Institut fiir Architektur von Anwendungssystemen
Universitdt Stuttgart

Universititsstrafse 38
D-70569 Stuttgart

Fachstudie Nr. 170

Vergleich von Frameworks zur
Implementierung von REST
basierten Anwendungen

Markus Fischer und Kalman Kepes und Alexander

Wassiljew
Studiengang: Softwaretechnik
Priifer/in: Prof. Dr. Leymann
Betreuer/in: Dipl.-Inf. Florian Haupt
Beginn am: 2012-12-17
Beendet am: 2013-06-18

CR-Nummer: Ke6.1,D21,D22,D213,D3.3

Kurzfassung

Mit steigender Popularitdt des Architekturstils Representational State Transfer veroffentlicht
in der Dissertation Architectural Styles and the Design of Network-based Software Architectures
von Roy T. Fielding im Jahre 2000, wurden und werden immer mehr Arbeiten verdffent-
licht die sich mit dem Thema beschéftigen. Darunter befinden sich auch Frameworks und
Spezifikationen, die das Entwickeln von RESTful Services anhand der Aspekte von REST,
wie beispielsweise Uniform Interface erleichtern wollen. In dieser Fachstudie werden eine
Reihe von Frameworks, fiir das Entwickeln von RESTful Services vorgestellt und anhand
eines Kriterienkatalogs ausgewertet und bewertet. Dieser Kriterienkatalog ist in 4 Kategorien
eingeteilt. Darunter fallen Kriterien beziiglich der Dokumentation des Frameworks, die mit
ihnen verbundenen Entwicklungsprozesse und inwieweit die REST Prinzipien mit Hilfe des
Frameworks realisiert werden konnen. Weiterhin werden erweiterte technische Fahigkeiten
betrachtet, wie beispielsweise Entwicklungsunterstiitzung fiir transaktionales Verhalten und
Asynchronitit, aber auch andere wichtige Aspekte fiir RESTful Applikationen, wie Sicherheit
und Zuverlassigkeit.

Inhaltsverzeichnis

1. Einleitung
1.1. Einleitung
1.2. Gliederung
2. Verwandte Arbeiten
2.1. Guidelines for Designing REST Frameworks
2.2. Zuzak NEA o
2.3. REST: Die ArchitekturdesWeb
2.4. RESTful Web Services Development Checklist
3. Kiriterienkatalog
3.1. Grundlagen
3.1.1. Allgemeines
3.1.2. REST Server Applikationen
3.1.3. REST Client Applikationen
3.1.4. Architektur und Funktionsweise
3.2. Entwicklung von REST basierten Anwendungen
3.2.1. Entwicklungsprozess/Vorgehensmodell
3.2.2. Modellierung von REST APIs
3.2.3. Modellierungswerkzeuge
3.3. Unterstiitzung grundlegender REST Prinzipien
3.3.1. Ressourcenidentifikation und Ressourcenstruktur
3.3.2. Ressourcentypen
3.3.3. Hypermedia.
3.3.4. Medientypen
33.5. Caching
3.3.6. Code-On-Demand
3.4. Erweiterte Technische Fahigkeiten
3.4.1. Protokollunterstiitzung jenseits von HTTP
3.4.2. HTTP . . o oo e
3.4.3. Unterstiitzung fiir Transaktionen
3.4.4. Security
3.4.5. Asynchronitdt o o
3.4.6. Zuverldssigkeit o o L oo
3.4.7. Umgang mit grofen Daten
3.5. Bewertungssystem oo o

11
11
12

13
13
14
14
15

17
17
17
18
18
18
19
19
19
20
20
21
21
22
22
23
23
23
24
24
24
25
25
25
26
26

4. Bewertungen 29

4.1, JEISRY 29
4.1.1. Grundlagen 29
4.1.2. Entwicklung von REST basierten Anwendungen 32
4.1.3. Unterstiitzung grundlegender REST Prinzipien 34
4.1.4. Erweiterte Technische Fahigkeiten 37

4.2 SCOOtET 40
421. Grundlagen L 41
4.2.2. Entwicklung von REST basierten Anwendungen 42
4.2.3. Unterstiitzung grundlegender REST Prinzipien 44
4.2.4. Erweiterte Technische Fahigkeiten 47

4.3. VRaptor 49
43.1. Grundlagen L 50
4.3.2. Entwicklung von REST basierten Anwendungen 52
4.3.3. Unterstiitzung grundlegender REST Prinzipien 53
4.3.4. Erweiterte Technische Fahigkeiten 56

4.4. Resthub 0 58
4.4.1. Grundlagen 59
4.4.2. Entwicklung von REST basierten Anwendungen 60
4.4.3. Unterstiitzung grundlegender REST Prinzipien 62
4.4.4. Erweiterte Technische Fahigkeiten 65

45. Apache CXF 67
4.5.1. Grundlagen 68
4.5.2. Entwicklung von REST basierten Anwendungen 70
4.5.3. Unterstiitzung grundlegender REST Prinzipien 71
4.5.4. Erweiterte Technische Fahigkeiten 74

4.6. Resteasy 76
4.6.1. Grundlagen L L 77
4.6.2. Entwicklung von REST basierten Anwendungen 79
4.6.3. Unterstiitzung grundlegender REST Prinzipien 8o
4.6.4. Erweiterte Technische Fahigkeiten 83

4.7. WInk . 000 86
4.7.1. Grundlagen 86
4.7.2. Entwicklung von REST basierten Anwendungen 88
4.7.3. Unterstiitzung grundlegender REST Prinzipien 89
4.7.4. Erweiterte Technische Fahigkeiten 92

4.8. Restlet 94
48.1. Grundlagen o 95
4.8.2. Entwicklung von REST basierten Anwendungen 97
4.8.3. Unterstiitzung grundlegender REST Prinzipien 98
4.8.4. Erweiterte Technische Fahigkeiten 101

4.9. Play Framework o 103
49.1. Grundlagen L L 105
4.9.2. Entwicklung von REST basierten Anwendungen 106
4.9.3. Unterstiitzung grundlegender REST Prinzipien 108

4.9.4. Erweiterte Technische Fahigkeiten 111

5. Ergebnisse 115

5.1. Kommentar zur Bearbeitung, 115

52. Grundlagen 115

5.2.1. Allgemeines - Ergebnisse 115

5.2.2. REST Server Applikationen - Ergebnisse 116

5.2.3. REST Client Applikationen - Ergebnisse 116

5.3. Entwicklung von REST basierten Anwendungen 116

5.3.1. Entwicklungsprozess/ Vorgehensmodell - Ergebnisse 116

5.3.2. Modellierung von REST APIs - Ergebnisse 116

5.3.3. Modellierungswerkzeuge - Ergebnisse 116

5.4. Unterstiitzung grundlegender REST Prinzipien 117

5.4.1. Ressourcenidentifikation und Ressourcenstruktur - Ergebnisse 117

5.4.2. Ressourcentypen - Ergebnisse 117

5.4.3. Hypermedia - Ergebnisse 117

5.4.4. Medientypen - Ergebnisse 00 L 117

5.4.5. Caching - Ergebnisse 117

5.4.6. Code-On-Demand - Ergebnisse 118

5.5. Erweiterte Technische Fahigkeiten 118

5.5.1. Protokollunterstiitzung jenseits von HTTP - Ergebnisse 118

5.5.2. HTTP - Ergebnisse 118

5.5.3. Unterstiitzung fiir Transaktionen - Ergebnisse 118

5.5.4. Security - Ergebnisse o oo Lo oL 118

5.5.5. Asynchronitdt - Ergebnisse, 119

5.5.6. Zuverldssigkeit - Ergebnisse 000, 119

5.5.7. Umgang mit grofSen Daten - Ergebnisse 119

6. Zusammenfassung und Ausblick 121

A. Gesamtiibersicht aller Auswertungen 123

Literaturverzeichnis 131
Tabellenverzeichnis

4.1. EckdatenJersey L 29

4.2. Auswertung Jersey Grundlagen L oL 29

4.3. Auswertung Jersey Entwicklung von REST basierten Anwendungen 32

4-4. Auswertung Jersey Unterstiitzung grundlegender REST Prinzipie 34

4.5. Auswertung Jersey Erweiterte Technische Fahigkeiten. 37

4.7.
4.8.
4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.
4.19.
4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.
4.28.
4.29.
4.30.
4.31.
4.32.
4-33-
4.34.
4.35.
4.36.
4.37-
4.38.
4.39-
4-40.
4.41.
4-42.
4.43.
4-44.
4.45.

A.1.
A.2.
As.

. Auswertungen in der Kategorie Entwicklungsprozess/Vorgehensmodell . . .

. Eckdaten Scooter e,

Auswertung Scooter Grundlagen
Auswertung Scooter Entwicklung von REST basierten Anwendungen
Auswertung Scooter Unterstiitzung grundlegender REST Prinzipien
Auswertung Scooter Erweiterte Technische Fahigkeiten
Eckdaten VRaptor
Auswertung VRaptor Grundlagen
Auswertung VRaptor Entwicklung von REST basierten Anwendungen
Auswertung VRaptor Unterstiitzung grundlegender REST Prinzipien
Auswertung VRaptor Erweiterte Technische Fahigkeiten
EckdatenResthub oo
Auswertung Resthub Grundlagen
Auswertung Resthub Entwicklung von REST basierten Anwendungen
Auswertung Resthub Unterstiitzung grundlegender REST Prinzipien
Auswertung Resthub Erweiterte Technische Fahigkeiten
Eckdaten Apache CXF
Auswertung Apache CXF Grundlagen
Auswertung Apache CXF Entwicklung von REST basierten Anwendungen . .
Auswertung Apache CXF Unterstiitzung grundlegender REST Prinzipien . . .
Auswertung Apache CXF Erweiterte Technische Fahigkeiten
Eckdaten Resteasy
Auswertung RESTEasy Grundlagen
Auswertung RESTEasy Entwicklung von REST basierten Anwendungen
Auswertung RESTEasy Unterstiitzung grundlegender REST Prinzipien -
Auswertung RESTEasy Erweiterte Technische Fahigkeiten
Eckdaten Wink L
Auswertung Apache Wink Grundlagen
Auswertung Apache Wink Entwicklung von REST basierten Anwendunge

Auswertung Apache Wink Unterstiitzung grundlegender REST Prinzipien . .
Auswertung Apache Wink Erweiterte Technische Fahigkeiten
Eckdaten Restlet L
Auswertung Restlet Grundlagen
Auswertung Restlet Entwicklung von REST basierten Anwendungen
Auswertung Restlet Unterstiitzung grundlegender REST Prinzipien
Auswertung Restlet Erweiterte Technische Fahigkeiten
EckdatenPlay
Auswertung Play Grundlagen
Auswertung Play Entwicklung von REST basierten Anwendungen
Auswertung Play Unterstiitzung grundlegender REST Prinzipien
Auswertung Play Erweiterte Technische Fahigkeiten.

Auswertungen in der Kategorie Allgemeines
Auswertungen in der Kategorie REST Server Applikationen
Auswertungen in der Kategorie Client Applikationen

101
103
105
106
108
111

123
123
124

. 124

A.5. Auswertungen in der Kategorie Modellierung von REST API's 125

A.6. Auswertungen in der Kategorie Modellierungswerkzeuge 125
A.7. Auswertungen in der Kategorie Ressourcenidentifikation und Ressourcen-
struktur 125
A.8. Auswertungen in der Kategorie Ressourcentypen 126
A.9. Auswertungen in der Kategorie Hypermedia 126
A.10.Auswertungen in der Kategorie Medientypen 126
A.11.Auswertungen in der Kategorie Caching 127
A.12.Auswertungen in der Kategorie Code-On-Demand 127
A.13.Auswertungen in der Kategorie Protokollunterstiitzung jenseits von HTTP . . 127
A.14.Auswertungen in der Kategorie HTTP 128
A.15.Auswertungen in der Kategorie Unterstiitzung von Transaktionen 128
A.16.Auswertungen in der Kategorie Security 128
A.17.Auswertungen in der Kategorie Asynchronitat 129
A.18.Auswertungen in der Kategorie Zuverlassigkeit 129
A.19.Auswertungen in der Kategorie Umgang mit groflen Daten 129

Verzeichnis der Listings

4.1. JAX-RSCode Beispiel L oo 30
4.2. Erstellung einer Applikation in Scooter. 40
4.3. VRaptor Ressourcen Beispiel 50
4.4. Zentrale Routing Klasse fiir URIs in dem Framework VRaptor. 50
4.5. URI Builder des Spring Stacks des REST Hub Frameworks 59
4.6. Ein Beispiel einer mit Resteasy entwickelten Methode. 77
4.7. Restlet Code Beispiel 95
4.8. Play Beispiel Code 104

1. Einleitung

1.1. Einleitung

Im Jahr 2000 verdffentlichte Roy Fielding seine Dissertation mit dem Titel “Architectural
Styles and the Design of Network-based Software Architectures”. In dieser leitet er von
verschiedenen Netzwerk-basierten Architekturstilen den “Representational State Transfer”
(REST) Stil ab. Dieser Stil, kurz: REST, wird in der Dissertation anhand verschiedener
Bedingunen definiert.

Die erste Bedingung ist die Einhaltung einer Client-Server-Architektur. Dabei wird die Benut-
zerschnittstelle von der Datenhaltung getrennt, um somit Portabilitdt von der Schnittstelle
und die Skalierbarkeit von Servern zu verbessern [Fieoo, Abschnitt 5.1.2].

Als zweite Bedingung wird fiir Client-Server Interaktionen Zustandslosigkeit gefordert.
Dadurch sollen Eigenschaften, wie Sichtbarkeit, Zuverladssigkeit und Skalierbarkeit verbessert
werden. Die Sichtbarkeit wird unterstiitzt, indem eine Anfrage zum Server alle notigen
Daten enthalten muss, damit dieser die Anfrage verarbeiten kann. Dadurch kénnen einzelne
Anfragen fiir sich betrachtet werden, ohne dass vorherige Anfragen eine Rolle spielen. Die
Zuverldssigkeit wird dann dadurch erhoht, dass beim Ausfall andere Instanzen Anfragen
verarbeiten konnen (Bsp: Hot Pool). Der Skalierbarkeits-Aspekt wird dadurch verbessert,
dass der Server keine Zustandsdaten mehr verwalten muss [Fieoo, Abschnitt 5.1.3].

Als dritte Bedingung definiert Fielding die Fahigkeit zum Cachen von Antworten (des Ser-
vers). Der Vorteil davon ist, dass die Menge potenzieller Anfragen vermindert werden kann.
Dabei werden Kriterien, wie Effizienz, Skalierbarkeit und Benutzer empfundene Performanz
verbessert, da Anfragen evtl. nicht verarbeitet werden miissen [Fieoo, Abschnitt 5.1.4].

Die Forderung nach einer einheitlichen Schnittstelle im REST Architekturstil vereinfacht die
Gesamtarchitektur und fordert die Transparenz von Interaktionen [Fieoo, Abschnitt 5.1.5].
Eine weitere Forderung besteht daraus, die zu entwerfende Anwendung in verschiedenen
Schichten aufzubauen und somit Kapselung von Funktionalidt zu ermdéglichen [Fieoo, Ab-
schnitt 5.1.6].

Als letzter Aspekt wird Code-On-Demand erwihnt, dieser soll Clients ermoglichen ihre
Funktionalitdt zu erweitern, indem sie Code vom Server laden und ausfiihren konnen [Fieoo,
Abschnitt 5.1.7].

Diese Fachstudie beschiftigt sich mit Frameworks, die das Entwickeln von RESTful Services
ermoglichen und erleichtern wollen. Es gibt zahlreiche REST Frameworks auf dem Markt,
mit verschiedener Verbreitung, Funktionalitét, Lizenzen und in verschiedenen Programmier-
sprachen [imp].

11

1. Einleitung

Diese Fachstudie evaluiert gezielt Open-Source Java Frameworks, die als aktives Projekt
bezeichnet werden konnen. Aktive Projekte sind dabei folgendermafien zu verstehen: Das
Framework wird aktiv weiterentwickelt. Es besteht die Moglichkeit Kontakt zu den Ent-
wicklern/ zur Community des Frameworks aufzunehmen. Das Framework wird von der
Communitiy in richtigen Projekten eingesetzt.

Am 13 Februar 2007 wurde dem Java Specification Request Nummer 311 “JAX-RS: The
Java API for RESTful Web Services” zugestimmt. Dabei handelt es sich um ein API, dass
Unterstiitzung zur Entwicklung von RESTful Anwendungen im Java Umfeld, bereitstellen
soll. Der erste Final Release der JAX-RS 1.0 Spezifikation erfolgte am 10. Oktober 2008,
ein Jahr spater die Version 1.1 am 23. November 2009. Die ersten, der bis heute aktiven
Java-Frameworks entstanden im Jahre 2007, also noch vor der Freigabe von JAX-RS 1.0. Diese
waren Apache CXF (Juli 2007), welches aus XFire und Celtix hervorgegangen ist, sowie
Restlet (April 2007). In der Folge der Spezifikation wurden viele Frameworks veroffentlicht.
Jersey als Referenzimplementierung im Oktober 2008, RESTEasy im Januar 2009, Play! und
VRaptor(3.0) jeweils im Oktober 2009 und schliefilich Apache Wink im November 2009. 2010
folgten dann noch Resthub (November) und Scooter (Dezember). Die Version 1.1 der JAX-RS
Spezifikation wurde am 24. Mai 2013 von der Version 2.0 abgeldst, zu der allerdings noch
keine zertifizierten Implementierungen zum Zeitpunkt dieser Fachstudie vorliegen.

1.2. Gliederung

Die Arbeit ist in folgender Weise gegliedert:
Kapitel 1 — Einleitung: Kapitel 1 stellt das Thema dieser Fachstudie vor.
Kapitel 2 — Verwandte Arbeiten: Kapitel 2 stellt verwandte Arbeiten dieser Fachstudie vor.

Kapitel 3 — Kriterienkatalog: Kapitel 3 stellt den Kriterienkatalog vor, anhand dem die Fra-
meworks ausgewertet und das Bewertungssystem, anhand dessen die Frameworks
beurteilt werden.

Kapitel 4 — Bewertungen: In Kapitel 4 werden die einzelnen Frameworks zundchst kurz
beschrieben, anhand des Kriterienkatalogs ausgewertet und schliefilich beurteilt.

Kapitel 5 — Ergebnisse: In Kapitel 5 werden die Ergebnisse aus Kapitel 4 zusammengefasst,
verglichen und ein Fazit gezogen.

Kapitel 6 — Zusammenfassung und Ausblick: fasst die Ergebnisse der Arbeit zusammen
und stellt Ankniipfungspunkte vor.

12

2. Verwandte Arbeiten

2.1. Guidelines for Designing REST Frameworks

Zuzak beschreibt in dem Artikel den Entwicklungsprozess eines RESTful Systems und ver-
sucht anhand von Richtlinien diverse Frameworks zu analysieren. Der Entwicklungsprozess
eines Systems wird von Zuzak in drei wichtige Phasen unterteilt. Framework-, Architektur-
und Applikationsphase.

Die Frameworkphase beinhaltet die Entwicklung eines Framework-Kerns als Architektur-
unabhingige Module, die spidter erforderlich sind fiir die Implementierung spezifi-
scher Architekturen und Anwendungen. Diese Module beinhalten zum einen generische
RESTFul-System-Engines und Repositories zum Verwalten von Protokoll- und Medientyp-
Implementierungen.

Architekturphase beinhaltet die Entwicklung der Technologien einer spezifischen RESTful
Archtitektur. Hier sollen laut Zuzak, die von der Applikationsphase unabhédngigen Protokolle,
Medientypen, Verlinkungen und Code-on-Demand Realisierungen implementiert werden.

In der Applikationsphase rat Zuzak, die Client und Server Logik zu implementieren. Dabei
kommen Module zum Einsatz, die in der Architektur- und der Frameworkphase entwickelt
wurden. In dieser Phase beschiftigen sich die Entwickler des Servers mit der Entwicklung
von Ressourcen und deren Identifizierung, wiahrend die Client-Entwickler die Applikations-
logik entweder als Browser oder als eigene Applikation implementieren. Ebenfalls sollen
in dieser Phase Prozessoren fiir verschiedene Medientypen entwickelt werden, die nicht in
wahrend der Architekturphase nicht definiert wurden.

Laut Zuzak sollen Frameworks Modifikationen unterstiitzen, so dass Entwickler das Fra-
mework bei Bedarf anpassen konnen. Als Beispiel erwdahnt Zuzak hier die Definition neuer
Protokoll-Header, neue Ressourcen und neue Medientypdefinitionen. Wohlgeformte Schnitt-
stellen und Repository orientiertes Design sind hier von Vorteil. Das Framework soll nach
Zuzak mehrere Protokolle der Applikationsschicht verwalten und deren paralleles Benut-
zen ermoglichen. Hier sollen kleine Module behilflich sein, die verschiedene Aufgaben
tibernehmen konnen, wie bspw. die Definition neuer Header oder Verben. Die von Zuzak
analysierten Frameworks weisen keinen generischen Ansatz aus, um das Protokoll wechseln
zu konnen. Sie sind fest an HTTP gebunden und bieten keine oder nur sehr kleine Erwei-
terungsmoglichkeiten. Als ndchster Punkt wird URI Design diskutiert. In diesem Bereich
soll ein Framework die Moglichkeit anbieten eigene Ressourcen-Identifikatoren, sowie deren
Templates zu definieren. Auch die Medientypen sollen erweiterbar, sowie Standards bereits

13

2. Verwandte Arbeiten

im Framework enthalten sollen. Als letzter Punkt soll Content-Negotiation vom Framework
automatisch durchgefiihrt werden.

In den weiteren beiden Kapiteln werden Client- und Server-orientierte Richtlinien behandelt.
In diesen Kapiteln beschreibt Zuzak das Vorgehen der Entwicklung solcher Systeme. Da
diese Fachstudie erster Linie an Frameworks, deren Aufbau und Nutzbarkeit behandelt ist
lediglich der erste Teil von [ZS12] relevant. So fanden einige Punkte, Protokollunterstiitzung
und Identifizierungsarten, Einzug in unseren Kriterienkatalog.

2.2. Zuzak NEA

In der Arbeit [ZBD11] beschreibt Zuzak das Vorgehen des Modellierens und des Analysierens
von RESTful Software-Systemen. Diese kurze Erlduterung behandelt jedoch lediglich den
Teil der Arbeit tiber das Modellieren von RESTful Software-Systemen mit Hilfe eines nicht
deterministischen endlichen Automaten (NEA). Dieser beschreibt, inwiefern sich Aufbau,
Zustande und Zustandsiibergange eines NEA auf RESTful Applikation iibertragen lassen.
Zuzak definiert dazu Komponenten oder Module, die bestimmte Operationen zu einer
bestimmten Zeit ausfiihren. So werden Module, wie bspw. Medientyp-Prozessoren definiert,
die beim Aufruf einer Ressource weitere Komponenten ansprechen. Speichern von Links,
Logik der Applikations-Schicht, Logik der Hypermedia-Schucht und der Protokollschicht
werden im ndchsten Schritt ausgefiihrt. Dabei ist entscheidend, in welchem Zustand sich
eine Applikation befindet. Bestimmte Zustdnde markieren dabei Ubergénge und somit auch
die Nutzung der, eben genannten, drei Komponenten. Zu diesem Zeitpunkt geht es nun in
Richtung REST Server zum Request Vorprozessor und/oder zum Request Prozessor, wobei
auch an dieser Stelle der Zustand entscheidend ist. Nach diesen Modulen werden noch die
letzten Module angesprochen, wie bspw. Code-on-Demand-Engine und das State-Integrator-
Modul. Letzteres priift bspw. ob JavaScript ausgefiihrt werden soll und {tibergibt diese dann
an die Code-on-Demand-Engine, welche nach der Ausfiihrung des Scriptes den Zustand des
NEA wechseln kann. Die Ubergénge finden durch Aufrufen, Nachladen und anzeigen von
Ressourcen statt. So wird in dieser Arbeit auch der Bezug zur Aussage “Hypermedia as the
engine of application state” hergestellt. Die relevanten Kriterien fiir den Kriterienkatalog
wurden hier fiir den Teil Hypermedia extrahiert. Am Ende von [ZBD11] werden noch
Richtlinien fiir Frameworks beschrieben, die zuvor in [ZS12] erwdhnt wurden.

2.3. REST: Die Architektur des Web

In dem Artikel “Die Architektur des Web” versucht Tilkov anhand eines Anwendungsbei-
spiels das REST Prinzip zu erldutern. Um dieses Beispiel zu entwerfen, bezieht Tilkov sich
auf HTTP als Applikationsprotokoll. Verschiedene Aspekte von REST werden erklirt, wie z.B.
zustandslose Kommunikation zwischen Client und Server. Weiterhin behandelt Tilkov Res-
sourcen und deren Identifizierbarkeit. Die einheitlichen Schnittstellen (Uniform Interfaces)
miissen demnach bei einer Applikation gut durchdacht sein und sollen von allen Ressource

14

2.4. RESTful Web Services Development Checklist

unterstiitzt werden. Die HTTP-Verben GET, PUT, POST und DELETE werden von Tilkov in
dem Anwendungsbeispiel als Befehle und als solche einheitlichen Schnittstellen bezeichnet.
Ein weiterer Aspekt, auf den dieser Artikel eingeht, ist das Hypermedia Prinzip. Wie die
Verlinkung, ist auch die Ressource und ihre Identifikation iiber Ressourcen-Identifikatoren,
wie URI beim REST Prinzip im Vordergrund. Als letzten Punkt benennt Tilkov MIME-Types
bzw. Medientypen.

2.4. RESTful Web Services Development Checklist

Der Artikel [Vino8] von Vinovski beschreibt die Enwicklung eines RESTful Web Service. Der
Artikel aufgebaut wie eine Checkliste. Der Artikel beschreibt grob die wichtigsten Aspekte
von REST. Ressourcen und deren Identifikatoren werden erwéhnt, sowie die Modellierung
der Identifikatoren. Dabei wird in diesem Artikel auf HATEOAS eingegangen. Desweiteren
beschiftigt sich Vinovski in diesem Artikel mit Repréasentationen und Medientypen. Er
verweist auf die IANA [ian], die fiir die Verwaltung von globalen Medientypen zustidndig
sind. Content-Negotiation wird kurz erldutert jedoch nicht weiterfithrend behandelt. In einem
weiterem Kapitel werden HTTP-Methoden prasentiert. Dabei muss beachtet werden, dass
eines der vier, fiir REST wichtigen, Methoden nicht idempotent ist. GET, PUT und DELETE
sind idempotent. Ein mehrmaliges Ausfiihren der Methoden verdndert die angesprochene
Ressource nur beim ersten mal. Die Antwort auf diese Anfragen ist immer die selbe. Die
Methode POST ist nicht idempotent, so dass Vinovski hier auf eine vorsichtige Nutzung
aufmerksam macht. Auf weitere Themen geht dieser Artikel leider nicht ein, dennoch sind
die gewonnenen Erkenntnisse relevant fiir den Kriterienkatalog, beziiglich der Unterstiitzung
fiir Medientypen.

15

3. Kriterienkatalog

In diesem Kapitel wird der Kriterienkatalog vorgestellt, mit dessen Hilfe die einzelnen
Frameworks evaluiert werden. Der Kriterienkatalog ist in vier Kategorien unterteilt: Grund-
lagen, Entwicklung von REST basierten Anwendungen, Unterstiitzung grundlegender REST
Prinzipien und Erweiterte Technische Fahigkeiten. In dem Kapitel Grundlagen befinden sich
Kriterien, wie z.B. die Lizenz, das Vorhandensein von Dokumentation und ob das Framework
bspw. die Entwicklung von REST Clients allgemein unterstiitzt. Die Kriterien unter Entwick-
lung von REST basierten Anwendungen beschéftigen sich mit Entwicklungsprozessen, die
mit dem Framework moglich sind und ob es Moglichkeiten der Modellierung gibt. Unter
Unterstiitzung grundlegender REST Prinzipien werden Kriterien aufgelistet, die sich mit
den REST Constraints auseinandersetzen wie bspw. Caching. Bei Kriterien der Kategorie
Erweiterte Technische Fahigkeiten werden Fragen bzgl. des HTTP Protokolls gestellt und ob
weitere Aspekte, wie Sicherheit und Zuverlassigkeit, aktiv unterstiitzt werden.

3.1. Grundlagen

Die Kategorie Grundlagen beschiftigt sich mit allgemeinen Eigenschaften des Frameworks
und ist in vier Unterkategorien eingeteilt: Allgemeines, REST Server Applikationen, REST
Client Applikationen, Architektur und Funktionsweise. Allgemeines besteht aus Kriteri-
en, wie Dokumentation, Lizenz und Community. REST Server Applikationen fragt nach,
welche Konfigurationen moglich sind, Server Applikationen zu realisieren. REST Client
Applikationen hat Kriterien, die die Fahigkeit zur REST Client Entwicklung evaluieren.
Unter der Kategorie Architektur und Funktionsweise, wird die High-level Architektur und
die allgemeine Funktionsweise des Frameworks abgefragt.

3.1.1. Allgemeines

1. Gibt es Hilfestellungen fiir die Entwicklung mit dem Framework? (Tutorials, Codebei-
spiele, Referenzen)

2. Existiert eine aktive Community?

3. Unter welcher Lizenz steht das Framework zur Verfiigung?

17

3. Kriterienkatalog

4. Ist das Framework prinzipiell erweiterbar, d.h. sind explizite Erweiterungsmechanis-
men vorgesehen? (Spezielle Erweiterungsmechanismen werden in den entsprechenden
Abschnitten separat abgefragt, aber die grundlegende Erweiterbarkeit kann auch
interessant sein)

3.1.2. REST Server Applikationen

Jede Software benétigt eine bestimmte Umgebung um lauffihig zu sein. Die Anforderun-
gen reichen dabei von Betriebssystemen, tiber virtuelle Maschinen bis hin zu bestimmten
installierten Anwendungen, die auf dem selben oder angebundenen System laufen miissen.
Beispielsweise Server oder Datenbankanwendungen.

1. Ist es moglich, eine Standalone REST Anwendung zu realisieren?

2. In welcher Umgebung kann die implementierte REST Anwendung ausgefiihrt werden?

3. Wie stark wird die Portierbarkeit der REST Anwendungen unterstiitzt?

3.1.3. REST Client Applikationen

Eine REST Applikation unterliegt immer der Client-Server Architektur. Diese Fachstudie kon-
zentriert sich zwar hauptsichlich auf Moglichkeiten, die Serverseite einer REST Applikation
zu realisieren, dennoch ist auch die Clientseite ein wichtiger Aspekt.

1. Unterstiitzt das Framework die Entwicklung von Client Applikationen?

2. Welche Hilfsmittel werden von dem Framework, zur Unterstiitzung der Cliententwick-
lung, angeboten? (Bspw. Highlevel-HTTP-Aufrufe, Komfortfunktionen etc.)

3. Wie sehen diese genau aus?

3.1.4. Architektur und Funktionsweise

1. Wie ist die Architektur und die grundlegende Funktionsweise des Frameworks?

2. Baut es auf bestehenden Technologien oder Frameworks auf?

18

3.2. Entwicklung von REST basierten Anwendungen

3.2. Entwicklung von REST basierten Anwendungen

Bei der Kategorie Entwicklung von REST basierten Anwendungen werden Kriterien in die
Unterkategorien Entwicklungsprozess/Vorgehensmodell, Modellierung von REST APIs und
Modellierungswerkzeuge eingeteilt. Im ersten Abschnitt werden Kriterien definiert, die
ermitteln sollen, ob empfohlene Entwicklungsprozesse existieren, gefordert werden, oder
ob Dokumentation zu einem typischen Entwicklungsprozess vorhanden ist. Die Kategorie
Modellierung von REST APIs iiberpriift, ob es Moglichkeiten gibt die API der Anwendung
zu modellieren, dabei wird untersucht, inwiefern Interface Description Languages (IDLs)
unterstiitzt werden. Die letzte Unterkategorie Modellierungswerkzeuge beschiftigt sich
im Gegensatz zur Modellierung von REST APIs Kategorie mit der Unterstiitzung von
Werkzeugen fiir die Modellierung, also ob das Framework solche Werkzeuge mitliefert.

3.2.1. Entwicklungsprozess/Vorgehensmodell

Fiir die Entwicklung von Anwendungen gibt es oft strukturierte Vorgehensweisen, die
sich teils erheblich unterscheiden. Ein Beispiel hierzu ist der Top-Down oder Bottom-Up
Ansatz bei der Entwicklung WSDL basierter Web Services. REST Frameworks kénnen die
Anwendungsentwicklung strukturieren, indem sie bestimmte Vorgehensweisen unterstiitzen
oder auch zwingend voraussetzen.

1. Wird von dem Framework ein explizites Vorgehensmodell gefordert?

2. Werden von dem Framework ein oder mehrere spezifische Vorgehensmodelle unter-
stiitzt?

3. Wie sieht der typische Entwicklungsprozess mit dem Framework aus?

3.2.2. Modellierung von REST APIs

Ein weit verbreitetes Hilfsmittel der Softwareentwicklung sind Schnittstellenbeschreibungs-
sprachen (IDLs), mit deren Hilfe die Schnittstellen von Softwarekomponenten beschrieben
werden konnen. Schnittstellenbeschreibungssprachen sind i.d.R nicht abhéngig von spezifi-
schen Programmiersprachen.

1. In welchem Umfang werden bestehende IDL von dem Framework unterstiitzt?
2. Definiert das Framework eine eigene IDL?

3. Falls ja, wie sieht diese aus und welche Funktionalitat liefert sie fiir die Entwicklung
einer Applikation?

4. Gibt es in dem Framework Moglichkeiten, bestehende Rest-Applikationen durch eine
IDL beschreiben zu lassen, also eine Schnittstellenbeschreibung, bspw. in WADL,
automatisch nach Abschluss des Entwicklungsprozesses zu generieren?

19

3. Kriterienkatalog

5. Konnen aus einer Schnittstellenbeschreibung in einer IDL (bspw. WADL) Proxies
und/oder Stubs generiert werden?

3.2.3. Modellierungswerkzeuge

Es gibt viele Modellierungswerkzeuge, die die Arbeit von Softwareentwicklern zum Teil
erheblich vereinfachen konnen. Diese Werkzeuge bieten Unterstiitzung zur Modellierung
der Architektur, von Use-Cases, bis hin zur Modellierung von Code.

1. Bietet das Framework Moglichkeiten eine zu entwickelnde API oder Anwendung mit
Hilfe (graphischer) Tools zu modellieren?

2. Gibt es Moglichkeiten die URI-Struktur einer REST-API zu modellieren?
3. Gibt es Moglichkeiten Ressourcen zu modellieren?
4. Falls ja, wie sieht diese Modellierung aus?

5. Lassen sich damit mehrere Ressourcen und ihre Beziehungen untereinander darstellen?

6. Lasst sich damit das Verhalten von Ressourcen und deren Reaktion auf Operationen
modellieren?

7. Gibt es Moglichkeiten Ressourcen-Status-Transitionen im Modell abzubilden?

8. Inwiefern werden Modellierungswerkzeuge unterstiitzt?

3.3. Unterstiitzung grundlegender REST Prinzipien

Unterstiitzung grundlegender REST Prinzipien fasst folgende Unterkategorien zusammen:
Ressourcenidentifikation und Ressourcenstruktur, Ressourcentypen, Hypermedia, Medien-
typen, Caching und Code-on-Demand. Die erste Unterkategorie fasst Kriterien bzgl. der
Handhabung von URI’s zusammen. Ressourcentypen evaluiert Moglichkeiten, erweiterte
Konzepte fiir REST Ressourcen, wie in [Tilog] beschrieben, zu implementieren. Die Hyperme-
dia Kategorie ermittelt ob das Framework den Hypermedia Aspekt von REST vereinfachen
kann, bspw. durch Generieren von Links in Reprasentationen. Medientypen evaluiert Content-
Negotiation bzgl. verschiedener Medientypen und die Moglichkeit eigene Medientypen
einzubringen. Caching greift den gleichnamigen REST Constraint auf, dabei wird gefragt,
ob vorgefertigte Mechanismen zum Caching existieren, oder ob den Entwicklern nur die
Moglichkeit gegeben wird diese von Hand zu implementieren. Der Code-on-Demand Aspekt
wird in der entsprechenden Kategorie abgefragt.

20

3.3. Unterstitzung grundlegender REST Prinzipien

3.3.1. Ressourcenidentifikation und Ressourcenstruktur

Das Konzept von Ressourcen und deren Identifikation ist eines der Kernkonzepte des REST-
Architekturstils. Die eindeutige Identifikation von Ressourcen wird dabei i.d.R mit Hilfe von
URI (Uniform Resource Identifier) realisiert. [ZS12]

1

2

3
4

. Wie erfolgt die Identifikation einzelner Ressourcen auf Entwicklungsebene?

Gibt es Unterstiitzung fiir URI-Templates?
Wie wird das Routing innerhalb des Frameworks umgesetzt?

Gibt es im Framework andere Identifizierungsarten aufler URI?

3.3.2. Ressourcentypen

Unter Ressourcentypen sind generische Ressourcen zusammengefasst. (Bspw. in abstrak-
ten Klassen). Bei der Entwicklung von REST-Applikationen kann es zu einem grofien
Implementierungs-Overhead kommen, wenn bspw. immer wieder Listenressourcen "von
Hand"geschrieben werden miissen. [ZS12] [Tilog]

1.

Gibt es vordefinierte Ressourcentypen?

Beim Entwerfen von Anwendungen gibt es, bedingt durch die fachliche Doméne,
immer Aspekte die sich als eigenstdndige Ressource eignen. Meistens iiberstimmen
Kandidaten mit den fachlichen Kernkonzepten. Diese sind bspw. User in einem Sozialen
Netzwerk, Threads in einem Forum. Diese Kandidaten sollten eine wichtige Rolle beim
Entwurf spielen und somit als Priméarressourcen gelten.

Unterstiitzt das Framework beim Entwurf von Priméarressourcen?

Unter einer Subressource versteht sich eine Ressource die Teil einer anderen ist. Bei-
spiele hierfiir sind eine Bestellung in einer Bestellliste, die Adressen einer Bestellung
oder Lieferanten einer Bestellung

Untersttitzt das Framework beim Entwurf von Subressourcen?

Eine Listenressource ist eine Ressource die eine Menge von Ressourcen des selben Typs
zusammenfasst.

Unterstiitzt das Framework beim Entwurf von Listenressourcen ?

Projektionen sind Ressourcen die dazu dienen Informationsmengen von anderen
Ressourcen einzuschréanken, um tibertragene Datenmengen zu reduzieren.

. Unterstiitzt das Framework beim Entwurf von Projektionen ?

Aggregationen fassen unterschiedliche Attribute der Primér- oder Listenressourcen
zusammen. So ist es moglich die Anzahl der Interaktionen zwischen dem Client und
dem Server zu begrenzen.

21

3. Kriterienkatalog

6.

7.

Unterstiitzt das Framework das Entwerfen solcher Aggregations-Ressourcen?

Einzelne Schritte oder ganze Arbeitsauftrage konnen als eine Ressource zusammenge-
fasst werden. Solche Ressourcen werden auch Aktivititen genannt.

Werden Aktivitaten von dem Framework unterstiitzt?

3.3.3. Hypermedia

Hypermedia ist eines der Kern-Konzepte der REST Architektur (HATEOAS), hierbei handelt
es sich darum, dass der Server dem Client anhand von Meta-Daten vermittelt, welche
Aktioneninnerhalb seines Zustandes moglich sind. Frameworks sollten daher Mechanismen
anbieten die es fiir Entwickler erleichtern, diese Aktionen auf Ressourcen, abhingig vom
Zustand abzubilden. [ZS12] [Tilog] [ZBD11] [kar]

1.

2.

Gibt es Moglichkeiten zustandsabhédngig Links zu Reprédsentationen hinzuzufiigen?

Gibt es Moglichkeiten Link-Relationen auch fiir Medientypen zu definieren die nicht
aus dem Hypertext-Umfeld kommen ?

Gibt es Komfort-Funktionen die das Verkniipfen von Inhalten erleichtern?

Gibt es vordefinierte "Verlinkungs-Typen". Bspw. Verlinkung auf Editoren. (siehe
googleDocs)

Gibt es die Moglichkeit in vorgegebenem Rahmen Verlinkungs-Typen selbst zu definie-
ren?

Werden Link-Standards unterstiitzt ?

Unterstiitzt das Framework Konzepte und Techniken des Semantic Web, also bspw.
Ontologien oder RDF?

3.3.4. Medientypen

Verschiedene Medientypen sind wichtig fiir ein REST Framework. So muss ein Framework
mehrere Medientypen beherrschen. Beispiele dafiir sind HTML, ATOM, XML, CSV etc..

1.

2.

N W

22

Welche Medientypen werden von dem Framework aktiv unterstiitzt?

Besteht eine Moglichkeit eigene Medientypen zu definieren? Wie wird dies realisiert?
Wird Client-side Content-Negotiation unterstiitzt?

Wird Server-side Content-Negotiation unterstiitzt?

Wie werden Medientypen bzgl. Content-Negotiation gew&hlt?

Wie werden verschiedene Codierungen bzgl. der Content-Negotiation gewahlt?

Wie werden verschiedene Zeichensitze bzgl. der Content-Negotiation gewahlt?

3.4. Erweiterte Technische Fahigkeiten

8. Wie werden verschiedene Sprachen bzgl. der Content-Negotiation gew&hlt?

3.3.5. Caching

Eines der Schliisselziele von Rest ist auch hohe Skalierbarkeit. Elementar fiir die Skalierbar-
keit ist dabei das Cachen.

1. Inwieweit wird Caching von einzelnen Frameworks unterstiitzt?

2. Gibt es voreingestellte Settings, die man nutzen kann? Oder muss man bei jeder
erzeugten Nachricht Caching-Header “von Hand” setzen?

3. Welche Caching-Modelle werden unterstiitzt?
4. Werden E-Tags unterstiitzt?

5. Automatische Generierung von E-Tags?

3.3.6. Code-On-Demand

Mit dem Code-On-Demand-Aspekt beschreibt Fielding in seiner Dissertation die Moglichkeit,
die Funktionalitdt des Clients mittels runterladbarem und ausfiihrbaren Code zu erweitern.

1. Inwiefern bietet das Framework Unterstiitzung zur Realisierung des Code-On-Demand
Aspekts?

3.4. Erweiterte Technische Fahigkeiten

Unter Erweiterte Technische Fahigkeiten wird die Unterstiitzung zur Realisierung wichtiger
Eigenschaften einer Applikation, wie Sicherheit und Zuverldssigkeit, untersucht. Weiterhin
wird untersucht, in welchem Umfang das HTTP Protokoll genutzt werden kann. Es wird
anhand folgender Unterkategorien eingeteilt: Protokollunterstiitzung jenseits von HTTP,
HTTP, Unterstiitzung fiir Transaktionen, Security, Asynchronitédt, Zuverldssigkeit und Um-
gang mit grofien Daten. Protokollunterstiitzung jenseits von HTTP fokussiert dabei auf
die Moglichkeit, mit dem Framework auch andere Netzwerk-Protokolle aufier HTTP zu
nutzen, wobei sich die Kategorie HTTP mit dem gleichnamigen Protokoll auseinander
setzt. Unterstiitzung fiir Transaktionen beschiéftigt sich mit der Fahigkeit, transaktionales
Verhalten zu realisieren. Asynchronitdt versucht zu ermitteln, ob Entwickler asynchrone
Programmiermodelle verwenden kdnnen und ob zwischen Client und Servern asynchrone
Kommunikation genutzt werden kann. Zuverladssigkeit geht auf Fahigkeiten ein, Fehlverhal-
ten bei der Client-Server-Kommunikation deterministisch zu behandeln. Bei der Kategorie
Umgang mit grofien Daten wird untersucht, ob das Framework Hilfestellung, zum Down-
und Upload grofler Daten, bietet.

23

3. Kriterienkatalog

3.4.1. Protokollunterstiitzung jenseits von HTTP

Der REST Architekturstil wurde urspriinglich konzipiert um vorhandene Probleme in HTTP
1.0 zu lokalisieren [Fieoo]. Diese wurden dann mit HTTP 1.1 behoben. Trotz der Nihe
zwischen REST und HTTP gibt es spezielle Protokolle fiir REST (CoAP, WAKA), die HTTP
ersetzen sollen/ konnen.

1. Welche Protokolle werden, abgesehen von HTTP, von dem Framework unterstiitzt?
2. Wie einfach ist es zwischen verschiedenen Protokollen zu wechseln?

3. Ist die gleichzeitige Nutzung verschiedener Protokolle moglich?

4. Koénnen angebotene Protokolle in vollem Umfang genutzt werden?

5. Falls Nein: Ist es moglich die Protokoll-Implementierungen entsprechend zu erweitern?

3.4.2. HTTP

HTTP ist das Referenzprotokoll fiir REST-Applikationen. In welchem Ausmafs nutzen die
Frameworks das hdufig genutzte Protokoll? Wenn HTTP genutzt werden soll, miissen auch
HTTP-Verben unterstiitzt werden. [Tilog] [FGM*g9]

1. Werden alle HTTP-Verben unterstiitzt?

2. Erlaubt das Framework die Nutzung bestimmter Verben ohne Einhaltung der spezifi-
zierten Verbsemantik wie Idempotenz und Sicherheit?

Mit Verwendung von HTTP miissen auch Header unterstiitzt werden.
1. Konnen alle Headerfelder gesetzt und gelesen werden?

2. Gibt es Moglichkeiten vordefinierte Headersets zu benutzen, oder die Moglichkeit
solche anzulegen?

3.4.3. Unterstitzung fur Transaktionen

Eine Transaktion ist eine Sequenz von Verarbeitungsschritten, die als Einheit betrachtet
wird und die ACID-Eigenschaften erfiillt. D.h. entweder werden alle Verarbeitungsschritte
durchgefiihrt, oder gar keine. Treten mitten in der Verarbeitung Fehler auf werden alle vor-
herigen zur Transaktion zugehorigen, bereits ausgefiihrten Schritte zurtickgesetzt (Rollback).
In dieser Kategorie geht es darum, ob das Framework aktiv Unterstiitzung anbietet, indem
bspw. eine Transaction-API angeboten wird.

1. Wird transaktionales Verhalten aktiv von dem Framework unterstiitzt?

2. In Form von transaktionalen Aufrufen? Also in der Zeit zwischen dem Erhalten eines
Requests und dem Senden der Antwort?

24

3.4. Erweiterte Technische Fahigkeiten

3. Unterstiitzt das Framework die Integration bestehender Transaktionstechniken wie
bspw. JTA?

4. Gibt es Untersttitzung fiir 2PC (Two-phase commit protocol)?

3.4.4. Security

In verteilten Systemen und Anwendungen spielt das Thema Sicherheit eine grofse Rolle. Beim
Einsatz von REST Applikationen kommuniziert i.d.R. eine Client-Anwendung mit einem
dazugehorigen Server. Um zu verhindern, dass bei der Kommunikation iiber das Internet
ein unautorisierter Zugriff auf die gesendeten Nachrichten oder gespeicherten Ressourcen
stattfindet, bedarf es Sicherheitsmechanismen wie SSL und Authentifizierung.

1. Kann das Framework SSL-Unterstiitzung anbieten? Kann ggf. ein Benutzer-Zertifikat
tiberpriift werden?

2. Werden Authentifizierungen (Im HTTP Umfeld bspw. Basic-Auth) unterstiitzt? Wie?
Welche?

3. Kann eine, mit Hilfe des Frameworks entwickelte, Standalone Anwendung uneinge-
schrankt konfiguriert werden?

4. Gibt es Moglichkeiten Nachrichten automatisch zu verschliisseln?

5. Gibt es Moglichkeiten Nachrichten automatisch mit einer Signatur zu versehen?

3.4.5. Asynchronitat

Asynchrone Kommunikation ermoglicht Servern, Anfragen nach eigenem Ermessen zu
bearbeiten. Clients profitieren von der Asynchronitdt indem sie nicht blockiert werden, da
sie nicht auf Antworten warten miissen.

1. Werden asynchrone Programmiermodelle von dem Framework aktiv unterstiitzt?
(Bspw.Threads, Non-blocking I/0)

2. Gibt es Moglichkeiten asynchronen Nachrichtenaustausch zu ermoglichen? (Bspw.
Patterns wie Polling etc.)

3.4.6. Zuverlassigkeit

Um zuverldssig zu arbeiten, muss ein Client stets wissen, ob seine Anfragen richtig bearbeitet
wurden oder nicht. Bleiben einzelne Anfragen ohne Antwort, muss der Client entscheiden,
ob er die Anfrage erneut schickt oder nicht. Idempotente Anfragen konnen dabei jederzeit
neu gesendet werden. Um Zuverldssigkeit in REST-Applikationen zu garantieren, miissen
kritische Fehlerfille betrachtet werden. Dies ist der Fall, wenn ein Client vom Server keine
Antwort erhalt:

25

3. Kriterienkatalog

Die Anfrage wurde vollstindig bearbeitet, die Antwort kommt aber nicht beim Client an.
Die Anfrage wurde nicht vollstindig bearbeitet, es kommt aber keine Antwort(auch keine
Fehlermeldung) beim Client an.

Das Problem ist, dass der Client nun entscheiden muss, ob er die Anfrage neu sendet oder
nicht. Dies ist vor allem kritisch bei nicht idempotenten Methoden.

1. Inwiefern unterstiitzt das Framework den Entwickler um oben beschriebenes Problem
zu losen?

2. Gibt es PUT/POST Kombinationen? [Tilog]
3. Reliable POST Unterstiitzung? [Tilog]

3.4.7. Umgang mit groBen Daten

In der heutigen Online Welt werden viele Daten bzw. Dateien zwischen Client und Ser-
ver ausgetauscht. Es ist auch moglich, dass es nicht nur bei kleinen JSON Objekten oder
dhnlichem bleibt.

1. Unterstiitzt das Framework den Austausch grofler Dateien?

2. Wird ein Vorgehen vorgegeben, um einen solchen Mechanismus selbst zu implementie-
ren, falls nicht vorhanden?

3.5. Bewertungssystem

Die Bewertung der untersuchten Frameworks erfolgt einzeln fiir jede der Kategorien des
Kriterienkatalogs. Die Kategorie Architektur und Funktionsweise wird dabei nicht bertick-
sichtigt.

Auf die Errechnung von Gesamtnoten fiir Kapitel oder Frameworks wird verzichtet. Der
Grund dafiir liegt darin, dass diese Fachstudie nicht darauf ausgerichtet ist ein Ranking
zu erstellen, sondern Hilfestellung zur Auswahl eines Frameworks leisten soll, das den
Zielen eines Softwareprojekts dient. Desweiteren ist es nicht moglich die richtige Gewichtung
einzelner Bewertungen festzulegen, zum einen, weil sich die untersuchten Kriterien sehr
stark unterscheiden, zum anderen, weil die individuellen Anforderungen an ein Framework
von Entwickler zu Entwickler und von Projekt zu Projekt unterschiedlich sind.

Zur Anwendung kommt ein 3-stufiges Bewertungssystem beginnend bei bei der Stufe o bis
zur Stufe 2.

Stufe 2 Stufe 2 bedeutet, dass in dem bewerteten Bereich die meisten Anforderungen erfiillt
sind und dass die Entwicklung in diesem Bereich die Entwicklung sehr komfortabel moglich
ist.

26

3.5. Bewertungssystem

Stufe 1 Stufe 1 bedeutet, dass in dem bewerteten Bereich die meisten Anforderungen erfiillt
sind, sich die Entwicklung allerdings schwieriger gestaltet, weil keine Highlevel-Zugriffe
oder Komfortfunktionen vorhanden sind.

Stufe 0 Die Stufe o kann 2 Dinge bedeuteten. Entweder wurden die Anforderungen in dem
bewerteten Bereich nicht erfiillt, oder es war keine ausreichende Dokumentation in diesem
Bereich vorhanden um eine Aussage zu treffen.

27

4. Bewertungen

4.1. Jersey

Eckdaten
URL http://jersey.java.net/
Lizenz CDDL 1.1, GPL v2
Entwickler Oracle

Tabelle 4.1.: Eckdaten Jersey

Beschreibung Jersey gilt als Referenz-Implementierung fiir JAX-RS (JSR 311) [jaxa]. Jersey
implementiert die in JAX-RS definierten Annotationen, die es erlauben URIs auf Klassen und
Methoden zu mappen, denen wiederrum Annotationen zur verfiigung stehen um festzulegen

auf welches HTTP Verb diese reagieren.

Beispiel In JAX-RS wird alles mittels Annotationen deklariert. Das Mapping von URIs auf
Methoden/Klassen geschieht mittels @Path. Um nun an einem Pfad HTTP Methoden zu
erlauben werden Annotation @GET, @PUT, etc. entsprechend den HTTP Verben deklariert.
Medientypen werden mittels @Produces/@Consumes-Annotation festgelegt, wobei Produces
fiir den Medientyp in der Antwort und Consumes fiir Medientypen bei der Anfrage steht.

Ein Beispiel ist in Listing 4.1.

4.1.1. Grundlagen

Abschnitt Stufe Kommentar

Allgemeines 2 Ausfiihrliche Dokumentation, aktive Communi-
ty, Referenzimplementierung von JAX-RS, gut
erweiterbar

REST Server Applikationen | 1 Auf Servlet ausgelegt, Standalone moglich

REST Client Applikationen | 2 Client-API, Komfortfunktionen, gute Erweite-

rungsmoglichkeiten

Tabelle 4.2.: Auswertung Jersey Grundlagen

29

http://jersey.java.net/

4. Bewertungen

Listing 4.1 JAX-RS Code Beispiel

package com.sun.ws.rest.samples.helloworld.resources;
import javax.ws.rs.GET;

import javax.ws.rs.Produces;

import javax.ws.rs.Path;

// The Java class will be hosted at the URI path "/helloworld"
@Path("/helloworld")
public class HelloWorldResource {

// The Java method will process HTTP GET requests
QGET
// The Java method will produce content identified by the MIME Media
// type "text/plain"
QProduces ("text/plain")
public String getClichedMessage() {
// Return some cliched textual content
return "Hello World";

Allgemeines

1 Auf der offiziellen Website existiert ein User Guide, welches 13 Themen bearbeitet. Hier
wird auch ein schneller Einstieg geboten in dem Kapitel ,Getting Started”. Nach einigen
Schritten ist eine HelloWorld Applikation bereits aufgesetzt und kann getestet werden. Der
User Guide bietet zu vielen behandelten Themen auch einige Code Beispiele an, so dass ein
Einstieg moglich ist. Aufler dem User Guide existiert noch eine Wiki Platform fiir Jersey. Hier
gibt es ebenfalls einen Getting Started Kapitel wie in dem offiziellem User Guide. Ebenfalls
zu finden sind hier unterschiedliche Beispiele.

21 Projekte sind auf der Jersey Website aufgefiihrt, welche Jersey nutzen.

Die Hilfestellung ist fiir das Framework Jersey auf jedenfall gegeben, wie relevant und
ausfiihrlich die Tutorials und Codebeispiele sind, kann in dieser Arbeit jedoch nicht heraus-
gearbeitet werden.

2 Neben den offiziellen Mailinglisten vom Entwickler Oracle, wird {iiber Jersey auf vielen
sozialen Plattformen diskutiert. So bietet Jersey mit Git-Hub einen Zugang zu dem Quellcode.
Auf Git-Hub wird im Falle von Fragen auf die Website stackoverflow.com verwiesen, Jersey
hat hier einen eigenen Tag ,jersey”.

3 Jersey steht unter den Lizenzen COMMON DEVELOPMENT AND DISTRIBUTION
LICENSE (CDDL) Version 1.0 und der GNU General Public License (GPL) Version 2, June
1991 zur Verfiigung .

30

4.1. Jersey

4 Da Jersey die Referenzimplementierung von JAX-RS 1.1 ist, gibt es die Erweiterungs-
mechanismen aus JAX-RS. Die API ermdglicht es neue MessageBodyReader und Messa-
geBodyWriter zu integrieren, wobei erstere dafiir zustandig sind HTTP Requestbodies zu
deserialisieren und letztere zum serialisieren. ExceptionManager werden dazu verwendet
Java-Exceptions auf HTTP Responses abzubilden. Zusatzlich existiert die Moglichkeit Con-
textResolver zu nutzen um bspw. einen JAXBContext fiir bestimmte jaxb-annotierte Java
Typen zu konfigurieren und diese beim De-/Serialisieren zu verwenden.

REST Server Applikationen

1 Esist moglich eine Standalone REST Anwendung mit den reinen Jersey Bibiliotheken
zu realisieren. Dabei kann man den im JDK mitgelieferten HTTP Server verwenden oder
beispielsweise den Grizzly HTTP Server. Jersey bietet fiir diese und andere verschiedene
Module an, um sie nutzen zu konnen.

2 Sofern die Anwendung als Standalone implementiert ist benotigt diese keine Umgebung.
Ansonsten kann diese Anwendung in einem Servlet Container ausgefiihrt werden, der
mindestens Servlet Spezifikation 2.5 erfiillt.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

REST Client Applikationen

1 Ja, das Jersey Framework enthilt eine Client-API. Die Client-API nutzt HttpURLConnec-
tion oder den Apache HTTP client. Diese beiden werden von Jerseys Client-API gewrapped.
Es gibt Unterstiitzung fiir automatische (De-)Serialisierung (mittels JAXB). Weiterhin werden
auch Filter unterstiitzt.[jera]

2 Die Client-API von Jersey bietet Highlevel-HTTP-Aufrufe und automatische (De-
)Serialisierung von Objekten.

3 Die HTTP-Aufrufe konnen mit einfachen HTTP-Methoden auf einem WebResource Ojekt
ausgefiihrt werden. Fiir wichtige Header-Felder(wie bspw. Accept-Header) gibt es ebenfalls
Methoden. Die automatische (De-)Serialisierung von Objekten wird wie beim Server auch
von MessageBodyReader/-Writer tibernommen. Weiterhin besteht auch die moglichkeit
ClientFilter zu implementieren, die in der Lage sind Antworten zwischen Client und Server
manipulieren. Beispielsweise konnen hier auch weitere Header gesetzt werden(z.B zur
Authentifizierung).

31

4. Bewertungen

Architektur und Funktionsweise

1 Jersey nutzt Java-Annotationen um HTTP-Verben, Medientypen auf Methoden zu map-
pen. Dabei werden bspw. Klassen mit dem @Path Attribut bei der Klassendeklarationen als
Rootklassen inkl. entsprechendem Pfad. mittels den Annotationen @GET, @PUT etc. werden
dann einzelne HTTP-Anfragen auf die entsprechenden methoden gemapped.

2 Fiir das verwenden von Jersey in einem Container wird Servlet 2.5 vorrausgesetzt, kann
aber auch Standalone mit dem in Java mitgelieferten HTTP Server verwendet werden.

4.1.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe Kommentar

Entwicklungsprozess/ Vor- | o

gehensmodell

Modellierung von REST | 1 Laufzeitgenerierung von WADL zu einzelnen
APIs Ressourcen

Modellierungswerkzeuge | o

Tabelle 4.3.: Auswertung Jersey Entwicklung von REST basierten Anwendungen

Entwicklungsprozess/Vorgehensmodell

1 Nein.

2 In Jersey existieren keine speziellen Mechanismen, die die Entwicklung mittels einem
bestimmten Vorgehensmodell explizit bevorteilen.

3 Der typische Entwicklungsprozess mit Jersey kommt dem Wasserfall-Modell am nichsten.
Die wichtigste Aufgabe, um spitere Korrekturarbeiten zu vermeiden ist es zunéchst, alle
Ressourcen und der Anordnung in der URI-Struktur zu identifizieren und ein geeignetes Java-
Modell zu implementieren. Mit diesen Voraussetzungen konnen dann die Ressourcenklassen
und Geschiftslogik implementiert werden.

Modellierung von REST APlIs

1 Jersey unterstiitzt die automatische Generierung von WADL.

2 Nein.

32

4.1. Jersey

3 Jersey kann zur Laufzeit einer Restapplikation eine WADL Beschreibung generieren. Die-
se kann einfach mittels HTTP GET http://pfad.zu.deiner.restapplikation/application.wadl
(Bsp.: http:/ /localhost:8080/application.wadl) generiert werden. Fiir eine einzelne Ressource
kann WADL mittels HTTP OPTIONS auf dieser Ressource generiert werden. Zusétzlich
bietet Jersey die Moglichkeit doc Elemente oder javadoc der Javaklassen in eine Datei zu
schreiben, so dass sie benutzt werden konnen um die WADL zu erweitern. Ebenfalls gibt
es die Moglichkeit mittels Maven-wadl-plugin WADL aus dem SourceCode zu generieren,
ohne dass die Applikation aktiv ist. [jerb]

4 Jersey selbst unterstiitzt das Generieren von Java aus WADL nicht. Allerdings kann
mittels dem wadlzjava Tool von GlassFish ClientCode generiert werden, der die Jersey-API
nutzt. Es wird dabei eine Klasse pro root-resource angelegt. Genutzt wird die Jersey 1.x und
JAX-RS 2.0 Spezifikation. [jerc]

Modellierungswerkzeuge

1 Nein.
2 Nein.
3 Nein.

4 Kann nicht beantwortet werden.

5 Nein.
6 Nein.
7 Nein.

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

33

4. Bewertungen

4.1.3. Unterstiitzung grundlegender REST Prinzipien

Abschnitt Stufe Kommentar

Ressourcenidentifikation 1 JAX-RS 1.1 Annotationen

und Ressourcenstruktur

Ressourcentypen 0

Hypermedia 1 Setzen von Link-Headern mittels Annotation
moglich

Medientypen 1 JAX-RS 1.1

Caching 1 CacheControl Klasse als Abstraktion von
Caching-Headern

Code-On-Demand 0

Tabelle 4.4.: Auswertung Jersey Unterstiitzung grundlegender REST Prinzipie

Ressourcenidentifikation und Ressourcenstruktur
1 Gemaf JAX-RS erfolgt die Identifikation {iber URI-Elemente, die per @Path Annotation
an Klassen und Methoden gebunden werden konnen. Dabei kénnen sowohl einzelne URI-

Elemente, als auch Teilpfade einer URI verwendet werden. Es ist damit moglich Aufruf-
Hierarchien tiber verschiedene Klassen und Methoden hinweg zu realisieren.

2 Ja. Jersey unterstiitzt Variablen in Pfaden. Auf diese Variablen kann wiederum mittels
Annotationen zugegriffen werden. [jerd] [jere]

3 Siehe dazu JAX-RS 1.1 Spezifikation [jaxa, JAX-RS 1.1 Abschnitt 3.7]

4 Nein.

Ressourcentypen

1 Primérressourcen und Subressourcen konnen mit Mitteln aus JAX-RS 1.1 unkompliziert
realisiert werden, sind aber nicht speziell als solche deklariert.

2 Gemifs JAX-RS 1.1 konnen Klassen mittels @Path Annotationen als Primérressource
verfiigbar gemacht werden.

3 Gemaifs JAX-RS 1.1 konnen Methoden innerhalb von Klassen mittels @Path Annotationen
als Subressourcenidentifikator genutzt werden.

34

4.1. Jersey

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Hypermedia

1 Ja. mittels der @Ref Annotation lassen sich Links in Reprédsentationen einfiigen. Dabei

injiziert die Jersey-Runtime die passende URI in das JavaObjekt, bevor es durch einen
MessageBodyWriter serialisiert wird. Zustandsabhédngige Link-Injektion kann tiber die
condition Einstellung realisiert werden. (@Ref ist nicht Teil der JAX-RS 1.1 Spezifikation)
[jerf]

2 Ja, Jersey implementiert dabei RFC 5988 [rfc] um Links per HTTP Header mitzuliefern.
Dies wird auch tiber die @Ref Annotation realisiert.

3 Abgesehen von der @Ref-Annotation gibt es keine weiteren. , komfort-Verkniipfungen”

4 Es gibt keine vordefinierten , Verlinkungs-Typen”.

5 Mittels der experimentellen Annotationen @Action, @Contextual ActionSet und @Hy-
permediaController lassen sich beispielsweise Aktionen als Subressourcen implementieren.
Mittels @ContextualActionSet lassen sich die jeweils verfiigbaren Aktionen dynamisch
einschranken.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Jersey unterstiitzt keine Konzepte und Techniken des Semantic Web. Es ist jedoch
moglich Jersey gemeinsam mit Som(m)er [sum] zu benutzen, um die Java Objekte nach RDF
zu serialisieren.

35

4. Bewertungen

Medientypen

1 Jersey als Referenzimplementierung von JAX-RS, bietet text/xml, application/xml und
application/- *+xml als nutzbare Medientypen, zusétzlich konnen durch die generischen Pro-
vider alle moglichen Medientypen verarbeitet (*/*) werden. Dabei werden die Messagebodies
in Strings, InputStream, etc.geladen. [jerg]

2 Die JAX-RS Spezifikation fordert das neue Medientypen registriert werden kénnen. So
konnen Provider implementiert werden die das Serialisieren/Deserialisieren von Medienty-
pen iibernehmen. Dafiir muss ein Interface implementiert werden (MessageBodyReader bzw.
MessageBodyWriter) und mit einer @Provider Annotation versehen werden.

3 C(lient-side Content-Negotiation ist durch Accept-Header realisiert, die sich mittels
Methoden setzen lassen.

4 Server-side Content-Negotiation wird mittels @Produces und @Consumes bewiltigt.
@Produces-Eintrage lassen sich auch priorisieren. [jerh]

5 Siehe [jaxa, JAX-RS 1.1 Abschnitt 4.2.1]

charset=UTF-8 wird standard-maflig gesetzt.

Client-side: Response.ok(entity).header("charset”, {itf-8").build(). So lassen sich alle
moglichen Header setzen.

Server-side: Durch die @Produces-Annotation laesst sich das charset auch beeinflussen.

@Produces(MediaType. TEXT_HTML, MediaType. ACCEPT_CHARSET = “UTF —
8//)

7 Die ResponseBuilder-Methode “language” erwartet ein java.util.Locale [jeri] WebResour-
ce.acceptLanguage(java.util.Locale loc). [jerj]

8 Das ist den Entwicklern tiberlassen, dabei miissen sie die Header des Requests selbst
auslesen und entsprechende Représentationen liefern.

36

4.1. Jersey

Caching

1 Es gibt vorgefertige Klassen um Caching zu realisieren. CacheControl ist eine Abstraktion
von den Caching-Headern in HTTP. EntityTag existiert als Abstraktion von EntityTags. Mit
diesen kann ein Entwickler das gewiinschte Cachingverhalten implementieren.

2 Es existieren keine Moglichkeiten CachingHeader ohne direkten Einfluss des Entwicklers
zu setzen. Jegliche Logik dies beziiglich muss vom Entwickler selbst implementiert werden.

3 Expirationsmodell und Validierungsmodell konnen von Entwicklern selbst implementiert
werden tiber die bereitgestellte API.

4 Ja.

5 Nein.

Code-On-Demand

1 Es gibt keine vorgefertigten Moglichkeiten den Code-On-Demand Aspekt gezielt zu
nutzen.

4.1.4. Erweiterte Technische Fahigkeiten

Abschnitt Stufe Kommentar
Protokollunterstiitzung jen- | o

seits von HTTP

HTTP 2 JAX-RS 1.1
Unterstiitzung fiir Transak-

tionen

Security 1 SSL

Asynchronitat 1 Non-Blocking Client
Zuverlassigkeit 0

Umgang mit grofien Daten | 2 Extra Annotation

Tabelle 4.5.: Auswertung Jersey Erweiterte Technische Fahigkeiten

37

4. Bewertungen

Protokollunterstiitzung jenseits von HTTP
Protokollunterstiitzung jenseits von HTTP

1 Nein.

2 Kann nicht beantwortet werden.

3 Nein.

4 HTTP kann in vollem Umfang genutzt werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

HTTP

1 JAX-RS 1.1 definiert als Annotationen GET, PUT, POST, DELETE und HEAD. Desweiteren
verlangt JAX-RS 1.1 auch noch Antworten auf OPTIONS Anfragen. Weiterhin konnen {tiber
die Annotation HttpMethod weitere HTTP-Methoden gemapped werden.

2 Da die HTTP-Verb-Annotationen lediglich zur Auswahl von Java-Methoden verwendet
werden, bleibt die Einhaltung der Verbsemantik in Bezug auf Idempotenz und Sicherheit in
der Verantwortung des Entwicklers.

1 Ja.
2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Unterstitzung flr Transaktionen

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.
2 Kann nicht beantwortet werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

38

4.1. Jersey

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Security
1 Jersey unterstiitz SSL. Dabei ist es irrelevant ob die Applikation ein standalone Server
ist oder in einem Container deployed wird. Benutzerzertifikate konnen mittels @ Context

Annotation tiberpriift werden. Hierbei wird die ganze Anfrage in den jeweiligen Kontext
injiziert.

2 Die Konfiguration hangt vom genutzen Server ab (JDK HTTPServer, Grizzly HTTP
Server).

3 Nein, bis auf die Moglichkeit SSL zu nutzen, muss alles selbst entwickelt werden.

4 Nein, alles muss selbst entwickelt werden, dabei empfehlen sich eigene MessageBody-
Reader und Writer.

5 Nein.

Asynchronitat
1 Jersey bietet fiir Clients den nicht-blockierenden Jersey Client, um dadurch die Vorteile

von asychronitdt zu bekommen. Server-seitig gibt es keine Unterstiitzung, da JAX-RS 1.1
konzeptionell auf synchronem Request-Response basiert.

2 Es gibt keine vorgefertigten Mechanismen fiir asynchronen Nachrichtenaustausch, alle
miissen vom Entwickler selbst implementiert werden.

Zuverlassigkeit

1 Gar nicht.
2 Nein.
3 Nein.

39

4. Bewertungen

Listing 4.2 Erstellung einer Applikation in Scooter.

1. Erstelle und definiere eine Datenbank
CREATE DATABASE ...;

USE ...;

CREATE TABLE entries (...);

2. Erstelle die Applikation
scooter> java -jar tools/create.jar customerservice

3. Generiere das Geruest

scooter> java -jar tools/generate.jar customerservice scaffold entry

4. Starte deine Applikation
scooter> java -jar tools/server.jar customerservice

Umgang mit groBen Daten

1 Ja, Jersey besitzt die Annotation ,FormDataParam” die speziell fiir den Austausch von
Dateien gedacht ist. In Verbindung mit dem Medientyp , multipart/form-data” wird der
Austausch von grofien Dateien untersttitzt.

2 Nein.

4.2. Scooter

Eckdaten
URL http://www.scooterframework. com/
Lizenz LGNU Library or Lesser General Public Li-
cense version 3.0 (LGPLv3)
Entwickler Amazing Force (http://www.
amazingforce.com/)

Tabelle 4.6.: Eckdaten Scooter

Beschreibung Geeignet fiir Browserbasierte WebApplikationen, ,,ControllerKlassen”(POJO)
mit public-Methoden, Routing durch .properties.

Beispiel FEine Applikation wird bei Scooter schon nach 3 Schritten lauffihig. In 4.2 werden
die Schritte aufgefiihrt, um eine Applikation in wenigen Minuten lauffdhig zu machen.

40

http://www.scooterframework.com/
http://www.amazingforce.com/
http://www.amazingforce.com/

4.2. Scooter

4.2.1. Grundlagen

Abschnitt Stufe Kommentar

Allgemeines 1 Gute Dokumentation, semi-aktive Community;,
erweiterbar

REST Server Applikationen | 1 Auf Standalone ausgelegt, Servlet aufwandig

REST Client Applikationen | o keine dedizierte Client-API, auf Browser-Clients
ausgelegt

Tabelle 4.7.: Auswertung Scooter Grundlagen

Allgemeines

1 Ja, es werden drei Beispiele vorgestellt darunter ein Blog und eine Twitter dhnliche
Applikation, es gibt Hilfestellungen zum Installieren, zur Projektstruktur und zum Design
der eigenen Applikation.

2 Es gibt eine Google Group [scoa] und einen Twitter Account [scob].

3 Das Scooter Framework gibt es unter der LGPL [Igp].

4 Scooter besitzt einen Plugin Mechanismus um beispielsweise Caches, Content-Handler
fiir Medientypen und Templates fiir Views hinzuzufiigen.

REST Server Applikationen

1 Ja, fiir Scooter wird sogar empfohlen die Anwendungen standalone zu realisieren.

2 Scooter ist darauf ausgelegt Applikationen standalone zu entwickeln, zusétzlich existiert
ein Ant-Skript mit dem es moglich ist diese in eine WAR Datei zu packen und somit auf
Servern zu verwenden die WAR Dateien verstehen.

3 Gar nicht bzw. schwer evaluierbar.

REST Client Applikationen

1 Ja.

41

4. Bewertungen

2 Es ist nicht moglich dedizierte Clients in Scooter zu entwickeln.

3 Scooter stiitzt sich auf das MVC Pattern und bietet speziell fiir die View vorgefertigte
Templates an. Diese werden anhand der Backend konfiguriert, bspw. wird eine HTML-Seite
generiert falls eine neue Klasse im Datenmodell angelegt wird. Die Templates fiir die View
sind erweiterbar man kann auch sogenannte TemplateHandler als Plugin einftigen. Zur
reinen Client-Entwicklung ist Scooter eher ungeeignet.

Architektur und Funktionsweise

1 Scooter versucht die Prinzipien aus Ruby-on-Rails in Java zu ermdglichen. Dabei wird
iibergeordnet das MVC-Pattern genutzt. Fiir das Modell wird ausschliesslich das ActiveR-
ecord Pattern verwendet, dafiir wird eine Klasse angeboten von denen Modellklassen erben
konnen. Die Modellklassen werden automatisch mit der angebundenen Datenbank konsistent
gehalten, auch Anderungen auf den Klassen werden beachtet. Fiir die View werden vorge-
fertigte Templates verwendet die dann Anhand des Datenmodells und der Control HTML
Seiten generiert, bspw. werden Forms generiert falls die Control es erlaubt bestimmte Daten
zu dndern. Die Control wird mittels Routing Dateien und Controller-Klassen implementiert,
dabei kann zwischen verschiedenen Ansatzen gewéahlt werden. Der RestfulRequestProcessor
erlaubt HTTP Methoden auf URI’s innerhalb der Applikation zu mappen, dabei werden
dann interne Mechanismen/Konventionen von Scooter fiir die jeweilige Semantik verwendet,
bspw. wiirde ein GET auf ./posts/123 den Post 123 eines Blogs zuriickgeben und ein POST
auf ./posts/ einen neuen Post erstellen [scoc].

2 Scooter baut auf Java, Servlets und einem internen Jetty auf.

4.2.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe Kommentar
Entwicklungsprozess/ Vor- | o

gehensmodell

Modellierung von REST | o

APIs

Modellierungswerkzeuge | o

Tabelle 4.8.: Auswertung Scooter Entwicklung von REST basierten Anwendungen

Entwicklungsprozess/Vorgehensmodell

1 Nein.

42

4.2. Scooter

2 Nein.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Modellierung von REST APIs

1

Gar nicht.

Nein.

Nein.

Nein.

Modellierungswerkzeuge

1

Nein.

Nein.

Nein.

Kann nicht beantwortet werden.

Nein.

Nein.

Nein.

Konnte im Rahmen der Fachstudie nicht evaluiert werden.

43

4. Bewertungen

4.2.3. Unterstiitzung grundlegender REST Prinzipien

Abschnitt Stufe Kommentar

Ressourcenidentifikation 2 Conventions-over-Configuration, Klassen be-

und Ressourcenstruktur kommen ihr URI anhand der Struktur im Pro-
jekt. URI-Konfiguration auch explizit moglich

Ressourcentypen 2 Conventions-over-Configuration Ansatz ermog-
licht viele Ressourcentypen

Hypermedia 0

Medientypen 1 Standard Medientypen

Caching 2 Per Routes Datei konfigurierbar

Code-On-Demand 0

Tabelle 4.9.: Auswertung Scooter Unterstiitzung grundlegender REST Prinzipien

Ressourcenidentifikation und Ressourcenstruktur

1 Scooter hat einen Conventions-over-Configuration Ansatz, das bedeutet Klassen wer-
den Anhand ihrer Projektstruktur auf URI's gemapped, falls nicht explizit in der Routing
Konfiguration eine andere gewédhlt wird.

2 Ja.

3 URI's werden auf Methoden von Controller-Klassen geleitet.

4 Nein.

Ressourcentypen

1 Es gibt die Singular-Resources [scoc] die dann mittels Kontrukten in der routes.properties
verfeinert werden kdnnen.

2 Alle Resourrcen in Scooter sind in erster Linie Priméarressourcen und konnen mittels
Routing-Konfiguration abgedndert werden.

3 Ja, per Routing-Konfiguration konnen ganze Controller-Klassen/Ressourcen als Subres-
source deklariert werden.

44

4.2. Scooter

4]Ja, per Routing-Konfiguration kénnen reine Listenressourcen definiert werden.

5 Ja, per Routingkonfiguration konnen bspw. paginierte Reprasentationen generiert wer-
den.

6 Nein.
7 Nein.
Hypermedia

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Medientypen
1 Ja, dazu werden ContentHandler Plugins benétigt. Diese implementieren eine handle
Methode und werden in der Konfiguration registriert. Die handle Methode bekommt als

Parameter den ganzen HTTP Request aus der sie dann eine HTTP Response generieren soll
[scod].

2 Nein.

45

4. Bewertungen

3 Die Content-Negotiation bei Scooter wird anhand der Routing-Konfiguration bewerk-
stelligt. Dabei wird die erste Deklaration in der routes.properties genommen die zur Request
passt [scoe].

4 Die erste passende aus routes.properties die zum Request passt wird gewahlt.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Caching

1 Es gibt WebCaching fiir das Cachen von Views und DataCaching fiir Caching zwischen
Applikation und Datenbank.

2 Alle Caching relevanten Einstellungen konnen in einer Konfigurationsdatei festgelegt
werden. Die kénnen global und lokal pro Route festgelegt werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Code-On-Demand

1 Keine.

46

4.2. Scooter

4.2.4. Erweiterte Technische Fahigkeiten

Abschnitt Stufe Kommentar

Protokollunterstiitzung jen- | o

seits von HTTP

HTTP 2 HTTP im angemessenem Umfang nutzbar
Unterstiitzung fiir Transak- | 1 JTA, JDBC

tionen

Security 1 Authentifikation

Asynchronitat 0

Zuverlassigkeit 0

Umgang mit grofsen Daten | 2

Tabelle 4.10.: Auswertung Scooter Erweiterte Technische Fahigkeiten

Protokollunterstiitzung jenseits von HTTP

1 Keine.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

HTTP

1 Es ist moglich alle Verben zu nutzen, auch solche die nicht von der HTTP Spezifikation
vorgegeben werden [scof].

2 Ja, mittels Controller Klassen ldsst sich Semantik der Verben umgehen.

1 Ja, in ContentHandlern.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

47

4. Bewertungen

Unterstiitzung fiir Transaktionen

1 Ja, es ist moglich einen Request transaktional zu verarbeiten [scog].

2 Scooter ermoglicht es bereits bestehende Transkationen zu nutzen. Dazu wird der
ImplicitTransactionManager genutzt [scog].

3 Scooter unterstiitz aktuell JDBC, JTA und den TransaktionsManager des Containers fiir
Transaktionen.

4 JTA wird unterstiitzt, somit auch 2PC.

Security

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Es ist moglich mit den mitgelieferten Werkzeugen, einen Login-Mechanismus zu gene-
rieren.

3 Ja, Scooter ist auf Standalone Applikationen ausgelegt.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Asynchronitat

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Zuverlassigkeit

1 Nein.

2 Nein.

48

4.3. VRaptor

3 Nein.

Umgang mit groBen Daten

1 Es gibt die Moglichkeit grofle Dateien ausserhalb des Hauptspeichers in einem Ordner
zu speichern, falls eine gewisse Grofse tiberschritten wird.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.3. VRaptor

Eckdaten
URL http://vraptor.caelum.com.br/
Lizenz Apache 2.0 Lizenz
Entwickler Caelum (http://www.caelum.com.br/)

Tabelle 4.11.: Eckdaten VRaptor

Beschreibung Benutzt VRaptor (MVC framework von caelum). Benutzt Annotations um
HTTP-Calls von Methoden beantworten zu lassen. (@Path mit URI pattern). Resourcen wer-
den mit @Resource annotiert. Sieht der vorgehensweise in Jersey sehr dhnlich. Application-
xml und Application-json wird unterstiitzt(benutzt XStream) Eigene Deserializer konnen im-
plementiert werden fiir eigene Typen. Unterstiitzung fiir HyperMedia mittels Java-Interface
“HypermediaResource”.(Resourcen verlinkung)

Beispiel VRaptor bietet einen guten Ansatz, wie einzelne URIs die Ressource identifizieren.
So ist es moglich ala JAX-RS mit der @Path Annotation die Methoden auf die Pfade zu
mappen, aulSerdem bietet hier VRaptor noch die Moglichkeit HTTP Methoden direkt abzu-
bilden(siehe 4.3). Moglichkeit besteht alle URIs zentral in einer Routing Klasse zu halten.4.4

49

http://vraptor.caelum.com.br/
http://www.caelum.com.br/

4. Bewertungen

Listing 4.3 VRaptor Ressourcen Beispiel

@Resource

public class ItemsController {
QGet
@Path("/items")
public void list() {...}

@Post("/client")
public void add(Client client){...}

@Delete("/client")
public void remove(Client client) {...}

Listing 4.4 Zentrale Routing Klasse fiir URIs in dem Framework VRaptor

@Component

@ApplicationScoped

public class CustomRoutes implements RoutesConfiguration {

public void config(Router router) {
new Rules(router) {
public void routes() {

routeFor("/").is(ClientController.class).list();
routeFor("/client/random") .is(ClientController.class) .random() ;

4.3.1. Grundlagen

Abschnitt Stufe Kommentar

Allgemeines 2 Gute Dokumentation und Tutorials, erweiterbar,
aktive Community

REST Server Applikationen | 1 Auf Servlet ausgelegt, Standalone sehr aufwéan-
dig

REST Client Applikationen | 2 Eigenes Clientprojekt Restfulie

Tabelle 4.12.: Auswertung VRaptor Grundlagen

Allgemeines
1 Ja, auf der offiziellen Dokumentationsseite existieren zwei Einfithrungshilfen, Codebei-

spiele fiir das Entwickeln mit den gegeben Annotationen und deren funktionsweise, bspw.
Ressourcen. Integration in andere Technologien werden dort auch erortert.

50

4.3. VRaptor

2 Es existieren Maillinglisten fiir Benutzer [vraa] und Entwickler [vrab], ausserdem wird
VRaptor auf GitHub [vrac] zur Verfiigung gestellt.

3 Apache 2.0 Lizenz.

4 Ja, es gibt zusitzlich zum Pluginmechanismus speziell ein Projekt auf GitHub, das fiir
externe Plugins vorgesehen ist. [vrad] Die Entwickler von VRaptor nehmen brauchbare
Plugins auch in das Release auf.

REST Server Applikationen

1 Ja [vrae].

2 Alle Umgebungen die die Servlet Spezifikation ab Version 2.5 unterstiitzen.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

REST Client Applikationen

1 Zur Client-Entwicklung in VRaptor wird das Projekt Restfulie vom gleichen Entwickler
(Caelum) genutzt.

2 Restfulie besitzt einfache Beispiele zur Einfithrung, Erklarungen zum Nutzen von Links
in Reprasentationen, Beispiele fiir Transitionen.

3 Es gibt Hilfsmittel zur Verarbeitung von Links, Automatische Serialisierung, Zustands-
abhéngige Aufrufe von Ressourcen.

Architektur und Funktionsweise

1 VRaptor ist ein MVC-Framework und bietet typisch Funktionen, Klassen fiir Model, View
und Control an. Es werden erst Klassen fiir das Modell erstellt die dann Mittels Controllern
eine View an die Clients schickt.

2 VRaptor baut auf dem Spring Framework und nutzt etwaige andere Technologien wie
das Injection-Framework Google Guice. VRaptor benutzt zum Builden Apache Maven da
kann man alle Abhéngigkeiten einsehen. [vraf]

51

4. Bewertungen

4.3.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe Kommentar
Entwicklungsprozess/ Vor- | o

gehensmodell

Modellierung von REST | o

APIs

Modellierungswerkzeuge | o

Tabelle 4.13.: Auswertung VRaptor Entwicklung von REST basierten Anwendungen

Entwicklungsprozess/Vorgehensmodell

1 Nein.

2 Nein.

3 Da VRaptor ein MVC Framework ist lassen sich passende Entwicklungsprozesse aus-
wiéhlen.

Modellierung von REST APlIs

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Nein.

3 Nein.

4 Nein.

Modellierungswerkzeuge

1 Nein.

2 Nein.

3 Nein.

52

4.3. VRaptor

4 Kann nicht beantwortet werden.

5 Nein.
6 Nein.
7 Nein.

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.3.3. Unterstitzung grundlegender REST Prinzipien

Abschnitt Stufe Kommentar

Ressourcenidentifikation 1 Annotationen dhnlich zu JAX-RS 1.1

und Ressourcenstruktur

Ressourcentypen o

Hypermedia 1 Spezielle Hypermedia-Ressource

Medientypen 1 Standard Medientypen, benutzt zentrale Me-
dientypen Repository

Caching 1 ObservableResource Klasse, um Caching zu be-
handeln

Code-On-Demand 0

Tabelle 4.14.: Auswertung VRaptor Unterstiitzung grundlegender REST Prinzipien

Ressourcenidentifikation und Ressourcenstruktur

1 Es werden Annotationen an Controller-Klassen-Methoden angehangt oder in einem
DeploymenDeskriptor definiert.

2 Ja.

3 URI werden anhand der Annotationen (bzw. definierten URIs im Deployment Deskriptor)
auf Controller-Klassen-Methoden weitergereicht. Man kann auch zusétzlich Router-Klassen

verwenden. [vrag]

4 Nein.

53

4. Bewertungen

Ressourcentypen

1 Primérresourcen.

2 Mit der @Resource Annotation an Controller-Klassen konnen Primarressourcen realisiert
werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Hypermedia

1 Es gibt die Hypermedia-Resource, diese kann abhéngig von ihrem Zustand Relationen
an den Client schicken.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

54

4.3. VRaptor

Medientypen

1 VRaptor unterstiitz alle gangigen XML, JSON Medientypen. Leider konnte keine genaue
List ermittelt werden.

2 VRaptor und Restfulie benutzen Medie, eine Medientyp-Repository mit der man eigene
Serialisierer und Deserialisierer registrieren kann. [https://github.com/caelum/medie]

3 Ja.

4 Ja.

5 Falls der Restfulie-Client keinen passenden Medientyp vom Server kriegt wihlt er, falls
vorhanden einen den er kennt automatisch.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Caching

1 Es gibt die Moglichkeit eine ObservableResource zu nutzen um Caching Funktionen
direkt in den Ressource-Klassen zu behandeln. [vrah]

2 Nein.

3 Nur das Validierungsmodell.

4 Ja.

5 Nein.

55

4. Bewertungen

Code-On-Demand

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.3.4. Erweiterte Technische Fahigkeiten

Abschnitt Stufe Kommentar

Protokollunterstiitzung jen- | o

seits von HTTP

HTTP 2 HTTP im angemessenem Umfang nutzbar
Unterstiitzung fiir Transak- | 1 Spring, JPA

tionen

Security 2 SSL und Plugins fiir Authentifizierung
Asynchronitat 1 Non-Blocking Requestverarbeitung
Zuverlassigkeit 0

Umgang mit grofien Daten | 2

Tabelle 4.15.: Auswertung VRaptor Erweiterte Technische Fahigkeiten

Protokollunterstiitzung jenseits von HTTP

1 Keine.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

HTTP

1 Ja.

2 Da HTTP-Aufrufe nur auf Java-Methoden timgeleitet"werden, bleibt die Einhaltung der
Verbsemantik in Bezug auf Idempotenz und Sicherheit in der Verantwortung des Entwick-
lers.

56

4.3. VRaptor

1 Ja.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Unterstiitzung fiir Transaktionen

1 Ja, VRaptor benutzt dazu Annotationen. Darunter werden Transaktions-Funktionen von
Spring, JPA genutzt.

2 Nein.

3 Ja

4 Nicht explizit in VRaptor selbst.

Security

1 Ja, man kann eine Applikation so konfigurieren das SSL verwendet wird. [vrai]

2 Ja, es gibt Plugins die Authentifizierung unterstiitzen. [vraj] [vrak]

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Asynchronitat

1 Die Request und Responses sind in VRaptor von Servlet HttpServletRequest abgeleitete
Klassen und erlauben die darin enthaltenen Funktionen fiir asynchrone Programmiermodel-
le.

2 Nein.

57

4. Bewertungen

Zuverlassigkeit

1 Gar nicht.
2 Nein.
3 Nein.

Umgang mit groBen Daten

1 Ja.

2 Es gibt die Moglichkeit falls zu grofse Dateien auftreten mittels eines Validators [vral]
das abzufangen und selbst geschriebener Logik diese zu behandeln. [vram]

4.4. Resthub

Eckdaten
URL http://resthub.org/
Lizenz Apache License 2.0
Entwickler

Tabelle 4.16.: Eckdaten Resthub

Beschreibung RestHub ist ein Stack von Spring Framework fiir die Serverseite und die
Backbone js fiir die Clientseite. RestHub wurde auf HTML5 Applications ausgelegt. Die
Kommunikation funktioniert tiber die Websockets oder REST webservices. RESThub definiert
eigene Profile, welche dann ausgefiihrt werden. Man kann auch die Profile von Spring
verwenden.

58

http://resthub.org/

4.4. Resthub

Listing 4.5 URI Builder des Spring Stacks des REST Hub Frameworks

UriComponents uriComponents =
UriComponentsBuilder
.fromUriString("http://example.com/hotels/{hotel}/bookings/{booking}")
.build O ;

URI uri = uriComponents.expand("42", "21").encode().toUri();

Beispiel Um die Serverseitige Unterstiitzung fiir RESTful Applikationenzu erméglichen,
wurden Annotationen in das bestehende MVC web framework hinzugefiigt. Mit der An-
notation @Controller lassen sich RESTful Webseiten und Applikationen mit Hilfe von
@PathVariable realisieren. Mit UriComponentsBuilder und UriComponents konnen URLs
dekodiert und kodiert werden. (Siehe 4.5)

Clientseitige Unterstiitzung iiber das RestTemplate, welches sich an die Klassen wie Jdbc-
Template und JmsTemplate anlehnen. Server und Client benutzen beide die HttpConverter,
um den Austausch von Requests und Responses durchfiihren zu kénnen.

4.4.1. Grundlagen

Abschnitt Stufe Kommentar

Allgemeines 1 Gute Dokumentation

REST Server Applikationen | 1 Nur Servlet moglich

REST Client Applikationen | 1 Auf Browser-Clients ausgelegt. Eine grofie Bi-
bliothek Backbone.js wird bereitgestellt.

Tabelle 4.17.: Auswertung Resthub Grundlagen

Allgemeines

1 RestHub bietet eine gute Dokumentation fiir den Spring Stack, sowie fiir den Backbone.js
Stack.

2 Es existiert ein Forum bei Google eine Gruppe:”resthub-dev”, weitere Foren, Mailinglis-
ten oder dhnliches sind nicht bekannt.

3 Spring Framework ist unter Apache 2.0 lizensiert. Backbone.js ist unter MIT License
lizensiert.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

59

4. Bewertungen

REST Server Applikationen

1 Nein.

2 In einem Servlet Container kann eine WAR Datei ausgefiihrt werden. Als Empfehlung
wird heir Jetty Servlet Engine angegeben.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

REST Client Applikationen

1 Ja, das Framework bietet mit dem Spring Stack einen Web Client an. Backbone.js bietet
jedoch viel méchtigere Scripte zur Entwicklung Browser gestiitzten Clients.

2 Es existiert eine vorgefertigte Klasse, welche sofort in Gebrauch genommen werden kann.
Hierbei unterscheidet man zwischen synchronen und asynchronen Aufrufen.

3 Mit Hilfe von Jackson ist es moglich, sofort JSON Objekte in Klassen zu konvertieren.

Architektur und Funktionsweise

1 In einer Routing Datei wird festgelegt, wie der Server bei Aufrufen verhalten soll. So
kann ein GET /item weiter an eine Controllermethode geleitet werden, dhnlich dem vorgehen
im Play Framework.

2 Um eine Applikation ausfithren zu konnen benétigt man einen Servlet Container.

4.4.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe Kommentar
Entwicklungsprozess/ Vor- | o

gehensmodell

Modellierung von REST | o

APIs

Modellierungswerkzeuge | o

Tabelle 4.18.: Auswertung Resthub Entwicklung von REST basierten Anwendungen

60

4.4. Resthub

Entwicklungsprozess/Vorgehensmodell

1 Nein.

2 Es existieren keine speziellen Mechanismen, welche ein Vorgehensmodell bevorteilen.

3 Der typische Entwicklungsprozess sieht folgender mafien aus: Man beginnt mit dem Ent-
wurf der Ressourcen und deren URI Struktur. Ab dann werden die Controllerfunktionalitidten
implementiert.

Modellierung von REST APls

1 Spring unterstiitzt keine automatische WADL Generierung.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Modellierungswerkzeuge

1 Nein.
2 Nein.
3 Nein.

4 Kann nicht beantwortet werden.

5 Nein.
6 Nein.
7 Nein.

61

4. Bewertungen

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.4.3. Unterstitzung grundlegender REST Prinzipien

Abschnitt Stufe Kommentar
Ressourcenidentifikation 1 Zentrale Routingdatei

und Ressourcenstruktur

Ressourcentypen 0

Hypermedia o}

Medientypen 1 Standard Medientypen
Caching 2 Per Annotation konfigurierbar
Code-On-Demand o

Tabelle 4.19.: Auswertung Resthub Unterstiitzung grundlegender REST Prinzipien

Ressourcenidentifikation und Ressourcenstruktur
1 Es gibt eine gemeinsame Routing Datei in dieser werden alle URI gesammelt und auf

Controller Methoden gemappt. Variablen in Pfaden kénnen benutzt werden. Diese kénnen
auch tiber regex Regeln festgesetzt werden.

2 Siehe Frage 1.

3 so
4 Nein.
Ressourcentypen

1 Vordefinierte Ressourcen Typen gibt es nicht. Es besteht aber eine Moglichkeit mit Hilfe
von Jackson und JSON, ein schnelles erstellen von Ressourcen aus einem JSON Objekt.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Wie bereits erwdhnt mit Jackson und JSON.

62

4.4. Resthub

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Hypermedia

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Medientypen

1 Unterstiitzt werden die Medientypen, die in der Klasse org.springframework.http.MediaType
definiert sind.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 C(lient-side Content-Negotiation wird {iber das setzen von Accept-Headern unterstiitzt.

63

4. Bewertungen

4 Server Side Content-Negotiation ldsst sich auf zwei Arten implementieren. Man kann

hierfiir von einer Java Klasse WebMvcConfigurerAdapter erben und somit Zugang zu
der Methode configureContentNegotiation() zu erlangen. Indieser konnen Medientypen
festgesetzt werden. Eine weitere Moglichkeit bietet sich tiber eine XML Konfigurationsdatei
an.

5 Entweder erfolgt dies tiber die Endung der URI beispielsweise .json, .xml (Funktionalitat
ist dann dhnlich Dateiendungen), oder tiber Reihenfolge, in der Medientypen auf dem Server
gesetzt sind.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Caching

1 Das Caching wird von dem Spring Stack auf der Server side unterstiizt.

2 Es gibt eine Moglichkeit die Controllermethoden mit einer Annotation @Cacheable zu
definieren. Hier kann sowohl Parameter, als auch Riickgabe der Methode als @Cacheable
markiert werden.

3 Es existiert das Conditional Caching.

4 Ja.

5 Ja.

Code-On-Demand

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

64

4.4. Resthub

4.4.4. Erweiterte Technische Fahigkeiten

Abschnitt Stufe Kommentar

Protokollunterstiitzung jen- | o

seits von HTTP

HTTP 2 HTTP im angemessenem Umfang nutzbar
Unterstiitzung fiir Transak- | 2 Spring

tionen

Security 1 SSL

Asynchronitat 2 Non-Blocking

Zuverlassigkeit 0

Umgang mit grofsen Daten | 1 Per Stream

Tabelle 4.20.: Auswertung Resthub Erweiterte Technische Fahigkeiten

Protokollunterstiitzung jenseits von HTTP

1 Keine.

2 Kann nicht beantwortet werden.

3 Nein.

4 Kann nicht beantwortet werden.

5 Module und Converter konnen dabei Helfen neue Protokolle einzubinden.

HTTP

1 DELETE, GET, HEAD, OPTIONS, POST, PUT, TRACE, Patch werden unterstiitzt.

2 Da HTTP-Aufrufe nur auf Java-Methoden timgeleitet"werden, bleibt die Einhaltung der
Verbsemantik in Bezug auf Idempotenz und Sicherheit in der Verantwortung des Entwick-
lers.

1 Esbesteht die Moglichkeit alle Header mit Hilfe der Klasse org.springframework.http . HttpHeaders
zu setzen.

65

4. Bewertungen

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Unterstiitzung fiir Transaktionen

1 Es werden Transaktionen unterstiitzt, dabei werden die vom Spring Framework ange-
botenen Fahigkeiten genutzt. Dabei muss das Spring Interface PlatformTransactionManager
implementiert werden.

2 Ja.

3 Resthub ist ein vorgefertigter Stack, aus Spring und Backbone.js, somit kdnnen alle
Features von Spring benutzt werden um externe Transaktionstechniken zu intergrieren.

4 Spring unterstiitzt 2PC, somit auch Resthub.

Security

1 SSL wird unterstiitzt. Dabei kann hier die J[SSE oder OpenSSL genutzt werden.

2 Kann nicht beantwortet werden.

3 Kann nicht beantwortet werden.

4 Kann nicht beantwortet werden.

5 Kann nicht beantwortet werden.

Asynchronitat

1 Mit einer Annotation @Async ist es moglich eine Methode asynchron auszufiihren.

2 Mit Backbone js ist es moglich einen Callback zu registrieren, so dass hier ein asynchroner
Aufruf moglich ist.

66

4.5. Apache CXF

Zuverlassigkeit

1 Gar nicht.
2 Nein.
3 Nein.

Umgang mit groBen Daten

1 Es besteht die Moglichkeit ein Stream bereit zu stellen. Sonst sind keine weiteren
Mechanismen bekannt.

2 Kann nicht beantwortet werden.

4.5. Apache CXF

Eckdaten
URL http://cxf.apache.org/
Lizenz Apache 2.0 Lizenz
Entwickler Apache Software Foundation

Tabelle 4.21.: Eckdaten Apache CXF

Beschreibung Apache CXF ist ein Open-Source Service Framework, um Services mithilfe
von API's/Spezifikationen, wie JAX-WS und JAX-RS, zu implementieren. CXF hat eine Reihe
von unterstiitzten Protokollen wie SOAP, XML/HTTP, RESTful HTTP oder CORBA die tiber

eine Reihen von Transportprotokollen arbeiten wie HTTP, JMS oder JBI. [cxfa]

Beispiel Da CXF JAX-RS 1.1 implementiert, werden Services entsprechend der Spezifikation
entwickelt. Ein Beispiel 4.1 und eine genauere Beschreibung kann bei Jersey 4.1 eingesehen
werden.

67

http://cxf.apache.org/

4. Bewertungen

4.5.1. Grundlagen

Abschnitt Stufe Kommentar

Allgemeines 2 Ausfiihrliche Dokumentation, aktive Communi-
ty, explizit auf Erweiterungen ausgelegt

REST Server Applikationen | 2 Servlet und Standalone komfortabel moglich,
OSGi moglich

REST Client Applikationen | 2 Verschiedene Clients mit unterschiedlichen

Funktionalitédten fiir verschiedene Anspriiche

Tabelle 4.22.: Auswertung Apache CXF Grundlagen

Allgemeines

1 Es gibt einen umfassenden User Guide um das generelle arbeiten mit CXF zu erleichtern.
Fiir REST Entwicklung gibt es drei Unterkategorien Entwicklung mit JAX-RS 1.1 [exfb],
JAX-WS Provider [cxfc] und HTTPBinding [cxfd] [cxfe].

2 Es gibt mehrere Maillinglisten [cxff] und einen IRC-Channel #cxf@irc.codehaus.org.

3 Apache Lizenz 2.0.

4 Ja, CXF hat explizit moglichkeiten zur Erweiterung [cxfg].

REST Server Applikationen

1 Ja [exfh].

2 CXF kann auf verschiedenen Application Servern deployed werden [cxfi]. Es gibt
Moglichkeiten CXF in einem OSGI Framework zu betreiben Da CXF standalone betrieben
werden kann, lauft CXF auf jedem System das eine JVM zur Verfiigung stellt.

3 Fiir verschiedene Umgebungen miissen teils andere Konfigurationen gewihlt werden,
die im Deployment Deskriptor eingestellt werden.

REST Client Applikationen

1 Ja.

68

4.5. Apache CXF

2 Es gibt drei Arten von REST-Clients: Proxy-based, HTTP-centric und XML-centric. Der
Proxy-based Client erlaubt es die im Server entwickelten JAX-RS Resource Klassen wieder
zuverwenden. Somit kann direkt auf Java-Klassen gearbeitet werden. Der HTTP-centric
Client stellt bekannte Konstrukte aus HTTP zur verfiigung. So konnen HTTP Header gesetzt
werden und HTTP Verben explizit genutzt werden. XML-centric Clients erlauben Ressourcen
Représentationen aus dem XML Umfeld mittels XPath Queries und XSLT Stylesheets zu
verarbeiten.

3 Alle drei Clients erlauben Reprédsentationen direkt in vorgesehene Java-Objekte zu (de-
)serialisieren. Es ist moglich einen Proxy-based Client in einen HTTP-centric umzuwandeln
und umgekehrt. Es konnen zur Laufzeit Clients generiert werden die es erlauben per Java-
Relflection diese bestimmten Klassen entsprechend anzupassen.

Architektur und Funktionsweise

1 CXF teilt sich in 7 Komponenten auf. Eine Komponente ist der Bus, dieser ist ein
Regsiter fiir Erweiterungen, Interceptoren (Auffanger) und Properties. Dieser gilt als der
“Backbone” von CXF. [cxfg] Die Front-end Komponente bietet ein Programmiermodell an,
mit dem Services erstellt werden konnen. In dieser ist auch die JAX-RS 1.1 implementierung
enthalten. [cxfj] Messaging & Interceptors Komponente besteht aus Messages, Interceptoren
und Interceptor-Ketten. Dabei ist die Idee das Messages durch Interceptor-Ketten geschickt
werden die diese verarbeiten.Beispielweise ist ein Interceptor innerhalb der Kette fiir das
konkrete XML parsen oder Verschliisselung zustandig.[cxtk] Das Service-Model ist eine
Komponente die in CXF angelegte Services beschreibt, dabei wurde das Model an WSDL
angelehnt. [cxfl] Die Databinding Komponente besteht aus Konvertern die aus gegebenen
Formaten diesen in XML transformieren und umgekehrt, da aber CXF JAX-RS 1.1 implemen-
tiert lassen sich auch JAX-RS Provider zur Konvertierung von Medientypen nutzen.[cxfm]
[cxfn] Die Protocol Bindings Komponente wird verwendet um Messages auf konkrete Trans-
port Protokolle zu transformieren. [cxfo] Die Komponente Transports ist fiir das Senden und
Empfangen innerhalb verschiedener Protokolle zustandig.[cxfp]

2 Apache CXF erlaubt Spring integration und viele weitere Moglichkeiten externe Techno-
logien zu integrieren/verwenden, ist aber selbst nicht davon abhingig.

69

4. Bewertungen

4.5.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe Kommentar

Entwicklungsprozess/ Vor- | o

gehensmodell

Modellierung von REST | 2 erlaubt von Code zu WADL und WADL zu
APIs Code Generierung

Modellierungswerkzeuge | o

Tabelle 4.23.: Auswertung Apache CXF Entwicklung von REST basierten Anwendungen

Entwicklungsprozess/Vorgehensmodell

1 Nein.

2 Nein.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Modellierung von REST APls

1 Es kdonnen WADL:s aus einer laufenden Applikation generiert werden, zuséatzlich gibt es
das Tool wadl2java um Java-Code aus einer WADL zu erstellen.[cxfq]

2 Nein.

3 Ja.

4 Ja, aus der WADL lasst sich Client und Server Code generieren.

Modellierungswerkzeuge

1 Nein.

2 Nein.

3 Nein.

70

4.5. Apache CXF

4 Kann nicht beantwortet werden.

5 Nein.
6 Nein.
7 Nein.

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.5.3. Unterstitzung grundlegender REST Prinzipien

Abschnitt Stufe Kommentar
Ressourcenidentifikation 1 JAX-RS 1.1 Annotationen

und Ressourcenstruktur

Ressourcentypen 0

Hypermedia 0

Medientypen 1 JAX-RS 1.1

Caching 1 Caching durch Cachingframework
Code-On-Demand o

Tabelle 4.24.: Auswertung Apache CXF Unterstiitzung grundlegender REST Prinzipien

Ressourcenidentifikation und Ressourcenstruktur
1 Gemifs JAX-RS erfolgt die Identifikation iiber URI-Elemente, die per @Path Annotation
an Klassen und Methoden gebunden werden kénnen. Dabei konnen sowohl einzelne URI-

Elemente, als auch Teilpfade einer URI verwendet werden. Es ist damit moglich Aufruf-
Hierarchien tiber verschiedene Klassen und Methoden hinweg zu realisieren.

2 Ja.

3 Siehe dazu JAX-RS 1.1 Spezifikation. [jaxa, JAX-RS 1.1 Abschnitt 3.7]
Zusétzlich ist es moglich die Wahl der Klassen und/oder der Methoden zu beeinflussen.
[exfr]

4 Nein.

71

4. Bewertungen

Ressourcentypen

1 Primérressourcen und Subressourcen konnen mit Mitteln aus JAX-RS 1.1 unkompliziert
realisiert werden, sind aber nicht speziell als solche deklariert.

2 Gemif JAX-RS 1.1 konnen Klassen mittels @Path Annotationen als Primérressource
verfiigbar gemacht werden.

3 Gemaifs JAX-RS 1.1 konnen Methoden innerhalb von Klassen mittels @Path Annotationen
als Subressourcenidentifikator genutzt werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Hypermedia

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

72

4.5. Apache CXF

Medientypen

1 Alle aus der JAX-RS Spezifikation.

2 CXF implementiert JAX-RS, somit konnen Provider implementiert werden die das
Serialisieren/Deserialisieren von Medientypen tibernehmen. Dafiir muss ein Interface im-
plementiert werden (MessageBodyReader bzw. MessageBodyWriter) und mit einer @Provider
Annotation versehen werden.

3 Ja, wird gemafs der JAX-RS Spezifikation durchgefiihrt.

4 Ja, wird gemaf3 der JAX-RS Spezifikation durchgefiihrt.

5 Wird geméfs der JAX-RS Spezifikation durchgefiihrt.

6 Wird geméfd der JAX-RS Spezifikation durchgefiihrt.

7 Wird geméfs der JAX-RS Spezifikation durchgefiihrt.

8 Wird gemafs der JAX-RS Spezifikation durchgefiihrt.

Caching

1 Esist mogliche CachingFrameworks wie bspw. Ehcache-Web [ehca] durch Konfiguration
in der web.xml zu nutzen.

2 Das benutzte CachingFramework muss komplett selbst konfiguriert werden.

3 Kommt auf das eingesetzte Framework an.

4 E-Tags werden unterstiitzt, miissen aber vom Entwickler selbst definiert werden.

5 Nein.

73

4. Bewertungen

Code-On-Demand

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.5.4. Erweiterte Technische Fahigkeiten

Abschnitt Stufe Kommentar

Protokollunterstiitzung jen- | 2 JMS

seits von HTTP

HTTP 2 JAX-RS 1.1

Unterstiitzung fiir Transak-

tionen

Security 2 SSL, Keystore, Signaturen,viele Authentifizierun-
gen XML-Verschliisselung und XML-Signaturen

Asynchronitat 1 Unterstiitzung fiir Apache HttpAsyncClient
(kann Non-Blocking I/0)

Zuverlassigkeit

Umgang mit grofien Daten | 2 Auslagerung auf Festplatte moglich

Tabelle 4.25.: Auswertung Apache CXF Erweiterte Technische Fahigkeiten

Protokollunterstiitzung jenseits von HTTP

1 JMS [cexfs].

2 Es miissen Konfigurationsdateien erstellt werden um Queue oder Topics zu konfigurieren
[cxft].

3 Ja

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Ja, innerhalb der Protocol Binding und Transports Komponenten.

HTTP
1 JAX-RS 1.1 definiert als Annotationen GET, PUT, POST, DELETE und HEAD. Desweiteren

verlangt JAX-RS 1.1 auch noch Antworten auf OPTIONS Anfragen. Weiterhin kénnen iiber
die Annotation HttpMethod weitere HTTP-Methoden gemapped werden.

74

4.5. Apache CXF

2 Da die HTTP-Verb-Annotationen lediglich zur Auswahl von Java-Methoden verwendet
werden, bleibt die Einhaltung der Verbsemantik in Bezug auf Idempotenz und Sicherheit in
der Verantwortung des Entwicklers.

1 Ja.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Unterstiitzung fiir Transaktionen

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Kann nicht beantwortet werden.

3 Ja, JTA kann genutzt werden tiber J]MS Konfiguration.

4 Durch JTA ist es auch moglich 2PC zu nutzen.

Security

1 Der client von Apache CXF benutzt automatisch Zertifikate und Keystores, die Teil der
JDK sind, wenn eine url mit “https” aufgerufen wird. Nur bei “custom” und selbst-signierten
Zertifikaten kann eine Konfiguration des keystores und des trust managers von Noten sein.
Der Apache CXF standalon HTTP transport kann mittels Konfiguration SSL-fahig gemacht
werden.

2 CXF kann Standalone betrieben werden und ist mittels Konfigurationsdatei voll konfigu-
rierbar.

3 Client beherrscht Basic und Digest Access, dariiber hinaus kann noch dynamic autho-
rization, NTLM Authentication und Spnego Authentication genutzt werden. Der Server
beherrscht BasicAuth. [exfu]

4 Es gibt automatische XML-Verschliisselung um die MessageEntity zu verschliisseln.

5 XML-Signaturen auf beiden Seiten.

75

4. Bewertungen

Asynchronitat

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Apache CXF bietet unter anderem die Apache HTTP Components HttpAsyncClient
library. [apaa]

Zuverlassigkeit

1 Fir idempotente Methoden ermdglicht CXF Clients andere Server zu nutzen falls der
Primére nicht erreichbar ist mittels Failover-Strategien. [cxfv] Weitere Probleme miissen vom
Entwickler selbst gelost werden.

2 Nein.
3 Nein.

Umgang mit groBen Daten

1 Ja, es ist moglich Speicher auf der Festplatte des Systems zu nutzen um grofse Dateien
darin auszulagern. [cxfw]

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.6. Resteasy

Eckdaten
URL http://www. jboss.org/resteasy/
Lizenz LGPL v3.
Entwickler JBoss

Tabelle 4.26.: Eckdaten Resteasy

76

http://www.jboss.org/resteasy/

4.6. Resteasy

Listing 4.6 Ein Beispiel einer mit Resteasy entwickelten Methode.

Q@Path("/events")

O@RequestScoped

public class EventService {
@Inject

private EntityManager em;

Q@GET

@Produces (MediaType.APPLICATION_JSON)
public List<Event> getAllEvents() {
final List<Event> results

em. createQuery (
"select e from Event e order by e.name").getResultList();

return results;

Beschreibung Resteasy ist eine zertifizierte JAX-RS Implementierung. Zusétzlich bietet
das Framework die Funktionalititen fiir die Client Entwicklung, Caching, Asynchrone
Programmiermodelle und JPA Support. Resteasy kann in jedem Servlet Container ausgefiihrt
werden. Doch die starke Bindung an den JBoss Application Server sorgt fiir eine angenehmere
Ausfithrung der Applikationen in dieser Umgebung.

Beispiel In JAX-RS wird vieles tiber Annotationen deklariert. Dabei werden die URIs
mittels der @Path Annotation an die Methoden gebunden. Siehe 4.6.

4.6.1. Grundlagen

Abschnitt Stufe Kommentar

Allgemeines 2 Ausfiihrliche Dokumentation, aktive Communi-
ty

REST Server Applikationen Servlet Container

REST Client Applikationen | 2 Client Framework wird angeboten, Server und

Client kdnnen gemeinsame Interfaces verwen-
den

Tabelle 4.27.: Auswertung RESTEasy Grundlagen

Allgemeines

1 FEine Dokumentation ist auf der offiziellen Seite von Resteasy zu finden. In dieser
Dokumentation werden unter anderem einige Beispiele vorgestellt.

77

4. Bewertungen

2 Es existieren eine offizielle Wiki, Mailing Listen, sowie Biicher zu Resteasy.

3 Resteasy steht unter der ASL 2.0 Lizenz. Es werden keine Bibliotheken von Drittanbietern

verbreitet, welche unter der GPL Lizenz lizensiert sind. Es werden jedoch Bibliotheken von
Drittanbietern in Resteasy mitverbreitet, welche unter der ASL 2.0 und LGPL Lizenzen
lizensiert sind.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

REST Server Applikationen

1 Es ist moglich eine Standalone Applikation zu realisieren. Dafiir sind nétige Schritte
durchzufiihren. Das Vorgehen ist in der Dokumentation beschrieben. [resa]

2 Die Applikation kann in einem JBoss 7 Application Server ausgefiihrt werden.

3 Mit Hilfe von verschiedenen Konfigurationen lédsst sich die Anwendung auf weitere
Servlet Container portieren.

REST Client Applikationen

1 Resteasy bietet mit dem Client Framework eine Moglichkeit einen Clientapplikation zu
entwickeln. Dieses Client Framework basiert auf dem Apache HttpClient.

2 Die Dokumentation liefert notige Informationen zur Cliententwicklung.

3 Es gibt die Moglichkeit die fiir Server-seite entwickelten MessageBodyWriter und Reader
auch fiir den Client verfiigbar zumachen, dartiber hinnaus kann man Filter entwickeln.

Architektur und Funktionsweise

1 Die Funktionsweise des Frameworks gleicht den weiteren Frameworks, welche die
JAX-RS Sperzifikation implementieren. Mittels @Path und den HTTP Verben Annotationen
werden die Methoden deklariert.

2 Als Applikation Server wird zum Ausfiihren JBoss AS 7 eingesetzt. Die Applikation
kann jedoch auch auf anderen Servlet Container ausgefiihrt werden.

78

4.6. Resteasy

4.6.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe

Kommentar

Entwicklungsprozess/ Vor- | o
gehensmodell

Modellierung von REST | o
APIs

Modellierungswerkzeuge | o

Tabelle 4.28.: Auswertung RESTEasy Entwicklung von REST basierten Anwendungen

Entwicklungsprozess/Vorgehensmodell

1 Es wird kein Vorgehensmodell gefordert.

2 Nein.

3 Um spater weniger Korrekturen an der Applikation durchfiihren zu miissen, sollten
zundchst die Ressourcen, die URI Struktur und ein geeignetes Modell zu implementieren.
Dann kann die Geschiftslogik implementiert werden.

Modellierung von REST APIs

1 Nein.

2 Nein.

3 Nein.

4 Nein.

Modellierungswerkzeuge

1 Nein.

2 Nein.

79

4. Bewertungen

3 Nein.

4 Kann nicht beantwortet werden.

5 Nein.
6 Nein.
7 Nein.

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.6.3. Unterstiitzung grundlegender REST Prinzipien

Abschnitt

Stufe

Kommentar

Ressourcenidentifikation
und Ressourcenstruktur

1

JAX-RS 1.1 Annotationen

Ressourcentypen

Hypermedia Atom Links, LinkHeader, Zustandsabhingig
Links

Medientypen JAX-RS 1.1 und weitere

Caching Per Annotation konfigurierbar

Code-On-Demand

Tabelle 4.29.: Auswertung RESTEasy Unterstiitzung grundlegender REST Prinzipien

Ressourcenidentifikation und Ressourcenstruktur

1 Gemifs JAX-RS erfolgt die Identifikation {iber URI-Elemente, die per @Path Annotation
an Klassen und Methoden gebunden werden kénnen. Dabei kénnen sowohl einzelne URI-
Elemente, als auch Teilpfade einer URI verwendet werden. Es ist damit moglich Aufruf-
Hierarchien tiber verschiedene Klassen und Methoden hinweg zu realisieren.

2 Ja. Resteasy bietet die Moglichkeit in der @Path Annotation Variablen zu deklarieren.
Diese konnen dann tiber weitere Annotationen genutzt werden.

3 Siehe dazu JAX-RS 1.1 Spezifikation. [jaxa, JAX-RS 1.1 Abschnitt 3.7]

8o

4.6. Resteasy

4 Nein.

Ressourcentypen

1 Primérressourcen und Subressourcen konnen mit Mitteln aus JAX-RS 1.1 unkompliziert
realisiert werden, sind aber nicht speziell als solche deklariert.

2 Gemif JAX-RS 1.1 konnen Klassen mittels @Path Annotationen als Primérressource
verfiigbar gemacht werden.

3 Gemaifs JAX-RS 1.1 konnen Methoden innerhalb von Klassen mittels @Path Annotationen
als Subressourcenidentifikator genutzt werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.
5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.
6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Hypermedia
1 Ja, es konnen Bedingungen definiert werden um Links zu Représentationen hinzuzufii-

gen wenn diese erfiillt ist.

2 RESTEasy implementiert Atom Links und die Link Header Spezifikation, es konnen
somit Links im HTTP Header angegeben werden.

3 Ja, es konnen Annotationen verwendet werden, die es ermoglichen JAX-RS Ressource-
klassen anzugeben um diese dann mittels einem Links verfiigbar zu machen.

4 Es werden bezogen auf die JAX-RS Annotation einer Methode, default-Werte aus dem
jeweiligen Standard (Atom, Linkheader) verwendet. Bspw. wird fiir eine @GET annotierte
Methode die eine Liste zurtickgibt als Relation collection gewihlt.

81

4. Bewertungen

5 Es konnen einfache Strings fiir die Typisierung verwendet werden.
6 Atom Links und LinkHeader.
7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Medientypen

1 Alle MedienTypen der JAX-RS Spezifikation und zusitzlich atom+* . [resb]

2 Esist moglich eigene Medientypen zu definieren. Dazu miissen MessageBodyReader
und Writer definiert werden, die fiir den eigenen Medientyp verantwortlich sind.

3 Ja

4 Mit @Produces und @Consumes Annotation wird Server-side Content-Negotiation
beeinflusst.

5 Die Medientypen konnen in einer web.xml definiert werden. Das Feld res-
teasy.media.type.mappings muss dabei mit den Medientypen gesetzt werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.
7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

8 Die Medientypen konnen in der web.xml definiert werden. Das Feld res-
teasy.language.mappings muss dabei mit den Medientypen gesetzt werden. Accept Header
konnen gesetzt werden. Die weitere Moglichkeit besteht in der Query den Medientypen
anzugeben.

82

4.6. Resteasy

Caching

1 Resteasy unterstiizt sowohl Server-side Caching, als auch Client-side Caching. Mit den
Annotationen @Chache und @NoCache wird den Methoden mitgeteilt, ob der erfolgreiche
Aufruf gecachet werden soll, oder nicht. Dabei muss man beachten, dass dies nur auf
Methoden mit dem @GET HTTP Verb zutrifft. Alle anderen HTTP Verben werden nicht

unterstiitzt. Auf der Client Seite wird der Browser Cache verwendet, sofern die Benutzung
erlaubt ist.

2 Es konnen default-Werte fiir die @Cache Annotation gesetzt werden. Die @Cache
Annotation muss jedoch auf den Methoden genutzt werden.

3 Ja.

4 Ja.

5 Ja.

Code-On-Demand

1 Nein.

4.6.4. Erweiterte Technische Fahigkeiten

Abschnitt Stufe Kommentar

Protokollunterstiitzung jen- | o
seits von HTTP

HTTP 2 JAX-RS 1.1

Unterstiitzung fiir Transak-
tionen

Security
Asynchronitat
Zuverlassigkeit

SSL, OAuth, Signaturen, Verschliisselung
Non-Blocking-IO, Asynchrone Requests

N|O N[N

Umgang mit grofien Daten

Tabelle 4.30.: Auswertung RESTEasy Erweiterte Technische Fahigkeiten

4. Bewertungen

Protokollunterstiitzung jenseits von HTTP

1 Es ist nur HTTP moglich.

2 Kann nicht beantwortet werden.
3 Nein.

4 Ja.

5 Kann nicht beantwortet werden.

HTTP

1 JAX-RS 1.1 definiert als Annotationen GET, PUT, POST, DELETE und HEAD. Desweiteren
verlangt JAX-RS 1.1 auch noch Antworten auf OPTIONS Anfragen. Weiterhin kénnen tiber
die Annotation HttpMethod weitere HTTP-Methoden gemapped werden.

2 Da die HTTP-Verb-Annotationen lediglich zur Auswahl von Java-Methoden verwendet
werden, bleibt die Einhaltung der Verbsemantik in Bezug auf Idempotenz und Sicherheit in
der Verantwortung des Entwicklers.

1 Ja.
2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Unterstiitzung fiir Transaktionen

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.
2 Kann nicht beantwortet werden.
3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.6. Resteasy

Security

1 SSL, OAuth von Haus aus nutzbar.

2 OAuth.

3 Nein.

4 Ja.

5 Ja.

Asynchronitat

1 Das Verarbeiten eines Requests kann asynchron stattfinden, dies muss zuerst im Servlet
Container, wie Tomcat oder JBoss eingestellt werden. Die Dokumentation von Resteasy liefert
hier einige Beispiele.

2 Ja.

Zuverlassigkeit

1 Gar nicht.
2 Nein.
3 Nein.

Umgang mit groBen Daten

1 Ja. Resteasy ermoglicht den Austausch grofler Dateien mit Hilfe der MultiPartProvider
Klasse.

2 siehe 1.

4. Bewertungen

4.7. Wink

Eckdaten
URL http://wink.apache.org/
Lizenz Apache 2.0 Lizenz
Entwickler Apache Software Foundation

Tabelle 4.31.: Eckdaten Wink

Beschreibung Apache Wink betreibt zwei Module, den Wink Server und Wink Client.Der
Wink Server implementiert JAX-RS 1.1 und definiert dariiber noch eigene Features die dem
REST-Prinzip helfen wollen.Der Wink Client baut auf JDK HttpUrlConnection auf und
erweitert somit diesen fiir die entwicklung.[win]

Beispiel Da Wink JAX-RS 1.1 implementiert, werden Services entsprechend der Spezifi-
kation entwickelt. Ein Beispiel 4.1 und eine genauere Beschreibung kann bei Jersey 4.1

eingesehen werden.

4.7.1. Grundlagen

Abschnitt

Stufe

Kommentar

Allgemeines

Dokumentation vorhanden, auf Erweiterung
ausgelegt

REST Server Applikationen

Auf Servlet ausgelegt

REST Client Applikationen

Client-API mit Standardfunktionalitiat vorhan-
den

Tabelle 4.32.: Auswertung Apache Wink Grundlagen

Allgemeines

1 Es gibt ein Wiki und Dokumentation zu allen Releases bis 1.2.1 (aktuelle Version ist 1.3.0).
Beim Teil , Getting Started“sind allerdings fast alle Kategorien noch TBD (to be done).

2 Es gibt mehrere Mailinglisten und einen (leeren) IRC-Channel.

3 Apache License, version 2.0.

86

http://wink.apache.org/

4.7. Wink

4 Ja, Apache Wink hilt sogar ein Verzeichnis dafiir bereit.

REST Server Applikationen

1 Apache Wink ist darauf ausgelegt als Komponente zusammen mit anderen Servern
bspw. Apache Geronimo oder Apache Tomcat zu laufen.

2 Apache Wink kann als .war Datei auf allen Servern ausgefiihrt werden, die .war Dateien
unterstiitzen.

3 Als .war Distribution ist Apache Wink in allen Umgebungen lauffihig, die es erlauben
eine .war File zu deployen.

REST Client Applikationen

1 Ja.

2 . Highlevel-HTTP-Aufrufe, (De-)Serialisierung von Objekten.

3 Der HTTP-Aufrufe, das Setzen der wichtigsten Header ist mittels Java-Methoden auf
einem Objekt der Klasse Resource moglich. (De-)Serialisierung von Objekten ist JAX-RS
typisch iiber MessageBodyReader und -Writer moglich. Die Standard Medientypen sind
vorimplementiert, weitere konnen selbst hinzugefiigt werden.

Architektur und Funktionsweise

1 Die Highlevel Server-Architektur von Apache Wink enthilt eine Runtime-Schicht, die
ankommende HTTP-Anfragen vom Host entgegen nimmt. Mit dieser Anfrage wird eine
neue ,Session”initiiert, indem ein Nachrichtenkontext erzeugt wird, der durch die Handler-
Kette gereicht wird. Zunédchst zu den Handlern, die dafiir zustandig sind, Anfragen zu
den richtigen Ressourcen und Methoden zuzuordnen. Wenn notig werden eingehende
Anfragen durch die entsprechenden Provider de-serialisiert. Nachdem die injizierbaren
Parameter bereit sind, werden die zugeordneten Ressourcenmethoden aufgerufen und das
generierte Antwort-Objekt wird wieder durch die Handler-Kette gereicht, bis es schliefSlich
vom richtigen Provider als HTTP-Antwort serialisiert wird.

2 Apache Wink benotigt einen HTTP-Server, der gleichzeitig als Container fiir WebArchives
dient (.war).

4. Bewertungen

4.7.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe Kommentar

Entwicklungsprozess/ Vor- | o

gehensmodell

Modellierung von REST | 1 Laufzeitgenerierung von WADL zu einzelnen
APIs Ressourcen

Modellierungswerkzeuge | o

Tabelle 4.33.: Auswertung Apache Wink Entwicklung von REST basierten Anwendunge

Entwicklungsprozess/Vorgehensmodell

1 Nein.

2 Nein.

3 Kann nicht beantwortet werden.

Modellierung von REST APIs

1 Wink unterstiitzt die Generierung von WADL.

2 Nein.

3 Kann nicht beantwortet werden.

4 Es konnen WADL-Dokumente fiir einzelne Ressourcen mittels HTTP OPTIONS An-
frage generiert werden, Desweiteren kann ein WADL-Dokument generiert werden, mittels
org.apache.wink.common.model.wadl. WADLGenerator, das ein JAXB-Modell der Ressourcen-
Klassen enthilt, welches dann von Clients konsumiert werden kann.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Modellierungswerkzeuge

1 Nein.

88

4.7. Wink

2 Nein.

3 Nein.

4 Kann nicht beantwortet werden.

5 Nein.
6 Nein.
7 Nein.

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.7.3. Unterstitzung grundlegender REST Prinzipien

Abschnitt Stufe Kommentar

Ressourcenidentifikation 1 JAX-RS 1.1 Annotationen

und Ressourcenstruktur

Ressourcentypen 0

Hypermedia 0

Medientypen 1 JAX-RS 1.1 und weitere

Caching 1 Setzen von HTTP-CacheControl-Headern
Code-On-Demand 0

Tabelle 4.34.: Auswertung Apache Wink Unterstiitzung grundlegender REST Prinzipien

Ressourcenidentifikation und Ressourcenstruktur

1 Gemafs JAX-RS erfolgt die Identifikation tiber URI-Elemente, die per @Path Annotation
an Klassen und Methoden gebunden werden kénnen. Dabei kénnen sowohl einzelne URI-
Elemente, als auch Teilpfade einer URI verwendet werden. Es ist damit moglich Aufruf-
Hierarchien tiber verschiedene Klassen und Methoden hinweg zu realisieren.

2 Ja.

3 Siehe [jaxa, JAX-RS 1.1 Abschnitt 3.7].

4. Bewertungen

4 Nein.

Ressourcentypen

1 Primérressourcen und Subressourcen konnen mit Mitteln aus JAX-RS 1.1 unkompliziert
realisiert werden, sind aber nicht speziell als solche deklariert.

2 Gemifs JAX-RS 1.1 konnen Klassen mittels @Path Annotationen als Primérressource
verfiigbar gemacht werden.

3 Gemaifs JAX-RS 1.1 konnen Methoden innerhalb von Klassen mittels @Path Annotationen
als Subressourcenidentifikator genutzt werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Hypermedia

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

90

4.7. Wink

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Medientypen

1 Aktiv unterstiitzt werden application/json, application/javascript, application/atomsvc+xml,
application/atomcat+xml, application/atom+xml, application/xml, text/html, text/csv, application/o-
pensearchdescription+xml, multipart/* und alle JAX-RS Medientypen.

2 Ja, es konnen eigene Provider (MessageBodyReader/-Writer) implementiert und regis-
triert werden.

3 Wird geméfs der JAX-RS Spezifikation durchgefiihrt.

4 Wird gemafs der JAX-RS Spezifikation durchgefiihrt.

5 Wird geméfs der JAX-RS Spezifikation durchgefiihrt.

6 Wird geméfd der JAX-RS Spezifikation durchgefiihrt.

7 Wird geméfs der JAX-RS Spezifikation durchgefiihrt.

8 Wird gemafs der JAX-RS Spezifikation durchgefiihrt.

Caching

1 Unterstiitzt wird das Caching insofern, dass die Caching-Header von gesendeten Ant-
worten entsprechend gesetzt werden konen.

2 Header miissen vom Entwickler selbst gesetzt werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Man kann die ETag-Header lesen und setzen.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

91

4. Bewertungen

Code-On-Demand

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.7.4. Erweiterte Technische Fahigkeiten

Abschnitt

Stufe

Kommentar

Protokollunterstiitzung jen-
seits von HTTP

(0)

HTTP

JAX-RS 1.1

Unterstiitzung fiir Transak-
tionen

Security

SSL, BasicAuth

Asynchronitit

Zuverlassigkeit

Umgang mit grofien Daten

CQ|O|O|Rr

Tabelle 4.35.: Auswertung Apache Wink Erweiterte Technische Fahigkeiten

Protokollunterstiitzung jenseits von HTTP

1 Keine.

2 Kann nicht beantwortet werden..

3 Kann nicht beantwortet werden.

4 HTTP kann im Kontext einer REST-Applikation in vollem Umfang genutzt werden.

5 Kann nicht beantwortet werden.

HTTP

1 JAX-RS 1.1 definiert als Annotationen GET, PUT, POST, DELETE und HEAD. Desweiteren
verlangt JAX-RS 1.1 auch noch Antworten auf OPTIONS Anfragen. Weiterhin kénnen iiber

die Annotation HttpMethod weitere HTTP-Methoden gemapped werden.

2 Ja.

92

4.7. Wink

1 Ja.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Unterstiitzung fiir Transaktionen

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Kann nicht beantwortet werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Security

1 Die Apache Wink Client API unterstiitzt SSL.

2 Der Client liefert einen BasicAuthSecurityHandler. Weitere Provider konnen selbst
implementiert werden.

3 Kann nicht beantwortet werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Asynchronitat

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

93

4. Bewertungen

Zuverlassigkeit

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Umgang mit groBen Daten

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.8. Restlet
Eckdaten
URL http://restlet.org
Lizenz Apache 2.0, LGPL 3.0/2.1, EPL 1.0, CDDL
1.0
Entwickler Restlet INC. (http://restlet.com/legal)

Tabelle 4.36.: Eckdaten Restlet

Beschreibung Restlet Framework unterstiitzt gleichzeitig die Implementierung von Servern
und dazu passende Clients. Es gibt bei Restlet Framework bereits Klassen fiir Ressourcen,
sowohl serverseitig als auch clientseitig. Serverseitig werden Anfragen iiber Annotationen
an Instanzmethoden weitergeleitet.

Beispiel FEin kleines Beispiel ist in Listing 4.7.

94

http://restlet.org
http://restlet.com/legal

4.8. Restlet

Listing 4.7 Restlet Code Beispiel

public class Part03 extends ServerResource {

public static void main(String[] args) throws Exception {
// Create the HTTP server and listen on port 8182
new Server (Protocol.HTTP, 8182, Part03.class).start();

}

QGet
public String toString() {
return "hello, world";

}

4.8.1. Grundlagen

Abschnitt Stufe Kommentar

Allgemeines 2 Ausfiihrliche Dokumentation, aktive Communi-
ty auf StackOverflow, auf Erweiterungen ausge-
legt

REST Server Applikationen | 1 Standalone, Servlet, GWT (Google Web Toolkit),
GAE (Google App Engine), Android und OSGi

REST Client Applikationen | 1 Client-API mit Standardfunktionalitdt vorhan-

den, Server und Client konnen gemeinsame In-
terfaces verwenden

Tabelle 4.37.: Auswertung Restlet Grundlagen

Allgemeines

1 Ja, es gibt ein Tutorial, einen Benutzerleitfaden, eine Javadoc Beschreibung und ein Buch

[LTB12].

2 Das Restlet Team bittet Nutzer, die Fragen bzgl. des Frameworks haben, Stackoverflow
zu benutzen und dabei sollen sie den ,restlet”tag anhdngen. Dariiber hinaus existiert eine
Maillingliste auf tigris.org. [resc] Restlet wird gerade von SVN auf GIT umgestellt, dabei wird
wiederum GitHub als Plattform und Anlaufstelle fiir Nutzer zur Verfiigung gestellt.[resd]

3 Restlet wird unter mehreren Lizenzen angeboten. Diese sind Apache 2.0, LGPL 3.0, LGPL
2.1, CDDL 1.0, EPL 1.0. Das Restlet Team ermoglicht auch das Nutzen von kommerziellen
Lizenzen, diese miissen dann aber mit den Entwicklern direkt ausgehandelt werden.

95

4. Bewertungen

4 Restlet ist durch die darunter liegende Architektur stark Erweiterbar. Dabei besteht
Restlet aus einer Restlet API und einer Restlet Engine auf dieser Restlet Extensions arbeiten.
[LTB12, Seite 10 - 11]

REST Server Applikationen

1 Ja. Dies ist sehr einfach mit wenigen Zeilen Code mogliche.[rese]

2 Es gibt fertige Pakete fiir Java SE, Java EE Servlet Container, GWT (Google Web Toolkit),
GAE (Google App Engine), Android und OSGIL

3 Portieren zwischen den Umgebungen Java SE, Java EE und GWT kann durch dndern
des Initialisierungscodes bzw. des DeploymentDeskriptors ohne zusitzliche d&nderungen der
Anwendung selbst erfolgen.

REST Client Applikationen

1 Ja das Framework beinhaltet eine ClientAPI. Sitzt man hinter einem Proxy oder dhnli-
chem lief3e sich per Extension auch der ApacheHTTPClient nutzen.

2 Mit Restlet ist es moglich Interfaces zwischen Server und Client auszutauschen. Dabei

muss das Interface mit den HTTP-Verben annotiert und von einer ServerResource implemen-
tiert werden. Der Client kann dieses Interface wrappen und eine Instanz der ServerResource
erstellen.[resf]

3 String o.d.wird automatisch konvertiert. Fiir speziellere Sachen wie JSON oder XML
empfiehlt Restlet selbst die eigene XStream-Extension zu verwenden.

Architektur und Funktionsweise

1 Restlet besteht aus der Restlet API, Restlet Engine und aus einer Menge von Restlet
Extensions. Restlet Applikationen sollen hauptsichlich auf der Restlet API aufbauen, kénnen
aber zusitzlich auf die Extensions zugreifen. ['rest in action"p. 10 - 11]. Restlet Applikationen
sind Subklassen von ClientResource oder ServerResource und werden in Restlet in eine
Komponente untergeordnet. Diese werden mittels Konnektoren auf URI’s gelegt um diese
ansprechbar zu machen. Bspw. Kann ein HTTP Konnektor eingehende Requests auf Metho-
den einer ServerResource weiterleiten, diese wiederum kann von ihr ausgehende Request an
einen POP3 Konnektor weiterleiten. [LTB12, Seiten 8 - 17]

96

4.8. Restlet

2 Der Restlet Kern baut rein auf Java SE auf. Zuséatzlich existieren Editionen fiir andere
Umgebungen, bspw. die OSGI Edition die den Kern als OSGI-Bundle anbieten.

4.8.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe Kommentar

Entwicklungsprozess/ Vor- | o

gehensmodell

Modellierung von REST | 1 Laufzeitgenerierung von WADL zu einzelnen
APIs Ressourcen

Modellierungswerkzeuge | o

Tabelle 4.38.: Auswertung Restlet Entwicklung von REST basierten Anwendungen

Entwicklungsprozess/Vorgehensmodell

1 Nein.

2 In ,Restlet in Action“Appendix D wird Resource-oriented-Analysis/Development
(ROA /D) vorgestellt. Doch es wird nicht darauf eingegangen wie die identifizierten Artifakte
des Vorgehensmodells auf Restlet abgebildet werden kann.

3 Nicht beantwortbar.

Modellierung von REST APIs

1 WADL wird mittels Extension unterstiitzt.[resg]

2 Nein. Es wird keine eigene IDL angeboten.

3 Um WADL zu erzeugen muss von den Klassen WADLServerResource, WADLApplication
abgeleitet werden. Dann miissen noch Methoden implementiert werden, die die jeweiligen
Methoden beschreiben. Per HTTP-OPTIONS kann dann die WADL abgerufen werden.

4 Es gibt keine Moglichkeit stubs aus WADL zu generieren mit Restlet.

97

4. Bewertungen

Modellierungswerkzeuge

1 Nein.
2 Nein.
3 Nein.

4 Kann nicht beantwortet werden.

5 Nein.
6 Nein.
7 Nein.

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.8.3. Unterstiitzung grundlegender REST Prinzipien

Abschnitt Stufe Kommentar

Ressourcenidentifikation 1 dedizierte Routing Objekte

und Ressourcenstruktur

Ressourcentypen 0

Hypermedia 0

Medientypen 2 Viele Medientypen

Caching 1 Setzen von HTTP-CacheControl-Headern
Code-On-Demand 0

Tabelle 4.39.: Auswertung Restlet Unterstiitzung grundlegender REST Prinzipien

Ressourcenidentifikation und Ressourcenstruktur

1 Das Routing Konzept in Restlet, erlaubt es URIs sowohl in einer Root-Klasse zu imple-
mentieren als auch in einzelnen Ressourcen-Klassen, auf einkommende Request werden
entsprechend des Mappings diese auf Methoden angewendet. URI-Templates werden von
der Router-Klasse unterstiitzt.

98

4.8. Restlet

2 Ja.

3 Um das Routing kiimmern sich bei Restlet Objekte der Router-Klasse. In diesen Objekten
konnen dann relative Pfade mittels .attach(String, Class) angehédngt werden.Bei Objekten
der Router-Klasse gibt es die Moglichkeit verschiedene ,,Matching-Modes “auszuwihlen.
Als default ist dabei MODE_EQUALS eingestellt, was bedeutet, dass die zu matchende
URI exakt dem definierten Pattern entsprechen muss. Dies verbietet dann allerdings auch
nachtrégliches, bzw. darauf folgendes Routing. Um Hierarchisches Routing zu realisieren
kann der Routing-Mode MODE_STARTS_WITH verwendet werden.

4 Nein.

Ressourcentypen

1 Nein. Es gibt nur die Klasse ServerResource, von der alle Ressourcen abgeleitet werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Hypermedia

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

99

4. Bewertungen

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Es exisitiert eine Restlet Extension fiir RDE.

Medientypen

1 Restlet hat eine grofie Liste an bereits unterstiitzten Medientypen. [resh]

2 Eigene Medientypen konnen mittels Extensions und dem richtigen Konverter realisiert
werden. Der Konverter muss dazu die entsprechende Serialisierung anbieten.

3 Setzen des Accept-Headers beim HTTP-Aufruf, ansonsten HTTP konform.

4 Man kann auf ServerResourcen ,Varianten“setzen und diese dann gezielt bei Anfragen
tiberpriifen und die geeignete Représentation erzeugen.

5 Von Hand.

6 HTTP konform.

7 HTTP konform.

8 HTTP konform.

Caching
1 Restlet erlaubt es Http-Caching zu nutzen, bietet aber derzeit noch keine eigenen

Cache-Funktionalitiaten. Diese sollen aber mit dem nichsten Release in Form der Klasse
CacheService implementiert werden.

100

4.8. Restlet

2 Ressourcenspezifisches Setzen der Wichtigsten Caching-Header (in den ServerResource-
Klassen).

3 Keine. Nur Caching tiber HTTP.

4 Ja.

5 Nein.

Code-On-Demand

1 Es gibt keine Unterstiitzung fiir Code-On-Demand.

4.8.4. Erweiterte Technische Fahigkeiten

Abschnitt Stufe Kommentar

Protokollunterstiitzung jen- | o
seits von HTTP

HTTP 2 HTTP im angemessenem Umfang nutzbar

Unterstiitzung fiir Transak-
tionen

Security
Asynchronitat

SSL-Extension, BasicAuth und DigestAuth
Non-Blocking-IO

Zuverlassigkeit
Umgang mit grofien Daten

N[O R |R

Tabelle 4.40.: Auswertung Restlet Erweiterte Technische Fahigkeiten

Protokollunterstiitzung jenseits von HTTP

1 Keine.

2 Nicht beantwortbar.

3 Nicht beantwortbar.

4 Nicht beantwortbar.

101

4. Bewertungen

5 Nicht beantwortbar.

HTTP

1 Ja.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Unterstitzung flr Transaktionen

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Kann nicht beantwortet werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Security

1 Ja, es gibt eine SSL-Extension.

2 Basic, Digest.

3 Konfiguration durch Java oder Konfigurationsdatei.

4 Ja.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

102

4.9. Play Framework

Asynchronitat

1 Es gibt non-blocking NIO Modi. Asynchrone Anfragenbearbeitung.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Zuverlassigkeit

1 Gar nicht.
2 Nein.
3 Nein.

Umgang mit groBen Daten

1 Ja, das Hochladen von Dateien wird in Restlet mittels der Apache FileUpload Extension
ermoglicht. Die Extension benutzt dabei von Apache das Commons-Fileupload Packet [apab],
das auch grofie Dateien beherscht.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4.9. Play Framework

Eckdaten
URL http://www.playframework.org
Lizenz Apache 2.0 Lizenz
Entwickler Zenexity (http://zenexity.fr/)

Tabelle 4.41.: Eckdaten Play

103

http://www.playframework.org
http://zenexity.fr/

4. Bewertungen

Listing 4.8 Play Beispiel Code

public class Application extends Controller {

public static Result index() {
return ok(index.render ("Your new application is ready."));

}

Beschreibung Das Framework versucht URI Pfade auf die Java Methoden abzubilden.
Diese werden in einem Controller definiert und kdnnen so benutzt werden. Play baut
auf HTTP auf und benutzt die gingigen Verben wie GET, PUT usw. Play geht auf die
Entwicklung der Server ein. So bietet dieses Framework keine Moglichkeit einen Client zu
bauen. Der Server beinhaltet einige Features sowie Contetn Negotiation und sogar Caching
ist mit ein Paar Eingriffen sehr leicht umusetzen.

Beispiel FEin Auszug aus dem Tutorial von der Play Webseite:

In einer Console wird zum aufsetzen eines Servers miissen nur eingie Zeilen eingegeben
werden.

e play new myFirstApp

Erzeugt das Projekt mit allen nétigen Ressourcen und Unterordnern
e cd myFirstApp

Betreten des Projekts
e play

Fiihrt die Console des Play Frameworks auf

Jetzt kann auf dem http://localhost:9ooo/ der Server iiber einen Browser angesprochen
werden. Die Routen/Pfade kdnnen in der conf/routes eingestellt werden. Ein Root Pfad
in der Konfigurationsdatei wiirde so ausehen: GET / controllers.Application.index(). Nun
braucht man einen Controller, welcher zum Root Pfad gemappt wurde, siehe Code Beispiel

4.8.

Weitere kleine Einstellungen und die Applikation ist bereit und lduft einwandfrei im Brow-
ser.

104

4.9. Play Framework

4.9.1. Grundlagen

Abschnitt Stufe Kommentar

Allgemeines 1 Ausfiihrliche Dokumentation, aktive Communi-
ty auf StackOverflow

REST Server Applikationen | 1 Auf Standalone ausgelegt, Servlet moglich, aber
nicht empfohlen

REST Client Applikationen | 2 Client-API mit Standardfunktionalitdt, zusatz-
lich Async-HTTP-Client

Tabelle 4.42.: Auswertung Play Grundlagen

Algemeines
1 Auf der Playframework Webseite wird in einem 20-miniitigen der Einstieg in die Web-
Entwicklung mit dem Playframework geboten. Auf der Playframework Webseite ist zudem

ausfiihrliche Dokumentation vorhanden. Es gibt die beiden Biicher “Play for Java” und “Play
for Scala”.

2 Sehr aktive Community auf StackOverflow. http://www.playframework.com/get-involved
Es gibt Mailing-Lists fiir User, Developer und fiir Security.

3 Apache 2.0 Lizenz.
4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

REST Server Applikationen

1 Ja. Das Playframework realisiert standardméflig eine Standalone Anwendung. Verwendet
wird dafiir ein JBoss Netty HTTP Server. Mithilfe der Klasse ServletWrapper ldsst sich Play
allerdings auch in einen Servlet Kontext einfiigen. Dies wird von Play! allerdings nicht
empfohlen.

2 JVM, ansonsten mit Hilfe des (nicht empfohlenen) ServletWrappers in allen ServletCon-
tainern.

105

http://www.playframework.com/get-involved

4. Bewertungen

REST Client Applikationen

1 Das Playframework liefert mit der Play WS API einen HTTP-Client. Mit dieser Api lasst
sich auch der Async-HTTP-Client nutzen. [asy]

2 Highlevel-HTTP-Aufrufe, teilweise (De-)Serialisierung von Objekten.

3 Beispiel zur Nutzung der (De-)Serialisierung von Objekten.

HttpResponse res = WS.url("http://www.google.com") .get();\\
String content = res.getString();\\

Document xml = res.getXml();\\

JsonElement json = res.getJson();\\

InputStream is = res.getStream();\\

Architektur und Funktionsweise

1 Die URIs werden in der conf/routes Datei festgelegt, die Java-Methoden, die die Aufrufe
bearbeiten auch dort spezifiziert. Diese Methoden miissen dann in einer Controllerklasse
implementiert werden. Da das Playframework als MVC Framework aufgebaut ist gibt es
extra Packete fiir Datenmodell und Anzeige.

2 JBoss Netty Http Server, JVM, Dartiber hinaus bietet Playframework viele andere Biblio-
theken an: [plaa]

4.9.2. Entwicklung von REST basierten Anwendungen

Abschnitt Stufe Kommentar
Entwicklungsprozess/ Vor- | o

gehensmodell

Modellierung von REST | o

APIs

Modellierungswerkzeuge | o

Tabelle 4.43.: Auswertung Play Entwicklung von REST basierten Anwendungen

Entwicklungsprozess/Vorgehensmodell

1 Vom Playframework wird kein explizites Vorgehensmodell gefordert.

106

4.9. Play Framework

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Modellierung von REST APIs

1 IDL’s werden vom Playframework nicht nativ unterstiitzt.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Modellierungswerkzeuge

1 Nein.
2 Nein.
3 Nein.

4 Kann nicht beantwortet werden.

5 Nein.
6 Nein.
7 Nein.

8 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

107

4. Bewertungen

4.9.3. Unterstiitzung grundlegender REST Prinzipien

Abschnitt Stufe Kommentar
Ressourcenidentifikation 1 Zentrale Routingdatei
und Ressourcenstruktur

Ressourcentypen 0

Hypermedia 0

Medientypen 1 Standard Medientypen
Caching 1 Eigene Caching-API
Code-On-Demand 0

Tabelle 4.44.: Auswertung Play Unterstiitzung grundlegender REST Prinzipien

Ressourcenidentifikation und Ressourcenstruktur

1 Alle URIs werden in der conf/routes Datei verwaltet. Dabei muss das HTTP-Verb, die
relative URI ab Server und die Methode, welche den Aufruf bearbeitet (fqn), angegeben
werden.

2 Esist im Playframework moglich bei der URI-Gestaltung dynamische Teile und sogar
reguldre Ausdriicke zu verwenden. Ebenfalls ist es moglich optionale URI-Teile zu nutzen.

3 Alle URI sind in der conf/routes Datei gespeichert. Ebenso die zugehorigen Java-
Methoden. Soll innerhalb des Frameworks ein request umgeleitet werden, so kann beispiels-
weise die URI einer Methode mit fqn controllers.admin.Application.hello zur Laufzeit durch
controllers.admin.routes. Application.hello() bestimmt werden.

4 Nein.

Ressourcentypen

1 Es gibt nur die Klasse Controller, in der die Java-Methoden zur Anfragen-Bearbeitung
implementiert werden konnen.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

108

4.9. Play Framework

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Hypermedia

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Medientypen

1 Play kann folgende Medientypen von Haus aus text/html, application/xhtml, text/xml,
application/xml, text/plain, text/javascript, application/json verarbeiten, damit Entwickler diese
komfortabel nutzen kénnen.

2 Ja, aber es muss alles “von Hand” gemacht werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

109

4. Bewertungen

4 Playframework empfiehlt Content-Negotiation iiber die URL zu regeln. Dazu sollen dann
URI-Templates der Form: path/file.{format} verwendet werden. Es ist aber auch moglich
HTTP-Content-Negotiation zu nutzen. Dann werden Accept-Header beachtet.[plab] [plac]

[plad]

5 HTML wird, sofern vorhanden (auch bei einer wildcard) per default ausgewdhlt, sonst
werden die in der Routes Datei gesetzten Mappigs genutzt.

6 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

7 Kann beim Setzen des Content-Types der Antwort mitgesetzt werden. UTF-8 wird per
default gesetzt.

8 Accept-Language Header. Best-Match (falls verfiigbar, ansonsten default.)

Caching

1 Das Playframework bietet eine eigene Cashing-Api die von EHCache [EhCb] implemen-
tiert wird wird. Die API erlaubt Objekte in den cache zu schreiben (auch temporér), lesen
und l6schen. Ebenso kann dieser Cache auf bestimmte Nutzer (von aufien) eingeschrankt
werden.

2 Caching-Header konnen auch in der conf/application.conf gesetzt werden.

3 Play benutzt EHCache zum cachen. EHCache untersiitzt alle Caching-Header aus HTTP
1.1, somit werden Validierungs- und Expirationsmodell unterstiitzt.

4 Ja.

5 In der conf/application.conf kann die automatische Generierung von E-Tags aktiviert
werden.

Code-On-Demand

1 Das Playframework bietet keine spezielle Unterstiitzung fiir Code-On-Demand Losun-
gen.

110

4.9. Play Framework

4.9.4. Erweiterte Technische Fahigkeiten

Abschnitt Stufe Kommentar

Protokollunterstiitzung jen- | o

seits von HTTP

HTTP 2 HTTP im angemessenem Umfang nutzbar

Unterstiitzung fiir Transak- Automatische JPA Nutzung bei Anfragen an

tionen den Server

Security SSL, Zertifikate, Authentifizierungen

Asynchronitat 2 Non-Blocking-IO, Asynchroner Nachrichtenaus-
tausch mit Akka

Zuverlassigkeit 0

Umgang mit grofsen Daten | 2 Auslagerung auf Festplatte automatisch

Tabelle 4.45.: Auswertung Play Erweiterte Technische Fahigkeiten

Protokollunterstiitzung jenseits von HTTP

1 Keine.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

4 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

HTTP

1 Laut Dokumentation auf der Playframework-Webseite werden Get, Put, Post, Delete
und Head unterstiitzt. Durch manuelles Bearbeiten des Parsers der routes-File lassen sich

allerdings auch andere Verben nutzen.

2 Da HTTP-Aufrufe nur auf Java-Methoden timgeleitet"werden, bleibt die Einhaltung der
Verbsemantik in Bezug auf Idempotenz und Sicherheit in der Verantwortung des Entwick-

lers.

111

4. Bewertungen

1 Ja.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Unterstiitzung fiir Transaktionen

1 Play bietet JPA persistence und Ebean, mit dem transaktionale Datenhaltung ermoglicht
werden kann. Bei der Nutzung von Ebean muss das transaktionale Verhalten allerdings
selbst bestimmt werden. (per @play.db.ebean.Transactional Annotation an Methoden) oder
“von Hand” mit:

Ebean.execute(new TxRunnable() { }});

[Plae] [plaf]

2 Das Playframework startet automatisch eine JPA-Transaction bei einer Anfrage und
fithrt den Commit aus, wenn der Java-Code keine Exception geworfen hat und die Antwort
versandt wurde.

3 Nein.
4 Nein.
Security

1 Das Framework unterstiitzt SSL und Zertifikat-Uberpriifung. Dazu miissen Die Zertifikat
mit einem bestimmten Namen im conf/ verzeichnis der Anwendung gespeichert werden.
Ebenso muss in der conf/Application.conf ein HTTPS Port eingetragen werden.[plag]

2 Der Webserver kann auch in der conf/Application.conf konfiguriert werden.[plah]

3 Playframework bietet dafiir extra ein Sicherheitsmodul, mit dem sich Authentifizierung
beim Server (auch mit verschiedenen Rollen) realisieren ldsst. [plai]

4 In der Konfigurationsdatei kann mittels application.secure="value” ein geheimer Schliis-
sel konfiguriert werden. Ist dieser nicht gesetzt, wird play.libs.Crypto.sign keine Nach-
richten verschliisseln. Ob automatisch Nachrichten verschliisselt werden ist nicht klar
erkennbar.[plaj]

112

4.9. Play Framework

5 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Asynchronitat

1 Ja, Playframework unterstiitzt unter anderem Non-Blocking I/O.[plak][plal]

2 Mit Hilfe von Akka(in Play integriert) lasst sich auch asynchroner Nachrichtenaustausch
realisieren.

Zuverlassigkeit

1 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

3 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

Umgang mit groBen Daten

1 Ja, das Playframework bietet Moglichkeiten Dateien “chunked” zu tibertragen. Zusitzlich
werden grofSe Dateien auf der Festplatte ausgelagert.[plam] [plan] [plao]

2 Konnte im Rahmen der Fachstudie nicht evaluiert werden.

113

5. Ergebnisse

5.1. Kommentar zur Bearbeitung

Zur Beantwortung der Fragen aus dem Kriterienkatalog haben wir fast ausschliefslich Infor-
mationen herangezogen, die zum Zeitpunkt der Fachstudie online verfiigbar waren. Dazu
gehoren die Webseiten der einzelnen Frameworks, aber auch Community-Seiten, wie bspw.
[stackoverflow], Blogs, Mailinglist-Archive, [googlegroups] etc.

Aufgrund der Tatsache, dass wir nur frei verfiigbare Informationen genutzt haben, war es
teilweise sehr schwer, Informationen zu speziellen Themen zu finden. Deshalb konnten wir
nicht alle Fragen definitiv beantworten.

Die Kategorie [Architektur und Funktionsweise] haben wir nicht zur Auswertung herange-
zogen, weil jeder Entwickler und jedes Projekt andere Anforderungen an ein Framework
hat.

5.2. Grundlagen

5.2.1. Allgemeines - Ergebnisse

Die Frameworks, die bei der Evaluierung am besten abgeschnitten haben sind Jersey, CXF,
RESTEasy, Restlet und VRaptor. Alle der genannten Frameworks zeichneten sich durch
eine ausfiihrliche Dokumentation aus, mit deren Hilfe man erste Services entwickeln kann.
Desweiteren war im Netz auch gentigend Informationen vorhanden, um auch grofiere
Projekte realisieren zu konnen. Jersey, CXF und RESTEasy hatten dabei den Vorteil, dass
durch die Implementierung von JAX-RS 1.1 sehr viele Hilfestellungen verfiigbar waren.
Frameworks, die JAX-RS 1.1 nicht implementierten waren dennoch ausreichend dokumentiert
um Services zu entwickeln, seien es einfache oder schwere Projekte. Die Communities der
Frameworks waren subjektiv bei den JAX-RS Frameworks grofier, da prinzipiell Losungen
von einem Framework auf andere iibertragen werden konnen. VRaptor und Restlet hingegen,
zeichneten sich durch kleinere, aber konzentriertere Gruppen, deren Aktivitdt subjektiv
hoher war. Alle Frameworks standen unter Lizenzen, die fiir die meisten Projekte nutzbar
wdren. Bei der prinzipiellen Erweiterbarkeit der Frameworks, waren grofle Unterschiede
bemerkbar. Einige Frameworks wie Restlet sind komplett darauf ausgelegt durch Extensions
erweitert zu werden, bei anderen konnten Informationen diesbeziiglich nicht ohne eine
intensive Analyse des Codes evaluiert werden.

115

5. Ergebnisse

5.2.2. REST Server Applikationen - Ergebnisse

Hervorzuhebende Frameworks in dieser Kategorie waren CXF und Restlet. Mit beiden
Frameworks ist es moglich, entwickelte Applikationen Standalone, als Servlet, oder innerhalb
eines OSGi Frameworks zu nutzen. Restlet bietet dariiberhinaus noch weitere Moglichkeiten
Applikationen zu betreiben, wie bspw. in der Google App Engine. Die meisten anderen
Frameworks waren meist auf Servlet-Betrieb beschriankt und miissten {iber speziellere
Konfigurationen fiir den Standalone-Betrieb eingestellt werden. Andere Umgebungen werden
nur von sehr wenigen Frameworks angeboten.

5.2.3. REST Client Applikationen - Ergebnisse

Alle Frameworks aufier Scooter verfiigen iiber einen dedizierten Client, der mindestens die
Funktionalitdt eines Standard-HTTP-Clients anbietet. Hervorzuheben sind Jersey, VRaptor,
CXF und Play, die speziellere APIs fiir Client die Cliententwicklung anbieten. Im Umfang
dieser APIs waren meist Zusatzfunktionen enthalten, die sich mit der Serialisierung von
Objekten beschiftigten. Einige unterstiitzen den Austausch gemeinsamer Interfaces zwischen
Server und Client. Der Hypermedia-Aspekt von REST war nur im Restfulie Clientframework
vertreten, das als Client fiir VRaptor genutzt wird.

5.3. Entwicklung von REST basierten Anwendungen

5.3.1. Entwicklungsprozess/ Vorgehensmodell - Ergebnisse

Bei keinem Framework gab es Vorgaben oder Empfehlungen bestimmte Entwicklungspro-
zesse zu nutzen.

5.3.2. Modellierung von REST APIs - Ergebnisse
Nur Jersey, CXF, Wink und Restlet bieten Unterstiitzung fiir WADL. Abgesehen von CXF
beschrankt sich diese Unterstiitzung auf die Laufzeitgenerierung von WADL-Dokumenten.

Weiterhin gibt es das Tool WADL2Java, das in der Lage ist aus WADL-Beschreibungen Stubs
zu generieren. Dieses Tool kann bspw. fiir CXF und Jersey genutzt werden.

5.3.3. Modellierungswerkzeuge - Ergebnisse

Keines der untersuchten Frameworks beinhaltet Modellierungswerkzeuge.

116

5.4. Unterstitzung grundlegender REST Prinzipien

5.4. Unterstiitzung grundlegender REST Prinzipien

5.4.1. Ressourcenidentifikation und Ressourcenstruktur - Ergebnisse

Bei allen Frameworks funktioniert das Routing von Anfragen dhnlich, dabei unterschieden
sich diese sich nur in der Deklaration. Einige benutzten Java-Annotationen (Alle JAX-
RS Frameworks, Restlet, VRaptor), andere eine zentrale Routing/Konfigurations-Datei.
Dabei werden ganze oder Fragmente von Pfaden auf Java-Methoden gemappt. Einzig das
Scooter Framework mit seinem Conventions-over-Configuration Ansatz generierte Routings
automatisch auf Modellklassen ohne das Routing von Hand zu deklarieren. Weiterhin
unterstiitzten alle Frameworks die Verwendung von URI Templates. Andere Arten der
Identifizierung von Ressourcen, aufier URI, unterstiitzte keines der Frameworks.

5.4.2. Ressourcentypen - Ergebnisse

Prinzipiell konnten alle Frameworks Priméar- und Subressourcen deklarieren. Die erweiter-
ten Konzepte fiir Ressourcen aus [Tilkov], wurden von keinem Framework aufser Scooter
unterstiitzt, wobei auch Scooter nicht alle Ressourcentypen unterstiitzt. Bei Scooter ist es
bspw. moglich Listenressourcen in der Konfigurationsdatei eines Projekts zu definieren.

5.4.3. Hypermedia - Ergebnisse

In der Hypermedia Kategorie ist RESTEasy hervorzuheben. RESTEasy ermoglicht es, mittels
Annotationen, Links (Atom Links, Link Header) in Représentationen einzufiigen. Dabei
konnten diese auch zustandsabhéngig eingefiigt und mit eigenen Linkrelationen typisiert
werden. Jersey bietet das Einfiigen von Link-Headern mittels Annotation. Bei den anderen
Frameworks muss der Hypermedia-Aspekt ganzlich selbst entwickelt werden.

5.4.4. Medientypen - Ergebnisse

Alle Frameworks unterstiitzen das Verarbeiten von XML und JSON Medientypen und
ermoglichen es, falls notig, eigene Medientypen zu definieren. Restlet bietet zusatzlich noch
eine Reihe von Medientypen, die in anderen Frameworks nicht standardmaéfsiig enthalten
sind.

5.4.5. Caching - Ergebnisse

Alle Frameworks verfiigen tiber eine Abstraktion von HTTP-CachControl Headern, nur
wenige automatisierten Caching komplett. Hervorzuheben sind sowohl REASTEasy und
Resthub, mit deren Hilfe Ressourcen per Annotation fiir das Caching konfiguriert werden

117

5. Ergebnisse

konnen, als auch Scooter, wo Caching-Optionen in der Routes-Datei verfiigbar sind. Weiterhin
konnen bspw. Caching-Frameworks, wie EHCache, in CXF integriert werden.

5.4.6. Code-On-Demand - Ergebnisse

Der optionale Code-On-Demand REST Aspekt wird von keinem Framework direkt unter-
sttitzt.

5.5. Erweiterte Technische Fahigkeiten

5.5.1. Protokollunterstiitzung jenseits von HTTP - Ergebnisse

Kein Framework, ausser CXF, ermoglicht das Nutzen von anderen Protokollen ausser HTTP.
CXF kann als Protokoll JMS verwenden und gibt auch Informationen wie man Queues und
Topics dafiir konfiguriert

5.5.2. HTTP - Ergebnisse

Alle Frameworks ermoglichen das Nutzen von HTTP in vollem Umfang.

5.5.3. Unterstitzung fur Transaktionen - Ergebnisse

Die Frameworks, die auf Spring aufbauen, VRaptor und Resthub, bieten vorgefertigte Lo-
sungen fiir die Nutzung von Transaktionen. Play startet fiir jede Anfrage an den Server
automatisch eine Transaktion. Bei den anderen Frameworks gab es zum Teil gut dokumen-
tierte Losungswege, Transaktionen zu integrieren. Eine eigene Transaktions-API oder eigens
definierte Annotationen werden aber von keinem der evaluierten Frameworks zur Verfiigung
gestellt.

5.5.4. Security - Ergebnisse

Alle evaluierten Frameworks sind in der Lage SSL zu nutzen. Verwendet werden dazu meist
Funktionen aus dem Servlet-Kontext. Ebenso bieten die meisten Frameworks zur Authen-
tifizierung zumindest BasicAuth an. Hervorzuheben sind RESTEasy und CXE. RESTEasy
stellt Verschliisselungs- und Signaturfunktionalitdt bereit, nei CXF gibt es Funktionalitat zur
Verschliisselung und Signatur von XML.

118

5.5. Erweiterte Technische Fahigkeiten

5.5.5. Asynchronitat - Ergebnisse
Asynchrone Request Verarbeitung wurde von den meisten Frameworks unterstiitzt. Nur

RESTEasy, Resthub und Play bieten vorgefertigte Moglichkeiten asynchronen Nachrichten-
austausch zu realisieren.

5.5.6. Zuverlassigkeit - Ergebnisse

Fiir die Handhabung der, in [Tilkov] beschriebenen, Zuverladssigkeitsprobleme, bietet keines
der evaluierten Frameworks aktiv Unterstiitzung.

5.5.7. Umgang mit groBen Daten - Ergebnisse
Aufler Resthub, Wink und Jersey, ist es bei allen Frameworks moglich, die Festplatte zur

Verarbeitung grofier Dateien zu nutzen. Jersey nutzt zur Handhabung grofSer Dateien eine
eigene Annotation, Resthub arbeitet mit Streams.

119

6. Zusammenfassung und Ausblick

Diese Studie hat einen Uberblick iiber die verschiedenen REST Frameworks im JAVA Umfeld
gegeben. Mit Hilfe der Kriterien sollte es dem Leser einfacher fallen, fiir seine REST Applika-
tion, das passende Framework zu finden. Die Beantwortung der Fragen und die Bewertung
mit den Noten o, 1 und 2 besagen wie stark, das eine oder andere Thema unterstiitz wird. Die
Frage , Welches Framework ist das bessere?”“konnen wir hier nicht beantworten. Es gibt viele
unterschiedliche Frameworks, welche ihre eigenen Straken und Schwachen haben. Dabei
hingt es vom Projekt ab, in dem ein Framework eingesetzt werden soll, welches Framework
mit seinen Starken am besten passt. Einige Schwichen fallen jedoch bei allen Frameworks aulf,
die fehlenden Modellierungswerkzeuge so wie Vorgehensmodelle um eine REST Applikation
implementieren zu konnen. In [ZBD11] stellt Zuzak ein Vorgehensmodell, dieses muss jedoch
ohne spezielle Tools oder IDEs vollzogen werden, so auch die Modellierung der Ressourcen
oder des URI Designs. Hier konnte sich die REST Community zusammenschlieffen und
solche Werkzeuge anbieten, damit die Applikation, die entsteht, dann wirklich auch RESTful
wird und nicht nur eine HTTP basierte Schnittstelle reprasentiert.[zus]

Ausblick

Die vorgestellten Frameworks werden als aktiv bezeichnet, so kann man hier gespannt
sein, wie diese sich weiterentwickeln. JAX-RS 2.0 wird wohl von allen JAX-RS-Frameworks
implementiert werden. In dieser Version ist bspw. ein einfacherer und verbesserter Client
spezifiziert [jaxb]. Auch die anderen Frameworks entwickeln sich weiter, denn nicht umsonst
befinden sich diese in den Versionen > 1.0. Vielleicht wird es eines Tages das Ultimative
Framework geben, das die Starken aller Frameworks vereint, aber bis dahin haben die
Entwickler von REST Applikationen die Quahl der Wahl.

121

A. Gesamtubersicht aller Auswertungen

Framework Stufe Kommentar

Jersey 2 Ausfiihrliche Dokumentation, aktive Community, Referenz-
implementierung von JAX-RS, gut erweiterbar

Scooter 1 Gute Dokumentation, semi-Aktive Community, erweiterbar

VRaptor 2 Gute Dokumentation und Tutorials, erweiterbar, aktive Com-
munity

Resthub 1 Gute Dokumentation

CXF 2 Ausfiihrliche Dokumentation, aktive Community, explizit auf
Erweiterungen ausgelegt

RESTEasy 2 Ausfiihrliche Dokumentation, aktive Community

Wink 1 Dokumentation vorhanden, auf Erweiterung ausgelegt

Restlet 2 Ausfiihrliche Dokumentation, aktive Community auf StackO-
verflow, auf Erweiterungen ausgelegt

Play 1 Ausfiihrliche Dokumentation, aktive Community auf StackO-

verflow

Tabelle A.1.: Auswertungen in der Kategorie Allgemeines

Framework Stufe Kommentar

Jersey 1 Auf Servlet ausgelegt, Standalone moglich

Scooter 1 Auf Standalone ausgelegt, Servlet aufwindig

VRaptor 2 Auf Servlet ausgelegt, Standalone sehr aufwindig

Resthub 1 Nur Servlet moglich

CXF 2 Servlet und Standalone komfortabel moglich, OSGi moglich

RESTEasy 1 Servlet Container

Wink 1 Auf Servlet ausgelegt

Restlet 2 Standalone, Servlet, GWT (Google Web Toolkit), GAE (Google
App Engine), Android und OSGi

Play 1 Auf Standalone ausgelegt, Servlet moglich, aber nicht emp-

fohlen

Tabelle A.2.: Auswertungen in der Kategorie REST Server Applikationen

123

A. Gesamtubersicht aller Auswertungen

Framework Stufe Kommentar

Jersey 1 Client-API, Komfortfunktionen, gute Erweiterungsmoglich-
keiten

Scooter 1 keine dedizierte Client-API, auf Browser-Clients ausgelegt

VRaptor 2 Eigenes Clientprojekt Restfulie

Resthub Auf Browser-Clients ausgelegt. Eine grofle Bibliothek Backbo-
ne.js wird bereitgestellt.

CXF 2 Verschiedene Clients mit unterschiedlichen Funktionalititen
fur verschiedene Anspriiche

RESTEasy 1 Client Framework wird angeboten, Server und Client kénnen
gemeinsame Interfaces verwenden

Wink 1 Client-API mit Standardfunktionalitiat vorhanden

Restlet 2 Client-API mit Standardfunktionalitidt vorhanden, Server und
Client konnen gemeinsame Interfaces verwenden

Play 1 Client-API mit Standardfunktionalitdt, zusitzlich Async-
HTTP-Client

Tabelle A.3.: Auswertungen in der Kategorie Client Applikationen

Framework

Stufe

Kommentar

Jersey

Scooter

VRaptor

Resthub

CXF

RESTEasy

Wink

Restlet

Play

Q|00 Q|0 |OQ|O|C|O

Tabelle A.4.: Auswertungen in der Kategorie Entwicklungsprozess/Vorgehensmodell

124

Framework Stufe Kommentar

Jersey 1 Laufzeitgenerierung von WADL zu einzelnen Ressourcen
Scooter 0 -

VRaptor 0 -

Resthub 0 -

CXF 2 erlaubt von Code zu WADL und WADL zu Code Generierung
RESTEasy 0 -

Wink 1 Laufzeitgenerierung von WADL zu einzelnen Ressourcen
Restlet 1 Laufzeitgenerierung von WADL zu einzelnen Ressourcen
Play 0 -

Tabelle A.5.: Auswertungen in der Kategorie Modellierung von REST API’s

Framework

Stufe

Kommentar

Jersey

Scooter

VRaptor

Resthub

CXF

RESTEasy

Wink

Restlet

Play

|00 |C|O|O|O|QC|OC

Tabelle A.6.: Auswertungen in der Kategorie Modellierungswerkzeuge

Framework Stufe Kommentar

Jersey 1 JAX-RS 1.1 Annotationen

Scooter 2 Conventions-over-Configuration, Klassen bekommen ihr URI
anhand der Struktur im Projekt. URI-Konfiguration auch ex-
plizit moglich

VRaptor 1 Annotationen dhnlich zu JAX-RS 1.1

Resthub 1 Zentrale Routingdatei

CXF 1 JAX-RS 1.1 Annotationen

RESTEasy 1 JAX-RS 1.1 Annotationen

Wink 1 JAX-RS 1.1 Annotationen

Restlet 1 dedizierte Routing Objekte, Annotatioen

Play 1 Zentrale Routingdatei

Tabelle A.7.: Auswertungen in der Kategorie Ressourcenidentifikation und Ressourcenstruk-

tur

125

A. Gesamtubersicht aller Auswertungen

Framework

Stufe

Kommentar

Jersey

(0)

Scooter

2

Conventions-over-Configuration Ansatz ermoglicht viele Res-
sourcentypen

VRaptor

Resthub

CXF

RESTEasy

Wink

Restlet

Play

Q|0 |C |0 |O|O|O

Tabelle A.8.: Auswertungen in der Kategorie Ressourcentypen

Framework

Stufe

Kommentar

Jersey

Setzen von Link-Headern mittels Annotation moglich

Scooter

VRaptor

Spezielle Hypermedia-Ressource

Resthub

CXF

RESTEasy

Atom Links, LinkHeader, Zustandsabhdngig Links

Wink

Restlet

Play

CQ|O|O|IN|O|O|Rr|O|r

Tabelle A.g9.: Auswertungen in der Kategorie Hypermedia

Framework Stufe Kommentar

Jersey 1 JAX-RS 1.1

Scooter 1 Standard Medientypen

VRaptor 1 Standard Medientypen, benutzt zentrale Medientypen Repo-
sitory

Resthub 1 Standard Medientypen

CXF 1 JAX-RS 1.1

RESTEasy 1 JAX-RS 1.1 und weitere

Wink 1 JAX-RS 1.1 und weitere

Restlet 2 Viele Medientypen

Play 1 Standard Medientypen

Tabelle A.10.: Auswertungen in der Kategorie Medientypen

126

Framework Stufe Kommentar

Jersey 1 CacheControl Klasse als Abstraktion von Caching-Headern
Scooter 2 Per Routes Datei konfigurierbar

VRaptor 1 ObservableResource Klasse, um Caching zu behandeln.
Resthub 2 Per Annotation konfigurierbar

CXF 1 Caching durch Cachingframework

RESTEasy 2 Per Annotation konfigurierbar

Wink 1 Setzen von HTTP-CacheControl-Headern

Restlet 1 Setzen von HTTP-CacheControl-Headern

Play 1 Eigene Caching API

Tabelle A.11.: Auswertungen in der Kategorie Caching

Framework Stufe Kommentar
Jersey 0 -
Scooter
VRaptor
Resthub
CXF
RESTEasy
Wink
Restlet
Play

Q|0 |OC|C|OC|O|O|O

Tabelle A.12.: Auswertungen in der Kategorie Code-On-Demand

Framework Stufe Kommentar
Jersey
Scooter
VRaptor
Resthub
CXF
RESTEasy
Wink
Restlet
Play

Q|0 |C O [NMN|O|O|O|C
2
9]

Tabelle A.13.: Auswertungen in der Kategorie Protokollunterstiitzung jenseits von HTTP

127

A. Gesamtubersicht aller Auswertungen

Framework Stufe Kommentar

Jersey 2 JAX-RS 1.1

Scooter 2 HTTP im angemessenem Umfang nutzbar
VRaptor 2 HTTP im angemessenem Umfang nutzbar
Resthub 2 HTTP im angemessenem Umfang nutzbar
CXF 2 JAX-RS 1.1

RESTEasy 2 JAX-RS 1.1

Wink 2 JAX-RS 1.1

Restlet 2 HTTP im angemessenem Umfang nutzbar
Play 2 HTTP im angemessenem Umfang nutzbar

Tabelle A.14.: Auswertungen in der Kategorie HTTP

Framework Stufe Kommentar

Jersey 0 -

Scooter 1 JTA, JDBC

VRaptor 1 Spring, JPA

Resthub 2 Spring

CXF 0 -

RESTEasy 0 -

Wink 0 -

Restlet 0 -

Play 1 Automatische JPA Nutzung bei Anfragen an den Server

Tabelle A.15.: Auswertungen in der Kategorie Unterstiitzung von Transaktionen

Framework Stufe Kommentar

Jersey 1 SSL

Scooter 1 Authentifikation

VRaptor 2 SSL und Plugins fiir Authentifizierung

Resthub 1 SSL

CXF 2 SSL,Keystore, Signaturen,viele Authentifizierungen XML-
Verschliisselung und XML-Signaturen

RESTEasy 2 SSL, OAuth, Signaturen, Verschliisselung

Wink 1 SSL, BasicAuth

Restlet 1 SSL-Extension, BasicAuth und DigestAuth

Play 1 SSL, Zertifikate, Authentifizierungen

Tabelle A.16.: Auswertungen in der Kategorie Security

128

Framework Stufe Kommentar

Jersey 1 Non-Blocking Client

Scooter 0 -

VRaptor 1 Non-Blocking Requestverarbeitung

Resthub 2 Non-Blocking

CXF 1 Unterstiitzung fiir Apache HttpAsyncClient (kann Non-
Blocking 1/0)

RESTEasy 2 Non-Blocking-IO, Asynchrone Requests

Wink 0 -

Restlet 1 Non-Blocking-IO

Play 2 Non-Blocking-10, Asynchroner Nachrichtenaustausch mit Ak-
ka

Tabelle A.17.: Auswertungen in der Kategorie Asynchronitit

Framework

Stufe

Kommentar

Jersey

Scooter

VRaptor

Resthub

CXF

RESTEasy

Wink

Restlet

Play

Q|0 |C Q|0 |Q|O|C O

Tabelle A.18.: Auswertungen in der Kategorie Zuverlassigkeit

Framework Stufe Kommentar

Jersey 2 Extra Annotation

Scooter 2 Auslagerung auf Festplatte moglich
VRaptor 2 Auslagerung auf Festplatte moglich
Resthub 1 Per Stream

CXF 2 Auslagerung auf Festplatte moglich
RESTEasy 2 Auslagerung auf Festplatte automatisch
Wink 0 -

Restlet 2 Auslagerung auf Festplatte automatisch
Play 2 Auslagerung auf Festplatte automatisch

Tabelle A.19.: Auswertungen in der Kategorie Umgang mit grofsen Daten

129

Literaturverzeichnis

[apaa] http://hc.apache.org/httpcomponents-asyncclient-dev/index.html. (Zi-
tiert auf Seite 76)

[apab] http://commons.apache.org/proper/commons-fileupload/. (Zitiert auf Sei-

te 103)

[asy] https://github.com/AsyncHttpClient/async-http-client. (Zitiert auf Sei-
te 106)

[cxfa] http://cxf.apache.org/. (Zitiert auf Seite 67)

[extb] http://cxf.apache.org/docs/jax-rs.html. (Zitiert auf Seite 68)

[exfc] http://cxf.apache.org/docs/rest-with-jax-ws-provider-and-dispatch.
html. (Zitiert auf Seite 68)

[exfd] http://cxf.apache.org/docs/http-binding.html. (Zitiert auf Seite 68)

[cxfe] http://cxf.apache.org/docs/restful-services.html. (Zitiert auf Seite 68)

[exff] http://cxf.apache.org/mailing-lists.html. (Zitiert auf Seite 68)

[cxfg] http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-Bus.

(Zitiert auf den Seiten 68 und 69)

[cxfh] http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/
release/samples/java_first_jaxws/src/main/java/demo/hw/server/Server.
java. (Zitiert auf Seite 68)

[exfi] http://cxf.apache.org/docs/application-server-specific-configuration-guide.
html. (Zitiert auf Seite 68)

[exfi] http://cxf.apache.org/docs/cxf-architecture.html#
CXFArchitecture-Frontends. (Zitiert auf Seite 69)

[exfk] http://cxf.apache.org/docs/cxf-architecture.html#
CXFArchitecture-Messaging%26Interceptors. (Zitiert auf Seite 69)

[exfl] http://cxf.apache.org/docs/cxf-architecture.html#
CXFArchitecture-TheServiceModel. (Zitiert auf Seite 69)

[exfm] http://cxf.apache.org/docs/data-binding-architecture.html. (Zitiert auf
Seite 69)

131

http://hc.apache.org/httpcomponents-asyncclient-dev/index.html
http://commons.apache.org/proper/commons-fileupload/
https://github.com/AsyncHttpClient/async-http-client
http://cxf.apache.org/
http://cxf.apache.org/docs/jax-rs.html
http://cxf.apache.org/docs/rest-with-jax-ws-provider-and-dispatch.html
http://cxf.apache.org/docs/rest-with-jax-ws-provider-and-dispatch.html
http://cxf.apache.org/docs/http-binding.html
http://cxf.apache.org/docs/restful-services.html
http://cxf.apache.org/mailing-lists.html
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-Bus
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/samples/java_first_jaxws/src/main/java/demo/hw/server/Server.java
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/samples/java_first_jaxws/src/main/java/demo/hw/server/Server.java
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/samples/java_first_jaxws/src/main/java/demo/hw/server/Server.java
http://cxf.apache.org/docs/application-server-specific-configuration-guide.html
http://cxf.apache.org/docs/application-server-specific-configuration-guide.html
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-Frontends
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-Frontends
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-Messaging%26Interceptors
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-Messaging%26Interceptors
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-TheServiceModel
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-TheServiceModel
http://cxf.apache.org/docs/data-binding-architecture.html

Literaturverzeichnis

[exfn]

[exfo]

[exfp]

[exfq]

[exfr]

[exfs]
[exft]
[exfu]
[exfv]
[exfw]
[ehca]
[EhCb]
[FGM"99]
[Fieoo]

[ian]

[imp]
[jaxa]

[jaxb]

132

http://cxf.apache.org/docs/cxf-architecture.html#
CXFArchitecture-DataBindings. (Zitiert auf Seite 69)

http://cxf.apache.org/docs/cxf-architecture.html\T1\ss#
CXFArchitecture-ProtocolBindings. (Zitiert auf Seite 69)

http://cxf.apache.org/docs/cxf-architecture.html#
CXFArchitecture-Transports. (Zitiert auf Seite 69)

http://cxf.apache.org/docs/jaxrs-services-description.html. (Zitiert auf
Seite 70)

http://cxf.apache.org/docs/jax-rs-basics.html#
JAX-RSBasics-Customselectionbetweenmultipleresources. (Zitiert auf
Seite 71)

http://cxf.apache.org/docs/jax-rs-advanced-features.html#
JAX-RSAdvancedFeatures-JMSSupport. (Zitiert auf Seite 74)

http://cxf.apache.org/docs/jax-rs-advanced-features.html#
JAX-RSAdvancedFeatures-JMSSupport. (Zitiert auf Seite 74)

http://cxf.apache.org/docs/secure-jax-rs-services.html#
SecureJAX-RSServices-ValidatingBasicAuthcredentialswithSTS. (Zitiert auf
Seite 75)

http://cxf.apache.org/docs/jax-rs-failover.html. (Zitiert auf Seite 76)

http://cxf.apache.org/docs/jax-rs-multiparts.html#
JAX-RSMultiparts-Readinglargeattachments. (Zitiert auf Seite 76)

http://www.ehcache.org/documentation/user-guide/web-caching. (Zitiert
auf Seite 73)

http://ehcache.org/. (Zitiert auf Seite 110)

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-
Lee. RFC 2616, Hypertext Transfer Protocol — HTTP/1.1, 1999. URL http:
//www.rfc.net/rfc2616.html. (Zitiert auf Seite 24)

R. T. Fielding. Architectural styles and the design of network-based software architectu-
res. Dissertation, 2000. AAI9980887. (Zitiert auf den Seiten 11 und 24)

www.iana.org/assignments/media-types. (Zitiert auf Seite 15)

http://code.google.com/p/implementing-rest/wiki/ByLanguage. (Zitiert auf
Seite 11)

https://jax-rs-spec.java.net/. (Zitiert auf den Seiten 29, 34, 36, 71, 80
und 89)

https://jax-rs-spec.java.net/nonav/2.0/apidocs/index.html. (Zitiert auf
Seite 121)

http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-DataBindings
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-DataBindings
http://cxf.apache.org/docs/cxf-architecture.html\T1\ss #CXFArchitecture-ProtocolBindings
http://cxf.apache.org/docs/cxf-architecture.html\T1\ss #CXFArchitecture-ProtocolBindings
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-Transports
http://cxf.apache.org/docs/cxf-architecture.html#CXFArchitecture-Transports
http://cxf.apache.org/docs/jaxrs-services-description.html
http://cxf.apache.org/docs/jax-rs-basics.html#JAX-RSBasics-Customselectionbetweenmultipleresources
http://cxf.apache.org/docs/jax-rs-basics.html#JAX-RSBasics-Customselectionbetweenmultipleresources
http://cxf.apache.org/docs/jax-rs-advanced-features.html#JAX-RSAdvancedFeatures-JMSSupport
http://cxf.apache.org/docs/jax-rs-advanced-features.html#JAX-RSAdvancedFeatures-JMSSupport
http://cxf.apache.org/docs/jax-rs-advanced-features.html#JAX-RSAdvancedFeatures-JMSSupport
http://cxf.apache.org/docs/jax-rs-advanced-features.html#JAX-RSAdvancedFeatures-JMSSupport
http://cxf.apache.org/docs/secure-jax-rs-services.html#SecureJAX-RSServices-ValidatingBasicAuthcredentialswithSTS
http://cxf.apache.org/docs/secure-jax-rs-services.html#SecureJAX-RSServices-ValidatingBasicAuthcredentialswithSTS
http://cxf.apache.org/docs/jax-rs-failover.html
http://cxf.apache.org/docs/jax-rs-multiparts.html#JAX-RSMultiparts-Readinglargeattachments
http://cxf.apache.org/docs/jax-rs-multiparts.html#JAX-RSMultiparts-Readinglargeattachments
http://www.ehcache.org/documentation/user-guide/web-caching
http://ehcache.org/
http://www.rfc.net/rfc2616.html
http://www.rfc.net/rfc2616.html
www.iana.org/assignments/media-types
http://code.google.com/p/implementing-rest/wiki/ByLanguage
https://jax-rs-spec.java.net/
https://jax-rs-spec.java.net/nonav/2.0/apidocs/index.html

Literaturverzeichnis

[jera]

[jerb]
[jerc]

jerd]

[jere]

[jerf]

[jerg]

[jerh]

[jeri]

[jerjl

[kar]

[plaa]

[plab]

[plac]

[plad]

[Plae]

http://jersey.java.net/nonav/documentation/latest/user-guide.html#
client-api. (Zitiert auf Seite 31)

https://wikis.oracle.com/display/Jersey/WADL. (Zitiert auf Seite 33)
http://wadl.java.net/wadl2java.html. (Zitiert auf Seite 33)

http://docs.oracle.com/cd/E19776-01/820-4867/ggqnw/index.html. (Zitiert
auf Seite 34)

http://docs.oracle.com/cd/E19776-01/820-4867/ggqny/index .html. (Zitiert
auf Seite 34)

http://jersey. java.net/nonav/documentation/latest/user-guide.html#
d4e1482. (Zitiert auf Seite 35)

http://jersey.java.net/nonav/apidocs/1.5/jersey/javax/ws/rs/core/
MediaType.html. (Zitiert auf Seite 36)

http://jersey.java.net/nonav/documentation/snapshot/jaxrs-resources.
html#d4el146. (Zitiert auf Seite 36)

http://jersey. java.net/nonav/apidocs/1.5/jersey/javax/ws/rs/core/
Response.ResponseBuilder.html. (Zitiert auf Seite 36)

http://jersey.java.net/nonav/apidocs/1.4/jersey/com/sun/jersey/api/
client/WebResource.html. (Zitiert auf Seite 36)

http://weblogs. java.net/blog/mkarg/archive/2010/02/14/
what-hateoas-actually-means. (Zitiert auf Seite 22)

GNU Lesser General Public License. URL http://www.gnu.org/licenses/1lgpl.
html. (Zitiert auf Seite 41)

J. Louvel, T. Templier, T. Boileau. Restlet in Action: Developing RESTful Web
APIs in Java. Running Series. Manning Publications Company, 2012. URL
http://books.google.de/books?id=e14GywAACAAJ. (Zitiert auf den Seiten 95
und 96)

http://www.playframework.com/documentation/1.2/1ibs. (Zitiert auf Sei-
te 106)

http://www.playframework.com/documentation/2.1.1/
JavaContentNegotiation. (Zitiert auf Seite 110)

http://www.playframework.com/documentation/1.2/routes#content-types.
(Zitiert auf Seite 110)

http://www.playframework.com/documentation/1.2/routes#
content-negotiation. (Zitiert auf Seite 110)

http://www.playframework.com/documentation/2.0/JavaEbean. (Zitiert auf
Seite 112)

133

http://jersey.java.net/nonav/documentation/latest/user-guide.html#client-api
http://jersey.java.net/nonav/documentation/latest/user-guide.html#client-api
https://wikis.oracle.com/display/Jersey/WADL
http://wadl.java.net/wadl2java.html
http://docs.oracle.com/cd/E19776-01/820-4867/ggqnw/index.html
http://docs.oracle.com/cd/E19776-01/820-4867/ggqny/index.html
http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4e1482
http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4e1482
http://jersey.java.net/nonav/apidocs/1.5/jersey/javax/ws/rs/core/MediaType.html
http://jersey.java.net/nonav/apidocs/1.5/jersey/javax/ws/rs/core/MediaType.html
http://jersey.java.net/nonav/documentation/snapshot/jaxrs-resources.html#d4e146
http://jersey.java.net/nonav/documentation/snapshot/jaxrs-resources.html#d4e146
http://jersey.java.net/nonav/apidocs/1.5/jersey/javax/ws/rs/core/Response.ResponseBuilder.html
http://jersey.java.net/nonav/apidocs/1.5/jersey/javax/ws/rs/core/Response.ResponseBuilder.html
http://jersey.java.net/nonav/apidocs/1.4/jersey/com/sun/jersey/api/client/WebResource.html
http://jersey.java.net/nonav/apidocs/1.4/jersey/com/sun/jersey/api/client/WebResource.html
http://weblogs.java.net/blog/mkarg/archive/2010/02/14/what-hateoas-actually-means
http://weblogs.java.net/blog/mkarg/archive/2010/02/14/what-hateoas-actually-means
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://books.google.de/books?id=e14GywAACAAJ
http://www.playframework.com/documentation/1.2/libs
http://www.playframework.com/documentation/2.1.1/JavaContentNegotiation
http://www.playframework.com/documentation/2.1.1/JavaContentNegotiation
http://www.playframework.com/documentation/1.2/routes#content-types
http://www.playframework.com/documentation/1.2/routes#content-negotiation
http://www.playframework.com/documentation/1.2/routes#content-negotiation
http://www.playframework.com/documentation/2.0/JavaEbean

Literaturverzeichnis

[plaf]

[plag]

[plah]

[plai]

[plaj]

[plak]

[plal]

[plam]

[plan]

[plao]

[resa]

[resb]

[resc]

[resd]

[rese]

[resf]

[resg]
[resh]

134

http://www.playframework.com/documentation/1.2.3/jpa. (Zitiert auf Sei-
te 112)

https://github.com/ransombriggs/play-1.2.5-patched/blob/master/
documentation/manual/production.textile#thttps-configuration. (Zitiert
auf Seite 112)

http://www.playframework.com/documentation/1.2.3/configuration#http.
(Zitiert auf Seite 112)

http://www.playframework.com/documentation/1.2.4/guide8. (Zitiert auf Sei-
te 112)

http://www.playframework.com/documentation/1.2.4/configuration#
application. (Zitiert auf Seite 112)

http://www.playframework.com/documentation/2.1.1/JavaAsync. (Zitiert auf
Seite 113)

http://www.playframework.com/documentation/1.2/asynchronous. (Zitiert
auf Seite 113)

http://www.playframework.com/documentation/2.0/JavaStream. (Zitiert auf
Seite 113)

http://www.playframework.com/documentation/2.1.1/JavaFileUpload. (Zi-
tiert auf Seite 113)

http://www.playframework.com/documentation/2.0/JavaBodyParsers. (Zi-
tiert auf Seite 113)

"http://docs.jboss.org/resteasy/docs/2.3.6.Final/userguide/html/
Installation_Configuration.html#d4e31". (Zitiert auf Seite 78)

http://docs. jboss.org/resteasy/docs/3.0-rc-1/userguide/html/Content_
Marshalling Providers.html#Default_Providers_and_default_JAX-RS_
Content_Marshalling. (Zitiert auf Seite 82)

http://restlet.tigris.org/ds/viewForumSummary.do?dsForumId=4447. (Zi-
tiert auf Seite 95)

https://github.com/restlet/restlet-framework-java. (Zitiert auf Seite 95)

http://restlet.org/learn/guide/2.1/introduction/first-steps/
first-server. (Zitiert auf Seite 96)

http://restlet.org/learn/guide/2.1/core/resource/client. (Zitiert auf Sei-
te 96)

http://restlet.org/learn/guide/2.2/extensions/wadl. (Zitiert auf Seite 97)

http://restlet.org/learn/javadocs/2.2/gae/api/org/restlet/data/
MediaType.html. (Zitiert auf Seite 100)

http://www.playframework.com/documentation/1.2.3/jpa
https://github.com/ransombriggs/play-1.2.5-patched/blob/master/documentation/manual/production.textile#https-configuration
https://github.com/ransombriggs/play-1.2.5-patched/blob/master/documentation/manual/production.textile#https-configuration
http://www.playframework.com/documentation/1.2.3/configuration#http
http://www.playframework.com/documentation/1.2.4/guide8
http://www.playframework.com/documentation/1.2.4/configuration#application
http://www.playframework.com/documentation/1.2.4/configuration#application
http://www.playframework.com/documentation/2.1.1/JavaAsync
http://www.playframework.com/documentation/1.2/asynchronous
http://www.playframework.com/documentation/2.0/JavaStream
http://www.playframework.com/documentation/2.1.1/JavaFileUpload
http://www.playframework.com/documentation/2.0/JavaBodyParsers
"http://docs.jboss.org/resteasy/docs/2.3.6.Final/userguide/html/Installation_Configuration.html#d4e31"
"http://docs.jboss.org/resteasy/docs/2.3.6.Final/userguide/html/Installation_Configuration.html#d4e31"
http://docs.jboss.org/resteasy/docs/3.0-rc-1/userguide/html/Content_Marshalling_Providers.html#Default_Providers_and_default_JAX-RS_Content_Marshalling
http://docs.jboss.org/resteasy/docs/3.0-rc-1/userguide/html/Content_Marshalling_Providers.html#Default_Providers_and_default_JAX-RS_Content_Marshalling
http://docs.jboss.org/resteasy/docs/3.0-rc-1/userguide/html/Content_Marshalling_Providers.html#Default_Providers_and_default_JAX-RS_Content_Marshalling
http://restlet.tigris.org/ds/viewForumSummary.do?dsForumId=4447
https://github.com/restlet/restlet-framework-java
http://restlet.org/learn/guide/2.1/introduction/first-steps/first-server
http://restlet.org/learn/guide/2.1/introduction/first-steps/first-server
http://restlet.org/learn/guide/2.1/core/resource/client
http://restlet.org/learn/guide/2.2/extensions/wadl
http://restlet.org/learn/javadocs/2.2/gae/api/org/restlet/data/MediaType.html
http://restlet.org/learn/javadocs/2.2/gae/api/org/restlet/data/MediaType.html

Literaturverzeichnis

[rfc]

[scoa]

[scob]

[scoc]

[scod]

[scoe]

[scof]

[scog]

[sum]

[Tilog]

[Vino8]

[vraa]

[vrab]

[vrac]
[vrad]

[vrae]

[vraf]

[vrag]

[vrah]

[vrai]

[vraj]

http://tools.ietf.org/html/rfc5988#section-5. (Zitiert auf Seite 35)

https://groups.google.com/forum/?fromgroups#!forum/scooter-framework.
(Zitiert auf Seite 41)

https://twitter.com/scooterflies. (Zitiert auf Seite 41)

http://www.scooterframework.com/docs/restful _routing.html. (Zitiert auf
den Seiten 42 und 44)

http://www.scooterframework.com/docs/content_handler.html. (Zitiert auf
Seite 45)

http://www.scooterframework.com/docs/routes.html. (Zitiert auf Seite 46)

https://github.com/scooter/scooter/blob/master/source/src/com/
scooterframework/web/route/RouteConstants. java. (Zitiert auf Seite 47)

http://www.scooterframework.com/docs/transactions.html. (Zitiert auf Sei-
te 48)

https://java.net/projects/sommer. (Zitiert auf Seite 35)

S. Tilkov. REST und HTTP: Einsatz der Architektur des Web fiir Integrationsszenarien.
dpunkt, Heidelberg, 2009. (Zitiert auf den Seiten 20, 21, 22, 24 und 26)

S. Vinoski. RESTful Web Services Development Checklist. Internet Computing,
IEEE, 12(6):96—95, 2008. doi:10.1109/MIC.2008.130. (Zitiert auf Seite 15)

https://groups.google.com/forum/?fromgroups#!forum/caelum-vraptor-en.
(Zitiert auf Seite 51)

https://groups.google.com/forum/?fromgroups#!forum/
caelum-vraptor-dev. (Zitiert auf Seite 51)

https://github.com/caelum/vraptor. (Zitiert auf Seite 51)
https://github.com/caelum/vraptor-contrib. (Zitiert auf Seite 51)

https://groups.google.com/forum/?fromgroups=#!topic/restfulie-java/
FiKg4ql8Dxs. (Zitiert auf Seite 51)

https://github.com/caelum/vraptor/blob/master/vraptor-core/pom.xml.
(Zitiert auf Seite 51)

http://vraptor.caelum.com.br/en/docs/resources-rest-en/. (Zitiert auf Sei-
te 53)

https://github.com/caelum/vraptor-dash/blob/master/src/main/java/
br/com/caelum/vraptor/dash/cache/ObservableResponse.java. (Zitiert auf
Seite 55)

http://www.guj.com.br/java/233197-vraptor-e-https. (Zitiert auf Seite 57)

https://github.com/qmx/vraptor-authz. (Zitiert auf Seite 57)

135

http://tools.ietf.org/html/rfc5988#section-5
https://groups.google.com/forum/?fromgroups#!forum/scooter-framework
https://twitter.com/scooterflies
http://www.scooterframework.com/docs/restful_routing.html
http://www.scooterframework.com/docs/content_handler.html
http://www.scooterframework.com/docs/routes.html
https://github.com/scooter/scooter/blob/master/source/src/com/scooterframework/web/route/RouteConstants.java
https://github.com/scooter/scooter/blob/master/source/src/com/scooterframework/web/route/RouteConstants.java
http://www.scooterframework.com/docs/transactions.html
https://java.net/projects/sommer
https://groups.google.com/forum/?fromgroups#!forum/caelum-vraptor-en
https://groups.google.com/forum/?fromgroups#!forum/caelum-vraptor-dev
https://groups.google.com/forum/?fromgroups#!forum/caelum-vraptor-dev
https://github.com/caelum/vraptor
https://github.com/caelum/vraptor-contrib
https://groups.google.com/forum/?fromgroups=#!topic/restfulie-java/FiKg4ql8Dxs
https://groups.google.com/forum/?fromgroups=#!topic/restfulie-java/FiKg4ql8Dxs
https://github.com/caelum/vraptor/blob/master/vraptor-core/pom.xml
http://vraptor.caelum.com.br/en/docs/resources-rest-en/
https://github.com/caelum/vraptor-dash/blob/master/src/main/java/br/com/caelum/vraptor/dash/cache/ObservableResponse.java
https://github.com/caelum/vraptor-dash/blob/master/src/main/java/br/com/caelum/vraptor/dash/cache/ObservableResponse.java
http://www.guj.com.br/java/233197-vraptor-e-https
https://github.com/qmx/vraptor-authz

Literaturverzeichnis

[vrak]
[vral]

[vram]

[win]

[ZBD11]

[ZS12]

[zus]

https://github.com/rlazoti/vraptor-authentication. (Zitiert auf Seite 57)
http://vraptor.caelum.com.br/en/docs/validation/. (Zitiert auf Seite 58)

http://vraptor.caelum.com.br/en/docs/download-and-upload/. (Zitiert auf
Seite 58)

http://wink.apache.org/. (Zitiert auf Seite 86)

I. Zuzak, I. Budiselic, G. Delac. A finite-state machine approach for modeling
and analyzing restful systems.]. Web Eng., 10(4):353—-390, 2011. URL http:
//dl.acm.org/citation.cfm?id=2230856.2230859. (Zitiert auf den Seiten 14,
22 und 121)

I. Zuzak, S. Schreier. ArRESTed Development: Guidelines for Designing
REST Frameworks. IEEE Internet Computing, 16(4):26—35, 2012. doi:http:
/ /doi.ieeecomputersociety.org/10.1109/MIC.2012.60. (Zitiert auf den Seiten 14,
21 und 22)

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven.
(Zitiert auf Seite 121)

Alle URLs wurden zuletzt am 16. 06. 2013 gepriift.

136

https://github.com/rlazoti/vraptor-authentication
http://vraptor.caelum.com.br/en/docs/validation/
http://vraptor.caelum.com.br/en/docs/download-and-upload/
http://wink.apache.org/
http://dl.acm.org/citation.cfm?id=2230856.2230859
http://dl.acm.org/citation.cfm?id=2230856.2230859
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Erkldarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Einleitung
	1.2 Gliederung

	2 Verwandte Arbeiten
	2.1 Guidelines for Designing REST Frameworks
	2.2 Zuzak NEA
	2.3 REST: Die Architektur des Web
	2.4 RESTful Web Services Development Checklist

	3 Kriterienkatalog
	3.1 Grundlagen
	3.1.1 Allgemeines
	3.1.2 REST Server Applikationen
	3.1.3 REST Client Applikationen
	3.1.4 Architektur und Funktionsweise

	3.2 Entwicklung von REST basierten Anwendungen
	3.2.1 Entwicklungsprozess/Vorgehensmodell
	3.2.2 Modellierung von REST APIs
	3.2.3 Modellierungswerkzeuge

	3.3 Unterstützung grundlegender REST Prinzipien
	3.3.1 Ressourcenidentifikation und Ressourcenstruktur
	3.3.2 Ressourcentypen
	3.3.3 Hypermedia
	3.3.4 Medientypen
	3.3.5 Caching
	3.3.6 Code-On-Demand

	3.4 Erweiterte Technische Fähigkeiten
	3.4.1 Protokollunterstützung jenseits von HTTP
	3.4.2 HTTP
	3.4.3 Unterstützung für Transaktionen
	3.4.4 Security
	3.4.5 Asynchronität
	3.4.6 Zuverlässigkeit
	3.4.7 Umgang mit großen Daten

	3.5 Bewertungssystem

	4 Bewertungen
	4.1 Jersey
	4.1.1 Grundlagen
	4.1.2 Entwicklung von REST basierten Anwendungen
	4.1.3 Unterstützung grundlegender REST Prinzipien
	4.1.4 Erweiterte Technische Fähigkeiten

	4.2 Scooter
	4.2.1 Grundlagen
	4.2.2 Entwicklung von REST basierten Anwendungen
	4.2.3 Unterstützung grundlegender REST Prinzipien
	4.2.4 Erweiterte Technische Fähigkeiten

	4.3 VRaptor
	4.3.1 Grundlagen
	4.3.2 Entwicklung von REST basierten Anwendungen
	4.3.3 Unterstützung grundlegender REST Prinzipien
	4.3.4 Erweiterte Technische Fähigkeiten

	4.4 Resthub
	4.4.1 Grundlagen
	4.4.2 Entwicklung von REST basierten Anwendungen
	4.4.3 Unterstützung grundlegender REST Prinzipien
	4.4.4 Erweiterte Technische Fähigkeiten

	4.5 Apache CXF
	4.5.1 Grundlagen
	4.5.2 Entwicklung von REST basierten Anwendungen
	4.5.3 Unterstützung grundlegender REST Prinzipien
	4.5.4 Erweiterte Technische Fähigkeiten

	4.6 Resteasy
	4.6.1 Grundlagen
	4.6.2 Entwicklung von REST basierten Anwendungen
	4.6.3 Unterstützung grundlegender REST Prinzipien
	4.6.4 Erweiterte Technische Fähigkeiten

	4.7 Wink
	4.7.1 Grundlagen
	4.7.2 Entwicklung von REST basierten Anwendungen
	4.7.3 Unterstützung grundlegender REST Prinzipien
	4.7.4 Erweiterte Technische Fähigkeiten

	4.8 Restlet
	4.8.1 Grundlagen
	4.8.2 Entwicklung von REST basierten Anwendungen
	4.8.3 Unterstützung grundlegender REST Prinzipien
	4.8.4 Erweiterte Technische Fähigkeiten

	4.9 Play Framework
	4.9.1 Grundlagen
	4.9.2 Entwicklung von REST basierten Anwendungen
	4.9.3 Unterstützung grundlegender REST Prinzipien
	4.9.4 Erweiterte Technische Fähigkeiten

	5 Ergebnisse
	5.1 Kommentar zur Bearbeitung
	5.2 Grundlagen
	5.2.1 Allgemeines - Ergebnisse
	5.2.2 REST Server Applikationen - Ergebnisse
	5.2.3 REST Client Applikationen - Ergebnisse

	5.3 Entwicklung von REST basierten Anwendungen
	5.3.1 Entwicklungsprozess/ Vorgehensmodell - Ergebnisse
	5.3.2 Modellierung von REST APIs - Ergebnisse
	5.3.3 Modellierungswerkzeuge - Ergebnisse

	5.4 Unterstützung grundlegender REST Prinzipien
	5.4.1 Ressourcenidentifikation und Ressourcenstruktur - Ergebnisse
	5.4.2 Ressourcentypen - Ergebnisse
	5.4.3 Hypermedia - Ergebnisse
	5.4.4 Medientypen - Ergebnisse
	5.4.5 Caching - Ergebnisse
	5.4.6 Code-On-Demand - Ergebnisse

	5.5 Erweiterte Technische Fähigkeiten
	5.5.1 Protokollunterstützung jenseits von HTTP - Ergebnisse
	5.5.2 HTTP - Ergebnisse
	5.5.3 Unterstützung für Transaktionen - Ergebnisse
	5.5.4 Security - Ergebnisse
	5.5.5 Asynchronität - Ergebnisse
	5.5.6 Zuverlässigkeit - Ergebnisse
	5.5.7 Umgang mit großen Daten - Ergebnisse

	6 Zusammenfassung und Ausblick
	A Gesamtübersicht aller Auswertungen
	Literaturverzeichnis

