Institut fiir Softwaretechnologie
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Fachstudie Nr. 157

Marktanalyse

Quellcodeverwaltung

Jakob Jarosch

Studiengang:

Prifer:

Betreuer:

begonnen am:

beendet am:

CR-Klassifikation:

Tobias Kuhn Patrick Strobel

Softwaretechnik

Prof. Dr. Stefan Wagner

Dipl.-Ing. Jan-Peter Ostberg
Markus Schmidt (flexis AG)

23. April 2012
23. Oktober 2012

D.2.7

Zusammenfassung

Mit Hilfe einer Quellcodeverwaltung lassen sich Dateien bequem versionieren und sichern.
Allerdings entwickeln sich auch Quellcodeverwaltungs-Werkzeug mit der Zeit weiter, wor-
aus sich entscheidende Unterschiede entwickelt haben; zum Beispiel die Unterscheidung
zwischen verteilten und zentralen Systemen. Der Industriepartner, die Flexis AG, setzt zur
Zeit das zentrale Subversion als Losung ein. Flexis vermutet aber, dass eine andere Losung
moglicherweise besser die gewiinschte Arbeitsweise unterstiitzt. Daher beschiftigt sich diese
Fachstudie mit einer Analyse der meisten auf dem Markt befindlichen Werkzeuge fiir die
Quellcodeverwaltung. Anhand der Anforderungen des Industriepartners wird zunéchst eine
Vorauswahl getroffen und die relevantesten Werkzeuge detailliert bewertet. AbschliefSend
wird eine Empfehlung fiir Flexis ausgesprochen.

Abstract

Files can be versioned and secured with the aid of a source code management. However,
source code management tools advance over time. Therefore, significant differences have
evolved, for example the distinction between distributed and centralized systems. The
industry partner, the Flexis AG, is currently using the centralized Subversion as a solution.
But Flexis assumes that other solutions might possibly support the desired work process
better. Therefore this study deals with an analysis of most source code management tools in
the market. By means of the requirements of the industry partner initially a pre-selection is
made and the most relevant tools are rated in greater detail. Finally, a recommendation for
Flexis is made.

Inhaltsverzeichnis

1 Einleitung

2 Grundlagen

21 Begriffe

2.2 Thementiberblick

23 Vorgehen
3 Marktiibersicht

3.1 Zentrale Quellcodeverwaltung,

3.2 Verteilte Quellcodeverwaltung

4 Momentan verwendetes System

4.1 Mitarbeiterbefragung o Lo o
5 Bewertungskriterien
51 K.O-Kriterien
5.1.1 JIRA-Integration
5.1.2 GUI-Unterstiitzung
513 IDE-Plugin.
5.1.4 Betriebssysteme oo o oo
5.1.5 Teilweises Auschecken o 0oL
51.6 Externals.
51.7 Export
5.1.8 Benutzerfreundlichkeit. Lo L
5.1.9 Konversion von Subversion Lo
5.2 Entscheidungskriterien o 0L
52,1 Lizenz
5.2.2 Dateiberechtigungen 0L
523 Keywords
524 File-Lock
5.2.5 Sammeln bzw. Zwischenspeichern von Commits
5.2.6 Suchenvon Changesets
527 Effizienz

6 Auswertung
6.1 Bewertungsiibersicht o L oo

10

11
11
12

15
15

17
17
17
17
18
18
18
19
19
19
20
21
21
21
21
22
22
23
23

25
25

6.2 In Frage kommende Werkzeuge

621 AccuRevSCM
6.2.2 Bazaar
6.23 Darcs
6.2.4 FossilSCM
6.25 Git e
6.2.6 IBM Rational Team Concert
6.27 Mercurial
6.2.8 Perforce
6.2.9 PlasticSCM
7 Empfehlung
7.1 Ubersicht
72 Diskussion
7.3 Einfiihrungsstrategie
7.4 Mogliche Probleme bei der Umstellung

8 Zusammenfassung und Ausblick

Literaturverzeichnis

1 Einleitung

Der Industriepartner, die Flexis AG, ist von der bisherigen Losung fiir die Quellcodever-
waltung nicht vollstdndig tiberzeugt. Aus diesem Grund interessiert sich Flexis fiir einen
Vergleich zu den Werkzeugen, die auf dem Markt auch verfiigbar wéaren. Diese sollen auf
die Kompatibilitit zum gewtinschten Umgang mit der Quellcodeverwaltung bei Flexis un-
tersucht werden. Hierfiir werden die Anforderungen von Flexis an ein solches Werkzeug
ermittelt, um passende Werkzeuge ermitteln und bewerten zu konnen. Daran schliefit sich
eine Empfehlung an.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen erklirt die Ausgangslage der Fachstudie und fasst die notwendigen
Grundbegriffe zusammen, die nachfolgend verwendet werden.

Kapitel 3 — Marktiibersicht zeichnet einen groben Uberblick iiber die auf dem Markt befind-
lichen Quellcodeverwaltungswerkzeuge.

Kapitel 4 — Momentan verwendetes System beschreibt den aktuellen Ist-Zustand beim In-
dustriepartner Flexis AG.

Kapitel 5 — Bewertungskriterien erkladrt die einzelnen Bewertungskriterien, die an die neue
Losung gestellt werden.

Kapitel 6 — Auswertung wertet die ausgewdhlten Werkzeuge konkret an den zuvor erkldrten
Bewertungskriterien aus.

Kapitel 7 — Empfehlung spricht eine Empfehlung aus, welches Vorgehen beziiglich der Quell-
codeverwaltung bei Flexis empfehlenswert erscheint.

Kapitel 8 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Ankniipfungspunkte vor.

2 Grundlagen

2.1 Begriffe

Quellcodeverwaltung ist ein Werkzeug, das es ermoglicht, Text-Dateien mit mehreren Ver-
sionen zu verwalten. Typischerweise wird zu einer Anderung protokolliert, wer diese
durchgefiihrt hat und warum. Tatsdchlich gibt es fiir den Begriff diverse Synonyme,
wie z.B. Revisionskontrolle, Versionskontrolle, (Software-)Konfigurationsverwaltung oder
Quellcodekontrolle. Obwohl diese eigentlich ndher zu unterscheiden wiren, macht es
fur die Praxis keinen Sinn, sie genauer zu unterscheiden [O’Sog]. Auf alle im Weiteren
betrachteten Werkzeuge treffen alle Begrifflichkeiten zu, sodass diese im Rahmen dieser
Arbeit austauschbar verwendet werden.

Repository ist das Behiltnis in einer Quellcodeverwaltung, das alle Dateien und Versionen
eines Projekts enthélt. Typischerweise ist ein Repository ein bestimmter Ordner, in dem
alle Dateien des Projekts mit der Versionskontrolle verwaltet werden konnen. [O’Sog]

Zentralisierte Quellcodeverwaltung ist eine Quellcodeverwaltung, die ein einzelnes, kano-
nisches Repository beinhaltet. Dabei arbeiten alle Mitarbeiter an diesem einen Reposi-
tory. [ASo9]

Verteilte Quellcodeverwaltung ist eine Quellcodeverwaltung, die kein von vornherein zen-
trales Repository mehr enthilt. Prinzipiell hat jeder Mitarbeiter sein eigenes, vollstandi-
ges Repository. Es kann allerdings trotzdem moglich sein, ein nicht-verteiltes Vorgehen
nachzubilden. [ASo9]

Revision (oft auch Changeset oder Commit) bezeichnet eine konkrete Version innerhalb einer
Quellcodeverwaltung. [O’Sog]

Merge bezeichnet die Operation einer Quellcodeverwaltung, die mehrere gleichzeitige An-
derungen an einer Datei wieder zusammenfiigt. Kénnen nur zwei Dateien miteinander
verglichen werden, spricht man von einem Zwei-Wege-Merge; wird zusatzlich noch
die Elterdatei, an der beide Anderungen durchgefiihrt wurden, einbezogen, so wird
das Vorgehen Drei-Wege-Merge genannt. [Menoz]

2.2 Themeniuberblick

Fiir die Software-Entwicklung ist heutzutage eine Quellcodeverwaltung nicht mehr weg-
zudenken. Im Kleinen ermoglicht sie es, Anderungen sicher abzuspeichern und zu doku-

2 Grundlagen

mentieren. Ebenso erlaubt eine Konfigurationsverwaltung es, bei Bedarf dltere Versionen
wiederherzustellen oder zu vergleichen. Insbesondere im Grofien, wenn mehrere Entwickler
koordiniert werden miissen, dient eine Quellcodeverwaltung dazu, die Ubersicht zu wahren
und vermeidet Datenverluste, da Anderungen nicht einfach ,verloren gehen” kénnen.

Die Flexis AG verwendet bisher das zentralisierte Quellcodeverwaltungs-Werkzeug , Subver-
sion”. Allerdings ist Flexis nicht vollstandig sicher, ob diese Losung voll {iberzeugen kann.
Deswegen soll der Markt auf fiir Flexis nutzbare Quellcodeverwaltungen untersucht werden.
Dabei sollen natiirlich die spezifischen Anforderungen bei Flexis einflieflen, um passende
Werkzeuge zu finden und zu bewerten. AbschliefSend soll eine Empfehlung ausgesprochen
werden.

2.3 Vorgehen

Um einen generellen Uberblick {iber den Bedarf bei Flexis zu gewinnen, haben wir zundchst
von unserem Ansprechpartner bei Flexis die groben Anforderungen skizziert bekommen.
Hiermit lief3 sich ein grober Marktiiberblick gewinnen, bei dem wir zundchst 17 Werkzeuge
herausgefiltert haben. AnschliefSend haben wir diese Werkzeuge niher betrachtet und auf-
grund einiger Kriterien 9 davon auswéhlen konnen, die den Kreis der detailliert erlduterten
Werkzeuge in dieser Arbeit bilden.

Anschliefsend haben wir einen Fragebogen entworfen, mit dessen Hilfe wir bei Flexis etwa
20 Mitarbeiter interviewen konnten. Dabei haben wir sowohl gezielt nach Funktionalitat
als auch offen nach Wiinschen und Anregungen gefragt. Mit diesen Ergebnissen war es
uns moglich, die tatsdchlichen Anforderungen bei Flexis zu erfassen und die in Frage
kommenden Werkzeuge detailliert zu analysieren.

Erste Zwischenresultate wurden in einem Zwischenvortrag zur Diskussion gestellt. Durch
die Auswertung aller Werkzeuge konnten wir uns individuell eine Meinung zur besten
denkbaren Losung bilden. Die individuellen Meinungen wurden dann in der Gruppe aus-
diskutiert, um zu einem gemeinsamen Konsens zu gelangen, welcher in dieser Ausarbeitung
dokumentiert wurde.

10

3 Marktubersicht

Der Mark der Versionskontrollsysteme ldsst sich grob nach deren Architektur unterteilen:
Wihrend zentrale Versionsverwaltungssysteme auf einer Client-Server-Architektur basie-
ren, bei denen die Repositorys auf einem separaten (Server-)System gespeichert werden,
werden die Repositorys bei verteilten Versionsverwaltungssystemen auf jedem Arbeitsplatz
dupliziert. Diese Kapitel soll einen kurzen Uberblick iiber die Entwicklung der Versionskon-
trollsysteme bieten und einige der bekanntesten bzw. verbreitetsten System, nach Architektur
unterteilt, vorstellen.

Auf dem Markt befinden sich neben Open-Source- auch kommerzielle Systeme, bei denen die
Lizenzierung meist nach Anzahl der Benutzer erfolgt. Die Gebiihren bewegen sich hierbei
zwischen, einmalig oder jdhrlich, wenigen 100 € bis hin zu einigen 1.000 €. Aufgrund der
nicht unerheblichen Lizenzkosten werden die kommerziellen Systeme hauptsachlich bei der
Entwicklung kommerzieller Produkte eingesetzt.

3.1 Zentrale Quellcodeverwaltung

Der Siegeszug der Versionsverwaltungssysteme in der Softwareentwicklung begann haupt-
sdchlich mit der Entwicklung von CVS, dem , Concurrent Versions System”. Die Entwicklung
von CVS begann 1989 mit der Zielsetzung, in einem Repository mehrere Dateien speichern
zu konnen und damit RCS (,,Revision Control System”) abzuldsen, bei dem dies nicht
moglich ist. Insbesondere da in CVS das Einchecken von Anderungen, das Committen,
nicht atomar in einer Transaktion ausgefiihrt wird, ist der Einsatz des Systems mit einigen
Risiken verbunden. Durch diese Schwachstelle konnen Daten korrumpiert werden, wenn
Anderungen durch zwei oder mehr Benutzer gleichzeitigen eingecheckt werden oder die
Verbindung wéhrend der Datentibertragung abbricht. [MBo3]

Um die Quellcodeverwaltung zu vereinfachen und hierbei die genannten Risiken zu mini-
mieren, begann im Jahr 2000 die Entwicklung von Subversion (meist mit SVN abgekiirzt) bei
CollabNet. Dabei orientierte man sich beim Bedienkonzept am damals sehr populdren CVS —
denn man wollte hierfiir einen Ersatz schaffen. Gleichzeitig wurde u. A. durch Hinzufiigen
von Transaktionen (also atomaren Commits) bewusst versucht, die bekannten Probleme
und Risiken auszumerzen [BCS11]. Die Rechnung ging auf und Subversion konnte CVS
zunehmend ersetzen. Mittlerweile zdhlt Subversion zu dem Versionsverwaltungssystem mit
der grofiten Verbreitung und wird bei zahlreichen Open-Source- und proprietdaren Projekte
verwendet. Einer Untersuchung zufolge betrug der Marktanteil von Subversion 2010 rund

11

3 Marktibersicht

33,4 %, wohingegen der Anteil von CVS auf 11,9 % schrumpfte [Ham1o]. Da Subversio-
nen einen guten Ersatz fiir CVS bietet, ldsst sich mutmafien, dass dessen Marktanteil in
Zukunft weiter zuriickgehen wird. Subversion wird von einer grofsen Anzahl bekannter
Open-Source-Projekte aber auch bei vielen Firmen eingesetzt [Sub].

Wihrend es sich bei den bereits genannten Systemen — RCS, CVS und Subversion — um
Open-Source-Projekte handelt, befinden sich auch einige kommerzielle Produkte auf dem
Markt. Einen nennenswerten Anteil konnten dabei Visual SourceSafe (12,5%) und Team
Foundation Server (8,5 %) von Microsoft sowie Perforce der Perforce Software Inc. (6,1 %) und
IBM’s ClearCase (5,4 %) erlangen (Stand 2010 nach [Ham1o]). Diese werden nicht nur bei
der jeweiligen Herstellerfirma selbst eingesetzt, sondern auch bei Organisation wie Google
(Perforce) [Men10] oder Siemens (ClearCase) [SKYo7].

Die kommerziellen Versionsverwaltungssysteme werden in der Regel mit einer grafischen
Benutzeroberfliche ausgeliefert. Um eine grafische Oberfldche bei den ansonsten tiber die
Kommandozeile zu bedienenden Open-Source-Systeme nachriisten zu kdnnen, stehen fiir
viele solche Oberflachen zur Verfiigung. Sehr verbreitet sind hier die TortoiseX-Projekte,
wobei X fiir das Kiirzel des jeweiligen System steht (z. B. TortoiseCVS, TortoiseSVN etc.).

3.2 Verteilte Quellcodeverwaltung

Erste Vertreter der verteilten Versionsverwaltungssysteme waren die Open-Source-Systeme
GNU Arch und Monotone. Arch erschien erstmals 2001, gilt seit 2009 offiziell als veraltet und
hat keinen nennenswerten Marktanteil mehr. Stattdessen konzentriert sich die Weiterentwick-
lung auf den Arch-Fork Bazaar [Wikc]. Monotone konnte sich ebenfalls nicht mehr am Markt
behaupten und wurde von neueren Systeme verdriangt [Ham1o]. David Roundy begann 2002
die Arbeit an einem neuen Format zur Speicherung der Daten in GNU Arch. Die Ergebnisse
flossen zwar nicht in Arch ein, fithrten aber zur Entwicklung des Patch-basierten Versions-
kontrollsystems Darcs, das schliefSlich 2003 veroffentlicht wurde [Wikb]. Wohl aufgrund
der unkonventionelle Funktionsweise von Darcs, die zwar einige besondere Moglichkeiten
bietet aber Probleme mit sich bringt, konnte dieses System auch bis 2010 keinen besonderen
Marktanteil erlangen [Ham1o]. Weitere Information zum internen Aufbau und den Folgen
daraus finden sich in Abschnitt 6.2.3 auf Seite 31.

Einen grofsen Einfluss auf die Entwicklung nachfolgender Open-Source-Versionsverwaltungs-
systeme hatte das kommerzielle Produkt BitKeeper. BitKeeper wurde 2000 veroffentlicht
und wurde anschliefsend auch zur Versionierung des Linux-Kernels eingesetzt. Dies war
moglich, da die Herstellerfirma BitMover Inc. zum damaligen Zeitpunkt eine kostenfreie
Nutzung ihres Systems fiir Open-Source-Projekte ermoglichte. Das zugrunde liegende
Lizenzmodell wurde im Jahr 2005 umgestellt. Ab diesem Zeitpunkt war eine kostenfreie
Nutzung der Software nicht mehr moglich — fiir den Linux-Kernel musste daher ein neues
Quellcodeverwaltungs-Werkzeug gefunden werden. [Wika]

Da fiir dieses Projekt kein geeignetes System auf dem Markt gefunden werden konnte,
begann Linus Torvalds mit der Entwicklung von Git. Eine erste Version des auf den Be-

12

3.2 Verteilte Quellcodeverwaltung

diirfnissen der Kernel-Entwickler zugeschnittenen Gits erschien bereits im gleichen Jahr
(2005). [ITWa] Seitdem konnte die Software viele Anhidnger gewinnen und wird nicht nur
bei vielen Projekten im Linux-Umfeld verwendet [Gitc]. Der Marktanteil betrug 2010 etwa
2,7 % [Ham1o].

Zu etwa der selben Zeit, zu der Torvalds mit der Entwicklung von Git begann, startete
Matt Mackall die Entwicklung des ebenfalls quelloffenen Mercurial. Das verfolgte Ziel
war auch diesmal, eine Alternative zu BitKeeper zu schaffen. [[TWb] Neben Projekten im
Linux-Umfeld verwendet u. A. Mozilla Mercurial [Merg].

Im Bereich der kommerziellen Versionsverwaltungssysteme konnten sich neben BitKeeper
noch AccuRev SCM von AccuRev Inc. (0,4 %) und Rational Team Concert der IBM durchsetzen
(0,3 %) (Stand 2010 nach [Ham10]).

Wie bei den zentralen Quellcodeverwaltungsystemen verfiigen auch, zumindest die letztge-
nannten kommerziellen Produkte, tiber eine grafische Benutzeroberfldche. Bei den quellof-
fenen Systemen lésst sich auch hier mit weiteren Open-Source-Projekten (z. B. TortoiseGit,
TortoiseHg) eine grafischen Oberfldche installieren.

13

4 Momentan verwendetes System

Die Flexis AG setzt seit einigen Jahren Subversion als Versionsverwaltungssytem ein. Dabei
wird der Quelltext in zwei verschiedenen Respositorys gespeichert, auf die sich ca. 10
Gigabyte an Quelltext und Bindrdateien verteilen.

In den Repositorys sind alle Projekte abgelegt; wird an einem Projekt gearbeitet so wird
dieses aus dem Repository ausgecheckt. Da viele Projekte die gleiche Codebasis verwenden,
wird das svn:externals-Feature genutzt, um diese Codebasis in das Projekt einzubinden.
Auflerdem wird Keyword-Expansion eingesetzt, um Dateien mit der aktuellen Version
kennzeichnen zu konnen und so beim Kunden die Moglichkeit zu haben, feststellen zu
konnen welche Version aktuell eingesetzt wird. Aktuell treten beim Committen von Dateien
ins Repository regelméfiig Konflikte auf.

Da viele Mitarbeiter keine weitgehende Kenntnis von Kommandozeilen-Tools haben, werden
in der Firma hauptsichlich grafische Oberflachen wie TortoiseSVN zur Verwaltung des
Repositorys eingesetzt; einige setzen aber auch die Kommandozeile ein. Manche Mitarbeiter
arbeiten auch von zuhause aus tiber eine VPN-Verbindung. Deshalb ist es wichtig, dass die
Kommunikation zwischen Repository-Server und Client moglichst ressourcensparend ist.

4.1 Mitarbeiterbefragung

Viele Mitarbeiter sind keine studierten Softwareentwickler sondern in die Softwareentwick-
lung ,reingerutscht”. Die Akzeptanz des aktuellen Systems ist sehr hoch, da alles zumindest
fir den alltaglichen Bedarf einigermafien funktioniert. Die Kenntnis der einzelnen Mitar-
beiter unterscheidet sich dabei sehr stark. Manche Mitarbeiter nutzen nur die Konsole, um
ihre Arbeit mit Subversion zu erledigen, andere konnen mit dem Repository nur iiber eine
grafische Oberfldche arbeiten und wéren ohne diese Unterstiitzung eher hilflos.

Fiir Mitarbeiter, die nicht so tief in der Materie stecken wie die anderen, ist ein Wechsel auf
ein neues System nur schwer vorstellbar, vor allem weil das aktuelle System in ihren Augen
eigentlich ausreichend ist. Sie wiirden einen Wechsel allerdings nicht ablehnen, sondern,
tatsdchliche Verbesserungen vorausgesetzt, akzeptieren und auch versuchen sich in das neue
System, mit erhoffter Unterstiitzung, einzuarbeiten.

Mitarbeiter, die eher ein Interesse fiir die Technik hinter der Softwareentwicklung zeigen,
wiinschen sich ein System, welches mehr Moglichkeiten bietet, um unabhéngig voneinander
zu arbeiten und Code untereinander zu tauschen. Vor allem auch mehrere Repositorys fiir

15

4 Momentan verwendetes System

unterschiedliche Zwecke wie Entwicklung, Test und Deployment aufzusetzen, gehorte zu
den vorgeschlagenen Ideen.

Fast alle Mitarbeiter beméngelten die schlechte Behandlung von Konflikten in Subversion
und wiirden sich wiinschen, dass diese effektiver funktioniert.

Je nach Abteilung unterscheidet sich auch die Art der Nutzung. Im Marketing beispiels-
weise ist das aktuelle System schon ,kompliziert genug” und eine Verschlechterung der
Benutzerfreundlichkeit wére nicht gewtinscht.

Einige Mitarbeiter schlugen vor, dass eine Kombination aus bestehendem und neuem System
vielleicht die beste Losung sein konnte, sodass sich jeder Mitarbeiter langsam an den Umstieg
gewoOhnen kann.

16

5 Bewertungskriterien

In diesem Kapitel wird auf die Kriterien eingegangen, die Einfluss auf die Wahl eines
geeigneten Versionsverwaltungssystems haben. Im Rahmen der Mitarbeiterbefragung (siehe
Abschnitt 4.1 auf Seite 15) wurden die Bediirfnisse der Mitarbeit ndher untersucht, um
hieraus die Gewichtung der Kriterien ableiten zu konnen. Hierbei kristallisierten sich einige
K. O.-Kriterien heraus, die von den Mitarbeitern oder der Firmenleitung als unverzichtbar
angesehen werden.

Die nachfolgend genannten Funktionen orientieren sich an Subversion, dem bei der Flexis
AG bisher verwendeten System. Da die Mitarbeiter mit Subversion vertraut sind, ist davon
auszugehen, dass diese von Subversion angebotenen Funktionen intensiv verwendet werden
oder fiir die Arbeit zwingend erforderlich sind.

5.1 K. O.-Kriterien

In diesem Abschnitt werden alle Kriterien aufgelistet, die als unverzichtbar gelten bzw.
zwingend erforderlich sind.

5.1.1 JIRA-Integration

Zur Verwaltung der Projekte und zur Aufgabenverteilung wird die kommerzielle
Projektmanagement-Software JIRA der australischen Firma Atlassian verwendet. Eine In-
tegration der Versionsverwaltung in JIRA ist somit zwingend erforderlich. Beim bisher
verwendeten System ist dies der Fall.

Die Integration in JIRA findet tiber Plugins statt, so dass fiir jedes in Frage kommende
Versionsverwaltungssystems das Vorhandensein eines solchen Plugins zu priifen ist. Das
Fehlen eine entsprechenden Plugins gilt damit als Ausschlusskriterium.

5.1.2 GUI-Unterstitzung

Gerade Open-Source-Versionsverwaltungssysteme verfiigen standardmaflig nur iiber einen
Kommandozeileninterpreter. Um eine komfortablere Bedienung zu ermoglichen, sind fiir vie-
le verbreitete Versionsverwaltungssysteme grafischer Benutzeroberflichen (GUIs) entstanden,
die sich meist in den Dateimanager des Betriebssystems integrieren. Die Mitarbeiterbe-
fragung ergab, dass fiir Subversion die Oberflache , TortoiseSVN” auf den Arbeitspldtzen

17

5 Bewertungskriterien

installiert ist. Von der Mehrheit der befragten Mitarbeiter wird die grafische Oberfldche
bevorzugt verwendet und als ein dufierst wichtiges Kriterium angesehen, da es ihren Ar-
beitsablauf vereinfacht. Insbesondere wird das Beheben von Merge-Konflikten durch die
Oberflache erleichtert.

Da bisher eine grafische Benutzeroberflache verwendet wird und die Mitarbeiter an eine
solche gewthnt sind, muss fiir alle in Frage kommenden Systeme eine selbige verfiigbar
sein. In diesem Zusammenhang ist das verwendete Betriebssystem von Bedeutung, da die
grafischen Oberflichen meist nur fiir Microsoft Windows verfiigbar sind. Da die bisherige
grafische Benutzeroberfliche nur fiir Microsoft Windows verfiigbar ist und die Mitarbeiter
hauptsachlich dieses Betriebssystem verwenden (siehe Abschnitt 5.1.4), muss fiir die in Frage
kommenden Systeme mindestens fiir Windows eine grafische Oberflache verftigbar sein.

Von den Mitarbeitern, die ebenfalls unter Linux arbeiten, wird eine grafische Oberfldche
nicht als zwingend, allerdings als interessante Zusatzfunktion angesehen. Damit kann die
Verfigbarkeit einer GUI unter Linux als Entscheidungshilfe angesehen werden.

5.1.3 IDE-Plugin

Neben einer eigenstiandigen Benutzeroberfldche (siehe Abschnitt 5.1.2 auf der vorherigen
Seite) gaben einige Mitarbeiter an, dass sie unter der integrierten Entwicklungsumgebung
(IDE) Eclipse das Subversion-Plugin verwenden. Da sie dieses Plugin als unverzichtbar
ansehen, muss auch fiir alle in Frage kommenden alternativen Systeme ein Plugin fiir die
Entwicklungsumgebung verfiigbar sein.

5.1.4 Betriebssysteme

Fiir die Quellcodeverwaltung selbst ist das verwendete Betriebssystem in der Regel von
untergeordneter Bedeutung, da die Systeme im Allgemeinen fiir die gidngigsten Betriebs-
systeme verfiigbar sind. Auf den Firmenarbeitspldtzen wird Microsoft Windows eingesetzt,
wobei einige Mitarbeiter auch unter Linux arbeiten. Somit miissen alle in Frage kommenden
Versionsverwaltungssysteme sowohl fiir Linux als auch fiir Windows verfiigbar sein.

5.1.5 Teilweises Auschecken

Da die eingesetzten Repositorys gegenwartig sehr grofd sind (mehrere Gigabytes, siehe Kapi-
tel 4 auf Seite 15) ist das vollstandige Herunterladen des Repositorys, wie es bei verteilten
Systemen typisch ist, zu vermeiden. Da von den Mitarbeitern auch von einem Heimarbeits-
platz oder bei einem Kunden auf das Repository zugegriffen wird, ist es unzumutbar, dass
fiir die Aktualisierung des Repositorys Daten heruntergeladen werden, die vom Mitarbeiter
nicht benotigt werden.

Um die fiir die Aktualisierung benotigte Zeit kurz zu halten, muss daher vom Versions-
verwaltungssystem die Moglichkeit geboten werden, nur tatsdchlich benotigte Teile des

18

5.1 K.O.-Kriterien

Repositorys herunterzuladen bzw. zu aktualisieren. Alternativ kann diesem Problem begeg-
net werden, sofern das System mit geringem Aufwand das Aufteilen der Repositorys in
kleinere Teilrepositorys unterstiitzt (wodurch nur jeweils ein kleineres, benotigtes Repository
heruntergeladen oder aktualisiert werden muss). In diesem Fall muss das System jedoch
Funktionen anbieten, die die durch das Aufteilen verlorenen Beziehungen innerhalb des
ehemaligen Repositorys nachbilden.

5.1.6 Externals

Subversion bietet iiber die s.g. ,Externals” die Moglichkeit, Verzeichnisse aus anderen
Repositorys in ein eigenes Repository einzubinden. Andern sich die Daten im eingebundenen
Repository, werden diese im eigenen automatisch ebenfalls aktualisiert. Diese auch als
,Vendor Branches” bekannte Funktion wird daher oft dazu verwendet, Komponenten von
Drittfirmen und Zulieferern in das firmeninterne Repository zu iibernehmen und aktuell zu
halten — so auch bei der Flexis AG.

Von alternativen Systemen wird daher eine Funktionalitdt erwartet, mit der sich die genann-
ten Beziehungen zwischen verschiedenen Repositorys nachbilden lassen.

5.1.7 Export

Die Konfiguration und der Zustand der Arbeitskopie der Repositorys wird bei vielen Versi-
onsverwaltungssystemen meist in besonderen Konfigurationsverzeichnissen oder -dateien
gespeichert. Diese befinden sich oft im Hauptverzeichnis der Arbeitskopie, gelegentlich
aber auch (etwa bei Verwendung eines dlteren Subversion-Clients) in jedem Verzeichnis
der Arbeitskopie. Gerade in letztgenanntem Fall ist das Erstellen einer sauberen Kopie
der Daten, etwa zur Auslieferung oder fiir den Build-Prozess, mit nicht unerheblichem
Aufwand verbunden, wenn diese Konfigurationsverzeichnisse bzw. -dateien manuell aus der
angelegten Kopie entfernt werden miissen.

Um das Erstellen einer Kopie der versionierten Daten zu erleichtern, existiert in Subversion
die Export-Funktion, die zu einer gegebenen Revisions-Nummer eine Kopie der zugehorigen
Daten erstellt. Unter Verwendung dieser Funktion lassen sich zudem diverse Prozess-Schritte
automatisieren. Da dies bei der Flexis AG der Fall ist, miissen alternative Systeme eine
dhnlich einfache Moglichkeit bieten, iiber entsprechende Kommandos oder alternativ tiber
Zusatzprogramme eine solche, saubere Kopie zu generieren.

5.1.8 Benutzerfreundlichkeit

Schon in Abschnitt 5.1.2 auf Seite 17 ist klar geworden, dass viele Benutzer wert auf
eine moglichst simple, verstandliche und grafische Benutzerfithrung legen. Konkret wurde
von vielen Mitarbeitern gefordert, dass die Benutzerfiihrung mindestens so einfach wie
in Subversion sein soll. Das bedeutet z.B. auch, dass gewthnte Arbeitsweisen sich im

19

5 Bewertungskriterien

neuen Werkzeug moglichst dhnlich wiederfinden sollten ohne den Prozess tibermaéfsiig
kompliziert zu machen. Da die Benutzer bisher hauptsichlich tiber den Dateimanager
Windows-Explorer auf die Versionsverwaltung zugreifen, miissen sich auch alternative
Systeme in den Dateimanager integrieren und hiertiber zumindest auf die geldufigsten
Funktionen Zugriff gewdhren. Ebenfalls problematisch ist der Fall, wenn zwar eine grafische
Unterstiitzung existiert, die grofie Mehrheit der Benutzer oder Dokumentation aber die
Arbeit tiber die Konsole forciert.

5.1.9 Konversion von Subversion

Ein logischer Schritt in der Erwdgung eines anderen Versionskontrollsystems ist nattirlich
die Frage, wie gut sich das vorhandene System in das neue umwandeln ladsst. Fehlt diese
Moglichkeit, kimen die Konsequenzen einem Datenverlust gleich — schliefSlich miisste
jede alte Anderung separat in Subversion begutachtet werden oder es kime zu Konflikten
zwischen alt und neu. Allerdings kann auch diese Konversion nicht ganz ideal sein, bspw.
wenn sie nur Teile aus dem alten Repository iibernimmt, z. B. wenn nur die Revisionen, nicht
aber die Commit-Beschreibungen konvertiert wiirden.

20

5.2 Entscheidungskriterien

5.2 Entscheidungskriterien

Bei den in diesem Abschnitt genannten Kriterien handelt es sich um Anforderungen, die von
einigen Mitarbeitern oder Firmenleitung genannt und gewtinscht, jedoch nicht als zwingend
angesehen wurden. Damit erleichtern es diese Kriterien, zwischen zwei Systemen, die beide
die K. O.-Kriterien erfiillen, zu entscheiden.

5.2.1 Lizenz

Beim bisher verwendeten Versionsverwaltungssystem , Subversion” und der dazugehdrigen
Benutzeroberfliche , TortoiseSVN“ handelt es sich um Open-Source-Projekte, wodurch sich
die Anwendungen unentgeltlich einsetzen lassen. Fiir die Mitarbeiter von untergeordneter
Rolle, fiir die Firmenleitung aber umso wichtiger, ist daher die Frage nach der Lizenz, unter
der die Systeme verwendet werden diirfen.

Prinzipiell wurde uns mitgeteilt, dass fiir die Flexis AG sowohl Open-Source- als auch
kommerzielle Systeme in Frage kommen. Aus dem finanziellen Gesichtspunkt wird jedoch
eine Open-Source-Losung bevorzugt. Bei der Untersuchung der kommerziellen Systeme
spielen die Lizenzkosten (Grundkosten und Kosten je Arbeitsplatz, ggf. pro Jahr) daher eine
wichtige Rolle. Durch eine Hochrechnung der anfallenden Kosten bei Ausriistung aller Ar-
beitspldtze (ca. 100 laut Befragung, siehe Abschnitt 4.1 auf Seite 15) mit dem entsprechenden
Versionsverwaltungssystem ergibt sich ein Uberblick iiber den finanziellen Aufwand einer
etwaigen Umriistung. Eine Entscheidung soll sich damit erleichtern lassen.

5.2.2 Dateiberechtigungen

Da besonders unter Linux Dateiberechtigungen eine wichtige Position einnehmen, wird
eine Mitversionierung dieser Berechtigungen von den Mitarbeitern, die auch unter Linux
arbeiten, als wiinschenswert angesehen. Dieser Wunsch bezieht sich dabei hauptséchlich auf
die Speicherung des Executable-Bits, d. h. der Kennzeichnung einer Datei als ausfiihrbare
Anwendung.

5.2.3 Keywords

Uber die Subversion-Funktion ,Keyword Expansion” lassen sich in Text-Dateien (Quellcode
etc.) definierte Schliisselworter durch Informationen aus dem Repository ersetzen. Ein
gangiger Anwendungsfall ist etwa die Verwendung des Schliisselworts ,ID” welches
beim Aktualisieren der Arbeitskopie automatisch durch Informationen tiiber die zugehorige
Datei (u.a. Revisionsnummer der letzten Anderung und Benutzer, der diese Anderung
durchgefiihrt hat) ersetzt wird.

Von den Mitarbeitern wird diese Funktion aufgrund einiger mit einhergehender Probleme
kontrovers diskutiert, da etwa beim automatischen Vergleichen der Daten identische Dateien

21

5 Bewertungskriterien

durch eine unterschiedlicher Ersetzung der Schliisselworte als verschieden markiert werden.
Da diese Funktion dennoch von einigen Mitarbeitern verwendet wird, sollte sie auch von
alternativen Systemen unterstiitzt werden.

5.2.4 File-Lock

Durch das Setzen von File-Locks auf eine Datei kann der Benutzer in Subversion verhindern,
dass diese Datei von einem anderen Benutzer gedndert werden kann. Erst durch eine
explizite Freigabe der Sperre ldsst sich die Datei durch andere Benutzer verdndern. Da diese
Funktion damit dem zugrunde liegenden Gedanken einer Versionsverwaltung, ndmlich dem
gleichzeitigen Arbeiten an den versionierten Daten, darunter eben auch das gleichzeitige
Arbeiten an ein und derselben Datei, widerspricht, wird diese Funktion hauptsdchlich
nur verwendet, wenn ein gleichzeitiges Bearbeiten einer Datei nicht moglich ist. Dies ist
typischerweise bei Bindr-Dateien der Fall.

Da in den Repositorys der Flexis AG nur wenige Bindr-Dateien gespeichert sind und
diese zudem nur selten gedndert werden, wird diese Funktion von keinem der befragten
Mitarbeitern verwendet. Daher wird von den alternativen Systemen das Vorhandensein einer
Lock-Funktion nicht verlangt.

5.2.5 Sammeln bzw. Zwischenspeichern von Commits

Um die in den Repositorys gespeicherten Quelldaten lauffdhig zu halten, sind die Mitarbeiter
bestrebt, durchgefiihrte Anderungen erst hochzuladen, wenn diese moglichst fehlerfrei sind.
Gleichzeit entsteht aber auch der Wunsch, bereits kleinere Anderungen in die Versions-
verwaltung einzuchecken (etwa um nach nicht zufriedenstellenden Anderungen auf einen
definierten Zwischenstand zurtickspringen zu kénnen).

Um beide Seiten vereinen zu konnen, erweist es sich als wiinschenswert, wenn von al-
ternativen Versionsverwaltungssystemen die Moglichkeit geboten wird, das Einchecken
von Anderungen und das finale Hochladen dieser in ein zentrale Repository zu trennen.
Das heifst die Fahigkeit, Commits zwischenzuspeichern und die gesammelten Commits
schliefslich in das Repository einzustellen

Ebenfalls bieten einige Systeme die Moglichkeit, Anderungen in einem eigenen lokalen
Bereich zwischenzuspeichern. Hierdurch ldsst sich weiterhin das lokale Repository bzw. die
Arbeitskopie aktualisieren, ohne das nicht eingecheckte Anderungen verloren gehen oder zu
Konflikten wahrend des Vorgangs fiihren.

Da beide Funktionen die Arbeit mit kleineren lokalen oder trotz kleinerer lokaler Anderungen
erleichtern, kann deren Verfiigbarkeit zur Entscheidungshilfe bei der Wahl eines alternativen
Systems herangezogen werden.

22

5.2 Entscheidungskriterien

5.2.6 Suchen von Changesets

Gelegentlich entsteht der Bedarf, nach einem Changeset zu suchen, in dem eine bestimmte
Anderung an einer Datei vorgenommen wurde. Ein solcher Fall stellt beispielsweise die Suche
nach dem betreffenden Changeset dar, in dem ein bestimmter Fehler in die Anwendung
eingefiigt wurde.

Die befragten Mitabeiter gaben an, dass die Suche einer bestimmten Revision gelegentlich
vorkommt. In diesem Fall bedienen sie sich des Logs der betreffenden Datei und durchsuchen
dieses manuell nach der betreffenden Anderung. Einige Versionsverwaltungssysteme bieten
hierfiir Funktionen an, die den Aufwand bei dieser Suche verringern konnen. Somit handelt
es sich bei dieser Suche um eine wiinschenswerte Funktion.

5.2.7 Effizienz

Auf die Frage nach der Effizienz erhielten wir von den befragten Mitarbeitern meist die
Antwort, dass das bisherige System (d.h. Subversion) ausreichend schnell sei. Dies ldsst
sich z. T. auch darauf zurtickfiihren, da hauptsachlich innerhalb des Firmengebadudes, somit
innerhalb des lokalen Netzes, auf die Repositorys zugegriffen werden. Der durch Subversion
benotigte Speicherplatz stellte ebenfalls kein Problem dar.

Fiir alternative Systeme bedeutet dies, dass ihre Effizienz mindesten auf Subversion-Niveau
sein muss.

23

6 Auswertung

6.1 Bewertungsubersicht

Zu jedem in Frage kommenden Werkzeug wird eine kurze Ubersichtsgrafik dargestellt, die
moglichst schnell reprasentieren soll, ob eine aus Kapitel 5 relevante Anforderung voll erfiillt
(@), gar nicht erfiillt (O) oder teilweise erfiillt (©) wird.

Dabei wurde platzbedingt versucht, die Kategorien durch kleine Symbole und Abkiirzungen
darzustellen. K. O.-Kriterien sind unterstrichen. Die Verweise auf die zugehorigen Bewer-
tungskritieren finden sich hochgestellt dahinter. Eine solche Grafik sieht z. B. so aus:

JIRA | GUI | IDE | OS x| =|© © | rwx | Keywords | # | Suchen | ®

#= e
o | O | OO0 |0]O0O]O0|O0]0O0|0]| O O ol O |0

JIRA steht fiir die Integration in Atlassian JIRA, wie in Abschnitt 5.1.1 beschrieben.

GUI steht fiir die Unterstiitzung einer graphischen Benutzeroberflidche, wie in Abschnitt 5.1.2
beschrieben.

IDE steht fiir das Vorhandensein einer IDE-Integration, wie in Abschnitt 5.1.3 beschrieben.
OS steht fiir die Unterstiitzung der Betiebssysteme, wie in Abschnitt 5.1.4 beschrieben.
=< steht fiir ein teilweises Auschecken von Repositorys, wie in Abschnitt 5.1.5 beschrieben.

x steht fiir die Unterstiitzung einer SVN-externals-artigen Einbindung von Dritt-Repositorys,
wie in Abschnitt 5.1.6 beschrieben.

= steht fiir die Moglichkeit eines sauberen Exportierens, wie in Abschnitt 5.1.7 beschrieben.

© steht fiir die Einschdtzung, dass das Werkzeug sehr benutzerfreundlich ist, wie in Ab-
schnitt 5.1.8 beschrieben.

~ steht fiir die Moglichkeit, ein vorhandenes SVN-Repository in ein Repository des genann-
ten Werkzeugs zu tiiberfiihren, wie in Abschnitt 5.1.9 beschrieben.

© steht fiir eine moglichst giinstige Lizenz, wie in Abschnitt 5.2.1 beschrieben.
rwx steht fiir die Speicherung von Dateiberechtigungen, wie in Abschnitt 5.2.2 beschrieben.

Keywords steht fiir die Unterstiitzung von Keyword Expansion, wie in Abschnitt 5.2.3
beschrieben.

25

6 Auswertung

£ steht fiir die Moglichkeit, Commits lokal zwischenzuspeichern und zu bearbeiten, wie in
Abschnitt 5.2.5 beschrieben.

Suchen steht fiir die Moglichkeit, Commits effizient zu suchen, wie in Abschnitt 5.2.6
beschrieben.

O steht fiir die Effizenz des Werkzeugs, wie in Abschnitt 5.2.7 beschrieben.

6.2 In Frage kommende Werkzeuge

Wie in Kapitel 3 erldutert, befinden sich unzihlige Quellcodeverwaltungs-Systeme auf dem
Markt. In diesem Kapitel werden deshalb nur Systeme vorgestellt die trotz einer Vorauswahl
weiterhin in Frage kommen.

AccuRev SCM ist ein kommerzielles Produkt der AccuRev Inc. Die of-
fizielle Webseite befindet sich auf www.accurev.com/accurev.html. ACCUReV

Bazaar ist ein Open-Source-Projekt und unter der GPL v2-Lizenz
veroffentlicht. Die offizielle Webseite befindet sich auf ba-
zaar.canonical.com.

Darcs ist ein Open-Source-Projekt und unter der GPL-Lizenz veroffent-
licht. Die offizielle Webseite befindet sich auf www.darcs.net.

26

http://www.accurev.com/accurev.html
http://bazaar.canonical.com
http://bazaar.canonical.com
http://www.darcs.net

6.2 In Frage kommende Werkzeuge

Fossil ist ein Open-Source-Projekt und unter der BSD-Lizenz veroffent-
licht. Die offizielle Webseite befindet sich auf www.fossil-scm.org.

Git ist ein Open-Source-Projekt und unter der GPL v2-Lizenz veroffent-
licht. Die offizielle Webseite befindet sich auf www.git-scm.org.

IBM Rational Team Concert ist ein kommerzielles Produkt der IBM Cor-
poration. Die offizielle Webseite befindet sich auf
ibm.com/software/rational /products/rtc/.

Mercurial ist ein Open-Source-Projekt und unter der GPL v2-Lizenz
veroffentlicht. Die offizielle Webseite befindet sich auf mercuri-
al.selenic.com.

Perforce ist ein kommerzielles Produkt der Perforce Software Inc. Die
offizielle Webseite befindet sich auf www.perforce.com.

Plastic SCM ist ein kommerzielles Produkt von Codice Software. Die
offizielle Webseite befindet sich auf www.plasticscm.com.

g

Y

<\
A\\.\\" //
FOSSIL

@ git

mercurial

PERFORCE

Version everything.

@ plasticscm.

codice:

27

http://www.fossil-scm.org/
http://www.git-scm.org
http://ibm.com/software/rational/products/rtc/
http://mercurial.selenic.com
http://mercurial.selenic.com
http://www.perforce.com
http://www.plasticscm.com/

6 Auswertung

6.2.1 AccuRev SCM

AccuRev SCM ist ein kommerzielles Versionsverwaltungssystem der AccuRev Inc. Es wird
seit 2002 stetig weiterentwickelt und von namhaften Firmen wie der NASA, Siemens oder
Sony eingesetzt.

JIRA | GUI | IDE | OS

=@ © | rwx | Keywords | § | Suchen | ®
O | e O

[] |] |] O o

= | X ~
® o | o6 o o o o

System

Bei AccuRev SCM handelt es sich um ein kommerzielles Produkt, fiir dessen Einsatz eine
kostenpflichtige Lizenzierung erforderlich ist [Acca]. Pro Nutzer (Lizenz) fillt eine einmalige
Gebiihr in Hohe von 1.151,81 € ($1.500) an. Auf 100 Benutzer hochgerechnet entspricht dies
Kosten in Hohe von ca. 115.181 €. Die Integration von AccuRev in JIRA kostet pro Server

764,03 € ($995).

Im Gegensatz zu den meisten anderen vorgestellten Systeme verfolgt AccuRev, wie Subver-
sion, den zentralen Ansatz. Die gesamte Kommunikation geschieht iiber einen zentralen
Server. Trotzdem ist es moglich in kleinen Teams in einer Kopie, getrennt vom Rest des
Repositorys, in sogenannten Streams zu arbeiten und anschliefSend die Ergebnisse wieder
im Haupt-Stream zu integrieren. Aulerdem kann man lokale Anderungen mit dem Server
synchronisieren ohne diese einzuchecken, damit ist beispielsweise das Weiterarbeiten an
einem anderen PC moglich (Private Checkin).

AccuRev SCM bietet fiir JIRA ein Plugin namens ,AccuSync” an, mit welchem die Versions-
verwaltung direkt in JIRA integriert werden kann.

Auflerdem gibt es sowohl fiir das Kontextmenii des Explorers unter Windows (dhnlich zu
,, TortoiseSVN”) als auch fiir Eclipse eine Erweiterung, die das Arbeiten mit dem Reposi-
tory sehr einfach moglich machen soll. Das Eclipse-Plugin wird direkt von AccuRev SCM
angeboten und ist kostenlos.

Das Herzstiick des AccuRev-Versionsverwaltungssystem ist der eigenstandige Client. Mit
diesem konnen alle Funktionen, die das AccuRev-System beherrscht, ausgefiihrt werden.
Trotz allem unterstiitzt AccuRev auch das Arbeiten mit der Konsole.

Funktionsumfang

AccuRev Inc. bewerben ihr Produkt als leistungsstarkes Konzept zur mehrstufigen kontinuier-
lichen Integration. Damit ist gemeint, dass AccuRev SCM die Moglichkeit bietet, Anderungen
am Quelltext tiber mehrere Ebenen zu verwalten und so je nach Entwicklungsfortschritt
verschiedene Repositorys zu nutzen.

28

6.2 In Frage kommende Werkzeuge

Aufserdem bietet es nativ die Unterstiitzung zum einfachen lokalen Branchen und Mergen.
Das bedeutet, dass man lokal Anderungen vornehmen kann und diese dann nach ausgiebigen
Tests wieder zuriick in den Hauptzweig des Repositorys mergt.

Laut Webseite ist auch eine sehr komfortable Verwaltung mehrerer Versionen mog-
lich [Accb].

Mit AccuRev ist durch den zentralen Ansatz auch ein teilweises Auschecken des Repositorys
moglich.

Es ist nur moglich das Execution-Bit der Dateiberechtigungen zu setzen, alle anderen
Berechtigungseinstellungen werden vom AccuRev-System ignoriert. Aufierdem wird eine
Keyword-Expansion wie in Subversion unterstiitzt.

Der Export einer bestimmten Revision ist nach dem Checkout der Revision durch einfaches
Kopieren des Ordners moglich. Eine bindre Suche nach Revisionen ist hingegen nicht
moglich.

Einen direkten Externals-Support wie Subversion bietet AccuRev nicht. Es kann aber mit ein-
fachen symbolischen Links, die AccuRev mit in das Repository einchecken kann, gearbeitet
werden um ein sehr dhnliches Verhalten zu erreichen.

29

6 Auswertung

6.2.2 Bazaar

Bei Bazaar, auch kurz bzr, handelt es sich um ein frei verfiigbares, unter der GPL lizenziertes,
verteiltes Konfigurationsverwaltungs-Werkzeug, das von Canonical Ltd. geférdert wird.

JIRA | GUI [IDE |OS | =< | X | = | © | ~» | © | rwx | Keywords | £ | Suchen | ®
© o © e O e & o o o O o o ({ [
System

Als GPL-Werkzeug ist Bazaar frei verfiigbar. Bazaar selbst wirbt mit Anpassungsfdhigkeit an
verschiedene Arbeitsmodelle, Effizienz, Flexibilitit und besonderer Benutzerfreundlichkeit.
Zahlreiche Features werden in Bazaar tiber Plugins realisiert. Trotz der Tatsache, dass Bazaar
u. a. mit seiner Community wirbt und schon seit langerer Zeit existiert, soll sich ein Buch
dartiber nur ,in Entwicklung” befinden. [Bzrc]

Bazaar steht fiir diverse Betriebssysteme zur Verfiigung, u.a. fiir Linux und fiir Win-
dows [Bzra]. Es gibt auch ein Plugin fiir Eclipse, allerdings kann dies zu einem Absturz von
Eclipse fithren, wenn auf der Kommandozeile Authentifizierungsinformationen abgefragt
werden [Bzrh]. Es gibt eine Tortoise-GUI namens TortoiseBzr, die sich dhnlich wie Tortoi-
seSVN verhdlt [Bzri]. Dazu kommt auch ein JIRA-Plugin [Bzrg], dessen Dokumentation
allerdings eher sparlich ausféllt und das seit 2008 auch nicht mehr weiterentwickelt wurde.

Mit Hilfe von bzr-svn [Bzrf] lassen sich Subversion-Repositorys von Bazaar aus bearbeiten,
so als wiirde es sich um Bazaar-Repositorys handeln. Ebenso lassen sich damit auch SVN-
Repositorys nach Bazaar konvertieren.

Funktionsumfang

Als verteiltes Versionskontrollsystem besitzt jeder Entwickler in Bazaar ein lokales Repository,
in das er zunéachst committen kann. Die Anderungen miissen dann gesondert je nach Kolla-
borationsstil entweder an die Repositorys anderer Entwickler oder das Haupt-Repository
weitergeleitet werden. Dafiir ist ein teilweiser Checkout nicht moglich. [Bzra]

Bazaar kennt ein zu Subversion vergleichbares Export-Kommando, mit dem Teile des Re-
positorys in beliebiger Form (Verzeichnisstruktur oder Archiv) exportiert werden konnen.
Als Dateiberechtigung wird nur das Execution Bit, also die Erlaubnis zur Ausfiihrung,
mitversioniert. [Bzra]

Keyword-Expansion [Bzre], Externals [Bzrd] und Bisect [Bzrb], also die schnelle, bindre Suche
nach einem bestimmten Commit, stehen in Bazaar ebenfalls als Plugins zur Verfiigung.

30

6.2 In Frage kommende Werkzeuge

6.2.3 Darcs

Darcs, hierbei handelt es sich um ein Akronym fiir ,Darcs adavanced revision control
system”, zdhlt zu den verteilten Systemen.

JIRA [GUI [IDE [0S [= [x [= | ©

© | rwx | Keywords | § | Suchen | ®
L

= e
O | © | @ e 0|0 | e | 0|0 O O e o | O

System

Darcs kann fiir alle géngigen Betriebssysteme (darunter auch Windows und Linux) von
der Homepage heruntergeladen werden [Dara]. Hierin enthalten ist allerdings nur der
Kommandozeilen-Interpreter. Die Kommandos die zur Bedienung des Systems benotigt
werden, wurden moglichst einfach und intuitiv gehalten: Werden den Kommandos nicht
alle benotigten Parameter {ibergeben, so wird der Benutzer interaktiv abgefragt, wie das
Kommando ausgefiihrt werden soll (beim Einchecken von Anderungen wird der Benutzer
bei fehlender Angabe von Parametern etwa fiir jede gednderte Datei gefragt, ob er diese mit
Einchecken mochte). Da es sich um ein Open-Source-Projekt handelt, fallen fiir die Nutzung
keine Gebiihren an.

Zur Integration in den Windows Explorer und als eigenstandige Benutzeroberflache ldsst
sich gegenwirtig lediglich das Open-Source-Projekt , TortoiseDarcs” [HT] finden, bei dem
die dhnlich lautende CVS-Oberfldche tibernommen und an Darcs angepasst wurde. Die
Benutzeroberfldche integriert sich in den Windows Explorer und dhnelt im Bedienkonzept der
in der Firma verwendeten Oberflache , TortoiseSvn”. Zwar steht fiir Darcs auf der Homepage
ein eigenes Wiki und eine ausfiihrliches Handbuch [Rou] zur Verfiigung, die Beschreibungen
orientieren sich jedoch ausschliefillich an der Verwendung der Kommandozeile. Da die
neuste Veroffentlichung der grafischen Oberfliche zudem aus dem Jahr 2006 stammt, ist
davon auszugehen, dass diese mit der Weiterentwicklung von Darcs nicht schritthalten
wird. Fiir Eclipse 3.x existiert zur Integration von Darcs das Plugin ,EclipseDarcs” [FG],
das im Gegensatz zur zuvor erwdhnten Benutzeroberfliche eine hohere Entwickleraktivitat
aufweist.

Die Suche nach einem Darcs-Plugin fiir das Projektmanagementsystem JIRA im Atlassian
Marktplatz [Atlc] sowie eine allgemeine Internetsuche nach eben diesem ergab keine Treffer
— eine Integration des Versionsverwaltungssystems ist damit ohne Weiteres nicht moglich.

Darcs hebt sich insbesondere durch seinen internen Aufbau von den meisten Versionsver-
waltungssytemen ab: Diese speichern die Anderungen meist intern in einem Baum. Werden
Anderungen in das System eingecheckt, so wird dem Baum ein neuer Eintrag mit den
betreffenden Anderungen angehingt. Hierdurch stehen alle Anderungen, und damit auch
die gespeicherten Versionen, in einer chronologischen Folge. Darcs hingegen fufit auf der
Patch-Theorie [Rou]. Fiir jede eingecheckte Anderung wird eine Patch-Datei generiert, in
der die durchgefiihrten Anderungen gespeichert werden. Somit existiert fiir jeden Commit,
in Darcs als record bezeichnet, ein eigener Patch. Die Reihenfolge des Eincheckens selbst, d. h.

31

6 Auswertung

die chronologische Abfolge, wird vom System nicht gespeichert. Damit existieren zwischen
den verschiedenen Patches per se keine zeitliche Abhiangigkeiten.

Wurden die Anderungen via record eingecheckt, kénnen diese an ein anderes (z. B. zentrales
Repository) tibertragen werden (push). Patches, die auf einem externen Repository liegen,
jedoch noch nicht in das eigene, lokale Repository tibernommen wurden, lassen sich mit
dem Befehl pull in dieses herunterladen und damit die Arbeitskopie aktualisieren. Da es
sich somit um ein verteiltes Versionsverwaltungssystem handelt, ist das Einchecken von
Anderungen und das Zurverfiigungstellen dieser von Haus aus getrennt.

Da wie eingangs beschrieben zwischen den Patches keine Reihenfolge definiert ist, wer-
den von Darcs wihrend des Herunterladens die Abhdngigkeiten zwischen den einzelnen
Patches berechnet um sicherstellen zu konnen, dass alle Dateien korrekt wiederhergestellt
werden. Dies fiihrt dazu, dass die Patches in einer Reihenfolge angewendet werden, die der
Reihenfolge des Eincheckens nicht mehr zwingend entspricht.

Funktionsumfang

Dank des patch-zentrierten Aufbaus und dem Nicht-Vorhandensein einer strikten Reihenfol-
ge zwischen den Patches bietet Darcs im Vergleich zu anderen Quellcodeverwaltungssyste-
men einige besondere Funktionen, die die tdgliche Arbeit erleichtern kénnen. Gleichzeitig
kann die durch die Patches entstehende Komplexitdt zu Problemen fiihren. Diese Aspekte
sollen nachfolgend, vor allem in Bezug auf die Bewertungskriterien (siehe Kapitel 5 auf
Seite 17), ndher betrachtet werden.

Darcs bietet beim initialen Kopieren bzw. Herunterladen eines Repositorys auf das lokale
System mit dem Kommando get die Moglichkeit an, eine ,lazy copy” des Repositorys
zu erstellen [Ho11]. Hierbei werden durch Angabe des Parameters lazy nur diejenigen
Patches aus dem externen Repository geladen, die zum Generieren einer Arbeitskopie mit
den aktuellsten Daten benttigt werden. Werden weitere Patches bendtigt (z. B. um einen
dlteren Arbeitsstand einer Datei wiederherzustellen), werden diese vom System bei Bedarf
automatisch heruntergeladen.

Bereits aus dem internen Aufbau heraus stehen die s. g. spontaneous Branches zur Verfiigung.
Dabei wird der Namen der Patches (d. h. die beim Record angegebene Beschreibung) zur
Generierung von Branches verwendet [Ho11]. Um die Funktion nutzen zu koénnen, muss die
Benennung nach einem bestimmten Schema erfolgen, wobei alle zusammengehorigen Pat-
ches (alle Patches, die einen Brach reprasentieren sollen) etwa mit dem selben Namensanfang
beginnen miissen. Uber einen zusitzlichen Parameter kann nun beim Aktualisieren des Re-
positorys (pull) oder beim Ubertragen der Daten an ein externes Repository (push) angegeben
werden, dass ausschliefllich Patches mit einem bestimmten Namensanfang heruntergeladen
und auf die Arbeitskopie angewendet bzw. hochgeladen werden sollen.

Beide Funktionen liefSen sich etwa wie folgt anwenden, um dem Problem der bei der Flexis
AG verwendeten, sehr grofien Repositories zu begegnen: Soll das Repository vollstindig auf
einen Arbeitsplatz tibertragen werden, um mit einer vollstandige Arbeitskopie arbeiten zu

32

6.2 In Frage kommende Werkzeuge

konnen, so lasst sich mit einem ,lazy-get” die zu iibertragende Datenmenge reduzieren, weil
nicht die vollstandige Historie heruntergeladen werden muss. Werden zudem alle Patches
konsequent so benannt, dass deren Name stets mit dem Namen bzw. Kiirzel des Teilprojekts
beginnen, zu dem sie gehoren, ldsst sich die zu iibertragende Datenmenge weiter reduzieren,
wenn nur die Daten zu einem bestimmten Teilprojekt benotigt werden. Hierbei gentigt
es dann, beim Aktualisieren bzw. beim Ubertragen des Repositories, eben diesen Namen
anzugeben, wodurch nur die nétigsten Patches heruntergeladen werden.

Aufgrund der nicht vorhandenen Chronologie erlaubt Darcs es, Patches und somit die Daten
aus verschiedenen Repositorys in ein eigenes Repository zu laden. Bei diesem Vorgang
wird standardmaéfiig die Vereinigungsmenge der Patches gebildet, wodurch alle Daten der
verschiedenen Repositorys gemeinsam zur Verfiigung stehen. Dieses Verfahren lasst sich
damit zur Einbindung von Fremdrepositorys (also Externals bzw. Vendor Branches, siehe
Abschnitt 5.1.6 auf Seite 19) verwenden. Neben der Vereinigungsmenge lasst sich alternativ
auch die Schnitt- oder die Komplementdrmenge bilden (siehe auch die Beschreibung des pull
Kommandos in [Rou]). Zur Einbindung externer Repositpories sind diese beiden allerdings
unbedeutend. Damit externe Repositories eingebunden werden kénnen, miissen diese ver-
standlicherweise als Darcs-Repositories gefiihrt werden. Hierfiir bietet sich das Open-Source
Tool , Tailor” an, mit dem sich Repositorys verschiedener Systeme ineinander konvertieren
lassen [Tai]. Liegt das externe Repository somit nicht als Darcs-Repository vor, muss dieses
zundchst mittels Tailor in ein Darcs Repository umgewandelt werden. Zwar lésst es sich
nun in das eigene Repository einbinden, durch die manuell durchgefiihrte Konvertierung
werden am original Repository durchgefiihrte Anderungen spéter aber nicht iibernommen,
da hierfiir eine erneute Konvertierung notig wiare. Sollen Anderungen also automatisch
tibernommen werden, so kann eine Losung darin bestehen, die Konvertierung regelméfig
automatisch zu wiederholen und das konvertierte Repository auf einem eigenen Server zur
Einbindung bereitzustellen.

Da es sich um ein verteiltes Versionsverwaltungssystem handelt, ist fiir das Einchecken
von Anderungen (also das Generieren von Patches) und das Betrachten der Historie ohne
Netzwerkkommunikation moglich. Dadurch ist Darcs im Vergleich zu Subversion bei den
haufigsten Anweisungen und bei kleineren Repositorys oft schneller. Bei grofseren Reposito-
rys schneidet Darcs hingegen, insbesondere wenn die Kommunikation zwischen Subversion
Client und Server iiber eine schnelle Netzwerkverbindung stattfindet, schlechter ab [Darb].
Beim Herunterladen und Mergen von Anderungen (also beim Zusammenfiihren mehrerer
Patches, in denen Anderungen an einer gleichen Datei vorgenommen wurden) iiber das
pull-Kommando kam es insbesondere vor der Version 2 hiufig zu einem von der Anzahl
der Konflikte abhéngigen exponentiellen Laufzeitverhalten. Das Durchfiihren der Aktuali-
sierung konnte dabei {iber eine Stunde dauern [Thr]. Dieses Problem konnte mit Darcs-2
abgeschwicht werden, wo dieses Verhalten seltener zu Tage tritt. Gédnzlich verhindern lies es
sich jedoch nicht [Darc].

Mit dem dist Kommando lassen sich der aktuelle Zustand oder dltere Zustiande des Re-
positorys in ein tar-Archive exportieren. Nicht eingecheckte Anderungen und das Darcs-
Konfigurationsverzeichnis werden dabei nicht tibernommen.

33

6 Auswertung

Das Setzen von Dateiberechtigungen auf einzelne Datei wird von Darcs nicht unterstiitzt.
Ebenso wird das automatische Ersetzen von Schliisselwortern (Keyword Expansion) nicht
unterstiitzt.

Mit dem Kommando trackdown stellt Darcs die Moglichkeit zur Verfiigung, die Patches
des Repositorys nach einer bestimmten Anderung zu durchsuchen. Durch Angabe des
Parameters bisec fithrt das System statt der linearen Suche eine binédre Suche durch, womit
sich die benoétigte Zeit reduzieren lasst. Das Kommando selbst wurde absichtlich recht
einfach gehalten: Fiir die Suche wird dem Kommando fiir den benétigten Vergleich lediglich
ein giiltiger Kommandozeilenbefehl oder ein Skript tibergeben. Die Suche wird nun solange
durchgefiihrt, bis der erste Patch gefunden wurde, bei der der Befehl bzw. das Skript einen
Erfolg zuriickmeldet. Um z. B. die letzte Version der Datei ,,Record.lhs” zu finden, in der
diese noch den Eintrag , FIXME” enthalt, konnte das Kommando in der Form darcs trackdown
"grep FIXME Record.lhs” verwendet werden. Dieses und weitere Beispiele finden sich im Darcs
Benutzerhandbuch [Rou].

Die Konvertierung eines Subversion-Repositorys nach Darcs ist nur tiber die Zusatz-
Anwendung , Tailor” (Open-Source) moglich. Bei der Konvertierung scheint Tailor jedoch
Probleme mit Dateien und Verzeichnissen zu haben, die mit dem Subversion-Kommando
move verschoben wurden. In einem Wiki-Artikel [Dard] wird beschrieben, wie die Konvertie-
rung durchgefiihrt und dieses Problem umgangen werden kann.

34

6.2 In Frage kommende Werkzeuge

6.2.4 Fossil SCM

Das Versionsverwaltungssystem Fossil ist ein verteiltes System welches von D. Richard
Hipp, der auch Autor der SQLite-Datenbank ist, entwickelt wurde. Fossil vereint neben der
Versionsverwaltung auch einen Bug-Tracker und eine Wiki-Software.

JIRA | GUI | IDE | OS = © © | rwx | Keywords | § | Suchen | ®

= | X oad
O | @€ | O @ 0O]0O|]0|0C| e e e O e e | o

System

Fossil ist unter der BSD Open-Source-Lizenz veroffentlicht und kann auf allen géangigen
Betriebssystemen genutzt werden. Fossil bietet neben dem Modul der Versionsverwaltung
einen Webservice an der das Repository direkt tiber das HTTP-Protokoll verfiigbar macht.
So kann ein Server sehr einfach mit nur einem Befehl eingerichtet werden. Die Konfiguration
des Repositorys geschieht dann iiber eine Weboberfldche.

Weitere Features, die Fossil von anderen Versionsverwaltungssystemen wie Git abhebt, sind,
dass in Fossil direkt ein Bug-Tracker integriert ist, der auch tiber den Webservice erreichbar
ist. Auflerdem ldsst sich auch ein Wiki-System, das in das Versionsverwaltungssystem
integriert ist, tiber den Webservice anzeigen.

Fossil bietet im Gegensatz zu Subversion kein zentrales Repository an, sondern erlaubt es
dem Nutzer ein eigenes Repository aufzubauen, das dann in ein anderes Repository gepusht
werden kann. Unter Pushen versteht man das Ubertragen des eigenen Entwicklungsstand in
ein anderes Repository. Nach einem abgeschlossenen Push sind die beiden Repositorys dann
auf dem gleichen Stand. Dadurch bietet sich im Vergleich zu Subversion die Moglichkeit
iiber mehrere Instanzen eine Anderung von einem Test-Repository in ein Repository mit
stabilen Versionen zu tibertragen.

Fossil erlaubt dadurch auch kein , Auschecken” mehr, sondern nur das komplette Klonen
eines bestehenden Repositorys. Dadurch ist auch kein partieller Checkout moglich, was aber
durch eine laut [Fosc] sehr effiziente Kompression des Repositorys kompensiert werden
kann.

Fossil bietet durch den direkt integrierten Bug-Tracker kaum Anbindungen an andere Ticket-
Systeme, das betrifft auch das nicht vorhandene JIRA-Plugin. Eine Integration in Eclipse
bietet Fossil auch nicht, dafiir gibt es eine GUI, die eine sehr einfache Verwaltung des
Fossil-Repositorys erlauben soll [Fosb]. Aufserdem gibt es den bereits erwdhnten Webservice,
der auch eine sehr umfangreiche Verwaltung des Repositorys zuldsst.

Laut Internetseite wird Fossil von einigen grofieren Projekten wie SQLite und TCL genutzt.
Die Repositorys dieser Projekte sind mehrere GB grofs und sollen der Webseite nach trotzdem
noch sehr performant laufen, was dann die Anforderungen an die Effizienz erfiillt.

35

6 Auswertung

Eine weitere gute Funktion, die Fossil bietet, ist die automatische Synchronisation des
Repositorys mit einem anderen Repository. So werden mogliche Konflikte friihzeitig erkannt
und konnen dadurch einfacher behoben werden.

Die Speicherung des Fossil-Repositorys wird in einer SQLite-Datenbank vorgenommen.
Dies erlaubt atomare Anderungen (Commits) und durch automatische Checks wird eine
unbemerkte Korrumpierung der Datenbank verhindert.

Funktionsumfang

Fossil bietet die Moglichkeit, das Execute-Flag der Dateiberechtigungen im Repository zu
speichern. Weitere Flags der Dateien werden aber nicht iibernommen.

Fossil bietet keine Export-Funktion, um einzelne Revisionen zu exportieren. Es kann aber
einfach der aktuelle Checkout kopiert werden, da im Vergleich zu alten Subversion-Versionen
keine Ordner oder Ahnliches angelegt werden. Eine Keyword-Expansion ist hingegen nicht
vorhanden und Fossil bietet daftiir auch keinen Alternativ-Mechanismus.

Fossil bietet auf der Kommandozeile den Befehl bisect. Mit dessen Hilfe kann man eine
bindre Suche starten, um fiir eine gesuchte Anderung einen Commit zu finden, in der zum
Beispiel ein Bug zum ersten Mal aufgetreten ist. Damit kann in logarithmischer Zeit der
Commit gefunden werden, in dem das Verhalten zum ersten Mal aufgetreten ist.

Um ein bestehendes Subversion-Repository nach Fossil zu portieren benétigt es einen
Zwischenschritt tiber ein Git-Repository, da Fossil von Haus aus nur aus Git importieren
kann. Des Weiteren werden der Anleitung nach auch nur ,einfache” Subversion-Repositorys
unterstiitzt [Fosa].

36

6.2 In Frage kommende Werkzeuge

6.2.5 Git

Das verteilte Versionsverwaltungssystem Git oder auch git wurde urspriinglich von Linus
Torvalds fiir die Entwicklung des Linux-Kernels geschrieben, wobei das Hauptaugenmerk
auf Geschwindigkeit lag.

JIRA | GUI | IDE | OS

= | Q © | rwx | Keywords | # | Suchen | ®
(DA D) L

D) O o [] |]

= | X ~
® 6 | 6 o O o [

System

Als Linux-Werkzeug ist Git unter einer Open-Source-Lizenz verfiigbar. Git ist prinzipiell
nur verteilt, ermoglicht aber verschiedene Workflows. Zum Beispiel ldsst sich auch verteilt
ein ,Subversion-Style Workflow” mit einem einzigen zentralen Repository nachbilden,
aber auch eine hierarchische Staffelung von verschiedenen Repositorys ist moglich. Ein
,Integration Manager” kann z. B. nur bestimmte Anderungen in ein ,hochheiliges’ Repository
iuibernehmen. [Gita]

Dabei tritt ein sehr markantes Merkmal von Git zu Tage: Es gibt kein ,, Auschecken” im
herkommlichen Sinne mehr, die einzige Moglichkeit besteht darin, das Repository zu klonen.
Da somit ein lokales Git-Repository immer eine vollstindige Kopie mit allen Commits
beinhaltet, ist auch kein partielles Auschecken moglich. Allerdings wird dies von Git selbst
explizit als Feature gewertet, da somit bei jedem Entwickler stets ein vollstandiges Backup
bereitsteht. Ebenso sollen ganze Git-Repositorys durch Kompression nicht erheblich grofier
sein als ein ausgechecktes Subversion-Repository. [Gita]

Git ist auf vielen Betriebsystemen verfiigbar, wozu auch die geforderten zdhlen. Es existieren
diverse GUIs fiir den Umgang mit Git, darunter auch TortoiseGit [Tora], das TortoiseSVIN
nachempfunden ist. Mit EGit [EGi] existiert auch ein Eclipse-Plugin fiir Git. Es sollte aller-
dings erwdhnt werden, dass sich, bedingt durch die Herkunft, z. B. viele Erklarungen zu
Git auf Konsolenein- und ausgaben beziehen. Atlassian bietet selbst ein Werkzeug fiir die
direkte Verwaltung von Git fiir ,Enterprise-Teams” an, welches fiir 100 Lizenzen etwa 6000
US-$ kostet [Atla]. Es gibt allerdings auch sowohl kostenfreie [JIRb] als auch kommerziell
betreute [JIRa] Addons fiir JIRA, hier ligen die Kosten um 1000 US-$.

Git versteht sich selbst als ein Versionskontrollsystem, in dem Branchen und Mergen be-
sonders einfach und schnell funktioniert. Dadurch soll es im Prinzip erleichtert werden,
Anderungen auszuprobieren ohne mit Konsequenzen fiir die Lauffihigkeit des Projekts
rechnen zu miissen. Hierfiir unterstiitzt Git fiinf verschiede Merge-Strategien, die gezielt
konfiguriert werden konnen. Weiterhin stechen zwei Features von Git stechen dabei hervor:
Es gibt zunéchst eine sogenannte Staging Area, in der ein Commit nach Belieben zusammen-
gebaut und gedndert werden kann, bevor er letztendlich tatsdachlich durchgefiihrt wird. Es
muss nicht mal ein vollstandiger Commit durchgefiihrt werden, sondern die Anderungen
konnen auch in einen lokalen Stash zwischengespeichert werden, um temporar zuriick zum
Originalzustand zu gelangen und z. B. erst einmal andere Anderungen zu begutachten. Auch

37

6 Auswertung

wenn er durchgefiihrt wird, gelangt ein Commit auch nur in das lokale Repository, und muss
erst mittels pushen, in ein fremdes Repository, oder pullen, von einem anderen Repository
aus, verteilt werden. [Gita]

Git kennt keine Revisionen, sondern nur Commits, die auch nicht inkrementell nummeriert
werden, sondern iiber ihre Hashsumme identifiziert werden. Dies hat mehrere Vorteile, wie
z.B. wird dadurch die Integritdt der Daten sichergestellt: Der Repository-Inhalt kann nicht
korrumpiert werden ohne, dass sich dabei die Commit-Hashes @ndern. Dabei basiert der
Hash nicht nur auf dem Inhalt, der sich im Repository befindet, sondern auch auf allen
vorangegangenen Commits. [Gita]

Da Git fiir den Linux-Kernel entwickelt wurde, der selbst kein kleines Repository darstellt,
war die Geschwindigkeit, mit der Git arbeitet, ein zentraler Aspekt. Durch die , Trennung”
der Repositorys wird die Ubertragung von Daten im Vergleich zu Subversion minimiert,
womit viele Operationen wesentlich schneller durchgefiihrt werden kénnen, als wenn die
Informationen erst vom zentralen Server abgerufen werden miissten. Git wirbt allerdings
damit, dass fast alle Operationen schneller sind als in Subversion — bis auf das initiale
Klonen. [Gita]

Funktionsumfang

Fiir einen detaillierteren Einstieg in Git empfiehlt sich ein Blick in das kostenfrei online
verftigbare ,Pro Git” [Chaog]. Dort wird auch der Befehl bisect erkldrt, mit dessen Hilfe
eine bindre Suche nach einem bestimmten Commit durchgefiihrt werden kann, in der bspw.
erstmals ein Bug aufgetreten ist. Dabei ist es nur notig, den Suchraum einzugrenzen und
eine logarithmische Anzahl von Commits als ,gut” oder ,schlecht” zu bewerten, damit Git
automatisch den Commit ausfindig macht, in dem das schlechte Verhalten zum ersten Mal
aufgetreten ist.

Ebenfalls findet sich dort eine Erlduterung von Externals fiir Git, die dort Submodules
heifSen und nativ unterstiitzt werden. Dabei wird der exakte Commit des Submoduls im
iibergeordneten Repository mitgespeichert, sodass sich die Umgebung exakt wiederherstellen
lasst. Um ein fremdes Repository einbinden zu konnen, muss dieses als Git-Repository
angeboten werden. Daher ist es ggf. notig, die , Git-Version” eines nicht in Git verwalteten
Repositorys nach dessen Konvertierung an einem zentralen Punkt anzubieten [Sta].

Etwas anders sieht es bei der Keyword-Expansion aus: Diese wird von Git nicht unterstiitzt,
da Git Dateien wie Commits tiber einen eindeutigen Hash identifiziert. Git bildet den Hash
einer Datei aber vor dem Commit, wobei der Commit-Hash auch wieder vom Hash der
Datei abhdngt. Das prinzipielle Verhalten ldsst sich aber mit Git Attributes nachbilden, wobei
hier wahrend des Aus- bzw. Eincheckens die Information hinzugefiigt bzw. geloscht werden.
Somit werden Anderungen nicht mitversioniert, aber die tatsichlich verwendeten Dateien
enthalten niitzliche Informationen. [Chaog]

Es existiert keine beliebige Export-Funktionalitdt in Git. Es gibt allerdings diverse Konso-
lenbefehle und Skripte, die dhnliche Ergebnisse erzielen. TortoiseGit unterstiitzt die native

38

6.2 In Frage kommende Werkzeuge

Export-Funktion, mit deren Hilfe die gesamte ausgecheckte Verzeichnisstruktur mit Dateien
in ein ZIP-Archiv exportiert werden kann.

Git erlaubt nur zwei Arten von Datei-Berechtigungen: Entweder Lesen und Schreiben fiir
den Besitzer, Nur-Lesen fiir alle anderen (,,644“"), oder fiir jeden zusatzlich noch ausfiihren
(,,755"). Dabei werden vorhandene Berechtigungen immer in eine der beiden umgewandelt.

Mit git-svn unterstiitzt Git die Konversion eines Subversion-Repositorys. Eine umfangreiche
Erkldrung zur Konversion findet sich nicht direkt, aber z.B. in Internet-Blogs [Alb1o].
Allerdings unterstiitzt git-son auch den bidirektionalen Fluss von Anderungen von und zu
Subversion und kann somit selbst quasi als Subversion-Client genutzt werden [Chaog]. Dies
wiirde auch ein einfacheres Testen und eine reibungsiarmere Ubergangsphase ermoglichen,
da Git so schrittweise angetestet bzw. eingefiihrt werden kénnte, ohne, dass ein vorhandenes
Repository kopiert und ein neuer Server aufgesetzt werden miisste.

Ichmod-Notation, siehe z. B. [chm]

39

6 Auswertung

6.2.6 IBM Rational Team Concert

Bei IBM Rational Team Concert handelt es sich um ein kommerzielles kollaborations- und
integrationsunterstiitzendes Werkzeug. Die Version ,RTC Developer” bietet dabei eine
verteilte Quellcodeverwaltung.

JIRA | GUI | IDE | OS

=<|X|=|©|~»|©|rwx | Keywords | § | Suchen | ®
[] o |] ® & O O | e|e O D) O L O ?

System

IBM Rational Team Concert steht fiir Windows und Linux zur Verfiigung und unterstiitzt
auch Eclipse. Ebenso ldsst sich JIRA bidirektional integrieren. [IBM]

Viele Informationen zu Rational Team Concert finden sich auf den Hilfeseiten von IBM oder
bei Jazz [Jaz], auf dem Rational Team Concert aufsetzt.

Rational Team Concert wird tiber den Browser oder IDE-Plugins gesteuert, sodass hier auch
eine benutzerfreundliche GUI zur Verfiigung steht. Es ist moglich, ein Subversion-Repository
fiir Rational Team Concert zu tibernehmen. [Jaz]

Laut Angaben der IBM-Webseite kostet eine Einzelplatzlizenz zwischen 2000 und 5000 US-$,
was hochstwahrscheinlich {iber dem Investitionsrahmen von Flexis liegen ditirfte. Daftir
handelt es sich um ein volles Kollaborationswerkzeug mit seinen eigenen Funktionen, die
aber weder Bestandteil dieser Analyse waren noch zum Prozess von Flexis passen miissen.

Funktionsumfang

Rational Team Concert ermoglicht es, Anderung aus dem aktuellen Bearbeitungsstand,
der Sand Box, zundchst in einem eigenen Repository Workspace zu speichern, das allerdings
auch auf dem Server gespeichert wird. Von dort aus kann dann der Code an einen Stream
tibergeben werden, sodass ihn andere bearbeiten konnen. Streams sind mit Branches aus den
gangigen Versionskontrollsystemen vergleichbar. Ebenso definiert Rational Team Concert
einige weitere eigene Begriffe wie Baseline/Snapshot fiir Tags und Change Set fiir Revisi-
on. [Jaz]

Es ist fiir Entwickler moglich, nur gewisse Komponenten zur Bearbeitung zu ,laden”,
was sinngeméfS bedeutet, dass Repositoryinhalte teilweise ausgecheckt werden kdnnen.
Eine Unterstiitzung fiir ein , Externals”-artiges Verhalten scheint zwar in Planung zu sein,
aber derzeit nicht zu existieren. Keyword Expansion wird nicht unterstiitzt. Beziiglich der
Berechtigungen erfasst Rational Team Concert nur das Benutzer-Executable-Bit. [Jaz]

40

6.2 In Frage kommende Werkzeuge

Zum effizienten Suchen von bestimmten Anderungen und zum teilweisen Export lieen sich
keine vertrauenswiirdigen Quellen finden, weswegen wir annehmen, dass diese Funktio-
nalitdt nicht vorhanden ist. Auch zur Effizienz lassen sich keine vergleichbaren Aussagen
treffen.

41

6 Auswertung

6.2.7 Mercurial

Bei dem in Python implementierten Mercurial handelt es sich um ein verteiltes Versionsver-
waltungssystem, das oft auch mit , hg” abgekiirzt wird; Hg steht im Periodensystem der
Elemente fiir Quecksilber, im Englischen ,Mercury”.

JIRA | GUI | IDE | OS x| =|© © | rwx | Keywords | # | Suchen | ®

= jaad
e | 6 & o O | 0| e o o o O |] e o o

System

Von der offiziellen Homepage [Mera] ldsst sich die Software fiir alle verbreiteten Betriebs-
systeme herunterladen, da bei der Entwicklung ein grofier Augenmerk auf Plattformunab-
hédngigkeit gelegt wurde. Da es sich um ein Open-Source Projekt handelt, kann Merurial
unentgeltlich genutzt werden. Fiir gdngige Linux Distributionen steht Mercurial in deren
eingebauten Paketverwaltungen zur Verfiigung. Unter Windows bietet sich der Download
der Installationsdatei mit integrierter Benutzeroberfldache , TortoiseHg” an [Torb]. Die In-
stallation beinhaltet u. a. einen Python-Interpreter, so dass zur Ausfiihrung keine weiteren
Komponenten installiert werden miissen.

TortoiseHg ldsst sich wie das verwandte TortoiseSvn bedienen und integriert sich ebenfalls
in den Windows Explorer. Von TortoiseHg existiert neben einer Windows-Version auch eine
Version fiir Linux und Mac OS X, wobei sie sich unter Linux in den Dateimanager , Nautilus”
integriert und hierin den selben Funktionsumfang bietet wie unter Windows.

Bei der Entwicklung von Mercurial wurde auf eine moglichst einfache Bedienung geachtet.
Beispielsweise wird fiir alle Kommandos ein einheitlicher Aufbau verwendet und soweit
moglich die selben Parameter. Das System verfiigt iiber einen eingebauten Webserver, der
tiber das Kommando server gestartet wird und tiber HTTP einen Zugriff auf die Repositorys
ohne Installation eines separaten Webserver ermoglicht. Uber CGI lasst sich aber auch ein
separater Webserver (Apache HTTPD etc.) zum Zugriff auf Mercurial Repositorys einrichten.
Alternativ kann auf die Repositorys auch {iber SSH zugegriffen werden. Einen guten Einstieg
in die Benutzung und die Administration von Mercurial bietet das Buch , Mercurial: The
Definitive Guide” [O’Sog].

Zur Integration in die Entwicklungsumgebung Eclipse bietet sich das Plugin , MercurialE-
clipse” an [Merb]. Das Plugin gilt als ausgereift und bietet Zugriff auf alle Funktionen von
Mecurial [Gen11].

Eine Integration in das Projektmanagementsystem JIRA kann auf zwei Wegen erfolgen:
Atlassian bietet mit dem kommerziellen Produkt ,FishEye” eine Oberfldche, mit der sich
Repositorys durchsuchen und tiberwachen lassen. FishEye ldsst sich in JIRA integrieren und
unterstiitzt neben Subversion unter Anderem auch Mercurial [Atlb]. Alternativ findet sich
im Atlassian Marktplatz ein Plugin, iiber das ein Zugriff auf Mercurial Repositorys ohne
FishEye moglich ist [Cus].

42

6.2 In Frage kommende Werkzeuge

Funktionsumfang

Zur Einbindung externer Repositorys unterstiitzt Mercurial s. g. ,,Subrepositories”. Hiermit
lassen sich fremde Repositorys innerhalb eines selbst festgelegten Verzeichnisses in ein
eigenes Repository einhdngen — damit entspricht es weitestgehend der Externals-Funktion in
Subversion. Neben Mercurial-Repositorys lassen sich mit der Subrepository-Funktion auch
Git- und Subversion-Repositories einbinden. In [ara] wird die Verwendung dieser Funktion
detailliert beschrieben.

Leider zdhlen Subrepository zu den , Features of Last Resort” [Merc]. Es handelt sich also
um Funktionen, die moglichst vermieden werden sollten. Die Griinde hierfiir liegen u. a.
im nicht ausreichend definierten Verhalten von rekursiven Mercurial-Kommandos, also
Kommandos die eigenstandig auf dem gesamten Repository inklusive der eingebundenen
Subrepositorys operieren (wie etwa das Kommando status zur Anzeige der gednderten
Daten). Dartiber hinaus versucht das push Kommando zuallererst die eingebundenen Repo-
sitorys zu aktualisieren. Sollten diese zeitweise nicht erreichbar sein, schldgt push somit fehl.
Um diese Probleme zu vermeiden wird empfohlen, keine Fremdrepositorys in Repositorys
einzubinden, die Quelldateien enthalten. Stattdessen sollte ein ,Master Repository” angelegt
werden in dem ausschliefslich mittels Subrepositorys sowohl die eigenen Repositorys als
auch die Repositorys aus fremden Quellen eingebunden werden. [Merh]

Mercurial bietet keine Funktion, um nur Teile eines Repositorys auf das lokale System herun-
terzuladen. Um zu vermeiden, dass das vollstandige Repository zur Arbeit heruntergeladen
werden muss, bietet sich die Verwendung der bereits vorgestellten Subrepositorys an. Um
den oben erwdhnten Problemen auszuweichen, empfiehlt es sich auch hier, dhnlich wie bei
der Einbindung fremder Repositorys vorzugehen: Nachdem das grofse Repository in mehre-
re kleinere aufgeteilt wurde (etwa nach Projekten oder Komponenten), wird anschlieffend
ein ,Master Repository” angelegt, in dem die zuvor angelegten, kleineren Teilrepositorys
eingebunden werden. Durch diese Vorgehensweise ldsst sich das sehr grofie Repository
aufteilen, ohne die Beziehungen der Projekte bzw. Komponenten untereinander zu verlieren.
Gleichzeitig geniigt es, nur das Repository herunterzuladen oder zu aktualisieren, das die
fiir die Arbeit benotigten Daten enthélt.

Ein unter Linux gesetztes Executable-Bit wird von Mercurial mitversioniert. Da sich dieses
Bit allerdings nur mit dem entsprechenden Unix-Befehl, nicht aber mit einem Mercurial-
Kommando dndern ldsst, ist eine Anderung der Berechtigung unter Windows nicht méglich.
Weitere Dateiberechtigungen werden allerdings nicht versioniert. [Mere]

Mit archive lassen sich die Daten der aktuellsten oder eine dlteren Revision exportieren.
Als Exportziel werden dabei neben einem Verzeichnis auch verschiedene Archivtypen
unterstiitzt.

Ebenso zu den , Features of Last Resort” [Merc] zdhlt das automatische Ersetzen von Schliis-
selwortern — die Keyword-Expansion — aufgrund der mit dieser Funktion einhergehenden
Probleme (siehe hierzu auch Abschnitt 5.2.3 auf Seite 21). Sollte diese Funktion dennoch
benotigt werden, lésst sie sich nach dem Aktivieren der bei der Installation von Mercurial
bereits mitgelieferten Keyword-Erweiterung verwenden. In der Konfigurationsdatei des

43

6 Auswertung

betreffenden Repositorys lassen sich nun die Dateien festlegen, in denen die Schliisselwor-
tersetzung durchgefiihrt werden sollen. Standardméfig unterstiitzt die Erweiterung die aus
CVS bekannten Schliisselworter, wie etwa Id oder $Revision$. Bei Bedarf konnen jedoch
auch weitere Schliisselworter und deren Zieltext in der Konfigurationsdatei des Reposito-
rys definiert werden. Weitere Informationen hierzu und zur allgemeinen Verwendung der
Erweiterung finden sich in der Mercurial Wiki [Merd].

Bei Einsatz von TortoiseHg ist der Zugriff auf das Repository direkt aus dem Dateimanager
moglich. TortoiseHg bietet Zugriff auf alle fiir die Arbeit bendtigten Funktionen von Mer-
curial. Beim Aktualisieren des Repositorys oder bei einem manuellen Merge von Branches
versucht Mercurial, soweit moglich, die verschiedenen Dateirevision automatisch mit einem
Drei-Wege-Merge zusammenzufiihren. Sollte das automatische Zusammenfiihren nicht ge-
lingen, wird zur Behebung des Konflikts ein grafische Drei-Wege-Merge-Werkzeug gestartet.
Zur vereinfachten Behebung von auftretenden Konflikten beim Mergen wird auch aus der
Kommandozeile heraus, sofern installiert, standardméfig ein grafisches Tool gestartet. Unter
Linux und Windows (zumindest bei installiertem TortoiseHg) wird zur Konfliktbehebung
das Werkzeug kdiff3 verwendet. Zu TortoiseHg wird im Internet eine umfangreiche Doku-
mentation [Be] angeboten, die die Arbeit mit Mercurial iiber diese Oberfldche erldutert.

Durch die Architektur ist das Einchecken von Anderungen und das Teilen dieser mit anderen
Mitarbeitern bereits getrennt. Um zusitzlich private Anderungen zwischenspeichern zu
konnen, etwa um das lokale Repository mit einem Pull aktualisieren zu konnen ohne das
Konflikte mit den nicht eingecheckten Dateien entstehen, wurde die Shelve-Erweiterung
entwickelt [Merf]. Die Erweiterung erlaubt es, lokale Anderungen in einem geschiitzten Be-
reich zwischenzuspeichern und innerhalb der Arbeitskopie die entsprechende Datei auf eine
gespeicherte Version zuriickzusetzen. Bei Bedarf lassen sich unterschiedliche Dateiversionen
in verschieden benannten Shelves sichern.

Mit bisec ist eine bindre Suche nach Changesets moglich, die bereits nach wenigen Durch-
laufen ein Ergebnis liefert. Diesem Kommando wird dafiir iiber einen Parameter bei jedem
Aufruf mitgeteilt, ob sich die gesuchte Anderung in der momentan in der Arbeitskopie
angezeigten Changeset enthalten ist. Im Anschluss wechselt das Kommando die Arbeitskopie
auf ein anderes Changeset. Dieser Vorgang wird solange wiederholt, bis das Changeset
gefunden wurde, in dem die gesuchte Anderung eingefiigt wurde. [O’Sog]

Bryan O’Sullivan hat die Geschwindigkeit von Mercurial mit Subversion verglichen und
im Abschnitt ,Mercurial Compared with Other Tools” seines Buches [O’Sog] die Ergebnis-
se beschrieben. Bei den durchgefiihrten Tests schnitt Mercurial bei allen durchgefiihrten
Operationen besser ab als Subversion.

Mercurial wird mit einer Erweiterung installiert, die mit dem Kommando convert das
Importieren der Daten und Historie u. A. aus Subversion erlaubt. Auch eine inkrementelle
Konvertierung ist moglich, bei der nur die Daten konvertiert werden, die sich seit der letzten
Ausfiihrung des Kommandos geéndert haben.

44

6.2 In Frage kommende Werkzeuge

6.2.8 Perforce

Perforce ist ein Versionsverwaltungssystem, das von Perforce Software, Inc. entwickelt wird.
Es wird von Firmen wie EADS, IBM oder SAP eingesetzt.

© | rwx | Keywords | § | Suchen | ®

JIRA | GUI | IDE | OS = |9
[]

=X e
®e | &6 e (& O| 0 0 ® | O] @ | J e O | @

System

Bei Perforce handelt es sich um ein kommerzielles Produkt, fiir dessen Einsatz auf mehr als 20
Arbeitspldtzen oder mehr als 20 Workspaces eine kostenpflichtige Lizenzierung erforderlich
ist [Perc]. Zur Lizenzierung bietet Perforce Software zwei Modelle an: Eine normale Lizenz,
oder eine Lizenz inkl. Support, welche in den ersten 12 Monaten obligatorisch ist. Pro Nutzer
fallt eine jahrliche Gebiihr in Hohe von 490,99 € ($640) an. Auf 100 Benutzer hochgerechnet
entspricht dies jahrlichen Kosten in Hohe von ca. 49.098 €. Fiir den ab dem 2. Jahr optionalen
Support fallen jahrlich weitere 122,74 € ($160) je Nutzer an. Was dann im ersten Jahr
ca. 61.372 € entspricht.

Ein Plugin fir JIRA (,FishEye”) ist auch als kommerzielles Produkt erhiltlich, welches
einmalig 3.068,66 € ($4.000) kostet und ein Jahr Support bietet, jedes weitere Jahr Support
kostet 1.534,33 € ($2.000).

Es existiert fiir alle gdngigen Betriebssysteme eine GUI- als auch eine Konsolenversion des
Clients, tiber den alle Operationen, die das System unterstiitzt, ausgefiihrt werden konnen.
Fiir Windows werden sogar zwei unterschiedliche grafische Oberflachen angeboten. Des
Weiteren gibt es fiir alle Plattformen auch einen Administrations-Client, der die Workspaces
verwalten kann.

Es werden auch Plugins fiir Eclipse und Visual Studio angeboten, welche wie Subclipse das
Versionverwaltungssystem direkt in die IDE integrieren [Perb].

Peforce selbst ist mehr ein zentrales Versionsverwaltungssystem als ein verteiltes. Es gibt
allerdings die Moglichkeit, Repositorys tiber mehrere Server zu verteilen, um die Last besser
zu verteilen oder auch Repositorys je nach Standort nur dort verfligbar zu machen. Die
Repositorys konnen automatisch zwischen den Servern synchronisiert werden.

Die Daten des Repositorys sind in zwei Teile aufgeteilt. Zum einen gibt es eine proprietdre
Datenbank, in der alle Informationen tiber Versionierung, Konfiguration, Nutzer, Commit-
Nachrichten, etc. gespeichert werden. Und zum anderen gibt es ein Verzeichnis auf dem
Server, in dem alle eingecheckten Dateien abgelegt werden. Deltas der Dateien werden
im RCS-Format gespeichert. Die Datenkbank ist tiber MD5-Priifsummen mit den Dateien
verkniipft. Auflerdem bietet die Datenbank, sofern konfiguriert, eine Wiederherstellungs-
funktion an, um im Falle eines Hardwaredefekts diese wiederherstellen zu konnen.

Ein Import des bestehenden SVN-Repositorys ist mittels des Scripts SVN2P4 mog-
lich [Perd].

45

6 Auswertung

Funktionsumfang

Trotz des zentralen Ansatzes bietet Perforce mittels P4Sandbox dem Nutzer die Moglichkeit,
eigene private Repositorys zu erstellen und dort auch nur lokale Branches zu erstellen und
somit unter anderem nur lokal zu committen.

Perforce bietet keine direkte zu SVN-Externals dquivalente Funktion an. Es gibt allerdings
die Moglichkeit in einem Workspace Teile von mehreren Repositorys einzubinden. So kann,
wenn die Externals-Quelle in einem Repository vorhanden ist, diese direkt in den Workspace
eingebunden werden [Pera].

Wie Subversion bietet Perforce eine Keyword-Expansion an, die es ermoglicht in eingecheck-
ten Dateien automatisch Revision, Datum, etc. zu ergdnzen.

Perforce biete keine Moglichkeit nur einen Teil des Repositorys auszuchecken. Durch die
Verwendung von Workspaces ist es allerdings moglich ein grofies Repository in mehrere
kleine logisch getrennte Teil-Repositorys zu unterteilen, die dann mittels des Workspaces
wieder zusammengefasst werden.

46

6.2 In Frage kommende Werkzeuge

6.2.9 Plastic SCM

Das Versionsverwaltungssystem Plastic SCM wird von der spanischen Firma , Codice Soft-
ware” entwickelt und vertrieben.

© | rwx | Keywords | § | Suchen | ®

JIRA | GUI |IDE |OS |=< | X | = | ©
O | 0o

>
e | 6 o o o O 0| O] O o]1]©| O |60

System

Plastic SCM lasst sich aufgrund seiner Architektur als hybrides Versionsverwaltungssystem
bezeichnen, das sich sowohl zentral als auch verteilt verwenden ldsst. Eine Kombination
beider Ansitze ist ebenfalls moglich. Das System verwendet eine Client-Server-Architektur,
die der Architektur typischer zentralisierter Systeme (wie etwa Subversion) stark dhnelt. Die
Repositorys und deren verschiedene Revisionen werden dabei von einem Server-Prozess
in einer SQL-Datenbank verwaltet. Je nach Anforderungen an die Datenbank lassen sich
verschiedene Datenbanksysteme einsetzten. Die Klienten erhalten iiber eine Netzwerkver-
bindung Zugriff auf die gespeicherten Daten bzw. Revisionen [Cod12c]. Im Gegensatz zu
typischen rein zentralisierten Systemen bietet Plastic SCM jedoch Funktionen, mit denen
sich die auf einem Server gespeicherten Repositorys leicht replizieren lassen, wobei sich die
Entwickler bei diesen Funktionen an den verteilter Systeme orientiert haben.

Dies zeigt sich nicht nur in der gleichlautenden Benennung der Befehle (push, pull), sondern
auch im dhnlichen Vorgehen beim Beheben von Konflikten, die beim Replizieren entste-
hen konnen (typischerweise wenn eine Datei des selben Branches auf beiden Servern auf
unterschiedlich Art gedndert wurde). So werden etwa die bei einem pull heruntergelade-
nen Changesets in einem Teilbranch abgelegt, der anschliefend mit dem Hauptbranche
zusammengefiihrt (via merge) werden muss. Wahrend bei verteilten Versionsverwaltungs-
systemen aber meist das vollstindige Repository repliziert wird, erlaubt Plastic SCM es,
lediglich bestimmte Branches auf einen anderen Server zu iibertragen oder mit diesem
abzugleichen. [Cod12a]

Diese Kombination aus einem Serverprozess, der allein fiir die Verwaltung der Repositorys
zustandig ist, und den angebotenen Funktionen zur Replikation erlauben die Verwendung
verschiedener Server-Topologien: Wird lediglich ein Server-Prozess verwendet, auf den
alle Klienten {iber eine Netzwerkverbindung zugreifen, ldsst sich das System &hnlich wie
Subversion einsetzten. Alternativ ist es jedoch auch moglich, auf jedem Arbeitsplatz neben
der Client-Version auch einen (eingebetteten) Server zu installieren. In diesem Fall kénnen
die Benutzer ein auf dem zentralen Server abgelegtes Repository in ihren lokalen Server
replizieren und haben somit auch ohne eine bestehende Netzwerkverbindung Zugriff auf alle
Revisionen und Funktionen des Versionsverwaltungssystems. Das System ldsst sich dann also
wie ein verteiltes Versionsverwaltungssystem einsetzten. Auch verschiedene Zwischenformen
(z. B. mehrere Server an verschiedenen Standorten) sind moglich.

47

6 Auswertung

Die Herstellerfirma von Plastic SCM, Codice Software, bietet im Atlassian Marktplatz
ein Plugin an, mit dem sich die Versionsverwaltung in JIRA integrieren ldsst. Von der
Herstellerfirma wird ebenfalls ein Plugin zur Integration in die Entwicklungsumgebung
Eclipse angeboten [Cod12b]. Sowohl Client als auch Server des Versionsverwaltungssystems
sind sowohl in einer Windows-Version als auch in einer Linux-Version verfiigbar. Die
grafische Benutzeroberfliche von Plastic SCM ist zentraler Bestandteil des Systems. Es
existiert zwar auch ein Kommandozeileninterpreter, iiber den sich das System bedienen
lasst, die Bedienung konzentriert sich aber auf das Verwenden der grafischen Oberfldche, die
unter Windows und Linux die selben Funktionen bietet [Cod12c]. Wahrend der Installation
wird auf Wunsch eine Integration in den Windows Explorer mit installiert, die Zugriff auf
die wichtigsten Funktionen des Systems bietet.

Bei Plastic SCM handelt es sich um ein kommerzielles Produkt, fiir dessen Einsatz auf
mehr als 15 Arbeitspldtzen eine kostenpflichtige Lizenzierung erforderlich ist [Cod]. Zur
Lizenzierung bietet Codice Software zwei Modelle an: Abonnement oder unbefristete Lizenz.
Beim Abonnement fallt pro Nutzer eine jahrliche Gebiihr in Hohe von 222,45 € ($279) an. Auf
100 Benutzer hochgerechnet entspricht dies jahrlichen Kosten in Hohe von ca. 22.245 €. Die
Kosten der unbefristeten Lizenz betragen einmalig bei 51 bis 100 Nutzern (da Mengenrabatt)
426,55 € je Benutzer. Fiir den optionalen Support fallen ab dem zweiten Jahr jahrlich weitere
94,88 € ($119) je Nutzer an. Fiir die unbefristete Lizenz fallen somit bei 100 Benutzern
einmalig etwa 42.655 € sowie ggf. weitere jahrliche Gebiihren in Hohe von ca. 9.488 € fiir
den (optionalen) Support an.

Funktionsumfang

Das Anlegen einer Arbeitskopie und das Ubertragen der Daten in diese Kopie ist in Plastic
SCM getrennt. In eine neu erstellte Arbeitskopie werden die Daten {iber die update-Funktion
heruntergeladen. Nach Auswahl des zur Arbeit benotigten Changesets werden nur die Daten
tibertragen, die in dem zugehorigen Branch enthalten sind. Der Hersteller Codice Software
empfiehlt, fiir jedes Arbeitspaket einen eigenen Branch zu erstellen (,,Branch per Task”).
Wurde die Arbeit an diesem Paket und damit an dem Branch beendet, solle der Branch
wieder in den Hauptbranch integriert (merge) werden. Wird dieser Empfehlung gefolgt, lasst
sich die auf die Arbeitsstation zu tibertragende Datenmenge reduzieren, sofern der benétigte
Branch alle fiir die Arbeit benétigten Daten enthilt. Da wie weiter oben beschrieben das
Replizieren auf Branch-Ebene stattfindet — d. h. beim Klonen des Repositorys mit pull 1asst
sich der zu replizierende Branch auswéahlen — lédsst sich auch hierbei die Datenmenge durch
geeignetes Anlegen von Branches reduzieren.

Um zu vermeiden, dass Dateien in die Arbeitskopie geladen werden, die fiir die durchzu-
fithrende Arbeit nicht benotigt werden oder von denen sich bereits eine dltere Revision in
der Arbeitskopie befindet, die zur Arbeit gentigt, lassen sich Dateien und Verzeichnisse in
eine clonk-Datei eintragen. Alle darin gelistete Dateien werden beim Update ignoriert und
somit vom Server nicht mehr iibertragen.

48

6.2 In Frage kommende Werkzeuge

Mit der Funktion x/ink besteht die Moglichkeit, externe Repositorys (in Subversion als
Externals bezeichnet, siehe Abschnitt 5.1.6 auf Seite 19) in ein anderes Repository einzuhan-
gen [Cod12d]. Von xlink werden allerdings ausschliefilich externe Plastic SCM Repositorys
unterstiitzt. Sollen Repsitorys eingebunden werden, die nicht mit Plastic SCM verwaltet
werden, miissen diese zuvor konvertiert und als Plastic SCM Repository bereitgestellt werden.
Dieses Vorgehen fiihrt jedoch dazu, dass Anderungen an den Fremdrepositorys nicht auto-
matisch iibernommen werden, weil hierzu die Konvertierung erneut durchgefiihrt werden
muss. Es bietet sich in diesem Fall an, die Konvertierung in regelméfSiigen Abstdnden automa-
tisiert auf einem Serversystem durchzufiihren, um einen moglichst aktuellen Datenbestand
zu gewdhrleisten.

Zur Konvertierung eines Repositorys bedient sich Plastic SCM dem in Git verwendeten
fast-export Format [Cod12c]. Mit dem Werkzeug ,svn-all-fast-export” [Mac] ist das Erstellen
einer solchen Exportdatei aus Subversion heraus moglich. Anschliefiend kann die erstellte
Datei tiber die Kommandozeile mit dem fast-import Kommando in ein Plastic SCM Repository
importiert werden. Sofern das Ausgangs-Versionsverwaltungssystem das Erstellen einer
inkrementellen Export-Datei unterstiitzt (hierbei wird anstelle der vollstindigen Historie
nur die Historie ab einer bestimmten Revision exportiert), ldsst sich ein bereits konvertiertes
Repository mit geringerem Aufwand auf den aktuellen Stand bringen.

Plastic SCM verfiigt tiber ein recht ausfiihrliches Rechtesystem, iiber das sich der Zugriff
auf die Dateien des Repositorys steuern lasst [Cod12c]. So ldsst sich beispielsweise festlegen,
welcher Benutzer eine neue Revision einer Datei in das Repository einchecken darf. All diese
Rechte finden jedoch auf der Ebene der Versionsverwaltung statt und sind unabhéngig von
den im Dateisystem des Betriebssystems gesetzten Dateiberechtigungen. Auf das Versionieren
dieser Dateiberechtigungen geht die Dokumentation des Versionsverwaltungssystems nicht
ein. Auch lieSen sich aufierhalb der Dokumentation keine Hinweise auf eine Speicherung
der Berechtigungen finden und im Test wurde nach dem Andern einer Berechtigung die
betreffende Datei nicht als gedndert markiert. Somit ist davon auszugehen, dass dies von
Plastic SCM nicht unterstiitzt wird.

Ebenso konnten keine Hinweise auf eine Export-Funktion in der Dokumentation gefunden
werden. Auch in der praktischen Erprobung des Versionsverwaltung konnte eine solche
Funktion nicht gefunden werden. Anzumerken ist allerdings, dass das System lediglich im
Hauptverzeichnis der Arbeitskopie einen Konfigurationsverzeichnis (,,.plastic”) anlegt, was
das manuelle Exportieren erleichtert. Von Plastic SCM ebenfalls nicht untersttitzt ist das
automatische Ersetzen von Schliisselwortern [Pos11].

Wie zu Beginn des Abschnittes beschriebe, ist die grafische Benutzeroberflache ein zentraler
Bestandteil von Plastic SCM. In die Oberfldche integriert ist eine grafische Darstellung der
Changesets und Branches sowie deren Beziehungen zueinander. Hierin ldsst sich durch
Auswahl eines Changesets im gewiinschten Branch leicht ein weiterer Unterbranch anlegen
oder dieser mit einem anderen Branch zusammenfiihren (merge). Beim Mergen versucht die
Versionsverwaltung Konflikte soweit moglich automatisch zu 1sen. Ist dies nicht moglich,
wird ein integriertes grafisches Drei-Wege-Merge-Werkzeug gedffnet, in dem der Konflikt
behoben werden kann.

49

6 Auswertung

In einem als Shelves bezeichneten Bereich lassen sich in Plastic SCM die an einer Datei
durchgefiihrten Anderungen lokal zwischenspeichern. Die Anderungen werden damit auch
ohne Einchecken der Dateien gesichert und es ldsst sich somit bei Bedarf eine gesicherte
Version wiederherstellen. Da beim Einchecken (Commit) die Daten grundsatzlich an einen
Server iibertragen werden, ist ein lokales Zwischenspeichern bzw. Trennen von Commits
und deren Upload, nur moglich, wenn auf dem lokalen System neben dem Client auch der
Plastic SCM Server installiert ist (siehe auch die Erlauterung der Architektur im Abschnitt
,System”). Wurde das System auf diese weise Eingerichtet und befindet sich eine Kopie
des Repositorys im lokalen System, konnen Anderungen auch ohne Netzwerkverbindung
eingecheckt und spiter gemeinsam iibertragen werden. Die Arbeitsweise entspricht damit
derer klassischer verteilter Versionsverwaltungssysteme.

Eine bindre Suche nach Anderungen und den zugehorigen Changesets wird von dem
Versionsverwaltungssystem nicht unterstiitzt. Eine solche Funktion wird weder in der
Dokumentation erwdhnt, noch konnte sie bei der Erprobung von Plastic SCM gefunden
werden.

50

7 Empfehlung

7.1 Ubersicht

In der folgenden Tabelle werden nochmals alle Bewertungen grob zusammengefasst, sodass
ein schneller Uberblick méglich ist. Fiir die Bedeutung siehe Kapitel 6.

Name JIRA | GUI | IDE

o
o)

Suchen

2
x

Keywords

AccuRev

Bazaar

Darcs

Fossil

Git

IBM RTC

Mercurial

Perforce

Plastic

o0 0o =000
Ol0/elC e e e e o o
AL B AE MK BE BK MK BE BRo)

aleseO™= o0

AL AT IE JeNrel LAY)
e oe000~0e
I LI eI AT)
oo0o 000000
elO|as@l0|O|®|O|®|iX
sls@sl0l@O|®|0|0|x
o o000 o0 ~e0 0
Ole|s|sa @00
Olelelo|a00|e|®
olojel0|e|e|e|e|O
©ele~eeCoeoc

7.2 Diskussion

Betrachtet man die Bewertungen der Werkzeuge in vertikaler Richtung, fallt sehr schnell auf,
dass alle Werkzeuge auf den gewiinschten Betriebssystemen verfiigbar sind und fast alle,
zumindest teilweise, lokal committen und von SVN importieren kénnen. Auch bietet jedes
Werkzeug mehr oder weniger eine grafische Unterstiitzung.

Horizontal gesehen erfiillen nur wenige Werkzeuge wirklich alle K. O.-Kriterien. Erstaunlich
ist dabei, dass die kommerziellen Werkzeuge nicht unbedingt mehr Anforderungen erfiillen
als die frei verfiigbaren.

Weiterhin ist uns bei der Auswertung aufgefallen, dass die Keyword Expansion von vielen
Werkzeugen sehr kritisch gesehen wird. Gerade in verteilten Systemen gibt es oft parallele
Versionen, die nicht einheitlich sequentiell wie bei Subversion durchnummeriert werden
konnen. Dazu stort das Einsetzen von zusitzlichen Informationen die Erfassung der tatsach-
lichen Anderungen, weswegen die allgemeine Empfehlung dahingeht, die Informationen
wéhrend des Builds hinzuzuftigen und nicht im Quellcodemanagement.

Am besten schneidet eindeutig Mercurial ab, das sowohl alle Kriterien wenigstens teilweise
erfiillt als auch frei verfiigbar ist. Als zweite Alternative wiirden wir Git hervorheben, das
lediglich das teilweise Auschecken nicht unterstiitzt, was sich aber dhnlich wie bei Mercurial

51

7 Empfehlung

(aber komplizierter) umgehen ldsst und in einem verteilten System fast unumgéanglich ist.
Dazu kommt, dass Git ebenso wie Mercurial kostenfrei erhiltlich ist und ansonsten auch
alle Kriterien erfiillt. Als einziges Werkzeug neben Mercurial erfiillt AccuRev zwar alle
K. O.-Kriterien, allerdings muss dafiir auf die bindre Suche verzichtet werden und ein nicht
unerheblicher Preis gezahlt werden, weswegen es vermutlich die dritte Wahl darstellt.

Mercurial und Git haben auch den Vorteil, dass sich, da sie frei verfiigbar sind, allgemein
auch mehr Informations- und Dokumentationsquellen dazu finden. Ebenso ermdglicht dies
eine grofiere Auswahl an Dritthersteller-Software und Erweiterungen, die bei proprietaren
Systemen oft nur gegen weitere Gebiihren beim Hersteller zu erhalten sind.

Die beiden Alternativen zwischen Mercurial und Git stellt gewissermafien auch eine Art
Glaubensfrage dar. Wahrend Git meistens schneller ist und zahlreiche komplexe Moglichkei-
ten und Funktionen bietet, ist Mercurial wesentlich benutzerfreundlicher und die Repositorys
meistens etwas kleiner. [Gitb, Git10]

7.3 Einflihrungsstrategie

Um ein neues System einzufiihren sind wieder Mercurial und Git im Vorteil, da diese
nicht nur ein kontinuierliches Konvertieren ermoglichen, sondern auch (bei Mercurial als
Erweiterung) als Subversion-Client benutzt werden konnen, sodass ein bidirektionales
Austesten moglich ist. Sollte sich kein neues System durchsetzen konnen, kdnnte sich bereits
diese Arbeitsweise fiir technisch mehr versierte Mitarbeiter als Losung anbieten.

Dabei kann man sich mit der Bedienung der Werkzeuge vertraut machen. Unter Umstan-
den sollte testweise ein Repository erst konvertiert werden, bevor Geschwindigkeit und
Grofie beim Auschecken verglichen werden. Dadurch lésst sich die individuelle Préaferenz
herausfinden.

Funktioniert dies zufriedenstellend, so kann das gesamte System eingesetzt werden. Dabei
sind wahrscheinlich die Repositorys in kleinere Einzelteile aufzugliedern und entsprechend
neu zu konfigurieren.

7.4 Mogliche Probleme bei der Umstellung

Da die Umstellung einer Quellcodeverwaltung naturgemafs sehr gravierend ausfallt, diirfte
das Hauptproblem die Akzeptanz der Entwickler sein. Da viele Mitarbeiter mit dem aktuellen
System weitgehend zufrieden sind, werden sie eine Umstellung nicht unbedingt befiirworten.
Aufierdem sinkt natiirlich temporar durch die Anpassung an die Umstellung die allgemeine
Produktivitat.

Daher sollte eine Umstellung mit Riicksicht auf die Konsequenzen genau abgewégt werden
und genau gepriift werden, ob die erhofften Verbesserungen dadurch eintreten werden oder
sich nicht neue Probleme auftun.

52

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde der Flexis AG ein passendes Quellcodeverwaltungs-Werkzeug emp-
fohlen. Dazu wurden zunidchst Grundlagen der erhéltlichen Quellcode- und Versionsver-
waltungen besprochen und anschlieffend eine grobe Marktiibersicht dargelegt. Im weiteren
Vorgehen wurden die konkreten Anforderungen von Flexis, sowohl zwingend erforderli-
che als auch gewiinschte, durch eine Mitarbeiterbefragung erhoben. Die Kriterien wurden
erldutert und eine gezielte Auswahl an 9 Werkzeugen getroffen, die eingehend auf die
Anforderungen beleuchtet wurden.

SchlieSlich wurde eine Darstellung entwickelt, um alle Werkzeuge miteinander in einer
Tabelle vergleichen zu konnen. Es wurden Auffilligkeiten bei den Werkzeugen und den
Anforderungen erldutert. Dazu wurde unsere Top-3-Empfehlung ausgesprochen und begriin-
det. Zuletzt wurde eine Moglichkeit zur inkrementellen Einfithrung dargelegt und mogliche
Probleme dabei aufgezeigt.

Ausblick

Die Untersuchung erhebt selbstverstiandlich keinen Anspruch auf Vollstandigkeit; obwohl
versucht wurde, alle verbreiteten und niitzlichen Werkzeuge auszusuchen, besteht die
Moglichkeit, dass in der Zukunft neue Quellcodeverwaltungs-Werkzeuge hinzukommen
oder alte sich verdndern. Praktisch diirfte dies allerdings nicht allzu bald der Fall sein.
Auf praktischer Seite ist ein ndchster, denkbarer Schritt in naher Zukunft sicherlich die
Uberpriifung der Vorschlidge, um gewiinschte Verbesserungen nachzuweisen und eventuelle
Probleme im Betrieb aufzudecken. Auch aus akademischer Sicht macht eine (breitere)
Untersuchung der Brauchbarkeit der Funktionalitdten der Versionsverwaltungssysteme im
realen Betrieb und eine mogliche Weiterentwicklung der Werkzeuge durchaus Sinn.

53

Literaturverzeichnis

[Acca]

[Accb]

[Alb10]

[ara]

[ASo9]

[Atla]

[Atlb]

[Atlc]

[BCS11]

[Be]

[Bzra]

[Bzrb]
[Bzrc]

[Bzrd]

AccuRev Licensing and Pricing. http://www.accurev.com/licensing.html. (Zi-
tiert auf Seite 28)

AccuRev Whitepaper - Top 10 Reasons Why Software Development Is Bet-
ter With AccuRev. http://www.accurev.com/sites/default/files/document/
topl0-reasons-software-development-better-with-accurev.pdf. (Zitiert auf
Seite 29)

J. Albin. Converting a Subversion repository to Git. http://john.albin.net/git/
convert-subversion-to-git, 2010. (Zitiert auf Seite 39)

aragost Trifork. Subrepositories. http://mercurial.aragost.com/kick-start/en/
subrepositories. (Zitiert auf Seite 43)

B. de Alwis, J. Sillito. Why are software projects moving from centralized to
decentralized version control systems? In Cooperative and Human Aspects on Software
Engineering, 2009. CHASE "09. ICSE Workshop on, S. 36 — 39. 2009. (Zitiert auf Seite 9)

Atlassian Stash. http://www.atlassian.com/software/stash/overview/
jira-dvcs-repository-integration. (Zitiert auf Seite 37)

Atlassian. FishEye. http://wuw.atlassian.com/software/fisheye/overview. (Zi-
tiert auf Seite 42)

Atlassian. Marketplace. https://marketplace.atlassian.com. (Zitiert auf Sei-
te 31)

C. M. P. Ben Collins-Sussman, Brian W. Fitzpatrick. Version Control with Subversion.
O'Reilly Media, 2011. URL http://svnbook.red-bean.com. (Zitiert auf Seite 11)

S. Borho, et al. Welcome to TortoiseHg'’s documentation! URL http://tortoisehg.
bitbucket.org/manual/1.1/index.html. (Zitiert auf Seite 44)

Bazaar 2.5 Documentation. http://doc.bazaar.canonical.com/bzr.2.5/en. (Zi-
tiert auf Seite 30)

Bazaar Bisect Plugin. https://launchpad.net/bzr-bisect. (Zitiert auf Seite 30)

Bazaar Documentation. http://wiki.bazaar.canonical.com/Documentation. (Zi-
tiert auf Seite 30)

Bazaar Externals Plugin. https://launchpad.net/bzr-externals. (Zitiert auf
Seite 30)

55

http://www.accurev.com/licensing.html
http://www.accurev.com/sites/default/files/document/top10-reasons-software-development-better-with-accurev.pdf
http://www.accurev.com/sites/default/files/document/top10-reasons-software-development-better-with-accurev.pdf
http://john.albin.net/git/convert-subversion-to-git
http://john.albin.net/git/convert-subversion-to-git
http://mercurial.aragost.com/kick-start/en/subrepositories
http://mercurial.aragost.com/kick-start/en/subrepositories
http://www.atlassian.com/software/stash/overview/jira-dvcs-repository-integration
http://www.atlassian.com/software/stash/overview/jira-dvcs-repository-integration
http://www.atlassian.com/software/fisheye/overview
https://marketplace.atlassian.com
http://svnbook.red-bean.com
http://tortoisehg.bitbucket.org/manual/1.1/index.html
http://tortoisehg.bitbucket.org/manual/1.1/index.html
http://doc.bazaar.canonical.com/bzr.2.5/en
https://launchpad.net/bzr-bisect
http://wiki.bazaar.canonical.com/Documentation
https://launchpad.net/bzr-externals

Literaturverzeichnis

[Bzre]

Bzrf]

Bzrh]
Bzri]

[
[Bzrg]
[

[
[Chaog]
[chm]

[Cod]

Bazaar KeywordExpansion. http://wiki.bazaar.canonical.com/
KeywordExpansion. (Zitiert auf Seite 30)

Bazaar Subversion Plugin. https://launchpad.net/bzr-svn. (Zitiert auf Seite 30)
bzr+jira. https://launchpad.net/bzr-jira. (Zitiert auf Seite 30)
BzrEclipse. http://wiki.bazaar.canonical.com/BzrEclipse. (Zitiert auf Seite 30)

TortoiseBzr. http://wiki.bazaar.canonical.com/TortoiseBzr. (Zitiert auf Sei-
te 30)

S. Chacon. Pro Git. Apress, 1 Auflage, 2009. URL http://git-scm.com/book.
(Zitiert auf den Seiten 38 und 39)

FreeBSD Man Page CHMOD(1). http://wuw.freebsd.org/cgi/man.cgi?query=
chmod&sektion=1. (Zitiert auf Seite 39)

Codice Software. Licensing and pricing. https://www.plasticscm.com/buy.aspx.
(Zitiert auf Seite 48)

[Cod1iz2a] Codice Software. Plastic SCM Distributed, 2012. URL http://www.plasticscm.

com/releases/4.1/manuals/en/distributedsystem.pdf. (Zitiert auf Seite 47)

[Cod12b] Codice Software. Plastic SCM IDE integrations, 2012. URL http://www.plasticscm.

com/releases/4.1/manuals/en/idesguide.pdf. (Zitiert auf Seite 48)

[Cod12c] Codice Software. Plastic SCM Introduction, 2012. URL http://www.plasticscm.

com/releases/4.1/manuals/en/userguide.pdf. (Zitiert auf den Seiten 47, 48
und 49)

[Cod12d] Codice Software. Plastic SCM Xlinks guide, 2012. (Zitiert auf Seite 49)

[Cus]

[Dara]

[Darb]

[Darc]

[Dard]

[EGi]
[FG]

56

CustomWare. Mercurial Plugin for JIRA. https://marketplace.atlassian.
com/plugins/com.consultingtoolsmiths.jira.plugin.ext.mercurial.
mercurial-jira-plugin. (Zitiert auf Seite 42)

Darcs. http://darcs.net. (Zitiert auf Seite 31)

Darcs Wiki. DifferencesFromSubversion. http://darcs.net/
DifferencesFromSubversion. (Zitiert auf Seite 33)

Darcs Wiki. Frequently Asked Questions (Performance). http://darcs.net/FAQ/
Performance. (Zitiert auf Seite 33)

Darcs Wiki. MigratingFromSubversion. http://darcs.net/
MigratingFromSubversion. (Zitiert auf Seite 34)

EGit. http://wuw.eclipse.org/egit. (Zitiert auf Seite 37)

L. Frenzel, R. Grzanka. EclipseDarcs. http://eclipsedarcs.sourceforge.net.
(Zitiert auf Seite 31)

http://wiki.bazaar.canonical.com/KeywordExpansion
http://wiki.bazaar.canonical.com/KeywordExpansion
https://launchpad.net/bzr-svn
https://launchpad.net/bzr-jira
http://wiki.bazaar.canonical.com/BzrEclipse
http://wiki.bazaar.canonical.com/TortoiseBzr
http://git-scm.com/book
http://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1
http://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1
https://www.plasticscm.com/buy.aspx
http://www.plasticscm.com/releases/4.1/manuals/en/distributedsystem.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/distributedsystem.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/idesguide.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/idesguide.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/userguide.pdf
http://www.plasticscm.com/releases/4.1/manuals/en/userguide.pdf
https://marketplace.atlassian.com/plugins/com.consultingtoolsmiths.jira.plugin.ext.mercurial.mercurial-jira-plugin
https://marketplace.atlassian.com/plugins/com.consultingtoolsmiths.jira.plugin.ext.mercurial.mercurial-jira-plugin
https://marketplace.atlassian.com/plugins/com.consultingtoolsmiths.jira.plugin.ext.mercurial.mercurial-jira-plugin
http://darcs.net
http://darcs.net/DifferencesFromSubversion
http://darcs.net/DifferencesFromSubversion
http://darcs.net/FAQ/Performance
http://darcs.net/FAQ/Performance
http://darcs.net/MigratingFromSubversion
http://darcs.net/MigratingFromSubversion
http://www.eclipse.org/egit
http://eclipsedarcs.sourceforge.net

Literaturverzeichnis

[Fosa]

Convert simple SVN-Repository to Fossil. http://bens.me.uk/2011/
convert-simple-svn-to-fossil. (Zitiert auf Seite 36)

[Fosb] Fossil GUI - Fuel. http://code.google.com/p/fuel-scm. (Zitiert auf Seite 35)

[Fosc] Fossil Performance. (Zitiert auf Seite 35)

[Gen11] E. Gentz. Die neue Freiheit bei der Versionskontrol-
le, 2011. URL http://wuw.heise.de/developer/artikel/
Die-neue-Freiheit-bei-der-Versionskontrolle-1224755.html. (Zitiert auf
Seite 42)

[Gita] About Git. http://git-scm.com/about. (Zitiert auf den Seiten 37 und 38)

[Gitb] Git vs. Mercurial: Please Relax. http://importantshock.wordpress.com/2008/08/
07/git-vs-mercurial. (Zitiert auf Seite 52)

[Gitc] Git Wiki. GitProjects. https://git.wiki.kernel.org/index.php/GitProjects.
(Zitiert auf Seite 13)

[Gitio] Google Code — Analysis of Git and Mercurial. http://code.google.com/p/
support/wiki/DVCSAnalysis, 2010. (Zitiert auf Seite 52)

[Ho11] M. Hoher. darcs/camp. Technische Universitdt Dresden, 2011. (Zitiert auf Seite 32)

[Hami1o]]J. Hammond. Forrester = Databyte: SCM Tool Adoption.
http://blogs.forrester.com/application_development/2010/01/
forrester-databyte-developer-scm-tool-adoption-and-use.html, 2010.
(Zitiert auf den Seiten 12 und 13)

[HT] K. Hoijarvi, E. Thomson. TortoiseDarcs. http://tortoisedarcs.sourceforge.net.
(Zitiert auf Seite 31)

[IBM] IBM - Rational Team Concert. http://www-01.ibm.com/software/rational/
products/rtc. (Zitiert auf Seite 40)

[ITWa] ITWissen. Git. http://www.itwissen.info/definition/lexikon/Git-Git.html.
(Zitiert auf Seite 13)

[ITWb] ITWissen. Mercurial. http://www.itwissen.info/definition/lexikon/
Mercurial-Mercurial.html. (Zitiert auf Seite 13)

[Jaz] . https://jazz.net/library. (Zitiert auf Seite 40)

[JIRa] Git Version Control Viewer. https://marketplace.atlassian.com/plugins/com.
xiplink.jira.git.jira_git_plugin. (Zitiert auf Seite 37)

[JIRb] JIRA Git Plugin. https://studio.plugins.atlassian.com/wiki/display/JGIT/
JIRA+Git+Plugin. (Zitiert auf Seite 37)

[Mac] T. Macieira. svn-all-fast-export. http://repo.or.cz/w/svn-all-fast-export.git.

(Zitiert auf Seite 49)

57

http://bens.me.uk/2011/convert-simple-svn-to-fossil
http://bens.me.uk/2011/convert-simple-svn-to-fossil
http://code.google.com/p/fuel-scm
http://www.heise.de/developer/artikel/Die-neue-Freiheit-bei-der-Versionskontrolle-1224755.html
http://www.heise.de/developer/artikel/Die-neue-Freiheit-bei-der-Versionskontrolle-1224755.html
http://git-scm.com/about
http://importantshock.wordpress.com/2008/08/07/git-vs-mercurial
http://importantshock.wordpress.com/2008/08/07/git-vs-mercurial
https://git.wiki.kernel.org/index.php/GitProjects
http://code.google.com/p/support/wiki/DVCSAnalysis
http://code.google.com/p/support/wiki/DVCSAnalysis
http://blogs.forrester.com/application_development/2010/01/forrester-databyte-developer-scm-tool-adoption-and-use.html
http://blogs.forrester.com/application_development/2010/01/forrester-databyte-developer-scm-tool-adoption-and-use.html
http://tortoisedarcs.sourceforge.net
http://www-01.ibm.com/software/rational/products/rtc
http://www-01.ibm.com/software/rational/products/rtc
http://www.itwissen.info/definition/lexikon/Git-Git.html
http://www.itwissen.info/definition/lexikon/Mercurial-Mercurial.html
http://www.itwissen.info/definition/lexikon/Mercurial-Mercurial.html
https://jazz.net/library
https://marketplace.atlassian.com/plugins/com.xiplink.jira.git.jira_git_plugin
https://marketplace.atlassian.com/plugins/com.xiplink.jira.git.jira_git_plugin
https://studio.plugins.atlassian.com/wiki/display/JGIT/JIRA+Git+Plugin
https://studio.plugins.atlassian.com/wiki/display/JGIT/JIRA+Git+Plugin
http://repo.or.cz/w/svn-all-fast-export.git

Literaturverzeichnis

[MBo3]

K. F. Moshe Bar. Open Source Development with CVS. Paraglyph Press, Inc., 2003.
(Zitiert auf Seite 11)

[Meno2] T. Mens. A State-of-the-Art Survey on Software Merging. Software Engineering, IEEE

Transactions on, 28(5):449 — 462, 2002. (Zitiert auf Seite 9)

[Men1o] G. Mendal, Herausgeber. Developing and Maintaining a Strategic Perforce Plan at

[Mera]
[Merb]
[Merc]

[Merd]

[Mere]

[Merf]

[Merg]

[Merh]

[O’Sog]

[Pera]

[Perb]

[Perc]

[Perd]

[Pos11]

[Rou]

58

Google. 2010. URL http://www.perforce.com/perforce/conferences/eu/2010/
Presentations/Geoff_Mendal-Strategic_Plan.paper.pdf. (Zitiert auf Seite 12)

Mercurial. http://mercurial.selenic.com. (Zitiert auf Seite 42)
MercurialEclipse. http://javaforge.com/project/HGE. (Zitiert auf Seite 42)

Mercurial Wiki. Features of Last Resort. http://mercurial.selenic.com/wiki/
FeaturesOfLastResort. (Zitiert auf Seite 43)

Mercurial Wiki. Keyword Extension. http://mercurial.selenic.com/wiki/
KeywordExtension. (Zitiert auf Seite 44)

Mercurial Wiki. Mercurial Frequently Asked Questions. http://mercurial.
selenic.com/wiki/FAQ. (Zitiert auf Seite 43)

Mercurial Wiki. Shelve Extension. http://mercurial.selenic.com/wiki/
ShelveExtension. (Zitiert auf Seite 44)

Mercurial Wiki. Some Projects that Use Mercurial. http://mercurial.selenic.
com/wiki/ProjectsUsingMercurial. (Zitiert auf Seite 13)

Mercurial Wiki. Subrepository. http://mercurial.selenic.com/wiki/
Subrepository. (Zitiert auf Seite 43)

B. O’Sullivan. Mercurial: The Definitive Guide. O’Reilly Media, 2009. (Zitiert auf den
Seiten 9, 42 und 44)

Multiple Repository Sync in Perforce. https://confluence.atlassian.com/
display/BAMKB/Multiple+Repository+Sync+in+Perforce. (Zitiert auf Seite 46)

Perforce Eclipse Plugin. http://www.perforce.com/product/components/
eclipse_plugin. (Zitiert auf Seite 45)

Perforce Preise - Internetseite. http://www.perforce.com/purchase/
licensing-pricing-options. (Zitiert auf Seite 45)

SVN2P4 - Von SVN zu Perforce. http://public.perforce.com/wiki/SVN2P4. (Zi-
tiert auf Seite 45)

J. Posner. Migrating from Perforce to Plastic SCM. Codice Software,
2011. URL http://www.plasticscm.com/releases/3.0.1/migration-guides/
perforce_migration.pdf. Abschnitt 2.7. (Zitiert auf Seite 49)

D. Roundy. Darcs User Manual. URL http://www.darcs.net/manual/darcs.pdf.
(Zitiert auf den Seiten 31, 33 und 34)

http://www.perforce.com/perforce/conferences/eu/2010/Presentations/Geoff_Mendal-Strategic_Plan.paper.pdf
http://www.perforce.com/perforce/conferences/eu/2010/Presentations/Geoff_Mendal-Strategic_Plan.paper.pdf
http://mercurial.selenic.com
http://javaforge.com/project/HGE
http://mercurial.selenic.com/wiki/FeaturesOfLastResort
http://mercurial.selenic.com/wiki/FeaturesOfLastResort
http://mercurial.selenic.com/wiki/KeywordExtension
http://mercurial.selenic.com/wiki/KeywordExtension
http://mercurial.selenic.com/wiki/FAQ
http://mercurial.selenic.com/wiki/FAQ
http://mercurial.selenic.com/wiki/ShelveExtension
http://mercurial.selenic.com/wiki/ShelveExtension
http://mercurial.selenic.com/wiki/ProjectsUsingMercurial
http://mercurial.selenic.com/wiki/ProjectsUsingMercurial
http://mercurial.selenic.com/wiki/Subrepository
http://mercurial.selenic.com/wiki/Subrepository
https://confluence.atlassian.com/display/BAMKB/Multiple+Repository+Sync+in+Perforce
https://confluence.atlassian.com/display/BAMKB/Multiple+Repository+Sync+in+Perforce
http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/product/components/eclipse_plugin
http://www.perforce.com/purchase/licensing-pricing-options
http://www.perforce.com/purchase/licensing-pricing-options
http://public.perforce.com/wiki/SVN2P4
http://www.plasticscm.com/releases/3.0.1/migration-guides/perforce_migration.pdf
http://www.plasticscm.com/releases/3.0.1/migration-guides/perforce_migration.pdf
http://www.darcs.net/manual/darcs.pdf

Literaturverzeichnis

[SKYo7] SKYTEC AG. Case Study: Siemens AG. www.skytecag.com/unternehmen/

[Sta]

[Sub]
[Tai]

[Thr]

[Tora]
[Torb]
[Wika]

[Wikb]

[Wikc]

references/case-studies/single-referenz/archive/2007/article/
siemens-ag-1, 2007. (Zitiert auf Seite 12)

Stack Overflow. Is it possible to have a subversion repository as
a git submodule? http://stackoverflow.com/questions/465042/
is-it-possible-to-have-a-subversion-repository-as-a-git-submodule.
(Zitiert auf Seite 38)

Subversion Testimonials. http://svn.apache.org/repos/asf/subversion/
branches/1.6.x/www/testimonials.html. (Zitiert auf Seite 12)

Tailor. http://progetti.arstecnica.it/tailor. (Zitiert auf Seite 33)

Three of Coins. Darcs vs Git: mathematician versus engineer. http://3ofcoins.
net/2008/12/16/darcs-vs-git-mathematician-versus-engineer. Kommentar
von ,Maciej” vom 24.12.2008. (Zitiert auf Seite 33)

TortoiseGit. http://code.google.com/p/tortoisegit. (Zitiert auf Seite 37)
TortoiseHg. http://tortoisehg.bitbucket.org. (Zitiert auf Seite 42)

Wikipedia. BitKeeper. http://en.wikipedia.org/w/index.php?title=
BitKeeper&oldid=510265555. (Zitiert auf Seite 12)

Wikipedia. Darcs. http://en.wikipedia.org/w/index.php?title=Special:
Cite&page=Darcs&id=517379492. (Zitiert auf Seite 12)

Wikipedia. GNU arch. http://en.wikipedia.org/w/index.php?title=GNU_
arch&oldid=511941266. (Zitiert auf Seite 12)

Alle URLs wurden zuletzt am 21. 10. 2012 gepriift.

59

www.skytecag.com/unternehmen/references/case-studies/single-referenz/archive/2007/article/siemens-ag-1
www.skytecag.com/unternehmen/references/case-studies/single-referenz/archive/2007/article/siemens-ag-1
www.skytecag.com/unternehmen/references/case-studies/single-referenz/archive/2007/article/siemens-ag-1
http://stackoverflow.com/questions/465042/is-it-possible-to-have-a-subversion-repository-as-a-git-submodule
http://stackoverflow.com/questions/465042/is-it-possible-to-have-a-subversion-repository-as-a-git-submodule
http://svn.apache.org/repos/asf/subversion/branches/1.6.x/www/testimonials.html
http://svn.apache.org/repos/asf/subversion/branches/1.6.x/www/testimonials.html
http://progetti.arstecnica.it/tailor
http://3ofcoins.net/2008/12/16/darcs-vs-git-mathematician-versus-engineer
http://3ofcoins.net/2008/12/16/darcs-vs-git-mathematician-versus-engineer
http://code.google.com/p/tortoisegit
http://tortoisehg.bitbucket.org
http://en.wikipedia.org/w/index.php?title=BitKeeper&oldid=510265555
http://en.wikipedia.org/w/index.php?title=BitKeeper&oldid=510265555
http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Darcs&id=517379492
http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Darcs&id=517379492
http://en.wikipedia.org/w/index.php?title=GNU_arch&oldid=511941266
http://en.wikipedia.org/w/index.php?title=GNU_arch&oldid=511941266

Erkldarung

Hiermit versichern wir, diese Arbeit
selbstdndig verfasst und nur die angegebenen
Quellen benutzt zu haben.

(Jakob Jarosch Tobias Kuhn Patrick Strobel)

	1 Einleitung
	2 Grundlagen
	2.1 Begriffe
	2.2 Themenüberblick
	2.3 Vorgehen

	3 Marktübersicht
	3.1 Zentrale Quellcodeverwaltung
	3.2 Verteilte Quellcodeverwaltung

	4 Momentan verwendetes System
	4.1 Mitarbeiterbefragung

	5 Bewertungskriterien
	5.1 K.O.-Kriterien
	5.1.1 JIRA-Integration
	5.1.2 GUI-Unterstützung
	5.1.3 IDE-Plugin
	5.1.4 Betriebssysteme
	5.1.5 Teilweises Auschecken
	5.1.6 Externals
	5.1.7 Export
	5.1.8 Benutzerfreundlichkeit
	5.1.9 Konversion von Subversion

	5.2 Entscheidungskriterien
	5.2.1 Lizenz
	5.2.2 Dateiberechtigungen
	5.2.3 Keywords
	5.2.4 File-Lock
	5.2.5 Sammeln bzw. Zwischenspeichern von Commits
	5.2.6 Suchen von Changesets
	5.2.7 Effizienz

	6 Auswertung
	6.1 Bewertungsübersicht
	6.2 In Frage kommende Werkzeuge
	6.2.1 AccuRev SCM
	6.2.2 Bazaar
	6.2.3 Darcs
	6.2.4 Fossil SCM
	6.2.5 Git
	6.2.6 IBM Rational Team Concert
	6.2.7 Mercurial
	6.2.8 Perforce
	6.2.9 Plastic SCM

	7 Empfehlung
	7.1 Übersicht
	7.2 Diskussion
	7.3 Einführungsstrategie
	7.4 Mögliche Probleme bei der Umstellung

	8 Zusammenfassung und Ausblick
	Literaturverzeichnis

