
Institut für Visualisierung und Interaktive Systeme

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Fachstudie Nr. 194

Untersuchung der Interaktions-
methoden und vorausgesetzten

Programmiererfahrung von
Simulationswerkzeugen

Steven Großmann, Johannes Herter, Nicholas Rush

Studiengang: Softwaretechnik

Prüfer/in: Jun.-Prof. Niels Henze

Betreuer/in: Dipl.-Inf. Miriam Greis
Dipl.-Inf. Lars Lischke

Beginn am: 14. April 2014

Beendet am: 14. Oktober 2014

CR-Nummer: I.6.m

Kurzfassung

Der SimTech Cluster der Universität in Stuttgart vereint viele Experten zum Thema Simulationen. Da
diese Experten aus den unterschiedlichsten Fachrichtungen kommen, bzw. die unterschiedlichsten
Dinge simulieren und modellieren, sind auch einige Mitglieder dabei, die wenig oder keine Pro-
grammiererfahrung aufweisen können. Auf Grund dieses Umstandes soll ein Simulationsprogramm
entwickelt werden, dass möglichst wenig Programmiererfahrung voraussetzt. Im Vorfeld zur Entwick-
lung eines solchen Programms sollen, im Rahmen dieser Fachstudie, bereits im SimTech verwendete
Programme untersucht werden. Dabei liegt das Hauptaugenmerk auf den Interaktionsmethoden
und dem Grad der Programmiererfahrung. Mit Hilfe einer Onlineumfrage wurde eine Übersicht von
verwendeten Programmen, die auch von den jeweiligen Teilnehmer der Umfrage bewertet wurden,
gesammelt. Außerdem wurden Interviews mit einigen Mitarbeitern von SimTech geführt, die einen
tieferen Einblick in die Verwendung der Programme liefern sollte. Basierend auf den Erkenntnissen der
Umfrage und der Interviews wurde eine Empfehlung für die Entwicklung des Simulationswerkzeugs
ausgesprochen.

3

Inhaltsverzeichnis

1. Einleitung 9

2. Verwandte Arbeit 11
2.1. Definitionen . 11
2.2. Schritte im Simulationsprozess . 12
2.3. Simulationsmethoden . 12
2.4. Vor- und Nachteile von Modellierung und Simulation 13
2.5. Multifunktionale Simulationsprogramme und Modellstrukturen 14
2.6. Programmierterminiologie und Methoden . 19

3. Umfrage 23
3.1. Fragebogen . 23
3.2. Durchführung . 26
3.3. Teilnehmer . 27
3.4. Ergebnisse . 27
3.5. Diskussion . 33

4. Interviews 35

5. Empfehlung 37

6. Zusammenfassung 39

7. Danksagung 41

A. Anhang 43
A.1. Fragebogen . 43
A.2. Ergebnisse . 47

Literaturverzeichnis 77

5

Abbildungsverzeichnis

2.1. PBD definieren einer Regel [DCST00] . 22

3.1. Beschäftigung . 27
3.2. Projektnetzwerke . 28
3.3. Fachrichtung . 29
3.4. Schritte . 30
3.5. Klassifizierung . 31
3.6. Programmierfähigkeiten . 32

Tabellenverzeichnis

A.1. CSUQ-Eclipse,C++ . 52
A.2. CSUQ-ChemShell . 53
A.3. CSUQ-demoa . 54
A.4. CSUQ-EMACS . 55
A.5. CSUQ-GAMS . 56
A.6. CSUQ-HyperCrash . 57
A.7. CSUQ-LS-DYNA . 58
A.8. CSUQ-LS-PREPOST . 59
A.9. CSUQ-Maple . 60
A.10. CSUQ-Molpro . 61
A.11. CSUQ-NetLogo . 62
A.12. CSUQ-NumPro . 63
A.13. CSUQ-Pandas . 64
A.14. CSUQ-ParaView . 65
A.15. CSUQ-Plato . 66
A.16. CSUQ-SAS . 67
A.17. CSUQ-Scenario Wizard . 68
A.18. CSUQ-Self-written Java for Android . 69
A.19. CSUQ-Self-written Python . 70
A.20. CSUQ-SG++ . 71

6

A.21. CSUQ-Siesta . 72
A.22. CSUQ-Vensim . 73
A.23. CSUQ-MATLAB . 74
A.24. CSUQ-DUNE . 74
A.25. CSUQ-(Open)CMISS . 75
A.26. CSUQ-ESPResSo . 75

7

1. Einleitung

Seit ca. einem halben Jahrhundert werden Simulationen in den verschiedensten Fachgebieten genutzt
[Gorb]. Während die Geschichte der Simulation beim Militär beginnt, findet sie heutzutage in der
Medizin, der Wirtschaft, den Sozialwissenschaften, dem Maschinenbau und vielen anderen Feldern
Anwendung [SB11]. Dabei wird in den meisten Fällen nicht die reine Simulation, sondern der ganze
Simulationsprozess (in der Literatur „Modeling and Simulation“ oder M&S [SB11]) betrachtet. Der
Simulationsprozess besteht aus mehreren Schritten, die von der Erstellung eines Modells, über
die Simulation, bis hin zur Visualisierung und Analyse reichen [SB11]. Dabei wird ein Modell als
Repräsentation der realenWelt beschrieben, das Abläufe oder Ereignisse widerspiegelt. Die Simulation
selbst ermöglicht dann, das Verhalten des Modells unter gegebenen oder sich ändernden Bedingungen
zu beobachten.

Diverse Simulationsprogramme wurden bereits für die verschiedensten Fachgebiete entwickelt [Gora].
Multifunktionale Simulationsprogramme sollen Simulationen von Systemen aus verschiedenen Gebie-
ten ermöglichen. Dadurch muss lediglich die Bedienung eines Programms erlernt werden, was zusätzli-
chen Lernaufwand und weitere Kosten vermeidet. Multifunktionale Simulationsprogramme benötigen
deshalb eine Modellierungssprache, mit der unterschiedliche Probleme sinnvoll dargestellt werden
können. Besonders diagrammbasierte Modelle konnten sich für diese Aufgabe qualifizieren [Gora].
Allerdings sind diese meist durch eine feste Auswahl an Komponenten beschränkt. Komplexe Systeme
benötigen jedoch Individualisierungsmöglichkeiten, um das System möglichst originalgetreu model-
lieren zu können. Mit Hilfe von speziellen Interaktionsmethoden soll auch Programmieranfängern
ermöglicht werden, individuelle Funktionen zu implementieren [KP05]. Hierfür sind grafische Ober-
flächen oder Methoden wie Programmieren durch Demonstrieren (Programming-By-Demonstration
(PBD)) [DCST00] besonders geeignet.

Auch die Universität Stuttgart hat sich der Forschung im Gebiet der Simulationen gewidmet und
vereint dazu Experten aus unterschiedlichsten Feldern im Stuttgart Research Centre for Simulation
Technology 1 (SRC SimTech). Zusätzlich ist der Exzellenzcluster Simulation Technology (SimTech),
welcher eine Graduiertenschule und einen Studiengang beinhaltet, in das SRC SimTech integriert.

Da nicht alle Experten des SimTech Clusters auch ausgeprägte Programmiererfahrung haben, soll
ein Simulationswerkzeug entwickelt werden. Dieses Werkzeug soll unter der Prämisse entwickelt
werden, dass möglichst wenig Programmiererfahrung zur Benutzung nötig ist. Ziel dieser Arbeit ist
es, eine Empfehlung für ein solches Simulationswerkzeug auszusprechen, wobei der Fokus auf den
Interaktionsmöglichkeiten und der nötigen Programmiererfahrung liegt.

1http://www.simtech.uni-stuttgart.de

9

1. Einleitung

Um einen Überblick der aktuell verwendeten Simulationswerkzeuge im SimTech Cluster zu bekom-
men, wurde eine Umfrage erstellt. Diese Umfrage wurde mit Hilfe von einigen Mitarbeitern des
SimTech Clusters verfeinert und dient nicht nur zur Bestandsaufnahme. Zusätzlich wurden noch
weiter Informationen zu Interaktionsmöglichkeiten und nötiger Programmiererfahrung in diesen
Programmen abgefragt. Die so ermittelten Werkzeuge wurden auf die nötige Programmiererfahrung
und die entsprechenden Interaktionsmöglichkeiten untersucht. Anhand dieser Untersuchung wurde
dann die Empfehlung ausgesprochen.

Diese Arbeitet gliedert sich in folgende Teile:

Kapitel 2 – Verwandte Arbeit: Definitionen und Erklärungen zum Thema Simulation und Modellie-
rung.

Kapitel 3 – Umfrage: Aufbau der Umfrage und Präsentation der Ergebnisse, sowie Diskussion zu
den Ergebnissen.

Kapitel 4 – Interviews: Zusammenfassung der abschließend geführten Interviews.

Kapitel 5 – Empfehlung: Anmerkungen und Empfehlung zur Umsetzung eines Simulationswerk-
zeugs.

Kapitel 6 – Zusammenfassung: Überblick über die Arbeit, die Ergebnisse und unsere Empfehlung.

10

2. Verwandte Arbeit

Durch die Verwendung von Simulationen in vielen verschiedenen Anwendungsgebieten, werden
auch viele wissenschaftliche Arbeiten über Simulationen veröffentlicht. Das folgende Kapitel stellt
eine Übersicht von Themenverwandten Arbeiten dar. Dabei liegt der Fokus auf grundlegenden In-
formationen zu Simulationen, Programme und Forschungen zum Thema intuitive Bedienung und
Programme mit generische Anwendung. Zunächst werden Definitionen von wichtigen Begriffen
wie Modellen, Simulationen und Systemen geklärt. Im Anschluss werden die einzelnen Schritte
des Simulationsprozess genauer betrachtet und zusätzlich gängige Simulationsmethoden erläutert.
Außerdem werden auch einige Vor- und Nachteile von Simulationen und bereits existierenden Si-
mulationsprogrammen diskutiert. Des Weiteren werden multifunktionale Simulationsprogramme
vorgestellt und Programmierterminologien sowie zugehörige Methoden erläutert

2.1. Definitionen

Modelle sind Abschätzungen bzw. Annäherungen an die reale Welt [SB11]. Dabei repräsentiert ein
Modell ein Ereignis, Objekt oder komplexes System, das nicht notgedrungen existieren muss [SB11].
Auch die Repräsentation eines fiktiven Objekts wird als Modell gesehen. Dabei können Modelle
in verschiedenen Abstraktionsebene entstehen. So stellt die einfache Zeichnung eines Autos ein
relativ simples Modell dar, das wenig Einblicke in Abläufe und Funktionsweise eines Autos gibt.
Eine Konstruktionszeichnung desselben Autos ist dabei ungleich Aufschluss- und Detailreicher und
ermöglicht tiefere Einblicke in die Funktionsweise des Autos. Nicht unbedingt muss ein Modell
das gesamte System erfassen. Es können auch kleine Teile des Systems modelliert und betrachtet
werden. Modelle sind nicht auf grafische Repräsentationen beschränkt. Auch mathematische oder
physikalische Formeln stellen Modelle dar.

Simulationen dienen zur Überprüfung und Validierung von Modellen und sollen das Verhalten eines
Modells mit unterschiedlichen Startwerten, oder einfach über die Zeit hinweg zeigen. Einfach gesagt,
ist eine Simulation die Rekonstruktion des Ablaufs eines beobachteten oder erfundenen Prozesses
[SB11]. Zu beachten ist, dass eine Simulation eines grafischen Modells nur schwer durchzuführen ist.
Mathematische oder physikalische Modelle eigenen sich besser zur Simulation. So kann zum Beispiel
der Abrieb eines Reifens an einem Auto simuliert werden, wenn man vorher ein physikalisches Modell
erstellt, das die unterschiedlichen Faktoren (Gewicht des Autos, Straßenbelag, etc.), die zum Abrieb
führen, berücksichtigt. Die Ergebnisse einer solchen Simulation können verwendet werden, um zu
zeigen, dass das Modell den Prozess der echten Welt geeignet repräsentiert (simulierter Reifenabrieb
deckt sich mit den Beobachtungen am Auto). Wenn dies der Fall ist, kann man untersuchen, wie
unterschiedliche Faktoren das Ergebnis der Simulation beeinflussen und daraus Rückschlüssel auf den
Prozess schließen. Nutzen finden Simulationen vor allem bei Systemen, auf die man keinen Zugriff

11

2. Verwandte Arbeit

hat (z.B. Sonnensystem), die zu nutzen zu gefährlich wären (z.B. Kernreaktoren), deren Veränderung
inakzeptabel wäre (z.B. Ökosysteme), oder die einfach nicht existieren [SB11].

Wiederholt haben wir Systeme benutzt um andere Begriffe oder Prinzipien zu erklären. Dabei sehen
wir Systeme als eine Sammlung kleinere Systeme oder auch Elementen, die durch Zusammenarbeit
und Interaktion ein gemeinsames Ziel erreichen [SB11], [LKK91]. Wenn wir also ein Auto als System
betrachten, fällt es uns nicht schwer kleiner Systeme oder Elemente in diesem System zu finden. Der
Motor, die Elektronik und die Lenkung (und natürlich einige mehr) sind alles kleine Systeme, die auch
ohne das jeweils andere funktionieren. Allerdings können sie nur zusammen die Aufgabe erfüllen,
sich fortzubewegen. Elemente können also Maschinen und Bauteile sein, aber genauso können auch
Software oder der Mensch als Element eines Systems vorkommen [SB11], [LKK91]. Dabei ist zu
beachten, dass System meist in größere Systeme eingebettet werden können und es daher wichtig ist,
den aktuellen Zusammenhang genau zu beachten.

2.2. Schritte im Simulationsprozess

Der Gesamte Simulationsprozess, in der Literatur häufig mit M&S („Modeling and Simulation“)
abgekürzt, umfasst nicht nur das Durchführen der Simulation selbst. Zu Beginn des Prozess geht
es darum das System, das simuliert werden soll, zu analysieren. Dazu gehört das Hinterfrage und
Untersuchen von Teilsystemen, sowie die Prüfung von Wechselwirkungen mit anderen Systemen
oder zwischen den Teilsystemen [SB11]. Dabei ist es wichtig möglichst genau und gewissenhaft
vorzugehen, da anhand von den gesammelten Daten im nächsten Schritt des Prozesses ein Modell
erstellt wird. Ziel bei der Erstellung des Modells ist es, eine möglichst genaue Repräsentation des
Systems zu entwickeln. Das erstellte Modell wird im nächsten Schritt simuliert.Hier werden durch
ändern gewisser Parameter im Modell, also quasi durchspielen unterschiedlicher Szenarien im System,
verschiedene Abläufe und Ergebnisse der Simulation beobachtet und dokumentiert [SB11]. Um
die Beobachtungen und Ergebnisse der Simulation verständlicher zu gestalten, werden im Schritt
der Visualisierung die gesammelten Daten verarbeitet und in geeigneter Weise dargestellt. Dieser
Schritt hilft uns beim Verständnis und der Interpretation der gesammelten Daten [SB11]. Zusätzlich
kann mit Hilfe der Visualisierung auch der Ablauf der Simulation, z.B. mit 3D-Computer Grafiken,
dargestellt werden [SB12]. Im letzten Schritt des Simulationsprozesses, der Analyse [SB12], werden die
gesammelten Daten ausgewertet und interpretiert. Dabei können aufgestellte Thesen überprüft und
validiert werden oder Rückschlüsse auf das simulierte System geschlossen werden [SB12]. Außerdem
können Empfehlungen auf Basis der Simulation ausgesprochen und Rahmenbedingungen für das
System vorgestellt werden [SB12].

2.3. Simulationsmethoden

Oft werden in der Literatur bestimmte Eigenschaften von Systemen, Modellen oder Simulationen
hervorgehoben, die den Ablauf bestimmen. So kann ein System zum Beispiel auf Parametern beruhen,
die sich langsam, mit dem Verlauf der Zeit, ändern, oder eben an einem bestimmten Zeitpunkt schlag-
artig verändert werden und so den Zustand des Systems ändern [SB11], [LKK91]. Zur einfacheren

12

2.4. Vor- und Nachteile von Modellierung und Simulation

Betrachtung grenzen wir in diesem Punkt nicht zwischen Systemen, Modellen und Simulationen ab,
sondern betrachten den gesamten Simulationsprozess. Diese Zusammenfassung scheint uns sinnvoll,
da z.B. ein dynamisches System auch meistens ein dynamisches Modell und eine dynamische Simula-
tion nach sich zieht. Dadurch ergeben sich einige Simulationsmethoden, die wir in Gegensatzpaaren
geordnet haben und im Folgenden erklären.

Eine statische Simulation ist dadurch definiert, dass entweder die Zeit keinerlei Rolle spielt, oder nur
ein bestimmter Zeitpunkt betrachtet wird. Beispiel hierfür ist eine Monte-Carlo Simulation [LKK91].
Im Gegensatz zu statischen Simulationen stehen dynamische Simulationen. Bei diesen Simulationen
spielt die Zeit eine entscheidende Rolle, da sich das betrachtete System mit der Zeit verändert bzw.
entwickelt [LKK91].

Zusätzlich unterscheidet man zwischen deterministischen und stochastischen Simulationen. Eine
deterministische Simulation basiert nicht auf probabilistischen Werte, beinhaltet also keine zufälligen
Werte [LKK91]. Dabei ist zu beachten, dass eine solche Simulation durch die Eingabe von festenWerten
auch zu einem festen Ergebnis determiniert. Stochastische Simulationen verwenden im Gegensatz
dazu zufällige Variablen. Dabei können identische Startparameter zu unterschiedlichen Ergebnissen
führen [LKK91]. Aus diesem Grund dürfen diese Ergebnisse nicht als tatsächliche Ergebnisse, sondern
müssen als Abschätzung der Eigenschaft des Systems gesehen werden [LKK91].

Außerdem unterscheidet man auch in kontinuierliche und diskrete Simulationen. Bei beiden Arten
geht es um die Veränderung von Variablen im Verlauf der Zeit. Bei diskreten Simulationen verändern
sich Variablen zu bestimmten Zeitpunkten oder beim Auftreten von Ereignissen [SB11], [LKK91].
Diese Änderung tritt augenblicklich auf, ist also vergleichbar mit einem Schalter der umgelegt wird.
Im Gegensatz dazu verändern sich bei kontinuierlichen Simulationen die Variablen fortlaufend mit
der Zeit [LKK91].

2.4. Vor- und Nachteile von Modellierung und Simulation

Sokolowski und Banks [SB11] listen eine Reihe von Vor- und Nachteilen auf, die Modellierung und
Simulation mit sich bringt. Dabei beziehen sie sich auf eine 1998 veröffentlichte Liste vom Institute of
Industrial Engineers. Zunächst wollen wir einige Vorteile dieser Auflistung vorstellen:

• Die Fähigkeit sich richtig zu entscheiden, indem man jede mögliche Veränderung überprüft

• Komprimieren oder expandieren der Zeitlichen Abläufe, um dem Nutzer die Möglichkeit zur
genaueren Untersuchung zu eröffnen

• Verständnis für Systeme, durch Erstellung und Untersuchung eines Szenarios

• Möglichkeiten erforschen, ohne das echte System zu stören

• Probleme diagnostizieren, indem die Interaktionen zwischen Variablen durschaut werden

• Visualisierung, um das System beobachten zu können

• Vorbereitung auf Änderungen, indem man mögliche Auswirkungen untersucht

13

2. Verwandte Arbeit

• Vernünftige Investition, da eine Simulation billiger als die tatsächliche Änderung des Systems
ist

• Kostengünstige Trainingshilfe

Durch die vielen Anwendungsmöglichkeiten ergeben sich auch viele Vorteile, die für die Verwendung
von Modellierung und Simulation sprechen. Jedoch bringt es auch einige Nachteile mit sich, die von
Sokolowski und Banks [SB11] auch weniger ausführlich beschrieben werden:

• Spezielles Training nötig, um Modelle zu erstellen

• Schwierige Interpretation von Ergebnissen, wenn diese auf Zufällen beruhen

• Zeitliche und finanzielle Kosten, da der Simulationsprozess aufwändig und kostenintensiv sein
kann

• Falscher Einsatz von Simulationen, wenn z.B. ein analytischer Ansatz erfolgsversprechender
wäre.

2.5. Multifunktionale Simulationsprogramme und Modellstrukturen

Seit den 1960er Jahren verstärkte sich das Interesse nach Programmen, welche komplexe Systeme simu-
lieren können [Gorb].Über die Jahre entstanden deshalb viele verschiedenen Simulationsprogramme,
die auf spezielle Probleme anwendbar sind. Allerdings müssen beispielsweise in Produktionsprozessen
mehrere Systeme aus verschiedenen Gebieten simuliert werden [MI99]. Programme für spezielle
Zwecke, benötigen meist eine spezielle Bedienung [MI99]. Aus diesem Umstand kristallisierte sich
der Wunsch nach Simulationsprogrammen, die generisch in mehreren Gebieten, bzw. auf mehrere
Problemstellungen anwendbar sind [Gorb]. Im Folgenden werden Modellstrukturen und Programme
vorgestellt, die sich mit dieser Problematik beschäftigen. Dabei liegt der Fokus auf Modellstrukturen
und Programmen, welche intuitiv und mit wenig bis keiner Programmiererfahrung bedient werden
können. Zusätzlich werden die Vor- und Nachteile von generischen Simulationsprogrammen erläutert
und diskutiert.

2.5.1. Gestaltung eines generischen Simulationsprogramms

Bereits in den 1960er Jahren erkannten Firmen wie IBM dass es nicht effizient ist, für jedes Fachgebiet
ein spezielles Simulationsprogramm zu entwickeln [Gora]. Deshalb ergab sich der Bedarf an Simulati-
onsprogrammen, die verschiedene Probleme lösen können [Gora]. Generische Simulationsprogramme
müssen verschiedensten Anforderungen gerecht werden, da der Fokus dieser Programme nicht in
einem speziellen Forschungsgebiet liegt. Aus diesem Grund muss eine Art der Modellierung gefunden
werden, die ein breites Spektrum abdeckt und sich sinnvoll als Simulation ausführen lässt. Um einen
Simulationsprozess zu initiieren müssen hauptsächlich zwei Schritte eingeleitet werden [Gorb]. Zuerst
muss ein Modell für das System konstruiert werden, gefolgt von der Erstellung eines Programms
welches die Logik und Aktionen des Modells produziert [Gorb]. Das lässt darauf schließen, dass der
Grundstein für ein erfolgreiches, generisches Simulationsprogramm eine wohl definierte formelle

14

2.5. Multifunktionale Simulationsprogramme und Modellstrukturen

Sprache ist. Mit einem derartigen Programm kann alles simuliert werden, das die gegebene Sprache
erfüllt. Die Herausforderung liegt darin, eine Sprache zu finden, die ein System möglichst detailliert
beschreiben kann und dennoch generisch verwendbar ist.

Im Rahmen einer Untersuchung von fortgeschrittenen Schaltsystemen sollte ein Werkzeug entwi-
ckelt werden, um diese Systeme zu simulieren. Ein Projekt welches von J. P. Runyon geleitet wurde
[Gora], verwendete für diese Aufgabe ein Simulationsprogramm das auf Sequenzdiagrammen basiert.
Damit konnten Schaltknoten dargestellt werden, welche gerichtete Operationen initiierten. Dieses
Programm wurde mit Verbesserungen erweitert, sodass mehr Details in die Simulation integriert wer-
den konnten. So wurden die Knoten der Sequenzdiagramme beispielsweise um Zeitbeschränkungen
oder spezielle Marker erweitert. In den Folgejahren wurde das Programm erfolgreich auf weitere
Systeme angewandt. Neben Schaltsystemen wurden damit auch Verkehrsflusssimulationen ausge-
führt. Die Verkehrsflusssimulationen wurden durch Bewegungen von Kunden in einem Supermarkt
demonstriert. Mit diesem Beispiel sollte die Einfachheit und Generik des Simulationsprogramms
bewiesen werden [Gora]. Für speziellere oder detailliertere Systeme mussten allerdings Anpassungen,
bzw. Erweiterungen zu dem Programm hinzugefügt werden [Gora]. Bedauerlicherweise konnten
die Sequenzdiagramme nicht für alle Systeme adaptiert werden. [Gora] Diesen Umstand bemerkte
auch G. Gordon als er einem Projekt von Dr. D. V. Newton beitrat, indem er nach einer geeigneten
Simulationsmethode für generische Systeme suchen sollte. Für große Entwicklungsprojekte konnte
ein Simulationsprogramm mit einer Sequenzdiagrammnotation nicht sinnvoll skaliert werden [Gora].
Inspiriert von den Vorteilen der Sequenzdiagramme entwickelte Gordon eine Blockdiagrammnotation
und ein Simulationsprogramm, zu Beginn unter dem Namen Gordon Simulator bekannt, das diese
Notation verwendet [Gora].

Die Blockdiagrammnotation des Gordon Simulator

Blockdiagramme bestehen aus Blöcken, die mit Linienverbindungen kombiniert werden. Blöcke
erfüllen bestimmte Funktionen in dem zu simulierenden System, während die Verbindungslinien
einen Datenfluss repräsentieren. Die Durchführung einer Simulation geschieht durch die Erstellung
von Transaktionen. Diese werden in einer chronologisch korrekten Reihenfolge und mit Rücksicht auf
deren Prioritäten, durch die Blöcke weitergereicht [Gora]. Jede Bewegung, hier als Zustandswechsel
anzusehen, bedeutet ein einzelnes Ereignis und geschieht zu einem bestimmten Zeitpunkt. Aus diesem
Grund verwendet der Gordon Simulator eine Zeitschaltung, welche allerdings nur von Ereignis zu
Ereignis schaltet. Das heißt, dass das System nicht in Echtzeit simuliert wird, sondern lediglich die
Ereigniskette abarbeitet. Demzufolge haben Blöcke eine bestimmte Blockzeit, welche indiziert wie
lange die Aktion des Blocks ausgeführt wird. Dadurch wird die Simulationsdurchführung beschleunigt
und es werden lange Pausen ohne die Ausführung von Systemfunktionen vermieden [Gora]. Um einen
korrekten Datenfluss im System zu gewährleisten, muss jeder Block mindestens einen Nachfolger
besitzen. Durch einen bestimmten ”Selection Factor” wird entschieden, welcher Nachfolger gewählt
wird [Gorb]. Teilweise benötigen Systeme eine Operationsausführung, während eine Transaktion
durchgeführt wird. Das kann mit der Hilfe von Ausrüstungskomponenten implementiert werden. Die
Komponenten können mit Transaktionen verknüpft werden und während der Transaktion ausgeführt
werden. Transaktionen die temporäre Entitäten eines Systems repräsentieren, benötigen Attribute.
Deshalb können Transaktionen Parameter übergeben werden. Beispielsweise halten Warenlager eine

15

2. Verwandte Arbeit

bestimmte Anzahl an Waren, welche durch diese Attribute ausgedrückt werden können. Dadurch
werden die Blockausführungszeiten während der Simulation beeinflusst.

In dem Programm von Gordon wird ein System durch verschiedene Block-Klassen definiert. Transak-
tionen werden mit Entstehungs- und Generierungsblöcken erstellt. Damit wird die Durchführung der
Simulation eingeleitet. Entstehungs- und Generierungsblöcke können Transaktionen zur Laufzeit
der Simulation generieren, manipulieren und entfernen [Gorb]. Weitere Block-Klassen bieten die
Möglichkeit, Transaktionen mit Markierungen zu versehen. Die markierten Transaktionen können im
weiteren Verlauf der Simulation an Fortschreitblöcken, Entscheidungen für die Nachfolgerblöcke tref-
fen [Gorb]. So entscheiden beispielsweise an Transferblöcken die Markierungen der Transaktionen,
über den weiteren Verlauf der Simulation. Des Weiteren gibt es Block-Klassen die Transaktionsaus-
rüstungen kontrollieren, Block Speicher blockieren können und Statistiken sammeln. Um Ereignisse
der Simulation interpretieren zu können, ist besonders letzterer Blocktyp wertvoll.

Das Allzweck-Simulationssystem - General Purpose Simulation System (GPSS)

Vorteilhaft für das auf Blockdiagrammen basierende Simulationsprogramm ist, dass Komponenten
einfach ersetzt werden können [Gorb]. Während der Zeit der Entwicklung des GPSS, wollten Inge-
nieure und Analytiker es möglichst vermeiden selber programmieren zu müssen. Daraus resultierte
die gute Organisation und Dokumentation, als wichtiger Faktor des GPSS. Des Weiteren geschieht die
Erstellung einer Simulation ohne Programmierpraktiken und Programmierterminologie. Somit kön-
nen auch Programmieranfänger das GPSS verwenden. Die Blockdiagrammsprache vermittelt somit
die Illusion, dass der Anwender das System nicht programmiert, sondern es beschreibt [Gora]. Durch
die Beachtung von Designregeln für Benutzerinteraktion, gewann das Programm an Mehrwert für
unerfahrene Nutzer. So wurden Programmabbrüche bei Fehlimplementierungen, mit Informationen
über den Systemstatus und Modellstatus in das Programm eingebaut. Allerdings sorgen bereits die
hohen Strukturen des Modellprinzips dafür, Ausführungsfehler vorherzusehen und zu beseitigen. Es
wurden auchMechanismen und Automatismen in das Programm eingebaut, um dem Benutzer unnötig
viel Interaktion zu ersparen. Wenn blockierte Transaktionen beispielsweise wieder als verfügbar
gesetzt werden, startet der Algorithmus automatisch von vorne.

Das Programmwurde im Verlauf der 60er Jahre in diversen Anwendungsgebieten, wie an der Börse, im
Städteverkehr, in Computerzentralen etc. verwendet und konnte sich in diesen Bereichen als sinnvoll
beweisen [Gorb]. Jedoch führt der generische Ansatz des Simulationsprogramms zu Kompromissen, da
es nicht immer den Anforderungen der Benutzer entspricht [Gorb]. Die Ausführungsgeschwindigkeit
der Simulationen mit dem GPSS wurden ebenfalls kritisiert, da sie sehr langsam im Vergleich zu
späteren Konkurrenzprogrammen ist.

2.5.2. Multifunktionale Simulationsplattformen und Pakete

Der Gordon Simulator bietet durch die Modellierung mit Blockdiagrammen einen generischen Ansatz
Systeme zu simulieren[Gorb]. Allerdings sind beim GPSS von Gordon die Möglichkeiten, durch die
vorgegebenen Blöcke begrenzt. Eine Funktion des Simulationsprogramms wurde in den öffentlichen
Dokumentationen des Programms jedoch nicht erwähnt, nämlich die Integration von Hilfe-Blöcken

16

2.5. Multifunktionale Simulationsprogramme und Modellstrukturen

[Gora]. Gordon verwendete diese Funktionen lediglich zum Debuggen. Mit diesen Blöcken konnte
selbst geschriebener Assembler Code in das Programm eingefügt werden, wodurch die Möglichkeit
gegeben wurde eigene Block-Klassen zu definieren. Zwar können Anwender ohne Programmiererfah-
rung keine Blöcke selbständig implementieren, allerdings könnten programmiererfahrene Spezialisten
diese Programme für andere Nutzer einrichten. Durch die daraus resultierende hohe Erweiterbarkeit
des Simulators, gewinnt das Programm erheblich an Mehrwert für dessen Benutzer.

Compiler-Compiler für visuelle Sprachen

Programme wie die Software ”Compiler-Compiler for Visual Languages” (CoCoViLa) [VK11] bein-
halten diverse Möglichkeiten der Individualisierung. CoCoViLa ist eine Simulationsplattform die
visuelle und modellbasierte Softwareentwicklung anbietet. Hierfür verwendet CoCoViLa eine struk-
turierte Darstellung von Programmen. Mit dieser Darstellung können deklarierte Spezifikationen
von Simulationen in ausführbaren Programmcode umgewandelt werden. Für die Modellierung eines
Systems, wird in CoCoViLa ein ähnliches Konzept wie im GPSS verwendet. Komponenten sind in
diesem Programm das Pendant zu Blöcken im GPSS. Sie repräsentieren Java Klassen, mit zusätzlichen
Annotationen die zur Darstellung der Komponenten dienen. Mit Hilfe der visuellen Werkzeuge der
Plattform, können Spezifikationen ohne selbstgeschriebenen Programmcode erstellt werden. An-
schließend werden die Spezifikationen vollkommen automatisch von CoCoViLa ausgeführt [VK11].
Während der Entwicklung der Plattform wurde sehr viel Wert auf Flexibilität gelegt, wodurch Co-
CoViLa multifunktional anwendbar ist [VK11]. Einzelne Komponenten lassen sich ohne Probleme
mit bereits existierenden oder neu entwickelten Komponenten austauschen. Threads werden durch
sogenannte Dämonen spezifiziert. Benutzerinteraktionen können durch Dämonen während Pro-
blembeschreibungen und während Simulationsphasen durchgeführt werden [VK11]. Simulationen
können als fortschreitende Zeitsimulation oder als diskrete Ereignissimulation ausgeführt werden,
was CoCoViLa flexibel einsetzbar gestaltet [VK11]. Mit der zusätzlichen Eigenschaft lässt sich das
Verhalten eines Systems über einen Zeitraum betrachten, wodurch Echtzeitsimulation untersucht
werden können.

Da es sich bei CoCoViLa um eine Plattform handelt, besteht die Möglichkeit verschiedene Desi-
gnprinzipien zur Simulation anzuwenden [VK11]. Eines der Prinzipien beruht beispielsweise auf der
automatischen Programmausführung von Spezifikationen. Dadurch wird ausführbarer Quellcode
generiert. Da eine Spezifikation hier jedoch eine eigene Art von Quellcode ist, betrachten wir ein
anderes Designprinzip. Personen ohne Programmiererfahrung können mit dem Designprinzip der
modellbasierten Softwareentwicklung, ausführbare Modelle für Simulationen erstellen [VK11]. Mit
Hilfe der visuellen Editoren der Plattform, können Simulationsdetails benutzerfreundlich editiert
werden. Der Klasseneditor ermöglicht es, visuelle Aspekte der Komponenten mit Zeichnungen oder
Bitmapimporten zu definieren [VK11]. Das trägt zu einer besseren Veranschaulichung der Komponen-
ten und damit des kompletten Systems bei. Der Schema-Editor ist für mehrere Zwecke verwendbar.
Damit können Simulationspakete, die im Klasseneditor erstellt wurden, importiert werden. Die Be-
nutzeroberfläche wird individuell an die Paketbeschreibung anpasst. In diesem Editor werden auch
die Simulationsprobleme visuell erstellt. Sie können dann in anderen Schemas als Komponenten in
einer höheren Hierarchie integriert werden [VK11]. Zusätzlich bietet diese Oberfläche noch Optionen
zum Debuggen an. Des Weiteren können Ergebnisse einer Simulation in einem neuen Fenster oder in

17

2. Verwandte Arbeit

der Konsolenausgabe dargestellt werden. Es gibt noch weitere Teile der Plattform, wie zum Beispiel
den Planer oder die Werkzeugbox. Mit dem Planer werden deklarierte Spezifikationen in ausführba-
ren Programmcode übersetzt. Dafür muss jedoch eine Spezifikation in der definierten Sprache der
Plattform geschrieben werden [VK11]. Das ist nicht mit einer rein visuellen Oberfläche und ohne
Programmierterminologie möglich.

20-SIM

Mit dem Modellierungs- und Simulationspaket 20-SIM, kann das dynamische Verhalten von Inge-
nieurssystemen modelliert und simuliert werden [Bro99]. Die Modelle in dieser Software, werden
als hierarchisch strukturierte Bond-Graphen und Blockdiagramme erstellt. Zusätzlich lassen sich
Gleichungen einfügen, um eigene Submodelle oder Gleichungsmodelle zu erstellen. Dadurch wird dem
Benutzer mehr Freiheit in der Modellierung gewährt [Bro99]. Abgesehen von dem Gleichungseditor,
können Modelle komplett mit einer grafischen Oberfläche und ohne Programmierpraktiken erstellt
werden [Bro99]. Somit können die, im entsprechenden Kapitel beschriebenen, Blockdiagramme be-
quem und ohne Programmiererfahrung erstellt werden. Das gleiche gilt für die Bond-Graphen, welche
einen essentiellen Teil des Pakets bilden. Durch diese Graphen können existierende Submodelle
komfortabel wiederverwendet und erweitert werden [Bro99]. Im Vergleich zur Simulationsplatt-
form CoCoViLa sind leider nicht die gleichen Individualisierungsmöglichkeiten gegeben. Jedoch
ist 20-SIM etwas leichtgewichtiger und somit weniger kompliziert in der Bedienung. Durch den
objektorientierten Ansatz von Bond-Graphen entstehen mehr Anwendungsmöglichkeiten, welche
von Blockdiagrammen allein nicht kompensiert werden können. Besonders dann, wenn es sich bei
der Modellierung und Simulation um physikalische Eingabe-/Ausgabesysteme handelt [Bro99].

2.5.3. Klassifizierung von Simulationswerkzeugen und Modellierungsprinzipien

Die bisher beschriebenen Simulationsprogramme, -Plattformen und -Pakete, sind nur ein kleiner Teil
dessen, was bisher entwickelt wurde und auf dem Markt verfügbar ist [MI99]. Dies sollte lediglich
veranschaulichen, wie Programme den Modellierungs- und Simulationsschritt mit verschiedenen
Methoden und Techniken durchführen. Simulationswerkzeuge haben bestimmte Charakteristiken, die
das Werkzeug klassifizieren. Beispielsweise definieren der Anwendungsumfang, das Modellparadigma
und die Flexibilität, zu welchem Typ das Simulationsprogramm zugeteilt wird [MI99]. Die Wahl
der Simulationsstrategie ist ein weiteres, signifikantes Merkmal [MI99]. Dabei gibt es hauptsächlich
zwei Strategien, nämlich die Prozessinteraktion und die Aktivitätsabtastung. Im Prinzip können mit
allen Strategien jegliche Problemstellungen gelöst werden [MI99], dennoch hilft die korrekte Wahl
einer Strategie, die Modellierung und Simulation des Problems zu vereinfachen. Beispielsweise ist die
Prozessinteraktions-Strategie besonders für Fertigungsanwendungen geeignet, in denen Materialien
in ein System geliefert werden und einen eher statischen Prozessverlauf haben [MI99]. Hingegen ist
die Aktivitätsabtastung-Strategie vorzugsweise für Systeme mit hoher Interaktion von Ressourcen,
mit stark variierenden Zuständen, geeignet [MI99]. Die Möglichkeit mehrere Strategien zu verbinden
besteht natürlich ebenfalls und wird des öfteren in Simulationswerkzeugen angewendet. Ein Beispiel
ist hier der Drei-Phasen-Ansatz, bestehend aus Prozessinteraktion, Aktivitätsabtastung und Ereignis-
disposition. Neben der Simulationsstrategie ist für generische Simulationswerkzeuge ebenfalls sehr

18

2.6. Programmierterminiologie und Methoden

wichtig, welcher Modellierungsansatz verwendet wird. Dabei hat sich in vielen Dokumentationen
von Simulationsprogrammen, mit Anwendungsmöglichkeiten ohne Programmierkenntnisse bewie-
sen, dass Modelle die auf visuellen Diagrammen basieren bevorzugt werden [Bro99] [Gorb] [VK11]
[Gora] [MI99]. Hierbei müssen nämlich keine Programmierterminologien angewendet werden und
das System kann praktisch mit Bauelementen zusammengesetzt werden [Gora]. Neben den bereits
erwähnten Blockdiagrammen, Bond-Graphen und Sequenzdiagrammen [Gorb] [VK11] werden häufig
auch Aktivitätsdiagramme oder Petrinetze verwendet [MI99], da sie eine ähnliche Struktur aufweisen.
Zu beachten ist allerdings, dass auch nicht diagrammbasierte, sondern beispielsweise strukturbasierte
Modelle, wie XML Code [TLR], für programmierunerfahrene Benutzer von Interesse sein können.

2.6. Programmierterminiologie und Methoden

Trotz der großen Auswahl an existierenden Simulationsprogrammen, konnte in unserer erstellten
Umfrage (Kapitel ??) festgestellt werden, dass viele Wissenschaftler ihre Programme selber entwickeln
und in Simulationen verwenden. Das liegt unter anderem daran, dass diverse Programme nicht frei
verfügbar sind oder dass für spezielle Probleme keine passenden Programme existieren. Für Personen
ohne Programmierkenntnisse, stellt das ein Hinderniss zur Erstellung und Durchführung von Simula-
tionen dar [KP05]. Neben dem Erlernen der strukturierten Herangehensweise an Problemstellungen,
muss sich ein Programmieranfänger mit einer speziellen Syntax auseinandersetzen, die sich von einer
natürlichen Sprache stark unterscheiden kann [KP05]. Diese Hürde wollen Forscher beseitigen, um
das Programmieren einer breiteren Masse zugänglich zu machen. Kapitel 2.6.1 konzentriert sich auf
das Erlernen von Programmiertechniken, unter der Voraussetzung dass der Programmieranfänger
bereits Erfahrung mit strukturierten Herangehensweisen an Problemstellungen hat. Das bedeutet,
dass die zum Programmieren benötigten Mechaniken und Konzepte [Sol86] vorhanden sind und
lediglich die Kommunikation mit dem Computer eine Barriere darstellt.

2.6.1. Zugänglichkeit zum Erlernen neuer Programmiersprachen

Benutzer von Computersystemen kommunizieren in der Regel nur über Programme mit dem Compu-
ter, die sie nicht selber geschrieben haben [DCST00]. Das bedeutet, dass die wenigsten Computerbe-
nutzer das Potenzial ihres Gerät ausnutzen können. Forscher erkannten diesen Mangel und arbeiteten
seit den frühen 1960er Jahren daran, das Programmieren der breiten Bevölkerung zugänglicher zu
machen [KP05]. Unglücklicherweise ist es den Forschern lange Zeit nicht gelungen, dieses Ziel zu
erreichen [DCST00]. Der Grund dafür liegt allerdings nicht an mangelndem Interesse, sich eine
Programmiersprache anzueignen, sondern mehr an der Barriere, welche die Zugänglichkeit zu einer
neuen Sprache darstellt [DCST00]. Forscher haben über einen Zeitraum von ca. 30 Jahren diverse
generische Sprachen an Programmieranfängern ausprobiert, dies allerdings ohne Erfolg [DCST00].
Somit kamen die Wissenschaftler zu dem Entschluss, dass die Programmiersprache selbst das Problem
darstellt [DCST00]. Oft wirkt die Syntax einer Programmiersprache willkürlich und Anfänger können
sich wenig unter den Abkürzungen und zusammengesetzten Befehlen vorstellen [KP05]. Deshalb
versuchten die Sprachforscher Lernsysteme zu entwickeln, die Personen langsam an die Syntax und
Semantik von Programmiersprachen heranführen. Erst nachdem die lernenden Personen Erfahrung

19

2. Verwandte Arbeit

mit den Lernsystemen gesammelt hatten, wurden sie an generische, kommerzielle Programmier-
sprachen wie C++, Java, etc. herangeführt [KP05]. Dabei wird bei Lernsystemen darauf geachtet,
dass sie eine gewisse Ähnlichkeit mit generischen Programmiersprachen haben, damit der spätere
Wechsel der Studenten einfach zu bewältigen ist, ohne wieder eine komplett neue Herangehensweise
erlernen zu müssen [KP05]. DesWeiteren haben Programmieranfänger oft Schwierigkeiten damit, ihre
Absichten in korrekter Form als Text in einen Editor zu schreiben, wie es bei den meisten generischen
Programmiersprachen üblich ist [KP05]. Deshalb gibt es zwei Ansätze, die ein Lernsystem verwenden
kann, um Programmieranfängern den Start zu erleichtern. Entweder muss die Programmiersprache
soweit verbessert werden, dass ein Anfänger diese Sprache leicht erlernen kann, oder es müssen
Alternativen entwickelt werden, wie die Personen ihre Instruktionen in den Computer eingeben
können [KP05].

Vereinfachen der Sprache: Generische Programmiersprachen beinhalten syntaktische Merkmale wie
zum Beispiel die geschweiften Klammern in Java, oder die Labels in Fortran, welche für Anfänger
schwierig zu verstehen sind, da sie keine offensichtliche Bedeutung zu haben scheinen [KP05]. Mit der
Sprache Basic sollte dem entgegen gewirkt werden, da hier viele englische Begriffe eingebaut wurden,
um dem Programmierer mehr Parallelität zu einer natürlichen Sprache zu gewähren [KP05]. Kritiker
bemängelten, dass dadurch mehr Rechenaufwand beim Übersetzen der Sprache in Maschinencode
verursacht wird. Doch da die Sprache die Programmierer nur an das Programmieren heranführen
sollte, wurde das in Kauf genommen [KP05]. Eine weitere Lernprogrammiersprache ist Blue, welche
bestimmte Restriktionen hat um das Programmieren für Anfänger zugänglicher zu gestalten. So gibt
es in Blue die Beschränkung, dass alles nur auf eine bestimmte Weise programmiert werden kann,
oder dass die Sprache sehr lesbar gestaltet ist, damit Studenten durch das betrachten von Beispielen
verstehen um was es in dem Programm geht [KP05]. Besonders interessant bei Blue ist, dass es eine
vollkommen objektorientierte Sprache ist und über Datei-Klassenstrukturen verfügt, sowie über
einen Garbagecollector. Ebenfalls objektorientiert und zusätzlich nah an der Java-Syntax, da auch
von Java abgeleitet, ist Junior Java (JJ). Der Code aus JJ kann als normaler Java Code exportiert
werden, wodurch die Lücke zwischen Lernsprache und generischer Sprache klein gehalten wurde,
um den späteren Wechsel zu erleichtern [KP05]. Das ist ein wichtiger Punkt, da die Balance zwischen
Lernsprache und generischer Sprache sinnvoll sein muss, um einerseits den späteren Wechsel zu
einer generischen Sprache zu vereinfachen. Andererseits muss eine möglichst einfache Terminologie
verwenden werden, damit die Programmieranfänger einen leichten Einstieg haben und sich auf die
Programmiermechanik konzentrieren können und nicht auf die Sprachsyntax.

Alternativen zur Computerinteraktion: Programmiersprachen unterliegen gewissen Beschränkungen,
wie eine bestimmte Reihenfolge in der die Befehlen eingegeben werden müssen oder die korrekte Ver-
wendung von Klammern. Mit diesen Eigenschaften kommen nicht alle Programmieranfänger zurecht
[KP05]. Aus diesem Grund wurden Lernsysteme entwickelt, die eine andere Befehlseingabemethode
verwenden, als über den herkömmlichen Texteditor. Mit der Hilfe von grafischen oder physischen
Objekten können ebenfalls Programme erstellt werden [KP05]. Diese Objekte sollen Programmele-
mente oder einzelne Befehle darstellen, die miteinander kombiniert werden können [KP05]. Durch
Formbeschränkungen der einzelnen Objekte wird verhindert, dass syntaktisch inkorrekte Befehle
mit den Komponenten erzeugt werden [KP05]. Ein Beispiel hierfür ist Pict [KP05]. Mit Pict lassen
sich einfache Programme durch das Verbinden von grafischen Bildern erstellen [KP05]. Die Bilder
repräsentieren Befehle, die aus einer Palette in der Menüleiste ausgewählt werden können. Um dem
Benutzer die Programmausführung visuell darzustellen, bewegt sich eine Box entlang der Befehlskette

20

2.6. Programmierterminiologie und Methoden

und stoppt, sofern das Programmverhalten an dem bestimmten Punkt nicht spezifiziert ist [KP05].
Diese Visualisierung ist ein weiterer wichtiger Punkt, da viele Programmieranfänger noch wenig
bis keine Vorstellung davon haben, wie ein Programm ausgeführt und durchlaufen wird [Sol86]. Ein
Beispiel für eine datenflussbasierte visuelle Programmiersprache ist Show and Tell [KP05]. Diese
Sprache wurde für Kinder entwickelt um sie näher an das Programmieren heranzuführen [KP05].
Ein Programm besteht hier aus Boxen die miteinander verbunden werden. Eine Box repräsentiert
einen bestimmten Wert oder eine ausführbare Operation auf Werte [KP05]. Zusätzlich beinhaltet das
Programm Boxen, die arithmetische Funktionen, Ein- und Ausgabemethoden und Spezialfunktionen
wie das Abspielen von Musik erfüllen. Boxen können durch selbstgezeichnete Bilder markiert werden,
um sie für spätere Verwendungen wieder zu erkennen [KP05]. Wie zu sehen ist, gibt es mehrere
Wege, um Programme sinnvoll zu implementieren. So sind beispielsweise auch Systeme interessant,
die bei der Strukturierung einer Programmiersprache mit einer visuellen Oberfläche unterstützen.
Dennoch hängt es von der Wahrnehmung des Anwenders ab, welches das für ihn beste System ist.

PBD und visuelle Vorher-Nachher Regeln

Trotz der vielen Versuche Programmiersprachen einfacher zu gestalten oder eine komfortablere
Befehlseingabe zu bieten, gelang es den Forschern nicht, eine wirklich breite Masse an Anfängern für
das Programmieren zu begeistern [DCST00]. Laut einer Schätzung an der Universität von Michigan
programmieren nur ca. 1 % der Teilnehmer eines Programmierkurs nach Ende der Vorlesung weiter.
Um das Programmieren einfacher und interessanter zu gestalten, habenWissenschaftler die Methoden
PBD (Programing by demonstration = Programmieren durch Demonstrieren) und visuellen Vorher-
Nachher Regeln kombiniert [DCST00]. Mit PBD werden Algorithmen von Benutzern, dem Computer
vorgeführt. Das geschieht durch die Verwendung der Benutzeroberfläche mit einfachen Computer-
Steuerungsgesten [DCST00]. Diese Steuerbefehle werden vom Computer aufgenommen und später
bei der Programmausführung wiederholt [DCST00]. Durch diese Methode werden verwirrende
sprachsyntaktische Elemente und komplexe Befehlseingabepraktiken umgangen. Zu beachten ist
allerdings, dass nach dem Erstellen eines Programms, Veränderungen daran ebenfalls einfach gestaltet
sein müssen. Diesen Punkt vergessen viele Systeme die PBD verwenden [DCST00]. Aus diesem Grund
haben die Entwickler von Stagecast Creator [DCST00] die Beschränkung eingeführt, dass die Creator-
Benutzer nur den Anfangs- und Endzustand, ohne die komplexen Zwischenschritte, eines Programms
sehen. Möchte ein Benutzer also beispielsweise für einen Zugsimulator eine neue Regel definieren
- der Zugmotor soll von links nach rechts bewegt werden - so definiert der Benutzer eine visuelle
Vorher-Nachher Regel [DCST00]. D.h. der Vorher-Zustand wird definiert (Motor auf der linken Seite)
und anschließend wird mit Drag-And-Drop der Motor auf die rechte Seite des Nachher-Zustand
gezogen. Siehe Abbildung 2.1. Auf die gleiche Weise funktioniert auch das Programm KidSIM 1, mit
welchem grafische Simulationen und Spiele erstellt werden können.

1http://www.sigchi.org/chi95/proceedings/papers/ac1bdy.htm

21

2. Verwandte Arbeit

Abbildung 2.1.: PBD definieren einer Regel [DCST00]

2.6.2. Design einer Programmiersprache für Programmieranfänger

Basierend auf den Erkenntnissen der bereits entwickelten Lernsysteme für Programmieranfänger kann
zusammengefasst werden, dass es viele Möglichkeiten gibt eine sinnvolle Entwicklungsumgebung für
Programmieranfänger zu entwickeln. Die Hauptpunkte die dabei beachtet werden müssen, sind die
Beseitigung der komplexen Sprachsyntax und die komfortable Eingabe der Befehle. Besonders die
visuellen Lernsysteme überzeugen durch die Eliminierung von syntaktischen Beschränkungen, durch
bereits bekannte physische Beschränkungen und lassen sich den Programmierer auf das Erstellen
des Programms konzentrieren [KP05]. Zu beachten ist allerdings, dass mit textuellen Sprachen oft
mächtigere Optionen zur Verfügung stehen, als durch rein visuelle Objekte (sofern sie sich nicht
individuell gestalten lassen) [KP05]. Damit wäre eine Kombination aus visuellen Operationen und
textuellen Eingabemethoden optimal. Ein gutes Beispiel sind die Programme StarLogo und NetLogo
2 3, welche Multi-Agenten-basiert sind. Den Agenten werden durch programmieren von einzelnen
Verhaltensfunktionen Regeln zugeteilt. Über die grafische Oberfläche lassen sich diese Agenten dann
kombinieren, wodurch eine Simulation modelliert und ausgeführt werden kann.

Weitere Funktionen die in einer Entwicklungsumgebung für Anfänger gegeben sein sollten, sind zum
Beispiel eine verständliche Programmausführung, evtl. visuell unterstützt und gute Rückmeldung bei
auftretenden Fehlausführungen oder Konstruktionsfehlern. Ein gutes Beispiel und relativ erfolgreich
an Probanden getestet, bietet das PBD Prinzip in Kombination mit den Vorher-Nachher Regeln
[DCST00].

2http://education.mit.edu/starlogo/
3https://ccl.northwestern.edu/netlogo

22

3. Umfrage

Um einen Überblick über verwendete Simulationswerkzeuge im SimTech Cluster der Universität
Stuttgart zu erlangen, haben wir eine Onlineumfrage erstellt. Diese Umfrage zielt außerdem darauf ab,
zusätzliche Informationen zu der Verwendung dieser Werkzeuge zu erlangen und auch in welchem
Fachgebiet diese hauptsächlich verwendet werden. Im folgenden Kapitel wird zuerst der Aufbau und
die Entwicklung des Fragebogens präsentiert. Anschließend wird ein Blick auf die Durchführung der
Umfrage geworfen. Am Ende des Kapitels werden die Ergebnisse des Fragebogens dargelegt.

3.1. Fragebogen

Dieser Abschnitt befasst sich speziell mit dem Fragebogen. Hier wird die Entwicklung und dessen
Aufbau dargestellt. Wir starten mit den generellen Aufbau, erklären anschließend die Entwicklung des
Fragebogens und gehen am Ende nochmal genauer auf die einzelnen Fragen und deren Hintergrund
ein.

3.1.1. Genereller Aufbau

Dieser Abschnitt befasst sich mit dem groben Aufbau des Fragebogens (siehe Unterkapitel 3.1.3).
Der Fragebogen ist aufgeteilt in vier Teile. Der erste Teil behandelt generelle Informationen über
den Befragten. Dieser Teil ist optional da hier auch persönliche Daten wie Name und E-Mailadresse
abgefragt werden. Der zweite Teil befasst sich mit der Art und Durchführung der Simulationen
und Modellierungen, sowie die dafür verwendeten Programme. Der dritte Teil ist eine detaillierte
Bewertung eines der verwendeten Programmen. Dieser Teil konnte für bis zu fünf Programme
ausgefüllt werden. Der letzte Teil ist um das Einverständnis des Befragten zur Nutzung der Daten
einzuholen und mögliche Vereinbarungen für abschließende Interviews zu finden.

3.1.2. Entwicklung

Die Entwicklung des Fragebogens lief über mehrere Schritte ab. Zuerst wurde eine Untersuchung
durchgeführt um sich genauermit Simulationen vertraut zumachen. Hierbei wurden gängigeWerkzeu-
ge genauer betrachtet, wobei das primäre Augenmerk auf deren Fachgebiet lag, um somit Programme
zu finden, die möglicherweise auch von SimTech-Mitarbeitern in ihrem Arbeitsalltag verwendet wer-
den. Dies erwies sich später als schwer, da es auch keinen wirklichen Überblick über alle Mitarbeiter
und ihr Fachgebiet gab. Dadurch wurde auch nochmals deutlich wie vorteilhaft eine Liste ist, welche
alle Mitarbeiter mit deren Tätigkeiten auflistet.

23

3. Umfrage

Aus den Ergebnissen der Untersuchung wurde ein erster Fragebogen erstellt. Dieser wurde zuerst
intern genauer besprochen und danach einigen SimTech-Mitarbeitern aus unterschiedlichen Fachbe-
reichen vorgelegt. Diese sollten den Fragebogen zur Probe ausfüllen und hatten die Möglichkeit, eine
Bewertung abzugeben bzw. Änderungsvorschläge zu machen. Aus den Interviews wurde bekannt,
wie unterschiedlich die Kenntnisse der Mitarbeiter im Bereich der Begrifflichkeiten und auch die Art
und Weise, wie diese Simulieren bzw. Modellieren, sind.

Anhand der Resultate aus den Interviews wurde ein weiterer Fragebogen erstellt. Dieser wurde dann
endgültig mithilfe der Umfrageplattform LimeSurvey 1 digitalisiert. Hierbei wurden noch kleinere
Änderungen durchgeführt.

3.1.3. Fragen

Dieser Teil behandelt die Fragen imDetail. Dabei werden vor allem die Hintergründe und der erwartete
Nutzen der einzelnen Fragen genannt und erklärt. Für eine übersichtlichere Darstellung werden die
einzelnen Teile des Fragebogens getrennt betrachtet. Wir beginnen mit den generellen Fragen um
anschließend die Fragen zu Modellierungs- und Simulationsprozessen zu behandeln. Danach wird die
Fragegruppe zur Werkzeugbewertung erläutert. Am Ende wird ein kurzer Blick auf die Fragen zum
Einverständnis geworfen.

Generelle Fragen

Dieser Teil behandelt generelle Fragen, die zur Erfassung von Beschäftigung und Zugehörigkeiten zu
Abteilungen von den Teilnehmer gedacht ist. Alle Fragen in dieser Gruppe waren optional.

Zuerst wird nach Name und E-Mailadresse gefragt, da es sich hier um simple Datenerfassung handelt.
Dies dient zur Erfassung der Teilnehmer, um somit die Bandbreite der Teilnehmer zu ermitteln. Die
Frage nach dem Projektnetzwerk und dem Fachbereich dient dazu, die Mitarbeiter zu gruppieren.
Dadurch können statistische Aussagen, über die Verwendung von bestimmten Programmen, getroffen
werden. Weiterhin haben diese Fragen auch den Zweck genauere Daten über den Mitarbeiter zu
erfassen.

Sollte ein Teilnehmer bei der Frage nach dem Projektnetzwerk angeben, dass er kein SimTech-
Mitarbeiter ist, so wird ihm die Möglichkeit geboten seine Universität anzugeben. Der Fragebogen
wurde um diese Möglichkeit erweitert, um auch Simulationsexperten, die nicht bei SimTech arbeiten,
die Chance zu geben an der Umfrage teilzunehmen. Damit sollte auch der Befragtenkreis erhöht
werden, um eine größere statistische Aussagekraft der Ergebnisse zu erhalten.

1http://www.limesurvey.org

24

3.1. Fragebogen

Modellierung- und Simulationsprozess

Dieser Teil zielt darauf ab, die Vorgehensweisen und verwendeten Methoden der Teilnehmer heraus-
zufinden. Dabei sind außerdem verwendete Programme und Ansätze zur Simulation anzugeben.

Um Aufgabenbereiche und Tätigkeiten zu ermitteln, fragen wir nach Simulationsschritten und einer
groben Beschreibung der Vorgehensweise. Es ist in soweit relevant, da in unterschiedlichen Pro-
zessschritten unterschiedliche Werkzeuge verwendet werden bzw. auch die Werkzeuge in diversen
Schritten zu unterschiedlichen Zwecken verwendet werden. Diese Frage wurde durch die vorange-
gangenen Interviews geprägt, da uns hierbei erklärt wurde, dass beim Modellieren/Simulieren auch
noch das Sammeln von Daten, die Visualisierung und das Interpretieren der Daten relevant ist.

Bei der Frage nach den Prozessschritten galt es herauszufinden, ob Personen, die in den selben Prozess-
schritten arbeiten, unterschiedliche Werkzeuge verwenden. Dies kann auf Grund der Zugehörigkeit
zu unterschiedlichen Bereichen der Fall sein. Außerdem galt es auch zu ermitteln ob Werkzeuge in
mehreren Prozessschritten verwendet werden.

Des weiteren werden die Teilnehmer nach einer Klassifikation bzw. Einschätzung der verwendeten
Simulationsansätze gefragt. Dabei soll ermittelt werden, ob immer die selben Werkzeuge bei z.B. einer
statischen Simulation verwendet werden oder ob diese auch für andere Simulationen Anwendung
finden.

Außerdem werden bekannte Programme abgefragt, um zu ermitteln, ob in den selben Gebieten (diese
können der Prozessschritt, der Ansatz oder auch das Fachgebiet sein) die gleichen Werkzeuge bekannt
sind, oder ob es große Variationen gibt. Durch die vorangegangenen Interviews wurde ersichtlich,
dass es viele Mitarbeiter ihre Werkzeuge selbst schrieben. Aus diesem Grund wurde die Frage nach
diesen Werkzeugen hinzugefügt.

Zuletzt werden die Teilnehmer gebeten, ihre eigene Programmiererfahrung einzuschätzen. Mit Hilfe
dieser Angabe sollten genauere Aussagen über die später genannte Programmiererfahrung für die
einzelnen Programme getroffen werden.

Werkzeugbewertung

Die ersten Fragen in diesem Block hatten den Zweck herauszufinden, welches Werkzeug zu welchem
Zweck in welchem Kontext verwendet wird.

Bei den nächsten Fragen war das Ziel herauszufinden wie das Programm genutzt wird. Dabei waren
die primäre Eingabemethode anzugeben, um später Aussagen darüber zu treffen ob z.B. eine grafische
Benutzeroberfläche der Allgemeinheit besser gefällt als der Nutzen von Programmcode. Außerdem
soll die ermittelt werden, welche Eingabemethoden das Programm unterstützt und wie beliebt diese
sind.

Darauf folgte ein Einschätzung bezüglich der Nutzerfreundlichkeit, welche aus einigen Fragen aus
dem Computer System Usability Questionnaire (CSUQ) (siehe Anhang A.2.4) besteht. Ziel dabei
ist etwas über die Bedienbarkeit des Werkzeugs herauszufinden, um abschätzen zu können, ob ein

25

3. Umfrage

Werkzeug besser und Nutzer freundlicher ist. Einige Fragen aus dem vollständigen CSUQ wurden
hier verworfen, da sonst der Fragebogen zu lang geworden wäre.

Die Fragen nach fehlenden Funktionen hatten das Ziel herauszufinden, ob es bei demWerkzeug einen
großen Malus gibt. Dadurch soll fehlende Funktionen ermittelt werden, die für zukünftige Programme
wichtig sind.

Mit den folgenden Fragen galt es herauszufinden, wie lange der Teilnehmer schon mit dem Werkzeug
arbeitet und wie intensiv die Nutzung ist. Dabei soll eine Einschätzung der Expertise für dieses
Programm ermittelt werden.

Zusätzlich wird nach Programmiersprachen gefragt, die zur erfolgreichen Nutzung des Werkzeugs
benötigt werden. Das soll bei unserer Einschätzung der nötigen Programmiererfahrung helfen.

Am Ende soll der Teilnehmer selbst noch eine Einschätzung zu mehreren Dingen abgeben. Dabei
ist die Bedienung des Programms, der manuelle Programmieraufwand und die Beherrschung der
relevanten Sprachen von Bedeutung. Damit sollen die vorangegangenen Fragen hervorgehoben und
eine Einschätzung unsererseits ermöglicht werden.
Zuletzt fragen wir nach einem integrierten Editor. Dabei soll die Unterstützung in programmierauf-
wendigen Werkzeugen ermittelt werden.

Einverständnisserklärung

Die Letzte Fragegruppe des Fragebogens behandelt das Einverständnis der Teilnehmer. Mit der Frage
nach dem Einverständnis zur Veröffentlichung wollten wir sicher gehen, dass auch ein Mehrwert für
die Mitarbeiter von SimTech erreichbar ist. Zusätzlich wurden die Teilnehmer gefragt, ob sie über die
Ergebnisse der Umfrage informiert werden wollen. Die Teilnehmer konnten außerdem angeben, ob sie
uns einen Einblick in ihre Arbeit gewähren wollen. Dabei wollten wir Eindrücke von den verwendeten
Programmen und den nötigen Schritten zur erfolgreichen Durchführung einer Simulation erlangen.
Zuletzt hatten die Teilnehmer noch die Chance, Kommentare jeglicher Art in einem Freitextfeld
anzugeben.

3.2. Durchführung

Wir haben eine Onlineumfrage auf der Plattform LimeSurvey erstellt. In dieses wurden die Fragen
eingegeben und durch Beschreibungstexte erweitert. Die Teilnehmer wurden per E-Mail aufgefordert
an der Umfrage teilzunehmen.

Im Einleitungstext wurde den Teilnehmern das Thema vorgestellt. Anschließend sollte der Teilneh-
mer die Fragen in der oben angegebenen Reihenfolge ausfüllen. Dabei hatte jeder Teilnehmer die
Möglichkeit, eine Bewertung für bis zu fünf Programme abzugeben.

26

3.3. Teilnehmer

3.3. Teilnehmer

Insgesamt hatte die Umfrage 46 Teilnehmer. Davon haben fünf angegeben, nicht zum SimTech Cluster
der Universität Stuttgart zu gehören. Mit einer Anzahl von 28 Teilnehmern war die Gruppe der
Doktoranden am stärksten unter den Teilnehmern vertreten.

3.4. Ergebnisse

Die Fragen Name und E-Mailadresse werden hier nicht gezeigt, da dies eine liste von Namen und
E-Mailadressen ist, diese können in der Liste im Anhang gefunden werden.

3.4.1. Generelle Fragen

Von den Befragten waren 28 Teilnehmer Doktoranden, vier Doktoren, acht Professoren und vier
gaben an, einer anderen Beschäftigung zu folgen. Die Angaben bei anderen Beschäftigungen setzen
sich aus drei Juniorprofessoren und einem Student zusammen. Zwei Teilnehmer gaben in diesem Feld
nichts an (siehe Abbildung 3.1).

Abbildung 3.1.: Die Verteilung der Teilnehmer in Abhängigkeit der Beschäftigung

Von den Befragten gaben insgesamt 15 Teilnehmer ein Diplom, zwölf einen Master, neun einen
Doktortitel, sechs eine Habilitation, einen Bachelortitel und ein Staatsexamen als höchsten Abschluss
an. Die verbleibenden zwei Teilnehmer entschieden sich, diese Frage nicht zu beantworten.

27

3. Umfrage

Von den Teilnehmern kamen aus jedem Projektnetzwerk durchschnittlich fünf Befragte, wobei neun
aus PN4: Gekoppelte Probleme in Biomechanik und Systembiologie und nur einer aus PN6: Wege
zu intelligenten Simulationsinfrastrukturen kamen. Außerdem gaben zwei Teilnehmer an, nicht bei
SimTech angestellt zu sein. Von diesen gab jeweils ein Teilnehmer an dem Imperial College London
oder der School of Mathematics University of Edinburgh zugehörig zu sein. Außerdem gaben fünf
Teilnehmer keine Antwort auf diese Frage an (siehe Abbildung 3.2).

Abbildung 3.2.: Die Zugehörigkeit der Teilnehmer zu den Projektnetzwerken des SimTech Clusters.

Die Fachrichtung setzte sich zum größten Teil aus Ingenieuren (41.3%) und Computerwissenschaftlern
(17.4%) zusammen (siehe Abbildung 3.3). Weniger stark waren Mathematik (10.9%) und andere
Naturwissenschaften (13.0%) vertreten. Als andere Fachrichtung gaben zwei Teilnehmer Physik und
jeweils ein Teilnehmer Biomechanik an.

3.4.2. Modellierung- und Simulationsprozess

Die meist genannten Schritte, an denen gearbeitet wird, sind Simulation mit 27 und Modellierung mit
27 Angaben (siehe Abbildung 3.4). Als weiterer großer Teil wurde die Interpretation mit 17 Angaben
ausgewählt. Sammeln (8 Angaben) und Visualisieren (10 Angaben) machen nur ein kleiner Teil der
Angaben aus. Als zusätzlichen Schritt wurde “Optimization-Inverse Modelling” angegeben.

Es wurden insgesamt 44 unterschiedliche Angaben gemacht, die die Arbeit in den einzelnen Schritten
genauer spezifiziert. Da diese Angaben sehr speziell sind und nur schwer zu gruppieren, verzichten
wir an diesem Punkt auf eine geeignete Zusammenfassung und verweisen auf die komplette Liste der
Antworten im Anhang (siehe Anhang A.2.1).

28

3.4. Ergebnisse

Abbildung 3.3.: Die Fachrichtungen der Teilnehmer

Der meist genannte Ansatz war unterschiedliche Arten Differenzialgleichungen zu simulieren, wobei
am häufigsten zwischen PDE (partial differential equations) und ODE (ordenary differential equations)
unterschieden wurde. Von 28 Simulationen zu Differenzialgleichungen wurden 20-mal PDE, sechsmal
ODE und zweimal andere genannt. Dabei wurde PDE zum Teil noch genauer als FEM (finite element
method) beschrieben. Ein weiterer Simulationsansatz der häufiger genannt wurde war Molecular
Dynamics (sechsmal). Außerdem wurde auch Monte Carlo (dreimal) häufiger als Simulationsansatz
genannt. Es wurden noch neun weitere Ansätze genannt, wobei hier nur fünf Modellierungsansätze
genannt wurden, wie z.B. Agenten basierte Modellierung. Des weiteren konnten vier Ansätze weder
Modellierung, noch Simulation zugeordnet werden.

Bei der Klassifizierung (siehe Abbildung 3.5) ist der Vergleich der Gegensatzpaare Relevant (siehe
Kapitel 2.3). Das erste Paar ist statisch und dynamisch. Die Teilnehmer gaben mehr als doppelt so oft
dynamisch (32-mal) als statisch (14-mal) an. Das zweite Gegensatzpaar ist kontinuierlich und diskret.
Die Teilnehmer haben in diesem Fall eine ähnliche Verteilung, mit kontinuierlich (22-mal) und diskret
(17-mal), angegeben. Das letzte Gegensatzpaar, deterministisch und stochastisch, variiert nur um
zwei Werte. Deterministisch wurde 17-mal angegeben und Stochastisch 15-mal. Als Anderes wurde
“Qualiataive impact network analysis”, einmal “none” und einmal “n/a” angegeben.

Bei der Frage nach den meist bekannten Werkzeugen wurden insgesamt 76 unterschiedliche Program-
me genannt (siehe Anhang A.2.2). 61 Programme wurden nur von einem Teilnehmer erwähnt. Matlab
war das am häufigsten genannte Programm, mit insgesamt 15 Nennungen. Das zweit meist genannte
Programm war OpenCMISS mit insgesamt fünf Erwähnungen. Die nächst häufig genannten Program-
me sind DUNE und ESPResSo mit vier Angaben. Weitere neun Programme wurden jeweils zweimal

29

3. Umfrage

Abbildung 3.4.: Die Schritte an denen von die Teilnehmer arbeiten

genannt. Diese Programme sind DUMUX, ParaView, GROMACS, Maple, preCICE, OpenFOAM, COM-
SOL, LAMMPS und Eclipse, wobei Eclipse eine Entwicklungsumgebung ist. Zusätzlich wurden mit
C++ (viermal), C (einmal) und Fortan (einmal) auch einige Programmiersprachen genannt.

Die gesamte Anzahl der für die Arbeit genannten Programme (siehe Anhang A.2.3) variiert nicht
groß mit den im Feld bekannten Programmen. Hier wurde eine Anzahl von 73 unterschiedlichen
Programmen genannt, wobei 53 nur einmal genannt wurden. Abermals ist hier das meist genannte
Programm Matlab mit 13, gefolgt von DUMUX und OpenCMiss mit jeweils vier Auflistungen. Pro-
gramme die dreimal genannt wurden sind DUNE, SG++ und ESPResSo. Dreizehn weitere Programme
wurden jeweils zwei mal genannt. Eine der Ausnahmen die nicht unter die Kategorie Simulation-
und Modellierungsprogramm fallen, ist Linux als Betriebssystem mit insgesamt zwei Nennungen.
Weiterhin wurden vier Textverarbeitungsprogramme und Präsentationsprogramme genannt. Diese
sind Latex, Powerpoint, Excel und Word. Außerdem wurden C++ (viermal), Python (zweimal) und
Fortran als Programmiersprachen genannt. Des weiteren wurden auch die Entwicklungsumgebungen
bzw. Texteditoren Sublime und Eclipse (zweimal) genannt. Als letzte Kategorie wurden Programme zur
Versionsverwaltung genannt. Diese sind git mit zwei und SVN mit jeweils einer Nennung. Insgesamt
33 von 47 Teilnehmern, die diese Frage beantwortet haben, gaben an, ihre Programme selbst zu
programmieren, bzw. verwenden ein vom Institut entwickeltes Programm.

Die Programmierfähigkeiten der Teilnehmer wird im Schnitt mittelmäßig bis gut bewertet. Der meist
angegebene Wert ist gute Programmierfähigkeiten mit 16 Angaben. Zwei Teilnehmer gaben sehr
schlechte Programmierfähigkeiten an (siehe Abbildung 3.6).

30

3.4. Ergebnisse

Abbildung 3.5.: Klassifizierung der Arbeit der Teilnehmer

3.4.3. Programm Bewertung

Es wurden insgesamt 27 Programme bewertet. Davon wurden insgesamt 23 Programme nur einmal
bewertet und werden in diesem Kapitel nicht näher erläutert (siehe Anhang A.2.4 für die komplette
Liste). Im folgenden werden also die Bewertungen von Programmen genauer betrachtet, welche
mindestens zweimal bewertet wurden (für CSUQ-Details siehe Anhang A.2.4).

Das erste Programm mit drei Bewertungen ist ESPResSo. Dieses Programm wird von allen Teilneh-
mern zum Simulieren und von einem Teilnehmer zusätzlich zum Modellieren verwendet. Zur Bedie-
nung ist keine grafische Oberfläche vorhanden, sondern wird mit Hilfe von Programm-spezifischem
bzw. Externen Code bedient. Die Bedienungsfreundlichkeit aus dem CSUQ ergab sich ein gesamt
Durchschnittswert von 3,54, wobei hier kein Aspekt sowohl negativ als auch positiv herausragt. Als
gewünschte Verbesserungen wurden Algorithmen für moderne Physik, Python Interface, Paralleles
Input/Output und eine generelle Fehlerbehebung genannt. Dabei wünscht sich mehr als die Hälfte
der Teilnehmer, die das Programm bewertet haben, ein Python Interface und parallelen Input/Out-
put. Zwei der Teilnehmer verwenden das Programm zwischen zwei und fünf Jahren, während ein
Teilnehmer seit über 5 Jahren mit ESPResSo arbeitet. Das Programm wird durchschnittlich 57% der Ar-
beitszeit verwendet, wobei das Minimum bei 10% liegt. Zur Verwendung wird primär eine Programm
Kommando Sprache (TCL) verwendet, aber auch C, C++, Message Passing Interface (MPI) und Python
sind möglich. Zwei Teilnehmer können das Programm sehr gut bedienen und einer durchschnittlich
gut. Zwei Teilnehmern gaben an, dass gute Programmierkenntnisse benötigt werden und laut einem

31

3. Umfrage

Abbildung 3.6.: Die Programmierfähigkeiten der Teilnehmer

sind weniger gute Programmierkenntnisse vorausgesetzt. Die Teilnehmer beherrschen die benötigten
Programmiersprachen im Schnitt gut. Das Programm liefert keinen integrierten Editor mit.

Das nächste Programm ist (Open)CMISS das von insgesamt vier Teilnehmern bewertet wurde. Dieses
Programm wird von allen Teilnehmern zum sowohl Simulieren als auch Visualisieren verwendet.
Zusätzlich verwenden es drei Teilnehmer zur Modellierung, zwei zur Daten Sammlung und ein Teil-
nehmer zum Interpretieren. Genauso wie ESPResSo wird (Open)CMISS über Programm-spezifischem
bzw. Externen Code bedient. Aus dem CSUQ ergab sich eine durchschnittliche Bedienungsfreundlich-
keit von 2,8, wobei hier die Aspekte der Erlernbarkeit mit 1,5 negativ und die allgemeine Zufriedenheit
mit 3,75 positiv hervorragen. Als Mängel von (Open)CMISS werden fehlende Beispiele für den Anfang,
ein klarer Quellcode und neue Features wie z.B. Verlinkung zu einem GUI genannt. Ein Teilnehmer
verwendet das Programm seit ein bis zwei Jahren, zwei verwenden es bisher zwischen zwei und fünf
Jahren, während ein weiterer (Open)CMISS seit über fünf Jahren verwendet. Der Beanspruchung
der Arbeitszeit variiert von zwei bis 50% der Arbeitszeit, wobei der Schnitt bei 25,5% der Arbeitszeit
liegt. Als benötigte Programmiersprache wurde Fortran angegeben und das Programm setzt gute
Fortran Kenntnisse voraussetzt. Die Fortran Kenntnisse der Teilnehmer werden als durchschnittlich
angegeben. Jeweils ein Teilnehmer kann das Programm gut bzw. weniger gut und zwei können es
durchschnittlich bedienen. (Open)CMISS liefert keinen integrierten Editor mit.

Ebenso wie (Open)CMISS wurde auch das Programm DUNE von vier Teilnehmern bewertet. Das
Programm wurde von allen Teilnehmern zum Simulieren verwendet. Außerdem verwenden es zwei
der Teilnehmer zur Modellierung und ein Teilnehmer zum Visualisieren. Auch DUNE wird mit
Hilfe von Programm-spezifischem bzw. externen Code bedient. Die durchschnittlich angegebene

32

3.5. Diskussion

Bedienungsfreundlichkeit beträgt 3,08, wobei die Aspekte der Simplizität des Programms mit einem
Wert von 1,25 negativ und die Effizenz mit 4,5 positiv hervorragen. Gewünschte Verbesserungen
sind eine breitere Auswahl an Lösungsalgorithmen für Lineare Gleichungssysteme, eine verbesserte
Spezifikation der parallelen Schnittstelle, zusätzliche Module und bessere Einführung für Personen
mit geringeren C++ Fähigkeiten. Die Verwendungsdauer des Programms variiert stark. Es gibt einen
Teilnehmer der das Programm seit über fünf Jahren verwendet und einen der erst seit maximal einem
Jahr damit arbeitet. Es wird durchschnittlich 53% der Arbeitszeit mit DUNE verbracht, wobei das
angegebene Minimum bei 30% liegt. Zur Verwendung werden gute bis sehr gute C++ Kenntnisse als
Voraussetzung angegeben. Drei der Teilnehmer haben gute Kenntnisse in C++ und einer weniger
gute. Die Teilnehmer gaben eine gute Expertise für das Programm an, wobei ein Teilnehmer das seine
Expertise eher gering einschätzt. Das Werkzeug liefert keinen integrierten Editor mit.

Das letzte und meist bewertete Programm ist Matlab mit insgesamt neun Bewertungen. Matlab
wird von allen zum Simulieren verwendet. Acht der Teilnehmer verwenden das Programm auch
zum Visualisieren und sechs zum Modellieren. Außerdem wird Matlab von fünf Teilnehmern zum
Interpretieren und von zwei zumDaten Sammeln verwendet. Zur Bedienung vonMatlab wurde sowohl
die Kommandozeile als auch Programm-spezifischer Code angegeben. Die angegebene allgemeine
Bedienbarkeit von Matlab beträgt 4,08. Keine der einzelnen Attribute des CSUQ weicht seht deutlich
von dem allgemeinen Durchschnittswert ab. Es wurden zwei Verbesserungsvorschläge gemacht, das
ein besserer Editor und Dokumentation von einfachen Funktionen hinzugefügt werden. Aber sieben
der Teilnehmer haben keine Verbesserungsvorschläge für Matlab gemacht. Zwei der neun Teilnehmer
benutzen Matlab zwischen ein und zwei Jahren, vier benutzen es bereits zwischen zwei und fünf
Jahren und drei länger als fünf Jahre. Matlab wird von den Teilnehmern durchschnittlich 33% der
Arbeitszeit verwendet. Zur Bedienung von Matlab wird laut 4 Teilnehmern die Programmiersprache
Matlab benötigt und 5 Teilnehmer gaben keine benötigte Programmiersprache an. Die durchschnittlich
benötigte Programmiererfahrung wird als mittelmäßig eingestuft, wobei zwei Teilnehmer angegeben
haben, dass sehr gute Programmiererfahrung benötigt wird. Sieben der Teilnehmer beherrschen die
für Matlab benötigten Kenntnisse gut bis sehr gut, zwei mittelmäßig. Vier der Teilnehmer schätzen
ihre Expertise für Matlab als gut ein, zwei als sehr gut, zwei weitere als weniger gut und ein Teilnehmer
als durchschnittlich.

3.5. Diskussion

Aus den Ergebnissen der Umfrage haben sich einige Dinge klar heraus gestellt. Zum einen ist der
SimTech Exzellenzcluster ein Zusammenschluss aus Experten der unterschiedlichsten Fachrichtung.
Dabei unterscheidet sich nicht nur die Fachrichtung, sondern auch die genauen Anwendungsfälle und
Vorgehensweise jedes Mitglieds. Das macht es zu einer großen Herausforderung, ein einheitliches
Programm für den komplette SimTech Cluster zu entwickeln. Außerdem heben die Angaben der
verwendeten Modellierungs- und Simulationsansätze deutlich hervor, dass für die selben Ansätze
oft völlig unterschiedliche Methoden, Programme und Vorgehensweisen von Nöten sind. Da einige
Teilnehmer Programmiersprachen, Entwicklungsumgebungen und andere, nicht speziell für die
Simulation oder Modellierung entwickelte, Programme angegeben haben, ist der Anteil der selbst
entwickelten Simulationen recht groß. Dabei ist davon auszugehen, dass diese Teilnehmer die Modelle

33

3. Umfrage

oder Simulationen entweder direkt mit Programmcode verwirklichen, oder selbständig Programme
zur Simulation entwickeln.

Die 73 genutzten Programme zeigen die extreme Bandbreite an verfügbaren Lösungen für Simu-
lationen. Dabei wird aus den vielen speziell entwickelten Programmen ersichtlich, dass auch nur
wenig kommerzielle Lösung den nötigen Funktionsumfang aufweisen. Die Ergebnisse verdeutlichen
außerdem, dass teilweise eine Ausführung von mehreren Programmen hintereinander zur Lösung der
Aufgabe verwendet werden muss. Im Bezug auf nötige Programmiererfahrung und Komfort der bewer-
teten Programme, sind sich die Teilnehmer der Studie uneinig. Während manche Teilnehmer angaben,
dass keine Programmiererfahrung zur Verwendung eines Programms nötig ist, gaben andere beim
selben Programme nötige Programmiererfahrung an. Dies verdeutlicht, dass es viele unterschiedliche
Anwendungsszenarien für die einzelnen Programme gibt. Außerdem lässt sich daraus schließen, dass
einige Teilnehmer nur die bereits implementierten Funktionen der Programme benötigen, während
andere Teilnehmer speziellere Funktionen benötigen und diese eventuell selbst schreiben müssen.

Außerdem sind uns Zusammenhänge zwischen nötiger Programmiererfahrung und Erlernbarkeit
eines Programmes aufgefallen. Je höher die nötige Programmiererfahrung für ein Programm, umso
schlechter wir die Erlernbarkeit des Programms bewertet. Zusätzlich ist unter den mehrfach bewer-
teten Programmen keines dabei, das eine grafische Benutzeroberfläche anbietet, darum wird auch
die Programmiererfahrung für diese Programme durchschnittlich als hoch empfunden. Bei diesen
Programmen gibt es außerdem keine einheitlich verwendete Programmiersprache. Es werden sehr
unterschiedliche Sprachen wie Matlab, C++ und Fortran genannt.

34

4. Interviews

In der Umfrage gibt es die Möglichkeit anzukreuzen, ob Teilnehmer damit einverstanden wären uns
einen Einblick in deren Arbeit mit den angegeben Simulationswerkzeugen zu gewähren. Die daraus
resultierenden Ergebnisse sollten uns weitere Informationen, über die Anwendung der angegebenen
Programme geben. Wir haben Fragen vorbereitet, mit denen wir diese Informationen herausfinden
können. Neben der Frage nach einer kurzen Demonstration der Prozessausführung, fragten wir
auch warum das Programm auf diese Weise und nicht anders genutzt wird, bzw. ob es auch anders
genutzt werden kann. Des Weiteren haben wir nach dem persönlichen Eindruck über die verwendeten
Werkzeuge gefragt. D.h. was gefällt dem Benutzer besonders an dem Programm und ob es kurz
demonstriert werden kann. Außerdem wollten wir erfahren ob es Möglichkeiten der Erweiterung des
Programms gibt, z.B. durch das Integrieren von Addons oder Plugins. Während der Demonstration
haben wir uns Notizen zu der Bedienung des Programms gemacht, um selbst beurteilen zu können ob
das Programm komfortabel zu benutzen ist.

Interviews haben wir mit Experten aus PN 5: Multiphasen- und Multiphysikmodellierungen geführt,
welche in den Bereichen Ingenieurswesen und Mathematik tätig waren. Dabei wurden Partikelsimu-
lationen und Durchfluss von Flüssigkeiten durch poröse Medien als Aufgabenbereiche angegeben.

In den Interviews haben wir herausgefunden, dass hauptsächlich Programme verwendet werden
die am Institut entwickelt wurden. Diese Programme werden dann teilweise von den anwendenden
Personen um Funktionen erweitert. Da diese zusätzlichen Funktionen meist nur von Einzelpersonen
verwendet werden, kommen die Funktionen nicht in Umlauf und sind somit anderen Personen des
Instituts nicht bekannt. In einem Simulationsprozess werden laut den befragten Personen mehrere
verschiedene Programme benutzt. Einer der Teilnehmer nannte im Interview einen “riesen Klotz”
an Daten, den er in die “Tool-Chain” eingeben muss. Das bedeutet ihnen steht kein allgemeines
Werkzeug zur Verfügung, um Simulationen zentralisiert zu erstellen und durchzuführen. Oftmals
werden Dateien mit einem Programm erzeugt, die dann anschließend von weiteren Programmen
interpretiert und verarbeitet werden. Auf Nachfrage ob den Personen ein generisches Programm
helfen würde, bekamen wir eine positive Antwort. Ein Interviewteilnehmer gab an, dass ein Bedarf
für ein allgemeines Simulationswerkzeug im SimTech Cluster besteht.

Als komfortable Funktionen der verwendeten Programme, nannten befragte Personen, eine “visuelle
Ausgabe von Simulationsergebnissen”. So seien Ergebnisse einer Simulation besser nachvollziehbar.
Ein weiterer wichtiger Punkt ist laut den befragten Personen, eine informative Fehlerausgabe (“[...]
kann direkt auf den Fehler klicken und hingehen [...]”). Dadurch ließen sich Fehlkonstruktionen schnell
beheben. Um die Simulationswerkzeuge schnell bedienen zu könnenwurde genannt, dass Tastenkürzel
gerne verwendet werden, da sich damit die Arbeitsprozesse beschleunigen lassen. Es wurde außerdem
erwähnt, dass Programme ab einer bestimmten Anzahl oder Größe von Eingabedateien langsamer
werden, was den Arbeitsfluss störe (“Bei großen Daten funktioniert Paraview nichtmehr so gut [...]”).

35

4. Interviews

Teilweise müssen bei Programmen pro Berechnung alle Ausführungsparameter neu definiert werden.
Das wurde bei einem Programm, dessen Benutzerfreundlichkeit nicht so gut sei, als negativer Punkt
bemängelt. Der Mangel an Benutzerfreundlichkeit sei allerdings der Komplexität des Programms zu
verschulden. Eine Person gab an, dass es allgemein schwer sei, eine Balance zwischen Komplexität
und Benutzerfreundlichkeit zu finden (“[...] sehr komplex, deshalb ist die Balance zwischen Usability
und Komplexität schwer.”). In diesem Fall sei eine gute Dokumentation bei Simulationswerkzeugen
erwünscht, so die befragte Person.

36

5. Empfehlung

Das SimTech Cluster besteht aus unterschiedlichen Gebieten, die jeweils unterschiedliche Modellie-
rungsansätze und Simulationsprogramme benötigen. Deshalb sind wir der Meinung, dass ein geeigne-
tes Simulationswerkzeug einen generischen Ansatz verfolgen muss. Programme die diagrammbasierte
Modellierungsansätze verwenden, konnten sich für diese Herausforderung als besonders geeignet
beweisen. Das Prinzip der Blockdiagrammnotation als Modellierungsansatz macht einen sinnvollen
Eindruck, um sich der generischen Problematik anzunehmen. Jedoch haben wir auch gemerkt, dass
ein festes Kontingent an Modellierungskomponenten nicht ausreicht, um möglichst verschiedene
und komplexe Systeme zu simulieren. Somit muss neben den vorgegebenen Komponenten die Mög-
lichkeit gegeben sein, eigene Komponenten zu implementieren. Da im SimTech Cluster nicht jeder
Forscher Programmierkenntnisse besitzt, muss neben textueller Codeimplementierung, eine weitere
Interaktionsmethode gegeben sein. Diese soll Forschern ohne Programmierkenntnisse ermöglichen,
eigene Komponenten zu implementieren. Als besonders empfehlenswert empfinden wir die Me-
thode Programmieren durch Demonstrieren (PBD), in Kombination mit visuellen Vorher-Nachher
Regeln. Dadurch lassen sich annähernd gleichwertige Komponenten implementieren, wie sie durch
herkömmlichen Code entstehen würden.

37

6. Zusammenfassung

Für den SimTech Cluster der Universität Stuttgart soll ein Simulationswerkzeug, das möglichst wenig
Programmiererfahrung voraussetzt, entwickelt werden. Zur Bestandsaufnahme und Informations-
beschaffung wurde in dieser Fachstudie eine Umfrage erstellt und auf Grund der Ergebnisse eine
Empfehlung für mögliche Herangehensweisen an ein solches Werkzeug gegeben. Angefangen wurde
mit der Untersuchung von verwandten Arbeiten. Dabei wurde der Fokus auf allgemeine Informationen
zum Thema Simulation, sowie auf Forschungsergebnissen im Bereich der Simulationswerkzeuge für
Programmieranfänger, gelegt. Um einen Überblick über genutzte Simulationswerkzeuge im SimTech
Cluster der Universität Stuttgart zu erlangen, wurde eine Umfrage erstellt. Ziel dieser Umfrage war
nicht allein die Bestandsaufnahme verwendeter Programme, sondern auch die Beschaffung von
zusätzlichen Informationen über Interaktionsmöglichkeiten und nötige Programmiererfahrung. Die
Auswertung der Umfrage und der darin genannten Simulationswerkzeuge zeigte, dass Programme
meist sehr speziell für einen Fachbereich entwickelt sind. Dabei werden oft hohe Ansprüche an die
Programmierkenntnisse des Nutzers gestellt. Eine Programm mit zusammenfassenden Funktionen ist
nur schwer zu realisieren.

Auf Grund dieser Auswertung haben wir eine Empfehlung ausgesprochen, die sich auf Interaktions-
möglichkeiten für das Werkzeug fokussiert. Um für Programmieranfänger geeignet zu sein, muss ein
Werkzeug einen generischen Ansatz verfolgen. Dabei macht die Blockdiagrammnotation zur Modellie-
rung Sinn. Außerdem muss das Programm erweiterbar sein, um auch speziellere Vorgehensweisen zu
unterstützen. Da dies selten ohne Programmierkenntnisse realisierbar ist, empfehlen wir die Methode
Programmieren durch Demonstrieren (PBD), in Kombination mit visuellen Vorher-Nachher Regeln.

39

7. Danksagung

An dieser Stelle wollen wir uns bei allen Beteiligten an der Fachstudie bedanken.

Besonderer Dank geht an unsere Betreuer Frau Greis und Herrn Lischke, für hilfreiche Tipps und
Hilfestellungen während der gesamten Studie.

Außerdem wollen wir uns bei allen Teilnehmern der Onlineumfrage bedanken, die eine Aussagekräf-
tige Empfehlung erst ermöglicht haben.

Besonderer Dank gilt auch den Mitarbeitern des SimTech Clusters, die uns zu einem Interview zur
Verfügung standen. Dabei sind nicht nur die vorangegangen Interviews mit hilfreichen Tipps zur
Umfrage gemeint, sondern auch die abschließenden Interviews zu tieferen Einblicken in die Arbeit.

41

A. Anhang

A.1. Fragebogen

A.1.1. Generelle Fragen

1. Your Name: (Textfeld)

2. Your EmailAddress: (Textfeld)

3. Your Occupation:

a) PhD Student

b) Post-doctorand

c) Professor

d) Other: (Textfeld)

4. Your highest degree:

a) Bachelor

b) Master

c) Diploma

d) PhD

e) Habituation

f) Other: (Textfeld)

5. Your project network:

a) PN1: Material Simulation

b) PN2: High Performance Simulation

c) PN3: Dynamic Systems

d) PN4: Biomechanics & Systembiology

e) PN5: Multiphase- and Multiphysics Modelling

f) PN6: Cyber-Infrastructure

g) PN7: Reflection & Contextualization

43

A. Anhang

h) Not a member of SimTech

6. Which university, institute or company are you working for? (Textfeld, aber nur für den Fall falls
die darüberliegende Frage mit h) beantwortet wurde, sonst wurde diese Frage nicht angezeigt)

7. Your Subject:

a) Mathematics

b) Computer science

c) Engineering

d) Social sciences

e) Economics

f) Sciences

g) Other: (Textfeld)

A.1.2. Modellierung- und Simulationsprozess

1. On which step(s) of the process are you currently working on? (Mehrere Antworten möglich)

a) Data gathering

b) Modelling

c) Simulation

d) Visualization

e) Interpretation

f) Other: (Textfeld)

2. What are you specifically doing in this/these step(s)? (Textfeld)

3. What modelling/simulation approach are you using? (Textfeld)

4. Please classify your approach: (Mehrere Antworten möglich)

a) Static

b) Dynamic

c) Continous

d) Discrete

e) Stochastic

f) Deterministic

g) Other: (Textfeld)

44

A.1. Fragebogen

5. Which modelling/simulation programs do you know best in your working field? (Textfeld)

6. Do you use self-written programs?

a) Yes

b) No

7. Which programs are you using for your work? (Textfeld)

8. Please rate your general programming skills: (Von 1 bis 5, der Fähigkeit nach aufsteigend)

A.1.3. Programm Bewertung

1. Name of the program: (Textfeld)

2. In which step(s) of the process do you use this program? (Mehrere Antworten möglich)

a) Data gathering

b) Modelling

c) Simulation

d) Visualization

e) Interpretation

f) Other: (Textfeld)

3. How are you primarily using this program?

a) Graphical interface

b) Command line

c) Program-specific code

d) External code

e) Other: (Textfeld)

4. Please indicate your level of agreement with the following statements: (Bewertung von eins bis
fünf, nach aufsteigender Zustimmung)

a) It is simple to use this system.

b) I can effectively complete my work using this system.

c) I am able to complete my work quickly using this system.

d) I am able to efficiently complete my work using this system.

e) It was easy to learn to use this system. strongly disagree

f) The system gives error messages that clearly tell me how to fix problems.

45

A. Anhang

g) Whenever I make a mistake using the system, I recover easily and quickly.

h) The information (such as online help, on-screen messages, and other documentation)
provided with this system is clear.

i) It is easy to find the information I need.

j) The information provided with the system is easy to understand.

k) I like using the interface of this system.

l) Overall, I am satisfied with this system. strongly disagree

5. Does the program need any improvement?

a) Yes

b) No

6. What kind of improvement is needed? (Textfeld - Nur wenn die vorherige Frage mit Ja beant-
wortet wurde)

7. For how many years are you using this program now?

a) 0-1

b) 1-2

c) 2-5

d) 5+

8. How much of your working time are you using this program (roughly)? (Prozentuale Angabe)

9. Do you need a programming language to opperate the program?

a) Yes

b) No

10. Which one? (Textfeld - Nur wenn die vorherige Frage mit Ja beantwortet wurde)

11. Please indicate your level of agreement with the following statements: Bewertung von eins bis
fünf, nach aufsteigender Zustimmung)

a) I am an expert user of this program.

b) Good programming skills are required to use this program.

c) I have good programming skills in the needed language(s).

12. Does the program offer an integrated editor for program-specific code?

a) Yes

b) No

1. Is it okay that the marked answers are shared with other SimTech employees?

46

A.2. Ergebnisse

a) Yes

b) No

2. Would you like to be informed about the results of the survey?

a) Yes

b) No

3. Would you be willing to provide us insight into your work?

a) Yes

b) No

4. Please feel free to leave any comments: (Textfeld)

A.2. Ergebnisse

A.2.1. Details der Schritte

• -Visualization and communication of untercertainty -Development of a simulation tool for
non-experts

• Adaptive sampling, GPU computing, Parameter studies

• Compare Results for different kinds of models/ Benchmark tests

• The research is on the development of a simulation method that is able to couple discrete and
continuous methods.

• Modelling and simulating molecules

• implementing a parallel 2dgrid

• Use standard methods for simulating fluid motions, implement and check whether they are
sufficient. Improve them to get better results.

• deriving models; Validation with measurement results

• - plot data - compare with literature - evaluation of experimental data

• data mining model developement parameter estimation

• Analysing the role of societal uncertainty and complexity in simulations

• Modelling the system based on Newton’s Laws by using various integrator schemes, performing
numerical simulations and calculating statics and dynamical properties of the system.

• Multiscale simulation

• Code development and supervision of PhD students

47

A. Anhang

• Deriving and preparation of model equations numerical solving

• 1.) Set up a set of competing conceptual models 2.) express each as mathematical model 3.)
Set up a set of prior knowledge (probability distribution) for model parameters and model
credibilities 4.) Perform forward uncertainty quantification 5.) perform inverse uncertainty
quantification and probabilistic risk assessment 6.) use the final (set of) models for decision
support 7.) analyze the impact of possible future data collection on the improvement of the
decision problem

• - development of efficient discretization for partial differential equations - fast and scalable
solvers for systems of linear equations - numerical methods for coupling black-box solvers
to a multiphysics simulation environment - efficient parallel implemenations of dynamically
adaptive computational grids

• produce different models and compare them against each other

• Coupling of fluid-structure-acoustics solver.

• Modelling: stochastic description of input parameters for simulations Interpretation: estimating
stochastic properties of some quantities of interest for some simulations

• Implementation of new numerical algorithms

• Modelling: deciding which atoms to take into our model and which to neglect, which approxi-
mations to make when solving Schrödinger’s equation, ... Visualization: Viewing of potential
energy surfaces, reaction paths, ...

• Contextualizing simulations at the science-policy interface

• I am gathering data in order to model a simulation model about investment decisions and I
try to create a management flight simulator to measure the impact of the simulation model on
human decsion making

• Modelling Car Side Impact Scenarios including Dummy/Human Modells in LSDyna. Modelling
muscles in a simple leg modell in NewEulM2.

• Skeletal muscle modelling

• Conducting expert interviews for gathering qualitative data about the society - energy system
interface.

• Modelling aggregation process of nanoparticles

• Change parameters, run simulation, visualize results, interpret results extend constitutive
equation

• parameter estimation biochemical modeling uncertainty analysis statistical learning methods

• perform simulations

• making sense of large social data bases

• identifying parameters representing biological terms, implementing numerically the model
approach

48

A.2. Ergebnisse

• Uncertainty Quantification

• method development, coupling atomistic and continuum models

• Trying to find a mathematical description and transfer that to computer code.

• Creating models to explain physical processes happening on the atomistic scale, implementing
them in existing academic code, and predicting experimental observations.

• Implementing algorithms and simulating the results as well as the performance and the bahvior
of the modelled system w.r.t. this algorithm.

• Data gathering: Collect data using Participatory Sensing: Users carry mobile devices sensing
the environment Simulation: Developing mechanisms to run simulations on mobile devices
leveraging resources of stationary servers connected over the internet.

• I’m designing feedback controllers for PDEs and compare them to lower order controllers,
which are cheaper to calculate.

• Modelling of a chemical Production Network

• Development of numerical methods and computer programs

• simulate muscle movement and activation

• Literature review and trying to develop an understanding of the modelling framework in
general.

A.2.2. Im Bereich bekannte Werkzeuge

• Matlab (15)

• (Open)CMISS (5)

• DUNE (4)

• ESPResSo (4)

• C++(4)

• Python (3)

• DUMUX(2)

• ParaView (2)

• GROMACS (2)

• Maple (2)

• preCICE (2)

• OpenFOAM (2)

• COMSOL (2)

• LAMMPS (2)

• Eclipse (2)

• NetLogo

• Stagecast

• StarLogo

• Excel

• Fortran

• C

• mathematica

• dymola

• amesim

49

A. Anhang

• demoa

• OpenSim

• Anybody

• GID

• Ovito

• VMD

• FRESHS

• Mobile (c++ multi-body dynamics engine)

• 3Dcreate

• MODFLOW

• Xpert-N, Hydrogeosphere

• ANSYS Fluent

• Alya (Barcelona Supercomputing Center)

• Peano (inhouse code)

• DAKOTA (Sandia)

• UQTk (Sandia)

• UQLab (ETH)

• ChemShell

• DL-FIND

• Molpro

• Turbomole

• Vensim

• iThink

• Stella

• PowerSim

• Anylogic

• Consideo iModeller

• LSDyna

• Hypermesh

• Hypercrash

• LSPrepost

• NewEulM2

• ScenarioWizard

• graphviz

• siesta

• gromacs

• vasp

• namd

• SAS

• PANDAS

• SG++

• IMD

• PLATO

• EDAMAME

• ONETEP

• GAUSSIAN

• ORCA

• Simulink

• GNU R

• Tau-Code

• CFX

• FEBio

• OpenSIM

A.2.3. Für die Arbeit verwendete Programme

50

A.2. Ergebnisse

• Matlab (13)

• DUMUX (4)

• OpenCMISS (4)

• C++ (4)

• ESPResSo (3)

• DUNE (3)

• SG++ (3)

• Exel(2)

• power-point (2)

• Linux (2)

• LaTeX (2)

• Eclipse (2)

• NumPro (2)

• Python (2)

• Maple (2)

• Ovito (2)

• Simulink (2)

• git(2)

• COMSOL(2)

• LS-DYNA (2)

• Sublime Text

• SVN

• Word

• NetLogo

• StarLogo

• Fortan

• ParaView

• GCC

• LLVM

• mathematica

• dymola

• amesim

• demoa

• GID

• Paraview

• VMD

• FRESHS

• Visual Studio 2010

• MODFLOW

• Xpert-N

• Hydrogeosphere

• ANSYS Fluent

• Alya (Barcelona Supercomputing Center)

• Peano (inhouse code)

• preCICE (inhouse code)

• OpenFOAM

• SBToolbox

• preCICE

• Shell

• Emacs

• KMail

• LAMMPS

• Visit

• ChemShell

• DL-FIND

• Molpro

• Turbomole

• Vensim

• Hypermesh

• Hypercrash

51

A. Anhang

• LSPrepost

• NewEulM2

• ABAQUS

• ScenarioWizard

• OpenCell

• siesta

• gromacs

• SAS

• SPPS

• MABSS

• PANDAS

• PLATO

• FLEXI

• EDAMAME

A.2.4. Programmberwertung

C++,Eclipse

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es über ein graphisches UI.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.1.: CSUQ-Eclipse,C++

Keine Verbesserungen benötigt
Es wird seit zwei bis fünf Jahren verwendet und das 80% der Arbeitszeit.
Zur Verwendung wird C++ benötigt. Der Teilnehmer sagt, er kann das Werkzeug mittelmäßig be-
nutzen, wobei Sehr gute C++ Kenntnisse benötigt sind, die der Teilnehmer auch hat. Das Werkzeug
liefert einen integrierten Editor mit.

52

A.2. Ergebnisse

ChemShell

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es Durch Programm-spezifischen Code.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Neutral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt sehr
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt sehr
Generell bin ich mit dem System zufrieden. Stimmt sehr

Tabelle A.2.: CSUQ-ChemShell

Gewünschte Verbesserungen sind bessere Simulationsprotokolle und effizientere Algorithmen
Es wird seit mehr als fünf Jahren verwendet und das 10% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug sehr gut benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

53

A. Anhang

demoa

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es Durch programm- spezifischen Code.

Es ist einfach das System zu benutzen. Stimmt weniger
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Neutral
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Neutral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benötigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt überhaupt nicht

Tabelle A.3.: CSUQ-demoa

Gewünschte Verbesserungen sind weitere Entwicklung und Dokumentation
Es wird seit zwei bis fünf Jahren verwendet und das 75% der Arbeitszeit.
Zur Verwendung wird C bzw. C++ als Programmiersprache benötigt. Der Teilnehmer sagt, er kann das
Werkzeug sehr gut benutzen. Um das Programm zu bedienen werden gute Programmiererfahrungen
vorausgesetzt diese hat der Teilnehmer auch. Das Werkzeug liefert keinen integrierten Editor mit.

54

A.2. Ergebnisse

EMACS

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es über ein graphisches UI.

Es ist einfach das System zu benutzen. Stimmt weniger
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Neutral
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt sehr

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Stimmt sehr

Tabelle A.4.: CSUQ-EMACS

Keine Verbesserungen benötigt
Es wird seit mehr als fünf Jahren verwendet und das 75% der Arbeitszeit.
Zur verwendung wird Lisp benötigt. Der Teilnehmer sagt, er kann das Werkzeug gut benutzen,
wobei durchschnittliche Lisp Kenntnisse benötigt sind, die der Teilnehmer nicht ausreichend hat. Das
Werkzeug liefert einen integrierten Editor mit.

55

A. Anhang

GAMS

Wird in Prozessschritten verwendet: Modellierung
Verwendet wird es über eine Kommandozeile.

Es ist einfach das System zu benutzen. Stimmt sehr
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt weniger

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt weniger

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.5.: CSUQ-GAMS

Keine Verbesserungen benötigt
Es wird seit bis zu einem Jahr verwendet und das 20% der Arbeitszeit.
Zur Verwendungwird Python benötigt. Der Teilnehmer sagt, er kann dasWerkzeug recht gut benutzen,
wobei durchschnittliche Python Kenntnisse benötigt sind, in denen der Teilnehmer sehr gute hat. Das
Werkzeug liefert einen integrierten Editor mit.

GROMACS

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Über die Verwendung und Bedienung wurden keine Angaben gemacht.

56

A.2. Ergebnisse

HyperCrash

Wird in Prozessschritten verwendet: Modellierung
Verwendet wird es über ein graphisches UI.

Es ist einfach das System zu benutzen. Stimmt sehr
Ich kann meine Arbeit effektiv mit dem System erledigen. Neutral
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Neutral
Es war einfach das System zu erlernen. Stimmt sehr
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benötigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.6.: CSUQ-HyperCrash

Es ist eine Verbesserung gewünscht insofern, dass das ausgaben manchmal falsch und nicht struktu-
riert sind.
Es wird seit bis zu einem Jahr verwendet und das 30% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug gut benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

57

A. Anhang

LS-DYNA

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es über eine Kommandozeile.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt weniger
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt überhaupt nicht

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt weniger

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Neutral

Es ist einfach benötigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Neutral

Tabelle A.7.: CSUQ-LS-DYNA

Keine Verbesserungen benötigt
Es wird seit bis zu einem Jahr verwendet und das 10% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug gut benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

58

A.2. Ergebnisse

LS-PREPOST

Wird in Prozessschritten verwendet: Modellierung, Visualisierung
Verwendet wird es über ein graphisches UI.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt weniger
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt überhaupt nicht

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt überhaupt nicht

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benötigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Neutral

Tabelle A.8.: CSUQ-LS-PREPOST

Interface variiert stark zwischen unterschiedlichen Versionen und somit sind Guides nur sehr spezi-
fisch auf die eine Interface version anzuwenden
Es wird seit bis zu einem Jahr verwendet und das 10% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug benutzen (Neutral). Das Werkzeug liefert einen integrierten Editor mit.

59

A. Anhang

Maple

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es über eine Kommandozeile.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt weniger
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Neutral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Neutral

Es ist einfach benötigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.9.: CSUQ-Maple

Keine Verbesserungen benötigt
Es wird seit mehr als fünf Jahren verwendet und das 10% der Arbeitszeit.
Zur Verwendung wird Programm-spezifischer Code benötigt. Der Teilnehmer sagt, er kann das
Werkzeug benutzen, wobei geringe Kenntnisse über den Programm-spezifischer Code benötigt sind,
über die der Teilnehmer aber mittelmäßig beherrscht. Das Werkzeug liefert einen integrierten Editor
mit.

60

A.2. Ergebnisse

Molpro

Wird in Prozessschritten verwendet: Modellierung
Verwendet wird es über Programm-spezifischer code.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Stimmt weniger
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt weniger

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Neutral

Es ist einfach benötigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt sehr
Generell bin ich mit dem System zufrieden. Stimmt sehr

Tabelle A.10.: CSUQ-Molpro

Keine Verbesserungen benötigt
Es wird seit mehr als fünf Jahren verwendet und das 10% der Arbeitszeit.
Zur Verwendung wird keine Sprache benötigt. Der Teilnehmer sagt, er kann das Werkzeug sehr gut
benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

61

A. Anhang

NetLogo

Wird in Prozessschritten verwendet: Modellierung, Simulieren, Visualisierung, Interpretation
Verwendet wird es über Programm-spezifischer Code.

Es ist einfach das System zu benutzen.Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt sehr

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt sehr

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.11.: CSUQ-NetLogo

Keine Verbesserungen benötigt
Es wird seit bis zu einem Jahren verwendet und das 5% der Arbeitszeit.
Zur Verwendung wird Netlogo als Sprache benötigt. Der Teilnehmer sagt, er kann das Werkzeug
mittelmäßig benutzen, wobei gute Netlogo Kenntnisse benötigt sind, die der Teilnehmer auch hat.
Das Werkzeug liefert einen integrierten Editor mit.

62

A.2. Ergebnisse

NumPro

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es über Kommandozeile.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Neutral
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt weniger

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Neutral

Es ist einfach benötigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.12.: CSUQ-NumPro

Gewünschte Verbesserungen sind, weitere Entwicklung, Dokumentation und einen code der es
ermöglicht diesen auch Kommerziell zu verwenden.
Es wird seit mindestens fünf Jahren verwendet und das 50% der Arbeitszeit.
Zur Verwendung wird C++ benötigt. Der Teilnehmer sagt, er kann das Werkzeug sehr gut benutzen,
mittelmäßige C++ Kenntnisse benötigt sind, die der Teilnehmer auch hat. Das Werkzeug liefert einen
integrierten Editor mit.

63

A. Anhang

Pandas

Wird in Prozessschritten verwendet: Simulieren
Verwendet wird es über externen Code.

Es ist einfach das System zu benutzen. Stimmt weniger
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Stimmt weniger
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Neutral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.13.: CSUQ-Pandas

Gewünschte Verbesserungen sind, ein Interface und Unterstützung von parallel computing
Es wird seit bis zu einem Jahre verwendet und das 40% der Arbeitszeit.
Zur Verwendung wird C benötigt. Der Teilnehmer sagt, er kann das Werkzeug gar nicht benutzen,
wobei sehr gute C Kenntnisse benötigt sind, die der Teilnehmer aber nur mittelmäßig hat. Das
Werkzeug liefert keinen integrierten Editor mit.

64

A.2. Ergebnisse

ParaView

Wird in Prozessschritten verwendet: Visualisierung
Verwendet wird es über ein graphisches UI.

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt überhaupt nicht
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt weniger

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benötigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.14.: CSUQ-ParaView

Als Verbesserung wurde ein Neuladen-Button vorgeschlagen, um besser mit inkorrekten
Visualisierungs-daten zu arbeiten.
Es wird seit zwei bis fünf Jahren verwendet und das 10% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug eher weniger benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

65

A. Anhang

Plato

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es über eine Kommandozeile

Es ist einfach das System zu benutzen. Stimmt weniger
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt überhaupt nicht

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt überhaupt nicht

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benötigte Informationen zu finden. Stimmt weniger
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Stimmt sehr

Tabelle A.15.: CSUQ-Plato

Gewünschte Verbesserungen sind eine bessere Modalisierung, effizientere Daten Strukturen und eine
bessere Bedienbarkeit
Es wird seit bis zu einem Jahr verwendet und das 70% der Arbeitszeit.
Zur Verwendung wird C benötigt. Der Teilnehmer sagt, er kann das Werkzeug sehr gut benutzen,
wobei gute C Kenntnisse benötigt sind, die der Teilnehmer auch hat. Das Werkzeug liefert keinen
integrierten Editor mit.

66

A.2. Ergebnisse

SAS

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es über Programm-spezifischen Code.

Es ist einfach das System zu benutzen. Stimmt weniger
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt weniger
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt weniger
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt überhaupt nicht

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt weniger

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt weniger

Es ist einfach benötigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Stimmt weniger
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt weniger

Tabelle A.16.: CSUQ-SAS

Ein besseres Nutzerinterface ist erwünscht.
Es wird seit mehr als fünf Jahren verwendet und das 10% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug weniger gut benutzen, Das Werkzeug liefert keinen integrierten Editor mit.

67

A. Anhang

Scenario Wizard

Wird in Prozessschritten verwendet: Daten sammeln, Modellierung, Simulieren, Visualisierung, Inter-
pretation
Verwendet wird es über ein graphisches UI.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Neutral
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Stimmt sehr
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.17.: CSUQ-Scenario Wizard

Gewünschte Verbesserungen sind, mehr Postprozess Unterstützung, eine Assistentenfunktion für
Anfänger und mehr Analysebeispiele in der Dokumentation
Es wird seit mehr als fünf Jahren verwendet und das 20% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug sehr gut benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

68

A.2. Ergebnisse

Self-written Java for Android

Wird in Prozessschritten verwendet: Daten Sammeln
Verwendet wird es über externen Code.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Neutral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt weniger

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Stimmt weniger
Generell bin ich mit dem System zufrieden. Neutral

Tabelle A.18.: CSUQ-Self-written Java for Android

Keine Verbesserungen benötigt
Es wird seit ein bis zwei Jahren verwendet und das 2% der Arbeitszeit.
Zur Verwendung wird Java benötigt. Der Teilnehmer sagt, er kann das Werkzeug gut benutzen,
wobei gute Java Kenntnisse benötigt sind, die der Teilnehmer auch hat. Das Werkzeug liefert keinen
integrierten Editor mit.

69

A. Anhang

Self-written Python

Wird in Prozessschritten verwendet: Daten Sammeln, Simulieren
Verwendet wird es über Programm-spezifischen Code.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Neutral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.19.: CSUQ-Self-written Python

Keine Verbesserungen benötigt
Es wird seit zwei bis fünf Jahren verwendet und das 10% der Arbeitszeit.
Zur Verwendung wird Python benötigt. Der Teilnehmer sagt, er kann das Werkzeug gut benutzen,
wobei gute Python Kenntnisse benötigt sind, die der Teilnehmer auch hat. Das Werkzeug liefert
keinen integrierten Editor mit.

70

A.2. Ergebnisse

SG++

Wird in Prozessschritten verwendet: Modellierung, Interpretation
Verwendet wird es als Bibliothek.

Es ist einfach das System zu benutzen. Stimmt sehr
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt sehr
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt sehr
Es war einfach das System zu erlernen. Neutral
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt weniger

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt weniger

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt sehr

Tabelle A.20.: CSUQ-SG++

Als Verbesserung ist gewünscht, dass auch andere Sprachen als C++ unterstützt werden
Es wird seit zwei bis fünf Jahren verwendet und das 80% der Arbeitszeit.
Zur Verwendung wird ist C++ am angenehmsten, aber Python, Java und Matlab sind auch unterstützt.
Der Teilnehmer sagt, er kann das Werkzeug gut benutzen, wobei gute C++ Kenntnisse benötigt sind,
die der Teilnehmer auch hat. Das Werkzeug liefert keinen integrierten Editor mit.

71

A. Anhang

Siesta

Wird in Prozessschritten verwendet: Modellierung, Simulieren
Verwendet wird es über eine Kommandozeile.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Neural

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Neutral

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt überhaupt nicht
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.21.: CSUQ-Siesta

Keine Verbesserungen benötigt
Es wird seit mehr als fünf Jahren verwendet und das 50% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug mittelmäßig benutzen. Das Werkzeug liefert keinen integrierten Editor mit.

72

A.2. Ergebnisse

Vensim

Wird in Prozessschritten verwendet: Modellierung, Simulieren, Visualisierung
Verwendet wird es über ein graphisches UI.

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Neutral
Ich kann mit dem System meine Arbeit schnell erledigen Neutral
Ich kann meine Arbeit effizient mit dem System erledigen. Neutral
Es war einfach das System zu erlernen. Stimmt weniger
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt überhaupt nicht

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt sehr

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.22.: CSUQ-Vensim

Es ist ein mehr intuitives Interface gewünscht, da das Werkzeug viele Funktionen hat, die dem
Teilnehmer unbekannt sind
Es wird seit zwei bis fünf Jahren verwendet und das 15% der Arbeitszeit.
Zur Verwendung wird keine Programmiersprache benötigt. Der Teilnehmer sagt, er kann das Werk-
zeug mittelmäßig benutzen. Das Werkzeug liefert einen integrierten Editor mit.

73

A. Anhang

Details CSUQ

Es ist einfach das System zu benutzen. Stimmt
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.23.: CSUQ-MATLAB

Es ist einfach das System zu benutzen. Stimmt überhaupt nicht
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt sehr
Ich kann mit dem System meine Arbeit schnell erledigen Neutral
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Stimmt weniger
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Neutral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Neutral

Es ist einfach benötigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.24.: CSUQ-DUNE

74

A.2. Ergebnisse

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Neutral
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt weniger bis Neu-

tral
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt weniger bis Neu-

tral
Es war einfach das System zu erlernen. Stimmt weniger bis über-

haupt nicht

Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt weniger bis Neu-
tral

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Neutral

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Neutral

Es ist einfach benötigte Informationen zu finden. Neutral
Informationen die vom System kommen sind einfach zu verstehen. Neutral
Ich benutze gerne das Interface des Systems. Stimmt
Generell bin ich mit dem System zufrieden. Stimmt

Tabelle A.25.: CSUQ-(Open)CMISS

Es ist einfach das System zu benutzen. Neutral
Ich kann meine Arbeit effektiv mit dem System erledigen. Stimmt
Ich kann mit dem System meine Arbeit schnell erledigen Stimmt
Ich kann meine Arbeit effizient mit dem System erledigen. Stimmt
Es war einfach das System zu erlernen. Neutral
Das System gibt deutliche Fehlermeldungen, die mir klar sagen wie
Probleme zu lösen sind.

Stimmt

Sobald ich einen Fehler beim benutzen des Systems mache, kann ich
schnell und einfach Aktionen rückgängig machen

Stimmt

.Hilfestellungen zum System (z.B. Online-Hilfe, Systemmeldungen und
andere Dokumentation) sind deutlich.

Stimmt

Es ist einfach benötigte Informationen zu finden. Stimmt
Informationen die vom System kommen sind einfach zu verstehen. Stimmt
Ich benutze gerne das Interface des Systems. Neutral
Generell bin ich mit dem System zufrieden. Stimmt (sehr)

Tabelle A.26.: CSUQ-ESPResSo

75

Literaturverzeichnis

[Bro99] J. F. Broenink. 20-SIM software for hierarchical bond-graph/block-diagram models. 1999.
(Zitiert auf den Seiten 18 und 19)

[DCST00] A. C. David Canfield Smith, L. Tesler. Novice Programming Comes of Age. 2000. (Zitiert
auf den Seiten 6, 9, 19, 21 und 22)

[Gora] G. Gordon. The Development of the General Purpose Simulation System (GPSS). (Zitiert auf
den Seiten 9, 14, 15, 16, 17 und 19)

[Gorb] G. Gordon. A General Purpose Systems Simulation Program. (Zitiert auf den Seiten 9, 14,
15, 16 und 19)

[KP05] C. Kelleher, R. Pausch. Lowering the Barriers to Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers. 2005. (Zitiert auf den Seiten 9, 19,
20, 21 und 22)

[LKK91] A. M. Law, W. D. Kelton, W. D. Kelton. Simulation modeling and analysis, Band 2. McGraw-
Hill New York, 1991. (Zitiert auf den Seiten 12 und 13)

[MI99] J. C. Martinez, P. G. Ioannou. General-Purpose Systems for Effective Construction Simulation.
1999. (Zitiert auf den Seiten 14, 18 und 19)

[SB11] J. A. Sokolowski, C. M. Banks. Principles of modeling and simulation: a multidisciplinary
approach. John Wiley & Sons, 2011. (Zitiert auf den Seiten 9, 11, 12, 13 und 14)

[SB12] J. A. Sokolowski, C. M. Banks. Handbook of Real-world Applications in Modeling and
Simulation, Band 2. John Wiley & Sons, 2012. (Zitiert auf Seite 12)

[Sol86] E. Soloway. Learning to Program = Learning to Construct Mechanisms and Explanations.
1986. (Zitiert auf den Seiten 19 und 21)

[TLR] K. S. Tim Laue, T. Röfer. SimRobot - A General Physical Robot Simulator and its Application
in RoboCup. (Zitiert auf Seite 19)

[VK11] A. O. M. H. P. G. E. T. Vahur Kotkas, Riina Maigre. CoCoViLa as a Multifunctional Simulation
Platform. 2011. (Zitiert auf den Seiten 17, 18 und 19)

Alle URLs wurden zuletzt am 28. 09. 2014 geprüft.

77

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Verwandte Arbeit
	2.1 Definitionen
	2.2 Schritte im Simulationsprozess
	2.3 Simulationsmethoden
	2.4 Vor- und Nachteile von Modellierung und Simulation
	2.5 Multifunktionale Simulationsprogramme und Modellstrukturen
	2.6 Programmierterminiologie und Methoden

	3 Umfrage
	3.1 Fragebogen
	3.2 Durchführung
	3.3 Teilnehmer
	3.4 Ergebnisse
	3.5 Diskussion

	4 Interviews
	5 Empfehlung
	6 Zusammenfassung
	7 Danksagung
	A Anhang
	A.1 Fragebogen
	A.2 Ergebnisse

	Literaturverzeichnis

