
Institute of Software Technology

Reliable Software Systems Research Group

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Fachstudie Nr. 188

Performance Testing in

Continuous Integration

Environments

Chris Geiger Dennis Przytarski Sascha Thullner

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Lars Grunske

Betreuer: Dipl.-Inform. André van Hoorn

begonnen am: 16.10.2013

beendet am: 17.04.2014

CR-Klassifikation: D.4.8

Abstract

The purpose of this case study is to evaluate how and which performance testing tools
which can be used in continuous integration (CI) environments. By doing so, developers
can see the effects of changes immediately and react against performance problems of their
applications. This will help companies to eliminate performance issues which the media is
reporting about more often every day. CI provides the reference platform for executing the
performance tests and the performance testing tools provide metrics like response time
and percentage of errors. These metrics can be combined through CI plugins. The results
of this combination can be visualized in form of graphs and tables.

Through this case study, we give a short market overview of current CI servers and
performance testing tools. In respect of the requirements by adesso AG, we will only
evaluate performance testing tools, which can be integrated into the Atlassian Bamboo or
Jenkins CI. We evaluated six performance testing tools of which four were integratable into
the CI servers. Based on the results of our evaluation we will give a recommendation.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
1.3 Collaboration with adesso AG . 2
1.4 Document Structure . 2

2 Foundations 3
2.1 Continuous Integration . 3
2.2 Performance Testing . 4

3 Research Procedure 7
3.1 Kick-Off Meeting . 7
3.2 Research and Criteria Catalog . 7
3.3 Evaluation of the Performance Testing Tools 8
3.4 Final Presentation and Written Report . 8

4 Market Overview 9
4.1 Continuous Integration . 9
4.2 Performance Testing Tools . 12

5 Criteria Catalog 15
5.1 Knock-out Criteria . 15
5.2 Relevant Criteria . 15

6 Evaluation 19
6.1 Performance Testing Tools . 19
6.2 Expandability of Bamboo and Jenkins . 30
6.3 Integration of Performance Testing Tools in Bamboo and Jenkins 31
6.4 Results . 45

7 Conclusion 49
7.1 Motivation and Summary . 49
7.2 Results . 49

8 Appendix 51

Bibliography 55

iii

Chapter 1

Introduction

This chapter provides an overview about the motivation, the goals, the collaboration with
our industry partner adesso AG and also the document structure of this case study.

1.1 Motivation

Continuous integration (CI) helps developers to detect functional problems in their code
early and therefore allows to increase the quality of the product. Continuous integration
is a software development process in which the individual team members integrate their
developed code in the whole project on a regular basis [Duvall et al. 2007].

Most of the time, only automated unit tests are executed on CI environments that
check whether the functionality of the system is still provided or if some changes in
the source code broke parts of a system’s functionality. However, this is not the only
meaningful information that can be extracted. For example, by creating and executing
automated performance tests, it is possible to get even deeper knowledge about a system’s
dynamic characteristics. Performance Testing in CI environments can help to identify
potential performance problems. Developers can get more insight into the performance
characteristics of their implementations by running small and automated performance
tests. This allows architects, developers, and testers to develop a better feeling on the
dynamic behavior of their applications, because they could see the effects of changes
immediately. Load tests and roll-outs also get more efficient as a lot of bugs could have
already been resolved by analyzing the results from the performance tests running on the
CI environment.

1.2 Goals

The goals of this study are the identification of functional and non-functional requirements
by adesso for performance testing integrated in CI environments, e.g., concerning support
for the specification and automatic execution of performance tests on different levels
(unit, integration, system), collection and visualization of results, as well as rules for
successful/failing builds. These requirements are represented by the criteria catalog in
Chapter 5.

1

1. Introduction

Furthermore, this study investigates the possibility of performance testing in CI envi-
ronments. This includes the examination of CI servers, monitoring tools, and performance
test tools.

The final result should be a scientifically-based recommendation of a combination of a
CI environment and a perfomance test tool taylored to adesso’s requirements.

1.3 Collaboration with adesso AG

This case study is conducted in collaboration with the adesso AG in Stuttgart. Adesso AG
is an independent IT service provider that supports companies through consulting and
software development. In cooperation the continuous integration server and performance
test tools are selected. Furthermore, a criteria catalog will be created according to the
wishes and ideas of the adesso AG.

Adesso AG develops individual software in the programming language Java. By
this time, they use Atlassian Bamboo and Jenkins CI as continuous integration servers.
Furthermore they are interested in using performance testing tools which can be integrated
into their current CI platform. This usage scenario serves us as an environment for this
case study.

1.4 Document Structure

The remainder of this document is structured as follows: In Chapter 2, a short introduction
is given by describing the foundations of this case study. Chapter 3 describes and arranges
the individual phases of the project and the research procedure. Chapter 4 offers a market
overview, listing and giving basic information about the different commercial and free
CI servers and performance testing tools. Chapter 5 introduces and describes the criteria
catalog which will be used to classificate the different performance test tools by their
relevance. Chapter 7 gives information about the evaluated tools and explains the results.
The last chapter concludes the study and gives a recommendation.

2

Chapter 2

Foundations

This chapter provides an overview about the foundations about continuous integration and
performance testing.

2.1 Continuous Integration

The administration effort of the developement process during a software project grows
with its size and complexity. Escpecially the version control and build process are a major
challenge. In teams with multiple members, the integration of the various code fragments is
an essential task. In this connection often arise so-called integration error. These integration
errors are hardly detected during the further development process and thus remain in the
software [Duvall et al. 2007].

To avoid these errors and bring other advantages and simplifications, CI is used in
software development. CI is a software development process in which the individual team
members integrate their developed code in the whole project on a regular basis. Each
integration is automatically tested and built, whereby big errors, which may prevent other
developers from further development of the software, are detected immediately. This
process includes tests which additionally check the functionality of the software [Fowler
2006]. Below the individual components of a CI environment are explained briefly with
reference to Figure 2.1.

2.1.1 Version Control System (VCS)

A technical prerequisite for the use of CI is a version control system (VCS). This system
manages the source code and other files of all the developers of the software project [Feuste
and Schluff 2012]. Popular VCSs are SVN and Git.

2.1.2 Continuous Integration Server

The CI server periodically sends requests to the VCS, weather the current project has been
changed. If changes are present, the continuous integration server starts a new build to
verify the new code for errors. A build consists of compiling the source code and executions
of the associated tests, such as unit tests [Feuste and Schluff 2012].

3

2. Foundations

%XLOG�7RRO

&RQWLQXRXV�,QWHJUDWLRQ�
6HUYHU 9HUVLRQ�&RQWURO�

6\VWHP

&,�6HUYHU
:HEVLWH 'HYHORSHU�7HDP

EXLOG�UHSRUWV

SXEOLVK�EXLOG�
UHSRUWV

EXLOG

XSGDWH

FRPPLW

QRWLI\

3OXJLQV

Figure 2.1. Continuous Integration Components [Feuste and Schluff 2012]

2.1.3 Build Tool

The CI server performs the compilation and the test execution not by itself. This functional-
ity is offered by a build tool. This tool must be set up by the development team prior to
using the CI server. The necessary files for using the build tool are often managed in the
VCS as well [Feuste and Schluff 2012]. Popular build tools are Apache Ant and Maven.

2.1.4 Plugins

For the continuous integration server, there are a variety of plugins that can extend its
functionality. For example the continuous integration server Jenkins has over 600 plugins
available like a Git, Findbugs or, Checkstyle plugin.

2.1.5 CI-Server Website

The results of the build process with associated data and information are stored on the
continuous integration server as reports. These reports are available via a website. They
provide, for example, detailed information about errors, test results and code quality
[Feuste and Schluff 2012].

2.2 Performance Testing

Performance testing is part of software engineering which continuously increases in
importance. Performance testing determines how a system behaves under a certain

4

2.2. Performance Testing

workload. There are several types of performance testing performed for various reasons,
which will be described in the following based on Meier et al. 2007.

2.2.1 Load Testing

Load testing examines the behavior of a system under a specific expected normal load. An
example of a load test is the simultaneous access of several users to a website, which then
perform specific actions. Results of this test are, for example, the server response time or
identified bottlenecks.

2.2.2 Stress Testing

Stress testing is useful to find the robustness and reliability of a system. It determines or
validates the behavior of an application beyond normal or peak load conditions.

2.2.3 Capacity Testing

A capacity test provides information about how workload can be handled and determines
capacity limits.

2.2.4 Component Testing

Every test which targets an architectural component of an application is called component
test. For example servers, databases or storage devices.

2.2.5 Unit Testing

Unit tests during performance testing hardly differ from normal unit tests. They are only
optimized for performance aspects.

5

Chapter 3

Research Procedure

This chapter describes the research procedure, which was conducted over six months in
the period between October, 16th 2013 and April, 17th 2014. Regular meetings to discuss
the recent results and next steps with our adviser took place bi-weekly. Our case study
was subdivided into four milestones. We performed this study in a team of three members.
Figure 3.1 visualizes our schedule as a Gantt chart.

Figure 3.1. Timeline as Gantt Diagram

3.1 Kick-Off Meeting

Because of a short term appointment with our industry partner, adesso AG, we had just a
small preparation phase before the kick-off milestone. Our goal for the first milestone was
to present the motiviation and a small market overview of some performance testing in
continuous integration enviroments. Our deadline for the 0th milestone was on October,
16th 2013. At this point, it was decided that we are only looking for performance testing
tools which are usable with Atlassian Bamboo or Jenkins CI.

3.2 Research and Criteria Catalog

After the kick-off meeting, we had a phase for working into our case study topic, creating
a market overview and the criteria catalog. During this phase, we found many interesting

7

3. Research Procedure

performance testing tools which we have categorized either as for functional or web testing.
Our deadline for the 1st milestone was on 29th November 2013.

3.3 Evaluation of the Performance Testing Tools

To establish well-founded results, we installed each listed performance testing tool on its
corresponding continuous integration platform. We noted for each performance tool how
each satisfied the criteria catalog. Our deadline for the 2nd milestone was on March, 14th
2014.

3.4 Final Presentation and Written Report

After we had finished with our evaluation phase, we held a final presentation to present
our results at adesso AG in Stuttgart. We also wrote this written report to sum up our
evaluation. Our deadline for the 3rd milestone was on April, 17th 2014.

8

Chapter 4

Market Overview

This chapter provides an overview of the tools for this case study which we found by
an internet research. These tools are divided into two sections — one for the continuous
integration servers (Section 4.1) and one for the performance testing tools (Section 4.2).
Each of these sections includes a table with the attributes of the tool and a short description
which was taken from the corresponding website. The unit testing tools as shown in
Table 6.1 are limited to the programming language Java. The table includes the following
attributes:

‚ Name
The name of the software.

‚ Developer
The person or organization who is maintaining the software.

‚ Operating System
The system on which the software can be run.

‚ License
The license under which the software can be used.

‚ Website
The URL of the website.

4.1 Continuous Integration

This section provides an overview of known and mostly used continuous integration
servers in alphabetic order.

9

4. Market Overview

4.1.1 Bamboo

Name Bamboo

Developer Atlassian

Operating System Cross-platform

License Proprietary

Website atlassian.com/software/bamboo

Bamboo is a product of a whole range of Atlassian products. It is a continuous
integration server which can be connected with the other products by Atlassian.
In combination with these products it covers all issues of an underlying software
project.

4.1.2 Continuum

Name Apache Continuum

Developer Apache Software Foundation

Operating System Cross-platform

License Apache License 2.0

Website continuum.apache.org

Apache Continuum is a continuous integration server that provides a number
of functions. Among other things, automated builds, a management for releases
and role based safety functions.

4.1.3 CruiseControl

Name CruiseControl

Developer ThoughtWorks

Operating System Cross-platform

License BSD 3-Clause License

Website cruisecontrol.sourceforge.net

On the one hand CruiseControl is a continuous integration server on the other
hand it is a framework which is extensible to create a custom continuous build

10

4.1. Continuous Integration

process. There are many plugins to extend CruiseControl in areas such as
source control or notification management.

4.1.4 Hudson

Name Hudson

Developer Eclipse Foundation

Operating System Cross-platform

License Eclipse Public License

Website hudson-ci.org

Hudson is a continuous integration server. It mainly focuses on building and
testing software projects continuously. It can also monitor the execution of jobs
which were run externally.

4.1.5 Jenkins

Name Jenkins (Hudson Fork)

Developer Community

Operating System Cross-platform

License MIT License

Website jenkins-ci.org

Jenkins is a fork of hudson. It is also a continuous integration server. Since it is
a fork of hudson these two continuous integration servers are quite similar.

4.1.6 TeamCity

Name TeamCity

Developer JetBrains

Operating System server-based web application

License Proprietary

Website jetbrains.com/teamcity

11

4. Market Overview

TeamCity provides a REST API and over 100 plugins to extend its basic func-
tionality.

4.2 Performance Testing Tools

This section provides an overview of known and mostly used performance testing tools for
continuous integration servers in alphabetical order.

4.2.1 Blitz

Name Blitz

Developer Spirent

Operating System Cross-platform

License Proprietary

Website blitz.io

Blitz is a load testing tool for websites, web applications, and REST APIs.

4.2.2 ContiPerf 2

Name ContiPerf 2

Developer Volker Bergmann

Operating System Cross-platform

License BSD License (and 3 others)

Website databene.org/contiperf.html

ContiPerf 2 is a performance testing tool that makes it possible to extend JUnit
4 test cases as performance tests.

12

4.2. Performance Testing Tools

4.2.3 JMeter

Name Apache JMeter

Developer Apache Software Foundation

Operating System Cross-platform

License Apache License 2.0

Website jmeter.apache.org

Apache JMeter can be used for performance tests like simulating a heavy load
on a server or to test performance on static and dynamic resources.

4.2.4 JUnitPerf

Name JUnitPerf

Developer Mike Clark (clarkware)

Operating System Cross-platform

License BSD 3-Clause License

Website clarkware.com/software/JUnitPerf.html

JUnitPerf is a tool to extend existing JUnit tests to measure the performance
and scalability of the functionality.

4.2.5 ScalaMeter

Name ScalaMeter

Developer Aleksandar Prokopec, Josh Suereth

Operating System Cross-platform

License BSD 3-Clause License

Website axel22.github.io/scalameter

ScalaMeter is a framework for performance regression testing. It can be used
for Scala and Java.

13

4. Market Overview

4.2.6 Selenium

Name Selenium

Developer ThoughtWorks

Operating System Cross-platform

License Apache License 2.0

Website docs.seleniumhq.org

Selenium is a tool to automate interactions with web applications. With this
automation it is also possible to test the performance of web applications.

14

Chapter 5

Criteria Catalog

This chapter provides the criteria catalog for the rating of the tools. Because the continuous
integration servers are already given, namely Bamboo and Jenkins, this criteria catalog will
be only applied on the performance testing tools.

5.1 Knock-out Criteria

The knock-out criteria are of nominal type. There is only one simple yes or no criteria
which must be satisfied.

‚ Integration into continuous integration server Atlassian Bamboo or Jenkins CI must be
possible.

5.2 Relevant Criteria

The relevant criteria are of ordinal type. Each criteria can get a positive (‘), neutral (d) or
negative (a) rating. A criteria with a positive rating gets two points, a neutral rating gets
one point and a negative rating gets zero points.

5.2.1 Documentation

If a good documentation of the product exists, it is likely that it is widely used.

‘ The product provides a well-written documentation.

d The product provides abbreviated documentation.

a The product provides absurd or even no documentation.

5.2.2 Community

If a community of the product exists, it is likely that it is widely distributed. Is it possible
to get answers to specific questions from any community?

15

5. Criteria Catalog

‘ People blog about the product and ask questions on forums and web-
sites like Stack Overflow.

d Product owner administrates a help site where questions may be an-
swered. It is tempted to establish a community.

a No community established as yet and product owner does not care.

5.2.3 Integration into the Continuous Integration Platform

Is the performance testing tool easily integratable into Atlassian Bamboo or Jenkins CI?

‘ Seamless integration by using the provided documentation without
hassle.

d Integration was after some made inquiries successful.

a Integration looks like an impossible mission.

5.2.4 Learnability

How easy is it to learn the product?

‘ Efficient and error-free interaction with the product was relative quick
possible.

d Not that easy to learn, so that it could be improved.

a Product is not easy to learn.

5.2.5 Likeability

Is the product likeable?

‘ It is fun to work with the product.

d The produt is okay to use but nothing special.

a The product is annoying and not worth to use it.

5.2.6 Maintenance

Is the product maintained by the origin product owner?

16

5.2. Relevant Criteria

‘ A recent stable version exists and the next version is under active
development.

d A usable version exists and bugfix support is provided.

a A usable version without any further bugfix support exists.

5.2.7 Software Cost

Is the tool free or affordable?

‘ Any open source license compatible with the Bamboo and/or Jenkins
license.

d Product price is announced publicly.

a Product price is only available on request.

5.2.8 Support

Is it possible to receive at least basic support?

‘ Product owner provides basic free support like a forum, mailing list, or
wiki.

d Only paid support is available.

a No support is offered.

5.2.9 Usability

Can the user complete key tasks with no unanswered questions?

‘ The most general principles for interaction design are adhered to.

d Some principles for interaction design are adhered to.

a No principles for interaction design are adhered to.

17

Chapter 6

Evaluation

This chapter is divided into four sections. The first section provides a evaluation of each
performance testing tool. The second section investigates the expandability of the CI
servers. The third section investigates the integration of the performance testing tools into
the CI servers. The last section summarizes the results of the previous section.

6.1 Performance Testing Tools

In Table 6.1 we classify the integratable performance testing tools in their corresponding
testing types (rows) and levels (columns).

Table 6.1. Classification of the performance testing tools without ScalaMeter and Selenium

Unit Integration System

Capacity,
Load, Stress ContiPerf 2, JUnitPerf - Blitz, JMeter

In this section, we evaluate the performance testing tools from the market overview
in Chapter 4. Figure 6.1 shows a Java method that factorizes a given number into prime
numbers. We use this code to run performance tests against this method, if it is possible
with the performance testing tool.

19

6. Evaluation

public class PrimeFactorization {

public static List<Long> getPrimeFactors (long number) {

List<Long> primeFactors = new ArrayList<Long>();

for (long i = 2; i <= number; i++) {

while (0 == number % i) {

primeFactors.add(i);

number /= i;

}

}

return primeFactors;

}

}

Figure 6.1. Prime factorization in Java [Prime Factorization - Algorithm in Java]

6.1.1 Blitz

Blitz is a cloud-based load and performance testing service. It is used to test a web API or
web app with simulated visitors from around the world. Blitz is able to perform sprints,
which are a simple HTTP or SSL requests to a specific URL and rushes, which are multiple
sprints within a specific pattern. Figure 6.2 shows a rush with a pattern where a different
amount of users perform a request over a specific time.

Figure 6.2. Example of a rush in form of a saw tooth pattern

To avoid accidental denial-of-service attacks on different websites Blitz users have to
authorize their application or website on the Blitz website and place a unique file in their
web server root. To perform a sprint or a rush the Blitz bar shown in Figure 6.3 can be used.
There are different parameters for the request which can be e.g., URL, method, region,
users or duration.

By pressing the play button the request will be performed and Blitz returns detailed

20

6.1. Performance Testing Tools

Figure 6.3. Blitz-Bar

information about its execution. For example Blitz provides information about the appli-
cation performance with metrics such as response time, hit rates, errors, timeouts and
also gives clues to help scale out an application. A full output of Blitz is shown in the
appendix in Figure 1 to Figure 3. The view of information can be enhanced by using
plugins. For Blitz there are several plugins like New Relic, Scout, and CopperEgg each
giving different additional information like CPU utilization or troughput. Blitz is very
useful to test applications in production mode.

Furthermore Blitz provides clients for many different platforms like Java, Maven,
JavaScript, and PHP. After integrating the client it is possible to execute sprints and rushes
directly within the code. Because it is a cloud based service, the load is generated by the
server network of Blitz. Figure 6.4 shows how simple it is to perform a rush to the website
www.test.de with users from California in form of the saw tooth pattern explained above.

6.1.2 ContiPerf 2

ContiPerf 2 is tool to transform JUnit tests into performance tests. To enable ContiPerf2 for
a JUnit test case we simply add a static @Rule at the beginning as seen in Figure 6.5. The
second step is to add the execution parameters (@PerfTest) and performance requirements
(@Required). In the example the test is configured to be executed 2000 times with 20

21

6. Evaluation

public class BlitzApp {
public static void main(String[] args) {

try {
Rush r1 = (Rush) io.blitz.command.Curl.parse(

USERNAME,
API_KEY,
"-p 1-1000:30,1-1000:30 -r california http://www.test.de"
);

r1.addListener(new IRushListener() {
public boolean onStatus(RushResult result) {

System.err.print(".");
}
public void onComplete(RushResult result) {

System.err.println("SUCCESS!");
}

});
r1.execute();

} catch (Exception ex) {
System.err.println("Rush failed.");

}
}

}

Figure 6.4. Performing a rush over the java client

concurrent threads. Each thread does 100 invocations. The execution time must be within
7000 milliseconds (7 seconds) and at least 300 test executions per second are required.

public class ContiPerfTest {

@Rule

public ContiPerfRule i = new ContiPerfRule();

@Test

@PerfTest(invocations = 2000, threads = 20)

@Required(throughput = 300, totalTime = 7000)

public void PrimeFactorTest() {

PrimeFactorization.getPrimeFactors(Long.MAX_VALUE);

}

}

Figure 6.5. First prime factorization test with ContiPerf2 in Java

The output shows that 2000 invocations were executed, that the maximum execution

22

6.1. Performance Testing Tools

time of an invocation was 210 ms, the average execution time of the invocations was 71.35
ms and the median was 60.

test.ContiPerfTest.PrimeFactorTest

samples: 2000

max: 210

average: 71.3475

median: 60

Figure 6.6. First test output

The test failed due to a timeout. The condition of a maximum execution time of 7000
milliseconds was not met.

Figure 6.7. First test result

We executed this test three times with different conditions.
The second time we changed the performance requirements from a maximum execution
time of 7000 milliseconds to 8000 milliseconds.

public class ContiPerfTest {

@Rule

public ContiPerfRule i = new ContiPerfRule();

@Test

@PerfTest(invocations = 2000, threads = 20)

@Required(throughput = 300, totalTime = 8000)

public void PrimeFactorTest() {

PrimeFactorization.getPrimeFactors(Long.MAX_VALUE);

}

}

Figure 6.8. Second prime factorization test with ContiPerf2 in Java

The output of the first and the second test was nearly the same.

23

6. Evaluation

test.ContiPerfTest.PrimeFactorTest

samples: 2000

max: 237

average: 73.821

median: 63

Figure 6.9. Second test output

This time the maximum execution time was within the required parameters but the test
had only 268 calls per second, 300 calls were required.

Figure 6.10. Second test result

We changed the required parameters again.

public class ContiPerfTest {

@Rule

public ContiPerfRule i = new ContiPerfRule();

@Test

@PerfTest(invocations = 2000, threads = 20)

@Required(throughput = 200, totalTime = 8000)

public void PrimeFactorTest() {

PrimeFactorization.getPrimeFactors(Long.MAX_VALUE);

}

}

Figure 6.11. Third prime factorization test with ContiPerf2 in Java

24

6.1. Performance Testing Tools

test.ContiPerfTest.PrimeFactorTest

samples: 2000

max: 288

average: 72.1655

median: 60

Figure 6.12. Third test output

The third execution of our test met all the required conditions and we got a positive
result.

Figure 6.13. Third test result

6.1.3 JMeter

JMeter is a Java desktop application which is used to simulate a heavy load on both static
and dynamic resources like databases, FTP servers, web dynamic languages [Apache JMeter].
It is highly configurable but the user interface (Figure 6.14) takes much getting used to.
Because of that, the user of this tool needs a long training period for a proper use to set up
a test plan.

A test plan executes a series of steps. If we want to test a web site, a test plan as an
example may look like this:

First, we create a thread group, which contains the number of threads, ramp-up period
and loop count properties. The first property specifies, how many threads will execute the
test plan completely independently of other threads. Each thread can be seen as a visitor
of the web site. The second specifies, how long it will take to reach the given number
of threads. This ensures, that the load can increase safely. The last property specifies,
how often a thread executes the test plan. After that, we need to create a HTTP request
containing the server address, port, and path. To see some results, we add a listener, which
collects the results and produces a graph. Finally, we can load test a web site with this
configuration. Figure 6.15 shows an example of a graphical result of this test plan.

25

6. Evaluation

Figure 6.14. JMeter graphical user interface

Figure 6.15. Graphical results of a test plan for the phpMyAdmin main screen web site with following
properties: number of threads: 125, ramp-up period: 2, loop count: 3.

26

6.1. Performance Testing Tools

6.1.4 JUnitPerf

JUnitPerf is a collection of JUnit test decorators. It can be used to measure the performance
and the scalability of functionality contained within JUnit tests [JUnitPerf]. The installation
of JUnitPerf is very simple. We just had to put the .jar into the Eclipse build path and we
were ready to start testing. We decided to implement two simple load tests. Running a
test under a specific load in JUnitPerf means running a test with a simulated number of
cuncurrent users and iterations. In each test we simulated 2500 cuncurrent users. The first
test measures the troughput of the function in Figure 6.1 under a specific load which is
shown in Figure 6.16.

public class PrimeFactorThroughputUnderLoadTest {

public static Test suite() {

Test test = new PrimeFactorTest("primeFactors");

Test loadTest = new LoadTest(test, 2500);

Test timedTest = new TimedTest(loadTest, 8000);

return timedTest;

}

public static void main(String args[]) {

junit.textui.TestRunner.run(suite());

}

}

Figure 6.16. Testing troughput under load with JUnitPerf

Figure 6.17. Result of the troughput under load test

The second test measures the response time under a specific load of the same function
which is shown in Figure 6.18.

27

6. Evaluation

public class PrimeFactorResponseTimeUnderLoadTest {

public static Test suite() {

Test test = new PrimeFactorTest("primeFactors");

Test timedTest = new TimedTest(test, 20);

Test loadTest = new LoadTest(timedTest, 2500);

return loadTest;

}

public static void main(String args[]) {

junit.textui.TestRunner.run(suite());

}

}

Figure 6.18. Testing response time under load with JUnitPerf

Figure 6.19. Result of the response time under load test

6.1.5 ScalaMeter

ScalaMeter is a microbenchmarking and performance regression testing framework which
can be used for Java and Scala. It can measure the running time of a method or algorithm
that is run against some input. [ScalaMeter, Automate your performance testing today.]
Unfortunately, the tests in ScalaMeter must be written in Scala. We tried to write a
test in Java but without success. Figure 6.20 shows such a test in Scala. The test will run
ten rounds to achieve usable benchmarking results. The first round will test the function in
Figure 6.1 with numbers from range 1 to 1000. With each additional round the range will
be incremented by 1000. For every round the elapsed time will be measured. After the last
round the benchmark results are outputted to the console as seen in Figure 6.21.

28

6.1. Performance Testing Tools

object RangeBenchmark extends PerformanceTest.Quickbenchmark {

val numbers = Gen.range("number")(1000, 10000, 1000)

val ranges = for {

number <- numbers

} yield 1 until number

performance of "PrimeFactorization" in {

measure method "getPrimeFactors" in {

using(ranges) in {

r => r.foreach(PrimeFactorization.getPrimeFactors(_))

}

}

}

}

Figure 6.20. ScalaMeter RangeBenchmark in Scala [ScalaMeter, Automate your performance testing

today.]

::Benchmark PrimeFactorization.getPrimeFactors::

Parameters(number -> 1000): 0.503

Parameters(number -> 2000): 1.74

Parameters(number -> 3000): 3.592

Parameters(number -> 4000): 6.019

Parameters(number -> 5000): 9.271

Parameters(number -> 6000): 12.414

Parameters(number -> 7000): 16.588

Parameters(number -> 8000): 21.11

Parameters(number -> 9000): 26.296

Parameters(number -> 10000): 32.267

Figure 6.21. Test results of benchmarking the function getPrimeFactors in milliseconds

6.1.6 Selenium

Selenium is in the first place a tool to automate a browser. We tried it with Firefox and
started to test some performance issues. After a few minutes it was obvious that this tool
is not a typical performance testing tool. Our test can be seen in the code below.

29

6. Evaluation

public class SeleniumTest extends SeleneseTestCase {

public void setUp() throws Exception {

setUp("https://www.google.de/", "*firefox");

}

public void testNew() throws Exception {

selenium.open("/");

selenium.type("q", "selenium rc");

selenium.click("btnG");

selenium.waitForPageToLoad("30000");

assertTrue(selenium.isTextPresent("Selenium"));

}

}

Figure 6.22. First test with Selenium in Java

In this test we tried to open Google in Firefox and executed a search request for
“selenium rc”. If the response page would contain the word “Selenium” the test would be
passed if the timout of 30 seconds would not be exceeded. Google is importing its results
dynamically with jQuery and because of that Selenium did not pass this test although
it found some results for “selenium rc”. Selenium is as said before more likely a tool to
automate the browser to perform repeating task automatically. We stopped to test selenium
any further.

6.2 Expandability of Bamboo and Jenkins

6.2.1 Atlassian Bamboo

The extensions in Atlassian Bamboo are called add-ons. A marketplace1 exists where these
add-ons can be found. It is also possible to install these add-ons directly from the web
interface (Figure 6.23).

Figure 6.23. Marketplace in Atlassian Bamboo

1https://marketplace.atlassian.com/plugins/app/bamboo

30

6.3. Integration of Performance Testing Tools in Bamboo and Jenkins

By searching the marketplace for the term performance, we found an add-on called
blitz.io which accords with a performance testing tool by name.

6.2.2 Jenkins CI

The extensions in Jenkins CI are called plugins. There are about 1.000 plugins which all
can be found on the plugins website2. It is also possible to install these plugins directly
from the web interface (Figure 6.24).

Figure 6.24. Manage Plugins in Jenkins CI

By going through the plugins list, we found a plugin called Performance Plugin, which
captures reports from the JMeter XML or JUnit format and generates graphical charts with
a trend report of performance (Figure 6.25). [Jenkins Performance Plugin]

Figure 6.25. Available Plugins in Jenkins CI

6.3 Integration of Performance Testing Tools in Bamboo
and Jenkins

In this section, we try to integrate the performance testing tools into the CI server which is
either Atlassian Bamboo or Jenkins CI.

After some investigation, we found out that some testing tools are not integratable in
neither Bamboo nor Jenkins. Table 6.2 shows the result of our investigation.

2https://wiki.jenkins-ci.org/display/JENKINS/Plugins

31

6. Evaluation

Table 6.2. Integration of the performance testing tools

Performance Testing Tool CI Server

Blitz Atlassian Bamboo, Jenkins CI

ContiPerf 2 Jenkins CI

JMeter Atlassian Bamboo, Jenkins CI

JUnitPerf Jenkins CI

ScalaMeter -

Selenium -

6.3.1 Plugin Overview

This section provides an overview of the plugins for this case study which we evaluated.
Each of these tools is described in a table with the attributes of the tool. The table includes
the following attributes:

‚ Name
The name of the plugin.

‚ Developer
The person or organization who is maintaining the plugin.

‚ CI-Server
The CI-Server on which the plugin can be run.

‚ License
The license under which the plugin can be used.

‚ Website
The URL of the website.

32

6.3. Integration of Performance Testing Tools in Bamboo and Jenkins

Name blitz.io

Developer Mu Dynamics

CI-Server Bamboo

License Commercial - no charge

Website marketplace.atlassian.com/plugins/io.blitz.bamboo-
plugin

Name JMeter Aggregator for Bamboo

Developer Atlassian Labs

CI-Server Bamboo

License BSD License

Website marketplace.atlassian.com/plugins/jmeterAggregator

Name Blitz_io

Developer Manuel Carrasco Monino

CI-Server Jenkins

License Unknown

Website wiki.jenkins-ci.org/display/JENKINS/Blitz_io

Name Performance Plugin

Developer Mu Dynamics

CI-Server Jenkins

License Unknown

Website wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin

33

6. Evaluation

6.3.2 Blitz

To use the Blitz add-on for Atlassian Bamboo or the plugin for Jenkins CI a registration at
blitz.io is needed. Blitz assigns a API username and API key to each user. These credentials
are needed to perform a sprint or a rush through the add-on or plugin. Furthermore the
application which should be tested has to be authorized as described in Section 6.1.1.

Atlassian Bamboo

During our research we found out that the current version of the Blitz add-on is not
compatible with the newest Atlassian Bamboo 5.4.1. We contacted the developers of Blitz,
which informed us that their add-on will be adapted in February 2014. In March we
decided to evaluate the Blitz add-on with Atlassian Bamboo 3.3.4 because this was the
last compatible version. It is very simple to integrate Blitz into Atlassian Bamboo. After
searching the Atlassian marketplace for the term “Blitz”, the add-on can be installed with
one click on “Install Now” as described in section 6.2.1. A sprint or a rush can be added
to a job in Atlassian Bamboo by creating a new task and choose “Blitz Curl” as shown in
Figure 6.26.

There the “Blitz Curl Configurations” can be set. For each “Blitz Curl”, the command,
the API username, the API key and the value of maximum errors in percent have to be
specified. Figure 6.27 shows a possible configuration for a rush.

After the execution of the rush, Atlassian Bamboo shows two diagrams with information
about the response time and the hit rate as show in Figure 6.28. The response time diagram
is showing the response time (light green line) of the server during one minute with
an increasing amount of concurrent users (grey line). The hit rate diagram shows the
successfull hits (green line), the timeouts (orange line) and the errors (red line) during one
minute with an increasing amount of concurrent users (grey line).

Jenkins CI

Integrating Blitz into Jenkins is as easy as integrating Blitz into Atlassian Bamboo. After
searching the plugin manager in Jenkins for the term “Blitz”, the plugin can be installed
be checking its checkbox and clicking “install without restart” as described in section
6.2.2. To use the Blitz plugin for Jenkins CI the credentials from blitz.io must be set under
“Configure System” within the Jenkins CI settings as shown in Figure 6.29.

The actual sprint or rush can be configured within the settings of the Jenkins CI project.
To add a rush or a sprint to the project, the option “Blitz.io” under the category “Post-build
Actions” has to be chosen. Figure 6.30 shows a possible configuration of a rush within
Jenkins CI.

After the execution of the rush, Jenkins CI gives additional textual information in
opposite to Atlassian Bamboo. These information contain a short summary about timeouts,
errors and successfull hits and escpecially a pie diagram as shown in Figure 6.31

34

6.3. Integration of Performance Testing Tools in Bamboo and Jenkins

Furthermore Jenkins shows the same two diagrams as Atlassian Bamboo with informa-
tion about the response time and the hit rate as show in Figure 6.32. The response time
diagram is showing the response time (light green line) of the server during one minute
with an increasing amount of concurrent users (grey line). The hit rate diagram show the
successfull hits (green line), the timeouts (orange line) and the errors (red line) during one
minute with an increasing amount of concurrent users (grey line).

Figure 6.26. Adding a new task to a job in Atlassian Bamboo

Figure 6.27. Possible configuratuion for a rush in Atlassian Bamboo

35

6. Evaluation

Figure 6.28. Result of a rush execution in Atlassian Bamboo

Figure 6.29. API username and API key in the Jenkins CI settings

36

6.3. Integration of Performance Testing Tools in Bamboo and Jenkins

Figure 6.30. Configure a rush within Jenkins CI

Figure 6.31. Result of a rush execution in Jenkins - part 1

37

6. Evaluation

Figure 6.32. Result of a rush execution in Jenkins - part 2

38

6.3. Integration of Performance Testing Tools in Bamboo and Jenkins

6.3.3 ContiPerf 2 and JUnitPerf

We decided to describe ContiPerf2 and JUnitPerf in only one section because the usage and
the integration are quite similar. The integration of these tools was only possible in Jenkins.
We were not able to use them with Bamboo because there are no add-ons available.

To integrate one of these two performance tools into Jenkins we needed the following
things:

1. A running Jenkins server

2. Performance Plugin for Jenkins

3. An executable Maven test project

We installed Jenkins and the Performance Plugin (Table 6.3.1) to be able to display the
performance test results in Jenkins. Our test project was developed as a Maven project
with modified JUnit test cases. The great advantage of these two performance tools is that
they can be used together in a single build. JMeter could also be used with the Performance

Plugin, but we seperated them from each other because of the testing level (Table 6.1).

The integration of both tools, JUnitPerf and ContiPerf2, is very simple. We had to install
the Performance Plugin for Jenkins from the integrated plugin page. After we restarted the
Jenkins server, we could add a post-build action to the project. Figure 6.33 shows the
configuration posibillities of the post-build action. We used an error threshold for each
build of 10 for unstable and 25 for failed, so we could see if more then 10 or 25 errors
occured. With the input field for the report files we could also ignore some test files for
our performance overview.

Figure 6.34 shows the response time and the error percentage of the ContiPerf2 test.
The response time average response time of our test was about 7.3 seconds. We defined
that the test failed if the response time is over 7.5 seconds. As seen in this figure it is only
possible to receive true or false results. Either the response time is below 7.5 seconds and
the test passes, or it is above 7.5 and the test fails.

With JUnitPerf we had a better view of the performance results of our load test. As seen
in Figure 6.35 the percentage of errors is not only 1 or 0. We defined a timeout of 18ms for
each test execution. We ran 2500 test exectutions and an average of 120 errors occured.

We also defined a throughput test for JUnitPerf (Figure 6.36). All the tests had to be
finished in a overall time of 8000ms. The left side shows the average execution time of each
test and the right side shows if the overall time of 8000ms was exceeded.

39

6. Evaluation

Figure 6.33. Post-build action settings

Figure 6.34. ContiPerf 2 - Performance overview

40

6.3. Integration of Performance Testing Tools in Bamboo and Jenkins

Figure 6.35. JUnitPerf - Performance overview (load test)

Figure 6.36. JUnitPerf - Performance overview (throughput test)

41

6. Evaluation

6.3.4 JMeter

Although JMeter is a GUI application, there are at least three possible options to run JMeter
in a non-GUI modus:

1. Ant task

2. Command line non-GUI launch option

3. Maven plugin

We decided to go the Maven plugin way. It exists already a useable JMeter Maven
project 3 that we used in this integration. We extended the test plan so that we tested a
dynamic PHP page (1), a cached dynamic PHP page (2), and a dynamic PHP page (3) with
a database connection.

Atlassian Bamboo

We found an add-on called ‘’JMeter Aggregator for Bamboo”. It aggregates the JMeter test
results and allows reporting on the aggregated results across all builds. The installation of
this add-on was not easy. First, the add-on is not officially supported for Bamboo and the
last version of the tool works only with Bamboo 5.0 from July 2013. In addition, the add-on
cannot be installed directly from the marketplace. Because of that, we needed to download
the add-on from the website and move it to the Bamboo library folder by ourselves.

The configuration is rather easy. After the build-project and the corresponding job are
created, the add-on can be activated in the job configuration at the tab ‘’Miscellaneous”.
It is also possible to configure assertions, so that a build can fail, if the given assertion is
not satisfied as seen in Figure 6.37. The add-on provides a form (Figure 6.38) that let us
generate graphs. But the given metrics are not clear because most entries contain the word
values. It is not clear what values should mean in this context.

Jenkins CI

With the performance test plugin, it is very easy to integrate JMeter into Jenkins. The
plugin can be installed directly from the Jenkins web interface. The configuration and
options are similar to ContiPerf 2 and JUnitPerf as seen in Figure 6.33. This plugin provides
only two metrics, namely the response time and percentage of errors. Figure 6.39 shows a
response time graph from the aggregated JMeter results and an error graph across the last
20 builds. It is also possible to get detailed results per build and page presented as a table
(Figure 6.40).

3https://github.com/mlex/jmeter-maven-example

42

6.3. Integration of Performance Testing Tools in Bamboo and Jenkins

Figure 6.37. JMeter configuration in Bamboo

Figure 6.38. JMeter build results graph in Bamboo

43

6. Evaluation

Figure 6.39. JMeter build results graph in Jenkins

Figure 6.40. Detailed JMeter results in Jenkins

44

6.4. Results

6.4 Results

In this section we summarize the results of our evaluation about the performance testing
tools in context with the criteria catalog from Chapter 5. For each performance testing tool
and CI server there is a table where each criteria from the criteria catalog is rated. 18 points
are the maximum value a performance testing tool can reach.

6.4.1 Atlassian Bamboo: Blitz

Criteria Comments
Documentation d An installation description exists.
Community d A forum exists. Questions will be answered within one

day.
Integration ‘ Simple integration through the add-on manager.
Learnability ‘ Easy to learn. Simple rush could be executed within 10

minutes.
Likeability d Product is okay to use but the results could be displayed

better.
Maintenance a Development is behind. Update add-on for the compability

with the newest Atlassian Bamboo is under development.
Software Cost ‘ The add-on is open source.
Support ‘ It exists a support forum. Questions will be answered

within one day.
Usability ‘ Easy to use.

Overall, the Blitz add-on for Atlassian Bamboo receives 13 of 18 points.

45

6. Evaluation

6.4.2 Jenkins CI: Blitz

Criteria Comments
Documentation d An installation description exists.
Community d A forum exists. Questions will be answered within one

day.
Integration ‘ Simple integration through the plugin manager.
Learnability ‘ Easy to learn. Simple rush could be executed within 10

minutes.
Likeability d Product is okay to use but the results could be displayed

better.
Maintenance ‘ Development is behind but the current version is integrat-

able into the newest Jenkins version
Software Cost ‘ The plugin is open source.
Support ‘ A support forum exists. Questions will be answered within

one day.
Usability ‘ Easy to use.

Overall, the Blitz plugin for Jenkins CI receives 15 of 18 points.

6.4.3 Atlassian Bamboo: JMeter

Criteria Comments
Documentation a A wrong installation description exists.
Community ‘ Older blog posts and questions about the add-on can be

found.
Integration d Integration was not easy. The add-on cannot be installed

through the add-on manager.
Learnability ‘ Easy to learn.
Likeability d The user experience is improvable.
Maintenance a The plugin is officially not supported.
Software Cost ‘ The plugin is open source.
Support ‘ Question can be asked via Atlassian Answers.
Usability d Easy to use, but graph form lets still some questions open.

Overall, the JMeter plugin for Bamboo receives 11 of 18 points.

6.4.4 Jenkins CI: ContiPerf 2, JUnitPerf, JMeter

We created only one table for ContiPerf 2, JUnitPerf and JMeter because all these tools use
the same plugin in Jenkins, the Performance Plugin.

46

6.4. Results

Criteria Comments
Documentation ‘ An easy and short manual exists + example
Community d There is an overview of Jira tickets.
Integration ‘ Simple integration through the plugin manager.
Learnability ‘ Easy to learn.
Likeability d The design is simple, it could provide more metrics.
Maintenance ‘ A stable version exists and it is under continuous develop-

ment.
Software Cost ‘ It is free and open source.
Support d The developer answers the questions on the wiki page.
Usability ‘ Simple and easy to use.

Overall, the Performance Plugin for Jenkins CI receives 15 of 18 points.

47

Chapter 7

Conclusion

7.1 Motivation and Summary

It is important to test performance of software on a regular basis. Small changes in code can
have immense consequences for the performance of the software. A continuous integration
(CI) server with performance testing tools is the fastest and most secure way to detect
performance issues. At first we did some research and collected information about Jenkins,
Bamboo and many different perfomance testing tools. With this market overview and
the requirements by adesso AG we reduced the amount of performance testing tools
which we evaluated in detail. Finally, we installed the CI servers and integrated the
chosen performance testing tools. In the next section we present our results and give a
recommendation.

7.2 Results

During our reading up phase we had the impression that Blitz and Bamboo will be the
favourite combination of CI server and performance testing tool. After deeper research and
testing our first impression turned out to be wrong. It turned out that the performance
testing add-ons for Bamboo are outdated and/or not supported anymore. At that time,
Blitz is only compatible with Bamboo 3.4.4 from February 2012 but a new version is in
development. The product owner Mu Dynamics told us that they are planning a release for
the latest version of Bamboo in March 2014. Although we tested Blitz on an older version of
Bamboo, it reached 13 out of 18 points and it seems to be a promising add-on for Bamboo.
The JMeter add-on is outdated and worse, it is officially not supported anymore. At that
time the latest release of the JMeter add-on works only with Bamboo 5.0. This can be seen
by the fact that it is barely documented and the installation was complex with misleading
installation instructions. The JMeter report form provides multiple metrics to choose from
but the displayed graph is difficult to interpret because of insufficient axis labels. This is
the reason it only reached 10 out of 18 points. For ContiPerf 2 and JUnitPerf we could not
find a way to integrate them into Bamboo.

The performance testing plugins for Jenkins were all easy to integrate via the plugin
manager into the current version of Jenkins. The plugin for Blitz is not explicitly developed
for the latest version of Jenkins but it works like a charm. Blitz for Jenkins is easy to use and

49

7. Conclusion

self-describing. The only negative issue is that the results of the tests could be displayed
more appealingly. Overall Blitz for Jenkins reached 15 out of 18 points. For Jenkins there
exists one performance plugin which can build reports from the JUnit or JMeter report
format. As a result of this the three plugins ContiPerf 2, JUnitPerf, and JMeter can be
used together at the same time. Furthermore it is easy to extend the performance plugin
by using a performance testing tool that supports the JUnit or JMeter report format. The
only constraint is that it just supports the two metrics “response time” and “percentage of
errors”.

All in all we are of the opinion that Jenkins had the better performance testing tools
and better support. For websites in production mode we recommend Jenkins with the
Blitz plugin because it can test a website under real conditions. If the website is under
development, Jenkins with JMeter is the better choice because it can be used in private
networks. Under the condition that unit tests should be used as performance tests we
recommend Jenkins with the performance testing tool JUnitPerf. Unlike ContiPerf 2 test
executions can fail partial.

50

Chapter 8

Appendix

LOAD TEST REPORT
DATE: 2/17/2014

RESPONSE TIMES

FASTEST: 199 MS

SLOWEST: 785 MS

AVERAGE: 399 MS

TEST CONFIGURATION

REGION: VIRGINIA
DURATION: 60 SECONDS

LOAD: 1-250 USERS

OTHER STATS

AVG. HITS: 23 /SEC

DATA TRANSFERED: 1.73MB

ANALYSIS
This rush generated 1,386 successful hits in 60 seconds and we transferred

1.73 MB of data in and out of your app. The average hit rate of 23/second

translates to about 1,995,840 hits/day.

The average response time was 399 ms.

You've got bigger problems, though: 71.63% of the users during this rush

experienced timeouts or errors!

HITS 28.37% (1386)

ERRORS 31.91% (1559)

TIMEOUTS 39.73% (1941)

HITS
This rush generated 1,386 successful hits. The number of hits includes all the

responses listed below. For example, if you only want HTTP 200 OK responses

to count as Hits, then you can specify -­-­status 200 in your rush.

CODE TYPE DESCRIPTION AMOUNT

200 HTTP OK 7

503 HTTP Service Unavailable 1379

HTTP 200 OK 1% (7)

HTTP 503 SERVICE UNA… 99% (1379)

TEST FROM : VIRGINIA
Query URL: http://www.st-­softwaretechnik.de:80

Started at: Mon Feb 17 2014, 08:33:50 +01:00

Finished at: Mon Feb 17 2014, 08:33:50 +01:00

HITS

Figure 1. Blitz response page one

51

8. Appendix

ERRORS
The first error happened at 5.00 seconds into the test when the number of

concurrent users was at 21. Errors are usually caused by resource exhaustion

issues, like running out of file descriptors or the connection pool size being too

small (for SQL databases).

CODE TYPE DESCRIPTION AMOUNT

23 TCP Connection timeout 1556

Response duration overlimit 3

CONNECTION TIMEOUT 100% (1556)

RESPONSE DURATION O… 0% (3)

TIMEOUTS
The first timeout happened at 5.00 seconds into the test when the number of concurrent users was at 21. Looks like you've been rushing with a timeout

of 1000 ms. Timeouts tend to increase with concurrency if you have lock contention of sorts. You might want to think about in-­memory caching using

redis, memcached or varnish to return stale data for a period of time and asynchronously refresh this data.

The max response time was: 784 ms @ 21 users

RESPONSE TIMES Response Times Users

5 sec 10 sec 15 sec 20 sec 25 sec 30 sec 35 sec 40 sec 45 sec 50 sec 55 sec 1.0 min

200 ms

400 ms

600 ms

800 ms

1.00 sec

50

100

150

200

250

HIT RATE

ERRORS

Figure 2. Blitz response page two

52

Powered by www.blitz.io

The max hit rate was: 169 hits per second

HIT RATE Hits/sec Errors/sec Timeouts/sec

5 sec 10 sec 15 sec 20 sec 25 sec 30 sec 35 sec 40 sec 45 sec 50 sec 55 sec 1.0 min

0.0/s

50.0/s

100.0/s

150.0/s

200.0/s

50

100

150

200

250

Figure 3. Blitz response page three

53

Bibliography

[Apache JMeter] Apache Software Foundation. Apache JMeter. http://jmeter.apache.org.
Accessed: 2014-02-16. (Cited on page 25)

[Jenkins Performance Plugin] M. Carrasco. Jenkins Performance Plugin. https://wiki.jenkins-

ci.org/display/JENKINS/Performance+Plugin. Accessed: 2014-02-16. (Cited on page 31)

[Duvall et al. 2007] P. Duvall, S. Matyas, and A. Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. Boston, 2007. (Cited on pages 1 and 3)

[Feuste and Schluff 2012] B. Feuste and S. Schluff. Continuous Integration in Zeiten agiler
Programmierung. Feb. 2012. url: http://www.heise.de/developer/artikel/Continuous-Integration-
in-Zeiten-agiler-Programmierung-1427092.html. (Cited on pages 3, 4)

[Fowler 2006] M. Fowler. Continuous Integration. May 2006. url: http://martinfowler.com/

articles/continuousIntegration.html. (Cited on page 3)

[JUnitPerf]. JUnitPerf. url: http://www.clarkware.com/software/JUnitPerf.html. (Cited on page 27)

[Meier et al. 2007] J. Meier, C Ferre, P Bansode, and S Barber. Types pf Performance Testing.
Sept. 2007. url: http://msdn.microsoft.com/en-us/library/bb924357.aspxl. (Cited on page 5)

[ScalaMeter, Automate your performance testing today.] ScalaMeter. ScalaMeter, Automate
your performance testing today. http://axel22.github.io/scalameter. Accessed: 2014-02-16.
(Cited on pages 28, 29)

[Prime Factorization - Algorithm in Java] L. Vogel. Prime Factorization - Algorithm in
Java. http://www.vogella.com/tutorials/JavaAlgorithmsPrimeFactorization/article.html. Accessed:
2014-02-16. (Cited on page 20)

55

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen
Werken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

I hereby declare that the work presented in this thesis is entirely my own.
I did not use any other sources and references that the listed ones. I have marked all direct or indirect
statements from other sources contained therein as quotations.
Neither this work nor significant parts of it were part of another examination procedure. I have not published
this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

Erklärung

Unterschrift:

Signature:

Declaration

