Institut fiir Softwaretechnologie

Abteilung Zuverldssige Softwaresysteme

Universitét Stuttgart
Universititsstrafle 38
D - 70569 Stuttgart

Fachstudie Nr. 184

Evaluation von Java Profiler Werkzeugen

Albert Flaig, Daniel Hertl, Florian Kriiger

Studiengang:

Priifer:
Betreuer:
begonnen am:

beendet am:

CR-Klassifikation:

Softwaretechnik

Prof. Dr. Lars Grunske
Dipl. Inf. André van Hoorn
31.05.2013

30.11.2013

D.4.8

Abstract

The purpose of this study is to evaluate Java profilers and compare them with each other.
As profilers differ in various aspects the evaluation has to cover many functional and
non-functional scopes like the user interface and license properties, states of development,
range of support, and the given underlying conditions. Choosing the right profiler is not
an easy task as there is a wide variety each with their own pros and cons. This study aids
in decision making by providing a comparison and enabling the user to easily weight up
each individual aspect to ones personal needs. Through this study we try to publish a
detailed comparison of current profilers as well as a personal recommendation based on
objective, well-defined criteria. In this context different kinds of profilers — commercial
as well as open source — will be looked at in an attempt to find the best-fitting tool for
specific usage scenarios. In order to achieve accurate results each profiler is tested with
a similar set of examinees. As a result a table based ranking will be established by the
help of the perceived results. The result of this analysis can further be used to choose one
profiler out of the tested ones to perfectly fit to the user needs. Secondarily it also provides
a detailed overview of current profilers and its functional scopes.

Contents

Introduction

1.1 Motivation e e e
1.2 Goals e e e
Foundations

21 Profiling Aspects
2.2 Java Virtual Machine Tooling Interface
23 Method Sampling
2.4 Bytecode Instrumentation L L L L L Lo
25 Remote JMX Connectionottt
Research Procedure

3.1 Preparation
3.2 Kick-Off e
3.3 Research e e e e
3.4 Create Assessment Criteria
3.5 Evaluation of Profilers
3.6 Final Presentation
Market Overview

41 Considered Profilers e
Evaluation Criteria

51 Criteria Catalog
5.2 Scale Definitions e
Evaluation Procedure

6.1 Applicationsunder Test
6.2 UseCases i i i e
Experimental Evaluation

7.1 Java Virtual Machine (JVM) Monitor
72 VisualVm e e e
73 NetBeans Profiler
74 Eclipse Test & Performance Tools Platform
75 inspectIT
76 jProfiler

11
11
11
12
12
12
12

13
13

15
15
15

Contents

7.7 YourKit Profiler
78 Dynatrace e
79 JavaMissionControl
710 Eclipse Memory Analyzer

8 Conclusion

A Detailed Profiler List
Al AppDynamics
A2 dynaTrace
A3 Eclipse HyadesPlugin
A4 Eclipse Profiler Plugin
A5 Eclipse TPTPo
A6 Inspectlt
A7 JavaMission Control

A.8 JMap

A9 jMechanic
ATO0JProbe o e e
AdlJProfiler e e
A12JVM Monitor o o e
Al3jvmstat

A.14 JRat

Al5Memory Analyzer.
A.16 NetBeans Profiler e
Ad7 Thermostat e e e e
Al18VisualVM e e
A.19 YourKit Java Profiler

Glossary
Acronyms

Bibliography

Chapter 1

Introduction

1.1 Motivation

Software has seamlessly integrated into our everyday lives in the recent decades. Through
the ever increasing processing power of today’s computers, software has to solve tasks
more complex than ever before. Therefore the demands of the software have risen and thus
increased the responsibility of the programmers. Even in the rarest exception, software
has to function correctly or else will cause high costs. In some extreme situations software
errors can even endanger human lives. In order to identify flaws or inefficiency in pro-
grams, specific techniques have been developed that help the developer seek problematic
code spots. One technique is described through the use of profilers. Profilers are tools
which analyze run time behavior on various aspects like the efficiency of specific routines,
the memory usage or the concurrency. They are used especially in development environ-
ments to help developers pin down memory leaks, demanding methods, and critical code
segments. Recently new aspects have appeared like measuring the amounts of database
accesses or analyzing internet interfaces. The goal of this study is to use and compare
commercial and non-commercial profilers and highlight their similarities and differences.

Collaboration with NovaTec GmbH

This study is executed in cooperation with NovaTec Consulting GmbH! located in Leinfelden-
Echterdingen.

1.2 Goals

The goal of this study is to compare current Java profilers and acquire meaningful results
to allow to carry out result analysis. Open source profiler will be considered as well
as commercial products. Through research the aspects of profiler and the possibilities
of the Java VM should be summarized. All profilers under test will be inspected with
a similar set of examinees to achieve results in order to create relative comparisons. A
detailed report will be created by the help of the study results to gain deeper insight into
the functional behavior of each profiler. Besides the main functionality like observing

1ht’rp: //www.novatecgmbh.de/

1. Introduction

CPU processing, memory usage or thread activity special features like coverage analysis,
workflow integration into other tools and continuous integration or support of further JVM
based languages are to be assessed individually. In addition to the functional aspects, the
usability of the profiler itself will also get a rating. To create a user-friendly overview, a
catalog is to be created by the help of the detailed reports. The catalog should show a
short summary of each profiler that includes a ranking of its functionality that offers the
possibility to filter a small set of profilers to fit perfectly to the users needs.

Tasks in Detail

> Illustration of the JVM profiler concept through the use of (JVM TI)

> Categorizing of profiler tools by license, features, risks, and effort

> Setup of a unified feature catalog of the tools including a term glossary

> Crucial illustration of the quality of the tools based on personal experiments and extern
reviews especially regarding developer workflow

= Creation of a decision-making support based on use cases to help the selection of profiler
tools.

Chapter 2

Foundations

The term profiling describes a dynamic analysis that covers issues of the resource manage-
ment of a program during execution. Main issues like CPU utilization, memory usage or
thread activity could be considered as well as special functions like network activity or
garbage collection. However this study considers Memory Profiling, Thread Profiling and
CPU Profiling as main aspects and are described in Section 2.1. Most Java profiler tools
rest upon the Java Virtual Machine Tooling Interface which has been introduced in Java 5
JVM [2004]. Therefore they rather differ in presentation and workflow than the amount of
available profiling information. See Section 2.2 for a overview of the JVM TI. A small set of
available profilers use different methods to collect information than through the usage of
JVM TI. To gather execution data profilers use the technique of Bytecode Instrumentation,
which is described in Section 2.4. Also some profilers use Method Sampling to reduce over-
head. This technique is described in Section 2.3. In Section 2.5 remote Java Management
Extensions (JMX) connections are described, which are used to connect to a remote JVM,
which is mostly useful for monitoring but also used during profiling.

2.1 Profiling Aspects

The purpose of this section is to define the borders of profiling aspects. For example when
talking about CPU profiling one needs to know what aspects are included in this aspect.
This section is going to clarify each term.

2.1.1 Memory Profiling

In this study the term Memory Profiling describes the ability to inspect heap, memory
management, allocated objects, allocation stack trace

2.1.2 Thread Profiling

In this study the term Thread Profiling involves the ability to see the states of each thread,
the code place a specific thread is running, the stack trace of the thread and the time spent
on each method by the thread, and analyze possible dead lock scenarios. Thread Profiling
transitions smoothly into CPU Profiling.

2. Foundations

2.1.3 CPU Profiling

In this study the term CPU Profiling describes the ability to inspect timers, CPU usage in
general and the percentage used by specific packages, classes, and methods.

2.2 Java Virtual Machine Tooling Interface

The Java Virtual Machine Tooling Interface is a programming interface for use by tools. It
provides functions to inspect the state of the Application under Test (AuT) running in a
JVM. The functions of JVM TI include profiling, debugging, monitoring, thread analysis,
coverage analysis, and more. Most profilers rely on the JVM TI to gather information on
the AuT. The abilities of the JVM TI are too vast to be covered here JVM. To retrieve data
through the JVM TI one needs to provide a JVM TIl-agent. Agents have to be written in
a native programming language. Each profiler that relies on the JVM TI has got its own
agent which tells the JVM TI what kind of data has to be gathered on the AuT.

2.3 Method Sampling

Method Sampling can be used to reduce overhead, however this technique greatly reduces
the level of detail of gathered data. When using Method Sampling one profiles the
application periodically after a set amount of time has passed JPM [2011]. On some
implementations of this technique the missed information on execution data is extrapolated.
Execution time of methods is thus estimated. Different profilers use a different term when
referring to this technique. In Chapter 7 only the term Method Sampling is used, regardless
what term the profiler uses.

2.4 Bytecode Instrumentation

Bytecode Instrumentation (BCI) describes the technique of injecting custom code in Java
classes during runtime. The purpose is to inject code which calls a custom event trigger
on different occasions like at class load time, method start and end time, custom expres-
sion evaluation and many more. See figure 2.1 for a simplified example of Bytecode
Instrumentation (BCI).

There are different methods of using BCI JVM:

> Static Instrumentation
The class file is instrumented before it is loaded into the JVM. Usually by providing a
duplicate class file with injected code.

> Load-Time Instrumentation
The class file is injected with custom code during load time in memory only.

2.5. Remote J]MX Connection

private void populate(ArraylList<Particle> population, int i) {
long startTime = getTimeStamp();
private void populate(Arraylist<Particle> population, int i) { for (i = 1; i <= numberOfParticles; i++) {
for (i = 1; i <= numberOfParticles; i++) { ﬂ population.add{new Particle(}};
population.add(new Particle());
} long duration = getTimeStamp() - startTime;

3 report(this, "populate”, duration);

Figure 2.1. The left method without BCI; the right method with BCI

> Dynamic Instrumentation
Class files which are already loaded and possibly even during execution are injected
with custom code in memory only.

2.5 Remote JMX Connection

The Java Remote J]MX Connection is an interface to connect to remote Java Applications
running in a different JVM on a remote or local host. This provides profiling and monitoring
capabilities on remote Java applications. The JMX connection supports SSL authentication.
This is a very important feature, especially for monitoring purposes, but is also useful
for profiling. One can monitor this way either a local or a remote JVM. In contrast to the
Java Virtual Machine Tooling Interface, the Java Management Extensions do not provide
in-depth information of the AuT and thus there is a need to provide additional interfaces
within the AuT for in-depth information mining. The JMX provides basic data like the
number of allocated objects, the CPU usage, general information of the system and the
JVM, etc.

Chapter 3

Research Procedure

This study is conducted within six months and takes place in the period from August 2,
2013 to November 18, 2013. A meeting with the adviser was held periodically every second
week to discuss the recent results. In a team of three members, we performed this study.
We introduced milestones to split our goals into small steps and improve the cooperation
with NovaTec. (3.1) visualizes our schedule as a Gantt-diagram.

S 7 ~ |
- 01
project ' q
: — Mai IJuni Im IAu ust ‘Se tember ‘Dmba. INuvembel
Vorgang | anfang | Enge | o ¢
© Basicresearch 100513 22.05.13 —
@ Kick-Off 24.05.13 24.05.13 I
© Research 27.0513 21.06.13 E—
@ Create assessment criteria 24.06.13 31.07.13 | E——
@ Evaluation of profilers 01.08.13 15.10.13 [1
@ Final presentation 16.10.13 18.11.13 | ——

Figure 3.1. schedule of study

3.1 Preparation

To prepare us for a presentation and a well-founded discussion we had to make us familiar
with the basics of the issue profiler. We took a short look at current profilers and read
some articles of the theoretical basics. The outcome has been included as Foundations in
Chapter 2.

3.2 Kick-Off

After the preparation phase in order to make ourselves familiar with the matter and to
prepare to an analysis discussion, our study started with the kick-off meeting in the office
of Novalec GmbH in Leinfelden-Echterdingen. After a short introduction of the company,
two representatives depicted their concern regarding the main focus of the study and we
discussed the demands of an expressive study.

11

3. Research Procedure

The early evaluation criteria of profiler tools have already been established in the kick-off
meeting.

3.3 Research

After the kick-off meeting, a 4-week-lasting research phase followed. During this phase,
existing profilers have been searched and categorized. Several interesting profilers have
been found through this research. In order to establish a detailed as possible list of profilers,
we started to gather information about the profilers by the use of forums and data of the
manufacturer.

3.4 Create Assessment Criteria

To compare the profilers against each other we had to create a few assessment criteria that
characterize a profiler at all important aspects. We laid down important points like CPU
utilization, memory usage, or thread activity. Beside that we wanted to take a further look
at the individual profilers and added a detailed list of criteria to our catalog. The result of
the gathered criteria can be looked up at the created table that offers an overview of the
current profilers.

3.5 Evaluation of Profilers

To establish well-founded results, we installed each listed profiler and created a small set
of test cases to take a closer look at the functionality. To challenge the specific functionality
of all profilers we chose two applications that were especially suited for these test cases.
Furthermore, we developed code snippets and injected them into the test applications. By
the help of these snippets we were able to compare the overhead which was produced by
the profilers during the profile process. During the evaluation of a single profiler a detailed
report of its functional behavior was written.

3.6 Final Presentation

After all profilers were tested and the study report was finished, a final presentation was
held at NovaTec GmbH.

12

Chapter 4

Market Overview

The following list represents our selection of current profilers. Refer also to Chapter A to see
a short summary of each individual tool and the complete list of our initial profiler lineup.
As time was limited we were not able to consider every tool. Therefore in Section 4.1 each
tool is shown which has been removed from this study with a short reasonable explanation.
The following list in Section 4.1 represents the profilers being tested in this study.

4.1 Considered Profilers

> JVM Monitor (Section A.12)
JVM Monitor is a Java profiler to monitor CPU, threads, and memory usage of Java
applications.

> Java VisualVM (Section A.18)
VisualVM is a tool which utilizes various available technologies like jvmstat, JMX, the
Serviceability Agent, and the Attach API to profile applications.

> NetBeans Profiler (Section A.16)
This profiler comes along with functions including CPU, memory and thread profiling
as well as basic JVM monitoring. It is integrated into the Netbeans IDE.

> Eclipse TPTP (Section A.5)
Eclipse Test & Performance Tools Platform (TPTP) includes frameworks to analyze the
run time behavior of desktop and enterprise applications written in Java. However it is
no longer developed and support for the newer JVM versions has been dropped.

> Inspectlt (Section A.6)
Analyzing tool developed by NovaTec GmbH. Collects data through manually integrated
measuring points at Java classes.

> JProfiler (Section A.11)
A commercial profiler that comes along with a wide range of functionality. It runs on
various operating systems and development environments.

> YourKit Java Profiler (Section A.19)
A commercial profiler that comes along with a wide range of functionality. It is free to
use for open source projects and runs on various operating systems.
13

4.

>

>

>

Market Overview

dynaTrace (Section A.2)
Commercial profiler with a huge range of features.

JRockit Mission Control (Section A.7)
Profiler that includes tools to monitor, manage, profile, and eliminate memory leaks in
Java applications with little performance overhead.

Memory Analyzer (Section A.15)
The Eclipse Memory Analyzer (MAT) helps to get Heap dumps.

Excluded Profilers

>

>

>

>

14

Hyades Eclipse Plugin (Section A.3)
The Hyades Eclipse Plugin has been integrated into Eclipse TPTP. Instead Eclipse TPTP
has been tested as mentioned in Section 4.1.

Thermostat (Section A.17)
Thermostat has only monitoring capability for now. Profiling functions are planned but
not yet implemented.

Eclipse Profiler Plugin (Section A.4)
The developer itself recommends the use of other profiler tools and does not support
Eclipse Profiler Plugin anymore.

jMechanic (Section A.9)
The last official version was v0.6 and has been released in 2004. Due to this inactivity
jMechanic is not considered.

JRat (Section A.14)
The development of JRat is already inactive since several years. Thus it has been
excluded.

AppDynamics (Section A.1)
AppDynamics is a monitoring tool that is specialized for production environments
rather than for profiling.

JMap (Section A.8)
Unsupported small tool, which isn’t stable and only runs on a few Linux distributions.

JProbe (Section A.10)
A powerful commercial tool. However, we were not able to get a hold of a test license
for the latest version.

jvmstat (Section A.13)
A small tool without GUI whose only functionality lies in the profiling of the memory
heap. It has too little functionality to be considered for an extensive test.

Chapter 5

Evaluation Criteria

To compare individual profiler tools with each other and to get a detailed list of the
functionality the profiler have been evaluated by specific criteria and categorized in scales.
Thereby a criteria catalog has been created to rate each profiler in each category. However
at this point the ratings are already filled in with the use of the scale definitions in section
5.2. See Chapter 7 on page 25 for the actual evaluation.

5.1 Criteria Catalog

5.2 Scale Definitions

In this caption you find the scales you need to evaluate the tested tools. Every scale is well
defined so it is possible to evaluate all tools.

The scale types used are ordinal and nominal scales. The ordinal scale types are described
in a table like grades in school. In the particular columns you will find the corresponding
grade definition. The nominal scales only describes if a profiler has a particular property.

5.2.1 Nominal Scales

> Development:

> Latest version
Date : The date of the latest version of the profiler

> Future-proof
Is the profiler future-proofed? : Yes/No

> License:

> Name
Under which license is the profiler? : Open Source / Eclipse Public License v1.0 /
commercial [test version available]

> Support:

15

5. Evaluation Criteria

> Forum
Is a forum available? : Yes/No Forum available

> Documentation
Is a documentation available? : Yes/No documentation available

> Active Support
Is a active support available? : Yes/No active support available

> Active Community
Is a active community available? : Yes/No active community available

> Basic conditions:

> IDE-integration
Is it possible to integrate the profiler and if possible for what IDE? : [Yes],Eclipse /
[Yes],Netbeans / No

> OS-compatibility
For what OS is the profiler provided for? : Windows / MacOS / Linux / Solaris /
AIX / FreeBSD / HP-UX

> extensibility
Is the profiler extendable? : Yes/No is (not) extendable

16

5.2. Scale Definitions

‘sauo Jo11d 9 Jo syoadse oy} sapnpour anfea a[eds Yoeq,

‘SpI1031
IST[IES 0} WY}
aredwod 0}
sdump deay
JABS puUE 2)EdId
pue sweiderp
ym deay oy
azATeue 0} o[qe
St Jo[jold syl

‘sAerre pue
spalqo “safe
>ped “sessep

Surpuodsaz
-100 9y} pue
despy poerrelop
Moys 0} d[qe
st 1argoxd ayf

uon
-ndoxa Junmp
sagueyd aA1[9y}
pue deay ous
MoOys 0} d[qe
st aargyoxd oy,

desyg
ay} jo sjoysdeus
e} 0} d[qe St
xoryoxd L

deayg
oy Aerdstp
0} d[qe ,UusI
1oryoxd L

deayg

S}NSII ISI[ILD
0} 31 aredwod
ued nok pue

SUOHDAUU0D
aseqejep jo
S}[NSaI JY} dALS
ued nox ‘ejep

jo adueyxe
3y} MOT[O] ued
nox *9IqISIA

SjuswdyeIs Jo
UOTNIIXd et
1yoad YL

31 MOYS
pue woIy auwod
sjuowRje}s Jo
SUOTIONIISUT S}
dIOyM puess
-Idpun 0} [qe
st 1argyoxd oyl

awn
oryoxd ayy Sur
-mp sadueyp jas
elep jo spuon
dAES Op 0} J[qe
st 1argyoxd ayr

uonedridde
ue Jo s)as ejep
3y} Mmoys pue
aseqeje(] e 0}
109U ued
1oyoxd L

syoal
-qo aseqeyep Aue
9AIISQO 0} JqIS
-sod jou st 31 1911
-oid sy yim

osegeled

7 |

€ |

|

I

0
anyeA aedg

odA1, A1ouaN

«9[€dS ATOWdIA]

SoIedS [PUIpIQ T'T'S

17

5. Evaluation Criteria

'sauo 1o11d a3 jo soadse sy} sepnur anfea J[eds yoed,

"Ssed
yoea jo Apoexd
arow 10 sageyped
yoea jo odejuad

peo|
NdD 93eyusdiad
I} pue speaIy)

a3ejuaniad
nad ayr sherd

-1ad Supndwod | Suruuni jJo uoy | -SIp YOIYm aurg Ayanoe
pa[Ieldap SMOYS | -BZI[eNsSIA B SMOUS | awr} © smoys | N gD Jo sjoysdeus | uomnde NJD moys
1yoxd oyl | royoad oyl | rergoad oyl | moys 1orgyoid ayy | 3,uop 1oqyoxd ayr Ayreuonpunyg
¥ € z T 0
anjea aredg Suroxd NgD
«2[€2S NdD
‘sauo Jotrd ayj Jo spoadse ay) sapNPUT dNTeA IS YdeH,
arqrssod
ST 90D 3DINOS A} dump peanyy
ojur 03 0} pue | e JJeaI ULd NOX
SOMIRISTY [[€D | 'PIOD3I Jey} Ojul -awm
MO[[0J 0} 2INjedj | Pa[IeIop 210w 03 | PIpPIOdAI PajIe)s
Yy, ‘Spealy} | pue awr JIe[ndn | J[3s je SpeaIy) sy}
Suruuni ay) jo | -red e je speary) | YoIeasal ued Nox
ejep 9y} Ojur | 9y} pioddr ued | ‘poyjew [edryderd

pa[reop arow 03
pue 193y ‘ozirens
-1a 0} Ayqiqrssod
9y} aAey NOX

nox “wo)sAs
Suruuni a8y} jo
SpeaIy) [[e SMOYS
1oryoxd L

JUSISJIP Ul Wy}
dZI[eNnsIA Ued pue
Speaiy} [[e SMoys
1aryoxd ML

3qe) IO dUTPWT}
e ur speary)
Suruuni e smoys
1yoxd L

peaxy} Suru
-uni Aue moys
3,uop 19[yoid ayJ,

Ayreuonpunyg

7|

€ |

¢

I

0
anjea afeog

Surgoad peany,

£9[€2S pealy]

18

5.2. Scale Definitions

‘sauo Jo11d 9 Jo syoadse oy} sapnpour anfea a[eds Yoeq,

AyTeuonouny
urewr ayj opIs
-9q suonouny
sur | reuorssojord jo Surgoad uonouny
Snid ym ordwre | junowre a8ny e | jo ased ur ydjay | urew o 3roddns suonouny
-Xa I0j 3[qepus) | yim Juole sawod | AI2A are suonpuny | AJuo suopdunjy suonoduny [euor | [euonippe jo Ajn
-xa st dmoad ayy, | 1argyoad Yyl | reuonrppe ayJ, [euonIppy | -Ippe ou are ardyJ, | -fenb pue juno)
¥ | ¢ | z | T 0
suon
an[eA a[edg | -dounj [eUOHIPPY
£SUOIPUN} [eUORIPPY
‘sauo 1otxd ayj jo spoadse ayy sapnuI aNJeA J[EdS e,
Suruuni st
1[yoxd oy Spym
uogeoridde oy
‘peayI2A0 UIIM SIOM 0} J[qe
paadxs ayy dn JOU 9I,NOK 1S9}
395 03 s3urpas [erd op 0} Juem ‘uonedrdde ay3 | ropun uonedrdde
‘uonedrdde | -A9s 9sooyd ued | nok suonde J[3uUIs | JO UOHNIAXD I} | Y} Sunnooxa
3} JO UOPNDAXd | NOX ‘PEIYIdA0 | JO PESYISAO Y} | S[qesip 3,Useop | jo aouaN[yuI s3uras
ay) 109y3e 3,usaop | ayy isnfpe yorym | snfpe o3 saniiq | inq oqudeorad | yonwr 03 oaey | pue aouanpy
peayrano dyJ | s8umjes are a1y | -1ssod dIe SIS | ST PEIYIoAO JYL | pedyra0 dYL | -ur peayrea0
v | ¢ | | T 0
anfea afedg peayIaaQ

£9[edS peayIdAQ

19

5. Evaluation Criteria

‘sauo Jo11d 9 Jo syoadse oy} sapnpour anfea a[eds Yoeq,

suewt
-IspBUuYg uag Jo

suot)
-ouny siaryoid ayy

UeULIDPIaUYS

udg Jo sanI

sa[NnI uapo8 § Ay} 1rgoid | 3snfpe o3 suondo uap[o8 § ‘moyy
paaIasqo st udis | ayy azieuosiad | pue sdumyes swos | jxed uoneziensia IND ou | -I0py “ApIqer]
-op 9orjIa)Ul I9s() | 0} d[qe are nox | sey targoxrd oy | eseysrgord ayy | sey togoid oyl | “Awmn ‘Aypiqesn
7 | ¢ | | I 0
SanId
anfea afedg | -doiJ Lyrend 10O
«2[IS IN1D

Chapter 6

Evaluation Procedure

To execute the evaluation on profilers, a test object has to be chosen which exhausts as
many as possible features of the profiler under test, based on the evaluation criteria on
page 15. The test object has to be applicable to as many profiler as possible in order to
make a uniform statement. Therefore several applications are used to cover specific tasks
of profilers. These two applications are introduced in Section 6.1. Additionally, use cases
have to be defined in order to establish an objective and uniform evaluation procedure. In
Section 6.2 use cases are defined which are to be executed for each test of each profiler for
both introduced applications.

6.1 Applications under Test

Columba

Columba' is an open source email client [Col]. This application has been chosen to
monitor its network activity and examine the features of the profiler in this field. Also this
application is relative big. Beside a high concurrency it demands a lot of functions of the
profiler. Thus the profiler being tested can be measured qualitatively.

1ht’rp: / /sourceforge.net/projects/columba/

21

6. Evaluation Procedure

E Columba el ... =
File Edit View Folder Message Utilities Help
G] New Message 0 Receive/Send Q What's related
= Folder Tree * || ¥ Message List
-8 Local Folders I Subject contains vJ I

[™y
B Musterbetreff - Columba =] B -t
Eile Edit View Format Message Utilities Help o

FsendNow @ atachFie G @ aa [J O (&) E

5 Search Result
earch Results Identity: [/ Bla: "Albert Flaig” <aflaig@gmail.com> v eriority: | Normal 4

] Te: l |max.mus‘telmann@mu;ter.de

i
|
L ¢ |
|
|

] Bec:] |
Subject | Musterbetreff

Mustertest [

This mail was sent with the Java email client Columba. Read more at http://columbamail.org

| |88
ﬁ

Figure 6.1. Columba, a versatile email client

Proguard

Through the use of Proguard? one can optimize and obfuscate Java code in order to remove
unused code and make the decompilation process of Java applications more difficult [Pro].
This process is memory and CPU heavy and demands the corresponding monitoring
functions of the profiler being tested. Also during obfuscating one can easily measure the
overhead, as this process claims a lot of processing time. Therefore the Proguard class
shrinker component is injected with an execution time measuring code.

Zhttp:/ /proguard.sourceforge.net/

22

6.2. Use Cases

| £ ProGuard

==

ProGuard
Input/Output
Shrinking
Obfuscation
Optimization
Information
Process

ReTrace

L

(

@R

r'—f

- Processing console

56842
160261
103419
17368
7105
6711
2078
6316
11053
18947
11447
9079
126313
44604
15394
21710
15789
9868
244733
32368
65526

| |4342

83288

| | 106972

7500
12236
186707
10263
8289
7499
8289
8289
9079
8289
8289
2079
7894
595648
Processing completed successfully

4]

I

L3

[«quT

Previous

View configuration

Save configuration...

Process!

Figure 6.2. ProGuard, a simple java obfuscator; The output during obfuscating procedure is shown

at this point

6.2 Use Cases

We evaluate the profilers with predefined use cases to reach comparable results. The use
case for each application under test is now described.

Columba

Columba is an email management program, therefore it is apparent to research the sending
and receiving of emails.
The test is started with a request to the added email provider, to check whether there are
new messages. The next step is to write a new mail with at least five receivers and content
of a short inserted text.

23

6. Evaluation Procedure

Proguard

In Proguard we start our testing scenario with optimizing some code. We choose the
Columba executable jar as a uniform test object. The configuration is left in default state
except for Ignore warnings about possibly erroneous input which is getting checked.

24

Chapter 7

Experimental Evaluation

7.1 JVM Monitor

JVM Monitor makes a solid impression on first sight. The plugin flawlessly integrates into
Eclipse. The Java Monitor perspective is easy to figure out. The JVM Explorer view shows
active java applications that can be profiled with a simple mouse click. There is no need to
mess around with run configurations which leaves a positive mark. The usual features are
included: Thread, memory and CPU profiling. Some important functions like starting and
stopping the CPU profiling are represented as small buttons on the top bar of the view
and are thus easy to miss. But still JVM Monitor is pretty easy to find out how to use it.
The time line shows various data like memory usage, loaded classes and more over the
course of run time.

] Properties |] Properties 17 Bae@EB =0
Selection from JVM Explorer
proguardgui.jar [PID: 4144]
Timeline Used Heap Memory @ ® X | Loaded ClassCount %
Threads
Memory | ™M
= 25M
MBeans M
15M
Ovenview
10M
133140 133150 133200 133210 133220 133230 133240 133250 133140 133150 133200 133200 132220 132230 133240 133250
Thread Count R CPU Usage B X

17 100%
80%
16 60%
/\ 40%
2%
15 o N AA/\A/\

133140 133150 133200 133210 133220 133230 133240 133250 133140 133150 133200 133210 133220 133230 133240 133250

Figure 7.1. Screenshot of the JVMMonitor tool

However the time line takes getting used to as the scales are not perfectly clear and not
always shown. Hovering your mouse over one graph tells its exact value though. Also the
more advanced user can add more graphs to the time line by inputting specific java beans
which are mostly already provided by the JVM. These beans can also be watched in the
MBeans tab.

25

7. Experimental Evaluation

CPU Profiling

BCI while CPU profiling puts quite a heavy toll on the overhead. In experiment the
measured method took around 5 to 10 times more time to execute. However you can easily
turn this feature off/on and specify the refresh precision which relieves overhead to a
negligible amount.

Thread Profiling

Each thread is shown with its claimed CPU power and its state along with its stack trace. A
very pleasant feature of JVM Monitor is to jump to the source code location of a stacktrace
entry while profiling threads. This can be done without any additional configuration.

Memory Profiling

Nothing extraordinary here. The needed information is displayed nicely in the Eclipse
view and the memory can be dumped with a simple click.

26

7.2. VisualVm

7.2 VisualVm

Visual VM impressed with a nice clear GUI. It can be used as Eclipse plugin. But this only
start the stand alone program. At first view the Profiler locks really good visualized and
gives a lot of information about the application.

The GUI

The GUI has a menu with six sections. Below the menu there is a little toolbar with some
options. The selection of the toolbar icons can be change by the user to personalize your
own tool. Further more the profiler got a tree view of the applications that are possible to
observe. The Remote observable applications are also shown in the tree. The last item in
the tree is the recorded snapshots that had been taken by the user. In the main window in
the middle, you can see the proper profiler.

P x| | Heap | permeen x
CPU usage:0,0% GC activity:0,0% Size: 33.116.160 8 Used: 25.064.445 5
Max: 268,435,456 B
100%
509 B
e
&0e e
e
a
0% e
ME;
4 oM
325 fesT) s
@ cPUusage M GC activity @ Heapsize M Used heap
Classes x| | Threads x
Total loaded: 4.720 Shared loaded: 1.830 Live: 21 Daemon: 16
Total unloaded: 0 Shared unloaded: 0 Live peak: 26 Total started: 91

4.500:

13105 310 15 1320 325
[Total loaded dasses [l Shared baded dasses

Figure 7.2. Overview of the VisualVm timelines

Main functions
Application manager

In the tree view of the profiler you can choose one of the observable applications which
are temporary running on your system. You can select them with an double click to go

27

7. Experimental Evaluation

into the detailed view or you can choose the short way with a right click on the application
you want to research. Direct executable functions in the Application manager are creating
a "Heap Dump", "Thread Dump", taking an application snapshot or adding a remote
connection to a host where an application is running you want to research.

CPU observation

VisualVM provides several possibilities to observe the CPU activities. There is an live
diagram which shows the CPU process while the application is running. In this diagram
you can point a particular time you want to see the CPU load exactly. Further more CPU
activities in a Sampler and in a profiler. In the Sampler you got details about the CPU since
the start of the application under test. Now you have the possibility to take copy of the
actual status of the CPU. Later you can compare this copy to earlier copies. You will see
the difference between the snapshots as you can see in Figure 2.

|#°] VisualvM 13.6 | B
File Applications View Tools Window Help
1810797 3HE | <]
=] || StertPage] & org.columba core, main.Main (pid 5532) | (5 cPU son & EDEE
8 Local | wew: (Omethoss - | | Q TL & Comparison of cpu; 1381483238373 to cpu; 1381493769414
ly .% ;::;‘:I:de 220) Call Tree - Method Time [%] v Time: Time: (CPU)
- & org.columba. core.main.Main (pid 5532) {23 *** JFluid Monitor thread *** [| +30.895ms 0,000ms ~

1+ (g [snapshot] 14:07:18 T Timer-0 0,000 ms 0,000 ms
: 0 Checkpointer [] +30.895 ms 0,000 ms
H @ [snapshot] 14:07:43 I3 *** Profiler Agent Special Execution Thread 6 [] +30.895 ms 0,000 ms
420 Remote £ **+ Profiler Agent Special Execution Thread 5 0,000ms 0,000ms
i) Snapshats X THCompressor [] +30.895 ms 0,000 ms
£ Cleaner-1 [] +30.895 ms 0,000 ms
3 Thread-11 [] +30.895 ms 0,000 ms
& *** profiler Agent Special Execution Thread 2 0,000ms 0,000ms
{51 RMI TCP Connection(4)-141.58.52.112 0,000ms 0,000ms
£ Thread-144 0,000ms 0,000ms
L Thread-145 [] +30.895 ms 0,000 ms
=+ java.lang.Thread. run () [] +30.895 ms 0,000 ms
=% javalang.Thread. run [] +30.895ms 0,000 ms
(=% org.columba. core. base. SwingWorkers2. run () [] +30.895 ms 0,000 ms
i@ seftme 0,000ms 0,000 ms
% org.columba. core. command. Worker. construct () [] +30.895ms 0,000 ms
elf time 0,000ms 0,000ms
() Self time 0,000 ms 0,000 ms
£ Image Animator 0 0,000ms 0,000ms
£ Thread-3 [] +30.895 ms 0,000 ms
£ Thread-1a% 000 me 0.000 me

Figure 7.3. Comparison of the snapshots

And the last option to check the CPU is the most interest. If you go to the profiler you
got nearly the same function as in the Sampler with the big difference that you can start
recording of the CPU at a particular time. Than you can do the same actions like in the
Sampler. You can got CPU snapshots and compare them to earlier versions.

Heap observation

The Heap observation is the same case like the observation of the CPU. You got several
options of researching the memory. A diagram, the Sampler and the profiler. The function
to observe the heap is analogue to the CPU profiling function. You see the instances and

28

7.2. VisualVm

the live objects at a particular time. Again with the difference that in the Sampler you got
it since the start and in the profiler started at a particular time.

29

7. Experimental Evaluation

7.3 NetBeans Profiler

The Netbeans Profiler is a feature of Netbeans. On the first view it is almost conspicuously
that it is similarity to the VisualVM profiler. This may be because VisualVm is actually
equal profiler than the Netbeans Profiler. But there are some differences between the two
profilers. The plugin is more powerful than the stand alone VisualVM. The main advantage
is that you can directly go into the code and check the points you are profiling.

The GUI

The individual screens are nearly the same like in the VisualVM profiler. The navigator
on the left side is the only difference, but a really nice and helpful add-on. If you double
click one of the classes in the memory view you will go to a view that shows detailed the

corresponding instances of this class and the actual states.

(0 NetBeans IDE 7.3.1 o i - —

A e

File Edit View Navigate Source Refoctor Run Debug Profile Team Tools Window Help
= GR ag TR~
P E S - T E » W

Projects |Files | Services | Profiler &%
=l Controls

<defalt config>

3]

[E|Thveads =|Eiheap: 18:31:47 5]

& = | @ summary () Casses [0 Instances | (@ 0QL Console

Take Snapshot Dump Heap Live Results

-+ HASHING_SEED

G CASE_INSENSITIVE_ORDER
[y serialPersistentFiclds

-+ serialVersionUID

-+ Gy <classloader>

= Saved Snapshots
& proguardworkspace

(&5 heap: 15:18:45
(& heap: 16:01:33

B 7o B () java.lang String Instances: 14.834 |
[= Status & Instances x || T Fields
Memory instrumentation Instance & Field
Configuration: Aralyze Memory <500 instances> ~||e tis
= wnne o # =[] -0 hash32
5 Profiling Results o - hash
10 value

)
(& heap: 16:51:52 & References
(&3 heap: 17:13:12 Field
(] heap: 18:31:47 © this
=] View
=
VM Telemetry Threads

[Basic Telemetry

Instrumented: 3470 Classes
Filter: 2
Threads: 2 =

? O Objectt
Total Memory: 18.530.3045 B Amay e | ==
Used Memory: 7,366,285

Time Spent in GC: 0,2%

er Agent with the Tool

Figure 7.4. NetBeans Profiler Overview

Main funcions

(Protocol version: 13)

The main functions of the Netbeans profiler are basically the same as they are in VisualVM.
But the advantage of the plugin is that you are directly connected to your code you want

to profile.

30

7.3. NetBeans Profiler

The differences to VisualVM in case of CPU profiling you will see in the following table.

Settings NetBeans profiler VisualVM

Profiling roots packages/classes/methods/project methods packages/classes
Instrumentation filter predefined sets/user defined/project code user defined
Profiling points enabled/disabled NIA

Profiling technique instrumentation only/instrumentation & sampled time | instrumentation only
Exclude Thread sleep() & Object wait() time | on/off always on

Profile underlying framework startup on/off always off

Profiling technique instrumentation only/instrumentation & sampled time | instrumentation only
Profile new Threads/Runnables on/off on/off

Profiled threads limit 1 to unlimited always 32

Thread CPU timer (Solaris only) on/off always off
Instrumentation scheme total/eager/lazy always lazy
Instrument Method.invoke() on/off always on
Instrument getters/setter on/off always off
Instrument empty methods on/off always off

Figure 7.5. Comparison of the NetbeansProfiler and VisualVm in case of CPU profilingJiri [July 28
,2008]

The differences to VisualVM in case of Memory profiling you will see in the following
table.

31

7. Experimental Evaluation

Settings NetBeans profiler VisualVM

Profiling scope object allocations / object allocations & GC | object allocations / object allocations & GC
Density of tracked objects track every to every nth object track every to every nth object

Allocations stack traces on/off on/off

Profiling points enabled/disabled MNIA

Limit stack traces depth 1 frame to unlimited depth always unlimited depth

Run GC when getting results | on/off always on

Figure 7.6. Comparison of the NetbeansProfiler and VisualVm in case of CPU profiling]Jiri [July 28
,2008]

7.4 Eclipse Test & Performance Tools Platform

The Eclipse Test & Performance Tools Platform is a powerful yet hard to use profiler.
There is no standalone version and therefore it is very conservative in its user interface.
Unfortunately due to its development stop in February 2011 the profiler is left in an
unstable state. It is incompatible with Java 1.7 as it causes errors through its byte code
instrumentation making the application unable to execute. The plugin seems to slowdown
the workbench when at work and the usability seems unpolished. Certain buttons have
unexpected behavior and you can’t move the uml diagrammes around. Also you can only
profile one category at a time which is a blow to its workflow rating.

Additional to its profiling capabilities Eclipse TPTP provides Probekit, a powerful
feature which allows developers to inject Java code fragments at specific points in code on
certain events. This allows for lightweight profiling by printing out only the information
needed by developers.

CPU Profiling

The execution statistics are neatly presented with just the right amount of information.
Each package is shown along its classes which in turn have its methods.

However there is a huge overhead. In experiment Proguard was at times frozen during
computation. The experiment had to be aborted. So the conclusion is to use CPU profiling
only on specific packages, classes or methods. There is also an execution flow feature
which shows a graphical representation of method calls along a vertical axis representing
execution time. The graph is flooded with method calls and cannot be moved around, only
zoomed in and out.

32

7.4. Eclipse Test & Performance Tools Platform

-
= Profile Configurations —

Create, manage, and run configurations

3 B MName: VisualVM Runner Columba

typefil| (@ Main [69= Arguments [, Classpath | (1) Profile Settings . [Destination 2 Source| I Environment | 7

Select the data collectors and analysis types for the launch,
Press F2 to see a quick description of the selected data collector or analysis type

&

g = — : —

= a4 @ 5 Java Profiling - JRE 1.5 or newer (double click to modify filters) Edit Options
=

[¢ Execution Time Analysis
£ Memory Analysis Test Availability
[197 Thread Analysis
[[1&® Probe Insertion

Ju
b
=3
T
Apply Revert
Filter m il s
@j Profile] ’ Close

Figure 7.7. The TPTP profile configuration

Thread Profiling

Eclipse TPTP has good thread profiling capabilities. The usual thread overview is included
and presented in a structured way. However the jump to source code location is missing at
this point when trying to jump to a specific threads implementation. The statistics show
what class uses which thread and further in which method. Also there is a thread visualizer
that gives the developer an overview of thread states at given instants.

Memory Profiling

Memory profiling has the usual information included which is presented in a good
structured way. Allocation details can be shown to see at which point a specific class has
been allocated.

33

7. Experimental Evaluation

2 Profiling and Logging - Eclipse Platform

o

% A~ =0

File Edit Mavigate Search Project Run Window Help
BrO @R @A BER il e £ [0 Pongand) & bve. [Resource
PR 35 #nNa| = O (G Execution Statistics £4. HIEEEY
= | [Execution Statistics - org.columba.core.main.Main [PID: 3352 |
e @] Session summary
FEIBES Highest 10 base time
[Test at Albert-NB [PID: ¢
[l <terminated> Profili Package <BaseTime(s.. AverageBase.. CumulativeTi.. Calls
f Execution Time £ 4 com.sleepycat je.dbi T 0,802252 0,000162 & 1,658911 A 4.965
[Testat Albert-NB [PID: € @ Environmentlmpl i 0,322208 0,000312 1,411583 A 1.034
U <terminated> Profil ;@ MemoryBudget 0,129097 0,000233 0135926 555
& Execution Time . @ DhTree 0104398 0,001800 0,377687 58
[Test at Albert-NB [PID: @ DatabaselmplSStatsAceur 0,081205 0,000394 0,081754 206
LL <terminated> Profili @ Cursormpl 0,061218 0,000036 0275150 1695
& Execution Time £ . @ Databaselmpl 0,041601 0,000067 0,226312 622
[3] Test at Albert-NB [PID: € . @ DbEnvPool 0,040857 0,006309 1,379155 6
B <monitoring> Profil © INList 0,011194 0,000117 0,013386 %6
&' Execution Time £ . @ DbConfigManager RN 0,007549 0,000019 s 0,019685 & 397
[3] erg.columba.core.main. . @ Databaseld 0,001975 0,000010 0002344 205
2% <monitoring> Profil # comjgoodieslooks.plastic Y 0,557729 0,000156 & 0688121 A 3.586
¢ Thread Analysis # com.smardec licensedj 0,397707 0,000080 0397707 4951
[3] erg.columba.core.main . {# com.sleepycatjelog 0,258919 0,000039 0330419 6712
¥ <monitoring> Profil . # com.jgoodieslooks.common 0171327 0,000080 0185655 2.850
& Execution Time £ # com.sleepycatjetree 0,147698 0,000039 0219997 3806
. # com.sleepycat je.recovery 0,123757 0,000635 0594373 195
. # com.jgoodies.forms.layout 0,108082 0,000029 0121602 3694
. com.sleepycat je i 0,106837 0,000054 & 1,719884 A 1.977
com.jgoodies.locks i 0106541 0,000101 & 0251989 A 1050
< om b || Session summary | Execution Statistics | Call Tree| Method Invocation Details| Methed Invecation
e

Figure 7.8. CPU Analyze View

Rating

> Need to tamper with run configurations to start profiling (Workflow -1)
> Allows only to profile one category at a time (Workflow -2)

> Slows down Eclipse in general (Usability -2)

> Not compatible with newest Java version (Future-Proof -5)

> Sometimes the tab within a view won’t switch correctly (Usability -1)
> Good presentation of execution statistics (CPU +1)

> Huge overhead (Overhead -4)

> Thread visualization (Threads +1)

> Memory allocation trace (Memory +1)

> ProbeKit for custom Java code injection (Features +1)

> Can be extended by various plugins (Features +1)

34

7.4. Eclipse Test & Performance Tools Platform

B e lain & - - - -1'- —T ! e s |
File Edit Mevigate Search Project Run Window Help
i REB F O E-QImO S Aoy |
Quick Access | E9| & Jeva [l Test (&) Profiling and Logging | i Java Monitor
P B3 Thread Analysis 52 | 22 Object Allocations legend Sb {5 ® = BB & %}}a %~ ~ =08
4 || Threads Anclysis - org.columba.core.main.Main [PID: 10768
g || Timescale: 0 5 10 15 20 2 L L 40 45 50 55

[Thread Group [system]
a Thread Group [<undefined>]
[| E Thread Group [main]
+ main [java.l..— T ; :
@ ColumbaSe...
i AWT-Shutd...
S8 AWT-Wind...
&P Image Fetc...
5@ AWT-Event...
® INCompres...

I3

1 Checkpoint...
% Cleaner [j...
& Image Fetc...

&® Image Fetc...

&# Image Fetc...

<

[0 r

Thread Statistics ‘ Maonitor Statistics | Threads Visualizer

Sh Call Stack 52 =\
&% main [javalang Thread] (stopped)

Figure 7.9. Detailed Thread Analysis

Summary

One point of criticism is the need to tamper with run configurations to start profiling.
Also one can only profile one category at a time. This has quite an impact on workflow.
It noticeably slows down the Eclipse IDE and tabs will not switch reliably. It is clear
that Eclipse TPTP is left in an unstable state. Eclipse TPTP is not future-proof at all, as
development has been halted and there is no support for newer Java versions. Also there
was a huge overhead tested in experiment. Nevertheless it has a few powerful features like
the ProbeKit and it can be extended by various plugins. The Thread and CPU visualization
is done nicely and during memory testing one can take a look at the allocation trace.
Eclipse TPTP has had its place in the profiler race but not it is definitely left behind.

35

7. Experimental Evaluation

= Profiling and Logging - Eclipse e =RNE X
File Edit Mavigate Search Project Run Window Help
BEB IO R UG S G
Quick Access | E7| &)ave |2 Test [Profiling and Logging | I Java Moritar
& | O Pprofiin.. 52 = B £ Object Allocations 53 | - ’ T =8
il e m | Dyjl a5 B | = <& Memory Analysis - org.columba.core.mainMain[PID: 8420]
- Memory Statistics
4 [3] org.columba.core.main.Main a » Filter: No filter. Click here to set filter
4 [<terminated> Profiling (13. - -
£ Memory Analysis >Class Name Package LiveInstan... Active Size.. TotalInsta.. Total Size (... Avg. Age “
Al D,;U‘umbaw,e‘mainlwm a @ ActiveBasicButtonLis # com jgoedies.lo... 1 32 1 22 0 =
4 [<terminateds Profiling (13, @ AuteTin & com sleepycat je... 1 136 1 136 0
Iy Memory Analysis @ BasicLocker & com sleepycat je... 25 2.200 25 2.200 0,24
4 [71 org.columba.core.main.Main a @ BIN tﬁ com.sleepycat,je.., 4 512 4 512 1
4 [<terminated> Profiling (13 @ BINBoundary % com.sleepycatje... 20 320 20 320 0
2 Memory Analysis @ BINDeltalogEntry # comsleepycatje... 2 48 2 43 1
40 orgl:o\umba‘core‘main.Main a @ BooleanBinding # comsleepycat.bi. 1 16 1 16 2
4 UL <terminated> Profiling (13, @ BooleanConfigParan & com sleepycatje... 29 928 29 928 2
= Memery Analysis @ BorderStyle # com jgoodies.lo... 3 48 3 48 0
40 orgTo\umba‘core‘mam.Mam 4 @ BoundedSize # com jgoodiesfo... 1 24 1 Pl 1
a L <terminateds Profiling (14, @ BrownSugar £ com jgoedies.lo.. 1 &0 1 80 1
£ Memory Analysis ® BtreeStats # com sleepycatje 18 1728 18 1728 033
4 5] orgcolumbs.core.main.Main 8 @ bytell # (defoult package) 163 161912 166 227992 032
2 B* <monitoring> Profiing (14 © byte[]l] # (defoult package]] 7.616 8 7616 0,29
£ Memory Analysis @ ByteBinding # com sleepycat.bi.. 1 16 1 16 2
4 5] progusrd.gui ProGuardGUT at 1 ® CellConstraints ~ # com jgoodiesfo.. 0 800 27 1.080 03
, [<terminated> Profiling (3. @ CellConstraintsSAlig # com jgoodiesfo... 7 168 7 168 1]s
< m b Memory Statistics | Allocation Details

Figure 7.10. Detailed Memory Analysis

7.5 inspectlT

InspectlT is a tool which was developed by NovaTec and belongs to the group of monitoring
tools more then to the group of profiling tools. We want to take a closer look at this
application anyway. With inspectIT its possible to include several sensors within the
sourcecode of an application. This sensors collects data through a connection to the
instrumented hooks of methods. Which methods gets equipped with such a hook will be
predetermined by a configuration file. The following figure shall describe each component
and its functionality.
The application is based on three components.

> User Interface
This component visualizes all created data by the sensors. Besides the profiling function-
ality like CPU activity, loaded classes, needed memory or thread activity it’s possible to
analyze sql statements, http activity and exceptions.

> Centralized Measurement Repository
The Centralized Measurement Repository(CMR) saves all information from each sensor
given by the agents. The user interface has access to this information and visualize.

> inspectIT Agent

36

7.5. inspectIT

User Interface

User Interface

Figure 7.11. Environment structure Siegl [May 17, 2013]

Agents are made to receive the data from an application. To collect data from an
application it has to be started with an agent. Each agent needs a configuration file
which defines which sensors shall be activated and which methods should be observated.

The GUI and its functions

The application comes as standalone version. The application to visualize the data has an
graphical user interface. To set up the CMR or an Agent the command line is needed. The
User Interface is made with Eclipse RCP and looks a bit like the Eclipse IDE.

Summary

InspectIT has a few abilities we already known from profilers. But this program isn’t really
made to profile an application. Its profiling functions like analyzing current loaded classes,
memory usage, thread activity or CPU usage are in comparison to other profilers very
simple. But the aim of the application wasn't to collect all information you can get it was
the aim to produce less overhead. It wouldn’t be fair to compare its functions with other
profilers. But the application could be a nice monitor.

37

7. Experimental Evaluation

e
e =
File Window Help
#-iy O EY i85 @
- Repository M (ﬁ Storage Mana (E Data Explorer i1 = B3 Class Loading Information I3 —- 8
EdG , = G &
A0 Local CMR ¥ [inspectTT [14.48] b [System Overview b Con [| [b & % ~
& Local CMR
[inspectIT [1.4.48] - 5000
- E= Instrumentation Browser ﬁ
3@ Invocation Sequences 2400
b 4 SQL Statements 4300
4 () Timer Data 2000
Show All 1
> E5 Browser 32300
1 E# Http Timer Data 600
1 ©) Exceptions 34001
4 [0 System Overview 32004
il cru 30001
@ Classes E 2800
% Memory B 26001
58 Threads © 24007
@ VM Summary 22007

20001
18001
16001
1400+

Current loaded classes: 4840 Total loaded classes: 4852

Total unloaded classes: 12

Figure 7.12. View over the GUI of the Inspectlt profiler

7.6 jProfiler

JProfiler is a powerful tool with many features and nice visualizations of the measurement
results you want to research. It is impressively because of the intuitive GUIL There are
many on the fly hints and navigation instructions that are very helpful to mastering your
tasks you want to do. This “instruction pilot” is not only helpful, you need it at many points
of the program, because it is possible that you loose the view in the variety of features.

The GUI

The program is distinguished by the clear GUI and the big intuitive symbols in the navigator
and the toolbar. The GUI is separated in 3 main parts. The menu bar with the toolbar
for the particular action, the navigator and the big main view. In the menu bar you have

38

7.6. jProfiler

many options to easy control the system. The toolbar supports to do the right actions you
have chosen in the navigator. The last part, the view part, shows you all results of your
profiling. It is important that the visualization is very clear to do a right interpretation of
the measured data. In the case of jProfiler the visualization is definitely clear.

The toolbar

The toolbar is separated in three parts. The Session part in which you have some options
for the whole profiling session you temporary run, the Profiling part in which you can
control your profiling and the last is the individual part called View specific. This last part
changes every time you change the function you want to execute. Every function you can
choose in the navigator includes other specific options you can use.

i 2 — — - P
v e a2l ol 4. - 12 1] C‘?ﬁ? =/
ok (= 8 & % 9 4|3 0 & 5
Start Save Session Start Stap Start Add iew Freeze Show In [ET
Center et Snapshat Settings | Recordings Recordings Tracking RiglCs Baokmark B Settings Rl View Heap Walker Current

Session Profiling View spedific

Figure 7.13. The toolbar with the particular sections marked by the black lines

39

7. Experimental Evaluation

The navigator

The navigator shows all the variety of actions you have with jProfiler. So in the figure
below 7.14 you see a short overview of the navigator with section and subsections of the
main actions.

‘&] Live memory ﬁ CFU views Q Threads ﬁl Telemetries éj Databases ‘% Moritors & locks

All Objects Call Tree Thread Hitory Memory IDBC Current Locking Graph
Recorded Objects Hot Spots Thread Monitor Recorded Objects JPajHbernate Current Monitors
Allocation Call Tree Call Graph Thread Dumps Recorded Throughput MongoDB Locking History Graph
Allocation Hot Spots Method Statistics GC Activity Cassandra Monitor History

Class Tracker Call Tracer Classes HBase Monitor Usage Statistics

Threads

Figure 7.14. The Navigator to chose the particular action of the profiler

The exact functionality will be described in a later section.
The main view is the visualization part as mentioned. It works with tables, maps, call
hierarchies, time lines and many more. Further more you have always the option to view
the visualizations in a filtered version. For example in the memory profiling view you have
the possibility to show a specific package you want to observe. In this package you can
only show the corresponding methods which are running.

Main functions
Live Memory

In all sub-functions of the Live memory feature you can choose an so called aggregation
level. This aggregation level is subdivided in classes, packages and Java EE Components.
This should give you the opportunity to have different views on the memory usage of your
profiled program.

= All Objects and Recorded Objects
The view of the All Objects Section and the Recorded Section is the same. If you take a
look at Figure 7.15 you see the extendable list of packages and the includes class counts
to each package. Now you can open the packages. If you now double click own of the
classes you will get to a source view of the class.

40

Profilng

Aggregation level: [Packages

7.6. jProfiler

Name

) javax.swing [
) java.uti.con
) java.beans [1
) org hsqld
) javax.sning
) java.awt [77
) de javasoft.plaf.synthetica
) net.miginfocom.a:
) java.lang ref
) java.security
) javax.sning.plaf [
) i
) javax.sning.plaf.sy

iavax snina.olaf basic

Figure 7.15. Memory usage view

Instance count v

> Allocation Call Tree and Allocation Hot Spots
In this section you have the same choice of selecting an aggregation level, but in this case
you have the levels methods, classes, packages and Java EE Components. The allocation
call tree shows a top-down call tree accumulated for all threads and filtered according.
The allocation hot spots view shows a list of methods where objects of a selected class
have been allocated. Only methods which contribute at least 0.1 percent of the total
number of allocations are included.

@] Local attach [3] - Profiler 8.0.1

60.947

173,

Y@ ED0| B &

Stan
St atach

By wwemenory

Al Objects Aggregationlevel

San swp
ot Sefings | Recondings Racordngs

Liveness mode:

e

Stan Add
Tadking | R GC pookmark | BN

O Z(3

Erofing

Recorded allocations of: All classes

Live objects

Casses

View
Serings

Recorded Objects Hotspot
Allocation Cal Tree
Allocation Hot Spots

Class Tracker

_h Heap waker
& cvien
g Threads

Y

r‘—I . @ 0,2%- 26,502 bytes - 1. 108 aloc. de javasoft.plaf.ynthetica. painter. TabbedPanepainter
Telemetries Qo .

E g Databases

ventQueue
5 - 19,742 alloc. d.gui.swing. dgui. events.EDTEventQueue:

i java.ant GraphicsConfguration
(Q m's1,5% - 5.573 6 - 4,892 alloc. de javasoftplaf.synthetica.painter Syn theticaPainter

947 16 - 1. 188 alloc. Java.awt. EventQueue

1
- 15,0% - 1

1, javax.swing. TTabbecPane
Q 11%

7 kB - 1.188 aloc. d.gui.swing.jdgui events. EDTEventQueue
947kB - 1.188 aloc. java. ant. EventDispatchThread
14,824 bytes - 54 aloc. Javax. swing.plaf.synth. SynthPainter

55 - 3.099 alloc. d.qul.swing.jdgui MainTabbedPane

- 1720 byte

< - 71 aloc. de.javaso

Plaf.synthetica StyleFactory$19

104 bytes - 46 aloc. de.javasoft.piaf.synthetca.simple2D. TabbedPanePainter

& ton-
O 0,0%- 304 byt

> Class Tracker

/1. Tava.text DecmaFormat

Figure 7.16. Allocation overview of the tested application

tes - 12 alloc. de javasoft pla.synthetica StyleFactorys20
javax swing, IntemalFrame.

java lang.reflect.Me thod
java ant.mage. Volatielmage

Allocated memory ~

Alocations

5.5 8 (51%)

R
I 54 VB (5 %)

- 84 (4%)
I 38818 (3 %)

W56 (1%)

B2k (1%)
W 115Kk8 (1%)
98.728bytes (0%)

175,020 butes (0 %)

In the Class Tracker you can observe whole packages or only arrays. You get a time
line that shows the progress of class counts in package or the value trend of an selected

array.

41

7. Experimental Evaluation

Heap Walker

The Heap Walker gives you the opportunity to take a snapshot of the actual state of the
memory. Now you can do a walkthrough to your memory. In Figure 7.17 you see the Heap
Walker toolbar.

|| Classes |7 Allocations ||| Biggest Objects |#| References || Time | #| Inspections 59| Graph

Figure 7.17. In the Heapwalker you can have a walk through the memory

With the left three symbols of the toolbar you can chose at a time either a class, allocation
or one of the biggest objects. Now you can research this selection in detail. For example
you have the opportunity to explore the references or the time the selection has impact in
the program. An additional feature is that you can show selected references in a graph.

CPU views

The This section you also have the aggregation level choice. Methods, classes, packages
and Java EE Components are available.

> Call Tree
Analogue to the call tree for the memory it shows a tree of filtered or all threads with
CPU percentage.

> Hot Spots
The hot spots view shows a list of calls of a selected type. The list is truncated at the
point where calls use less than 0.1 percent of the total time of all calls.

@] Local attach [3] - JProfiler 801 [N -
sion View Profiling Window Help

Iherenttme ~ Average Time ™
1.227s (41 %) 2.611ms
I <73 s (16 %) 4735
& CPU views. I <73 s (16 %) 4735
4735 (16 %) 473s
CalTre I 52 %) 2625
113.982 ms (0 %) 13.982ms
Hot Spots 475ms (0 %) 475ms
Call Graph =0 - "
3585
2120
CallTracer o
_ 21350
Tivesds 2Zisosis
g s
21320
¢ 27y
‘Qj Monitors &locks 2105
- Tops
_ s
o [200207 s

Figure 7.18. The CPU Hotspots. Here you see the main active threads in focus

42

7.6. jProfiler

> Call Graph
This feature generates call graph. You can choose threads that you want to display
in this graph. In this graph you see the threads an fields which are in relation to the
selected threads. It should illustrate how the thread call circle was executed. Additional
to that there are some facts to each thread and field like the total calls and the total
compute time.

I jd.gui.swing. GuiRunnable.run L I I o L ane (B4 unSave
5 Total: 43.363 s, Inherent: 802 s, Calls: 33 3 Total: 42.310 s, Inherent. 2.353 ps, Calls: 33

Jd.gui.sning Jdguiviews info.Li berinfoPane accessy 15|
- Total: 174 ys, Inherent: 174 s, Galls: 68 B

Java.uiil. ArrayList iterator @)
U Total: 832 ps, Inherent: 832 i, Calls: 45 (1

Jd nutils Formtter formatReadable %
Total: 18,550 s, nherent: 630 ps, Calls: 35 =

tor. hashlext S
i 353 s, Callsi 155

lang StingBuilder.<init>
s, Inherent: 854 s, Calls: 38

™~ & java lang StingBuildetoSting B
3 Total: 650 ys, Inherent: 650 s, Calls: 38 &

»[¥ jdcantiolling JoLogger geiLagger |
A\ & Total:2 ps, Inherent: 2 ps, C: - /

@ P
U Totaiood

java.lang. StringBuilder.append
Total: 98 ps, Inherent: 06 ps, Calls: 38

s, Calls: 1

Figure 7.19. In the Call Graph you have the possibility to generate call graphs of selected threads

> Method Statistics
In this section you can start a recording. In this interval of start and stop recording you
get a list of methods which were running in this time. Now you can choose one of them
and go into the details.

> Call Tracer
The same recording action you got in the Method Statistics you have in the Call Tracer.
Here you will get a extendable list of packages which have methods that were called at
the recording interval.

Threads

> Thread History and Thread Monitor
This two sections visualizing the running threads in the program. In the History all
running threads are displayed in a time line. By right clicking one of them you can go
to the CPU view and check it in the call tree. In the Monitor you got a list of all threads.
If you select one of them you get a list of methods involved in this thread. This methods
you can double click and go straight to a source code viewer if it is possible to look into
the classes.

43

7. Experimental Evaluation

> Thread Dump
This function only creates a summary of all threads. At this point you also have the
possibility to go into the source code.

Telemetries

In all time line diagrams you have the same set of options you can use to go more detailed
into the set of data. You can set bookmarks, you can zoom in and zoom out and you can
change the graph type from area to line graph view. Additional to that you have an export
view function and a set of settings to personalize your time line diagrams.

> Memory

> Heap
This time line diagram shows the total heap usage. The used Heap and the free space
of heap

> Non Heap
This time line diagram shows the code cache usage and the perm gen usage.

> Recorded Objects
This time line shows what size of memory is used by arrays and what part used by non
array typed objects.

> Recorded Throughput
This diagram shows how many objects are collected of the GC and how many are
created.

> GC Activity
This diagram shows the live action of the garbage collector in percent

> Classes
Shows the CPU computed and non CPU computed class counts

> Threads
In this time line diagram you can see all Threads with the particular state in different
colors.

> CPU Load
Last but not least the time line diagram of the CPU load. Here you see the CPU
computing percentage which the application needs.

44

7.7. YourKit Profiler

7.7 YourKit Profiler

YourKit profiler is a commercial great tool to analyze applications. The application comes
as standalone version with plugins for several IDEs [YourKit GmbH]. The plugins just
starts the applications out of the IDE’s. The standalone version visualizes the information
in real time. The profiler is very powerful and comes with a huge set of functions. In
comparison to other profilers with same range of functionality its very easy to install.
Just execute the installer downloaded at the Homepage and that’s it. After starting an
application out of the IDE the profiler starts to visualize the information. To the functional
scope belongs well known functions like CPU and memory profiling as well as innovative
ones like inspections of leaks and memory wastes.

The plugin

The profiler comes with a standalone version and a corresponding plugin for several IDEs
like Eclipse, Intelli] IDEA, NetBeans and JDeveloper. The plugin is very simple and only
starts the application with the YourKit Profiler

Run | Window Help

we Profile

@, Run Ctrl+Fl11
%, Debug F11
we Profile History 3
e Profile As 3
e Profile...

Figure 7.20. Overview of the Eclipse Yourkit profiler

The figure shows the menu item run at Eclipse Juno. Besides the menu entry profile ,
which starts the standalone program and a selected project at eclipse, the plugin appends a
profile history and a profile asfunction, which is similar to the well known function run as
unless it also starts the profiler.

45

7. Experimental Evaluation

The standalone application

The standalone version starts with a welcome screen. The welcome screen shows a few
important functions and helps to come familiar with the program. Here the user can find
the documentation, an example program which can be started out of the application to
test the profiler for the first time or a list of the current detected java application running
on the system. Furthermore there are an integration wizard to install the plugin into the
used IDE, a function to open an existing snapshot to analyze older recorded data or even a
function to connect to a remote application.

-
43 Main-2013-10-15 snapshot [C\Users\kaisercanvas\Snapshots] - Yourkit Java Ofiler 1206 =)

File View Memory CPU Settings Tools Help

Evaluation license expires on October 28, 2013, Purchase a license. ||

o| @ crPU Threads | @ Memory | Y§ Garbage Collection | @@ Exceptions | @ Probes | @ Inspections | [Summary [

5| All objects (reachable and unreachable)

2| Objects: 1126654 / shallow size: 63 MB / retained size: 63 MB Strong reachable among them: 713.231 (63%) / shallow size: 39 MB (62%) / retained size: 3 MB (62%) @ Reachability scopes

~ Name Objects Size

2 Statistics <Objects without allocation informations 1094737 64942.296

g Clssiit £l <Allthreads» 3917 100% 1766264 100%

E| Chmstroe B % javalang.Thread.run() 3831 9% 1763792

al E % org.columba. Ce 1.run() 31732 o 1.760.600
e jave.ang Throwable printStackTrace(31732 5% 1760600

2| Reachability scopes 1 jova.awt.EventDispatchThread run() 8 0 2448 0

5| Classloaders ¥ org.columba.core scripting FileObserverThread.run() 10 20

@ Wb applications

Inspections

Object explorer

S Main-2013-10-15

Allocations

Call tree (all threads together) [

Class Tree | Object Explorer | Generations | Ages | Reachability

Class Loaders | Web Applications | Callees List | QuickInfo

| Class it for objects selected in the upper table

s Class name (2% = [P calculate exact retained sies
Hot spots by object count Class Name Objects | ShallowSize | + Retained Size
Hot spots by object size [c] charll 14330 45% 1269232 2% =1269232
Method list [c] java.nio.HeapCharBuffer 4003 13% 196560 11% 196.560

Object ages [€] javalang.String 5117 16% 122808 7 122808
[€] javalang StackTraceElement 2048 & 49152
T [€] javalang.StringBuilder 307 0% o1k 2+
e [€] java.utildentityHashMap 1024 33 09%0 2 Nz 2%
[€] java.util. CollectionsSSetFromMap 1024 3% 16384 1% 16384 1%
¥ Non-filtered method Hide | |[6] java.lang.ThrowableS\WrappedPrintStream 1023 3% 16368 1% =16368 1%
Filtered method
Filters...

ere objects were cre:

Class list: memory distribution among instances of different classes

Figure 7.21. Yourkit memory usage analysis

By the help of the list of the current running java applications we can come to the
analyze view of an application. Here we have a toolbar to record, clear or stop data of
the profiled application. At the bottom of the toolbar the program shows a tab-bar which
offers access to all common functions. A detailed list of all tabs and its functions was made
bellow.

46

7.7. YourKit Profiler

Functions

> CPU
This view shows two diagrams at the top of the panel. One illustrates an overview of
the current used CPU in percent, the other one the amount of current sleeping and
running threads. The sampling of the CPU can be adjust at the settings menu. A
detailed list can be found at the bottom of the panel. A Call Tree offers the function
to navigate though the methods of the application and Stack Traces can be found there too.

CPU Time Threads
Total: 4m49s Inlast5 mins 10s In last min: 2s All live: 19 Daemons: 14 Peak: 26 Total created: 331
LD %5 5
BED % 20
60 % 15
40 % 10
0% 5
0% T T T N T T T
1h 3Bm 40s 1h 3Bm 50= 1h 35m 1h 3Bm 40= 1h 38m 50s 1h 35m

Figure 7.22. Yourkit CPU usage analysis

> Threads
This view shows the current running threads. It shows a small table that visualizes
the states of the threads in real time. The states could be runnable, blocked, sleeping and
waiting. Beneath the table a small figure shows the CPU usage.

Name States

PO IS TTeT v

AWT-EventQueue-0
AWT-Shutdown
AWT-Windows
Checkpointer

Cleaner-1

T T T T T
im lh 45m 10z lh 45m 205 1h 45m 30z 1h 45m 405 Lh 45m 505 lhe

: T I I T I
m lh 45m 10z lh 45m 205 1h 45m 30z 1h 45m 405 Lh 45m 505 lhe

Figure 7.23. Thread overview of the observed application

To get detailed information of a thread and its stack trace at a specific time a click at the
table appends a slider. A table with more information is shown at the bottom of the
panel when the slider was added.

47

7. Experimental Evaluation

> Deadlock

A helpful function can be reached through the tab Deadlock. The profiler recognizes
Threads that seems to be in a deadlock. That means the profiler takes a look at the
stack of the threads. If a thread doesn’t change its stack for more than ten seconds it is
probable a deadlock.

&p cPU Threads | € Deadlocks | @ Memory | T Garbage Collection | 8 Monitor Usage

Refresh the view: @

Frozen threads found (potential deadlock)

It seerns that the following threads have not changed their stack for more than 10 seconds.
These threads are possibly (but not necessarily!) in a deadlock or hung.

Thread-161 <--- Frozen for at least 59m 27=

48

4 java.awt.Component.setFont(Font)

°fr‘java.awt.CDntainer.setFDnt{Fant)

4 javax.swing.)Component.setFont(Font)

9 javax.swing.LookAndFeelinstallColorsAndFont{JComponent, String, String, String)

i javan.swing.plaf.basic.BasicLabelULinstallDefaults(ILabel)

4 javax.swing.plaf.basic.BasicLabelULinstallUI)Component)

4 javax.swingJComponent.setUI{ComponentUT)

i javan.swing.)Label.setUl{LabelUT)

I javax.swing.)Label, updatell]

irjavax.swing.JLabel.dinitb (String, Icon, int)

i javax.swing.)Label.<init> (String)

4 org.columba.mail.gui.message.viewer.HeaderViewer transformHeaderField(Header, String)

4 org.columba.mail. qui.message.viewer.HeaderViewer.view({IMailbox, Object, MailFrameMediator)
4 org.colurnba.mail.gui.message. MessageController.showMessage(Mailbox, Object)

4 org.columba.mail.gui.message.command.ViewMessageCommand.execute([WorkerStatusController)
4 org.columba.core.cormmand. Command.process(Worker)

4 org.columba.core.cormmand. Worker.construct()

4 org.columba.core.base.SwingWorkerS2.run()

i java.lang. Thread.run() <2 recursive calls>

Figure 7.24. List of dead threads that seemed to be dead

The view shows all deadlocks and its stack trace.

7.7. YourKit Profiler

> Memory
One of the main functions which is usually for a profiler is to show current memory
usage. This profiler offers three diagrams that show heap- and non-heap-usage of the
current application as well as the amount of current loaded classes. The table below
offers some functions to search for specific classes to get an amount of its instances and
memory usage as well as memory allocations.

Heap Memory Non-Heap Memory Classes

Memory Pool: All Pools e Memory Pool: All Pools ¥ Currently loaded: 4936 Total unloaded: 3

Allocated: 72MB Used: 61 MB Limit: 247 MB Allocated: 23MB Used: 23MB Limit: 96 MB
B0 MBT] 25 MB 50007
&4 MB 20 MB 4.000
48 MBo 15 MB 3.000
3 MB 10 ME 2.000
16 MB 5MB 1000

o T T ¢ T T 0 T T T
40s 2h 5m 50s Zh &m 40 2h 5m 50s Zh 6m m 4ds 2Zh 5m 50s Zh 6m

Figure 7.25. Yourkit Memory observation

> Garbage Collection
The next function visualizes the garbage collector activity. It will help to estimate
garbage collection load.

> Exceptions
Another helpful view can be reached over the Exceptions tab. The exceptions may be
grouped by their exception class or by thread. The second table shows the stack trace
of the current selected exception at the first table. It is possible to filter for specific
exceptions.

Mame Count
E- [g] org.celumba.ristretto. parser.ParserException 32601 V6%
i@ AWT-EventQueue-0 native ID: 0 up: 'main 21615 51%
i@ <Oldest finished threads> 10966 26 %
@ Thread-402 native ID: 0 roup: ‘main g8 0%
@ Thread-404 native 10: 0x group: 'main 8 0%
i@ Thread-405 native ID: 0 group: 'main 4 0%
Bl (€] java.net.SocketTimeoutException 4232 10%
@ ColumbaServer native ID; 05420 group: 'main’ 4232 10%
(€] java.util MissingResourceException 42 0%
[€] orgxml.saxSAXNotRecognizedException 37 0%
Name Count
=l &, java.net.DualStackPlainSocketimpl.waitForNewConnection(int, int) 4,232 100 %
B #, java.netServerSocket.accept()
El- B, org.columba.core.main ColumbaServer$1.run()
., javalang.Thread.run()

Figure 7.26. Recognized Exceptions of the application under test

49

7. Experimental Evaluation

> Inspections
Possibly, the most innovative function this profiler offers. This function is only enabled
after profiling an application and scans the application snapshots that could be saved
after profiling. It inspects the application and tries to find code-segments that could be
improved. It tests various possible faults and problems.

Inspections Found r Description

=~ Memory Waste
Find chjects referenced by a large number of other objects.

Duplicate strings 114973

Duplicate arrays 14351 Possible problem: incorrect relations between objects in memory, logical errors, non optimal data structures,
Null fields 493

Sparse arrays 12496

Zero length arrays 1062

=l Possible Leaks
Objects retained by inner clas: 49
Lost SWT controls 0 r Optiens (applied on inspection run)
=~ Other Memory Oddities
HashMap hash code distributi0
Highly referenced objects 129
Self referencing objects 223
MNon-serializable objects refere 1698
Objects with biggest distance 50

Show objects with at least | 100 | back references

| Ignore objects of filtered classes Edit filters...

[l File Access
Not closed files 31 Bl Run Al Inspections [Run This Inspection Only X Cance
Result:
Mame Reference Count

32 objects of class |G| java.lang.String 150053
2 ebjects of class [€] java.lang.Boolean 28.343
7 objects of class |G| javax.swing.plaf.ColorUIResource 7137
1 ebject of class [€] org.columba.mail.guitable.model. MessageNode 6933
1 object of class €] java.awt.Color 6929
Paths from GC Roots || Allacations

‘ Paths from GC Roots to objects selected in the upper table

MName Objects Retained Size
(= <All the objects> 32 100 % 2032 100 %
<0hbjects retained from several classes simultaneously, or GC roots> 32 100 % 2032 100 %

Figure 7.27. Yourkit Inspection view

> Monitoring
The view Monitor Usage helps to find synchronization issues at the application. It
visualizes dependencies between the threads. That means it shows which thread calling
the wait function and blocks other threads.

Group by Waiting/blocked thread ™ then group by Blocker thread ¥ [7] Show blocked threads enly

Mame Time (ms) Count

Waiting thread 4@ Thread-16 native 10: 0x838 group: 'main 22 0% 137 39%
Waiting thread @ Thread-15 native ID: 1xJF4 group: 'main’ 3660 1% 6 2%
El Blocked thread (8¢ Thread-15 native ID: 0x7F4 group: 'main’ 37 0% 2 1%
B~ was blacked by thread G AWT-EventQueue-0 native ID: (5520 group: 'main’ 37 0% 2 1%

on moniter of class [€] java.awt.ComponentSAWT TreeLock 37 0% 2 1%

Waiting thread 4@ Thread-11 native ID: 058 group: 'main’ 29347 11% 13 4%
Waiting thread @' Reference Handler native ID: 0:114 73072 2% 8 I%
Waiting thread 48 Java2D Disposer native ID: 0x478 group: 'system’ 53310 20% 2 1%
El- Waiting thread & INCompressor native ID: 0:55C group: ‘main 255104 97% 51 15%

Figure 7.28. Yourkit Monitoring features

a1
o

7.7. YourKit Profiler

> Other functions Other functions are Probes, where specific profile tests can be enabled
or disabled and Summary which gives a short overview of all collected information.

Summary

YourKit is a very useful profiler which comes along with a lot of well developed functions.
All well-known basic functions are included and work well. The profiler is very easy to
install and easy to understand after short practice. Sometimes the visualization is a bit
ordinary so that a better visualization would be desirable. A plugin can be included in
various IDE’s and works suitable. The function Inspections is very innovative and can help a
lot to improve the performance of an application. All in all a very nice commercial product.

51

7. Experimental Evaluation

7.8 Dynatrace

Dynatrace is a commercial, very powerful profiler tool.

The environment

The Dynatrace environment consists of several components

Rich-Client/
Browser
Bl Java Il \WebServer Il Other

NV /S

Pure Path
Collector

dynaTrace Client

Server
Repository

Figure 7.29. The DynaTrace environment

The main component is visualized in the figure above as the Dynatrace Server. This
component holds the central configuration and administration. The Server saves the
information it receives from the pure path controller into the repository. Beside getting
information from the pure path controller the server is allowed to receive information from
a monitoring collector too (not shown in the figure). The Dynatrace client is responsible
for the presentation layer and visualizes the collected information. Dynatrace works with
sensors to collect various data from the applications.

52

7.8. Dynatrace

Summary

DynaTrace is one of the most powerful profiler/monitoring tools. But we didn’t get any
license to test this tool. Without testing its not possible to make serious statement. Anyway
if you want to profile a big software system you definitely should take a closer look at this
software.

53

7. Experimental Evaluation

7.9 Java Mission Control

As of recently, JRockit Mission Control and the JRockit JVM have been both merged into
Hotspot JVM JMC. Mission Control is now included in Java starting Java 7u40 so there is
no need to download additional tools. One can optionally get the eclipse plugin which
additionally brings the feature to jump to source code locations. The oracle website has
the download for Mission Control Eclipse Plugin split at two different places, so you have
to make sure to pick the newer version of it. JRockit Mission Control looks very good
on startup. The user interface is not overloaded and has a limited amount of actions at
startup, foremost to connect to a specific VM. When starting the Flight Recorder, Mission
Control shows its full potential. One can set very specific the level of detail and thus the
overhead of the record. The Flight Recorder records a wide variety of information starting
from class loading statistics over method profiling till system processes. After a recording
has finished or even during the recording, one can take a look at the generated report
which - additionally to its recorded information - has statistics generated using various
kind of graphs. There is also an interesting Trigger-feature, which allows the developer to
make certain actions happen when certain conditions are met. For example one can set
to automatically start deep level recording when CPU usage is above 50 percent. This is
however more of a monitoring feature.

Testing has been done with Java Java Development Kit (JDK) 7u40 and Mission Control
Eclipse Plugin 5.2.0.

= Mission Contral - localhest - Eclipse l o (5 e
File Edit MNavigate Search Project Run Window Help
o -7 B RS - - = - = Quick Access 3 E_‘fl &’ Java [[Bd Mission Control
localhost &1 =8
E + Triggers @
-
Trigger Rules 7(%) Rule Details
g Add trigger rules and activate/deactivate them. Triggers that are Condition | Action Constraints
i not available in the monitored JVM are greyed out,
General 4 [@][) Java SE Add... Description
4 CPU Usage - JVM Process (Too Hig The attribute ProcessCpuload in the OperatingSystem Mbean
[] 4 CPU Usage - VM Process (Too Low reports the average load of all processors for the JVM process.
£ CPU Usage - Machine (Tea High!
E ‘:’ cpU Usage—Machinagoo Losv]J Ahigh CPU usage may indicate some performance problem.
i+ Deadlocked Thread -
E " Lea S::('? Lrea]s MBean Path java.lang:type=0OperatingSystem
& Live oo Large)
[] <& Monitored Deadlocked Threads Attribute Name: ProcessCpuload
[Threzd Count (Too Highl C Val 0.0077228110772915755
WebLogic Server 10.3 - Examples S Reset urrent Value: | 0.
| | + (1O webLogesener103- bampies s
[} Open Sessions (Too Many) Max trigger value: 0.0
[F] & Pending IMS Messages (Teo High) m
[[] <+ Pending Queued Requests (Too M; - Sustained [s]: 1
[E] <&+ Primary Objects (Too Many) Limit period [} 60
R iting for DB C ti
E 5:;'_‘; Haa\t‘: l";llgctcg){] onnects [¥] Trigger when condition is met.
[“& Server State (Not running) [¥] Trigger when recavering from condition
[< Threads Waiting for Bean (Too Mat
< n 3

Figure 7.30. Overview of the triggers

54

7.9. Java Mission Control

CPU Profiling

The overview gives the user a very quick hint on the current state of the application. But
the information shown here is pretty generic.

2 Mission Contrel - lacalhost - Eclipse - = | [
L
File Edit Mavigate Search Project Run Window Help
L R E S e Quek acces | 05| & e (BT Cam)
B localhost 52 =&
L7 &= Overview & U@
E
~ Dashboard =L S DR
Used Java Heap Memory JVM CPU Usage Live Set + Fragmentation
= i ;
(T, x S IR
EY 70 v o EY 0
20 20 @',
10 M o - % 7o %
R . & | 0 T | R . & 1008+
Mow: 60,08 MB Max: 7361 MB Mow:0,39% Max:12,06% Mo value yet
~ Processor B R
Famiir e B T Ml Machine CPU Usage

[CJvm cPU Usage

> - i
191736 19742 121748

3 - + 7 i +
191700 191706 191712 191718 191724 1917320

151754
¥ Memory fDR

Lo [JUsed Physical Memory (%)

[l Used Java Heap (%)

19:1700 151706 191712 191718 191724 1911730 1911736 1501742 1501748 1501754

[T Overview [ServerInformation

Figure 7.31. Overview of Java Mission Control

A report shows more detailed information regarding CPU: The amount of method calls,
the method in question, the time the execution used up and more. Fortunately one can
directly jump to the source code location when using the eclipse plugin.

Hot methods show methods which are called most frequently and take most time. So it
basically shows the methods along the methods cumulative time being active. There is also
the call tree showing the stack trace of methods.

55

7. Experimental Evaluation

IFSeREy e e E Quick Access | &2 & save (EgWimzon Conta)
o Ellocalhost @ flight recording 2013-10-15 01 54 54,fr 52 =8
17} &1 Overview @
=) e
s || Evenis @ Operatve Set Interval: 10 min 11 5 (al]) [Synchronize Selection
encral
L]
Memoy (| || | | [[N | [N | I 11
151013 01:44:44 a 151013 01554:55
Hot Packages @
Threads The packages where the application spent most time executing,
L‘% Package Sample Count Percentage “
- Cjavanet s 20,51%
sy;;m [Wjava.util.concurrent Jocks 7 17,95% |=
Wjava.util s Il 1282% | |
P Wjavaxswing EN | 7.60%
[Cljava.util.concurrent,atomic EN | 7,69%
sun.awt 2 513%
Mjava.nie 2 513%
Hot Classes @
Fiker Calurmn
Class Sample Count Percentage *
@ java.util.concurrent locks.LockSupport s 1282% |7
© java.util.concurrent atomic.AtomicLong EN | 7.60%
© java.net.Socket EN | 7,69%
@ java.nio DirectByteBuffer bl | 513%
@ java.util HashMap | 513%
© java.net ServerSocket 20 513% _

& Overiew| @ HDtMahndsl = CaHTree‘ 1 Exc!ptmnsl @, Cnmp\\stmns‘ @ Class Luadmg‘

Figure 7.32. Java Mission Control code report feature

Thread Profiling

Thread profiling in real time provides most information needed by developers. One can
take a look at the stacktrace, the graph of active threads or the state of each individual
thread whether it is running, blocked or waiting. The view pleases the user by being neatly
structured. Even more information is available when opening a recording, which, sadly,

has no live update feed.

56

localhost 9 flight_recording 2013-10-15_01 54 54.jfr 52 -
I= Latencies \@|
General B Events O Operative Set Interval: 10 min 11 s (all) Synchronize Selection
Rl

Memory

7.9. Java Mission Control

1510.13 01:44:44 \:I \:/ I:/ I:I 15.10.13 01:54:55

Java Latencies @
Event Type Count Average Lengest
DJava Monitor Wait 785 45988 ms 4 min 58 5296 ms
.Java Thread Park 27.346 60 ms 501 ps 4 min53s324 ms
. Socket Read 2.253 364 ms 201 ps 28622 ms
[Eava Thread Sleep 123 45909 ms 45995 ms

Latency Stack Traces @

Stack Trace Longest Count

Figure 7.33. Java Mission Control Thread observation

Memory Profiling

Memory Profiling is another thing Mission Control presents greatly. The overview presents
most needed information in one single graph, while the bottom tabs show more detailed

information.
localhost | B flight_recording_2013-10-15_01_54_54.jfr 52 =5
I Garbage Collections @
@ Events B Operative Set Interval: 10 min 11 s (all) Synchronize Selection
General
o N I I I L
S 151013 01:44:44 s | [| 15.10.13 01:54:55
Cooe [=]([=][=] Bl (=]
Heap | Reference Qbjects | Failed Promotions‘ Failed Evacuations‘
Threads ' Reference Objects @
;’é (/] M Weak References (] [T Soft References (/| [Final References (¥| [Phantom References
L i] e e
g w0 }
System]
3 tw
g0
Events S
20
10
o

o500 14600 o470 o198 o190 015000 o151 o1zm o530 o1 sm
Garbage Collections (@) | General| GC Phases | Reference Objects | Heap | Perm Gen | Metaspace Before GC|)
General @

GCID LongestPau.. Type Conc Fail -
43 3msOllps ParallelScav.. Mo General o
44 2ms547 ps ParallelScavi. No Type N/A
45 1ms940 ps ParallelScav... Ne GC Reason N/A -
46 2msi0ps ParallelScav.. Mo
47 2ms16l ps ParallelScav.. Mo GCIn N7A L
48 1ms901 ps ParallelScav.. No Time
49 2ms129ps ParallelScav.. No <| StartTime N/A
< m] »

Erdd Tivam niA

Figure 7.34. Java Mission Control Memory Report

57

7. Experimental Evaluation

Rating

Mission Control is clearly more of a monitoring tool rather than a profiler. But still it does
many profiling features better than some dedicated profiler tools.

> Need to tamper with JVM arguments to start profiling (Workflow -1)

> Only compatible starting Java 7u2. Earlier versions need specific JRockit VM (Ergonomy
-1)

> Nice "speedometer” visualizations which give the user a quick hint on the state of the
application (Usability +1)

> User interface is designed pretty well and complies with the eclipse user interface
guideline (Likability +1)

> Very detailed information presented in a structured way (Usability +1)

> Need to start Flight Recorder in order to get detailed information which in turn is not
updated in real time (Workflow -1)

> Overhead very low and can be set to ones needs (Overhead +5)

Summary

The need to tamper with JVM arguments to start profiling is inconvenient and has a
negative impact on workflow. This feature would be more useful for the task of monitoring.
Mission Control is only compatible with Java starting version 7u2, earlier versions need
a specific JRockit JVM. Also one needs to start the Flight Recorder of Mission Control in
order to start gaining detailed information about the AuT. And that data is not updated in
real time on the user interface but rather saved in a log file. It is clear that Java Mission
Control is developed in regard to monitoring rather than the task of profiling. However Java
Mission Control has a very likable user interface. Especially the speedometer visualization
is a good eye candy. It gives the user an instant impression on the current state of the
application. The partly very detailed information is presented in a very structured way:.
Also the overhead can be set to any detail level, making the overhead range from practically
negligible to huge depending on the user’s needs and the amount of data needed. The
overhead is also handled very efficiently, which gives Java Mission Control a perfect score
at this aspect. However this study is about profilers so Java Mission Control is not its native
environment.

58

7.10. Eclipse Memory Analyzer

7.10 Eclipse Memory Analyzer

Memory Analyzer (MAT) is a memory analyzing tool which helps to visualize heap dumps.
Since Java 2 Platform Editon a simple command line profiling tool called HPROF have
been added. The output files that hprof creates can be read by Eclipse MAT. By supplying
HPROF options at startup, users can request various types of heap or CPU profiling
features from HPROF. Besides HPROF it’s also possible to read IBM dump files. A Java
heap dump is a snapshot of the complete Java object graph at a certain point in time. It
includes all objects, fields, primitive types and object references.

The GUI and its functions

Eclipse MAT comes of course as a plugin for Eclipse IDE. The plugin firstly looks very
simple and the administration is a bit confusing.

File Edit Mavigate Search Project Run Window Help
B e e R vi®w e - .| -
Quick Access ﬁl <= Plug-in Development & Java [, Memory Analysis
[, Inspector 51 g = 8 heapdump-1381685043823 hprof 57 = 0
4, Insp! = P P P
@ 0:3194f20 ioml %o EE | Q
[7] SyncedLogManager -
mcum.s\aapycatde‘\ug i Overview I3 % default_report or... | [j] Histogram %g dominator_tree ‘?" thread_overview % default_report or...
class com.sleepycatjelog.Synce.. - i “
[c] pycatielogSy Details
@, comas! tjelogLoght
5 COM.S Eepycali®0g.toglanager Size; 10,6 MB Classes: 5,4k Objects: 131k Class Loader; 94 Unreachable Objects Histogram
48] sun.misc.LauncherSAppClassLo) I
1164 (shallow size)
1113146.928 (retained size) ~ Biggest Objects by Retained Size
o noGCroot 11ME £ {
Statics | Attributes| 2 #
Type Name Value HEEKE
ref readHook null
leng nTempBuf.. 0
int nRepeatFa.. 1
leng lastLsnAtR... 1161975
int readBuffer.. 2048
boole.. readOnly false
ref envimpl comisleepyce
ref checkpoin... com.sleepyce
ref fileManager com.sleepyce
boole... doChecks... true EME _ il
ref logWritela... com.sleepyce I
ref logBufferP... com.sleepyce 7 El Console 2 o ~i-=0
Mo consoles to display at this time,

Figure 7.35. Overview of the Eclipse Memory Analyzer

The plugin comes with a own perspective view called Memory Analysis. This perspec-
tive view consists of a few views.

> Inspector
This view shows detailed information of Java Objects when hovering parts of pie charts
or clicking on items at the main view. Detailed information could be for example the
memory address of an array, its class hierarchy or content or even the values of its

attributes.
59

7. Experimental Evaluation

> Main View: Heap Dump analysis
The main view visualizes all information covered by the heap dump. With the menu
bar at the top of this view its possible to open different analysis.

> Overview
Shows general information of the heap dump like needed memory, amount of classes
and objects or biggest objects of the corresponding application.

> Histogram
Lists number of instances per class.

> Dominator Tree
visualizes a tree which contains objects and its child objects. Its possible to walk
trough the tree to analyze the shallow and retained heap of each object.

> Object Query Language
MAT offers the possibility to search for objects with a sql-like language called Object
Query language (OQL). That allows to query the heap dump. OQL represents classes
as tables, objects as rows, and fields as columns. As an example the following query
would lists all Java objects that starts with "java.lang" "Select * from "java.lang.*" .

> Threads
This view visualizes information of all Threads at the time of the heap dump. Besides
name, needed Heap space, context class loader and state of the Thread its possible to
analyze more detailed information by the help of the Inspector View.

Besides the basic functionality its also possible to create reports automatically. MAT
offers a report to create a system overview, a report of the top components or even a
report that tries to find leaks automatically which can be a nice feature.

Summary

The inspected tool "Eclipse Memory Analyzer" isn’t a tool that belongs to the chapter
"Profiler" because its not possible to observe an application. But it can be a huge help
to analyze the result of a profiler which creates heap dumps and isn’t that great in
visualize the dumps. Furthermore there is a domain where this tool provides perfect
information which helps a lot by profiling an application. One big problem is to detect
the faults of an application that causes out-of-memory errors. This errors are very difficult
to solve. But its possible to generate heap and thread dumps by adding the param -
XX:+HeapDumpOnOutOfMemoryError at start up to the vm. If the application wants to
throw an out-of-memory error the vm creates a heap dump first. By the help of Eclipse
MAT this heap dump can be a big help to detect the faults at the source code.

60

Chapter 8

Conclusion

In the conclusion you will see the summary of this study. It starts with a result-table which
shows the details of every aspect of the tested profilers. Refer to the scale definitions in
section 5.2 to comprehend the final results of the evaluation. Note that some of the scales
are ordinal and some are nominal. The last part of this section is the recommendation on
the basis of this result table.

61

8. Conclusion

Scaletype | JVMMonitor NetbeansProfiler | EclipseTPTP Mission Control |
Database 0 0 0 0
Heap 2 3 3 3
Thread Profiling 4 3 2 3
Functionality
CPU Profiling 2 2 2 3
Functionality
Overhead 3 2 1 4
Additional Func- 1 2 1 2
tions
GUI 2 3 2 3
Development: Latest Version version 3.8.1, | version 6.5.1, version 4.7.2, 25 | version 4.1
Feb 2, 2013 Feb 2011
future-proof yes yes no yes
Licence: Name Eclipse Public | CDDL and GPL | Eclipse Public | Eclipse Public
License v1.0 v2 License v1.0 License v1.0
Support: Forum no yes no yes
Documentation yes yes yes yes
Active support yes yes no yes
Active community || yes yes no yes
Basic conditions: || IDE Integration yes/ Eclipse > | Netbeans yes/Eclipse yes/Eclipse
3.6 (only AUT <
JAVA 1.6)
OS-compatibility platform inde- | platform inde- | platform inde- | platform inde-
pendent pendent pendent pendent
extensibility no no no no

62

ou

ou

ou

sak

AYIqIsua)xa

juspuad
-opur wroyerd

juapuad
-opur wroperd

juapuad
-opur wroprerd

juspuad
-opur wropyerd

Aqnedwod-g0

(s1qe[reAR OS[E

duoe-puels) dnyreys
asdipyg/seh | 03 osdipyg/seh | ¢g<oasdipg/sah | 9-¢< asdippg/sok uoneI3ul ([| :SuOnRIpuod diseq
sok ou sok SoA | AIunuuiod aAIPY
ou sak sak sak y1oddns a0y
SoA sok sok SoA UOT}RIUSWINDO(]
Sak S94 ou sak WINIo :3110ddng
uors
0'TA 9SUDI] UOISI9A)SI], | -19A31S3} [[NJ SAep
ornqng osdrpyg TeRIWWO)) | (T ‘TerIdWUo)) A+ TIID dwreN :90UddI]
sak sok SaA sak jooxd-ammny
€10 aun(
9T ‘0°¢’] UOIsIaA €10C PO 0¢ £10C AIn[1¢ €10C ‘dos 1 UOISI9A 3s9%e] guawdopaasg
4 i ¥ € N5
suony
0 4 ¥ [4 -oung [euonIppy
- [4 € 4 peayeAQ
Ayeuonpun,g
0 4 i € Sungoiy NdD
Ajyreuonpunyg
1 € € € Suryord peary],
I € € 4 deay
0 0 € 0 aseqeye
I9ZA]
-euy AIOwdN ID[INOK 1a[goI(NATENSIA adAjereng

63

8. Conclusion

After a long period of evaluation three profilers stood out through their convincing
capabilities. Thus it made it difficult to make a recommendation for a single profiler.
Nowadays the demands of software engineering products are ever-increasing. Software
could contain various technologies and principles like databases, interfaces to the under-
lying system, connecting to the internet, rendering real-time animations, and the usage
of several protocols to communicate with peripheral devices. Every software demands
various resources from its environment. A software which creates real-time animations,
for instance, would require a lot of power of the graphics card. To calculate the rendering
algorithms the software would need to interact with a rendering library like OpenGL or
DirectX. These requirements require other testing techniques than — for example — a
program for tax-calculation would need. A perfect profiler would need to offer the best
solution for any imaginable scenario. This is an impossible feat to develop.

We extracted the main functionality of each profiler and analyzed them in their capa-
bility and functional diversity. Each functionality obtained a rating by the use of predefined
scale definitions. As a result the commercial profilers have achieved higher ratings in
overall. The JProfiler and the YourKit profiler are solid in the CPU profiling functionality,
its handling, and its multiplicity of qualitative additional functions. If you develop a
commercial software which would cost your company a huge amount of money;, if crashed,
you should consider the pros and the cons before you choose a profiler. One function of
the YourKit profiler which was outstanding in comparison to similar functions was the
ability to find possible improvements in the code. The profiler searches for memory waste
like duplicate strings and arrays, null fields or zero length arrays, possible memory leaks,
file accesses, and various other possible improvements. The other profiler which attracts
positive attention is the JProfiler. It stood out with a beautiful way to present the details of
the AuT. Furthermore this presentation was consistently present in all functionalities of
the profiler. Additional functions like viewing a graph of the call tree of threads allows
the analyst to find out which thread started another and how long it stood active. The
beautiful and multifaceted visualization in every aspect is an additional plus point.

But the open source products don’t lack heavily behind the commercial products. A lot
of the free profilers come with plugins to integrate into common IDEs and provide full
featured functionality as well developed as the commercial tools are.

In conclusion you have to compare the tools with the help of the given result table to
find a profiler which fits your needs perfectly.

64

A.1 AppDynamics

Appendix A

Detailed Profiler List

Name: AppDynamics
Manufacturer: AppDynamics
Language:

GUL yes

State / Activity:

active, stable

IDE Integration:

Eclipse / intellij / Oracle JDeveloper / Netbeans
Win/Linux/Unix/Mac

Command line capability:

Supported OS:

no details

Time Measurement:

yes, Observation of all activity of the application
under test

Memory Measurement: yes,
Thread Measurement: yes
Data Collection: no detail
Overhead: no detail

Special Features:

display the full application, observation of the
full system (databases, server, application etc.)
automated fail and error detection with AppDy-
namics. statistics and overviews of application
usage

Support:

Support and Community

License:

Commercial Version

65

A. Detailed Profiler List

A.2 dynaTrace

Name: dynaTrace
Manufacturer: Compuware
Language: Multilingual
GUL yes

State / Activity:

active, stable

IDE Integration:

Eclipse plugin / intellij plugin

Command line capability:

yes

Supported OS:

all common - inform at
http://de.compuware.com/application-
performance-management/ platform-support-
matrix.html

Time Measurement:

yes, observation of requests, Hot Spots, statistics
of methods

Memory Measurement:

yes, very detailed (size of objects, instances, call
patches, classes, heap-structure, Garbage Collec-
tor)

Thread Measurement:

yes

Data Collection:

no details

Overhead:

"<2% overhead"

Special Features:

locale and remote applications are supported,
on-demand profiling,

Support: Online documentation, Request Support / Bug
Report
License: commercial

66

A3.

A.3 Eclipse Hyades Plugin

Eclipse Hyades Plugin

Name: Eclipse Hyades Plugin
Manufacturer: Eclipse Foundation
Language: English

GUL yes

State / Activity: inactive, obsolete

IDE Integration: Eclipse plugin
Command line capability: no

Supported OS: All OS supported by Eclipse
Time Measurement: yes

Memory Measurement: yes

Thread Measurement: yes

Data Collection: no details

Overhead: no details

Special Features: no details

Support:

Inactive community

License:

Eclipse Public License v1.0

67

A. Detailed Profiler List

A.4 Eclipse Profiler Plugin

68

Name: Eclipse Profiler Plugin
Manufacturer: Ricardo Inzaurra
Language: English

GUL yes

State / Activity: active, stable

IDE Integration: Eclipse plugin
Command line capability: no

Supported OS: All OS supported by Eclipse
Time Measurement: yes
Memory Measurement: yes, heap profiling

Thread Measurement:

yes, call tree is shown

Data Collection:

no details

Overhead:

no details

Special Features:

Visualization of call graph

Support:

Get started guide

License:

Common Public License 1.0

A.5 Eclipse TPTP

A.5. Eclipse TPTP

Name: Eclipse TPTP
Manufacturer: Eclipse Foundation
Language: English

GUL yes

State / Activity:

inactive, successor to Eclipse Hyades Plugin
(Section A.3)

IDE Integration:

Eclipse plugin

Command line capability:

no

Supported OS: All OS supported by Eclipse
Time Measurement: yes

Memory Measurement: yes

Thread Measurement: yes

Data Collection: no details

Overhead: no details

Special Features:

locale and remote applications are supported

Support:

Online documentation, community

License:

Eclipse Public License v1.0

69

A. Detailed Profiler List

A.6 Inspectlt

Name: Inspectlt

Manufacturer: Novatec

Language: Java, Spring, Eclipse RCP, PicoAgent.
GUL yes

State / Activity:

active, stable

IDE Integration:

Command line capability:

Supported OS:

Windows (32/64 bit), Linux (32/64 bit)
Mac(partly 32/64bit)

Time Measurement:

yes, Observation of single methods in detail

Memory Measurement:

yes, cursorily

Thread Measurement:

yes, cursorily

Data Collection:

manipulating source code previous to compile
process

Overhead:

middle

Special Features:

Observation of database-accesses, exceptions and
Http-Requests

Support: Kick-off presentation of NovaTec, online docu-
mentation
License: License of NovaTec

70

A.7. Java Mission Control

A.7 Java Mission Control

Name: Java Mission Control
Manufacturer: Oracle

Language: Multilingual

GUL yes

State / Activity:

active, stable

IDE Integration: Eclipse plugin
Command line capability: yes
Supported OS: all common - inform at

http:/ /de.compuware.com/application-
performance-management/platform-support-
matrix.html

Time Measurement:

yes, really exact measurements of requests

Memory Measurement:

yes, memory leaks

Thread Measurement:

yes

Data Collection:

directly from the VM

Overhead:

no Overhead

Special Features:

single JVM; maybe the application have to be
ported

Support:

Online documentation, community, tutorials

License:

free, closed source (special function have to be
payed)

71

A. Detailed Profiler List

A.8 JMap
Name: JMap
Manufacturer: Oracle
Language: English
GUIL no
State / Activity: inactive, finished
IDE Integration: In JDK integrated
Command line capability: yes
Supported OS: In JDK integrated
Time Measurement: no
Memory Measurement: yes, Memory Dumps
Thread Measurement: no
Data Collection: directly from the VM
Overhead: no overhead
Special Features: absolute shell application, only memory dumps
Support: Online documentation, community, tutorials
License: open source

72

A9

A.9. jMechanic

jMechanic
Name: jMechanic
Manufacturer:
Language: java
GUL yes, swt

State / Activity:

Development suspended since 2004. Alpha state

IDE Integration:

Eclipse

Command line capability:

no

Supported OS:

java supporting OS

Time Measurement:

yes

Memory Measurement:

yes, Heap- and loaded classes observation

Thread Measurement: no
Data Collection: ?
Overhead: less

Special Features:

supports local and remote applications

Support:

sourceforge - But not active

License:

AFL

73

A. Detailed Profiler List

A.10 JProbe

Name: JProbe
Manufacturer: Quest Software
Language: Java

GUL Eclipse Plug-In

State / Activity:

Production/Stable

IDE Integration:

Eclipse 3.4, 3.5 and 3.6

Command line capability:

Supported OS:

Systems that support Eclipse

Time Measurement:

yes, memory observation in real time, CPU ob-
servation

Memory Measurement:

yes, Garbage Collector-, Heap-, loaded classes
observation

Thread Measurement: yes
Data Collection: -
Overhead: less

Special Features:

only application on local systems, well designed
GUI with many settings, record snapshots at par-
ticular time, many features

Support: JProbe Documentation, JProbe
Users Guide, JProbe Help
https:/ /support.quest.com/Default.aspx

License: Commercial

74

A.11. JProfiler

A.11 JProfiler

Name: JProfiler

Manufacturer: ej-technologies

Language:

GUL yes

State / Activity: active, stable

IDE Integration: Eclipse / intellij / Oracle JDeveloper / Netbeans
Win/Linux/Unix/Mac

Command line capability: -

Supported OS: all common - inform at http://www.ej-
technologies.com/products/jprofiler / featuresPlatforms.html

Time Measurement: yes, observation of requests, Hot Spots, statistics
of methods

Memory Measurement: yes, very detailed (size of objects, instances, call
paths, classes, heap-structure, Garbage Collector)

Thread Measurement: yes

Data Collection: no details

Overhead: no details

Special Features: locale and remote applications are supported,

supports comparison of actual and previous
executions, tracking of requests (AWT/Swing
/Thread Requests) . It is possible to install on
server like Apache/JBoss/Jetty/IBM to inspect
EE applications

Support: Online documentation, Request Support / Bug
Report
License: Comercial Version

75

A. Detailed Profiler List

A.12 JVM Monitor

Name: JVM Monitor

Manufacturer: http:/ /www.jvmmonitor.org/

Language: Java

GUIL Yes, embedded into Eclipse. Also SWT GUI

State / Activity:

Active development (Release 3.8.1)

IDE Integration:

Eclipse Plugln for:

Helios 3.6.x, Indigo 3.7.x or Juno 3.8.x/4.2.x
Java for Eclipse:

Oracle JDK 6 or 7, Open]DK 6 or 7, or Apple JDK
6

Command line capability:

No Statements

Supported OS:

Windows, Linux, or Mac OS X

Time Measurement:

Shows time depending diagrams (configurable)
of main memory, number temporary loaded ob-
jects, number of threads, CPU usage

Memory Measurement:

Detailed illustration of memory usage

Thread Measurement:

Detailed illustration of running threads with
CPU usage and CPU state

Data Collection:

Overhead:

little

Special Features:

automatic detection of JVM in localhost or via
remote connection by stating of host and port

Support:

Issue Tracker to report bugs or make suggestions
for new requirements

License:

Free open source software, Eclipse Public License
v1.0

A.13. jvmstat

A.13 jvmstat

Name: jvmstat

Manufacturer: ORACLE

Language: Java

GUL yes, Swing

State / Activity: development suspended
IDE Integration: stand alone tool

Command line capability: yes

Supported OS: Windows 98 and Windows ME

Time Measurement: yes - compiling time/ Class Loader/ histogram
of previous runtimes

Memory Measurement: yes

Thread Measurement: yes

Data Collection: -

Overhead: less

Special Features: remote access
Support: no support

License: Open Source Software

77

A. Detailed Profiler List

A.14 JRat
Name: JRat
Manufacturer:
Language: java
GUIL yes, swing

78

State / Activity:

not activity since 2007 - never reached stable
version

IDE Integration:

no

Command line capability:

no

Supported OS:

OS able to run Java

Time Measurement:

yes, single methods are observable

Memory Measurement: no
Thread Measurement: no
Data Collection: JVMPI
Overhead: less

Special Features:

Support:

sourceforge : Wiki / Mailing List / BugTracker

License:

GNU Library or Lesser General Public License
version 2.0 (LGPLv2)

A.15. Memory Analyzer

A.15 Memory Analyzer

Name: Memory Analyzer
Manufacturer: Eclipse Org
Language: English

GUL yes

State / Activity: active, stable

IDE Integration: Eclipse plugin
Command line capability: no

Supported OS: all common which supports Eclipse
Time Measurement: no

Memory Measurement: yes, memory leaks
Thread Measurement: no

Data Collection: directly from the VM
Overhead: less overhead

Special Features: -

Support: Online documentation, Community, Tutorials

License: open source

79

A. Detailed Profiler List

A.16 NetBeans Profiler

Name: NetBeans Profiler
Manufacturer: NetBeans

Language: -

GUIL: Embedded into Netbeans
State / Activity: active, stable

IDE Integration: Netbeans

Command line capability:

Supported OS:

Windows, Linux(x86/x64), Solaris(x86/x64), So-
laris(sparc), Mac OS, OS independent Zip

Time Measurement:

yes, CPU-Activity at real time, Threads and stor-
age usage at real time

Memory Measurement:

yes, Garbage Collector-, Heap-, loaded classes
observation

Thread Measurement: yes
Data Collection: -
Overhead: less

Special Features:

Integrated into NetBeans, connection to remote
applications

Support:

Profiler Blog News, features, tips and tricks and
all around the profiler.

License:

Common Development and Distribution License
CDDL v1.0 and GNU General Public License
GPL v2.

80

A.17. Thermostat

A.17 Thermostat

Name: Thermostat

Manufacturer: Redhead

Language: Java

GUL yes, Swing

State / Activity: development state, last stable 0.92

IDE Integration: no, will be published as embedded eclipse plugin
soon

Command line capability: yes

Supported OS: only Fedora at the moment

Time Measurement: yes, per host : record loaded classes

Memory Measurement: yes, Able to observe Garbage Collector, memory
allocation of single instances, heap etc.

Thread Measurement: yes

Data Collection: jstatd, JMX, JVMTIL, and Systemtap

Overhead: less

Special Features: provides monitoring of several Java Virtual Ma-
chines on several hosts

Support: Bug Tracker, wiki, mailinglist

License: GPLv2+

81

A. Detailed Profiler List

A.18 VisualVM

Name: VisualVM
Manufacturer: Oracle/Sun
Language: java

GUL yes, swing

State / Activity:

active, stable

IDE Integration:

Eclipse / Netbeans

Command line capability:

no

Supported OS:

OS able to run Java

Time Measurement:

yes, able to observe single methods

Memory Measurement:

yes, Garbage Collector-, Heap-, loaded classes
observation

Thread Measurement:

yes

Data Collection:

jvmstat, JMX, the Serviceability Agent (SA), and
the attached API

Overhead:

less

Special Features:

already integrated into java jdk, locale and re-
mote applications are supported, plugins may be
installed

Support:

JIRA BugTracker

License:

GPLv2 + CE

A.19. YourKit Java Profiler

A.19 YourKit Java Profiler

Name: YourKit Java Profiler
Manufacturer: YourKit, LLC
Language: English

GUL yes

State / Activity:

active, stable

IDE Integration:

Eclipse / intellij / Oracle JDeveloper / Netbeans
Win/Linux/Unix/Mac/Solaris/etc.

Command line capability:

yes

Supported OS:

all common - inform at
http:/ /www.yourkit.com/features/index.jsp#multiplatform

Time Measurement:

yes, observation of requests, Hot Spots, statistics
of methods

Memory Measurement:

yes, very detailed (size of objects, instances, call
paths, classes, heap-structure, Garbage Collector)

Thread Measurement:

yes

Data Collection:

no details

Overhead:

"zero overhead"

Special Features:

locale and remote applications are supported,
on-demand profiling,

Support: Online documentation, Request Support / Bug
Report
License: commercial

83

Glossary

Application under Test The application which is tested by the current profiler. In this study
this is either Columba or Proguard. 87

Bytecode Instrumentation A technique used to gain data on execution time and duration
during profiling of a certain method. Explained in detail in Section 2.4. 7, 87

Java Management Extensions JMX provides tools for building distributed, modular, and dy-

namic solutions for managing and monitoring applications. Mostly used for monitoring.
Available starting Java 1.5 J]MX. 9

Java Virtual Machine The machine responsible for executing Java applications and Java
bytecode. 87

Java Virtual Machine Tooling Interface A programming interface used by development,
profiling, and monitoring tools. Provides functions to inspect the state and control the
execution of applications running in the JVM. Explained in detail in Section 2.2. 7-9, 87

jomstat A small tool without GUI whose only purpose is to dump memory heaps. Is often
used by other profilers to get a memory heap dump. 13

Method Sampling A technique used to gain data on execution time and duration during
profiling of certain methods. Explained in detail in Section 2.3. 7, 8

85

AuT Application under Test. 8, 9, 58, 64
BCI Bytecode Instrumentation. 8, 9, 26
IDE Integrated Development Environment. 35

JDK Java Development Kit. 54

JMX Java Management Extensions. 7, 9, 13

JVM Java Virtual Machine. 3, 8, 9, 25, 26, 54, 58, 85
JVM TI Java Virtual Machine Tooling Interface. 6-8

MAT Eclipse Memory Analyzing Tool. 14, 59, 60
SSL Secure Sockets Layer. 9

TPTP Eclipse Test & Performance Tools Platform. 13, 14, 32, 33, 35

Acronyms

87

Bibliography

[COI] Columba. http://sourceforge.net/projects/columba/.

[JMC] Java Mission Control 5.2 release notes. URL nttp://www.oracle.com/technetwork/java/
javase/2col/jmc- relnotes-2004763.html.

JMX] Java management extensions (jmx) technology. URL http://www.oracle.com/technetwork/
java/javase/tech/javamanagement-140525.html.

[JVM] Jvm tooling interface 1.2 documentation. URL nttp://docs.oracle.com/javase/7/docs/
platform/jvmti/jvmti.html.

[Pro] Proguard. http://proguard.sourceforge.net/.

[JVM 2004] Creating a debugging and profiling agent with jvmti, 2004. URL http://www.

oracle.com/technetwork/articles/javase/jvmti-136367.html.

[JPM 2011] Java performance messen - mit sampling oder in-
strumentierung, Oct. 2011. URL https://blog.codecentric.de/2011/10/

java-performance-messen-mit-sampling-oder-instrumentierung/.

[Jiri July 28 ,2008] S. Jiri. Netbeans profiler
the netbeans profiler and visualvm blog
profﬂing with Visualvm, part 1. https://blogs.oracle.com/nbprofiler/entry/profiling_with_
visualvm_part_2,]uly 28 ,2008.

[Siegl May 17, 2013] S. Siegl. Inspectit overview. nttps://documentation.novatec-gmbh.de/display/
INSPECTIT/Overview, May 17, 2013.

[YourKit GmbH] YourKit GmbH. Yourkit profiler. nttp://www.yourkit.com/.

89

http://sourceforge.net/projects/columba/
http://www.oracle.com/technetwork/java/javase/2col/jmc-relnotes-2004763.html
http://www.oracle.com/technetwork/java/javase/2col/jmc-relnotes-2004763.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://proguard.sourceforge.net/
http://www.oracle.com/technetwork/articles/javase/jvmti-136367.html
http://www.oracle.com/technetwork/articles/javase/jvmti-136367.html
https://blog.codecentric.de/2011/10/java-performance-messen-mit-sampling-oder-instrumentierung/
https://blog.codecentric.de/2011/10/java-performance-messen-mit-sampling-oder-instrumentierung/
https://blogs.oracle.com/nbprofiler/entry/profiling_with_visualvm_part_2
https://blogs.oracle.com/nbprofiler/entry/profiling_with_visualvm_part_2
https://documentation.novatec-gmbh.de/display/INSPECTIT/Overview
https://documentation.novatec-gmbh.de/display/INSPECTIT/Overview
http://www.yourkit.com/

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wortlich oder sinngeméal aus anderen
Werken tibernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Priifungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollstindig verdftentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren iiberein.

Unterschrift:

Stuttgart, den 04.12.2013

Declaration

I hereby declare that the work presented in this thesis is entirely my own.

I did not use any other sources and references that the listed ones. I have marked all direct or indirect
statements from other sources contained therein as quotations.

Neither this work nor significant parts of it were part of another examination procedure. I have not published
this work in whole or in part before.

The electronic copy is consistent with all submitted copies.

Signature:

Stuttgart, 4th December 2013

	1 Introduction
	1.1 Motivation
	1.2 Goals

	2 Foundations
	2.1 Profiling Aspects
	2.1.1 Memory Profiling
	2.1.2 Thread Profiling
	2.1.3 CPU Profiling

	2.2 Java Virtual Machine Tooling Interface
	2.3 Method Sampling
	2.4 Bytecode Instrumentation
	2.5 Remote JMX Connection

	3 Research Procedure
	3.1 Preparation
	3.2 Kick-Off
	3.3 Research
	3.4 Create Assessment Criteria
	3.5 Evaluation of Profilers
	3.6 Final Presentation

	4 Market Overview
	4.1 Considered Profilers

	5 Evaluation Criteria
	5.1 Criteria Catalog
	5.2 Scale Definitions
	5.2.1 Nominal Scales
	5.2.2 Ordinal Scales

	6 Evaluation Procedure
	6.1 Applications under Test
	6.2 Use Cases

	7 Experimental Evaluation
	7.1 jvm Monitor
	7.2 VisualVm
	7.3 NetBeans Profiler
	7.4 Eclipse Test & Performance Tools Platform
	7.5 inspectIT
	7.6 jProfiler
	7.7 YourKit Profiler
	7.8 Dynatrace
	7.9 Java Mission Control
	7.10 Eclipse Memory Analyzer

	8 Conclusion
	A Detailed Profiler List
	A.1 AppDynamics
	A.2 dynaTrace
	A.3 Eclipse Hyades Plugin
	A.4 Eclipse Profiler Plugin
	A.5 Eclipse TPTP
	A.6 InspectIt
	A.7 Java Mission Control
	A.8 JMap
	A.9 jMechanic
	A.10 JProbe
	A.11 JProfiler
	A.12 JVM Monitor
	A.13 jvmstat
	A.14 JRat
	A.15 Memory Analyzer
	A.16 NetBeans Profiler
	A.17 Thermostat
	A.18 VisualVM
	A.19 YourKit Java Profiler

	Glossary
	Acronyms
	Bibliography

