellend, so kann das gesamte System eingesetzt werden. Dabei
sind wahrscheinlich die Repositorys in kleinere Einzelteile aufzugliedern und entsprechend
neu zu konfigurieren.

7.4 Mögliche Probleme bei der Umstellung

Da die Umstellung einer Quellcodeverwaltung naturgemäß sehr gravierend ausfällt, dürfte
das Hauptproblem die Akzeptanz der Entwickler sein. Da viele Mitarbeiter mit dem aktuellen
System weitgehend zufrieden sind, werden sie eine Umstellung nicht unbedingt befürworten.
Außerdem sinkt natürlich temporär durch die Anpassung an die Umstellung die allgemeine
Produktivität.

Daher sollte eine Umstellung mit Rücksicht auf die Konsequenzen genau abgewägt werden
und genau geprüft werden, ob die erhofften Verbesserungen dadurch eintreten werden oder
sich nicht neue Probleme auftun.

52

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde der Flexis AG ein passendes Quellcodeverwaltungs-Werkzeug emp-
fohlen. Dazu wurden zunächst Grundlagen der erhältlichen Quellcode- und Versionsver-
waltungen besprochen und anschließend eine grobe Marktübersicht dargelegt. Im weiteren
Vorgehen wurden die konkreten Anforderungen von Flexis, sowohl zwingend erforderli-
che als auch gewünschte, durch eine Mitarbeiterbefragung erhoben. Die Kriterien wurden
erläutert und eine gezielte Auswahl an 9 Werkzeugen getroffen, die eingehend auf die
Anforderungen beleuchtet wurden.

Schließlich wurde eine Darstellung entwickelt, um alle Werkzeuge miteinander in einer
Tabelle vergleichen zu können. Es wurden Auffälligkeiten bei den Werkzeugen und den
Anforderungen erläutert. Dazu wurde unsere Top-3-Empfehlung ausgesprochen und begrün-
det. Zuletzt wurde eine Möglichkeit zur inkrementellen Einführung dargelegt und mögliche
Probleme dabei aufgezeigt.

Ausblick

Die Untersuchung erhebt selbstverständlich keinen Anspruch auf Vollständigkeit; obwohl
versucht wurde, alle verbreiteten und nützlichen Werkzeuge auszusuchen, besteht die
Möglichkeit, dass in der Zukunft neue Quellcodeverwaltungs-Werkzeuge hinzukommen
oder alte sich verändern. Praktisch dürfte dies allerdings nicht allzu bald der Fall sein.
Auf praktischer Seite ist ein nächster, denkbarer Schritt in naher Zukunft sicherlich die
Überprüfung der Vorschläge, um gewünschte Verbesserungen nachzuweisen und eventuelle
Probleme im Betrieb aufzudecken. Auch aus akademischer Sicht macht eine (breitere)
Untersuchung der Brauchbarkeit der Funktionalitäten der Versionsverwaltungssysteme im
realen Betrieb und eine mögliche Weiterentwicklung der Werkzeuge durchaus Sinn.

53

Literaturverzeichnis

[Acca] AccuRev Licensing and Pricing. http://www.accurev.com/licensing.html. (Zi-
tiert auf Seite 28)

[Accb] AccuRev Whitepaper - Top 10 Reasons Why Software Development Is Bet-
ter With AccuRev. http://www.accurev.com/sites/default/files/document/

top10-reasons-software-development-better-with-accurev.pdf. (Zitiert auf
Seite 29)

[Alb10] J. Albin. Converting a Subversion repository to Git. http://john.albin.net/git/
convert-subversion-to-git, 2010. (Zitiert auf Seite 39)

[ara] aragost Trifork. Subrepositories. http://mercurial.aragost.com/kick-start/en/
subrepositories. (Zitiert auf Seite 43)

[AS09] B. de Alwis, J. Sillito. Why are software projects moving from centralized to
decentralized version control systems? In Cooperative and Human Aspects on Software
Engineering, 2009. CHASE ’09. ICSE Workshop on, S. 36 – 39. 2009. (Zitiert auf Seite 9)

[Atla] Atlassian Stash. http://www.atlassian.com/software/stash/overview/

jira-dvcs-repository-integration. (Zitiert auf Seite 37)

[Atlb] Atlassian. FishEye. http://www.atlassian.com/software/fisheye/overview. (Zi-
tiert auf Seite 42)

[Atlc] Atlassian. Marketplace. https://marketplace.atlassian.com. (Zitiert auf Sei-
te 31)

[BCS11] C. M. P. Ben Collins-Sussman, Brian W. Fitzpatrick. Version Control with Subversion.
O’Reilly Media, 2011. URL http://svnbook.red-bean.com. (Zitiert auf Seite 11)

[Be] S. Borho, et al. Welcome to TortoiseHg’s documentation! URL http://tortoisehg.

bitbucket.org/manual/1.1/index.html. (Zitiert auf Seite 44)

[Bzra] Bazaar 2.5 Documentation. http://doc.bazaar.canonical.com/bzr.2.5/en. (Zi-
tiert auf Seite 30)

[Bzrb] Bazaar Bisect Plugin. https://launchpad.net/bzr-bisect. (Zitiert auf Seite 30)

[Bzrc] Bazaar Documentation. http://wiki.bazaar.canonical.com/Documentation. (Zi-
tiert auf Seite 30)

[Bzrd] Bazaar Externals Plugin. https://launchpad.net/bzr-externals. (Zitiert auf
Seite 30)

55

http://www.accurev.com/licensing.html
http://www.accurev.com/sites/default/files/document/top10-reasons-software-development-better-with-accurev.pdf
http://www.accurev.com/sites/default/files/document/top10-reasons-software-development-better-with-accurev.pdf
http://john.albin.net/git/convert-subversion-to-git
http://john.albin.net/git/convert-subversion-to-git
http://mercurial.aragost.com/kick-start/en/subrepositories
http://mercurial.aragost.com/kick-start/en/subrepositories
http://www.atlassian.com/software/stash/overview/jira-dvcs-repository-integration
http://www.atlassian.com/software/stash/overview/jira-dvcs-repository-integration
http://www.atlassian.com/software/fisheye/overview
https://marketplace.atlassian.com
http://svnbook.red-bean.com
http://tortoisehg.bitbucket.org/manual/1.1/index.html
http://tortoisehg.bitbucket.org/manual/1.1/index.html
http://doc.bazaar.canonical.com/bzr.2.5/en
https://launchpad.net/bzr-bisect
http://wiki.bazaar.canonical.com/Documentation
https://launchpad.net/bzr-externals

Literaturverzeichnis

[Bzre] Bazaar KeywordExpansion. http://wiki.bazaar.canonical.com/

KeywordExpansion. (Zitiert auf Seite 30)

[Bzrf] Bazaar Subversion Plugin. https://launchpad.net/bzr-svn. (Zitiert auf Seite 30)

[Bzrg] bzr-jira. https://launchpad.net/bzr-jira. (Zitiert auf Seite 30)

[Bzrh] BzrEclipse. http://wiki.bazaar.canonical.com/BzrEclipse. (Zitiert auf Seite 30)

[Bzri] TortoiseBzr. http://wiki.bazaar.canonical.com/TortoiseBzr. (Zitiert auf Sei-
te 30)

[Cha09] S. Chacon. Pro Git. Apress, 1 Auflage, 2009. URL http://git-scm.com/book.
(Zitiert auf den Seiten 38 und 39)

[chm] FreeBSD Man Page CHMOD(1). http://www.freebsd.org/cgi/man.cgi?query=

chmod&sektion=1. (Zitiert auf Seite 39)

[Cod] Codice Software. Licensing and pricing. https://www.plasticscm.com/buy.aspx.
(Zitiert auf Seite 48)

[Cod12a] Codice Software. Plastic SCM Distributed, 2012. URL http://www.plasticscm.

com/releases/4.1/manuals/en/distributedsystem.pdf. (Zitiert auf Seite 47)

[Cod12b] Codice Software. Plastic SCM IDE integrations, 2012. URL http://www.plasticscm.

com/releases/4.1/manuals/en/idesguide.pdf. (Zitiert auf Seite 48)

[Cod12c] Codice Software. Plastic SCM Introduction, 2012. URL http://www.plasticscm.

com/releases/4.1/manuals/en/userguide.pdf. (Zitiert auf den Seiten 47, 48

und 49)

[Cod12d] Codice Software. Plastic SCM Xlinks guide, 2012. (Zitiert auf Seite 49)

[Cus] CustomWare. Mercurial Plugin for JIRA. https://marketplace.atlassian.

com/plugins/com.consultingtoolsmiths.jira.plugin.ext.mercurial.

mercurial-jira-plugin. (Zitiert auf Seite 42)

[Dara] Darcs. http://darcs.net. (Zitiert auf Seite 31)

[Darb] Darcs Wiki. DifferencesFromSubversion. http://darcs.net/

DifferencesFromSubversion. (Zitiert auf Seite 33)

[Darc] Darcs Wiki. Frequently Asked Questions (Performance). http://darcs.net/FAQ/
Performance. (Zitiert auf Seite 33)

[Dard] Darcs Wiki. MigratingFromSubversion. http://darcs.net/

MigratingFromSubversion. (Zitiert auf Seite 34)

[EGi] EGit. http://www.eclipse.org/egit. (Zitiert auf Seite 37)

[FG] L. Frenzel, R. Grzanka. EclipseDarcs. http://eclipsedarcs.sourceforge.net.
(Zitiert auf Seite 31)

56

http://wiki.bazaar.canonical.com/KeywordExpansion
http://wiki.bazaar.canonical.com/KeywordExpansion
https://launchpad.net/bzr-svn
https://launchpad.net/bzr-jira
http://wiki.bazaar.canonical.com/BzrEclipse
http://wiki.bazaar.canonical.com/TortoiseBzr
http://git-scm.com/book
http://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1
http://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1
https://www.plasticscm.com/buy.aspx
http://www.plasticscm.com/releases/4.1/manuals/en/distributedsystem.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/distributedsystem.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/idesguide.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/idesguide.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/userguide.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/userguide.pdf
https://marketplace.atlassian.com/plugins/com.consultingtoolsmiths.jira.plugin.ext.mercurial.mercurial-jira-plugin
https://marketplace.atlassian.com/plugins/com.consultingtoolsmiths.jira.plugin.ext.mercurial.mercurial-jira-plugin
https://marketplace.atlassian.com/plugins/com.consultingtoolsmiths.jira.plugin.ext.mercurial.mercurial-jira-plugin
http://darcs.net
http://darcs.net/DifferencesFromSubversion
http://darcs.net/DifferencesFromSubversion
http://darcs.net/FAQ/Performance
http://darcs.net/FAQ/Performance
http://darcs.net/MigratingFromSubversion
http://darcs.net/MigratingFromSubversion
http://www.eclipse.org/egit
http://eclipsedarcs.sourceforge.net

Literaturverzeichnis

[Fosa] Convert simple SVN-Repository to Fossil. http://bens.me.uk/2011/

convert-simple-svn-to-fossil. (Zitiert auf Seite 36)

[Fosb] Fossil GUI - Fuel. http://code.google.com/p/fuel-scm. (Zitiert auf Seite 35)

[Fosc] Fossil Performance. (Zitiert auf Seite 35)

[Gen11] E. Gentz. Die neue Freiheit bei der Versionskontrol-
le, 2011. URL http://www.heise.de/developer/artikel/

Die-neue-Freiheit-bei-der-Versionskontrolle-1224755.html. (Zitiert auf
Seite 42)

[Gita] About Git. http://git-scm.com/about. (Zitiert auf den Seiten 37 und 38)

[Gitb] Git vs. Mercurial: Please Relax. http://importantshock.wordpress.com/2008/08/
07/git-vs-mercurial. (Zitiert auf Seite 52)

[Gitc] Git Wiki. GitProjects. https://git.wiki.kernel.org/index.php/GitProjects.
(Zitiert auf Seite 13)

[Git10] Google Code – Analysis of Git and Mercurial. http://code.google.com/p/

support/wiki/DVCSAnalysis, 2010. (Zitiert auf Seite 52)

[Hö11] M. Höher. darcs/camp. Technische Universität Dresden, 2011. (Zitiert auf Seite 32)

[Ham10] J. Hammond. Forrester Databyte: SCM Tool Adoption.
http://blogs.forrester.com/application_development/2010/01/

forrester-databyte-developer-scm-tool-adoption-and-use.html, 2010.
(Zitiert auf den Seiten 12 und 13)

[HT] K. Hoijarvi, E. Thomson. TortoiseDarcs. http://tortoisedarcs.sourceforge.net.
(Zitiert auf Seite 31)

[IBM] IBM – Rational Team Concert. http://www-01.ibm.com/software/rational/

products/rtc. (Zitiert auf Seite 40)

[ITWa] ITWissen. Git. http://www.itwissen.info/definition/lexikon/Git-Git.html.
(Zitiert auf Seite 13)

[ITWb] ITWissen. Mercurial. http://www.itwissen.info/definition/lexikon/

Mercurial-Mercurial.html. (Zitiert auf Seite 13)

[Jaz] . https://jazz.net/library. (Zitiert auf Seite 40)

[JIRa] Git Version Control Viewer. https://marketplace.atlassian.com/plugins/com.

xiplink.jira.git.jira_git_plugin. (Zitiert auf Seite 37)

[JIRb] JIRA Git Plugin. https://studio.plugins.atlassian.com/wiki/display/JGIT/

JIRA+Git+Plugin. (Zitiert auf Seite 37)

[Mac] T. Macieira. svn-all-fast-export. http://repo.or.cz/w/svn-all-fast-export.git.
(Zitiert auf Seite 49)

57

http://bens.me.uk/2011/convert-simple-svn-to-fossil
http://bens.me.uk/2011/convert-simple-svn-to-fossil
http://code.google.com/p/fuel-scm
http://www.heise.de/developer/artikel/Die-neue-Freiheit-bei-der-Versionskontrolle-1224755.html
http://www.heise.de/developer/artikel/Die-neue-Freiheit-bei-der-Versionskontrolle-1224755.html
http://git-scm.com/about
http://importantshock.wordpress.com/2008/08/07/git-vs-mercurial
http://importantshock.wordpress.com/2008/08/07/git-vs-mercurial
https://git.wiki.kernel.org/index.php/GitProjects
http://code.google.com/p/support/wiki/DVCSAnalysis
http://code.google.com/p/support/wiki/DVCSAnalysis
http://blogs.forrester.com/application_development/2010/01/forrester-databyte-developer-scm-tool-adoption-and-use.html
http://blogs.forrester.com/application_development/2010/01/forrester-databyte-developer-scm-tool-adoption-and-use.html
http://tortoisedarcs.sourceforge.net
http://www-01.ibm.com/software/rational/products/rtc
http://www-01.ibm.com/software/rational/products/rtc
http://www.itwissen.info/definition/lexikon/Git-Git.html
http://www.itwissen.info/definition/lexikon/Mercurial-Mercurial.html
http://www.itwissen.info/definition/lexikon/Mercurial-Mercurial.html
https://jazz.net/library
https://marketplace.atlassian.com/plugins/com.xiplink.jira.git.jira_git_plugin
https://marketplace.atlassian.com/plugins/com.xiplink.jira.git.jira_git_plugin
https://studio.plugins.atlassian.com/wiki/display/JGIT/JIRA+Git+Plugin
https://studio.plugins.atlassian.com/wiki/display/JGIT/JIRA+Git+Plugin
http://repo.or.cz/w/svn-all-fast-export.git

Literaturverzeichnis

[MB03] K. F. Moshe Bar. Open Source Development with CVS. Paraglyph Press, Inc., 2003.
(Zitiert auf Seite 11)

[Men02] T. Mens. A State-of-the-Art Survey on Software Merging. Software Engineering, IEEE
Transactions on, 28(5):449 – 462, 2002. (Zitiert auf Seite 9)

[Men10] G. Mendal, Herausgeber. Developing and Maintaining a Strategic Perforce Plan at
Google. 2010. URL http://www.perforce.com/perforce/conferences/eu/2010/

Presentations/Geoff_Mendal-Strategic_Plan.paper.pdf. (Zitiert auf Seite 12)

[Mera] Mercurial. http://mercurial.selenic.com. (Zitiert auf Seite 42)

[Merb] MercurialEclipse. http://javaforge.com/project/HGE. (Zitiert auf Seite 42)

[Merc] Mercurial Wiki. Features of Last Resort. http://mercurial.selenic.com/wiki/

FeaturesOfLastResort. (Zitiert auf Seite 43)

[Merd] Mercurial Wiki. Keyword Extension. http://mercurial.selenic.com/wiki/

KeywordExtension. (Zitiert auf Seite 44)

[Mere] Mercurial Wiki. Mercurial Frequently Asked Questions. http://mercurial.

selenic.com/wiki/FAQ. (Zitiert auf Seite 43)

[Merf] Mercurial Wiki. Shelve Extension. http://mercurial.selenic.com/wiki/

ShelveExtension. (Zitiert auf Seite 44)

[Merg] Mercurial Wiki. Some Projects that Use Mercurial. http://mercurial.selenic.

com/wiki/ProjectsUsingMercurial. (Zitiert auf Seite 13)

[Merh] Mercurial Wiki. Subrepository. http://mercurial.selenic.com/wiki/

Subrepository. (Zitiert auf Seite 43)

[O’S09] B. O’Sullivan. Mercurial: The Definitive Guide. O’Reilly Media, 2009. (Zitiert auf den
Seiten 9, 42 und 44)

[Pera] Multiple Repository Sync in Perforce. https://confluence.atlassian.com/

display/BAMKB/Multiple+Repository+Sync+in+Perforce. (Zitiert auf Seite 46)

[Perb] Perforce Eclipse Plugin. http://www.perforce.com/product/components/

eclipse_plugin. (Zitiert auf Seite 45)

[Perc] Perforce Preise - Internetseite. http://www.perforce.com/purchase/

licensing-pricing-options. (Zitiert auf Seite 45)

[Perd] SVN2P4 - Von SVN zu Perforce. http://public.perforce.com/wiki/SVN2P4. (Zi-
tiert auf Seite 45)

[Pos11] J. Posner. Migrating from Perforce to Plastic SCM. Codice Software,
2011. URL http://www.plasticscm.com/releases/3.0.1/migration-guides/

perforce_migration.pdf. Abschnitt 2.7. (Zitiert auf Seite 49)

[Rou] D. Roundy. Darcs User Manual. URL http://www.darcs.net/manual/darcs.pdf.
(Zitiert auf den Seiten 31, 33 und 34)

58

http://www.perforce.com/perforce/conferences/eu/2010/Presentations/Geoff_Mendal-Strategic_Plan.paper.pdf
http://www.perforce.com/perforce/conferences/eu/2010/Presentations/Geoff_Mendal-Strategic_Plan.paper.pdf
http://mercurial.selenic.com
http://javaforge.com/project/HGE
http://mercurial.selenic.com/wiki/FeaturesOfLastResort
http://mercurial.selenic.com/wiki/FeaturesOfLastResort
http://mercurial.selenic.com/wiki/KeywordExtension
http://mercurial.selenic.com/wiki/KeywordExtension
http://mercurial.selenic.com/wiki/FAQ
http://mercurial.selenic.com/wiki/FAQ
http://mercurial.selenic.com/wiki/ShelveExtension
http://mercurial.selenic.com/wiki/ShelveExtension
http://mercurial.selenic.com/wiki/ProjectsUsingMercurial
http://mercurial.selenic.com/wiki/ProjectsUsingMercurial
http://mercurial.selenic.com/wiki/Subrepository
http://mercurial.selenic.com/wiki/Subrepository
https://confluence.atlassian.com/display/BAMKB/Multiple+Repository+Sync+in+Perforce
https://confluence.atlassian.com/display/BAMKB/Multiple+Repository+Sync+in+Perforce
http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/purchase/licensing-pricing-options
http://www.perforce.com/purchase/licensing-pricing-options
http://public.perforce.com/wiki/SVN2P4
http://www.plasticscm.com/releases/3.0.1/migration-guides/perforce_migration.pdf
http://www.plasticscm.com/releases/3.0.1/migration-guides/perforce_migration.pdf
http://www.darcs.net/manual/darcs.pdf

Literaturverzeichnis

[SKY07] SKYTEC AG. Case Study: Siemens AG. www.skytecag.com/unternehmen/

references/case-studies/single-referenz/archive/2007/article/

siemens-ag-1, 2007. (Zitiert auf Seite 12)

[Sta] Stack Overflow. Is it possible to have a subversion repository as
a git submodule? http://stackoverflow.com/questions/465042/

is-it-possible-to-have-a-subversion-repository-as-a-git-submodule.
(Zitiert auf Seite 38)

[Sub] Subversion Testimonials. http://svn.apache.org/repos/asf/subversion/

branches/1.6.x/www/testimonials.html. (Zitiert auf Seite 12)

[Tai] Tailor. http://progetti.arstecnica.it/tailor. (Zitiert auf Seite 33)

[Thr] Three of Coins. Darcs vs Git: mathematician versus engineer. http://3ofcoins.

net/2008/12/16/darcs-vs-git-mathematician-versus-engineer. Kommentar
von „Maciej“ vom 24.12.2008. (Zitiert auf Seite 33)

[Tora] TortoiseGit. http://code.google.com/p/tortoisegit. (Zitiert auf Seite 37)

[Torb] TortoiseHg. http://tortoisehg.bitbucket.org. (Zitiert auf Seite 42)

[Wika] Wikipedia. BitKeeper. http://en.wikipedia.org/w/index.php?title=

BitKeeper&oldid=510265555. (Zitiert auf Seite 12)

[Wikb] Wikipedia. Darcs. http://en.wikipedia.org/w/index.php?title=Special:

Cite&page=Darcs&id=517379492. (Zitiert auf Seite 12)

[Wikc] Wikipedia. GNU arch. http://en.wikipedia.org/w/index.php?title=GNU_

arch&oldid=511941266. (Zitiert auf Seite 12)

Alle URLs wurden zuletzt am 21. 10. 2012 geprüft.

59

www.skytecag.com/unternehmen/references/case-studies/single-referenz/archive/2007/article/siemens-ag-1
www.skytecag.com/unternehmen/references/case-studies/single-referenz/archive/2007/article/siemens-ag-1
www.skytecag.com/unternehmen/references/case-studies/single-referenz/archive/2007/article/siemens-ag-1
http://stackoverflow.com/questions/465042/is-it-possible-to-have-a-subversion-repository-as-a-git-submodule
http://stackoverflow.com/questions/465042/is-it-possible-to-have-a-subversion-repository-as-a-git-submodule
http://svn.apache.org/repos/asf/subversion/branches/1.6.x/www/testimonials.html
http://svn.apache.org/repos/asf/subversion/branches/1.6.x/www/testimonials.html
http://progetti.arstecnica.it/tailor
http://3ofcoins.net/2008/12/16/darcs-vs-git-mathematician-versus-engineer
http://3ofcoins.net/2008/12/16/darcs-vs-git-mathematician-versus-engineer
http://code.google.com/p/tortoisegit
http://tortoisehg.bitbucket.org
http://en.wikipedia.org/w/index.php?title=BitKeeper&oldid=510265555
http://en.wikipedia.org/w/index.php?title=BitKeeper&oldid=510265555
http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Darcs&id=517379492
http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Darcs&id=517379492
http://en.wikipedia.org/w/index.php?title=GNU_arch&oldid=511941266
http://en.wikipedia.org/w/index.php?title=GNU_arch&oldid=511941266

Erklärung

Hiermit versichern wir, diese Arbeit
selbständig verfasst und nur die angegebenen
Quellen benutzt zu haben.

(Jakob Jarosch Tobias Kuhn Patrick Strobel)

	1 Einleitung
	2 Grundlagen
	2.1 Begriffe
	2.2 Themenüberblick
	2.3 Vorgehen

	3 Marktübersicht
	3.1 Zentrale Quellcodeverwaltung
	3.2 Verteilte Quellcodeverwaltung

	4 Momentan verwendetes System
	4.1 Mitarbeiterbefragung

	5 Bewertungskriterien
	5.1 K.O.-Kriterien
	5.1.1 JIRA-Integration
	5.1.2 GUI-Unterstützung
	5.1.3 IDE-Plugin
	5.1.4 Betriebssysteme
	5.1.5 Teilweises Auschecken
	5.1.6 Externals
	5.1.7 Export
	5.1.8 Benutzerfreundlichkeit
	5.1.9 Konversion von Subversion

	5.2 Entscheidungskriterien
	5.2.1 Lizenz
	5.2.2 Dateiberechtigungen
	5.2.3 Keywords
	5.2.4 File-Lock
	5.2.5 Sammeln bzw. Zwischenspeichern von Commits
	5.2.6 Suchen von Changesets
	5.2.7 Effizienz

	6 Auswertung
	6.1 Bewertungsübersicht
	6.2 In Frage kommende Werkzeuge
	6.2.1 AccuRev SCM
	6.2.2 Bazaar
	6.2.3 Darcs
	6.2.4 Fossil SCM
	6.2.5 Git
	6.2.6 IBM Rational Team Concert
	6.2.7 Mercurial
	6.2.8 Perforce
	6.2.9 Plastic SCM

	7 Empfehlung
	7.1 Übersicht
	7.2 Diskussion
	7.3 Einführungsstrategie
	7.4 Mögliche Probleme bei der Umstellung

	8 Zusammenfassung und Ausblick
	Literaturverzeichnis

