Institut fir Visualisierung und Interaktive Systeme

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Fachstudie Nr. 194

Untersuchung der Interaktions-
methoden und vorausgesetzten
Programmiererfahrung von
Simulationswerkzeugen

Steven GroBmann, Johannes Herter, Nicholas Rush

Studiengang: Softwaretechnik
Priifer/in: Jun.-Prof. Niels Henze
Betreuer/in: Dipl.-Inf. Miriam Greis

Dipl.-Inf. Lars Lischke

Beginn am: 14. April 2014

Beendet am: 14. Oktober 2014

CR-Nummer: 1.6.m

Kurzfassung

Der SimTech Cluster der Universitit in Stuttgart vereint viele Experten zum Thema Simulationen. Da
diese Experten aus den unterschiedlichsten Fachrichtungen kommen, bzw. die unterschiedlichsten
Dinge simulieren und modellieren, sind auch einige Mitglieder dabei, die wenig oder keine Pro-
grammiererfahrung aufweisen kénnen. Auf Grund dieses Umstandes soll ein Simulationsprogramm
entwickelt werden, dass moglichst wenig Programmiererfahrung voraussetzt. Im Vorfeld zur Entwick-
lung eines solchen Programms sollen, im Rahmen dieser Fachstudie, bereits im SimTech verwendete
Programme untersucht werden. Dabei liegt das Hauptaugenmerk auf den Interaktionsmethoden
und dem Grad der Programmiererfahrung. Mit Hilfe einer Onlineumfrage wurde eine Ubersicht von
verwendeten Programmen, die auch von den jeweiligen Teilnehmer der Umfrage bewertet wurden,
gesammelt. Auflerdem wurden Interviews mit einigen Mitarbeitern von SimTech gefiihrt, die einen
tieferen Einblick in die Verwendung der Programme liefern sollte. Basierend auf den Erkenntnissen der
Umfrage und der Interviews wurde eine Empfehlung fiir die Entwicklung des Simulationswerkzeugs
ausgesprochen.

Inhaltsverzeichnis

1. Einleitung

2. Verwandte Arbeit

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

Definitionen
Schritte im Simulationsprozess Lo
Simulationsmethoden L L
Vor- und Nachteile von Modellierung und Simulation
Multifunktionale Simulationsprogramme und Modellstrukturen
Programmierterminiologie und Methoden

3. Umfrage

3.1.
3.2.
3.3.
34.
3.5.

Fragebogen
Durchfithrung
Teilnehmer L e
Ergebnisse e
Diskussion

4. Interviews

5. Empfehlung

6. Zusammenfassung

7. Danksagung

A. Anhang
A.1. Fragebogen
A2, Ergebnisse

Literaturverzeichnis

11
11
12
12
13
14
19

23
23
26
27
27
33

35

37

39

41

43
43
47

77

Abbildungsverzeichnis

2.1.

3.1.
3.2.
3.3.
34.
3.5.
3.6.

PBD definieren einer Regel [DCST00] 22
Beschaftigung 27
Projektnetzwerke 28
Fachrichtung 29
Schritte e 30
Klassifizierung 31
Programmierfahigkeiten L 32

Tabellenverzeichnis

Al
A2
A3.
A4
A5.
A6.
AT
AS8.
A09.

A.10.
A1l
A2
A.13.
A.14.
A.15.
A.16.
A.17.
A.18.
A.109.
A.20.

CSUQ-Eclipse,C++ o o 52
CSUQ-ChemShell 53
CSUQ-demoa v v vt e e e e e e e 54
CSUQ-EMACS 55
CSUQ-GAMS . . . e 56
CSUQ-HyperCrash 57
CSUQ-LS-DYNA e 58
CSUQ-LS-PREPOST o e e e 59
CSUQ-Maple 60
CSUQ-Molpro 61
CSUQ-NetLogo o o oot 62
CSUQ-NumPro o e 63
CSUQ-Pandas 64
CSUQ-ParaView o e 65
CSUQ-Plato o 66
CSUQ-SAS . . o 67
CSUQ-Scenario Wizard 68
CSUQ-Self-written Java for Android 69
CSUQ-Self-written Python L L o 70
CSUQ-SGH+ o ot o e e e e e e 71

A21.CSUQ-Siesta oo e 72

A22.CSUQ-Vensim e e e e e 73
A23.CSUQ-MATLAB 74
A24.CSUQ-DUNE o 74
A25.CSUQ-(Open)CMISS o 75
A.26.CSUQ-ESPResSO o o 75

1. Einleitung

Seit ca. einem halben Jahrhundert werden Simulationen in den verschiedensten Fachgebieten genutzt
[Gorb]. Wihrend die Geschichte der Simulation beim Militar beginnt, findet sie heutzutage in der
Medizin, der Wirtschaft, den Sozialwissenschaften, dem Maschinenbau und vielen anderen Feldern
Anwendung [SB11]. Dabei wird in den meisten Féllen nicht die reine Simulation, sondern der ganze
Simulationsprozess (in der Literatur ,Modeling and Simulation® oder M&S [SB11]) betrachtet. Der
Simulationsprozess besteht aus mehreren Schritten, die von der Erstellung eines Modells, iiber
die Simulation, bis hin zur Visualisierung und Analyse reichen [SB11]. Dabei wird ein Modell als
Représentation der realen Welt beschrieben, das Ablaufe oder Ereignisse widerspiegelt. Die Simulation
selbst ermoglicht dann, das Verhalten des Modells unter gegebenen oder sich dndernden Bedingungen
zu beobachten.

Diverse Simulationsprogramme wurden bereits fiir die verschiedensten Fachgebiete entwickelt [Gora].
Multifunktionale Simulationsprogramme sollen Simulationen von Systemen aus verschiedenen Gebie-
ten ermoglichen. Dadurch muss lediglich die Bedienung eines Programms erlernt werden, was zusatzli-
chen Lernaufwand und weitere Kosten vermeidet. Multifunktionale Simulationsprogramme bendtigen
deshalb eine Modellierungssprache, mit der unterschiedliche Probleme sinnvoll dargestellt werden
konnen. Besonders diagrammbasierte Modelle konnten sich fiir diese Aufgabe qualifizieren [Gora].
Allerdings sind diese meist durch eine feste Auswahl an Komponenten beschrankt. Komplexe Systeme
benétigen jedoch Individualisierungsmoglichkeiten, um das System moglichst originalgetreu model-
lieren zu kénnen. Mit Hilfe von speziellen Interaktionsmethoden soll auch Programmieranfangern
ermoglicht werden, individuelle Funktionen zu implementieren [KP05]. Hierfiir sind grafische Ober-
flachen oder Methoden wie Programmieren durch Demonstrieren (Programming-By-Demonstration
(PBD)) [DCST00] besonders geeignet.

Auch die Universitat Stuttgart hat sich der Forschung im Gebiet der Simulationen gewidmet und
vereint dazu Experten aus unterschiedlichsten Feldern im Stuttgart Research Centre for Simulation
Technology ! (SRC SimTech). Zusitzlich ist der Exzellenzcluster Simulation Technology (SimTech),
welcher eine Graduiertenschule und einen Studiengang beinhaltet, in das SRC SimTech integriert.

Da nicht alle Experten des SimTech Clusters auch ausgepragte Programmiererfahrung haben, soll
ein Simulationswerkzeug entwickelt werden. Dieses Werkzeug soll unter der Pramisse entwickelt
werden, dass moglichst wenig Programmiererfahrung zur Benutzung nétig ist. Ziel dieser Arbeit ist
es, eine Empfehlung fiir ein solches Simulationswerkzeug auszusprechen, wobei der Fokus auf den
Interaktionsmdoglichkeiten und der nétigen Programmiererfahrung liegt.

"http://www.simtech.uni-stuttgart.de

1. Einleitung

Um einen Uberblick der aktuell verwendeten Simulationswerkzeuge im SimTech Cluster zu bekom-
men, wurde eine Umfrage erstellt. Diese Umfrage wurde mit Hilfe von einigen Mitarbeitern des
SimTech Clusters verfeinert und dient nicht nur zur Bestandsaufnahme. Zusétzlich wurden noch
weiter Informationen zu Interaktionsmoglichkeiten und nétiger Programmiererfahrung in diesen
Programmen abgefragt. Die so ermittelten Werkzeuge wurden auf die notige Programmiererfahrung
und die entsprechenden Interaktionsmoglichkeiten untersucht. Anhand dieser Untersuchung wurde
dann die Empfehlung ausgesprochen.

Diese Arbeitet gliedert sich in folgende Teile:

Kapitel 2 — Verwandte Arbeit: Definitionen und Erkldrungen zum Thema Simulation und Modellie-
rung.

Kapitel 3 — Umfrage: Aufbau der Umfrage und Présentation der Ergebnisse, sowie Diskussion zu
den Ergebnissen.

Kapitel 4 - Interviews: Zusammenfassung der abschliefend gefiihrten Interviews.

Kapitel 5 - Empfehlung: Anmerkungen und Empfehlung zur Umsetzung eines Simulationswerk-
zeugs.

Kapitel 6 - Zusammenfassung: Uberblick iiber die Arbeit, die Ergebnisse und unsere Empfehlung.

10

2. Verwandte Arbeit

Durch die Verwendung von Simulationen in vielen verschiedenen Anwendungsgebieten, werden
auch viele wissenschaftliche Arbeiten tiber Simulationen veroffentlicht. Das folgende Kapitel stellt
eine Ubersicht von Themenverwandten Arbeiten dar. Dabei liegt der Fokus auf grundlegenden In-
formationen zu Simulationen, Programme und Forschungen zum Thema intuitive Bedienung und
Programme mit generische Anwendung. Zunéchst werden Definitionen von wichtigen Begriffen
wie Modellen, Simulationen und Systemen geklart. Im Anschluss werden die einzelnen Schritte
des Simulationsprozess genauer betrachtet und zusatzlich géngige Simulationsmethoden erlautert.
Auflerdem werden auch einige Vor- und Nachteile von Simulationen und bereits existierenden Si-
mulationsprogrammen diskutiert. Des Weiteren werden multifunktionale Simulationsprogramme
vorgestellt und Programmierterminologien sowie zugehorige Methoden erlautert

2.1. Definitionen

Modelle sind Abschéatzungen bzw. Anndherungen an die reale Welt [SB11]. Dabei reprasentiert ein
Modell ein Ereignis, Objekt oder komplexes System, das nicht notgedrungen existieren muss [SB11].
Auch die Repriasentation eines fiktiven Objekts wird als Modell gesehen. Dabei kénnen Modelle
in verschiedenen Abstraktionsebene entstehen. So stellt die einfache Zeichnung eines Autos ein
relativ simples Modell dar, das wenig Einblicke in Ablaufe und Funktionsweise eines Autos gibt.
Eine Konstruktionszeichnung desselben Autos ist dabei ungleich Aufschluss- und Detailreicher und
ermoglicht tiefere Einblicke in die Funktionsweise des Autos. Nicht unbedingt muss ein Modell
das gesamte System erfassen. Es konnen auch kleine Teile des Systems modelliert und betrachtet
werden. Modelle sind nicht auf grafische Reprisentationen beschrinkt. Auch mathematische oder
physikalische Formeln stellen Modelle dar.

Simulationen dienen zur Uberpriifung und Validierung von Modellen und sollen das Verhalten eines
Modells mit unterschiedlichen Startwerten, oder einfach tiber die Zeit hinweg zeigen. Einfach gesagt,
ist eine Simulation die Rekonstruktion des Ablaufs eines beobachteten oder erfundenen Prozesses
[SB11]. Zu beachten ist, dass eine Simulation eines grafischen Modells nur schwer durchzufiihren ist.
Mathematische oder physikalische Modelle eigenen sich besser zur Simulation. So kann zum Beispiel
der Abrieb eines Reifens an einem Auto simuliert werden, wenn man vorher ein physikalisches Modell
erstellt, das die unterschiedlichen Faktoren (Gewicht des Autos, Straflenbelag, etc.), die zum Abrieb
fiithren, beriicksichtigt. Die Ergebnisse einer solchen Simulation kénnen verwendet werden, um zu
zeigen, dass das Modell den Prozess der echten Welt geeignet reprasentiert (simulierter Reifenabrieb
deckt sich mit den Beobachtungen am Auto). Wenn dies der Fall ist, kann man untersuchen, wie
unterschiedliche Faktoren das Ergebnis der Simulation beeinflussen und daraus Riickschliissel auf den
Prozess schlieffen. Nutzen finden Simulationen vor allem bei Systemen, auf die man keinen Zugriff

11

2. Verwandte Arbeit

hat (z.B. Sonnensystem), die zu nutzen zu gefahrlich waren (z.B. Kernreaktoren), deren Veranderung
inakzeptabel wire (z.B. Okosysteme), oder die einfach nicht existieren [SB11].

Wiederholt haben wir Systeme benutzt um andere Begriffe oder Prinzipien zu erkldren. Dabei sehen
wir Systeme als eine Sammlung kleinere Systeme oder auch Elementen, die durch Zusammenarbeit
und Interaktion ein gemeinsames Ziel erreichen [SB11], [LKK91]. Wenn wir also ein Auto als System
betrachten, fallt es uns nicht schwer kleiner Systeme oder Elemente in diesem System zu finden. Der
Motor, die Elektronik und die Lenkung (und natiirlich einige mehr) sind alles kleine Systeme, die auch
ohne das jeweils andere funktionieren. Allerdings kénnen sie nur zusammen die Aufgabe erfiillen,
sich fortzubewegen. Elemente konnen also Maschinen und Bauteile sein, aber genauso kénnen auch
Software oder der Mensch als Element eines Systems vorkommen [SB11], [LKK91]. Dabei ist zu
beachten, dass System meist in grofiere Systeme eingebettet werden konnen und es daher wichtig ist,
den aktuellen Zusammenhang genau zu beachten.

2.2. Schritte im Simulationsprozess

Der Gesamte Simulationsprozess, in der Literatur hiufig mit M&S (,Modeling and Simulation®)
abgekiirzt, umfasst nicht nur das Durchfithren der Simulation selbst. Zu Beginn des Prozess geht
es darum das System, das simuliert werden soll, zu analysieren. Dazu gehort das Hinterfrage und
Untersuchen von Teilsystemen, sowie die Prifung von Wechselwirkungen mit anderen Systemen
oder zwischen den Teilsystemen [SB11]. Dabei ist es wichtig moglichst genau und gewissenhaft
vorzugehen, da anhand von den gesammelten Daten im nichsten Schritt des Prozesses ein Modell
erstellt wird. Ziel bei der Erstellung des Modells ist es, eine moglichst genaue Reprasentation des
Systems zu entwickeln. Das erstellte Modell wird im néchsten Schritt simuliert.Hier werden durch
andern gewisser Parameter im Modell, also quasi durchspielen unterschiedlicher Szenarien im System,
verschiedene Abliufe und Ergebnisse der Simulation beobachtet und dokumentiert [SB11]. Um
die Beobachtungen und Ergebnisse der Simulation verstandlicher zu gestalten, werden im Schritt
der Visualisierung die gesammelten Daten verarbeitet und in geeigneter Weise dargestellt. Dieser
Schritt hilft uns beim Verstandnis und der Interpretation der gesammelten Daten [SB11]. Zusitzlich
kann mit Hilfe der Visualisierung auch der Ablauf der Simulation, z.B. mit 3D-Computer Grafiken,
dargestellt werden [SB12]. Im letzten Schritt des Simulationsprozesses, der Analyse [SB12], werden die
gesammelten Daten ausgewertet und interpretiert. Dabei konnen aufgestellte Thesen iiberpriift und
validiert werden oder Riickschliisse auf das simulierte System geschlossen werden [SB12]. Auflerdem
konnen Empfehlungen auf Basis der Simulation ausgesprochen und Rahmenbedingungen fiir das
System vorgestellt werden [SB12].

2.3. Simulationsmethoden

Oft werden in der Literatur bestimmte Eigenschaften von Systemen, Modellen oder Simulationen
hervorgehoben, die den Ablauf bestimmen. So kann ein System zum Beispiel auf Parametern beruhen,
die sich langsam, mit dem Verlauf der Zeit, &ndern, oder eben an einem bestimmten Zeitpunkt schlag-
artig verandert werden und so den Zustand des Systems dndern [SB11], [LKK91]. Zur einfacheren

12

2.4. Vor- und Nachteile von Modellierung und Simulation

Betrachtung grenzen wir in diesem Punkt nicht zwischen Systemen, Modellen und Simulationen ab,
sondern betrachten den gesamten Simulationsprozess. Diese Zusammenfassung scheint uns sinnvoll,
da z.B. ein dynamisches System auch meistens ein dynamisches Modell und eine dynamische Simula-
tion nach sich zieht. Dadurch ergeben sich einige Simulationsmethoden, die wir in Gegensatzpaaren
geordnet haben und im Folgenden erklaren.

Eine statische Simulation ist dadurch definiert, dass entweder die Zeit keinerlei Rolle spielt, oder nur
ein bestimmter Zeitpunkt betrachtet wird. Beispiel hierfiir ist eine Monte-Carlo Simulation [LKK91].
Im Gegensatz zu statischen Simulationen stehen dynamische Simulationen. Bei diesen Simulationen
spielt die Zeit eine entscheidende Rolle, da sich das betrachtete System mit der Zeit verdndert bzw.
entwickelt [LKK91].

Zusatzlich unterscheidet man zwischen deterministischen und stochastischen Simulationen. Eine
deterministische Simulation basiert nicht auf probabilistischen Werte, beinhaltet also keine zufalligen
Werte [LKK91]. Dabei ist zu beachten, dass eine solche Simulation durch die Eingabe von festen Werten
auch zu einem festen Ergebnis determiniert. Stochastische Simulationen verwenden im Gegensatz
dazu zufillige Variablen. Dabei konnen identische Startparameter zu unterschiedlichen Ergebnissen
fithren [LKK91]. Aus diesem Grund diirfen diese Ergebnisse nicht als tatséchliche Ergebnisse, sondern
missen als Abschatzung der Eigenschaft des Systems gesehen werden [LKK91].

Auflerdem unterscheidet man auch in kontinuierliche und diskrete Simulationen. Bei beiden Arten
geht es um die Verédnderung von Variablen im Verlauf der Zeit. Bei diskreten Simulationen verédndern
sich Variablen zu bestimmten Zeitpunkten oder beim Auftreten von Ereignissen [SB11], [LKK91].
Diese Anderung tritt augenblicklich auf, ist also vergleichbar mit einem Schalter der umgelegt wird.
Im Gegensatz dazu verdndern sich bei kontinuierlichen Simulationen die Variablen fortlaufend mit
der Zeit [LKK91].

2.4. Vor- und Nachteile von Modellierung und Simulation

Sokolowski und Banks [SB11] listen eine Reihe von Vor- und Nachteilen auf, die Modellierung und
Simulation mit sich bringt. Dabei beziehen sie sich auf eine 1998 veréffentlichte Liste vom Institute of
Industrial Engineers. Zunichst wollen wir einige Vorteile dieser Auflistung vorstellen:

« Die Fahigkeit sich richtig zu entscheiden, indem man jede mogliche Veranderung iiberpriift

« Komprimieren oder expandieren der Zeitlichen Ablaufe, um dem Nutzer die Moglichkeit zur
genaueren Untersuchung zu eréffnen

« Verstandnis fiir Systeme, durch Erstellung und Untersuchung eines Szenarios

« Moglichkeiten erforschen, ohne das echte System zu stéren

« Probleme diagnostizieren, indem die Interaktionen zwischen Variablen durschaut werden
« Visualisierung, um das System beobachten zu kénnen

« Vorbereitung auf Anderungen, indem man mdogliche Auswirkungen untersucht

13

2. Verwandte Arbeit

« Verniinftige Investition, da eine Simulation billiger als die tatsichliche Anderung des Systems
ist

« Kostengiinstige Trainingshilfe

Durch die vielen Anwendungsmoglichkeiten ergeben sich auch viele Vorteile, die fiir die Verwendung
von Modellierung und Simulation sprechen. Jedoch bringt es auch einige Nachteile mit sich, die von
Sokolowski und Banks [SB11] auch weniger ausfiithrlich beschrieben werden:

« Spezielles Training nétig, um Modelle zu erstellen

Schwierige Interpretation von Ergebnissen, wenn diese auf Zuféllen beruhen

Zeitliche und finanzielle Kosten, da der Simulationsprozess aufwandig und kostenintensiv sein
kann

Falscher Einsatz von Simulationen, wenn z.B. ein analytischer Ansatz erfolgsversprechender
ware.

2.5. Multifunktionale Simulationsprogramme und Modellstrukturen

Seit den 1960er Jahren verstérkte sich das Interesse nach Programmen, welche komplexe Systeme simu-
lieren konnen [Gorb].Uber die Jahre entstanden deshalb viele verschiedenen Simulationsprogramme,
die auf spezielle Probleme anwendbar sind. Allerdings miissen beispielsweise in Produktionsprozessen
mehrere Systeme aus verschiedenen Gebieten simuliert werden [MI99]. Programme fiir spezielle
Zwecke, benédtigen meist eine spezielle Bedienung [MI99]. Aus diesem Umstand kristallisierte sich
der Wunsch nach Simulationsprogrammen, die generisch in mehreren Gebieten, bzw. auf mehrere
Problemstellungen anwendbar sind [Gorb]. Im Folgenden werden Modellstrukturen und Programme
vorgestellt, die sich mit dieser Problematik beschéftigen. Dabei liegt der Fokus auf Modellstrukturen
und Programmen, welche intuitiv und mit wenig bis keiner Programmiererfahrung bedient werden
koénnen. Zusétzlich werden die Vor- und Nachteile von generischen Simulationsprogrammen erldutert
und diskutiert.

2.5.1. Gestaltung eines generischen Simulationsprogramms

Bereits in den 1960er Jahren erkannten Firmen wie IBM dass es nicht effizient ist, fiir jedes Fachgebiet
ein spezielles Simulationsprogramm zu entwickeln [Gora]. Deshalb ergab sich der Bedarf an Simulati-
onsprogrammen, die verschiedene Probleme 16sen kénnen [Gora]. Generische Simulationsprogramme
missen verschiedensten Anforderungen gerecht werden, da der Fokus dieser Programme nicht in
einem speziellen Forschungsgebiet liegt. Aus diesem Grund muss eine Art der Modellierung gefunden
werden, die ein breites Spektrum abdeckt und sich sinnvoll als Simulation ausfithren l4sst. Um einen
Simulationsprozess zu initiieren miissen hauptsichlich zwei Schritte eingeleitet werden [Gorb]. Zuerst
muss ein Modell fiir das System konstruiert werden, gefolgt von der Erstellung eines Programms
welches die Logik und Aktionen des Modells produziert [Gorb]. Das lasst darauf schlieflen, dass der
Grundstein fiir ein erfolgreiches, generisches Simulationsprogramm eine wohl definierte formelle

14

2.5. Multifunktionale Simulationsprogramme und Modellstrukturen

Sprache ist. Mit einem derartigen Programm kann alles simuliert werden, das die gegebene Sprache
erfillt. Die Herausforderung liegt darin, eine Sprache zu finden, die ein System méoglichst detailliert
beschreiben kann und dennoch generisch verwendbar ist.

Im Rahmen einer Untersuchung von fortgeschrittenen Schaltsystemen sollte ein Werkzeug entwi-
ckelt werden, um diese Systeme zu simulieren. Ein Projekt welches von J. P. Runyon geleitet wurde
[Gora], verwendete fiir diese Aufgabe ein Simulationsprogramm das auf Sequenzdiagrammen basiert.
Damit konnten Schaltknoten dargestellt werden, welche gerichtete Operationen initiierten. Dieses
Programm wurde mit Verbesserungen erweitert, sodass mehr Details in die Simulation integriert wer-
den konnten. So wurden die Knoten der Sequenzdiagramme beispielsweise um Zeitbeschrankungen
oder spezielle Marker erweitert. In den Folgejahren wurde das Programm erfolgreich auf weitere
Systeme angewandt. Neben Schaltsystemen wurden damit auch Verkehrsflusssimulationen ausge-
fuhrt. Die Verkehrsflusssimulationen wurden durch Bewegungen von Kunden in einem Supermarkt
demonstriert. Mit diesem Beispiel sollte die Einfachheit und Generik des Simulationsprogramms
bewiesen werden [Gora]. Fir speziellere oder detailliertere Systeme mussten allerdings Anpassungen,
bzw. Erweiterungen zu dem Programm hinzugefiigt werden [Gora]. Bedauerlicherweise konnten
die Sequenzdiagramme nicht fiir alle Systeme adaptiert werden. [Gora] Diesen Umstand bemerkte
auch G. Gordon als er einem Projekt von Dr. D. V. Newton beitrat, indem er nach einer geeigneten
Simulationsmethode fiir generische Systeme suchen sollte. Fir grofle Entwicklungsprojekte konnte
ein Simulationsprogramm mit einer Sequenzdiagrammnotation nicht sinnvoll skaliert werden [Gora].
Inspiriert von den Vorteilen der Sequenzdiagramme entwickelte Gordon eine Blockdiagrammnotation
und ein Simulationsprogramm, zu Beginn unter dem Namen Gordon Simulator bekannt, das diese
Notation verwendet [Gora].

Die Blockdiagrammnotation des Gordon Simulator

Blockdiagramme bestehen aus Blocken, die mit Linienverbindungen kombiniert werden. Blocke
erfiillen bestimmte Funktionen in dem zu simulierenden System, wihrend die Verbindungslinien
einen Datenfluss repréisentieren. Die Durchfithrung einer Simulation geschieht durch die Erstellung
von Transaktionen. Diese werden in einer chronologisch korrekten Reihenfolge und mit Riicksicht auf
deren Prioritaten, durch die Blocke weitergereicht [Gora]. Jede Bewegung, hier als Zustandswechsel
anzusehen, bedeutet ein einzelnes Ereignis und geschieht zu einem bestimmten Zeitpunkt. Aus diesem
Grund verwendet der Gordon Simulator eine Zeitschaltung, welche allerdings nur von Ereignis zu
Ereignis schaltet. Das heif3t, dass das System nicht in Echtzeit simuliert wird, sondern lediglich die
Ereigniskette abarbeitet. Demzufolge haben Blocke eine bestimmte Blockzeit, welche indiziert wie
lange die Aktion des Blocks ausgefiihrt wird. Dadurch wird die Simulationsdurchfithrung beschleunigt
und es werden lange Pausen ohne die Ausfithrung von Systemfunktionen vermieden [Gora]. Um einen
korrekten Datenfluss im System zu gewéahrleisten, muss jeder Block mindestens einen Nachfolger
besitzen. Durch einen bestimmten ”Selection Factor” wird entschieden, welcher Nachfolger gewahlt
wird [Gorb]. Teilweise benétigen Systeme eine Operationsausfithrung, wihrend eine Transaktion
durchgefiihrt wird. Das kann mit der Hilfe von Ausriistungskomponenten implementiert werden. Die
Komponenten konnen mit Transaktionen verkniipft werden und wahrend der Transaktion ausgefiihrt
werden. Transaktionen die temporére Entitdten eines Systems repriasentieren, benotigen Attribute.
Deshalb kénnen Transaktionen Parameter iibergeben werden. Beispielsweise halten Warenlager eine

15

2. Verwandte Arbeit

bestimmte Anzahl an Waren, welche durch diese Attribute ausgedriickt werden kénnen. Dadurch
werden die Blockausfithrungszeiten wihrend der Simulation beeinflusst.

In dem Programm von Gordon wird ein System durch verschiedene Block-Klassen definiert. Transak-
tionen werden mit Entstehungs- und Generierungsblocken erstellt. Damit wird die Durchfithrung der
Simulation eingeleitet. Entstehungs- und Generierungsblocke kénnen Transaktionen zur Laufzeit
der Simulation generieren, manipulieren und entfernen [Gorb]. Weitere Block-Klassen bieten die
Moglichkeit, Transaktionen mit Markierungen zu versehen. Die markierten Transaktionen kénnen im
weiteren Verlauf der Simulation an Fortschreitblocken, Entscheidungen fiir die Nachfolgerblocke tref-
fen [Gorb]. So entscheiden beispielsweise an Transferblocken die Markierungen der Transaktionen,
tiber den weiteren Verlauf der Simulation. Des Weiteren gibt es Block-Klassen die Transaktionsaus-
ristungen kontrollieren, Block Speicher blockieren konnen und Statistiken sammeln. Um Ereignisse
der Simulation interpretieren zu kdnnen, ist besonders letzterer Blocktyp wertvoll.

Das Allzweck-Simulationssystem - General Purpose Simulation System (GPSS)

Vorteilhaft fir das auf Blockdiagrammen basierende Simulationsprogramm ist, dass Komponenten
einfach ersetzt werden kénnen [Gorb]. Wahrend der Zeit der Entwicklung des GPSS, wollten Inge-
nieure und Analytiker es moglichst vermeiden selber programmieren zu miissen. Daraus resultierte
die gute Organisation und Dokumentation, als wichtiger Faktor des GPSS. Des Weiteren geschieht die
Erstellung einer Simulation ohne Programmierpraktiken und Programmierterminologie. Somit kén-
nen auch Programmieranfanger das GPSS verwenden. Die Blockdiagrammsprache vermittelt somit
die Illusion, dass der Anwender das System nicht programmiert, sondern es beschreibt [Gora]. Durch
die Beachtung von Designregeln fiir Benutzerinteraktion, gewann das Programm an Mehrwert fiir
unerfahrene Nutzer. So wurden Programmabbriiche bei Fehlimplementierungen, mit Informationen
iiber den Systemstatus und Modellstatus in das Programm eingebaut. Allerdings sorgen bereits die
hohen Strukturen des Modellprinzips dafiir, Ausfithrungsfehler vorherzusehen und zu beseitigen. Es
wurden auch Mechanismen und Automatismen in das Programm eingebaut, um dem Benutzer unnétig
viel Interaktion zu ersparen. Wenn blockierte Transaktionen beispielsweise wieder als verfiigbar
gesetzt werden, startet der Algorithmus automatisch von vorne.

Das Programm wurde im Verlauf der 60er Jahre in diversen Anwendungsgebieten, wie an der Borse, im
Stadteverkehr, in Computerzentralen etc. verwendet und konnte sich in diesen Bereichen als sinnvoll
beweisen [Gorb]. Jedoch fithrt der generische Ansatz des Simulationsprogramms zu Kompromissen, da
es nicht immer den Anforderungen der Benutzer entspricht [Gorb]. Die Ausfithrungsgeschwindigkeit
der Simulationen mit dem GPSS wurden ebenfalls kritisiert, da sie sehr langsam im Vergleich zu
spateren Konkurrenzprogrammen ist.

2.5.2. Multifunktionale Simulationsplattformen und Pakete

Der Gordon Simulator bietet durch die Modellierung mit Blockdiagrammen einen generischen Ansatz
Systeme zu simulieren[Gorb]. Allerdings sind beim GPSS von Gordon die Moglichkeiten, durch die
vorgegebenen Blocke begrenzt. Eine Funktion des Simulationsprogramms wurde in den 6ffentlichen
Dokumentationen des Programms jedoch nicht erwahnt, namlich die Integration von Hilfe-Blocken

16

2.5. Multifunktionale Simulationsprogramme und Modellstrukturen

[Gora]. Gordon verwendete diese Funktionen lediglich zum Debuggen. Mit diesen Blocken konnte
selbst geschriebener Assembler Code in das Programm eingefiigt werden, wodurch die Moglichkeit
gegeben wurde eigene Block-Klassen zu definieren. Zwar kénnen Anwender ohne Programmiererfah-
rung keine Blocke selbstindig implementieren, allerdings konnten programmiererfahrene Spezialisten
diese Programme fiir andere Nutzer einrichten. Durch die daraus resultierende hohe Erweiterbarkeit
des Simulators, gewinnt das Programm erheblich an Mehrwert fiir dessen Benutzer.

Compiler-Compiler fiir visuelle Sprachen

Programme wie die Software "Compiler-Compiler for Visual Languages” (CoCoViLa) [VK11] bein-
halten diverse Moglichkeiten der Individualisierung. CoCoVila ist eine Simulationsplattform die
visuelle und modellbasierte Softwareentwicklung anbietet. Hierfiir verwendet CoCoViLa eine struk-
turierte Darstellung von Programmen. Mit dieser Darstellung konnen deklarierte Spezifikationen
von Simulationen in ausfithrbaren Programmcode umgewandelt werden. Fiir die Modellierung eines
Systems, wird in CoCoVila ein dhnliches Konzept wie im GPSS verwendet. Komponenten sind in
diesem Programm das Pendant zu Blécken im GPSS. Sie reprasentieren Java Klassen, mit zusatzlichen
Annotationen die zur Darstellung der Komponenten dienen. Mit Hilfe der visuellen Werkzeuge der
Plattform, konnen Spezifikationen ohne selbstgeschriebenen Programmcode erstellt werden. An-
schlieBend werden die Spezifikationen vollkommen automatisch von CoCoVilLa ausgefiihrt [VK11].
Wihrend der Entwicklung der Plattform wurde sehr viel Wert auf Flexibilitat gelegt, wodurch Co-
CoViLa multifunktional anwendbar ist [VK11]. Einzelne Komponenten lassen sich ohne Probleme
mit bereits existierenden oder neu entwickelten Komponenten austauschen. Threads werden durch
sogenannte Ddmonen spezifiziert. Benutzerinteraktionen kénnen durch Damonen wéhrend Pro-
blembeschreibungen und wihrend Simulationsphasen durchgefithrt werden [VK11]. Simulationen
koénnen als fortschreitende Zeitsimulation oder als diskrete Ereignissimulation ausgefiihrt werden,
was CoCoVilLa flexibel einsetzbar gestaltet [VK11]. Mit der zuséitzlichen Eigenschaft lasst sich das
Verhalten eines Systems iiber einen Zeitraum betrachten, wodurch Echtzeitsimulation untersucht
werden koénnen.

Da es sich bei CoCoViLa um eine Plattform handelt, besteht die Moglichkeit verschiedene Desi-
gnprinzipien zur Simulation anzuwenden [VK11]. Eines der Prinzipien beruht beispielsweise auf der
automatischen Programmausfithrung von Spezifikationen. Dadurch wird ausfithrbarer Quellcode
generiert. Da eine Spezifikation hier jedoch eine eigene Art von Quellcode ist, betrachten wir ein
anderes Designprinzip. Personen ohne Programmiererfahrung konnen mit dem Designprinzip der
modellbasierten Softwareentwicklung, ausfithrbare Modelle fiir Simulationen erstellen [VK11]. Mit
Hilfe der visuellen Editoren der Plattform, konnen Simulationsdetails benutzerfreundlich editiert
werden. Der Klasseneditor ermdglicht es, visuelle Aspekte der Komponenten mit Zeichnungen oder
Bitmapimporten zu definieren [VK11]. Das tragt zu einer besseren Veranschaulichung der Komponen-
ten und damit des kompletten Systems bei. Der Schema-Editor ist fiir mehrere Zwecke verwendbar.
Damit konnen Simulationspakete, die im Klasseneditor erstellt wurden, importiert werden. Die Be-
nutzeroberfliche wird individuell an die Paketbeschreibung anpasst. In diesem Editor werden auch
die Simulationsprobleme visuell erstellt. Sie kénnen dann in anderen Schemas als Komponenten in
einer hoheren Hierarchie integriert werden [VK11]. Zusitzlich bietet diese Oberfldche noch Optionen
zum Debuggen an. Des Weiteren kénnen Ergebnisse einer Simulation in einem neuen Fenster oder in

17

2. Verwandte Arbeit

der Konsolenausgabe dargestellt werden. Es gibt noch weitere Teile der Plattform, wie zum Beispiel
den Planer oder die Werkzeugbox. Mit dem Planer werden deklarierte Spezifikationen in ausfithrba-
ren Programmcode tibersetzt. Dafiir muss jedoch eine Spezifikation in der definierten Sprache der
Plattform geschrieben werden [VK11]. Das ist nicht mit einer rein visuellen Oberfliche und ohne
Programmierterminologie moglich.

20-SIM

Mit dem Modellierungs- und Simulationspaket 20-SIM, kann das dynamische Verhalten von Inge-
nieurssystemen modelliert und simuliert werden [Bro99]. Die Modelle in dieser Software, werden
als hierarchisch strukturierte Bond-Graphen und Blockdiagramme erstellt. Zusétzlich lassen sich
Gleichungen einfiigen, um eigene Submodelle oder Gleichungsmodelle zu erstellen. Dadurch wird dem
Benutzer mehr Freiheit in der Modellierung gewahrt [Bro99]. Abgesehen von dem Gleichungseditor,
kénnen Modelle komplett mit einer grafischen Oberfliche und ohne Programmierpraktiken erstellt
werden [Bro99]. Somit konnen die, im entsprechenden Kapitel beschriebenen, Blockdiagramme be-
quem und ohne Programmiererfahrung erstellt werden. Das gleiche gilt fiir die Bond-Graphen, welche
einen essentiellen Teil des Pakets bilden. Durch diese Graphen kénnen existierende Submodelle
komfortabel wiederverwendet und erweitert werden [Bro99]. Im Vergleich zur Simulationsplatt-
form CoCoVila sind leider nicht die gleichen Individualisierungsmoglichkeiten gegeben. Jedoch
ist 20-SIM etwas leichtgewichtiger und somit weniger kompliziert in der Bedienung. Durch den
objektorientierten Ansatz von Bond-Graphen entstehen mehr Anwendungsmoglichkeiten, welche
von Blockdiagrammen allein nicht kompensiert werden kénnen. Besonders dann, wenn es sich bei
der Modellierung und Simulation um physikalische Eingabe-/Ausgabesysteme handelt [Bro99].

2.5.3. Klassifizierung von Simulationswerkzeugen und Modellierungsprinzipien

Die bisher beschriebenen Simulationsprogramme, -Plattformen und -Pakete, sind nur ein kleiner Teil
dessen, was bisher entwickelt wurde und auf dem Markt verfiigbar ist [MI99]. Dies sollte lediglich
veranschaulichen, wie Programme den Modellierungs- und Simulationsschritt mit verschiedenen
Methoden und Techniken durchfiithren. Simulationswerkzeuge haben bestimmte Charakteristiken, die
das Werkzeug klassifizieren. Beispielsweise definieren der Anwendungsumfang, das Modellparadigma
und die Flexibilitit, zu welchem Typ das Simulationsprogramm zugeteilt wird [MI99]. Die Wahl
der Simulationsstrategie ist ein weiteres, signifikantes Merkmal [MI99]. Dabei gibt es hauptsédchlich
zwei Strategien, namlich die Prozessinteraktion und die Aktivitdtsabtastung. Im Prinzip kénnen mit
allen Strategien jegliche Problemstellungen gel6st werden [MI99], dennoch hilft die korrekte Wahl
einer Strategie, die Modellierung und Simulation des Problems zu vereinfachen. Beispielsweise ist die
Prozessinteraktions-Strategie besonders fiir Fertigungsanwendungen geeignet, in denen Materialien
in ein System geliefert werden und einen eher statischen Prozessverlauf haben [MI99]. Hingegen ist
die Aktivitatsabtastung-Strategie vorzugsweise fiir Systeme mit hoher Interaktion von Ressourcen,
mit stark variierenden Zusténden, geeignet [MI99]. Die Méglichkeit mehrere Strategien zu verbinden
besteht natiirlich ebenfalls und wird des 6fteren in Simulationswerkzeugen angewendet. Ein Beispiel
ist hier der Drei-Phasen-Ansatz, bestehend aus Prozessinteraktion, Aktivititsabtastung und Ereignis-
disposition. Neben der Simulationsstrategie ist fiir generische Simulationswerkzeuge ebenfalls sehr

18

2.6. Programmierterminiologie und Methoden

wichtig, welcher Modellierungsansatz verwendet wird. Dabei hat sich in vielen Dokumentationen
von Simulationsprogrammen, mit Anwendungsmoéglichkeiten ohne Programmierkenntnisse bewie-
sen, dass Modelle die auf visuellen Diagrammen basieren bevorzugt werden [Bro99] [Gorb] [VK11]
[Gora] [MI99]. Hierbei miissen namlich keine Programmierterminologien angewendet werden und
das System kann praktisch mit Bauelementen zusammengesetzt werden [Gora]. Neben den bereits
erwihnten Blockdiagrammen, Bond-Graphen und Sequenzdiagrammen [Gorb] [VK11] werden haufig
auch Aktivititsdiagramme oder Petrinetze verwendet [MI99], da sie eine dhnliche Struktur aufweisen.
Zu beachten ist allerdings, dass auch nicht diagrammbasierte, sondern beispielsweise strukturbasierte
Modelle, wie XML Code [TLR], fiir programmierunerfahrene Benutzer von Interesse sein kénnen.

2.6. Programmierterminiologie und Methoden

Trotz der grofien Auswahl an existierenden Simulationsprogrammen, konnte in unserer erstellten
Umfrage (Kapitel ??) festgestellt werden, dass viele Wissenschaftler ihre Programme selber entwickeln
und in Simulationen verwenden. Das liegt unter anderem daran, dass diverse Programme nicht frei
verfiigbar sind oder dass fiir spezielle Probleme keine passenden Programme existieren. Fiir Personen
ohne Programmierkenntnisse, stellt das ein Hinderniss zur Erstellung und Durchfithrung von Simula-
tionen dar [KP05]. Neben dem Erlernen der strukturierten Herangehensweise an Problemstellungen,
muss sich ein Programmieranfinger mit einer speziellen Syntax auseinandersetzen, die sich von einer
natiirlichen Sprache stark unterscheiden kann [KP05]. Diese Hiirde wollen Forscher beseitigen, um
das Programmieren einer breiteren Masse zuganglich zu machen. Kapitel 2.6.1 konzentriert sich auf
das Erlernen von Programmiertechniken, unter der Voraussetzung dass der Programmieranfanger
bereits Erfahrung mit strukturierten Herangehensweisen an Problemstellungen hat. Das bedeutet,
dass die zum Programmieren benétigten Mechaniken und Konzepte [Sol86] vorhanden sind und
lediglich die Kommunikation mit dem Computer eine Barriere darstellt.

2.6.1. Zuganglichkeit zum Erlernen neuer Programmiersprachen

Benutzer von Computersystemen kommunizieren in der Regel nur iiber Programme mit dem Compu-
ter, die sie nicht selber geschrieben haben [DCST00]. Das bedeutet, dass die wenigsten Computerbe-
nutzer das Potenzial ihres Gerit ausnutzen konnen. Forscher erkannten diesen Mangel und arbeiteten
seit den frithen 1960er Jahren daran, das Programmieren der breiten Bevélkerung zugénglicher zu
machen [KP05]. Unglicklicherweise ist es den Forschern lange Zeit nicht gelungen, dieses Ziel zu
erreichen [DCST00]. Der Grund dafiir liegt allerdings nicht an mangelndem Interesse, sich eine
Programmiersprache anzueignen, sondern mehr an der Barriere, welche die Zugénglichkeit zu einer
neuen Sprache darstellt [DCST00]. Forscher haben iiber einen Zeitraum von ca. 30 Jahren diverse
generische Sprachen an Programmieranfingern ausprobiert, dies allerdings ohne Erfolg [DCST00].
Somit kamen die Wissenschaftler zu dem Entschluss, dass die Programmiersprache selbst das Problem
darstellt [DCST00]. Oft wirkt die Syntax einer Programmiersprache willkiirlich und Anfinger konnen
sich wenig unter den Abkiirzungen und zusammengesetzten Befehlen vorstellen [KP05]. Deshalb
versuchten die Sprachforscher Lernsysteme zu entwickeln, die Personen langsam an die Syntax und
Semantik von Programmiersprachen heranfiihren. Erst nachdem die lernenden Personen Erfahrung

19

2. Verwandte Arbeit

mit den Lernsystemen gesammelt hatten, wurden sie an generische, kommerzielle Programmier-
sprachen wie C++, Java, etc. herangefiithrt [KP05]. Dabei wird bei Lernsystemen darauf geachtet,
dass sie eine gewisse Ahnlichkeit mit generischen Programmiersprachen haben, damit der spétere
Wechsel der Studenten einfach zu bewailtigen ist, ohne wieder eine komplett neue Herangehensweise
erlernen zu miissen [KP05]. Des Weiteren haben Programmieranfanger oft Schwierigkeiten damit, ihre
Absichten in korrekter Form als Text in einen Editor zu schreiben, wie es bei den meisten generischen
Programmiersprachen iiblich ist [KP05]. Deshalb gibt es zwei Ansétze, die ein Lernsystem verwenden
kann, um Programmieranfingern den Start zu erleichtern. Entweder muss die Programmiersprache
soweit verbessert werden, dass ein Anfinger diese Sprache leicht erlernen kann, oder es miissen
Alternativen entwickelt werden, wie die Personen ihre Instruktionen in den Computer eingeben
koénnen [KP05].

Vereinfachen der Sprache: Generische Programmiersprachen beinhalten syntaktische Merkmale wie
zum Beispiel die geschweiften Klammern in Java, oder die Labels in Fortran, welche fiir Anfanger
schwierig zu verstehen sind, da sie keine offensichtliche Bedeutung zu haben scheinen [KP05]. Mit der
Sprache Basic sollte dem entgegen gewirkt werden, da hier viele englische Begriffe eingebaut wurden,
um dem Programmierer mehr Parallelitit zu einer natiirlichen Sprache zu gewahren [KP05]. Kritiker
bemingelten, dass dadurch mehr Rechenaufwand beim Ubersetzen der Sprache in Maschinencode
verursacht wird. Doch da die Sprache die Programmierer nur an das Programmieren heranfithren
sollte, wurde das in Kauf genommen [KP05]. Eine weitere Lernprogrammiersprache ist Blue, welche
bestimmte Restriktionen hat um das Programmieren fir Anfinger zugénglicher zu gestalten. So gibt
es in Blue die Beschrankung, dass alles nur auf eine bestimmte Weise programmiert werden kann,
oder dass die Sprache sehr lesbar gestaltet ist, damit Studenten durch das betrachten von Beispielen
verstehen um was es in dem Programm geht [KP05]. Besonders interessant bei Blue ist, dass es eine
vollkommen objektorientierte Sprache ist und iiber Datei-Klassenstrukturen verfiigt, sowie iiber
einen Garbagecollector. Ebenfalls objektorientiert und zusétzlich nah an der Java-Syntax, da auch
von Java abgeleitet, ist Junior Java (JJ). Der Code aus JJ kann als normaler Java Code exportiert
werden, wodurch die Liicke zwischen Lernsprache und generischer Sprache klein gehalten wurde,
um den spateren Wechsel zu erleichtern [KP05]. Das ist ein wichtiger Punkt, da die Balance zwischen
Lernsprache und generischer Sprache sinnvoll sein muss, um einerseits den spéateren Wechsel zu
einer generischen Sprache zu vereinfachen. Andererseits muss eine moglichst einfache Terminologie
verwenden werden, damit die Programmieranfinger einen leichten Einstieg haben und sich auf die
Programmiermechanik konzentrieren konnen und nicht auf die Sprachsyntax.

Alternativen zur Computerinteraktion: Programmiersprachen unterliegen gewissen Beschriankungen,
wie eine bestimmte Reihenfolge in der die Befehlen eingegeben werden miissen oder die korrekte Ver-
wendung von Klammern. Mit diesen Eigenschaften kommen nicht alle Programmieranfanger zurecht
[KP05]. Aus diesem Grund wurden Lernsysteme entwickelt, die eine andere Befehlseingabemethode
verwenden, als iiber den herkémmlichen Texteditor. Mit der Hilfe von grafischen oder physischen
Objekten kénnen ebenfalls Programme erstellt werden [KP05]. Diese Objekte sollen Programmele-
mente oder einzelne Befehle darstellen, die miteinander kombiniert werden kénnen [KP05]. Durch
Formbeschrankungen der einzelnen Objekte wird verhindert, dass syntaktisch inkorrekte Befehle
mit den Komponenten erzeugt werden [KP05]. Ein Beispiel hierfir ist Pict [KP05]. Mit Pict lassen
sich einfache Programme durch das Verbinden von grafischen Bildern erstellen [KP05]. Die Bilder
reprasentieren Befehle, die aus einer Palette in der Mentileiste ausgew&hlt werden konnen. Um dem
Benutzer die Programmausfithrung visuell darzustellen, bewegt sich eine Box entlang der Befehlskette

20

2.6. Programmierterminiologie und Methoden

und stoppt, sofern das Programmverhalten an dem bestimmten Punkt nicht spezifiziert ist [KP05].
Diese Visualisierung ist ein weiterer wichtiger Punkt, da viele Programmieranfinger noch wenig
bis keine Vorstellung davon haben, wie ein Programm ausgefithrt und durchlaufen wird [Sol86]. Ein
Beispiel fiir eine datenflussbasierte visuelle Programmiersprache ist Show and Tell [KP05]. Diese
Sprache wurde fir Kinder entwickelt um sie ndher an das Programmieren heranzufithren [KP05].
Ein Programm besteht hier aus Boxen die miteinander verbunden werden. Eine Box reprasentiert
einen bestimmten Wert oder eine ausfithrbare Operation auf Werte [KP05]. Zusétzlich beinhaltet das
Programm Boxen, die arithmetische Funktionen, Ein- und Ausgabemethoden und Spezialfunktionen
wie das Abspielen von Musik erfiillen. Boxen kénnen durch selbstgezeichnete Bilder markiert werden,
um sie fiir spitere Verwendungen wieder zu erkennen [KP05]. Wie zu sehen ist, gibt es mehrere
Wege, um Programme sinnvoll zu implementieren. So sind beispielsweise auch Systeme interessant,
die bei der Strukturierung einer Programmiersprache mit einer visuellen Oberflache unterstiitzen.
Dennoch héingt es von der Wahrnehmung des Anwenders ab, welches das fiir ihn beste System ist.

PBD und visuelle Vorher-Nachher Regeln

Trotz der vielen Versuche Programmiersprachen einfacher zu gestalten oder eine komfortablere
Befehlseingabe zu bieten, gelang es den Forschern nicht, eine wirklich breite Masse an Anfangern fiir
das Programmieren zu begeistern [DCST00]. Laut einer Schitzung an der Universitat von Michigan
programmieren nur ca. 1 % der Teilnehmer eines Programmierkurs nach Ende der Vorlesung weiter.
Um das Programmieren einfacher und interessanter zu gestalten, haben Wissenschaftler die Methoden
PBD (Programing by demonstration = Programmieren durch Demonstrieren) und visuellen Vorher-
Nachher Regeln kombiniert [DCST00]. Mit PBD werden Algorithmen von Benutzern, dem Computer
vorgefiihrt. Das geschieht durch die Verwendung der Benutzeroberfliche mit einfachen Computer-
Steuerungsgesten [DCSTO00]. Diese Steuerbefehle werden vom Computer aufgenommen und spater
bei der Programmausfithrung wiederholt [DCST00]. Durch diese Methode werden verwirrende
sprachsyntaktische Elemente und komplexe Befehlseingabepraktiken umgangen. Zu beachten ist
allerdings, dass nach dem Erstellen eines Programms, Verdnderungen daran ebenfalls einfach gestaltet
sein miissen. Diesen Punkt vergessen viele Systeme die PBD verwenden [DCST00]. Aus diesem Grund
haben die Entwickler von Stagecast Creator [DCST00] die Beschrankung eingefiihrt, dass die Creator-
Benutzer nur den Anfangs- und Endzustand, ohne die komplexen Zwischenschritte, eines Programms
sehen. Mdchte ein Benutzer also beispielsweise fiir einen Zugsimulator eine neue Regel definieren
- der Zugmotor soll von links nach rechts bewegt werden - so definiert der Benutzer eine visuelle
Vorher-Nachher Regel [DCST00]. D.h. der Vorher-Zustand wird definiert (Motor auf der linken Seite)
und anschlieflend wird mit Drag-And-Drop der Motor auf die rechte Seite des Nachher-Zustand
gezogen. Siehe Abbildung 2.1. Auf die gleiche Weise funktioniert auch das Programm KidSIM !, mit
welchem grafische Simulationen und Spiele erstellt werden konnen.

"http://www.sigchi.org/chi95/proceedings/papers/ac1bdy.htm

21

2. Verwandte Arbeit

pritiin (15770 Jiakbid define

Errwaan . BT

i @ arag

@ 0 mmgge o
Abbildung 2.1.: PBD definieren einer Regel [DCST00]

2.6.2. Design einer Programmiersprache fur Programmieranfanger

Basierend auf den Erkenntnissen der bereits entwickelten Lernsysteme fiir Programmieranfianger kann
zusammengefasst werden, dass es viele Moglichkeiten gibt eine sinnvolle Entwicklungsumgebung fiir
Programmieranfanger zu entwickeln. Die Hauptpunkte die dabei beachtet werden miissen, sind die
Beseitigung der komplexen Sprachsyntax und die komfortable Eingabe der Befehle. Besonders die
visuellen Lernsysteme iiberzeugen durch die Eliminierung von syntaktischen Beschrankungen, durch
bereits bekannte physische Beschrankungen und lassen sich den Programmierer auf das Erstellen
des Programms konzentrieren [KP05]. Zu beachten ist allerdings, dass mit textuellen Sprachen oft
machtigere Optionen zur Verfiigung stehen, als durch rein visuelle Objekte (sofern sie sich nicht
individuell gestalten lassen) [KP05]. Damit ware eine Kombination aus visuellen Operationen und
textuellen Eingabemethoden optimal. Ein gutes Beispiel sind die Programme StarLogo und NetLogo
23 welche Multi-Agenten-basiert sind. Den Agenten werden durch programmieren von einzelnen
Verhaltensfunktionen Regeln zugeteilt. Uber die grafische Oberflache lassen sich diese Agenten dann
kombinieren, wodurch eine Simulation modelliert und ausgefithrt werden kann.

Weitere Funktionen die in einer Entwicklungsumgebung fiir Anfanger gegeben sein sollten, sind zum
Beispiel eine verstiandliche Programmausfithrung, evtl. visuell unterstiitzt und gute Riickmeldung bei
auftretenden Fehlausfithrungen oder Konstruktionsfehlern. Ein gutes Beispiel und relativ erfolgreich
an Probanden getestet, bietet das PBD Prinzip in Kombination mit den Vorher-Nachher Regeln
[DCSTO00].

*http://education.mit.edu/starlogo/
*https://ccl.northwestern.edu/netlogo

22

3. Umfrage

Um einen Uberblick iiber verwendete Simulationswerkzeuge im SimTech Cluster der Universitit
Stuttgart zu erlangen, haben wir eine Onlineumfrage erstellt. Diese Umfrage zielt auflerdem darauf ab,
zusitzliche Informationen zu der Verwendung dieser Werkzeuge zu erlangen und auch in welchem
Fachgebiet diese hauptsachlich verwendet werden. Im folgenden Kapitel wird zuerst der Aufbau und
die Entwicklung des Fragebogens prasentiert. AnschlieSend wird ein Blick auf die Durchfithrung der
Umfrage geworfen. Am Ende des Kapitels werden die Ergebnisse des Fragebogens dargelegt.

3.1. Fragebogen

Dieser Abschnitt befasst sich speziell mit dem Fragebogen. Hier wird die Entwicklung und dessen
Aufbau dargestellt. Wir starten mit den generellen Aufbau, erkliren anschlieBend die Entwicklung des
Fragebogens und gehen am Ende nochmal genauer auf die einzelnen Fragen und deren Hintergrund
ein.

3.1.1. Genereller Aufbau

Dieser Abschnitt befasst sich mit dem groben Aufbau des Fragebogens (siehe Unterkapitel 3.1.3).
Der Fragebogen ist aufgeteilt in vier Teile. Der erste Teil behandelt generelle Informationen tiber
den Befragten. Dieser Teil ist optional da hier auch personliche Daten wie Name und E-Mailadresse
abgefragt werden. Der zweite Teil befasst sich mit der Art und Durchfithrung der Simulationen
und Modellierungen, sowie die dafiir verwendeten Programme. Der dritte Teil ist eine detaillierte
Bewertung eines der verwendeten Programmen. Dieser Teil konnte fiir bis zu fiinf Programme
ausgefullt werden. Der letzte Teil ist um das Einverstdndnis des Befragten zur Nutzung der Daten
einzuholen und mégliche Vereinbarungen fiir abschlieBende Interviews zu finden.

3.1.2. Entwicklung

Die Entwicklung des Fragebogens lief tiber mehrere Schritte ab. Zuerst wurde eine Untersuchung
durchgefiihrt um sich genauer mit Simulationen vertraut zu machen. Hierbei wurden gangige Werkzeu-
ge genauer betrachtet, wobei das primére Augenmerk auf deren Fachgebiet lag, um somit Programme
zu finden, die moglicherweise auch von SimTech-Mitarbeitern in ihrem Arbeitsalltag verwendet wer-
den. Dies erwies sich spater als schwer, da es auch keinen wirklichen Uberblick tiber alle Mitarbeiter
und ihr Fachgebiet gab. Dadurch wurde auch nochmals deutlich wie vorteilhaft eine Liste ist, welche
alle Mitarbeiter mit deren Tatigkeiten auflistet.

23

3. Umfrage

Aus den Ergebnissen der Untersuchung wurde ein erster Fragebogen erstellt. Dieser wurde zuerst
intern genauer besprochen und danach einigen SimTech-Mitarbeitern aus unterschiedlichen Fachbe-
reichen vorgelegt. Diese sollten den Fragebogen zur Probe ausfiillen und hatten die Moglichkeit, eine
Bewertung abzugeben bzw. Anderungsvorschlige zu machen. Aus den Interviews wurde bekannt,
wie unterschiedlich die Kenntnisse der Mitarbeiter im Bereich der Begrifflichkeiten und auch die Art
und Weise, wie diese Simulieren bzw. Modellieren, sind.

Anhand der Resultate aus den Interviews wurde ein weiterer Fragebogen erstellt. Dieser wurde dann
endgiiltig mithilfe der Umfrageplattform LimeSurvey ! digitalisiert. Hierbei wurden noch kleinere
Anderungen durchgefiihrt.

3.1.3. Fragen

Dieser Teil behandelt die Fragen im Detail. Dabei werden vor allem die Hintergriinde und der erwartete
Nutzen der einzelnen Fragen genannt und erklért. Fiir eine iibersichtlichere Darstellung werden die
einzelnen Teile des Fragebogens getrennt betrachtet. Wir beginnen mit den generellen Fragen um
anschlieffend die Fragen zu Modellierungs- und Simulationsprozessen zu behandeln. Danach wird die
Fragegruppe zur Werkzeugbewertung erliutert. Am Ende wird ein kurzer Blick auf die Fragen zum
Einverstidndnis geworfen.

Generelle Fragen

Dieser Teil behandelt generelle Fragen, die zur Erfassung von Beschaftigung und Zugehorigkeiten zu
Abteilungen von den Teilnehmer gedacht ist. Alle Fragen in dieser Gruppe waren optional.

Zuerst wird nach Name und E-Mailadresse gefragt, da es sich hier um simple Datenerfassung handelt.
Dies dient zur Erfassung der Teilnehmer, um somit die Bandbreite der Teilnehmer zu ermitteln. Die
Frage nach dem Projektnetzwerk und dem Fachbereich dient dazu, die Mitarbeiter zu gruppieren.
Dadurch konnen statistische Aussagen, iiber die Verwendung von bestimmten Programmen, getroffen
werden. Weiterhin haben diese Fragen auch den Zweck genauere Daten iiber den Mitarbeiter zu
erfassen.

Sollte ein Teilnehmer bei der Frage nach dem Projektnetzwerk angeben, dass er kein SimTech-
Mitarbeiter ist, so wird ihm die Moglichkeit geboten seine Universitiat anzugeben. Der Fragebogen
wurde um diese Moglichkeit erweitert, um auch Simulationsexperten, die nicht bei SimTech arbeiten,
die Chance zu geben an der Umfrage teilzunehmen. Damit sollte auch der Befragtenkreis erhoht
werden, um eine groflere statistische Aussagekraft der Ergebnisse zu erhalten.

"http://www.limesurvey.org

24

3.1. Fragebogen

Modellierung- und Simulationsprozess

Dieser Teil zielt darauf ab, die Vorgehensweisen und verwendeten Methoden der Teilnehmer heraus-
zufinden. Dabei sind auflerdem verwendete Programme und Ansétze zur Simulation anzugeben.

Um Aufgabenbereiche und Tatigkeiten zu ermitteln, fragen wir nach Simulationsschritten und einer
groben Beschreibung der Vorgehensweise. Es ist in soweit relevant, da in unterschiedlichen Pro-
zessschritten unterschiedliche Werkzeuge verwendet werden bzw. auch die Werkzeuge in diversen
Schritten zu unterschiedlichen Zwecken verwendet werden. Diese Frage wurde durch die vorange-
gangenen Interviews gepragt, da uns hierbei erklart wurde, dass beim Modellieren/Simulieren auch
noch das Sammeln von Daten, die Visualisierung und das Interpretieren der Daten relevant ist.

Bei der Frage nach den Prozessschritten galt es herauszufinden, ob Personen, die in den selben Prozess-
schritten arbeiten, unterschiedliche Werkzeuge verwenden. Dies kann auf Grund der Zugehorigkeit
zu unterschiedlichen Bereichen der Fall sein. Auflerdem galt es auch zu ermitteln ob Werkzeuge in
mehreren Prozessschritten verwendet werden.

Des weiteren werden die Teilnehmer nach einer Klassifikation bzw. Einschatzung der verwendeten
Simulationsansitze gefragt. Dabei soll ermittelt werden, ob immer die selben Werkzeuge bei z.B. einer
statischen Simulation verwendet werden oder ob diese auch fiir andere Simulationen Anwendung

finden.

Auflerdem werden bekannte Programme abgefragt, um zu ermitteln, ob in den selben Gebieten (diese
konnen der Prozessschritt, der Ansatz oder auch das Fachgebiet sein) die gleichen Werkzeuge bekannt
sind, oder ob es grofie Variationen gibt. Durch die vorangegangenen Interviews wurde ersichtlich,
dass es viele Mitarbeiter ihre Werkzeuge selbst schrieben. Aus diesem Grund wurde die Frage nach
diesen Werkzeugen hinzugefugt.

Zuletzt werden die Teilnehmer gebeten, ihre eigene Programmiererfahrung einzuschitzen. Mit Hilfe
dieser Angabe sollten genauere Aussagen iiber die spater genannte Programmiererfahrung fiir die
einzelnen Programme getroffen werden.

Werkzeugbewertung

Die ersten Fragen in diesem Block hatten den Zweck herauszufinden, welches Werkzeug zu welchem
Zweck in welchem Kontext verwendet wird.

Bei den nichsten Fragen war das Ziel herauszufinden wie das Programm genutzt wird. Dabei waren
die primére Eingabemethode anzugeben, um spéter Aussagen dariiber zu treffen ob z.B. eine grafische
Benutzeroberflache der Allgemeinheit besser gefillt als der Nutzen von Programmcode. Aulerdem
soll die ermittelt werden, welche Eingabemethoden das Programm unterstiitzt und wie beliebt diese
sind.

Darauf folgte ein Einschitzung beziiglich der Nutzerfreundlichkeit, welche aus einigen Fragen aus
dem Computer System Usability Questionnaire (CSUQ) (sieche Anhang A.2.4) besteht. Ziel dabei
ist etwas iiber die Bedienbarkeit des Werkzeugs herauszufinden, um abschétzen zu kénnen, ob ein

25

3. Umfrage

Werkzeug besser und Nutzer freundlicher ist. Einige Fragen aus dem vollstindigen CSUQ wurden
hier verworfen, da sonst der Fragebogen zu lang geworden wire.

Die Fragen nach fehlenden Funktionen hatten das Ziel herauszufinden, ob es bei dem Werkzeug einen
groflien Malus gibt. Dadurch soll fehlende Funktionen ermittelt werden, die fiir zukiinftige Programme
wichtig sind.

Mit den folgenden Fragen galt es herauszufinden, wie lange der Teilnehmer schon mit dem Werkzeug
arbeitet und wie intensiv die Nutzung ist. Dabei soll eine Einschétzung der Expertise fiir dieses
Programm ermittelt werden.

Zusétzlich wird nach Programmiersprachen gefragt, die zur erfolgreichen Nutzung des Werkzeugs
benétigt werden. Das soll bei unserer Einschatzung der notigen Programmiererfahrung helfen.

Am Ende soll der Teilnehmer selbst noch eine Einschédtzung zu mehreren Dingen abgeben. Dabei
ist die Bedienung des Programms, der manuelle Programmieraufwand und die Beherrschung der
relevanten Sprachen von Bedeutung. Damit sollen die vorangegangenen Fragen hervorgehoben und
eine Einschitzung unsererseits erméglicht werden.

Zuletzt fragen wir nach einem integrierten Editor. Dabei soll die Unterstiitzung in programmierauf-
wendigen Werkzeugen ermittelt werden.

Einverstandnisserklarung

Die Letzte Fragegruppe des Fragebogens behandelt das Einverstandnis der Teilnehmer. Mit der Frage
nach dem Einverstandnis zur Verdffentlichung wollten wir sicher gehen, dass auch ein Mehrwert fir
die Mitarbeiter von SimTech erreichbar ist. Zusétzlich wurden die Teilnehmer gefragt, ob sie tiber die
Ergebnisse der Umfrage informiert werden wollen. Die Teilnehmer konnten auflerdem angeben, ob sie
uns einen Einblick in ihre Arbeit gew#hren wollen. Dabei wollten wir Eindriicke von den verwendeten
Programmen und den nétigen Schritten zur erfolgreichen Durchfithrung einer Simulation erlangen.
Zuletzt hatten die Teilnehmer noch die Chance, Kommentare jeglicher Art in einem Freitextfeld
anzugeben.

3.2. Durchfiihrung

Wir haben eine Onlineumfrage auf der Plattform LimeSurvey erstellt. In dieses wurden die Fragen
eingegeben und durch Beschreibungstexte erweitert. Die Teilnehmer wurden per E-Mail aufgefordert
an der Umfrage teilzunehmen.

Im Einleitungstext wurde den Teilnehmern das Thema vorgestellt. Anschlielend sollte der Teilneh-
mer die Fragen in der oben angegebenen Reihenfolge ausfiillen. Dabei hatte jeder Teilnehmer die
Maoglichkeit, eine Bewertung fiir bis zu finf Programme abzugeben.

26

3.3. Teilnehmer

3.3. Teilnehmer

Insgesamt hatte die Umfrage 46 Teilnehmer. Davon haben fiinf angegeben, nicht zum SimTech Cluster
der Universitat Stuttgart zu gehoren. Mit einer Anzahl von 28 Teilnehmern war die Gruppe der
Doktoranden am stédrksten unter den Teilnehmern vertreten.

3.4. Ergebnisse

Die Fragen Name und E-Mailadresse werden hier nicht gezeigt, da dies eine liste von Namen und
E-Mailadressen ist, diese konnen in der Liste im Anhang gefunden werden.

3.4.1. Generelle Fragen

Von den Befragten waren 28 Teilnehmer Doktoranden, vier Doktoren, acht Professoren und vier
gaben an, einer anderen Beschiftigung zu folgen. Die Angaben bei anderen Beschéftigungen setzen
sich aus drei Juniorprofessoren und einem Student zusammen. Zwei Teilnehmer gaben in diesem Feld
nichts an (siehe Abbildung 3.1).

30 28
25
20
15

10

8
: l :
PhD Student Post-doctorand Professor Other
B Anzahl

Abbildung 3.1.: Die Verteilung der Teilnehmer in Abhangigkeit der Beschaftigung

Von den Befragten gaben insgesamt 15 Teilnehmer ein Diplom, zwolf einen Master, neun einen
Doktortitel, sechs eine Habilitation, einen Bachelortitel und ein Staatsexamen als hochsten Abschluss
an. Die verbleibenden zwei Teilnehmer entschieden sich, diese Frage nicht zu beantworten.

27

3. Umfrage

Von den Teilnehmern kamen aus jedem Projektnetzwerk durchschnittlich fiinf Befragte, wobei neun
aus PN4: Gekoppelte Probleme in Biomechanik und Systembiologie und nur einer aus PN6: Wege
zu intelligenten Simulationsinfrastrukturen kamen. Auflerdem gaben zwei Teilnehmer an, nicht bei
SimTech angestellt zu sein. Von diesen gab jeweils ein Teilnehmer an dem Imperial College London
oder der School of Mathematics University of Edinburgh zugehérig zu sein. Aufierdem gaben fiinf
Teilnehmer keine Antwort auf diese Frage an (siehe Abbildung 3.2).

10

E | ‘ I

PN5 PNG N7 Other

B

ol

=

W Anzahl

Abbildung 3.2.: Die Zugehorigkeit der Teilnehmer zu den Projektnetzwerken des SimTech Clusters.

Die Fachrichtung setzte sich zum gréfiten Teil aus Ingenieuren (41.3%) und Computerwissenschaftlern
(17.4%) zusammen (siehe Abbildung 3.3). Weniger stark waren Mathematik (10.9%) und andere
Naturwissenschaften (13.0%) vertreten. Als andere Fachrichtung gaben zwei Teilnehmer Physik und
jeweils ein Teilnehmer Biomechanik an.

3.4.2. Modellierung- und Simulationsprozess

Die meist genannten Schritte, an denen gearbeitet wird, sind Simulation mit 27 und Modellierung mit
27 Angaben (siehe Abbildung 3.4). Als weiterer grofler Teil wurde die Interpretation mit 17 Angaben
ausgewahlt. Sammeln (8 Angaben) und Visualisieren (10 Angaben) machen nur ein kleiner Teil der
Angaben aus. Als zusatzlichen Schritt wurde “Optimization-Inverse Modelling” angegeben.

Es wurden insgesamt 44 unterschiedliche Angaben gemacht, die die Arbeit in den einzelnen Schritten
genauer spezifiziert. Da diese Angaben sehr speziell sind und nur schwer zu gruppieren, verzichten
wir an diesem Punkt auf eine geeignete Zusammenfassung und verweisen auf die komplette Liste der
Antworten im Anhang (siehe Anhang A.2.1).

28

3.4. Ergebnisse

20 19
15
10 8
5 B
5 I x - 0
N m L 0
{,::Er Ls-jzf 0% -{EF {\{L‘- GEF O
o - && & 0 S

e \S‘-»'E’ {{F"? G’-.":* '

< Q o
Gﬁ"t‘
o
W Anzahl

Abbildung 3.3.: Die Fachrichtungen der Teilnehmer

Der meist genannte Ansatz war unterschiedliche Arten Differenzialgleichungen zu simulieren, wobei
am haufigsten zwischen PDE (partial differential equations) und ODE (ordenary differential equations)
unterschieden wurde. Von 28 Simulationen zu Differenzialgleichungen wurden 20-mal PDE, sechsmal
ODE und zweimal andere genannt. Dabei wurde PDE zum Teil noch genauer als FEM (finite element
method) beschrieben. Ein weiterer Simulationsansatz der haufiger genannt wurde war Molecular
Dynamics (sechsmal). Auflerdem wurde auch Monte Carlo (dreimal) hdufiger als Simulationsansatz
genannt. Es wurden noch neun weitere Ansétze genannt, wobei hier nur fiinf Modellierungsansitze
genannt wurden, wie z.B. Agenten basierte Modellierung. Des weiteren konnten vier Ansitze weder
Modellierung, noch Simulation zugeordnet werden.

Bei der Klassifizierung (siehe Abbildung 3.5) ist der Vergleich der Gegensatzpaare Relevant (siehe
Kapitel 2.3). Das erste Paar ist statisch und dynamisch. Die Teilnehmer gaben mehr als doppelt so oft
dynamisch (32-mal) als statisch (14-mal) an. Das zweite Gegensatzpaar ist kontinuierlich und diskret.
Die Teilnehmer haben in diesem Fall eine dhnliche Verteilung, mit kontinuierlich (22-mal) und diskret
(17-mal), angegeben. Das letzte Gegensatzpaar, deterministisch und stochastisch, variiert nur um
zwei Werte. Deterministisch wurde 17-mal angegeben und Stochastisch 15-mal. Als Anderes wurde
“Qualiataive impact network analysis”, einmal “none” und einmal “n/a” angegeben.

Bei der Frage nach den meist bekannten Werkzeugen wurden insgesamt 76 unterschiedliche Program-
me genannt (siehe Anhang A.2.2). 61 Programme wurden nur von einem Teilnehmer erwahnt. Matlab
war das am haufigsten genannte Programm, mit insgesamt 15 Nennungen. Das zweit meist genannte
Programm war OpenCMISS mit insgesamt fiinf Erwahnungen. Die nachst haufig genannten Program-
me sind DUNE und ESPResSo mit vier Angaben. Weitere neun Programme wurden jeweils zweimal

29

3. Umfrage

30 27 27
25
20 17
10
1 i :
D —
L
{5% N ~ ﬁgv ﬁﬁb 25
-?::\'3-' Db'z- &'3' N{":b '.:}_'t“)
o o qﬁ‘ N Q@
oy _‘ﬁ? &
Q° &
W Anzahl

Abbildung 3.4.: Die Schritte an denen von die Teilnehmer arbeiten

genannt. Diese Programme sind DUMUX, ParaView, GROMACS, Maple, preCICE, OpenFOAM, COM-
SOL, LAMMPS und Eclipse, wobei Eclipse eine Entwicklungsumgebung ist. Zusétzlich wurden mit
C++ (viermal), C (einmal) und Fortan (einmal) auch einige Programmiersprachen genannt.

Die gesamte Anzahl der fiir die Arbeit genannten Programme (sieche Anhang A.2.3) variiert nicht
grof3 mit den im Feld bekannten Programmen. Hier wurde eine Anzahl von 73 unterschiedlichen
Programmen genannt, wobei 53 nur einmal genannt wurden. Abermals ist hier das meist genannte
Programm Matlab mit 13, gefolgt von DUMUX und OpenCMiss mit jeweils vier Auflistungen. Pro-
gramme die dreimal genannt wurden sind DUNE, SG++ und ESPResSo. Dreizehn weitere Programme
wurden jeweils zwei mal genannt. Eine der Ausnahmen die nicht unter die Kategorie Simulation-
und Modellierungsprogramm fallen, ist Linux als Betriebssystem mit insgesamt zwei Nennungen.
Weiterhin wurden vier Textverarbeitungsprogramme und Prasentationsprogramme genannt. Diese
sind Latex, Powerpoint, Excel und Word. Auflerdem wurden C++ (viermal), Python (zweimal) und
Fortran als Programmiersprachen genannt. Des weiteren wurden auch die Entwicklungsumgebungen
bzw. Texteditoren Sublime und Eclipse (zweimal) genannt. Als letzte Kategorie wurden Programme zur
Versionsverwaltung genannt. Diese sind git mit zwei und SVN mit jeweils einer Nennung. Insgesamt
33 von 47 Teilnehmern, die diese Frage beantwortet haben, gaben an, ihre Programme selbst zu
programmieren, bzw. verwenden ein vom Institut entwickeltes Programm.

Die Programmierfahigkeiten der Teilnehmer wird im Schnitt mittelmaflig bis gut bewertet. Der meist
angegebene Wert ist gute Programmierfihigkeiten mit 16 Angaben. Zwei Teilnehmer gaben sehr
schlechte Programmierfihigkeiten an (siehe Abbildung 3.6).

30

3.4. Ergebnisse

35 32
30
25 22
20 7 17 15 17
15
10

5 3

0 [

e - & @ 7 - %,
r_} ‘E‘r"& @{} ."?Q-.} | Lﬂii" {{;;Q Q‘ {;} Q“'?E‘
ov & ¥ & &
o 5~ &
o
B Anzahl

Abbildung 3.5.: Klassifizierung der Arbeit der Teilnehmer

3.4.3. Programm Bewertung

Es wurden insgesamt 27 Programme bewertet. Davon wurden insgesamt 23 Programme nur einmal
bewertet und werden in diesem Kapitel nicht néher erldutert (siehe Anhang A.2.4 fiir die komplette
Liste). Im folgenden werden also die Bewertungen von Programmen genauer betrachtet, welche
mindestens zweimal bewertet wurden (fiir CSUQ-Details siehe Anhang A.2.4).

Das erste Programm mit drei Bewertungen ist ESPResSo. Dieses Programm wird von allen Teilneh-
mern zum Simulieren und von einem Teilnehmer zusatzlich zum Modellieren verwendet. Zur Bedie-
nung ist keine grafische Oberflache vorhanden, sondern wird mit Hilfe von Programm-spezifischem
bzw. Externen Code bedient. Die Bedienungsfreundlichkeit aus dem CSUQ ergab sich ein gesamt
Durchschnittswert von 3,54, wobei hier kein Aspekt sowohl negativ als auch positiv herausragt. Als
gewiinschte Verbesserungen wurden Algorithmen fiir moderne Physik, Python Interface, Paralleles
Input/Output und eine generelle Fehlerbehebung genannt. Dabei wiinscht sich mehr als die Hélfte
der Teilnehmer, die das Programm bewertet haben, ein Python Interface und parallelen Input/Out-
put. Zwei der Teilnehmer verwenden das Programm zwischen zwei und fiinf Jahren, wihrend ein
Teilnehmer seit iber 5 Jahren mit ESPResSo arbeitet. Das Programm wird durchschnittlich 57% der Ar-
beitszeit verwendet, wobei das Minimum bei 10% liegt. Zur Verwendung wird primér eine Programm
Kommando Sprache (TCL) verwendet, aber auch C, C++, Message Passing Interface (MPI) und Python
sind moglich. Zwei Teilnehmer konnen das Programm sehr gut bedienen und einer durchschnittlich
gut. Zwei Teilnehmern gaben an, dass gute Programmierkenntnisse benétigt werden und laut einem

31

3. Umfrage

18
16
14
12 10
10

8

6

4 2

2

0

vaguely ab average confident very
confident
MW Anzahl

Abbildung 3.6.: Die Programmierfiahigkeiten der Teilnehmer

sind weniger gute Programmierkenntnisse vorausgesetzt. Die Teilnehmer beherrschen die benétigten
Programmiersprachen im Schnitt gut. Das Programm liefert keinen integrierten Editor mit.

Das nichste Programm ist (Open)CMISS das von insgesamt vier Teilnehmern bewertet wurde. Dieses
Programm wird von allen Teilnehmern zum sowohl Simulieren als auch Visualisieren verwendet.
Zusatzlich verwenden es drei Teilnehmer zur Modellierung, zwei zur Daten Sammlung und ein Teil-
nehmer zum Interpretieren. Genauso wie ESPResSo wird (Open)CMISS tiber Programm-spezifischem
bzw. Externen Code bedient. Aus dem CSUQ ergab sich eine durchschnittliche Bedienungsfreundlich-
keit von 2,8, wobei hier die Aspekte der Erlernbarkeit mit 1,5 negativ und die allgemeine Zufriedenheit
mit 3,75 positiv hervorragen. Als Mangel von (Open)CMISS werden fehlende Beispiele fiir den Anfang,
ein klarer Quellcode und neue Features wie z.B. Verlinkung zu einem GUI genannt. Ein Teilnehmer
verwendet das Programm seit ein bis zwei Jahren, zwei verwenden es bisher zwischen zwei und fiinf
Jahren, wahrend ein weiterer (Open)CMISS seit tiber fiinf Jahren verwendet. Der Beanspruchung
der Arbeitszeit variiert von zwei bis 50% der Arbeitszeit, wobei der Schnitt bei 25,5% der Arbeitszeit
liegt. Als benétigte Programmiersprache wurde Fortran angegeben und das Programm setzt gute
Fortran Kenntnisse voraussetzt. Die Fortran Kenntnisse der Teilnehmer werden als durchschnittlich
angegeben. Jeweils ein Teilnehmer kann das Programm gut bzw. weniger gut und zwei kénnen es
durchschnittlich bedienen. (Open)CMISS liefert keinen integrierten Editor mit.

Ebenso wie (Open)CMISS wurde auch das Programm DUNE von vier Teilnehmern bewertet. Das
Programm wurde von allen Teilnehmern zum Simulieren verwendet. Aulerdem verwenden es zwei
der Teilnehmer zur Modellierung und ein Teilnehmer zum Visualisieren. Auch DUNE wird mit
Hilfe von Programm-spezifischem bzw. externen Code bedient. Die durchschnittlich angegebene

32

3.5. Diskussion

Bedienungsfreundlichkeit betrégt 3,08, wobei die Aspekte der Simplizitit des Programms mit einem
Wert von 1,25 negativ und die Effizenz mit 4,5 positiv hervorragen. Gewiinschte Verbesserungen
sind eine breitere Auswahl an Losungsalgorithmen fiir Lineare Gleichungssysteme, eine verbesserte
Spezifikation der parallelen Schnittstelle, zusitzliche Module und bessere Einfuhrung fiir Personen
mit geringeren C++ Féahigkeiten. Die Verwendungsdauer des Programms variiert stark. Es gibt einen
Teilnehmer der das Programm seit iiber finf Jahren verwendet und einen der erst seit maximal einem
Jahr damit arbeitet. Es wird durchschnittlich 53% der Arbeitszeit mit DUNE verbracht, wobei das
angegebene Minimum bei 30% liegt. Zur Verwendung werden gute bis sehr gute C++ Kenntnisse als
Voraussetzung angegeben. Drei der Teilnehmer haben gute Kenntnisse in C++ und einer weniger
gute. Die Teilnehmer gaben eine gute Expertise fiir das Programm an, wobei ein Teilnehmer das seine
Expertise eher gering einschétzt. Das Werkzeug liefert keinen integrierten Editor mit.

Das letzte und meist bewertete Programm ist Matlab mit insgesamt neun Bewertungen. Matlab
wird von allen zum Simulieren verwendet. Acht der Teilnehmer verwenden das Programm auch
zum Visualisieren und sechs zum Modellieren. Aulerdem wird Matlab von fiinf Teilnehmern zum
Interpretieren und von zwei zum Daten Sammeln verwendet. Zur Bedienung von Matlab wurde sowohl
die Kommandozeile als auch Programm-spezifischer Code angegeben. Die angegebene allgemeine
Bedienbarkeit von Matlab betragt 4,08. Keine der einzelnen Attribute des CSUQ weicht seht deutlich
von dem allgemeinen Durchschnittswert ab. Es wurden zwei Verbesserungsvorschlige gemacht, das
ein besserer Editor und Dokumentation von einfachen Funktionen hinzugefiigt werden. Aber sieben
der Teilnehmer haben keine Verbesserungsvorschlage fiir Matlab gemacht. Zwei der neun Teilnehmer
benutzen Matlab zwischen ein und zwei Jahren, vier benutzen es bereits zwischen zwei und funf
Jahren und drei langer als funf Jahre. Matlab wird von den Teilnehmern durchschnittlich 33% der
Arbeitszeit verwendet. Zur Bedienung von Matlab wird laut 4 Teilnehmern die Programmiersprache
Matlab benétigt und 5 Teilnehmer gaben keine benétigte Programmiersprache an. Die durchschnittlich
benétigte Programmiererfahrung wird als mittelméflig eingestuft, wobei zwei Teilnehmer angegeben
haben, dass sehr gute Programmiererfahrung benétigt wird. Sieben der Teilnehmer beherrschen die
fir Matlab benétigten Kenntnisse gut bis sehr gut, zwei mittelméflig. Vier der Teilnehmer schitzen
ihre Expertise fiir Matlab als gut ein, zwei als sehr gut, zwei weitere als weniger gut und ein Teilnehmer
als durchschnittlich.

3.5. Diskussion

Aus den Ergebnissen der Umfrage haben sich einige Dinge klar heraus gestellt. Zum einen ist der
SimTech Exzellenzcluster ein Zusammenschluss aus Experten der unterschiedlichsten Fachrichtung.
Dabei unterscheidet sich nicht nur die Fachrichtung, sondern auch die genauen Anwendungsfalle und
Vorgehensweise jedes Mitglieds. Das macht es zu einer grof3en Herausforderung, ein einheitliches
Programm fiir den komplette SimTech Cluster zu entwickeln. Auflerdem heben die Angaben der
verwendeten Modellierungs- und Simulationsansétze deutlich hervor, dass fiir die selben Ansétze
oft v6llig unterschiedliche Methoden, Programme und Vorgehensweisen von Noten sind. Da einige
Teilnehmer Programmiersprachen, Entwicklungsumgebungen und andere, nicht speziell fiir die
Simulation oder Modellierung entwickelte, Programme angegeben haben, ist der Anteil der selbst
entwickelten Simulationen recht grof. Dabei ist davon auszugehen, dass diese Teilnehmer die Modelle

33

3. Umfrage

oder Simulationen entweder direkt mit Programmecode verwirklichen, oder selbstdndig Programme
zur Simulation entwickeln.

Die 73 genutzten Programme zeigen die extreme Bandbreite an verfiigbaren Losungen fiir Simu-
lationen. Dabei wird aus den vielen speziell entwickelten Programmen ersichtlich, dass auch nur
wenig kommerzielle Losung den notigen Funktionsumfang aufweisen. Die Ergebnisse verdeutlichen
auflerdem, dass teilweise eine Ausfithrung von mehreren Programmen hintereinander zur Losung der
Aufgabe verwendet werden muss. Im Bezug auf nétige Programmiererfahrung und Komfort der bewer-
teten Programme, sind sich die Teilnehmer der Studie uneinig. Wahrend manche Teilnehmer angaben,
dass keine Programmiererfahrung zur Verwendung eines Programms notig ist, gaben andere beim
selben Programme nétige Programmiererfahrung an. Dies verdeutlicht, dass es viele unterschiedliche
Anwendungsszenarien fiir die einzelnen Programme gibt. Aulerdem lésst sich daraus schlieffen, dass
einige Teilnehmer nur die bereits implementierten Funktionen der Programme benétigen, wahrend
andere Teilnehmer speziellere Funktionen benétigen und diese eventuell selbst schreiben miissen.

Auf3erdem sind uns Zusammenhinge zwischen nétiger Programmiererfahrung und Erlernbarkeit
eines Programmes aufgefallen. Je hoher die nétige Programmiererfahrung fiir ein Programm, umso
schlechter wir die Erlernbarkeit des Programms bewertet. Zusétzlich ist unter den mehrfach bewer-
teten Programmen keines dabei, das eine grafische Benutzeroberfliche anbietet, darum wird auch
die Programmiererfahrung fiir diese Programme durchschnittlich als hoch empfunden. Bei diesen
Programmen gibt es auBerdem keine einheitlich verwendete Programmiersprache. Es werden sehr
unterschiedliche Sprachen wie Matlab, C++ und Fortran genannt.

34

4. Interviews

In der Umfrage gibt es die Moglichkeit anzukreuzen, ob Teilnehmer damit einverstanden wéren uns
einen Einblick in deren Arbeit mit den angegeben Simulationswerkzeugen zu gewéhren. Die daraus
resultierenden Ergebnisse sollten uns weitere Informationen, iiber die Anwendung der angegebenen
Programme geben. Wir haben Fragen vorbereitet, mit denen wir diese Informationen herausfinden
konnen. Neben der Frage nach einer kurzen Demonstration der Prozessausfithrung, fragten wir
auch warum das Programm auf diese Weise und nicht anders genutzt wird, bzw. ob es auch anders
genutzt werden kann. Des Weiteren haben wir nach dem persénlichen Eindruck iiber die verwendeten
Werkzeuge gefragt. D.h. was gefillt dem Benutzer besonders an dem Programm und ob es kurz
demonstriert werden kann. Aulerdem wollten wir erfahren ob es Moglichkeiten der Erweiterung des
Programms gibt, z.B. durch das Integrieren von Addons oder Plugins. Wahrend der Demonstration
haben wir uns Notizen zu der Bedienung des Programms gemacht, um selbst beurteilen zu kénnen ob
das Programm komfortabel zu benutzen ist.

Interviews haben wir mit Experten aus PN 5: Multiphasen- und Multiphysikmodellierungen gefiihrt,
welche in den Bereichen Ingenieurswesen und Mathematik titig waren. Dabei wurden Partikelsimu-
lationen und Durchfluss von Fliissigkeiten durch porése Medien als Aufgabenbereiche angegeben.

In den Interviews haben wir herausgefunden, dass hauptsichlich Programme verwendet werden
die am Institut entwickelt wurden. Diese Programme werden dann teilweise von den anwendenden
Personen um Funktionen erweitert. Da diese zusétzlichen Funktionen meist nur von Einzelpersonen
verwendet werden, kommen die Funktionen nicht in Umlauf und sind somit anderen Personen des
Instituts nicht bekannt. In einem Simulationsprozess werden laut den befragten Personen mehrere
verschiedene Programme benutzt. Einer der Teilnehmer nannte im Interview einen “riesen Klotz”
an Daten, den er in die “Tool-Chain” eingeben muss. Das bedeutet ihnen steht kein allgemeines
Werkzeug zur Verfiigung, um Simulationen zentralisiert zu erstellen und durchzufithren. Oftmals
werden Dateien mit einem Programm erzeugt, die dann anschlieBend von weiteren Programmen
interpretiert und verarbeitet werden. Auf Nachfrage ob den Personen ein generisches Programm
helfen wiirde, bekamen wir eine positive Antwort. Ein Interviewteilnehmer gab an, dass ein Bedarf
fuir ein allgemeines Simulationswerkzeug im SimTech Cluster besteht.

Als komfortable Funktionen der verwendeten Programme, nannten befragte Personen, eine “visuelle
Ausgabe von Simulationsergebnissen”. So seien Ergebnisse einer Simulation besser nachvollziehbar.
Ein weiterer wichtiger Punkt ist laut den befragten Personen, eine informative Fehlerausgabe (“[...]
kann direkt auf den Fehler klicken und hingehen [...]”). Dadurch lielen sich Fehlkonstruktionen schnell
beheben. Um die Simulationswerkzeuge schnell bedienen zu kénnen wurde genannt, dass Tastenkiirzel
gerne verwendet werden, da sich damit die Arbeitsprozesse beschleunigen lassen. Es wurde auflerdem
erwahnt, dass Programme ab einer bestimmten Anzahl oder Gréfie von Eingabedateien langsamer
werden, was den Arbeitsfluss store (“Bei grofien Daten funktioniert Paraview nichtmehr so gut [...]").

35

4. Interviews

Teilweise miissen bei Programmen pro Berechnung alle Ausfithrungsparameter neu definiert werden.
Das wurde bei einem Programm, dessen Benutzerfreundlichkeit nicht so gut sei, als negativer Punkt
bemangelt. Der Mangel an Benutzerfreundlichkeit sei allerdings der Komplexitat des Programms zu
verschulden. Eine Person gab an, dass es allgemein schwer sei, eine Balance zwischen Komplexitit
und Benutzerfreundlichkeit zu finden (“[...] sehr komplex, deshalb ist die Balance zwischen Usability

und Komplexitit schwer”). In diesem Fall sei eine gute Dokumentation bei Simulationswerkzeugen
erwiinscht, so die befragte Person.

36

5. Empfehlung

Das SimTech Cluster besteht aus unterschiedlichen Gebieten, die jeweils unterschiedliche Modellie-
rungsansitze und Simulationsprogramme benétigen. Deshalb sind wir der Meinung, dass ein geeigne-
tes Simulationswerkzeug einen generischen Ansatz verfolgen muss. Programme die diagrammbasierte
Modellierungsansitze verwenden, konnten sich fiir diese Herausforderung als besonders geeignet
beweisen. Das Prinzip der Blockdiagrammnotation als Modellierungsansatz macht einen sinnvollen
Eindruck, um sich der generischen Problematik anzunehmen. Jedoch haben wir auch gemerkt, dass
ein festes Kontingent an Modellierungskomponenten nicht ausreicht, um moglichst verschiedene
und komplexe Systeme zu simulieren. Somit muss neben den vorgegebenen Komponenten die Mog-
lichkeit gegeben sein, eigene Komponenten zu implementieren. Da im SimTech Cluster nicht jeder
Forscher Programmierkenntnisse besitzt, muss neben textueller Codeimplementierung, eine weitere
Interaktionsmethode gegeben sein. Diese soll Forschern ohne Programmierkenntnisse erméglichen,
eigene Komponenten zu implementieren. Als besonders empfehlenswert empfinden wir die Me-
thode Programmieren durch Demonstrieren (PBD), in Kombination mit visuellen Vorher-Nachher
Regeln. Dadurch lassen sich anndhernd gleichwertige Komponenten implementieren, wie sie durch
herkémmlichen Code entstehen wiirden.

37

6. Zusammenfassung

Fiir den SimTech Cluster der Universitat Stuttgart soll ein Simulationswerkzeug, das méglichst wenig
Programmiererfahrung voraussetzt, entwickelt werden. Zur Bestandsaufnahme und Informations-
beschaffung wurde in dieser Fachstudie eine Umfrage erstellt und auf Grund der Ergebnisse eine
Empfehlung fir mégliche Herangehensweisen an ein solches Werkzeug gegeben. Angefangen wurde
mit der Untersuchung von verwandten Arbeiten. Dabei wurde der Fokus auf allgemeine Informationen
zum Thema Simulation, sowie auf Forschungsergebnissen im Bereich der Simulationswerkzeuge fiir
Programmieranfinger, gelegt. Um einen Uberblick tiber genutzte Simulationswerkzeuge im SimTech
Cluster der Universitat Stuttgart zu erlangen, wurde eine Umfrage erstellt. Ziel dieser Umfrage war
nicht allein die Bestandsaufnahme verwendeter Programme, sondern auch die Beschaffung von
zusitzlichen Informationen tiber Interaktionsmoéglichkeiten und nétige Programmiererfahrung. Die
Auswertung der Umfrage und der darin genannten Simulationswerkzeuge zeigte, dass Programme
meist sehr speziell fiir einen Fachbereich entwickelt sind. Dabei werden oft hohe Anspriiche an die
Programmierkenntnisse des Nutzers gestellt. Eine Programm mit zusammenfassenden Funktionen ist
nur schwer zu realisieren.

Auf Grund dieser Auswertung haben wir eine Empfehlung ausgesprochen, die sich auf Interaktions-
moglichkeiten fiir das Werkzeug fokussiert. Um fiir Programmieranfanger geeignet zu sein, muss ein
Werkzeug einen generischen Ansatz verfolgen. Dabei macht die Blockdiagrammnotation zur Modellie-
rung Sinn. Auflerdem muss das Programm erweiterbar sein, um auch speziellere Vorgehensweisen zu
unterstiitzen. Da dies selten ohne Programmierkenntnisse realisierbar ist, empfehlen wir die Methode
Programmieren durch Demonstrieren (PBD), in Kombination mit visuellen Vorher-Nachher Regeln.

39

7. Danksagung

An dieser Stelle wollen wir uns bei allen Beteiligten an der Fachstudie bedanken.

Besonderer Dank geht an unsere Betreuer Frau Greis und Herrn Lischke, fiir hilfreiche Tipps und
Hilfestellungen wihrend der gesamten Studie.

Auflerdem wollen wir uns bei allen Teilnehmern der Onlineumfrage bedanken, die eine Aussagekraf-
tige Empfehlung erst ermdglicht haben.

Besonderer Dank gilt auch den Mitarbeitern des SimTech Clusters, die uns zu einem Interview zur
Verfiigung standen. Dabei sind nicht nur die vorangegangen Interviews mit hilfreichen Tipps zur
Umfrage gemeint, sondern auch die abschlieflenden Interviews zu tieferen Einblicken in die Arbeit.

41

A. Anhang

A.1. Fragebogen

A.1.1. Generelle Fragen

1. Your Name: (Textfeld)
2. Your EmailAddress: (Textfeld)
3. Your Occupation:

a) PhD Student
b) Post-doctorand
Professor

Other: (Textfeld)

C

d

= - =

4. Your highest degree:

a) Bachelor

b

d

e) Habituation

)
)
¢) Diploma
)
)
f) Other: (Textfeld)
5. Your project network:
PN1: Material Simulation
PN2: High Performance Simulation

PN3: Dynamic Systems

PN5: Multiphase- and Multiphysics Modelling

)
)
)
d) PN4: Biomechanics & Systembiology
)
) PN6: Cyber-Infrastructure

)

PN7: Reflection & Contextualization

A. Anhang

h) Not a member of SimTech

6. Which university, institute or company are you working for? (Textfeld, aber nur fiir den Fall falls
die dariiberliegende Frage mit h) beantwortet wurde, sonst wurde diese Frage nicht angezeigt)

7. Your Subject:

a) Mathematics

b) Computer science
c) Engineering

d) Social sciences

e) Economics

f) Sciences

g) Other: (Textfeld)

A.1.2. Modellierung- und Simulationsprozess

44

1. On which step(s) of the process are you currently working on? (Mehrere Antworten méglich)

a) Data gathering
b) Modelling

¢) Simulation

d) Visualization
e) Interpretation

f) Other: (Textfeld)

2. What are you specifically doing in this/these step(s)? (Textfeld)
3. What modelling/simulation approach are you using? (Textfeld)

4. Please classify your approach: (Mehrere Antworten moglich)

a) Static

b) Dynamic

¢) Continous
d) Discrete

e) Stochastic

f) Deterministic

g) Other: (Textfeld)

A.1. Fragebogen

5. Which modelling/simulation programs do you know best in your working field? (Textfeld)
6. Do you use self-written programs?

a) Yes

b) No
7. Which programs are you using for your work? (Textfeld)

8. Please rate your general programming skills: (Von 1 bis 5, der Fahigkeit nach aufsteigend)

A.1.3. Programm Bewertung

1. Name of the program: (Textfeld)
2. In which step(s) of the process do you use this program? (Mehrere Antworten moglich)
a) Data gathering
b) Modelling
¢) Simulation
d) Visualization
e) Interpretation
f) Other: (Textfeld)
3. How are you primarily using this program?
a) Graphical interface

b

Command line

d

)
)
¢) Program-specific code
) External code

e) Other: (Textfeld)

4. Please indicate your level of agreement with the following statements: (Bewertung von eins bis
funf, nach aufsteigender Zustimmung)

a) It is simple to use this system.
b) I can effectively complete my work using this system.

c) I am able to complete my work quickly using this system.

)
)
)
d) Iam able to efficiently complete my work using this system.
e) It was easy to learn to use this system. strongly disagree

)

f) The system gives error messages that clearly tell me how to fix problems.

45

A. Anhang

46

10.

11.

12.

g) Whenever I make a mistake using the system, I recover easily and quickly.

h) The information (such as online help, on-screen messages, and other documentation)
provided with this system is clear.

i) It is easy to find the information I need.
j) The information provided with the system is easy to understand.
k) Ilike using the interface of this system.

) Overall, I am satisfied with this system. strongly disagree

. Does the program need any improvement?

a) Yes
b) No

. What kind of improvement is needed? (Textfeld - Nur wenn die vorherige Frage mit Ja beant-

wortet wurde)

. For how many years are you using this program now?

a) 0-1
b) 1-2
c) 2-5
d) 5+

. How much of your working time are you using this program (roughly)? (Prozentuale Angabe)

. Do you need a programming language to opperate the program?

a) Yes
b) No
Which one? (Textfeld - Nur wenn die vorherige Frage mit Ja beantwortet wurde)

Please indicate your level of agreement with the following statements: Bewertung von eins bis
fiinf, nach aufsteigender Zustimmung)

a) I am an expert user of this program.
b) Good programming skills are required to use this program.
c¢) IThave good programming skills in the needed language(s).
Does the program offer an integrated editor for program-specific code?
a) Yes
b) No

. Is it okay that the marked answers are shared with other SimTech employees?

A.2. Ergebnisse

a) Yes
b) No
2. Would you like to be informed about the results of the survey?
a) Yes
b) No
3. Would you be willing to provide us insight into your work?
a) Yes
b) No

4. Please feel free to leave any comments: (Textfeld)

A.2. Ergebnisse

A.2.1. Details der Schritte
« -Visualization and communication of untercertainty -Development of a simulation tool for
non-experts
« Adaptive sampling, GPU computing, Parameter studies
« Compare Results for different kinds of models/ Benchmark tests

« The research is on the development of a simulation method that is able to couple discrete and
continuous methods.

+ Modelling and simulating molecules
« implementing a parallel 2dgrid

+ Use standard methods for simulating fluid motions, implement and check whether they are
sufficient. Improve them to get better results.

« deriving models; Validation with measurement results

« - plot data - compare with literature - evaluation of experimental data

« data mining model developement parameter estimation

« Analysing the role of societal uncertainty and complexity in simulations

« Modelling the system based on Newton’s Laws by using various integrator schemes, performing
numerical simulations and calculating statics and dynamical properties of the system.

« Multiscale simulation

» Code development and supervision of PhD students

47

A. Anhang

48

Deriving and preparation of model equations numerical solving

1.) Set up a set of competing conceptual models 2.) express each as mathematical model 3.)
Set up a set of prior knowledge (probability distribution) for model parameters and model
credibilities 4.) Perform forward uncertainty quantification 5.) perform inverse uncertainty
quantification and probabilistic risk assessment 6.) use the final (set of) models for decision
support 7.) analyze the impact of possible future data collection on the improvement of the
decision problem

- development of efficient discretization for partial differential equations - fast and scalable
solvers for systems of linear equations - numerical methods for coupling black-box solvers
to a multiphysics simulation environment - efficient parallel implemenations of dynamically
adaptive computational grids

produce different models and compare them against each other
Coupling of fluid-structure-acoustics solver.

Modelling: stochastic description of input parameters for simulations Interpretation: estimating
stochastic properties of some quantities of interest for some simulations

Implementation of new numerical algorithms

Modelling: deciding which atoms to take into our model and which to neglect, which approxi-
mations to make when solving Schrodinger’s equation, ... Visualization: Viewing of potential
energy surfaces, reaction paths, ...

Contextualizing simulations at the science-policy interface

I am gathering data in order to model a simulation model about investment decisions and I
try to create a management flight simulator to measure the impact of the simulation model on
human decsion making

Modelling Car Side Impact Scenarios including Dummy/Human Modells in LSDyna. Modelling
muscles in a simple leg modell in NewEulM2.

Skeletal muscle modelling

Conducting expert interviews for gathering qualitative data about the society - energy system
interface.

Modelling aggregation process of nanoparticles

Change parameters, run simulation, visualize results, interpret results extend constitutive
equation

parameter estimation biochemical modeling uncertainty analysis statistical learning methods
perform simulations
making sense of large social data bases

identifying parameters representing biological terms, implementing numerically the model
approach

A.2. Ergebnisse

Uncertainty Quantification
method development, coupling atomistic and continuum models
Trying to find a mathematical description and transfer that to computer code.

Creating models to explain physical processes happening on the atomistic scale, implementing
them in existing academic code, and predicting experimental observations.

Implementing algorithms and simulating the results as well as the performance and the bahvior
of the modelled system w.r.t. this algorithm.

Data gathering: Collect data using Participatory Sensing: Users carry mobile devices sensing
the environment Simulation: Developing mechanisms to run simulations on mobile devices
leveraging resources of stationary servers connected over the internet.

I’'m designing feedback controllers for PDEs and compare them to lower order controllers,
which are cheaper to calculate.

Modelling of a chemical Production Network
Development of numerical methods and computer programs
simulate muscle movement and activation

Literature review and trying to develop an understanding of the modelling framework in
general.

A.2.2. Im Bereich bekannte Werkzeuge

Matlab (15) « COMSOL (2)
(Open)CMISS (5) « LAMMPS (2)
DUNE (4) « Eclipse (2)
ESPResSo (4) « NetLogo
C++(4) + Stagecast
Python (3) « StarLogo
DUMUX(2) « Excel
ParaView (2) « Fortran
GROMACS (2) . C

Maple (2) « mathematica
preCICE (2) + dymola
OpenFOAM (2) « amesim

49

A. Anhang

A.2.3. Fir die Arbeit verwendete Programme

50

demoa

OpenSim

Anybody

GID

Ovito

VMD

FRESHS

Mobile (c++ multi-body dynamics engine)
3Dcreate

MODFLOW

Xpert-N, Hydrogeosphere
ANSYS Fluent

Alya (Barcelona Supercomputing Center)
Peano (inhouse code)
DAKOTA (Sandia)

UQTk (Sandia)

UQLab (ETH)

ChemShell

DL-FIND

Molpro

Turbomole

Vensim

iThink

Stella

PowerSim

Anylogic

Consideo iModeller

LSDyna
Hypermesh
Hypercrash
LSPrepost
NewEulM2

ScenarioWizard

graphviz
siesta
gromacs
vasp

namd

SAS
PANDAS
SG++

IMD
PLATO
EDAMAME
ONETEP
GAUSSIAN
ORCA
Simulink
GNUR
Tau-Code
CFX

FEBio
OpenSIM

A.2. Ergebnisse

Matlab (13)
DUMUX (4)

OpenCMISS (4)

Ci++ (4)
ESPResSo (3)
DUNE (3)
SG++ (3)
Exel(2)

power-point (2)

Linux (2)
LaTeX (2)
Eclipse (2)
NumPro (2)
Python (2)
Maple (2)
Ovito (2)
Simulink (2)
git(2)
COMSOL(2)
LS-DYNA (2)
Sublime Text
SVN

Word
NetLogo
StarLogo
Fortan
ParaView
GCC

LLVM

mathematica

dymola

amesim

demoa

GID

Paraview

VMD

FRESHS

Visual Studio 2010
MODFLOW

Xpert-N
Hydrogeosphere
ANSYS Fluent

Alya (Barcelona Supercomputing Center)
Peano (inhouse code)
preCICE (inhouse code)
OpenFOAM
SBToolbox

preCICE

Shell

Emacs

KMail

LAMMPS

Visit

ChemShell

DL-FIND

Molpro

Turbomole

Vensim

Hypermesh
Hypercrash

51

A. Anhang

» LSPrepost « SAS

o NewEulM2 « SPPS

« ABAQUS « MABSS
 ScenarioWizard « PANDAS

+ OpenCell « PLATO

« siesta « FLEXI

» gromacs « EDAMAME

A.2.4. Programmberwertung
C++,Eclipse

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es iiber ein graphisches Ul

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt
Probleme zu l6sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt
schnell und einfach Aktionen riickgingig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.1.: CSUQ-Eclipse,C++

Keine Verbesserungen benétigt

Es wird seit zwei bis fiunf Jahren verwendet und das 80% der Arbeitszeit.

Zur Verwendung wird C++ benétigt. Der Teilnehmer sagt, er kann das Werkzeug mittelméflig be-
nutzen, wobei Sehr gute C++ Kenntnisse benétigt sind, die der Teilnehmer auch hat. Das Werkzeug
liefert einen integrierten Editor mit.

52

A.2. Ergebnisse

ChemShell

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es Durch Programm-spezifischen Code.

Es ist einfach das System zu benutzen.

Stimmt

Ich kann meine Arbeit effektiv mit dem System erledigen.

Stimmt sehr

Ich kann mit dem System meine Arbeit schnell erledigen

Stimmt sehr

Ich kann meine Arbeit effizient mit dem System erledigen.

Stimmt sehr

Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Neutral
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt

andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden.

Stimmt sehr

Informationen die vom System kommen sind einfach zu verstehen.

Stimmt

Ich benutze gerne das Interface des Systems.

Stimmt sehr

Generell bin ich mit dem System zufrieden.

Stimmt sehr

Tabelle A.2.: CSUQ-ChemShell

Gewtlinschte Verbesserungen sind bessere Simulationsprotokolle und effizientere Algorithmen

Es wird seit mehr als finf Jahren verwendet und das 10% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug sehr gut benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

53

A. Anhang

demoa

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es Durch programm- spezifischen Code.

Es ist einfach das System zu benutzen.

Stimmt weniger

Ich kann meine Arbeit effektiv mit dem System erledigen.

Stimmt sehr

Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Neutral
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Neutral
Probleme zu l6sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt

schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benétigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt iiberhaupt nicht

Tabelle A.3.: CSUQ-demoa

Gewtlinschte Verbesserungen sind weitere Entwicklung und Dokumentation

Es wird seit zwei bis finf Jahren verwendet und das 75% der Arbeitszeit.

Zur Verwendung wird C bzw. C++ als Programmiersprache benoétigt. Der Teilnehmer sagt, er kann das
Werkzeug sehr gut benutzen. Um das Programm zu bedienen werden gute Programmiererfahrungen
vorausgesetzt diese hat der Teilnehmer auch. Das Werkzeug liefert keinen integrierten Editor mit.

54

A.2. Ergebnisse

EMACS

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es iiber ein graphisches Ul

Es ist einfach das System zu benutzen. Stimmt weniger
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Neutral

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt sehr
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Neutral

Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Stimmt sehr

Tabelle A.4.: CSUQ-EMACS

Keine Verbesserungen benétigt

Es wird seit mehr als finf Jahren verwendet und das 75% der Arbeitszeit.

Zur verwendung wird Lisp benétigt. Der Teilnehmer sagt, er kann das Werkzeug gut benutzen,
wobei durchschnittliche Lisp Kenntnisse benétigt sind, die der Teilnehmer nicht ausreichend hat. Das
Werkzeug liefert einen integrierten Editor mit.

55

A. Anhang

GAMS

Wird in Prozessschritten verwendet: Modellierung
Verwendet wird es iiber eine Kommandozeile.

Es ist einfach das System zu benutzen. Stimmt sehr
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Stimmt

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt weniger
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt weniger
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.5.: CSUQ-GAMS

Keine Verbesserungen benoétigt

Es wird seit bis zu einem Jahr verwendet und das 20% der Arbeitszeit.

Zur Verwendung wird Python benétigt. Der Teilnehmer sagt, er kann das Werkzeug recht gut benutzen,
wobei durchschnittliche Python Kenntnisse benétigt sind, in denen der Teilnehmer sehr gute hat. Das
Werkzeug liefert einen integrierten Editor mit.

GROMACS

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Uber die Verwendung und Bedienung wurden keine Angaben gemacht.

56

A.2. Ergebnisse

HyperCrash

Wird in Prozessschritten verwendet: Modellierung
Verwendet wird es iiber ein graphisches Ul

Es ist einfach das System zu benutzen. Stimmt sehr
Ich kann meine Arbeit effektiv mit dem System erledigen. Neutral
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Neutral
Es war einfach das System zu erlernen. Stimmt sehr

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt weniger
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.6.: CSUQ-HyperCrash

Es ist eine Verbesserung gewiinscht insofern, dass das ausgaben manchmal falsch und nicht struktu-
riert sind.

Es wird seit bis zu einem Jahr verwendet und das 30% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug gut benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

57

A. Anhang

LS-DYNA

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es iiber eine Kommandozeile.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt weniger

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt iiberhaupt nicht
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt weniger
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Neutral
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Neutral

Tabelle A.7.: CSUQ-LS-DYNA

Keine Verbesserungen benoétigt

Es wird seit bis zu einem Jahr verwendet und das 10% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug gut benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

58

A.2. Ergebnisse

LS-PREPOST

Wird in Prozessschritten verwendet: Modellierung, Visualisierung
Verwendet wird es iiber ein graphisches Ul

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt weniger

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt iiberhaupt nicht
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt Giberhaupt nicht
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt weniger
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Neutral

Tabelle A.8.: CSUQ-LS-PREPOST

Interface variiert stark zwischen unterschiedlichen Versionen und somit sind Guides nur sehr spezi-
fisch auf die eine Interface version anzuwenden

Es wird seit bis zu einem Jahr verwendet und das 10% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug benutzen (Neutral). Das Werkzeug liefert einen integrierten Editor mit.

59

A. Anhang

Maple

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es iiber eine Kommandozeile.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt weniger

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Neutral
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Neutral
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.9.: CSUQ-Maple

Keine Verbesserungen benoétigt

Es wird seit mehr als funf Jahren verwendet und das 10% der Arbeitszeit.

Zur Verwendung wird Programm-spezifischer Code benétigt. Der Teilnehmer sagt, er kann das
Werkzeug benutzen, wobei geringe Kenntnisse iiber den Programm-spezifischer Code benétigt sind,
Uiber die der Teilnehmer aber mittelméflig beherrscht. Das Werkzeug liefert einen integrierten Editor
mit.

60

A.2. Ergebnisse

Molpro

Wird in Prozessschritten verwendet: Modellierung
Verwendet wird es iiber Programm-spezifischer code.

Es ist einfach das System zu benutzen.

Neutral

Ich kann meine Arbeit effektiv mit dem System erledigen.

Stimmt sehr

Ich kann mit dem System meine Arbeit schnell erledigen

Stimmt sehr

Ich kann meine Arbeit effizient mit dem System erledigen.

Stimmt sehr

Es war einfach das System zu erlernen.

Stimmt weniger

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu 16sen sind.

Stimmt weniger

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Neutral
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Stimmt

Ich benutze gerne das Interface des Systems.

Stimmt sehr

Generell bin ich mit dem System zufrieden.

Stimmt sehr

Tabelle A.10.: CSUQ-Molpro

Keine Verbesserungen benétigt

Es wird seit mehr als finf Jahren verwendet und das 10% der Arbeitszeit.

Zur Verwendung wird keine Sprache benétigt. Der Teilnehmer sagt, er kann das Werkzeug sehr gut
benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

61

A. Anhang

NetLogo

Wird in Prozessschritten verwendet: Modellierung, Simulieren, Visualisierung, Interpretation
Verwendet wird es iiber Programm-spezifischer Code.

Es ist einfach das System zu benutzen.Stimmt

Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt sehr
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt sehr
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.11.: CSUQ-NetLogo

Keine Verbesserungen benoétigt

Es wird seit bis zu einem Jahren verwendet und das 5% der Arbeitszeit.

Zur Verwendung wird Netlogo als Sprache benétigt. Der Teilnehmer sagt, er kann das Werkzeug
mittelmaflig benutzen, wobei gute Netlogo Kenntnisse benétigt sind, die der Teilnehmer auch hat.
Das Werkzeug liefert einen integrierten Editor mit.

62

A.2. Ergebnisse

NumPro

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es iiber Kommandozeile.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Neutral

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt weniger
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Neutral
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.12.: CSUQ-NumPro

Gewilinschte Verbesserungen sind, weitere Entwicklung, Dokumentation und einen code der es
ermoglicht diesen auch Kommerziell zu verwenden.

Es wird seit mindestens fiinf Jahren verwendet und das 50% der Arbeitszeit.

Zur Verwendung wird C++ benoétigt. Der Teilnehmer sagt, er kann das Werkzeug sehr gut benutzen,
mittelméflige C++ Kenntnisse benétigt sind, die der Teilnehmer auch hat. Das Werkzeug liefert einen
integrierten Editor mit.

63

A. Anhang

Pandas

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es iber externen Code.

Es ist einfach das System zu benutzen.

Stimmt weniger

Ich kann meine Arbeit effektiv mit dem System erledigen.

Stimmt sehr

Ich kann mit dem System meine Arbeit schnell erledigen

Stimmt

Ich kann meine Arbeit effizient mit dem System erledigen.

Stimmt sehr

Es war einfach das System zu erlernen.

Stimmt weniger

Probleme zu l6sen sind.

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie

Neutral

schnell und einfach Aktionen riickgéngig machen

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich

Neutral

andere Dokumentation) sind deutlich.

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und

Stimmt weniger

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.13.: CSUQ-Pandas

Gewtlinschte Verbesserungen sind, ein Interface und Unterstiitzung von parallel computing

Es wird seit bis zu einem Jahre verwendet und das 40% der Arbeitszeit.

Zur Verwendung wird C benétigt. Der Teilnehmer sagt, er kann das Werkzeug gar nicht benutzen,
wobei sehr gute C Kenntnisse benétigt sind, die der Teilnehmer aber nur mittelmaflig hat. Das

Werkzeug liefert keinen integrierten Editor mit.

64

A.2. Ergebnisse

ParaView

Wird in Prozessschritten verwendet: Visualisierung
Verwendet wird es iiber ein graphisches Ul

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt tiberhaupt nicht
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt weniger
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt weniger
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.14.: CSUQ-ParaView

Als Verbesserung wurde ein Neuladen-Button vorgeschlagen, um besser mit inkorrekten
Visualisierungs-daten zu arbeiten.

Es wird seit zwei bis fiinf Jahren verwendet und das 10% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug eher weniger benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

65

A. Anhang

Plato

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es tiber eine Kommandozeile

Es ist einfach das System zu benutzen.

Stimmt weniger

Ich kann meine Arbeit effektiv mit dem System erledigen.

Stimmt sehr

Ich kann mit dem System meine Arbeit schnell erledigen

Stimmt sehr

Ich kann meine Arbeit effizient mit dem System erledigen.

Stimmt sehr

Es war einfach das System zu erlernen.

Stimmt

Probleme zu l6sen sind.

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie

Stimmt iiberhaupt nicht

schnell und einfach Aktionen riickgéngig machen

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich

Stimmt iiberhaupt nicht

andere Dokumentation) sind deutlich.

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und

Stimmt weniger

Es ist einfach benétigte Informationen zu finden.

Stimmt weniger

Informationen die vom System kommen sind einfach zu verstehen.

Stimmt weniger

Ich benutze gerne das Interface des Systems.

Stimmt weniger

Generell bin ich mit dem System zufrieden.

Stimmt sehr

Tabelle A.15.: CSUQ-Plato

Gewtinschte Verbesserungen sind eine bessere Modalisierung, effizientere Daten Strukturen und eine

bessere Bedienbarkeit
Es wird seit bis zu einem Jahr verwendet und das 70% der Arbeitszeit.

Zur Verwendung wird C benétigt. Der Teilnehmer sagt, er kann das Werkzeug sehr gut benutzen,
wobei gute C Kenntnisse benétigt sind, die der Teilnehmer auch hat. Das Werkzeug liefert keinen

integrierten Editor mit.

66

A.2. Ergebnisse

SAS

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es iiber Programm-spezifischen Code.

Es ist einfach das System zu benutzen.

Stimmt weniger

Ich kann meine Arbeit effektiv mit dem System erledigen.

Stimmt

Ich kann mit dem System meine Arbeit schnell erledigen

Stimmt weniger

Ich kann meine Arbeit effizient mit dem System erledigen.

Stimmt

Es war einfach das System zu erlernen.

Stimmt weniger

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu 16sen sind.

Stimmt iiberhaupt nicht

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen riickgéngig machen

Stimmt weniger

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benétigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Neutral

Generell bin ich mit dem System zufrieden.

Stimmt weniger

Tabelle A.16.: CSUQ-SAS

Ein besseres Nutzerinterface ist erwiinscht.

Es wird seit mehr als finf Jahren verwendet und das 10% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug weniger gut benutzen, Das Werkzeug liefert keinen integrierten Editor mit.

67

A. Anhang

Scenario Wizard

Wird in Prozessschritten verwendet: Daten sammeln, Modellierung, Simulieren, Visualisierung, Inter-
pretation
Verwendet wird es tiber ein graphisches UL

Es ist einfach das System zu benutzen.

Stimmt

Ich kann meine Arbeit effektiv mit dem System erledigen.

Stimmt sehr

Ich kann mit dem System meine Arbeit schnell erledigen

Stimmt sehr

Ich kann meine Arbeit effizient mit dem System erledigen.

Stimmt sehr

Es war einfach das System zu erlernen. Neutral
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt
Probleme zu l6sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Neutral

Ich benutze gerne das Interface des Systems. Stimmt sehr

Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.17.: CSUQ-Scenario Wizard

Gewilinschte Verbesserungen sind, mehr Postprozess Unterstiitzung, eine Assistentenfunktion fiir
Anfanger und mehr Analysebeispiele in der Dokumentation

Es wird seit mehr als fiinf Jahren verwendet und das 20% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug sehr gut benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

68

A.2. Ergebnisse

Self-written Java for Android

Wird in Prozessschritten verwendet: Daten Sammeln
Verwendet wird es iber externen Code.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Stimmt

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Neutral
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt weniger
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Neutral

Tabelle A.18.: CSUQ-Self-written Java for Android

Keine Verbesserungen benétigt

Es wird seit ein bis zwei Jahren verwendet und das 2% der Arbeitszeit.

Zur Verwendung wird Java benoétigt. Der Teilnehmer sagt, er kann das Werkzeug gut benutzen,
wobei gute Java Kenntnisse ben6tigt sind, die der Teilnehmer auch hat. Das Werkzeug liefert keinen
integrierten Editor mit.

69

A. Anhang

Self-written Python

Wird in Prozessschritten verwendet: Daten Sammeln, Simulieren
Verwendet wird es iiber Programm-spezifischen Code.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Neutral
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.19.: CSUQ-Self-written Python

Keine Verbesserungen benoétigt

Es wird seit zwei bis finf Jahren verwendet und das 10% der Arbeitszeit.

Zur Verwendung wird Python benétigt. Der Teilnehmer sagt, er kann das Werkzeug gut benutzen,
wobei gute Python Kenntnisse benétigt sind, die der Teilnehmer auch hat. Das Werkzeug liefert
keinen integrierten Editor mit.

70

A.2. Ergebnisse

SG++

Wird in Prozessschritten verwendet: Modellierung, Interpretation
Verwendet wird es als Bibliothek.

Es ist einfach das System zu benutzen. Stimmt sehr
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Neutral

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt weniger
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt weniger
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt sehr

Tabelle A.20.: CSUQ-SG++

Als Verbesserung ist gewiinscht, dass auch andere Sprachen als C++ unterstiitzt werden

Es wird seit zwei bis fiinf Jahren verwendet und das 80% der Arbeitszeit.

Zur Verwendung wird ist C++ am angenehmsten, aber Python, Java und Matlab sind auch unterstiitzt.
Der Teilnehmer sagt, er kann das Werkzeug gut benutzen, wobei gute C++ Kenntnisse benétigt sind,
die der Teilnehmer auch hat. Das Werkzeug liefert keinen integrierten Editor mit.

71

A. Anhang

Siesta

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es iiber eine Kommandozeile.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Neural
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Neutral
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt iiberhaupt nicht
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.21.: CSUQ-Siesta

Keine Verbesserungen benoétigt

Es wird seit mehr als funf Jahren verwendet und das 50% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug mittelmaBig benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

72

A.2. Ergebnisse

Vensim

Wird in Prozessschritten verwendet: Modellierung, Simulieren, Visualisierung
Verwendet wird es iiber ein graphisches Ul

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Neutral
Ich kann mit dem System meine Arbeit schnell erledigen Neutral
Ich kann meine Arbeit effizient mit dem System erledigen. Neutral
Es war einfach das System zu erlernen. Stimmt weniger

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt iiberhaupt nicht
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt sehr
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.22.: CSUQ-Vensim

Es ist ein mehr intuitives Interface gewiinscht, da das Werkzeug viele Funktionen hat, die dem
Teilnehmer unbekannt sind

Es wird seit zwei bis fiinf Jahren verwendet und das 15% der Arbeitszeit.

Zur Verwendung wird keine Programmiersprache benétigt. Der Teilnehmer sagt, er kann das Werk-
zeug mittelméafig benutzen. Das Werkzeug liefert einen integrierten Editor mit.

73

A. Anhang

Details CSUQ
Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt
Probleme zu 16sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt
schnell und einfach Aktionen riickgingig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.23.: CSUQ-MATLAB

Es ist einfach das System zu benutzen. Stimmt tiberhaupt nicht
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr

Ich kann mit dem System meine Arbeit schnell erledigen Neutral

Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt

Es war einfach das System zu erlernen. Stimmt weniger

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Neutral
Probleme zu l6sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral
schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Neutral
andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.24.: CSUQ-DUNE

74

A.2. Ergebnisse

Es ist einfach das System zu benutzen.

Neutral

Ich kann meine Arbeit effektiv mit dem System erledigen.

Neutral

Ich kann mit dem System meine Arbeit schnell erledigen

Stimmt weniger bis Neu-
tral

Ich kann meine Arbeit effizient mit dem System erledigen.

Stimmt weniger bis Neu-
tral

Es war einfach das System zu erlernen.

Stimmt weniger bis iiber-
haupt nicht

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu l6sen sind.

Stimmt weniger bis Neu-
tral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Neutral

schnell und einfach Aktionen riickgéngig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Neutral

andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Neutral

Informationen die vom System kommen sind einfach zu verstehen. Neutral

Ich benutze gerne das Interface des Systems. Stimmt

Generell bin ich mit dem System zufrieden. Stimmt
Tabelle A.25.: CSUQ-(Open)CMISS

Es ist einfach das System zu benutzen. Neutral

Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt

Ich kann mit dem System meine Arbeit schnell erledigen Stimmt

Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt

Es war einfach das System zu erlernen. Neutral

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie | Stimmt

Probleme zu l6sen sind.

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich | Stimmt

schnell und einfach Aktionen riickgingig machen

Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und | Stimmt

andere Dokumentation) sind deutlich.

Es ist einfach benétigte Informationen zu finden. Stimmt

Informationen die vom System kommen sind einfach zu verstehen. Stimmt

Ich benutze gerne das Interface des Systems. Neutral

Generell bin ich mit dem System zufrieden.

Stimmt (sehr)

Tabelle A.26.: CSUQ-ESPResSo

75

Literaturverzeichnis

[Bro99]

J. F. Broenink. 20-SIM software for hierarchical bond-graph/block-diagram models. 1999.
(Zitiert auf den Seiten 18 und 19)

[DCST00] A. C.David Canfield Smith, L. Tesler. Novice Programming Comes of Age. 2000. (Zitiert

[Gora]

[Gorb]

[KPO5]

[LKK91]

[MI99]

[SB11]

[SB12]

[Sol86]

[TLR]

[VK11]

auf den Seiten 6, 9, 19, 21 und 22)

G. Gordon. The Development of the General Purpose Simulation System (GPSS). (Zitiert auf
den Seiten 9, 14, 15, 16, 17 und 19)

G. Gordon. A General Purpose Systems Simulation Program. (Zitiert auf den Seiten 9, 14,
15, 16 und 19)

C. Kelleher, R. Pausch. Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers. 2005. (Zitiert auf den Seiten 9, 19,
20, 21 und 22)

A. M. Law, W. D. Kelton, W. D. Kelton. Simulation modeling and analysis, Band 2. McGraw-
Hill New York, 1991. (Zitiert auf den Seiten 12 und 13)

J. C. Martinez, P. G. Ioannou. General-Purpose Systems for Effective Construction Simulation.
1999. (Zitiert auf den Seiten 14, 18 und 19)

J. A. Sokolowski, C. M. Banks. Principles of modeling and simulation: a multidisciplinary
approach. John Wiley & Sons, 2011. (Zitiert auf den Seiten 9, 11, 12, 13 und 14)

J. A. Sokolowski, C. M. Banks. Handbook of Real-world Applications in Modeling and
Simulation, Band 2. John Wiley & Sons, 2012. (Zitiert auf Seite 12)

E. Soloway. Learning to Program = Learning to Construct Mechanisms and Explanations.
1986. (Zitiert auf den Seiten 19 und 21)

K.S. Tim Laue, T. Rofer. SimRobot - A General Physical Robot Simulator and its Application
in RoboCup. (Zitiert auf Seite 19)

A.O.M. H.P.G.E. T. Vahur Kotkas, Riina Maigre. CoCoViLa as a Multifunctional Simulation
Platform. 2011. (Zitiert auf den Seiten 17, 18 und 19)

Alle URLs wurden zuletzt am 28. 09. 2014 gepriift.

77

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Verwandte Arbeit
	2.1 Definitionen
	2.2 Schritte im Simulationsprozess
	2.3 Simulationsmethoden
	2.4 Vor- und Nachteile von Modellierung und Simulation
	2.5 Multifunktionale Simulationsprogramme und Modellstrukturen
	2.6 Programmierterminiologie und Methoden

	3 Umfrage
	3.1 Fragebogen
	3.2 Durchführung
	3.3 Teilnehmer
	3.4 Ergebnisse
	3.5 Diskussion

	4 Interviews
	5 Empfehlung
	6 Zusammenfassung
	7 Danksagung
	A Anhang
	A.1 Fragebogen
	A.2 Ergebnisse

	Literaturverzeichnis

