
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Fachstudie Nr. 164

Automatisierte, quantitative
Analyse von

Android-Applikation-GUIs

Robin Goldberg, Hansjorg Schmauder, Benjamin
Schmidt

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Albrecht Schmidt

Betreuer/in: Dipl.-Inf. Niels Henze, M. Sc. Alireza
Sahami

Beginn am: 2012-08-15

Beendet am: 2013-02-14

CR-Nummer: D.2.2

Hansjörg
Typewriter
..

Kurzfassung

Nach der rasanten Verbreitung klassischer Mobiltelefone zeichnet sich in den letzten Jahren
ein neuer Trend ab: Immer mehr Mobiltelefone werden durch sogenannte „Smartphones“
ersetzt. Diese Smartphones bieten dem Nutzer über die klassischen Funktionen wie Telefon
und SMS hinaus Zugriff auf ein breites Feld von Funktionen und Diensten, von denen
viele direkt mit dem mobilen Internet verbunden sind. Der große Unterschied zwischen
klassischen Mobiltelefonen und Smartphones liegt dabei vor allem im Konzept der Applica-
tions (Apps). Nutzer können eine Vielzahl unterschiedlicher Apps aus großen Apps-Stores
herunterladen und installieren, um den Funktionsumfang ihres Smartphones erheblich zu
erweitern. Die große Zahl der Apps auf der einen Seite und die steigende Bedeutung von
Smartphones und Apps auf der anderen Seite machen dieses Feld auch für die Forschung
sehr interessant. Dazu wurden Techniken entwickelt, um automatisch gefährliche Apps
zu identifizieren oder Fehler in einer großen Anzahl von Apps zu finden. Im Gegensatz
dazu beschäftigt sich diese Arbeit mit der automatisierten Analyse von Apps aus der Sicht
der Mensch-Rechner-Interaktion. Dazu haben wir 400 beliebte Android Apps untersucht.
Die Ergebnisse legen nahe, dass sich die Komplexität der Benutzungsschnittstelle je nach
App-Kategorie unterscheidet. Des Weiteren haben wir die zur Gestaltung verwendeten
Layout-Dateien mit dem Ziel analysiert, Elemente und Muster von Elementen zu finden, die
häufig verwendet werden.

Das häufigste Muster, das wir identifizieren konnten, besteht aus drei Elementen und macht
insgesamt 5.43 % aller Elemente der Layout-Dateien aus. Damit tritt es häufiger auf als einige
Standard-Elemente wie beispielweise Fortschrittsbalken und Kontrollkästchen. Die zehn
häufigsten Muster machen zusammen 21.13 % aller Elemente aus. Sie treten alle häufiger
auf als bekannte Elemente wie Optionsfelder. Mithilfe dieser Muster lassen sich nicht nur
Erkenntnisse über die derzeitige Gestaltung von App-Oberflächen gewinnen, sondern auch
Ideen für neue, sinnvolle Elemente finden.

3

Inhaltsverzeichnis

1 Einleitung 7

2 Verwandte Arbeiten 9
2.1 Automatisierte (Android-)App-Analyse . 9

2.2 Mobile Interaktion . 11

3 Android-Architektur 13
3.1 Android-System . 13

3.2 Apps . 14

3.3 Play Store . 16

4 Reverse-Engineering und Analyse 17
4.1 Download . 17

4.2 APK entpacken . 18

4.3 Resourcen analysieren . 18

4.4 Manifest analysieren . 19

4.5 Code und Layout analysieren . 20

4.6 Datensatz . 21

5 Ergebnisse 23
5.1 Statistiken beliebter Android-Anwendungen . 23

5.1.1 Sprachen . 23

5.1.2 Unterstützte Anzeigen . 23

5.1.3 Einstiegspunkte . 24

5.1.4 Analyse der Berechtigungen . 24

5.1.5 Anzahl der Benutzungsschnittstellen . 26

5.1.6 Diskussion der Befunde . 28

5.2 User-Interface-Elemente und -Muster . 28

5.2.1 Layouts . 29

5.2.2 User-Interface-Elemente . 30

5.2.3 User-Interface-Muster . 32

5.2.4 Diskussion der Befunde . 34

5.3 Einschränkungen . 35

6 Folgerung und Ausblick 37
6.1 Zusammenfassung und zukünftige Arbeiten . 37

Literaturverzeichnis 39

5

Abbildungsverzeichnis

3.1 Android-Systemarchitektur . 14

3.2 Android-Manifest-Datei . 15

3.3 Android-Layout-Datei . 16

5.1 Die zwölf meistverwendeten Sprachen neben Englisch. 24

5.2 Die häufigsten Android-Standardberechtigungen. 25

5.3 Die durchschnittle Anzahl Aktivitäten (links), Layouts (mitte), und Bilder
(rechts) für die zehn Kategorien mit den meisten Anwendungen in unserem
Datensatz. Die Fehlerbalken zeigen die Standardabweichung. 26

5.4 Die durchschnittliche Anzahl von Widgets pro App, aufgetragen für die
zehn häufigsten Standard-Widgets von Android in unserem Datensatz. Die
Fehlerbalken zeigen die Standardabweichung. 29

5.5 Die häufigsten Layout-Muster. 31

5.6 Die Verwendung häufiger Layout-Muster durch die Apps im Datensatz. 31

5.7 Überblick über die üblichsten Widget-Muster. 33

5.8 Verwendung der häufigen Widget-Muster in den Apps. 33

Tabellenverzeichnis

4.1 Die Verteilung der heruntergeladenen Apps auf die verschiedenen Kategorien.
Die letzten drei Spalten zeigen die durchschnittliche Anzahl der Activitys,
Layouts und Bildern der Apps in der jeweiligen Kategorie. 22

5.1 Die zehn am häufigsten verwendeten Widgets in unserem Datensatz. Die
Spalten zeigen den Name des Widgets, die Anzahl der Apps, in denen es
verwendet wurde, den prozentualen Anteil gegenüber der Gesamtzahl aller
gefundenen Widgets und die Gesamtzahl, wie oft das Widget gefunden wurde. 30

6

1 Einleitung

Der Trend zum Smartphone ist ungebrochen, viele Menschen sind inzwischen permanent mit
mobilem Internet versorgt und knnen von berall auf E-Mails, Nachrichten und andere Dienste
zurckgreifen. Als zentrales Bedienelement hat sich der Touchscreen herauskristallisiert, der
Anzeige und Bedienung der Smartphones zugleich darstellt. Erweitert wird die Funktionaliter
Smartphones durch eine Vielzahl sogenannter Apps, kleiner Programme, welche einen
bestimmten Dienst anbieten, Kommunikation ermglichen oder einfach nur unterhalten
sollen. Bei tausenden von Apps, die auf den verschiedenen Marktplen erhlich sind und
sich hig mit lichen Themen beschigen, spielt die Gestaltung der GUI und Interaktion eine
entscheidende Rolle. Sie kann ber den Erfolg oder Misserfolg einer App entscheiden, da
es im Normalfall keine Anleitungen gibt und die Nutzer auch keine Motivation haben,
Hilfefunktionen zu befragen. Die App muss aber nicht nur eine gute Usability haben, also
einfach und intuitiv zu bedienen sein, sondern auch Likeability ist ein wichtiges Thema. Die
Nutzung der App soll Spaachen und fr den Nutzer ein Erlebnis darstellen.

Damit verbunden ist die visuelle Prntation, da direkt mit den Elementen auf dem Bildschirm
interagiert wird. Je nach Art der App knnen dabei ganz verschiedene Konzepte und Elemente
zum Einsatz kommen. Wend mobile Spiele versuchen, eine mglichst gute Immersion zu
erreichen, mssen Nachrichten-Apps bersichtlich sein und in Kommunikationsprogrammen
wird hig versucht, den Eindruck einer direkten Konversation aufrecht zu erhalten. Dies
alles macht die Betrachtung der Benutzungsoberflen von Apps zu einem interessanten und
lohnenswerten Feld.

Diese Arbeit stellt folgende Aspekte vor: Zunst werden in Kapitel 2 verwandte Arbeiten
beschrieben, die helfen sollen, den Kontext dieser Arbeit richtig einzuordnen und einen
erblick ber das Themengebiet zu bekommen. Im dritten Kapitel folgt eine Beschreibung des
Android-Systems und der Funktionsweise von Apps und dem fr diese Arbeit genutzten
App-Store. Kapitel 4 erkl, wie die einzelnen Apps analysiert wurden und welche Daten dabei
gewonnen werden konnten. Die Vorstellung der Ergebnisse folgt in Kapitel 5, im letzten
Kapitel stellen wir Folgerungen vor und geben Ideen, welche Herausforderungen auf diesem
Feld noch offen sind.

7

2 Verwandte Arbeiten

In diesem Kapitel werden zunächst einige Arbeiten vorgestellt, die sich ebenfalls mit der
Analyse von Apps beschäftigt haben. Im Wesentlichen haben wir zwei Kategorien bestehen-
der Arbeiten zu diesem Thema identifiziert. Zum einen wurden schon einige automatisierte
Untersuchungen von (Android-)Apps durchgeführt, die sich jedoch zum Großteil auf Aspek-
te der Sicherheit und der Korrektheit der Apps konzentrierten. Zum anderen gibt es bereits
Arbeiten, die sich mit der Gestaltung und Analyse der Android-GUI beschäftigen sowie
zahlreiche Richtlinien und Hinweise für die Oberflächengestaltung von Apps. Diese Arbeiten
konzentrieren sich aber zumeist auf Beispielanwendungen oder wenige, ausgesuchte Apps.

2.1 Automatisierte (Android-)App-Analyse

Die ersten Arbeiten, in denen größere Mengen von Android-Apps untersucht wurden, be-
schäftitgen sich zum Großteil mit Aspekten der Sicherheit und dem Rechte-System der
Android-Plattform. Einen einfachen Ansatz wählen dabei Barrera et al [BKOS10]. Sie ex-
trahieren die Manifest-Dateien von 1.100 Apps, um daraus alle von den Apps benutzten
Rechte auszulesen. Diese werden anschließend als Bit-Vektoren gespeichert, um darauf
Analysen zu den verwendeten Rechte auszuführen. Die Apps werden dabei in Kategorien
entsprechend denen im Android-Market gruppiert. Die meisten Rechte finden sich bei Apps
aus dem Bereich Kommunikation, die wenigstens beim Bereich der Themes. Insgesamt
wurde festgestellt, dass einige wenige Rechte wie zum Beispiel der Zugriff auf das Inter-
net sehr häufig verwendet werden, während der Großteil nur selten zum Einsatz kommt.
Zudem wurden einige Fehler wie der doppelte Aufruf von Rechten oder Aufrufe auf nicht
existierende Rechte gefunden. Im Weiteren werden auch noch verschiedene Kategorien
über die Ähnlichkeit ihrer Rechte verglichen, um die Nutzung weiter aufzuschlüsseln und
Verbesserungsvorschläge für das Rechte-System von Android geben zu können.

Der Fokus bei der Arbeit von Felt et al. [FCH+
11] liegt darin, herauszufinden, wie viele

Android Apps mehr Rechte aufrufen als sie tatsächlich brauchen. Ihr Tool Stowaway un-
tersucht, welche API-Funktionen in der App tatsächlich aufgerufen werden. Dazu liegen
die Apps zunächst in Form von Dalvik-Executables vor, werden dann per Dedexer Tool
dissassembled und von Stowaway mittels statischer Codeanalyse untersucht. Diese findet
alle API-Aufrufe und vergleicht sie mit einer vorher erstellten Karte, auf der verzeichnet ist,
welcher Aufruf zu welcher Permission gehört. Des Weiteren wurden auch Content-Providers
und Intents untersucht, um hier ebenfalls die verwendeten Rechte herauszufinden. Bei der
Untersuchung von 940 Apps wurde etwa ein Drittel als überpriveligiert eingestuft. Als Ursa-
chen identifizieren die Autoren verschiedene Fehler, von der Nutzung veralteter Rechte über

9

2 Verwandte Arbeiten

Copy & Paste-Fehler bis hin zu Artefakten durch Testcode oder schlechte API-Information
über die für einen Aufruf tatsächlich benötigten Rechte.

Einen Schritt weiter geht die Arbeit von Chin et al. [CFGW11]. Dort werden die Kommuni-
kation zwischen einzelnen Android-Apps und die mit dem Android-Modell einhergehenden
Risiken untersucht. Android-Apps kommunizieren über sogenannte Intents. Dabei handelt
es sich um Nachrichten, die innerhalb einer App, zwischen verschiedenen Apps oder auch
systemweit gesendet werden können. Intents enthalten immer einen Empfänger und optio-
nal Daten, welche zum Empfänger gesendet werden. Der Empfänger kann dabei entweder
explizit angegeben oder implizit vom Android-System bestimmt werden. Zur Analyse des
Intent-Verhaltens von Apps nutzt ihr Tool ComDroid statische Codeanalyse auf Basis von
dissassembleten Dalvik-Executables. Es verfolgt die Intents von der Erzeugung an der Quelle
bis zur Konsumierung bei einer Senke und untersucht dabei die Möglichkeit, das Intent
durch unzureichende Definition von Rechten oder ungenaue Angabe von Sender oder Emp-
fänger zu manipulieren oder Intents einer App abzufangen und die Daten darin auszulesen.
Außerdem werden die einzelnen Komponenten von Apps auf die Möglichkeit hin untersucht,
sie mithilfe von Intents zu beeinflussen, weil die empfangenen Nachrichten nicht sorgfältig
genug geprüft und verarbeitet werden. Bei der Untersuchung von 20 Apps mit Hilfe von
ComDroid wurden 34 mögliche Angriffspunkte identifiziert, 12 der untersuchten Apps
wiesen wenigstens eine Verwundbarkeit auf.

Im Bereich von automatisierter App-Analyse wurden bisher hauptsächlich Aspekte wie
Sicherheit und Datenschutz untersucht. In der Arbeit von Hu und Neamtiu [HN11] findet
sich allerdings ein erster Ansatz zur GUI-Analyse. Sie zielt ab auf das Auffinden von
typischen Fehlern in Android-Apps mittels automatisch generierter Testfälle. Dies erfordert
aufgrund der Android-GUI-Architektur eine neue Vorgehensweise verglichen mit etablierten
Testmethoden. Die Aktivitäts- und Ereignis-Struktur von Android-Apps lässt sich nicht mit
bisherigen GUI-Analyse-Tools abbilden, dazu ist eine Kombination von Tools nötig. Zum
Test der GUI wurden hierbei JUnit zur automatischen Testfallgenerierung und Monkey, ein
Tool zur Generierung von Android-UI-Events, genutzt. Die Daten der Tests wurden in das
System-Log geschrieben, welches anschließend ausgewertet wurde. Es ließen sich mit dieser
Methode sowohl bekannte Fehler entdecken als auch bisher unbekannte Fehler auffinden.

Zusätzliche dynamische Codeanalyse zur Einschätzung der Gefahr durch eine App stellen
Bläsing et al. [BBS+10] in ihrer Arbeit vor. Neben der statischen Codeanalyse führen sie die
untersuchte App in einer Sandbox aus, um ihr tatsächliches Verhalten zu beobachten. Dabei
geht es vor allem darum, Apps zu identifizieren, welche die Privatsphäre des Nutzers verlet-
zen könnten oder Malware enthalten. Bei der statischen Analyse wird nach verdächtigen
Mustern im Code gesucht. Als verdächtige Muster werden vor allem Versuche angesehen,
den normalen Ablauf im Android-System durch direkte Aufrufe von nativem Code in Biblio-
theken oder direkter Codeausführung zu beeinflussen oder per Reflection Beschränkungen
der API zu umgehen. Während der dynamischen Analyse werden alle Aktionen der App
aufzeichnet. Das dabei entstandene Log kann dann entweder manuell oder automatisiert
untersucht werden. Den Einsatzbereich sehen die Autoren bei Prüfungen im Marktplatz
ebenso wie für Anti-Virus-Tools auf dem Android-Gerät.

10

2.2 Mobile Interaktion

Szydlowski et al. [SEKV12] beschäftigen sich in ihrer Arbeit auch mit dem Problem der
Sicherheit, sie betrachten allerdings iOS-Apps. Im Fokus ihrer Arbeit liegt die Herausfor-
derung der dynamischen Analyse von Apps, die hauptsächlich über ihre GUI gesteuert
werden. Das Ziel ihrer Analyse ist es, potentiell gefährliche Apps zu identifizieren. Dass
die Einbeziehung der GUI nötig ist, zeigen ihre Angaben zur Codeüberdeckung: Ohne
Einbeziehung der GUI liegt sie bei 16 %, mit GUI-Analyse bei 69 %. Im Gegensatz zu den
vorher vorgestellten statischen Analyseverfahren wird bei dynamischen Analysen die App
direkt bei ihrer Ausführung beobachtet. Da es sich um eine grundlegende Arbeit handelt,
wurden keine richtigen Apps untersucht, sondern nur die Tools anhand einer Beispiel-App
getestet. Dabei wurde gezeigt, dass die Verwendung der GUI absolut notwendig ist, um
einen Großteil der Funktionsaufrufe einer App tatsächlich zu finden und damit auf eine ähn-
liche Abdeckung wie bei statischer Codeanalyse zu kommen. Der Vorteil der dynamischen
Analyse besteht in dem Fall darin, auch Code untersuchen zu können, bei dem die statische
Analyse scheitert, weil der Code maskiert wurde.

2.2 Mobile Interaktion

Fortwährend beschäftigen sich Forscher mit der Ergründung, Datensammlung und Beobach-
tung über das Nutzungsverhalten von Anwendern einer App. Cui und Roto betrachteten, wie
Anwender das mobile Internet nutzen [CR08] und fanden dabei heraus, dass die Dauer der
Web-Nutzung zwar kurz ist, aber mehr Zeit im Browser verbracht wird, wenn die Benutzer
per WLAN verbunden sind. Böhmer et al. führten eine groß angelegte Studie mit einem
genauen Protokoll über die Anwendungsnutzung bei Android-Apps durch [BHS+11]. Basie-
rend auf grundlegenden und kontextuellen Statistiken entwickelten sie das Vorschlagsystem
„Appazaar“ [BBK10]. Möller et al. untersuchten das Update-Verhalten und die Auswir-
kungen auf die Sicherheit im Google Play Market [MDR+

12]. Sie berichten, dass Nutzer
dazu neigen, Updates auch eine Woche nach Erscheinung der Aktualisierung noch nicht
zu installieren. Rahmati et al. führten eine Longitudinalstudie durch und verglichen, wie
Benutzer aus unterschiedlichen sozialen und wirtschaftlichen Verhältnissen („SES“) sich an
neue Smartphone-Technologien und deren Installation bzw. Nutzung anpassen [RTS+12]. Sie
zeigen, dass Nutzer aus einem Umfeld von niedrigerem Status mehr Geld für Anwendungen
ausgeben und auch mehr Anwendungen installieren. Die Gruppe mit dem niedrigsten Status
schätzt die Usability ihrer iPhones verglichen mit den anderen Gruppen am schlechtesten ein.
Die Nutzung der Smartphone-Dienste wird von 14 jugendlichen Nutzern überprüft [RZ12].
In der Feldstudie wird berichtet, dass sie ihre Smartphones zu verschiedenen sozialen Zwe-
cken einsetzen und sehr von der Mobilität profitieren, sodass sie es auch unterschiedlich
einsetzen, je nachdem, wo sie sich befinden. Verkasalo [Ver09] zeigt außerdem, dass Nutzer
bestimmte Typen mobiler Dienste in bestimmten Kontexten verwenden. So werden Browser-
und Multimedia-Anwendungen hauptsächlich eingesetzt, wenn die Nutzer unterwegs sind,
Spiele hingegen öfters dann, wenn sie zu Hause sind. Balagtas et al. bewerten verschiedene
UI-Designs und Eingabetechniken für Touchscreen-Mobiltelefone [BFFH09].

Einige Veröffentlichungen beschäftigen sich auch mit dem Nutzerverhalten bei der Ver-
wendung und Interaktion mit Apps auf mobilen Geräten. Henze et al. evaulierten die

11

2 Verwandte Arbeiten

Genauigkeit von Berührungsinteraktion bei mobilen Apps [HRB11] und leiteten eine Kom-
pensationsmethode ab, die die Nutzereingaben auf dem Display verschiebt, um Fehler zu
reduzieren. Außerdem untersuchten sie das Eingabeverhalten auf virtuellen Tastaturen,
wie sie bei Smartphones häufig Verwendung finden [HRB12] und schlossen dort, dass die
Markierung der angeklickten Stelle mit einem einfachen Punkt die Fehlerrate bei Benutzern
auf der Android-Tastatur senkt. Leiva et al. beschäftigten sich mit der Unterbrechung der
mobilen Anwendung sowohl durch bewusstes Vor- und Zurückwechseln zwischen den
geöffneten Anwendungen als auch durch jähe Unterbrechungen wie eingehende Telefon-
anrufe [LBG+

12]. Sie stellen fest, dass derartige Unterbrechungen zwar tendenziell selten
vorkommen, im Falle des Eintretens allerdings häufig einen signifikanten Overhead zur
Folge haben.

12

3 Android-Architektur

Dieses Kapitel gibt einen Überblick über die Android-Architektur. Dazu wird zunächst
das Android-System selbst beschrieben. Dann folgt die Beschreibung der Architektur von
Android-Apps, bevor zuletzt noch der Marktplatz für Android-Apps, Google Play, vorgestellt
wird. Dieses Kapitel führt damit in die wesentlichen Konzepte ein, welche nachher in der
Beschreibung der Analyse verwendet werden und stellt diese in den korrekten Kontext. Es
werden hauptsächlich die für diese Arbeit wesentlichen Aspekte vorgestellt1. Die aktuelle
Version von Android ist 4.1, da aber viele ältere Geräte keine Updates auf aktuelle Versionen
bekommen, sind noch viele Android 2.x-Geräte in Nutzung, die 3.x-Serie war rein für Tablets
ausgelegt.

3.1 Android-System

Die Grundlage des Android-Systems ist eine spezielle Form des Linux-Kernels. Dieser
enthält die Treiber für die Hardwarekomponenten des jeweiligen Gerätes wie z.B. Display,
Kamera oder WiFi und kümmert sich auch um das ganze Energiemanagement des Geräts.
Darauf aufbauend gibt es eine Reihe von Bibliotheken, ähnlich denen des Standard-Java,
die in C oder C++ geschrieben sind und sich um Grundfunktionen der Software kümmern,
beispielsweise den Zugang zu Datenbanken, Mediendarstellung, Grafiken, Verschlüsselungen
und Ähnliches. Auch spezielle Versionen von Standardbibliotheken wie der libc sind hier
zu finden, welche auf die Bedürfnisse der Hardware mit wenig Speicher, langsameren
Prozessoren und geringem Energieverbrauch optimiert sind.

Die eigentlich Funktionalität für Entwickler und Benutzer ist im Application Framework
und den Applications enthalten. Diese sind in Java geschrieben und werden von einem
eigens entwickelten Tool auf den Bytecode für die Dalvik Virtual Machine (VM) von An-
droid angepasst. Dies ermöglicht die Nutzung von normalen Entwicklungsumgebungen
aus dem Java-Umfeld, der Code muss lediglich am Ende noch in das DEX-Format umge-
wandelt werden. Bei der Dalvik-VM handelt es sich um eine eigens für Android entwickelte
Java-Ausführungsumgebung. Das Application Framework bietet Zugriff auf grundlegende
Funktionen über verschiedene Manager und abstrahiert den Zugriff auf Funktionen der
Standardbibliotheken und der Dalvik-VM für die Entwickler von Applications. Zu den

1Eine vollständige Beschreibung der Android-Architektur findet sich beipielweise auf
http://developer.android.com.

13

3 Android-Architektur

Abbildung 3.1: Android-Systemarchitektur

vorhandenen Managern zählen unter anderem der Telephone Manager, der Location Ma-
nager und der Resource Manager, aber auch der Window Manager und Activity Manager
zur Verwaltung von Oberflächen und Funktionen. Einen vollständigen Überblick über die
einzelnen Komponenten des Android-Betriebssystems bietet Abbildung 3.12.

3.2 Apps

Applications für Android werden in Java geschrieben, für die Gestaltung der Benutzerober-
fläche werden XML-Dateien verwendet. Zusätzlich können noch Ressourcen in Form von
Sprachdateien oder Bildern eingebunden werden. Der Ausgangspunkt jeder Application ist
die Manifest-Datei. Sie ist in XML geschrieben und enthält grundsätzliche Informationen zur
App. Hier wird definiert, wo der Code der App zu finden ist, welche Aktivitäten in einer
App zur Verfügung stehen und welche davon als Startaktivitäten gekennzeichnet sind. Des
Weiteren können in der Manifest-Datei auch Angaben zu Rechten, öffentlich Verfügbaren

2Quelle: http://developer.android.com/images/system-architecture.jpg

14

3.2 Apps

Abbildung 3.2: Android-Manifest-Datei

Schnittstellen und weiteren Konfigurationen der App eingetragen werden, eine Beispieldatei
zeigt Abbildung 3.2.

Die Grundlage für die Programmierung einer App stellt in Android die sogenannte Activity
dar. Eine Activity stellt genau eine Bildschirmansicht dar, der Quellcode zur Funktionalität
wird in einer Java-Klasse implementiert, das Layout sollte über eine XML-Datei definiert
werden, es können jedoch auch Veränderungen am Layout im Quellcode der Klasse vor-
genommen werden. Die verschiedenen Activitys können sich gegenseitig aufrufen und
damit die gesamte Funktionalität der Application abbilden. Jede Activity ist eine Unterklasse
von Activity und muss bestimmte Funktionen enthalten, die dem Android-System sagen,
was zu tun ist, wenn eine App gestartet, gestoppt oder beendet wird. Auf dem Bildschirm
nimmt eine Activity im Normalfall den gesamten Platz ein. Da jeweils nur eine Activity
aktiv sein kann, muss jede Activity Mechanismen vorsehen, ihren Zustand zu speichern und
wiederherzustellen, wenn in der Zwischenzeit eine andere Application verwendet wurde.

Häufig existieren von einer Anwendung Versionen in verschiedenen Sprachen und es
gibt unterschiedliche Layouts für unterschiedliche Bildschirmgrößen, Ausrichtungen und
Auflösungen. Damit nicht für jede Version eigene APKs veröffentlicht werden müssen,
können unterschiedliche Sprach- und Layoutdateien in speziell benannten Ordner abgelegt
werden, wo sie automatisch vom Android-System in der jeweiligen Situation ausgewählt
werden. Alle diese Elemente werden schließlich zu einem komprimierten Ordner, dem
Android Application Package (APK), zusammengepackt. Das APK enthält alle Ressourcen,
die Manifest-Datei und den in Bytecode kompilierten Code der Activitys. Ein solches APK
kann dann zum Beispiel vom Play Market heruntergeladen und installiert werden.

Die Gestaltung der Oberfläche erfolgt primär durch XML-Dateien. Dort werden die visuellen
Elemente und deren Eigenschaften angegeben, die in einem Elementbaum verschachtelt
sind. Jedes dieser Elemente ist von der Klasse View abgeleitet und stellt einen Bereich auf
dem Bildschirm dar, mit dem der Nutzer interagieren kann. Für alle üblichen visuellen
Elemente stehen bereits fertige Klassen in Android zur Verfügung. Auf diese Weise können
Buttons, Textfelder und Labels einfach in das Layout eingefügt werden. Um die Anordnung
kümmert sich der angegebene Layout-Manager. Im Beispiel in Abbildung 3.3 füllt dazu ein
relatives Layout zunächst den gesamten Bildschirm, während die einzelnen Elemente in
einem linearen Layout untereinander angeordnet werden.

15

3 Android-Architektur

Abbildung 3.3: Android-Layout-Datei

3.3 Play Store

Über den Google Play Store können Apps verbreitet werden. Die meisten Android-
Smartphones haben den Zugang zum Play Store direkt integriert, es gibt aber auch Android-
Geräte, die andere Stores ansprechen (z.B. Amazons Kindle). Im Play Store werden die
Apps in verschiedensten Kategorien wie beipsielsweise Spiele, Büro, Kommunikation, Sport,
Unterhaltung usw. eingeteilt. Zusätzlich gibt es Übersichten über aktuelle, beliebte und
gut bewertete Apps. Google untersucht Apps, die im Play Store hochgeladen werden, um
Schadprogramme und unzulässige Inhalte zu vermeiden. Apps können sowohl kostenlos
angeboten werden wie auch über das integrierte Bezahlsystem gekauft werden. Im Play
Store wird auch die Version des Android-Systems des Benutzer geprüft und es werden ihm
nur Apps angeboten, die unter seiner Version lauffähig sind.

Zum jetzigen Zeitpunkt (Ende Oktober 2012) sind im Play Store etwa 700.000 App vorhan-
den3. Zugriff auf kostenlose Inhalte im Play Store besteht aus 190 Ländern; in 132 Ländern
können Apps nicht nur erworben werden, sondern es können auch innerhalb der Apps
Käufe getätigt werden. Etwa die Hälfte der Apps bietet solche In-App-Käufe an. Die Ent-
wicklergemeinde rund um Android ist sehr aktiv, pro Monat werden rund 40.000 neue Apps
erstellt4.

3Quelle: http://www.businessweek.com/news/2012-10-29/google-says-700-000-applications-available-for-
android-devices

4Quelle: http://web4tech.com/2012/06/27/google-play-store-statistics-updates/

16

4 Reverse-Engineering und Analyse

Nachdem die Komponenten und die Struktur von Android-Apps vorgestellt wurden, soll in
diesem Kapitel darauf eingegangen werden, wie die Apps automatisiert heruntergeladen
und analysiert werden können. Im Zuge dieser Arbeit kommen dabei zwei Werkzeuge
zum Einsatz. Zum einen eine angepasste Version des Programms APKFetcher, welches in
Java geschrieben ist und auf der inoffiziellen Google Market API1 basiert. Mit diesem Tool
werden die APK-Archive von Apps heruntergeladen und zusammen mit einer Textdatei
mit zusätzlichen Informationen wie dem Namen, der Kategorie oder dem Zeitpunkt des
Downloads abgespeichert. Das zweite Werkzeug, der APKAnalyzer, liest dann diesen Ordner
aus, erstellt eine Liste der gefundenen Apps und führt die Analyse der einzelnen Apps aus.
Der APKAnalyzer wurde eigens für diese Arbeit in C# implementiert. Die Analyseergebnisse
werden in einer SQLite-Datenbank abgespeichert. Der Schwerpunkt liegt bei Daten, die einen
direkten Bezug zur Benutzeroberfläche aufweisen, und natürlich der Benutzeroberfläche
selbst. Die einzelnen Teile, ihre Funktion und die Daten, welche sie generieren, werden in
den folgenden Unterkapiteln im einzelnen beschrieben.

4.1 Download

Der erste Schritt der Datengewinnung bestand darin, die Apps vom Google-Market herun-
terzuladen. Hierzu wurde die Google Market API eingesetzt, die in dem von Niels Henze
entwickelten APKFetcher-Werkzeug verwendet wird. Mithilfe des Tools wird eine Verbin-
dung zum Market-Server hergestellt unter Verwendung einer Android-Authentifizierung.
Das beinhaltet eine Device-ID, eine E-Mail-Adresse und das zugehörige Passwort. Als Device-
ID nutzten wir die Identifikationsnummer eines unserer eigenen Geräte (ein HTC Wildfire
S), bei der E-Mail-Adresse und dem Passwort das mit dem Gerät verknüpfte Konto.

Der APKFetcher baut mit der Google Market API Anfragen an den Market-Server zusammen
und setzt diese dann ab. Da wird die populärsten Apps analysieren wollten, erzeugten wir
diesen Query dementsprechend mit verschiedenen Parametern: Gesucht wurden

• ausschließlich kostenlose Apps

• geordnet nach absteigender Popularität

• sowie weitere Informationen zu den Apps wie über das APK-Archiv hinausgehende
Statistiken etc.

1Homepage: http://code.google.com/p/android-market-api/

17

4 Reverse-Engineering und Analyse

Teile dieser zusätzlichen Informationen wurden zur heruntergeladenen APK-Datei geschrie-
ben. Dabei wurde von der Google Market API keine Eigenschaft angeboten, die die Popu-
larität der App im Google Market einordnet. Wir haben uns deshalb auf die Reihenfolge
der vom Store empfangenen APKs verlassen, sodass das Ranking der Apps über einen
fortlaufenden Downloadindex realisiert wurde. Die sonstigen Daten, die in die Textdatei
geschrieben wurden, enthalten

• den Namen der App,

• die Kategorie, der die App zugeordnet ist,

• die Bewertung der App durch die Nutzer, die 1–5 Sterne vergeben konnten,

• die aus der Downloadreihenfolge gewonnene Platzierung im Ranking sowie

• den Zeitstempel des Downloadzeitpunkts.

Im nächsten Schritt müssen die App-Archive dekomprimiert werden.

4.2 APK entpacken

Beim Entpacken der APK-Dateien kommt das APKTool2 zum Einsatz. Das APK-Format ist
ein gepacktes Containerformat, welches allerdings eigene Kodierungen verwendet, was die
Nutzung eines speziellen Werkzeugs zum Entpacken notwendig macht. Das APKTool ist in
Java geschrieben und wird im Kontext des APKAnalyzer über eine Batch-Datei aufgerufen.
Es entpackt die Ordner mit den verwendeten Ressourcen und wandelt die Java-Bytecode-
Dateien in .smali-Dateien um. Bei diesem SMALI-Format handelt es sich um eine teilweise
menschenlesbare Sprache, die benutzt wird, um aus dem Bytecode nicht den ursprünglichen
Javacode erzeugen zu müssen.

4.3 Resourcen analysieren

Für die Benutzeroberfläche interessant ist im Wesentlichen der Ordner ’res’, welcher alle
von der Benutzeroberfläche verwendeten Ressourcen enthält. Dazu zählen Bilder und Ani-
mationen ebenso wie die XML-Layout-Dateien, welche die Oberfläche beschreiben, und
Dateien, welche den Text der Oberfläche in unterschiedlichen Sprachen enthalten können.
Für jede Kategorie möglicher Ordner gibt es die Standardordner „drawable“ für Bilder und
Animationen, „values“ für Sprachen und „layout“ für XML-Dateien zur Beschreibung der
Benutzungsoberfläche.

Es können zusätzliche Ordner angelegt werden, indem an den Ordnernamen bestimmte
Suffixe angehängt werden. Für Sprachen sind das beispielsweise Ländercodes aus zwei

2Homepage: http://code.google.com/p/android-apktool/

18

4.4 Manifest analysieren

Buchstaben. Ein Ordner für Text in deutscher Sprache hätte den Namen „values-de“. Zu-
sätzlich zu Sprachen können auch bestimmte Auflösungen oder Bildschirmgrößen definiert
werden, sowie Definitionen für gedrehte Bildschirme mittels der Erweiterung „-land“ codiert
werden. All diese Suffixe können auch kombiniert werden, sodass zum Beispiel Ordner wie
„layout-ar-xhdpi-land“ für ein Layout in arabischer Sprache für hochauflösende Geräte im
Landscape-Modus stünde. Das Android-System sucht dann abhängig von der Konfiguration
des Gerätes automatisch die passenden Ressourcen. Sind Ressourcen in einem speziellen
Ordner nicht vorhanden, werden die Ressourcen aus dem Standardordner geladen.

Der APKAnalyzer liest zunächst alle Ordner ein, die im „res“-Verzeichnis liegen. Dann
zählt er, wie viele „drawable“-, „layout“- und „values“-Ordner vorhanden sind. Drawables
und Layouts werden dabei typischerweise für verschiedene Auflösungen, Größen oder
Ausrichtungen definiert, wohingegen Values im Normalfall für verschiedene Sprachen
definiert sind. Der APKAnalyzer sucht nach den verwendeten Auflösungen und Größen.
Diese sind für Android-Apps in vier vorgegebenen Stufen definiert. Für die Größe kann
small, medium, large und xlarge angegeben werden, für die Auflösung ldpi, mdpi, hdpi und
xhdpi; diese fassen jeweils Gruppen möglicher Auflösungen und Größen zusammen3. Die
gefundenen Definitionen werden in der Datenbank abgespeichert. Bei den Sprachen wird
nur die Zahl der verwendeten Sprachen ermittelt, indem nach Suffixen, bestehend aus zwei
Buchstaben, gesucht wird sowie dem Bindestrich-Zeichen als Begrenzer.

4.4 Manifest analysieren

Die Manifest-Datei4 einer Anwendung beschreibt im XML-Format die Komponenten einer
Anwendung. Das Manifest wurde schrittweise mithilfe von XPath analysiert, wobei die
einzelnen Befunde in einer Datenbank festgehalten wurden. Der Wurzelknoten enthält
bereits Informationen zum Paketpfad, unter dem später die SMALI-Dateien zu finden
sind, die den Code der Anwendung enthalten und Rückschlüsse auf die Layout-Dateien
erlauben. Der darunterliegende Knoten „application“ enthält neben Informationen, ob
Hardwarebeschleunigung aktiv ist oder spezielle UI-Optionen gesetzt sind, auch alle in
der Anwendung zur Verfügung stehenden Aktivitäten mitsamt den Informationen, wo
ihre korrespondierenden SMALI-Dateien im Paket zu finden sind. Ob es sich bei einer
Aktivitäten um ein Hauptaktivität, also einen Einstiegspunkt, handelt, kann man anhand des
android.intent.action.MAIN-Attributes herrausfinden. Ist dieses gesetzt, kann die Anwendung
mit dieser Aktivität starten. Zusätzlich enthält die Manifest-Datei Informationen über die
verwendeten Berechtigungen, Hardwarefeatures, Bibliotheken und viele weitere.

Auf die folgenden Informationen haben wir uns innerhalb unserer Analyse konzentriert:

• Aktivitäten (activity)

3Eine genau Auflistung findet sich auf http://developer.android.com/guide/practices/screens_support.html.
4Für Informationen über die Manifest-Datei siehe http://developer.android.com/guide/topics/manifest/manifest-

intro.html

19

4 Reverse-Engineering und Analyse

• Verwendete Bibliotheken (uses-library)

• Erforderte Berechtigungen (uses-permission)

• Verwendete Features wie Beschleunigungssensor (uses-feature)

• Die verwendete SDK-Version (uses-sdk)

• Hardwarebeschleunigung (hardwareAccelerated)

• Theme (theme)

• UI-Optionen (uiOptions)

4.5 Code und Layout analysieren

Für die gefunden Referenzen auf Aktivitäten wird im nächsten Schritt versucht, die zu-
gehörigen Layout-Dateien zu ermitteln. Um die Layout-Datei für eine Aktivität zu finden,
mussten wir drei verschiedene Informationsquellen auswerten. Zum einen die Manifest-
Datei ansich, da an der jeweiligen Aktivität ein Attribut hängt, das darüber Auskunft gibt,
wie die SMALI-Codedatei im Paket heißt. Dann wurde die Datei „public.xml“ geparst und
gespeichert. Diese Datei stellt eine Abbildung von einer abstrakten ID auf einen Pfad zu einer
Datei innerhalb des Pakets im Ressourcen-Ordner dar. Innherhalb dieses Ordners liegen
die Layout-Dateien. Nun folgt die Analyse der SMALI-Datei. Innerhalb dieser findet man
eventuell einen Abschnitt wie:

const/high16 v4,32446

...

invoke-virtual {v7,v4},com/android/Test/setContentView ; setContentView(I)V

setContentView zeigt an, dass hier eine Sicht gezeigt wird, wofür eine Layout-Datei geladen
werden muss. Um welche Layout-Datei es sich an dieser Stelle dabei handelt, findet man an-
hand des zweiten Parameters nach invoke-virtual heraus. Nachdem man in der SMALI-Datei
eine Zeile mit setContentView gefunden hat, geht man wieder einige Zeilen zurück und ver-
sucht eine Initialisierung der Variable (in diesem Fall v4) zu finden. Hier wurde der Variable
zuvor der Wert 32446 zugewiesen. Diesen Wert findet man in der Datei „public.xml“ wieder.
Hier ist er allerdings auf 10 Zeichen mit 0 aufgefüllt. Es kann natürlich diverse Konstrukte
im Code geben, die dazu führen, dass man nicht mehr ohne Weiteres setContentView oder
die Variableninitialisierung findet. Diese Tatsache haben wir in unserer Analyse nicht weiter
betrachtet, sondern nur festgehalten, wann keine Layout-Datei zu einer Aktivität gefunden
werden konnte.

Sind die Referenzen auf alle Layout-Dateien in der Datenbank abgespeichert, untersucht
der APKAnalyzer die gefundenen Layout-Dateien und speichert die dort gefundenen XML
Elemente ebenfalls in der Datenbank ab. Dazu werden die Dateien als XML-Dokumente
eingelesen und die gefundenen Elemente vom Wurzelknoten aus bis zu den Blattknoten

20

4.6 Datensatz

jeweils mit Namen und der Referenz auf den Vaterknoten und die Layout-Datei abgespeichert.
Damit lässt sich für die Analyse die komplette Baumstruktur jedes Layout-Dokuments für
spätere Auswertungen wiederherstellen. Gespeichert werden nur XML-Elemente, keine
Attribute, da dies für Analysen bezüglich der Struktur der einzelnen Bildschirmseiten
ausreichend ist. Elemente können dabei sowohl von Android definierte Standartelemente
wie Layouts (LinearLayout, RelativeLayout,...) oder interaktive Elemente (Schaltflächen,
Eingabefelder,...) sowie selbst definierte Elemente sein. Die selbst definierten Elemente lassen
sich anhand ihres Namens erkennen. Die Bezeichnungen sind nach dem Schema von Java-
Paketen benannt (z.B. „com.rgoldberg.CustomView“), daher reicht die Suche nach einem
Punkt, um sie zu identifizieren. Die in Android definierten include-Elemente, mit denen
sich eine XML-Datei in eine andere einbetten lässt, werden nicht aufgelöst sondern, nur als
normale Elemente erfasst.

4.6 Datensatz

Unter Einsatz der oben beschriebenen Downloadmethode luden wir am 20. August 2012

die 400 populärsten Apps vom Google Play Store herunter und erzeugten die Informatio-
nen dafür. Für den Download gaben wir keine sprachlichen Präferenzen an. Daher waren
die erhaltenenen Daten – wo durch die App unterstützt – lokalisiert in deutscher Sprache,
vermutlich aufgrund der Gerätesprache, der Verbindung zum Market-Server aus bundesdeut-
schem Gebiet, des verwendeten Google-Accounts oder der deutschen SIM-Karte. Enthielt die
App keine deutsche Übersetzung, war stets ein englischer Name angegeben. Wir nehmen an,
dass dies keine Einschränkung der heruntergeladenen Apps mit sich brachte, da sich unter
den Downloads auch Apps befinden, die ganz offensichtlich nicht für den deutschen Markt
zugeschnitten sind, beispielsweise „FOX News“ oder „Domino’s Pizza USA“.

Die Analyse der Statistiken aus den Informations-Dateien zu den APKs ergab, dass die
400 Apps in 21 Kategorien gegliedert waren. Die Kategorien mit den meisten Apps waren
„Werkzeuge“ mit 14,5 % und „Kommunikation“ mit 9,2 % Anteil an der Gesamtheit der
heruntergeladenen Apps. Tabelle 4.1 zeigt die weitere Aufteilung in die anderen Kategorien.
Wir haben Spiele im Rahmen dieser Studie bewusst außer Betracht gelassen, da deren Be-

nutzeroberflächen konzeptionell sehr stark von den GUIs anderer Arten von Anwendungen
abweichen.

Benutzer können die heruntergeladenen Apps im Google Play Store bewerten und hierzu
ihren Gesamteindruck auf einer Skala von 1–5 abgeben. Die durchschnittliche Bewertung
der 400 Apps lag bei 4,25, der Median betrug 4,36 und die Standardabweichung lag bei
0,45. 80 % der Apps wurden mit mindestens 4 Punkten bewertet. Der offensichtliche Zu-
sammenhang ist, dass populäre Apps in der Regel auch von den Benutzern hoch bewertet
werden. Interessanterweise gab es einige Ausreißer unter den Apps, die besonders schlechte
Bewertungen erhalten haben, beispielsweise „More for me“, eine App aus der Kategorie
„Shopping“, die als 131. App in der Downloadreihenfolge heruntergeladen wurde, jedoch
nur eine Bewertung von 1,88 erhielt. Die durchschnittlich höchsten Bewertungen wurden in
den Kategorien „Personalisierung“, „Effizienz“ und „Werkzeuge“ vergeben; dort lagen die

21

4 Reverse-Engineering und Analyse

Kategorie N Bewertung Activitys Layouts Bilder
Werkzeuge 58 4.37 14.00 29.64 34.47

Kommunikation 37 4.29 36.65 88.16 65.22

Unterhaltung 34 4.17 21.41 49.68 23.56

Effizienz 34 4.38 25.32 65.38 60.29

Soziale Netzwerke 34 4.11 44.44 118.88 74.71

Musik & Audio 31 4.19 24.97 66.35 59.77

Fotografie 21 4.34 24.57 60.76 61.81

Shopping 19 4.03 36.89 106.53 56.89

Bücher & Nachschlagewerke 16 4.25 18.94 54.81 50.50

Reisen & Lokales 15 4.21 40.73 131.47 73.73

Lifestyle 14 4.30 37.57 89.43 41.43

Gesundheit & Fitness 13 4.28 50.77 93.92 55.38

Medien & Videos 12 4.34 22.92 53.08 37.75

Personalisierung 11 4.44 15.45 55.82 29.55

Nachrichten & Magazine 11 4.10 24.73 66.09 40.09

Finanzen 10 4.26 61.10 118.40 44.20

Büro 8 4.12 25.25 99.38 69.38

Wetter 8 4.24 18.13 36.25 166.50

Sport 7 3.98 40.00 136.29 46.86

Software & Demos 4 4.28 1.25 1.75 0.00

Lernen 3 3.72 39.33 88.00 78.67

Tabelle 4.1: Die Verteilung der heruntergeladenen Apps auf die verschiedenen Kategorien.
Die letzten drei Spalten zeigen die durchschnittliche Anzahl der Activitys,
Layouts und Bildern der Apps in der jeweiligen Kategorie.

Bewertungsdurchschnitte zwischen 4,37 und 4,44. Am anderen Ende standen die Kategorien
„Shopping“, „Sport“ und „Lernen“ mit durchschnittlichen Bewertungen zwischen 3,72 und
4,03.

22

5 Ergebnisse

5.1 Statistiken beliebter Android-Anwendungen

Die heruntergeladenen und wie in Kapitel 4 beschriebenen analysierten APKs resultierten
in einer Gesamtanzahl von 778.071 Dateien, die in insgesamt 47.706 Ordnern organisiert
waren.

5.1.1 Sprachen

Wir nutzten die Ressourcen der Anwendungen, die zur Internationalisierung verwendet
werden können, um zu bestimmen, welche Sprachen eine Anwendung explizit unterstützt.
Bei allen Anwendungen war Englisch die Voreinstellung. Die Zahl der von den Anwendun-
gen verwendeten Sprachen beläuft sich auf 235 unterschiedliche Sprachen, wenn man die
regionalen Variationen (z.B. en_us und en_gb) mit einschließt. Im Durchschnitt unterstützt
eine Anwendung 12,74 unterschiedliche Sprachen (SD = 16.42). 47 der Anwendungen unter-
stützen nur die voreingestellte Sprache und 56 unterstützten eine zusätzliche Sprache außer
Englisch. Mehr als die Hälte der Anwendungen (216) unterstützen fünf oder mehr Sprachen.
Abbildung 5.1 zeigt die zwölf am häufigsten unterstützten Sprachen. Die am häufigsten
unterstützten Sprachen neben Englisch sind Chinesisch (63,8 %), Spanisch (56,6 %) und
Französisch (47,6 %). Es gibt über 50 Anwendungen (12,5 %), die 30 verschiedene Sprachen
unterstützen.

5.1.2 Unterstützte Anzeigen

Indem die Suffixe der Ressourcen-Dateien analysiert wurden, konnten wir herrausfinden,
welche unterschiedlichen Punktdichten (dots per inch, DPI) und Bildschirmgrößen von einer
Anwendung unterstützt werden. Für die Punktdichte gibt es 4 Suffixe: LDPI (Low DPI), MDPI
(Medium DPI), HDIP (High DPI) und XHDPI (Extra High DPI). Die Analyse zeigt, dass nur
173 Anwendungen explizit alle vier Varianten unterstützen und 26 Anwendungen gar keine
speziellen Punktdichten per Ressourcen anbieten. 93 % der Anwendungen unterstützen
HDPI, 75 % MDPI, 70 % LDPI und 50 % XHDPI. Vier weitere Suffixe wurden für die
Bildschirmgrößen verwendet: small, normal, large und xlarge. Die Ergebnisse zeigen, dass
neun Anwendungen alle vier Größen explizit unterstützen und 215 Anwendungen keine
spezielle Bildschirmgröße definieren. Die Größe large wurde am häufigsten, nämlich von
170 Anwendungen, unterstützt.

23

5 Ergebnisse

Abbildung 5.1: Die zwölf meistverwendeten Sprachen neben Englisch.

Es sollte erwähnt werden, dass ein Bildschirmgrößen- oder Punktdichten-Suffix nicht un-
bedingt impliziert, dass die Ressourcen nur für diese spezielle Bildschirmgröße in dieser
Punktdichte geeignet sind. Falls Ressourcen für das verwendete Gerät nicht direkt zur
Verfügung stehen, kann das System die Ressource, die am besten passt, selbst auswählen
und verwenden. Dies könnte ein Grund dafür sein, weshalb die meisten Anwendungen nicht
jede Ressource direkt anbieten, sondern die Ressourcen auf eine Art spezifizieren, die es
erlaubt, sie auf einer Vielzahl von Geräten zu verwenden.

5.1.3 Einstiegspunkte

Wie bereits zuvor beschrieben, können Anwendungen mehr als einen Einstiegspunkt (Main
Activity) besitzen. Die Untersuchung der Manifest-Datei zeigte, dass zehn Anwendungen
keine Main-Activitys haben und 90 mehr als eine. Die „Kayak“-Anwendung hat mit 64 die
höchste Anzahl an Haupteinstiegspunkten.

5.1.4 Analyse der Berechtigungen

Wir untersuchten die Metadaten, die von jeder Anwendung bereitgestellt werden, indem wir
die Manifest-Datei analysierten. Insgesamt konnten wir 355 unterschiedliche Berechtigungen
(M = 11,2 Berechtigungen pro App, SD = 7,83) feststellen. Insbesondere haben wir die
Standardberechtigungen von Android näher untersucht, die die Anwendungen benötigen.

24

5.1 Statistiken beliebter Android-Anwendungen

Abbildung 5.2: Die häufigsten Android-Standardberechtigungen.

Von den 355 Berechtigungen sind 121 Android-Standardberechtigungen (M = 9,6 Berechti-
gungen pro App, SD = 6,6). Abbildung 5.2 zeigt die zehn am häufigsten vorkommenden
Android-Standardberechtigungen. Die drei häufigsten sind Internetzugang (8,7 % aller extra-
hierten Berechtigungen), die Berechtigung, um festzustellen, ob eine Netzwerkverbindung
vorhanden ist (7,9 %), und die Berechtigung, Daten auf den externen Datenträger des Gerätes
zu schreiben (6,8 %).

Taktiles Feedback

Die meisten Android-Geräte sind mit einem Vibrationsmotor ausgestattet, der es erlaubt,
fühlbare Rückmeldung zu geben. Die Anwendung benötigt allerdings eine entsprechende Be-
rechtigung, um den Vibrationsmotor zu aktivieren. Die Ergebnisse zeigten, dass 47,25 % der
Anwendungen diese Berechtigung verlangen und somit taktiles Feedback geben können.

Standortinformationen

Wir waren außerdem interessiert an der Verwendung von kontextbezogenen Informationen,
insbesondere der Standortinformationen, die von einer Anwendung ausgewertet werden
können. Insgesamt können 190 Anwendungen den Standort des Gerätes abrufen. 154 Anwen-
dungen nutzen genaue Standortinformationen durch die Verwendung des GPS-Sensors und
147 Anwendungen verwendeten eine grobe Standorterkennung (z.B. über die Mobilfunkzel-
len oder über sichtbare WiFi-Netzwerke). 111 Anwendungen können beide Informationen
abrufen, den genauen und den groben Stadort des Gerätes.

25

5 Ergebnisse

Abbildung 5.3: Die durchschnittle Anzahl Aktivitäten (links), Layouts (mitte), und Bilder
(rechts) für die zehn Kategorien mit den meisten Anwendungen in unserem
Datensatz. Die Fehlerbalken zeigen die Standardabweichung.

Vernetzung

96,25 % der Anwendungen verlangen Internetzugang. Weitere Analysen zeigten, dass 10,25 %
der Anwendungen Bluetooth nutzen, 8,25 % haben die Berechtigung, SMS zu versenden,
und 2,5 % verwenden die Nahfeldkommunikations-Möglichkeiten des Gerätes (near field
communication, NFC). Es muss erwähnt werden, dass nicht alle Geräte die NFC-Technologie
unterstützen.

5.1.5 Anzahl der Benutzungsschnittstellen

Um festzustellen, ob sich die Benutzungsschnittstellen von Anwendungen aus unterschied-
lichen Kategorien unterscheiden, haben wir eine statistische Analyse der am häufigsten
vorkommenden Kategorien unseres Datensatzes gemacht. Wegen des geringen Probenum-
fanges für einige Kategorien haben wir uns auf die zehn häufigsten Kategorien fokussiert
(N ≥ 15). Wir verwenden die Anzahl der Aktivitäten, die Anzahl der Layouts und die Abzahl
der verwendeten Bilder als Indikator für die Komplexität einer Bunutzungsschnittstelle.
Tabelle 4.1 bietet eine Übersicht über die Anzahl der Aktivitäten, Layouts und Bilder jeder
Kategorie. Um festzustellen, ob sich Kategorien stark unterscheiden, haben wir eine ANOVA-
Varianzanalyse durchgeführt. Im Anschluss daran haben wir ein Games-Howell-Test für den
paarweisen Vergleich von Kategorien gleicher Varianz durchgeführt.

Aktivitäten

Nachdem wir die Anzahl der Aktivitäten jeder Anwendung extrahiert hatten, untersuchten
wir, ob die durchschnittliche Anzahl an Aktivitäten sich zwischen den zehn häufigsten Kate-
gorien signifikant unterscheidet. Levene’s Test zeigt, dass die Homgenitätsannahme verletzt
wurde (F(9,289) = 3,89 mit p < 0,001). Der ANOVA-Test deckte einen signifikanten Unter-
schied zwischen den Kategorien auf. Ein im Nachhinein ausgeführter Games-Howell-Test
zeigt sechs signifikante paarweise Unterschiede zwischen den Kategorien. Anwendungen der
Kategorie „Werkzeuge“ (M = 14,00; SD = 17,34) haben weniger Aktivitäten als Anwendun-
gen der Kategorie „Soziale Netzwerke“ (M = 44,44; SD = 27,64; p < 0,001) und „Shopping“

26

5.1 Statistiken beliebter Android-Anwendungen

(M = 36,89; SD = 24,07; p < 0,05). Unterhaltungsanwendungen (M = 21,41; SD = 17,34)
haben signifikant weniger Aktivitäten als Anwendung aus der Kategorie „Soziale Netzwerke“
(p < 0,01). Weiterhin haben Anwendung dr Kategorie „Soziale Netzwerke“ signifikant mehr
Aktivitäten als Anwendungen aus „Musik & Audio“ (M = 24,97; SD = 19,41; p < 0,05) und
aus „Bücher & Nachschlagewerke“ (M = 18,97; SD = 17,83; p < 0,01).

Layouts

Weiterhin haben wir die Anzahl der Layouts pro Anwendung untersucht, um statistische
Differenzen zwischen den Kategorien festzustellen. Wieder einaml zeigte der Levene-Test,
dass die Homgenitätsannahme verletzt wurde (F(9,289) = 4,44; p < 0,001). Eine ANOVA
deckte signifikante Unterschiede zwischen den Kategorien auf (F(9,289) = 6,87; p < 0,001).
Ein Games-Howell-post-hoc-Test lieferte acht signifikante paarweise Unterschiede zwischen
den Kategorien. Anwendungen der Kategorie „Werkzeuge“ (M = 29,64; SD = 35,52) haben
weniger Layouts als Anwendungen der Kategorien „Kommunikation“ (M = 88,16; SD =
98,72; p < 0,05), „Effizienz“ (M = 65,38; SD = 45,99; p < 0,01), „Soziale Netzwerke“ (M =
118,88; SD = 76,21; p < 0,001), „Musik & Audio“ (M = 66,35; SD = 51,13; p < 0,05) und
„Shopping“ (M = 106,53; SD = 74,39; p < 0,01). Anwendungen der Kategorie „Unterhaltung“
(M = 49,68; SD = 57,74) haben weniger Layouts verglichen zu Anwendungen der „Sozialen
Netzwerke“ (p < 0,01). Effizienz-Anwendungen haben ebenso weniger Layouts als die der
Kategorie „Soziale Netzwerke“ (p < 0,05).

Bilder

Weiterhin haben wir die durchschnittliche Anzahl der Bilder verglichen. Levenes Test zeigt,
dass die Homogenitätsannahme nicht verletzt wurde (F(9,289) = 0,64; p = 0,77). Auch
eine ANOVA zeigte keine signifikanten Unterschiede zwischen den Kategorien. Folglich
verzichteten wir auf eine post-hoc-Analyse.

Zusammenhänge

Wenn man sich die Diagramme aus Abbildung 5.3 genauer anschaut, kann man daraus
schließen, dass es eine eventuelle Korrelation zwischen der Anzahl der Aktivitäten, Layouts
und Bilder der Anwendungen gibt. Also untersuchten wird die Zusammenhänge zwischen
der Anzahl der Aktivitäten, Layouts und Bilder. Der Pearson-Korrelationskoeffizient zeigt,
dass signifikante paarweise Zusammenhänge zwischen allen drei Parametern existieren.
Es gibt eine starke Korrelation zwischen der Anzahl der Aktivitäten und der Anzahl der
Layouts (r = 0,79; p < 0,0001). Weiterhin gibt es eine Korrelation zwischen der Anzahl der
Aktivitäten und der Anzahl der Bilder (r = 0,29; p < 0,0001) sowie zwischen der Anzahl
der Layouts und Anzahl der Bilder (r = 0,39; p < 0,0001). Es ist nicht überraschend, dass
eine Anwendung mit einer großen Anzahl an Aktivitäten auch über eine große Anzahl an
Layouts verfügt. Diese starke Korrelation weist auf ein verbreitetes Muster hin.

27

5 Ergebnisse

5.1.6 Diskussion der Befunde

Wir fanden heraus, dass unter allen analysierten Android-Anwendungen 88,25 % weitere
Sprachen außer Englisch unterstützen. Es wird außerdem eine große Bandbreite and Spra-
chen untersützt, die Mehrheit der Anwendungen bietet sogar fünf oder mehr Sprachen. Die
Ergebnisse zeigen, dass die beliebtesten Android-Anwendungen sehr facettenreich sind in Be-
zug auf die Sprachunterstützung. Man kann daraus schließen, dass die Chancen, erfolgreich
zu sein, höher sind, wenn eine Anwendung in vielen Sprachen lokalisiert wurde.

Wir haben die Anzahl der Aktivitäten, Layouts und Bilder einer Anwendung analysiert. Es
wurde gezeigt, dass Anwendungen aus verschiedenen Kategorien signifikant unterschiedli-
che Anzahlen an Aktivitäten und Layouts aufweisen. Wir haben gezeigt, dass die Werkzeuge
und Anwendungen aus den Bereichen „Unterhaltung“, „Effizienz“, „Musik & Audio“,
„Fotografie“ und „Bücher & Nachschlagewerke“ weniger Sichten und Layouts haben als
Anwendungen aus den Kategorien „Kommunikation“, „Soziale Netzwerke“, „Shopping“
und „Reisen“. Die stark lineare Korrelation zwischen der Anzahl der Aktivitäten und der
Anzahl der Layouts weisen auf einen linearen Faktor hin. Außerdem ist es ungewöhnlich,
für Anwendungen mehr als einen Einstiegspunkt anzubieten. Nur 20 % der Anwendungen
haben mehr als eine Hauptaktivität. 96,25 %, ein überwältiger Großteil der untersuchten
Anwendungen, wollen auf das Internet zugreifen und fast die Hälfte der Anwendungen
(47,50 %) greifen auf Lokationsinformationen zu. Auch wenn es unterschiedliche Gründe
gibt, warum eine Anwendung Zugriff zum Internet verlangt (z.B. um Werbung anzuzeigen),
so kann man ebenfalls von der hohen Anzahl an Anwendungen darauf schließen, dass viele
Anwendungen auf dynamischen Inhalten basieren. Anzumerken ist außerdem, dass fast die
Hälte der Anwendungen (47,25 %) in der Lage ist, taktiles Feedback über den Vibrations-
motor des Mobilgerätes zu geben. Weiterhin untersützen die Anwendungen verschiedene
Geräte basierend auf der Anzeigepixeldichte und weniger nach Bildschirmgrößen.

Anwendungen von verschiedenen Kategorien unterscheiden sich in Bezug auf die Be-
nutzungsschnittstellenkomplexität. Beispielsweise haben Werkzeuge weniger Sichten und
Layouts als Anwendungen der „Sozialen Netzwerke“. Werkzeuge, wie der Name vermu-
ten lässt, befassen sich mit spezifischen Anwendungsfällen. Ein typisches Beispiel dafür
ist die Anwendung Spirit Level Plus, die es ermöglicht, das Gerät als Wasserwage zu ver-
wenden. Die ebenfalls niedrige Anzahl an Aktivitäten und Layouts von Anwendungen
anderer Kategorien wie „Unterhaltung“, „Effizienz“, „Musik & Audio“, „Fotografie“ und
„Bücher & Nachschlagewerke“ lässt darauf schließen, dass diese Anwendungen auch nur für
spezifische Anwendungsfälle gedacht sind.

5.2 User-Interface-Elemente und -Muster

Wir interessieren uns für häufig genutzte Steuerelemente der Benutzungsschnittstelle und
potentielle Muster für das von den Anwendungen verwendete Design. Üblicherweise wird
das User Interface von Android-Apps in XML-Dateien verwaltet, die das Layout beschreiben.
Diese Dateien geben an, welche Elemente an welcher Stelle stehen und welche Struktur

28

5.2 User-Interface-Elemente und -Muster

Abbildung 5.4: Die durchschnittliche Anzahl von Widgets pro App, aufgetragen für die
zehn häufigsten Standard-Widgets von Android in unserem Datensatz. Die
Fehlerbalken zeigen die Standardabweichung.

sie aufweisen, beispielsweise ob sie noch weitere Elemente enthalten. Im Folgenden wird
ein grober Überblick über Android-GUIs gegeben. Danach werden die Ergebnisse der
Studie präsentiert, die die meistgenutzten Elemente und die häufigsten Verknüpfungen
von Elementen bestimmt hat. In letzterem Schritt wurden Muster gesucht, die sich aus der
hierarchischen Schachtelung der Steuerelemente ergeben.

5.2.1 Layouts

Die Benutzungsschnittstelle einer Android-App besteht grundlegend aus einer Menge von
Activitys; davon entspricht jede Activity einem einzelnen Bildschirm mit einem User Interface.
Dieses wiederum enthält sogenannte „Widgets“, z.B. Textfelder, Kontrollkästchen oder
Schaltflächen. Widgets werden innerhalb Layout-Containern verwendet, die angeben, wie
die Struktur des User-Interfaces der Activity aussieht. Layout-Container können wiederum
weitere Layout-Container als Elemente enthalten, wodurch für die Beschreibung der GUI
eine hierarchische Struktur entsteht.

Prinzipiell ist es auch möglich, Widgets und andere Layout-Elemente direkt im Quellcode
der App zu definieren, die Android Developer Guidelines empfehlen aber die Deklaration
der UI-Struktur in den Layout-Dateien im XML-Format.

Die Android-API stellt einige verschiedene Layout-Container bereit, um die Zusammenstel-
lung des User-Interfaces und den darin enthaltenen Elementen zu ermöglichen. Außerdem

29

5 Ergebnisse

Widget Apps Anteil Gesamt
TextView 383 35,50 % 56467

ImageView 380 15,59 % 24794

Button 355 9,37 % 14912

View 271 4,35 % 6917

EditText 318 2,91 % 4628

ImageButton 294 2,71 % 4308

ProgressBar 300 1,67 % 2662

CheckBox 285 1,54 % 2443

RadioButton 176 0,76 % 1213

Spinner 178 0,48 % 759

Tabelle 5.1: Die zehn am häufigsten verwendeten Widgets in unserem Datensatz. Die Spalten
zeigen den Name des Widgets, die Anzahl der Apps, in denen es verwendet
wurde, den prozentualen Anteil gegenüber der Gesamtzahl aller gefundenen
Widgets und die Gesamtzahl, wie oft das Widget gefunden wurde.

könenn Entwickler zusätzlich eigene Widgets und Layout-Container programmieren. Die
fünf meistgenutzten Layout-Container werden nachfolgend kurz erläutert.

• LinearLayout: Die Elemente werden in einer einzelnen Spalte oder Zeile nach-/neben-
einander angeordnet.

• RelativeLayout: Ermöglicht die Positionierung der untergeordneten Elemente relativ
zueinander oder zum beinhaltenden Layout-Container.

• FrameLayout: Stellt für ein einzelnes Steuerelement den im Layout-Container angegebe-
nen Platz zur Verfügung.

• TableLayout: Ordnet die Elemente ähnlich dem linearen Layout-Container an, erlaubt
aber die Platzierung in Zeilen und Spalten und nicht nur in einer Richtung.

• AbsoluteLayout: Erlaubt die absolute Positionierung der untergeordneten Elemente. Die-
ses unflexible Layout wird in besonderen Situationen eingesetzt, da seine Verwendung
die Wartung der App erschwert.

Die Layout-Container beschreiben also die Lage der Widgets; der Benutzer der App inter-
agiert jedoch ausschließlich mit den eingebetteten Widgets. Von der Android-API werden
bereits einige gebräuchliche Widgets bereitgestellt, wie man sie aus klassischen Desktop-
Anwendungen oder von Webseiten kennt. Typische Beispiele sind TextViews, die beschrei-
benden Text darstellen, ImageViews für Bilder, Buttons (Schaltflächen), EditTexts für die
Eingabe von Text oder ProgressBars zur visuellen Fortschrittsanzeige.

5.2.2 User-Interface-Elemente

Insgesamt konnten wir aus den APKs der 400 heruntergeladenen Apps 29.086 Layout-
Dateien im XML-Format extrahieren. Wir analysierten diese Dateien, um die am häufigsten

30

5.2 User-Interface-Elemente und -Muster

Abbildung 5.5: Die häufigsten Layout-Muster.

Abbildung 5.6: Die Verwendung häufiger Layout-Muster durch die Apps im Datensatz.

31

5 Ergebnisse

eingesetzten Layout-Container und Widgets herauszufinden. Insgesamt waren in in allen
Layouts zusammen 77.343 Standard-Layout-Container aus der Android-API und 159.072

Widgets enthalten, was naiv im Schnitt zwei Widgets pro Layout-Container entspräche.

Abbildung 5.5 zeigt die Verwendung der Standard-Layout-Container in unserem Datensatz.
Das LinearLayout hat einen Anteil von 66,95 % an der Gesamtzahl der Layout-Container
und wird von 390 Apps verwendet. Der Anteil des RelativeLayouts (verwendet in 365

Apps) beträgt 24,20 %. Auch FrameLayout und ScrollView werden vom Großteil der Apps
verwendet (in 307 bzw. 332 Apps), haben aber nur 7,82 % und 2,35 % Gesamtanteil. Mit
jeweils unter einem Prozent an der Gesamtheit der Layouts auf den hinteren Plätzen befinden
sich das TableLayout (167 Apps) und das AbsoluteLayout (35 Apps). Abbildung 5.6 zeigt die
durchschnittliche Verwendung der Layouts in den Apps.

Eine ähnliche Betrachtung führten wir für die Standard-Widgets der Android-API durch.
Das unter den 159.072 Elementen mit Abstand am häufigsten auftretende Element war der
TextView (35,5 %), gefolgt von ImageView (15,6 %) und Button (9,4 %). Tabelle 5.1 zeigt die
zehn meistverwendeten Widgets. Zusammen machen diese zehn Widget-Typen 74,87 % der
Gesamtzahl der Widgets aus. Sie werden von über der Hälfte der 400 analysierten Apps
verwendet. Abbildung 5.7 gibt einen weiteren Einblick in die durchschnittliche Verwendung
der Widgets in den verschiedenen Apps.

Zusätzlich zu den Standard-Widgets aus der Android-API fanden wir 4.022 eigenentwickelte
Layouts und Widgets in den Layout-Dateien. Dabei handelt es sich häufig um leichte
Abwandlungen von Schaltflächen oder Layouts, manche Widgets stellten aber auch größere
Komponenten wie Galerie-Ansichten dar oder ermöglichten die Auswahl eines Datums.

5.2.3 User-Interface-Muster

Nachdem wir die Widgets und Layout-Container aus den Layout-Dateien analysiert hatten,
versuchten wir, potentielle Muster für den Entwurf einer Benutzungsschnittstelle zu finden.
Hierfür betrachteten wir, wie Elemente kombiniert wurden, d.h. welche Elemente zusammen
verwendet wurden und durch welchen Typ von Layout-Container sie üblicherweise gruppiert
wurden.

Hierfür untersuchten wir die Layout-Container und die darin enthaltenen Elemente, die
durch die Inklusionsbeziehung hierarchisch strukturiert sind. Daher bildeten wir aus den
XML-Dateien die Eltern-Kind-Beziehung als Datenstruktur. Hierüber konnten wir für je-
des Element herausfinden, in welchem Layout-Container es organisiert war und welche
Geschwisterelemente es auf derselben Ebene besitzt. Dadurch fanden wir Strukturen und
Kombinationen heraus, die wir anhand der Häufigkeit, mit der sie auftraten, zählten, um
gebräuchliche Muster in der Hierarchie zu entdecken.

Insgesamt fanden wir 22.870 unterschiedliche Kombinationen von Elementen. Hiervon
wurden jedoch 75,8 % lediglich einmal verwendet. Die Analyse erlaubte die Klassifizierung
der Muster in zwei verschiedene Arten.

32

5.2 User-Interface-Elemente und -Muster

Abbildung 5.7: Überblick über die üblichsten Widget-Muster.

Abbildung 5.8: Verwendung der häufigen Widget-Muster in den Apps.

33

5 Ergebnisse

Der erste Typ besteht aus einem Layout-Container, der neben beliebig vielen Widgets noch
andere Layout-Container enthält. Aus dieser Kategorie ist das am häufigsten anzutreffende
Muster ein ScrollView als Layout-Container, der ein LinearLayout enthält. Dieses Muster
ermöglicht die Verwendung von mehr Elementen, als der Bildschirm aufgrund seiner
Auflösung gleichzeitig darstellen könnte. Abbildung 5.5 zeigt die neun am häufigsten
gesehenen Muster dieser Kategorie. Wir betrachteten außerdem die Anzahl der Apps, in
denen das jeweilige Mustern verwendet wurde; das eben beschriebene wurde beispielsweise
in 307 Apps genutzt. Interessanterweise wird das zweithäufigste Muster in weniger Apps
(insgesamt 236) verwendet als das dritthäufigste (248 Apps). Die Verwendung in den Apps
aus dem Datensatz wird in Abbildung 5.6 veranschaulicht. Eine zusätzliche Betrachtung der
Kategorien der Apps ergab, dass Apps aus der Kategorie „Lernen“ durchschnittlich häufiger
auf solche Muster zurückgriffen als Apps anderer Kategorien.

Der zweite Typ von Mustern besteht aus einem Layout-Container, der ausschließlich Widgets
als Kind-Elemente beinhaltet. Abbildung 5.7 demonstriert die zehn Kombinationen dieser
Art, die am öftesten auftraten. Spitzenreiter dieser Art von Muster ist die Kombination
zweier TextViews in einem LinearLayout, gefolgt von einem LinearLayout mit nur einem
TextView, die Kombination aus ImageView und TextView in einem LinearLayout belegt den
dritten Platz. Wir untersuchten auch die Verwendung von ButtonViews in verschiedenen
Pattern. Die Verwendung der Muster durch die verschiedenen Apps zeigt unter diesen ersten
drei Plätzen ähnliche Trends. Ähnlich dem obigen Phänomen aus der ersten Art von Muster
wird die vierthäufigste Kombination (zwei Buttons in einem LinearLayout) in weniger Apps
verwendet als die fünfthäufigste (lediglich ein Button in einem LinearLayout). Abbildung 5.8
zeigt die Verwendung der Muster in den Apps. Diese Art von Entwurfsmuster wurde
durchschnittlich besonders häufig in Apps der Kategorie „Soziale Netzwerke“ genutzt.

5.2.4 Diskussion der Befunde

Wir haben die Benutzungsschnittstellen der 400 populärsten Apps vom Google Market ana-
lysiert und dabei bestimmt, welche Widgets und Layout-Container am häufigsten auftreten.
Wir fanden dadurch heraus, dass über die Hälfte aller verwendeten Widgets die Elemente
TextView und ImageView ausmachen, die nur dazu dienen, Text bzw. Bilder anzuzeigen.
Obwohl wir damit rechneten, dass Elemente zur Anzeige von Informationen offenkundig
einen größeren Anteil ausmachen müssen als interaktive Elemente, überrascht das Verhältnis.
Beispielsweise fanden wir etwa 47-mal so viele TextViews als RadioButtons zur Auswahl
einer aus mehreren Optionen. Einige Standard-Widgets der Android-API können beinahe
als esoterisch betrachtet werden, beispielsweise die Elemente ToggleButton oder SeekBar,
die nur jeweils 0,37 % bzw. 0,25 % der Gesamtzahl der Widgets ausmachen. Die häufigsten
interaktiven Widgets (Button- und EditText-Elemente) legen die Vermutung nahe, dass die
Layouts der untersuchten Apps hauptsächlich dazu dienen, Text einzugeben und virtuelle
Schaltflächen zu drücken.

Außer den einzelnen Widgets identifizierten wir Muster von Elementkombinationen. Die
Resultate zeigen, dass die Muster allgemein häufig verwendet werden, also nicht nur
in speziellen Apps zum Einsatz kommen. Einige dieser Kombinationen werden deutlich

34

5.3 Einschränkungen

häufiger verwendet als manche Standard-Widgets. Zusammengerechnet sind 21,13 % aller
Widgets und Layout-Container unseres Datensatzes Teil mindestens eines der zehn häufigsten
Muster von Elementen. 77,28 % aller ScrollViews enthalten ein LinearLayout. Gäbe es diese
Kombination als eigenes Layout-Container-Element, wäre es der fünfthäufigste Layout-
Container. Interessanterweise ist das zweithäufigste Muster ein LinearLayout, das in einem
LinearLayout enthalten ist – eine Kombination, die als „nutzlos“ erachtet wird1.

Das häufigste Widget-Muster in unserem Datensatz besteht aus zwei TextViews in einem
LinearLayout. Diese Kombination stellt 5,43 % aller User-Interface-Elemente dar und kommt
damit alleine etwa so häufig vor wie alle CheckBox-, RadioButton-, ToggleButton- und
SeekBar-Elemente zusammen. Die Entwicklung dieser Kombination als neues Widget würde
sich an sechster Stelle in die Rangfolge der am häufigsten genutzten Widgets einordnen.
Die Entdeckung solcher empirischen Entwurfsmuster könnte also zu optimierten Widgets
führen.

5.3 Einschränkungen

Die 400 in dieser Arbeit untersuchten Anwendungen wurden mittels einer nicht repräsenta-
tiven Stichprobenauswahl gezogen. Dazu kam der Ranking-Algorithmus des Google-Play-
Markets zum Einsatz, indem die 400 populärsten Anwendungen heruntergeladen wurden.
Auf welcher Basis Google dieses Ranking erstellt, ist nicht bekannt. Es ist anzunehmen,
dass diese 400 Anwendungen auch tatsächlich weit verbreitet sind, da sie den Nutzern des
Google-Play-Markets ebenfalls als erstes in den Listen angezeigt werden, aber der Einfluss
anderer Faktoren wie das Rating der Nutzer kann nicht ausgeschlossen werden.

Für den Download von Anwendungen muss die Geräte-ID eines Android-Gerätes ange-
geben werden. Die Einstellungen und Eigenschaften dieses Gerätes beeinflussen ebenfalls
die angezeigten Anwendungen, da Entwickler die Möglichkeit, haben die Nutzung ihrer
Anwendungen auf bestimmte Gerätearten, Sprachen oder Konfigurationen zu beschränken;
diese Einstellungen werden von Google genutzt, um nur passende Anwendungen anzubieten.
Alle heruntergeladenen Anwendungen waren kostenlos, wir gehen jedoch davon aus, dass
die populärsten Anwendungen für viele Sprachen und Plattformen verfügbar sind und wir
damit viel genutzte Anwendungen untersucht haben.

Eine weitere Einschränkung bildet die Art, mit der Layout-Informationen in Android-
Anwendungen angegeben werden können. Obwohl Google empfiehlt, alle Layout-
Informationen in XML-Dateien abzulegen, können sie auch direkt im Code der Anwendung
Elemente für die Benutzeroberfläche definiert werden. Diese werden bei unserer Analyse
nicht abgedeckt, allerdings glauben wir, dass die grundsätzlichen Layouts in XML-Dateien

1Die Vorgehensweise vieler Entwickler, ein LinearLayout in einem LinearLayout zu platzieren, kommentiert
das Android SDK: „This LinearLayout layout or its LinearLayout parent is useless“.

35

5 Ergebnisse

definiert werden und direkt im Code eher interaktive Elemente nach Bedarf erzeugt wer-
den. Da unser Interesse häufig wiederkehrenden Mustern in den Layouts galt, scheint dies
akzeptabel.

36

6 Folgerung und Ausblick

6.1 Zusammenfassung und zukünftige Arbeiten

Ziel dieser Arbeit war es, die Struktur der Benutzungsoberfläche einer großen Anzahl von
Android-Anwendungen zu untersuchen, um sich wiederholende Muster und auffällige
Kombinationen und Eigenschaften zu finden. Zu diesem Zwecke haben wir zunächst die 400

populärsten Anwendungen aus dem Google Play Market herunter geladen. Diese wurden
anschließend entpackt und dekompiliert, um an Informationen über die Benutzungsober-
fläche zu gelangen. Mit den eingesetzten Reverse-Engineering-Techniken konnten Teile des
ursprünglichen Quellcodes und alle verwendeten Ressourcen zugänglich gemacht werden.
Mittels Analysen der XML-Layout-Dateien, der verwendeten Ressourcen und des Quellcodes
konnten wir eine Reihe von Kennzahlen und Zusammenhängen extrahieren und in einer
Datenbank speichern. Diese reichen von den verwendeten Sprachen über die von einer
Anwendung benötigten Rechte bis hin zu kompletten Layout-Informationen mit Hierarchien
und Mustern der einzelnen Aktivitäten.

Bei Betrachtung der Sprachen fiel eine breite Unterstützung für mehrere Sprachen auf,
88,25 % der Anwendungen unterstützen mehr als eine Sprache. Bei mehr als der Hälfte
der Anwendungen waren es noch 5 verschiedene Sprachen, wobei Chinesisch, Spanisch
und Französisch am häufigsten auftraten. Die Möglichkeit, Ressourcen für verschiedene
Bildschirmauflösungen und Größen zu hinterlegen, wurde insgesamt nur wenig genutzt. Das
Android-System ist in der Lage, die Ressourcen selbstständig auszuwählen und anzupassen.
Dazu passt die Beobachtung, dass eher Resourcen für hohe Auflösungen und größere
Bildschirme hinterlegt werden und die Umwandlung für einfachere bzw. geringer auflösende
Formate dem Android-System überlassen wird. Weniger als die Hälfte der untersuchten
Anwendungen unterstützen alle vier möglichen Auflösungen und hatten Definitionen für
verschiedene Bildschirmgrößen.

Während mit 96,25 % annährend alle Anwendungen die Berechtigung für den Zugriff auf das
Internet verlangen, sind nur 47,25 % in der Lage, taktiles Feedback über die Vibrationsmoto-
ren des Gerätes zu geben. Auch die Abfrage des aktuellen Standorts wird nur in etwa der
Hälfte der untersuchten Anwendungen verlangt. Weitere häufig vorhandene Berechtigungen
sind die Prüfung auf eine bestehende Netzwerkverbindung und das Schreiben auf den
Datenträger des Android-Gerätes.

Bei der Betrachtung der Aktivitäten einer Anwendung fällt auf, dass lediglich 20 % mehr als
eine Hauptaktivität und damit mehr als einen Einstiegspunkt anbieten. Insgesamt zeigen
sich signifikanten Unterschiede in der Anzahl der Aktivitäten bei Anwendungen unter-
schiedlicher Kategorien. Während Anwendungen aus der Kategorie „Soziale Netzwerke“

37

6 Folgerung und Ausblick

über sehr viele Aktivitäten verfügen, ist die Anzahl bei Anwendungen aus den Kategorien
„Werkzeuge“ und „Unterhaltung“ wesentlich geringer.

Im Hinblick darauf, ob die Anzahl der Layout-Dateien stark variieren, ließen sich bei den
Anwendungen – gruppiert nach den am häufigsten auftretenden Kategorien – zwei Gruppen
ausmachen: Sehr umfangreich sind Anwendungen der Kategorien „Kommunikation“, „Sozia-
le Netzwerke“, „Shopping“ und „Reisen“ gestaltet. Im Kontrast dazu stehen Anwendungen
aus den Kategorien „Unterhaltung“, „Tools“, „Musik & Audio“ und „Effizienz“, die entweder
nur einen kleinen, speziellen Aufgabenbereich oder sehr dynamische Benutzeroberflächen
besitzen, die mittels der statischen Analyse in dieser Arbeit nur unzureichend abgebildet
werden können. Hier findet sich auch ein erster Ansatz zu möglichen weiteren Arbeiten.
Emulatoren bieten die Möglichkeit, Anwendungen während der Nutzung zu beobachten
und Nutzereingaben zu simulieren. Damit können bessere Erkentnisse über die Beziehungen
der einzelnen Aktivitäten innerhalb der Anwendung und auch der Interaktion mit anderen
Anwendungen gewonnen werden. Zudem könnten so auch Benutzungsoberflächen erfasst
werden, die sich dynamisch ändern und damit neue Einsichten über Interaktionskonzepte
gefunden werden.

Bei der Analyse der Layout-Dateien konnten wir häufig genutzte Android-Widgets identifi-
zieren, die Beliebtheit der unterschiedlichen Layout-Möglichkeiten feststellen und häufig
auftretende Muster aus mehreren Widgets und Layouts finden. Auffällig war hier die große
Anzahl einfacher Text-, Bild- und Button-Widgets, komplexere, interaktive Widgets wurden
nur selten verwendet. Einige der in vielen Anwendungen auftreten Muster aus einfachen
Widgets kommen deutlich häufiger vor als komplexere Standard-Android-Widgets, so bei-
spielweise die Kombination von mehreren Textelementen oder Text- und Bildelementen.

Bei den Layout-Containern wird hauptsächlich das LinearLayout innerhalb eines ScrollViews
verwendet, um einfach Inhalte untereinander auf dem Bildschirm anzubieten. Überraschen-
derweise findet sich auch die Kombination aus ineinander verschachtelten LinearLayouts
sehr häufig, obwohl diese Art der Strukturierung auf die Gestaltung der Aktivitäten keinen
Einfluss hat. Eine nähere Untersuchung dieses Gebietes könnte nach komplexeren Mustern
suchen, in dieser Arbeit wurden nur Muster betrachtet, die eine Tiefe von maximal zwei
Ebenen haben. Eine genauere Analyse der Struktur der Benutzeroberflächen könnte Einsich-
ten über Gestaltungregeln für erfolgreiche Anwendungen liefern. Hier sind auch praktische
Anwendungen der gewonnenen Erkenntnisse denkbar. Vor allem in Entwicklungsumgebun-
gen und Gestaltungswerkzeugen könnten häufig vorkommende Muster genutzt werden,
um Layouts schneller und einfacher zu gestalten und dem Nutzer dienliche Hinweise zur
Strukturierung der Benutzeroberfläche seiner Anwendung zu geben.

38

Literaturverzeichnis

[BBK10] M. Böhmer, G. Bauer, A. Krüger. Exploring the design space of context-aware
recommender systems that suggest mobile applications. In Proceedings of CARS.
2010. (Zitiert auf Seite 11)

[BBS+10] T. Blaesing, L. Batyuk, A. Schmidt, S. A. Camtepe, S. Albayrak. An Android
Application Sandbox System for Suspicious Software Detection. In Proceedings of
5th International Conference on Malicious and Unwanted Software (MALWARE), S.
55–62. 2010. (Zitiert auf Seite 10)

[BFFH09] F. Balagtas-Fernandez, J. Forrai, H. Hussmann. Evaluation of user interface
design and input methods for applications on mobile touch screen devices. In
Proc. of Interact, S. 243–246. Springer, 2009. (Zitiert auf Seite 11)

[BHS+11] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, G. Bauer. Falling asleep with angry
birds, facebook and kindle: A large scale study on mobile application usage. In
Proceedings of MobileHCI, S. 47–56. 2011. (Zitiert auf Seite 11)

[BKOS10] D. Barrera, H. G. Kayacik, P. C. van Oorschot, A. Somayaji. A methodology for
empirical analysis of permission-based security models and its application to
android. In Proceedings of the 17th ACM conference on Computer and communications
security, CCS ’10, S. 73–84. ACM, New York, NY, USA, 2010. doi:10.1145/
1866307.1866317. URL http://doi.acm.org/10.1145/1866307.1866317. (Zitiert
auf Seite 9)

[CFGW11] E. Chin, A. P. Felt, K. Greenwood, D. Wagner. Analyzing inter-application
communication in Android. In Proceedings of the 9th international conference on
Mobile systems, applications, and services, MobiSys ’11, S. 239–252. ACM, New
York, NY, USA, 2011. doi:10.1145/1999995.2000018. URL http://doi.acm.org/

10.1145/1999995.2000018. (Zitiert auf Seite 10)

[CR08] Y. Cui, V. Roto. How people use the web on mobile devices. In Proceedings of
WWW, S. 905–914. 2008. (Zitiert auf Seite 11)

[FCH+
11] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner. Android permissions demysti-

fied. In Proceedings of the 18th ACM conference on Computer and communications
security, CCS ’11, S. 627–638. ACM, New York, NY, USA, 2011. doi:10.1145/
2046707.2046779. URL http://doi.acm.org/10.1145/2046707.2046779. (Zitiert
auf Seite 9)

39

http://doi.acm.org/10.1145/1866307.1866317
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/2046707.2046779

Literaturverzeichnis

[HN11] C. Hu, I. Neamtiu. A GUI bug finding framework for Android applications.
In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, S.
1490–1491. ACM, New York, NY, USA, 2011. doi:10.1145/1982185.1982504. URL
http://doi.acm.org/10.1145/1982185.1982504. (Zitiert auf Seite 10)

[HRB11] N. Henze, E. Rukzio, S. Boll. 100,000,000 taps: analysis and improvement of
touch performance in the large. In Proc. of MobileHCI, S. 133–142. 2011. (Zitiert
auf Seite 12)

[HRB12] N. Henze, E. Rukzio, S. Boll. Observational and Experimental Investigation of
Typing Behaviour using Virtual Keyboards on Mobile Devices. In Proc. of CHI.
2012. (Zitiert auf Seite 12)

[LBG+
12] L. A. Leiva, M. Böhmer, S. Gehring, et al. Back to the App: The Costs of Mobile

Application Interruptions. In Proc. of MobileHCI. 2012. (Zitiert auf Seite 12)

[MDR+
12] A. Möller, S. Diewald, L. Roalter, F. Michahelles, M. Kranz. Update behavior

in app markets and security implications: A case study in Google Play. In
Proceedings of MobileHCI. 2012. (Zitiert auf Seite 11)

[RTS+12] A. Rahmati, C. Tossell, C. Shepard, P. Kortum, L. Zhong. Exploring iPhone usage:
The influence of socioeconomic differences on smartphone adoption, usage and
usability. In Proceedings of MobileHCI. 2012. (Zitiert auf Seite 11)

[RZ12] A. Rahmati, L. Zhong. Studying smartphone usage: Lessons from a four-month
field study. In IEEE Transactions on Mobile Computing. 2012. (Zitiert auf Seite 11)

[SEKV12] M. Szydlowski, M. Egele, C. Kruegel, G. Vigna. Challenges for Dynamic Analysis
of iOS Applications. In J. Camenisch, D. Kesdogan, Herausgeber, Open Problems
in Network Security, Band 7039 von Lecture Notes in Computer Science, S. 65–
77. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-27585-2_6. URL
http://dx.doi.org/10.1007/978-3-642-27585-2_6. (Zitiert auf Seite 11)

[Ver09] H. Verkasalo. Contextual patterns in mobile service usage. Personal and Ubiquitous
Computing, 13(5):331–342, 2009. (Zitiert auf Seite 11)

Alle URLs wurden zuletzt am 11. 02. 2013 geprüft.

40

http://doi.acm.org/10.1145/1982185.1982504
http://dx.doi.org/10.1007/978-3-642-27585-2_6

	1 Einleitung
	2 Verwandte Arbeiten
	2.1 Automatisierte (Android-)App-Analyse
	2.2 Mobile Interaktion

	3 Android-Architektur
	3.1 Android-System
	3.2 Apps
	3.3 Play Store

	4 Reverse-Engineering und Analyse
	4.1 Download
	4.2 APK entpacken
	4.3 Resourcen analysieren
	4.4 Manifest analysieren
	4.5 Code und Layout analysieren
	4.6 Datensatz

	5 Ergebnisse
	5.1 Statistiken beliebter Android-Anwendungen
	5.1.1 Sprachen
	5.1.2 Unterstützte Anzeigen
	5.1.3 Einstiegspunkte
	5.1.4 Analyse der Berechtigungen
	5.1.5 Anzahl der Benutzungsschnittstellen
	5.1.6 Diskussion der Befunde

	5.2 User-Interface-Elemente und -Muster
	5.2.1 Layouts
	5.2.2 User-Interface-Elemente
	5.2.3 User-Interface-Muster
	5.2.4 Diskussion der Befunde

	5.3 Einschränkungen

	6 Folgerung und Ausblick
	6.1 Zusammenfassung und zukünftige Arbeiten

	Literaturverzeichnis

 HistoryItem_V1
 TrimAndShift

 Bereich: alle geraden Seiten
 Beschneiden: keine
 Versatz: oben um 0.85 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20121129141658
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 453
 310

 Fixed
 Up
 0.8504
 0.0000

 Even
 2
 AllDoc
 248

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9a
 Quite Imposing Plus 2
 1

 18
 40
 39
 20

 1

 HistoryList_V1
 qi2base

