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A B S T R A C T

Stereo reconstruction belongs to the fundamental problems in com-
puter vision, with the aim of reconstructing the depth of a static
scene. In order to solve this problem the corresponding pixels in both
views must be found. A common technique is to minimize an energy
(cost) function. Therefore, most methods use a parameterization in
form of a displacement information (disparity). In contrast, this thesis
uses, extends and examines a depth parameterization. (i) First a ba-
sic depth-driven variational method is developed based on a recently
presented method of Basha et al. [2]. (ii) After that, several possible
extensions are presented, in order to improve the developed method.
These extensions include advanced smoothness terms that incorpo-
rate image information and enable an anisotropic smoothing behav-
ior. Further advanced data terms are considered, which use modified
constraints to allow a more accurate estimation in different situations.
(iii) Finally, all extensions are compared with each other and with a
disparity-driven counterpart.

Z U S A M M E N FA S S U N G

Die Stereorekonstruktion zählt zu den grundlegenden Problemen des
Maschinensehens (Computer Vision), mit dem Ziel die Tiefeninfor-
mation einer statischen Szene zu rekonstruieren. Um dieses Problem
zu lösen, müssen die zueinandergehörigen Bildpunkte in beiden An-
sichten identifiziert werden (Korrespondenzfindung). Ein häufig ver-
wendeter Ansatz beinhaltet die Minimierung eines Energiefunktion-
als (Kostenfunktional). Dabei verwenden die meisten Ansätze eine
Parametrisierung in Form von Verschiebungsinformation (Disparität).
Im Unterschied dazu verwendet, erweitert und untersucht diese Ar-
beit eine Tiefen-Parametrisierung. (i) Zuerst wird ein tiefengetrieben-
er Variationsansatz auf Basis einer kürzlich vorgestellten Arbeit von
Basha et al. [2] entwickelt. (ii) Danach werden mehrere mögliche Er-
weiterungen präsentiert, um das entwickelte Verfahren zu verbessern.
Diese Erweiterungen beinhalten fortgeschrittene Glattheitsterme, die
Bildinformationen miteinbeziehen und ein anisotropes Glättungsver-
halten ermöglichen. Zudem werden fortgeschrittene Datenterme, mit
veränderten Annahmen, betrachtet, um eine genauere Schätzung zu
ermöglichen. (iii) Zum Schluss werden alle Erweiterungen miteinan-
der und mit einem disparitätsgetriebenen Äquivalent verglichen.
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1
I N T R O D U C T I O N

1.1 motivation

A classical and central problem in computer vision is the reconstruc-
tion of depth in a static scene. Given two images of a scene captured
from two different viewpoints this problem is known as stereo recon-
struction. Stereo reconstruction makes use of the fact that the offset of
objects in both views is related to the depth. It can be divided in two
main steps. First, corresponding pixels in both views must be identi-
fied. In a second step the depth is computed by triangulation of the
correspondences. As the triangulation is simple, with known camera
calibration and corresponding pixels, the main challenge remains the
first step - solving the correspondence problem.

In order to compute a very precise solution especially global opti-
mization approaches have been established in literature. These meth-
ods determine all corresponding pixels simultaneously, as the mini-
mizer of a suitable energy functional. Therefore, most of the meth-
ods use a parameterization in the form of displacement information,
known as the disparity. Even though such approaches have the advan-
tage of being very similar to motion estimation methods and there-
fore facilitate similar concepts, they also have a number of disadvan-
tages. In particular the computation is performed in the 2-D image
space and not directly in the 3-D space, consequently it is difficult
to make use of prior knowledge. Moreover disparity-driven methods
cannot be easily extended to a setting that uses more than two cam-
eras, due to the fact that for arbitrary number of cameras the geomet-
ric relations become arbitrarily complicated. This more-general prob-
lem is known as multi-view stereo. Depth-driven approaches provide
an elegant solution to this problem. They model the problem in 3-D
space and calculate the depth directly.

fields of application. Stereo reconstruction and the obtained
3-D structure allows to accomplish a broad variety of tasks. For ex-
ample, it allows to determine the distances to objects, which is a very
useful information, that allows to find a safe path through an un-
known environment or to localize the own position in a known map.
It offers the foundation for fully automatically robot navigation [18] or
the design of driver assistance systems [14], which support the driver in
critical situations. Figure 1 shows a scene taken in a pedestrian area
and the reconstructed color-coded depth information.
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2 introduction

(a) One image of the stereo pair showing the scene.

(b) Reconstructed color-coded depth information.

Figure 1: A possible field of application. Showing a reconstruction of a scene
from the KITTI benchmark dataset [10].

Another application is found in the post-processing of modern
Camera-Arrays [26]. Here the knowledge of the depth is needed to
correct for parallax and allow to produce correct images.

1.2 related work

First attempts of depth-driven approaches go back to the work of
Robert and Deriche [15]. They were the first to use such a parameter-
ization, but without mentioning details of the challenging minimiza-
tion. New approaches such as the method of Basha et al. [2] use such
a parameterization with an additional motion estimation (scene flow).
Furthermore, they offer insights into a suitable minimization, which
is based on the well-known nested fixed-point iteration method of
Brox et al. [4].
Stühmer et al. [21] combine such an approach with recent camera
tracking algorithms to achieve a dense reconstruction in real-time
from a single handheld camera, where the easy extension to multi-
ple images allows to increase the robustness of the estimated depth.

1.3 aim of this thesis

The aim of this thesis is to develop a simple depth-driven stereo ap-
proach using two cameras based on the method of Basha et al. [2].
Further the developed stereo approach shall be improved by the use
of advanced data and smoothness terms. In addition, the thesis aims
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for a comparison between the developed variational depth-driven
method and a variational disparity-driven approach.

1.4 organization

This thesis is organized as follows: Chapter 2 introduces basic con-
cepts and notations used throughout this thesis, which allow to build
the basic method in the following chapter (Chapter 3). After that, sev-
eral extensions are presented in Chapter 4, in order to improve the
developed method. Finally, the method and the extensions are evalu-
tated and compared in Chapter 5 and a conclusion is given in the last
chapter (Chapter 6).





2
B A C K G R O U N D

This chapter introduces basic concepts and notations that are used
throughout this thesis. Most of the following geometry-related con-
cepts and examples can be found with more extensive explanations
in [11].

Due to the fact that the developed depth-driven approach assumes
that the imaging systems follows the basic pinhole model, it forms
the main part of this chapter. In addition, a short introduction to
homogeneous coordinates, the epipolar geometry and the calculus of
variations is given.

2.1 geometry-related background

2.1.1 Homogeneous Coordinates

Homogeneous coordinates are a nice and simple extension to the Homogeneous
coordinates were
invented by Möbius
(1827) and Plücker
(1830) [19].

Euclidean space Rn, which allow to perform affine transformations
through a simple matrix multiplication. An example for such an affine
transformation will be shown in the following section. To transform
Euclidean coordinates to homogeneous coordinates, vectors x ∈ Rn

are expanded to vectors x̃ ∈ Rn+1 by appending a one, so the for-
ward transformation reads

H : Rn → Rn+1

x = (x1, . . . , xn)
> 7→ x̃ = (x1, . . . , xn, 1)> (1)

The back transformation is almost as simple. The first n entries are
divided by the last entry:

H−1 : Rn+1 → Rn

x̃ = (x̃1, . . . , x̃n+1)
> 7→ x =

(
x̃1
x̃n+1

, . . . ,
x̃n

x̃n+1

)>
(2)

Taking a close look at the back transformation shows that a point in
Euclidean coordinates can have several counterparts in homogeneous
coordinates. This means that

H−1 (x̃) = H−1 (λ · x̃)
H−1

(
(x̃1, . . . , x̃n+1)

>
)
= H−1

(
(λ · x̃1, . . . , λ · x̃n+1)>

)
denote the same point (for λ 6= 0). Further there are points in homoge-
neous coordinates that have no Euclidean counterpart. These are the

5



6 background

homogeneous coordinates holding a zero as last entry, which would
produce a division by zero using the back transformation.

x̃ = (x̃1, . . . , x̃n, 0)>

This can be understood as a point at infinity and would mean that a
division by zero would result in infinity.

2.1.2 The Basic Pinhole Model

After introducing the homogeneous coordinates the basic pinhole
model is explained. It describes how the Camera C projects a point“The Worldwide

Pinhole Photogra-
phy Day is held

each year the last
Sunday of April.”

pinholeday.org

P ∈ R3 on the image plane Ω ⊂ R2 resulting into the projected point
p ∈ Ω. The geometry of the basic pinhole model is illustrated in Fig-
ure 2.

To keep the model simple, the camera center C is placed at the
origin of the Euclidean 3-space R3. The image plane is then placed
in front of the camera center at the plane Z = f, with f being the
focal length. The Z axis, in which the camera is pointing, is known
as principle axis and the intersection point with the image plane c is
named principle point.

P

Z

X

Y

p

x

y C

c

f

image plane

principle axis

camera center

Figure 2: The geometry of the basic pinhole camera.

The projection π : R3 → Ω, P 7→ p can be understood as an intersec-
tion of a ray, starting at P going through C, and the image plane. With
the intercept theorem in mind and a close look at Figure 3 follows:PXPY

PZ

 7→
(
f · PX/PZ
f · PY/PZ

)
(3)

http://www.pinholeday.org
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P

Y

Z

p

Cc

f

f · PY/PZ

PY

PZ

Figure 3: The geometry of the basic pinhole camera.

By making use of homogeneous coordinates this projection can be
expressed as a linear mapping. This is why Equation 3 may be written
as a matrix multiplication:

PX

PY

PZ

1

 7→
f · PXf · PY
PZ

 =

f 0 0 0

0 f 0 0

0 0 1 0


︸ ︷︷ ︸

M


PX

PY

PZ

1

 (4)

The matrix M used here is called the camera projection matrix. It As a quick reminder:
p̃ is a homogeneous
equivalent to p.

allows the description of the camera projection in a single 3× 4matrix
using the homogeneous coordinates given by p̃ =MP̃.

2.1.3 Two Cameras in one World

The previous section introduced a complete model of the pinhole
camera. Unfortunately, the made assumptions do not allow to have
several pinhole cameras within the same world coordinate frame.
Apart from that, the model only allows a very specific camera. In
order to overcome these limitations, the following assumptions must
be discarded:

a. The world and camera coordinate frames are identical.

b. The origin of the image plane coordinates is located at the prin-
ciple point.

c. The image plane coordinates have equal scales in x and y direc-
tion.

The first assumption to be canceled is assumption a which leads to
the extrinsic camera parameters.

extrinsic camera parameters . The relation between two co-
ordinate frames can be expressed by a rotation and a translation. Ho-
mogeneous coordinates allow to write this relation in a homogeneous
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4× 4 matrix. Let Tworld→cam denote the forward transformation from
the world coordinate frame to the camera coordinate frame, of the
formIn this case it

is clear that 0
is not a scalar. Tworld→cam =

[
R t

0 1

]
Here R is a 3× 3 rotation matrix and t a 3× 1 translation vector. A
sketch of this is shown in Figure 4. The same matrix also describes
the backward coordinate transformation of a point. Given a point
Pworld relative to the world coordinate frame it is related to the camera
coordinate frame by

P̃world = Tworld→camP̃cam

Using the inverse transform Tcam→world of Tworld→cam which is given
by

Tcam→world =

[
R −1 −R −1t

0 1

]
(5)

allows to set up a more general camera projection matrix. Therefore,
the 3-D point Pworld in the world coordinate frame is expressed in
camera coordinates using the backward coordinate transformation,
which leads to

M =

f 0 0 0

0 f 0 0

0 0 1 0


[

R −1 −R −1t

0 1

]
(6)

In literature the parameters R = R −1 and t = −R −1t are called ex-
trinsic or external camera parameters.

After canceling assumption a, assumptions b and c are in line. This
results in the intrinsic camera parameters.

intrinsic camera parameters . In practice the origin of the
image plane coordinates is not at the principle point. By taking this
offset, seen in Figure 5, into acccount the new camera projection ma-
trix reads

M =

f 0 cx 0

0 f cy 0

0 0 1 0


[
R t

0 1

]
(7)

where c = (cx, cy)> are the coordinates of the principle point. By
introducing the matrix

K =

f 0 cx

0 f cy

0 0 1

 (8)



2.1 geometry-related background 9

Xcam

Ycam

Zcam

x

y

t

R

Xworld

Yworld

Zworld

Figure 4: The translation t and rotation R of the camera coordinate frame
relative to the world coordinate frame.

xcam

ycam

c

x

y

ox

oy

Figure 5: Relation between image and camera coordinate system.

which is called camera calibration matrix, the camera projection ma-
trix is written as

M =
[
K 0

] [R t

0 1

]
(9)

The next step is canceling the assumption c, saying that the image
plane coordinates have equal scales in x and y direction. Hence a scale
factor for each direction is introduced. These scale factors nx and ny
define the number of pixels per unit distance in image coordinates.
Applying this scale to the camera calibration matrix leads to

K =

nx 0 0

0 ny 0

0 0 1


f 0 cx

0 f cy

0 0 1

 =

sx 0 ox

0 sy oy

0 0 1

 (10)

Now sx = f · nx and sx = f · nx denote the scaled focal lengths in
terms of pixel dimensions and o = (ox,oy)> the principle point offset
in terms of pixel dimensions.
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For even more generality a skew parameter can be added, but it
is zero for most of the cameras and is not considered in this thesis.
The final camera projection matrix M is now a 3× 4 matrix of rank
3 and offers 10 degrees of freedom (11 including the not introduced
skew factor), defined up to an arbitrary scale. Knowing the projection
matrix, this means knowing the intrinsic and the extrinsic parameters,
the camera is said to be fully calibrated.

2.1.4 The Epipolar Geometry

Being capable of describing an arbitrary number of cameras in oneSturm names Hauck
as the first person

to uncover the
Epipolar geometry

in 1883 [22].

world coordinate frame, a first stereo camera setup can be introduced.
This will be the so-called converging camera setup, seen in Figure 6

and on the left side of Figure 7. In this arrangement the two cameras
are translated along the x-axis and are rotated somewhat towards
each other.

P
Q

R

e1 e2

p1 p2

C1 C2

epipolar plane

epipolar line

baseline

Figure 6: The geometry of a stereo image pair (converging camera setup).

Trying to solve the correspondence problem for the point p1, taken
by the first camera, will lead to the epipolar geometry. The corre-
sponding 3-D point P must lie on the optical ray going through the
camera center C1 and the projected point p1. In consequence a second
optical ray going through the second camera center C2 and the corre-
sponding point p2 must intersect the first optical ray. Not knowing P
or p2 this could be any point on the first optical ray, e.g. P, Q or R.
This means the point p2 must lie on the projection of the first optical
ray, which is known as the epipolar line. Obviously there also is a
corresponding epipolar line in the first image plane.
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Further the line joining the camera centers is called baseline and
intersection points with the image plane are named epipoles e1 an e2.
The plane containing the camera centers and an arbitrary 3-D point
is called epipolar plane, the intersection of the epipolar plane and the
image planes although results in the epipolar lines.

P
Q

R

e1 e2

p1 p2

C1 C2

P
Q

R

p1 p2

C1 C2

Figure 7: A top view of the converging camera setup (left) and the ortho-
parallel camera setup (right).

P
Q

R

p1 p2

C1 C2

epipolar plane

epipolar line

baseline

Figure 8: The geometry of a stereo image pair (ortho-parallel camera setup).

Another common used camera setup is the ortho-parallel camera
setup, shown in Figure 8 and on the right side of Figure 7. In this
setup the cameras have parallel optical axes pointing in the same
direction. Which is why the relation can be described with a single
translation and without rotation. This setup comes with the advan-
tage that the epipolar lines are horizontal, this means that displace-
ment is only along the X-axis. Due to the fact that the 1-D search space
fits perfect to the pixel discretization, there are algorithms that trans-
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form images taken with other cameras setups to match the epipolar
lines. This procedure is known as image rectification [9].

2.2 calculus of variations

As aforementioned in the introduction, the correspondence problemHistorically, the cal-
culus of variations

originated from
concrete problems

of geometry and
physics. [12]

is solved as the minimizer of a suitable energy functional. In order to
do so, the use of calculus of variations will help. The object of calculus
of variations is to find extrema of functionals [12]. A functional is a
quantity that depends on a number of functions. Briefly, a functional
is a function of functions. A necessary condition for the existence of
an extremum is the vanishing of the first variation, which leads to the
Euler-Lagrange equation.

2.2.1 The Euler-Lagrange Equation

A simple problem is determining the minimizer of the following func-
tional

E(y) =

∫b
a

F (x,y,yx)dx (11)

where F (x,y,yx) is called the Lagrange-Function and E(y) is defined
onD ⊂ C1 [a,b]. Let the function y(x) ∈ C1 [a,b] be a local minimizerC1 [a,b] are all

continuously differ-
entiable functions

defined on the closed
interval [a,b] ∈ R

of the functional (11) and the Lagrange-Function F : [a,b]×R×R→
R continuous and continuously differentiable with respect to y and
yx. Then holds

Fyx(x,y,yx) ∈ C1 [a,b] (12)

0 = Fy(x,y,yx) −
d

dx
Fyx(x,y,yx) (13)

with natural boundary conditions

Fyx(a,y(a),yx(a)) = 0

Fyx(b,y(b),yx(b)) = 0

A proof to this theorem can be found in [12]. The Equation 13 is
known as the Euler-Lagrange-Equation, which each local minimizer
y must satisfy. If E(y) is strictly convex, a local minimizer y is the
unique minimizer.

2.2.2 The Case of Several Variables

The previous simple problem is in 1-D, the problems later in this
thesis will be in a 2-D space which is why an extension is needed. Ac-
cording to [7] this generalization is straightforward. For a functional

E(u) =

∫
Ω

F (x,y,u,ux,uy)dxdy (14)



2.2 calculus of variations 13

over a given region Ω the Euler-Lagrange equation reads

0 = Fu −
∂

∂x
Fux −

∂

∂y
Fuy (15)

with the natural boundary condition

0 = n>

(
Fux

Fuy

)
(16)

on the image boundary of ∂Ω with the normal vector n.

2.2.3 Functionals with Higher-Order Derivatives

Another extension of the Euler-Lagrange equation is needed if the
Lagrange-Function contains higher order derivatives. This extension
is although a straightforward extension as in the 2-D case. These are
energy functionals of the following form

E(u) =

∫
Ω

F (x,y,u,ux,uy,uxx,uxy,uyx,uyy)dxdy (17)

The Euler-Lagrange equation reads

0 = Fu −
∂

∂x
Fux −

∂

∂y
Fuy

+
∂2

∂x2
Fuxx +

∂2

∂x∂y
Fuxy +

∂2

∂y∂x
Fuyx +

∂2

∂yy
Fuyy (18)

with the natural boundary conditions

0 = n>

Fux − ∂
∂xFuxx −

∂
∂yFuxy

Fuy −
∂
∂xFuyx −

∂
∂yFuyy

 (19)

0 = n>

(
Fuxx

Fuxy

)
, 0 = n>

(
Fuyx

Fuyy

)
(20)

on the image boundary of ∂Ω with the normal vector n. A derivation
of these natural boundary conditions is given in Section A.4.





3
T H E M E T H O D

This chapter will describe the modeling of the simple depth-driven
stereo approach using two cameras based on the method of Basha et
al. [2]. It is split up in several parts starting with an explanation of the
parameterization, followed by the introduction of a variational model.
Then a suitable minimization strategy and discretization is given for
the proposed energy functional.

3.1 the parameterization

The depth-driven stereo method uses a 3-D point cloud parameter-
ization, with respect to a reference view. This means the surface is
described as a finite size point set P ⊂ R3. Therefore, each pixel
in the reference view p0 ∈ Ω0 ⊂ R2 has a corresponding 3-D un-
known P ∈ P. The projection of a 3-D point P onto the image taken
by the camera Ci is denoted by pi ∈ Ωi. Furthermore it is assumed
that the cameras follow the previously introduced pinhole model of
Section 2.1.2 and Section 2.1.3. For a better understanding a sketch
showing a simple scene containing a cube is given in Figure 9.

C0
C1

Xworld

Yworld

Zworld

P ∈ Pp0 ∈ Ω0
p1 ∈ Ω1

Figure 9: The parameterization of the surface as 3-D point cloud. Each 3-D
point lies on an optical ray of the reference camera C0. Which is
aligned with the world coordinate system.

The reference camera coordinate system is assumed to be aligned
with the world coordinate system. In this case the X- and Y-coordinate
of a point P can be expressed as a function of Z, since P must lie on
the optical ray through the known camera center and p0. To find
these functions the next step will be a close look at the projection

15



16 the method

π0 of the reference camera. Using the corresponding homogeneous
coordinates p̃0 and P̃ it reads

p̃0 =

xy
1

 =
[
K 0

] [R t

0 1

]
X

Y

Z

1

 =M0P̃ (21)

Since the reference camera coordinate system is aligned with the
world coordinate system the matrix holding the extrinsic parameters
becomes the identity. It remains

p̃0 =

xy
1

 =

sx 0 ox 0

0 sy oy 0

0 0 1 0



X

Y

Z

1

 =M0P̃ (22)

performing the matrix multiplication results in

p̃0 =

xy
1

 =

sx ·X+ ox ·Z
sy · Y + oy ·Z

Z

 =M0P̃ (23)

a back transform to Euclidean coordinates and rearranging the equa-
tion leads to(

X

Y

)
= Z

(
x/sx

y/sy

)
−Z

(
ox/sx

oy/sy

)
(24)

Knowing this relationship, Z remains the only unknown of the prob-
lem, since X and Y can be determined by Equation 24 as functions of
Z and p0. This even holds if the number of used cameras is increased,
which allows an easy extension to additional views. Finally, each 3-D
point P ∈ P is given by

P =

XY
Z

 = Z(x,y)

x/sx − ox/sxy/sy − oy/sy

1

 (25)

The projection pi = (xi,yi)> of a point P onto the camera Ci is then
computed by applying the camera projection matrix in homogeneous
coordinates and back transform these to Euclidean coordinates. This
can be written as

pi =

(
xi

yi

)
=

[
Mi
]
1,2 P̃

[Mi]3 P̃
(26)
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where
[
Mi
]
1,2 contains the first and the second row of the camera

projection matrix of Ci, which is a 2× 4 matrix, and
[
Mi
]
3

the third
row, which is a 1× 4 matrix. Therefore, xi and yi are given by

xi =
[Mi]1P̃
[Mi]3P̃

=
Mi
11 ·X+Mi

12 · Y +Mi
13 ·Z+Mi

14 · 1
Mi
31 ·X+Mi

32 · Y +Mi
33 ·Z+Mi

34 · 1

=
Z

a︷ ︸︸ ︷(
Mi
11 · (x/sx − ox/sx) +Mi

12 · (y/sy − oy/sy) +Mi
13

)
+

b︷︸︸︷
Mi
14

Z
(
Mi
31 · (x/sx − ox/sx) +Mi

32 · (y/sy − oy/sy) +Mi
33

)︸ ︷︷ ︸
c

+Mi
34︸︷︷︸
d

=
a ·Z+ b

c ·Z+ d

yi =
[Mi]2P̃
[Mi]3P̃

=
Mi
21 ·X+Mi

22 · Y +Mi
23 ·Z+Mi

24 · 1
Mi
31 ·X+Mi

32 · Y +Mi
33 ·Z+Mi

34 · 1

=
Z

ǎ︷ ︸︸ ︷(
Mi
21 · (x/sx − ox/sx) +Mi

22 · (y/sy − oy/sy) +Mi
23

)
+

b̌︷︸︸︷
Mi
24

Z
(
Mi
31 · (x/sx − ox/sx) +Mi

32 · (y/sy − oy/sy) +Mi
33

)︸ ︷︷ ︸
c

+Mi
34︸︷︷︸
d

=
ǎ ·Z+ b̌

c ·Z+ d
(27)

3.2 the variational model

Now that the parameterization is clear the next step will be to set up
the variational model. Therefore, a energy functional is formulated,
that allows to compute the unknown depth Z : Ω0 → R as a minimiz-
ing function. The proposed energy functional has the following form

E(Z) = EData(Z) +α ESmooth(Z) (28)

It consists of a data term EData(Z) and a smoothness term ESmooth(Z).
The data term models the assumption that the projection of the recon-
structed surface P fits to both views. Unfortunately, the usage of the
data term alone is an ill-posed problem due to ambiguities of the pro-
jection. Hence the smoothness term enforces Z to be smoothly vary-
ing in space. In addition, this allows to obtain solutions for occluded
pixels. Besides these two terms a regularization parameter α > 0 is
introduced to steer their relative impact.

In order to use this energy functional, constancy assumptions on
image features have to be made. Corresponding image features have
to remain unchanged between both views with the aim of defining
a quantity, that allows to tell how well corresponding pixels match.
By assuming a scene of Lambertian objects, the brightness constancy
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assumption is a favorable choice, since regardless of the viewing di-
rection objects appear equally bright. Thus the data term reads

EData(Z) =

∫
Ω0

(
|I0(p0) − I1(p1)|

2
)
dxdy (29)

Where Ii(x,y) : Ωi ⊂ R2 → R denotes the image taken by camera Ci.
As a result of the quadratic penalizer the influence of outliers is very

x

y

The increasing
influence of a

quadratic penalizer
vs. the regularized

L1 norm.

high. This can be reduced by using a non-quadratic penalizer. As in
[2, 4] the regularized L1 norm will be used

Ψ(s2) =
√
s2 + ε2 (30)

with a small ε > 0 to ensure differentiability and strict convexity.
Applying the function to the current data term leads to the robust
data term

EData(Z) =

∫
Ω0

Ψ
(
|I0(p0) − I1(p1)|

2
)
dxdy (31)

Further one should note that this non-linearized formulation allows
the estimation of large displacements. The linearization is postponed
to the numerical scheme.

After having discussed the data term a concrete smoothness term
is needed. Therefore, the gradient of Z will be penalized with respect
to the reference view to obtain a smoothly varying surface. This can
be expressed as

ESmooth(Z) =

∫
Ω0

|∇Z|2dxdy (32)

As before, the quadratic penalizer will not produce a desirable so-
lution, because depth discontinuities are smoothed. Hence the same
subquadratic function Ψ(s2) will be applied as in case of the data
term. This will lead to an isotropic depth-driven smoothing behavior
and that allows to preserve discontinuities.

ESmooth(Z) =

∫
Ω0

Ψ
(
|∇Z|2

)
dxdy (33)

Finally, the complete energy functional reads

E(Z) =

∫
Ω0

Ψ
(
|I0(p0) − I1(p1)|

2
)
+α Ψ

(
|∇Z|2

)
dxdy (34)

3.3 minimizing the energy functional

Having the energy functional at hand, it remains the question how
to find the minimizing function. To achieve this the Euler-Lagrange
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equation introduced in Section 2.2 will help. For the energy func-
tional (Equation 34) the corresponding Euler-Lagrange equation re-
quires the following partial derivatives

FZ = 2 ·Ψ ′
(
|I0(p0) − I1(p1)|

2
)
· (I0(p0) − I1(p1))

· (I0(p0) − I1(p1))Z

FZx = 2 ·Ψ ′
(
|∇Z(x,y)|2

)
·Z(x,y)x ·α

FZy = 2 ·Ψ ′
(
|∇Z(x,y)|2

)
·Z(x,y)y ·α

plugging these partial derivatives in Equation 15 the corresponding
Euler-Lagrange equation reads

0 = Ψ ′
(
|I0(p0) − I1(p1)|

2
)
· (I0(p0) − I1(p1)) · (I0(p0) − I1(p1))Z

−αdiv
(
Ψ ′
(
|∇Z|2

)
· ∇Z

)
(35)

with the natural boundary condition

0 = n>∇Z = ∂nZ (36)

Introducing the following abbreviation ∆ = I0(p0) − I1(p1) allows a
short notation of Equation 35.

0 = Ψ ′
(
|∆|2

)
·∆ ·∆Z −αdiv

(
Ψ ′
(
|∇Z|2

)
· ∇Z

)
(37)

Unfortunately, the energy functional (Equation 34) is non-linear and
non-convex, because of the perspective projection, the non-linearized
data term and the non-quadratic penalizers. In particular the non-
convexity poses a problem, since this is why the energy functional
has multiple local minimizer. Consequently, a suitable minimization
strategy is needed. To handle these challenges the well-known nested
fixed-point iteration method of Brox et al. [4] is used. With the aim of
creating a linear equation the method consists of three major parts: a
fixed point iteration, a incremental computation, and a coarse-to-fine
strategy.

fixed point iteration. The first step is to introduce a fixed
point iteration step on Z, to overcome the non-linearity in the argu-
ment. Let Ii(pi

k) denote the image value of the projected point Pk

which corresponds to the depth Zk(x,y) and let ∆k denote the abbre-
viation ∆k = I0(p0

k) − I1(p1
k), where k denotes the iteration index.

Using a semi-implicit scheme in the data term and an implicit scheme
in the smoothness term, the solution of Zk+1 can be obtained as a so-
lution of

0 = Ψ ′
(∣∣∆k+1∣∣2) ·∆k+1 ·∆kZ −αdiv

(
Ψ ′
(
|∇Zk+1|2

)
· ∇Zk+1

)
(38)
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incremental computation. The Equation 38 still remains non-
linear due to the non-linear Ψ ′ functions and the ∆k+1 term. To re-
move the second non-linearity an incremental computation is intro-
duced by the splitting the unknown depth in the known depth Zk

from the old time step and the unknown depth increment dZk from
the new time step

Zk+1 = Zk + dZk (39)

Using a first order Taylor expansion the linearization reads

Ii(pi
k+1) ≈ Ii(pi

k) + ∂ZIi(pi
k) · dZk (40)

and it follows that

∆k+1 ≈ ∆k +∆kZ · dZk (41)

In order to keep up a compact notation the Ψ ′ terms are abbreviated
as (

Ψ ′
)k

Data = Ψ ′
( ∣∣∆k +∆kZ · dZk∣∣2 )(

Ψ ′
)k

Smooth = Ψ ′
(
|∇
(
Zk + dZk

)
|2
)

(42)

Now, Equation 38 can be rewritten as

0 =
(
Ψ ′
)k

Data ·
(
∆k +∆kZ · dZk

)
·∆kZ

−αdiv
((
Ψ ′
)k

Smooth · ∇
(
Zk + dZk

))
(43)

The remaining non-linearity of this new equation is because of the
Ψ ′ functions, but since the chosen Ψ is a strict convex function, Equa-
tion 43 that has to be solved at each fixed point step corresponds to a a
convex problem with a unique minimizer. The next step is to remove
the remaining non-linearity. This is achieved by a second fixed point
iteration, which is referred to as inner fixed point iteration. The itera-
tion step is denoted by an index l. Further the abbreviations (Ψ ′)k,l

Data
and (Ψ ′)k,l

Smooth use the depth at iteration k and the depth increment
dZk,l at iteration k, l. Finally, the following equation is obtained at
each fixed point iteration, that is linear in dZk,l+1 reads

0 =
(
Ψ ′
)k,l

Data ·
(
∆k +∆kZ · dZk,l+1) ·∆kZ

−αdiv
((
Ψ ′
)k,l

Smooth · ∇
(
Zk + dZk,l+1)) (44)

coarse-to-fine strategy. The original energy functional is non-
convex, so to approximate a good local minimizer or even to obtain
the global minimizer the outer fixed point iteration is embedded into
a coarse-to-fine scheme. Hence, a refinement factor η ∈ (0, 1) is intro-
duced, to build an image pyramid. Starting at the coarsest level k = 0

up to the original problem size, where the coarse result is used as ini-
tialization of the next finer level. Figure 10 shows by the example of
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η−1

η−1

k = 0

k = 1

k = 2

Figure 10: The coarse-to-fine strategy: while starting on the coarsest level
leads to a good local minimizer or even the global minimizer, a
non-hierarchical approach may lead to a poor local minimizer.

an energy landscape how the coarse-to-fine approach helps to avoid
poor local minimizers, while a non-hierarchical approach may lead to
a poor local minimizer.

This reduced image size also requires an adaption of the camera
projection matrices, strictly speaking the camera calibration matrices,
in order to suit each level. This can be done in a way that keeps the
magnitude of the depth the same on each level. For this reason the
pixel dimension is adopted according to η. Equation 10 shows how
the pixel dimension influences the camera calibration matrix and a
scaled version for a coarser level reads

Kη =

η ·nx 0 0

0 η ·ny 0

0 0 1


f 0 cx

0 f cy

0 0 1

 =

η · sx 0 η · ox
0 η · sy η · oy
0 0 1

 (45)

To use this strategy a few questions are still unanswered. The first
question is how to initialize Z0 and dZk,0. The second question is
how to compute expressions like Ii(pi

k).

back projection. The second question is answered with a back
projection towards the reference view. In order to do so the already
computed depth Zk is used to determine the 3-D points Pk. Those
points are then projected towards the second view, which results in
the point p1

k. In most cases p1
k will lie between the image pixels

and an approximation can be computed using a bilinear interpolation.
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This value can then be written in a back projected image Ik1(x,y). That
is

Ik1(x,y) = I1(p1
k) (46)

Figure 11 illustrates this procedure.

? ? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? ? ?

?

?
?C0

C1

P ∈ Pk
Ik1(x,y)

pk1 ∈ Ω1

Figure 11: Back projection towards the reference view. This can be under-
stood as a compensation of the already computed depth Zk.

the initialization. For the depth increment a trivial initializa-
tion dZk,0 = 0 is chosen. But such an initialization is not possible for
Z0, since a trivial initialization with Z0 = 0 would produce a set of
points P0 lying entirely in the reference camera origin. This would
result in a very poor or even unusable back projected image I01(x,y).
To avoid this problem a plane sweeping approach is used.

To this end, a constant Z is assumed and for a finite number of
planes (e.g. Z0 = 0, 1, . . .) a normalized data term is evaluated. Nor-
malized means here normalized with respect to the number of 3-D
points projected on the second view. The plain with the smallest en-
ergy is then used as initialization. For the quadratically penalized
data term this reads

EInit(Z) = w
−1
1 ·

∫
Ω0

(
|I0(p0) − I1(p1)|

2
)
dxdy (47)

with w1 being the number of projected 3-D points that lie on the
second image taken by the camera C1. A sketch is given in Figure 12.
The next question is which planes should be evaluated, depending
on the cameras intrinsic parameters and the relative camera pose a
reasonable depth range can vary strongly. To answer this question
an ortho-parallel or a converging camera setup is assumed and it
is assumed that the point P lying on the optical axis of C1 is seen
by both cameras. In addition, it is assumed that the epipoles of the
cameras do not lie in the image. With these assumptions a reasonable
depth range can be computed as follows:
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Z0 = 3

Z0 = 2

C0 C1

Figure 12: Plain sweeping to compute a constant initial depth.

Q

Z

q2

r2

C1 C2

Q

q1 r2

C1 C2

Figure 13: Depth range computation.

1. Compute the epipolar line for the second view of the optical
axis of the camera C0.

2. Compute the intersection points q1, r1 of the computed epipolar
line with the image boundary.

3. Compute the intersection points Q, R of the optical axis of the
camera C0 and the optical ray going through camera center C1

and the previously computed points q1, r1. This is illustrated in
Figure 13.

4. The smaller Z-coordinate of both points with Z > 0 is used as
starting value. If the larger Z-coordinate is non-negative it can
be used as stopping value, otherwise a multiple of the starting
value is used.
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After answering the open questions on the initialization the next
step is to discretize the derivatives. But before doing this a handy
notation is introduced.

3.4 following the motion tensor notation

To further simplify the notation this section introduces a depth ten-
sor notation, which follows the idea of the motion tensor notation
in optical flow estimation [5]. Therefore, a depth increment vector
dZk,l := (dZk,l, 1)>, a vector S∇ := (∆kZ,∆k)> and a depth tensor Tk

are introduced. The depth tensor is a symmetric 2× 2 matrix defined
as

Tk := S∇S>∇ =

(
(∆kZ)

2 ∆kZ∆
k

∆kZ∆
k (∆k)2

)
(48)

This allows to rewrite the fixed point iteration from Equation 44 as

0 =
(
Ψ ′
)k,l

Data ·
(
Tk11 · dZk,l + Tk12

)
−αdiv

((
Ψ ′
)k,l

Smooth · ∇
(
Zk + dZk,l+1)) (49)

and the abbreviations of the Ψ terms as(
Ψ ′
)k,l

Data := Ψ ′
(

dZk,l> Tk dZk,l
)

(
Ψ ′
)k,l

Smooth := Ψ ′
(
|∇
(
Zk + dZk

)
|2
)

(50)

3.5 discretization

In this section an important step towards the numerical solution of
the fixed point iteration (49) is taken, speaking of the discretization.
Since each 3-D point Pk ∈ Pk corresponds to a pixel pk0 ∈ Ω0 in
the reference view the unknown function dZk(x,y) can be consid-
ered as a rectangular pixel grid with the grid size hkx × hky. Then, the
approximation to dZk at a pixel (i, j) is given by dZki,j. Analogous ap-
proximations are Zki,j, T

k
i,j, (Ψ

′)k,l
Data i,j and (Ψ ′)k,l

Smooth i,j. The discrete
version of Equation 49 is given by

0 =
(
Ψ ′
)k,l

Data i,j ·
((
Tk11
)
i,j · dZ

k,l
i,j +

(
Tk12
)
i,j

)
−αdiv

((
Ψ ′
)k,l

Smooth i,j · ∇
(
Zki,j + dZ

k,l+1
i,j

))
(51)

In order to make use of it the contained derivatives must be calcu-
lated. This is done by using finite difference approximations.

discrete depth tensor . Starting with the depth tensor Tk, the
approximation of ∆kZ = I0(p0

k)Z − I1(p1
k)Z is required. Hence, the
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derivative of Ii(pi
k) with respect to Z is required. Applying the chain

rule it follows In this paragraph
the superscript k is
dropped for xki , yki
and Zk, so pi

k :=

(xi,yi)> and Z :=
Zk.

∂ZIi(pi
k) =

(
∇iIi(pi

k)
)> · ∂Zpi

k

= ∂xiIi · ∂Zxi + ∂yiIi · ∂Zyi (52)

where ∇i = (∂xi ,∂yi)
>. Using the coefficients defined in (27) the

derivatives ∂Zxi and ∂Zyi read

∂Zxi =
ad− bc

(c ·Z+ d)2
∂Zyi =

ǎd− b̌c

(c ·Z+ d)2
(53)

To compute the derivative (∇iIi)> Basha et al. [2] used the back pro-
jected image and the following relation of the gradient of the back
projected image (∇Ii)> with gradient of the original image,

(∇iIi(xi,yi))> = (∇Ii(x,y))> · J−1 (54)

where J denotes the Jacobian matrix. The derivation and the entries
of the Jacobian can be found in Section A.2. However an alternative
approach is to first compute the gradient of the original image and
perform a back projection of the gradient, i.e. this is

(∇iIi(xi,yi))> = (∇iIi(x,y))> (55)

Later on an experiment (Section 5.3) will help to choose the favored
approach. The needed gradients are approximated using a central
fourth order finite difference scheme, which reads

∂xIi i,j =
−Ii i+2,j + 8Ii i+1,j − 8Ii i−1,j + Ii i−2,j

12hkx

∂yIi i,j =
−Ii i,j+2 + 8Ii i,j+1 − 8Ii i,j−1 + Ii i,j−2

12hky
(56)

Putting all this together allows to compute the parts of the fixed point
iteration related to the data term.

smoothness term . To approximate the smoothness term related
part, speaking of the divergence expression, a nested central second
order finite difference scheme is used. A derivation can be found in
Section A.1. Using the abbreviation(

Ψ ′
)k,l

Smooth i,j :=
(
Ψ ′
)k,l

S i,j

this reads

−αdiv
((
Ψ ′
)k,l

S i,j · ∇
(
Zki,j + dZ

k,l+1
i,j

))
(57)

= −α
∑

n∈{x,y}

∑
(ĩ,j̃)∈Nn(i,j)

wk,l
i,j,ĩ,j̃,n

(
Zk,l
ĩ,j̃

+ dZk,l+1
ĩ,j̃

−Zk,l
i,j − dZ

k,l+1
i,j

)
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where

wk,l
i,j,ĩ,j̃,n

= α ·
(Ψ ′)k,l

S ĩ,j̃ + (Ψ ′)k,l
S i,j

2 · h2n
(58)

and Nn(i, j) denotes the set of neighbors of the pixel (i, j) in direction
n. In this case these are the four direct neighbor pixels (i+ 1, j), (i−
1, j), (i, j+ 1) and (i, j− 1). The value of (Ψ ′)k,l

S i,j is given by

Ψ ′(s2) =
1

2 ·
√
s2 + ε2

(59)

where the argument is computed by using a central fourth order finite
difference scheme which as before.

∂xZi,j =
−Zi+2,j + 8Zi+1,j − 8Zi−1,j +Zi−2,j

12hkx

∂yZi,j =
−Zi,j+2 + 8Zi,j+1 − 8Zi,j−1 +Zi,j−2

12hky
(60)

A stencil is given in Section B.1.

3.6 solving the linear equation

Finally, the method comes down to solve a linear discrete equation at
each pixel that reads

0 =
(
Ψ ′
)k,l

Data i,j ·
((
Tk11
)
i,j · dZ

k,l
i,j +

(
Tk12
)
i,j

)
−α

∑
n∈{x,y}

∑
(ĩ,j̃)∈Nn(i,j)

wk,l
i,j,ĩ,j̃,n

(
Zk,l
ĩ,j̃

+ dZk,l+1
ĩ,j̃

−Zk,l
i,j − dZ

k,l+1
i,j

)
This can be expressed as a linear equation system Ax = b, where
A is a sparse matrix. Therefore, an iterative solver is a suitable and
simple choice in order to approximate the solution. Such an iterative
solver is the Successive Overrelaxation Method (SOR) [28]. Hence, at
each inner loop l several iterations are performed. The corresponding
iteration step s with the overrelaxation parameter ω reads

dZk,l+1,s+1
i,j

=(1−ω) · dZk,l+1,s
i,j +ω ·

((
Ψ ′
)k,l

Data i,j

(
Tk12
)
i,j

−
∑

n∈{x,y}

∑
(ĩ,j̃)∈N−

n(i,j)

wk,l
i,j,ĩ,j̃,n

(
Zk,l
ĩ,j̃

+ dZk,l+1,s+1
ĩ,j̃

−Zk,l
i,j

)

−
∑

n∈{x,y}

∑
(ĩ,j̃)∈N+

n(i,j)

wk,l
i,j,ĩ,j̃,n

(
Zk,l
ĩ,j̃

+ dZk,l+1,s
ĩ,j̃

−Zk,l
i,j

))

·

−
(
Tk11
)
i,j ·
(
Ψ ′
)k,l

Data i,j −
∑

n∈{x,y}

∑
(ĩ,j̃)∈Nn(i,j)

wk,l
i,j,ĩ,j̃,n

−1
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Here N−
n(i, j) denotes the set of neighbors of the pixel (i, j) in direc-

tion n that have already been computed in the iteration step s and
N+
n(i, j) denotes the set of neighbors of the pixel (i, j) in direction n

that have not been computed yet in the iteration step s.

3.7 presmoothing

The last point to add is a small preprocessing step, it consists of a
convolution of the input image with a Gaussian kernel of standard
deviation σpre. This step allows to remove high-frequency noise of
the images and guarantees that the image can be seen as a function
of C∞. It reads

Ii = Kσpre ∗ I
orig
i (61)

Here, Kσpre denotes the Gaussian kernel and ∗ the convolution opera-

tor. Moreover, Iorig
i denotes the unsmoothed image and Ii the result-

ing smoothed image.
The parameter σpre is also referred to as noise scale [6]. It is im-

portant to note, that if σpre is chosen too large, small details are elim-
inated. Because the coarse-to-fine approach already includes a kind
of smoothing, only a very small amount or even no presmoothing is
needed.





4
E X T E N S I O N S

4.1 advanced smoothness terms

Up to now an isotropic depth-driven smoothness term was used. In
this section more advanced smoothness terms are proposed.

4.1.1 Isotropic Image- & Depth-Driven Regularization

It often can be observed that discontinuities in the depth correlate
with image edges, because object boundaries often coincide with im-
age edges. Therefore, embedding this information can help to im-
prove the depth field at discontinuities [1]. The desired behavior is
to reduce the smoothing at image edges. In order to achieve such an
smoothing-behavior an additional weighting function g(s2) is added.
Here the Perona-Malik diffusivity [13] is used, which reads

x

y

A weighting
function g(s2).

g(s2) =
1

1+ s2

λ2

(62)

where λ > 0 is the contrast parameter, which separates forward and
backward diffusion. This is a positive and decreasing function. It is
applied to the spatial image gradient |∇I0|2, which serves as a fuzzy
edge detector. In case of RGB color images, the absolute value of the
gradient of each color channel is summed up and squared. Because of
g being positive and decreasing it will reduce the diffusion at image
edges. The new smoothness term, which is a depth- and image-driven
combination, reads

ESmooth(Z) =

∫
Ω0

g(|∇I0|2) ·Ψ
(
|∇Z|2

)
dxdy (63)

and will be referred to as isotropic image- and depth-driven regular-
izer. The regularization parameter ε of Ψ and the contrast parameter
λ of g allow to adjust the behavior to result in a good interaction
between both parts. With this new smoothness term the following
questions arise: How does it change the Euler-Lagrange equation and
how is it minimized? Therefore, a generic form is considered in the
following.

a generic form . The smoothness term related part of the Euler-
Lagrange equation can be understood as a diffusion-like process [27].
This part reads

div (D · ∇Z) (64)

29
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with the diffusion tensor D, a positive semidefinite symmetric 2× 2
matrix. The Diffusion tensor D steers the diffusion-like process. It is
given by

D :=

(
a b

b c

)
(65)

Thus, the divergence expression can be written asa, b and c are NOT
the short notation
of the projections.

div (D · ∇Z) = div

(
aZx + bZy

bZx + cZy

)

= ∂x (aZx) + ∂x (bZy) + ∂y (bZx) + ∂y (cZy)

The diffusion tensor to the isotropic depth-driven smoothness term,
that has been used so far, reads

D = I ·Ψ ′
(
|∇Z|2

)
=

(
Ψ ′
(
|∇Z|2

)
0

0 Ψ ′
(
|∇Z|2

)) (66)

where I denotes the identity matrix. In this case b = 0 and the mixed
terms ∂x (bZy) and ∂y (bZx) vanish. The diffusion tensor of the new
combined image- and depth-driven smoothness term reads

D =

(
g(|∇I0|2) ·Ψ ′

(
|∇Z|2

)
0

0 g(|∇I0|2) ·Ψ ′
(
|∇Z|2

)) (67)

Here the mixed terms also vanish. Hence, the same discretization as
in the pure depth-driven isotropic case can be used. The new weights
for Equation 58 read

wk,l
i,j,ĩ,j̃,n

= α · 1
h2n

g(|∇I0|2)kĩ,j̃ + g(|∇I0|
2)ki,j

2

(Ψ ′)k,l
S ĩ,j̃ + (Ψ ′)k,l

S i,j

2
(68)

4.1.2 Anisotropic Complementary Regularization

Unfortunately, the use of image information has some shortcomings.
In rich textured regions oversegmentation effects appear, because the
discontinuities in depth do not correlate well with the image edges.
Pure depth-driven smoothness terms as proposed in the basic method
do not have this problem, but often result in less accurate edges. A
more clever solution to this problem is a joint regularizer, as proposed
by Sun et al. [23] and further improved by Zimmer et al. [30]. Such
a smoothness term takes the directional information of the image
structure and the magnitude of the evolving depth information. The
directional information is gathered using the structure tensor [8]:

Sρ(∇I0) := Kρ ∗
(
∇I0∇I>0

)
(69)
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The convolution with a Gaussian kernel integrates neighborhood in-
formation. The directional information is extracted using the eigen-
vectors of Sρ, which are two orthonormal vectors s1 and s2, due to
the fact that Sρ is a symmetric positive semidefinite 2× 2 matrix. The
corresponding eigenvalues µ1 > µ2 > 0 help to identify the direc-
tion. The eigenvector s1, corresponding to the larger eigenvalue µ1,
points across the local image structure, consequently s2 points along
it. In addition, Zimmer et al. propose a single robust penalization,
that means to use a subquadratic penalization in s1-direction and
a quadratic penalization in s2-direction. The final smoothness term
reads

ESmooth(Z) = ΨP

((
s>1∇Z

)2)
+
(
s>2∇Z

)2
(70)

This leads to the following diffusion tensor

D = (s1, s2)

Ψ ′P ((s>1∇Z)2) 0

0 1

(s>1
s>2

)
(71)

ΨP denotes the Perona-Malik regulariser [13] given by

ΨP(s
2) := λ2 log

(
1+

s2

λ2

)
(72)

and

Ψ ′P(s
2) :=

1

1+ s2

λ2

(73)

As before, λ > 0 is the contrast parameter, which separates forward
and backward diffusion.

It appears that the new diffusion tensor has off-diagonal entries
different from zero. Because of that the mixed partial derivatives
∂x (bZy) and ∂y (bZx) of the divergence expression do not vanish. A
standard discretization as before will not guarantee the non-negativity
requirement. Hence, a special discretization that was first used in [30]
is applied. A stencil of the discretization is given in Section B.2.

Later, additional constraints are embedded in the data term, such as
the gradient constancy and additional constraints for the RGB color
representation. In this case the structure tensor is replaced by the
regularization tensor

Rρ := Kρ ∗
3∑
c=1

(
∇Ic0∇Ic>0 + γ

(
∇ (Ic0)x∇ (Ic0)

>
x +∇ (Ic0)y∇ (Ic0)

>
y

))
to gather the directional information using the constraint edges. Here
Ii =

(
I1i , I2i , I3i

)
denotes a RGB color image.
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4.1.3 Anisotropic Depth-Driven Regularization

A further possible extension to the isotropic depth-driven smooth-
ness term is the step towards an anisotropic depth-driven smoothness
term. Zimmer et al. [29] propose a way to achieve a true anisotropic
depth-driven behavior. Therefore, the smoothness term is not mod-
eled as a part of the energy functional, rather they directly modify
the diffusion tensor that evokes the intended behavior. As before, the
structure tensor is used to obtain directional information. However
this time the evolving depth information is used instead of the image
information. Hence, the corresponding structure tensor reads

Sρ(∇Zσ) := Kρ ∗
(
∇Zσ∇Z>σ

)
(74)

where an additional Gaussian convolution with the standard devia-
tion σ is performed on the depth information to reduce the influence
of noise and staircasing effects. And as before a Gaussian convolution
with the standard deviation ρ is applied to integrate the information
over a neighborhood. Hence, the proposed diffusion tensor reads

D = Ψ ′P (Sρ(∇Zσ)) = (s1, s2)

(
Ψ ′P (µ1) 0

0 Ψ ′P (µ2)

)(
s>1

s>2

)
(75)

in this case the matrix-valued function Ψ ′P denotes a function which
applies the scalar-valued version to each eigenvalue and leaves the
eigenvectors unchanged. This leads to a anisotropic smoothing be-
havior that adapts to the local structure. Mainly three different cases
can arise

a. Homogeneous regions, where both eigenvalues vanish, this leads
to a smoothing in both directions.
µ1 ≈ µ2 ≈ 0⇒ Ψ ′P(µ1) ≈ Ψ ′P(µ2) ≈ 1

b. Straight edges, where one eigenvalue vanishes which leads to a
anisotropic smoothing along the edge but not across.
µ1 � µ2 ≈ 0⇒ Ψ ′P(µ1) ≈ 0,Ψ ′P(µ2) ≈ 1

c. Corners, no eigenvalues vanishes which prevents smoothing.
µ1 > µ2 � 0⇒ Ψ ′P(µ1) ≈ Ψ ′P(µ2) ≈ 0

As in the case of the complementary regularizer the diffusion tensors
has off-diagonal entries different from zero, which is why the same
discretization is used. The stencil is given in Section B.2.

4.1.4 Second Order Isotropic Regularization

Up to now all the proposed smoothness terms are of first order. This
has the disadvantage that surfaces parallel to the reference camera are
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preferred, because the gradient would be zero in this case. To elim-
inate this shortcoming second order smoothness terms help: They
treat slanted surfaces equally. A possible second order isotropic regu-
larizer is the following

ESmooth(Z) =

∫
Ω0

Ψ
(
‖HZ‖2F

)
dxdy (76)

it penalizes the Frobenius Norm of the Hessian of Z which reads

‖HZ‖F =
√
Z2xx +Z

2
xy +Z

2
yx +Z

2
yy

=
√
Z2xx + 2 ·Z2xy +Z2yy

Here again the use of the regularized L1 norm allows the preservation
of depth discontinuities. The new energy functional now contains
second order terms and no first order terms anymore. Of course this
changes the Euler-Lagrange equation. Plugging the following partial
derivatives

FZ = 2 ·Ψ ′D
(
|∆|2

)
·∆ ·∆Z

FZx = 0

FZy = 0

FZxx = 2α ·Ψ ′S
(
|∇Z|2

)
·Zxx

FZxy = 2α ·Ψ ′S
(
|∇Z|2

)
·Zxy

FZyx = 2α ·Ψ ′S
(
|∇Z|2

)
·Zyx

FZyy = 2α ·Ψ ′S
(
|∇Z|2

)
·Zyy

in Equation 18 the new Euler-Lagrange equation reads

0 = Ψ ′
(
|∆|2

)
·∆ ·∆Z −α∇∗>

(
Ψ ′
(
‖HZ‖2F

)
· ∇∗Z

)
(77)

where ∇∗ = (∂xx,∂xy,∂yx,∂yy)> and the associated boundary con-
ditions read

0 = n>

(
−∂xZxx − ∂yZxy

−∂xZyx − ∂yZyy

)
, 0 = n>

(
FZxx

FZxy

)
, 0 = n>

(
FZyx

FZyy

)

It is seen, that the divergence expression is replaced by a sort of sec-
ond order divergence. The derivation of the discretization is shown
in Section A.3 and the corresponding stencil in Section B.3.

To keep the relative impact of data and smoothness term the same
as before, the regularization parameter α is adapted to the warping
level k. This is achieved by setting αk = α/η` where ` is the pyramid
level (`(k) = kmax −k) which results in increased values of α at coarser
levels.
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4.2 advanced data terms

The previous section introduced several advanced smoothness terms.
In contrast, this section will deal with improving the data term. The
basic method already makes use of a robust data term, with a non-
quadratic penalizer. Another possibility to improve the data term is
the use of modified constraints to allow a more accurate estimation
in different situations.

4.2.1 Gradient Constancy

In real world sequences slight brightness changes can appear between
both views. This can have different kinds of causes, such as asyn-
chronous exposure times of the cameras or images that were taken
at different points in time, while in the meanwhile the illumination
changed. Consequently, recent optic flow methods sometimes use a
gradient constancy assumption, such as the one proposed by Brox et
al. [4]. In a general setting, especially with a wide baseline the image
gradients may vary, due to the change of viewpoint. However, the
gradient of the back projected image stays the same. The gradient
constancy assumption reads

∇I0(p0) = ∇I1(p1) (78)

As before the assumption is used in a non-linearized manner to allow
large displacements. In addition, the robust penalizer function Ψ is
applied separately to both assumptions. In order to steer the relative
impact a weighting parameter γ is introduced. The new data term
reads

EData(Z) =

∫
Ω0

Ψ
(
|∆|2

)
+ γΨ

(
|∇∆|2

)
dxdy (79)

and the corresponding Euler-Lagrange equation (using the smooth-
ness term of the basic method)

0 = Ψ ′
(
|∆|2

)
·∆ ·∆Z +Ψ ′

(
|∇∆|2

)
· (∇∆)> · (∇∆)Z

−αdiv (D · ∇Z) (80)

with the natural boundary condition

0 = n>∇Z = ∂nZ (81)
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After repeating the steps of Section 3.3, an additional depth tensor is
obtained which reads

Tk∇ :=

((
∇∆k

)>
Z

(
∇∆k

)
Z

(
∇∆k

)>
Z

(
∇∆k

)(
∇∆k

)>
Z

(
∇∆k

) (
∇∆k

)> (∇∆k)
)

(82)

:=

( ((
∂x∆

k
)
Z

)2 (
∂x∆

k
)
Z

(
∂x∆

k
)(

∂x∆
k
)
Z

(
∂x∆

k
) (

∂x∆
k
)2

)
(83)

+

( ((
∂y∆

k
)
Z

)2 (
∂y∆

k
)
Z

(
∂y∆

k
)(

∂y∆
k
)
Z

(
∂y∆

k
) (

∂y∆
k
)2

)
(84)

and which allows to write the new fixed point iteration, equivalent to
Equation 49, with the additional gradient constancy assumption as

0 =
(
Ψ ′
)k,l

Data ·
(
Tk11 · dZk,l + Tk12

)
+
(
Ψ ′
)k,l

DataGradient ·
(
Tk∇11 · dZk,l + Tk∇12

)
−αdiv

((
Ψ ′
)k,l

Smooth · ∇
(
Zk + dZk,l+1)) (85)

with the new abbreviation(
Ψ ′
)k,l

DataGradient := Ψ
′
(

dZk,l> Tk∇ dZk,l
)

(86)

4.2.2 Color Images

Up to now only gray value images have been considered. Of course, it
is desirable to exploit the additional color information, if color images
are available. Hence, the data term must be extended. If RGB color
images Ii =

(
I1i , I2i , I3i

)
are available, one possibility is to assume con-

stancy of all color channels.

I10(p0) − I
1
1(p1) = 0

I20(p0) − I
2
1(p1) = 0

I30(p0) − I
3
1(p1) = 0

These new assumptions can be coupled and result in the new data
term

EData(Z) =

∫
Ω0

Ψ

(
3∑
c=1

|∆c|2

)
dxdy (87)

where ∆c = Ic0(p0) − I
c
1(p1). After repeating the steps of Section 3.3

the new fixed point iteration is equivalent to Equation 49 with a new
joint depth tensor that reads

TC,k :=

3∑
i=1

Tc,k =

3∑
i=1

(
(∆c,k
Z )2 ∆c,k

Z ∆c,k

∆c,k
Z ∆c,k (∆c,k)2

)
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Of course, this can be extended analogously to the additional gradient
constancy assumption which gives the following data term

EData(Z) =

∫
Ω0

Ψ

(
3∑
c=1

|∆c|2

)
+ γΨ

(
3∑
c=1

|∇∆c|2
)
dxdy (88)

and results in the fixed point iteration of Equation 85 with the new
joint gradient depth tensor

TC,k
∇ :=

3∑
c=1

Tc,k
∇

=

3∑
i=1

((
∇∆c,k

)
Z

(
∇∆c,k

)>
Z

(
∇∆c,k

)
Z

(
∇∆c,k

)>(
∇∆c,k

)
Z

(
∇∆c,k

)> (
∇∆c,k

) (
∇∆c,k

)>
)

4.2.3 Multiple Views

As already mentioned, the used parameterization can be easily ex-
tended to use an arbitrary number of cameras. Therefore, the data
term is modified to consider the information of all images and the
extended version reads

EData(Z) =

∫
Ω0

∑
i

Ψ
(
|∆i|

2
)
+ γΨ

(
|∇∆i|2

)
dxdy (89)

with ∆i = I0(p0) − Ii(pi). The simplicity of this extension is the con-
sequence of the parameterization with respect to the reference view.
In contrast, disparity-driven approaches do not allow such an simple
extension for arbitrary cases.

As before, this modification comes down to adding additional depth
tensors to the fixed point iteration.

0 =
∑
i

( (
Ψ ′
)i,k,l

Data ·
(
T i,k11 · dZ

k,l + T i,k12

)
+
(
Ψ ′
)i,k,l

DataGradient ·
(
T i,k∇11 · dZ

k,l + T i,k∇12

))
−αdiv

((
Ψ ′
)k,l

Smooth · ∇
(
Zk + dZk,l+1)) (90)

with the new abbreviations(
Ψ ′
)i,k,l

Data := Ψ ′
(

dZk,l> T i,k dZk,l
)

(91)(
Ψ ′
)i,k,l

DataGradient := Ψ
′
(

dZk,l> T i,k∇ dZk,l
)

(92)

and

T i,k =

(
(∆i,kZ )2 ∆i,kZ ∆

i,k

∆i,kZ ∆
i,k (∆i,k)2

)
(93)

T i,k∇ :=

((
∇∆i,k

)>
Z

(
∇∆i,k

)
Z

(
∇∆i,k

)>
Z

(
∇∆i,k

)(
∇∆i,k

)>
Z

(
∇∆i,k

) (
∇∆i,k

)> (∇∆i,k)
)

(94)
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5.1 evaluation methodology

In order to judge and compare the quality of the developed method
and the proposed extensions some sort of quality metric is needed. A
commonly used approach is to compute error statistics with respect
to ground truth data. For this purpose already benchmark datasets
exist [10, 16]. These benchmarks mainly use the estimated dispar-
ity to evaluate the performance, because most stereo algorithms are
disparity-driven. Since this thesis presents a depth-driven approach
that operates in the 3-D space an additional 3-D quality metric is used.
The two quality metrics are defined as follows:

• Mean absolute error of the disparity (MAEd)

MAEd =
1

|Ω0|

∑
(i,j)∈Ω0

|dtruth
i,j − destimate

i,j | (95)

• Mean absolute error of the Euclidean distance (MAE3D)

MAE3D =
1

|P|

∑
P∈P

|Ptruth − Pestimate| (96)

With the use of multiple views situations can arise in which ob-
jects that are visible in one view are hidden behind other objects in
the second view. Such constellations are called occlusions. Since it is
impossible to find the correct correspondence for occlusions the er-
ror will likely increase in occluded regions. In order to allow a more
detailed evaluation the metrics will be once applied to all pixels and
once only for the non-occluded pixels. To determine the occluded
pixels a forward/backward-check is used. Therefore, the sum of for-
ward disparity dfi,j and backward disparity dbi,j is computed, which
should vanish in case of non-occluded pixels. Because it is likely that
values are needed that lie between pixels an error arises, since these
values will be interpolated using a linear interpolation. Consequently,
a threshold Tocc is introduced and occluded pixels are defined by

|dfi,j − d
b
i+dfi,j,j+d

f
i,j
| > Tocc

In the following work this is threshold is set to Tocc = 0.5.

Apart from the computed error statistics an error visualization will
be used to allow a visual evaluation of the accuracy. Hence, the signed

37
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error will be displayed using a color coding from red over green to
blue, where green indicates a correct depth. An illustration is seen in
Figure 14. This allows to identify in which regions the error occurs
and interpret it.

Z

X

Y

C1

+δ
0

−δ

Figure 14: Color coding for the error visualization.

5.2 evaluation datasets

After introducing the metrics the last entity missing to perform the
evaluation are test datasets. To start with simple scenes, without great
complexity ray-traced images are used, which were created using
the MegaPOV Ray-tracer [24] and the annotation patch [25]. The test
scenes use a ortho-parallel camera setup and contain one object each,
which is placed in front of a background parallel to the cameras.
These objects are a cube, a sphere and a rotated cube. The test scenes
are shown in Figure 16. In all scenes the background and the objects
are well textured, what helps to minimize ambiguities.

As more complex test scenes the Teddy and Cones dataset, shown
in Figure 15, of the Middlebury benchmark [17] are used. These
datasets consist of rectified images with available ground truth dis-
parities (quarter-pixel accuracy). Unfortunately, the benchmark does
not provide the camera projection matrices, which are needed for the
developed method. In order to overcome this problem, the reference
camera is aligned with the origin and the extrinsic camera param-
eters of the second camera are set to a pure horizontal translation.
This is possible because the images are rectified. The intrinsic cam-
era parameters are set by choosing an arbitrary field of view angle,
which determines the scaled focal length uniquely by the image size.
In addition, the principle point is chosen to lie in the image center.
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(a) Reference view (b) Second view (c) Ground truth

Figure 15: Evaluation datasets of the Middlebury benchmark [17]. First row:
The Teddy dataset. Second row: The Cones dataset.

(a) Reference view (b) Second view (c) Ground truth

Figure 16: Simple test sequences created with the MegaPOV Ray-tracer. First
row: The parallel cube dataset. Second row: The sphere dataset.
Third row: The rotated cube dataset.
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5.3 image derivative

In Section 3.5 two possible strategies to compute the needed deriva-
tive (∇iIi)> were presented

a. Relate the gradient of the back projected image with the gradi-
ent of the original image using the Jacobian.

b. Use the back projected gradient.

The previous introduced test scenes should help to decide the pre-
ferred method. Therefore, the proposed metrics are computed for all
five datasets of Section 5.2, using the fixed parameters σpre = 0.4,
η = 0.98, kmax = 200, lmax = 4, ω = 1.8 and SOR-cycles = 10. The
regularization parameter α has been optimized with respect to the
MAE3D of all pixels. Table 1 shows the computed metrics, which re-
veal that the method b gives slightly better results. On account of this
experiment and to the fact that the approach b requires less compu-
tational effort, it is the preferred method and is used in the following
experiments.

all non-occluded

MAE3D MAEd MAE3D MAEd

parallel cube

a . (α = 0.14) 0.019 0.035 0.009 0.018

b . (α = 0.15) 0.018 0.032 0.008 0.017

sphere

a . (α = 0.15) 0.017 0.032 0.007 0.016

b . (α = 0.16) 0.017 0.031 0.007 0.016

rotated cube

a . (α = 0.15) 0.021 0.038 0.012 0.024

b . (α = 0.16) 0.020 0.035 0.011 0.022

teddy

a . (α = 0.11) 0.120 1.191 0.081 0.806

b . (α = 0.14) 0.116 1.082 0.077 0.721

cones

a . (α = 0.27) 0.083 1.220 0.049 0.671

b . (α = 0.34) 0.073 1.108 0.045 0.624

Table 1: The computed metrics using the two presented approaches to com-
pute the derivative (∇iIi)>.
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5.4 comparison of the smoothness term

This section will compare the regularization strategies of the devel-
oped method, the proposed extensions (Section 4.1) and additionally
homogeneous regularization. To implement homogeneous regulariza-
tion the quadratic penalizer Ψ(s2) = s2 is used for the smoothness
term. As data term the robust data term for gray value images of Sec-
tion 3.2 is used, with a gray value version of the datasets. Again, the
same parameters as in Section 5.3 are kept fixed with the same values
and the regularization parameter α is optimized with respect to the
MAE3D of all pixels.
In Figure 18, Figure 19, Figure 20, Figure 21 (Figure 22) and Figure 23

(Figure 24) the datasets of Section 5.2 are used to compare the differ-
ent type of regularizers.

• Homogeneous Regularizers. One can clearly see that the first order
homogeneous regularizer (Figure 18b, Figure 19b, Figure 20b,
Figure 21b and Figure 23b) gives oversmoothed results. The
same holds for the second order homogeneous regularizer (Fig-
ure 18e, Figure 19e, Figure 20e, Figure 21e and Figure 23e).

• Isotropic Depth-Driven Regularizers. Using the isotropic depth-
driven regularizer (Figure 18c, Figure 19c, Figure 20c, Figure 21c
and Figure 23c), obvious sharper depth edges are achieved com-
pared to the homogeneous regularizer. The error visualization
shows as well, that the error shrinks at the depth edges.

The second order isotropic regularizer (Figure 18f, Figure 19f,
Figure 20f, Figure 21f and Figure 23f) improves the depth edges
of it is homogeneous counterpart, but not as good as in the first
oder case.

• Isotropic Image- & Depth-Driven Regularizer. Using the isotropic
image- & depth-driven regularizer (Figure 18d, Figure 19d, Fig-
ure 20d, Figure 21d and Figure 23d) proposed in Section 4.1.1
does not show a noticeable visual improvement in these scenes.
In the ray-traced images this is especially due to the fact that the
texture is everywhere and does not indicate object boundaries.

• Anisotropic Complementary Regularizer. The anisotropic comple-
mentary regularizer (Figure 18g, Figure 19g, Figure 20g, Fig-
ure 21g and Figure 21g obtains sharp looking edges, but with
aberrations. Especially the strong textured regions in the ray-
traced images lead to lots of aberrations.

• Anisotropic Depth-Driven Regularizer. The anisotropic depth-dri-
ven regularizer (Figure 18h, Figure 19h, Figure 20h, Figure 21h
and Figure 23h) seems to produce a very accurate depth edge.
But a look at the error visualization shows, that the error ap-
pears more constant than in the isotropic depth-driven case.
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The associated metrics are listed in Table 2. One may notice that the
3-D quality metric MAE3D does not necessarily correlate with the 2-
D quality metric MAEd. To understand this non-correlation, a simple
example is illustrated in Figure 17. It shows the 3-D point error and
the corresponding disparity error.

−δ

+δ

3-D point error

C1 C2

disparity error

Figure 17: Illustration of the the relation between the 3-D error used for the
MAE3D and the 2-D disparity error used for the MAEd.

As previously mentioned the homogeneous regularizers give over-
smoothed depth edges this reflects also in the quality metrics. The
anisotropic complementary regularizer does not perform to well on
the ray-traced datasets, due to the misleading image boundary. In con-
trast it performs better on the Teddy and Cones datasets. The second or-
der isotropic depth-driven regularizer appears to result in worse qual-
ity metrics as the first order isotropic depth-driven regularizer, due to
less sharp depth edges. Even though the anisotropic depth-driven reg-
ularizer gives good looking visual results it does not achieve as good
quality metrics as the isotropic depth-driven regularizer. Finally, the
isotropic image- & depth-driven regularizer performs a little better
on the Teddy and Cones datasets according to the quality metrics, but
not on all ray-traced datasets. In case of the sphere dataset it deterio-
rates the quality metric.

Summarizing, the isotropic depth-driven regularizer gives the best
overall results in the ray-traced scenes. Whereas, the Isotropic Image-
& Depth-Driven Regularizer and the anisotropic complementary Reg-
ularizer give better results on the more realistic Teddy and Cones
datasets.
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all non-occluded

MAE3D MAEd MAE3D MAEd

Parallel cube

Homogeneous 0.079 0.120 0.067 0.102

Second order homogeneous 0.075 0.112 0.063 0.093

Anisotropic Complementary 0.056 0.097 0.045 0.081

Second order isotropic 0.038 0.059 0.026 0.040

Anisotropic depth-driven 0.019 0.032 0.008 0.015

Isotropic depth-driven 0.018 0.032 0.008 0.017

Isotropic image- & depth-driven 0.017 0.033 0.007 0.018

Sphere

Homogeneous 0.071 0.110 0.060 0.093

Second order homogeneous 0.062 0.095 0.050 0.078

Isotropic image- & depth-driven 0.053 0.665 0.044 0.666

Anisotropic Complementary 0.048 0.093 0.039 0.080

Second order isotropic 0.030 0.049 0.018 0.032

Anisotropic depth-driven 0.024 0.043 0.015 0.029

Isotropic depth-driven 0.017 0.031 0.007 0.016

Rotated cube

Homogeneous 0.091 0.129 0.083 0.117

Second order homogeneous 0.084 0.118 0.075 0.106

Anisotropic Complementary 0.038 0.060 0.031 0.050

Second order isotropic 0.034 0.053 0.025 0.039

Anisotropic depth-driven 0.025 0.041 0.016 0.027

Isotropic image- & depth-driven 0.021 0.042 0.013 0.031

Isotropic depth-driven 0.020 0.035 0.011 0.022

Teddy

Second order homogeneous 0.193 1.559 0.160 1.179

Homogeneous 0.181 1.467 0.147 1.135

Anisotropic depth-driven 0.163 1.330 0.128 1.005

Second order isotropic 0.149 1.279 0.111 0.869

Isotropic depth-driven 0.116 1.068 0.076 0.710

Anisotropic Complementary 0.115 1.001 0.082 0.712

Isotropic image- & depth-driven 0.112 1.051 0.074 0.697

Cones

Second order homogeneous 0.094 1.318 0.066 0.839

Homogeneous 0.090 1.284 0.063 0.829

Second order isotropic 0.084 1.216 0.058 0.775

Anisotropic depth-driven 0.074 1.122 0.047 0.638

Anisotropic Complementary 0.073 1.095 0.048 0.647

Isotropic depth-driven 0.073 1.108 0.045 0.624

Isotropic image- & depth-driven 0.072 1.111 0.044 0.611

Table 2: The quality metrics corresponding to Figure 18, Figure 19, Figure 20,
Figure 21 and Figure 23.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18: Parallel cube dataset with different smoothness terms. First row,
from left to right: (a) Ground truth depth values. (b) Depth val-
ues and error visualization for the homogeneous regularization
(α = 2.0). (c) Isotropic depth-driven regularization (α = 0.15). Sec-
ond row, from left to right: (d) Isotropic image- and depth-driven
regularization (α = 0.23, λ = 0.14). (e) Second order homoge-
neous regularization (α = 20.0). (f) Second order isotropic depth-
driven regularization (α = 0.3). Second row, from left to right: (g)
Anisotropic complementary regularization (α = 9.5, λ = 0.01,
ρ = 3). (h) Anisotropic depth-driven regularization (α = 16.8,
λ = 0.01, ρ = 3, σ = 1.5).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19: Sphere dataset with different smoothness terms. First row, from
left to right: (a) Ground truth depth values. (b) Depth values and
error visualization for the homogeneous regularization (α = 3.0).
(c) Isotropic depth-driven regularization (α = 0.17). Second row,
from left to right: (d) Isotropic image- and depth-driven regulariza-
tion (α = 0.15, λ = 0.14). (e) Second order homogeneous regular-
ization (α = 25.0). (f) Second order isotropic depth-driven regu-
larization (α = 0.17). Second row, from left to right: (g) Anisotropic
complementary regularization (α = 9.5, λ = 0.01, ρ = 3). (h)
Anisotropic depth-driven regularization (α = 15.0, λ = 0.01,
ρ = 3, σ = 1.5).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 20: Rotated cube dataset with different smoothness terms. First row,
from left to right: (a) Ground truth depth values. (b) Depth val-
ues and error visualization for the homogeneous regularization
(α = 3.0). (c) Isotropic depth-driven regularization. (α = 0.16) Sec-
ond row, from left to right: (d) Isotropic image- and depth-driven
regularization (α = 0.2, λ = 0.14). (e) Second order homoge-
neous regularization (α = 40.0). (f) Second order isotropic depth-
driven regularization (α = 0.13). Second row, from left to right: (g)
Anisotropic complementary regularization (α = 9.5, λ = 0.01,
ρ = 3). (h) Anisotropic depth-driven regularization (α = 13.0,
λ = 0.01, ρ = 3, σ = 1.5).



5.4 comparison of the smoothness term 47

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 21: Results for the Teddy dataset of the Middlebury benchmark [17]
with different smoothness terms. First row, from left to right: (a)
Ground truth depth values, the white regions indicate that no
ground truth values are available. (b) Depth values for the homo-
geneous regularization (α = 5.0). (c) Isotropic depth-driven reg-
ularization (α = 0.14). Second row, from left to right: (d) Isotropic
image- and depth-driven regularization (α = 0.16, λ = 0.14). (e)
Second order homogeneous regularization (α = 120.0). (f) Second
order isotropic depth-driven regularization (α = 0.291). Second
row, from left to right: (g) Anisotropic complementary regulariza-
tion (α = 13.21, λ = 0.01, ρ = 3). (h) Anisotropic depth-driven
regularization (α = 24.6, λ = 0.01, ρ = 3, σ = 1.5).
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(b) (c)

(d) (e) (f)

(g) (h)

Figure 22: Error visualization for the Teddy dataset of the Middlebury bench-
mark [17] with different smoothness terms. First row, from left to
right: (b) Error visualization for the homogeneous regularization.
(α = 5.0). (c) Isotropic depth-driven regularization (α = 0.14). Sec-
ond row, from left to right: (d) Isotropic image- and depth-driven
regularization (α = 0.16, λ = 0.14). (e) Second order homoge-
neous regularization (α = 120.0). (f) Second order isotropic depth-
driven regularization (α = 0.291). Second row, from left to right: (g)
Anisotropic complementary regularization (α = 13.21, λ = 0.01,
ρ = 3). (h) Anisotropic depth-driven regularization (α = 24.6,
λ = 0.01, ρ = 3, σ = 1.5).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 23: Results for the Cones dataset of the Middlebury benchmark [17]
with different smoothness terms. First row, from left to right: (a)
Ground truth depth values, the white regions indicate that no
ground truth values are available. (b) Depth values for the homo-
geneous regularization (α = 13.3). (c) Isotropic depth-driven reg-
ularization (α = 0.34). Second row, from left to right: (d) Isotropic
image- and depth-driven regularization (α = 0.43, λ = 0.1). (e)
Second order homogeneous regularization (α = 200.0). (f) Sec-
ond order isotropic depth-driven regularization (α = 0.44). Second
row, from left to right: (g) Anisotropic complementary regulariza-
tion (α = 26.4, λ = 0.01, ρ = 3). (h) Anisotropic depth-driven
regularization (α = 28.1, λ = 0.01, ρ = 3, σ = 1.5).
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(b) (c)

(d) (e) (f)

(g) (h)

Figure 24: Results for the Cones dataset of the Middlebury benchmark [17]
with different smoothness terms. First row, from left to right: (b) Er-
ror visualization for the homogeneous regularization (α = 13.3).
(c) Isotropic depth-driven regularization (α = 0.34). Second row,
from left to right: (d) Isotropic image- and depth-driven regulariza-
tion (α = 0.43, λ = 0.1). (e) Second order homogeneous regular-
ization (α = 200.0). (f) Second order isotropic depth-driven regu-
larization (α = 0.44). Second row, from left to right: (g) Anisotropic
complementary regularization (α = 26.4, λ = 0.01, ρ = 3). (h)
Anisotropic depth-driven regularization (α = 28.1, λ = 0.01,
ρ = 3, σ = 1.5).
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5.5 data term comparison

The previous section compared and examined the presented smooth-
ness terms. In this section some experiments will help to do the
same with the proposed data terms. As smoothness term the isotropic
depth-driven regularizer is used.

brightness enhancement. In order to demonstrate the useful-
ness of the gradient constancy, the cube dataset is modified and eval-
uated. The modification consists of a global additive brightness en-
hancement in the second view. Figure 25a shows the modified views.
Now the depth values are computed once, using only the brightness
constancy assumption (Figure 25c) and with a additional gradient
constancy assumption (Figure 25d). Comparing both results shows
that the additional gradient constancy allows to compute a satisfiable
result, while the brightness constancy alone leads to a poor result.

(a) (b) (c) (d)

Figure 25: Modified cube dataset, where the brightness is increased in the
second view. First row, from left to right: (a) Unmodified reference
view and second view (increased brightness). (b) Ground truth
depth values. (c) Depth values and error visualization using only
the brightness constancy assumption (α = 0.15). (d) Brightness
constancy assumption and the gradient constancy assumption
(γ = 5.0, α = 0.6).

After showing the benefits of the gradient constancy assumption in
case of brightness changes, the previously evaluated Teddy and Cones
datasets are evaluated once more using gray value images with addi-
tional gradient constancy, RGB value images and RGB value images
with additional gradient constancy. The output is shown in Figure 26

and Figure 27.

• Additional Gradient constancy with gray value images. In case of
the Teddy dataset an improvement of the depth values at the
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chimney and stuffed toy up front. In the Cones dataset no clear
visual improvement is noticeable.

• RGB value images images. In case of the Teddy dataset no clear
visual improvement is noticeable. In the Cones dataset an im-
provement of the depth values of the cones can be observed.

• Additional Gradient constancy with RGB value images. In case of
the Teddy dataset some the error visualization reveals additional
errors compared to the run with the gray value images. In the
Cones dataset a further improvement is observed.

After a look at the visual results the related metrics, given in Ta-
ble 3, are analyzed. They reveal that all extensions lead to an im-
provement. In case of the Teddy dataset the gray value images with
additional gradient constancy lead to the best quality metrics. For
the Cones dataset the RGB images with additional gradient constancy
lead to the best quality metrics. In both cases the combination of RGB
images and additional gradient constancy improves the quality met-
rics compared to the gray value images without gradient constancy.
Hence the following experiments will use the combination of RGB
images and additional gradient constancy assumption as data term.

all non-occluded

MAE3D MAEd MAE3D MAEd

Teddy

Gray value constancy 0.116 1.068 0.076 0.710

RGB value constancy 0.115 1.061 0.075 0.692

Gray & gradient constancy 0.100 0.900 0.059 0.531

RGB & gradient constancy 0.107 0.958 0.067 0.596

Cones

Gray value constancy 0.073 1.108 0.045 0.624

RGB value constancy 0.071 1.081 0.040 0.536

Gray & gradient constancy 0.067 1.017 0.040 0.533

RGB & gradient constancy 0.067 1.006 0.037 0.490

Table 3: The quality metrics corresponding to Figure 26 and Figure 27.
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(a) (b) (c)

Figure 26: Results for the Teddy dataset of the Middlebury benchmark
[17] with different data terms using the isotropic depth-driven
smoothness term. First row, from left to right: (a) Depth values and
error visualization using gray value images and additional gra-
dient constancy assumption (γ = 5.0, α = 0.31). (b) RGB color
images (α = 0.28). (c) RGB color images and additional gradient
constancy assumption (γ = 5.0, α = 0.54).

(a) (b) (c)

Figure 27: Results for the Cones dataset of the Middlebury benchmark
[17] with different data terms using the isotropic depth-driven
smoothness term. First row, from left to right: (a) Depth values and
error visualization using gray value images and additional gra-
dient constancy assumption (γ = 5.0, α = 0.7). (b) RGB color
images (α = 0.62). (c) RGB color images and additional gradient
constancy assumption (γ = 5.0, α = 1.01).
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5.6 a disparity-driven approach

As already mentioned in the introduction, this thesis aims at a com-
parison between the developed variational depth-driven method and
a variational disparity-driven approach. This section introduces the
variational disparity-driven approach, which will then be compared
with developed method.

As basis the method of Zimmer et al.[29] is used which assumes an
ortho-parallel camera setup. This results in a pure horizontal displace-
ment denoted by u (disparity). As for the developed depth-driven
method the used energy functional of the disparity-driven method
has the following form

E(u) = EData(u) +α ESmooth(u) (97)

The data term EData(u) and the smoothness term ESmooth(u) are cho-
sen accordingly to the depth-driven method, in order to have equiva-
lent assumptions in both approaches. For example the basic method

E(Z) =

∫
Ω0

Ψ
(
|I0(p0) − I1(p1)|

2
)
+α Ψ

(
|∇Z|2

)
dxdy

is compared to

E(u) =

∫
Ω0

Ψ
(
|I0(x,y) − I1(x+ u,y)|2

)
+α Ψ

(
|∇u|2

)
dxdy

The minimization is achieved similarly using the fixed-point iteration
of Brox et al. [4] and will be not further explained here.

The next experiment uses the Teddy and the Cones dataset of Sec-
tion 5.2 to compare the depth-driven parameterization and the dis-
parity-driven parameterization. As data term the brightness and gra-
dient constancy assumption with the RGB valued version of the data-
sets are used.

• Isotropic Depth/Disparity-Driven. In the Teddy dataset (Figure 28a
and Figure 29a) only slight differences are noticeable. The depth-
driven approach seems to perform a bit better in the background,
whereas the disparity-driven approach performs better in the
foreground. In the Cones dataset (Figure 30a and Figure 31a) the
depth-driven approach is slightly better at the location between
the front middle cone and the cone next to it.

• Isotropic Image- & Depth/Disparity-Driven Regularizer. In the Teddy
dataset (Figure 28b and Figure 29b) the disparity-driven ap-
proach resolves the depth of the blanket (on the left side) better,
while the depth-driven approach resolves the chimney better.
The Cones dataset (Figure 30b and Figure 31b) shows almost no
noticeable differences.
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• Second Order Isotropic Depth/Disparity-Driven. In the Teddy dataset
(Figure 28c and Figure 29c) the depth-driven approach resolves
the background better, but the disparity-driven approach per-
forms better at the left image boundary and at the right side of
the teddy. In the Cones dataset (Figure 30b and Figure 31b) only
the left bottom corner is resolved better by the depth-driven
approach.

• Anisotropic Complementary Regularizer. In both datasets the dis-
parity-driven approach leads to less aberrations at the depth
edges, than the depth-driven approach.

• Anisotropic Depth/Disparity-Driven Regularizer. In the Teddy data-
set (Figure 28c and Figure 29c) the depth-driven approach has
errors on the chimney and at the top edge of the blanket (on the
left side), in contrast to the disparity-driven approach. In the
Cones dataset (Figure 30b and Figure 31b) almost no noticeable
differences can be observed.

The associated metrics are listed in Table 4. It shows that in the
Teddy dataset disparity-driven approach achieves in most cases better
metrics. In contrast, the depth-driven approach obtains better metrics
in most cases of the Cones dataset. The error difference is smaller
in the non-occluded regions and again does not necessary correlate
with the disparity error. In both scenes the Anisotropic Complementary
Regularizer achieves the best results.
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all non-occluded

MAE3D MAEd MAE3D MAEd

Teddy (depth-driven parameterization)

Isotropic depth-driven 0.107 0.958 0.067 0.596

Isotropic image-& depth-driven 0.102 0.936 0.060 0.553

Second order isotropic 0.122 1.118 0.079 0.600

Anisotropic complementary 0.100 0.867 0.067 0.577

Anisotropic depth-driven 0.118 1.023 0.073 0.639

Teddy (disparity-driven parameterization)

Isotropic disparity-driven 0.104 0.956 0.066 0.613

Isotropic image-& disp.-driven 0.098 0.915 0.064 0.603

Second order isotropic 0.107 0.872 0.073 0.587

Anisotropic complementary 0.086 0.776 0.061 0.541

Anisotropic disparity-driven 0.106 0.933 0.070 0.608

Cones (depth-driven parameterization)

Isotropic depth-driven 0.067 1.006 0.037 0.490

Isotropic image-& depth-driven 0.065 0.973 0.037 0.483

Second order isotropic 0.069 0.980 0.039 0.498

Anisotropic complementary 0.066 1.007 0.040 0.527

Anisotropic depth-driven 0.067 1.011 0.038 0.502

Cones (disparity-driven parameterization)

Isotropic disparity-driven 0.069 1.036 0.040 0.526

Isotropic image-& disp.-driven 0.067 1.000 0.040 0.516

Second order isotropic 0.070 1.022 0.041 0.522

Anisotropic complementary 0.061 0.902 0.039 0.493

Anisotropic disparity-driven 0.073 1.035 0.044 0.527

Table 4: The quality metrics corresponding to Figure 28 (Figure 29) and Fig-
ure 30 (Figure 31).
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6
C O N C L U S I O N

In this thesis a depth-driven variational stereo method has been pre-
sented, with a detailed step by step explanation, based on the recently
presented method of Basha et al. [2]. Moreover, several extensions
have been proposed to improve the developed method.

First the basic concepts and notations have been introduced in
Chapter 2. With the fundamental knowledge ready to use, the depth-
driven method was formed in Chapter 3. In Chapter 4 several ex-
tensions were presented, starting with extensions of the smoothness
term, where among others information of the image edges was em-
bedded and an anisotropic adaption of the smoothing behavior was
incorporated. Secondly, the data term was modified to allow the use
of more advanced constraints, such as the gradient constancy, the con-
sideration of images with a RGB color representation and the use of
additional views.

In the final part, Chapter 5, an evaluation methodology and test
datasets were presented, which where used to compare all extensions
with each other. In addition, a comparison with a disparity-driven
method was performed.

In contrast to the 2-D disparity parameterization the 3-D point
cloud parameterization brings several advantages, such as the simple
extension to multiple views and the possibility to easily incorporate
additional prior knowledge on the depth. Despite the fact that the
point cloud parameterization yields a non-linear relation between the
image coordinates and the unknowns (unlike the disparity parameter-
ization) that lead to non-trivial computations, it did not show conver-
gence problems and in some scenes even outperforms the disparity
parameterization.

The evaluation shows that the isotropic depth-driven regularizer
used in the basic developed method performs very well, almost best
in all used ray-traced datasets. In contrast, the isotropic image- &
depth-driven regularizer and the anisotropic complementary regular-
izer, which both embed image information, perform better on the
more realistic Middlebury datasets. By the use of advanced data terms,
such as the brightness and gradient constancy assumption with the
RGB valued version of the datasets, this difference in performance re-
mains and even slightly increases. Especially, the additional gradient
constancy assumption of the proposed data terms lead to an improve-
ment of the quality metrics, as well as a more robust version. While
comparing the performance one must keep in mind that the results
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depend on the applied metrics, because different metrics may lead
to different results, as seen in case of the used 2-D and 3-D quality
metric.

6.1 future work

reflection model . In real world sequences not all objects ex-
hibit the Lambertian reflectance, hence these objects violate the bright-
ness constancy assumption under certain circumstances. One possi-
bility to handle this problem is to consider more complex reflection
models.

occlusion handling . Most errors appear in occluded regions,
therefore an incorporation of an occlusion handling would be desir-
able. This especially applies in the case of multiple views, because the
number of occlusions increases.

large displacements . In stereo settings small objects or de-
tails in the foreground underlie a large displacement. The coarse-to-
fine strategy considered in this thesis is not enough to address this
problem, since at coarse levels, where the displacement is sufficiently
small to be estimated, these objects or details disappear. To handle
such large displacements feature matches can be integrated in the
computation, similar as in the case of optical flow [3, 20].

normalized regularizer . The presented regularizers use the
gradient of Z computed on the 2-D pixel grid and therefore do not
consider the increasing distance between the 3-D points by increasing
depth. In order to deal with this problem a normalization may be
desirable that takes the depth values into account.
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D E R I VAT I O N S

a.1 smoothness term related derivatives

The smoothness term related derivatives are approximated using a
nested central second order finite difference scheme. The derivation
reads

div
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a.2 the jacobian

In Section 3.5 the Equation 54 relates the gradient of the back pro-
jected image with the original image gradient. It appears that this
relation leads to the Jacobian matrix. The derivation of this relation
can be derived as follows

(∇Ii(x,y))> =

(
∂xIi(x,y)

∂yIi(x,y)

)>
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(
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∂y(Ii(xi,yi))

)>
(99)

=

(
∂xiIi(xi,yi) · ∂xxi + ∂yiI1 · ∂xyi
∂xiI1(xi,yi) · ∂yxi + ∂yiI1 · ∂yyi

)>
(100)

=


(∇iIi(xi,yi))> ·

(
∂xxi

∂xyi

)

(∇iIi(xi,yi))> ·

(
∂yxi

∂yyi

)

>

(101)

= (∇iIi(xi,yi))> ·

∂xi∂x ∂xi
∂y

∂yi
∂x

∂yi
∂y


︸ ︷︷ ︸

J

(102)

The entries of the Jacobian matrix are given by
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ǎ ·Z+ b̌

) (
M31

sx
Z+ c · ∂xZ

)
(c ·Z+ d)2

+

(
M21

sx
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The needed inverse Jacobian J−1 can be computed as follows

J−1 =
1
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(
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−J21 J11

)
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1
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(
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As one can see in (103) the partial derivatives ∂xZ and ∂yZ are used.
Which are approximated using a central fourth order finite difference
scheme.
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12hkx
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12hky
(105)

a.3 second order isotropic smoothness term

In this derivation the short notation Ψ ′ := Ψ ′
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a.4 natural boundary conditions

In this section the natural boundary conditions of a functional of the
following kind

E(u) =

∫
Ω

F (x,y,u,ux,uy,uxx,uxy,uyx,uyy)dxdy (106)

are derived. Here Ω is a rectangular subset of R2 with piecewise
smooth boundary ∂Ω. Further it is assumed that u(x,y) is a suffi-
ciently often differentiable minimizer of E, which is embedded into
u(x,y, e) := u(x,y) + εη(x,y) with an arbitrary perturbation function
η(x,y) in the region Ω. Because u(x,y) minimizes E(u) the scalar
function Φ(ε) := E(u+ εη) has a minimum at ε = 0. This leads to

0 = Φ ′(0) =
d

dε
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∣∣∣∣
ε=0

= δE (107)

where δE is known as the first variation of E at u in the direction of η
Applying the chain rule it follows that

δE =

∫
Ω

(Fuη+ Fuxηx + Fuyηy

+ Fuxxηxx + Fuxyηxy + Fuyxηyx + Fuyyηyy)dxdy (108)
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Integration by parts of all the terms containing derivatives of η yields
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where for (x,y) ∈ ∂Ω the outer normal is denoted by n(x,y) =

(nx,ny)>. A further integration by parts of all the integrals over Ω
containing derivatives of η yields
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After rearranging, Equation 109 results in
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Since u is a minimizer it must fulfill Equation 18. Further one can
choose a function η with the properties η|∂Ω 6= 0 and ∇η|∂Ω = 0,
what results in the following case
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Making use the fundamental lemma of the calculus of variations, this
results in
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Similar one can choose η|∂Ω = ηy|∂Ω = 0 and ηy|∂Ω 6= 0, what
results in

0 = Fuxxnx + Fuxyny ∀(x,y) ∈ ∂Ω (112)

and analog
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So it follows that the minimizer u fulfills the boundary conditions
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b.1 isotropic smoothness term
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Table 5: Stencil for the isotropic smoothness term.

b.2 anisotropic smoothness term
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Table 6: Stencil for the anisotropic smoothness terms.

69



70 stencils

b.3 second order isotropic smoothness term
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Table 7: Stencil for the second order isotropic smoothness term.
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