
Fachstudie Nr. 184

Evaluation von Java Profiler Werkzeugen

Albert Flaig, Daniel Hertl, Florian Krüger

Studiengang:

Prüfer:

begonnen am:

beendet am:

CR-Klassifikation:

Betreuer:

Softwaretechnik

Prof. Dr. Lars Grunske

Dipl. Inf. André van Hoorn

31.05.2013

30.11.2013

D.4.8

Institut für Softwaretechnologie

Universität Stuttgart

Universitätsstraße 38

D - 70569 Stuttgart

Abteilung Zuverlässige Softwaresysteme

Abstract

The purpose of this study is to evaluate Java profilers and compare them with each other.
As profilers differ in various aspects the evaluation has to cover many functional and
non-functional scopes like the user interface and license properties, states of development,
range of support, and the given underlying conditions. Choosing the right profiler is not
an easy task as there is a wide variety each with their own pros and cons. This study aids
in decision making by providing a comparison and enabling the user to easily weight up
each individual aspect to ones personal needs. Through this study we try to publish a
detailed comparison of current profilers as well as a personal recommendation based on
objective, well-defined criteria. In this context different kinds of profilers — commercial
as well as open source — will be looked at in an attempt to find the best-fitting tool for
specific usage scenarios. In order to achieve accurate results each profiler is tested with
a similar set of examinees. As a result a table based ranking will be established by the
help of the perceived results. The result of this analysis can further be used to choose one
profiler out of the tested ones to perfectly fit to the user needs. Secondarily it also provides
a detailed overview of current profilers and its functional scopes.

1

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Goals . 5

2 Foundations 7
2.1 Profiling Aspects . 7
2.2 Java Virtual Machine Tooling Interface . 8
2.3 Method Sampling . 8
2.4 Bytecode Instrumentation . 8
2.5 Remote JMX Connection . 9

3 Research Procedure 11
3.1 Preparation . 11
3.2 Kick-Off . 11
3.3 Research . 12
3.4 Create Assessment Criteria . 12
3.5 Evaluation of Profilers . 12
3.6 Final Presentation . 12

4 Market Overview 13
4.1 Considered Profilers . 13

5 Evaluation Criteria 15
5.1 Criteria Catalog . 15
5.2 Scale Definitions . 15

6 Evaluation Procedure 21
6.1 Applications under Test . 21
6.2 Use Cases . 23

7 Experimental Evaluation 25
7.1 Java Virtual Machine (JVM) Monitor . 25
7.2 VisualVm . 27
7.3 NetBeans Profiler . 30
7.4 Eclipse Test & Performance Tools Platform . 32
7.5 inspectIT . 36
7.6 jProfiler . 38

3

Contents

7.7 YourKit Profiler . 45
7.8 Dynatrace . 52
7.9 Java Mission Control . 54
7.10 Eclipse Memory Analyzer . 59

8 Conclusion 61

A Detailed Profiler List 65
A.1 AppDynamics . 65
A.2 dynaTrace . 66
A.3 Eclipse Hyades Plugin . 67
A.4 Eclipse Profiler Plugin . 68
A.5 Eclipse TPTP . 69
A.6 InspectIt . 70
A.7 Java Mission Control . 71
A.8 JMap . 72
A.9 jMechanic . 73
A.10 JProbe . 74
A.11 JProfiler . 75
A.12 JVM Monitor . 76
A.13 jvmstat . 77
A.14 JRat . 78
A.15 Memory Analyzer . 79
A.16 NetBeans Profiler . 80
A.17 Thermostat . 81
A.18 VisualVM . 82
A.19 YourKit Java Profiler . 83

Glossary 85

Acronyms 87

Bibliography 89

4

Chapter 1

Introduction

1.1 Motivation

Software has seamlessly integrated into our everyday lives in the recent decades. Through
the ever increasing processing power of today’s computers, software has to solve tasks
more complex than ever before. Therefore the demands of the software have risen and thus
increased the responsibility of the programmers. Even in the rarest exception, software
has to function correctly or else will cause high costs. In some extreme situations software
errors can even endanger human lives. In order to identify flaws or inefficiency in pro-
grams, specific techniques have been developed that help the developer seek problematic
code spots. One technique is described through the use of profilers. Profilers are tools
which analyze run time behavior on various aspects like the efficiency of specific routines,
the memory usage or the concurrency. They are used especially in development environ-
ments to help developers pin down memory leaks, demanding methods, and critical code
segments. Recently new aspects have appeared like measuring the amounts of database
accesses or analyzing internet interfaces. The goal of this study is to use and compare
commercial and non-commercial profilers and highlight their similarities and differences.

Collaboration with NovaTec GmbH

This study is executed in cooperation with NovaTec Consulting GmbH1 located in Leinfelden-
Echterdingen.

1.2 Goals

The goal of this study is to compare current Java profilers and acquire meaningful results
to allow to carry out result analysis. Open source profiler will be considered as well
as commercial products. Through research the aspects of profiler and the possibilities
of the Java VM should be summarized. All profilers under test will be inspected with
a similar set of examinees to achieve results in order to create relative comparisons. A
detailed report will be created by the help of the study results to gain deeper insight into
the functional behavior of each profiler. Besides the main functionality like observing

1http://www.novatecgmbh.de/

5

1. Introduction

CPU processing, memory usage or thread activity special features like coverage analysis,
workflow integration into other tools and continuous integration or support of further JVM
based languages are to be assessed individually. In addition to the functional aspects, the
usability of the profiler itself will also get a rating. To create a user-friendly overview, a
catalog is to be created by the help of the detailed reports. The catalog should show a
short summary of each profiler that includes a ranking of its functionality that offers the
possibility to filter a small set of profilers to fit perfectly to the users needs.

Tasks in Detail

� Illustration of the JVM profiler concept through the use of (JVM TI)

� Categorizing of profiler tools by license, features, risks, and effort

� Setup of a unified feature catalog of the tools including a term glossary

� Crucial illustration of the quality of the tools based on personal experiments and extern
reviews especially regarding developer workflow

� Creation of a decision-making support based on use cases to help the selection of profiler
tools.

6

Chapter 2

Foundations

The term profiling describes a dynamic analysis that covers issues of the resource manage-
ment of a program during execution. Main issues like CPU utilization, memory usage or
thread activity could be considered as well as special functions like network activity or
garbage collection. However this study considers Memory Profiling, Thread Profiling and
CPU Profiling as main aspects and are described in Section 2.1. Most Java profiler tools
rest upon the Java Virtual Machine Tooling Interface which has been introduced in Java 5
JVM [2004]. Therefore they rather differ in presentation and workflow than the amount of
available profiling information. See Section 2.2 for a overview of the JVM TI. A small set of
available profilers use different methods to collect information than through the usage of
JVM TI. To gather execution data profilers use the technique of Bytecode Instrumentation,
which is described in Section 2.4. Also some profilers use Method Sampling to reduce over-
head. This technique is described in Section 2.3. In Section 2.5 remote Java Management
Extensions (JMX) connections are described, which are used to connect to a remote JVM,
which is mostly useful for monitoring but also used during profiling.

2.1 Profiling Aspects

The purpose of this section is to define the borders of profiling aspects. For example when
talking about CPU profiling one needs to know what aspects are included in this aspect.
This section is going to clarify each term.

2.1.1 Memory Profiling

In this study the term Memory Profiling describes the ability to inspect heap, memory
management, allocated objects, allocation stack trace

2.1.2 Thread Profiling

In this study the term Thread Profiling involves the ability to see the states of each thread,
the code place a specific thread is running, the stack trace of the thread and the time spent
on each method by the thread, and analyze possible dead lock scenarios. Thread Profiling
transitions smoothly into CPU Profiling.

7

2. Foundations

2.1.3 CPU Profiling

In this study the term CPU Profiling describes the ability to inspect timers, CPU usage in
general and the percentage used by specific packages, classes, and methods.

2.2 Java Virtual Machine Tooling Interface

The Java Virtual Machine Tooling Interface is a programming interface for use by tools. It
provides functions to inspect the state of the Application under Test (AuT) running in a
JVM. The functions of JVM TI include profiling, debugging, monitoring, thread analysis,
coverage analysis, and more. Most profilers rely on the JVM TI to gather information on
the AuT. The abilities of the JVM TI are too vast to be covered here JVM. To retrieve data
through the JVM TI one needs to provide a JVM TI-agent. Agents have to be written in
a native programming language. Each profiler that relies on the JVM TI has got its own
agent which tells the JVM TI what kind of data has to be gathered on the AuT.

2.3 Method Sampling

Method Sampling can be used to reduce overhead, however this technique greatly reduces
the level of detail of gathered data. When using Method Sampling one profiles the
application periodically after a set amount of time has passed JPM [2011]. On some
implementations of this technique the missed information on execution data is extrapolated.
Execution time of methods is thus estimated. Different profilers use a different term when
referring to this technique. In Chapter 7 only the term Method Sampling is used, regardless
what term the profiler uses.

2.4 Bytecode Instrumentation

Bytecode Instrumentation (BCI) describes the technique of injecting custom code in Java
classes during runtime. The purpose is to inject code which calls a custom event trigger
on different occasions like at class load time, method start and end time, custom expres-
sion evaluation and many more. See figure 2.1 for a simplified example of Bytecode
Instrumentation (BCI).

There are different methods of using BCI JVM:

� Static Instrumentation
The class file is instrumented before it is loaded into the JVM. Usually by providing a
duplicate class file with injected code.

� Load-Time Instrumentation
The class file is injected with custom code during load time in memory only.

8

2.5. Remote JMX Connection

Figure 2.1. The left method without BCI; the right method with BCI

� Dynamic Instrumentation
Class files which are already loaded and possibly even during execution are injected
with custom code in memory only.

2.5 Remote JMX Connection

The Java Remote JMX Connection is an interface to connect to remote Java Applications
running in a different JVM on a remote or local host. This provides profiling and monitoring
capabilities on remote Java applications. The JMX connection supports SSL authentication.
This is a very important feature, especially for monitoring purposes, but is also useful
for profiling. One can monitor this way either a local or a remote JVM. In contrast to the
Java Virtual Machine Tooling Interface, the Java Management Extensions do not provide
in-depth information of the AuT and thus there is a need to provide additional interfaces
within the AuT for in-depth information mining. The JMX provides basic data like the
number of allocated objects, the CPU usage, general information of the system and the
JVM, etc.

9

Chapter 3

Research Procedure

This study is conducted within six months and takes place in the period from August 2,
2013 to November 18, 2013. A meeting with the adviser was held periodically every second
week to discuss the recent results. In a team of three members, we performed this study.
We introduced milestones to split our goals into small steps and improve the cooperation
with NovaTec. (3.1) visualizes our schedule as a Gantt-diagram.

Figure 3.1. schedule of study

3.1 Preparation

To prepare us for a presentation and a well-founded discussion we had to make us familiar
with the basics of the issue profiler. We took a short look at current profilers and read
some articles of the theoretical basics. The outcome has been included as Foundations in
Chapter 2.

3.2 Kick-Off

After the preparation phase in order to make ourselves familiar with the matter and to
prepare to an analysis discussion, our study started with the kick-off meeting in the office
of NovaTec GmbH in Leinfelden-Echterdingen. After a short introduction of the company,
two representatives depicted their concern regarding the main focus of the study and we
discussed the demands of an expressive study.

11

3. Research Procedure

The early evaluation criteria of profiler tools have already been established in the kick-off
meeting.

3.3 Research

After the kick-off meeting, a 4-week-lasting research phase followed. During this phase,
existing profilers have been searched and categorized. Several interesting profilers have
been found through this research. In order to establish a detailed as possible list of profilers,
we started to gather information about the profilers by the use of forums and data of the
manufacturer.

3.4 Create Assessment Criteria

To compare the profilers against each other we had to create a few assessment criteria that
characterize a profiler at all important aspects. We laid down important points like CPU
utilization, memory usage, or thread activity. Beside that we wanted to take a further look
at the individual profilers and added a detailed list of criteria to our catalog. The result of
the gathered criteria can be looked up at the created table that offers an overview of the
current profilers.

3.5 Evaluation of Profilers

To establish well-founded results, we installed each listed profiler and created a small set
of test cases to take a closer look at the functionality. To challenge the specific functionality
of all profilers we chose two applications that were especially suited for these test cases.
Furthermore, we developed code snippets and injected them into the test applications. By
the help of these snippets we were able to compare the overhead which was produced by
the profilers during the profile process. During the evaluation of a single profiler a detailed
report of its functional behavior was written.

3.6 Final Presentation

After all profilers were tested and the study report was finished, a final presentation was
held at NovaTec GmbH.

12

Chapter 4

Market Overview

The following list represents our selection of current profilers. Refer also to Chapter A to see
a short summary of each individual tool and the complete list of our initial profiler lineup.
As time was limited we were not able to consider every tool. Therefore in Section 4.1 each
tool is shown which has been removed from this study with a short reasonable explanation.
The following list in Section 4.1 represents the profilers being tested in this study.

4.1 Considered Profilers

� JVM Monitor (Section A.12)
JVM Monitor is a Java profiler to monitor CPU, threads, and memory usage of Java
applications.

� Java VisualVM (Section A.18)
VisualVM is a tool which utilizes various available technologies like jvmstat, JMX, the
Serviceability Agent, and the Attach API to profile applications.

� NetBeans Profiler (Section A.16)
This profiler comes along with functions including CPU, memory and thread profiling
as well as basic JVM monitoring. It is integrated into the Netbeans IDE.

� Eclipse TPTP (Section A.5)
Eclipse Test & Performance Tools Platform (TPTP) includes frameworks to analyze the
run time behavior of desktop and enterprise applications written in Java. However it is
no longer developed and support for the newer JVM versions has been dropped.

� InspectIt (Section A.6)
Analyzing tool developed by NovaTec GmbH. Collects data through manually integrated
measuring points at Java classes.

� JProfiler (Section A.11)
A commercial profiler that comes along with a wide range of functionality. It runs on
various operating systems and development environments.

� YourKit Java Profiler (Section A.19)
A commercial profiler that comes along with a wide range of functionality. It is free to
use for open source projects and runs on various operating systems.

13

4. Market Overview

� dynaTrace (Section A.2)
Commercial profiler with a huge range of features.

� JRockit Mission Control (Section A.7)
Profiler that includes tools to monitor, manage, profile, and eliminate memory leaks in
Java applications with little performance overhead.

� Memory Analyzer (Section A.15)
The Eclipse Memory Analyzer (MAT) helps to get Heap dumps.

Excluded Profilers

� Hyades Eclipse Plugin (Section A.3)
The Hyades Eclipse Plugin has been integrated into Eclipse TPTP. Instead Eclipse TPTP
has been tested as mentioned in Section 4.1.

� Thermostat (Section A.17)
Thermostat has only monitoring capability for now. Profiling functions are planned but
not yet implemented.

� Eclipse Profiler Plugin (Section A.4)
The developer itself recommends the use of other profiler tools and does not support
Eclipse Profiler Plugin anymore.

� jMechanic (Section A.9)
The last official version was v0.6 and has been released in 2004. Due to this inactivity
jMechanic is not considered.

� JRat (Section A.14)
The development of JRat is already inactive since several years. Thus it has been
excluded.

� AppDynamics (Section A.1)
AppDynamics is a monitoring tool that is specialized for production environments
rather than for profiling.

� JMap (Section A.8)
Unsupported small tool, which isn’t stable and only runs on a few Linux distributions.

� JProbe (Section A.10)
A powerful commercial tool. However, we were not able to get a hold of a test license
for the latest version.

� jvmstat (Section A.13)
A small tool without GUI whose only functionality lies in the profiling of the memory
heap. It has too little functionality to be considered for an extensive test.

14

Chapter 5

Evaluation Criteria

To compare individual profiler tools with each other and to get a detailed list of the
functionality the profiler have been evaluated by specific criteria and categorized in scales.
Thereby a criteria catalog has been created to rate each profiler in each category. However
at this point the ratings are already filled in with the use of the scale definitions in section
5.2. See Chapter 7 on page 25 for the actual evaluation.

5.1 Criteria Catalog

5.2 Scale Definitions

In this caption you find the scales you need to evaluate the tested tools. Every scale is well
defined so it is possible to evaluate all tools.
The scale types used are ordinal and nominal scales. The ordinal scale types are described
in a table like grades in school. In the particular columns you will find the corresponding
grade definition. The nominal scales only describes if a profiler has a particular property.

5.2.1 Nominal Scales

� Development:

� Latest version
Date : The date of the latest version of the profiler

� Future-proof
Is the profiler future-proofed? : Yes/No

� License:

� Name
Under which license is the profiler? : Open Source / Eclipse Public License v1.0 /
commercial [test version available]

� Support:

15

5. Evaluation Criteria

� Forum
Is a forum available? : Yes/No Forum available

� Documentation
Is a documentation available? : Yes/No documentation available

� Active Support
Is a active support available? : Yes/No active support available

� Active Community
Is a active community available? : Yes/No active community available

� Basic conditions:

� IDE-integration
Is it possible to integrate the profiler and if possible for what IDE? : [Yes],Eclipse /
[Yes],Netbeans / No

� OS-compatibility
For what OS is the profiler provided for? : Windows / MacOS / Linux / Solaris /
AIX / FreeBSD / HP-UX

� extensibility
Is the profiler extendable? : Yes/No is (not) extendable

16

5.2. Scale Definitions

5.
2.

2
O

rd
in

al
Sc

al
es

M
em

or
y

Sc
al

e*

M
em

or
y

Ty
pe

Sc
al

e
va

lu
e

0
1

2
3

4

D
at

ab
as

e
W

it
h

th
is

p
ro

-
fil

er
it

is
no

tp
os

-
si

bl
e

to
ob

se
rv

e
an

y
da

ta
ba

se
ob

-
je

ct
s

T
he

p
ro

fi
le

r
ca

n
co

nn
ec

t
to

a
D

at
ab

as
e

an
d

sh
ow

th
e

d
at

a
se

ts
of

an
ap

pl
ic

at
io

n

T
he

p
ro

fi
le

r
is

ab
le

to
d

o
sa

ve
tr

en
d

s
of

d
at

a
se

t
ch

an
ge

s
du

r-
in

g
th

e
p

ro
fi

le
ti

m
e

T
he

p
ro

fi
le

r
is

ab
le

to
u

nd
er

-
st

an
d

w
he

re
th

e
in

st
ru

ct
io

ns
of

st
at

em
en

ts
co

m
e

fr
om

an
d

sh
ow

it

T
he

p
ro

fi
le

r
m

ak
e

ex
ec

u
ti

on
of

st
at

em
en

ts
vi

si
bl

e.
Yo

u
ca

n
fo

llo
w

th
e

ex
ch

an
ge

of
d

at
a.

Yo
u

ca
n

sa
ve

th
e

re
su

lt
s

of
d

at
ab

as
e

co
nn

ec
ti

on
s

an
d

yo
u

ca
n

co
m

p
ar

e
it

to
ea

rl
ie

r
re

su
lt

s
H

ea
p

T
he

p
ro

fi
le

r
is

n’
t

ab
le

to
d

is
p

la
y

th
e

H
ea

p

T
he

p
ro

fi
le

r
is

ab
le

to
ta

ke
sn

ap
sh

ot
s

of
th

e
H

ea
p

T
he

p
ro

fi
le

r
is

ab
le

to
sh

ow
th

e
he

ap
an

d
th

e
liv

e
ch

an
ge

s
d

u
ri

ng
ex

ec
u

-
ti

on

T
he

p
ro

fi
le

r
is

ab
le

to
sh

ow
d

et
ai

le
d

H
ea

p
an

d
th

e
co

r-
re

sp
on

d
in

g
cl

as
se

s,
p

ac
k-

ag
es

,
ob

je
ct

s
an

d
ar

ra
ys

.

T
he

P
ro

fi
le

r
is

ab
le

to
an

al
yz

e
th

e
he

ap
w

it
h

d
ia

gr
am

s
an

d
cr

ea
te

an
d

sa
ve

he
ap

d
u

m
p

s
to

co
m

p
ar

e
th

em
to

ea
rl

ie
r

re
co

rd
s.

*E
ac

h
sc

al
e

va
lu

e
in

cl
ud

es
th

e
as

pe
ct

s
of

th
e

pr
io

r
on

es
.

17

5. Evaluation Criteria

T
hr

ea
d

Sc
al

e*

Th
re

ad
pr

ofi
lin

g
Sc

al
e

va
lu

e
0

1
2

3
4

Fu
nc

ti
on

al
it

y
Th

e
pr

ofi
le

r
do

n’
t

sh
ow

an
y

ru
n-

ni
ng

th
re

ad

T
he

p
ro

fi
le

r
sh

ow
s

al
lr

un
ni

ng
th

re
ad

s
in

a
ti

m
el

in
e

or
ta

bl
e

T
he

p
ro

fi
le

r
sh

ow
s

al
lt

hr
ea

d
s

an
d

ca
n

vi
su

al
iz

e
th

em
in

d
if

fe
re

nt
gr

ap
hi

ca
lm

et
ho

d.
Yo

u
ca

n
re

se
ar

ch
th

e
th

re
ad

s
at

se
lf

st
ar

te
d

re
co

rd
ed

ti
m

e.

T
he

p
ro

fi
le

r
sh

ow
s

al
lt

hr
ea

d
s

of
th

e
ru

nn
in

g
sy

st
em

.
Yo

u
ca

n
re

co
rd

th
e

th
re

ad
s

at
a

p
ar

-
ti

cu
la

r
ti

m
e

an
d

go
m

or
e

d
et

ai
le

d
in

to
th

at
re

co
rd

.
Yo

u
ca

n
cr

ea
te

a
th

re
ad

du
m

p

Yo
u

ha
ve

th
e

p
os

si
bi

lit
y

to
vi

-
su

al
iz

e,
fi

lt
er

an
d

go
m

or
e

d
et

ai
le

d
in

to
th

e
d

at
a

of
th

e
ru

nn
in

g
th

re
ad

s.
T

he
fe

at
u

re
to

fo
llo

w
ca

ll
hi

er
ar

ch
ie

s
an

d
to

go
in

to
th

e
so

ur
ce

co
de

is
po

ss
ib

le
*E

ac
h

sc
al

e
va

lu
e

in
cl

ud
es

th
e

as
pe

ct
s

of
th

e
pr

io
r

on
es

.

C
PU

Sc
al

e*

C
PU

pr
ofi

lin
g

Sc
al

e
va

lu
e

0
1

2
3

4

Fu
nc

ti
on

al
it

y
Th

e
pr

ofi
le

r
do

n’
t

sh
ow

C
PU

ac
ti

on
Th

e
pr

ofi
le

r
sh

ow
sn

ap
sh

ot
s

of
C

PU
ac

ti
vi

ty

T
he

p
ro

fi
le

r
sh

ow
s

a
ti

m
e

lin
e

w
hi

ch
d

is
-

p
la

ys
th

e
C

P
U

pe
rc

en
ta

ge

T
he

p
ro

fi
le

r
sh

ow
s

a
vi

su
al

iz
a-

ti
on

of
ru

nn
in

g
th

re
ad

s
an

d
th

ei
r

p
er

ce
nt

ag
e

C
P

U
lo

ad

T
he

p
ro

fi
le

r
sh

ow
s

d
et

ai
le

d
co

m
p

u
ti

ng
p

er
-

ce
nt

ag
e

of
ea

ch
pa

ck
ag

es
or

m
or

e
ex

ac
tl

y
of

ea
ch

cl
as

s.
*E

ac
h

sc
al

e
va

lu
e

in
cl

ud
es

th
e

as
pe

ct
s

of
th

e
pr

io
r

on
es

.

18

5.2. Scale Definitions

O
ve

rh
ea

d
Sc

al
e*

O
ve

rh
ea

d
Sc

al
e

va
lu

e
0

1
2

3
4

O
ve

rh
ea

d
in

-
fl

u
en

ce
an

d
se

tt
in

gs

T
he

ov
er

he
ad

ha
ve

to
m

u
ch

in
fl

u
en

ce
of

ex
ec

u
ti

ng
th

e
ap

pl
ic

at
io

n
un

de
r

te
st

.
Yo

u
’r

e
no

t
ab

le
to

w
or

k
w

ith
th

e
ap

p
lic

at
io

n
w

hi
le

th
e

pr
ofi

le
r

is
ru

nn
in

g

T
he

ov
er

he
ad

is
p

er
ce

p
ti

bl
e

bu
t

d
oe

sn
’t

d
is

ab
le

th
e

ex
ec

u
ti

on
of

th
e

ap
pl

ic
at

io
n.

T
he

re
ar

e
p

os
si

-
bi

lit
ie

s
to

ad
ju

st
th

e
ov

er
he

ad
of

si
ng

le
ac

tio
ns

yo
u

w
an

t
to

do

Th
er

e
ar

e
se

tt
in

gs
w

hi
ch

ad
ju

st
th

e
ov

er
he

ad
.

Yo
u

ca
n

ch
oo

se
se

v-
er

al
se

tt
in

gs
to

se
t

u
p

th
e

ex
p

ec
te

d
ov

er
he

ad
.

T
he

ov
er

he
ad

d
oe

sn
’t

af
fe

ct
th

e
ex

ec
u

ti
on

of
th

e
ap

pl
ic

at
io

n.

*E
ac

h
sc

al
e

va
lu

e
in

cl
ud

es
th

e
as

pe
ct

s
of

th
e

pr
io

r
on

es
.

A
dd

it
io

na
l

fu
nc

ti
on

s*

A
d

d
it

io
na

l
fu

nc
-

ti
on

s
Sc

al
e

va
lu

e

0
1

2
3

4

C
ou

nt
an

d
qu

al
-

it
y

of
ad

d
it

io
na

l
fu

nc
ti

on
s

Th
er

e
ar

e
no

ad
di

-
ti

on
al

fu
nc

ti
on

s
A

d
d

it
io

na
l

fu
nc

ti
on

s
on

ly
su

pp
or

t
th

e
m

ai
n

fu
nc

ti
on

T
he

ad
d

it
io

na
l

fu
nc

tio
ns

ar
e

ve
ry

he
lp

fu
li

n
ca

se
of

pr
ofi

lin
g

T
he

p
ro

fi
le

r
co

m
es

al
on

g
w

it
h

a
hu

ge
am

ou
nt

of
p

ro
fe

ss
io

na
l

fu
nc

ti
on

s
be

-
si

d
e

th
e

m
ai

n
fu

nc
ti

on
al

it
y

T
he

pr
ofi

le
r

is
ex

-
te

nd
ab

le
fo

r
ex

-
am

p
le

w
it

h
p

lu
g

in
s

*E
ac

h
sc

al
e

va
lu

e
in

cl
ud

es
th

e
as

pe
ct

s
of

th
e

pr
io

r
on

es
.

19

5. Evaluation Criteria

G
U

I
sc

al
e*

G
U

IQ
ua

lit
y

Pr
op

-
er

ti
es

Sc
al

e
va

lu
e

0
1

2
3

4

U
sa

bi
lit

y,
U

ti
lit

y,
L

ik
ab

ili
ty

,
W

or
k-

fl
ow

,
8

go
ld

en
ru

le
s

of
B

en
Sh

ne
id

er
m

an

T
he

p
ro

fi
le

r
ha

s
no

G
U

I
Th

e
pr

ofi
le

r
ha

s
a

vi
su

al
iz

at
io

n
pa

rt
T

he
p

ro
fi

le
r

ha
s

so
m

e
se

tt
in

gs
an

d
op

ti
on

s
to

ad
ju

st
th

e
pr

ofi
le

rs
fu

nc
-

ti
on

s

Yo
u

ar
e

ab
le

to
p

er
so

na
liz

e
th

e
pr

ofi
le

r

U
se

r
In

te
rf

ac
e

d
e-

si
gn

is
ob

se
rv

ed
th

e
8

go
ld

en
ru

le
s

of
B

en
Sh

ne
id

er
-

m
an

s
*E

ac
h

sc
al

e
va

lu
e

in
cl

ud
es

th
e

as
pe

ct
s

of
th

e
pr

io
r

on
es

.

20

Chapter 6

Evaluation Procedure

To execute the evaluation on profilers, a test object has to be chosen which exhausts as
many as possible features of the profiler under test, based on the evaluation criteria on
page 15. The test object has to be applicable to as many profiler as possible in order to
make a uniform statement. Therefore several applications are used to cover specific tasks
of profilers. These two applications are introduced in Section 6.1. Additionally, use cases
have to be defined in order to establish an objective and uniform evaluation procedure. In
Section 6.2 use cases are defined which are to be executed for each test of each profiler for
both introduced applications.

6.1 Applications under Test

Columba

Columba1 is an open source email client [Col]. This application has been chosen to
monitor its network activity and examine the features of the profiler in this field. Also this
application is relative big. Beside a high concurrency it demands a lot of functions of the
profiler. Thus the profiler being tested can be measured qualitatively.

1http://sourceforge.net/projects/columba/

21

6. Evaluation Procedure

Figure 6.1. Columba, a versatile email client

Proguard

Through the use of Proguard2 one can optimize and obfuscate Java code in order to remove
unused code and make the decompilation process of Java applications more difficult [Pro].
This process is memory and CPU heavy and demands the corresponding monitoring
functions of the profiler being tested. Also during obfuscating one can easily measure the
overhead, as this process claims a lot of processing time. Therefore the Proguard class
shrinker component is injected with an execution time measuring code.

2http://proguard.sourceforge.net/

22

6.2. Use Cases

Figure 6.2. ProGuard, a simple java obfuscator; The output during obfuscating procedure is shown
at this point

6.2 Use Cases

We evaluate the profilers with predefined use cases to reach comparable results. The use
case for each application under test is now described.

Columba

Columba is an email management program, therefore it is apparent to research the sending
and receiving of emails.
The test is started with a request to the added email provider, to check whether there are
new messages. The next step is to write a new mail with at least five receivers and content
of a short inserted text.

23

6. Evaluation Procedure

Proguard

In Proguard we start our testing scenario with optimizing some code. We choose the
Columba executable jar as a uniform test object. The configuration is left in default state
except for Ignore warnings about possibly erroneous input which is getting checked.

24

Chapter 7

Experimental Evaluation

7.1 JVM Monitor

JVM Monitor makes a solid impression on first sight. The plugin flawlessly integrates into
Eclipse. The Java Monitor perspective is easy to figure out. The JVM Explorer view shows
active java applications that can be profiled with a simple mouse click. There is no need to
mess around with run configurations which leaves a positive mark. The usual features are
included: Thread, memory and CPU profiling. Some important functions like starting and
stopping the CPU profiling are represented as small buttons on the top bar of the view
and are thus easy to miss. But still JVM Monitor is pretty easy to find out how to use it.
The time line shows various data like memory usage, loaded classes and more over the
course of run time.

Figure 7.1. Screenshot of the JVMMonitor tool

However the time line takes getting used to as the scales are not perfectly clear and not
always shown. Hovering your mouse over one graph tells its exact value though. Also the
more advanced user can add more graphs to the time line by inputting specific java beans
which are mostly already provided by the JVM. These beans can also be watched in the
MBeans tab.

25

7. Experimental Evaluation

CPU Profiling

BCI while CPU profiling puts quite a heavy toll on the overhead. In experiment the
measured method took around 5 to 10 times more time to execute. However you can easily
turn this feature off/on and specify the refresh precision which relieves overhead to a
negligible amount.

Thread Profiling

Each thread is shown with its claimed CPU power and its state along with its stack trace. A
very pleasant feature of JVM Monitor is to jump to the source code location of a stacktrace
entry while profiling threads. This can be done without any additional configuration.

Memory Profiling

Nothing extraordinary here. The needed information is displayed nicely in the Eclipse
view and the memory can be dumped with a simple click.

26

7.2. VisualVm

7.2 VisualVm

VisualVM impressed with a nice clear GUI. It can be used as Eclipse plugin. But this only
start the stand alone program. At first view the Profiler locks really good visualized and
gives a lot of information about the application.

The GUI

The GUI has a menu with six sections. Below the menu there is a little toolbar with some
options. The selection of the toolbar icons can be change by the user to personalize your
own tool. Further more the profiler got a tree view of the applications that are possible to
observe. The Remote observable applications are also shown in the tree. The last item in
the tree is the recorded snapshots that had been taken by the user. In the main window in
the middle, you can see the proper profiler.

Figure 7.2. Overview of the VisualVm timelines

Main functions

Application manager

In the tree view of the profiler you can choose one of the observable applications which
are temporary running on your system. You can select them with an double click to go

27

7. Experimental Evaluation

into the detailed view or you can choose the short way with a right click on the application
you want to research. Direct executable functions in the Application manager are creating
a "Heap Dump", "Thread Dump", taking an application snapshot or adding a remote
connection to a host where an application is running you want to research.

CPU observation

VisualVM provides several possibilities to observe the CPU activities. There is an live
diagram which shows the CPU process while the application is running. In this diagram
you can point a particular time you want to see the CPU load exactly. Further more CPU
activities in a Sampler and in a profiler. In the Sampler you got details about the CPU since
the start of the application under test. Now you have the possibility to take copy of the
actual status of the CPU. Later you can compare this copy to earlier copies. You will see
the difference between the snapshots as you can see in Figure 2.

Figure 7.3. Comparison of the snapshots

And the last option to check the CPU is the most interest. If you go to the profiler you
got nearly the same function as in the Sampler with the big difference that you can start
recording of the CPU at a particular time. Than you can do the same actions like in the
Sampler. You can got CPU snapshots and compare them to earlier versions.

Heap observation

The Heap observation is the same case like the observation of the CPU. You got several
options of researching the memory. A diagram, the Sampler and the profiler. The function
to observe the heap is analogue to the CPU profiling function. You see the instances and

28

7.2. VisualVm

the live objects at a particular time. Again with the difference that in the Sampler you got
it since the start and in the profiler started at a particular time.

29

7. Experimental Evaluation

7.3 NetBeans Profiler

The Netbeans Profiler is a feature of Netbeans. On the first view it is almost conspicuously
that it is similarity to the VisualVM profiler. This may be because VisualVm is actually
equal profiler than the Netbeans Profiler. But there are some differences between the two
profilers. The plugin is more powerful than the stand alone VisualVM. The main advantage
is that you can directly go into the code and check the points you are profiling.

The GUI

The individual screens are nearly the same like in the VisualVM profiler. The navigator
on the left side is the only difference, but a really nice and helpful add-on. If you double
click one of the classes in the memory view you will go to a view that shows detailed the
corresponding instances of this class and the actual states.

Figure 7.4. NetBeans Profiler Overview

Main funcions

The main functions of the Netbeans profiler are basically the same as they are in VisualVM.
But the advantage of the plugin is that you are directly connected to your code you want
to profile.

30

7.3. NetBeans Profiler

The differences to VisualVM in case of CPU profiling you will see in the following table.

Figure 7.5. Comparison of the NetbeansProfiler and VisualVm in case of CPU profilingJiri [July 28
,2008]

The differences to VisualVM in case of Memory profiling you will see in the following
table.

31

7. Experimental Evaluation

Figure 7.6. Comparison of the NetbeansProfiler and VisualVm in case of CPU profilingJiri [July 28
,2008]

7.4 Eclipse Test & Performance Tools Platform

The Eclipse Test & Performance Tools Platform is a powerful yet hard to use profiler.
There is no standalone version and therefore it is very conservative in its user interface.
Unfortunately due to its development stop in February 2011 the profiler is left in an
unstable state. It is incompatible with Java 1.7 as it causes errors through its byte code
instrumentation making the application unable to execute. The plugin seems to slowdown
the workbench when at work and the usability seems unpolished. Certain buttons have
unexpected behavior and you can’t move the uml diagrammes around. Also you can only
profile one category at a time which is a blow to its workflow rating.

Additional to its profiling capabilities Eclipse TPTP provides Probekit, a powerful
feature which allows developers to inject Java code fragments at specific points in code on
certain events. This allows for lightweight profiling by printing out only the information
needed by developers.

CPU Profiling

The execution statistics are neatly presented with just the right amount of information.
Each package is shown along its classes which in turn have its methods.

However there is a huge overhead. In experiment Proguard was at times frozen during
computation. The experiment had to be aborted. So the conclusion is to use CPU profiling
only on specific packages, classes or methods. There is also an execution flow feature
which shows a graphical representation of method calls along a vertical axis representing
execution time. The graph is flooded with method calls and cannot be moved around, only
zoomed in and out.

32

7.4. Eclipse Test & Performance Tools Platform

Figure 7.7. The TPTP profile configuration

Thread Profiling

Eclipse TPTP has good thread profiling capabilities. The usual thread overview is included
and presented in a structured way. However the jump to source code location is missing at
this point when trying to jump to a specific threads implementation. The statistics show
what class uses which thread and further in which method. Also there is a thread visualizer
that gives the developer an overview of thread states at given instants.

Memory Profiling

Memory profiling has the usual information included which is presented in a good
structured way. Allocation details can be shown to see at which point a specific class has
been allocated.

33

7. Experimental Evaluation

Figure 7.8. CPU Analyze View

Rating

� Need to tamper with run configurations to start profiling (Workflow -1)

� Allows only to profile one category at a time (Workflow -2)

� Slows down Eclipse in general (Usability -2)

� Not compatible with newest Java version (Future-Proof -5)

� Sometimes the tab within a view won’t switch correctly (Usability -1)

� Good presentation of execution statistics (CPU +1)

� Huge overhead (Overhead -4)

� Thread visualization (Threads +1)

� Memory allocation trace (Memory +1)

� ProbeKit for custom Java code injection (Features +1)

� Can be extended by various plugins (Features +1)

34

7.4. Eclipse Test & Performance Tools Platform

Figure 7.9. Detailed Thread Analysis

Summary

One point of criticism is the need to tamper with run configurations to start profiling.
Also one can only profile one category at a time. This has quite an impact on workflow.
It noticeably slows down the Eclipse IDE and tabs will not switch reliably. It is clear
that Eclipse TPTP is left in an unstable state. Eclipse TPTP is not future-proof at all, as
development has been halted and there is no support for newer Java versions. Also there
was a huge overhead tested in experiment. Nevertheless it has a few powerful features like
the ProbeKit and it can be extended by various plugins. The Thread and CPU visualization
is done nicely and during memory testing one can take a look at the allocation trace.
Eclipse TPTP has had its place in the profiler race but not it is definitely left behind.

35

7. Experimental Evaluation

Figure 7.10. Detailed Memory Analysis

7.5 inspectIT

InspectIT is a tool which was developed by NovaTec and belongs to the group of monitoring
tools more then to the group of profiling tools. We want to take a closer look at this
application anyway. With inspectIT its possible to include several sensors within the
sourcecode of an application. This sensors collects data through a connection to the
instrumented hooks of methods. Which methods gets equipped with such a hook will be
predetermined by a configuration file. The following figure shall describe each component
and its functionality.

The application is based on three components.

� User Interface
This component visualizes all created data by the sensors. Besides the profiling function-
ality like CPU activity, loaded classes, needed memory or thread activity it’s possible to
analyze sql statements, http activity and exceptions.

� Centralized Measurement Repository
The Centralized Measurement Repository(CMR) saves all information from each sensor
given by the agents. The user interface has access to this information and visualize.

� inspectIT Agent

36

7.5. inspectIT

Figure 7.11. Environment structure Siegl [May 17, 2013]

Agents are made to receive the data from an application. To collect data from an
application it has to be started with an agent. Each agent needs a configuration file
which defines which sensors shall be activated and which methods should be observated.

The GUI and its functions

The application comes as standalone version. The application to visualize the data has an
graphical user interface. To set up the CMR or an Agent the command line is needed. The
User Interface is made with Eclipse RCP and looks a bit like the Eclipse IDE.

Summary

InspectIT has a few abilities we already known from profilers. But this program isn’t really
made to profile an application. Its profiling functions like analyzing current loaded classes,
memory usage, thread activity or CPU usage are in comparison to other profilers very
simple. But the aim of the application wasn’t to collect all information you can get it was
the aim to produce less overhead. It wouldn’t be fair to compare its functions with other
profilers. But the application could be a nice monitor.

37

7. Experimental Evaluation

Figure 7.12. View over the GUI of the InspectIt profiler

7.6 jProfiler

JProfiler is a powerful tool with many features and nice visualizations of the measurement
results you want to research. It is impressively because of the intuitive GUI. There are
many on the fly hints and navigation instructions that are very helpful to mastering your
tasks you want to do. This ’instruction pilot’ is not only helpful, you need it at many points
of the program, because it is possible that you loose the view in the variety of features.

The GUI

The program is distinguished by the clear GUI and the big intuitive symbols in the navigator
and the toolbar. The GUI is separated in 3 main parts. The menu bar with the toolbar
for the particular action, the navigator and the big main view. In the menu bar you have

38

7.6. jProfiler

many options to easy control the system. The toolbar supports to do the right actions you
have chosen in the navigator. The last part, the view part, shows you all results of your
profiling. It is important that the visualization is very clear to do a right interpretation of
the measured data. In the case of jProfiler the visualization is definitely clear.

The toolbar

The toolbar is separated in three parts. The Session part in which you have some options
for the whole profiling session you temporary run, the Profiling part in which you can
control your profiling and the last is the individual part called View specific. This last part
changes every time you change the function you want to execute. Every function you can
choose in the navigator includes other specific options you can use.

Figure 7.13. The toolbar with the particular sections marked by the black lines

39

7. Experimental Evaluation

The navigator

The navigator shows all the variety of actions you have with jProfiler. So in the figure
below 7.14 you see a short overview of the navigator with section and subsections of the
main actions.

Figure 7.14. The Navigator to chose the particular action of the profiler

The exact functionality will be described in a later section.
The main view is the visualization part as mentioned. It works with tables, maps, call
hierarchies, time lines and many more. Further more you have always the option to view
the visualizations in a filtered version. For example in the memory profiling view you have
the possibility to show a specific package you want to observe. In this package you can
only show the corresponding methods which are running.

Main functions

Live Memory

In all sub-functions of the Live memory feature you can choose an so called aggregation
level. This aggregation level is subdivided in classes, packages and Java EE Components.
This should give you the opportunity to have different views on the memory usage of your
profiled program.

� All Objects and Recorded Objects
The view of the All Objects Section and the Recorded Section is the same. If you take a
look at Figure 7.15 you see the extendable list of packages and the includes class counts
to each package. Now you can open the packages. If you now double click own of the
classes you will get to a source view of the class.

40

7.6. jProfiler

Figure 7.15. Memory usage view

� Allocation Call Tree and Allocation Hot Spots
In this section you have the same choice of selecting an aggregation level, but in this case
you have the levels methods, classes, packages and Java EE Components. The allocation
call tree shows a top-down call tree accumulated for all threads and filtered according.
The allocation hot spots view shows a list of methods where objects of a selected class
have been allocated. Only methods which contribute at least 0.1 percent of the total
number of allocations are included.

Figure 7.16. Allocation overview of the tested application

� Class Tracker
In the Class Tracker you can observe whole packages or only arrays. You get a time
line that shows the progress of class counts in package or the value trend of an selected
array.

41

7. Experimental Evaluation

Heap Walker

The Heap Walker gives you the opportunity to take a snapshot of the actual state of the
memory. Now you can do a walkthrough to your memory. In Figure 7.17 you see the Heap
Walker toolbar.

Figure 7.17. In the Heapwalker you can have a walk through the memory

With the left three symbols of the toolbar you can chose at a time either a class, allocation
or one of the biggest objects. Now you can research this selection in detail. For example
you have the opportunity to explore the references or the time the selection has impact in
the program. An additional feature is that you can show selected references in a graph.

CPU views

The This section you also have the aggregation level choice. Methods, classes, packages
and Java EE Components are available.

� Call Tree
Analogue to the call tree for the memory it shows a tree of filtered or all threads with
CPU percentage.

� Hot Spots
The hot spots view shows a list of calls of a selected type. The list is truncated at the
point where calls use less than 0.1 percent of the total time of all calls.

Figure 7.18. The CPU Hotspots. Here you see the main active threads in focus

42

7.6. jProfiler

� Call Graph
This feature generates call graph. You can choose threads that you want to display
in this graph. In this graph you see the threads an fields which are in relation to the
selected threads. It should illustrate how the thread call circle was executed. Additional
to that there are some facts to each thread and field like the total calls and the total
compute time.

Figure 7.19. In the Call Graph you have the possibility to generate call graphs of selected threads

� Method Statistics
In this section you can start a recording. In this interval of start and stop recording you
get a list of methods which were running in this time. Now you can choose one of them
and go into the details.

� Call Tracer
The same recording action you got in the Method Statistics you have in the Call Tracer.
Here you will get a extendable list of packages which have methods that were called at
the recording interval.

Threads

� Thread History and Thread Monitor
This two sections visualizing the running threads in the program. In the History all
running threads are displayed in a time line. By right clicking one of them you can go
to the CPU view and check it in the call tree. In the Monitor you got a list of all threads.
If you select one of them you get a list of methods involved in this thread. This methods
you can double click and go straight to a source code viewer if it is possible to look into
the classes.

43

7. Experimental Evaluation

� Thread Dump
This function only creates a summary of all threads. At this point you also have the
possibility to go into the source code.

Telemetries

In all time line diagrams you have the same set of options you can use to go more detailed
into the set of data. You can set bookmarks, you can zoom in and zoom out and you can
change the graph type from area to line graph view. Additional to that you have an export
view function and a set of settings to personalize your time line diagrams.

� Memory

� Heap
This time line diagram shows the total heap usage. The used Heap and the free space
of heap

� Non Heap
This time line diagram shows the code cache usage and the perm gen usage.

� Recorded Objects
This time line shows what size of memory is used by arrays and what part used by non
array typed objects.

� Recorded Throughput
This diagram shows how many objects are collected of the GC and how many are
created.

� GC Activity
This diagram shows the live action of the garbage collector in percent

� Classes
Shows the CPU computed and non CPU computed class counts

� Threads
In this time line diagram you can see all Threads with the particular state in different
colors.

� CPU Load
Last but not least the time line diagram of the CPU load. Here you see the CPU
computing percentage which the application needs.

44

7.7. YourKit Profiler

7.7 YourKit Profiler

YourKit profiler is a commercial great tool to analyze applications. The application comes
as standalone version with plugins for several IDEs [YourKit GmbH]. The plugins just
starts the applications out of the IDE’s. The standalone version visualizes the information
in real time. The profiler is very powerful and comes with a huge set of functions. In
comparison to other profilers with same range of functionality its very easy to install.
Just execute the installer downloaded at the Homepage and that’s it. After starting an
application out of the IDE the profiler starts to visualize the information. To the functional
scope belongs well known functions like CPU and memory profiling as well as innovative
ones like inspections of leaks and memory wastes.

The plugin

The profiler comes with a standalone version and a corresponding plugin for several IDEs
like Eclipse, IntelliJ IDEA, NetBeans and JDeveloper. The plugin is very simple and only
starts the application with the YourKit Profiler

Figure 7.20. Overview of the Eclipse Yourkit profiler

The figure shows the menu item run at Eclipse Juno. Besides the menu entry profile ,
which starts the standalone program and a selected project at eclipse, the plugin appends a
profile history and a profile asfunction, which is similar to the well known function run as
unless it also starts the profiler.

45

7. Experimental Evaluation

The standalone application

The standalone version starts with a welcome screen. The welcome screen shows a few
important functions and helps to come familiar with the program. Here the user can find
the documentation, an example program which can be started out of the application to
test the profiler for the first time or a list of the current detected java application running
on the system. Furthermore there are an integration wizard to install the plugin into the
used IDE, a function to open an existing snapshot to analyze older recorded data or even a
function to connect to a remote application.

Figure 7.21. Yourkit memory usage analysis

By the help of the list of the current running java applications we can come to the
analyze view of an application. Here we have a toolbar to record, clear or stop data of
the profiled application. At the bottom of the toolbar the program shows a tab-bar which
offers access to all common functions. A detailed list of all tabs and its functions was made
bellow.

46

7.7. YourKit Profiler

Functions

� CPU
This view shows two diagrams at the top of the panel. One illustrates an overview of
the current used CPU in percent, the other one the amount of current sleeping and
running threads. The sampling of the CPU can be adjust at the settings menu. A
detailed list can be found at the bottom of the panel. A Call Tree offers the function
to navigate though the methods of the application and Stack Traces can be found there too.

Figure 7.22. Yourkit CPU usage analysis

� Threads
This view shows the current running threads. It shows a small table that visualizes
the states of the threads in real time. The states could be runnable, blocked, sleeping and
waiting. Beneath the table a small figure shows the CPU usage.

Figure 7.23. Thread overview of the observed application

To get detailed information of a thread and its stack trace at a specific time a click at the
table appends a slider. A table with more information is shown at the bottom of the
panel when the slider was added.

47

7. Experimental Evaluation

� Deadlock
A helpful function can be reached through the tab Deadlock. The profiler recognizes
Threads that seems to be in a deadlock. That means the profiler takes a look at the
stack of the threads. If a thread doesn’t change its stack for more than ten seconds it is
probable a deadlock.

Figure 7.24. List of dead threads that seemed to be dead

The view shows all deadlocks and its stack trace.

48

7.7. YourKit Profiler

� Memory
One of the main functions which is usually for a profiler is to show current memory
usage. This profiler offers three diagrams that show heap- and non-heap-usage of the
current application as well as the amount of current loaded classes. The table below
offers some functions to search for specific classes to get an amount of its instances and
memory usage as well as memory allocations.

Figure 7.25. Yourkit Memory observation

� Garbage Collection
The next function visualizes the garbage collector activity. It will help to estimate
garbage collection load.

� Exceptions
Another helpful view can be reached over the Exceptions tab. The exceptions may be
grouped by their exception class or by thread. The second table shows the stack trace
of the current selected exception at the first table. It is possible to filter for specific
exceptions.

Figure 7.26. Recognized Exceptions of the application under test

49

7. Experimental Evaluation

� Inspections
Possibly, the most innovative function this profiler offers. This function is only enabled
after profiling an application and scans the application snapshots that could be saved
after profiling. It inspects the application and tries to find code-segments that could be
improved. It tests various possible faults and problems.

Figure 7.27. Yourkit Inspection view

� Monitoring
The view Monitor Usage helps to find synchronization issues at the application. It
visualizes dependencies between the threads. That means it shows which thread calling
the wait function and blocks other threads.

Figure 7.28. Yourkit Monitoring features
50

7.7. YourKit Profiler

� Other functions Other functions are Probes, where specific profile tests can be enabled
or disabled and Summary which gives a short overview of all collected information.

Summary

YourKit is a very useful profiler which comes along with a lot of well developed functions.
All well-known basic functions are included and work well. The profiler is very easy to
install and easy to understand after short practice. Sometimes the visualization is a bit
ordinary so that a better visualization would be desirable. A plugin can be included in
various IDE’s and works suitable. The function Inspections is very innovative and can help a
lot to improve the performance of an application. All in all a very nice commercial product.

51

7. Experimental Evaluation

7.8 Dynatrace

Dynatrace is a commercial, very powerful profiler tool.

The environment

The Dynatrace environment consists of several components

Figure 7.29. The DynaTrace environment

The main component is visualized in the figure above as the Dynatrace Server. This
component holds the central configuration and administration. The Server saves the
information it receives from the pure path controller into the repository. Beside getting
information from the pure path controller the server is allowed to receive information from
a monitoring collector too (not shown in the figure). The Dynatrace client is responsible
for the presentation layer and visualizes the collected information. Dynatrace works with
sensors to collect various data from the applications.

52

7.8. Dynatrace

Summary

DynaTrace is one of the most powerful profiler/monitoring tools. But we didn’t get any
license to test this tool. Without testing its not possible to make serious statement. Anyway
if you want to profile a big software system you definitely should take a closer look at this
software.

53

7. Experimental Evaluation

7.9 Java Mission Control

As of recently, JRockit Mission Control and the JRockit JVM have been both merged into
Hotspot JVM JMC. Mission Control is now included in Java starting Java 7u40 so there is
no need to download additional tools. One can optionally get the eclipse plugin which
additionally brings the feature to jump to source code locations. The oracle website has
the download for Mission Control Eclipse Plugin split at two different places, so you have
to make sure to pick the newer version of it. JRockit Mission Control looks very good
on startup. The user interface is not overloaded and has a limited amount of actions at
startup, foremost to connect to a specific JVM. When starting the Flight Recorder, Mission
Control shows its full potential. One can set very specific the level of detail and thus the
overhead of the record. The Flight Recorder records a wide variety of information starting
from class loading statistics over method profiling till system processes. After a recording
has finished or even during the recording, one can take a look at the generated report
which - additionally to its recorded information - has statistics generated using various
kind of graphs. There is also an interesting Trigger-feature, which allows the developer to
make certain actions happen when certain conditions are met. For example one can set
to automatically start deep level recording when CPU usage is above 50 percent. This is
however more of a monitoring feature.
Testing has been done with Java Java Development Kit (JDK) 7u40 and Mission Control
Eclipse Plugin 5.2.0.

Figure 7.30. Overview of the triggers

54

7.9. Java Mission Control

CPU Profiling

The overview gives the user a very quick hint on the current state of the application. But
the information shown here is pretty generic.

Figure 7.31. Overview of Java Mission Control

A report shows more detailed information regarding CPU: The amount of method calls,
the method in question, the time the execution used up and more. Fortunately one can
directly jump to the source code location when using the eclipse plugin.

Hot methods show methods which are called most frequently and take most time. So it
basically shows the methods along the methods cumulative time being active. There is also
the call tree showing the stack trace of methods.

55

7. Experimental Evaluation

Figure 7.32. Java Mission Control code report feature

Thread Profiling

Thread profiling in real time provides most information needed by developers. One can
take a look at the stacktrace, the graph of active threads or the state of each individual
thread whether it is running, blocked or waiting. The view pleases the user by being neatly
structured. Even more information is available when opening a recording, which, sadly,
has no live update feed.

56

7.9. Java Mission Control

Figure 7.33. Java Mission Control Thread observation

Memory Profiling

Memory Profiling is another thing Mission Control presents greatly. The overview presents
most needed information in one single graph, while the bottom tabs show more detailed
information.

Figure 7.34. Java Mission Control Memory Report

57

7. Experimental Evaluation

Rating

Mission Control is clearly more of a monitoring tool rather than a profiler. But still it does
many profiling features better than some dedicated profiler tools.

� Need to tamper with JVM arguments to start profiling (Workflow -1)

� Only compatible starting Java 7u2. Earlier versions need specific JRockit VM (Ergonomy
-1)

� Nice "speedometer" visualizations which give the user a quick hint on the state of the
application (Usability +1)

� User interface is designed pretty well and complies with the eclipse user interface
guideline (Likability +1)

� Very detailed information presented in a structured way (Usability +1)

� Need to start Flight Recorder in order to get detailed information which in turn is not
updated in real time (Workflow -1)

� Overhead very low and can be set to ones needs (Overhead +5)

Summary

The need to tamper with JVM arguments to start profiling is inconvenient and has a
negative impact on workflow. This feature would be more useful for the task of monitoring.
Mission Control is only compatible with Java starting version 7u2, earlier versions need
a specific JRockit JVM. Also one needs to start the Flight Recorder of Mission Control in
order to start gaining detailed information about the AuT. And that data is not updated in
real time on the user interface but rather saved in a log file. It is clear that Java Mission
Control is developed in regard to monitoring rather than the task of profiling. However Java
Mission Control has a very likable user interface. Especially the speedometer visualization
is a good eye candy. It gives the user an instant impression on the current state of the
application. The partly very detailed information is presented in a very structured way.
Also the overhead can be set to any detail level, making the overhead range from practically
negligible to huge depending on the user’s needs and the amount of data needed. The
overhead is also handled very efficiently, which gives Java Mission Control a perfect score
at this aspect. However this study is about profilers so Java Mission Control is not its native
environment.

58

7.10. Eclipse Memory Analyzer

7.10 Eclipse Memory Analyzer

Memory Analyzer (MAT) is a memory analyzing tool which helps to visualize heap dumps.
Since Java 2 Platform Editon a simple command line profiling tool called HPROF have
been added. The output files that hprof creates can be read by Eclipse MAT. By supplying
HPROF options at startup, users can request various types of heap or CPU profiling
features from HPROF. Besides HPROF it’s also possible to read IBM dump files. A Java
heap dump is a snapshot of the complete Java object graph at a certain point in time. It
includes all objects, fields, primitive types and object references.

The GUI and its functions

Eclipse MAT comes of course as a plugin for Eclipse IDE. The plugin firstly looks very
simple and the administration is a bit confusing.

Figure 7.35. Overview of the Eclipse Memory Analyzer

The plugin comes with a own perspective view called Memory Analysis. This perspec-
tive view consists of a few views.

� Inspector
This view shows detailed information of Java Objects when hovering parts of pie charts
or clicking on items at the main view. Detailed information could be for example the
memory address of an array, its class hierarchy or content or even the values of its
attributes.

59

7. Experimental Evaluation

� Main View: Heap Dump analysis
The main view visualizes all information covered by the heap dump. With the menu
bar at the top of this view its possible to open different analysis.

� Overview
Shows general information of the heap dump like needed memory, amount of classes
and objects or biggest objects of the corresponding application.

� Histogram
Lists number of instances per class.

� Dominator Tree
visualizes a tree which contains objects and its child objects. Its possible to walk
trough the tree to analyze the shallow and retained heap of each object.

� Object Query Language
MAT offers the possibility to search for objects with a sql-like language called Object
Query language (OQL). That allows to query the heap dump. OQL represents classes
as tables, objects as rows, and fields as columns. As an example the following query
would lists all Java objects that starts with "java.lang" "Select * from "java.lang.*" .

� Threads
This view visualizes information of all Threads at the time of the heap dump. Besides
name, needed Heap space, context class loader and state of the Thread its possible to
analyze more detailed information by the help of the Inspector View.

Besides the basic functionality its also possible to create reports automatically. MAT
offers a report to create a system overview, a report of the top components or even a
report that tries to find leaks automatically which can be a nice feature.

Summary

The inspected tool "Eclipse Memory Analyzer" isn’t a tool that belongs to the chapter
"Profiler" because its not possible to observe an application. But it can be a huge help
to analyze the result of a profiler which creates heap dumps and isn’t that great in
visualize the dumps. Furthermore there is a domain where this tool provides perfect
information which helps a lot by profiling an application. One big problem is to detect
the faults of an application that causes out-of-memory errors. This errors are very difficult
to solve. But its possible to generate heap and thread dumps by adding the param -
XX:+HeapDumpOnOutOfMemoryError at start up to the vm. If the application wants to
throw an out-of-memory error the vm creates a heap dump first. By the help of Eclipse
MAT this heap dump can be a big help to detect the faults at the source code.

60

Chapter 8

Conclusion

In the conclusion you will see the summary of this study. It starts with a result-table which
shows the details of every aspect of the tested profilers. Refer to the scale definitions in
section 5.2 to comprehend the final results of the evaluation. Note that some of the scales
are ordinal and some are nominal. The last part of this section is the recommendation on
the basis of this result table.

61

8. Conclusion
Scaletype

JV
M

M
onitor

N
etbeansProfiler

EclipseTPTP
M

ission
C

ontrol
D

atabase
0

0
0

0
H

eap
2

3
3

3
T

hread
P

rofi
ling

Functionality
4

3
2

3

C
P

U
P

rofi
ling

Functionality
2

2
2

3

O
verhead

3
2

1
4

A
d

d
itional

Fu
nc-

tions
1

2
1

2

G
U

I
2

3
2

3
D

evelopm
ent:

Latest
Version

version
3.8.1,

Feb
2,2013

version
6.5.1,

version
4.7.2,25

Feb
2011

version
4.1

future-proof
yes

yes
no

yes
Licence:

N
am

e
E

clip
se

P
u

blic
License

v1.0
C

D
D

L
and

G
PL

v2
E

clip
se

P
u

blic
License

v1.0
E

clip
se

P
u

blic
License

v1.0
Support:

Forum
no

yes
no

yes
D

ocum
entation

yes
yes

yes
yes

A
ctive

support
yes

yes
no

yes
A

ctive
com

m
unity

yes
yes

no
yes

Basic
conditions:

ID
E

Integration
yes/

E
clip

se
>

3.6
N

etbeans
yes/

E
clip

se
(only

A
U

T
<

JA
VA

1.6)

yes/Eclipse

O
S-com

patibility
p

latform
ind

e-
pendent

p
latform

ind
e-

pendent
p

latform
ind

e-
pendent

p
latform

ind
e-

pendent
extensibility

no
no

no
no

62

Sc
al

et
yp

e
V

is
ua

lV
M

JP
ro

fil
er

Yo
ur

K
it

M
em

or
y

A
na

-
ly

ze
r

D
at

ab
as

e
0

3
0

0
H

ea
p

2
3

3
1

T
hr

ea
d

P
ro

fi
lin

g
Fu

nc
ti

on
al

it
y

3
3

3
1

C
P

U
P

ro
fi

lin
g

Fu
nc

ti
on

al
it

y
3

4
4

0

O
ve

rh
ea

d
2

3
2

-
A

d
d

it
io

na
l

Fu
nc

-
ti

on
s

2
4

4
0

G
U

I
3

4
4

2
D

ev
el

op
m

en
t:

La
te

st
Ve

rs
io

n
12

Se
p,

20
13

31
Ju

ly
20

13
30

O
ct

20
13

ve
rs

io
n

1.
3.

0,
26

Ju
ne

20
13

fu
tu

re
-p

ro
of

ye
s

ye
s

ye
s

ye
s

Li
ce

nc
e:

N
am

e
G

PL
v.

2+
ce

C
om

m
er

ci
al

,1
0

da
ys

fu
ll

te
st

ve
r-

si
on

C
om

m
er

ci
al

,
Te

st
ve

rs
io

n
E

cl
ip

se
P

u
bl

ic
Li

ce
ns

e
v1

.0

Su
pp

or
t:

Fo
ru

m
ye

s
no

ye
s

ye
s

D
oc

um
en

ta
ti

on
ye

s
ye

s
ye

s
ye

s
A

ct
iv

e
su

pp
or

t
ye

s
ye

s
ye

s
no

A
ct

iv
e

co
m

m
un

it
y

ye
s

ye
s

no
ye

s
Ba

si
c

co
nd

it
io

ns
:

ID
E

In
te

gr
at

io
n

ye
s/

Ec
lip

se
>3

.6
ye

s/
Ec

lip
se

>3
.3

ye
s/

E
cl

ip
se

to
st

ar
tu

p
ye

s/
E

cl
ip

se
(s

ta
nd

-a
lo

ne
al

so
av

ai
la

bl
e)

O
S-

co
m

pa
ti

bi
lit

y
p

la
tf

or
m

in
d

e-
pe

nd
en

t
p

la
tf

or
m

in
d

e-
pe

nd
en

t
p

la
tf

or
m

in
d

e-
pe

nd
en

t
p

la
tf

or
m

in
d

e-
pe

nd
en

t
ex

te
ns

ib
ili

ty
ye

s
no

no
no

63

8. Conclusion

After a long period of evaluation three profilers stood out through their convincing
capabilities. Thus it made it difficult to make a recommendation for a single profiler.
Nowadays the demands of software engineering products are ever-increasing. Software
could contain various technologies and principles like databases, interfaces to the under-
lying system, connecting to the internet, rendering real-time animations, and the usage
of several protocols to communicate with peripheral devices. Every software demands
various resources from its environment. A software which creates real-time animations,
for instance, would require a lot of power of the graphics card. To calculate the rendering
algorithms the software would need to interact with a rendering library like OpenGL or
DirectX. These requirements require other testing techniques than — for example — a
program for tax-calculation would need. A perfect profiler would need to offer the best
solution for any imaginable scenario. This is an impossible feat to develop.

We extracted the main functionality of each profiler and analyzed them in their capa-
bility and functional diversity. Each functionality obtained a rating by the use of predefined
scale definitions. As a result the commercial profilers have achieved higher ratings in
overall. The JProfiler and the YourKit profiler are solid in the CPU profiling functionality,
its handling, and its multiplicity of qualitative additional functions. If you develop a
commercial software which would cost your company a huge amount of money, if crashed,
you should consider the pros and the cons before you choose a profiler. One function of
the YourKit profiler which was outstanding in comparison to similar functions was the
ability to find possible improvements in the code. The profiler searches for memory waste
like duplicate strings and arrays, null fields or zero length arrays, possible memory leaks,
file accesses, and various other possible improvements. The other profiler which attracts
positive attention is the JProfiler. It stood out with a beautiful way to present the details of
the AuT. Furthermore this presentation was consistently present in all functionalities of
the profiler. Additional functions like viewing a graph of the call tree of threads allows
the analyst to find out which thread started another and how long it stood active. The
beautiful and multifaceted visualization in every aspect is an additional plus point.
But the open source products don’t lack heavily behind the commercial products. A lot
of the free profilers come with plugins to integrate into common IDEs and provide full
featured functionality as well developed as the commercial tools are.

In conclusion you have to compare the tools with the help of the given result table to
find a profiler which fits your needs perfectly.

64

Appendix A

Detailed Profiler List

A.1 AppDynamics

Name: AppDynamics

Manufacturer: AppDynamics

Language:

GUI: yes

State / Activity: active, stable

IDE Integration: Eclipse / intellij / Oracle JDeveloper / Netbeans
Win/Linux/Unix/Mac

Command line capability: -

Supported OS: no details

Time Measurement: yes, Observation of all activity of the application
under test

Memory Measurement: yes,

Thread Measurement: yes

Data Collection: no detail

Overhead: no detail

Special Features: display the full application, observation of the
full system (databases, server, application etc.)
automated fail and error detection with AppDy-
namics. statistics and overviews of application
usage

Support: Support and Community

License: Commercial Version

65

A. Detailed Profiler List

A.2 dynaTrace

Name: dynaTrace

Manufacturer: Compuware

Language: Multilingual

GUI: yes

State / Activity: active, stable

IDE Integration: Eclipse plugin / intellij plugin

Command line capability: yes

Supported OS: all common - inform at
http://de.compuware.com/application-
performance-management/platform-support-
matrix.html

Time Measurement: yes, observation of requests, Hot Spots, statistics
of methods

Memory Measurement: yes, very detailed (size of objects, instances, call
patches, classes, heap-structure, Garbage Collec-
tor)

Thread Measurement: yes

Data Collection: no details

Overhead: " 2% overhead"

Special Features: locale and remote applications are supported,
on-demand profiling,

Support: Online documentation, Request Support / Bug
Report

License: commercial

66

A.3. Eclipse Hyades Plugin

A.3 Eclipse Hyades Plugin

Name: Eclipse Hyades Plugin

Manufacturer: Eclipse Foundation

Language: English

GUI: yes

State / Activity: inactive, obsolete

IDE Integration: Eclipse plugin

Command line capability: no

Supported OS: All OS supported by Eclipse

Time Measurement: yes

Memory Measurement: yes

Thread Measurement: yes

Data Collection: no details

Overhead: no details

Special Features: no details

Support: Inactive community

License: Eclipse Public License v1.0

67

A. Detailed Profiler List

A.4 Eclipse Profiler Plugin

Name: Eclipse Profiler Plugin

Manufacturer: Ricardo Inzaurra

Language: English

GUI: yes

State / Activity: active, stable

IDE Integration: Eclipse plugin

Command line capability: no

Supported OS: All OS supported by Eclipse

Time Measurement: yes

Memory Measurement: yes, heap profiling

Thread Measurement: yes, call tree is shown

Data Collection: no details

Overhead: no details

Special Features: Visualization of call graph

Support: Get started guide

License: Common Public License 1.0

68

A.5. Eclipse TPTP

A.5 Eclipse TPTP

Name: Eclipse TPTP

Manufacturer: Eclipse Foundation

Language: English

GUI: yes

State / Activity: inactive, successor to Eclipse Hyades Plugin
(Section A.3)

IDE Integration: Eclipse plugin

Command line capability: no

Supported OS: All OS supported by Eclipse

Time Measurement: yes

Memory Measurement: yes

Thread Measurement: yes

Data Collection: no details

Overhead: no details

Special Features: locale and remote applications are supported

Support: Online documentation, community

License: Eclipse Public License v1.0

69

A. Detailed Profiler List

A.6 InspectIt

Name: InspectIt

Manufacturer: Novatec

Language: Java, Spring, Eclipse RCP, PicoAgent.

GUI: yes

State / Activity: active, stable

IDE Integration: -

Command line capability: -

Supported OS: Windows (32/64 bit), Linux (32/64 bit)
Mac(partly 32/64bit)

Time Measurement: yes, Observation of single methods in detail

Memory Measurement: yes, cursorily

Thread Measurement: yes, cursorily

Data Collection: manipulating source code previous to compile
process

Overhead: middle

Special Features: Observation of database-accesses, exceptions and
Http-Requests

Support: Kick-off presentation of NovaTec, online docu-
mentation

License: License of NovaTec

70

A.7. Java Mission Control

A.7 Java Mission Control

Name: Java Mission Control

Manufacturer: Oracle

Language: Multilingual

GUI: yes

State / Activity: active, stable

IDE Integration: Eclipse plugin

Command line capability: yes

Supported OS: all common - inform at
http://de.compuware.com/application-
performance-management/platform-support-
matrix.html

Time Measurement: yes, really exact measurements of requests

Memory Measurement: yes, memory leaks

Thread Measurement: yes

Data Collection: directly from the VM

Overhead: no Overhead

Special Features: single JVM; maybe the application have to be
ported

Support: Online documentation, community, tutorials

License: free, closed source (special function have to be
payed)

71

A. Detailed Profiler List

A.8 JMap

Name: JMap

Manufacturer: Oracle

Language: English

GUI: no

State / Activity: inactive, finished

IDE Integration: In JDK integrated

Command line capability: yes

Supported OS: In JDK integrated

Time Measurement: no

Memory Measurement: yes, Memory Dumps

Thread Measurement: no

Data Collection: directly from the VM

Overhead: no overhead

Special Features: absolute shell application, only memory dumps

Support: Online documentation, community, tutorials

License: open source

72

A.9. jMechanic

A.9 jMechanic

Name: jMechanic

Manufacturer:

Language: java

GUI: yes, swt

State / Activity: Development suspended since 2004. Alpha state

IDE Integration: Eclipse

Command line capability: no

Supported OS: java supporting OS

Time Measurement: yes

Memory Measurement: yes, Heap- and loaded classes observation

Thread Measurement: no

Data Collection: ?

Overhead: less

Special Features: supports local and remote applications

Support: sourceforge - But not active

License: AFL

73

A. Detailed Profiler List

A.10 JProbe

Name: JProbe

Manufacturer: Quest Software

Language: Java

GUI: Eclipse Plug-In

State / Activity: Production/Stable

IDE Integration: Eclipse 3.4, 3.5 and 3.6

Command line capability: -

Supported OS: Systems that support Eclipse

Time Measurement: yes, memory observation in real time, CPU ob-
servation

Memory Measurement: yes, Garbage Collector-, Heap-, loaded classes
observation

Thread Measurement: yes

Data Collection: -

Overhead: less

Special Features: only application on local systems, well designed
GUI with many settings, record snapshots at par-
ticular time, many features

Support: JProbe Documentation, JProbe
Users Guide, JProbe Help
https://support.quest.com/Default.aspx

License: Commercial

74

A.11. JProfiler

A.11 JProfiler

Name: JProfiler

Manufacturer: ej-technologies

Language:

GUI: yes

State / Activity: active, stable

IDE Integration: Eclipse / intellij / Oracle JDeveloper / Netbeans
Win/Linux/Unix/Mac

Command line capability: -

Supported OS: all common - inform at http://www.ej-
technologies.com/products/jprofiler/featuresPlatforms.html

Time Measurement: yes, observation of requests, Hot Spots, statistics
of methods

Memory Measurement: yes, very detailed (size of objects, instances, call
paths, classes, heap-structure, Garbage Collector)

Thread Measurement: yes

Data Collection: no details

Overhead: no details

Special Features: locale and remote applications are supported,
supports comparison of actual and previous
executions, tracking of requests (AWT/Swing
/Thread Requests) . It is possible to install on
server like Apache/JBoss/Jetty/IBM to inspect
EE applications

Support: Online documentation, Request Support / Bug
Report

License: Comercial Version

75

A. Detailed Profiler List

A.12 JVM Monitor

Name: JVM Monitor

Manufacturer: http://www.jvmmonitor.org/

Language: Java

GUI: Yes, embedded into Eclipse. Also SWT GUI

State / Activity: Active development (Release 3.8.1)

IDE Integration: Eclipse PlugIn for:
Helios 3.6.x, Indigo 3.7.x or Juno 3.8.x/4.2.x
Java for Eclipse:
Oracle JDK 6 or 7, OpenJDK 6 or 7, or Apple JDK
6

Command line capability: No Statements

Supported OS: Windows, Linux, or Mac OS X

Time Measurement: Shows time depending diagrams (configurable)
of main memory, number temporary loaded ob-
jects, number of threads, CPU usage

Memory Measurement: Detailed illustration of memory usage

Thread Measurement: Detailed illustration of running threads with
CPU usage and CPU state

Data Collection: -

Overhead: little

Special Features: automatic detection of JVM in localhost or via
remote connection by stating of host and port

Support: Issue Tracker to report bugs or make suggestions
for new requirements

License: Free open source software, Eclipse Public License
v1.0

76

A.13. jvmstat

A.13 jvmstat

Name: jvmstat

Manufacturer: ORACLE

Language: Java

GUI: yes, Swing

State / Activity: development suspended

IDE Integration: stand alone tool

Command line capability: yes

Supported OS: Windows 98 and Windows ME

Time Measurement: yes - compiling time/ Class Loader/ histogram
of previous runtimes

Memory Measurement: yes

Thread Measurement: yes

Data Collection: -

Overhead: less

Special Features: remote access

Support: no support

License: Open Source Software

77

A. Detailed Profiler List

A.14 JRat

Name: JRat

Manufacturer:

Language: java

GUI: yes, swing

State / Activity: not activity since 2007 - never reached stable
version

IDE Integration: no

Command line capability: no

Supported OS: OS able to run Java

Time Measurement: yes, single methods are observable

Memory Measurement: no

Thread Measurement: no

Data Collection: JVMPI

Overhead: less

Special Features: -

Support: sourceforge : Wiki / Mailing List / BugTracker

License: GNU Library or Lesser General Public License
version 2.0 (LGPLv2)

78

A.15. Memory Analyzer

A.15 Memory Analyzer

Name: Memory Analyzer

Manufacturer: Eclipse Org

Language: English

GUI: yes

State / Activity: active, stable

IDE Integration: Eclipse plugin

Command line capability: no

Supported OS: all common which supports Eclipse

Time Measurement: no

Memory Measurement: yes, memory leaks

Thread Measurement: no

Data Collection: directly from the VM

Overhead: less overhead

Special Features: -

Support: Online documentation, Community, Tutorials

License: open source

79

A. Detailed Profiler List

A.16 NetBeans Profiler

Name: NetBeans Profiler

Manufacturer: NetBeans

Language: -

GUI: Embedded into Netbeans

State / Activity: active, stable

IDE Integration: Netbeans

Command line capability: -

Supported OS: Windows, Linux(x86/x64), Solaris(x86/x64), So-
laris(sparc), Mac OS, OS independent Zip

Time Measurement: yes, CPU-Activity at real time, Threads and stor-
age usage at real time

Memory Measurement: yes, Garbage Collector-, Heap-, loaded classes
observation

Thread Measurement: yes

Data Collection: -

Overhead: less

Special Features: Integrated into NetBeans, connection to remote
applications

Support: Profiler Blog News, features, tips and tricks and
all around the profiler.

License: Common Development and Distribution License
CDDL v1.0 and GNU General Public License
GPL v2.

80

A.17. Thermostat

A.17 Thermostat

Name: Thermostat

Manufacturer: Redhead

Language: Java

GUI: yes, Swing

State / Activity: development state, last stable 0.92

IDE Integration: no, will be published as embedded eclipse plugin
soon

Command line capability: yes

Supported OS: only Fedora at the moment

Time Measurement: yes, per host : record loaded classes

Memory Measurement: yes, Able to observe Garbage Collector, memory
allocation of single instances, heap etc.

Thread Measurement: yes

Data Collection: jstatd, JMX, JVMTI, and Systemtap

Overhead: less

Special Features: provides monitoring of several Java Virtual Ma-
chines on several hosts

Support: Bug Tracker, wiki, mailinglist

License: GPLv2+

81

A. Detailed Profiler List

A.18 VisualVM

Name: VisualVM

Manufacturer: Oracle/Sun

Language: java

GUI: yes, swing

State / Activity: active, stable

IDE Integration: Eclipse / Netbeans

Command line capability: no

Supported OS: OS able to run Java

Time Measurement: yes, able to observe single methods

Memory Measurement: yes, Garbage Collector-, Heap-, loaded classes
observation

Thread Measurement: yes

Data Collection: jvmstat, JMX, the Serviceability Agent (SA), and
the attached API

Overhead: less

Special Features: already integrated into java jdk, locale and re-
mote applications are supported, plugins may be
installed

Support: JIRA BugTracker

License: GPLv2 + CE

82

A.19. YourKit Java Profiler

A.19 YourKit Java Profiler

Name: YourKit Java Profiler

Manufacturer: YourKit, LLC

Language: English

GUI: yes

State / Activity: active, stable

IDE Integration: Eclipse / intellij / Oracle JDeveloper / Netbeans
Win/Linux/Unix/Mac/Solaris/etc.

Command line capability: yes

Supported OS: all common - inform at
http://www.yourkit.com/features/index.jsp#multiplatform

Time Measurement: yes, observation of requests, Hot Spots, statistics
of methods

Memory Measurement: yes, very detailed (size of objects, instances, call
paths, classes, heap-structure, Garbage Collector)

Thread Measurement: yes

Data Collection: no details

Overhead: "zero overhead"

Special Features: locale and remote applications are supported,
on-demand profiling,

Support: Online documentation, Request Support / Bug
Report

License: commercial

83

Glossary

Application under Test The application which is tested by the current profiler. In this study
this is either Columba or Proguard. 87

Bytecode Instrumentation A technique used to gain data on execution time and duration
during profiling of a certain method. Explained in detail in Section 2.4. 7, 87

Java Management Extensions JMX provides tools for building distributed, modular, and dy-
namic solutions for managing and monitoring applications. Mostly used for monitoring.
Available starting Java 1.5 JMX. 9

Java Virtual Machine The machine responsible for executing Java applications and Java
bytecode. 87

Java Virtual Machine Tooling Interface A programming interface used by development,
profiling, and monitoring tools. Provides functions to inspect the state and control the
execution of applications running in the JVM. Explained in detail in Section 2.2. 7–9, 87

jvmstat A small tool without GUI whose only purpose is to dump memory heaps. Is often
used by other profilers to get a memory heap dump. 13

Method Sampling A technique used to gain data on execution time and duration during
profiling of certain methods. Explained in detail in Section 2.3. 7, 8

85

Acronyms

AuT Application under Test. 8, 9, 58, 64

BCI Bytecode Instrumentation. 8, 9, 26

IDE Integrated Development Environment. 35

JDK Java Development Kit. 54

JMX Java Management Extensions. 7, 9, 13

JVM Java Virtual Machine. 3, 8, 9, 25, 26, 54, 58, 85

JVM TI Java Virtual Machine Tooling Interface. 6–8

MAT Eclipse Memory Analyzing Tool. 14, 59, 60

SSL Secure Sockets Layer. 9

TPTP Eclipse Test & Performance Tools Platform. 13, 14, 32, 33, 35

87

Bibliography

[Col] Columba. http://sourceforge.net/projects/columba/.

[JMC] Java Mission Control 5.2 release notes. URL http://www.oracle.com/technetwork/java/

javase/2col/jmc-relnotes-2004763.html.

[JMX] Java management extensions (jmx) technology. URL http://www.oracle.com/technetwork/

java/javase/tech/javamanagement-140525.html.

[JVM] Jvm tooling interface 1.2 documentation. URL http://docs.oracle.com/javase/7/docs/

platform/jvmti/jvmti.html.

[Pro] Proguard. http://proguard.sourceforge.net/.

[JVM 2004] Creating a debugging and profiling agent with jvmti, 2004. URL http://www.

oracle.com/technetwork/articles/javase/jvmti-136367.html.

[JPM 2011] Java performance messen – mit sampling oder in-
strumentierung, Oct. 2011. URL https://blog.codecentric.de/2011/10/

java-performance-messen-mit-sampling-oder-instrumentierung/.

[Jiri July 28 ,2008] S. Jiri. Netbeans profiler
the netbeans profiler and visualvm blog
profiling with visualvm, part 1. https://blogs.oracle.com/nbprofiler/entry/profiling_with_

visualvm_part_2, July 28 ,2008.

[Siegl May 17, 2013] S. Siegl. Inspectit overview. https://documentation.novatec-gmbh.de/display/

INSPECTIT/Overview, May 17, 2013.

[YourKit GmbH] YourKit GmbH. Yourkit profiler. http://www.yourkit.com/.

89

http://sourceforge.net/projects/columba/
http://www.oracle.com/technetwork/java/javase/2col/jmc-relnotes-2004763.html
http://www.oracle.com/technetwork/java/javase/2col/jmc-relnotes-2004763.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://proguard.sourceforge.net/
http://www.oracle.com/technetwork/articles/javase/jvmti-136367.html
http://www.oracle.com/technetwork/articles/javase/jvmti-136367.html
https://blog.codecentric.de/2011/10/java-performance-messen-mit-sampling-oder-instrumentierung/
https://blog.codecentric.de/2011/10/java-performance-messen-mit-sampling-oder-instrumentierung/
https://blogs.oracle.com/nbprofiler/entry/profiling_with_visualvm_part_2
https://blogs.oracle.com/nbprofiler/entry/profiling_with_visualvm_part_2
https://documentation.novatec-gmbh.de/display/INSPECTIT/Overview
https://documentation.novatec-gmbh.de/display/INSPECTIT/Overview
http://www.yourkit.com/

Ich versichere, diese Arbeit selbstständig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen

Werken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens.

Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

I hereby declare that the work presented in this thesis is entirely my own.

I did not use any other sources and references that the listed ones. I have marked all direct or indirect

statements from other sources contained therein as quotations.

Neither this work nor significant parts of it were part of another examination procedure. I have not published

this work in whole or in part before.

The electronic copy is consistent with all submitted copies.

Erklärung

Stuttgart, den 04.12.2013

Unterschrift:

Stuttgart, 4th December 2013

Signature:

Declaration

	1 Introduction
	1.1 Motivation
	1.2 Goals

	2 Foundations
	2.1 Profiling Aspects
	2.1.1 Memory Profiling
	2.1.2 Thread Profiling
	2.1.3 CPU Profiling

	2.2 Java Virtual Machine Tooling Interface
	2.3 Method Sampling
	2.4 Bytecode Instrumentation
	2.5 Remote JMX Connection

	3 Research Procedure
	3.1 Preparation
	3.2 Kick-Off
	3.3 Research
	3.4 Create Assessment Criteria
	3.5 Evaluation of Profilers
	3.6 Final Presentation

	4 Market Overview
	4.1 Considered Profilers

	5 Evaluation Criteria
	5.1 Criteria Catalog
	5.2 Scale Definitions
	5.2.1 Nominal Scales
	5.2.2 Ordinal Scales

	6 Evaluation Procedure
	6.1 Applications under Test
	6.2 Use Cases

	7 Experimental Evaluation
	7.1 jvm Monitor
	7.2 VisualVm
	7.3 NetBeans Profiler
	7.4 Eclipse Test & Performance Tools Platform
	7.5 inspectIT
	7.6 jProfiler
	7.7 YourKit Profiler
	7.8 Dynatrace
	7.9 Java Mission Control
	7.10 Eclipse Memory Analyzer

	8 Conclusion
	A Detailed Profiler List
	A.1 AppDynamics
	A.2 dynaTrace
	A.3 Eclipse Hyades Plugin
	A.4 Eclipse Profiler Plugin
	A.5 Eclipse TPTP
	A.6 InspectIt
	A.7 Java Mission Control
	A.8 JMap
	A.9 jMechanic
	A.10 JProbe
	A.11 JProfiler
	A.12 JVM Monitor
	A.13 jvmstat
	A.14 JRat
	A.15 Memory Analyzer
	A.16 NetBeans Profiler
	A.17 Thermostat
	A.18 VisualVM
	A.19 YourKit Java Profiler

	Glossary
	Acronyms
	Bibliography

