Institut fiir Softwaretechnologie
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Fachstudie Nr. 167

Marktanalyse statischer
Codeanalysewerkzeuge fur Java

Marius Bauer Michael Nistor

Albert Ziegenhagel
Studiengang: Softwaretechnik
Prifer: Prof. Dr. Stefan Wagner
Betreuer: Dipl.-Ing. Jan-Peter Ostberg
begonnen am: 29. Mai 2012
beendet am: 30. November 2012

CR-Klassifikation: D.2.8,D.2.4

Inhaltsverzeichnis

1 Einleitung 9
1.1 Begriffe 9

1.2 Fokus der Fachstudie L 9
1.2.1 Wichtige Anforderungen 10

1.2.2 Nicht berticksichtigte Aspekte 10

1.3 Gliederung 10

2 Ablauf der Fachstudie 11
2.1 Phasen 11
2.2 Zeitlicher Verlauf 12

3 Marktiiberblick 15
4 Nutzungsszenario 29
5 Bewertungskriterien 31
51 K.O.Kriterien L 31
5.1.1 Erweiterbarkeit L 31

512 Updates L 32

5.1.3 Plattform. L 32

5.1.4 Funktionsumfang 32

5.2 Nicht relevante Kriterien oo L. 33
5.2.1 Art/Architektur 33

5.3 Weitere Kriterien 33
5.3.1 Community/Support 33

5.3.2 Dokumentation L o 34

5.3.3 Benutzerfreundlichkeit. 0 oo L. 34

53.4 Blacklisting o 35

53.5 Kosten 35

53.6 Lizenz 35

53.7 Performance. L 36

5.3.8 Quellcode vs. Bytecode 36

6 Evaluation 37

6.1 Voruntersuchung 37
6.2 Bewertungsschema L L L. 39
6.3 Werkzeuge L 42
6.3.1 Checkstyle L 42
6.3.2 ConQAT e 46
633 FindBugs. 50
6.3.4 JLINt e e 53
6.3.5 Moose e 55
6.3.6 PMD 58
6.3.7 Sonar e 61
6.3.8 Understand 64

6.4 Resultat. e 67
7 Empfehlung 69

Abbildungsverzeichnis

2.1

6.1
6.2
6.3
6.4

6.5
6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

6.19

Ablauf der Fachstudie mit Phasen und Meilensteinen. Legende: Einar = Einar-
beitung in das Thema , Rech = Recherche nach auf dem Markt befindlichen
statische Codeanalysewerkzeuge , Info = Erste Analyse der Werkzeuge , Vorb
= Vorbereitung auf Zwischen- bzw. Endvortrag , Vortr = Zwischen- bzw. End-
vortrag Bewer = Erstellung des Bewertungsschemas , Vor = Voruntersuchung
der gefundenen Werkzeuge , break = Pause Analy = Evaluation , Korr =

Korrekturphase , Abgab = Abgabe der Fachstudie 13
Ausschnitt der Konfigurationsdatei fiir die Sun Coding Conventions 43
Screenshot nach der Ausfiihrung von CheckStyle im Eclipse-Plug-in 44
XML Ausgabe von CheckStyle 45
Der aus Blocks (Funktions-Bausteinen) aufgebaute Analyse-Graph und eine

Liste der verfiigbaren Blocks, 47
Grafische Ansicht der Analyse-Konfiguration in Eclipse mit Bearbeitungsmog-

lichkeiten L 48
HTML-Ausgabe einer Clone-Detection-Analyse mit Visualisierung der gefun-

denen Codeduplikate als TreeMap 49
Eingabe-Konfiguration von FindBugs 51
Blacklisting Moglichkeiten o L. 51
Grafische Ansicht der GUI mit den Resultaten nach der Analyse 52
Startbildschirm der Anwendung mit dem VM Kontextmenti 56
Anzeige der Resultate aus der generierten MSE Datei 56
Ruleset, welches die richtige Verwendung von clone()-Implementierungen priift 59
Standard HTML Report von PMD 60
Blacklisting in Sonar L o 61
Der Inhalt einer Konfigurationsdatei, um die Untersuchung zu starten 62
Anzeige wahrend desScans L L L oL 63
Hauptseite der Resultate, die nach einem Scan angezeigt werden kann 63
Konfigurationsdialog zum Auswéhlen von Checks, welche iiber der Codebasis

ausgefiihrt werdensollen 65

Treemap, welche das Verhiltnis von Codezeilen zu Kommentarzeilen anzeigt . 66

Tabellenverzeichnis

6.1
6.2
6.3

6.4
6.5

Ergebnis der Voruntersuchung anhand der K.O.-Kriterien 39
Punktzahl fiir jeden Wert auf der Bewertungsskala 40
Gewichtung der Bewertungskriterien 41
Endnote anhand der erreichten normierten Punktzahl 41
Resultat der Evaluation mit Bewertung der Kriterien 67

Kurzfassung

Im Rahmen dieser Fachstudie werden statische Codeanalysewerkzeuge fiir Java unter-
sucht und bewertet. Die Grundlage der Bewertung entsteht durch Absprache zwischen den
Autoren dieser Fachstudie und Herr Ostberg. Codeanalysewerkzeuge welche die grundle-
genden Anforderungen iiberstehen, werden einer genaueren Evaluation unterzogen. Am
Ende wird auf Grundlage der Evaluation eine Empfehlung fiir ein Codeanalysewerkzeug
ausgesprochen.

Abstract

In this Fachstudie statistical code analysis tools for Java will be studied and evaluated. The
basis of the evaluation is derived through an agreement with the authors of this report an
Mr. Ostberg. Code analysis tools which outlast these basic requirements will be evaluated
thoroughly. At the end of the report a recommendation for one code analysis tool will be
issued based on the evaluation.

1 Einleitung

Die Qualitdt von Software wird immer wichtiger und soll moglichst wahrend dem gesamten
Entwicklungszyklus einer Software sichergestellt sein. Dafiir werden heutzutage eine grofie
Anzahl von Software-Werkzeugen eingesetzt, die den Entwickler dabei unterstiitzen sollen.
Wihrend der Implementierung werden deswegen u. a. statische Codeanalysewerkzeuge
verwendet, die hadufig fest in den Entwicklungsprozess integriert sind.

Allerdings gibt es eine Vielzahl von Codeanalysewerkzeugen am Markt, kommerzielle wie
Open Source, die iiber unterschiedlichste Eigenschaften verfiigen. Diese reichen vom ange-
botenen Funktionsumfang, tiber die Benutzbarkeit, bis hin zur Qualitdt der Ausgabe. Diese
Fachstudie soll deswegen einen Uberblick iiber die am Markt befindlichen Codenanalyse-
werkzeuge bieten sowie diese evaluieren und bewerten.

1.1 Begriffe

Statische Codeanalyse Der Begriff statische Codeanalyse umfasst die Untersuchung des
Quell- oder Bytecodes, ohne den Code auszufiihren. Wird der Code fiir die Analyse aus-
gefiihrt, spricht man von dynamischer Codeanalyse. Statische Codeanalyse umfasst z. B.
die Messung von Umfangs- und Qualitdtsmetriken, die Analyse des Datenflusses oder die
Konformitat der Softwarearchitektur mit dem Architekturentwurf.

Erweiterbarkeit Im Kontext der Fachstudie ist fiir die Erweiterbarkeit nicht notwendigerwei-
se die Verfiigbarkeit des Quellcodes erforderlich. Auch eine spezifizierte und dokumentierte
Schnittstelle oder ein Plug-in-System eines, z. B. kommerziellen, Codeanalysewerkzeugs
erfiillt den Begriff der Erweiterbarkeit.

1.2 Fokus der Fachstudie

Das Nutzungsszenario der Fachstudie im universitiaren Bereich, legt den Fokus der Markt-
analyse nicht auf den produktiven Einsatz eines Codeanalysewerkzeuges, sondern auf die
Moglichkeiten der Forschung und Weiterentwicklung. Dies hat Auswirkungen auf die an
das Codeanalysewerkzeug gestellten Anforderungen.

1 Einleitung

1.2.1 Wichtige Anforderungen

Aus dem Fokus der Fachstudie ergeben sich die folgenden wichtigen Anforderungen:
Erweiterbarkeit, Qualitdt und Umfang der Dokumentation, Aktivitit der Community und
Supportleistungen sowie Benutzerfreundlichkeit und Qualitdt der Ausgabe.

1.2.2 Nicht beriicksichtigte Aspekte

Aus dem selben Grund finden folgende Untersuchungsaspekte keine oder nur geringe
Berticksichtigung: Quantitit und Qualitit der Befunde und Ergebnisse, Integrierbarkeit
in den Entwicklungsprozess und die Entwicklungsumgebung sowie die Performanz der
Untersuchung.

1.3 Gliederung

Die Fachstudie ist in folgender Weise gegliedert:

Kapitel 2 — Ablauf der Fachstudie: Enthilt die Beschreibung der einzelnen Phasen der Fach-
studie und einen Terminplan mit allen Meilensteinen.

Kapitel 3 — Marktiiberblick: Gibt eine moglichst vollstindige Auflistung und Kurzbeschrei-
bung aller am Markt vorhandenen statischen Codeanalysewerkzeuge fiir Java.

Kapitel 4 — Nutzungsszenario: Beschreibung des Szenarios, in dem das in der Fachstudie
empfohlene Codeanalysewerkzeug spater eingesetzt wird.

Kapitel 5 — Bewertungskriterien: Definition und Beschreibung der K.O.- und Bewertungs-
kriterien, inklusive Gewichtung und Bewertungsskala fiir jedes einzelne Bewertungs-
kriterium.

Kapitel 6 — Evaluation: Enthélt zum einen die Definition des Bewertungsschemas, anhand
dessen die Platzierung der evaluierten Codeanalysewerkzeuge ermittelt wird, und zum
anderen die Voruntersuchung aller Codeanalysewerkzeuge aus der Marktiibersicht
entsprechend der K.O.-Kriterien. Die so ermittelten Codeanalysewerkzeuge werden
anschlieffend detailliert auf die hin Bewertungskriterien untersucht und bewertet.

Kapitel 7 — Empfehlung: Abschlieffend wird auf Grundlage der Evaluation eine Empfehlung
fiir ein oder mehrere Codeanalysewerkzeuge ausgesprochen.

10

2 Ablauf der Fachstudie

In diesem Kapitel wird der Ablauf der Fachstudie vorgestellt, die im Zeitraum von sechs
Monaten vom 29.05.2012 bis 30.11.2012 durchgefiihrt wurde.

2.1 Phasen

Beginn der Fachstudie und Projektplan

Die Fachstudie begann am 29.05.2012 mit einem Kick-off-Meeting. Dipl.-Ing. Jan-Peter Ost-
berg stellte uns als Vertreter des Instituts fiir Softwaretechnologie die Problemstellung
hinsichtlich der Auswahl eines statischen Codeanalysewerkzeugs fiir Java vor, dessen Lizen-
zierung eine Erweiterung im universitaren Rahmen erlaubt. In einem spéteren Analysege-
sprach konnten wir uns anhand vorbereiteter Fragen einen detaillierten Uberblick von den
Anforderungen an das auszuwdhlende Codeanalysewerkzeug verschaffen. Im Anschluss an
das Kick-off-Meeting und das Analysegesprach planten wir die Phasen und Meilensteine
der Fachstudie.

Recherche zum Marktiiberblick

Als Erstes verschafften wir uns einen moglichst vollstindigen Uberblick der am Markt
vorhandenen statischen Codeanalysewerkzeuge fiir Java. Zu jedem Werkzeug listeten wir
relevante Informationen wie die Lizenz, den Entwicklungsstand und die Kernaussagen der
Hersteller auf.

Analyse der Bewertungskriterien

Anhand der detaillierten Anforderungen entwickelten wir in Absprache mit Herr Ostberg
Bewertungskriterien sowie deren Relevanz. Einige der Kriterien miissen auf jeden Fall erfiillt
werden und wurden deswegen als K.O.-Kriterien eingestuft. Auch die Gewichtung der
Kriterien erfolgte in Absprache mit Herr Ostberg. Am Ende dieser Phase hielten wir am
09.08.2012 einen Zwischenvortrag, in dem die bisherigen Ergebnisse, die Marktiibersicht und
die Bewertungskriterien, vorgestellt wurden.

11

2 Ablauf der Fachstudie

Voruntersuchung anhand der K.O.-Kriterien
Im Anschluss an die Definition der Bewertungskriterien untersuchten wir alle wahrend

der Recherche gefundenen Codeanalysewerkzeuge auf die K.O.-Kriterien, um die fiir die
ausfiihrliche Evaluation geeigneten Werkzeuge herauszufiltern.

Definition eines Bewertungsschemas

Zeitgleich definierten wir ein Bewertungsschema, in dem die erreichbaren Punkte und die
Umrechnung in eine Endnote fiir die zu untersuchenden Werkzeuge festgelegt wurden.

Evaluation der Werkzeuge
Anhand der vorher ausgearbeiteten Bewertungskriterien, evaluierten wir die nach der Vor-

untersuchung verbleibenden Codeanalysewerkzeuge. Die Bewertung der Kriterien erfolgte
sowohl in textlicher als auch in tabellarischer Form.

Erarbeitung der Empfehlung

Auf Grundlage der Evaluation sprachen wir anschlieffend eine Empfehlung fiir eines bzw.
mehrere Codeanalysewerkzeuge aus, da sich kein eindeutiger Sieger feststellen liefs.

Abgabe und Ende der Fachstudie

Die Ubergabe der fertigen Fachstudie an Herr Ostberg, am 30.11.2012, und der Abschluss-
vortrag, der am 29.11.2012 gehalten wurde, bildeten das Ende der Fachstudie.

2.2 Zeitlicher Verlauf

Das Gantt-Diagramm in Abbildung 2.1 zeigt den zeitlichen Ablauf der in Abschnitt 2.1
beschriebenen Phasen und die erreichten Meilensteine M1 Marktiibersicht (12.07.2012),
M2 Definition der Bewertungskriterien (02.08.2012), M3 Zwischenvortrag (09.08.2012), M4
Evaluation (01.11.2012), M5 Empfehlung (08.11.2012), M6 Abschlussvortrag (29.11.2012) und
My Abgabe (30.11.2012).

12

2.2 Zeitlicher Verlauf

arpmsyPe 19p aqedqy = qedqy ¢ aseydin)yaiIoy = 110y ‘ uoneneaq = A[feuy
asneJ = Yea1q ‘ 93NIZYINL USULPpUNa3 I9p JUNYODNSISJUNIOA = IOA * SEWDYISS3UN}IOMIY SOp Suny[elsig =
I9MIg FenIOAPUH "MZ(-UdUJSIMZ = I}IOA ‘ eI IOAPUY "MZ(-UaydSImM]Z Jne Sunjordqiop = qIoA ‘ 93Naz)Iap
I9p IsA[euy 9)s1g = OJu] ‘ 93NIZ IIMISA[eULIPO)) SYDSHE)S USDI[PULI(IILIA WP JNe Ydeu SydIayday =

ooy “ ewaY [Sep ur Sunjqreury = Ieury :9pua3o "USUIdISUS[Id]A pun UdseyJ J1W STpnisyde,] Iop jne[qy :I'c Sunpqqy

Hop,
qiop,

LI

qefigy
oy —
aln
S

Aleuy
VEETL
ILTS

1amag

Mo,

CIET

Rl

wazag TLOZ 13quanop ZLOZ 1390p0 ZLOZ1aquadasg ZLOZ nBny ZLoz e ZLOZ tunp

chkoz el

13

3 Marktuberblick

In diesem Kapitel werden die derzeit verfiigbaren statische Codeanalysewerkzeuge vorge-
stellt, die mindestens JAVA unterstiitzen. Die verschiedenen Tools werden stichwortartig
beschrieben. Es wird keine Garantie auf Richtigkeit gegeben, da die hier angegebenen Infor-
matione von den Herstellern und/oder Vertreiber stammen. Viele Hersteller kommerzieller
Tools geben keine dffentlichen Informationen iiber die derzeitige Versionsnummer heraus. In
diesem Fall, wird die jeweilige Versionsart von uns als unbekannt deklariert.

Agiled StructureViews

> Reverse Engineering Tool zum Erstellen von UML Dia-
grammen.

> Eclipse-Plug-in

> Kostenlose Version fiir nicht kommerzielle Zwecke er-
haltlich

Bauhaus Suite

> Untestiitzung von: C, C++, C#, Java und Ada

> Erkennung von Stilverstofe, toten Code, Metrikausrei-
Ber, duplizierten Code, zyklische Abhangigkeiten und
Architekturverstofsen

> Hohe Anpassbarkeit bzw. Erweiterbarkeit.

> Optimierung auf Simplizitat

P &
EAgile]
StructureViews

Untersuchte Version
1.7.10

Lizenz
kommerziell

Webseite
agilej.com

Axivion.

Stopping Software Erosion

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
axivion.com

15

http://www.agilej.com/
http://www.axivion.com/

3 Marktiberblick

BugScout

> Unterstiitzung von: Java, PHP, ASP and C#
> Als SaaS in der Cloud

> Erkennung von Sicherheitsliicken

> Benutzerdefinierte Sicherheitsregeln

> Uberpriifung des Codes auf best practices’

Checkstyle

> Grofle Ahnlichkeiten zu PMD
> Benutzung von Regeln

> Erkennt duplizierten Code, Richtigkeit von JavaDoc
Kommentaren, Zeichenabstiande...

> Plug-ins fiir gdngige Entwicklungsumgebungen vorhan-
den

> Hoher Konfigurationsgrad

Classycle

> erkennt zyklische Abhingigkeiten
> Erstellt HTML-Berichte

16

%
buguroo

offervive recurity

Untersuchte Version
Unbekannt
Lizenz
kommerziell
Webseite
buguroo.com

Jblic Cle
Dean

Untersuchte Version
5.6 (18.09.2012)

e

Lizenz
LGPL

Webseite
checkstyle.sourceforge.net

O
Classycle
N0

Untersuchte Version
1.4 (10.04.2011)

Lizenz
BSD License

Webseite
classycle.sourceforge.net

https://buguroo.com/en/products/bugscout/
http://checkstyle.sourceforge.net/
http://classycle.sourceforge.net/

Clirr

L
> Uberpriift Bibliotheken und Binar-Dateien auf Kompa- - r r
tibilitat zu <eren Versionen
Untersuchte Version
0.6 (27.09.2005)

Lizenz
Apache Software License

Webseite
sourceforge.net/projects/clirr

Condenser Untersuchte Version

> Clone-Erkennung und automatische Korrektur 1.06 (30:12.2002)

Lizenz
MIT License

Webseite
condenser.sourceforge.net

> Untersucht Java Quellcodeverzeichnisse

ConQAT

—.
> Integrierte Visualisierung der Ergebnisse co n
> Aggregation von Qualitdtsmetriken zur schnellen Uber- Untersuchte Version

sicht der Qualitit
Clone-Erkennung
Architektur-Konformitéts-Analyse

Integration von anderen Codeanalysewerkzeugen wie
z.B. FindBugs und PMD

Erweiterbares Framework (Plug-in Architektur)
Trendanalyse zur Messung der Qualitét tiber die Zeit
Kostenpflichtiger Support verfiigbar

Tutorials und ausfiihrliche Dokumentation verfiigbar

2011.9 (30.09.2011)

Lizenz
Apache License 2.0

Webseite
congat.org

17

http://sourceforge.net/projects/clirr/
http://condenser.sourceforge.net/
https://www.conqat.org/

3 Marktiberblick

Coverity SAVE

> Datenflussanalyse

> Erkennt Sicherheitsliicken
> Fehlererkennung

> Parellele Codeanalyse

> Inkrementelle Analyse, d.h. nur gednderter Code wird
analysiert

Dependecy Finder

> Erkennt Abhédngigkeiten
> Objektorientierte Metriken

Dependometer

> Unterstiitzung fiir: Java, C++ und C#

> Erzeugt einen ausfiihrlichen HTML Report
> Erkennt Zyklen

> Erkennt Verstofie gegen die Architektur

> Errechnet Metriken

18

¢) coverity’

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
coverity.com

Untersuchte Version
1.2.1 (29.11.2010)

Lizenz
BSD License

Webseite

sourceforge.net/projects/depfind

Untersuchte Version
1.2.5 (28.02.2011)

Lizenz
VPL 1.0.2

Webseite
source.valtech.com

http://www.coverity.com/products/static-analysis.html
http://sourceforge.net/projects/depfind/
http://source.valtech.com/display/dpm/Dependometer

devKing add-on for checKing QA

> Plug-in fiir die Webapplikation checkKing QA
> Unterstiitzt Java, JSP, JavaScript, HTML and XML
> Erstellt Berichte

> Source Code wird auf die Einhaltung einer Vielzahl von
Regeln tiberpriift

> Automatische Fehler Praventionsmafinahmen

DevPartner

> Qualitdt und Komplexitdt des Codes

> Erkennung von Speicherlecks

> Thread-Analyse und Erkennung von Dead-Locks
> Code-Uberdeckung

> Unterstiitzt mehrere Sprachen

DMS Software Reengineering Toolkit

> Analysiert direkt den Quellcode

> Komplette Refaktoringkette vom Codeparsen zur Qua-
litatsanalyse {iber Restrukturierung bis hin zur automa-
tischen Codegenerierung und Portierung

> Generischer Aufbau in Modulen fiir leichte Erweiterbar-
keit

> Module miissen einzeln zusammengestellt und gekauft
werden

@optimyth

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
optimyth.com

L o [
[]
Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
microfocus.com

Untersuchte Version

unbekannt

Lizenz
kommerziell

Webseite
www.semdesigns.com

19

http://www.optimyth.com/devking/devking-add-on-for-checking-qa
http://www.microfocus.com/products/micro-focus-developer/devpartner/index.aspx
http://www.semdesigns.com/products/DMS/DMSToolkit.html

3 Marktiberblick

DoctordJ - Java analyzer Untersuchte Version

> Untersucht *java Dateien 512 (22.08.2006)

Lizenz
LGPL v2

Webseite
sourceforge.net/projects/doctorj

> Erkennt Rechtschreibfehler und andere hdufige Fehler

FindBugs

> Analysiert Bytecode

> Fehlererkennung

> Auch als Plug-in fiir Eclipse

Untersuchte Version
2.0.1 (12.07.2012)

Lizenz
LGPL

Webseite
findbugs.sourceforge.net

HP Fortify Static Code Analyzer (SCA)

Untersuchte Version

> Erkennt Sicherheitsliicken in Software unbekannt
Li
> Schneller Scan des Source Codes 1zenz'
kommerziell
Webseite
fortify.com

20

http://sourceforge.net/projects/doctorj/
http://findbugs.sourceforge.net/
https://www.fortify.com/products/hpfssc/source-code-analyzer.html

Imagix 4d

> fiir C,C++ und Java Quellcode Illl_agl_xg

> Erzeugt unterschiedlichste Diagramme auf verschiede- Untersuchte Version
nen Abstraktionsebenen und hebt Beziehungen/Abhéan- 7.3.2
gigkeiten vor Lizenz

> Findet 20 verschiedene potentielle Fehlerquellen im Co- kommerziell (Testversion
de erhiltlich)

> Erstellt Codemetriken und analysiert Flussdiagramme Webseite

) imagix.com
> Unterstiitzt auch das Erstellen von Dokumentation

JarAnalyzer Untersuchte Version

> Analysiert jar-Dateien 1.2 (31.07.2000)

> Erkennt Abhingigkeiten zwischen zwei oder mehreren legnz
; . BSD Licence
jar-Dateien
‘] Webseite
> Graphische Ausgabe der Ergebnisse Kirkk.com
JCSC
> Erkennt Abweichungen vom Coding-Standard J{ C
Jara Coding y if

} Standard Checker

Untersuchte Version
0.98.1 (07.07.2005)

Lizenz
GPL

Webseite
jesc.sourceforge.net

21

http://www.imagix.com/
http://www.kirkk.com/main/Main/JarAnalyzer
http://jcsc.sourceforge.net/

3 Marktiberblick

JDepend

> Untersucht Java Quellcodeverzeichnisse

> Erstellt Metriken tiber Klassen/Interfaces/Packages/ ...
und ihre Abhingigkeiten untereinander

JLint

> Untersucht Java Bytecode

> Durchfiihren einer Datenflussanalyse und Erstellen ei-
nes Lock-Graphen

> Erkennen von Fehlern

> Erkennen von Synchronisationsproblemen und Wider-
spriichen

jTest

> Datenflussanalyse
> Berechnen von Code-Metriken

> Untersucht den Source-Code

Kalistick

> Cloud-basierte Anwendung

> Aufzeichnung von Test-"footprints’

22

Untersuchte Version
2.9.1 (XX.XX.2010)

Lizenz
BSD License

Webseite
clarkware.com

Untersuchte Version
3.1.2 (11.01.2011)

Lizenz
GPL

Webseite
jlint.sourceforge.net

Jtest

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
parasoft.com

kali KA

INNOVATION FOR AGILE QA
Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
kalistick.com

http://clarkware.com/software/JDepend.html
http://jlint.sourceforge.net/
http://www.parasoft.com/jsp/products/jtest.jsp?itemId=14
http://www.kalistick.com/

Klocwork Insight

> Erkennt Sicherheitsliicken im Code
> Graphische Darstellung der Softwarearchitektur

> Unterstiitzung fiir C/C++, Java und C#

LDRA Testbed

> Erkennt Abweichungen vom Coding-Standard

Macker

> Erkennt Abweichungen von Architektur-Regeln

Moose

> Datenanalyseprogramm

> Analysiert Java, C++, XML, ...

> Erstellt Datenmodelle und kann diese analysieren
> Berechnet Metriken

> Erweiterbar und konfigurierbar

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
klocwork.com

LDRA

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
Idra.com

Untersuchte Version
0.4.2 (03.11.2003)

Lizenz
GPL

Webseite
sourceforge.net/projects/macker

Untersuchte Version
4.6 (Xx.02.2012)

Lizenz
BSD License und MIT
License

Webseite
moosetechnology.org

23

http://www.klocwork.com/products/insight/
http://www.ldra.com/index.php/en/products-a-services/ldra-tool-suite/ldra-testbedr
http://sourceforge.net/projects/macker/
http://www.moosetechnology.org/

3 Marktiberblick

PMD

> Unterstiitzt Java, C, C++ und PHP

> Plug-ins fiir alle gdngigen Entwicklungsumgebungen
(eclipse, jDeveloper, NetBeans...)

> Benutzung von statischen Regeln

> Erkennung von moglichen Bugs (leere try/catch blocke),
totem code und unnotigen Schleifen

> Neue Regeln lassen sich relativ leicht schreiben

> Zur Erkennung von duplizierten Code lédsst sich die
Erweiterung CPD benutzen

ProjectCodeMeter

> Berechnet Code-Metriken
> Berechnet Teamproduktivitdt und Kosten
> Untersucht Code auf Einhaltung von Coding-Standards

> Vergleicht berechnete Statistiken mit Marktdurch-
schnittswerten

QJ-Pro

> Erkennt Abweichungen vom Coding-Standard

> Fehlererkennung

24

DON'T SHOOT THE MESSENGER
Untersuchte Version
5.0.0 (01.05.2012)

Lizenz
BSD-style License

Webseite
/pmd.sourceforge.net

ProjectCodeMeter

Timely Source Cost Estimation

Untersuchte Version
1.23

Lizenz

kommerziell (Testversion

erhéltlich)

Webseite
projectcodemeter.com

QJ)-Fro
Untersuchte Version

2.2.0 (22.03.2005)

Lizenz
GPL

Webseite
gjpro.sourceforge.net/

http://pmd.sourceforge.net/pmd-5.0.0/
http://www.projectcodemeter.com
http://qjpro.sourceforge.net/

ResourceMiner

> Grafische Visualisierung der Code-Struktur als Abhan-
gigkeitsbaum

Rational AppScan Source Edition

> Erkennt Sicherheitsliicken im Code
> Datenflussanalyse

> Spezialisiert auf Code-Sicherheit

Sonar

> Untersucht die Software-Architektur
> Clone-Erkennung

> Uberpriifung der Komplexitit

v

Erkennt potentielle Fehler

v

Uberpriift die Einhaltung von Richtlinien
> Graphische Berichtsausgabe iiber eine Website

> Viele Erweiterungen vorhanden

v

Integration von anderen Codeanalysewerkzeugen wie
z.B. PMD, CheckStyle oder FindBugs

-

RESOURCEMINER
-

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
resourceminer.nu

.|l|

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
ibm.com

sonar

Untersuchte Version
3.3 (24.10.2012)

Lizenz
LGPL v3.0

Webseite
sonar.codehaus.org

25

http://www.resourceminer.nu/
http://www.ibm.com/software/products/de/de/appscansource/
http://sonar.codehaus.org/

3 Marktiberblick

SonarGraph (SonardJ)

> Analysiert kompilierte Klassen und Quellcode

> Graphische Strukturausgabe des zu untersuchenden
System

> Vergleich zwischen Model und Code moglich: zeigt
Unterschiede/Fehler auf

> Plug-ins fiir eclipse und intelli] verfiigbar
> Zwei Versionen verfiligbar: Architektur und Qualitat

> Weitreichende Statistiken

Soot

> Generiert vier verschiedene Zwischencodes fiir die ein-
fachere Analyse

> Aufruf-Graph-Analyse

Sotoarc/Sotograph

> Grafische Visualisierung der Code-Struktur als hierar-
chischen Baum

> Moglichkeit die Software-Architektur grafisch zu spe-
zifizieren

> Erkennt Abweichungen von der Architektur

> Auch als Plug-in fiir Eclipse

26

SONAR

QUALITY
Untersuchte Version
6.0 (01.07.2010)

Lizenz
kommerziell

Webseite
hello2amorrow.com

Untersuchte Version
2.5.0 (22.01.2012)

Lizenz
LGPL

Webseite
sable.mcgill.ca

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
hellozmorrow.com

http://www.hello2morrow.com/products/sonargraph
http://www.sable.mcgill.ca/soot/
https://www.hello2morrow.com/products/sotoarc

TattleTale

> Scannt jar-Dateien
> erkennt Abhingigkeiten
> Bericht wird als HTML-Datei exportiert

> Erkennt/Entfernt ‘black-listed” APIs , Klassen Stand-
orte...

UC Detector

> Erkennt toten Code
> Erkennt unnétige Public-Deklarationen

> Auch als Eclipse-Plug-in

Understand

> Komplette IDE mit Code Editor

> Kann verschiedenste Codemetriken erzeugen: Codezei-
len, Code-Coupling, ...

> Codeverifikation gegen 'Coding-Standards” und Pro-
grammierrichtlinien (z.B. Effective C++) oder eigen de-
finierte Standards

> Kann Klassen/Objekt Abhédngigkeiten aufzeigen

> Fiir Java, Ada, C/C++, C# Fortran, JOVIAL, Pascal,
PL/M, VHDL, Cobol, Web-Sprachen, Phython (bei Java
jedoch nicht alles. z.b. Generics nicht)

> Erzeugt unterschiedliche Graphen (z.b. UML)

@@ tattletale

Untersuchte Version
1.2.0 Beta2 (17.02.2012)

Lizenz
LGPL v2.1

Webseite
jboss.org

7.‘\
® UCDetector

Untersuchte Version
1.10.0 (05.04.2012)

Lizenz
Eclipse Public License v1.0

Webseite
ucdetector.org

Understand’

Source Code Analysis & Metrics
Untersuchte Version
3.0.638 (02.11.2012)

Lizenz
kommerziell (Testversion
erhéltlich)

Webseite
scitools.com

27

http://www.jboss.org/tattletale/
http://www.ucdetector.org/
http://www.scitools.com/

3 Marktiberblick

Veracode Static Analysis

> Unterstiitzt C, C++, Java, .NET bytecode, PHP...
> Untersuchung des Byte Codes

> Erkennung von Gefdhrdungen durch Libraries, APIs,
Compileroptimierungen und 3rd party Komponenten

> Erkennung von Sicherheitsliicken

Yasca

> Unterstiitzung von: Java, C/C++, HTML, JavaScript,
ASP, ColdFusion, PHP, COBOL und weitere Sprachen

> Erkennt Sicherheitsliicken

> Fehlererkennung

> Erkennung von Performanz-Problemen

> Uberpriifung des Codes auf ‘best practices’

> Integration von anderen Codeanalysewerkzeuge wie
z.B. FindBugs, PMD und JLint

28

Untersuchte Version
unbekannt

Lizenz
kommerziell

Webseite
veracode.com

Untersuchte Version
2.21 (01.11.2010)

Lizenz
BSD Licence, GPL v2,
LGPL v2

Webseite

sourceforge.net/projects/yasca

http://www.veracode.com/products/static
http://sourceforge.net/projects/yasca/

4 Nutzungsszenario

In unserer Fachstudie gibt es keinen externen Kunden. Kunde und Betreuer sind hier
dquivalent. Es wird ein Programm gesucht, welches aus der grofien Menge der statischen
Codeanalyswerkzeuge fiir Java heraussticht. Auf Basis der Empfehlung dieser Fachstudie,
wird die SE2 Abteilung des Instituts fiir Softwaretechnologie der Universitdt Stuttgart, sich
auf ein statisches Codeanalysewerkzeug festlegen. Es ist geplant an dem empfohlenen
Codeanalysewerkzeug sukzessive Erweiterungen durchzufiihren, um eine moglichst hohe
Anpassung zu erreichen, um es fiir zukiinftige Aufgaben optimal einzusetzen.

29

5 Bewertungskriterien

In diesem Kapitel werden die Kriterien beschrieben, welche bei der Bewertung der einzel-
nen Codeanalysewerkzeuge in Betracht gezogen wurden. Fiir jedes Kriterium wurde dabei
gemeinsam mit dem Betreuer eine Gewichtung erarbeitet, um die untersuchten Codenalyse-
werkzeuge genau nach den Anforderungen qualifizieren zu konnen. Fiir eine Erkldrung der
hier verwendeten Skalen siehe Kapitel 6.2.

5.1 K.O. Kriterien

Die folgenden Kriterien sind unbedingt notwendig und fithren, wenn nicht erfiillt, zum
bedingungslosen Ausschluss eines Codenalysewerkzeuges von den weiteren Untersuchun-
gen.

5.1.1 Erweiterbarkeit

Beschreibung Erweiterbarkeit beschreibt die Moglichkeit ein Codeanalysewerkzeug den
eigenen Anforderungen entsprechend anzupassen und neu benétigte Funktionalitidt hinzu-
zufiigen.

Erweiterbarkeit kann unterschiedlich stark gegeben sein und geht deshalb mit anderen
Bewertungskriterien wie Dokumentation oder Projektaktivitit einher.

Dieses Kriterium distanziert sich jedoch von der Abwéagung tiber die Auspragung der
Erweiterbarkeit und beschiftigt sich nur mit der Tatsache, ob Erweiterbarkeit tiberhaupt
oder gar nicht gegeben ist.

Ist beispielsweise der Quellcode eines zu untersuchenden Codeanalysewerkzeuges erhiltlich
oder lassen sich Plug-ins in dieses einbinden, so ist die Erweiterbarkeit im Sinne dieses
Kriteriums erfiillt, egal wie schwer der Quellcode zu verstehen oder wie méchtig die Plug-
in-Schnittstelle ist.

Gewichtung Eine Erweiterbarkeit im Sinne dieses Kriteriums ist zwingend fiir ein weiteres
in Betracht ziehen des untersuchten Codenalysewerkzeuges notwendig.

Skala ¢© /S

31

5 Bewertungskriterien

5.1.2 Updates

Beschreibung Codeanalysewerkzeuge werden hédufig von kommerziell orientierten Firmen
oder aber auch von Programmierern in ihrer Freizeit entwickelt. Gerade bei letzteren passiert
es nicht selten, dass die Entwicklung anfangs extrem voranschreitet, mit der Zeit jedoch
stark zuriickgeht oder gar vollig aufgegeben wird. Aber auch kommerzielle Projekte ereilt
oft das Schicksal, dass diese nicht mehr lukrativ genug sind oder aus anderen Griinden nicht
weiterentwickelt werden.

Die Aktivitat im Bezug auf Updates eines Softwareprojekts beschreibt, ob dieses noch
weiterentwickelt wird und wenn ja, in welchem Mafle. Bei einem aktiven Projekt muss
davon ausgegangen werden konnen, dass neue Versionen mit Fehlerbehebungen oder
Erweiterungen veroffentlicht werden.

Gewichtung Codenalysewerkzeuge, bei welchen die letzte veroffentlichte Version langer
als sechs Monate zuriickliegt, werden von der weiteren Bewertung ausgeschlossen.

Skala ©/©

5.1.3 Plattform

Beschreibung Codeanalysewerkzeuge kommen auf Computern mit unterschiedlichsten
Architekturen und Betriebssystemen zum Einsatz. Jedoch ist nicht jedes Codeanalysewerk-
zeug auf jeder dieser Plattformen lauffihig. Dieses Kriterium beschiftigt sich mit den, vom
zu untersuchenden Codeanalysewerkzeugen unterstiitzten, Plattformen.

Gewichtung Die Codeanalysewerkzeuge miissen mindestens auf Microsoft Windows 7
lauffdhig sein und werden, wenn dies nicht erfiillt wird, von der weiteren Bewertung
ausgeschlossen.

Skala © /9

5.1.4 Funktionsumfang

Beschreibung Gerade im Bereich der statischen Codeanalyse ist der Funktionsumfang
der Werkzeugen breit gefachert. Es gibt Codeanalysewerkzeuge, welche nur auf eine ganz
besondere Art von Analyse spezialisiert sind und andere, welche gleich ein ganzes Arsenal
an verschiedener Funktionalitdt mit sich bringen. Bei diesem Kriterium geht es darum die
unterschiedlichen Funktionalititen eines Codeanalysewerkzeuges herauszufinden und zu
zdhlen.

32

5.2 Nicht relevante Kriterien

Gewichtung Da die analysierten Codeanalysewerkzeuge mit neuer Funktionalitdt erweitert
werden sollen, reicht eine Spezialisierung auf einzelne Funktionalitdten nicht aus. Ein
Codeanalysewerkzeug, das nicht mindesten drei unterschiedliche Funktionalititen bietet,
wird von der weiteren Bewertung ausgeschlossen.

Skala ¢ /S

5.2 Nicht relevante Kriterien

5.2.1 Art/Architektur
Beschreibung Codeanalysewerkzeuge gibt es sowohl als alleinstehende Programme, als
auch als Plug-ins fiir gingige Entwicklungsumgebungen wie z. B. Eclipse.

Manchmal sind auch Kombinationen moglich. Das Codeanalysewerkzeug kann alleinstehend
als Konsolenanwendung verwendet werden, aber auch in einer IDE eingebunden sein, um
so besseres visuelles Feedback und eine hohere Produktivitit zu erzielen.

Dieses Kriterium soll die Codeanalysewerkzeuge in eine dieser Klassen einteilen.

Gewichtung Dieses Kriterium ist fiir den Betreuer von keiner Bedeutung.

5.3 Weitere Kriterien

5.3.1 Community/Support

Beschreibung Ein weiterer Teil des Aktivitdtskriteriums beschreibt die Zuganglichkeit zu
Informationen. Bei einem aktiven Projekt im Bezug auf die Community ist es moglich Infor-
mationen iiber die Software zu erhalten, um diese zu verwenden oder zu erweitern. Dieser
Teil des Kriteriums setzt nicht unbedingt eine aktive Weiterentwicklung der Software voraus,
sondern bezieht sich auf eine aktive Community und angebotene Supportleistungen.

Gewichtung Die Aktivitdt im Bezug auf die Community ist von hoher Wichtigkeit und
sollte insbesondere aus Sicht der Erweiterbarkeitsmoglichkeiten, die sich aus einer hohen
Aktivitat ergeben, betrachtet werden.

Skala & /06 /o6

33

5 Bewertungskriterien

5.3.2 Dokumentation

Beschreibung Dokumentation beinhaltet alle Dokumente, die Auskunft {iber das zu un-
tersuchende Codeanalysewerkzeug (nicht jedoch der Bedienung dieses) liefern. Hierbei
kann es sich um externe Dokumente wie eine Spezifikation, Entwurfsdokumente oder
API-Beschreibungen handeln, aber auch um ausgepragte Quellcodekommentare.

Nicht gemeint sind Dokumente wie zum Beispiel das Handbuch, das zwar tiblicherweise
auch der Dokumentation zugeordnet wird, nach der Definition der hier behandelten Kriterien,
jedoch zur Benutzerfreundlichkeit beitrdgt und deshalb zu diesem Kriterium zugeordnet
wird.

Ein wichtiger Punkt dieses Kriteriums ist nicht nur das Vorhandensein einer Dokumentation,
sondern auch die Qualitiat dieser. Hierbei ist vor allem zu beachten, ob die Dokumentation
auch den aktuellen Stand der Software beschreibt und nicht bereits veraltet ist. Dokumenta-
tion, die nicht mehr die momentane Umsetzung zeigt, ist nicht von Nutzen und darf nicht
positiv in die Bewertung einfliefSen.

Gewichtung Die Dokumentation ist von hoher Bedeutung. Auch diese sollte insbesondere
dahingehend untersucht werden, dass der Quellcode (sofern vorhanden) leicht verstanden
werden kann oder dass Schnittstellen fiir Plug-ins oder andere Anbindungen zur Erweiter-
barkeit gut beschrieben sind.

Skala @& /06 /o

5.3.3 Benutzerfreundlichkeit

Beschreibung Benutzerfreundlichkeit beschreibt wie einfach ein Benutzer das Codeanaly-
sewerkzeug verwenden kann und wie wohl er sich dabei fiihlt. Dies beinhaltet einerseits wie
gut er sich intuitiv in der Umgebung des Codeanalysewerkzeuges oder dessen Eingabemog-
lichkeiten zurecht findet, aber auch wie gut die Funktionalitit und dessen Verwendung, z. B.
in einem externen Handbuch, beschrieben ist.

Auch die Aufbereitung der Ergebnisse und Verstdndlichkeit dieser fiir den Benutzer fliefdt in
dieses Kriterium ein.

Gewichtung Die Benutzerfreundlichkeit ist von hoher Bedeutung.

Skala © /06 /o

34

5.3 Weitere Kriterien

5.3.4 Blacklisting

Beschreibung Blacklisting beschreibt die Funktionalitdt einmal gefundene Fehler markie-
ren zu konnen, so dass diese bei einem weiteren Durchlauf des Codeanalysewerkzeuges
nicht mehr beméngelt werden.

Hierdurch ist es moglich Befunde, welche man nicht beheben mochte aus den Resultaten zu
streichen, um eine bessere Ubersicht mit einem Fokus auf die tatsichlich kritischen Mangel
zu gewdhrleisten. Ein Codeanalysewerkzeug welches diese Funktionalitdt bietet, wird jedoch
einem ohne diese Funktionalitdt vorgezogen.

Gewichtung Das Vorhandensein von Blacklisting ist von geringer Bedeutung.
Skala © / ©

5.3.5 Kosten

Beschreibung Handelt es sich nicht um ein Open Source Codeanalysewerkzeug, so ist dies
meist damit verbunden, dass das Codeanalysewerkzeug kauflich erworben werden muss.
Die dabei entstehenden Kosten sollen in diesem Kriterium bewertet werden. Zu beachten ist
hier auch, ob Testversionen, kostenlose Versionen fiir die nicht kommerzielle Nutzung oder
andere Vergiinstigungen z.B. durch eine EDU Version, erhiltlich sind.

Ebenso kann es Fille geben, in denen bestimmte Leistungen, wie beispielsweise der Support
oder angebotene Plug-ins, kostenpflichtig sind. Solche Faktoren fliefien ebenfalls in dieses
Kriterium mit ein.

Gewichtung Die Kosten eines Codeanalysewerkzeuges werden mittel gewichtet.
Skala ©/©/©

5.3.6 Lizenz

Beschreibung Es gibt verschiedene Lizenzierungen fiir Codeanalysewerkzeuge. Diese
regeln oft (gerade bei Open Source Werkzeugen) wie man mit Anderungen oder Erweite-
rungen der Software umgehen soll. Hierbei wird festgelegt, ob man diese verdffentlichen
darf, wenn ja in welchem MafSe und mit welchen Einschrankungen. Das Ziel dieses Kri-
teriums ist es zu bewerten, ob die Lizenzierung ein Problem bei der Erweiterungen des
Codeanalysewerkzeuges darstellt oder nicht.

35

5 Bewertungskriterien

Gewichtung Die Lizenz wird nur gering gewichtet.

Skala © /06 /o

5.3.7 Performance

Beschreibung Statische Codeanalyse beinhaltet oft aufwendige Prozesse, die eine hohe
Komplexitdt und damit lange Laufzeiten mit sich bringen. Aufierdem sind die Codebasen
welche durch solche Werkzeuge untersucht werden, nicht selten sehr grofs und erschweren
dadurch dieses Problem. Im Zusammenhang mit Continuous Integration, in der jede Nacht,
oder gar bei jedem Commit von Anderungen in ein Quellcodeverwaltungsprogramm, Tests
und statische Codeanalysen ablaufen sollen, ist die effiziente Implementierung und damit
einhergehende Performance oft ein Punkt, der in Betracht gezogen werden muss.

Gewichtung Die Performance ist von geringer Bedeutung. Das Codeanalysewerkzeug wird
vor allem zu wissenschaftlichen Zwecken eingesetzt, bei welchen die Laufzeiten nur eine
untergeordnete Rolle spielen.

Skala @& /06 /o

5.3.8 Quellcode vs. Bytecode

Beschreibung Java-Quellcode wird zuerst in Bytecode kompiliert, welcher dann von einer
Virtuellen Maschine interpretiert und ausgefiihrt wird. Codeanalysewerkzeuge kdnnen
entweder den Quellcode oder den kompilierten Bytecode untersuchen um ihre Analysen
durchzufiihren. Codeanalysewerkzeuge, die Quellcode anstatt Bytecode analysieren, sind
vorzuziehen.

Gewichtung Die Unterscheidung ob ein Codeanalysewerkzeug Quell- oder Bytecode ana-
lysiert ist von geringer Bedeutung.

Skala © /O

36

6 Evaluation

6.1 Voruntersuchung

Die gefundenen Codeanalysewerkzeuge werden einer Voruntersuchung unterzogen, um
diejenigen auszusortieren, die gegen mindestens ein K.O.-Kriterien verstofien. Dies dient in
erster Linie dazu, die Teilnehmerzahl, die fiir eine genauere Evaluation in Frage kommen, zu
verringern. Die gekiirzte Liste enthdlt darum nur noch Codeanalysewerkzeuge, die alle K.O.-
Kriterien erfiillen. Die Vorauswahl geschah mit Hilfe einer Matrix. Sie stellt dar, inwiefern
die K.O.-Kriterien von den Codeanalysewerkzeuge erfiillt wurden. Wenn mindestens ein
K.O.-Kriterium nicht erfiillt wird, wird bei dem betreffenden Codeanalysewerkzeuge auf
eine weitere Untersuchung anderer K.O.-Kriterien verzichtet.

Erklarung der Legende

Erfullt: & Alle Anforderungen des Kriteriums sind erftillt.

Nicht erfillt: © Mindestens eine Anforderung des Kriteriums ist nicht
erfiillt.

Nicht tiberpriift: ? Das Kriterium wurde im Rahmen der Fachstudie nicht
uberpriift.

Erklarung der Kriterien

Erweiterbarkeit Das Codeanalysewerkzeug ist ohne groflere Probleme erweiterbar

Updates Das Codeanalysewerkzeug befindet sich in aktiver Entwicklung
Funktionsumfang Das Codeanalysewerkzeug bietet mindestens drei verschiedene Funktionen
Plattform Das Codeanalysewerkzeug lauft mindestens unter Microsoft Windows 7

37

6 Evaluation

38

o0
Name H P &
Agile] StructureViews e ? ? 7
Bauhaus Suite e & & &
BugScout e ? ? 7
Checkstyle e & & o
Classycle ® & 6 ?
Clirr Sl ° ?
Condenser e e ? 7
ConQAT & & & D
Coverity SAVE e ? 7 7
Dependency Finder ol ? ?
Dependometer c Bl ? ?
devKing add-on for checKing QA e ? 7 7
DevPartner e ? ? 7
DMS Software Reengineering e ? ? 2
Doctor] - Java analyzer e a ? 2
FindBugs @ & & &
HP Fortify Static Code Analyzer (SCA) & 2?2 2 2
Imagix 4d e ? 7 7
JarAnalyzer e e ? 7
JCsC Sl ° ?
JDepend e e ? 7
JLint @ & & O
jTest e ? 7 7
Kalistick e ? ? 2
Klocwork Insight e ? 7 7
LDRA Testbed e ? ? 7

6.2 Bewertungsschema

UC Detector

Understand

o0
i
Name H P & &
Macker @ e ? 7
Moose e & & O
PMD @ & & o
ProjectCodeMeter e ? 7?7 7
QJ-Pro e e ? 7
ResourceMiner ey ? ? 7
Rational AppScan Source Edition &€ ? 2 ?
Sonar e & & o
SonarGraph e ? 7?7 7
Soot ® & |6 ?
Sotoarc/Sotograph e ? ? 7
TattleTale ® 4
@
®
S

~ (D | D |D
~ D ||D D
~J

Veracode Static Analysis

@
O
~
N

Yasca

Tabelle 6.1: Ergebnis der Voruntersuchung anhand der K.O.-Kriterien

6.2 Bewertungsschema

Vorgehen zur Bestimmung des Evaluationsergebnisses fiir ein Werkzeug

Nachdem alle Kriterien fiir ein Codeanalysewerkzeug bewertet wurden, werden die er-
reichten Punktzahlen mit ihren Gewichtung multipliziert und anschlieffend aufsummiert.
Die sich daraus ergebende Gesamtpunktzahl wird auf eine Skala von o bis 100% normiert
und das Codeanalysewerkzeug bekommt anhand der normierten Punktzahl eine Endnote
zugewiesen.

39

6 Evaluation

Die normierte Punktzahl Py fiir ein Codeanalysewerkzeug W is definiert durch

1
Y _gipi

PW N Pmax i
Hierbei ist
i ein Kriterium aus Kapitel 5.3,
gi die Gewichtung des Kriteriums i,
pi die Punktzahl des Kriteriums i anhand der Evaluationsergebnisse,
P,..x die maximal erreichbare Punktzahl.

Die Punktzahlen, Gewichtungen und Endnoten konnen mit Hilfe der nachfolgenden Tabellen
ermittelt werden.

Punktzahlen

Fiir jedes Kriterium kann ein Codeanalysewerkzeug zwischen o und 2 Punkten erhalten.
Dafiir wird es auf der Stufe der Ordinalskala eingeordnet, die das Codeanalysewerkzeug fiir
das entsprechende Kriterium erfiillt.

Ergebnis Punktzahl Bedeutung im Allgemeinen

&) 2 Punkte Das Kriterium wird vollstindig erfiillt.
® 1 Punkt Das Kriterium wird teilweise erfiillt.
&) 0 Punkte Das Kriterium wird nicht erfiillt.

Tabelle 6.2: Punktzahl fiir jeden Wert auf der Bewertungsskala

Gewichtungen
Alle moglichen Gewichtungen befinden sich auf der Ordinalskala [0, 5]. Die Gewichtung

gi = 0 reprdsentiert die irrelevanten Kriterien, die fiir die Evaluation keine Rolle spielen. Die
Gewichtung der einzelnen Kriterien erfolgte in Abstimmung mit Herr Ostberg.

40

6.2 Bewertungsschema

Kriterium i Qi

Community/Support

Dokumentation

5
5
Benutzerfreundlichkeit 4
3
2

Kosten
Lizenz
Blacklisting 1
Performance 1

Quellcode vs. Bytecode 1
Art/ Architektur 0

Tabelle 6.3: Gewichtung der Bewertungskriterien

Endnoten

Den normierten Punktzahlen werden Endnoten zugewiesen.

Pw [%] Endnote

100-96 1+
95-91 1
90-86 1-
85-81 2+
80-76 2
75771 2-
70-66 3+
65-61 3
60-56 3-
55-51 4+
50-46 4
45-0 5

Tabelle 6.4: Endnote anhand der erreichten normierten Punktzahl

41

6 Evaluation

6.3 Werkzeuge

6.3.1 Checkstyle

CheckStyle ist ein Kommandozeilenwerkzeug zur statischen
Codeanalyse, das einst entwickelt wurde, um Codelayouts ge-
vy . = gen gangige Standards zu tiberpriifen und auf Abweichungen
thE dE‘. \ hinzuweisen. Diese Funktionalitdt war auch namensgebend fiir
: . das Codeanalysewerkzeug. Seit einer grofien Architekturdnde-
gmﬂn rungen in Version 3.0 sind jedoch auch andere Tests verfiigbar
"":"!I',_}."-':"" gemacht worden, wie zum Beispiel das Erkennen von Codedu-
plikaten, Klassendesignproblemen (Sichtbarkeit von Klassen-
membern, Final-Deklarationen, Throw-Deklarationen, uvm.)
oder fehlerbehafteten Ausdriicken. Dennoch liegt das Augen-
merk der meisten Checks immer noch auf Dingen, die man
hauptsachlich dem ”Stil” von Quellcode zuschreiben wiirde.

Lizenz CheckStyle analysiert den Quellcode von Javaprogrammen.
GNU Lesser General Public

License v2

e o

T

Untersuchte Version
5.6 (18.09.2012)

Community/Support: Es existieren vier Mailinglisten fiir
Webseite CheckStyle. Eine fiir offizielle Ankiindigungen, eine fiir Com-
mits in das Versionsverwaltungssystem, eine fiir Benutzer-
fragen und eine fiir Entwicklerfragen. Allgemein sind diese
Mailinglisten nur sehr schwach in Benutzung und die meisten
Eintrdge der letzten Zeit (besonders in der Entwicklermailingliste) sind von Diskussion unter
den Entwicklern selbst.

checkstyle.sourceforge.net

Dokumentation: Die Dokumentation von CheckStyle ist in einem guten Zustand. Auf der
Webseite ist eine Referenzliste mit allen Verfiigbaren Checks vorhanden. Jeder einzelne
Check wird dabei kurz beschrieben (oft mit einem Codebeispiel), enthilt eine Liste mit den
verfiigbaren Parametern, eine Angabe {iber das entsprechende Paket und welchem Modul
der Test zugeordnet ist. Auch der Quellcode ist gut dokumentiert. Eine API Referenz ist
ebenfalls auf der Webseite verfiigbar, welche alle Klassen und ihre Methoden erklart. Es ist
auch ein Tutorial vorhanden, dass beschreibt, welche Schritte man verfolgen muss, um neue
Checks in CheckStyle einzuftigen. Ein Entwurfsdokument, dass die gesamte Architektur von
CheckStyle tibersichtlich darstellt, ist jedoch nicht vorhanden.

Benutzerfreundlichkeit: CheckStyle wurde hauptsédchlich entwickelt, um es direkt in den
Buildprozess einzubetten, aber nicht um manuell Codechecks z.B. direkt wahrend der Ent-
wicklung einer Software vom Entwickler selbst durchzufiihren. Deshalb besitzt CheckStyle
selbst keine grafische Oberfliche, sondern ist ein reines Kommandozeilenwerkzeug, welches
tiber eine XML-Datei konfiguriert wird.

42

http://checkstyle.sourceforge.net/

6.3 Werkzeuge

E <module name="Checker">

8 E} <l—

3 If you set the basedir property below, then all reported file

36 names will be relative to the specified directory. See

37 http://checkstyle.sourceforge.net/5.x/config.html #Checker

3L <property name="basedir" wvalue="§%{basedir}"/>

40 B -

42 <!'—— Check=s that a package-info.java file exists for each package. -
2 <1—— BSee :ttp:ﬁfc:ecksty;e.3f.:etfcc:f;g_ja?adcc.:tmL#JawadccPackage -1
44 <module name="JavadocPackage"/>

46 «<!-— Checks whether files end with a new line. -
47 <!1—— See http:/, “ecksty;e.sf.:etfcc:f;g_m;sc.html#ﬂew;;:ekti:dCfF;;e -
48 <module name="HewlineAtEndOfFile"/>

50 <!—— Checks that property file= contain the =ame keys. -

=il <1—— Bee http.,,ctecksty;e.Sf.:et;cc:f;g_m;sc.htm;#?:a:a;at;c: ——

52 <module name="Translation"/>

S <!-— Checks for S5ize Violations. -

EEG <!-- See http://checkstyle.sf.net/config sizes.html -->

S5é <module name="Filelength",/>

58 <1-- Checks for whitespace -

L <!-- See http://checkstyle.sf.net/config whitespace.html -->

al <module name="FileTabCharacter"/>

61

62 <!-— Miscellaneous other checks. -

63 <!-- See http://checkstyle.sf.net/config misc.html -->

64 = <module name="RegexpSingleline">

65 <property name="format" wvalus="\s+§"/>

66 <property name="minimum" wvalue="0"/>

&7 <property name="maximmm" wvalues="0"/>

68 <property name="message" wvalue="Line has trailing spaces."/>

63 B </module>

Abbildung 6.1: Ausschnitt der Konfigurationsdatei fiir die Sun Coding Conventions

Die XML-Konfigurationsdatei ist simpel und tibersichtlich aufgebaut. Die einzelnen Module,
welche die durchzufiihrenden Checks reprasentieren, sind als XML-Knoten gestaltet, die
wiederum Kindknoten fiir ihre Parameter besitzen (siehe Abbildung 6.1).

Der Konsolenaufruf von CheckStyle gestaltet sich sehr einfach. Es werden die zu verwenden-
de Konfiguration und die zu untersuchende Datei(en) als Parameter tibergeben. Zusétzlich
kann eine Ausgabedatei und das Ausgabeformat spezifiziert werden.

Unabhéngig von CheckStyle selbst wurde auch ein Eclipse-Plug-in entwickelt, dass es
erlaubt CheckStyle einfach tiber Eclipse auszufiihren und die Funde direkt in der IDE im
Quellcode darzustellen (siehe Abbildung 6.2). Aufierdem erlaubt das Eclipse-Plug-in die
Konfigurationen fiir CheckStyle einfach tiber Dialoge in den Praferenzen eines Eclipse-
Projekts zu modifizieren und den eigenen Anforderungen projektspezifisch anzupassen.

43

6 Evaluation

File Edit Source Refactor Navigate Search Project Run Window Help
mi SN O- A e & s PR e Quick Access | o | @]
|% PackageEx. 2 = O A0 versionNumberjava i3 = 8
E% v L'; Stringl| mumbers = version.gubstring(U, Detalndex).split("\\."): e
. I if (numbers.length > 0)
4 [rapidminer F] majorNumber = Integer.parselnt(numbers[0]):
b 2 sre & if (numbers.lengch > 1)
I 52 src_generated o] minorNumber = Integer.parssInt{numbers[1]);
1> £ resources) if (numbers.lsngth > 2)
1+ 2 sre_launcher Q patchlevel = Integer.parseInt (numbers[2]):
> 55 src_test beta = true;
|+ mh Referenced Libraries ol String betaMumberString = version.substring (betalndex + "heta".length()):
&+ =k JRE System Library [jr if (betaNumberString.length() > 0) {
b = lib el betaliumber = Integer.parselnt (betaNumberString);
I [licenses i
b scripts } else { // no beta
& build_extensionxml String[] numbers = version.split("\\.");:
& build.properties K [Das i -Konstrukt muss (] benuzenJrs . 1engtn > 0)
5 buidaml - majorNumber = Integer.parselnt(numbers[0]):
CHANGES it E]] if (numbers.lengeh > 1)
INSTALL bt t]) minorNumber = Integer.parselnt(numbers[l]):
LICENSE txt 2 i s B A e v
README.tt < >
E‘deblemsﬁg @ Javadoc Declaration T =8
43 errors, 206.581 warnings, 0 others (Filter matched 143 of 206624 itemns)
Description - Resource Path Location Type @
- @ Errors (43 items)
4 (& Wamings (100 of 206581 items)
@ '~ sollte in einer neuen Zeile stehen. WersionNumber.java /rapidminer/src/co.. line 126 Checkstyle Problem
& '~ sollte in einer neuen Zeile stehen. WersionNumber.java /rapidminer/src/co... line 127 Checkstyle Problem
@ '~ solite in einer neuen Zeile stehen. VersionNumber,java frapidminer/src/co... line 128 Checkstyle Problem
& '~ sollte in einer neuen Zeile stehen. WersionNumber.java frapidminer/src/ce.. line 128 Checkstyle Problem
@ '~ solite in einer neuen Zeile stehen. VersionNumber,java frapidminer/src/co... line 130 Checkstyle Problem
& '~ sollte in einer neuen Zeile stehen. WersionNumber.java frapidminer/src/ce.. line 131 Checkstyle Problem
& ' entspricht nicht dem Muster '*[a-z][a-zA-] Kernel java /rapidminer/src/lib... line 43 Checkstyle Problem v
< > < : >
| Writable | SmartInsert | 28:6

Abbildung 6.2: Screenshot nach der Ausfiihrung von CheckStyle im Eclipse-Plug-in

Eine Integration fiir Ant-Buildtasks ist ebenfalls vorhanden.

Ausgabe: Nutzt man CheckStyle ohne das Eclipse-Plug-in, so sind zwei unterschiedliche
Ausgabeformate moglich: eine Plain-Text-Ausgabe und eine XML-Ausgabe. Wird eine Ausga-
bedatei spezifiziert, so wird die Ausgabe dort hinein geschrieben. CheckStyle gibt in diesem
Fall keinerlei Informationen auf die Standardausgabe aus. Ist keine Ausgabedatei spezifiziert,
so wird die gesamte Ausgabe auf die Konsole geschrieben. Die XML Ausgabe ist fiir die
maschinelle Verarbeitung geeignet. Die Befunde werden nach Dateien sortiert tibersichtlich
abgebildet (siehe Abbildung 6.3).

Kosten: CheckStyle ist Open Source und somit vollkommen kostenfrei.

44

6.3 Werkzeuge

1 <?xml version="1.0" encoding="UTF-8"2>

2 <checkstyle version="5.6">

3 E(file name="C:\Users\alzi\Documents\Fachstudie\CheckStyle\testcode\rapidminer).classpath">

4 <error line="3" column="1" severity="error" message="File contains tab characters (this is the first i
=] r</file>

& [H<file name="C:\Users\alzi\Documents\Fachstundie\CheckStyle\testcode\rapidminer) . .project">

7 <error line="3" column="1" severity="error" message="File contains tab characters (this is the first i
8 r</file>

2 [H<file name="C:\Users\alzi‘\Documents\Fachstundie\CheckStyle\testcode\rapidminer\bnild.properties">

10 </file>

11 [H<file name="C:\Users\alzi\Documents\Fachstundie\CheckStyle\testcode\rapidminer\build.xml">

12 <error line="2" column="1" severity="error" message="File contains tab characters (this is the first i
L3 <error line="27" zeverity="error" message="Line has trailing spaces." source="com.puppycrawl.tools.chs
14 <error line="38" =everit 'error" message="Line has trailing spaces." source="com.puppycrawl.tools.che
BIR] <error line="402" severi "error" message="Line has trailing spaces." source="com.puppycrawl.tools.cl
16 <error line="589" severityv="error" message="Line has trailing spaces." source="com.puppycrawl.tools.cl
17 - line="594" "error" message="Line has trailing spaces." source="com.puppycrawl.tools.cl
18 <error line="611" "error" message="Line has trailing spaces." source="com.puppycrawl.tools.cl
13 <error line="g52" meszzage="Line has trailing spaces." source="com.puppycrawl.tools.cl
20 <error line="g53" meszzage="Line has trailing spaces." source="com.puppycrawl.tools.cl
21 <error line="g58" meszzage="Line has trailing spaces." source="com.puppycrawl.tools.cl
22 <error line="663" meszzage="Line has trailing spaces." source="com.puppycrawl.tools.cl
23 r</file>

24 [Jxfile name="C:\Users\alzi\Documents\Fachstudie'\CheckStyle\testcode\rapidminer\bnild extension.xml">
25 <error line="0" severity="error" message="Datei endet nicht mit einem Zeilenumbruch." socurce="com.pupi
26 <error line="2" column="1" severity="error" message="File contains tab characters (this is the first i
27 <error line="294" severity="error" message="Line has trailing spaces." source="com.puppycrawl.tools.cl
28 <error line="353" severity="error" message="Line has trailing spaces." source="com.puppycrawl.tools.cl
29 r</file>

Abbildung 6.3: XML Ausgabe von CheckStyle

45

6 Evaluation

6.3.2 ConQAT

Die von der CQSE GmbH und TU Miinchen entwickelte Open
Source Software ConQAT ist ein statisches Codeanalysewerk-
zeug, welches unter der Apache Lizenz 2.0 veroffentlicht ist.
ConQAT unterstiitzt nativ verschiedene géangige Programmier-
sprachen, wie z.B. Java und C#. Die beinhalteten Funktionen
reichen vom Erstellen von Qualitdtsmetriken, tiber das Erken-
nen von Codeduplikaten bis zur Architektur-Konformitéts-
Analyse. Die Software ist als Plug-in Framework konzipiert,
was sie erweiterbar macht. Aufierdem kann es mit anderen
verbreiteten Codeanalysewerkzeugen wie z.B. PMD oder Find-
Bugs integriert werden. Da es sich um Open Source Software

Webseite handelt, fallen fiir Lizenzen keine Kosten an, allerdings ist

congat.org der Support durch die CQSE GmbH kostenpflichtig. Da die
Software in Java geschrieben ist und aufSerdem in Eclipse integriert ist, ist sie plattformu-
nabhédngig und es werden Downloads fiir Windows, Mac OS X und Linux angeboten. Es
wurde bereits eine neue Version fiir das Ende des Jahres 2012 angekiindigt und die neue
ConQAT 2012.9 Engine wurde bereits auf der ICSM 2012 Konferenz als Pre-Release verof-
fentlicht. ConQAT fiihrt die Analyse auf Quellcodebasis durch und unterstiitzt Blacklisting
von Codeduplikaten.

Untersuchte Version
2011.9 (30.09.2011)

Lizenz
Apache License 2.0

Community/Support: Auf der ConQAT Webseite ist eine Liste mit Benutzern der Software
aus dem akademischen Bereich veroffentlicht. Inwieweit es sich dabei um eine aktive
Community handelt konnte ist nicht klar. Support wird von der CQSE GmbH geleistet
und ist kostenpflichtig.

Dokumentation: Die ConQAT Webseite bietet Zugriff auf die umfangreiche Dokumentation,
die neben dem Handbuch ConQAT Book und der API ConQATDoc auch zahlreiche Tutorials,
Screenshots und Demos beinhaltet. Auflerdem sind auch zahlreiche Publikationen tiber
ConQAT und solche die ConQAT verwenden aufgefiihrt.

In dem Online-Dokument ConQATDoc werden alle Funktions-Bausteine (Blocks) beschrie-
ben. Der Quellcode ist nach einem einheitlichen Styleguide geschrieben und ausreichend
kommentiert. Eine Spezifikation oder ein Entwurfsdokument, das tiber ConQATDoc hinaus
geht, gibt es jedoch nicht, was den Einstieg in die Weiterentwicklung der Software schwie-
rig macht. Zumindest eine Beschreibung des Plug-ins-Systems ware notwendig, um neue
Plug-ins fiir ConQAT entwickeln zu kdnnen.

Benutzerfreundlichkeit: Das ConQAT Book bezieht sich zwar auf eine &dltere Version der
Software, weswegen einige Detailss veraltet sind, aber liefert trotzdem eine detaillierte
Beschreibung aller Funktionen der Software. Die Schwiche des Handbuchs, die Verwendung
der Software nur knapp zu beschreiben, wird durch die ausfiihrlichen Tutorials auf der

46

https://www.conqat.org/

6.3 Werkzeuge

[F0] Con@AT Library &3 . E= Outline | =

.TokenFlleScope

> & dotnet

» & graph

5] LOCAnaly:er » & html_presentation
loc- analy:;er J r@io

> & java

+5‘§? Suml\ggregator + & model_clones

3> &) 0

)

loc- aggr'e‘gator + € persistence
v & resource

& CommentRatloA... & BinaryElementFactory

& ColumnTextFilter

& ConQATRatingAssessor

& ContentFilter

& ContentMarker

& CoverageAssessor

& DiffFMarker

B J\ssessmentl\ggr & DuplicateElementAnalyzer

cr- analy;_gr

@ Douhlenssessor

cr- asses;qr

& DuplicakeElementFilter
& ElementBaselineReader
- & ElementBaselineWriter
i% AssessmentColor... & ElementMameExtractor
cr-colorizer & ElementMameFilter

cr-aggregator

& ElementSizeAnalyzer

[@/TreeMapLayouter & FilePresentCondition
cr-tre J & FileSystemScope
& FindingDeltahssessor
& FindingDeltaProcessor
+§‘§§ HTMLPresentation | & FindingsAnnotator
J & HeaderAssessor
& InvalidCharacterAnalyzer

+ @ TableLayuouI:er

| i} & EmptyContainerPruner
loc-table +

presentﬁion

~
L

Abbildung 6.4: Der aus Blocks (Funktions-Bausteinen) aufgebaute Analyse-Graph und eine
Liste der verfiigbaren Blocks

Webseite ausgeglichen. Auch die bei der Installation beinhalteten Beispiele sind fiir den
ersten Einstieg von grofler Hilfe. Einzig die Installationsanleitung ist sowohl im Handbuch,
als auch auf der Webseite duflerst knapp ausgefallen, weswegen eine korrekte Installation
bei evtl. auftretenden Problemen einige Zeit in Anspruch nehmen kann.

Durch die Integration von ConQAT in Eclipse ist der Einstieg fiir jeden der mit Eclipse
vertraut ist leicht. Trotzdem kann allein die Vielzahl an Funktionen den Benutzer {iberfor-
dern. Auch das Erstellen einer Analyse-Konfiguration als Graph mit Hilfe von Funktions-
Bausteinen (Blocks) ist durchaus komplex und erschwert den Einstieg (siehe Abbildung 6.4).
Durch die gute Dokumentation der Bausteine, den mitgelieferten Beispiels-Konfigurationen
sowie den ausfiihrlichen Schritt-fiir-Schritt Tutorials, ist dies jedoch keine untiberwindbare
Hiirde. Wer einmal das Prinzip verstanden hat, kann schnell und effizient komplexe Ana-
lysen entwerfen und auch direkt die Weiterverarbeitung und grafische Aufbereitung der
gewonnenen Daten spezifizieren. Die Bausteine decken namlich nicht nur Analysemethoden,
sondern auch Verarbeitung sowie Visualisierung der angefallenen Daten ab. Auch die zum
Analyse-Graph gehorende Analyse-Konfiguration ist {ibersichtlich gestaltet und leicht zu
konfigurieren (siehe Abbildung 6.5).

47

6 Evaluation

[*trend-example.cqr 2 =0
& Run Config trend-example.cqr Q
~ ConQAT Block - RunBlock
Choose ConQAT block associated with this configuration Run or debug the block

trend-example %] Change.. 2 Launch ConQAT analysis
! %5 Launch ConQAT analysis in Debug mode
| Abstract Run Config
~ Parameters
Parameker output Lt} MNew
<no documentation> Parameter © Attribute value Delete
¢ gw: <no at v [project U
ocumentations
name junit E
v O input Down
dir congat-examples/projects/junit.zip
v [0 oukput
< | <>
» Includes
» Comment

Abbildung 6.5: Grafische Ansicht der Analyse-Konfiguration in Eclipse mit Bearbeitungs-
moglichkeiten

Ausgabe: Die Ausgabe der bei einer Analyse erhobenen Daten erfolgt als HTML. Die
Ausgabe ist klar strukturiert und bietet eine interaktive Exploration der Daten (siehe Ab-
bildung 6.6). Es gibt eine Ubersicht der Analysedaten, Detailansichten der einzelnen Daten
mit verschiedenen Visualisierungen (z. B. Tabellen und Tree Maps) sowie verschiedene
Informationen zur verwendeten Analyse-Konfiguration und der Ausfiihrung. Im Detail
sind dies ein Log der Ausfiihrung mit Informationen und evtl. aufgetretenen Fehlern, der
verwendete Analyse-Graph, detaillierte Ausfithrungszeiten (aufgeteilt nach den einzelnen
Analyseschritten) und eine Auflistung aller verwendeten Pakete der ConQAT Engine.

Kosten: Da es sich um Open Source Software handelt fallen keine Lizenzkosten an, aller-
dings ist der Support kostenpflichtig.

48

6.3 Werkzeuge

|= ConQAT: CloneDetec... 9‘ il
—
co nuAT CloneDetective @ Thu Nov 01 14:13:01 CET 2012
@ Clones Overview (Clones) -
Overview Percentage of the LoC contained in at least one clone
= Clones
Clones (volume sorted)
[iclones overview
Clones (card-sorted)
Clones
@ Info
& Log Messages
& Config Graph
8 Execution Time
® Config
JUnit/org/junit/runners/Parameterized.javal
Name Parameterized.java
Clone Assessment @
LoC 158
Clone LoC 0
LocCoverage]
Units 54
Clone Units 0
RFSS 54
Cooo Ooso Haoo false UnitCoverage 0 :.

Abbildung 6.6: HTML-Ausgabe einer Clone-Detection-Analyse mit Visualisierung der ge-
fundenen Codeduplikate als Tree Map

49

6 Evaluation

6.3.3 FindBugs

FindBugs ist eines der bekanntesten Codeanalysewerkzeuge in
der statischen Codeanalyse heutzutage. Das urspriinglich von
der Universitdt von Maryland entwickelte Tools kann heute be-
reits mehr als eine Million registrierte Downloads verzeichnen
und zeichnet sich durch seine sehr hohe Fehlererkennungsrate
aus. FindBugs gehort zu der Sorte der statischen Codeanaly-
sewerkzeuge, die den Bytecode untersuchen. Der Quellcode
wird nur benétigt, wenn man mit der GUI von FindBugs arbei-
tet und farbliche Markierungen der Fehler-Standorte wiinscht.
FindBugs unterstiitzt Blacklisting.

Untersuchte Version
2.0.1 (12.07.2012)

Lizenz
LGPL Community/Support: Aufgrund der grofien Bekanntheit des
Codeanalysewerkzeuges, findet man im gesamten Netz In-
Webseite formationen iiber FindBugs. Der Quellcode ist aufgrund der

Lizenz frei zugdnglich und es gibt zahlreiche Tutorials in allen
moglichen Sprachen. Das Benutzerhandbuch ist neben engli-
scher Sprache, sogar ins Japanische tibersetzt worden. Es exis-
tieren zwei Mailinglisten. Die eine ist lediglich fiir Ankiindigungen seitens der Entwickler.
Die andere Mailingliste ist fiir Diskussionen rund um FindBugs geeignet.

findbugs.sourceforge.net

Dokumentation: Es existieren aktuelle API Beschreibungen. Samtliche Dokumente werden
gewartet und sind auf einem aktuellen Stand. Bei neuen Releases der Software dauert es
im Normalfall stets etwas Zeit, bis die Dokumente nachgezogen werden. Dieser Aufgabe
wird jedoch regelméfiig nachgekommen. Fiir jede neue Version des Tools seit Beginn der
Entwicklung existiert zudem ein sehr ausfiihrliches ChangeLog.

Benutzerfreundlichkeit: FindBugs kann mittels Kommandozeile, GUI oder auch als Plug-in
tir gangige Entwicklungsumgebungen benutzt werden. Die Benutzung des Codeanalyse-
werkzeuges ist auch ohne groflere Einarbeitung moglich. Falls dennoch Probleme auftauchen,
kann eines der vielen Tutorials betrachtet werden. Die Entwickler selbst stellen ausfiihrliche
Dokumente auf englische (und japanische) Sprache bereit, die einem weiterhelfen. Eine FAQ
Sektion deckt die meisten auftauchenden Probleme. Die GUI lésst sich intuitiv bedienen.
Gefundene Bugs werden in verschiedenen Kategorien iibersichtlich aufgelistet. Der Benutzer
hat selbst die Moglichkeit die Sortierung vorzunehmen. Jede Bug Art wird in der GUI genau
auf englisch beschrieben. Der Standort wird genau angegeben. Falls auch der Quellcode der
Software zum analysieren {ibergeben wurde, werden die betroffenen Stellen zudem farblich
markiert. Auch ohne Quellcode wird die Stelle durch vier Textzeilen genau beschrieben.
Blacklisting ist ebenfalls innerhalb der GUI bequem moglich.

50

http://findbugs.sourceforge.net/

6.3 Werkzeuge

Project name
|rapidMiner

Klassen-Archive und Verzeichnisse zum Analysieren
C:iUsers\Michael\Desktop\findbugs-2.0.1\libitest.jar

Hilfs-Klassen

E:\Studium\Fachstudie\Testcode\rapidmineriliblSassyReader-0.5.jar
EAStudium\Fachstudie'Testcodelrapidmineriliblakuhn-util-r28011.jar

inlTantond

Source-Verzeichnisse

E:\Studium\Fachstudie\Testcode\rapidminerisrc_generated
E:Studium\Fachstudie'Testcode\rapidminerisrc_launcher
EAStudium\Fachstudie'Testcode\rapidminerisrc

Store bug reviews in:
<default>

Abbildung 6.7: Eingabe-Konfiguration von FindBugs

er out all bugs whose...

[Prioritat is Normal
[] Class is com.rapidminer.gui.OperatorDocEditor$2

[| Package is com.rapidminer.gui

[] Kategorie is Correctness

[| Bewertung is unclassified

[] Fehler-Art is Bad use of return value from method
[| Fehler-Muster is Method ignores return value

[| Bug Rankis 5

[Invert {i.e. filter bugs which do not match selected criteria).

Abbildung 6.8: Blacklisting Moglichkeiten

51

6 Evaluation

Datel Bearbeiten Ansicht Navigation Bewertung Hife

[pata Jjavain com. iner datatable
Class name filter: ‘ H Filter ‘ 4
79 for {Peir<Double, ? extends Comparable> entry : allValues) { el
T by:\ Ka(egorie\ FohlerArt FelllerrMuslerl (_)‘ 80 indexMapping[idx] = entry.getFirst().intValue():
[:38 +idx;
[Fenler (1445) || &2 }
& (9 Comeciness (104) a3 return indexMapping;
¢ Bad practice (315) 84 Jeiset
¢ [Bad implementation of cloneable idiom (59) @ 1t rowCount = datalablesuetRostabert):
86 int[] indexMapping = new int[rowCount];
¢ [clone method does not call super.clene() (33) a7 for [int i = 0 1 < rowCouni i) |
@ com.rapidminer.Process.clone() does not calf | a5 indexMapping[i] = i
Q [com. dalatable DataT: .)
O com rapidminer.example AfiributeWeights clo an return indexMapping:
Q@ com rapidminer example DelegateAttributes 91 1
Q@ com.rapidminer.example. cls 9z)]
#3

© comrapidminer.example set Partition.clone()

© com.rapidminer.example table BinominalAtrl b B0pceries
a5 public DataTableNaturalSertProvider clome() { L
Q@ com.rapidminer.example table.
o 96 DataTableNaturalSortProvider clone = new DataTableNaturalSortProvider (columnldx, ascending):
com.rapidminer example.table DateAftribute e S L
O com.rapidminer.example table NumericalAtri| a3 y =
O com rapidminer.example table i a9 |
@ com rapidminer.example table. Polynominalil 7| 100 =]
[] 1 v |
-lv ‘ Ib] [| ‘ Suche ‘ | Vorwarts suchen | | Riickwarts suchen

av

clone() does not call super.clone()
At DataTableNaturalSortProvider javarines 96-87]
In method com.rapidminer. datatable.DataTableNaturalSortProvider.clon

: clone method does not call super.clone()

This non-final class defines a clone() method that does not call super.clone(). Ifthis class ('4°)is extended by a subclass ('87), and the subclass 8 calls super.clone(), then
itis likely that &'s clone() method will return an object of type A, which violates the standard contract for clone().

If all clone() methods call super.clone(), then they are guarantze to use Objectclone(), which always retums an object of the corect type

Bug Kind and pattern: CN - CN_IDIOM_NO_SUPER_CALL

< I ID

UNIVERSITY OF
‘Illlu:h‘fmdbllgs.snuroelome.nel @ MARYLAND

Abbildung 6.9: Grafische Ansicht der GUI mit den Resultaten nach der Analyse

Ausgabe: Die Ausgabe istin HTML oder XML moglich. Die durch die Konsolenanwendung
erzeugte XML-Dateien, lassen sich tiber die GUI einlesen. Diese XML-Dateien werden dort
sehr iibersichtlich dargestellt.

Kosten: FindBugs zédhlt zu den Open Source Codeanalysewerkzeugen und bietet keine
Form von kommerziellem Support und/oder Ahnlichem an.

52

6.3 Werkzeuge

6.3.4 JLint

Bei JLint handelt es sich um eine, unter der GPL veroffentlichte,
Open Source Software, die seit 2002 auf SourceForge entwi-
ckelt wird. Da es sich bei GPL um eine copyleft-Lizenz handelt,
diirfen auch Anderungen/Erweiterungen an der Software nur
unter GPL/LGPL verdffentlicht werden. Dabei scheint es kein
festes Entwicklerteam zu geben und die Aktivitat im Projekt
scheint stark zu schwanken. JLint untersucht Java Programme
per statischer Code Analyse des Bytecodes auf Fehler, Syn-
chronisationsprobleme und Widerspriiche im Code. Es werden

Untersuchte Version
3.1.2 (11.01.2011)

Lizenz unter anderem Race-Conditions und Deadlocks erkannt. Dazu
GPL wird eine Datenflussanalyse durchgefiihrt und ein Lock-Graph
erstellt. Blacklisting wird nicht unterstiitzt. Auch scheint die

Webseite Architektur nicht speziell auf Erweiterbarkeit ausgelegt.

jlint.sourceforge.net

Community/Support: Obwohl es sich um ein Open Source
Projekt handelt, das schon lange lauft, gibt es keine aktive Community. Auf der Projektseite
auf SourceForge ist nur geringe Aktivitiat zu verzeichnen. Fragen im Forum scheinen nur
sporadisch von einem der Entwickler beantwortet zu werden, im BugTracker gemeldete Feh-
ler werden nicht bearbeitet und es gibt auch keine Mailingliste. Auflerdem wird ausdriicklich
darauf hingewiesen, dass es keinerlei Support von Seiten der Entwickler gibt, da es sich um
ein nicht kommerzielles Projekt handelt.

Dokumentation: Es gibt keinerlei Software-Dokumente wie z. B. Spezifikation oder Entwurf
die bei der Weiterentwicklung der Software hilfreich sein konnten. Da auch der Quellcode
komplett unkommentiert ist, diirfte eine Erweiterung der Software sich als dufSerst schwierig
darstellen.

Benutzerfreundlichkeit: Bei diesem Punkt ist vorweg zu sagen, dass die Software nicht in
der Praxis getestet werden konnte, da eine Installation nicht moglich war. Alle Einschét-
zungen beruhen deswegen alleine auf den Beschreibungen des Handbuchs und sonstigen
Informationsquellen tiber die Software.

Dadurch dass der Quellcode selbst kompiliert werden muss, fillt der Einstieg schwer. Dies
wird dadurch verstdrkt, dass es zwar eine Anleitung dazu gibt, diese jedoch dufierst knapp
gehalten ist und praktisch keinerlei Informationen zu evtl. auftretenden Fehler enthilt. Da
beim Kompilieren der Software Fehler auftraten, die sich zwar teilweise beheben lieflen, aber
eben nicht vollstindig, konnte die Software nicht ausgefiihrt werden.

Als einziges Dokument gibt es ein Handbuch, dass die grundsitzliche Funktionsweise von
JLint erldutert und alle Funktionen auflistet und beschreibt. Die moglichen Kommando-

53

http://jlint.sourceforge.net/

6 Evaluation

zeilenparameter werde ausfiihrlich beschrieben, so dass auch ein mit der Kommandozeile
unerfahrener Benutzer sich schnell zurecht findet.

Bei JLint handelt es sich um ein reines Kommandozeilenprogramm. Durch die gute Erklarung
der moglichen Parameter im Handbuch stellt dies jedoch kein Problem dar. Zuerst muss das
zu analysierende Java-Programm mit einem beliebigen Java-Compiler in Bytecode tibersetzt
werden und anschliefsend als Parameter an JLint iibergeben werden.

Ausgabe: Die Ausgabe erfolgt ausschlieilich auf die Konsole. Uber die Qualitit der
Ausgabe kann leider keine Aussage getroffen werden, da weder tiber das Format, noch tiber
den Inhalt, im Handbuch eine Aussage getroffen wird.

Kosten: Da es sich um Open Source Software handelt, fallen keine Lizenzkosten an. Auch
gibt es sonst keine kommerziellen Leistungen von Seiten der Entwickler.

54

6.3 Werkzeuge

6.3.5 Moose

Die erste Version von Moose wurde bereits im Jahr 1996 ver-
m offentlicht. Mittlerweile ist man bei der Version 4.7 angelangt.
Da diese Version jedoch noch nicht final ist (und sich unter
Untersuchte Version Windows nicht korrekt laden liefS), wurde die vorige Version ge-
testet. Der Hauptnutzen der Software liegt darin, Entwicklern

und Ingenieuren zu helfen, grofiere Softwareprojekte durch
eine grofse Anzahl an Visualisierungen verstandlicher zu ma-

4.6 (xx.02.2012)

Lizenz
. chen. Dabei wird der Quellcode untersucht. Blacklisting wird
BSD Llﬁ?:i;nd MIT seitens Moose nicht unterstiitzt. An dieser Stelle muss die auf-
fallend schlechte Performance des Produktes erwihnt werden.
Die meisten Schritte bei der Analyse der Software benotigen
Webseite

Einiges an Geduld. Auf dem benutzten Testrechner war es

moosetechnology.org nicht méglich das Codeanalysewerkzeug effizient zu benutzen.
Die Kernkomponente der Software befindet sich unter der BSD und MIT License. Dies trifft
jedoch nicht auf alle bendtigten Komponenten zu. Der empfohlene Java Parser befindet sich
beispielsweise unter einer kommerziellen Lizenz.

Community/Support: Es existiert eine Mailingliste, die aktiv benutzt wird.

Dokumentation: Die Dokumente sind leider nicht auf dem aktuellsten Stand. Es existieren
viele Informationen iiber die Hintergriinde von Moose. Die Qualitét der eigenen Dokumente
ist jedoch nicht vollig zufrieden stellend und auch nicht aktuell. Es existiert ein extra Internet-
auftritt, der unter http:/ /www.themoosebook.org erreichbar ist und sehr viele Informationen
tiber die Geschichte und die Benutzung von Moose liefert. Ebenfalls liefert diese Dokumen-
tation einiges an Hintergrundwissen, beispielsweise wie die benutzten Algorithmen arbeiten.
Leider finden sich keine Informationen dariiber, von wann der beschriebene Stand ist. Zum
Teil sind deshalb Informationen falsch. Kommentare unter den jeweiligen Eintrdgen helfen
einem bei Fehler meist weiter. Diese werden jedoch iiberwiegend von den Entwicklern nicht
beachtet. Aufierdem muss erwdhnt werden, dass einige Bereiche lediglich ein “TODO” als
Inhalt anzeigen.

Benutzerfreundlichkeit: Moose punktet leider nicht in Sachen Benutzerfreundlichkeit. Dies
fangt beim Start der Software an. Ohne die oben genannte Dokumentation ist die Benutzung
unmoglich. Fehler in der Dokumentation werden bereits hier schon offenbart. Wenn der Start
gegliickt ist, kommt ein erstes Gefiihl des Verlorenseins auf. Eine integrierte Hilfe-Funktion
liefert einem aufier Lizenz Informationen und ein Verweis auf den Internetauftritt keine
Hilfe. Das einzige verfligbare Kontextmenii stammt von der virtuellen Maschine, in der
Moose geladen wird. Nach dem Laden einer XML dhnlichen Datei, erhdlt man eine grofse
Auflistung von Textzeilen. Die eigentliche Komplexitdt des Codeanalysewerkzeuges kommt
spatestens hier negativ zur Geltung.

55

http://www.moosetechnology.org/

6

Evaluation

System Browser

Moose Panel

Abbildung 6.10: Startbildschirm der Anwendung mit dem VM Kontextmenii

m All famixaccesses (71985) -~
‘'m All famixannotationinstances (9901)
5 All famixannotationtypes (19)

'm All famixattributes (15046)

‘m All famixcaughtexceptions (1947)

‘fa Al famixclasses (6172)

'm All famixcomments (L1858)

‘m All famixdeclaredexceptions (2699)
‘m All famixenums (86)

‘m Al famixenumvalues (372)

‘m All famiximplicitvariables (4698)

‘m All famixinheritances (8730)

‘W All famixinvocations (133507)

' Al famixlocalvariables (21695)

& All famixmethods (32918)

@ All famixnamespaces (481)

‘m All famixparameterizableclasses (163)
'm All famixparameterizedtypes (2278)
‘'m All famixparameters (26274)

‘m All famixparametertypes (103)

'@ All famixprimitivetypes (9)

'm All famixreferences (12838)

‘m All famixthrownexceptions (2006)

‘T All model classes (4737)

' All model namespaces (253)

'm All model tvpes (5165) i

Abbildung 6.11: Anzeige der Resultate aus der generierten MSE Datei

6.3 Werkzeuge

Ausgabe: Die meisten Ergebnisse lassen sich visuell innerhalb der GUI darstellen. Diese
liegen in einer sehr uniibersichtlichen textuellen Form vor. Visualisierungen lassen sich durch
langere Ladenzeiten iiber nicht wirklich intuitive Vorgdnge erzeugen.

Kosten: Es existieren derzeit keine kommerziellen Angebote von Moose. Der Support ist
ebenfalls kostenlos.

57

6 Evaluation

6.3.6 PMD

PMD ist ein statisches Codeanalysewerkzeug fiir Java, das aber
auch JavaScript, XML, XSL und JSP unterstiitzt. Es arbeitet sehr
dhnlich wie CheckStyle, unterstiitzt jedoch wesentlich mehr
verschiedene Tests, die auch eher tatsachliche Fehler und nicht
nur den “Codingstyle” analysieren. Es sind weiterhin Tests (in
DON'T SHOOT THE MESSENGER PMD "Rules", im Folgenden Regeln genannt) vorhanden, die
Stellen im Code finden, die auf schlechte Performance hindeu-
ten (z.B. String-, StringBuffer- und StringBuilder-Nutzung). Es
existieren Plug-ins fiir unzdhlige Entwicklungsumgebungen,
von denen einige jedoch nicht auf dem aktuellen Stand (sowohl
von Seiten der IDE, also auch von Seiten PMDs) sind. Neue
Regeln konnen entweder in Java geschrieben werden, in dem
eine entsprechende Klasse abgeleitet wird, in der die neue
Art der Uberpriifung durchgefiihrt werden soll oder auch als
Webseite XPath-Ausdriicke. PMD untersucht den Java Quellcode und un-
pmd.sourceforge.net terstiitzt Blacklisting auf verschiedenste Arten und Weisen.

Untersuchte Version
5.0.0 (01.05.2012)

Lizenz
Eigene "BSD &hnlich"

Community/Support: PMD hat eine Mailingliste und ein Forum. Das Forum scheint nicht
sehr aktiv zu sein (etwa zwei bis vier Beitrdge pro Monat), jedoch erhilt man auf gestellte
Fragen, meisten noch am selben Tag eine Antwort. Die Mailingliste wird zwar frequentierter
verwendet, ist jedoch eher fiir interne Angelegenheiten der PMD Entwickler vorgesehen. Ein
kostenpflichtiger Support ist nicht vorhanden.

Dokumentation: Auf der Webseite von PMD ist eine ausfiihrliche Liste tiber die vorhanden
Rulesets existent. Diese ist sehr dhnlich zu der von CheckStyle aufgebaut. Jede einzelne
Regel wird kurz erkldrt und ein Beispiel dazu aufgefiihrt. Es ist auch ein Tutorial tiber
das Erweitern von PMD, in Form von neuen Regeln, vorhanden. Es existieren auflerdem
einige andere Informationen, wie zum Beispiel Guidelines zum Aufstellen von guten Regeln
oder weiterfiihrende Informationen fiir PMD Entwickler. Eine API Referenz, welche aus den
Quellcodekommentaren generiert wurde ist ebenfalls vorhanden, sie ist jedoch an vielen
Stellen unvollstindig oder unzureichend.

Benutzerfreundlichkeit: PMD selbst ist als Kommandozeilentool konzipiert. Es existieren
jedoch Plug-ins fiir sehr viele IDEs (Eclipse, EMacs, JEdit, ...) oder Buildsysteme (Ant,
Maven, ...). Viele Plug-ins (darunter auch das Eclipse-Plug-in) sind jedoch nicht auf dem
aktuellen Stand und koénnen somit nur eingeschrankt werden. Die letzte stabile Version
des Eclipse-Plug-ins unterstiitzt beispielsweise nur Eclipse in der Version 3.2.6 und ist vier
Jahre alt. Eine neue Version fiir PMD 5.0 und Eclipse 4 (aka Juno) ist jedoch gerade in
Arbeit, konnte aber fiir diese Fachstudie nicht untersucht werden. Das Ausfiihren iiber die
Konsole gestaltet sich etwas kompliziert. Rulesetdateien, welche in XML geschrieben sind

58

http://pmd.sourceforge.net/

6.3 Werkzeuge

und Verweise auf Java Klassen haben, die die entsprechenden Tests implementieren, sind
standardmafig direkt in den Resourcen der PMD JAR-Datei verbaut und sind nicht immer
leicht zu verstehen. Externe Dateien lassen sich jedoch auch angeben. Dennoch sind die
Parameter eher uniibersichtlich und schlecht dokumentiert.

<?xml version="1.0"2%>

<ruleset name="Clone Implementation"

Ins="http://pnd.sourceforge.net/ruleset/2.0.0"
tx2i="http://www.w3.org/2001/XMLSchema-instance"
emalocation="http://pmd.sourceforge.net/ruleset/2.0.0 http://pmd.sourceforge.net/ruleset 2 0 0.xsd"

SR T TS P R

x=1i:nolNamespaceSchemalocation="http: //pmnd.sourceforge. net,"ruleset727070 Jxsd">
E <description>

g The Clone Implementation rmleset contains a collection of runles that find guestionable unsages of the clone() method.
10 r </description>

<rule name="ProperCloneImplementation"”

=ince="1.4"
mezzage="0bject clone() should be implemented with super.clone()"
class="net.sourceforge.pmd. lang.rule.XPathRule"
1 = externallnfolUrl="http://pmd.sourceforge.net/rules/java/clone.html#ProperCloneInplementation" >
E <description>

2
13 language="java"

] Object clone() shomld be implemented with super.clone().
E </description>
<priority>2</priority>

2 = <properties>
3 <property name="xpath">
4 <value>

20
21
2
2
2
2
2
2
2
29

r </wvalue>
r </property>

Abbildung 6.12: Ruleset, welches die richtige Verwendung von clone()-Implementierungen
priift

Ausgabe: PMD unterstiitzt viele verschiedene Ausgabeformate. Aufier einer Plain-Text
Ausgabe sind vor allem HTML und XML hervorzuheben. Eine interessante Moglichkeit ist
es direkt XSLT Transformationen auf die generierten XML Dateien auszufiihren, um so eine
Formatierung nach eigenen Vorlieben zu erhalten.

Kosten: PMD ist Open Source und somit komplett kostenfrei.

59

6 Evaluation

(™

w

15

PMD report
Problems found

File
C:\Users\alzi Documents'Fachstudie'PMDtestcode'\rapidminer'src' com'rapidminer' Process. java
C:\Users\alzi Documents'Fachstudie'PMD testcode'rapidminer'src\com'rapidminer Process.java

C:\Users\alzi Documents'Fachstudie'PMD! testcode'rapidminer'src\com'rapidminer'datatable
‘DataTableNaturalSortProvider java
C:\Users'alzi Documents' Fachstudie'PMD testcode'rapidminer'src\com'rapidminer' datatable
\DataTableNaturalSortProvider java

C:\Users'\alzi Documents'Fachstudie'PMD! testcode'rapidminer'src\com'rapidminer'datatable
‘DataTableNaturalSortProvider. java

C:\Users\alzi Documents'Fachstudie'PMD!'testcode'rapidminer'src\com'rapidminer'datatable
‘DataTableSortProvider java

C:\Users\alzi Documents'Fachstudie'PMD! testcode'rapidminer!src\com'rapidminer'datatable
‘\DataTableSortProvider java

C:\Users\alzi Documents'Fachstudie'PMD testcode'rapidminer'src\com'rapidminer| example
\AbstractAttributes.java

C:\Users'\alzi Documents'Fachstudie'PMD!'testcode'rapidminer\src\com'rapidminer\example
\AbstractAtiributes java

C:\Users\alzi Documents'Fachstudie'PMD! testcode'rapidminer'src' com'rapidminer' example\ Attribute java

C:\Users\alzi Documents'Fachstudie'PMD! testcode'rapidminer'src\com'rapidminer| example\ Attribute java
C:\Users\alzi Documents'Fachstudie'PMD testcode'rapidminer'src\com'rapidminer| example

~ \AttributeDescription java

C:\Users\alziDocuments' Fachstudie'PMD! testcode'rapidminer!src\com'rapidminer\example
\AttributeDescription java
C:\Users'alzi Documents'Fachstudie\PMD'testcode'rapidminer'src\com'rapidminer'example
\AttributeDescription java

C:\Users\alzi Documents'Fachstudie'PMD' testcode'rapidminer!src\com'rapidminer\example! AtiributeRole _java

Abbildung 6.13: Standard HTML Report von PMD

60

310
310

94

95

33

33

44

45

71

71

78

79

79

67

Problem
Obiject clone() should be implemented with s
clone() method should throw CloneNot$

clone() method should be #
Cloneable interface

er.clon
ortedException

lemented only if implementin,

Object clone() should be implemented with super. clonef

clone() method should throw CloneNotSupportedException

clone() method should be implemented only if implementing
Cloneable interface

clone() method should throw CloneNotSupportedException

clone() method should be implemented only if implementing
Cloneable interface

clone() method should throw CloneNotSupportedException

clone() method should be implemented only if implementing
Cloneable interface

clone() method should throw CloneNotSupportedException

clone() method should be implemented only if implementing
Cloneable interface

Object clone() should be implemented with super. clons
clone() method should throw CloneNotSupportedException
clone() method should be implemented only if implementin;

e

6.3 Werkzeuge

6.3.7 Sonar

sonar

Untersuchte Version
3.3 (24.10.2012)

Lizenz
LGPL v3.0

Webseite
sonar.codehaus.org

Sonar ist ein unter der LGPL veroffentlichtes mehrbenutzerfahi-
ges statisches Codeanalysewerkzeug, welches webbasierend ist
und daher aus drei Komponenten besteht. Die erste Komponen-
te entspricht einer Datenbank, in der die Resultate der Analyse
gespeichert werden. Sonar bietet Unterstiitzung fiir alle gan-
gige Datenbanken Arten an. Die zweite Komponente ist ein
WebServer, in der die Ergebnisse aufbereitet untersucht werden
konnen. Aufierdem wird hier die Konfiguration der Software
vorgenommen. Die dritte Komponente ist eine Konsolenan-
wendung, die fiir die Untersuchung des Quellcodes zustandig
ist. In den letzten zwei Jahren gab es mehr als 15 veroffentlichte
Versionen. Die Entwickler werben mit einer Downloadzahl von
tiber 100.000. Sonar benutzt standardmaéfiig die sehr bekannten
statischen Codeanalysewerkzeuge CheckStyle, FindBugs und
PMD als Plug-ins ab Werk. Es wird sowohl der Bytecode als

auch der Quellcode analysiert. Blacklisting wird von Sonar unterstiitzt.

4 | @ localhost9000/Filters/new

) Aktuelle Nachrichten 3/ Leitsystem L33T / StuP... [Selfla

Dashboards

& Y
|~ g,
- <Um,

Configuration ® Administrator » Log out &%

Quality Profiles New filter
My Profile Nomo:
My Filters

Manual Metrics

Path: Search

Manual Rules

Criteria: i
Dbl Dt bomids riteria: | Select a metric

and: | Select a metric
SECURITY and: | Select a metric

Users Differential period: | None
Groups

System Administrators
Roles

Language: [1Java Wnenn.
Favourites only: []

Key like:
SYSTEM Name contains:
General Settings Build date: v

Backup Save & Preview Save & Close
Bulk Deletion
System Info
Update Center

sonar

Shared: [

Display: [Projects [Sub-projects [Directories/Packages [Files [Unit Test Files

v || Value v v Reset

v || Value v v Reset

v || Value v v Reset

v

0 1anguage is selectsd, no fiter will appl

Use * to match zero or more characters and ? to match any single character.

days

Cancel

Powrered by SonarSource ¢ - Open Source LGPL (% - v.3.3 - Plugins 7 - Documentation 7 - Ask a question &7
Embedded database should be used for evaluation purpose only.

Abbildung 6.14: Blacklisting in Sonar

Community/Support: Es existieren Mailinglisten fiir Benutzer und fiir Entwickler. Diese

werden sehr aktiv benutzt.
Es wird zwar auch bei der

Pro Monat kommen einige Hundert neue Nachrichten hinzu.
nicht kommerziellen Version Support seitens der Entwickler

angeboten, dieser unterscheidet sich aber aller Wahrscheinlichkeit nach stark von den
Supportleistungen der kostenpflichtigen Versionen.

61

http://sonar.codehaus.org/

6 Evaluation

Dokumentation: Die Dokumente sind auf einem aktuellen Stand und es existiert eine
API. Es existieren Tutorials, die fiir die Konfigurations- bzw. Einrichtungsaufgaben notwen-
dig sind, um die Software erfolgreich zu benutzen. Eine ausfiihrliche FAQ Sektion sowie
Hilfestellungen fiir Entwickler runden das Ganze ab.

Benutzerfreundlichkeit: Wenn man zum ersten Mal mit der Software in Beriihrung kommt,
wird man nach kurzer Zeit feststellen, dass die Konfiguration und Einrichtung mehr Zeit
bedarf, als man denkt. Das Werkzeug wirbt damit, dass es einzig und allein vier kleine
Schritte sind, bis man Resultate erkennen kann. Diese Schritte sind jedoch etwas kompli-
zierter. Das Eclipse-Plug-in ist erst benutzbar, nachdem man sein Projekt vollstandig durch
eine Konsolenanwendung analysiert hat. Um die Konsolenanwendung jedoch zu benutzen,
miissen erst Einstellungen im benutzten Betriebssystem vorgenommen werden und diverse
Konfigurationsdateien von Hand erstellt werden. Es existiert keine GUI, die einem die Arbeit
abnimmt. Nach der Konfiguration und einem erfolgreichem Durchlauf, kann man die er-
zeugten Resultate ansehen. Das Eclipse-Plug-in ist daher nicht im Stande die Konfigurations-
bzw. Einrichtungs-Aufgaben zu iibernehmen. Es vergeht daher etwas an Zeit, bis man eine
lauffdhige Software hat. Sobald man jedoch die Einarbeitungszeit hinter sich hat, ist die
Software einfach zu bedienen und die Resultate werden einem sehr ausfiihrlich angezeigt.
Da die Ergebnisse in einer Datenbank gespeichert werden ist ein Vergleich mit mehreren
erzielten Ergebnisse sehr gut moglich. Ebenso einigt sich dieses Codeanalysewerkzeug sehr
gut, wenn mehrere Menschen am gleichen Projekt arbeiten.

|=] sonarproject properties |

1 # required metadata

2 zonar.projectEey=rapidminer
sonar.projectName=Test Code
sonar.projectVersion=1.0

path to source directories (required)

AR (ST BT S

Sonar.sources=src, Src_generated, src_launcher

path to test source directories (optional)

10 Sonar.tests=src_test

12 # path to project binaries (optional), for example directory of Java bytecode
13 =zonar.binaries=build

optional comma-separated list of paths to libraries. Only path to JAR file and path

1 Mmoo

sonar.libraries=lib/blas.jar, lib/collections-generic.jar, libfcolt.jaﬂ

18 # The value of the property must be the key of the language.

1% =sonar.language=java

21 # Additional parameters

22 Fonar.my.property=value

Abbildung 6.15: Der Inhalt einer Konfigurationsdatei, um die Untersuchung zu starten

62

6.3 Werkzeuge

CAWindows\system32\cmd.exe

2:59:13.85%3 INFO p.PhasesTimeProfiler — Sensor CheckstyleSenso
19:59:13.085%3 INFO org.zsonar.INFO — Execute Checksztyle 5.5.
2:59:13.873 INFO ckstyleConfiguration — Checkstyle configuratio
chatudle\Te¢tcode\rap1dm1ner\.donar\checkdtyle xml
INFO org.zsonar.INFO — Execute Checksztyle 5.5 done: 11138 ms
INFO p.PhasesTimeProfiler — Sensor CheckstyleSensor done: 11138 ms
INFO

INFO

E:NStudiumsF

Sensor PmdSensor..
Execute PMD 4.3...
Java version: 1.5
FMD configuration: E:“\Studium“Fachstud

p-PhasesTimeProfiler

org.sonar. [NFO

IMFO o.s.p.p.PndTemplate

INFO p.p.PmdConfiguration
ie“Testcodesrapidminers.sonarspmd.xml

— PMD configuration: E:“Studium“Fachstud
.sonarspmd—unit—tests.xml
org.sonar.INFO — Execute PMD 4.3 done: 74834 ms

Abbildung 6.16:

Ausgabe:

p-PhasesTimeProfiler
p-PhasesTimeProfiler
p.PhasesTimeProfiler
p.PhasesTimeProfiler
p-PhasesTimeProfiler

p-PhasesTimeProfiler
p-PhasesTimeProfiler
p.PhasesTimeProfiler

Anzeige wahrend des Scans

— Sensor
Sensop
Sensor
Sensor
Sensopr

Sensor
Sensop
Sensor

PmdSensor done: 75884 ms
ProfileSensor.
ProfileSensor done: 258 ns
ProfileEventsSensor...
ProfileEventszSensor done: 28 ms
ProjectLinksSensor. .
ProjectLinkz8ensor done: 18 ms
VersionEventsSensor...

Die Resultate der Analyse werden in einer definierten Datenbank gespeichert.

Sonar selbst liefert bereits eine Datenbankart mit. Mittels Webinterface konnen die Resultate
eingesehen werden. Die Visualisierung erfolgt hierbei tiberwiegend textuell. Es gibt ausfiihr-
liche Statistiken, die alle leicht verstdndlich sind. Jedoch fehlen imposante Graphiken, um

die Resultate eindrucksvoller aussehen zu lassen.

&

localhost-90:

Aktuelle Nachrichten |3

Dashboards

Leitsystem L33T / StuP... [__

Self jagaidS

Ceonfiguration

e -
= [M- pertcke

& Administrator » Log out o=y

iy §

Sear:h

Projects [Test Code &
19:55 | Time changes. v Configure widgets | Manage dashboards
Hotspats
Vi Lines of code Classes Violations A Blocker 0
Time Machine 304.268 3.579 32.573 2 Citical 361 1
501.592 lines 252 packages . A Major 16.072 [|
ERupors 148003 statements 21,835 methods Rules compliance - M 145
Vilations Drilldown 3129 flee A secessa 78,7% 7
g ’ v lnfo 1313]
Clouds
Design
Libraries Comments Duplications Package tangle index Dependencies to cut
13,4% 5,9% 14,9% 360 between packages
CONFIGURATION 46.943 lines 29 716 lines > 1528 cycles 1.380 between files

Quality Profiles 47,4% docu. API 2388 blocks
T 7.875 undocu. API 647 files
Action Plans |(.|)||::l,(;s(s coverage |6||‘|i| ‘(esi success
o Complesiy i h
e 3,0 matod 0.0% b covvage
i 18,2 jcass
Update Key 20,9 rie P s e e wn
Project Deletion Total: 65.311 . y
®) Methods Files
sonar
Events | Al v
01. Nov 2012 Version 1.0
Abbildung 6.17: Hauptseite der Resultate, die nach einem Scan angezeigt werden kann
Kosten: Die eigentliche Sonar Platform ist Open Source. Es gibt jedoch noch eine Professio-

nal Edition und eine Enterprise Edition, die kommerziell sind. Diese beinhalten neben einem
besseren Support, auch die Unterstiitzung weiterer (zum Teil exotischer) Programmierspra-
chen. Die Kosten verlaufen sich im mittleren fiinf stelligen Bereich. Die Firma bietet fiir 2000
Euro einen Installations- und Konfigurationsdienst an. Zudem werden auch Schulungen
angeboten, deren Kosten bei mehreren Tausend Euro liegen. Es existieren neben kostenlose
Plug-ins auch kommerzielle Plug-ins.

63

6 Evaluation

6.3.8 Understand

d dp Understand ist eine kommerzielle Codeanalyseplattform fiir

viele verschiedene Programmiersprachen, darunter auch Ja-
va. Sie kommt mit einer kompletten Entwicklungsumgebung,
inklusive Code-Editor, der jedoch stark auf die Analyse und
das Reviewing von Codeprojekten, anstatt auf die tatsdchli-
che Entwicklung innerhalb der IDE, ausgelegt ist. Understand
enthélt dabei unterschiedliche Pakete zum erstellen von Metri-

Source Code Analysis & Metrics

Untersuchte Version
3.0.638 (02.11.2012)

I'_lzenz) ken, dem Priifen von Coding-Standards oder anderen Dingen,
kommerziell (Testversion gje auf unsaubere Programmierung hinweisen. Auferdem ist
erhdltlich) es Understand moglich Abhingigkeiten zu analysieren und
verschiedene Graphen (UML, Kontroll-Fluss, Aufruthierarchi-

Webseite en, ...) zu erstellen. Understand besitzt die Moglichkeit zur
scitools.com Erweiterung der meisten Funktionalitdten, wie dem Messen

von Metriken oder eigenen Code-Checks, bis hin zu neuen Grapherstellungs-Algorithmen.
Diese Erweiterungen konnen wahlweise iiber eine Perl oder eine Phython Schnittstelle
gescriptet werden. Eine grofie Auswahl an existierenden Skripten, welche zu einem grofien
Teil von Benutzern geschrieben wurden, werden direkt auf der Webseite zum Download
angeboten.

Community/Support: Understand verfiigt iiber ein Forum, in dem Fragen sowohl zur
Verwendung der Software selbst, als auch zur Erweiterung tiber Skripte, diskutiert werden
konnen. Das Forum ist sehr aktiv und Fragen werden oft schon nach wenigen Stunden von
Mitarbeitern des Herstellers beantwortet. Auflerdem ist es moglich Fragen auch an eine
Supportadresse per E-Mail zu senden.

Dokumentation: Understand ist ausgiebig dokumentiert. Die Entwicklungsumgebung ver-
fiigt liber eine Hilfe, die alle Komponenten der Oberfldche erkldrt und an Beispielen ver-
deutlicht. Aulerdem existieren auf der Webseite ein FAQ und Videotutorials, in denen
einige Features der Software genau erkldart werden. Von den Entwicklern wird auch ein Blog
verwaltet, in dem Neuigkeiten tiber das Projekt angekiindigt und vorgestellt werden. Die Perl
und Phyton APIs zur Erweiterung besitzen beide sehr lange API Referenzbeschreibungen,
welche alle Funktionen oder Klassen der Schnittstelle beschreiben.

Benutzerfreundlichkeit: Understand ist ein grofSes Framework, dass zwar tiber eine graphi-
sche Benutzeroberflache verfiigt, die an eine IDE erinnert, jedoch ist diese oft uniibersichtlich
strukturiert und macht einen tiberladenen Eindruck. Dies fiihrt dazu, dass viele Funktio-
nalitdten nicht intuitiv bedienbar sind und vieles in der Hilfe nachgeschaut werden muss.
Dennoch sind alle Dinge iiber grafische Elemente einstellbar, die man manchmal eben einfach
nur suchen muss.

64

http://www.scitools.com/

6.3 Werkzeuge

File Edit Search View Project Reports Metrics Graphs CodeCheck Annotaions Toole Window Help [=] x]

FYER LAY ERE N o =R PR P Jadnsdaole Hsaen 2

~ Architecture Browser ﬂ 5 X (2

& Understand CDdeChel:k‘);"

@
£ | = Dirsctory Structure
B - sre
2w com G [new & % i 2
4
3 Check Name Description
I HTMLImageAdder java (Fils) =-[®] (@l SciTools’ Recommended Checks Universal standards agreed upon by most experts
g LicensePrependerjava (File) ~[] |@ Functions Too Long Program units should not have more than the spacified number of lines
= OperatorListCreator.java (File) & Overly Complex Functions Test the McCabe Cyclomatic Complexity for program units.
E ParameterRefactoring.java (File) -] @ Unreachable Code Source wil not contain Unreachable Code
RemoveClassVersionTags.java ... =0 g AllChecks
- StyleCheck java (File) = D E Language Specific
z ¥~ src_generated D E CandCos
H [#- src_launcher an
:% [#- src_test =] |:| E Java
® & E Naming Conventions
2 : & Unused nstance Variables. Unused Instance Variables.
E I [@ Unused Local Variables. Unused Local Variables
g] | Unused Methods Defined methods shall be called at least once.
| ™ [[@ Metrics
T

"W Detailed Description: SciTools’ Recommended Checks\Functions Too Long

Rationale

Long functions are usually complex and difficutt to read meaning they are alsa difficult to comprahend and to test

Functions, Methads, Packages, Procedures, Subroutines stc. are tested by this check

Options:

Maximum Lines | 200

~ Information Browser

G- O~ # iy~ |V sye
Architecture src

- Fullname: Directory Structurefsrc
- Parent: Directory Structure

[# Children

Metrics

[count enly Lines of Codefignore comment Ines, blank Ines, etc)

[use verbose Logging

Abbildung 6.18: Konfigurationsdialog zum Auswéhlen von Checks, welche tiber der Code-
basis ausgefiihrt werden sollen

Ausgabe: Es werden viele verschiedene Ausgabemoglichkeiten unterstiitzt, die in der Regel
alle innerhalb der grafischen Oberfldche angezeigt werden. Understand ist es dabei moglich
Befunde im Code direkt auf die entsprechenden Codezeilen zuriickzuspiegeln. Aufierdem
lassen sich fiir Metriken und Befunde Treemaps erstellen, welche einen guten Uberblick iiber
Schwachstellen der Codebasis liefern. Alle Diagramme, Graphiken und Tabellen lassen sich
auch in entsprechende Formate exportieren (meist CSV oder XML).

Kosten: Understand ist kostenpflichtig. Der tatsdchliche Preis ist nur auf Anfrage erhiltlich.
Es steht jedoch eine 16 Tage Testversion zur Verfiigung, die innerhalb des Testzeitraums
uneingeschriankt genutzt werden kann. Der Support ist nicht an spezielle Supportvertrage
gekoppelt oder zeitlich begrenzt, kostet also nichts extra.

6 Evaluation

Abbildung 6.19: Treemap, welche das Verhiltnis von Codezeilen zu Kommentarzeilen an-
zeigt

66

6.4 Resultat

6.4 Resultat

Die detaillierten Beschreibungen der statischen Codeanalysewerkzeuge stellen das Resultat
der Evaluationsphase dar. Dieses kann in kompakter Form der nachfolgenden Tabelle ent-
nommen werden.

PR E

;f g’ :go . 2 A & g

9 & © g 8 c S
Kriterium 6 8 E E § E & 5
Community /Support e o0 &8 8 6 o0 &
Dokumentation © 0 0l 8 o o0 &
Benutzerfreundlichkeit © & & ol 8 & o
Kosten e © & & & & O[O
Lizenz & & & o O & & D
Blacklisting e & & 6 6 & & O
Performance @ & & & e & & O
Quellcode vs. Bytecode ® & 6 6 & & & &
Normierte Punktzahlin % 53 71 73 32 23 60 71 75
Endnote 4+ 2- 2- 5 5 3= 2- 2-

Tabelle 6.5: Resultat der Evaluation mit Bewertung der Kriterien

67

7 Empfehlung

Nach unserer Evaluation konnten vier Codeanalysewerkzeuge die Bestnote (2-) erreichen.
Dennoch existieren teilweise grofie Unterschiede zwischen den einzelnen Codeanalysewerk-
zeugen, so dass eine Bestimmung eines eindeutigen Siegers nicht einfach moglich ist. Viel
mehr hingt dies von dem konkreten Einsatzgebiet und den personlichen Vorlieben den
Benutzers ab. Im Folgenden wollen wir auf die Individualitdten der vier Gewinner-Werkzeug
eingehen, so dass der Leser nach eigenem Ermessen, das fiir ihn richtige Codeanalysewerk-
zeug wahlen kann. Vor allem sollte klar sein, dass in unserer Bewertung nicht auf den
tatsdchlichen Funktionsumfang der Codeanalysewerkzeuge eingegangen wurde, da dieser
von Werkzeug zu Werkzeug sehr stark variiert und ein guter Vergleich damit unmoglich
wird. Das Hauptaugenmerk lag bei dieser Fachstudie auf anderen Punkten (siehe Abschnitt

5)-

Eines der Codeanalysewerkzeuge sticht besonders heraus: FindBugs. Denn anders als die
tibrigen drei Codeanalysewerkzeuge ist FindBugs ein auf ein Gebiet spezialisiertes Einzel-
werkzeug und keine komplette Plattform zur statischen Codeanalyse. FindBugs ist nach
unseren Kriterien, die vor allem Erweiterbarkeit in den Vordergrund stellen, sehr gut bewer-
tet worden. Der Funktionsumfang ist jedoch durch seine Ausrichtung auf ein Themengebiet
eingeschriankt. Bei den anderen Codeanalysewerkzeugen, die eher eine Plattform fiir ver-
schiedene Funktionalitdten bilden, ist dies nicht der Fall. Dies geht sogar so weit, dass die
Codeanalysewerkzeuge ConQAT und Sonar, FindBugs (oder auch CheckSytle und PMD)
einbinden konnen und damit den gesamten Funktionsumfang dessen in sich integrieren.

Sonar bietet einige Besonderheiten, wie dass es auf einem Datenbanksystem aufbaut, in dem
es alle Ergebnisse vorhergegangener Tests abspeichert und dass es ein Webinterface liefert,
um diese bequem und tibersichtlich darzustellen. Dies kann insbesondere dann interessant
sein, wenn das Codeanalysewerkzeug produktiv in einem Team eingesetzt wird, so dass
jeder Entwickler eine gute Ubersicht {iber die aktuelle Qualitit des Codes erhalten kann.

ConQAT punktet besonders im Bereich der Benutzerfreundlichkeit. Hier ist es sehr einfach
die auszufiihrenden Analyseschritte in einem Graphen zusammenzustellen. Auch die Ausga-
be wird sehr ordentlich und {ibersichtlich in vielen unterschiedlichen Formaten dargestellt.
Auch eine Trendanalyse dartiiber, wie sich ein Softwareprojekt im Laufe seines Daseins
entwickelt wird einfach unterstiitzt. Wichtiges Merkmal von ConQAT ist, im Gegensatz zu
den anderen beiden Analyseplattformen mit der Bestnote, dass ConQAT sehr gut in Eclipse
integriert ist. Dies kann vor allem fiir einen Entwickler, welcher in dieser IDE auch seine
normale Arbeit verrichtet, von Vorteil sein.

Understand, das einzige kommerzielle Codeanalysewerkzeug in der Endauswahl, kommt
mit einer eigenen grafischen Oberfliche mit integriertem Editor, die stark an eine IDE

69

7 Empfehlung

erinnert. Diese ist jedoch nicht auf tatsdchliches Entwickeln, sondern auf Tatigkeiten im
Rahmen der statischen Codeanalyse ausgelegt. Wichtiger Unterschied ist aufierdem, dass
man Erweiterungen nicht direkt am Quellcode in Java vornehmen kann (da dieser nicht
verfiigbar ist), sondern diese in Perl oder Python tiber die speziell dafiir angebotenen APIs
vornehmen muss.

70

Erklarung

Wir versichern, diese Arbeit selbststiandig verfasst zu haben. Wir haben keine anderen als
die angegebenen Quellen benutzt und alle wortlich oder sinngemafs aus anderen Werken
iibernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen Priifungsverfahrens. Wir haben diese
Arbeit bisher weder teilweise noch vollstandig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

«Ort, Datum, Unterschriften»

Marius Bauer, Michael Nistor, Albert Ziegenhagel

Alle URLs wurden zuletzt am 08.11.2012 gepriift.

71

	1 Einleitung
	1.1 Begriffe
	1.2 Fokus der Fachstudie
	1.2.1 Wichtige Anforderungen
	1.2.2 Nicht berücksichtigte Aspekte

	1.3 Gliederung

	2 Ablauf der Fachstudie
	2.1 Phasen
	2.2 Zeitlicher Verlauf

	3 Marktüberblick
	4 Nutzungsszenario
	5 Bewertungskriterien
	5.1 K.O. Kriterien
	5.1.1 Erweiterbarkeit
	5.1.2 Updates
	5.1.3 Plattform
	5.1.4 Funktionsumfang

	5.2 Nicht relevante Kriterien
	5.2.1 Art/Architektur

	5.3 Weitere Kriterien
	5.3.1 Community/Support
	5.3.2 Dokumentation
	5.3.3 Benutzerfreundlichkeit
	5.3.4 Blacklisting
	5.3.5 Kosten
	5.3.6 Lizenz
	5.3.7 Performance
	5.3.8 Quellcode vs. Bytecode

	6 Evaluation
	6.1 Voruntersuchung
	6.2 Bewertungsschema
	6.3 Werkzeuge
	6.3.1 Checkstyle
	6.3.2 ConQAT
	6.3.3 FindBugs
	6.3.4 JLint
	6.3.5 Moose
	6.3.6 PMD
	6.3.7 Sonar
	6.3.8 Understand

	6.4 Resultat

	7 Empfehlung

