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Kurzfassung

Die an der Universität Stuttgart entwickelte Datenbeschreibungssprache SKilL (Serialization Killer
Language) bietet eine Möglichkeit, große Datenmengen sprach- und plattformunabhängig zu seria-
lisieren. Ihre aktuelle Anbindung an die Programmiersprache Scala hat aber das Problem, dass für
große Datenmengen Geschwindigkeitseinbußen durch viele Garbage Collections verursacht werden
und in einigen Fällen sogar Speicherüberläufe auftreten.

In dieser Arbeit werden Möglichkeiten untersucht, den Speicherverbrauch der Scala-Anbindung
zu reduzieren. Der Speicherverbrauch der verschiedenen Implementierungen wird anschließend
verglichen. Zu diesem Zweck wurde ein Testframework entwickelt, das die Erstellung von Tests
vereinfacht und als Vorlage für entsprechende Tests in anderen Programmiersprachen verwendet
werden kann.
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1. Einleitung

Die an der Universität Stuttgart entworfene Sprache SKilL (Serialization Killer Language) [Fel13]
dient zur sprach- und plattformunabhängigen Serialisierung großer Datenmengen. Zu diesem Zweck
wurden SKilL-Anbindungen für verschiedene Sprachen entwickelt, darunter Scala [SKi14a, O+], Ada
[Prz14], Java [Ung14] und C [Har14]. Beim Vergleich der SKilL-Anbindungen an Scala und an Ada
wurde festgestellt, dass der generierte Scala-Code einen wesentlich höheren Speicherverbrauch hat
als äquivalenter Ada-Code [Prz14].

Im Gegensatz zu Ada, welches eine systemnahe Programmiersprache ist, läuft Scala auf der Java
Virtual Machine (JVM). Diese verwendet einen Garbage Collector und Just-In-Time-Compilation
[Ora14]. Zudem erbt Scala von Java die Wurzel der Typhierarchie, die Klasse java.lang.Object,
die bereits einen Grundspeicherverbrauch von 16 Byte pro Objekt mitbringt (auf einer 64-Bit-JVM).
Dieser Speicher wird z. B. zur Synchronisation der Objektzugriffe, zur Speicherung des Alters eines
Objekts und/oder des Hash-Codes verwendet [KW08].

Der von der Scala-Anbindung generierte Code benutzt viel Speicher. Das führt in Kombination mit
dem Garbage Collector zu Geschwindigkeitseinbußen, da ein Großteil der Rechenleistung für teure
Garbage Collections verwendet wird statt für zielführende Berechnungen. Weiterhin ist die Anzahl
der gleichzeitig im Speicher gehaltenen Objekte dadurch stark begrenzt. Das kann dazu führen, dass
z. B. ein Scala-Programm beim Einlesen einer von einem anderen Programm erzeugten SKilL-Datei
abstürzt. Der Grund ist, dass der verfügbare Speicher vollständig aufgebraucht wird, obwohl die in der
SKilL-Spezifikation aufgeführten numerischen Grenzwerte in der Datei eingehalten wurden [Fel13,
Anhang D].

Nun übernimmt die JVM allerdings die gesamte Speicherverwaltung. Zudem existiert keine zuverläs-
sige portable (d. h. für alle JVMs anwendbare) Möglichkeit, die JVM nach dem aktuellen Speicherver-
brauch zu fragen. Das erschwert das Auffinden der Stellen, an denen die Scala-Anbindung Speicher
verschwendet. Für die in dieser Arbeit verwendete JVM existiert aber eine nicht-portable Schnittstelle,
über die der aktuelle Speicherverbrauch in regelmäßigen Zeitabständen abgefragt werden kann. Dar-
auf basierend wurde im Rahmen dieser Arbeit ein Testframework zur Speichermessung für generierte
Scala-Anbindungen entwickelt. Mit diesem wurde der Speicherverbrauch der aktuellen Implemen-
tierung evaluiert. Dazu wurden für die Speicherevaluation interessante SKilL-Spezifikationen und
zugehörige Tests erstellt.

Auf den dabei gemachten Beobachtungen basierend werden in dieser Arbeit Möglichkeiten aufgezeigt,
die Scala-Anbindung [SKi14a] so anzupassen, dass der generierte Code weniger Speicher verbraucht.
Um die Effektivität dieser Vorschläge zu verifizieren, wurden die entwickelten Tests an die Benutzer-
schnittstelle der modifizierten Implementierung angepasst. Die Ergebnisse dieser Tests wurden mit
den Ergebnissen für die aktuelle Implementierung verglichen.
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1. Einleitung

1.1. Gliederung

In Kapitel 2 werden verwandte Arbeiten vorgestellt, sowohl zu den Tests als auch zur vorgestellten
alternativen Implementierung der Scala-Anbindung.

Kapitel 3 enthält die Grundlagen der Sprachen Scala und SKilL sowie eine kurze Übersicht über den
Heapaufbau der JVM.

Kapitel 4 beschreibt die alternative Implementierung. Dabei werden von der aktuellen Implementie-
rung ausgehend die durchgeführten Veränderungen und deren Folgen beschrieben.

Kapitel 5 beschäftigt sich mit der Speichermessung auf der JVM.

Kapitel 6 beschreibt das Testframework und wie es verwendet werden kann.

In Kapitel 7 werden beide Implementierungen in Tests bezüglich ihres Speicherverbrauchs miteinander
verglichen. Die dazu verwendeten Tests werden mithilfe des Testframeworks beschrieben.

Kapitel 8 schließt die Arbeit mit einer Zusammenfassung und einem Ausblick ab.
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2. Verwandte Arbeiten

2.1. SKilL-Anbindung an Scala

Die Grundlage für diese Arbeit bildet die aktuelle Scala-Anbindung [SKi14a]. Die hier vorgestellte
alternative Implementierung verwendet in einigen Teilen den gleichen Quellcode. Insbesondere bleibt
die Benutzerschnittstelle der Basisimplementierung fast vollständig erhalten. Sie wird um ein paar
neueMethoden ergänzt, die zur Erzeugung von Adaptern für Container dienen. Diese Adapter nehmen
an anderen Stellen der Schnittstelle die Plätze der ursprünglichen Container ein.

Ein Vergleich der aktuellen Scala-Anbindung mit der hier vorgestellten Lösung ist im Kapitel 7 zu
finden.

2.2. Benchmark-Tests

Die für den 16. Workshop Software-Reengineering und -Evolution entwickelten Benchmark-Tests
[Fel14] wurden als Orientierungshilfe für die Entwicklung des Testframeworks und der verwendeten
Tests benutzt. Das betrifft besonders die Implementierung der Ergebnisse (Trait Result und abgeleitete
Klassen) aus dem Testframework. Auch die grafische Ausgabe der Ergebnisse als LATEX-Datei baut auf
der für die Benchmark-Tests implementierten Ausgabe auf.

Im Unterschied zu den Benchmark-Tests, die zur Laufzeitauswertung der generierten Scala-Anbindung
gedacht sind, wird bei den hier verwendeten Tests der Speicherverbrauch gemessen. Zudem wurden
die Messungen der Benchmark-Tests im selben Prozess wie der Test selbst ausgeführt. In den hier
verwendeten Tests dagegen werden mehrere Prozesse verwendet.

2.3. SKilL-Anbindungen an andere Sprachen

Weitere SKilL-Anbindungen existieren zurzeit für die Programmiersprachen Ada, Java und C.

Die SKilL-Anbindung an Ada [Prz14] wurde entwickelt, um einen Vergleich verschiedener Anbin-
dungen zu ermöglichen. Entsprechend enthält [Prz14] auch Performance-Tests zum Vergleich der
Implementierungen. Im Gegensatz zu den in dieser Arbeit aufgeführten Tests wurde hier jedoch die
Laufzeit, der Durchsatz und der Speicherverbrauch der erzeugten SKilL-Dateien ausgewertet.

Der Number-Test in dieser Arbeit basiert auf der selben Spezifikationwie der Number-Test in Abschnitt
6.1 von [Prz14].
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2. Verwandte Arbeiten

Die SKilL-Anbindung an Java [Ung14] teilt einige Eigenschaften der Scala-Anbindung, da Java-
Programme ebenfalls auf der JVM ausgeführt werden. Allerdings arbeitet diese mit Reflexion, um das
Typsystem von SKilL zu speichern.

Die SKilL-Anbindung an C [Har14] wurde als Beweis entwickelt, dass eine Anbindung an eine
nicht-objektorientierte Sprache möglich ist.
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3. Grundlagen

Dieses Kapitel beschreibt in Kürze die wesentlichen Teile der Programmiersprache Scala [O+], der
Datenbeschreibungssprache SKilL [Fel13] und der JVM, insbesondere den Aufbau des Heaps.

3.1. Scala

Scala ist eine objektorientierte, funktionale Programmiersprache. Da sie für die JVM entwickelt wurde,
teilt sie einige Eigenschaften mit der Programmiersprache Java. Insbesondere können Java-Klassen
und Interfaces in Scala direkt verwendet werden. Dieser Abschnitt ist nur eine kurze Übersicht
über Scala, genauere Informationen sind in der Scala-Spezifikation [O+] zu finden. Es wird davon
ausgegangen, dass der Leser die Programmiersprache Java kennt. Gemeinsame Elemente, wie z. B.
Kommentare, werden nicht aufgeführt.

Innerhalb einer Scala-Codedatei können mehrere Klassen, Traits und Objekte definiert werden. Diese
können sogar in unterschiedliche Pakete verteilt sein. [O+, § 9]

3.1.1. Syntax

In Scala können Bezeichner für Klassen, Objekte und Methoden aus bestimmten Unicode-Zeichen der
Basisebene bestehen, d. h. Zeichen mit den Codes U+0000 bis U+FFFF. Als Buchstaben zählen in Scala
die Zeichen der Unicode-Kategorien Ll (Kleinbuchstaben), Lu (Großbuchstaben), Lt (Titelbuchstaben),
Lo (Andere Buchstaben) und Nl (Buchstabenartige Zahlen) sowie die Zeichen _ und $. Die in Java
üblichen Operatorzeichen sowie # und alle Zeichen der Unicode-Kategorien Sm (Mathematische
Symbole) und So (Andere Symbole) zählen als Operatorzeichen. Ein Bezeichner kann bestehen aus:

• Buchstaben und Zahlen

• Operatorzeichen

• einer Folge von Buchstaben und Zahlen, gefolgt von _, gefolgt von Operatorzeichen

• einem beliebigen Text, eingeschlossen in ``

Schlüsselworte können nicht als Bezeichner verwendet werden, außer sie werden in `` eingeschlossen.
[O+, § 1.1]

Einige Beispiele für gültige Bezeichner (1. Zeile) und ungültige Bezeichner (2. Zeile, val ist ein
Schlüsselwort):
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3. Grundlagen

Listing 3.1: Bezeichner
test123 X_X _1 setter_= ++ `val` `das ist ein Test`

+_inv 3x val test++

Anweisungen können nicht nur mit ; getrennt werden, sondern auch durch einen Zeilenwechsel. Zei-
lenwechsel als Anweisungstrenner werden aber nur innerhalb von geschweiften Klammern aktiviert
und innerhalb von runden und eckigen Klammern deaktiviert. Es ist jeweils die nächste umschließende
Klammerung entscheidend. Außerdem werden Zeilenwechsel in unvollständigen Ausdrücken, wie
z. B. nach . oder einem Operator, dessen zweites Argument noch fehlt, nicht als Anweisungstrenner
interpretiert. [O+, § 1.2]

Anders als bei Java werden generische Typparameter nicht in spitze, sondern in eckige Klammern
eingeschlossen. Ein Wildcard-Parameter wird durch _ dargestellt. Kovarianz von Typparametern wird
mit +, Kontravarianz mit - vor dem Parameter angegeben. Eine obere Grenze für einen Typparameter
T, z. B. eine Basisklasse des Parameters, kann mit <: angegeben werden, eine untere Grenze, z. B.
eine vom Parameter abgeleitete Klasse, mit >:. Arrayzugriffe werden nicht mit eckigen Klammern,
sondern wie Funktionsaufrufe mit runden Klammern notiert. Typumwandlungen eines Ausdrucks x
in einen Typ T werden mit x.asInstanceOf[T] durchgeführt. [O+, § 3.2, 3.5, 4.4, 4.5, 12.1, 12.3.4]

Beispiel:
Listing 3.2: Typparameter
class Typen[+A, // Kovariant

-B, // Kontravariant

C >: X, // C hat X als abgeleitete Klasse

D <: AnyRef] { // D hat AnyRef als direkte oder indirekte Basisklasse

/* ... */

}

3.1.2. Klassen und Traits

Klassen in Scala sind ähnlich den Klassen in Java: Sie können von genau einer Klasse oder einem
Trait erben und beliebig viele Traits implementieren. Traits entsprechen ungefähr den Interfaces
in Java. Allerdings können Traits Methoden mit einer Definition enthalten und eine Basisklasse
besitzen. Implementierte Traits werden nicht wie Interfaces in Java mit implements, sondern mit
with angegeben. [O+, § 5.1, 5.4.1]

Die Definition einer Klasse ist gleichzeitig die Definition des primären Konstruktors der Klasse. Alle
Inhalte der Klasse, die keine Feld- oder Methodendeklarationen sind, werden bei der Konstruktion
einer Instanz der Klasse ausgeführt. Weitere Konstruktoren können innerhalb der Klasse als Methoden
mit dem speziellen Namen this definiert werden, sie müssen aber als erste Anweisung einen anderen
Konstruktor aufrufen, um das Objekt zu erzeugen. Die Parameter des primären Konstruktors werden
hinter dem Namen der Klasse und einer eventuellen Sichtbarkeitseinschränkung für den Konstruktor
angegeben. Diese Parameter können gleichzeitig Felddefinitionen sein. Hat eine Klasse (kein Trait!)
eine Basisklasse, werden direkt hinter der Basisklasse die Parameter für ihren primären Konstruktor
übergeben. Traits können keine Konstruktorparameter haben, da von ihnen keine Instanz erzeugt
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3.1. Scala

werden kann. Ist der Inhalt einer Klassendefinition leer, können die geschweiften Klammern auch
weggelassen werden. [O+, § 5.1, 5.3]

Beispiel:
Listing 3.3: Klassen und Traits
class A(val a : Int) { /* Irgendwelche Definitionen */ }

trait T { /* Weitere Definitionen */ }

trait U extends A { /* Noch mehr Definitionen */ }

class B(b : Int) extends A(b) with T with U

Anders als in Java haben Klassen keine statischen Felder und Methoden. Stattdessen existieren
Singleton-Objekte, die ähnlich wie Klassen ohne Typ- und Konstruktorparameter definiert werden.
Dazu wird statt dem Schlüsselwort class das Schlüsselwort object verwendet. Eine Klasse oder ein
Trait und ein Objekt mit dem selben Namen, die in der selben Datei definiert sind, haben Zugriff auf
alle Felder und Methoden des jeweils anderen, auch private. Methoden und Felder in einem solchen
Objekt können wie statische Methoden und Felder der Klasse behandelt werden. [O+, § 5.5]

3.1.3. Methoden und Felder

Methoden werden mit dem Schlüsselwort def eingeführt. Überschreibt eine Methode eine Basisklas-
senimplementierung, muss dies explizit durch das Schlüsselwort override markiert werden. Wie im
obigen Beispiel bereits zu sehen ist, werden Parameter in der Form Name : Typ angegeben. Steht
vor dem Typ eines Parameters =>, so wird der übergebene Ausdruck erst bei der ersten Verwendung
ausgewertet. Steht nach dem Typ des letzten Parameters ein *, so kann dieser Parameter beliebig oft
wiederholt werden, analog zu ... bei Java. Der Typ des Rückgabewerts wird mit : Typ nach der Pa-
rameterliste angegeben. Die Parameterliste kann vollständig weggelassen werden, falls eine Methode
keine Parameter hat. Ebenso kann bei nicht-rekursiven Funktionen der Typ des Rückgabetyps vom
Compiler abgeleitet und daher weggelassen werden. Die Definition von Methoden, die einen Wert
zurückgeben, muss mit = beginnen; fehlt das Gleichzeichen, ist der Rückgabewert das Objekt () vom
Typ Unit. [O+, § 4.6, 5.2]

Für Felder gibt es zwei Schlüsselworte: val und var. val führt einen Wert ein, der nach der Initiali-
sierung nicht mehr verändert werden kann, var dagegen einen veränderlichen Wert. Beide definieren
gleichzeitig einen Scala-Getter für den Wert, var zusätzlich einen Scala-Setter. In Scala sind Getter
einfache Methoden ohne Parameter und ohne Seiteneffekte, aber mit Rückgabewert, wie zum Beispiel
def x = /* ... */. Setter sind Methoden, deren Name auf _= endet und die genau einen Parameter
besitzen, z. B. def x_=(X : Int) = /* ... */. Sie werden bei Scala auf eine besondere Weise auf-
gerufen: Der Ausdruck x = /* ... */ wird im gegebenen Beispiel in einen Aufruf x_=(/* ... */)

umgewandelt. val und var werden auch zur Einführung lokaler Variablen verwendet. [O+, § 4.1, 4.2,
6.15]

Einige Methodennamen haben eine spezielle Bedeutung [O+, § 6.6, 6.15, 8.1.8]:

apply (mit beliebigen Parametern) wird aufgerufen, wenn nach einem Objekt eine passende Parame-
terliste steht.
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3. Grundlagen

update (mit beliebigen Parametern) wird aufgerufen, wenn einem Objekt mit Parameterliste etwas
zugewiesen wird.

unapply (in einem Objekt, mit genau einem Parameter) wird aufgerufen, um aus dem Parameter
Werte zu extrahieren, z. B. Werte von Feldern.

Beispiel:
Listing 3.4: apply und update
class X {

def apply(i : Int) = /* ... */

def update(i : Int, value : Int) = /* ... */

}

val x = new X

x(1) // ruft x.apply(1) auf

x(1) = 2 // ruft x.update(1, 2) auf

Eine Klasse, ein Trait oder ein Objekt kann auch Typdefinitionen enthalten. Eine Typdefinition der
Form type T = Typ definiert T als Alias für den Typ rechts vom Gleichzeichen. [O+, § 4.3]

3.1.4. Modifizierer

Klassen-, Trait- und Objektdefinitionen können mit Modifizierern versehen sein. Diese stehen vor dem
Schlüsselwort class, trait oder object. Nicht alle Modifizierer sind für alle Arten von Definitionen
erlaubt [O+, § 5.2, 5.4]:

sealed (für Klassen und Traits) gibt an, dass nur Klassen und Traits in der selben Codedatei von der
Klasse bzw. dem Trait erben können.

final (für Klassen) gibt an, dass von einer Klasse nicht geerbt werden kann. Das selbe Schlüsselwort
wird für Methoden verwendet, die nicht überschrieben werden können.

abstract (für Klassen) gibt an, dass von einer Klasse keine Instanz erzeugt werden kann.

case (für Klassen undObjekte) sorgt dafür, dass bestimmteMethoden vomCompiler generiert werden,
unter anderem eine Überschreibung der equals- und hashCode-Methoden. Für Klassen wird
im Companion-Objekt eine apply-Methode definiert, die ein neues Objekt der Klasse erzeugt
sowie eine unapply-Methode, die die zur Konstruktion verwendeten Parameter aus einem
Objekt extrahiert. Solche Klassen können also ohne das Schlüsselwort new erzeugt werden.

Standardmäßig sind alle Konstruktoren, Klassen, Traits, Objekte, Methoden und Felder öffentlich.
Daher besitzt Scala kein Schlüsselwort für öffentliche Sichtbarkeit. Zum Einschränken der Sichtbarkeit
können unter anderem folgende Angaben verwendet werden [O+, § 5.2]:

private Nur die definierende Klasse bzw. das definierende Objekt hat Zugriff.

protected Nur die definierende Klasse und abgeleitete Klassen haben Zugriff.

private[x] Alle Klassen und Objekte, die innerhalb des umschließenden Pakets, der umschließenden
Klasse bzw. des umschließenden Objekts x definiert sind, haben Zugriff.
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3.1. Scala

protected[x] Alle Klassen und Objekte, die innerhalb des umschließenden Pakets, der umschlie-
ßenden Klasse bzw. des umschließenden Objekts x definiert sind, sowie abgeleitete Klassen
haben Zugriff.

3.1.5. Ausdrücke

In Scala sind alle Anweisungen Ausdrücke, einschließlich Codeblöcken und anderen üblichen Kon-
strukten wie if ... else, try ... catch usw. und haben einen wohldefinierten Typ. Der Typ
eines Codeblocks ist der Typ der letzten Anweisung, der Typ einer if ... else-Anweisung ist der
genaueste gemeinsame Typ beider Zweige. Fehlt der else-Zweig, ist dessen Typ als Unit festgelegt.
[O+, § 6.11, 6.16]

In Scala existieren zwei Formen von for-Ausdrücken:
Listing 3.5: for-Ausdrücke
for (value <- collection) /* Ausdruck mit value */

for (value <- collection) yield /* Ausdruck mit value */

Die erste Form führt für alle Werte in collection den Ausdruck aus, wobei value an den aktuellen
Wert gebunden wird und hat den Typ Unit. Die zweite Form erzeugt eine neue Liste von Werten,
meist vom selben Listentyp wie collection, die für jeden Wert von collection das Ergebnis des
Ausdrucks für diesen Wert enthält. Auch hier wird value an den aktuellen Wert gebunden. In beiden
Fällen ist value unveränderlich. [O+, § 6.19]

value kann auch eine komplexere Form haben, wie zum Beispiel X(val1, val2). In diesem Fall wird
für das Objekt X die unapply-Methode mit dem aktuellen Wert als Argument aufgerufen und val1

sowie val2 an die extrahierten Werte gebunden. Hinter collection dürfen auch durch ; getrennt
weitere lokale Werte definiert werden, die im gegebenen Code ebenfalls unveränderlich sind. [O+,
§ 6.19, 8.1.8]

Beispiel:
Listing 3.6: Komplexe for-Ausdrücke
case class X(val _1 : Int, val _2 : Int)

val collection : Array[X] = /* ... */

for (X(val1, val2) <- collection; sum = val1 + val2)

yield sum

3.1.6. Vordefinierte Typen

Die Wurzel der Scala-Typhierarchie ist scala.Any. Diese hat genau zwei abgeleitete Klassen,
scala.AnyVal und scala.AnyRef. AnyRef entspricht java.lang.Object, Any und AnyVal haben
kein Java-Äquivalent. AnyRef ist die Basisklasse aller Referenztypen, d. h. aller Klassen, Traits und Ob-
jekte, die nicht explizit von einer anderen Klasse erben. AnyVal ist die Basisklasse aller Werttypen, d. h.
Typen, die in Java keine Klassen sind. Da diese Typen in Scala aber gleichzeitig einen primitiven Typ

15



3. Grundlagen

Tabelle 3.1.: Zuordnung von Scala-Werttypen zu Java-Typen

Scala-Werttyp primitiver Java-Typ Boxtyp
scala.Boolean boolean java.lang.Boolean

scala.Byte byte java.lang.Byte

scala.Short short java.lang.Short

scala.Int int java.lang.Integer

scala.Long long java.lang.Long

scala.Float float java.lang.Float

scala.Double double java.lang.Double

scala.Char char java.lang.Character

scala.Unita voida java.lang.Voida

aNur als Rückgabetyp von Funktionen äquivalent

und die zugehörige Box (d. h. ein Objekt, das einen primitivenWert enthält, z. B. java.lang.Integer)
bezeichnen, können sie auch als generische Parameter verwendet werden. Boxing und Unboxing
geschieht bei Verwendung von Werttypen automatisch, wenn nötig. [O+, § 12.1, 12.5.1]

Tabelle 3.1 listet die Werttypen von Scala mit ihren Java-Entsprechungen auf. Das einzige Objekt vom
Typ Unit ist das leere Tupel, ().

Der Typ scala.Nothing erbt per Definition von allen Typen. Von diesem Typ gibt es keine Instan-
zen. Eine Methode, die Nothing zurückgibt, kann nicht normal zurückkehren, sondern muss eine
Ausnahme werfen. Der Typ scala.Null mit der einzigen Instanz null erbt per Definition von allen
Referenztypen.

scala.Array[T] in Scala entspricht dem Java-Array T[]. [O+, § 12.3.4]

Weiterhin spielen in dieser Arbeit folgende Typen eine Rolle:

scala.Option[T] Repräsentiert einen optionalen Wert vom Typ T. Entweder eine Instanz von
scala.Some[T], falls ein Wert existiert oder das Objekt scala.None. Some[T] ist mit case
definiert.

scala.collection.mutable.ArrayBuffer[T] Repräsentiert eine erweiterbare Liste von Objekten
vom Typ T mit schnellem wahlfreien Zugriff, da intern ein Array verwendet wird.

scala.collection.mutable.ListBuffer[T] Repräsentiert eine erweiterbare verlinkte Liste von
Objekten vom Typ T.

scala.collection.mutable.HashSet[T] Repräsentiert eine Menge von Objekten vom Typ T, ge-
speichert in einer Hash-Tabelle.

scala.collection.mutable.HashMap[K, V] Repräsentiert eine Map mit Schlüsseln vom Typ K

und Werten vom Typ V, gespeichert in einer Hash-Tabelle.

Im Rest dieser Arbeit wird für alle in diesem Abschnitt beschriebenen Typen das enthaltende Paket
weggelassen.
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3.2. SKilL

SKilL [Fel13] besteht aus einer Datenbeschreibungssprache und einem Serialisierungsformat. Mit
der Datenbeschreibungssprache können SKilL-Spezifikationen geschrieben werden, aus denen SKilL-
Anbindungen für verschiedene Programmiersprachen generiert werden können. Sie orientiert sich
an Programmiersprachen wie C++ und Java, so dass Entwickler dieser Sprachen die Spezifikationen
lesen können. Um kompatibel mit möglichst vielen Programmiersprachen zu sein, ignoriert die
Datenbeschreibungssprache Groß- und Kleinschreibung. Das Serialisierungsformat beschreibt den
Aufbau der SKilL-Dateien, die von einer SKilL-Anbindung geschrieben und gelesen werden können.

Dieser Abschnitt beschreibt die Typen, die in SKilL-Spezifikationen verwendet werden können sowie
den Grobaufbau einer generierten SKilL-Anbindung und in Kürze das Serialisierungsformat.

3.2.1. Typen

Die Typen in SKilL lassen sich in drei Bereiche aufteilen: Eingebaute Typen, zusammengesetzte Typen
und Benutzertypen.

Die eingebauten Typen sind [Fel13, § 4.1]:

i8, i16, i32, i64 Ganzzahlige Werte fester Länge mit 8, 16, 32 bzw. 64 Bit.

v64 Ganzzahlige Werte mit 64 Bit Länge, die aber mit einer variablen Anzahl an Bytes serialisiert
werden. Kleine Zahlen (im Intervall [0, 128)) werdenmit einem Byte, große (≥ 255) und negative
Zahlen dagegen mit neun Byte serialisiert.

f32, f64 Fließkommazahlen mit 32 bzw. 64 Bit, die entsprechend der Norm IEEE 754 [IEE08] kodiert
sind.

bool Wahrheitswerte, die die beiden Werte wahr und falsch annehmen können.

string Zeichenketten mit variabler Länge. Der Inhalt besteht (im Serialisierungsformat) aus UTF-8-
kodierten Unicode-Zeichen.

annotation Ein Zeiger auf einen beliebigen Benutzertyp. Zusätzlich zum Ziel wird der Typ des Ziels
gespeichert.

Benutzertypen sind in SKilL-Spezifikationen spezifizierte oder aus SKilL-Dateien gelesene Typen. In
einer SKilL-Spezifikation definierte Benutzertypen werden für die daraus generierte SKilL-Anbindung
als bekannte Typen bezeichnet, alle anderen als unbekannte Typen.

Benutzertypen setzen sich aus Feldern zusammen, die einen beliebigen SKilL-Typ haben können. Felder
werden wie in Java in der Form Typ Name; definiert. Alle Felder innerhalb einer Typdefinition müssen
verschiedene Namen besitzen. Felder mit ganzzahligem Typ können auch mit const markiert werden,
um Konstanten anzugeben. Der Wert von Konstanten wird in der SKilL-Spezifikation festgelegt und
beim Einlesen einer SKilL-Datei überprüft. Falls der gelesene und der spezifizierte Wert verschieden
sind, wird ein Fehler beim Einlesen gemeldet. Felder beliebigen Typs können mit auto markiert
werden. In diesem Fall wird zwar ein entsprechendes Feld im generierten Code erzeugt, das Feld wird
aber bei der Serialisierung ignoriert. [Fel13, § 3.4, 4.3]
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Bekannte Benutzertypen können andere bekannte Benutzertypen erweitern, analog zum Ableiten
von Klassen. Entsprechend sind zyklische Abhängigkeiten beim Erweitern nicht erlaubt. SKilL unter-
stützt nur einfache Vererbung, ein Benutzertypen kann also nur einen anderen Typ erweitern. Ein
abgeleiteter Typ wird als Untertyp bezeichnet, der Typ, der erweitert wird, als Obertyp. Ein Typ, der
keinen Obertyp besitzt, d. h. die Wurzel einer Typhierarchie ist, wird Basistyp genannt. [Fel13, § 3.3,
4.3]

Beispiel für einen Benutzertyp und Erweiterung:
Listing 3.7: Benutzertypen
/** Definiert einen Typ A mit einem Feld a. */

A { i32 a; }

/** Erweitert A um ein Feld b. Alternativen zu : sind extends und with. */

B : A { A b; }

Benutzertypen und Felder können mit vorangestellten Einschränkungen (Restrictions) und Hinwei-
sen (Hints) versehen werden. Einschränkungen werden serialisiert, Hinweise dagegen beeinflussen
lediglich die generierte SKilL-Anbindung. Einschränkungen werden mit einem@-Zeichen eingeleitet,
Hinweise mit ! . [Fel13, § 3.3]

Zusammengesetzte Typen bezeichnen Typen, die sich aus mehreren Einträgen des selben Typs (bzw.
der selben Typen) zusammensetzen. Das sind Arrays fester Länge, Arrays variabler Länge, Listen,
Mengen und Maps. Alle zusammengesetzten Typen haben Typparameter, für die eingebaute Typen
oder Benutzertypen eingesetzt werden können. Das folgende Listing zeigt die Deklaration von Feldern
mit zusammengesetzten Typen. [Fel13, § 3.5, 4.2]
Listing 3.8: Zusammengesetzte Typen
A {

/** Ein Array fester Länge mit Elementen vom Typ string und der Länge 15. */

string[15] a;

/** Ein Array variabler Länge mit Elementen vom Typ i32. */

i32[] b;

/** Eine Liste mit Elementen vom Typ A. */

list<A> c;

/** Eine Menge mit Elementen vom Typ annotation. */

set<annotation> d;

/** Eine Map mit Schlüsseln vom Typ bool und Werten vom Typ i8. */

map<bool, i8> e;

/** Eine verschachtelte Map. */

map<i16, A, f32> f;

}

3.2.2. Aufbau der SKilL-Anbindung an Scala

Das Diagramm 3.1 zeigt den groben Aufbau der Scala-Anbindung. Der Benutzer sieht dabei nur den
Teil, der in der oberen Zeile aufgeführt ist (Frontend), der Rest wird von der Anbindung verborgen
(Backend).

Benutzertypen sind hier allgemeine Klassen für unbekannte Typen sowie Klassen, die aus einer SKilL-
Spezifikation generiert wurden. Für jede Typdeklaration einer SKilL-Spezifikation wird eine solche
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Benutzertypen Poolschnittstellen SKilL-Zustand
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Abbildung 3.1.: Aufbau der Scala-Anbindung

Klasse generiert. Parallel dazu werden Speicherpools erzeugt. Zu jedem Basistyp wird ein Basispool
generiert, für alle anderen Typen je ein Unterpool. Über die öffentliche Schnittstelle der Pools können
Instanzen von bekannten Benutzertypen erzeugt werden. Außerdem kann über alle Instanzen eines
Benutzertyps (einschließlich abgeleiteten Typen) iteriert werden. Der SKilL-Zustand schließlich ist die
Repräsentation einer SKilL-Datei im Speicher. Er enthält für alle in einer SKilL-Datei vorkommenden
und alle spezifizierten Benutzertypen je einen Speicherpool, insbesondere auch für unbekannte Typen.
Ein SKilL-Zustand bietet Lese-, Schreib- und Anhängoperationen für SKilL-Dateien an und leitet die
entsprechenden Aufrufe an die zuständigen internen Klassen weiter.

3.2.3. Serialisierungsformat

Eine SKilL-Datei besteht aus Blöcken. Das ermöglicht das Anhängen neuer Objekte an bestehende Da-
ten, ohne dass an diesen etwas geändert werden muss. Außerdem ist das Format darauf optimiert, dass
Teile der Datei ohne großen Aufwand übersprungen werden können. Es gibt zwei Typen von Blöcken:
Zeichenkettenblöcke und Typblöcke. Diese treten immer in Paaren auf, erst ein Zeichenkettenblock,
dann ein Typblock. [Fel13, § 6.2]

Ein Zeichenkettenblock beginnt mit einem v64 count, das die Anzahl der Zeichenketten im Block
angibt. Anschließend kommen count i32-Werte, die jeweils die Endposition einer Zeichenkette relativ
zum ersten Zeichen der ersten Zeichenkette angeben, gefolgt von den UTF-8-kodierten Zeichenketten.
In einem Zeichenkettenblock sind sowohl Namen von Typen und Feldern der in der Datei enthaltenen
Typdeklarationen (immer in Kleinbuchstabenform) als auch Benutzerzeichenfolgen enthalten, d. h.
Werte von Feldern vom Typ string. Zeichenketten werden in Typblöcken über ihren 1-basierten
Index (gespeichert als v64) in der Datei adressiert. [Fel13, § 6.2.1]

Ein Typblock beginnt ebenfalls mit einem v64 count. Dieses gibt an, wie viele Typdeklarationen im
Typblock enthalten sind. Für jeden Typ, für den in einem Typblock Instanzen enthalten sind, muss
eine Typdeklaration enthalten sein. Anschließend folgen count Typdeklarationen und nach diesen
feldweise geordnet die Daten für die einzelnen Instanzen. Die Typdeklarationen sind so geordnet, dass
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ein Obertyp immer vor allen seinen Untertypen deklariert wird. Eine Typdeklaration besteht aus zwei
Teilen: Einem Informationsblock über den Typ selbst, gefolgt von einer Liste von Felddeklarationen.
Abbildung 3.2 veranschaulicht den Aufbau des Informationsblocks und einer Felddeklaration. [Fel13,
§ 6.2.2]

Informationsblock

string name
?1 string super
?3 v64 LBPSI
v64 count
?1 R[] restrictions
v64 LFieldCount

Felddeklaration

?2 R[] restrictions
?2 TYPE type
?2 string name
v64 end

Abbildung 3.2.: Aufbau einer Typdeklaration: Informationsblock und Felddeklaration [Fel13, § 6.2]

Dabei sind mit ?1 gekennzeichnete Felder nur vorhanden, wenn ein Typ das erste Mal in einer SKilL-
Datei vorkommt. Besitzt ein Typ keinen Obertyp, hat super den Wert 0. count im Informationsblock
gibt an, wie viele neue Instanzen des Typs (einschließlich Untertypen) im Typblock dazukommen.
LFieldCount ist die Anzahl der Felder des Typs, für die im Typblock Daten gespeichert sind. Die mit
?2 markierten Felder sind nur vorhanden, wenn ein Feld das erste Mal vorkommt. Felder, die neu
hinzukommen, stehen hinter den bereits vorhandenen. Der Wert end gibt an, wo die Daten eines
Feldes relativ zum Ende der letzten Typdeklaration enden. Das mit ?3 gekennzeichnete Feld ist nur
vorhanden, wenn ein Typ einen Obertyp besitzt. In diesem Fall gibt es an, ab welchem Index (1-basiert)
die Daten des Basistyps im selben Block zu diesem Typ gehören. [Fel13, § 6.2.2]

3.3. Speicherverwaltung auf der JVM

Dieser Abschnitt beschreibt in Kürze den Aufbau des Heaps und die Funktionsweise des Garbage
Collectors für die verwendete JVM. Für andere JVMs wird keine Aussage gemacht; das Verhalten
dürfte jedoch sehr ähnlich sein.

Der Heap ist in der JVM nicht ein großer Speicherblock, sondern in mehrere Bereiche (sogenannte
Generationen) aufgeteilt. Die Generationen haben verschiedene Aufgaben. [GCT]

• Die permanente Generation enthält interne Daten der JVM, wie z. B. geladene Klasseninfor-
mationen. Sie hat eine feste Größe, die beim Start der JVM festgelegt wird und spielt für ein
Programm auf der JVM nur eine untergeordnete Rolle.

• Die junge Generation enthält neue Objekte bis zu einer bestimmten Größe. Sie ist weiter un-
terteilt in einen Bereich für neu erzeugte Objekte („Eden“) und zwei Bereiche für Objekte, die
bereits mindestens eine Garbage Collection in der jungen Generation überlebt haben („Survivor
spaces“). Die Größe der jungen Generation ist verhältnismäßig klein.

• Die alte Generation enthält Objekte, die in der jungen Generation genug Garbage Collections
überlebt haben und neue Objekte, die zu groß für die junge Generation sind.
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Garbage Collections in der jungen Generation sind relativ billig, da diese relativ klein ist und zudem
viele der enthaltenen Objekte nur temporäre Daten sind und nur wenige eine Garbage Collection
überleben. Die alte Generation dagegen ist die größte der Generationen. In ihr befinden sich viele
langlebige Objekte, wodurch sich der Aufwand für Garbage Collections erhöht. Daher werden Garbage
Collections in der jungen Generation klein und Garbage Collections in der alten Generation groß
genannt. [GCT]
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4. Speicherreduktion von SKilL-Zuständen

Dieses Kapitel beschreibt mögliche Veränderungen in der bestehenden Scala-Anbindung, die zu einem
reduzierten Speicherverbrauch führen. Dazu werden zuerst Teile der ursprünglichen Implementierung
[SKi14a] betrachtet, die bezüglich ihres Speicherverbrauchs optimierbar sind. Anschließend werden
darauf aufbauende Optimierungen vorgestellt. Zu den Optimierungen ist auch angegeben, inwiefern
diese die Laufzeit beeinflussen können. Im Normalfall überwiegt jedoch bei großen Objektzahlen die
Laufzeitverbesserung durch weniger große Garbage Collections.

4.1. Ursprüngliche Implementierung

Die ursprüngliche Implementierung ist auf GitHub (siehe [SKi14a]) zu finden. Dieser Abschnitt
beleuchtet nur die für die folgenden Optimierungen wesentlichen Teile. Alle Aussagen in diesem
Abschnitt beziehen sich auf die ursprüngliche Implementierung. Das vom Codegenerator erzeugte
Paket wird im Folgenden mit x bezeichnet.

4.1.1. Benutzertypen

Die in der SKilL-Spezifikation definierten Benutzertypen [Fel13, § 4.3] werden auf Klassen abgebildet,
die direkt oder indirekt von x.internal.SkillType erben. Die in einer SKilL-Spezifikation definierte
Typhierarchie wird durch abgeleitete Klassen implementiert. Die Konstruktoren der Klassen sind nur
innerhalb des Pakets x zugreifbar. Der vorgesehene Weg, neue Instanzen zu erzeugen, führt über die
in einem SKilL-Zustand enthaltenen Objektlager, die Speicherpools. Normale Felder, im Folgenden
lokale Felder genannt, sind übliche Felder innerhalb der generierten Klassen. Die Schnittstelle für den
Benutzer besteht aus einer für Scala üblichen Getter/Setter-Implementierung [O+, § 4.2]. Diese kann
Fehler werfen, falls z. B. ein Feld ignoriert wird, d. h. mit einem ignore-Hint versehen ist [Fel13, § 5.2],
oder eine Einschränkung verletzt wird. Verweise auf andere Objekte im selben Zustand werden durch
übliche Referenzen realisiert.

Jedes Objekt enthält eine Identifikationsnummer, die SKilL-ID, vom Typ Long im Feld skillID von
SkillType. Objekte, die aus einer SKilL-Datei gelesen oder in eine SKilL-Datei geschrieben wurden,
im Folgenden alte Objekte genannt, haben eindeutige, positive SKilL-IDs. Neu erzeugte und noch nicht
geschriebene Objekte, im Folgenden neue Objekte, bekommen die spezielle SKilL-ID −1. Die SKilL-ID
0 wird zur Markierung gelöschter Objekte verwendet; sie ist beim Serialisieren für Nullverweise
reserviert (siehe [Fel13, § 6.3]).
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Für Typen und Felder können auch Einschränkungen in der Spezifikation angegeben werden. Da
diese aber in der aktuellen Form als veraltet deklariert wurden, werden sie in dieser Arbeit nicht
beachtet.1

Laufendes Beispiel

Die folgende einfache SKilL-Spezifikation wird in diesem Kapitel immer wieder aufgegriffen. Spätere
Beispiele bauen darauf auf:
Listing 4.1: Laufendes Beispiel – Hierarchie
A {

i32 x;

}

B : A {

A y;

}

Diese Spezifikation wird in der ursprünglichen Implementierung implementiert als
Listing 4.2: Hierarchie – Implementierung
sealed class A private[x](skillID: Long) extends SkillType(skillID) {

...

protected var _x: Int = 0

final def x = _x

final def x_=(X: Int) = _x = X

...

}

sealed class B private[x](skillID: Long) extends A(skillID) {

...

protected var _y: A = null

final def y = _y

final def y_=(Y: A) = { /* Prüfung: Y != null */; _y = Y }

...

}

4.1.2. Objekte in SKilL-Zuständen

Zu jedem Benutzertyp, einschließlich der nicht-spezifizierten, aus einer SKilL-Datei gelesenen Typen,
existiert ein assoziierter Speicherpool in jedem SKilL-Zustand (siehe auch [Fel13, § 6.3]). Ebenso
ist zu jedem Speicherpool genau ein Benutzertyp assoziiert. Speicherpools erben von der Klasse
StoragePool über eine ihrer beiden Unterklassen BasePool und SubPool. Ein Speicherpool enthält
Verweise auf alle enthaltenen Objekte, alte ebenso wie neue, und Hilfsmethoden für die Serialisierung
und Deserialisierung von Speicherpools in binäre SKilL-Dateien. Er erlaubt auch den Zugriff auf
unbekannte Felder per Reflexion und enthält deren Daten für jedes Objekt des assoziierten Typs,

1Die speicheroptimierte Implementierung enthält dennoch Code für Einschränkungen, geerbt von der ursprünglichen
Implementierung, teilweise mit Anpassungen an die neue Implementierung.
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d. h. unbekannte Felder sind verteilt (siehe nächsten Abschnitt). Zusätzlich enthalten Speicherpools
Verweise auf alle Unterpools und ihren Oberpool, jeweils falls vorhanden.

Speicherpools gliedern sich in zwei Untertypen: Basispools (Klasse BasePool) gehören zu Basistypen,
Unterpools (Klasse SubPool) zu allen anderen Typen. Unbekannte Typhierarchien verwenden direkt
diese Klassen. Für bekannte Typen und deren unbekannte Untertypen werden Klassen generiert, die
von einer dieser beiden Klassen erben. Ein Basispool enthält alle alten Objekte, die vom zugehörigen
oder einem davon abgeleiteten Typ sind. Bei neuen Objekten ist jeder Speicherpool für alle Objekte
des zugehörigen Typs zuständig.

Entsprechend enthalten Basispools ein Array, das Verweise auf alle alten Objekte des assoziierten Typs
und aller abgeleiteten Typen beinhaltet. Außerdem enthalten alle Speicherpools einen ArrayBuffer,
der Verweise auf alle neuen Objekte des assoziierten Typs enthält.

Speicherpools erlauben das Iterieren über alle enthaltenen Instanzen. Dazu gehören alle Objekte, die
vom assoziierten Typ oder davon abgeleitet sind. Dabei existieren zwei Reihenfolgen:

• Dateiordnung, d. h. die Reihenfolge, in der Instanzen beim Anhängen an eine Datei geschrieben
werden würden

• Typordnung, d. h. zuerst alle Objekte eines Typs, dann alle Objekte des nächsten Typs usw.

Außerdem können alte Objekte intern auch durch ihre SKilL-ID erhalten werden.

Generierte Speicherpools für bekannte Typen erlauben zusätzlich das Erzeugen neuer Objekte mit-
tels ihrer apply-Methode. Davon ausgenommen sind Speicherpools für Singletons. Diese haben
stattdessen eine get-Methode, die die einzige Instanz zurückgibt.

4.2. Verteilte vs. lokale Felder

Da in der alten Implementierung jede Instanz einer von SkillType abgeleiteten Klasse die gesamte
Lebenszeit des enthaltenden Zustands überdauert, ist es interessant zu betrachten, wie viel Speicher
die Instanzen eigentlich selbst belegen. Auf der JVM (64 Bit) benötigt jedes Objekt mindestens 16 Byte2.
Das ist die Größe von java.lang.Object, der direkten oder indirekten Basisklasse jedes Objekts auf
der JVM. Für SKilL-Objekte kommen nun noch die SKilL-ID und alle Felder hinzu.

Betrachtet man ein Objekt ohne Felder, so benötigt dieses bereits mindestens 24 Byte3. Dieser Grund-
speicherbedarf kann nicht reduziert werden, solange Referenzen auf jedes dieser Objekte existieren.
Daher stellt sich die Frage, ob die Objekte wirklich benötigt werden.

Die SKilL-Spezifikation [Fel13] erlaubt das Deklarieren von Feldern als „distributed“ (verteilt) mittels
eines Hints wie folgt:

2Ermittelt mit VisualVM [Vis14] für die verwendete JVM
3Aufgrund der unglücklichen Benennung eines Konstruktorparameters (skillID) wird dieser innerhalb einer Methode
verwendet statt des gleichnamigen Felds von SkillType. Daher kommen noch einmal 8 Byte pro Hierarchiestufe einer
Klasse hinzu, d. h. erbt B (ohne eigene Felder) von A, so benötigt eine Instanz von B 8 Byte mehr als eine Instanz von A.
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Listing 4.3: Distributed-Hint
A {

!distributed

i32 x;

}

Die ursprüngliche Implementierung unterstützt keine verteilten Felder außer den unbekannten, dort
sind bekannte Felder immer lokal. Die Daten eines verteilten Felds sind im Gegensatz zu einem
lokalen Feld nicht im Objekt, sondern im zugehörigen Speicherpool gespeichert. Daher müssen sie auf
irgendeinem Weg dem passenden Objekt zugeordnet werden können. Eine Möglichkeit besteht darin,
die Daten in einer Map zu speichern, welche mit dem Objekt indiziert wird. Diese Möglichkeit wird
in der ursprünglichen Implementierung für unbekannte Felder verwendet. Vom Speicherverbrauch
her besser ist aber die Verwendung eines Arrays, das die Daten des Felds enthält und mittels der
SKilL-IDs der Objekte indiziert wird. Dazu muss aber jedes Objekt eines Speicherpools eine eindeutige
SKilL-ID besitzen, was bisher nicht gegeben ist. Zudem erfordert die Anwesenheit eines oder mehrerer
verteilter Felder, dass in jedem Objekt ein Verweis auf den zugehörigen Speicherpool enthalten ist.

Verteilte Felder sind allerdings langsamer als lokale Felder, denn statt einem Zugriff vom Objekt
direkt auf die Daten muss erst auf den Speicherpool, dann auf das entsprechende Array zugegriffen
werden, bevor die Daten selbst erreicht werden. Zudem sind die Daten eines Objekts nicht mehr dicht
beieinander gespeichert, was die Ausnutzung von Cache-Lokalität bei der Arbeit mit einem Objekt
für verteilte Felder verhindert. Werden dagegen alle Daten eines Feldes für alle Objekte durchlaufen,
wie z. B. beim Serialisieren in eine SKilL-Datei, kann von der Cache-Lokalität profitiert werden, da
die Daten nah beieinander liegen.

Die Ersetzung aller Felder durch verteilte Felder hat aber durchaus Vorteile: Da die Objekte nun
keine Daten mehr enthalten, ist es unnötig, in den Speicherpools Referenzen auf sie zu speichern.
Damit entfällt bei der dauerhaften Speicherung von Objektdaten der oben berechnete Grundspeicher
pro Objekt. Stattdessen wird für jedes Feld ein Array benötigt, das wiederum selbst ein Objekt ist
und damit 24 Byte Extraaufwand (Grundspeicher plus Größe) erzeugt. Doch innerhalb einer SKilL-
Spezifikation bzw. einer SKilL-Datei ist nur eine konstante Anzahl an Feldern definiert, daher ist
dies für eine konkrete Kombination von Spezifikation und Datei ein konstanter Aufwand anstatt des
vorherigen linearen Aufwands.

Werden die Objekte selbst allerdings nicht mehr gespeichert, wird es nötig, für jeden Benutzerzugriff
auf die Daten ein neues, relativ kleines Zugriffsobjekt zu erzeugen. Diese Objekte arbeiten als Proxy:
Sie kennen die Position der Daten, kodiert in der SKilL-ID, und bieten dem Benutzer eine übliche
Feldschnittstelle mit Getter und Setter an, über die er auf die Daten zugreifen kann. Sie enthalten nur
noch die SKilL-ID und Verweise auf die zugehörigen Speicherpools. Dabei gehört zu einer Klasse nicht
nur ihr assoziierter Speicherpool, sondern auch die zu allen direkten und indirekten Basisklassen
assoziierten Speicherpools. Da der SKilL-Zustand alle zugehörigen Speicherpools kennt, wird nur ein
weiterer Konstruktorparameter benötigt, nämlich das Zustandsobjekt.

26



4.3. SKilL-IDs und Indizierung

Die Spezifikation in Listing 4.3 ergibt also die folgende Definition für das zugehörige Proxyobjekt:
Listing 4.4: Proxy
sealed class A private[x](_skillID: Long, state : SkillState) extends KnownSkillType(_skillID) {

...

protected final val APool = state.A.asInstanceOf[AStoragePool]

...

final def x = APool.getX(skillID)

final def x_=(X: Int) = APool.setX(skillID, X)

...

}

KnownSkillType implementiert dabei die neue Infrastruktur für bekannte Typen. Alle Zugriffe auf
das Feld x werden an den assoziierten Speicherpool weitergeleitet. Dort wird mithilfe der SKilL-ID
der korrekte Datensatz adressiert.

Da die Datensätze nur noch anhand ihrer SKilL-ID und ihrem Basistyp (siehe Abschnitt 3.2.1) unter-
schieden werden, sind nun zwei Objekte als identisch zu betrachten, wenn sie auf die selben Daten
verweisen. Entsprechend sind Änderungen an einem Objekt in jedem anderen Objekt sichtbar, das
auf den selben Datensatz verweist. Die Objekte können also auch als eine Art Referenz auf den
zugehörigen, unter Umständen auf mehrere Speicherpools verteilten Datensatz betrachtet werden.

4.3. SKilL-IDs und Indizierung

Um die SKilL-ID als Index für die Daten enthaltenden Arrays zu benutzen, muss jeder Datensatz
(ein ursprüngliches Objekt) eine eindeutige SKilL-ID besitzen. Für alte Objekte bietet sich an, die zur
Serialisierung verwendete SKilL-ID zu benutzen. Dadurch können Daten aus einer SKilL-Datei direkt
so eingelesen werden, wie sie in der Datei stehen. Für neue Objekte gibt es mehrere Möglichkeiten,
eindeutige SKilL-IDs festzulegen. Eine Möglichkeit ist, einfach die nächste freie positive Zahl zu
verwenden, da niemals alte Objekte erzeugt werden, sondern vielmehr neue Objekte geschrieben und
dadurch zu alten Objekten werden. In diesem Fall müssten die neuen Objekte sowieso umgeordnet
werden, um die Bedingungen des Dateiformats zu erfüllen, dass Objekte innerhalb eines Typblocks
nach Typ sortiert sein müssen (siehe [Fel13, § 6]). Umordnen bedeutet hier, dass die neuen Objekte
mit neuen SKilL-IDs versehen werden.

Aufgrund dieser Umordnung ist es aber empfehlenswert, getrennte Datenarrays für alte und neue
Objekte anzulegen. Daher wurde entschieden, eine andere Möglichkeit zu nutzen, nämlich neuen
Objekten negative SKilL-IDs zu verteilen, die dann als negative Indizes (1-basiert) verwendet werden
können. Das ermöglicht auch eine schnellere Unterscheidung, ob ein Objekt bereits geschrieben
wurde oder nicht, und eine entsprechende Reaktion.

4.4. Benutzertypen und Annotationen

Da nun keine dauerhaften Objekte mehr existieren, können auch keine Referenzen mehr darauf in
den Feldern gespeichert werden. Bei Referenzen ist das Ziel ein Benutzertyp, zu dem ein eindeutiger
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4. Speicherreduktion von SKilL-Zuständen

Speicherpool gehört, der wiederum zu einem eindeutigen Basispool gehört. Innerhalb eines Basispools
sind SKilL-IDs laut SKilL-Spezifikation eindeutig [Fel13, § 6.3]. Folglich reicht es aus, anstatt einer
Referenz die SKilL-ID des Ziels zu speichern. Nebenbei erlaubt dies, Felder mit Referenztyp genauso
einzulesen wie Felder mit primitiven Typen, nämlich durch einfaches Kopieren der Daten aus der
Datei in das Datenarray des Felds.

Auch Annotationen sind Referenzen. Jedoch wird bei diesen noch zusätzlich ein Verweis auf den
passenden Speicherpool benötigt, damit das Ziel eindeutig identifiziert werden kann. Hier kann
ausgenutzt werden, dass jeder Speicherpool eines SKilL-Zustands einen eindeutigen Index besitzt.
Für Annotationen wird folglich der Index des korrekten Speicherpools sowie die SKilL-ID des referen-
zierten Objekts gespeichert. Beim Lesen eines Annotationsfelds muss nun nur noch der gespeicherte
Name des Speicherpools (siehe [Fel13, § 6.4]) mithilfe des SKilL-Zustands in einen Index übersetzt
werden.

Werden Referenzen und Annotationen allerdings auf diese Weise gespeichert, wird ein Mechanismus
benötigt, der für eine gegebene SKilL-ID ein Proxyobjekt liefert, das dem Benutzer Zugriff auf einen
Datensatz gewährt. Es wurde entschieden, diesen Mechanismus in die Implementierung des SKilL-
Zustands aufzunehmen, da dieser alle betroffenen Speicherpools kennt. Das ist dadurch sichergestellt,
dass Querverweise zwischen verschiedenen Zuständen nicht serialisierbar und daher nicht erlaubt sind.
Damit Referenzen und Annotationen in Feldern aufgelöst werden können, erhalten die Speicherpools
einen Verweis auf ihren enthaltenden Zustand.

4.5. Ausnutzung von JVM-Eigenschaften

Die JVM hat einige Einschränkungen, vor allem bezüglich Objektanzahlen und Arraygrößen. So
werden JVM-Arrays mit vorzeichenbehafteten 32-Bit-Ganzzahlen (Int in Scala) indiziert und können
daher nur bis zu 231 − 1 Objekte enthalten. Folglich reicht es aus, auch für die SKilL-ID nicht
die vollen 64 Bit zu benutzen, sondern lediglich 32 Bit. Entsprechend kann auch die Anzahl der
Speicherpools diese Grenze nicht übersteigen. Annotationen benötigen daher nur 64 Bit bzw. zweimal
32 Bit anstatt der theoretischen 128 Bit. Nach der SKilL-Spezifikation [Fel13, § D] ist die Ausnutzung
dieser Einschränkung erlaubt, ohne die Korrektheit der Implementierung zu beeinflussen.

Es wird auf der JVM außerdem deutlich zwischen primitiven Typen (Boolean, Byte, Short, Int,
Long, Float, Double) und Objekten unterschieden. Insbesondere enthält ein Array mit primitivem
Elementtyp die Einträge selbst, während ein Array mit einem Objekttyp als Elementtyp lediglich
Referenzen auf die enthaltenen Objekte enthält. Daher benötigt es wesentlich weniger Speicherplatz,
eine Annotation in einem einzelnen Long-Wert zu kodieren (8 Byte) anstatt ein Objekt mit zwei
Int-Einträgen zu verwenden (8 Byte für eine Referenz plus 24 Byte für das Objekt).

Werden die obigen Eigenschaften der JVM ausgenutzt, können die in Tabelle 4.1 aufgeführten Scala-
Typen für die entsprechenden grundlegenden SKilL-Typen verwendet werden. Dabei ist zu beachten,
dass der SKilL-Typ string auch für die Speicherung im SKilL-Zustand in den Scala-Typ String

übersetzt wird, obwohl dieser ein Objekttyp ist. Der Grund ist, dass Strings weder Benutzertypen
noch zusammengesetzte Typen sind und daher als primitive Typen betrachtet werden können.
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Tabelle 4.1.: Transformation von SKilL-Typen zu Scala-Typen unter Ausnutzung von
JVM-Einschränkungen

SKilL-Typ Scala-Typ (gespeichert) Scala-Typ (Schnittstelle)
bool Boolean Boolean

i8 Byte Byte

i16 Short Short

i32 Int Int

i64 , v64 Long Long

f32 Float Float

f64 Double Double

string String String

annotation Long SkillTypea

Benutzertypen Int Benutzertypab

abenötigt entsprechende Auflösungsfunktionen
bvon SkillType direkt oder indirekt abgeleitete Klasse

Tabelle 4.2.: Zusammengesetzte SKilL-Typen mit ihren Scala-Entsprechungen (ursprüng-
liche Implementierung)

SKilL-Typ Scala-Typ
A[n] ArrayBuffer[a]a

A[] ArrayBuffer[a]

list <A> ListBuffer[a]

set<A> HashSet[a]

map<A, B> HashMap[a, b]

map<A, B, . . . > HashMap[a, HashMap[b, ...]]

ascala.Array wäre eigentlich die korrekte Wahl, doch hat diese Klasse einige Besonderheiten, die
die Interaktion mit generischem Code erschweren, unter anderem, dass Arrays echt spezialisiert
werden für verschiedene primitive Typen. Das kollidiert mit der Typlöschung.

4.6. Zusammengesetzte Typen

SKilL besitzt noch weitere Typen, die sich aus mehreren Elementen zusammensetzen. Das sind Arrays
konstanter Länge, Arrays variabler Länge, Listen, Mengen und Maps. In Tabelle 4.2 sind diese mit
ihrer Scala-Entsprechung (in der ursprünglichen Implementierung) aufgelistet. A, B und C sind dabei
beliebige SKilL-Typen aus Tabelle 4.1 und a, b und c ihre Scala-Entsprechungen in der Schnittstelle,
n ist eine natürliche Zahl. Nach der Definition von SKilL können zusammengesetzte Typen nicht
geschachtelt werden (siehe auch die Grammatik einer SKilL-Spezifikation in [Fel13, § 2]).

Werden Referenzen auf Benutzertypen und Annotationen nun als Int bzw. Long gespeichert, aber
als Objekte an den Benutzer übergeben, können diese Container nicht mehr sowohl im Speicher
als auch in der Schnittstelle verwendet werden. Es werden also Adapter benötigt, die intern auf die

29



4. Speicherreduktion von SKilL-Zuständen

in einem Container gespeicherten kodierten Referenzen zugreifen. Dem Benutzer stellen sie neu
erzeugte Objekte zur Verfügung, über die er wiederum auf die Daten des zugehörigen Datensatzes
zugreifen kann. Die Adapter müssen folglich fähig sein, sowohl Benutzertypen in kodierte Referenzen
bzw. Annotationen zu konvertieren als auch kodierte Referenzen zurück in Benutzertypen.

Der zweite Teil ist ohne weitere Informationen unmöglich wegen der auf der JVM stattfindenden
Typlöschung (type erasure), d. h. zur Laufzeit stehen keine Informationen mehr über die konkret
eingesetzten Typparameter zur Verfügung [Ull11]. Daher benötigen die Adapter einen Zugriff auf
den SKilL-Zustand, besser gesagt auf die korrekte dort definierte Auflösungsfunktion. Entsprechend
wurde die Schnittstelle des SKilL-Zustands um Fabrikmethoden erweitert. Diese erzeugen korrekt
typisierte und mit den korrekten Auflösungsfunktionen versehene Containeradapter mit einem neuen,

Tabelle 4.3.: Zusammengesetzte SKilL-Typen mit ihren Scala-Entsprechungen (optimierte Implementierung)

SKilL-Typ Elementtyp(en) Scala-Typ (Speicher) Scala-Typ (Schnittstelle)
A[n] primitiva Array[a] Array[a]

Benutzertyp Array[Int] RefArray[a]b

annotation Array[Long] AnnotationArrayb

A[] primitiva ArrayBuffer[a] ArrayBuffer[a]

Benutzertyp ArrayBuffer[Int] RefArrayBuffer[a]b

annotation ArrayBuffer[Long] AnnotationArrayBufferb

list <A> primitiva ListBuffer[a] ListBuffer[a]

Benutzertyp ListBuffer[Int] RefListBuffer[a]b

annotation ListBuffer[Long] AnnotationListBufferb

set<A> primitiva HashSet[a] HashSet[a]

Benutzertyp HashSet[Int] RefHashSet[a]b

annotation HashSet[Long] AnnotationHashSetb

map<A, B> primitiva HashMap[a,b] BasicMapView[a,b]b

primitiva/Benutzertyp HashMap[a,Int] BasicRefMapView[a,b]b

primitiva/annotation HashMap[a,Long] BasicAnnotationMapView[a]b

Benutzertyp/primitiva HashMap[Int,b] RefBasicMapView[a,b]b

Benutzertypen HashMap[Int,Int] RefMapView[a,b]b

Benutzertyp/annotation HashMap[Int,Long] RefAnnotationMapView[a]b

annotation/primitiva HashMap[Long,b] AnnotationBasicMapView[b]b

annotation/Benutzertyp HashMap[Long,Int] AnnotationRefMapView[b]b

annotation HashMap[Long,Long] AnnotationMapViewb

map<A, . . . > A primitiva HashMap[a,_]c BasicMapMapView[a,_]bd

A Benutzertyp HashMap[Int,_]c AnnotationMapMapView[a,_]bd

A annotation HashMap[Long,_]c AnnotationMapMapView[_]bd

aEiner der Typen bool, i8, i16, i32, i64, v64, f32, f64, string
bAdaptertyp
cJe nach weiteren Typen ist _ eine entsprechende HashMap
dJe nach weiteren Typen ist _ der diesen Typen entsprechende ...MapView-Typ aus dieser Tabelle
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leeren Hintergrundcontainer. Tabelle 4.3 listet die Repräsentation der zusammengesetzte Typen in
der optimierten Implementierung auf.

4.7. Speicherpools

Um die bisher genannten Optimierungen umsetzen zu können, mussten die Speicherpools und die
Serialisierung angepasst werden. Im Gegensatz zur Serialisierung, wo nur relativ kleine Änderungen
vorgenommen werden mussten, meist aufgrund von Änderungen in den Speicherpools, wurden
die Speicherpools komplett überarbeitet und in weiten Teilen umgestaltet. Unter anderem wurden
neue Aufgaben hinzugefügt, die nötig werden, wenn die Objekte nur noch als Datensätze in den
Speicherpools existieren. Tabelle 4.4 fasst die Verwaltungsbereiche, Tabelle 4.5 die Aufgaben der
Speicherpools jeweils in beiden Implementierungen zusammen. Die Klasse StoragePool enthält
dabei die Gemeinsamkeiten der Klassen BasePool und SubPool, generierte Pools sind die generierten
Speicherpools für bekannte Typen (siehe auch Abschnitt 4.1.2).

Tabelle 4.4.: Verwaltungsbereiche der Speicherpools in den verschiedenen Implementierungen

Ursprüngliche
Implementierung

Optimierte Implementierung

StoragePool • Typhierarchie (Unterpools,
Oberpool)

• Felddeklarationen,
unbekannte Felder

• Statische Instanzen des Pools
• Dynamische Blockinforma-
tionen

• Typhierarchie (Unterpools,
Oberpool)

• Felddeklarationen,
unbekannte Felder

• Anzahl statischer neuer
Instanzen

• Statische Blockinformationen
BasePool • Dynamische Instanzen des

Pools
• Enthaltender SKilL-Zustand
• Gültigkeit von Instanzen bzw.
SKilL-IDs

• Dynamische neue Instanzen
SubPool • Dynamische Blockinforma-

tionen
• Lokaler Poolindex (innerhalb
eines Basispools)

Generierte Pools • Singleton-Instanz (falls
anwendbar)

• Singleton-Instanz (falls
anwendbar)

• Daten für alte dynamische
Instanzena

• Daten für neue statische
Instanzen

aNur Felder, die im assoziierten Typ des Pools deklariert sind, d. h. weder Felder der Basisklassen noch Felder von
abgeleiteten Klassen
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Tabelle 4.5.: Aufgaben der Speicherpools in den verschiedenen Implementierungen

Ursprüngliche
Implementierung

Optimierte Implementierung

StoragePool • Erzeugen neuer Unterpools
• Hinzufügen neuer Felder
• Auflösen von SKilL-IDs zu
Instanzena

• Iteration über Instanzen

• Erzeugen neuer Unterpools,
Iterieren über Unterpools

• Hinzufügen neuer Felder
• Auflösen von SKilL-IDs zu
Instanzen

• Iteration über Instanzen
• Erzeugen von Proxyobjektena
• Infrastruktur zur Verwaltung
von Felddaten (einschließlich
Aktualisierung von Referenzen)

BasePool • Aktualisierung von SKilL-IDs
vor Serialisierung

• Aktualisierung von SKilL-IDs
vor Serialisierung

• Löschen und Hinzufügen von
Instanzen

• Aufbau der Umordnungstabellen
zur Aktualisierung von
Referenzen und Umordnung von
Instanzen

SubPool • Zuordnung von SKilL-IDs zu
lokalen Datenindizes

Generierte Pools • Erzeugen neuer Instanzen
(falls anwendbar)

• Erzeugen neuer Instanzen (falls
anwendbar)

• Erzeugen von korrekt typisierten
Proxyobjekten

• Zugriff auf Felddaten für
dynamische Instanzenb

aImplementiert in den abgeleiteten Klassen
bNur Felder, die im assoziierten Typ des Pools deklariert sind, d. h. weder Felder der Basisklassen noch Felder von
abgeleiteten Klassen

In diesem Abschnitt bezeichnen statische Instanzen eines Speicherpools alle Objekte bzw. Datensätze,
die vom dazu assoziierten Benutzertyp sind. Dynamische Instanzen eines Speicherpools enthalten
zusätzlich alle Objekte bzw. Datensätze der vom assoziierten Benutzertyp abgeleiteten Typen. Alte
Instanzen sind gelesene oder bereits geschriebene Objekte bzw. Datensätze, alle anderen Instanzen
sind neue Instanzen.

Die Speicherpools haben in der optimierten Implementierung deutlich mehr Aufgaben zu erfüllen,
da die Daten aller Felder nun dort gespeichert sind. Aus diesem Grund werden in den folgenden
Unterabschnitten einige Bereiche der Speicherpools detaillierter beschrieben. Das beinhaltet die
Speicherung und Verwaltung der Datensätze sowie die Aufgaben der Basispools.
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4.7.1. Alte Instanzen

Alte Instanzen wurden aus SKilL-Dateien gelesen bzw. in SKilL-Dateien geschrieben. Daher orientiert
sich ihre Speicherung an der Spezifikation des binären SKilL-Formats [Fel13, § 6.2]. Das bedeutet,
dass alle Daten eines Feldes f in Blöcken gespeichert werden, wobei jeder Block bezüglich der
Typhierarchie sortiert ist, d. h. alle Daten eines Typs kommen an einem Stück direkt vor den Daten
seiner abgeleiteten Typen. Da sich an diesen Blöcken nachträglich nichts mehr ändert, können alle
Blöcke hintereinander in ein einziges Array geschrieben werden. Da gelöschte Instanzen nur als
gelöscht markiert werden, müssen nur beim Schreiben in eine Datei die Blöcke aktualisiert werden.
Der Elementtyp des Arrays ist der in den Tabellen 4.1 und 4.2 aufgeführte zum SKilL-Typ von f
gehörige Scala-Typ für die Darstellung im Speicher.

Für das laufende Beispiel (Listing 4.1) ergibt sich für die angegebenen Felder der folgende Aufbau
(3 Blöcke mit den Inhalten 3 A, 2 B; 0 A, 2 B; 2 A, 3 B), beschriftet mit dem jeweiligen Typ und der
SKilL-ID des Objekts:

A1 A2 A3 B4 B5 B6 B7 A8 A9 B10 B11 B12Feld x von A

B4 B5 B6 B7 B10 B11 B12Feld y von B

Abbildung 4.1.: Speicherung von alten Daten

Wie am Beispiel gut zu sehen ist, eignet sich die SKilL-ID als Index für Felder eines Basistyps, da
alle SKilL-IDs vom Basispool vergeben werden. Für Unterpools dagegen ist die SKilL-ID ungeeignet.
Die SKilL-IDs der Instanzen in einem Unterpool sind aber offensichtlich sortiert und innerhalb eines
Blocks lückenlos (nach Definition des SKilL-Dateiformats, siehe auch [Fel13, § 6]). Eine Funktion
zur Berechnung eines Index in ein Feld eines Unterpools aus einer SKilL-ID benötigt also zusätzlich
nur Informationen über die dynamischen Blöcke des Unterpools und kann in Scala folgendermaßen
implementiert werden4:
Listing 4.5: Index für Felder in Unterpools
case class BlockInfo(val bpsi : Int, val count : Int)

def indexOfOldID(skillID : Int) : Int = {

var start = 0

for (BlockInfo(pos, count) <- dynamicBlockInfos;

end = pos + count)

if (pos < skillID && skillID <= end)

return skillID - start - 1

else

start += count

-1 // wird nie erreicht (falls Eingabe gültig)

}

4In der tatsächlichen Implementierung ist eine äquivalente Variante enthalten, die statt der Methode dynamicBlockInfos
die zugrundeliegenden Daten nutzt.
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Dabei enthält dynamicBlockInfos vom Typ Iterator[BlockInfo] Informationen über alle Blöcke
dynamischer Instanzen des Unterpools. pos bzw. bpsi ist dabei der Anfang des Blocks und count

dessen Länge. Da Blockinformationen 0-basiert gespeichert werden, da in Scala Arrays 0-basiert sind,
SKilL-IDs dagegen 1-basiert, wird statt dem (eigentlich eingeschlossenen) Anfang des Blocks das
(eigentlich ausgeschlossene) Ende des Blocks beim Vergleich mit einbezogen. Da diese Funktion nur
intern aufgerufen wird, ist die übergebene skillID immer in einem Block enthalten, daher wird
grundsätzlich ein gültiger Index ausgegeben. Die Komplexität dieser Funktion ist im schlimmsten Fall
O(#Blöcke) (Anzahl Schleifendurchläufe). Da im Normalfall nur wenige Blöcke im Verhältnis zur
Anzahl der Objekte vorhanden sind – jeder Block zusätzlich zum ersten entspricht einem Anhängen
an eine existierende Datei –, ist dies ein relativ kleiner Aufwand.

4.7.2. Neue Instanzen

Neue Instanzen werden während der Laufzeit neu erzeugt. Da sie in beliebiger Reihenfolge erzeugt
werden können, können anders als bei alten Instanzen keine Annahmen bezüglich ihrer Ordnung
getroffen werden. Würden die SKilL-IDs wie für alte Daten in Typreihenfolge vergeben werden,
wären unzählige Umordnungen nötig, z. B. falls von zwei Typen, die einen gemeinsamen Basistyp
haben, abwechselnd Instanzen erzeugt werden. Daher werden die SKilL-IDs in Erzeugungsreihenfolge
vergeben.

Da SKilL-IDs innerhalb von Basispools eindeutig sind, sind dort zwei parallele Arrays newPoolInfo
und newIndexInfo definiert, die die Zuordnung einer SKilL-ID für eine neue Instanz zu einem Paar
definieren, welches aus einem Speicherpool und einem lokalen Index besteht. Dieses Paar ist die genaue
Adresse eines Datensatzes. Damit das möglich ist, können die Daten einzelner Instanzen nicht wie bei
alten Daten auf mehrere Speicherpools aufgeteilt sein, sondern jeder Speicherpool muss alle Daten
seiner statischen Instanzen enthalten. Die Getter/Setter für Felder und die Aktualisierungsmethoden
für Verweise brauchen allerdings Zugriff auf die Daten ihrer dynamischen Instanzen. Um dieses
Problem zu lösen, wurden Traits eingeführt, die alle Felder eines Typs beschreiben. Diese werden
von allen Pools implementiert, die zu diesem Typ oder einem davon abgeleiteten Typ assoziiert sind.
Für das laufende Beispiel mit einigen neu erzeugten Objekten in der Reihenfolge B, A, B, B, A, A ergibt
sich der folgende Zustand (Felder beschriftet wie im vorigen Abschnitt, Pfeile ordnen den „Adressen“
links den entsprechenden Datensatz rechts zu):

B 0
A 0
B 1
B 2
A 1
A 2

newPoolInfo newIndexInfo

A−2
A−5
A−6
B−1
B−3
B−4

Feld x
AStoragePool

B−1
B−3
B−4

Feld y

BStoragePool

−1
−2
−3
−4
−5
−6

SK
ilL

-ID

Abbildung 4.2.: Neue Daten in Speicherpools: Speicherung und Zugriff
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Dabei ist zu bemerken, dass beide Speicherpools (AStoragePool und BStoragePool) ein Array für
das Feld x besitzen, welches im BStoragePool parallel zum Array für das Feld y ist.

Die Abbildung zeigt auch, wie die Auflösung einer SKilL-ID zu Feldindizes für neue Instanzen
funktioniert. Der zu erkennende indirekte Feldzugriff bedeutet allerdings, dass für neue Instanzen die
Zugriffszeit auf die Daten höher ist als für alte Instanzen, da zwei Arrayzugriffe sowie zwei Feldzugriffe
mehr benötigt werden (jeweils auf newPoolInfo und newIndexInfo). Bei vielen Feldzugriffen auf
neue Instanzen kann daher im Vergleich zur ursprünglichen Implementierung eine längere Laufzeit
erwartet werden. Außerdem brauchen neue Instanzen durch die zusätzlichen Verwaltungsstrukturen
mehr Speicherplatz als alte Instanzen. Es kann daher in der optimierten Implementierung ratsam sein,
in regelmäßigen Abständen den SKilL-Zustand zu schreiben und dadurch neue Instanzen zu alten
Instanzen zu machen.5

Neue Instanzen können nur für spezifizierte, d. h. bekannte Typen erzeugt werden. Die entsprechenden
Speicherpools besitzen eine Fabrikfunktion für den assoziierten Typ, falls dieser kein Singleton-Typ
ist. Andernfalls wird automatisch ein neuer Datensatz sowie ein passendes Proxyobjekt erzeugt,
falls noch keine Instanz des Singleton-Typs existiert. Da die skillID für den neuen Datensatz vom
zugehörigen Basispool vergeben wird, müssen neue Instanzen dort registriert werden. Entsprechend
existiert im Basispool eine Registrierungsmethode addPoolInstance, die von allen Fabrikfunktionen
mit dem aktuellen Pool und dem nächsten lokalen Index aufgerufen wird. Sie erzeugt daraus neue
Einträge in newPoolInfo und newIndexInfo und gibt die nächste freie SKilL-ID zurück.

4.7.3. Basispools

Basispools sind für alle Instanzen zuständig, die vom assoziierten Basistyp oder einem davon abgelei-
teten Typ sind. Insbesondere enthalten sie die Verwaltungsstrukturen und -methoden für das Löschen
und Hinzufügen von Instanzen sowie für die Zuordnung negativer SKilL-IDs zu neuen Instanzen und
Hilfsmethoden für die Serialisierung von Speicherpools. Dieser Abschnitt beschäftigt sich mit den
Verwaltungsaufgaben eines Basispools.

Instanzen werden innerhalb von Speicherpools nicht gelöscht, sondern lediglich als gelöscht markiert.
Erst beim Serialisieren werden alle als gelöscht markierten Datensätze entfernt. Wurden außerdem
alte Instanzen bearbeitet bzw. gelöscht, darf beim Serialisieren nicht an eine Datei angehängt wer-
den. Es müssen stattdessen alle Daten neu geschrieben werden. Wie auch in der ursprünglichen
Implementierung ist dieses Verhalten nicht vollständig implementiert. Lediglich gelöschte Instanzen
werden erkannt. Dazu existieren in einem Basispool zwei Arrays, eines für alte (deleted) und eines
für neue Instanzen (newDeleted), die für jede Instanz einen booleschen Wert enthalten, ob diese
gelöscht wurde. Zur schnelleren Überprüfung, ob eine alte Instanz gelöscht wurde, hat jeder Basispool
eine boolesche Variable dirty. Proxyobjekte (und damit der Benutzer) haben durch die Methoden
removeByID (Löschen von Instanzen) und isIDRemoved (Prüfen, ob eine Instanz gelöscht ist) Zugriff
auf diese Markierungen.

5In der ursprünglichen Implementierung ist das Speicherverhalten umgekehrt, da auf alte Instanzen zwei Referenzen, auf
neue jedoch nur eine Referenz im Speicherpool gespeichert wird.
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Die Verwaltungsstrukturen newPoolInfo und newIndexInfo zur Zuordnung von SKilL-IDs zu Daten-
sätzen wurden bereits imAbschnitt 4.7.2 beschrieben undwerden daher hier nicht weiter ausgeführt.

4.7.4. Serialisierung

Im Bereich der Serialisierung wurde im Vergleich zur ursprünglichen Implementierung einiges
geändert, vor allem dadurch, dass Referenzen und Annotationen nun vor der Serialisierung auch in
Feldern korrigiert werden müssen. Dazu wurde eine vollständig neue Infrastruktur eingeführt, so
dass während der Serialisierung eines Speicherpools nun folgende Schritte durchgeführt werden:

• Schreiben einer Datei:

1. Basispools bauen vollständige Umordnungstabellen für ihre dynamischen Instanzen auf;
Instanzen werden in Typordnung sortiert.

2. Alle Instanzen werden in einen Block komprimiert, dabei gelöschte Instanzen entfernt.

3. Referenzen und Annotationen in bekannten und unbekannten Feldern werden mithilfe
der Umordnungstabellen korrigiert, Verweise auf gelöschte Instanzen werden zu Nullver-
weisen korrigiert.

4. Die Datei wird mithilfe der Klasse StateWriter6 geschrieben.

• Anhängen an eine Datei:

1. Basispools bauen Umordnungstabellen für neue dynamische Instanzen auf, in Typordnung
sortiert.

2. Die neuen Instanzen werden in einen Block komprimiert, der anschließend an die bereits
vorhandenen Blöcke angehängt wird. Dabei werden gelöschte Instanzen entfernt.

3. Referenzen und Annotationen auf neue Objekte in bekannten und unbekannten Feldern
werden mithilfe der Umordnungstabelle korrigiert, Verweise auf gelöschte Instanzen
werden zu Nullverweisen korrigiert.

4. Die Datei wird mithilfe der Klasse StateAppender6 geschrieben.

Es existieren zwei Formate für Umordnungstabellen, eines für alte Instanzen und eines für neue
Instanzen. Die Schreiboperation verwendet beide Formate und ein Array von Paaren von Umord-
nungstabellen, je eine für alte und eine für neue Instanzen. Die Anhängoperation benutzt ein Array
von Tabellen, aber nur das Format für neue Instanzen. Es existiert höchstens eine Umordnungsta-
belle pro Format und Basispool in jedem Schreib- bzw. Anhängvorgang. Für Unterpools werden die
entsprechenden Tabellen ihres jeweiligen Basispools verwendet.

Eine Umordnungstabelle für alte Objekte besteht aus einer sortierten Liste von Intervallen mit
zugehöriger Verschiebung bzw. einer Markierung, ob das Intervall aus gelöschten Instanzen besteht.
Jedes Intervall endet mit dem Beginn des nächsten Intervalls, daher muss nur der Beginn jedes

6Die Klassen StateWriter und StateAppender wurden weitgehend übernommen aus der ursprünglichen Implementie-
rung, aber angepasst an den neuen Ablauf und die neue Struktur der Speicherpools.
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Intervalls gespeichert werden. Das letzte Intervall endet am Ende der Daten. Innerhalb eines Intervalls
sind alle Instanzen vom selben statischen Typ. Um diese Tabellen zu verwenden, muss also für eine
gegebene (positive) SKilL-ID lediglich das passende Intervall gefunden werden, das aufgrund der
Konstruktion auf jeden Fall existiert. Anschließend muss, falls es sich um ein gelöschtes Intervall
handelt, die Instanz gelöscht bzw. die Referenz auf Null gesetzt werden, andernfalls die Instanz bzw.
die Referenz um den zum Intervall gehörenden Verschiebungswert verschoben werden. Instanzen
werden gelöscht, indem ihre Daten nicht in die neu erzeugten Datenarrays kopiert werden. Da jedes
Intervall 8 Byte belegt, ist die Umordnungstabelle im schlimmsten Fall, d. h. jede SKilL-ID ist ein
eigenes Intervall, 8n Byte groß, wobei n die Anzahl der alten Instanzen ist. Dieser Fall tritt nur ein,
wenn vor der Serialisierung in allen Blöcken von jedem Typ entweder nur eine Instanz existiert oder
jede zweite Instanz als gelöscht markiert wurde. In üblichen Anwendungsfällen wird daher wesentlich
weniger Speicher benötigt.

Da neue Instanzen in den meisten Fällen keine wohldefinierte Ordnung haben, besteht eine Um-
ordnungstabelle für neue Instanzen lediglich aus einem Array. In diesem ist zu jeder (negativen)
SKilL-ID, mittels −SKilL-ID − 1 in einen Index transformiert, die neue (positive) SKilL-ID oder 0
gespeichert. Offensichtlich braucht diese Umordnungstabelle immer 4n Byte (Referenzen werden als
Int gespeichert), wobei n die Anzahl der neuen Instanzen ist.

Insgesamt ist die Summe des Speicherverbrauchs für die Umordnungstabellen und des Speicherver-
brauchs für die Verwaltungsstrukturen pro Objekt für ausreichend viele Objekte immer noch geringer
als die ursprünglichen 24 Byte Grundspeicherverbrauch für die ursprünglichen Objekte. Das gilt nicht
für zusammengesetzte Typen mit Referenzen oder Annotationen als Inhalt. Aufgrund des Boxings von
primitiven Scala-Typen wird hier in der optimierten Implementierung während des Schreibvorgangs
wegen der Umordnungstabellen sogar mehr Speicherplatz verbraucht (siehe auch Abschnitt 7.6). Eine
mögliche Lösung des Problems ist im Abschnitt 4.8.1 beschrieben.

4.8. Weitere Optimierungen

Die ursprüngliche Implementierung benutzt ArrayBuffer, um statische Instanzen, sowohl alte als
auch neue, zu speichern. Es wurde festgestellt, dass die Klasse ArrayBuffer beim Vergrößern zwar
automatisch das enthaltene Array vergrößert, beim Verkleinern aber keinen Speicherplatz mehr
freigibt. Das kann dazu führen, dass Speicherplatz verschwendet wird. Daher verwendet die optimierte
ImplementierungArrays für die Speicherung von Felddaten, die von den Speicherpools selbst verwaltet
werden. Diese vergrößern die Arrays, falls nötig, aber verkleinern sie auch wieder, wenn sie nicht
mehr benötigt werden. Das betrifft vor allem neue Instanzen. Bei einer Schreib- oder Anhängoperation
werden alle Arrays für alte Instanzen auf die exakt benötigte Größe vergrößert, alle Arrays für neue
Instanzen durch kleine, leere Arrays ersetzt.

Eine weitere Optimierung des Speicherverbrauchs ist die Verwendung spezieller Arrays für boolesche
Werte, so dass die Elemente nur ein Bit benötigen. Der Zugriff auf diese Werte wird dadurch allerdings
langsamer. Im Fall der internen Markierungsarrays für gelöschte Datensätze ist das üblicherweise
kein großes Problem, da auf diese nur zum Löschen von Instanzen bzw. zum Prüfen, ob eine Instanz
gelöscht ist, sowie beim Iterieren zugegriffen wird. Beim Iterieren wird auf das Markierungsarray für
alte Daten außerdem nur zugegriffen, wenn dirty im entsprechenden Basispool gesetzt ist, d. h. nur
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falls mindestens eine alte Instanz gelöscht wurde. Der mögliche Verwendungsbereich erstreckt sich
zusätzlich über alle Felder des SKilL-Typs bool. Hier wird diese Optimierung allerdings noch nicht
eingesetzt.

Die Implementierung dieser spezialisierten Arrays für boolesche Werte (Klasse BooleanArray)
verwendet intern ein Array[Int] zum Speichern der Einträge und belegt leer 56 Byte; ein
Array[Boolean] benötigt leer nur 24 Byte. Der höhere Grundbedarf zahlt sich jedoch aus: Bei
40 Einträgen sind beide gleich groß (64 Byte), bei mehr Einträgen ist BooleanArray bereits kleiner
als ein Array[Boolean] mit gleich vielen Einträgen.

Bei der Ausgabe in eine SKilL-Datei wird in der ursprünglichen Implementierung ein Puffer verwendet,
um die Positionen zu finden, an denen die Daten eines Feldes enden. Diesen Puffer einzusparen und
die Größe vorzuberechnen, wie es in einer bisher unveröffentlichten gemeinsamen Implementierung
für alle JVM-Sprachen (javaCommon) gemacht wird, wäre auch vom Speicher her die beste Lösung
[Fel15]. Da die optimierte Implementierung jedoch auf der ursprünglichen Implementierung basiert,
wurde lediglich die Pufferklasse OutBuffer verbessert.

Diese in Java geschriebene Klasse speichert die geschriebenen Daten intern in Byte-Arrays. Daten
können mithilfe zweier put-Funktionen zum Puffer hinzugefügt werden. Eine akzeptiert ein byte als
Argument und schreibt dieses in das aktuelle Byte-Array, falls noch Platz ist, und erzeugt andernfalls
ein neues Byte-Array der Größe 8 kB. Die andere put-Funktion erwartet ein byte[] als Argument und
fügt dieses am Ende der Array-Liste des Puffers hinzu. Da die übergebenen Arrays aber serialisierte
Formen von primitiven Datentypen sind, d. h. nur 2 bis 8 Einträge enthalten, überwiegen bei diesen
Arrays die 24 Byte von java.lang.Object und der Arraygröße. Es ist also effizienter, diese Arrays
zu verwerfen und ihren Inhalt in die größeren, bereits vorhandenen Arrays zu kopieren.

4.8.1. Nicht durchgeführte Optimierungen

Außer der Klasse Array existieren für keine der Klassen, die zur Repräsentation zusammengesetzter
Typen verwendet werden, spezialisierte Versionen für primitive Typen. Daher ergibt sich hier ein hö-
herer Speicherverbrauch, als nötig ist. Das liegt daran, dass alle Einträge in ArrayBuffer, ListBuffer,
HashSet und HashMap wegen der Typlöschung als Referenzen auf Objekte gespeichert werden. Daher
werden primitive Typen, da sie auf der JVM keine Objekte sind, in Objekte eingebettet (Boxing). Statt
z. B. 8 Byte für ein Longwerden also 8 Byte für eine Referenz auf ein java.lang.Long-Objekt benötigt
und zusätzlich 24 Byte für dieses Objekt. Da durch die in den vorigen Abschnitten durchgeführten
Optimierungen dazu führen, dass nur primitive Elementtypen verwendet werden (mit Ausnahme der
String-Klasse), betrifft das fast alle Felder mit zusammengesetztem Typ. Die Lösung dieses Problems
ist die Implementierung spezialisierter Varianten von allen diesen Klassen für jeden primitiven Typ
und entsprechende Anpassung der Speicherpools und Containeradapter.
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Zur Untersuchung des benötigten Speichers einer generierten Scala-Anbindung wurden im Rahmen
dieser Arbeit Tests entwickelt. In diesen Tests werden alle für den Speicherverbrauch relevanten
Teile des generierten Codes getestet. Dabei findet der Zugriff grundsätzlich nur über die generierte
öffentliche Schnittstelle statt.

5.1. Speichermessung auf der JVM

Da die JVM die vollständige Verwaltung des Speichers übernimmt, ist es nicht möglich, durch modifi-
zierte Allokations- und Deallokationsfunktionen den aktuellen Speicherverbrauch zu messen. Auch
die durch Java angebotenen Funktionen java.lang.Runtime.freeMemory (aktuell freier Heapspei-
cher) und java.lang.Runtime.totalMemory (aktuelle Heapgröße) haben sich als unzuverlässig
erwiesen, da sie ungenaue Ergebnisse liefern. Daher wurde entschieden, eine nicht-portable Schnitt-
stelle der HotSpot-JVM [Ora14], Jvmstat [Jvm], zur Speichermessung zu benutzen. Diese ist in der
Bibliothek tools.jar als Bestandteil des Java Delevopment Kit (JDK) 7 von Oracle enthalten. Die zur
Verwendung der Schnittstelle benötigte Klasse wurde nur für die HotSpot-JVM aus der Testumgebung
implementiert; eine vollständigere Behandlung der verschiedenen JVM-Versionen ist im Quellcode
des Programms VisualVM [Vis14] zu finden. Der Hauptunterschied besteht in der Benennung der
einzelnen „Counter“. Das sind von der JVM verwendete Instrumentationsobjekte, die verschiedene
interne Daten der JVM enthalten, wie z. B. den verwendeten Speicher.

Damit der Speicherverbrauch gemessen werden kann, musste eine Klasse geschrieben werden, die die
sun.jvmstat.monitor.event.VmListener-Schnittstelle implementiert und sich bei der Ziel-JVM,
auf der der Speicherverbrauch gemessen werden soll, anmeldet. In regelmäßigen Abständen wird dann
die Klasse informiert, dass sich im überwachten Prozess der Speicherverbrauch verändert hat. Diese
Werte werden dann vom im nächsten Kapitel beschriebenen Testframework weiterverarbeitet.

Um den gemessenen Speicherverbrauch nicht zusätzlich durch Messdaten zu erhöhen, verwenden die
in dieser Arbeit benutzten Tests mehrere Prozesse mit verschiedenen Aufgaben. Ein Prozess führt
Verwaltungs- und Messaufgaben durch, d. h. er startet andere Prozesse, die den eigentlichen Test
durchführen und misst deren Speicherverbrauch über die Jvmstat-Schnittstelle.

5.2. Übersicht über Jvmstat

Dieser Abschnitt gibt eine kurze, oberflächliche Übersicht über den verwendeten Teil der Jvmstat-
Schnittstelle [Jvm]. Alle in diesem Abschnitt erwähnten Klassen sind im Paket sun.jvmstat.monitor
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enthalten. Die öffentliche Schnittstelle besteht aus abstrakten Klassen, die statische Fabrikmethoden
besitzen und einigen konkreten Klassen, meistens ohne zugreifbarem Konstruktor.

Die Klasse MonitoredHost stellt eine abstrakte Maschine dar, wie zum Beispiel den lokalen Computer,
auf der virtuelle Maschinen (JVMs) ausgeführt werden können. Die statische getMonitoredHost-
Methode liefert eine Maschine, für die man eine Adresse hat oder den eindeutigen Bezeich-
ner einer darauf laufenden virtuellen Maschine, dargestellt durch die Klasse VmIdentifier.
Das Testframework startet nur Prozesse auf dem lokalen Computer. Es wird daher der Aufruf
MonitoredHost.getMonitoredHost("localhost") verwendet, um eine entsprechende Instanz der
MonitoredHost-Klasse zu erhalten.

Eine überwachte JVM wird durch die Klasse MonitoredVm repräsentiert. Erzeugt werden kann eine In-
stanz dieser Klasse, falls man die Prozess-ID der gewünschten JVM auf einer bekanntenMaschine kennt
und eine MonitoredHost-Instanz für diese Maschine besitzt. Eine Klasse, die die event.VmListener-
Schnittstelle implementiert, kann mittels der MonitoredVm.addVmListener-Methode als Beobachter
einer MonitoredVm registriert werden.

Schließlich existieren noch Monitore (Schnittstelle Monitor), die einen einzelnen Wert der JVM über-
wachen. Sie werden in einem regelmäßigen Zeitabstand aktualisiert, welcher durch die MonitoredVm-
Klasse festgelegt wird. Monitore können über ihren Namen von einer MonitoredVm-Instanz erhalten
werden. Die Namen der Monitore variieren von JVM zu JVM je nach Version und Hersteller. In der JVM
aus der Testumgebung entsprechen die Namen der interessanten Monitore dem regulären Ausdruck
„sun.gc.generation.[0-9]+.space.[0-9]+.used“. Diese Monitore geben die Menge des aktuell
verwendeten Speichers in jeder JVM-Generation [GCT] an. Die Summe der Werte von allen diesen
Monitoren ist die gesamte Speichermenge, die aktuell von der überwachten JVM benutzt wird.
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In diesem Kapitel wird das Framework beschrieben, das erlaubt, mit wenig Aufwand für neue Spezifika-
tionen angepasste Tests zu erzeugen. Zur Zeit verwendet dieses Framework nur einen Parameter, der
entweder aus einer Liste stammt oder mit einer gegebenen Verteilung zufällig generiert wird. Eine Er-
weiterung auf mehrere Parameter ist denkbar, führt aber zu schwer auswertbaren, mehrdimensionalen
Ergebnissen.

Das Testframework besteht aus mehreren Bestandteilen. Aus den folgenden Grundbausteinen kann
ein Test erzeugt werden:

• Ergebnisse (Trait Result) speichern Messdaten in verschiedenen Formen.

• Drucker (Trait Printer) steuern die Ausgabe eines Prozesses.

• Aktionen (Trait Action) legen den Testablauf fest.

• Ein Testablauf (Klasse Task) kapselt die Aufgaben und Daten eines einzelnen Prozesses oder
Threads.

• Die Klasse StorageTestBase definiert die Funktionalität, um die anderen Grundbausteine zu
benutzen.

Zusätzlich existieren noch Helferklassen: Die in Kapitel 5 erwähnte Klasse zur Speichermessung mit
dem Namen ValueReporter, sowie Verteilungen (Klasse Distribution) für die zufälligen Tests. Das
Framework ist auf Erweiterbarkeit ausgelegt. Es können zusätzlich zu den vordefinierten Klassen
eigene Ergebnisse, Aktionen und Verteilungen definiert und verwendet werden.

Dieses Kapitel beschreibt lediglich die Teile des Testframeworks, die für die Verwendung benötigt
werden. Weitergehende Informationen zur Implementierung eigener Ergebnisse und Aktionen sowie
genauere Informationen über Drucker und die interne Speichermessung befinden sich im Anhang.

6.1. Ergebnisse

Ergebnisse erben von einem der Traits SingleValueResult (für einen Messwert pro Parameter) oder
MultiValueResult (für mehrere Messwerte pro Parameter). Die Companion-Objekte beider Traits
besitzen jeweils eine Methode saveGraph, die eine Liste der jeweiligen Ergebnisse als Datenreihen in
ein LATEX-Diagramm speichert (benötigt das LATEX-Paket pgfplots1 [Feu14]).

1Die verwendete Version ist 1.10. Für die Verwendung der ausgegebenen Diagramme \pgfplotsset{compat=1.10} in der
Präambel des LATEX-Dokuments angeben.
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Beide saveGraph-Methoden haben folgende Parameter (in der angegebenen Reihenfolge):

file (String) Pfad zur Ausgabedatei für das Diagramm

caption (String) Überschrift des Diagramms

axisStyle (String) Art der Achsen (normal oder logarithmisch). Akzeptiert die Werte „axis“,
„loglogaxis“, „semilogxaxis“ oder „semilogyaxis“

coordinateStyle (String) Art der Datenlinien (Linien und/oder Punkte, . . . ). Akzeptiert die Werte
„smooth“, „only marks“, „sharp plot“, „“, . . . Für Beschreibungen und weitere Werte siehe
Dokumentation von pgfplots [Feu14].

data (Seq[...Result]) Liste der Ergebnisse für die Datenlinien.

Jedes Ergebnis besitzt einen Namen, der im Diagramm als Beschriftung der entsprechenden Datenlinie
verwendet wird.

6.1.1. Vordefinierte Ergebnisse

Die folgenden beiden kanonischen Implementierungen der beiden Traits für Ergebnisse sind bereits
im Testframework vordefiniert:

CollapsedResult Speichert einen Messwert pro Parameter. Mehrere Messwerte für einen Parameter
werden mit einer Funktion zu einem Wert verarbeitet. Der Konstruktor erwartet einen Namen
für das Ergebnis und die zu verwendende Funktion als Parameter.

MultiResult Speichert mehrere Messwerte pro Parameter. Der Konstruktor erwartet lediglich den
Namen für das Ergebnis als Parameter.

6.2. Drucker

Drucker sind nur relevant, falls nur ein Prozess verwendet werden soll, in dem sowohl die Tests
ausgeführt werden als auch gemessen wird. In diesem Fall können die folgenden zwei Drucker als
Parameter für die createTask-Methode der StorageTestBase-Klasse angegeben werden:

ConsolePrint gibt die maximale Heapkapazität und den maximalen Speicherverbrauch innerhalb
des Messzeitraums auf der Konsole aus. Die Ausgabe erfolgt in tabellarischer Form, einzelne
Spalten sind durch Tab-Zeichen getrennt. In der ersten Spalte steht der Parameter der aktuellen
Ausführung, in der zweiten Spalte die maximale Heapkapazität in Byte, in der dritten der
maximale Speicherverbrauch, ebenfalls in Byte.

ResultPrint gibt die maximale Heapkapazität und den maximalen Speicherverbrauch innerhalb des
Messzeitraums in Ergebnisse aus, die zu Beginn derMessung gesetzt werden. Die Ergebnisse sind
optional. Wird eines der Ergebnisse oder sogar beide nicht gesetzt, werden die entsprechenden
Messwerte ignoriert.

42



6.3. Aktionen und Testabläufe

6.3. Aktionen und Testabläufe

Aktionen sind das Kernstück des Testframeworks. Eine Aktion beschreibt einen Schritt bzw. eine
Schrittfolge eines Testablaufs. Eine Task-Instanz verwaltet dabei die Daten, die vonmehrerenAktionen
übergreifend verwendet werden sollen.

Sowohl Aktionen als auch Testabläufe hängen vom Typ des verwendeten SKilL-Zustands ab und
haben daher einen Typparameter. Da manche Aktionen keinen Zugriff auf den Zustand brauchen,
existiert auch eine typlose Variante der Aktion. Alle Typparameter, die in der Definition des Traits
Action, den abgeleiteten Traits und der Klasse Task vorkommen, müssen folglich den Typ eines
generierten SKilL-Zustands (Trait SkillState im zu testenden generierten Code) oder Nothing
annehmen. Dabei wird Nothing nur für typlose Aktionen verwendet.

Diese Typparameter und alle Typparameter in den folgenden Abschnitten könnten eingespart oder
wenigstens mit einer oberen Schranke versehen werden, wenn alle generierten SkillState-Traits von
einem gemeinsamen Basis-Trait (z. B. common.SkillStateBase) erben würden, das den gemeinsamen
Teil dieser Traits enthält. Dieser gemeinsame Teil ist groß, denn die einzigen Unterschiede zwischen
allen diesen Traits bestehen in den direkten Zugriffen auf die Speicherpools, die zu bekannten
Typen assoziiert sind. Dadurch könnte auch der interne Teil des Testframeworks deutlich vereinfacht
werden.

Aktionen können mit dem Operator +> verkettet werden. Das Ergebnis führt zuerst die Aktion aus,
die als linker Operand gegeben ist, anschließend den rechten Operanden. Beide Aktionen müssen
den selben Zustandstyp verwenden, es sei denn, mindestens eine davon ist typlos. Um eine Folge von
Aktionen in eine einzige Aktion umzuwandeln, definiert das Companion-Objekt des Traits Action
eine fold-Methode, die eine Liste von Aktionen erwartet. Das Ergebnis ist eine Aktion, die alle
Aktionen aus der Liste in der gegebenen Reihenfolge ausführt.

Testabläufe werden durch die Task-Klasse dargestellt. Ein Testablauf enthält aktionsübergreifen-
de Daten wie den verwendeten SKilL-Zustand. Objekte der Task-Klasse werden nur dann direkt
verwendet, wenn nur ein Prozess verwendet wird. In diesem Fall werden sie mithilfe der createTask-
Methode der StorageTestBase-Klasse aus einem für die Ausgabe verwendeten Drucker und einer
durchzuführenden Aktion erzeugt.

6.3.1. Vordefinierte Aktionen

Im Testframework sind bereits einige typlose Aktionen vordefiniert. Außerdem enthält die Klasse
StorageTestBase Implementierungen für bestimmte typisierte Aktionen.

Im Folgenden wird die Funktionsweise der vordefinierten Aktionen beschrieben. Die Angaben zur
serialisierten Form sind nur für externe Tests relevant, d. h. Tests die mehrere Prozesse verwenden:

DummyAction (typlos, serialisiert als leere Zeichenfolge) führt keine Aktion aus und verschwindet
beim Verketten/Serialisieren. Diese Aktion dient als neutrales Element von +> und wird erzeugt,
wenn bei der Deserialisierung einer Aktion ein Fehler auftritt.
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Pause (typlos) wartet auf eine beliebige Benutzereingabe per Konsole (Standardeingabe). Funktioniert
nicht in externen Tests, da Benutzereingaben nicht an den externen Prozess weitergegeben
werden können.

GC (typlos, serialisiert als „gc“) führt eine explizite Garbage Collection durch. Da die JVM frei ist,
solche Anfragen zu ignorieren, geschieht unter Umständen nichts.

Delete (typlos, serialisiert als „delete“) setzt den verwendeten SKilL-Zustand auf None, d. h. kein
aktiver Zustand, zurück und versucht, eine Garbage Collection durchzuführen.

Create (typisiert, serialisiert als „create“) ruft auf der umgebenden StorageTestBase-Instanz die
(abstrakten) Methoden create und createElements auf.

Write (typisiert, serialisiert als „write“) ruft auf der umgebenden StorageTestBase-Instanz die
(abstrakte) Methode write auf.

Read (typisiert, serialisiert als „read“) ruft auf der umgebenden StorageTestBase-Instanz die (ab-
strakte) Methode read auf.

CreateMore (typisiert, serialisiert als „createmore“) ruft auf der umgebenden StorageTestBase-
Instanz die (abstrakte) Methode createMoreElements auf.

Append (typisiert, serialisiert als „append“) ruft auf der umgebenden StorageTestBase-Instanz die
(abstrakte) Methode append auf.

Die von den typisierten Aktionen aufgerufenen Methoden werden im Abschnitt 6.5 beschrieben. Jede
typisierte Aktion misst den Speicherverbrauch während ihrer Ausführung und hat entsprechend ein
Ergebnis als Konstruktorparameter.

6.4. Verteilungen

Für Tests, die zufällige Werte nutzen, existieren im Testframework Verteilungen. Verteilungen erben
von der abstrakten Klasse Distribution. Im folgenden Listing ist diese Klasse zusammen mit allen be-
reits vordefinierten Verteilungen aufgeführt. Weitere Verteilungen können erzeugt werden. Verteilun-
gen werden vor allem als Parameter für die randomizedTest-Methoden der StorageTestBase-Klasse
verwendet.
Listing 6.1: Verteilungen
package common.randomHelpers

import scala.util.Random

abstract class Distribution(protected val random: Random) {

def next: Int

}

class UniformDistribution(_random: Random, val lowerBound: Int, val upperBound: Int)

extends Distribution(_random)

class LogarithmicDistribution(_random: Random, lowerBound: Int, upperBound: Int)

extends Distribution(_random)
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Eine Verteilung benutzt den übergebenen Zufallsgenerator, um gleichverteilte (Pseudo-)Zufallszahlen
als Ausgangswerte zu erhalten. Durch die next-Methode gibt die Verteilung dann einen Wert zurück,
der entsprechend der gewünschten Verteilung angepasst wurde.

UniformDistribution repräsentiert eine Gleichverteilung auf dem Intervall zwischen lowerBound

(einschließlich) und upperBound (ausschließlich). lowerBound sollte kleiner als upperBound sein.

LogarithmicDistribution repräsentiert eine logarithmische Verteilung auf dem Intervall zwischen
lowerBound (einschließlich) und upperBound (ausschließlich). lowerBound sollte hier ebenfalls klei-
ner als upperBound und beide größer als 0 sein. Logarithmische Verteilung bedeutet hier, dass die
Logarithmen der erzeugten Zahlen gleichverteilt sind.

6.5. Speichertests

Die vorgesehene Weise das Testframework zu verwenden, ist das Schreiben einer Klasse, die von
StorageTestBase erbt und deren abstrakte Methoden implementiert. Sie enthält Methoden zum
Durchführen von Tests, sowohl im selben Prozess als auch in externen Prozessen und die oben
beschriebenen vordefinierten typisierten Aktionen. Außerdem sind bereits zwei vordefinierte Tests
definiert, die verwendet werden können. Auch ein Speichertest hängt vom Typ des SKilL-Zustands
ab, daher hat diese Klasse einen entsprechenden Typparameter.

Dieser Abschnitt erklärt die zur Verwendung des Testframeworks nötigen Schritte und die Funkti-
onsweise der wichtigsten Teile der StorageTestBase-Klasse. Im Folgenden wird zuerst der grobe
Aufbau der Klasse StorageTestBase aufgeführt, in den Unterabschnitten dann die Details zu den
einzelnen Aufgabenbereichen.
Listing 6.2: Speichertest
package common

import common.storage._

import common.randomHelpers.Distribution

abstract class StorageTestBase[StateType](val name: String) extends CommonTest {

type Action = storage.Action[StateType]

type TypedAction = storage.TypedAction[StateType]

type Task = storage.Task[StateType]

// Tests

...

// Aktionen

...

// Infrastruktur

...

}

CommonTest (definiert in der SKilL-Scala-Testsuite [SKi14b]) erbt von der Klasse FunSuite aus der
ScalaTest-Bibliothek [Sca] und unterstützt daher das Schreiben von Tests direkt in der Klasse mittels
test(Name) { Testinhalt } und Ausführung der Tests als Scala-JUnit-Tests. Der Konstruktorparameter
namewird verwendet, umNamen für die temporären Dateien zu generieren, die von den vordefinierten
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Tests als Ein- und Ausgabedateien benutzt werden. Die Typdefinitionen Action, TypedAction und
Task sollen dem Programmierer eines Speichertests das Mitschleifen des Zustandstyps ersparen und
dadurch der Übersichtlichkeit dienen.

6.5.1. Testdurchführung und vordefinierte Tests

Listing 6.3: Speichertest – Tests
...

// Tests

def runThread(test: => Unit): Unit

def runProcess(param: String, file: Path, count: Int, action: Action): Unit

def repeatedTest(counts: Array[Int], repetitions: Int,

task: Task): Unit

def repeatedTest(counts: Array[Int], repetitions: Int,

param: String, tasks: Action*): Unit

def randomizedTest(samples: Int, distribution: Distribution,

task: Task): Unit

def randomizedTest(samples: Int, distribution: Distribution,

param: String, tasks: Action*): Unit

...

Die Methoden runThread und runProcess helfen bei der Ausführung eines Tests. runThread führt
den übergebenen Ausdruck in einem neuen Thread innerhalb des selben Prozesses aus. Bei den
vordefinierten Tests ist dieser Ausdruck die Ausführung der im verwendeten Testablauf festgelegten
Aktion mit den entsprechenden Parametern für den aktuellen Durchlauf. runProcess dagegen startet
einen neuen Prozess für genau einen Durchlauf der übergebenen Aktion. param sind Parameter, die
an die neu gestartete JVM übergeben werden, file ist die für alle Dateioperationen zu verwendende
Datei und count ist der Parameter des Durchlaufs. Der Name count wurde gewählt, da bei den in
dieser Arbeit verwendeten Tests dieser Parameter immer die Anzahl der erzeugten Objekte oder
Array-, Listen- oder Mengenelemente angibt.

Die beiden vordefinierten Tests repeatedTest und randomizedTest existieren in zwei Varianten:
Die erste Variante nimmt einen Testablauf als Parameter und führt den Test im selben Prozess mittels
runThread aus. Die zweite Variante führt den Test in externen Prozessen mittels runProcess aus.
param wird dabei einfach weitergereicht. Für jede Aktion in tasks wird für jeden Durchlauf nach-
einander ein eigener Prozess gestartet. Diese Prozesse verwenden alle den selben Parameter und die
selbe Datei. repeatedTest entnimmt die Durchlaufparameter dem übergebenen Array counts. Für
jeden Parameter wird der Test repetitionsmal durchgeführt. randomizedTest generiert die Durch-
laufparameter mithilfe der übergebenen Verteilung. Es werden insgesamt samples Testdurchläufe
ausgeführt.

6.5.2. Aktionen

Die Methoden write und append könnten bereits in dieser Klasse implementiert werden, wenn alle
SkillState-Traits von einem gemeinsamen Basis-Trait erben würden, da diese lediglich Methoden
des Zustands aufrufen, die in allen SkillState-Traits die selbe Deklaration besitzen.
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Listing 6.4: Speichertest – Aktionen
...

// Aktionen

def create: StateType

def createElements(state: StateType, n: Int): Unit

def write(state: StateType, f: Path): Unit

def read(f: Path): StateType

def createMoreElements(state: StateType, n: Int): Unit

def append(state: StateType): Unit

// Fabriken für typisierte Aktionen und Tasks

object Create { def apply(res: Option[Result]) = new Create(res) }

object Write { def apply(res: Option[Result]) = new Write(res) }

object Read { def apply(res: Option[Result]) = new Read(res) }

object CreateMore { def apply(res: Option[Result]) = new CreateMore(res) }

object Append { def apply(res: Option[Result]) = new Append(res) }

def createAndWrite(cr: Option[Result], wr: Option[Result])

= Create(cr) +> Write(wr)

def readAndAppend(re: Option[Result], cr: Option[Result], ap: Option[Result])

= Read(re) +> CreateMore(cr) +> Append(ap)

def createTask(printer: TaskBase.Printer, action: Action)

= new Task(printer, action)

...

Die abstrakten Methoden create, createElements, write, read, createMoreElements und append
implementieren die vordefinierten typisierten Aktionen. Die Bedeutung dieser Methoden ist wie
folgt:

• create erzeugt einen neuen, leeren SKilL-Zustand vom entsprechenden Typ.

• createElements erzeugt im übergebenen (leeren) Zustand Objekte, Arrayelemente oder Ähn-
liches und nutzt dabei den Parameter n. Ob diese Objekte vom selben Typ sind, insgesamt n
Objekte oder n Objekte von jedem Typ erzeugt werden, ist hier nicht festgelegt.

• write schreibt den übergebenen Zustand in die übergebene Datei f.

• read erzeugt einen neuen SKilL-Zustand, der aus der übergebenen Datei f gelesen wird.

• createMoreElements erzeugt im übergebenen (nicht-leeren) Zustand weitere Objekte, Array-
elemente oder Ähnliches und nutzt dabei den Parameter n. Ebenso wie bei createElements
ist nichts weiteres festgelegt.

• append hängt die neu erzeugten Objekte an die zum gelesenen SKilL-Zustand state zugehörige
Datei an. Diese Operation ist nur möglich, falls keine vorhandenen Objekte gelöscht oder
verändert wurden.

Alle weiteren Objekte und Methoden sind Fabriken für neue Aktionen und Testabläufe.
createAndWrite sowie readAndAppend bieten Abkürzungen für häufig verwendete Aktionsfolgen.
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6.5.3. Infrastruktur für externe Tests

Listing 6.5: Speichertest – Infrastruktur
abstract class StorageTestBase ... {

...

// Infrastruktur

def getMainObject: StorageTestBase.ExternalTest[StateType]

def stringToAction(str: String): Action

final def externalTestMain(args: Array[String]): Unit

}

object StorageTestBase {

trait ExternalTest[StateType] {

def createTest: StorageTestBase[StateType]

final def main(args: Array[String]) = createTest.externalTestMain(args)

}

}

Um externe Tests korrekt ausführen zu können, benötigt die StorageTestBase-Klasse Informationen
darüber, welches Objekt die Hauptfunktion eines externen Tests enthält. Dieses Objekt muss in der
Lage sein, einen Speichertest vom richtigen Typ zu erzeugen und die benötigten Aktionen auszuführen.
Dazu muss der Schreiber eines Speichertests die abstrakte Methode getMainObject überschreiben.
Der zurückgegebene Wert muss ein statisches Objekt sein, das als Hauptobjekt verwendet werden
kann, z. B. das Companion-Objekt des Speichertests. Insbesondere darf dieses Objekt kein anonymes
Objekt oder ein Feld einer Klasse sein.

Das von diesem Objekt zu implementierende Trait StorageTestBase.ExternalTest definiert bereits
eine main-Methode mit der benötigten Implementierung. Im Objekt muss nur noch die abstrakte Me-
thode createTest definiert werden, die einen Speichertest vom richtigen Typ erzeugt. Die Methode
externalTestMain interpretiert die durch runProcess generierten Parameter und erzeugt daraus
einen Testablauf, der die gewünschte Aktion durchführt. Dazu wird die Methode stringToAction
verwendet, um die übergebene Liste von serialisierten Aktionen zu deserialisieren. Werden benut-
zerdefinierte Aktionen verwendet, muss diese Methode überschrieben werden, um die Namen der
benutzerdefinierten Aktionen zurück zu Aktionsobjekten übersetzen. Die überschreibende Methode
sollte als letztes die Basisklassenimplementierung aufrufen, um die Benutzung vordefinierter Aktionen
zu ermöglichen.

6.6. Beispiel

In diesem Abschnitt wird am Beispiel der folgenden SKilL-Spezifikation eine mögliche Testimplemen-
tierung vorgestellt (siehe auch den ersten Test im nächsten Kapitel):
Listing 6.6: Number-Beispiel
Number {

i64 number;

}
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Der hier angegebene Speichertest verwendet randomisierte gleichverteilte Objektanzahlen in einem
externen Test. Alle in dieser Arbeit verwendeten Tests sind ähnlich aufgebaut. Es wird angenommen,
dass aus der obigen Spezifikation ein Paket number generiert wurde, das die Implementierung der
SKilL-Anbindung enthält.
Listing 6.7: Speichertest-Implementierung
import org.junit.runner.RunWith

import org.scalatest.junit.JUnitRunner

import scala.util.Random

import java.nio.file.Path

import number.api.SkillState

import common.storage.{SingleValueResult, CollapsedResult}

import common.randomHelpers.UniformDistribution

@RunWith(classOf[JUnitRunner]) // Ausführung als Scala-JUnit-Test

class StorageTest extends common.StorageTestBase[SkillState]("number") {

override def create = SkillState.create

override def createElements(state: SkillState, n: Int) =

for (i <- 0 until n) state.Number(i)

override def write(state: SkillState, f: Path) = state.write(f)

override def read(f: Path) = SkillState.read(f)

override def createMoreElements(state: SkillState, n: Int) = createElements(state, n)

override def append(state: SkillState) = state.append

test("Randomisierter Speichertest") {

// Ergebnisse

val createRes = CollapsedResult("create", Math.max)

val writeRes = CollapsedResult("write", Math.max)

val readRes = CollapsedResult("read", Math.max)

val createMoreRes = CollapsedResult("create more", Math.max)

val appendRes = CollapsedResult("append", Math.max)

// Test

val random = new Random

random.setSeed(31948) // für Reproduzierbarkeit

randomizedTest(

100, // Anzahl Durchläufe

new UniformDistribution(random, 1, 30000000), // Gleichverteilung in [1, 30000000)

"-Xmx8G", // 8 GB Arbeitsspeicher erlauben

createAndWrite(Some(createRes), Some(writeRes)), // Aktionen

readAndAppend(Some(readRes), Some(createMoreRes), Some(appendRes))

)

// Ausgabe

val results = Seq(createRes, writeRes, readRes, createMoreRes, appendRes)

SingleValueResult.saveGraph(

"results/number.tex", // Ausgabedatei

"Numbertest", // Diagrammtitel

"axis", // Achsentyp (normale Achsen)

"only marks", // Diagrammtyp (nur Punkte)

results // Datenlinien

)

}
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override def getMainObject = StorageTest

}

object StorageTest extends StorageTestBase.ExternalTest[SkillState] {

def createTest = new StorageTest

}

Die Implementierungen der fünf Methoden create, write, read, append und getMainObject

sind im Normalfall identisch zu den in diesem Beispieltest gegebenen. createElements und
createMoreElements dagegen enthalten sehr spezifischen Code für den zu testenden SKilL-Zustand
und unterscheiden sich daher von Test zu Test deutlich.
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In diesem Kapitel werden die ursprüngliche Implementierung [SKi14a] und die optimierte Imple-
mentierung aus Kapitel 4 miteinander durch Tests verglichen. Dazu werden Tests verwendet, die
mithilfe des Testframeworks aus Kapitel 6 erzeugt wurden. Für jeden Test wird die verwendete
SKilL-Spezifikation sowie eine kurze Beschreibung des Tests angegeben.

Der grobe Ablauf aller Tests ist gleich (siehe auch Listing 6.7):

• Es wird ein externer randomisierter Test mit 100 gleichverteilten Parametern n aus dem Intervall
[1, 30 000 000) für einfache bzw. [1, 3 000 000) für zusammengesetzte Typen durchgeführt.

• Der erste Arbeitsprozess erzeugt einen neuen SKilL-Zustand und füllt ihn mit Objekten. An-
schließend wird der Zustand geschrieben.

• Der zweite Arbeitsprozess liest den geschriebenen Zustand ein, fügt weitere Objekte hinzu und
schreibt das Ergebnis mithilfe der Anhängoperation.

Die wesentlichen Unterschiede liegen in den Methoden createElements und createMoreElements.
Daher sind diese oder eine Beschreibung der Elementfabriken für jeden Test angegeben.

In den Diagrammen bezieht sich die Bezeichnung Alt auf die ursprüngliche Implementierung und
Neu auf die optimierte. Die Messwerte wurden mit dem Testframework erzeugt, wobei alle 10 ms
ein Wert gemessen und von allen Messwerten innerhalb einer Aktion das Maximum behalten wurde.
Wegen Garbage Collections auf der JVM, die automatisch ausgelöst werden, bilden die Werte nicht
immer eine stetige Kurve, sondern können zwischen verschiedenen benachbarten Parametern deutlich
springen.

7.1. Testumgebung

Alle Tests dieser Arbeit wurden mit der in diesem Kapitel angegebenen Testumgebung durchgeführt.
Verwendet wurde ein Lenovo T510 Laptop (von 2010) mit der folgenden Ausstattung:

CPU: 2,67 GHz Intel Core i5 560M

RAM: 8 GB 667 MHz DDR3

Betriebssystem: Windows 7 Service Pack 1, 64 Bit

JVM: Java HotSpot(TM) 64-Bit Server VM (build 23.7-b01, mixed mode)

Für die Tests wurde der JVM-Parameter -Xmx8G verwendet, der der JVM erlaubt, bis zu 8 GB Speicher
zu belegen [Jav].
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7.2. Primitive Typen

Diesem Test liegt folgende Spezifikation zugrunde (siehe auch das Beispiel in Abschnitt 6.6):
Listing 7.1: Number.skill
Number {

i64 number;

}

Dieser Test zeigt den Speicherverbrauch von einfachen Typen mit primitiven Feldern. Für andere
primitive Feldtypen wird entsprechend weniger bzw. gleich viel Speicher benötigt, das Ergebnis ist
jedoch analog.

Beide Elementfabriken sind identisch und erzeugen n Objekte, wobei das Feld number mit aufsteigen-
den Zahlen von 0 bis n − 1 gefüllt wird. Es werden also für einen Parameter n in beiden Prozessen
jeweils n Elemente erzeugt.

Die Diagramme 7.1 und 7.2 zeigen den Speicherverbrauch für diesen Test für die unterschiedlichen
Operationen. Zu sehen ist deutlich, dass die optimierte Implementierung außer beim Schreiben
deutlich weniger Speicherplatz pro Objekt benötigt.

7.3. Mehrere Felder

Zum Vergleich mit dem vorigen Test wurde die folgende Spezifikation verwendet:
Listing 7.2: Fields.skill
Fields {

i32 a;

i32 b;

}

Der Typ Fields hat die selbe Größe wie der Typ Number aus dem vorigen Abschnitt. Die Element-
fabriken sind wie oben definiert, mit dem einzigen Unterschied, dass beide Felder mit den selben
Zahlen gefüllt werden.

In den Diagrammen 7.3 und 7.4 ist deutlich zu sehen, dass die ursprüngliche Implementierung bei
mehreren Feldern übermäßig viel Speicher benötigt. Durch den effizienteren Ausgabepuffer in der
optimierten Implementierung reduziert sich der Speicherverbrauch auf ein vernünftiges Maß.

52



7.3. Mehrere Felder

0 0.5 1 1.5 2 2.5 3
·107

0

0.5

1

1.5

2
·109

Anzahl Objekte

Be
le
gt
er

Sp
ei
ch
er

(in
By

te
s) Alt – Erzeugen

Alt – Schreiben
Neu – Erzeugen
Neu – Schreiben
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Abbildung 7.3.: Fields – Erzeugen und Schreiben von Objekten
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Abbildung 7.4.: Fields – Lesen, Erzeugen von weiteren Objekten und Anhängen

7.4. Referenzen

Referenzen brauchen auf einem 64-Bit-System eigentlich genauso viel Speicher wie der SKilL-Typ i64.
Da aber bei der verwendeten JVM standardmäßig der Parameter -XX:+UseCompressedOops [Jav]
gesetzt ist, mit dem die JVM statt 64-Bit-Zeigern 32-Bit-Offsets für Referenzen verwendet1, belegen
Referenzen lediglich 32 Bit. Der Typ aus der folgenden Spezifikation braucht daher theoretisch weniger
Speicher als die obigen Typen.
Listing 7.3: Cycle.skill
Cycle {

Cycle prev;

}

Die Elementfabriken sind hier definiert als
Listing 7.4: Referenzen – Elemente
def createElements(state: SkillState, n: Int) {

var c = state.Cycle(null)

for (i <- 1 until n) c = state.Cycle(c)

state.Cycle.head.prev = c

}

def createMoreElements(state: SkillState, n: Int) {

var c = state.Cycle.last

for (i <- 0 until n) c = state.Cycle(c)

state.Cycle.head.prev = c

}

head gibt dabei die erste Instanz eines Speicherpools zurück. Es wird also eine einfach verlinkte
zyklische Liste ohne Inhalte erzeugt.

1Diese Kompression kann durch den Parameter -XX:-UseCompressedOops deaktiviert werden. Es wurde aber entschieden,
bis auf den Parameter -Xmx8G die Standardwerte der JVM zu verwenden.
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Abbildung 7.5.: Cycle – Erzeugen und Schreiben von Objekten
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Abbildung 7.6.: Cycle – Lesen, Erzeugen von weiteren Objekten und Anhängen

7.5. Abgeleitete Typen

Dieser Abschnitt enthält mehrere Tests, die alle auf der folgenden Spezifikation aufbauen:
Listing 7.5: Derivation.skill
Base {

i32 base;

}

Derived : Base {

i32 derived;

}

Empty : Derived {

}
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Der erste Test erzeugt nur Objekte vom Typ Derived und dient zum Vergleich des Verhaltens der
verschiedenen Implementierungen bei Typhierarchien.
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Abbildung 7.7.: Derivation Test 1 – Erzeugen und Schreiben von Objekten
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Abbildung 7.8.: Derivation Test 1 – Lesen, Erzeugen von weiteren Objekten und Anhängen

Wie in den Diagrammen 7.7 und 7.8 zu sehen ist, braucht in der ursprünglichen Implementierung der
Schreib- bzw. Anhängvorgang übermäßig viel Speicher. Das ist wie beim Fields-Test auf die vielen
kleinen Arrays im Puffer zur Größenberechnung (siehe Abschnitt 4.8) zurückzuführen.

Im zweiten Test wird der Speicherverbrauch unter Verwendung von Objekten des Typs Empty mit
den Ergebnissen vom ersten Test verglichen. Da die ursprüngliche Implementierung bei diesem Test
beim Schreiben aufgrund einer java.lang.NullPointerException2 abgestürzt ist, sind für diese
keine Ergebnisse vorhanden.

2Die Ausnahme ist beim Schreiben des base-Felds von Base in der generierten Datei StateWriter.scala aufgetreten.
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Abbildung 7.9.: Derivation Test 2 – Erzeugen und Schreiben von Objekten
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Abbildung 7.10.: Derivation Test 2 – Lesen, Erzeugen von weiteren Objekten und Anhängen

Die Diagramme 7.9 und 7.10 zeigen, dass in der optimierten Implementierung leere (Unter-)Typen bis
auf den assoziierten Speicherpool keinen zusätzlichen Speicher brauchen. Der zusätzliche Speicher
für den Speicherpool ist aber vernachlässigbar, da er konstant und klein ist.

7.6. Zusammengesetzte Typen

Für zusammengesetzte Typen werden außer bei Arrays fester Größe immer zwei Tests durchgeführt.
Im ersten Test wird die Anzahl der Elemente pro Objekt auf 10 festgesetzt und die Anzahl der
Objekte variiert, im zweiten wird die Anzahl der Objekte auf 10 festgesetzt und die Anzahl der
Elemente pro Objekt variiert. Da im zweiten Test die Objekte bearbeitet werden, ist hier Anhängen
nicht möglich, daher entfällt dieser Schritt. Der Einfachheit halber sind für Arrays und Listen alle
Einträge Annotationen, die auf nichts verweisen. Es könnten auch Einträge mit gültigen Zielen
verwendet werden, z. B. Selbstverweise, aber das erhöht nur die Komplexität des Tests und ändert am
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Speicherverbrauch nichts. Bei Mengen und Maps ist es dagegen nicht möglich, solche Einträge zu
verwenden, da diese jedes Element bzw. jeden Schlüssel nur einmal erlauben. Mengen verwenden
daher i64 als Einträge, welche in der optimierten Implementierung genau gleich viel Speicherplatz
belegen wie Annotationen. Da sich Mengen und Maps prinzipiell sehr ähnlich verhalten und der
Test für Mengen mit der ursprünglichen Implementierung bereits 39 Stunden benötigte, wurde kein
getrennter Test für Maps durchgeführt.

7.6.1. Arrays fester Größe

Dieser Test verwendet die folgende Spezifikation:
Listing 7.6: FixedArray.skill
Fixed {

annotation[10] fixed;

}

Die Elementfabriken produzieren auch hier n Objekte und sind identisch für beide Erzeugungsphasen.
Da in diesem Fall aber die Benutzerschnittstelle der beiden Implementierungen unterschiedlich sind,
mussten die Elementfabriken an die jeweilige Implementierung angepasst werden. Die folgenden
beiden Listings zeigen die verschiedenen Varianten für createElements:
Listing 7.7: Arrays fester Größe – Elemente, ursprüngliche Implementierung
def createElements(state: SkillState, n: Int) =

for (i <- 0 until n) {

val data = ArrayBuffer[SkillType](null, null, null, null, null, null, null, null, null, null)

state.Fixed(data)

}

Listing 7.8: Arrays fester Größe – Elemente, optimierte Implementierung
def createElements(state: SkillState, n: Int) =

for (i <- 0 until n) {

val data = state.makeAnnotationArray(10)

state.Fixed(data)

}

Durch die interne Verwendung der Klasse Array statt ArrayBuffer verringert sich der Speicherver-
brauch in der optimierten Implementierung beim Erzeugen neuer Objekte, ansonsten verändert sich
der Speicherverbrauch hier kaum (siehe Diagramme 7.11 und 7.12).

7.6.2. Arrays variabler Größe und Listen

Für Arrays variabler Größe und Listen werden fast identische Tests verwendet. Die zugrundeliegenden
Spezifikationen sind:
Listing 7.9: VariableArray.skill
Variable {

annotation[] variable;

}
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Abbildung 7.11.: FixedArray – Erzeugen und Schreiben von Objekten
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Abbildung 7.12.: FixedArray – Lesen, Erzeugen von weiteren Objekten und Anhängen

Listing 7.10: List.skill
AList {

list<annotation> aList;

}

Im ersten Test werden in beiden Elementfabriken n Objekte mit jeweils 10 Elementen im enthaltenen
Array bzw. in der enthaltenen Liste erzeugt. Dazu werden folgende Definitionen von createElements
verwendet:
Listing 7.11: Arrays variabler Größe und Listen – Elemente, ursprüngliche Implementierung (Test 1)
def createElements(state: SkillState, n: Int) =

for (i <- 0 until n) {

val data = ArrayBuffer[SkillType]() // bzw. ListBuffer[SkillType]()

for (j <- 0 until 10) data += null

state.Variable(data)

}
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Listing 7.12: Arrays variabler Größe und Listen – Elemente, optimierte Implementierung (Test 1)
def createElements(state: SkillState, n: Int) =

for (i <- 0 until n) {

val data = state.makeAnnotationVarArray() // bzw. state.makeAnnotationList()

for (j <- 0 until 10) data += null

state.Variable(data)

}
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Abbildung 7.13.: VariableArray Test 1 – Erzeugen und Schreiben von Objekten
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Abbildung 7.14.: VariableArray Test 1 – Lesen, Erzeugen von weiteren Objekten und Anhängen

Die Diagramme 7.13 bis 7.16 zeigen deutlich den in Abschnitt 4.7.4 beschriebenen Effekt, dass durch
Boxing der primitiven Typen in der optimierten Implementierung kein Speicher eingespart werden
kann. Im Gegenteil wird der Speicherverbrauch beim Schreiben sogar noch durch die Umordnungsta-
bellen erhöht.
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Abbildung 7.15.: List Test 1 – Erzeugen und Schreiben von Objekten
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Abbildung 7.16.: List Test 1 – Lesen, Erzeugen von weiteren Objekten und Anhängen

Im zweiten Test werden in der ersten Elementfabrik 10 Objekte mit jeweils n Elementen im enthal-
tenen Array bzw. in der enthaltenen Liste erzeugt. Die zweite Elementfabrik erzeugt in den bereits
vorhandenen 10 Objekten n weitere Array- bzw. Listenelemente.
Listing 7.13: Arrays variabler Größe und Listen – Elemente, ursprüngliche Implementierung (Test 2)
def createElements(state: SkillState, n: Int) =

for (i <- 0 until 10) {

val data = ArrayBuffer[SkillType]() // bzw. ListBuffer[SkillType]()

for (j <- 0 until n) data += null

state.Variable(data)

}

def createMoreElements(state: SkillState, n: Int) =

for (obj <- state.Variable.all) { // bzw. obj <- state.AList.all

val data = obj.variable // bzw. obj.aList

for (j <- 0 until n) data += null

}
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Listing 7.14: Arrays variabler Größe und Listen – Elemente, optimierte Implementierung (Test 2)
def createElements(state: SkillState, n: Int) =

for (i <- 0 until 10) {

val data = state.makeAnnotationVarArray() // bzw. state.makeAnnotationList()

for (j <- 0 until n) data += null

state.Variable(data)

}

def createMoreElements(state: SkillState, n: Int) =

for (obj <- state.Variable.all) { // bzw. obj <- state.AList.all

val data = obj.variable // bzw. obj.aList

for (j <- 0 until n) data += null

}

Wie die Diagramme 7.17 bis 7.20 zeigen, braucht die optimierte Implementierung in den meisten
Fällen in etwa gleich viel Speicher wie die ursprüngliche Implementierung. Hier ist der zusätzliche
Speicherverbrauch durch die Umordnungstabellen kaum zu bemerken, da diese nur 10 Einträge
enthalten, also sehr klein sind.
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Abbildung 7.17.: VariableArray Test 2 – Erzeugen und Schreiben von Objekten

Diese Tests zeigen deutlich, dass durch spezialisierte Datenstrukturen für primitive Typen noch
deutlich Speicherplatz eingespart werden kann. Für Basistypen, die keine bekannten Untertypen
besitzen, könnten zusätzlich noch die Umordnungstabellen für neue Objekte eingespart werden, da
nur von bekannten Typen Objekte erzeugt werden können.
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Abbildung 7.18.: VariableArray Test 2 – Lesen und Erzeugen von weiteren Objekten
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Abbildung 7.19.: List Test 2 – Erzeugen und Schreiben von Objekten
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Abbildung 7.20.: List Test 2 – Lesen und Erzeugen von weiteren Objekten
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7.6.3. Mengen

Für Mengen wird die folgende Spezifikation verwendet:
Listing 7.15: Set.skill
ASet {

set<i64> aSet;

}

Wie im vorigen Abschnitt erzeugen auch hier im ersten Test die Elementfabriken n Objekte mit
jeweils 10 Einträgen im enthaltenen HashSet. Allerdings sind hier für beide Implementierungen die
Elementfabriken gleich:
Listing 7.16: Mengen – Elemente (Test 1)
def createElements(state: SkillState, n: Int) =

for (i <- 0 until n) state.ASet(HashSet(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))
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Abbildung 7.21.: Set Test 1 – Erzeugen und Schreiben von Objekten
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Abbildung 7.22.: Set Test 1 – Lesen, Erzeugen von weiteren Objekten und Anhängen

64



7.6. Zusammengesetzte Typen

Wie die Diagramme 7.21 und 7.22 zeigen, hat die ursprüngliche Implementierung Probleme, wenn
viele Mengen vorhanden sind. Auch hier ist das Problem wieder der Ausgabepuffer, gefüllt mit
vielen kleinen Arrays (siehe Abschnitt 4.8). Da die Mengen selbst aber auch viel Arbeitsspeicher
benötigen, tritt hier das Problem in verstärkter Form auf, so dass es schon für weniger als eine Million
Objekte während der Schreibaktion zum Speicherüberlauf kommt, d. h. das Programm wegen eines
java.lang.OutOfMemoryError abstürzt (fehlende Datenpunkte).

Im zweiten Test werden in createElements 10 Objekte erzeugt und mit den Zahlen 0 bis n−1 befüllt,
in createMoreElements werden weitere n Zahlen, n bis 2n − 1, hinzugefügt.
Listing 7.17: Mengen – Elemente (Test 2)
def createElements(state: SkillState, n: Int) =

for (i <- 0 until 10) {

val data = new HashSet[Long]();

for (j <- 0 until n) data += j

state.ASet(data)

}

def createMoreElements(state: SkillState, n: Int) =

for (obj <- state.ASet.all) {

val data = obj.aSet

for (j <- 0 until n) data += j + n

}
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Abbildung 7.23.: Set Test 2 – Erzeugen und Schreiben von Objekten

In den Diagrammen 7.23 und 7.24 kann man sehen, dass sich die ursprüngliche und die optimierte
Implementierung (bis auf das Schreiben) gleich verhalten. Das ist darauf zurückzuführen, dass die
Mengen zwar an einer anderen Stelle, nämlich im Speicherpool, gespeichert sind, die Mengen selbst
sich aber nicht verändert haben, da hier ein primitiver Elementtyp gewählt wurde. Der Unterschied
beim Schreiben wird auch hier wieder durch den Ausgabepuffer ausgelöst.
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Abbildung 7.24.: Set Test 2 – Lesen und Erzeugen von weiteren Objekten

7.7. Laufzeit und Korrektheit

Zur Überprüfung der Laufzeit und Korrektheit wurde die SKilL-Scala-Testsuite [SKi14b] mit leichten
Anpassungen an die veränderte Benutzerschnittstelle für die optimierte Implementierung ausge-
führt. Dabei wurde festgestellt, dass die optimierte Implementierung in den Fällen langsamer als die
ursprüngliche Implementierung war, in denen wenige Objekte erzeugt wurden, viele Feldzugriffe
stattfanden oder viele Referenzen korrigiert werden mussten. Jedoch lag der zeitliche Mehraufwand
meist unter 25% des Zeitaufwands für die ursprüngliche Implementierung, außer wenn Referenzen
überprüft und eventuell korrigiert werden mussten. In diesen Fällen wurden zum Teil, vor allem
beim graph.WSR14Test mit Referenzen in HashSet-Objekten, doppelte bis vierfache Laufzeiten fest-
gestellt, allerdings war der Faktor für größere Objektanzahlen geringer als für kleinere. Der Test
date.WriteTest zeigte dagegen, dass für große Datenmengen (1,6 Millionen Objekte bzw. 10 MB
Daten aus einer Datei) die optimierte Implementierung sogar weniger Zeit benötigt. Auch bei al-
len hier durchgeführten Speichertests war die optimierte Implementierung deutlich schneller als
die ursprüngliche. Insbesondere benötigten bei der optimierten Implementierung die Lesevorgän-
ge selbst für große Dateien (etwa 30 Millionen Objekte) wenige Millisekunden. Die ursprüngliche
Implementierung dagegen benötigte mehrere Sekunden.

Alle Tests der Testsuite wurden fehlerfrei ausgeführt und die erzeugten Dateien entsprachen den
erwarteten Ergebnissen. Die ursprüngliche Implementierung erzeugte in zwei Teilen des Tests
toolchains.node.CoreTest dagegen fehlerhafte Ergebnisse beim Schreiben eines Zustands in zwei
verschiedene Dateien.

7.8. Zusammenfassung der Ergebnisse

Die Ergebnisse aller Tests zusammengenommen zeigen, dass für Felder mit einfachen Type, d. h.
nicht zusammengesetzten Typen, die Optimierungen die gewünschte Wirkung gezeigt haben. Hier
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wurde zum Teil deutlich weniger Speicher verbraucht, insbesondere bei Schreib- und Anhängope-
rationen durch die zusätzliche Wirkung des verbesserten Ausgabepuffers. Bei zusammengesetzten
Typen dagegen wurde lediglich bei Arrays konstanter Länge durch die Verwendung von Arrays statt
ArrayBuffer-Objekten Speicher eingespart, in allen anderen Fällen wird durch die Typlöschung
nicht nur kein Speicher eingespart, sondern sogar beim Schreiben und Anhängen durch die Umord-
nungstabellen mehr Speicher verbraucht.

Weiterhin hat sich die Laufzeit beim Lesen und Schreiben vieler Daten deutlich verbessert, ausgenom-
men der Fälle, in denen viele Referenzen überprüft werden müssen, dafür ist der Zugriff auf Felddaten
durch mehr Indirektion vor allem bei neu erzeugten Objekten deutlich langsamer.
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Im Rahmen dieser Arbeit wurden einige SKilL-Spezifikationen genutzt, die einzelne Bereiche der Scala-
Anbindung getrennt voneinander beleuchten. Die entsprechenden Tests wurden einfach gehalten,
da es nur auf den Speicherverbrauch des aus den SKilL-Spezifikationen generierten Codes ankam.
Diese werten den Speicherverbrauch in den dafür interessanten Phasen der Scala-Anbindung aus.
Das beinhaltet das Erzeugen von Objekten sowie das Lesen, Schreiben und Anhängen von Objekten
aus, in bzw. an SKilL-Dateien.

Bei diesen Tests wurde festgestellt, dass die ursprüngliche Implementierung kaum Speicherplatz
verschwendet, d. h. für ein Scala-Programm übermäßig viel Speicher benötigt, mit Ausnahme des
beim Schreiben und Anhängen verwendeten Ausgabepuffers. Da aber viele der verwendeten Objekte
relativ klein sind, d. h. weniger Felder in der SKilL-Spezifikationen sind als Objekte existieren, bestand
hier dennoch eine Verbesserungsmöglichkeit.

Um den Speicherverbrauch der Scala-Anbindung zu verringern, ist es aufgrund des Grundspeicher-
bedarfs von Objekten und der Architektur der JVM sinnvoll, die Anzahl langlebiger Objekte, vor
allem von kleinen, zu reduzieren. Gleichzeitig sollte die Größe der verbleibenden langlebigen Objekte
erhöht werden. Dazu können die Daten der SKilL-Objekte statt direkt im Objekt als Datensatz im
zugehörigen Speicherpool aufbewahrt werden, d. h. lokale Felder durch verteilte Felder ersetzt werden.
Zum Zugriff auf die Daten eines Datensatzes kann ein Proxyobjekt verwendet werden, so dass sich
für den Benutzer die Schnittstelle kaum ändert.

Gelesene und bereits geschriebene Daten werden dabei analog zur serialisierten Form gespeichert
und mittels der selben SKilL-ID adressiert. Feldzugriffe dagegen benötigen mehr Indirektionen und
sind daher langsamer. Ebenso geht die ursprüngliche Cache-Lokalität für kleinere Objekte verloren.

Neu erzeugte, bisher ungeschriebene Daten haben zudem das Problem, dass sie anders als gelesene
bzw. geschriebene Daten nicht nach ihrem Typ in Blöcke sortiert sind, sondern in beliebiger Rei-
henfolge vorliegen können. Daher werden hier zusätzliche Verwaltungsstrukturen benötigt. Um die
Iteration in Typreihenfolge zu unterstützen, werden weiterhin alle Daten aller Objekte eines Typs in
einem Speicherpool gesammelt, statt wie bei gelesenen bzw. geschriebenen Daten im assoziierten
Speicherpool des das Feld definierenden Typs.

Die veränderte Speicherung der Daten benötigt außerdem einen Auflösungsmechanismus, um aus
den Adressen von Datensätzen, gespeichert in den SKilL-IDs, Objekte erzeugen zu können und
umgekehrt von diesen Objekten Rückschlüsse auf die SKilL-ID zu ziehen, um auf den zugehörigen
Datensatz zugreifen zu können. Der Nachteil ist, dass durch diesen Auflösungsmechanismus der
Zugriff auf Felder mit Referenz- bzw. Annotations-Typ zusätzlichen Aufwand erfordert (Auflösen
der Referenz, Erzeugen eines neuen Objekts) und daher langsamer ist als zuvor. Außerdem ist es
nötig, in solchen Feldern die Referenzen anzupassen, wenn die referenzierten Objekte umgeordnet
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wurden. Entsprechendes gilt für zusammengesetzte Typen mit Referenz- und Annotations-Typen als
Inhalten.

Diese Verbesserungen bezüglich des Speichers wurden in den Codegenerator der Scala-Anbindung
eingearbeitet. Dabei wurde im Vergleich zur ursprünglichen Implementierung die Behandlung von als
gelöscht markierten Objekten verbessert. Allerdings wurde die Korrektur von Referenzen und Annota-
tionen in unbekannten Felder noch nicht implementiert. Daher ist in der optimierten Implementierung
die Behandlung unbekannter Felder nicht korrekt, falls dort Referenzen oder Annotationen korri-
giert werden müssen. Das schränkt die Benutzung der optimierten Implementierung nur dann ein,
wenn viel mit unbekannten Feldern gearbeitet wird. Für übliche Anwendungen ist dies aber eher
irrelevant.

Wie beim Vergleichen der beiden Implementierungen festgestellt wurde, führt die reduzierte Speicher-
last dazu, dass nur wenige teure große Garbage Collections durchgeführt werden, vor allem während
der Schreib- und Anhängphasen. Zusätzlich führt der verbesserte Ausgabepuffer durch die Reduktion
der Anzahl der gespeicherten Byte-Arrays nicht nur zu einer geringeren Speicherauslastung, sondern
auch zu einem schnelleren Schreibvorgang, da größere Blöcke geschrieben werden können. Insgesamt
sind daher in der optimierten Implementierung die Schreib- und Anhängphasen deutlich schneller
als in der ursprünglichen Implementierung. Ebenso wird durch die Speicherung der Felder analog
zum Dateiaufbau und dadurch, dass nur wenige Objekte erzeugt werden müssen, der Lesevorgang
wesentlich beschleunigt.

8.1. Ausblick

Weitere Optimierungen können im Bereich der verwendeten Container für zusammengesetzte Typen
vorgenommen werden. Da die Implementierung bis auf den Typ String ausschließlich primitive
Typen zur Speicherung der Daten verwendet, bietet es sich an, statt der nicht-spezialisierten Container
aus der Scala-Standardbibliothek spezialisierte Container zu verwenden. Durch diesen Schritt wird
vermieden, dass primitive Typen in ein Objekt geschachtelt werden, da nicht-spezialisierte Container
wegen der Typlöschung nur auf Objekten arbeiten. Die Standardbibliothek enthält zurzeit für keinen
der verwendeten Container spezialisierte Varianten, diese müssen alle selbst geschrieben werden.
Der Nutzen ist allerdings groß, denn für einen einzigen in einem solchen Container gespeicherten
Wert entfallen 24 Byte, 8 Byte für eine Referenz, 16 Byte für den Grundbedarf eines Objekts. Unter
Missachtung der Ausrichtung von Werten macht das bei einem Long 75% und bei einem Byte sogar
96% des ursprünglichen Verbrauchs aus.

Um die vollständig korrekte Behandlung von unbekannten Feldern in der optimierten Implemen-
tierung zu ermöglichen, ist es ratsam, deren Speicherung zu ändern. Die Daten unbekannter Felder
werden zurzeit in einer HashMap[FieldDeclaration, HashMap[Int, Any]] gespeichert. Unter Um-
ständen wäre es besser, die innere HashMap durch korrekt typisierte Arrays zu ersetzen, d. h. den Typ
HashMap[FieldDeclaration, Array[_]] zu verwenden, und unbekannte Felder dann wie bekannte
Felder zu behandeln. Da die Felddeklarationen der unbekannten Felder für jeden Typ in einer Liste
im assoziierten Speicherpool gespeichert sind, besitzen sie einen Index. Daher kann sogar noch wei-
tergegangen werden und ein Array[Array[_]] verwendet werden. Die Aktualisierung unbekannter
Felder kann dann analog zur Aktualisierung bekannter Felder durchgeführt werden.
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8.1. Ausblick

Eventuell bietet es sich an, spezialisierte Speicherpools zu erstellen, wie zum Beispiel für bekannte
Basistypen ohne bekannte Untertypen, Singletons oder monotone Typen, d. h. Typen, von denen
Instanzen erzeugt, aber nicht mehr gelöscht werden können. So kann für bekannte Basistypen
ohne bekannte Untertypen die Verwaltung neu erzeugter Datensätze vereinfacht werden, da neue
Instanzen unbekannter Typen nicht erzeugt werden können und somit alle neuen Datensätze auch
ohne zusätzlichen Verwaltungsaufwand eindeutig zugeordnet werden können. Singletons, die eigene
Felder definieren, müssen deren Daten nicht in Arrays speichern, da ja nur eine Instanz existiert.
Zudem kann hier das einzige Objekt tatsächlich gespeichert werden und alle eigenen Felder direkt
enthalten. Für monotone Typen kann der gesamte Mechanismus zum Löschen von Objekten und die
zugehörigen Datenstrukturen entfallen.
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A. Anhang

A.1. Testframework

Dieser Abschnitt beschreibt die Implementierung einiger Teile des Testframeworks und enthält
Hinweise zur Implementierung eigener Ergebnisse und Aktionen.

A.1.1. Ergebnisse

Ergebnisse implementieren das versiegelte, d. h. als sealed gekennzeichnete, Trait Result. Dazu
müssen sie von einem der Traits SingleValueResult (für einen Messwert pro Parameter) oder
MultiValueResult (mehrere Messwerte pro Parameter) erben. Diese haben folgende Definitionen:
Listing A.1: Result-Schnittstellen
package common.storage

sealed trait Result {

val name: String

def +=(n: Int, s: Double): Unit

}

trait SingleValueResult extends Result {

val storage: HashMap[Int, Double]

}

trait MultiValueResult {

val storage: HashMap[Int, ArrayBuffer[Double]]

}

Die enthaltenen HashMap-Objekte speichern die Daten des Ergebnisses. Neue Daten werden mit der
Methode += hinzugefügt. n ist dabei der Parameter, s der Messwert. Die Verarbeitung mehrerer Mess-
werte zu einem Wert für implementierende Klassen des SingleValueResult-Traits ist vollständig
dem Implementierer überlassen. n ist üblicherweise der Parameter eines Tests. name ist der Name
des Ergebnisses, der von den saveGraph-Methoden als Beschriftung der entsprechenden Datenlinie
verwendet wird.

Innerhalb des Testframeworks wird die Methode += nur von der Klasse ValueReporter aufgerufen,
die im nächsten Abschnitt beschrieben wird.

73



A. Anhang

A.1.2. Drucker und die Klasse ValueReporter

Drucker steuern die prozessinterne Speichermessung und die Ausgabe der Messwerte. Es gibt genau
drei verschiedene Drucker, zwei für die Verwendung nur eines Prozesses für Messung und Ausführung
(siehe auch Abschnitt 6.2), einen für die externe Speichermessung:

ConsolePrint gibt die maximale Heapkapazität und den maximalen Speicherverbrauch innerhalb
des Messzeitraums auf der Konsole aus. Die Ausgabe erfolgt in tabellarischer Form, einzelne
Spalten sind durch Tab-Zeichen getrennt. In der ersten Spalte steht der Parameter der aktuellen
Ausführung (n), in der zweiten Spalte die maximale Heapkapazität in Byte, in der dritten der
maximale Speicherverbrauch, ebenfalls in Byte.

ResultPrint gibt die maximale Heapkapazität und den maximalen Speicherverbrauch innerhalb des
Messzeitraums in Ergebnisse aus, die zu Beginn derMessung gesetzt werden. Die Ergebnisse sind
optional. Wird eines der Ergebnisse oder sogar beide nicht gesetzt, werden die entsprechenden
Messwerte ignoriert.

StartStopPrint wird für die externe Speichermessung verwendet. Dieser Printer gibt lediglich
„start“ bei Beginn der Messung und „finished“ bei Ende der Messung auf der Konsole aus.
Nach einer Ausgabe wartet er auf ein Signal zum Fortsetzen per Standardeingabe. Das intera-
gierende Gegenstück zu diesem Drucker ist die runProcess-Methode der StorageTestBase-
Klasse.

DieMethoden der Drucker-Klassen können nur von der Klasse TaskBase verwendet werden. Aktionen
rufen sie indirekt über die Task-Instanz auf, die sie als Parameter bekommen. Task und TaskBase

werden im nächsten Abschnitt genauer beschrieben.

Die eigentliche Speichermessung wird durch die ValueReporter-Klasse durchgeführt. Instanzen
dieser Klasse registrieren sich selbst als Beobachter bei der zu überwachenden JVM. Dazu bekommt der
Konstruktor die Prozess-ID der Ziel-JVM als Parameter. Das folgende Listing enthält alle wesentlichen
Felder und Methoden dieser Klasse. Dabei wurden Hilfsdaten und -methoden weggelassen.
Listing A.2: Jvmstat-Schnittstelle
package common.storage

import sun.jvmstat.monitor.event._

class ValueReporter(pid: String, var n: Int) extends VmListener {

private var capacityResult: Option[Result]

private var usedResult: Option[Result]

def switchResults(capacity: Option[Result], used: Option[Result]): Unit

...

override def monitorStatusChanged(event: MonitorStatusChangeEvent): Unit

override def monitorsUpdated(event: VmEvent): Unit

override def disconnected(event: VmEvent): Unit

}

capacityResult nimmt dieMesswerte der aktuell verfügbaren Speicherkapazität auf, usedResult die
des aktuellen Speicherverbrauchs. switchResults tauscht beide Ergebnisse durch die übergebenen
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Parameter aus. Die Ergebnisse sind optional: Werden Messwerte, z. B. der Kapazität, nicht benötigt,
kann das entsprechende Ergebnis einfach auf None gesetzt werden.

Die letzten drei Methoden implementieren die VmListener-Schnittstelle [Jvm]. Dabei wird die Me-
thode monitorStatusChanged nicht verwendet, d. h. die Implementierung ist leer. Diese Methode
wird aufgerufen, wenn sich der Zustand der Überwachungsmonitore geändert hat. monitorsUpdated
fügt neue Messwerte zu den Ergebnissen hinzu. Diese Methode wird aufgerufen, wenn sich die Werte
der Überwachungsmonitore geändert haben. Bricht die Verbindung zur überwachten JVM ab, wird
disconnected aufgerufen, welches die Datenaufzeichnung beendet. Danach kann die betroffene
Instanz der ValueReporter-Klasse nicht mehr verwendet werden. Die Monitore werden alle 10 ms
abgefragt, um eine relativ dichte Messwertmenge zu erhalten, ohne den Fortschritt des Programms
unnötig zu behindern.

A.1.3. Aktionen und Testabläufe

Das folgende Listing zeigt die Definitionen der Traits Action sowie die beiden Spezialisierungen
davon, TypedAction für typisierte Aktionen und UntypedAction für typlose Aktionen.
Listing A.3: Action-Schnittstellen
package common.storage

sealed trait Action[+StateType] {

def apply(t: TaskBase, n: Int, f: Path): Unit

def +>(b: UntypedAction): Action[StateType]

def +>[StateType2 >: StateType](b: TypedAction[StateType2]): Action[StateType2]

def name: String

def results: Iterator[Option[Result]]

}

object Action {

def fold[StateType](seq: Iterable[Action[StateType]]): Action[StateType]

}

trait TypedAction[StateType] extends Action[StateType] {

final override def apply(t: TaskBase, n: Int, f: Path) =

apply(t.asInstanceOf[Task[StateType]], n, f)

def apply(t: Task[StateType], n: Int, f: Path)

final override def +>(b: UntypedAction): TypedAction[StateType]

final override def +>[StateType2 >: StateType](b: TypedAction[StateType2]):

TypedAction[StateType2]

}

trait UntypedAction extends Action[Nothing] {

override def +>(b: UntypedAction): UntypedAction

override def +>[StateType](b: TypedAction[StateType]): TypedAction[StateType]

}

75



A. Anhang

Die wichtigste Methode einer Aktion ist apply. Diese führt die Aktion für den gegebenen Testablauf t,
den Durchlaufparameter n und die für Dateiein- und -ausgaben zu verwendende SKilL-Datei f aus.
Die einzige von TaskBase erbende Klasse ist Task, welche garantiert, dass für eine zugehörige Aktion
der Typparameter übereinstimmt. Daher können typisierte Aktionen auf den gesamten Testablauf
zugreifen, insbesondere den enthaltenen SKilL-Zustand, typlose dagegen nur auf TaskBase. Gäbe
es für alle SkillState-Traits ein gemeinsames Basis-Trait, könnte die TaskBase-Klasse komplett
eingespart werden.

Sollen Aktionen in einem externen Prozess ausgeführt werden, werden sie durch ihre name-Methode
serialisiert. Die entstehende Zeichenfolge wird an den externen Prozess übergeben und dort mithilfe
der Methode stringToAction in StorageTestBase wieder zu Aktionen deserialisiert. Möchte man
eigene Aktionen zur Ausführung in einem externen Prozess definieren, müssen diesen eindeutige
Namen ohne Leerzeichen zugewiesen werden und die Methode stringToAction in der eigenen
Testklasse überschrieben werden. results ist ein Iterator über alle Ergebnisse, die von einer Aktion
verwendet werden, d. h. in die die Aktion schreibt. Diese Methode wird ebenfalls für die externe
Ausführung verwendet.

Die Task-Klasse für Testabläufe ist wie folgt definiert:
Listing A.4: Testablauf-Klassen
package common.storage

sealed abstract class TaskBase(val printer: TaskBase.Printer) {

def reset: Unit

final def startMeasuring(cap: Option[Result], used: Option[Result])

final def stopMeasuring()

protected final def setCount(n: Int)

}

object TaskBase {

sealed trait Printer {

protected[TaskBase] def print(): Unit

protected[TaskBase] def setCount(n: Int): Unit

protected[TaskBase] def setResults(cap: Option[Result], used: Option[Result]): Unit

}

class ConsolePrint extends Printer { ... }

class ResultPrint extends Printer { ... }

object StartStopPrint extends Printer { ... }

}

final class Task[StateType](printMemory: TaskBase.Printer, private val action: Action[StateType])

extends TaskBase(printMemory) {

var state: Option[StateType]

override def reset: Unit

def apply(n: Int, f: Path)

}
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TaskBase ist die Basisklasse aller Testabläufe und bietet eine vom SKilL-Zustand unabhängige Schnitt-
stelle für typlose Aktionen. Dabei ist auch die Verwaltung der Ausgabe über die verschiedenen Drucker
enthalten. Deren Methoden können nicht direkt aufgerufen werden. Stattdessen wird die Ausgabe
mit den Methoden startMeasuring (Beginn der Speichermessung), stopMeasuring (Beenden der
Speichermessung) und setCount (Festlegen des Durchlaufparameters) gesteuert. reset erlaubt das
Zurücksetzen des Zustands state auf den Wert scala.None, was auch dessen Initialwert ist.

Die Task-Klasse ergänzt lediglich den (optionalen) SKilL-Zustand state und die Methode apply, die
die an den Konstruktor übergebene Aktion action ausführt. Genauer setzt sie den Durchlaufpara-
meter n im zugehörigen Drucker mittels setCount und ruft anschließend die apply-Methode der
Aktion auf.
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Glossar

Annotation Eine Referenz, die auf einen beliebigen Benutzertyp verweisen kann. In der ursprüng-
lichen Implementierung einfach eine SkillType-Referenz, in einer SKilL-Datei und der opti-
mierten Implementierung eine reiche Referenz, bestehend aus dem Typ und der SKilL-ID des
Ziels. 27–30, 36, 37, 57, 58, 69, 70

Benutzertyp oder kurz Typ. Nach [Fel13] ein in einer SKilL-Spezifikation deklarierter Typ. In dieser
Arbeit wird der Begriff weitergehend auch für Typen verwendet, die aus einer SKilL-Datei
gelesen wurden. 17–19, 23, 24, 27–30, 32, 79, 80

Generation Auf der JVM ist der Heap in mehrere sogenannte Generationen aufgeteilt. Die verwen-
dete JVM teilt den Heap in eine junge Generation, eine alte Generation und eine permanente
Generation. Die junge Generation enthält neu erzeugte Objekte und hat eine relativ kleine Grö-
ße, die alte enthält Objekte, die einige Garbage Collections in der jungen Generation überlebt
haben sowie neu erzeugte Objekte, die zu groß für die junge Generation sind [GCT]. 20, 21, 40

Scala-Anbindung Die SKilL-Anbindung für die Programmiersprache Scala. 7–10, 18, 19, 23, 39, 69,
70

SKilL-Anbindung Ein Generator für SKilL-Spezifikationen, der Code für eine bestimmte Program-
miersprache erzeugt. Dieser muss mindestens die in [Fel13] definierte Kernsprache unterstützen.
Oft wird mit SKilL-Anbindung auch der generierte Code bezeichnet. Ist nicht aus dem Kontext
ersichtlich, um welche Bedeutung es sich handelt, ist diese explizit angegeben. 7, 9, 10, 17, 18,
49, 79

SKilL-Datei Die serialisierte Form von Daten nach [Fel13], die von einer generierten SKilL-
Anbindung geschrieben und gelesen werden. Es handelt sich hierbei um ein binäres Dateiformat,
meist mit der Dateiendung .sf. 7, 9, 17, 19, 20, 23, 24, 26, 27, 33, 35, 38, 46, 47, 69, 70, 76, 79, 80

SKilL-ID Eine Zahl, die ein Objekt bzw. einen Datensatz innerhalb eines Basispools eindeutig iden-
tifiziert. Dabei werden zwei Typen unterschieden: SKilL-IDs in der binären SKilL-Datei und
SKilL-IDs in der generierten SKilL-Anbindung. 23, 25–28, 31–37, 69, 79

SKilL-Spezifikation Eine der in [Fel13] beschriebenen Grammatik entsprechende Datei, meistens
mit der Dateiendung .skill. 7, 17, 18, 23, 24, 26, 27, 29, 48, 49, 51, 69, 79

SKilL-Zustand Repräsentation einer SKilL-Datei im Code. Bietet Möglichkeiten, auf gelesene Daten
zuzugreifen, neue Objekte im Zustand zu erzeugen und einen Zustand in eine SKilL-Datei zu
serialisieren. 19, 23–26, 28, 30, 35, 43–47, 50, 76, 77
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Typlöschung (type erasure) bedeutet, dass beim Übersetzen eines generischen Typs alle generi-
schen Parameter durch konkrete Klassen ersetzt werden. Einerseits führt das dazu, dass eine
generische Klasse wie eine nicht-generische Klasse nur in einer einzigen Variante kompiliert
wird. Andererseits stehen keine Informationen über die eingesetzten Typparameter bei der
Verwendung zur Verfügung. [O+, § 3.7] [Ull11]. 29, 30, 38, 67, 70

unbekannter Typ Die Teilmenge der Benutzertypen, die ausschließlich aus einer SKilL-Datei gelesen
wurden, d. h. für die kein spezialisierter Code generiert wurde. 17–19, 25, 71

zusammengesetzter Typ Einer der vordefinierten SKilL-Typen X[n], X[], list <X>, set<X> und
map<X , Y , . . . >, wobei X und Y vordefinierte, nicht zusammengesetzte SKilL-Typen oder
Benutzertypen sind, n eine natürliche Zahl ist undmapmindestens zwei Typargumente enthält
[Fel13]. 17, 18, 28–31, 37, 38, 51, 57, 66, 67, 70

Abkürzungsverzeichnis

JVM Java Virtual Machine. 7, 8, 10, 11, 20, 25, 28, 30, 38–40, 44, 46, 51, 54, 69, 74, 75

SKilL Serialization Killer Language. 3, 7, 8, 10, 11, 17, 18, 29, 66
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