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Kurzfassung

Die an der Universitat Stuttgart entwickelte Datenbeschreibungssprache SKilL (Serialization Killer
Language) bietet eine Moglichkeit, grofle Datenmengen sprach- und plattformunabhéngig zu seria-
lisieren. Ihre aktuelle Anbindung an die Programmiersprache Scala hat aber das Problem, dass fiir
grofie Datenmengen Geschwindigkeitseinbuf3en durch viele Garbage Collections verursacht werden
und in einigen Fallen sogar Speicheriiberldufe auftreten.

In dieser Arbeit werden Moglichkeiten untersucht, den Speicherverbrauch der Scala-Anbindung
zu reduzieren. Der Speicherverbrauch der verschiedenen Implementierungen wird anschlieBend
verglichen. Zu diesem Zweck wurde ein Testframework entwickelt, das die Erstellung von Tests
vereinfacht und als Vorlage fiir entsprechende Tests in anderen Programmiersprachen verwendet

werden kann.
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1. Einleitung

Die an der Universitat Stuttgart entworfene Sprache SKilL (Serialization Killer Language) [Fel13]
dient zur sprach- und plattformunabhingigen Serialisierung grofier Datenmengen. Zu diesem Zweck
wurden SKilL-Anbindungen fiir verschiedene Sprachen entwickelt, darunter Scala [SKil4a, O"], Ada
[Prz14], Java [Ung14] und C [Har14]. Beim Vergleich der SKilL-Anbindungen an Scala und an Ada
wurde festgestellt, dass der generierte Scala-Code einen wesentlich hoheren Speicherverbrauch hat
als dquivalenter Ada-Code [Prz14].

Im Gegensatz zu Ada, welches eine systemnahe Programmiersprache ist, lduft Scala auf der Java
Virtual Machine (JVM). Diese verwendet einen Garbage Collector und Just-In-Time-Compilation
[Ora14]. Zudem erbt Scala von Java die Wurzel der Typhierarchie, die Klasse java.lang.0Object,
die bereits einen Grundspeicherverbrauch von 16 Byte pro Objekt mitbringt (auf einer 64-Bit-JVM).
Dieser Speicher wird z. B. zur Synchronisation der Objektzugriffe, zur Speicherung des Alters eines
Objekts und/oder des Hash-Codes verwendet [KWO08].

Der von der Scala-Anbindung generierte Code benutzt viel Speicher. Das fithrt in Kombination mit
dem Garbage Collector zu Geschwindigkeitseinbuflen, da ein Grofiteil der Rechenleistung fiir teure
Garbage Collections verwendet wird statt fiir zielfithrende Berechnungen. Weiterhin ist die Anzahl
der gleichzeitig im Speicher gehaltenen Objekte dadurch stark begrenzt. Das kann dazu fithren, dass
z.B. ein Scala-Programm beim Einlesen einer von einem anderen Programm erzeugten SKilL-Datei
abstiirzt. Der Grund ist, dass der verfiigbare Speicher vollstandig aufgebraucht wird, obwohl die in der
SKilL-Spezifikation aufgefithrten numerischen Grenzwerte in der Datei eingehalten wurden [Fel13,
Anhang D].

Nun tibernimmt die JVM allerdings die gesamte Speicherverwaltung. Zudem existiert keine zuverlas-
sige portable (d. h. fiir alle JVMs anwendbare) Moglichkeit, die JVM nach dem aktuellen Speicherver-
brauch zu fragen. Das erschwert das Auffinden der Stellen, an denen die Scala-Anbindung Speicher
verschwendet. Fiir die in dieser Arbeit verwendete JVM existiert aber eine nicht-portable Schnittstelle,
Uber die der aktuelle Speicherverbrauch in regelméfligen Zeitabstanden abgefragt werden kann. Dar-
auf basierend wurde im Rahmen dieser Arbeit ein Testframework zur Speichermessung fiir generierte
Scala-Anbindungen entwickelt. Mit diesem wurde der Speicherverbrauch der aktuellen Implemen-
tierung evaluiert. Dazu wurden fiir die Speicherevaluation interessante SKilL-Spezifikationen und
zugehorige Tests erstellt.

Auf den dabei gemachten Beobachtungen basierend werden in dieser Arbeit Moglichkeiten aufgezeigt,
die Scala-Anbindung [SKil4a] so anzupassen, dass der generierte Code weniger Speicher verbraucht.
Um die Effektivitat dieser Vorschldge zu verifizieren, wurden die entwickelten Tests an die Benutzer-
schnittstelle der modifizierten Implementierung angepasst. Die Ergebnisse dieser Tests wurden mit
den Ergebnissen fiir die aktuelle Implementierung verglichen.



1. Einleitung

1.1. Gliederung

In Kapitel 2 werden verwandte Arbeiten vorgestellt, sowohl zu den Tests als auch zur vorgestellten
alternativen Implementierung der Scala-Anbindung.

Kapitel 3 enthilt die Grundlagen der Sprachen Scala und SKilL sowie eine kurze Ubersicht tiber den
Heapaufbau der JVM.

Kapitel 4 beschreibt die alternative Implementierung. Dabei werden von der aktuellen Implementie-
rung ausgehend die durchgefithrten Veranderungen und deren Folgen beschrieben.

Kapitel 5 beschiftigt sich mit der Speichermessung auf der JVM.
Kapitel 6 beschreibt das Testframework und wie es verwendet werden kann.

In Kapitel 7 werden beide Implementierungen in Tests beziiglich ihres Speicherverbrauchs miteinander
verglichen. Die dazu verwendeten Tests werden mithilfe des Testframeworks beschrieben.

Kapitel 8 schlie3t die Arbeit mit einer Zusammenfassung und einem Ausblick ab.



2. Verwandte Arbeiten

2.1. SKilL-Anbindung an Scala

Die Grundlage fiir diese Arbeit bildet die aktuelle Scala-Anbindung [SKil4a]. Die hier vorgestellte
alternative Implementierung verwendet in einigen Teilen den gleichen Quellcode. Insbesondere bleibt
die Benutzerschnittstelle der Basisimplementierung fast vollstandig erhalten. Sie wird um ein paar
neue Methoden erginzt, die zur Erzeugung von Adaptern fiir Container dienen. Diese Adapter nehmen
an anderen Stellen der Schnittstelle die Plitze der urspriinglichen Container ein.

Ein Vergleich der aktuellen Scala-Anbindung mit der hier vorgestellten Losung ist im Kapitel 7 zu
finden.

2.2. Benchmark-Tests

Die fiir den 16. Workshop Software-Reengineering und -Evolution entwickelten Benchmark-Tests
[Fel14] wurden als Orientierungshilfe fiir die Entwicklung des Testframeworks und der verwendeten
Tests benutzt. Das betrifft besonders die Implementierung der Ergebnisse (Trait Result und abgeleitete
Klassen) aus dem Testframework. Auch die grafische Ausgabe der Ergebnisse als KIEX-Datei baut auf
der fiir die Benchmark-Tests implementierten Ausgabe auf.

Im Unterschied zu den Benchmark-Tests, die zur Laufzeitauswertung der generierten Scala-Anbindung
gedacht sind, wird bei den hier verwendeten Tests der Speicherverbrauch gemessen. Zudem wurden
die Messungen der Benchmark-Tests im selben Prozess wie der Test selbst ausgefiihrt. In den hier
verwendeten Tests dagegen werden mehrere Prozesse verwendet.

2.3. SKilL-Anbindungen an andere Sprachen

Weitere SKilL-Anbindungen existieren zurzeit fiir die Programmiersprachen Ada, Java und C.

Die SKilL-Anbindung an Ada [Prz14] wurde entwickelt, um einen Vergleich verschiedener Anbin-
dungen zu ermdglichen. Entsprechend enthélt [Prz14] auch Performance-Tests zum Vergleich der
Implementierungen. Im Gegensatz zu den in dieser Arbeit aufgefithrten Tests wurde hier jedoch die
Laufzeit, der Durchsatz und der Speicherverbrauch der erzeugten SKilL-Dateien ausgewertet.

Der Number-Test in dieser Arbeit basiert auf der selben Spezifikation wie der Number-Test in Abschnitt
6.1 von [Prz14].



2. Verwandte Arbeiten

Die SKilL-Anbindung an Java [Ungl4] teilt einige Eigenschaften der Scala-Anbindung, da Java-
Programme ebenfalls auf der JVM ausgefiihrt werden. Allerdings arbeitet diese mit Reflexion, um das
Typsystem von SKilL zu speichern.

Die SKilL-Anbindung an C [Har14] wurde als Beweis entwickelt, dass eine Anbindung an eine
nicht-objektorientierte Sprache moglich ist.
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3. Grundlagen

Dieses Kapitel beschreibt in Kiirze die wesentlichen Teile der Programmiersprache Scala [O1], der
Datenbeschreibungssprache SKilL [Fel13] und der JVM, insbesondere den Aufbau des Heaps.

3.1. Scala

Scala ist eine objektorientierte, funktionale Programmiersprache. Da sie fiir die JVM entwickelt wurde,
teilt sie einige Eigenschaften mit der Programmiersprache Java. Insbesondere kénnen Java-Klassen
und Interfaces in Scala direkt verwendet werden. Dieser Abschnitt ist nur eine kurze Ubersicht
iiber Scala, genauere Informationen sind in der Scala-Spezifikation [O"] zu finden. Es wird davon
ausgegangen, dass der Leser die Programmiersprache Java kennt. Gemeinsame Elemente, wie z. B.
Kommentare, werden nicht aufgefiihrt.

Innerhalb einer Scala-Codedatei konnen mehrere Klassen, Traits und Objekte definiert werden. Diese
kénnen sogar in unterschiedliche Pakete verteilt sein. [0, § 9]

3.1.1. Syntax

In Scala kénnen Bezeichner fiir Klassen, Objekte und Methoden aus bestimmten Unicode-Zeichen der
Basisebene bestehen, d. h. Zeichen mit den Codes U+0000 bis U+FFFF. Als Buchstaben zihlen in Scala
die Zeichen der Unicode-Kategorien L1 (Kleinbuchstaben), Lu (Grof3buchstaben), Lt (Titelbuchstaben),
Lo (Andere Buchstaben) und N1 (Buchstabenartige Zahlen) sowie die Zeichen — und $. Die in Java
iiblichen Operatorzeichen sowie # und alle Zeichen der Unicode-Kategorien Sm (Mathematische
Symbole) und So (Andere Symbole) zihlen als Operatorzeichen. Ein Bezeichner kann bestehen aus:

+ Buchstaben und Zahlen

« Operatorzeichen

« einer Folge von Buchstaben und Zahlen, gefolgt von —, gefolgt von Operatorzeichen
« einem beliebigen Text, eingeschlossen in ~*

Schliisselworte konnen nicht als Bezeichner verwendet werden, aufler sie werden in " * eingeschlossen.
(0", §1.1]

Einige Beispiele fiir giiltige Bezeichner (1. Zeile) und ungiiltige Bezeichner (2. Zeile, val ist ein
Schliisselwort):
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3. Grundlagen

Listing 3.1: Bezeichner

testl23 XX _1 setter—= ++ ‘val' ‘das ist ein Test'
+_inv 3x val test++

Anweisungen kénnen nicht nur mit ; getrennt werden, sondern auch durch einen Zeilenwechsel. Zei-
lenwechsel als Anweisungstrenner werden aber nur innerhalb von geschweiften Klammern aktiviert
und innerhalb von runden und eckigen Klammern deaktiviert. Es ist jeweils die ndchste umschlieflende
Klammerung entscheidend. Aulerdem werden Zeilenwechsel in unvollstindigen Ausdriicken, wie
z.B. nach . oder einem Operator, dessen zweites Argument noch fehlt, nicht als Anweisungstrenner
interpretiert. [OT, § 1.2]

Anders als bei Java werden generische Typparameter nicht in spitze, sondern in eckige Klammern
eingeschlossen. Ein Wildcard-Parameter wird durch _ dargestellt. Kovarianz von Typparametern wird
mit +, Kontravarianz mit - vor dem Parameter angegeben. Eine obere Grenze fiir einen Typparameter
T, z.B. eine Basisklasse des Parameters, kann mit <: angegeben werden, eine untere Grenze, z. B.
eine vom Parameter abgeleitete Klasse, mit >:. Arrayzugriffe werden nicht mit eckigen Klammern,
sondern wie Funktionsaufrufe mit runden Klammern notiert. Typumwandlungen eines Ausdrucks x
in einen Typ T werden mit x.asInstance0f[T] durchgefiihrt. [0T,§3.2,3.5, 4.4, 45,12.1, 12.3.4]

Beispiel:
Listing 3.2: Typparameter
class Typen[+A, // Kovariant
-B, // Kontravariant
C>: X, // C hat X als abgeleitete Klasse

D <: AnyRef] { // D hat AnyRef als direkte oder indirekte Basisklasse
/* ... %/
}

3.1.2. Klassen und Traits

Klassen in Scala sind dhnlich den Klassen in Java: Sie konnen von genau einer Klasse oder einem
Trait erben und beliebig viele Traits implementieren. Traits entsprechen ungefihr den Interfaces
in Java. Allerdings kénnen Traits Methoden mit einer Definition enthalten und eine Basisklasse
besitzen. Implementierte Traits werden nicht wie Interfaces in Java mit implements, sondern mit
with angegeben. [0, § 5.1, 5.4.1]

Die Definition einer Klasse ist gleichzeitig die Definition des priméren Konstruktors der Klasse. Alle
Inhalte der Klasse, die keine Feld- oder Methodendeklarationen sind, werden bei der Konstruktion
einer Instanz der Klasse ausgefiihrt. Weitere Konstruktoren konnen innerhalb der Klasse als Methoden
mit dem speziellen Namen this definiert werden, sie miissen aber als erste Anweisung einen anderen
Konstruktor aufrufen, um das Objekt zu erzeugen. Die Parameter des primaren Konstruktors werden
hinter dem Namen der Klasse und einer eventuellen Sichtbarkeitseinschrankung fiir den Konstruktor
angegeben. Diese Parameter konnen gleichzeitig Felddefinitionen sein. Hat eine Klasse (kein Trait!)
eine Basisklasse, werden direkt hinter der Basisklasse die Parameter fiir ihren priméren Konstruktor
iibergeben. Traits konnen keine Konstruktorparameter haben, da von ihnen keine Instanz erzeugt
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3.1. Scala

werden kann. Ist der Inhalt einer Klassendefinition leer, konnen die geschweiften Klammern auch
weggelassen werden. [0, § 5.1, 5.3]

Beispiel:

Listing 3.3: Klassen und Traits

class A(val a : Int) { /* Irgendwelche Definitionen x/ }
trait T { /*x Weitere Definitionen x/ }

trait U extends A { /x Noch mehr Definitionen x/ }

class B(b : Int) extends A(b) with T with U

Anders als in Java haben Klassen keine statischen Felder und Methoden. Stattdessen existieren
Singleton-Objekte, die dhnlich wie Klassen ohne Typ- und Konstruktorparameter definiert werden.
Dazu wird statt dem Schliisselwort class das Schliisselwort object verwendet. Eine Klasse oder ein
Trait und ein Objekt mit dem selben Namen, die in der selben Datei definiert sind, haben Zugriff auf
alle Felder und Methoden des jeweils anderen, auch private. Methoden und Felder in einem solchen
Objekt kénnen wie statische Methoden und Felder der Klasse behandelt werden. [0, § 5.5]

3.1.3. Methoden und Felder

Methoden werden mit dem Schliisselwort def eingefiihrt. Uberschreibt eine Methode eine Basisklas-
senimplementierung, muss dies explizit durch das Schliisselwort override markiert werden. Wie im
obigen Beispiel bereits zu sehen ist, werden Parameter in der Form Name : Typ angegeben. Steht
vor dem Typ eines Parameters =>, so wird der iibergebene Ausdruck erst bei der ersten Verwendung
ausgewertet. Steht nach dem Typ des letzten Parameters ein *, so kann dieser Parameter beliebig oft
wiederholt werden, analog zu . .. bei Java. Der Typ des Riickgabewerts wird mit : Typ nach der Pa-
rameterliste angegeben. Die Parameterliste kann vollstindig weggelassen werden, falls eine Methode
keine Parameter hat. Ebenso kann bei nicht-rekursiven Funktionen der Typ des Riickgabetyps vom
Compiler abgeleitet und daher weggelassen werden. Die Definition von Methoden, die einen Wert
zuriickgeben, muss mit = beginnen; fehlt das Gleichzeichen, ist der Riickgabewert das Objekt () vom
Typ Unit. [OT, § 4.6, 5.2]

Fir Felder gibt es zwei Schliisselworte: val und var. val fithrt einen Wert ein, der nach der Initiali-
sierung nicht mehr veréndert werden kann, var dagegen einen veranderlichen Wert. Beide definieren
gleichzeitig einen Scala-Getter fiir den Wert, var zusitzlich einen Scala-Setter. In Scala sind Getter
einfache Methoden ohne Parameter und ohne Seiteneffekte, aber mit Riickgabewert, wie zum Beispiel

def x = /* ... x/.Setter sind Methoden, deren Name auf _= endet und die genau einen Parameter
besitzen, z.B. def x_=(X : Int) = /* ... =*/.Sie werden bei Scala auf eine besondere Weise auf-
gerufen: Der Ausdruck x = /* ... %/ wird im gegebenen Beispiel in einen Aufruf x_=(/* ... */)

umgewandelt. val und var werden auch zur Einfithrung lokaler Variablen verwendet. [0T,§4.1,4.2,
6.15]

Einige Methodennamen haben eine spezielle Bedeutung [0, § 6.6, 6.15, 8.1.8]:

apply (mit beliebigen Parametern) wird aufgerufen, wenn nach einem Objekt eine passende Parame-
terliste steht.

13



3. Grundlagen

update (mit beliebigen Parametern) wird aufgerufen, wenn einem Objekt mit Parameterliste etwas
zugewiesen wird.

unapply (in einem Objekt, mit genau einem Parameter) wird aufgerufen, um aus dem Parameter
Werte zu extrahieren, z. B. Werte von Feldern.

Beispiel:
Listing 3.4: apply und update
class X {
def apply(i : Int) = /% ... %/
def update(i : Int, value : Int) = /% ... %/
}
val x = new X
x(1) // ruft x.apply(1l) auf
x(1) =2 // ruft x.update(1, 2) auf

Eine Klasse, ein Trait oder ein Objekt kann auch Typdefinitionen enthalten. Eine Typdefinition der
Form type T = Typ definiert T als Alias fiir den Typ rechts vom Gleichzeichen. [0, § 4.3]

3.1.4. Modifizierer

Klassen-, Trait- und Objektdefinitionen konnen mit Modifizierern versehen sein. Diese stehen vor dem
Schliisselwort class, trait oder object. Nicht alle Modifizierer sind fiir alle Arten von Definitionen
erlaubt [OT, § 5.2, 5.4]:

sealed (fiir Klassen und Traits) gibt an, dass nur Klassen und Traits in der selben Codedatei von der
Klasse bzw. dem Trait erben konnen.

final (fur Klassen) gibt an, dass von einer Klasse nicht geerbt werden kann. Das selbe Schliisselwort
wird fir Methoden verwendet, die nicht iberschrieben werden kénnen.

abstract (fir Klassen) gibt an, dass von einer Klasse keine Instanz erzeugt werden kann.

case (firKlassen und Objekte) sorgt dafiir, dass bestimmte Methoden vom Compiler generiert werden,
unter anderem eine Uberschreibung der equals- und hashCode-Methoden. Fiir Klassen wird
im Companion-Objekt eine apply-Methode definiert, die ein neues Objekt der Klasse erzeugt
sowie eine unapply-Methode, die die zur Konstruktion verwendeten Parameter aus einem
Objekt extrahiert. Solche Klassen kénnen also ohne das Schliisselwort new erzeugt werden.

Standardméflig sind alle Konstruktoren, Klassen, Traits, Objekte, Methoden und Felder 6ffentlich.
Daher besitzt Scala kein Schliisselwort fiir 6ffentliche Sichtbarkeit. Zum Einschranken der Sichtbarkeit
kénnen unter anderem folgende Angaben verwendet werden [OT, § 5.2]:

private Nur die definierende Klasse bzw. das definierende Objekt hat Zugriff.
protected Nur die definierende Klasse und abgeleitete Klassen haben Zugriff.

private[x] Alle Klassen und Objekte, die innerhalb des umschliefenden Pakets, der umschliefenden
Klasse bzw. des umschlieflenden Objekts x definiert sind, haben Zugriff.

14



3.1. Scala

protected[x] Alle Klassen und Objekte, die innerhalb des umschlieflenden Pakets, der umschlie-
Benden Klasse bzw. des umschlieBenden Objekts x definiert sind, sowie abgeleitete Klassen
haben Zugriff.

3.1.5. Ausdriicke

In Scala sind alle Anweisungen Ausdriicke, einschliefilich Codeblécken und anderen tiblichen Kon-
strukten wie if ... else, try ... catch usw. und haben einen wohldefinierten Typ. Der Typ
eines Codeblocks ist der Typ der letzten Anweisung, der Typ einer if ... else-Anweisung ist der
genaueste gemeinsame Typ beider Zweige. Fehlt der else-Zweig, ist dessen Typ als Unit festgelegt.
[0T, §6.11, 6.16]

In Scala existieren zwei Formen von for-Ausdriicken:

Listing 3.5: for-Ausdriicke

for (value <- collection) /* Ausdruck mit value x/

for (value <- collection) yield /* Ausdruck mit value x*/

Die erste Form fithrt fiir alle Werte in collection den Ausdruck aus, wobei value an den aktuellen
Wert gebunden wird und hat den Typ Unit. Die zweite Form erzeugt eine neue Liste von Werten,
meist vom selben Listentyp wie collection, die fiir jeden Wert von collection das Ergebnis des
Ausdrucks fiir diesen Wert enthalt. Auch hier wird value an den aktuellen Wert gebunden. In beiden
Fallen ist value unverinderlich. [OT, § 6.19]

value kann auch eine komplexere Form haben, wie zum Beispiel X(vall, val2).In diesem Fall wird
fiir das Objekt X die unapply-Methode mit dem aktuellen Wert als Argument aufgerufen und vall
sowie val2 an die extrahierten Werte gebunden. Hinter collection diirfen auch durch ; getrennt
weitere lokale Werte definiert werden, die im gegebenen Code ebenfalls unveranderlich sind. [OT,
§6.19, 8.1.8]

Beispiel:

Listing 3.6: Komplexe for-Ausdriicke

case class X(val _1 : Int, val _2 : Int)

val collection : Array[X] = /* ... %/
for (X(vall, val2) <- collection; sum = vall + val2)
yield sum

3.1.6. Vordefinierte Typen

Die Wurzel der Scala-Typhierarchie ist scala.Any. Diese hat genau zwei abgeleitete Klassen,
scala.AnyVal und scala.AnyRef. AnyRef entspricht java.lang.0Object, Any und AnyVal haben
kein Java-Aquivalent. AnyRef ist die Basisklasse aller Referenztypen, d. h. aller Klassen, Traits und Ob-
jekte, die nicht explizit von einer anderen Klasse erben. AnyVal ist die Basisklasse aller Werttypen, d. h.
Typen, die in Java keine Klassen sind. Da diese Typen in Scala aber gleichzeitig einen primitiven Typ



3. Grundlagen

Tabelle 3.1.: Zuordnung von Scala-Werttypen zu Java-Typen

Scala-Werttyp | primitiver Java-Typ Boxtyp
scala.Boolean boolean java.lang.Boolean
scala.Byte byte java.lang.Byte
scala.Short short java.lang.Short
scala.Int int java.lang.Integer
scala.Long long java.lang.Long
scala.Float float java.lang.Float
scala.Double double java.lang.Double
scala.Char char java.lang.Character

scala.Unit? void? java.lang.Void?

“Nur als Riickgabetyp von Funktionen dquivalent

und die zugehorige Box (d. h. ein Objekt, das einen primitiven Wert enthilt, z. B. java.lang.Integer)
bezeichnen, kénnen sie auch als generische Parameter verwendet werden. Boxing und Unboxing
geschieht bei Verwendung von Werttypen automatisch, wenn nétig. [0, § 12.1, 12.5.1]

Tabelle 3.1 listet die Werttypen von Scala mit ihren Java-Entsprechungen auf. Das einzige Objekt vom
Typ Unit ist das leere Tupel, ().

Der Typ scala.Nothing erbt per Definition von allen Typen. Von diesem Typ gibt es keine Instan-
zen. Eine Methode, die Nothing zuriickgibt, kann nicht normal zuriickkehren, sondern muss eine
Ausnahme werfen. Der Typ scala.Null mit der einzigen Instanz null erbt per Definition von allen
Referenztypen.

scala.Array[T] in Scala entspricht dem Java-Array T[]. [0, § 12.3.4]
Weiterhin spielen in dieser Arbeit folgende Typen eine Rolle:

scala.Option[T] Reprisentiert einen optionalen Wert vom Typ T. Entweder eine Instanz von
scala.Some[T], falls ein Wert existiert oder das Objekt scala.None. Some[T] ist mit case
definiert.

scala.collection.mutable.ArrayBuffer[T] Reprasentiert eine erweiterbare Liste von Objekten
vom Typ T mit schnellem wahlfreien Zugriff, da intern ein Array verwendet wird.

scala.collection.mutable.ListBuffer[T] Reprisentiert eine erweiterbare verlinkte Liste von
Objekten vom Typ T.

scala.collection.mutable.HashSet[T] Reprisentiert eine Menge von Objekten vom Typ T, ge-
speichert in einer Hash-Tabelle.

scala.collection.mutable.HashMap[K, V] Repriasentiert eine Map mit Schlisseln vom Typ K
und Werten vom Typ V, gespeichert in einer Hash-Tabelle.

Im Rest dieser Arbeit wird fiir alle in diesem Abschnitt beschriebenen Typen das enthaltende Paket
weggelassen.
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3.2. SKilL

3.2. SKilL

SKilL [Fel13] besteht aus einer Datenbeschreibungssprache und einem Serialisierungsformat. Mit
der Datenbeschreibungssprache konnen SKilL-Spezifikationen geschrieben werden, aus denen SKilL-
Anbindungen fiir verschiedene Programmiersprachen generiert werden konnen. Sie orientiert sich
an Programmiersprachen wie C++ und Java, so dass Entwickler dieser Sprachen die Spezifikationen
lesen konnen. Um kompatibel mit moglichst vielen Programmiersprachen zu sein, ignoriert die
Datenbeschreibungssprache Grof3- und Kleinschreibung. Das Serialisierungsformat beschreibt den
Aufbau der SKilL-Dateien, die von einer SKilL-Anbindung geschrieben und gelesen werden kénnen.

Dieser Abschnitt beschreibt die Typen, die in SKilL-Spezifikationen verwendet werden kénnen sowie
den Grobaufbau einer generierten SKilL-Anbindung und in Kiirze das Serialisierungsformat.

3.2.1. Typen

Die Typen in SKilL lassen sich in drei Bereiche aufteilen: Eingebaute Typen, zusammengesetzte Typen
und Benutzertypen.

Die eingebauten Typen sind [Fel13, § 4.1]:
i8, 116, i32, 164 Ganzzahlige Werte fester Lange mit 8, 16, 32 bzw. 64 Bit.

v64 Ganzzahlige Werte mit 64 Bit Lange, die aber mit einer variablen Anzahl an Bytes serialisiert
werden. Kleine Zahlen (im Intervall [0, 128)) werden mit einem Byte, grofie (> 2°°) und negative
Zahlen dagegen mit neun Byte serialisiert.

132, f64 FlieBkommazahlen mit 32 bzw. 64 Bit, die entsprechend der Norm IEEE 754 [IEE08] kodiert
sind.

bool Wahrheitswerte, die die beiden Werte wahr und falsch annehmen konnen.

string Zeichenketten mit variabler Lange. Der Inhalt besteht (im Serialisierungsformat) aus UTF-8-
kodierten Unicode-Zeichen.

annotation Ein Zeiger auf einen beliebigen Benutzertyp. Zusétzlich zum Ziel wird der Typ des Ziels
gespeichert.

Benutzertypen sind in SKilL-Spezifikationen spezifizierte oder aus SKilL-Dateien gelesene Typen. In
einer SKilL-Spezifikation definierte Benutzertypen werden fiir die daraus generierte SKilL-Anbindung
als bekannte Typen bezeichnet, alle anderen als unbekannte Typen.

Benutzertypen setzen sich aus Feldern zusammen, die einen beliebigen SKilL-Typ haben kénnen. Felder
werden wie in Java in der Form Typ Name; definiert. Alle Felder innerhalb einer Typdefinition miissen
verschiedene Namen besitzen. Felder mit ganzzahligem Typ kénnen auch mit const markiert werden,
um Konstanten anzugeben. Der Wert von Konstanten wird in der SKilL-Spezifikation festgelegt und
beim Einlesen einer SKilL-Datei tiberpriift. Falls der gelesene und der spezifizierte Wert verschieden
sind, wird ein Fehler beim Einlesen gemeldet. Felder beliebigen Typs kénnen mit auto markiert
werden. In diesem Fall wird zwar ein entsprechendes Feld im generierten Code erzeugt, das Feld wird
aber bei der Serialisierung ignoriert. [Fel13, § 3.4, 4.3]
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3. Grundlagen

Bekannte Benutzertypen konnen andere bekannte Benutzertypen erweitern, analog zum Ableiten
von Klassen. Entsprechend sind zyklische Abhéngigkeiten beim Erweitern nicht erlaubt. SKilL unter-
stiitzt nur einfache Vererbung, ein Benutzertypen kann also nur einen anderen Typ erweitern. Ein
abgeleiteter Typ wird als Untertyp bezeichnet, der Typ, der erweitert wird, als Obertyp. Ein Typ, der
keinen Obertyp besitzt, d. h. die Wurzel einer Typhierarchie ist, wird Basistyp genannt. [Fel13, § 3.3,
43]

Beispiel fiir einen Benutzertyp und Erweiterung:

Listing 3.7: Benutzertypen

/*x Definiert einen Typ A mit einem Feld a. */

A {132 a; }

/xx Erweitert A um ein Feld b. Alternativen zu : sind extends und with. x/
B:A{Ab;}

Benutzertypen und Felder kénnen mit vorangestellten Einschrinkungen (Restrictions) und Hinwei-
sen (Hints) versehen werden. Einschrinkungen werden serialisiert, Hinweise dagegen beeinflussen
lediglich die generierte SKilL-Anbindung. Einschrankungen werden mit einem @-Zeichen eingeleitet,
Hinweise mit !. [Fel13, § 3.3]

Zusammengesetzte Typen bezeichnen Typen, die sich aus mehreren Eintragen des selben Typs (bzw.
der selben Typen) zusammensetzen. Das sind Arrays fester Lange, Arrays variabler Lange, Listen,
Mengen und Maps. Alle zusammengesetzten Typen haben Typparameter, fiir die eingebaute Typen
oder Benutzertypen eingesetzt werden konnen. Das folgende Listing zeigt die Deklaration von Feldern
mit zusammengesetzten Typen. [Fel13, § 3.5, 4.2]

Listing 3.8: Zusammengesetzte Typen

A {
/*x Ein Array fester Ldnge mit Elementen vom Typ string und der Ldnge 15. x/
string[15] a;
/*x Ein Array variabler Ldnge mit Elementen vom Typ 132. */
i32[] b;
/*x Eine Liste mit Elementen vom Typ A. */
list<A> c;
/*x Eine Menge mit Elementen vom Typ annotation. x/
set<annotation> d;
/*x Eine Map mit Schlisseln vom Typ bool und Werten vom Typ i8. */
map<bool, i8> e;
/**x Eine verschachtelte Map. */
map<il6, A, 32> f;

-

3.2.2. Aufbau der SKilL-Anbindung an Scala

Das Diagramm 3.1 zeigt den groben Aufbau der Scala-Anbindung. Der Benutzer sieht dabei nur den
Teil, der in der oberen Zeile aufgefiihrt ist (Frontend), der Rest wird von der Anbindung verborgen
(Backend).

Benutzertypen sind hier allgemeine Klassen fiir unbekannte Typen sowie Klassen, die aus einer SKilL-
Spezifikation generiert wurden. Fiir jede Typdeklaration einer SKilL-Spezifikation wird eine solche
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Benutzertypen |Poolschnittstellen| SKilL-Zustand

bieten &;‘\,\x
Zugriff e serialisiert mit
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Unterpools Dateien

Abbildung 3.1.: Aufbau der Scala-Anbindung

Klasse generiert. Parallel dazu werden Speicherpools erzeugt. Zu jedem Basistyp wird ein Basispool
generiert, fiir alle anderen Typen je ein Unterpool. Uber die 6ffentliche Schnittstelle der Pools kénnen
Instanzen von bekannten Benutzertypen erzeugt werden. Aulerdem kann tiber alle Instanzen eines
Benutzertyps (einschlieBlich abgeleiteten Typen) iteriert werden. Der SKilL-Zustand schliefllich ist die
Reprisentation einer SKilL-Datei im Speicher. Er enthilt fiir alle in einer SKilL-Datei vorkommenden
und alle spezifizierten Benutzertypen je einen Speicherpool, insbesondere auch fiir unbekannte Typen.
Ein SKilL-Zustand bietet Lese-, Schreib- und Anhéngoperationen fiir SKilL-Dateien an und leitet die
entsprechenden Aufrufe an die zustidndigen internen Klassen weiter.

3.2.3. Serialisierungsformat

Eine SKilL-Datei besteht aus Blocken. Das ermdglicht das Anhéngen neuer Objekte an bestehende Da-
ten, ohne dass an diesen etwas gedndert werden muss. Aulerdem ist das Format darauf optimiert, dass
Teile der Datei ohne grofien Aufwand iibersprungen werden kénnen. Es gibt zwei Typen von Blocken:
Zeichenkettenblocke und Typblocke. Diese treten immer in Paaren auf, erst ein Zeichenkettenblock,
dann ein Typblock. [Fel13, § 6.2]

Ein Zeichenkettenblock beginnt mit einem v64 count, das die Anzahl der Zeichenketten im Block
angibt. Anschlieflend kommen count i32-Werte, die jeweils die Endposition einer Zeichenkette relativ
zum ersten Zeichen der ersten Zeichenkette angeben, gefolgt von den UTF-8-kodierten Zeichenketten.
In einem Zeichenkettenblock sind sowohl Namen von Typen und Feldern der in der Datei enthaltenen
Typdeklarationen (immer in Kleinbuchstabenform) als auch Benutzerzeichenfolgen enthalten, d. h.
Werte von Feldern vom Typ string. Zeichenketten werden in Typblocken tiber ihren 1-basierten
Index (gespeichert als v64) in der Datei adressiert. [Fel13, § 6.2.1]

Ein Typblock beginnt ebenfalls mit einem v64 count. Dieses gibt an, wie viele Typdeklarationen im
Typblock enthalten sind. Fiir jeden Typ, fiir den in einem Typblock Instanzen enthalten sind, muss
eine Typdeklaration enthalten sein. Anschlieflend folgen count Typdeklarationen und nach diesen
feldweise geordnet die Daten fiir die einzelnen Instanzen. Die Typdeklarationen sind so geordnet, dass
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3. Grundlagen

ein Obertyp immer vor allen seinen Untertypen deklariert wird. Eine Typdeklaration besteht aus zwei
Teilen: Einem Informationsblock iiber den Typ selbst, gefolgt von einer Liste von Felddeklarationen.
Abbildung 3.2 veranschaulicht den Aufbau des Informationsblocks und einer Felddeklaration. [Fel13,
§ 6.2.2]

Informationsblock Felddeklaration
string name 79 R[] restrictions
71 string super 79 TYPE type
73 v64 LBPSI ?9 string name
v64 count v64 end
71 R[] restrictions
v64 LFieldCount

Abbildung 3.2.: Aufbau einer Typdeklaration: Informationsblock und Felddeklaration [Fel13, § 6.2]

Dabei sind mit 7; gekennzeichnete Felder nur vorhanden, wenn ein Typ das erste Mal in einer SKilL-
Datei vorkommt. Besitzt ein Typ keinen Obertyp, hat super den Wert 0. count im Informationsblock
gibt an, wie viele neue Instanzen des Typs (einschliefilich Untertypen) im Typblock dazukommen.
LFieldCount ist die Anzahl der Felder des Typs, fiir die im Typblock Daten gespeichert sind. Die mit
79 markierten Felder sind nur vorhanden, wenn ein Feld das erste Mal vorkommt. Felder, die neu
hinzukommen, stehen hinter den bereits vorhandenen. Der Wert end gibt an, wo die Daten eines
Feldes relativ zum Ende der letzten Typdeklaration enden. Das mit 73 gekennzeichnete Feld ist nur
vorhanden, wenn ein Typ einen Obertyp besitzt. In diesem Fall gibt es an, ab welchem Index (1-basiert)
die Daten des Basistyps im selben Block zu diesem Typ gehoren. [Fel13, § 6.2.2]

3.3. Speicherverwaltung auf der JVM

Dieser Abschnitt beschreibt in Kiirze den Aufbau des Heaps und die Funktionsweise des Garbage
Collectors fur die verwendete JVM. Fiir andere JVMs wird keine Aussage gemacht; das Verhalten
durfte jedoch sehr dhnlich sein.

Der Heap ist in der JVM nicht ein grof3er Speicherblock, sondern in mehrere Bereiche (sogenannte
Generationen) aufgeteilt. Die Generationen haben verschiedene Aufgaben. [GCT]

« Die permanente Generation enthélt interne Daten der JVM, wie z.B. geladene Klasseninfor-
mationen. Sie hat eine feste Grofle, die beim Start der JVM festgelegt wird und spielt fiir ein
Programm auf der JVM nur eine untergeordnete Rolle.

« Die junge Generation enthilt neue Objekte bis zu einer bestimmten Grofle. Sie ist weiter un-
terteilt in einen Bereich fiir neu erzeugte Objekte (,Eden®) und zwei Bereiche fir Objekte, die
bereits mindestens eine Garbage Collection in der jungen Generation {iberlebt haben (,,Survivor
spaces”). Die Grofle der jungen Generation ist verhaltnismafig klein.

« Die alte Generation enthalt Objekte, die in der jungen Generation genug Garbage Collections
itberlebt haben und neue Objekte, die zu grof} fiir die junge Generation sind.
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3.3. Speicherverwaltung auf der JVM

Garbage Collections in der jungen Generation sind relativ billig, da diese relativ klein ist und zudem
viele der enthaltenen Objekte nur temporare Daten sind und nur wenige eine Garbage Collection
iiberleben. Die alte Generation dagegen ist die grofite der Generationen. In ihr befinden sich viele
langlebige Objekte, wodurch sich der Aufwand fiir Garbage Collections erhoht. Daher werden Garbage
Collections in der jungen Generation klein und Garbage Collections in der alten Generation grof3
genannt. [GCT]
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4. Speicherreduktion von SKilL-Zustanden

Dieses Kapitel beschreibt mégliche Veranderungen in der bestehenden Scala-Anbindung, die zu einem
reduzierten Speicherverbrauch fithren. Dazu werden zuerst Teile der urspriinglichen Implementierung
[SKil4a] betrachtet, die beziiglich ihres Speicherverbrauchs optimierbar sind. Anschlieffend werden
darauf aufbauende Optimierungen vorgestellt. Zu den Optimierungen ist auch angegeben, inwiefern
diese die Laufzeit beeinflussen kénnen. Im Normalfall iberwiegt jedoch bei grofien Objektzahlen die
Laufzeitverbesserung durch weniger gro3e Garbage Collections.

4.1. Urspringliche Implementierung

Die urspriingliche Implementierung ist auf GitHub (siehe [SKil4a]) zu finden. Dieser Abschnitt
beleuchtet nur die fiir die folgenden Optimierungen wesentlichen Teile. Alle Aussagen in diesem
Abschnitt beziehen sich auf die urspriingliche Implementierung. Das vom Codegenerator erzeugte
Paket wird im Folgenden mit x bezeichnet.

4.1.1. Benutzertypen

Die in der SKilL-Spezifikation definierten Benutzertypen [Fel13, § 4.3] werden auf Klassen abgebildet,
die direkt oder indirekt von x. internal.SkillType erben. Die in einer SKilL-Spezifikation definierte
Typhierarchie wird durch abgeleitete Klassen implementiert. Die Konstruktoren der Klassen sind nur
innerhalb des Pakets x zugreifbar. Der vorgesehene Weg, neue Instanzen zu erzeugen, fithrt tiber die
in einem SKilL-Zustand enthaltenen Objektlager, die Speicherpools. Normale Felder, im Folgenden
lokale Felder genannt, sind iibliche Felder innerhalb der generierten Klassen. Die Schnittstelle fiir den
Benutzer besteht aus einer fiir Scala iiblichen Getter/Setter-Implementierung [O™, § 4.2]. Diese kann
Fehler werfen, falls z. B. ein Feld ignoriert wird, d. h. mit einem ignore-Hint versehen ist [Fel13, § 5.2],
oder eine Einschrankung verletzt wird. Verweise auf andere Objekte im selben Zustand werden durch
iibliche Referenzen realisiert.

Jedes Objekt enthalt eine Identifikationsnummer, die SKilL-ID, vom Typ Long im Feld skillID von
SkillType. Objekte, die aus einer SKilL-Datei gelesen oder in eine SKilL-Datei geschrieben wurden,
im Folgenden alte Objekte genannt, haben eindeutige, positive SKilL-IDs. Neu erzeugte und noch nicht
geschriebene Objekte, im Folgenden neue Objekte, bekommen die spezielle SKilL-ID —1. Die SKilL-ID
0 wird zur Markierung geloschter Objekte verwendet; sie ist beim Serialisieren fiir Nullverweise
reserviert (siehe [Fel13, § 6.3]).
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4. Speicherreduktion von SKilL-Zustédnden

Fir Typen und Felder kénnen auch Einschrankungen in der Spezifikation angegeben werden. Da
diese aber in der aktuellen Form als veraltet deklariert wurden, werden sie in dieser Arbeit nicht
beachtet.!

Laufendes Beispiel

Die folgende einfache SKilL-Spezifikation wird in diesem Kapitel immer wieder aufgegriffen. Spétere
Beispiele bauen darauf auf:

Listing 4.1: Laufendes Beispiel — Hierarchie

A {
i32 x;

-

B : A {
Ay;

-

Diese Spezifikation wird in der urspriinglichen Implementierung implementiert als

Listing 4.2: Hierarchie — Implementierung

sealed class A private[xz](skillID: Long) extends SkillType(skillID) {

protected var _x: Int

=0
final def x = _x
final def x_=(X: Int) = _x = X

}
sealed class B private[x](skillID: Long) extends A(skillID) {

protected var _y: A = null
final def y = _y
final def y_=(Y: A)

{ /% Prifung: Y != null x/; _y =Y }

-

4.1.2. Objekte in SKilL-Zustédnden

Zu jedem Benutzertyp, einschlie8lich der nicht-spezifizierten, aus einer SKilL-Datei gelesenen Typen,
existiert ein assoziierter Speicherpool in jedem SKilL-Zustand (siehe auch [Fel13, § 6.3]). Ebenso
ist zu jedem Speicherpool genau ein Benutzertyp assoziiert. Speicherpools erben von der Klasse
StoragePool iiber eine ihrer beiden Unterklassen BasePool und SubPool. Ein Speicherpool enthilt
Verweise auf alle enthaltenen Objekte, alte ebenso wie neue, und Hilfsmethoden fiir die Serialisierung
und Deserialisierung von Speicherpools in binédre SKilL-Dateien. Er erlaubt auch den Zugriff auf
unbekannte Felder per Reflexion und enthalt deren Daten fiir jedes Objekt des assoziierten Typs,

'Die speicheroptimierte Implementierung enthilt dennoch Code fiir Einschrinkungen, geerbt von der urspriinglichen
Implementierung, teilweise mit Anpassungen an die neue Implementierung.



4.2. Verteilte vs. lokale Felder

d. h. unbekannte Felder sind verteilt (siehe nidchsten Abschnitt). Zusatzlich enthalten Speicherpools
Verweise auf alle Unterpools und ihren Oberpool, jeweils falls vorhanden.

Speicherpools gliedern sich in zwei Untertypen: Basispools (Klasse BasePool) gehdren zu Basistypen,
Unterpools (Klasse SubPool) zu allen anderen Typen. Unbekannte Typhierarchien verwenden direkt
diese Klassen. Fiir bekannte Typen und deren unbekannte Untertypen werden Klassen generiert, die
von einer dieser beiden Klassen erben. Ein Basispool enthilt alle alten Objekte, die vom zugehérigen
oder einem davon abgeleiteten Typ sind. Bei neuen Objekten ist jeder Speicherpool fiir alle Objekte
des zugehorigen Typs zustindig.

Entsprechend enthalten Basispools ein Array, das Verweise auf alle alten Objekte des assoziierten Typs
und aller abgeleiteten Typen beinhaltet. Auierdem enthalten alle Speicherpools einen ArrayBuffer,
der Verweise auf alle neuen Objekte des assoziierten Typs enthélt.

Speicherpools erlauben das Iterieren iiber alle enthaltenen Instanzen. Dazu gehoren alle Objekte, die
vom assoziierten Typ oder davon abgeleitet sind. Dabei existieren zwei Reihenfolgen:

+ Dateiordnung, d. h. die Reihenfolge, in der Instanzen beim Anhingen an eine Datei geschrieben
werden wiirden

« Typordnung, d. h. zuerst alle Objekte eines Typs, dann alle Objekte des nachsten Typs usw.
Auflerdem konnen alte Objekte intern auch durch ihre SKilL-ID erhalten werden.

Generierte Speicherpools fiir bekannte Typen erlauben zusitzlich das Erzeugen neuer Objekte mit-
tels ihrer apply-Methode. Davon ausgenommen sind Speicherpools fiir Singletons. Diese haben
stattdessen eine get-Methode, die die einzige Instanz zuriickgibt.

4.2. Verteilte vs. lokale Felder

Da in der alten Implementierung jede Instanz einer von SkillType abgeleiteten Klasse die gesamte
Lebenszeit des enthaltenden Zustands tiberdauert, ist es interessant zu betrachten, wie viel Speicher
die Instanzen eigentlich selbst belegen. Auf der JVM (64 Bit) benétigt jedes Objekt mindestens 16 Byte?.
Das ist die Grofle von java.lang.0bject, der direkten oder indirekten Basisklasse jedes Objekts auf
der JVM. Fir SKilL-Objekte kommen nun noch die SKilL-ID und alle Felder hinzu.

Betrachtet man ein Objekt ohne Felder, so benétigt dieses bereits mindestens 24 Byte®. Dieser Grund-
speicherbedarf kann nicht reduziert werden, solange Referenzen auf jedes dieser Objekte existieren.
Daher stellt sich die Frage, ob die Objekte wirklich bené6tigt werden.

Die SKilL-Spezifikation [Fel13] erlaubt das Deklarieren von Feldern als ,distributed” (verteilt) mittels
eines Hints wie folgt:

Ermittelt mit VisualVM [Vis14] fiir die verwendete JVM

? Aufgrund der ungliicklichen Benennung eines Konstruktorparameters (skillID) wird dieser innerhalb einer Methode
verwendet statt des gleichnamigen Felds von SkillType. Daher kommen noch einmal 8 Byte pro Hierarchiestufe einer
Klasse hinzu, d. h. erbt B (ohne eigene Felder) von A, so benétigt eine Instanz von B 8 Byte mehr als eine Instanz von A.
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4. Speicherreduktion von SKilL-Zustédnden

Listing 4.3: Distributed-Hint

A{
!distributed
i32 x;

}

Die urspriingliche Implementierung unterstiitzt keine verteilten Felder aufler den unbekannten, dort
sind bekannte Felder immer lokal. Die Daten eines verteilten Felds sind im Gegensatz zu einem
lokalen Feld nicht im Objekt, sondern im zugehorigen Speicherpool gespeichert. Daher miissen sie auf
irgendeinem Weg dem passenden Objekt zugeordnet werden konnen. Eine Moglichkeit besteht darin,
die Daten in einer Map zu speichern, welche mit dem Objekt indiziert wird. Diese Moglichkeit wird
in der urspringlichen Implementierung fiir unbekannte Felder verwendet. Vom Speicherverbrauch
her besser ist aber die Verwendung eines Arrays, das die Daten des Felds enthilt und mittels der
SKilL-IDs der Objekte indiziert wird. Dazu muss aber jedes Objekt eines Speicherpools eine eindeutige
SKilL-ID besitzen, was bisher nicht gegeben ist. Zudem erfordert die Anwesenheit eines oder mehrerer
verteilter Felder, dass in jedem Objekt ein Verweis auf den zugehorigen Speicherpool enthalten ist.

Verteilte Felder sind allerdings langsamer als lokale Felder, denn statt einem Zugriff vom Objekt
direkt auf die Daten muss erst auf den Speicherpool, dann auf das entsprechende Array zugegriffen
werden, bevor die Daten selbst erreicht werden. Zudem sind die Daten eines Objekts nicht mehr dicht
beieinander gespeichert, was die Ausnutzung von Cache-Lokalitét bei der Arbeit mit einem Objekt
fiir verteilte Felder verhindert. Werden dagegen alle Daten eines Feldes fiir alle Objekte durchlaufen,
wie z. B. beim Serialisieren in eine SKilL-Datei, kann von der Cache-Lokalitét profitiert werden, da
die Daten nah beieinander liegen.

Die Ersetzung aller Felder durch verteilte Felder hat aber durchaus Vorteile: Da die Objekte nun
keine Daten mehr enthalten, ist es unnétig, in den Speicherpools Referenzen auf sie zu speichern.
Damit entfillt bei der dauerhaften Speicherung von Objektdaten der oben berechnete Grundspeicher
pro Objekt. Stattdessen wird fiir jedes Feld ein Array benétigt, das wiederum selbst ein Objekt ist
und damit 24 Byte Extraaufwand (Grundspeicher plus Grofie) erzeugt. Doch innerhalb einer SKilL-
Spezifikation bzw. einer SKilL-Datei ist nur eine konstante Anzahl an Feldern definiert, daher ist
dies fiir eine konkrete Kombination von Spezifikation und Datei ein konstanter Aufwand anstatt des
vorherigen linearen Aufwands.

Werden die Objekte selbst allerdings nicht mehr gespeichert, wird es notig, fiir jeden Benutzerzugriff
auf die Daten ein neues, relativ kleines Zugriffsobjekt zu erzeugen. Diese Objekte arbeiten als Proxy:
Sie kennen die Position der Daten, kodiert in der SKilL-ID, und bieten dem Benutzer eine tibliche
Feldschnittstelle mit Getter und Setter an, tiber die er auf die Daten zugreifen kann. Sie enthalten nur
noch die SKilL-ID und Verweise auf die zugehorigen Speicherpools. Dabei gehort zu einer Klasse nicht
nur ihr assoziierter Speicherpool, sondern auch die zu allen direkten und indirekten Basisklassen
assoziierten Speicherpools. Da der SKilL-Zustand alle zugehorigen Speicherpools kennt, wird nur ein
weiterer Konstruktorparameter benétigt, naimlich das Zustandsobjekt.
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Die Spezifikation in Listing 4.3 ergibt also die folgende Definition fiir das zugehorige Proxyobjekt:

Listing 4.4: Proxy

sealed class A private[x](_skillID: Long, state : SkillState) extends KnownSkillType(_skillID) {
protected final val APool = state.A.asInstanceOf[AStoragePool]

final def x = APool.getX(skillID)
final def x_=(X: Int) = APool.setX(skillID, X)

}

KnownSkillType implementiert dabei die neue Infrastruktur fiir bekannte Typen. Alle Zugriffe auf
das Feld x werden an den assoziierten Speicherpool weitergeleitet. Dort wird mithilfe der SKilL-ID
der korrekte Datensatz adressiert.

Da die Datensétze nur noch anhand ihrer SKilL-ID und ihrem Basistyp (siehe Abschnitt 3.2.1) unter-
schieden werden, sind nun zwei Objekte als identisch zu betrachten, wenn sie auf die selben Daten
verweisen. Entsprechend sind Anderungen an einem Objekt in jedem anderen Objekt sichtbar, das
auf den selben Datensatz verweist. Die Objekte konnen also auch als eine Art Referenz auf den
zugehorigen, unter Umstidnden auf mehrere Speicherpools verteilten Datensatz betrachtet werden.

4.3. SKilL-IDs und Indizierung

Um die SKilL-ID als Index fiir die Daten enthaltenden Arrays zu benutzen, muss jeder Datensatz
(ein urspriingliches Objekt) eine eindeutige SKilL-ID besitzen. Fiir alte Objekte bietet sich an, die zur
Serialisierung verwendete SKilL-ID zu benutzen. Dadurch kénnen Daten aus einer SKilL-Datei direkt
so eingelesen werden, wie sie in der Datei stehen. Fiir neue Objekte gibt es mehrere Moglichkeiten,
eindeutige SKilL-IDs festzulegen. Eine Moglichkeit ist, einfach die nachste freie positive Zahl zu
verwenden, da niemals alte Objekte erzeugt werden, sondern vielmehr neue Objekte geschrieben und
dadurch zu alten Objekten werden. In diesem Fall miissten die neuen Objekte sowieso umgeordnet
werden, um die Bedingungen des Dateiformats zu erfiillen, dass Objekte innerhalb eines Typblocks
nach Typ sortiert sein miissen (siehe [Fel13, § 6]). Umordnen bedeutet hier, dass die neuen Objekte
mit neuen SKilL-IDs versehen werden.

Aufgrund dieser Umordnung ist es aber empfehlenswert, getrennte Datenarrays fiir alte und neue
Objekte anzulegen. Daher wurde entschieden, eine andere Moglichkeit zu nutzen, ndmlich neuen
Objekten negative SKilL-IDs zu verteilen, die dann als negative Indizes (1-basiert) verwendet werden
konnen. Das ermdglicht auch eine schnellere Unterscheidung, ob ein Objekt bereits geschrieben
wurde oder nicht, und eine entsprechende Reaktion.

4.4. Benutzertypen und Annotationen

Da nun keine dauerhaften Objekte mehr existieren, konnen auch keine Referenzen mehr darauf in
den Feldern gespeichert werden. Bei Referenzen ist das Ziel ein Benutzertyp, zu dem ein eindeutiger
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4. Speicherreduktion von SKilL-Zustédnden

Speicherpool gehort, der wiederum zu einem eindeutigen Basispool gehort. Innerhalb eines Basispools
sind SKilL-IDs laut SKilL-Spezifikation eindeutig [Fel13, § 6.3]. Folglich reicht es aus, anstatt einer
Referenz die SKilL-ID des Ziels zu speichern. Nebenbei erlaubt dies, Felder mit Referenztyp genauso
einzulesen wie Felder mit primitiven Typen, ndmlich durch einfaches Kopieren der Daten aus der
Datei in das Datenarray des Felds.

Auch Annotationen sind Referenzen. Jedoch wird bei diesen noch zusitzlich ein Verweis auf den
passenden Speicherpool benétigt, damit das Ziel eindeutig identifiziert werden kann. Hier kann
ausgenutzt werden, dass jeder Speicherpool eines SKilL-Zustands einen eindeutigen Index besitzt.
Fiir Annotationen wird folglich der Index des korrekten Speicherpools sowie die SKilL-ID des referen-
zierten Objekts gespeichert. Beim Lesen eines Annotationsfelds muss nun nur noch der gespeicherte
Name des Speicherpools (siehe [Fel13, § 6.4]) mithilfe des SKilL-Zustands in einen Index iibersetzt
werden.

Werden Referenzen und Annotationen allerdings auf diese Weise gespeichert, wird ein Mechanismus
benotigt, der fir eine gegebene SKilL-ID ein Proxyobjekt liefert, das dem Benutzer Zugriff auf einen
Datensatz gewahrt. Es wurde entschieden, diesen Mechanismus in die Implementierung des SKilL-
Zustands aufzunehmen, da dieser alle betroffenen Speicherpools kennt. Das ist dadurch sichergestellt,
dass Querverweise zwischen verschiedenen Zustanden nicht serialisierbar und daher nicht erlaubt sind.
Damit Referenzen und Annotationen in Feldern aufgelost werden konnen, erhalten die Speicherpools
einen Verweis auf ihren enthaltenden Zustand.

4.5. Ausnutzung von JVM-Eigenschaften

Die JVM hat einige Einschriankungen, vor allem beziiglich Objektanzahlen und Arraygréfien. So
werden JVM-Arrays mit vorzeichenbehafteten 32-Bit-Ganzzahlen (Int in Scala) indiziert und kénnen
daher nur bis zu 23! — 1 Objekte enthalten. Folglich reicht es aus, auch fiir die SKilL-ID nicht
die vollen 64 Bit zu benutzen, sondern lediglich 32 Bit. Entsprechend kann auch die Anzahl der
Speicherpools diese Grenze nicht iibersteigen. Annotationen benédtigen daher nur 64 Bit bzw. zweimal
32 Bit anstatt der theoretischen 128 Bit. Nach der SKilL-Spezifikation [Fel13, § D] ist die Ausnutzung
dieser Einschriankung erlaubt, ohne die Korrektheit der Implementierung zu beeinflussen.

Es wird auf der JVM auflerdem deutlich zwischen primitiven Typen (Boolean, Byte, Short, Int,
Long, Float, Double) und Objekten unterschieden. Insbesondere enthélt ein Array mit primitivem
Elementtyp die Eintrége selbst, wihrend ein Array mit einem Objekttyp als Elementtyp lediglich
Referenzen auf die enthaltenen Objekte enthalt. Daher benétigt es wesentlich weniger Speicherplatz,
eine Annotation in einem einzelnen Long-Wert zu kodieren (8 Byte) anstatt ein Objekt mit zwei
Int-Eintragen zu verwenden (8 Byte fiir eine Referenz plus 24 Byte fiir das Objekt).

Werden die obigen Eigenschaften der JVM ausgenutzt, konnen die in Tabelle 4.1 aufgefiihrten Scala-
Typen fiir die entsprechenden grundlegenden SKilL-Typen verwendet werden. Dabei ist zu beachten,
dass der SKilL-Typ string auch fur die Speicherung im SKilL-Zustand in den Scala-Typ String
tibersetzt wird, obwohl dieser ein Objekttyp ist. Der Grund ist, dass Strings weder Benutzertypen
noch zusammengesetzte Typen sind und daher als primitive Typen betrachtet werden kénnen.
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Tabelle 4.1.: Transformation von SKilL-Typen zu Scala-Typen unter Ausnutzung von
JVM-Einschriankungen

SKilL-Typ Scala-Typ (gespeichert) | Scala-Typ (Schnittstelle)
bool Boolean Boolean
i8 Byte Byte
i16 Short Short
i32 Int Int

i64, v64 Long Long
f32 Float Float
fo4 Double Double
string String String
annotation Long SkillType®
Benutzertypen Int Benutzertyp®®

“benotigt entsprechende Auflésungsfunktionen
bvon SkillType direkt oder indirekt abgeleitete Klasse

Tabelle 4.2.: Zusammengesetzte SKilL-Typen mit ihren Scala-Entsprechungen (urspriing-
liche Implementierung)

SKilL-Typ Scala-Typ
Aln] ArrayBuffer[a]l®
All] ArrayBuffer[al
list <A~ ListBuffer([a]
set<A> HashSet[a]
map<A, B> HashMap[a, b]
map<A, B, ...> | HashMap[a, HashMap[b, ...]]

“scala.Array wire eigentlich die korrekte Wahl, doch hat diese Klasse einige Besonderheiten, die
die Interaktion mit generischem Code erschweren, unter anderem, dass Arrays echt spezialisiert
werden fiir verschiedene primitive Typen. Das kollidiert mit der Typloschung.

4.6. Zusammengesetzte Typen

SKilL besitzt noch weitere Typen, die sich aus mehreren Elementen zusammensetzen. Das sind Arrays
konstanter Lange, Arrays variabler Lange, Listen, Mengen und Maps. In Tabelle 4.2 sind diese mit
ihrer Scala-Entsprechung (in der urspriinglichen Implementierung) aufgelistet. A, B und C' sind dabei
beliebige SKilL-Typen aus Tabelle 4.1 und a, b und c ihre Scala-Entsprechungen in der Schnittstelle,
n ist eine natiirliche Zahl. Nach der Definition von SKilL kdnnen zusammengesetzte Typen nicht
geschachtelt werden (siehe auch die Grammatik einer SKilL-Spezifikation in [Fel13, § 2]).

Werden Referenzen auf Benutzertypen und Annotationen nun als Int bzw. Long gespeichert, aber
als Objekte an den Benutzer iibergeben, kénnen diese Container nicht mehr sowohl im Speicher
als auch in der Schnittstelle verwendet werden. Es werden also Adapter benétigt, die intern auf die
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4. Speicherreduktion von SKilL-Zustédnden

in einem Container gespeicherten kodierten Referenzen zugreifen. Dem Benutzer stellen sie neu
erzeugte Objekte zur Verfiigung, iiber die er wiederum auf die Daten des zugehorigen Datensatzes
zugreifen kann. Die Adapter miissen folglich fahig sein, sowohl Benutzertypen in kodierte Referenzen
bzw. Annotationen zu konvertieren als auch kodierte Referenzen zuriick in Benutzertypen.

Der zweite Teil ist ohne weitere Informationen unméglich wegen der auf der JVM stattfindenden
Typloschung (type erasure), d. h. zur Laufzeit stehen keine Informationen mehr tiber die konkret
eingesetzten Typparameter zur Verfiigung [Ull11]. Daher benétigen die Adapter einen Zugriff auf
den SKilL-Zustand, besser gesagt auf die korrekte dort definierte Auflésungsfunktion. Entsprechend
wurde die Schnittstelle des SKilL-Zustands um Fabrikmethoden erweitert. Diese erzeugen korrekt
typisierte und mit den korrekten Auflésungsfunktionen versehene Containeradapter mit einem neuen,

Tabelle 4.3.: Zusammengesetzte SKilL-Typen mit ihren Scala-Entsprechungen (optimierte Implementierung)

SKilL-Typ Elementtyp(en) Scala-Typ (Speicher)| Scala-Typ (Schnittstelle)
Aln] primitiv® Arrayl[al Arrayl[al
Benutzertyp Array[Int] RefArray[a]®
annotation Array[Long] AnnotationArrayb
AJ] primitiv® ArrayBuffer[al ArrayBuffer[a]
Benutzertyp ArrayBuffer[Int] RefArrayBuffer[a]®
annotation ArrayBuffer[Long] AnnotationArrayBuffe rb
list <A~ primitiv® ListBuffer[a] ListBuffer[a]
Benutzertyp ListBuffer[Int] RefListBuffer[a]®
annotation ListBuffer[Long] AnnotationListBuffer?
set<A> primitiv® HashSet[a] HashSet[a]
Benutzertyp HashSet[Int] RefHashSet[a]b
annotation HashSet[Long] AnnotationHashSet?
map<A, B> primitiv® HashMap[a,b] BasicMapView[a,b]®
primitiv?/Benutzertyp HashMap[a,Int] BasicRefMapView[a,b]”
primitiv®/annotation HashMap[a,Long] BasicAnnotationMapView[al b
Benutzertyp/primitiv® HashMap[Int,b] RefBasicMapView[a,b]®
Benutzertypen HashMap[Int,Int] RefMapView[a,b] b
Benutzertyp/annotation| HashMap[Int,Long] RefAnnotationMapView[a] b
annotation/primitiv® HashMap[Long,b] AnnotationBasicMapView[b]?
annotation/Benutzertyp | HashMap[Long, Int] AnnotationRefMapView[b] b
annotation HashMap[Long,Long] AnnotationMapViewb
map-<A, ...> A primitiv® HashMap[a,_1¢ BasicMapMapView[a,_]%¢
A Benutzertyp HashMap[Int,_]¢ AnnotationMapMapView[a,,]bd
A annotation HashMap[Long,_1° AnnotationMapMapView[_]bd

“Einer der Typen bool, i8, i16, i32, i64, v64, f32, f64, string

b Adaptertyp

“Je nach weiteren Typen ist _ eine entsprechende HashMap
“Je nach weiteren Typen ist _ der diesen Typen entsprechende . ..MapView-Typ aus dieser Tabelle
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leeren Hintergrundcontainer. Tabelle 4.3 listet die Reprédsentation der zusammengesetzte Typen in
der optimierten Implementierung auf.

4.7. Speicherpools

Um die bisher genannten Optimierungen umsetzen zu konnen, mussten die Speicherpools und die
Serialisierung angepasst werden. Im Gegensatz zur Serialisierung, wo nur relativ kleine Anderungen
vorgenommen werden mussten, meist aufgrund von Anderungen in den Speicherpools, wurden
die Speicherpools komplett iiberarbeitet und in weiten Teilen umgestaltet. Unter anderem wurden
neue Aufgaben hinzugefiigt, die ntig werden, wenn die Objekte nur noch als Datensétze in den
Speicherpools existieren. Tabelle 4.4 fasst die Verwaltungsbereiche, Tabelle 4.5 die Aufgaben der
Speicherpools jeweils in beiden Implementierungen zusammen. Die Klasse StoragePool enthélt
dabei die Gemeinsamkeiten der Klassen BasePool und SubPool, generierte Pools sind die generierten
Speicherpools fiir bekannte Typen (siehe auch Abschnitt 4.1.2).

Tabelle 4.4.: Verwaltungsbereiche der Speicherpools in den verschiedenen Implementierungen

Urspriingliche Optimierte Implementierung
Implementierung
StoragePool Typhierarchie (Unterpools, Typhierarchie (Unterpools,
Oberpool) Oberpool)
Felddeklarationen, Felddeklarationen,
unbekannte Felder unbekannte Felder
Statische Instanzen des Pools Anzahl statischer neuer
Dynamische Blockinforma- Instanzen
tionen Statische Blockinformationen
BasePool Dynamische Instanzen des Enthaltender SKilL-Zustand
Pools Gultigkeit von Instanzen bzw.
SKilL-IDs
Dynamische neue Instanzen
SubPool Dynamische Blockinforma-

tionen
Lokaler Poolindex (innerhalb
eines Basispools)

Generierte Pools

Singleton-Instanz (falls
anwendbar)

Singleton-Instanz (falls
anwendbar)

Daten fiir alte dynamische
Instanzen®

Daten fir neue statische
Instanzen

“Nur Felder, die im assoziierten Typ des Pools deklariert sind, d. h. weder Felder der Basisklassen noch Felder von

abgeleiteten Klassen
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Tabelle 4.5.: Aufgaben der Speicherpools in den verschiedenen Implementierungen

Urspriingliche
Implementierung

Optimierte Implementierung

StoragePool

+ Erzeugen neuer Unterpools

+ Hinzufiigen neuer Felder

+ Auflésen von SKilL-IDs zu
Instanzen®

+ Iteration tiber Instanzen

+ Erzeugen neuer Unterpools,
Iterieren iber Unterpools

+ Hinzufiigen neuer Felder

+ Auflésen von SKilL-IDs zu
Instanzen

« Iteration iiber Instanzen

+ Erzeugen von Proxyobjekten®

o Infrastruktur zur Verwaltung
von Felddaten (einschliefilich
Aktualisierung von Referenzen)

BasePool « Aktualisierung von SKilL-IDs « Aktualisierung von SKilL-IDs

vor Serialisierung vor Serialisierung

« Loschen und Hinzufiigen von
Instanzen

« Aufbau der Umordnungstabellen
zur Aktualisierung von
Referenzen und Umordnung von
Instanzen

SubPool + Zuordnung von SKilL-IDs zu

lokalen Datenindizes

Generierte Pools + Erzeugen neuer Instanzen « Erzeugen neuer Instanzen (falls
(falls anwendbar) anwendbar)

« Erzeugen von korrekt typisierten
Proxyobjekten

o Zugriff auf Felddaten fiir

dynamische Instanzen”

“Implementiert in den abgeleiteten Klassen
’Nur Felder, die im assoziierten Typ des Pools deklariert sind, d. h. weder Felder der Basisklassen noch Felder von
abgeleiteten Klassen

In diesem Abschnitt bezeichnen statische Instanzen eines Speicherpools alle Objekte bzw. Datensatze,
die vom dazu assoziierten Benutzertyp sind. Dynamische Instanzen eines Speicherpools enthalten
zusitzlich alle Objekte bzw. Datensétze der vom assoziierten Benutzertyp abgeleiteten Typen. Alte
Instanzen sind gelesene oder bereits geschriebene Objekte bzw. Datensétze, alle anderen Instanzen
sind neue Instanzen.

Die Speicherpools haben in der optimierten Implementierung deutlich mehr Aufgaben zu erfiillen,
da die Daten aller Felder nun dort gespeichert sind. Aus diesem Grund werden in den folgenden
Unterabschnitten einige Bereiche der Speicherpools detaillierter beschrieben. Das beinhaltet die
Speicherung und Verwaltung der Datensétze sowie die Aufgaben der Basispools.
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4.7.1. Alte Instanzen

Alte Instanzen wurden aus SKilL-Dateien gelesen bzw. in SKilL-Dateien geschrieben. Daher orientiert
sich ihre Speicherung an der Spezifikation des binédren SKilL-Formats [Fel13, § 6.2]. Das bedeutet,
dass alle Daten eines Feldes f in Blocken gespeichert werden, wobei jeder Block beziiglich der
Typhierarchie sortiert ist, d. h. alle Daten eines Typs kommen an einem Stiick direkt vor den Daten
seiner abgeleiteten Typen. Da sich an diesen Blocken nachtraglich nichts mehr dndert, kénnen alle
Blocke hintereinander in ein einziges Array geschrieben werden. Da geldschte Instanzen nur als
geloscht markiert werden, miissen nur beim Schreiben in eine Datei die Blocke aktualisiert werden.
Der Elementtyp des Arrays ist der in den Tabellen 4.1 und 4.2 aufgefiihrte zum SKilL-Typ von f
gehorige Scala-Typ fiir die Darstellung im Speicher.

Fiir das laufende Beispiel (Listing 4.1) ergibt sich fiir die angegebenen Felder der folgende Aufbau
(3 Blocke mit den Inhalten 3 A, 2 B; 0 A, 2 B; 2 A, 3 B), beschriftet mit dem jeweiligen Typ und der
SKilL-ID des Objekts:

FeldXVOI’lA’Al‘AQ‘A3‘B4‘BSIBG‘87|AS‘A9‘BIO‘BH‘812‘

FeldyvonB’B4‘85|86‘87|B1o‘311‘312‘

Abbildung 4.1.: Speicherung von alten Daten

Wie am Beispiel gut zu sehen ist, eignet sich die SKilL-ID als Index fiir Felder eines Basistyps, da
alle SKilL-IDs vom Basispool vergeben werden. Fiir Unterpools dagegen ist die SKilL-ID ungeeignet.
Die SKilL-IDs der Instanzen in einem Unterpool sind aber offensichtlich sortiert und innerhalb eines
Blocks liickenlos (nach Definition des SKilL-Dateiformats, siehe auch [Fel13, § 6]). Eine Funktion
zur Berechnung eines Index in ein Feld eines Unterpools aus einer SKilL-ID benétigt also zusatzlich
nur Informationen iiber die dynamischen Blocke des Unterpools und kann in Scala folgendermafien
implementiert werden*:

Listing 4.5: Index fiir Felder in Unterpools

case class BlockInfo(val bpsi : Int, val count : Int)

def index0fOldID(skillID : Int) : Int = {
var start = 0
for (BlockInfo(pos, count) <- dynamicBlockInfos;
end = pos + count)
if (pos < skillID && skillID <= end)
return skillID - start - 1
else
start += count
-1 // wird nie erreicht (falls Eingabe giltig)
}

*In der tatsichlichen Implementierung ist eine dquivalente Variante enthalten, die statt der Methode dynamicBlockInfos
die zugrundeliegenden Daten nutzt.
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Dabei enthélt dynamicBlockInfos vom Typ Iterator[BlockInfo] Informationen wiber alle Blocke
dynamischer Instanzen des Unterpools. pos bzw. bpsi ist dabei der Anfang des Blocks und count
dessen Lange. Da Blockinformationen 0-basiert gespeichert werden, da in Scala Arrays 0-basiert sind,
SKilL-IDs dagegen 1-basiert, wird statt dem (eigentlich eingeschlossenen) Anfang des Blocks das
(eigentlich ausgeschlossene) Ende des Blocks beim Vergleich mit einbezogen. Da diese Funktion nur
intern aufgerufen wird, ist die iibergebene skillID immer in einem Block enthalten, daher wird
grundsatzlich ein giiltiger Index ausgegeben. Die Komplexitit dieser Funktion ist im schlimmsten Fall
O(#Blicke) (Anzahl Schleifendurchldufe). Da im Normalfall nur wenige Blocke im Verhéltnis zur
Anzahl der Objekte vorhanden sind - jeder Block zusétzlich zum ersten entspricht einem Anhingen
an eine existierende Datei —, ist dies ein relativ kleiner Aufwand.

4.7.2. Neue Instanzen

Neue Instanzen werden wihrend der Laufzeit neu erzeugt. Da sie in beliebiger Reihenfolge erzeugt
werden konnen, konnen anders als bei alten Instanzen keine Annahmen beziiglich ihrer Ordnung
getroffen werden. Wiirden die SKilL-IDs wie fiir alte Daten in Typreihenfolge vergeben werden,
waren unzihlige Umordnungen nétig, z. B. falls von zwei Typen, die einen gemeinsamen Basistyp
haben, abwechselnd Instanzen erzeugt werden. Daher werden die SKilL-IDs in Erzeugungsreihenfolge
vergeben.

Da SKilL-IDs innerhalb von Basispools eindeutig sind, sind dort zwei parallele Arrays newPoolInfo
und newIndexInfo definiert, die die Zuordnung einer SKilL-ID fiir eine neue Instanz zu einem Paar
definieren, welches aus einem Speicherpool und einem lokalen Index besteht. Dieses Paar ist die genaue
Adresse eines Datensatzes. Damit das moglich ist, konnen die Daten einzelner Instanzen nicht wie bei
alten Daten auf mehrere Speicherpools aufgeteilt sein, sondern jeder Speicherpool muss alle Daten
seiner statischen Instanzen enthalten. Die Getter/Setter fiir Felder und die Aktualisierungsmethoden
fiir Verweise brauchen allerdings Zugriff auf die Daten ihrer dynamischen Instanzen. Um dieses
Problem zu l6sen, wurden Traits eingefiihrt, die alle Felder eines Typs beschreiben. Diese werden
von allen Pools implementiert, die zu diesem Typ oder einem davon abgeleiteten Typ assoziiert sind.
Fiir das laufende Beispiel mit einigen neu erzeugten Objekten in der Reihenfolge B, A, B, B, A, A ergibt
sich der folgende Zustand (Felder beschriftet wie im vorigen Abschnitt, Pfeile ordnen den ,Adressen®
links den entsprechenden Datensatz rechts zu):

’ newPoolInfo | newIndexInfo ‘ AStoragePool | BStoragePool
/ Feld x
—1 B 0 > A_o
-2 A 0 A_5
2, g, Feld y
dl — B 1 _—> A6
Z—4| B 2 "~ B_; B_1
C_5] A 1 ~ B_3 B_;
—6 A 2 ™~ B_4 B_4

Abbildung 4.2.: Neue Daten in Speicherpools: Speicherung und Zugriff
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Dabei ist zu bemerken, dass beide Speicherpools (AStoragePool und BStoragePool) ein Array fiir
das Feld x besitzen, welches im BStoragePool parallel zum Array fiir das Feld y ist.

Die Abbildung zeigt auch, wie die Auflésung einer SKilL-ID zu Feldindizes fiir neue Instanzen
funktioniert. Der zu erkennende indirekte Feldzugriff bedeutet allerdings, dass fiir neue Instanzen die
Zugriffszeit auf die Daten hoher ist als fiir alte Instanzen, da zwei Arrayzugriffe sowie zwei Feldzugriffe
mehr benotigt werden (jeweils auf newPoolInfo und newIndexInfo). Bei vielen Feldzugriffen auf
neue Instanzen kann daher im Vergleich zur urspriinglichen Implementierung eine langere Laufzeit
erwartet werden. Auflerdem brauchen neue Instanzen durch die zusétzlichen Verwaltungsstrukturen
mehr Speicherplatz als alte Instanzen. Es kann daher in der optimierten Implementierung ratsam sein,
in regelmafliigen Abstinden den SKilL-Zustand zu schreiben und dadurch neue Instanzen zu alten
Instanzen zu machen.’

Neue Instanzen kénnen nur fiir spezifizierte, d. h. bekannte Typen erzeugt werden. Die entsprechenden
Speicherpools besitzen eine Fabrikfunktion fiir den assoziierten Typ, falls dieser kein Singleton-Typ
ist. Andernfalls wird automatisch ein neuer Datensatz sowie ein passendes Proxyobjekt erzeugt,
falls noch keine Instanz des Singleton-Typs existiert. Da die skillID fiir den neuen Datensatz vom
zugehorigen Basispool vergeben wird, miissen neue Instanzen dort registriert werden. Entsprechend
existiert im Basispool eine Registrierungsmethode addPoolInstance, die von allen Fabrikfunktionen
mit dem aktuellen Pool und dem néchsten lokalen Index aufgerufen wird. Sie erzeugt daraus neue
Eintrage in newPoolInfo und newIndexInfo und gibt die nachste freie SKilL-ID zuriick.

4.7.3. Basispools

Basispools sind fiir alle Instanzen zustandig, die vom assoziierten Basistyp oder einem davon abgelei-
teten Typ sind. Insbesondere enthalten sie die Verwaltungsstrukturen und -methoden fiir das Loschen
und Hinzufiigen von Instanzen sowie fiir die Zuordnung negativer SKilL-IDs zu neuen Instanzen und
Hilfsmethoden fiir die Serialisierung von Speicherpools. Dieser Abschnitt beschéftigt sich mit den
Verwaltungsaufgaben eines Basispools.

Instanzen werden innerhalb von Speicherpools nicht geloscht, sondern lediglich als geloscht markiert.
Erst beim Serialisieren werden alle als geloscht markierten Datensétze entfernt. Wurden auflerdem
alte Instanzen bearbeitet bzw. geloscht, darf beim Serialisieren nicht an eine Datei angehéngt wer-
den. Es miissen stattdessen alle Daten neu geschrieben werden. Wie auch in der urspriinglichen
Implementierung ist dieses Verhalten nicht vollstandig implementiert. Lediglich geloschte Instanzen
werden erkannt. Dazu existieren in einem Basispool zwei Arrays, eines fiir alte (deleted) und eines
fir neue Instanzen (newDeleted), die fiir jede Instanz einen booleschen Wert enthalten, ob diese
geloscht wurde. Zur schnelleren Uberpriifung, ob eine alte Instanz geloscht wurde, hat jeder Basispool
eine boolesche Variable dirty. Proxyobjekte (und damit der Benutzer) haben durch die Methoden
removeByID (Loschen von Instanzen) und isIDRemoved (Priifen, ob eine Instanz geloscht ist) Zugrift
auf diese Markierungen.

*In der urspriinglichen Implementierung ist das Speicherverhalten umgekehrt, da auf alte Instanzen zwei Referenzen, auf
neue jedoch nur eine Referenz im Speicherpool gespeichert wird.
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Die Verwaltungsstrukturen newPoolInfo und newIndexInfo zur Zuordnung von SKilL-IDs zu Daten-
satzen wurden bereits im Abschnitt 4.7.2 beschrieben und werden daher hier nicht weiter ausgefiihrt.

4.7.4. Serialisierung

Im Bereich der Serialisierung wurde im Vergleich zur urspriinglichen Implementierung einiges
geandert, vor allem dadurch, dass Referenzen und Annotationen nun vor der Serialisierung auch in
Feldern korrigiert werden miissen. Dazu wurde eine vollstandig neue Infrastruktur eingefithrt, so
dass wihrend der Serialisierung eines Speicherpools nun folgende Schritte durchgefiihrt werden:

« Schreiben einer Datei:

1. Basispools bauen vollstindige Umordnungstabellen fiir ihre dynamischen Instanzen auf;
Instanzen werden in Typordnung sortiert.

2. Alle Instanzen werden in einen Block komprimiert, dabei geloschte Instanzen entfernt.

3. Referenzen und Annotationen in bekannten und unbekannten Feldern werden mithilfe
der Umordnungstabellen korrigiert, Verweise auf geldschte Instanzen werden zu Nullver-
weisen korrigiert.

4. Die Datei wird mithilfe der Klasse StateWriter® geschrieben.
+ Anhéngen an eine Datei:

1. Basispools bauen Umordnungstabellen fiir neue dynamische Instanzen auf, in Typordnung
sortiert.

2. Die neuen Instanzen werden in einen Block komprimiert, der anschlieffend an die bereits
vorhandenen Blocke angehangt wird. Dabei werden geloschte Instanzen entfernt.

3. Referenzen und Annotationen auf neue Objekte in bekannten und unbekannten Feldern
werden mithilfe der Umordnungstabelle korrigiert, Verweise auf geloschte Instanzen
werden zu Nullverweisen korrigiert.

4. Die Datei wird mithilfe der Klasse StateAppender® geschrieben.

Es existieren zwei Formate fiir Umordnungstabellen, eines fiir alte Instanzen und eines fiir neue
Instanzen. Die Schreiboperation verwendet beide Formate und ein Array von Paaren von Umord-
nungstabellen, je eine fiir alte und eine fiir neue Instanzen. Die Anhidngoperation benutzt ein Array
von Tabellen, aber nur das Format fiir neue Instanzen. Es existiert hochstens eine Umordnungsta-
belle pro Format und Basispool in jedem Schreib- bzw. Anhangvorgang. Fiir Unterpools werden die
entsprechenden Tabellen ihres jeweiligen Basispools verwendet.

Eine Umordnungstabelle fiir alte Objekte besteht aus einer sortierten Liste von Intervallen mit
zugehoriger Verschiebung bzw. einer Markierung, ob das Intervall aus geloschten Instanzen besteht.
Jedes Intervall endet mit dem Beginn des néchsten Intervalls, daher muss nur der Beginn jedes

®Die Klassen StateWriter und StateAppender wurden weitgehend iibernommen aus der urspriinglichen Implementie-
rung, aber angepasst an den neuen Ablauf und die neue Struktur der Speicherpools.
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Intervalls gespeichert werden. Das letzte Intervall endet am Ende der Daten. Innerhalb eines Intervalls
sind alle Instanzen vom selben statischen Typ. Um diese Tabellen zu verwenden, muss also fiir eine
gegebene (positive) SKilL-ID lediglich das passende Intervall gefunden werden, das aufgrund der
Konstruktion auf jeden Fall existiert. Anschliefend muss, falls es sich um ein geloschtes Intervall
handelt, die Instanz gelscht bzw. die Referenz auf Null gesetzt werden, andernfalls die Instanz bzw.
die Referenz um den zum Intervall gehérenden Verschiebungswert verschoben werden. Instanzen
werden gel6scht, indem ihre Daten nicht in die neu erzeugten Datenarrays kopiert werden. Da jedes
Intervall 8 Byte belegt, ist die Umordnungstabelle im schlimmsten Fall, d. h. jede SKilL-ID ist ein
eigenes Intervall, 8n Byte grof3, wobei n die Anzahl der alten Instanzen ist. Dieser Fall tritt nur ein,
wenn vor der Serialisierung in allen Blécken von jedem Typ entweder nur eine Instanz existiert oder
jede zweite Instanz als geloscht markiert wurde. In tiblichen Anwendungsfillen wird daher wesentlich
weniger Speicher benétigt.

Da neue Instanzen in den meisten Féllen keine wohldefinierte Ordnung haben, besteht eine Um-
ordnungstabelle fiir neue Instanzen lediglich aus einem Array. In diesem ist zu jeder (negativen)
SKilL-ID, mittels —SKilL-ID — 1 in einen Index transformiert, die neue (positive) SKilL-ID oder 0
gespeichert. Offensichtlich braucht diese Umordnungstabelle immer 4n Byte (Referenzen werden als
Int gespeichert), wobei n die Anzahl der neuen Instanzen ist.

Insgesamt ist die Summe des Speicherverbrauchs fiir die Umordnungstabellen und des Speicherver-
brauchs fiir die Verwaltungsstrukturen pro Objekt fiir ausreichend viele Objekte immer noch geringer
als die urspriinglichen 24 Byte Grundspeicherverbrauch fiir die urspriinglichen Objekte. Das gilt nicht
fiir zusammengesetzte Typen mit Referenzen oder Annotationen als Inhalt. Aufgrund des Boxings von
primitiven Scala-Typen wird hier in der optimierten Implementierung wéhrend des Schreibvorgangs
wegen der Umordnungstabellen sogar mehr Speicherplatz verbraucht (siehe auch Abschnitt 7.6). Eine
mogliche Losung des Problems ist im Abschnitt 4.8.1 beschrieben.

4.8. Weitere Optimierungen

Die urspriingliche Implementierung benutzt ArrayBuffer, um statische Instanzen, sowohl alte als
auch neue, zu speichern. Es wurde festgestellt, dass die Klasse ArrayBuffer beim Vergréfiern zwar
automatisch das enthaltene Array vergroflert, beim Verkleinern aber keinen Speicherplatz mehr
freigibt. Das kann dazu fithren, dass Speicherplatz verschwendet wird. Daher verwendet die optimierte
Implementierung Arrays fiir die Speicherung von Felddaten, die von den Speicherpools selbst verwaltet
werden. Diese vergrofiern die Arrays, falls notig, aber verkleinern sie auch wieder, wenn sie nicht
mehr benétigt werden. Das betrifft vor allem neue Instanzen. Bei einer Schreib- oder Anhéngoperation
werden alle Arrays fir alte Instanzen auf die exakt benétigte Grofie vergrofiert, alle Arrays fiir neue
Instanzen durch kleine, leere Arrays ersetzt.

Eine weitere Optimierung des Speicherverbrauchs ist die Verwendung spezieller Arrays fiir boolesche
Werte, so dass die Elemente nur ein Bit benétigen. Der Zugriff auf diese Werte wird dadurch allerdings
langsamer. Im Fall der internen Markierungsarrays fiir geloschte Datensatze ist das iblicherweise
kein grofies Problem, da auf diese nur zum Loschen von Instanzen bzw. zum Priifen, ob eine Instanz
geloscht ist, sowie beim Iterieren zugegriffen wird. Beim Iterieren wird auf das Markierungsarray fiir
alte Daten auflerdem nur zugegriffen, wenn dirty im entsprechenden Basispool gesetzt ist, d. h. nur
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falls mindestens eine alte Instanz geloscht wurde. Der mdgliche Verwendungsbereich erstreckt sich
zusitzlich iiber alle Felder des SKilL-Typs bool. Hier wird diese Optimierung allerdings noch nicht
eingesetzt.

Die Implementierung dieser spezialisierten Arrays fiir boolesche Werte (Klasse BooleanArray)
verwendet intern ein Array[Int] zum Speichern der Eintrdge und belegt leer 56 Byte; ein
Array[Boolean] benétigt leer nur 24 Byte. Der hohere Grundbedarf zahlt sich jedoch aus: Bei
40 Eintragen sind beide gleich grof} (64 Byte), bei mehr Eintrégen ist BooleanArray bereits kleiner
als ein Array[Boolean] mit gleich vielen Eintragen.

Bei der Ausgabe in eine SKilL-Datei wird in der urspriinglichen Implementierung ein Puffer verwendet,
um die Positionen zu finden, an denen die Daten eines Feldes enden. Diesen Puffer einzusparen und
die Grofle vorzuberechnen, wie es in einer bisher unveréffentlichten gemeinsamen Implementierung
fir alle JVM-Sprachen (javaCommon) gemacht wird, wire auch vom Speicher her die beste Losung
[Fel15]. Da die optimierte Implementierung jedoch auf der urspriinglichen Implementierung basiert,
wurde lediglich die Pufferklasse OutBuffer verbessert.

Diese in Java geschriebene Klasse speichert die geschriebenen Daten intern in Byte-Arrays. Daten
konnen mithilfe zweier put-Funktionen zum Puffer hinzugefiigt werden. Eine akzeptiert ein byte als
Argument und schreibt dieses in das aktuelle Byte-Array, falls noch Platz ist, und erzeugt andernfalls
ein neues Byte-Array der Grof3e 8 kB. Die andere put-Funktion erwartet ein byte[] als Argument und
fiigt dieses am Ende der Array-Liste des Puffers hinzu. Da die tibergebenen Arrays aber serialisierte
Formen von primitiven Datentypen sind, d. h. nur 2 bis 8 Eintrage enthalten, iiberwiegen bei diesen
Arrays die 24 Byte von java.lang.0Object und der Arraygrofle. Es ist also effizienter, diese Arrays
zu verwerfen und ihren Inhalt in die gro8eren, bereits vorhandenen Arrays zu kopieren.

4.8.1. Nicht durchgefiihrte Optimierungen

Aufler der Klasse Array existieren fiir keine der Klassen, die zur Représentation zusammengesetzter
Typen verwendet werden, spezialisierte Versionen fiir primitive Typen. Daher ergibt sich hier ein ho-
herer Speicherverbrauch, als notig ist. Das liegt daran, dass alle Eintrdge in ArrayBuffer, ListBuffer,
HashSet und HashMap wegen der Typloschung als Referenzen auf Objekte gespeichert werden. Daher
werden primitive Typen, da sie auf der JVM keine Objekte sind, in Objekte eingebettet (Boxing). Statt
z.B. 8 Byte fiir ein Long werden also 8 Byte fiir eine Referenz auf ein java.lang.Long-Objekt benoétigt
und zusétzlich 24 Byte fiir dieses Objekt. Da durch die in den vorigen Abschnitten durchgefithrten
Optimierungen dazu fithren, dass nur primitive Elementtypen verwendet werden (mit Ausnahme der
String-Klasse), betrifft das fast alle Felder mit zusammengesetztem Typ. Die Losung dieses Problems
ist die Implementierung spezialisierter Varianten von allen diesen Klassen fiir jeden primitiven Typ
und entsprechende Anpassung der Speicherpools und Containeradapter.
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Zur Untersuchung des benétigten Speichers einer generierten Scala-Anbindung wurden im Rahmen
dieser Arbeit Tests entwickelt. In diesen Tests werden alle fiir den Speicherverbrauch relevanten
Teile des generierten Codes getestet. Dabei findet der Zugriff grundsétzlich nur iiber die generierte
offentliche Schnittstelle statt.

5.1. Speichermessung auf der JVM

Da die JVM die vollstindige Verwaltung des Speichers tibernimmt, ist es nicht méglich, durch modifi-
zierte Allokations- und Deallokationsfunktionen den aktuellen Speicherverbrauch zu messen. Auch
die durch Java angebotenen Funktionen java.lang.Runtime. freeMemory (aktuell freier Heapspei-
cher) und java.lang.Runtime.totalMemory (aktuelle Heapgrofle) haben sich als unzuverlissig
erwiesen, da sie ungenaue Ergebnisse liefern. Daher wurde entschieden, eine nicht-portable Schnitt-
stelle der HotSpot-JVM [Oral4], Jvmstat [Jvm], zur Speichermessung zu benutzen. Diese ist in der
Bibliothek tools.jar als Bestandteil des Java Delevopment Kit (JDK) 7 von Oracle enthalten. Die zur
Verwendung der Schnittstelle benétigte Klasse wurde nur fiir die HotSpot-JVM aus der Testumgebung
implementiert; eine vollstindigere Behandlung der verschiedenen JVM-Versionen ist im Quellcode
des Programms VisualVM [Vis14] zu finden. Der Hauptunterschied besteht in der Benennung der
einzelnen ,,Counter®. Das sind von der JVM verwendete Instrumentationsobjekte, die verschiedene
interne Daten der JVM enthalten, wie z. B. den verwendeten Speicher.

Damit der Speicherverbrauch gemessen werden kann, musste eine Klasse geschrieben werden, die die
sun.jvmstat.monitor.event.VmListener-Schnittstelle implementiert und sich bei der Ziel-JVM,
auf der der Speicherverbrauch gemessen werden soll, anmeldet. In regelméfligen Abstanden wird dann
die Klasse informiert, dass sich im iberwachten Prozess der Speicherverbrauch veréndert hat. Diese
Werte werden dann vom im néchsten Kapitel beschriebenen Testframework weiterverarbeitet.

Um den gemessenen Speicherverbrauch nicht zusatzlich durch Messdaten zu erhdhen, verwenden die
in dieser Arbeit benutzten Tests mehrere Prozesse mit verschiedenen Aufgaben. Ein Prozess fiihrt
Verwaltungs- und Messaufgaben durch, d. h. er startet andere Prozesse, die den eigentlichen Test
durchfithren und misst deren Speicherverbrauch tiber die Jvmstat-Schnittstelle.

5.2. Ubersicht iiber Jymstat

Dieser Abschnitt gibt eine kurze, oberflichliche Ubersicht tiber den verwendeten Teil der Jvmstat-
Schnittstelle [Jvm]. Alle in diesem Abschnitt erwdhnten Klassen sind im Paket sun. jvmstat.monitor
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enthalten. Die offentliche Schnittstelle besteht aus abstrakten Klassen, die statische Fabrikmethoden
besitzen und einigen konkreten Klassen, meistens ohne zugreifbarem Konstruktor.

Die Klasse MonitoredHost stellt eine abstrakte Maschine dar, wie zum Beispiel den lokalen Computer,
auf der virtuelle Maschinen (JVMs) ausgefiihrt werden konnen. Die statische getMonitoredHost-
Methode liefert eine Maschine, fiir die man eine Adresse hat oder den eindeutigen Bezeich-
ner einer darauf laufenden virtuellen Maschine, dargestellt durch die Klasse VmIdentifier.
Das Testframework startet nur Prozesse auf dem lokalen Computer. Es wird daher der Aufruf
MonitoredHost.getMonitoredHost("localhost") verwendet, um eine entsprechende Instanz der
MonitoredHost-Klasse zu erhalten.

Eine tiberwachte JVM wird durch die Klasse MonitoredVm reprasentiert. Erzeugt werden kann eine In-
stanz dieser Klasse, falls man die Prozess-ID der gewiinschten JVM auf einer bekannten Maschine kennt
und eine MonitoredHost-Instanz fiir diese Maschine besitzt. Eine Klasse, die die event.VmListener-
Schnittstelle implementiert, kann mittels der MonitoredVm.addVmListener-Methode als Beobachter
einer MonitoredVm registriert werden.

SchlieBllich existieren noch Monitore (Schnittstelle Monitor), die einen einzelnen Wert der JVM tiber-
wachen. Sie werden in einem regelméfiigen Zeitabstand aktualisiert, welcher durch die Monitoredvm-
Klasse festgelegt wird. Monitore kénnen iiber ihren Namen von einer MonitoredVm-Instanz erhalten
werden. Die Namen der Monitore variieren von JVM zu JVM je nach Version und Hersteller. In der JVM
aus der Testumgebung entsprechen die Namen der interessanten Monitore dem reguldren Ausdruck
»sun.gc.generation.[0-9]+.space.[0-9]+.used”. Diese Monitore geben die Menge des aktuell
verwendeten Speichers in jeder JVM-Generation [GCT] an. Die Summe der Werte von allen diesen
Monitoren ist die gesamte Speichermenge, die aktuell von der tiberwachten JVM benutzt wird.

40



6. Testframework

In diesem Kapitel wird das Framework beschrieben, das erlaubt, mit wenig Aufwand fiir neue Spezifika-
tionen angepasste Tests zu erzeugen. Zur Zeit verwendet dieses Framework nur einen Parameter, der
entweder aus einer Liste stammt oder mit einer gegebenen Verteilung zufillig generiert wird. Eine Er-
weiterung auf mehrere Parameter ist denkbar, fithrt aber zu schwer auswertbaren, mehrdimensionalen
Ergebnissen.

Das Testframework besteht aus mehreren Bestandteilen. Aus den folgenden Grundbausteinen kann
ein Test erzeugt werden:

+ Ergebnisse (Trait Result) speichern Messdaten in verschiedenen Formen.

Drucker (Trait Printer) steuern die Ausgabe eines Prozesses.

Aktionen (Trait Action) legen den Testablauf fest.

« Ein Testablauf (Klasse Task) kapselt die Aufgaben und Daten eines einzelnen Prozesses oder
Threads.

« Die Klasse StorageTestBase definiert die Funktionalitit, um die anderen Grundbausteine zu
benutzen.

Zusitzlich existieren noch Helferklassen: Die in Kapitel 5 erwéhnte Klasse zur Speichermessung mit
dem Namen ValueReporter, sowie Verteilungen (Klasse Distribution) fiir die zufalligen Tests. Das
Framework ist auf Erweiterbarkeit ausgelegt. Es konnen zusatzlich zu den vordefinierten Klassen
eigene Ergebnisse, Aktionen und Verteilungen definiert und verwendet werden.

Dieses Kapitel beschreibt lediglich die Teile des Testframeworks, die fiir die Verwendung benétigt
werden. Weitergehende Informationen zur Implementierung eigener Ergebnisse und Aktionen sowie
genauere Informationen tiber Drucker und die interne Speichermessung befinden sich im Anhang.

6.1. Ergebnisse

Ergebnisse erben von einem der Traits SingleValueResult (fiir einen Messwert pro Parameter) oder
MultiValueResult (fiir mehrere Messwerte pro Parameter). Die Companion-Objekte beider Traits
besitzen jeweils eine Methode saveGraph, die eine Liste der jeweiligen Ergebnisse als Datenreihen in
ein KIEX-Diagramm speichert (benotigt das KIX-Paket pgfplots! [Feu14]).

'Die verwendete Version ist 1.10. Fiir die Verwendung der ausgegebenen Diagramme \pgfplotsset{compat=1.10} in der
Praambel des BKIgX-Dokuments angeben.
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Beide saveGraph-Methoden haben folgende Parameter (in der angegebenen Reihenfolge):
file (String) Pfad zur Ausgabedatei fir das Diagramm
caption (String) Uberschrift des Diagramms

axisStyle (String) Art der Achsen (normal oder logarithmisch). Akzeptiert die Werte ,axis®
,loglogaxis®, ,semilogxaxis® oder ,semilogyaxis”

coordinateStyle (String) Art der Datenlinien (Linien und/oder Punkte, ...). Akzeptiert die Werte
,smooth®, ;only marks®, ,sharp plot® ,% ... Fir Beschreibungen und weitere Werte siehe
Dokumentation von pgfplots [Feu14].

data (Seq[...Result]) Liste der Ergebnisse fiir die Datenlinien.

Jedes Ergebnis besitzt einen Namen, der im Diagramm als Beschriftung der entsprechenden Datenlinie
verwendet wird.

6.1.1. Vordefinierte Ergebnisse

Die folgenden beiden kanonischen Implementierungen der beiden Traits fiir Ergebnisse sind bereits
im Testframework vordefiniert:

CollapsedResult Speichert einen Messwert pro Parameter. Mehrere Messwerte fiir einen Parameter
werden mit einer Funktion zu einem Wert verarbeitet. Der Konstruktor erwartet einen Namen
fiir das Ergebnis und die zu verwendende Funktion als Parameter.

MultiResult Speichert mehrere Messwerte pro Parameter. Der Konstruktor erwartet lediglich den
Namen fiir das Ergebnis als Parameter.

6.2. Drucker

Drucker sind nur relevant, falls nur ein Prozess verwendet werden soll, in dem sowohl die Tests
ausgefiihrt werden als auch gemessen wird. In diesem Fall konnen die folgenden zwei Drucker als
Parameter fiir die createTask-Methode der StorageTestBase-Klasse angegeben werden:

ConsolePrint gibt die maximale Heapkapazitit und den maximalen Speicherverbrauch innerhalb
des Messzeitraums auf der Konsole aus. Die Ausgabe erfolgt in tabellarischer Form, einzelne
Spalten sind durch Tab-Zeichen getrennt. In der ersten Spalte steht der Parameter der aktuellen
Ausfithrung, in der zweiten Spalte die maximale Heapkapazitat in Byte, in der dritten der
maximale Speicherverbrauch, ebenfalls in Byte.

ResultPrint gibt die maximale Heapkapazitat und den maximalen Speicherverbrauch innerhalb des
Messzeitraums in Ergebnisse aus, die zu Beginn der Messung gesetzt werden. Die Ergebnisse sind
optional. Wird eines der Ergebnisse oder sogar beide nicht gesetzt, werden die entsprechenden
Messwerte ignoriert.
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6.3. Aktionen und Testablaufe

Aktionen sind das Kernstiick des Testframeworks. Eine Aktion beschreibt einen Schritt bzw. eine
Schrittfolge eines Testablaufs. Eine Task-Instanz verwaltet dabei die Daten, die von mehreren Aktionen
tibergreifend verwendet werden sollen.

Sowohl Aktionen als auch Testabldaufe hingen vom Typ des verwendeten SKilL-Zustands ab und
haben daher einen Typparameter. Da manche Aktionen keinen Zugriff auf den Zustand brauchen,
existiert auch eine typlose Variante der Aktion. Alle Typparameter, die in der Definition des Traits
Action, den abgeleiteten Traits und der Klasse Task vorkommen, miissen folglich den Typ eines
generierten SKilL-Zustands (Trait SkillState im zu testenden generierten Code) oder Nothing
annehmen. Dabei wird Nothing nur fiir typlose Aktionen verwendet.

Diese Typparameter und alle Typparameter in den folgenden Abschnitten kénnten eingespart oder
wenigstens mit einer oberen Schranke versehen werden, wenn alle generierten SkillState-Traits von
einem gemeinsamen Basis-Trait (z. B. common. SkillStateBase) erben wiirden, das den gemeinsamen
Teil dieser Traits enthélt. Dieser gemeinsame Teil ist grof3, denn die einzigen Unterschiede zwischen
allen diesen Traits bestehen in den direkten Zugriffen auf die Speicherpools, die zu bekannten
Typen assoziiert sind. Dadurch kénnte auch der interne Teil des Testframeworks deutlich vereinfacht
werden.

Aktionen kénnen mit dem Operator +> verkettet werden. Das Ergebnis fithrt zuerst die Aktion aus,
die als linker Operand gegeben ist, anschlieBend den rechten Operanden. Beide Aktionen miissen
den selben Zustandstyp verwenden, es sei denn, mindestens eine davon ist typlos. Um eine Folge von
Aktionen in eine einzige Aktion umzuwandeln, definiert das Companion-Objekt des Traits Action
eine fold-Methode, die eine Liste von Aktionen erwartet. Das Ergebnis ist eine Aktion, die alle
Aktionen aus der Liste in der gegebenen Reihenfolge ausfiihrt.

Testablaufe werden durch die Task-Klasse dargestellt. Ein Testablauf enthélt aktionsiibergreifen-
de Daten wie den verwendeten SKilL-Zustand. Objekte der Task-Klasse werden nur dann direkt
verwendet, wenn nur ein Prozess verwendet wird. In diesem Fall werden sie mithilfe der createTask-
Methode der StorageTestBase-Klasse aus einem fiir die Ausgabe verwendeten Drucker und einer
durchzufithrenden Aktion erzeugt.

6.3.1. Vordefinierte Aktionen

Im Testframework sind bereits einige typlose Aktionen vordefiniert. Auflerdem enthalt die Klasse
StorageTestBase Implementierungen fiir bestimmte typisierte Aktionen.

Im Folgenden wird die Funktionsweise der vordefinierten Aktionen beschrieben. Die Angaben zur
serialisierten Form sind nur fiir externe Tests relevant, d. h. Tests die mehrere Prozesse verwenden:

DummyAction (typlos, serialisiert als leere Zeichenfolge) fithrt keine Aktion aus und verschwindet
beim Verketten/Serialisieren. Diese Aktion dient als neutrales Element von +> und wird erzeugt,
wenn bei der Deserialisierung einer Aktion ein Fehler auftritt.
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Pause (typlos) wartet auf eine beliebige Benutzereingabe per Konsole (Standardeingabe). Funktioniert
nicht in externen Tests, da Benutzereingaben nicht an den externen Prozess weitergegeben
werden konnen.

GC (typlos, serialisiert als ,gc“) fithrt eine explizite Garbage Collection durch. Da die JVM frei ist,
solche Anfragen zu ignorieren, geschieht unter Umsténden nichts.

Delete (typlos, serialisiert als ,delete®) setzt den verwendeten SKilL-Zustand auf None, d. h. kein
aktiver Zustand, zuriick und versucht, eine Garbage Collection durchzufiihren.

Create (typisiert, serialisiert als ,create®) ruft auf der umgebenden StorageTestBase-Instanz die
(abstrakten) Methoden create und createElements auf.

Write (typisiert, serialisiert als ,write®) ruft auf der umgebenden StorageTestBase-Instanz die
(abstrakte) Methode write auf.

Read (typisiert, serialisiert als ,read) ruft auf der umgebenden StorageTestBase-Instanz die (ab-
strakte) Methode read auf.

CreateMore (typisiert, serialisiert als ,createmore®) ruft auf der umgebenden StorageTestBase-
Instanz die (abstrakte) Methode createMoreElements auf.

Append (typisiert, serialisiert als ,append®) ruft auf der umgebenden StorageTestBase-Instanz die
(abstrakte) Methode append auf.

Die von den typisierten Aktionen aufgerufenen Methoden werden im Abschnitt 6.5 beschrieben. Jede
typisierte Aktion misst den Speicherverbrauch wihrend ihrer Ausfithrung und hat entsprechend ein
Ergebnis als Konstruktorparameter.

6.4. Verteilungen

Fiir Tests, die zufillige Werte nutzen, existieren im Testframework Verteilungen. Verteilungen erben
von der abstrakten Klasse Distribution. Im folgenden Listing ist diese Klasse zusammen mit allen be-
reits vordefinierten Verteilungen aufgefiihrt. Weitere Verteilungen kénnen erzeugt werden. Verteilun-
gen werden vor allem als Parameter fiir die randomizedTest-Methoden der StorageTestBase-Klasse
verwendet.

Listing 6.1: Verteilungen

package common.randomHelpers
import scala.util.Random

abstract class Distribution(protected val random: Random) {
def next: Int
}

class UniformDistribution(—random: Random, val lowerBound: Int, val upperBound: Int)
extends Distribution(—random)

class LogarithmicDistribution(—_random: Random, lowerBound: Int, upperBound: Int)
extends Distribution(_random)
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Eine Verteilung benutzt den iibergebenen Zufallsgenerator, um gleichverteilte (Pseudo-)Zufallszahlen
als Ausgangswerte zu erhalten. Durch die next-Methode gibt die Verteilung dann einen Wert zuriick,
der entsprechend der gewiinschten Verteilung angepasst wurde.

UniformDistribution représentiert eine Gleichverteilung auf dem Intervall zwischen lowerBound
(einschliefilich) und upperBound (ausschliellich). LowerBound sollte kleiner als upperBound sein.

LogarithmicDistribution reprasentiert eine logarithmische Verteilung auf dem Intervall zwischen
lowerBound (einschliefilich) und upperBound (ausschlief3lich). LowerBound sollte hier ebenfalls klei-
ner als upperBound und beide grofler als 0 sein. Logarithmische Verteilung bedeutet hier, dass die
Logarithmen der erzeugten Zahlen gleichverteilt sind.

6.5. Speichertests

Die vorgesehene Weise das Testframework zu verwenden, ist das Schreiben einer Klasse, die von
StorageTestBase erbt und deren abstrakte Methoden implementiert. Sie enthilt Methoden zum
Durchfihren von Tests, sowohl im selben Prozess als auch in externen Prozessen und die oben
beschriebenen vordefinierten typisierten Aktionen. Auflerdem sind bereits zwei vordefinierte Tests
definiert, die verwendet werden kénnen. Auch ein Speichertest hiangt vom Typ des SKilL-Zustands
ab, daher hat diese Klasse einen entsprechenden Typparameter.

Dieser Abschnitt erklart die zur Verwendung des Testframeworks notigen Schritte und die Funkti-
onsweise der wichtigsten Teile der StorageTestBase-Klasse. Im Folgenden wird zuerst der grobe
Aufbau der Klasse StorageTestBase aufgefiihrt, in den Unterabschnitten dann die Details zu den
einzelnen Aufgabenbereichen.

Listing 6.2: Speichertest

package common

import common.storage._
import common.randomHelpers.Distribution

abstract class StorageTestBase[StateType](val name: String) extends CommonTest {
type Action = storage.Action[StateTypel]
type TypedAction = storage.TypedAction[StateTypel]
type Task = storage.Task[StateType]
// Tests
// Aktionen

// Infrastruktur

}

CommonTest (definiert in der SKilL-Scala-Testsuite [SKi14b]) erbt von der Klasse FunSuite aus der
ScalaTest-Bibliothek [Sca] und unterstiitzt daher das Schreiben von Tests direkt in der Klasse mittels
test(Name) { Testinhalt } und Ausfithrung der Tests als Scala-JUnit-Tests. Der Konstruktorparameter
name wird verwendet, um Namen fiir die temporidren Dateien zu generieren, die von den vordefinierten
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Tests als Ein- und Ausgabedateien benutzt werden. Die Typdefinitionen Action, TypedAction und
Task sollen dem Programmierer eines Speichertests das Mitschleifen des Zustandstyps ersparen und
dadurch der Ubersichtlichkeit dienen.

6.5.1. Testdurchfiihrung und vordefinierte Tests

Listing 6.3: Speichertest — Tests

// Tests
def runThread(test: => Unit): Unit
def runProcess(param: String, file: Path, count: Int, action: Action): Unit

def repeatedTest(counts: Array[Int], repetitions: Int,
task: Task): Unit

def repeatedTest(counts: Array[Int], repetitions: Int,
param: String, tasks: Actionx): Unit

def randomizedTest(samples: Int, distribution: Distribution,
task: Task): Unit

def randomizedTest(samples: Int, distribution: Distribution,
param: String, tasks: Actionx): Unit

Die Methoden runThread und runProcess helfen bei der Ausfithrung eines Tests. runThread fithrt
den tibergebenen Ausdruck in einem neuen Thread innerhalb des selben Prozesses aus. Bei den
vordefinierten Tests ist dieser Ausdruck die Ausfithrung der im verwendeten Testablauf festgelegten
Aktion mit den entsprechenden Parametern fiir den aktuellen Durchlauf. runProcess dagegen startet
einen neuen Prozess fiir genau einen Durchlauf der iibergebenen Aktion. param sind Parameter, die
an die neu gestartete JVM iibergeben werden, file ist die fiir alle Dateioperationen zu verwendende
Datei und count ist der Parameter des Durchlaufs. Der Name count wurde gewahlt, da bei den in
dieser Arbeit verwendeten Tests dieser Parameter immer die Anzahl der erzeugten Objekte oder
Array-, Listen- oder Mengenelemente angibt.

Die beiden vordefinierten Tests repeatedTest und randomizedTest existieren in zwei Varianten:
Die erste Variante nimmt einen Testablauf als Parameter und fithrt den Test im selben Prozess mittels
runThread aus. Die zweite Variante fithrt den Test in externen Prozessen mittels runProcess aus.
param wird dabei einfach weitergereicht. Fiir jede Aktion in tasks wird fiir jeden Durchlauf nach-
einander ein eigener Prozess gestartet. Diese Prozesse verwenden alle den selben Parameter und die
selbe Datei. repeatedTest entnimmt die Durchlaufparameter dem iibergebenen Array counts. Fir
jeden Parameter wird der Test repetitions mal durchgefiihrt. randomizedTest generiert die Durch-
laufparameter mithilfe der iibergebenen Verteilung. Es werden insgesamt samples Testdurchlaufe
ausgefiihrt.

6.5.2. Aktionen

Die Methoden write und append koénnten bereits in dieser Klasse implementiert werden, wenn alle
SkillState-Traits von einem gemeinsamen Basis-Trait erben wiirden, da diese lediglich Methoden
des Zustands aufrufen, die in allen SkillState-Traits die selbe Deklaration besitzen.
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Listing 6.4: Speichertest — Aktionen

// Aktionen

de
de
de
de
de
de

f
f
f
f
f
f

create: StateType

createElements(state: StateType, n: Int): Unit
write(state: StateType, f: Path): Unit

read(f: Path): StateType

createMoreElements(state: StateType, n: Int): Unit
append(state: StateType): Unit

// Fabriken fiir typisierte Aktionen und Tasks

object Create { def apply(res: Option[Result]) = new Create(res) }
object Write { def apply(res: Option[Result]) = new Write(res) }
object Read { def apply(res: Option[Result]) = new Read(res) }
object CreateMore { def apply(res: Option[Result]) = new CreateMore(res) }
object Append { def apply(res: Option[Result]) = new Append(res) }
def createAndWrite(cr: Option[Result], wr: Option[Result])
= Create(cr) +> Write(wr)
def readAndAppend(re: Option[Result], cr: Option[Result], ap: Option[Result])
= Read(re) +> CreateMore(cr) +> Append(ap)
def createTask(printer: TaskBase.Printer, action: Action)

new Task(printer, action)

Die abstrakten Methoden create, createElements, write, read, createMoreElements und append
implementieren die vordefinierten typisierten Aktionen. Die Bedeutung dieser Methoden ist wie

folgt:

Alle

create erzeugt einen neuen, leeren SKilL-Zustand vom entsprechenden Typ.

createElements erzeugt im iibergebenen (leeren) Zustand Objekte, Arrayelemente oder Ahn-
liches und nutzt dabei den Parameter n. Ob diese Objekte vom selben Typ sind, insgesamt n
Objekte oder n Objekte von jedem Typ erzeugt werden, ist hier nicht festgelegt.

write schreibt den iibergebenen Zustand in die tibergebene Datei f.
read erzeugt einen neuen SKilL-Zustand, der aus der tibergebenen Datei f gelesen wird.

createMoreElements erzeugt im iibergebenen (nicht-leeren) Zustand weitere Objekte, Array-
elemente oder Ahnliches und nutzt dabei den Parameter n. Ebenso wie bei createElements
ist nichts weiteres festgelegt.

append hangt die neu erzeugten Objekte an die zum gelesenen SKilL-Zustand state zugehorige
Datei an. Diese Operation ist nur moglich, falls keine vorhandenen Objekte gel6scht oder
verdandert wurden.

weiteren Objekte und Methoden sind Fabriken fiir neue Aktionen und Testabldufe.

createAndWrite sowie readAndAppend bieten Abkiirzungen fiir haufig verwendete Aktionsfolgen.
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6.5.3. Infrastruktur fiir externe Tests

Listing 6.5: Speichertest — Infrastruktur

abstract class StorageTestBase ... {

// Infrastruktur
def getMainObject: StorageTestBase.ExternalTest[StateType]
def stringToAction(str: String): Action
final def externalTestMain(args: Array[String]): Unit
}
object StorageTestBase {
trait ExternalTest[StateType] {
def createTest: StorageTestBase[StateType]

final def main(args: Array[String]) = createTest.externalTestMain(args)
}
}

Um externe Tests korrekt ausfithren zu kénnen, benétigt die StorageTestBase-Klasse Informationen
dartiber, welches Objekt die Hauptfunktion eines externen Tests enthalt. Dieses Objekt muss in der
Lage sein, einen Speichertest vom richtigen Typ zu erzeugen und die benéotigten Aktionen auszufiihren.
Dazu muss der Schreiber eines Speichertests die abstrakte Methode getMainObject tiberschreiben.
Der zuriickgegebene Wert muss ein statisches Objekt sein, das als Hauptobjekt verwendet werden
kann, z. B. das Companion-Objekt des Speichertests. Insbesondere darf dieses Objekt kein anonymes
Objekt oder ein Feld einer Klasse sein.

Das von diesem Objekt zu implementierende Trait StorageTestBase.ExternalTest definiert bereits
eine main-Methode mit der benétigten Implementierung. Im Objekt muss nur noch die abstrakte Me-
thode createTest definiert werden, die einen Speichertest vom richtigen Typ erzeugt. Die Methode
externalTestMain interpretiert die durch runProcess generierten Parameter und erzeugt daraus
einen Testablauf, der die gewinschte Aktion durchfiihrt. Dazu wird die Methode stringToAction
verwendet, um die ibergebene Liste von serialisierten Aktionen zu deserialisieren. Werden benut-
zerdefinierte Aktionen verwendet, muss diese Methode iberschrieben werden, um die Namen der
benutzerdefinierten Aktionen zuriick zu Aktionsobjekten tibersetzen. Die iberschreibende Methode
sollte als letztes die Basisklassenimplementierung aufrufen, um die Benutzung vordefinierter Aktionen
zu ermoglichen.

6.6. Beispiel

In diesem Abschnitt wird am Beispiel der folgenden SKilL-Spezifikation eine mogliche Testimplemen-
tierung vorgestellt (siehe auch den ersten Test im nachsten Kapitel):

Listing 6.6: Number-Beispiel

Number {
i64 number;

}

48



6.6. Beispiel

Der hier angegebene Speichertest verwendet randomisierte gleichverteilte Objektanzahlen in einem
externen Test. Alle in dieser Arbeit verwendeten Tests sind dhnlich aufgebaut. Es wird angenommen,
dass aus der obigen Spezifikation ein Paket number generiert wurde, das die Implementierung der
SKilL-Anbindung enthalt.

Listing 6.7: Speichertest-Implementierung

import org.junit.runner.RunWith

import org.scalatest.junit.JUnitRunner
import scala.util.Random

import java.nio.file.Path

import number.api.SkillState
import common.storage.{SingleValueResult, CollapsedResult}
import common.randomHelpers.UniformDistribution

@RunWith(classOf[JUnitRunner]) // Ausfihrung als Scala-JUnit-Test
class StorageTest extends common.StorageTestBase[SkillState] ("number") {
override def create = SkillState.create
override def createElements(state: SkillState, n: Int) =
for (i <- 0 until n) state.Number(i)
override def write(state: SkillState, f: Path) = state.write(f)
override def read(f: Path) = SkillState.read(f)
override def createMoreElements(state: SkillState, n: Int) = createElements(state, n)
override def append(state: SkillState) = state.append

test("Randomisierter Speichertest") {
// Ergebnisse

val createRes = CollapsedResult("create", Math.max)
val writeRes = CollapsedResult("write", Math.max)
val readRes = CollapsedResult("read", Math.max)
val createMoreRes = CollapsedResult("create more", Math.max)
val appendRes = CollapsedResult("append", Math.max)

// Test
val random = new Random
random.setSeed(31948) // fiir Reproduzierbarkeit

randomizedTest (
100, // Anzahl Durchléufe
new UniformDistribution(random, 1, 30000000), // Gleichverteilung in [1, 30000000)
"-Xmx8G", // 8 GB Arbeitsspeicher erlauben

createAndWrite(Some(createRes), Some(writeRes)), // Aktionen
readAndAppend (Some(readRes), Some(createMoreRes), Some(appendRes))
)
// Ausgabe
val results = Seq(createRes, writeRes, readRes, createMoreRes, appendRes)
SingleValueResult.saveGraph(
"results/number.tex", // Ausgabedatei

"Numbertest", // Diagrammtitel

"axis", // Achsentyp (normale Achsen)
"only marks", // Diagrammtyp (nur Punkte)
results // Datenlinien
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override def getMainObject = StorageTest

}

object StorageTest extends StorageTestBase.ExternalTest[SkillState] {
def createTest = new StorageTest

}

Die Implementierungen der fiinf Methoden create, write, read, append und getMainObject
sind im Normalfall identisch zu den in diesem Beispieltest gegebenen. createElements und
createMoreElements dagegen enthalten sehr spezifischen Code fiir den zu testenden SKilL-Zustand
und unterscheiden sich daher von Test zu Test deutlich.
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7. Vergleich

In diesem Kapitel werden die urspriingliche Implementierung [SKil4a] und die optimierte Imple-
mentierung aus Kapitel 4 miteinander durch Tests verglichen. Dazu werden Tests verwendet, die
mithilfe des Testframeworks aus Kapitel 6 erzeugt wurden. Fiir jeden Test wird die verwendete
SKilL-Spezifikation sowie eine kurze Beschreibung des Tests angegeben.

Der grobe Ablauf aller Tests ist gleich (siehe auch Listing 6.7):

« Eswird ein externer randomisierter Test mit 100 gleichverteilten Parametern n aus dem Intervall
[1, 30 000 000) fir einfache bzw. [1, 3 000 000) firr zusammengesetzte Typen durchgefiihrt.

« Der erste Arbeitsprozess erzeugt einen neuen SKilL-Zustand und fiillt ihn mit Objekten. An-
schlieBend wird der Zustand geschrieben.

« Der zweite Arbeitsprozess liest den geschriebenen Zustand ein, fiigt weitere Objekte hinzu und
schreibt das Ergebnis mithilfe der Anhingoperation.

Die wesentlichen Unterschiede liegen in den Methoden createElements und createMoreElements.
Daher sind diese oder eine Beschreibung der Elementfabriken fiir jeden Test angegeben.

In den Diagrammen bezieht sich die Bezeichnung Alt auf die urspriingliche Implementierung und
Neu auf die optimierte. Die Messwerte wurden mit dem Testframework erzeugt, wobei alle 10 ms
ein Wert gemessen und von allen Messwerten innerhalb einer Aktion das Maximum behalten wurde.
Wegen Garbage Collections auf der JVM, die automatisch ausgelost werden, bilden die Werte nicht
immer eine stetige Kurve, sondern kdnnen zwischen verschiedenen benachbarten Parametern deutlich
springen.

7.1. Testumgebung

Alle Tests dieser Arbeit wurden mit der in diesem Kapitel angegebenen Testumgebung durchgefiihrt.
Verwendet wurde ein Lenovo T510 Laptop (von 2010) mit der folgenden Ausstattung:

CPU: 2,67 GHz Intel Core i5 560M

RAM: 8 GB 667 MHz DDR3

Betriebssystem: Windows 7 Service Pack 1, 64 Bit

JVM: Java HotSpot(TM) 64-Bit Server VM (build 23.7-b01, mixed mode)

Fiir die Tests wurde der JVM-Parameter -Xmx8G verwendet, der der JVM erlaubt, bis zu 8 GB Speicher
zu belegen [Jav].
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7.2. Primitive Typen

Diesem Test liegt folgende Spezifikation zugrunde (siehe auch das Beispiel in Abschnitt 6.6):

Listing 7.1: Number.skill

Number {
i64 number;

}

Dieser Test zeigt den Speicherverbrauch von einfachen Typen mit primitiven Feldern. Fiir andere
primitive Feldtypen wird entsprechend weniger bzw. gleich viel Speicher benétigt, das Ergebnis ist
jedoch analog.

Beide Elementfabriken sind identisch und erzeugen n Objekte, wobei das Feld number mit aufsteigen-
den Zahlen von 0 bis n — 1 gefiillt wird. Es werden also fiir einen Parameter n in beiden Prozessen
jeweils n Elemente erzeugt.

Die Diagramme 7.1 und 7.2 zeigen den Speicherverbrauch fiir diesen Test fiir die unterschiedlichen
Operationen. Zu sehen ist deutlich, dass die optimierte Implementierung aufler beim Schreiben
deutlich weniger Speicherplatz pro Objekt benétigt.

7.3. Mehrere Felder

Zum Vergleich mit dem vorigen Test wurde die folgende Spezifikation verwendet:

Listing 7.2: Fields.skill

Fields {
i32 a;
i32 b;

}

Der Typ Fields hat die selbe Grofie wie der Typ Number aus dem vorigen Abschnitt. Die Element-
fabriken sind wie oben definiert, mit dem einzigen Unterschied, dass beide Felder mit den selben
Zahlen gefiillt werden.

In den Diagrammen 7.3 und 7.4 ist deutlich zu sehen, dass die urspriingliche Implementierung bei
mehreren Feldern tiberméflig viel Speicher benétigt. Durch den effizienteren Ausgabepuffer in der
optimierten Implementierung reduziert sich der Speicherverbrauch auf ein verniinftiges Mafi.
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Abbildung 7.3.: Fields — Erzeugen und Schreiben von Objekten
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Abbildung 7.4.: Fields — Lesen, Erzeugen von weiteren Objekten und Anhéngen

7.4. Referenzen

Referenzen brauchen auf einem 64-Bit-System eigentlich genauso viel Speicher wie der SKilL-Typ i64.
Da aber bei der verwendeten JVM standardméflig der Parameter -XX:+UseCompressedOops [Jav]
gesetzt ist, mit dem die JVM statt 64-Bit-Zeigern 32-Bit-Offsets fiir Referenzen verwendet!, belegen
Referenzen lediglich 32 Bit. Der Typ aus der folgenden Spezifikation braucht daher theoretisch weniger
Speicher als die obigen Typen.

Listing 7.3: Cycle.skill

Cycle {
Cycle prev;

-

Die Elementfabriken sind hier definiert als

Listing 7.4: Referenzen — Elemente

def createElements(state: SkillState, n: Int) {
var ¢ = state.Cycle(null)
for (i <- 1 until n) c = state.Cycle(c)
state.Cycle.head.prev = c

}

def createMoreElements(state: SkillState, n: Int) {
var c = state.Cycle.last
for (i <- 0 until n) c = state.Cycle(c)
state.Cycle.head.prev = c

-

head gibt dabei die erste Instanz eines Speicherpools zuriick. Es wird also eine einfach verlinkte
zyklische Liste ohne Inhalte erzeugt.

'Diese Kompression kann durch den Parameter -XX: -UseCompressedOops deaktiviert werden. Es wurde aber entschieden,
bis auf den Parameter -Xmx8G die Standardwerte der JVM zu verwenden.



7.5. Abgeleitete Typen
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7.5. Abgeleitete Typen

Dieser Abschnitt enthalt mehrere Tests, die alle auf der folgenden Spezifikation aufbauen:

Listing 7.5: Derivation.skill

Base {
i32 base;
}

Derived : Base {
132 derived;

}

Empty : Derived {
}
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Der erste Test erzeugt nur Objekte vom Typ Derived und dient zum Vergleich des Verhaltens der
verschiedenen Implementierungen bei Typhierarchien.
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Abbildung 7.8.: Derivation Test 1 — Lesen, Erzeugen von weiteren Objekten und Anhéngen

Wie in den Diagrammen 7.7 und 7.8 zu sehen ist, braucht in der urspriinglichen Implementierung der
Schreib- bzw. Anhangvorgang iibermaf3ig viel Speicher. Das ist wie beim Fields-Test auf die vielen
kleinen Arrays im Puffer zur Gré3enberechnung (siehe Abschnitt 4.8) zuriickzufiihren.

Im zweiten Test wird der Speicherverbrauch unter Verwendung von Objekten des Typs Empty mit
den Ergebnissen vom ersten Test verglichen. Da die urspriingliche Implementierung bei diesem Test
beim Schreiben aufgrund einer java.lang.NullPointerException? abgestiirzt ist, sind fiir diese

keine Ergebnisse vorhanden.

’Die Ausnahme ist beim Schreiben des base-Felds von Base in der generierten Datei StateWriter.scala aufgetreten.
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Abbildung 7.9.: Derivation Test 2 — Erzeugen und Schreiben von Objekten
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Abbildung 7.10.: Derivation Test 2 — Lesen, Erzeugen von weiteren Objekten und Anhingen

Die Diagramme 7.9 und 7.10 zeigen, dass in der optimierten Implementierung leere (Unter-)Typen bis
auf den assoziierten Speicherpool keinen zusitzlichen Speicher brauchen. Der zusatzliche Speicher
fiir den Speicherpool ist aber vernachlassigbar, da er konstant und klein ist.

7.6. Zusammengesetzte Typen

Fir zusammengesetzte Typen werden aufler bei Arrays fester Grofie immer zwei Tests durchgefiihrt.
Im ersten Test wird die Anzahl der Elemente pro Objekt auf 10 festgesetzt und die Anzahl der
Objekte variiert, im zweiten wird die Anzahl der Objekte auf 10 festgesetzt und die Anzahl der
Elemente pro Objekt variiert. Da im zweiten Test die Objekte bearbeitet werden, ist hier Anhéngen
nicht moglich, daher entfallt dieser Schritt. Der Einfachheit halber sind fiir Arrays und Listen alle
Eintrage Annotationen, die auf nichts verweisen. Es kénnten auch Eintrage mit giiltigen Zielen
verwendet werden, z. B. Selbstverweise, aber das erhoht nur die Komplexitat des Tests und dndert am
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Speicherverbrauch nichts. Bei Mengen und Maps ist es dagegen nicht moglich, solche Eintrige zu
verwenden, da diese jedes Element bzw. jeden Schliissel nur einmal erlauben. Mengen verwenden
daher i64 als Eintrage, welche in der optimierten Implementierung genau gleich viel Speicherplatz
belegen wie Annotationen. Da sich Mengen und Maps prinzipiell sehr dhnlich verhalten und der
Test fiir Mengen mit der urspriinglichen Implementierung bereits 39 Stunden benétigte, wurde kein
getrennter Test fiir Maps durchgefiihrt.

7.6.1. Arrays fester GroBe

Dieser Test verwendet die folgende Spezifikation:

Listing 7.6: FixedArray.skill

Fixed {
annotation[10] fixed;

}

Die Elementfabriken produzieren auch hier n Objekte und sind identisch fiir beide Erzeugungsphasen.
Da in diesem Fall aber die Benutzerschnittstelle der beiden Implementierungen unterschiedlich sind,
mussten die Elementfabriken an die jeweilige Implementierung angepasst werden. Die folgenden
beiden Listings zeigen die verschiedenen Varianten fiir createElements:

Listing 7.7: Arrays fester Grofie — Elemente, urspriingliche Implementierung

def createElements(state: SkillState, n: Int) =
for (i <- 0 until n) {
val data = ArrayBuffer[SkillTypel (null, null, null, null, null, null, null, null, null, null)
state.Fixed(data)
}

Listing 7.8: Arrays fester Grofle — Elemente, optimierte Implementierung

def createElements(state: SkillState, n: Int) =
for (i <- 0 until n) {
val data = state.makeAnnotationArray(10)
state.Fixed(data)
}

Durch die interne Verwendung der Klasse Array statt ArrayBuffer verringert sich der Speicherver-
brauch in der optimierten Implementierung beim Erzeugen neuer Objekte, ansonsten verandert sich
der Speicherverbrauch hier kaum (siehe Diagramme 7.11 und 7.12).

7.6.2. Arrays variabler GroBe und Listen

Fiir Arrays variabler Grofie und Listen werden fast identische Tests verwendet. Die zugrundeliegenden
Spezifikationen sind:

Listing 7.9: VariableArray.skill

Variable {
annotation[] variable;

}
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Abbildung 7.11.: FixedArray — Erzeugen und Schreiben von Objekten
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Abbildung 7.12.: FixedArray - Lesen, Erzeugen von weiteren Objekten und Anhéngen

Listing 7.10: List.skill

AList {
list<annotation> alist;

}

Im ersten Test werden in beiden Elementfabriken n Objekte mit jeweils 10 Elementen im enthaltenen
Array bzw. in der enthaltenen Liste erzeugt. Dazu werden folgende Definitionen von createElements

verwendet:

Listing 7.11: Arrays variabler Grofie und Listen — Elemente, urspriingliche Implementierung (Test 1)

def createElements(state: SkillState, n: Int) =
for (i <- 0 until n) {
val data = ArrayBuffer[SkillTypel() // bzw. ListBuffer[SkillType]()
for (j <- 0 until 10) data += null
state.Variable(data)
}
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Listing 7.12: Arrays variabler Grofie und Listen — Elemente, optimierte Implementierung (Test 1)

def createElements(state: SkillState, n: Int) =
for (i <- 0 until n) {
val data = state.makeAnnotationVarArray() // bzw. state.makeAnnotationList()
for (j <- 0 until 10) data += null
state.Variable(data)

}
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Abbildung 7.13.: VariableArray Test 1 — Erzeugen und Schreiben von Objekten
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Abbildung 7.14.: VariableArray Test 1 — Lesen, Erzeugen von weiteren Objekten und Anhingen

Die Diagramme 7.13 bis 7.16 zeigen deutlich den in Abschnitt 4.7.4 beschriebenen Effekt, dass durch
Boxing der primitiven Typen in der optimierten Implementierung kein Speicher eingespart werden
kann. Im Gegenteil wird der Speicherverbrauch beim Schreiben sogar noch durch die Umordnungsta-
bellen erhoht.
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Abbildung 7.15.: List Test 1 — Erzeugen und Schreiben von Objekten
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Abbildung 7.16.: List Test 1 — Lesen, Erzeugen von weiteren Objekten und Anhéngen
Im zweiten Test werden in der ersten Elementfabrik 10 Objekte mit jeweils n Elementen im enthal-

tenen Array bzw. in der enthaltenen Liste erzeugt. Die zweite Elementfabrik erzeugt in den bereits
vorhandenen 10 Objekten n weitere Array- bzw. Listenelemente.

Listing 7.13: Arrays variabler Grofie und Listen — Elemente, urspriingliche Implementierung (Test 2)

def createElements(state: SkillState, n: Int) =
for (i <- 0 until 10) {
val data = ArrayBuffer[SkillTypel() // bzw. ListBuffer[SkillType]()
for (j <- 0 until n) data += null
state.Variable(data)
}
def createMoreElements(state: SkillState, n: Int) =
for (obj <- state.Variable.all) { // bzw. obj <- state.AlList.all
val data = obj.variable // bzw. obj.alList
for (j <- 0 until n) data += null

}
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Listing 7.14: Arrays variabler Grofie und Listen — Elemente, optimierte Implementierung (Test 2)

def createElements(state: SkillState, n: Int) =

for (i <- 0 until 10) {
val data = state.makeAnnotationVarArray() // bzw. state.makeAnnotationList()

for (j <- 0 until n) data += null
state.Variable(data)

}
def createMoreElements(state: SkillState, n: Int) =
for (obj <- state.Variable.all) { // bzw. obj <- state.AList.all
val data = obj.variable // bzw. obj.alList
for (j <- 0 until n) data += null

}

Wie die Diagramme 7.17 bis 7.20 zeigen, braucht die optimierte Implementierung in den meisten
Fallen in etwa gleich viel Speicher wie die urspriingliche Implementierung. Hier ist der zusétzliche
Speicherverbrauch durch die Umordnungstabellen kaum zu bemerken, da diese nur 10 Eintrage

enthalten, also sehr klein sind.
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Abbildung 7.17.: VariableArray Test 2 — Erzeugen und Schreiben von Objekten

Diese Tests zeigen deutlich, dass durch spezialisierte Datenstrukturen fiir primitive Typen noch
deutlich Speicherplatz eingespart werden kann. Fir Basistypen, die keine bekannten Untertypen
besitzen, konnten zusitzlich noch die Umordnungstabellen fiir neue Objekte eingespart werden, da

nur von bekannten Typen Objekte erzeugt werden kénnen.
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Abbildung 7.18.: VariableArray Test 2 — Lesen und Erzeugen von weiteren Objekten
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Abbildung 7.19.: List Test 2 — Erzeugen und Schreiben von Objekten
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Abbildung 7.20.: List Test 2 — Lesen und Erzeugen von weiteren Objekten
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7.6.3. Mengen

Fiir Mengen wird die folgende Spezifikation verwendet:

Listing 7.15: Set.skill

ASet {
set<i64> aSet;

-

Wie im vorigen Abschnitt erzeugen auch hier im ersten Test die Elementfabriken n Objekte mit
jeweils 10 Eintragen im enthaltenen HashSet. Allerdings sind hier fiir beide Implementierungen die
Elementfabriken gleich:

Listing 7.16: Mengen — Elemente (Test 1)

def createElements(state: SkillState, n: Int) =
for (i <- 0 until n) state.ASet(HashSet(®, 1, 2, 3, 4, 5, 6, 7, 8, 9))
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Abbildung 7.21.: Set Test 1 — Erzeugen und Schreiben von Objekten
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Abbildung 7.22.: Set Test 1 — Lesen, Erzeugen von weiteren Objekten und Anhangen
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Wie die Diagramme 7.21 und 7.22 zeigen, hat die urspriingliche Implementierung Probleme, wenn
viele Mengen vorhanden sind. Auch hier ist das Problem wieder der Ausgabepuffer, gefiillt mit
vielen kleinen Arrays (siehe Abschnitt 4.8). Da die Mengen selbst aber auch viel Arbeitsspeicher
benétigen, tritt hier das Problem in verstarkter Form auf, so dass es schon fiir weniger als eine Million
Objekte wahrend der Schreibaktion zum Speicheriiberlauf kommt, d. h. das Programm wegen eines
java.lang.OutOfMemoryError abstiirzt (fehlende Datenpunkte).

Im zweiten Test werden in createElements 10 Objekte erzeugt und mit den Zahlen 0 bis n — 1 befiillt,
in createMoreElements werden weitere n Zahlen, n bis 2n — 1, hinzugefugt.

Listing 7.17: Mengen — Elemente (Test 2)

def createElements(state: SkillState, n: Int) =
for (i <- 0 until 10) {
val data = new HashSet[Long]();
for (j <- 0 until n) data += j
state.ASet(data)
}
def createMoreElements(state: SkillState, n: Int) =
for (obj <- state.ASet.all) {
val data = obj.aSet
for (j <- 0 until n) data +=j + n

}
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Abbildung 7.23.: Set Test 2 — Erzeugen und Schreiben von Objekten

In den Diagrammen 7.23 und 7.24 kann man sehen, dass sich die urspriingliche und die optimierte
Implementierung (bis auf das Schreiben) gleich verhalten. Das ist darauf zurtickzufiihren, dass die
Mengen zwar an einer anderen Stelle, ndmlich im Speicherpool, gespeichert sind, die Mengen selbst
sich aber nicht verédndert haben, da hier ein primitiver Elementtyp gewahlt wurde. Der Unterschied
beim Schreiben wird auch hier wieder durch den Ausgabepuffer ausgelost.
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Abbildung 7.24.: Set Test 2 — Lesen und Erzeugen von weiteren Objekten

7.7. Laufzeit und Korrektheit

Zur Uberpriifung der Laufzeit und Korrektheit wurde die SKilL-Scala-Testsuite [SKi14b] mit leichten
Anpassungen an die veridnderte Benutzerschnittstelle fiir die optimierte Implementierung ausge-
fithrt. Dabei wurde festgestellt, dass die optimierte Implementierung in den Fillen langsamer als die
urspringliche Implementierung war, in denen wenige Objekte erzeugt wurden, viele Feldzugriffe
stattfanden oder viele Referenzen korrigiert werden mussten. Jedoch lag der zeitliche Mehraufwand
meist unter 25% des Zeitaufwands fiir die urspringliche Implementierung, aufler wenn Referenzen
tberpriift und eventuell korrigiert werden mussten. In diesen Fillen wurden zum Teil, vor allem
beim graph.WSR14Test mit Referenzen in HashSet-Objekten, doppelte bis vierfache Laufzeiten fest-
gestellt, allerdings war der Faktor fiir grofiere Objektanzahlen geringer als fiir kleinere. Der Test
date.WriteTest zeigte dagegen, dass fiir grole Datenmengen (1,6 Millionen Objekte bzw. 10 MB
Daten aus einer Datei) die optimierte Implementierung sogar weniger Zeit benétigt. Auch bei al-
len hier durchgefithrten Speichertests war die optimierte Implementierung deutlich schneller als
die urspriingliche. Insbesondere bendtigten bei der optimierten Implementierung die Lesevorgin-
ge selbst fiir grofle Dateien (etwa 30 Millionen Objekte) wenige Millisekunden. Die urspriingliche
Implementierung dagegen benétigte mehrere Sekunden.

Alle Tests der Testsuite wurden fehlerfrei ausgefiihrt und die erzeugten Dateien entsprachen den
erwarteten Ergebnissen. Die urspriingliche Implementierung erzeugte in zwei Teilen des Tests
toolchains.node.CoreTest dagegen fehlerhafte Ergebnisse beim Schreiben eines Zustands in zwei
verschiedene Dateien.

7.8. Zusammenfassung der Ergebnisse

Die Ergebnisse aller Tests zusammengenommen zeigen, dass fiir Felder mit einfachen Type, d. h.
nicht zusammengesetzten Typen, die Optimierungen die gewiinschte Wirkung gezeigt haben. Hier
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wurde zum Teil deutlich weniger Speicher verbraucht, insbesondere bei Schreib- und Anhangope-
rationen durch die zusitzliche Wirkung des verbesserten Ausgabepuffers. Bei zusammengesetzten
Typen dagegen wurde lediglich bei Arrays konstanter Lange durch die Verwendung von Arrays statt
ArrayBuffer-Objekten Speicher eingespart, in allen anderen Fallen wird durch die Typloschung
nicht nur kein Speicher eingespart, sondern sogar beim Schreiben und Anhéngen durch die Umord-
nungstabellen mehr Speicher verbraucht.

Weiterhin hat sich die Laufzeit beim Lesen und Schreiben vieler Daten deutlich verbessert, ausgenom-
men der Fille, in denen viele Referenzen tiberpriift werden missen, dafiir ist der Zugriff auf Felddaten
durch mehr Indirektion vor allem bei neu erzeugten Objekten deutlich langsamer.
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8. Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden einige SKilL-Spezifikationen genutzt, die einzelne Bereiche der Scala-
Anbindung getrennt voneinander beleuchten. Die entsprechenden Tests wurden einfach gehalten,
da es nur auf den Speicherverbrauch des aus den SKilL-Spezifikationen generierten Codes ankam.
Diese werten den Speicherverbrauch in den dafiir interessanten Phasen der Scala-Anbindung aus.
Das beinhaltet das Erzeugen von Objekten sowie das Lesen, Schreiben und Anhéngen von Objekten
aus, in bzw. an SKilL-Dateien.

Bei diesen Tests wurde festgestellt, dass die urspriingliche Implementierung kaum Speicherplatz
verschwendet, d. h. fiir ein Scala-Programm tbermaflig viel Speicher benétigt, mit Ausnahme des
beim Schreiben und Anhingen verwendeten Ausgabepuffers. Da aber viele der verwendeten Objekte
relativ klein sind, d. h. weniger Felder in der SKilL-Spezifikationen sind als Objekte existieren, bestand
hier dennoch eine Verbesserungsmoglichkeit.

Um den Speicherverbrauch der Scala-Anbindung zu verringern, ist es aufgrund des Grundspeicher-
bedarfs von Objekten und der Architektur der JVM sinnvoll, die Anzahl langlebiger Objekte, vor
allem von kleinen, zu reduzieren. Gleichzeitig sollte die Gr63e der verbleibenden langlebigen Objekte
erhoht werden. Dazu kénnen die Daten der SKilL-Objekte statt direkt im Objekt als Datensatz im
zugehorigen Speicherpool aufbewahrt werden, d. h. lokale Felder durch verteilte Felder ersetzt werden.
Zum Zugriff auf die Daten eines Datensatzes kann ein Proxyobjekt verwendet werden, so dass sich
fiir den Benutzer die Schnittstelle kaum andert.

Gelesene und bereits geschriebene Daten werden dabei analog zur serialisierten Form gespeichert
und mittels der selben SKilL-ID adressiert. Feldzugriffe dagegen benétigen mehr Indirektionen und
sind daher langsamer. Ebenso geht die urspriingliche Cache-Lokalitét fiir kleinere Objekte verloren.

Neu erzeugte, bisher ungeschriebene Daten haben zudem das Problem, dass sie anders als gelesene
bzw. geschriebene Daten nicht nach ihrem Typ in Blocke sortiert sind, sondern in beliebiger Rei-
henfolge vorliegen konnen. Daher werden hier zuséatzliche Verwaltungsstrukturen benétigt. Um die
Iteration in Typreihenfolge zu unterstiitzen, werden weiterhin alle Daten aller Objekte eines Typs in
einem Speicherpool gesammelt, statt wie bei gelesenen bzw. geschriebenen Daten im assoziierten
Speicherpool des das Feld definierenden Typs.

Die verianderte Speicherung der Daten benétigt auflerdem einen Auflésungsmechanismus, um aus
den Adressen von Datensétzen, gespeichert in den SKilL-IDs, Objekte erzeugen zu kénnen und
umgekehrt von diesen Objekten Riickschliisse auf die SKilL-ID zu ziehen, um auf den zugehdrigen
Datensatz zugreifen zu kénnen. Der Nachteil ist, dass durch diesen Auflésungsmechanismus der
Zugriff auf Felder mit Referenz- bzw. Annotations-Typ zusétzlichen Aufwand erfordert (Auflésen
der Referenz, Erzeugen eines neuen Objekts) und daher langsamer ist als zuvor. Auflerdem ist es
notig, in solchen Feldern die Referenzen anzupassen, wenn die referenzierten Objekte umgeordnet
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wurden. Entsprechendes gilt fiir zusammengesetzte Typen mit Referenz- und Annotations-Typen als
Inhalten.

Diese Verbesserungen beziiglich des Speichers wurden in den Codegenerator der Scala-Anbindung
eingearbeitet. Dabei wurde im Vergleich zur urspriinglichen Implementierung die Behandlung von als
geloscht markierten Objekten verbessert. Allerdings wurde die Korrektur von Referenzen und Annota-
tionen in unbekannten Felder noch nicht implementiert. Daher ist in der optimierten Implementierung
die Behandlung unbekannter Felder nicht korrekt, falls dort Referenzen oder Annotationen korri-
giert werden miissen. Das schrankt die Benutzung der optimierten Implementierung nur dann ein,
wenn viel mit unbekannten Feldern gearbeitet wird. Fiir ibliche Anwendungen ist dies aber eher
irrelevant.

Wie beim Vergleichen der beiden Implementierungen festgestellt wurde, fithrt die reduzierte Speicher-
last dazu, dass nur wenige teure grofle Garbage Collections durchgefiithrt werden, vor allem wahrend
der Schreib- und Anhéngphasen. Zusatzlich fithrt der verbesserte Ausgabepuffer durch die Reduktion
der Anzahl der gespeicherten Byte-Arrays nicht nur zu einer geringeren Speicherauslastung, sondern
auch zu einem schnelleren Schreibvorgang, da grofiere Blocke geschrieben werden konnen. Insgesamt
sind daher in der optimierten Implementierung die Schreib- und Anhéngphasen deutlich schneller
als in der urspriinglichen Implementierung. Ebenso wird durch die Speicherung der Felder analog
zum Dateiaufbau und dadurch, dass nur wenige Objekte erzeugt werden miissen, der Lesevorgang
wesentlich beschleunigt.

8.1. Ausblick

Weitere Optimierungen kénnen im Bereich der verwendeten Container fiir zusammengesetzte Typen
vorgenommen werden. Da die Implementierung bis auf den Typ String ausschlief3lich primitive
Typen zur Speicherung der Daten verwendet, bietet es sich an, statt der nicht-spezialisierten Container
aus der Scala-Standardbibliothek spezialisierte Container zu verwenden. Durch diesen Schritt wird
vermieden, dass primitive Typen in ein Objekt geschachtelt werden, da nicht-spezialisierte Container
wegen der Typloschung nur auf Objekten arbeiten. Die Standardbibliothek enthilt zurzeit fiir keinen
der verwendeten Container spezialisierte Varianten, diese miissen alle selbst geschrieben werden.
Der Nutzen ist allerdings grof3, denn fiir einen einzigen in einem solchen Container gespeicherten
Wert entfallen 24 Byte, 8 Byte fiir eine Referenz, 16 Byte fiir den Grundbedarf eines Objekts. Unter
Missachtung der Ausrichtung von Werten macht das bei einem Long 75% und bei einem Byte sogar
96% des urspringlichen Verbrauchs aus.

Um die vollstandig korrekte Behandlung von unbekannten Feldern in der optimierten Implemen-
tierung zu ermdéglichen, ist es ratsam, deren Speicherung zu dndern. Die Daten unbekannter Felder
werden zurzeit in einer HashMap[FieldDeclaration, HashMap[Int, Any]l] gespeichert. Unter Um-
stdinden wire es besser, die innere HashMap durch korrekt typisierte Arrays zu ersetzen, d. h. den Typ
HashMap[FieldDeclaration, Array[-]] zuverwenden, und unbekannte Felder dann wie bekannte
Felder zu behandeln. Da die Felddeklarationen der unbekannten Felder fiir jeden Typ in einer Liste
im assoziierten Speicherpool gespeichert sind, besitzen sie einen Index. Daher kann sogar noch wei-
tergegangen werden und ein Array[Array[_]] verwendet werden. Die Aktualisierung unbekannter
Felder kann dann analog zur Aktualisierung bekannter Felder durchgefithrt werden.

70



8.1. Ausblick

Eventuell bietet es sich an, spezialisierte Speicherpools zu erstellen, wie zum Beispiel fiir bekannte
Basistypen ohne bekannte Untertypen, Singletons oder monotone Typen, d. h. Typen, von denen
Instanzen erzeugt, aber nicht mehr geléscht werden kénnen. So kann fiir bekannte Basistypen
ohne bekannte Untertypen die Verwaltung neu erzeugter Datensétze vereinfacht werden, da neue
Instanzen unbekannter Typen nicht erzeugt werden kénnen und somit alle neuen Datensiatze auch
ohne zusitzlichen Verwaltungsaufwand eindeutig zugeordnet werden konnen. Singletons, die eigene
Felder definieren, miissen deren Daten nicht in Arrays speichern, da ja nur eine Instanz existiert.
Zudem kann hier das einzige Objekt tatsdchlich gespeichert werden und alle eigenen Felder direkt
enthalten. Fiir monotone Typen kann der gesamte Mechanismus zum Loschen von Objekten und die
zugehorigen Datenstrukturen entfallen.
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A. Anhang

A.1. Testframework

Dieser Abschnitt beschreibt die Implementierung einiger Teile des Testframeworks und enthalt
Hinweise zur Implementierung eigener Ergebnisse und Aktionen.

A.1.1. Ergebnisse

Ergebnisse implementieren das versiegelte, d. h. als sealed gekennzeichnete, Trait Result. Dazu
missen sie von einem der Traits SingleValueResult (fiir einen Messwert pro Parameter) oder
MultiValueResult (mehrere Messwerte pro Parameter) erben. Diese haben folgende Definitionen:

Listing A.1: Result-Schnittstellen

package common.storage

sealed trait Result {
val name: String

def +=(n: Int, s: Double): Unit
}

trait SingleValueResult extends Result {
val storage: HashMap[Int, Double]
}

trait MultiValueResult {
val storage: HashMap[Int, ArrayBuffer[Doublel]]
}

Die enthaltenen HashMap-Objekte speichern die Daten des Ergebnisses. Neue Daten werden mit der
Methode += hinzugefiigt. n ist dabei der Parameter, s der Messwert. Die Verarbeitung mehrerer Mess-
werte zu einem Wert fiir implementierende Klassen des SingleValueResult-Traits ist vollstindig
dem Implementierer tiberlassen. n ist iiblicherweise der Parameter eines Tests. name ist der Name
des Ergebnisses, der von den saveGraph-Methoden als Beschriftung der entsprechenden Datenlinie
verwendet wird.

Innerhalb des Testframeworks wird die Methode += nur von der Klasse ValueReporter aufgerufen,
die im nichsten Abschnitt beschrieben wird.
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A.1.2. Drucker und die Klasse ValueReporter

Drucker steuern die prozessinterne Speichermessung und die Ausgabe der Messwerte. Es gibt genau
drei verschiedene Drucker, zwei fiir die Verwendung nur eines Prozesses fiir Messung und Ausfithrung
(siehe auch Abschnitt 6.2), einen fiir die externe Speichermessung:

ConsolePrint gibt die maximale Heapkapazitit und den maximalen Speicherverbrauch innerhalb
des Messzeitraums auf der Konsole aus. Die Ausgabe erfolgt in tabellarischer Form, einzelne
Spalten sind durch Tab-Zeichen getrennt. In der ersten Spalte steht der Parameter der aktuellen
Ausfithrung (n), in der zweiten Spalte die maximale Heapkapazitit in Byte, in der dritten der
maximale Speicherverbrauch, ebenfalls in Byte.

ResultPrint gibt die maximale Heapkapazitit und den maximalen Speicherverbrauch innerhalb des
Messzeitraums in Ergebnisse aus, die zu Beginn der Messung gesetzt werden. Die Ergebnisse sind
optional. Wird eines der Ergebnisse oder sogar beide nicht gesetzt, werden die entsprechenden
Messwerte ignoriert.

StartStopPrint wird fiir die externe Speichermessung verwendet. Dieser Printer gibt lediglich
,start® bei Beginn der Messung und ,,finished® bei Ende der Messung auf der Konsole aus.
Nach einer Ausgabe wartet er auf ein Signal zum Fortsetzen per Standardeingabe. Das intera-
gierende Gegenstiick zu diesem Drucker ist die runProcess-Methode der StorageTestBase-
Klasse.

Die Methoden der Drucker-Klassen konnen nur von der Klasse TaskBase verwendet werden. Aktionen
rufen sie indirekt uiber die Task-Instanz auf, die sie als Parameter bekommen. Task und TaskBase
werden im nédchsten Abschnitt genauer beschrieben.

Die eigentliche Speichermessung wird durch die ValueReporter-Klasse durchgefiihrt. Instanzen
dieser Klasse registrieren sich selbst als Beobachter bei der zu iiberwachenden JVM. Dazu bekommt der
Konstruktor die Prozess-ID der Ziel-JVM als Parameter. Das folgende Listing enthalt alle wesentlichen
Felder und Methoden dieser Klasse. Dabei wurden Hilfsdaten und -methoden weggelassen.

Listing A.2: Jvmstat-Schnittstelle

package common.storage
import sun.jvmstat.monitor.event._

class ValueReporter(pid: String, var n: Int) extends VmListener {
private var capacityResult: Option[Result]
private var usedResult: Option[Result]
def switchResults(capacity: Option[Result], used: Option[Result]): Unit

override def monitorStatusChanged(event: MonitorStatusChangeEvent): Unit
override def monitorsUpdated(event: VmEvent): Unit
override def disconnected(event: VmEvent): Unit

}

capacityResult nimmt die Messwerte der aktuell verfiigbaren Speicherkapazitit auf, usedResult die
des aktuellen Speicherverbrauchs. switchResults tauscht beide Ergebnisse durch die tibergebenen
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Parameter aus. Die Ergebnisse sind optional: Werden Messwerte, z. B. der Kapazitat, nicht benétigt,
kann das entsprechende Ergebnis einfach auf None gesetzt werden.

Die letzten drei Methoden implementieren die VmListener-Schnittstelle [Jvm]. Dabei wird die Me-
thode monitorStatusChanged nicht verwendet, d. h. die Implementierung ist leer. Diese Methode
wird aufgerufen, wenn sich der Zustand der Uberwachungsmonitore geandert hat. monitorsUpdated
fiigt neue Messwerte zu den Ergebnissen hinzu. Diese Methode wird aufgerufen, wenn sich die Werte
der Uberwachungsmonitore geandert haben. Bricht die Verbindung zur tiberwachten JVM ab, wird
disconnected aufgerufen, welches die Datenaufzeichnung beendet. Danach kann die betroffene
Instanz der ValueReporter-Klasse nicht mehr verwendet werden. Die Monitore werden alle 10 ms
abgefragt, um eine relativ dichte Messwertmenge zu erhalten, ohne den Fortschritt des Programms
unnotig zu behindern.

A.1.3. Aktionen und Testablaufe

Das folgende Listing zeigt die Definitionen der Traits Action sowie die beiden Spezialisierungen
davon, TypedAction fiir typisierte Aktionen und UntypedAction fiir typlose Aktionen.

Listing A.3: Action-Schnittstellen

package common.storage

sealed trait Action[+StateType] {
def apply(t: TaskBase, n: Int, f: Path): Unit

def +>(b: UntypedAction): Action[StateTypel]
def +>[StateType2 >: StateTypel(b: TypedAction[StateType2]): Action[StateType2]

def name: String

def results: Iterator[Option[Result]]
}
object Action {

def fold[StateTypel](seq: Iterable[Action[StateTypel]): Action[StateType]
}

trait TypedAction[StateType] extends Action[StateType] {
final override def apply(t: TaskBase, n: Int, f: Path) =
apply(t.asInstanceOf[Task[StateTypell, n, f)
def apply(t: Task[StateTypel, n: Int, f: Path)

final override def +>(b: UntypedAction): TypedAction[StateTypel
final override def +>[StateType2 >: StateType](b: TypedAction[StateType2]):
TypedAction[StateType2]
}

trait UntypedAction extends Action[Nothing] {

override def +>(b: UntypedAction): UntypedAction

override def +>[StateTypel(b: TypedAction[StateType]): TypedAction[StateType]
}
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Die wichtigste Methode einer Aktion ist apply. Diese fiihrt die Aktion fiir den gegebenen Testablauf t,
den Durchlaufparameter n und die fiir Dateiein- und -ausgaben zu verwendende SKilL-Datei f aus.
Die einzige von TaskBase erbende Klasse ist Task, welche garantiert, dass fiir eine zugehorige Aktion
der Typparameter iibereinstimmt. Daher konnen typisierte Aktionen auf den gesamten Testablauf
zugreifen, insbesondere den enthaltenen SKilL-Zustand, typlose dagegen nur auf TaskBase. Gébe
es fur alle SkillState-Traits ein gemeinsames Basis-Trait, konnte die TaskBase-Klasse komplett
eingespart werden.

Sollen Aktionen in einem externen Prozess ausgefiihrt werden, werden sie durch ihre name-Methode
serialisiert. Die entstehende Zeichenfolge wird an den externen Prozess iibergeben und dort mithilfe
der Methode stringToAction in StorageTestBase wieder zu Aktionen deserialisiert. Méchte man
eigene Aktionen zur Ausfithrung in einem externen Prozess definieren, miissen diesen eindeutige
Namen ohne Leerzeichen zugewiesen werden und die Methode stringToAction in der eigenen
Testklasse tiberschrieben werden. results ist ein Iterator iiber alle Ergebnisse, die von einer Aktion
verwendet werden, d.h. in die die Aktion schreibt. Diese Methode wird ebenfalls fiir die externe
Ausfithrung verwendet.

Die Task-Klasse fiir Testabldufe ist wie folgt definiert:

Listing A.4: Testablauf-Klassen

package common.storage

sealed abstract class TaskBase(val printer: TaskBase.Printer) {
def reset: Unit

final def startMeasuring(cap: Option[Result], used: Option[Result])
final def stopMeasuring()

protected final def setCount(n: Int)
}
object TaskBase {
sealed trait Printer {
protected[TaskBase] def print(): Unit
protected[TaskBase] def setCount(n: Int): Unit
protected[TaskBase] def setResults(cap: Option[Result], used: Option[Result]): Unit
}

class ConsolePrint extends Printer { ... }
class ResultPrint extends Printer { ... }
object StartStopPrint extends Printer { ... }

final class Task[StateTypel (printMemory: TaskBase.Printer, private val action: Action[StateType])
extends TaskBase(printMemory) {
var state: Option[StateTypel]

override def reset: Unit

def apply(n: Int, f: Path)
}
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TaskBase ist die Basisklasse aller Testabldufe und bietet eine vom SKilL-Zustand unabhéngige Schnitt-
stelle fiir typlose Aktionen. Dabei ist auch die Verwaltung der Ausgabe tiber die verschiedenen Drucker
enthalten. Deren Methoden kénnen nicht direkt aufgerufen werden. Stattdessen wird die Ausgabe
mit den Methoden startMeasuring (Beginn der Speichermessung), stopMeasuring (Beenden der
Speichermessung) und setCount (Festlegen des Durchlaufparameters) gesteuert. reset erlaubt das
Zurucksetzen des Zustands state auf den Wert scala.None, was auch dessen Initialwert ist.

Die Task-Klasse ergénzt lediglich den (optionalen) SKilL-Zustand state und die Methode apply, die
die an den Konstruktor iibergebene Aktion action ausfithrt. Genauer setzt sie den Durchlaufpara-
meter n im zugehorigen Drucker mittels setCount und ruft anschlieBend die apply-Methode der
Aktion auf.
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Glossar

Annotation Eine Referenz, die auf einen beliebigen Benutzertyp verweisen kann. In der urspring-
lichen Implementierung einfach eine SkillType-Referenz, in einer SKilL-Datei und der opti-
mierten Implementierung eine reiche Referenz, bestehend aus dem Typ und der SKilL-ID des
Ziels. 27-30, 36, 37, 57, 58, 69, 70

Benutzertyp oder kurz Typ. Nach [Fel13] ein in einer SKilL-Spezifikation deklarierter Typ. In dieser
Arbeit wird der Begriff weitergehend auch fiir Typen verwendet, die aus einer SKilL-Datei
gelesen wurden. 17-19, 23, 24, 27-30, 32, 79, 80

Generation Auf der JVM ist der Heap in mehrere sogenannte Generationen aufgeteilt. Die verwen-
dete JVM teilt den Heap in eine junge Generation, eine alte Generation und eine permanente
Generation. Die junge Generation enthalt neu erzeugte Objekte und hat eine relativ kleine Gro-
Be, die alte enthilt Objekte, die einige Garbage Collections in der jungen Generation tiberlebt
haben sowie neu erzeugte Objekte, die zu grof} fiir die junge Generation sind [GCT]. 20, 21, 40

Scala-Anbindung Die SKilL-Anbindung fiir die Programmiersprache Scala. 7-10, 18, 19, 23, 39, 69,
70

SKilL-Anbindung Ein Generator fiir SKilL-Spezifikationen, der Code fiir eine bestimmte Program-
miersprache erzeugt. Dieser muss mindestens die in [Fel13] definierte Kernsprache unterstiitzen.
Oft wird mit SKilL-Anbindung auch der generierte Code bezeichnet. Ist nicht aus dem Kontext
ersichtlich, um welche Bedeutung es sich handelt, ist diese explizit angegeben. 7, 9, 10, 17, 18,
49,79

SKilL-Datei Die serialisierte Form von Daten nach [Fel13], die von einer generierten SKilL-
Anbindung geschrieben und gelesen werden. Es handelt sich hierbei um ein binéres Dateiformat,
meist mit der Dateiendung .sf. 7,9, 17, 19, 20, 23, 24, 26, 27, 33, 35, 38, 46, 47, 69, 70, 76, 79, 80

SKilL-ID Eine Zahl, die ein Objekt bzw. einen Datensatz innerhalb eines Basispools eindeutig iden-
tifiziert. Dabei werden zwei Typen unterschieden: SKilL-IDs in der biniren SKilL-Datei und
SKilL-IDs in der generierten SKilL-Anbindung. 23, 25-28, 31-37, 69, 79

SKilL-Spezifikation Eine der in [Fel13] beschriebenen Grammatik entsprechende Datei, meistens
mit der Dateiendung .skill. 7, 17, 18, 23, 24, 26, 27, 29, 48, 49, 51, 69, 79

SKilL-Zustand Reprisentation einer SKilL-Datei im Code. Bietet Moglichkeiten, auf gelesene Daten
zuzugreifen, neue Objekte im Zustand zu erzeugen und einen Zustand in eine SKilL-Datei zu
serialisieren. 19, 23-26, 28, 30, 35, 43-47, 50, 76, 77
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Typloschung (type erasure) bedeutet, dass beim Ubersetzen eines generischen Typs alle generi-
schen Parameter durch konkrete Klassen ersetzt werden. Einerseits fithrt das dazu, dass eine
generische Klasse wie eine nicht-generische Klasse nur in einer einzigen Variante kompiliert
wird. Andererseits stehen keine Informationen iiber die eingesetzten Typparameter bei der
Verwendung zur Verfiigung. [0, § 3.7] [Ull11]. 29, 30, 38, 67, 70

unbekannter Typ Die Teilmenge der Benutzertypen, die ausschlie8lich aus einer SKilL-Datei gelesen
wurden, d. h. fiir die kein spezialisierter Code generiert wurde. 17-19, 25, 71

zusammengesetzter Typ Einer der vordefinierten SKilL-Typen X [n], X[], list <X >, set<X>und
map<X,Y, ...> wobei X und Y vordefinierte, nicht zusammengesetzte SKilL-Typen oder
Benutzertypen sind, n eine natiirliche Zahl ist und map mindestens zwei Typargumente enthalt
[Fel13]. 17, 18, 28-31, 37, 38, 51, 57, 66, 67, 70

Abkurzungsverzeichnis

JVM Java Virtual Machine. 7, 8, 10, 11, 20, 25, 28, 30, 38-40, 44, 46, 51, 54, 69, 74, 75

SKilL Serialization Killer Language. 3, 7, 8, 10, 11, 17, 18, 29, 66
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