
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Fachstudie Nr. 171

Analyse existierender visueller
Notationen zur Modellierung von

Anwendungstopologien und
deren Integration mit

Prozessnotationen
Lars-Alexander Albrecht, Rene Trefft,

Michael Zimmermann

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Uwe Breitenbücher

Beginn am: 2013-01-15

Beendet am: 2013-07-17

CR-Nummer: H.1.2

Kurzfassung

Die Modellierung von Topologien, bestehend aus vielen einzelnen Komponenten und
deren Beziehungen zueinander, sowie deren Management ist ein großes Problem
im Bereich von komplexen Cloud-Anwendungen. Die Topologie und Orchestration
Specification for Cloud Applications (TOSCA) hat sich diesem Problem angenommen
und einen Standard zur Beschreibung von Cloud-Anwendungen geschaffen.

Mit Vino4TOSCA wurde eine wohldefinierte und auf etablierten Usability-
Forschungen basierende visuelle Notation für TOSCA entworfen. Allerdings ermöglicht
Vino4TOSCA bisher lediglich die Darstellung von Topologien. Aus diesem Grund
wird in dieser Arbeit eine auf Vino4TOSCA aufbauende visuelle Notation erarbei-
tet, welche sowohl die Modellierung von Topologien als auch der dazugehörigen
Managementplänen in einem Diagramm ermöglicht.

Inhaltsverzeichnis

Inhaltsverzeichnis

Abkürzungsverzeichnis 4

Abbildungsverzeichnis 6

1 Einleitung 8

2 Grundlagen 10
2.1 Cloud Computing . 10
2.2 Topology and Orchestration Specification for Cloud Applications

(TOSCA) . 11

3 Anforderungsanalyse 14
3.1 Visuelle Anforderungen . 15
3.2 TOSCA-spezifische Anforderungen 20
3.3 Usability- und User Experience-Anforderungen 21
3.4 Anforderungen für die Integration visueller Geschäftsprozessnotationen 21

4 Analyse existierender visueller Notationen 23
4.1 Anwendungstopologien . 23

4.1.1 Vino4TOSCA . 23
4.1.2 Fundamental Modeling Concepts 28
4.1.3 UML-Komponentendiagramm 31
4.1.4 Acme . 32
4.1.5 Service Component Architecture 35
4.1.6 ER-Diagramm . 36
4.1.7 HIPO-Diagramm . 37

4.2 Geschäftsprozesse . 39
4.2.1 Petri-Netz . 39
4.2.2 GWorkflowDL . 41
4.2.3 Nassi-Shneiderman-Diagramm 41
4.2.4 Folgeplan und Flussdiagramm 42
4.2.5 Datenflussdiagramm . 44
4.2.6 UML-Aktivitätsdiagramm . 46
4.2.7 Business Process Model and Notation (BPMN) 47

2

Inhaltsverzeichnis

4.2.8 Ereignisgesteuerte Prozesskette (EPK) 48
4.3 Auswertung und Schlussfolgerungen 50

5 Vino4TOSCA 2 52
5.1 Visuelle Variablen . 52
5.2 Visuelle Elemente . 53

5.2.1 Node Template Shape . 54
5.2.2 Node Type Shape . 55
5.2.3 Relationship Template Shape 56
5.2.4 Relationship Type Shape . 57
5.2.5 Node Type Interface Shape 58
5.2.6 Relationship Type Interface Shape 59
5.2.7 Plan Shape . 59
5.2.8 Plan Invoke Operation Shape 61
5.2.9 Visual Group Shapes . 61
5.2.10 Visual Relationship Group Shapes 63
5.2.11 Node Template Instanzen . 64

5.3 Beispiele . 65

6 Zusammenfassung und Ausblick 67

Literaturverzeichnis 68

3

Abkürzungsverzeichnis

Abkürzungsverzeichnis

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

CS Committee Specification

DA Deployment Artifact

EPK Ereignisgesteuerte Prozesskette

ER-Diagramm Entity-Relationship-Diagramm

FMC Fundamental Modeling Concepts

FOPL First-Order Predicate Logic

GWorkflowDL Generic Workflow Description Language

HIPO-Diagramm Hierarchy plus Input-Process-Output-Diagramm

IaaS Infrastructure as a Service

IA Implementation Artifact

IAAS Institut für Architektur von Anwendungssystemen

IBM International Business Machines Corporation

IT Informationstechnik

NIST National Institute of Standards and Technology

OMG Object Management Group

PaaS Platform as a Service

RPC Remote Procedure Call

SaaS Software as a Service

SCA Service Component Architecture

SE Software Engineering

SOA Service Oriented Architecture

4

Abkürzungsverzeichnis

SPIKES Structured Plans for Improving Knowledge Transfer in
Engineering of Systems

TOSCA Topology and Orchestration Specification for Cloud Applications

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

Vino4TOSCA Visual Notation for TOSCA

VM Virtuelle Maschine

WAR Web Archive

WD Working Draft

XML Extensible Markup Language

5

Abbildungsverzeichnis

Abbildungsverzeichnis

3.1 Anomalien der Semiotischen Klarheit nach [Moo09]. 15
3.2 Semantische Transparenz ist ein Kontinuum nach [Moo09]. 16
3.3 Kognitive Integration nach [Moo09]. 17
3.4 Einflussfaktoren des „Cognitive Fit“ nach [Moo09]. 19

4.1 Node Template Shape mit Beispiel nach [BBK+12a]. 25
4.2 Relationship Template Shape mit Beispiel nach [BBK+12a]. 25
4.3 Expanded / Collapsed Group Template Shapes (links) und Visual

Group Shapes (rechts) nach [BBK+12a]. 26
4.4 Expanded / Collapsed Visual Relationship Group Shapes nach

[BBK+12a]. 26
4.5 Zulässige Instanzen von Node Templates (links) und Relationship

Templates (rechts) nach [BBK+12a]. 27
4.6 Vino4TOSCA-Diagramm eines Web Shops nach [BBK+12b]. 28
4.7 Beispiel eines FMC-Aufbau-Diagramms nach [Wik13c]. 30
4.8 Beispiel eines UML-Komponentendiagramms. 32
4.9 Beispiel einer Acme-Repräsentation [Ley12]. 34
4.10 Beispiel einer Acme-Repräsentationskarte [Ley12]. 34
4.11 Beispiel eines SCA-Diagramms nach [IBM06]. 36
4.12 Beispiel eines Entity-Relationship-Diagramms nach [Wik13a]. 38
4.13 Beispiel eines HIPO-Diagramms nach [Fri02]. 39
4.14 Beispiel eines Petri-Netzes nach [sof] 40
4.15 Beispiel eines GWorkflowDL-Diagramms nach [Fra11]. 42
4.16 Beispiel eines Nassi-Shneiderman-Diagramms nach [LR09]. 43
4.17 Beispiel eines Flussdiagramms nach [www]. 44
4.18 Beispiel eines Datenflussdiagramms nach [Win13]. 45
4.19 Beispiel eines UML-Aktivitätsdiagramm nach [Inf13]. 47
4.20 Beispiel eines BPMN-Diagramms nach [R0̈9]. 48
4.21 Beispiel eines EPK-Diagramms nach [Ges12]. 49

5.1 Die acht visuellen Variablen von Bertin. 53
5.2 Vino4TOSCA 2 Node Template Shape mit Beispiel nach [BBK+12a]. 55
5.3 Vino4TOSCA 2 Node Type Shape mit Beispielen. 56

6

Abbildungsverzeichnis

5.4 Vino4TOSCA 2 Relationship Template Shape mit Beispiel nach
[BBK+12a]. 57

5.5 Vino4TOSCA 2 Relationship Type Shape mit Beispiel. 57
5.6 Vino4TOSCA 2 Node Type Interface Shape mit Beispiel. 58
5.7 Vino4TOSCA 2 Relationship Type Interface Shape mit Beispiel. . . 59
5.8 Vino4TOSCA 2 Plan Shape mit Beispiel. 60
5.9 Vino4TOSCA 2 Plan Invoke Operation Shape Beispiel. 62
5.10 Vino4TOSCA 2 Expanded und Collapsed Visual Group Shapes nach

[BBK+12a]. 63
5.11 Vino4TOSCA 2 Expanded und Collapsed Visual Relationship Group

Shapes nach [BBK+12a]. 64
5.12 Vino4TOSCA 2 Node Template Instanzen mit Beispiel nach [BBK+12a]. 64
5.13 Vino4TOSCA 2-Diagramm zu einem TOSCA-Modell einer Mailan-

wendung. 66

7

1 Einleitung

1 Einleitung

Die Installation und Wartung von Anwendungen auf Servern ist für ein IT-
Unternehmen in der Regel eine aufwändige Aufgabe. In den letzten Jahren hat
sich ein Trend entwickelt, entsprechende Anwendungen in die Cloud auszulagern.
Dadurch entfällt die kostenintensive Bereitstellung und Wartung von Hard- und
Software, die für die Ausführung der Anwendung erforderlich ist. Stattdessen werden
diese Tätigkeiten vom Cloud-Anbieter übernommen, der eine sichere und zuverlässige
Infrastruktur bereitstellt. Die Abrechnung erfolgt nutzungsbasiert, Aktualisierungen
der Infrastruktur erfolgen automatisch und Größenänderungen in jede Richtung
stellen kein Problem dar.

Die Topology and Orchestration Specification for Cloud Applications (TOSCA)
setzt bei diesem Trend an und definiert eine portable und interoperable Sprache zur
Beschreibung einer Cloud-Anwendung durch ihre Topologie und deren Management
mittels Plänen. Ein Plan ist ein Geschäftsprozess, deren Notation nicht durch TOSCA
vorgegeben wird. Stattdessen sollen bereits existierende Standards, insbesondere die
Business Process Model and Notation (BPMN) und Business Process Execution
Language (BPEL), eingesetzt werden. Mittels TOSCA soll die Migration einer Cloud-
Anwendung zu einem anderen Anbieter deutlich vereinfacht werden. Insbesondere
jedoch kann das Management der Anwendung in jeder Umgebung automatisiert
werden. [TOS13]

Mit der Visual Notation for TOSCA (Vino4TOSCA) wurde eine visuelle Notati-
on entworfen, mit der die Topologie einer TOSCA-Anwendung grafisch dargestellt
werden kann (siehe Abschnitt 4.1.1). Generell sind visuelle Notationen einfacher
zu erlernen als textuelle Notationen. Sie ermöglichen eine schnelle und effektive
Kommunikation1 von Informationen, wohingegen eine textuelle Notation auf eine
vollständige Wiedergabe von Informationen ausgerichtet ist.
Dem Entwurf von Vino4TOSCA ist eine umfangreiche Anforderungsanalyse voraus-
gegangen, in der u. a. Usability eine wichtige Rolle spielte. Dies stellt eine Besonder-
heit dar, da bei den meisten, weiteren visuellen Notationen lediglich die Semantik
die Schlüsselanforderung im Entwurfsprozess darstellte. Die Pläne einer TOSCA-
Anwendung können in einem Vino4TOSCA-Diagramm nicht dargestellt werden,

1Die Effektivität einer visuellen Notation resultiert aus der leistungsfähigen und hoch parallelisierten
visuellen Informationsverarbeitung des menschlichen Gehirns.

8

1 Einleitung

obwohl das Management eine zentrale Rolle in einem TOSCA-Modell einnimmt.
[BBK+12a]

In dieser Fachstudie wird eine visuelle Notation entworfen, mit der die Topologie
und Pläne eines TOSCA-Modells zusammen (integriert) dargestellt werden können.
Zunächst werden in Kapitel 2 Begriffe eingeführt, die in dieser Arbeit benötigt
werden. Analog zu Vino4TOSCA wird eine Anforderungsanalyse durchgeführt, auf
die in Kapitel 3 eingegangen wird. Im Anschluss werden in Kapitel 4 bereits exis-
tierende visuelle Notationen für Anwendungstopologien (u. a. Vino4TOSCA) und
Geschäftsprozesse (u. a. BPMN) vorgestellt und analysiert. Auf Grundlage dieser
Analyse und den aufgestellten Anforderungen wird die visuelle Notation entworfen,
die in Kapitel 5 beschrieben wird. Abschließend wird in Kapitel 6 die Arbeit zu-
sammenfasst und Anregungen für zukünftige Arbeiten gegeben, die thematisch mit
dieser Arbeit in Zusammenhang stehen.

9

2 Grundlagen

2 Grundlagen

In diesem Kapitel sollen Begrifflichkeiten erläutert werden, die für das Verständnis
dieser Arbeit relevant sind. Cloud Computing bildet die Basis, sodass auf diesen
Begriff zuerst eingegangen wird.

2.1 Cloud Computing

Momentan existiert keine allgemeingültige Definition für Cloud-Computing. Im
wissenschaftlichen Bereich wird jedoch meist die Definition der Standardisierungsstelle
NIST (National Institute of Standards and Technology), die 2009 veröffentlicht wurde,
verwendet:

Cloud Computing ist ein Modell, das es erlaubt bei Bedarf, jederzeit
und überall bequem über ein Netzwerk auf einen geteilten Pool von
konfigurierbaren Rechnerressourcen (z. B. Netze, Server, Speichersysteme,
Anwendungen und Dienste) zuzugreifen, die schnell und mit minima-
lem Managementaufwand oder geringer Serviceprovider-Interaktion zur
Verfügung gestellt werden können. [MG11]

Durch Cloud-Computing sollen also IT-Ressourcen effizient in und über Netzwerke
zur Verfügung gestellt werden [M1̈2]. Die virtuelle Ort, an dem sich diese befinden,
bezeichnet man dabei als Cloud2 (deutsch „Wolke“).

IT-Ressourcen werden als Dienste zur Verfügung gestellt. Generell unterscheidet man
zwischen folgenden Servicemodellen:

• Infrastructure as a Service (IaaS) stellt Datenspeicher, Netzwerkkapazität und
Rechenleistung zur Verfügung. Auf virtuellen Recheninstanzen können z.B.
Betriebssysteme mit Anwendungen installiert werden. [Bun]

• Platform as a Service (PaaS) stellt eine Ausführungsumgebung für Anwendun-
gen bereit. Auf diese kann mittels standardisierter Schnittstellen zugegriffen
und Anwendungen installiert werden. Ein Zugriff auf die Infrastruktur ist nicht
möglich. [MG11]

2Der Begriff der Cloud kommt daher, dass für einen Nutzer der IT-Ressourcen die zugrunde liegende
Infrastruktur verborgen bleibt.

10

2 Grundlagen

• Software as a Service (SaaS) stellt eine Software zur Verfügung, auf die in der
Regel über einen Webbrowser zugegriffen werden kann. [Bun]

Cloud-Dienste werden üblicherweise von Anbietern bereitgestellt, die sich auf dem
Gebiet des Cloud-Computing spezialisiert haben, sodass eine hohe Sicherheit und
Zuverlässigkeit gewährleistet ist.

2.2 Topology and Orchestration Specification for Cloud
Applications (TOSCA)

Die Topology and Orchestration Specification for Cloud Applications (TOSCA)
definiert eine Sprache, mit der Cloud-Anwendungen und deren Management portabel
und interoperabel beschrieben werden können, d. h. unabhängig von einem konkreten
Cloud-Anbieter oder einer Hosting-Technologie. Das Datenformat eines TOSCA-
Modells ist XML. [BBK+12a]

In diesem Dokument kommt TOSCA in der Version CS013 (vom 2013-03-18) zum
Einsatz. Die visuelle Notation, die im Rahmen dieser Arbeit entworfen wird, basiert
auf dieser Version.

In einem TOSCA-Modell wird eine Cloud-Anwendung mittels ihrer Struktur be-
schrieben. Diese wird durch ein Topology Template repräsentiert, das sich aus Node
Templates und Relationship Templates zusammensetzt. Ein Node Template stellt eine
Komponente der Anwendung dar und ist durch ein Node Type typisiert. Zwei Node
Templates können mittels einem Relationship Template, das analog ein Relationship
Type referenziert, miteinander verbunden werden. [BBK+12a]

In Node Types und Relationship Types können in erster Linie Schnittstellen mit
Management-Operationen definiert werden. In letzterem Konstrukt wird dabei wird
Quell- und Zielschnittstellen (Source Interfaces und Target Interfaces) unterschieden.
Ein Quellschnittstelle definiert Operationen, die an der Quelle der Relation ausgeführt
werden, um die Verbindung zwischen den entsprechenden zwei Node Templates
zu realisieren. Analog dazu wird eine Operation einer Zielschnittstelle am Ziel
der Relation ausgeführt. Ein Node Type Implementation bzw. Relationship Type
Implementation repräsentiert die Implementierung eines referenzierten Node Type
bzw. Relationship Type. Hierzu definiert es Implementation Artifacts (IAs), welche
die Schnittstellen realisieren. In einer Node Type Implementation können zusätzlich
Deployment Artifacts (DAs) angegeben werden, die ein zugehöriges Node Template,

3TOSCA Spezifikation Version CS01: http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/
TOSCA-v1.0-cs01.pdf

11

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf

2 Grundlagen

also eine Komponente der Anwendung repräsentieren. Die Definition von DAs ist
auch direkt in einem Node Template möglich. [BBK+12a]

Denkbar wäre ein Node Template, das eine Cloud-Anwendung repräsentiert. Das
zugehörige Deployment Artifact wäre dann die Distribution der Anwendung (z. B.
ZIP-Datei). Das Deployment der Cloud-Anwendung wäre eine mögliche Aufgabe
eines Implementation Artifacts (IAs, z. B. WAR-Datei). Ein „hostedOn“-Relationship
Template könnte die Cloud-Anwendung mit einem Betriebssystem, das ein weiteres
Node Template darstellt, verbinden.

Die Definition eines Artefakts erfolgt in einem Node Template, einer Node Type
Implementation und Relationship Type Implementation durch eine Referenz auf
ein Artifact Template. Ein Artifact Template spezifiziert ein Artefakt direkt oder
durch Referenzen. Ein Referenz ist dabei eine URI, die auf eine Datei oder einen
Ordner verweist. In letzterem Falle sind Patterns erlaubt, mit denen Dateien an
der Artefakt-Referenz ausgeschlossen werden können. Die Notation, in der Patterns
angegeben werden, ist durch TOSCA nicht spezifiziert und kann daher beliebig
gewählt werden. Beispielsweise können reguläre Ausdrücke zum Einsatz kommen.
Ein Artifact Template ist durch ein Artifact Type typisiert, welches die Menge der
zulässigen Artefakte einschränkt. [BBK+12a]

Pläne (Plans) repräsentieren in einem TOSCA-Modell das Management der Cloud-
Anwendung. Ein Plan ist ein Modell eines Geschäftsprozesses (Workflow), das Opera-
tionen, die durch IAs bereitgestellt sind, zu höherwertigen Management-Operationen
kombiniert (orchestriert). Denkbar wäre ein „Build Plan“, der eine Cloud-Anwendung
bereitstellt bzw. instanziiert. Analog zu einem Artifact Template kann ein Plan direkt
oder mittels einer URI-Referenz definiert werden.

Eine konkrete Sprache für Pläne bzw. Prozesse wird von TOSCA nicht vorgegeben.
Stattdessen sollen existierende Standards, insbesondere BPMN und BPEL, eingesetzt
werden. [BBK+12a]

Ein Service Template spezifiziert einen Service und deren Management und besteht
dazu aus einem Topology Template und Plänen. Nach einer erfolgreichen Ausführung
eines Build Plans existiert eine Instanz eines Service Template bzw. deren Topology
Template, d. h. ein konkreter Service. Definitions besteht aus Service Templates und
den erwähnten Types, die in Service Templates referenziert werden. [BBK+12a]

Alle angesprochenen Konstrukte stellen XML-Elemente dar und bilden nach beschrie-
bener Hierarchie ein gültiges TOSCA Definitions-Dokument. [BBK+12a]

Der Visual Editor for TOSCA (VALESCA) ist ein webbasiertes Modellierungswerk-
zeug für TOSCA, das u. a. die visuelle Notation Vino4TOSCA (Visual Notation for

12

2 Grundlagen

TOSCA) unterstützt, mit der Topology Templates grafisch dargestellt werden können
[BBK+12b]. Näheres zu dieser Notation in Abschnitt 4.1.1.

13

3 Anforderungsanalyse

3 Anforderungsanalyse

In diesem Kapitel werden Anforderungen genannt und beschrieben, die bei der Defi-
nition von Vino4TOSCA 2 in Kapitel 5 berücksichtigt werden sollen. Die Aufstellung
von Anforderungen bildet die Basis für die Erstellung einer Notation, die effektiv
einsetzbar ist.

Wir kategorisieren die Anforderungen in vier Bereiche.
In Abschnitt 3.1 werden zunächst visuelle Anforderungen behandelt. In der ersten
Version von Vino4TOSCA [BBK+12a] (siehe Abschnitt 4.1.1) bildete die Design
Theorie „The Physics of Notations“ von Moody [Moo09] die Grundlage für die
Entwicklung der visuellen Notation. Moody setzt sich in diesem Dokument mit
der physikalischen Wahrnehmung von Notationen im Rahmen der menschlichen
Fähigkeiten auseinander. Er beschreibt Prinzipien, welche aus der Theorie sowie
empirischen Untersuchungen stammen. Auch bei Vino4TOSCA 2 wird u. a. dieses
Dokument für die Bestimmung der visuellen Anforderungen herangezogen.
Im Anschluss folgen in Abschnitt 3.2 Anforderungen, die sicherstellen sollen, dass
sich mit der visuellen Notation korrekt TOSCA-Topologien darstellen lassen.
In 3.3 werden Usability-4 und User Experience5-Anforderungen beschrieben. Die
Notation soll effektiv und effizient genutzt werden können. Das Nutzungserlebnis soll
dabei auch berücksichtigt werden.
Abschließend werden in Abschnitt 3.4 Anforderungen dargelegt, welche die Integration
von Prozessnotationen betreffen.

Jede Anforderung, die im Folgenden genannt wird, erhält die Bezeichnung Ax, wobei
x für eine Zahl steht, die eindeutig eine bestimmte Anforderung referenziert. In den
weiteren Kapiteln kann so einfach auf Anforderungen verwiesen werden.

4Benutzbarkeit
5Benutzerfreundlichkeit

14

3 Anforderungsanalyse

3.1 Visuelle Anforderungen

Visuelle Anforderungen sollen die kognitive Effektivität6 steigern, welche die wich-
tigste Variable für die Bewertung und den Vergleich einer visuellen Notation darstellt
[Moo09].

Die semiotische Klarheit (A1) stellt die erste visuelle Anforderung dar. Sie besagt, dass
zwischen den semantischen Konstrukten einer visuellen Notation und ihrer grafischen
Darstellung eine 1:1 Beziehung existieren muss. Jedes semantische Konstrukt der
Notation darf nicht durch mehr als ein grafisches Element ausgedrückt werden können
(Symbol Redundanz). Weiterhin dürfen mehrere Konstrukte nicht durch das gleiche
grafische Symbol repräsentiert werden (Symbol Überladung). Auch darf es kein
grafisches Symbol geben, das keinem semantischen Konstrukt angehört (Symbol
Überschuss). Ebenso darf es kein Konstrukt geben, dass keinem grafischen Symbol
zugewiesen wurde (Symbol Defizit). [Moo09]
Abbildung 3.1 veranschaulicht die genannten Anomalien der semiotischen Klarheit.

K1

K2

K3

K4

?
Symbol‐

redundanz

?

Symbol‐
überladung

Symbol‐
defizit

Symbol‐
überschuss

Semantische
Konstrukte

(Metamodell)

Visuelle Syntax
(grafische Symbole)

Enkodierung

Dekodierung

Abbildung 3.1: Anomalien der Semiotischen Klarheit nach [Moo09].

Die differenzierte Wahrnehmung (A2) stellt eine weitere visuelle Anforderung dar.
Jedes Element der Notation muss eindeutig unterschieden werden können, damit es zu
keinen Missverständnissen kommt. Der Grad an Unterscheidbarkeit ist dabei durch
die visuelle Distanz7 zwischen den grafischen Elementen gegeben. Beispielsweise
gibt es in vielen visuellen Notationen zentrale Elemente, die sich verhältnismäßig
nur wenig unterscheiden. Insbesondere für Personen, die nicht mit der Domäne der

6Die kognitive Effektivität ist nach [LS87] die Geschwindigkeit, Leichtigkeit und Genauigkeit mit
der Informationen vom menschlichen Verstand verarbeitet werden können.

7Die visuelle Distanz wird bestimmt durch die Anzahl der visuellen Variablen (z. B. Form, Farbe,
Schriftgröße oder Schriftstil), in denen sich grafische Elemente unterscheiden und dem Umfang
der Unterschiede.

15

3 Anforderungsanalyse

visuellen Notation vertraut sind, ist der kognitive Aufwand zum Verständnis eines
Modells hoch, wenn sich grafische Elemente nicht deutlich unterscheiden. [Moo09]

Gemäß der semantischen Transparenz (A3) soll am Aussehen eines grafischen Ele-
ments seine Bedeutung erkennbar sein. In [Moo09] wird verdeutlicht, dass dieses
Prinzip nicht binär8 ist, sondern ein Kontinuum darstellt: Man spricht von dem Grad
zwischen dem Aussehen und der Bedeutung eines grafischen Elements. Abbildung 3.2
veranschaulicht diesen Zusammenhang.

Semantische Transparenz
Am Aussehen erkennt man die

Bedeutung (positive Assoziation).

Semantische Gegensätzlichkeit
Aus dem Aussehen schließt man auf eine
andere oder gegensätzliche Bedeutung

(negative Assoziation).

Semantische Opakheit
Beliebiges Verhältnis zwischen Aussehen und

Bedeutung.

Abbildung 3.2: Semantische Transparenz ist ein Kontinuum nach [Moo09].

Icons sind grafische Symbole, die in der Regel eine starke Bindung zwischen Aussehen
und Bedeutung aufweisen und sich daher gut für die Umsetzung der semantischen
Transparenz eignen. Zusätzlich fällt das Erlernen und Erinnern an Icons meist leichter
als bei Formen. Auch wirken sie visuell ansprechender.

Die semantische Transparenz lässt sich ebenso auf den Zusammenhang von Elementen
anwenden. Die Bedeutung eines Elements soll sich aus seiner Lage und Beziehung mit
weiteren Elementen ableiten lassen können. Man spricht hierbei von der semantisch
transparenten Relation (A4), welche wir explizit als separate Anforderung definieren.
[Moo09]

Es sollten Mechanismen vorgesehen werden, um mit Komplexität umzugehen bzw.
diese bei Bedarf zu verringern. Man spricht hierbei vom Komplexitätsmanagement
(A5). Systeme sollten auf verschiedenen Hierarchieebenen betrachtet (Abstraktion)
und in kleinere Teile (Subsysteme) zerlegt werden können (Modularisierung). Die
Bildung von sinnvollen Hierarchieebenen ermöglicht „top down understanding“. In
[NC99] wurde gezeigt, dass diese Vorgehensweise zum Verständnis von Diagrammen
aus dem Bereich des Software Engineerings beiträgt. Weiterhin kann man durch Hier-
archiebildung den Interessen unterschiedlicher Leser gerecht werden. Die niedrigste
Hierarchieebene (Detaillierungsgrad) sollte dabei zunächst einen Überblick über das
gesamte System geben. Die weiteren Ebenen können dann einzelne Komponenten im
Detail veranschaulichen. [Moo09]

Eine weitere Anforderung betrifft die Integration von Diagrammen. In der Regel wird
ein System nicht nur durch ein einzelnes Diagramm repräsentiert, sondern durch eine

8Binär bedeutet in diesem Kontext, dass die Anforderung lediglich erfüllt bzw. nicht erfüllt sein
kann.

16

3 Anforderungsanalyse

Vielzahl von Diagrammen unterschiedlicher Typen. Für den Leser stellt das Zusam-
mensetzen der Informationen aus den verschiedenen Diagrammen einen zusätzlichen
kognitiven Aufwand dar. Der kognitiven Integration entsprechend sollte eine visuelle
Notation Mechanismen vorsehen, welche diesen Aufwand senken (A6). Man unter-
scheidet dabei zwischen der konzeptuellen Integration, die den Leser unterstützen
soll, Informationen aus verschiedenen Diagrammen zu einer kohärenten mentalen
Gesamtdarstellung des System zusammenzusetzen und der perzeptuellen Integration,
welche die Navigation und Übergänge zwischen den Diagrammen vereinfachen soll.
Abbildung 3.3 veranschaulicht diese beiden Begriffe. [Moo09]

Diagramm 1 Diagramm 2
Perzeptuelle
Integration

Konzeptuelle
Integration

Kognitive Gesamtdarstellung

Navigation zwischen Diagrammen

Abbildung 3.3: Kognitive Integration nach [Moo09].

Weiterhin sollte eine visuelle Notation möglichst viele visuelle Variablen (z. B. Form
und Farbe) einsetzen. Je mehr Variablen im visuellen Vokabular einer Notation ent-
halten sind, desto höher ist ihre visuelle Ausdrucksfähigkeit (A7). Klassische Formen
wirken dabei am wenigsten kognitiv effektiv [LS87]. Im Gegensatz dazu gehört Farbe
zu den kognitiv effektivsten visuellen Variablen, da das menschliche Auge sehr emp-
findlich auf Farbvariationen reagiert und schnell zwischen Farben unterscheiden kann.
Farbe sollte jedoch keinesfalls als einzige Variable zur Unterscheidung von grafischen
Elementen eingesetzt werden, da ansonsten Personen mit einer Farbsinnstörung oder
Farbfehlsichtigkeit u.U. die Elemente nicht mehr unterscheiden können. Stattdessen
sollte Farbe lediglich zur redundanten Kodierung verwendet werden. [Moo09]

17

3 Anforderungsanalyse

Text und Grafik sollten zusammen eingesetzt werden, um Informationen zu über-
mitteln (kodieren), was als „Dual Coding“ (A8) bezeichnet wird. Grundsätzlich
werden textuelle Informationen im verbalen System verarbeitet bzw. gespeichert,
bildliche Informationen hingegen im nicht-verbalen bzw. imaginalen System. Falls
eine Information textuell als auch grafisch präsentiert wird, werden folglich beide
Systeme aktiviert. Es werden Verbindungen zwischen den Systemen aufgebaut, die
zu einer deutlichen Steigerung der Merkfähigkeit führen. Anwendung findet dieses
Prinzip bspw. bei Annotationen, welche grafische Elemente durch Text ergänzen und
in Hybrid-Symbolen, die Grafik und Text in einem grafischen Element vereinigen.
[Moo09]

Weiterhin sollte der grafischen Ökonomie entsprechend darauf geachtet werden, dass
die Menge der Elemente im visuellen Vokabular noch kognitiv verarbeitet werden
kann. Die grafische Komplexität der Notation sollte somit nicht zu hoch sein (A9).
Jedes weitere Element im visuellen Vokabular senkt zudem die kognitive Effektivität,
was nicht wünschenswert ist. Personen, die mit der Domäne der visuellen Notation
nicht vertraut sind, sind insbesondere von der graphischen Komplexität betroffen. Dies
haben empirische Studien ergeben ([NC99]), die mit SE-Diagrammen durchgeführt
wurden.

Der Symbol-Defizit, den wir bereits im Rahmen der semiotischen Klarheit angespro-
chen haben, kann auch gezielt dazu eingesetzt werden, die graphische Komplexität
zu senken. Die semantischen Konstrukte, die vom Symbol-Defizit betroffen sind
(semantische Konstrukte, die kein grafischen Symbol besitzen), müssen in diesem Fall
durch Text repräsentiert werden. Dieser Ansatz findet in vielen visuellen Notationen
Anwendung (zumindest in einem gewissen Umfang) [Moo09, S. 15].

Auch sollte eine Notation verschiedene visuelle Dialekte anbieten, mit denen Infor-
mationen dargestellt werden können. Dadurch können Modelle erzeugt werden, die
für verschiedene Aufgaben sowie Leser mit unterschiedlicher Erfahrung passend bzw.
optimiert sind. Diese Forderung entspricht der Theorie des „Cognitive Fit“ (A10).
[Moo09] Abbildung 3.4 veranschaulicht, durch welche Parameter der „Cognitive Fit“
beeinflusst wird. Durch „Cognitive Fit“ kann insgesamt eine schnellere Problem-
lösung und eine höhere kognitive Effizienz erreicht werden. Neben dem visuellen
Dialekt, der die Basisnotation darstellt, können weitere visuelle Dialekte (Profile) für
verschiedene Einsatzbereiche, Aufgaben oder Zielgruppen die Basisnotation erweitern
bzw. anpassen. Beispielsweise könnte es ein Whiteboard-Profil geben, das Icons durch
Formen ersetzt, die für das händische Skizzieren auf einem Whiteboard gedacht sind.
Solche Formen könnten z. B. mit wenigen, schwarzen Linien auskommen und keine
ausgefüllten Bereiche besitzen. In den meisten SE-Notationen kommen Profile (leider)

18

3 Anforderungsanalyse

Cognitive Fit

Darstellungsform Konkrete Aufgabe

Person, welche die
Aufgabe löst

Abbildung 3.4: Einflussfaktoren des „Cognitive Fit“ nach [Moo09].

nicht zum Einsatz. Stattdessen enthält bereits die Basisnotation einfache grafische
Elemente, um dem Bedürfnis nach Skizzieren nachzukommen.

Gemäß der Kommunikationstheorie sollten Informationen, die der Modellierer in
einem Modell der visuellen Notation hinterlegt, möglichst unverändert zu einem
Leser des Modells übertragen werden (A11). Anders ausgedrückt sollten Modelle
der visuellen Notation die jeweiligen Informationen eindeutig repräsentieren, sodass
Missverständnisse vermieden werden.

Werden Änderungen an einem Modell der visuellen Notation vorgenommen, so
sollten sich diese möglichst wenig die Gesamtstruktur auswirken (A12) [PQ06]. Das
Hinzufügen eines Knotens bspw. sollte nicht zu grundsätzlichen Änderungen am
Modell führen bzw. diese erfordern. Der Aufwand zum (erneuten) Verständnis eines
Modells nach einer Änderung soll durch diese Anforderung möglichst gering gehalten
werden.

Weiterhin sollte die visuelle Notation von Personen, die mit der Domäne vertraut sind,
möglichst schnell erlernt werden können. Alle anderen Personen sollten ebenfalls in
einer angemessener Zeit ein Modell der Notation verstanden haben (A13). [PQ06]

Die visuelle Notation sollte Features vorsehen, die einem Leser bei der Navigation
durch ein Modell der Notation unterstützen. Dies wird als minimale Desorientierung

19

3 Anforderungsanalyse

(A14) bezeichnet. Beispielsweise könnten hierfür Orientierungspunkte zum Einsatz
kommen oder Vorschriften definiert werden, die das Layout bzw. die Struktur betreffen.
[PQ06]

Visuelle Metaphern, die eine Notation vorsieht, sollten effektiv und ausdrucksstark
sein (A15), sodass sie sinnvoll eingesetzt werden können [PQ06]. Beispiele für visuelle
Metaphern bilden Icons oder Farben, die eine bestimmte Information übermitteln
sollen.

3.2 TOSCA-spezifische Anforderungen

Die Anforderungen, die im Folgenden dargelegt werden, sollen sicherstellen, dass die
semantische Konstrukte der visuellen Notation auf TOSCA zugeschnitten sind.

Node Templates und Relationship Templates eines Topology Templates müssen
mit der visuellen Notation dargestellt werden können. Auch sollen Node Types
und Relationship Types, die von Node Templates bzw. Relationship Templates
referenziert werden, repräsentiert werden können. Die genannten Elemente müssen
somit in ein Modell der visuellen Notation überführt werden können. Wir fassen
diese Anforderungen unter der Vollständigkeit zusammen (A16).

Die genannten Typ-Elemente sollen dargestellt werden können, da in diesen, die
Schnittstellen mit Management-Operationen definiert sind. Die Darstellung von
Operationen verdeutlicht, welche Managementrolle ein Node Type einnimmt. Insbe-
sondere jedoch können dadurch Beziehungen zwischen einem Node Type und einem
Plan dargestellt werden (siehe A26).

Entsprechend der semantischen Korrektheit (A17) sollte eine gültiges Modell der
visuellen Notation ein gültiges Topology Template mit zugehörigen Node Types und
Relationship Types repräsentieren [BBK+12a].

Auch sollte die visuelle Notation erweiterbar (A18) sein. Elemente sollten mit Infor-
mationen wie z. B. Erläuterungen oder zusätzliche Eigenschaften versehen werden
können. [BBK+12a]

TOSCA-Topologien sind in den meisten Fällen umfangreich. Daher sollte die visuelle
Notation Mechanismen vorsehen, mit denen Topologien in verschiedenen Detaillie-
rungsgraden dargestellt werden können (A19; siehe auch A5). [BBK+12a]

20

3 Anforderungsanalyse

3.3 Usability- und User Experience-Anforderungen

Die visuelle Notation sollte für ihre Aufgaben optimiert sein (A20). Die Modellierung
von Topology Templates, Node Types, Relationship Types, Management-Plänen und
den Beziehungen zwischen Node Types bzw. Relationship Types und Plänen (siehe
A26) müssen folglich ohne Probleme möglich sein. [BBK+12a]

Ein Modell der visuellen Notation sollte möglichst ohne zusätzliche Informationen, d. h.
jene, die nicht aus des Modell stammen, verstanden werden können. Die grafischen
Elemente der Notation sollten folglich selbsterklärend sein (A21). Am Aussehen eines
Elements sollte auf dessen Bedeutung geschlossen werden können, sofern man mit
der Domäne der entsprechenden Notation vertraut ist. [BBK+12a]

Die grafischen Elemente der Notation sollten schnell und einfach zu zeichnen sein
(A22), sodass die Notation auch bspw. für ein Whiteboard oder für eine Tafeln
geeignet ist. Es bietet sich dabei an, gesonderte Elemente für das Skizzieren zu
erstellen, die in einem Profil bereitgestellt werden können (siehe A10). [BBK+12a]

Weiterhin sollten die Elemente visuell ansprechend wirken bzw. den Vorlieben des
Menschen entsprechen (A23) [BBK+12a]. Ästhetisch ansprechende Dinge führen zu
positiver Emotion, was die Fähigkeit verbessert, Probleme zu lösen [Nor02]. Ein
visuell ansprechendes Modell wird von einem Leser in einer kürzeren Zeit verstanden
als ein Modell mit selbigem Inhalt, das jedoch weniger ansprechend wirkt. In einer
Studie von Bar und Neta [BN06] wurde bspw. gezeigt, dass Personen abgerundete
Formen bevorzugen. Auch sind jene Formen leichter zu zeichnen.

3.4 Anforderungen für die Integration visueller
Geschäftsprozessnotationen

Die zu entwerfende visuelle Notation soll Prozessnotationen integrieren. Für den
Integrationsaspekt werden gesonderte Anforderungen benötigt, auf die im Folgenden
eingegangen wird.

Bestehende visuelle Notationen für Geschäftsprozesse bzw. Pläne dürfen für die
Integration bzw. gemeinsamen Darstellung mit einem Topology Template (mit zu-
gehörigen Types) nicht verändert werden (A24). Prozessnotationen erfüllen in der
Regel jedoch nicht alle Anforderungen, die in den Abschnitten 3.1 und 3.3 dargelegt
sind. Daher erlauben wir explizit, dass Prozessnotationen die Anforderungen aus
den genannten Bereichen nicht erfüllen müssen. Die eindeutige Unterscheidbarkeit
zwischen Topologie (mit Types) und Plänen muss jedoch gegeben sein (A25).

21

3 Anforderungsanalyse

Existiert eine Beziehung zwischen einer Management-Operation, die zu einem Node
Type bzw. einem Relationship Type gehört und einer Aktivität eines Plans (ruft die
Operation auf), so sollte dies grafisch verdeutlicht werden können (A26).

Entsprechend dem Komplexitätsmanagement, welches wir bereits in 3.1 angesprochen
haben, sollten auch für visuelle Prozessnotationen Möglichkeiten zur Abstraktion
vorgesehen werden (A27). Einzelne Aktivitäten eines Prozesses, die als nicht relevant
für ein Modell bzw. seine beabsichtige Aussage eingestuft werden, sollten ausgeblendet
werden können. Auch sollten Prozesse vollständig „zusammengeklappt“ werden
können. Diese Anforderung steht im Widerspruch zu A23, wo gefordert wird, dass
visuelle Prozessnotationen nicht verändert werden dürfen. Generell erlauben wir
Mechanismen zur Abstraktion, sofern entsprechende Möglichkeiten nicht bereits Teil
der visuellen Notation des Plans bzw. Prozesses sind.

Die letzte Anforderung dieses Bereichs betrifft die semantische Korrektheit (A28):
Der Modellierer entscheidet, ob ein Plan, der zu einem Topology Template gehört9, in
einem Modell der visuellen Notation repräsentiert wird. Falls er sich dafür entscheidet,
so darf die Semantik des Plans nicht verändert werden. Beispielsweise dürfen keine
Aktivitäten entfernt oder der Ablauf verändert werden. Wird Abstraktion angewendet,
so muss dies eindeutig ersichtlich sein.

9Die Zusammengehörigkeit ist gegeben, falls das Topology Template und der Plan in selbigen
Service Template definiert sind.

22

4 Analyse existierender visueller Notationen

4 Analyse existierender visueller Notationen

Als Grundlage für den Entwurf der neuen visuellen Notation sollen in diesem Kapitel
existierende visuelle Notationen für Anwendungstopologien und Geschäftsprozesse
vorgestellt und analysiert werden. Es soll dabei lediglich auf wichtige und insbesondere
standardisierte Notationen aus den genannten Bereichen eingegangen werden. Jede
Notation wird durch eine oder mehrere Abbildungen veranschaulicht, die konkrete
Beispiele oder visuelle Elemente der Notation (verallgemeinert) darstellen.

In der Analyse (siehe Abschnitt 4.3) wird unter anderem bestimmt, inwieweit sich die
Notationen im Bereich der Anwendungstopologien für die Darstellung von TOSCA-
Topologien und die Integration von Geschäftsprozessen eignen. Konzeptionelle bzw.
Entwurfsentscheidungen, die als passend und brauchbar eingestuft werden, sollen
in den Entwurf der neuen Notation einfließen (ggf. mit Anpassungen, sodass die
aufgestellten Anforderungen erfüllt sind).

Die visuellen Notationen für Geschäftsprozesse werden im Hinblick auf die Integra-
tion mit TOSCA-Topologien untersucht. Eignung und Brauchbarkeit sollen dabei
betrachtet werden. Es sollen schließlich Geschäftsprozessnotationen bestimmt werden,
die zur Integration mit einer TOSCA-Topologie akzeptiert werden. Entsprechend
Anforderung A24 müssen Prozessnotationen die aufgestellten Anforderungen aus
den Abschnitten 3.1, 3.2 und 3.3 nicht erfüllen. Aus diesem Grund findet eine ent-
sprechende Überprüfung nicht statt. Die Anforderungen für die Integration von
Prozessnotationen (siehe Abschnitt 3.4) werden im Rahmen des Entwurfs der neuen
Notation umgesetzt.

4.1 Anwendungstopologien

4.1.1 Vino4TOSCA

TOSCA spezifiziert keine grafischen Elemente für die semantischen Konstrukte der
Sprache [TOS13]. Eine entsprechende visuelle Notation wäre jedoch wünschenswert,
da damit eine TOSCA-Topologie auf einem einfachen und schnellen Wege repräsen-
tiert bzw. kommuniziert werden kann.

23

4 Analyse existierender visueller Notationen

Aus dieser Motivation heraus ist Vino4TOSCA (Visual Notation for TOSCA) ent-
standen, mit der TOSCA Topology Templates, die aus Node Templates, Relationship
Templates und Group Templates bestehen, modelliert werden können. Zu letzte-
rem Element sollte hierbei erwähnt werden, dass dieses in der aktuellen TOSCA
Spezifikation CS01 vom 2013-03-18 [TOS13] nicht mehr vorgesehen ist.

Die Basis für den Entwurf der visuellen Notation bildete eine umfangreiche Anfor-
derungsanalyse, bei der neben den üblichen Aspekten wie semantische Korrektheit
und Vollständigkeit insbesondere auch die menschliche Wahrnehmung, Usability,
Ergonomie und User Experience miteinbezogen wurde. Für visuelle Anforderungen
wurde dabei die Design Theorie „The Physics of Notations“ von Moody [Moo09]
herangezogen, die auf der Theorie sowie empirischen Studien beruht. [BBK+12a]
Viele bekannte visuelle Notationen wie z. B. UML wurden im Gegensatz dazu nicht
auf der Grundlage von visuellen Prinzipien entwickelt. Ein expliziter Entwurfsprozess
für die visuelle Syntax wurde nicht vorgesehen. Stattdessen wurde der Fokus auf
Semantik gelegt. Diese Vorgehensweise führt in der Regel zu einer Notation, die sich
durch Defizite in der Usability auszeichnet. Auch Christopher Alexander [Ale64] hat
dieses Problem existierender visueller Notation erkannt. Er spricht von einer „unself-
conscious design culture“ (auf Deutsch etwa „freie Designkultur“), die auf Instinkt,
Imitation und Tradition basiert und sich nicht nach expliziten Designprinzipien
richtet. [BBK+12a]

Vino4TOSCA wurde am Institut für Architektur von Anwendungssystemen
(IAAS) der Universität Stuttgart entwickelt und im September 2012 veröffentlicht.
[BBK+12a]

Im Folgenden soll nun die eigentliche Notation anhand der verschiedenen Shapes
(Elemente) erläutert werden.

Ein Node Template Shape (siehe Abbildung 4.1) ist ein abgerundetes Rechteck
(durchgezogene Linie), dass ein Node Template repräsentiert. Das zugehörige Node
Template kann mittels einem (i) Icon, der (ii) ID bzw. dem (iii) Namen des Node
Templates oder über die (iv) ID bzw. dem (v) Namen des zugehörigen Node Type
(in Klammern gesetzt) definiert werden, wobei mindestens eine dieser fünf Varianten
verwendet werden muss. Eine ID muss grundsätzlich unterstrichen werden. Weiterhin
gibt es ein optionales Feld, in dem zusätzliche Informationen hinterlegt werden können
(Text oder Bilder). Dieses ist ebenfalls abgerundet und wird hinter dem Haupt-Shape
positioniert, sodass die oberen Ecken nicht sichtbar sind. Das Haupt-Shape darf
ein Hintergrundbild enthalten, wobei dieses nicht den Icon-Bereich oder den Text
überdecken darf. [BBK+12a]

Ein Relationship Template Shape (siehe Abbildung 4.2) repräsentiert ein Relationship
Template. Es handelt sich um eine Linie, die an ihren Enden beliebige (kleine) Shapes

24

4 Analyse existierender visueller Notationen

NodeTemplate.Name
NodeTemplate.Id

(NodeTemplate.NodeType.Name | Id)

Icon
Area

Zusätzliche Informationen

Customer Database
CustomerDatabase
(Derby Database)

Abbildung 4.1: Node Template Shape mit Beispiel nach [BBK+12a].

besitzen darf, z. B. einen Pfeil. Der Stil der Linie kann frei gewählt werden, wobei
sie nicht gestrichelt wie bei einem Visual Group Shape sein darf. Analog zu einem
Node Template Shape kann das zugehörige Relationship Template definiert werden.
Ein Icon steht über der Linie, falls die Linie horizontal ist, andernfalls (vertikal bzw.
diagonal) auf einer beliebigen Seite. Ein Relationship Template Shape verbindet
grundsätzlich zwei relationale Elemente. Ein relationales Element ist dabei ein Node
Template Shape, Collapsed Group Template Shape oder Collapsed Visual Group
Shape, wobei auf die letzteren beiden noch näher eingegangen wird. Ein optionales
Feld für zusätzliche Informationen wird unter die Linie gesetzt und berührt die
Linie, falls sie horizontal ist. Andernfalls kann sich das Feld an einer beliebigen Seite
befinden. [BBK+12a]

Zusätzliche Informationen

RelationshipTemplate.Name
RelationshipTemplate.Id

(RelationshipTemplate.RelationshipType.Name | Id)

Icon
Area

? ?

Hosted on

Abbildung 4.2: Relationship Template Shape mit Beispiel nach [BBK+12a].

Ein Group Template kann durch zwei verschiedene Shapes (siehe Abbildung 4.3,
links) dargestellt werden. Das Expanded Group Template Shape enthält die Elemente
des Group Template. Die Form dieses Shapes kann frei gewählt werden, wobei der
Linienstil durchgezogen sein muss. Zur Beschreibung kann ein Icon, eine ID bzw. ein
Name definiert werden, wobei mindestens eine dieser drei Möglichkeiten verwendet
werden muss. Das Collapsed Group Template Shape dagegen abstrahiert die Elemente
des Group Template. Es ist ein Oval, dessen Linie durchgezogen sein muss. Ein kleines
Quadrat mit einem Plus-Zeichen symbolisiert die Abstraktion. Auch hier kann ein
Icon, eine ID bzw. ein Name zur Beschreibung verwendet werden. [BBK+12a]

Die Visual Group Shapes (siehe Abbildung 4.3, rechts) dienen zum visuellen Gruppie-
ren bzw. Abstrahieren von Elementen, also ohne das Topology Template zu verändern.
Die Linien der Shapes sind gestrichelt, im Übrigen entsprechen sie den Shapes des

25

4 Analyse existierender visueller Notationen

Group Templates. Visual Group Shapes können auch zur Integration von anderen
Diagrammen verwendet werden. [BBK+12a]

Icon
Area

GroupTemplate.Name
GroupTemplate.Id

Icon
Area

GroupTemplate.Name
GroupTemplate.Id

Icon
Area

VisualGroup.Name
VisualGroup.Id

Icon
Area

VisualGroup.Name
VisualGroup.Id

+ +

Abbildung 4.3: Expanded / Collapsed Group Template Shapes (links) und Visual
Group Shapes (rechts) nach [BBK+12a].

Mit den Visual Relationship Group Shapes (siehe Abbildung 4.4) können Relationship
Template Shapes visuell gruppiert bzw. abstrahiert werden. Die Expanded-Variante
besteht aus zwei gestrichelten Linien, die relationale Elemente verbinden. Zwischen
den Linien muss mindestens ein Relationship Template Shape stehen. Zur Beschrei-
bung kann ein Icon, eine ID bzw. ein Name verwendet werden, die über der oberen
Linie stehen müssen. Eine dieser drei Möglichkeiten muss mindestens verwendet
werden. Die Collapsed-Variante dagegen abstrahiert Relationship Template Shapes.
Es handelt sich um eine gestrichelte Linie zwischen relationalen Elementen, die in
der Mitte ein kleines Quadrat mit einem Plus-Zeichen enthält, dass die Abstraktion
symbolisiert. Im Übrigen entspricht sie der Expanded-Variante. [BBK+12a]

Grundsätzlich darf bei keinen Group Shapes ein Hintergrundbild gesetzt werden.
[BBK+12a]

Group.Name
Group.Id

Icon
Area Group.Name

Group.Id
Icon
Area

+

Abbildung 4.4: Expanded / Collapsed Visual Relationship Group Shapes nach
[BBK+12a].

Weiterhin können die zulässigen Instanzen von Node Templates sowie Group Templa-
tes visualisiert werden (siehe Abbildung 4.5). Dazu wird eine Linie teilweise um das
entsprechende Shape gezeichnet und der min-Wert auf die linke Seite, der max-Wert
auf die rechte Seite über dem Shape geschrieben. [BBK+12a]

Vino4TOSCA ermöglicht auch die Definition von Profilen. Dabei handelt es sich um
domänenspezifische Erweiterungen bzw. Anpassungen der Notation für bestimmte
Bedürfnisse oder Fähigkeiten von Benutzern. Ein Aufgabe kann so intuitiv und
effektiv gelöst werden. Beispielsweise könnte es ein Whiteboard-Profil geben, welches

26

4 Analyse existierender visueller Notationen

NodeTemplate.Name
NodeTemplate.Id

(NodeTemplate.NodeType.Name | Id)

Icon
Area

Icon
Area

GroupTemplate.Name
GroupTemplate.Id

+

min max maxmin

Abbildung 4.5: Zulässige Instanzen von Node Templates (links) und Relationship
Templates (rechts) nach [BBK+12a].

definiert, dass alle Linien schwarz sein müssen und keine Icons verwendet werden
dürfen. [BBK+12a]

Die Darstellung einer Form, ihre Orientierung und ihr Linienstil darf grundsätzlich
nicht verändert werden. Alle weiteren visuellen Variablen sind frei wählbar, sofern
sie nicht durch ein Profil fest definiert werden. Ein Profil darf lediglich die visuellen
Variablen Farbe, Textur und Größe definieren. [BBK+12a]

Abbildung 4.6 zeigt ein Vino4TOSCA-Diagramm eines Web Shops, der auf einem
Apache Tomcat deployed ist und eine Apache Derby Datenbank verwendet. Tomcat
läuft auf Ubuntu, dass sich auf einer Amazon EC2 Instanz befindet.

27

4 Analyse existierender visueller Notationen

WebShop
(WAR)

Created with Java 1.7.

Servlet Container
(Tomcat)

Customer Database
CustomerDatabase
(Derby Database)

OperatingSystem
(UbuntuLinux)

Virtual Server
(AWS EC2 Server)

Type: On‐Demand

Connection
(JDBCConnection)

(hosted on) (hosted on)

(hosted on)

(hosted on)

Abbildung 4.6: Vino4TOSCA-Diagramm eines Web Shops nach [BBK+12b].

Vino4TOSCA basiert auf der TOSCA Spezifikation WD07 vom Juli 2012 [BBK+12a].
Wie bereits angesprochen, gibt es in der momentanen Version CS01 keine Group
Templates mehr, sodass entsprechende Formen für Group Templates in der zu
entwerfenden Notation nicht mehr benötigt werden. Node Types bzw. Relationship
Types wurden in WD07 in einem Service Template definiert, das zugleich das
Wurzelelement bildete. Nun befinden sich die genannten Elemente im Wurzelelement
Definitions. Service Template ist ein Unterelement von Definitions, dass nur noch
aus einem Topology Template und Plänen besteht. [TOS13]

4.1.2 Fundamental Modeling Concepts

Die Fundamental Modeling Concepts (FMC) sind eine, zur Modellierung und Dar-
stellung von komplexen Softwaresystemen, konzipierte Methodik. Die Entwicklung
begann in den 70er Jahren unter der Leitung von Prof.-Dr. Siegfried Wendt. Anfangs
Structured Plans for Improving Knowledge Transfer in Engineering of Systems
– kurz SPIKES – genannt, wurden die Konzepte im Jahr 2001 zu Fundamental
Modeling Concepts umbenannt. [FMC]

28

4 Analyse existierender visueller Notationen

Grundgedanke der Fundamental Modeling Concepts ist die Möglichkeit einer gra-
fischen Darstellung der konzeptionellen Struktur eines Softwaresystems und deren
Informationsverarbeitung und nicht, wie bei vielen anderen üblichen Notationen, die
Dokumentation der konkreten Umsetzung. Dadurch soll eine effiziente Kommunikati-
on über Softwaresysteme, auch zwischen verschiedenen projektbeteiligten Gruppen,
mit verschiedenen technischen Vorkenntnissen, wie zum Beispiel Software-Architekten
und Auftraggebern ermöglicht werden. [Wik13c]

Obwohl sehr auf theoretischen Grundlagen basierend, nutzen bekannte Unternehmen
wie SIEMENS, SAP und ALCATEL die Fundamental Modeling Concepts in der
Praxis. [FMC]

FMC beinhaltet drei grundlegende Diagrammtypen zur grafischen Darstellung von
Softwaresystemen. Dies sind Aufbaudiagramme, Ablaufdiagramme und Wertebe-
reichsdiagramme.

Aufbaudiagramme dienen der Darstellung von Beziehungen verschiedener System-
komponenten zueinander. Jede Komponente wird der Kategorie Akteur, Kanal oder
Speicher zugeordnet. Akteure, dargestellt als eckige Knoten, sind aktive Komponen-
ten. Kanäle, dargestellt durch meist kleine Kreise und Speicher, dargestellt durch
Ovale, sind passive Komponenten. Passive Komponenten können nicht mit anderen
passiven Komponenten in Beziehung stehen wie auch aktive Komponenten nicht
mit anderen aktiven Komponenten in Beziehung stehen können. Dementsprechend
können Beziehungen nur zwischen aktiven sowie passiven Komponenten bestehen.
Für Kanten zwischen verschiedenen Knoten gilt: Zwischen Akteuren und Speichern
müssen Kanten gerichtet sein, zwischen Akteuren und Kanälen können sie dagegen
auch ungerichtet sein. Eine Kante von einem Speicher oder einem Kanal zu einem
Akteur hat die Bedeutung, dass der Akteur aus dem Speicher liest bzw. von einem
Kanal empfängt. Eine entgegengesetzt gerichtete Kante bedeutet, dass der Akteur in
den Speicher schreibt beziehungsweise über den Kanal sendet. In beide Richtungen
gerichtete Kanten sind nicht vorgesehen, stattdessen müssen zwei entgegengesetzt
gerichtete Kanten im Falle einer Beziehung zwischen Speicher und Akteur oder eine
ungerichtete Kante zwischen Kanal und Akteur genutzt werden. Kanäle können mit
einem „R“ samt Pfeil gekennzeichnet sein und stellen damit einen Request/Response-
Kanal dar. Über diesen Kanal kann eine Komponente einen Dienst einer anderen
Komponente aufrufen und bekommt eine entsprechende Antwort geliefert. Des Wei-
teren können Knoten durch die Einbettung in einen anderen Knoten gruppiert und
dadurch Gemeinsamkeiten ausgedrückt werden. [Wik13c]

Abbildung 4.7 zeigt ein Beispiel eines Aufbaudiagramms. Es veranschaulicht ein
Softwaresystem das es Kunden ermöglicht, über ein Buchungssystem Reisen zu
buchen. Kunden können dafür eine Anfrage (Request) an dieses Buchungssystem

29

4 Analyse existierender visueller Notationen

...

Buchungssystem

Reiseveranstalter

Kunde Kunde

Kundendaten
Reservierungs-

daten

R Rbuchen

Abbildung 4.7: Beispiel eines FMC-Aufbau-Diagramms nach [Wik13c].

schicken und bekommen nach dessen Bearbeitung eine Response (Antwort) zurück.
Das Buchungssystem ist dabei mit zwei Speichern zur Ablage von Kunden- und
Reservierungsdaten verbunden, die zur Übersichtlichkeit und zur Reduzierung von
Kanälen in einem übergeordneten Speicher gruppiert sind. Die Abbildung zeigt des
Weiteren eine Reiseveranstalter-Komponente, die seinerseits Zugriff auf die Kunden-
sowie Reservierungsdaten hat.

Ablaufdiagramme werden mit einer erweiterten Art von Petri-Netzen (siehe Ab-
schnitt 4.2.1) dargestellt und stellen den Ablauf innerhalb eines Softwaresystems
oder eines Ausschnitts davon dar. Stellen im FMC-Petri-Netz können dabei nur
eine Marke aufnehmen, wohingegen mit einem Doppelkreis gekennzeichnete Stellen,
unendlich viele Marken aufnehmen können. Des Weiteren können von einer Stelle
abgehende Kanten im FMC-Petri-Netz, zur Bestimmung der schaltenden Transition,
mit einer Bedingung versehen werden. [Wik13c]

Wertebereichsdiagramme sind im FMC von Entity-Relationship-Diagrammen (siehe
Abschnitt 4.1.6) abgeleitet und Beschreiben die im Softwaresystem möglichen Werte-

30

4 Analyse existierender visueller Notationen

bereiche. Relationen werden in FMC als eckige Knoten, Entitäten, welche wiederum
Attribute enthalten können, als runde Knoten dargestellt. [Wik13c]

Gemeinsam haben alle drei Diagrammtypen, dass sie jeweils eine Klasse mit runden
Knoten sowie eine Klasse mit eckigen Knoten enthalten und bipartit sind.

4.1.3 UML-Komponentendiagramm

Komponentendiagramme sind eine der 14 Diagrammarten der UML. Sie werden
hauptsächlich zur Visualisierung von Software-Systemen eingesetzt. Hier liegt der
Grad der Veranschaulichung auf den einzelnen Komponenten und deren Zusammen-
hang im größeren System. [Wik13f]

In einem Komponentendiagramm wird eine Komponente durch ein Rechteck (durch-
gezogene Linie) repräsentiert, das den Stereotyp „«component»“ und den Namen
der Komponente enthält. Die Komponenten in einem Komponentendiagramm bilden
ein System bzw. Teilsystem. Ein Port kommt zum Einsatz, falls eine Komponente
mehrere Schnittstellen besitzt. Es handelt sich dabei um ein kleines Quadrat, dass
sich am Rand einer Komponente befindet. Eine Schnittstelle wird durch einen nicht
ausgefüllten Kreis repräsentiert, der mittels einer durchgezogenen Linie mit der
Komponente verbunden ist, welche die Schnittstelle anbietet bzw. realisiert. Benötigt
eine Komponente hingegen eine Schnittstelle, so kann dies durch einen Halbkreis
visualisiert werden, der den entsprechenden Kreis bzw. die Schnittstelle umschließt.
Hierbei sollte erwähnt werden, dass ein Halbkreis nicht alleine existieren kann, d. h.
jede Schnittstelle, die von einer Komponente benötigt wird, muss von einer anderen
Komponente angeboten werden. Der umgekehrte Fall, das eine bereitgestellte Schnitt-
stelle nicht genutzt wird, ist hingegen erlaubt. Mittels einer Delegation können die
Operationen einer Schnittstelle, die von einer Komponente angeboten wird, zu einer
Unterkomponente weitergereicht werden.

Abbildung 4.8 zeigt ein Komponentendiagramm, dass die Komponenten Postbox,
Briefkasten und Postverwaltung enthält. Die Postbox nutzt eine Schnittstelle, die
von der Postverwaltung zur Verfügung gestellt wird. Die Schnittstelle ist dabei über
einen Port mit der Postverwaltung verbunden. Die Komponente Briefkasten stellt
eine Schnittstelle bereit, die von der Postverwaltung benötigt wird. Ein (externer)
Benutzer nutzt über eine Delegation eine Schnittstelle der Postverwaltung.

Aufgrund des geringen visuellen Vokabulars sind UML-Komponentendiagramme
einfach zu lesen, schnell erlernbar und benutzerfreundlich. Systeme können weitest-
gehend unabhängig von der eingesetzten Programmiersprache dargestellt werden.
Weiterhin können Komponenten beliebig verschachtelt werden. Daraus folgt jedoch,
dass Komponentendiagramme ab einer bestimmten Komplexität unübersichtlich

31

4 Analyse existierender visueller Notationen

<<component>>

Postverwaltung

<<component>>

Postbox

<<component>>

Briefkasten

<<use>>

Port

Verwaltung
überwachen

Postbox leeren

Abbildung 4.8: Beispiel eines UML-Komponentendiagramms.

werden können. Dynamische Daten lassen sich mit einem Komponentendiagramm
nicht darstellen.

4.1.4 Acme

Acme ist eine generische Architektur-Sprache, welche zur Beschreibung von Software-
Architektur angewendet wird. Gute Notation erlauben es komponentenbasierte Ent-
würfe der Software zu erstellen, Aussagen über deren Eigenschaften zu treffen und
Analyse und System Integration automatisch ablaufen zu lassen. [GMW00]

Acme gehört zur der zweiten Generation von architekturbeschreibenden Sprachen.
Acme besitzt Eigenschaften, welche auf den Erfahrungswerten aus anderen archi-
tekturbeschreibenden Sprachen gewonnen wurden. Acme ist eine einfache Sprache,
dessen grundlegende Elemente, den Architekturentwurf, die natürlichen Erweiterun-
gen unterstützen und komplexere Architektur Erstellung ermöglicht. Acme stellt
eine einfache, semantisch erweiterbare Sprache bereit, welche auf eine Menge von
Werkzeugen zurückgreifen kann. Diese Werkzeuge unterstützen die Analyse und
die Integration unabhängig von den in der Entwicklung verwendeten Werkzeugen.
[GMW00]

Acme unterstützt vier Aspekte der Architektur. Der erste Aspekt ist die Struktur. Die
Struktur organisiert ein System und dessen Einzelteile. Der zweite Aspekt sind die
Eigenschaften, welche von Interesse sind. Diese Eigenschaften stellen Informationen
bereit, welche Rückschlüsse über das Verhalten des Systems ermöglichen. Der dritte

32

4 Analyse existierender visueller Notationen

Aspekt sind die Einschränkungen. Die Einschränkungen sind Richtlinien, welche
beschreiben, wie sich die Architektur über die Zeit verändern kann. Der vierte und
letzte Aspekt sind Typen und Stile. Typen und Stile, welche die Klassen und die
Familien der Architektur beschreiben. [GMW00]

Die Acme-Struktur besteht aus sieben Kernentitäten: Anhänge, Komponenten, Kon-
nektoren, Systeme, Ports, Rollen, Repräsentationen und Repräsentationen-Karten.
[GMW00]

Komponenten repräsentieren berechnende Elemente und die Datenhaltungsschicht des
Systems. Eine Komponente kann mehrere Schnittstellen besitzen, mit zugewiesenen
Ports interagieren. [GMW00]

Ein Port ist der Interaktionspunkt zwischen einer Komponente und der Systemum-
gebung. Ports können einfache Schnittstellen und auch komplexere Schnittstellen
bereitstellen. [GMW00]

Die Konnektoren repräsentieren die Interaktion zwischen den einzelnen Komponenten.
Die Schnittstellen der Konnektoren sind als Rollen definiert. [GMW00]

Rollen definieren einen Teilnehmer einer Interaktion und sind von den Konnektoren
abhängig. Es gibt binäre Konnektoren, welche jeweils eine von zwei verschiedenen
Rollen annehmen können. Als Beispiel können wir hier einen RPC (Remote Procedure
Call) Konnektor betrachten. Hier kann entweder die Rolle des Anrufers oder die Rolle
des Angerufenen übernommen werden. Es gibt jedoch auch komplexere Konnektoren
für die eine Rolle mehr als zwei Funktionen übernehmen kann. [GMW00]

Das System wird in Acme durch einen definierten Graphen dargestellt. Der Graph
besteht zum einen aus Knoten, welche durch Komponenten dargestellt sind. Des
weiteren existieren Kanten, welche die Konnektoren repräsentieren. [GMW00]

Anhänge definieren Kanten indem sie Ports mit den zugehörigen Konnektoren der
Rollen verbinden. [GMW00]

Die Repräsentationen in Acme (siehe Abbildung 4.9) erlauben das Spezifizieren von
Hierarchien der Struktur, Kapselung von Subsystemen, und eine alternative Sicht
auf die Struktur. [GMW00]

Mittels der Repräsentationskarten (siehe Abbildung 4.10) können die Verbindungen
zwischen verschiedenen Ebenen der Struktur betrachtet werden. [GMW00]

Um Hierarchien in der Architektur darzustellen, erlaubt Acme die Komponenten und
Konnektoren in detaillierten Ebenen darzustellen. Diese detaillierten Beschreibungen
werden auch als Repräsentationen bezeichnet. Eine Repräsentation kann z. B. dafür
genutzt werden, den Datenfluss innerhalb der Schnittstelle zu verfolgen. Die interne

33

4 Analyse existierender visueller Notationen

Client Server
RPC

Connection
Manager

Database
Manager

Security
Manager

Representation

Abbildung 4.9: Beispiel einer Acme-Repräsentation [Ley12].

Server

Client
RPC

Connection
Manager

Database
Manager

Security
Manager

Abbildung 4.10: Beispiel einer Acme-Repräsentationskarte [Ley12].

Korrespondenz auf diesen Ebenen muss ebenfalls dargestellt werden. In Acme wird
dies als Repräsentations-Karte „Rep-map“ dargestellt. [GMW00]

Die sieben Entwurfsklassen ermöglichen eine ausreichende Beschreibung der Archi-
tektur als Graph aus Komponenten und Konnektoren. [GMW00]

Acme erlaubt das Hinzufügen von Eigenschaften an jede der oben beschriebenen
Entitäten um die Architektur noch weiter zu spezifizieren. [GMW00]

Jedoch gibt es auch Kontruktionsbeschränkungen, welche durch die Syntax gegeben
sind. Acme verwendet eine beschränkende Sprache, welche auf FOPL (First-Order Pre-
dicate Logic) aufgebaut ist. Beschränkungen können dabei mit Entwurfs-Elementen
verknüpft werden. Dies ist auf zwei Wegen möglich. Entweder als Invariante oder

34

4 Analyse existierender visueller Notationen

als Heuristik. Invarianten stellen Regeln bereit, welche nicht überschritten werden
können, wohin eine Heuristik die teilweise Überschreitung dieser Regeln erlaubt.
[GMW00]

Acme bietet, wie bereits erwähnt, die Möglichkeit Typen und Stile für die Architektur
zu definieren. [GMW00]

Stile erlauben entweder domänenspezifische oder architekturspezifische Beschrän-
kungen zu definieren. Diese sind entweder auf die Typen von Eigenschaften, auf die
strukturellen Typen oder auf den Stil, im Allgemeinen anwendbar. Das Annotieren
von Eigenschaften ist eine Möglichkeit Annotationen anzuwenden. Die zweite Möglich-
keit Annotationen zu verwenden ist, spezielle Typen von Konnektoren, Komponenten,
Rollen und Ports zu beschreiben. Stil ist die allgemeine Beschreibung von Eigen-
schaftstypen und Strukturtypen. Dies wird in Acme auch als Familie bezeichnet. Eine
Familie wird durch vier Angaben beschrieben. Eigenschaftenstypen, Strukturtypen,
den Beschränkungen und der Standardstruktur. [GMW00]

Acme kann zu verschiedenen Aufgaben verwendet werden: Zur Beschreibung und
Analyse der Softwarearchitektur, als Basis um neue Entwurfs- und Analysewerkzeuge
zu entwerfen und die Integration von neuen Werkzeugen zu unterstützen. [GMW00]

4.1.5 Service Component Architecture

Service Component Architecture (SCA) ist eine standardisierte Notation um Ge-
schäftsprozesse und die zu Grunde liegende Implementierung darzustellen. Sie basiert
auf der Service Oriented Architecture (SOA) und stellt die Geschäftsprozesse service-
orientiert dar. Durch die SCA ist eine getrennte Darstellung von der Geschäftslogik
und der Implementierung der Prozesse möglich. [IBM06]

In der SCA existieren drei verschiedene Ebenen. Die erste Ebene ist die Geschäftsinte-
grationslogik. In dieser Ebene befinden sich die Geschäftsprozesse. Die zweite Ebene
wird als Servicekomponenten-Ebene bezeichnet und enthält die Servicekomponenten,
in welchen die einzelnen Services (Dienste) implementiert sind. Die dritte Ebene ist
die Implementierungsebene. Hier liegt der Programmcode, welcher in den Services
verwendet wird. In der SCA wird zudem noch zwischen verschiedenen Artefakten
unterschieden. Eine Servicekomponente konfiguriert eine Serviceimplementierung.
Die Servicedatenobjekte erweitern die SCA um definierte Services und die Beziehung
zwischen den einzelnen Komponenten. Servicequalifikations-Merkmale steuern die
Interaktion zwischen dem Service-Client und einem Zielclient. Die SCA besitzt auch
Module. Die Einheiten, welche in das Enterprise Archive geschrieben werden, sind
von Modulen bestimmt. Aus Leistungsgründen werden die Komponenten in einem
Modul zusammengefasst. Die Daten können durch Verweise auf andere Komponenten

35

4 Analyse existierender visueller Notationen

übergeben werden. Zuletzt existieren in der SCA Importe und Exporte. Beide definie-
ren die Schnittstellen von Modulen. Importe erlauben den Zugriff auf Services, welche
außerhalb des Moduls liegen. Exporte erlauben Komponenten, Services anderen
Komponenten zur Verfügung zu stellen. Für die Implementierung der Services einer
Komponente können Serviceimplementierungstypen vergeben werden. Da SCA auf
verschiedene Geschäftsprozesse angewandt werden kann, wird in Abbildung 4.11 ein
allgemeiner Ansatz zur Verdeutlichung gezeigt. [IBM06]

Geschäftsintegrationslogik

Servicekomponenten

Implementierung

Abbildung 4.11: Beispiel eines SCA-Diagramms nach [IBM06].

4.1.6 ER-Diagramm

Grundsätzlichen dienen ER (Entity Relationship)-Diagramme, im Rahmen der Da-
tenmodellierung, zur Beschreibung eines Ausschnitts der reellen Welt [Wik13a]. Die
wohl wichtigste praktische Anwendung ist der Datenbankentwurf. Ein Modell ei-
ner Datenbank kann mittels ER-Diagrammen unabhängig von einem konkreten
Datenbanksystem wie MySQL dargestellt werden [Che04].

36

4 Analyse existierender visueller Notationen

Das visuelle Vokabular besteht lediglich aus drei Elementen. Eine Entität (Entity)
wird als Rechteck dargestellt und steht für ein konkretes Objekt. Die Beziehung
(Relationship) verknüpft zwei oder mehrere Entitäten miteinander und wird als Raute
visualisiert. Eine Eigenschaft (Attribute) wird einer Entität zugewiesen und durch
eine Ellipse dargestellt. An den Verknüpfungen kann zudem auch dargestellt werden,
wie viele Entitäten von einer anderen Entität ausgehen können. Entweder kann dies
durch eine Zahl, oder ein Sternchen festgelegt werden. Sehr häufig findet man die die
Zahl 1 oder auch 0..1, d.h. es können null oder eine Entität existieren. Das Sternchen
bedeutet, dass beliebig viele Entitäten existieren können. [Che04]

Abbildung 4.12 zeigt zwei ER-Diagramme. Im obigen Diagramm besitzt die Entität
Angestellter die Attribute Name und Kürzel. Die Eins neben der Angestellten
Entität in Verbindung mit der Beziehung und der Entität Projekt bedeutet, dass ein
Angestellter ein Projekt leitet. Hier müssen wir jedoch das Sternchen bei der Entität
Projekt betrachten. Daraus folgern wir, dass ein Projektleiter mehrere Projekte leiten
kann.
Das zweite Diagramm stellt eine Entität Autor dar, welche zwei Attribute besitzt:
Name und Alter. Weiterhin existiert die Entität Buch, welche als Attribute die ISBN
und einen Namen besitzt. Hier kann man also als erstes feststellen, das null oder
mehr Autoren null oder mehr Bücher verfassen. Im unteren Teil des Diagramms steht
vereinfacht, dass ein Verlag einen Namen hat und dieser null oder mehrere Bücher
verlegt.

Aufgrund ihres geringen visuellen Vokabulars, sind Entity-Relationship-Diagramme,
einfach zu lesen, schnell erlernbar und benutzerfreundlich. Zudem können Sie Daten
unabhängig vom Datenmodell darstellen. Wie jedoch auch schon bei den Petri Netzen,
sind Entity-Relationship Diagramme ab einer gewissen Größe unübersichtlich und
eignen sich dadurch ebenfalls nicht für die Darstellung von Topologien. Ebenso
wie Petri Netze lassen sich Entity-Relationship-Diagramme nicht für dynamische
Verfahren anwenden. Dies liegt an der Tatsache, das Entity-Relationship-Diagramme
keine Operationen besitzen, welche dynamische Modellierung ermöglicht, wodurch
ein Entity-Relationship Diagramm nur zur statischen Modellierung eingesetzt werden
kann. [Loh05]

4.1.7 HIPO-Diagramm

Ein HIPO (Hierarchy plus Input-Process Output)-Diagramm ermöglicht die Darstel-
lung von Funktionen, die in einem System ausgeführt werden. Jede Funktion wird
durch die Eingabe, die Verarbeitung und die Ausgabe beschrieben. HIPO-Diagramme
wurden um 1970 von IBM entwickelt. [Wik13e]

37

4 Analyse existierender visueller Notationen

Angestellter

Autor Buch

Projekt

Verlag

leitet

verfasst

wird
verlegt
von

Alter

ISBN Name

Kürzel KürzelName

Name

Name

1

*

*

**

1

Abbildung 4.12: Beispiel eines Entity-Relationship-Diagramms nach [Wik13a].

Grundsätzlich besteht ein HIPO-Diagramm aus zwei Teilen: Der erste Teil ist die
Hierarchie, durch die festgelegt wird, welche Prozesse welche Unterprozesse besitzen.
Im zweiten Teil sind die Eingabe, der zuständige Prozess und die resultierende
Ausgabe beschrieben. [Wik13e]

Abbildung 4.13 zeigt ein HIPO-Diagramm, in dem die Eingaben „Materialbuchfüh-
rung“, „Lohnbuchführung“, „Anlagenführung“, „direkt“ und „Debitoren“ in den
Prozess „Erfassung“ einfließen. Für einen weiteren Prozess „Gliederung“ existiert die
Eingabe „Angabe zu Art der Leistungsabhängigkeit Erfassungsart“. Letzteren Prozess
benötigt die Ausgabe des ersten Prozesses, sodass eine Abhängigkeit zwischen den
Prozessen besteht.

Abhängigkeiten lassen sich zwischen beliebigen Prozessen definieren, sodass einfache
Prozesse zu größeren, komplexeren Prozessen zusammengesetzt werden können.

HIPO-Diagramme erlauben die Darstellung von komplexen Abläufen. Zudem können
mittels HIPO-Diagrammen Systeme bis hin zur Funktionsebene strukturiert wer-
den. Zur Bestimmung der Komplexität einer Funktion können HIPO-Diagramme
verwendet werden. Jedoch werden HIPO-Diagramme, wie die zuvor vorgestellten
Diagrammtypen, auch ab einer gewissen Größe unübersichtlich. Ein weiterer Nachteil
ist dass sich nur Programm- und keine Datenflüsse darstellen lassen. [LS78]

38

4 Analyse existierender visueller Notationen

Kostenrechung
0

Kostenträger-
Rechnung

3

Kostenarten-
Rechnung

1

Kostenstellen-
Rechnung

2

Erfassung
Ges.-Kosten /

Erlöse
1.1

Gliederung
in Kosten /

Erlöse
1.2

Gemeinkosten-
Verrechnung

2.1

Kostenstellen-
Planung

2.2

Kostenträger-
Stückrechnung

3.1

Kostenträger-
Zeitrechnung

3.2

Eingabe (Input) Verarbeitung (Process) Ausgabe (Output)

1.1 Erfassung

1.2 Gliederung

Materialbuchführung

Lohnbuchführung

Anlagenführung

„direkt“

Debitoren /Kreditoren

Angaben zur Art der Leistungsabhängigkeit
Erfassungsart

Nach bestimmten
Abrechnungsperioden erfaßte

Kosten und Erlöse

Kosten- und Erlösarten
Einzelkosten

Gemeinkosten

Abbildung 4.13: Beispiel eines HIPO-Diagramms nach [Fri02].

4.2 Geschäftsprozesse

4.2.1 Petri-Netz

Die erste visuelle Notation welche betrachtet werden soll, sind Petri-Netze. Petri
Netze dienen zur Analyse, Modellierung, und Simulation von verteilten dynamischen
Systemen mit nebenläufigen und nichtdeterministischen Vorgängen. Petri Netze gibt
es schon seit den 1960er Jahren und wurden von ihrem Namensgeber, Carl Adam
Petri entwickelt. Petri Netze entstanden aus endlichen Automaten und sind aus
zwei verschiedenen Arten von Knoten aufgebaut, den Stellen und Transitionen. In
Stellen liegen während der Ausführung Tokens. Transitionen verschieben Tokens an
andere Stellen. Zwischen Stellen und Transitionen können Verbindungen existieren.
Die Verbindungen werden auch als Kanten bezeichnet. Existiert eine Verbindung
zwischen einer Stelle und einer Transition kann die Transition ausgeführt werden
sobald die benötigte Anzahl der Tokens an ihr anliegt. Dies resultiert daraus, dass
zusätzlich an den eingehenden und auch den ausgehenden Kanten einer Transition,
Bedingungen erstellt werden können. So kann zum Beispiel eine Transition erst einen
Token erhalten wenn in der Stelle aus der der Token kommt zwei Tokens anliegen.
Dies ermöglicht die Erzeugung von neuen Tokens aber auch die Reduzierung von
schon vorhandenen Tokens.

39

4 Analyse existierender visueller Notationen

Abbildung 4.14 zeigt ein Petri-Netz, das aus sechs Stellen und vier Transitionen
besteht. Zu Beginn liegen in der Start Stelle und in Kunde am Schalter 1 jeweils ein
Token. Die erste Transition welche gefeuert werden kann ist die Kunden Auskunft.
Der Token wird aus Kunde am Schalter 1 in Schalter frei und in Kunde informiert
gelegt. Kunde am Schalter 1 ist nun nicht mehr belegt. Zum gleichen Zeitpunkt wird
aber auch die Transition „Kunde zu Schalter 2“ gefeuert. Dies resultiert aus den
belegten Stellen Schalter frei und Start. Nach den ersten beiden Schritten wurden also
zwei Transitionen gefeuert und einige Tokens verschoben. Da es in diesem Petri-Netz
keinen Fangzustand gibt und die Tokens immer wieder erzeugt werden, kann dieses
Petri Netz unendlich viele Zustände durchlaufen.

Kunde zu
Schalter 1

Kunden
Auskunft

Kunden
Auskunft

Kunde zu
Schalter 2

Schalter frei

Schalter frei

Kunde am
Schalter 1

Kunde am
Schalter 2Start

Kunde
informiert

Abbildung 4.14: Beispiel eines Petri-Netzes nach [sof]
.

Petri-Netze ermöglichen komplexere Vorgänge zu beschreiben, obwohl ihre Syntax
sehr einfach ist. Durch diese sehr simple Syntax kann die Erstellung von solchen Petri-
Netzen schnell erlernt und angewandt werden. Zusätzlich ermöglichen Petri-Netze eine
einfache Situationsanalyse durch die Verwendung von Tokens. Der Aufbau eines Petri
Netzes erlaubt auch die Modellierung von genauen Abläufen und Vorgängen, welche
mit Vor- und Nachbedingungen erstellt werden. Leider existieren für die praktische
Anwendung keine einheitlichen Notationen für höhere Petri Netze. Dadurch ist
die Erstellung dieser höheren Petri Netze sehr aufwändig und die Analyse dieser
oft sehr kompliziert. Petri-Netze sind außerdem statische Strukturen wodurch ihre

40

4 Analyse existierender visueller Notationen

Einsatzmöglichkeiten beschränkt sind. Aus Mangel einer einheitlichen Vorgehensweise
zur Erstellung von Petri Netzen, können bei der Erstellung eines Petri Netzes schon
Probleme auftreten. Zuletzt sind Petri-Netze ab einer gewissen Größe unübersichtlich.
Aus diesem Grund eigenen sich Petri Netze nicht zur Darstellung von komplexeren
Prozessen, wie sie in Managementplänen und Topologien zu finden sind.

4.2.2 GWorkflowDL

Die nächste Notation die der Analyse unterzogen wird ist die Generic Workflow
Description Language (GWorkflowDL). Die grundlegende Sprache der GWorkflowDL
ist XML. Die GWorkflowDL eignet sich um Geschäftsprozesse und ausführbare
Prozesse zu beschreiben. Die GWorkflowDL basiert auf höheren Petri Netzen und
wird vom Frauenhofer Institut für Rechnerarchitektur und Softwaretechnik seit
2001 entwickelt. (Quelle Wiki) Im GWorkflowDL werden die Aktivitäten eines
Prozesses durch Transitionen dargestellt. Die Tokens repräsentieren die verwendeten
Daten. Neben der Modellierung und der Analyse dient das GWorkflowDL auch zur
Überwachung und der Ausführung von Prozessen. Dies resultiert daher, dass sich
Kontrollfluss und Datenfluss mittels des GWorkflowDL gut beschreiben lassen. Die
GWorkflowDL kann sowohl technische Prozesse als auch abstrakte Geschäftsprozesse
abbilden. [Wik13d]

In Abbildung 4.15 ist ein GWorkflowDL-Diagramm dargestellt. Zu Anfang liegen
zwei Token, die zu bearbeitenden Daten, in der Aktivität beginn. Die Daten werden
nun an den Prozess geliefert, der als Transition dargestellt wird. Nach Durchlauf
des Prozesses werden die bearbeiteten Daten in die Aktivitäten ausgabeDaten und
wurdeSortiert geschrieben. Hier ist leicht zu erkennen, das Rückmeldung über den
Prozess in der darauffolgenden Aktivität gegeben wird.

Wie unschwer erkennbar ist, lassen sich mit dem GWorkflowDL komplexe Prozesse
gut modellieren. Meist jedoch ist das Resultat sehr komplex und daher schwer zu
analysieren.

4.2.3 Nassi-Shneiderman-Diagramm

Nassi-Shneiderman-Diagramme (Struktogramme) bieten eine weitere Möglichkeit der
Darstellung von Daten in graphischen Sichtweisen. Nassi-Shneiderman-Diagramme
dienen hauptsächlich der Erstellung von Programmentwürfen.
Nassi-Shneiderman-Diagramme wurden von Isaac Nassi und Ben Schneiderman
1972/73 erfunden. Nassi-Shneiderman-Diagramme zerlegen das Gesamtproblem in
mehrere kleinere Teilprobleme. Nassi-Shneiderman-Diagramme werden auch oft in

41

4 Analyse existierender visueller Notationen

Zustand

sortierenbeginn

eingabe ausgabe

ausgabeDaten

wurdeSortiert

Abbildung 4.15: Beispiel eines GWorkflowDL-Diagramms nach [Fra11].

der Top-Down Entwicklung von Programmen verwendet um an diesen eine Program-
manalyse zu ermöglichen. Die Darstellung von Nassi-Shneiderman-Diagramme sind
hintereinander geschaltete oder geschachtelte Strukturblöcke. [Wik13g]

Abbildung 4.16 zeigt ein Nassi-Shneiderman-Diagramm. Als erstes wird die Ausgabe
auf 2,3 gesetzt. Im nächsten Schritt wird die Variable n mit dem Wert fünf initialisiert.
Nun existiert eine Schachtelung. Die nächsten Schritte werden laut dem Diagramm
ewig durchlaufen. Wir haben in diesem Beispiel also eine unendliche Schleife. Zu
Beginn wird i mit drei initialisiert. Nun folgt eine weitere Schleife. In dieser Schleife
wird bei jedem Durchlauf der Wert zwei auf den Wert von i hinzu addiert. Wenn die
angegebene Bedingung nicht mehr gilt, wird der nächste Programmschritt ausgeführt.
In diesem Schritt wird geprüft ob i*i > n ist. Anhand vom Wahrheitswert wird dann
entscheiden in welchem Zweig das Programm weiterlaufen soll.

Anhand des Beispiels konnte man erkennen, dass Nassi-Shneiderman-Diagramme
sehr leicht erstellt werden können. Zudem erzwingt ein Nassi-Shneiderman-Diagramm
einen disziplinierten Programmablauf zu gestalten. Durch ihre Simplizität sind Nassi-
Shneiderman-Diagramme leicht verständlich und schnell auch von Laien erstellbar.
Wie aber auch schon bei den vorherigen Diagrammen, können Nassi-Shneiderman-
Diagramme durch ihre Größe oder die dargestellten Algorithmen sehr komplex und
daher schwer zu lesen werden. [Gab]

4.2.4 Folgeplan und Flussdiagramm

Der nächste Diagramm-Typ der betrachtet werden soll, ist der Folgeplan bzw. die
Flussdiagramme. Flussdiagramme werden öfters auch als Programmstrukturpläne

42

4 Analyse existierender visueller Notationen

Ausgabe 2, 3

n := 5

i := 3

solange (i * i < n) und (n mod i != 0)

i := i + 2

i * i > n

wahr falsch

Ausgabe n

n := n + 2

wiederholen

Abbildung 4.16: Beispiel eines Nassi-Shneiderman-Diagramms nach [LR09].

bezeichnet. Ein Flussdiagramm beschreibt einen Algorithmus bzw. die Folge der
im Algorithmus abgehandelten Operationen. Ein Flussdiagramm unterstützt somit
den Entwickler bei der Programmierung bzw. der Umsetzung des Algorithmus.
Flussdiagramme gehören zu einer der Diagrammarten welche genormt sind, wodurch
die Arbeit mit ihnen deutlich erleichtert wird. Das Flussdiagramm soll nun anhand
eines Beispiels vorgestellt werden. Flussdiagramme bestehen aus Knoten und Kanten.
Die Knoten haben jedoch unterschiedliche Formen und Farben, abhängig davon
was sie zu bedeuten haben. Kanten stellen den Informationsfluss der Daten dar. In
Abbildung 4.17 wird mit dem Startknoten begonnen. Danach folgt die erste Aktivität,
„Zum Telefon gehen“. Danach folgt die nächste Aktivität „Hörer abnehmen“. Nun
wird durch eine Bedingung, dargestellt durch eine Raute, abgefragt. Falls es ein
Ankommender Ruf existiert, wird erst die Aktivität „Gespräch führen“ durchgeführt
und danach „Hörer auflegen“. Im Falle, dass die Bedingung „Ankommender Ruf“
falsch ist, folgt die Aktivität „Nummer wählen“. Hiernach folgt die nächste Bedingung.
Falls ein Gesprächspartner ans Telefon geht, wird das Gespräch geführt. Ansonsten
wird der Hörer aufgelegt. Nach der Aktivität „Hörer auflegen“ wird Stop aufgerufen.

Flussdiagramme bieten gegenüber anderen Diagrammtypen sehr erhebliche Vorteile.
Unter anderem besitzen Flussdiagramme ein geringes visuelles Vokabular wodurch

43

4 Analyse existierender visueller Notationen

Ankomme
nder Ruf

Gesprächs-
partner
geht ran

Zum Telefon
gehen

Hörer
abnehmen

Nummer
wählen

Gespräch
führen

Hörer
auflegen

Start

Stop

ja

ja

nein

nein

Abbildung 4.17: Beispiel eines Flussdiagramms nach [www].

sie in sehr kurzer Zeit erlernbar sind. Flussdiagramme finden ihre Anwendung nicht
nur im IT-Bereich sondern auch in anderen Bereichen wie z.B. Prozessplanung
und Durchführungsstrategien. Leider existieren für Flussdiagramme keine Symbole
für grundlegende Kontrollstrukturen. Daraus ist es in Flussdiagrammen schwer zu
erkennen ob Strukturen geschachtelt sind oder nicht. Flussdiagramme lassen sich
leider nicht optimal für objektorientierte Programmierkonzepte einsetzen. Hier eignen
sich UML-Diagramme besser.

4.2.5 Datenflussdiagramm

Datenflussdiagramme sind ein weiterer Diagrammtyp, die nun näher betrachtet
werden sollen. Das Datenflussdiagramm beschreibt den Fluss von Daten durch
das System. Hierzu gehören sowohl die Bereitstellung, die Veränderung und die
Verwendung der Daten. Datenflussdiagramme lassen sich auch zur Darstellung von

44

4 Analyse existierender visueller Notationen

Prozessen und Tätigkeiten verwenden. Des Weiteren sind Datenflussdiagramme
ebenso wie Folgepläne genormt (DIN66001). Datenflussdiagramme besitzen vier
verschiedene graphische Elemente. Das erste Element ist der Datenspeicher. Dieser
wird mittels zwei paralleler Linien dargestellt, zwischen welchen der Name des
Speichers angegeben wird. Das zweite Element ist der Datenfluss. Der Datenfluss
wird durch einen Pfeil mit Namen dargestellt. Das dritte Element ist die Funktion,
welche durch einen Kreis mit Namen dargestellt wird. Das vierte und letzte Element
ist die Schnittstelle. Sie wird durch ein Rechteck mit Namen dargestellt.

Abbildun 4.18 zeigt ein Datenfluss-Diagramm. Dieses enthält drei Datenspeicher,
acht verschiedene Datenflüsse, zwei Funktionen und zwei Schnittstellen. Von der
Kundenschnittstelle werden Bestellungsdaten an die Bestellung bearbeiten Funktion
gesendet. Von hier aus werden die Kundendaten aus der Kunden Datei und Bestands-
daten aus der Lagerbestands Datei geladen. Die Bestellung bearbeiten Funktion
schickt dann Entnahmedaten an die Lagerbestands Datei und Lieferungsdaten an die
Funktion „Rechnung schreiben”’. Diese greift wieder auf die Kundendatei zu, schickt
Rechnungssummen an die Debitorendatei und sendet schließlich die Rechnungsdaten
an die Kundenschnittstelle.

Kunde Kunde
Rechnung
schreiben

Kunden - Datei

Lagerbestands - Datei Debitoren - Datei

Bestellung
Bestellung
bearbeiten

Kundendaten

Bestands-
daten

Lieferung Rechnung

Rechnungs-
summen

Entnahme-
daten

Abbildung 4.18: Beispiel eines Datenflussdiagramms nach [Win13].

Das Datenflussdiagramm ist, da es nur auf vier Elementen aufgebaut ist, sehr schnell
und einfach erlernbar. Zusätzlich ist es eben durch diese vier verschiedenen Elemente,
welche das visuelle Vokabular ausmachen, sehr gut verständlich und leicht lesbar. Eine
weitere Eigenschaft des Datenflussdiagramms ist, dass man den theoretischen mit dem
tatsächlichen Ablauf vergleichen kann. Jedoch kommt bei dieser ansonsten schönen
Diagrammart, die Unübersichtlichkeit bei größeren Diagrammen zum Vorschein.

45

4 Analyse existierender visueller Notationen

4.2.6 UML-Aktivitätsdiagramm

Das UML-Aktivitätsdiagramm ist ein Verhaltensdiagramm. Es beschränkt sich auf
die dynamischen Prozesse des Systems. Aktivitätsdiagramme stellen die Verknüpfung
von elementaren Aktionen mit Kontroll- und Datenflüssen graphisch dar. Aktivi-
tätsdiagramme eignen sich sehr gut zur Beschreibung von Anwendungsfällen. In
Aktivitätsdiagrammen existieren Token, welche den Durchlauf durch das Aktivitäts-
diagramm darstellen. Innerhalb des Aktivitätsdiagramms existieren zudem Aktionen,
welche auch als Unteraktionen dargestellt werden können. [AMA, RJB99]

Anhand von Abbildung 4.19 wird nun die allgemeine Funktionsweise eines Akti-
vitätsdiagramms erläutert. Die erste Aktion zu welchem der erste Token gesendet
wird, ist die Gast erscheint Aktion. Von dieser Funktion wird nun eine Subaktion
anhand von dem Status der Eingabe geöffnet. Falls der Gast neu ist, wird die Aktion
Gast aufnehmen aufgerufen. Der Gast wird als aufgenommen markiert und kann
nun verwaltet werden. Falls der Gast als bekannt erkannt worden wäre, wäre die
Gast verwaltet Aktion direkt nach der Gast erscheint Aktion aufgerufen worden. Die
letzte Aktion, die hier im Beispiel aufgerufen wird, ist die Belegung erstellen Aktion.
Danach ist das Aktivitätsdiagramm abgearbeitet.

An obigem Beispiel konnte man sehr gut die Vorteile des Aktivitätsdiagramms
verdeutlichen. Aktivitätsdiagramme enthalten vereinheitlichte Symbole welche der
Prozessdarstellung dienen. Durch diese Standardisierung, muss nur einmal die Syntax
verstanden worden sein um sie auf alle anderen Aktivitätsdiagramme anwenden
zu können. Dies ermöglicht das Abläufe leicht und effizient nachvollzogen werden
können. Zudem kommt hinzu, dass Aufgrund des UML-Standards ein relativ ho-
her Bekanntheitsgrad existiert, welches die Verwendung von Aktivitätsdiagrammen
positiv beeinflusst. Es existieren jedoch auch hier Nachteile die, die Verwendung
von Aktivitätsdiagrammen für Topologie-Darstellungen nicht begünstigen. Der erste
dieser ist, dass durch Aktivitätsdiagramme hauptsächlich Abläufe dargestellt werden
können, welche technisch orientiert sind. Zudem gibt es nur unzureichende Vorga-
ben zur Struktur des Prozessmodells. Aktivitätsdiagramme lassen sich auch nur für
den Einzelprozess anwenden, da keine Möglichkeiten gegeben sind um komplexere
Prozesse, oder welche die in sich verschachtelt sind, darstellen zu können. Aussagen
über die Prozessgüte lassen sich außerdem nicht aus dem Modell ablesen. Das Ak-
tivitätsdiagramm eignet sich nicht für die direkte Automatisierung eines Prozesses.
[AMA, RJB99]

46

4 Analyse existierender visueller Notationen

Gast registrieren

Gast verwalten

Belegung erstellen

Gast
[aufgenommen]

<<signal receipt>>
Gast erscheint

[Gast neu] [Gast bekannt]

Abbildung 4.19: Beispiel eines UML-Aktivitätsdiagramm nach [Inf13].

4.2.7 Business Process Model and Notation (BPMN)

Ein weiterer Diagrammtyp ist die Business Process Model and Notation (BPMN).
BPMN ist eine graphische Spezifikationssprache in der Wirtschaftsinformatik. Mit-
hilfe der bereitgestellten Symbole lassen sich Geschäftsprozesse und Arbeitsabläufe
modellieren und dokumentieren. Ab 2001 wurde BPMN von IBM entwickelt und
angewandt und seitdem weiterentwickelt. BPMN ist mit EPK verwandt. In der
BPMN existieren folgende graphische Elemente: Flow-Objekts sind die Knoten in
den Geschäftsprozessdiagrammen. Connecting-Objekts verbinden Knoten in den
Geschäftsprozessidagrammen. Pools und Swimlanes sind die Bereiche in welchen
Aktoren und Systeme dargestellt werden. Artifakts sind weitere Elemente wie dataob-
jects groups und annotions zur weiteren Dokumentation. In folgendem Beispiel wird
ein Vertriebssystem dargestellt. Begonnen wird mit einer Mitteilung in Schriftform,

47

4 Analyse existierender visueller Notationen

welche an das Subsystem Lieferauftrag buchen und einmal an das Datenmodel Liefe-
rung geschickt wird. Lieferung buchen legt eine neue Lieferung an. Dies geschieht in
einem Subsystem. Diese liefert wiederrum Daten an den Lieferung warten Prozess.
Bedingungen können ebenfalls in die Systemabläufe eingespielt werden. Hier wird
geprüft ob für eine Lieferung das Avis System gebraucht wird oder nicht. Im Falle,
dass es nicht gebraucht wird, folgt der Endzustand und das Vertriebssystem ist bis
zur Eingabe neuer Daten inaktiv.

V
er

tr
ie

b

Lieferauftrag
buchen

Auf Lieferung
warten

Liefertermin
avisierenX

System zur Tourenplanung von Lieferungen

Lieferung

Avis
notwendig

LieferungAnlegen Kommissioniert

Abbildung 4.20: Beispiel eines BPMN-Diagramms nach [R0̈9].

In Abbildung 4.20 kann man die Grundstruktur der BPMN sehr gut erkennen. Die
Prozesse lassen sich sehr einfach in den Lanes darstellen. Bei Bedarf kann man auch
weiter ins Detail gehen wie im zweiten Beispiel zu sehen war. BPMN eignet sich
sehr gut um IT und Geschäftsprozesse miteinander zu verbinden. Auch ist sie gut
für größere Projektteams geeignet, welche aus unterschiedlichen Bereichen kommen
können. BPMN ist wie UML durch die OMG standardisiert. Andererseits ist BPMN
nicht so leicht zu erlernen, da ein sehr großes Vokabular existiert was die Komplexität
der Diagramme immens erhöht, was jedoch anhand der Beispiele nicht auf Anhieb
ersichtlich ist. Viele fachliche Aspekte des Prozesses werden durch BPMN nicht
dargestellt.

4.2.8 Ereignisgesteuerte Prozesskette (EPK)

Die Ereignisgesteuerte Prozesskette (EPK) ist eine weitere graphische Visualisie-
rung für Pläne. Geschäftsprozesse werden hier als zeitliche logische Abfolge von
betriebswirtschaftlichen Aufgaben dargestellt. EPK wurde 1992 an der Universität

48

4 Analyse existierender visueller Notationen

des Saarlandes entwickelt. EPK beinhaltete drei grundlegende Notationselemente:
Event, Funktion, und Logische Operatoren (And, Or, Xor) [Wik13b, Enz, re-]

In Abbildung 4.21 ist eine einfache EPK dargestellt. Das erste Event Auftrag ist
eingegangen, löst die Funktion Kundendaten Prüfen aus. Nachdem die Kundendaten
geprüft wurden, wird das Event Kundendaten sind geprüft aufgerufen, was sofort die
nächste Funktion aufruft. Dies geschieht bis keine Funktion mehr nach einem Event
aufgerufen werden kann.

Auftrag ist
eingegangen

Kundendaten
prüfen

Machbarkeit
prüfen

Kundendaten
sind geprüft

Machbarkeit
ist geprüft

Abbildung 4.21: Beispiel eines EPK-Diagramms nach [Ges12].

Das Beispiel veranschaulicht die Einfachheit von EPK. EPK eignet sich aufgrund
seiner Struktur für eine breite Anzahl von Anwendungen. EPK ist außerdem sehr
umfassend und bietet Konstrukte für organisatorische als auch IT Aspekte. Ebenfalls
lässt sich EPK gut in andere Notationen integrieren. Durch seine Simplizität kann
EPK auch von nicht IT-Leuten verstanden werden. Durch seine weite Verbreitung
findet EPK auch in der Praxis Anwendung. Zu den genannten Vorteilen liegen bei
EPK auch einige Nachteile anbei. Einige Konstrukte sind nicht eindeutig spezifiziert.
Dies führt zu mehrfachen Auslegungsmöglichkeiten der Konstrukte, was nicht der
Verständlichkeit dient. Um EPK für weitere Anwendungsbereiche nutzen zu können,

49

4 Analyse existierender visueller Notationen

ist eine grundsätzliche Überarbeitung für diese Anwendungsbereiche nötig. EPK ist
nicht intuitiv, wodurch ein hoher Schulungs- und Einarbeitungsaufwand gefordert
wird.[Wik13b, Enz, re-]

4.3 Auswertung und Schlussfolgerungen

Vino4TOSCA (siehe Abschnitt 4.1.1) ist die einzige visuelle Notation für Anwen-
dungstopologien, die bereits auf TOSCA-Topologien ausgerichtet ist und zudem die
aufgestellten Anforderungen aus den Abschnitten 3.1, 3.2 und 3.3 erfüllt. Lediglich
die Anforderungen A16, A17 und A20 werden nicht erfüllt, da mit Vino4TOSCA,
wie bereits erwähnt, ausschließlich Topology Templates visualisiert werden können.
Für Node Types und Relationship Types existieren folglich keine grafischen Ele-
mente10. Auch sieht die Notation keine Möglichkeit zur Integration von visuellen
Prozessnotationen vor. Damit die genannten Anforderungen erfüllt werden, müssen
entsprechende Anpassungen bzw. Erweiterungen an der bestehenden Vino4TOSCA-
Notation vorgenommen werden.

Aus dem genannten Grund wurde daher die Entscheidung getroffen, die neue Notation
auf Basis von Vino4TOSCA zu entwerfen bzw. eine weiterentwickelte Version von
Vino4TOSCA bereitzustellen. Bedingt durch diese Entwurfsentscheidung wird als
Name für die neue Notation Vino4TOSCA 2 gewählt.

Alle weiteren visuellen Notationen im Bereich der Anwendungstopologien erfüllen die
Anforderungen A10, A16, A17, A19, A20 nicht, da keine visuellen Dialekte vorgesehen
sind bzw. nicht die Möglichkeit zur Erstellung von Profilen angeboten wird und sie
weiterhin nicht TOSCA-spezifisch ausgerichtet sind. Komponentendiagramme, HIPO-
Diagramme und Acme erfüllen zusätzlich A23 nicht, da keine visuellen Elemente
vorhanden sind, die sich durch abgerundete Ecken auszeichnen, was eine visuell
ansprechende Eigenschaft darstellen würde. Die letzten beiden Notationen sind
zudem nicht selbsterklärend, sodass A21 nicht erfüllt ist. Für ER-Diagramme ist
A5 nicht gegeben, da weder Abstraktion noch Modularisierung unterstützt wird.
HIPO-Diagramme und ER-Diagramme sind nicht erweiterbar, d. h. deren Elemente
können nicht mit zusätzlichen Informationen oder Eigenschaften versehen werden.
Aus diesem Grund ist für die genannten Notationen A18 nicht erfüllt.

Für Vino4TOSCA 2 wurde aus den vorgestellten Notationen für Anwendungstopo-
logien, mit Ausnahme von Vino4TOSCA, lediglich zwei Entwurfsentscheidungen
übernommen bzw. als brauchbar eingestuft: Wie bereits angesprochen, wird in einem

10In einem Vino4TOSCA Node Template Shape bzw. Relationship Template Shape kann die ID
und der Name des zugehörigen Node Types bzw. Relationship Types definiert werden. Separate
grafische Elemente für Typ-Elemente existieren nicht.

50

4 Analyse existierender visueller Notationen

Komponentendiagramm eine Schnittstelle einer Komponente durch einen nicht aus-
gefüllten Kreis dargestellt, der mittels einer Linie mit der Komponente verbunden ist.
Die Verwendung der Schnittstelle durch eine weitere Komponente wird durch einen
offenen Halbkreis visualisiert, welcher den Kreis halb umschließt. In Vino4TOSCA 2
soll diese Darstellungsweise für eine Beziehung zwischen der Schnittstelle eines Node
Type bzw. Relationship Type und einer Aktivität eines Plans, welche eine Operation
der Schnittstelle aufruft, zum Einsatz kommen. Da in einem Komponentendiagramm
lediglich auf Schnittstellen-Ebene eine Beziehung dargestellt werden kann, hier jedoch
konkret eine Operationsaufruf einer Schnittstelle dargestellt werden soll, müssen
Anpassungen an der Darstellung vorgenommen werden. Ebenso müssen Änderungen
bzw. Erweiterungen vorgenommen werden, damit zwischen „Source Interfaces“ und
„Target Interfaces“ eines Relationship Type unterschieden werden kann. Weiterhin
wird in einem Komponentendiagramm eine Komponente mit dem Schlüsselwort bzw.
Stereotyp „«component»“ dargestellt. In Vino4TOSCA 2 soll die ID des zugehörigen
Typ-Elements durch spitze Klammern eingeschlossen bzw. durch diese hervorgehoben
werden.

Unter den vorgestellten visuellen Notationen für Geschäftsprozesse existiert keine
Notation, die sich für das Management von Anwendungen etabliert hat. Wir nehmen
an, dass diese Feststellung auf alle visuellen Prozessnotationen übertragbar ist. Am
ehesten würde sich BPEL für die genannte Aufgabe eignen. Keller beschreibt die
automatisierte Provisionierung (Bereitstellung) von Anwendungen mit BPEL [KB04].
Jedoch existiert für BPEL keine standardisierte visuelle Notation. Stattdessen exis-
tieren eine Reihe von Ansätzen, welche die Konstrukte von BPEL mittels Icons oder
Shapes visualisieren. Falls Modellierer und Leser unterschiedliche grafische Elemente
einsetzen, führt dies u.U. zu Missverständnissen oder Fehlinterpretationen.

Aus den genannten Gründen wurde die Entscheidung getroffen, alle visuelle Notatio-
nen für Geschäftsprozesse zur Integration mit TOSCA-Topologien (mit zugehörigen
Node Types und Relationship Types) zu akzeptieren. Da die vorgestellten Notationen
keine signifikanten Gemeinsamkeiten zeigen, ist es nicht möglich, die grafischen Ele-
mente für TOSCA-Konstrukte so zu entwerfen, dass immer eine eindeutige Trennung
zwischen Topologie und Plänen gegeben ist (A25). Zur Erfüllung dieser Anforderung
müssen im Rahmen des Entwurfs von Vino4TOSCA 2 daher zusätzliche visuelle
Variablen definiert werden.

51

5 Vino4TOSCA 2

5 Vino4TOSCA 2

Vino4TOSCA 2 ermöglicht die grafische Modellierung von TOSCA Topology Tem-
plates, bestehend aus (1) Node Templates und (2) Relationship Templates, (3) Node
Types, (4) Relationship Types und (5) Plänen eines TOSCA-Modells (A16, A17,
A20). Für letztere Konstrukte definiert Vino4TOSCA 2 keine visuellen Elemente.
Stattdessen sollen (entsprechend der TOSCA Spezifikation) bereits existierende
visuelle Notationen für Geschäftsprozesse eingesetzt werden, insbesondere BPMN
[TOS13]. Eine Beziehung zwischen einer Aktivität eines Plans und einer Schnittstelle
eines Node Types bzw. Relationship Types, die zustande kommt, falls in der Aktivität
eine Operation der Schnittstelle aufgerufen wird, kann visualisiert werden (A26).

Die visuelle Notation erlaubt die Definition von Profilen (A7, A10, A23). Wie bereits
erwähnt, ist ein Profil eine Erweiterung bzw. Anpassung der Notation für bestimmte
Bedürfnisse oder Fähigkeiten von Benutzern in einer bestimmten Domäne [BBK+12a].
Eine Aufgabe kann so effektiv und intuitiv gelöst werden kann [BBK+12a]. Profile
beschränken die Variabilität von visuellen Variablen. Beispielsweise wäre es denkbar
als Textfarbe lediglich schwarz zuzulassen. Basis-Notation und Profile bilden visuelle
Dialekte [BBK+12a]. Im folgenden Abschnitt 5.1 werden die visuellen Variablen
genannt, die durch Profile eingeschränkt werden dürfen.

5.1 Visuelle Variablen

Vino4TOSCA 2 verwendet die acht visuellen Variablen von Bertin [Ber83] zur Kodie-
rung von Informationen (A7): (1) Horizontale und (2) vertikale Position, (3) Größe,
(4) Helligkeit, (5) Muster, (6) Farbe, (7) Ausrichtung und (8) Form. Abbildung 5.1
veranschaulicht die Variablen bzw. zeigt beispielhaft, welche Änderungen durch diese
hervorgerufen werden können.

Die Variablen werden in folgende Kategorien eingeordnet:

1. Variablen, die fest definiert sind.

2. Variablen, die durch Profile eingeschränkt werden dürfen.

3. Freie Variablen.

52

5 Vino4TOSCA 2

(1) Horizontale Position

(2) Vertikale Position

(3) Größe

(4) Helligkeit

(5) Muster

(6) Farbe

(7) Ausrichtung

(8) Form

Abbildung 5.1: Die acht visuellen Variablen von Bertin.

In Vino4TOSCA 2 sind die Formen und deren Ausrichtung fest vorgegeben, dürfen
also nicht verändert werden (Kategorie 1). Alle weiteren Variablen sind frei (Kategorie
3), sofern sie nicht durch Profile definiert sind. In einem Profil dürfen die Variablen
Farbe, Helligkeit, Muster und Größe festgelegt werden (Kategorie 2), da mit diesen
eine höhere kognitive Effektivität erzielt werden kann. Falls bspw. in einem Profil,
das bei der Modellierung eines Diagramms angewendet werden soll, keine Farbe
für die Linien einer Form definiert ist, so darf diese frei gewählt werden (visuelle
Variabilität). Generell freie Variablen sind die horizontale und vertikale Position
eines visuellen Elements (Kategorie 3). Diese dürfen folglich nicht durch ein Profil
vorgegeben werden.

5.2 Visuelle Elemente

Für die meisten visuellen Elemente von Vino4TOSCA 2 wurden abgerundeten Formen
gewählt. Diese Entscheidung wurde getroffen, da entsprechend einer Studie von Bar
und Neta [BN06] abgerundete Formen von Personen bevorzugt werden (A23). Auch
sind jene Formen leichter mit der Hand zu zeichnen (A22) [BBK+12a]. Dies ist
wichtig, da Formen fest definierte Variablen sind (siehe Abschnitt 5.1).

Icons können u. a. zur Beschreibung von visuellen Elemente eingesetzt werden (A3,
A7, A8, A23). Sie benötigen weniger Platz, weisen eine höhere Informationsdichte auf

53

5 Vino4TOSCA 2

als Text und werden bevorzugt gegenüber Formen. Weiterhin können sie schneller
verarbeitet und erlernt werden. Icons müssen in einem visuellen Element an die
linke obere Position gesetzt werden (Icon Area), da diese von Personen am meisten
beachtet wird. [BBK+12a]

Die Schriftart von Text in einem visuellen Element ist nicht vorgegeben [BBK+12a].
Sie kann folglich frei gewählt werden, sofern keine Beschränkung durch ein Profil
vorliegt. IDs müssen unterstrichen werden [BBK+12a]. Die ID des zugehörigen Typ-
Elements (Referenz) ist nicht unterstrichen. Sie wird stattdessen durch vier spitze
Klammern eingeschlossen (vgl. UML-Stereotyp). Die genannten Entwurfsentschei-
dungen tragen zu einer schnelleren Wiedererkennung bei (A3, A8, A21).

Die meisten Formen von Vino4TOSCA 2 können um eine „Additional Information
Area“ erweitert werden, in der beliebige Informationen (Text und Bilder) hinterlegt
werden können (A16, A18, A21) [BBK+12a]. Insbesondere dient dieses Feld zum
Hinterlegen von Daten, die aus TOSCA-Konstrukten bzw. -Elementen stammen, die
mit Vino4TOSCA 2 nicht direkt repräsentiert werden können [BBK+12a]. Hierunter
fallen bspw. die Properties (Eigenschaften) eines Node Templates oder Relationship
Templates.

In den folgenden Unterabschnitten soll nun auf die visuellen Elemente von
Vino4TOSCA im Detail eingegangen werden. Jedes Element wird (insbesondere)
durch die Form, den optionalen bzw. erforderlichen Inhalt, die Semantik und die
visuelle Variabilität beschrieben. Wie bereits erwähnt, kann letztere ggf. durch ein
Profil beschränkt werden.

5.2.1 Node Template Shape

Das Node Template Shape, dargestellt in Abbildung 5.2, repräsentiert ein Node Tem-
plate eines Topology Templates. Es handelt um ein Rechteck (A3) mit abgerundeten
Ecken, dargestellt mittels einer durchgezogenen Linie. Das Node Template kann
durch ein (1) Icon in der Icon Area (links ausgerichtet), (2) den Namen oder (3) die
ID des Node Template definiert werden (A3), wobei mindestens eine dieser drei Infor-
mationen angegeben werden muss. Falls mehrere textuelle Informationen dargestellt
werden sollen, so muss die visuelle Reihenfolge aus Abbildung 5.2 eingehalten werden.
Mittels einer optionalen Additional Information Area können weitere Informationen
(Text oder Bilder) hinterlegt werden, die nicht direkt in der Form definiert werden
können. Dabei handelt es sich um ein weiteres abgerundetes Rechteck, dargestellt
mittels einer durchgezogenen Linie, das unter die Hauptform gesetzt wird. Es befindet
sich hinter der Hauptform, sodass die oberen Ecken verdeckt sind. [BBK+12a]

54

5 Vino4TOSCA 2

Die Hauptform darf ein beliebiges Hintergrundbild enthalten. Icon Area und Text
dürfen folglich nicht überdeckt werden. Die Linienfarbe der Hauptform und Additional
Information Area darf beliebig gewählt werden, wohingegen der Linienstil nicht
verändert werden darf (A2). [BBK+12a]

NodeTemplate.Name
NodeTemplate.Id

Icon
Area

Zusätzliche Informationen

Web Application Server
WebAppServer

Abbildung 5.2: Vino4TOSCA 2 Node Template Shape mit Beispiel nach [BBK+12a].

5.2.2 Node Type Shape

Das Node Type Shape, dargestellt in Abbildung 5.3, repräsentiert ein Node Type als
ein abgerundetes Rechteck mit durchgezogener Linie. Es kann eine beliebige Anzahl
von Node Template Shapes (siehe Abschnitt 5.2.1) enthalten (auch keine), die Node
Templates repräsentieren, welche das Node Type referenzieren (A4). Das Node Type
kann durch ein (1) Icon in der Icon Area (links ausgerichtet), (2) den Namen oder
(3) die ID des Node Type definiert werden (A3), wobei mindestens eine dieser drei
Informationen angegeben werden muss. Die genannten Informationen sind durch
eine durchgezogene Linie von den Node Template Shapes getrennt, auch falls keine
Node Templates vorhanden sind. Falls mehrere textuelle Informationen dargestellt
werden sollen, so muss die visuelle Reihenfolge aus Abbildung 5.3 eingehalten werden.
Eine optionale Additional Information Area ermöglicht das Hinterlegen von weiteren
Informationen. Diese ist ebenfalls ein abgerundetes Rechteck, dargestellt mittels einer
durchgezogenen Linie. Es wird hinter die Hauptform gesetzt, sodass die oberen Ecken
nicht sichtbar sind.

In der Hauptform darf ein beliebiges Hintergrundbild platziert werden. Icon, textuelle
Node Type-Informationen und Node Templates Shapes dürfen folglich nicht überdeckt
werden. Die Linienfarbe der Hauptform und Additional Information Area darf beliebig
gewählt werden, wohingegen der Linienstil nicht verändert werden darf (A1, A2).

Die Darstellung eines Node Types ist optional. Ein Node Template Shape muss nicht
im entsprechenden Node Type Shape dargestellt werden.

55

5 Vino4TOSCA 2

NodeTemplate1.Name
NodeTemplate1.Id

Icon
Area

Zusätzliche Informationen

NodeType.Name
NodeType.Id

Icon
Area

Zusätzliche Informationen

NodeTemplateN.Name
NodeTemplateN.Id

Icon
Area

Zusätzliche Informationen

...

ApacheDerbyDatabaseType

Version: 10.10.1.1

User Database
UserDatabase

MySQL Database Type
MySQLDatabaseType

Product Database

Abbildung 5.3: Vino4TOSCA 2 Node Type Shape mit Beispielen.

5.2.3 Relationship Template Shape

Das Relationship Template Shape, dargestellt in Abbildung 5.4, repräsentiert ein
Relationship Template eines Topology Templates als eine Linie (beliebig ausgerichtet),
die an jedem ihren Enden eine beliebige (kleine) Form besitzt, z. B. einen Pfeil (A3).
Der Linienstil darf nicht gestrichelt sein (wie bei einem Visual Group Shape, siehe
Abschnitt 5.2.9), im Übrigen kann er frei gewählt werden (A2). Die Linienfarbe kann
beliebig gewählt werden. Ein Relationship Template Shape verbindet zwei Node
Template Shapes (siehe Abschnitt 5.2.1) oder Collapsed Visual Group Shapes (siehe
Abschnitt 5.2.9). In letzterem Falle zeigen Quelle und Ziel jeweils auf ein (nicht
sichtbares) Element in der Gruppe. Das Relationship Template kann durch ein (1)
Icon in der Icon Area (links ausgerichtet), (2) den Namen, (3) die ID des Relationship
Template oder über (4) die ID des zugehörigen Relationship Type definiert werden
(A3). Letztere Information wird durch vier spitze Klammern eingeschlossen (A3). Sie
referenziert auf ein Relationship Type Shape (siehe Abschnitt 5.2.4) bzw. Relationship
Type mit der angegebenen ID. Zumindest eine der genannten Informationen muss
definiert werden. Falls mehrere textuelle Informationen angegeben werden, so muss
die visuelle Reihenfolge aus Abbildung 5.4 eingehalten werden. Die Icon Area befindet
sich über der Linie, falls diese horizontal ist, andernfalls (vertikal oder diagonal)
auf einer beliebigen Seite. In einer optionalen Additional Information Area können
weitere, beliebige Informationen hinterlegt werden. Dabei handelt es sich um ein

56

5 Vino4TOSCA 2

abgerundetes Rechteck, dargestellt mit einer durchgezogenen Linie, welche unter die
Relationship Template-Linie gesetzt wird und diese berührt, falls die Linie horizontal
ist. Andernfalls kann sich die Additional Information Area an einer beliebigen Seite
befinden. Die Linienfarbe der Additional Information Area ist beliebig, wohingegen
der Linienstil nicht verändert werden darf (A1, A2). [BBK+12a]

Zusätzliche Informationen

RelationshipTemplate.Name
RelationshipTemplate.Id

<<RelationshipTemplate.RelationshipType.Id>>

Icon
Area

? ?

Deploy Relation
DeployRelation

<<deployedOnType>>

Abbildung 5.4: Vino4TOSCA 2 Relationship Template Shape mit Beispiel nach
[BBK+12a].

5.2.4 Relationship Type Shape

Abbildung 5.5 zeigt ein Relationship Type Shape, das ein Relationship Type re-
präsentiert. Es handelt sich um ein abgerundetes Rechteck, deren rechte Seite um
ein abgerundetes Dreieck erweitert wird, sodass ein Richtungspfeil (A3) entsteht
(das Dreieck ist die Pfeilspitze). Das aufgesetzte Dreieck sollte möglichst gleich-
schenklig sein. Die rechte Seite des Rechtecks bzw. die Basis des gleichschenkligen
Dreiecks ist unsichtbar. Der Linienstil ist durchgezogen. Das Relationship Type kann
durch ein (1) Icon in der Icon Area (links ausgerichtet), (2) den Namen oder (3)
die ID des Relationship Type definiert werden (A3), wobei mindestens eine dieser
drei Informationen angegeben werden muss. Falls mehrere textuelle Informationen
definiert werden, so muss die visuelle Reihenfolge aus Abbildung 5.5 eingehalten
werden. Eine optionale Additional Information Area ermöglicht das Hinterlegen von
weiteren Informationen. Diese ist ein abgerundetes Rechteck, dargestellt mittels einer
durchgezogenen Linie, das unter die Hauptform (ohne Pfeilspitze) gesetzt wird. Es
wird hinter die Hauptform gelegt, sodass die oberen Ecken überdeckt sind.

Icon
Area

RelationshipType.Name
RelationshipType.Id runningOnType

Zusätzliche Informationen

Abbildung 5.5: Vino4TOSCA 2 Relationship Type Shape mit Beispiel.

57

5 Vino4TOSCA 2

Die Hauptform kann ein beliebiges Hintergrundbild enthalten, d. h. Icon und Text
dürfen nicht überdeckt werden. Die Linienfarbe der Hauptform und Additional Infor-
mation Area darf beliebig gewählt werden. Eine Änderung des Linienstils hingegen
ist nicht erlaubt (A1, A2).

Die Repräsentation eines Relationship Types ist optional. Ein Relationship Template
Shape kann dargestellt werden, ohne das das zugehörige Relationship Type Shape
existieren muss.

5.2.5 Node Type Interface Shape

Ein Node Type Interface Shape repräsentiert eine Schnittstelle eines Node Types. Die
Schnittstelle wird durch einen nicht ausgefüllten Kreis dargestellt (A3), der mittels
einer Linie (beliebig ausgerichtet) mit einem Node Type Shape (siehe Abschnitt 5.2.2)
verbunden ist. Der Linienstil ist durchgezogen. Der Name der Schnittstelle muss
angegeben werden. Ein Node Type Shape kann mit einer beliebigen Anzahl von Node
Type Interface Shapes verbunden sein. In Abbildung 5.6 ist ein Node Type Interface
Shape dargestellt, das mit einem Node Type Shape verbunden ist.

Die Linienfarbe eines Node Type Interface Shapes kann beliebig gewählt werden. Der
Linienstil darf nicht verändert werden darf (A1, A2).

NodeType.Name
NodeType.Id

Icon
Area

Zusätzliche Informationen

...

NodeType.Interface1.Name

NodeType.InterfaceN.Name

...

Operating System
OperatingSystem

Control

Status

Configuration

Ubuntu

Abbildung 5.6: Vino4TOSCA 2 Node Type Interface Shape mit Beispiel.

58

5 Vino4TOSCA 2

5.2.6 Relationship Type Interface Shape

Die Quell- und Zielschnittstellen (Source Interfaces und Target Interfaces) eines
Relationship Types können durch Relationship Type Interface Shapes repräsentiert
werden. Ein Relationship Type Interface Shape entspricht einem Node Type Interface
Shape (siehe Abschnitt 5.2.5) bis auf die folgenden Eigenschaften: Der Kreis, der
die Schnittstelle darstellt, muss ein „S“ (Source) enthalten, falls es sich um eine
Quellschnittstelle handelt (A3, A8). Eine Zielschnittstelle wird durch ein „T“ (Tar-
get) visualisiert (A3, A8). Ein Relationship Type Shape kann mit einer beliebigen
Anzahl von Relationship Type Interface Shapes verbunden sein. Abbildung 5.7 zeigt
ein Relationship Type Interface Shape, das mit einem Relationship Type Shape
verbunden ist.

T

Icon
Area

RelationshipType.Name
RelationshipType.Id

Zusätzliche Informationen

T

RelationshipType.TargetInterface1.Name

T

RelationshipType.TargetInterfaceN.Name

...

S

S

...

RelationshipType.SourceInterface1.Name

RelationshipType.SourceInterfaceN.Name

Deployed On
deployedOn

Deployer

Abbildung 5.7: Vino4TOSCA 2 Relationship Type Interface Shape mit Beispiel.

5.2.7 Plan Shape

Das Plan Shape, dargestellt in Abbildung 5.8, repräsentiert einen Plan. Es handelt
sich um ein abgerundetes Rechteck, unterteilt in zwei Bereiche, die durch eine Linie
getrennt werden. Der Linienstil ist durchgehend. Im oberen Bereich kann ein (1)
Icon in der Icon Area (links ausgerichtet), (2) der Name, (3) die ID, der (4) Typ
(URI)11 oder die (5) Sprache des Plans (URI)12 definiert werden (A3). Eine der
ersten drei Informationen müssen mindestens angegeben werden. Im unteren Bereich
wird der Plan selbst dargestellt. Hierzu kann eine beliebige visuelle Notation für
die entsprechende Prozesssprache (in unveränderter Form) eingesetzt werden (A24).
Eine standardisierte Notation sollte bevorzugt werden. Die Semantik des Prozesses
darf nicht verändert werden (A28). Weitere Informationen können in einer optionalen
Additional Information Area hinterlegt werden. Diese ist ein abgerundetes Rechteck,

11Z.B. Build Plan (instanziiert einen Service):
http://docs.oasis-open.org/tosca/ns/2011/12/PlanTypes/BuildPlan

12Z.B. BPMN 2.0-Plan: http://www.omg.org/spec/BPMN/20100524/MODEL

59

5 Vino4TOSCA 2

bestehend aus einer durchgehenden Linie, das unter die Hauptform gesetzt wird,
sodass die oberen Ecken nicht sichtbar sind.

Zusätzliche Informationen

Plan.Name
Plan.Id

Plan.Type
Plan.Language

Icon
Area

Visual representation of the Plan.

Web Application Build Plan
WebAppBuildPlan

http://docs.oasis‐open.org/tosca/ns/2011/12/PlanTypes/BuildPlan
http://www.omg.org/spec/BPMN/20100524/MODEL

 Retrieve
deploy endpoint

Provisioning
completed

Deploy
application

Create
database

Retrieve
database
endpoint

 Set database
endpoint in
application

Abbildung 5.8: Vino4TOSCA 2 Plan Shape mit Beispiel.

Der obere Bereich der Hauptform darf ein beliebiges Hintergrundbild enthalten. Icon
und Text dürfen folglich nicht überdeckt werden. Die Linienfarbe der Hauptform
und Additional Information Area kann beliebig gewählt werden, wohingegen der
Linienstil nicht verändert werden darf (A2). Die visuelle Repräsentation des Prozesses
unterliegt den Vorgaben (visuelle Syntax) der eingesetzten visuellen Notation und
kann nicht durch ein Profil beschränkt werden (A24).

Die Pläne bzw. Plan Shapes werden durch eine doppelte durchgehende Linie (beliebig
ausgerichtet) von der Repräsentation des Topology Templates, der Node Types und
Relationship Types getrennt (siehe Abbildung 5.9; A14, A25). Die Linienfarbe kann
frei gewählt werden, der Linienstil hingegen darf nicht verändert werden (A1, A2).

60

5 Vino4TOSCA 2

Wird ein Service Template (mit Node Types und Relationship Types) mit
Vino4TOSCA 2 repräsentiert, so obliegt es dem Modellierer, welche Pläne dargestellt
werden sollen.

5.2.8 Plan Invoke Operation Shape

Eine Verbindung zwischen einer Aktivität und einer Schnittstelle eines Node Type
bzw. Relationship Type, die zustande kommt, falls in der Aktivität eine Operation
der Schnittstelle aufgerufen wird, kann durch ein Plan Invoke Operation Shape
repräsentiert werden. Das Plan Invoke Operation Shape ist ein offener Halbkreis,
der mittels einer durchgezogenen Linie (beliebig ausgerichtet) mit der Aktivität des
Plans bzw. Prozesses (in einem Plan Shape, siehe Abschnitt 5.2.7) verbunden ist, in
welchem die Operation aufgerufen wird (A3). Der Name der Operation kann optional
angegeben werden. Sieht die verwendete visuelle Prozessnotation ein anderes Element
zum Aufruf von Operationen bzw. zum Ausführen von Aufgaben vor, so wird das
Plan Invoke Shape mit diesem Element verbunden. Der Halbkreis umschließt den
Kreis, der die Schnittstelle repräsentiert (siehe Abschnitt 5.2.5 bzw. 5.2.6), welche
die aufzurufende Operation definiert (A4). Existiert der Halbkreis bereits, da ein
weiteres Plan Invoke Shape einer Aktivität dargestellt ist, das eine Operation aus
selbiger Schnittstelle aufruft, so wird lediglich die Linie zwischen Aktivität und
Halbkreis gezeichnet. Abbildung 5.9 zeigt Plan Invoke Operation Shapes zwischen
Schnittstellen von Node Types und Aktivitäten eines Plans.

Die Linienfarbe eines Plan Invoke Operation Shape kann frei gewählt werden, wohin-
gegen der Linienstil nicht verändert werden darf (A1, A2).

5.2.9 Visual Group Shapes

Die Visual Group Shapes setzen sich aus dem Expanded und Collapsed Visual Group
Shape zusammen. Beide sind in Abbildung 5.10 dargestellt.

Mit dem Expanded Visual Group Shape können Elemente visuell gruppiert werden
(A5, A19). Die Form kann beliebig gewählt werden und muss die entsprechenden
Elemente enthalten (A4). Der Linienstil ist gestrichelt. Im oberen Bereich der Form,
der durch eine gestrichelte Linie getrennt ist, kann (1) ein Icon in der Icon Area
(links ausgerichtet), (2) ein Name oder (3) eine ID definiert werden (A3). Eine der
genannten Informationen muss mindestens angegeben werden. Falls mehrere textuelle
Informationen definiert werden, so muss die visuelle Reihenfolge aus Abbildung 5.10
eingehalten werden. Auf die visuellen Elemente eines Plans (in einem Plan Shape,
siehe Abschnitt 5.2.7) darf das Expanded Visual Group Shape nicht angewendet
werden (A24). [BBK+12a]

61

5 Vino4TOSCA 2

OnlineShop

LinuxType

Ubuntu

<<deployedOnType>>

VirtualMachineType

VirtualMachine

<<hostedOnType>>

LinuxControl

OnlineShopBuildPlan
http://www.omg.org/spec/BPMN/20100524/MODEL

Deploy
online shop
application

Provisioning
completed

Create
Virtual Machine
with Ubuntu

VMControl

deployedOnType

hostedOnType

create

deploy

Abbildung 5.9: Vino4TOSCA 2 Plan Invoke Operation Shape Beispiel.

Das Collapsed Visual Group Shape ist ein Oval, das eine beliebige Anzahl von
visuellen Elemente repräsentiert bzw. diese abstrahiert (A5, A19). Der Linienstil ist
gestrichelt. Ein kleines Quadrat, dass an der Unterseite der Form mittig angeordnet
ist und ein Plus-Zeichen enthält, soll die Abstraktion bzw. den geschlossenen Zustand
symbolisieren (A3). Die Form kann (1) ein Icon in Icon Area (links ausgerichtet),
(2) ein Name oder (3) eine ID enthalten, wobei zumindest eine der genannten Daten
angegeben werden muss (A3). Das Collapsed Visual Group Shape darf nicht auf
die visuellen Elemente eines Plans (in einem Plan Shape, siehe Abschnitt 5.2.7)
angewendet werden außer die visuelle Notation des Plans sieht keine Möglichkeiten
zur Abstraktion vor (A27). [BBK+12a]

Die Linienfarbe der Visual Group Shapes kann frei gewählt werden. Eine Änderung
des Linienstils hingegen ist nicht erlaubt (A1, A2). Auch darf kein Hintergrundbild
gesetzt werden. [BBK+12a]

Die Visual Group Shapes können auch zur Integration von anderen Diagrammen
eingesetzt werden (A6). Das integrierte Diagramm wird durch das Icon, die ID oder

62

5 Vino4TOSCA 2

Icon
Area

VisualGroup.Name
VisualGroup.Id

Icon
Area

VisualGroup.Name
VisualGroup.Id

+

Abbildung 5.10: Vino4TOSCA 2 Expanded und Collapsed Visual Group Shapes nach
[BBK+12a].

den Namen identifiziert. Das zugrunde liegende TOSCA-Modell wird durch Visual
Group Shapes grundsätzlich nicht verändert. [BBK+12a]

5.2.10 Visual Relationship Group Shapes

Zu den Visual Relationship Group Shapes gehören das Expanded und das Col-
lapsed Relationship Group Shape, die in Abbildung 5.11 veranschaulicht werden.
[BBK+12a]

Das Expanded Visual Relationship Group Shape dient der visuellen Gruppierung
von Relationship Template Shapes (siehe Abschnitt 5.2.3) die Node Template Shapes
bzw. Visual Group Shapes verbinden (A5, A19). Es besteht aus zwei gestrichelten
Linien, die eine beliebige Anzahl von Relationship Template Shapes enthalten können,
mindestens jedoch zwei (A4). Das Element kann oberhalb der Linien durch ein (1) Icon
in der Icon Area (links ausgerichtet), (2) einen Namen oder (3) eine ID beschrieben
werden, wobei mindestens eine der genannten Informationen angegeben werden muss
(A3). Falls mehrere textuelle Informationen definiert werden, so muss die visuelle
Reihenfolge aus Abbildung 5.11 eingehalten werden. [BBK+12a]

Mit dem Collapsed Visual Relationship Group Shape können Relationship Template
Shapes abstrahiert werden (A5, A19). Es besteht aus einer gestrichelten Linie, die
zwei Relationship Template Shapes bzw. Visual Group Shapes verbinden. In der Mitte
der Linie befindet sich ein kleines Quadrat mit einem Plus-Zeichen, das verdeutlichen
soll, dass die Linie für eine Menge von (nicht sichtbaren) Relationship Template
Shapes steht (A3). Über der Linie müssen zumindest eine der folgenden Informationen
definiert werden: Ein (1) Icon in der Icon Area (links ausgerichtet), (2) ein Name
oder (3) eine ID (A3). Werden mehrere textuelle Informationen angegeben, so muss
die visuelle Reihenfolge aus Abbildung 5.11 beachtet werden. [BBK+12a]

63

5 Vino4TOSCA 2

VisualRelationshipGroup.Name
VisualRelationshipGroup.Id

Icon
Area

VisualRelationshipGroup.Name
VisualRelationshipGroup.Id

Icon
Area

+

Abbildung 5.11: Vino4TOSCA 2 Expanded und Collapsed Visual Relationship
Group Shapes nach [BBK+12a].

Die Linienfarbe der Visual Relationship Group Shapes kann beliebig gewählt werden.
Der Linienstil dagegen muss den Vorgaben entsprechen (A1, A2). Ein Hintergrundbild
ist nicht erlaubt. [BBK+12a]

5.2.11 Node Template Instanzen

Ein Node Template besitzt zwei optionale Attribute, in denen die minimale und
maximale Zahl an zulässigen Instanzen des Node Templates definiert werden kann.
Zur Repräsentation dieser Angaben muss eine zweite, durchgehende Linie teilweise um
das entsprechende Node Template Shape (siehe Abschnitt 5.2.1) gezeichnet werden13

(A3) und der min-Wert wird auf die linke Seite, der max-Wert auf die rechte Seite
über die Form geschrieben werden. Abbildung 5.12 zeigt ein Node Template Shape
eines Node Types, in dem die genannten Attribute definiert sind. [BBK+12a]

NodeTemplate.Name
NodeTemplate.Id

Icon
Area

min max

Mail application
MailApplication

1 1000

Abbildung 5.12: Vino4TOSCA 2 Node Template Instanzen mit Beispiel nach
[BBK+12a].

13Dies soll die mögliche Existenz von mehreren Instanzen verdeutlichen.

64

5 Vino4TOSCA 2

5.3 Beispiele

Abbildung 5.9 zeigt ein Vino4TOSCA 2-Diagramm eines Online-Shops. Die Anwen-
dung selbst wird durch das Node Template „OnlineShop“ repräsentiert und läuft auf
Ubuntu (gleichnamiges Node Template). Das Node Type „LinuxType“ des Betriebs-
systems definiert eine Schnittstelle „LinuxControl“, die Operationen bereitstellt, mit
denen u. a. Anwendungen installiert werden können. Das Betriebssystem läuft auf
einer virtuellen Maschine (VM), die durch das Node Template „VirtualMachine“
dargestellt ist. Dieses referenziert den Node Type „VirtualMachineType“ mit der
Schnittstelle „VMControl“, die Operationen definiert, mit denen virtuelle Maschinen
verwaltet (z. B. erstellt) werden können.
Der BPMN-Plan „OnlineShopBuildPlan“, dargestellt auf der rechten Seite, provi-
sioniert den Online-Shop. Zunächst wird eine Virtuelle Maschine erzeugt, auf der
bereits Ubuntu vorinstalliert ist. Abschließend wird die Webanwendung installiert.

Abbildung 5.13 zeigt das Diagramm einer Mailanwendung. Die eigentliche Anwen-
dung wird durch das Node Template „Mail Application“ repräsentiert und ist über
mehrere Relationship Templates, die in der Abbildung mittels einem Visual Re-
lationship Group Shape (siehe Abschnitt 5.2.10) abstrahiert dargestellt sind, mit
mehreren Datenbanken verbunden. Die Datenbanken und deren Infrastrukturen
(Server mit Betriebssystem) sind ebenfalls durch ein Visual Group Shape (siehe
Abschnitt 5.2.9) abstrahiert. Die Mailanwendung läuft auf einem Apache Webserver,
repräsentiert durch das Node Template „MailAppWebserver“. Der zugehörige Node
Type „ApacheWebserverType“ definiert die Schnittstellen „ModuleManagement“
und „AppManagement“, mit deren Operationen Module bzw. Anwendungen auf dem
Webserver verwaltet (z. B. installiert) werden können. Windows Server, repräsentiert
durch das gleichnamige Node Template, ist das Betriebssystem, auf welchem der
Webserver installiert ist. Das zugehörige Typ-Element „WindowsServerType“ stellt
eine Schnittstelle „AppManagement“ bereit, deren Operationen zur Verwaltung der
Anwendungen auf dem Betriebssystem eingesetzt werden können. Windows Ser-
ver läuft auf einem Cloud Server von Rackspace, der durch das Node Template
„MailAppServer“ repräsentiert ist. Das Anlegen eines entsprechenden Servers bzw.
deren Verwaltung erfolgt über Operationen der Schnittstelle „ServerManagement“,
die vom zugehörigen Typ-Element „RackspaceCloudServerType“ bereitgestellt ist.
Auf der rechten Seite ist der BPMN-Plan „MailAppBuildPlan“ dargestellt, mit dem
die Mailanwendung bereitgestellt bzw. eine Instanz der Topologie erzeugt werden
kann. Zunächst wird ein Cloud Server mit bereits vorinstalliertem Windows Server
auf Rackspace erzeugt. Anschließend werden nacheinander der Apache Webserver,
das PHP Modul und die eigentliche Mailanwendung installiert. Parallel zu den
bisher genannten Aktivitäten werden weitere Server erzeugt, auf denen jeweils ein

65

5 Vino4TOSCA 2

Database endpoints will be set in mail application during its initial
configuration.

PHPApplicationType

 Mail Application

depends on

VMControl

 PHP Module

installed on

MailAppServer

RackspaceCloudServerType

hosted on

hosted on

ApacheWebserverType

MailAppWebserver

WindowsServerType

Version: 2008

WindowsServer

hosted on

Databases with
Infrastructure

Database Connections

+

+

Mail Application Build Plan
MailAppBuildPlan

http://docs.oasis‐open.org/tosca/ns/2011/12/PlanTypes/BuildPlan

http://www.omg.org/spec/BPMN/20100524/MODEL

Install
Apache Webserver

Provisioning
completed

Create
server instance

with Windows Server

create
ServerManagement

Install
PHP Module

Initial configuration of mail
application

Install
mail application

AppManagement

Create infrastructures for
databases

Create databases

install

AppManagement

ModuleManagement
install

install

Abbildung 5.13: Vino4TOSCA 2-Diagramm zu einem TOSCA-Modell einer
Mailanwendung.

Betriebssystem installiert und schließlich eine Datenbank angelegt wird. Nach der
Installation und Erstellung der Datenbanken erfolgt abschließend die Konfiguration
der Mailanwendung. Dabei werden u. a. die Endpunkte der Datenbanken in der
Mailanwendung gesetzt.

66

6 Zusammenfassung und Ausblick

6 Zusammenfassung und Ausblick

Das Ziel dieser Fachstudie war es, eine visuelle Notation zur Darstellung von To-
pologien und Managementplänen zu erstellen. Hierfür wurden zuerst verschiedene
Anforderungen aufgestellt, welche als Grundlagen zur Erstellung eines effektiv einsetz-
baren Diagramms dienen. Die Anforderungen wurden dabei in visuelle Anforderungen
zur Gestaltung von Diagrammen, TOSCA-spezifische Anforderungen, Usability- und
User Experience-Anforderungen sowie Anforderungen bezüglich der Integration von
Topologien und Geschäftsprozessen kategorisiert. Weiterhin wurden bestehende Nota-
tionen von Anwendungstopologien sowie Geschäftsprozessen betrachtet und anhand
der aufgestellten Anforderungen bewertet. Schließlich wurde eine auf Vino4TOSCA
aufbauende Notation – Vino4TOSCA 2 genannt – erarbeitet, welche sowohl die
grafische Darstellung von Topology Templates als auch von Plänen sowie deren Bezie-
hungen ermöglicht. Die entworfene Notation definiert im Gegensatz zu Vino4TOSCA
zusätzlich Formen für Node Types und Relationship Types, deren Schnittstellen, Plä-
nen und den Aufruf von Operationen (in Plänen), die in den genannten Schnittstellen
definiert worden sind. An den bereits existierenden Formen für Node Templates,
Relationship Templates, Visual Groups, Visual Relationship Groups und Instanzen
von Node Templates wurden Anpassungen vorgenommen. Die Expanded und Col-
lapsed Group Template Shapes wurden nicht übernommen, da Group Templates
mittlerweile aus der TOSCA Spezifikation entfernt worden sind. Zukünftig wäre es
denkbar, dass Formen für weitere TOSCA-Elemente wie z. B. Requirements entworfen
werden, um den Informationsgehalt der Notation weiter zu steigern.

67

Literaturverzeichnis

Literaturverzeichnis

[Ale64] C. Alexander. Notes on the Synthesis of Form. Harvard University
Press, 1964.

[AMA] AMADEE GmbH. UML-Aktivitätsdiagramm. URL http:

//www.amadee.com/docs/de/uml-aktivitaetsdiagramm.html?

ContextID=140. Abgerufen am 2013-05-06.

[BBK+12a] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, D. Schumm. Vi-
no4TOSCA: A Visual Notation for Application Topologies Based on
TOSCA. In OTM 2012, Part I, Band 7565 von Lecture Notes in Com-
puter Science (LNCS), S. 416–424. Springer-Verlag, 2012.

[BBK+12b] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, D. Schumm. Vi-
no4TOSCA Website, 2012. URL http://www.vino4tosca.org.

[Ber83] J. Bertin. Semiology of graphics. University of Wisconsin Press, 1983.

[BN06] M. Bar, M. Neta. Humans Prefer Curved Visual Objects. Psychologi-
cal Science, 17(8):645–648, 2006. doi:10.1111/j.1467-9280.2006.01759.x.
URL http://pss.sagepub.com/content/17/8/645.abstract.

[Bun] Bundesamt für Sicherheit in der Informationstechnik. Cloud Com-
puting Grundlagen. URL https://www.bsi.bund.de/DE/Themen/

CloudComputing/Grundlagen/Grundlagen_node.html. Abgerufen am
2013-04-17.

[Che04] P. P. Chen. Entity Relationship Modellierung, 2004. URL
http://ebus.informatik.uni-leipzig.de/www/media/lehre/

seminar-pioniere04/sem04swp-hartmann-vortrag.pdf.

[Enz] Enzyklopädie der Wirtschaftsinformatik. EPK. URL
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/

wi-enzyklopaedie/lexikon/is-management/Systementwicklung/

Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/

Geschaftsprozessmodellierung/EPK. Abgerufen am 2013-05-14.

68

http://www.amadee.com/docs/de/uml-aktivitaetsdiagramm.html?ContextID=140
http://www.amadee.com/docs/de/uml-aktivitaetsdiagramm.html?ContextID=140
http://www.amadee.com/docs/de/uml-aktivitaetsdiagramm.html?ContextID=140
http://www.vino4tosca.org
http://pss.sagepub.com/content/17/8/645.abstract
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
https://www.bsi.bund.de/DE/Themen/CloudComputing/Grundlagen/Grundlagen_node.html
http://ebus.informatik.uni-leipzig.de/www/media/lehre/seminar-pioniere04/sem04swp-hartmann-vortrag.pdf
http://ebus.informatik.uni-leipzig.de/www/media/lehre/seminar-pioniere04/sem04swp-hartmann-vortrag.pdf
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Geschaftsprozessmodellierung/EPK
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Geschaftsprozessmodellierung/EPK
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Geschaftsprozessmodellierung/EPK
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systementwicklung/Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/Geschaftsprozessmodellierung/EPK

Literaturverzeichnis

[FMC] FMC Consortium. Fundamental Modeling Concepts – Quick Introduc-
tion. URL http://www.fmc-modeling.org/quick-intro. Abgerufen
am 2013-05-05.

[Fra11] Fraunhofer FIRST. The Generic Workflow Description Language Tool-
box, 2011. URL http://gridworkflow.org/kwfgrid/gworkflowdl/

docs.

[Fri02] G. Friese. Wirtschaftsinformatik I Übung 2 – EPK-Modellierung, Tech-
niken zum Systementwurf, 2002. URL http://www.friese-total.de/

uni/bwl/wi/wi-2.shtml. Abgerufen am 2013-05-02.

[Gab] Gabler Wirtschaftslexikon. Struktogramm. URL http://

wirtschaftslexikon.gabler.de/Archiv/76260/struktogramm-v7.

html.

[Ges12] Geschäftsprozessmanagement Blog. Modellierung von Geschäftspro-
zessen mit der Ereignisgesteuerten Prozesskette (EPK), 2012. URL
http://de.processorientation.com/?p=668. Abgerufen am 2013-05-
02.

[GMW00] D. Garlan, R. T. Monroe, D. Wile. Foundations of component-based
systems. Kapitel Acme: architectural description of component-based
systems, S. 47–67. Cambridge University Press, New York, NY, USA,
2000. URL http://dl.acm.org/citation.cfm?id=336431.336437.

[IBM06] IBM. WebSphere Integration Developer – Service Component Archi-
tecture, 2006. URL http://publib.boulder.ibm.com/infocenter/

dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.

doc/topics/csrvcomparch.html. Abgerufen am 2013-07-11.

[Inf13] Informatik Forum Simon GmbH. UML – Unified Mode-
ling Language, 2013. URL http://www.infforum.de/themen/

anwendungsentwicklung/thema_SE-methode_uml.htm. Abgerufen am
2013-05-02.

[KB04] A. Keller, R. Badonnel. Automating the Provisioning of Applicati-
on Services with the BPEL4WS Workflow Language. In A. Sahai,
F. Wu, Herausgeber, Utility Computing, Band 3278 von Lecture No-
tes in Computer Science, S. 15–27. Springer Berlin Heidelberg, 2004.
doi:10.1007/978-3-540-30184-4_2. URL http://dx.doi.org/10.1007/

978-3-540-30184-4_2.

[Ley12] F. Leymann. Architectural Diagrams & Styles (Foliensatz), 2012.

69

http://www.fmc-modeling.org/quick-intro
http://gridworkflow.org/kwfgrid/gworkflowdl/docs
http://gridworkflow.org/kwfgrid/gworkflowdl/docs
http://www.friese-total.de/uni/bwl/wi/wi-2.shtml
http://www.friese-total.de/uni/bwl/wi/wi-2.shtml
http://wirtschaftslexikon.gabler.de/Archiv/76260/struktogramm-v7.html
http://wirtschaftslexikon.gabler.de/Archiv/76260/struktogramm-v7.html
http://wirtschaftslexikon.gabler.de/Archiv/76260/struktogramm-v7.html
http://de.processorientation.com/?p=668
http://dl.acm.org/citation.cfm?id=336431.336437
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.doc/topics/csrvcomparch.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.doc/topics/csrvcomparch.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.doc/topics/csrvcomparch.html
http://www.infforum.de/themen/anwendungsentwicklung/thema_SE-methode_uml.htm
http://www.infforum.de/themen/anwendungsentwicklung/thema_SE-methode_uml.htm
http://dx.doi.org/10.1007/978-3-540-30184-4_2
http://dx.doi.org/10.1007/978-3-540-30184-4_2

Literaturverzeichnis

[Loh05] N. Lohmann. DBS I – Grundlagen von Datenbanksystemen,
2005. URL http://www2.informatik.hu-berlin.de/~blunk/pdf/

dbs1_nlohmann.pdf.

[LR09] B. Lahres, G. Rayman. Objektorientierte Programmierung,
2009. URL http://openbook.galileocomputing.de/oop/oop_

kapitel_02_001.htm. Abgerufen am 2013-05-02.

[LS78] J. Ludewig, W. Streng. Überblick und Vergleich verschiedener Mittel für
die Spezifikation und den Entwurf von Software. Kernforschungszentrum,
Karlsruhe, 1978.

[LS87] J. H. Larkin, H. A. Simon. Why a Diagram is (Sometimes) Worth
Ten Thousand Words. Cognitive Science, 11(1):65–100, 1987. doi:10.
1111/j.1551-6708.1987.tb00863.x. URL http://dx.doi.org/10.1111/

j.1551-6708.1987.tb00863.x.

[M1̈2] M. Müller. Sichere Nutzung von Cloud-Storage in Daten-
banken. Diplomarbeit, Technische Universität Dresden, 2012.
URL http://www.rn.inf.tu-dresden.de/uploads/Studentische_

Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf. Abgerufen am
2013-04-22.

[MG11] P. M. Mell, T. Grance. SP 800-145. The NIST Definition of Cloud
Computing. Technischer Bericht, National Institute of Standards &
Technology, Gaithersburg, MD, United States, 2011. URL http://csrc.

nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Abge-
rufen am 2013-04-21.

[Moo09] D. Moody. The “Physics“ of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Trans.
Softw. Eng., 35(6):756–779, 2009. doi:10.1109/TSE.2009.67. URL http:

//dx.doi.org/10.1109/TSE.2009.67.

[NC99] J. C. Nordbotten, M. E. Crosby. The effect of graphic style on data
model interpretation. Information Systems Journal, 9(2):139–155, 1999.
doi:10.1046/j.1365-2575.1999.00052.x. URL http://dx.doi.org/10.

1046/j.1365-2575.1999.00052.x.

[Nor02] D. Norman. Emotion & design: attractive things work better. in-
teractions, 9(4):36–42, 2002. doi:10.1145/543434.543435. URL http:

//doi.acm.org/10.1145/543434.543435.

70

http://www2.informatik.hu-berlin.de/~blunk/pdf/dbs1_nlohmann.pdf
http://www2.informatik.hu-berlin.de/~blunk/pdf/dbs1_nlohmann.pdf
http://openbook.galileocomputing.de/oop/oop_kapitel_02_001.htm
http://openbook.galileocomputing.de/oop/oop_kapitel_02_001.htm
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://dx.doi.org/10.1111/j.1551-6708.1987.tb00863.x
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf
http://www.rn.inf.tu-dresden.de/uploads/Studentische_Arbeiten/Diplomarbeit_M%C3%BCller_Mario.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1109/TSE.2009.67
http://dx.doi.org/10.1109/TSE.2009.67
http://dx.doi.org/10.1046/j.1365-2575.1999.00052.x
http://dx.doi.org/10.1046/j.1365-2575.1999.00052.x
http://doi.acm.org/10.1145/543434.543435
http://doi.acm.org/10.1145/543434.543435

Literaturverzeichnis

[PQ06] M. Petre, E. de Quincey. A gentle overview of software visualisation.
Psychology of Programming Interest Group (PPIG), 2006. URL http:

//www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf.

[R0̈9] B. Rücker. Bauen wir uns eine BPMN 2.0 Engi-
ne, 2009. URL http://www.bpm-guide.de/2009/08/02/

bauen-wir-uns-eine-bpmn-20-engine. Abgerufen am 2013-05-
02.

[re-] re-wissen.de – Fraunhofer IESE. EPK-Modellierung. URL
http://www.re-wissen.de/opencms/Wissen/Techniken/

EPK-Modellierung.html. Abgerufen am 2013-05-14.

[RJB99] J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling Language
reference manual. Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

[sof] software-kompetenz.de – Fraunhofer IESE. Petri-Netze. URL http:

//www.software-kompetenz.de/?16617. Abgerufen am 2013-05-02.

[TOS13] TOSCA Technical Committee. Topology and Orchestration Specifica-
tion for Cloud Applications (TOSCA) – Committee Specification 01.
Technischer Bericht, OASIS, 2013. URL http://docs.oasis-open.

org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf. Abgerufen am
2013-04-26.

[Wik13a] Wikipedia. Entity-Relationship-Modell – Wikipedia, Die freie En-
zyklopädie, 2013. URL http://de.wikipedia.org/w/index.php?

title=Entity-Relationship-Modell&oldid=117772832. Abgerufen
am 2013-05-05.

[Wik13b] Wikipedia. Ereignisgesteuerte Prozesskette – Wikipedia, Die freie
Enzyklopädie, 2013. URL http://de.wikipedia.org/w/index.php?

title=Ereignisgesteuerte_Prozesskette&oldid=116791035. Abge-
rufen am 2013-05-10.

[Wik13c] Wikipedia. Fundamental Modeling Concepts – Wikipedia, Die freie
Enzyklopädie, 2013. URL http://de.wikipedia.org/w/index.php?

title=Fundamental_Modeling_Concepts&oldid=116170221. Abgeru-
fen am 2013-05-05.

[Wik13d] Wikipedia. Generic Workflow Description Language – Wikipedia, Die
freie Enzyklopädie, 2013. URL http://de.wikipedia.org/w/index.

php?title=Generic_Workflow_Description_Language&oldid=

114950229. Abgerufen am 2013-05-01.

71

http://www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf
http://www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf
http://www.bpm-guide.de/2009/08/02/bauen-wir-uns-eine-bpmn-20-engine
http://www.bpm-guide.de/2009/08/02/bauen-wir-uns-eine-bpmn-20-engine
http://www.re-wissen.de/opencms/Wissen/Techniken/EPK-Modellierung.html
http://www.re-wissen.de/opencms/Wissen/Techniken/EPK-Modellierung.html
http://www.software-kompetenz.de/?16617
http://www.software-kompetenz.de/?16617
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.pdf
http://de.wikipedia.org/w/index.php?title=Entity-Relationship-Modell&oldid=117772832
http://de.wikipedia.org/w/index.php?title=Entity-Relationship-Modell&oldid=117772832
http://de.wikipedia.org/w/index.php?title=Ereignisgesteuerte_Prozesskette&oldid=116791035
http://de.wikipedia.org/w/index.php?title=Ereignisgesteuerte_Prozesskette&oldid=116791035
http://de.wikipedia.org/w/index.php?title=Fundamental_Modeling_Concepts&oldid=116170221
http://de.wikipedia.org/w/index.php?title=Fundamental_Modeling_Concepts&oldid=116170221
http://de.wikipedia.org/w/index.php?title=Generic_Workflow_Description_Language&oldid=114950229
http://de.wikipedia.org/w/index.php?title=Generic_Workflow_Description_Language&oldid=114950229
http://de.wikipedia.org/w/index.php?title=Generic_Workflow_Description_Language&oldid=114950229

Literaturverzeichnis

[Wik13e] Wikipedia. HIPO-Diagramm – Wikipedia, Die freie Enzyklopä-
die, 2013. URL http://de.wikipedia.org/w/index.php?title=

HIPO-Diagramm&oldid=116464651. Abgerufen am 2013-04-06.

[Wik13f] Wikipedia. Komponentendiagramm – Wikipedia, Die freie Enzyklo-
pädie, 2013. URL http://de.wikipedia.org/w/index.php?title=

Komponentendiagramm&oldid=116940785. Abgerufen am 2013-07-03.

[Wik13g] Wikipedia. Nassi-Shneiderman-Diagramm – Wikipedia, Die freie
Enzyklopädie, 2013. URL http://de.wikipedia.org/w/index.php?

title=Nassi-Shneiderman-Diagramm&oldid=118156563. Abgerufen
am 2013-05-04.

[Win13] WinfWiki. Dokumentationsanforderungen im IT-Projektmanagement,
Abschnitt Datenflussdiagramm – WinfWiki, 2013. URL http:

//winfwiki.wi-fom.de/index.php/Dokumentationsanforderungen_

im_IT-Projektmanagement#Datenflussdiagramm. Abgerufen am
2013-05-02.

[www] www.BWL-Betriebswirtschaft.de. Das Flussdiagramm. URL http://

www.bwl-betriebswirtschaft.de/flussdiagramm.html. Abgerufen
am 2013-05-02.

72

http://de.wikipedia.org/w/index.php?title=HIPO-Diagramm&oldid=116464651
http://de.wikipedia.org/w/index.php?title=HIPO-Diagramm&oldid=116464651
http://de.wikipedia.org/w/index.php?title=Komponentendiagramm&oldid=116940785
http://de.wikipedia.org/w/index.php?title=Komponentendiagramm&oldid=116940785
http://de.wikipedia.org/w/index.php?title=Nassi-Shneiderman-Diagramm&oldid=118156563
http://de.wikipedia.org/w/index.php?title=Nassi-Shneiderman-Diagramm&oldid=118156563
http://winfwiki.wi-fom.de/index.php/Dokumentationsanforderungen_im_IT-Projektmanagement#Datenflussdiagramm
http://winfwiki.wi-fom.de/index.php/Dokumentationsanforderungen_im_IT-Projektmanagement#Datenflussdiagramm
http://winfwiki.wi-fom.de/index.php/Dokumentationsanforderungen_im_IT-Projektmanagement#Datenflussdiagramm
http://www.bwl-betriebswirtschaft.de/flussdiagramm.html
http://www.bwl-betriebswirtschaft.de/flussdiagramm.html

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen be-
nutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet. Weder
diese Arbeit noch wesentliche Teile daraus waren bisher Ge-
genstand eines anderen Prüfungsverfahrens. Ich habe diese
Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift Lars-Alexander Albrecht

Ort, Datum, Unterschrift Rene Trefft

Ort, Datum, Unterschrift Michael Zimmermann

	Inhaltsverzeichnis
	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Einleitung
	Grundlagen
	Cloud Computing
	Topology and Orchestration Specification for Cloud Applications (TOSCA)

	Anforderungsanalyse
	Visuelle Anforderungen
	TOSCA-spezifische Anforderungen
	Usability- und User Experience-Anforderungen
	Anforderungen für die Integration visueller Geschäftsprozessnotationen

	Analyse existierender visueller Notationen
	Anwendungstopologien
	Vino4TOSCA
	Fundamental Modeling Concepts
	UML-Komponentendiagramm
	Acme
	Service Component Architecture
	ER-Diagramm
	HIPO-Diagramm

	Geschäftsprozesse
	Petri-Netz
	GWorkflowDL
	Nassi-Shneiderman-Diagramm
	Folgeplan und Flussdiagramm
	Datenflussdiagramm
	UML-Aktivitätsdiagramm
	Business Process Model and Notation (BPMN)
	Ereignisgesteuerte Prozesskette (EPK)

	Auswertung und Schlussfolgerungen

	Vino4TOSCA 2
	Visuelle Variablen
	Visuelle Elemente
	Node Template Shape
	Node Type Shape
	Relationship Template Shape
	Relationship Type Shape
	Node Type Interface Shape
	Relationship Type Interface Shape
	Plan Shape
	Plan Invoke Operation Shape
	Visual Group Shapes
	Visual Relationship Group Shapes
	Node Template Instanzen

	Beispiele

	Zusammenfassung und Ausblick
	Literaturverzeichnis

