Institut fiir Visualisierung und Interaktive Systeme

Universitdt Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Fachstudie Nr. 164

Automatisierte, quantitative

Analyse von

Android-Applikation-GUIs

Robin Goldberg, Hansjorg Schmauder, Benjamin

Studiengang:

Priifer/in:

Betreuer/in:

Beginn am:

Beendet am:

CR-Nummer:

Schmidt

Softwaretechnik

Prof. Dr. Albrecht Schmidt

Dipl.-Inf. Niels Henze, M. Sc. Alireza
Sahami

2012-08-15
2013-02-14

D.2.2

Hansjörg
Typewriter
..

Kurzfassung

Nach der rasanten Verbreitung klassischer Mobiltelefone zeichnet sich in den letzten Jahren
ein neuer Trend ab: Immer mehr Mobiltelefone werden durch sogenannte ,Smartphones”
ersetzt. Diese Smartphones bieten dem Nutzer tiber die klassischen Funktionen wie Telefon
und SMS hinaus Zugriff auf ein breites Feld von Funktionen und Diensten, von denen
viele direkt mit dem mobilen Internet verbunden sind. Der grofie Unterschied zwischen
klassischen Mobiltelefonen und Smartphones liegt dabei vor allem im Konzept der Applica-
tions (Apps). Nutzer konnen eine Vielzahl unterschiedlicher Apps aus grofien Apps-Stores
herunterladen und installieren, um den Funktionsumfang ihres Smartphones erheblich zu
erweitern. Die grofSe Zahl der Apps auf der einen Seite und die steigende Bedeutung von
Smartphones und Apps auf der anderen Seite machen dieses Feld auch fiir die Forschung
sehr interessant. Dazu wurden Techniken entwickelt, um automatisch gefdhrliche Apps
zu identifizieren oder Fehler in einer grofien Anzahl von Apps zu finden. Im Gegensatz
dazu beschiftigt sich diese Arbeit mit der automatisierten Analyse von Apps aus der Sicht
der Mensch-Rechner-Interaktion. Dazu haben wir 400 beliebte Android Apps untersucht.
Die Ergebnisse legen nahe, dass sich die Komplexitdt der Benutzungsschnittstelle je nach
App-Kategorie unterscheidet. Des Weiteren haben wir die zur Gestaltung verwendeten
Layout-Dateien mit dem Ziel analysiert, Elemente und Muster von Elementen zu finden, die
hdufig verwendet werden.

Das hdufigste Muster, das wir identifizieren konnten, besteht aus drei Elementen und macht
insgesamt 5.43 % aller Elemente der Layout-Dateien aus. Damit tritt es hdufiger auf als einige
Standard-Elemente wie beispielweise Fortschrittsbalken und Kontrollkdstchen. Die zehn
héufigsten Muster machen zusammen 21.13 % aller Elemente aus. Sie treten alle hdufiger
auf als bekannte Elemente wie Optionsfelder. Mithilfe dieser Muster lassen sich nicht nur
Erkenntnisse iiber die derzeitige Gestaltung von App-Oberflichen gewinnen, sondern auch
Ideen fiir neue, sinnvolle Elemente finden.

Inhaltsverzeichnis

1 Einleitung

2 Verwandte Arbeiten

2.1 Automatisierte (Android-)App-Analyse L.
2.2 Mobile Interaktion o oo
3 Android-Architektur
3.1 Android-System
3.2 APPS . .
33 PlayStore
4 Reverse-Engineering und Analyse
4.1 Download
42 APKentpacken
4.3 Resourcen analysieren L 0 L.
4.4 Manifest analysieren L L o oL
4.5 Code und Layout analysieren
4.6 Datensatz.
5 Ergebnisse
5.1 Statistiken beliebter Android-Anwendungen
51.1 Sprachen
5.1.2 Unterstiitzte Anzeigen
5.1.3 Einstiegspunkte o o oo o
5.1.4 Analyse der Berechtigungen
5.1.5 Anzahl der Benutzungsschnittstellen
5.1.6 Diskussion der Befunde oL
5.2 User-Interface-Elemente und -Muster
52,1 Layouts.
5.2.2 User-Interface-Elemente
5.2.3 User-Interface-Muster
5.2.4 Diskussionder Befunde
5.3 Einschrankungen 00 L.

6 Folgerung und Ausblick

6.1

Zusammenfassung und zukiinftige Arbeiteno

Literaturverzeichnis

11

13
13
14
16

17
17
18
18
19
20
21

23
23
23
23
24
24
26
28
28
29
30
32
34
35

37
37

39

Abbildungsverzeichnis

3.1
3.2
33

5.1
5.2
53

54

Android-Systemarchitektur oo o o000 14
Android-Manifest-Datei L o o 15
Android-Layout-Datei 16
Die zwolf meistverwendeten Sprachen neben Englisch. 24
Die hdufigsten Android-Standardberechtigungen. 25

Die durchschnittle Anzahl Aktivitdten (links), Layouts (mitte), und Bilder
(rechts) fiir die zehn Kategorien mit den meisten Anwendungen in unserem
Datensatz. Die Fehlerbalken zeigen die Standardabweichung. 26
Die durchschnittliche Anzahl von Widgets pro App, aufgetragen fiir die
zehn hdufigsten Standard-Widgets von Android in unserem Datensatz. Die

Fehlerbalken zeigen die Standardabweichung. 29
Die haufigsten Layout-Muster. 31
Die Verwendung hdufiger Layout-Muster durch die Apps im Datensatz. 31
Uberblick iiber die iiblichsten Widget-Muster. 33
Verwendung der haufigen Widget-Muster in den Apps. 33

Tabellenverzeichnis

4.1

Die Verteilung der heruntergeladenen Apps auf die verschiedenen Kategorien.
Die letzten drei Spalten zeigen die durchschnittliche Anzahl der Activitys,
Layouts und Bildern der Apps in der jeweiligen Kategorie.. 22

Die zehn am héaufigsten verwendeten Widgets in unserem Datensatz. Die
Spalten zeigen den Name des Widgets, die Anzahl der Apps, in denen es
verwendet wurde, den prozentualen Anteil gegeniiber der Gesamtzahl aller
gefundenen Widgets und die Gesamtzahl, wie oft das Widget gefunden wurde. 30

1 Einleitung

Der Trend zum Smartphone ist ungebrochen, viele Menschen sind inzwischen permanent mit
mobilem Internet versorgt und knnen von berall auf E-Mails, Nachrichten und andere Dienste
zurckgreifen. Als zentrales Bedienelement hat sich der Touchscreen herauskristallisiert, der
Anzeige und Bedienung der Smartphones zugleich darstellt. Erweitert wird die Funktionaliter
Smartphones durch eine Vielzahl sogenannter Apps, kleiner Programme, welche einen
bestimmten Dienst anbieten, Kommunikation ermglichen oder einfach nur unterhalten
sollen. Bei tausenden von Apps, die auf den verschiedenen Marktplen erhlich sind und
sich hig mit lichen Themen beschigen, spielt die Gestaltung der GUI und Interaktion eine
entscheidende Rolle. Sie kann ber den Erfolg oder Misserfolg einer App entscheiden, da
es im Normalfall keine Anleitungen gibt und die Nutzer auch keine Motivation haben,
Hilfefunktionen zu befragen. Die App muss aber nicht nur eine gute Usability haben, also
einfach und intuitiv zu bedienen sein, sondern auch Likeability ist ein wichtiges Thema. Die
Nutzung der App soll Spaachen und fr den Nutzer ein Erlebnis darstellen.

Damit verbunden ist die visuelle Prntation, da direkt mit den Elementen auf dem Bildschirm
interagiert wird. Je nach Art der App knnen dabei ganz verschiedene Konzepte und Elemente
zum Einsatz kommen. Wend mobile Spiele versuchen, eine mglichst gute Immersion zu
erreichen, mssen Nachrichten-Apps bersichtlich sein und in Kommunikationsprogrammen
wird hig versucht, den Eindruck einer direkten Konversation aufrecht zu erhalten. Dies
alles macht die Betrachtung der Benutzungsoberflen von Apps zu einem interessanten und
lohnenswerten Feld.

Diese Arbeit stellt folgende Aspekte vor: Zunst werden in Kapitel 2 verwandte Arbeiten
beschrieben, die helfen sollen, den Kontext dieser Arbeit richtig einzuordnen und einen
erblick ber das Themengebiet zu bekommen. Im dritten Kapitel folgt eine Beschreibung des
Android-Systems und der Funktionsweise von Apps und dem fr diese Arbeit genutzten
App-Store. Kapitel 4 erkl, wie die einzelnen Apps analysiert wurden und welche Daten dabei
gewonnen werden konnten. Die Vorstellung der Ergebnisse folgt in Kapitel 5, im letzten
Kapitel stellen wir Folgerungen vor und geben Ideen, welche Herausforderungen auf diesem
Feld noch offen sind.

2 Verwandte Arbeiten

In diesem Kapitel werden zunéchst einige Arbeiten vorgestellt, die sich ebenfalls mit der
Analyse von Apps beschiftigt haben. Im Wesentlichen haben wir zwei Kategorien bestehen-
der Arbeiten zu diesem Thema identifiziert. Zum einen wurden schon einige automatisierte
Untersuchungen von (Android-)Apps durchgefiihrt, die sich jedoch zum Grofiteil auf Aspek-
te der Sicherheit und der Korrektheit der Apps konzentrierten. Zum anderen gibt es bereits
Arbeiten, die sich mit der Gestaltung und Analyse der Android-GUI beschiftigen sowie
zahlreiche Richtlinien und Hinweise fiir die Oberflachengestaltung von Apps. Diese Arbeiten
konzentrieren sich aber zumeist auf Beispielanwendungen oder wenige, ausgesuchte Apps.

2.1 Automatisierte (Android-)App-Analyse

Die ersten Arbeiten, in denen grofsere Mengen von Android-Apps untersucht wurden, be-
schiftitgen sich zum Grofsteil mit Aspekten der Sicherheit und dem Rechte-System der
Android-Plattform. Einen einfachen Ansatz wihlen dabei Barrera et al [BKOS10]. Sie ex-
trahieren die Manifest-Dateien von 1.100 Apps, um daraus alle von den Apps benutzten
Rechte auszulesen. Diese werden anschliefsend als Bit-Vektoren gespeichert, um darauf
Analysen zu den verwendeten Rechte auszufiihren. Die Apps werden dabei in Kategorien
entsprechend denen im Android-Market gruppiert. Die meisten Rechte finden sich bei Apps
aus dem Bereich Kommunikation, die wenigstens beim Bereich der Themes. Insgesamt
wurde festgestellt, dass einige wenige Rechte wie zum Beispiel der Zugriff auf das Inter-
net sehr hdufig verwendet werden, wahrend der Grofsteil nur selten zum Einsatz kommt.
Zudem wurden einige Fehler wie der doppelte Aufruf von Rechten oder Aufrufe auf nicht
existierende Rechte gefunden. Im Weiteren werden auch noch verschiedene Kategorien
tiber die Ahnlichkeit ihrer Rechte verglichen, um die Nutzung weiter aufzuschliisseln und
Verbesserungsvorschlédge fiir das Rechte-System von Android geben zu konnen.

Der Fokus bei der Arbeit von Felt et al. [FCH" 11] liegt darin, herauszufinden, wie viele
Android Apps mehr Rechte aufrufen als sie tatsdchlich brauchen. Ihr Tool Stowaway un-
tersucht, welche API-Funktionen in der App tatsdchlich aufgerufen werden. Dazu liegen
die Apps zunéchst in Form von Dalvik-Executables vor, werden dann per Dedexer Tool
dissassembled und von Stowaway mittels statischer Codeanalyse untersucht. Diese findet
alle API-Aufrufe und vergleicht sie mit einer vorher erstellten Karte, auf der verzeichnet ist,
welcher Aufruf zu welcher Permission gehort. Des Weiteren wurden auch Content-Providers
und Intents untersucht, um hier ebenfalls die verwendeten Rechte herauszufinden. Bei der
Untersuchung von 940 Apps wurde etwa ein Drittel als tiberpriveligiert eingestuft. Als Ursa-
chen identifizieren die Autoren verschiedene Fehler, von der Nutzung veralteter Rechte iiber

2 Verwandte Arbeiten

Copy & Paste-Fehler bis hin zu Artefakten durch Testcode oder schlechte API-Information
tiber die fiir einen Aufruf tatsdchlich benétigten Rechte.

Einen Schritt weiter geht die Arbeit von Chin et al. [CFGW11]. Dort werden die Kommuni-
kation zwischen einzelnen Android-Apps und die mit dem Android-Modell einhergehenden
Risiken untersucht. Android-Apps kommunizieren iiber sogenannte Intents. Dabei handelt
es sich um Nachrichten, die innerhalb einer App, zwischen verschiedenen Apps oder auch
systemweit gesendet werden kdnnen. Intents enthalten immer einen Empfanger und optio-
nal Daten, welche zum Empfanger gesendet werden. Der Empfanger kann dabei entweder
explizit angegeben oder implizit vom Android-System bestimmt werden. Zur Analyse des
Intent-Verhaltens von Apps nutzt ihr Tool ComDroid statische Codeanalyse auf Basis von
dissassembleten Dalvik-Executables. Es verfolgt die Intents von der Erzeugung an der Quelle
bis zur Konsumierung bei einer Senke und untersucht dabei die Moglichkeit, das Intent
durch unzureichende Definition von Rechten oder ungenaue Angabe von Sender oder Emp-
fanger zu manipulieren oder Intents einer App abzufangen und die Daten darin auszulesen.
Aufierdem werden die einzelnen Komponenten von Apps auf die Moglichkeit hin untersucht,
sie mithilfe von Intents zu beeinflussen, weil die empfangenen Nachrichten nicht sorgfaltig
genug gepriift und verarbeitet werden. Bei der Untersuchung von 20 Apps mit Hilfe von
ComDroid wurden 34 mogliche Angriffspunkte identifiziert, 12 der untersuchten Apps
wiesen wenigstens eine Verwundbarkeit auf.

Im Bereich von automatisierter App-Analyse wurden bisher hauptsidchlich Aspekte wie
Sicherheit und Datenschutz untersucht. In der Arbeit von Hu und Neamtiu [HN11] findet
sich allerdings ein erster Ansatz zur GUI-Analyse. Sie zielt ab auf das Auffinden von
typischen Fehlern in Android-Apps mittels automatisch generierter Testfélle. Dies erfordert
aufgrund der Android-GUI-Architektur eine neue Vorgehensweise verglichen mit etablierten
Testmethoden. Die Aktivitats- und Ereignis-Struktur von Android-Apps ldsst sich nicht mit
bisherigen GUI-Analyse-Tools abbilden, dazu ist eine Kombination von Tools nétig. Zum
Test der GUI wurden hierbei JUnit zur automatischen Testfallgenerierung und Monkey, ein
Tool zur Generierung von Android-UI-Events, genutzt. Die Daten der Tests wurden in das
System-Log geschrieben, welches anschliefsend ausgewertet wurde. Es lieflen sich mit dieser
Methode sowohl bekannte Fehler entdecken als auch bisher unbekannte Fehler auffinden.

Zusitzliche dynamische Codeanalyse zur Einschdatzung der Gefahr durch eine App stellen
Blésing et al. [BBS'10] in ihrer Arbeit vor. Neben der statischen Codeanalyse fiihren sie die
untersuchte App in einer Sandbox aus, um ihr tatsdchliches Verhalten zu beobachten. Dabei
geht es vor allem darum, Apps zu identifizieren, welche die Privatsphére des Nutzers verlet-
zen konnten oder Malware enthalten. Bei der statischen Analyse wird nach verdachtigen
Mustern im Code gesucht. Als verddchtige Muster werden vor allem Versuche angesehen,
den normalen Ablauf im Android-System durch direkte Aufrufe von nativem Code in Biblio-
theken oder direkter Codeausfiihrung zu beeinflussen oder per Reflection Beschrankungen
der API zu umgehen. Wiahrend der dynamischen Analyse werden alle Aktionen der App
aufzeichnet. Das dabei entstandene Log kann dann entweder manuell oder automatisiert
untersucht werden. Den Einsatzbereich sehen die Autoren bei Priifungen im Marktplatz
ebenso wie fiir Anti-Virus-Tools auf dem Android-Gerit.

10

2.2 Mobile Interaktion

Szydlowski et al. [SEKV12] beschiftigen sich in ihrer Arbeit auch mit dem Problem der
Sicherheit, sie betrachten allerdings iOS-Apps. Im Fokus ihrer Arbeit liegt die Herausfor-
derung der dynamischen Analyse von Apps, die hauptsachlich iiber ihre GUI gesteuert
werden. Das Ziel ihrer Analyse ist es, potentiell gefdhrliche Apps zu identifizieren. Dass
die Einbeziehung der GUI nétig ist, zeigen ihre Angaben zur Codetiberdeckung: Ohne
Einbeziehung der GUI liegt sie bei 16 %, mit GUI-Analyse bei 69 %. Im Gegensatz zu den
vorher vorgestellten statischen Analyseverfahren wird bei dynamischen Analysen die App
direkt bei ihrer Ausfithrung beobachtet. Da es sich um eine grundlegende Arbeit handelt,
wurden keine richtigen Apps untersucht, sondern nur die Tools anhand einer Beispiel-App
getestet. Dabei wurde gezeigt, dass die Verwendung der GUI absolut notwendig ist, um
einen Grofsteil der Funktionsaufrufe einer App tatsdchlich zu finden und damit auf eine dhn-
liche Abdeckung wie bei statischer Codeanalyse zu kommen. Der Vorteil der dynamischen
Analyse besteht in dem Fall darin, auch Code untersuchen zu kénnen, bei dem die statische
Analyse scheitert, weil der Code maskiert wurde.

2.2 Mobile Interaktion

Fortwéhrend beschiftigen sich Forscher mit der Ergriindung, Datensammlung und Beobach-
tung iiber das Nutzungsverhalten von Anwendern einer App. Cui und Roto betrachteten, wie
Anwender das mobile Internet nutzen [CRo8] und fanden dabei heraus, dass die Dauer der
Web-Nutzung zwar kurz ist, aber mehr Zeit im Browser verbracht wird, wenn die Benutzer
per WLAN verbunden sind. Bohmer et al. fithrten eine grofs angelegte Studie mit einem
genauen Protokoll iiber die Anwendungsnutzung bei Android-Apps durch [BHS 11]. Basie-
rend auf grundlegenden und kontextuellen Statistiken entwickelten sie das Vorschlagsystem
~Appazaar” [BBK1o]. Moller et al. untersuchten das Update-Verhalten und die Auswir-
kungen auf die Sicherheit im Google Play Market [MDR"12]. Sie berichten, dass Nutzer
dazu neigen, Updates auch eine Woche nach Erscheinung der Aktualisierung noch nicht
zu installieren. Rahmati et al. fithrten eine Longitudinalstudie durch und verglichen, wie
Benutzer aus unterschiedlichen sozialen und wirtschaftlichen Verhéltnissen (,,SES”) sich an
neue Smartphone-Technologien und deren Installation bzw. Nutzung anpassen [RTS* 12]. Sie
zeigen, dass Nutzer aus einem Umfeld von niedrigerem Status mehr Geld fiir Anwendungen
ausgeben und auch mehr Anwendungen installieren. Die Gruppe mit dem niedrigsten Status
schatzt die Usability ihrer iPhones verglichen mit den anderen Gruppen am schlechtesten ein.
Die Nutzung der Smartphone-Dienste wird von 14 jugendlichen Nutzern tiberpriift [RZ12].
In der Feldstudie wird berichtet, dass sie ihre Smartphones zu verschiedenen sozialen Zwe-
cken einsetzen und sehr von der Mobilitédt profitieren, sodass sie es auch unterschiedlich
einsetzen, je nachdem, wo sie sich befinden. Verkasalo [Verog] zeigt auflerdem, dass Nutzer
bestimmte Typen mobiler Dienste in bestimmten Kontexten verwenden. So werden Browser-
und Multimedia-Anwendungen hauptsichlich eingesetzt, wenn die Nutzer unterwegs sind,
Spiele hingegen 6fters dann, wenn sie zu Hause sind. Balagtas et al. bewerten verschiedene
Ul-Designs und Eingabetechniken fiir Touchscreen-Mobiltelefone [BFFHog].

Einige Veroffentlichungen beschiftigen sich auch mit dem Nutzerverhalten bei der Ver-
wendung und Interaktion mit Apps auf mobilen Gerdten. Henze et al. evaulierten die

11

2 Verwandte Arbeiten

Genauigkeit von Beriihrungsinteraktion bei mobilen Apps [HRB11] und leiteten eine Kom-
pensationsmethode ab, die die Nutzereingaben auf dem Display verschiebt, um Fehler zu
reduzieren. Auflerdem untersuchten sie das Eingabeverhalten auf virtuellen Tastaturen,
wie sie bei Smartphones hiaufig Verwendung finden [HRB12] und schlossen dort, dass die
Markierung der angeklickten Stelle mit einem einfachen Punkt die Fehlerrate bei Benutzern
auf der Android-Tastatur senkt. Leiva et al. beschiftigten sich mit der Unterbrechung der
mobilen Anwendung sowohl durch bewusstes Vor- und Zuriickwechseln zwischen den
geoffneten Anwendungen als auch durch jahe Unterbrechungen wie eingehende Telefon-
anrufe [LBG' 12]. Sie stellen fest, dass derartige Unterbrechungen zwar tendenziell selten
vorkommen, im Falle des Eintretens allerdings hédufig einen signifikanten Overhead zur
Folge haben.

12

3 Android-Architektur

Dieses Kapitel gibt einen Uberblick iiber die Android-Architektur. Dazu wird zunédchst
das Android-System selbst beschrieben. Dann folgt die Beschreibung der Architektur von
Android-Apps, bevor zuletzt noch der Marktplatz fiir Android-Apps, Google Play, vorgestellt
wird. Dieses Kapitel fithrt damit in die wesentlichen Konzepte ein, welche nachher in der
Beschreibung der Analyse verwendet werden und stellt diese in den korrekten Kontext. Es
werden hauptsachlich die fiir diese Arbeit wesentlichen Aspekte vorgestellt’. Die aktuelle
Version von Android ist 4.1, da aber viele <ere Gerite keine Updates auf aktuelle Versionen
bekommen, sind noch viele Android 2.x-Gerdte in Nutzung, die 3.x-Serie war rein fiir Tablets
ausgelegt.

3.1 Android-System

Die Grundlage des Android-Systems ist eine spezielle Form des Linux-Kernels. Dieser
enthilt die Treiber fiir die Hardwarekomponenten des jeweiligen Gerédtes wie z.B. Display,
Kamera oder WiFi und kiimmert sich auch um das ganze Energiemanagement des Gerits.
Darauf aufbauend gibt es eine Reihe von Bibliotheken, dhnlich denen des Standard-Java,
die in C oder C++ geschrieben sind und sich um Grundfunktionen der Software kiimmern,
beispielsweise den Zugang zu Datenbanken, Mediendarstellung, Grafiken, Verschliisselungen
und Ahnliches. Auch spezielle Versionen von Standardbibliotheken wie der libc sind hier
zu finden, welche auf die Bediirfnisse der Hardware mit wenig Speicher, langsameren
Prozessoren und geringem Energieverbrauch optimiert sind.

Die eigentlich Funktionalitét fiir Entwickler und Benutzer ist im Application Framework
und den Applications enthalten. Diese sind in Java geschrieben und werden von einem
eigens entwickelten Tool auf den Bytecode fiir die Dalvik Virtual Machine (VM) von An-
droid angepasst. Dies ermoglicht die Nutzung von normalen Entwicklungsumgebungen
aus dem Java-Umfeld, der Code muss lediglich am Ende noch in das DEX-Format umge-
wandelt werden. Bei der Dalvik-VM handelt es sich um eine eigens fiir Android entwickelte
Java-Ausfiihrungsumgebung. Das Application Framework bietet Zugriff auf grundlegende
Funktionen tiber verschiedene Manager und abstrahiert den Zugriff auf Funktionen der
Standardbibliotheken und der Dalvik-VM fiir die Entwickler von Applications. Zu den

'Eine vollstindige Beschreibung der Android-Architektur findet sich Dbeipielweise auf
http:/ /developer.android.com.

13

3 Android-Architektur

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWDORK

Window Content

Activity Manager Manager Providers

Telephony Resource Locaton Motification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries

Framework

ORVirea

OpenGL | ES FreeType WebKit Machine

SGL SsL libe

LINUX KERMNEL

Flash Memary Binder (IPC)

o
Display
Driver Driver

! Camera Driver
Driver

Audio Power

Keypad Driver WiFi Driver (i Management

Abbildung 3.1: Android-Systemarchitektur

vorhandenen Managern zdhlen unter anderem der Telephone Manager, der Location Ma-
nager und der Resource Manager, aber auch der Window Manager und Activity Manager
zur Verwaltung von Oberfldchen und Funktionen. Einen vollstindigen Uberblick iiber die
einzelnen Komponenten des Android-Betriebssystems bietet Abbildung 3.1%.

3.2 Apps

Applications fiir Android werden in Java geschrieben, fiir die Gestaltung der Benutzerober-
flaiche werden XML-Dateien verwendet. Zusatzlich konnen noch Ressourcen in Form von
Sprachdateien oder Bildern eingebunden werden. Der Ausgangspunkt jeder Application ist
die Manifest-Datei. Sie ist in XML geschrieben und enthélt grundsitzliche Informationen zur
App. Hier wird definiert, wo der Code der App zu finden ist, welche Aktivitidten in einer
App zur Verfiigung stehen und welche davon als Startaktivitidten gekennzeichnet sind. Des
Weiteren konnen in der Manifest-Datei auch Angaben zu Rechten, 6ffentlich Verfiigbaren

2Quelle: http:/ /developer.android.com/images/system-architecture.jpg

14

3.2 Apps

<?xml version="1.0" encoding="otf-8"7>
<manifest android:versionCode="1" android:versionName="1.0" package="com.example.androidhelloworld"”
wmlns:android="http://schemas.android. com/apk/res/android">
<uses-sdk android:min3dkVersion="8" android:target5dkVersion="15" />
<application android:theme="@style/AppTheme" android:label="@string/app name" android:icon="@drawable/ic launcher">
<activity android:label="@string/title activity main" android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
<factivity>
</application>
</manifest:>

Abbildung 3.2: Android-Manifest-Datei

Schnittstellen und weiteren Konfigurationen der App eingetragen werden, eine Beispieldatei
zeigt Abbildung 3.2.

Die Grundlage fiir die Programmierung einer App stellt in Android die sogenannte Activity
dar. Eine Activity stellt genau eine Bildschirmansicht dar, der Quellcode zur Funktionalitat
wird in einer Java-Klasse implementiert, das Layout sollte tiber eine XML-Datei definiert
werden, es konnen jedoch auch Verdnderungen am Layout im Quellcode der Klasse vor-
genommen werden. Die verschiedenen Activitys konnen sich gegenseitig aufrufen und
damit die gesamte Funktionalitit der Application abbilden. Jede Activity ist eine Unterklasse
von Activity und muss bestimmte Funktionen enthalten, die dem Android-System sagen,
was zu tun ist, wenn eine App gestartet, gestoppt oder beendet wird. Auf dem Bildschirm
nimmt eine Activity im Normalfall den gesamten Platz ein. Da jeweils nur eine Activity
aktiv sein kann, muss jede Activity Mechanismen vorsehen, ihren Zustand zu speichern und
wiederherzustellen, wenn in der Zwischenzeit eine andere Application verwendet wurde.

Haufig existieren von einer Anwendung Versionen in verschiedenen Sprachen und es
gibt unterschiedliche Layouts fiir unterschiedliche Bildschirmgrofsen, Ausrichtungen und
Aufldsungen. Damit nicht fiir jede Version eigene APKs veroffentlicht werden miissen,
konnen unterschiedliche Sprach- und Layoutdateien in speziell benannten Ordner abgelegt
werden, wo sie automatisch vom Android-System in der jeweiligen Situation ausgewdahlt
werden. Alle diese Elemente werden schliefilich zu einem komprimierten Ordner, dem
Android Application Package (APK), zusammengepackt. Das APK enthilt alle Ressourcen,
die Manifest-Datei und den in Bytecode kompilierten Code der Activitys. Ein solches APK
kann dann zum Beispiel vom Play Market heruntergeladen und installiert werden.

Die Gestaltung der Oberfldche erfolgt primdr durch XML-Dateien. Dort werden die visuellen
Elemente und deren Eigenschaften angegeben, die in einem Elementbaum verschachtelt
sind. Jedes dieser Elemente ist von der Klasse View abgeleitet und stellt einen Bereich auf
dem Bildschirm dar, mit dem der Nutzer interagieren kann. Fiir alle tiblichen visuellen
Elemente stehen bereits fertige Klassen in Android zur Verfiigung. Auf diese Weise kénnen
Buttons, Textfelder und Labels einfach in das Layout eingefligt werden. Um die Anordnung
kiimmert sich der angegebene Layout-Manager. Im Beispiel in Abbildung 3.3 fiillt dazu ein
relatives Layout zunédchst den gesamten Bildschirm, wahrend die einzelnen Elemente in
einem linearen Layout untereinander angeordnet werden.

15

3 Android-Architektur

<?xml version="1.0" encoding="utf-8"7?>

<Relativelayout android:layout_width="fill parent" android:layout_height="fill parent"
xmlnz:android="http://schemas.android.com/apk/res/android">

<LinearLayout android:orientation="vertical" andr

oid:1 t_width="wrap content" android:layout height="wrap content"

android:layout alignParentLeft="true" android:layout a ParentTop="true"

gnParentRight="true" android al. arentBottom="trne">
<TextView android:id="@id/textViewl" android v
android:layout_height="wrap content" android:text=
<EditText android:id="@id/editTextl" android:1
android:layout height="wrap content" android:h

android:layout_a

t_width="wrap_content"

string/hello world" />

yout_widrch="fill parent"

'_:t="@strll)g/ellter;llame" android:em=s="10" android:inputType="text">

<requestFocus />

</EditText>

<Linearlayout android:layout_width="fill parent" android:layout_height="wrap content">
<Button android:id="@id/buttonl" android:1
a:drs;d:Eexl:="@str‘ing/hﬂtton_text" android

</LinearLayout>

</LinearLayout>
</Relativelayvout>

jout_width="fill parent" android:layout_height="wrap content"”
"gstring/button_hint" />

Abbildung 3.3: Android-Layout-Datei

3.3 Play Store

Uber den Google Play Store kénnen Apps verbreitet werden. Die meisten Android-
Smartphones haben den Zugang zum Play Store direkt integriert, es gibt aber auch Android-
Gerite, die andere Stores ansprechen (z.B. Amazons Kindle). Im Play Store werden die
Apps in verschiedensten Kategorien wie beipsielsweise Spiele, Biiro, Kommunikation, Sport,
Unterhaltung usw. eingeteilt. Zusitzlich gibt es Ubersichten iiber aktuelle, beliebte und
gut bewertete Apps. Google untersucht Apps, die im Play Store hochgeladen werden, um
Schadprogramme und unzuldssige Inhalte zu vermeiden. Apps kénnen sowohl kostenlos
angeboten werden wie auch iiber das integrierte Bezahlsystem gekauft werden. Im Play
Store wird auch die Version des Android-Systems des Benutzer gepriift und es werden ihm
nur Apps angeboten, die unter seiner Version lauffahig sind.

Zum jetzigen Zeitpunkt (Ende Oktober 2012) sind im Play Store etwa 700.000 App vorhan-
den3. Zugriff auf kostenlose Inhalte im Play Store besteht aus 190 Landern; in 132 Landern
konnen Apps nicht nur erworben werden, sondern es konnen auch innerhalb der Apps
Kéufe getatigt werden. Etwa die Halfte der Apps bietet solche In-App-Kéufe an. Die Ent-
wicklergemeinde rund um Android ist sehr aktiv, pro Monat werden rund 40.000 neue Apps
erstelltt.

3Quelle: http://www.businessweek.com/news/2012-10-29/google-says-700-ooo-applications-available-for-
android-devices
4Quelle: http:/ /webgtech.com/2012/06/27/google-play-store-statistics-updates/

16

4 Reverse-Engineering und Analyse

Nachdem die Komponenten und die Struktur von Android-Apps vorgestellt wurden, soll in
diesem Kapitel darauf eingegangen werden, wie die Apps automatisiert heruntergeladen
und analysiert werden konnen. Im Zuge dieser Arbeit kommen dabei zwei Werkzeuge
zum Einsatz. Zum einen eine angepasste Version des Programms APKFetcher, welches in
Java geschrieben ist und auf der inoffiziellen Google Market API" basiert. Mit diesem Tool
werden die APK-Archive von Apps heruntergeladen und zusammen mit einer Textdatei
mit zusdtzlichen Informationen wie dem Namen, der Kategorie oder dem Zeitpunkt des
Downloads abgespeichert. Das zweite Werkzeug, der APKAnalyzer, liest dann diesen Ordner
aus, erstellt eine Liste der gefundenen Apps und fiihrt die Analyse der einzelnen Apps aus.
Der APKAnalyzer wurde eigens fiir diese Arbeit in C# implementiert. Die Analyseergebnisse
werden in einer SQLite-Datenbank abgespeichert. Der Schwerpunkt liegt bei Daten, die einen
direkten Bezug zur Benutzeroberfliche aufweisen, und natiirlich der Benutzeroberfliche
selbst. Die einzelnen Teile, ihre Funktion und die Daten, welche sie generieren, werden in
den folgenden Unterkapiteln im einzelnen beschrieben.

4.1 Download

Der erste Schritt der Datengewinnung bestand darin, die Apps vom Google-Market herun-
terzuladen. Hierzu wurde die Google Market API eingesetzt, die in dem von Niels Henze
entwickelten APKFetcher-Werkzeug verwendet wird. Mithilfe des Tools wird eine Verbin-
dung zum Market-Server hergestellt unter Verwendung einer Android-Authentifizierung.
Das beinhaltet eine Device-ID, eine E-Mail-Adresse und das zugehorige Passwort. Als Device-
ID nutzten wir die Identifikationsnummer eines unserer eigenen Geréte (ein HTC Wildfire
S), bei der E-Mail-Adresse und dem Passwort das mit dem Gerit verkniipfte Konto.

Der APKFetcher baut mit der Google Market API Anfragen an den Market-Server zusammen
und setzt diese dann ab. Da wird die populdrsten Apps analysieren wollten, erzeugten wir
diesen Query dementsprechend mit verschiedenen Parametern: Gesucht wurden

o ausschlielich kostenlose Apps
e geordnet nach absteigender Popularitat

e sowie weitere Informationen zu den Apps wie iiber das APK-Archiv hinausgehende
Statistiken etc.

"Homepage: http:/ /code.google.com/p/android-market-api/

17

4 Reverse-Engineering und Analyse

Teile dieser zusétzlichen Informationen wurden zur heruntergeladenen APK-Datei geschrie-
ben. Dabei wurde von der Google Market API keine Eigenschaft angeboten, die die Popu-
laritdat der App im Google Market einordnet. Wir haben uns deshalb auf die Reihenfolge
der vom Store empfangenen APKs verlassen, sodass das Ranking der Apps iiber einen
fortlaufenden Downloadindex realisiert wurde. Die sonstigen Daten, die in die Textdatei
geschrieben wurden, enthalten

e den Namen der App,

o die Kategorie, der die App zugeordnet ist,

e die Bewertung der App durch die Nutzer, die 1—5 Sterne vergeben konnten,
e die aus der Downloadreihenfolge gewonnene Platzierung im Ranking sowie
e den Zeitstempel des Downloadzeitpunkts.

Im néchsten Schritt miissen die App-Archive dekomprimiert werden.

4.2 APK entpacken

Beim Entpacken der APK-Dateien kommt das APKTool*> zum Einsatz. Das APK-Format ist
ein gepacktes Containerformat, welches allerdings eigene Kodierungen verwendet, was die
Nutzung eines speziellen Werkzeugs zum Entpacken notwendig macht. Das APKTool ist in
Java geschrieben und wird im Kontext des APKAnalyzer iiber eine Batch-Datei aufgerufen.
Es entpackt die Ordner mit den verwendeten Ressourcen und wandelt die Java-Bytecode-
Dateien in .smali-Dateien um. Bei diesem SMALI-Format handelt es sich um eine teilweise
menschenlesbare Sprache, die benutzt wird, um aus dem Bytecode nicht den urspriinglichen
Javacode erzeugen zu miissen.

4.3 Resourcen analysieren

Fiir die Benutzeroberflache interessant ist im Wesentlichen der Ordner ‘res’, welcher alle
von der Benutzeroberfliche verwendeten Ressourcen enthilt. Dazu zdhlen Bilder und Ani-
mationen ebenso wie die XML-Layout-Dateien, welche die Oberfldche beschreiben, und
Dateien, welche den Text der Oberfldche in unterschiedlichen Sprachen enthalten kénnen.
Fiir jede Kategorie moglicher Ordner gibt es die Standardordner ,,drawable” fiir Bilder und
Animationen, ,values” fiir Sprachen und ,layout” fiir XML-Dateien zur Beschreibung der
Benutzungsoberfldche.

Es konnen zusitzliche Ordner angelegt werden, indem an den Ordnernamen bestimmte
Suffixe angehdngt werden. Fiir Sprachen sind das beispielsweise Liandercodes aus zwei

*Homepage: http:/ /code.google.com/p/android-apktool/

18

4.4 Manifest analysieren

Buchstaben. Ein Ordner fiir Text in deutscher Sprache hitte den Namen , values-de”. Zu-
satzlich zu Sprachen konnen auch bestimmte Auflosungen oder Bildschirmgrofien definiert
werden, sowie Definitionen fiir gedrehte Bildschirme mittels der Erweiterung ,-land” codiert
werden. All diese Suffixe konnen auch kombiniert werden, sodass zum Beispiel Ordner wie
,Jayout-ar-xhdpi-land” fiir ein Layout in arabischer Sprache fiir hochauflésende Gerdte im
Landscape-Modus sttinde. Das Android-System sucht dann abhédngig von der Konfiguration
des Gerites automatisch die passenden Ressourcen. Sind Ressourcen in einem speziellen
Ordner nicht vorhanden, werden die Ressourcen aus dem Standardordner geladen.

Der APKAnalyzer liest zunédchst alle Ordner ein, die im ,res”-Verzeichnis liegen. Dann
zdhlt er, wie viele ,drawable”-, ,layout”- und ,values”“-Ordner vorhanden sind. Drawables
und Layouts werden dabei typischerweise fiir verschiedene Auflosungen, Grofien oder
Ausrichtungen definiert, wohingegen Values im Normalfall fiir verschiedene Sprachen
definiert sind. Der APKAnalyzer sucht nach den verwendeten Auflosungen und Grofien.
Diese sind fiir Android-Apps in vier vorgegebenen Stufen definiert. Fiir die Grofle kann
small, medium, large und xlarge angegeben werden, fiir die Auflosung 1dpi, mdpi, hdpi und
xhdpi; diese fassen jeweils Gruppen moglicher Auflosungen und Grofien zusammen3. Die
gefundenen Definitionen werden in der Datenbank abgespeichert. Bei den Sprachen wird
nur die Zahl der verwendeten Sprachen ermittelt, indem nach Suffixen, bestehend aus zwei
Buchstaben, gesucht wird sowie dem Bindestrich-Zeichen als Begrenzer.

4.4 Manifest analysieren

Die Manifest-Datei* einer Anwendung beschreibt im XML-Format die Komponenten einer
Anwendung. Das Manifest wurde schrittweise mithilfe von XPath analysiert, wobei die
einzelnen Befunde in einer Datenbank festgehalten wurden. Der Wurzelknoten enthalt
bereits Informationen zum Paketpfad, unter dem spédter die SMALI-Dateien zu finden
sind, die den Code der Anwendung enthalten und Riickschliisse auf die Layout-Dateien
erlauben. Der darunterliegende Knoten ,application” enthilt neben Informationen, ob
Hardwarebeschleunigung aktiv ist oder spezielle UI-Optionen gesetzt sind, auch alle in
der Anwendung zur Verfiigung stehenden Aktivititen mitsamt den Informationen, wo
ihre korrespondierenden SMALI-Dateien im Paket zu finden sind. Ob es sich bei einer
Aktivitdten um ein Hauptaktivitit, also einen Einstiegspunkt, handelt, kann man anhand des
android.intent.action. MAIN-Attributes herrausfinden. Ist dieses gesetzt, kann die Anwendung
mit dieser Aktivitit starten. Zusitzlich enthilt die Manifest-Datei Informationen tiber die
verwendeten Berechtigungen, Hardwarefeatures, Bibliotheken und viele weitere.

Auf die folgenden Informationen haben wir uns innerhalb unserer Analyse konzentriert:

o Aktivitdten (activity)

3Eine genau Aulflistung findet sich auf http://developer.android.com/guide/practices/screens_support.html.

4Fiir Informationen tiber die Manifest-Datei siehe http:/ /developer.android.com/guide/topics/manifest/manifest-

intro.html

19

4 Reverse-Engineering und Analyse

Verwendete Bibliotheken (uses-library)

Erforderte Berechtigungen (uses-permission)
e Verwendete Features wie Beschleunigungssensor (uses-feature)

Die verwendete SDK-Version (uses-sdk)

Hardwarebeschleunigung (hardwareAccelerated)

Theme (theme)

UI-Optionen (uiOptions)

4.5 Code und Layout analysieren

Fiir die gefunden Referenzen auf Aktivititen wird im nédchsten Schritt versucht, die zu-
gehorigen Layout-Dateien zu ermitteln. Um die Layout-Datei fiir eine Aktivitdt zu finden,
mussten wir drei verschiedene Informationsquellen auswerten. Zum einen die Manifest-
Datei ansich, da an der jeweiligen Aktivitdt ein Attribut hangt, das dartiber Auskunft gibt,
wie die SMALI-Codedatei im Paket heifst. Dann wurde die Datei ,public.xml” geparst und
gespeichert. Diese Datei stellt eine Abbildung von einer abstrakten ID auf einen Pfad zu einer
Datei innerhalb des Pakets im Ressourcen-Ordner dar. Innherhalb dieses Ordners liegen
die Layout-Dateien. Nun folgt die Analyse der SMALI-Datei. Innerhalb dieser findet man
eventuell einen Abschnitt wie:

const/highl6 v4,32446

invoke-virtual {v7,v4},com/android/Test/setContentView ; setContentView(I)V

setContentView zeigt an, dass hier eine Sicht gezeigt wird, wofiir eine Layout-Datei geladen
werden muss. Um welche Layout-Datei es sich an dieser Stelle dabei handelt, findet man an-
hand des zweiten Parameters nach invoke-virtual heraus. Nachdem man in der SMALI-Datei
eine Zeile mit setContentView gefunden hat, geht man wieder einige Zeilen zuriick und ver-
sucht eine Initialisierung der Variable (in diesem Fall v4) zu finden. Hier wurde der Variable
zuvor der Wert 32446 zugewiesen. Diesen Wert findet man in der Datei ,public.xml” wieder.
Hier ist er allerdings auf 10 Zeichen mit o aufgefiillt. Es kann natiirlich diverse Konstrukte
im Code geben, die dazu fiihren, dass man nicht mehr ohne Weiteres setContentView oder
die Variableninitialisierung findet. Diese Tatsache haben wir in unserer Analyse nicht weiter
betrachtet, sondern nur festgehalten, wann keine Layout-Datei zu einer Aktivitiat gefunden
werden konnte.

Sind die Referenzen auf alle Layout-Dateien in der Datenbank abgespeichert, untersucht
der APKAnalyzer die gefundenen Layout-Dateien und speichert die dort gefundenen XML
Elemente ebenfalls in der Datenbank ab. Dazu werden die Dateien als XML-Dokumente
eingelesen und die gefundenen Elemente vom Wurzelknoten aus bis zu den Blattknoten

20

4.6 Datensatz

jeweils mit Namen und der Referenz auf den Vaterknoten und die Layout-Datei abgespeichert.
Damit lasst sich fiir die Analyse die komplette Baumstruktur jedes Layout-Dokuments fiir
spatere Auswertungen wiederherstellen. Gespeichert werden nur XML-Elemente, keine
Attribute, da dies fiir Analysen beziiglich der Struktur der einzelnen Bildschirmseiten
ausreichend ist. Elemente konnen dabei sowohl von Android definierte Standartelemente
wie Layouts (LinearLayout, RelativeLayout,...) oder interaktive Elemente (Schaltfldchen,
Eingabefelder,...) sowie selbst definierte Elemente sein. Die selbst definierten Elemente lassen
sich anhand ihres Namens erkennen. Die Bezeichnungen sind nach dem Schema von Java-
Paketen benannt (z.B. ,,com.rgoldberg.CustomView”), daher reicht die Suche nach einem
Punkt, um sie zu identifizieren. Die in Android definierten include-Elemente, mit denen
sich eine XML-Datei in eine andere einbetten ldsst, werden nicht aufgeldst sondern, nur als
normale Elemente erfasst.

4.6 Datensatz

Unter Einsatz der oben beschriebenen Downloadmethode luden wir am 20. August 2012
die 400 populdrsten Apps vom Google Play Store herunter und erzeugten die Informatio-
nen dafiir. Fiir den Download gaben wir keine sprachlichen Praferenzen an. Daher waren
die erhaltenenen Daten — wo durch die App unterstiitzt — lokalisiert in deutscher Sprache,
vermutlich aufgrund der Geratesprache, der Verbindung zum Market-Server aus bundesdeut-
schem Gebiet, des verwendeten Google-Accounts oder der deutschen SIM-Karte. Enthielt die
App keine deutsche Ubersetzung, war stets ein englischer Name angegeben. Wir nehmen an,
dass dies keine Einschrankung der heruntergeladenen Apps mit sich brachte, da sich unter
den Downloads auch Apps befinden, die ganz offensichtlich nicht fiir den deutschen Markt
zugeschnitten sind, beispielsweise ,,FOX News” oder ,Domino’s Pizza USA”.

Die Analyse der Statistiken aus den Informations-Dateien zu den APKs ergab, dass die
400 Apps in 21 Kategorien gegliedert waren. Die Kategorien mit den meisten Apps waren
,Werkzeuge” mit 14,5 % und ,Kommunikation” mit 9,2 % Anteil an der Gesamtheit der
heruntergeladenen Apps. Tabelle 4.1 zeigt die weitere Aufteilung in die anderen Kategorien.
Wir haben Spiele im Rahmen dieser Studie bewusst aufler Betracht gelassen, da deren Be-
nutzeroberflichen konzeptionell sehr stark von den GUIs anderer Arten von Anwendungen
abweichen.

Benutzer konnen die heruntergeladenen Apps im Google Play Store bewerten und hierzu
ihren Gesamteindruck auf einer Skala von 1-5 abgeben. Die durchschnittliche Bewertung
der 400 Apps lag bei 4,25, der Median betrug 4,36 und die Standardabweichung lag bei
0,45. 80 % der Apps wurden mit mindestens 4 Punkten bewertet. Der offensichtliche Zu-
sammenhang ist, dass populdre Apps in der Regel auch von den Benutzern hoch bewertet
werden. Interessanterweise gab es einige Ausreifler unter den Apps, die besonders schlechte
Bewertungen erhalten haben, beispielsweise ,,More for me”, eine App aus der Kategorie
,Shopping”, die als 131. App in der Downloadreihenfolge heruntergeladen wurde, jedoch
nur eine Bewertung von 1,88 erhielt. Die durchschnittlich hochsten Bewertungen wurden in
den Kategorien ,Personalisierung”, , Effizienz” und , Werkzeuge” vergeben; dort lagen die

21

4 Reverse-Engineering und Analyse

Kategorie N | Bewertung | Activitys | Layouts | Bilder
Werkzeuge 58 4.37 14.00 20.64 | 34.47
Kommunikation 37 4.29 36.65 88.16 | 65.22
Unterhaltung 34 4.17 21.41 49.68 | 23.56
Effizienz 34 4.38 25.32 65.38 | 60.29
Soziale Netzwerke 34 4.11 44-44 118.88 | 74.71
Musik & Audio 31 4.19 24.97 66.35 | 59.77
Fotografie 21 4.34 24.57 60.76 | 61.81
Shopping 19 4.03 36.89 106.53 | 56.89
Biicher & Nachschlagewerke | 16 4.25 18.94 54.81 | 50.50
Reisen & Lokales 15 4.21 40.73 131.47 | 73.73
Lifestyle 14 4.30 37.57 89.43 | 41.43
Gesundheit & Fitness 13 4.28 50.77 93.92 | 55.38
Medien & Videos 12 434 22.92 53.08 | 37.75
Personalisierung 11 444 15.45 55.82 | 29.55
Nachrichten & Magazine 11 4.10 24.73 66.09 | 40.09
Finanzen 10 4.26 61.10 118.40 | 44.20
Biiro 8 4.12 25.25 99.38 | 69.38
Wetter 8 4.24 18.13 36.25 | 166.50
Sport 7 3.98 40.00 136.29 | 46.86
Software & Demos 4 4.28 1.25 1.75 0.00
Lernen 3 3.72 39.33 88.00 | 78.67

Tabelle 4.1: Die Verteilung der heruntergeladenen Apps auf die verschiedenen Kategorien.
Die letzten drei Spalten zeigen die durchschnittliche Anzahl der Activitys,
Layouts und Bildern der Apps in der jeweiligen Kategorie.

Bewertungsdurchschnitte zwischen 4,37 und 4,44. Am anderen Ende standen die Kategorien
,Shopping”, , Sport” und , Lernen” mit durchschnittlichen Bewertungen zwischen 3,72 und

4,03.

22

5 Ergebnisse

5.1 Statistiken beliebter Android-Anwendungen

Die heruntergeladenen und wie in Kapitel 4 beschriebenen analysierten APKs resultierten
in einer Gesamtanzahl von 778.071 Dateien, die in insgesamt 47.706 Ordnern organisiert
waren.

5.1.1 Sprachen

Wir nutzten die Ressourcen der Anwendungen, die zur Internationalisierung verwendet
werden kdnnen, um zu bestimmen, welche Sprachen eine Anwendung explizit unterstiitzt.
Bei allen Anwendungen war Englisch die Voreinstellung. Die Zahl der von den Anwendun-
gen verwendeten Sprachen belduft sich auf 235 unterschiedliche Sprachen, wenn man die
regionalen Variationen (z.B. en_us und en_gb) mit einschliefst. Im Durchschnitt unterstiitzt
eine Anwendung 12,74 unterschiedliche Sprachen (SD = 16.42). 47 der Anwendungen unter-
stiitzen nur die voreingestellte Sprache und 56 unterstiitzten eine zuséatzliche Sprache aufser
Englisch. Mehr als die Hélte der Anwendungen (216) unterstiitzen fiinf oder mehr Sprachen.
Abbildung 5.1 zeigt die zwolf am haufigsten unterstiitzten Sprachen. Die am héufigsten
unterstiitzten Sprachen neben Englisch sind Chinesisch (63,8 %), Spanisch (56,6 %) und
Franzosisch (47,6 %). Es gibt {iber 50 Anwendungen (12,5 %), die 30 verschiedene Sprachen
unterstiitzen.

5.1.2 Unterstitzte Anzeigen

Indem die Suffixe der Ressourcen-Dateien analysiert wurden, konnten wir herrausfinden,
welche unterschiedlichen Punktdichten (dots per inch, DPI) und Bildschirmgrofsen von einer
Anwendung unterstiitzt werden. Fiir die Punktdichte gibt es 4 Suffixe: LDPI (Low DPI), MDPI
(Medium DPI), HDIP (High DPI) und XHDPI (Extra High DPI). Die Analyse zeigt, dass nur
173 Anwendungen explizit alle vier Varianten unterstiitzen und 26 Anwendungen gar keine
speziellen Punktdichten per Ressourcen anbieten. 93 % der Anwendungen unterstiitzen
HDPI, 75 % MDPI, 70 % LDPI und 50 % XHDPI. Vier weitere Suffixe wurden fiir die
Bildschirmgrofien verwendet: small, normal, large und xlarge. Die Ergebnisse zeigen, dass
neun Anwendungen alle vier Grofien explizit unterstiitzen und 215 Anwendungen keine
spezielle Bildschirmgrofie definieren. Die GrofSe large wurde am haufigsten, namlich von
170 Anwendungen, unterstiitzt.

23

5 Ergebnisse

300

250

200

150

100

number of apps

50

2 bl
) 3
@ 3
&

& <

&S

Abbildung 5.1: Die zwolf meistverwendeten Sprachen neben Englisch.

Es sollte erwdhnt werden, dass ein Bildschirmgrofien- oder Punktdichten-Suffix nicht un-
bedingt impliziert, dass die Ressourcen nur fiir diese spezielle Bildschirmgrofse in dieser
Punktdichte geeignet sind. Falls Ressourcen fiir das verwendete Geréat nicht direkt zur
Verfligung stehen, kann das System die Ressource, die am besten passt, selbst auswéhlen
und verwenden. Dies konnte ein Grund dafiir sein, weshalb die meisten Anwendungen nicht
jede Ressource direkt anbieten, sondern die Ressourcen auf eine Art spezifizieren, die es
erlaubt, sie auf einer Vielzahl von Geriten zu verwenden.

5.1.3 Einstiegspunkte

Wie bereits zuvor beschrieben, konnen Anwendungen mehr als einen Einstiegspunkt (Main
Activity) besitzen. Die Untersuchung der Manifest-Datei zeigte, dass zehn Anwendungen
keine Main-Activitys haben und 9o mehr als eine. Die ,Kayak”“-Anwendung hat mit 64 die
hochste Anzahl an Haupteinstiegspunkten.

5.1.4 Analyse der Berechtigungen

Wir untersuchten die Metadaten, die von jeder Anwendung bereitgestellt werden, indem wir
die Manifest-Datei analysierten. Insgesamt konnten wir 355 unterschiedliche Berechtigungen
(M = 11,2 Berechtigungen pro App, SD = 7,83) feststellen. Insbesondere haben wir die
Standardberechtigungen von Android nidher untersucht, die die Anwendungen benétigen.

24

5.1 Statistiken beliebter Android-Anwendungen

400
350
wy
& 300 -
©
250
e
5 200
'E 150 -
E 100
50 -
D | T T T T T T T T T
QA N 2 2 Q $ o s L &
‘-62\\ ‘330& (’3% ‘}"b \sz‘ ’b\'o (QQ “b,g\o &) a}\‘z’
& NN 3 o & & O S S
N 3 ? o 5 C (2 0 &
© () N Q (\?4- Qf’ > .'\‘3) %
& O T & E S
& o e ¢ ? ?) o N
¢ & o A & & S 3
(\’\' AN e\- @ e DQ; 6
oS & & & Y Y ¢
\)c‘-"‘ é.. q\ 'Q 0§
¥ i
&
\OQA

Abbildung 5.2: Die hdufigsten Android-Standardberechtigungen.

Von den 355 Berechtigungen sind 121 Android-Standardberechtigungen (M = 9,6 Berechti-
gungen pro App, SD = 6,6). Abbildung 5.2 zeigt die zehn am hdufigsten vorkommenden
Android-Standardberechtigungen. Die drei hdufigsten sind Internetzugang (8,7 % aller extra-
hierten Berechtigungen), die Berechtigung, um festzustellen, ob eine Netzwerkverbindung
vorhanden ist (7,9 %), und die Berechtigung, Daten auf den externen Datentriger des Gerétes
zu schreiben (6,8 %).

Taktiles Feedback

Die meisten Android-Gerite sind mit einem Vibrationsmotor ausgestattet, der es erlaubt,
fiithlbare Riickmeldung zu geben. Die Anwendung benétigt allerdings eine entsprechende Be-
rechtigung, um den Vibrationsmotor zu aktivieren. Die Ergebnisse zeigten, dass 47,25 % der
Anwendungen diese Berechtigung verlangen und somit taktiles Feedback geben kénnen.

Standortinformationen

Wir waren auflerdem interessiert an der Verwendung von kontextbezogenen Informationen,
insbesondere der Standortinformationen, die von einer Anwendung ausgewertet werden
konnen. Insgesamt konnen 190 Anwendungen den Standort des Gerédtes abrufen. 154 Anwen-
dungen nutzen genaue Standortinformationen durch die Verwendung des GPS-Sensors und
147 Anwendungen verwendeten eine grobe Standorterkennung (z.B. tiber die Mobilfunkzel-
len oder {iiber sichtbare WiFi-Netzwerke). 111 Anwendungen konnen beide Informationen
abrufen, den genauen und den groben Stadort des Gerites.

25

5 Ergebnisse

activities

images

[SRRN-
o & & 3
% ===

%

(rechts) fiir die zehn Kategorien mit den meisten Anwendungen in unserem
Datensatz. Die Fehlerbalken zeigen die Standardabweichung.

Vernetzung

96,25 % der Anwendungen verlangen Internetzugang. Weitere Analysen zeigten, dass 10,25 %
der Anwendungen Bluetooth nutzen, 8,25 % haben die Berechtigung, SMS zu versenden,
und 2,5 % verwenden die Nahfeldkommunikations-Moglichkeiten des Gerétes (near field
communication, NFC). Es muss erwdhnt werden, dass nicht alle Gerdte die NFC-Technologie
untersttitzen.

5.1.5 Anzahl der Benutzungsschnittstellen

Um festzustellen, ob sich die Benutzungsschnittstellen von Anwendungen aus unterschied-
lichen Kategorien unterscheiden, haben wir eine statistische Analyse der am hdufigsten
vorkommenden Kategorien unseres Datensatzes gemacht. Wegen des geringen Probenum-
fanges fiir einige Kategorien haben wir uns auf die zehn haufigsten Kategorien fokussiert
(N > 15). Wir verwenden die Anzahl der Aktivitdten, die Anzahl der Layouts und die Abzahl
der verwendeten Bilder als Indikator fiir die Komplexitidt einer Bunutzungsschnittstelle.
Tabelle 4.1 bietet eine Ubersicht iiber die Anzahl der Aktivititen, Layouts und Bilder jeder
Kategorie. Um festzustellen, ob sich Kategorien stark unterscheiden, haben wir eine ANOVA-
Varianzanalyse durchgefiihrt. Im Anschluss daran haben wir ein Games-Howell-Test fiir den
paarweisen Vergleich von Kategorien gleicher Varianz durchgefiihrt.

Aktivitaten

Nachdem wir die Anzahl der Aktivitdten jeder Anwendung extrahiert hatten, untersuchten
wir, ob die durchschnittliche Anzahl an Aktivitdten sich zwischen den zehn hiufigsten Kate-
gorien signifikant unterscheidet. Levene’s Test zeigt, dass die Homgenitatsannahme verletzt
wurde (F(9,289) = 3,89 mit p < 0,001). Der ANOVA-Test deckte einen signifikanten Unter-
schied zwischen den Kategorien auf. Ein im Nachhinein ausgefiihrter Games-Howell-Test
zeigt sechs signifikante paarweise Unterschiede zwischen den Kategorien. Anwendungen der
Kategorie ,Werkzeuge” (M = 14,00; SD = 17,34) haben weniger Aktivititen als Anwendun-
gen der Kategorie ,Soziale Netzwerke” (M = 44,44; SD = 27,64; p < 0,001) und , Shopping”

26

5.1 Statistiken beliebter Android-Anwendungen

(M = 36,89; SD = 24,07; p < 0,05). Unterhaltungsanwendungen (M = 21,41; SD = 17,34)
haben signifikant weniger Aktivitdten als Anwendung aus der Kategorie ,Soziale Netzwerke”
(p < 0,01). Weiterhin haben Anwendung dr Kategorie ,Soziale Netzwerke” signifikant mehr
Aktivitdten als Anwendungen aus ,Musik & Audio” (M = 24,97; SD = 19,41; p < 0,05) und
aus ,Biicher & Nachschlagewerke” (M = 18,97; SD = 17,83; p < 0,01).

Layouts

Weiterhin haben wir die Anzahl der Layouts pro Anwendung untersucht, um statistische
Differenzen zwischen den Kategorien festzustellen. Wieder einaml zeigte der Levene-Test,
dass die Homgenitdtsannahme verletzt wurde (F(9,289) = 4,44; p < 0,001). Eine ANOVA
deckte signifikante Unterschiede zwischen den Kategorien auf (F(9,289) = 6,87; p < 0,001).
Ein Games-Howell-post-hoc-Test lieferte acht signifikante paarweise Unterschiede zwischen
den Kategorien. Anwendungen der Kategorie , Werkzeuge” (M = 29,64; SD = 35,52) haben
weniger Layouts als Anwendungen der Kategorien , Kommunikation” (M = 88,16; SD =
98,72; p < 0,05), , Effizienz” (M = 65,38; SD = 45,99; p < 0,01), ,,Soziale Netzwerke” (M =
118,88; SD = 76,21; p < 0,001), ,Musik & Audio” (M = 66,35; SD = 51,13; p < 0,05) und
,Shopping” (M = 106,53; SD = 74,39; p < 0,01). Anwendungen der Kategorie , Unterhaltung”
(M = 49,68; SD = 57,74) haben weniger Layouts verglichen zu Anwendungen der ,Sozialen
Netzwerke” (p < 0,01). Effizienz-Anwendungen haben ebenso weniger Layouts als die der
Kategorie ,Soziale Netzwerke” (p < 0,05).

Bilder

Weiterhin haben wir die durchschnittliche Anzahl der Bilder verglichen. Levenes Test zeigt,
dass die Homogenitdtsannahme nicht verletzt wurde (F(9,289) = 0,64; p = 0,77). Auch
eine ANOVA zeigte keine signifikanten Unterschiede zwischen den Kategorien. Folglich
verzichteten wir auf eine post-hoc-Analyse.

Zusammenhénge

Wenn man sich die Diagramme aus Abbildung 5.3 genauer anschaut, kann man daraus
schlieflen, dass es eine eventuelle Korrelation zwischen der Anzahl der Aktivitdten, Layouts
und Bilder der Anwendungen gibt. Also untersuchten wird die Zusammenhénge zwischen
der Anzahl der Aktivitdten, Layouts und Bilder. Der Pearson-Korrelationskoeffizient zeigt,
dass signifikante paarweise Zusammenhinge zwischen allen drei Parametern existieren.
Es gibt eine starke Korrelation zwischen der Anzahl der Aktivitdten und der Anzahl der
Layouts (r = 0,79; p < 0,0001). Weiterhin gibt es eine Korrelation zwischen der Anzahl der
Aktivitaten und der Anzahl der Bilder (r = 0,29; p < 0,0001) sowie zwischen der Anzahl
der Layouts und Anzahl der Bilder (r = 0,39; p < 0,0001). Es ist nicht tiberraschend, dass
eine Anwendung mit einer groflen Anzahl an Aktivitdaten auch iiber eine grofse Anzahl an
Layouts verfiigt. Diese starke Korrelation weist auf ein verbreitetes Muster hin.

27

5 Ergebnisse

5.1.6 Diskussion der Befunde

Wir fanden heraus, dass unter allen analysierten Android-Anwendungen 88,25 % weitere
Sprachen aufier Englisch unterstiitzen. Es wird aufierdem eine grofie Bandbreite and Spra-
chen untersiitzt, die Mehrheit der Anwendungen bietet sogar fiinf oder mehr Sprachen. Die
Ergebnisse zeigen, dass die beliebtesten Android-Anwendungen sehr facettenreich sind in Be-
zug auf die Sprachunterstiitzung. Man kann daraus schlieflen, dass die Chancen, erfolgreich
zu sein, hoher sind, wenn eine Anwendung in vielen Sprachen lokalisiert wurde.

Wir haben die Anzahl der Aktivitdten, Layouts und Bilder einer Anwendung analysiert. Es
wurde gezeigt, dass Anwendungen aus verschiedenen Kategorien signifikant unterschiedli-
che Anzahlen an Aktivitdten und Layouts aufweisen. Wir haben gezeigt, dass die Werkzeuge
und Anwendungen aus den Bereichen ,Unterhaltung”, ,Effizienz”, ,Musik & Audio”,
,Fotografie” und ,Biicher & Nachschlagewerke” weniger Sichten und Layouts haben als
Anwendungen aus den Kategorien ,, Kommunikation®”, ,Soziale Netzwerke”, ,Shopping”
und , Reisen”. Die stark lineare Korrelation zwischen der Anzahl der Aktivititen und der
Anzahl der Layouts weisen auf einen linearen Faktor hin. Auflerdem ist es ungewochnlich,
fiir Anwendungen mehr als einen Einstiegspunkt anzubieten. Nur 20 % der Anwendungen
haben mehr als eine Hauptaktivitdt. 96,25 %, ein tiberwaltiger Grofdteil der untersuchten
Anwendungen, wollen auf das Internet zugreifen und fast die Hélfte der Anwendungen
(47,50 %) greifen auf Lokationsinformationen zu. Auch wenn es unterschiedliche Griinde
gibt, warum eine Anwendung Zugriff zum Internet verlangt (z.B. um Werbung anzuzeigen),
so kann man ebenfalls von der hohen Anzahl an Anwendungen darauf schlieflen, dass viele
Anwendungen auf dynamischen Inhalten basieren. Anzumerken ist auflerdem, dass fast die
Halte der Anwendungen (47,25 %) in der Lage ist, taktiles Feedback tiber den Vibrations-
motor des Mobilgerites zu geben. Weiterhin untersiitzen die Anwendungen verschiedene
Gerite basierend auf der Anzeigepixeldichte und weniger nach Bildschirmgrofien.

Anwendungen von verschiedenen Kategorien unterscheiden sich in Bezug auf die Be-
nutzungsschnittstellenkomplexitét. Beispielsweise haben Werkzeuge weniger Sichten und
Layouts als Anwendungen der ,Sozialen Netzwerke”. Werkzeuge, wie der Name vermu-
ten ldsst, befassen sich mit spezifischen Anwendungsféllen. Ein typisches Beispiel dafiir
ist die Anwendung Spirit Level Plus, die es ermoglicht, das Gerit als Wasserwage zu ver-
wenden. Die ebenfalls niedrige Anzahl an Aktivititen und Layouts von Anwendungen
anderer Kategorien wie , Unterhaltung”, ,Effizienz”, ,Musik & Audio”, , Fotografie” und
,Biicher & Nachschlagewerke” ldsst darauf schliefien, dass diese Anwendungen auch nur fiir
spezifische Anwendungsfélle gedacht sind.

5.2 User-Interface-Elemente und -Muster

Wir interessieren uns fiir hdufig genutzte Steuerelemente der Benutzungsschnittstelle und
potentielle Muster fiir das von den Anwendungen verwendete Design. Ublicherweise wird
das User Interface von Android-Apps in XML-Dateien verwaltet, die das Layout beschreiben.
Diese Dateien geben an, welche Elemente an welcher Stelle stehen und welche Struktur

28

5.2 User-Interface-Elemente und -Muster

350

% _
o 300
o
2 250
%)
& 200
)
= 150
G |
s 100 -
£ |
2 i N

O | : : I : ; : ;_'_;_'_L_'_;_'_J'_‘

S ¢ 9 » R ¢ R
&Q"+ 6@-% < ’bog’ (OQ;‘ C(\Q‘ 50 R
N \6\ Q Q_’b

Abbildung 5.4: Die durchschnittliche Anzahl von Widgets pro App, aufgetragen fiir die
zehn héufigsten Standard-Widgets von Android in unserem Datensatz. Die
Fehlerbalken zeigen die Standardabweichung.

sie aufweisen, beispielsweise ob sie noch weitere Elemente enthalten. Im Folgenden wird
ein grober Uberblick iiber Android-GUIs gegeben. Danach werden die Ergebnisse der
Studie présentiert, die die meistgenutzten Elemente und die hadufigsten Verkntipfungen
von Elementen bestimmt hat. In letzterem Schritt wurden Muster gesucht, die sich aus der
hierarchischen Schachtelung der Steuerelemente ergeben.

5.2.1 Layouts

Die Benutzungsschnittstelle einer Android-App besteht grundlegend aus einer Menge von
Activitys; davon entspricht jede Activity einem einzelnen Bildschirm mit einem User Interface.
Dieses wiederum enthilt sogenannte , Widgets”, z.B. Textfelder, Kontrollkédstchen oder
Schaltflaichen. Widgets werden innerhalb Layout-Containern verwendet, die angeben, wie
die Struktur des User-Interfaces der Activity aussieht. Layout-Container konnen wiederum
weitere Layout-Container als Elemente enthalten, wodurch fiir die Beschreibung der GUI
eine hierarchische Struktur entsteht.

Prinzipiell ist es auch moglich, Widgets und andere Layout-Elemente direkt im Quellcode
der App zu definieren, die Android Developer Guidelines empfehlen aber die Deklaration
der UI-Struktur in den Layout-Dateien im XML-Format.

Die Android-API stellt einige verschiedene Layout-Container bereit, um die Zusammenstel-
lung des User-Interfaces und den darin enthaltenen Elementen zu ermdoglichen. AufSerdem

29

5 Ergebnisse

Widget Apps | Anteil | Gesamt
TextView 383 | 35,50 % 56467
ImageView 380 | 15,59 % 24794
Button 355 | 9,37 % 14912
View 271 | 4,35 % 6917
EditText 318 2,91 % 4628
ImageButton 204 | 2,71 % 4308
ProgressBar 300 1,67 % 2662
CheckBox 285 | 1,54 % 2443
RadioButton 176 | 0,76 % 1213
Spinner 178 | 0,48 % 759

Tabelle 5.1: Die zehn am héufigsten verwendeten Widgets in unserem Datensatz. Die Spalten

zeigen den Name des Widgets, die Anzahl der Apps, in denen es verwendet
wurde, den prozentualen Anteil gegeniiber der Gesamtzahl aller gefundenen
Widgets und die Gesamtzahl, wie oft das Widget gefunden wurde.

konenn Entwickler zusétzlich eigene Widgets und Layout-Container programmieren. Die
fiinf meistgenutzten Layout-Container werden nachfolgend kurz erldutert.

LinearLayout: Die Elemente werden in einer einzelnen Spalte oder Zeile nach-/neben-
einander angeordnet.

RelativeLayout: Ermoglicht die Positionierung der untergeordneten Elemente relativ
zueinander oder zum beinhaltenden Layout-Container.

FrameLayout: Stellt fiir ein einzelnes Steuerelement den im Layout-Container angegebe-
nen Platz zur Verfiigung.

TableLayout: Ordnet die Elemente dhnlich dem linearen Layout-Container an, erlaubt
aber die Platzierung in Zeilen und Spalten und nicht nur in einer Richtung.

AbsoluteLayout: Erlaubt die absolute Positionierung der untergeordneten Elemente. Die-
ses unflexible Layout wird in besonderen Situationen eingesetzt, da seine Verwendung
die Wartung der App erschwert.

Die Layout-Container beschreiben also die Lage der Widgets; der Benutzer der App inter-
agiert jedoch ausschliefilich mit den eingebetteten Widgets. Von der Android-API werden
bereits einige gebrduchliche Widgets bereitgestellt, wie man sie aus klassischen Desktop-
Anwendungen oder von Webseiten kennt. Typische Beispiele sind TextViews, die beschrei-
benden Text darstellen, ImageViews fiir Bilder, Buttons (Schaltflichen), EditTexts fiir die
Eingabe von Text oder ProgressBars zur visuellen Fortschrittsanzeige.

5.2.2 User-Interface-Elemente

Insgesamt konnten wir aus den APKs der 400 heruntergeladenen Apps 29.086 Layout-
Dateien im XML-Format extrahieren. Wir analysierten diese Dateien, um die am hdufigsten

30

5.2 User-Interface-Elemente und -Muster

T

INoAe]aAle|9Y

InoAeTaeaur

Relativelayout

noAeieaun
hoAeieaun
1noAeieaun

noAe]aAe| 9y

1noAe]ieaun
maipa3ew|

1noAeT7IE3UI
MIIAIXD]

noAeieaun
hoAeieaun

hoAeieaun

LinearLayout

1noAe]ieaun

ScrollView

3500

3000

2500 -
2000 -
1500 -
1000 -

92Uallnido0 |BlO]

500 -

0 -

noAeaane|9y

noAeueaun

RelativeLayout

noAeleaun
noAejieaun
jnoAeueaun

noAeanne|ay

noAejieaun
maipa8ew|

noAeueaun
MaIAIXRL

1noAeleaun
1noAelieaur]

noAeleaun

LinearLayout

i“llillt

1noAelieaun

ScrollView

T T T
o o o
o wn

T 1 T T
o o o o o
un o u 3} o
m m ™~ ~ i —l
sdde jo Jaqwinu

Abbildung 5.5: Die hdufigsten Layout-Muster.

Abbildung 5.6: Die Verwendung haufiger Layout-Muster durch die Apps im Datensatz.

31

5 Ergebnisse

eingesetzten Layout-Container und Widgets herauszufinden. Insgesamt waren in in allen
Layouts zusammen 77.343 Standard-Layout-Container aus der Android-API und 159.072
Widgets enthalten, was naiv im Schnitt zwei Widgets pro Layout-Container entspréche.

Abbildung 5.5 zeigt die Verwendung der Standard-Layout-Container in unserem Datensatz.
Das LinearLayout hat einen Anteil von 66,95 % an der Gesamtzahl der Layout-Container
und wird von 390 Apps verwendet. Der Anteil des RelativeLayouts (verwendet in 365
Apps) betragt 24,20 %. Auch FrameLayout und ScrollView werden vom Grofsteil der Apps
verwendet (in 307 bzw. 332 Apps), haben aber nur 7,82 % und 2,35 % Gesamtanteil. Mit
jeweils unter einem Prozent an der Gesamtheit der Layouts auf den hinteren Pldtzen befinden
sich das TableLayout (167 Apps) und das AbsoluteLayout (35 Apps). Abbildung 5.6 zeigt die
durchschnittliche Verwendung der Layouts in den Apps.

Eine dhnliche Betrachtung fiihrten wir fiir die Standard-Widgets der Android-API durch.
Das unter den 159.072 Elementen mit Abstand am h&ufigsten auftretende Element war der
TextView (35,5 %), gefolgt von ImageView (15,6 %) und Button (9,4 %). Tabelle 5.1 zeigt die
zehn meistverwendeten Widgets. Zusammen machen diese zehn Widget-Typen 74,87 % der
Gesamtzahl der Widgets aus. Sie werden von tiber der Hilfte der 400 analysierten Apps
verwendet. Abbildung 5.7 gibt einen weiteren Einblick in die durchschnittliche Verwendung
der Widgets in den verschiedenen Apps.

Zusatzlich zu den Standard-Widgets aus der Android-API fanden wir 4.022 eigenentwickelte
Layouts und Widgets in den Layout-Dateien. Dabei handelt es sich haufig um leichte
Abwandlungen von Schaltflichen oder Layouts, manche Widgets stellten aber auch groflere
Komponenten wie Galerie-Ansichten dar oder ermoglichten die Auswahl eines Datums.

5.2.3 User-Interface-Muster

Nachdem wir die Widgets und Layout-Container aus den Layout-Dateien analysiert hatten,
versuchten wir, potentielle Muster fiir den Entwurf einer Benutzungsschnittstelle zu finden.
Hierfiir betrachteten wir, wie Elemente kombiniert wurden, d.h. welche Elemente zusammen
verwendet wurden und durch welchen Typ von Layout-Container sie tiblicherweise gruppiert
wurden.

Hierfiir untersuchten wir die Layout-Container und die darin enthaltenen Elemente, die
durch die Inklusionsbeziehung hierarchisch strukturiert sind. Daher bildeten wir aus den
XML-Dateien die Eltern-Kind-Beziehung als Datenstruktur. Hieriiber konnten wir fiir je-
des Element herausfinden, in welchem Layout-Container es organisiert war und welche
Geschwisterelemente es auf derselben Ebene besitzt. Dadurch fanden wir Strukturen und
Kombinationen heraus, die wir anhand der H&aufigkeit, mit der sie auftraten, zdhlten, um
gebrduchliche Muster in der Hierarchie zu entdecken.

Insgesamt fanden wir 22.870 unterschiedliche Kombinationen von Elementen. Hiervon
wurden jedoch 75,8 % lediglich einmal verwendet. Die Analyse erlaubte die Klassifizierung
der Muster in zwei verschiedene Arten.

32

5.2 User-Interface-Elemente und -Muster

33

4500

t omsBo E Wy
Mmalpsgew| malpadew|
3 o
m... =
= B
T ©
MalpXBL MaIAIXR]
| [y T ..
MIIAIXD] MIIAIXD]
MIIAIXD] m MIIAIXD]
3
&0
T
5 3 =
S £ :
uopng ww I uonng m
£ £
a5 4
B e 2 Wyt
Mmalpadew| w I malpe8ew |
~
S
MBIAIX3L i MBIAIXBL
monpaL i maynal
T 1 1 1 1 I 1 1 1 n
= T T T T T T T
m A m 0 m b m n S m A o~ a4 a "
92U3liN320 |10} _.M sdde jo saqunu

Abbildung 5.8: Verwendung der haufigen Widget-Muster in den Apps.

5 Ergebnisse

Der erste Typ besteht aus einem Layout-Container, der neben beliebig vielen Widgets noch
andere Layout-Container enthélt. Aus dieser Kategorie ist das am hadufigsten anzutreffende
Muster ein ScrollView als Layout-Container, der ein LinearLayout enthélt. Dieses Muster
ermoglicht die Verwendung von mehr Elementen, als der Bildschirm aufgrund seiner
Auflosung gleichzeitig darstellen konnte. Abbildung 5.5 zeigt die neun am héaufigsten
gesehenen Muster dieser Kategorie. Wir betrachteten aufserdem die Anzahl der Apps, in
denen das jeweilige Mustern verwendet wurde; das eben beschriebene wurde beispielsweise
in 307 Apps genutzt. Interessanterweise wird das zweithdufigste Muster in weniger Apps
(insgesamt 236) verwendet als das dritthdufigste (248 Apps). Die Verwendung in den Apps
aus dem Datensatz wird in Abbildung 5.6 veranschaulicht. Eine zusidtzliche Betrachtung der
Kategorien der Apps ergab, dass Apps aus der Kategorie ,Lernen” durchschnittlich haufiger
auf solche Muster zuriickgriffen als Apps anderer Kategorien.

Der zweite Typ von Mustern besteht aus einem Layout-Container, der ausschlieslich Widgets
als Kind-Elemente beinhaltet. Abbildung 5.7 demonstriert die zehn Kombinationen dieser
Art, die am oftesten auftraten. Spitzenreiter dieser Art von Muster ist die Kombination
zweier TextViews in einem LinearLayout, gefolgt von einem LinearLayout mit nur einem
TextView, die Kombination aus ImageView und TextView in einem LinearLayout belegt den
dritten Platz. Wir untersuchten auch die Verwendung von ButtonViews in verschiedenen
Pattern. Die Verwendung der Muster durch die verschiedenen Apps zeigt unter diesen ersten
drei Platzen dhnliche Trends. Ahnlich dem obigen Phianomen aus der ersten Art von Muster
wird die vierthdufigste Kombination (zwei Buttons in einem LinearLayout) in weniger Apps
verwendet als die fiinfthaufigste (lediglich ein Button in einem LinearLayout). Abbildung 5.8
zeigt die Verwendung der Muster in den Apps. Diese Art von Entwurfsmuster wurde
durchschnittlich besonders haufig in Apps der Kategorie ,,Soziale Netzwerke” genutzt.

5.2.4 Diskussion der Befunde

Wir haben die Benutzungsschnittstellen der 400 populdrsten Apps vom Google Market ana-
lysiert und dabei bestimmt, welche Widgets und Layout-Container am hdufigsten auftreten.
Wir fanden dadurch heraus, dass tiber die Halfte aller verwendeten Widgets die Elemente
TextView und ImageView ausmachen, die nur dazu dienen, Text bzw. Bilder anzuzeigen.
Obwohl wir damit rechneten, dass Elemente zur Anzeige von Informationen offenkundig
einen grofieren Anteil ausmachen miissen als interaktive Elemente, {iberrascht das Verhiltnis.
Beispielsweise fanden wir etwa 47-mal so viele TextViews als RadioButtons zur Auswahl
einer aus mehreren Optionen. Einige Standard-Widgets der Android-API konnen beinahe
als esoterisch betrachtet werden, beispielsweise die Elemente ToggleButton oder SeekBar,
die nur jeweils 0,37 % bzw. 0,25 % der Gesamtzahl der Widgets ausmachen. Die haufigsten
interaktiven Widgets (Button- und EditText-Elemente) legen die Vermutung nahe, dass die
Layouts der untersuchten Apps hauptsédchlich dazu dienen, Text einzugeben und virtuelle
Schaltflachen zu driicken.

Aufler den einzelnen Widgets identifizierten wir Muster von Elementkombinationen. Die
Resultate zeigen, dass die Muster allgemein hdufig verwendet werden, also nicht nur
in speziellen Apps zum Einsatz kommen. Einige dieser Kombinationen werden deutlich

34

5.3 Einschrankungen

haufiger verwendet als manche Standard-Widgets. Zusammengerechnet sind 21,13 % aller
Widgets und Layout-Container unseres Datensatzes Teil mindestens eines der zehn haufigsten
Muster von Elementen. 77,28 % aller ScrollViews enthalten ein LinearLayout. Gébe es diese
Kombination als eigenes Layout-Container-Element, wére es der fiinfthaufigste Layout-
Container. Interessanterweise ist das zweithdufigste Muster ein LinearLayout, das in einem
LinearLayout enthalten ist — eine Kombination, die als ,nutzlos” erachtet wird".

Das hdufigste Widget-Muster in unserem Datensatz besteht aus zwei TextViews in einem
LinearLayout. Diese Kombination stellt 5,43 % aller User-Interface-Elemente dar und kommt
damit alleine etwa so haufig vor wie alle CheckBox-, RadioButton-, ToggleButton- und
SeekBar-Elemente zusammen. Die Entwicklung dieser Kombination als neues Widget wiirde
sich an sechster Stelle in die Rangfolge der am héufigsten genutzten Widgets einordnen.
Die Entdeckung solcher empirischen Entwurfsmuster konnte also zu optimierten Widgets
fiihren.

5.3 Einschrankungen

Die 400 in dieser Arbeit untersuchten Anwendungen wurden mittels einer nicht reprasenta-
tiven Stichprobenauswahl gezogen. Dazu kam der Ranking-Algorithmus des Google-Play-
Markets zum Einsatz, indem die 400 populdrsten Anwendungen heruntergeladen wurden.
Auf welcher Basis Google dieses Ranking erstellt, ist nicht bekannt. Es ist anzunehmen,
dass diese 400 Anwendungen auch tatsdchlich weit verbreitet sind, da sie den Nutzern des
Google-Play-Markets ebenfalls als erstes in den Listen angezeigt werden, aber der Einfluss
anderer Faktoren wie das Rating der Nutzer kann nicht ausgeschlossen werden.

Fiir den Download von Anwendungen muss die Gerédte-ID eines Android-Gerites ange-
geben werden. Die Einstellungen und Eigenschaften dieses Gerétes beeinflussen ebenfalls
die angezeigten Anwendungen, da Entwickler die Moglichkeit, haben die Nutzung ihrer
Anwendungen auf bestimmte Geréatearten, Sprachen oder Konfigurationen zu beschranken;
diese Einstellungen werden von Google genutzt, um nur passende Anwendungen anzubieten.
Alle heruntergeladenen Anwendungen waren kostenlos, wir gehen jedoch davon aus, dass
die populédrsten Anwendungen fiir viele Sprachen und Plattformen verfiigbar sind und wir
damit viel genutzte Anwendungen untersucht haben.

Eine weitere Einschrankung bildet die Art, mit der Layout-Informationen in Android-
Anwendungen angegeben werden konnen. Obwohl Google empfiehlt, alle Layout-
Informationen in XML-Dateien abzulegen, konnen sie auch direkt im Code der Anwendung
Elemente fiir die Benutzeroberfliche definiert werden. Diese werden bei unserer Analyse
nicht abgedeckt, allerdings glauben wir, dass die grundséatzlichen Layouts in XML-Dateien

'Die Vorgehensweise vieler Entwickler, ein LinearLayout in einem LinearLayout zu platzieren, kommentiert
das Android SDK: , This LinearLayout layout or its LinearLayout parent is useless”.

35

5 Ergebnisse

definiert werden und direkt im Code eher interaktive Elemente nach Bedarf erzeugt wer-
den. Da unser Interesse hdufig wiederkehrenden Mustern in den Layouts galt, scheint dies
akzeptabel.

36

6 Folgerung und Ausblick

6.1 Zusammenfassung und zukiinftige Arbeiten

Ziel dieser Arbeit war es, die Struktur der Benutzungsoberfldche einer grofien Anzahl von
Android-Anwendungen zu untersuchen, um sich wiederholende Muster und auffillige
Kombinationen und Eigenschaften zu finden. Zu diesem Zwecke haben wir zunichst die 400
populédrsten Anwendungen aus dem Google Play Market herunter geladen. Diese wurden
anschlieffend entpackt und dekompiliert, um an Informationen tiber die Benutzungsober-
flache zu gelangen. Mit den eingesetzten Reverse-Engineering-Techniken konnten Teile des
urspriinglichen Quellcodes und alle verwendeten Ressourcen zugénglich gemacht werden.
Mittels Analysen der XML-Layout-Dateien, der verwendeten Ressourcen und des Quellcodes
konnten wir eine Reihe von Kennzahlen und Zusammenhingen extrahieren und in einer
Datenbank speichern. Diese reichen von den verwendeten Sprachen iiber die von einer
Anwendung benétigten Rechte bis hin zu kompletten Layout-Informationen mit Hierarchien
und Mustern der einzelnen Aktivitdten.

Bei Betrachtung der Sprachen fiel eine breite Unterstiitzung fiir mehrere Sprachen auf,
88,25 % der Anwendungen unterstiitzen mehr als eine Sprache. Bei mehr als der Halfte
der Anwendungen waren es noch 5 verschiedene Sprachen, wobei Chinesisch, Spanisch
und Franzosisch am hdufigsten auftraten. Die Moglichkeit, Ressourcen fiir verschiedene
Bildschirmauflosungen und Groflen zu hinterlegen, wurde insgesamt nur wenig genutzt. Das
Android-System ist in der Lage, die Ressourcen selbststandig auszuwihlen und anzupassen.
Dazu passt die Beobachtung, dass eher Resourcen fiir hohe Auflosungen und grofiere
Bildschirme hinterlegt werden und die Umwandlung fiir einfachere bzw. geringer auflésende
Formate dem Android-System tiiberlassen wird. Weniger als die Hilfte der untersuchten
Anwendungen unterstiitzen alle vier moglichen Aufldsungen und hatten Definitionen fiir
verschiedene Bildschirmgrofien.

Wihrend mit 96,25 % anndhrend alle Anwendungen die Berechtigung fiir den Zugriff auf das
Internet verlangen, sind nur 47,25 % in der Lage, taktiles Feedback tiber die Vibrationsmoto-
ren des Gerétes zu geben. Auch die Abfrage des aktuellen Standorts wird nur in etwa der
Halfte der untersuchten Anwendungen verlangt. Weitere hdufig vorhandene Berechtigungen
sind die Priifung auf eine bestehende Netzwerkverbindung und das Schreiben auf den
Datentrager des Android-Gerites.

Bei der Betrachtung der Aktivitdten einer Anwendung fallt auf, dass lediglich 20 % mehr als
eine Hauptaktivitit und damit mehr als einen Einstiegspunkt anbieten. Insgesamt zeigen
sich signifikanten Unterschiede in der Anzahl der Aktivitdten bei Anwendungen unter-
schiedlicher Kategorien. Wahrend Anwendungen aus der Kategorie , Soziale Netzwerke”

37

6 Folgerung und Ausblick

iiber sehr viele Aktivititen verfiigen, ist die Anzahl bei Anwendungen aus den Kategorien
,Werkzeuge” und ,,Unterhaltung” wesentlich geringer.

Im Hinblick darauf, ob die Anzahl der Layout-Dateien stark variieren, liefsen sich bei den
Anwendungen — gruppiert nach den am hdufigsten auftretenden Kategorien — zwei Gruppen
ausmachen: Sehr umfangreich sind Anwendungen der Kategorien ,Kommunikation”, ,Sozia-
le Netzwerke”, ,Shopping” und , Reisen” gestaltet. Im Kontrast dazu stehen Anwendungen
aus den Kategorien ,Unterhaltung”, ,Tools”, ,Musik & Audio” und , Effizienz”, die entweder
nur einen kleinen, speziellen Aufgabenbereich oder sehr dynamische Benutzeroberfldchen
besitzen, die mittels der statischen Analyse in dieser Arbeit nur unzureichend abgebildet
werden konnen. Hier findet sich auch ein erster Ansatz zu moglichen weiteren Arbeiten.
Emulatoren bieten die Moglichkeit, Anwendungen wihrend der Nutzung zu beobachten
und Nutzereingaben zu simulieren. Damit konnen bessere Erkentnisse iiber die Beziehungen
der einzelnen Aktivitdten innerhalb der Anwendung und auch der Interaktion mit anderen
Anwendungen gewonnen werden. Zudem konnten so auch Benutzungsoberflachen erfasst
werden, die sich dynamisch dndern und damit neue Einsichten iiber Interaktionskonzepte
gefunden werden.

Bei der Analyse der Layout-Dateien konnten wir hdufig genutzte Android-Widgets identifi-
zieren, die Beliebtheit der unterschiedlichen Layout-Moglichkeiten feststellen und haufig
auftretende Muster aus mehreren Widgets und Layouts finden. Auffillig war hier die grofie
Anzahl einfacher Text-, Bild- und Button-Widgets, komplexere, interaktive Widgets wurden
nur selten verwendet. Einige der in vielen Anwendungen auftreten Muster aus einfachen
Widgets kommen deutlich hdufiger vor als komplexere Standard-Android-Widgets, so bei-
spielweise die Kombination von mehreren Textelementen oder Text- und Bildelementen.

Bei den Layout-Containern wird hauptséchlich das LinearLayout innerhalb eines ScrollViews
verwendet, um einfach Inhalte untereinander auf dem Bildschirm anzubieten. Uberraschen-
derweise findet sich auch die Kombination aus ineinander verschachtelten LinearLayouts
sehr haufig, obwohl diese Art der Strukturierung auf die Gestaltung der Aktivitdten keinen
Einfluss hat. Eine ndhere Untersuchung dieses Gebietes konnte nach komplexeren Mustern
suchen, in dieser Arbeit wurden nur Muster betrachtet, die eine Tiefe von maximal zwei
Ebenen haben. Eine genauere Analyse der Struktur der Benutzeroberflichen konnte Einsich-
ten {iber Gestaltungregeln fiir erfolgreiche Anwendungen liefern. Hier sind auch praktische
Anwendungen der gewonnenen Erkenntnisse denkbar. Vor allem in Entwicklungsumgebun-
gen und Gestaltungswerkzeugen konnten hiaufig vorkommende Muster genutzt werden,
um Layouts schneller und einfacher zu gestalten und dem Nutzer dienliche Hinweise zur
Strukturierung der Benutzeroberfliche seiner Anwendung zu geben.

38

Literaturverzeichnis

[BBK10]

[BBST10]

[BFFHog]

[BHS"11]

[BKOS10]

[CFGW11]

[CRo8]

[FCH™11]

M. Bohmer, G. Bauer, A. Kriiger. Exploring the design space of context-aware
recommender systems that suggest mobile applications. In Proceedings of CARS.
2010. (Zitiert auf Seite 11)

T. Blaesing, L. Batyuk, A. Schmidt, S. A. Camtepe, S. Albayrak. An Android
Application Sandbox System for Suspicious Software Detection. In Proceedings of
5th International Conference on Malicious and Unwanted Software (MALWARE), S.
55-62. 2010. (Zitiert auf Seite 10)

F. Balagtas-Fernandez, J. Forrai, H. Hussmann. Evaluation of user interface
design and input methods for applications on mobile touch screen devices. In
Proc. of Interact, S. 243—246. Springer, 2009. (Zitiert auf Seite 11)

M. Bohmer, B. Hecht, J. Schoning, A. Kriiger, G. Bauer. Falling asleep with angry
birds, facebook and kindle: A large scale study on mobile application usage. In
Proceedings of MobileHCI, S. 47-56. 2011. (Zitiert auf Seite 11)

D. Barrera, H. G. Kayacik, P. C. van Oorschot, A. Somayaji. A methodology for
empirical analysis of permission-based security models and its application to
android. In Proceedings of the 17th ACM conference on Computer and communications
security, CCS "10, S. 73-84. ACM, New York, NY, USA, 2010. doi:10.1145/
1866307.1866317. URL http://doi.acm.org/10.1145/1866307.1866317. (Zitiert
auf Seite 9)

E. Chin, A. P. Felt, K. Greenwood, D. Wagner. Analyzing inter-application
communication in Android. In Proceedings of the 9th international conference on
Mobile systems, applications, and services, MobiSys '11, S. 239—252. ACM, New
York, NY, USA, 2011. doi:10.1145/1999995.2000018. URL http://doi.acm.org/
10.1145/1999995.2000018. (Zitiert auf Seite 10)

Y. Cui, V. Roto. How people use the web on mobile devices. In Proceedings of
WWW, S. 905-914. 2008. (Zitiert auf Seite 11)

A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner. Android permissions demysti-
fied. In Proceedings of the 18th ACM conference on Computer and communications
security, CCS 11, S. 627-638. ACM, New York, NY, USA, 2011. doi:10.1145/
2046707.2046779. URL http://doi.acm.org/10.1145/2046707.2046779. (Zitiert
auf Seite 9)

39

http://doi.acm.org/10.1145/1866307.1866317
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/2046707.2046779

Literaturverzeichnis

[HN11]

[HRB11]

[HRB12]

[LBGt12]

[MDR*12]

[RTST12]

[RZ12]

[SEKV12]

[Verog]

C. Hu, I. Neamtiu. A GUI bug finding framework for Android applications.
In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC 11, S.
1490-1491. ACM, New York, NY, USA, 2011. doi:10.1145/1982185.1982504. URL
http://doi.acm.org/10.1145/1982185.1982504. (Zitiert auf Seite 10)

N. Henze, E. Rukzio, S. Boll. 100,000,000 taps: analysis and improvement of
touch performance in the large. In Proc. of MobileHCI, S. 133-142. 2011. (Zitiert
auf Seite 12)

N. Henze, E. Rukzio, S. Boll. Observational and Experimental Investigation of
Typing Behaviour using Virtual Keyboards on Mobile Devices. In Proc. of CHI.
2012. (Zitiert auf Seite 12)

L. A. Leiva, M. Bohmer, S. Gehring, et al. Back to the App: The Costs of Mobile
Application Interruptions. In Proc. of MobileHCI. 2012. (Zitiert auf Seite 12)

A. Moller, S. Diewald, L. Roalter, F. Michahelles, M. Kranz. Update behavior
in app markets and security implications: A case study in Google Play. In
Proceedings of MobileHCI. 2012. (Zitiert auf Seite 11)

A. Rahmati, C. Tossell, C. Shepard, P. Kortum, L. Zhong. Exploring iPhone usage:
The influence of socioeconomic differences on smartphone adoption, usage and
usability. In Proceedings of MobileHCI. 2012. (Zitiert auf Seite 11)

A. Rahmati, L. Zhong. Studying smartphone usage: Lessons from a four-month
field study. In IEEE Transactions on Mobile Computing. 2012. (Zitiert auf Seite 11)

M. Szydlowski, M. Egele, C. Kruegel, G. Vigna. Challenges for Dynamic Analysis
of iOS Applications. In J. Camenisch, D. Kesdogan, Herausgeber, Open Problems
in Network Security, Band 7039 von Lecture Notes in Computer Science, S. 65—
77. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-27585-2_6. URL
http://dx.doi.org/10.1007/978-3-642-27585-2_6. (Zitiert auf Seite 11)

H. Verkasalo. Contextual patterns in mobile service usage. Personal and Ubiquitous
Computing, 13(5):331-342, 2009. (Zitiert auf Seite 11)

Alle URLs wurden zuletzt am 11. 02.2013 gepriift.

40

http://doi.acm.org/10.1145/1982185.1982504
http://dx.doi.org/10.1007/978-3-642-27585-2_6

	1 Einleitung
	2 Verwandte Arbeiten
	2.1 Automatisierte (Android-)App-Analyse
	2.2 Mobile Interaktion

	3 Android-Architektur
	3.1 Android-System
	3.2 Apps
	3.3 Play Store

	4 Reverse-Engineering und Analyse
	4.1 Download
	4.2 APK entpacken
	4.3 Resourcen analysieren
	4.4 Manifest analysieren
	4.5 Code und Layout analysieren
	4.6 Datensatz

	5 Ergebnisse
	5.1 Statistiken beliebter Android-Anwendungen
	5.1.1 Sprachen
	5.1.2 Unterstützte Anzeigen
	5.1.3 Einstiegspunkte
	5.1.4 Analyse der Berechtigungen
	5.1.5 Anzahl der Benutzungsschnittstellen
	5.1.6 Diskussion der Befunde

	5.2 User-Interface-Elemente und -Muster
	5.2.1 Layouts
	5.2.2 User-Interface-Elemente
	5.2.3 User-Interface-Muster
	5.2.4 Diskussion der Befunde

	5.3 Einschränkungen

	6 Folgerung und Ausblick
	6.1 Zusammenfassung und zukünftige Arbeiten

	Literaturverzeichnis

 HistoryItem_V1
 TrimAndShift

 Bereich: alle geraden Seiten
 Beschneiden: keine
 Versatz: oben um 0.85 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20121129141658
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 453
 310

 Fixed
 Up
 0.8504
 0.0000

 Even
 2
 AllDoc
 248

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9a
 Quite Imposing Plus 2
 1

 18
 40
 39
 20

 1

 HistoryList_V1
 qi2base

