Institut fiir Architektur von Anwendungssystemen

Universitdt Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Fachstudie Nr. 171

Analyse existierender visueller
Notationen zur Modellierung von
Anwendungstopologien und
deren Integration mit

Prozessnotationen

Lars-Alexander Albrecht, Rene Trefft,
Michael Zimmermann

Studiengang: Softwaretechnik

Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Uwe Breitenbiicher
Beginn am: 2013-01-15

Beendet am: 2013-07-17

CR-Nummer: H.1.2



Kurzfassung

Die Modellierung von Topologien, bestehend aus vielen einzelnen Komponenten und
deren Beziehungen zueinander, sowie deren Management ist ein grofles Problem
im Bereich von komplexen Cloud-Anwendungen. Die Topologie und Orchestration
Specification for Cloud Applications (TOSCA) hat sich diesem Problem angenommen

und einen Standard zur Beschreibung von Cloud-Anwendungen geschaffen.

Mit VinodTOSCA wurde eine wohldefinierte und auf etablierten Usability-
Forschungen basierende visuelle Notation fiir TOSCA entworfen. Allerdings erméglicht
Vino4dTOSCA bisher lediglich die Darstellung von Topologien. Aus diesem Grund
wird in dieser Arbeit eine auf Vino4TOSCA aufbauende visuelle Notation erarbei-
tet, welche sowohl die Modellierung von Topologien als auch der dazugehoérigen

Managementplénen in einem Diagramm ermdoglicht.



Inhaltsverzeichnis

Inhaltsverzeichnis
Abkiirzungsverzeichnis 4
Abbildungsverzeichnis 6
1 Einleitung 8
2 Grundlagen 10
2.1 Cloud Computing . . . . . . . . . ... 10
2.2 Topology and Orchestration Specification for Cloud Applications
(TOSCA) . . . 11
3 Anforderungsanalyse 14
3.1 Visuelle Anforderungen . . . . .. . ... oL oo 15
3.2 TOSCA-spezifische Anforderungen . . . . . . .. .. .. ... .... 20
3.3 Usability- und User Experience-Anforderungen . . . . ... ... .. 21

3.4 Anforderungen fiir die Integration visueller Geschéftsprozessnotationen 21

Analyse existierender visueller Notationen 23
4.1 Anwendungstopologien . . . . . . .. ... Lo 23
4.1.1 VinodTOSCA . . . . . . . . 23
4.1.2 Fundamental Modeling Concepts . . . . . . .. ... ... .. 28
4.1.3 UML-Komponentendiagramm . . . . . . .. .. .. .. .. .. 31
414 Acme . ... 32
4.1.5 Service Component Architecture . . . . . ... ... ... .. 35
4.1.6 ER-Diagramm . . .. ... ... ... ... ... .. ... 36
4.1.7 HIPO-Diagramm . . . . . . ... ... ... ... ...... 37
4.2 Geschéftsprozesse . . . . . . ... 39
4.2.1 Petri-Netz . . . . . . ... 39
4.2.2 GWorkflowDL . . . . .. .. oL o 41
4.2.3 Nassi-Shneiderman-Diagramm . . . . . .. ... ... .. .. 41
4.2.4 Folgeplan und Flussdiagramm . . . . . . ... ... ... ... 42
4.2.5 Datenflussdiagramm . . . . ... ... 44
4.2.6 UML-Aktivitdtsdiagramm . . . . . . . .. ... ... ... .. 46
4.2.7 Business Process Model and Notation (BPMN) . . . ... .. 47



Inhaltsverzeichnis

4.2.8 Ereignisgesteuerte Prozesskette (EPK) . . . . ... ... ...

4.3 Auswertung und Schlussfolgerungen . . . . .. ... .. ... ...

5 Vino4TOSCA 2
5.1 Visuelle Variablen . . ... ... ... ... ... ... ........
5.2 Visuelle Elemente . . . . . . . . . . ... ... o
5.2.1 Node Template Shape . . . . . ... ... ... ... .....
5.2.2 Node Type Shape . . . . .. .. ... ... ... .. .....
5.2.3 Relationship Template Shape . . . . . .. .. ... ... ...
5.2.4 Relationship Type Shape . . .. .. ... ... ... .....
5.2.5 Node Type Interface Shape . . . ... ... ... .. .. ...
5.2.6 Relationship Type Interface Shape . . . . . ... .. ... ..
5.2.7 PlanShape . . . . . . . . . .. ... ...
5.2.8 Plan Invoke Operation Shape . . . . . . . .. ... ... ...
5.2.9 Visual Group Shapes . . . . . .. . ... ... ... ......
5.2.10 Visual Relationship Group Shapes . . . . .. ... ... ...
5.2.11 Node Template Instanzen . . . . . . ... ... ... .....
5.3 Beispiele . . . . ..

6 Zusammenfassung und Ausblick

Literaturverzeichnis

52
52
53
o4
95
o6
o7
o8
99
99
61
61
63
64
65

67

68



Abkiirzungsverzeichnis

Abkiirzungsverzeichnis

BPEL

BPMN

CS

DA

EPK
ER-Diagramm
FMC

FOPL

GWorkflowDL

Business Process Execution Language
Business Process Model and Notation
Committee Specification

Deployment Artifact
Ereignisgesteuerte Prozesskette
Entity-Relationship-Diagramm
Fundamental Modeling Concepts
First-Order Predicate Logic

Generic Workflow Description Language

HIPO-Diagramm Hierarchy plus Input-Process-Output-Diagramm

laaS
IA
IAAS
IBM

NIST
OMG
Paa$S
RPC
SaaS
SCA
SE
SOA

Infrastructure as a Service

Implementation Artifact

Institut fiir Architektur von Anwendungssystemen
International Business Machines Corporation
Informationstechnik

National Institute of Standards and Technology
Object Management Group

Platform as a Service

Remote Procedure Call

Software as a Service

Service Component Architecture

Software Engineering

Service Oriented Architecture



Abkiirzungsverzeichnis

SPIKES

TOSCA

uML

URI

URL
Vino4TOSCA
VM

WAR

WD

XML

Structured Plans for Improving Knowledge Transfer in

Engineering of Systems

Topology and Orchestration Specification for Cloud Applications
Unified Modeling Language

Uniform Resource Identifier

Uniform Resource Locator

Visual Notation for TOSCA

Virtuelle Maschine

Web Archive

Working Draft

Extensible Markup Language



Abbildungsverzeichnis

Abbildungsverzeichnis

3.1
3.2
3.3
3.4

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

5.1
5.2
5.3

Anomalien der Semiotischen Klarheit nach [Moo09]. . . . ... ... 15
Semantische Transparenz ist ein Kontinuum nach [Moo09]. . . . . . 16
Kognitive Integration nach [Moo09]. . . . . .. ... ... ... ... 17
Einflussfaktoren des ,,Cognitive Fit“ nach [Moo09]. . . . . . ... .. 19
Node Template Shape mit Beispiel nach [BBK™12a]. . . . .. . . .. 25
Relationship Template Shape mit Beispiel nach [BBK*12a]. . . . . . 25
Expanded / Collapsed Group Template Shapes (links) und Visual

Group Shapes (rechts) nach [BBK"12a]. . . .. ... ... ... ... 26
Expanded / Collapsed Visual Relationship Group Shapes nach

[BBKT12a]. .« oo 26
Zulassige Instanzen von Node Templates (links) und Relationship

Templates (rechts) nach [BBK™12a]. . . . ... ... ... ... ... 27
Vino4TOSCA-Diagramm eines Web Shops nach [BBKT12b]. . . .. 28
Beispiel eines FMC-Aufbau-Diagramms nach [Wik13c]. . . . . . . . . 30
Beispiel eines UML-Komponentendiagramms. . . . . . . .. .. ... 32
Beispiel einer Acme-Représentation [Ley12]. . . . . . ... ... ... 34
Beispiel einer Acme-Reprisentationskarte [Ley12]. . . . . ... ... 34
Beispiel eines SCA-Diagramms nach [IBMO06]. . . . . .. .. ... .. 36
Beispiel eines Entity-Relationship-Diagramms nach [Wik13a]. . . . . 38
Beispiel eines HIPO-Diagramms nach [Fri02]. . . . ... .. ... .. 39
Beispiel eines Petri-Netzes nach [sof] . . . . ... ... ... .. ... 40
Beispiel eines GWorkflowDL-Diagramms nach [Frall]. . . ... ... 42
Beispiel eines Nassi-Shneiderman-Diagramms nach [LR09]. . . . . . . 43
Beispiel eines Flussdiagramms nach [www]. . .. ... ... ... .. 44
Beispiel eines Datenflussdiagramms nach [Winl3]. . .. ... .. .. 45
Beispiel eines UML-Aktivitdtsdiagramm nach [Inf13]. . . . . . . . .. 47
Beispiel eines BPMN-Diagramms nach [R09]. . . . ... ... .. .. 48
Beispiel eines EPK-Diagramms nach [Ges12]. . . . . ... ... ... 49
Die acht visuellen Variablen von Bertin. . . . . . .. ... ... ... 53
Vino4TOSCA 2 Node Template Shape mit Beispiel nach [BBK*12a]. 55
Vino4dTOSCA 2 Node Type Shape mit Beispielen. . . ... ... .. 56



Abbildungsverzeichnis

5.4

9.5
5.6
5.7
5.8
5.9
5.10

5.11

5.12
5.13

VinodTOSCA 2 Relationship Template Shape mit Beispiel nach

BBK*12a]. . . . oo 57
VinodTOSCA 2 Relationship Type Shape mit Beispiel. . . . . . . . . 57
Vino4dTOSCA 2 Node Type Interface Shape mit Beispiel. . . . . .. 58
VinodTOSCA 2 Relationship Type Interface Shape mit Beispiel. . . 59
Vino4dTOSCA 2 Plan Shape mit Beispiel. . . . . ... ... ... .. 60
VinodTOSCA 2 Plan Invoke Operation Shape Beispiel. . . . . . . .. 62
Vino4TOSCA 2 Expanded und Collapsed Visual Group Shapes nach

[BBKT12a]. . . . . . o 63
Vino4TOSCA 2 Expanded und Collapsed Visual Relationship Group

Shapes nach [BBK™12a]. . . . . . . . .. ... ... .. ........ 64

Vino4TOSCA 2 Node Template Instanzen mit Beispiel nach [BBK™12a]. 64
VinodTOSCA 2-Diagramm zu einem TOSCA-Modell einer Mailan-
wendung. ... ... 66



1 FEinleitung

1 Einleitung

Die Installation und Wartung von Anwendungen auf Servern ist fiir ein IT-
Unternehmen in der Regel eine aufwéindige Aufgabe. In den letzten Jahren hat
sich ein Trend entwickelt, entsprechende Anwendungen in die Cloud auszulagern.
Dadurch entfillt die kostenintensive Bereitstellung und Wartung von Hard- und
Software, die fiir die Ausfithrung der Anwendung erforderlich ist. Stattdessen werden
diese Tatigkeiten vom Cloud-Anbieter iibernommen, der eine sichere und zuverldssige
Infrastruktur bereitstellt. Die Abrechnung erfolgt nutzungsbasiert, Aktualisierungen
der Infrastruktur erfolgen automatisch und Groflendnderungen in jede Richtung

stellen kein Problem dar.

Die Topology and Orchestration Specification for Cloud Applications (TOSCA)
setzt bei diesem Trend an und definiert eine portable und interoperable Sprache zur
Beschreibung einer Cloud-Anwendung durch ihre Topologie und deren Management
mittels Pldnen. Ein Plan ist ein Geschéaftsprozess, deren Notation nicht durch TOSCA
vorgegeben wird. Stattdessen sollen bereits existierende Standards, insbesondere die
Business Process Model and Notation (BPMN) und Business Process Execution
Language (BPEL), eingesetzt werden. Mittels TOSCA soll die Migration einer Cloud-
Anwendung zu einem anderen Anbieter deutlich vereinfacht werden. Insbesondere
jedoch kann das Management der Anwendung in jeder Umgebung automatisiert
werden. [TOS13]

Mit der Visual Notation for TOSCA (Vino4dTOSCA) wurde eine visuelle Notati-
on entworfen, mit der die Topologie einer TOSCA-Anwendung grafisch dargestellt
werden kann (siehe Abschnitt 4.1.1). Generell sind visuelle Notationen einfacher
zu erlernen als textuelle Notationen. Sie ermoglichen eine schnelle und effektive
Kommunikation' von Informationen, wohingegen eine textuelle Notation auf eine
vollsténdige Wiedergabe von Informationen ausgerichtet ist.

Dem Entwurf von VinodTOSCA ist eine umfangreiche Anforderungsanalyse voraus-
gegangen, in der u. a. Usability eine wichtige Rolle spielte. Dies stellt eine Besonder-
heit dar, da bei den meisten, weiteren visuellen Notationen lediglich die Semantik
die Schliisselanforderung im Entwurfsprozess darstellte. Die Pléane einer TOSCA-

Anwendung koénnen in einem Vino4dTOSCA-Diagramm nicht dargestellt werden,

! Die Effektivitét einer visuellen Notation resultiert aus der leistungsfahigen und hoch parallelisierten
visuellen Informationsverarbeitung des menschlichen Gehirns.



1 FEinleitung

obwohl das Management eine zentrale Rolle in einem TOSCA-Modell einnimmt.
[BBK "12a]

In dieser Fachstudie wird eine visuelle Notation entworfen, mit der die Topologie
und Pléne eines TOSCA-Modells zusammen (integriert) dargestellt werden kénnen.
Zunéachst werden in Kapitel 2 Begriffe eingefiihrt, die in dieser Arbeit bendtigt
werden. Analog zu VinodTOSCA wird eine Anforderungsanalyse durchgefiihrt, auf
die in Kapitel 3 eingegangen wird. Im Anschluss werden in Kapitel 4 bereits exis-
tierende visuelle Notationen fiir Anwendungstopologien (u.a. VinodTOSCA) und
Geschaftsprozesse (u.a. BPMN) vorgestellt und analysiert. Auf Grundlage dieser
Analyse und den aufgestellten Anforderungen wird die visuelle Notation entworfen,
die in Kapitel 5 beschrieben wird. Abschliefend wird in Kapitel 6 die Arbeit zu-
sammenfasst und Anregungen fiir zukiinftige Arbeiten gegeben, die thematisch mit

dieser Arbeit in Zusammenhang stehen.



2 Grundlagen

2 Grundlagen

In diesem Kapitel sollen Begrifflichkeiten erldutert werden, die fiir das Verstandnis
dieser Arbeit relevant sind. Cloud Computing bildet die Basis, sodass auf diesen

Begriff zuerst eingegangen wird.

2.1 Cloud Computing

Momentan existiert keine allgemeingiiltige Definition fiir Cloud-Computing. Im
wissenschaftlichen Bereich wird jedoch meist die Definition der Standardisierungsstelle
NIST (National Institute of Standards and Technology), die 2009 veréffentlicht wurde,

verwendet:

Cloud Computing ist ein Modell, das es erlaubt bei Bedarf, jederzeit
und iiberall bequem iiber ein Netzwerk auf einen geteilten Pool von
konfigurierbaren Rechnerressourcen (z. B. Netze, Server, Speichersysteme,
Anwendungen und Dienste) zuzugreifen, die schnell und mit minima-
lem Managementaufwand oder geringer Serviceprovider-Interaktion zur

Verfiigung gestellt werden kénnen. [MG11]

Durch Cloud-Computing sollen also I'T-Ressourcen effizient in und iiber Netzwerke
zur Verfiigung gestellt werden [M12]. Die virtuelle Ort, an dem sich diese befinden,
bezeichnet man dabei als Cloud? (deutsch ,Wolke®).

IT-Ressourcen werden als Dienste zur Verfiigung gestellt. Generell unterscheidet man

zwischen folgenden Servicemodellen:

o Infrastructure as a Service (IaaS) stellt Datenspeicher, Netzwerkkapazitdt und
Rechenleistung zur Verfiigung. Auf virtuellen Recheninstanzen kénnen z. B.

Betriebssysteme mit Anwendungen installiert werden. [Bun]

o Platform as a Service (PaaS) stellt eine Ausfithrungsumgebung fiir Anwendun-
gen bereit. Auf diese kann mittels standardisierter Schnittstellen zugegriffen
und Anwendungen installiert werden. Ein Zugriff auf die Infrastruktur ist nicht
moglich. [MG11]

2Der Begriff der Cloud kommt daher, dass fiir einen Nutzer der IT-Ressourcen die zugrunde liegende
Infrastruktur verborgen bleibt.

10



2 Grundlagen

o Software as a Service (SaaS) stellt eine Software zur Verfiigung, auf die in der

Regel iiber einen Webbrowser zugegriffen werden kann. [Bun]

Cloud-Dienste werden iiblicherweise von Anbietern bereitgestellt, die sich auf dem
Gebiet des Cloud-Computing spezialisiert haben, sodass eine hohe Sicherheit und

Zuverlassigkeit gewahrleistet ist.

2.2 Topology and Orchestration Specification for Cloud
Applications (TOSCA)

Die Topology and Orchestration Specification for Cloud Applications (TOSCA)
definiert eine Sprache, mit der Cloud-Anwendungen und deren Management portabel
und interoperabel beschrieben werden kénnen, d. h. unabhangig von einem konkreten
Cloud-Anbieter oder einer Hosting-Technologie. Das Datenformat eines TOSCA-
Modells ist XML. [BBK™12a]

In diesem Dokument kommt TOSCA in der Version CS01? (vom 2013-03-18) zum
Einsatz. Die visuelle Notation, die im Rahmen dieser Arbeit entworfen wird, basiert

auf dieser Version.

In einem TOSCA-Modell wird eine Cloud-Anwendung mittels ihrer Struktur be-
schrieben. Diese wird durch ein Topology Template reprasentiert, das sich aus Node
Templates und Relationship Templates zusammensetzt. Ein Node Template stellt eine
Komponente der Anwendung dar und ist durch ein Node Type typisiert. Zwei Node
Templates konnen mittels einem Relationship Template, das analog ein Relationship

Type referenziert, miteinander verbunden werden. [BBK™12a]

In Node Types und Relationship Types konnen in erster Linie Schnittstellen mit
Management-Operationen definiert werden. In letzterem Konstrukt wird dabei wird
Quell- und Zielschnittstellen (Source Interfaces und Target Interfaces) unterschieden.
Ein Quellschnittstelle definiert Operationen, die an der Quelle der Relation ausgefiithrt
werden, um die Verbindung zwischen den entsprechenden zwei Node Templates
zu realisieren. Analog dazu wird eine Operation einer Zielschnittstelle am Ziel
der Relation ausgefiihrt. Ein Node Type Implementation bzw. Relationship Type
Implementation repréasentiert die Implementierung eines referenzierten Node Type
bzw. Relationship Type. Hierzu definiert es Implementation Artifacts (IAs), welche
die Schnittstellen realisieren. In einer Node Type Implementation kénnen zuséatzlich

Deployment Artifacts (DAs) angegeben werden, die ein zugehoriges Node Template,

3TOSCA Spezifikation Version CS01: http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.pdf

11


http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf

2 Grundlagen

also eine Komponente der Anwendung reprisentieren. Die Definition von DAs ist
auch direkt in einem Node Template moglich. [BBK™12a]

Denkbar wire ein Node Template, das eine Cloud-Anwendung repréasentiert. Das
zugehorige Deployment Artifact wére dann die Distribution der Anwendung (z. B.
ZIP-Datei). Das Deployment der Cloud-Anwendung wére eine mogliche Aufgabe
eines Implementation Artifacts (IAs, z. B. WAR-Datei). Ein ,hostedOn“-Relationship
Template konnte die Cloud-Anwendung mit einem Betriebssystem, das ein weiteres

Node Template darstellt, verbinden.

Die Definition eines Artefakts erfolgt in einem Node Template, einer Node Type
Implementation und Relationship Type Implementation durch eine Referenz auf
ein Artifact Template. Ein Artifact Template spezifiziert ein Artefakt direkt oder
durch Referenzen. Ein Referenz ist dabei eine URI, die auf eine Datei oder einen
Ordner verweist. In letzterem Falle sind Patterns erlaubt, mit denen Dateien an
der Artefakt-Referenz ausgeschlossen werden kénnen. Die Notation, in der Patterns
angegeben werden, ist durch TOSCA nicht spezifiziert und kann daher beliebig
gewdhlt werden. Beispielsweise konnen reguldre Ausdriicke zum Einsatz kommen.
Ein Artifact Template ist durch ein Artifact Type typisiert, welches die Menge der
zulissigen Artefakte einschrinkt. [BBK'12a]

Pléne (Plans) reprisentieren in einem TOSCA-Modell das Management der Cloud-
Anwendung. Ein Plan ist ein Modell eines Geschéftsprozesses (Workflow), das Opera-
tionen, die durch IAs bereitgestellt sind, zu hoherwertigen Management-Operationen
kombiniert (orchestriert). Denkbar wére ein ,,Build Plan®, der eine Cloud-Anwendung
bereitstellt bzw. instanziiert. Analog zu einem Artifact Template kann ein Plan direkt

oder mittels einer URI-Referenz definiert werden.

Eine konkrete Sprache fiir Plane bzw. Prozesse wird von TOSCA nicht vorgegeben.
Stattdessen sollen existierende Standards, insbesondere BPMN und BPEL, eingesetzt
werden. [BBK™12a]

Ein Service Template spezifiziert einen Service und deren Management und besteht
dazu aus einem Topology Template und Plinen. Nach einer erfolgreichen Ausfithrung
eines Build Plans existiert eine Instanz eines Service Template bzw. deren Topology
Template, d. h. ein konkreter Service. Definitions besteht aus Service Templates und

den erwiihnten Types, die in Service Templates referenziert werden. [BBK™'12a]

Alle angesprochenen Konstrukte stellen XML-Elemente dar und bilden nach beschrie-
bener Hierarchie ein giiltiges TOSCA Definitions-Dokument. [BBK*12a]

Der Visual Editor for TOSCA (VALESCA) ist ein webbasiertes Modellierungswerk-
zeug fir TOSCA, das u.a. die visuelle Notation Vino4ATOSCA (Visual Notation for

12



2 Grundlagen

TOSCA) unterstiitzt, mit der Topology Templates grafisch dargestellt werden kénnen
[BBK*12b]. Néheres zu dieser Notation in Abschnitt 4.1.1.

13



3 Anforderungsanalyse

3 Anforderungsanalyse

In diesem Kapitel werden Anforderungen genannt und beschrieben, die bei der Defi-
nition von VinodTOSCA 2 in Kapitel 5 beriicksichtigt werden sollen. Die Aufstellung
von Anforderungen bildet die Basis fiir die Erstellung einer Notation, die effektiv

einsetzbar ist.

Wir kategorisieren die Anforderungen in vier Bereiche.

In Abschnitt 3.1 werden zunéchst visuelle Anforderungen behandelt. In der ersten
Version von VinodTOSCA [BBK*12a] (siche Abschnitt 4.1.1) bildete die Design
Theorie ,, The Physics of Notations“ von Moody [Moo09] die Grundlage fir die
Entwicklung der visuellen Notation. Moody setzt sich in diesem Dokument mit
der physikalischen Wahrnehmung von Notationen im Rahmen der menschlichen
Fahigkeiten auseinander. Er beschreibt Prinzipien, welche aus der Theorie sowie
empirischen Untersuchungen stammen. Auch bei VinodTOSCA 2 wird u. a. dieses
Dokument fiir die Bestimmung der visuellen Anforderungen herangezogen.

Im Anschluss folgen in Abschnitt 3.2 Anforderungen, die sicherstellen sollen, dass
sich mit der visuellen Notation korrekt TOSCA-Topologien darstellen lassen.

In 3.3 werden Usability-* und User Experience’-Anforderungen beschrieben. Die
Notation soll effektiv und effizient genutzt werden kénnen. Das Nutzungserlebnis soll
dabei auch beriicksichtigt werden.

Abschlieend werden in Abschnitt 3.4 Anforderungen dargelegt, welche die Integration

von Prozessnotationen betreffen.

Jede Anforderung, die im Folgenden genannt wird, erhélt die Bezeichnung Ax, wobei
x fiir eine Zahl steht, die eindeutig eine bestimmte Anforderung referenziert. In den

weiteren Kapiteln kann so einfach auf Anforderungen verwiesen werden.

4Benutzbarkeit
5Benutzerfreundlichkeit

14



3 Anforderungsanalyse

3.1 Visuelle Anforderungen

Visuelle Anforderungen sollen die kognitive EffektivititS steigern, welche die wich-
tigste Variable fiir die Bewertung und den Vergleich einer visuellen Notation darstellt
[Moo09].

Die semiotische Klarheit (A1) stellt die erste visuelle Anforderung dar. Sie besagt, dass
zwischen den semantischen Konstrukten einer visuellen Notation und ihrer grafischen
Darstellung eine 1:1 Beziehung existieren muss. Jedes semantische Konstrukt der
Notation darf nicht durch mehr als ein grafisches Element ausgedriickt werden kénnen
(Symbol Redundanz). Weiterhin diirfen mehrere Konstrukte nicht durch das gleiche
grafische Symbol repriisentiert werden (Symbol Uberladung). Auch darf es kein
grafisches Symbol geben, das keinem semantischen Konstrukt angehort (Symbol
Uberschuss). Ebenso darf es kein Konstrukt geben, dass keinem grafischen Symbol
zugewiesen wurde (Symbol Defizit). [Moo09]

Abbildung 3.1 veranschaulicht die genannten Anomalien der semiotischen Klarheit.

Enkodierung

Semantische
Konstrukte
(Metamodell)

Visuelle Syntax
(grafische Symbole)

Symbol-
defizit

Symbol-
redundanz

Svmbol
Yy

iiberladung

Symbol-
tiberschuss

Dekodierung

Abbildung 3.1: Anomalien der Semiotischen Klarheit nach [Moo09].

Die differenzierte Wahrnehmung (A2) stellt eine weitere visuelle Anforderung dar.
Jedes Element der Notation muss eindeutig unterschieden werden koénnen, damit es zu
keinen Missverstdndnissen kommt. Der Grad an Unterscheidbarkeit ist dabei durch
die visuelle Distanz’ zwischen den grafischen Elementen gegeben. Beispielsweise
gibt es in vielen visuellen Notationen zentrale Elemente, die sich verhéltnisméafig

nur wenig unterscheiden. Insbesondere fiir Personen, die nicht mit der Doméne der

Die kognitive Effektivitit ist nach [LS87] die Geschwindigkeit, Leichtigkeit und Genauigkeit mit
der Informationen vom menschlichen Verstand verarbeitet werden kénnen.

"Die visuelle Distanz wird bestimmt durch die Anzahl der visuellen Variablen (z. B. Form, Farbe,
Schriftgrofie oder Schriftstil), in denen sich grafische Elemente unterscheiden und dem Umfang
der Unterschiede.

15



3 Anforderungsanalyse

visuellen Notation vertraut sind, ist der kognitive Aufwand zum Verstédndnis eines

Modells hoch, wenn sich grafische Elemente nicht deutlich unterscheiden. [Moo09]

Geméf der semantischen Transparenz (A3) soll am Aussehen eines grafischen Ele-
ments seine Bedeutung erkennbar sein. In [Moo09] wird verdeutlicht, dass dieses
Prinzip nicht binér® ist, sondern ein Kontinuum darstellt: Man spricht von dem Grad
zwischen dem Aussehen und der Bedeutung eines grafischen Elements. Abbildung 3.2
veranschaulicht diesen Zusammenhang.

Semantische Transparenz _Semantische Opakheit Semantische Gegensitzlichkeit
Beliebiges Verhdltnis zwischen Aussehen und

Am Aussehen erkennt man die < »  Aus dem Aussehen schliet man auf eine

Bedeutung. o
Bedeutung (positive Assoziation). edeutung andere oder gegensdtzliche Bedeutung

(negative Assoziation).

Abbildung 3.2: Semantische Transparenz ist ein Kontinuum nach [Moo09].

Icons sind grafische Symbole, die in der Regel eine starke Bindung zwischen Aussehen
und Bedeutung aufweisen und sich daher gut fiir die Umsetzung der semantischen
Transparenz eignen. Zusétzlich fallt das Erlernen und Erinnern an Icons meist leichter

als bei Formen. Auch wirken sie visuell ansprechender.

Die semantische Transparenz léasst sich ebenso auf den Zusammenhang von Elementen
anwenden. Die Bedeutung eines Elements soll sich aus seiner Lage und Beziehung mit
weiteren Elementen ableiten lassen konnen. Man spricht hierbei von der semantisch
transparenten Relation (A4), welche wir explizit als separate Anforderung definieren.
[Moo09]

Es sollten Mechanismen vorgesehen werden, um mit Komplexitidt umzugehen bzw.
diese bei Bedarf zu verringern. Man spricht hierbei vom Komplexitdtsmanagement
(A5). Systeme sollten auf verschiedenen Hierarchieebenen betrachtet (Abstraktion)
und in kleinere Teile (Subsysteme) zerlegt werden kénnen (Modularisierung). Die
Bildung von sinnvollen Hierarchieebenen ermoglicht ,,top down understanding® In
[NC99] wurde gezeigt, dass diese Vorgehensweise zum Verstdndnis von Diagrammen
aus dem Bereich des Software Engineerings beitragt. Weiterhin kann man durch Hier-
archiebildung den Interessen unterschiedlicher Leser gerecht werden. Die niedrigste
Hierarchieebene (Detaillierungsgrad) sollte dabei zunéchst einen Uberblick iiber das
gesamte System geben. Die weiteren Ebenen kénnen dann einzelne Komponenten im

Detail veranschaulichen. [Moo09]

Eine weitere Anforderung betrifft die Integration von Diagrammen. In der Regel wird

ein System nicht nur durch ein einzelnes Diagramm représentiert, sondern durch eine

8Binar bedeutet in diesem Kontext, dass die Anforderung lediglich erfiillt bzw. nicht erfiillt sein
kann.

16



3 Anforderungsanalyse

Vielzahl von Diagrammen unterschiedlicher Typen. Fiir den Leser stellt das Zusam-
mensetzen der Informationen aus den verschiedenen Diagrammen einen zusétzlichen
kognitiven Aufwand dar. Der kognitiven Integration entsprechend sollte eine visuelle
Notation Mechanismen vorsehen, welche diesen Aufwand senken (A6). Man unter-
scheidet dabei zwischen der konzeptuellen Integration, die den Leser unterstiitzen
soll, Informationen aus verschiedenen Diagrammen zu einer kohdrenten mentalen
Gesamtdarstellung des System zusammenzusetzen und der perzeptuellen Integration,
welche die Navigation und Ubergéinge zwischen den Diagrammen vereinfachen soll.
Abbildung 3.3 veranschaulicht diese beiden Begriffe. [Moo09]

Kognitive Gesamtdarstellung

Konzeptuelle
Integration

Diagramm 2

A

Perzeptuelle
Integration ~

Navigation zwischen Diagrammen

Abbildung 3.3: Kognitive Integration nach [Moo09].

Weiterhin sollte eine visuelle Notation moglichst viele visuelle Variablen (z.B. Form
und Farbe) einsetzen. Je mehr Variablen im visuellen Vokabular einer Notation ent-
halten sind, desto hoher ist ihre visuelle Ausdrucksfahigkeit (A7). Klassische Formen
wirken dabei am wenigsten kognitiv effektiv [LS87]. Im Gegensatz dazu gehort Farbe
zu den kognitiv effektivsten visuellen Variablen, da das menschliche Auge sehr emp-
findlich auf Farbvariationen reagiert und schnell zwischen Farben unterscheiden kann.
Farbe sollte jedoch keinesfalls als einzige Variable zur Unterscheidung von grafischen
Elementen eingesetzt werden, da ansonsten Personen mit einer Farbsinnstorung oder
Farbfehlsichtigkeit u. U. die Elemente nicht mehr unterscheiden kénnen. Stattdessen

sollte Farbe lediglich zur redundanten Kodierung verwendet werden. [Moo09]

17



3 Anforderungsanalyse

Text und Grafik sollten zusammen eingesetzt werden, um Informationen zu {iber-
mitteln (kodieren), was als ,Dual Coding® (A8) bezeichnet wird. Grundsétzlich
werden textuelle Informationen im verbalen System verarbeitet bzw. gespeichert,
bildliche Informationen hingegen im nicht-verbalen bzw. imaginalen System. Falls
eine Information textuell als auch grafisch prasentiert wird, werden folglich beide
Systeme aktiviert. Es werden Verbindungen zwischen den Systemen aufgebaut, die
zu einer deutlichen Steigerung der Merkfahigkeit fithren. Anwendung findet dieses
Prinzip bspw. bei Annotationen, welche grafische Elemente durch Text ergdnzen und
in Hybrid-Symbolen, die Grafik und Text in einem grafischen Element vereinigen.
[Moo09]

Weiterhin sollte der grafischen Okonomie entsprechend darauf geachtet werden, dass
die Menge der Elemente im visuellen Vokabular noch kognitiv verarbeitet werden
kann. Die grafische Komplexitiat der Notation sollte somit nicht zu hoch sein (A9).
Jedes weitere Element im visuellen Vokabular senkt zudem die kognitive Effektivitét,
was nicht winschenswert ist. Personen, die mit der Doméne der visuellen Notation
nicht vertraut sind, sind insbesondere von der graphischen Komplexitét betroffen. Dies
haben empirische Studien ergeben ([NC99]), die mit SE-Diagrammen durchgefiihrt

wurden.

Der Symbol-Defizit, den wir bereits im Rahmen der semiotischen Klarheit angespro-
chen haben, kann auch gezielt dazu eingesetzt werden, die graphische Komplexitét
zu senken. Die semantischen Konstrukte, die vom Symbol-Defizit betroffen sind
(semantische Konstrukte, die kein grafischen Symbol besitzen), miissen in diesem Fall
durch Text reprasentiert werden. Dieser Ansatz findet in vielen visuellen Notationen

Anwendung (zumindest in einem gewissen Umfang) [Moo09, S. 15].

Auch sollte eine Notation verschiedene visuelle Dialekte anbieten, mit denen Infor-
mationen dargestellt werden kénnen. Dadurch kénnen Modelle erzeugt werden, die
fiir verschiedene Aufgaben sowie Leser mit unterschiedlicher Erfahrung passend bzw.
optimiert sind. Diese Forderung entspricht der Theorie des ,,Cognitive Fit“ (A10).
[Moo09] Abbildung 3.4 veranschaulicht, durch welche Parameter der ,,Cognitive Fit“
beeinflusst wird. Durch ,,Cognitive Fit“ kann insgesamt eine schnellere Problem-
l6sung und eine hohere kognitive Effizienz erreicht werden. Neben dem visuellen
Dialekt, der die Basisnotation darstellt, konnen weitere visuelle Dialekte (Profile) fiir
verschiedene Einsatzbereiche, Aufgaben oder Zielgruppen die Basisnotation erweitern
bzw. anpassen. Beispielsweise konnte es ein Whiteboard-Profil geben, das Icons durch
Formen ersetzt, die fiir das hiandische Skizzieren auf einem Whiteboard gedacht sind.
Solche Formen koénnten z. B. mit wenigen, schwarzen Linien auskommen und keine

ausgefiillten Bereiche besitzen. In den meisten SE-Notationen kommen Profile (leider)

18



3 Anforderungsanalyse

Darstellungsform

Konkrete Aufgabe

Cognitive Fit

Person, welche die

Aufgabe |6st

Abbildung 3.4: Einflussfaktoren des ,,Cognitive Fit*“ nach [Moo09].

nicht zum Einsatz. Stattdessen enthélt bereits die Basisnotation einfache grafische

Elemente, um dem Bediirfnis nach Skizzieren nachzukommen.

Geméafl der Kommunikationstheorie sollten Informationen, die der Modellierer in
einem Modell der visuellen Notation hinterlegt, moglichst unverdndert zu einem
Leser des Modells iibertragen werden (A11l). Anders ausgedriickt sollten Modelle
der visuellen Notation die jeweiligen Informationen eindeutig représentieren, sodass

Missverstandnisse vermieden werden.

Werden Anderungen an einem Modell der visuellen Notation vorgenommen, so
sollten sich diese moglichst wenig die Gesamtstruktur auswirken (A12) [PQO6]. Das
Hinzufiigen eines Knotens bspw. sollte nicht zu grundsétzlichen Anderungen am
Modell fithren bzw. diese erfordern. Der Aufwand zum (erneuten) Verstdndnis eines
Modells nach einer Anderung soll durch diese Anforderung méglichst gering gehalten

werden.

Weiterhin sollte die visuelle Notation von Personen, die mit der Doméne vertraut sind,
moglichst schnell erlernt werden koénnen. Alle anderen Personen sollten ebenfalls in

einer angemessener Zeit ein Modell der Notation verstanden haben (A13). [PQO6]

Die visuelle Notation sollte Features vorsehen, die einem Leser bei der Navigation

durch ein Modell der Notation unterstiitzen. Dies wird als minimale Desorientierung

19



3 Anforderungsanalyse

(A14) bezeichnet. Beispielsweise konnten hierfiir Orientierungspunkte zum Einsatz
kommen oder Vorschriften definiert werden, die das Layout bzw. die Struktur betreffen.
[PQOG]

Visuelle Metaphern, die eine Notation vorsieht, sollten effektiv und ausdrucksstark
sein (A15), sodass sie sinnvoll eingesetzt werden konnen [PQO6]. Beispiele fiir visuelle
Metaphern bilden Icons oder Farben, die eine bestimmte Information tibermitteln

sollen.

3.2 TOSCA-spezifische Anforderungen

Die Anforderungen, die im Folgenden dargelegt werden, sollen sicherstellen, dass die

semantische Konstrukte der visuellen Notation auf TOSCA zugeschnitten sind.

Node Templates und Relationship Templates eines Topology Templates miissen
mit der visuellen Notation dargestellt werden konnen. Auch sollen Node Types
und Relationship Types, die von Node Templates bzw. Relationship Templates
referenziert werden, reprasentiert werden kénnen. Die genannten Elemente miissen
somit in ein Modell der visuellen Notation {iberfithrt werden kénnen. Wir fassen

diese Anforderungen unter der Vollstdndigkeit zusammen (A16).

Die genannten Typ-Elemente sollen dargestellt werden konnen, da in diesen, die
Schnittstellen mit Management-Operationen definiert sind. Die Darstellung von
Operationen verdeutlicht, welche Managementrolle ein Node Type einnimmt. Insbe-
sondere jedoch kénnen dadurch Beziehungen zwischen einem Node Type und einem
Plan dargestellt werden (siehe A26).

Entsprechend der semantischen Korrektheit (A17) sollte eine giiltiges Modell der
visuellen Notation ein giiltiges Topology Template mit zugehoérigen Node Types und
Relationship Types représentieren [BBK'12a].

Auch sollte die visuelle Notation erweiterbar (A18) sein. Elemente sollten mit Infor-
mationen wie z. B. Erlduterungen oder zusétzliche Eigenschaften versehen werden
kénnen. [BBK™12a]

TOSCA-Topologien sind in den meisten Féllen umfangreich. Daher sollte die visuelle
Notation Mechanismen vorsehen, mit denen Topologien in verschiedenen Detaillie-
rungsgraden dargestellt werden kénnen (A19; siehe auch A5). [BBK12a]

20



3 Anforderungsanalyse

3.3 Usability- und User Experience-Anforderungen

Die visuelle Notation sollte fiir ihre Aufgaben optimiert sein (A20). Die Modellierung
von Topology Templates, Node Types, Relationship Types, Management-Plinen und
den Beziechungen zwischen Node Types bzw. Relationship Types und Planen (siche
A26) miissen folglich ohne Probleme moglich sein. [BBK™12a]

Ein Modell der visuellen Notation sollte moglichst ohne zusétzliche Informationen, d. h.
jene, die nicht aus des Modell stammen, verstanden werden kénnen. Die grafischen
Elemente der Notation sollten folglich selbsterklérend sein (A21). Am Aussehen eines
Elements sollte auf dessen Bedeutung geschlossen werden kénnen, sofern man mit

der Doméine der entsprechenden Notation vertraut ist. [BBK™12a)]

Die grafischen Elemente der Notation sollten schnell und einfach zu zeichnen sein
(A22), sodass die Notation auch bspw. fiir ein Whiteboard oder fiir eine Tafeln
geeignet ist. Es bietet sich dabei an, gesonderte Elemente fiir das Skizzieren zu
erstellen, die in einem Profil bereitgestellt werden konnen (sieche A10). [BBK™12a]

Weiterhin sollten die Elemente visuell ansprechend wirken bzw. den Vorlieben des
Menschen entsprechen (A23) [BBKT12a]. Asthetisch ansprechende Dinge fiihren zu
positiver Emotion, was die Fahigkeit verbessert, Probleme zu 16sen [Nor02]. Ein
visuell ansprechendes Modell wird von einem Leser in einer kiirzeren Zeit verstanden
als ein Modell mit selbigem Inhalt, das jedoch weniger ansprechend wirkt. In einer
Studie von Bar und Neta [BN06] wurde bspw. gezeigt, dass Personen abgerundete

Formen bevorzugen. Auch sind jene Formen leichter zu zeichnen.

3.4 Anforderungen fiir die Integration visueller

Geschaftsprozessnotationen

Die zu entwerfende visuelle Notation soll Prozessnotationen integrieren. Fiir den
Integrationsaspekt werden gesonderte Anforderungen benétigt, auf die im Folgenden

eingegangen wird.

Bestehende visuelle Notationen fiir Geschéftsprozesse bzw. Plane diirfen fiir die
Integration bzw. gemeinsamen Darstellung mit einem Topology Template (mit zu-
gehorigen Types) nicht verdndert werden (A24). Prozessnotationen erfiillen in der
Regel jedoch nicht alle Anforderungen, die in den Abschnitten 3.1 und 3.3 dargelegt
sind. Daher erlauben wir explizit, dass Prozessnotationen die Anforderungen aus
den genannten Bereichen nicht erfiillen miissen. Die eindeutige Unterscheidbarkeit

zwischen Topologie (mit Types) und Plénen muss jedoch gegeben sein (A25).

21



3 Anforderungsanalyse

Existiert eine Beziehung zwischen einer Management-Operation, die zu einem Node
Type bzw. einem Relationship Type gehort und einer Aktivitat eines Plans (ruft die

Operation auf), so sollte dies grafisch verdeutlicht werden kénnen (A26).

Entsprechend dem Komplexitdtsmanagement, welches wir bereits in 3.1 angesprochen
haben, sollten auch fiir visuelle Prozessnotationen Moglichkeiten zur Abstraktion
vorgesehen werden (A27). Einzelne Aktivititen eines Prozesses, die als nicht relevant
fiir ein Modell bzw. seine beabsichtige Aussage eingestuft werden, sollten ausgeblendet
werden konnen. Auch sollten Prozesse vollstindig ,,zusammengeklappt® werden
kénnen. Diese Anforderung steht im Widerspruch zu A23, wo gefordert wird, dass
visuelle Prozessnotationen nicht veréndert werden diirfen. Generell erlauben wir
Mechanismen zur Abstraktion, sofern entsprechende Moglichkeiten nicht bereits Teil

der visuellen Notation des Plans bzw. Prozesses sind.

Die letzte Anforderung dieses Bereichs betrifft die semantische Korrektheit (A28):
Der Modellierer entscheidet, ob ein Plan, der zu einem Topology Template gehort?, in
einem Modell der visuellen Notation représentiert wird. Falls er sich dafiir entscheidet,
so darf die Semantik des Plans nicht verdndert werden. Beispielsweise diirfen keine
Aktivitaten entfernt oder der Ablauf verandert werden. Wird Abstraktion angewendet,

so muss dies eindeutig ersichtlich sein.

9Die Zusammengehorigkeit ist gegeben, falls das Topology Template und der Plan in selbigen
Service Template definiert sind.

22



4 Analyse existierender visueller Notationen

4 Analyse existierender visueller Notationen

Als Grundlage fiir den Entwurf der neuen visuellen Notation sollen in diesem Kapitel
existierende visuelle Notationen fiir Anwendungstopologien und Geschéftsprozesse
vorgestellt und analysiert werden. Es soll dabei lediglich auf wichtige und insbesondere
standardisierte Notationen aus den genannten Bereichen eingegangen werden. Jede
Notation wird durch eine oder mehrere Abbildungen veranschaulicht, die konkrete

Beispiele oder visuelle Elemente der Notation (verallgemeinert) darstellen.

In der Analyse (siche Abschnitt 4.3) wird unter anderem bestimmt, inwieweit sich die
Notationen im Bereich der Anwendungstopologien fiir die Darstellung von TOSCA-
Topologien und die Integration von Geschéftsprozessen eignen. Konzeptionelle bzw.
Entwurfsentscheidungen, die als passend und brauchbar eingestuft werden, sollen
in den Entwurf der neuen Notation einfliefen (ggf. mit Anpassungen, sodass die

aufgestellten Anforderungen erfiillt sind).

Die visuellen Notationen fiir Geschéaftsprozesse werden im Hinblick auf die Integra-
tion mit TOSCA-Topologien untersucht. Eignung und Brauchbarkeit sollen dabei
betrachtet werden. Es sollen schliellich Geschéftsprozessnotationen bestimmt werden,
die zur Integration mit einer TOSCA-Topologie akzeptiert werden. Entsprechend
Anforderung A24 miissen Prozessnotationen die aufgestellten Anforderungen aus
den Abschnitten 3.1, 3.2 und 3.3 nicht erfiillen. Aus diesem Grund findet eine ent-
sprechende Uberpriifung nicht statt. Die Anforderungen fiir die Integration von
Prozessnotationen (siche Abschnitt 3.4) werden im Rahmen des Entwurfs der neuen

Notation umgesetzt.

4.1 Anwendungstopologien

4.1.1 Vino4ATOSCA

TOSCA spezifiziert keine grafischen Elemente fiir die semantischen Konstrukte der
Sprache [TOS13]. Eine entsprechende visuelle Notation wére jedoch wiinschenswert,
da damit eine TOSCA-Topologie auf einem einfachen und schnellen Wege représen-

tiert bzw. kommuniziert werden kann.

23



4 Analyse existierender visueller Notationen

Aus dieser Motivation heraus ist VinoATOSCA (Visual Notation for TOSCA) ent-
standen, mit der TOSCA Topology Templates, die aus Node Templates, Relationship
Templates und Group Templates bestehen, modelliert werden kénnen. Zu letzte-
rem Element sollte hierbei erwdhnt werden, dass dieses in der aktuellen TOSCA
Spezifikation CS01 vom 2013-03-18 [TOS13] nicht mehr vorgesehen ist.

Die Basis fiir den Entwurf der visuellen Notation bildete eine umfangreiche Anfor-
derungsanalyse, bei der neben den iiblichen Aspekten wie semantische Korrektheit
und Vollstédndigkeit insbesondere auch die menschliche Wahrnehmung, Usability,
Ergonomie und User Experience miteinbezogen wurde. Fiir visuelle Anforderungen
wurde dabei die Design Theorie ,,The Physics of Notations“ von Moody [Moo09]
herangezogen, die auf der Theorie sowie empirischen Studien beruht. [BBK™12a]
Viele bekannte visuelle Notationen wie z. B. UML wurden im Gegensatz dazu nicht
auf der Grundlage von visuellen Prinzipien entwickelt. Ein expliziter Entwurfsprozess
fiir die visuelle Syntax wurde nicht vorgesehen. Stattdessen wurde der Fokus auf
Semantik gelegt. Diese Vorgehensweise fiihrt in der Regel zu einer Notation, die sich
durch Defizite in der Usability auszeichnet. Auch Christopher Alexander [Ale64] hat
dieses Problem existierender visueller Notation erkannt. Er spricht von einer ,unself-
conscious design culture“ (auf Deutsch etwa ,freie Designkultur®), die auf Instinkt,
Imitation und Tradition basiert und sich nicht nach expliziten Designprinzipien
richtet. [BBK™12a]

VinodTOSCA wurde am Institut fiir Architektur von Anwendungssystemen
(IAAS) der Universitiat Stuttgart entwickelt und im September 2012 verdffentlicht.
[BBK 12a]

Im Folgenden soll nun die eigentliche Notation anhand der verschiedenen Shapes

(Elemente) erlédutert werden.

Ein Node Template Shape (siehe Abbildung 4.1) ist ein abgerundetes Rechteck
(durchgezogene Linie), dass ein Node Template reprasentiert. Das zugehorige Node
Template kann mittels einem (i) Icon, der (ii) ID bzw. dem (iii) Namen des Node
Templates oder tiber die (iv) ID bzw. dem (v) Namen des zugehorigen Node Type
(in Klammern gesetzt) definiert werden, wobei mindestens eine dieser fiinf Varianten
verwendet werden muss. Eine ID muss grundsétzlich unterstrichen werden. Weiterhin
gibt es ein optionales Feld, in dem zusétzliche Informationen hinterlegt werden kénnen
(Text oder Bilder). Dieses ist ebenfalls abgerundet und wird hinter dem Haupt-Shape
positioniert, sodass die oberen Ecken nicht sichtbar sind. Das Haupt-Shape darf
ein Hintergrundbild enthalten, wobei dieses nicht den Icon-Bereich oder den Text
iiberdecken darf. [BBK'12a]

Ein Relationship Template Shape (siehe Abbildung 4.2) repréasentiert ein Relationship

Template. Es handelt sich um eine Linie, die an ihren Enden beliebige (kleine) Shapes

24



4 Analyse existierender visueller Notationen

| NodeTemplate.Name Customer Database
Acon NodeTemplate.ld CustomerDatabase
rea (NodeTemplate.NodeType.Name | Id) (Derby Database)

Zusatzliche Informationen

J

Abbildung 4.1: Node Template Shape mit Beispiel nach [BBK'12a].

besitzen darf, z. B. einen Pfeil. Der Stil der Linie kann frei gewéhlt werden, wobei
sie nicht gestrichelt wie bei einem Visual Group Shape sein darf. Analog zu einem
Node Template Shape kann das zugehorige Relationship Template definiert werden.
Ein Icon steht iiber der Linie, falls die Linie horizontal ist, andernfalls (vertikal bzw.
diagonal) auf einer beliebigen Seite. Ein Relationship Template Shape verbindet
grundsétzlich zwei relationale Elemente. Ein relationales Element ist dabei ein Node
Template Shape, Collapsed Group Template Shape oder Collapsed Visual Group
Shape, wobei auf die letzteren beiden noch niher eingegangen wird. Ein optionales
Feld fiir zusdtzliche Informationen wird unter die Linie gesetzt und beriihrt die
Linie, falls sie horizontal ist. Andernfalls kann sich das Feld an einer beliebigen Seite
befinden. [BBK"12a]

RelationshipTemplate.Name
Icon RelationshipTemplate.ld
Area . ) - e Hosted on
(RelationshipTemplate.RelationshipType.Name | Id)

Zusatzliche Informationen

Abbildung 4.2: Relationship Template Shape mit Beispiel nach [BBK'12a].

Ein Group Template kann durch zwei verschiedene Shapes (sieche Abbildung 4.3,
links) dargestellt werden. Das Expanded Group Template Shape enthélt die Elemente
des Group Template. Die Form dieses Shapes kann frei gewéhlt werden, wobei der
Linienstil durchgezogen sein muss. Zur Beschreibung kann ein Icon, eine ID bzw. ein
Name definiert werden, wobei mindestens eine dieser drei Mdoglichkeiten verwendet
werden muss. Das Collapsed Group Template Shape dagegen abstrahiert die Elemente
des Group Template. Es ist ein Oval, dessen Linie durchgezogen sein muss. Ein kleines
Quadrat mit einem Plus-Zeichen symbolisiert die Abstraktion. Auch hier kann ein

Icon, eine ID bzw. ein Name zur Beschreibung verwendet werden. [BBK'12a]

Die Visual Group Shapes (siehe Abbildung 4.3, rechts) dienen zum visuellen Gruppie-
ren bzw. Abstrahieren von Elementen, also ohne das Topology Template zu verdndern.

Die Linien der Shapes sind gestrichelt, im Ubrigen entsprechen sie den Shapes des

25



4 Analyse existierender visueller Notationen

Group Templates. Visual Group Shapes kénnen auch zur Integration von anderen

Diagrammen verwendet werden. [BBK ' 12a]

\ - -

Icon GroupTemplate.Name / Icon VisualGroup.Name
Area GroupTemplate.ld

Area VisualGroup.Id

-
N
Icon VisualGroup.Name \

\
I
I

) ! Area VisualGroup.Id !
| \ /
|
/

N -
Ne -
RS 3 S S

1
I
Icon GroupTemplate.Name |
Area :

1

Abbildung 4.3: Expanded / Collapsed Group Template Shapes (links) und Visual
Group Shapes (rechts) nach [BBK'12a].

Mit den Visual Relationship Group Shapes (siehe Abbildung 4.4) kénnen Relationship
Template Shapes visuell gruppiert bzw. abstrahiert werden. Die Expanded-Variante
besteht aus zwei gestrichelten Linien, die relationale Elemente verbinden. Zwischen
den Linien muss mindestens ein Relationship Template Shape stehen. Zur Beschrei-
bung kann ein Icon, eine ID bzw. ein Name verwendet werden, die iiber der oberen
Linie stehen miissen. Eine dieser drei Moglichkeiten muss mindestens verwendet
werden. Die Collapsed-Variante dagegen abstrahiert Relationship Template Shapes.
Es handelt sich um eine gestrichelte Linie zwischen relationalen Elementen, die in
der Mitte ein kleines Quadrat mit einem Plus-Zeichen enthélt, dass die Abstraktion

symbolisiert. Im Ubrigen entspricht sie der Expanded-Variante. [BBK12a]

Grundsétzlich darf bei keinen Group Shapes ein Hintergrundbild gesetzt werden.
[BBK ™12a]

Icon Group.Name
Area Group.ld Icon Group.Name

B[

Abbildung 4.4: Expanded / Collapsed Visual Relationship Group Shapes nach
[BBK*12a).

Weiterhin kénnen die zuléssigen Instanzen von Node Templates sowie Group Templa-
tes visualisiert werden (siehe Abbildung 4.5). Dazu wird eine Linie teilweise um das
entsprechende Shape gezeichnet und der min-Wert auf die linke Seite, der max-Wert
auf die rechte Seite iiber dem Shape geschrieben. [BBK112a]

Vino4dTOSCA ermoglicht auch die Definition von Profilen. Dabei handelt es sich um
doménenspezifische Erweiterungen bzw. Anpassungen der Notation fiir bestimmte
Bediirfnisse oder Fahigkeiten von Benutzern. Ein Aufgabe kann so intuitiv und

effektiv gelost werden. Beispielsweise konnte es ein Whiteboard-Profil geben, welches

26



4 Analyse existierender visueller Notationen

min max min max

NodeTemplate.Name

NodeTemplate.ld
(NodeTemplate.NodeType.Name | Id)

Icon
Area

GroupTemplate.Name
GroupTemplate.ld

Abbildung 4.5: Zuléssige Instanzen von Node Templates (links) und Relationship
Templates (rechts) nach [BBK*12a].

definiert, dass alle Linien schwarz sein miissen und keine Icons verwendet werden
diirfen. [BBK™12a]

Die Darstellung einer Form, ihre Orientierung und ihr Linienstil darf grundsétzlich
nicht verdndert werden. Alle weiteren visuellen Variablen sind frei wahlbar, sofern
sie nicht durch ein Profil fest definiert werden. Ein Profil darf lediglich die visuellen
Variablen Farbe, Textur und Gréfe definieren. [BBK™12a]

Abbildung 4.6 zeigt ein VinodTOSCA-Diagramm eines Web Shops, der auf einem
Apache Tomcat deployed ist und eine Apache Derby Datenbank verwendet. Tomcat

lauft auf Ubuntu, dass sich auf einer Amazon EC2 Instanz befindet.

27



4 Analyse existierender visueller Notationen

<5 WebShop
"""""" = (WAR)
(hosted on) Connection
| Created with Java 1.7. (JDBCConnection)
v Y

Servlet Container Customer Database

: (Tomcat) /‘ CustomerDatabase
V4 (Derby Database)

(hosted on) (hosted on)
OperatingSystem
(UbuntuLinux)
| (hosted on)
v

Virtual Server
(AWS EC2 Server)

L Type: On-Demand J

Abbildung 4.6: Vino4TOSCA-Diagramm eines Web Shops nach [BBK™12b].

VinodTOSCA basiert auf der TOSCA Spezifikation WD07 vom Juli 2012 [BBK*12a).
Wie bereits angesprochen, gibt es in der momentanen Version CS01 keine Group
Templates mehr, sodass entsprechende Formen fiir Group Templates in der zu
entwerfenden Notation nicht mehr bendtigt werden. Node Types bzw. Relationship
Types wurden in WDO07 in einem Service Template definiert, das zugleich das
Wurzelelement bildete. Nun befinden sich die genannten Elemente im Wurzelelement
Definitions. Service Template ist ein Unterelement von Definitions, dass nur noch

aus einem Topology Template und Plénen besteht. [TOS13]

4.1.2 Fundamental Modeling Concepts

Die Fundamental Modeling Concepts (FMC) sind eine, zur Modellierung und Dar-
stellung von komplexen Softwaresystemen, konzipierte Methodik. Die Entwicklung
begann in den 70er Jahren unter der Leitung von Prof.-Dr. Siegfried Wendt. Anfangs
Structured Plans for Improving Knowledge Transfer in Engineering of Systems
— kurz SPIKES — genannt, wurden die Konzepte im Jahr 2001 zu Fundamental
Modeling Concepts umbenannt. [FMC]

28



4 Analyse existierender visueller Notationen

Grundgedanke der Fundamental Modeling Concepts ist die Moglichkeit einer gra-
fischen Darstellung der konzeptionellen Struktur eines Softwaresystems und deren
Informationsverarbeitung und nicht, wie bei vielen anderen iiblichen Notationen, die
Dokumentation der konkreten Umsetzung. Dadurch soll eine effiziente Kommunikati-
on iiber Softwaresysteme, auch zwischen verschiedenen projektbeteiligten Gruppen,
mit verschiedenen technischen Vorkenntnissen, wie zum Beispiel Software-Architekten

und Auftraggebern erméglicht werden. [Wik13c]

Obwohl sehr auf theoretischen Grundlagen basierend, nutzen bekannte Unternehmen
wie SIEMENS, SAP und ALCATEL die Fundamental Modeling Concepts in der
Praxis. [FMC]

FMC beinhaltet drei grundlegende Diagrammtypen zur grafischen Darstellung von
Softwaresystemen. Dies sind Aufbaudiagramme, Ablaufdiagramme und Wertebe-

reichsdiagramme.

Aufbaudiagramme dienen der Darstellung von Beziehungen verschiedener System-
komponenten zueinander. Jede Komponente wird der Kategorie Akteur, Kanal oder
Speicher zugeordnet. Akteure, dargestellt als eckige Knoten, sind aktive Komponen-
ten. Kanidle, dargestellt durch meist kleine Kreise und Speicher, dargestellt durch
Ovale, sind passive Komponenten. Passive Komponenten kénnen nicht mit anderen
passiven Komponenten in Bezichung stehen wie auch aktive Komponenten nicht
mit anderen aktiven Komponenten in Beziehung stehen kénnen. Dementsprechend
koénnen Beziehungen nur zwischen aktiven sowie passiven Komponenten bestehen.
Fir Kanten zwischen verschiedenen Knoten gilt: Zwischen Akteuren und Speichern
miissen Kanten gerichtet sein, zwischen Akteuren und Kanélen kénnen sie dagegen
auch ungerichtet sein. Eine Kante von einem Speicher oder einem Kanal zu einem
Akteur hat die Bedeutung, dass der Akteur aus dem Speicher liest bzw. von einem
Kanal empfingt. Eine entgegengesetzt gerichtete Kante bedeutet, dass der Akteur in
den Speicher schreibt beziehungsweise iiber den Kanal sendet. In beide Richtungen
gerichtete Kanten sind nicht vorgesehen, stattdessen miissen zwei entgegengesetzt
gerichtete Kanten im Falle einer Beziehung zwischen Speicher und Akteur oder eine
ungerichtete Kante zwischen Kanal und Akteur genutzt werden. Kanéle kénnen mit
einem ,R* samt Pfeil gekennzeichnet sein und stellen damit einen Request/Response-
Kanal dar. Uber diesen Kanal kann eine Komponente einen Dienst einer anderen
Komponente aufrufen und bekommt eine entsprechende Antwort geliefert. Des Wei-
teren konnen Knoten durch die Einbettung in einen anderen Knoten gruppiert und

dadurch Gemeinsamkeiten ausgedriickt werden. [Wik13c]

Abbildung 4.7 zeigt ein Beispiel eines Aufbaudiagramms. Es veranschaulicht ein
Softwaresystem das es Kunden ermdglicht, iiber ein Buchungssystem Reisen zu

buchen. Kunden kénnen dafiir eine Anfrage (Request) an dieses Buchungssystem

29



4 Analyse existierender visueller Notationen

Kunde Kunde

buchen

Buchungssystem

L)

Reservierungs-

Kundendaten
daten

L)

Reiseveranstalter

Abbildung 4.7: Beispiel eines FMC-Aufbau-Diagramms nach [Wik13c].

schicken und bekommen nach dessen Bearbeitung eine Response (Antwort) zuriick.
Das Buchungssystem ist dabei mit zwei Speichern zur Ablage von Kunden- und
Reservierungsdaten verbunden, die zur Ubersichtlichkeit und zur Reduzierung von
Kaniélen in einem iibergeordneten Speicher gruppiert sind. Die Abbildung zeigt des
Weiteren eine Reiseveranstalter-Komponente, die seinerseits Zugriff auf die Kunden-

sowie Reservierungsdaten hat.

Ablaufdiagramme werden mit einer erweiterten Art von Petri-Netzen (sieche Ab-
schnitt 4.2.1) dargestellt und stellen den Ablauf innerhalb eines Softwaresystems
oder eines Ausschnitts davon dar. Stellen im FMC-Petri-Netz kénnen dabei nur
eine Marke aufnehmen, wohingegen mit einem Doppelkreis gekennzeichnete Stellen,
unendlich viele Marken aufnehmen kénnen. Des Weiteren kénnen von einer Stelle
abgehende Kanten im FMC-Petri-Netz, zur Bestimmung der schaltenden Transition,

mit einer Bedingung versehen werden. [Wik13c]

Wertebereichsdiagramme sind im FMC von Entity-Relationship-Diagrammen (siehe

Abschnitt 4.1.6) abgeleitet und Beschreiben die im Softwaresystem moglichen Werte-

30



4 Analyse existierender visueller Notationen

bereiche. Relationen werden in FMC als eckige Knoten, Entitédten, welche wiederum
Attribute enthalten konnen, als runde Knoten dargestellt. [Wik13c]

Gemeinsam haben alle drei Diagrammtypen, dass sie jeweils eine Klasse mit runden

Knoten sowie eine Klasse mit eckigen Knoten enthalten und bipartit sind.

4.1.3 UML-Komponentendiagramm

Komponentendiagramme sind eine der 14 Diagrammarten der UML. Sie werden
hauptséchlich zur Visualisierung von Software-Systemen eingesetzt. Hier liegt der
Grad der Veranschaulichung auf den einzelnen Komponenten und deren Zusammen-

hang im groferen System. [Wik13f]

In einem Komponentendiagramm wird eine Komponente durch ein Rechteck (durch-
gezogene Linie) représentiert, das den Stereotyp ,,«component»“ und den Namen
der Komponente enthélt. Die Komponenten in einem Komponentendiagramm bilden
ein System bzw. Teilsystem. Ein Port kommt zum Einsatz, falls eine Komponente
mehrere Schnittstellen besitzt. Es handelt sich dabei um ein kleines Quadrat, dass
sich am Rand einer Komponente befindet. Eine Schnittstelle wird durch einen nicht
ausgefiillten Kreis repréisentiert, der mittels einer durchgezogenen Linie mit der
Komponente verbunden ist, welche die Schnittstelle anbietet bzw. realisiert. Benétigt
eine Komponente hingegen eine Schnittstelle, so kann dies durch einen Halbkreis
visualisiert werden, der den entsprechenden Kreis bzw. die Schnittstelle umschlief3t.
Hierbei sollte erwihnt werden, dass ein Halbkreis nicht alleine existieren kann, d. h.
jede Schnittstelle, die von einer Komponente benétigt wird, muss von einer anderen
Komponente angeboten werden. Der umgekehrte Fall, das eine bereitgestellte Schnitt-
stelle nicht genutzt wird, ist hingegen erlaubt. Mittels einer Delegation kénnen die
Operationen einer Schnittstelle, die von einer Komponente angeboten wird, zu einer

Unterkomponente weitergereicht werden.

Abbildung 4.8 zeigt ein Komponentendiagramm, dass die Komponenten Postbox,
Briefkasten und Postverwaltung enthélt. Die Postbox nutzt eine Schnittstelle, die
von der Postverwaltung zur Verfiigung gestellt wird. Die Schnittstelle ist dabei iiber
einen Port mit der Postverwaltung verbunden. Die Komponente Briefkasten stellt
eine Schnittstelle bereit, die von der Postverwaltung benétigt wird. Ein (externer)

Benutzer nutzt {iber eine Delegation eine Schnittstelle der Postverwaltung.

Aufgrund des geringen visuellen Vokabulars sind UML-Komponentendiagramme
einfach zu lesen, schnell erlernbar und benutzerfreundlich. Systeme kénnen weitest-
gehend unabhéngig von der eingesetzten Programmiersprache dargestellt werden.
Weiterhin kénnen Komponenten beliebig verschachtelt werden. Daraus folgt jedoch,

dass Komponentendiagramme ab einer bestimmten Komplexitdt uniibersichtlich

31



4 Analyse existierender visueller Notationen

<<component>>

Postbox \(—\

Verwaltung
Gberwachen

<<use>>

Postbox leeren

——0

<<component>>

Postverwaltung

<<component>>

Briefkasten

Abbildung 4.8: Beispiel eines UML-Komponentendiagramms.

werden konnen. Dynamische Daten lassen sich mit einem Komponentendiagramm

nicht darstellen.

4.1.4 Acme

Acme ist eine generische Architektur-Sprache, welche zur Beschreibung von Software-
Architektur angewendet wird. Gute Notation erlauben es komponentenbasierte Ent-
wiirfe der Software zu erstellen, Aussagen iiber deren Eigenschaften zu treffen und

Analyse und System Integration automatisch ablaufen zu lassen. [GMWO00]

Acme gehort zur der zweiten Generation von architekturbeschreibenden Sprachen.
Acme besitzt Eigenschaften, welche auf den Erfahrungswerten aus anderen archi-
tekturbeschreibenden Sprachen gewonnen wurden. Acme ist eine einfache Sprache,
dessen grundlegende Elemente, den Architekturentwurf, die natiirlichen Erweiterun-
gen unterstiitzen und komplexere Architektur Erstellung ermoglicht. Acme stellt
eine einfache, semantisch erweiterbare Sprache bereit, welche auf eine Menge von
Werkzeugen zuriickgreifen kann. Diese Werkzeuge unterstiitzen die Analyse und
die Integration unabhéngig von den in der Entwicklung verwendeten Werkzeugen.
[GMWO00]

Acme unterstiitzt vier Aspekte der Architektur. Der erste Aspekt ist die Struktur. Die
Struktur organisiert ein System und dessen Einzelteile. Der zweite Aspekt sind die
Eigenschaften, welche von Interesse sind. Diese Eigenschaften stellen Informationen

bereit, welche Riickschliisse iiber das Verhalten des Systems ermdglichen. Der dritte

32



4 Analyse existierender visueller Notationen

Aspekt sind die Einschriankungen. Die Einschrankungen sind Richtlinien, welche
beschreiben, wie sich die Architektur iiber die Zeit verdndern kann. Der vierte und
letzte Aspekt sind Typen und Stile. Typen und Stile, welche die Klassen und die
Familien der Architektur beschreiben. [GMWO00]

Die Acme-Struktur besteht aus sieben Kernentitdten: Anhédnge, Komponenten, Kon-
nektoren, Systeme, Ports, Rollen, Repriasentationen und Repréasentationen-Karten.
[GMWO00]

Komponenten reprasentieren berechnende Elemente und die Datenhaltungsschicht des
Systems. Eine Komponente kann mehrere Schnittstellen besitzen, mit zugewiesenen
Ports interagieren. [GMWO00]

Ein Port ist der Interaktionspunkt zwischen einer Komponente und der Systemum-
gebung. Ports konnen einfache Schnittstellen und auch komplexere Schnittstellen
bereitstellen. [GMWO00]

Die Konnektoren reprasentieren die Interaktion zwischen den einzelnen Komponenten.
Die Schnittstellen der Konnektoren sind als Rollen definiert. [GMWO00]

Rollen definieren einen Teilnehmer einer Interaktion und sind von den Konnektoren
abhéngig. Es gibt bindre Konnektoren, welche jeweils eine von zwei verschiedenen
Rollen annehmen koénnen. Als Beispiel kénnen wir hier einen RPC (Remote Procedure
Call) Konnektor betrachten. Hier kann entweder die Rolle des Anrufers oder die Rolle
des Angerufenen iibernommen werden. Es gibt jedoch auch komplexere Konnektoren

fir die eine Rolle mehr als zwei Funktionen tibernehmen kann. [GMWO00]

Das System wird in Acme durch einen definierten Graphen dargestellt. Der Graph
besteht zum einen aus Knoten, welche durch Komponenten dargestellt sind. Des

weiteren existieren Kanten, welche die Konnektoren représentieren. [GMWO00]

Anhénge definieren Kanten indem sie Ports mit den zugehorigen Konnektoren der
Rollen verbinden. [GMWO00)]

Die Reprisentationen in Acme (sieche Abbildung 4.9) erlauben das Spezifizieren von
Hierarchien der Struktur, Kapselung von Subsystemen, und eine alternative Sicht
auf die Struktur. [GMWO00]

Mittels der Représentationskarten (siche Abbildung 4.10) kénnen die Verbindungen
zwischen verschiedenen Ebenen der Struktur betrachtet werden. [GMWO00)]

Um Hierarchien in der Architektur darzustellen, erlaubt Acme die Komponenten und
Konnektoren in detaillierten Ebenen darzustellen. Diese detaillierten Beschreibungen
werden auch als Représentationen bezeichnet. Eine Repréasentation kann z. B. dafiir

genutzt werden, den Datenfluss innerhalb der Schnittstelle zu verfolgen. Die interne

33



4 Analyse existierender visueller Notationen

Client

Representation

Connection
Manager

Database
Manager

Security
Manager

Abbildung 4.9: Beispiel einer Acme-Représentation [Ley12].

RPC
: _A___.___
Client Connection
Manager
Server
Security L, Database
Manager | "|  Manager

Abbildung 4.10: Beispiel einer Acme-Représentationskarte [Ley12].

Korrespondenz auf diesen Ebenen muss ebenfalls dargestellt werden. In Acme wird

dies als Représentations-Karte ,Rep-map® dargestellt. [GMWO00]

Die sieben Entwurfsklassen ermdoglichen eine ausreichende Beschreibung der Archi-
tektur als Graph aus Komponenten und Konnektoren. [GMWO00]

Acme erlaubt das Hinzufiigen von Eigenschaften an jede der oben beschriebenen

Entitdten um die Architektur noch weiter zu spezifizieren. [GMWO00]

Jedoch gibt es auch Kontruktionsbeschrankungen, welche durch die Syntax gegeben
sind. Acme verwendet eine beschriankende Sprache, welche auf FOPL (First-Order Pre-
dicate Logic) aufgebaut ist. Beschrankungen kénnen dabei mit Entwurfs-Elementen

verkniipft werden. Dies ist auf zwei Wegen moglich. Entweder als Invariante oder

34



4 Analyse existierender visueller Notationen

als Heuristik. Invarianten stellen Regeln bereit, welche nicht iiberschritten werden
kénnen, wohin eine Heuristik die teilweise Uberschreitung dieser Regeln erlaubt.
[GMWO00]

Acme bietet, wie bereits erwdhnt, die Moglichkeit Typen und Stile fiir die Architektur
zu definieren. [GMWO00]

Stile erlauben entweder doméanenspezifische oder architekturspezifische Beschran-
kungen zu definieren. Diese sind entweder auf die Typen von Eigenschaften, auf die
strukturellen Typen oder auf den Stil, im Allgemeinen anwendbar. Das Annotieren
von Eigenschaften ist eine Moglichkeit Annotationen anzuwenden. Die zweite Moglich-
keit Annotationen zu verwenden ist, spezielle Typen von Konnektoren, Komponenten,
Rollen und Ports zu beschreiben. Stil ist die allgemeine Beschreibung von Eigen-
schaftstypen und Strukturtypen. Dies wird in Acme auch als Familie bezeichnet. Eine
Familie wird durch vier Angaben beschrieben. Eigenschaftenstypen, Strukturtypen,
den Beschrénkungen und der Standardstruktur. [GMWOO]

Acme kann zu verschiedenen Aufgaben verwendet werden: Zur Beschreibung und
Analyse der Softwarearchitektur, als Basis um neue Entwurfs- und Analysewerkzeuge

zu entwerfen und die Integration von neuen Werkzeugen zu unterstiitzen. [GMWO00]

4.1.5 Service Component Architecture

Service Component Architecture (SCA) ist eine standardisierte Notation um Ge-
schéaftsprozesse und die zu Grunde liegende Implementierung darzustellen. Sie basiert
auf der Service Oriented Architecture (SOA) und stellt die Geschéftsprozesse service-
orientiert dar. Durch die SCA ist eine getrennte Darstellung von der Geschéftslogik

und der Implementierung der Prozesse moglich. [IBMO6]

In der SCA existieren drei verschiedene Ebenen. Die erste Ebene ist die Geschéftsinte-
grationslogik. In dieser Ebene befinden sich die Geschéftsprozesse. Die zweite Ebene
wird als Servicekomponenten-Ebene bezeichnet und enthélt die Servicekomponenten,
in welchen die einzelnen Services (Dienste) implementiert sind. Die dritte Ebene ist
die Implementierungsebene. Hier liegt der Programmcode, welcher in den Services
verwendet wird. In der SCA wird zudem noch zwischen verschiedenen Artefakten
unterschieden. Eine Servicekomponente konfiguriert eine Serviceimplementierung.
Die Servicedatenobjekte erweitern die SCA um definierte Services und die Beziehung
zwischen den einzelnen Komponenten. Servicequalifikations-Merkmale steuern die
Interaktion zwischen dem Service-Client und einem Zielclient. Die SCA besitzt auch
Module. Die Einheiten, welche in das Enterprise Archive geschrieben werden, sind
von Modulen bestimmt. Aus Leistungsgriinden werden die Komponenten in einem

Modul zusammengefasst. Die Daten kénnen durch Verweise auf andere Komponenten

35



4 Analyse existierender visueller Notationen

iibergeben werden. Zuletzt existieren in der SCA Importe und Exporte. Beide definie-
ren die Schnittstellen von Modulen. Importe erlauben den Zugriff auf Services, welche
auflerhalb des Moduls liegen. Exporte erlauben Komponenten, Services anderen
Komponenten zur Verfiigung zu stellen. Fiir die Implementierung der Services einer
Komponente kénnen Serviceimplementierungstypen vergeben werden. Da SCA auf
verschiedene Geschéftsprozesse angewandt werden kann, wird in Abbildung 4.11 ein

allgemeiner Ansatz zur Verdeutlichung gezeigt. [IBMO06]

Geschéftsintegrationslogik

= | - E ==

== == =< I gy =< == [ ==

L 1 L 1
Implementierung
S
AN AN AN AN

Abbildung 4.11: Beispiel eines SCA-Diagramms nach [IBMO06].

4.1.6 ER-Diagramm

Grundsétzlichen dienen ER (Entity Relationship)-Diagramme, im Rahmen der Da-
tenmodellierung, zur Beschreibung eines Ausschnitts der reellen Welt [Wik13a]. Die
wohl wichtigste praktische Anwendung ist der Datenbankentwurf. Ein Modell ei-
ner Datenbank kann mittels ER-Diagrammen unabhéngig von einem konkreten

Datenbanksystem wie MySQL dargestellt werden [Che04].

36



4 Analyse existierender visueller Notationen

Das visuelle Vokabular besteht lediglich aus drei Elementen. Eine Entitat (Entity)
wird als Rechteck dargestellt und steht fiir ein konkretes Objekt. Die Beziehung
(Relationship) verkniipft zwei oder mehrere Entitdten miteinander und wird als Raute
visualisiert. Eine Eigenschaft (Attribute) wird einer Entitét zugewiesen und durch
eine Ellipse dargestellt. An den Verkniipfungen kann zudem auch dargestellt werden,
wie viele Entitdten von einer anderen Entitét ausgehen kénnen. Entweder kann dies
durch eine Zahl, oder ein Sternchen festgelegt werden. Sehr haufig findet man die die
Zahl 1 oder auch 0..1, d.h. es kénnen null oder eine Entitéit existieren. Das Sternchen

bedeutet, dass beliebig viele Entitaten existieren konnen. [Che04]

Abbildung 4.12 zeigt zwei ER-Diagramme. Im obigen Diagramm besitzt die Entitét
Angestellter die Attribute Name und Kiirzel. Die Eins neben der Angestellten
Entitat in Verbindung mit der Beziehung und der Entitdt Projekt bedeutet, dass ein
Angestellter ein Projekt leitet. Hier miissen wir jedoch das Sternchen bei der Entitét
Projekt betrachten. Daraus folgern wir, dass ein Projektleiter mehrere Projekte leiten
kann.

Das zweite Diagramm stellt eine Entitdt Autor dar, welche zwei Attribute besitzt:
Name und Alter. Weiterhin existiert die Entitat Buch, welche als Attribute die ISBN
und einen Namen besitzt. Hier kann man also als erstes feststellen, das null oder
mehr Autoren null oder mehr Biicher verfassen. Im unteren Teil des Diagramms steht
vereinfacht, dass ein Verlag einen Namen hat und dieser null oder mehrere Biicher

verlegt.

Aufgrund ihres geringen visuellen Vokabulars, sind Entity-Relationship-Diagramme,
einfach zu lesen, schnell erlernbar und benutzerfreundlich. Zudem kénnen Sie Daten
unabhangig vom Datenmodell darstellen. Wie jedoch auch schon bei den Petri Netzen,
sind Entity-Relationship Diagramme ab einer gewissen Grofle uniibersichtlich und
eignen sich dadurch ebenfalls nicht fiir die Darstellung von Topologien. Ebenso
wie Petri Netze lassen sich Entity-Relationship-Diagramme nicht fiir dynamische
Verfahren anwenden. Dies liegt an der Tatsache, das Entity-Relationship-Diagramme
keine Operationen besitzen, welche dynamische Modellierung ermoglicht, wodurch
ein Entity-Relationship Diagramm nur zur statischen Modellierung eingesetzt werden
kann. [Loh05]

4.1.7 HIPO-Diagramm

Ein HIPO (Hierarchy plus Input-Process Output)-Diagramm ermoglicht die Darstel-
lung von Funktionen, die in einem System ausgefithrt werden. Jede Funktion wird
durch die Eingabe, die Verarbeitung und die Ausgabe beschrieben. HIPO-Diagramme
wurden um 1970 von IBM entwickelt. [Wik13e]

37



4 Analyse existierender visueller Notationen

.
Angestellter | @ Projekt

Autor @ Buch

.‘

Abbildung 4.12: Beispiel eines Entity-Relationship-Diagramms nach [Wik13a].

Grundsétzlich besteht ein HIPO-Diagramm aus zwei Teilen: Der erste Teil ist die
Hierarchie, durch die festgelegt wird, welche Prozesse welche Unterprozesse besitzen.
Im zweiten Teil sind die Eingabe, der zustidndige Prozess und die resultierende
Ausgabe beschrieben. [Wik13e]

Abbildung 4.13 zeigt ein HIPO-Diagramm, in dem die Eingaben , Materialbuchfiih-
rung”, ,,Lohnbuchfiihrung, ,,Anlagenfiithrung, ,direkt“ und ,Debitoren* in den
Prozess , Erfassung® einflielen. Fiir einen weiteren Prozess ,,Gliederung® existiert die
Eingabe ,Angabe zu Art der Leistungsabhéngigkeit Erfassungsart“. Letzteren Prozess
benotigt die Ausgabe des ersten Prozesses, sodass eine Abhéngigkeit zwischen den

Prozessen besteht.

Abhéngigkeiten lassen sich zwischen beliebigen Prozessen definieren, sodass einfache

Prozesse zu grofieren, komplexeren Prozessen zusammengesetzt werden kénnen.

HIPO-Diagramme erlauben die Darstellung von komplexen Ablaufen. Zudem kénnen
mittels HIPO-Diagrammen Systeme bis hin zur Funktionsebene strukturiert wer-
den. Zur Bestimmung der Komplexitiat einer Funktion kénnen HIPO-Diagramme
verwendet werden. Jedoch werden HIPO-Diagramme, wie die zuvor vorgestellten
Diagrammtypen, auch ab einer gewissen Grofle uniibersichtlich. Ein weiterer Nachteil

ist dass sich nur Programm- und keine Datenfliisse darstellen lassen. [LS78]

38



4 Analyse existierender visueller Notationen

Kostenrechung
0
Kostenarten- Kostenstellen- Kostentrager-
Rechnung Rechnung Rechnung
1 2 3
Erfassung Gliederung Gemeinkosten- Kostenstellen- Kostentrager- Kostentrager-
Ges.-Kosten / in Kosten / Verrechnung Planung Stiickrechnung Zeitrechnung
Erlose Erlose
11 1.2 2.1 2.2 3.1 3.2
Eingabe (Input) Verarbeitung (Process) Ausgabe (Output)

Materialbuchfiihrung

Lohnbuchfiihrung Ej\ \
\\*:{ﬁ Nach bestimmten
Anlagenfihrung Ej 1 » Abrechnungsperioden erfalte

.1 Erfassung >

// Kosten und Erlése

Ldirekt”
Debitoren /Kreditoren

. et Kosten- und Erlésarten
Angaben zur Art der Leistungsabhangigkeit Einzelkosten

» 1.2 Gliederun
Erfassungsart {—gJ Gemeinkosten

v

Abbildung 4.13: Beispiel eines HIPO-Diagramms nach [Fri02].
4.2 Geschiaftsprozesse

4.2.1 Petri-Netz

Die erste visuelle Notation welche betrachtet werden soll, sind Petri-Netze. Petri
Netze dienen zur Analyse, Modellierung, und Simulation von verteilten dynamischen
Systemen mit nebenlédufigen und nichtdeterministischen Vorgédngen. Petri Netze gibt
es schon seit den 1960er Jahren und wurden von ihrem Namensgeber, Carl Adam
Petri entwickelt. Petri Netze entstanden aus endlichen Automaten und sind aus
zwei verschiedenen Arten von Knoten aufgebaut, den Stellen und Transitionen. In
Stellen liegen wahrend der Ausfithrung Tokens. Transitionen verschieben Tokens an
andere Stellen. Zwischen Stellen und Transitionen kénnen Verbindungen existieren.
Die Verbindungen werden auch als Kanten bezeichnet. Existiert eine Verbindung
zwischen einer Stelle und einer Transition kann die Transition ausgefithrt werden
sobald die benotigte Anzahl der Tokens an ihr anliegt. Dies resultiert daraus, dass
zusatzlich an den eingehenden und auch den ausgehenden Kanten einer Transition,
Bedingungen erstellt werden kénnen. So kann zum Beispiel eine Transition erst einen
Token erhalten wenn in der Stelle aus der der Token kommt zwei Tokens anliegen.
Dies erméglicht die Erzeugung von neuen Tokens aber auch die Reduzierung von

schon vorhandenen Tokens.

39



4 Analyse existierender visueller Notationen

Abbildung 4.14 zeigt ein Petri-Netz, das aus sechs Stellen und vier Transitionen
besteht. Zu Beginn liegen in der Start Stelle und in Kunde am Schalter 1 jeweils ein
Token. Die erste Transition welche gefeuert werden kann ist die Kunden Auskunft.
Der Token wird aus Kunde am Schalter 1 in Schalter frei und in Kunde informiert
gelegt. Kunde am Schalter 1 ist nun nicht mehr belegt. Zum gleichen Zeitpunkt wird
aber auch die Transition ,Kunde zu Schalter 2“ gefeuert. Dies resultiert aus den
belegten Stellen Schalter frei und Start. Nach den ersten beiden Schritten wurden also
zwel Transitionen gefeuert und einige Tokens verschoben. Da es in diesem Petri-Netz
keinen Fangzustand gibt und die Tokens immer wieder erzeugt werden, kann dieses

Petri Netz unendlich viele Zustande durchlaufen.

Schalter frei

Kunde zu Kunden
Schalter 1 Auskunft

Kunde am

Schalter 1

Kunde am Kunde
Start . .

Schalter 2 informiert

Kunde zu Kunden
Schalter 2 Auskunft

Schalter frei

Abbildung 4.14: Beispiel eines Petri-Netzes nach [sof]

Petri-Netze ermoglichen komplexere Vorgédnge zu beschreiben, obwohl ihre Syntax
sehr einfach ist. Durch diese sehr simple Syntax kann die Erstellung von solchen Petri-
Netzen schnell erlernt und angewandt werden. Zusétzlich ermoglichen Petri-Netze eine
einfache Situationsanalyse durch die Verwendung von Tokens. Der Aufbau eines Petri
Netzes erlaubt auch die Modellierung von genauen Abldufen und Vorgéingen, welche
mit Vor- und Nachbedingungen erstellt werden. Leider existieren fiir die praktische
Anwendung keine einheitlichen Notationen fiir hohere Petri Netze. Dadurch ist
die Erstellung dieser hoheren Petri Netze sehr aufwindig und die Analyse dieser

oft sehr kompliziert. Petri-Netze sind auflerdem statische Strukturen wodurch ihre

40



4 Analyse existierender visueller Notationen

Einsatzmoglichkeiten beschrankt sind. Aus Mangel einer einheitlichen Vorgehensweise
zur Erstellung von Petri Netzen, konnen bei der Erstellung eines Petri Netzes schon
Probleme auftreten. Zuletzt sind Petri-Netze ab einer gewissen Grofle uniibersichtlich.
Aus diesem Grund eigenen sich Petri Netze nicht zur Darstellung von komplexeren

Prozessen, wie sie in Managementpldanen und Topologien zu finden sind.

4.2.2 GWorkflowDL

Die néchste Notation die der Analyse unterzogen wird ist die Generic Workflow
Description Language (GWorkflowDL). Die grundlegende Sprache der GWorkflowDL
ist XML. Die GWorkflowDL eignet sich um Geschéftsprozesse und ausfiithrbare
Prozesse zu beschreiben. Die GWorkflowDL basiert auf hoheren Petri Netzen und
wird vom Frauenhofer Institut fiir Rechnerarchitektur und Softwaretechnik seit
2001 entwickelt. (Quelle Wiki) Im GWorkflowDL werden die Aktivitdten eines
Prozesses durch Transitionen dargestellt. Die Tokens repriasentieren die verwendeten
Daten. Neben der Modellierung und der Analyse dient das GWorkflowDL auch zur
Uberwachung und der Ausfithrung von Prozessen. Dies resultiert daher, dass sich
Kontrollfluss und Datenfluss mittels des GWorkflowDL gut beschreiben lassen. Die
GWorkflowDL kann sowohl technische Prozesse als auch abstrakte Geschéftsprozesse
abbilden. [Wik13d]

In Abbildung 4.15 ist ein GWorkflowDL-Diagramm dargestellt. Zu Anfang liegen
zwei Token, die zu bearbeitenden Daten, in der Aktivitdt beginn. Die Daten werden
nun an den Prozess geliefert, der als Transition dargestellt wird. Nach Durchlauf
des Prozesses werden die bearbeiteten Daten in die Aktivitdten ausgabeDaten und
wurdeSortiert geschrieben. Hier ist leicht zu erkennen, das Riickmeldung iiber den

Prozess in der darauffolgenden Aktivitit gegeben wird.

Wie unschwer erkennbar ist, lassen sich mit dem GWorkflowDL komplexe Prozesse
gut modellieren. Meist jedoch ist das Resultat sehr komplex und daher schwer zu

analysieren.

4.2.3 Nassi-Shneiderman-Diagramm

Nassi-Shneiderman-Diagramme (Struktogramme) bieten eine weitere Moglichkeit der
Darstellung von Daten in graphischen Sichtweisen. Nassi-Shneiderman-Diagramme
dienen hauptséchlich der Erstellung von Programmentwiirfen.

Nassi-Shneiderman-Diagramme wurden von Isaac Nassi und Ben Schneiderman
1972/73 erfunden. Nassi-Shneiderman-Diagramme zerlegen das Gesamtproblem in

mehrere kleinere Teilprobleme. Nassi-Shneiderman-Diagramme werden auch oft in

41



4 Analyse existierender visueller Notationen

beginn sortieren ausgabeDaten

Zustand
. eingabe ausgabe
P

wurdeSortiert

Abbildung 4.15: Beispiel eines GWorkflowDL-Diagramms nach [Frall].

der Top-Down Entwicklung von Programmen verwendet um an diesen eine Program-
manalyse zu ermoglichen. Die Darstellung von Nassi-Shneiderman-Diagramme sind
hintereinander geschaltete oder geschachtelte Strukturblocke. [Wik13g]

Abbildung 4.16 zeigt ein Nassi-Shneiderman-Diagramm. Als erstes wird die Ausgabe
auf 2,3 gesetzt. Im néchsten Schritt wird die Variable n mit dem Wert fiinf initialisiert.
Nun existiert eine Schachtelung. Die néchsten Schritte werden laut dem Diagramm
ewig durchlaufen. Wir haben in diesem Beispiel also eine unendliche Schleife. Zu
Beginn wird i mit drei initialisiert. Nun folgt eine weitere Schleife. In dieser Schleife
wird bei jedem Durchlauf der Wert zwei auf den Wert von i hinzu addiert. Wenn die
angegebene Bedingung nicht mehr gilt, wird der néichste Programmschritt ausgefiihrt.
In diesem Schritt wird gepriift ob i*i > n ist. Anhand vom Wahrheitswert wird dann

entscheiden in welchem Zweig das Programm weiterlaufen soll.

Anhand des Beispiels konnte man erkennen, dass Nassi-Shneiderman-Diagramme
sehr leicht erstellt werden kénnen. Zudem erzwingt ein Nassi-Shneiderman-Diagramm
einen disziplinierten Programmablauf zu gestalten. Durch ihre Simplizitéit sind Nassi-
Shneiderman-Diagramme leicht versténdlich und schnell auch von Laien erstellbar.
Wie aber auch schon bei den vorherigen Diagrammen, kénnen Nassi-Shneiderman-
Diagramme durch ihre Grofie oder die dargestellten Algorithmen sehr komplex und

daher schwer zu lesen werden. [Gab)]

4.2.4 Folgeplan und Flussdiagramm

Der néchste Diagramm-Typ der betrachtet werden soll, ist der Folgeplan bzw. die

Flussdiagramme. Flussdiagramme werden 6fters auch als Programmstrukturplidne

42



4 Analyse existierender visueller Notationen

Ausgabe 2, 3

solange (i *i<n)und (n modi!=0)

i=i+2

i*i>n
wahr falsch

Ausgabe n

n:=n+2

wiederholen

Abbildung 4.16: Beispiel eines Nassi-Shneiderman-Diagramms nach [LR09].

bezeichnet. Ein Flussdiagramm beschreibt einen Algorithmus bzw. die Folge der
im Algorithmus abgehandelten Operationen. Ein Flussdiagramm unterstiitzt somit
den Entwickler bei der Programmierung bzw. der Umsetzung des Algorithmus.
Flussdiagramme gehdren zu einer der Diagrammarten welche genormt sind, wodurch
die Arbeit mit ihnen deutlich erleichtert wird. Das Flussdiagramm soll nun anhand
eines Beispiels vorgestellt werden. Flussdiagramme bestehen aus Knoten und Kanten.
Die Knoten haben jedoch unterschiedliche Formen und Farben, abhéngig davon
was sie zu bedeuten haben. Kanten stellen den Informationsfluss der Daten dar. In
Abbildung 4.17 wird mit dem Startknoten begonnen. Danach folgt die erste Aktivitat,
»,Zum Telefon gehen“. Danach folgt die ndchste Aktivitdt ,,Horer abnehmen*. Nun
wird durch eine Bedingung, dargestellt durch eine Raute, abgefragt. Falls es ein
Ankommender Ruf existiert, wird erst die Aktivitdt ,,Gespréch fithren* durchgefiihrt
und danach ,Horer auflegen®. Im Falle, dass die Bedingung ,,Ankommender Ruf*
falsch ist, folgt die Aktivitdt ,Nummer wéhlen“. Hiernach folgt die néchste Bedingung.
Falls ein Gesprichspartner ans Telefon geht, wird das Gespréch gefithrt. Ansonsten

wird der Horer aufgelegt. Nach der Aktivitat ,Horer auflegen® wird Stop aufgerufen.

Flussdiagramme bieten gegeniiber anderen Diagrammtypen sehr erhebliche Vorteile.

Unter anderem besitzen Flussdiagramme ein geringes visuelles Vokabular wodurch

43



4 Analyse existierender visueller Notationen

I Start I

y

Zum Telefon
gehen

|

Horer
abnehmen

Ankomme
nder Ruf

Nummer
wahlen

Horer
auflegen

Abbildung 4.17: Beispiel eines Flussdiagramms nach [www].

sie in sehr kurzer Zeit erlernbar sind. Flussdiagramme finden ihre Anwendung nicht
nur im IT-Bereich sondern auch in anderen Bereichen wie z.B. Prozessplanung
und Durchfiihrungsstrategien. Leider existieren fiir Flussdiagramme keine Symbole
fir grundlegende Kontrollstrukturen. Daraus ist es in Flussdiagrammen schwer zu
erkennen ob Strukturen geschachtelt sind oder nicht. Flussdiagramme lassen sich
leider nicht optimal fiir objektorientierte Programmierkonzepte einsetzen. Hier eignen

sich UML-Diagramme besser.

4.2.5 Datenflussdiagramm

Datenflussdiagramme sind ein weiterer Diagrammtyp, die nun ndher betrachtet
werden sollen. Das Datenflussdiagramm beschreibt den Fluss von Daten durch
das System. Hierzu gehoéren sowohl die Bereitstellung, die Verdnderung und die

Verwendung der Daten. Datenflussdiagramme lassen sich auch zur Darstellung von

44



4 Analyse existierender visueller Notationen

Prozessen und Tétigkeiten verwenden. Des Weiteren sind Datenflussdiagramme
ebenso wie Folgepldne genormt (DIN66001). Datenflussdiagramme besitzen vier
verschiedene graphische Elemente. Das erste Element ist der Datenspeicher. Dieser
wird mittels zwei paralleler Linien dargestellt, zwischen welchen der Name des
Speichers angegeben wird. Das zweite Element ist der Datenfluss. Der Datenfluss
wird durch einen Pfeil mit Namen dargestellt. Das dritte Element ist die Funktion,
welche durch einen Kreis mit Namen dargestellt wird. Das vierte und letzte Element

ist die Schnittstelle. Sie wird durch ein Rechteck mit Namen dargestellt.

Abbildun 4.18 zeigt ein Datenfluss-Diagramm. Dieses enthélt drei Datenspeicher,
acht verschiedene Datenfliisse, zwei Funktionen und zwei Schnittstellen. Von der
Kundenschnittstelle werden Bestellungsdaten an die Bestellung bearbeiten Funktion
gesendet. Von hier aus werden die Kundendaten aus der Kunden Datei und Bestands-
daten aus der Lagerbestands Datei geladen. Die Bestellung bearbeiten Funktion
schickt dann Entnahmedaten an die Lagerbestands Datei und Lieferungsdaten an die

Funktion ,,Rechnung schreiben”’

. Diese greift wieder auf die Kundendatei zu, schickt
Rechnungssummen an die Debitorendatei und sendet schliellich die Rechnungsdaten

an die Kundenschnittstelle.

Kunden - Datei

Kundendaten

Bestellung Lieferung Rechnung

Bestellung
bearbeiten

Rechnung

schreiben Kunde

Kunde

Bestands-
daten

Entnahme-
daten

Rechnungs-
summen

Lagerbestands - Datei Debitoren - Datei

Abbildung 4.18: Beispiel eines Datenflussdiagramms nach [Win13].

Das Datenflussdiagramm ist, da es nur auf vier Elementen aufgebaut ist, sehr schnell
und einfach erlernbar. Zuséitzlich ist es eben durch diese vier verschiedenen Elemente,
welche das visuelle Vokabular ausmachen, sehr gut verstandlich und leicht lesbar. Eine
weitere Eigenschaft des Datenflussdiagramms ist, dass man den theoretischen mit dem
tatséchlichen Ablauf vergleichen kann. Jedoch kommt bei dieser ansonsten schénen

Diagrammart, die Uniibersichtlichkeit bei grofieren Diagrammen zum Vorschein.

45



4 Analyse existierender visueller Notationen

4.2.6 UML-Aktivitatsdiagramm

Das UML-Aktivitdtsdiagramm ist ein Verhaltensdiagramm. Es beschréankt sich auf
die dynamischen Prozesse des Systems. Aktivitdtsdiagramme stellen die Verkniipfung
von elementaren Aktionen mit Kontroll- und Datenfliisssen graphisch dar. Aktivi-
tdtsdiagramme eignen sich sehr gut zur Beschreibung von Anwendungsfillen. In
Aktivitatsdiagrammen existieren Token, welche den Durchlauf durch das Aktivitéts-
diagramm darstellen. Innerhalb des Aktivitdtsdiagramms existieren zudem Aktionen,
welche auch als Unteraktionen dargestellt werden konnen. [AMA, RJB99]

Anhand von Abbildung 4.19 wird nun die allgemeine Funktionsweise eines Akti-
vitdtsdiagramms erldutert. Die erste Aktion zu welchem der erste Token gesendet
wird, ist die Gast erscheint Aktion. Von dieser Funktion wird nun eine Subaktion
anhand von dem Status der Eingabe getffnet. Falls der Gast neu ist, wird die Aktion
Gast aufnehmen aufgerufen. Der Gast wird als aufgenommen markiert und kann
nun verwaltet werden. Falls der Gast als bekannt erkannt worden wére, wire die
Gast verwaltet Aktion direkt nach der Gast erscheint Aktion aufgerufen worden. Die
letzte Aktion, die hier im Beispiel aufgerufen wird, ist die Belegung erstellen Aktion.

Danach ist das Aktivitdtsdiagramm abgearbeitet.

An obigem Beispiel konnte man sehr gut die Vorteile des Aktivitdtsdiagramms
verdeutlichen. Aktivitdtsdiagramme enthalten vereinheitlichte Symbole welche der
Prozessdarstellung dienen. Durch diese Standardisierung, muss nur einmal die Syntax
verstanden worden sein um sie auf alle anderen Aktivitdtsdiagramme anwenden
zu konnen. Dies ermoglicht das Ablaufe leicht und effizient nachvollzogen werden
kénnen. Zudem kommt hinzu, dass Aufgrund des UML-Standards ein relativ ho-
her Bekanntheitsgrad existiert, welches die Verwendung von Aktivitdtsdiagrammen
positiv beeinflusst. Es existieren jedoch auch hier Nachteile die, die Verwendung
von Aktivitdtsdiagrammen fiir Topologie-Darstellungen nicht begiinstigen. Der erste
dieser ist, dass durch Aktivitdtsdiagramme hauptsichlich Abldufe dargestellt werden
konnen, welche technisch orientiert sind. Zudem gibt es nur unzureichende Vorga-
ben zur Struktur des Prozessmodells. Aktivitdtsdiagramme lassen sich auch nur fiir
den Einzelprozess anwenden, da keine Moglichkeiten gegeben sind um komplexere
Prozesse, oder welche die in sich verschachtelt sind, darstellen zu konnen. Aussagen
iiber die Prozessgiite lassen sich auflerdem nicht aus dem Modell ablesen. Das Ak-
tivitdtsdiagramm eignet sich nicht fiir die direkte Automatisierung eines Prozesses.
[AMA, RJB99]

46



4 Analyse existierender visueller Notationen

<<signal receipt>>
Gast erscheint

[Gast neu] [Gast bekannt]

[ Gast registrieren ]

I

|

|

| f

\V2 >L Gast verwalten

Gast
[aufgenommen]

[ Belegung erstellen J

o

Abbildung 4.19: Beispiel eines UML-Aktivitdtsdiagramm nach [Inf13].

4.2.7 Business Process Model and Notation (BPMN)

Ein weiterer Diagrammtyp ist die Business Process Model and Notation (BPMN).
BPMN ist eine graphische Spezifikationssprache in der Wirtschaftsinformatik. Mit-
hilfe der bereitgestellten Symbole lassen sich Geschéftsprozesse und Arbeitsablaufe
modellieren und dokumentieren. Ab 2001 wurde BPMN von IBM entwickelt und
angewandt und seitdem weiterentwickelt. BPMN ist mit EPK verwandt. In der
BPMN existieren folgende graphische Elemente: Flow-Objekts sind die Knoten in
den Geschéftsprozessdiagrammen. Connecting-Objekts verbinden Knoten in den
Geschéftsprozessidagrammen. Pools und Swimlanes sind die Bereiche in welchen
Aktoren und Systeme dargestellt werden. Artifakts sind weitere Elemente wie dataob-
jects groups und annotions zur weiteren Dokumentation. In folgendem Beispiel wird

ein Vertriebssystem dargestellt. Begonnen wird mit einer Mitteilung in Schriftform,

47



4 Analyse existierender visueller Notationen

welche an das Subsystem Lieferauftrag buchen und einmal an das Datenmodel Liefe-
rung geschickt wird. Lieferung buchen legt eine neue Lieferung an. Dies geschieht in
einem Subsystem. Diese liefert wiederrum Daten an den Lieferung warten Prozess.
Bedingungen koénnen ebenfalls in die Systemabléufe eingespielt werden. Hier wird
gepriift ob fiir eine Lieferung das Avis System gebraucht wird oder nicht. Im Falle,
dass es nicht gebraucht wird, folgt der Endzustand und das Vertriebssystem ist bis

zur Eingabe neuer Daten inaktiv.

Lieferung

\
|
|
|
|
|
|
|
|
|

Vertrieb

Liefertermin
avisieren

h
=] a
Lieferauftrag Auf Lieferung Avis
buchen warten notwendig

T
I ?
|
! i
|
LieferungAnlegen E B Kommissioniert
I |
A2

| System zur Tourenplanung von Lieferungen |

Abbildung 4.20: Beispiel eines BPMN-Diagramms nach [R09].

In Abbildung 4.20 kann man die Grundstruktur der BPMN sehr gut erkennen. Die
Prozesse lassen sich sehr einfach in den Lanes darstellen. Bei Bedarf kann man auch
weiter ins Detail gehen wie im zweiten Beispiel zu sehen war. BPMN eignet sich
sehr gut um IT und Geschéftsprozesse miteinander zu verbinden. Auch ist sie gut
fiir grofere Projektteams geeignet, welche aus unterschiedlichen Bereichen kommen
kénnen. BPMN ist wie UML durch die OMG standardisiert. Andererseits ist BPMN
nicht so leicht zu erlernen, da ein sehr grofies Vokabular existiert was die Komplexitét
der Diagramme immens erhoht, was jedoch anhand der Beispiele nicht auf Anhieb
ersichtlich ist. Viele fachliche Aspekte des Prozesses werden durch BPMN nicht
dargestellt.

4.2.8 Ereignisgesteuerte Prozesskette (EPK)
Die Ereignisgesteuerte Prozesskette (EPK) ist eine weitere graphische Visualisie-

rung fiir Pldne. Geschéftsprozesse werden hier als zeitliche logische Abfolge von
betriebswirtschaftlichen Aufgaben dargestellt. EPK wurde 1992 an der Universitét

48



4 Analyse existierender visueller Notationen

des Saarlandes entwickelt. EPK beinhaltete drei grundlegende Notationselemente:
Event, Funktion, und Logische Operatoren (And, Or, Xor) [Wik13b, Enz, re-|

In Abbildung 4.21 ist eine einfache EPK dargestellt. Das erste Event Auftrag ist
eingegangen, 16st die Funktion Kundendaten Priifen aus. Nachdem die Kundendaten
geprift wurden, wird das Event Kundendaten sind gepriift aufgerufen, was sofort die
néchste Funktion aufruft. Dies geschieht bis keine Funktion mehr nach einem Event

aufgerufen werden kann.

Auftrag ist

eingegangen

Y

Kundendaten
prufen

Y

Kundendaten
sind gepruft

Y

Machbarkeit
prifen

Machbarkeit

ist gepruft

Abbildung 4.21: Beispiel eines EPK-Diagramms nach [Ges12].

Das Beispiel veranschaulicht die Einfachheit von EPK. EPK eignet sich aufgrund
seiner Struktur fir eine breite Anzahl von Anwendungen. EPK ist auflerdem sehr
umfassend und bietet Konstrukte fiir organisatorische als auch IT Aspekte. Ebenfalls
lasst sich EPK gut in andere Notationen integrieren. Durch seine Simplizitat kann
EPK auch von nicht IT-Leuten verstanden werden. Durch seine weite Verbreitung
findet EPK auch in der Praxis Anwendung. Zu den genannten Vorteilen liegen bei
EPK auch einige Nachteile anbei. Einige Konstrukte sind nicht eindeutig spezifiziert.
Dies fiithrt zu mehrfachen Auslegungsmoglichkeiten der Konstrukte, was nicht der

Verstéindlichkeit dient. Um EPK fiir weitere Anwendungsbereiche nutzen zu kénnen,

49



4 Analyse existierender visueller Notationen

ist eine grundsitzliche Uberarbeitung fiir diese Anwendungsbereiche nétig. EPK ist
nicht intuitiv, wodurch ein hoher Schulungs- und Einarbeitungsaufwand gefordert
wird.[Wik13b, Enz, re-]

4.3 Auswertung und Schlussfolgerungen

Vino4dTOSCA (siehe Abschnitt 4.1.1) ist die einzige visuelle Notation fiir Anwen-
dungstopologien, die bereits auf TOSCA-Topologien ausgerichtet ist und zudem die
aufgestellten Anforderungen aus den Abschnitten 3.1, 3.2 und 3.3 erfiillt. Lediglich
die Anforderungen A16, A17 und A20 werden nicht erfillt, da mit VinodTOSCA,
wie bereits erwahnt, ausschliellich Topology Templates visualisiert werden kénnen.
Fiir Node Types und Relationship Types existieren folglich keine grafischen Ele-
mente'”. Auch sieht die Notation keine Méglichkeit zur Integration von visuellen
Prozessnotationen vor. Damit die genannten Anforderungen erfiillt werden, miissen
entsprechende Anpassungen bzw. Erweiterungen an der bestehenden Vino4TOSCA-

Notation vorgenommen werden.

Aus dem genannten Grund wurde daher die Entscheidung getroffen, die neue Notation
auf Basis von VinodTOSCA zu entwerfen bzw. eine weiterentwickelte Version von
Vino4dTOSCA bereitzustellen. Bedingt durch diese Entwurfsentscheidung wird als
Name fiir die neue Notation Vino4TOSCA 2 gewahlt.

Alle weiteren visuellen Notationen im Bereich der Anwendungstopologien erfiillen die
Anforderungen A10, A16, A17, A19, A20 nicht, da keine visuellen Dialekte vorgesehen
sind bzw. nicht die Md&glichkeit zur Erstellung von Profilen angeboten wird und sie
weiterhin nicht TOSCA-spezifisch ausgerichtet sind. Komponentendiagramme, HIPO-
Diagramme und Acme erfiillen zusétzlich A23 nicht, da keine visuellen Elemente
vorhanden sind, die sich durch abgerundete Ecken auszeichnen, was eine visuell
ansprechende Eigenschaft darstellen wiirde. Die letzten beiden Notationen sind
zudem nicht selbsterklarend, sodass A21 nicht erfillt ist. Fiir ER-Diagramme ist
A5 nicht gegeben, da weder Abstraktion noch Modularisierung unterstiitzt wird.
HIPO-Diagramme und ER-Diagramme sind nicht erweiterbar, d.h. deren Elemente
konnen nicht mit zusétzlichen Informationen oder Eigenschaften versehen werden.

Aus diesem Grund ist fiir die genannten Notationen A18 nicht erfiillt.

Fir Vino4dTOSCA 2 wurde aus den vorgestellten Notationen fiir Anwendungstopo-
logien, mit Ausnahme von VinodTOSCA, lediglich zwei Entwurfsentscheidungen

iitbernommen bzw. als brauchbar eingestuft: Wie bereits angesprochen, wird in einem

1Tn einem Vino4dTOSCA Node Template Shape bzw. Relationship Template Shape kann die ID
und der Name des zugehorigen Node Types bzw. Relationship Types definiert werden. Separate
grafische Elemente fiir Typ-Elemente existieren nicht.

20



4 Analyse existierender visueller Notationen

Komponentendiagramm eine Schnittstelle einer Komponente durch einen nicht aus-
gefiillten Kreis dargestellt, der mittels einer Linie mit der Komponente verbunden ist.
Die Verwendung der Schnittstelle durch eine weitere Komponente wird durch einen
offenen Halbkreis visualisiert, welcher den Kreis halb umschliefit. In Vino4TOSCA 2
soll diese Darstellungsweise fiir eine Beziehung zwischen der Schnittstelle eines Node
Type bzw. Relationship Type und einer Aktivitéit eines Plans, welche eine Operation
der Schnittstelle aufruft, zum Einsatz kommen. Da in einem Komponentendiagramm
lediglich auf Schnittstellen-Ebene eine Beziehung dargestellt werden kann, hier jedoch
konkret eine Operationsaufruf einer Schnittstelle dargestellt werden soll, miissen
Anpassungen an der Darstellung vorgenommen werden. Ebenso miissen Anderungen
bzw. Erweiterungen vorgenommen werden, damit zwischen ,,Source Interfaces* und
,Target Interfaces“ eines Relationship Type unterschieden werden kann. Weiterhin
wird in einem Komponentendiagramm eine Komponente mit dem Schliisselwort bzw.
Stereotyp ,,«component»“ dargestellt. In VinodTOSCA 2 soll die ID des zugehorigen
Typ-Elements durch spitze Klammern eingeschlossen bzw. durch diese hervorgehoben

werden.

Unter den vorgestellten visuellen Notationen fiir Geschéaftsprozesse existiert keine
Notation, die sich fiir das Management von Anwendungen etabliert hat. Wir nehmen
an, dass diese Feststellung auf alle visuellen Prozessnotationen iibertragbar ist. Am
ehesten wiirde sich BPEL fiir die genannte Aufgabe eignen. Keller beschreibt die
automatisierte Provisionierung (Bereitstellung) von Anwendungen mit BPEL [KB04].
Jedoch existiert fiir BPEL keine standardisierte visuelle Notation. Stattdessen exis-
tieren eine Reihe von Ansétzen, welche die Konstrukte von BPEL mittels Icons oder
Shapes visualisieren. Falls Modellierer und Leser unterschiedliche grafische Elemente

einsetzen, fithrt dies u. U. zu Missverstédndnissen oder Fehlinterpretationen.

Aus den genannten Griinden wurde die Entscheidung getroffen, alle visuelle Notatio-
nen fiir Geschéftsprozesse zur Integration mit TOSCA-Topologien (mit zugehorigen
Node Types und Relationship Types) zu akzeptieren. Da die vorgestellten Notationen
keine signifikanten Gemeinsamkeiten zeigen, ist es nicht moglich, die grafischen Ele-
mente fiir TOSCA-Konstrukte so zu entwerfen, dass immer eine eindeutige Trennung
zwischen Topologie und Plianen gegeben ist (A25). Zur Erfiilllung dieser Anforderung
miissen im Rahmen des Entwurfs von VinodTOSCA 2 daher zusétzliche visuelle

Variablen definiert werden.

51



5 VinoJTOSCA 2

5 Vino4TOSCA 2

VinodTOSCA 2 ermdglicht die grafische Modellierung von TOSCA Topology Tem-
plates, bestehend aus (1) Node Templates und (2) Relationship Templates, (3) Node
Types, (4) Relationship Types und (5) Plinen eines TOSCA-Modells (A16, A17,
A20). Fiir letztere Konstrukte definiert Vino4dTOSCA 2 keine visuellen Elemente.
Stattdessen sollen (entsprechend der TOSCA Sperzifikation) bereits existierende
visuelle Notationen fiir Geschéftsprozesse eingesetzt werden, insbesondere BPMN
[TOS13]. Eine Beziehung zwischen einer Aktivitit eines Plans und einer Schnittstelle
eines Node Types bzw. Relationship Types, die zustande kommt, falls in der Aktivitit

eine Operation der Schnittstelle aufgerufen wird, kann visualisiert werden (A26).

Die visuelle Notation erlaubt die Definition von Profilen (A7, A10, A23). Wie bereits
erwihnt, ist ein Profil eine Erweiterung bzw. Anpassung der Notation fiir bestimmte
Bediirfnisse oder Fahigkeiten von Benutzern in einer bestimmten Doméne [BBK ™ 12a].
Eine Aufgabe kann so effektiv und intuitiv gelést werden kann [BBK'12a]. Profile
beschrianken die Variabilitdt von visuellen Variablen. Beispielsweise wére es denkbar
als Textfarbe lediglich schwarz zuzulassen. Basis-Notation und Profile bilden visuelle
Dialekte [BBK'12a]. Im folgenden Abschnitt 5.1 werden die visuellen Variablen

genannt, die durch Profile eingeschrankt werden diirfen.

5.1 Visuelle Variablen

VinodTOSCA 2 verwendet die acht visuellen Variablen von Bertin [Ber83] zur Kodie-
rung von Informationen (A7): (1) Horizontale und (2) vertikale Position, (3) GroSe,
(4) Helligkeit, (5) Muster, (6) Farbe, (7) Ausrichtung und (8) Form. Abbildung 5.1
veranschaulicht die Variablen bzw. zeigt beispielhaft, welche Anderungen durch diese

hervorgerufen werden kénnen.

Die Variablen werden in folgende Kategorien eingeordnet:

1. Variablen, die fest definiert sind.
2. Variablen, die durch Profile eingeschréankt werden diirfen.

3. Freie Variablen.

02



5 VinoJTOSCA 2

(1) Horizontale Position

(2) Vertikale Position

|
|
(3) GréRe B
|

(4) Helligkeit

(5) Muster VA

(6) Farbe .

(7) Ausrichtung .

(8) Form .

>» o m| = ml =

Abbildung 5.1: Die acht visuellen Variablen von Bertin.

In Vino4TOSCA 2 sind die Formen und deren Ausrichtung fest vorgegeben, diirfen
also nicht verdndert werden (Kategorie 1). Alle weiteren Variablen sind frei (Kategorie
3), sofern sie nicht durch Profile definiert sind. In einem Profil diirfen die Variablen
Farbe, Helligkeit, Muster und Grofle festgelegt werden (Kategorie 2), da mit diesen
eine hohere kognitive Effektivitat erzielt werden kann. Falls bspw. in einem Profil,
das bei der Modellierung eines Diagramms angewendet werden soll, keine Farbe
fiir die Linien einer Form definiert ist, so darf diese frei gewédhlt werden (visuelle
Variabilitéit). Generell freie Variablen sind die horizontale und vertikale Position
eines visuellen Elements (Kategorie 3). Diese diirfen folglich nicht durch ein Profil

vorgegeben werden.

5.2 Visuelle Elemente

Fiir die meisten visuellen Elemente von Vino4dTOSCA 2 wurden abgerundeten Formen
gewahlt. Diese Entscheidung wurde getroffen, da entsprechend einer Studie von Bar
und Neta [BNO6] abgerundete Formen von Personen bevorzugt werden (A23). Auch
sind jene Formen leichter mit der Hand zu zeichnen (A22) [BBK*12a]. Dies ist
wichtig, da Formen fest definierte Variablen sind (sieche Abschnitt 5.1).

Icons kénnen u. a. zur Beschreibung von visuellen Elemente eingesetzt werden (A3,

A7, A8, A23). Sie benétigen weniger Platz, weisen eine hohere Informationsdichte auf

o3



5 VinoJTOSCA 2

als Text und werden bevorzugt gegeniiber Formen. Weiterhin kénnen sie schneller
verarbeitet und erlernt werden. Icons miissen in einem visuellen Element an die
linke obere Position gesetzt werden (Icon Area), da diese von Personen am meisten
beachtet wird. [BBK™12a)]

Die Schriftart von Text in einem visuellen Element ist nicht vorgegeben [BBK™12a].
Sie kann folglich frei gewéhlt werden, sofern keine Beschrinkung durch ein Profil
vorliegt. IDs miissen unterstrichen werden [BBK™12a]. Die ID des zugehérigen Typ-
Elements (Referenz) ist nicht unterstrichen. Sie wird stattdessen durch vier spitze
Klammern eingeschlossen (vgl. UML-Stereotyp). Die genannten Entwurfsentschei-

dungen tragen zu einer schnelleren Wiedererkennung bei (A3, A8, A21).

Die meisten Formen von Vino4TOSCA 2 kénnen um eine ,,Additional Information
Area“ erweitert werden, in der beliebige Informationen (Text und Bilder) hinterlegt
werden konnen (A16, A18, A21) [BBK'12a]. Insbesondere dient dieses Feld zum
Hinterlegen von Daten, die aus TOSCA-Konstrukten bzw. -Elementen stammen, die
mit Vino4TOSCA 2 nicht direkt représentiert werden kénnen [BBK™12a]. Hierunter
fallen bspw. die Properties (Eigenschaften) eines Node Templates oder Relationship
Templates.

In den folgenden Unterabschnitten soll nun auf die visuellen Elemente von
Vino4dTOSCA im Detail eingegangen werden. Jedes Element wird (insbesondere)
durch die Form, den optionalen bzw. erforderlichen Inhalt, die Semantik und die
visuelle Variabilitdt beschrieben. Wie bereits erwdahnt, kann letztere ggf. durch ein

Profil beschrankt werden.

5.2.1 Node Template Shape

Das Node Template Shape, dargestellt in Abbildung 5.2, représentiert ein Node Tem-
plate eines Topology Templates. Es handelt um ein Rechteck (A3) mit abgerundeten
FEcken, dargestellt mittels einer durchgezogenen Linie. Das Node Template kann
durch ein (1) Icon in der Icon Area (links ausgerichtet), (2) den Namen oder (3) die
ID des Node Template definiert werden (A3), wobei mindestens eine dieser drei Infor-
mationen angegeben werden muss. Falls mehrere textuelle Informationen dargestellt
werden sollen, so muss die visuelle Reihenfolge aus Abbildung 5.2 eingehalten werden.
Mittels einer optionalen Additional Information Area kénnen weitere Informationen
(Text oder Bilder) hinterlegt werden, die nicht direkt in der Form definiert werden
konnen. Dabei handelt es sich um ein weiteres abgerundetes Rechteck, dargestellt
mittels einer durchgezogenen Linie, das unter die Hauptform gesetzt wird. Es befindet
sich hinter der Hauptform, sodass die oberen Ecken verdeckt sind. [BBK'12a]

54



5 VinoJTOSCA 2

Die Hauptform darf ein beliebiges Hintergrundbild enthalten. Icon Area und Text
diirfen folglich nicht iiberdeckt werden. Die Linienfarbe der Hauptform und Additional
Information Area darf beliebig gewédhlt werden, wohingegen der Linienstil nicht
verdndert werden darf (A2). [BBK'12a]

Icon NodeTemplate.Name P Web Application Server
Area NodeTemplate.Id [ [ e WebAppServer

Zusatzliche Informationen

Abbildung 5.2: Vino4TOSCA 2 Node Template Shape mit Beispiel nach [BBK ™ 12a].

5.2.2 Node Type Shape

Das Node Type Shape, dargestellt in Abbildung 5.3, reprisentiert ein Node Type als
ein abgerundetes Rechteck mit durchgezogener Linie. Es kann eine beliebige Anzahl
von Node Template Shapes (sieche Abschnitt 5.2.1) enthalten (auch keine), die Node
Templates représentieren, welche das Node Type referenzieren (A4). Das Node Type
kann durch ein (1) Icon in der Icon Area (links ausgerichtet), (2) den Namen oder
(3) die ID des Node Type definiert werden (A3), wobei mindestens eine dieser drei
Informationen angegeben werden muss. Die genannten Informationen sind durch
eine durchgezogene Linie von den Node Template Shapes getrennt, auch falls keine
Node Templates vorhanden sind. Falls mehrere textuelle Informationen dargestellt
werden sollen, so muss die visuelle Reihenfolge aus Abbildung 5.3 eingehalten werden.
Eine optionale Additional Information Area ermdoglicht das Hinterlegen von weiteren
Informationen. Diese ist ebenfalls ein abgerundetes Rechteck, dargestellt mittels einer
durchgezogenen Linie. Es wird hinter die Hauptform gesetzt, sodass die oberen Ecken
nicht sichtbar sind.

In der Hauptform darf ein beliebiges Hintergrundbild platziert werden. Icon, textuelle
Node Type-Informationen und Node Templates Shapes diirfen folglich nicht tiberdeckt
werden. Die Linienfarbe der Hauptform und Additional Information Area darf beliebig

gewahlt werden, wohingegen der Linienstil nicht verdndert werden darf (A1, A2).

Die Darstellung eines Node Types ist optional. Ein Node Template Shape muss nicht
im entsprechenden Node Type Shape dargestellt werden.

95



5 VinoJTOSCA 2

4 N\ 4 N\
lcon NodeType.Name ’ ApacheDerbyDatabaseType
Area NodeType.ld
- /
Icon NodeTemplatel.Name
Area NodeTemplatel.ld Version: 10.10.1.1
. J
Zusatzliche Informationen 4 N
R MySQL Database Type
. MySQLDatabaseType
: MysQL
L]
4 2\
Icon NodeTemplateN.Name O O User Database
Area NodeTemplateN.Id @ ! > UserDatabase
J
Zusitzliche Informationen (" N
\_ Y, Product Database
Zusatzliche Informationen \_ Y,
N\ J & J

Abbildung 5.3: Vino4dTOSCA 2 Node Type Shape mit Beispielen.

5.2.3 Relationship Template Shape

Das Relationship Template Shape, dargestellt in Abbildung 5.4, représentiert ein
Relationship Template eines Topology Templates als eine Linie (beliebig ausgerichtet),
die an jedem ihren Enden eine beliebige (kleine) Form besitzt, z. B. einen Pfeil (A3).
Der Linienstil darf nicht gestrichelt sein (wie bei einem Visual Group Shape, siehe
Abschnitt 5.2.9), im Ubrigen kann er frei gewiihlt werden (A2). Die Linienfarbe kann
beliebig gewéhlt werden. Ein Relationship Template Shape verbindet zwei Node
Template Shapes (siche Abschnitt 5.2.1) oder Collapsed Visual Group Shapes (siehe
Abschnitt 5.2.9). In letzterem Falle zeigen Quelle und Ziel jeweils auf ein (nicht
sichtbares) Element in der Gruppe. Das Relationship Template kann durch ein (1)
Icon in der Icon Area (links ausgerichtet), (2) den Namen, (3) die ID des Relationship
Template oder iiber (4) die ID des zugehorigen Relationship Type definiert werden
(A3). Letztere Information wird durch vier spitze Klammern eingeschlossen (A3). Sie
referenziert auf ein Relationship Type Shape (siehe Abschnitt 5.2.4) bzw. Relationship
Type mit der angegebenen ID. Zumindest eine der genannten Informationen muss
definiert werden. Falls mehrere textuelle Informationen angegeben werden, so muss
die visuelle Reihenfolge aus Abbildung 5.4 eingehalten werden. Die Icon Area befindet
sich iiber der Linie, falls diese horizontal ist, andernfalls (vertikal oder diagonal)
auf einer beliebigen Seite. In einer optionalen Additional Information Area kénnen

weitere, beliebige Informationen hinterlegt werden. Dabei handelt es sich um ein

o6



5 VinoJTOSCA 2

abgerundetes Rechteck, dargestellt mit einer durchgezogenen Linie, welche unter die
Relationship Template-Linie gesetzt wird und diese beriihrt, falls die Linie horizontal
ist. Andernfalls kann sich die Additional Information Area an einer beliebigen Seite
befinden. Die Linienfarbe der Additional Information Area ist beliebig, wohingegen
der Linienstil nicht verindert werden darf (A1, A2). [BBK™12a]
RelationshipTemplate.Name

Icon Deploy Relation

Area - I:\flatlonsrlpTen:QI.ate I:. . DeplovRelation
<<RelationshipTemplate.RelationshipType.ld>> <<d_u;e lovedOnTypes>

>

Zusatzliche Informationen

Abbildung 5.4: VinodTOSCA 2 Relationship Template Shape mit Beispiel nach
[BBK " 12a).

5.2.4 Relationship Type Shape

Abbildung 5.5 zeigt ein Relationship Type Shape, das ein Relationship Type re-
prasentiert. Es handelt sich um ein abgerundetes Rechteck, deren rechte Seite um
ein abgerundetes Dreieck erweitert wird, sodass ein Richtungspfeil (A3) entsteht
(das Dreieck ist die Pfeilspitze). Das aufgesetzte Dreieck sollte moglichst gleich-
schenklig sein. Die rechte Seite des Rechtecks bzw. die Basis des gleichschenkligen
Dreiecks ist unsichtbar. Der Linienstil ist durchgezogen. Das Relationship Type kann
durch ein (1) Icon in der Icon Area (links ausgerichtet), (2) den Namen oder (3)
die ID des Relationship Type definiert werden (A3), wobei mindestens eine dieser
drei Informationen angegeben werden muss. Falls mehrere textuelle Informationen
definiert werden, so muss die visuelle Reihenfolge aus Abbildung 5.5 eingehalten
werden. Eine optionale Additional Information Area ermoglicht das Hinterlegen von
weiteren Informationen. Diese ist ein abgerundetes Rechteck, dargestellt mittels einer
durchgezogenen Linie, das unter die Hauptform (ohne Pfeilspitze) gesetzt wird. Es

wird hinter die Hauptform gelegt, sodass die oberen Ecken tiberdeckt sind.

Icon RelationshipType.Name .
. . runningOnType
Area RelationshipType.ld rreingn b
Zusétzliche Informationen J

Abbildung 5.5: Vino4TOSCA 2 Relationship Type Shape mit Beispiel.

o7



5 VinoJTOSCA 2

Die Hauptform kann ein beliebiges Hintergrundbild enthalten, d.h. Icon und Text
diirfen nicht iiberdeckt werden. Die Linienfarbe der Hauptform und Additional Infor-
mation Area darf beliebig gewihlt werden. Eine Anderung des Linienstils hingegen
ist nicht erlaubt (A1, A2).

Die Repréasentation eines Relationship Types ist optional. Ein Relationship Template
Shape kann dargestellt werden, ohne das das zugehorige Relationship Type Shape

existieren muss.

5.2.5 Node Type Interface Shape

Ein Node Type Interface Shape représentiert eine Schnittstelle eines Node Types. Die
Schnittstelle wird durch einen nicht ausgefiillten Kreis dargestellt (A3), der mittels
einer Linie (beliebig ausgerichtet) mit einem Node Type Shape (siche Abschnitt 5.2.2)
verbunden ist. Der Linienstil ist durchgezogen. Der Name der Schnittstelle muss
angegeben werden. Ein Node Type Shape kann mit einer beliebigen Anzahl von Node
Type Interface Shapes verbunden sein. In Abbildung 5.6 ist ein Node Type Interface
Shape dargestellt, das mit einem Node Type Shape verbunden ist.

Die Linienfarbe eines Node Type Interface Shapes kann beliebig gewéhlt werden. Der
Linienstil darf nicht verdndert werden darf (A1, A2).

4 N
NodeType.Interfacel.Name
lcon NodeType.Name O
Area NodeType.Id .
L]
[ ]
. NodeType.InterfaceN.Name
. O
e
N v
Zusatzliche Informationen
= J
4 N
Control
Operating System
OperatingSystem Status
Configuration —~
@ Ubuntu
S J

Abbildung 5.6: Vino4dTOSCA 2 Node Type Interface Shape mit Beispiel.

o8



5 VinoJTOSCA 2

5.2.6 Relationship Type Interface Shape

Die Quell- und Zielschnittstellen (Source Interfaces und Target Interfaces) eines
Relationship Types kénnen durch Relationship Type Interface Shapes représentiert
werden. Ein Relationship Type Interface Shape entspricht einem Node Type Interface
Shape (siehe Abschnitt 5.2.5) bis auf die folgenden Eigenschaften: Der Kreis, der
die Schnittstelle darstellt, muss ein ,,S“ (Source) enthalten, falls es sich um eine
Quellschnittstelle handelt (A3, A8). Eine Zielschnittstelle wird durch ein ,, T“ (Tar-
get) visualisiert (A3, A8). Ein Relationship Type Shape kann mit einer beliebigen
Anzahl von Relationship Type Interface Shapes verbunden sein. Abbildung 5.7 zeigt
ein Relationship Type Interface Shape, das mit einem Relationship Type Shape

verbunden ist.

RelationshipType.Sourcelnterfacel.Name RelationshipType.Targetinterfacel.Name
©, O,
° Icon RelationshipType.Name .
: Area RelationshipType.ld :
® @
RelationshipType.SourcelnterfaceN.Name RelationshipType.TargetinterfaceN.Name
Zusétzliche Informationen
Deployer
O,
Deployed On
deployedOn

Abbildung 5.7: Vino4TOSCA 2 Relationship Type Interface Shape mit Beispiel.

5.2.7 Plan Shape

Das Plan Shape, dargestellt in Abbildung 5.8, représentiert einen Plan. Es handelt
sich um ein abgerundetes Rechteck, unterteilt in zwei Bereiche, die durch eine Linie
getrennt werden. Der Linienstil ist durchgehend. Im oberen Bereich kann ein (1)
Icon in der Icon Area (links ausgerichtet), (2) der Name, (3) die ID, der (4) Typ
(URD)! oder die (5) Sprache des Plans (URI)'? definiert werden (A3). Eine der
ersten drei Informationen miissen mindestens angegeben werden. Im unteren Bereich
wird der Plan selbst dargestellt. Hierzu kann eine beliebige visuelle Notation fiir
die entsprechende Prozesssprache (in unverdnderter Form) eingesetzt werden (A24).
Eine standardisierte Notation sollte bevorzugt werden. Die Semantik des Prozesses
darf nicht verdndert werden (A28). Weitere Informationen kénnen in einer optionalen

Additional Information Area hinterlegt werden. Diese ist ein abgerundetes Rechteck,

117.B. Build Plan (instanziiert einen Service):
http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/BuildPlan
127 B. BPMN 2.0-Plan: http://wuw.omg.org/spec/BPMN/20100524/MODEL

29



5 VinoJTOSCA 2

bestehend aus einer durchgehenden Linie, das unter die Hauptform gesetzt wird,

sodass die oberen Ecken nicht sichtbar sind.

4 N
Plan.Name
Icon Plan.ld
Area Plan.Type

Plan.Language

Visual representation of the Plan.

= =0
- ~O

Zusatzliche Informationen

Web Application Build Plan

WebAppBuildPlan
http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/BuildPlan
http://www.omg.org/spec/BPMN/20100524/MODEL

application deploy endpoint database

|

Set database & Retrieve
endpointin  [€— database
application endpoint

Provisioning
completed

@ Deploy P@ Retrieve _,ﬁig} Create

- J

Abbildung 5.8: Vino4TOSCA 2 Plan Shape mit Beispiel.

Der obere Bereich der Hauptform darf ein beliebiges Hintergrundbild enthalten. Icon
und Text diirfen folglich nicht iiberdeckt werden. Die Linienfarbe der Hauptform
und Additional Information Area kann beliebig gewéhlt werden, wohingegen der
Linienstil nicht verdndert werden darf (A2). Die visuelle Représentation des Prozesses
unterliegt den Vorgaben (visuelle Syntax) der eingesetzten visuellen Notation und
kann nicht durch ein Profil beschréankt werden (A24).

Die Pléne bzw. Plan Shapes werden durch eine doppelte durchgehende Linie (beliebig
ausgerichtet) von der Représentation des Topology Templates, der Node Types und
Relationship Types getrennt (sieche Abbildung 5.9; A14, A25). Die Linienfarbe kann

frei gewéhlt werden, der Linienstil hingegen darf nicht veréndert werden (A1, A2).

60



5 VinoJTOSCA 2

Wird ein Service Template (mit Node Types und Relationship Types) mit
VinodTOSCA 2 représentiert, so obliegt es dem Modellierer, welche Plane dargestellt

werden sollen.

5.2.8 Plan Invoke Operation Shape

Eine Verbindung zwischen einer Aktivitdt und einer Schnittstelle eines Node Type
bzw. Relationship Type, die zustande kommt, falls in der Aktivitidt eine Operation
der Schnittstelle aufgerufen wird, kann durch ein Plan Invoke Operation Shape
reprasentiert werden. Das Plan Invoke Operation Shape ist ein offener Halbkreis,
der mittels einer durchgezogenen Linie (beliebig ausgerichtet) mit der Aktivitét des
Plans bzw. Prozesses (in einem Plan Shape, sieche Abschnitt 5.2.7) verbunden ist, in
welchem die Operation aufgerufen wird (A3). Der Name der Operation kann optional
angegeben werden. Sieht die verwendete visuelle Prozessnotation ein anderes Element
zum Aufruf von Operationen bzw. zum Ausfiithren von Aufgaben vor, so wird das
Plan Invoke Shape mit diesem Element verbunden. Der Halbkreis umschliefit den
Kreis, der die Schnittstelle reprisentiert (siche Abschnitt 5.2.5 bzw. 5.2.6), welche
die aufzurufende Operation definiert (A4). Existiert der Halbkreis bereits, da ein
weiteres Plan Invoke Shape einer Aktivitdat dargestellt ist, das eine Operation aus
selbiger Schnittstelle aufruft, so wird lediglich die Linie zwischen Aktivitdt und
Halbkreis gezeichnet. Abbildung 5.9 zeigt Plan Invoke Operation Shapes zwischen
Schnittstellen von Node Types und Aktivitdten eines Plans.

Die Linienfarbe eines Plan Invoke Operation Shape kann frei gewéhlt werden, wohin-

gegen der Linienstil nicht verdandert werden darf (A1, A2).

5.2.9 Visual Group Shapes

Die Visual Group Shapes setzen sich aus dem Expanded und Collapsed Visual Group
Shape zusammen. Beide sind in Abbildung 5.10 dargestellt.

Mit dem Expanded Visual Group Shape kénnen Elemente visuell gruppiert werden
(A5, A19). Die Form kann beliebig gewahlt werden und muss die entsprechenden
Elemente enthalten (A4). Der Linienstil ist gestrichelt. Im oberen Bereich der Form,
der durch eine gestrichelte Linie getrennt ist, kann (1) ein Icon in der Icon Area
(links ausgerichtet), (2) ein Name oder (3) eine ID definiert werden (A3). Eine der
genannten Informationen muss mindestens angegeben werden. Falls mehrere textuelle
Informationen definiert werden, so muss die visuelle Reihenfolge aus Abbildung 5.10
eingehalten werden. Auf die visuellen Elemente eines Plans (in einem Plan Shape,
siehe Abschnitt 5.2.7) darf das Expanded Visual Group Shape nicht angewendet
werden (A24). [BBK'12a]

61



5 VinoJTOSCA 2

—[ OnlineShop J

4 ™\
<<deployedOnType>> OnlineShopBuildPlan
Ve ~N http://www.omg.org/spec/BPMN/20100524/MODEL
LinuxType
LinuxControl
Ne Q)
g Ubuntu
\ deploy Create
S J/ Virtual Machine
with Ubuntu
<<hostedOnType>>
' ™\
VirtualMachineType Deploy
——p—— onlineshop
application

create

] VMControl @

VL VirtualMachine

AN J

Provisioning

4 completed
deployedOnType > N J
-
S
hostedOnType >
-

Abbildung 5.9: Vino4TOSCA 2 Plan Invoke Operation Shape Beispiel.

Das Collapsed Visual Group Shape ist ein Oval, das eine beliebige Anzahl von
visuellen Elemente reprisentiert bzw. diese abstrahiert (A5, A19). Der Linienstil ist
gestrichelt. Ein kleines Quadrat, dass an der Unterseite der Form mittig angeordnet
ist und ein Plus-Zeichen enthélt, soll die Abstraktion bzw. den geschlossenen Zustand
symbolisieren (A3). Die Form kann (1) ein Icon in Icon Area (links ausgerichtet),
(2) ein Name oder (3) eine ID enthalten, wobei zumindest eine der genannten Daten
angegeben werden muss (A3). Das Collapsed Visual Group Shape darf nicht auf
die visuellen Elemente eines Plans (in einem Plan Shape, sieche Abschnitt 5.2.7)
angewendet werden aufler die visuelle Notation des Plans sieht keine Moglichkeiten
zur Abstraktion vor (A27). [BBK'12a]

Die Linienfarbe der Visual Group Shapes kann frei gewéiihlt werden. Eine Anderung
des Linienstils hingegen ist nicht erlaubt (A1, A2). Auch darf kein Hintergrundbild
gesetzt werden. [BBK'12a]

Die Visual Group Shapes konnen auch zur Integration von anderen Diagrammen

eingesetzt werden (A6). Das integrierte Diagramm wird durch das Icon, die ID oder

62



5 VinoJTOSCA 2

~ o _-
R, -

- ~

/ \

| |

: Icon VisualGroup.Name : ________

| Area VisualGroup.Id | =7 T~

I | -7 N
| | {/ Icon VisualGroup.Name \
| | Area VisualGroup.ld !
| | \ /
| | AN Ve

| |

| |

| |

| |

Abbildung 5.10: Vino4dTOSCA 2 Expanded und Collapsed Visual Group Shapes nach
[BBK12a).

den Namen identifiziert. Das zugrunde liegende TOSCA-Modell wird durch Visual
Group Shapes grundsitzlich nicht verdndert. [BBK112a]

5.2.10 Visual Relationship Group Shapes

Zu den Visual Relationship Group Shapes gehoren das Expanded und das Col-
lapsed Relationship Group Shape, die in Abbildung 5.11 veranschaulicht werden.
[BBK "12a]

Das Expanded Visual Relationship Group Shape dient der visuellen Gruppierung
von Relationship Template Shapes (sieche Abschnitt 5.2.3) die Node Template Shapes
bzw. Visual Group Shapes verbinden (A5, A19). Es besteht aus zwei gestrichelten
Linien, die eine beliebige Anzahl von Relationship Template Shapes enthalten kénnen,
mindestens jedoch zwei (A4). Das Element kann oberhalb der Linien durch ein (1) Icon
in der Icon Area (links ausgerichtet), (2) einen Namen oder (3) eine ID beschrieben
werden, wobei mindestens eine der genannten Informationen angegeben werden muss
(A3). Falls mehrere textuelle Informationen definiert werden, so muss die visuelle
Reihenfolge aus Abbildung 5.11 eingehalten werden. [BBK™12a]

Mit dem Collapsed Visual Relationship Group Shape konnen Relationship Template
Shapes abstrahiert werden (A5, A19). Es besteht aus einer gestrichelten Linie, die
zwei Relationship Template Shapes bzw. Visual Group Shapes verbinden. In der Mitte
der Linie befindet sich ein kleines Quadrat mit einem Plus-Zeichen, das verdeutlichen
soll, dass die Linie fiir eine Menge von (nicht sichtbaren) Relationship Template
Shapes steht (A3). Uber der Linie miissen zumindest eine der folgenden Informationen
definiert werden: Ein (1) Icon in der Icon Area (links ausgerichtet), (2) ein Name
oder (3) eine ID (A3). Werden mehrere textuelle Informationen angegeben, so muss
die visuelle Reihenfolge aus Abbildung 5.11 beachtet werden. [BBK™12a]

63



5 VinoJTOSCA 2

Icon VisualRelationshipGroup.Name
Area VisualRelationshipGroup.ld

Icon VisualRelationshipGroup.Name
Area VisualRelationshipGroup.Id
[+]

Abbildung 5.11: Vino4dTOSCA 2 Expanded und Collapsed Visual Relationship
Group Shapes nach [BBK"12a).

Die Linienfarbe der Visual Relationship Group Shapes kann beliebig gewéhlt werden.
Der Linienstil dagegen muss den Vorgaben entsprechen (A1, A2). Ein Hintergrundbild
ist nicht erlaubt. [BBK™12a]

5.2.11 Node Template Instanzen

Ein Node Template besitzt zwei optionale Attribute, in denen die minimale und
maximale Zahl an zulédssigen Instanzen des Node Templates definiert werden kann.
Zur Repréasentation dieser Angaben muss eine zweite, durchgehende Linie teilweise um
das entsprechende Node Template Shape (sieche Abschnitt 5.2.1) gezeichnet werden'?
(A3) und der min-Wert wird auf die linke Seite, der max-Wert auf die rechte Seite
iiber die Form geschrieben werden. Abbildung 5.12 zeigt ein Node Template Shape
eines Node Types, in dem die genannten Attribute definiert sind. [BBK™12a]

min max 1 1000
Icon NodeTemplate.Name Mail application
Area NodeTemplate.Id MailApplication

Abbildung 5.12: VinodTOSCA 2 Node Template Instanzen mit Beispiel nach
[BBK12a).

3Dies soll die mogliche Existenz von mehreren Instanzen verdeutlichen.

64



5 VinoJTOSCA 2

5.3 Beispiele

Abbildung 5.9 zeigt ein VinodTOSCA 2-Diagramm eines Online-Shops. Die Anwen-
dung selbst wird durch das Node Template ,,OnlineShop*“ reprasentiert und lauft auf
Ubuntu (gleichnamiges Node Template). Das Node Type ,LinuxType* des Betriebs-
systems definiert eine Schnittstelle , LinuxControl“, die Operationen bereitstellt, mit
denen u.a. Anwendungen installiert werden kénnen. Das Betriebssystem lauft auf
einer virtuellen Maschine (VM), die durch das Node Template ,VirtualMachine
dargestellt ist. Dieses referenziert den Node Type ,VirtualMachineType* mit der
Schnittstelle ,,VMControl“, die Operationen definiert, mit denen virtuelle Maschinen
verwaltet (z.B. erstellt) werden kénnen.

Der BPMN-Plan ,,OnlineShopBuildPlan*, dargestellt auf der rechten Seite, provi-
sioniert den Online-Shop. Zunéchst wird eine Virtuelle Maschine erzeugt, auf der

bereits Ubuntu vorinstalliert ist. Abschlieflend wird die Webanwendung installiert.

Abbildung 5.13 zeigt das Diagramm einer Mailanwendung. Die eigentliche Anwen-
dung wird durch das Node Template ,Mail Application® reprasentiert und ist iiber
mehrere Relationship Templates, die in der Abbildung mittels einem Visual Re-
lationship Group Shape (siehe Abschnitt 5.2.10) abstrahiert dargestellt sind, mit
mehreren Datenbanken verbunden. Die Datenbanken und deren Infrastrukturen
(Server mit Betriebssystem) sind ebenfalls durch ein Visual Group Shape (siche
Abschnitt 5.2.9) abstrahiert. Die Mailanwendung lauft auf einem Apache Webserver,
reprasentiert durch das Node Template ,,MailAppWebserver®. Der zugehorige Node
Type ,,ApacheWebserverType“ definiert die Schnittstellen ,ModuleManagement*
und , AppManagement*, mit deren Operationen Module bzw. Anwendungen auf dem
Webserver verwaltet (z.B. installiert) werden kénnen. Windows Server, reprisentiert
durch das gleichnamige Node Template, ist das Betriebssystem, auf welchem der
Webserver installiert ist. Das zugehorige Typ-Element ,WindowsServerType* stellt
eine Schnittstelle ,AppManagement“ bereit, deren Operationen zur Verwaltung der
Anwendungen auf dem Betriebssystem eingesetzt werden kénnen. Windows Ser-
ver lauft auf einem Cloud Server von Rackspace, der durch das Node Template
»2MailAppServer” représentiert ist. Das Anlegen eines entsprechenden Servers bzw.
deren Verwaltung erfolgt iiber Operationen der Schnittstelle ,,ServerManagement®,
die vom zugehorigen Typ-Element ,,RackspaceCloudServerType“ bereitgestellt ist.

Auf der rechten Seite ist der BPMN-Plan ,,MailAppBuildPlan“ dargestellt, mit dem
die Mailanwendung bereitgestellt bzw. eine Instanz der Topologie erzeugt werden
kann. Zundchst wird ein Cloud Server mit bereits vorinstalliertem Windows Server
auf Rackspace erzeugt. Anschlielend werden nacheinander der Apache Webserver,
das PHP Modul und die eigentliche Mailanwendung installiert. Parallel zu den

bisher genannten Aktivitdten werden weitere Server erzeugt, auf denen jeweils ein

65



5 VinoJTOSCA 2

( PHPApplicationType W

depends on

*‘ g Mail Application ]~J~

y

Database Connections |

Mail Application Build Plan
MailAppBuildPlan

http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/BuildPlan
http://www.omg.org/spec/BPMN/20100524/MODEL

N

Ve

-

~

~

i
[
[
|
|
: 4 Datab ith Create i :
| PHP Module ( atabases wi \ %} C@ate reate infrastructures for
: \ Infrastructure / — server instance databases
! N ~ - 4 with Windows Server
| S~ _ _—--"
|
i hosted on installed on
i
| N (@ Install Create databases
| ModuleManagement Apache Webs
i ApacheWebserverType @ install pache Webserver E
i 2/
i AppManagement "
. instal
| MailAppWebserver @ Y
| @ Install
| |1
4 | PHP Module
[
hosted on I
! N
N
WindowsServerType : @
| mail application
|
! AppM t
- i = ppManagemen
. WindowsServer install
! O
I - 2/
i Version: 2008
i J Initial configuration of mail
i application
! hosted on
|
| A
I RackspaceCloudServerType
i ServerManagement
| @ create Provisioning
! J \_ completed
L.

y

N

Database endpoints will be set in mail application during its initial

configuration.

Abbildung 5.13: VinodTOSCA 2-Diagramm
Mailanwendung.

zu

einem TOSCA-Modell

einer

Betriebssystem installiert und schliefllich eine Datenbank angelegt wird. Nach der

Installation und Erstellung der Datenbanken erfolgt abschlieflend die Konfiguration

der Mailanwendung. Dabei werden u.a. die Endpunkte der Datenbanken in der

Mailanwendung gesetzt.

66



6 Zusammenfassung und Ausblick

6 Zusammenfassung und Ausblick

Das Ziel dieser Fachstudie war es, eine visuelle Notation zur Darstellung von To-
pologien und Managementplénen zu erstellen. Hierfiir wurden zuerst verschiedene
Anforderungen aufgestellt, welche als Grundlagen zur Erstellung eines effektiv einsetz-
baren Diagramms dienen. Die Anforderungen wurden dabei in visuelle Anforderungen
zur Gestaltung von Diagrammen, TOSCA-spezifische Anforderungen, Usability- und
User Experience-Anforderungen sowie Anforderungen beziiglich der Integration von
Topologien und Geschéftsprozessen kategorisiert. Weiterhin wurden bestehende Nota-
tionen von Anwendungstopologien sowie Geschéftsprozessen betrachtet und anhand
der aufgestellten Anforderungen bewertet. Schliefllich wurde eine auf VinodTOSCA
aufbauende Notation — VinodTOSCA 2 genannt — erarbeitet, welche sowohl die
grafische Darstellung von Topology Templates als auch von Pldnen sowie deren Bezie-
hungen erméglicht. Die entworfene Notation definiert im Gegensatz zu VinodTOSCA
zusatzlich Formen fiir Node Types und Relationship Types, deren Schnittstellen, Pla-
nen und den Aufruf von Operationen (in Plénen), die in den genannten Schnittstellen
definiert worden sind. An den bereits existierenden Formen fiir Node Templates,
Relationship Templates, Visual Groups, Visual Relationship Groups und Instanzen
von Node Templates wurden Anpassungen vorgenommen. Die Expanded und Col-
lapsed Group Template Shapes wurden nicht iibernommen, da Group Templates
mittlerweile aus der TOSCA Spezifikation entfernt worden sind. Zukiinftig wére es
denkbar, dass Formen fiir weitere TOSCA-Elemente wie z. B. Requirements entworfen

werden, um den Informationsgehalt der Notation weiter zu steigern.

67



Literaturverzeichnis

Literaturverzeichnis

[Ale64]

[AMA]

[BBK*12a]

[BBK+12b]

[Ber83]

[BNO6]

[Bun]

[Che04]

[Enz]

C. Alexander. Notes on the Synthesis of Form. Harvard University
Press, 1964.

AMADEE GmbH. UML-Aktivitdtsdiagramm. URL http:
//www .amadee.com/docs/de/uml-aktivitaetsdiagramm.html?
ContextID=140. Abgerufen am 2013-05-06.

U. Breitenbiicher, T. Binz, O. Kopp, F. Leymann, D. Schumm. Vi-
nodTOSCA: A Visual Notation for Application Topologies Based on
TOSCA. In OTM 2012, Part I, Band 7565 von Lecture Notes in Com-
puter Science (LNCS), S. 416-424. Springer-Verlag, 2012.

U. Breitenbiicher, T. Binz, O. Kopp, F. Leymann, D. Schumm. Vi-
no4dTOSCA Website, 2012. URL http://www.vino4tosca.org.

J. Bertin. Semiology of graphics. University of Wisconsin Press, 1983.

M. Bar, M. Neta. Humans Prefer Curved Visual Objects. Psychologi-
cal Science, 17(8):645—648, 2006. doi:10.1111/j.1467-9280.2006.01759.x.
URL http://pss.sagepub.com/content/17/8/645.abstract.

Bundesamt fiir Sicherheit in der Informationstechnik. Cloud Com-
puting Grundlagen. URL https://www.bsi.bund.de/DE/Themen/
CloudComputing/Grundlagen/Grundlagen_node.html. Abgerufen am
2013-04-17.

P. P. Chen. Entity Relationship Modellierung, 2004. URL
http://ebus.informatik.uni-leipzig.de/www/media/lehre/

seminar-pioniere04/sem04swp-hartmann-vortrag.pdf.

Enzyklopddie der Wirtschaftsinformatik. EPK. URL
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/
wi-enzyklopaedie/lexikon/is-management/Systementwicklung/
Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/
Geschaftsprozessmodellierung/EPK. Abgerufen am 2013-05-14.

68


http://www.amadee.com/docs/de/uml-aktivitaetsdiagramm.html?ContextID=140
http://www.amadee.com/docs/de/uml-aktivitaetsdiagramm.html?ContextID=140
http://www.amadee.com/docs/de/uml-aktivitaetsdiagramm.html?ContextID=140
http://www.vino4tosca.org
http://pss.sagepub.com/content/17/8/645.abstract
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
http://ebus.informatik.uni-leipzig.de/www/media/lehre/seminar-pioniere04/sem04swp-hartmann-vortrag.pdf
http://ebus.informatik.uni-leipzig.de/www/media/lehre/seminar-pioniere04/sem04swp-hartmann-vortrag.pdf
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Geschaftsprozessmodellierung/EPK
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Geschaftsprozessmodellierung/EPK
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Geschaftsprozessmodellierung/EPK
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Geschaftsprozessmodellierung/EPK

Literaturverzeichnis

[FMC]

[Frall]

[Fri02]

[Gab]

[Ges12]

[GMWO00]

[IBMOG]

[Inf13]

[KB04]

[Ley12]

FMC Consortium. Fundamental Modeling Concepts — Quick Introduc-
tion. URL http://www.fmc-modeling.org/quick-intro. Abgerufen
am 2013-05-05.

Fraunhofer FIRST. The Generic Workflow Description Language Tool-
box, 2011. URL http://gridworkflow.org/kufgrid/gworkflowdl/

docs.

G. Friese. Wirtschaftsinformatik I Ubung 2 — EPK-Modellierung, Tech-
niken zum Systementwurf, 2002. URL http://www.friese-total.de/
uni/bwl/wi/wi-2.shtml. Abgerufen am 2013-05-02.

Gabler Wirtschaftslexikon. Struktogramm. URL http://
wirtschaftslexikon.gabler.de/Archiv/76260/struktogramm-v7.
html.

Geschiéftsprozessmanagement Blog. Modellierung von Geschéftspro-
zessen mit der Ereignisgesteuerten Prozesskette (EPK), 2012. URL
http://de.processorientation.com/7p=668. Abgerufen am 2013-05-
02.

D. Garlan, R. T. Monroe, D. Wile. Foundations of component-based
systems. Kapitel Acme: architectural description of component-based
systems, S. 47-67. Cambridge University Press, New York, NY, USA,
2000. URL http://dl.acm.org/citation.cfm?id=336431.336437.

IBM. WebSphere Integration Developer — Service Component Archi-
tecture, 2006. URL http://publib.boulder.ibm.com/infocenter/
dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.
doc/topics/csrvcomparch.html. Abgerufen am 2013-07-11.

Informatik Forum Simon GmbH. UML - Unified Mode-
ling Language, 2013. URL http://www.infforum.de/themen/

anwendungsentwicklung/thema_SE-methode_uml.htm. Abgerufen am
2013-05-02.

A. Keller, R. Badonnel. Automating the Provisioning of Applicati-
on Services with the BPEL4AWS Workflow Language. In A. Sahai,
F. Wu, Herausgeber, Utility Computing, Band 3278 von Lecture No-
tes in Computer Science, S. 15-27. Springer Berlin Heidelberg, 2004.
d0i:10.1007/978-3-540-30184-4 2. URL http://dx.doi.org/10.1007/
978-3-540-30184-4_2.

F. Leymann. Architectural Diagrams & Styles (Foliensatz), 2012.

69


http://www.fmc-modeling.org/quick-intro
http://gridworkflow.org/kwfgrid/gworkflowdl/docs
http://gridworkflow.org/kwfgrid/gworkflowdl/docs
http://www.friese-total.de/uni/bwl/wi/wi-2.shtml
http://www.friese-total.de/uni/bwl/wi/wi-2.shtml
http://wirtschaftslexikon.gabler.de/Archiv/76260/struktogramm-v7.html
http://wirtschaftslexikon.gabler.de/Archiv/76260/struktogramm-v7.html
http://wirtschaftslexikon.gabler.de/Archiv/76260/struktogramm-v7.html
http://de.processorientation.com/?p=668
http://dl.acm.org/citation.cfm?id=336431.336437
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.doc/topics/csrvcomparch.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.doc/topics/csrvcomparch.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.doc/topics/csrvcomparch.html
http://www.infforum.de/themen/anwendungsentwicklung/thema_SE-methode_uml.htm
http://www.infforum.de/themen/anwendungsentwicklung/thema_SE-methode_uml.htm
http://dx.doi.org/10.1007/978-3-540-30184-4_2
http://dx.doi.org/10.1007/978-3-540-30184-4_2

Literaturverzeichnis

[Loh05]

[LR09)

[LST78]

[LS87]

[Mi2]

MG11]

[Moo09]

[NC99]

[Nor02]

N. Lohmann. DBS I - Grundlagen von Datenbanksystemen,
2005. URL http://www2.informatik.hu-berlin.de/~blunk/pdf/
dbs1_nlohmann.pdf.

B. Lahres, G. Rayman. Objektorientierte Programmierung,
2009. URL http://openbook.galileocomputing.de/oop/oop_
kapitel_02_001.htm. Abgerufen am 2013-05-02.

J. Ludewig, W. Streng. Uberblick und Vergleich verschiedener Mittel fiir
die Spezifikation und den Entwurf von Software. Kernforschungszentrum,
Karlsruhe, 1978.

J. H. Larkin, H. A. Simon. Why a Diagram is (Sometimes) Worth
Ten Thousand Words. Cognitive Science, 11(1):65-100, 1987. doi:10.
1111/§.1551-6708.1987.tb00863.x. URL http://dx.doi.org/10.1111/
j.1551-6708.1987.tb00863. x.

M. Miiller. Sichere Nutzung wvon Cloud-Storage in Daten-
banken. Diplomarbeit, Technische Universitat Dresden, 2012.
URL http://wuw.rn.inf.tu-dresden.de/uploads/Studentische_
Arbeiten/Diplomarbeit_M)C37%BCller_Mario.pdf. Abgerufen am
2013-04-22.

P. M. Mell, T. Grance. SP 800-145. The NIST Definition of Cloud
Computing. Technischer Bericht, National Institute of Standards &
Technology, Gaithersburg, MD, United States, 2011. URL http://csrc.
nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Abge-
rufen am 2013-04-21.

D. Moody. The “Physics“ of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Trans.
Softw. Eng., 35(6):756-779, 2009. doi:10.1109/TSE.2009.67. URL http:
//dx.doi.org/10.1109/TSE.2009.67.

J. C. Nordbotten, M. E. Crosby. The effect of graphic style on data
model interpretation. Information Systems Journal, 9(2):139-155, 1999.
doi:10.1046/j.1365-2575.1999.00052.x. URL http://dx.doi.org/10.
1046/j.1365-2575.1999.00052. x.

D. Norman. Emotion & design: attractive things work better. in-
teractions, 9(4):36-42, 2002. doi:10.1145/543434.543435. URL http:
//doi.acm.org/10.1145/543434.543435.

70


http://www2.informatik.hu-berlin.de/~blunk/pdf/dbs1_nlohmann.pdf
http://www2.informatik.hu-berlin.de/~blunk/pdf/dbs1_nlohmann.pdf
http://openbook.galileocomputing.de/oop/oop_kapitel_02_001.htm
http://openbook.galileocomputing.de/oop/oop_kapitel_02_001.htm
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1109/TSE.2009.67
http://dx.doi.org/10.1109/TSE.2009.67
http://dx.doi.org/10.1046/j.1365-2575.1999.00052.x
http://dx.doi.org/10.1046/j.1365-2575.1999.00052.x
http://doi.acm.org/10.1145/543434.543435
http://doi.acm.org/10.1145/543434.543435

Literaturverzeichnis

[PQOG]

[RO9]

[re-]

[RIBYY]

[sof]

[TOS13)

[Wik13a]

[Wik13b)

[Wik13c]

[Wik13d]

M. Petre, E. de Quincey. A gentle overview of software visualisation.
Psychology of Programming Interest Group (PPIG), 2006. URL http:
//www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf.

B. Riicker. Bauen wir uns eine BPMN 2.0 Engi-
ne, 2009. URL http://www.bpm-guide.de/2009/08/02/
bauen-wir-uns-eine-bpmn-20-engine. Abgerufen am 2013-05-
02.

re-wissen.de — Fraunhofer IESE. EPK-Modellierung. URL
http://www.re-wissen.de/opencms/Wissen/Techniken/
EPK-Modellierung.html. Abgerufen am 2013-05-14.

J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling Language
reference manual. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

software-kompetenz.de — Fraunhofer IESE. Petri-Netze. URL http:
//www . software-kompetenz.de/716617. Abgerufen am 2013-05-02.

TOSCA Technical Committee. Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA) — Committee Specification 01.
Technischer Bericht, OASIS, 2013. URL http://docs.oasis-open.
org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf. Abgerufen am
2013-04-26.

Wikipedia. Entity-Relationship-Modell — Wikipedia, Die freie En-
zyklopéddie, 2013. URL http://de.wikipedia.org/w/index.php?
title=Entity-Relationship-Modell&oldid=117772832. Abgerufen
am 2013-05-05.

Wikipedia. Ereignisgesteuerte Prozesskette — Wikipedia, Die freie
Enzyklopadie, 2013. URL http://de.wikipedia.org/w/index.php?
title=Ereignisgesteuerte_Prozesskette&oldid=116791035. Abge-
rufen am 2013-05-10.

Wikipedia. Fundamental Modeling Concepts — Wikipedia, Die freie
Enzyklopéadie, 2013. URL http://de.wikipedia.org/w/index.php?
title=Fundamental_Modeling Concepts&oldid=116170221. Abgeru-
fen am 2013-05-05.

Wikipedia. Generic Workflow Description Language — Wikipedia, Die
freie Enzyklopédie, 2013. URL http://de.wikipedia.org/w/index.
php?title=Generic_Workflow_Description_Language&oldid=
114950229. Abgerufen am 2013-05-01.

71


http://www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf
http://www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf
http://www.bpm-guide.de/2009/08/02/bauen-wir-uns-eine-bpmn-20-engine
http://www.bpm-guide.de/2009/08/02/bauen-wir-uns-eine-bpmn-20-engine
http://www.re-wissen.de/opencms/Wissen/Techniken/EPK-Modellierung.html
http://www.re-wissen.de/opencms/Wissen/Techniken/EPK-Modellierung.html
http://www.software-kompetenz.de/?16617
http://www.software-kompetenz.de/?16617
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://de.wikipedia.org/w/index.php?title=Entity-Relationship-Modell&oldid=117772832
http://de.wikipedia.org/w/index.php?title=Entity-Relationship-Modell&oldid=117772832
http://de.wikipedia.org/w/index.php?title=Ereignisgesteuerte_Prozesskette&oldid=116791035
http://de.wikipedia.org/w/index.php?title=Ereignisgesteuerte_Prozesskette&oldid=116791035
http://de.wikipedia.org/w/index.php?title=Fundamental_Modeling_Concepts&oldid=116170221
http://de.wikipedia.org/w/index.php?title=Fundamental_Modeling_Concepts&oldid=116170221
http://de.wikipedia.org/w/index.php?title=Generic_Workflow_Description_Language&oldid=114950229
http://de.wikipedia.org/w/index.php?title=Generic_Workflow_Description_Language&oldid=114950229
http://de.wikipedia.org/w/index.php?title=Generic_Workflow_Description_Language&oldid=114950229

Literaturverzeichnis

[Wik13e]

[Wik13f]

[Wik13g]

[Win13]

[www]

Wikipedia. HIPO-Diagramm - Wikipedia, Die freie Enzyklopé-
die, 2013. URL http://de.wikipedia.org/w/index.php?title=
HIPO-Diagramm&oldid=116464651. Abgerufen am 2013-04-06.

Wikipedia. Komponentendiagramm — Wikipedia, Die freie Enzyklo-
padie, 2013. URL http://de.wikipedia.org/w/index.php7title=
Komponentendiagramm&oldid=116940785. Abgerufen am 2013-07-03.

Wikipedia. Nassi-Shneiderman-Diagramm — Wikipedia, Die freie
Enzyklopéadie, 2013. URL http://de.wikipedia.org/w/index.php?
title=Nassi-Shneiderman-Diagramm&oldid=118156563. Abgerufen
am 2013-05-04.

WinfWiki. Dokumentationsanforderungen im IT-Projektmanagement,
Abschnitt Datenflussdiagramm — WinfWiki, 2013. URL http:
//winfwiki.wi-fom.de/index.php/Dokumentationsanforderungen_
im_IT-Projektmanagement#Datenflussdiagramm. Abgerufen am
2013-05-02.

www.BWL-Betriebswirtschaft.de. Das Flussdiagramm. URL http://
www.bwl-betriebswirtschaft.de/flussdiagramm.html. Abgerufen
am 2013-05-02.

72


http://de.wikipedia.org/w/index.php?title=HIPO-Diagramm&oldid=116464651
http://de.wikipedia.org/w/index.php?title=HIPO-Diagramm&oldid=116464651
http://de.wikipedia.org/w/index.php?title=Komponentendiagramm&oldid=116940785
http://de.wikipedia.org/w/index.php?title=Komponentendiagramm&oldid=116940785
http://de.wikipedia.org/w/index.php?title=Nassi-Shneiderman-Diagramm&oldid=118156563
http://de.wikipedia.org/w/index.php?title=Nassi-Shneiderman-Diagramm&oldid=118156563
http://winfwiki.wi-fom.de/index.php/Dokumentationsanforderungen_im_IT-Projektmanagement#Datenflussdiagramm
http://winfwiki.wi-fom.de/index.php/Dokumentationsanforderungen_im_IT-Projektmanagement#Datenflussdiagramm
http://winfwiki.wi-fom.de/index.php/Dokumentationsanforderungen_im_IT-Projektmanagement#Datenflussdiagramm
http://www.bwl-betriebswirtschaft.de/flussdiagramm.html
http://www.bwl-betriebswirtschaft.de/flussdiagramm.html

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen be-
nutzt und alle wortlich oder sinngeméafl aus anderen Werken
iibernommene Aussagen als solche gekennzeichnet. Weder
diese Arbeit noch wesentliche Teile daraus waren bisher Ge-
genstand eines anderen Priifungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollstandig veroffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten

Exemplaren iiberein.

Ort, Datum, Unterschrift Lars-Alexander Albrecht

Ort, Datum, Unterschrift Rene Trefft

Ort, Datum, Unterschrift Michael Zimmermann



	Inhaltsverzeichnis
	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Einleitung
	Grundlagen
	Cloud Computing
	Topology and Orchestration Specification for Cloud Applications (TOSCA)

	Anforderungsanalyse
	Visuelle Anforderungen
	TOSCA-spezifische Anforderungen
	Usability- und User Experience-Anforderungen
	Anforderungen für die Integration visueller Geschäftsprozessnotationen

	Analyse existierender visueller Notationen
	Anwendungstopologien
	Vino4TOSCA
	Fundamental Modeling Concepts
	UML-Komponentendiagramm
	Acme
	Service Component Architecture
	ER-Diagramm
	HIPO-Diagramm

	Geschäftsprozesse
	Petri-Netz
	GWorkflowDL
	Nassi-Shneiderman-Diagramm
	Folgeplan und Flussdiagramm
	Datenflussdiagramm
	UML-Aktivitätsdiagramm
	Business Process Model and Notation (BPMN)
	Ereignisgesteuerte Prozesskette (EPK)

	Auswertung und Schlussfolgerungen

	Vino4TOSCA 2
	Visuelle Variablen
	Visuelle Elemente
	Node Template Shape
	Node Type Shape
	Relationship Template Shape
	Relationship Type Shape
	Node Type Interface Shape
	Relationship Type Interface Shape
	Plan Shape
	Plan Invoke Operation Shape
	Visual Group Shapes
	Visual Relationship Group Shapes
	Node Template Instanzen

	Beispiele

	Zusammenfassung und Ausblick
	Literaturverzeichnis

