Studiengang:

Priifer:

Betreuer:

begonnen am:

beendet am:

CR-Klassifikation:

Institut fur Mensch-Computer-Interaktion
Universitat Stuttgart
Universitatsstralle 38
70569 Stuttgart
Germany

Fachstudie Nr. 176

Personenerkennung
uber verschiedene Gerate

David Krauss, Mathias Landwehr,
Paul Brombosch

Softwaretechnik

Prof. Dr. Albrecht Schmidt

Tilman Dingler, Markus Funk

15.04.2013

15.10.2013

H.1.2

Kurzfassung

Im Laufe der Fachstudie wurde ermittelt welches Kamera-/Softwaresystem sich am besten zur
Erkennung und Wiedererkennung von Personen eignet. Der Grundgedanke ist es,
personenbezogene Inhalte auf einem Display anzuzeigen. Nach den Recherchen haben sich
zwei APIs zum genaueren Vergleich heraus kristallisiert, ndmlich Kinect SDK und OpenCV.
Um einen Vergleich durchfiihren zu kénnen, wurde jeweils eine Anwendung implementiert,
die Gesichter in einem Video erkennt. Der Vergleich zeigte deutlich die Starken und
Schwaichen der Implementierungen in mehreren Kategorien. Das Kinect SDK zeichnete sich
durch viele Vorteile bei den Personenwahrnehmung aus, wo hingegen OpenCV bei der
Wiedererkennung hervorstechen konnte. Das endgiiltig implementierte System verwendet
deshalb Kinect SDK zur Gesichtswahrnehmung und OpenCV zur Wiedererkennung und
Kategorisierung.

Inhaltsverzeichnis

1. AufgabenbesChreibung.........cccoviiiieiinieece et st 5
1.1.Zweck des DOKUMENLS.cocueriiriieiiinieieieeteteeteee ettt e e s e sanees 5
1.2.Uberblick iiber den weiteren INNAlL..............c.c.oveveveueeiererererieeeeeeeeeesese e eseeesesess s s e enens 5

2. PrOJEKLUDEIDIICK. . ccetieeiieeiie ettt e et s e e e s ae e e aae e erae e e e e nnbaaaaaeas 6
2. 1. AUfGabenStellUNG.........coeoiiiiuiieiiiiieeieet ettt 6
2.2, VOTGENOISWEISE. ...ccuuveieiieeeiieeeiteeeiteestteesteessteessibee s tbeesbaeesssaessssaessssaessssaaeessssssnaeessnsanns 6

2.2.1. Einarbeitung@SPhase.cccueeiierieiieiieeieete ettt ettt sttt s 6
2.2.2.VergleiChSPRASE.ccctiiiieeiteiee ettt sba e s sba e e snreees 7
2.2.3. EntscheidungSphase.c.coeueiriiirieiiienieeeeeteet ettt ettt ettt 7
2.2. 4 ENtWiCKIUNGSPRASE. ...ccviieiiieiiieieeiieeteeie ettt s et e st e e e sstae e earaeeennaeeas 7
2.3.ZEIPIANUNE. ...c.ueeeiieeieeiteeie ettt ettt e e st e s bt e st e e bt e s st e st e e s st e esbeessbesbeessteenbeesnaesennees 7

B EINAIDEITUNG.eeitiiiieeieeteee ettt ettt et e et e st e s sbe e st e e bt e e b e e saesnbaeeennbaeeennees 8
3.1 KINECE SDIK [IMSDIN L. ettttttieeeeeeeetttteeeeeeeeeettteeneeeseeesstaeessneesssssssessssnneesssesunssesenessssnnes 8
3.2.0DPENCYV [OPCV]ttt sttt et sttt s et st e st e be et e saaesseenbesseenseensesseensenn 9

3.2.1. Projekt relevante FUNKHONEN..........cccierierriienieeieeniecieesee et see et e s 9
3.2.2. EMGUCY [EMOV Lttt ettt sttt st sttt e sneeen 10
3.3.0DPENNI [OPNI...ceiiiiitiiieieeteieeteet ettt sttt st e se e sae et e sae e st e e s s e e e e e sanee 10

4.Vergleich Vorgehensweise (VEIrsuChe).........cueevviiiiieiiiiiiiniieeniieerieeeieeereeee e sivee e e s 12
4.1.Minimale und Maximale ReiChWEILe...........ccccteriiiiiiiriiiiieieeteeeee e 15
4.2 Erkennung von Gesichtern bei verschiedenen Winkeln...........cccccoecvevviiniiinninniieinnieennns 16

4.2.1.Einzelne 5° MeSSUNZEN.......ccccverrreerrreernreeeiieeesieeeeseessssaesssseeessssnsseeesssssssseeessnsnns 16
4.2.2. Komplette durchgéngige Drehung............coceoerieriiiinienieninicnieeeeeseceeeeenenn 18
4.3.Vorbeilaufen an der KiNECt..........cccuiiriiriiiiiieniiecieeie ettt eee e esteeseeesreesneesveesessaeens 18
4.4.Mehrere Probanden..........ccocueeuiiriiiiiiinieeieeet ettt ettt et e s e e 20
4.4.1.Personen StllStehend..........cccevuerieriiiiniinirieeeeteeeese e 20
4.4.2.Personen DeWeZend.........ccccueieuiiiriiieiiiieicieeeriee et eseeeseeesteeeseaae e e e s s saaaaeeeeean 21
4.5, FaK@ZESICRIOT....cueiiiieeieeiieeet ettt ettt sttt s b e e esbe e s abae e e 21
4.5.1.Gezeichneter SMILEY......cccuiieiiiiiiiiiieeceeeee et e e e s aaaee s 22
4.5.2.Gemaltes Gesicht Mit KOTPET.......c.coevuiiruieriiiiniierieeteeieee ettt see e 22

4.5.3.Bilder VON POISOMOIN. ...cceieieiiiiiiieeeeeeeeeeeeeeeeeeeeee ettt e et e e eeeeeeeeeeeeeeeeereeeeeeeeaes 23

4.6.verschiedene BeleuChtUn@en..........cccviiiiieiriiiiiiiiie ittt ee e e e e e eaaaeeas 23
5.Ergebnis VergleiCh........ooiiiiiiie e 25
6.GeSiChtSWidererkennUIE.c.cevviriiierieeiiiereeeie et e ete et e ste et e ste e aeessbeesseesssesssaessseesssssaennn 27

6.1.Bilderverwaltlng..........coccuiiiiiiiiieiiecciieecie ettt est e et e e s e e e s aeeesbe e e aaeeesabeeesensnsaaaaaens 27

6.2.Hinzufligen neuer Bilder...........ccoociiiiiiiiiiiiiieeiecteeeetee ettt 27

6.3.Gesichter wiedererkennen............cccuieciierieriiiiniieecieecre et e e e re e e ssreeeenes 28

6.4.Architektur zur verteilten Wiedererkennung.............cceeeeveeeeiieeriiieinieessiieessieeeessiveeeenn 29

6.5.IMPIEMENTIEIUNG.corieeiiiieiiieteee ettt ettt et e s be e e s aea e e sabaeesstaeesanees 30

6.5.1.CLieNt APPLICAION.icitierieeiieeieecteeie ettt e e et esbeesaeesseessaesseesseesssessssseesnns 30
6.5.2.N0AEJS WEDSEIVEL.....ccccuiieeiiieeiieieiieeeteeeeteeeeteeesateeeseeeeeaeeessaesessaeessseesnssseeasannnns 31
6.5.3.STVEr APPLICALION.....cciiieiiieieeiieiie ettt ettt erte e st e e teesaesteessseebeeesssseesssnseeennns 31

S SN 0T [131 3 =) TSR 32

6. 7.SKaAlIOIDATKEIL. ... eeeeiieiieeieeiieee ettt ettt s b e et e st e e sae e e beesaennns 32
7.GesChlechtSerkenNUIG........cccuviiiiiiiiiieiieecee ettt ae e s saa e e s aa e e s e e e sssaeenanas 33
o N W 1 =) 1 T2 13 =) L USRS 34

8.1.GesichtsSmerkmale.........c.cooueviiiiriinieeeeee ettt e 34

8.2, ATCRITEKIUT ... eeiiiieiiieeeiee ettt ettt e e ste e e te e s sabe e st eesbaeessaaeesssaeenssaeensnsenaeens 34
9.Weiterflihrende ATDEIteN.......cccuiiiiiiieeiieceeceece ettt e ste e e e e e saae e e e s naaaeeeeennns 35
10. ZUSamMMENTASSUNG.....cccueerieiriieeieeiieeieerteerieestesteeseessteesatesseesssesseesstessseesssesssassssessseesnnns 36

1. Aufgabenbeschreibung

In unserer heutigen Gesellschaft, in der Informationen immer schneller zur Verfugung
stehen missen, sind Anzeigeflachen nicht mehr wegzudenken. Um unndétige
Informationsflut zu vermeiden, sollten Inhalte auf digitalen Anzeigeflachen passend
auf den Benutzer zugeschnitten werden. Personalisierung von Inhalten findet bereits
in grolem Malde im Web und auf mobilen Endgeraten statt. Im Bereich der ,Public
Display“ Netzwerken stellt sich die Frage danach, wie Passanten erkannt werden
kénnen, um personalisierte Informationen in Echtzeit darzustellen. Wenn Passanten
dartber hinaus Uber mehrere Gerate hinweg erkannt werden, kdnnen Nutzerprofile
generiert werden, welche Bewegungsmuster beinhalten sowie Buchflhren Uber
Inhalte, die Nutzern bereits angezeigt wurden.

Somit kdnnen ahnliche oder weiterfihrende Informationen Gber mehrere Displays
hinweg angezeigt werden. Ein denkbares Szenario ware ein klassischer
Museumsbesuch: In Museen soll den jeweiligen Besuchern an Hand der bereits
gesehenen Ausstellungsstucke ahnliche Informationen prasentiert werden, wie zum
Beispiel Flyer mit weiteren Ausstellungsstlcken, die im Interessensbereich des
Besuchers liegen.

Ein weiteres Szenario ware die zielgruppenorientierte Anzeige von Werbeinhalten:
Wahrend ein Passant auf einem Display ein Kinoplakat angezeigt bekommt, konnte
auf dem nachsten Display, welches dieser passiert, beispielsweise ein Trailer des
Films oder ein Rabattgutschein fur das nahe gelegene Kino zu sehen sein.

1.1. Zweck des Dokuments

Dieses Dokument wurde in Verbindung mit einer Fachstudie erarbeitet. Es
dokumentiert den Verlauf und die Entscheidung bei der Analyse der Studie und
Entwicklung eines Tools fur das VIS der Fakultat Informatik der Universitat Stuttgart.

1.2. Uberblick iiber den weiteren Inhalt

Im Kapitel 2 wird ein grober Uberblick iiber das gesamte Projekt und die damit
verbundene Zeitplanung gegeben. Im weiteren Verlauf wird auf die einzelnen APIs
eingegangen. Kapitel 4 spiegelt die Vergleichsphase unseres Projekts wider, in der
wir die Anforderungen an die jeweiligen APls testen und abwagen. Somit folgen in
Kapitel 5 unsere gewonnen Erkenntnisse und die daraus resultierenden Folgen flr
das weitere Projekt. Der technische Hintergrund und die Architektur unseren
Anwendung werden in Kapitel 6 erlautert. In letzten zwei Kapitel wir auf den
bestehenden so wie auf den erweiterbaren Funktionsumfang eingegangen.

2. Projektiiberblick

Dieses Kapitel dokumentiert die Problematik und die strukturelle Herangehensweise
der gesamten Fachstudie. Zu Beginn wird die urspriinglichen Aufgabenstellung und
anschliel3end die verschiedenen Phasen des Projekts reprasentiert.

2.1. Aufgabenstellung

Aufgabe der Fachstudie ist es geeignete Systeme fir die visuelle Analyse von
Passanten zu vergleichen und zu bewerten. Mit Hilfe von Bilderfassungssystemen
sollen Passanten klassifiziert und wiedererkannt werden. Public Displays sollen dann
benutzerspezifische Inhalte anbieten.

Aulerdem soll ein lauffahiges System implementiert werden, in Form einer verteilten
Anwendung mit einem zentralen Server. Dieser soll in der Lage sein, Nutzerprofile zu
speichern und eine Schnittstelle bieten, um diese Profile abzufragen, zu modifizieren,
sowie Bilder entgegenzunehmen und zu analysieren.

2.2. Vorgehensweise

Auf Grundlage des Aufbaus einer Fachstudie teilt sich die die Arbeit in vier Phasen:

Einarbeitungsphase
Vergleichsphase
Entscheidungsphase
Entwicklungsphase

2.2.1.Einarbeitungsphase

Da dem Team bis dato keinerlei Erfahrungen mit bestehenden Technologien zur
Gesichtserkennung bekannt waren, recherchierten wir erstmals nach bestehenden
Lédsungen und Bibliotheken.

Leider standen keine kostenfreie Anwendungen, die unsere Aufgabenstellung bereits
realisieren, zur Verfugung. Wir haben uns deshalb auf folgende drei APIs fixiert:

e Kinect SDK Version 1.6
e OpenCV Version 2.4.6.0
e OpenNI

2.2.2.Vergleichsphase

In dieser Phase des Projekts stand der Vergleich der APls im Mittelpunkt.

So stellten wir bereits bei der Zusammensetzung der Vergleichsparameter fest, dass
dies nicht nicht wie vorgestellt laufen kann. Urspringlich basierte unser Vergleich auf
der Durchfihrung der Tests mit Hilfe von Bildern, leider konnten wir dies nicht fir das
Kinect SDK realisieren. Auf Grund dessen griffen wir auf Kinect-Studio zurick um mit
Kinect-Sequenzen arbeiten zu kénnen. Als weiteres Problem stellten wir fest, dass
das Kinect SDK uber keinerlei Algorithmen zur Wiedererkennung von Personen
verfugt, wodurch wir unsere Vergleichsstudie auf die Wahrnehmung von Personen
begrenzten.

2.2.3.Entscheidungsphase

Die Ergebnisse der Vergleichsphase wurden nun auf geeignete Weise verglichen und
daraus die Struktur und die Zusammensetzung der einzelnen Komponenten fur die
Anwendung festgelegt. Aufgrund der bereits aufgewandten Arbeitszeit legten wir an
dieser Stelle fest, den Umfang unserer Anwendung auf die Personen sowie
Geschlechtserkennung zu begrenzen.

2.2.4.Entwicklungsphase

Durch die erfassten Erkenntnisse erstellen wir ein lauffahiges System und begannen
mit der Erfassung unterschiedlicher Profile. Hierfir wurden Gesichter erfasst und
Profilen sowie Geschlechtern zugeordnet.

Die Fachstudie endet schlieRlich mit der Fertigstellung der Anwendung und der
schriftlichen Ausarbeitung samtlicher erfassten Erkenntnisse.

2.3. Zeitplanung

Fir die zeitliche Planung wurden zu Beginn des Projekts Arbeitspakete und deren
zeitlichen Rahmenbedingungen abgeschatzt.

Meilenstein IName Beschreibung Termin Ziele

1 Treffen Kurze Présentation bisheriger Programme 28.05.13)- Fertiges Alphaprogramm

2 - Wahmehmung von Gesichtemn in Streams
Bildererkennung Gesichtswarhnehmung in Streams 20.06.13]- Speichern der Gesichtern

3 Datenbank Datenbank mit Bildern aufbauen 30.06.13|- Datenbank mit Gesichtern von Personen

4 Streams aufnehmen und durch - Vergleich von OpenCV und KinectSDK
Gesichtserkennung Gesichtserkennung jagen und testen 15.07.13

5 Vergleich von Datenbankbildern und - Vergleich von Gesichtern aus Streams und Datenbank
Bildvergleich Gesichtern aus Streams 01.08.13|- Erkennung von bereits vorhandenen Gesichtern

6 - Erkennung von Gesichter in Streams
Gesichtserkennung 2 |Gesichter von Streams erkennen 20.08.13|- Hinzufiigung von noch nicht erkannten Gesichtern

7 - Datenbank erstellen mit Kategorien fiir Gesichtsdaten
Kategorisierung Gesichtsdaten in einer Datenbank speichern 05.09.13- Einfugen von neu erhaltenen Daten aus den Streams

9 Ausarbeitung Ausarbeitung anhand der Studie erstellen 05.10.13]- Fertige Ausarbeitung im PDF Format

7

3. Einarbeitung

3.1. Kinect SDK ™MSPNI

Das Kinect SDK wird von Microsoft angeboten und richtet sich an Entwickler, die eine
Kinect fir Windows (im Folgendem kurz Kinect) besitzen. Diese ist von der Kinect fur
die Xbox zu unterscheiden und wie der Name schon sagt, fur die einfache
Programmierung unter Windows geeignet. Die Kinect verflgt Gber eine Farbkamera,
einen Infrarotstrahler, einen Infrarot-Tiefensensor, mehrere Mikrofone und einen
Neigungsmotor.

Die Kinect ist fUr die Interaktion mit einem Computer in mittelgrollen Raumen
vorgesehen. Der Abstand der Benutzer sollte dabei zwischen 3,5m und 0,5m
betragen. Die Personenerkennung des Kinect SDK ermittelt mit Hilfe der
Tiefeinformationen die Position eines Skelettes. Zu einem Skelett gehéren mehrere
Skelett-Punkte, die die Software an markanten Punkten eines Menschen anbringt. Im
Standardmodus werden einem Benutzer 20 Gelenkpunkte zugeordnet. Ein so
genannter Seated-Mode reduziert die Anzahl der Gelenkpunkte. Es werden dann nur
noch 10 Gelenkpunkte aus der Schulter-, Arm- und Kopfpartie auf dem Benutzer
gesucht.

(Quelle: Tracking Modes (Seated and Default) - http://msdn.microsoft.com/en-
us/library/hh973077.aspx)

Die Abstandsgrenzen kdonnen ebenfalls verandert werden. Im Near-Mode kénnen
Benutzer ab einer praktischen Entfernung von 0,4m bis zur Maximalentfernung von
3,0m erkannt werden. Im Standardmodus von 0,8m bis 4,0m.

Flr das Szenario unserer Fachstudie eignet sich der Seated-Mode in Verbindung mit
dem Near-Mode besonders, weil ein Benutzer wegen seiner geringen
Interaktionsdistanz (zu einem public display) nicht immer vollstandig im Sichtfeld der
Kinect ist.

3.2. OpenCV [P

Bei OpenCV handelt es sich um eine freie Programmbibliothek welche unter den
BSD-Lizenz Bedingungen steht und somit kostenlos fur akademische und
kommerzielle Nutzungen einsetzbar ist. Das ,CV* im Namen steht fir englisch
,computer Vision®“. OpenCV beinhaltet Schnittstellen fur C++, C, Python sowie JAVA
und unterstutzt Windows, Linux, Mac OS, iOS und Android.

OpenCV wurde mit einem starken Fokus auf Echtzeit-Anwendungen konzipiert. Die
Bibliothek ist im Stande, unter der Nutzung von C++ bzw. C, die Vorteile der
Mehrkernprozessoren anzuwenden. Die Bibliothek verflgt tber mehr als 2500
optimierte Algorithmen. Das Einsatzspektrum reicht von interaktiver Kunst bis hin zur
fortschrittlichen Robotik.

3.2.1. Projekt relevante Funktionen

Gesichtserkennung:

Die Gesichtserkennung wird mit Hilfe von Beschreibungsdateien realisiert, in
unserem Fall kam die von OpenCV zur Verfligung gestellte
harrcascade_frontface default zum Einsatz. Fur diese Beschreibungsdateien wurden
die notwendigen Informationen aus mehreren tausend Bildern berechnet und
schlieB3lich als .xml abgespeichert.

Der Algorithmus vergleicht mit Hilfe von Rechtecken das Eingabebild mit der
Beschreibungsdatei.

Dabei wird das Eingabebild systematisch, Zeile flir Zeile, von oben-links bis unten-
rechts abgescannt. Diese Prozedur wird fur unterschiedliche Rechteckgréf3en
wiederholt.

Abbildung 1: Quelle: Vorlesung Computergrafik
Universitdt Stuttgart

Bildinformation verwenden:

OpenCV bietet auch die Mdglichkeit eigene Beschreibungsdateien zu erstellen,
welche in unserem Fall bei der Gesichtswiedererkennung (siehe Kapitel 6) sowie der
Geschlechtserkennung (siehe Kapitel 7) zum Einsatz kamen.

3.2.2. EmguCV MV

Um die Fahigkeit der unterschiedlichen Bibliothek zu erfassen, wollten wir den
Vergleiche auch in der selben Programmsprache, in unserem Fall C#, durchflhren.
An dieser stelle kam EmguCV zum Einsatz. Bei EmguCV handelt es sich um einen
plattformibergreifenden .NET Wrapper , womit OpenCV Funktionen in .NET-
kompatiblen Sprachen wie C#, VB, VC++ und IronPython aufgerufen werden
konnen.

3.3. OpenNI "M

OpenNI steht flr “Open Natural Interaction” . Das Framework ist ein Open Source
SDK, welches von einer Gruppe von verschiedenen Entwicklern ins Leben gerufen
wurde. Es wird dafur genutzt um 3D Sensor Middleware-Bibliotheken und
Anwendungen zu entwickeln. Das Framework stellt hauptsachlich Schnittstellen
zwischen den Geraten und der Middleware bzw. den Anwendungen zur Verfliigung.
Auf der OpenNI Internetseite selbst kdnnen auch bereits fertige Projekte, die mit Hilfe

von OpenNI entwickelt wurden heruntergeladen werden. Hierbei erkennt man die

10

vielen Einsatzmaoglichkeiten. Diese reichen von Scannen von Personen bis hin zur
Animation von Ork-Gesichtern. OpenNl ist also eine sehr vielseitiges SDK das in
Verbindung mit anderen Frameworks zum Einsatz kommt.

Da OpenNI allerdings keine eigenstandige Gesichtswahrnehmung und -erkennung
besitzt und die meisten, von OpenNI zur Verfligung gestellten, Projekte zur
Gesichtswahrnehmung ohnehin OpenCV verwenden, haben wir uns dazu
entschieden OpenNI nicht zu benutzen. Aber da OpenNI ohnehin fir kompliziertere
Anwendungen ausgelegt ist und es sich bei unserer um eine einfache
Gesichtserkennung handelt, fir die das Kinect SDK und OpenCV ausreichen, lohnt
es sich nicht OpenNI zu verwenden.

11

4. Vergleich Vorgehensweise (Versuche)

Fir den Vergleich der beiden Programme nehmen wir mit der Software Kinect Studio
kurze Videosequenzen auf. Diese Videosequenzen kdnnen wir in unsere Programme
einflgen und dadurch die Gesichtswahrnehmung vergleichen. Hierbei messen wir
bei beiden Programmen die Anzahl der Frames, in denen Gesichtern erfasst wurden.
Das Ergebnis besteht aus zwei Zahlen besteht:

1.

Die Anzahl an Frames auf denen Gesichtern erfasst wurden im Verhaltnis zu
der insgesamten Anzahl an Frames

Das Verhaltnis zur Anzahl der insgesamt aufgenommenen Frames in Prozent.
Bei diesen Versuchen ist eine maximale Prozentzahl von 100% nicht
erreichbar. Um 100% erreichen zu kdnnen, misste auf jedem Frame ein
Gesicht zu sehen sein, das im passenden Abstand zur und direkt in die Kinect
schauen musste. Dies ist aber nicht immer der Fall. Aus diesem Grund kdnnen
die Prozentzahlen stark von 100% abweichen. Da aber bei beiden
Programmen die selbe Videosequenz analysiert wird spielt das keine Rolle.
Denn wenn die Zahlen beim Kinect SDK niedrig sind, sind sie es meistens
auch bei OpenCV. Das Programm welches bei den Prozentzahlen den
héheren Wert erreicht gewinnt. Allerdings sind die Zahlen allein nicht immer
ausreichend, weshalb noch eine Gewichtung der Kategorien und persdnliche
Bewertung mit einflief3t.

Die Sequenzen werden im Labor B im Simtech-Gebaude aufgenommen.

Folgende Materialien wurden fur die Aufnahmen bendtigt:

» Kinect: Fur die Aufnahme der Videosequenzen

* Leiter: Um die Kinect auf Augenhéhe zu montieren.

* Dumbledore-Computer: Auf dem Kinect-Studio lauft.

* Klebeband: Um Abstande auf dem Boden zu markieren.

* Meterstab: Zur Abmessung.

» Papier und Stift: Fur Notizen und Malen von Gesichtern.

» Taschenrechner: Um Abstande und Winkel zu berechnen.

* Smartphone: Fur Bilder von Personen.

12

Verwendete Software:

* Kinect Studio: fur die Aufnahmen. (http://www.microsoft.com/en-
us/kinectforwindowsdev/Downloads.aspx)

* Eigene Implementierung: Fur Erfassung von Videosequenz mit Hilfe
von Kinect Studio.

. -
y

Abbildung 2: Raum fiir die Aufnamen

Raum Vorbereitung:

Zunachst stellen wir die Leiter auf, damit wir die Kinect auf Augenhdhe anbringen
konnen.

Danach werden die Markierungen auf dem Boden angebracht. Diese werden so
positioniert, dass der maximale Kinectaufnahmebereich markiert ist. Die Kinect bildet
mit den Markierungen ein Dreieck, bei dem die Kinect die Spitze K (Kinect) bildet. Die
beiden Eckpunkte am linken und rechten Rand des maximalen Aufnahmebereichs
heil3en A (links) und B (rechts). Der Mittelpunkt zwischen A und B heil3t M. Die
Maximale Reichweite fur das Labor B (Strecke KM) betragt: 3,7m.

Der Abstand zwischen AM und BM ist jeweils ca. 2,3m lang. Daraus folgt fur den

. . . 23 o
maximalen Kinectaufnahmewinkel: Ot~2>l<arctan(3 7)~2>l<30 ~60

b

13

Der Raum wird von der Decke beleuchtet. Bei allen Aufnahmen, abgesehen von
,verschiedene Beleuchtungen®, bleibt die Beleuchtung immer gleich.

L s
en

S

Abbildung 3: Raum mit Markiun

Fir die Aufnahmen werden beide Programme mit einer Auflésung von 640x480
konfiguriert. Des Weiteren haben wir fur die Gesichtswahrnehmung des OpenCV
Programms als Parameter fur die ,detectMultiscale“- Methode folgende Parameter
verwendet:

1. das Bild (640x480)
Scalefactor: 1,5
Anzahl Nachbarn: 6

kleinster Rahmen: 30x30

o b~ o N

Groldter Rahmen: empty

14

Das OpenCV Programm haben wir, aus perfomancetechnischen Grunden, Uber die
GPU der Grafikkarte laufen lassen. Dies ist nur mit einer Nvidia Grafikkarte mdglich.
Wir haben daflr eine Nvidia Geforce GT 750M benutzt. Wenn man das Programm
Uber die CPU hatte laufen lassen, waren die Framewerte noch schlechter gewesen
als sie ohnehin schon waren. Da die Framewerte bei OpenCV wesentlich geringer
sind als bei KinectSDK werden die Gesamtzahlen nicht beachtet, sondern lediglich
die Prozentzahlen.

4.1. Minimale und Maximale Reichweite

Hintergrund: Dieser Test ist dazu notwendig um die minimale und maximale
Reichweite, in der die zwei APIs Gesichter wahrnehmen kdnnen, ausfindig zu
machen. Ein Gesicht sollte auch dann noch wahrgenommen werden, wenn die
Testperson sich in einem minimalen Abstand von 50cm von der Kinect entfernt
befindet, da bei realen Public Displays die Kinect einen ahnlichen Abstand zum
Gesicht der bedienenden Person aufweist. Aullerdem wird der normale Use-Case im
Alltag sich hauptsachlich auf das Annahern an die Kinect beschranken.

Durchfiuhrung:

Die Testperson geht in 50cm Schritten auf die Kinect hinzu und entfernt sich
anschliel3end wieder. (Strecke KM). Gestartet wird hierbei bei M. Bei jeder 50cm
Markierung wird ein paar Sekunden gestoppt, um ordentliche Aufnahmen zu
gewahrleisten. Der Versuch wird mit allen 3 Testpersonen durchgefuhrt.

Abbildung 4: Vor- und Zurticklaufen

15

Messdaten:

Person1 323/542 59,50% 27/87 31,00%
Person2 335/625 53,60% 30/122 24,50%
Person3 459/779 58,90% 90/169 53,20%

Ergebnis:

Man sieht auf dem ersten Blick, dass Kinect SDK wesentlich besser abschneidet als
OpenCV. Das liegt hauptsachlich an den Arbeitsweisen der beiden Algorithmen von
Kinect SDK und OpenCV. Da OpenCV bei jedem Frame das Gesicht neu entdecken
muss und, aufgrund des Vor- und Zurucklaufens die Grof3e der Rechtecke stark
variiert, die Performance dadurch noch einmal stark beeintrachtigt wird, schneidet
OpenCV wesentlich schlechter ab als Kinect SDK.

4.2. Erkennung von Gesichtern bei verschiedenen Winkeln

Hintergrund:

Die APlIs sollten auch Gesichter, die nicht frontal zur Kinect zeigen wahrnehmen, da
der Bedienende vermutlich oft auf dem Public Display hin- und herschaut. Folglich
muss die Kinect Gesichter auch aus unterschiedlichen Winkeln noch erfassen
kénnen.

4.2.1.Einzelne 5° Messungen

Durchfihrung:

Die Testperson bewegt sich seitlich auf AM bzw. BM, wobei AM = BM = 1m. Der
Abstand zur Kinect KM betragt hierbei 1,5m. Die Testperson stellt sich zunachst auf
den Punkt A/B und schaut stets geradeaus. Nun bewegt sich die Person Richtung M
und zwar in einem Abstand, der im Kinect Aufnahmebereich einem Winkel von 5°
entspricht.

16

Der Abstand eines 5° Winkels betragt hierbei ca. 16,6666cm (1m = 30°).

A
Abbildung 5: Seitlich laufen in 5° Schritten

Messdaten:

Personl 132/318 41,50% 16/62 25,80%
Person2 160/343 46,60% 36/75 48,00%
Person3 216/393 54,90% 19/78 24,30%

Ergebnis:

Bei Kinect SDK wird bei allen Testpersonen das Gesicht zwischen einem Winkel von
0 — 25° erkannt. OpenCV verhalt sich hier wesentlich instabiler. Die
Erkennungswinkel reichen von 25° bei einer Person bis zu 10° bei einer anderen.
Aulerdem wir teilweise auch die Hand der Personen als Gesicht erkannt. Da

KinectSDK bei diesem Versuch wesentlich stabiler gearbeitet hat und auch von den
Prozentzahlen besser abschneidet, gewinnt hier Kinect SDK.

17

4.2.2.Komplette durchgingige Drehung

Durchflhrung: Eine Testperson setzt sich auf einen drehbaren Stuhl in einem

Abstand von (1m) zur Kinect. Danach wird der Stuhl um 360° gedreht. Die
Testperson schaut dabei immer geradeaus.

Abbildung 6: Kopfdrehung
Messdaten:

Personl 11/84 13%

2/17 11,7%

Ergebnis:

Anhand der Prozentzahlen schneiden Kinect SDK und OpenCV ungefahr gleich gut

ab. Da es bei diesem Versuch keine besonderen Auffalligkeiten gab kdnnen wir hier
aufgrund der hoheren Framezahlen Kinect SDK bevorzugen.

4.3. Vorbeilaufen an der Kinect
Hintergrund:

Dieser Versuch dient dazu herauszufinden, in welcher Geschwindigkeit die APls ein
Gesicht erkennen. Das kann von Vorteil sein, wenn eine Person an dem Public

18

Display vorbei lauft und fliichtig in die Kinect schaut, worauf der Inahlt des Displays
reagieren und der Passant mit Inhalten gelockt werden kann.

Durchflihrung: Abstand KM = 1,5m, AB = 2m. Die Testpersonen laufen von A nach B
in unterschiedlichen Geschwindigkeiten und schauen dabei immer in die Kinect.

Messdaten:

b

K .
|'!'
A4
Kl
o
1
1
1
1
1
1
'
1
1
I
1
1
1
1
1
1
1
1
1
1
|

Abbildung 7: Vorbeilaufen an der Kinect

langsam 3,1s 9/92 9,7% 2/21 9,5%
mittel 1,5s 0/59 0% 0/18 0%
schnell 1,2s 0/50 0% 2/20 10%

langsam 2,6s 8/80 10% 1/11 9%
mittel 2,2s 0/73 0% 1/17 5,8%
schnell 1,0s 0/41 0% 1/10 10%

Ergebnis:

Man sieht hier anhand der Zahlen, dass OpenCV eindeutig besser abschneidet. Das
liegt vor allem an den Wahrnehmungsalgorithmen. Da sich die Personen flur das
Skelett zu schnell bewegt haben, konnte KinectSDK keine guten Werte erzielen.
OpenCV sucht auf jedem Frame ein Gesicht, was in diesem Fall besser funktioniert.
Da OpenCV aber stark von dem Frame abhangt den das Programm gerade
verarbeitet handelt es sich hierbei aber um eine Glickssache. Bei Person1 mit
mittelschnellem Tempo sieht man zum Beispiel, dass 0 Frames gemessen wurden.

Daher ist OpenCV mehr oder weniger vom Glick der Framewahl abhangig, was aber
auch nicht zu zuverlassigen Ergebnissen fuhrt.

4.4. Mehrere Probanden
Hintergrund:

Dieser Versuch soll testen, ob auch mehrere Personen von den APls erfasst werden
konnen. Es ist namlich moglich, dass mehrere Menschen gleichzeitig vor dem

Display stehen und anderen Personen zuschauen bzw. mit ihnen zusammen das
Display bedienen.

4.4.1.Personen stillstehend

1
o, TR
I : :
1
1
1
1
1
1
1
1
1
1
[
1
1
|
1
I
1
1
1
1

-
-

A
Abbildung 8: Mehrere Probanten
Durchfuhrung:

Drei Personen stellen sich gleichzeitig vor die Kinect.

20

Messdaten:

Person1/2/3 73/88 82,90% 14/38 36,80%

Ergebnis:

Das Kinect SDK weist hier wesentlich hdhere Werte auf. Allerdings liegt das auch
daran, dass immer nur eine Person erkannt wird. OpenCV erkennt alle drei
Personen. Demnach gewinnt hier OpenCV trotz schlechterer Prozent- und
Framezahlen.

4.4.2.Personen bewegend
Durchfihrung:
Drei Personen laufen wild durcheinander vor der Kinect herum.

Messdaten:

Person1/2/3 222/286 77,60% 52/65 80,00%

Ergebnis:

Bei diesem Versuch dominiert OpenCV. Nicht nur héhere Prozentzahlen, sondern
auch mehrere Personen werden erkannt. Allerdings wurden hier nur 2 von maximal
drei Personen gleichzeitig erkannt. Trotzdem gewinnt bei diesem Versuch ebenfalls
OpenCV.

4.5. Fakegesichter

Hintergrund:
Hier soll getestet werden, ob auch falsche Gesichter, wie zum Beispiel Bilder mit
Gesichtern von den APIs erfasst werden. Das sollte im Normalfall nicht passieren, da

21

sonst eventuell statt dem Gesicht des Bedieners, ein Gesicht, das sich eventuell auf
dem T-Shirt befindet erfasst und gespeichert wird. Falls danach eine Person mit dem
selben T-Shirt den Display bedient wird unter Umstanden dieselbe Person auf dem
T-Shirt statt der Person, welche das T-Shirt tragt, erkannt.

4.5.1.Gezeichneter Smiley

Durchfuhrung:
Smiley malen und das Bild vor die Kinect halten.

Messdaten:

Bild 0/122 0,00% 0/24 0,00%

Ergebnis:
Bei diesem Versuch haben beide Programme gleich abgeschnitten. Der Smileywurde
bei beiden nicht erkannt, wie es auch sein sollte.

4.5.2.Gemaltes Gesicht mit Korper

Durchfihrung:
Gemaltes Gesicht vor das Gesicht einer Person halten und die Person vor die Kinect
stellen.

Messdaten:

Person1 mit 22/165 13,30% 0/33 0,00%
Bild

22

Ergebnis:

Kinect SDK hat, wenn auch nur kurz, ein Gesicht erkannt, da das Skelett zwar
vorhanden aber das Gesicht eine Attrappe war. OpenCV hat hierbei nichts erkannt.
Folglich gewinnt hier OpenCV.

4.5.3.Bilder von Personen

Durchfuhrung:
Portraitbilder von Personen mit Smartphone aufnehmen und die Bilder vor die Kinect
halten.

Messdaten:

Bilder 0/87 0,00% 8/20 40,00%

Ergebnis:

Kinect SDK hat aufgrund eines fehlendes Skeletts nichts erkannt. OpenCV jedoch
hat die Gesichter erkannt. Das sollte allerdings nicht passieren. Gerade wenn zum
Beispiel gegenuber des Public Displays ein Plakat mit einem Gesicht aufgehangt
wird, wird die ganze Zeit dieses Gesicht erkannt. Aulierdem konnte man, wenn man
das nétige Hintergrundwissen Uber das System verfligt, Bilder von anderen
Personen machen und vor den Display halten, um so zu sehen, woflr sich diese
Person interessiert. Deshalb ist der Gewinner hier eindeutig Kinect SDK.

4.6. verschiedene Beleuchtungen

Hintergrund:

Da die Public Displays, wie der Name schon sagt, public, also 6ffentlich sind,
befinden diese sich teilweise auch an der frischen Luft. Sie sind also der Witterung
und der Sonne ausgesetzt. Da sich die Sonne leider nicht immer an der selben Stelle
befindet, ist es wichtig verschiedene Beleuchtungswinkel zu Uberprufen.

23

Abbildung 9: Beleuchtung in 45°

Durchfuhrung:

Testperson stellt sich im Abstand von ca. 1,5m vor die Kinect im abgedunkelten
Raum. Das Gesicht wird dann fur ein paar Sekunden in 45° Winkeln beleuchtet. (0°,
45°,90°, 135°, 180°).

Messdaten:

199/239 83,20% 89,30%

Ergebnis:

Bei diesem Versuch schneidet OpenCV gering besser ab. Beim Kinect SDK gab es
aulRerdem geringe Verschiebungen der Skelettpunkte beim Lichtwechsel. Hier
gewinnt OpenCV.

24

5. Ergebnis Vergleich

Der Gewinner unsere Versuche ist Kinect SDK. OpenCV hat zwar mehr, Kinect SDK
aber die wichtigeren Kategorien gewonnen. Die Hauptvergleiche: Vor- und
Zurucklaufen und Kopfdrehen, konnte Kinect SDK fur sich verbuchen. Die
Bildattrappen von Gesichtern werden durch die Skelettmechanik nicht erkannt, was
ein enormer Vorteil fur die Public Displays sein kann. Der grof3te Nachteil des Kinect
SDK ist, dass mehrere Personen nicht erkannt werden. Aber von diesem Punkt
abgesehen ist Kinect SDK wesentlich besser geeignet als OpenCV.

OpenCV hat den Nachteil, dass es bei Streams generell dem Kinect SDK in Hinsicht
auf Perfomance unterlegen ist.

Ein weiterer Schwachpunkt von OpenCYV ist die niedrige Framezahl auf die wir in
unserem Vergleich nicht eingegangen sind, da OpenCV allein schon aus diesem
Grund nicht geeignet ware. Es gibt zwar verschiedene Moglichkeiten die Framezahl
von OpenCV wesentlich zu erhéhen, allerdings wiirde das den Vergleich verfalschen.
Man konnte zum Beispiel die Auflosung herunterschrauben. Dadurch wirden aber
keine guten Vergleichsmoglichkeiten zwischen OpenCV und Kinect SDK mehr
herrschen. Eine weitere Mdoglichkeit bestinde darin die Parameter der Methode
,DetectMultiScale” je nach Versuch anzupassen. Dies wirde ebenfalls die Framezahl
stark erhdhen, allerdings verfalscht das wieder die Ergebnisse, da im Endprogramm
die Parameter nicht geandert werden kdnnen.

Man kann also zu beiden API's folgendes Uber die Vor- und Nachteile sagen:

Kinect SDK: Ist fir Streams und Videos ausgelegt und aufgrund der Skelettmechanik
gut um einzelne Personen zu verfolgen. Aulderdem wird dadurch verhindert, dass
Gesichtsattrappen erkannt werden, was, je nach Situation auch ein Nachteil sein
kann. Wenn zum Beispiel die Anwendung darauf ausgelegt ist, Personen auf Bildern
zu erfassen. In unserem Fall ist es jedoch positiv zu betrachten. Des Weiteren ist
Kinect SDK praziser bei der Gesichtswahrnehmung, da, wenn das Skelett einmal
registriert wurde, die Position gespeichert wird, im Gegensatz zu OpenCV. Aufgrund
der oben genannten Punkte lauft Kinect SDK wesentlich schneller als OpenCV.

Allerdings gibt es auch viele Nachteile fiur Kinect SDK. Diese wurden in unserem
Vergleich nicht mit einbezogen, weil sie sich hauptsachlich auf die Wiedererkennung
beziehen. Das Kinect SDK bendtigt ein Skelett und ist dadurch nicht in der Lage
Gesichter auf Bildern zu erkennen, wie bereits angesprochen. Allerdings kann man
deshalb auch keine erkannten Gesichtern mit Bildern aus der Datenbank
vergleichen, was eine Wiedererkennung unmoglich macht. Das spielt allerdings auch
keine grof3e Rolle, da das Kinect SDK von sich aus sowieso keine Funktionen zur
Gesichtswiedererkennung bereitstellt.

25

OpenCV: Aus technischen Grinden eignet sich OpenCV besser flr die
Gesichtserkennung auf Bildern. Hierbei kommt die Performance nicht so sehr zum
tragen. Allerdings funktioniert die Erkennung auf Bildern daflir besser, was bei Kinect
SDK nicht einmal unterstiutzt wird. Ein weiterer Vorteil ist, dass OpenCV
Gesichtswiedererkennung unterstitzt, was fur die nachfolgende Arbeit unerlasslich
ist. Zusatzlich zur Wiedererkennung gibt es hier auch Moglichkeiten verschiedene
andere Persondendaten zur Kategorisierung zu erfassen die mit Hilfe der
Trainierbarkeit realisiert werden. Ein weiterer Vorteil von OpenCV ist die bereits
angesprochene Konfigurierbarkeit mit der man situationsabhangig das Programm
konfigurieren kann. Auf diese Weise kann man das Programm auf bestimmte
Situationen anpassen, in denen es gute Ergebnisse erzielen kann.

Die bereits angesprochene Konfigurierbarkeit kann zwar fur einzelne Situation sehr
von Vorteil sein, da unser Programm aber einen universelleren Einsatz als Ziel hat,
wird daraus ein Nachteil der sehr an der Performance zehrt.

Aus bereits genannten Griinden eignet sich Kinect SDK wesentlich besser zur
Gesichtswahrnehmung. Da es allerdings keine Unterstutzung seitens
Gesichtserkennung anbietet kdnnen wir uns nicht komplett auf Kinect SDK
verlassen. Da die bereits genannten Schwachen zur Wiederkennung von Kinect SDK
gleichzeitig die Starken von OpenCV sind haben wir beschlossen das Kinect SDK
zur Personenerkennung und OpenCV zur Wiedererkennung zu verwenden.

26

6. Gesichtswidererkennung
Die Aufgaben der Wiedererkennungssoftware sind:

e Bekannte Gesichter verwalten
e Neue Gesichter hinzufugen
e Gesichter wiedererkennen

Daruber hinaus soll sie spater Uber weitere Features erweitert werden konnen. (siehe
Kapitel 7: Geschlechtserkennung)

6.1. Bilderverwaltung

Die Bilderverwaltung wird Uber eine Liste realisiert, die den vollstandigen Pfad der
Bilddatei und die zugehérige ID dieser Person hélt. Bei einer Anderung der Liste,
wird diese sofort XML-serialisiert und abgespeichert. Ebenso wird sie beim
Programmestart wieder eingelesen.

6.2. Hinzufiigen neuer Bilder

Beim Hinzufugen neuer Bilder wird zunachst Uberprift ob das Gesicht auf dem
neuen Bild bereits bekannt ist. Als Ergebnis liefert der Fisherface-Algorithmus die ID
der Klasse, welcher das Gesicht zugeordnet werden konnte. Bei Gesichtern die
keiner der trainierten Klassen zugeordnet werden konnten, gibt der Algorithmus -1
als Ergebnis zuruck. In diesem Fall wird das neue Gesicht in eine neue Klasse (mit
neuer ID) abgelegt und trainiert. Bereits bekannte Gesichter werden nur dann
trainiert, wenn noch nicht genugend Bilder trainiert wurden.

27

Neues Bild
o ﬂ Bild einlesen ‘

v

Person
wiedererkennen

Suche Anzahl M [unbekannt Trainiere mit
trainierter Bilder neuer ID

dieser Person

Y

[<10] | Trainiere mit
erkannter |ID
[>=10]
erkannte ID
zurtickgeben

¢ \J
O O

Aus Grunden der Skalierbarkeit werden zu einer Klasse maximal 10 Gesichter
trainiert.

6.3. Gesichter wiedererkennen

Bilder mussen fur die Wiedererkennung mit OpenCV alle die selbe GrofRe haben.
Aus diesem Grund speichern wir alle aufgenommenen Bilder im 100 px * 100 px
Format auf. Da die Grolie des Gesichtes allerdings abhangig von dem Abstand
unterschiedlich grof ist, mussen wir dir Bilder verkleinern, bzw. vergrofern, sodass
sie in das Format passen.

Der Fisherface-Algorithmus ordnet ein Bild in eine der trainierten Klassen ein. Dabei
wahlt er diejenige Klasse als Ergebnis, die die geringste Distanz zum Testobjekt hat.
Dabei gibt es drei mdgliche Fehler:

1. Ein bekanntes Gesicht wird der falschen Klasse zugeordnet
2. Ein bekanntes Gesicht wird als unbekannt eingestuft (,false negative®)
3. Ein unbekanntes Gesicht wird einer Klasse zugeordnet (,false positive®)

Der Konstruktor des Recognizer-Klasse erhalt 2 Parameter, die die Fehlerquote
maldgeblich beeinflussen.

28

public FisherFaceRecognizer(
int numComponents,
double threshold

)

Der zweite Parameter gibt die Schwelle an, ab welcher Distanz ein zu testendes
Gesicht als unbekannt eingestuft wird. Ist die Schwelle

e zu hoch eingestellt, wird Fehler Nummer 3 ofter auftreten
e zu niedrig eingestellt, wird Fehler Nummer 2 6fter eintreten

6.4. Architektur zur verteilten Wiedererkennung

Das Szenario erfordert die verteilte Erfassung von Bildern, aber eine zentralisierte
Verwaltung, Kategorisierung und Untersuchung. Hier wird auf das Client-Server
Muster zurlckgegriffen. Jeder Klient ist dabei mit einer Microsoft Kinect und einer
Netzwerkverbindung ausgertustet. Der Server stellt einen leichtgewichtigen
Webserver zu Verfiigung, der die empfangenen Bilder an die
Wiedererkennungssoftware weitergibt.

(via KinectSDK) Webserver

-:F—‘“SB
H Post Re

Face Detection
(via KinectSDK)

-FJ“SB

Face Detection
(via KinectSDK)

1
BT U5

Face Detection |« % NodeJS

Put

Image | '
Observe
Image Folder

Image Processing /
Face Recogntion

29

6.5. Implementierung

6.5.1.Client Application
Abhangigkeiten
Die Anwendung verwendet die folgenden Assebmlys:

Microsoft.Kinect.dll
Microsoft.Kinect.Toolkit.dll
Microsoft.Kinect. Toolkit.FaceTracking.dll

Als erstes soll eine Verbindung zur Kinect aufgebaut werden. Dazu wird ein
EventHandler fur das Event KinectSensorChooser.KinectChanged implementiert. An
dieser Stelle werden nun die Einstellungen fur die Kinect gesetzt. Dazu zahlen
Auflésung (sowohl fur Farb- als fUr Infrarotbilder), Near mode und Seated mode.

Ein weiterer EventHandler wird ausgefuhrt sobald die Kinect neue Frames bereithalt.
Hier erhalt der Entwickler bereits ein Feld mit Skelettobjekten, die die Kinect erkannt
hat. Fur jedes erkannte Skelett wird mit Hilfe des FaceTracker Objektes versucht ein
Gesicht zu finden. Jedoch kann die Anwendung nicht ohne Weiteres entscheiden, ob
ein erkanntes Gesicht zu einer bereits bekannten Person gehort.

Uber die Oberflache kann der Benutzer den Bild-Ausgabepfad festlegen. Dieser wird
in den Benutzereinstellungen gespeichert. Eine konfigurierbare natlrliche Zahl gibt
den Abstand als Anzahl von Frames an, in dem Gesichter gespeichert und an den
Server gesendet werden sollen. Daruber hinaus vergibt die Anwendung jedem
Gesicht eine ID-Nummer. Sollte Uber einen konfigurierbaren Zeitraum kein Gesicht
erkannt worden sein, wird beim nachsten Mal eine um eins erhdhte ID vergeben. Der
Dateiname beinhaltet dabei alle fur den Server interessanten Informationen:

237-165753678.jpg

X-y.jpg, wobei x die automatisch inkrementierte ID des erkannten Gesichts ist. Y ist
eine Zufallszahl, die dafur sorgt, dass ein Dateiname einmalig ist.

Die gespeicherten Bilder werden in der Methode ServerConnection.Trainimage an
den Webserver gesendet:

webClient.UploadFiTleAsync(
new Uri(Properties.Settings.Default.ServerUploaduRL), "POST", FilePath);

Die Server URL wird dabei in den Anwendungseinstellungen (KinectApp.exe.config)
konfiguriert.

30

6.5.2.Node]S Webserver
Der NodeJS Webserver lauscht auf Port 3000 und registriert sich auf zwei URLSs:

app.post('/train’, train.start);
app.post('/upload', upload.begin);

Sollte ein Post-Request an eine der beiden URLs gesendet werden, nimmt die
zugehorige Funktion train.start oder upload.begin diesen entgegen. Das darin
enthaltene Bild wird dann entweder in .\uploads oder in .\train abgelegt.

Es gibt zwei getrennte Ordner, damit der Recognition-Server zwischen Bildern
unterscheiden kann, die er trainieren soll und denen, die er nur prifen soll. Diese
Unterscheidung wurde im Laufe des Projekts hinfallig. Neuester Stand ist, dass jedes
Bild zuerst gepruft wird und dann entschieden wird, ob neu trainiert wird oder nicht.
Dazu wird jedes Bild an die /train-Route gesendet.

6.5.3.Server Application

Zunachst werden in einem neuen Thread zwei FileSystemWatcher Objekte
konfiguriert. Diese Uberwachen zwei konfigurierbare Ordnerpfade. Sobald eine Datei
mit .jpg-Endung erstellt wird, wird ein EventHandler ausgefuhrt. Dieser startet
wiederum einen neuen Thread, der sich um die Behandlung des Bildes kimmert.
Dazu gehort die Wiedererkennung und das Training des FisherFaceRecognizers.

Beim Start der Anwendung wird versucht im Windows-Anwendungsdatenverzeichnis
die Datei \RecognizerServer\TrainingData.xml zu lesen. In ihr werden die Pfade zu
allen trainierten Bildern verwaltet. Zu jedem Bild gehort aul3erdem ein Label, das
anzeigt zu welcher Klasse das jeweilige Bild gehdrt. Im Quellcode ist dies die Liste:

List<ImageSet> ImageStorage.TrainingData

Diese wird bei Anderungen XML-serialisiert und abgespeichert. Ein Auszug:

<ImageSet>
<Filename>C:\Uni\Fachstudie\FS_Server\train\269-1667962847.jpg</Filename>
<Label>269</Label>

</ImageSet>

<ImageSet>
<FiTlename>C:\Uni\Fachstudie\FS_Server\train\269-845899570. jpg</Filename>
<Label>269</Label>

</ImageSet>

<ImageSet>
<FiTename>C:\Uni\Fachstudie\FS_Server\train\271-722060412. jpg</Filename>
<Label>271</Label>

</ImageSet>

Aulerdem wird zur Geschlechtserkennung eine weitere XML-Datei eingelesen.
(Siehe Kapitel 7)

31

Das Trainieren des Fisherface-Algorithmus geschieht Gber die Methode
FisherFaceRecognizer.Train(...)
Die Einordnung eines Bildes in eine Klasse geschieht Uber die Methode

FisherFaceRecognizer.Predict(...)

6.6. Codemetriken

Hierarchie & Wartbarkeitsindex Tyklomatische Komplexitit | Vererbungstiefe Klassenkopplung = Codezeilen

3 KinectOpenCVipp ([@ 81 47 9 68 140
bo[e#] KinectSDKApp (Debd @ 7 48 9 T4 151
[- RecognizerServer (De @ 146
(P reroanpp ooy T R

Die in C# implementierten Systemteile bestehen aus nur wenigen Zeilen Code und
haben eine gute Wartbarkeit. Das zeigt, dass die Implementierung durch das Kinect
Toolkit und OpenCYV stark vereinfacht wurden.

6.7. Skalierbarkeit

Eine Bilddatei in Graustufen mit einer Aufldsung von 100 px * 100 px hat
durchschnittlich die Grofie von 4 kB. Fur 1.000.000 Bilder bendtigt man also etwa 4
GB Speicherplatz.

Durch die verteilte Architektur des Systems, skaliert die Erfassung der Bilder
ebenfalls sehr gut. Es stellt kein Problem dar ca. 5 Bilder pro Sekunde, pro Maschine
zu erfassen.

Der Teil, der am meisten Zeit beansprucht ist das Trainieren der Wiedererkennung.
Bei der Geschlechtserkennung spielt dies allerdings keine Rolle, weil lediglich zum
Programmestart eine feste Anzahl an Bildern trainiert wird (konstante Komplexitat). Bei
fortschreitender Laufzeit erhdht sich jedoch die Anzahl der zu trainierenden Gesichter
fur die Wiedererkennung. Hier gibt es unterschiedliche Verbesserungsmoglichkeiten:

e Es werden immer nur die neuesten n Bilder trainiert. (konstante Komplexitat)

e Es werden mehrere FisherFaceRecognizer-Objekte erstellt, die sich die
»Trainingslast® aufteilen. (Load Balancing) Diese kdnnen nebenlaufig trainiert
werden.

e Das Training wird auf mehrere Maschinen gleichzeitig aufgeteilt. (Hoher
Entwicklungsaufwand nétig)

32

7. Geschlechtserkennung

Ahnlich wie die Wiedererkennung funktioniert die Geschlechtserkennung. Dabei
werden zwei Klassen von Gesichtern trainiert.

Ein Ausschnitt aus der XML-Datei TrainingData.xml:

<?xml version="1.0"7>

<ArrayOfImageSet xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema">
<ImageSet>
<FiTlename>.\Training\Frauen\s35\9.jpg</Filename>
<Label>0</Label>

</ImageSet>

<ImageSet>

<Filename>.\Training\Frauen\s35\10. jpg</Filename>
<Label>0</Label>

</ImageSet>

<ImageSet>

<Filename>.\Training\Mdnner\s1l\1l. jpg</Filename>
<Label>1</Label>

</ImageSet>

<ImageSet>
<Filename>.\Training\Manner\s1l\2.jpg</Filename>
<Label>1</Label>

</ImageSet>

</ArrayofImageSet>

Bilder mit Frauengesichtern werden mit dem Label O trainiert und Mannergesichter
mit dem Label 1. Ein zu testendes Bild wird einer der beiden Klassen zugeordnet.
Um zu verhindern, dass zu testende Gesichter als unbekannt eingestuft werden, wird
die Schwelle auf einen mdglichst hohen Wert eingestellt:

genderDetector = new FisherFaceRecognizer(90, Int32.MaxVvalue);

Die Aussagekraft der Geschlechtserkennung erhdht sich dabei mit der Anzahl der
trainierten Bilder. Beim Start der Server Software werden eine feste Anzahl an
Bildern eingelesen und trainiert. (40 Mannergesichter und 40 Frauengesichter) Im
Hinblick auf die Skalierbarkeit ist es kein Problem, mehr Gesichter zu trainieren, da
dies nur einmal zum Start der Anwendung ausgeflthrt wird.

33

http://www.w3.org/2001/XMLSchema

8. Erweiterbarkeit

8.1. Gesichtsmerkmale

Wie schon im Kapitel "Geschlechtserkennung" erwahnt, basiert die Klassifizierung
auf Gesichtsmerkmale und den zugehdorigen Attributen. So ist es mdglich durch das
Erweitern der Gesichtsdatenbank weitere Gruppierungen zu erstellen, wie
Beispielsweise Altersgruppen oder ethnische Gruppen.

8.2. Architektur

Durch die verteilten Komponenten des Systems lassen sich beliebig viele Systeme
mit einer Kinect anbinden.

Zur Verbesserung der Performance gibt es auRerdem mehrere Moglichkeiten die
Serversoftware zu erweitern. (Siehe Kapitel 5.7 Skalierbarkeit)

34

9. Weiterfithrende Arbeiten
Fir weiterflUhrende Arbeiten wirde sich ein Vergleich der
Wiedererkennungsalgorithmen anbieten. In OpenCV sind vier Algorithmen
implementiert:
» FisherFaces
* EigenFaces
* Local Binary Patterns Histogram
* Principle Component Analysis
Interessante Fragestellungen dazu waren:
* Wie viele Bilder sollten sinnvollerweise zu einer Person trainiert werden?
* Wie verhalt sich die Performance?
* Welcher Algorithmus hat die meisten korrekten Treffer?
Anhand der Ergebnisse kdonnte das vorhandene System angepasst werden.

Aulerdem waren Verbesserungen in Hinsicht auf die Erfassung von mehreren
Personen zum selben Zeitpunkt denkbar.

35

10. Zusammenfassung

Abschlieend mochten wir das gesamte Projekt noch einmal Revue passieren
lassen.

Fir den Vergleich haben wir die APIs Kinect SDK und OpenCV verwendet. Hierbei
ging es darum herauszufinden, welche der beiden APls sich besser dafir eignet,
Gesichter von Personen wahrzunehmen. Um das herauszufinden, haben wir
verschiedene Versuche durchgefihrt. Dabei haben wir versucht, die APls auf
Alltagssituationen zu testen, wie zum Beispiel das Zulaufen zur Kinect, sowie
Bewegungen des Kopfes und das Anzeigen von Bilder mit Gesichtern von Personen.

Kinect SDK hat bei diesen Versuchen wesentlich besser abgeschnitten, weshalb wir
uns dazu entschieden haben, es fur die Gesichtswahrnehmung zu verwenden.
OpenCV hatte allgemein eine schlechtere Bildrate als Kinect SDK. Auf3erdem gab es
bei OpenCV auch einige Probleme bei der Kopfdrehung und dem Erkennen der
Bilder von Personen. Da Kinect SDK allerdings keine eigenstandige
Gesichtserkennung unterstitzt, haben wir uns dazu entschlossen, OpenCYV fir die
Wiedererkennung zu verwenden. Als abschlieRendes Statement kann man sagen,
dass beide APIs gewisse Vor- und Nachteile bieten, weshalb wir uns auch dazu
entschieden haben, beide in Verbindung zu verwenden.

36

Quellverzeichnis

[EMCV] EmguCV; http://www.emgu.com/wiki/index.php/Main_Page

[MSDN] Miscrosoft MSDN; http://msdn.microsoft.com/en-us/library/jj131033.aspx
[OPCV] Intel, Willow Garage; http://opencv.org/

[OPNI] PrimeSense , Willow Garage, ASUS; http://www.openni.org/

37

Erklarung

Hiermit versichere ich, diese Arbeit selbststindig verfasst und nur die angegebenen Quellen
benutzt zu haben. Wértliche und sinngeméiRe Ubernahmen aus anderen Quellen habe ich nach
bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 15. Oktober 2013

38

	1. Aufgabenbeschreibung
	1.1. Zweck des Dokuments
	1.2. Überblick über den weiteren Inhalt

	2. Projektüberblick
	2.1. Aufgabenstellung
	2.2. Vorgehensweise
	2.2.1. Einarbeitungsphase
	2.2.2. Vergleichsphase
	2.2.3. Entscheidungsphase
	2.2.4. Entwicklungsphase

	2.3. Zeitplanung

	3. Einarbeitung
	3.1. Kinect SDK [MSDN]
	3.2. OpenCV [OPCV]
	3.2.1. Projekt relevante Funktionen
	3.2.2. EmguCV [EMCV]

	3.3. OpenNI [OPNI]

	4. Vergleich Vorgehensweise (Versuche)
	4.1. Minimale und Maximale Reichweite
	4.2. Erkennung von Gesichtern bei verschiedenen Winkeln
	4.2.1. Einzelne 5° Messungen
	4.2.2. Komplette durchgängige Drehung

	4.3. Vorbeilaufen an der Kinect
	4.4. Mehrere Probanden
	4.4.1. Personen stillstehend
	4.4.2. Personen bewegend

	4.5. Fakegesichter
	4.5.1. Gezeichneter Smiley
	4.5.2. Gemaltes Gesicht mit Körper
	4.5.3. Bilder von Personen

	4.6. verschiedene Beleuchtungen

	5. Ergebnis Vergleich
	6. Gesichtswidererkennung
	6.1. Bilderverwaltung
	6.2. Hinzufügen neuer Bilder
	6.3. Gesichter wiedererkennen
	6.4. Architektur zur verteilten Wiedererkennung
	6.5. Implementierung
	6.5.1. Client Application
	6.5.2. NodeJS Webserver
	6.5.3. Server Application

	6.6. Codemetriken
	6.7. Skalierbarkeit

	7. Geschlechtserkennung
	8. Erweiterbarkeit
	8.1. Gesichtsmerkmale
	8.2. Architektur

	9. Weiterführende Arbeiten
	10. Zusammenfassung

