Institut flr Architektur von Anwendungssystemen

Universitat Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Masterarbeit Nr.9

Konzept und Implementierung far
Choreographiecontainer

Norman Wolter

Studiengang: Softwaretechnik
Prifer/in: Jun.-Prof. Dr.-Ing Dimka Karastoyanova
Betreuer/in: Dipl.-Inf. Michael Hahn,

M.Sc. Wirt.-Inf. Andreas Weil3

Beginn am: 15. Juli 2014

Beendet am: 14. Januar 2015

CR-Nummer: D.1.7,D.2.6, H.4.1

Kurzfassung

Diese Arbeit beschaftigt sich mit dem Konzept von Choreographiecontainern. Choreographiecon-
tainer dienen dazu, einen Datenfluss auflerhalb des reguliren Daten— und Kontrollflusses einer
Choreographie zu definieren. Aufierdem erleichtern Choreographiecontainer das Modellieren und
Pflegen der einzelnen Prozessmodelle einer Choreographie, da konkrete Daten zur Laufzeit und nicht
bereits wihrend der Modellierung der Prozessmodelle, bzw. der Choreographie, hinzugefiigt werden
konnen. Des Weiteren werden Choreographien um externe Nutzer erweitert. Diese konnen auf die
Daten innerhalb eines Choreographiecontainers zugreifen und erméglichen es, Daten die in der Cho-
reographie erzeugt werden fiir definierte Teilnehmer, die kein Teil der eigentlichen Choreographie
sind, zugéinglich zu machen.

Auflerdem beschreibt diese Arbeit, einen bereits an der Universitat Stuttgart erstellten, Choreogra-
phieeditor der um die Méglichkeit der Darstellung einer Choreographie mit Choreographiecontainer
erweitert wurde.

Inhaltsverzeichnis

1. Einleitung

2. Grundlagen
2.1. Grundbegriffe 0L
2.2. Extensible Markup Language
2.3. XML Schema Definition
2.4. Modellierung von Choreographien.
2.5. Business Process Execution Language
2.6. BPEL4Chor
27. Eclipse

3. Verwandte Arbeiten

4. Konzept
41. Beispiel
4.2. Definitionen

4.3. Architektur einer Choreographie mit Choreographiecontainer

4.4. Container Descriptor und External User Descriptor

4.5. Graphische Darstellung einer Choreographie mit Choreographiecontainer

4.6. Anwendungsfille
4.7. Entwurfsentscheidungen
4.8. Softwarearchitektur eines Choreographiecontainers
4.9. Choreographie mit Choreographiecontainer Editor

5. Realisierung
5.1. Ubersicht des vorhandenen Editors
52. EMFModelle
5.3. Tooling Definition Model
5.4. Graphical Definition Model
5.5. Mapping Definition Model
56. Ergebnis 0oL
5.7. Geplante Umsetzung fiir das Einfiigen von Variablen

6. Zusammenfassung und Ausblick
A. Anhang

Literaturverzeichnis

11
11
12
13
13
15
16
16

19

21
21
22
23
29
38
43
47
52
52

59
59
59
61
62
63
68
68

71

73

77

Abbildungsverzeichnis

2.1.

2.2.

2.3.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

4.9.

4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.

4.19.

4.20.
4.21.
4.22.
4.23.
4.24.
4.25.
4.26.
4.27.

Darstellung einer Choreographie in zwei verschiedenen Versionen einer Choreogra-
phieumgebung
Top—down (links) und bottom—-up (rechts) Modellierungsansatz. Darstellung basierend
auf [WKI14]
BPEL4Chor Artefakte. Darstellung basiert auf [DKLWO07]

Ein Beispiel fiir die Verwendung eines Choreographiecontainers
Architekturiibersicht aller Teilnehmer
Datenmodell einer Choreographie mit Choreographiecontainer
Zusammenhang zwischen Datenmodell und Choreographieartefakten
Zusammenspiel der Prozessartefakte oL,
Beispiel fiir die Verwendung eines Choreographiecontainers
Zwei Darstellungsoptionen fiir einen Prozess
Darstellung der verschiedenen Verbindungsmoglichkeiten bei der Darstellung einer
Choreographie mit Choreographiecontainer
Visualisierung einer Choreographiecontainer mit Choreographievariablen
Choreographievariablen mit detaillierten Schreibvorgéngen
Externe Nutzer mit Lese- und Schreibzugriffen
Beispiel fiir eine Veroffentlichung von Zwischenergebnissen
Beispiel fiir wechselnde Parameter Lo L L
Beispiel fiir ein zusammengefasstes Ergebnis o Lo
Beispiel fiir einen schreibenden Prozess und viele Lesende
Beispiel fiir den Umgang mit groffen Datenmengen
Beispiel fiir die Verwendung von Konstanten
Synchronisation zwischen den verschiedenen Teilen einer Choreographie durch Ab-
fragen.
Synchronisation zwischen den verschiedenen Teilen einer Choreographie durch eine
Synchronisationsnachricht oo L
Softwarearchitektur eines Choreographiecontainers
Oberflache eines Designers fiir eine Choreographie mit Choreographiecontainer
Eigenschaftsreiter des Choreographiecontainers
Eigenschaftsreiter von Prozessen und Aktivitdten
Eigenschaftsreiter eines externen Nutzers
Eigenschaftsreiter einer zusammengesetzten Variable
Eigenschaftsreiter einer atomaren Variablen
Eigenschaftsreiter eines Kontrollflusses

4.28.
4.29.

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.
5.12.
5.13.

5.14.
5.15.
5.16.

Eigenschaftsreiter einer Nachrichtenverbindung 58

Eigenschaftsreiter eines Datenflusses 58
Ubersicht des Editors 60
Ecore Modellder PBD 61
Eigenschatfsfenster des CDataLinkable Elements 62
Ecore Modell der Choreographie 62
Das Tooling Definition Model L 63
Figure Descriptor Abschnitt im Graphical Definition Model 64
Compartment Abschnitt im Graphical Definition Model 64
Labels Abschnitt im Graphical Definition Model 65
Nodes und Connections Abschnitt im Graphical Definition Model 65
Mapping Definition Model L L 66
Eigenschaftenfenster des CContainers 67
Eigenschaftenfenster der Child Reference einer CComplexVariable 67
Eigenschaftenfenster der Child Reference einer CComplexVariable innerhalb einer

CComplexVariable zur Selbstbeinhaltumg 67
Eigenschaftenfenster eines CDataLink 68
Beispiel des Editors mit Choreographiecontainer 69
Beispiel einer Darstellung auf der Zeichenflache 70

Verzeichnis der Listings

2.1.
2.2.
2.3.
24.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

4.10.
4.11.
4.12.

Beispiel fiir die Darstellung der Daten einer Personin XML 13
XSD des Beispiel fiir die Darstellung der Daten einer Personin XML 13
Definition einer BPEL Variable nach [OAS07] 15
Beispiel fiir eine Variable in BPEL oL 16
Schema des Wurzelelements o 32
Aufbau des Wurzelelements L oL L oL 33
Schema einer atomaren Variablen Lo oL 33
Darstellung der beiden atomaren Variablen aus Beispiel 4.6 34
Schema einer zusammengesetzten Variablen 34
Darstellung der zusammengesetzten Variablen aus Beispiel 4.6 35
Schema der schreibenden und lesenden Nutzer 35
Schema des Wurzelelements des External User Descriptors 36
Aufbau des Wurzelelements o 36
Schema der Rollen der Nutzer 37
Schema Schreib- und Leseméglichkeiten, 37
Schemader Variablen 37

4.13. Darstellung der externen Nutzer Administrator und Forscher aus Beispiel 4.6 38

5.1. BPEL Serialisierung von Prozessl, 70
A.1. Vollstindiger Container Descriptor von Beispiel 4.6 73
A.2. Vollstandiger External User Descriptor von Beispiel 4.6 74
A.3. XML-Schema des Container Descriptors 75
A.4. XML-Schema des External User Descriptors 76

Abkurzungsverzeichnis

Apache ODE Apache Orchestration Director Engine
APT Application Programming Interface
BPEL Business Process Execution Language
EMF Eclipse Modeling Framework

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

PBD Participant behavior description

REST Representational State Transfer
WS-CDL Web Services Choreography Description Language
WSDL Web Services Description Language
XML ...l Extensible Markup Language

XSD ..ol XML Schema Definition

1. Einleitung

Die Nutzung von Workflowtechnologien hat Einzug in eine Vielzahl von Anwendungsgebieten
gehalten. Zum einen werden sie in der Industrie zur Darstellung und Automatisierung von Ge-
schiftsprozessen, zum anderen in der Forschung zur Durchfithrung von Simulationen verwendet.
Ein globales Modell in dem mehrere Prozesse bzw. Simulationen, als Teilnehmer miteinander inter-
agieren wird als Choreographie bezeichnet. Das Verhalten jedes einzelnen Teilnehmers wird durch
ein Prozessmodell definiert. Eine Choreographie beschreibt auch die Kommunikation zwischen den
einzelnen Teilnehmern. In der Forschung kénnen auf diese Art einzelne Simulationen zu einer grof3en
Simulation, wie z. B. einer Multi—Skalen Simulation, zusammengefasst werden. Insbesondere bei den
wissenschaftlichen Simulationen kénnen dabei grole Datenmengen anfallen. Diese Daten kénnen
z.B. eine grofle Menge an Einzelergebnissen oder auch ein vollstdndiger 3D—Scan eines menschlichen
Korpers sein.

In bisherigen Choreographien konnen Daten nur statisch in den einzelnen Prozessmodellen hinterlegt
werden oder dynamisch in Form von Nachrichten, zur Laufzeit, an eine Prozessinstanz geschickt
werden. Wenn mehrere Prozessmodelle dieselben Daten benétigen, wie z. B. eine Konstante, muss diese
in jedem Modell einzeln hinterlegt werden. Wenn eine Anderung der Konstante eintritt miissen alle
Prozessmodelle entsprechend angepasst werden. Wenn Daten dynamisch zwischen Prozessinstanzen
ausgetauscht werden, kann es passieren, dass ein Anwender die benétigten Daten iiber eine Nachricht
an eine der Prozessinstanzen, welche auf diese Nachricht wartet, sendet und auf sie reagiert, in
dem die Prozessinstanz die Nachricht an andere Teilnehmer weitersendet. Im schlimmsten Fall
werden dabei die Daten iiber Prozessinstanzen geleitet, die die Daten gar nicht benétigen und nur
zur Koordination anderer Prozessinstanzen verwendet werden. Durch dieses Verhalten entsteht ein
hoheres Datenaufkommen als eigentlich benétigt wird.

Daher wird im Rahmen dieser Arbeit ein Konzept fiir sogenannte Choreographiecontainer vorgestellt.
Choreographiecontainer erméglichen es, Datenfliisse zwischen den Teilnehmern einer Choreographie
und Daten die au3erhalb der Choreographieumgebung gespeichert sind zu definieren und kénnen
somit die oben beschriebenen Probleme reduzieren, indem alle Teilnehmer die Zugrift auf bestimmte
Daten brauchen, diese gleichzeitig erhalten konnen. Ein weiterer Vorteil bei der Verwendung eines
Choreographiecontainers ist es, dass auch Interessenten, die nicht Teil der eigentlichen Choreographie
sind, Zugriff auf die erzeugten Daten gegeben werden kann.

Das primire Ziel dieser Arbeit ist es, ein Konzept fur die Darstellung, der Verwendung und des
Aufbaus eines Choreographiecontainers zu entwickeln. Auflerdem wird ein bestehender Choreogra-
phieeditor [Son13] erweitert um Choreographien mit Choreographiecontainern graphisch modellieren
zu kénnen.

1. Einleitung

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 — Grundlagen beschiftigt sich mit grundlegenden Konzepten und Technologien, deren
Verstandnis fiir diese Arbeit wichtig sind.

Kapitel 3 — Verwandte Arbeiten beschiftigt sich mit anderen Arbeiten, die sich mit einer ahnlichen
Thematik befassen.

Kapitel 4 — Konzept beschreibt das Konzept von Choreographiecontainern und geht detailliert auf
deren graphische Darstellung mit und ohne Hilfe eines graphischen Editors ein.

Kapitel 5 — Realisierung beschiftigt sich mit der geplanten und der durchgefiihrten Implementie-
rung der Editor Komponente einer Choreographie mit Choreographiecontainer.

Kapitel 6 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und be-
schreibt Moglichkeiten fiir weiterfithrende Arbeiten zum Thema Choreographiecontainer.

10

2. Grundlagen

In diesem Kapitel werden die Grundlagen beschrieben, die fiir diese Arbeit verwendet werden.
Zunichst werden die Grundbegriffe: Orchestrierung, Choreographie, Orchestrierungsengine und Cho-
reographieumgebung erlautert. Im Anschluss werden die Extensible Markup Language (XML) und die
XML Schema Definition (XSD) erlautert. Des Weiteren wird auf die Modellierung einer Choreographie,
so wie die Orchestrierungssprache WS-Business Process Execution Language (BPEL) und die darauf
aufbauende Choreographiesprache BPEL4Chor, eingegangen. Da fiir die Realisierung des Konzepts
die Entwicklungsumgebung Eclipse und deren Erweiterungen Modeling Framework (EMF), Graphical
Editing Framework (GEF) und Graphical Modeling Framework (GMF) verwendet werden, werden diese
niher beschrieben.

2.1. Grundbegriffe

Dieser Abschnitt erldutert einige Grundbegriffe die fiir das Verstandnis dieser Arbeit besonders
wichtig sind.

2.1.1. Orchestrierung und Choreographie

Eine Orchestrierung, im Kontext dieser Arbeit, beschreibt einen Prozess, dessen Aktivitaten als
Webservices realisiert sind. Die Interaktion mit den Webservices wird dabei nur aus Sicht dieses
Prozesses beschrieben [KL08].

Wenn mehrere Prozesse miteinander interagieren nennt man dies eine Choreographie. Die Choreogra-
phie beschreibt dabei jedoch nicht unbedingt den Ablauf der einzelnen Prozesse, sondern konzentriert
sich hauptsichlich auf Nachrichtenaustausch zwischen den Prozessen. Eine Choreographie beschreibt
somit das Zusammenspiel verschiedener Prozesse aus einer globalen Perspektive [KLO08].

2.1.2. Orchestrierungsengine und Choreographieumgebung

Eine Orchestrierungsengine ist in der Lage, einen in einer Prozessbeschreibungssprache wie BPEL
beschriebenen Prozess auszufithren. Die Orchestrierungsengine selbst dient dabei als eine Art Contai-
ner in der die Prozess Beschreibung deployt werden kann. Die Orchestrierungsengine liest dabei die
Prozessbeschreibung ein und fiihrt die darin enthaltenen Befehle, wie den Aufruf eines Webservices,
aus. Ein Beispiel einer solchen Orchestrierungsengine ist Apache ODE (Orchestration Director Engine)
[Foua].

11

2. Grundlagen

Choreographieumgebung| orchestrierungs-
engine2

Prozess2

Choreographieumgebung

Orchestrierungs- | /*
Orchestrierungsengine enginel /

.| Orchestrierungs-
engine3

Prozessl /| \\\ Prozess3
Prozessl Prozess2 Prozess3 ~ 4

(a) Darstellung einer Choreographie mit einer Or- (b) Darstellung einer Choreographie mit mehre-
chestrierungsengine ren Orchestrierungsengine

Abbildung 2.1.: Darstellung einer Choreographie in zwei verschiedenen Versionen einer Choreogra-
phieumgebung

Eine Choreographieumgebung ist ein Konstrukt welches, wie in Abbildung 2.1 dargestellt, die zu
einer Choreographie gehérenden Prozesse und Orchestrierungsengines auf denen die Prozesse ausge-
fuhrt werden, umfasst. Da eine Orchestrierungsengine potentiell in der Lage ist mehrere Prozesse
gleichzeitig auszufithren, kann die Choreographie Umgebung, wie in Abbildung 2.1a dargestellt, aus
nur einer Orchestrierungsengine auf der simtliche Prozesse einer Choreographie ausgefithrt werden
bestehen. Eine Choreographieumgebung kann aber auch, wie in Abbildung 2.1b dargestellt, aus meh-
reren Orchestrierungsengines bestehen auf denen, die jeweils zu dieser Choreographie gehérenden
Prozesse ausgefithrt werden.

2.2. Extensible Markup Language

XML ermoglicht es, Daten hierarchisch dargestellt, in einem Textdokument zu speichern [W3Cal].
Die fiir diese Arbeit wichtigsten Teile einer XML Datei sind Elemente und Attribute. Listing 2.1
zeigt ein Beispiel fiir die XML Darstellung der Daten einer Person. Das Wurzelelement dieser XML
Darstellung ist das Element person. Dieses wird durch das Tag <person> begonnen und endet mit dem
schliefenden Tag </person>. In diesem Wurzelelement befinden sich drei weitere Elemente namens:
vorname, nachname und alter. Das Element person enthalt zusétzlich das Attribut status. Dieses stellt
eine Metainformation fiir dieses Element dar.

12

2.3. XML Schema Definition

Listing 2.1 Beispiel fiir die Darstellung der Daten einer Person in XML

<?xml version="1.0" encoding="UTF-8"?>

<person status="wichtig">
<vorname>Max</vorname>
<nachname>Mustermann</nachname>
<alter>42</alter>

</person>

Listing 2.2 XSD des Beispiel fiir die Darstellung der Daten einer Person in XML

<xs:element name="person">
</xs:complexType>
<Xs:sequence>
<xs:element name="vorname" type="xs:string"/>
<xs:element name="nachname" type="xs:string"/>
<xs:element name="alter" type="xs:integer"/>
</Xs:sequence>
<xs:attribute name="status" type="xs:string"/>
</xs:complexType>
</xs:element>

2.3. XML Schema Definition

Eine XML Schema Definition (XSD) erméglicht es, XML Dokumente strukturiert zu beschreiben
[W3Cb]. Listing 2.2 zeigt die XSD fiir das XML Dokument aus Listing 2.1. Da das Element Person
weitere Elemente beinhalten und iiber ein Attribut verfiigen soll, wird es als complexType modelliert.
Das Element person soll eine Reihe andere Elemente in festgelegter Reihenfolge enthalten. Dies wird
durch das Tag <xs:sequence> realisiert. Die enthaltenen Elemente sind alle einfache Elemente und
bestehen nur aus deren Namen und dem jeweiligen Datentyp. Zusétzlich soll das Element person
iiber ein Attribut verfiigen, die Attribute miissen nach den Elementen modelliert werden. Bis auf den
Tagnamen Attribut, folgt ein Attribut dem selben Aufbau wie ein Element.

2.4. Modellierung von Choreographien

Die folgende Beschreibung basiert auf der Beschreibung in [WK14], wurde jedoch abstrahiert damit
der darin beschriebene Ansatz sich nicht nur auf Multi-Skalen sondern allgemein anwenden lésst. Es
werden zwei Ansatze fiir die Modellierung von Choreographien beschrieben.

Der erste Ansatz ist der Top—down Ansatz. Bei diesem Ansatz wird zunichst die Problembeschreibung
bzw. die Aufgabe definiert die gelost werden soll (1). Im néchsten Schritt wird mit Hilfe eines gra-
phischen Editors die Choreographie modelliert(2). In dem darauf folgenden Schritt (3), werden aus
der graphischen Darstellung der Choreographie abstrakte Prozesse erzeugt. Die abstrakten Prozesse

13

2. Grundlagen

@

Problemdoméne

S

Problemdoméane

Choreographieeditor Modelle

Modellierte
Choreographie

Automatische Automatische
Umwandlung Umwandlung

{Abstrakte Workfows} Ausfiihrbare Workflows

Manuelle Verfeinerung

()

@

Abgeleitete
Choreographie

Manuelle Modellierung mit

(w)

Verfeinerte und
ausfuhrbare Workflows

Abbildung 2.2.: Top-down (links) und bottom-up (rechts) Modellierungsansatz. Darstellung basie-
rend auf [WK14]

enthalten dabei nur Aktivitaten welche fiir die Kommunikation zwischen den einzelnen Prozessen not-
wendig sind. Die abstrakten Prozesse werden anschlielend (4) manuell verfeinert. Die Verfeinerung
der einzelnen abstrakten Prozesse kann durch Spezialisten auf dem jeweiligen Gebiet erfolgen.

Bei dem Bottom-Up Ansatz wird auf bereits bestehende Prozesse, fiir die jedoch kein globales Modell
vorhanden ist, zuriick gegriffen (1). Diese werden in eine abgeleitete Choreographie umgewandelt (2).
Aus der abgeleiteten Choreographie kann der Modellierer die Choreographie weiter anpassen, um
z. B. nicht benétigte Prozesse zu entfernen, oder weitere hinzuzufiigen. Die abgeleitete Choreographie
reprisentiert ihrerseits eine Problembeschreibung (3).

14

2.5. Business Process Execution Language

Listing 2.3 Definition einer BPEL Variable nach [OAS07]

<variables>
<variable name="BPELVariableName"
messageType="QName"?
type="QName"?
element="QName" ?>+
from-spec?
</variable>
</variables>

2.5. Business Process Execution Language

BPEL ist eine XML-basierte Sprache, mit der Orchestrierungen beschrieben werden kénnen [OAS07].
Die fiir diese Arbeit verwendete Version BPEL 2.0 wurde 2007 von OASIS standardisiert. Es gibt keine
standardisierte graphische Darstellung. Die Hauptbestandteile eines BPEL Dokumentes sind: Partner
Links, Correlation Sets, Handlers, Aktivitditen und Variablen.

Zusétzlich zu den oben genannten Teilen gibt es das Prozesselement. Dieses ist das Wurzelelement
welches alle anderen Bestandteile beinhalten kann. Es ist somit die BPEL Darstellung des modellierten
Prozesses. Das Prozesselement kann in seiner Definition Variablen enthalten, auf die alle Aktivitaten
innerhalb des Prozesses zugreifen konnen.

Partner Links dienen als Beschreibung fiir einen Kommunikationskanal zwischen dem Prozess und
einem Partner. Correlation Sets erméglichen es der Orchestrierungsengine Nachrichten zu der rich-
tigen Prozessinstanz zu leiten. Handlers kiimmern sich darum, was in bestimmten Situationen wie
dem Auftreten eins Ausnahmezustandes oder eines bestimmten Ereignisses passieren soll.

Es gibt zwei Sorten von Aktivitaten: Basisaktivitdten und strukturierte Aktivititen. Basisaktivitaten
werden z. B. verwendet um Webservices aufzurufen oder Nachrichten zu empfangen. Strukturierte
Aktivitaten realisieren den Kontrollfluss und konnen sowohl strukturierte Aktivitaten als auch
Basisaktivitdten enthalten. Eine fiir diese Arbeit besonders wichtige strukturierte Aktivitat ist die
Scope Activity . Scope Activities kénnen als einzige Aktivitat Variablen enthalten. Wenn einer Scope
Activity Variablen hinzugefiigt werden, kann jede Aktivitat innerhalb der Scope Activity auf die
Variable zugreifen. Ein Zugriff von auflerhalb der Scope Activity auf die Variable ist nicht méglich.

Variablen kénnen Nachrichten oder Daten enthalten. Die Definition einer Variable ist ist Listing 2.3
dargestellt. Eine Variable hat das Attribut name, welches den Namen der Variablen wiedergibt. Eine
Variable muss eines der Attribute Web Services Description Language (WSDL) messageType oder XML
Schema type oder ein XML Schema element enthalten. Mit diesem Attribut kann man den Typ der
Variablen definieren. Das Attribut from—spec kann optional verwendet werden um die Variable zu
initialisieren. Listing 2.4 zeigt ein Beispiel fiir eine Variable. Diese Variable hat den Namen UserName
und ist vom einfachen XSD Datentyp String.

15

2. Grundlagen

Listing 2.4 Beispiel fiir eine Variable in BPEL

<variables>
<variable name="UserName"
type="xsd:String" />
</variables>

2.6. BPEL4Chor

BPEL selbst fehlt eine Moglichkeit eine Choreographie zu modellieren. Aus diesem Grund wurde
BPEL4Chor entwickelt [DKLWO07]. Eine BPEL4Chor Choreographie besteht, wie in Abbildung 2.3
dargestellt, aus drei verschiedenen Artefakttypen: der Participant topology, den Participant behavior
descriptions und den Participant groundings.

Die Participant topology beschreibt die strukturellen Aspekte einer Choreographie, in Form der
verschiedenen Teilnehmer und deren Kommunikation untereinander und enthalt die Participant
Declaration und die Message Links. Sie enthalt somit die drei neu hinzugefiigten Elemente Participant,
Participant Set und Message Link. Die Participants stellen die Teilnehmer der Choreographie dar
und die Participant Sets eine Menge an Teilnehmern. Ein Beispiel fiir einen Teilnehmer kann ein
bestimmtes Hotel sein dessen Prozess das Einchecken eines Kunden wiedergibt. Ein Participant Set in
der selben Choreographie wiren verschiedene Autovermietungen mit eigenen Prozessen. Die Message
Links ermoglichen es die Kommunikation zwischen verschiedenen Teilnehmern darzustellen.

Fiir jeden Teilnehmer wird eine Participant behavior description (PBD) benétigt bzw. erzeugt. Dieses
Artefakt beschreibt den Kontrollfluss innerhalb der einzelnen Teilnehmer. Bei den PBDs handelt es sich
um abstrakte BPEL Prozesse. Abstrakte BPEL Prozesse, sind wie normale Prozesse jedoch enthalten sie
nicht ausfithrbare Opaque Activities und nutzen den abstrakten Namespace. Diese Opaque Activities
dienen als Platzhalter und kénnen mit beliebigen BPEL Editoren verdndert und angepasst werden.
Die PBDs sind fiir diese Arbeit von besonderem Interesse, da in diese die BPEL Variablen und Scope
Activities eingefiigt werden konnen.

Die Participant groundings Artefakte enthalten genaue Informationen tiber technischen Details der
Choreographie wie z. B. port types. Diese Informationen sind von den anderen Artefakten entkoppelt,
um die Wiederverwendbarkeit der anderen Artefakte zu erhchen.

2.7. Eclipse

Eclipse [Foue] ist eine auf Java basierende Entwicklungsumgebung. Die Eclipse Entwicklungsum-
gebung kann als Entwicklungsumgebung fiir diverse Programmiersprachen, wie z.B. Java [Ull10],
genutzt werden. Au3erdem ist der Funktionsumfang von Eclipse Giber Plugins erweiterbar. Bei EMF,
GEF und GEF handelt es sich ebenso um Plugins wie bei dem an der Universitit Stuttgart erstellten
BPEL4Choreditor [Son13].

EMF wird genutzt um Datenmodelle, in Form von Metamodellen, fiir eine bestimmte Problem Doméne
zu erzeugen. Das Metamodell kann entweder manuell von einem Entwickler erzeugt werden oder

16

2.7. Eclipse

Participant — -
Participant Declaration i
topology P Message Links
i i Verbindet die
Strukturelle Aspekte Liste der Participants PBDs

Participant behavior

descriptions (PBDs) Participant groundings
Beobachtbarer Kontroll-
und Datenfluss

Technische Konfiguration

Abbildung 2.3.: BPEL4Chor Artefakte. Darstellung basiert auf [DKLW07]

aus z.B. bereits bestehenden XSDs oder auch Java Annotationen [Ull10] ausgelesen werden. Das
Metamodell wird in einer .ecore Datei gespeichert und wird im weiteren Verlauf auch als Ecore Modell
bezeichnet. Aus dem Metamodell kann automatisch Code erzeugt werden, mit dem sich Instanzen
des Metamodells manipulieren lassen. Es nimmt somit dem Entwickler die Aufgabe ab, den Code der
bendtigt wird um die Instanzen z. B. zu dndern oder zu serialisieren, manuell erzeugen zu miissen
[SBPMO09].

GEF hilft dabei graphische Editoren zu erstellen. Es handelt sich hierbei um eine Implementierung
der Model-View-Controller Architektur [Fow]. Ein Datenmodell entspricht hierbei dem Model, die View
ist die graphische Représentation des Modells und der Editor iibernimmt die Funktion des Controllers
[Maj].

GMF wurde entwickelt um die Vorteile und Funktionen von EMF und GEF miteinander zu kombinieren
[Gro09]. GMF erméglicht es, mit Hilfe eines Editors, ein mit EMF erstelltes Modell mit GEF zu nutzen.
Ein GMF Projekt besteht zunéchst aus drei Teilen: dem Domain Model, dem Graphical Definition Model
und dem Tooling Definition Model. Das Domain Model enthalt die Beschreibung des Doménenmodells
und entspricht somit einem Ecore Modell. Das Graphical Definition Model enthalt die Informationen,
wie die Teile des Ecore Modells, welche graphisch dargestellt werden, aussehen sollen, also welche
Form, Farbe usw. die graphischen Darstellungen haben sollen. Das Tooling Definition Model gibt an,
welche Werkzeuge mit denen die graphischen Darstellung erzeugt werden sollen, in der Palette zu
sehen sind. Diese drei Modelle werden in einem Mapping Definition Model miteinander verknupft.
Aus dem Mapping Definition Model lasst sich ein Generator Model erstellen. Aus diesem Modell kann
der Code fiir einen graphischen Editor in Eclipse automatisch erzeugt werden.

17

3. Verwandte Arbeiten

Die Choreographiesprache WS-CDL [W3C05] wurde von dem World Wide Web Consortium (W3C)
entwickelt. Diese Sprache basiert auf XML und ermoglicht es, Choreographien auf eine vorgegebene
Art zu beschreiben. Choreographien werden hierbei auf einer abstrakten Ebene beschrieben. In
WS-CDL werden Variablen auf vier Arten genutzt:

« Information Exchange Capturing Variables, werden verwendet um Nachrichten mit einem
Inhalt zu fullen oder sie werden durch eine erhaltene Nachricht gefiillt.

« State Capturing Variables, werden verwendet um den Zustand der einzelnen Teilnehmer darzu-
stellen.

« Channel Capturing Variables, werden verwendet um Informationen tber die Adressen an
welche Daten gesendet werden sollen, deren Policies usw. zu speichern.

+ Exception Capturing Variables, werden verwendet um Informationen iiber Exceptions zu
speichern.

Alle Choreographieteilnehmer, die in der entsprechenden Variablendefinition vermerkt sind, kénnen
diese lesen oder je nach Definition auch deren Wert verandern. Alle anderen Variablen Typen werden
auch global definiert, die einzelnen Teilnehmer verwenden diese allerdings lokal. Lokal bedeutet hier,
dass die Variablen zwar denselben Namen haben konnen, jedoch unterschiedliche Werte enthalten
konnen. Es existiert keine offizielle Graphische Notation fiir WS-CDL. Die Hauptgemeinsamkeit zu
dieser Arbeit liegt darin, dass Variablen au3erhalb von einzelnen Teilnehmern auf einer Choreogra-
phieebene definiert werden und die Aufteilung in verschiedene Variablentypen.

In [BWHO08b] wird beschrieben, wie Kontroll- und Datenfluss in einem Workflow getrennt werden
konnen. Bei diesem Ansatz handelt es sich um einen Hybridansatz bestehend aus Choreographie
und Orchestrierung. Der Kontrollfluss wird zentral durch eine Workflow Engine gesteuert, wihrend
der Datenfluss auch zwischen einzelnen Webservices ermdglicht wird. Zu diesem Zweck werden
sogenannte Proxies eingefiihrt. Proxies dienen als zwischen Station zwischen der Orchestrierung und
den einzelnen Webservices. Durch entsprechende API-Befehle [BWHO08a] ist es der Orchestrierung
moglich, durch den Proxy, Daten direkt von einem oder mehreren Webservices zu erhalten oder zu
befehlen, dass Daten, iiber den Proxy direkt zwischen Webservices ausgetauscht werden. Die Idee
Daten iiber einen Proxy auszutauschen wird in dieser Arbeit aufgegriffen.

In [WGSL09] wird beschrieben, wie grofiere Datenmengen mittels einer Referenz ausgetauscht
werden konnen. Dieser Ansatz basiert auf BPEL und ist deshalb ebenfalls auf Orchestrierungen
und nicht direkt auf Choreographien bezogen. Jeder Webservice erhalt ein Reference Resolution
System (RRS), dieses ist in der Lage, die Referenzen, die es von einem Workflow oder einem anderen
RRS erhilt, aufzulosen. Auf diese Art ist es moglich, Daten zwischen den RRS auszutauschen, ohne

19

3. Verwandte Arbeiten

dass dabei grof3e Dateimengen durch die Orchestrierungsengine geleitet werden miissen. Fiir diesen
Ansatz werden keine neuen BPEL Konstrukte benétigt, sondern lediglich bestehende erweitert. Der
Ansatz ist somit BPEL konform. Dies wire eine Realisierungsméglichkeit wie der Austausch grofier
Datenmengen mittels Referenzen von statten gehen kann.

Die Orchestrierungsengine Apache ODE [Foua] hat bereits ein Konzept implementiert, mit dem auf
Daten auflerhalb des eigentlichen Workflows zugegriffen werden kann [Fouc]. Bei diesem Konzept
werden Variablen, wie in [OAS07] beschrieben angelegt, jedoch um das Attribut xvar:id erweitert.
Durch dieses zusatzliche Attribut erkennt ODE, dass es sich um eine externe Variable handelt, deren
Daten aulerhalb der Orchestrierungsengine verwaltet werden und ermittelt aus dem Deployment
Descriptor [Foub] wie auf die Variable zugegriffen werden soll. Derzeit wird nur der Zugriff auf eine
Datenbank mittels eines Java Database Connectivity(JDBC) Mappings ermdglicht. Der Deployment
Descriptor enthélt dabei die Information auf welche Tabelle, welche Spalte usw. zugegriffen werden
soll.

In [RHEAO05] werden verschieden Data Patterns beschrieben und klassifiziert. Das Pattern Enviro-
mental Data (Pattern 8) ist das Pattern, das bei der hier erstellen Arbeit hauptséchlich verwendet wird.
Dieses Pattern beschreibt, dass die Daten, die von einem Workflow verwendet werden, auflerhalb des
Workflows gespeichert werden.

20

4. Konzept

Dieses Kapitel beschreibt das Konzept eines, im folgenden auch nur Container genannten, Choreo-
grpahiecontainers. Dieser ermdoglicht es, Daten auflerhalb der Choreographieumgebung zu definieren
und diese fiir die Teilnehmer der Choreographie zur Verfiigung zu stellen. Im ersten Teil des Kapitels
wird die Verwendung eines Choreographiecontainers anhand eines Beispiels erldutert. Im Anschluss
werden die Definitionen von Choreographiecontainern und Choreographievariablen gegeben. Die
folgenden Abschnitte beschreiben die Architektur eines Systems mit Choreographiecontainer, die
erzeugten Choreographieartefakte Container Descriptor und External User Descriptor, die graphische
Darstellung einer Choreographie mit Choreographiecontainer, Anwendungsfille fiir einen Choreo-
graphiecontainer, Entwurfsentscheidungen die bei der Entwicklung eines Choreographiecontainer
getroffen werden miissen, die Softwarearchitektur eines Choreographiecontainers und den Aufbau
eines Editors zur Erstellung einer Choreographie mit Choreographiecontainer.

Im Rahmen dieser Arbeit wird davon davon ausgegangen, dass alle Choreographievariablen zur
Laufzeit der Choreographie nur einmal einen Wert zugewiesen bekommen kénnen. Diese Restriktion
wird eingefiihrt, um Probleme beziiglich konkurrierenden Zugriffen zu vermeiden. Zum Beispiel kann
das Problem, dass ein Prozess veraltete Daten, im Kontext der Choreographie, aus einer Choreogra-
phievariablen liest nicht auftreten, da diese im Kontext der aktuellen Choreographie immer als aktuell
zu betrachten sind.

4.1. Beispiel

Das Konzept der Choreographiecontainer erweitert die Nutzung von Variablen dahingehend, dass sie
nicht nur lokal innerhalb der Orchestrierungen, sondern in einem globalen Kontext einer Choreogra-
phie, verwendet werden kénnen. Abbildung 4.1 zeigt ein Beispiel fiir einen Choreographiecontainer, in
welchem ein Kunde eines Reiseveranstalters seine Reise organisiert. Die Choreographie besteht aus ei-
nem externen Nutzer, einem Choreographiecontainer und vier Teilnehmern, die durch Prozessmodelle
repriasentiert werden.

Der Kunde tritt in der Rolle des externen Nutzers Kunde auf. Dieser gibt, z. B. iiber eine Internetseite
seine Kundeninformationen, wie Name, Alter, Wunschziel, Preisspanne, Mietwagenwunsch, usw. an.
Durch die Eingabe der Daten wird, nach deren Bestatigung, die Choreographie angestofien.

Der Choreographiecontainer tragt den Namen Reisedaten und beinhaltet die Choreographievariablen:
ReiseAngebot, die bereits weiter oben beschriebene Choreographievariable Kundeninformation und
AbgeschlosseneSchritte. ReiseAngebot enthilt am Ende der Choreographie das erstellte Reiseangebot.
AbgeschlosseneSchritte enthalt Informationen dariiber, welche wichtigen Schritte der Choreographie
bereits abgeschlossen wurden.

21

4. Konzept

Die Choreographie hat vier Prozesse: Reisebiiro, Flug, Hotel und Mietwagen. Der Prozess Reisebiiro
wird, nach der Eingabe der Kundeinformationen gestartet. Nach der Startaktivitat RI werden, durch
die beiden Aktivitidten R2 und R4, die Prozesse Flug und Hotel gestartet. Danach wartet der Reisebiiro
Prozess bis die Ergebnisse der beiden anderen Prozesse gesendet werden.

Der Prozess Flug wird durch seine Aktivitat F1 gestartet und erarbeitet in den folgenden Aktivitaten
den Flug, der die grofite Ubereinstimmung mit den angegeben Kundeninformationen und den besten
Preis hat. Das Ergebnis wird im Anschluss durch die Aktivitat F4 an den Prozess Reisebiiro gesendet.
Auflerdem wird in der Choreographievariablen AbgeschlosseneSchritte hinterlegt, dass ein Flugangebot
ausgewahlt und somit der Prozess abgeschlossen ist.

Der Prozess Hotel wird durch den Empfang der Nachricht von R4 durch die Aktivitit HI gestartet.
H2 sucht im Anschluss das Hotel, welches sich am besten mit den Kundeninformationen deckt und
hinterlegt nachdem dieses gefunden wurde, den entsprechenden Wert in AbgeschlosseneSchritte. Die
Aktivitat H3 sendet die Daten des gefunden Hotels an den Prozess Mietwagen.

Der Prozess Mietwagen sucht, nachdem er in M1 gestartet wurde in M2 den besten Mietwagen fiir die
Gegend des Hotels. Dieser Prozess benétigt Daten des Kunden, wie das Alter, da Angebote eventuell
von Parametern wie dem Alter des Kunden abhéngig sein konnen. Diese Daten werden direkt aus
dem Choreographiecontainer gelesen. Nachdem das beste Angebot gefunden wurde, wird in der
Choreographievariablen der entsprechende Wert gesetzt und das Ergebnis zuriick an den Hotel Prozess
gesendet. Der Prozess Hotel sendet nach Erhalt der Information iiber das beste Mietwagenangebot,
dieses und das beste Hotelangebot an den Reisebiiro Prozess.

Nachdem die beiden Aktivititen R3 und R4 die Nachrichten iiber den besten Flug, das beste Ho-
tel und den besten Mietwagen erhalten haben, wird das beste gesamt Angebot erstellt und in die
Choreographievariable ReiseAngebot geschrieben. Diese kann von dem Kunden eingesehen werden.

Dieses Beispiel zeigt den Vorteil des Choreographiecontainers, indem alle Prozesse, die Daten aus
Kundeninformationen benédtigen auf diese zugreifen konnen. Ohne Choreographiecontainer miisste der
Prozess Reisebiiro die Kundeninformationen an die Prozesse Flug und Hotel senden und der Prozess Hotel
miisste die Daten anschlieBend noch an den Prozess Mietwagen weiterleiten. Statt Nachrichten mit
potentiell groflen Nutzerdaten werden nur leere oder Steuerungsnachrichten gesendet um die Prozesse
zu starten. Ein weiterer Vorteil ist, dass der Kunde iiber die Einsicht auf die Choreographievariable
AbgschlosseneSchritte eine Moglichkeit erhilt den Status seines Auftrags einzusehen, ohne Einblicke
in die Choreographie erhalten zu miissen. Auflerdem kann der Kunde, eine Referenz auf die Daten im
ReiseAngebot, z.B. in Form eines Links, an Freunde weitersenden.

4.2. Definitionen

Definition 4.2.1 (Choreographiecontainer)

Ein Choreographiecontainer ist eine Komponente welche es ermoglicht prozessiibergreifend Daten in
einer Choreographie zu nutzen. Er dient dabei als Container fiir einzelne Choreographievariablen. Ein
Choreographiecontainer ermoglicht es, Daten aufSerhalb des Nachrichtenflusses einer Choreographie zu
definieren und somit dass die Daten auch auflerhalb des Nachrichtenflusses ausgetauscht werden konnen.

22

4.3. Architektur einer Choreographie mit Choreographiecontainer

RelseDaten -

ReiseAngebot Kundeninformationen)« -« --«--- - . AbgeschlosseneSchritte

Abbildung 4.1.: Ein Beispiel fiir die Verwendung eines Choreographiecontainers

Definition 4.2.2 (Choreographievariable)

Als Choreographievariable wird eine konkrete Entitdt innerhalb eines Choreographiecontainers bezeichnet
in der Daten gespeichert werden konnen. Dies konnen z. B. einfache Datentypen wie eine Gleitkommazahl
oder auch bindre Daten sein. Es ist auflerdem mdoglich, dass die Variablen auch komplexe Datenstrukturen
enthalten kénnen.

4.3. Architektur einer Choreographie mit Choreographiecontainer

In diesem Abschnitt wird ein Uberblick iiber die Komponenten gegeben, aus denen eine Choreographie
mit Choreographiecontainer besteht. Im weiteren Verlauf des Abschnitts wird das Datenmodell einer
solchen Choreographie und das Zusammenspiel der erzeugten Choreographieartefakte erlautert.

4.3.1. Architekturibersicht aller Komponenten
Wie in Abbildung 4.2 dargestellt, besteht eine Choreographie mit Choreographiecontainer aus den

folgenden vier Elementen: der Choreographieumgebung, dem Choreographiecontainer, einem Daten-
server und externen Nutzern.

23

4. Konzept

Eine Choreographieumgebung besteht, wie in 2.1.2 ndher beschrieben, aus einer oder mehreren Orche-
strierungsengines, welche die infrastrukturelle Grundlage fiir das Ausfithren der einzelnen Prozessmo-
delle der Teilnehmer der Choreographie, bilden. Jede dieser Orchestrierungsengines muss um einen
Choreographiecontainer zu unterstiitzen entsprechend erweitert werden. Im Rahmen dieser Arbeit
nicht weiter auf die Entwicklung einer Containererweiterung fiir Orchestrierungsengines eingegangen,
da sie sich auf die Modellierung von Choreographien mit Choreographiecontainer fokussiert. Sobald
die Orchestrierungsengine auf einen Befehl stof3t fiir den Daten aus dem Choreographiecontainer
benotigt werden, sendet die Containererweiterung eine Anfrage an den Choreographiecontainer.

Der Choreographiecontainer enthilt ein Mapping welches es der Choreographiecontainer Kompo-
nente ermdglicht die benétigten Daten, von einem Datenserver abzufragen. Das Mapping wandelt die
Anfrage der Orchestrierungsengine in eine standardisierte Anfrage an den entsprechenden Daten-
server um. Der Choreographiecontainer liest bei seinem Start eine, in 4.4.2 detailliert beschriebene,
Konfigurationsdatei ein. Diese Datei enthilt die Informationen, welche Variablen angelegt werden,
wie diese aufgebaut sind und welche Teilnehmer Zugriff auf die Daten erhalten. Nach Erhalt einer
Anfrage priift der Choreographiecontainer zunéchst ob der entsprechende Teilnehmer auf die Daten
zugreifen darf und weist die Anfrage bei negativer Priifung mit einer entsprechenden Nachricht ab.
Falls dem Teilnehmer der Zugriff erlaubt wird, sendet der Choreographiecontainer Daten an den
Datenserver oder liest Daten von diesem. Der Choreographiecontainer kann die Datenanfragen durch
Caching oft verwendeter Daten im internen Speicher beschleunigen. Der Choreographiecontainer
kann Anfragen von externen Nutzern entgegen nehmen und gibt ihnen entweder die Daten selbst
weiter oder leitet diese direkt auf den Datenserver weiter.

Der Datenserver ist eine Komponente die Daten verwalten kann. Der Datenserver kann z. B. ein
Representational State Transfer (REST)-Server [Fie00], eine Datenbank oder auch ein Dateiserver
sein. Fir diese Komponente wird keine spezielle Anpassungen an eine Choreographie benétigt.

Die externen Nutzer sind beliebige Anwendungen oder Benutzer, die sich aulerhalb der Choreogra-
phieumgebung befinden. Diese kénnen entweder auf den Choreographiecontainer oder direkt auf
den Datenserver zugreifen um Daten zu speichern oder anzufragen.

4.3.2. Datenmodell

Abbildung 4.3 zeigt das zu der Darstellung von Choreographien mit Choreographiecontainer geho-
rende Datenmodell. Alle Attribute die in diesem Modell nicht als optional beschrieben werden sind
verpflichtend. Das Element Choreographie entspricht der Zeichenflache der gesamten Choreogra-
phie. Es gibt drei Elemente, die direkt zu einer Choreographie gehoren: der Choreographiecontainer,
die externen Nutzer und die Prozesse. Diese Elemente sind, mit Ausnahme von Datenfluss— und
Nachrichtenaustausch—Verbindungen, die einzigen Elemente die direkt auf der Zeichenfl4che platziert
werden konnen.

Eine Choreographie kann beliebig viele Elemente vom Typ externer Nutzer und vom Typ Prozess
enthalten. Beide Elemente haben das Attribut Name, welches den eindeutigen Namen des jeweiligen
Elements enthalt.

24

4.3. Architektur einer Choreographie mit Choreographiecontainer

Choreographieumgebung

Orchestrierungs-
Prozessl enginel

Container-
erweiterung

Externer Nutzer

O
|
|
|
|
|
|
|
|
1

R

Orchestrierungs-
Prozess2 engine2 Datenserver

@ Choreographiecontainer |-~ =
<

erweiterung | K-------------

Container- | [~ [T 7
_____________ -- Variable2

O
|
|
|
|
|
|
|
|
1

Orchestrierungs-
engine3

Container- | [| 7T
erweiterung ||, | |

Abbildung 4.2.: Architekturiibersicht aller Teilnehmer

Prozess3

Jede Choreographie kann nur maximal ein Element vom Typ Choreographiecontainer enthalten. Diese
Einschrankung wird im Rahmen dieser Arbeit getroffen, um Synchronisations— und Abhangigkeits-
probleme zwischen mehreren Choreographiecontainern zu vermeiden. Jeder Choreographiecontainer
hat die Attribute Name und Adresse. Das Attribut Name enthélt den Namen des Choreographiecon-
tainers und das Attribut Adresse die Adresse unter der der Choreographiecontainer erreichbar ist.
Ein Choreographiecontainer kann beliebig viele Elemente vom Typ atomare Variable oder vom Typ
zusammengesetzte Variable enthalten. Er muss jedoch mindestens ein Element von einem der beiden
Typen beinhalten, da der Choreographiecontainer ansonsten uberfliissig wire.

Atomare Variablen und zusammengesetzte Variablen kénnen nur innerhalb eines Choreographie-
container oder einer zusammengesetzten Variablen platziert werden. Zusammengesetzte Variablen
konnen eine beliebige Anzahl an zusammengesetzten Variablen oder atomaren Variablen beinhalten.

25

4. Konzept

Das unterste Element einer zusammengesetzten Variablen muss immer eine atomare Variable sein,
da nur diese Daten enthalten kénnen. Beide Arten von Variablen haben das Attribut Name und
das optionale Attribut Permanent. Name enthalt den einzigartigen Namen der jeweiligen Variablen.
Das Attribut Permanent signalisiert der Choreographiecontainer Komponente, dass die Daten dieser
Variablen persistent gespeichert werden. Sobald einer Variablen, bei der dieses Attribut verwendet
wird, ein Wert zugewiesen wird, wird dieser auf dem Datenserver serialisiert. Wenn das Attribut bei
einer zusammengesetzten Variablen verwendet wird, gilt der Wert dieses Attributs fiir alle atomaren
und zusammengesetzten Variablen die sich darin befinden. Atomare Variablen enthalten zusatzlich
die Attribute: Datentyp, Konstante und Referenz. Das Attribut Datentyp enthalt den Datentyp der fiir
dies Variable verwendet wird. Das optionale Attribut Konstante, enthilt die Information dariiber, ob
es sich bei der Variablen um eine Konstante handelt. Der Wert einer Konstanten muss gesetzt sein
bevor eine Choreographie gestartet wurde und darf sich in deren Verlauf nicht mehr dndern. Das
optionale Attribut Referenz zeigt an, ob die Variable einen direkten Wert oder die Referenz auf einen
Wert oder eine Datei enthélt. Dieses Attribut wird genutzt, wenn der Choreographiecontainer in
einem System verwendet wird welches Reference Passing [WGSL09] unterstiitzt.

Prozesse konnen eine beliebige Anzahl von Aktivitdten enthalten. Da es mdglich ist einen Prozess als
Blackbox zu modellieren, muss ein Prozess nicht zwangslaufig Aktivitaten enthalten. Prozesse und
Aktivitaten enthalten das Attribut Name, welches den einzigartigen Namen des jeweiligen Elements
enthalt.

Aktivitdten in dem selben Prozess kdnnen mit einer Kontrollfluss—Verbindung verbunden werden.
Dabei gilt, dass es sich immer um eine 1:1 Verbindung und eine gerichtete Kante im Graphen handelt.
Falls eine Aktivitdt mehrere Nachfolger hat, so sind Verbindungen als einzelne Elemente zu betrachten.
Kontrollfliisse haben das Attribut Bedingung. Die Verwendung dieses Attributs ist optional und gibt
an welche Bedingungen erfiillt sein miissen damit der Kontrollfluss ausgefiihrt wird.

Aktivitdten in zwei verschiedenen Prozessen kénnen mit einer Nachrichtenaustausch—Verbindung,
verbunden werden. Hierbei handelt es sich ebenfalls um eine 1:1 Verbindung. Dieses Element hat das
Attribut Name, welches den Namen des Datenaustauschs und das Attribut Datentyp, welches den
Datentyp der iibertragenen Nachricht enthalt.

Prozesse und strukturierte Aktivitaten konnen eigene lokale Variablen enthalten. Diese sind nur lokal
im jeweiligen Element Prozess oder Aktivitdt vorhanden und auf diese kann nicht von auf3erhalb
des jeweiligen Elements zugegriffen werden. Der Name der fiir das Attribut Name verwendet wird,
muss einzigartig fiir den jeweiligen Prozess bzw. die jeweilige Aktivitét in der sie definiert ist, sein.
Das Attribut Datentyp gibt den Datentyp der betreffenden Variablen an. Diese Variablen werden in
der folgenden Arbeit nicht explizit modelliert, weder in der graphischen Darstellung noch im dazu
gehorenden Editor. Sie werden automatisch von dem Editor in den, im Abschnitt 4.3.3 beschriebenen,
Prozessartefakten eingefiigt.

Das Element, welches die meisten anderen Elemente verbindet, ist die Datenverbindung. Folgen-
de Verbindungen sind méglich: externer Nutzer zu Choreographiecontainer, externer Nutzer zu
zusammengesetzter Variable, externer Nutzer zu atomarer Variable, Prozess zu Choreographiecon-
tainer, Prozess zu zusammengesetzter Variable, Prozess Teilnehmer zu atomarer Variable, Aktivitét
zu Choreographiecontainer, Aktivitat zu zusammengesetzter Variable und Aktivitdt zu atomarer
Variable.

26

4.3. Architektur einer Choreographie mit Choreographiecontainer

Choreographie

0.1 1 1 |«
*
Choreographiecontainer * -
+Name * Prozess Lokale Variable
+Name
+Adresse . Externe Nutzer +Name ’—+Datentyp
+Name 1 *
1
1 1 .
*
* * * * * *
' Z tzte Variabl I
usammengesetzte variable Datenverbindung Aktivitat Kontrollfluss
+Name S) +NI +R 1
+Permanent Name 1 Bedingung
* * * * * *
*
1 *
*
*
* 17 Nachrichtenverbindung
- +Name
Atomare Variable +Datentyp
+Name
+Datentyp
+Konstante
+Referenz *
+Permanent

Abbildung 4.3.: Datenmodell einer Choreographie mit Choreographiecontainer

4.3.3. Ubersicht und Zusammenspiel der Choreographieartefakte

Als Choreographieartefakte werden samtliche Beschreibungen bezeichnet, die verwendet werden um
eine Choreographie zu spezifizieren und darzustellen. Die fiir dieses Konzept wichtigsten Artefakte
sind: die graphische Darstellung der Choreographie und die Modelldaten, die Prozessartefakte, der
Container Descriptor und der External User Descriptor. Diese Artefakte konnen von Hand oder durch
einen in 4.9 beschriebenen Editor zundchst modelliert und dann automatisch generiert werden.

Abbildung 4.4 zeigt den Zusammenhang zwischen dem Datenmodell und den Choreographieartefakten.
Die rot umrandeten Elemente sind solche, die fiir die Erstellung des Container Descriptors benétigt
werden. Fiir dieses Artefakt werden der Choreographiecontainer, die Choreographievariablen in Form
der atomaren und zusammengesetzten Variablen, die externen Nutzer und die Datenverbindungen
bendtigt.

Die blau umrandeten Elemente werden benétigt, um den External User Descriptor zu erstellen.
Fiir den External User Descriptor werden die Elemente: atomare Variable, Datenverbindung und

27

4. Konzept

Choreographie

X 2
P S

0.1 |

Choreographiecontainer

+Name * Prozess
[+Adresse Externe Nutzer Nam *game
* +Datentyp

lokale Variable

+Name i

1

1 1

[Z““"‘"‘E"ge“‘“e Variable Datenverbindung Aktivitat Kontrollfluss

[+Name
[+Permanent - 1

1

Nachrichtenverbindung

Atomare Variable +Name

[+Name +Datentyp

+Datentyp

+Konstante

+Referenz

+Permanent
Container External User Prozess
Descriptor Descriptor Artefakte

Abbildung 4.4.: Zusammenhang zwischen Datenmodell und Choreographieartefakten

externer Nutzer benétigt. Aus den Datenverbindungen zu den Elementen Choreographiecontainer und
zusammengesetzte Variable wird abgeleitet auf welche atomaren Variablen der externe Nutzer Zugriff
erhélt. Ist er mit dem Choreographiecontainer verbunden, sind dies alle Choreographievariablen,
wenn eine Verbindung zu einer zusammengesetzten Variablen besteht, erhélt der externe Nutzer
Zugriff auf alle Variablen innerhalb der zusammengesetzten Variablen.

Die griin umrandeten Bereiche enthalten die Elemente, die fiir die Erstellung der Prozessartefakte
notig sind. Diese Elemente sind: Prozesse, Aktivititen, Variablen, Nachrichtenverbindungen und
Kontrollfluss.

Wie in Abbildung 4.5 dargestellt, werden die graphische Darstellung und die Modelldaten der Choreo-
graphie von dem Editor gespeichert und geladen. Beides wird in einer Datei gespeichert, diese enthalt
die Informationen dartiiber, welche Elemente sich an welcher Stelle der Zeichenflache befinden und
welche Werte das in 4.3.2 beschriebene Datenmodell enthélt. Diese Datei wird in dieser Arbeit nicht
ndher beschrieben, da dafiir bereits vollstindige Ansétze, wie Eclipse z. B. GMF [Gro09] existieren.

Aus der graphischen Darstellung und den Modelldaten werden aulerdem abstrakte Prozessartefakte
erzeugt. Bei abstrakten Prozessartefakten handelt es sich um Dateien, die in einer Choreographieum-
gebung ausgefithrt werden konnen, da diese zwar syntaktisch korrekt sind, jedoch nur kommu-

28

4.4. Container Descriptor und External User Descriptor

nikationsrelevante Aktivititen enthalten. Diese konnen anschlieflend entweder manuell oder mit
entsprechenden Werkzeugen in ausfithrbare Prozessartefakte tiberfithrt werden. Das Erstellen und
Umwandeln von Prozessartefakten sind nicht Teil dieser Arbeit.

Der Choreographie Descriptor, welcher in 4.4.2 ndher beschrieben wird, ist ein weiteres durch den
Editor erzeugtes Artefakt. In diesem Artefakt wird der Aufbau des Choreographiecontainers mit
allen Choreographievariablen und deren Optionen festgehalten. Er dient als Konfigurationsdatei
einer erweiterten Choreographieumgebung, welche in der Lage sein muss, diese Datei zu lesen
und deren Semantik zu verstehen. Durch diese Konfiguration ist es der Umgebung moglich, die
angegebenen Daten auf einem eigenen Datenspeicher zu speichern und bei Bedarf auch wieder zu
laden. Der Datenspeicher befindet sich auf einem eigenen Datenserver, welcher abhéngig von der
Implementierung der Choreographieumgebung, z. B. ein REST-Server [Fie00] oder eine Datenbank
sein kann.

Falls externe Nutzer fir die Choreographie zugelassen werden, wird der, in 4.4.3 niher beschriebene,
External User Descriptor erstellt. Dieser enthilt die Information welche Rollen auf welche Choreo-
graphievariablen in der Choreographie zugreifen diirfen und kann somit als Konfiguration, oder
als Ausgangspunkt fiir eine komplexere Konfigurationsdatei, fiir den Zugriff auf den Datenserver
verwendet werden.

4.4. Container Descriptor und External User Descriptor

In diesem Abschnitt wird zunéchst ein Beispiel einer Choreographie mit mehreren externen Nutzern
und Prozessen gegeben. Anhand dieses Beispiels wird der Aufbau eines Container Descriptors und
eines External User Descriptors erlautert.

4.4.1. Beispiel

Das, in Abbildung 4.6, gezeigte Beispiel hat drei externe Teilenehmer. Diese drei Teilnehmer sind:
Administrator, Forscher und Interessenten. Die Rolle Administrator kann den Inhalt aller Choreogra-
phievariablen im Choreographiecontainer lesen und auf die Variable Konfiguration schreiben. Die
Rolle Forscher kann Daten aus der zusammengesetzten Choreographievariablen Zwischenergebnis
Gesamt und der atomaren Variablen Endergebnis lesen. Die letzte Rolle, die des Interessenten, kann
nur auf die Variable Endergebnis lesend zugreifen.

Prozess 1benotigt den Inhalt der Variablen Konfiguration und kann deshalb lesend auf diese zugreifen.
Nachdem Prozess 1 gestartet wurde, werden mehrere komplexe Berechnungen durchgefithrt, und
deren Ergebnisse von der Aktivitat C1in Teil Bund E1 in Teil C der zusammengesetzten Variablen
Zwischenergebnis Prozess 1 geschrieben. Die zusammengesetzte Variable Zwischenergebnis Prozess 1 ist
selbst ein Teil der zusammengesetzten Variablen Zwischenergebnis Gesamt. Prozess 2 kann unabhéngig
von Prozess 1 gestartet werden. Die letzte Aktivitat in Prozess 2, D2 schreibt das Ergebnis des Prozesses
in Teil A der Variablen Zwischenergebnis Gesamt. Fiir den Zugriff auf die Variable Zwischenergebnis
Gesamt wurde nur definiert, dass Prozess 3 Zugriff auf diese hat und nicht genau welche Aktivitat. Aus

29

4. Konzept

Speichert

4

Editor

Ladt

Erzeugt

Erzeugt

Erzeugt

Abstrakte Container External

Prozess- Descrintor Participant

artefakte p Descriptor
Verfeinerung der Konfiguriert

Prozessartefakte

Konfiguriert

Ausfuhrbare Konfiguriert

Prozess-
artefakte

Fragt/Speichert
‘(Daten ab

h 4

Choreographieumgebung Choreographiecontainer

Empfangt Daten

Abbildung 4.5.: Zusammenspiel der Prozessartefakte

30

Graphische
Darstellung

Externe Teilnehmer

Sendet 1 Ladt
Daten Ladt Lo Daaten
Daten : :
(|
(|
(|
(|
(|
Sendet: :
Daten|
[
N
Datenserver
Speichert
Daten
Ladt Daten .
Datenspeicher

4.4. Container Descriptor und External User Descriptor

Administrator) (Forscher X ------ .

S . Zwischenergebnis \
Choreographie Container Gesamt

: (Teil A >(1.

Zwischenergebnis

: Prozess 1 : : .

o : S -_ > :
Konfiguration > Endergebnis

Teil C

==

Abbildung 4.6.: Beispiel fiir die Verwendung eines Choreographiecontainers

diesem Grund kann Prozess 3 erst gestartet werden wenn alle atomaren Variablen von Zwischenergebnis
Gesamt beschrieben wurden.

4.4.2. Container Descriptor

Der Container Descriptor ist ein Choreographieartefakt, welches zusatzlich zu bestehenden Artefakten
wie z. B. der Beschreibung eines Workflows mittels BPEL Datei, erzeugt wird. Der Container Descriptor

31

4. Konzept

Listing 4.1 Schema des Wurzelelements

<xs:element name="choreographyContainer" type="ChoreographyContainerType"/>

<xs:complexType name="ChoreographyContainerType">
<Xs:sequence>
<xs:choice max0Occurs="unbounded">
<xs:element ref="atomicVariable"/>
<xs:element ref="complexVariable"/>
</xs:choice>
<xs:element ref="reader" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

enthalt die Beschreibungen des gesamten Choreographiecontainers und der Choreographievariablen
einer Choreographie. Dieses zusatzliche Artefakt kann einer entsprechend modifizierten Choreogra-
phieumgebung zur Verfiigung gestellt werden, um es dieser zu erméglichen Choreographievariablen
zu erkennen. Dadurch, dass es sich um eine eigenstidndige Datei handelt, kann der Workflow in jeder
beliebigen Choreographiesprache definiert werden. Damit Variablen und Choreographie Teilnehmer
eindeutig zugeordnet werden kénnen, muss jedes name Attribut einzigartig in dem Container Des-
criptor sein. Der vollstdndige Container Descriptor fiir das in Abbildung 4.6 dargestellte Beispiel und
das vollstandige Schema sind im Anhang bei A.1 bzw. A.3 zu finden.

In Anlehnung an bereits am Institut erstellte Arbeiten (z.B. [DK14]), wird der Namespace urn:IAAS:
choreography:schemas:choreography:choreographycontainer:2014 verwendet. Wie Listing 4.1 zeigt,
ist jeder Choreographiecontainer vom Typ ChoreographieContainerType. Ein Choreographiecontainer
besteht aus einer beliebigen Menge von atomaren Variablen, hier atomicVariable und zusammen-
gesetzten Variablen, hier complexVariable genannt. Zusétzlich zu den Variablen kann ein Choreo-
graphiecontainer auch beliebig viele Elemente vom Typ readerType enthalten. Dies ermoglicht dem
angegebenen Leser Zugriff auf samtliche Choreographievariablen im Container. Vollen Zugriff wird
explizit nur Lesern eingerdumt, da die Moglichkeit auf alle Variablen schreiben zu kénnen ein zu
hohes Sicherheitsrisiko birgt. Aulerdem verfiigt jeder Choreographiecontainer iiber das Pflichtattribut
name, welches den Namen des Choreographiecontainer enthalten muss. Der Name sollte hierbei dem
Namen der Choreographie selbst entsprechen.

Listing 4.2 zeigt den dufleren Aufbau fiir das Wurzelelement fiir das in Abbildung 4.6 dargestellte
Beispiel. Dem Beispiel entsprechend hat der Administrator vollen Lesezugriff auf die Variablen:
Konfiguration, Zwischenergebnis und Endergebnis.

Atomare Variablen, in Listing 4.3 atomicVariable genannt, ist vom Typ atomicVariableType. Dieser
Typ besteht aus einer beliebigen Menge von Lesern reader und Schreibern writer, die in beliebiger
Reihenfolge auftreten koénnen. Es ist zwar moglich mehr als einen Schreiber zu verwenden, dies
widerspricht jedoch der Definition in 4.2.1 und wird nur als Méglichkeit beibehalten, fiir den Fall,
dass die Definition sich dndert und mehrere Schreiber erlaubt werden. Jede atomare Variable hat die
Pflichtattribute name und dataType. Das Attribut name ist vom Typ NCName und gibt entsprechend
den Namen der Variablen an. Das Attribut dataType ist vom Typ String und gibt den Datentyp der

32

4.4. Container Descriptor und External User Descriptor

Listing 4.2 Aufbau des Wurzelelements

<choreographyContainer
xmlns="urn:IAAS:choreography:schemas:choreography:choreographycontainer:2014"
name="Beispiel">

<reader name="Administrator"/>
</choreographyContainer>

Listing 4.3 Schema einer atomaren Variablen

<xs:element name="atomicVariable" type="atomicVariableType"/>

<xs:complexType name="atomicVariableType">
<xs:choice max0Occurs="unbounded">
<xs:element ref="reader"/>
<xs:element ref="writer"/>
</xs:choice>

<xs:attribute name="name" type="xs:NCName" use="required"/>

<xs:attribute name="dataType" type="xs:string" use="required"/>

<xs:attribute name="constant" type="xs:boolean"/>

<xs:attribute name="reference" type="xs:boolean"/>

<xs:attribute name="permanent" type="xs:boolean"/>
</xs:complexType>

Variablen wieder. Dies ermdglicht es, dass der Datentyp unabhingig von einer Programmiersprache
definiert werden kann. Nur den einzelnen Orchestrieungsengines miissen zur Laufzeit bekannt sein
um welchen Datentyp es sich konkret handelt. Somit kénnten die Datentypen v6llig unabhingig von
der Choreographie definiert werden und bei einer eventuellen Anderungen miissen nur Anpassungen
in den entsprechenden Artefakten und nicht an der gesamten Choreographie durchgefithrt werden.
Die folgenden drei Attribute: constant, reference und permanent sind vom Typ Boolean. Das Attribut
constant gibt an, ob es sich um eine Konstante handelt. Der Wert einer Konstante muss bereits vor der
Laufzeit definiert sein und darf sich in deren Verlauf nicht mehr dndern. Das Attribut reference gibt
an, dass es sich bei der Variablen um eine Referenz auf Daten aulerhalb des Choreographieumgebung
handelt und deshalb von den einzelnen Orchestrierungsengines entsprechend verwendet werden
muss. Das letzte Attribut, permanent, gibt an, dass die Daten dieser Variablen zum Zeitpunkt des
Schreibens persistent gespeichert werden miissen.

Listing 4.4 zeigt die erstellten Instanzen fiir die beiden Variablen Konfiguration und Endergebnis.
Konfiguration wird von Administrator beschrieben und von Prozess1 gelesen. Die Variable Endergebnis
wird von Prozess3 beschrieben und von Forscher und Interessent gelesen.

Eine zusammengesetzte Variable, in Listing 4.5 complexVariable genannt, ist vom Typ complexVaria-
bleType. Ein complexVariable Element hat die Elemente atomicVariable und complexVariable. Diese
konnen in beliebiger Menge und Reihenfolge vorkommen. Da zusammengesetzte Variablen beliebig
geschachtelt werden konnen, referenziert sich das Element complexVariable selbst. Aulerdem verfiigt

33

4. Konzept

Listing 4.4 Darstellung der beiden atomaren Variablen aus Beispiel 4.6

<atomicVariable name="Konfiguration" dataType="KonfigurationTyp">
<writer name="Administrator"/>
<reader name="Prozessl"/>

</atomicVariable>

<atomicVariable name="Endergebnis" dataType="EndergebnisTyp" permanent="true">
<writer name="Prozess3"/>
<reader name="Forscher"/>
<reader name="Interessent"/>

</atomicVariable>

Listing 4.5 Schema einer zusammengesetzten Variablen

<xs:element name="complexVariable" type="complexVariableType"/>
<xs:complexType name="complexVariableType">
<XS:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="atomicVariable"/>
<xs:element ref="complexVariable"/>
</xs:choice>
<xs:element ref="reader" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="permanent" type="xs:boolean"/>
</xs:complexType>

jede zusammengesetzte Variable tiber eine beliebige Anzahl von reader Elementen. Jeder Leser hat
vollstandigen Zugriff auf saimtlichen Untervariablen der zusammengesetzten Variablen bei der er als
Leser hinterlegt ist. Jede zusammengesetzte Variable hat die Attribute name und permanent, welche
die selbe Bedeutung wie bei einer atomaren Variablen haben. Zusammengesetzte Variablen kénnen
selbst keine Daten enthalten. Deshalb muss das unterste Element immer eine atomare Variable sein.

Listing 4.6 zeigt den Aufbau der Variablen ZwischenergebnisGesamt aus Beispiel 4.6. Die zusammen-
gesetzte Variable, hat als direktes Unterelement eine atomare Variable namens TeilA. Diese wird
von Prozess2 beschrieben. Auflerdem enthilt die Variable ZwischenergebnisGesamt eine weitere
zusammengesetzt Variable namens ZwischenergebnissProzess. Diese enthilt zwei weitere atomare
Variablen TeilB und TeilC. Die atomaren Variablen TeilB und TeilC werden von Aktivitat CI und
E1beschrieben. Die beiden Leser Forscher und Prozess3 konnen samtliche Elemente der Variablen
ZwischenergebnisGesamt lesen.

Die, in Listing 4.7, gezeigten Elemente reader und writer sind vom Typ readerType bzw. writerType.
Sie haben jeweils das Attribut name, welches den einzigartigen Namen des jeweiligen Teilnehmers
wiedergibt. Beispiele fiir die Verwendung dieser Elemente wurden bereits in den vorhergehenden
Listings gezeigt.

34

4.4. Container Descriptor und External User Descriptor

Listing 4.6 Darstellung der zusammengesetzten Variablen aus Beispiel 4.6

<complexVariable name="ZwischenergebnisGesamt">

<atomicVariable name="TeilA" dataType="TeilATyp">
<writer name="Prozess2"/>
</atomicVariable>

<complexVariable name="ZwischenergebnisProzessl">

<atomicVariable name="TeilB" dataType="TeilBTyp">
<writer name="Cl"/>
</atomicVariable>

<atomicVariable name="TeilC" dataType="TeilCTyp">
<writer name="El1"/>
</atomicVariable>
</complexVariable>

<reader name="Forscher"/>
<reader name="Prozess3"/>

</complexVariable>

Listing 4.7 Schema der schreibenden und lesenden Nutzer

<xs:element name="reader" type="readerType"/>

<xs:complexType name="readerType">
<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

<xs:element name="writer" type="writerType"/>
<xs:complexType name="writerType">

<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

4.4.3. External User Descriptor

Der External User Descriptor ist ein weiteres Choreographieartefakt, welches zusatzlich zu der
Choreographiebeschreibung selbst und dem Container Descriptor verwendet werden kann. Dieses
Artefakt beschreibt die externen Nutzer einer Choreographie und auf welche Choreographievariablen
diese Zugriff erhalten. Es kann verwendet werden um daraus Policies, welche z. B. festlegen auf welche
Server ein Nutzer zugreifen darf und welche nicht, fiir den Zugriff auf die Choreographievariablen
zu erstellen. So konnte die Standardrolle in Beispiel 4.6 Interessent sein. Die Daten aus der Variablen
Endergebnis konnten 6ffentlich zugénglich sein. Jedem der auf diese Variable zugreift wiirde somit
automatisch die Rolle Interessent zugewiesen bekommen. Durch die Abfrage einer Kombination aus
Nutzername und Passwort konnen die anderen Rollen geschiitzt werden bzw. nur fiir entsprechende

35

4. Konzept

Listing 4.8 Schema des Wurzelelements des External User Descriptors

<xs:element name="externalUserRoles" type="externalUsersRolesType"/>

<xs:complexType name="externalUsersRolesType">
<Xxs:sequence>
<xs:element ref="role" maxOccurs="unbounded"/>
</Xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

Listing 4.9 Aufbau des Wurzelelements

<externalUsersRoles
xmlns="urn:IAAS:choreography:schemas:choreography:externalUsers:2014"
name="Beispiel">

</externalUsersRoles>

Personen zugénglich gemacht werden. Der vollstindige External User Descriptor fiir 4.6 und das
vollstandige Schema sind im Anhang bei A.2 bzw. A.4 zu finden.

Wie bei dem External User Descriptor wurde der Namespace urn:IAAS:choreography:schemas: cho-
reography:externalPaticipants:2014, des External User Descriptors, an bereits bestehende Arbeiten
[DK14] angelehnt. Das in Listing 4.8 dargestellte Element externalUserRoles, vom Typ externalPa-
ticipantsRolesType, dient als Wurzelelement. Es kann eine unbegrenzte Menge an role Elementen
enthalten. Auflerdem hat es das Attribut name, dieses bezieht sich auf den Namen der gesamten
Choreographie und ist zwingend erforderlich.

Listing 4.9 zeigt das Wurzelelement aus Beispiel 4.6. Der Name entspricht dem gew#hlten Namen der
Choreographie Beispiel, welche fiir die gesamte Choreographie festgelegt wurde.

Das in Listing 4.10 gezeigte Element role, vom Typ roleType, beschreibt eine Rolle in der Choreogra-
phie. Es enthélt eine beliebige Menge von readsFrom und writesTo Elementen, welche in beliebiger
Reihenfolge auftreten kénnen. Jedes readsFrom Element ist, wie in Listing 4.11 gezeigt, vom Typ
readsFromType und jedes writesTo Element vom Typ writesToType. Beide Elemente konnen beliebig
viele variable und complexVariable in beliebiger Reihenfolge enthalten. Eine atomare Variable vom
Typ variableTyp hat die Attribute name und dataType, die den Namen und den Datentyp der Varia-
blen wiedergeben. Beide Attribute miissen verpflichtend angegeben werden. Eine zusammengesetzte
Variable vom Typ complexVariable kann beliebig viele variable Elemente enthalten. Eine Schachtelung
ist hier nicht notwendig, da alle atomaren Variablen die sich innerhalb der zusammengesetzten
Variablen befindet aufgelistet werden. Das Attribut name gibt den Namen der zusammengesetzten
Variablen wieder. Hierbei kann der Name der obersten zusammengesetzten Variablen oder auch tiefer
geschalteten zusammengesetzten Variablen entsprechen. Die Schemas der Variablen werden in Listing
4.12 dargestellt.

36

4.4. Container Descriptor und External User Descriptor

Listing 4.10 Schema der Rollen der Nutzer

<xs:element name="role" type="roleType"/>

<xs:complexType name="roleType">
<xs:choice max0Occurs="unbounded">
<xs:element ref="readsFrom"/>
<xs:element ref="writesTo"/>
</xs:choice>

<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

Listing 4.11 Schema Schreib- und Lesemoglichkeiten

<xs:element name="readsFrom" type="readsFromType"/>
<xs:complexType name="readsFromType">
<xs:choice maxOccurs="unbounded">
<xs:element ref="variable"/>
<xs:element ref="complexVariable"/>
</xs:choice>
</xs:complexType>

<xs:element name="writesTo" type="writesToType"/>
<xs:sequence maxOccurs="unbounded">
<xs:element ref="variable"/>
<xs:element ref="complexVariable"/>
</Xs:sequence>
</xs:complexType>

Listing 4.12 Schema der Variablen

<xs:element name="variable" type="variableType"/>
<xs:complexType name="variableType">
<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="dataType" type="xs:string" use="required"/>
</xs:complexType>

<xs:element name="complexVariable" type="complexVariableType"/>
<xs:complexType name="complexVariableType">
<xs:sequence max0Occurs="unbounded">
<xs:element ref="variable"/>
</Xxs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

37

4. Konzept

Listing 4.13 Darstellung der externen Nutzer Administrator und Forscher aus Beispiel 4.6

<role name="Administrator">
<writesTo>
<variable name="Konfiguration" dataType="KonfigurationTyp"/>
</writesTo>

<readsFrom>
<complexVariable name="ChoreographieContainerBeispiel">
<variable name="Konfiguration" dataType="KonfigurationTyp">
<variable name="TeilA" dataType="TeilATyp">
<variable name="TeilB" dataType="TeilBTyp">
<variable name="TeilC" dataType="TeilCTyp">
<variable name="Endergebnis" dataType="EndegebnisTyp">
</complexVariable>
</readsFrom>
</role>

<role name="Forscher">
<readsFrom>
<variable name="Endergebnis" dataType="EndegebnisTyp">
<complexVariable name="Zwischenergebnis">
<variable name="TeilA" dataType="TeilATyp">
<variable name="TeilB" dataType="TeilBTyp">
<variable name="TeilC" dataType="TeilCTyp">
</complexVariable>
</readsFrom>
</role>

Listing 4.13 zeigt zwei Instanzen von role fiir das Beispiel 4.6. Die Rolle Administrator schreibt auf
die Variable Konfiguration und kann alle Variablen innerhalb des Choreographiecontainers Choreo-
graphieContainerBeispiel lesen. Die Datentypen der Variablen Konfiguration und Endergebnis sind
dieselben wie bereits im Container Descriptor. Die Rolle Administrator hat die Méglichkeit auf alle
Variablen im Choreographiecontainer zuzugreifen. Dies ist ist ein Sonderfall und wird so behandelt
als wire der Container eine zusammengesetzte Variable, mit samtlichen méglichen Variablen und
deren Datentyp als Inhalt. Die Rolle Forscher hat Lesezugriff auf die atomare Variable Endergebnis
und vollstandigen Lesezugriff auf die zusammengesetzte Variable Zwischenergebnis und somit auch
auf deren atomare Variablen.

4.5. Graphische Darstellung einer Choreographie mit
Choreographiecontainer

Im folgenden wird eine Notation eingefiihrt, die dazu dient, die Nutzung eines Choreographiecon-
tainers bzw. von Choreographievariablen in eine Choreographie darzustellen. Diese Notation kann
verwendet werden um bereits bestehende Choregraphien abstrakter darzustellen und um Choreogra-
phiecontainer zu erweitern. Die Darstellung der Choreographie mit Choreographiecontainer kann
somit als ein weiteres Choreographieartefakt betrachtet werden.

38

4.5. Graphische Darstellung einer Choreographie mit Choreographiecontainer

(a) Ein Blackbox Prozess (b) Ein detaillierter Pro-
zess

Abbildung 4.7.: Zwei Darstellungsoptionen fiir einen Prozess

4.5.1. Prozesse

Als Prozesse werden die Teilnehmer einer Choreographie bezeichnet. Die Prozesse kénnen entweder
als Blackbox , wie in Abbildung 4.7a dargestellt, ohne Aktivititen oder detaillierter mit Aktivitaten
dargestellt werden. Diese Darstellungsform ist besonders sinnvoll wenn Top-Down, beginnend mit
der abstraktesten Form der Problemmodellierung, wie in 2.4 beschrieben, modelliert werden soll, da
zu beginn noch nicht bekannt ist wie die Interaktionen innerhalb oder auch zwischen den einzelnen
Teilnehmern aussehen. Es sollte jedoch bereits zu Beginn einer Modellierungsphase tiberlegt werden
welche Teilnehmer es geben wird und bei welchen Daten es Sinn macht diese prozessiibergreifend
verfiigbar zu machen. Beide Prozess Typen werden nachfolgend als weife rechteckige Zeichenflache,
auf der sich ein farblich hervorgehobenes kleineres Rechteck befindet, dargestellt. Der Name des
jeweiligen Prozesses wird in den farblich hervorgehobenen, oberen Teil des Symbols geschrieben.
Prozesse konnen durch Aktivitaten prazisiert werden.

Aktivitaten sind Arbeitsschritte innerhalb einer Orchestrierung. Sie entsprechen nicht zwangsldufig
einer Basisaktivitat in BPEL [OAS07], es kénnen auch zusammengefasste Ablaufe wie in einem Scope
in BPEL oder einer Workunit in WS-CDL [W3C05] sein. Durch diese detailliertere Abstufung wird es
ermoglicht noch wahrend der Ausfithrung eines Prozess nicht mehr bendtigte Daten zu beseitigen,
ahnlich der Garbage Collection in Java [Ora]. Aktivitaten werden durch einen Kreis innerhalb eines
Prozesses dargestellt. Der Kreis enthélt entweder einen Namen oder eine Identifikationsnummer
durch die eine Aktivitat bei der Modellierung der Orchestrierung mit dem entsprechenden Konstrukt
der zugrunde liegenden Choreographiesprache assoziiert werden kann. Aktivititen werden mit einer
durchgezogenen Linie wie in 4.5.2 beschrieben verbunden.

39

4. Konzept

€ € —=Nachricht — . AKHON « o o o o
(a) Kontrollfluss zwischen 2 zwei Ak- (b) Nachrichtenaustausch zwischen (c) Daten Verbindung zwischen Cho-
tivitaten Prozessen reographiecontainer und Prozes-

sen

Abbildung 4.8.: Darstellung der verschiedenen Verbindungsmoglichkeiten bei der Darstellung einer
Choreographie mit Choreographiecontainer

4.5.2. Verbindungen

Es gibt bei dieser Darstellung drei Arten von Verbindungen: die Verbindung zwischen Aktivitaten
(Kontrollfluss), dem Nachrichtenaustausch zwischen Prozessen und dem Datenaustausch zwischen
dem Choreographiecontainer und Prozessen. Alle drei werden durch Pfeile mit offener Spitze darge-
stellt. Das Objekt von dem der Pfeil ausgeht, sendet bzw. schreibt Daten wihrend das Objekt, auf das
der Pfeil zeigt empfangt bzw. Daten liest.

Der Kontrollfluss zwischen Aktivitaten wird durch einen Pfeil mit durchgehender Linie dargestellt. Mit
diesem Pfeil kénnen nur Aktivititen innerhalb des selben Prozesses verbunden werden. Es ist somit
nicht méglich eine solche Verbindung auflerhalb eines Prozesses zu zeichnen. Diese Verbindung dient
dazu, dem Modellierer eine bessere Ubersicht der Abhingigkeiten der Aktivititen zu ermoglichen.

Der Nachrichtenaustausch zwischen zwei Prozessen wird durch einen Pfeil mit gestrichelter Linie
dargestellt. Der Pfeil kann den Namen der Nachricht enthalten. Mit diesem Pfeil kénnen zwei Akti-
vitdten verbunden werden, die sich nicht im gleichen Prozess finden. Dieser Pfeil stellt das senden
bzw. empfangen einer Nachricht dar. Er wird verwendet um zu zeigen, dass Daten nur einmal ausge-
tauscht werden. Wenn z. B. ein Prozess ein Ergebnis erzeugt, welches nur fiir einen beliebigen Prozess
interessant ist, ist es nicht notwendig im Choreographiecontainer eine extra Variable zu erstellen und
damit Speicher zu belegen. Aulerdem kann der Verbinder genutzt werden um den Austausch privater
Daten, welche moglicherweise nicht fiir alle Teilnehmer sichtbar sein sollten, zu symbolisieren.

Der Austausch von Daten zwischen dem Choreographiecontainer bzw. dessen Choreographievariablen
und den Prozessen oder externen Nutzern wird durch einen Pfeil mit gepunkteter Linie dargestellt.
Die Linie kann den Namen einer Aktion, wie Lesen oder Schreiben, enthalten. Dieser Pfeil kann
Aktivitaten oder Prozesse mit Choreographievariablen verbinden. Er steht fiir das lesende bzw.
schreibende Zugreifen auf eine Choreographievariable. Falls eine Choreographievariable mit einem
Prozess verbunden ist, kann jede Aktivitat innerhalb dieses Prozesses auf die Daten in der Variablen
zugreifen. Wenn eine Aktivitdt mit einer Choreographievariablen verbunden wird erméglicht dies
eine feinere Abstufung der Zugriffsmoglichkeit auf die Variablen.

4.5.3. Choreographiecontainer und Variablen

Choreographiecontainer werden als weifles Rechteck mit einem Namen darin, wie in Abbildung 4.9
gezeigt, dargestellt. Der Container dient als Zeichenflache fiir Choreographievariablen. Der Cho-
reographiecontainer kann iiberall auf der Zeichenflache platziert werden, die Stelle sollte jedoch so
gewihlt werden, dass es ohne Uberkreuzungen moglich sein sollte Verbindungen zwischen ihm und

40

4.5. Graphische Darstellung einer Choreographie mit Choreographiecontainer

Choreographiecontainer
< Konfiguration > <Zwischenergebnis> < Endergebnis >

Abbildung 4.9.: Visualisierung einer Choreographiecontainer mit Choreographievariablen

Prozessen zu zeichnen. Wenn der Choreographiecontainer oberhalb oder unterhalb der Prozesse
gezeichnet wird, besteht zusétzlich eine visuelle Abgrenzung zu eventuellen externen Nutzern. Es
darf nur ein Choreographiecontainer pro Choreographie definiert werden. Dies dient dazu, dass der
Modellierer sich keine Gedanken dariiber machen muss, in welchen Container er die Choreographieva-
riablen hinzufiigen muss. Jeder Teilnehmer ist potentiell in der Lage auf den Choreographiecontainer
zuzugreifen.

Es gibt zwei Arten von Choreographievariablen, die atomaren Choreographievariablen und die zusam-
mengesetzten Choreographievariablen. Beide Arten werden als Rechtecke mit abgerundeten Ecken
und dem jeweiligen Namen darin dargestellt und unterscheiden sich durch das Hintergrundmuster.
Zusammengesetzte Choreographievariablen wie z. B. Zwischenergebnis in Abbildung 4.9 haben ein
quadratisches Hintergrundmuster, wihrend atomare Choreographievariablen, wie Konfiguration oder
Endergebnis, ohne Hintergrundmuster dargestellt werden. Beide Arten von Variablen miissen eine
andere Hintergrundfarbe als der Choreographiecontainer haben um leichter erkennbar zu sein und
diirfen nur innerhalb des Choreographiecontainers platziert werden.

Atomare Choreographievariablen enthalten beliebige Daten. Sie kénnen sowohl simple Datentypen,
wie z. B. eine Ganzzahl enthalten, als auch komplexere Daten wie ein Array aus Ganzzahlen. Wie
bereits in der Definition 4.2.2 erlautert, darf nur ein Prozess schreibend auf eine atomare Variable
zugreifen. Lesend diirfen beliebig viele Prozesse auf eine atomare Choreographievariable zugreifen.

Zusammengesetzte Choreographievariablen diirfen ebenfalls beliebige Datentypen enthalten und
konnen beliebig tief geschachtelt werden. Die Abgrenzung zu einer atomaren Choreographievariablen
liegt darin, dass mehrere Prozesse schreibend, auf sie zugreifen diirfen. Dies scheint auf den ersten
Blick der Definition einer Choreographievariablen zu widersprechen. Dieser Widerspruch wird
dadurch aufgelost, dass jeder Prozess nur auf einen einzelnen Teil der Variablen schreiben darf. Wenn
eine Verbindung zu einer zusammengesetzten Variablen gezogen wird, hat der verbundene Prozess
oder die verbundene Aktivitat Zugrift auf alle zusammengesetzten und atomaren Variablen innerhalb
der zusammengesetzten Variablen.

Ein Beispiel fiir dieses Konzept wird in Abbildung 4.10 dargestellt. In diesem Beispiel gibt es drei
Prozesse: den LeihwagenProzess, den FlugProzess und den HotelProzess. Jeder dieser Prozesse sucht
das jeweils beste Angebot.

Die zusammengesetzte Variable Reise besteht aus der atomaren Variablen Leihwagen und der zusam-
mengesetzten Variablen Reisebiirolnfo. Die zusammengesetzte Variable Reisebiirolnfo besteht aus den
atomaren Variablen Flug und Hotel.

41

4. Konzept

Reise

Reisebtirolnfo

Abbildung 4.10.: Choreographievariablen mit detaillierten Schreibvorgangen

Die Prozesse Leihwagenprozess, FlugProzess und HotelProzess schreiben auf die entsprechenden Va-
riablen. Da jeder der Prozesse eine direkte Verbindung aufweist, konnen die Prozesse nur auf die
jeweilige Variable zugreifen. Der ReisebiiroProzess hat eine Verbindung zu der zusammengesetz-
ten Variablen Reisebiirolnfo und kann somit auf alle Variablen zugreifen, die sich innerhalb dieser
zusammengesetzten Variablen befinden.

4.5.4. Externe Nutzer

Externe Nutzer werden wie in Abbildung 4.11 gezeigt, als Ellipse dargestellt. Die Rolle, die der Nutzer
in der Choreographie spielt, wie z. B. Administrator oder Nutzer muss angegeben werden. Die Rolle
kann dabei auch fiir eine ganze Gruppe von Nutzern stehen. So konnten hinter der Rolle Nutzer
zum Beispiel in Wirklichkeit 100 Nutzer sein, die alle in ihrer Rolle Nutzer den durch Verbindungen
definierten Zugriff auf bestimmte Variablen haben. Externe Nutzer konnen sowohl schreibend als
auch lesend auf den Choreographiecontainer bzw. auf die Choreographievariablen zugreifen.

Rolle1 kann in diesem Beispiel nur schreibend auf die Variable Konfiguration zugreifen. Es sind wie im
Fall von Rolle2 auch mehrfach Verbindungen méglich. Falls ein externer Nutzer nur mit dem Choreo-
graphiecontainer und nicht mit einer konkreten Choreographievariablen verbunden wird, bedeutet
dies, dass der Nutzer, je nach Pfeilrichtung des Verbinders, vollstindigen lesenden oder schreibenden
Zugriff auf samtliche Choreographievariablen der Choreographie hat. In Abbildung 4.11 ist es Rolle3
moglich auf Konfiguration, Zwischenergebnis und Endergebnis lesend zuzugreifen. Bei lesenden Zugrif-
fen konnen in diesem Fall, falls die Variablen private Daten enthalten, Datenschutzprobleme auftreten.
Wenn wie im Fall von Rolle4 vollstindiger schreibender Zugriff auf sdmtliche Choreographievaria-
blen besteht, kénnten massive Stérungen im Ablauf oder falsche Ergebnisse erzeugt werden. Rolle4
konnte z. B. ein falsches Zwischenergebnis erzeugen bevor die Prozesse iberhaupt an dem Punkt
angekommen sind, an dem diese geschrieben werden. Diese wiirden entweder zum Anhalten der
Choreographie oder dem Verwenden von falschen Zwischenergebnissen fithren. Rolle4 konnte auch
direkt die Variable Endergebnis mit einem Wert fiillen und somit das publizieren eines falschen oder
geschonten Ergebnisses ermoglichen. Aus diesen Griinden sollten externe Nutzer wenn méglich nur
direkt mit Choreographievariablen verbunden werden und nicht mit dem Choreographiecontainer.

42

4.6. Anwendungsfalle

o

Lesen Schreiben

Schr{eiben Lesen

V2

o
A0

: . - Choreographiecontainer
\./.‘.. .
< Konfiguration > <Zwischenergebnis> C Endergebnis >

Abbildung 4.11.: Externe Nutzer mit Lese- und Schreibzugriffen

4.6. Anwendungsfalle

In diesem Abschnitt werden Anwendungsfille beschrieben bei denen Vorteile durch die Nutzung eines
Choreographiecontainers entstehen. Die Fille lassen sich auch kombinieren, fiir diesen Abschnitt
werden sie soweit wie moglich vereinfacht um das Konzept welches hinter ihnen steht deutlich hervor
zu heben.

4.6.1. Veroffentlichung von Zwischenergebnissen

Die Grundvoraussetzung fiir den, in Abbildung 4.12 dargestellten Anwendungsfall ist, dass komplexe
Berechnungen oder Verarbeitungsschritte in mehrere Prozesse oder Aktivititen aufgeteilt werden
konnen. In dem Choreographiecontainer kann eine beliebige Menge von Choreographievariablen,
welche Zwischenergebnisse, z. B. aus komplexen Berechnungen oder auch Zwischenschritte bei der
Verarbeitung von groflen Bildermengen [JKP'04], erstellt werden. Die Prozesse und Aktivitdten
stehen fiir einzelne Berechnungs— oder Verarbeitungsschritte. Bei diesem Anwendungsfall wird abge-
wogen, welche Zwischenergebnisse, iiber Choreographievariablen 6ffentlich gemacht werden sollen.
Dies stellt eine Erweiterung des in [BWHO08b] beschriebenen sequentiellen Musters dar, da so beliebig
viele externe Nutzer die Zwischenergebnisse einsehen kénnen. Externe Nutzer sind hier in der Rolle
Interessenten vertreten. Interessenten kénnen in diesem Beispiel nur lesend auf die Choreographie-
variablen zugreifen und stellen Personen dar, die an Zwischenergebnissen interessiert sind wie z. B.
Wissenschaftler. Wenn grofiere Datenmengen entstehen, kann dieser Fall auch mit dem Fall grof3e
Datenmengen in 4.6.5 kombiniert werden. Der Vorteil der Nutzung eines Choreographiecontainers
liegt bei diesem Fall darin, dass bereits bei der ersten Konzeption erwogen werden kann, welche Rollen
aufBerhalb der Choreographie Zugriff auf welche Daten erhalten. So ist es moglich zu definieren, dass
nur wenige privilegierte Nutzer, z. B. Wissenschaftler Zugriff auf alle Choreographievariablen haben,
wihrend fiir normale Interessenten nur der Zugriff auf bestimmte Daten, wie Meilensteine, haben.

43

4. Konzept

Choreographie Container ..+ ""

[Zwischenergebnis 1] [Zwischenergebnis 2] [Zwischenergebnis 3] . Zwischenergebnis N

Abbildung 4.12.: Beispiel fiir eine Veroffentlichung von Zwischenergebnissen

4.6.2. Wechselnde Parameter

Bei diesem Anwendungsfall werden Daten auflerhalb der Choreographieumgebung erzeugt und
tiber Choreographievariablen diesem zur Verfiigung gestellt. In dem, in Abbildung 4.13 dargestellten,
Beispiel wird eine Simulation mit verschiedenen, haufig wechselnden, Parametern, gestartet. Die
Parameter werden in einer Choreographievariablen namens Parameter durch die Rolle Forscher
gespeichert. Die Choreographie besteht aus mehreren Prozessen die gleichzeitig gestartet und Zugriff
auf die Parameter ben6tigen. Bei Prozess 1 benétigt die Aktivitat A1 Zugriff und bei Prozess 2 und 3
die gesamten Prozesse. Alle drei fithren Berechnungen durch und Prozess 2 und 3 senden mit ihrer
letzten Aktivitét ihre Ergebnisse in Form einer Nachricht an Prozess 1, der die Ergebnisse verwendet
um ein Endergebnis zu erstellen.

Dieses Vorgehen wird in [SK13], als Parameterstudie bezeichnet. Die entsprechenden Parameter
werden dabei durch einen Dialog des Editors abgefragt und in Form einer Nachricht an die Choreo-
graphie gesendet. Mit einem Choreographiecontainer bietet sich die Moglichkeit bereits mehrere
dieser Parametersatze vorzubereiten.

44

4.6. Anwendungsfalle

Choreographiecontainer

Abbildung 4.13.: Beispiel fiir wechselnde Parameter

4.6.3. Zusammengefasste Ergebnisse

Dieser Anwendungsfall basiert auf der Annahme, dass es einen Prozess gibt, der Daten von meh-
reren anderen Prozessen benétigt. Dieser Fall entspricht, aus Sicht des Choreographiecontainers
bzw. des Prozesses X, dem in [BWHO08b] beschriebenen Muster, Fan-In. Abbildung 4.14 zeigt ein
Beispiel fiir diesen Fall. Die Prozesse 1-N, welche aus Griinden der Ubersicht gestapelt dargestellt
werden, starten gleichzeitig, stellen Berechnungen an und speichern diese in der zusammengesetzten
Choreographievariablen Zwischenergebnisse. Aulerdem senden die letzten Aktivitiaten der Prozesse
eine Nachricht an Prozess X um zu signalisieren, dass diese fertig sind. Dieser Prozess nimmt alle
Nachrichten entgegen und sendet nachdem die Prozesse 1-N ihre Beendigung signalisiert haben eine
entsprechende Nachricht an Prozess Y der die Daten aus der Choreographievariablen liest und die
abschlieflenden Berechnungen durchfiihrt.

4.6.4. Viele Leser

Dieser Anwendungsfall entspricht dem umgekehrten Fall von zusammengefassten Ergebnissen und
entspricht somit, dem in [BWHO08b] beschriebenen Muster Fan-Out. Wie in Abbildung 4.15 dargestellt,
gibt es bei diesem einen Prozess 1 von dessen Ergebnis alle folgenden Prozesse 2—-N abhéngig sind.
Deshalb sendet Prozess 1 mit seiner letzten Aktivitat Startnachrichten an die Prozesse 2-N. Diese
erhalten die bendtigten Daten aus der Choreographievariablen Zwischenergebnis.

45

4. Konzept

Choreographie Container

A Zwischenergebnis .

Abbildung 4.14.: Beispiel fiir ein zusammengefasstes Ergebnis

4.6.5. GroBe Datenmengen

Bei diesem Anwendungsfall sollen grole Datenmengen zwischen verschiedenen Prozessen ausge-
tauscht werden. Dies kénnen sowohl atomare Choreographievariablen, wie z. B. bindre Daten in
Form eines Bildes, oder zusammengesetzte Choreographievariablen, wie eine grof3e Serie von Mess-
daten, sein. Das Rechteck in Abbildung 4.16 mit der Beschriftung grof3e Datei steht fiir eine grof3e
Datei die an einem beliebigen Ort, innerhalb des Choreographieumgebung oder véllig auflerhalb
des Systems, gespeichert werden kann. Prozess 1 erstellt als Ergebnis eine grof3e Datei. Die Datei
wird auf einem Server, auf den mittels einer REST-API zugegriffen werden kann, aulerhalb des
Choreographieumgebung gespeichert. Die Referenz auf die Datei, in diesem Fall eine URL, wird in der
Choreographievariablen Speicherort abgespeichert. Prozess 2 kann, sobald die entsprechende Datei
von einem Webservice benoétigt wird, die Referenz direkt an die benétigten Webservices, wie z. B. in
[BWHO08b] beschrieben, gesendet werden. Der Webservice kann in diesem Fall dank der Referenz
die Datei von ihrem Speicherort laden [WGSL09], ohne das sie durch die Orchestrierungsengines
geschickt werden missen. Die Moglichkeiten Daten zu speichern und auszutauschen, werden im
Abschnitt 4.7.2 naher beschrieben.

46

4.7. Entwurfsentscheidungen

Choreographie Container

{ Zwischenergebnis)
L ’.,.’

Abbildung 4.15.: Beispiel fiir einen schreibenden Prozess und viele Lesende

4.6.6. Konstanten

Fiir diesen Fall werden bestimmte Konstanten fiir die gesamte Choreographie definiert. Im Beispiel von
Abbildung 4.17 sind dies die Konstanten Pi und Grenzwert. Pi steht stellvertretend fiir Mathematische
Konstanten, welche eventuell von den zugrunde liegenden Systemen unterschiedlich prézise definiert
werden konnten. Grenzwert steht fiir einen Schwellwert ab wann eine Abweichung zu grof3 wird.
Der Vorteil fur diesen Fall liegt in der Vereinfachung der Prozessartefakte, da die entsprechenden
Variablen nicht fiir jeden Prozess einzeln deklariert werden miissen. Aulerdem miissen im Falle einer
Anderung eines Grenzwertes, nicht alle Eintrage fir die Variable in jedem einzelnen Prozessartefakt
verandert werden.

4.7. Entwurfsentscheidungen

Dieser Abschnitt beschaftigt sich mit Entwurfsentscheidungen, die bei der Umsetzung eines Editors
und der Choreographieumgebung abgewogen werden miissen.

47

4. Konzept

h 4

GrofRe Datei

Choreographie Container

Speicherort

Abbildung 4.16.: Beispiel fir den Umgang mit grolen Datenmengen

4.7.1. Synchronisation

Es gibt drei Moglichkeiten die Synchronisation zwischen dem Choreographiecontainer und den
einzelnen Teilnehmern der Choreographie zu ermdglichen: Synchronisation durch Pullen, durch
Nachrichtenaustausch und eine zentrale Synchronisation durch die Choreographieumgebung.

Synchronisation durch Abfragen

Bei dem Abfragen einer Variablen werden, wie in Abbildung 4.18 dargestellt, von einer Aktivitit aus
einer Orchestrierung wiederholt Anfragen an den Choreographiecontainer gesendet. Der Container
liefert hierbei solange negative Antworten, bis die angefragte Ressource tatsachlich fiir den Prozess
verfiigbar ist. Um diese Vorgehensweise umzusetzen ist es notig, dass die zugrunde liegende Cho-
reographiesprache zwei Aktivitdten zu Verfugung stellt, um auf eine externe Variable zuzugreifen:
Die Moglichkeit Anfragen an den Choreographiecontainer zu senden und eine Schleife um diese
Anfragen zu wiederholen. Die Anzahl von Anfragen sollten begrenzt werden, um im Fehlerfall, z. B.
bei einem Absturz des Choreographiecontainers oder der Nichtverfiigbarkeit der Infrastruktur, nicht
endlos ausgefiihrt zu werden und somit Ressourcen verbrauchen. Des Weiteren miissen Zeitabstande

48

4.7. Entwurfsentscheidungen

Choreographie Container

Abbildung 4.17.: Beispiel fiir die Verwendung von Konstanten

definiert werden um nicht zu viel Bandbreite der zugrunde liegenden Infrastruktur zu verbrauchen.
Dieser Ansatz kann auf der Ausfithrungsebene oder auf Choreographieebene realisiert werden. Auf
Choreographieebene ist dies nur moglich, falls der Choreographiecontainer in Form eines Proxy
realisiert wird.

Synchronisation durch Nachrichtenaustausch

Abbildung 4.19 zeigt den Ablauf einer Synchronisierung durch Nachrichtenaustausch. Die Aktivitat
D1in Prozess 1 erzeugt in diesem Fall Daten die anschlieffend in der Choreographievariablen Zwi-
schenergebnis gespeichert werden. Im Anschluss an diese Aktivitat sendet die Aktivitat E1, welche
durch die dickere Umrandung gekennzeichnet ist, eine Nachricht an Prozess 2. Da die Daten aus der
Variablen Zwischenergebnis von der Aktivitdt C2 benétigt werden, blockiert die Aktivitit B2, die
ebenfalls durch den dickeren Rand gekennzeichnet wurde, den Prozess bis die Nachricht von Aktivitat
E1 eintrifft. Diese Form der Synchronisation hat den Vorteil, dass die Synchronisationsaktivititen auf
Ebene der Choreographie definiert werden. Um diese Variante des Zugriffs umzusetzen, benétigt die
zugrunde liegende Chorgeographiesprache zwei Aktivititen: Eine Sendeaktivitit und eine blockieren-
de Empfangsaktivitit. Das Senden der Synchronisationsnachricht kann synchron oder asynchron
erfolgen. Der Empfang der Nachricht muss blockierend sein, da sonst eine Aktivitdt versuchen kénnte
Daten aus einer Choreographievariablen zu lesen, obwohl diese nicht existiert oder leer ist. Dieser
Ansatz kann, falls der Choreographiecontainer in Form eines Webservices realisiert wird, vollstindig
auf Choreographie Ebene umgesetzt werden.

49

4. Konzept

Choreographiecontainer

< Zwischenergebnis >

Antwort

Prozess 1 Prozess 2

@ Schreiben

——

Anfrage

Schleife

—

—
—
—_—

Abbildung 4.18.: Synchronisation zwischen den verschiedenen Teilen einer Choreographie durch
Abfragen

Synchronisation durch die Choreographieumgebung

Bei diesem Ansatz tibernimmt die jeweils ausfithrende Orchestrierungsengine in Verbindung mit dem
Choreographiecontainer die Synchronisation, ohne dass eine explizite Synchronisation in den Prozess-
artefakten festgelegt werden muss. Dies wire moglich wenn ein synchrones Protokoll fiir die Abfrage
der Daten aus dem Choreographiecontainer verwendet wird. Die jeweilige Orchestrierungsengine
wird bei diesem Ansatz durch Funktionsaufrufe blockiert. Diese Funktionsaufrufe blockieren den
Programmablauf der Choreographieumgebung so lange, bis eine Antwort von dem Choreographiecon-
tainer erfolgt. Bei diesem Ansatz wird die Orchestrierungsengine eng an den Choreographiecontainer
gebunden, da eigene Funktionen fiir den Abruf von Daten aus einem Datenserver implementiert
werden miissen. Dafiir muss keine explizite Synchronisation durch den Modellierer der Choreographie
erfolgen.

50

4.7. Entwurfsentscheidungen

Choreographie Container

< Zwischenergebnis >

>\

Prozess 2

(n2)

Prozess 1

S
C'/7f@ /b@n

D2

Abbildung 4.19.: Synchronisation zwischen den verschiedenen Teilen einer Choreographie durch
eine Synchronisationsnachricht

4.7.2. Datenhaltung

Grundsatzlich gibt es zwei Moglichkeiten der Datenhaltung bei diesem Konzept. Die erste Moglichkeit
besteht darin, dass die Daten der Choreographievariablen in der Choreographieumgebung selbst
gespeichert werden. Choreographievariablen werden bei diesem Ansatz wie Variablen, oder dem
Variablen entsprechenden Konstrukt der gew#hlten Choreographiesprache, behandelt. Der Nachteil
dieses Ansatzes besteht darin, dass der Zugriff von externen Nutzern, mit simtlichen Zugriffs- und
Sicherheitsmechanismen hinzugefiigt werden miisste.

Der andere Ansatz besteht darin, dass die Daten auf einem eigenen Datenserver gespeichert werden.
Die Choreographieumgebung wird bei diesem Ansatz dahingehend erweitert, dass bei dem Aufruf
einer Choreographievariablen, die Daten von dem Datenserver abgerufen werden kénnen. Der

51

4. Konzept

Datenserver kann z.B. in Form eines REST-Servers oder einer Datenbank realisiert werden. Der
Vorteil dieses Ansatzes besteht darin, dass der Zugriff von externen Nutzern mit der Zugriffskontrolle
des Datenservers realisiert werden kann. Der Datenserver kann bei diesem Ansatz getrennt von der
Choreographieumgebung existieren. Je nach Art des Datenservers konnen auf diesem auch grofle
Dateien wie z. B. hochauflgsende Bilder gespeichert sein.

4.8. Softwarearchitektur eines Choreographiecontainers

Die Softwarearchitektur eines Choreographiecontainers folgt, wie in Abbildung 4.20 gezeigt, einer
Drei-Schichten-Architektur [Mic].

Die oberste Schicht ist die Prdsentationsschicht. Diese Schicht ist das User-Interface iiber welches mit
dem Choreographiecontainer interagiert werden kann. Sie enthalt die Komponenten WSDL—-und REST-
Interface. Da eine grofle Zahl von Webservice mit WSDL verwendet werden und Orchestrierungen
Webservices verwenden, kann davon ausgegangen werden, dass die meisten Orchestrierungsengines
iber eine eingebaute Moglichkeit verfiigen, mittels WSDL mit einem Webservice zu kommunizieren.
Der Choreographiecontainer verfiigt iiber ein WSDL-Interface, um die Kommunikation mit einer
Orchestrierungsengine, mit méglichst wenig Anderungen, durchfiihren zu konnen. Aulerdem verfiigt
die Prasentationsschicht tiber ein REST-Interface, um das Abfragen von Daten durch externe Teilneh-
mer zu ermdglichen und ein Service-Interface um die Funktionsfihigkeit des Choreographiecontainer
zu iiberwachen. Teil der Prasentationsschicht ist die Zugriffskontrollschicht. Diese priift ob Anfragen
von externen Nutzern oder Prozessen, wie im Container Descriptor definiert, erlaubt sind und weist
gegebenenfalls unberechtigte Anfragen mit einer entsprechenden Nachricht ab.

Die Logikschicht steuert den Ablauf und koordiniert die Funktionen des Choreographiecontainers. In
dieser Schicht befindet sich die Mapping Komponente. Diese wandelt Anfragen an den Choreogra-
phiecontainer in Anfragen an den Datenserver um oder 14dt die Daten aus dem internen Speicher
des Choreographiecontainers. Auflerdem enthalt diese Schicht die Parser Funktionalititen, die ver-
wendet werden um die Konfigurationsdatei einzulesen. Die Konfiguration wird anschlieflend in der
Datenhaltungsschicht gespeichert.

Die Datenhaltungsschicht enthalt eine interne Speicherkomponente, in der die Konfiguration des Cho-
reographiecontainers gespeichert wird. Diese Komponente kann in nachfolgenden Arbeiten zur Ver-
besserung der Abfragegeschwindigkeit um einen Cache erweitert werden. Die Datenhaltungsschicht
enthélt zusétzlich die Client-Funktionalititen, die benétigt werden, damit der Choreographiecontainer
mit dem Datenserver kommunizieren kann.

4.9. Choreographie mit Choreographiecontainer Editor

Dieser Abschnitt beschreibt einen Graphischen Editor mit dem es moglich ist, eine Choreographie
mit Choreographiecontainer zu erstellen. Der Editor orientiert sich an bereits bestehenden Editoren
wie dem BPEL Designer [Foud] und dem BPEL4Chor Designer [Son13]. Abbildung 4.21 zeigt die
Oberflache des Editors. Am oberen Rand befindet sich eine Toolbar die gingige Editor Elemente,

52

4.9. Choreographie mit Choreographiecontainer Editor

Choreographiecontainer

WSDL Interface REST Interface

Prasentationsschicht
| Zugriffskontrollschicht

Mapping Logikschicht Konfigurationsparser

Interner Datenspeicher Datenhaltungsschicht Datenserver Client

Abbildung 4.20.: Softwarearchitektur eines Choreographiecontainers

wie einen Speicher- und einen Ladebutton, beinhaltet. Speichern und laden beziehen sich auf die
graphischen Elemente und deren darunter liegende Modelle. Es wird durch das Driicken von Speichern
nur die Darstellung der Choreographie gespeichert und noch keine spezifischen Artefakte erzeugt.
Die Toolbar kann um weitere Buttons wie: Bearbeiten, Ansicht, Optionen oder Suchen erweitert
werden.

Unter dieser Toolbar, befindet sich eine weitere Toolbar die Buttons speziell fiir die Verwendung
als Choreographie mit Choreographiecontainer Editor beinhaltet. Der Button mit der Aufschrift
Erzeuge Prozessartefakte, serialisiert die fiir die verwendete Choreographiesprache spezifischen Pro-
zessartefakte. Der Button Erzeuge Container Descriptor, serialisiert den Container Descriptor, in der in
4.4.2 beschriebenen Form, fiir die Choreographie. Der letzte Button in der Toolbar Erzeuge External
User Descriptor serialisiert den External User Descriptor, in der in 4.4.3 beschriebenen Form, fiir die
Choreographie.

Den zentralen Platz des Editors nimmt die, als solche benannte, Zeichenflache ein. Auf dieser Flache
koénnen die einzelnen Elemente einer Choreographie mit Choreographiecontainer platziert werden.
Einzelne Elemente kénnen aus der Palette am rechten Rand selektiert werden. Die Elemente sind in
folgenden Gruppen angeordnet: Prozesse, externe Nutzer, Choreographiecontainer, Variablen und
Verbindungen. Die Elemente, die den Gruppennamen tragen und farblich hervorgehoben sind, kénnen
nicht auf der Zeichenflache platziert werden. Wenn diese angeklickt werden, wird die Gruppe aus-
oder eingeklappt. Wie bereits in 4.3.2 beschrieben, kénnen nur die Elemente Prozess, externer Nutzer
und Choreographiecontainer direkt auf der Zeichenflache platziert werden. Aktivitdten lassen sich

53

4. Konzept

‘ | Speichern | | Laden

Erzeuge External Participant PSR

Description

Erzeuge Prozessartefakte Erzeuge Container Descriptor

Prozess

Aktivitéat

Externe Teilnehmer

Externer Teilnehmer

Choreographie
Container und Variablen
Zeichenflache Choreographie

Container
Einfache Choreographie
Variable
Zusammengesetzte
Choreographie Variable

Verbindungen

Kontrollfluss

Eigenschaftenbereich Datenverbindung

Reiterl Nachrichtenaustausch

Reiter2

Reiter3

Abbildung 4.21.: Oberflache eines Designers fiir eine Choreographie mit Choreographiecontainer

nur in einem bereits platzierten Prozess platzieren und die beiden Variablen Typen nur in einem
Choreographiecontainer. Verbindungen lassen sich nur zwischen den entsprechenden Elementen
ziehen. Der Editor ist so konstruiert, dass es nur méglich ist Elemente nur ihren Definitionen gemaf3
zu platzieren. Wiirde z. B. versucht eine Aktivitit auf der Zeichenfldche zu platzieren, verdndert sich
das Maussymbol und bei einem Klick passiert nichts.

Den unterem Teil des Editors nimmt ein Eigenschaftsbereich ein. In der Leiste, in der in Abbildung
4.21 Eigenschaftsbereich steht, wird der Typ des aktuell auf der Zeichenflache selektierten Elements
angezeigt. Auf der linken Seite des Bereichs sind mehrere Reiter, die die verschiedenen Einstellungs-
moglichkeiten eines Elements gruppieren. Der aktuell selektierte Reiter wird, wie in Abbildung 4.26
gezeigt, durch einen dickeren Rand hervor gehoben. Die rechte Seite der Ansicht zeigt die Einstellungs-
moglichkeiten an, die der aktuelle Reiter bereitstellt. Diese Reiter stellen ein Graphische Oberflache
dar, iiber die die Eigenschaften eines Modellelements verandert werden kénnen.

Die Abbildung 4.22 zeigt die verschiedenen Inhalte der Eigenschaftsbereiche der Elemente einer
Choreographie mit Choreographiecontainer. Alle Elemente auler Verbindungen, auf welche spater
néher eingegangen wird, haben den Reiter Eigenschaften. Jedes Element hat in diesem Reiter ein Label
mit dem Inhalt Name und ein leeres Textfeld. In das leere Textfeld wird der, fiir diese Choreographie,
einzigartige Name des Elements eingetragen. Da der Name vom Typ NCName ist, darf er keinen

54

4.9. Choreographie mit Choreographiecontainer Editor

Choreographie Container

Eigenschaften

Name: Name

Adresse: Adresse

Abbildung 4.22.: Eigenschaftsreiter des Choreographiecontainers

Prozess

Eigenschaften

Name: Name

Abbildung 4.23.: Eigenschaftsreiter von Prozessen und Aktivititen

Doppelpunkt enthalten. Auflerdem enthélt der Reiter ein leeres Textfeld, in welches die Adresse des
Choreographiecontainer eingetragen wird.

Abbildung 4.23 zeigt die Eigenschaftsreiter von Prozessen und Aktivitaten. Da die Details dieser
Elemente zum Zeitpunkt der Erstellung des Choreographiecontainers noch nicht im Vordergrund
stehen, verfiigen die Elemente nur iiber ein Textfeld fiir den Namen des jeweiligen Elements.

Externe Nutzer haben, wie in Abbildung, 4.24 dargestellt, eine Checkbox mit dem Label Schreiber.
Diese Checkbox stellt einen zusatzlichen Sicherheitsmechanismus dar, da es generell Sicherheitsrisiken
birgt, Teilnehmer von auflerhalb der Choreographie Daten in den Choreographiecontainer schreiben
zu lassen. Aus diesem Grund muss zusitzlich zu einer Datenverbindung von externem Nutzer zu dem
Container oder einer Variablen die Checkbox aktiviert werden. Sollte diese nicht aktiviert sein wenn
Choreographieartefakte erzeugt werden sollen, wird die entsprechende Datenverbindung ignoriert.

Der, in Abbildung 4.25, gezeigte Eigenschaftsbereich fiir das Element zusammengesetzte Variable
hat eine Checkbox mit dem Label Permanent. Das Aktivieren dieser Checkbox setzt das Permanent
Attribut der Variablen auf wahr. Bei allen Variablen die sich innerhalb dieser Variablen befinden wird
das Attribut ebenfalls auf wahr gesetzt. Dadurch wird der Choreographieumgebung signalisiert, dass
diese Variablen persistent gespeichert werden miissen.

Atomare Variablen haben, wie in Abbildung 4.26, zusatzlich zu der Permanent Checkbox, eine Check-
box mit dem Label Referenz und eine mit dem Label Konstante. Die Checkbox mit dem Label Referenz
setzt das Referenz Attribut auf den Wert wahr und die Checkbox mit dem Label Konstante setzt das

55

4. Konzept

Externer Teilnehmer

Base

Name: Name

Schreiber []

Abbildung 4.24.: Eigenschaftsreiter eines externen Nutzers

Zusammengesetzte Variable

Base

Name: Name

Permanent []

Abbildung 4.25.: Eigenschaftsreiter einer zusammengesetzten Variable

Konstante Attribut auf den Wert wahr. Zusatzlich zu dem Feld mit dem Namen der Variablen, hat eine
atomare Variable ein leeres Feld mit dem Label Datentyp. Der Datentyp muss angegeben werden. Der
Datentyp der Variablen wird in Form einer Zeichenkette eingetragen. Falls dieses Eintragen nicht
vorgenommen wird, wird beim Versuch Prozessartefakte zu erzeugen ein Fehler angezeigt. Die beiden
Reiter Schreiber und Leser haben eine leere Liste mit dem Label Teilnehmer. Wird der Button Hinzu-
fiigen gedriickt, 6ffnet sich ein Fenster in dem séamtliche Teilnehmer einer Choreographie, welche die
Moglichkeit haben auf Choreographievariablen zuzugreifen, angezeigt werden. Durch einen Klick
kann der entsprechende Teilnehmer selektiert werden und durch das driicken des Hinzufiigen Buttons
wird der Teilnehmer in die Liste hinzugefiigt. Die Verwendung der Reiter Schreiber und Leser ist
optional. Das Verbinden durch Datenflusspfeile ist verpflichtend. Die Pfeile konnen fiir eine bessere
Ubersicht ausgeblendet werden.

Die Eigenschaftsbereiche der Verbindungen unterscheiden sich von denen der anderen Elemente. Eine
Verbindung vom Typ Kontrollfluss verfiigt im Eigenschaftsbereich, wie in Abbildung 4.27 gezeigt,
tiber ein leeres Textfeld mit dem Label Bedingung. Die Verwendung dieses Feldes ist optional und
gibt Bedingungen an, die erfiillt sein miissen, damit der Kontrollfluss ausgefiihrt wird.

Der Eigenschaftsbereich einer Verbindung vom Typ Nachrichtenaustausch hat, wie in Abbildung
4.28 zwei leere Textfelder, eines mit dem Label Nachricht und eine mit dem Label Datentyp. Das
Nachrichtenfeld ist optional zu befiillen. Wenn ein Name eingetragen wird, wird er, wie in 4.8 gezeigt,
in der Linie des Pfeils angezeigt. Der Datentyp ist, in Form einer Zeichenkette einzutragen. Die
Angabe des Datentyps ist verpflichtend.

56

4.9. Choreographie mit Choreographiecontainer Editor

Variable
Eigenschaften Name: Name Datentyp: Typ
Schreiber Konstante [] Referenz [
Leser Permanent [
Variable
Eigenschaften i
g Variable < Hinzufligen }
Schreiber
Leser
Variable
Eigenschaften i
g Variable < Hinzufligen }
Schreiber
Leser
Teilnehmer A
Teilnehmer B

< Auswahlen >

Abbildung 4.26.: Eigenschaftsreiter einer atomaren Variablen

4. Konzept

Kontrollfluss

Eigenschaften

Bedingung: Bedingung

Abbildung 4.27.: Eigenschaftsreiter eines Kontrollflusses

Nachrichtenaustausch
Eigenschaften
Nachricht: Nachricht
Datentyp: Datentyp

Abbildung 4.28.: Eigenschaftsreiter einer Nachrichtenverbindung

Eine Verbindung vom Typ Datenfluss hat, wie in Abbildung 4.29 zu sehen ist, ein leeres Textfeld mit
dem Label Name. In dieses Textfeld kann man optional die Art des Zugriffs, z. B. lesen oder schreiben
eintragen. Wird eine Name eingetragen, wird diese in der Linie des Verbinders angezeigt. Das Eintragen
eines Namens dient nur der Ubersicht und wird in kein Choreographieartefakt iibernommen.

Datenfluss

Eigenschaften

Name: Name

Abbildung 4.29.: Eigenschaftsreiter eines Datenflusses

58

5. Realisierung

In diesem Abschnitt werden die Erweiterungen des BPEL4Chor [Son13] beschrieben, die fiir die
Realisierung, des in dieser Arbeit beschriebenen, graphischen Konzepts einer Choreographie mit
Choreographiecontainer, durchgefiithrt wurden. Der bereits existierende BPEL4Chor Editor wurde als
Grundlage gewahlt, da dieser zum Einen, den Teil der zur Erstellung von Prozessartefakten bereits
implementiert hat und zum Anderen als Eclipse Plugin realisiert wurde und somit vergleichsweise
einfach erweiterbar ist.

5.1. Ubersicht des vorhandenen Editors

Abbildung 5.1 zeigt ein Bildschirmfoto des bereits existierenden Editors. Am oberen Ende des Editors
befindet sich, gelb umrandet, eine Toolbar mit der, die wichtigsten Elemente zur Steuerung eines
Editors wie z. B. ein File Abschnitt mit dem Choreographien gespeichert und geladen werden kénnen.
Der rot umrandete Teil des Editors ist die Zeichenfldche, auf der die graphischen Elemente platziert
werden konnen. Diese Elemente konnen auf der rechten Seite, aus der rot umrandeten, Palette
selektiert werden. Im unteren Teil des Editors befindet sich griin umrandet ein Eigenschaftenfenster,
in dem die Eigenschaften eines selektierten, graphischen Elements, auf verschiedene Reiter aufgeteilt,
angezeigt werden.

Der bereits bestehende Editor, erfiillt somit, von Seiten der Nutzeroberflache bereits alle Bedingungen
die in 4.9 beschrieben wurden. Jedoch missen noch die fiir die Choreographie mit Choreographiecon-
tainer notigen, zusétzlichen graphischen Elemente hinzugefiigt werden. Wie diese modelliert wurden,
wird in den folgenden Abschnitten beschrieben.

Die in den nachsten Abschnitten gezeigten Modelle wurden in [Son13] beschrieben und auch erstellt.
Sie mussten jedoch erweitert werden um die Moglichkeit zu bieten Choreographien mit Choreographie-
container darstellen zu konnen. Aus diesem Grund wird nur auf die entsprechenden Erweiterungen
dieser Modelle eingegangen, die benétigt werden um eine Choreographie mit Choreographiecontainer
darstellen und bearbeiten zu kénnen.

5.2. EMF Modelle

Abbildung 5.2 zeigt das Ecore Modell der Participant behavior description. Dieses Modell enthélt im
wesentlichen die Elemente die im BPEL Standard beschrieben wurden. Von besonderem Interesse
fur das Konzept dieser Arbeit sind die beiden Elemente Process und Scope. Diese beiden Elemente

59

5. Realisierung

&) x|
i~ |- v | BEEH | ceom@| | -l - ?al [Resource
. i cfte m
|[rzhoma Zlls ZIB I A-& - -~ | BB = - |00 - i
o |12 zepelchor_agram 3 FICMCnICT =
5 :I% 5 Palette
- .) e
e Zeichenfliche Bt =
2= 4 CMessageLink
CParticipant
E + i
4 CParticipagiSaly;
< participant (= ParticpantBehaviorDescription £l
e rapE—
£ process (5] 5cope
& Invake
% main
[Pick
& invoke = Flow -
Z|Flow
4 FlowActivityLink
(= Abstract £
£73 Abstract Activity
| {23—+{77 Abstract Connector
| o 4 AbstraciConnectorlink
[Tasks (= ZARTED SA=a=l
4 CParticipant > o =
— Eo [Eigenschaftenfenster =
Containment = add-fnotexists
Appearance Name =
Base Scope
Selects L
. | =}
I :

Abbildung 5.1.: Ubersicht des Editors

enthalten bereits gemafl BPEL Standard Variablen. Aus diesem Grund werden sie genutzt um die Da-
tenmodell Elemente, Prozess und Aktivitét aus 4.3.2 darzustellen. An der graphischen Darstellung und
der standardméfligen Verwendung der Elemente wurde nichts verandert. Sie wurden nur dahingehend
verandert, dass es moglich ist eine Verbindung zwischen ihnen und einem Choreographiecontainer
bzw. einer Choreographievariablen zu erstellen.

Um eine Verbindung zwischen verschiedenen Elementen zu ermdglichen wurde das Element CData-
Linkable eingefiihrt, dessen Eigenschaftenfenster in 5.3 dargestellt wird. Die Eigenschaften Abstract
und Interface wurden auf true gesetzt, um eine Verwendung als Interface zu ermoglichen. Jedes
Element, dass von diesem Element erbt, kann potentiell mit dem anderen verbunden werden. Das
Interface CDataLinkable wurde im PBD Modell hinzugefiigt, da die beiden Elemente Process und Scope
in der Lage sein miissen es zu nutzen. Das hinzufiigen des Interfaces CDataLinkable ist die einzige
Anderung die am Datenmodell der Elemente Process und Scope durchgefiihrt wurde. Das Einfiigen
des Interfaces in dieses Modell ist notwendig, da zwar die Elemente aus dem PBD Modell im Chor
Modell sichtbar sind, aber nicht die Elemente aus dem Chor Modell im PBD Modell. Es wire moglich
dies zu dndern, dies wiirde dann allerdings zu einer gegenseitigen Abhéngigkeit fithren.

Das in Abbildung 5.4 dargestellte Ecore Modell der Choreographie hat als Wurzelelement Choreo-
graphy. Dieses Element beschreibt die Choreographie als ganzes, das bedeutet, dass alle Elemente
die direkt mit der Choreographie in Verbindung stehen als Referenz unter dieses Element eingefiigt
werden missen. In diesem Fall sind es die Elemente ccontainer, cexternalparticipant und cdatalinks.
Diese Elemente entsprechen dem Choreographiecontainer, den externen Nutzern und den Datenver-
bindungen im Datenmodell 4.3.2. Durch die entsprechende Einstellungen kann jede Choreography

60

5.3. Tooling Definition Model

EIIF_, platform: fresourceforg. edipse. bpeldchor . model fmodel fpbd . ecore E-H Scope - Activity, CDataLinkable
- # pbd

Q ExtensibleElements

Q Documentation

E| H Process -» ExtensibleElements, CDatalinkable

- GenModel

- = messageExchanges : MessageExchanges
-+ = yariables : Variables

- = correlationSets @ CorrelationSets

- =+ faultHandlers : FaultHandlers

- = compensationHandler : ActivityContainer
----- = extensions ! Extensions - = terminationHandler : ActivityContainer

..... [, .
o impart : Impart - = eventHandlers : EventHandlers
----- =+ messageExchanges : MessageExchanges - O gctivity @ Activity

----- =+ yariables : Variables -+ igolated : Boolean

- 23 exitOnStandardFault : Boolean

----- = correlationSets @ CorrelationSets
----- = faultHandlers ; FaultHandlers

----- = eventHandlers : EventHandlers .

[=+ activity : Activity '

----- = name @ EString

----- O targetMamespace : EString

..... O queryLanguage @ EString -~ B Coatalinkable
----- O expressionLanguage : EString

----- = suppressJoinFailure : Boolean

----- o exitOnStandardFault @ Boolean

----- T abstractProcessProfile : EString

Abbildung 5.2.: Ecore Modell der PBD

nur eine Instanz vom Typ ccontainer erstellen und eine unbegrenzte Menge von cexternalparticipant
und cdatalinks Instanzen.

Die Elemente CContainer, CContainerSimpleVariable, CContainerComplexVariable und CExternalParti-
cipant erben von dem Interface CDataLinkable und enthalten die in 4.3.2 beschriebenen Attribute.
Diese Elemente entsprechen: dem Choreographiecontainer, der atomaren Variablen, der zusammen-
gesetzten Variablen und dem externen Nutzer im Datenmodell 4.3.2. Die Namen sind hierbei vom Typ
EString und die binéren Attribute vom Typ EBoolean. Da sowohl der Choreographiecontainer als auch
zusammengesetzte Variablen, Choreographievariablen enthalten kénnen, haben diese Referenzen auf

die beiden Choreographievariablen Typen CContainerSimpleVariable und CContainerComplexVaria-
ble.

Das Element CDataLink ermoglicht es durch dessen beide Attribute target und source vom Typ
CDataLinkable, die Elemente, die von diesem Interface erben, miteinander zu verbinden.

5.3. Tooling Definition Model

Abbildung 5.5 zeigt das gesamte Tooling Definition Model des BPEL4Chor Editors. Jedes graphische
Element, welches auf der Zeichenflache platziert werden soll, muss in dieses Modell eingetragen
werden. Das Modell ist in mehrere Tool Groups aufgeteilt. Die Eintrage fiir den Choreographiecontainer,
die Choreographievariablen, die externen Nutzer und die Datenverbindung, wurden zu der Gruppe
Choreography hinzugefigt.

61

5. Realisierung

K[L Problems (@ Javadoc (@ Dedaration (E Console (E"@ Call Hierarch ({f' Search (E Properties 4 = 8|
=i =
Property | Value
Abstract I+ true
Default Value =
ESuper Types
Instance Type Mame =
Interface I+ true
Mame = CDatalinkable
1] | na

Abbildung 5.3.: Eigenschatfsfenster des CDataLinkable Elements

org. edipse.bpeldchor.model fmodel {chor .ecare

= H CContsiner - Chatalinkable
-+ = name : EString
- 5 simplevariables : CContainerSimpleVariable
- 3 complexvariables : CContainerComplexVariable
= H cContainersimpleVariable -= CDatalinkable
name : EString

=B Choreography

----- T name : EString

----- T targetNamespace : EString

----- 5t partidpants : CPartidpant

----- 3 partidpantSets : CParticipantSet

----- = messagelinks : CMessageLink

----- 3 participantRefs : CParticipantRef

----- 5= flowActivityLinks : FlowActivityLink

----- 3 groundings : CGrounding

----- &2 forEachIterationSpecs : ForEachlterationSpec
----- &2 abstractConnectorLinks : AbstractConnectorLink
----- = coontainer @ CContainer

----- &a cexternalparticipant : CExternalParticipant

----- 3 datalinks : CDatalink

a
= dataType : EString
-~ =3 link : EBoolean
= constant : EBoolean
= permanent : EBoolean
=+ H cContainerComplexvariable - Chatalinkable
-+ 3 name : EString
-+ 3 permanent : EBoolean

- = simplevariables : CContainerSimpleVariable
- = complexvariables : CContainerComplexVariable
= H cExternalParticipant - CDatalinkable

b3 name : EString

.
: o= allowedwriter : EBoolean
B H chataLink
i =+ source : CataLinkable
=+ target : CDatalinkable
L O name EString
[]

.
.

Abbildung 5.4.: Ecore Modell der Choreographie

5.4. Graphical Definition Model

Abbildung 5.6 zeigt die Figure Descriptors des Graphical Definition Model. Die ausgeklappten Elemente
sind jene, welche neu hinzugefiigt wurden. Die Figure Descriptors bestimmen das Aussehen der
graphischen Elemente auf der Zeichenfliche. Die Zeichenflache wird durch das Canvas Chor Element
definiert. Das Canvas Chor Element enthilt alle Elemente die, graphische Elemente definieren.

Das Aussehen aller, in dieser Arbeit erstellten, graphischen Elemente wird in der Figure Gallery
choreography festgelegt. Das Aussehen des Choreographiecontainers wird durch die CContainerFigure
festgelegt. Das erste Element gibt die dufiere Form des Elements an. Diese wurde gemaf3 der graphi-
schen Darstellung in 4.5 als Rectangle, zu deutsch Rechteck festgelegt. Zusitzlich wird ein Layout,

62

5.5. Mapping Definition Model

SR & |5 tform: fresource/org. edipse. bpeldchor .amffmadelfchor .amftool
E- 4 Tool Registry
- Palette chorPalette
El 4 Tool Group Choreography
; - 4 Creation Tool CMessageLink
-+ Creation Tool CPartidpant
-+ Creation Tool CParticipantSet
-4 Creation Tool CContainer
-« Creation Tool CContainerSimpleVariable
< Creation Tool CContainerComplexVariable
-4 Creation Tool CExternalParticipant
-+ Creation Tool CDatalink
Palette Separator
- 4 Tool Group ParticipantBehaviorDescription
- 4 Tool Group Pick
- 4 Tool Group Flow
- <4 Tool Group Abstract

Abbildung 5.5.: Das Tooling Definition Model

ein Label, welches in Abbildung 5.8 dargestellt wird und ein Compartment, welches in Abbildung 5.7
dargestellt wird, festgelegt. Das Compartment gibt die Form des Teils von dem Element an, in welcher
andere Elemente platziert werden kdnnen. Diese Form wurde auch als rechteckig festgelegt.

Die atomare Variable ist als CContainerSimpleVariableFigure und die zusammengesetzte Variable
als CContainerComplexVariableFigure definiert. Beide Sorten werden als abgerundete Rechtecke
dargestellt. Diese Figures beinhalten zusitzlich ein Background Element, welches es ermoglicht
eine Hintergrundfarbe fiir das Element festzulegen. Die Farbe der atomaren Variablen ist weif3
und der zusammengesetzten Variablen ist hellgrau. Die zusammengesetzte Variable enthilt, wie
auch der Choreographiecontainer ein Compartment, da in diesem Element weitere atomare und
zusammengesetzte Variablen platziert werden konnen.

Die externen Nutzer werden als CExternalParticipantFigure definiert. Dieses Element ist vom Prinzip
gleich aufgebaut wie der Choreographiecontainer, es enthalt jedoch kein Compartment.

Die Datenverbindung wird als CDataLinkFigure definiert. Diese enthilt als Element eine Polyline
Connection. Diese lasst das Element als eine Verbindungslinie erkennen, da es sich bei der Polyline
um keine geometrische Figur sondern um eine Linie handelt.

Abbildung 5.9 zeigt die Nodes fiir geometrische Formen und Connections fiir Verbindungen, des
Modells. Diese reprasentieren die Elemente welche spater graphisch dargestellt werden sollen. Zu
diesem Zweck beinhalten sie die Information, welcher Figure Descriptor zu ihnen gehort.

5.5. Mapping Definition Model

Das Mapping Definition Model verbindet die Ecore, Tooling Definition und Graphical Definition Mo-
delle miteinander. Abbildung 5.10 zeigt das Mapping Definition Model des Editors. Die ausgeklappten

63

5. Realisierung

.bpeldchor.gmffm chor.amfaraph
E|¢ Canvas chor
= 4 Figure Gallery choreography
; - Figure Descriptor CMessagelinkFigure
-} Figure Descriptor CPartidpantFigure
-< Figure Descriptor CPartidpantSetFigure
-4 Figure Descriptor CParticipantRefFigure
-} Figure Descriptor CParticpantReflinkFigure
-< Figure Descriptor AbstractConnectorLinkFigure
=< Figure Descriptor CContainerFigure
B4 Rectangle CContainerFigure
: -4 Border Layout
-4 Label CContainerName
< Border Layout Data BEGINNING
= <_> Rectangle CContainerCompartment

B- ¢ Figure Descriptor CContainerComplexVariableFigure

<» Rounded Rectangle CContainerComplexVariableFigure

"4+ Border Layout

< Background: lightGray

4+ Label CContainerComplexVariableMame

< Border Layout Data BEGINNING

El- <4 Rounded Rectangle CContainerComplexVariableCompartment
i 4 Border Layout Data CENTER

< Child Access getFigureCContainerComplexVariableMame

< Child Access getFigureCContainerComplexVariableCompartment

= ¢ Figure Descriptor CDatalinkFigure

\.’_‘ Polyline Connection CDataLinkFigure
‘w4 Label CDatalinkMName

‘< Border Layout Data CENTER <= Child Access getFigureCDatalinkMName
----- <+ Child Access getFigureCContainerName B+ 4+ Figure Gallery pbd
----- <~ Child Access getFigureCContainerCompartment [4 Figure Gallery deco
[=l- <= Figure Descriptor CContainerSimpleVariableFigure
B4 Rounded Rectangle CContainerSimpleVariableFigure
4 Border Layout
-4 Background: white
-4 Label CContainerSimpleVariableName
e < Border Layout Data BEGINNING
----- <= Child Access getFigureCContainer SimpleVariableMame
[=l <= Figure Descriptor CExternalParticipantFigure
B4 Ellipse CExternalParticipantFigure
“ 4 Border Layout
-4 Label CExternalParticipantiame
‘-4 Border Layout Data FILL
----- <= Child Access getFigureCExternalParticipantiame

Abbildung 5.6.: Figure Descriptor Abschnitt im Graphical Definition Model

----- < Compartment CContainerCompartment (CContainerFigure)
----- < Compartment CContainerComplexVariableCompartment (CContainerComplexvariableFigure)

Abbildung 5.7.: Compartment Abschnitt im Graphical Definition Model

Elemente wurde neu hinzugefiigt. Die Elemente, die direkt auf der Zeichenflache platziert werden
konnen, werden entweder als Top Node Reference oder als Link Mapping definiert.

Der Choreographiecontainer entspricht hier dem Element Top Node Reference CContainer. Dieses
Element gibt an, welches Element aus dem Ecore Modell dargestellt werden soll. Die Top Node
Reference enthalt unter anderem das Node Mapping. Abbildung 5.11 zeigt das Eigenschaftenfenster
des Node Mappings fiir einen Choreographiecontainer. Das Element Attribut gibt an, welches Element
aus dem Ecore Modell dargestellt werden soll. Das Diagram Node Attribut gibt an welche Node und
tiber diese welchen Figure Descriptor bzw. welche Form das Element haben soll. Zusétzlich enthélt
das Node Mapping, tiber die Child References, die Information welche Kindelemente ein Element

64

5.5. Mapping Definition Model

----- %+ Diagram Label CContainerMame

----- %+ Diagram Label CContainerSimpleYariableMame
----- < Diagram Label CContainerComplexVariableMame
----- % Diagram Label CExternalParticipantMame

- 4 Diagram Label CDatalinkName

Abbildung 5.8.: Labels Abschnitt im Graphical Definition Model

----- % Mode CContainer {CContainerFigure)

----- % Mode CContainerSimpleVariable (CContainerSimpleVariableFigure)

----- < Mode CContainerComplexvariable (CContainerComplexVariableFigure)
----- % Mode CExternalPartidpant (CExternalParticipantFigure)

----- < Connection CMessageLink

----- < Connection CParticipantReflink

----- < Connection FlowAtivityLink

----- < Connection ActivityInSequencelink

----- “+ Connection AbstractConnectarLink

----- < Connection CDataLink

Abbildung 5.9.: Nodes und Connections Abschnitt im Graphical Definition Model

beinhalten kann. Das Eigenschaftenfenster der Child Reference, der CContainerComplexVariable wird
in Abbildung 5.12 dargestellt. Die Attribute Child und Referenced Child geben an welches Node Mapping
die Child Reference beinhaltet. In diesem Fall das Node Mapping der zusammengesetzten Variablen
CContainerComplexVariable. Das Attribut Compartment gibt an, in welchem Compartment dieses
Element spéter platziert werden soll. Das Compartment entspricht in diesem Fall dem Compartment
Mapping CContainerCompartment, welches bedeutet, dass das Element im Choreographiecontainer
Element platziert werden kann. Das Attribut Containment Feature gibt an iiber welche Referenz
auf die Daten im Ecore Modell zugegriffen werden konnen. In diesem Fall kann auf die Daten tiber
die Referenz des Choreographiecontainers auf die Daten im Ecore Modell zugegriffen werden. Das
Element CExternalParticipant folgt einem dhnlichen Aufbau, enthilt jedoch keine Child References
und Compartments.

Abbildung 5.13 zeigt das Eigenschaftenfenster der Child Reference der zusammengesetzten Variablen,
die sich innerhalb der Child Reference der zusammengesetzten Variablen befindet. Dies stellt somit eine

65

5. Realisierung

EIE platform .edipse.bpeldchor.gn jchor .gmfmap
B4 Mapping
+-- ¥] Top Mode Reference <participants:CParticipant/CParticipant >
K] Top Mode Reference <participantSets:CParticdpantSet/CParticipantSet>
+ Top Mode Reference <participantRefs:CParticdipantRef/CParticipantRef>
-1 Top Mode Reference <ccontainer: CContainer f[CContainer =
E|I:I MNode Mapping <CContainer/CContainer =
Ab Feature Label Mapping false
=¥ child Reference <simplevariables:CContainerSimpleVariable /CContainerSimplevariable =
E|I:I Mode Mapping <CContainerSimpleVariable /{CContainerSimpleVariable =
L..Ab Feature Label Mapping false
= b_:l Child Reference <complexvariables: CContainerComplexyariable /CContainerComplexVariable >
=13 Mode Mapping <CContainerComplexyariable /CContainerComplexvariable =
Ab Feature Label Mapping false
K1 Child Reference <complexvariables: CContainerComplexVariable/CContainerComplexVariable =
B Child Reference <simplevariables: CContainerSimpleVariable /[CContainerSimpleVariable =
B Compartment Mapping <CContainerComplexVariableCompartment:>
----- E Compartment Mapping <CContainerCompartment =
=~ ¥ Top Mode Reference <cexternalparticipant: CExternalParticipant/CExternalParticdipant =
E-IT Node Mapping <CExternalParticipant/CExternalParticipant>
i..fib Feature Label Mapping false
Link Mapping <CMessageLink{CMessageLink.sendActivity: CLinkable->=CMessagelink.receiveActivity: CLinkable}/CMessageLink =
Link Mapping <FlowActivityLink{FlowActivityLink. sourceActivity: Activity->FlowActivitylLink. targetActivity: Activity }/FlowA tivityLink =
Link Mapping <{CMessageLink.participantRefs:CParticipantRef} /CParticipantReflink =
Link Mapping <AbstractConnectorLink{AbstractConnectorLink.sendActivity: CLinkable-=AbstractConnectorLink.receive Activity: Clinkable} /AbstractConnectorLink =
Link Mapping <CDatalink{CDataLink.source:CDatalinkable- >Chatalink. target: CDatalinkable} fCDatalink =
L..fib Feature Label Mapping false
Canvas Mapping
(- & platform: fresource forg.edipse . bpel4chor.modelfmodelfchor . ecore

Abbildung 5.10.: Mapping Definition Model

Rekursion dar, da zusammengesetzte Variablen sich selbst enthalten konnen. Die Attribute entspre-
chen den selben wie in der Child Reference eine Stufe dartber, jedoch éndert sich das Compartment, da
als Compartment nicht der Choreographiecontainer sondern das Compartment CContainerComplexVa-
riableCompartment der zusammengesetzten Variablen CContainerComplexVariable verwendet wird.
Eine weitere wichtige Anderung ist, dass nicht mehr tiber die Referenz des Choreographiecontainer,
CContainer.complexvariables, sondern iiber die Referenz der zusammengesetzten Variablen CCon-
tainerComplexVariable.complexvariables auf die Ecore Daten der beinhalteten zusammengesetzten
Variablen zugegriffen wird.

Verbindungen werden nicht als Nodes sondern als Link Mapping realisiert. Abbildung 5.14 zeigt das
Eigenschaftenfenster der Datenverbindung CDataLink. Das Containment Feature gibt an, iiber welche
Ecore Referenz auf die Daten zugegriffen wird. Das Element Attribut gibt an, welches Element aus dem
Chor Ecore Modell verwendet wird. Die Attribute Source Feature und Target Feature geben an, welche
Elemente als Ursprung und Ziel der Verbindung verwendet werden konnen. In diesem Fall sind die
die source und target Attribute des CDataLink Elements im Ecore Modell. Das Attribut Diagram Link
gibt an, welche graphische Reprasentation, aus dem Graphical Definition Model, fiir die Verbindung
verwendet wird. Das letzte Attribut Tooling, gibt an welches Element aus dem Tooling Definition
Model verwendet wird, um die Verbindung zu erzeugen.

66

5.5. Mapping Definition Model

Property | Value
=l Domain meta information
Element [CContainer -> CDataLinkable
Misc
[=1 Visual representation
Appearance Style
Context Menu
Diagram Mode 4+ Mode CContainer (CContainerFigure)
Tool < Creation Tool CContainer
q | B

Abbildung 5.11.: Eigenschaftenfenster des CContainers

Property | Value
Child I Mode Mapping <CContainerComplexVariable JCContainerComplexyariable =
Children Feature
Compartment E Compartment Mapping <CContainer Compartment >
Containment Feature 5 CContainer.complexvariables: CContainer ComplexVariable
Referenced Child 1 Node Mapping <CContainerComplexVariable /CContainerComplexyariables

< | 2
Abbildung 5.12.: Eigenschaftenfenster der Child Reference einer CComplexVariable

Property | Value
Child T Mode Mapping <CContainerComplexVariable/CContainerComplexVariable >
Children Feature
Compartment E Compartment Mapping <CContainerComplexVariableCompartment:
Containment Feature = CContainerComplexVariable, complexvariables: CContainerComplexVariable
Referenced Child I Mode Mapping <CContainerComplexvariable/CContainerComplexVariable >
| | |

Abbildung 5.13.: Eigenschaftenfenster der Child Reference einer CComplexVariable innerhalb einer
CComplexVariable zur Selbstbeinhaltumg

67

5. Realisierung

Property I Value

= Domain meta information
Containment Feature = Choreography. datalinks: CDataLink
Element H CDatalink
Source Feature =+ CDatalink. source:CDatalinkable
Target Feature = CDatalink. target: CDatalinkable

= Misc

Related Diagrams
= Visual representation
Appearance Style

Context Menu
Diagram Link <+ Connection CDatalink
Tool < Creation Tool CDatalink

1| | 2

Abbildung 5.14.: Eigenschaftenfenster eines CDataLink

5.6. Ergebnis

Abbildung 5.15 zeigt das Ergebnis, des aus den vorherigen Abschnitten beschriebenen Editor. Im
oberen Teil der Choreographie sind zwei externe Nutzer zu sehen, die einmal schreibend und einmal
lesen, auf den Choreographiecontainer darunter zugreifen. Der Choreographiecontainer enthélt
eine atomare Variable und eine zusammengesetzte Variable. Die zusammengesetzte Variable enthalt
selbst eine atomare und eine zusammengesetzte Variable, welche wiederum zwei atomare Variablen
enthalt.

Die verschiedenen Teilnehmer sind tiber lesende und schreibende Datenverbindungen mit den Choreo-
graphievariablen im Choreographiecontainer und auch dem Choreographiecontainer selbst verbunden.
Es werden auch die Moglichkeiten gezeigt, dass die Choreographievariablen sowohl mit einem Process
als auch mit einem Scope verbunden werden kénnen.

Der untere Teil der Abbildung 5.15 zeigt das Eigenschaftenfenster einer atomaren Variablen. Die
Darstellung der verschiedenen Attribute werden von Eclipse automatisch in dieser Form generiert. In
die beiden Felder Name und DataType konnen die entsprechenden Daten in Form einer Zeichenkette
eingetragen werden. Die Attribute Constant, Link und Permanent sind als Dropdown—Listen realisiert
und die Werte true oder false konnen ausgewéhlt werden.

5.7. Geplante Umsetzung fir das Einfligen von Variablen

Abbildung 5.16 zeigt ein stark vereinfachtes Beispiel einer Choreographie mit zwei Teilnehmern und
einem Choreographiecontainer der eine atomare und eine zusammengesetzte Variable enthalt, welche
wiederum zwei weitere atomare Variablen enthalten. Die Prozesse beider Teilnehmer haben Zugriff
auf die atomare Variable SimulationID und die Scopes der Prozesse auf die atomare Variable Teill bzw.
Teil2. Listing 5.1 zeigt den BPEL Code der automatisch fiir ProzessI aus der graphischen Darstellung
generiert werden soll. In dem bisherigen Editor wurden keine Variablen erzeugt sondern nur ProzessI,
main und Berechnungl.

68

5.7. Geplante Umsetzung fir das Einfigen von Variablen

& Resource - test/Beispiel.chor_diagram - Eclipse Platform

MERES
Fie Edt Diagram Mavigate Search Project Run ChorDiagramEditor SimTech SIMPL Environment Window Help
I |a-le v |BE|comB] - o - Bl
|[Fabome i | EREA [T A [S e R e e e =RIEED |
:) Beispiel.chor_diagram &% =0
B e o b
= < -
4 Comimom
= pap=m— - & Comtuinmt 5 e » & Choreography &
o= - - 4 CMessagelink
El % Coots: re= . 4 CParticpant
EYrrr—— # CPartiopantSet
4 CContainer
4 CContainerSimpleVariable
<4+ CContainerComplexVariable
CExternalPartidpant
- 4 it R — + P
S 8 S 4 CDatalink
»
& ke oo j—
. ’ = ParticipantBehaviorDescription
smees < ame
(2 Pick
| Flow
< | [| Abstract
| Tasks |] Properties &3 5 = = =8
4 CContainerSimpleVariable
Core Property [value [=
Constant 4 false
Lo s ed Data Type =
Link % false
Permanent 4 false —
[e

Abbildung 5.15.: Beispiel des Editors mit Choreographiecontainer

Die Variablen werden, je nachdem welche Prozesse und welche Scopes mit den Variablen verbunden
sind, in die BPEL Serialisierung eingefiigt. Die eingefiigten Variablen sind alle vom Typ String, da in
diesem Typ alle anderen Datentypen enthalten sein konnen und die Gré8e der enthalten Daten keiner
direkten Groflenbeschriankung, auler der mit welcher Grofle von Strings die Orchestrierungsengine
effektiv umgehen kann, unterliegt. Der erzeugt BPEL Code ist standardkonform.

69

5. Realisierung

< SimulationContainer

< SimulationID <+ Ergebnis
p 4 Teil
4 Teil2 -
4 Teinehmerl 4 Teinehmer2
B < prozessl B 2 Prozess?
= main = main
[0l Berechnungl o] Berechnung2

Abbildung 5.16.: Beispiel einer Darstellung auf der Zeichenflache

Listing 5.1 BPEL Serialisierung von Prozess1

<?xml version="1.0" encoding="UTF-8" standalone="no"7?>
<bpel:process

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
name="Prozessl" xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/abstract">

<variables>
<variable name="SimulationID" type="xsd:String" />
</variables>
<bpel:sequence name="main">
<bpel:scope name="Berechnungl">
<variables>
<variable name="Teill" type="xsd:String" />
</variables>
</bpel:scope name="Berechnungl">

</bpel:sequence>

</bpel:process>

70

6. Zusammenfassung und Ausblick

Um dem Problem dass Daten nur statisch in den Prozessmodellen einer Choreographie modelliert
werden konnen und dass unnétige viele Daten tiber Teilnehmer einer Choreographie geleitet wer-
den, zu begegnen, wird das Konzept des Choreographiecontainers eingefiithrt. Das Konzept der
Choreographiecontainer wird in dieser Arbeit erldutert und es wird ein bestehender graphischer
Editor [Son13] dahingehend erweitert, dass Choreographien mit Choreographiecontainer graphisch
modelliert werden kénnen.

Die Grundlagen deren Verstidndnis wichtig sind werden in Kapitel 2 erlautert.

In Kapitel 4 werden Arbeiten, deren Ansitze sich ebenfalls mit dem Datenfluss in Choreographien
befassen, vorgestellt.

In Kapitel 4 wird zunéchst das grobe Konzept eines Choreographiecontainers vorgestellt. Zu diesem
Zweck werden die benétigten Komponenten, die ein System welches Choreographiecontainer unter-
stiitzt, beschrieben und ein Datenmodell fiir die Choreographie selbst erldutert. Im Anschluss wird
der Zusammenhang, der zwischen den einzelnen Choreographieartefakten und zu dem Datenmodell
besteht, erlautert. Aulerdem werden die beiden, fiir die Choreographie mit Choreographiecontainer
benoétigten Choreographieartefakte: Container Descriptor und External User Description beschrie-
ben und anhand eines konkreten Beispiels erlautert. Darauf folgend wird eine graphische Notation
eingefiithrt, mit der es moglich ist eine Choreographie mit Choreographiecontainer darzustellen. Es
werden auch Anwendungsfille dargestellt und beschrieben, bei denen der Einsatz von Choreogra-
phiecontainern besonders sinnvoll ist. Im weiteren Verlauf werden die Softwarearchitektur eines
Choreographiecontainers und die graphische Oberflache eines Editors der fiir die Modellierung einer
Choreographie mit Choreographiecontainer verwendet werden kann erldutert.

Fir die Implementierung des graphischen Editors, wird in Kapitel 5 ein bereits bestehender Editor
[Son13], erweitert um eine Choreographie mit Choreographiecontainer darstellen zu kénnen. Zu
diesem Zweck werden die GMF- und EMF-Modelle angepasst und aus diesen entsprechender Co-
de generiert. Aufgrund des engen Zeitrahmens konnten keine entsprechenden Komponenten zur
Serialisierung der Choreographieartefakte erstellt werden.

Abschlieflend kann man sagen, dass die Ziele dieser Arbeit grofitenteils erreicht werden. Es existiert
nun ein umfassendes Konzept, auf das in weiteren Arbeiten aufgebaut werden kann. Aufierdem
konnen mittels des BPEL4Chor-Editors Choreographien mit Choreographiecontainer graphisch
dargestellt werden.

71

6. Zusammenfassung und Ausblick

Ausblick

Weitere Arbeiten kénnten sich mit der Erstellung der eigentlichen Choreographiecontainer Kompo-
nente beschéftigen. Es existiert zwar bereits eine grobe Softwarearchitektur fiir diese Komponente
jedoch miisste diese noch implementiert werden. Es wire besonders sinnvoll, diese als einfachen
Webservice mit Anschluss an einen Datenserver zu realisieren, da Orchestrierungsengines bereits
tiber die Moglichkeiten verfiigen, Webservices aufzurufen. Besondere Teilgebiete dieser Arbeit konnte
die Moglichkeit zur internen Speicherung von Daten innerhalb des Choreographiecontainers, zwecks
schnellerer Antwortzeiten, beschaftigen. Auflerdem kénnte die Moglichkeit analysiert werden, ei-
ne Garbage Collection einzufiihren, die es ermdglicht nicht mehr genutzte Daten sowohl aus dem
internen Speicher als auch aus dem Datenserver zu l6schen. Des Weiteren konnte die Moglichkeit,
verschiedene Datensysteme wie einen REST-Server und eine Datenbank gleichzeitig an den Choreo-
graphiecontainer anzuschlieffen und die Daten entsprechend ihrer Art und Verwendungshaufigkeit
auf diese zu verteilen, analysiert und realisiert werden.

Eine weitere Arbeit konnte sich mit der Erweiterung der verwendeten Orchestrierungsengine befas-
sen, um die Moglichkeit, Daten von auflerhalb des Workflows von einem Choreographiecontainer
abzufragen. Ein besonderes wichtiges und interessantes Themengebiet fiir diese Arbeit ist der Umgang
mit verschiedenen Datentypen aus dem Choreographiecontainer und in der eigentlichen Choreogra-

phie.

Eine kleinere Arbeit konnte sich mit der Moglichkeit beschaftigen, aus dem erstellten External
User Descriptor, giiltige und standardisierte Zugriffskonfigurationen fiir verschiedene Arten von
Datenservern zu erstellen.

72

A. Anhang

Listing A.1 Vollstandiger Container Descriptor von Beispiel 4.6

<?xml version="1.0" encoding="utf-8"?>

<choreographyContainer

xmlns="urn:IAAS:choreography:schemas:choreography:choreographycontainer:2014"

name="Beispiel">

<atomicVariable name="Konfiguration" dataType="KonfigurationTyp">

<writer name="Administrator"/>
<reader name="Prozessl"/>
</atomicVariable>

<complexVariable name="ZwischenergebnisGesamt">

<atomicVariable name="TeilA" dataType="TeilATyp">
<writer name="Prozess2"/>
</atomicVariable>

<complexVariable name="ZwischenergebnisProzessl">

<atomicVariable name="TeilB" dataType="TeilBTyp">
<writer name="C1l"/>
</atomicVariable>

<atomicVariable name="TeilC" dataType="TeilCTyp">
<writer name="El1"/>
</atomicVariable>
</complexVariable>

<reader name="Forscher"/>
<reader name="Prozess3"/>

</complexVariable>

<atomicVariable name="Endergebnis" dataType="EndergebnisTyp"
<writer name="Prozess3"/>
<reader name="Forscher"/>
<reader name="Interessent"/>

</atomicVariable>

</choreographyContainer>

permanent="true">

73

A. Anhang

Listing A.2 Vollstandiger External User Descriptor von Beispiel 4.6

<?xml version="1.0" encoding="utf-8"?>

<externalUsersRoles
xmlns="urn:IAAS:choreography:schemas:choreography:externalUsers:2014"
name="Beispiel">

<role name="Administrator">
<writesTo>
<variable name="Konfiguration" dataType="KonfigurationTyp"/>
</writesTo>

<readsFrom>
<complexVariable name="ChoreographieContainerBeispiel">
<variable name="Konfuguration" dataType="KonfugurationTyp">
<variable name="TeilA" dataType="TeilATyp">
<variable name="TeilB" dataType="TeilBTyp">
<variable name="TeilC" dataType="TeilCTyp">
<variable name="Endergebnis" dataType="EndegebnisTyp">
</complexVariable>
</readsFrom>
</role>

<role name="Forscher">
<readsFrom>
<variable name="Endergebnis" dataType="EndegebnisTyp">
<complexVariable name="Zwischenergebnis">
<variable name="TeilA" dataType="TeilATyp">
<variable name="TeilB" dataType="TeilBTyp">
<variable name="TeilC" dataType="TeilCTyp">
</complexVariable>
</readsFrom>
</role>

<role name="Forscher">
<readsFrom>
<variable name="Endergebnis" dataType="EndergebnisTyp">
</readsFrom>
</role>

</externalUsersRoles>

74

Listing A.3 XML-Schema des Container Descriptors

<?xml
<XS:scC

version="1.0" encoding="UTF-8"7>

hema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="urn:IAAS:choreography:schemas:choreography:choreographycontainer:2014"
targetNamespace="urn:IAAS:choreography:schemas:choreography:choreographycontainer:2014"
elementFormDefault="qualified">

<xs:element name="choreographyContainer" type="ChoreographyContainerType"/>
<xs:complexType name="ChoreographyContainerType">
<Xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="atomicVariable"/>
<xs:element ref="complexVariable"/>
</xs:choice>
<xs:element ref="reader" maxOccurs="unbounded"/>
</Xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

<xs:element name="atomicVariable" type="atomicVariableType"/>

<xs:complexType name="atomicVariableType">

<Xs

:choice maxOccurs="unbounded">

<xs:element ref="reader"/>
<xs:element ref="writer"/>

</X

<XS:
<XS:
<XS:
<XS:
<XS:

s:choice>

attribute name="name" type="xs:NCName" use="required"/>
attribute name="dataType" type="xs:string" use="required"/>
attribute name="constant" type="xs:boolean"/>

attribute name="reference" type="xs:boolean"/>

attribute name="permanent" type="xs:boolean"/>

</xs:complexType>

<xs:element name="complexVariable" type="complexVariableType"/>
<xs:complexType name="complexVariableType">
<Xs:sequence>
<xs:choice maxOccurs="unbounded">
<xs:element ref="atomicVariable"/>
<xs:element ref="complexVariable"/>
</xs:choice>
<xs:element ref="reader" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="permanent" type="xs:boolean"/>
</xs:complexType>

<xs:element name="reader" type="readerType"/>
<xs:complexType name="readerType">

<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

<xs:element name="writer" type="writerType"/>

<xs:complexType name="writerType">

<XSs

tattribute name="name" type="xs:NCName" use="required"/>

</xs:complexType>

</Xs:s

chema>

75

A. Anhang

Listing A.4 XML-Schema des External User Descriptors

<?xml version="1.0" encoding="UTF-8"?7>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="urn:IAAS:choreography:schemas:choreography:externalUsers:2014"
targetNamespace="urn:IAAS:choreography:schemas:choreography:externalUsers:2014"
elementFormDefault="qualified">

<xs:element name="externalUsersRoles" type="externalUsersRolesType"/>
<xs:complexType name="externalUsersRolesType">
<Xs:sequence>
<xs:element ref="role" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

<xs:element name="role" type="roleType"/>
<xs:complexType name="roleType">
<xs:choice max0Occurs="unbounded">
<xs:element ref="readsFrom"/>
<xs:element ref="writesTo"/>
</xs:choice>

<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

<xs:element name="readsFrom" type="readsFromType"/>
<xs:complexType name="readsFromType">
<xs:choice maxOccurs="unbounded">
<xs:element ref="variable"/>
<xs:element ref="complexVariable"/>
</xs:choice>
</xs:complexType>

<xs:element name="writesTo" type="writesToType"/>
<xs:sequence maxOccurs="unbounded">
<xs:element ref="variable"/>
</Xs:sequence>
</xs:complexType>

<xs:element name="variable" type="variableType"/>
<xs:complexType name="variableType">
<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="dataType" type="xs:string" use="required"/>
</xs:complexType>

<xs:element name="complexVariable" type="complexVariableType"/>
<xs:complexType name="complexVariableType">
<xs:sequence maxOccurs="unbounded">
<xs:element ref="variable"/>
<xs:element ref="complexVariable"/>
</Xs:sequence>

<xs:attribute name="name" type="xs:NCName" use="required"/>
</xs:complexType>

</Xs:schema>

76

Literaturverzeichnis

[BWHO08a]

[BWHO8b]

[DK14]

[DKLW07]

[Fie00]

[Foua]

[Foub]

[Fouc]

[Foud]

[Foue]

[Fow]

[Gro09]

A. Barker, J. Weissman, J. van Hemert. Orchestrating Data-Centric Workflows. In The 8th
IEEE International Symposium on Cluster Computing and the Grid (CCGrid), S. 210-217.
IEEE Computer Society, 2008. (Zitiert auf Seite 19)

A. Barker, J. B. Weissman, J. van Hemert. Eliminating the Middleman: Peer-to-peer
Dataflow. In Proceedings of the 17th International Symposium on High Performance Distri-
buted Computing, HPDC 08, S. 55-64. ACM, New York, NY, USA, 2008. (Zitiert auf den
Seiten 19, 43, 45 und 46)

G. Decker, O. Kopp. Topologgy.xsd, 2014. URL https://github.com/IAAS/
BPEL4Chor-model/blob/master/doc/BPEL4Chor20schema/topology.xsd. (Zitiert
auf den Seiten 32 und 36)

G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for modeling
choreographies. In Web Services, 2007. ICWS 2007. IEEE International Conference on, S.
296-303. IEEE, 2007. (Zitiert auf den Seiten 6, 16 und 17)

R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.
Dissertation, 2000. (Zitiert auf den Seiten 24 und 29)

A.S.Foundation. Apache ODE. URL http://ode.apache.org/. (Zitiert auf den Seiten 11
und 20)

A. S. Foundation. External Variable: JDBC Mapping. URL http://ode.apache.org/
extensions/external-variables-jdbc-mapping.html. (Zitiert auf Seite 20)

A. S. Foundation. External Variables. URL http://ode.apache.org/extensions/
external-variables.html. (Zitiert auf Seite 20)

E. Foundation. BPEL Designer Project. URL https://eclipse.org/bpel/. (Zitiert auf
Seite 52)

E. Foundation. Eclipse. URL https://eclipse.org/home/index.php. (Zitiert auf
Seite 16)

M. Fowler. GUI Architectures. URL http://martinfowler.com/eaaDev/uiArchs.html.
(Zitiert auf Seite 17)

R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley Professional, 1 Auflage, 2009. (Zitiert auf den Seiten 17 und 28)

77

https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor20schema/topology.xsd
https://github.com/IAAS/BPEL4Chor-model/blob/master/doc/BPEL4Chor20schema/topology.xsd
http://ode.apache.org/
http://ode.apache.org/extensions/external-variables-jdbc-mapping.html
http://ode.apache.org/extensions/external-variables-jdbc-mapping.html
http://ode.apache.org/extensions/external-variables.html
http://ode.apache.org/extensions/external-variables.html
https://eclipse.org/bpel/
https://eclipse.org/home/index.php
http://martinfowler.com/eaaDev/uiArchs.html

Literaturverzeichnis

[JKP"04]

[Ora]

[RHEAO05]

[SBPM09]

[SK13]

[Son13]

[UI110]

[W3Ca]

[W3Cb]

[W3C05]

78

J. C. Jacob, D. S. Katz, T. Prince, B. G. Berriman, J. C. Good, A. C. Laity, E. Deelman,
G. Singh, M.-H. Su. The montage architecture for grid-enabled science processing of
large, distributed datasets. 2004. (Zitiert auf Seite 43)

O. Kopp, F. Leymann. Choreography Design Using WS-BPEL. IEEE Data Eng. Bull,
31(3):31-34, 2008. (Zitiert auf Seite 11)

B. Majewski. A Shape Diagram Editor. URL http://www.eclipse.org/articles/
Article-GEF-diagram-editor/shape.html. (Zitiert auf Seite 17)

Microsoft. Layered Application. URL http://msdn.microsoft.com/en-us/library/
ff650258.aspx. (Zitiert auf Seite 52)

OASIS. Web Services Business Process Execution Language Version 2.0, 2007. URL
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html. (Zitiert auf
den Seiten 7, 15, 20 und 39)

Oracle. Java Garbage Collection Basics. URL http://www.oracle.com/webfolder/
technetwork/tutorials/obe/java/gc01l/index.html. (Zitiert auf Seite 39)

N. Russell, A. H. M. ter Hofstede, D. Edmond, W. M. P. van der Aalst. Workflow Data
Patterns: Identification, Representation and Tool Support. In Proceedings of the 24th
International Conference on Conceptual Modeling, ER’05, S. 353-368. Springer-Verlag, 2005.
(Zitiert auf Seite 20)

D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2nd Auflage, 2009. (Zitiert auf Seite 17)

M. Sonntag, D. Karastoyanova. Model-as-you-go: An Approach for an Advanced In-
frastructure for Scientific Workflows. Journal of Grid Computing, 11(3):553-583, 2013.
(Zitiert auf Seite 44)

O. Sonnauer. Modellierung von Scientific Workflows mit Choreographien. Diploma thesis,
University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and Infor-
mation Technology, Germany, 2013. URL http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3429&engl=1. (Zitiert auf den Seiten 9,
16, 52, 59 und 71)

C. Ullenboom. Java ist auch eine Insel: Das umfassende Handbuch (Galileo Computing).
Galileo Computing, 2010. (Zitiert auf den Seiten 16 und 17)

W3C. XML Schema Tutorial. URL http://www.w3.0rg/TR/2008/REC-xml-20081126/.
(Zitiert auf Seite 12)

W3C. XML Schema Tutorial. URL http://www.w3schools.com/schema/default.asp.
(Zitiert auf Seite 13)

W3C. Web Services Choreography Description Language Version 1.0, 2005. URL http:
//www.w3.0rg/TR/ws-cdl-10/. (Zitiert auf den Seiten 19 und 39)

http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://msdn.microsoft.com/en-us/library/ff650258.aspx
http://msdn.microsoft.com/en-us/library/ff650258.aspx
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3429&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3429&engl=1
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3schools.com/schema/default.asp
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

Literaturverzeichnis

[WGSL09] M. Wieland, K. Gorlach, D. Schumm, F. Leymann. Towards Reference Passing in Web
Service and Workflow-based Applications. In Proceedings of the 13th IEEE Enterprise
Distributed Object Conference (EDOC 2009), S. 109-118. IEEE, 2009. (Zitiert auf den
Seiten 19, 26 und 46)

[WK14] A.Weif, D. Karastoyanova. Enabling coupled multi-scale, multi-field experiments through
choreographies of data-driven scientific simulations. Computing, S. 1-29, 2014. (Zitiert
auf den Seiten 6, 13 und 14)

Alle URLs wurden zuletzt am 11.01. 2015 gepriift.

79

Erkliarung

Ich versichere, diese Arbeit selbststiandig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngemifd aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Pritifungsverfahrens. Ich habe diese Arbeit bisher weder teilwei-
se noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	2 Grundlagen
	2.1 Grundbegriffe
	2.2 Extensible Markup Language
	2.3 XML Schema Definition
	2.4 Modellierung von Choreographien
	2.5 Business Process Execution Language
	2.6 BPEL4Chor
	2.7 Eclipse

	3 Verwandte Arbeiten
	4 Konzept
	4.1 Beispiel
	4.2 Definitionen
	4.3 Architektur einer Choreographie mit Choreographiecontainer
	4.4 Container Descriptor und External User Descriptor
	4.5 Graphische Darstellung einer Choreographie mit Choreographiecontainer
	4.6 Anwendungsfälle
	4.7 Entwurfsentscheidungen
	4.8 Softwarearchitektur eines Choreographiecontainers
	4.9 Choreographie mit Choreographiecontainer Editor

	5 Realisierung
	5.1 Übersicht des vorhandenen Editors
	5.2 EMF Modelle
	5.3 Tooling Definition Model
	5.4 Graphical Definition Model
	5.5 Mapping Definition Model
	5.6 Ergebnis
	5.7 Geplante Umsetzung für das Einfügen von Variablen

	6 Zusammenfassung und Ausblick
	A Anhang
	Literaturverzeichnis

