
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. 9

Konzept und Implementierung für
Choreographiecontainer

Norman Wolter

Studiengang: Softwaretechnik

Prüfer/in: Jun.-Prof. Dr.-Ing Dimka Karastoyanova

Betreuer/in: Dipl.-Inf. Michael Hahn,
M.Sc. Wirt.-Inf. Andreas Weiß

Beginn am: 15. Juli 2014

Beendet am: 14. Januar 2015

CR-Nummer: D.1.7, D.2.6, H.4.1

Kurzfassung

Diese Arbeit beschäftigt sich mit dem Konzept von Choreographiecontainern. Choreographiecon-
tainer dienen dazu, einen Datenfluss außerhalb des regulären Daten– und Kontrollflusses einer
Choreographie zu definieren. Außerdem erleichtern Choreographiecontainer das Modellieren und
Pflegen der einzelnen Prozessmodelle einer Choreographie, da konkrete Daten zur Laufzeit und nicht
bereits während der Modellierung der Prozessmodelle, bzw. der Choreographie, hinzugefügt werden
können. Des Weiteren werden Choreographien um externe Nutzer erweitert. Diese können auf die
Daten innerhalb eines Choreographiecontainers zugreifen und ermöglichen es, Daten die in der Cho-
reographie erzeugt werden für definierte Teilnehmer, die kein Teil der eigentlichen Choreographie
sind, zugänglich zu machen.

Außerdem beschreibt diese Arbeit, einen bereits an der Universität Stuttgart erstellten, Choreogra-
phieeditor der um die Möglichkeit der Darstellung einer Choreographie mit Choreographiecontainer
erweitert wurde.

3

Inhaltsverzeichnis

1. Einleitung 9

2. Grundlagen 11
2.1. Grundbegriffe . 11
2.2. Extensible Markup Language . 12
2.3. XML Schema Definition . 13
2.4. Modellierung von Choreographien . 13
2.5. Business Process Execution Language . 15
2.6. BPEL4Chor . 16
2.7. Eclipse . 16

3. Verwandte Arbeiten 19

4. Konzept 21
4.1. Beispiel . 21
4.2. Definitionen . 22
4.3. Architektur einer Choreographie mit Choreographiecontainer 23
4.4. Container Descriptor und External User Descriptor 29
4.5. Graphische Darstellung einer Choreographie mit Choreographiecontainer 38
4.6. Anwendungsfälle . 43
4.7. Entwurfsentscheidungen . 47
4.8. Softwarearchitektur eines Choreographiecontainers 52
4.9. Choreographie mit Choreographiecontainer Editor 52

5. Realisierung 59
5.1. Übersicht des vorhandenen Editors . 59
5.2. EMF Modelle . 59
5.3. Tooling Definition Model . 61
5.4. Graphical Definition Model . 62
5.5. Mapping Definition Model . 63
5.6. Ergebnis . 68
5.7. Geplante Umsetzung für das Einfügen von Variablen 68

6. Zusammenfassung und Ausblick 71

A. Anhang 73

Literaturverzeichnis 77

5

Abbildungsverzeichnis

2.1. Darstellung einer Choreographie in zwei verschiedenen Versionen einer Choreogra-
phieumgebung . 12

2.2. Top–down (links) und bottom–up (rechts) Modellierungsansatz. Darstellung basierend
auf [WK14] . 14

2.3. BPEL4Chor Artefakte. Darstellung basiert auf [DKLW07] 17

4.1. Ein Beispiel für die Verwendung eines Choreographiecontainers 23
4.2. Architekturübersicht aller Teilnehmer . 25
4.3. Datenmodell einer Choreographie mit Choreographiecontainer 27
4.4. Zusammenhang zwischen Datenmodell und Choreographieartefakten 28
4.5. Zusammenspiel der Prozessartefakte . 30
4.6. Beispiel für die Verwendung eines Choreographiecontainers 31
4.7. Zwei Darstellungsoptionen für einen Prozess . 39
4.8. Darstellung der verschiedenen Verbindungsmöglichkeiten bei der Darstellung einer

Choreographie mit Choreographiecontainer . 40
4.9. Visualisierung einer Choreographiecontainer mit Choreographievariablen 41
4.10. Choreographievariablen mit detaillierten Schreibvorgängen 42
4.11. Externe Nutzer mit Lese- und Schreibzugriffen . 43
4.12. Beispiel für eine Veröffentlichung von Zwischenergebnissen 44
4.13. Beispiel für wechselnde Parameter . 45
4.14. Beispiel für ein zusammengefasstes Ergebnis . 46
4.15. Beispiel für einen schreibenden Prozess und viele Lesende 47
4.16. Beispiel für den Umgang mit großen Datenmengen 48
4.17. Beispiel für die Verwendung von Konstanten . 49
4.18. Synchronisation zwischen den verschiedenen Teilen einer Choreographie durch Ab-

fragen . 50
4.19. Synchronisation zwischen den verschiedenen Teilen einer Choreographie durch eine

Synchronisationsnachricht . 51
4.20. Softwarearchitektur eines Choreographiecontainers 53
4.21. Oberfläche eines Designers für eine Choreographie mit Choreographiecontainer . . 54
4.22. Eigenschaftsreiter des Choreographiecontainers . 55
4.23. Eigenschaftsreiter von Prozessen und Aktivitäten . 55
4.24. Eigenschaftsreiter eines externen Nutzers . 56
4.25. Eigenschaftsreiter einer zusammengesetzten Variable 56
4.26. Eigenschaftsreiter einer atomaren Variablen . 57
4.27. Eigenschaftsreiter eines Kontrollflusses . 58

6

4.28. Eigenschaftsreiter einer Nachrichtenverbindung . 58
4.29. Eigenschaftsreiter eines Datenflusses . 58

5.1. Übersicht des Editors . 60
5.2. Ecore Modell der PBD . 61
5.3. Eigenschatfsfenster des CDataLinkable Elements . 62
5.4. Ecore Modell der Choreographie . 62
5.5. Das Tooling Definition Model . 63
5.6. Figure Descriptor Abschnitt im Graphical Definition Model 64
5.7. Compartment Abschnitt im Graphical Definition Model 64
5.8. Labels Abschnitt im Graphical Definition Model . 65
5.9. Nodes und Connections Abschnitt im Graphical Definition Model 65
5.10. Mapping Definition Model . 66
5.11. Eigenschaftenfenster des CContainers . 67
5.12. Eigenschaftenfenster der Child Reference einer CComplexVariable 67
5.13. Eigenschaftenfenster der Child Reference einer CComplexVariable innerhalb einer

CComplexVariable zur Selbstbeinhaltumg . 67
5.14. Eigenschaftenfenster eines CDataLink . 68
5.15. Beispiel des Editors mit Choreographiecontainer . 69
5.16. Beispiel einer Darstellung auf der Zeichenfläche . 70

Verzeichnis der Listings

2.1. Beispiel für die Darstellung der Daten einer Person in XML 13
2.2. XSD des Beispiel für die Darstellung der Daten einer Person in XML 13
2.3. Definition einer BPEL Variable nach [OAS07] . 15
2.4. Beispiel für eine Variable in BPEL . 16

4.1. Schema des Wurzelelements . 32
4.2. Aufbau des Wurzelelements . 33
4.3. Schema einer atomaren Variablen . 33
4.4. Darstellung der beiden atomaren Variablen aus Beispiel 4.6 34
4.5. Schema einer zusammengesetzten Variablen . 34
4.6. Darstellung der zusammengesetzten Variablen aus Beispiel 4.6 35
4.7. Schema der schreibenden und lesenden Nutzer . 35
4.8. Schema des Wurzelelements des External User Descriptors 36
4.9. Aufbau des Wurzelelements . 36
4.10. Schema der Rollen der Nutzer . 37
4.11. Schema Schreib- und Lesemöglichkeiten . 37
4.12. Schema der Variablen . 37

7

4.13. Darstellung der externen Nutzer Administrator und Forscher aus Beispiel 4.6 38

5.1. BPEL Serialisierung von Prozess1 . 70

A.1. Vollständiger Container Descriptor von Beispiel 4.6 73
A.2. Vollständiger External User Descriptor von Beispiel 4.6 74
A.3. XML-Schema des Container Descriptors . 75
A.4. XML-Schema des External User Descriptors . 76

Abkürzungsverzeichnis

Apache ODE Apache Orchestration Director Engine
API Application Programming Interface
BPEL Business Process Execution Language
EMF Eclipse Modeling Framework
GEF Graphical Editing Framework
GMF Graphical Modeling Framework
PBD Participant behavior description
REST Representational State Transfer
WS-CDL Web Services Choreography Description Language
WSDL Web Services Description Language
XML Extensible Markup Language
XSD XML Schema Definition

8

1. Einleitung

Die Nutzung von Workflowtechnologien hat Einzug in eine Vielzahl von Anwendungsgebieten
gehalten. Zum einen werden sie in der Industrie zur Darstellung und Automatisierung von Ge-
schäftsprozessen, zum anderen in der Forschung zur Durchführung von Simulationen verwendet.
Ein globales Modell in dem mehrere Prozesse bzw. Simulationen, als Teilnehmer miteinander inter-
agieren wird als Choreographie bezeichnet. Das Verhalten jedes einzelnen Teilnehmers wird durch
ein Prozessmodell definiert. Eine Choreographie beschreibt auch die Kommunikation zwischen den
einzelnen Teilnehmern. In der Forschung können auf diese Art einzelne Simulationen zu einer großen
Simulation, wie z. B. einer Multi–Skalen Simulation, zusammengefasst werden. Insbesondere bei den
wissenschaftlichen Simulationen können dabei große Datenmengen anfallen. Diese Daten können
z. B. eine große Menge an Einzelergebnissen oder auch ein vollständiger 3D–Scan eines menschlichen
Körpers sein.

In bisherigen Choreographien können Daten nur statisch in den einzelnen Prozessmodellen hinterlegt
werden oder dynamisch in Form von Nachrichten, zur Laufzeit, an eine Prozessinstanz geschickt
werden.Wennmehrere Prozessmodelle dieselben Daten benötigen, wie z. B. eine Konstante, muss diese
in jedem Modell einzeln hinterlegt werden. Wenn eine Änderung der Konstante eintritt müssen alle
Prozessmodelle entsprechend angepasst werden. Wenn Daten dynamisch zwischen Prozessinstanzen
ausgetauscht werden, kann es passieren, dass ein Anwender die benötigten Daten über eine Nachricht
an eine der Prozessinstanzen, welche auf diese Nachricht wartet, sendet und auf sie reagiert, in
dem die Prozessinstanz die Nachricht an andere Teilnehmer weitersendet. Im schlimmsten Fall
werden dabei die Daten über Prozessinstanzen geleitet, die die Daten gar nicht benötigen und nur
zur Koordination anderer Prozessinstanzen verwendet werden. Durch dieses Verhalten entsteht ein
höheres Datenaufkommen als eigentlich benötigt wird.

Daher wird im Rahmen dieser Arbeit ein Konzept für sogenannte Choreographiecontainer vorgestellt.
Choreographiecontainer ermöglichen es, Datenflüsse zwischen den Teilnehmern einer Choreographie
und Daten die außerhalb der Choreographieumgebung gespeichert sind zu definieren und können
somit die oben beschriebenen Probleme reduzieren, indem alle Teilnehmer die Zugriff auf bestimmte
Daten brauchen, diese gleichzeitig erhalten können. Ein weiterer Vorteil bei der Verwendung eines
Choreographiecontainers ist es, dass auch Interessenten, die nicht Teil der eigentlichen Choreographie
sind, Zugriff auf die erzeugten Daten gegeben werden kann.

Das primäre Ziel dieser Arbeit ist es, ein Konzept für die Darstellung, der Verwendung und des
Aufbaus eines Choreographiecontainers zu entwickeln. Außerdem wird ein bestehender Choreogra-
phieeditor [Son13] erweitert um Choreographien mit Choreographiecontainern graphisch modellieren
zu können.

9

1. Einleitung

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen beschäftigt sich mit grundlegenden Konzepten und Technologien, deren
Verständnis für diese Arbeit wichtig sind.

Kapitel 3 – Verwandte Arbeiten beschäftigt sich mit anderen Arbeiten, die sich mit einer ähnlichen
Thematik befassen.

Kapitel 4 – Konzept beschreibt das Konzept von Choreographiecontainern und geht detailliert auf
deren graphische Darstellung mit und ohne Hilfe eines graphischen Editors ein.

Kapitel 5 – Realisierung beschäftigt sich mit der geplanten und der durchgeführten Implementie-
rung der Editor Komponente einer Choreographie mit Choreographiecontainer.

Kapitel 6 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und be-
schreibt Möglichkeiten für weiterführende Arbeiten zum Thema Choreographiecontainer.

10

2. Grundlagen

In diesem Kapitel werden die Grundlagen beschrieben, die für diese Arbeit verwendet werden.
Zunächst werden die Grundbegriffe: Orchestrierung, Choreographie, Orchestrierungsengine und Cho-
reographieumgebung erläutert. Im Anschluss werden die Extensible Markup Language (XML) und die
XML Schema Definition (XSD) erläutert. Des Weiteren wird auf die Modellierung einer Choreographie,
so wie die OrchestrierungsspracheWS–Business Process Execution Language (BPEL) und die darauf
aufbauende Choreographiesprache BPEL4Chor, eingegangen. Da für die Realisierung des Konzepts
die Entwicklungsumgebung Eclipse und deren Erweiterungen Modeling Framework (EMF), Graphical
Editing Framework (GEF) und Graphical Modeling Framework (GMF) verwendet werden, werden diese
näher beschrieben.

2.1. Grundbegriffe

Dieser Abschnitt erläutert einige Grundbegriffe die für das Verständnis dieser Arbeit besonders
wichtig sind.

2.1.1. Orchestrierung und Choreographie

Eine Orchestrierung, im Kontext dieser Arbeit, beschreibt einen Prozess, dessen Aktivitäten als
Webservices realisiert sind. Die Interaktion mit den Webservices wird dabei nur aus Sicht dieses
Prozesses beschrieben [KL08].

Wenn mehrere Prozesse miteinander interagieren nennt man dies eine Choreographie. Die Choreogra-
phie beschreibt dabei jedoch nicht unbedingt den Ablauf der einzelnen Prozesse, sondern konzentriert
sich hauptsächlich auf Nachrichtenaustausch zwischen den Prozessen. Eine Choreographie beschreibt
somit das Zusammenspiel verschiedener Prozesse aus einer globalen Perspektive [KL08].

2.1.2. Orchestrierungsengine und Choreographieumgebung

Eine Orchestrierungsengine ist in der Lage, einen in einer Prozessbeschreibungssprache wie BPEL
beschriebenen Prozess auszuführen. Die Orchestrierungsengine selbst dient dabei als eine Art Contai-
ner in der die Prozess Beschreibung deployt werden kann. Die Orchestrierungsengine liest dabei die
Prozessbeschreibung ein und führt die darin enthaltenen Befehle, wie den Aufruf eines Webservices,
aus. Ein Beispiel einer solchen Orchestrierungsengine ist Apache ODE (Orchestration Director Engine)
[Foua].

11

2. Grundlagen

Prozess1 Prozess3Prozess2

Orchestrierungsengine

Choreographieumgebung

(a) Darstellung einer Choreographie mit einer Or-
chestrierungsengine

Prozess1 Prozess3

Prozess2

Orchestrierungs-

engine1

Orchestrierungs-

engine2

Orchestrierungs-

engine3

Choreographieumgebung

(b) Darstellung einer Choreographie mit mehre-
ren Orchestrierungsengine

Abbildung 2.1.: Darstellung einer Choreographie in zwei verschiedenen Versionen einer Choreogra-
phieumgebung

Eine Choreographieumgebung ist ein Konstrukt welches, wie in Abbildung 2.1 dargestellt, die zu
einer Choreographie gehörenden Prozesse und Orchestrierungsengines auf denen die Prozesse ausge-
führt werden, umfasst. Da eine Orchestrierungsengine potentiell in der Lage ist mehrere Prozesse
gleichzeitig auszuführen, kann die Choreographie Umgebung, wie in Abbildung 2.1a dargestellt, aus
nur einer Orchestrierungsengine auf der sämtliche Prozesse einer Choreographie ausgeführt werden
bestehen. Eine Choreographieumgebung kann aber auch, wie in Abbildung 2.1b dargestellt, aus meh-
reren Orchestrierungsengines bestehen auf denen, die jeweils zu dieser Choreographie gehörenden
Prozesse ausgeführt werden.

2.2. Extensible Markup Language

XML ermöglicht es, Daten hierarchisch dargestellt, in einem Textdokument zu speichern [W3Ca].
Die für diese Arbeit wichtigsten Teile einer XML Datei sind Elemente und Attribute. Listing 2.1
zeigt ein Beispiel für die XML Darstellung der Daten einer Person. Das Wurzelelement dieser XML
Darstellung ist das Element person. Dieses wird durch das Tag <person> begonnen und endet mit dem
schließenden Tag </person>. In diesem Wurzelelement befinden sich drei weitere Elemente namens:
vorname, nachname und alter. Das Element person enthält zusätzlich das Attribut status. Dieses stellt
eine Metainformation für dieses Element dar.

12

2.3. XML Schema Definition

Listing 2.1 Beispiel für die Darstellung der Daten einer Person in XML

<?xml version="1.0" encoding="UTF-8"?>

<person status="wichtig">

<vorname>Max</vorname>

<nachname>Mustermann</nachname>

<alter>42</alter>

</person>

Listing 2.2 XSD des Beispiel für die Darstellung der Daten einer Person in XML

<xs:element name="person">

</xs:complexType>

<xs:sequence>

<xs:element name="vorname" type="xs:string"/>

<xs:element name="nachname" type="xs:string"/>

<xs:element name="alter" type="xs:integer"/>

</xs:sequence>

<xs:attribute name="status" type="xs:string"/>

</xs:complexType>

</xs:element>

2.3. XML Schema Definition

Eine XML Schema Definition (XSD) ermöglicht es, XML Dokumente strukturiert zu beschreiben
[W3Cb]. Listing 2.2 zeigt die XSD für das XML Dokument aus Listing 2.1. Da das Element Person
weitere Elemente beinhalten und über ein Attribut verfügen soll, wird es als complexType modelliert.
Das Element person soll eine Reihe andere Elemente in festgelegter Reihenfolge enthalten. Dies wird
durch das Tag <xs:sequence> realisiert. Die enthaltenen Elemente sind alle einfache Elemente und
bestehen nur aus deren Namen und dem jeweiligen Datentyp. Zusätzlich soll das Element person
über ein Attribut verfügen, die Attribute müssen nach den Elementen modelliert werden. Bis auf den
Tagnamen Attribut, folgt ein Attribut dem selben Aufbau wie ein Element.

2.4. Modellierung von Choreographien

Die folgende Beschreibung basiert auf der Beschreibung in [WK14], wurde jedoch abstrahiert damit
der darin beschriebene Ansatz sich nicht nur auf Multi–Skalen sondern allgemein anwenden lässt. Es
werden zwei Ansätze für die Modellierung von Choreographien beschrieben.

Der erste Ansatz ist der Top–down Ansatz. Bei diesem Ansatz wird zunächst die Problembeschreibung
bzw. die Aufgabe definiert die gelöst werden soll (1). Im nächsten Schritt wird mit Hilfe eines gra-
phischen Editors die Choreographie modelliert(2). In dem darauf folgenden Schritt (3), werden aus
der graphischen Darstellung der Choreographie abstrakte Prozesse erzeugt. Die abstrakten Prozesse

13

2. Grundlagen

Problemdomäne

Modellierte

Choreographie

Abstrakte Workflows

Verfeinerte und

ausführbare Workflows

Ausführbare Workflows

Abgeleitete

Choreographie

Problemdomäne

3

2

4

1

1

2

3

Manuelle Modellierung mit

Choreographieeditor

Automatische

Umwandlung

Manuelle Verfeinerung

Automatische

Umwandlung

Modelle

Abbildung 2.2.: Top–down (links) und bottom–up (rechts) Modellierungsansatz. Darstellung basie-
rend auf [WK14]

enthalten dabei nur Aktivitäten welche für die Kommunikation zwischen den einzelnen Prozessen not-
wendig sind. Die abstrakten Prozesse werden anschließend (4) manuell verfeinert. Die Verfeinerung
der einzelnen abstrakten Prozesse kann durch Spezialisten auf dem jeweiligen Gebiet erfolgen.

Bei dem Bottom–Up Ansatz wird auf bereits bestehende Prozesse, für die jedoch kein globales Modell
vorhanden ist, zurück gegriffen (1). Diese werden in eine abgeleitete Choreographie umgewandelt (2).
Aus der abgeleiteten Choreographie kann der Modellierer die Choreographie weiter anpassen, um
z. B. nicht benötigte Prozesse zu entfernen, oder weitere hinzuzufügen. Die abgeleitete Choreographie
repräsentiert ihrerseits eine Problembeschreibung (3).

14

2.5. Business Process Execution Language

Listing 2.3 Definition einer BPEL Variable nach [OAS07]

<variables>

<variable name="BPELVariableName"

messageType="QName"?

type="QName"?

element="QName"?>+

from-spec?

</variable>

</variables>

2.5. Business Process Execution Language

BPEL ist eine XML–basierte Sprache, mit der Orchestrierungen beschrieben werden können [OAS07].
Die für diese Arbeit verwendete Version BPEL 2.0 wurde 2007 von OASIS standardisiert. Es gibt keine
standardisierte graphische Darstellung. Die Hauptbestandteile eines BPEL Dokumentes sind: Partner
Links, Correlation Sets, Handlers, Aktivitäten und Variablen.

Zusätzlich zu den oben genannten Teilen gibt es das Prozesselement. Dieses ist das Wurzelelement
welches alle anderen Bestandteile beinhalten kann. Es ist somit die BPEL Darstellung des modellierten
Prozesses. Das Prozesselement kann in seiner Definition Variablen enthalten, auf die alle Aktivitäten
innerhalb des Prozesses zugreifen können.

Partner Links dienen als Beschreibung für einen Kommunikationskanal zwischen dem Prozess und
einem Partner. Correlation Sets ermöglichen es der Orchestrierungsengine Nachrichten zu der rich-
tigen Prozessinstanz zu leiten. Handlers kümmern sich darum, was in bestimmten Situationen wie
dem Auftreten eins Ausnahmezustandes oder eines bestimmten Ereignisses passieren soll.

Es gibt zwei Sorten von Aktivitäten: Basisaktivitäten und strukturierte Aktivitäten. Basisaktivitäten
werden z. B. verwendet um Webservices aufzurufen oder Nachrichten zu empfangen. Strukturierte
Aktivitäten realisieren den Kontrollfluss und können sowohl strukturierte Aktivitäten als auch
Basisaktivitäten enthalten. Eine für diese Arbeit besonders wichtige strukturierte Aktivität ist die
Scope Activity . Scope Activities können als einzige Aktivität Variablen enthalten. Wenn einer Scope
Activity Variablen hinzugefügt werden, kann jede Aktivität innerhalb der Scope Activity auf die
Variable zugreifen. Ein Zugriff von außerhalb der Scope Activity auf die Variable ist nicht möglich.

Variablen können Nachrichten oder Daten enthalten. Die Definition einer Variable ist ist Listing 2.3
dargestellt. Eine Variable hat das Attribut name, welches den Namen der Variablen wiedergibt. Eine
Variable muss eines der Attribute Web Services Description Language (WSDL) messageType oder XML
Schema type oder ein XML Schema element enthalten. Mit diesem Attribut kann man den Typ der
Variablen definieren. Das Attribut from–spec kann optional verwendet werden um die Variable zu
initialisieren. Listing 2.4 zeigt ein Beispiel für eine Variable. Diese Variable hat den Namen UserName
und ist vom einfachen XSD Datentyp String.

15

2. Grundlagen

Listing 2.4 Beispiel für eine Variable in BPEL

<variables>

<variable name="UserName"

type="xsd:String" />

</variables>

2.6. BPEL4Chor

BPEL selbst fehlt eine Möglichkeit eine Choreographie zu modellieren. Aus diesem Grund wurde
BPEL4Chor entwickelt [DKLW07]. Eine BPEL4Chor Choreographie besteht, wie in Abbildung 2.3
dargestellt, aus drei verschiedenen Artefakttypen: der Participant topology, den Participant behavior
descriptions und den Participant groundings.

Die Participant topology beschreibt die strukturellen Aspekte einer Choreographie, in Form der
verschiedenen Teilnehmer und deren Kommunikation untereinander und enthält die Participant
Declaration und die Message Links. Sie enthält somit die drei neu hinzugefügten Elemente Participant,
Participant Set und Message Link. Die Participants stellen die Teilnehmer der Choreographie dar
und die Participant Sets eine Menge an Teilnehmern. Ein Beispiel für einen Teilnehmer kann ein
bestimmtes Hotel sein dessen Prozess das Einchecken eines Kunden wiedergibt. Ein Participant Set in
der selben Choreographie wären verschiedene Autovermietungen mit eigenen Prozessen. DieMessage
Links ermöglichen es die Kommunikation zwischen verschiedenen Teilnehmern darzustellen.

Für jeden Teilnehmer wird eine Participant behavior description (PBD) benötigt bzw. erzeugt. Dieses
Artefakt beschreibt den Kontrollfluss innerhalb der einzelnen Teilnehmer. Bei den PBDs handelt es sich
um abstrakte BPEL Prozesse. Abstrakte BPEL Prozesse, sind wie normale Prozesse jedoch enthalten sie
nicht ausführbare Opaque Activities und nutzen den abstrakten Namespace. Diese Opaque Activities
dienen als Platzhalter und können mit beliebigen BPEL Editoren verändert und angepasst werden.
Die PBDs sind für diese Arbeit von besonderem Interesse, da in diese die BPEL Variablen und Scope
Activities eingefügt werden können.

Die Participant groundings Artefakte enthalten genaue Informationen über technischen Details der
Choreographie wie z. B. port types. Diese Informationen sind von den anderen Artefakten entkoppelt,
um die Wiederverwendbarkeit der anderen Artefakte zu erhöhen.

2.7. Eclipse

Eclipse [Foue] ist eine auf Java basierende Entwicklungsumgebung. Die Eclipse Entwicklungsum-
gebung kann als Entwicklungsumgebung für diverse Programmiersprachen, wie z. B. Java [Ull10],
genutzt werden. Außerdem ist der Funktionsumfang von Eclipse über Plugins erweiterbar. Bei EMF,
GEF und GEF handelt es sich ebenso um Plugins wie bei dem an der Universität Stuttgart erstellten
BPEL4Choreditor [Son13].

EMF wird genutzt um Datenmodelle, in Form von Metamodellen, für eine bestimmte Problem Domäne
zu erzeugen. Das Metamodell kann entweder manuell von einem Entwickler erzeugt werden oder

16

2.7. Eclipse

Participant

topology

Strukturelle Aspekte

Participant Declaration

Liste der Participants

Message Links

Verbindet die

PBDs

Participant behavior

descriptions (PBDs)

Beobachtbarer Kontroll-

und Datenfluss

Participant groundings

Technische Konfiguration

Abbildung 2.3.: BPEL4Chor Artefakte. Darstellung basiert auf [DKLW07]

aus z. B. bereits bestehenden XSDs oder auch Java Annotationen [Ull10] ausgelesen werden. Das
Metamodell wird in einer .ecore Datei gespeichert und wird im weiteren Verlauf auch als Ecore Modell
bezeichnet. Aus dem Metamodell kann automatisch Code erzeugt werden, mit dem sich Instanzen
des Metamodells manipulieren lassen. Es nimmt somit dem Entwickler die Aufgabe ab, den Code der
benötigt wird um die Instanzen z. B. zu ändern oder zu serialisieren, manuell erzeugen zu müssen
[SBPM09].

GEF hilft dabei graphische Editoren zu erstellen. Es handelt sich hierbei um eine Implementierung
derModel-View-Controller Architektur [Fow]. Ein Datenmodell entspricht hierbei demModel, die View
ist die graphische Repräsentation des Modells und der Editor übernimmt die Funktion des Controllers
[Maj].

GMFwurde entwickelt um die Vorteile und Funktionen von EMF und GEFmiteinander zu kombinieren
[Gro09]. GMF ermöglicht es, mit Hilfe eines Editors, ein mit EMF erstelltes Modell mit GEF zu nutzen.
Ein GMF Projekt besteht zunächst aus drei Teilen: demDomainModel, demGraphical DefinitionModel
und dem Tooling Definition Model. Das Domain Model enthält die Beschreibung des Domänenmodells
und entspricht somit einem Ecore Modell. Das Graphical Definition Model enthält die Informationen,
wie die Teile des Ecore Modells, welche graphisch dargestellt werden, aussehen sollen, also welche
Form, Farbe usw. die graphischen Darstellungen haben sollen. Das Tooling Definition Model gibt an,
welche Werkzeuge mit denen die graphischen Darstellung erzeugt werden sollen, in der Palette zu
sehen sind. Diese drei Modelle werden in einem Mapping Definition Model miteinander verknüpft.
Aus dem Mapping Definition Model lässt sich ein Generator Model erstellen. Aus diesem Modell kann
der Code für einen graphischen Editor in Eclipse automatisch erzeugt werden.

17

3. Verwandte Arbeiten

Die Choreographiesprache WS-CDL [W3C05] wurde von dem World Wide Web Consortium (W3C)
entwickelt. Diese Sprache basiert auf XML und ermöglicht es, Choreographien auf eine vorgegebene
Art zu beschreiben. Choreographien werden hierbei auf einer abstrakten Ebene beschrieben. In
WS-CDL werden Variablen auf vier Arten genutzt:

• Information Exchange Capturing Variables, werden verwendet um Nachrichten mit einem
Inhalt zu füllen oder sie werden durch eine erhaltene Nachricht gefüllt.

• State Capturing Variables, werden verwendet um den Zustand der einzelnen Teilnehmer darzu-
stellen.

• Channel Capturing Variables, werden verwendet um Informationen über die Adressen an
welche Daten gesendet werden sollen, deren Policies usw. zu speichern.

• Exception Capturing Variables, werden verwendet um Informationen über Exceptions zu
speichern.

Alle Choreographieteilnehmer, die in der entsprechenden Variablendefinition vermerkt sind, können
diese lesen oder je nach Definition auch deren Wert verändern. Alle anderen Variablen Typen werden
auch global definiert, die einzelnen Teilnehmer verwenden diese allerdings lokal. Lokal bedeutet hier,
dass die Variablen zwar denselben Namen haben können, jedoch unterschiedliche Werte enthalten
können. Es existiert keine offizielle Graphische Notation für WS-CDL. Die Hauptgemeinsamkeit zu
dieser Arbeit liegt darin, dass Variablen außerhalb von einzelnen Teilnehmern auf einer Choreogra-
phieebene definiert werden und die Aufteilung in verschiedene Variablentypen.

In [BWH08b] wird beschrieben, wie Kontroll- und Datenfluss in einem Workflow getrennt werden
können. Bei diesem Ansatz handelt es sich um einen Hybridansatz bestehend aus Choreographie
und Orchestrierung. Der Kontrollfluss wird zentral durch eine Workflow Engine gesteuert, während
der Datenfluss auch zwischen einzelnen Webservices ermöglicht wird. Zu diesem Zweck werden
sogenannte Proxies eingeführt. Proxies dienen als zwischen Station zwischen der Orchestrierung und
den einzelnen Webservices. Durch entsprechende API-Befehle [BWH08a] ist es der Orchestrierung
möglich, durch den Proxy, Daten direkt von einem oder mehreren Webservices zu erhalten oder zu
befehlen, dass Daten, über den Proxy direkt zwischen Webservices ausgetauscht werden. Die Idee
Daten über einen Proxy auszutauschen wird in dieser Arbeit aufgegriffen.

In [WGSL09] wird beschrieben, wie größere Datenmengen mittels einer Referenz ausgetauscht
werden können. Dieser Ansatz basiert auf BPEL und ist deshalb ebenfalls auf Orchestrierungen
und nicht direkt auf Choreographien bezogen. Jeder Webservice erhält ein Reference Resolution
System (RRS), dieses ist in der Lage, die Referenzen, die es von einem Workflow oder einem anderen
RRS erhält, aufzulösen. Auf diese Art ist es möglich, Daten zwischen den RRS auszutauschen, ohne

19

3. Verwandte Arbeiten

dass dabei große Dateimengen durch die Orchestrierungsengine geleitet werden müssen. Für diesen
Ansatz werden keine neuen BPEL Konstrukte benötigt, sondern lediglich bestehende erweitert. Der
Ansatz ist somit BPEL konform. Dies wäre eine Realisierungsmöglichkeit wie der Austausch großer
Datenmengen mittels Referenzen von statten gehen kann.

Die Orchestrierungsengine Apache ODE [Foua] hat bereits ein Konzept implementiert, mit dem auf
Daten außerhalb des eigentlichen Workflows zugegriffen werden kann [Fouc]. Bei diesem Konzept
werden Variablen, wie in [OAS07] beschrieben angelegt, jedoch um das Attribut xvar:id erweitert.
Durch dieses zusätzliche Attribut erkennt ODE, dass es sich um eine externe Variable handelt, deren
Daten außerhalb der Orchestrierungsengine verwaltet werden und ermittelt aus dem Deployment
Descriptor [Foub] wie auf die Variable zugegriffen werden soll. Derzeit wird nur der Zugriff auf eine
Datenbank mittels eines Java Database Connectivity(JDBC) Mappings ermöglicht. Der Deployment
Descriptor enthält dabei die Information auf welche Tabelle, welche Spalte usw. zugegriffen werden
soll.

In [RHEA05] werden verschieden Data Patterns beschrieben und klassifiziert. Das Pattern Enviro-
mental Data (Pattern 8) ist das Pattern, das bei der hier erstellen Arbeit hauptsächlich verwendet wird.
Dieses Pattern beschreibt, dass die Daten, die von einem Workflow verwendet werden, außerhalb des
Workflows gespeichert werden.

20

4. Konzept

Dieses Kapitel beschreibt das Konzept eines, im folgenden auch nur Container genannten, Choreo-
grpahiecontainers. Dieser ermöglicht es, Daten außerhalb der Choreographieumgebung zu definieren
und diese für die Teilnehmer der Choreographie zur Verfügung zu stellen. Im ersten Teil des Kapitels
wird die Verwendung eines Choreographiecontainers anhand eines Beispiels erläutert. Im Anschluss
werden die Definitionen von Choreographiecontainern und Choreographievariablen gegeben. Die
folgenden Abschnitte beschreiben die Architektur eines Systems mit Choreographiecontainer, die
erzeugten Choreographieartefakte Container Descriptor und External User Descriptor, die graphische
Darstellung einer Choreographie mit Choreographiecontainer, Anwendungsfälle für einen Choreo-
graphiecontainer, Entwurfsentscheidungen die bei der Entwicklung eines Choreographiecontainer
getroffen werden müssen, die Softwarearchitektur eines Choreographiecontainers und den Aufbau
eines Editors zur Erstellung einer Choreographie mit Choreographiecontainer.

Im Rahmen dieser Arbeit wird davon davon ausgegangen, dass alle Choreographievariablen zur
Laufzeit der Choreographie nur einmal einen Wert zugewiesen bekommen können. Diese Restriktion
wird eingeführt, um Probleme bezüglich konkurrierenden Zugriffen zu vermeiden. Zum Beispiel kann
das Problem, dass ein Prozess veraltete Daten, im Kontext der Choreographie, aus einer Choreogra-
phievariablen liest nicht auftreten, da diese im Kontext der aktuellen Choreographie immer als aktuell
zu betrachten sind.

4.1. Beispiel

Das Konzept der Choreographiecontainer erweitert die Nutzung von Variablen dahingehend, dass sie
nicht nur lokal innerhalb der Orchestrierungen, sondern in einem globalen Kontext einer Choreogra-
phie, verwendet werden können. Abbildung 4.1 zeigt ein Beispiel für einen Choreographiecontainer, in
welchem ein Kunde eines Reiseveranstalters seine Reise organisiert. Die Choreographie besteht aus ei-
nem externen Nutzer, einem Choreographiecontainer und vier Teilnehmern, die durch Prozessmodelle
repräsentiert werden.

Der Kunde tritt in der Rolle des externen Nutzers Kunde auf. Dieser gibt, z. B. über eine Internetseite
seine Kundeninformationen, wie Name, Alter, Wunschziel, Preisspanne, Mietwagenwunsch, usw. an.
Durch die Eingabe der Daten wird, nach deren Bestätigung, die Choreographie angestoßen.

Der Choreographiecontainer trägt den Namen Reisedaten und beinhaltet die Choreographievariablen:
ReiseAngebot, die bereits weiter oben beschriebene Choreographievariable Kundeninformation und
AbgeschlosseneSchritte. ReiseAngebot enthält am Ende der Choreographie das erstellte Reiseangebot.
AbgeschlosseneSchritte enthält Informationen darüber, welche wichtigen Schritte der Choreographie
bereits abgeschlossen wurden.

21

4. Konzept

Die Choreographie hat vier Prozesse: Reisebüro, Flug, Hotel und Mietwagen. Der Prozess Reisebüro
wird, nach der Eingabe der Kundeinformationen gestartet. Nach der Startaktivität R1 werden, durch
die beiden Aktivitäten R2 und R4, die Prozesse Flug und Hotel gestartet. Danach wartet der Reisebüro
Prozess bis die Ergebnisse der beiden anderen Prozesse gesendet werden.

Der Prozess Flug wird durch seine Aktivität F1 gestartet und erarbeitet in den folgenden Aktivitäten
den Flug, der die größte Übereinstimmung mit den angegeben Kundeninformationen und den besten
Preis hat. Das Ergebnis wird im Anschluss durch die Aktivität F4 an den Prozess Reisebüro gesendet.
Außerdemwird in der Choreographievariablen AbgeschlosseneSchritte hinterlegt, dass ein Flugangebot
ausgewählt und somit der Prozess abgeschlossen ist.

Der Prozess Hotel wird durch den Empfang der Nachricht von R4 durch die Aktivität H1 gestartet.
H2 sucht im Anschluss das Hotel, welches sich am besten mit den Kundeninformationen deckt und
hinterlegt nachdem dieses gefunden wurde, den entsprechenden Wert in AbgeschlosseneSchritte. Die
Aktivität H3 sendet die Daten des gefunden Hotels an den Prozess Mietwagen.

Der Prozess Mietwagen sucht, nachdem er in M1 gestartet wurde in M2 den besten Mietwagen für die
Gegend des Hotels. Dieser Prozess benötigt Daten des Kunden, wie das Alter, da Angebote eventuell
von Parametern wie dem Alter des Kunden abhängig sein können. Diese Daten werden direkt aus
dem Choreographiecontainer gelesen. Nachdem das beste Angebot gefunden wurde, wird in der
Choreographievariablen der entsprechendeWert gesetzt und das Ergebnis zurück an denHotel Prozess
gesendet. Der Prozess Hotel sendet nach Erhalt der Information über das beste Mietwagenangebot,
dieses und das beste Hotelangebot an den Reisebüro Prozess.

Nachdem die beiden Aktivitäten R3 und R4 die Nachrichten über den besten Flug, das beste Ho-
tel und den besten Mietwagen erhalten haben, wird das beste gesamt Angebot erstellt und in die
Choreographievariable ReiseAngebot geschrieben. Diese kann von dem Kunden eingesehen werden.

Dieses Beispiel zeigt den Vorteil des Choreographiecontainers, indem alle Prozesse, die Daten aus
Kundeninformationen benötigen auf diese zugreifen können. Ohne Choreographiecontainer müsste der
Prozess Reisebüro dieKundeninformationen an die Prozesse Flug undHotel senden und der ProzessHotel
müsste die Daten anschließend noch an den Prozess Mietwagen weiterleiten. Statt Nachrichten mit
potentiell großen Nutzerdaten werden nur leere oder Steuerungsnachrichten gesendet um die Prozesse
zu starten. Ein weiterer Vorteil ist, dass der Kunde über die Einsicht auf die Choreographievariable
AbgschlosseneSchritte eine Möglichkeit erhält den Status seines Auftrags einzusehen, ohne Einblicke
in die Choreographie erhalten zu müssen. Außerdem kann der Kunde, eine Referenz auf die Daten im
ReiseAngebot, z. B. in Form eines Links, an Freunde weitersenden.

4.2. Definitionen

Definition 4.2.1 (Choreographiecontainer)
Ein Choreographiecontainer ist eine Komponente welche es ermöglicht prozessübergreifend Daten in
einer Choreographie zu nutzen. Er dient dabei als Container für einzelne Choreographievariablen. Ein
Choreographiecontainer ermöglicht es, Daten außerhalb des Nachrichtenflusses einer Choreographie zu
definieren und somit dass die Daten auch außerhalb des Nachrichtenflusses ausgetauscht werden können.

22

4.3. Architektur einer Choreographie mit Choreographiecontainer

R1

R4R2

R3

R6

R5

Reisebüro

F1

F2

F3

F4

Flug

ReiseDaten

KundeninformationenReiseAngebot

H1

H2

H3

H5

Hotel

M1

M2

M3

Mietwagen

AbgeschlosseneSchritte

H4

Kunde

Abbildung 4.1.: Ein Beispiel für die Verwendung eines Choreographiecontainers

Definition 4.2.2 (Choreographievariable)
Als Choreographievariable wird eine konkrete Entität innerhalb eines Choreographiecontainers bezeichnet
in der Daten gespeichert werden können. Dies können z. B. einfache Datentypen wie eine Gleitkommazahl
oder auch binäre Daten sein. Es ist außerdem möglich, dass die Variablen auch komplexe Datenstrukturen
enthalten können.

4.3. Architektur einer Choreographie mit Choreographiecontainer

In diesemAbschnitt wird ein Überblick über die Komponenten gegeben, aus denen eine Choreographie
mit Choreographiecontainer besteht. Im weiteren Verlauf des Abschnitts wird das Datenmodell einer
solchen Choreographie und das Zusammenspiel der erzeugten Choreographieartefakte erläutert.

4.3.1. Architekturübersicht aller Komponenten

Wie in Abbildung 4.2 dargestellt, besteht eine Choreographie mit Choreographiecontainer aus den
folgenden vier Elementen: der Choreographieumgebung, dem Choreographiecontainer, einem Daten-
server und externen Nutzern.

23

4. Konzept

Eine Choreographieumgebung besteht, wie in 2.1.2 näher beschrieben, aus einer oder mehreren Orche-
strierungsengines, welche die infrastrukturelle Grundlage für das Ausführen der einzelnen Prozessmo-
delle der Teilnehmer der Choreographie, bilden. Jede dieser Orchestrierungsengines muss um einen
Choreographiecontainer zu unterstützen entsprechend erweitert werden. Im Rahmen dieser Arbeit
nicht weiter auf die Entwicklung einer Containererweiterung für Orchestrierungsengines eingegangen,
da sie sich auf die Modellierung von Choreographien mit Choreographiecontainer fokussiert. Sobald
die Orchestrierungsengine auf einen Befehl stößt für den Daten aus dem Choreographiecontainer
benötigt werden, sendet die Containererweiterung eine Anfrage an den Choreographiecontainer.

Der Choreographiecontainer enthält ein Mapping welches es der Choreographiecontainer Kompo-
nente ermöglicht die benötigten Daten, von einem Datenserver abzufragen. Das Mapping wandelt die
Anfrage der Orchestrierungsengine in eine standardisierte Anfrage an den entsprechenden Daten-
server um. Der Choreographiecontainer liest bei seinem Start eine, in 4.4.2 detailliert beschriebene,
Konfigurationsdatei ein. Diese Datei enthält die Informationen, welche Variablen angelegt werden,
wie diese aufgebaut sind und welche Teilnehmer Zugriff auf die Daten erhalten. Nach Erhalt einer
Anfrage prüft der Choreographiecontainer zunächst ob der entsprechende Teilnehmer auf die Daten
zugreifen darf und weist die Anfrage bei negativer Prüfung mit einer entsprechenden Nachricht ab.
Falls dem Teilnehmer der Zugriff erlaubt wird, sendet der Choreographiecontainer Daten an den
Datenserver oder liest Daten von diesem. Der Choreographiecontainer kann die Datenanfragen durch
Caching oft verwendeter Daten im internen Speicher beschleunigen. Der Choreographiecontainer
kann Anfragen von externen Nutzern entgegen nehmen und gibt ihnen entweder die Daten selbst
weiter oder leitet diese direkt auf den Datenserver weiter.

Der Datenserver ist eine Komponente die Daten verwalten kann. Der Datenserver kann z. B. ein
Representational State Transfer (REST)–Server [Fie00], eine Datenbank oder auch ein Dateiserver
sein. Für diese Komponente wird keine spezielle Anpassungen an eine Choreographie benötigt.

Die externen Nutzer sind beliebige Anwendungen oder Benutzer, die sich außerhalb der Choreogra-
phieumgebung befinden. Diese können entweder auf den Choreographiecontainer oder direkt auf
den Datenserver zugreifen um Daten zu speichern oder anzufragen.

4.3.2. Datenmodell

Abbildung 4.3 zeigt das zu der Darstellung von Choreographien mit Choreographiecontainer gehö-
rende Datenmodell. Alle Attribute die in diesem Modell nicht als optional beschrieben werden sind
verpflichtend. Das Element Choreographie entspricht der Zeichenfläche der gesamten Choreogra-
phie. Es gibt drei Elemente, die direkt zu einer Choreographie gehören: der Choreographiecontainer,
die externen Nutzer und die Prozesse. Diese Elemente sind, mit Ausnahme von Datenfluss– und
Nachrichtenaustausch–Verbindungen, die einzigen Elemente die direkt auf der Zeichenfläche platziert
werden können.

Eine Choreographie kann beliebig viele Elemente vom Typ externer Nutzer und vom Typ Prozess
enthalten. Beide Elemente haben das Attribut Name, welches den eindeutigen Namen des jeweiligen
Elements enthält.

24

4.3. Architektur einer Choreographie mit Choreographiecontainer

Prozess1

Prozess3

Prozess2

Orchestrierungs-

engine1

Orchestrierungs-

engine2

Orchestrierungs-

engine3

Choreographiecontainer

Datenserver

Variable1

Variable2

Externer Nutzer

Choreographieumgebung

Container-

erweiterung

Container-

erweiterung

Container-

erweiterung

Abbildung 4.2.: Architekturübersicht aller Teilnehmer

Jede Choreographie kann nur maximal ein Element vom Typ Choreographiecontainer enthalten. Diese
Einschränkung wird im Rahmen dieser Arbeit getroffen, um Synchronisations– und Abhängigkeits-
probleme zwischen mehreren Choreographiecontainern zu vermeiden. Jeder Choreographiecontainer
hat die Attribute Name und Adresse. Das Attribut Name enthält den Namen des Choreographiecon-
tainers und das Attribut Adresse die Adresse unter der der Choreographiecontainer erreichbar ist.
Ein Choreographiecontainer kann beliebig viele Elemente vom Typ atomare Variable oder vom Typ
zusammengesetzte Variable enthalten. Er muss jedoch mindestens ein Element von einem der beiden
Typen beinhalten, da der Choreographiecontainer ansonsten überflüssig wäre.

Atomare Variablen und zusammengesetzte Variablen können nur innerhalb eines Choreographie-
container oder einer zusammengesetzten Variablen platziert werden. Zusammengesetzte Variablen
können eine beliebige Anzahl an zusammengesetzten Variablen oder atomaren Variablen beinhalten.

25

4. Konzept

Das unterste Element einer zusammengesetzten Variablen muss immer eine atomare Variable sein,
da nur diese Daten enthalten können. Beide Arten von Variablen haben das Attribut Name und
das optionale Attribut Permanent. Name enthält den einzigartigen Namen der jeweiligen Variablen.
Das Attribut Permanent signalisiert der Choreographiecontainer Komponente, dass die Daten dieser
Variablen persistent gespeichert werden. Sobald einer Variablen, bei der dieses Attribut verwendet
wird, ein Wert zugewiesen wird, wird dieser auf dem Datenserver serialisiert. Wenn das Attribut bei
einer zusammengesetzten Variablen verwendet wird, gilt der Wert dieses Attributs für alle atomaren
und zusammengesetzten Variablen die sich darin befinden. Atomare Variablen enthalten zusätzlich
die Attribute: Datentyp, Konstante und Referenz. Das Attribut Datentyp enthält den Datentyp der für
dies Variable verwendet wird. Das optionale Attribut Konstante, enthält die Information darüber, ob
es sich bei der Variablen um eine Konstante handelt. Der Wert einer Konstanten muss gesetzt sein
bevor eine Choreographie gestartet wurde und darf sich in deren Verlauf nicht mehr ändern. Das
optionale Attribut Referenz zeigt an, ob die Variable einen direkten Wert oder die Referenz auf einen
Wert oder eine Datei enthält. Dieses Attribut wird genutzt, wenn der Choreographiecontainer in
einem System verwendet wird welches Reference Passing [WGSL09] unterstützt.

Prozesse können eine beliebige Anzahl von Aktivitäten enthalten. Da es möglich ist einen Prozess als
Blackbox zu modellieren, muss ein Prozess nicht zwangsläufig Aktivitäten enthalten. Prozesse und
Aktivitäten enthalten das Attribut Name, welches den einzigartigen Namen des jeweiligen Elements
enthält.

Aktivitäten in dem selben Prozess können mit einer Kontrollfluss–Verbindung verbunden werden.
Dabei gilt, dass es sich immer um eine 1:1 Verbindung und eine gerichtete Kante im Graphen handelt.
Falls eine Aktivität mehrere Nachfolger hat, so sind Verbindungen als einzelne Elemente zu betrachten.
Kontrollflüsse haben das Attribut Bedingung. Die Verwendung dieses Attributs ist optional und gibt
an welche Bedingungen erfüllt sein müssen damit der Kontrollfluss ausgeführt wird.

Aktivitäten in zwei verschiedenen Prozessen können mit einer Nachrichtenaustausch–Verbindung,
verbunden werden. Hierbei handelt es sich ebenfalls um eine 1:1 Verbindung. Dieses Element hat das
Attribut Name, welches den Namen des Datenaustauschs und das Attribut Datentyp, welches den
Datentyp der übertragenen Nachricht enthält.

Prozesse und strukturierte Aktivitäten können eigene lokale Variablen enthalten. Diese sind nur lokal
im jeweiligen Element Prozess oder Aktivität vorhanden und auf diese kann nicht von außerhalb
des jeweiligen Elements zugegriffen werden. Der Name der für das Attribut Name verwendet wird,
muss einzigartig für den jeweiligen Prozess bzw. die jeweilige Aktivität in der sie definiert ist, sein.
Das Attribut Datentyp gibt den Datentyp der betreffenden Variablen an. Diese Variablen werden in
der folgenden Arbeit nicht explizit modelliert, weder in der graphischen Darstellung noch im dazu
gehörenden Editor. Sie werden automatisch von dem Editor in den, im Abschnitt 4.3.3 beschriebenen,
Prozessartefakten eingefügt.

Das Element, welches die meisten anderen Elemente verbindet, ist die Datenverbindung. Folgen-
de Verbindungen sind möglich: externer Nutzer zu Choreographiecontainer, externer Nutzer zu
zusammengesetzter Variable, externer Nutzer zu atomarer Variable, Prozess zu Choreographiecon-
tainer, Prozess zu zusammengesetzter Variable, Prozess Teilnehmer zu atomarer Variable, Aktivität
zu Choreographiecontainer, Aktivität zu zusammengesetzter Variable und Aktivität zu atomarer
Variable.

26

4.3. Architektur einer Choreographie mit Choreographiecontainer

Choreographie

+Name

+Adresse

Choreographiecontainer

+Name

Externe Nutzer +Name

Prozess

+Name

+Permanent

Zusammengesetzte Variable
Datenverbindung

+Name

+Datentyp

+Konstante

+Referenz

+Permanent

Atomare Variable

+Name

Aktivität

+Name

+Datentyp

Nachrichtenverbindung

+Bedingung

Kontrollfluss

10..1 1

*

1

*

1

*

1

*

* *

*

*

*

*

*

*

*

*

* *

*

*

* *

1

*

*

*

+Name

+Datentyp

Lokale Variable

1 *

1

*

*

*

Abbildung 4.3.: Datenmodell einer Choreographie mit Choreographiecontainer

4.3.3. Übersicht und Zusammenspiel der Choreographieartefakte

Als Choreographieartefakte werden sämtliche Beschreibungen bezeichnet, die verwendet werden um
eine Choreographie zu spezifizieren und darzustellen. Die für dieses Konzept wichtigsten Artefakte
sind: die graphische Darstellung der Choreographie und die Modelldaten, die Prozessartefakte, der
Container Descriptor und der External User Descriptor. Diese Artefakte können von Hand oder durch
einen in 4.9 beschriebenen Editor zunächst modelliert und dann automatisch generiert werden.

Abbildung 4.4 zeigt den Zusammenhang zwischen demDatenmodell und denChoreographieartefakten.
Die rot umrandeten Elemente sind solche, die für die Erstellung des Container Descriptors benötigt
werden. Für dieses Artefakt werden der Choreographiecontainer, die Choreographievariablen in Form
der atomaren und zusammengesetzten Variablen, die externen Nutzer und die Datenverbindungen
benötigt.

Die blau umrandeten Elemente werden benötigt, um den External User Descriptor zu erstellen.
Für den External User Descriptor werden die Elemente: atomare Variable, Datenverbindung und

27

4. Konzept

Choreographie

+Name

+Adresse

Choreographiecontainer

+Name

Externe Nutzer +Name

Prozess

+Name

+Permanent

Zusammengesetzte Variable
Datenverbindung

+Name

+Datentyp

+Konstante

+Referenz

+Permanent

Atomare Variable

+Name

Aktivität

+Name

+Datentyp

Nachrichtenverbindung

+Bedingung

Kontrollfluss

10..1 1

*

1

*

1

*

1

*

* *

*

*

*

*

*

*

*

*

* *

*

*

* *

1

*

*

*

+Name

+Datentyp

lokale Variable

1 *

1

*

Container

Descriptor

External User

Descriptor

Prozess

Artefakte

*

*

Abbildung 4.4.: Zusammenhang zwischen Datenmodell und Choreographieartefakten

externer Nutzer benötigt. Aus den Datenverbindungen zu den Elementen Choreographiecontainer und
zusammengesetzte Variable wird abgeleitet auf welche atomaren Variablen der externe Nutzer Zugriff
erhält. Ist er mit dem Choreographiecontainer verbunden, sind dies alle Choreographievariablen,
wenn eine Verbindung zu einer zusammengesetzten Variablen besteht, erhält der externe Nutzer
Zugriff auf alle Variablen innerhalb der zusammengesetzten Variablen.

Die grün umrandeten Bereiche enthalten die Elemente, die für die Erstellung der Prozessartefakte
nötig sind. Diese Elemente sind: Prozesse, Aktivitäten, Variablen, Nachrichtenverbindungen und
Kontrollfluss.

Wie in Abbildung 4.5 dargestellt, werden die graphische Darstellung und die Modelldaten der Choreo-
graphie von dem Editor gespeichert und geladen. Beides wird in einer Datei gespeichert, diese enthält
die Informationen darüber, welche Elemente sich an welcher Stelle der Zeichenfläche befinden und
welche Werte das in 4.3.2 beschriebene Datenmodell enthält. Diese Datei wird in dieser Arbeit nicht
näher beschrieben, da dafür bereits vollständige Ansätze, wie Eclipse z. B. GMF [Gro09] existieren.

Aus der graphischen Darstellung und den Modelldaten werden außerdem abstrakte Prozessartefakte
erzeugt. Bei abstrakten Prozessartefakten handelt es sich um Dateien, die in einer Choreographieum-
gebung ausgeführt werden können, da diese zwar syntaktisch korrekt sind, jedoch nur kommu-

28

4.4. Container Descriptor und External User Descriptor

nikationsrelevante Aktivitäten enthalten. Diese können anschließend entweder manuell oder mit
entsprechenden Werkzeugen in ausführbare Prozessartefakte überführt werden. Das Erstellen und
Umwandeln von Prozessartefakten sind nicht Teil dieser Arbeit.

Der Choreographie Descriptor, welcher in 4.4.2 näher beschrieben wird, ist ein weiteres durch den
Editor erzeugtes Artefakt. In diesem Artefakt wird der Aufbau des Choreographiecontainers mit
allen Choreographievariablen und deren Optionen festgehalten. Er dient als Konfigurationsdatei
einer erweiterten Choreographieumgebung, welche in der Lage sein muss, diese Datei zu lesen
und deren Semantik zu verstehen. Durch diese Konfiguration ist es der Umgebung möglich, die
angegebenen Daten auf einem eigenen Datenspeicher zu speichern und bei Bedarf auch wieder zu
laden. Der Datenspeicher befindet sich auf einem eigenen Datenserver, welcher abhängig von der
Implementierung der Choreographieumgebung, z. B. ein REST-Server [Fie00] oder eine Datenbank
sein kann.

Falls externe Nutzer für die Choreographie zugelassen werden, wird der, in 4.4.3 näher beschriebene,
External User Descriptor erstellt. Dieser enthält die Information welche Rollen auf welche Choreo-
graphievariablen in der Choreographie zugreifen dürfen und kann somit als Konfiguration, oder
als Ausgangspunkt für eine komplexere Konfigurationsdatei, für den Zugriff auf den Datenserver
verwendet werden.

4.4. Container Descriptor und External User Descriptor

In diesem Abschnitt wird zunächst ein Beispiel einer Choreographie mit mehreren externen Nutzern
und Prozessen gegeben. Anhand dieses Beispiels wird der Aufbau eines Container Descriptors und
eines External User Descriptors erläutert.

4.4.1. Beispiel

Das, in Abbildung 4.6, gezeigte Beispiel hat drei externe Teilenehmer. Diese drei Teilnehmer sind:
Administrator, Forscher und Interessenten. Die Rolle Administrator kann den Inhalt aller Choreogra-
phievariablen im Choreographiecontainer lesen und auf die Variable Konfiguration schreiben. Die
Rolle Forscher kann Daten aus der zusammengesetzten Choreographievariablen Zwischenergebnis
Gesamt und der atomaren Variablen Endergebnis lesen. Die letzte Rolle, die des Interessenten, kann
nur auf die Variable Endergebnis lesend zugreifen.

Prozess 1 benötigt den Inhalt der Variablen Konfiguration und kann deshalb lesend auf diese zugreifen.
Nachdem Prozess 1 gestartet wurde, werden mehrere komplexe Berechnungen durchgeführt, und
deren Ergebnisse von der Aktivität C1 in Teil B und E1 in Teil C der zusammengesetzten Variablen
Zwischenergebnis Prozess 1 geschrieben. Die zusammengesetzte Variable Zwischenergebnis Prozess 1 ist
selbst ein Teil der zusammengesetzten Variablen Zwischenergebnis Gesamt. Prozess 2 kann unabhängig
von Prozess 1 gestartet werden. Die letzte Aktivität in Prozess 2, D2 schreibt das Ergebnis des Prozesses
in Teil A der Variablen Zwischenergebnis Gesamt. Für den Zugriff auf die Variable Zwischenergebnis
Gesamt wurde nur definiert, dass Prozess 3 Zugriff auf diese hat und nicht genau welche Aktivität. Aus

29

4. Konzept

Editor Graphische

Darstellung

Container

Descriptor

External

Participant

Descriptor

Abstrakte

Prozess-

artefakte

Datenspeicher

Datenserver

Externe Teilnehmer

Verfeinerung der

Prozessartefakte

Erzeugt

Erzeugt
Erzeugt

Speichert

Lädt

Konfiguriert

Ausführbare

Prozess-

artefakte

Speichert

Daten

Lädt Daten

Lädt

Daten

Sendet

Daten

Konfiguriert

Choreographieumgebung Choreographiecontainer

Konfiguriert

Fragt/Speichert

Daten ab

Empfängt Daten

Sendet

Daten

Lädt

Daten

Abbildung 4.5.: Zusammenspiel der Prozessartefakte

30

4.4. Container Descriptor und External User Descriptor

A1

D1B1

C1

F1

E1

Prozess 1

A2

B2

C2

D2

Prozess 2

Choreographie Container

Konfiguration

Administrator

Endergebnis

A3

B3

C3

D3

Prozess 3

Forscher Interessent

Teil C

Teil B

Teil A

Zwischenergebnis

Gesamt

Zwischenergebnis

Prozess 1

Abbildung 4.6.: Beispiel für die Verwendung eines Choreographiecontainers

diesemGrund kann Prozess 3 erst gestartet werdenwenn alle atomaren Variablen von Zwischenergebnis
Gesamt beschrieben wurden.

4.4.2. Container Descriptor

Der Container Descriptor ist ein Choreographieartefakt, welches zusätzlich zu bestehenden Artefakten
wie z. B. der Beschreibung einesWorkflowsmittels BPEL Datei, erzeugt wird. Der Container Descriptor

31

4. Konzept

Listing 4.1 Schema des Wurzelelements

<xs:element name="choreographyContainer" type="ChoreographyContainerType"/>

<xs:complexType name="ChoreographyContainerType">

<xs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element ref="atomicVariable"/>

<xs:element ref="complexVariable"/>

</xs:choice>

<xs:element ref="reader" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

enthält die Beschreibungen des gesamten Choreographiecontainers und der Choreographievariablen
einer Choreographie. Dieses zusätzliche Artefakt kann einer entsprechend modifizierten Choreogra-
phieumgebung zur Verfügung gestellt werden, um es dieser zu ermöglichen Choreographievariablen
zu erkennen. Dadurch, dass es sich um eine eigenständige Datei handelt, kann der Workflow in jeder
beliebigen Choreographiesprache definiert werden. Damit Variablen und Choreographie Teilnehmer
eindeutig zugeordnet werden können, muss jedes name Attribut einzigartig in dem Container Des-
criptor sein. Der vollständige Container Descriptor für das in Abbildung 4.6 dargestellte Beispiel und
das vollständige Schema sind im Anhang bei A.1 bzw. A.3 zu finden.

In Anlehnung an bereits am Institut erstellte Arbeiten (z. B. [DK14]), wird der Namespace urn:IAAS:
choreography:schemas:choreography:choreographycontainer:2014 verwendet. Wie Listing 4.1 zeigt,
ist jeder Choreographiecontainer vom Typ ChoreographieContainerType. Ein Choreographiecontainer
besteht aus einer beliebigen Menge von atomaren Variablen, hier atomicVariable und zusammen-
gesetzten Variablen, hier complexVariable genannt. Zusätzlich zu den Variablen kann ein Choreo-
graphiecontainer auch beliebig viele Elemente vom Typ readerType enthalten. Dies ermöglicht dem
angegebenen Leser Zugriff auf sämtliche Choreographievariablen im Container. Vollen Zugriff wird
explizit nur Lesern eingeräumt, da die Möglichkeit auf alle Variablen schreiben zu können ein zu
hohes Sicherheitsrisiko birgt. Außerdem verfügt jeder Choreographiecontainer über das Pflichtattribut
name, welches den Namen des Choreographiecontainer enthalten muss. Der Name sollte hierbei dem
Namen der Choreographie selbst entsprechen.

Listing 4.2 zeigt den äußeren Aufbau für das Wurzelelement für das in Abbildung 4.6 dargestellte
Beispiel. Dem Beispiel entsprechend hat der Administrator vollen Lesezugriff auf die Variablen:
Konfiguration, Zwischenergebnis und Endergebnis.

Atomare Variablen, in Listing 4.3 atomicVariable genannt, ist vom Typ atomicVariableType. Dieser
Typ besteht aus einer beliebigen Menge von Lesern reader und Schreibern writer, die in beliebiger
Reihenfolge auftreten können. Es ist zwar möglich mehr als einen Schreiber zu verwenden, dies
widerspricht jedoch der Definition in 4.2.1 und wird nur als Möglichkeit beibehalten, für den Fall,
dass die Definition sich ändert und mehrere Schreiber erlaubt werden. Jede atomare Variable hat die
Pflichtattribute name und dataType. Das Attribut name ist vom Typ NCName und gibt entsprechend
den Namen der Variablen an. Das Attribut dataType ist vom Typ String und gibt den Datentyp der

32

4.4. Container Descriptor und External User Descriptor

Listing 4.2 Aufbau des Wurzelelements

<choreographyContainer

xmlns="urn:IAAS:choreography:schemas:choreography:choreographycontainer:2014"

name="Beispiel">

:

:

<reader name="Administrator"/>

</choreographyContainer>

Listing 4.3 Schema einer atomaren Variablen

<xs:element name="atomicVariable" type="atomicVariableType"/>

<xs:complexType name="atomicVariableType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="reader"/>

<xs:element ref="writer"/>

</xs:choice>

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="dataType" type="xs:string" use="required"/>

<xs:attribute name="constant" type="xs:boolean"/>

<xs:attribute name="reference" type="xs:boolean"/>

<xs:attribute name="permanent" type="xs:boolean"/>

</xs:complexType>

Variablen wieder. Dies ermöglicht es, dass der Datentyp unabhängig von einer Programmiersprache
definiert werden kann. Nur den einzelnen Orchestrieungsengines müssen zur Laufzeit bekannt sein
um welchen Datentyp es sich konkret handelt. Somit könnten die Datentypen völlig unabhängig von
der Choreographie definiert werden und bei einer eventuellen Änderungen müssen nur Anpassungen
in den entsprechenden Artefakten und nicht an der gesamten Choreographie durchgeführt werden.
Die folgenden drei Attribute: constant, reference und permanent sind vom Typ Boolean. Das Attribut
constant gibt an, ob es sich um eine Konstante handelt. Der Wert einer Konstante muss bereits vor der
Laufzeit definiert sein und darf sich in deren Verlauf nicht mehr ändern. Das Attribut reference gibt
an, dass es sich bei der Variablen um eine Referenz auf Daten außerhalb des Choreographieumgebung
handelt und deshalb von den einzelnen Orchestrierungsengines entsprechend verwendet werden
muss. Das letzte Attribut, permanent, gibt an, dass die Daten dieser Variablen zum Zeitpunkt des
Schreibens persistent gespeichert werden müssen.

Listing 4.4 zeigt die erstellten Instanzen für die beiden Variablen Konfiguration und Endergebnis.
Konfiguration wird von Administrator beschrieben und von Prozess1 gelesen. Die Variable Endergebnis
wird von Prozess3 beschrieben und von Forscher und Interessent gelesen.

Eine zusammengesetzte Variable, in Listing 4.5 complexVariable genannt, ist vom Typ complexVaria-
bleType. Ein complexVariable Element hat die Elemente atomicVariable und complexVariable. Diese
können in beliebiger Menge und Reihenfolge vorkommen. Da zusammengesetzte Variablen beliebig
geschachtelt werden können, referenziert sich das Element complexVariable selbst. Außerdem verfügt

33

4. Konzept

Listing 4.4 Darstellung der beiden atomaren Variablen aus Beispiel 4.6

<atomicVariable name="Konfiguration" dataType="KonfigurationTyp">

<writer name="Administrator"/>

<reader name="Prozess1"/>

</atomicVariable>

<atomicVariable name="Endergebnis" dataType="EndergebnisTyp" permanent="true">

<writer name="Prozess3"/>

<reader name="Forscher"/>

<reader name="Interessent"/>

</atomicVariable>

Listing 4.5 Schema einer zusammengesetzten Variablen

<xs:element name="complexVariable" type="complexVariableType"/>

<xs:complexType name="complexVariableType">

<xs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element ref="atomicVariable"/>

<xs:element ref="complexVariable"/>

</xs:choice>

<xs:element ref="reader" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="permanent" type="xs:boolean"/>

</xs:complexType>

jede zusammengesetzte Variable über eine beliebige Anzahl von reader Elementen. Jeder Leser hat
vollständigen Zugriff auf sämtlichen Untervariablen der zusammengesetzten Variablen bei der er als
Leser hinterlegt ist. Jede zusammengesetzte Variable hat die Attribute name und permanent, welche
die selbe Bedeutung wie bei einer atomaren Variablen haben. Zusammengesetzte Variablen können
selbst keine Daten enthalten. Deshalb muss das unterste Element immer eine atomare Variable sein.

Listing 4.6 zeigt den Aufbau der Variablen ZwischenergebnisGesamt aus Beispiel 4.6. Die zusammen-
gesetzte Variable, hat als direktes Unterelement eine atomare Variable namens TeilA. Diese wird
von Prozess2 beschrieben. Außerdem enthält die Variable ZwischenergebnisGesamt eine weitere
zusammengesetzt Variable namens ZwischenergebnissProzess. Diese enthält zwei weitere atomare
Variablen TeilB und TeilC. Die atomaren Variablen TeilB und TeilC werden von Aktivität C1 und
E1 beschrieben. Die beiden Leser Forscher und Prozess3 können sämtliche Elemente der Variablen
ZwischenergebnisGesamt lesen.

Die, in Listing 4.7, gezeigten Elemente reader und writer sind vom Typ readerType bzw. writerType.
Sie haben jeweils das Attribut name, welches den einzigartigen Namen des jeweiligen Teilnehmers
wiedergibt. Beispiele für die Verwendung dieser Elemente wurden bereits in den vorhergehenden
Listings gezeigt.

34

4.4. Container Descriptor und External User Descriptor

Listing 4.6 Darstellung der zusammengesetzten Variablen aus Beispiel 4.6

<complexVariable name="ZwischenergebnisGesamt">

<atomicVariable name="TeilA" dataType="TeilATyp">

<writer name="Prozess2"/>

</atomicVariable>

<complexVariable name="ZwischenergebnisProzess1">

<atomicVariable name="TeilB" dataType="TeilBTyp">

<writer name="C1"/>

</atomicVariable>

<atomicVariable name="TeilC" dataType="TeilCTyp">

<writer name="E1"/>

</atomicVariable>

</complexVariable>

<reader name="Forscher"/>

<reader name="Prozess3"/>

</complexVariable>

Listing 4.7 Schema der schreibenden und lesenden Nutzer

<xs:element name="reader" type="readerType"/>

<xs:complexType name="readerType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

<xs:element name="writer" type="writerType"/>

<xs:complexType name="writerType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

4.4.3. External User Descriptor

Der External User Descriptor ist ein weiteres Choreographieartefakt, welches zusätzlich zu der
Choreographiebeschreibung selbst und dem Container Descriptor verwendet werden kann. Dieses
Artefakt beschreibt die externen Nutzer einer Choreographie und auf welche Choreographievariablen
diese Zugriff erhalten. Es kann verwendet werden um daraus Policies, welche z. B. festlegen auf welche
Server ein Nutzer zugreifen darf und welche nicht, für den Zugriff auf die Choreographievariablen
zu erstellen. So könnte die Standardrolle in Beispiel 4.6 Interessent sein. Die Daten aus der Variablen
Endergebnis könnten öffentlich zugänglich sein. Jedem der auf diese Variable zugreift würde somit
automatisch die Rolle Interessent zugewiesen bekommen. Durch die Abfrage einer Kombination aus
Nutzername und Passwort können die anderen Rollen geschützt werden bzw. nur für entsprechende

35

4. Konzept

Listing 4.8 Schema des Wurzelelements des External User Descriptors

<xs:element name="externalUserRoles" type="externalUsersRolesType"/>

<xs:complexType name="externalUsersRolesType">

<xs:sequence>

<xs:element ref="role" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

Listing 4.9 Aufbau des Wurzelelements

<externalUsersRoles

xmlns="urn:IAAS:choreography:schemas:choreography:externalUsers:2014"

name="Beispiel">

:

:

</externalUsersRoles>

Personen zugänglich gemacht werden. Der vollständige External User Descriptor für 4.6 und das
vollständige Schema sind im Anhang bei A.2 bzw. A.4 zu finden.

Wie bei dem External User Descriptor wurde der Namespace urn:IAAS:choreography:schemas: cho-
reography:externalPaticipants:2014, des External User Descriptors, an bereits bestehende Arbeiten
[DK14] angelehnt. Das in Listing 4.8 dargestellte Element externalUserRoles, vom Typ externalPa-
ticipantsRolesType, dient als Wurzelelement. Es kann eine unbegrenzte Menge an role Elementen
enthalten. Außerdem hat es das Attribut name, dieses bezieht sich auf den Namen der gesamten
Choreographie und ist zwingend erforderlich.

Listing 4.9 zeigt das Wurzelelement aus Beispiel 4.6. Der Name entspricht dem gewählten Namen der
Choreographie Beispiel, welche für die gesamte Choreographie festgelegt wurde.

Das in Listing 4.10 gezeigte Element role, vom Typ roleType, beschreibt eine Rolle in der Choreogra-
phie. Es enthält eine beliebige Menge von readsFrom und writesTo Elementen, welche in beliebiger
Reihenfolge auftreten können. Jedes readsFrom Element ist, wie in Listing 4.11 gezeigt, vom Typ
readsFromType und jedes writesTo Element vom Typ writesToType. Beide Elemente können beliebig
viele variable und complexVariable in beliebiger Reihenfolge enthalten. Eine atomare Variable vom
Typ variableTyp hat die Attribute name und dataType, die den Namen und den Datentyp der Varia-
blen wiedergeben. Beide Attribute müssen verpflichtend angegeben werden. Eine zusammengesetzte
Variable vom Typ complexVariable kann beliebig viele variable Elemente enthalten. Eine Schachtelung
ist hier nicht notwendig, da alle atomaren Variablen die sich innerhalb der zusammengesetzten
Variablen befindet aufgelistet werden. Das Attribut name gibt den Namen der zusammengesetzten
Variablen wieder. Hierbei kann der Name der obersten zusammengesetzten Variablen oder auch tiefer
geschalteten zusammengesetzten Variablen entsprechen. Die Schemas der Variablen werden in Listing
4.12 dargestellt.

36

4.4. Container Descriptor und External User Descriptor

Listing 4.10 Schema der Rollen der Nutzer

<xs:element name="role" type="roleType"/>

<xs:complexType name="roleType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="readsFrom"/>

<xs:element ref="writesTo"/>

</xs:choice>

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

Listing 4.11 Schema Schreib- und Lesemöglichkeiten

<xs:element name="readsFrom" type="readsFromType"/>

<xs:complexType name="readsFromType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="variable"/>

<xs:element ref="complexVariable"/>

</xs:choice>

</xs:complexType>

<xs:element name="writesTo" type="writesToType"/>

<xs:sequence maxOccurs="unbounded">

<xs:element ref="variable"/>

<xs:element ref="complexVariable"/>

</xs:sequence>

</xs:complexType>

Listing 4.12 Schema der Variablen

<xs:element name="variable" type="variableType"/>

<xs:complexType name="variableType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="dataType" type="xs:string" use="required"/>

</xs:complexType>

<xs:element name="complexVariable" type="complexVariableType"/>

<xs:complexType name="complexVariableType">

<xs:sequence maxOccurs="unbounded">

<xs:element ref="variable"/>

</xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

37

4. Konzept

Listing 4.13 Darstellung der externen Nutzer Administrator und Forscher aus Beispiel 4.6

<role name="Administrator">

<writesTo>

<variable name="Konfiguration" dataType="KonfigurationTyp"/>

</writesTo>

<readsFrom>

<complexVariable name="ChoreographieContainerBeispiel">

<variable name="Konfiguration" dataType="KonfigurationTyp">

<variable name="TeilA" dataType="TeilATyp">

<variable name="TeilB" dataType="TeilBTyp">

<variable name="TeilC" dataType="TeilCTyp">

<variable name="Endergebnis" dataType="EndegebnisTyp">

</complexVariable>

</readsFrom>

</role>

<role name="Forscher">

<readsFrom>

<variable name="Endergebnis" dataType="EndegebnisTyp">

<complexVariable name="Zwischenergebnis">

<variable name="TeilA" dataType="TeilATyp">

<variable name="TeilB" dataType="TeilBTyp">

<variable name="TeilC" dataType="TeilCTyp">

</complexVariable>

</readsFrom>

</role>

Listing 4.13 zeigt zwei Instanzen von role für das Beispiel 4.6. Die Rolle Administrator schreibt auf
die Variable Konfiguration und kann alle Variablen innerhalb des Choreographiecontainers Choreo-
graphieContainerBeispiel lesen. Die Datentypen der Variablen Konfiguration und Endergebnis sind
dieselben wie bereits im Container Descriptor. Die Rolle Administrator hat die Möglichkeit auf alle
Variablen im Choreographiecontainer zuzugreifen. Dies ist ist ein Sonderfall und wird so behandelt
als wäre der Container eine zusammengesetzte Variable, mit sämtlichen möglichen Variablen und
deren Datentyp als Inhalt. Die Rolle Forscher hat Lesezugriff auf die atomare Variable Endergebnis
und vollständigen Lesezugriff auf die zusammengesetzte Variable Zwischenergebnis und somit auch
auf deren atomare Variablen.

4.5. Graphische Darstellung einer Choreographie mit
Choreographiecontainer

Im folgenden wird eine Notation eingeführt, die dazu dient, die Nutzung eines Choreographiecon-
tainers bzw. von Choreographievariablen in eine Choreographie darzustellen. Diese Notation kann
verwendet werden um bereits bestehende Choregraphien abstrakter darzustellen und um Choreogra-
phiecontainer zu erweitern. Die Darstellung der Choreographie mit Choreographiecontainer kann
somit als ein weiteres Choreographieartefakt betrachtet werden.

38

4.5. Graphische Darstellung einer Choreographie mit Choreographiecontainer

Prozess

(a) Ein Blackbox Prozess

A

DB

C

F

E

Prozess

(b) Ein detaillierter Pro-
zess

Abbildung 4.7.: Zwei Darstellungsoptionen für einen Prozess

4.5.1. Prozesse

Als Prozesse werden die Teilnehmer einer Choreographie bezeichnet. Die Prozesse können entweder
als Blackbox , wie in Abbildung 4.7a dargestellt, ohne Aktivitäten oder detaillierter mit Aktivitäten
dargestellt werden. Diese Darstellungsform ist besonders sinnvoll wenn Top-Down, beginnend mit
der abstraktesten Form der Problemmodellierung, wie in 2.4 beschrieben, modelliert werden soll, da
zu beginn noch nicht bekannt ist wie die Interaktionen innerhalb oder auch zwischen den einzelnen
Teilnehmern aussehen. Es sollte jedoch bereits zu Beginn einer Modellierungsphase überlegt werden
welche Teilnehmer es geben wird und bei welchen Daten es Sinn macht diese prozessübergreifend
verfügbar zu machen. Beide Prozess Typen werden nachfolgend als weiße rechteckige Zeichenfläche,
auf der sich ein farblich hervorgehobenes kleineres Rechteck befindet, dargestellt. Der Name des
jeweiligen Prozesses wird in den farblich hervorgehobenen, oberen Teil des Symbols geschrieben.
Prozesse können durch Aktivitäten präzisiert werden.

Aktivitäten sind Arbeitsschritte innerhalb einer Orchestrierung. Sie entsprechen nicht zwangsläufig
einer Basisaktivität in BPEL [OAS07], es können auch zusammengefasste Abläufe wie in einem Scope
in BPEL oder einer Workunit in WS-CDL [W3C05] sein. Durch diese detailliertere Abstufung wird es
ermöglicht noch während der Ausführung eines Prozess nicht mehr benötigte Daten zu beseitigen,
ähnlich der Garbage Collection in Java [Ora]. Aktivitäten werden durch einen Kreis innerhalb eines
Prozesses dargestellt. Der Kreis enthält entweder einen Namen oder eine Identifikationsnummer
durch die eine Aktivität bei der Modellierung der Orchestrierung mit dem entsprechenden Konstrukt
der zugrunde liegenden Choreographiesprache assoziiert werden kann. Aktivitäten werden mit einer
durchgezogenen Linie wie in 4.5.2 beschrieben verbunden.

39

4. Konzept

(a) Kontrollfluss zwischen 2 zwei Ak-
tivitäten

Nachricht

(b) Nachrichtenaustausch zwischen
Prozessen

Aktion

(c) Daten Verbindung zwischen Cho-
reographiecontainer und Prozes-
sen

Abbildung 4.8.: Darstellung der verschiedenen Verbindungsmöglichkeiten bei der Darstellung einer
Choreographie mit Choreographiecontainer

4.5.2. Verbindungen

Es gibt bei dieser Darstellung drei Arten von Verbindungen: die Verbindung zwischen Aktivitäten
(Kontrollfluss), dem Nachrichtenaustausch zwischen Prozessen und dem Datenaustausch zwischen
dem Choreographiecontainer und Prozessen. Alle drei werden durch Pfeile mit offener Spitze darge-
stellt. Das Objekt von dem der Pfeil ausgeht, sendet bzw. schreibt Daten während das Objekt, auf das
der Pfeil zeigt empfängt bzw. Daten liest.

Der Kontrollfluss zwischen Aktivitäten wird durch einen Pfeil mit durchgehender Linie dargestellt. Mit
diesem Pfeil können nur Aktivitäten innerhalb des selben Prozesses verbunden werden. Es ist somit
nicht möglich eine solche Verbindung außerhalb eines Prozesses zu zeichnen. Diese Verbindung dient
dazu, dem Modellierer eine bessere Übersicht der Abhängigkeiten der Aktivitäten zu ermöglichen.

Der Nachrichtenaustausch zwischen zwei Prozessen wird durch einen Pfeil mit gestrichelter Linie
dargestellt. Der Pfeil kann den Namen der Nachricht enthalten. Mit diesem Pfeil können zwei Akti-
vitäten verbunden werden, die sich nicht im gleichen Prozess finden. Dieser Pfeil stellt das senden
bzw. empfangen einer Nachricht dar. Er wird verwendet um zu zeigen, dass Daten nur einmal ausge-
tauscht werden. Wenn z. B. ein Prozess ein Ergebnis erzeugt, welches nur für einen beliebigen Prozess
interessant ist, ist es nicht notwendig im Choreographiecontainer eine extra Variable zu erstellen und
damit Speicher zu belegen. Außerdem kann der Verbinder genutzt werden um den Austausch privater
Daten, welche möglicherweise nicht für alle Teilnehmer sichtbar sein sollten, zu symbolisieren.

Der Austausch vonDaten zwischen demChoreographiecontainer bzw. dessen Choreographievariablen
und den Prozessen oder externen Nutzern wird durch einen Pfeil mit gepunkteter Linie dargestellt.
Die Linie kann den Namen einer Aktion, wie Lesen oder Schreiben, enthalten. Dieser Pfeil kann
Aktivitäten oder Prozesse mit Choreographievariablen verbinden. Er steht für das lesende bzw.
schreibende Zugreifen auf eine Choreographievariable. Falls eine Choreographievariable mit einem
Prozess verbunden ist, kann jede Aktivität innerhalb dieses Prozesses auf die Daten in der Variablen
zugreifen. Wenn eine Aktivität mit einer Choreographievariablen verbunden wird ermöglicht dies
eine feinere Abstufung der Zugriffsmöglichkeit auf die Variablen.

4.5.3. Choreographiecontainer und Variablen

Choreographiecontainer werden als weißes Rechteck mit einem Namen darin, wie in Abbildung 4.9
gezeigt, dargestellt. Der Container dient als Zeichenfläche für Choreographievariablen. Der Cho-
reographiecontainer kann überall auf der Zeichenfläche platziert werden, die Stelle sollte jedoch so
gewählt werden, dass es ohne Überkreuzungen möglich sein sollte Verbindungen zwischen ihm und

40

4.5. Graphische Darstellung einer Choreographie mit Choreographiecontainer

Choreographiecontainer

Konfiguration Zwischenergebnis Endergebnis

Abbildung 4.9.: Visualisierung einer Choreographiecontainer mit Choreographievariablen

Prozessen zu zeichnen. Wenn der Choreographiecontainer oberhalb oder unterhalb der Prozesse
gezeichnet wird, besteht zusätzlich eine visuelle Abgrenzung zu eventuellen externen Nutzern. Es
darf nur ein Choreographiecontainer pro Choreographie definiert werden. Dies dient dazu, dass der
Modellierer sich keine Gedanken darüber machen muss, in welchen Container er die Choreographieva-
riablen hinzufügen muss. Jeder Teilnehmer ist potentiell in der Lage auf den Choreographiecontainer
zuzugreifen.

Es gibt zwei Arten von Choreographievariablen, die atomaren Choreographievariablen und die zusam-
mengesetzten Choreographievariablen. Beide Arten werden als Rechtecke mit abgerundeten Ecken
und dem jeweiligen Namen darin dargestellt und unterscheiden sich durch das Hintergrundmuster.
Zusammengesetzte Choreographievariablen wie z. B. Zwischenergebnis in Abbildung 4.9 haben ein
quadratisches Hintergrundmuster, während atomare Choreographievariablen, wie Konfiguration oder
Endergebnis, ohne Hintergrundmuster dargestellt werden. Beide Arten von Variablen müssen eine
andere Hintergrundfarbe als der Choreographiecontainer haben um leichter erkennbar zu sein und
dürfen nur innerhalb des Choreographiecontainers platziert werden.

Atomare Choreographievariablen enthalten beliebige Daten. Sie können sowohl simple Datentypen,
wie z. B. eine Ganzzahl enthalten, als auch komplexere Daten wie ein Array aus Ganzzahlen. Wie
bereits in der Definition 4.2.2 erläutert, darf nur ein Prozess schreibend auf eine atomare Variable
zugreifen. Lesend dürfen beliebig viele Prozesse auf eine atomare Choreographievariable zugreifen.

Zusammengesetzte Choreographievariablen dürfen ebenfalls beliebige Datentypen enthalten und
können beliebig tief geschachtelt werden. Die Abgrenzung zu einer atomaren Choreographievariablen
liegt darin, dass mehrere Prozesse schreibend, auf sie zugreifen dürfen. Dies scheint auf den ersten
Blick der Definition einer Choreographievariablen zu widersprechen. Dieser Widerspruch wird
dadurch aufgelöst, dass jeder Prozess nur auf einen einzelnen Teil der Variablen schreiben darf. Wenn
eine Verbindung zu einer zusammengesetzten Variablen gezogen wird, hat der verbundene Prozess
oder die verbundene Aktivität Zugriff auf alle zusammengesetzten und atomaren Variablen innerhalb
der zusammengesetzten Variablen.

Ein Beispiel für dieses Konzept wird in Abbildung 4.10 dargestellt. In diesem Beispiel gibt es drei
Prozesse: den LeihwagenProzess, den FlugProzess und den HotelProzess. Jeder dieser Prozesse sucht
das jeweils beste Angebot.

Die zusammengesetzte Variable Reise besteht aus der atomaren Variablen Leihwagen und der zusam-
mengesetzten Variablen ReisebüroInfo. Die zusammengesetzte Variable ReisebüroInfo besteht aus den
atomaren Variablen Flug und Hotel.

41

4. Konzept

Leihwagen

Reise

LeihwagenProzess

FlugProzess

HotelProzess

Flug

Hotel

ReisebüroInfo

ReisebüroProzess

Abbildung 4.10.: Choreographievariablen mit detaillierten Schreibvorgängen

Die Prozesse Leihwagenprozess, FlugProzess und HotelProzess schreiben auf die entsprechenden Va-
riablen. Da jeder der Prozesse eine direkte Verbindung aufweist, können die Prozesse nur auf die
jeweilige Variable zugreifen. Der ReisebüroProzess hat eine Verbindung zu der zusammengesetz-
ten Variablen ReisebüroInfo und kann somit auf alle Variablen zugreifen, die sich innerhalb dieser
zusammengesetzten Variablen befinden.

4.5.4. Externe Nutzer

Externe Nutzer werden wie in Abbildung 4.11 gezeigt, als Ellipse dargestellt. Die Rolle, die der Nutzer
in der Choreographie spielt, wie z. B. Administrator oder Nutzer muss angegeben werden. Die Rolle
kann dabei auch für eine ganze Gruppe von Nutzern stehen. So könnten hinter der Rolle Nutzer
zum Beispiel in Wirklichkeit 100 Nutzer sein, die alle in ihrer Rolle Nutzer den durch Verbindungen
definierten Zugriff auf bestimmte Variablen haben. Externe Nutzer können sowohl schreibend als
auch lesend auf den Choreographiecontainer bzw. auf die Choreographievariablen zugreifen.

Rolle1 kann in diesem Beispiel nur schreibend auf die Variable Konfiguration zugreifen. Es sind wie im
Fall von Rolle2 auch mehrfach Verbindungen möglich. Falls ein externer Nutzer nur mit dem Choreo-
graphiecontainer und nicht mit einer konkreten Choreographievariablen verbunden wird, bedeutet
dies, dass der Nutzer, je nach Pfeilrichtung des Verbinders, vollständigen lesenden oder schreibenden
Zugriff auf sämtliche Choreographievariablen der Choreographie hat. In Abbildung 4.11 ist es Rolle3
möglich auf Konfiguration, Zwischenergebnis und Endergebnis lesend zuzugreifen. Bei lesenden Zugrif-
fen können in diesem Fall, falls die Variablen private Daten enthalten, Datenschutzprobleme auftreten.
Wenn wie im Fall von Rolle4 vollständiger schreibender Zugriff auf sämtliche Choreographievaria-
blen besteht, könnten massive Störungen im Ablauf oder falsche Ergebnisse erzeugt werden. Rolle4
könnte z. B. ein falsches Zwischenergebnis erzeugen bevor die Prozesse überhaupt an dem Punkt
angekommen sind, an dem diese geschrieben werden. Diese würden entweder zum Anhalten der
Choreographie oder dem Verwenden von falschen Zwischenergebnissen führen. Rolle4 könnte auch
direkt die Variable Endergebnis mit einem Wert füllen und somit das publizieren eines falschen oder
geschönten Ergebnisses ermöglichen. Aus diesen Gründen sollten externe Nutzer wenn möglich nur
direkt mit Choreographievariablen verbunden werden und nicht mit dem Choreographiecontainer.

42

4.6. Anwendungsfälle

Choreographiecontainer

Konfiguration Zwischenergebnis

Rolle1 Rolle2 Rolle3

Schreiben Lesen

Schreiben

Rolle4

Lesen

Endergebnis

Lesen

Abbildung 4.11.: Externe Nutzer mit Lese- und Schreibzugriffen

4.6. Anwendungsfälle

In diesem Abschnitt werden Anwendungsfälle beschrieben bei denen Vorteile durch die Nutzung eines
Choreographiecontainers entstehen. Die Fälle lassen sich auch kombinieren, für diesen Abschnitt
werden sie soweit wie möglich vereinfacht um das Konzept welches hinter ihnen steht deutlich hervor
zu heben.

4.6.1. Veröffentlichung von Zwischenergebnissen

Die Grundvoraussetzung für den, in Abbildung 4.12 dargestellten Anwendungsfall ist, dass komplexe
Berechnungen oder Verarbeitungsschritte in mehrere Prozesse oder Aktivitäten aufgeteilt werden
können. In dem Choreographiecontainer kann eine beliebige Menge von Choreographievariablen,
welche Zwischenergebnisse, z. B. aus komplexen Berechnungen oder auch Zwischenschritte bei der
Verarbeitung von großen Bildermengen [JKP+04], erstellt werden. Die Prozesse und Aktivitäten
stehen für einzelne Berechnungs– oder Verarbeitungsschritte. Bei diesem Anwendungsfall wird abge-
wogen, welche Zwischenergebnisse, über Choreographievariablen öffentlich gemacht werden sollen.
Dies stellt eine Erweiterung des in [BWH08b] beschriebenen sequentiellen Musters dar, da so beliebig
viele externe Nutzer die Zwischenergebnisse einsehen können. Externe Nutzer sind hier in der Rolle
Interessenten vertreten. Interessenten können in diesem Beispiel nur lesend auf die Choreographie-
variablen zugreifen und stellen Personen dar, die an Zwischenergebnissen interessiert sind wie z. B.
Wissenschaftler. Wenn größere Datenmengen entstehen, kann dieser Fall auch mit dem Fall große
Datenmengen in 4.6.5 kombiniert werden. Der Vorteil der Nutzung eines Choreographiecontainers
liegt bei diesem Fall darin, dass bereits bei der ersten Konzeption erwogen werden kann, welche Rollen
außerhalb der Choreographie Zugriff auf welche Daten erhalten. So ist es möglich zu definieren, dass
nur wenige privilegierte Nutzer, z. B. Wissenschaftler Zugriff auf alle Choreographievariablen haben,
während für normale Interessenten nur der Zugriff auf bestimmte Daten, wie Meilensteine, haben.

43

4. Konzept

A1

DNB1

C1

F1

E1

Prozess 1

A2

B2

C2

D2

Prozess 2

Choreographie Container

Zwischenergebnis 1

Interessent

Zwischenergebnis 2 Zwischenergebnis 3 Zwischenergebnis N

AN

BN

CN

DN

Prozess N

...

Abbildung 4.12.: Beispiel für eine Veröffentlichung von Zwischenergebnissen

4.6.2. Wechselnde Parameter

Bei diesem Anwendungsfall werden Daten außerhalb der Choreographieumgebung erzeugt und
über Choreographievariablen diesem zur Verfügung gestellt. In dem, in Abbildung 4.13 dargestellten,
Beispiel wird eine Simulation mit verschiedenen, häufig wechselnden, Parametern, gestartet. Die
Parameter werden in einer Choreographievariablen namens Parameter durch die Rolle Forscher
gespeichert. Die Choreographie besteht aus mehreren Prozessen die gleichzeitig gestartet und Zugriff
auf die Parameter benötigen. Bei Prozess 1 benötigt die Aktivität A1 Zugriff und bei Prozess 2 und 3
die gesamten Prozesse. Alle drei führen Berechnungen durch und Prozess 2 und 3 senden mit ihrer
letzten Aktivität ihre Ergebnisse in Form einer Nachricht an Prozess 1, der die Ergebnisse verwendet
um ein Endergebnis zu erstellen.

Dieses Vorgehen wird in [SK13], als Parameterstudie bezeichnet. Die entsprechenden Parameter
werden dabei durch einen Dialog des Editors abgefragt und in Form einer Nachricht an die Choreo-
graphie gesendet. Mit einem Choreographiecontainer bietet sich die Möglichkeit bereits mehrere
dieser Parametersätze vorzubereiten.

44

4.6. Anwendungsfälle

A1

D1B1

C1

F1

E1

Prozess 1

A2

B2

C2

D2

Prozess 2

Choreographiecontainer

Parameter

Forscher

A3

B3

C3

D3

Prozess 3

Abbildung 4.13.: Beispiel für wechselnde Parameter

4.6.3. Zusammengefasste Ergebnisse

Dieser Anwendungsfall basiert auf der Annahme, dass es einen Prozess gibt, der Daten von meh-
reren anderen Prozessen benötigt. Dieser Fall entspricht, aus Sicht des Choreographiecontainers
bzw. des Prozesses X, dem in [BWH08b] beschriebenen Muster, Fan-In. Abbildung 4.14 zeigt ein
Beispiel für diesen Fall. Die Prozesse 1–N, welche aus Gründen der Übersicht gestapelt dargestellt
werden, starten gleichzeitig, stellen Berechnungen an und speichern diese in der zusammengesetzten
Choreographievariablen Zwischenergebnisse. Außerdem senden die letzten Aktivitäten der Prozesse
eine Nachricht an Prozess X um zu signalisieren, dass diese fertig sind. Dieser Prozess nimmt alle
Nachrichten entgegen und sendet nachdem die Prozesse 1–N ihre Beendigung signalisiert haben eine
entsprechende Nachricht an Prozess Y der die Daten aus der Choreographievariablen liest und die
abschließenden Berechnungen durchführt.

4.6.4. Viele Leser

Dieser Anwendungsfall entspricht dem umgekehrten Fall von zusammengefassten Ergebnissen und
entspricht somit, dem in [BWH08b] beschriebenen Muster Fan-Out. Wie in Abbildung 4.15 dargestellt,
gibt es bei diesem einen Prozess 1 von dessen Ergebnis alle folgenden Prozesse 2–N abhängig sind.
Deshalb sendet Prozess 1 mit seiner letzten Aktivität Startnachrichten an die Prozesse 2–N. Diese
erhalten die benötigten Daten aus der Choreographievariablen Zwischenergebnis.

45

4. Konzept

A2

B2

C2

D2

Prozess 2

A1

B1

C1

D1

Prozess 1

A2

B2

C2

D2

Prozess 2

Choreographie Container

Zwischenergebnis

AY

BY

CY

Prozess Y

A1

B1

C1

D1

Prozess 1

AX

BX

ZX

Prozess X

XX...

Abbildung 4.14.: Beispiel für ein zusammengefasstes Ergebnis

4.6.5. Große Datenmengen

Bei diesem Anwendungsfall sollen große Datenmengen zwischen verschiedenen Prozessen ausge-
tauscht werden. Dies können sowohl atomare Choreographievariablen, wie z. B. binäre Daten in
Form eines Bildes, oder zusammengesetzte Choreographievariablen, wie eine große Serie von Mess-
daten, sein. Das Rechteck in Abbildung 4.16 mit der Beschriftung große Datei steht für eine große
Datei die an einem beliebigen Ort, innerhalb des Choreographieumgebung oder völlig außerhalb
des Systems, gespeichert werden kann. Prozess 1 erstellt als Ergebnis eine große Datei. Die Datei
wird auf einem Server, auf den mittels einer REST–API zugegriffen werden kann, außerhalb des
Choreographieumgebung gespeichert. Die Referenz auf die Datei, in diesem Fall eine URL, wird in der
Choreographievariablen Speicherort abgespeichert. Prozess 2 kann, sobald die entsprechende Datei
von einem Webservice benötigt wird, die Referenz direkt an die benötigten Webservices, wie z. B. in
[BWH08b] beschrieben, gesendet werden. Der Webservice kann in diesem Fall dank der Referenz
die Datei von ihrem Speicherort laden [WGSL09], ohne das sie durch die Orchestrierungsengines
geschickt werden müssen. Die Möglichkeiten Daten zu speichern und auszutauschen, werden im
Abschnitt 4.7.2 näher beschrieben.

46

4.7. Entwurfsentscheidungen

A2

B2

C2

D2

Prozess 2

A1

B1

C1

D1

Prozess 1

A2

B2

C2

D2

Prozess 2

Choreographie Container

Zwischenergebnis

A3

B3

C3

Prozess 1

A1

B1

C1

D1

Prozess 2

Abbildung 4.15.: Beispiel für einen schreibenden Prozess und viele Lesende

4.6.6. Konstanten

Für diesen Fall werden bestimmte Konstanten für die gesamte Choreographie definiert. Im Beispiel von
Abbildung 4.17 sind dies die Konstanten Pi und Grenzwert. Pi steht stellvertretend für Mathematische
Konstanten, welche eventuell von den zugrunde liegenden Systemen unterschiedlich präzise definiert
werden könnten. Grenzwert steht für einen Schwellwert ab wann eine Abweichung zu groß wird.
Der Vorteil für diesen Fall liegt in der Vereinfachung der Prozessartefakte, da die entsprechenden
Variablen nicht für jeden Prozess einzeln deklariert werden müssen. Außerdem müssen im Falle einer
Änderung eines Grenzwertes, nicht alle Einträge für die Variable in jedem einzelnen Prozessartefakt
verändert werden.

4.7. Entwurfsentscheidungen

Dieser Abschnitt beschäftigt sich mit Entwurfsentscheidungen, die bei der Umsetzung eines Editors
und der Choreographieumgebung abgewogen werden müssen.

47

4. Konzept

A1

B1

C1

F1

Prozess 1

A2

B2

C2

D2

Prozess 2

Choreographie Container

Speicherort

Große Datei

Abbildung 4.16.: Beispiel für den Umgang mit großen Datenmengen

4.7.1. Synchronisation

Es gibt drei Möglichkeiten die Synchronisation zwischen dem Choreographiecontainer und den
einzelnen Teilnehmern der Choreographie zu ermöglichen: Synchronisation durch Pullen, durch
Nachrichtenaustausch und eine zentrale Synchronisation durch die Choreographieumgebung.

Synchronisation durch Abfragen

Bei dem Abfragen einer Variablen werden, wie in Abbildung 4.18 dargestellt, von einer Aktivität aus
einer Orchestrierung wiederholt Anfragen an den Choreographiecontainer gesendet. Der Container
liefert hierbei solange negative Antworten, bis die angefragte Ressource tatsächlich für den Prozess
verfügbar ist. Um diese Vorgehensweise umzusetzen ist es nötig, dass die zugrunde liegende Cho-
reographiesprache zwei Aktivitäten zu Verfügung stellt, um auf eine externe Variable zuzugreifen:
Die Möglichkeit Anfragen an den Choreographiecontainer zu senden und eine Schleife um diese
Anfragen zu wiederholen. Die Anzahl von Anfragen sollten begrenzt werden, um im Fehlerfall, z. B.
bei einem Absturz des Choreographiecontainers oder der Nichtverfügbarkeit der Infrastruktur, nicht
endlos ausgeführt zu werden und somit Ressourcen verbrauchen. Des Weiteren müssen Zeitabstände

48

4.7. Entwurfsentscheidungen

A1

D1B1

C1

F1

E1

Prozess 1

A2

B2

C2

D2

Prozess 2

Choreographie Container

PI Grenzwert

A3

B3

C3

D3

Prozess 3

Abbildung 4.17.: Beispiel für die Verwendung von Konstanten

definiert werden um nicht zu viel Bandbreite der zugrunde liegenden Infrastruktur zu verbrauchen.
Dieser Ansatz kann auf der Ausführungsebene oder auf Choreographieebene realisiert werden. Auf
Choreographieebene ist dies nur möglich, falls der Choreographiecontainer in Form eines Proxy
realisiert wird.

Synchronisation durch Nachrichtenaustausch

Abbildung 4.19 zeigt den Ablauf einer Synchronisierung durch Nachrichtenaustausch. Die Aktivität
D1 in Prozess 1 erzeugt in diesem Fall Daten die anschließend in der Choreographievariablen Zwi-
schenergebnis gespeichert werden. Im Anschluss an diese Aktivität sendet die Aktivität E1, welche
durch die dickere Umrandung gekennzeichnet ist, eine Nachricht an Prozess 2. Da die Daten aus der
Variablen Zwischenergebnis von der Aktivität C2 benötigt werden, blockiert die Aktivität B2, die
ebenfalls durch den dickeren Rand gekennzeichnet wurde, den Prozess bis die Nachricht von Aktivität
E1 eintrifft. Diese Form der Synchronisation hat den Vorteil, dass die Synchronisationsaktivitäten auf
Ebene der Choreographie definiert werden. Um diese Variante des Zugriffs umzusetzen, benötigt die
zugrunde liegende Chorgeographiesprache zwei Aktivitäten: Eine Sendeaktivität und eine blockieren-
de Empfangsaktivität. Das Senden der Synchronisationsnachricht kann synchron oder asynchron
erfolgen. Der Empfang der Nachricht muss blockierend sein, da sonst eine Aktivität versuchen könnte
Daten aus einer Choreographievariablen zu lesen, obwohl diese nicht existiert oder leer ist. Dieser
Ansatz kann, falls der Choreographiecontainer in Form eines Webservices realisiert wird, vollständig
auf Choreographie Ebene umgesetzt werden.

49

4. Konzept

A1

D1B1

C1

F1

E1

Prozess 1

A2

C2

D2

Prozess 2

Choreographiecontainer

Lesen

Schreiben

Anfrage

Antwort

Schleife

B2

Zwischenergebnis

Abbildung 4.18.: Synchronisation zwischen den verschiedenen Teilen einer Choreographie durch
Abfragen

Synchronisation durch die Choreographieumgebung

Bei diesem Ansatz übernimmt die jeweils ausführende Orchestrierungsengine in Verbindung mit dem
Choreographiecontainer die Synchronisation, ohne dass eine explizite Synchronisation in den Prozess-
artefakten festgelegt werden muss. Dies wäre möglich wenn ein synchrones Protokoll für die Abfrage
der Daten aus dem Choreographiecontainer verwendet wird. Die jeweilige Orchestrierungsengine
wird bei diesem Ansatz durch Funktionsaufrufe blockiert. Diese Funktionsaufrufe blockieren den
Programmablauf der Choreographieumgebung so lange, bis eine Antwort von dem Choreographiecon-
tainer erfolgt. Bei diesem Ansatz wird die Orchestrierungsengine eng an den Choreographiecontainer
gebunden, da eigene Funktionen für den Abruf von Daten aus einem Datenserver implementiert
werden müssen. Dafür muss keine explizite Synchronisation durch den Modellierer der Choreographie
erfolgen.

50

4.7. Entwurfsentscheidungen

A1

E1B1

C1

H1

F1

Prozess 1

A2

B2

C2

D2

Prozess 2

S
ch

re
ib

e
n

L
e
se

n

Choreographie Container

Synchronistationsnachricht

Zwischenergebnis

G1D1

Abbildung 4.19.: Synchronisation zwischen den verschiedenen Teilen einer Choreographie durch
eine Synchronisationsnachricht

4.7.2. Datenhaltung

Grundsätzlich gibt es zwei Möglichkeiten der Datenhaltung bei diesem Konzept. Die erste Möglichkeit
besteht darin, dass die Daten der Choreographievariablen in der Choreographieumgebung selbst
gespeichert werden. Choreographievariablen werden bei diesem Ansatz wie Variablen, oder dem
Variablen entsprechenden Konstrukt der gewählten Choreographiesprache, behandelt. Der Nachteil
dieses Ansatzes besteht darin, dass der Zugriff von externen Nutzern, mit sämtlichen Zugriffs- und
Sicherheitsmechanismen hinzugefügt werden müsste.

Der andere Ansatz besteht darin, dass die Daten auf einem eigenen Datenserver gespeichert werden.
Die Choreographieumgebung wird bei diesem Ansatz dahingehend erweitert, dass bei dem Aufruf
einer Choreographievariablen, die Daten von dem Datenserver abgerufen werden können. Der

51

4. Konzept

Datenserver kann z. B. in Form eines REST-Servers oder einer Datenbank realisiert werden. Der
Vorteil dieses Ansatzes besteht darin, dass der Zugriff von externen Nutzern mit der Zugriffskontrolle
des Datenservers realisiert werden kann. Der Datenserver kann bei diesem Ansatz getrennt von der
Choreographieumgebung existieren. Je nach Art des Datenservers können auf diesem auch große
Dateien wie z. B. hochauflösende Bilder gespeichert sein.

4.8. Softwarearchitektur eines Choreographiecontainers

Die Softwarearchitektur eines Choreographiecontainers folgt, wie in Abbildung 4.20 gezeigt, einer
Drei-Schichten-Architektur [Mic].

Die oberste Schicht ist die Präsentationsschicht. Diese Schicht ist das User-Interface über welches mit
demChoreographiecontainer interagiert werden kann. Sie enthält die KomponentenWSDL– und REST–
Interface. Da eine große Zahl von Webservice mit WSDL verwendet werden und Orchestrierungen
Webservices verwenden, kann davon ausgegangen werden, dass die meisten Orchestrierungsengines
über eine eingebaute Möglichkeit verfügen, mittels WSDL mit einem Webservice zu kommunizieren.
Der Choreographiecontainer verfügt über ein WSDL–Interface, um die Kommunikation mit einer
Orchestrierungsengine, mit möglichst wenig Änderungen, durchführen zu können. Außerdem verfügt
die Präsentationsschicht über ein REST–Interface, um das Abfragen von Daten durch externe Teilneh-
mer zu ermöglichen und ein Service–Interface um die Funktionsfähigkeit des Choreographiecontainer
zu überwachen. Teil der Präsentationsschicht ist die Zugriffskontrollschicht. Diese prüft ob Anfragen
von externen Nutzern oder Prozessen, wie im Container Descriptor definiert, erlaubt sind und weist
gegebenenfalls unberechtigte Anfragen mit einer entsprechenden Nachricht ab.

Die Logikschicht steuert den Ablauf und koordiniert die Funktionen des Choreographiecontainers. In
dieser Schicht befindet sich die Mapping Komponente. Diese wandelt Anfragen an den Choreogra-
phiecontainer in Anfragen an den Datenserver um oder lädt die Daten aus dem internen Speicher
des Choreographiecontainers. Außerdem enthält diese Schicht die Parser Funktionalitäten, die ver-
wendet werden um die Konfigurationsdatei einzulesen. Die Konfiguration wird anschließend in der
Datenhaltungsschicht gespeichert.

Die Datenhaltungsschicht enthält eine interne Speicherkomponente, in der die Konfiguration des Cho-
reographiecontainers gespeichert wird. Diese Komponente kann in nachfolgenden Arbeiten zur Ver-
besserung der Abfragegeschwindigkeit um einen Cache erweitert werden. Die Datenhaltungsschicht
enthält zusätzlich die Client-Funktionalitäten, die benötigt werden, damit der Choreographiecontainer
mit dem Datenserver kommunizieren kann.

4.9. Choreographie mit Choreographiecontainer Editor

Dieser Abschnitt beschreibt einen Graphischen Editor mit dem es möglich ist, eine Choreographie
mit Choreographiecontainer zu erstellen. Der Editor orientiert sich an bereits bestehenden Editoren
wie dem BPEL Designer [Foud] und dem BPEL4Chor Designer [Son13]. Abbildung 4.21 zeigt die
Oberfläche des Editors. Am oberen Rand befindet sich eine Toolbar die gängige Editor Elemente,

52

4.9. Choreographie mit Choreographiecontainer Editor

Präsentationsschicht

Logikschicht

Datenhaltungsschicht

WSDL Interface REST Interface

Mapping

Datenserver Client

Konfigurationsparser

Interner Datenspeicher

Choreographiecontainer

Zugriffskontrollschicht

Abbildung 4.20.: Softwarearchitektur eines Choreographiecontainers

wie einen Speicher- und einen Ladebutton, beinhaltet. Speichern und laden beziehen sich auf die
graphischen Elemente und deren darunter liegendeModelle. Es wird durch das Drücken von Speichern
nur die Darstellung der Choreographie gespeichert und noch keine spezifischen Artefakte erzeugt.
Die Toolbar kann um weitere Buttons wie: Bearbeiten, Ansicht, Optionen oder Suchen erweitert
werden.

Unter dieser Toolbar, befindet sich eine weitere Toolbar die Buttons speziell für die Verwendung
als Choreographie mit Choreographiecontainer Editor beinhaltet. Der Button mit der Aufschrift
Erzeuge Prozessartefakte, serialisiert die für die verwendete Choreographiesprache spezifischen Pro-
zessartefakte. Der Button Erzeuge Container Descriptor, serialisiert den Container Descriptor, in der in
4.4.2 beschriebenen Form, für die Choreographie. Der letzte Button in der Toolbar Erzeuge External
User Descriptor serialisiert den External User Descriptor, in der in 4.4.3 beschriebenen Form, für die
Choreographie.

Den zentralen Platz des Editors nimmt die, als solche benannte, Zeichenfläche ein. Auf dieser Fläche
können die einzelnen Elemente einer Choreographie mit Choreographiecontainer platziert werden.
Einzelne Elemente können aus der Palette am rechten Rand selektiert werden. Die Elemente sind in
folgenden Gruppen angeordnet: Prozesse, externe Nutzer, Choreographiecontainer, Variablen und
Verbindungen. Die Elemente, die den Gruppennamen tragen und farblich hervorgehoben sind, können
nicht auf der Zeichenfläche platziert werden. Wenn diese angeklickt werden, wird die Gruppe aus-
oder eingeklappt. Wie bereits in 4.3.2 beschrieben, können nur die Elemente Prozess, externer Nutzer
und Choreographiecontainer direkt auf der Zeichenfläche platziert werden. Aktivitäten lassen sich

53

4. Konzept

Reiter1

Reiter2

Reiter3

Erzeuge Prozessartefakte Erzeuge Container Descriptor
Erzeuge External Participant

Description

Externe Teilnehmer

Externer Teilnehmer

Choreographie

Container und Variablen

Choreographie

Container

Einfache Choreographie

Variable

Zusammengesetzte

Choreographie Variable

Verbindungen

Kontrollfluss

Datenverbindung

Nachrichtenaustausch

Prozesse

Prozess

Aktivität

Eigenschaftenbereich

Zeichenfläche

Speichern Laden

Abbildung 4.21.: Oberfläche eines Designers für eine Choreographie mit Choreographiecontainer

nur in einem bereits platzierten Prozess platzieren und die beiden Variablen Typen nur in einem
Choreographiecontainer. Verbindungen lassen sich nur zwischen den entsprechenden Elementen
ziehen. Der Editor ist so konstruiert, dass es nur möglich ist Elemente nur ihren Definitionen gemäß
zu platzieren. Würde z. B. versucht eine Aktivität auf der Zeichenfläche zu platzieren, verändert sich
das Maussymbol und bei einem Klick passiert nichts.

Den unterem Teil des Editors nimmt ein Eigenschaftsbereich ein. In der Leiste, in der in Abbildung
4.21 Eigenschaftsbereich steht, wird der Typ des aktuell auf der Zeichenfläche selektierten Elements
angezeigt. Auf der linken Seite des Bereichs sind mehrere Reiter, die die verschiedenen Einstellungs-
möglichkeiten eines Elements gruppieren. Der aktuell selektierte Reiter wird, wie in Abbildung 4.26
gezeigt, durch einen dickeren Rand hervor gehoben. Die rechte Seite der Ansicht zeigt die Einstellungs-
möglichkeiten an, die der aktuelle Reiter bereitstellt. Diese Reiter stellen ein Graphische Oberfläche
dar, über die die Eigenschaften eines Modellelements verändert werden können.

Die Abbildung 4.22 zeigt die verschiedenen Inhalte der Eigenschaftsbereiche der Elemente einer
Choreographie mit Choreographiecontainer. Alle Elemente außer Verbindungen, auf welche später
näher eingegangen wird, haben den Reiter Eigenschaften. Jedes Element hat in diesem Reiter ein Label
mit dem Inhalt Name und ein leeres Textfeld. In das leere Textfeld wird der, für diese Choreographie,
einzigartige Name des Elements eingetragen. Da der Name vom Typ NCName ist, darf er keinen

54

4.9. Choreographie mit Choreographiecontainer Editor

Eigenschaften

Choreographie Container

NameName:

AdresseAdresse:

Abbildung 4.22.: Eigenschaftsreiter des Choreographiecontainers

Eigenschaften

Prozess

NameName:

Abbildung 4.23.: Eigenschaftsreiter von Prozessen und Aktivitäten

Doppelpunkt enthalten. Außerdem enthält der Reiter ein leeres Textfeld, in welches die Adresse des
Choreographiecontainer eingetragen wird.

Abbildung 4.23 zeigt die Eigenschaftsreiter von Prozessen und Aktivitäten. Da die Details dieser
Elemente zum Zeitpunkt der Erstellung des Choreographiecontainers noch nicht im Vordergrund
stehen, verfügen die Elemente nur über ein Textfeld für den Namen des jeweiligen Elements.

Externe Nutzer haben, wie in Abbildung, 4.24 dargestellt, eine Checkbox mit dem Label Schreiber.
Diese Checkbox stellt einen zusätzlichen Sicherheitsmechanismus dar, da es generell Sicherheitsrisiken
birgt, Teilnehmer von außerhalb der Choreographie Daten in den Choreographiecontainer schreiben
zu lassen. Aus diesem Grund muss zusätzlich zu einer Datenverbindung von externem Nutzer zu dem
Container oder einer Variablen die Checkbox aktiviert werden. Sollte diese nicht aktiviert sein wenn
Choreographieartefakte erzeugt werden sollen, wird die entsprechende Datenverbindung ignoriert.

Der, in Abbildung 4.25, gezeigte Eigenschaftsbereich für das Element zusammengesetzte Variable
hat eine Checkbox mit dem Label Permanent. Das Aktivieren dieser Checkbox setzt das Permanent
Attribut der Variablen auf wahr. Bei allen Variablen die sich innerhalb dieser Variablen befinden wird
das Attribut ebenfalls auf wahr gesetzt. Dadurch wird der Choreographieumgebung signalisiert, dass
diese Variablen persistent gespeichert werden müssen.

Atomare Variablen haben, wie in Abbildung 4.26, zusätzlich zu der Permanent Checkbox, eine Check-
box mit dem Label Referenz und eine mit dem Label Konstante. Die Checkbox mit dem Label Referenz
setzt das Referenz Attribut auf den Wert wahr und die Checkbox mit dem Label Konstante setzt das

55

4. Konzept

Base

Externer Teilnehmer

NameName:

Schreiber

Abbildung 4.24.: Eigenschaftsreiter eines externen Nutzers

Base

Zusammengesetzte Variable

NameName:

Permanent

Abbildung 4.25.: Eigenschaftsreiter einer zusammengesetzten Variable

Konstante Attribut auf den Wert wahr. Zusätzlich zu dem Feld mit dem Namen der Variablen, hat eine
atomare Variable ein leeres Feld mit dem Label Datentyp. Der Datentyp muss angegeben werden. Der
Datentyp der Variablen wird in Form einer Zeichenkette eingetragen. Falls dieses Eintragen nicht
vorgenommen wird, wird beim Versuch Prozessartefakte zu erzeugen ein Fehler angezeigt. Die beiden
Reiter Schreiber und Leser haben eine leere Liste mit dem Label Teilnehmer. Wird der Button Hinzu-
fügen gedrückt, öffnet sich ein Fenster in dem sämtliche Teilnehmer einer Choreographie, welche die
Möglichkeit haben auf Choreographievariablen zuzugreifen, angezeigt werden. Durch einen Klick
kann der entsprechende Teilnehmer selektiert werden und durch das drücken des Hinzufügen Buttons
wird der Teilnehmer in die Liste hinzugefügt. Die Verwendung der Reiter Schreiber und Leser ist
optional. Das Verbinden durch Datenflusspfeile ist verpflichtend. Die Pfeile können für eine bessere
Übersicht ausgeblendet werden.

Die Eigenschaftsbereiche der Verbindungen unterscheiden sich von denen der anderen Elemente. Eine
Verbindung vom Typ Kontrollfluss verfügt im Eigenschaftsbereich, wie in Abbildung 4.27 gezeigt,
über ein leeres Textfeld mit dem Label Bedingung. Die Verwendung dieses Feldes ist optional und
gibt Bedingungen an, die erfüllt sein müssen, damit der Kontrollfluss ausgeführt wird.

Der Eigenschaftsbereich einer Verbindung vom Typ Nachrichtenaustausch hat, wie in Abbildung
4.28 zwei leere Textfelder, eines mit dem Label Nachricht und eine mit dem Label Datentyp. Das
Nachrichtenfeld ist optional zu befüllen. Wenn ein Name eingetragen wird, wird er, wie in 4.8 gezeigt,
in der Linie des Pfeils angezeigt. Der Datentyp ist, in Form einer Zeichenkette einzutragen. Die
Angabe des Datentyps ist verpflichtend.

56

4.9. Choreographie mit Choreographiecontainer Editor

Eigenschaften

Schreiber

Leser

Variable

NameName:

Eigenschaften

Schreiber

Leser

Variable

Variable

Konstante

Hinzufügen

Eigenschaften

Schreiber

Leser

Variable

Variable
Hinzufügen

Auswählen

Teilnehmer A

Teilnehmer B

...

Permanent

Referenz

Datentyp: Typ

Abbildung 4.26.: Eigenschaftsreiter einer atomaren Variablen

57

4. Konzept

Eigenschaften

Kontrollfluss

BedingungBedingung:

Abbildung 4.27.: Eigenschaftsreiter eines Kontrollflusses

Eigenschaften

Nachrichtenaustausch

NachrichtNachricht:

DatentypDatentyp:

Abbildung 4.28.: Eigenschaftsreiter einer Nachrichtenverbindung

Eine Verbindung vom Typ Datenfluss hat, wie in Abbildung 4.29 zu sehen ist, ein leeres Textfeld mit
dem Label Name. In dieses Textfeld kann man optional die Art des Zugriffs, z. B. lesen oder schreiben
eintragen.Wird eine Name eingetragen, wird diese in der Linie des Verbinders angezeigt. Das Eintragen
eines Namens dient nur der Übersicht und wird in kein Choreographieartefakt übernommen.

Eigenschaften

Datenfluss

NameName:

Abbildung 4.29.: Eigenschaftsreiter eines Datenflusses

58

5. Realisierung

In diesem Abschnitt werden die Erweiterungen des BPEL4Chor [Son13] beschrieben, die für die
Realisierung, des in dieser Arbeit beschriebenen, graphischen Konzepts einer Choreographie mit
Choreographiecontainer, durchgeführt wurden. Der bereits existierende BPEL4Chor Editor wurde als
Grundlage gewählt, da dieser zum Einen, den Teil der zur Erstellung von Prozessartefakten bereits
implementiert hat und zum Anderen als Eclipse Plugin realisiert wurde und somit vergleichsweise
einfach erweiterbar ist.

5.1. Übersicht des vorhandenen Editors

Abbildung 5.1 zeigt ein Bildschirmfoto des bereits existierenden Editors. Am oberen Ende des Editors
befindet sich, gelb umrandet, eine Toolbar mit der, die wichtigsten Elemente zur Steuerung eines
Editors wie z. B. ein File Abschnitt mit dem Choreographien gespeichert und geladen werden können.
Der rot umrandete Teil des Editors ist die Zeichenfläche, auf der die graphischen Elemente platziert
werden können. Diese Elemente können auf der rechten Seite, aus der rot umrandeten, Palette
selektiert werden. Im unteren Teil des Editors befindet sich grün umrandet ein Eigenschaftenfenster,
in dem die Eigenschaften eines selektierten, graphischen Elements, auf verschiedene Reiter aufgeteilt,
angezeigt werden.

Der bereits bestehende Editor, erfüllt somit, von Seiten der Nutzeroberfläche bereits alle Bedingungen
die in 4.9 beschrieben wurden. Jedoch müssen noch die für die Choreographie mit Choreographiecon-
tainer nötigen, zusätzlichen graphischen Elemente hinzugefügt werden. Wie diese modelliert wurden,
wird in den folgenden Abschnitten beschrieben.

Die in den nächsten Abschnitten gezeigten Modelle wurden in [Son13] beschrieben und auch erstellt.
Siemussten jedoch erweitert werden umdieMöglichkeit zu bieten Choreographienmit Choreographie-
container darstellen zu können. Aus diesem Grund wird nur auf die entsprechenden Erweiterungen
dieser Modelle eingegangen, die benötigt werden um eine Choreographie mit Choreographiecontainer
darstellen und bearbeiten zu können.

5.2. EMF Modelle

Abbildung 5.2 zeigt das Ecore Modell der Participant behavior description. Dieses Modell enthält im
wesentlichen die Elemente die im BPEL Standard beschrieben wurden. Von besonderem Interesse
für das Konzept dieser Arbeit sind die beiden Elemente Process und Scope. Diese beiden Elemente

59

5. Realisierung

Abbildung 5.1.: Übersicht des Editors

enthalten bereits gemäß BPEL Standard Variablen. Aus diesem Grund werden sie genutzt um die Da-
tenmodell Elemente, Prozess und Aktivität aus 4.3.2 darzustellen. An der graphischen Darstellung und
der standardmäßigen Verwendung der Elemente wurde nichts verändert. Sie wurden nur dahingehend
verändert, dass es möglich ist eine Verbindung zwischen ihnen und einem Choreographiecontainer
bzw. einer Choreographievariablen zu erstellen.

Um eine Verbindung zwischen verschiedenen Elementen zu ermöglichen wurde das Element CData-
Linkable eingeführt, dessen Eigenschaftenfenster in 5.3 dargestellt wird. Die Eigenschaften Abstract
und Interface wurden auf true gesetzt, um eine Verwendung als Interface zu ermöglichen. Jedes
Element, dass von diesem Element erbt, kann potentiell mit dem anderen verbunden werden. Das
Interface CDataLinkable wurde im PBD Modell hinzugefügt, da die beiden Elemente Process und Scope
in der Lage sein müssen es zu nutzen. Das hinzufügen des Interfaces CDataLinkable ist die einzige
Änderung die am Datenmodell der Elemente Process und Scope durchgeführt wurde. Das Einfügen
des Interfaces in dieses Modell ist notwendig, da zwar die Elemente aus dem PBD Modell im Chor
Modell sichtbar sind, aber nicht die Elemente aus dem Chor Modell im PBD Modell. Es wäre möglich
dies zu ändern, dies würde dann allerdings zu einer gegenseitigen Abhängigkeit führen.

Das in Abbildung 5.4 dargestellte Ecore Modell der Choreographie hat als Wurzelelement Choreo-
graphy. Dieses Element beschreibt die Choreographie als ganzes, das bedeutet, dass alle Elemente
die direkt mit der Choreographie in Verbindung stehen als Referenz unter dieses Element eingefügt
werden müssen. In diesem Fall sind es die Elemente ccontainer, cexternalparticipant und cdatalinks.
Diese Elemente entsprechen dem Choreographiecontainer, den externen Nutzern und den Datenver-
bindungen im Datenmodell 4.3.2. Durch die entsprechende Einstellungen kann jede Choreography

60

5.3. Tooling Definition Model

Abbildung 5.2.: Ecore Modell der PBD

nur eine Instanz vom Typ ccontainer erstellen und eine unbegrenzte Menge von cexternalparticipant
und cdatalinks Instanzen.

Die Elemente CContainer, CContainerSimpleVariable, CContainerComplexVariable und CExternalParti-
cipant erben von dem Interface CDataLinkable und enthalten die in 4.3.2 beschriebenen Attribute.
Diese Elemente entsprechen: dem Choreographiecontainer, der atomaren Variablen, der zusammen-
gesetzten Variablen und dem externen Nutzer im Datenmodell 4.3.2. Die Namen sind hierbei vom Typ
EString und die binären Attribute vom Typ EBoolean. Da sowohl der Choreographiecontainer als auch
zusammengesetzte Variablen, Choreographievariablen enthalten können, haben diese Referenzen auf
die beiden Choreographievariablen Typen CContainerSimpleVariable und CContainerComplexVaria-
ble.

Das Element CDataLink ermöglicht es durch dessen beide Attribute target und source vom Typ
CDataLinkable, die Elemente, die von diesem Interface erben, miteinander zu verbinden.

5.3. Tooling Definition Model

Abbildung 5.5 zeigt das gesamte Tooling Definition Model des BPEL4Chor Editors. Jedes graphische
Element, welches auf der Zeichenfläche platziert werden soll, muss in dieses Modell eingetragen
werden. DasModell ist inmehrere Tool Groups aufgeteilt. Die Einträge für den Choreographiecontainer,
die Choreographievariablen, die externen Nutzer und die Datenverbindung, wurden zu der Gruppe
Choreography hinzugefügt.

61

5. Realisierung

Abbildung 5.3.: Eigenschatfsfenster des CDataLinkable Elements

Abbildung 5.4.: Ecore Modell der Choreographie

5.4. Graphical Definition Model

Abbildung 5.6 zeigt die Figure Descriptors des Graphical Definition Model. Die ausgeklappten Elemente
sind jene, welche neu hinzugefügt wurden. Die Figure Descriptors bestimmen das Aussehen der
graphischen Elemente auf der Zeichenfläche. Die Zeichenfläche wird durch das Canvas Chor Element
definiert. Das Canvas Chor Element enthält alle Elemente die, graphische Elemente definieren.

Das Aussehen aller, in dieser Arbeit erstellten, graphischen Elemente wird in der Figure Gallery
choreography festgelegt. Das Aussehen des Choreographiecontainers wird durch die CContainerFigure
festgelegt. Das erste Element gibt die äußere Form des Elements an. Diese wurde gemäß der graphi-
schen Darstellung in 4.5 als Rectangle, zu deutsch Rechteck festgelegt. Zusätzlich wird ein Layout,

62

5.5. Mapping Definition Model

Abbildung 5.5.: Das Tooling Definition Model

ein Label, welches in Abbildung 5.8 dargestellt wird und ein Compartment, welches in Abbildung 5.7
dargestellt wird, festgelegt. Das Compartment gibt die Form des Teils von dem Element an, in welcher
andere Elemente platziert werden können. Diese Form wurde auch als rechteckig festgelegt.

Die atomare Variable ist als CContainerSimpleVariableFigure und die zusammengesetzte Variable
als CContainerComplexVariableFigure definiert. Beide Sorten werden als abgerundete Rechtecke
dargestellt. Diese Figures beinhalten zusätzlich ein Background Element, welches es ermöglicht
eine Hintergrundfarbe für das Element festzulegen. Die Farbe der atomaren Variablen ist weiß
und der zusammengesetzten Variablen ist hellgrau. Die zusammengesetzte Variable enthält, wie
auch der Choreographiecontainer ein Compartment, da in diesem Element weitere atomare und
zusammengesetzte Variablen platziert werden können.

Die externen Nutzer werden als CExternalParticipantFigure definiert. Dieses Element ist vom Prinzip
gleich aufgebaut wie der Choreographiecontainer, es enthält jedoch kein Compartment.

Die Datenverbindung wird als CDataLinkFigure definiert. Diese enthält als Element eine Polyline
Connection. Diese lässt das Element als eine Verbindungslinie erkennen, da es sich bei der Polyline
um keine geometrische Figur sondern um eine Linie handelt.

Abbildung 5.9 zeigt die Nodes für geometrische Formen und Connections für Verbindungen, des
Modells. Diese repräsentieren die Elemente welche später graphisch dargestellt werden sollen. Zu
diesem Zweck beinhalten sie die Information, welcher Figure Descriptor zu ihnen gehört.

5.5. Mapping Definition Model

Das Mapping Definition Model verbindet die Ecore, Tooling Definition und Graphical Definition Mo-
delle miteinander. Abbildung 5.10 zeigt das Mapping Definition Model des Editors. Die ausgeklappten

63

5. Realisierung

Abbildung 5.6.: Figure Descriptor Abschnitt im Graphical Definition Model

Abbildung 5.7.: Compartment Abschnitt im Graphical Definition Model

Elemente wurde neu hinzugefügt. Die Elemente, die direkt auf der Zeichenfläche platziert werden
können, werden entweder als Top Node Reference oder als Link Mapping definiert.

Der Choreographiecontainer entspricht hier dem Element Top Node Reference CContainer. Dieses
Element gibt an, welches Element aus dem Ecore Modell dargestellt werden soll. Die Top Node
Reference enthält unter anderem das Node Mapping. Abbildung 5.11 zeigt das Eigenschaftenfenster
des Node Mappings für einen Choreographiecontainer. Das Element Attribut gibt an, welches Element
aus dem Ecore Modell dargestellt werden soll. Das Diagram Node Attribut gibt an welche Node und
über diese welchen Figure Descriptor bzw. welche Form das Element haben soll. Zusätzlich enthält
das Node Mapping, über die Child References, die Information welche Kindelemente ein Element

64

5.5. Mapping Definition Model

Abbildung 5.8.: Labels Abschnitt im Graphical Definition Model

Abbildung 5.9.: Nodes und Connections Abschnitt im Graphical Definition Model

beinhalten kann. Das Eigenschaftenfenster der Child Reference, der CContainerComplexVariable wird
in Abbildung 5.12 dargestellt. Die AttributeChild und Referenced Child geben anwelchesNodeMapping
die Child Reference beinhaltet. In diesem Fall das Node Mapping der zusammengesetzten Variablen
CContainerComplexVariable. Das Attribut Compartment gibt an, in welchem Compartment dieses
Element später platziert werden soll. Das Compartment entspricht in diesem Fall dem Compartment
Mapping CContainerCompartment, welches bedeutet, dass das Element im Choreographiecontainer
Element platziert werden kann. Das Attribut Containment Feature gibt an über welche Referenz
auf die Daten im Ecore Modell zugegriffen werden können. In diesem Fall kann auf die Daten über
die Referenz des Choreographiecontainers auf die Daten im Ecore Modell zugegriffen werden. Das
Element CExternalParticipant folgt einem ähnlichen Aufbau, enthält jedoch keine Child References
und Compartments.

Abbildung 5.13 zeigt das Eigenschaftenfenster der Child Reference der zusammengesetzten Variablen,
die sich innerhalb der Child Reference der zusammengesetzten Variablen befindet. Dies stellt somit eine

65

5. Realisierung

Abbildung 5.10.:Mapping Definition Model

Rekursion dar, da zusammengesetzte Variablen sich selbst enthalten können. Die Attribute entspre-
chen den selben wie in der Child Reference eine Stufe darüber, jedoch ändert sich das Compartment, da
als Compartment nicht der Choreographiecontainer sondern das Compartment CContainerComplexVa-
riableCompartment der zusammengesetzten Variablen CContainerComplexVariable verwendet wird.
Eine weitere wichtige Änderung ist, dass nicht mehr über die Referenz des Choreographiecontainer,
CContainer.complexvariables, sondern über die Referenz der zusammengesetzten Variablen CCon-
tainerComplexVariable.complexvariables auf die Ecore Daten der beinhalteten zusammengesetzten
Variablen zugegriffen wird.

Verbindungen werden nicht als Nodes sondern als Link Mapping realisiert. Abbildung 5.14 zeigt das
Eigenschaftenfenster der Datenverbindung CDataLink. Das Containment Feature gibt an, über welche
Ecore Referenz auf die Daten zugegriffen wird. Das Element Attribut gibt an, welches Element aus dem
Chor Ecore Modell verwendet wird. Die Attribute Source Feature und Target Feature geben an, welche
Elemente als Ursprung und Ziel der Verbindung verwendet werden können. In diesem Fall sind die
die source und target Attribute des CDataLink Elements im Ecore Modell. Das Attribut Diagram Link
gibt an, welche graphische Repräsentation, aus dem Graphical Definition Model, für die Verbindung
verwendet wird. Das letzte Attribut Tooling, gibt an welches Element aus dem Tooling Definition
Model verwendet wird, um die Verbindung zu erzeugen.

66

5.5. Mapping Definition Model

Abbildung 5.11.: Eigenschaftenfenster des CContainers

Abbildung 5.12.: Eigenschaftenfenster der Child Reference einer CComplexVariable

Abbildung 5.13.: Eigenschaftenfenster der Child Reference einer CComplexVariable innerhalb einer
CComplexVariable zur Selbstbeinhaltumg

67

5. Realisierung

Abbildung 5.14.: Eigenschaftenfenster eines CDataLink

5.6. Ergebnis

Abbildung 5.15 zeigt das Ergebnis, des aus den vorherigen Abschnitten beschriebenen Editor. Im
oberen Teil der Choreographie sind zwei externe Nutzer zu sehen, die einmal schreibend und einmal
lesen, auf den Choreographiecontainer darunter zugreifen. Der Choreographiecontainer enthält
eine atomare Variable und eine zusammengesetzte Variable. Die zusammengesetzte Variable enthält
selbst eine atomare und eine zusammengesetzte Variable, welche wiederum zwei atomare Variablen
enthält.

Die verschiedenen Teilnehmer sind über lesende und schreibende Datenverbindungen mit den Choreo-
graphievariablen imChoreographiecontainer und auch demChoreographiecontainer selbst verbunden.
Es werden auch die Möglichkeiten gezeigt, dass die Choreographievariablen sowohl mit einem Process
als auch mit einem Scope verbunden werden können.

Der untere Teil der Abbildung 5.15 zeigt das Eigenschaftenfenster einer atomaren Variablen. Die
Darstellung der verschiedenen Attribute werden von Eclipse automatisch in dieser Form generiert. In
die beiden Felder Name und DataType können die entsprechenden Daten in Form einer Zeichenkette
eingetragen werden. Die Attribute Constant, Link und Permanent sind als Dropdown–Listen realisiert
und die Werte true oder false können ausgewählt werden.

5.7. Geplante Umsetzung für das Einfügen von Variablen

Abbildung 5.16 zeigt ein stark vereinfachtes Beispiel einer Choreographie mit zwei Teilnehmern und
einem Choreographiecontainer der eine atomare und eine zusammengesetzte Variable enthält, welche
wiederum zwei weitere atomare Variablen enthalten. Die Prozesse beider Teilnehmer haben Zugriff
auf die atomare Variable SimulationID und die Scopes der Prozesse auf die atomare Variable Teil1 bzw.
Teil2. Listing 5.1 zeigt den BPEL Code der automatisch für Prozess1 aus der graphischen Darstellung
generiert werden soll. In dem bisherigen Editor wurden keine Variablen erzeugt sondern nur Prozess1,
main und Berechnung1.

68

5.7. Geplante Umsetzung für das Einfügen von Variablen

Abbildung 5.15.: Beispiel des Editors mit Choreographiecontainer

Die Variablen werden, je nachdem welche Prozesse und welche Scopes mit den Variablen verbunden
sind, in die BPEL Serialisierung eingefügt. Die eingefügten Variablen sind alle vom Typ String, da in
diesem Typ alle anderen Datentypen enthalten sein können und die Größe der enthalten Daten keiner
direkten Größenbeschränkung, außer der mit welcher Größe von Strings die Orchestrierungsengine
effektiv umgehen kann, unterliegt. Der erzeugt BPEL Code ist standardkonform.

69

5. Realisierung

Abbildung 5.16.: Beispiel einer Darstellung auf der Zeichenfläche

Listing 5.1 BPEL Serialisierung von Prozess1

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<bpel:process

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

name="Prozess1" xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/abstract">

<variables>

<variable name="SimulationID" type="xsd:String" />

</variables>

<bpel:sequence name="main">

<bpel:scope name="Berechnung1">

<variables>

<variable name="Teil1" type="xsd:String" />

</variables>

</bpel:scope name="Berechnung1">

</bpel:sequence>

</bpel:process>

70

6. Zusammenfassung und Ausblick

Um dem Problem dass Daten nur statisch in den Prozessmodellen einer Choreographie modelliert
werden können und dass unnötige viele Daten über Teilnehmer einer Choreographie geleitet wer-
den, zu begegnen, wird das Konzept des Choreographiecontainers eingeführt. Das Konzept der
Choreographiecontainer wird in dieser Arbeit erläutert und es wird ein bestehender graphischer
Editor [Son13] dahingehend erweitert, dass Choreographien mit Choreographiecontainer graphisch
modelliert werden können.

Die Grundlagen deren Verständnis wichtig sind werden in Kapitel 2 erläutert.

In Kapitel 4 werden Arbeiten, deren Ansätze sich ebenfalls mit dem Datenfluss in Choreographien
befassen, vorgestellt.

In Kapitel 4 wird zunächst das grobe Konzept eines Choreographiecontainers vorgestellt. Zu diesem
Zweck werden die benötigten Komponenten, die ein System welches Choreographiecontainer unter-
stützt, beschrieben und ein Datenmodell für die Choreographie selbst erläutert. Im Anschluss wird
der Zusammenhang, der zwischen den einzelnen Choreographieartefakten und zu dem Datenmodell
besteht, erläutert. Außerdem werden die beiden, für die Choreographie mit Choreographiecontainer
benötigten Choreographieartefakte: Container Descriptor und External User Description beschrie-
ben und anhand eines konkreten Beispiels erläutert. Darauf folgend wird eine graphische Notation
eingeführt, mit der es möglich ist eine Choreographie mit Choreographiecontainer darzustellen. Es
werden auch Anwendungsfälle dargestellt und beschrieben, bei denen der Einsatz von Choreogra-
phiecontainern besonders sinnvoll ist. Im weiteren Verlauf werden die Softwarearchitektur eines
Choreographiecontainers und die graphische Oberfläche eines Editors der für die Modellierung einer
Choreographie mit Choreographiecontainer verwendet werden kann erläutert.

Für die Implementierung des graphischen Editors, wird in Kapitel 5 ein bereits bestehender Editor
[Son13], erweitert um eine Choreographie mit Choreographiecontainer darstellen zu können. Zu
diesem Zweck werden die GMF– und EMF–Modelle angepasst und aus diesen entsprechender Co-
de generiert. Aufgrund des engen Zeitrahmens konnten keine entsprechenden Komponenten zur
Serialisierung der Choreographieartefakte erstellt werden.

Abschließend kann man sagen, dass die Ziele dieser Arbeit größtenteils erreicht werden. Es existiert
nun ein umfassendes Konzept, auf das in weiteren Arbeiten aufgebaut werden kann. Außerdem
können mittels des BPEL4Chor–Editors Choreographien mit Choreographiecontainer graphisch
dargestellt werden.

71

6. Zusammenfassung und Ausblick

Ausblick

Weitere Arbeiten könnten sich mit der Erstellung der eigentlichen Choreographiecontainer Kompo-
nente beschäftigen. Es existiert zwar bereits eine grobe Softwarearchitektur für diese Komponente
jedoch müsste diese noch implementiert werden. Es wäre besonders sinnvoll, diese als einfachen
Webservice mit Anschluss an einen Datenserver zu realisieren, da Orchestrierungsengines bereits
über die Möglichkeiten verfügen, Webservices aufzurufen. Besondere Teilgebiete dieser Arbeit könnte
die Möglichkeit zur internen Speicherung von Daten innerhalb des Choreographiecontainers, zwecks
schnellerer Antwortzeiten, beschäftigen. Außerdem könnte die Möglichkeit analysiert werden, ei-
ne Garbage Collection einzuführen, die es ermöglicht nicht mehr genutzte Daten sowohl aus dem
internen Speicher als auch aus dem Datenserver zu löschen. Des Weiteren könnte die Möglichkeit,
verschiedene Datensysteme wie einen REST–Server und eine Datenbank gleichzeitig an den Choreo-
graphiecontainer anzuschließen und die Daten entsprechend ihrer Art und Verwendungshäufigkeit
auf diese zu verteilen, analysiert und realisiert werden.

Eine weitere Arbeit könnte sich mit der Erweiterung der verwendeten Orchestrierungsengine befas-
sen, um die Möglichkeit, Daten von außerhalb des Workflows von einem Choreographiecontainer
abzufragen. Ein besonderes wichtiges und interessantes Themengebiet für diese Arbeit ist der Umgang
mit verschiedenen Datentypen aus dem Choreographiecontainer und in der eigentlichen Choreogra-
phie.

Eine kleinere Arbeit könnte sich mit der Möglichkeit beschäftigen, aus dem erstellten External
User Descriptor, gültige und standardisierte Zugriffskonfigurationen für verschiedene Arten von
Datenservern zu erstellen.

72

A. Anhang

Listing A.1 Vollständiger Container Descriptor von Beispiel 4.6

<?xml version="1.0" encoding="utf-8"?>

<choreographyContainer

xmlns="urn:IAAS:choreography:schemas:choreography:choreographycontainer:2014"

name="Beispiel">

<atomicVariable name="Konfiguration" dataType="KonfigurationTyp">

<writer name="Administrator"/>

<reader name="Prozess1"/>

</atomicVariable>

<complexVariable name="ZwischenergebnisGesamt">

<atomicVariable name="TeilA" dataType="TeilATyp">

<writer name="Prozess2"/>

</atomicVariable>

<complexVariable name="ZwischenergebnisProzess1">

<atomicVariable name="TeilB" dataType="TeilBTyp">

<writer name="C1"/>

</atomicVariable>

<atomicVariable name="TeilC" dataType="TeilCTyp">

<writer name="E1"/>

</atomicVariable>

</complexVariable>

<reader name="Forscher"/>

<reader name="Prozess3"/>

</complexVariable>

<atomicVariable name="Endergebnis" dataType="EndergebnisTyp" permanent="true">

<writer name="Prozess3"/>

<reader name="Forscher"/>

<reader name="Interessent"/>

</atomicVariable>

</choreographyContainer>

73

A. Anhang

Listing A.2 Vollständiger External User Descriptor von Beispiel 4.6

<?xml version="1.0" encoding="utf-8"?>

<externalUsersRoles

xmlns="urn:IAAS:choreography:schemas:choreography:externalUsers:2014"

name="Beispiel">

<role name="Administrator">

<writesTo>

<variable name="Konfiguration" dataType="KonfigurationTyp"/>

</writesTo>

<readsFrom>

<complexVariable name="ChoreographieContainerBeispiel">

<variable name="Konfuguration" dataType="KonfugurationTyp">

<variable name="TeilA" dataType="TeilATyp">

<variable name="TeilB" dataType="TeilBTyp">

<variable name="TeilC" dataType="TeilCTyp">

<variable name="Endergebnis" dataType="EndegebnisTyp">

</complexVariable>

</readsFrom>

</role>

<role name="Forscher">

<readsFrom>

<variable name="Endergebnis" dataType="EndegebnisTyp">

<complexVariable name="Zwischenergebnis">

<variable name="TeilA" dataType="TeilATyp">

<variable name="TeilB" dataType="TeilBTyp">

<variable name="TeilC" dataType="TeilCTyp">

</complexVariable>

</readsFrom>

</role>

<role name="Forscher">

<readsFrom>

<variable name="Endergebnis" dataType="EndergebnisTyp">

</readsFrom>

</role>

</externalUsersRoles>

74

Listing A.3 XML-Schema des Container Descriptors

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="urn:IAAS:choreography:schemas:choreography:choreographycontainer:2014"

targetNamespace="urn:IAAS:choreography:schemas:choreography:choreographycontainer:2014"

elementFormDefault="qualified">

<xs:element name="choreographyContainer" type="ChoreographyContainerType"/>

<xs:complexType name="ChoreographyContainerType">

<xs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element ref="atomicVariable"/>

<xs:element ref="complexVariable"/>

</xs:choice>

<xs:element ref="reader" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

<xs:element name="atomicVariable" type="atomicVariableType"/>

<xs:complexType name="atomicVariableType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="reader"/>

<xs:element ref="writer"/>

</xs:choice>

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="dataType" type="xs:string" use="required"/>

<xs:attribute name="constant" type="xs:boolean"/>

<xs:attribute name="reference" type="xs:boolean"/>

<xs:attribute name="permanent" type="xs:boolean"/>

</xs:complexType>

<xs:element name="complexVariable" type="complexVariableType"/>

<xs:complexType name="complexVariableType">

<xs:sequence>

<xs:choice maxOccurs="unbounded">

<xs:element ref="atomicVariable"/>

<xs:element ref="complexVariable"/>

</xs:choice>

<xs:element ref="reader" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="permanent" type="xs:boolean"/>

</xs:complexType>

<xs:element name="reader" type="readerType"/>

<xs:complexType name="readerType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

<xs:element name="writer" type="writerType"/>

<xs:complexType name="writerType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

</xs:schema>
75

A. Anhang

Listing A.4 XML-Schema des External User Descriptors

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="urn:IAAS:choreography:schemas:choreography:externalUsers:2014"

targetNamespace="urn:IAAS:choreography:schemas:choreography:externalUsers:2014"

elementFormDefault="qualified">

<xs:element name="externalUsersRoles" type="externalUsersRolesType"/>

<xs:complexType name="externalUsersRolesType">

<xs:sequence>

<xs:element ref="role" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

<xs:element name="role" type="roleType"/>

<xs:complexType name="roleType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="readsFrom"/>

<xs:element ref="writesTo"/>

</xs:choice>

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

<xs:element name="readsFrom" type="readsFromType"/>

<xs:complexType name="readsFromType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="variable"/>

<xs:element ref="complexVariable"/>

</xs:choice>

</xs:complexType>

<xs:element name="writesTo" type="writesToType"/>

<xs:sequence maxOccurs="unbounded">

<xs:element ref="variable"/>

</xs:sequence>

</xs:complexType>

<xs:element name="variable" type="variableType"/>

<xs:complexType name="variableType">

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="dataType" type="xs:string" use="required"/>

</xs:complexType>

<xs:element name="complexVariable" type="complexVariableType"/>

<xs:complexType name="complexVariableType">

<xs:sequence maxOccurs="unbounded">

<xs:element ref="variable"/>

<xs:element ref="complexVariable"/>

</xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

</xs:schema>

76

Literaturverzeichnis

[BWH08a] A. Barker, J. Weissman, J. van Hemert. Orchestrating Data-Centric Workflows. In The 8th
IEEE International Symposium on Cluster Computing and the Grid (CCGrid), S. 210–217.
IEEE Computer Society, 2008. (Zitiert auf Seite 19)

[BWH08b] A. Barker, J. B. Weissman, J. van Hemert. Eliminating the Middleman: Peer-to-peer
Dataflow. In Proceedings of the 17th International Symposium on High Performance Distri-
buted Computing, HPDC ’08, S. 55–64. ACM, New York, NY, USA, 2008. (Zitiert auf den
Seiten 19, 43, 45 und 46)

[DK14] G. Decker, O. Kopp. Topologgy.xsd, 2014. URL https://github.com/IAAS/

BPEL4Chor-model/blob/master/doc/BPEL4Chor20schema/topology.xsd. (Zitiert
auf den Seiten 32 und 36)

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for modeling
choreographies. In Web Services, 2007. ICWS 2007. IEEE International Conference on, S.
296–303. IEEE, 2007. (Zitiert auf den Seiten 6, 16 und 17)

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.
Dissertation, 2000. (Zitiert auf den Seiten 24 und 29)

[Foua] A. S. Foundation. Apache ODE. URL http://ode.apache.org/. (Zitiert auf den Seiten 11
und 20)

[Foub] A. S. Foundation. External Variable: JDBC Mapping. URL http://ode.apache.org/

extensions/external-variables-jdbc-mapping.html. (Zitiert auf Seite 20)

[Fouc] A. S. Foundation. External Variables. URL http://ode.apache.org/extensions/

external-variables.html. (Zitiert auf Seite 20)

[Foud] E. Foundation. BPEL Designer Project. URL https://eclipse.org/bpel/. (Zitiert auf
Seite 52)

[Foue] E. Foundation. Eclipse. URL https://eclipse.org/home/index.php. (Zitiert auf
Seite 16)

[Fow] M. Fowler. GUI Architectures. URL http://martinfowler.com/eaaDev/uiArchs.html.
(Zitiert auf Seite 17)

[Gro09] R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley Professional, 1 Auflage, 2009. (Zitiert auf den Seiten 17 und 28)

77

https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor20schema/topology.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor20schema/topology.xsd
http://ode.apache.org/
http://ode.apache.org/extensions/external-variables-jdbc-mapping.html
http://ode.apache.org/extensions/external-variables-jdbc-mapping.html
http://ode.apache.org/extensions/external-variables.html
http://ode.apache.org/extensions/external-variables.html
https://eclipse.org/bpel/
https://eclipse.org/home/index.php
http://martinfowler.com/eaaDev/uiArchs.html

Literaturverzeichnis

[JKP+04] J. C. Jacob, D. S. Katz, T. Prince, B. G. Berriman, J. C. Good, A. C. Laity, E. Deelman,
G. Singh, M.-H. Su. The montage architecture for grid-enabled science processing of
large, distributed datasets. 2004. (Zitiert auf Seite 43)

[KL08] O. Kopp, F. Leymann. Choreography Design Using WS-BPEL. IEEE Data Eng. Bull.,
31(3):31–34, 2008. (Zitiert auf Seite 11)

[Maj] B. Majewski. A Shape Diagram Editor. URL http://www.eclipse.org/articles/

Article-GEF-diagram-editor/shape.html. (Zitiert auf Seite 17)

[Mic] Microsoft. Layered Application. URL http://msdn.microsoft.com/en-us/library/

ff650258.aspx. (Zitiert auf Seite 52)

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0, 2007. URL
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. (Zitiert auf
den Seiten 7, 15, 20 und 39)

[Ora] Oracle. Java Garbage Collection Basics. URL http://www.oracle.com/webfolder/

technetwork/tutorials/obe/java/gc01/index.html. (Zitiert auf Seite 39)

[RHEA05] N. Russell, A. H. M. ter Hofstede, D. Edmond, W. M. P. van der Aalst. Workflow Data
Patterns: Identification, Representation and Tool Support. In Proceedings of the 24th
International Conference on Conceptual Modeling, ER’05, S. 353–368. Springer-Verlag, 2005.
(Zitiert auf Seite 20)

[SBPM09] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd Auflage, 2009. (Zitiert auf Seite 17)

[SK13] M. Sonntag, D. Karastoyanova. Model-as-you-go: An Approach for an Advanced In-
frastructure for Scientific Workflows. Journal of Grid Computing, 11(3):553–583, 2013.
(Zitiert auf Seite 44)

[Son13] O. Sonnauer. Modellierung von Scientific Workflows mit Choreographien. Diploma thesis,
University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and Infor-
mation Technology, Germany, 2013. URL http://www2.informatik.uni-stuttgart.

de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3429&engl=1. (Zitiert auf den Seiten 9,
16, 52, 59 und 71)

[Ull10] C. Ullenboom. Java ist auch eine Insel: Das umfassende Handbuch (Galileo Computing).
Galileo Computing, 2010. (Zitiert auf den Seiten 16 und 17)

[W3Ca] W3C. XML Schema Tutorial. URL http://www.w3.org/TR/2008/REC-xml-20081126/.
(Zitiert auf Seite 12)

[W3Cb] W3C. XML Schema Tutorial. URL http://www.w3schools.com/schema/default.asp.
(Zitiert auf Seite 13)

[W3C05] W3C. Web Services Choreography Description Language Version 1.0, 2005. URL http:

//www.w3.org/TR/ws-cdl-10/. (Zitiert auf den Seiten 19 und 39)

78

http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://msdn.microsoft.com/en-us/library/ff650258.aspx
http://msdn.microsoft.com/en-us/library/ff650258.aspx
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3429&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3429&engl=1
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3schools.com/schema/default.asp
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

Literaturverzeichnis

[WGSL09] M. Wieland, K. Görlach, D. Schumm, F. Leymann. Towards Reference Passing in Web
Service and Workflow-based Applications. In Proceedings of the 13th IEEE Enterprise
Distributed Object Conference (EDOC 2009), S. 109–118. IEEE, 2009. (Zitiert auf den
Seiten 19, 26 und 46)

[WK14] A.Weiß, D. Karastoyanova. Enabling coupledmulti-scale, multi-field experiments through
choreographies of data-driven scientific simulations. Computing, S. 1–29, 2014. (Zitiert
auf den Seiten 6, 13 und 14)

Alle URLs wurden zuletzt am 11. 01. 2015 geprüft.

79

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen
	2.1 Grundbegriffe
	2.2 Extensible Markup Language
	2.3 XML Schema Definition
	2.4 Modellierung von Choreographien
	2.5 Business Process Execution Language
	2.6 BPEL4Chor
	2.7 Eclipse

	3 Verwandte Arbeiten
	4 Konzept
	4.1 Beispiel
	4.2 Definitionen
	4.3 Architektur einer Choreographie mit Choreographiecontainer
	4.4 Container Descriptor und External User Descriptor
	4.5 Graphische Darstellung einer Choreographie mit Choreographiecontainer
	4.6 Anwendungsfälle
	4.7 Entwurfsentscheidungen
	4.8 Softwarearchitektur eines Choreographiecontainers
	4.9 Choreographie mit Choreographiecontainer Editor

	5 Realisierung
	5.1 Übersicht des vorhandenen Editors
	5.2 EMF Modelle
	5.3 Tooling Definition Model
	5.4 Graphical Definition Model
	5.5 Mapping Definition Model
	5.6 Ergebnis
	5.7 Geplante Umsetzung für das Einfügen von Variablen

	6 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

