Institut fiir Architektur von Anwendungssystemen

Universitit Stuttgart
Universitétsstra3e 38
D - 70569 Stuttgart

Fachstudie Nr. 174

Vergleich von Sprachen, Methoden und Tools
zur Modellierung und
Beschreibung von REST Schnittstellen

Leonard Bruder, Fabian Harth, Nedim Karaoguz

Studiengang: Softwaretechnik

Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Florian Haupt
begonnen am: 10.04.2013

beendet am: 10.10.2013

CR-Klassifikation: D.2.1,F.3.1

Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

Inhaltsverzeichnis
INHALTSVERZEICHNIS ...vtteittteteeesieeasteesiee e teeastaesseaestaeastaeasaaasseaesaeansaeaneaesseeassaeansaesneeessseanseenns mn
ABBILDUNGSVERZEICHNIS.eeitttetteitttestteasteesttesssaesseeasssesssaassseassasasseessessssesasseesssssssesssessnes Vil
L ST IN G S ettt ettt ettt e e e e ettt e e e e oo E ettt e e e e e e bbb e e e et e e e e s e bbb e e e e e e e e nns VIII
1 EINLEITUNG ..ectiiiieiiiiittt ettt ettt e e e e ettt e e e e 4444kttt e e e e e e e e kbbb ettt e e e e e e e ennbbbn e e e e eeeeenans 1
1.1 Zweck und Aufbau des DOKUMENTScccveiiiieiiiie e 2
1.2 GHIBABIUNG ... 2
2 KRITERIENKATALOG. ... ttttttiuttttaaaattteeaeaastteaaeaasteeeaeaassteeasaaseseeesaanbseaaesastbeaaesanbeeaeesanaeeeesannes 3
2.1 GEWICHIUNG ...ttt 4
2.2 Fragen zur Bewertung der ANSALZEcooeiiieiiieniie e 5
2.2.1 Ausdrucksstarke der Sprache - SYNtax.........ccccevieiiiiiieiiie e 5
2.2.2 Ausdrucksstéarke der Sprache - Semantikcccccvoviiiiiiiieniie 5
2.2.3 LESDAIKEIT ...ttt 5
2.2.4 AnWENdUNQ JEr SPraCheoiiiiiie i 5
3 INDIVIDUELL BEWERTETE SPEZIFIKATIONEN UND WISSENSCHAFTLICHE
AUSARBEITUNGENceiiutteitit ettt ettt et ettt et e be e s st et e ekt e s bt e et b e e ke e e bt e s sb e e nbe e e nbeeanbeennne s 7
3.1 Modeling Behavioral RESTful Web Service Interfaces in UML 7
3.1.1 BESCRIEIDUNG....cciiiiie e 7
R A = 1= Y =T (1o [OO PP PPPR S PPRTPPP 8
3.2 Towards a Model-Driven Process for Designing ReSTful Web Services 9
3.2.1 BeSCRIEIDUNG.....cciiii ettt e 9
3.2.2 BEWEITUNG ..evvvieiiie ettt ettt e e e s bbbt e e e e e e s st e e e e e e e s s ettt n e e e as 12
3.3 An UML profile for modeling RESTTul SErvicesccccevevvvevivveennnen. 13
3.3.1 BeSCNIEIDUNG.....cciiiiiie e s 13
R T = 1= Y =T (1 o [T EPPP R PTPPPP 14
3.4 Modeling RESTful applications............ccceoviveiiine e 15
3.4.1 BeSCNIEIDUNG.....ccoiiiiiec e 15
3i4.2 BEWEITUNG ..vvvveiiiiee ettt ettt e e e e e s et e e e e e e e s st b e e e e e e e e e s bbb e eeeeeas 16
3.5 WRIML ...ttt 17
3.5.1 BeSCRIEIDUNG.....ccoiiieiie e 17
R T = 1= Y =T (1 o OO PP PPP PP PPOP 18
3.6 RESTAESC 1.ttt ettt nree s 19

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

3.6.1 BESCHIEIDUNG ... 19
3.6.2 BEWETTUNG ..ceiiiiiieiiie ettt ettt 20
4 MIT DEM KRITERIENKATALOG BEWERTETE SPEZIFIKATIONEN UND
FRAMEWORIKS. ...ttt ettt e e ettt e e e e s et b ettt e e e e e e e e bbb et e e e e e e e e anbbbne et e eeeenanns 21
4.1 WWADL ...ttt 22
4.1.1 BeSCRIeIDUNG ..o 22
4.1.2 BEISPIEL ..o 22
41,3 BEWEITUNGeeieietiie ittt etk e et ettt 23
A.1.3. 1 SYNEAX ettt 23
4.1.3.2 SEMANTIK ...eeeiiiie e 24
4.1.3.3 LeSharkeitoooeeeiie e 24
4.1.3.4 Anwendung der SPrache...........coceiiiiiieiiieiiieiie e 24
A1 FAZIt.oiiie e e 26
4.2 WWSDIL 2.0ttt ettt 27
4.2.1 BeSChIreIDUNG ...ovviiie e 27
4.2.2 BEISPIE ..o 27
4.2.3 BEWEITUNG ...coiiiiiiiiiet ettt et e e e e e a e e e e e a s 29
4.2.3. 1 SYNEAX..eiiiiiiiiiiiiiiiii ettt 29
4.2.3.2 SEMANTIKooiiiiiie e 30
4.2.3.3 LeSDArKeitccueeiiieiiie 30
4.2.3.4 Anwendung der SPrache.........cccccovieeiiiie i 30
A28 FAZIT..coiii e 31
4.3 NRESTS ..t 32
4.3.1 BESCRIEIDUNG ... 32
4.3.2 BEISPIE ..o 32
4.3.3 BEWEITUNG ...ceii ittt e et e e e e e a e e e 32
4.3.3. 1 SYNEAX . eiiiiiiiiiiiiiiiiii it 32
4.3.3.2 SEMANTIKeeeiiiiiie et 33
4.3.3.3 LeSharkeitc..covvieiiieii 34
4.3.3.4 Anwendung der SPrache.........cccccovvveiiiic i 34
B384 FAZIT..ciiii e 35

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.4

4.5

4.6

4.7

441
4.4.2
443

444

451
45.2
45.3

454

46.1
4.6.2
4.6.3

46.4

4.7.1
4.7.2
4.7.3

MICTOWSIMO ettt 36

BESCRIEIDUNG ...
BRISPIEI ...
BEWETTUNG ... e
431 SYNEAX coitiiiiiiieeiie ettt

A.4.3.2 SEMANTIK ..t
A.4.3.3 LESDAIKEIT. ..ot

4.4.3.4 Anwendung der SPrache.........c.ccooveiiieiiiiiiiie e

BESCRIBIDUNG. ..o
BRISPIEI ...
BEWETTUNG ...
A.5.3. 1 SYNEAX ettt

A.5.3.2 SIMANTIK ..ttt ———————
4.5.3.3 LESHAIKEIT. ..o

4.5.3.4 Anwendung der SPrache.......cccccccvveiiiie i

BESCNIEIDUNG.......ei it
BEISPIEH ..o
BeWEITUNG — SWAGOET ..ttt e e
4.6.3. 1 SYNEAX ..iiiiiiiiiiiiiii ittt

4.6.3.2 SEMANTIK ...t
4.6.3.3 LESHAIKEIt. ..o

4.6.3.4 Anwendung der SPrache.........cccccveiiiie i

BESCNIEIDUNG.......ei i
BEISPIE ..o
BOWEITUNG ...ttt

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

A.7.3.1 SYNEABX . .itiiieiiitiie ettt 53

A.7.3.2 SEMANTIK ..eeeiiiieiiiie ettt 54

4.7.3.3 LeSharkeitcoooueieiieee 54

4.7.3.4 Anwendung der SPrache...........ccccoeviiiiieiiieiiieie e 54

O VA | OO EPT ORI 56

O ERGEBNISSE ..ottt ettt ettt e e e e e e e ettt e e e e e e et e e e e e e e e a bbb eaaeeeaans 58
Tabellarische Ubersicht der Bewertungen................ccoceueveecieenenenenanans 60
Tabellarische Auswertung der Ergebnissecccevvveriiinieiiieiieeninn, 61

6 ZUSAMMENFASSUNG ...iuttteeeautteeaeaastteaaeaaastseaeaasstseasaaasbeeaeaaassbeeeeaasbbeeeesanbbeeaesanbbeaeesannbneeesan 62

7 LITERATURVERZEICHNISiiiiitttttitt i e e e ettt e e e e e ettt et e e e e e s st e e e e e e e e s e anbbbbn e e e e eeeeanans 63

Vi

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Abbildungsverzeichnis

Abbildung 1: Modellierung von Ressourcen durch ein UML-Klassendiagramm und

ZUQENOTIGE URIS [4] ..ottt 7
Abbildung 2: Ausschnitt aus der High-Level Designansicht eines Services [5] 9
Abbildung 3: Ein Beispiel eines Information Model [5] ... 10
Abbildung 4: Verwendung des UML Profils [7]cccoooeiiiiniiie e 13
Abbildung 5: Generierter Code fur den Controller [7].......ccooveiiiiieniiie e 14
Abbildung 6: Typensystem fiir die Modellierung von Ressourcen [8].........ccccevvvveiiinnnns 15
Abbildung 7: WRMLDoc und Werminal [9]oooiiiiiiiii e 17
Abbildung 8: Architektur des WRML Application Servers [9]........cccovvviiiiiniiieninennn 18
ADDIIdUNG 9: REST DESCIIDE ...ttt s 25
Abbildung 10: Ubersicht einer APl mit SWagger [21]......cccccvoveveverivirerereeeeeeeeeee e 46
Abbildung 11: Beispiel fiir die Darstellung einer HTTP-Methode mit Swagger-Ul [21] 47
Abbildung 12: Beispielcode flir Swagger [20]cceeiveiiiiiiieiieiieer e 48
Abbildung 13: Konsolenausgabe des RestDoc Python CHentscccccccveviiveviineiinnnn, 56
Abbildung 14: RestDoc in der Konsolenausgabe der serverseitigen Implementierung,

AUSgabe aDGESCNNITLENoiiiiiie e 56
Abbildung 15: Vergleich der Ergebnisse unserer AUSWEITUNGENcovvvvevvieeiiireniennens 58

Vil

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Listings

Listing 1: Information Model Elemente flir addSeats [5]ccooveiiiiiieniieiieice 11
Listing 2: RESTDESC BeiSPIEICOUE...........eiiiieiiiiiie e 19
Listing 3: WADL BeiSPIEICOUEccviiiiiiiieii e 22
Listing 4: SChIUSSEIWOItEr iN WADLcouiiiiiiiie et 24
Listing 5: Java Annotationen fir WADLccoooiiiiiiiee e 26
Listing 6: Beschreibung einer Schnittstelle mit WSDLccccooiiiiiiiieiiieec 28
Listing 7: NRESTS BeISPIEICOUEooiiiiiiieei e 32
Listing 8: MicroWSMO BeiSpIelCOUEooiiiiiiiiiiiiiiee e 36
Listing 9: SEREDAS): JSON Reprasentationccccooveereeiiieiiienieenee e 40
Listing 10: Metadaten einer SEREDAS]-Beschreibungcccoooveviiiiniiiiiiicnie e, 41
Listing 11: Elementdefinition einer SEREDAS]j-Beschreibung...........cccccvvieiiiiiinnnnene, 42
Listing 12: RestDOC COdeDEISPIEIcoveiiiieiii i 52

viii

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

1 Einleitung

REpresentational State Transfer (REST), beschrieben im Jahr 2000 von Roy Fielding [1],
ist ein Architekturstil der die vier Kernziele: Geschwindigkeit, Skalierbarkeit, Simplizitat
und Datenunabhéngigkeit verfolgt und sich dazu auf vier Prinzipien stutzt:

* Ressourcenidentifikation mittels URIs: Eine Ressource eines Dienstes ist eindeutig
uber ihre URI bestimmt und wird (iber diese adressiert.

* Einheitliches Interface: REST unterstiitzt nur die CRUD*-Methoden.

» Selbst-beschreibende Messages: Ressourcen sind losgelost von ihrer
Représentation, so dass sie in einer Vielzahl von Formaten zur Verfigung stehen
konnen.

» Stateful Interaktionen tber Hyperlinks: Jede Interaktion mit einer Ressource ist
zustandslos, sodass der Status wahrend der Interaktion Gbermittelt werden muss.

Durch sein hervorragendes Mapping auf die vier HTTP-Hauptmethoden: POST, GET,
PUT, DELETE, und seine Leichtgewichtigkeit [2], existieren mittlerweile eine Vielzahl
von Diensten, die ihre APl mittels REST zur Verfigung stellen. Im Gegensatz zu
Diensten, die auf dem WS*-Stack basieren und ihre funktionalen und nicht-funktionalen
Eigenschaften mit Hilfe von WSDL bzw. WS-Policy beschreiben und sie dadurch
Kunden zur Verfligung stellen, existiert bis jetzt kein vergleichbarer Industriestandard um
REST APIs zu beschreiben und/oder zu modellieren. Dies bedeutet, dass viele REST-
Dienste nur eine textuelle, lediglich fir Menschen verstéandliche Beschreibung anbieten.
Es gibt auch einige Meinungen?, die entweder nur einen sehr geringen oder gar keinen
Bedarf an der Dokumentation einer REST API sehen, weil diese selbstbeschreibend sein
sollte. Dies wirft jedoch eine Vielzahl von Problemen auf: So ist beispielsweise die
komplette Funktionalitédt einer selbstbeschreibenden REST API erst ersichtlich, nachdem
man den gesamten Baum von Verlinkungen durchlaufen hat.

In dieser Fachstudie prasentieren wir einige Ansatze zur Beschreibung von REST
Diensten und bewerten diese anschliefend anhand eines Kriterienkatalogs. Dieser wird in
Kapitel 2 nédher vorgestellt. Des Weiteren stellen wir einige Ansitze aus
wissenschaftlichen Verdffentlichungen vor und beschreiben diese naher.

Die meisten der untersuchten Sprachen verfolgen einen von zwei Ansatzen um REST-
Dienste zu beschreiben. Entweder einen service- bzw. operationenorientierten oder einen
ressourcenorientierten Ansatz. Als operationenorientierten Ansatz definieren wir in dieser
Fachstudie Sprachen, die das Beschreiben der Funktionalitdt der verschiedenen
Operationen eines Services in den Vordergrund stellen. Die eigentlichen Ressourcen
ricken dabei in den Hintergrund. Eine weitere Mdoglichkeit, den einige Sprachen
verfolgen, ist die Eigenschaften eines Dienstes mit Hilfe von semantischen Ausdriicken
zu beschreiben. Diese beiden Ansédtze werden von einigen entweder als ungeeignet fur

! Create Retrieve Update Delete
2(09.10.2013): http://stackoverflow.com/questions/1966243/restful-api-documentation

http://stackoverflow.com/questions/1966243/restful-api-documentation

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

eine Resource Oriented Architecture (ROA) angesehen, weil sie den Fokus auf die
Modellierung der Représentationen der Ressourcen vermissen, oder als sehr aufwéndig
bzw. umstandlich, weil das Semantic Web noch in einer friihen Phase der Entwicklung
steckt. Lanthaler et al. fassen diese Zurtickhaltung unter dem Begriff Semaphobia
zusammen [3].

1.1 Zweck und Aufbau des Dokuments

Dieses Dokument bewertet einige Spezifikationen, Frameworks und wissenschaftliche
Ausarbeitungen, die syntaktische, semantische oder konzeptionelle
Beschreibungsmoglichkeiten fir RESTful Services definieren bzw. verwenden. Als
Grundlage daftr dient ein zu diesem Zweck entworfener Fragenkatalog, der im
nachfolgenden Kapitel beschrieben wird.

Damit kann es Entwicklern von Schnittstellen einen Anhaltspunkt geben, welche
Technologie geeignet ist, um diese zu dokumentieren. Weil ein zentraler Aspekt die
Beschreibung von Schnittstellen in einem maschinenlesbaren Format ist, werden
verschiedenste Ausdrucksmoglichkeiten dafir vorgestellt und kénnen als Ubersicht
verwendet werden.

1.2 Gliederung

Der Rest des Dokuments ist wie folgt gegliedert:

Im néchsten Kapitel wird der fir die Bewertung verwendete Kriterienkatalog
beschrieben. Hierbei wird auch auf die unterschiedliche Gewichtung der Fragen
eingegangen.

Das dritte Kapitel enthalt die Beschreibungen und Bewertung der Spezifikationen und
Ausarbeitungen, die nicht durch das Bewertungssystem evaluiert wurden. Die Bewertung
ist also eher subjektiv und basiert auf den Erkenntnissen der Autoren tber die anderen
Sprachen.

Das vierte Kapitel fasst die Beschreibungen und Bewertungen der restlichen
Spezifikationen und Frameworks zusammen, auf die der Kriterienkatalog ,,angewandt*
wurde. Hierbei wurde flr jede Frage auf einer Skala von 0 bis 3 angegeben, inwieweit der
jeweilige Prufling die durch die jeweilige Frage ausgedriickte Anforderung erfullt. Flr
jede Beschreibungssprache wurde ein Fazit verfasst, das den gewonnenen Eindruck
zusammenfasst.

Im funften Kapitel werden die Ergebnisse der Bewertungen mit dem Kriterienkatalog
gesammelt und interpretiert.

Das letzte Kapitel dient dann als Zusammenfassung des Dokuments.

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

2 Kiriterienkatalog

Um Rest-Schnittstellen zu modellieren gibt es sehr unterschiedliche Ansatze. Viele
konzentrieren sich auf eine rein syntaktische Sichtweise, was bedeutet, sie modellieren
Ressourcen, Methoden, erlaubte Inputs und Outputs statisch. Diese Beschreibungen
dienen zum einen als Referenz fiir Entwickler, die clientseitig gegen diese Schnittstellen
implementieren, zum anderen gibt es Moglichkeiten, daraus Codestubs zu generieren.

Eine weitere Moglichkeit ist der eher konzeptionelle Ansatz, der durch die Verwendung
von UML-Diagrammen zum Entwerfen von Schnittstellen bzw. Services dient. Auch hier
ist das Generieren von Codestubs teilweise vorgesehen.

Andere Ansatze konzentrieren sich darauf, die Semantik von Services oder von
Methodenaufrufen formal zu fassen. In den meisten Fallen verwenden sie Ontologien, die
wiederum RDF® verwenden, oder geben Mdglichkeiten an, ihre Beschreibungen nach
RDF zu konvertieren.

Mit diesem Hintergrund haben wir versucht, eine faire Vergleichsbasis zu schaffen. Weil
sich die sprachlichen Ansatze von den konzeptionellen bzw. modellierenden sowohl in
der Philosophie als auch dem zugrundeliegenden Anwendungsfall unterscheiden, haben
wir letztere zwar begutachtet, jedoch nicht durch das Bewertungsschema erfasst.

Die Fragen zur Bewertung sind in vier Gruppen unterteilt: Syntax, Semantik, Lesbarkeit
und Anwendbarkeit. Das ermdglicht eine prézisere Beurteilung der einzelnen Sprachen
unter verschiedenen Gesichtspunkten.

In der ersten Kategorie des Kriterienkataloges sind syntaktische Aspekte zu finden, im
zweiten Teil semantische, wodurch der Kriterienkatalog auf beide Ansatze anwendbar ist.
Die dritte Gruppe behandelt die Lesbarkeit des Codes, in dem die
Schnittstellenbeschreibung erfolgt. Im letzten Teil blicken wir ber die formalen
Spezifikationen hinweg und beurteilen die Relevanz in der Praxis, also, ob Tools
angeboten werden und wie hilfreich diese wirklich sind.

Die Auswahl der Fragen erfolgte dabei nachdem wir uns die zur Begutachtung stehenden
Ansidtze etwas genauer angeschaut hatten. Ideen einzelner Arbeiten, die in ihrem
Vorkommen einzigartig waren, wurden nicht mit aufgenommen. Vielmehr wollten wir
Elementares erfassen und Erfolgsmethoden (,,best practice”) mit beriicksichtigen. Mit
dem Hintergrund, dass eine dieser Spezifikationen bzw. Ideen zur Beschreibung einer
Schnittstelle eingesetzt werden sollte, sahen wir uns veranlasst, die Verstandlichkeit und
den erforderlichen Einarbeitungsaufwand ebenfalls zu hinterfragen.

Fur die Evaluierung wurden die Pruflinge zu jeder Frage auf einer Skala von 0 bis 3
bewertet. Die Punktzahl drickt dabei aus, inwiefern der Priifling die durch die Frage
gestellte Anforderung erfullt (1 Punkt: in Ansatzen erfillt; 2 Punkte: zu Teilen erfillt; 3
Punkte: vollstandig erfullt).bzw. nicht erfullt (O Punkte).

% (09.10.2013): http://en.wikipedia.org/wiki/Resource_Description_Framework

http://en.wikipedia.org/wiki/Resource_Description_Framework

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

2.1 Gewichtung

Fur die Gesamtbewertung haben wir zum einen die einzelnen Fragen innerhalb einer
Gruppe gewichtet und uns zum anderen die Moglichkeit offen gehalten, die jeweiligen
Gruppen selbst fur eine Gesamtwertung zu gewichten. Ersteres ermoglicht die strenge
Bewertung elementarer Aspekte und gleichzeitig das Aufnehmen von nitzlichen und
sinnvollen Features einzelner Anséatze.

Auch die Tatsache, dass einzelnen Fragen eine unterschiedliche Reichweite - also die
Summe des durch die Beantwortung dieser Frage tatsdchlich Bewerteten - zugrundeliegt,
wird hierdurch bertcksichtigt. (Die Frage ,,Wie gut ist die Spezifikation? hétte
beispielsweise eine Reichweite von 100%, die Frage nach deren Ausdrucksstarke nur
noch 50% usw.) Weil dartiber hinaus nicht fiir jede Gruppe die gleiche Anzahl an Fragen
vorhanden ist, kann eine Gewichtung einzelner Gruppen bzw. Fragen diesen Umstand
relativieren.

Die Gewichtung der Gruppen ermdéglicht hingegen die Bewertung eines Ansatzes tber
dessen eigentliche Mdoglichkeiten hinaus. Steht beispielsweise die Praxistauglichkeit
mehrerer Sprachen mit vergleichbarer Ausdrucksstarke (syntaktisch / semantisch) zur
Debatte, kann durch die Gewichtung der Gruppe Anwendbarkeit eine aussagekréftige
Wertung fur deren Einsatz erzielt werden.

Kombiniert man die Anzahl der Fragen mit der jeweiligen Gewichtung ergibt sich der
Einfluss einer Gruppe auf die Gesamtwertung. Die Ausdrucksstérke (Syntax & Semantik)
bilden dabei 52%. Wahrend die Anwendbarkeit der Sprache mit 42% zur Geltung kommt,
ist die Auswirkung der Lesbarkeit mit den verbleibenden 6% Uberschaubar.

Im Folgenden ist der fertige Kriterienkatalog sowie die verwendete Gewichtung
aufgefuhrt. Wir wollten bei der Auswertung zum einen die Mdglichkeiten einzelner
Ansétze abbilden und zum anderen moégliche Hirden widerspiegeln, die eine spétere
Anwendung erschweren (wie z.B. zu hoher Aufwand fir die Einarbeitung). Die
Bewertung gibt also eine Antwort auf die Frage, welcher Ansatz verwendet werden sollte,
wenn eine Schnittstelle neu entwickelt wurde und dokumentiert werden soll, um
verwendet werden zu kénnen.

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

2.2 Fragen zur Bewertung der Ansatze

2.2.1 Ausdrucksstarke der Sprache - Syntax

e Konnen die Ressourcen der Schnittstelle definiert werden? — doppelt gewichtet

e Kobnnen pro Ressource erlaubte Operationen definiert werden? - doppelt
gewichtet

e Konnen erwarteter Input bzw. Output des Servers definiert werden?
e Kodnnen Beziehungen zwischen Ressourcen definiert werden?

e Kann fir Methoden beschrieben werden, welche Statuscodes erzeugt werden
kdnnen?

e Bietet die Sprache vordefinierte Ressourcentypen an?

e Kobnnen Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-
Ressource definiert werden kdnnen?

e Konnen in URI Definitionen Templates verwendet werden?

2.2.2 Ausdrucksstarke der Sprache - Semantik

e Kann die Bedeutung einer Ressource definiert werden? — doppelt gewichtet
e Kann die Bedeutung einer Operation definiert werden? — doppelt gewichtet

e Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

2.2.3 Lesbarkeit

e Wie gering ist der Anteil an Syntax-Overhead im Code?

e Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

2.2.4 Anwendung der Sprache

e Inwelchem Umfang wird die Sprache bereits eingesetzt?
e Wie gut ist die Sprache dokumentiert? — doppelt gewichtet

e Wie gut sind die Tools dokumentiert, die fiir diese Sprache angeboten werden? —
doppelt gewichtet

e Einfachheit: wie gering ist der Aufwand zur Einarbeitung in die Sprache? —
doppelt gewichtet

e Unter Verwendung frei verfugbarer Tools und Frameworks

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Wie gut wird der Entwickler beim modellieren unterstiitzt?

Gibt es eine hilfreiche, graphische Darstellung der Modelle? — doppelt
gewichtet

Unterstiitzung fir folgende Szenarien:

= Schnittstellen eines bestehenden RESTful Web Service sollen in
einem maschinenlesbaren Format beschrieben werden.
Beschreibungen sind bisher gar nicht oder nur in Plaintext
vorhanden. — doppelt gewichtet

= Es soll die Schnittstelle eines RESTful Web Service vor dessen
Implementierung entworfen werden. Aus dem Modell sollen Code-
Stubs generiert werden kénnen.

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

3 Individuell bewertete Spezifikationen und
wissenschaftliche Ausarbeitungen

In diesem Kapitel wird eine individuelle Bewertung einzelner Spezifikationen und
wissenschaftlicher Ausarbeitungen ohne die Verwendung des Kriterienkatalogs
durchgefiihrt. Dieser konnte auf Grund der Eigenart einiger Ansatze nicht immer auf
diese angewandt werden. Jeder Prifling wird dabei in einem ersten Abschnitt
beschrieben, um anschliefend anhand unserer Erkenntnisse aus der Bewertung anderer
Priflinge bewertet zu werden.

3.1 Modeling Behavioral RESTful Web Service Interfaces in
UML

3.1.1 Beschreibung

Die Arbeit von Porres et al. [4] erklart, wie UML Diagramme verwendet werden kdnnen,
um die Semantik von Webservices zu beschreiben. Die Autoren nennen als Vision eine
Lautomatic service discovery* und ,service repositories”. Um diesen Ansatz zu
motivieren, beziehen sie sich auf WADL und argumentieren, erstens sei es mit WADL
nicht moglich, irgendetwas tber die Semantik eines Webservice auszudriicken, zweitens
erlaube es WADL, Webservices zu beschreiben, die die REST-Prinzipien nicht befolgen.

Fur das Modellieren von Ressourcen eines Webservices schlagen die Autoren vor,
Klassendiagramme zu verwenden. Sie erklaren genau, wie die
Beschreibungsmdglichkeiten, die UML definiert, auf Ressourcen abgebildet werden
kdnnen: Klassenattribute werden zu Représentationen der Ressource, Assoziationen
beschreiben referenzierte Ressourcen, und Beschriftungen auf den Assotionzionen geben
den relativen URI Pfad an. Mengen von Ressourcen konnen als ,,<<collection>>*
markiert werden. Als Beispiel haben die Autoren einen Service fir Hotelreservierungen
modelliert. Dabei sind fur die URI Angaben Platzhalter verwendet, ,,{bid}*, und ,,{rid}*,
fiir die die Id der entsprechenden ,,booking®, bzw. ,,room* Ressource eingesetzt wird.

<<collecfion>>
bookings

i o s | <oolecton>>
- Jbookings /{bid }/
{bid}}, 0. 1.* ::? : g'?es?lf:'n {rid} /bookings/{bid}/cancel [
booking rooms/{rid| +ﬂﬂ)[’5 . Str‘ingg t’: :'):c:; 1111::;. j’]{t : id}/
+bid : In}eger L }:e’ pay qu]]L/ peonfirmation /
+bdate : Date booking

Jrooms/{rid}/
Jrooms/{rid}/booking/

+guestiD : String

Jrooms/{rid}/booking/c
Jrooms/{rid}/booking /payment/
Jrooms/{rid}/booking/payment/

0.1] cancel payment pconfirmation

pconfirmation/
cancel 0.1 +pid : Integer 0.1 +confirm : Boolean
+amount : Integer — +iry : Integer
+cdate ¢ Dfﬂe payment +pDate : Date pconfirmation| +wailing : Boolean
+note : String

Abbildung 1: Modellierung von Ressourcen durch ein UML-KIlassendiagramm und
zugehorige URIs [4]

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Um semantische Aspekte auszudricken sollen UML Zustandsdiagramme verwendet
werden, wobei Zustandsiibergange mit Vor- und Nachbedingungen beschriftet werden.
Das bedeutet, dass boolsche Ausdriicke angegeben werden, die definieren, unter welchen
Bedingungen eine Methode aufgerufen werden kann, und welche Bedingungen nach der
Ausfiihrung der Methode gelten.

3.1.2 Bewertung

Es gibt verschiedene Ansédtze, UML zu verwenden, um Restschnittstellen zu modellieren.
Das Verwenden von Klassendiagrammen um Ressourcen zu modellieren scheint uns eine
gute Idee zu sein, da Klassendiagramme diese statischen Zusammenhange gut ausdriicken
konnen. AuRerdem kann mit der Verwendung von UML auf bestehende Tools
zuriickgegriffen werden und die Notation ist weit verbreitet und akzeptiert.

Die Ansétze zur Formulierung von semantischen Zusammenhéngen bewerten wir als zu
komplex, um industriell Anwendung zu finden.

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

3.2 Towards a Model-Driven Process for Designing ReSTful
Web Services

3.2.1 Beschreibung

Laitkorpi et al. [5] beschreiben einen Vorgang um funktionale Spezifikationen in einen
RESTful Web Service zu transformieren.

Als Motivation geben die Autoren an, dass wéhrend des gewdhnlichen Designprozesses
wesentliche Prinzipien von REST verworfen werden, wenn bendtigte Funktionalitat auf
konkrete Elemente einer APl gemappt werden. Ebenso beméngeln sie den fehlenden
ressourcenorientierten Ansatz von vorhandenen Designprozessen, da diese eher einen
objektorientierten Fokus besitzen. Einen bestehenden Ansatz, nach Richardson und Ruby
[6], um RESTful Services zu designen, halten Laitkorpi et al. fur ungeeignet, weil er eine
Designlucke offenbart. Als Beispiel wird ein einfacher Service einer Airline beschrieben.
Die nachfolgendende Abbildung zeigt einen Ausschnitt, den die Autoren als Beispiel flr
eine Designlucke auffihren, weil aus diesem Ansatz nicht hervorgeht, auf welche Art und
Weise der abgebildete Schritt ,,7: addSeats(seats)“ RESTful implementiert werden kann.

7: addSeats(seats)

A 4

8: recalculatePrice()

A

9: itinerary with price

<«

Abbildung 2: Ausschnitt aus der High-Level Designansicht eines Services [5]

Laitkorpi et al. schlagen einen mehrstufigen Prozess vor, der als Ziel hat, alle fur einen
RESTful Service relevanten Informationen zu beinhalten - sowohl fir die
Implementierung, als auch flr die spatere Nutzung der API. Der Prozess unterteilt sich in
folgende Phasen:

e Analysis: Die Autoren gehen davon aus, dass zu Beginn eine funktionale
Spezifikation der Anforderungen des Services vorliegt - hauptséchlich bestehend
aus einem UML Sequenzdiagramm. Zudem sollte diese Spezifikation zwei
Sichten bieten. Zum einen die Businesssicht, mit den gegenseitigen
Abhangigkeiten der Interaktionen, und eine High-Level Klassenansicht mit dem
Vokabular der Domain.

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Behavioral canonicalization: Hierbei wird die High-Level Ansicht zwischen
Client und Service heruntergebrochen, analysiert, um relevante
Statusinformationen zu finden, geeignete primitive Operationen bestimmt, um
diese Status zu manipulieren und daraus ein Information Model (unten stehende
Abbildung) zu formen. Das darauf folgende Listing zeigt ein Beispiel fir
addSeats:

<<bystander>>

£ =

addresses Flight =<addressees>

Systam-Flight Flight-Seat

=<id output=> code: Code i
<<jd.oulput=> departure: Departurd -
<zputput=> amival: Armival ==inspect>> () : Seat []

=<inspect== (arr_baf, o, dep_aft, from) : Flight [] <<putput>> from: From =

: <<output>>to: To . available=True
arr_bef ‘\\\ +ilight
<<system>> | dep_aft - o 0.n
from TS
to
<<addressea>>
ltinerary-Seat
Seowne> <<addressee bystander=>] <<bystander>>
Itinerary <<create>> {s-eafs: Seat []) : Price Seat
[
<<id,output==> id: 1D ; <<id.::uut1p;ul=-=- clodbel: C:dal "
+itinerary |=<inpul output=> price: Price ==gutput=> available: Available
0..n |<<cutput=> customer: Customer =knows 5 "'5;“': <<gutput=> baseprice: Price
=<raplace>> (price: Price) <<replace=>> (it Minerary, avail: Available) : Price

Abbildung 3: Ein Beispiel eines Information Model [5]

10

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

INTERACTION 7+9: addSeats

Concern Answer encoded as model elements

listener Itinerary-Seat association class representing Itinerary ---
<<knows>> --->* Seat

bystanders <<system>>, Itinerary, Seat, Flight

relationships <<system>> --- <<owns>> --> * |tinerary

Itinerary --- <<knows>> --> * Seat

Flight --- <<owns>> --> * Seat

qualifiers <<id>> attributes: Itinerary::id, Seat::code (values such as “K12”),
Flight::code (values such as “AY204”), Flight::departure

Intention <<stateChange>> (not shown in the model)

Effect <<create>>

Content <<input>>: Seat ([] indicates plural)

<<input>> mapped to concept attributes: Seat::code, Seat::flight

<<output>>: price

<<output>> mapped to concept attributes: Itinerary::price; because
Itinerary is not the same as <<addressee>>, this interaction must be
split into two: Itinerary-Seat::<<create>>() and
Itinerary::<<inspect>>(). Only the former is exempified

Listing 1: Information Model Elemente fir addSeats [5]

e Structural canonicalization: In dieser Phase wird ein Resource Abstraction Layer
Uber das zuvor erstellte Information Model gelegt, so dass Informationen nun mit
aufrufbaren Ressourcenentitaten verknipft sind.

e Service translation: Hier werden die nun erstellten Modelle auf konkrete
Technologien Ubertragen. Laitkorpi et al. stellen in ihrem Paper WADL (siehe
auch Kapitel 4.1 WADL) als eine Moglichkeit vor. Der beschriebene Ansatz ist
jedoch nicht auf WADL beschrénkt.

Die Autoren geben an, dass sie derzeit an einer Pattern Language arbeiten die
grundsétzliche Prinzipien fiir die Entwicklung von RESTful Web Services beinhalten
soll. Leider konnten wir wéhrend der Erstellung dieser Fachstudie keine Ergebnisse dieser
Arbeit an einer Pattern Language finden.

Bezliglich moglicher Toolunterstiitzung sehen Laitkorpi et al. nur WADL-Tools, jedoch
wéren Tools zur Unterstutzung des Modellierungsprozesses hilfreich, missten aber in
einer separaten Arbeit behandelt werden.

Zum Schluss geben die Autoren noch einen Ausblick: Sie bestatigen, dass sie zum
Zeitpunkt der Veroffentlichung ihrer Arbeit noch keinen empirischen Beleg fiir die

11

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Qualitat und den Nutzen ihres Ansatzes vorlegen kdnnen. Sie waren aber zuversichtlich
und stellten in Aussicht, einen Evaluierungsprozess in der ersten Hélfte im Jahr 2009
durchzufiihren. Uns war es leider nicht mdglich, Ergebnisse dieser Evaluierung oder
weitere Arbeiten, die diesen Ansatz verfolgen, zu finden.

3.2.2 Bewertung

Das Problem, dass die Autoren eingangs beschreiben (und die daraus resultierenden
Probleme), sind nachvollziehbar. Der Ansatz, ein strukturiertes und durchdachtes
Vorgehensmodell zu schaffen, ist lobenswert. Es ware sehr hilfreich fir eine konkrete
Bewertung gewesen, die Ergebnisse des - in der Arbeit angekundigten -
Evaluierungsprozesses zu kennen, sofern er durchgefiihrt wurde. Der Titel des Papers,
,Towards a Model-Driven Process for Designing ReSTful Web Services* und der
Ausblick den die Autoren darin selbst geben, legen nahe, dass diese Arbeit erst der
Beginn auf dem Weg zu einem modellgetriebenen Prozess ist. Daher ist der Mangel an
auffindbaren Arbeiten, die auf diesen Ergebnissen von 2009 aufbauen, verwunderlich und
lasst befurchten, dass dieser Ansatz nicht konkret weiterverfolgt wurde.

12

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

3.3 An UML profile for modeling RESTTful services

3.3.1 Beschreibung

In dieser Ausarbeitung [7] wird eine Erweiterung der Syntax und Semantik von
Elementen des UML Metamodells vorgestellt. Das Ziel hierbei ist die Verringerung des
Modellierungsaufwands von RESTful Services. Im Fokus stehen dabei RESTful Services,
die als Controller von Webanwendungen dienen, die das Model-View-Controller-Pattern
implementieren.

Die komplette MVC Anwendung kann dabei so modelliert werden, dass Interaktion und
Struktur ersichtlich sind. Im Moment stehen die im Paper vorgestellten UML Elemente
und Stereotypen nur in UML Profilen fur das Programm Enterprise Architect zur
Verfugung. Die Grunde fur die Verwendung von Enterprise Architect sind die
angebotenen Mechanismen fir Metamodelle und das enthaltene Framework zum
Generieren von Code. Letzteres erlaubt die Anpassung der Templates zur
Codegenerierung.

Die Arbeit umfasst die Erweiterung fir Controller, RESTful Services und Views.

* Ein RESTful Controller wird als Klasse mit dem Stereotypen ,rest-controller
représentiert, welcher das selbsterkldarende Attribut ,,url” zu dieser hinzufligt.

* Ein RESTful Service wird als UML Interface mit dem Stereotypen ,rest-service*
modelliert, welcher Attribute fir die URI und die HTTP-Methode bereitstellt.
Dartiber hinaus kénnen URI Variablen und HTTP-Parameter dargestellt werden.

* Views werden ebenfalls durch stereotypisierte Klassen abstrahiert. Es kénnen der
Name, die zugehdrige URL und der Status einer Sitzung ausgedrtickt werden.

GuestRegistering: /guest

[<< pojo >>

S e .

) : | UserData

3 1 <<sessi ribute>>

[_\ | | user : String
_éc} RegisterPage | !
I
1
I

7 3 pass : String
\I)lew user form :/

first : String
| 'users_create’ :

last : String

I
I
I
®"""""""". | : e domain
T ' Register : <<entity>> User
i ' S
|
I

Activation account i 5
*+.\| <<entity>> Person

Inext steps: o I <<entity>> Role
users_next_steps'

Abbildung 4: Verwendung des UML Profils [7]

Wie in obiger Abbildung zu erkennen, kénnen damit Struktur und Interaktion eines
Controllers (in diesem Fall fur ein System zur Registrierung) in einem einzigen
Diagramm dargestellt werden. Der Status der View wechselt dabei von Start Uber
Intermediate zu Finish.

13

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Zumindest fur den Controller kann mit den angepassten Templates des Enterprise
Architect der entsprechende Java-Code generiert werden.

@RequestMapping("/guest")
@Controller
@SessionAttributes({ "userData" })
public class GuestRegistering {
QRequestMapping(value="register",
method=RequestMethod.GET)
public String registerPage(Model uiModel){
// if (condition) {
// return "users_create";

/7 F

return

}

@RequestMapping(method = RequestMethod.POST)
public String register (Model uiModel){

// if (condition) {

// return "users_next_steps";

/7 F
return
}
public UserData m_UserData;
public ActivationData m_ActivationData;

H

Abbildung 5: Generierter Code fiir den Controller [7]

3.3.2 Bewertung

Der Ansatz, ein Mittel zwischen anschaulicher Modellierung der Architektur und die
Technologie beriicksichtigendem Erzeugen von Code zu entwerfen, ist hier durchaus
gelungen. Allerdings wirkt die beschriebene Neuerung dabei eher wie ein durchdachtes
Anwenden der Mdglichkeiten in Enterprise Architect, das nicht voll zur Entfaltung
kommit.

Wie im obigen Schaubild zu erkennen, ist das Ergebnis - ungeachtet dessen — sehenswert.
Es wurde ein sehr aussagekréftiger Typ von Diagramm entworfen, dem sich sowohl der
Verlauf wie auch die Struktur eines Programms entnehmen lassen. Das Erzeugen von
Quellcode ist generell sehr hilfreich, wenn auch noch ausbaufahig.

14

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

3.4 Modeling RESTful applications

3.4.1 Beschreibung

Silvia Schreier [8] stellt in ihrer Arbeit ein Metamodell vor, mit dem Schnittstellen von
RESTful Webservices modelliert werden konnen. Sie legt dabei den Fokus auf das
Design auf einer hheren Abstraktionsebene, losgeldst von technischen Details, und nennt
als Ziel ,,model driven development®.

Fur die Beschreibung des Metamodells dient Ecore, ein Meta-Metamodell und Teil des
,Eclipse Modeling Framework*.

Die Autorin gliedert die Beschreibung ihres Metamodells in zwei Teile - erstens
»dtructural Modeling®, zweitens ,,Behavioral Modeling®. Das strukturelle Modell umfasst
ein Typensystem flir Ressourcen, inklusive verschiedener Containertypen.

Generalization

—> EReference

containingType | | listElementType
| ResourceType I
elementTypes
projectedType pagedType
| AggregationResourceType | |ActivityResourceType‘ ’PagingResourceType| |ListResourceType‘
SubresourceType| ‘ PrimaryResourceType | | ProjectionResourceType| | FilterResourceType |

Abbildung 6: Typensystem flr die Modellierung von Ressourcen [8]

Das Typensystem bietet einige Maoglichkeiten, Ressourcen zu klassifizieren und
miteinander in Verbindung zu setzen. Uber den Typ ,,PrimaryResourceType* konnen
abstrakte Vorlagen definiert werden, von denen verschiedene Instanzen erstellt werden
konnen. Eine Hierarchie unter Ressourcen kann mit der Verwendung von
»SubresourceType® ausgedriickt werden. Zusétzlich zum Typ konnen fiir Ressourcen
Attribute vorgegeben werden, fir die zum einen die von Java definierten primitiven
Datentypen und zum anderen ein Collection Datentyp definiert werden kann.

Fir das Modellieren von Methoden gibt es eine Klasse ,,Method®, die auf eine der HTTP
Methoden abbildet. Fur diese kann auBerdem eine Menge von ,MediaTypes” und
Parameter angegeben werden.

Fir das ,,.Behavioral Modeling* schligt die Autorin vor, deterministische endliche
Automaten zu verwenden. Fiir Methoden soll dann eine ,,Action® definiert werden, die
Zustandsiibergange auslésen kann. Fir Actions werden verschiedene weitere Typen
definiert, unter anderem ,CreateAction”, welche neue Ressourcen erzeugt,

#(09.10.2013): http://www.eclipse.org/modeling/emf/

15

http://www.eclipse.org/modeling/emf/

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

,UpdateAction®, um Properties von Ressourcen neu zu setzen, oder ,,ReturnAction®, um
zuriickgegebene Repréasentationen zu beschreiben.

3.4.2 Bewertung

Der Ansatz von Silvia Schreier behandelt eine andere Modellierungsebene als andere in
dieser Fachstudie untersuchte Ansdtze, unser Kriterienkatalog lieR sich deswegen hier
nicht anwenden.

Uns gefallt das Metamodell bezuglich struktureller Modellierung sehr gut. Es werden
verschiedene Ressourcentypen definiert und die Moglichkeit, Ressourcen zu
klassifizieren, bringt eine Ausdrucksstarke mit sich, die in anderen
Beschreibungssprachen nicht zu finden ist.

Der Vorschlag, deterministische endliche Automaten zu verwenden, um das Verhalten
von Ressourcen zu modellieren, erscheint etwas aufwéndig. Aullerdem fehlen hier noch
technische Details.

16

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

3.5 WRML

3.5.1 Beschreibung

WRML (Web Resource Modeling Language) wurde in dieser Fachstudie nur
oberflachlich betrachtet. Zu Beginn der Fachstudie waren noch Informationen zu WRML
unter www.wrml.org zu finden, jedoch war der Entwicklungsstand unklar und es gab
keine Hinweise darauf, dass derzeit an WRML weitergearbeitet wird. Inzwischen verlinkt
diese Seite auf ein GitHub-Projekt® zu WRML und die ehemals auf der Webseite zu
Verfligung gestellten Informationen sind nur noch teilweise im Google-Cache zu finden.
Auf GitHub gab es in den letzten zwei Monaten wieder Commits.

WRML wird als Framework beschrieben, das Tools und eine eigene Application Server
Engine beinhaltet. Es fuhrt zusétzlich einen eigenen Mediatype und Schemadefinitionen
ein. Als Tools werden Wrmldoc und Werminal beschrieben. Wrmldoc ist eine
webbasierte GUI, ahnlich zu Swagger (siehe Kapitel 4.6). Werminal ist, wie in unten
stehender Abbildung zu erkennen, ein Command-line Tool.

Wrmidoc Werminal
Web-based GUI Command-line GUI

O fireball Iy

......

aaaaaaaa

..........

Links

/ Rsscurcs

Abbildung 7: WRMLDoc und Werminal [9]

Die nédchste Abbildung zeigt die Architektur des WRML Application Servers. Dessen
Aufgabe ist es, HTTP-basierte Anfragen in den WRML Kontext zu Ubersetzen. Die

®(09.10.2013): https://github.com/wrml/wrml

17

http://www.wrml.org/
https://github.com/wrml/wrml

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

einzelnen Komponenten (ApiLoader, SchemalLoader, etc.) kimmern sich dann um
entsprechende Teile der Payload.

s}
3
—|
i S
WrmlServlet
'l ™
Engine
Context
ApilLoader ‘ Schemaloader SyntaxLoader ‘ FormatLoader
ServicelLoader
SEI"ViCE(S) The WrmlServlet is a
. — . thin wrapper around the
"""""""""" WRML core: the Engine
oo and its reloadable
Context.
Pa—
The Context is the
| heart of the core. It k

delegates to Services

and to a handful of
o . system “loader” classes. —y
Models

Abbildung 8: Architektur des WRML Application Servers [9]

Auf Amazon lasst sich ein Buch® des Autors iiber REST und WRML finden, in welchem
er neben einigen Techniken zum Implementieren von REST Services auch WRML
vorstellt. Die Rezessionen dort fallen jedoch sehr negativ aus, vor allem WRML wird in
den Kommentaren stark kritisiert, weil es zu komplex sei.

3.5.2 Bewertung

WRML wurde mangels Informationen und wegen genannter Griinde in dieser Studie
nicht bewertet.

€ (09.10.2013): http://www.amazon.de/Rest-Design-Rulebook-Mark-Masse/dp/1449310508/

18

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

3.6 RESTdesc

3.6.1 Beschreibung

RESTdesc beschreibt den Ansatz, ,Notation 3“ [10] zu verwenden, um semantische
Aspekte von Webservices auszudriicken [11]. N3 bietet aussagenlogische Konstrukte wie
Implikationen und Quantoren, sodass Vor- und Nachbedingungen fir den Aufruf von
Webservices formuliert werden kdnnen. Im nachfolgenden Beispiel, das die Autoren auf
ihrer Homepage’ angeben, wird ausgedriickt, dass - sofern fiir ein Bild ein Link vom Typ
,dpedia-owl:thumbnail*“ existiert - auf diesem Link eine HTTP Get Methode aufgerufen
werden kann, die ein Bild der Hohe 80 Pixel zuriickliefert.

@prefix : <http://example.org/image#>.
@prefix http: <http://www.w3.o0rg/2011/http#>.
@prefix dbpedia: <http://dbpedia.org/resource/>.
@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.
{

?image :smallThumbnail ?thumbnail.}
=> {

_:request http:methodName "GET";
http:requestURI ?thumbnail;
http:resp [http:body ?thumbnail].

?image dbpedia-owl:thumbnail ?thumbnail.

?thumbnail a dbpedia:Image;
dbpedia-owl:height 80.0.}.

Listing 2: RESTDesc Beispielcode

Entscheidend fiir die Aussagekraft solcher Beschreibungen sind naturlich die VVokabulare
der verwendeten Ontologien. Die Autoren schlagen die Verwendung des HTTP
Vokabulars® vor, um alle Aspekte von HTTP Methoden beschreiben zu konnen.
Weiterhin kann jede in RDF formulierte Ontologie verwendet werden.

Damit die Verwendung von Platzhaltern in URI Beschreibungen erkléart werden kann,
wurde eine eigene Ontologie entworfen®.

Die Autoren erklaren, dass Deduktionen verwendet werden konnen, falls Vor- und
Nachbedingungen in N3 formuliert sind [11]. Damit kann ein Clientprogramm fiir eine
Ausgangsbedingung feststellen, welche Webservices aufzurufen sind, um ein definiertes
Ziel zu erreichen, falls Ausgangsbedingung und Ziel die Ontologien verwendet, in denen
auch die Beschreibungen der Webservices formuliert sind.

7(09.10.2013) http://restdesc.org/about/descriptions
(09.10.2013) http://www.w3.0rg/TR/HT TP-in-RDF10/#classes
? (09.10.2013) http://multimedialab.elis.ugent.be/organon/ontologies/restdesc/uri-template

19

http://restdesc.org/about/descriptions
http://www.w3.org/TR/HTTP-in-RDF10/#classes
http://multimedialab.elis.ugent.be/organon/ontologies/restdesc/uri-template

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

3.6.2 Bewertung

RESTDesc flihrt keine eigene Notation ein, sondern verwendet ,Notation 3%, um
semantische Aspekte von Webservices auszudriicken. Die Aussagekraft dieser
Beschreibungen hédngt stark von der verwendeten Ontologie ab, die beliebig gewahlt
werden kann. Aus diesen Grinden haben wir RESTDesc nicht mit unserem
Kriterienkatalog bewertet.

Die N3 Notation erlaubt es uber Konstrukte wie Quantoren und Implikationen und die
Verwendung von beliebigen Ontologien, komplizierte Zusammenhénge formal
auszudriicken. Wir glauben, dass Formalismen dieser Art unabdingbar sind, um wirklich
automatisierte ,,service discovery* zu entwickeln. Was RESTDesc allerdings nicht ohne
weiteres ausdriicken kann, sind syntaktische VVorgaben fir Interfaces von Webservices zu
formulieren, beispielsweise Schemadefinitionen flr erlaubte Inputs und Outputs
anzugeben. Wir glauben, dass hier zusétzlich eine Moglichkeit verwendet werden muss,
um die syntaktische Struktur der Interfaces zu beschreiben.

20

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4 Mit dem Kriterienkatalog bewertete Spezifikationen
und Frameworks

In diesem Kapitel wird die Bewertung einzelner Spezifikationen und Frameworks anhand
des Kriterienkatalogs durchgefiihrt. Die Bewertung einzelner Fragen erfolgt dabei auf
einer Skala von 0 bis 3. Die Punktzahl O bedeutet, dass die durch die Frage implizierte
Anforderung nicht erfillt wurde. Die Punktezahlen 1 (in Ansatzen erfillt), 2 (zu Teilen
erfullt) und 3 (vollstdndig erflllt) geben den Grad an, in welchem der Prifling die
Anforderung abdeckt.

Fur jeden Prifling sollen Beschreibung und Beispiel einen Uberblick (iber dessen
Eigenschaften geben und Bewertung und Fazit diese Eigenschaften evaluieren. Eine
abschlieBende Bewertung in Relation zu anderen Priflingen befindet sich im néchsten
Kapitel.

21

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

41 WADL

4.1.1 Beschreibung

WADL [12] (Web Application Description Language) wird auf Wikipedia'® als
“machine-readable XML description of HTTP-based web applications (typically REST
web services)” bezeichnet. ES ist also eine auf XML basierende Beschreibungssprache fur
HTTP-Schnittstellen. Laut dieser Quelle ist WADL das ,,REST equivalent of SOAP's [...]
WSDL®, bietet aber die entscheidende Erweiterung, dass Ressourcen eine direkte
Reprasentation im XML Schema haben, an. Auflerdem kdnnen diesen Ressourcen
zugeordnete Methoden modelliert werden, die genau auf die HTTP Methoden abgebildet
werden.

WADL ist eine ,,W3C Member Submission®, und ist unserer Meinung nach (von WSDL
abgesehen) der Ansatz mit der ausfiihrlichsten und exaktesten Spezifikation.

4.1.2 Beispiel

Das nachfolgende Beispiel stammt aus der oben genannten Spezifikation und ist stark
gekdrzt:

<resources base="http://api.search.yahoo.com/NewsSearchService/V1/">
<resource path="newsSearch">
<method name="GET" id="search">
<request>

<param name="appid" type="xsd:string" style="query"
required="true"/>

<param name="query" type="xsd:string" style="query"
required="true"/>

<param name="type" style="query" default="all">

<option value="all"/> <option value="any"/> <option
value="phrase"/>
</param>

<param name="results" style="query" type="xsd:int"

default="10"/> [..]
<response status="200">
</response> </method>
</resource>

</resources>

Listing 3: WADL Beispielcode

19(09.10.2013): http://en.wikipedia.org/wiki/Web_Application_Description_Language

22

http://en.wikipedia.org/wiki/Web_Application_Description_Language

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

413 Bewertung
41.3.1 Syntax

Konnen die Ressourcen der Schnittstelle definiert werden?

2 Punkte: In WADL koénnen flr die Beschreibung von Ressourcen Beschreibungen und
IDs hinterlegt werden. AuBerdem ist es moglich, Ressourcen hierarchisch zu schachteln.
Konnen pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Das WADL Schema definiert das Element , method*, das tiber das Attribut
,hame* einer HTTP Methode zugeordnet wird.

Konnen erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: In WADL kann unter dem ,,method* Element ein ,request”, bzw. ,response*
Element angehdngt werden, fir das wiederum eine Schemadefinition hinterlegt werden
kann, die mdgliche Inputs, bzw. Outputs definiert.

Kodnnen Beziehungen zwischen Ressourcen definiert werden?

1 Punkt: WADL bietet die Mdoglichkeit, Ressourcen zu schachteln, wodurch
hierarchische Beziehungen ausgedriickt werden konnen. Andere Formen von
Beziehungen konnen nicht modelliert werden.

Kann fur Methoden beschrieben werden, welche Statuscodes erzeugt werden
konnen?

3 Punkte: In WADL kann pro ,response*, bzw. ,,request Element eine Liste von HTTP
Statuscodes angegeben werden.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: WADL bietet zwar die Maoglichkeit, eigene Typen fir Ressourcen zu
definieren, allerdings bietet die Sprache keine vordefinierten Typen.

Kodnnen Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-
Ressource definiert werden kénnen?

3 Punkte: Ressourcen kdnnen hierarchisch geschachtelt werden, die URI Definitionen
gelten dann relativ zur Ubergeordneten Ressource.

Konnen in URI-Definitionen Templates verwendet werden?

3 Punkte: WADL erlaubt es, in URI Definitionen Templates in geschweiften Klammern
anzugeben, die in einem angehéngten ,,param® Element definiert werden konnen.

23

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.1.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?
0 Punkte: Mit WADL kann keine Semantik ausgedriickt werden.

Kann die Bedeutung einer Operation definiert werden?
0 Punkte: Mit WADL kann keine Semantik ausgedriickt werden.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?
0 Punkte: Mit WADL kann keine Semantik ausgedriickt werden.

4.1.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

1 Punkt: Durch das Verwenden von XML entsteht relativ viel Overhead, vor allem durch
schlieBende Tags.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

3 Punkte: Die Verwendung von XML ist hilfreich, um hierarchische Beziehungen
darzustellen. Die definierten Schlusselworte sind treffend gewahlt:

<resources base="http://api.search.yahoo.com/NewsSearchService/V1/">
<resource path="newsSearch">
<method name="GET" id="search">
<request>
<param name="appid" type="xsd:string"

Listing 4: Schlisselwdrter in WADL
4.1.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

2 Punkte: Es sind diverse Blogs, Forumsposts, und Diskussionen zu WADL zu finden.
Apache bietet das Framework ,,CXF*, welches WADL unterstitzt'!. AuRerdem bietet
IBM Produkte an'?, die WADL unterstiitzen. Trotzdem ist der Eindruck entstanden, dass
WADL bisher noch nicht in groRem Rahmen unterstutzt wird.

Wie gut ist die Sprache dokumentiert

2 Punkte: Die Spezifikation auf der W3-Website ist ausfihrlich und bietet einige
Beispiele.

11(09.10.2013) http://cxf.apache.org/docs/jaxrs-services-description.html

12(09.10.2013)
http://pic.dhe.ibm.com/infocenter/dmanager/v8rOm2/index.jsp?topic=%2Fcom.ibm.wodm.dserver%2Ftopic
s%2Fwodm_dserver.html

24

http://cxf.apache.org/docs/jaxrs-services-description.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver%2Ftopics%2Fwodm_dserver.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver%2Ftopics%2Fwodm_dserver.html

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Wie gut sind die Tools dokumentiert, die fur diese Sprache angeboten
werden?

3 Punkte: Es gibt ausflhrliche Installationsbeschreibungen und Anleitungen, auch mit
Bildern.

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

2 Punkte: Auf Grund der umfangreichen Spezifikation ist einiger Aufwand erforderlich,
um WADL vollstandig zu erfassen.

Wie gut wird der Entwickler beim Modellieren bestehender Schnittstellen
unterstutzt?

1 Punkt: Es gibt ein freies Browser-Tool ,REST Describe«!®, Uber das
Schnittstellenbeschreibungen interaktiv erstellt werden kénnen.

</method>
o <method name=" sET E"}Q

&) Add Response

= ﬁreq‘uest}g

=m
newParam

EvPE="| ysd-string E " g (manual)
style=| === Prmitive Types: === wShow Details

¥sd-boolean

<param | xsdinteger
------ =="|xsd-float
xsd:dateTime
xsd:time
stvle=|xsd:date « Show Details
xsd:anyURI
>@ === Complex Types: ===
@ AddR language
country
F === Custom Types: ===
Add P
L Define Custom Types...

</request>

mL 4
Iy (manual}

</method>

&) Add Resource
Abbildung 9: REST Describe

Aullerdem erlaubt das ,,CFX‘ Framework von Apache, Java Methoden mit Annotationen
zu versehen:

13 (09.10.2013) http://tomayac.de/rest-describe/latest/RestDescribe.html

25

http://tomayac.de/rest-describe/latest/RestDescribe.html

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

@POST
@Path ("books/{bookid}")
@Descriptions ({

@Description (value = "Adds a new book™", target =
DocTarget .METHOD) ,

@Description(value = "Requested Book", target = DocTarget.RETURN),
@Description(value = "Request", target = DocTarget.REQUEST),
@Description(value = "Response", target = DocTarget.RESPONSE),
@Description(value = "Resource", target = DocTarget.RESOURCE) })

Listing 5: Java Annotationen fir WADL

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

1 Punkt: Das Browser-Tool ,,REST Describe“ (s.0.) kann Schnittstellenbeschreibungen
hierarchisch darstellen.

Unterstitzung fur: Schnittstellen sollen in einem maschinenlesbaren Format
beschrieben werden.

3 Punkte: Die mit dem Browser Tool ,REST Describe“ (s.0.) erstellten
Schnittstellenbeschreibungen koénnen als WADL-Dokument heruntergeladen werden.
Sind Java Annotationen in korrekter Syntax vorhanden, kann das ,,CXF* Framework von
Apache automatisiert Java Klassen erzeugen..

Unterstutzung far: Aus der entworfenen Schnittstelle sollen Code-Stubs
generiert werden kénnen.

3 Punkte: Das Tool ,wadl2Java“** kann clientseitig Codestubs generieren. Es setzt auf
der Jax-RS Api auf, und erzeugt aus WADL Beschreibungen Java-Klassen. Es kann tiber
die Kommandozeile, als Ant-Plugin, oder als Maven Plugin ausgefuhrt werden.

4.1.4 Fazit

WADL wirkt insgesamt ,,erwachsen. Es bietet (bis auf WSDL) die ausfiihrlichste und
genaueste Spezifikation und setzt mit XML auf ein erfolgreiches und weit verbreitetes
Format. Uns gefallen die Mdglichkeiten, Ressourcen in Hierarchien zu modellieren, und
Ressourcentypen definieren zu kénnen.

Uber WADL ist mehr Information, Dokumentation, und Diskussion zu finden, als zu
jeder anderen Beschreibungssprache. Sprechend ist auch, dass sich IBM und Apache
bereits damit befasst haben.

14(09.10.2013) https://wadl.java.net/wadl2java.html

26

https://wadl.java.net/wadl2java.html

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.2 WSDL 2.0

4.2.1 Beschreibung

WSDL 2.0 [13] (Web Service Definition Language) ist der Quasi-Nachfolger von WSDL
1.1 (Web Service Description Language) und im Unterschied zu diesem eine
Recommendation des W3C. Neben einigen kosmetischen Anderungen, wie der
Umbenennung von portType in Interface, ist es nun auch mdglich, REST Dienste in
WSDL zu beschreiben. Dies wird dadurch ermdglicht, dass in WSDL 2.0 Bindings zu
allen HTTP Methoden angegeben werden kénnen'®. WSDL 2.0 verfolgt den service- bzw.
operationenorientierten Ansatz.

4.2.2 Beispiel

Nachfolgendes Listing zeigt eine WSDL 2.0 Beispiel-Datei. Fur REST Services sind vor
allem der Interface- und Binding-Tag interessant, weil hier die Funktionen beschrieben
werden, die durchgefiihrt werden kénnen.

<wsdl:description xmlns:wsdl="http://www.w3.0rg/ns/wsdl"

targetNamespace="http://www.bookstore.org/booklist/wsdl"
xmlns:tns="http://www.bookstore.org/booklist/wsdl"
xmlns:whttp="http://www.w3.0rg/ns/wsdl/http"
xmlns:wsdlx="http://www.w3.0org/ns/wsdl-extensions"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:msg="http://www.bookstore.org/booklist/xsd">
<wsdl:documentation>

This is a WSDL 2.0 description of a sample bookstore service

listing for obtaining book information.

</wsdl:documentation>

<wsdl:types>
<xs:import namespace="http://www.bookstore.org/booklist/xsd"
schemalocation="booklist.xsd"/>

</wsdl:types>

15(09.10.2013): http://www.w3.0rg/TR/wsdI20-primer/#basics-interface

27

http://www.w3.org/TR/wsdl20-primer/#basics-interface

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

<wsdl:interface name="BookListInterface">
<wsdl:operation name="getBookList"
pattern="http://www.w3.0rg/ns/wsdl/in-out"
style="http://www.w3.0rg/ns/wsdl/style/iri"
wsdlx:safe="true">
<wsdl:documentation>
This operation returns a list of books.
</wsdl:documentation>
<wsdl:input element="msg:getBookList"/>
<wsdl:output element="msg:bookList"/>
</wsdl:operation>

</wsdl:interface>

<wsdl:binding name="BookListHTTPBinding"
type="http://www.w3.0org/ns/wsdl/http"
interface="tns:BookListInterface">
<wsdl:documentation>
The RESTful HTTP binding for the book list service.
</wsdl:documentation>
<wsdl:operation ref="tns:getBookList" whttp:method="GET"/>
</wsdl:binding>

<wsdl:service name="BookList" interface="tns:BookListInterface">
<wsdl:documentation>
The bookstore's book list service.
</wsdl:documentation>
<wsdl:endpoint name="BookListHTTPEndpoint"
binding="tns:BookListHTTPBinding"
address="http://www.bookstore.com/books/">
</wsdl:endpoint>
</wsdl:service>

</wsdl:description>

Listing 6: Beschreibung einer Schnittstelle mit WSDL*®

16(09.10.2013): http://www.ibm.com/developerworks/webservices/library/ws-restwsdl/

28

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

423 Bewertung
4231 Syntax

Konnen die Ressourcen der Schnittstelle definiert werden?

2 Punkte: Ressourcen konnen nicht direkt modelliert werden, sondern lediglich
Endpoints von Services mit bestimmten Interfaces, die Operationen zur Verfugung
stellen. Somit mussen Ressourcen in WSDL 2.0 als Interfaces beschrieben werden.
Konnen pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Ja, alle Operationen kénnen beschrieben werden, sowie der Inhalt der zu
erwartenden Input- bzw. Outputmessage.

Konnen erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: Ja, mit Hilfe von XML Schemata kénnen diese definiert werden.

Kodnnen Beziehungen zwischen Ressourcen definiert werden?

2 Punkte: WSDL 2.0 ermoglicht es, Interfaces zu vererben. Eine konkrete Mdglichkeit
die Beziehungen zwischen Ressourcen zu modellieren existiert nur, wenn man das in
WSDL 2.0 spezifizierte Mapping zu RDF/OWL nutzt, um seine WSDL-File in RDF zu
Ubersetzen und diese anschlieBend mit anderen semantischen Informationen
zusammenfiihrt."’

Kann fur Methoden beschrieben werden, welche Statuscodes erzeugt werden
konnen?

1 Punkt: Es ist nur fir Fehlernachrichten (Faults) mdglich, einen HTTP-Statuscode
anzugeben.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: Nein, dies ist in WSDL 2.0 nicht méglich.

Kodnnen Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-
Ressource definiert werden kénnen?

0 Punkte: Nein, dies ist in WSDL 2.0 nicht méglich.

Konnen in URI-Definitionen Templates verwendet werden?
3 Punkte: Ja, mit Hilfe von Tokens. [14]

17 (09.10.2013): http://www.w3.0rg/ TR/2007/NOTE-wsdI20-rdf-20070626/

29

http://www.w3.org/TR/2007/NOTE-wsdl20-rdf-20070626/

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.2.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

1 Punkt: Nur moglich unter Zuhilfenahme des RDF-Mappings und der Definition und
Nutzung weiterer RDF-Dokumente.

Kann die Bedeutung einer Operation definiert werden?

1 Punkt: Nur moglich unter Zuhilfenahme des RDF-Mappings und der Definition und
Nutzung weiterer RDF-Dokumente.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?
1 Punkt: Nur mdglich unter Zuhilfenahme des RDF-Mappings und der Definition und
Nutzung weiterer RDF-Dokumente.

4.2.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

1 Punkt: Sehr groRer Overhead. WSDL 2.0 nutzt XML und hat daher ein sehr verboses
Erscheinungsbild. Hinzu kommt der groRe spezifizierte Umfang von WSDL 2.0, sodass
zum Teil umsténdliche Konstrukte nétig sind, um vergleichsweise einfache Dinge zu
modellieren.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

2 Punkte: Auch fir Menschen die sich bereits mit WSDL 1.1 auskennen, ist WSDL 2.0
nicht sofort zu durchschauen, weil zum Beispiel einige Namensanderungen an Tags
durchgefuhrt wurden. Hinzu kommt, dass WSDL 2.0 nicht speziell fir REST entwickelt
wurde.

4.2.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

1 Punkt: WSDL 2.0 ist seit 2007 eine W3C Recommendation, allerdings ist WSDL 2.0
bei weitem nicht so verbreitet wie sein Vorganger WSDL 1.1.

Wie gut ist die Sprache dokumentiert?

2 Punkte: Die Sprache ist ausfiihrlich dokumentiert, jedoch ohne Beispiele.®

Wie gut sind die Tools dokumentiert, die flr diese Sprache angeboten
werden?

1 Punkt: Zum Zeitpunkt der Erstellung dieser Arbeit waren nur wenige Tools im Internet
vorhanden und deren Entwicklungsstatus zum Teil unbekannt (siehe Apache Woden®®).

18 (09.10.2013): http://www.w3.0rg/TR/2007/REC-wsdI20-20070626/

30

http://www.w3.org/TR/2007/REC-wsdl20-20070626/

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?
1 Punkt: Aufgrund der sehr komplexen Spezifikation besteht ein relativ hoher Aufwand.

Wird der Entwickler beim Modellieren unterstitzt?

1 Punkt: Aufgrund mangelnden Toolsupports, vor allem fir REST/ROA, kann nur auf
andere XML-Werkzeuge zuruickgegriffen werden.

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

0 Punkte: Nein, uns ist kein Tool bekannt.

UnterstUtzung fur: Schnittstellen sollen in einem maschinenlesbaren Format
beschrieben werden.

3 Punkte: Ja, weil sémtliche Dateien mit Hilfe von XML/XSD beschrieben werden.

Unterstutzung fur: Aus der entworfenen Schnittstelle sollen Code-Stubs
generiert werden kdnnen.

1 Punkt: Dies ist prinzipiell moéglich, aber bislang fehlen die nétigen Tools. Vor allem
fur das Erstellen von REST Services.

4.2.4 Fazit

Man merkt WSDL 2.0 seine SOA-Herkunft an. Im Gegensatz zu WSDL 1.1 ist es mit
WSDL 2.0 inzwischen zwar moglich REST Services zu beschreiben, jedoch wirkt sich
die fehlende Ressourcenorientierung und mangelnde Toolunterstitzung negativ aus. Zum
jetzigen Zeitpunkt lasst sich auch der Erfolg von WSDL 2.0 noch nicht absehen. Es ist
fraglich ob es die sehr weite Verbreitung von WSDL 1.1 jemals erreichen wird.

191(09.10.2013): http://ws.apache.org/woden/

31

http://ws.apache.org/woden/

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.3 hRESTS

4.3.1 Beschreibung

LhRESTS* [15] ist ein auf , Notation 3“?° basierendes Mikroformat, in welchem RESTful
Webservices beschrieben werden konnen. Das bedeutet, es ist dafur entworfen,
vollstandig in HTML-, oder XHTML Code eingebettet zu werden. Diese Form wird
dadurch begriindet, dass der groRte Teil der vorhandenen Dokumentation von RESTful
Webservices in Textform und fur Maschinen nicht verwertbar in HTML Format vorliegt.
Die Idee ist also, diese schon verfligbare Dokumentation mit maschinenverwertbaren
Informationen iiber den Service zu erweitern. ,hRESTS* betont dabei die Einfachheit,
das Modell beschrankt sich auf einige wenige Klassen.

4.3.2 Beispiel

Im Beispiel ist eine textuelle Beschreibung eines Webservice um Maschinenlesbare
~hRESTS®“ Beschreibungen (hervorgehoben) erweitert worden. Es kann formal
ausgedriickt werden, was Beschreibung des Input, und was Beschreibung des Output ist,
diese werden der HTTP Get-Methode zugeordnet.

<div class="service” id="svc”>

<p>Description of the ACME Hotels
service:</p>

<div class="operation” id="opl”><p>

The operation <code class="label”>getHotelDetails</code> is

invoked using the method GET

at <code class="address”>http://example.com/h/{id}</code>,

with the ID of the particular hotel replacing
the parameter <code>id</code>.

It returns the hotel details in an
<code>ex:hotelInformation</code> document.

</p></div></div>

Listing 7: hRESTS Beispielcode
43.3 Bewertung
43.3.1 Syntax

Kodnnen die Ressourcen der Schnittstelle definiert werden?

0 Punkte: ,,hRESTS* ist nicht ressourcenorientiert, sondern betrachtet Services und
Operationen. Es gibt im Modell von hRESTS keine direkte Darstellung flr Ressourcen.

20(09.10.2013): http://en.wikipedia.org/wiki/Notation3

32

http://en.wikipedia.org/wiki/Notation3

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Kodnnen pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Es konnen erlaubte Operationen einem Service zugeordnet aufgelistet und auf
HTTP-Methoden abgebildet werden.

Konnen erwarteter Input bzw. Output des Servers definiert werden?

1 Punkt: ,hRESTS“ bietet keine Moglichkeit, Schemadefinitionen fur erlaubte
Ressourcentypen zu definieren. Es kann nur definiert werden, dass eine Methode einen
Input, bzw. einen Output hat.

Konnen Beziehungen zwischen Ressourcen definiert werden?

0 Punkte: ,,hRESTS* bietet keine Darstellung fiir Ressourcen, und damit auch keine
Beziehungen zwischen Ressourcen.

Kann fur Methoden beschrieben werden, welche Statuscodes erzeugt werden
kénnen?

0 Punkte: Es gibt keine Moglichkeit, mogliche Statuscodes aufzulisten.

Bietet die Sprache vordefinierte Ressourcentypen an?
0 Punkte: ,,hRESTS* definiert keine Ressourcentypen.

Kodnnen Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-
Ressource definiert werden konnen?

0 Punkte: ,,hRESTS* bietet keine Darstellung fiir Ressourcen.

Konnen in URI-Definitionen Templates verwendet werden?

3 Punkte: In URI Definitionen kénnen Platzhalter der Form ,,{id}* verwendet werden.
4.3.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?
0 Punkte: ,,hRESTS* bietet keine Moglichkeit, Semantik auszudriicken.

Kann die Bedeutung einer Operation definiert werden?
0 Punkte: ,,hRESTS* bietet keine Moglichkeit, Semantik auszudriicken.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?
0 Punkte: ,,hRESTS* bietet keine Moglichkeit, Semantik auszudricken.

33

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.3.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: Ausgehend von bestehendem HTML-Code sind die zusatzlichen Annotationen
sehr knapp, der Overhead ist minimal. (siehe Beispiel oben)

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

1 Punkt: Die Einbettung in HTML Code bringt es mit sich, dass die ,,hRESTS*
Beschreibungen zwischen HTML Tags stehen, und dadurch schwer lesbar sind, weil die
Anreicherungen zwischen HTML-Konstrukten gesucht werden muss.

4.3.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?
0 Punkte: Uns ist kein Einsatz von ,,hRESTS* bekannt.

Wie gut ist die Sprache dokumentiert

2 Punkte: ,hRESTS* wird in der Arbeit [16] vorgestellt, auBerdem gibt es einen
Webauftritt!, der im Wesentlichen den Inhalt des Papers enthalt, um einige Beispiele
erweitert.

Wie gut sind die Tools dokumentiert, die fiir diese Sprache angeboten
werden?

0 Punkte: Es gibt ein XSLT Style-Sheet®® ohne nennenswerte Dokumentation, welches
hREST Beschreibungen aus XHTML Code extrahieren kann. Ansonsten gibt es flr
L, ARESTS* keine Tools.

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

3 Punkte: Die Sprache bietet eine sehr tberschaubare Anzahl an Mdglichkeiten an und
ist deshalb leicht zu erlernen.

Wie gut wird der Entwickler beim modellieren bestehender Schnittstellen
unterstutzt?

0 Punkte: Es gibt keine Tools, die den Entwickler beim Erstellen der ,,hRESTS*
Beschreibungen unterstiitzen.

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

0 Punkte: Es gibt keine grahische Darstellung fiir ,,hRESTS* Beschreibungen.

21 (09.10.2013): http://knoesis.org/research/srl/projects/hRESTs
%2 (09.10.2013): http://members.sti2.at/~jacekk/hrests/hrests.xslt

34

http://knoesis.org/research/srl/projects/hRESTs
http://members.sti2.at/~jacekk/hrests/hrests.xslt

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Unterstitzung fur: Schnittstellen sollen in einem maschinenlesbaren Format
beschrieben werden.

1 Punkt: Fir XHTML Code, der mit hREST angereichert ist, kann uber ein XSLT
Stylesheet automatisch RDF generiert werden.

UnterstUtzung far: Aus der entworfenen Schnittstelle sollen Code-Stubs
generiert werden kdnnen.

0 Punkte: Es gibt keine Tools, die aus ,,hRESTS* Beschreibungen Codestubs generieren
konnen.

434 Fazit

LNRESTS* bringt als Mikroformat den Vorteil, in bestehenden XHTML Code integriert
werden zu kénnen und ist durch sein schlankes Modell schnell zu erfassen. Allerdings
konnen einige elementaren Begriffe zum Prinzip REST nicht beschrieben werden, allen
voran der Begriff ,,Ressource®.

35

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.4 MicroWSMO

44.1 Beschreibung

Mit WSMO-Lite [17] ist eine Menge von Begriffen angeboten, die tber SAWSDL
(SemanticAnnotationsforWSDLandXMLSchema) Annotationen [18] verwendet werden
kénnen, um semantische Zusammenhange im Bereich Webservices auszudriicken. Diese
Ontologie wurde fiir die Verwendung in WSDL Beschreibungen entwickelt und eignet
sich ohne Modifikation nicht flr die Beschreibung von RESTful Services.

In der Ausarbeitung zu MicroWSMO [19] erarbeiten die Autoren verschiedene
Servicemodelle als RDF Schemadefinitionen, die auf das WSMO-Lite Servicemodell
aufbauend zusammen mit einer Erweiterung des ,hRESTS“ [16] Servicemodell
verwendet werden kdnnen, um RESTful Webservices zu beschreiben. Dafir wird ein
,Resource oriented service model“ (ROSM) eingeflihrt, welches RDF-Klassen wie
»dervicedResource, ,,Address®, ,,Operation”, und ,Parameter einfiithrt. Fiir die
Beschreibung von semantischen Zusammenhéngen greifen die Autoren auf SAWSDL
Annotationen zurick, fir die sie die WSMO-Lite Ontologie verwenden.

442 Beispiel

Im Beispiel ist die Beschreibung eines Webservice in HTML um MicroWSMO
Beschreibungen erweitert (hervorgehoben). [15]

<div class="service” id="svc”>
<hl>ACME Hotels service API</hl>
<p>This service is a

<a rel="model”
href="http://example.com/ecommerce/hotelReservation”>

hotel reservation service. </p>
<div class="operation” id="opl”>
<h2>Operation <code class="label”>getHotelDetails</code></h2>
<p> Invoked using the GET
at <code class="address”>http://example.com/h/{id}</code>

Parameters:

Listing 8: MicroWSMO Beispielcode

Hier sind vor allem die semantischen Modellreferenzen zu den Klassen
,;hotelReservation® und ,,hotel” zu bemerken.

36

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

443 Bewertung
4.43.1 Syntax

Konnen die Ressourcen der Schnittstelle definiert werden?

2 Punkte: MicroWSMO definiert die RDF Klasse ,,ServicedResource® mit Zuordnung zu
einem Service, mit der Ressourcen dargestellt werden kénnen.

Konnen pro Ressource erlaubte Operationen definiert werden?

3 Punkte: MicroWSMO bietet als RDF Property ,,supportsOperation” eine Zuordnung
von ,,Operation* Klassen zu Ressourcen. Die Methoden kénnen wiederum auf die HTTP-
Methoden aus dem HTTP Namespace abgebildet werden.?

Konnen erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: An dieser Stelle sehen die Autoren vor, den SAWSDL Namespace?* zu
verwenden, damit kann als ,,modelReference” eine URI zu einer Schemadefinition
verlinkt werden.

Kodnnen Beziehungen zwischen Ressourcen definiert werden?

1 Punkt: Es konnen ,,ResourceCollections® definiert werden, und Ressourcen dieser
Collection zugeordnet werden, allerdings ist die Sprache auf solche hierarchischen
Beziehungen beschréankt, es konnen keine beliebigen Referenzen definiert werden.

Kann fur Methoden beschrieben werden, welche Statuscodes erzeugt werden
konnen?

3 Punkte: Ja, MicroWSMO verwendet daflr die ,,ResponseCode* Klasse aus dem HTTP
Namespace.

Bietet die Sprache vordefinierte Ressourcentypen an?

1 Punkt: MicroWSMO bietet die RDF Klasse ,,ServicedResourceCollection®, die

wiederum mehrere ,,ServicedResource* Instanzen enthalten kann.

Kodnnen Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-
Ressource definiert werden kénnen?

0 Punkte: MicroWSMO erlaubt es zwar, Ressourcen hierarchisch anzuordnen, URIs
mussen aber immer absolut angegeben werden.
Konnen in URI-Definitionen Templates verwendet werden?

3 Punkte: MicroWSMO erlaubt es, Teile der URI als Templates in der Form “{id}”
anzugeben.

%% 09.10.2013): http://www.w3.0rg/2006/http#
2%(09.10.2013): http://www.w3.org/ns/sawsdI#

37

http://www.w3.org/2006/http
http://www.w3.org/ns/sawsdl

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.4.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

0 Punkte: Es konnen zwar flr Inputs und Outputs von Methoden (ber eine
,modelReference” semantische Klassen angegeben werden, nicht aber direkt fir
Ressourcen.

Kann die Bedeutung einer Operation definiert werden?

2 Punkte: Ja, hierfir soll der SAWSDL Namespace verwendet werden, damit kdnnen
iber die RDF Properties ,modelReference®, liftingSchemaMapping®“, und
,loweringSchemaMapping* fiir Methoden und deren Inputs und Outputs semantische
Modellklassen angegeben werden.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?
0 Punkte: Es ist in MicroWSMO nicht mdglich, Beziehungen zwischen Ressourcen
semantisch zu beschreiben.

4.4.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: Ausgehend von bestehendem HTML-Code sind die zusatzlichen Annotationen
sehr knapp, der Overhead ist minimal.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

1 Punkt: Wie bei ,,hRESTS* finden wir die zwischen HTML Code eingebetteten
Beschreibungen schwer lesbar (siehe Beispiel oben).

4.4.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

0 Punkte: Die Sprache wird bisher nicht eingesetzt.

Wie gut ist die Sprache dokumentiert?

1 Punkt: MicroWSMO wird bisher nur in wissenschaftlichen Arbeiten beschrieben. Wir
finden, dass das Verstandnis hier durch die Vielzahl an verwendeten Sprachen,
Ontologien, und Notationen erschwert wird.

Wie gut sind die Tools dokumentiert, die flr diese Sprache angeboten
werden?

0 Punkte: Die Arbeit verweist auf ein XSLT Style-Sheet, welches aus hREST
Beschreibungen in XHTML RDF erzeugen kann. Das Sheet ist laut Paper
»selbsterkldarend®, es gibt also keinerlei Dokumentation.

38

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

1 Punkt: Die Verwendung von Ontologien und verschiedenen Service-Modellen steht
dem raschen Erlenen deutlich im Weg. AuRerdem setzt die Verwendung anderer
Sprachen wie hREST oder SAWSDL Kenntnis uber diese voraus oder erfordert
zusatzliche Einarbeitung.

Wie gut wird der Entwickler beim modellieren unterstiitzt?

0 Punkte: Es gibt keine Tools, die den Entwickler beim Erstellen von MicroWSMO
Beschreibungen unterstitzen.

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

0 Punkte: Es gibt keine Mdglichkeiten, MicroWSMO Beschreibungen graphisch
darzustellen.

Unterstitzung far: Schnittstellen sollen in einem maschinenlesbaren Format
beschrieben werden.

3 Punkte: Uber eine XSL Transformation kénnen MicroWSMO Beschreibungen aus
HTML nach RDF konvertiert werden.

Unterstutzung fir: Aus der entworfenen Schnittstelle sollen Code-Stubs
generiert werden kdnnen.

0 Punkte: Es gibt bisher keine Tools, die aus MicroWSMO Beschreibungen Code-Stubs
generieren kdnnen.

4.4.4 Fazit

Durch die Erweiterung des Servicemodells von ,,hRESTS* gewinnt MicroWSMO stark
an Bedeutung flr das Beschreiben von Schnittstellen von RESTful Webservices. Es ist
nun moglich, die wichtigsten Elemente einer Schnittstelle zu beschreiben, nédmlich
Ressourcen, Operationen, Inputs, und Outputs. Auch geht MicroWSMO mit der
Maoglichkeit, Modellreferenzen zu definieren, in die richtige Richtung fiir ,,service
discovery*.

Die Einbettung in HTML Code finden wir etwas unglucklich, weil sie die MicroWSMO
Beschreibungen sehr schwer lesbar macht.

39

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

45 SEREDAS]j

45.1 Beschreibung

SEREDAS;] [3] ist eine semantische Beschreibungssprache fir RESTful Services. Die
Abkirzung selbst steht fir SEmantic REstful DAta Services, wobei das angehéangte ,,j
die Verwendung von JSON verdeutlichen soll. Bei der Entwicklung wurde insbesondere
darauf geachtet, SEREDAS;j als Beschreibungssprache so einfach wie mdglich zu halten.

Eine SEREDASj-Beschreibung besteht aus Metadaten und einer Beschreibung der
Struktur der definierten Représentation. Diese Unterteilung ist im Codebeispiel gut zu
erkennen.

Im Gegensatz zu anderen Ansétzen werden hier die architektonischen Eigenschaften von
REST bericksichtigt. Es werden also anstatt Operationen oder In- bzw. Output die
eigentlichen Reprasentationen der Ressourcen definiert, um RESTful Services
angemessen beschreiben zu kénnen.

Neben der Dokumentation des Services bzw. der verwendeten Datenformate kénnen
Elemente einer JSON-Représentation durch semantische Annotationen beispielsweise so
beschrieben werden, dass einem Client klar ist, welches Element eine URI darstellt und
daruber hinaus, was dessen Bedeutung ist.

Die automatische Erstellung einer Dokumentation aus einer SEREDASj-Beschreibung ist
prinzipiell moglich.
45.2 Beispiel

Nachfolgend werden eine JSON Représentation und die zugehorige SEREDAS]-
Beschreibung aufgefiihrt. Alle Codebeispiele sind der Ausarbeitung [3] entnommen.

"id": 556410,

"first name": "Markus",

"last name": "Lanthaler",

"gender": "male",

"knows": [
{ "id": 586807, "name": "Christian Gitl" },
{ "id": 790980, "name": "John Doe" }]

Listing 9: SEREDAS;j: JSON Représentation

Das Beispiel setzt ein fiktives soziales Netzwerk voraus und stellt die Repréasentation
einer Person und ihrer Freunde dar.

40

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Das folgende Codebeispiel zeigt die beiden wesentlichen Teile einer SEREDAS]-
Beschreibung. Die erforderlichen Metadaten bilden dabei den ersten Block. Hier werden
externe Quellen angegeben und Links sowie deren Bedeutung definiert. Es wird deutlich,
dass ein Client erkennen kann, dass es sich bei einer ID um einen Link zu einer anderen
Person handelt.

"meta": {
"prefixes": {
"foaf": "http://xmlns.com/foaf/0.1/",
"ex": " http://example.com/onto#",
"owl": "http://www.w3.0rg/2002/07/owl#",
"iana": "http://www.iana.org/link-relations/"},
"links": {

"/user/{id}": {

"mediaType": "application/json",
"seredasjDescription": "#",
"semantics": {
"owl:sameAs": "<#properties/knows>"},
"variables": {
"id": |
"binding": "#properties/knows/id",
"model": "[ex:id]"}},
"requestDescription": "#"

bodts L]
Listing 10: Metadaten einer SEREDAS]j-Beschreibung

Der zweite Teil definiert die Struktur obiger JSON-Représentation und gibt auch hier die
Bedeutung der einzelnen Elemente an.

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

"type": "object",
"model": " [foaf:Person]",
"properties": {
"id": |
"type": "number", "model": "[ex:id]" },
"first name": {
"type": "string", "model": "[foaf:firstName]" },
"last name": {
"type": "string", "model": "[foaf:surname]" },
"gender": {
"type": "string", "model": "[foaf:gender]" 1},
"knows": {
"type": "array",
"model": "[foaf:knows]",
"items": {
"type": "object", "model": "[foaf:Person]",
"properties": {
"id": |
"type": "number", "model": "[ex:id]" },
"name": {
"type": "string", "model": "[foaf:name]"

PRty
Listing 11: Elementdefinition einer SEREDASj-Beschreibung

453 Bewertung

453.1 Syntax

Konnen die Ressourcen der Schnittstelle definiert werden?

3 Punkte: Ja, es kann ein JSON Schema angegeben werden.

Kodnnen pro Ressource erlaubte Operationen definiert werden?

2 Punkte: SEREDASj verwendet ganz bewusst eine Sichtweise auf Reprasentationen,
nicht auf angebotene Operationen. Erlaubte Operationen missen durch eigene
SEREDASj-Beschreibungen definiert und eingebunden werden (z.B. um Request Bodies
zu beschreiben) und kénnen nicht direkt inline beschrieben werden.

Koénnen erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: Ja, fur die Beschreibung von Inputs und Outputs kann eine SEREDAS]j
Beschreibung hinterlegt werden. Das Modell sieht vor, zu einem Link wiederum eine
SEREDASj Beschreibung anzugeben, die Request-Bodies beschreibt. Als einzige Quelle

42

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

ist das Paper selbst zu finden, in welchem hierflir allerdings kein Beispiel angegeben
wird.

Kodnnen Beziehungen zwischen Ressourcen definiert werden?

3 Punkte: Das ist eine der Starken von SEREDAS;). Beziehungen zwischen Ressourcen
werden tber Links in der SEREDAS] Beschreibung einer Représentation definiert.

Kann fir Methoden beschrieben werden, welche Statuscodes erzeugt werden
kdnnen?

0 Punkte: SEREDASj ist zur Beschreibung der Reprédsentationen von Ressourcen
konzipiert, nicht fir die zugehdriger Methoden.
Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: Es sind keine Ressourcentypen in SEREDAS] definiert.

Kodnnen Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-
Ressource definiert werden kénnen?

0 Punkte: Die Schachtelung von Ressourcen ist in SEREDASj so nicht mdglich.
Beziehungen zwischen Ressourcen werden uber Links ausgedriickt. Die URIs bleiben
davon sinnvoller Weise unberthrt.

Konnen in URI-Definitionen Templates verwendet werden?

3 Punkte: URI Angaben kdnnen Platzhalter enthalten, die einem Feld in der Definition
der Ressourcenreprésentation zugeordnet sind.

45.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

3 Punkte: Die Bedeutung einer Ressource ist Teil der SEREDASj-Beschreibung und
kann als VVerweis auf eine Ontologie angegeben werden.

Kann die Bedeutung einer Operation definiert werden?

0 Punkte: Mit SEREDASj werden vor allem Ressourcen bzw. deren Reprasentationen
beschrieben. Eine direkte Beschreibung einer Operation und deren Bedeutung ist somit
nicht vorgesehen.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

3 Punkte: Gerade hierauf wurde Wert gelegt. Die Beschreibung der Beziehung zu
anderen Ressourcen gestaltet sich genauso einfach wie die semantische Annotation
dieser.

43

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

45.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: Bedingt durch die Darstellung in JSON und die Wahl von kurzen, préagnanten
Schlisselwortern ist der Overhead minimal.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

3 Punkte: Bedingt durch JSON ist die Darstellung tbersichtlich und klar strukturiert.
Auferdem lasst sich die Struktur einer SEREDASj-Beschreibung durch das definierte
Modell sehr gut erfassen.

4534 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

0 Punkte: SEREDAS]j wird bisher nicht eingesetzt und existiert nur auf theoretischer
Basis.

Wie gut ist die Sprache dokumentiert?

1 Punkt: An Dokumentation ist auRer dem Paper selbst nur eine Prasentation®® des
Autors zu finden, die im Wesentlichen den gleichen Inhalt enthélt. Die Spezifikation im
Paper macht einen vollstandigen Eindruck, ist dabei allerdings sehr kompakt und enthélt
nur wenig Beispielmaterial.

Wie gut sind die Tools dokumentiert, die fiir diese Sprache angeboten
werden?

0 Punkte: Auf Grund der fehlenden Verbreitung gibt es fir SEREDASj noch keine
Tools.

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

3 Punkte: Eine Anforderung bei der Konzeption von SEREDASj war, dass die
Einarbeitungszeit auf ein Minimum reduziert wird, damit die Verwendung nicht auf
Grund dieser Barriere ausgeschlossen wird. Das wird unter anderem durch die
Verwendung von JSON konsequent verfolgt und ist unserer Meinung nach gelungen.

Wie gut wird der Entwickler beim Modellieren bestehender Schnittstellen
unterstutzt?

0 Punkte: Es gibt weder Modelle noch eine Unterstltzung fiir deren Erstellung. Die
Beschreibung der Ressourcen erfolgt manuell.

%% (09.10.2013): http://de.slideshare.net/lanthaler/a-semantic-description-language-for-restfful-data-
services-to-combat-semaphobia-8064613

44

http://de.slideshare.net/lanthaler/a-semantic-description-language-for-restfful-data-services-to-combat-semaphobia-8064613
http://de.slideshare.net/lanthaler/a-semantic-description-language-for-restfful-data-services-to-combat-semaphobia-8064613

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Gibt es eine hilfreiche, graphische Darstellung der Modelle?
0 Punkte: Es gibt keine graphische Darstellung fliir SEREDAS,;.

Unterstitzung fur: Schnittstellen sollen in einem maschinenlesbaren Format
beschrieben werden.

1 Punkt: Im Paper beschreibt der Autor, wie SEREDASj-Beschreibungen in RDF
konvertiert werden konnen. Die Konvertierung ist simpel und wenig fehleranféllig.
Allerdings ist dieses Vorgehen bisher nicht umgesetzt bzw. die Umsetzung nicht frei
zugénglich.

Unterstutzung fir: Aus der entworfenen Schnittstelle sollen Code-Stubs
generiert werden kdnnen.

0 Punkte: Das Erstellen von Code-Stubs ist nicht Teil von SEREDAS;.

454 Fazit

SEREDAS; begriindet eine spezielle, ressourcenorientierte Sichtweise und halt diese
konsequent ein. Dabei wurde viel Wert auf Einfachheit und Verstandlichkeit gelegt.
Représentationen von Ressourcen kdnnen umfassend beschrieben und deren Bedeutung
angegeben werden. Einzig der mangeinde Erfolg in Bezug auf die Verwendung triben
den sehr positiven Gesamteindruck.

45

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.6 Swagger

4.6.1 Beschreibung

Swagger [20] ist Spezifikation und Framework zugleich und wurde fur die
Dokumentation von APIs entwickelt. Der grundlegende Gedanke ist dabei, dass die
Dokumentation an die API eines RESTful Service gebunden und dadurch stets aktuell ist.
Im Vordergrund steht aul’erdem die Interaktion mit der APl durch eine die Schnittstelle
veranschaulichende Benutzeroberflache.

wordList Show/Hide List Operations = Expand Operations = Raw

/wordList.json/{permalink}

JwordList.json/{permalink} Deletes an existing WordList
/wordList.json/{permalink} Fetches a WordlList by 1D
m /wordList.json/{permalink}/words Adds words to a WordList
/wordList.json/{permalink}/words Fetches words in a WordList
m /wordlList.json/{permalink}/deleteWords Removes words from a WordList
m /wordLists.json Creates a WordList.

Abbildung 10: Ubersicht einer APl mit Swagger [21]

Obiges Beispiel ist auf http://petstore.swagger.wordnik.com/ zu finden. Die zur
Verfligung stehenden HTTP-Operationen kénnen hier durch die farbliche Hervorhebung
in der Benutzeroberflaiche gut unterschieden werden, bieten eine ausreichende
Kurzbeschreibung und kénnen ,ausgeklappt werden, um Details anzuzeigen. Auch die
Ressourcen lassen sich dieser Auflistung entnehmen. Die dokumentierte API lasst sich
damit insgesamt sehr gut erfassen.

Auffallend ist, dass mit dem Ansatz von Swagger eigentlich Operationen beschrieben
werden, anstatt Reprasentationen von Ressourcen, welche wesentlich fir RESTful
Services sind.

4.6.2 Beispiel

Die Benutzeroberflache erlaubt es dem Anwender, sich die Operationen mit Hilfe von
Interaktion genauer anzuschauen. Dabei sind In- bzw. Output klar zu erkennen und die
Kurzbeschreibung einzelner Parameter zum besseren Verstandnis ebenfalls aufgefiihrt.

46

http://petstore.swagger.wordnik.com/#!/

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Aulerdem lassen sich der Beschreibung mogliche Error Status Codes und deren
Begrundung entnehmen.

pet Show/Hide = List Operations = Expand Operations = Raw
/pet/{petld} Find pet by ID

Implementation Notes
Returns a pet based on ID

Response Class
Madel

Pet{
id (integer): Unique identifier for the Pet,
category (Category, optional). Category the petis in,
name (string): Friendly name of the pet,
photoUrls (array[string], optional: Image URLs,
tags (array[Tagl, optional): Tags assigned to this pet,
status (string, optional) = ['available’ or 'pending’ or 'soldT: pet status in the store

H

Category {
id (integer, optional): Category unigque identifier,
name (string, optional: Name of the category

H

Tag{
id (integer, optional): Unique identifier for the tag,
name (string. optional): Friendly name for the tag

1

Response Content Type | application/json |Z|

Parameters
Parameter Value Description Parameter Type Data Type
petId 1D of pet that needs to be path integer

fetched

Error Status Codes

HTTP Status Code Reason
480 Invalid ID supplied
484 Pet not found

Abbildung 11: Beispiel fir die Darstellung einer HTTP-Methode mit Swagger-Ul [21]

Der fir solche Beschreibungen erforderliche Code ist in JSON gehalten und gestaltet sich
dadurch schlicht und gut lesbar. Eine Beschreibung fiir eine &hnliche Operation wiirde
wie hier abgebildet aussehen.

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

"apis":
1
“path™:"/pet/{petId}”,
"description™:"Operations about pets”,
“operations”:|
1

"method” :"GET",
"
o

"nickname":"getPetById"”,

"type":"Pet",

"parameters":[...]
"summary":"Find pet by its unigque ID",
"notes™: "Only Pets which you have permission to see will be returned”,

o _m,
ESpONSEMEesSages .

Abbildung 12: Beispielcode fir Swagger [20]

Der Output wird dabei durch das Feld ,type* beschrieben, wéahrend ,parameters® den
erforderlichen Input definiert. Die Felder ,nickname®, ,,summary“ und ,,notes* dienen
dabei als Beschreibungen mit unterschiedlichem Umfang.

4.6.3 Bewertung — Swagger

46.3.1 Syntax

Konnen die Ressourcen der Schnittstelle definiert werden?

2 Punkte: Swagger stellt primar angebotene Operationen dar, Ressourcen sind im Code
als ,apis“ aufgefiihrt. Daflr kdnnen Beschreibungen hinterlegt, und Pfade definiert
werden.

Kodnnen pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Die Operationen eines RESTful Service kdnnen vollstandig definiert werden.
Das Feld ,method“ erlaubt dabei die Werte GET, POST, PUT und DELETE,
entsprechend der bendtigten HTTP-Methode. Fir Operationen koénnen aulRerdem
aussagekraftige Bezeichner gewaéhlt und Kurz- sowie ausfuhrliche Beschreibungen
verfasst werden.

Kodnnen erwarteter Input bzw. Output des Servers definiert werden?

2 Punkte: In- bzw. Output einer Operation kdnnen angegeben werden. Wahrend man fir
den Input erforderliche Parameter definiert, wird fur den Output direkt der Datentyp
angegeben. Swagger erlaubt es dafiir, JSON-Schemadefinitionen zentral zu hinterlegen,
die dann im gleichen Swagger-Dokument als In- bzw. Outputs referenziert werden
konnen. Allerdings ist es nicht mdglich, externe Schemadefinitionen ber URLs zu
verlinken.

48

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Konnen Beziehungen zwischen Ressourcen definiert werden?

0 Punkte: Nein, eine solche Mdglichkeit ist nicht vorgesehen.

Kann fur Methoden beschrieben werden, welche Statuscodes erzeugt werden
kénnen?

3 Punkte: Ja, aulerdem kann zu jedem Statuscode eine zusétzliche Beschreibungen und
ggf. ein Modell (z.B. bei ungultigem Eingabeformat) angegeben werden.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: Es werden keine vordefinierten Ressourcentypen angeboten.
Kodnnen Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden konnen?

0 Punkte: Diese Mdglichkeit ist in Swagger nicht enthalten.

Konnen in URI-Definitionen Templates verwendet werden?

3 Punkte: Ja, dafur kdnnen Beschreibungen angegeben werden. Aulerdem koénnen
Datentypen definiert, fur numerische Datentypen Minimum und Maximum angeben, und
uber Enums mogliche Werte definiert werden, fur Post-Methoden kénnen komplexe
Datentypen definiert werden.

4.6.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

0 Punkte: Semantische Annotationen werden von Swagger nicht untersttzt.

Kann die Bedeutung einer Operation definiert werden?

0 Punkte: Semantische Annotationen werden von Swagger nicht unterstitzt.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden

0 Punkte: Semantische Annotationen werden von Swagger nicht unterstitzt.
4.6.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: Weil Swagger JSON verwendet, ist der benotigte Code sehr schlicht. Die
vorgesehenen Elemente sind dabei sinnvoll und stichhaltig benannt.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

3 Punkte: Der Code ist auf Grund der Verwendung von JSON und der kompakten
Konstrukte sehr verstandlich. Die Gliederung dieser ist sinnvoll und kann schnell erfasst
werden.

49

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.6.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

1 Punkt: Swagger taucht immer wieder in Diskussion diverser Foren auf, und wird dabei
uberwiegend sehr positiv bewertet. Es sind allerdings keine Firmen angegeben oder
bekannt, die Swagger einsetzen.

Wie gut ist die Sprache dokumentiert

3 Punkte: Swagger présentiert sich mit einer ubersichtlichen Dokumentation, und
profitiert dabei von zur Verfligung stehenden Live-Demos, fir die sogar die zugrunde
liegenden Swagger-Beschreibungen ausgegeben werden kdnnen.

Wie gut sind die Tools dokumentiert, die fiir diese Sprache angeboten
werden? — 3 Punkte

3 Punkte: Es existieren mehrere Tools, zu denen jeweils ausfuhrliche Anleitungen fur die
Installation und deren Benutzung vorhanden sind.

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

3 Punkte: Die anschaulichen Beispiele von Swagger-Beschreibungen zu verschiedenen
APIs vermitteln durch die interaktive Benutzeroberflache schnell ein gutes Geflhl fur die
Sprache, das zusammen mit der Ubersichtlichen Dokumentation und der Einfachheit der
Sprache sehr gut zum Versténdnis beitréagt.

Wie gut wird der Entwickler beim Modellieren bestehender Schnittstellen
unterstutzt?

1 Punkt: Das Modellieren erfolgt manuell oder, falls vorhanden, durch die automatische
Interpretation der Swagger-Java-Annotationen.

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

2 Punkte: Die interaktive Benutzeroberflache (Swagger-Ul) stellt auf ihre Weise ein
Modell der beschriebenen Schnittstelle dar, die sich als hilfreich erweist und durch ihre
gelungene Gestaltung tberzeugt.

Unterstitzung fur: Schnittstellen sollen in einem maschinenlesbaren Format
beschrieben werden.

3 Punkte: Die Entwickler definieren mit Swagger Core Java-Annotationen und die
erforderliche Logik zum Generieren von Swagger-Beschreibungen an.

50

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

UnterstUtzung far: Aus der entworfenen Schnittstelle sollen Code-Stubs
generiert werden kdnnen.

3 Punkte: Die Entwickler bieten mit Swagger Codegen die Maoglichkeit Code in
verschiedenen Sprachen basierend auf der entworfenen Swagger Resource Declaration zu
generieren.

464 Fazit

Swagger hinterlasst einen durchweg positiven Eindruck und besticht durch die
angebotene Benutzeroberflache. Hierbei sind auch die Beschreibungsmdglichkeiten fir
Schnittstellen sinnvoll und auf die Anwendung in der Praxis ausgerichtet. Die kompakte
Dokumentation ermdglicht in Ergdnzung mit den vorhandenen Beispielen einen raschen
Einstieg, der mit vielseitigen Tools belohnt wird. Wer auf semantische Annotationen
angewiesen ist, sollte sich einer anderen Ldsung bedienen. Auch das Entwerfen von
Schnittstellen wird durch Swagger nur bedingt geférdert.

51

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.7 RestDoc

4.7.1 Beschreibung

RestDoc [22] bezeichnet sich selbst auf der eigenen Homepage als ,,language-agnostic
specification for self-describing REST API's* [23], ist also eine Beschreibungssprache fur
,RESTful“ Schnittstellen. RestDoc basiert auf JSON, die Spezifikation definiert also {iber
ein JSON Schema ein Vokabular, welches sowohl Ressourcen-, als auch
methodenorientiert ist.

Fur den Zugriff auf RestDoc Beschreibungen sieht die Spezifikation vor, dass der Server
fiir den Aufruf der HTTP ,,Options* Methode auf eine URI eine RestDoc Beschreibung
liefert, in der alle Ressourcen unter dieser URI beschrieben sind.

Es existieren Open-Source Tools fir die Erstellung und Verwendung von RestDoc,
sowohl serverseitig als auch clientseitig, die aber bisher eher den Status eines Prototyps
haben.

4.7.2 Beispiel

Im Beispiel aus der RestDoc Spezifikation [22] ist zum einen zu sehen, dass URI
Definitionen Uber Platzhalter angegeben werden kénnen, zum anderen kdnnen reguldre
Ausdriicke angegeben werden, um flir Parameter erlaubte Werte zu definieren.

"resources": [{
"id": "LocalizedMessage",
"description": "A localized message",
"path": "/{locale}/{messageId}{?seasonal}l",
"params": { // URI parameters descriptions
"locale": {
"description”: "A standard locale string, e.g. \"en US.utf-8\"",
"validations": [{ "type": "match", "pattern": "la-z]+(_[A-
Z1+) [.1"}1),
"messageId": {[..]1},
"seasonal": {[..}}

by
"methods": {

“PUT": {
"description": "Update or create a message",
"statusCodes": { "201": "Created" 1},

"accepts": {[..1} } } 1
Listing 12: RestDoc Codebeispiel

52

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4,73 Bewertung
4.7.3.1 Syntax

Konnen die Ressourcen der Schnittstelle definiert werden?

2 Punkte: Restdoc bietet fur die Darstellung von Ressourcen das JSON-Element
,resource, das eine 1D und eine Beschreibung enthalten kann.

Konnen pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Methoden werden in RestDoc tiber das JSON-Element ,,method* représentiert,
das eine Beschreibung enthalten kann.

Konnen erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: Fur Methoden kann tber das Element ,,accepts®, bzw. ,,response® eine Menge
von Schemadefinitionen angegeben werden, die die erlaubten Ressourcenrepréasentationen
definiert.

Kodnnen Beziehungen zwischen Ressourcen definiert werden?

0 Punkte: Es ist in RestDoc nicht moglich, Beziehungen zwischen Ressourcen
auszudriicken.

Kann fur Methoden beschrieben werden, welche Statuscodes erzeugt werden
konnen?

3 Punkte: Uber das Element , statusCodes kann die Menge von mdglichen Statuscodes
definiert werden.
Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: RestDoc bietet darlber hinaus keine vordefinierten Typen.

Kodnnen Ressourcen geschachtelt werden, sodass URISs relativ zur Eltern-
Ressource definiert werden kénnen?

0 Punkte: RestDoc bietet keine Mdglichkeit, Ressourcen hierarchisch in Beziehung zu
setzen.
Konnen in URI-Definitionen Templates verwendet werden?

3 Punkte: Teile von URIs kénnen Uber Platzhalter beschrieben werden, die von RestDoc
als ,,Parameter” bezeichnet werden. Fir Parameter kdnnen Beschreibungen angegeben
werden, und sogar erlaubte Werte Uber einen reguléren Ausdruck definiert werden.

53

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

4.7.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

0 Punkte: Es ist nicht vorgesehen, mit RestDoc Semantik auszudriicken.

Kann die Bedeutung einer Operation definiert werden?

0 Punkte: Es ist nicht vorgesehen, mit RestDoc Semantik auszudrticken.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

0 Punkte: Es ist nicht vorgesehen, mit RestDoc Semantik auszudrticken.

4.7.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: RestDoc Beschreibungen sind in JSON geschrieben. Hier fallt kaum Overhead
an. Die von RestDoc definierten Elemente sind knapp benannt, meistens nur mit einem
Wort (siehe Beispiel oben).

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

3 Punkte: RestDoc verwendet JSON als Darstellung. Als Grundlage gibt es deswegen
nur sehr wenige Konstrukte, die sehr einfach verstandlich sind. Die Schlisselwérter sind
sehr kurz gehalten, aber von der Benennung her sinnvoll und leicht verstandlich.

4.7.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

1 Punkt: Die RestDoc Homepage nennt die ,,Tullius Walden Bank* als einzigen Nutzer
von RestDoc.?

Wie gut ist die Sprache dokumentiert?

2 Punkte: Als Dokumentation ist nur die Spezifikation auf der Homepage zu finden.
Diese ist knapp, aber exakt und vollstdndig - auflerdem mit einem kleinem Beispiel
versehen. Ansonsten ist keine Dokumentation zu finden.

Wie gut sind die Tools dokumentiert, die flr diese Sprache angeboten
werden?

0 Punkte: Das Projekt bietet auf Github?’ eine serverseitige Implementierung, firr die
Dokumentation existiert. Fir deren Benutzung muss der Quellcode manuell kompiliert
werden.

26 (09.10.2013) http://www.restdoc.org/refs.html
27 (09.10.2013) https://github.com/hoegertn/restdoc-java-server

54

http://www.restdoc.org/refs.html
https://github.com/hoegertn/restdoc-java-server

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Fur die clientseitige Implementierung in Python gibt es nur eine kurze
Installationsanleitung, die auf Windows Systemen nicht funktioniert.?

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

2 Punkte: Die sehr kompakte Dokumentation lasst immer wieder Fragen aufkommen,
deren Antwort sich teilweise nur muhsam erarbeiten lasst, auch wenn RestDoc selbst
durch seine Einfachheit punktet.

Wie gut wird der Entwickler beim Modellieren bestehender Schnittstellen
unterstutzt?

1 Punkt: Die serverseitige Implementierung definiert JavaDoc-Annotationen, aus denen
die serverseitige Implementierung JSSON RestDoc Beschreibungen erstellen kann. Fur
diese Annotationen ist keine Dokumentation hinterlegt auBer einem Kkleinen
Beispielprojekt als Teil des Codes. Ansonsten wird keine Unterstiitzung angeboten.

Beispiel fur JavaDoc-Annotationen aus dem Sourcecode der serverseitigen
Implementierung:

@POST
@RestDocIgnore
@RestDocReturnCodes (
{@RestDocReturnCode (code = "200", description = "All went well"),
@RestDocReturnCode (code = "403", description = "Access not
allowed") })

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

1 Punkt: RestDoc definiert, dass die Schnittstellenbeschreibungen beim Options-Aufruf
auf der Ressource zurlickgegeben werden. Die clientseitige Implementierung in Python
kann diese in Textform auf der Konsole ausgeben.

%8 (09.10.2013) https://github.com/RestDoc/restdoc.py

55

https://github.com/RestDoc/restdoc.py

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

(localhost:5e88) reload
(localhost:5@88) resources

+om-m- e Fommmmm e tommmmm e -
| did | path | methods | description |
+o---- R Fommmmmm e e -
| App | f:app | ['POST', 'GET'] | None |
+----- +---- - e e B TR e e +
(localhost:5888) doc App

{'id': "App',

‘methods': {'GET': {'description': 'Gets the app'},
'"POST": {'description': 'Updates the app'}},

‘params': {'app': {'description': 'the app entry id', ‘required': Truel}},

"path': 'J:iapp'}

(localhost:5e88) get App -t app=foobar

288 0K

transfer-encoding: chunked

connection: keep-alive

x-powered-by: Express

Abbildung 13: Konsolenausgabe des RestDoc Python Clients

UnterstUtzung far: Schnittstellen sollen in einem maschinenlesbaren Format
beschrieben werden.
3 Punkte: Sind die Schnittstellen iber JavaDoc-Annotationen beschrieben, kann die

serverseitige Implementierung daraus JSON RestDoc Beschreibungen erstellen.
Allerdings kdnnen diese bisher nur auf der Konsole ausgegeben werden:

[main] INFO org.restdoc.server.impl.RestDocGenerator - Starting generation of RestDoc

[main] INFO org.restdoc.server.impl.RestDocGenerator - Searching for RestDoc API classes

[main] INFO org.restdoc.server.impl.RestDocGenerator - Scanning class: org.restdoc.server.impl.MyRSBean

[main] INFO org.restdoc.server.impl.RestDocGenerator - Class org.restdoc.server.impl.MyCrudBean provides prede
[main] INFO org.restdoc.server.impl.RestDocGenerator - Scanning class: org.restdoc.server.impl.MyResourceBean
[main] INFO org.restdoc.server.impl.RestDocGenerator - Scanning class: org.restdoc.server.impl.MyDeepRes
[main] INFO org.restdoc.server.impl.RestDocGenerator - Ignoring method: public java.lang.5tring org.restdoc.se
{"schemas":{"http://some.json/msg":{"type”:"inline”, "schema™: {"type":"object”, "properties”:{"content”:{"type™:
{"schemas™:{"http://some.json/msg": {"type”:"inline”, "schema™: {"type":"object”, "properties”: {"content”: {"type™:

Abbildung 14: RestDoc in der Konsolenausgabe der serverseitigen Implementierung,
Ausgabe abgeschnitten

Unterstitzung fur: Aus der entworfenen Schnittstelle sollen Code-Stubs
generiert werden kdnnen.

0 Punkte: Die Generierung von Code-Stubs wird nicht angeboten.

4.7.4 Fazit

Die Sprache RestDoc wirkt gut durchdacht und setzt mit JSON auf einen bewdhrten
Standard. Es konnen sowohl Ressourcen als auch Methoden dargestellt werden, was
sowohl eine Ressourcen-, als auch eine methodenorientierte Modellierung erlaubt.
RestDoc bietet einige gute Ideen, wie fur URI-Parameter regulére Ausdriicke, die erlaubte
Werte definieren, angeben zu kdnnen. Was aber die Toolunterstiitzung betrifft, so sind die

56

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

auf der Homepage als ,,server-side implementation®, bzw. ,client-side implementation*
bezeichneten Werkzeuge nicht mehr als Prototypen ohne jede graphische Oberflache.

Die Installation der angebotenen Tools ist aufwéndig und es gibt kaum Anleitungen.
Tatsdachlich muss fir die Verwendung der serverseitigen Implementierung der
Sourcecode heruntergeladen und kompiliert werden.

57

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

5 Ergebnisse

Das nachfolgende Diagramm zeigt den erreichten, prozentualen Gesamtwert jedes
Ansatzes abhangig von der maximal erreichten Punktzahl in der jeweiligen Kategorie.
Die Kategorie ,,Auswertung Gesamt* fasst dabei die Ergebnisse der restlichen Kategorien
zusammen.

Maximal erreichte
Punktzahl

Auswertung Auswertung Auswertung Auswertung Auswertung
Gesamt Ausdruckstarke Ausdruckstarke Lesbarkeit Anwendung der
der Sprache - der Sprache - Sprache
Syntax Semantik

B WADL mWSDL2.0 ®hRESTS ® MicroWSMO B SEREDASj ® Swagger M RestDoc

Abbildung 15: Vergleich der Ergebnisse unserer Auswertungen

Swagger und WADL haben dabei die htchste Gesamtpunktzahl erreicht. Das schlief3t die
anfangs beschriebene Gewichtung der Fragen mit ein. WSDL 2.0, MicroWSMO,
SEREDASj und RestDoc bilden das Mittelfeld: Hier wirde sich eine individuelle
Gewichtung der Fragen am deutlichsten zeigen.

Wir wollen an dieser Stelle auf die Vielzahl an Madglichkeiten hinweisen, die
beschriebenen Modellierungssprachen zu erweitern oder zu kombinieren. Unter
Zuhilfenahme von SAWSDL konnen beispielsweise WSDL Beschreibungen um
semantische Annotationen erweitert werden. Analog gibt es Ansiatze, WADL

58

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Beschreibungen zu erweitern. Zudem ist es denkbar, zusatzlich zu einer rein
syntaktischen Beschreibung eine Sprache zu verwenden, die dafir erstellt wurde,
semantische Zusammenhdange zu formulieren. Wir konnten bei der Bewertung nicht alle
dieser Mdoglichkeiten beriicksichtigen, die Ergebnisse sollten also nach
Anwendungsbereich differenziert betrachtet werden.

Es lasst sich beispielsweise erkennen, dass SEREDASj trotz guter Werte kaum
Bedeutung in der Anwendung hat. Dieses Problem trifft wahrscheinlich viele gute
Ansétze, deren Verwendung entweder durch den Mangel an Popularitdt und damit
verbundenem Mangel an Dokumentation (Forumsdiskussionen usw.) oder an zu hoher
Komplexitat scheitern.

Bei Betrachtung aller Bewertungen zu den einzelnen Fragen fallt auf, dass beispielsweise
nicht versucht wird, vordefinierte Ressourcentypen anzubieten. Aullerdem bieten alle
Sprachen die Verwendung von Templates in URI Definitionen an.

59

"U3JaIIBUAS 3[|91S1HUYDS SNe sgN1S-apo) 1Ny Sunzinisiaiun

‘JewJo4 uaJleqsajuaulyasewl ul usj|a31saHuyos unj MCDNuDumeuCD

£3]|19pOIA J3p Sunj21s1eQ 3YdsIydess ‘DydIayly auid s 1919

£3ZIN3S193UN UBJII|[SPOIA WIS J3PIIMIUT ISP PAIA

¢3yoeuds aip ul SunyagJeuly Jnz puemny Jap st Suliag aIpn :3ayyoeuly

&Ma1uUsWNXop aydelds 3salp Ny |00 31p puls IS 3l

éManuawnyop ayaelds aip st I8 Al

$1219598U19 S}a19q ayde.ds 3Ip pJim Suejwn WaYdRM U|

¢uayasnzue Suninapag a4yl USIYNJISUOY-ap0) USP 1S AJINIUL BIAN

$9P0) Wi PeaYIaAQ-XeIUAS U [1I91uy Jap 15! SulIas aIpm

SuapJam palulap Sunyaizag Jaule Suninapag alp uuey|

£UdpJam JaluLap uoiesadQ Jaule Suninapag alp uuey|

£UDPIaM HIBIUIJBP 924N0SSaY Jaule Suninapag alp uuey|

£ UDPJaM 19pUSMIDA sa1e|dWd| UsUOoIULRd [YN Ul USUUQY

&(S1YN aA1B[R4) UBPIIM 33IYIBYDISDT USDINOSSAY UBUUQY

Ein Vergleich von Sprachen, Methoden und Tools

;ue uadAluadinossay a1aIULAPIOA BydeIdS 31Ip 193131

£UBUUEY UBPJIAM }3N3ZI3 SIPOISNILIS BYI[AM ‘USPIIM USQRIYISI] UUe)|

zur Modellierung und Beschreibung von REST-Schnittstellen

¢USpJaM UBIUIBP U33JN0SSaY Uaydsimz COMC:LQ_Nwm uauuoy)|

¢Uapiam ULBIULJBP SIDAISS Sop ndinQ ‘MZq indu| J33934EMID USUUO)

éuapJiam ualuljap usuolesadp 91gNe[Ja 924N0SSaYy oud uauugy

5.1 Tabellarische Ubersicht der Bewertungen

J288ems [Sva3yis

S1S3¥Y 1asm

¢USPIDM 11U 3][D3ISIHUYIS JIP USIINOSSDY SIP UBUUQY

60

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

5.2 Tabellarische Auswertung der Ergebnisse

Sprache WADL WSDL2.0 hRESTS ng\;‘; S:)E::j' Swagger RestDoc
Gesamt 58 47 27 42 47 59 46
Syntax 26 22 11 24 22 20 22
Semantik 0 0 4

Lesbarkeit 4 4 4 6 6
Anwendung 28 17 12 10 10 33 18
Gesamt 0,98 0,80 046 | 071 | 0,80 1,00 0,78
Syntax 1,00 0,85 042 | 092 | 0,85 0,77 0,85
Semantik 0,00 0,56 0,00 | 044 | 100 | 0,00 0,00
Lesbarkeit 0,67 0,50 067 | 067 | 1,00 1,00 1,00
Sprache 0,85 0,52 036 | 030 | 0,30 1,00 0,55

Die obere Tabelle zeigt die erreichte Gesamtpunktzahl der bewerteten Spezifikationen.
Hierbei wurde die Gewichtung der einzelnen Fragen bereits berticksichtigt.

Die untere Tabelle zeigt die normalisierten Werte. Eine 1,00 in der unteren Tabelle
entspricht also der Hochstpunktzahl der gleichen Gruppe in der oberen Tabelle.

61

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

6 Zusammenfassung

Diese Fachstudie gibt einen Uberblick tiber vorhandene Methoden, Sprachen und Tools
zur Modellierung von REST-Schnittstellen. Die Motivation hierfir griindet in der
Notwendigkeit, REST Services beschreiben zu missen. Maschinenlesbare
Beschreibungen von REST APIs existieren bis jetzt nur in tberschaubarem Ausmal. Es
gibt zu diesem Thema inzwischen viele wissenschaftliche Arbeiten mit sehr
verschiedenen Ansdtzen, von ressourcenorientierten zu methodenorientierten und von
rein syntaktischen zu semantischen Beschreibungen mit der Vision eines ,,semantic web®
und automatisierter ,,service discovery*. Keine dieser Methoden oder Sprachen hat bisher
jedoch industriell grof3e Bedeutung erlangt - ein Grund dafiir konnte der Umstand sein,
dass es immer noch Uneinigkeit dartber gibt, was denn Uberhaupt modelliert werden
sollte.

Wir haben zur Ermittlung verschiedener Losungen fur diese Anforderung einen
Kriterienkatalog erstellt und diesen zur Bewertung in Frage kommender Spezifikationen
benutzt. Unabhangig davon wurden alternative Ansdtze bewertet, die sich aus
verschiedenen Griinden nicht durch den Fragenkatalog erfassen liel3en.

Die Ergebnisse der bewerteten Spezifikationen wurden graphisch in einer Tabelle
aufbereitet und es wurde gezeigt, dass es zum Teil erhebliche Unterschiede in den
jeweiligen Starken und Schwachen der Kandidaten gibt. So l&sst sich zu diesem Zeitpunkt
kein klarer ,,Gewinner* feststellen und es ist fraglich ob sich in naher Zukunft ein
Standard etablieren wird.

62

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

7 Literaturverzeichnis

[1] R.T. Fielding, Architectural Styles and the Design of Network-Based Software
Architectures, University of California, Irvine., 2000.

[2] C. Pautasso, O. Zimmermann und F. Leymann, ,,Restful web services vs. "big" web
services: making the right architectural decision,* Proceedings of the 17th
international conference on World Wide Web (WWW '08), pp. 805-814, 2008.

[3] M. Lanthaler und C. Giitl, ,,A Semantic Description Language for RESTful Data
Services to Combat Semaphobia, Proceedings of the 5th IEEE International
Conference on Digital Ecosystems and Technologies (IEEE DEST 2011), pp. 47-53,
2011.

[4] 1. Porres und I. Rauf, ,,Modeling behavioral RESTful web service interfaces in
UML,“ Proceedings of the 2011 ACM Symposium on Applied Computing (SAC '11),
pp. 1598-1605, 2011.

[5] M. Laitkorpi, P. Selonen und T. Systa, ,,Towards a Model-Driven Process for
Designing ReSTful Web Services,“ ICWS '09 Proceedings of the 2009 IEEE
International Conference on Web Services, pp. 173-180, 20009.

[6] L. Richardson und S. Ruby, RESTful Web Services, O'Reilly Media, 2007.

[7] E.Ormeno, M. Lund, L. Aballay und S. Aciar, ,,An UML profile for modeling
RESTful services,* 13th Argentine Symposium on Software Engineering, ASSE
2012, pp. 119-133, 2012.

[8] S. Schreier, ,,Modeling RESTful applications,* WS-REST'11 Proceedings of the
Second International Workshop on RESTful Design, pp. 15-21, 2011.

[9] M. Masse, ,,WRML Design Notes,“ 2013.

[10] T. Berners-Lee und D. Connolly, ,,Notation3 (N3): A readable RDF syntax,” W3C,
[Online]. Available: http://www.w3.org/TeamSubmission/2011/SUBM-n3-
20110328/. [Zugriff am 9 Oktober 2013].

[11] R. Verborgh, T. Steiner, D. Deursen, J. Roo, R. Van De Walle, J. Gabarré und
Vallés, ,,Capturing the functionality of Web services with functional descriptions,*
Multimedia Tools and Applications Volume 64 Issue 2, pp. 365-387, May 2013.

[12] M. Hadley, ,,Web Application Description Language,” W3C, [Online]. Available:
http://www.w3.0rg/Submission/2009/SUBM-wadI-20090831/. [Zugriff am 7
Oktober 2013].

[13] R. Chinnici, J.-J. Moreau und S. Weerawarana, ,,Web Services Description
Language (WSDL) Version 2.0 Part1: Core Language,” W3C, [Online]. Available:
http://mww.w3.0rg/TR/2007/REC-wsdl20-20070626/. [Zugriff am 8 Oktober 2013].

[14] H. Haas, P. Le Hégaret, J.-J. Moreau, D. Orchard, J. Schlimmer und S.
Weerawarana, ,,Web Services Description Language (WSDL) Version 2.0 Part 3:
Bindings,” W3C, [Online]. Available: http://www.w3.0rg/TR/2004/WD-wsdI20-
bindings-20040803/. [Zugriff am 8 Oktober 2013].

[15] J. Kopecky, T. Vitvar, D. Fensel und K. Gomadam, ,hRESTS & MicroWSMO,
CMS WG Working Draft,* 2009.

[16] J. Kopecky, K. Gomadam und T. Vitvar, ,,hRESTS: An HTML Microformat for
Describing RESTful Web Services,“ WI-IAT '08 Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent

63

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Technology - Volume 01, pp. 619-625, 2008.

[17] D. Fensel, F. Fischer, J. Kopecky, R. Krummenacher, D. Lambert und T. Vitvar,
,WSMO-L.ite: Lightweight Semantic Descriptions for Services on the Web,* W3C,
[Online]. Available: http://www.w3.0rg/Submission/2010/SUBM-WSMO-L ite-
20100823/. [Zugriff am 8 Oktober 2013].

[18] J. Farrell und H. Lausen, ,,Semantic Annotations for WSDL and XML Schema,*
W3C, [Online]. Available: http://www.w3.0rg/TR/2007/REC-sawsdl-20070828/.
[Zugriff am 8 Oktober 2013].

[19] F. Fischer und B. Norton, ,,D3.4.6 MicroWSMO v2 — Defining the second version of
MicroWSMO as a systematic approach for rich tagging,* 2009.

[20] Reverb Technologies, Inc, ,,Swagger: A simple, open standard for describing REST
APIs with JSON | Reverb for Developers, [Online]. Available:
https://developers.helloreverb.com/swagger/. [Zugriff am 8 Oktober 2013].

[21] Reverb Technologies, Inc, ,,Swagger Sample App,* [Online]. Available:
http://petstore.swagger.wordnik.com/#!/. [Zugriff am 8 Oktober 2013].

[22] RestDoc.org, ,,RestDoc - Documenting REST APIs Version 1 (2012-12-02),
[Online]. Available: http://www.restdoc.org/spec.html. [Zugriff am 6 Oktober 2013].

[23] T. Hoeger, ,,RestDoc Specification - README.md,* [Online]. Available:
https://github.com/RestDoc/specification/blob/master/README.md. [Zugriff am 6
Oktober 2013].

64

Ein Vergleich von Sprachen, Methoden und Tools
zur Modellierung und Beschreibung von REST-Schnittstellen

Erklarung

Ich versichere, diese Arbeit selbststandig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wortlich oder
sinngemaR aus anderen Werken Gibernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines
anderen Prufungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollstandig veroffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren (iberein.

Bruder, Leonard Harth, Fabian Karaoguz, Nedim
Stuttgart, 10.10.2013

65

