
Fachstudie Nr. 174

Ê»®¹´»·½¸ ª±² Í°®¿½¸»²ô Ó»¬¸±¼»² «²¼ Ì±±´­
¦«® Ó±¼»´´·»®«²¹ «²¼

Þ»­½¸®»·¾«²¹ ª±² ÎÛÍÌ Í½¸²·¬¬­¬»´´»²

Leonard Bruder, Fabian Harth, Nedim Karao uz

Í¬«¼·»²¹¿²¹æ

Ð®$º»®æ

¾»¹±²²»² ¿³æ

¾»»²¼»¬ ¿³æ

ÝÎóÕ´¿­­·º·µ¿¬·±²æ

Þ»¬®»«»®æ

Softwaretechnik

Prof. Dr. Frank Leymann

Dipl.-Inf. Florian Haupt

10.04.2013

10.10.2013

D.2.1, F.3.1

Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 iii

Inhaltsverzeichnis

INHALTSVERZEICHNIS .. III

ABBILDUNGSVERZEICHNIS ... VII

LISTINGS ...VIII

1 EINLEITUNG .. 1

1.1 Zweck und Aufbau des Dokuments .. 2

1.2 Gliederung ... 2

2 KRITERIENKATALOG... 3

2.1 Gewichtung .. 4

2.2 Fragen zur Bewertung der Ansätze ... 5

2.2.1 Ausdrucksstärke der Sprache - Syntax ... 5

2.2.2 Ausdrucksstärke der Sprache - Semantik ... 5

2.2.3 Lesbarkeit ... 5

2.2.4 Anwendung der Sprache .. 5

3 INDIVIDUELL BEWERTETE SPEZIFIKATIONEN UND WISSENSCHAFTLICHE

AUSARBEITUNGEN ... 7

3.1 Modeling Behavioral RESTful Web Service Interfaces in UML 7

3.1.1 Beschreibung... 7

3.1.2 Bewertung ... 8

3.2 Towards a Model-Driven Process for Designing ReSTful Web Services 9

3.2.1 Beschreibung... 9

3.2.2 Bewertung ... 12

3.3 An UML profile for modeling RESTful services 13

3.3.1 Beschreibung... 13

3.3.2 Bewertung ... 14

3.4 Modeling RESTful applications.. 15

3.4.1 Beschreibung... 15

3.4.2 Bewertung ... 16

3.5 WRML ... 17

3.5.1 Beschreibung... 17

3.5.2 Bewertung ... 18

3.6 RESTdesc .. 19

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

iv

3.6.1 Beschreibung ... 19

3.6.2 Bewertung .. 20

4 MIT DEM KRITERIENKATALOG BEWERTETE SPEZIFIKATIONEN UND

FRAMEWORKS .. 21

4.1 WADL ..22

4.1.1 Beschreibung ... 22

4.1.2 Beispiel .. 22

4.1.3 Bewertung .. 23

4.1.3.1 Syntax .. 23

4.1.3.2 Semantik .. 24

4.1.3.3 Lesbarkeit .. 24

4.1.3.4 Anwendung der Sprache... 24

4.1.4 Fazit... 26

4.2 WSDL 2.0 ...27

4.2.1 Beschreibung ... 27

4.2.2 Beispiel .. 27

4.2.3 Bewertung .. 29

4.2.3.1 Syntax .. 29

4.2.3.2 Semantik .. 30

4.2.3.3 Lesbarkeit .. 30

4.2.3.4 Anwendung der Sprache... 30

4.2.4 Fazit... 31

4.3 hRESTS ..32

4.3.1 Beschreibung ... 32

4.3.2 Beispiel .. 32

4.3.3 Bewertung .. 32

4.3.3.1 Syntax .. 32

4.3.3.2 Semantik .. 33

4.3.3.3 Lesbarkeit .. 34

4.3.3.4 Anwendung der Sprache... 34

4.3.4 Fazit... 35

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 v

4.4 MicroWSMO ... 36

4.4.1 Beschreibung... 36

4.4.2 Beispiel ... 36

4.4.3 Bewertung ... 37

4.4.3.1 Syntax ... 37

4.4.3.2 Semantik ... 38

4.4.3.3 Lesbarkeit.. 38

4.4.3.4 Anwendung der Sprache .. 38

4.4.4 Fazit .. 39

4.5 SEREDASj... 40

4.5.1 Beschreibung... 40

4.5.2 Beispiel ... 40

4.5.3 Bewertung ... 42

4.5.3.1 Syntax ... 42

4.5.3.2 Semantik ... 43

4.5.3.3 Lesbarkeit.. 44

4.5.3.4 Anwendung der Sprache .. 44

4.5.4 Fazit .. 45

4.6 Swagger ... 46

4.6.1 Beschreibung... 46

4.6.2 Beispiel ... 46

4.6.3 Bewertung – Swagger .. 48

4.6.3.1 Syntax ... 48

4.6.3.2 Semantik ... 49

4.6.3.3 Lesbarkeit.. 49

4.6.3.4 Anwendung der Sprache .. 50

4.6.4 Fazit .. 51

4.7 RestDoc ... 52

4.7.1 Beschreibung... 52

4.7.2 Beispiel ... 52

4.7.3 Bewertung ... 53

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

vi

4.7.3.1 Syntax .. 53

4.7.3.2 Semantik .. 54

4.7.3.3 Lesbarkeit .. 54

4.7.3.4 Anwendung der Sprache... 54

4.7.4 Fazit... 56

5 ERGEBNISSE ... 58

5.1 Tabellarische Übersicht der Bewertungen..60

5.2 Tabellarische Auswertung der Ergebnisse ...61

6 ZUSAMMENFASSUNG .. 62

7 LITERATURVERZEICHNIS ... 63

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 vii

Abbildungsverzeichnis

Abbildung 1: Modellierung von Ressourcen durch ein UML-Klassendiagramm und

zugehörige URIs [4] .. 7

Abbildung 2: Ausschnitt aus der High-Level Designansicht eines Services [5] 9
Abbildung 3: Ein Beispiel eines Information Model [5] ... 10

Abbildung 4: Verwendung des UML Profils [7] .. 13
Abbildung 5: Generierter Code für den Controller [7] .. 14

Abbildung 6: Typensystem für die Modellierung von Ressourcen [8] 15
Abbildung 7: WRMLDoc und Werminal [9] ... 17

Abbildung 8: Architektur des WRML Application Servers [9]....................................... 18
Abbildung 9: REST Describe .. 25

Abbildung 10: Übersicht einer API mit Swagger [21] .. 46
Abbildung 11: Beispiel für die Darstellung einer HTTP-Methode mit Swagger-UI [21] 47

Abbildung 12: Beispielcode für Swagger [20] ... 48
Abbildung 13: Konsolenausgabe des RestDoc Python Clients 56

Abbildung 14: RestDoc in der Konsolenausgabe der serverseitigen Implementierung,

Ausgabe abgeschnitten .. 56

Abbildung 15: Vergleich der Ergebnisse unserer Auswertungen 58

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

viii

Listings

Listing 1: Information Model Elemente für addSeats [5] ..11

Listing 2: RESTDesc Beispielcode ...19
Listing 3: WADL Beispielcode ..22
Listing 4: Schlüsselwörter in WADL ..24

Listing 5: Java Annotationen für WADL ..26
Listing 6: Beschreibung einer Schnittstelle mit WSDL ...28

Listing 7: hRESTS Beispielcode ..32
Listing 8: MicroWSMO Beispielcode ..36

Listing 9: SEREDASj: JSON Repräsentation ...40
Listing 10: Metadaten einer SEREDASj-Beschreibung ..41

Listing 11: Elementdefinition einer SEREDASj-Beschreibung42
Listing 12: RestDoc Codebeispiel ..52

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 1

1 Einleitung

REpresentational State Transfer (REST), beschrieben im Jahr 2000 von Roy Fielding [1],

ist ein Architekturstil der die vier Kernziele: Geschwindigkeit, Skalierbarkeit, Simplizität

und Datenunabhängigkeit verfolgt und sich dazu auf vier Prinzipien stützt:

• Ressourcenidentifikation mittels URIs: Eine Ressource eines Dienstes ist eindeutig

über ihre URI bestimmt und wird über diese adressiert.

• Einheitliches Interface: REST unterstützt nur die CRUD
1
-Methoden.

• Selbst-beschreibende Messages: Ressourcen sind losgelöst von ihrer

Repräsentation, so dass sie in einer Vielzahl von Formaten zur Verfügung stehen

können.

• Stateful Interaktionen über Hyperlinks: Jede Interaktion mit einer Ressource ist

zustandslos, sodass der Status während der Interaktion übermittelt werden muss.

Durch sein hervorragendes Mapping auf die vier HTTP-Hauptmethoden: POST, GET,

PUT, DELETE, und seine Leichtgewichtigkeit [2], existieren mittlerweile eine Vielzahl

von Diensten, die ihre API mittels REST zur Verfügung stellen. Im Gegensatz zu

Diensten, die auf dem WS*-Stack basieren und ihre funktionalen und nicht-funktionalen

Eigenschaften mit Hilfe von WSDL bzw. WS-Policy beschreiben und sie dadurch

Kunden zur Verfügung stellen, existiert bis jetzt kein vergleichbarer Industriestandard um

REST APIs zu beschreiben und/oder zu modellieren. Dies bedeutet, dass viele REST-

Dienste nur eine textuelle, lediglich für Menschen verständliche Beschreibung anbieten.

Es gibt auch einige Meinungen
2
, die entweder nur einen sehr geringen oder gar keinen

Bedarf an der Dokumentation einer REST API sehen, weil diese selbstbeschreibend sein

sollte. Dies wirft jedoch eine Vielzahl von Problemen auf: So ist beispielsweise die

komplette Funktionalität einer selbstbeschreibenden REST API erst ersichtlich, nachdem

man den gesamten Baum von Verlinkungen durchlaufen hat.

In dieser Fachstudie präsentieren wir einige Ansätze zur Beschreibung von REST

Diensten und bewerten diese anschließend anhand eines Kriterienkatalogs. Dieser wird in

Kapitel 2 näher vorgestellt. Des Weiteren stellen wir einige Ansätze aus

wissenschaftlichen Veröffentlichungen vor und beschreiben diese näher.

Die meisten der untersuchten Sprachen verfolgen einen von zwei Ansätzen um REST-

Dienste zu beschreiben. Entweder einen service- bzw. operationenorientierten oder einen

ressourcenorientierten Ansatz. Als operationenorientierten Ansatz definieren wir in dieser

Fachstudie Sprachen, die das Beschreiben der Funktionalität der verschiedenen

Operationen eines Services in den Vordergrund stellen. Die eigentlichen Ressourcen

rücken dabei in den Hintergrund. Eine weitere Möglichkeit, den einige Sprachen

verfolgen, ist die Eigenschaften eines Dienstes mit Hilfe von semantischen Ausdrücken

zu beschreiben. Diese beiden Ansätze werden von einigen entweder als ungeeignet für

1 Create Retrieve Update Delete
2 (09.10.2013): http://stackoverflow.com/questions/1966243/restful-api-documentation

http://stackoverflow.com/questions/1966243/restful-api-documentation

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

2

eine Resource Oriented Architecture (ROA) angesehen, weil sie den Fokus auf die

Modellierung der Repräsentationen der Ressourcen vermissen, oder als sehr aufwändig

bzw. umständlich, weil das Semantic Web noch in einer frühen Phase der Entwicklung

steckt. Lanthaler et al. fassen diese Zurückhaltung unter dem Begriff Semaphobia

zusammen [3].

1.1 Zweck und Aufbau des Dokuments

Dieses Dokument bewertet einige Spezifikationen, Frameworks und wissenschaftliche

Ausarbeitungen, die syntaktische, semantische oder konzeptionelle

Beschreibungsmöglichkeiten für RESTful Services definieren bzw. verwenden. Als

Grundlage dafür dient ein zu diesem Zweck entworfener Fragenkatalog, der im

nachfolgenden Kapitel beschrieben wird.

Damit kann es Entwicklern von Schnittstellen einen Anhaltspunkt geben, welche

Technologie geeignet ist, um diese zu dokumentieren. Weil ein zentraler Aspekt die

Beschreibung von Schnittstellen in einem maschinenlesbaren Format ist, werden

verschiedenste Ausdrucksmöglichkeiten dafür vorgestellt und können als Übersicht

verwendet werden.

1.2 Gliederung

Der Rest des Dokuments ist wie folgt gegliedert:

Im nächsten Kapitel wird der für die Bewertung verwendete Kriterienkatalog

beschrieben. Hierbei wird auch auf die unterschiedliche Gewichtung der Fragen

eingegangen.

Das dritte Kapitel enthält die Beschreibungen und Bewertung der Spezifikationen und

Ausarbeitungen, die nicht durch das Bewertungssystem evaluiert wurden. Die Bewertung

ist also eher subjektiv und basiert auf den Erkenntnissen der Autoren über die anderen

Sprachen.

Das vierte Kapitel fasst die Beschreibungen und Bewertungen der restlichen

Spezifikationen und Frameworks zusammen, auf die der Kriterienkatalog „angewandt“

wurde. Hierbei wurde für jede Frage auf einer Skala von 0 bis 3 angegeben, inwieweit der

jeweilige Prüfling die durch die jeweilige Frage ausgedrückte Anforderung erfüllt. Für

jede Beschreibungssprache wurde ein Fazit verfasst, das den gewonnenen Eindruck

zusammenfasst.

Im fünften Kapitel werden die Ergebnisse der Bewertungen mit dem Kriterienkatalog

gesammelt und interpretiert.

Das letzte Kapitel dient dann als Zusammenfassung des Dokuments.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 3

2 Kriterienkatalog

Um Rest-Schnittstellen zu modellieren gibt es sehr unterschiedliche Ansätze. Viele

konzentrieren sich auf eine rein syntaktische Sichtweise, was bedeutet, sie modellieren

Ressourcen, Methoden, erlaubte Inputs und Outputs statisch. Diese Beschreibungen

dienen zum einen als Referenz für Entwickler, die clientseitig gegen diese Schnittstellen

implementieren, zum anderen gibt es Möglichkeiten, daraus Codestubs zu generieren.

Eine weitere Möglichkeit ist der eher konzeptionelle Ansatz, der durch die Verwendung

von UML-Diagrammen zum Entwerfen von Schnittstellen bzw. Services dient. Auch hier

ist das Generieren von Codestubs teilweise vorgesehen.

Andere Ansätze konzentrieren sich darauf, die Semantik von Services oder von

Methodenaufrufen formal zu fassen. In den meisten Fällen verwenden sie Ontologien, die

wiederum RDF
3
 verwenden, oder geben Möglichkeiten an, ihre Beschreibungen nach

RDF zu konvertieren.

Mit diesem Hintergrund haben wir versucht, eine faire Vergleichsbasis zu schaffen. Weil

sich die sprachlichen Ansätze von den konzeptionellen bzw. modellierenden sowohl in

der Philosophie als auch dem zugrundeliegenden Anwendungsfall unterscheiden, haben

wir letztere zwar begutachtet, jedoch nicht durch das Bewertungsschema erfasst.

Die Fragen zur Bewertung sind in vier Gruppen unterteilt: Syntax, Semantik, Lesbarkeit

und Anwendbarkeit. Das ermöglicht eine präzisere Beurteilung der einzelnen Sprachen

unter verschiedenen Gesichtspunkten.

In der ersten Kategorie des Kriterienkataloges sind syntaktische Aspekte zu finden, im

zweiten Teil semantische, wodurch der Kriterienkatalog auf beide Ansätze anwendbar ist.

Die dritte Gruppe behandelt die Lesbarkeit des Codes, in dem die

Schnittstellenbeschreibung erfolgt. Im letzten Teil blicken wir über die formalen

Spezifikationen hinweg und beurteilen die Relevanz in der Praxis, also, ob Tools

angeboten werden und wie hilfreich diese wirklich sind.

Die Auswahl der Fragen erfolgte dabei nachdem wir uns die zur Begutachtung stehenden

Ansätze etwas genauer angeschaut hatten. Ideen einzelner Arbeiten, die in ihrem

Vorkommen einzigartig waren, wurden nicht mit aufgenommen. Vielmehr wollten wir

Elementares erfassen und Erfolgsmethoden („best practice“) mit berücksichtigen. Mit

dem Hintergrund, dass eine dieser Spezifikationen bzw. Ideen zur Beschreibung einer

Schnittstelle eingesetzt werden sollte, sahen wir uns veranlasst, die Verständlichkeit und

den erforderlichen Einarbeitungsaufwand ebenfalls zu hinterfragen.

Für die Evaluierung wurden die Prüflinge zu jeder Frage auf einer Skala von 0 bis 3

bewertet. Die Punktzahl drückt dabei aus, inwiefern der Prüfling die durch die Frage

gestellte Anforderung erfüllt (1 Punkt: in Ansätzen erfüllt; 2 Punkte: zu Teilen erfüllt; 3

Punkte: vollständig erfüllt).bzw. nicht erfüllt (0 Punkte).

3 (09.10.2013): http://en.wikipedia.org/wiki/Resource_Description_Framework

http://en.wikipedia.org/wiki/Resource_Description_Framework

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

4

2.1 Gewichtung

Für die Gesamtbewertung haben wir zum einen die einzelnen Fragen innerhalb einer

Gruppe gewichtet und uns zum anderen die Möglichkeit offen gehalten, die jeweiligen

Gruppen selbst für eine Gesamtwertung zu gewichten. Ersteres ermöglicht die strenge

Bewertung elementarer Aspekte und gleichzeitig das Aufnehmen von nützlichen und

sinnvollen Features einzelner Ansätze.

Auch die Tatsache, dass einzelnen Fragen eine unterschiedliche Reichweite - also die

Summe des durch die Beantwortung dieser Frage tatsächlich Bewerteten - zugrundeliegt,

wird hierdurch berücksichtigt. (Die Frage „Wie gut ist die Spezifikation?“ hätte

beispielsweise eine Reichweite von 100%, die Frage nach deren Ausdrucksstärke nur

noch 50% usw.) Weil darüber hinaus nicht für jede Gruppe die gleiche Anzahl an Fragen

vorhanden ist, kann eine Gewichtung einzelner Gruppen bzw. Fragen diesen Umstand

relativieren.

Die Gewichtung der Gruppen ermöglicht hingegen die Bewertung eines Ansatzes über

dessen eigentliche Möglichkeiten hinaus. Steht beispielsweise die Praxistauglichkeit

mehrerer Sprachen mit vergleichbarer Ausdrucksstärke (syntaktisch / semantisch) zur

Debatte, kann durch die Gewichtung der Gruppe Anwendbarkeit eine aussagekräftige

Wertung für deren Einsatz erzielt werden.

Kombiniert man die Anzahl der Fragen mit der jeweiligen Gewichtung ergibt sich der

Einfluss einer Gruppe auf die Gesamtwertung. Die Ausdrucksstärke (Syntax & Semantik)

bilden dabei 52%. Während die Anwendbarkeit der Sprache mit 42% zur Geltung kommt,

ist die Auswirkung der Lesbarkeit mit den verbleibenden 6% überschaubar.

Im Folgenden ist der fertige Kriterienkatalog sowie die verwendete Gewichtung

aufgeführt. Wir wollten bei der Auswertung zum einen die Möglichkeiten einzelner

Ansätze abbilden und zum anderen mögliche Hürden widerspiegeln, die eine spätere

Anwendung erschweren (wie z.B. zu hoher Aufwand für die Einarbeitung). Die

Bewertung gibt also eine Antwort auf die Frage, welcher Ansatz verwendet werden sollte,

wenn eine Schnittstelle neu entwickelt wurde und dokumentiert werden soll, um

verwendet werden zu können.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 5

2.2 Fragen zur Bewertung der Ansätze

2.2.1 Ausdrucksstärke der Sprache - Syntax

 Können die Ressourcen der Schnittstelle definiert werden? – doppelt gewichtet

 Können pro Ressource erlaubte Operationen definiert werden? - doppelt

gewichtet

 Können erwarteter Input bzw. Output des Servers definiert werden?

 Können Beziehungen zwischen Ressourcen definiert werden?

 Kann für Methoden beschrieben werden, welche Statuscodes erzeugt werden

können?

 Bietet die Sprache vordefinierte Ressourcentypen an?

 Können Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden können?

 Können in URI Definitionen Templates verwendet werden?

2.2.2 Ausdrucksstärke der Sprache - Semantik

 Kann die Bedeutung einer Ressource definiert werden? – doppelt gewichtet

 Kann die Bedeutung einer Operation definiert werden? – doppelt gewichtet

 Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

2.2.3 Lesbarkeit

 Wie gering ist der Anteil an Syntax-Overhead im Code?

 Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

2.2.4 Anwendung der Sprache

 In welchem Umfang wird die Sprache bereits eingesetzt?

 Wie gut ist die Sprache dokumentiert? – doppelt gewichtet

 Wie gut sind die Tools dokumentiert, die für diese Sprache angeboten werden? –

doppelt gewichtet

 Einfachheit: wie gering ist der Aufwand zur Einarbeitung in die Sprache? –

doppelt gewichtet

 Unter Verwendung frei verfügbarer Tools und Frameworks

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

6

o Wie gut wird der Entwickler beim modellieren unterstützt?

o Gibt es eine hilfreiche, graphische Darstellung der Modelle? – doppelt

gewichtet

o Unterstützung für folgende Szenarien:

 Schnittstellen eines bestehenden RESTful Web Service sollen in

einem maschinenlesbaren Format beschrieben werden.

Beschreibungen sind bisher gar nicht oder nur in Plaintext

vorhanden. – doppelt gewichtet

 Es soll die Schnittstelle eines RESTful Web Service vor dessen

Implementierung entworfen werden. Aus dem Modell sollen Code-

Stubs generiert werden können.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 7

3 Individuell bewertete Spezifikationen und

wissenschaftliche Ausarbeitungen

In diesem Kapitel wird eine individuelle Bewertung einzelner Spezifikationen und

wissenschaftlicher Ausarbeitungen ohne die Verwendung des Kriterienkatalogs

durchgeführt. Dieser konnte auf Grund der Eigenart einiger Ansätze nicht immer auf

diese angewandt werden. Jeder Prüfling wird dabei in einem ersten Abschnitt

beschrieben, um anschließend anhand unserer Erkenntnisse aus der Bewertung anderer

Prüflinge bewertet zu werden.

3.1 Modeling Behavioral RESTful Web Service Interfaces in

UML

3.1.1 Beschreibung

Die Arbeit von Porres et al. [4] erklärt, wie UML Diagramme verwendet werden können,

um die Semantik von Webservices zu beschreiben. Die Autoren nennen als Vision eine

„automatic service discovery“ und „service repositories“. Um diesen Ansatz zu

motivieren, beziehen sie sich auf WADL und argumentieren, erstens sei es mit WADL

nicht möglich, irgendetwas über die Semantik eines Webservice auszudrücken, zweitens

erlaube es WADL, Webservices zu beschreiben, die die REST-Prinzipien nicht befolgen.

Für das Modellieren von Ressourcen eines Webservices schlagen die Autoren vor,

Klassendiagramme zu verwenden. Sie erklären genau, wie die

Beschreibungsmöglichkeiten, die UML definiert, auf Ressourcen abgebildet werden

können: Klassenattribute werden zu Repräsentationen der Ressource, Assoziationen

beschreiben referenzierte Ressourcen, und Beschriftungen auf den Assotionzionen geben

den relativen URI Pfad an. Mengen von Ressourcen können als „<<collection>>“

markiert werden. Als Beispiel haben die Autoren einen Service für Hotelreservierungen

modelliert. Dabei sind für die URI Angaben Platzhalter verwendet, „{bid}“, und „{rid}“,

für die die Id der entsprechenden „booking“, bzw. „room“ Ressource eingesetzt wird.

Abbildung 1: Modellierung von Ressourcen durch ein UML-Klassendiagramm und

zugehörige URIs [4]

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

8

Um semantische Aspekte auszudrücken sollen UML Zustandsdiagramme verwendet

werden, wobei Zustandsübergänge mit Vor- und Nachbedingungen beschriftet werden.

Das bedeutet, dass boolsche Ausdrücke angegeben werden, die definieren, unter welchen

Bedingungen eine Methode aufgerufen werden kann, und welche Bedingungen nach der

Ausführung der Methode gelten.

3.1.2 Bewertung

Es gibt verschiedene Ansätze, UML zu verwenden, um Restschnittstellen zu modellieren.

Das Verwenden von Klassendiagrammen um Ressourcen zu modellieren scheint uns eine

gute Idee zu sein, da Klassendiagramme diese statischen Zusammenhänge gut ausdrücken

können. Außerdem kann mit der Verwendung von UML auf bestehende Tools

zurückgegriffen werden und die Notation ist weit verbreitet und akzeptiert.

Die Ansätze zur Formulierung von semantischen Zusammenhängen bewerten wir als zu

komplex, um industriell Anwendung zu finden.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 9

3.2 Towards a Model-Driven Process for Designing ReSTful

Web Services

3.2.1 Beschreibung

Laitkorpi et al. [5] beschreiben einen Vorgang um funktionale Spezifikationen in einen

RESTful Web Service zu transformieren.

Als Motivation geben die Autoren an, dass während des gewöhnlichen Designprozesses

wesentliche Prinzipien von REST verworfen werden, wenn benötigte Funktionalität auf

konkrete Elemente einer API gemappt werden. Ebenso bemängeln sie den fehlenden

ressourcenorientierten Ansatz von vorhandenen Designprozessen, da diese eher einen

objektorientierten Fokus besitzen. Einen bestehenden Ansatz, nach Richardson und Ruby

[6], um RESTful Services zu designen, halten Laitkorpi et al. für ungeeignet, weil er eine

Designlücke offenbart. Als Beispiel wird ein einfacher Service einer Airline beschrieben.

Die nachfolgendende Abbildung zeigt einen Ausschnitt, den die Autoren als Beispiel für

eine Designlücke aufführen, weil aus diesem Ansatz nicht hervorgeht, auf welche Art und

Weise der abgebildete Schritt „7: addSeats(seats)“ RESTful implementiert werden kann.

Abbildung 2: Ausschnitt aus der High-Level Designansicht eines Services [5]

Laitkorpi et al. schlagen einen mehrstufigen Prozess vor, der als Ziel hat, alle für einen

RESTful Service relevanten Informationen zu beinhalten - sowohl für die

Implementierung, als auch für die spätere Nutzung der API. Der Prozess unterteilt sich in

folgende Phasen:

 Analysis: Die Autoren gehen davon aus, dass zu Beginn eine funktionale

Spezifikation der Anforderungen des Services vorliegt - hauptsächlich bestehend

aus einem UML Sequenzdiagramm. Zudem sollte diese Spezifikation zwei

Sichten bieten. Zum einen die Businesssicht, mit den gegenseitigen

Abhängigkeiten der Interaktionen, und eine High-Level Klassenansicht mit dem

Vokabular der Domain.

7: addSeats(seats)

9: itinerary with price

8: recalculatePrice()

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

10

 Behavioral canonicalization: Hierbei wird die High-Level Ansicht zwischen

Client und Service heruntergebrochen, analysiert, um relevante

Statusinformationen zu finden, geeignete primitive Operationen bestimmt, um

diese Status zu manipulieren und daraus ein Information Model (unten stehende

Abbildung) zu formen. Das darauf folgende Listing zeigt ein Beispiel für

addSeats:

Abbildung 3: Ein Beispiel eines Information Model [5]

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 11

INTERACTION 7+9: addSeats

Concern Answer encoded as model elements

listener Itinerary-Seat association class representing Itinerary ---

<<knows>> ---> * Seat

bystanders <<system>>, Itinerary, Seat, Flight

relationships <<system>> --- <<owns>> --> * Itinerary

 Itinerary --- <<knows>> --> * Seat

 Flight --- <<owns>> --> * Seat

qualifiers <<id>> attributes: Itinerary::id, Seat::code (values such as “K12”),

Flight::code (values such as “AY204”), Flight::departure

Intention <<stateChange>> (not shown in the model)

Effect <<create>>

Content <<input>>: Seat ([] indicates plural)

 <<input>> mapped to concept attributes: Seat::code, Seat::flight

 <<output>>: price

 <<output>> mapped to concept attributes: Itinerary::price; because

Itinerary is not the same as <<addressee>>, this interaction must be

split into two: Itinerary-Seat::<<create>>() and

Itinerary::<<inspect>>(). Only the former is exempified

Listing 1: Information Model Elemente für addSeats [5]

 Structural canonicalization: In dieser Phase wird ein Resource Abstraction Layer

über das zuvor erstellte Information Model gelegt, so dass Informationen nun mit

aufrufbaren Ressourcenentitäten verknüpft sind.

 Service translation: Hier werden die nun erstellten Modelle auf konkrete

Technologien übertragen. Laitkorpi et al. stellen in ihrem Paper WADL (siehe

auch Kapitel 4.1 WADL) als eine Möglichkeit vor. Der beschriebene Ansatz ist

jedoch nicht auf WADL beschränkt.

Die Autoren geben an, dass sie derzeit an einer Pattern Language arbeiten die

grundsätzliche Prinzipien für die Entwicklung von RESTful Web Services beinhalten

soll. Leider konnten wir während der Erstellung dieser Fachstudie keine Ergebnisse dieser

Arbeit an einer Pattern Language finden.

Bezüglich möglicher Toolunterstützung sehen Laitkorpi et al. nur WADL-Tools, jedoch

wären Tools zur Unterstützung des Modellierungsprozesses hilfreich, müssten aber in

einer separaten Arbeit behandelt werden.

Zum Schluss geben die Autoren noch einen Ausblick: Sie bestätigen, dass sie zum

Zeitpunkt der Veröffentlichung ihrer Arbeit noch keinen empirischen Beleg für die

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

12

Qualität und den Nutzen ihres Ansatzes vorlegen können. Sie waren aber zuversichtlich

und stellten in Aussicht, einen Evaluierungsprozess in der ersten Hälfte im Jahr 2009

durchzuführen. Uns war es leider nicht möglich, Ergebnisse dieser Evaluierung oder

weitere Arbeiten, die diesen Ansatz verfolgen, zu finden.

3.2.2 Bewertung

Das Problem, dass die Autoren eingangs beschreiben (und die daraus resultierenden

Probleme), sind nachvollziehbar. Der Ansatz, ein strukturiertes und durchdachtes

Vorgehensmodell zu schaffen, ist lobenswert. Es wäre sehr hilfreich für eine konkrete

Bewertung gewesen, die Ergebnisse des - in der Arbeit angekündigten -

Evaluierungsprozesses zu kennen, sofern er durchgeführt wurde. Der Titel des Papers,

„Towards a Model-Driven Process for Designing ReSTful Web Services“ und der

Ausblick den die Autoren darin selbst geben, legen nahe, dass diese Arbeit erst der

Beginn auf dem Weg zu einem modellgetriebenen Prozess ist. Daher ist der Mangel an

auffindbaren Arbeiten, die auf diesen Ergebnissen von 2009 aufbauen, verwunderlich und

lässt befürchten, dass dieser Ansatz nicht konkret weiterverfolgt wurde.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 13

3.3 An UML profile for modeling RESTful services

3.3.1 Beschreibung

In dieser Ausarbeitung [7] wird eine Erweiterung der Syntax und Semantik von

Elementen des UML Metamodells vorgestellt. Das Ziel hierbei ist die Verringerung des

Modellierungsaufwands von RESTful Services. Im Fokus stehen dabei RESTful Services,

die als Controller von Webanwendungen dienen, die das Model-View-Controller-Pattern

implementieren.

Die komplette MVC Anwendung kann dabei so modelliert werden, dass Interaktion und

Struktur ersichtlich sind. Im Moment stehen die im Paper vorgestellten UML Elemente

und Stereotypen nur in UML Profilen für das Programm Enterprise Architect zur

Verfügung. Die Gründe für die Verwendung von Enterprise Architect sind die

angebotenen Mechanismen für Metamodelle und das enthaltene Framework zum

Generieren von Code. Letzteres erlaubt die Anpassung der Templates zur

Codegenerierung.

Die Arbeit umfasst die Erweiterung für Controller, RESTful Services und Views.

• Ein RESTful Controller wird als Klasse mit dem Stereotypen „rest-controller“

repräsentiert, welcher das selbsterklärende Attribut „url“ zu dieser hinzufügt.

• Ein RESTful Service wird als UML Interface mit dem Stereotypen „rest-service“

modelliert, welcher Attribute für die URI und die HTTP-Methode bereitstellt.

Darüber hinaus können URI Variablen und HTTP-Parameter dargestellt werden.

• Views werden ebenfalls durch stereotypisierte Klassen abstrahiert. Es können der

Name, die zugehörige URL und der Status einer Sitzung ausgedrückt werden.

Abbildung 4: Verwendung des UML Profils [7]

Wie in obiger Abbildung zu erkennen, können damit Struktur und Interaktion eines

Controllers (in diesem Fall für ein System zur Registrierung) in einem einzigen

Diagramm dargestellt werden. Der Status der View wechselt dabei von Start über

Intermediate zu Finish.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

14

Zumindest für den Controller kann mit den angepassten Templates des Enterprise

Architect der entsprechende Java-Code generiert werden.

Abbildung 5: Generierter Code für den Controller [7]

3.3.2 Bewertung

Der Ansatz, ein Mittel zwischen anschaulicher Modellierung der Architektur und die

Technologie berücksichtigendem Erzeugen von Code zu entwerfen, ist hier durchaus

gelungen. Allerdings wirkt die beschriebene Neuerung dabei eher wie ein durchdachtes

Anwenden der Möglichkeiten in Enterprise Architect, das nicht voll zur Entfaltung

kommt.

Wie im obigen Schaubild zu erkennen, ist das Ergebnis - ungeachtet dessen – sehenswert.

Es wurde ein sehr aussagekräftiger Typ von Diagramm entworfen, dem sich sowohl der

Verlauf wie auch die Struktur eines Programms entnehmen lassen. Das Erzeugen von

Quellcode ist generell sehr hilfreich, wenn auch noch ausbaufähig.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 15

3.4 Modeling RESTful applications

3.4.1 Beschreibung

Silvia Schreier [8] stellt in ihrer Arbeit ein Metamodell vor, mit dem Schnittstellen von

RESTful Webservices modelliert werden können. Sie legt dabei den Fokus auf das

Design auf einer höheren Abstraktionsebene, losgelöst von technischen Details, und nennt

als Ziel „model driven development“.

Für die Beschreibung des Metamodells dient Ecore, ein Meta-Metamodell und Teil des

„Eclipse Modeling Framework“
4
.

Die Autorin gliedert die Beschreibung ihres Metamodells in zwei Teile - erstens

„Structural Modeling“, zweitens „Behavioral Modeling“. Das strukturelle Modell umfasst

ein Typensystem für Ressourcen, inklusive verschiedener Containertypen.

Abbildung 6: Typensystem für die Modellierung von Ressourcen [8]

Das Typensystem bietet einige Möglichkeiten, Ressourcen zu klassifizieren und

miteinander in Verbindung zu setzen. Über den Typ „PrimaryResourceType“ können

abstrakte Vorlagen definiert werden, von denen verschiedene Instanzen erstellt werden

können. Eine Hierarchie unter Ressourcen kann mit der Verwendung von

„SubresourceType“ ausgedrückt werden. Zusätzlich zum Typ können für Ressourcen

Attribute vorgegeben werden, für die zum einen die von Java definierten primitiven

Datentypen und zum anderen ein Collection Datentyp definiert werden kann.

Für das Modellieren von Methoden gibt es eine Klasse „Method“, die auf eine der HTTP

Methoden abbildet. Für diese kann außerdem eine Menge von „MediaTypes“ und

Parameter angegeben werden.

Für das „Behavioral Modeling“ schlägt die Autorin vor, deterministische endliche

Automaten zu verwenden. Für Methoden soll dann eine „Action“ definiert werden, die

Zustandsübergänge auslösen kann. Für Actions werden verschiedene weitere Typen

definiert, unter anderem „CreateAction“, welche neue Ressourcen erzeugt,

4 (09.10.2013): http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

16

„UpdateAction“, um Properties von Ressourcen neu zu setzen, oder „ReturnAction“, um

zurückgegebene Repräsentationen zu beschreiben.

3.4.2 Bewertung

Der Ansatz von Silvia Schreier behandelt eine andere Modellierungsebene als andere in

dieser Fachstudie untersuchte Ansätze, unser Kriterienkatalog ließ sich deswegen hier

nicht anwenden.

Uns gefällt das Metamodell bezüglich struktureller Modellierung sehr gut. Es werden

verschiedene Ressourcentypen definiert und die Möglichkeit, Ressourcen zu

klassifizieren, bringt eine Ausdrucksstärke mit sich, die in anderen

Beschreibungssprachen nicht zu finden ist.

Der Vorschlag, deterministische endliche Automaten zu verwenden, um das Verhalten

von Ressourcen zu modellieren, erscheint etwas aufwändig. Außerdem fehlen hier noch

technische Details.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 17

3.5 WRML

3.5.1 Beschreibung

WRML (Web Resource Modeling Language) wurde in dieser Fachstudie nur

oberflächlich betrachtet. Zu Beginn der Fachstudie waren noch Informationen zu WRML

unter www.wrml.org zu finden, jedoch war der Entwicklungsstand unklar und es gab

keine Hinweise darauf, dass derzeit an WRML weitergearbeitet wird. Inzwischen verlinkt

diese Seite auf ein GitHub-Projekt
5
 zu WRML und die ehemals auf der Webseite zu

Verfügung gestellten Informationen sind nur noch teilweise im Google-Cache zu finden.

Auf GitHub gab es in den letzten zwei Monaten wieder Commits.

WRML wird als Framework beschrieben, das Tools und eine eigene Application Server

Engine beinhaltet. Es führt zusätzlich einen eigenen Mediatype und Schemadefinitionen

ein. Als Tools werden Wrmldoc und Werminal beschrieben. Wrmldoc ist eine

webbasierte GUI, ähnlich zu Swagger (siehe Kapitel 4.6). Werminal ist, wie in unten

stehender Abbildung zu erkennen, ein Command-line Tool.

Abbildung 7: WRMLDoc und Werminal [9]

Die nächste Abbildung zeigt die Architektur des WRML Application Servers. Dessen

Aufgabe ist es, HTTP-basierte Anfragen in den WRML Kontext zu übersetzen. Die

5 (09.10.2013): https://github.com/wrml/wrml

http://www.wrml.org/
https://github.com/wrml/wrml

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

18

einzelnen Komponenten (ApiLoader, SchemaLoader, etc.) kümmern sich dann um

entsprechende Teile der Payload.

Abbildung 8: Architektur des WRML Application Servers [9]

Auf Amazon lässt sich ein Buch
6
 des Autors über REST und WRML finden, in welchem

er neben einigen Techniken zum Implementieren von REST Services auch WRML

vorstellt. Die Rezessionen dort fallen jedoch sehr negativ aus, vor allem WRML wird in

den Kommentaren stark kritisiert, weil es zu komplex sei.

3.5.2 Bewertung

WRML wurde mangels Informationen und wegen genannter Gründe in dieser Studie

nicht bewertet.

6 (09.10.2013): http://www.amazon.de/Rest-Design-Rulebook-Mark-Masse/dp/1449310508/

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 19

3.6 RESTdesc

3.6.1 Beschreibung

RESTdesc beschreibt den Ansatz, „Notation 3“ [10] zu verwenden, um semantische

Aspekte von Webservices auszudrücken [11]. N3 bietet aussagenlogische Konstrukte wie

Implikationen und Quantoren, sodass Vor- und Nachbedingungen für den Aufruf von

Webservices formuliert werden können. Im nachfolgenden Beispiel, das die Autoren auf

ihrer Homepage
7
 angeben, wird ausgedrückt, dass - sofern für ein Bild ein Link vom Typ

„dpedia-owl:thumbnail“ existiert - auf diesem Link eine HTTP Get Methode aufgerufen

werden kann, die ein Bild der Höhe 80 Pixel zurückliefert.

@prefix : <http://example.org/image#>.

@prefix http: <http://www.w3.org/2011/http#>.

@prefix dbpedia: <http://dbpedia.org/resource/>.

@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.

{

?image :smallThumbnail ?thumbnail.}

=> {

_:request http:methodName "GET";

http:requestURI ?thumbnail;

http:resp [http:body ?thumbnail].

?image dbpedia-owl:thumbnail ?thumbnail.

?thumbnail a dbpedia:Image;

dbpedia-owl:height 80.0.}.

Listing 2: RESTDesc Beispielcode

Entscheidend für die Aussagekraft solcher Beschreibungen sind natürlich die Vokabulare

der verwendeten Ontologien. Die Autoren schlagen die Verwendung des HTTP

Vokabulars
8
 vor, um alle Aspekte von HTTP Methoden beschreiben zu können.

Weiterhin kann jede in RDF formulierte Ontologie verwendet werden.

Damit die Verwendung von Platzhaltern in URI Beschreibungen erklärt werden kann,

wurde eine eigene Ontologie entworfen
9
.

Die Autoren erklären, dass Deduktionen verwendet werden können, falls Vor- und

Nachbedingungen in N3 formuliert sind [11]. Damit kann ein Clientprogramm für eine

Ausgangsbedingung feststellen, welche Webservices aufzurufen sind, um ein definiertes

Ziel zu erreichen, falls Ausgangsbedingung und Ziel die Ontologien verwendet, in denen

auch die Beschreibungen der Webservices formuliert sind.

7 (09.10.2013) http://restdesc.org/about/descriptions
8 (09.10.2013) http://www.w3.org/TR/HTTP-in-RDF10/#classes
9 (09.10.2013) http://multimedialab.elis.ugent.be/organon/ontologies/restdesc/uri-template

http://restdesc.org/about/descriptions
http://www.w3.org/TR/HTTP-in-RDF10/#classes
http://multimedialab.elis.ugent.be/organon/ontologies/restdesc/uri-template

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

20

3.6.2 Bewertung

RESTDesc führt keine eigene Notation ein, sondern verwendet „Notation 3“, um

semantische Aspekte von Webservices auszudrücken. Die Aussagekraft dieser

Beschreibungen hängt stark von der verwendeten Ontologie ab, die beliebig gewählt

werden kann. Aus diesen Gründen haben wir RESTDesc nicht mit unserem

Kriterienkatalog bewertet.

Die N3 Notation erlaubt es über Konstrukte wie Quantoren und Implikationen und die

Verwendung von beliebigen Ontologien, komplizierte Zusammenhänge formal

auszudrücken. Wir glauben, dass Formalismen dieser Art unabdingbar sind, um wirklich

automatisierte „service discovery“ zu entwickeln. Was RESTDesc allerdings nicht ohne

weiteres ausdrücken kann, sind syntaktische Vorgaben für Interfaces von Webservices zu

formulieren, beispielsweise Schemadefinitionen für erlaubte Inputs und Outputs

anzugeben. Wir glauben, dass hier zusätzlich eine Möglichkeit verwendet werden muss,

um die syntaktische Struktur der Interfaces zu beschreiben.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 21

4 Mit dem Kriterienkatalog bewertete Spezifikationen

und Frameworks

In diesem Kapitel wird die Bewertung einzelner Spezifikationen und Frameworks anhand

des Kriterienkatalogs durchgeführt. Die Bewertung einzelner Fragen erfolgt dabei auf

einer Skala von 0 bis 3. Die Punktzahl 0 bedeutet, dass die durch die Frage implizierte

Anforderung nicht erfüllt wurde. Die Punktezahlen 1 (in Ansätzen erfüllt), 2 (zu Teilen

erfüllt) und 3 (vollständig erfüllt) geben den Grad an, in welchem der Prüfling die

Anforderung abdeckt.

Für jeden Prüfling sollen Beschreibung und Beispiel einen Überblick über dessen

Eigenschaften geben und Bewertung und Fazit diese Eigenschaften evaluieren. Eine

abschließende Bewertung in Relation zu anderen Prüflingen befindet sich im nächsten

Kapitel.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

22

4.1 WADL

4.1.1 Beschreibung

WADL [12] (Web Application Description Language) wird auf Wikipedia
10

 als

“machine-readable XML description of HTTP-based web applications (typically REST

web services)” bezeichnet. Es ist also eine auf XML basierende Beschreibungssprache für

HTTP-Schnittstellen. Laut dieser Quelle ist WADL das „REST equivalent of SOAP's [...]

WSDL“, bietet aber die entscheidende Erweiterung, dass Ressourcen eine direkte

Repräsentation im XML Schema haben, an. Außerdem können diesen Ressourcen

zugeordnete Methoden modelliert werden, die genau auf die HTTP Methoden abgebildet

werden.

WADL ist eine „W3C Member Submission“, und ist unserer Meinung nach (von WSDL

abgesehen) der Ansatz mit der ausführlichsten und exaktesten Spezifikation.

4.1.2 Beispiel

Das nachfolgende Beispiel stammt aus der oben genannten Spezifikation und ist stark

gekürzt:

<resources base="http://api.search.yahoo.com/NewsSearchService/V1/">

 <resource path="newsSearch">

 <method name="GET" id="search">

 <request>

 <param name="appid" type="xsd:string" style="query"

required="true"/>

 <param name="query" type="xsd:string" style="query"

required="true"/>

 <param name="type" style="query" default="all">

 <option value="all"/> <option value="any"/> <option

value="phrase"/>

 </param>

 <param name="results" style="query" type="xsd:int"

default="10"/> […]

 <response status="200">

 </response> </method>

 </resource>

</resources>

Listing 3: WADL Beispielcode

10 (09.10.2013): http://en.wikipedia.org/wiki/Web_Application_Description_Language

http://en.wikipedia.org/wiki/Web_Application_Description_Language

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 23

4.1.3 Bewertung

4.1.3.1 Syntax

Können die Ressourcen der Schnittstelle definiert werden?

2 Punkte: In WADL können für die Beschreibung von Ressourcen Beschreibungen und

IDs hinterlegt werden. Außerdem ist es möglich, Ressourcen hierarchisch zu schachteln.

Können pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Das WADL Schema definiert das Element „method“, das über das Attribut

„name“ einer HTTP Methode zugeordnet wird.

Können erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: In WADL kann unter dem „method“ Element ein „request“, bzw. „response“

Element angehängt werden, für das wiederum eine Schemadefinition hinterlegt werden

kann, die mögliche Inputs, bzw. Outputs definiert.

Können Beziehungen zwischen Ressourcen definiert werden?

1 Punkt: WADL bietet die Möglichkeit, Ressourcen zu schachteln, wodurch

hierarchische Beziehungen ausgedrückt werden können. Andere Formen von

Beziehungen können nicht modelliert werden.

Kann für Methoden beschrieben werden, welche Statuscodes erzeugt werden

können?

3 Punkte: In WADL kann pro „response“, bzw. „request“ Element eine Liste von HTTP

Statuscodes angegeben werden.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: WADL bietet zwar die Möglichkeit, eigene Typen für Ressourcen zu

definieren, allerdings bietet die Sprache keine vordefinierten Typen.

Können Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden können?

3 Punkte: Ressourcen können hierarchisch geschachtelt werden, die URI Definitionen

gelten dann relativ zur übergeordneten Ressource.

Können in URI-Definitionen Templates verwendet werden?

3 Punkte: WADL erlaubt es, in URI Definitionen Templates in geschweiften Klammern

anzugeben, die in einem angehängten „param“ Element definiert werden können.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

24

4.1.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

0 Punkte: Mit WADL kann keine Semantik ausgedrückt werden.

Kann die Bedeutung einer Operation definiert werden?

0 Punkte: Mit WADL kann keine Semantik ausgedrückt werden.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

0 Punkte: Mit WADL kann keine Semantik ausgedrückt werden.

4.1.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

1 Punkt: Durch das Verwenden von XML entsteht relativ viel Overhead, vor allem durch

schließende Tags.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

3 Punkte: Die Verwendung von XML ist hilfreich, um hierarchische Beziehungen

darzustellen. Die definierten Schlüsselworte sind treffend gewählt:

<resources base="http://api.search.yahoo.com/NewsSearchService/V1/">

 <resource path="newsSearch">

 <method name="GET" id="search">

 <request>

 <param name="appid" type="xsd:string"

Listing 4: Schlüsselwörter in WADL

4.1.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

2 Punkte: Es sind diverse Blogs, Forumsposts, und Diskussionen zu WADL zu finden.

Apache bietet das Framework „CXF“, welches WADL unterstützt
11

. Außerdem bietet

IBM Produkte an
12

, die WADL unterstützen. Trotzdem ist der Eindruck entstanden, dass

WADL bisher noch nicht in großem Rahmen unterstützt wird.

Wie gut ist die Sprache dokumentiert

2 Punkte: Die Spezifikation auf der W3-Website ist ausführlich und bietet einige

Beispiele.

11 (09.10.2013) http://cxf.apache.org/docs/jaxrs-services-description.html
12 (09.10.2013)

http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver%2Ftopic

s%2Fwodm_dserver.html

http://cxf.apache.org/docs/jaxrs-services-description.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver%2Ftopics%2Fwodm_dserver.html
http://pic.dhe.ibm.com/infocenter/dmanager/v8r0m1/index.jsp?topic=%2Fcom.ibm.wodm.dserver%2Ftopics%2Fwodm_dserver.html

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 25

Wie gut sind die Tools dokumentiert, die für diese Sprache angeboten

werden?

3 Punkte: Es gibt ausführliche Installationsbeschreibungen und Anleitungen, auch mit

Bildern.

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

2 Punkte: Auf Grund der umfangreichen Spezifikation ist einiger Aufwand erforderlich,

um WADL vollständig zu erfassen.

Wie gut wird der Entwickler beim Modellieren bestehender Schnittstellen

unterstützt?

1 Punkt: Es gibt ein freies Browser-Tool „REST Describe“
13

, über das

Schnittstellenbeschreibungen interaktiv erstellt werden können.

Abbildung 9: REST Describe

Außerdem erlaubt das „CFX“ Framework von Apache, Java Methoden mit Annotationen

zu versehen:

13 (09.10.2013) http://tomayac.de/rest-describe/latest/RestDescribe.html

http://tomayac.de/rest-describe/latest/RestDescribe.html

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

26

@POST

@Path("books/{bookid}")

@Descriptions({

@Description(value = "Adds a new book", target =

DocTarget.METHOD),

@Description(value = "Requested Book", target = DocTarget.RETURN),

@Description(value = "Request", target = DocTarget.REQUEST),

@Description(value = "Response", target = DocTarget.RESPONSE),

@Description(value = "Resource", target = DocTarget.RESOURCE)})

Listing 5: Java Annotationen für WADL

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

1 Punkt: Das Browser-Tool „REST Describe“ (s.o.) kann Schnittstellenbeschreibungen

hierarchisch darstellen.

Unterstützung für: Schnittstellen sollen in einem maschinenlesbaren Format

beschrieben werden.

3 Punkte: Die mit dem Browser Tool „REST Describe“ (s.o.) erstellten

Schnittstellenbeschreibungen können als WADL-Dokument heruntergeladen werden.

Sind Java Annotationen in korrekter Syntax vorhanden, kann das „CXF“ Framework von

Apache automatisiert Java Klassen erzeugen..

Unterstützung für: Aus der entworfenen Schnittstelle sollen Code-Stubs

generiert werden können.

3 Punkte: Das Tool „wadl2Java“
14

 kann clientseitig Codestubs generieren. Es setzt auf

der Jax-RS Api auf, und erzeugt aus WADL Beschreibungen Java-Klassen. Es kann über

die Kommandozeile, als Ant-Plugin, oder als Maven Plugin ausgeführt werden.

4.1.4 Fazit

WADL wirkt insgesamt „erwachsen“. Es bietet (bis auf WSDL) die ausführlichste und

genaueste Spezifikation und setzt mit XML auf ein erfolgreiches und weit verbreitetes

Format. Uns gefallen die Möglichkeiten, Ressourcen in Hierarchien zu modellieren, und

Ressourcentypen definieren zu können.

Über WADL ist mehr Information, Dokumentation, und Diskussion zu finden, als zu

jeder anderen Beschreibungssprache. Sprechend ist auch, dass sich IBM und Apache

bereits damit befasst haben.

14 (09.10.2013) https://wadl.java.net/wadl2java.html

https://wadl.java.net/wadl2java.html

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 27

4.2 WSDL 2.0

4.2.1 Beschreibung

WSDL 2.0 [13] (Web Service Definition Language) ist der Quasi-Nachfolger von WSDL

1.1 (Web Service Description Language) und im Unterschied zu diesem eine

Recommendation des W3C. Neben einigen kosmetischen Änderungen, wie der

Umbenennung von portType in Interface, ist es nun auch möglich, REST Dienste in

WSDL zu beschreiben. Dies wird dadurch ermöglicht, dass in WSDL 2.0 Bindings zu

allen HTTP Methoden angegeben werden können
15

. WSDL 2.0 verfolgt den service- bzw.

operationenorientierten Ansatz.

4.2.2 Beispiel

Nachfolgendes Listing zeigt eine WSDL 2.0 Beispiel-Datei. Für REST Services sind vor

allem der Interface- und Binding-Tag interessant, weil hier die Funktionen beschrieben

werden, die durchgeführt werden können.

<wsdl:description xmlns:wsdl="http://www.w3.org/ns/wsdl"

 targetNamespace="http://www.bookstore.org/booklist/wsdl"

 xmlns:tns="http://www.bookstore.org/booklist/wsdl"

 xmlns:whttp="http://www.w3.org/ns/wsdl/http"

 xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:msg="http://www.bookstore.org/booklist/xsd">

 <wsdl:documentation>

 This is a WSDL 2.0 description of a sample bookstore service

 listing for obtaining book information.

 </wsdl:documentation>

 <wsdl:types>

 <xs:import namespace="http://www.bookstore.org/booklist/xsd"

 schemaLocation="booklist.xsd"/>

 </wsdl:types>

15 (09.10.2013): http://www.w3.org/TR/wsdl20-primer/#basics-interface

http://www.w3.org/TR/wsdl20-primer/#basics-interface

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

28

 <wsdl:interface name="BookListInterface">

 <wsdl:operation name="getBookList"

 pattern="http://www.w3.org/ns/wsdl/in-out"

 style="http://www.w3.org/ns/wsdl/style/iri"

 wsdlx:safe="true">

 <wsdl:documentation>

 This operation returns a list of books.

 </wsdl:documentation>

 <wsdl:input element="msg:getBookList"/>

 <wsdl:output element="msg:bookList"/>

 </wsdl:operation>

 </wsdl:interface>

 <wsdl:binding name="BookListHTTPBinding"

 type="http://www.w3.org/ns/wsdl/http"

 interface="tns:BookListInterface">

 <wsdl:documentation>

 The RESTful HTTP binding for the book list service.

 </wsdl:documentation>

 <wsdl:operation ref="tns:getBookList" whttp:method="GET"/>

 </wsdl:binding>

 <wsdl:service name="BookList" interface="tns:BookListInterface">

 <wsdl:documentation>

 The bookstore's book list service.

 </wsdl:documentation>

 <wsdl:endpoint name="BookListHTTPEndpoint"

 binding="tns:BookListHTTPBinding"

 address="http://www.bookstore.com/books/">

 </wsdl:endpoint>

 </wsdl:service>

</wsdl:description>

Listing 6: Beschreibung einer Schnittstelle mit WSDL
16

16 (09.10.2013): http://www.ibm.com/developerworks/webservices/library/ws-restwsdl/

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 29

4.2.3 Bewertung

4.2.3.1 Syntax

Können die Ressourcen der Schnittstelle definiert werden?

2 Punkte: Ressourcen können nicht direkt modelliert werden, sondern lediglich

Endpoints von Services mit bestimmten Interfaces, die Operationen zur Verfügung

stellen. Somit müssen Ressourcen in WSDL 2.0 als Interfaces beschrieben werden.

Können pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Ja, alle Operationen können beschrieben werden, sowie der Inhalt der zu

erwartenden Input- bzw. Outputmessage.

Können erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: Ja, mit Hilfe von XML Schemata können diese definiert werden.

Können Beziehungen zwischen Ressourcen definiert werden?

2 Punkte: WSDL 2.0 ermöglicht es, Interfaces zu vererben. Eine konkrete Möglichkeit

die Beziehungen zwischen Ressourcen zu modellieren existiert nur, wenn man das in

WSDL 2.0 spezifizierte Mapping zu RDF/OWL nutzt, um seine WSDL-File in RDF zu

übersetzen und diese anschließend mit anderen semantischen Informationen

zusammenführt.
17

Kann für Methoden beschrieben werden, welche Statuscodes erzeugt werden

können?

1 Punkt: Es ist nur für Fehlernachrichten (Faults) möglich, einen HTTP-Statuscode

anzugeben.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: Nein, dies ist in WSDL 2.0 nicht möglich.

Können Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden können?

0 Punkte: Nein, dies ist in WSDL 2.0 nicht möglich.

Können in URI-Definitionen Templates verwendet werden?

3 Punkte: Ja, mit Hilfe von Tokens. [14]

17 (09.10.2013): http://www.w3.org/TR/2007/NOTE-wsdl20-rdf-20070626/

http://www.w3.org/TR/2007/NOTE-wsdl20-rdf-20070626/

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

30

4.2.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

1 Punkt: Nur möglich unter Zuhilfenahme des RDF-Mappings und der Definition und

Nutzung weiterer RDF-Dokumente.

Kann die Bedeutung einer Operation definiert werden?

1 Punkt: Nur möglich unter Zuhilfenahme des RDF-Mappings und der Definition und

Nutzung weiterer RDF-Dokumente.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

1 Punkt: Nur möglich unter Zuhilfenahme des RDF-Mappings und der Definition und

Nutzung weiterer RDF-Dokumente.

4.2.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

1 Punkt: Sehr großer Overhead. WSDL 2.0 nutzt XML und hat daher ein sehr verboses

Erscheinungsbild. Hinzu kommt der große spezifizierte Umfang von WSDL 2.0, sodass

zum Teil umständliche Konstrukte nötig sind, um vergleichsweise einfache Dinge zu

modellieren.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

2 Punkte: Auch für Menschen die sich bereits mit WSDL 1.1 auskennen, ist WSDL 2.0

nicht sofort zu durchschauen, weil zum Beispiel einige Namensänderungen an Tags

durchgeführt wurden. Hinzu kommt, dass WSDL 2.0 nicht speziell für REST entwickelt

wurde.

4.2.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

1 Punkt: WSDL 2.0 ist seit 2007 eine W3C Recommendation, allerdings ist WSDL 2.0

bei weitem nicht so verbreitet wie sein Vorgänger WSDL 1.1.

Wie gut ist die Sprache dokumentiert?

2 Punkte: Die Sprache ist ausführlich dokumentiert, jedoch ohne Beispiele.
18

Wie gut sind die Tools dokumentiert, die für diese Sprache angeboten

werden?

1 Punkt: Zum Zeitpunkt der Erstellung dieser Arbeit waren nur wenige Tools im Internet

vorhanden und deren Entwicklungsstatus zum Teil unbekannt (siehe Apache Woden
19

).

18 (09.10.2013): http://www.w3.org/TR/2007/REC-wsdl20-20070626/

http://www.w3.org/TR/2007/REC-wsdl20-20070626/

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 31

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

1 Punkt: Aufgrund der sehr komplexen Spezifikation besteht ein relativ hoher Aufwand.

Wird der Entwickler beim Modellieren unterstützt?

1 Punkt: Aufgrund mangelnden Toolsupports, vor allem für REST/ROA, kann nur auf

andere XML-Werkzeuge zurückgegriffen werden.

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

0 Punkte: Nein, uns ist kein Tool bekannt.

Unterstützung für: Schnittstellen sollen in einem maschinenlesbaren Format

beschrieben werden.

3 Punkte: Ja, weil sämtliche Dateien mit Hilfe von XML/XSD beschrieben werden.

Unterstützung für: Aus der entworfenen Schnittstelle sollen Code-Stubs

generiert werden können.

1 Punkt: Dies ist prinzipiell möglich, aber bislang fehlen die nötigen Tools. Vor allem

für das Erstellen von REST Services.

4.2.4 Fazit

Man merkt WSDL 2.0 seine SOA-Herkunft an. Im Gegensatz zu WSDL 1.1 ist es mit

WSDL 2.0 inzwischen zwar möglich REST Services zu beschreiben, jedoch wirkt sich

die fehlende Ressourcenorientierung und mangelnde Toolunterstützung negativ aus. Zum

jetzigen Zeitpunkt lässt sich auch der Erfolg von WSDL 2.0 noch nicht absehen. Es ist

fraglich ob es die sehr weite Verbreitung von WSDL 1.1 jemals erreichen wird.

19 (09.10.2013): http://ws.apache.org/woden/

http://ws.apache.org/woden/

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

32

4.3 hRESTS

4.3.1 Beschreibung

„hRESTS“ [15] ist ein auf „Notation 3“
20

 basierendes Mikroformat, in welchem RESTful

Webservices beschrieben werden können. Das bedeutet, es ist dafür entworfen,

vollständig in HTML-, oder XHTML Code eingebettet zu werden. Diese Form wird

dadurch begründet, dass der größte Teil der vorhandenen Dokumentation von RESTful

Webservices in Textform und für Maschinen nicht verwertbar in HTML Format vorliegt.

Die Idee ist also, diese schon verfügbare Dokumentation mit maschinenverwertbaren

Informationen über den Service zu erweitern. „hRESTS“ betont dabei die Einfachheit,

das Modell beschränkt sich auf einige wenige Klassen.

4.3.2 Beispiel

Im Beispiel ist eine textuelle Beschreibung eines Webservice um Maschinenlesbare

„hRESTS“ Beschreibungen (hervorgehoben) erweitert worden. Es kann formal

ausgedrückt werden, was Beschreibung des Input, und was Beschreibung des Output ist,

diese werden der HTTP Get-Methode zugeordnet.

<div class=”service” id=”svc”>

<p>Description of the ACME Hotels

service:</p>

<div class=”operation” id=”op1”><p>

 The operation <code class=”label”>getHotelDetails</code> is

 invoked using the method GET

 at <code class=”address”>http://example.com/h/{id}</code>,

 with the ID of the particular hotel replacing

 the parameter <code>id</code>.

 It returns the hotel details in an

 <code>ex:hotelInformation</code> document.

</p></div></div>

Listing 7: hRESTS Beispielcode

4.3.3 Bewertung

4.3.3.1 Syntax

Können die Ressourcen der Schnittstelle definiert werden?

0 Punkte: „hRESTS“ ist nicht ressourcenorientiert, sondern betrachtet Services und

Operationen. Es gibt im Modell von hRESTS keine direkte Darstellung für Ressourcen.

20 (09.10.2013): http://en.wikipedia.org/wiki/Notation3

http://en.wikipedia.org/wiki/Notation3

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 33

Können pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Es können erlaubte Operationen einem Service zugeordnet aufgelistet und auf

HTTP-Methoden abgebildet werden.

Können erwarteter Input bzw. Output des Servers definiert werden?

1 Punkt: „hRESTS“ bietet keine Möglichkeit, Schemadefinitionen für erlaubte

Ressourcentypen zu definieren. Es kann nur definiert werden, dass eine Methode einen

Input, bzw. einen Output hat.

Können Beziehungen zwischen Ressourcen definiert werden?

0 Punkte: „hRESTS“ bietet keine Darstellung für Ressourcen, und damit auch keine

Beziehungen zwischen Ressourcen.

Kann für Methoden beschrieben werden, welche Statuscodes erzeugt werden

können?

0 Punkte: Es gibt keine Möglichkeit, mögliche Statuscodes aufzulisten.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: „hRESTS“ definiert keine Ressourcentypen.

Können Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden können?

0 Punkte: „hRESTS“ bietet keine Darstellung für Ressourcen.

Können in URI-Definitionen Templates verwendet werden?

3 Punkte: In URI Definitionen können Platzhalter der Form „{id}“ verwendet werden.

4.3.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

0 Punkte: „hRESTS“ bietet keine Möglichkeit, Semantik auszudrücken.

Kann die Bedeutung einer Operation definiert werden?

0 Punkte: „hRESTS“ bietet keine Möglichkeit, Semantik auszudrücken.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

0 Punkte: „hRESTS“ bietet keine Möglichkeit, Semantik auszudrücken.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

34

4.3.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: Ausgehend von bestehendem HTML-Code sind die zusätzlichen Annotationen

sehr knapp, der Overhead ist minimal. (siehe Beispiel oben)

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

1 Punkt: Die Einbettung in HTML Code bringt es mit sich, dass die „hRESTS“

Beschreibungen zwischen HTML Tags stehen, und dadurch schwer lesbar sind, weil die

Anreicherungen zwischen HTML-Konstrukten gesucht werden muss.

4.3.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

0 Punkte: Uns ist kein Einsatz von „hRESTS“ bekannt.

Wie gut ist die Sprache dokumentiert

2 Punkte: „hRESTS“ wird in der Arbeit [16] vorgestellt, außerdem gibt es einen

Webauftritt
21

, der im Wesentlichen den Inhalt des Papers enthält, um einige Beispiele

erweitert.

Wie gut sind die Tools dokumentiert, die für diese Sprache angeboten

werden?

0 Punkte: Es gibt ein XSLT Style-Sheet
22

 ohne nennenswerte Dokumentation, welches

hREST Beschreibungen aus XHTML Code extrahieren kann. Ansonsten gibt es für

„hRESTS“ keine Tools.

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

3 Punkte: Die Sprache bietet eine sehr überschaubare Anzahl an Möglichkeiten an und

ist deshalb leicht zu erlernen.

Wie gut wird der Entwickler beim modellieren bestehender Schnittstellen

unterstützt?

0 Punkte: Es gibt keine Tools, die den Entwickler beim Erstellen der „hRESTS“

Beschreibungen unterstützen.

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

0 Punkte: Es gibt keine grahische Darstellung für „hRESTS“ Beschreibungen.

21 (09.10.2013): http://knoesis.org/research/srl/projects/hRESTs
22 (09.10.2013): http://members.sti2.at/~jacekk/hrests/hrests.xslt

http://knoesis.org/research/srl/projects/hRESTs
http://members.sti2.at/~jacekk/hrests/hrests.xslt

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 35

Unterstützung für: Schnittstellen sollen in einem maschinenlesbaren Format

beschrieben werden.

1 Punkt: Für XHTML Code, der mit hREST angereichert ist, kann über ein XSLT

Stylesheet automatisch RDF generiert werden.

Unterstützung für: Aus der entworfenen Schnittstelle sollen Code-Stubs

generiert werden können.

0 Punkte: Es gibt keine Tools, die aus „hRESTS“ Beschreibungen Codestubs generieren

können.

4.3.4 Fazit

„hRESTS“ bringt als Mikroformat den Vorteil, in bestehenden XHTML Code integriert

werden zu können und ist durch sein schlankes Modell schnell zu erfassen. Allerdings

können einige elementaren Begriffe zum Prinzip REST nicht beschrieben werden, allen

voran der Begriff „Ressource“.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

36

4.4 MicroWSMO

4.4.1 Beschreibung

Mit WSMO-Lite [17] ist eine Menge von Begriffen angeboten, die über SAWSDL

(SemanticAnnotationsforWSDLandXMLSchema) Annotationen [18] verwendet werden

können, um semantische Zusammenhänge im Bereich Webservices auszudrücken. Diese

Ontologie wurde für die Verwendung in WSDL Beschreibungen entwickelt und eignet

sich ohne Modifikation nicht für die Beschreibung von RESTful Services.

In der Ausarbeitung zu MicroWSMO [19] erarbeiten die Autoren verschiedene

Servicemodelle als RDF Schemadefinitionen, die auf das WSMO-Lite Servicemodell

aufbauend zusammen mit einer Erweiterung des „hRESTS“ [16] Servicemodell

verwendet werden können, um RESTful Webservices zu beschreiben. Dafür wird ein

„Resource oriented service model“ (ROSM) eingeführt, welches RDF-Klassen wie

„ServicedResource“, „Address“, „Operation“, und „Parameter“ einführt. Für die

Beschreibung von semantischen Zusammenhängen greifen die Autoren auf SAWSDL

Annotationen zurück, für die sie die WSMO-Lite Ontologie verwenden.

4.4.2 Beispiel

Im Beispiel ist die Beschreibung eines Webservice in HTML um MicroWSMO

Beschreibungen erweitert (hervorgehoben). [15]

<div class=”service” id=”svc”>

 <h1>ACME Hotels service API</h1>

 <p>This service is a

 <a rel=”model”

href=”http://example.com/ecommerce/hotelReservation”>

 hotel reservation service. </p>

 <div class=”operation” id=”op1”>

 <h2>Operation <code class=”label”>getHotelDetails</code></h2>

 <p> Invoked using the GET

 at <code class=”address”>http://example.com/h/{id}</code>

 Parameters:

[…]

Listing 8: MicroWSMO Beispielcode

Hier sind vor allem die semantischen Modellreferenzen zu den Klassen

„hotelReservation“ und „hotel“ zu bemerken.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 37

4.4.3 Bewertung

4.4.3.1 Syntax

Können die Ressourcen der Schnittstelle definiert werden?

2 Punkte: MicroWSMO definiert die RDF Klasse „ServicedResource“ mit Zuordnung zu

einem Service, mit der Ressourcen dargestellt werden können.

Können pro Ressource erlaubte Operationen definiert werden?

3 Punkte: MicroWSMO bietet als RDF Property „supportsOperation“ eine Zuordnung

von „Operation“ Klassen zu Ressourcen. Die Methoden können wiederum auf die HTTP-

Methoden aus dem HTTP Namespace abgebildet werden.
23

Können erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: An dieser Stelle sehen die Autoren vor, den SAWSDL Namespace
24

 zu

verwenden, damit kann als „modelReference“ eine URI zu einer Schemadefinition

verlinkt werden.

Können Beziehungen zwischen Ressourcen definiert werden?

1 Punkt: Es können „ResourceCollections“ definiert werden, und Ressourcen dieser

Collection zugeordnet werden, allerdings ist die Sprache auf solche hierarchischen

Beziehungen beschränkt, es können keine beliebigen Referenzen definiert werden.

Kann für Methoden beschrieben werden, welche Statuscodes erzeugt werden

können?

3 Punkte: Ja, MicroWSMO verwendet dafür die „ResponseCode“ Klasse aus dem HTTP

Namespace.

Bietet die Sprache vordefinierte Ressourcentypen an?

1 Punkt: MicroWSMO bietet die RDF Klasse „ServicedResourceCollection“, die

wiederum mehrere „ServicedResource“ Instanzen enthalten kann.

Können Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden können?

0 Punkte: MicroWSMO erlaubt es zwar, Ressourcen hierarchisch anzuordnen, URIs

müssen aber immer absolut angegeben werden.

Können in URI-Definitionen Templates verwendet werden?

3 Punkte: MicroWSMO erlaubt es, Teile der URI als Templates in der Form “{id}”

anzugeben.

23 (09.10.2013): http://www.w3.org/2006/http#
24 (09.10.2013): http://www.w3.org/ns/sawsdl#

http://www.w3.org/2006/http
http://www.w3.org/ns/sawsdl

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

38

4.4.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

0 Punkte: Es können zwar für Inputs und Outputs von Methoden über eine

„modelReference“ semantische Klassen angegeben werden, nicht aber direkt für

Ressourcen.

Kann die Bedeutung einer Operation definiert werden?

2 Punkte: Ja, hierfür soll der SAWSDL Namespace verwendet werden, damit können

über die RDF Properties „modelReference“, „liftingSchemaMapping“, und

„loweringSchemaMapping“ für Methoden und deren Inputs und Outputs semantische

Modellklassen angegeben werden.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

0 Punkte: Es ist in MicroWSMO nicht möglich, Beziehungen zwischen Ressourcen

semantisch zu beschreiben.

4.4.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: Ausgehend von bestehendem HTML-Code sind die zusätzlichen Annotationen

sehr knapp, der Overhead ist minimal.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

1 Punkt: Wie bei „hRESTS“ finden wir die zwischen HTML Code eingebetteten

Beschreibungen schwer lesbar (siehe Beispiel oben).

4.4.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

0 Punkte: Die Sprache wird bisher nicht eingesetzt.

Wie gut ist die Sprache dokumentiert?

1 Punkt: MicroWSMO wird bisher nur in wissenschaftlichen Arbeiten beschrieben. Wir

finden, dass das Verständnis hier durch die Vielzahl an verwendeten Sprachen,

Ontologien, und Notationen erschwert wird.

Wie gut sind die Tools dokumentiert, die für diese Sprache angeboten

werden?

0 Punkte: Die Arbeit verweist auf ein XSLT Style-Sheet, welches aus hREST

Beschreibungen in XHTML RDF erzeugen kann. Das Sheet ist laut Paper

„selbsterklärend“, es gibt also keinerlei Dokumentation.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 39

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

1 Punkt: Die Verwendung von Ontologien und verschiedenen Service-Modellen steht

dem raschen Erlenen deutlich im Weg. Außerdem setzt die Verwendung anderer

Sprachen wie hREST oder SAWSDL Kenntnis über diese voraus oder erfordert

zusätzliche Einarbeitung.

Wie gut wird der Entwickler beim modellieren unterstützt?

0 Punkte: Es gibt keine Tools, die den Entwickler beim Erstellen von MicroWSMO

Beschreibungen unterstützen.

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

0 Punkte: Es gibt keine Möglichkeiten, MicroWSMO Beschreibungen graphisch

darzustellen.

Unterstützung für: Schnittstellen sollen in einem maschinenlesbaren Format

beschrieben werden.

3 Punkte: Über eine XSL Transformation können MicroWSMO Beschreibungen aus

HTML nach RDF konvertiert werden.

Unterstützung für: Aus der entworfenen Schnittstelle sollen Code-Stubs

generiert werden können.

0 Punkte: Es gibt bisher keine Tools, die aus MicroWSMO Beschreibungen Code-Stubs

generieren können.

4.4.4 Fazit

Durch die Erweiterung des Servicemodells von „hRESTS“ gewinnt MicroWSMO stark

an Bedeutung für das Beschreiben von Schnittstellen von RESTful Webservices. Es ist

nun möglich, die wichtigsten Elemente einer Schnittstelle zu beschreiben, nämlich

Ressourcen, Operationen, Inputs, und Outputs. Auch geht MicroWSMO mit der

Möglichkeit, Modellreferenzen zu definieren, in die richtige Richtung für „service

discovery“.

Die Einbettung in HTML Code finden wir etwas unglücklich, weil sie die MicroWSMO

Beschreibungen sehr schwer lesbar macht.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

40

4.5 SEREDASj

4.5.1 Beschreibung

SEREDASj [3] ist eine semantische Beschreibungssprache für RESTful Services. Die

Abkürzung selbst steht für SEmantic REstful DAta Services, wobei das angehängte „j“

die Verwendung von JSON verdeutlichen soll. Bei der Entwicklung wurde insbesondere

darauf geachtet, SEREDASj als Beschreibungssprache so einfach wie möglich zu halten.

Eine SEREDASj-Beschreibung besteht aus Metadaten und einer Beschreibung der

Struktur der definierten Repräsentation. Diese Unterteilung ist im Codebeispiel gut zu

erkennen.

Im Gegensatz zu anderen Ansätzen werden hier die architektonischen Eigenschaften von

REST berücksichtigt. Es werden also anstatt Operationen oder In- bzw. Output die

eigentlichen Repräsentationen der Ressourcen definiert, um RESTful Services

angemessen beschreiben zu können.

Neben der Dokumentation des Services bzw. der verwendeten Datenformate können

Elemente einer JSON-Repräsentation durch semantische Annotationen beispielsweise so

beschrieben werden, dass einem Client klar ist, welches Element eine URI darstellt und

darüber hinaus, was dessen Bedeutung ist.

Die automatische Erstellung einer Dokumentation aus einer SEREDASj-Beschreibung ist

prinzipiell möglich.

4.5.2 Beispiel

Nachfolgend werden eine JSON Repräsentation und die zugehörige SEREDASj-

Beschreibung aufgeführt. Alle Codebeispiele sind der Ausarbeitung [3] entnommen.

"id": 556410,

"first_name": "Markus",

"last_name": "Lanthaler",

"gender": "male",

"knows": [

{ "id": 586807, "name": "Christian Gütl" },

{ "id": 790980, "name": "John Doe" }]

Listing 9: SEREDASj: JSON Repräsentation

Das Beispiel setzt ein fiktives soziales Netzwerk voraus und stellt die Repräsentation

einer Person und ihrer Freunde dar.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 41

Das folgende Codebeispiel zeigt die beiden wesentlichen Teile einer SEREDASj-

Beschreibung. Die erforderlichen Metadaten bilden dabei den ersten Block. Hier werden

externe Quellen angegeben und Links sowie deren Bedeutung definiert. Es wird deutlich,

dass ein Client erkennen kann, dass es sich bei einer ID um einen Link zu einer anderen

Person handelt.

"meta": {

"prefixes": {

"foaf": "http://xmlns.com/foaf/0.1/",

"ex": " http://example.com/onto#",

"owl": "http://www.w3.org/2002/07/owl#",

"iana": "http://www.iana.org/link-relations/"},

"links": {

"/user/{id}": {

"mediaType": "application/json",

"seredasjDescription": "#",

"semantics": {

"owl:sameAs": "<#properties/knows>"},

"variables": {

"id": {

"binding": "#properties/knows/id",

"model": "[ex:id]"}},

"requestDescription": "#"

},}}, […]

Listing 10: Metadaten einer SEREDASj-Beschreibung

Der zweite Teil definiert die Struktur obiger JSON-Repräsentation und gibt auch hier die

Bedeutung der einzelnen Elemente an.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

42

"type": "object",

"model": "[foaf:Person]",

"properties": {

"id": {

"type": "number", "model": "[ex:id]" },

"first_name": {

"type": "string","model": "[foaf:firstName]" },

"last_name": {

"type": "string", "model": "[foaf:surname]" },

"gender": {

"type": "string", "model": "[foaf:gender]" },

"knows": {

"type": "array",

"model": "[foaf:knows]",

"items": {

"type": "object", "model": "[foaf:Person]",

"properties": {

"id": {

"type": "number", "model": "[ex:id]" },

"name": {

"type": "string", "model": "[foaf:name]"

}}}}}

Listing 11: Elementdefinition einer SEREDASj-Beschreibung

4.5.3 Bewertung

4.5.3.1 Syntax

Können die Ressourcen der Schnittstelle definiert werden?

3 Punkte: Ja, es kann ein JSON Schema angegeben werden.

Können pro Ressource erlaubte Operationen definiert werden?

2 Punkte: SEREDASj verwendet ganz bewusst eine Sichtweise auf Repräsentationen,

nicht auf angebotene Operationen. Erlaubte Operationen müssen durch eigene

SEREDASj-Beschreibungen definiert und eingebunden werden (z.B. um Request Bodies

zu beschreiben) und können nicht direkt inline beschrieben werden.

Können erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: Ja, für die Beschreibung von Inputs und Outputs kann eine SEREDASj

Beschreibung hinterlegt werden. Das Modell sieht vor, zu einem Link wiederum eine

SEREDASj Beschreibung anzugeben, die Request-Bodies beschreibt. Als einzige Quelle

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 43

ist das Paper selbst zu finden, in welchem hierfür allerdings kein Beispiel angegeben

wird.

Können Beziehungen zwischen Ressourcen definiert werden?

3 Punkte: Das ist eine der Stärken von SEREDASj. Beziehungen zwischen Ressourcen

werden über Links in der SEREDASj Beschreibung einer Repräsentation definiert.

Kann für Methoden beschrieben werden, welche Statuscodes erzeugt werden

können?

0 Punkte: SEREDASj ist zur Beschreibung der Repräsentationen von Ressourcen

konzipiert, nicht für die zugehöriger Methoden.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: Es sind keine Ressourcentypen in SEREDASj definiert.

Können Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden können?

0 Punkte: Die Schachtelung von Ressourcen ist in SEREDASj so nicht möglich.

Beziehungen zwischen Ressourcen werden über Links ausgedrückt. Die URIs bleiben

davon sinnvoller Weise unberührt.

Können in URI-Definitionen Templates verwendet werden?

3 Punkte: URI Angaben können Platzhalter enthalten, die einem Feld in der Definition

der Ressourcenrepräsentation zugeordnet sind.

4.5.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

3 Punkte: Die Bedeutung einer Ressource ist Teil der SEREDASj-Beschreibung und

kann als Verweis auf eine Ontologie angegeben werden.

Kann die Bedeutung einer Operation definiert werden?

0 Punkte: Mit SEREDASj werden vor allem Ressourcen bzw. deren Repräsentationen

beschrieben. Eine direkte Beschreibung einer Operation und deren Bedeutung ist somit

nicht vorgesehen.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

3 Punkte: Gerade hierauf wurde Wert gelegt. Die Beschreibung der Beziehung zu

anderen Ressourcen gestaltet sich genauso einfach wie die semantische Annotation

dieser.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

44

4.5.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: Bedingt durch die Darstellung in JSON und die Wahl von kurzen, prägnanten

Schlüsselwörtern ist der Overhead minimal.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

3 Punkte: Bedingt durch JSON ist die Darstellung übersichtlich und klar strukturiert.

Außerdem lässt sich die Struktur einer SEREDASj-Beschreibung durch das definierte

Modell sehr gut erfassen.

4.5.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

0 Punkte: SEREDASj wird bisher nicht eingesetzt und existiert nur auf theoretischer

Basis.

Wie gut ist die Sprache dokumentiert?

1 Punkt: An Dokumentation ist außer dem Paper selbst nur eine Präsentation
25

 des

Autors zu finden, die im Wesentlichen den gleichen Inhalt enthält. Die Spezifikation im

Paper macht einen vollständigen Eindruck, ist dabei allerdings sehr kompakt und enthält

nur wenig Beispielmaterial.

Wie gut sind die Tools dokumentiert, die für diese Sprache angeboten

werden?

0 Punkte: Auf Grund der fehlenden Verbreitung gibt es für SEREDASj noch keine

Tools.

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

3 Punkte: Eine Anforderung bei der Konzeption von SEREDASj war, dass die

Einarbeitungszeit auf ein Minimum reduziert wird, damit die Verwendung nicht auf

Grund dieser Barriere ausgeschlossen wird. Das wird unter anderem durch die

Verwendung von JSON konsequent verfolgt und ist unserer Meinung nach gelungen.

Wie gut wird der Entwickler beim Modellieren bestehender Schnittstellen

unterstützt?

0 Punkte: Es gibt weder Modelle noch eine Unterstützung für deren Erstellung. Die

Beschreibung der Ressourcen erfolgt manuell.

25 (09.10.2013): http://de.slideshare.net/lanthaler/a-semantic-description-language-for-restfful-data-

services-to-combat-semaphobia-8064613

http://de.slideshare.net/lanthaler/a-semantic-description-language-for-restfful-data-services-to-combat-semaphobia-8064613
http://de.slideshare.net/lanthaler/a-semantic-description-language-for-restfful-data-services-to-combat-semaphobia-8064613

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 45

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

0 Punkte: Es gibt keine graphische Darstellung für SEREDASj.

Unterstützung für: Schnittstellen sollen in einem maschinenlesbaren Format

beschrieben werden.

1 Punkt: Im Paper beschreibt der Autor, wie SEREDASj-Beschreibungen in RDF

konvertiert werden können. Die Konvertierung ist simpel und wenig fehleranfällig.

Allerdings ist dieses Vorgehen bisher nicht umgesetzt bzw. die Umsetzung nicht frei

zugänglich.

Unterstützung für: Aus der entworfenen Schnittstelle sollen Code-Stubs

generiert werden können.

0 Punkte: Das Erstellen von Code-Stubs ist nicht Teil von SEREDASj.

4.5.4 Fazit

SEREDASj begründet eine spezielle, ressourcenorientierte Sichtweise und hält diese

konsequent ein. Dabei wurde viel Wert auf Einfachheit und Verständlichkeit gelegt.

Repräsentationen von Ressourcen können umfassend beschrieben und deren Bedeutung

angegeben werden. Einzig der mangelnde Erfolg in Bezug auf die Verwendung trüben

den sehr positiven Gesamteindruck.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

46

4.6 Swagger

4.6.1 Beschreibung

Swagger [20] ist Spezifikation und Framework zugleich und wurde für die

Dokumentation von APIs entwickelt. Der grundlegende Gedanke ist dabei, dass die

Dokumentation an die API eines RESTful Service gebunden und dadurch stets aktuell ist.

Im Vordergrund steht außerdem die Interaktion mit der API durch eine die Schnittstelle

veranschaulichende Benutzeroberfläche.

Abbildung 10: Übersicht einer API mit Swagger [21]

Obiges Beispiel ist auf http://petstore.swagger.wordnik.com/ zu finden. Die zur

Verfügung stehenden HTTP-Operationen können hier durch die farbliche Hervorhebung

in der Benutzeroberfläche gut unterschieden werden, bieten eine ausreichende

Kurzbeschreibung und können „ausgeklappt“ werden, um Details anzuzeigen. Auch die

Ressourcen lassen sich dieser Auflistung entnehmen. Die dokumentierte API lässt sich

damit insgesamt sehr gut erfassen.

Auffallend ist, dass mit dem Ansatz von Swagger eigentlich Operationen beschrieben

werden, anstatt Repräsentationen von Ressourcen, welche wesentlich für RESTful

Services sind.

4.6.2 Beispiel

Die Benutzeroberfläche erlaubt es dem Anwender, sich die Operationen mit Hilfe von

Interaktion genauer anzuschauen. Dabei sind In- bzw. Output klar zu erkennen und die

Kurzbeschreibung einzelner Parameter zum besseren Verständnis ebenfalls aufgeführt.

http://petstore.swagger.wordnik.com/#!/

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 47

Außerdem lassen sich der Beschreibung mögliche Error Status Codes und deren

Begründung entnehmen.

Abbildung 11: Beispiel für die Darstellung einer HTTP-Methode mit Swagger-UI [21]

Der für solche Beschreibungen erforderliche Code ist in JSON gehalten und gestaltet sich

dadurch schlicht und gut lesbar. Eine Beschreibung für eine ähnliche Operation würde

wie hier abgebildet aussehen.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

48

Abbildung 12: Beispielcode für Swagger [20]

Der Output wird dabei durch das Feld „type“ beschrieben, während „parameters“ den

erforderlichen Input definiert. Die Felder „nickname“, „summary“ und „notes“ dienen

dabei als Beschreibungen mit unterschiedlichem Umfang.

4.6.3 Bewertung – Swagger

4.6.3.1 Syntax

Können die Ressourcen der Schnittstelle definiert werden?

2 Punkte: Swagger stellt primär angebotene Operationen dar, Ressourcen sind im Code

als „apis“ aufgeführt. Dafür können Beschreibungen hinterlegt, und Pfade definiert

werden.

Können pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Die Operationen eines RESTful Service können vollständig definiert werden.

Das Feld „method“ erlaubt dabei die Werte GET, POST, PUT und DELETE,

entsprechend der benötigten HTTP-Methode. Für Operationen können außerdem

aussagekräftige Bezeichner gewählt und Kurz- sowie ausführliche Beschreibungen

verfasst werden.

Können erwarteter Input bzw. Output des Servers definiert werden?

2 Punkte: In- bzw. Output einer Operation können angegeben werden. Während man für

den Input erforderliche Parameter definiert, wird für den Output direkt der Datentyp

angegeben. Swagger erlaubt es dafür, JSON-Schemadefinitionen zentral zu hinterlegen,

die dann im gleichen Swagger-Dokument als In- bzw. Outputs referenziert werden

können. Allerdings ist es nicht möglich, externe Schemadefinitionen über URLs zu

verlinken.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 49

Können Beziehungen zwischen Ressourcen definiert werden?

0 Punkte: Nein, eine solche Möglichkeit ist nicht vorgesehen.

Kann für Methoden beschrieben werden, welche Statuscodes erzeugt werden

können?

3 Punkte: Ja, außerdem kann zu jedem Statuscode eine zusätzliche Beschreibungen und

ggf. ein Modell (z.B. bei ungültigem Eingabeformat) angegeben werden.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: Es werden keine vordefinierten Ressourcentypen angeboten.

Können Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden können?

0 Punkte: Diese Möglichkeit ist in Swagger nicht enthalten.

Können in URI-Definitionen Templates verwendet werden?

3 Punkte: Ja, dafür können Beschreibungen angegeben werden. Außerdem können

Datentypen definiert, für numerische Datentypen Minimum und Maximum angeben, und

über Enums mögliche Werte definiert werden, für Post-Methoden können komplexe

Datentypen definiert werden.

4.6.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

0 Punkte: Semantische Annotationen werden von Swagger nicht unterstützt.

Kann die Bedeutung einer Operation definiert werden?

0 Punkte: Semantische Annotationen werden von Swagger nicht unterstützt.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden

0 Punkte: Semantische Annotationen werden von Swagger nicht unterstützt.

4.6.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: Weil Swagger JSON verwendet, ist der benötigte Code sehr schlicht. Die

vorgesehenen Elemente sind dabei sinnvoll und stichhaltig benannt.

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

3 Punkte: Der Code ist auf Grund der Verwendung von JSON und der kompakten

Konstrukte sehr verständlich. Die Gliederung dieser ist sinnvoll und kann schnell erfasst

werden.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

50

4.6.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

1 Punkt: Swagger taucht immer wieder in Diskussion diverser Foren auf, und wird dabei

überwiegend sehr positiv bewertet. Es sind allerdings keine Firmen angegeben oder

bekannt, die Swagger einsetzen.

Wie gut ist die Sprache dokumentiert

3 Punkte: Swagger präsentiert sich mit einer übersichtlichen Dokumentation, und

profitiert dabei von zur Verfügung stehenden Live-Demos, für die sogar die zugrunde

liegenden Swagger-Beschreibungen ausgegeben werden können.

Wie gut sind die Tools dokumentiert, die für diese Sprache angeboten

werden? – 3 Punkte

3 Punkte: Es existieren mehrere Tools, zu denen jeweils ausführliche Anleitungen für die

Installation und deren Benutzung vorhanden sind.

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

3 Punkte: Die anschaulichen Beispiele von Swagger-Beschreibungen zu verschiedenen

APIs vermitteln durch die interaktive Benutzeroberfläche schnell ein gutes Gefühl für die

Sprache, das zusammen mit der übersichtlichen Dokumentation und der Einfachheit der

Sprache sehr gut zum Verständnis beiträgt.

Wie gut wird der Entwickler beim Modellieren bestehender Schnittstellen

unterstützt?

1 Punkt: Das Modellieren erfolgt manuell oder, falls vorhanden, durch die automatische

Interpretation der Swagger-Java-Annotationen.

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

2 Punkte: Die interaktive Benutzeroberfläche (Swagger-UI) stellt auf ihre Weise ein

Modell der beschriebenen Schnittstelle dar, die sich als hilfreich erweist und durch ihre

gelungene Gestaltung überzeugt.

Unterstützung für: Schnittstellen sollen in einem maschinenlesbaren Format

beschrieben werden.

3 Punkte: Die Entwickler definieren mit Swagger Core Java-Annotationen und die

erforderliche Logik zum Generieren von Swagger-Beschreibungen an.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 51

Unterstützung für: Aus der entworfenen Schnittstelle sollen Code-Stubs

generiert werden können.

3 Punkte: Die Entwickler bieten mit Swagger Codegen die Möglichkeit Code in

verschiedenen Sprachen basierend auf der entworfenen Swagger Resource Declaration zu

generieren.

4.6.4 Fazit

Swagger hinterlässt einen durchweg positiven Eindruck und besticht durch die

angebotene Benutzeroberfläche. Hierbei sind auch die Beschreibungsmöglichkeiten für

Schnittstellen sinnvoll und auf die Anwendung in der Praxis ausgerichtet. Die kompakte

Dokumentation ermöglicht in Ergänzung mit den vorhandenen Beispielen einen raschen

Einstieg, der mit vielseitigen Tools belohnt wird. Wer auf semantische Annotationen

angewiesen ist, sollte sich einer anderen Lösung bedienen. Auch das Entwerfen von

Schnittstellen wird durch Swagger nur bedingt gefördert.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

52

4.7 RestDoc

4.7.1 Beschreibung

RestDoc [22] bezeichnet sich selbst auf der eigenen Homepage als „language-agnostic

specification for self-describing REST API's“ [23], ist also eine Beschreibungssprache für

„RESTful“ Schnittstellen. RestDoc basiert auf JSON, die Spezifikation definiert also über

ein JSON Schema ein Vokabular, welches sowohl Ressourcen-, als auch

methodenorientiert ist.

Für den Zugriff auf RestDoc Beschreibungen sieht die Spezifikation vor, dass der Server

für den Aufruf der HTTP „Options“ Methode auf eine URI eine RestDoc Beschreibung

liefert, in der alle Ressourcen unter dieser URI beschrieben sind.

Es existieren Open-Source Tools für die Erstellung und Verwendung von RestDoc,

sowohl serverseitig als auch clientseitig, die aber bisher eher den Status eines Prototyps

haben.

4.7.2 Beispiel

Im Beispiel aus der RestDoc Spezifikation [22] ist zum einen zu sehen, dass URI

Definitionen über Platzhalter angegeben werden können, zum anderen können reguläre

Ausdrücke angegeben werden, um für Parameter erlaubte Werte zu definieren.

"resources": [{

 "id": "LocalizedMessage",

 "description": "A localized message",

 "path": "/{locale}/{messageId}{?seasonal}",

 "params": { // URI parameters descriptions

 "locale": {

 "description": "A standard locale string, e.g. \"en_US.utf-8\"",

 "validations": [{ "type": "match", "pattern": "[a-z]+(_[A-

Z]+)[…]"}] },

 "messageId": {[…]},

 "seasonal": {[…}}

 },

 "methods": {

 “PUT": {

 "description": "Update or create a message",

 "statusCodes": { "201": "Created" },

 "accepts": {[…]} } }]

Listing 12: RestDoc Codebeispiel

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 53

4.7.3 Bewertung

4.7.3.1 Syntax

Können die Ressourcen der Schnittstelle definiert werden?

2 Punkte: Restdoc bietet für die Darstellung von Ressourcen das JSON-Element

„resource“, das eine ID und eine Beschreibung enthalten kann.

Können pro Ressource erlaubte Operationen definiert werden?

3 Punkte: Methoden werden in RestDoc über das JSON-Element „method“ repräsentiert,

das eine Beschreibung enthalten kann.

Können erwarteter Input bzw. Output des Servers definiert werden?

3 Punkte: Für Methoden kann über das Element „accepts“, bzw. „response“ eine Menge

von Schemadefinitionen angegeben werden, die die erlaubten Ressourcenrepräsentationen

definiert.

Können Beziehungen zwischen Ressourcen definiert werden?

0 Punkte: Es ist in RestDoc nicht möglich, Beziehungen zwischen Ressourcen

auszudrücken.

Kann für Methoden beschrieben werden, welche Statuscodes erzeugt werden

können?

3 Punkte: Über das Element „statusCodes“ kann die Menge von möglichen Statuscodes

definiert werden.

Bietet die Sprache vordefinierte Ressourcentypen an?

0 Punkte: RestDoc bietet darüber hinaus keine vordefinierten Typen.

Können Ressourcen geschachtelt werden, sodass URIs relativ zur Eltern-

Ressource definiert werden können?

0 Punkte: RestDoc bietet keine Möglichkeit, Ressourcen hierarchisch in Beziehung zu

setzen.

Können in URI-Definitionen Templates verwendet werden?

3 Punkte: Teile von URIs können über Platzhalter beschrieben werden, die von RestDoc

als „Parameter“ bezeichnet werden. Für Parameter können Beschreibungen angegeben

werden, und sogar erlaubte Werte über einen regulären Ausdruck definiert werden.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

54

4.7.3.2 Semantik

Kann die Bedeutung einer Ressource definiert werden?

0 Punkte: Es ist nicht vorgesehen, mit RestDoc Semantik auszudrücken.

Kann die Bedeutung einer Operation definiert werden?

0 Punkte: Es ist nicht vorgesehen, mit RestDoc Semantik auszudrücken.

Kann die Bedeutung einer Beziehung zwischen Ressourcen definiert werden?

0 Punkte: Es ist nicht vorgesehen, mit RestDoc Semantik auszudrücken.

4.7.3.3 Lesbarkeit

Wie gering ist der Anteil an Syntax-Overhead im Code?

3 Punkte: RestDoc Beschreibungen sind in JSON geschrieben. Hier fällt kaum Overhead

an. Die von RestDoc definierten Elemente sind knapp benannt, meistens nur mit einem

Wort (siehe Beispiel oben).

Wie intuitiv ist den Code-Konstrukten ihre Bedeutung anzusehen?

3 Punkte: RestDoc verwendet JSON als Darstellung. Als Grundlage gibt es deswegen

nur sehr wenige Konstrukte, die sehr einfach verständlich sind. Die Schlüsselwörter sind

sehr kurz gehalten, aber von der Benennung her sinnvoll und leicht verständlich.

4.7.3.4 Anwendung der Sprache

In welchem Umfang wird die Sprache bereits eingesetzt?

1 Punkt: Die RestDoc Homepage nennt die „Tullius Walden Bank“ als einzigen Nutzer

von RestDoc.
26

Wie gut ist die Sprache dokumentiert?

2 Punkte: Als Dokumentation ist nur die Spezifikation auf der Homepage zu finden.

Diese ist knapp, aber exakt und vollständig - außerdem mit einem kleinem Beispiel

versehen. Ansonsten ist keine Dokumentation zu finden.

Wie gut sind die Tools dokumentiert, die für diese Sprache angeboten

werden?

0 Punkte: Das Projekt bietet auf Github
27

 eine serverseitige Implementierung, für die

Dokumentation existiert. Für deren Benutzung muss der Quellcode manuell kompiliert

werden.

26 (09.10.2013) http://www.restdoc.org/refs.html
27 (09.10.2013) https://github.com/hoegertn/restdoc-java-server

http://www.restdoc.org/refs.html
https://github.com/hoegertn/restdoc-java-server

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 55

Für die clientseitige Implementierung in Python gibt es nur eine kurze

Installationsanleitung, die auf Windows Systemen nicht funktioniert.
28

Einfachheit: Wie gering ist der Aufwand zur Einarbeitung in die Sprache?

2 Punkte: Die sehr kompakte Dokumentation lässt immer wieder Fragen aufkommen,

deren Antwort sich teilweise nur mühsam erarbeiten lässt, auch wenn RestDoc selbst

durch seine Einfachheit punktet.

Wie gut wird der Entwickler beim Modellieren bestehender Schnittstellen

unterstützt?

1 Punkt: Die serverseitige Implementierung definiert JavaDoc-Annotationen, aus denen

die serverseitige Implementierung JSON RestDoc Beschreibungen erstellen kann. Für

diese Annotationen ist keine Dokumentation hinterlegt außer einem kleinen

Beispielprojekt als Teil des Codes. Ansonsten wird keine Unterstützung angeboten.

Beispiel für JavaDoc-Annotationen aus dem Sourcecode der serverseitigen

Implementierung:

@POST

@RestDocIgnore

@RestDocReturnCodes(

 {@RestDocReturnCode(code = "200", description = "All went well"),

 @RestDocReturnCode(code = "403", description = "Access not

allowed")})

Gibt es eine hilfreiche, graphische Darstellung der Modelle?

1 Punkt: RestDoc definiert, dass die Schnittstellenbeschreibungen beim Options-Aufruf

auf der Ressource zurückgegeben werden. Die clientseitige Implementierung in Python

kann diese in Textform auf der Konsole ausgeben.

28 (09.10.2013) https://github.com/RestDoc/restdoc.py

https://github.com/RestDoc/restdoc.py

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

56

Abbildung 13: Konsolenausgabe des RestDoc Python Clients

Unterstützung für: Schnittstellen sollen in einem maschinenlesbaren Format

beschrieben werden.

3 Punkte: Sind die Schnittstellen über JavaDoc-Annotationen beschrieben, kann die

serverseitige Implementierung daraus JSON RestDoc Beschreibungen erstellen.

Allerdings können diese bisher nur auf der Konsole ausgegeben werden:

Abbildung 14: RestDoc in der Konsolenausgabe der serverseitigen Implementierung,

Ausgabe abgeschnitten

Unterstützung für: Aus der entworfenen Schnittstelle sollen Code-Stubs

generiert werden können.

0 Punkte: Die Generierung von Code-Stubs wird nicht angeboten.

4.7.4 Fazit

Die Sprache RestDoc wirkt gut durchdacht und setzt mit JSON auf einen bewährten

Standard. Es können sowohl Ressourcen als auch Methoden dargestellt werden, was

sowohl eine Ressourcen-, als auch eine methodenorientierte Modellierung erlaubt.

RestDoc bietet einige gute Ideen, wie für URI-Parameter reguläre Ausdrücke, die erlaubte

Werte definieren, angeben zu können. Was aber die Toolunterstützung betrifft, so sind die

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 57

auf der Homepage als „server-side implementation“, bzw. „client-side implementation“

bezeichneten Werkzeuge nicht mehr als Prototypen ohne jede graphische Oberfläche.

Die Installation der angebotenen Tools ist aufwändig und es gibt kaum Anleitungen.

Tatsächlich muss für die Verwendung der serverseitigen Implementierung der

Sourcecode heruntergeladen und kompiliert werden.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

58

5 Ergebnisse

Das nachfolgende Diagramm zeigt den erreichten, prozentualen Gesamtwert jedes

Ansatzes abhängig von der maximal erreichten Punktzahl in der jeweiligen Kategorie.

Die Kategorie „Auswertung Gesamt“ fasst dabei die Ergebnisse der restlichen Kategorien

zusammen.

Abbildung 15: Vergleich der Ergebnisse unserer Auswertungen

Swagger und WADL haben dabei die höchste Gesamtpunktzahl erreicht. Das schließt die

anfangs beschriebene Gewichtung der Fragen mit ein. WSDL 2.0, MicroWSMO,

SEREDASj und RestDoc bilden das Mittelfeld: Hier würde sich eine individuelle

Gewichtung der Fragen am deutlichsten zeigen.

Wir wollen an dieser Stelle auf die Vielzahl an Möglichkeiten hinweisen, die

beschriebenen Modellierungssprachen zu erweitern oder zu kombinieren. Unter

Zuhilfenahme von SAWSDL können beispielsweise WSDL Beschreibungen um

semantische Annotationen erweitert werden. Analog gibt es Ansätze, WADL

Auswertung
Gesamt

Auswertung
Ausdruckstärke

der Sprache -
Syntax

Auswertung
Ausdruckstärke

der Sprache -
Semantik

Auswertung
Lesbarkeit

Auswertung
Anwendung der

Sprache

Maximal erreichte
Punktzahl

WADL WSDL 2.0 hRESTS MicroWSMO SEREDASj Swagger RestDoc

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 59

Beschreibungen zu erweitern. Zudem ist es denkbar, zusätzlich zu einer rein

syntaktischen Beschreibung eine Sprache zu verwenden, die dafür erstellt wurde,

semantische Zusammenhänge zu formulieren. Wir konnten bei der Bewertung nicht alle

dieser Möglichkeiten berücksichtigen, die Ergebnisse sollten also nach

Anwendungsbereich differenziert betrachtet werden.

Es lässt sich beispielsweise erkennen, dass SEREDASj trotz guter Werte kaum

Bedeutung in der Anwendung hat. Dieses Problem trifft wahrscheinlich viele gute

Ansätze, deren Verwendung entweder durch den Mangel an Popularität und damit

verbundenem Mangel an Dokumentation (Forumsdiskussionen usw.) oder an zu hoher

Komplexität scheitern.

Bei Betrachtung aller Bewertungen zu den einzelnen Fragen fällt auf, dass beispielsweise

nicht versucht wird, vordefinierte Ressourcentypen anzubieten. Außerdem bieten alle

Sprachen die Verwendung von Templates in URI Definitionen an.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

60

5.1 Tabellarische Übersicht der Bewertungen

R
e

st
D

o
c

2 3 3 0 3 0 0 3 0 0 0 3 3 1 2 0 2 1 1 3 0

Sw
ag

ge
r

2 3 2 0 3 0 0 3 0 0 0 3 3 1 3 3 3 1 2 3 3

SE
R

ED
A

Sj

3

2

3

3

0

0

0

3

3

0

3

3

3

0

1

0

3

0

0

1

0

M
ir

co
-

W
SM

O

2 3 3 1 3 1 0 3 0 2 0 3 1 0 1 0 1 0 0 3 0

h
R

ES
TS

0 3 1 0 0 0 0 3 0 0 0 3 1 0 2 0 3 0 0 1 0

W
SD

L
2.

0

2 3 3 2 1 0 0 3 1 1 1 1 2 1 2 1 1 1 0 3 1

W
A

D
L

2 3 3 1 3 0 3 3 0 0 0 1 3 2 2 3 2 1 1 3 3

K
ri

te
ri

en

K
ö

n
n

en
 d

ie
 R

es
so

u
rc

en
 d

e
r

Sc
h

ni
tt

st
el

le
 d

ef
in

ie
rt

 w
er

de
n

?

K
ö

n
n

en
 p

ro
 R

es
so

u
rc

e
er

la
u

b
te

 O
p

er
at

io
ne

n
 d

ef
in

ie
rt

 w
er

d
en

?

K
ö

n
n

en
 e

rw
ar

te
te

r
In

p
u

t
b

zw
. O

u
tp

u
t

d
es

 S
er

ve
rs

 d
ef

in
ie

rt
 w

er
d

en
?

K
ö

n
n

en
 B

ez
ie

h
u

n
ge

n
zw

is
ch

en
 R

es
so

u
rc

en
 d

ef
in

ie
rt

 w
er

d
en

?

K
an

n
 b

es
ch

ri
eb

en
 w

er
d

en
, w

el
ch

e
St

at
u

sc
o

d
es

 e
rz

eu
gt

 w
er

de
n

 k
ön

n
e

n?

B
ie

te
t

di
e

Sp
ra

ch
e

vo
rd

ef
in

ie
rt

e
R

es
so

u
rc

en
ty

p
en

 a
n

?

K
ö

n
n

en
 R

es
so

u
rc

en
 g

es
ch

ac
h

te
lt

 w
er

d
en

 (
re

la
ti

ve
 U

R
Is

)
?

K
ö

n
n

en
 in

 U
R

I D
ef

in
it

io
n

en
 T

em
p

la
te

s
ve

rw
en

d
et

 w
er

d
en

?

K
an

n
 d

ie
 B

ed
eu

tu
n

g
ei

n
er

 R
es

so
u

rc
e

de
fi

n
ie

rt
 w

er
de

n
?

K
an

n
 d

ie
 B

ed
eu

tu
n

g
ei

n
er

 O
p

er
at

io
n

d
ef

in
ie

rt
 w

er
d

en
?

K
an

n
 d

ie
 B

ed
eu

tu
n

g
ei

n
er

 B
ez

ie
h

un
g

d
ef

in
ie

rt
 w

er
d

en
?

W
ie

 g
er

in
g

is
t

d
er

 A
n

te
il

an
 S

yn
ta

x-
O

ve
rh

ea
d

 im
 C

o
d

e?

W
ie

 in
tu

it
iv

 is
t

de
n

 C
o

d
e-

K
on

st
ru

kt
en

 ih
re

 B
ed

eu
tu

n
g

an
zu

se
h

en
?

In
 w

el
ch

em
 U

m
fa

n
g

w
ir

d
d

ie
 S

p
ra

ch
e

b
er

ei
ts

 e
in

ge
se

tz
t?

W
ie

 g
u

t
is

t
d

ie
 S

p
ra

ch
e

d
o

ku
m

en
ti

er
t?

W
ie

 g
u

t
si

n
d

 d
ie

 T
o

ol
s

fü
r

d
ie

se
 S

p
ra

ch
e

d
o

ku
m

en
ti

er
t?

Ei
n

fa
ch

h
ei

t:
 W

ie
 g

e
ri

n
g

is
t

d
er

 A
u

fw
an

d
 z

u
r

Ei
n

ar
be

it
u

n
g

in
 d

ie
 S

p
ra

ch
e?

W
ir

d
 d

er
 E

n
tw

ic
kl

er
 b

e
im

 M
o

de
lli

e
re

n
 u

n
te

rs
tü

tz
t?

G
ib

t
es

 e
in

e
hi

lf
re

ic
h

e,
 g

ra
p

h
is

ch
e

D
ar

st
el

lu
n

g
d

er
 M

o
de

lle
?

U
n

te
rs

tü
tz

u
n

g
fü

r:
 S

ch
n

it
ts

te
lle

n
 in

 m
as

ch
in

en
le

sb
ar

en
 F

o
rm

at
.

U
n

te
rs

tü
tz

u
n

g
fü

r:
 C

o
d

e-
St

ub
s

au
s

Sc
h

ni
tt

st
el

le
 g

en
er

ie
re

n
.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 61

5.2 Tabellarische Auswertung der Ergebnisse

Sprache WADL WSDL 2.0 hRESTS
Micro

WSMO
SERE-
DASj

Swagger RestDoc

Gesamt 58 47 27 42 47 59 46

Syntax 26 22 11 24 22 20 22

Semantik 0 5 0 4 9 0 0

Lesbarkeit 4 3 4 4 6 6 6

Anwendung 28 17 12 10 10 33 18

 Gesamt 0,98 0,80 0,46 0,71 0,80 1,00 0,78

Syntax 1,00 0,85 0,42 0,92 0,85 0,77 0,85

Semantik 0,00 0,56 0,00 0,44 1,00 0,00 0,00

Lesbarkeit 0,67 0,50 0,67 0,67 1,00 1,00 1,00

Sprache 0,85 0,52 0,36 0,30 0,30 1,00 0,55

Die obere Tabelle zeigt die erreichte Gesamtpunktzahl der bewerteten Spezifikationen.

Hierbei wurde die Gewichtung der einzelnen Fragen bereits berücksichtigt.

Die untere Tabelle zeigt die normalisierten Werte. Eine 1,00 in der unteren Tabelle

entspricht also der Höchstpunktzahl der gleichen Gruppe in der oberen Tabelle.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

62

6 Zusammenfassung

Diese Fachstudie gibt einen Überblick über vorhandene Methoden, Sprachen und Tools

zur Modellierung von REST-Schnittstellen. Die Motivation hierfür gründet in der

Notwendigkeit, REST Services beschreiben zu müssen. Maschinenlesbare

Beschreibungen von REST APIs existieren bis jetzt nur in überschaubarem Ausmaß. Es

gibt zu diesem Thema inzwischen viele wissenschaftliche Arbeiten mit sehr

verschiedenen Ansätzen, von ressourcenorientierten zu methodenorientierten und von

rein syntaktischen zu semantischen Beschreibungen mit der Vision eines „semantic web“

und automatisierter „service discovery“. Keine dieser Methoden oder Sprachen hat bisher

jedoch industriell große Bedeutung erlangt - ein Grund dafür könnte der Umstand sein,

dass es immer noch Uneinigkeit darüber gibt, was denn überhaupt modelliert werden

sollte.

Wir haben zur Ermittlung verschiedener Lösungen für diese Anforderung einen

Kriterienkatalog erstellt und diesen zur Bewertung in Frage kommender Spezifikationen

benutzt. Unabhängig davon wurden alternative Ansätze bewertet, die sich aus

verschiedenen Gründen nicht durch den Fragenkatalog erfassen ließen.

Die Ergebnisse der bewerteten Spezifikationen wurden graphisch in einer Tabelle

aufbereitet und es wurde gezeigt, dass es zum Teil erhebliche Unterschiede in den

jeweiligen Stärken und Schwächen der Kandidaten gibt. So lässt sich zu diesem Zeitpunkt

kein klarer „Gewinner“ feststellen und es ist fraglich ob sich in naher Zukunft ein

Standard etablieren wird.

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 63

7 Literaturverzeichnis

[1] R. T. Fielding, Architectural Styles and the Design of Network-Based Software

Architectures, University of California, Irvine., 2000.

[2] C. Pautasso, O. Zimmermann und F. Leymann, „Restful web services vs. "big"' web

services: making the right architectural decision,“ Proceedings of the 17th

international conference on World Wide Web (WWW '08), pp. 805-814, 2008.

[3] M. Lanthaler und C. Gütl, „A Semantic Description Language for RESTful Data

Services to Combat Semaphobia,“ Proceedings of the 5th IEEE International

Conference on Digital Ecosystems and Technologies (IEEE DEST 2011), pp. 47-53,

2011.

[4] I. Porres und I. Rauf, „Modeling behavioral RESTful web service interfaces in

UML,“ Proceedings of the 2011 ACM Symposium on Applied Computing (SAC '11),

pp. 1598-1605, 2011.

[5] M. Laitkorpi, P. Selonen und T. Systa, „Towards a Model-Driven Process for

Designing ReSTful Web Services,“ ICWS '09 Proceedings of the 2009 IEEE

International Conference on Web Services, pp. 173-180, 2009.

[6] L. Richardson und S. Ruby, RESTful Web Services, O'Reilly Media, 2007.

[7] E. Ormeño, M. Lund, L. Aballay und S. Aciar, „An UML profile for modeling

RESTful services,“ 13th Argentine Symposium on Software Engineering, ASSE

2012, pp. 119-133, 2012.

[8] S. Schreier, „Modeling RESTful applications,“ WS-REST'11 Proceedings of the

Second International Workshop on RESTful Design, pp. 15-21, 2011.

[9] M. Masse, „WRML Design Notes,“ 2013.

[10] T. Berners-Lee und D. Connolly, „Notation3 (N3): A readable RDF syntax,“ W3C,

[Online]. Available: http://www.w3.org/TeamSubmission/2011/SUBM-n3-

20110328/. [Zugriff am 9 Oktober 2013].

[11] R. Verborgh, T. Steiner, D. Deursen, J. Roo, R. Van De Walle, J. Gabarró und

Vallés, „Capturing the functionality of Web services with functional descriptions,“

Multimedia Tools and Applications Volume 64 Issue 2, pp. 365-387, May 2013.

[12] M. Hadley, „Web Application Description Language,“ W3C, [Online]. Available:

http://www.w3.org/Submission/2009/SUBM-wadl-20090831/. [Zugriff am 7

Oktober 2013].

[13] R. Chinnici, J.-J. Moreau und S. Weerawarana, „Web Services Description

Language (WSDL) Version 2.0 Part1: Core Language,“ W3C, [Online]. Available:

http://www.w3.org/TR/2007/REC-wsdl20-20070626/. [Zugriff am 8 Oktober 2013].

[14] H. Haas, P. Le Hégaret, J.-J. Moreau, D. Orchard, J. Schlimmer und S.

Weerawarana, „Web Services Description Language (WSDL) Version 2.0 Part 3:

Bindings,“ W3C, [Online]. Available: http://www.w3.org/TR/2004/WD-wsdl20-

bindings-20040803/. [Zugriff am 8 Oktober 2013].

[15] J. Kopecký, T. Vitvar, D. Fensel und K. Gomadam, „hRESTS & MicroWSMO,

CMS WG Working Draft,“ 2009.

[16] J. Kopecký, K. Gomadam und T. Vitvar, „hRESTS: An HTML Microformat for

Describing RESTful Web Services,“ WI-IAT '08 Proceedings of the 2008

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

64

Technology - Volume 01, pp. 619-625, 2008.

[17] D. Fensel, F. Fischer, J. Kopecký, R. Krummenacher, D. Lambert und T. Vitvar,

„WSMO-Lite: Lightweight Semantic Descriptions for Services on the Web,“ W3C,

[Online]. Available: http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-

20100823/. [Zugriff am 8 Oktober 2013].

[18] J. Farrell und H. Lausen, „Semantic Annotations for WSDL and XML Schema,“

W3C, [Online]. Available: http://www.w3.org/TR/2007/REC-sawsdl-20070828/.

[Zugriff am 8 Oktober 2013].

[19] F. Fischer und B. Norton, „D3.4.6 MicroWSMO v2 – Defining the second version of

MicroWSMO as a systematic approach for rich tagging,“ 2009.

[20] Reverb Technologies, Inc, „Swagger: A simple, open standard for describing REST

APIs with JSON | Reverb for Developers,“ [Online]. Available:

https://developers.helloreverb.com/swagger/. [Zugriff am 8 Oktober 2013].

[21] Reverb Technologies, Inc, „Swagger Sample App,“ [Online]. Available:

http://petstore.swagger.wordnik.com/#!/. [Zugriff am 8 Oktober 2013].

[22] RestDoc.org, „RestDoc - Documenting REST APIs Version 1 (2012-12-02),“

[Online]. Available: http://www.restdoc.org/spec.html. [Zugriff am 6 Oktober 2013].

[23] T. Hoeger, „RestDoc Specification - README.md,“ [Online]. Available:

https://github.com/RestDoc/specification/blob/master/README.md. [Zugriff am 6

Oktober 2013].

 Ein Vergleich von Sprachen, Methoden und Tools

zur Modellierung und Beschreibung von REST-Schnittstellen

 65

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder

sinngemäß aus anderen Werken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines

anderen Prüfungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Bruder, Leonard Harth, Fabian Karaoğuz, Nedim

Stuttgart, 10.10.2013

