Institute of Software Technology

University of Stuttgart
UniversitatsstralRe 38
D-70569 Stuttgart

Fachstudie Nr. 193

Evaluation of Load Testing Tools

Gustav Murawski, Philipp Keck, Sven Schnaible

Course of Study: Softwaretechnik
Examiner: Prof. Dr. Lars Grunske
Supervisor: André van Hoorn
Commenced: 2014/04/02
Completed: 2014/10/02

CR-Classification: D.4.8

Abstract

This study evaluates common load testing tools with focus on AJAX based web applications,
including JSF ViewState and WebSockets as special cases. Load tests are created and
executed using an internal application provided by the collaborating company NovaTec
GmbH. The evaluation focuses on the efficient creation and maintainance of workload
specifications, which is of great importance when employing load tests in larger projects.
Eight tools have been tested and recommendations are given for different use cases at the

end of the paper.

1ii

Zusammenfassung

Diese Studie bewertet gebrduchliche Lasttest-Werkzeuge, wobei das Augenmerk auf AJAX-
basierte Web-Anwendungen, den JSF ViewState und WebSockets als spezieller Fall gerichtet
ist. Lasttests werden durch eine interne Anwendung erstellt und ausgefiihrt. Diese An-
wendung wird von der zusammenarbeitenden Firma NovaTec GmbH bereit gestellt. Die
Auswertung konzentriert sich auf die effiziente Erstellung und Wartung von Lasttest-
Spezifikationen, was von grofier Bedeutung ist, falls solche Lasttests in umfangreicheren
Projekten verwendet werden. Es wurden acht Werkzeuge getestet und die dazugehorigen
Empfehlungen auf Basis verschiedener Anwendungsfillen am Ende der Ausarbeitung
ausgesprochen.

Introduction

1.1 Motivation
12 Goals
1.3 Collaboration with NovaTec Consulting GmbH
1.4 Document Structure

Organization

21 Timeline
22 Phases
23 Milestones

Basics of Load Testing

3.1 Meaning of Load Testing
3.2 Performance Testing Basics
3.3 Variants of Performance Tests
3.4 Workload Specification Approaches
3.5 Workload Generation Approaches

Market Overview and Shortlist
4.1 Market Overview
42 Shortlist

Criteria Catalog

51 Scales

5.2 Meta Criteria

5.3 Non-Functional Criteria
5.4 Functional Criteria

Evaluation Procedure

6.1 The System Under Test
6.2 Test Environment
6.3 TestScenario.

Evaluation Results

71 JMeter
72 loadIT.
73 Neoload

Contents

11

................................... 11
....................... 15

17

....................... 17
....................... 17
............................... 19
.................................. 20

27

................................ 27
................................... 28
....................... 28

31

....................... 31
....................... 35
....................... 38

vii

Contents

74 WAPT . . e e e e 41
7.5 RPT (Rational Performance Tester) 45
7.6 LoadUIWebPro e 48
7.7 LoadRunner e e 52
7.8 Silk Performer e e 55
79 Summary 56
700 Conclusion e e e e e e 61
Bibliography 63

viii

Chapter 1

Introduction

1.1 Motivation

For modern web applications it is critical to remain available and guarantee short response
times—even if accessed by large numbers of concurrent users. Studies show that response
times above one second cause dissatisfaction, which makes users switch to a competitor
sooner or later [Cheung and Lee, 2005].

Building applications that meet these performance requirements starts with planning
and testing these requirements in the early stages of the development process. Load tests
are carried out in order to ensure that the required number of customers can be served
simultaneously without exceeding a certain response time and performance requirements
such as throughput and utilization.

In practice, load tests are rarely an integral part of the development process, see
P. Haberl [2012]. The main reasons (other than the lack of time or money) may be the
common preconception that meaningful load tests are too difficult to create and maintain
as well as short-sighted calculations showing that the benefits of load tests don’t outweigh
their costs.

However, there are lots of tools available—both open-source and commercial—that
support the creation and execution of load tests. Because of the high variety of these tools,
it may be difficult to find a suitable solution for the individual use case.

1.2 Goals

This study attempts to serve as a guidance for choosing the right load testing tool—
particularly for testing web-based applications that make use of AJAX and WebSockets.
The results will be reported in form of a market overview, a criteria catalog and transparent
experiments that allow for quick comparison of the tools. We also make a recommendation
on which tool to use for several different use cases.

1. Introduction

1.3 Collaboration with NovaTec Consulting GmbH

This case study is conducted in collaboration with NovaTec Consulting GmbH in Leinfelden-
Echterdingen. NovaTec is an owner-operated, independent German IT consulting firm
that amongst other things specializes in performance management and load testing. In
the context of load testing, NovaTec offers the freely available product LoadIT ([NovaTec
Solutions GmbH, 2014]), which is an extension for the popular JMeter tool ([Apache
Foundation, 2014]).

1.4 Document Structure
Chapter 2 presents our organization. Chapter 3 presents relevant foundations. Chapter 4

gives a market overview. Chapter 5 presents the evaluation criteria. The evaluation
procedure is presented in Chapter 6. Chapter 7 presents the evaluation results.

Chapter 2

Organization

This chapter will describe the milestones and phases of the study, which was conducted
over six months in the period between 2nd May 2014 and 1st October 2014.

2.1 Timeline

The following Gantt chart shows the milestones and phases of the study.

o snia

1 L
T

Vorgang | Anfang | Ende
© KickOff Meeting 020514 020514
© TestPresentation for Kick-Of 300414 300414 °
© Presentation-Transparencies 020414 010514 | 1
© Infermediate State Discussion with NovaTech GmbH 26.08.14 26.08.14
© Preliminary Final-Version 100914 10.09.14

© Creation ofthe Load Testing Tool List 020414 010514 Eﬁ
© Completion of the Load Testing Tool List 020514 140514

© Creation ofthe Evaluation Critera 020414 010514
© Completion of the Evaluation Critera 020514 0108.14
© Extension of the Evaluation Critera 040814 100914

the Elaboration 020414 011014]

il wai

020414 300514 E—

. h
© Setup ofthe Evaluation Plan 020514 230514 E
© Evaluation ofthe Tools 260514 100914

2.2 Phases

Phase 1: Begin of the Study The study began with the kickoff meeting on 2nd May 2014 in
the department of NovaTec Consulting GmbH in Leinfelden-Echterdingen. After presenting
our first ideas to NovaTec, we were introduced to the basics of Load Testing Tools and the
requirements of the study. Our presentation also contained slides about our general course,
goals, a preliminary criteria catalog, and a first list of load testing tool.

Phase 2: Research In this phase we familiarized us with the topic of load testing and
also searched for load testing tool, which we listed in the market overview (see Chapter 4).

Phase 3: Evaluation Criteria Several criteria for our evaluation were developed. They are
based on the kickoff meeting notes and further research. Our criteria catalog was planned
to complete over time in case we find further important criteria points while testing our
selected tools. The rating and structure of the specific criteria points are defined by us.

2. Organization

Phase 4: Creation of the Load Testing Tool List While being in this phase, we searched
for five to eight load testing tools to test within our study. We chose JMeter as the most
popular and few load testing tools were also recommended by NovaTec to be considered
within our elaboration.

Phase 5: Set up of the Evaluation Plan Before we were able to start the evaluation
of the tools we selected, we had to determine the evaluation procedure first. After we set it
up we used this procedure for every load testing tool we chose.

Phase 6: Evaluation of the Tools In this phase we used our evaluation plan on all se-
lected load testing tools and took down all information we gathered in notes and tables.

Phase 7: Creation of the Elaboration Creating the elaboration was continuous process
since the beginning of our project. We categorized our gathered information in a compact
introduction to explain the first steps of load testing followed by the market overview.
Afterwards we show our specifically set up criteria catalog with the evaluation procedure.
At last we represent all our evaluation results in both text and tabular form.

2.3 Milestones

> 1st Milestone 2nd May 2014: Kick-Off Meeting with NovaTec. We presented our goals
and a first load testings tool list and criteria catalog. Subsequently there was a discussion
about additional points that needed to be taken into our elaboration and which topics
needed improvement and more attention.

> 2nd Milestone 26th August 2014: Intermediate State Discussion with NovaTlec. On
this meeting we presented all our results till then. Our progress came to 80 percent
completion rate at this time.

> 3rd Milestone 2nd October 2014: Handing in of the final version. At this point we
were done with all the testings, summarized all our evaluation results and did several
feedback rounds.

> 4th Milestone Mid October 2014: Presentation of our study with focus on testing with
WebSocket protocol.

Chapter 3

Basics of Load Testing

This chapter provides an overview about load testing. In Section 3.1 we point out the
meaning of load testing. Section 3.2 presents the basics of performance testing, while
Section 3.4 and Section 3.5 introduce different workload specification and generation
approaches, respectively.

3.1 Meaning of Load Testing

Note that the term load test’ is ambivalent. It may either refer to performance tests in
general or to the most basic form of performance testing as explained in Section 3.3. For
performance testing, Abbors et al. [2012] give the following definition:

"The idea behind performance testing is to validate the system under test in
terms of its responsiveness, stability, and resource utilization when the system
is put under certain synthetic workload in a controlled environment"

3.2 Performance Testing Basics

Performance tests examine the performance of a system under a particular workload.
Performance can be defined by many different metrics in this context, e.g., response time,
throughput, etc.

A typical test setup is depicted in Figure 3.1. It requires several workload agents
to send requests to the system under test. The overall amount and time distribution of
these requests is determined by a workload specification and distributed by the controller.
During the processing of the requests, the system under test as well as the workload agents
measure certain metrics to gather information about the reaction of the system. The data is
collected and used to generate a report.

3.3 Variants of Performance Tests

There are several variations of performance tests that can be characterized by their goals.
We follow the classification of Subraya and Subrahmanya [2000].

3. Basics of Load Testing

i Workload generator

Workload
: agent
Workload
specification
Workload
} agent
Y |
PN Workload : System under
: agent ! test

L]
[]
) S—
Measure SN
Workload ment
agent

Figure 3.1. General load test architecture

> Load tests: The goal of a load test is to simulate realistic, day-to-day conditions and to
observe how the application server can handle it. In particular, think times and arrival
rates are used to reflect the observed load patterns in production use.

> Stress tests: A stress test analyzes the behaviour of an overloaded system. It serves to
test the stability and robustness of the system under extreme circumstances.

> Endurance/Durability/Soak tests: Endurance tests put load on the system for a longer
period of time. The goal is to find memory leaks and other causes of performance
degradation.

3.4 Workload Specification Approaches

In this section we will define and explain the different possibilities to generate certain
workload specification successfully. The record-and-play approach will be introduced in
Section 3.4.1 and scripting in Section 3.4.2.

3.41 Record-and-Play

One of the quickest ways to get a workload specification is to once execute a sequence
of actions and have the computer record it. Since reproducing the actions by simulating

3.5. Workload Generation Approaches

mouse clicks and other UI interactions would be too slow, performance tests are based
on sending requests. Therefore, it suffices to record all the request that have been made
during the action sequence. There are multiple possibilities to intercept these requests:

> Built-in browser: The load testing tool contains a mini-browser, in which the user
executes the actions.

> Browser plug-in: The load testing tool provides a plug-in for popular browsers so that
the user can perform the actions in her normal browser environment.

> Proxy: The load testing tool sets up a proxy server that is registered in a normal browser
and records the requests.

The main advantage of this approach is that it is fast and easy. In particular, AJAX calls are
supported by design.

The record-and-play approach can be improved by breaking down the requests into
single steps, allowing the user to recombine the steps to create a different specification.
This approach can also be combined with the scripting approach (see next section), if the
recording output is provided as a script instead of a list or tree of recordings in the UL

The possibility to modify and rearrange the recording is a major improvement when it
comes to maintainability and flexibility of the tests. However, special parameters (like JSF
View State IDs, see Chapter 6) may require some modification, which can be rather easy or
difficult, depending on the support of the respective load testing tool.

3.4.2 Scripting

By providing a suitable script language such as JavaScript, a load testing tool can allow
the user to specify action sequences in code. In combination with the recording approach
introduced above, scripts don’t have to be written entirely.

The most significant advantages of this approach originate from the fact that the scripts
are in fact code, just like the application they intend to test. Therefore, the load test
specification can be versioned and organized by the same configuration management tools
and even alongside the code itself, which increases maintainbability. Also, scripts provide
a deeper control of the test execution. On the other hand, using the scripting interface
may require some training, especially if the tester is not already familiar with the scripting
language used by the load testing tool.

3.5 Workload Generation Approaches

Executing a load test usually involves executing one or more workload specifications a
couple of times. The number, the temporal distribution and the combination of different
specification executions can be handled quite differently.

3. Basics of Load Testing

3.5.1 Open and Closed Workloads

First, we distinguish between open and closed workloads. Schroeder et al. [2006] give the
following definition for open and closed workloads:

> Closed workloads: A new request is only triggered by the completion of a previous
request (after a certain think time).

> Open workloads: A new request is only triggered by a new user arrival.

In the context of web applications, particularly those using AJAX, most requests depend
on preceding requests. Thus, a sequence of requests always belongs together and—if
considered separately—behaves like a closed workload. Therefore, we do not apply the
definitions of open and closed workloads on single requests, but on entire executions of
workload specifications.

Most tools do not make a difference between open and closed workloads. Instead, it
is possible to specify how many parallel “virtual” users should be simulated and how
often each of these users performs a workload specification. While the users themselves
are executed concurrently, the repetition of a specification that a single user executes is
always sequential. Therefore, the generated workloads are generally closed workloads,
because a user starts a new cycle only when his previous cycle is completed. But by
setting the number of repetitions to a single execution of the specification and by in turn
increasing the total number of concurrent users, one can generate open workloads. The
typical characteristics of open workloads like arrival rates or distributions can also be
achieved by delaying some of the virtual users.

Schroeder et al. [2006] also consider partly-open systems, which combine external
arrival rates (open workload) with repetitions (closed workload). In order not to overflow
the system, a repetition only occurs with a certain probability, so that the workload is not
strictly closed.

3.5.2 Load Intensity

The second characteristic of a workload is its intensity distribution over time, which is
determined by the arrival rate. We only list the most basic patterns and refer to v. Kistowski
et al. [2014] for more details.

Note that in production use, users would usually not start coming in all at once, but
increasingly over a (short) period of time. This is usually modeled as a ramp-up time at
the beginning of the test.

Constant

A rather simple way of modeling load distribution is to create a constant number of
concurrent users (see Figure 3.2a), which operate independently and send one request after

3.5. Workload Generation Approaches

Loadintensity Loadintensity Loadintensity

3 f1s te

L fo
b Faa b
/

te faz F /

ts fio ls / \
La Lo ba

\
fa fo s
e L fe

(a) Constant (b) Peaks (c) Periodic

Figure 3.2. Different load intensities

another, optionally including a “think time”. This approach ensures that there is always a
constant number of users active in the system.

Peaks

For some application types, a typical production workload is not constant, but rather heavy
at a few times only. For example, the registration system used for the tutorial groups at the
University of Stuttgart is only used at the beginning of the semester. In the first few weeks,
there are a few times with very high workload, while during the rest of the time, the server
is rarely used.

This can be modeled as a constant (base) workload combined with workload peaks,
that are distributed evenly over the entire time period. A graphical representation of such
a load intensity can be seen in Figure 3.2b.

Seasonal/Periodic/Cyclic

Another way of modeling workload is to have a different amount of concurrent users that
never drops below a predefined lower limit and never rises above a predefined upper limit,
like seen in Figure 3.2c. The concurrent user numbers will alternate between these limits
and thus simulate a daily or weekly routine.

Advanced Model-based Approaches

In order to model user behaviour more realistically (especially for large numbers of users),
workload generation models can be employed. The execution still consists of basic steps
that need to be recorded or scripted (see above). These steps are then combined by a
workload generation model to form a more complex workload specification. In particular,
the workload model defines the number, frequency and order of the basic steps.

3. Basics of Load Testing

For more details about workload generation models, we refer to Hoorn et al. [2008], Roy
et al. [2013], Feitelson [2002], Schroeder et al. [2006] and v. Kistowski et al. [2014].

10

Chapter 4

Market Overview and Shortlist

In the following, we provide the full list of all load testing tools that we have found on the
Internet during our research. At the end of the chapter we list the tools that we selected for
the evaluation.

4.1 Market Overview

In this section, we shortly describe the load testing tools we found during our market
research.

JMeter (Apache)

Apache JMeter is the de-facto standard open-source tool. While the base functionality is
already quite good, it comes with plenty of plug-ins for almost every use case.

Apach
r ’l -
: . eyer._ .
> License: Apache License 2.0 Vit L .
> Website: nttp://jmeter.apache.org/

Load Test (AppPerfect)

The tool developed by AppPerfect provides all important features and also supports
scheduling and monitoring. WebSockets are not supported.

> License: Proprietary App

> Website: http://www.appperfect.com/products/
load-test.html

Load Tester (webperformance)

Webperformance offers a tool focused on browser-recording and replay based on the
Selenium framework. Monitoring is supported and a cloud service can be used for load

11

http://jmeter.apache.org/
http://www.appperfect.com/products/load-test.html
http://www.appperfect.com/products/load-test.html

4. Market Overview and Shortlist

generation. WebSockets are not supported.

> License: Proprietary \.V)Eb pe nfo rmance

> Website: http://www.webperformance.com
loadIT (NovaTec)
NovaTec loadlT is technically an extension of Apache JMeter. As such, it supports plug-ins

written for JMeter and has a similar user interface. There are various improvements and
additions.

> License: Proprietary (free of charge) j\O((/‘[

> Website: http://www.loadit.de/

LoadRunner (HP)

HP’s LoadRunner is based on scripts, has a large number of features and supports a wide
range of technologies, including WebSockets.

> License: Proprietary /

> Website: http://www8.hp.com/us/en/

Loadrunner

software-solutions/loadrunner-load-testing/

index.html

Loadtest (alexfernandez)
Loadtest is based on Node.js and provides a command-line as well as a JavaScript interface,

and provides only the most basic features.

> License: MIT license

> Website: https://github.com/alexfernandez/
loadtest

12

http://www.webperformance.com
http://www.loadit.de/
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/index.html
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/index.html
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/index.html
https://github.com/alexfernandez/loadtest
https://github.com/alexfernandez/loadtest

4.1. Market Overview

LoadUIWeb (SmartBear)

LoadUIWeb Pro is based on browser simulation (in contrast to simply sending predefined
requests) and execution in the cloud. WebSockets are not supported directly.

> License: Proprietary @ SMART

> Website: http://smartbear.com/products/
ga-tools/load- testing/

NeoLoad (NeoTys)

NeoTys NeoLoad features a great user guidance and many automated tasks.

> License: Proprietary (NED LDAD

> Website: http://www.neotys.com/product/

overview-neoload.html

Phantom]S

Phantom]S is a JavaScript framework for website testing that can also be used for perfor-
mance testing.

> License: BSD Dh=2antamicC

> Website: http://phantomjs.org/

RPT (IBM)

IBM’s Rational Performance Tester is a large software package closely integrated with the
Java language and the Eclipse framework.

> License: Proprietary

> Website: http://www-03.ibm.com/software/

products/de/performance/

13

http://smartbear.com/products/qa-tools/load-testing/
http://smartbear.com/products/qa-tools/load-testing/
http://www.neotys.com/product/overview-neoload.html
http://www.neotys.com/product/overview-neoload.html
http://phantomjs.org/
http://www-03.ibm.com/software/products/de/performance/
http://www-03.ibm.com/software/products/de/performance/

4. Market Overview and Shortlist

Silk Performer (Borland)

Borland’s Silk Performer is a feature-rich tool that integrates with virtually any other
technology.

> License: Proprietary

> Website: http://www.borland.com/products/

silkperformer/

SOAtest/LoadTest (Parasoft)

Parasoft’s SOAtest is designed for API testing of web services, so there is no browser
recording and other features common to load testing tools for web applications. However,
sending HTTP messages is supported and Parasoft’s LoadTest of managing and evaluating
load tests, so that load testing web applications is possible. WebSockets are not supported.

> License: Proprietary s OAtest& load TESt

> Website: http://www.parasoft.com/soatest

The Grinder

The Grinder is another popular open-source tool.

> License: Custom open source license i The ﬁrinder

> Website: http://grinder.sourceforge.net/

Thor

Thor is a utility tool for testing WebSocket connections, based on Node js.

> License: MIT license

> Website: https://www.npmjs.org/package/thor

Tsung

Tsung is a load testing tool based on the Erlang programming langauge that supports both
HTTP and WebSockets (among other protocols), although the support for the latter is only

14

http://www.borland.com/products/silkperformer/
http://www.borland.com/products/silkperformer/
http://www.parasoft.com/soatest
http://grinder.sourceforge.net/
https://www.npmjs.org/package/thor

4.2. Shortlist

experimental.

tributed load testing tool

> License: GPLv2

> Website: http://tsung.erlang-projects.org/

WAPT (Softlogica)

Softlogica’s WAPT provides a selection of the most useful and important features on a
clean and intuitive user interface that guides the user.

{
> License: Proprietary ﬁ‘%ﬁ@ WAPT

> Website: http://www.loadtestingtool.com

WebLOAD (RadView)

The most distinctive features of RadView’s WebLOAD are its modern Office-like interface,
recording to JavaScript and full WebSocket support.

: . : WEBLOAD >
> License: Proprletary ‘.__--—" OPEN SOURGE LOAD TESTING

> Website: http://radview.com/

Webserver Stress Tool (Paessler)

Paessler’s Webserver Stress Tool is script-based and only includes rather basic features, but
it is advertised to be fast. WebSockets are not supported.

PAESSLER®

> License: Proprietar
p y the network monitoring company

> Website: http://www.de.paessler.com/webstress

4.2 Shortlist

From the tools that are listed above, we first eliminated the commandline tools like Load Test,
because they lack functionality and are unsuited for the usage in bigger projects. Then
we eliminated tools whose main purpose is not load testing, like Phantom]S and SOAtest.
Among the remaining tools we selected the following eight representative tools: JMeter,
loadIT, NeoLoad, WAPT, RPT, LoadUIWeb Pro, LoadRunner, and Silk Performer.

15

http://tsung.erlang-projects.org/
http://www.loadtestingtool.com
http://radview.com/
http://www.de.paessler.com/webstress

Chapter 5

Criteria Catalog

In this chapter we list and explain our evaluation criteria. These are grouped into meta
criteria (Section 5.2), which are not part of the product itself, non-functional (Section 5.3)
and functional (Section 5.4) criteria.

5.1 Scales

For each criterion, we define a scale that it is evaluated on. Some are simply lists of those
items that are supported by the tool, or only rated on a binary scale where

v

y” means the item is present/supported and

1

n” means it is not present/supported.

Most criteria are rated on a three-valued ordinal scale where

i

means the item does not fulfill the expectations we have in a load testing tool,
”0” means the item at least fulfills our expectations and

”+” means the item exceeds our expectations.

5.2 Meta Criteria

In the following subsections we represent analysis methods of meta data within separated
subject areas. These results are acquired by statistical methods and valuations. Here we
segmented our meta criteria in the following subsections: At first we amplify which licence
type our tested product has. In the next subsections we rate the quality and quantity of
the documentation and the support service and alternative provided support channels. In
the following there are several criteria points summarized in the chapter usability. We also
consider the stability rate of the product as well as the extensibility.

5.2.1 License

Even though the license does not influence the rating, it is specified for reference. Using
an open source tool may have several advantages that include the ability to debug and
customize the tool using its source code. On the other hand, commercial solutions often

17

5. Criteria Catalog

come with included support. Since support, documentation and extensibility are treated
as individual criteria, the license itself is not included in the overall rating. But it will be
remarked, if a load testing tool can be used with a commercial or free licence and if the
source code is available.

5.2.2 Documentation

The term documentation covers the entirety of information on the use and design of a
product. The existence of the following kinds of documentation is evaluated (no matter if
it is being provided by the tool publisher or by third parties):

* User manual
* Wiki
Tutorial (text)

Tutorial (video)
* Integrated documentation (help-function)
¢ For open source tools: Detailed JavaDoc or similar source code documentation

Incomplete or outdated documentation is not considered.

5.2.3 Support

Support is a set of communication channels that allows users to get help with problems
that could not be solved using the documentation. The existence of the following kinds of
support channels is evaluated:

* E-Mail / Contact form

* Telephone

* (Highly available) hotline

¢ User/Community forum

* Mailing list

* Moderated forum with expert support

Closed or outdated support channels are not considered, but listed for reference.

5.2.4 System Platforms

All supported platforms, i.e., operating systems that the controller and/or the agents can
be executed on, are listed. This is not to be confused with the platforms for potential
under-test applications, which a tool may have special support for.

18

5.3. Non-Functional Criteria

5.3 Non-Functional Criteria

5.3.1 Usability

We split the usability into three sub-criteria: simplicity, user guidance, and an undo
function.

The simplicity is shown on an ordinal scale ranging from ”-” to ”+”:

”-” The user interface is too complex and unstructured or the structure is too confusing.
Functions are labeled in an unintuitive way.

”0” The user interface is easily comprehensible with a little help from the manual.
Functions are organized in a coherent structure and labeled appropriately.

”+” The user interface is structured similarly to other well-known applications, places
functions where the average expert user would expect them to be and supports the
user with directed hints and expressive icons, so that consulting the manual is not
necessary.

R

The user guidance is shown on an ordinal scale ranging from ”-” to ”+”:

”-” The user is not guided in any way and has to find his way through the tool on his
own.

”0” The tool uses wizards and tells the user what he can adjust.

”+” The tool guides the user through the process of a load test and highlights settings
that need to be configuired.

The presence of an undo function is evaluated on a binary scale.

53.2 Stability

The stability of the tool is evaluated by the absence of the following events during a
one-hour testing:

* Lacking UI responsiveness
* Ul crash

* Load generator crash

5.3.3 Extensibility

The existence of the following interfaces is evaluated:
* Protocols

* Reporting formats

19

5. Criteria Catalog

5.4 Functional Criteria

Load testing tools offer a broad range of different and sometimes very specific features.
This evaluation concentrates on features that are of general interest as well as features that
are necessary to test JSF applications. Note that not only features directly included in the
product are evaluated, but also features that are available through a plug-in. Here we made
a point on separating this topic into the subsections supported protocols and workload
specification.

5.4.1 Supported Protocols (K.O. Criterion)

It is evaluated if the tool supports HTTP, HTTPS and WebSockets. Tools that do not support
HTTP are excluded completely from the evaluation.

5.4.2 Workload Specification

Some possible ways to generate workload specifications have been described in Section 3.4.
For the evaluation of the tools, the extent to which they support these workload generation
approaches is evaluated. The workload generation approaches are subdivided into two
main methods, namely record and play and also scripting.

Record-and-Play

First, the setup procedure of the record-and-play environment is evaluated. This includes
the supported methods (Proxy and/or Tunnel), web browsers (Firefox, Chrome, Internet
Explorer, etc.) and the ability of the tool to automatically open and configure the respective
browsers. In particular, the tool’s internal proxy server needs to be able to handle HTTPS
traffic. These single items are documented using a binary scale each.

Second, the further processing of the recording is evaluated. A tool can support the
user in various ways to allow her to create a workload specification from her recording
quickly:

* Automatic grouping of requests (detecting requests that belong together)

* Manual grouping of requests (by selecting groups or by clicking a button when the
current group is complete)

¢ Custom naming of individual requests by the user (possibly at recording time)

* Outputting the recording as an editable script (which inherently allows copy&paste,
editing and commenting). If so:
* Is the script commented to help the user find individual requests?
* Is the script well structured and easily readable?
* Does the script structure allow to deactivate and/or exchange requests quickly?

20

5.4. Functional Criteria

* Outputting the recording as a list on the UI, which may allow to:
* Reorder requests
* Dynamically deactivate requests (for testing purposes)
¢ Copy&Paste requests
 Edit request parameters

The support for each of these is documented on a binary scale and the overall user

experience using the record-and-play function is rated on an ordinal scale from ”-” to ”+”.

In addition, the ability to handle the JSF View State ID, which is required for our specific
test application (see Chapter 6), is evaluated on an ordinal scale from ”-” to ”+":

”-” The JSF View State ID must be retrieved manually and inserted into subsequent
requests. The procedure to do so is not documented and/or time-consuming.

”0” The JSF View State ID must be retrieved manually and inserted into subsequent
requests. The procedure to do so is well documented and the tool allows to apply
the new View State ID to multiple subsequent requests at once.

”+” The JSF View State ID is detected and handled automatically.

Note that testing tools that cannot handle JSF (JavaServer Faces) View State at all are
excluded from our evaluation.
Scripting

If the tool offers some kind of scripting language to create or enhance workload specifica-
tions, the following criteria are evaluated:

> Is the language a common language that an average web developer might already know?

> Are the features of the language documented with respect to the use in the load testing
tool?

> Does the load testing tool offer syntax highlighting?

> Does the load testing tool offer auto completion?

5.4.3 Execution

In the following subsections we define which aspects of a tool have to be taken into account
to provide an evaluation basis for the whole functionality of the load testing tool. The
different aspects are clearly sophisticated. Some of them have their own matching rate
with ideal load testing tool features which are predefined in every subsection.

21

5. Criteria Catalog

Combination of Test Parts

A useful feature to quickly assemble different workload specifications is the combination
of tests from smaller (previously recorded or scripted) parts. In addition to the mere
possibility to combine and rearrange test parts, control structures like branching (if) and
looping (while, for) have been evaluated.

Parametrisation

In order to run workload specifications, which follow the same sequence of requests, but
are executed with different parameters, a feature is required to assign certain request
parameters to values retrieved from a list or file. This feature—if present—has been
evaluated by using different login data for otherwise identical workload specifications, and

”,

rated on an ordinal scale from ”-" to ”+”:

”-” Although there is no particular support for parametrisation, it is possible to duplicate
workload specifications and change individual parameters manually.

”0” The tool supports inserting different values for specific parameters. Values are
entered in a table.

”+” The tool supports inserting different values for specific parameters and can also
evaluate value expressions. Values can be entered in a table or imported from a file.

Pre-test Execution

After creating a workload specification, the user wants to verify if it runs correctly against
her application server, mostly without running an entire load test to do so. A feature
that ignores all settings about load generation models, distributed load generation agents,
etc. and only executes a workload specification once is useful to determine whether the
workload specification and application server are correctly configured for the main test
execution. Only the existence of such a feature is evaluated on a binary scale.

Workload Models

It is evaluated if the tool supports the following workload models:
* Constant distribution

* Peaks

* Periodic, Cyclic, Seasonal

* User-defined function

It is also evaluated if the tool supports Ramp-Up.

22

5.4. Functional Criteria

Distributed Execution

An important part of load test executions is to ensure that the load generator itself is not
the bottleneck. Therefore, multiple machines are used as load generators and they need
to be coordinated. The extent to which the load testing tool facilitates the configuration,
execution, and data collection on multiple machines is evaluated on an ordinal scale from
b0 4

”-” Distributed test execution is not supported at all by the tool and could only be
performed manually.

”0” Distributed test execution is possible, but a lot of manual configuration is required.
The tool supports at least starting and stopping remote machines simultaneously.

”+” Distributed test execution is supported by the tool. It helps setting up remote
machines and transferring configurations and test data to those machines. After
executing the test, the tool is able to collect the recorded results automatically.

Test Abortion

It is evaluated on a binary scale, whether the tool supports canceling a running test within
a reasonably short time, also on all remote machines, if those can be controlled from within
the tool.

5.4.4 Reporting

This chapter only deals with the report function of the load testing tool. The different as-
pects we take into account are clearly distinguished in report contents, -format, -generation
and report management. The subsections contain an ideal feature that we expect load
testing tools to have.

Report Contents

To evaluate the reports generated by the load testing tools, mostly the information included
in the reports is taken into account:

¢ Input data and test environment
* Request times
* Throughput

e Utilization

23

5. Criteria Catalog

Report Format

The available formats for reports should on the one hand provide a clearly represented
overview of the test results and on the other hand provide structured and detailed infor-
mation. Furthermore, a machine-readable format that allows for further use of the data in
other applications (e.g., Microsoft Excel©) can be useful.

The available reporting formats as a whole are rated using an ordinal scale from ”-” to

v

+7

”-"” The reports can be displayed within the tool’s interface and options for export are
very limited or unsatisfying, so that a good visualization cannot be achieved even
after exporting the raw data to another tool.

”0” The reports can be displayed and there are several useful export options, at least
one of which is a structured data format. Results are put into graphs to provide an
overview.

”+” Reports are displayed both as graphs and as tables. The offered export formats are
well structured and offer detailed information.

Report Generation

It is investigated whether the testing tool allows customization of its reports. This involves
the possibility to select the parts of the report (rated on a boolean scale), as well as the
possibility to provide additional data sources such as the results of profiling instruments,
etc.

Moreover, it is an advantage if a tool provides partial results during the test or when a
test fails, both documented on a binary scale.

Report Management

When conducting a lot of load tests, it is important to have some kind of report management.
Features like local report management, centralized report management, report sharing
and report comparison can be provided by a load testing tool to facilitate the report
management. Additionally, a tool might be able to compare the results of multiple test
executions and generate comparative reports. These individual features are documented
on a binary scale.

5.4.5 Maintainability of Workload Specifications

Note that this is not a strictly separate criterion, since it is mainly influenced by other
features. But because of its importance in production use, we evaluate it separately.

In practice, an important part of load testing is to keep up with the changes of the
system under test. Therefore, a good load testing tool should support the maintenance of
load tests. We identified three major areas that affect maintainability.

24

5.4. Functional Criteria

> Response Validation: Due to misconfiguration, network problems, or server overload,
a request can terminate with an error. Such errors can occur in different forms: The
server may be unreachable, it may send HTTP Status codes like 500 or 404, it may send
(small, quick) responses that indicate an internal subsystem failure (e.g., <error>This
server is overloaded, please return later.</error>) and are usually handled by the
Ul layer in the browser, or it may simply send false responses (such as empty result
sets).

To ensure that the server was actually able to handle the load and did not only reply
with error messages, which requires a lot less time per client, load testing tools should
provide simple and efficient means to verify the responses. Possible verification methods
include:

For the evaluation we list the supported verification methods.

* Automatically detect and report network failures and negative HTTP Response Code
* Regex evaluation of responses or similar textual evaluation

* XPath queries on the response

* Automatic detection of common error message types

* Compare actual responses to recorded responses

> Modifying outdated tests: When the tester needs to modify a large workload specifica-
tion, it is important that the tool allows reordering, deleting and modifying the requests
quickly. In addition, a group-edit or batch-change or global search-replace feature can
save a lot of time.

> Modular test design: By re-using parts of workload specifications and assembling
longer tests from smaller modules, the amount of specification data can be reduced,
which means that there is less to maintain. Load testing tools should allow the user to
extract parts of a test, create a module and reference it from other tests.

> Manageable file format: If the load testing tool stores its data in a format (like XML)
that is recognized by source code management tools, the tests can be stored and
managed besides the software itself. It also makes merging and branching possible for
the workload specifications.

The overall ability of the tools to support load test maintenance is rated on an ordinal

scale from ”-” to ”+".
”-"” The tool does not have specific features to increase maintainability.

”0” The tool only offers some of the features listed above or some of them do not work
reliably.

”+” The tool offers most of the features listed above and they are easy to use and work
reliably.

25

Chapter 6

Evaluation Procedure

This chapter presents the system under test (see Section 6.1), the test environment (see
Section 6.2), and the test scenario (see Section 6.3) used for the evaluation.

6.1 The System Under Test

The cooperation partner NovaTec (see Section 1.3) has provided an internally used and
developed application called NovaERM (see Figure 6.1) for this study. NovaERM is based
on Java Enterprise technologies like Enterprise Java Beans, Java Persistence AP]I, Java Server
Faces 2.2, PrimeFaces and also JavaScript and therefore makes heavy use of AJAX. In order
to test the WebSockets capabilities of the load testing tools, NovaERM has been extended
by a feature based on WebSockets.

[Login - NovaERM x
€ | & nttps://localhost:8443/novaermweb/ content/indexxhtml ¢ | B~ Google P B ¥ & =
Login
Benuzemame |dg
Passwort ([s4] |
Built on ${buildNumbes} | Version: ${mavansgaiata tag.name}

Figure 6.1. Login of the tested application

27

6. Evaluation Procedure

6.2 Test Environment

All tests have been executed on regular laptops running Windows 7. In order to avoid
negative performance impacts, the test systems were connected to AC power during the
tests.

As application server, WildFly 8.1 was used to deploy the application. Also the latest
versions of the browsers supported by the tools (Chrome, Firefox Internet Explorer) were
used. Please note that the actually measured performance of the application is not of
interest in this study. In particular, the correctness and stability of the measurement results,
which the tools produced, have not been verified.

6.3 Test Scenario

In order to assess the tools” capability to record browser requests and generate workload
specifications, we created a suitable test scenario. The test scenario includes a login, two
JSF views (each of which has its own View State ID) and several AJAX requests. Since the
test scenario is recorded from user interactions, we illustrate the scenario using screenshots:

The first action is the login (see Figure 6.1). After filling in the login form, the user
clicks the login button (”Anmelden”), which triggers a POST request to the server.

In response to the login request, the server redirects the browser (using a 302 response
code) to the homepage, which is the first JSF view. When loading the homepage, the
browser loads a number of additional JS and CSS files from the server.

The homepage shows a list of tasks (see Figure 6.2), which is not used in the test sce-
nario. Instead, the tester opens a search form for applicants from the menu ("Bewerbung”,
”Bewerbertibersicht”). The search form is displayed in a new PrimeFaces tab using an
AJAX post-back request to the JSF view. The tester then switches to the search mode for
applicants (instead of tasks) using the radio-box ("Bewerbung”) at the top, which triggers
another AJAX request to refresh the entire user interface below.

The third step is to produce search results. In order to be able to perform the recording
quickly, the tester does not enter a search query, but simply clicks the search button
("Suchen”) to retrieve all records from the database, which is done in another AJAX request.
The search usually takes less than a second.

After the results have been retrieved (see Figure 6.3), the user clicks the first entry. This
opens a new tab (see Figure 6.4) containing information about the selected applicant. The
tab is opened using a GET request to a specific URL, i.e., this step does not include another
AJAX request, but it creates a new JSF view, which is assigned a different view state ID (!).

To ensure that the load testing tools are capable of detecting the new JSF view state 1D,
the tester triggers two AJAX requests in the new view by clicking the checkbox labelled

28

6.3. Test Scenario

tartseite - NovaERM

(¢a . ~ Google PlirE ¥ A =
NovaERM Personal - Bewerbung ¥ Venwaltung - Logout

Anlegen
Tasks
Zugeordnete Tasks _

D ¢ Name & Beschreibung & Zusatz & Bereich(e) < ort & Task-Beg. & Owmer Zusitzliche Information & A
12290 Bewerbung anlegen Freud, Sigmund (Stuttgart) Practical School Ausbildung HK | LE 18.08.2014 DG 1
12317 Einstein, Albert (Stuttgar) Practical Trainge Ausbildung St.. | MUC 18.082014 DG
12344 Bewerbung anlegen Kant, Immanuel (Stuttgart) Regular ... | FFM 18.082014 DG
12371 schiller, Friedrich (Stutigart) Temporary Staft Central Services | JED 18.082014 DG
12398 Bewerbung anlegen Koch, Robert (Stuttgarty Working Student Marketing LE 18.082014 DG
13190 Heing, Heinrich (Stuttgart) Trainge Gooperative education | Ausbildung HK | LE 18.082014 DG
14777 Bewerbung anlegen Kopernikus, Nikalaus (Stuttaarty Graduand Technical Ser. | FFM 18.082014 DG
14804 Bewerbung anlegen Digtrich, Marlene (Stuttgart) Trainee Vertried JED 18.08.2014 DG
1630 Anf. SAnitiieren Stellenausschraibung Study 18.082014 DG
3827 Anf. SAlnitiieren Stellenausschreibung Delivery 18.082014 DG
5163 Anf. SAinitiieren Stellenausschreibung Central 5. 18.082014 DG
6474 Meinung abgeben MaxE, MaxE (Stutigart) Regular Emplayment Ausbildung St FFM 18.082014 DG 012 abgegeb. / angef Meinungen
9709 Anf. SAinitiieren Stellenausschreibung Vertrieb. 18.082014 DG

Zugeordnete Tasks - Rolle

[o3 Name & Beschreibung & Zusatz & Bereich(e) 3 ort & TaskBeg. & | Oumer ¢ Zusitziiche Information & |

‘ Keine Tasks in dieser Kategorie ‘

Nicht zugeordnete Tasks

Task-Beg. &
18.082014

\ D¢ \ Name < \ Beschreibung & \ Zusatz &
‘ 10807 ‘ Bew. ‘ Biggle, Bradley (Stutigart) ‘ Practical Scheol
hﬁ% -

Bereich(e) < ‘ ort &

Owmer & ‘ Zusatzliche Information ¢ ‘

SB ‘ 014 abgegeb. / angef. Meinungen

Berufsorientie. ‘ JED

Figure 6.2. The tasklist in NovaERM

tartseite - NovaERM

€ a ;i v ¢ |[B- cooge Plerlm ¢ & =
NOVaERM Personal + Bewerbung ~ Verwaltung ~ Logout
Tasks || Bewerbungen %
Bewerberiibersicht
Suche nach © TaskBeweroung @ Bewerbung E
Untemehmenseinheit l]
Name (I |
Vorname [) standort []
Status = @i = [Apgelehnt Zustandiger Bereich []
Stellenausschreibung |] Verragsart []
Einstufung []
Owner
HName & ‘ Eingangsdatum & ‘ Vertragsart & ‘ Standort & ‘ S TR ‘ Einstufung ‘ Status & ‘ Abgelehntam &
Ramba Zamba 18.08.2014 Regular Employment Frankfurt 1 In Bearbeitung
Bio. Boss 18.08.2014 Regular Employment Jeddah 1 In Bearbeitung
Blackdog Tusik 18.08.2014 Temporary Staff Jeddah 1 In Bearbeitung
Burch Timmy 18.08.2014 Praciical Trainee Leinfelden-Echterdingen 1 In Bearbeitung
Armet, Diplomand 18.08.2014 Graduand Frankfurt 1 In Bearbeitung
Bosch Carl 18.08.2014 Pracical Trainee Leinfelden-Echterdingen 1 In Bearbeitung
ischer, Ofto 18.08.2014 Regular Empl Wdnchen 1 In Bearbeitung
Bravo. Tester 18.08.2014 Reaular Frankfurt 1 In
= i

Figure 6.3. Search screen for applicants

29

6. Evaluation Procedure

[Armer, Praktikant - Bew. b... X

&) @ hitps/ , . / ot

e ||B- Google

PlrE & A=

Bewerbung bearbeiten

+ Abschlieen * Abbrechen

[4 |

Schwerbehinderung [

Staatsang Deutsch |~
2. Staatsang Schwez |+

Arbeitserlaubnis erf.

Bewerbungsquelle
Stellenausschreibung -
Initiativbewersung]

Bewerberdaten Kontaktdaten

Titel [T Mobil [+49 123 12345678

Name* [Armer] | Telefon [+49 123 123456-78
Vorname* [Prakikant | Fax [+4912312345679

Zusatz1 [uno] E-Mail [armer. de
Zusaz2 D) T des Bewerbers
. [‘ Immer erreichoart

Strake/Nr* |Dustere strate |[13 J

Land* Deutschland | =

PLZ/OM [70173 | stutigart

Geschlecht® © weiblich @ mannlich

Geburtsdatum* ‘150@ 1996

Gsburtsort (|

£ Glaser, Dagmar
=0

Daten zur Bewerbung
Eingangsdatum*

In Papierform
Untemehmenseinheit
Standort*

Zustandiger Bereich®

|18.08.2014

™}
NT Consufing |+
Franidurt -

|[Berutsorientierung » |

Gehaltsvorstellung per annum [15000

Eintritts datum

Bemerkung Eintritts datum

Vertragsart®

Name der Hochschule
Studiengang®
Geplanter Abschluss

[18.022015

0 bald wie mdglich

Practical Trainee -

|Universitdat Ulm

[Informatik

Bachelor |~

Figure 6.4. Page with detailed information about the application

]

”Initiativbewerbung” twice. Since the UI underneath the checkbox depends on its state,
each click triggers an AJAX request.

After all four steps have been completed, the tester first stops the recording and then
logs out of the application and closes the two tabs to ensure that the next test will start in a

new session.

30

Chapter 7

Evaluation Results

This chapter provides the documented evaluation results of the eight selected load testing
tools (see Section 4.2).

7.1 JMeter

The manufacturing company of JMeter is Apache and the license of this load testing tool is
Apache 2.0. The version tested in this elaboration is JMeter 2.11, which is free to use for
companies and private persons. JMeter 2.11 can be ran on every operating system as long
as it has a working Java Virtual Machine (JVM).

"\, HTTP(S) Test Script Recorderjmx (CAUsers\Philipp\Deskiop\HTTP(S) Test Script Recorderjmx) - Apache JMeter (211 r1554548) - =
Datei Bearbeiten Search Start Optionen Hilfe
@l alle V4 = b §
Delal &4 €=l «]=]4] == o & ? 208 00 -
9 & Bewerbung bearbeten ST " R " 1=
¢ [Thread Group eques
44 HTTP Request Defautts ‘uame: [ntmi |
¢) Recording Controller ‘
o 7 novasrmicontentindex xhtml
r glnwurm’cun er; indiex xhtmi / . ’rwm: server Timeouts (il
novaermavax.faces.resource/novaerm.css X) ”) i |
I8 o o Server Name oder IP: | |Port Number: Connect: Response:
o novaermiresourcesimagesfiogo. png [Pz, T
o #* movaermresourcesimagesiavicon.co . I:E -
Implementation: Protokall (tto]: [htips WMethode: [POST Content Kodierung: [UTF-8
o #* movaermicontent]_securty_check v s ps_| post_[~] 9
o #* movaermicontentindex xhtmi =l |praa: | oy
o 77 inovasrmiavax faces resourceiprimetaces.css. o _ "
o 172 Movsernteva feces resourcsiovaerm.ore [] Automatisch Redirects folgen [¥] Folge Redirects] Benutze KeepAlive [Use forPOST [] patible headers
o / fa yiiuery-piu Body Data
o 77 inovasrmiavax faces resource/novasrmmin -
Lo . Parameter die mit dem Request gesendet werden:
o £ novsermmessagesis Name wert Encodieren? mit B
r . st [variaces patiaiaja frus -
L p PR javaxfaces source fform]_idt240 =
P & - javaxfaces partial execute @all E
- fa
o fnliabasmomierevioy | [t oo Lot oo L] e o]
o 4 [novaermicontentinaex xhimi —
o #* movaermicontenuinaex xhtmi Datel mit dem Request senden:
- fa g Dateiname: | Wert des “nameAtiibutes: | MIME Type
o #* movaermicontentindex xhtmi
o #* movaermicontentindex xhtmi
-
L e e | |
-
L Proxy Server !
L "ServevName oder IF: JPort Number: Benutzemame | Passwort 1| ||
T Embedded Resources from HTML File:
-
{D Hole alle Bilder und Java Applets (nur HTWL Dateien) [Use concurrn pe URLS must match L
1 B

Figure 7.1. JMeter’s Ul

31

7. Evaluation Results

7.1.1 Download and Installation

JMeter comes packaged as a zip archive. There is no setup required other than extracting
the archive and providing a JVM. In particular, there is no selective installation and no
helper for plug-in installation. To simplify the search for and installation of suitable plug-
ins, the website jmeter-plug-ins.org provides predefined sets of common plug-ins. The source
code of JMeter is freely available.

7.1.2 User Interface

The user interface is rather complex and has only partly been translated to languages
other than English. The main concept is to build a tree of elements that form the test. All
kinds of different elements like tools for recording, the recordings themselves, controllers
for the execution, results are organized in that main tree. Adding new elements requires
experience, a good tutorial or lucky guessing, since items are not labeled intuitively. There
are no wizards or beginner tips that introduce the interface and help with the first steps.
For the experienced user, the JMeter user interface serves its purpose and allows for
quick interaction with the software. JMeter does not provide an undo/redo feature.

7.1.3 Workload Specification

JMeter allows recording requests through a proxy server. While this proxy server works
with all major browsers, JMeter does not configure or open them automatically. The HTTPS
certificate also needs to be installed manually.

For the JSF View State ID, there is no dedicated feature in JMeter to automatically
handle or even detect it. However, JMeter is able to deal with the View State, since it
supports variables. Detailed instructions to manually configure the View State ID handling
are available on the internet.

WebSocket support is provided through a plug-in. Though the capability is very simple.
One can send and receive messages and specify the connection to be used. Also it is not
possible to record the ongoing WebSocket connection, hence the communication has to be
created by hand.

Recorded requests are not grouped automatically, but they can be grouped manually
after the recording is completed. This is a little cumbersome, though. Renaming, reordering
and deleting recorded requests as well as creating entirely new ones is easily possible.

JMeter uses a sophisticated GUI for viewing and editing request details. Request
parameters can be edited quickly in a table.

JMeter provides integration with various scripting languages. However, none of them
can be used to drive a load test from code entirely. Instead, JMeter offers several points
of integration with the scripting languages: Timers, pre- and post-processors, samplers,
assertions and listeners can be implemented as a script instead of defining them on the UL
The older ones of the supported languages are BeanShell and BSF. While their interpreters

32

jmeter-plug-ins.org

7.1. JMeter

still work, they have been deprecated in favor of a JSR-223 interpreter, which—among
others—also supports BeanShell, JavaScript, and many others.

Although JMeter is able to include the scripts from external files, so that an external
editor could be used, it also provides an integrated editor with syntax highlighting. Other
than that, the editor has only few features, which include bracket highlighting and block
folding—but there is no auto completion or integrated documentation.

There is not much documentation on how to use the scripting languages in JMeter. The
most important information (that is the available variables) is given directly in the editor
window. And of course, there is a general documentation of the scripting languages’ syntax
available on the internet.

In addition, JMeter has a (small) expression language to evaluate variable values for
request parameters, etc.

7.1.4 Execution

JMeter does not offer a pre-test execution. It is possible to combine different test parts, also
by using loops and branches. While JMeter does not offer a specific feature for running a
set of requests with varying parameters, a limited kind of parametrization can be achieved
by duplicating an entire sub-tree.

Natively,]Meter only offers constant load generation with ramp-up. More complicated
workload specifications can be achieved with plug-ins or manually by using timers and
loops.

Setting up a distributed load generation environment is simple and JMeter both starts
and stops/aborts distributed execution quickly.

JMeter shows most of its results already during the test execution. It cannot import
external data or use profiling tools to collect additional data. Distributed execution is also
possible and very easy to set up.

7.1.5 Monitoring

JMeter shows most of its results already during the test execution. But it is not able to
import external data or use profiling tools to collect additional data.

7.1.6 Organization, Presentation and Export of Test Results

JMeter does not have a result management; results are stored in special nodes in the tree.
Running a subsequent test either overwrites the existing results, or mixes them with the
new results.

Results are presented using graphs and tables. There is a variety of “listeners” available
to collect and display different kinds of data. The design is quite simple and graphs
sometimes do not scale correctly so that the actual information is too small and/or the
graph does not fit the containing window.

33

7. Evaluation Results

Most of the graphs can be exported as images and the raw data can be exported in CSV
format. When used with the U], all exports need to be triggered individually. In headless
mode the export is done automatically. The final results contain request and response
times, appropriate utilization concepts within the same graph and performance values
represented by the PerfMon-Profiler.

7.1.7 Maintainability

To detect outdated load test specifications, the various response assertions in JMeter can
be used. However, these are mostly designed to detect server failures. In particular, there
is no feature to compare responses for similarity to a recorded response. With some
manual work, it is possible to create reasonable assertions, and JMeter offers several ways
to do so. There are assertions for duration, length and title of the response, simple (string
based) matchers, and for more complicated cases there is the scripting language integration.
Altogether, a detection for changed applications can be hand-crafted in JMeter.

When the application has changed, it is rather difficult to adjust the tests in JMeter.
While reordering and editing of single requests is easily possible, there is no feature to
modify multiple requests at once. Therefore, the most efficient solution to, e.g., react to a
changed JSF ID is to open the file in a text editor and use the search-and-replace function
there.

The fact that JMeter uses an XML based file format makes the latter quite easy. Aside
from being easily editable from other tools, the XML format is also well suited for version-
ing.

Modularization is possible in JMeter by moving requests to new modules in the
”"WorkBench” and then using the "Module controller” to include them into workload
specifications. While the interface and implementation of this feature is plain and simple, it
is still very effective in combination with the drag-drop functionality in [Meter’s main tree.

7.1.8 Extensibility

JMeter has a wide interface for plug-ins that gives users the opportunity to extend nearly
every aspect of the tool including the support of other protocols and the introduction of
new graphs.

7.1.9 Support

JMeter has an integrated HTML documentation that is also available online. While the
offline viewer is quite difficult to handle, the contents are comprehensive and helpful. For
additional help, there is both a forum and a mailing list. Many hints, tips and tutorials in
video and text format can be found on the web. The wiki was not accessible during our
evaluation.

34

7.2. loadIT

7110 Summary

JMeter is the only open source tool we evaluated. While the GUI is very complex and
sometimes cumbersome to use, there is enough documentation and a large community
to help with problems. Besides that, JMeter shines through it’s extensibility which led to
many useful plug-ins. With the “Module controller” and the versionable file format [Meter
also allows for sustainable load testing.

7.2 loadIT

loadlT is based on JMeter. Its manufacturer NovaTec offers the proprietary tool free of
charge, unless it is being used by other consulting companies.

7.2.1 Download and Installation

Up to the tested version 1.3, the tool required a license that could be obtained by registration.
In the newer version 1.4, loadIT can be installed by simply downloading and extracting a
zip archive. On Windows, the BAT file to start the tool did not work (though this may be
due to misconfiguration), but the SH file intended for Linux did.

7.2.2 User Interface

Although loadIT uses a more modern Ul design, the interface structure is basically the
same as JMeter’s. NovaTec offers additional tree elements annotated with ”(NT)” that
provide more features and are slightly more usable. In particular, loadIT has good default
settings like the “Prepopulate default test tree” feature.

While experienced users and also JMeter users will easily find their way in loadIT, the
user interface might still be unneccesarily complex for beginners.

7.2.3 Record and Play and Further Editing

loadIT provides a couple of improvements that simplify the creation of workload specifica-
tions. It has a modified proxy server and recorder, which is capable of opening the default
browser automatically and is easier to set up. However, it cannot configure the browsers,
either.

The JSF View State ID can be handled by a dedicated ”“extractor”, which needs to be
activated manually and works fine.

The JMeter WebSocket plug-in seems not to be compatible with loadIT.

Recorded requests are grouped automatically in a reasonable way and (re-)grouping
them manually is easier than in JMeter. Renaming, reordering and deleting recorded
requests as well as creating entirely new ones is easily possible.

35

7. Evaluation Results

-loadit-1.3\load i

- NovaTec LoadIT (1.3.7.20120006) based on Apache IMeter

File Edit Search Run Oy

o/0

- [TestPlan

4l Cookie Manager
-4 HTTP Request Defauts
8% InspectT Header
- Glnha\ assertion
= | Test Scenarie
- BewerbungAnzsigen
“- () BewerbungAnzeigen
‘View Results Tree
‘Aggregate Report (NT)
orkBench
) HTTP Proxy Server (NT)
I Bewerbunghnzeigen
-1 inovaermcontenti_securiy_check
JInovaerm/content_security_check
Constant Timer
HTTP Header Wanager

[Trinidad JSF ViewState Extractor

4t HTTP Header Manager
#7 inovaermiavax faces resourceliqueryliauen)
#7 inovaermijavax. faces resourcelprimefaces |
£ Inovaermiiavax faces.resource/queryfiauery

Inovaermiavax.faces.resource/novaerm_p
#7 Inovaermjavax.faces.resource/magesiuric
£ Inovaermiiavax faces resource/imagesiui-ic

Configuration | Recorded Respense | Recarded Respanse (L)

HTTP Request with recorded response

[ames | stml

Comments

Vieb Server
’rsewev Name or IP: [§{HOST}

Port humber:

[[

HTTP Request

proto ety [rigs | vetnos: [v conmtencanss | |

Path: | xhtml

Follow Redirects

edirect Automatically

Parameters | post Body

/se multipart/form-data for HTTP POST

Send Parameters With the Request:

Name: Value

[Encose? | incuce Equais?

Add from Cipboard | | Delete

Inovaerm/contentindex xhimi
Inovaerm/contentindex xhiml
Inovaerm/contentindex xhimi
Inovagrm/contentibew erbunglbewerbunganzeig|
Inovaerm/contentibewerbungibewerbunganzeig|
Inovaermicontentbew erbung/bewerbunganzeig|

i 3

Send Fies Wit the Request:

File Path:

| Parameter Name: | MIME Type:

] [elete

Proxy Server
"5&1\/&1 Name or IP: |

rtmber: 08 Usrnne | Jpassord ||

Optional
Retrieve All Embedded Resources

Use as Monitor.

ave response as MD5 hash?

Embedded URLS must match: |

(a) Request view in loadIT

-loadit-13\loadit-tests\testplans\novaermBewerbungAnzeigen.jmy) - NovaTec LoadIT (13.7.20120006) based on Apache JMeter

Eile Edit Search Run Oy

e

0/ =

- J4 TestPlan

= BewerbungAnzeigen2

-4 Cookie Manager
.48 HTTP Request Defautts
4fi nspectT Header

) BewerbungAnzzigen2
orkBench

HTTP Proxy Server (NT)
=8 BewerbungAnzeigen

1) novaermicontentil_securty_check
-1 iovaerm/contentindex xhtmi
Inovaerm/content/index xhtmi
Inovaerm/contentfindex. xhtml

7

Inovaerm/contentibew srbunglbewerbunganzeig|
& inovaermicontentibew erbungibewerbunganzeig|

) S(URL-EXTYindex xhtm
i]

#7 S{URL-EXT}]_securty_check

7 SIURLEXT)ndexxhtml

7 movasrmussbavas: taces resourcetiuery’g
47 Inovaermwebljavax faces.resourcefiauery/
/" Inovaermwebljavax faces resourcefnovaer
#7 Inovaermwebljavax. faces.resource/mages/
Inovaermwebliavax. faces.resource/images/
7 novasrmwebiavas: taces resourcenmagest
&7 Inovaermwebiping

¥ S{URL-EXTbewerbung/bewerbunganzeigen xh
7 S{URL EXTypewsrbungbeverbunganzeige]
47 novaermwebijavax faces.resource/fleuplog
£ Inovaermwebiping

i 3

Test Steps | Test overview | Errors / Agents|

indude threzd group name i label

Lobel [#Samples | Average NFR 95%Line | NFR 95% Error

Sent (Bfrea.)]

Sent (KB/s)

Throughp.

r]

[Rec. @lpa..[Rec. @req)| Rec. 6E1)
0|

62,7

45

12,7

4,614)

10906

4754

0,7

2,307]

TOTAL 30 0 0

1071,5

1851

12,4

6,520

Test duration: 0:00:04 Total bytes sent: 56.490

Total bytes received:

4.870.482

Save in DB Il

Copy to dipboard

36

(b) Results table in loadIT

Figure 7.2. loadIT’s UI

7.2. loadIT

7.2.4 Scripting

In contrast to JMeter, loadIT only provides the BeanShell scripting languages—and none of
the others. Also, there is no syntax highlighting in loadIT.

7.2.5 Execution

In addition to the features that are already included in JMeter (see Section 7.1), loadIT is
able to retrieve dynamic request parameters from a central database, which distributes
them to the load agents. Also, there are some advanced features for the deployment and
synchronization of load agents that are not part of our evaluation criteria. Distributed
execution is also possible and very easy to set up.

7.2.6 Monitoring

loadIT shows most of its results already during the test execution. It is integrated with
DynaTrace and NovaTec’s inspectIT to get profiling data.

7.2.7 Organization, Presentation and Export of Test Results

Like JMeter, loadIT does not have an integrated report management, but it is able to store
results to a database. Also, it provides more detailed and structured tables. The final
results contain request and response times, appropriate utilization concepts within the
same graph and performance values represented by the PerfMon-Profiler.

7.2.8 Maintainability

All of JMeter’s response assertion features are available in loadlT, too, except for the missing
scripting languages. Additionally, there is a feature to automatically compare the actual
responses during test execution with recorded responses. This feature is not automatically
active during test execution and it will not cause the tests to fail. Instead, it can be called
manually after a test execution to compare the results. The comparison works quite well in
the default configuration and can be adjusted manually using a configuration file, so that
values that are known to change (like session IDs) will not be recognized as errors. A small
drawback is the integrated diff viewer, which fails to display large results (longer than 300
lines) and truncates them, so that the conflict is sometimes not visible. Nevertheless, the
feature can be used in a reliable way once it has been adjusted to avoid false positives.

Mass-edit is not present in loadIT, either. The file format is similar to JMeter and allows
for manual search-and-replace as well as versioning. Modularization is possible in the same
way, but loadIT additionally supports the modularization by grouping recorded requests
automatically.

37

7. Evaluation Results

7.2.9 Extensibility

loadlt inherits the plug-in interface of JMeter (see Section 7.1.8).

7210 Support

loadIT has a wiki which cant be joined by users. For help, there is a mailing list (of JMeter)
and you are able to contact the manufacturers directly via e-mail or telephone.

7211 Summary

By extending JMeter, loadIT inherits all of JMeters strong points, but is not always able
to eliminate its drawbacks. The major improvements of JMeter include the handling of
the JSF View State ID, dynamic request parameters, the itegration with DynaTrace and
inspectlT, and the improved modularization.

7.3 NeoLoad

The manufacturing company of NeoLoad is Neotys and the license of this load testing tool
is proprietary. The test version is 4.2.2. This version runs on Windows, Linux, Solaris, IBM
AIX, HP-UX, and is also executable by VMware.

7.3.1 Download and Installation

NeLoad requires a license that can be obtained by registration. Users also have the
opportunity to download a 30 days trial-version and NeoLoad has a build-in update
function. NeoLoad is not open source.

7.3.2 User Interface

The user interface of NeoLoad has a clear and compact structure and the tool functions are
all very user-friendly and comprehensible. NeoLoad guides the user step-by-step through
the test process and automatically opens tabs where configuration is needed. Another
point to mention is the undo-function.

7.3.3 Record and Play and Further Editing

NeoLoad allows recording requests through either a proxy server or a tunnel. The proxy
server works with all major browsers and NeoLoad automatically configures and opens
them. When using HTTPS, a certificate has to be installed manually. NeoLoad also provides
automatic JSF support, dynamic parameters, and support of the WebSocket protocol. All
WebSocket connections are automatically recorded along the HTTP requests and listed in

38

€ Neoload - [NovaERM']

7.3. NeoLoad

ST =]

File Edit Share Record Run Tools Help

deH ey Rr|cOFRA V|

" Runtime A2 Resuits
@l Virtual Users | @& populatons
Servers -] =
) Virtual User Profies Request type: [Use a manual definition =
i Virtuallser et
efiiton
& mnit
&5 Actions Method: [POST | Postcontenttype: |[Form |
-3 Logn R il |
@) frovaermmebfping Server: | L8 locahost < path: | chtml =
@ xh L
= @] fovaermweb/contentfindex, xh POST parameters | URL path parameters|
] rovaermmeb/contentinge:
@] fnovaermwebjcontent/index. xh Name
JBvax.aces.source
- -
g i | | | hevexfaces partal.exear= [form: tzbber 1] idt157:radioBewerbungFilter
@] fnovaermmebfping_1 javax.faces. partial.render Tijdt Formrtabber: 1 idt P L
k- - avar.faces.behavior event change
|~ | | favaxfoces.partal.event change
" & gt] |fom fom
& ed L[| fomsbberion tiss tiduse et selcton
§) Virtualser_2 it65:groupTaskList_selection
- < g idt1 st
{23 Shared Containers | < || [omtabbers st selection N |
: idt e E
i o = ¥
b P fomicber iy tisrxrtmtane
< 0 » formtabber: L1_dt157:tFlterVorname
Actions @ form:tabber: 1:j_idt157: thlFilterTaskResults_selection
) Delay A formetabber: L1_idt1571_idt254radAbsegeDurch folse
© Loop 14 idt157:.
" While form:tabber_actvelndex T
(2) If...Then. .. Eise F
(@ varizble Modifier
(£ Container
{} Try...Catch —
 Go to nextiteration [@wnvsia. || Q advanced.. | [o vaidaton
s >

€ Neoload - [TestProjekt*]

(a) Request view in NeoLoad

(=@ %]

File Edit Share Record Run Tools Help

dedHevar ea@@FEadyeo

& Design

2 Testsurmary | 22 Vaies | 7 Graphs | @ Enors | @, serts | g Loss [i)

4" Runtime

Results: [12:06- 16 1 2014« | (3 Tools

Summary Results summary
Resuits summary
i y = = S = =
ST Project TestProjekt Load Policy « The population Populationt is constant vith 10 users.
Hot szots Scenario scenario
Em Startdate Jul 16, 2014 12:06:52 PM Description
Lty Enddate Jul 16, 2014 12:06:58 PM
. General statistics — T Filters None
=hEn LG Hosts localhast Debug Disabled
Virtual Users
Containers
Push messages
Pages Stafistics Summas
Media Contents
Monitors Total pages 0 - Average pagesis 14 -
Scenario
Total hits 50 - Average hitsis 71 -
Main graphs
Total users launched 10 - Average Request response time 04995 -
Average page response f .
WErAQE page eapEnaz e Total iterations completed 10 - Average Page response fime. 0897 s -
Average request respanse time
Average response time (containers} Total throughput 055 8 - Average throughput 0.8 Mers -
Hits per second Total hit errors o - Error rate 0% -
Emmors Total action errors. 0 - Total duration alerts 0% -
Throughput
Distribution ofPage Response Tmes — -HosLA -Passed (3 -Accepmble @B- Fale
(Y NEOTYS
100 { Fioo
@ orsd L
& ors 78
g
3 Dg

T

(b) Results summary in NeoLoad

Figure 7.3. NeoLoad’s Ul

the UL Sent messages are listed as single entries while recieved messages are listed in the
view of the connection request.

39

7. Evaluation Results

Recorded requests are not grouped automatically, but they can be grouped manually
after the recording is completed. Reordering and deleting recorded requests as well as
creating entirely new ones is easily possible. But unfortunately, it is not able to export the
configured action groups as a script.

During the recording NeoLoad takes screenshots of the pages and shows them with the
requests which makes it easier to orient oneself in the list of requests.

7.3.4 Scripting

NeoLoad allows the user to insert JavaScript sections and also provides documentation.
The editor has syntax-highlighting but unfortunately no auto completion.

7.3.5 Execution

NeoLoad offers a pre-test execution to validate the workload specification and the test
environment. Various elements, like loops, branches, and delays, make it possible to create
advanced workload specifications.

When configuring the load intensity, the user can specify a constant load intensity, a
ramp-up, peaks, a custom function, and combinations of these.

Setting up a distributed load generation environment is very simple and convenient. It
is customizable and has an implemented abort function.

7.3.6 Monitoring

NeoLoad shows most of its results already during the test execution. It can also import
external data or use profiling tools to collect additional data itself.

7.3.7 Organization, Presentation and Export of Test Results

The data of each test execution is stored in a separate data set. NeoLoad also has a feature
to compare the result of different executions.

Results are presented using graphs and tables. The design is very clear and graphs
always scale correctly. Also, the extent of represented information is satisfying.

Most of the graphs can be exported as images: RTF, PDF, HTML, and XML. The raw
data can be exported in CSV format. All exports can be triggered individually or in groups.
The final results contain request and response times, appropriate utilization concepts, and
performance values.

7.3.8 Maintainability

To detect outdated load test specifications, the various response assertions in NeoLoad can
be used. However, these are mostly designed to detect server failures. In particular, there is

40

74. WAPT

no feature to compare responses for similarity to a recorded response. With some manual
work, it is possible to create reasonable assertions, and NeoLoad offers several ways to do
so. There are assertions for duration, length and title of the response, simple (string-based)
matchers.

When the application has changed, it is rather difficult to adjust the tests in NeoLoad.
While reordering and editing of single requests is easily possible, there is no feature to edit
multiple requests at once.

The modularization is provided with so-called “Shader Containers” that allow for such
modules (e.g., Login) to be used in multiple workload specifications.

7.3.9 Extensibility

NeoLoad is in no way extensible.

7.3.10 Support

NeoLoad has a manual which is accessible online and another one integrated in the load
testing tool itself. Many hints, tips, and tutorials in video and text format can be found on
the web or in the official forum. For additional help, Neotys is providing support contact
by mail and a phone hotline.

7.3.11 Summary

NeoLoad is a very easy-to-use tool that has nearly every feature we wished a good load
testing tool to have, including automatic JSF ViewState handling. The features we missed
were automatic grouping of request, automatic comparision of respones, and mass-edit of
requests.

74 WAPT

The manufacturing company of WAPT is Softlogica and the license of this load testing tool
is proprietary. WAPT is available in two editions: the regular for around 700 USD and the
Pro Edition with additional functionality for around 1,200 USD. We tested the regular as
well as the Pro edition and indicate the features only available to Pro users.

7.4.1 Download and Installation

The tested version of WAPT requires no registration. The manufacturing company of WAPT
also provides a demo version of their load testing tool and users have the opportunity to
choose a selective tool installation. WAPT is not open source.

41

7. Evaluation Re:

sults

[Uit e WAPT 1 Uit e il 15 s o SN

File Edit View Actions Tools Help

[N

g6k R

e B

Open Add Save SaveResults | Rec StopRec | VerifyTest | RunTest Stop Tect | Settings | Help

o Getting Started
@ Profiles
&y Profile
s page_2: https://localhost 8443/no]
#e page_3: hitpsi//localhost 8443/n0]
$¢ page & https,//localhost 8443/no]
#e page_5: https://localhost 8443/no]
#s page 6 https//localhost 8443/no)
g page B: https://localhost 8443/no|
page.9: hitps;//localhost:8443/n0]
#o page 17: hittps://192.168.0.204 :844
fie page_21: https://192.168.0.204 :844
Fi page_22: hitps://192.168.0.204 :544
-fip page 23: hitps://192.168.0.204 :844
Fi page 21: hitps://192.168.0.204 :844
& scenario
) Test Volume
- Log and Report Settings
Yy Results
£ Logs

Properties |Response processing

Method:

(e —

Name: page_8: https: localn sl
Server: localhost. Port: 8443 HTTPS
LRLPath: jnovaermuebjcontent/index.xhtm = [Flencode [@Y Use variable.

N e N

javax. faces.source

javax faces.partial.execute

javax. faces.partial.render

form:tabber:0:j_idt11:]_idt156

form

form:tabber:0:j_idt11:]_idt12:userTaskList_selection
dt11:_idt6S:groupTasklist_selection

form:tabber:0;]_idt11:] idt156
formitabber:0:3_idt11: dt156
form:tabber:0:]_idt1 1:tasklst
form:tabber:0:5_idt11: dt156
farm

_idt110:unassignedTaskList_selection

POST Parameters |LRL Parameters | HTTP Headers | Page Bements|
Name value Encode 9, nd
Javax. faces.partalajax e

(&
g

[l Find value.

Move Do

e v
P e IEE

User thin time from HEL] 10 [+ seconds

Ready

(a) Request view in WAPT

w1 et e e e W

File Edit View Actions Tools Help

E. B K
- B Gyl

e B

Mew Open Add Save SaveResults | Rec StopRec | VerifyTest | RunTest ctop Tect | Settings | Help

i Getting Started

@ Profiles

Performance | Bandwidth | Errors | Custom

cenario
1) Test Volume
-§ Log and Report Settings
) Results
-8 Summary Report
i) Performance Data
- Response Time
iy Bandwidth Usage
i Errors Report
bl summany
2-dY Profilel
i page_2: hitps://localhost 8443/no
W page_3: hitps://localhost 8443/no]
#ly page 4: https://localhost:8443/no]
i page_5: https://localhost 8443/no]
i page 6: https://localhost 8443/no)
-4l page_8: hitps://localhost.8443/no
¥ page.9: https//localhost 8443/no]
¥l page_10: https://192.168.0.204 :844)
¥ page_17: hetps://192.168.0.204 :844

Resample: MIN () MAX

: WW_W_\/\/\‘

0:00:00 0:00:08 0:00:16 0:00:24

-l page_18: hitps://192.168.0.204 :844
page 19: hitps://192.168.0.204 :844
% page 21: hitps://192.168.0.204 :844
 page_22: https://192.168.0.204 :844
B page_23: hitps://192.168.0.204 :544

-l page 24: hitps://192.168.0.204 :844

£ Logs

fi— v
Udap PR e

0:00:32 0:00:40 0:00:48

0:01:28 0:01:36

00144 0:01:52 00200

[+ Avgresponse tme, sec.

= Avg response time with page slements, sec
= Avg processing time, sec

Lo Avg download time, sec

|4 Sessions per second

L& Pages per second

7 Successful hits per second

2] Active users

Al

Readde

42

(b) Summary graph in WAPT

Figure 7.4. The Ul of WAPT

74. WAPT

7.4.2 User Interface

The user interface of WAPT has a clear and compact structure and the tool’s functions are
all very user-friendly and comprehensible. But unfortunately, it has no undo-function.

7.4.3 Record and Play and Further Editing

WAPT allows recording requests through a proxy server. Configuring it for SSL/HTTPS
is complicated. While the proxy server works with all major browsers, WAPT configures
and opens them automatically. WAPT even has an integrated browser, which is very
cumbersome to use though. Also, the HTTPS certificate needs to be installed manually,
without any help of instructions, because there are no official ones. WAPT supports
JSE, which has to be activated manually, but does not provide any introductions again.
Configurable WebSockets are also not provided in WAPT.

Recorded requests can be grouped automatically or manually after the recording is
completed. But the manual method is very laborious and the automatic one is too obscure
to understand it immediately. Renaming, reordering, and deleting recorded requests as
well as creating entirely new ones is possible.

7.4.4 Scripting

There is only a scripting language for the Pro version and also a very scarce documentation
for the user. The editor features syntax-highlighting but no auto completion.

7.4.5 Execution

WAPT offers a pre-test execution to validate the workload specification and the test
environment. It is possible to combine different test parts, also by using loops and
branches.

WAPT also offers a specific feature for running a set of requests with varying parameters
(better in PRO) and constant load generation only with ramp-up, peaks, and periodic
variants (only rectangular). It is not possible to specify custom load intensity functions.

Setting up a distributed load generation environment is simple, but only possible with
the Pro version. WAPT has an abort function and distributed execution is also possible and
very easy to set up.

WAPT offers (basic) response assertion. It is able to detect failed requests by checking
the response text for (the absence of) certain matches (“contains”). There is no feature
to compare the responses during execution with those recorded when the workload
specification was created. Furthermore, it is possible to detect responses that exceed a time
limit.

43

7. Evaluation Results

7.4.6 Monitoring

WAPT shows most of its results already during the test execution and is able to use profiling
tools to collect additional data; only with the Pro version though. External data cannot be
imported.

7.4.7 Organization, Presentation and Export of Test Results

WAPT does not have a dedicated result management interface; results are stored a special
files, which can be organized in the file system only.

Results are presented using graphs and tables. The design is very clear and graphs
always scale correctly. But unfortunately the extent of the represented information is
limited.

The overall report can be exported in HTML format; individual graphs can be exported
as images (PNG). The raw data can be exported in CSV format, but only in the Pro version.
The final results contain request and response times and appropriate performance values.

7.4.8 Maintainability

To detect outdated load test specifications, the various response assertions in WAPT can be
used. Unfortunately the response assertions in WAPT have to be configured manually and
that is a very strict and inflexible way to do so. Only the response time and the presence
and absence of a string can be validated. However, these are mostly designed to detect
server failure. In particular, there is no feature to compare responses for similarity to a
recorded response. The editing of several actions is not possible: the search functions
works successfully in all areas, but not the replace function. Modular testing is also not
executable and in fact there does not exist a versionable file format.

7.4.9 Extensibility

WAPT is in no way extensible.

7410 Support

WAPT has a manual which is accessible online as well as one integrated in the load testing
tool itself. Many hints, tips, and tutorials in video and text format can be found on the web.
For additional support, there is both a community forum and customer support via e-mail.

7411 Summary

The functionality of WAPT is limited in nearly every category making it useless for load
test with very special requirements. Also the lack of features that support maintainability
hinder the use for sustainable load testing in large projects.

44

7.5. RPT (Rational Performance Tester)

7.5 RPT (Rational Performance Tester)

The manufacturing company of RPT is IBM and the license of this load testing tool is
proprietary. The price for the tool itself is around 2,253.86 EUR (as per July 2014). The
test version of RPT used in this elaboration can be executed on Windows, Linux, and AIX
systems.

7.5.1 Download and Installation

The tested version of RPT requires a license that can be obtained by registration. The
manufacturing company of RPT provides a demo version of their load testing tool. Another
beneficial point is that this load testing tool has an integrated update function. IBM does
not provide source code for the tool.

7.5.2 User Interface

As usual with IBM products, the user interface is based on Eclipse RCP. Therefore, the
structure of the RPT user interface is quite intuitive for regular Eclipse users, but may be
confusing for other load testers, since it does not exactly follow the process of load testing.
As part of the Eclipse integration, RPT offers the typical search and undo functions and
organizes its data into projects.

7.5.3 Record and Play and Further Editing

RPT allows recording requests through a proxy server. This proxy server works with all
major browsers and RPT configures and opens them automatically. The HTTPS certificate
does not need to be installed manually.

Recorded requests can be grouped automatically or manually after the recording is
completed. Renaming is only possible for action groups; reordering, and deleting recorded
requests as well as creating entirely new ones is easily possible.

RPT automatically correlates response and request data, including the JSF ViewState.

7.5.4 Scripting

RPT uses Java as its scripting language. There are good syntax-highlighting and auto
completion functions available (default Eclipse functionality).

7.5.5 Execution

RPT offers a pre-test execution to validate the workload specification and the test environ-
ment. It is possible to combine different test parts, also by using loops and branches.

45

7. Evaluation Results

[3 igen.testsuite - Rational I T T IEN = o)

Datei Bearbeiten Navigieren Suchen Projekt Ausfishren Fenster Hife
- B AR SERS) BRSNSl Schneller Zugriff i [| (& Leistungstest | B3, Testausfahrung

n =0 2ozp 9= BewerbungAnzeigen 53 = O

i Testnavigator 33

Test - BewerbungAnzeigen
b (o tabs

BewerbungAnzeigen [01.08.2014 13:38:48] Testinhalte Testelementdetails
BewerbungAnzeigen [11.07.2014 12:5218] v

Filterted eingeben Optionen ~ Anforderungsatt

liy Leistungsbericht - BewerbungAnzeigen [L. August 2014 13- ?
iy Leistungsbericht - zp [1. August 2014 13-35-40 MESZ] %= e Version: 11 | Methode: [POST = | [V]- Biimaranforderung
Uiy % BewerbungAnzeigen -
iy Leistungsbericht - zp [1. August 2014 13-46-08 MESZ] | = P M -
E ms1n i
2o [01.08.2014 13:46:08) 1>) Testressourcen - Ve & &
P [01.08‘2014 o § 0 - [NovakRM Einfugen [Klicken Sie mit der rechten Maustaste, um weitere Optionen anzuzeigen |
2p [OL0B. 99 = URL:
2p [01.08.2014 12:31:53] - @ Startseite e Auswinien] B ngvastmweb/ content/indexxntml
2p [01.08.2014 13:20:54] - T
: | Entf
2p [01.08.2014 1311.06] 7 0 Amwort 200 OK ntfemen -
zp [11.07.2014 13:25:36] L p— Daten:
Ik) E
(& Positionen b A i resol [Nachopen | Datenblock . Codi Hinzufigen 5
N BIES“;M » 2 localhost8443 novacmmwebjovarfaces eso|~| TNochunten | |[TSRSaior Joieriocespania potate - UTF
- - b A : fjavax faces.resol e
& “ localhost8443/ novaermwebfjavax faces.reso e
Leistungstestlauf =9 4 J 1€
coliza—ioion » 72 localhost:8443/ novaermweb/messages.js [machster | [l o, " | | Substitution entfernen
2| s & = & “8 localhost:8443/novaermwebyjavax faces. eso)
§
BewerbungAnzeigen [1. August 2014 13:38:48 MESZ] i+ “2 localhosti8443/novaermweb/javax faces.reso) {. Ausfihren | Anforderungsheader
gAnzeig g [
» “% localhost8443/novasimuweb/javax faces.reso Headername Wert | [Hinzufagen
1“2 localhost8443/novaermwebyjavax faces.reso Debuggen o T -
4 [Bewerbertbersicht = i Aindemn
o A Anzeigen User-Agent Mozilla/5.0 (Windows NT ~
N il < m] v Entfermnen
L Fe——] E 2 Antwort: 200 - OK 2
Benutzerkommentare Klicken Sie hier, um Kemmentare cin: o Febler 53 B Protokolca s) U vep
Antwortzeit [H:M:S] 0:00:18
Benutzer (gesomt] B 0 Febler, L Warnung, 0 Andiere
Vi fenet asean ~| Beschreibung Ressource Pfad Position Typ
l o b s @ Warnunaen (1 Element)
Textdaten: "javaxf tial, K rtial, ? | &1 Aktiviert
=

(a) Request view in RPT
@ s 3 testsuite - Rational AT TN e e Je— o]

Datei Bearbeiten Navigieren Suchen Projekt Ausfiihren Fenster Hilfe
= e HER a2 R R SRR SRR Schneller Zugriff | | (% Ceistungstest | B Testausfunrung

n =0 2ozp 9= BewerbungAnzeigen 53 = O

i Testnavigator 33

Test - BewerbungAnzeigen
I (= tabs

BewerbungAnzeigen [01.08.2014 13:38:48] Testinhalte Testelementdetails
BewerbungAnzeigen [11,07.2014 12:5318] v

Filtertex eingeben Optionen ~ Anforderungsatt

iy Leistungsbericht - BewerbungAnzeigen [1. August 2014 13- s
iy Leistungsbericht - zp [1. August 2014 13-35-40 MESZ] % Version: 11 | Methode: [POST = | [J]- Biiméranforderung
Iy % Bewerbunghnzeigen -
iy Leistungsbericht - zp [1. August 2014 13-46-08 MESZ] P 3 .
[01.08.2014 13:46:08] » g Testressourcen = Ve mic1n &
e o » 12 NovalRM Einfiigen [Kiicken Sie mit der rechten Maustaste, um weitere Optionen anzuzeigen |
2p [01.08.2014 12:35:40] 4 T Startseite URL: 5 decantml
D108 013 155153) 25 . [Auiiien | B navasrmweb/ content/indexxntm
2p [01.08.2014 13:20:54] - e
y im Entf
2p [01.08.2014 1311.06] 7 0 Amwort 200 OK ntfemen -
zp [11.07.2014 13:25:36] L o p— Daten:
- ")
(& Positionen b A i resol [Nachopen | Datenblock . Codi Hinzufigen 3
N BT:“;M il » 83 localhost 8443 novaermwebjovax faces.eso|~| “Nachunten | |[Tedatem javariaces pania sy UF
= 5 b A : fjavaxfaces.reso,
& 8 localhost8443/ novaermwebfjava faces.reso =
-5 b A i resol =
Leistungstestiaufe &3 » “8 localhost:8443/ novaermweb/messages.js [Mechster | [l , ¥} tution entfernen
Beo|lha Iy N & 2 localhost8443/novaermweb/javax faces.reso
BewerbungAnzeigen [1. August 2014 13:38:48 MESZ] i #2 localhost8443/ novaermweb/javax faces.reso 2. Ausfishren Anforderungsheader
i “ localhost:8443/novaermweb/javax faces.reso) o Headername. Wert Hinzufagen
& “E localhost:#443/novaermweb/javax faces.reso Lebuggen i T
b ost localhost: Fndem
b Anzeigen User-Agent Mozilla/5.0 (Windows NT ~
il < m] v Entfernen
] L 4 Antwort: 200 - OK 2
Benutzerk t Klicken Sie hi [2 tare ein: <
enutzerkommentare icken Sie hier, um Kommentare in o Febler 53| B Protokolc .) - -n
Antwortzeit [H:M:S] 0:00:18
Benuteer gesort] h 0 Fehler, 1 Warnung, 0 Andere
P fe . - Beschreibung ° Ressource Pfad Position Typ
ll I v » @ Warnunaen (1 Element)
Textdaten: "javaxf tial, K rtial, p | & Aktiviert

(b) RPT’s UI during execution

Figure 7.5. The UI of RPT

RPT also offers an excellent feature for running a set of requests with varying parameters.

46

7.5. RPT (Rational Performance Tester)

It provides constant load generation and peaks with ramp-up, but there is no periodic load
intensity available.

The load generation of RPT is customizable and has an abort function. Distributed
execution is also possible and very easy to set up.

RPT offers response assertion. In particular, it is able to detect failed requests by
checking the response text for (the absence of) certain matches. There is also a reliable
feature to compare the responses during execution with those recorded when the workload
specification was created.

7.5.6 Monitoring

RPT does not show the results during the test execution. But it is able to import external
data, by IMB Tivoli, or use profiling tools to collect additional data.

7.5.7 Organization, Presentation and Export of Test Results

RPT has a result management. Results are presented using graphs and tables. The design
is not one of the beneficial points of this load testing tool, but the graphs always scale
correctly. Also, the extent of the represented information is satisfying.

Reports can be exported in HTML or RTF format. The raw data can be exported in CSV
format. All exports can be triggered individually or in groups. The final results contain
request and response times and appropriate performance values.

7.5.8 Maintainability

Load test specifications can be executed once locally to check if they still work. RPT
automatically checks for typical error codes/messages and also lists “potential correlation
errors”, which can be used to detect relevant application changes. There are, however, a
few false positives and they cannot be set to ignore manually (unlike with other errors in
Eclipse).

Inserting manual response assertions is also possible using checks for response time,
size, title, or content matching. The latter can be done very conveniently by highlighting
the respective passage in the recorded response and adding it to the response check.

Editing request data individually is cumbersome because RPT does not split up the
HTTP GET parameters, but shows all of them as a single-line text block (in GET query
format). Mass-editing is still possible and can be done very easily, because RPT offers a
good global search-and-replace function that can be applied to very specific parts of the
test.

Modular test design is part of RPTs design concept. Using compound tests, the user
can assemble complex load test specifications from individual recordings using loops and
branches if required. The clearly structured tree view makes it easy to do so. All parts of a

47

7. Evaluation Results

load test design are stored as individual files and organized in folders within the Eclipse
project. This causes many files to be created. Unfortunately, the RPT specific file formats
including the most important file format (.testsuite) are not based on plain text files, so
that they cannot be versioned. As a solution, IBM provides CVS integration from the IDE,
which has not been evaluated in this study.

7.5.9 Extensibility

Besides HTTP other protocols can be included through plug-ins. RPT can also be extended
though Java that can be used to perform various tasks like setting up the test environment
and gathering additional data during the execution.

7.5.10 Support

RPT has a manual which is accessible online and another one integrated in the load testing
tool itself. Many hints, tips, and tutorials in video and integrated text format can be found
on the web. RPT also has a moderated forum in which users are able to interchange.
For additional support, there is a customer support via e-mail and telephone available.
Although there is a wiki for RPT hosted on the IBM website, it is mostly empty.

7511 Summary

RPT has all features needed for common load testing. A plus is the automatic correlation
of data that can be a big time saver when creating the workload specification. The fact that
RPT is based on Eclipse RCP makes it a good choice for users that are already familiar
with Eclipse or other IBM products.

7.6 LoadUIWeb Pro

The manufacturing company of LoadUIWeb Pro is SmartBear and the license of this load
testing tool is proprietary. The price for the tool itself is around 6,439 EUR. The test version
of LoadUIWeb Pro used in this elaboration can be ran on Windows/Linux/AIX.

7.6.1 Download and Installation

LoadUIWeb Pro requires a license that can be obtained by registration. Users also have the
opportunity to download a 14-days trial version and LoadUIWeb Pro has a build-in update
function. Since LoadUIWeb Pro is not open-source, there is no source code delivered with
the executable.

48

7.6. LoadUIWeb Pro

 LoadUIWeb Pro - CAUsers\SSN\Documents\LoadUIWeb 2 Pro Projects\ TestProject ATestProject2 tp

© File Edit View Test Tools Try Help .

2 ®E.

| Project Explorer

9 i | % By [X, | @ Record User Scenario [y [Stop | ¢ Set Parameter Values...

| TestProject2
£ [8] LoadTesting
£ Cloud
£}] Scenarios
&) Seenariol
1 stations
2] Tests
&) Test1
£ [TestProject2 Logs
Test1 [1 virtual users] Log
Test1 [10 virtual users] Log .

% [| & workspace

@) StartPage X |] Scenariol X

CEEEs)| (3 meractve Hep
[

[Group by Pages| Group by Custom Pages No Grouping

Group by Connections

Page

(@] Page 0001 Login - NovaERM
[F-)Request 0001 (index. xhtml)

£ Request 0002 {theme. css xhtmi)

£ Request 0003 {novaerm, css. xhimi)
®) Request 0006 (j_security_check)
[F5)Request 0007 (index.xhtml)

4 Request 0008 {primefaces. css. xhtm)
-] Request 0008 (jquery.js.xhim)
Request 0010 (jquery-plugns Js. xhim)
-] Request 0011 {primefaces. s xhimi)
4 Request 0012 (subscrbe)

% Requestoo13

Think time =
s Mg o

| General | Request | Response

o POST jnovaermweb content/index.xhtml HTTP/1 1 =]
Accept application/am, texthaml, */%; g=0.01 2
Accept-Encoding gz, deflate
Accept-language en-USenig=0.5
Cache-Control no-cache
Connection keep-alive

L Content-Length 495
b Content-Type application/x-waw-form-urlencoded; charset-UTF-8
Cookie _0BGOCHOMLHFZGW.nbook

5] Request 0014 (novaerm_pre.js.xhim)

4 Request 0020 (serverEndpoint)

- ¥ Request 0021 {index.xhtml)

) Request 0022 (index. xhtmi)
- (#) Request 0023 {index.xhtml)
[F*)Request 0024 (bewerbunganzeigen xhtml)

(filevlnad. css. xhimi)

farm %3Atabber %:3A0% 3A]_idt11%3A] idt1:
form%%3tabber %3A0%34]_idt11%%3A] Idtss
|| | formes3atabberse3anvs3a)_dt1%saj_idt1:

notify3.dropbox, com:8! notify8,dropbox.com 80

Enab.. Recordedtiost Simulated Host Port
dients1.google.com:30 dients1.google.com 80
localhostig443 localhost 8443

~_activelndex
ljavax. faces ViewState

Faces-Request partal/ajax
localhost:8443
xhtml) SR =
Parameter Value
Request 0015 (novaerm_post j.xhim) avax. faces partial ajax e
- [=]Request 0017 (ui-icons_38667F_256x240.png. xhimi) ovaxfaces.source formes3A]_idt397
[=IRequest 0018 (ui-cons_898989_256x240.png xhtml) || ||favax, faces partisl.execute %40zl
-+ [=]Request 0019 (ui-cons_516 161_256x240 png.xhiri) javax. faces partia render formek3atabber
form%%34j_idt357 form%s3Aj_idt357
tebid tabBewerbungen
form form

@form®3Atabber_activelndex_7
@javax.faces ViewState

Text Parameters

Form | Data Modifiers

Cookie Replacers

TS, Seftings |

What Do You Want to
Do Next?

Create or Open a Test Project

Record Traffic

Verify User Scenario

Create Load Test

Parameterize Requests

Correlate Requests With Responses
Define Validation Rules for Responses
Run Tests

Select Servers and Metrics to Be Monitored
Analyze TestResults

Learn more

i Introducing LoadUlWeb
{2 Getiing Started Tutorial
{2 LoadUNWWeb Samples

LoadUIWeb on the Web

B Forums

2 Frequently Asked Questions

2 Blogs

2 Send a lessage to Support Team

Interaciive Help Home Page

CAPS NUM SCRL

(a) Request view in LoadUIWeb Pro

A LoadUMeb Pro - C:AUsers\SSN\Documents\Load UWeb 2 Pro Projects\TestProject2\TestProject2 Itp

e Edit View Tegt Tools Try Help .

[3@,

7, Project Explarer

Ve |h BB X,
£ (28] (4 workspace

£ TestProject2
£ @] LoadTestng
2, Cloud
1] Scenarios
i) scenariol
% stations
B8] Tests
&) Testt
- [2] TestProject? Logs
Test1 [1 virtual users] Log - ...
{Test1 [10 virtual users] Log ..

@ Record User Scenario) 14 Stop | o4, Set Parameter Values...

@ stertpage % [|&] Scenaro1 x [[a) Tests % | & Test1 [10 virtual users] Log - ... X

Report
int... Exportto HTML - Export to PDF...

General Information

Project: TestProject2
Test: Testl
Result: Success

Date / Time Scenario Completion Time
Date 28.08.2014 Average 2m41,98 5
Start Time of the Test 14:17:04 Maximum 2m57,92s5
End Time of the Test 14:2002 Minimum 2m24025
Initialization Time 282 ms .
Page Load Time
Errors / Warnings Average 2m 33,045
Maximum 2m42,435
Total Warnings 0 (view)
— Minimum 2m23,73s
Total Errors 0 (view)
Time to First Byte
Load Profile (Steady load) Po— sas
Maximum Number of Virtual Users 10 Maximum 54,135
Minimum Number of Virtual Users L] Minimum 10ms
Test Duration 2m57,925

Load Profile Graph

[mteractive Help
[Seftings |

What Do You Want to
Do Next?

Create or Open a Test Project

Record Traffic

Verify User Scenario

Creale Load Test

Parameterize Requests

Correlate Requests With Responses
Define Validation Rules for Respanses
Run Tests

Select Servers and Metrics to Be onitored
Analyze Test Results

Learn more

i Introducing LoadUlwed
il Getting Stared Tutorial
{4 LoadUvVeb Samples

LoadUIWeb on the Web

2 Forums

3 Frequently Asked Questions

4 Blogs

2 Send a Message to Support Team

Interactive Help Home Page

CAPS NUM SCRL

(b) Result summary in LoadUIWeb Pro

Figure 7.6. The Ul of LoadUIWeb Pro

49

7. Evaluation Results

7.6.2 User Interface

The user interface of LoadUIWeb Pro has a clear and compact structure and the tool
functions are all very user-friendly and comprehensible. The menu lists Undo/Redo
actions, but they do not work at all.

7.6.3 Record and Play and Further Editing

LoadUIWeb Pro allows recording requests through a proxy server. This proxy server works
with all major browsers and LoadUIWeb Pro configures and opens them automatically.
The HTTPS certificate does not need to be installed manually. JSF is also supported but has
to be activated manually. LoadUIWeb Pro does not have an integrated browser and does
not provide any configurable WebSockets.

Recorded requests can be grouped automatically or manually after the recording is
completed. But the automatic method has a very bad detection. Renaming, reordering, and
deleting recorded requests as well as creating entirely new ones is possible. Unfortunately,
it is not possible to copy requests or deactivate a request for testing purposes.

7.6.4 Scripting

LoadUIWeb Pro has no scripting elements.

7.6.5 Execution

LoadUIWeb Pro offers a pre-test execution to validate the workload specification and the
test environment. It is possible to combine different test parts with so-called complex
scenarios. These complex scenarios support static loops but no branching.

LoadUIWeb Pro also offers a feature for running a set of requests with varying param-
eters. It provides constant load generation and ramp-ups, but there is no periodic load
intensity available. There is also no way to run response-checks for error messages.

The load generation of LoadUIWeb Pro is customizable and has an abort function.
Distributed execution is also possible and very easy to set up.

7.6.6 Monitoring
LoadUIWeb Pro shows most of its results already during the test execution. But it is not
able to import external data or use profiling tools to collect additional data.

7.6.7 Organization, Presentation and Export of Test Results

LoadUIWeb Pro has a result management. Results are presented by using graphs. The
design gives a favourable impression and the graphs always scale correctly. Also, the extent
of the represented information is satisfying.

50

7.6. LoadUIWeb Pro

Reports can be exported in HTML or PDF format. All exports can be triggered
individually or in groups. The final results contain request and response times and
appropriate utilization concepts. Unfortunately, the raw data cannot be exported in a
structured format like CSV.

7.6.8 Maintainability

To detect outdated load test specifications, the various response assertions in LoadUIWeb
Pro can be used. However, these are mostly designed to detect server failures. In particular,
there is no feature to compare responses for similarity to a recorded response. The
validation of responses is possible, but offers only string-matching.

When the application has changed, it is rather difficult to adjust the tests in LoadUIWeb
Pro. While reordering and editing of single requests is easily possible, there is no feature
to modify multiple requests at once. Therefore, the most efficient solution to, e.g., react to
a changed JSF ID is to open the file in a text editor and use the search-and-replace function

there.

The fact that LoadUIWeb Pro uses an XML based file format makes the latter quite easy.
Aside from being easily editable from other tools, the XML format is also well suited for
versioning.

Modularization is possible in LoadUIWeb Pro with so-called “Complex scenarios’
which is a list of other scenarios to execute.

7.6.9 Extensibility

LoadUIWeb Pro is in no way extensible.

7.6.10 Support

LoadUIWeb Pro has a manual which is accessible online and another one integrated in
the load testing tool itself. Many hints, tips, and tutorials in video and text format can be
found on the web. LoadUIWeb Pro also has a moderated forum in which users are able to
interchange. For additional support, there is a customer support via e-mail and telephone
available. During the evaluation we found no wiki or mailing list.

7.6.11 Summary

LoadUIWeb Pro has all basic features needed by a load testing tool, but lacks functionality
to customize the workload specification and results in an extensive manner.

51

7. Evaluation Results

7.7 LoadRunner

The manufacturing company of LoadRunner is HP and the license of this load testing tool
is proprietary. The price for the tool itself is around 0.56-2.00 USD per virtual user and day.
The test version of LoadRunner used in this elaboration can be ran on Windows XP and all
other types of Windows Servers.

7.7.1 Download and Installation

The tested version of LoadRunner requires a license that could be obtained by registration.
The manufacturing company of LoadRunner is also providing a demo version of their load
testing tool and users have the opportunity to choose for a selective tool installation. But
unfortunately there is no source for this tool available.

7.7.2 User Interface

LoadRunner is split up into multiple applications for designing, running and analysing
load tests (besides some more applications). These applications have three different designs
and user interface principles, which is confusing. The user guidance is quite satisfying
but shows a deficit at some points. A beneficial criterion is that LoadRunner has an
undo-function.

7.7.3 Record and Play and Further Editing

LoadRunner allows recording requests through a proxy server. This proxy server works
with all major browsers and LoadRunner configures and opens them automatically. Also
the HTTPS certificate does not need to be installed manually. LoadRunner supports JSF
but is only able to operate with one View State ID automatically.

The recorded requests are organized as code and therefore it is inherently possible to
reorder and delete requests as well as creating new ones. Unfortunately, the generated
code is barely commented and the variable naming is not always clear.

LoadRunner supports the WebSockets protocol quite remarkably. All connections and
sent messages are recorded and included in the script. Additional callback functions for
the OnOpen, OnMessage, OnError and OnClose allow the implementation of client logic
and/or logging.

7.74 Scripting

The languages available are C, Visual Basic, and Java. The corresponding documentation
is very comprehensible. Beside that the editor also features syntax-highlighting and an
auto-complete function.

52

7.7. LoadRunner

&~ 8~ 5 |EE @ 5 % B & DesignSudo| = [§ §l| Defaultlayout - 0 | HRLN | (@~ Help ~
Solution Explorer T X Bewerb..gANzeigen3 Adion.c X i
& & Solution Untiied 78 “Referer=https://loca ontent/index.xhtml”,
& & Bewerbur 7 "Snapshot=t4.inf",
[@ Actions 72 "Mode=HTHL",
& vuser_init 73
& Adtion 7 wax.faces partial .ajax", "Value=true", ENDITEM,
@ vuser_end 75 vax.faces.source”, "Value= :1:j_idt157:radioBewerbungFilter”, ENDITEM,
- 76 vax.faces.partial.execute”, a. orm:tabb: j_idt157:radioBewerbungFilter”, ENDITEM,
© [ExraFiles 77 vax.faces.partial.render”, "Value=form:tabber:1:j_idt157:bewerbungtblFilters formstabber:1:j_idt157:tblFiltersGroup”, ENDITEM,
[globals.h 78 vax.faces.behavior.event”, "Valueschange", ENDITEM,
[§ Run-Time Setings 79 ., "Value=change", ENDITEM,
% Parameters 89))
& Replay Runs Passed] 81 serTaskList_selectio Value=", ENDITEN,
82 roupTaskList_selection”, "Value=", ENDITF
83 dt110:unassignedTaskList_selection”, "Value LoadRunner APl Constant ENDITEM
84 :radioBewerbungFilter”, "Value=false", ENDITEM,
85 idt157:txtFilterName”, "Value=", ENDITEM,
86 idt157:txtFilterVorname"”, "Value=", ENDITEM,
57 idt157:tblFilterTaskResults_selection”,
[28 idt157:j_idt254:radAbsageDurch”, “value=false”, ENDITEM,
89 B j_idt254:txtAbsageBemerkung”, "Value=", ENDITEM,
98 itabber_activeIndex", "Valus
91 ENDITEM,
92
93
24 web_submit_data(”index.xhtml_3",
e 5 https://loca index.xhtml”,
Output X
Replay - =] Q Options - |

[Replay stafus passed View summary Started at 28.08.2014 15:42:48 Elapsed time: 00:06

Action.c(132): web_url("ping") was successful, 5 body bytes, 153 header bytes, 11 chunking overhead bytes [Msgld: MMSG-26335]

Action.c(148): web_custom request(”bewerbunganzeigen.xhtml 2") started [Msgld: MMSG-26355]
Action.c(140): web_custom_request("bewerbunganzeigen.xhtnl 2") was successful, 322 body bytes, 426 header bytes, 13 chunking overhead bytes [MsgId
Action.c(165): web_custom_request("bewerbunganzeigen.xhtml_3") started [MsgId: MMSG-26355]

2 Solution Explorer | # Step Navigator [output | @1 Tasks | [Emors | 7 Run-ime Data | (7] Search Resulls

© Script parsing succeeded & Replay statuspassed In91 col 70

(a) Workload specification as script in LoadRunner

ew Groph Reports Tools Mindows Help

P05 7 EQ%C Wh&E | BE|B|R
‘E“‘“”:‘P‘“'E’[h - B X1 Surmmary Report | Running Vusers [[Hits per Second] Throughput | Transaction Summary | Average Transac..n Response Ti &
) v "
Hits per Second g
B Sessiontla 24 =
& Reports [raz 1 Vusers 2
21 summary Report 2 I a5 7 Vuserl0 8
B Graphs o X 1 Vuser =
i Running Vusers mia . B
1 % ::f;}:f"”d 18 75 % Vusers z
[ik] Transaction Summary 16 [11.985 1 Vusers :o
il Average Transacton Response Time = [1 Vuser 0 £
§ 14 15,884 1 Vuser12 —
& 15,054 1 Vuser! 1 =
@ i
B E o713 52 Vuser s
g 774 E Vusers g
£ [e 1 Vuser 0 =
8 16,689 1 VuserS &
6 16,03 % Vuserl 0 L
[Properties x| l16.954 % Vusers
4
] e —
= 2 user
) . [27.578 1 Vuserl
Description Displays the number of hits made
Filter None 0 28,638 1 Vusers
Granslarty 5 Sesonds 0000 00:10 0020 0030 0040 0050 0100 0110 0120 01:30 0140 0150 0200 | bog % Vusarl2
Groop By Elapsed scenario time mm:ss o7 % Vuserl1
Measurement BreakDown [Legend 311 1 Vuser13
Title His per Second mmee% 2% 2 0220 [30.375 1 Vuserld
£[Col=l]see =] [~ [Graph Minivum [~ [verage [~ [Graph Mazimum Iiéé: gg :““"ED
VI |His [0.000 [10800 |z35m baars i \/HXSYWZ
¥ user
|25.083 1 Wuser12
5113 1 Vuser! 1
Displaps the number of hits made on the Web server by Vusers |32.454 18 Wuser10
during each second of the load test. This graph hefps you evaluste b3 146 1 Vusarl 0 =
the: amaurk of lnad Vusers generate, in terms o the number of his
ERNN Y Eis [MO wwmx] < v
Controller OutputMessages
|(f) Complete data [[

(b) Results view in LoadRunner

Figure 7.7. The Ul of LoadRunner

53

7. Evaluation Results

7.7.5 Execution

LoadRunner offers a pre-test execution to validate the workload specification and the test
environment. Because the requests are organized in code, it is very easy to implement loop,
branches, and parametrization.

Concerning workload intensity, LoadRunner features constant load with ramp-up and
custom functions.

Distributed execution is also possible and very easy to set up.

7.7.6 Monitoring

LoadRunner shows most of its results already during the test execution and uses profiling
tools to collect additional data. But unfortunately it is not able to import external data.

7.7.7 Organization, Presentation and Export of Test Results

Results are presented by using graphs and tables. While the user interface looks very
crowded, the graphs always scale correctly and a wide range of information is available.

LoadRunner can export to a wide variety of file format, including HTML, PDF, some
image formats and also CSV and XLS as structured formats.

7.7.8 Maintainability

The fact that the requests are organized as code, makes the workload specifications easy to
maintain. Modularization is achieved by simply extracting the requests into a new function.
Also code is very easy-to-use with versioning software. The editing of multiple requests at
once can be done with the text-replace function.

To detect outdated workload specifications LoadRunner allows for response validation
and the comparison of responses to the recorded ones only during the pre-test execution,
which is adequate for the purpose of maintainability.

7.7.9 Extensibility

LoadRunner is designed on top of an extensibility framework called Addin Tree. This
allows everyone to fully customize the tool with plug-ins.

7.7.10 Support

LoadRunner has a manual which is accessible online and another one integrated in the
load testing tool itself. Many hints, tips, and tutorials in video and text format can be
found on the web. LoadRunner also has a moderated forum in which users are able to
interchange. For additional support, there is a customer support via e-mail and telephone

54

7.8. Silk Performer

available and an exclusive hotline for clients. During the evaluation we found no wiki or
mailing list.

7711 Summary

LoadRunner organizes the workload specification as code, which inherently adds many
features like response validation and modularization. Apart from that, LoadRunner has a
wide functionality that allows it to be used for nearly every use case.

7.8 Silk Performer

The manufacturing company of Silk Performer is Borland and the license of this load
testing tool is proprietary. The test version of Silk Performer used in this elaboration can
only be ran on Windows XP.

Unfortunately we were not able to fully evaluate Silk Performer, because the load
generator was not able to communicate with our test application. Hence we only show our
results as far as we have come in the evaluation procedure.

7.8.1 Download and Installation

The tested version of Silk Performer requires a license that could be obtained by registration.
Borland is also providing a demo version of their load testing tool and users have the
opportunity to choose for a selective tool installation. Another beneficial point is that this
load testing tool has an integrated update function. But unfortunately there is no source
for this tool available.

7.8.2 User Interface

The user interface is quite extensive but still ease-to-use. The user is guided with wizards
and Silk Performer also features an undo-function.

7.8.3 Record and Play and Further Editing

Silk Perfomer allows recording requests through a proxy server. This proxy server works
with all major browsers and Silk Performer configures and opens them automatically. Silk
Performer also features the automatic handling of session ID’s, including the JSF ViewState.

The recorded requests are organized as code and therefore it is inherently possible to
reorder and delete requests as well as creating new ones. Unfortunately, the generated
code is barely commented and the variable naming is not always clear.

55

7. Evaluation Results

7.8.4 Support

Silk Performer has a manual which is accessible online and another one integrated in the
load testing tool itself. Many hints, tips, and tutorials in video and text format can be
found on the web, plus it has a wiki, too. Silk Performer also has a moderated forum in
which users are able to interchange. For additional support, there is a customer support
via e-mail. During the evaluation we found no mailing list.

7.9 Summary
This section gives a short summary of the evaluation results in the form of tables. The

entries evaluation result either on a binary scale (y/n) or on an ordinal scale (-/0/+)
defined in the criteria catalog (see Chapter 5).

56

Documentation and Support

JMeter | loadIT | NeoLoad | WAPT | RPT | LoadUIWeb | LoadRunner | Silk Performer
User Guide y y y y y y y y
Wiki y y n n y n n y
Tutorial: Text y n y y y y y y
Tutorial: Video y n y y y y y y
Integrated Manual y n y y y y y y
Code Documentation n omit. omit omit omit. | omit omit omit.
E-Mail / Contact Form | n y y y y y y y
Telephone n y y n y y y n
Customer-Hotline n n n n n n y n
Community Forum y n y y y y y y
Mailing List y y n n n n n n
Moderated Forum n n y n y y y y
Usability and Extensibility
JMeter | loadIT | NeoLoad | WAPT | RPT | LoadUIWeb | LoadRunner | Silk Performer

Simplicity - 0 + + 0 0 - 0

User Guidance - - + + 0 0 0 +

Undo-Function n n y n y n y y

Protocols y y n n y n y

Reporting formats | y y n n n n y

Record and Play - Supported Technologies

JMeter | loadIT | NeoLoad | WAPT | RPT | LoadUIWeb Pro | LoadRunner | Silkperformer

HTTPS y y y y y y y y
WebSockets y y y n n n y

Proxy-Method y y y y y y y y
Automatic Proxy-Configuration | n n y y y y y y
Firefox-Support y y y y y y y y
Chrome-Support y y y y y y y y
IE-Support y y y y y y y y
Integrated Browser n n n y n n n n
Automatic Opening n y y y y y y y
JSF-Support - + + - + + 0 +

Record and Play - Further Editing
JMeter | loadIT | NeoLoad | WAPT | RPT | LoadUIWeb Pro | LoadRunner | Silkperformer

Grouping automatic n y n y y y n n
Grouping manual y y y y y y y y
Renaming y y y y n y y y
Output as Script n n n n n n y y
Script-Commentation omit omit. | omit omit omit. | omit - -

Script Readability omit omit. | omit omit omit. | omit. 0 -
Output in the Ul y y y y y y n n
Reorder Requests y y y y y y y y
Deactivation of Requests | y y y n y n y y
Copy/Paste y y y y y y y y
Parameter-Modification | y y y y y y y y

Scripting

JMeter | loadIT | NeoLoad | WAPT | RPT | LoadUIWeb Pro | LoadRunner | Silk Performer
Documentation - - + 0 + omit. + 0
Autocomplete n n n n y omit. y n
Syntax-Highlighting | y n y y y omit. y y
Execution
JMeter | loadIT | NeoLoad | WAPT | RPT | LoadUIWeb | LoadRunner | Silk Performer
Composition y y y y y y y
Loops and Branching | y y y y y n y
Parametrisation - 0 + + + + +
Pre-Test Execution n n y y y y y
Constant Distribution | y y y y y y y
Peaks n n y y y n n
Periodic n n y y n n n
User-Defined y y y n y y y
Ramp-Up y y y y y y y
Distributed Execution | + + + + + + +
Test Abortion y y y y y y y

Maintainability

JMeter

loadIT

NeoLoad

WAPT

RPT

LoadUIWeb

LoadRunner

Silk Performer

Response-Validation

Automatic Response-Comparison
Group-Editing

Modular Test Design
Manageable file format

Overall

o< < B B

+ << B <

o< < B B

'8 BB Bx<

o< <N<Y<

o< < B3 3B

+ << B<E<

Results

loadIT

NeoLoad

WAPT

RPT

LoadUIWeb

LoadRunner

Silk Performer

Input Data and Test Environment
Content: Request/Response Times
Content: Throughput

Content: Utilization

Report Format

Selective Export

Profiling

Import of extern Measurement Data
Results during the Execution
Organization of serveral Data Sets
Comparison of Test Results

B B< BB oM< DB E
[}
a
o
=

S NN O < B

NN <YN<N<YY +<<S< B

S BN B<Y< +B<~< B

N BN +B8<< B

' B B

S<< B8 B53-B

< BN B +B<~< B

7.10. Conclusion

7.10 Conclusion

In this study, we selected eight load testing tools and evaluated them using the criteria
catalog we created beforehand. We now give our opinion on which tools to consider for a
given use case.

At first sight, all of the load testing tools evaluated in this study are quite similar and
have clearly influenced each other: They all offer a recording-based approach to generate
workload specifications in the form of a list of requests, let the user correct, refine and
parametrise the generated requests. But beyond that, the tools differ significantly in the
number and quality of their features, as well as the ideas and concepts they are based on.

Some users may need to use a particular tool, because it is the only one that offers
integration with their system under test or the rest of their testing environment. For other
users, who are not restricted to a single tool, we provide a guideline to facilitate their
decision.

For users with little or no experience in load testing, who just want to try and find out
the costs and benefits of load testing, we do not recommend to use one of the open-source
tools, only because they are free and small in download size. Instead, the trial versions
of the commercial products should also be considered, which are also free. The decision
for a suitable load testing tool should be made beforehand, possibly with the hints below.
NeoLoad and WAPT provide a user-friendly interface and help getting started.

Probably one of the first decisions to be made is the decision between a script-based
and a Ul-form-based tool, because it has a great impact on how the user works with the
tool and how changes, parametrisation, versioning, etc. need to be done. LoadRunner
and Silk Performer are the only two tools in this evaluation with code-based workload
specifications.

If the load tests are to be employed in a production environment on a day-to-day basis,
we recommend looking at loadIT and LoadRunner, because they offer the best features to
help maintain workload specifications.

Furthermore, the offered features of the tool should be considered. While no user will
need all of the features, we recommend to make sure that the desired features are available
in the preferred tool using the tables above, especially for WAPT and LoadUIWeb Pro,
since they are far from being feature-complete. Choosing a tool with many features that
are not needed for the particular use case may on the other hand result in confusion and
slower working speed. This might be the case with IBM’s Rational Performance Tester,
which offers most features.

Last but not least, one has to decide between an open-source and a commercial tool.
This is especially important for more complicated or unusual kinds of load tests, since they
might require changes to or internal knowledge of the tool. While the commercial vendors
offer support for their products (which is often included) and can therefore help with
special cases, the free tools have many special cases already built-in or available through
plug-ins, but they may be hard to find and understand. Being the only truly open-source
tool in the evaluation, JMeter can also be adjusted by the tester to fit the requirements. This

61

7. Evaluation Results

is probably how loadIT was founded, but unfortunately loadIT is not open-source, so that
it cannot be adjusted as easily.

For good WebSocket support, we recommend LoadRunner, because of its ability to
simulate client-side logic, which is needed to test complex WebSocket communication.

The above thoughts can be useful to decide for or against a particular load testing tool,
but we explicitly point out that only a small selection of the available load testing tools
have been evaluated, so that we recommend looking at other similar tools before making a
decision.

The purpose of this study was to find a good load testing tool for the test application
NovaERM. In our opinion, NeoLoad would be best suited. It comes with all required
features (especially excellent JSF support) and is not overfilled with functionality, which is
not needed. NeoLoad’s simple and clear user interface is also an important point, because
NovaERM is developed mostly by working students. Hence, the staff is changing on a
regular basis. Also, if NovaERM will use WebSockets in the future, NeoLoad already has
basic support.

62

Bibliography

[Abbors et al. 2012] F. Abbors, T. Ahmad, D. Truscan, and I. Porres. Mbpet — a model-based
performance testing tool. In A. Alimohammad and P. Dini, editors, 4th International
Conference on Advances in System Testing and Validation Lifecycle, page 1-8. IARIA, 2012.

[Apache Foundation 2014] Apache Foundation. Apache JMeter, 2014. URL nttp://jakarta.

apache.org/jmeter/.

[Cheung and Lee 2005] C. Cheung and M. Lee. The asymmetric effect of website attribute
performance on satisfaction: An empirical study. In System Sciences, 2005. HICSS ’05.
Proceedings of the 38th Annual Hawaii International Conference on, pages 175c-175c¢, Jan
2005.

[Feitelson 2002] D. G. Feitelson. Workload modeling for performance evaluation. In
Performance Evaluation of Complex Systems: Techniques and Tools, pages 114-141. Springer
Verlag, 2002.

[Hoorn et al. 2008] A. V. Hoorn, M. Rohr, and W. Hasselbring. Generating probabilistic and
intensity-varying workload for web-based software systems. In Performance Evaluation —
Metrics, Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop (SIPEW “08), volume 5119 of Lecture Notes in Computer Science (LNCS, pages
124-143. SPEC, Springer, 2008.

[NovaTec Solutions GmbH 2014] NovaTec Solutions GmbH. loadIT, 2014. URL http:

//www.loadit.de/home/.

[P. Haberl 2012] K. V. M. W. P. Haberl, A. Spillner. Survey 2011: Software test in practice,
2012. Translation of Umfrage 2011: Softwaretest in der Praxis, dpunkt.verlag.

[Roy et al. 2013] S. Roy, T. Begin, and P. Gongalves. A Complete Framework for Modelling
and Generating Workload Volatility of a VoD System. In IEEE Int. Wireless Communications
and Mobile Computing Conference, pages 1168 — 1174, Calgari, Italy, 2013.

[Schroeder et al. 2006] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus
closed: A cautionary tale. In Proceedings of the 3rd Conference on Networked Systems Design
& Implementation - Volume 3, NSDI'06, pages 18-18, Berkeley, CA, USA, 2006. USENIX
Association.

[Subraya and Subrahmanya 2000] B. M. Subraya and S. V. Subrahmanya. Object driven
performance testing in web applications. In APAQS, pages 17-28, 2000.

63

http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://www.loadit.de/home/
http://www.loadit.de/home/

[v. Kistowski et al. 2014] J. v. Kistowski, N. R. Herbst, and S. Kounev. Modeling variations
in load intensity over time. In Proceedings of the Third International Workshop on Large Scale
Testing, LT '14, pages 1-4, New York, NY, USA, 2014. ACM.

Bibliography

Declaration

We declare that this thesis is the solely effort of the authors. We

did not use any other sources and references than the listed ones.

We have marked all contained direct or indirect statements from
other sources as such. Neither this work nor significant parts of
it were part of another review process. We did not publish this
work partially or completely yet. The electronic copy is consistent
with all submitted copies.

Stuttgart, 2014/10/02

65

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Collaboration with NovaTec Consulting GmbH
	1.4 Document Structure

	2 Organization
	2.1 Timeline
	2.2 Phases
	2.3 Milestones

	3 Basics of Load Testing
	3.1 Meaning of Load Testing
	3.2 Performance Testing Basics
	3.3 Variants of Performance Tests
	3.4 Workload Specification Approaches
	3.4.1 Record-and-Play
	3.4.2 Scripting

	3.5 Workload Generation Approaches
	3.5.1 Open and Closed Workloads
	3.5.2 Load Intensity
	Constant
	Peaks
	Seasonal/Periodic/Cyclic
	Advanced Model-based Approaches

	4 Market Overview and Shortlist
	4.1 Market Overview
	4.2 Shortlist

	5 Criteria Catalog
	5.1 Scales
	5.2 Meta Criteria
	5.2.1 License
	5.2.2 Documentation
	5.2.3 Support
	5.2.4 System Platforms

	5.3 Non-Functional Criteria
	5.3.1 Usability
	5.3.2 Stability
	5.3.3 Extensibility

	5.4 Functional Criteria
	5.4.1 Supported Protocols (K.O. Criterion)
	5.4.2 Workload Specification
	Record-and-Play
	Scripting

	5.4.3 Execution
	Combination of Test Parts
	Parametrisation
	Pre-test Execution
	Workload Models
	Distributed Execution
	Test Abortion

	5.4.4 Reporting
	Report Contents
	Report Format
	Report Generation
	Report Management

	5.4.5 Maintainability of Workload Specifications

	6 Evaluation Procedure
	6.1 The System Under Test
	6.2 Test Environment
	6.3 Test Scenario

	7 Evaluation Results
	7.1 JMeter
	7.1.1 Download and Installation
	7.1.2 User Interface
	7.1.3 Workload Specification
	7.1.4 Execution
	7.1.5 Monitoring
	7.1.6 Organization, Presentation and Export of Test Results
	7.1.7 Maintainability
	7.1.8 Extensibility
	7.1.9 Support
	7.1.10 Summary

	7.2 loadIT
	7.2.1 Download and Installation
	7.2.2 User Interface
	7.2.3 Record and Play and Further Editing
	7.2.4 Scripting
	7.2.5 Execution
	7.2.6 Monitoring
	7.2.7 Organization, Presentation and Export of Test Results
	7.2.8 Maintainability
	7.2.9 Extensibility
	7.2.10 Support
	7.2.11 Summary

	7.3 NeoLoad
	7.3.1 Download and Installation
	7.3.2 User Interface
	7.3.3 Record and Play and Further Editing
	7.3.4 Scripting
	7.3.5 Execution
	7.3.6 Monitoring
	7.3.7 Organization, Presentation and Export of Test Results
	7.3.8 Maintainability
	7.3.9 Extensibility
	7.3.10 Support
	7.3.11 Summary

	7.4 WAPT
	7.4.1 Download and Installation
	7.4.2 User Interface
	7.4.3 Record and Play and Further Editing
	7.4.4 Scripting
	7.4.5 Execution
	7.4.6 Monitoring
	7.4.7 Organization, Presentation and Export of Test Results
	7.4.8 Maintainability
	7.4.9 Extensibility
	7.4.10 Support
	7.4.11 Summary

	7.5 RPT (Rational Performance Tester)
	7.5.1 Download and Installation
	7.5.2 User Interface
	7.5.3 Record and Play and Further Editing
	7.5.4 Scripting
	7.5.5 Execution
	7.5.6 Monitoring
	7.5.7 Organization, Presentation and Export of Test Results
	7.5.8 Maintainability
	7.5.9 Extensibility
	7.5.10 Support
	7.5.11 Summary

	7.6 LoadUIWeb Pro
	7.6.1 Download and Installation
	7.6.2 User Interface
	7.6.3 Record and Play and Further Editing
	7.6.4 Scripting
	7.6.5 Execution
	7.6.6 Monitoring
	7.6.7 Organization, Presentation and Export of Test Results
	7.6.8 Maintainability
	7.6.9 Extensibility
	7.6.10 Support
	7.6.11 Summary

	7.7 LoadRunner
	7.7.1 Download and Installation
	7.7.2 User Interface
	7.7.3 Record and Play and Further Editing
	7.7.4 Scripting
	7.7.5 Execution
	7.7.6 Monitoring
	7.7.7 Organization, Presentation and Export of Test Results
	7.7.8 Maintainability
	7.7.9 Extensibility
	7.7.10 Support
	7.7.11 Summary

	7.8 Silk Performer
	7.8.1 Download and Installation
	7.8.2 User Interface
	7.8.3 Record and Play and Further Editing
	7.8.4 Support

	7.9 Summary
	7.10 Conclusion

	Bibliography

