
Institut für Softwaretechnologie
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Fachstudie Nr. 167

Marktanalyse statischer
Codeanalysewerkzeuge für Java

Marius Bauer Michael Nistor
Albert Ziegenhagel

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Stefan Wagner

Betreuer: Dipl.-Ing. Jan-Peter Ostberg

begonnen am: 29. Mai 2012

beendet am: 30. November 2012

CR-Klassifikation: D.2.8, D.2.4

Inhaltsverzeichnis

1 Einleitung 9
1.1 Begriffe . 9

1.2 Fokus der Fachstudie . 9

1.2.1 Wichtige Anforderungen . 10

1.2.2 Nicht berücksichtigte Aspekte . 10

1.3 Gliederung . 10

2 Ablauf der Fachstudie 11
2.1 Phasen . 11

2.2 Zeitlicher Verlauf . 12

3 Marktüberblick 15

4 Nutzungsszenario 29

5 Bewertungskriterien 31
5.1 K.O. Kriterien . 31

5.1.1 Erweiterbarkeit . 31

5.1.2 Updates . 32

5.1.3 Plattform . 32

5.1.4 Funktionsumfang . 32

5.2 Nicht relevante Kriterien . 33

5.2.1 Art/Architektur . 33

5.3 Weitere Kriterien . 33

5.3.1 Community/Support . 33

5.3.2 Dokumentation . 34

5.3.3 Benutzerfreundlichkeit . 34

5.3.4 Blacklisting . 35

5.3.5 Kosten . 35

5.3.6 Lizenz . 35

5.3.7 Performance . 36

5.3.8 Quellcode vs. Bytecode . 36

3

6 Evaluation 37
6.1 Voruntersuchung . 37

6.2 Bewertungsschema . 39

6.3 Werkzeuge . 42

6.3.1 Checkstyle . 42

6.3.2 ConQAT . 46

6.3.3 FindBugs . 50

6.3.4 JLint . 53

6.3.5 Moose . 55

6.3.6 PMD . 58

6.3.7 Sonar . 61

6.3.8 Understand . 64

6.4 Resultat . 67

7 Empfehlung 69

4

Abbildungsverzeichnis

2.1 Ablauf der Fachstudie mit Phasen und Meilensteinen. Legende: Einar = Einar-
beitung in das Thema , Rech = Recherche nach auf dem Markt befindlichen
statische Codeanalysewerkzeuge , Info = Erste Analyse der Werkzeuge , Vorb
= Vorbereitung auf Zwischen- bzw. Endvortrag , Vortr = Zwischen- bzw. End-
vortrag Bewer = Erstellung des Bewertungsschemas , Vor = Voruntersuchung
der gefundenen Werkzeuge , break = Pause Analy = Evaluation , Korr =
Korrekturphase , Abgab = Abgabe der Fachstudie 13

6.1 Ausschnitt der Konfigurationsdatei für die Sun Coding Conventions 43

6.2 Screenshot nach der Ausführung von CheckStyle im Eclipse-Plug-in 44

6.3 XML Ausgabe von CheckStyle . 45

6.4 Der aus Blocks (Funktions-Bausteinen) aufgebaute Analyse-Graph und eine
Liste der verfügbaren Blocks . 47

6.5 Grafische Ansicht der Analyse-Konfiguration in Eclipse mit Bearbeitungsmög-
lichkeiten . 48

6.6 HTML-Ausgabe einer Clone-Detection-Analyse mit Visualisierung der gefun-
denen Codeduplikate als Tree Map . 49

6.7 Eingabe-Konfiguration von FindBugs . 51

6.8 Blacklisting Möglichkeiten . 51

6.9 Grafische Ansicht der GUI mit den Resultaten nach der Analyse 52

6.10 Startbildschirm der Anwendung mit dem VM Kontextmenü 56

6.11 Anzeige der Resultate aus der generierten MSE Datei 56

6.12 Ruleset, welches die richtige Verwendung von clone()-Implementierungen prüft 59

6.13 Standard HTML Report von PMD . 60

6.14 Blacklisting in Sonar . 61

6.15 Der Inhalt einer Konfigurationsdatei, um die Untersuchung zu starten 62

6.16 Anzeige während des Scans . 63

6.17 Hauptseite der Resultate, die nach einem Scan angezeigt werden kann 63

6.18 Konfigurationsdialog zum Auswählen von Checks, welche über der Codebasis
ausgeführt werden sollen . 65

6.19 Treemap, welche das Verhältnis von Codezeilen zu Kommentarzeilen anzeigt . 66

5

Tabellenverzeichnis

6.1 Ergebnis der Voruntersuchung anhand der K.O.-Kriterien 39

6.2 Punktzahl für jeden Wert auf der Bewertungsskala 40

6.3 Gewichtung der Bewertungskriterien . 41

6.4 Endnote anhand der erreichten normierten Punktzahl 41

6.5 Resultat der Evaluation mit Bewertung der Kriterien 67

6

Kurzfassung

Im Rahmen dieser Fachstudie werden statische Codeanalysewerkzeuge für Java unter-
sucht und bewertet. Die Grundlage der Bewertung entsteht durch Absprache zwischen den
Autoren dieser Fachstudie und Herr Ostberg. Codeanalysewerkzeuge welche die grundle-
genden Anforderungen überstehen, werden einer genaueren Evaluation unterzogen. Am
Ende wird auf Grundlage der Evaluation eine Empfehlung für ein Codeanalysewerkzeug
ausgesprochen.

Abstract

In this Fachstudie statistical code analysis tools for Java will be studied and evaluated. The
basis of the evaluation is derived through an agreement with the authors of this report an
Mr. Ostberg. Code analysis tools which outlast these basic requirements will be evaluated
thoroughly. At the end of the report a recommendation for one code analysis tool will be
issued based on the evaluation.

7

1 Einleitung

Die Qualität von Software wird immer wichtiger und soll möglichst während dem gesamten
Entwicklungszyklus einer Software sichergestellt sein. Dafür werden heutzutage eine große
Anzahl von Software-Werkzeugen eingesetzt, die den Entwickler dabei unterstützen sollen.
Während der Implementierung werden deswegen u. a. statische Codeanalysewerkzeuge
verwendet, die häufig fest in den Entwicklungsprozess integriert sind.

Allerdings gibt es eine Vielzahl von Codeanalysewerkzeugen am Markt, kommerzielle wie
Open Source, die über unterschiedlichste Eigenschaften verfügen. Diese reichen vom ange-
botenen Funktionsumfang, über die Benutzbarkeit, bis hin zur Qualität der Ausgabe. Diese
Fachstudie soll deswegen einen Überblick über die am Markt befindlichen Codenanalyse-
werkzeuge bieten sowie diese evaluieren und bewerten.

1.1 Begriffe

Statische Codeanalyse Der Begriff statische Codeanalyse umfasst die Untersuchung des
Quell- oder Bytecodes, ohne den Code auszuführen. Wird der Code für die Analyse aus-
geführt, spricht man von dynamischer Codeanalyse. Statische Codeanalyse umfasst z. B.
die Messung von Umfangs- und Qualitätsmetriken, die Analyse des Datenflusses oder die
Konformität der Softwarearchitektur mit dem Architekturentwurf.

Erweiterbarkeit Im Kontext der Fachstudie ist für die Erweiterbarkeit nicht notwendigerwei-
se die Verfügbarkeit des Quellcodes erforderlich. Auch eine spezifizierte und dokumentierte
Schnittstelle oder ein Plug-in-System eines, z. B. kommerziellen, Codeanalysewerkzeugs
erfüllt den Begriff der Erweiterbarkeit.

1.2 Fokus der Fachstudie

Das Nutzungsszenario der Fachstudie im universitären Bereich, legt den Fokus der Markt-
analyse nicht auf den produktiven Einsatz eines Codeanalysewerkzeuges, sondern auf die
Möglichkeiten der Forschung und Weiterentwicklung. Dies hat Auswirkungen auf die an
das Codeanalysewerkzeug gestellten Anforderungen.

9

1 Einleitung

1.2.1 Wichtige Anforderungen

Aus dem Fokus der Fachstudie ergeben sich die folgenden wichtigen Anforderungen:
Erweiterbarkeit, Qualität und Umfang der Dokumentation, Aktivität der Community und
Supportleistungen sowie Benutzerfreundlichkeit und Qualität der Ausgabe.

1.2.2 Nicht berücksichtigte Aspekte

Aus dem selben Grund finden folgende Untersuchungsaspekte keine oder nur geringe
Berücksichtigung: Quantität und Qualität der Befunde und Ergebnisse, Integrierbarkeit
in den Entwicklungsprozess und die Entwicklungsumgebung sowie die Performanz der
Untersuchung.

1.3 Gliederung

Die Fachstudie ist in folgender Weise gegliedert:

Kapitel 2 – Ablauf der Fachstudie: Enthält die Beschreibung der einzelnen Phasen der Fach-
studie und einen Terminplan mit allen Meilensteinen.

Kapitel 3 – Marktüberblick: Gibt eine möglichst vollständige Auflistung und Kurzbeschrei-
bung aller am Markt vorhandenen statischen Codeanalysewerkzeuge für Java.

Kapitel 4 – Nutzungsszenario: Beschreibung des Szenarios, in dem das in der Fachstudie
empfohlene Codeanalysewerkzeug später eingesetzt wird.

Kapitel 5 – Bewertungskriterien: Definition und Beschreibung der K.O.- und Bewertungs-
kriterien, inklusive Gewichtung und Bewertungsskala für jedes einzelne Bewertungs-
kriterium.

Kapitel 6 – Evaluation: Enthält zum einen die Definition des Bewertungsschemas, anhand
dessen die Platzierung der evaluierten Codeanalysewerkzeuge ermittelt wird, und zum
anderen die Voruntersuchung aller Codeanalysewerkzeuge aus der Marktübersicht
entsprechend der K.O.-Kriterien. Die so ermittelten Codeanalysewerkzeuge werden
anschließend detailliert auf die hin Bewertungskriterien untersucht und bewertet.

Kapitel 7 – Empfehlung: Abschließend wird auf Grundlage der Evaluation eine Empfehlung
für ein oder mehrere Codeanalysewerkzeuge ausgesprochen.

10

2 Ablauf der Fachstudie

In diesem Kapitel wird der Ablauf der Fachstudie vorgestellt, die im Zeitraum von sechs
Monaten vom 29.05.2012 bis 30.11.2012 durchgeführt wurde.

2.1 Phasen

Beginn der Fachstudie und Projektplan

Die Fachstudie begann am 29.05.2012 mit einem Kick-off-Meeting. Dipl.-Ing. Jan-Peter Ost-
berg stellte uns als Vertreter des Instituts für Softwaretechnologie die Problemstellung
hinsichtlich der Auswahl eines statischen Codeanalysewerkzeugs für Java vor, dessen Lizen-
zierung eine Erweiterung im universitären Rahmen erlaubt. In einem späteren Analysege-
spräch konnten wir uns anhand vorbereiteter Fragen einen detaillierten Überblick von den
Anforderungen an das auszuwählende Codeanalysewerkzeug verschaffen. Im Anschluss an
das Kick-off-Meeting und das Analysegespräch planten wir die Phasen und Meilensteine
der Fachstudie.

Recherche zum Marktüberblick

Als Erstes verschafften wir uns einen möglichst vollständigen Überblick der am Markt
vorhandenen statischen Codeanalysewerkzeuge für Java. Zu jedem Werkzeug listeten wir
relevante Informationen wie die Lizenz, den Entwicklungsstand und die Kernaussagen der
Hersteller auf.

Analyse der Bewertungskriterien

Anhand der detaillierten Anforderungen entwickelten wir in Absprache mit Herr Ostberg
Bewertungskriterien sowie deren Relevanz. Einige der Kriterien müssen auf jeden Fall erfüllt
werden und wurden deswegen als K.O.-Kriterien eingestuft. Auch die Gewichtung der
Kriterien erfolgte in Absprache mit Herr Ostberg. Am Ende dieser Phase hielten wir am
09.08.2012 einen Zwischenvortrag, in dem die bisherigen Ergebnisse, die Marktübersicht und
die Bewertungskriterien, vorgestellt wurden.

11

2 Ablauf der Fachstudie

Voruntersuchung anhand der K.O.-Kriterien

Im Anschluss an die Definition der Bewertungskriterien untersuchten wir alle während
der Recherche gefundenen Codeanalysewerkzeuge auf die K.O.-Kriterien, um die für die
ausführliche Evaluation geeigneten Werkzeuge herauszufiltern.

Definition eines Bewertungsschemas

Zeitgleich definierten wir ein Bewertungsschema, in dem die erreichbaren Punkte und die
Umrechnung in eine Endnote für die zu untersuchenden Werkzeuge festgelegt wurden.

Evaluation der Werkzeuge

Anhand der vorher ausgearbeiteten Bewertungskriterien, evaluierten wir die nach der Vor-
untersuchung verbleibenden Codeanalysewerkzeuge. Die Bewertung der Kriterien erfolgte
sowohl in textlicher als auch in tabellarischer Form.

Erarbeitung der Empfehlung

Auf Grundlage der Evaluation sprachen wir anschließend eine Empfehlung für eines bzw.
mehrere Codeanalysewerkzeuge aus, da sich kein eindeutiger Sieger feststellen ließ.

Abgabe und Ende der Fachstudie

Die Übergabe der fertigen Fachstudie an Herr Ostberg, am 30.11.2012, und der Abschluss-
vortrag, der am 29.11.2012 gehalten wurde, bildeten das Ende der Fachstudie.

2.2 Zeitlicher Verlauf

Das Gantt-Diagramm in Abbildung 2.1 zeigt den zeitlichen Ablauf der in Abschnitt 2.1
beschriebenen Phasen und die erreichten Meilensteine M1 Marktübersicht (12.07.2012),
M2 Definition der Bewertungskriterien (02.08.2012), M3 Zwischenvortrag (09.08.2012), M4

Evaluation (01.11.2012), M5 Empfehlung (08.11.2012), M6 Abschlussvortrag (29.11.2012) und
M7 Abgabe (30.11.2012).

12

2.2 Zeitlicher Verlauf

A
bb

il
du

ng
2.

1:
A

bl
au

f
d

er
Fa

ch
st

u
d

ie
m

it
P

ha
se

n
u

nd
M

ei
le

ns
te

in
en

.L
eg

en
d

e:
E

in
ar

=
E

in
ar

be
it

u
ng

in
d

as
T

he
m

a
,R

ec
h

=
R

ec
he

rc
he

na
ch

au
f

d
em

M
ar

kt
be

fi
nd

lic
he

n
st

at
is

ch
e

C
od

ea
na

ly
se

w
er

kz
eu

ge
,I

nf
o

=
E

rs
te

A
na

ly
se

d
er

W
er

kz
eu

ge
,V

or
b

=
Vo

rb
er

ei
tu

ng
au

f
Z

w
is

ch
en

-
bz

w
.E

nd
vo

rt
ra

g
,V

or
tr

=
Z

w
is

ch
en

-
bz

w
.E

nd
vo

rt
ra

g
Be

w
er

=
E

rs
te

llu
ng

d
es

B
ew

er
tu

ng
ss

ch
em

as
,V

or
=

V
or

u
nt

er
su

ch
u

ng
d

er
ge

fu
nd

en
en

W
er

kz
eu

ge
,b

re
ak

=
P

au
se

A
na

ly
=

Ev
al

ua
ti

on
,K

or
r

=
K

or
re

kt
ur

ph
as

e
,A

bg
ab

=
A

bg
ab

e
de

r
Fa

ch
st

ud
ie

13

3 Marktüberblick

In diesem Kapitel werden die derzeit verfügbaren statische Codeanalysewerkzeuge vorge-
stellt, die mindestens JAVA unterstützen. Die verschiedenen Tools werden stichwortartig
beschrieben. Es wird keine Garantie auf Richtigkeit gegeben, da die hier angegebenen Infor-
matione von den Herstellern und/oder Vertreiber stammen. Viele Hersteller kommerzieller
Tools geben keine öffentlichen Informationen über die derzeitige Versionsnummer heraus. In
diesem Fall, wird die jeweilige Versionsart von uns als unbekannt deklariert.

AgileJ StructureViews

Untersuchte Version
1.7.10

Lizenz
kommerziell

Webseite
agilej.com

. Reverse Engineering Tool zum Erstellen von UML Dia-
grammen.

. Eclipse-Plug-in

. Kostenlose Version für nicht kommerzielle Zwecke er-
hältlich

Bauhaus Suite

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
axivion.com

. Untestützung von: C, C++, C#, Java und Ada

. Erkennung von Stilverstöße, toten Code, Metrikausrei-
ßer, duplizierten Code, zyklische Abhängigkeiten und
Architekturverstößen

. Hohe Anpassbarkeit bzw. Erweiterbarkeit.

. Optimierung auf Simplizität

15

http://www.agilej.com/
http://www.axivion.com/

3 Marktüberblick

BugScout

Untersuchte Version
Unbekannt

Lizenz
kommerziell

Webseite
buguroo.com

. Unterstützung von: Java, PHP, ASP and C#

. Als SaaS in der Cloud

. Erkennung von Sicherheitslücken

. Benutzerdefinierte Sicherheitsregeln

. Überprüfung des Codes auf ’best practices’

Checkstyle

Untersuchte Version
5.6 (18.09.2012)

Lizenz
LGPL

Webseite
checkstyle.sourceforge.net

. Große Ähnlichkeiten zu PMD

. Benutzung von Regeln

. Erkennt duplizierten Code, Richtigkeit von JavaDoc
Kommentaren, Zeichenabstände...

. Plug-ins für gängige Entwicklungsumgebungen vorhan-
den

. Hoher Konfigurationsgrad

Classycle

Untersuchte Version
1.4 (10.04.2011)

Lizenz
BSD License

Webseite
classycle.sourceforge.net

. erkennt zyklische Abhängigkeiten

. Erstellt HTML-Berichte

16

https://buguroo.com/en/products/bugscout/
http://checkstyle.sourceforge.net/
http://classycle.sourceforge.net/

Clirr

Untersuchte Version
0.6 (27.09.2005)

Lizenz
Apache Software License

Webseite
sourceforge.net/projects/clirr

. Überprüft Bibliotheken und Binär-Dateien auf Kompa-
tibilität zu älteren Versionen

Condenser Untersuchte Version
1.06 (30.12.2002)

Lizenz
MIT License

Webseite
condenser.sourceforge.net

. Clone-Erkennung und automatische Korrektur

. Untersucht Java Quellcodeverzeichnisse

ConQAT

Untersuchte Version
2011.9 (30.09.2011)

Lizenz
Apache License 2.0

Webseite
conqat.org

. Integrierte Visualisierung der Ergebnisse

. Aggregation von Qualitätsmetriken zur schnellen Über-
sicht der Qualität

. Clone-Erkennung

. Architektur-Konformitäts-Analyse

. Integration von anderen Codeanalysewerkzeugen wie
z.B. FindBugs und PMD

. Erweiterbares Framework (Plug-in Architektur)

. Trendanalyse zur Messung der Qualität über die Zeit

. Kostenpflichtiger Support verfügbar

. Tutorials und ausführliche Dokumentation verfügbar

17

http://sourceforge.net/projects/clirr/
http://condenser.sourceforge.net/
https://www.conqat.org/

3 Marktüberblick

Coverity SAVE

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
coverity.com

. Datenflussanalyse

. Erkennt Sicherheitslücken

. Fehlererkennung

. Parellele Codeanalyse

. Inkrementelle Analyse, d.h. nur geänderter Code wird
analysiert

Dependecy Finder

Untersuchte Version
1.2.1 (29.11.2010)

Lizenz
BSD License

Webseite
sourceforge.net/projects/depfind

. Erkennt Abhängigkeiten

. Objektorientierte Metriken

Dependometer

Untersuchte Version
1.2.5 (28.02.2011)

Lizenz
VPL 1.0.2

Webseite
source.valtech.com

. Unterstützung für: Java, C++ und C#

. Erzeugt einen ausführlichen HTML Report

. Erkennt Zyklen

. Erkennt Verstöße gegen die Architektur

. Errechnet Metriken

18

http://www.coverity.com/products/static-analysis.html
http://sourceforge.net/projects/depfind/
http://source.valtech.com/display/dpm/Dependometer

devKing add-on for checKing QA

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
optimyth.com

. Plug-in für die Webapplikation checkKing QA

. Unterstützt Java, JSP, JavaScript, HTML and XML

. Erstellt Berichte

. Source Code wird auf die Einhaltung einer Vielzahl von
Regeln überprüft

. Automatische Fehler Präventionsmaßnahmen

DevPartner

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
microfocus.com

. Qualität und Komplexität des Codes

. Erkennung von Speicherlecks

. Thread-Analyse und Erkennung von Dead-Locks

. Code-Überdeckung

. Unterstützt mehrere Sprachen

DMS Software Reengineering Toolkit

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
www.semdesigns.com

. Analysiert direkt den Quellcode

. Komplette Refaktoringkette vom Codeparsen zur Qua-
litätsanalyse über Restrukturierung bis hin zur automa-
tischen Codegenerierung und Portierung

. Generischer Aufbau in Modulen für leichte Erweiterbar-
keit

. Module müssen einzeln zusammengestellt und gekauft
werden

19

http://www.optimyth.com/devking/devking-add-on-for-checking-qa
http://www.microfocus.com/products/micro-focus-developer/devpartner/index.aspx
http://www.semdesigns.com/products/DMS/DMSToolkit.html

3 Marktüberblick

DoctorJ - Java analyzer Untersuchte Version
5.1.2 (22.08.2006)

Lizenz
LGPL v2

Webseite
sourceforge.net/projects/doctorj

. Untersucht *.java Dateien

. Erkennt Rechtschreibfehler und andere häufige Fehler

FindBugs

Untersuchte Version
2.0.1 (12.07.2012)

Lizenz
LGPL

Webseite
findbugs.sourceforge.net

. Analysiert Bytecode

. Fehlererkennung

. Auch als Plug-in für Eclipse

HP Fortify Static Code Analyzer (SCA) Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
fortify.com

. Erkennt Sicherheitslücken in Software

. Schneller Scan des Source Codes

20

http://sourceforge.net/projects/doctorj/
http://findbugs.sourceforge.net/
https://www.fortify.com/products/hpfssc/source-code-analyzer.html

Imagix 4d

Untersuchte Version
7.3.2

Lizenz
kommerziell (Testversion

erhältlich)

Webseite
imagix.com

. für C,C++ und Java Quellcode

. Erzeugt unterschiedlichste Diagramme auf verschiede-
nen Abstraktionsebenen und hebt Beziehungen/Abhän-
gigkeiten vor

. Findet 20 verschiedene potentielle Fehlerquellen im Co-
de

. Erstellt Codemetriken und analysiert Flussdiagramme

. Unterstützt auch das Erstellen von Dokumentation

JarAnalyzer Untersuchte Version
1.2 (31.07.2006)

Lizenz
BSD Licence

Webseite
kirkk.com

. Analysiert jar-Dateien

. Erkennt Abhängigkeiten zwischen zwei oder mehreren
jar-Dateien

. Graphische Ausgabe der Ergebnisse

JCSC

Untersuchte Version
0.98.1 (07.07.2005)

Lizenz
GPL

Webseite
jcsc.sourceforge.net

. Erkennt Abweichungen vom Coding-Standard

21

http://www.imagix.com/
http://www.kirkk.com/main/Main/JarAnalyzer
http://jcsc.sourceforge.net/

3 Marktüberblick

JDepend Untersuchte Version
2.9.1 (xx.xx.2010)

Lizenz
BSD License

Webseite
clarkware.com

. Untersucht Java Quellcodeverzeichnisse

. Erstellt Metriken über Klassen/Interfaces/Packages/...
und ihre Abhängigkeiten untereinander

JLint

Untersuchte Version
3.1.2 (11.01.2011)

Lizenz
GPL

Webseite
jlint.sourceforge.net

. Untersucht Java Bytecode

. Durchführen einer Datenflussanalyse und Erstellen ei-
nes Lock-Graphen

. Erkennen von Fehlern

. Erkennen von Synchronisationsproblemen und Wider-
sprüchen

jTest

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
parasoft.com

. Datenflussanalyse

. Berechnen von Code-Metriken

. Untersucht den Source-Code

Kalistick

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
kalistick.com

. Cloud-basierte Anwendung

. Aufzeichnung von Test-’footprints’

22

http://clarkware.com/software/JDepend.html
http://jlint.sourceforge.net/
http://www.parasoft.com/jsp/products/jtest.jsp?itemId=14
http://www.kalistick.com/

Klocwork Insight

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
klocwork.com

. Erkennt Sicherheitslücken im Code

. Graphische Darstellung der Softwarearchitektur

. Unterstützung für C/C++, Java und C#

LDRA Testbed

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
ldra.com

. Erkennt Abweichungen vom Coding-Standard

Macker Untersuchte Version
0.4.2 (03.11.2003)

Lizenz
GPL

Webseite
sourceforge.net/projects/macker

. Erkennt Abweichungen von Architektur-Regeln

Moose

Untersuchte Version
4.6 (xx.02.2012)

Lizenz
BSD License und MIT

License

Webseite
moosetechnology.org

. Datenanalyseprogramm

. Analysiert Java, C++, XML, ...

. Erstellt Datenmodelle und kann diese analysieren

. Berechnet Metriken

. Erweiterbar und konfigurierbar

23

http://www.klocwork.com/products/insight/
http://www.ldra.com/index.php/en/products-a-services/ldra-tool-suite/ldra-testbedr
http://sourceforge.net/projects/macker/
http://www.moosetechnology.org/

3 Marktüberblick

PMD

Untersuchte Version
5.0.0 (01.05.2012)

Lizenz
BSD-style License

Webseite
/pmd.sourceforge.net

. Unterstützt Java, C, C++ und PHP

. Plug-ins für alle gängigen Entwicklungsumgebungen
(eclipse, jDeveloper, NetBeans...)

. Benutzung von statischen Regeln

. Erkennung von möglichen Bugs (leere try/catch blöcke),
totem code und unnötigen Schleifen

. Neue Regeln lassen sich relativ leicht schreiben

. Zur Erkennung von duplizierten Code lässt sich die
Erweiterung CPD benutzen

ProjectCodeMeter

Untersuchte Version
1.23

Lizenz
kommerziell (Testversion

erhältlich)

Webseite
projectcodemeter.com

. Berechnet Code-Metriken

. Berechnet Teamproduktivität und Kosten

. Untersucht Code auf Einhaltung von Coding-Standards

. Vergleicht berechnete Statistiken mit Marktdurch-
schnittswerten

QJ-Pro

Untersuchte Version
2.2.0 (22.03.2005)

Lizenz
GPL

Webseite
qjpro.sourceforge.net/

. Erkennt Abweichungen vom Coding-Standard

. Fehlererkennung

24

http://pmd.sourceforge.net/pmd-5.0.0/
http://www.projectcodemeter.com
http://qjpro.sourceforge.net/

ResourceMiner

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
resourceminer.nu

. Grafische Visualisierung der Code-Struktur als Abhän-
gigkeitsbaum

Rational AppScan Source Edition

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
ibm.com

. Erkennt Sicherheitslücken im Code

. Datenflussanalyse

. Spezialisiert auf Code-Sicherheit

Sonar

Untersuchte Version
3.3 (24.10.2012)

Lizenz
LGPL v3.0

Webseite
sonar.codehaus.org

. Untersucht die Software-Architektur

. Clone-Erkennung

. Überprüfung der Komplexität

. Erkennt potentielle Fehler

. Überprüft die Einhaltung von Richtlinien

. Graphische Berichtsausgabe über eine Website

. Viele Erweiterungen vorhanden

. Integration von anderen Codeanalysewerkzeugen wie
z.B. PMD, CheckStyle oder FindBugs

25

http://www.resourceminer.nu/
http://www.ibm.com/software/products/de/de/appscansource/
http://sonar.codehaus.org/

3 Marktüberblick

SonarGraph (SonarJ)

Untersuchte Version
6.0 (01.07.2010)

Lizenz
kommerziell

Webseite
hello2morrow.com

. Analysiert kompilierte Klassen und Quellcode

. Graphische Strukturausgabe des zu untersuchenden
System

. Vergleich zwischen Model und Code möglich: zeigt
Unterschiede/Fehler auf

. Plug-ins für eclipse und intelliJ verfügbar

. Zwei Versionen verfügbar: Architektur und Qualität

. Weitreichende Statistiken

Soot Untersuchte Version
2.5.0 (22.01.2012)

Lizenz
LGPL

Webseite
sable.mcgill.ca

. Generiert vier verschiedene Zwischencodes für die ein-
fachere Analyse

. Aufruf-Graph-Analyse

Sotoarc/Sotograph Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
hello2morrow.com

. Grafische Visualisierung der Code-Struktur als hierar-
chischen Baum

. Möglichkeit die Software-Architektur grafisch zu spe-
zifizieren

. Erkennt Abweichungen von der Architektur

. Auch als Plug-in für Eclipse

26

http://www.hello2morrow.com/products/sonargraph
http://www.sable.mcgill.ca/soot/
https://www.hello2morrow.com/products/sotoarc

TattleTale

Untersuchte Version
1.2.0 Beta2 (17.02.2012)

Lizenz
LGPL v2.1

Webseite
jboss.org

. Scannt jar-Dateien

. erkennt Abhängigkeiten

. Bericht wird als HTML-Datei exportiert

. Erkennt/Entfernt ’black-listed’ APIs , Klassen Stand-
orte...

UC Detector

Untersuchte Version
1.10.0 (05.04.2012)

Lizenz
Eclipse Public License v1.0

Webseite
ucdetector.org

. Erkennt toten Code

. Erkennt unnötige Public-Deklarationen

. Auch als Eclipse-Plug-in

Understand

Untersuchte Version
3.0.638 (02.11.2012)

Lizenz
kommerziell (Testversion

erhältlich)

Webseite
scitools.com

. Komplette IDE mit Code Editor

. Kann verschiedenste Codemetriken erzeugen: Codezei-
len, Code-Coupling, ...

. Codeverifikation gegen ’Coding-Standards’ und Pro-
grammierrichtlinien (z.B. Effective C++) oder eigen de-
finierte Standards

. Kann Klassen/Objekt Abhängigkeiten aufzeigen

. Für Java, Ada, C/C++, C# Fortran, JOVIAL, Pascal,
PL/M, VHDL, Cobol, Web-Sprachen, Phython (bei Java
jedoch nicht alles. z.b. Generics nicht)

. Erzeugt unterschiedliche Graphen (z.b. UML)

27

http://www.jboss.org/tattletale/
http://www.ucdetector.org/
http://www.scitools.com/

3 Marktüberblick

Veracode Static Analysis

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
veracode.com

. Unterstützt C, C++, Java, .NET bytecode, PHP...

. Untersuchung des Byte Codes

. Erkennung von Gefährdungen durch Libraries, APIs,
Compileroptimierungen und 3rd party Komponenten

. Erkennung von Sicherheitslücken

Yasca Untersuchte Version
2.21 (01.11.2010)

Lizenz
BSD Licence, GPL v2,

LGPL v2

Webseite
sourceforge.net/projects/yasca

. Unterstützung von: Java, C/C++, HTML, JavaScript,
ASP, ColdFusion, PHP, COBOL und weitere Sprachen

. Erkennt Sicherheitslücken

. Fehlererkennung

. Erkennung von Performanz-Problemen

. Überprüfung des Codes auf ’best practices’

. Integration von anderen Codeanalysewerkzeuge wie
z.B. FindBugs, PMD und JLint

28

http://www.veracode.com/products/static
http://sourceforge.net/projects/yasca/

4 Nutzungsszenario

In unserer Fachstudie gibt es keinen externen Kunden. Kunde und Betreuer sind hier
äquivalent. Es wird ein Programm gesucht, welches aus der großen Menge der statischen
Codeanalyswerkzeuge für Java heraussticht. Auf Basis der Empfehlung dieser Fachstudie,
wird die SE2 Abteilung des Instituts für Softwaretechnologie der Universität Stuttgart, sich
auf ein statisches Codeanalysewerkzeug festlegen. Es ist geplant an dem empfohlenen
Codeanalysewerkzeug sukzessive Erweiterungen durchzuführen, um eine möglichst hohe
Anpassung zu erreichen, um es für zukünftige Aufgaben optimal einzusetzen.

29

5 Bewertungskriterien

In diesem Kapitel werden die Kriterien beschrieben, welche bei der Bewertung der einzel-
nen Codeanalysewerkzeuge in Betracht gezogen wurden. Für jedes Kriterium wurde dabei
gemeinsam mit dem Betreuer eine Gewichtung erarbeitet, um die untersuchten Codenalyse-
werkzeuge genau nach den Anforderungen qualifizieren zu können. Für eine Erklärung der
hier verwendeten Skalen siehe Kapitel 6.2.

5.1 K.O. Kriterien

Die folgenden Kriterien sind unbedingt notwendig und führen, wenn nicht erfüllt, zum
bedingungslosen Ausschluss eines Codenalysewerkzeuges von den weiteren Untersuchun-
gen.

5.1.1 Erweiterbarkeit

Beschreibung Erweiterbarkeit beschreibt die Möglichkeit ein Codeanalysewerkzeug den
eigenen Anforderungen entsprechend anzupassen und neu benötigte Funktionalität hinzu-
zufügen.

Erweiterbarkeit kann unterschiedlich stark gegeben sein und geht deshalb mit anderen
Bewertungskriterien wie Dokumentation oder Projektaktivität einher.

Dieses Kriterium distanziert sich jedoch von der Abwägung über die Ausprägung der
Erweiterbarkeit und beschäftigt sich nur mit der Tatsache, ob Erweiterbarkeit überhaupt
oder gar nicht gegeben ist.

Ist beispielsweise der Quellcode eines zu untersuchenden Codeanalysewerkzeuges erhältlich
oder lassen sich Plug-ins in dieses einbinden, so ist die Erweiterbarkeit im Sinne dieses
Kriteriums erfüllt, egal wie schwer der Quellcode zu verstehen oder wie mächtig die Plug-
in-Schnittstelle ist.

Gewichtung Eine Erweiterbarkeit im Sinne dieses Kriteriums ist zwingend für ein weiteres
in Betracht ziehen des untersuchten Codenalysewerkzeuges notwendig.

Skala ⊕ / 	

31

5 Bewertungskriterien

5.1.2 Updates

Beschreibung Codeanalysewerkzeuge werden häufig von kommerziell orientierten Firmen
oder aber auch von Programmierern in ihrer Freizeit entwickelt. Gerade bei letzteren passiert
es nicht selten, dass die Entwicklung anfangs extrem voranschreitet, mit der Zeit jedoch
stark zurückgeht oder gar völlig aufgegeben wird. Aber auch kommerzielle Projekte ereilt
oft das Schicksal, dass diese nicht mehr lukrativ genug sind oder aus anderen Gründen nicht
weiterentwickelt werden.

Die Aktivität im Bezug auf Updates eines Softwareprojekts beschreibt, ob dieses noch
weiterentwickelt wird und wenn ja, in welchem Maße. Bei einem aktiven Projekt muss
davon ausgegangen werden können, dass neue Versionen mit Fehlerbehebungen oder
Erweiterungen veröffentlicht werden.

Gewichtung Codenalysewerkzeuge, bei welchen die letzte veröffentlichte Version länger
als sechs Monate zurückliegt, werden von der weiteren Bewertung ausgeschlossen.

Skala ⊕ / 	

5.1.3 Plattform

Beschreibung Codeanalysewerkzeuge kommen auf Computern mit unterschiedlichsten
Architekturen und Betriebssystemen zum Einsatz. Jedoch ist nicht jedes Codeanalysewerk-
zeug auf jeder dieser Plattformen lauffähig. Dieses Kriterium beschäftigt sich mit den, vom
zu untersuchenden Codeanalysewerkzeugen unterstützten, Plattformen.

Gewichtung Die Codeanalysewerkzeuge müssen mindestens auf Microsoft Windows 7

lauffähig sein und werden, wenn dies nicht erfüllt wird, von der weiteren Bewertung
ausgeschlossen.

Skala ⊕ / 	

5.1.4 Funktionsumfang

Beschreibung Gerade im Bereich der statischen Codeanalyse ist der Funktionsumfang
der Werkzeugen breit gefächert. Es gibt Codeanalysewerkzeuge, welche nur auf eine ganz
besondere Art von Analyse spezialisiert sind und andere, welche gleich ein ganzes Arsenal
an verschiedener Funktionalität mit sich bringen. Bei diesem Kriterium geht es darum die
unterschiedlichen Funktionalitäten eines Codeanalysewerkzeuges herauszufinden und zu
zählen.

32

5.2 Nicht relevante Kriterien

Gewichtung Da die analysierten Codeanalysewerkzeuge mit neuer Funktionalität erweitert
werden sollen, reicht eine Spezialisierung auf einzelne Funktionalitäten nicht aus. Ein
Codeanalysewerkzeug, das nicht mindesten drei unterschiedliche Funktionalitäten bietet,
wird von der weiteren Bewertung ausgeschlossen.

Skala ⊕ / 	

5.2 Nicht relevante Kriterien

5.2.1 Art/Architektur

Beschreibung Codeanalysewerkzeuge gibt es sowohl als alleinstehende Programme, als
auch als Plug-ins für gängige Entwicklungsumgebungen wie z. B. Eclipse.

Manchmal sind auch Kombinationen möglich. Das Codeanalysewerkzeug kann alleinstehend
als Konsolenanwendung verwendet werden, aber auch in einer IDE eingebunden sein, um
so besseres visuelles Feedback und eine höhere Produktivität zu erzielen.

Dieses Kriterium soll die Codeanalysewerkzeuge in eine dieser Klassen einteilen.

Gewichtung Dieses Kriterium ist für den Betreuer von keiner Bedeutung.

5.3 Weitere Kriterien

5.3.1 Community/Support

Beschreibung Ein weiterer Teil des Aktivitätskriteriums beschreibt die Zugänglichkeit zu
Informationen. Bei einem aktiven Projekt im Bezug auf die Community ist es möglich Infor-
mationen über die Software zu erhalten, um diese zu verwenden oder zu erweitern. Dieser
Teil des Kriteriums setzt nicht unbedingt eine aktive Weiterentwicklung der Software voraus,
sondern bezieht sich auf eine aktive Community und angebotene Supportleistungen.

Gewichtung Die Aktivität im Bezug auf die Community ist von hoher Wichtigkeit und
sollte insbesondere aus Sicht der Erweiterbarkeitsmöglichkeiten, die sich aus einer hohen
Aktivität ergeben, betrachtet werden.

Skala ⊕ / � / 	

33

5 Bewertungskriterien

5.3.2 Dokumentation

Beschreibung Dokumentation beinhaltet alle Dokumente, die Auskunft über das zu un-
tersuchende Codeanalysewerkzeug (nicht jedoch der Bedienung dieses) liefern. Hierbei
kann es sich um externe Dokumente wie eine Spezifikation, Entwurfsdokumente oder
API-Beschreibungen handeln, aber auch um ausgeprägte Quellcodekommentare.

Nicht gemeint sind Dokumente wie zum Beispiel das Handbuch, das zwar üblicherweise
auch der Dokumentation zugeordnet wird, nach der Definition der hier behandelten Kriterien,
jedoch zur Benutzerfreundlichkeit beiträgt und deshalb zu diesem Kriterium zugeordnet
wird.

Ein wichtiger Punkt dieses Kriteriums ist nicht nur das Vorhandensein einer Dokumentation,
sondern auch die Qualität dieser. Hierbei ist vor allem zu beachten, ob die Dokumentation
auch den aktuellen Stand der Software beschreibt und nicht bereits veraltet ist. Dokumenta-
tion, die nicht mehr die momentane Umsetzung zeigt, ist nicht von Nutzen und darf nicht
positiv in die Bewertung einfließen.

Gewichtung Die Dokumentation ist von hoher Bedeutung. Auch diese sollte insbesondere
dahingehend untersucht werden, dass der Quellcode (sofern vorhanden) leicht verstanden
werden kann oder dass Schnittstellen für Plug-ins oder andere Anbindungen zur Erweiter-
barkeit gut beschrieben sind.

Skala ⊕ / � / 	

5.3.3 Benutzerfreundlichkeit

Beschreibung Benutzerfreundlichkeit beschreibt wie einfach ein Benutzer das Codeanaly-
sewerkzeug verwenden kann und wie wohl er sich dabei fühlt. Dies beinhaltet einerseits wie
gut er sich intuitiv in der Umgebung des Codeanalysewerkzeuges oder dessen Eingabemög-
lichkeiten zurecht findet, aber auch wie gut die Funktionalität und dessen Verwendung, z. B.
in einem externen Handbuch, beschrieben ist.

Auch die Aufbereitung der Ergebnisse und Verständlichkeit dieser für den Benutzer fließt in
dieses Kriterium ein.

Gewichtung Die Benutzerfreundlichkeit ist von hoher Bedeutung.

Skala ⊕ / � / 	

34

5.3 Weitere Kriterien

5.3.4 Blacklisting

Beschreibung Blacklisting beschreibt die Funktionalität einmal gefundene Fehler markie-
ren zu können, so dass diese bei einem weiteren Durchlauf des Codeanalysewerkzeuges
nicht mehr bemängelt werden.

Hierdurch ist es möglich Befunde, welche man nicht beheben möchte aus den Resultaten zu
streichen, um eine bessere Übersicht mit einem Fokus auf die tatsächlich kritischen Mängel
zu gewährleisten. Ein Codeanalysewerkzeug welches diese Funktionalität bietet, wird jedoch
einem ohne diese Funktionalität vorgezogen.

Gewichtung Das Vorhandensein von Blacklisting ist von geringer Bedeutung.

Skala � / 	

5.3.5 Kosten

Beschreibung Handelt es sich nicht um ein Open Source Codeanalysewerkzeug, so ist dies
meist damit verbunden, dass das Codeanalysewerkzeug käuflich erworben werden muss.
Die dabei entstehenden Kosten sollen in diesem Kriterium bewertet werden. Zu beachten ist
hier auch, ob Testversionen, kostenlose Versionen für die nicht kommerzielle Nutzung oder
andere Vergünstigungen z.B. durch eine EDU Version, erhältlich sind.

Ebenso kann es Fälle geben, in denen bestimmte Leistungen, wie beispielsweise der Support
oder angebotene Plug-ins, kostenpflichtig sind. Solche Faktoren fließen ebenfalls in dieses
Kriterium mit ein.

Gewichtung Die Kosten eines Codeanalysewerkzeuges werden mittel gewichtet.

Skala ⊕ / � / 	

5.3.6 Lizenz

Beschreibung Es gibt verschiedene Lizenzierungen für Codeanalysewerkzeuge. Diese
regeln oft (gerade bei Open Source Werkzeugen) wie man mit Änderungen oder Erweite-
rungen der Software umgehen soll. Hierbei wird festgelegt, ob man diese veröffentlichen
darf, wenn ja in welchem Maße und mit welchen Einschränkungen. Das Ziel dieses Kri-
teriums ist es zu bewerten, ob die Lizenzierung ein Problem bei der Erweiterungen des
Codeanalysewerkzeuges darstellt oder nicht.

35

5 Bewertungskriterien

Gewichtung Die Lizenz wird nur gering gewichtet.

Skala ⊕ / � / 	

5.3.7 Performance

Beschreibung Statische Codeanalyse beinhaltet oft aufwendige Prozesse, die eine hohe
Komplexität und damit lange Laufzeiten mit sich bringen. Außerdem sind die Codebasen
welche durch solche Werkzeuge untersucht werden, nicht selten sehr groß und erschweren
dadurch dieses Problem. Im Zusammenhang mit Continuous Integration, in der jede Nacht,
oder gar bei jedem Commit von Änderungen in ein Quellcodeverwaltungsprogramm, Tests
und statische Codeanalysen ablaufen sollen, ist die effiziente Implementierung und damit
einhergehende Performance oft ein Punkt, der in Betracht gezogen werden muss.

Gewichtung Die Performance ist von geringer Bedeutung. Das Codeanalysewerkzeug wird
vor allem zu wissenschaftlichen Zwecken eingesetzt, bei welchen die Laufzeiten nur eine
untergeordnete Rolle spielen.

Skala ⊕ / � / 	

5.3.8 Quellcode vs. Bytecode

Beschreibung Java-Quellcode wird zuerst in Bytecode kompiliert, welcher dann von einer
Virtuellen Maschine interpretiert und ausgeführt wird. Codeanalysewerkzeuge können
entweder den Quellcode oder den kompilierten Bytecode untersuchen um ihre Analysen
durchzuführen. Codeanalysewerkzeuge, die Quellcode anstatt Bytecode analysieren, sind
vorzuziehen.

Gewichtung Die Unterscheidung ob ein Codeanalysewerkzeug Quell- oder Bytecode ana-
lysiert ist von geringer Bedeutung.

Skala � / 	

36

6 Evaluation

6.1 Voruntersuchung

Die gefundenen Codeanalysewerkzeuge werden einer Voruntersuchung unterzogen, um
diejenigen auszusortieren, die gegen mindestens ein K.O.-Kriterien verstoßen. Dies dient in
erster Linie dazu, die Teilnehmerzahl, die für eine genauere Evaluation in Frage kommen, zu
verringern. Die gekürzte Liste enthält darum nur noch Codeanalysewerkzeuge, die alle K.O.-
Kriterien erfüllen. Die Vorauswahl geschah mit Hilfe einer Matrix. Sie stellt dar, inwiefern
die K.O.-Kriterien von den Codeanalysewerkzeuge erfüllt wurden. Wenn mindestens ein
K.O.-Kriterium nicht erfüllt wird, wird bei dem betreffenden Codeanalysewerkzeuge auf
eine weitere Untersuchung anderer K.O.-Kriterien verzichtet.

Erklärung der Legende

Erfüllt: ⊕ Alle Anforderungen des Kriteriums sind erfüllt.
Nicht erfüllt: 	 Mindestens eine Anforderung des Kriteriums ist nicht

erfüllt.
Nicht überprüft: ? Das Kriterium wurde im Rahmen der Fachstudie nicht

überprüft.

Erklärung der Kriterien

Erweiterbarkeit Das Codeanalysewerkzeug ist ohne größere Probleme erweiterbar
Updates Das Codeanalysewerkzeug befindet sich in aktiver Entwicklung
Funktionsumfang Das Codeanalysewerkzeug bietet mindestens drei verschiedene Funktionen
Plattform Das Codeanalysewerkzeug läuft mindestens unter Microsoft Windows 7

37

6 Evaluation

Name Er
w

ei
te

rb
ar

ke
it

U
pd

at
es

Fu
nk

ti
on

su
m

fa
ng

Pl
at

tf
or

m

AgileJ StructureViews 	 ? ? ?

Bauhaus Suite ⊕ ⊕ ⊕ ⊕

BugScout 	 ? ? ?

Checkstyle ⊕ ⊕ ⊕ ⊕

Classycle ⊕ ⊕ 	 ?

Clirr ⊕ 	 ? ?

Condenser ⊕ 	 ? ?

ConQAT ⊕ ⊕ ⊕ ⊕

Coverity SAVE 	 ? ? ?

Dependency Finder ⊕ 	 ? ?

Dependometer ⊕ 	 ? ?

devKing add-on for checKing QA 	 ? ? ?

DevPartner 	 ? ? ?

DMS Software Reengineering 	 ? ? ?

DoctorJ - Java analyzer ⊕ 	 ? ?

FindBugs ⊕ ⊕ ⊕ ⊕

HP Fortify Static Code Analyzer (SCA) 	 ? ? ?

Imagix 4d 	 ? ? ?

JarAnalyzer ⊕ 	 ? ?

JCSC ⊕ 	 ? ?

JDepend ⊕ 	 ? ?

JLint ⊕ ⊕ ⊕ ⊕

jTest 	 ? ? ?

Kalistick 	 ? ? ?

Klocwork Insight 	 ? ? ?

LDRA Testbed 	 ? ? ?

38

6.2 Bewertungsschema

Name Er
w

ei
te

rb
ar

ke
it

U
pd

at
es

Fu
nk

ti
on

su
m

fa
ng

Pl
at

tf
or

m

Macker ⊕ 	 ? ?

Moose ⊕ ⊕ ⊕ ⊕

PMD ⊕ ⊕ ⊕ ⊕

ProjectCodeMeter 	 ? ? ?

QJ-Pro ⊕ 	 ? ?

ResourceMiner 	 ? ? ?

Rational AppScan Source Edition 	 ? ? ?

Sonar ⊕ ⊕ ⊕ ⊕

SonarGraph 	 ? ? ?

Soot ⊕ ⊕ 	 ?

Sotoarc/Sotograph 	 ? ? ?

TattleTale ⊕ ⊕ 	 ?

UC Detector ⊕ ⊕ 	 ?

Understand ⊕ ⊕ ⊕ ⊕

Veracode Static Analysis 	 ? ? ?

Yasca ⊕ 	 ? ?

Tabelle 6.1: Ergebnis der Voruntersuchung anhand der K.O.-Kriterien

6.2 Bewertungsschema

Vorgehen zur Bestimmung des Evaluationsergebnisses für ein Werkzeug

Nachdem alle Kriterien für ein Codeanalysewerkzeug bewertet wurden, werden die er-
reichten Punktzahlen mit ihren Gewichtung multipliziert und anschließend aufsummiert.
Die sich daraus ergebende Gesamtpunktzahl wird auf eine Skala von 0 bis 100% normiert
und das Codeanalysewerkzeug bekommt anhand der normierten Punktzahl eine Endnote
zugewiesen.

39

6 Evaluation

Die normierte Punktzahl PW für ein Codeanalysewerkzeug W is definiert durch

PW =
1

Pmax
∑

i
gi pi

Hierbei ist
i ein Kriterium aus Kapitel 5.3,
gi die Gewichtung des Kriteriums i,
pi die Punktzahl des Kriteriums i anhand der Evaluationsergebnisse,
Pmax die maximal erreichbare Punktzahl.

Die Punktzahlen, Gewichtungen und Endnoten können mit Hilfe der nachfolgenden Tabellen
ermittelt werden.

Punktzahlen

Für jedes Kriterium kann ein Codeanalysewerkzeug zwischen 0 und 2 Punkten erhalten.
Dafür wird es auf der Stufe der Ordinalskala eingeordnet, die das Codeanalysewerkzeug für
das entsprechende Kriterium erfüllt.

Ergebnis Punktzahl Bedeutung im Allgemeinen

⊕ 2 Punkte Das Kriterium wird vollständig erfüllt.

� 1 Punkt Das Kriterium wird teilweise erfüllt.

	 0 Punkte Das Kriterium wird nicht erfüllt.

Tabelle 6.2: Punktzahl für jeden Wert auf der Bewertungsskala

Gewichtungen

Alle möglichen Gewichtungen befinden sich auf der Ordinalskala [0, 5]. Die Gewichtung
gi = 0 repräsentiert die irrelevanten Kriterien, die für die Evaluation keine Rolle spielen. Die
Gewichtung der einzelnen Kriterien erfolgte in Abstimmung mit Herr Ostberg.

40

6.2 Bewertungsschema

Kriterium i gi

Community/Support 5

Dokumentation 5

Benutzerfreundlichkeit 4

Kosten 3

Lizenz 2

Blacklisting 1

Performance 1

Quellcode vs. Bytecode 1

Art/Architektur 0

Tabelle 6.3: Gewichtung der Bewertungskriterien

Endnoten

Den normierten Punktzahlen werden Endnoten zugewiesen.

PW [%] Endnote

100-96 1+

95-91 1

90-86 1-

85-81 2+

80-76 2

75-71 2-

70-66 3+

65-61 3

60-56 3-

55-51 4+

50-46 4

45-0 5

Tabelle 6.4: Endnote anhand der erreichten normierten Punktzahl

41

6 Evaluation

6.3 Werkzeuge

6.3.1 Checkstyle

Untersuchte Version
5.6 (18.09.2012)

Lizenz
GNU Lesser General Public

License v2

Webseite
checkstyle.sourceforge.net

CheckStyle ist ein Kommandozeilenwerkzeug zur statischen
Codeanalyse, das einst entwickelt wurde, um Codelayouts ge-
gen gängige Standards zu überprüfen und auf Abweichungen
hinzuweisen. Diese Funktionalität war auch namensgebend für
das Codeanalysewerkzeug. Seit einer großen Architekturände-
rungen in Version 3.0 sind jedoch auch andere Tests verfügbar
gemacht worden, wie zum Beispiel das Erkennen von Codedu-
plikaten, Klassendesignproblemen (Sichtbarkeit von Klassen-
membern, Final-Deklarationen, Throw-Deklarationen, uvm.)
oder fehlerbehafteten Ausdrücken. Dennoch liegt das Augen-
merk der meisten Checks immer noch auf Dingen, die man
hauptsächlich dem ”Stil” von Quellcode zuschreiben würde.
CheckStyle analysiert den Quellcode von Javaprogrammen.

Community/Support: Es existieren vier Mailinglisten für
CheckStyle. Eine für offizielle Ankündigungen, eine für Com-
mits in das Versionsverwaltungssystem, eine für Benutzer-
fragen und eine für Entwicklerfragen. Allgemein sind diese
Mailinglisten nur sehr schwach in Benutzung und die meisten

Einträge der letzten Zeit (besonders in der Entwicklermailingliste) sind von Diskussion unter
den Entwicklern selbst.

Dokumentation: Die Dokumentation von CheckStyle ist in einem guten Zustand. Auf der
Webseite ist eine Referenzliste mit allen Verfügbaren Checks vorhanden. Jeder einzelne
Check wird dabei kurz beschrieben (oft mit einem Codebeispiel), enthält eine Liste mit den
verfügbaren Parametern, eine Angabe über das entsprechende Paket und welchem Modul
der Test zugeordnet ist. Auch der Quellcode ist gut dokumentiert. Eine API Referenz ist
ebenfalls auf der Webseite verfügbar, welche alle Klassen und ihre Methoden erklärt. Es ist
auch ein Tutorial vorhanden, dass beschreibt, welche Schritte man verfolgen muss, um neue
Checks in CheckStyle einzufügen. Ein Entwurfsdokument, dass die gesamte Architektur von
CheckStyle übersichtlich darstellt, ist jedoch nicht vorhanden.

Benutzerfreundlichkeit: CheckStyle wurde hauptsächlich entwickelt, um es direkt in den
Buildprozess einzubetten, aber nicht um manuell Codechecks z.B. direkt während der Ent-
wicklung einer Software vom Entwickler selbst durchzuführen. Deshalb besitzt CheckStyle
selbst keine grafische Oberfläche, sondern ist ein reines Kommandozeilenwerkzeug, welches
über eine XML-Datei konfiguriert wird.

42

http://checkstyle.sourceforge.net/

6.3 Werkzeuge

Abbildung 6.1: Ausschnitt der Konfigurationsdatei für die Sun Coding Conventions

Die XML-Konfigurationsdatei ist simpel und übersichtlich aufgebaut. Die einzelnen Module,
welche die durchzuführenden Checks repräsentieren, sind als XML-Knoten gestaltet, die
wiederum Kindknoten für ihre Parameter besitzen (siehe Abbildung 6.1).

Der Konsolenaufruf von CheckStyle gestaltet sich sehr einfach. Es werden die zu verwenden-
de Konfiguration und die zu untersuchende Datei(en) als Parameter übergeben. Zusätzlich
kann eine Ausgabedatei und das Ausgabeformat spezifiziert werden.

Unabhängig von CheckStyle selbst wurde auch ein Eclipse-Plug-in entwickelt, dass es
erlaubt CheckStyle einfach über Eclipse auszuführen und die Funde direkt in der IDE im
Quellcode darzustellen (siehe Abbildung 6.2). Außerdem erlaubt das Eclipse-Plug-in die
Konfigurationen für CheckStyle einfach über Dialoge in den Präferenzen eines Eclipse-
Projekts zu modifizieren und den eigenen Anforderungen projektspezifisch anzupassen.

43

6 Evaluation

Abbildung 6.2: Screenshot nach der Ausführung von CheckStyle im Eclipse-Plug-in

Eine Integration für Ant-Buildtasks ist ebenfalls vorhanden.

Ausgabe: Nutzt man CheckStyle ohne das Eclipse-Plug-in, so sind zwei unterschiedliche
Ausgabeformate möglich: eine Plain-Text-Ausgabe und eine XML-Ausgabe. Wird eine Ausga-
bedatei spezifiziert, so wird die Ausgabe dort hinein geschrieben. CheckStyle gibt in diesem
Fall keinerlei Informationen auf die Standardausgabe aus. Ist keine Ausgabedatei spezifiziert,
so wird die gesamte Ausgabe auf die Konsole geschrieben. Die XML Ausgabe ist für die
maschinelle Verarbeitung geeignet. Die Befunde werden nach Dateien sortiert übersichtlich
abgebildet (siehe Abbildung 6.3).

Kosten: CheckStyle ist Open Source und somit vollkommen kostenfrei.

44

6.3 Werkzeuge

Abbildung 6.3: XML Ausgabe von CheckStyle

45

6 Evaluation

6.3.2 ConQAT

Untersuchte Version
2011.9 (30.09.2011)

Lizenz
Apache License 2.0

Webseite
conqat.org

Die von der CQSE GmbH und TU München entwickelte Open
Source Software ConQAT ist ein statisches Codeanalysewerk-
zeug, welches unter der Apache Lizenz 2.0 veröffentlicht ist.
ConQAT unterstützt nativ verschiedene gängige Programmier-
sprachen, wie z.B. Java und C#. Die beinhalteten Funktionen
reichen vom Erstellen von Qualitätsmetriken, über das Erken-
nen von Codeduplikaten bis zur Architektur-Konformitäts-
Analyse. Die Software ist als Plug-in Framework konzipiert,
was sie erweiterbar macht. Außerdem kann es mit anderen
verbreiteten Codeanalysewerkzeugen wie z.B. PMD oder Find-
Bugs integriert werden. Da es sich um Open Source Software
handelt, fallen für Lizenzen keine Kosten an, allerdings ist
der Support durch die CQSE GmbH kostenpflichtig. Da die

Software in Java geschrieben ist und außerdem in Eclipse integriert ist, ist sie plattformu-
nabhängig und es werden Downloads für Windows, Mac OS X und Linux angeboten. Es
wurde bereits eine neue Version für das Ende des Jahres 2012 angekündigt und die neue
ConQAT 2012.9 Engine wurde bereits auf der ICSM 2012 Konferenz als Pre-Release veröf-
fentlicht. ConQAT führt die Analyse auf Quellcodebasis durch und unterstützt Blacklisting
von Codeduplikaten.

Community/Support: Auf der ConQAT Webseite ist eine Liste mit Benutzern der Software
aus dem akademischen Bereich veröffentlicht. Inwieweit es sich dabei um eine aktive
Community handelt konnte ist nicht klar. Support wird von der CQSE GmbH geleistet
und ist kostenpflichtig.

Dokumentation: Die ConQAT Webseite bietet Zugriff auf die umfangreiche Dokumentation,
die neben dem Handbuch ConQAT Book und der API ConQATDoc auch zahlreiche Tutorials,
Screenshots und Demos beinhaltet. Außerdem sind auch zahlreiche Publikationen über
ConQAT und solche die ConQAT verwenden aufgeführt.

In dem Online-Dokument ConQATDoc werden alle Funktions-Bausteine (Blocks) beschrie-
ben. Der Quellcode ist nach einem einheitlichen Styleguide geschrieben und ausreichend
kommentiert. Eine Spezifikation oder ein Entwurfsdokument, das über ConQATDoc hinaus
geht, gibt es jedoch nicht, was den Einstieg in die Weiterentwicklung der Software schwie-
rig macht. Zumindest eine Beschreibung des Plug-ins-Systems wäre notwendig, um neue
Plug-ins für ConQAT entwickeln zu können.

Benutzerfreundlichkeit: Das ConQAT Book bezieht sich zwar auf eine ältere Version der
Software, weswegen einige Detailss veraltet sind, aber liefert trotzdem eine detaillierte
Beschreibung aller Funktionen der Software. Die Schwäche des Handbuchs, die Verwendung
der Software nur knapp zu beschreiben, wird durch die ausführlichen Tutorials auf der

46

https://www.conqat.org/

6.3 Werkzeuge

Abbildung 6.4: Der aus Blocks (Funktions-Bausteinen) aufgebaute Analyse-Graph und eine
Liste der verfügbaren Blocks

Webseite ausgeglichen. Auch die bei der Installation beinhalteten Beispiele sind für den
ersten Einstieg von großer Hilfe. Einzig die Installationsanleitung ist sowohl im Handbuch,
als auch auf der Webseite äußerst knapp ausgefallen, weswegen eine korrekte Installation
bei evtl. auftretenden Problemen einige Zeit in Anspruch nehmen kann.

Durch die Integration von ConQAT in Eclipse ist der Einstieg für jeden der mit Eclipse
vertraut ist leicht. Trotzdem kann allein die Vielzahl an Funktionen den Benutzer überfor-
dern. Auch das Erstellen einer Analyse-Konfiguration als Graph mit Hilfe von Funktions-
Bausteinen (Blocks) ist durchaus komplex und erschwert den Einstieg (siehe Abbildung 6.4).
Durch die gute Dokumentation der Bausteine, den mitgelieferten Beispiels-Konfigurationen
sowie den ausführlichen Schritt-für-Schritt Tutorials, ist dies jedoch keine unüberwindbare
Hürde. Wer einmal das Prinzip verstanden hat, kann schnell und effizient komplexe Ana-
lysen entwerfen und auch direkt die Weiterverarbeitung und grafische Aufbereitung der
gewonnenen Daten spezifizieren. Die Bausteine decken nämlich nicht nur Analysemethoden,
sondern auch Verarbeitung sowie Visualisierung der angefallenen Daten ab. Auch die zum
Analyse-Graph gehörende Analyse-Konfiguration ist übersichtlich gestaltet und leicht zu
konfigurieren (siehe Abbildung 6.5).

47

6 Evaluation

Abbildung 6.5: Grafische Ansicht der Analyse-Konfiguration in Eclipse mit Bearbeitungs-
möglichkeiten

Ausgabe: Die Ausgabe der bei einer Analyse erhobenen Daten erfolgt als HTML. Die
Ausgabe ist klar strukturiert und bietet eine interaktive Exploration der Daten (siehe Ab-
bildung 6.6). Es gibt eine Übersicht der Analysedaten, Detailansichten der einzelnen Daten
mit verschiedenen Visualisierungen (z. B. Tabellen und Tree Maps) sowie verschiedene
Informationen zur verwendeten Analyse-Konfiguration und der Ausführung. Im Detail
sind dies ein Log der Ausführung mit Informationen und evtl. aufgetretenen Fehlern, der
verwendete Analyse-Graph, detaillierte Ausführungszeiten (aufgeteilt nach den einzelnen
Analyseschritten) und eine Auflistung aller verwendeten Pakete der ConQAT Engine.

Kosten: Da es sich um Open Source Software handelt fallen keine Lizenzkosten an, aller-
dings ist der Support kostenpflichtig.

48

6.3 Werkzeuge

Abbildung 6.6: HTML-Ausgabe einer Clone-Detection-Analyse mit Visualisierung der ge-
fundenen Codeduplikate als Tree Map

49

6 Evaluation

6.3.3 FindBugs

Untersuchte Version
2.0.1 (12.07.2012)

Lizenz
LGPL

Webseite
findbugs.sourceforge.net

FindBugs ist eines der bekanntesten Codeanalysewerkzeuge in
der statischen Codeanalyse heutzutage. Das ursprünglich von
der Universität von Maryland entwickelte Tools kann heute be-
reits mehr als eine Million registrierte Downloads verzeichnen
und zeichnet sich durch seine sehr hohe Fehlererkennungsrate
aus. FindBugs gehört zu der Sorte der statischen Codeanaly-
sewerkzeuge, die den Bytecode untersuchen. Der Quellcode
wird nur benötigt, wenn man mit der GUI von FindBugs arbei-
tet und farbliche Markierungen der Fehler-Standorte wünscht.
FindBugs unterstützt Blacklisting.

Community/Support: Aufgrund der großen Bekanntheit des
Codeanalysewerkzeuges, findet man im gesamten Netz In-
formationen über FindBugs. Der Quellcode ist aufgrund der
Lizenz frei zugänglich und es gibt zahlreiche Tutorials in allen
möglichen Sprachen. Das Benutzerhandbuch ist neben engli-
scher Sprache, sogar ins Japanische übersetzt worden. Es exis-

tieren zwei Mailinglisten. Die eine ist lediglich für Ankündigungen seitens der Entwickler.
Die andere Mailingliste ist für Diskussionen rund um FindBugs geeignet.

Dokumentation: Es existieren aktuelle API Beschreibungen. Sämtliche Dokumente werden
gewartet und sind auf einem aktuellen Stand. Bei neuen Releases der Software dauert es
im Normalfall stets etwas Zeit, bis die Dokumente nachgezogen werden. Dieser Aufgabe
wird jedoch regelmäßig nachgekommen. Für jede neue Version des Tools seit Beginn der
Entwicklung existiert zudem ein sehr ausführliches ChangeLog.

Benutzerfreundlichkeit: FindBugs kann mittels Kommandozeile, GUI oder auch als Plug-in
für gängige Entwicklungsumgebungen benutzt werden. Die Benutzung des Codeanalyse-
werkzeuges ist auch ohne größere Einarbeitung möglich. Falls dennoch Probleme auftauchen,
kann eines der vielen Tutorials betrachtet werden. Die Entwickler selbst stellen ausführliche
Dokumente auf englische (und japanische) Sprache bereit, die einem weiterhelfen. Eine FAQ
Sektion deckt die meisten auftauchenden Probleme. Die GUI lässt sich intuitiv bedienen.
Gefundene Bugs werden in verschiedenen Kategorien übersichtlich aufgelistet. Der Benutzer
hat selbst die Möglichkeit die Sortierung vorzunehmen. Jede Bug Art wird in der GUI genau
auf englisch beschrieben. Der Standort wird genau angegeben. Falls auch der Quellcode der
Software zum analysieren übergeben wurde, werden die betroffenen Stellen zudem farblich
markiert. Auch ohne Quellcode wird die Stelle durch vier Textzeilen genau beschrieben.
Blacklisting ist ebenfalls innerhalb der GUI bequem möglich.

50

http://findbugs.sourceforge.net/

6.3 Werkzeuge

Abbildung 6.7: Eingabe-Konfiguration von FindBugs

Abbildung 6.8: Blacklisting Möglichkeiten

51

6 Evaluation

Abbildung 6.9: Grafische Ansicht der GUI mit den Resultaten nach der Analyse

Ausgabe: Die Ausgabe ist in HTML oder XML möglich. Die durch die Konsolenanwendung
erzeugte XML-Dateien, lassen sich über die GUI einlesen. Diese XML-Dateien werden dort
sehr übersichtlich dargestellt.

Kosten: FindBugs zählt zu den Open Source Codeanalysewerkzeugen und bietet keine
Form von kommerziellem Support und/oder Ähnlichem an.

52

6.3 Werkzeuge

6.3.4 JLint

Untersuchte Version
3.1.2 (11.01.2011)

Lizenz
GPL

Webseite
jlint.sourceforge.net

Bei JLint handelt es sich um eine, unter der GPL veröffentlichte,
Open Source Software, die seit 2002 auf SourceForge entwi-
ckelt wird. Da es sich bei GPL um eine copyleft-Lizenz handelt,
dürfen auch Änderungen/Erweiterungen an der Software nur
unter GPL/LGPL veröffentlicht werden. Dabei scheint es kein
festes Entwicklerteam zu geben und die Aktivität im Projekt
scheint stark zu schwanken. JLint untersucht Java Programme
per statischer Code Analyse des Bytecodes auf Fehler, Syn-
chronisationsprobleme und Widersprüche im Code. Es werden
unter anderem Race-Conditions und Deadlocks erkannt. Dazu
wird eine Datenflussanalyse durchgeführt und ein Lock-Graph
erstellt. Blacklisting wird nicht unterstützt. Auch scheint die
Architektur nicht speziell auf Erweiterbarkeit ausgelegt.

Community/Support: Obwohl es sich um ein Open Source
Projekt handelt, das schon lange läuft, gibt es keine aktive Community. Auf der Projektseite
auf SourceForge ist nur geringe Aktivität zu verzeichnen. Fragen im Forum scheinen nur
sporadisch von einem der Entwickler beantwortet zu werden, im BugTracker gemeldete Feh-
ler werden nicht bearbeitet und es gibt auch keine Mailingliste. Außerdem wird ausdrücklich
darauf hingewiesen, dass es keinerlei Support von Seiten der Entwickler gibt, da es sich um
ein nicht kommerzielles Projekt handelt.

Dokumentation: Es gibt keinerlei Software-Dokumente wie z. B. Spezifikation oder Entwurf
die bei der Weiterentwicklung der Software hilfreich sein könnten. Da auch der Quellcode
komplett unkommentiert ist, dürfte eine Erweiterung der Software sich als äußerst schwierig
darstellen.

Benutzerfreundlichkeit: Bei diesem Punkt ist vorweg zu sagen, dass die Software nicht in
der Praxis getestet werden konnte, da eine Installation nicht möglich war. Alle Einschät-
zungen beruhen deswegen alleine auf den Beschreibungen des Handbuchs und sonstigen
Informationsquellen über die Software.

Dadurch dass der Quellcode selbst kompiliert werden muss, fällt der Einstieg schwer. Dies
wird dadurch verstärkt, dass es zwar eine Anleitung dazu gibt, diese jedoch äußerst knapp
gehalten ist und praktisch keinerlei Informationen zu evtl. auftretenden Fehler enthält. Da
beim Kompilieren der Software Fehler auftraten, die sich zwar teilweise beheben ließen, aber
eben nicht vollständig, konnte die Software nicht ausgeführt werden.

Als einziges Dokument gibt es ein Handbuch, dass die grundsätzliche Funktionsweise von
JLint erläutert und alle Funktionen auflistet und beschreibt. Die möglichen Kommando-

53

http://jlint.sourceforge.net/

6 Evaluation

zeilenparameter werde ausführlich beschrieben, so dass auch ein mit der Kommandozeile
unerfahrener Benutzer sich schnell zurecht findet.

Bei JLint handelt es sich um ein reines Kommandozeilenprogramm. Durch die gute Erklärung
der möglichen Parameter im Handbuch stellt dies jedoch kein Problem dar. Zuerst muss das
zu analysierende Java-Programm mit einem beliebigen Java-Compiler in Bytecode übersetzt
werden und anschließend als Parameter an JLint übergeben werden.

Ausgabe: Die Ausgabe erfolgt ausschließlich auf die Konsole. Über die Qualität der
Ausgabe kann leider keine Aussage getroffen werden, da weder über das Format, noch über
den Inhalt, im Handbuch eine Aussage getroffen wird.

Kosten: Da es sich um Open Source Software handelt, fallen keine Lizenzkosten an. Auch
gibt es sonst keine kommerziellen Leistungen von Seiten der Entwickler.

54

6.3 Werkzeuge

6.3.5 Moose

Untersuchte Version
4.6 (xx.02.2012)

Lizenz
BSD License und MIT

License

Webseite
moosetechnology.org

Die erste Version von Moose wurde bereits im Jahr 1996 ver-
öffentlicht. Mittlerweile ist man bei der Version 4.7 angelangt.
Da diese Version jedoch noch nicht final ist (und sich unter
Windows nicht korrekt laden ließ), wurde die vorige Version ge-
testet. Der Hauptnutzen der Software liegt darin, Entwicklern
und Ingenieuren zu helfen, größere Softwareprojekte durch
eine große Anzahl an Visualisierungen verständlicher zu ma-
chen. Dabei wird der Quellcode untersucht. Blacklisting wird
seitens Moose nicht unterstützt. An dieser Stelle muss die auf-
fallend schlechte Performance des Produktes erwähnt werden.
Die meisten Schritte bei der Analyse der Software benötigen
Einiges an Geduld. Auf dem benutzten Testrechner war es
nicht möglich das Codeanalysewerkzeug effizient zu benutzen.

Die Kernkomponente der Software befindet sich unter der BSD und MIT License. Dies trifft
jedoch nicht auf alle benötigten Komponenten zu. Der empfohlene Java Parser befindet sich
beispielsweise unter einer kommerziellen Lizenz.

Community/Support: Es existiert eine Mailingliste, die aktiv benutzt wird.

Dokumentation: Die Dokumente sind leider nicht auf dem aktuellsten Stand. Es existieren
viele Informationen über die Hintergründe von Moose. Die Qualität der eigenen Dokumente
ist jedoch nicht völlig zufrieden stellend und auch nicht aktuell. Es existiert ein extra Internet-
auftritt, der unter http://www.themoosebook.org erreichbar ist und sehr viele Informationen
über die Geschichte und die Benutzung von Moose liefert. Ebenfalls liefert diese Dokumen-
tation einiges an Hintergrundwissen, beispielsweise wie die benutzten Algorithmen arbeiten.
Leider finden sich keine Informationen darüber, von wann der beschriebene Stand ist. Zum
Teil sind deshalb Informationen falsch. Kommentare unter den jeweiligen Einträgen helfen
einem bei Fehler meist weiter. Diese werden jedoch überwiegend von den Entwicklern nicht
beachtet. Außerdem muss erwähnt werden, dass einige Bereiche lediglich ein “TODO“ als
Inhalt anzeigen.

Benutzerfreundlichkeit: Moose punktet leider nicht in Sachen Benutzerfreundlichkeit. Dies
fängt beim Start der Software an. Ohne die oben genannte Dokumentation ist die Benutzung
unmöglich. Fehler in der Dokumentation werden bereits hier schon offenbart. Wenn der Start
geglückt ist, kommt ein erstes Gefühl des Verlorenseins auf. Eine integrierte Hilfe-Funktion
liefert einem außer Lizenz Informationen und ein Verweis auf den Internetauftritt keine
Hilfe. Das einzige verfügbare Kontextmenü stammt von der virtuellen Maschine, in der
Moose geladen wird. Nach dem Laden einer XML ähnlichen Datei, erhält man eine große
Auflistung von Textzeilen. Die eigentliche Komplexität des Codeanalysewerkzeuges kommt
spätestens hier negativ zur Geltung.

55

http://www.moosetechnology.org/

6 Evaluation

Abbildung 6.10: Startbildschirm der Anwendung mit dem VM Kontextmenü

Abbildung 6.11: Anzeige der Resultate aus der generierten MSE Datei

56

6.3 Werkzeuge

Ausgabe: Die meisten Ergebnisse lassen sich visuell innerhalb der GUI darstellen. Diese
liegen in einer sehr unübersichtlichen textuellen Form vor. Visualisierungen lassen sich durch
längere Ladenzeiten über nicht wirklich intuitive Vorgänge erzeugen.

Kosten: Es existieren derzeit keine kommerziellen Angebote von Moose. Der Support ist
ebenfalls kostenlos.

57

6 Evaluation

6.3.6 PMD

Untersuchte Version
5.0.0 (01.05.2012)

Lizenz
Eigene "BSD ähnlich"

Webseite
pmd.sourceforge.net

PMD ist ein statisches Codeanalysewerkzeug für Java, das aber
auch JavaScript, XML, XSL und JSP unterstützt. Es arbeitet sehr
ähnlich wie CheckStyle, unterstützt jedoch wesentlich mehr
verschiedene Tests, die auch eher tatsächliche Fehler und nicht
nur den “Codingstyle“ analysieren. Es sind weiterhin Tests (in
PMD "Rules", im Folgenden Regeln genannt) vorhanden, die
Stellen im Code finden, die auf schlechte Performance hindeu-
ten (z.B. String-, StringBuffer- und StringBuilder-Nutzung). Es
existieren Plug-ins für unzählige Entwicklungsumgebungen,
von denen einige jedoch nicht auf dem aktuellen Stand (sowohl
von Seiten der IDE, also auch von Seiten PMDs) sind. Neue
Regeln können entweder in Java geschrieben werden, in dem
eine entsprechende Klasse abgeleitet wird, in der die neue
Art der Überprüfung durchgeführt werden soll oder auch als
XPath-Ausdrücke. PMD untersucht den Java Quellcode und un-
terstützt Blacklisting auf verschiedenste Arten und Weisen.

Community/Support: PMD hat eine Mailingliste und ein Forum. Das Forum scheint nicht
sehr aktiv zu sein (etwa zwei bis vier Beiträge pro Monat), jedoch erhält man auf gestellte
Fragen, meisten noch am selben Tag eine Antwort. Die Mailingliste wird zwar frequentierter
verwendet, ist jedoch eher für interne Angelegenheiten der PMD Entwickler vorgesehen. Ein
kostenpflichtiger Support ist nicht vorhanden.

Dokumentation: Auf der Webseite von PMD ist eine ausführliche Liste über die vorhanden
Rulesets existent. Diese ist sehr ähnlich zu der von CheckStyle aufgebaut. Jede einzelne
Regel wird kurz erklärt und ein Beispiel dazu aufgeführt. Es ist auch ein Tutorial über
das Erweitern von PMD, in Form von neuen Regeln, vorhanden. Es existieren außerdem
einige andere Informationen, wie zum Beispiel Guidelines zum Aufstellen von guten Regeln
oder weiterführende Informationen für PMD Entwickler. Eine API Referenz, welche aus den
Quellcodekommentaren generiert wurde ist ebenfalls vorhanden, sie ist jedoch an vielen
Stellen unvollständig oder unzureichend.

Benutzerfreundlichkeit: PMD selbst ist als Kommandozeilentool konzipiert. Es existieren
jedoch Plug-ins für sehr viele IDEs (Eclipse, EMacs, JEdit, ...) oder Buildsysteme (Ant,
Maven, ...). Viele Plug-ins (darunter auch das Eclipse-Plug-in) sind jedoch nicht auf dem
aktuellen Stand und können somit nur eingeschränkt werden. Die letzte stabile Version
des Eclipse-Plug-ins unterstützt beispielsweise nur Eclipse in der Version 3.2.6 und ist vier
Jahre alt. Eine neue Version für PMD 5.0 und Eclipse 4 (aka Juno) ist jedoch gerade in
Arbeit, konnte aber für diese Fachstudie nicht untersucht werden. Das Ausführen über die
Konsole gestaltet sich etwas kompliziert. Rulesetdateien, welche in XML geschrieben sind

58

http://pmd.sourceforge.net/

6.3 Werkzeuge

und Verweise auf Java Klassen haben, die die entsprechenden Tests implementieren, sind
standardmäßig direkt in den Resourcen der PMD JAR-Datei verbaut und sind nicht immer
leicht zu verstehen. Externe Dateien lassen sich jedoch auch angeben. Dennoch sind die
Parameter eher unübersichtlich und schlecht dokumentiert.

Abbildung 6.12: Ruleset, welches die richtige Verwendung von clone()-Implementierungen
prüft

Ausgabe: PMD unterstützt viele verschiedene Ausgabeformate. Außer einer Plain-Text
Ausgabe sind vor allem HTML und XML hervorzuheben. Eine interessante Möglichkeit ist
es direkt XSLT Transformationen auf die generierten XML Dateien auszuführen, um so eine
Formatierung nach eigenen Vorlieben zu erhalten.

Kosten: PMD ist Open Source und somit komplett kostenfrei.

59

6 Evaluation

Abbildung 6.13: Standard HTML Report von PMD

60

6.3 Werkzeuge

6.3.7 Sonar

Untersuchte Version
3.3 (24.10.2012)

Lizenz
LGPL v3.0

Webseite
sonar.codehaus.org

Sonar ist ein unter der LGPL veröffentlichtes mehrbenutzerfähi-
ges statisches Codeanalysewerkzeug, welches webbasierend ist
und daher aus drei Komponenten besteht. Die erste Komponen-
te entspricht einer Datenbank, in der die Resultate der Analyse
gespeichert werden. Sonar bietet Unterstützung für alle gän-
gige Datenbanken Arten an. Die zweite Komponente ist ein
WebServer, in der die Ergebnisse aufbereitet untersucht werden
können. Außerdem wird hier die Konfiguration der Software
vorgenommen. Die dritte Komponente ist eine Konsolenan-
wendung, die für die Untersuchung des Quellcodes zuständig
ist. In den letzten zwei Jahren gab es mehr als 15 veröffentlichte
Versionen. Die Entwickler werben mit einer Downloadzahl von
über 100.000. Sonar benutzt standardmäßig die sehr bekannten
statischen Codeanalysewerkzeuge CheckStyle, FindBugs und
PMD als Plug-ins ab Werk. Es wird sowohl der Bytecode als

auch der Quellcode analysiert. Blacklisting wird von Sonar unterstützt.

Abbildung 6.14: Blacklisting in Sonar

Community/Support: Es existieren Mailinglisten für Benutzer und für Entwickler. Diese
werden sehr aktiv benutzt. Pro Monat kommen einige Hundert neue Nachrichten hinzu.
Es wird zwar auch bei der nicht kommerziellen Version Support seitens der Entwickler
angeboten, dieser unterscheidet sich aber aller Wahrscheinlichkeit nach stark von den
Supportleistungen der kostenpflichtigen Versionen.

61

http://sonar.codehaus.org/

6 Evaluation

Dokumentation: Die Dokumente sind auf einem aktuellen Stand und es existiert eine
API. Es existieren Tutorials, die für die Konfigurations- bzw. Einrichtungsaufgaben notwen-
dig sind, um die Software erfolgreich zu benutzen. Eine ausführliche FAQ Sektion sowie
Hilfestellungen für Entwickler runden das Ganze ab.

Benutzerfreundlichkeit: Wenn man zum ersten Mal mit der Software in Berührung kommt,
wird man nach kurzer Zeit feststellen, dass die Konfiguration und Einrichtung mehr Zeit
bedarf, als man denkt. Das Werkzeug wirbt damit, dass es einzig und allein vier kleine
Schritte sind, bis man Resultate erkennen kann. Diese Schritte sind jedoch etwas kompli-
zierter. Das Eclipse-Plug-in ist erst benutzbar, nachdem man sein Projekt vollständig durch
eine Konsolenanwendung analysiert hat. Um die Konsolenanwendung jedoch zu benutzen,
müssen erst Einstellungen im benutzten Betriebssystem vorgenommen werden und diverse
Konfigurationsdateien von Hand erstellt werden. Es existiert keine GUI, die einem die Arbeit
abnimmt. Nach der Konfiguration und einem erfolgreichem Durchlauf, kann man die er-
zeugten Resultate ansehen. Das Eclipse-Plug-in ist daher nicht im Stande die Konfigurations-
bzw. Einrichtungs-Aufgaben zu übernehmen. Es vergeht daher etwas an Zeit, bis man eine
lauffähige Software hat. Sobald man jedoch die Einarbeitungszeit hinter sich hat, ist die
Software einfach zu bedienen und die Resultate werden einem sehr ausführlich angezeigt.
Da die Ergebnisse in einer Datenbank gespeichert werden ist ein Vergleich mit mehreren
erzielten Ergebnisse sehr gut möglich. Ebenso einigt sich dieses Codeanalysewerkzeug sehr
gut, wenn mehrere Menschen am gleichen Projekt arbeiten.

Abbildung 6.15: Der Inhalt einer Konfigurationsdatei, um die Untersuchung zu starten

62

6.3 Werkzeuge

Abbildung 6.16: Anzeige während des Scans

Ausgabe: Die Resultate der Analyse werden in einer definierten Datenbank gespeichert.
Sonar selbst liefert bereits eine Datenbankart mit. Mittels Webinterface können die Resultate
eingesehen werden. Die Visualisierung erfolgt hierbei überwiegend textuell. Es gibt ausführ-
liche Statistiken, die alle leicht verständlich sind. Jedoch fehlen imposante Graphiken, um
die Resultate eindrucksvoller aussehen zu lassen.

Abbildung 6.17: Hauptseite der Resultate, die nach einem Scan angezeigt werden kann

Kosten: Die eigentliche Sonar Platform ist Open Source. Es gibt jedoch noch eine Professio-
nal Edition und eine Enterprise Edition, die kommerziell sind. Diese beinhalten neben einem
besseren Support, auch die Unterstützung weiterer (zum Teil exotischer) Programmierspra-
chen. Die Kosten verlaufen sich im mittleren fünf stelligen Bereich. Die Firma bietet für 2000

Euro einen Installations- und Konfigurationsdienst an. Zudem werden auch Schulungen
angeboten, deren Kosten bei mehreren Tausend Euro liegen. Es existieren neben kostenlose
Plug-ins auch kommerzielle Plug-ins.

63

6 Evaluation

6.3.8 Understand

Untersuchte Version
3.0.638 (02.11.2012)

Lizenz
kommerziell (Testversion

erhältlich)

Webseite
scitools.com

Understand ist eine kommerzielle Codeanalyseplattform für
viele verschiedene Programmiersprachen, darunter auch Ja-
va. Sie kommt mit einer kompletten Entwicklungsumgebung,
inklusive Code-Editor, der jedoch stark auf die Analyse und
das Reviewing von Codeprojekten, anstatt auf die tatsächli-
che Entwicklung innerhalb der IDE, ausgelegt ist. Understand
enthält dabei unterschiedliche Pakete zum erstellen von Metri-
ken, dem Prüfen von Coding-Standards oder anderen Dingen,
die auf unsaubere Programmierung hinweisen. Außerdem ist
es Understand möglich Abhängigkeiten zu analysieren und
verschiedene Graphen (UML, Kontroll-Fluss, Aufrufhierarchi-
en, ...) zu erstellen. Understand besitzt die Möglichkeit zur
Erweiterung der meisten Funktionalitäten, wie dem Messen

von Metriken oder eigenen Code-Checks, bis hin zu neuen Grapherstellungs-Algorithmen.
Diese Erweiterungen können wahlweise über eine Perl oder eine Phython Schnittstelle
gescriptet werden. Eine große Auswahl an existierenden Skripten, welche zu einem großen
Teil von Benutzern geschrieben wurden, werden direkt auf der Webseite zum Download
angeboten.

Community/Support: Understand verfügt über ein Forum, in dem Fragen sowohl zur
Verwendung der Software selbst, als auch zur Erweiterung über Skripte, diskutiert werden
können. Das Forum ist sehr aktiv und Fragen werden oft schon nach wenigen Stunden von
Mitarbeitern des Herstellers beantwortet. Außerdem ist es möglich Fragen auch an eine
Supportadresse per E-Mail zu senden.

Dokumentation: Understand ist ausgiebig dokumentiert. Die Entwicklungsumgebung ver-
fügt über eine Hilfe, die alle Komponenten der Oberfläche erklärt und an Beispielen ver-
deutlicht. Außerdem existieren auf der Webseite ein FAQ und Videotutorials, in denen
einige Features der Software genau erklärt werden. Von den Entwicklern wird auch ein Blog
verwaltet, in dem Neuigkeiten über das Projekt angekündigt und vorgestellt werden. Die Perl
und Phyton APIs zur Erweiterung besitzen beide sehr lange API Referenzbeschreibungen,
welche alle Funktionen oder Klassen der Schnittstelle beschreiben.

Benutzerfreundlichkeit: Understand ist ein großes Framework, dass zwar über eine graphi-
sche Benutzeroberfläche verfügt, die an eine IDE erinnert, jedoch ist diese oft unübersichtlich
strukturiert und macht einen überladenen Eindruck. Dies führt dazu, dass viele Funktio-
nalitäten nicht intuitiv bedienbar sind und vieles in der Hilfe nachgeschaut werden muss.
Dennoch sind alle Dinge über grafische Elemente einstellbar, die man manchmal eben einfach
nur suchen muss.

64

http://www.scitools.com/

6.3 Werkzeuge

Abbildung 6.18: Konfigurationsdialog zum Auswählen von Checks, welche über der Code-
basis ausgeführt werden sollen

Ausgabe: Es werden viele verschiedene Ausgabemöglichkeiten unterstützt, die in der Regel
alle innerhalb der grafischen Oberfläche angezeigt werden. Understand ist es dabei möglich
Befunde im Code direkt auf die entsprechenden Codezeilen zurückzuspiegeln. Außerdem
lassen sich für Metriken und Befunde Treemaps erstellen, welche einen guten Überblick über
Schwachstellen der Codebasis liefern. Alle Diagramme, Graphiken und Tabellen lassen sich
auch in entsprechende Formate exportieren (meist CSV oder XML).

Kosten: Understand ist kostenpflichtig. Der tatsächliche Preis ist nur auf Anfrage erhältlich.
Es steht jedoch eine 16 Tage Testversion zur Verfügung, die innerhalb des Testzeitraums
uneingeschränkt genutzt werden kann. Der Support ist nicht an spezielle Supportverträge
gekoppelt oder zeitlich begrenzt, kostet also nichts extra.

65

6 Evaluation

Abbildung 6.19: Treemap, welche das Verhältnis von Codezeilen zu Kommentarzeilen an-
zeigt

66

6.4 Resultat

6.4 Resultat

Die detaillierten Beschreibungen der statischen Codeanalysewerkzeuge stellen das Resultat
der Evaluationsphase dar. Dieses kann in kompakter Form der nachfolgenden Tabelle ent-
nommen werden.

Kriterium C
he

ck
St

yl
e

C
on

Q
A

T

Fi
nd

B
ug

s

JL
in

t

M
oo

se

PM
D

So
na

r

U
nd

er
st

an
d

Community/Support 	 � ⊕ 	 	 � � ⊕

Dokumentation � � � 	 	 � � ⊕

Benutzerfreundlichkeit � ⊕ ⊕ � 	 	 ⊕ �

Kosten ⊕ � ⊕ ⊕ ⊕ ⊕ � 	

Lizenz ⊕ ⊕ ⊕ � � ⊕ ⊕ ⊕

Blacklisting 	 ⊕ ⊕ 	 	 ⊕ ⊕ ⊕

Performance ⊕ ⊕ ⊕ ⊕ 	 ⊕ ⊕ �

Quellcode vs. Bytecode ⊕ ⊕ 	 	 ⊕ ⊕ ⊕ ⊕
Normierte Punktzahl in % 53 71 73 32 23 60 71 75

Endnote 4+ 2- 2- 5 5 3- 2- 2-

Tabelle 6.5: Resultat der Evaluation mit Bewertung der Kriterien

67

7 Empfehlung

Nach unserer Evaluation konnten vier Codeanalysewerkzeuge die Bestnote (2-) erreichen.
Dennoch existieren teilweise große Unterschiede zwischen den einzelnen Codeanalysewerk-
zeugen, so dass eine Bestimmung eines eindeutigen Siegers nicht einfach möglich ist. Viel
mehr hängt dies von dem konkreten Einsatzgebiet und den persönlichen Vorlieben den
Benutzers ab. Im Folgenden wollen wir auf die Individualitäten der vier Gewinner-Werkzeug
eingehen, so dass der Leser nach eigenem Ermessen, das für ihn richtige Codeanalysewerk-
zeug wählen kann. Vor allem sollte klar sein, dass in unserer Bewertung nicht auf den
tatsächlichen Funktionsumfang der Codeanalysewerkzeuge eingegangen wurde, da dieser
von Werkzeug zu Werkzeug sehr stark variiert und ein guter Vergleich damit unmöglich
wird. Das Hauptaugenmerk lag bei dieser Fachstudie auf anderen Punkten (siehe Abschnitt
5).

Eines der Codeanalysewerkzeuge sticht besonders heraus: FindBugs. Denn anders als die
übrigen drei Codeanalysewerkzeuge ist FindBugs ein auf ein Gebiet spezialisiertes Einzel-
werkzeug und keine komplette Plattform zur statischen Codeanalyse. FindBugs ist nach
unseren Kriterien, die vor allem Erweiterbarkeit in den Vordergrund stellen, sehr gut bewer-
tet worden. Der Funktionsumfang ist jedoch durch seine Ausrichtung auf ein Themengebiet
eingeschränkt. Bei den anderen Codeanalysewerkzeugen, die eher eine Plattform für ver-
schiedene Funktionalitäten bilden, ist dies nicht der Fall. Dies geht sogar so weit, dass die
Codeanalysewerkzeuge ConQAT und Sonar, FindBugs (oder auch CheckSytle und PMD)
einbinden können und damit den gesamten Funktionsumfang dessen in sich integrieren.

Sonar bietet einige Besonderheiten, wie dass es auf einem Datenbanksystem aufbaut, in dem
es alle Ergebnisse vorhergegangener Tests abspeichert und dass es ein Webinterface liefert,
um diese bequem und übersichtlich darzustellen. Dies kann insbesondere dann interessant
sein, wenn das Codeanalysewerkzeug produktiv in einem Team eingesetzt wird, so dass
jeder Entwickler eine gute Übersicht über die aktuelle Qualität des Codes erhalten kann.

ConQAT punktet besonders im Bereich der Benutzerfreundlichkeit. Hier ist es sehr einfach
die auszuführenden Analyseschritte in einem Graphen zusammenzustellen. Auch die Ausga-
be wird sehr ordentlich und übersichtlich in vielen unterschiedlichen Formaten dargestellt.
Auch eine Trendanalyse darüber, wie sich ein Softwareprojekt im Laufe seines Daseins
entwickelt wird einfach unterstützt. Wichtiges Merkmal von ConQAT ist, im Gegensatz zu
den anderen beiden Analyseplattformen mit der Bestnote, dass ConQAT sehr gut in Eclipse
integriert ist. Dies kann vor allem für einen Entwickler, welcher in dieser IDE auch seine
normale Arbeit verrichtet, von Vorteil sein.

Understand, das einzige kommerzielle Codeanalysewerkzeug in der Endauswahl, kommt
mit einer eigenen grafischen Oberfläche mit integriertem Editor, die stark an eine IDE

69

7 Empfehlung

erinnert. Diese ist jedoch nicht auf tatsächliches Entwickeln, sondern auf Tätigkeiten im
Rahmen der statischen Codeanalyse ausgelegt. Wichtiger Unterschied ist außerdem, dass
man Erweiterungen nicht direkt am Quellcode in Java vornehmen kann (da dieser nicht
verfügbar ist), sondern diese in Perl oder Python über die speziell dafür angebotenen APIs
vornehmen muss.

70

Erklärung

Wir versichern, diese Arbeit selbstständig verfasst zu haben. Wir haben keine anderen als
die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens. Wir haben diese
Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

«Ort, Datum, Unterschriften»

Marius Bauer, Michael Nistor, Albert Ziegenhagel

Alle URLs wurden zuletzt am 08.11.2012 geprüft.

71

	1 Einleitung
	1.1 Begriffe
	1.2 Fokus der Fachstudie
	1.2.1 Wichtige Anforderungen
	1.2.2 Nicht berücksichtigte Aspekte

	1.3 Gliederung

	2 Ablauf der Fachstudie
	2.1 Phasen
	2.2 Zeitlicher Verlauf

	3 Marktüberblick
	4 Nutzungsszenario
	5 Bewertungskriterien
	5.1 K.O. Kriterien
	5.1.1 Erweiterbarkeit
	5.1.2 Updates
	5.1.3 Plattform
	5.1.4 Funktionsumfang

	5.2 Nicht relevante Kriterien
	5.2.1 Art/Architektur

	5.3 Weitere Kriterien
	5.3.1 Community/Support
	5.3.2 Dokumentation
	5.3.3 Benutzerfreundlichkeit
	5.3.4 Blacklisting
	5.3.5 Kosten
	5.3.6 Lizenz
	5.3.7 Performance
	5.3.8 Quellcode vs. Bytecode

	6 Evaluation
	6.1 Voruntersuchung
	6.2 Bewertungsschema
	6.3 Werkzeuge
	6.3.1 Checkstyle
	6.3.2 ConQAT
	6.3.3 FindBugs
	6.3.4 JLint
	6.3.5 Moose
	6.3.6 PMD
	6.3.7 Sonar
	6.3.8 Understand

	6.4 Resultat

	7 Empfehlung

