Institut fiir Architektur von Anwendungssystemen
Universitat Stuttgart

Universitatsstrafie 38
D-70569 Stuttgart

Masterarbeit

Aktualisierung und
Anderungsweitergabe in
Workflow-Choreographien

Markus Nemet

Studiengang;: Informatik

Priifer/in: Prof. Dr. Dr. h. c. Frank Leymann
Betreuer/in: M.Sc. Wirt.-Inf. Andreas Weif3
Beginn am: 22. November 2016

Beendet am: 24. Mai 2017

CR-Nummer: D.2.11,G.2.2, H.4.1,1.7.0

Kurzfassung

Das Forschungsfeld e-Science beschéftigt sich unter anderem mit Simulationen in der Wissen-
schaft. Eine Strategie besteht darin, die etablierten Standards, aus der Geschaftswelt, auf die
Anforderungen von Wissenschaftlern, fiir Scientific-Workflows, zu iibertragen.

Die angebotene Werkzeuge fiir Wissenschaftler sollten das Modellieren mit der Trial and
Error Methode unterstiitzen, da dies eine natiirliche Vorgehensweise bei der Erstellung von
Experimenten darstellt. Die Experimente werden als Workflow-Choreographien beschrieben.

Diese Arbeit beschaftigt sich damit, wie Aktualisierungen von Workflow-Choreographien
an die beteiligten Partner propagiert und gleichzeitig diese Aktualisierungen automatisch
in das bestehende Modell des Partners iibernommen werden kénnen. Dazu wird ein Model-
Integration-Konzept erarbeitet und anschlieend in einem Proof of Concept die Funktionalitat
innerhalb eines wissenschaftlichen Prototyps bereitgestellt.

Inhaltsverzeichnis

Abbildungsverzeichnis

Verzeichnis der Listings

Verzeichnis der Algorithmen

1.

Einleitung

1.1.
1.2.
1.3.
1.4.
1.5.

Motivation e
Szenario e e e
Hintergrund
Ziel der Arbeit
Gliederung

Grundlagen

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

Workflow-Management
Kompositionen L
Modellierung
Technologien L
Notation e
Verarbeitung

Verwandte Arbeiten

3.1.
3.2
3.3.

Business Process Management L.
Data Engineering L
Software Engineering L

Anforderungsanalyse

4.1.
4.2.
4.3.
4.4.

Aktualisierung und Anderungsweitergabe
Fusionvon Modellen
Anderungsmuster
Artefakte

11

13
14
15
19
19
20

21
21
23
24
25
28
29

31
31
35
36

5. Konzept
5.1. Anforderungen
52. Annahmen
5.3. Vergleichen und Verschmelzen
54. Beispiel
5.5. Algorithmus

6. Prototyp
6.1. BPEL4Chor Designer
6.2. Verwendung
6.3. Architektur.
6.4. Eigenschaften
6.5. ANPasSUNGEN ottt e e e
6.6. Beurteilung

7. Implementierung

7.1. Komponenten e
7.2. JDOM Bibliothek
7.3. IntegrierungindenPrototyp L oL

8. Evaluierung
8.1. Anforderungen
8.2. Funktionsweise
83. Schwiachen
8.4. Laufzeitabschatzung

9. Zusammenfassung und Ausblick

9.1. Zusammenfassung
9.2. Ausblick

A. Klassifizierung des Match und Merge-Operators

B. Typische Referenzpunkte
B.1. BPEL-Datei. e
B.2. Deployment-Datei
B.3. WSDL-Datei e

C. Abkilirzungsverzeichnis

Literaturverzeichnis

49
49
50
51
53
55

61
61
62
63
64
64
65

67
67
70
72

77
77
78
79
80

81
81
32

85

87
87
87
88

89

91

Abbildungsverzeichnis

1.1.
1.2.
1.3.
1.4.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

4.1.

4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

5.1.
5.2.

6.1.
6.2.
6.3.

7.1.
7.2.

8.1.

Vorgehen beim Fusionieren zweier Modelle 15
Beschreibung einer Festkorpersimulation 16
Modellierte Choreographie innerhalb des Prototyps 17
Verfeinerte Orchestrierung des MD Teilnehmers 18
Die drei Workflow-Dimensionen 22
Lebenszyklus von a) Business Workflows und b) Scientific Workflows 23
Orchestrierung und Choreographie 24
Top-down Modellierungsansatz mit Beispiel 25
Graphische Darstellung einer Orchestrierung mit BPMN 26
BPEL4Chor Artefakte 27
XML-Datei und DOM-Knotenbaum 30
Aktualisierung der Choreographie und Anderungsweitergabe an die betroffe-

nen Orchestrierungen L L 38
Evolution einer Version durch Ableitung 39
Ablaufstruktur fiir das Modell Anderungsmanagement 41
Knoten hinzufiigen und entfernen 45
Knoten ersetzen und verschieben 46
GruppierungenvonKnoten oo 000 000 47
Graph zu XML Ubersetzung i 48
GraphmitEbenen 48
Fusionieren zweier Modelle mit Hilfe von Versions-Beziehungen 52
Das neue Modell (Links) und altes Modell (Rechts), wird zum fusionierten

Modell (Mitte) vereinigt 54
Von der Problembeschreibung bis zum ausfithrbaren BPEL-Prozess 62
Erweiterung um ein Merging-Modul 63
Optionsseite fiir den Transformation Assistenten 65
Komponentendiagramm der Implementierung 68
EMF Compare Funktionsweise 75

Aktualisierung und Anderungsweitergabe von Choreographie zur Orchestrierung 79

Verzeichnis der Listings

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.

Match-Strategy Interface Lo L 68
Merge-Strategy Interface Lo Lo L L 69
Laden eins Modells mit dem DocumentBuilder 71
Konvertierung eines DOM-Baums zu einem JDOM-Baum 71
Konvertierung eines JDOM-Baums zu einem DOM-Baum 71
Erganzungen im existierenden TransformChoreographyHandler 73

Verzeichnis der Algorithmen

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.

Referenzpunkte werden identifiziert 56
Identifizierung der Aktualisierungen 57
Identifizierung der Verfeinerungen. 57
Finde Referenzpunkt fir Knoten 58
Verfeinerungen mit Skelett verbinden 58
Fusionieren von Attributeno o Lo oL 59
Aktualisierung eines Modellso oo L 60

11

1. Einleitung

In allen Bereichen finden inzwischen computergestiitzte Arbeiten statt. Der Computer dient
nicht nur als Unterstiitzung oder zur Effizienzsteigerung, sondern auch dazu Ablaufe zu
dokumentieren, analysieren und zu automatisieren. Eine Variante Arbeitsablaufe mit Hilfe
von Computern zu modellieren sind Workflows. Diese Workflows konnen mit Hife eines
Workflow-Management-Systeme (WfMS) ausgefithrt und verwaltet werden [LR00].

In der Geschaftswelt haben sich Workflows und Workflow-Management etabliert [BG07],
dadurch entwickelten sich eine Reihe von Standards und Konzepten [Wee+05][Whi04][KL08].
Es liegt nahe die bewéhrten Standards und Konzepte [Aal12] auch fiir andere Doménen,
ausserhalb der Business-Workflows, einzusetzen [SHK12]. So wird versucht die gereiften
Standards aufzugreiffen und fiir wissenschaftliche Workflows, sogennante Scientific-Workflows,
zu verwenden [SKD10].

Ein Herausforderung, sowohl in Scientific-Workflows als auch in Business-Workflows, ist es
existierende Workflow-Modelle bequem anzupassen. Ein wichtiger Aspekt fiir Unternehmen
ist das reibungslose Modellieren und Ausfiithren von Prozessen [RWRO06b]. Ein Unternehmen,
welches schnell seine Prozesse anpassen kann, hat enorme wirtschaftliche Vorteile [RWR06a],
da bei der Uberarbeitung eines Workflow-Modells oftmals viele Experten und Personenstunden
involviert sind [LR+10]. Diese Flexibilitit erlaubt es Unternehmen beispielsweise sich auf neue
Geschéftspartner mit anderen Vorgehensweisen einzustellen oder auf Einwirkungen von auf3en,
wie Gesetzesdnderungen, reagieren zu konnen.

Eine Zusammenarbeit mit Partnern kann in der Welt der Workflows mit Hilfe einer Workflow-
Choreographie modelliert werden. Innerhalb dieser Choreographie ist zum Beispiel der Nach-
richtenaustausch zwischen den Teilnehmern spezifiziert. Wird die Choreographie geandert,
ist es gegebenenfalls erforderlich die Choreographie-Teilnehmer iiber die Anderungen zu
informieren, damit weiterhin eine Kommunikation und damit eine Zusammenarbeit zwischen
den Teilnehmern moglich ist.

Im Bereich des e-Science werden Scientific-Workflows fiir die Modellierung und Ausfithrung
von Simulationen verwendet [RSM11]. An die Werkzeuge der Scientific-Workflows bestehen
jedoch andere Anforderungen im Vergleich zu Business-Workflows [BG07]. Das resultiert nicht
nur aus den unterschiedlichen Verwendungsweisen [SKL10]. Daher sind eine Reihe neuer
Workflow-Management-Systeme entstanden, welche sich an die Bediirfnisse von Wissen-
schaftler richten [Lud+06][Tay+07][Hul+06]. Innerhalb dieser Systeme kdnnen Simulationen
modelliert und ausgefithrt werden [KR][SK10].

13

1. Einleitung

Die Universitat Stuttgart entwickelt einen Prototyp, in dem wissenschaftliche Workflows
modellierbar und ausfithrbar sind. Dafiir werden die Standards und Konzepte der Geschaftswelt
aufgriffen und zu diesem Zwecke eingesetzt.

In dieser Arbeit werden Aktualisierungen der Workflow-Choreographie betrachtet und wie
diese Anderungen an die betroffenen Choreographie-Teilnehmer mitgeteilt werden konnen.
Die Anderungen sollen automatisch in den Workflow der Choreographie-Teilnehmer integriert
werden. Dazu wird ein Model-Integration-Konzept erarbeitet und anschlieffend in einem Proof
of Concept die Funktionalitat innerhalb des wissenschaftlichen Prototyps bereitgestellt.

1.1. Motivation

Mit Hilfe von Scientific-Workflow Werkzeugen konnen Wissenschaftler bei der Modellierung,
Durchfithrung und Dokumentation ihrer Experimente unterstiitzt werden. Die Workflow-
Management-Umgebungen sind dafiir auf die Bediirfnisse der Wissenschaftler abgestimmt,
damit sich diese voll und ganz auf ihre Kernkompetenzen konzentrieren konnen.

An der Universitat Stuttgart wird ein Prototyp entwickelt, der einfaches Modellieren und Aus-
fihren von Scientific-Workflows ermoglichen soll. Die Modellierung, innerhalb des Prototyps,
findet mit Hilfe des Konzepts der Workflow-Choreographie statt.

Ein wichtiger Aspekt des Prototyps ist die flexible und unkomplizierte Modellierung, welche
bereitgestellt werden soll. Hierzu kann per drag and drop ein Experiment iiber die grafische
Oberflache erstellt werden. Weiter sollen Simulationen mit Hilfe der trial and error Methode
modellierbar sein, da typischerweise in der Wissenschaft das gewiinschte Ergebnis bekannt,
aber der Weg dorthin unerforscht ist.

Durch die trial and error Methode entwickelt sich ein Modell schrittweise weiter. Hierbei entste-
hen mehrere dhnliche Versionen eines Modells. Zwei Modelle zu vergleichen und Passagen mit
Unterschieden festzustellen, um diese in ein neues Modell zu iibernehmen, ist zeitaufwendig
und behindert den Arbeitsfluss (Abbildung 1.1).

Deshalb ist es notwendig, den Wissenschaftlern eine praktikable Losung bereitzustellen, die
das Vergleichen und Verschmelzen zweier Modelle problemlos erméglicht. Dies beinhaltet
Aktualisierungen am Modell zu erkennen und diese gegebenenfalls an den betroffenen Stellen
einzuarbeiten. Im besten Fall passiert das automatisch und ohne weiteres Zutun des Wissen-
schaftlers. So soll eine Verbesserung des Arbeitsablaufs bei der Modellierung entstehen, die
Fehlervermeidung fordert und Arbeitszeit einspart.

14

1.2. Szenario

ModellA -———————— Modell B

verschmelzen

Fusioniertes
Modell

Abbildung 1.1.: Vorgehen beim Fusionieren zweier Modelle

1.2. Szenario

Das aktuelle Modellieren mit dem Prototyp wird im folgenden Szenario beschrieben. Zunachst
ist eine initiale Modellierung des Experiments erforderlich, welche meist aus einer textuellen
Beschreibung hervorgeht. Daraus entsteht ein Modell, welches gerade so viele Informationen
beinhaltet, dass dieses ausgefithrt und Ergebnisse betrachtet werden kénnen. Der Wissen-
schaftler modifiziert dieses Modell dann weiter, bis das gewiinschte Ergebnis vorliegt. Dieser
Ablauf wird beliebig oft wiederholt.

Im Folgenden wird ein Modell betrachtet, welches in vorherigen Arbeiten [WK16][Hin14][WKM]
entstanden ist. Das Modell zeigt ein Experiment in Form einer Simulation. Innerhalb der Simu-
lation werden Festkorper physikalischen Vorgéangen wie Krafteinwirkung und thermischer
Alterung ausgesetzt, um spater das Materialverhalten beurteilen zu kénnen. Die Festkorpersi-
mulation besteht aus mehreren Simulationen, die zusammen das Experiment bilden. Es werden
fiir dieses Beispiel zwei Simulationen herausgegriffen, um die Zusammenarbeit zu demonstrie-
ren. Betrachtet wird die Monte-Carlo-Simulation (KMC) und die Molekulardynamik-Simulation
(MD). Sie sind Teilnehmer der Choreographie.

Diese zwei Simulationen tauschen wihrend des Experimentes Nachrichten miteinander aus.
Ausgehend von der KMC-Simulation wird ein Zwischenstand an die MD-Simulation gesendet.
Die MD-Simulation bearbeitet den empfangenen Zwischenstand und schickt das Ergebnis
zuriick. In Abbildung 1.2a ist der Nachrichtenaustausch innerhalb des Ablaufdiagramms dar-
gestellt. Das Senden einer Nachricht wird durch einen ausgefiillten und das Empfangen durch
einen leeren Brief symbolisiert. In diesem ersten Versuch wird ein einzelner Zwischenstand
ausgetauscht.

Dem Wissenschaftler gentigt dieser einzelne Zwischenstand nicht fiir eine Beurteilung, er
mochte mehr Details. Deshalb entscheidet er im nichsten Versuch mehrere Zwischenstande
analysieren zu lassen. Er erweitert das Modell so, dass die KMC-Simulation mehrere Zwi-
schenstdnde von der MD-Simulation berechnen léasst. Diese Modifikation ist in Abbildung 1.2b

15

1. Einleitung

S send Snapshot receive Result
[
=] runSimulation analyseSnapshot createPlot
iA :
g : :
b= : H
W W
- b P E— t
L % LY
- .
Snapshot - . Result
W W
Ly, O
5 configureSimulation J—I
E
=
e |
7 i . send Result
7 | receive Snapshot 0 compileSourceCode
= compile necessary?
no
(a) Erster Versuch
s N ™
% send Snapshot receive Result
m
=
£ runSimulation analyseSnapshot —- createPlot —»O
=
L= 5 i
2 [H : :
. .
L] L]
i k.
\. 0 e UL IR O y.
+ + b
Y| Snapshot S Result
5 configureSimulation J—I
3
=
= |
e i ’ send Result
u receive Snapshot Q compileSourceCode
= compile necessary? o

(b) Zweiter Versuch

Abbildung 1.2.: Beschreibung einer Festkérpersimulation

dargestellt und zeigt, wie ausgehend von der KMC-Simulation mehrere Nachrichten gesendet
und empfangen werden. Dies ist durch ein Wiederholungssymbol dargestellt.

Diese theoretische Betrachtung muss innerhalb des Prototyps umgesetzt werden. Die Durch-
fihrung eines Experiments kann mit Hilfe des Prototyps wie folgt umgesetzt werden: Die
Modellierung der Simulation entsteht grafisch als Choreographie innerhalb des ChorDesigners.
Hierbei wird lediglich ein rudimentares Modell und die Kommunikationsaktivitaten der Teil-

16

1.2. Szenario

4 KMCSimulation

2 KMCSimulation

4 MDSimulation
» main

& startSimulation & MDSimulation

?runKMCSlmulatlon = main

& configureSimulation P & | receiveSnapshot
& | callbackFrom KMCSimulationService T | flow
%4 foreachSnapshot & ifCompilationlsNecessary & configureSimulation
scope
* sequence sequence
5’ analyseSnapshot 5’ compileSourceCode
?se\eclSr\apshot < sendSnapshaotMessagelink
@ ifSnapshotSelected & unMDSimulation
@ | callbackFromMDSimulationService

T sequence -te1a-d & sendResult

& sendSnapshot

o) while

- sequence

4 sendResultsMessadelink
& receiveResult 4

5’ createPlot

Abbildung 1.3.: Modellierte Choreographie innerhalb des Prototyps

nehmer modelliert. Das entstandene Diagramm wird anschlieend so transformiert, dass jeder
Teilnehmer einen Workflow in Form einer Orchestrierung erhalt. Die Orchestrierung muss
dann fir jeden Teilnehmer mit Geschéftslogik verfeinert werden. Dadurch wird das Modell
ausfithrbar. Das Modell kann schliefllich simuliert und die Ergebnisse vom Wissenschaftler
analysiert werden. Der Wissenschaftler trifft Entscheidungen aufgrund der Ergebnisse und
modifiziert das Modell gegebenenfalls.

Eine detailliertere Ansicht der modellierten Festkorpersimulation, innerhalb des Prototyps, ist
in Abbildung 1.3 zu sehen. Hier sind in der Choreographie zuséatzlich, iiber die Kommunikation
hinaus, weitere Aktivitdten und Ablaufstrukturen fiir jeden Teilnehmer erganzt worden. Der
Nachrichtenaustausch wird tiber die Pfeile angezeigt. Die KMC-Simulation ist auf der linken
Seite zu sehen und die MD-Simulation auf der rechten Seite.

Das gezeigte Modell beschreibt die Interaktion zwischen den Teilnehmern und die Struktur
des Experiments. Es ist noch nicht ausfithrbar und muss zunéchst von jedem Teilnehmer
individuell verfeinert werden. Dazu erhélt jeder Teilnehmer seine Verhaltensbeschreibung aus
diesem Choreographie-Modell. Diese Verhaltensbeschreibung wird aus der Choreographie
heraus generiert. Die Beschreibung des eigenen Ablaufs wird Orchestrierung genannt. Jeder
Teilnehmer fligt weitere Elemente in seine Orchestrierung ein, damit diese ausfithrbar wird.

17

1. Einleitung

= main

& | receiveSnapshot

Z| flow

PR
& ifCompilationlshecessary = iz

s

ifCompilationlsNecessary & . Simulati
configureSimulation

5 sequence

‘= prepareCompilation

& compileSourceCode

= prepareRunMDSimulation
&runMDSimulation
e | callbackFromMDSimulationService
= prepareResult

&sendResult

@

Abbildung 1.4.: Verfeinerte Orchestrierung des MD Teilnehmers

Sind alle Orchestrierungen verfeinert und ausfithrbar, kann die Choreographie ausgefiihrt
werden.

Représentativ sind in Abbildung 1.4 die Verfeinerung der MD-Simulation Orchestrierung durch
weitere Aktivitaten zu sehen. In diesem Fall wurden bendtigte Vorbereitungsschritte hinzuge-
fugt, beispielsweise die prepareRunMDSimulation Aktivitat. Diese manuellen Verfeinerungen
missen aktuell bei jedem neuen Versuchsmodell erneut eingearbeitet werden, da sie durch
eine erneute Generierung der Orchestrierung tiberschrieben werden.

Entwickelt sich das Choreographie-Modell weiter und erhalt Modifizierungen, ist jedes Mal
eine erneute Generierung der Teilnehmer-Orchestrierungen notwendig. Die Modifizierungen
konnen dabei einfache Verschiebungen der Aktivitdten, bis hin zu komplexen Ablaufinderun-
gen umfassen.

Die Teilnehmer erhalten die neue Version der Orchestrierung. Das hat zur Folge, dass die
Verfeinerungen der Teilnehmer erneut in das neue Modell hinzugefiigt oder angepasst werden
miissen, obwohl diese dem alten Modell dhnlich sind. Das Anpassen der Verfeinerungen
bedeutet jedes Mal einen zeitlichen Aufwand. Deshalb ist ein automatisches Integrieren des
alten verfeinerten Modells in das neue noch unverfeinerte Modell eine grof3e Erleichterung,
welche sonst miifig und fehleranfillig mit copy and paste erledigt werden miisste.

18

1.3. Hintergrund

1.3. Hintergrund

Das Institut fiir Architektur von Anwendungssystemen (IAAS) ist Teil des Exzellenzcluster
»Simulation Technology“ (SimTech), welches im Rahmen der Exzellenzinitiative von Bund und
Landern (DFG) geférdert wird'. Eines der Unterprojekte beschiftigt sich mit der Modellierung
von Multiskalen- und Multiphysiksimulationen?®. In diesem Rahmen entsteht unter anderem
eine Anwendung, welche Wissenschaftler bei der Modellierung von Simulationen unterstiitzen
soll. Eine Anforderung an diese Anwendung ist, dass die Modellierung der Simulationen
mit Hilfe der trial and error Methode durchgefiihrt werden kann, da dies als eine natiirliche
Vorgehensweise bei der Durchfithrung von Experimenten angesehen wird.

1.4. Ziel der Arbeit

Aktuell wird von dem Prototyp fiir jede gespeicherte Anderung eine neue Modell-Revision
angelegt oder das bestehende alte Modell iberschrieben. Anpassungen am bestehenden al-
ten Modell werden entweder im Falle einer neuen Revision nicht iibernommen oder durch
Uberschreiben verworfen. Es sind weitere manuelle Schritte notwendig, um die Anderungen
aus beiden Modellen in ein gemeinsames Modell zu tiberfithren. Das handische Verschmelzen
beider Modelle ist ein aufwendiger, fehleranfilliger Vorgang. Zudem behindert es den trial and
error Arbeitsablauf, da diese Schritte fiir jeden Versuch erneut vorgenommen werden miissen.
Deshalb soll das Verschmelzen beider Modelle automatisiert werden.

Um die trial and error Methode besser zu unterstiitzen, muss die existierende Transformation,
aus dem Choreographie-Modell zu den einzelnen Teilnehmer-Workflows, erweitert werden. Die
Erweiterung umfasst die Weitergabe und Einarbeitung der Anderungen in bereits bestehende
und verfeinerte Workflows der Teilnehmer. Dabei sollen transitive Anderungen beachtet und
entsprechend an betroffene Choreographie-Teilnehmer propagiert werden. Dazu soll zunéchst
ein Model-Integration-Konzept fiir die Integration und Weitergabe der Aktualisierungen erarbei-
tet werden. Spéter soll die Funktionalitét in einem Proof of Concept im Prototyp implementiert
und anschlieffend evaluiert werden.

http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/
2http://www.simtech.uni-stuttgart.de/forschung/pn/PNé/index.html

19

1. Einleitung

1.5. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 1 — Einleitung: Es wird mit einer Hinfithrung zum Thema begonnen, welche eine
Ubersicht tiber den Themenkomplex bietet. Darauf folgt die Motivation dieser Arbeit,
sowie ein Beispielszenario, in der die Ergebnisse dieser Arbeit Anwendung finden kdnnen.
Des weiteren wird der wissenschaftlichen Rahmen genannt und zuletzt die Ziele der
Arbeit aufgezeigt.

Kapitel 2 — Grundlagen Die fiir diese Arbeit erforderlichen Begriffe, Definitionen und Kon-
zepte werden in diesem Kapitel erlautert. Zusétzlich wird ein Einblick auf die grundle-
genden Technologien ermdglicht.

Kapitel 3 — Verwandte Arbeiten Verschiedene Publikationen beschiftigen sich mit dem be-
arbeiteten Themenkomplex. Hier werden exemplarisch einige relevante Arbeiten vor-
gestellt. Sie dienen dazu Unterschiede und Gemeinsamkeiten darzustellen, sowie einen
weiteren Einblick in das Thema zu gewéhren.

Kapitel 4 — Anforderungsanalyse Basierend auf den Grundlagen und verwandten Arbeiten
wird das Thema genauer untersucht. Zudem wird die weitere Vorgehensweise erarbeitet.

Kapitel 5 — Konzept Die Anforderungen und Annahmen werden erdrtert. Die getroffenen
Entscheidungen werden festgehalten und Algorithmen fiir die Realisierung vorgeschla-
gen.

Kapitel 6 — Prototyp Der wissenschaftliche Prototyp wird prasentiert. Zudem wird die exis-
tierende Architektur analysiert und benétigte Anpassungen fiir die Umsetzung des
Konzeptes vorgestellt.

Kapitel 7 — Implementierung Das vorgestellte Konzept wird im wissenschaftlichen Prototyp
implementiert. Hierzu werden die entwickelten Komponenten betrachtet und Details
der Implementierung erldutert.

Kapitel 8 — Evaluierung Die Algorithmen werden auf die Anforderungen gepriift. Danach
wird eine kurze Laufzeitanalyse durchgefiihrt.

Kapitel 9 — Zusammenfassung und Ausblick Die Ergebnisse der Arbeit werden zusam-
mengefasst und abschlieffend beurteilt. Danach wird ein Ausblick auf weiterfithrende
Forschungen in Bezug auf mogliche Verbesserungen und Weiterentwicklungen gegeben.

Hinweis Diese Arbeit ist auf Deutsch verfasst, dennoch werden Fachbegriffe aus dem Engli-
schen iibernommen, um ein gemeinsames Vokabular sicherzustellen und weitere Recherchen
zu vereinfachen. Oftmals ist auch keine addquate Ubersetzung vorhanden, weshalb auf die
englische Bezeichnung zuriickgegriffen wird.

20

2. Grundlagen

In der vorhergehenden Einleitung wurde die Motivation dieser Arbeit beschrieben und mittels
einem Beispiel Szenario begriindet. Zuséatzlich wurden die Ziele dieser Arbeit vorgestellt.

In diesen Kapitel werden Grundlagen, sowie Definitionen, Konzepte und Technologien, welche
fiir diese Arbeit von Relevanz sind, préasentiert.

Begonnen wird in Abschnitt 2.1 mit einer kurzen Einfithrung zu Workflows und in das
Workflow-Management. Darauf folgt in Abschnitt 2.2 die Gegentiberstellung von Workflow
Kompositionen. AnschlieBend wird in Abschnitt 2.3 ein Einblick auf die Workflow Modellie-
rung gegeben. In Abschnitt 2.4 wird auf konkrete Technologien eingegangen und in Abschnitt
2.5 die verwendete Notationen fiir Workflows vorgestellt. Abschlielend wird in Abschnitt 2.6
eine Verarbeitungsmethode fiir Workflow-Modelle beschrieben.

2.1. Workflow-Management

Aus dem Bediirfnis heraus Arbeitsablaufe computergestiitzt zu verwalten und zu realisieren
entstanden Systeme und Hilfsmittel um Arbeitsablaufe auf dem Computer durchzufithren
[Gan+07]. Aus diesem Bediirfnis heraus resultierten Workflows, welche unter anderem spezifi-
ziert, analysiert, modelliert und optimiert werden miissen. Mit diesem Thema beschaftigt sich
das Workflow-Management.

Das Feld des Workflow-Managements ,,[...] umfasst alle Aufgaben, die bei der Modellierung,
Spezifikation, Simulation sowie bei der Ausfithrung und Steuerung der Workflows erfullt
werden miissen® [LLS10].

Ein Workflow besteht aus drei Dimensionen (Abbildung 2.1). Eine Dimension beschreibt,
welche Aktivitaten erledigt werden miissen (Was-Dimension), ein weiterer Aspekt, welche Per-
sonen oder Programme diese erledigen (Wer-Dimension), und zuletzt, welche I'T-Infrastruktur
verwendet wird (Womit-Dimension) [LR00].

Eine Moglichkeit der Reprasentation der Prozesslogik ist in der Form eines Graphen, dieser
beschreibt die Abarbeitungsfolge von Aktivitaten. In Abbildung 2.1 ist eine schematische
Darstellung eines Prozessgraphen(Was-Dimension) zu sehen.

21

2. Grundlagen

Prozesslogik

@E@E—-‘

was?

Organisation

womit?

L1111
i -6
TTTTT

Infrastruktur

Abbildung 2.1.: Die drei Workflow-Dimensionen nach [LR00]

Business-Workflow und Scientific-Workflow Workflows werden durch das zu erreichen-
de Ziel unterschieden [RSM11]. Fiir die vorliegende Arbeit sind zwei Workflow Typen rele-
vant.

Zum einen existieren die Business Workflows mit Workflow-Umgebungen, die auf Geschafts-
prozesse und deren Anforderungen spezialisiert sind. Hierzu zahlt das Automatisieren von
Geschiftsprozessen innerhalb eines Unternehmens. In Abbildung 2.2 (a) ist der Lebenszy-
klus eines Business Workflows zu sehen. Dieser besteht aus mehreren Phasen, welche von
unterschiedlichen Personen ausgefiithrt und mit unterschiedlichen Werkzeugen durchlaufen
wird.

Zum anderen gibt es die Scientific-Workflows, welche auf die Bediirfnisse von Wissenschaftlern
zugeschnitten sind. In Abbildung 2.2 (b) ist der Lebenszyklus eines Scientific-Workflows
abgebildet. Hier werden die Phasen von einem Wissenschaftler selbstandig durchlaufen. Dieser
verwendet ein Werkzeug das auf seine Anforderungen angepasst ist, um sich ganz auf seine
Kernkompetenzen konzentrieren zu konnen. Als eine einfach zu benutzende Software, zur
Unterstiitzung in allen Phasen, wurde das Mayflower-Framework [SHK12] entwickelt.

22

2.2. Kompositionen

1
I]
i Workffow |

Legend 1 Activity [Meodeling Modelss §
1 Moaitori |
]
Phase (S U R B SIS, -
i ey sl .
User 3 | Workflow Inte- | Scientist
V instance gration 1
1 panit

Adminfstrator
{IT specialist) 1
|

1 IT specialist
1

1

| Client/Employee 1
1

Workflow Engine Model-as-you-ga Framework

Abbildung 2.2.: Lebenszyklus von a) Business Workflows und b) Scientific Workflows
[SHK12][WK14]

2.2. Kompositionen

Es existieren zwei Ansatze fiir die Komposition von Aktivitaten im Rahmen eines Workflows.
Sind die Aktivititen aus der Sicht eines Teilnehmers beschrieben und hat dieser alleinige
Kontrolle tiber samtliche Aktivitaten, dann handelt es sich um eine Orchestrierung. Inner-
halb der Orchestrierung existiert ein zentraler Koordinator. Zur Veranschaulichung kann ein
Orchester herangezogen werden. Der Dirigent, repréasentativ fiir die zentrale Steuereinheit
und Koordination, leitet das Ensemble durch das Musikstiick, welches stellvertretend fiir die
Aktivitaten und den Prozess stehen.

Interagieren hingegen mehrere Teilnehmer gleichwertig miteinander, das heif3t ohne zen-
tralen Koordinator, wird von einer Choreographie gesprochen. Eine Choreographie umfasst
mindestens zwei Teilnehmer. Es ist durchaus moglich, dass ein Teilnehmer in mehreren Cho-
reographien gleichzeitig involviert ist. Um sich eine Choreographie vorzustellen greift die
Analogie eines gemeinsamen Tanzes. Alle Teilnehmer wollen ein gemeinsames Ziel erreichen.
Um dieses Ziel zu erreichen muss sich auf ein Folge von Interaktionen geeinigt werden.

In Abbildung 2.3 wird der Zusammenhang zwischen Orchestrierung und Choreographie
verdeutlicht. Die Orchestrierung legt den Fokus auf das interne Verhalten und wird daher auch
lokale Sicht genannt. Hingegen fokussiert sich die Choreographie auf die Kommunikation
der Teilnehmer und bietet so eine globale Sicht auf den Prozess. In der globalen Sicht sind die
Aktivitaten zur Kommunikation notwendigerweise fiir den Partner sichtbar. So verbinden die
Paare invoke, receive und reply, receive die beiden Orchestrierungen miteinander.

23

Business specialist
Business analyst (a)
- - X ------- T Lo YW S

Execution and '
Monitoring . ’

2. Grundlagen

Prozess A Prozess B

[Choreographie 1

-K =

recéive df— — — — — — — — — — — — — — reply

Orchestrierung Orchestrierung

Abbildung 2.3.: Orchestrierung und Choreographie nach [Wee+05]

Eine Choreographie kann auch als Vertrag zwischen den Teilnehmern interpretiert werden, in
dem sich die Teilnehmer auf den Kommunikationsablauf geeinigt haben.

2.3. Modellierung

Bei der Modellierung von Workflow Modellen wird typischerweise entweder mit der Top-down
oder Bottom-up Methode vorgegangen. Wird die Top-down Methode verwendet, wird zunéchst
von oben mit einem allgemeinen Modell begonnen und dieses nach unten immer detaillierter
spezifiziert.

Fir die Modellierung einer Choreographie nach der Top-down Methode hat dies folgende
Bedeutung (Abbildung 2.4): Zunéchst wird mit einer Analyse des Problems begonnen. Diese
umfasst unter anderem das Herausfinden beteiligter Choreographie-Teilnehmer und die not-
wendige Kommunikation untereinander. Aus der Analyse entsteht dann ein Choreographie
Modell, welches die Teilnehmer und die Konversation, das heif3t die Kommunikationsaktivita-
ten jedes Teilnehmers, enthalt. Dieses Modell wird dann automatisch in abstrakte Workflows
transformiert. Jeder Teilnehmer erhalt einen abstrakten Workflow, welcher nur die eigenen
Kommunikationsaktivitidten beinhaltet. Der abstrakte Workflow ist noch nicht ausfithrbar
und muss fiir jeden Teilnehmer mit den eigentlichen Arbeitsschritten verfeinert werden. So-
bald der Workflow vollstdndig verfeinert wurde besitzt jeder Teilnehmer eine ausfithrbare
Orchestrierung. Wird das Modell hingegen Bottom-up konstruiert, werden die Schritte in die
entgegengesetzte Richtung abgearbeitet. Zuerst wird mit der Modellierung der einzelnen Or-
chestrierungen begonnen. Aus den einzelnen Orchestrierungen wird dann eine Choreographie
generiert.

24

2.4. Technologien

| Top-down >

I'\.-::ag:elle Modﬁl_ﬁeg;rrttg Automatishe Manuelle
mi Choreographie Editor Unmwandlung Verfenerung

-~ -~ T
'/ /‘ Modellierte \ £ / Verfemerteund
1) Problemdomine .3) 3) Abstrakte Workflows ausfiihrbare
Choreographle Workflows

2\ (o)
Legende) K 5) é @/ 2 [
' @

L

o

Kom munikations
Aktivitat g | g

</
B |
o Arbeitsschritt N —~ _ |
Aktivitat “\Hﬁ_ﬁﬁ_ _F(_, T .
— Kontroliflus — | |
\
\“‘-.____ —

— —* Machrichtenfluss

C:' Choreographie
Teilnehmer

Abbildung 2.4.: Top-down Modellierungsansatz mit Beispiel, nach [WK16]

2.4. Technologien

Es hat sich etabliert, dass sich Aktivitaten eines Workflows einem Service bedienen um die
Aktivitat durchzufithren. Typischerweise werden die Services in Form von Webservices (WS)
bereitgestellt.

Die Webservice Technologie (WST) umfasst eine grole Anzahl' von Standards. Zwei wichtige
Standards, die Grundlage fiir den Kern der WST sind, bilden die Web Service Description
Language (WSDL) und SOAP. Alle entwickelten Standards werden unter dem Namen WS-
Technologie Stack oder kurz WS-* zusammengefasst. Der Stern steht stellvertretend fiir die
Namen der Standards, weil die Webservice Erweiterungen alle ein WS vorangestellt haben
und mit dem Eigennamen enden. Die Spezifikationen aus WS-* basieren wiederum auf dem
Extensible Markup Language (XML) Standard.

Extensible Markup Language Die Extensible Markup Language (XML) ist eine Auszeich-
nungssprache, mit der hierarchisch strukturierte Daten in Textdateien abgelegt werden koén-
nen.

I"There are more than 150 WS-* Specs!"[Wee+05]

25

2. Grundlagen

v

v

Retrieve Retrieve

Potential Files Parameters Run
Files Retrieve KMC MD
S hot . .

napsho Simulation
f D
Compile
Source Code
.
Compilation \) A

necessary? L -

Y4

h

Abbildung 2.5.: Graphische Darstellung einer Orchestrierung mit BPMN [WKM]

\'D
= 3
= CreatePlot }—\O

e —

MD Simulation
'

Web Services Description Language Die bereitgestellte Funktionalitat des Webservices
wird mit Hilfe der Web Services Description Language (WSDL) beschrieben. Innerhalb der
WSDL-Datei wird unter anderem festgehalten, welche eingehenden und ausgehenden Nach-
richten vom Service erwartet werden und welche Operationen ausgefithrt werden kénnen.

WS-BPEL Die Web-Service Business Process Execution Language, oder kurz BPEL, erlaubt
es Geschéftsprozesse in Form von Orchestrierungen zu spezifizieren. Hierfiir werden drei Ka-
tegorien von Sprachbestandteilen angeboten. Dazu gehoren die Basisaktivititen, strukturierte
Aktivitaten und Bereiche.

Business Process Model and Notation Fiir die graphische Darstellung der durch BPEL
modellierten Prozesse gibt es keinen offiziellen Standard. Oft wird die grafische Business
Process Model and Notation (BPMN) Sprache zu diesem Zweck herangezogen [Ley10]. In
Abbildung 2.5 ist die grafische Darstellung einer Orchestrierung mit BPMN zu sehen. Sie
zeigt den vereinfachten Workflow der Molekulardynamik-Simulation. Die Aktivitaten sind als
Webservice implementiert [Nem14].

WS-BPEL4Chor Die Sprache BPEL ist fiir Orchestrierungen ein akzeptierter Standard,
jedoch bietet sie keine Moglichkeit Choreographien zu beschreiben. Eine Losung bevorzugt
es, BPEL diesbeziiglich zu erweitern. Mit der Erweiterung des Sprachumfangs von BPEL zu
BPEL4Chor ist es moglich Choreographien modellieren zu kénnen [Dec+07]. Hierfiir wird
BPEL so erweitert, dass an BPEL selbst keine Anderung vorgenommen werden. Dadurch wird
ein nahtloses Zusammenbringen von Orchestrierungen und Choreographien erreicht.

26

2.4. Technologien

BPEL4Chor choreography

Participant topology

Structural aspects

Participant Declaration
List of the participants

Message Links

Connecting PBDs

Participant behavior
descriptions (PBDs)

Observable control & data flow

Participant groundings

Technical configuration

Abbildung 2.6.: BPEL4Chor Artefakte [Dec+07]

Die Erweiterung besteht aus drei Typen von Artefakten, welche zusammen BPEL4Chor bilden
(Abbildung 2.6).

Fiir jeden Teilnehmer existiert ein Participant Behavior Description (PBD) Artefakt. Jedes
Artefakt beinhaltet die Abhangigkeiten der Aktivitdten und beschreibt damit insbesondere
den Kontrollfluss und jene Aktivitdten, welche fiir den Nachrichtenaustausch verantwortlich
sind. In diesem Artefakt wird das Verhalten fiir jeden Teilnehmer separat festgehalten.

Die Participant Topology (PTop) beschreibt die strukturelle Ansicht der Choreographie. Hier
werden die beteiligten Teilnehmer aufgefithrt und die untereinander ausgetauschten Nachrich-
ten aufgelistet. Das Artefakt verbindet so die einzelnen PBDs zu einer Gesamtheit.

In den vorherigen zwei Artefakten wurde das Verhalten und die Beziehung beschrieben. Im
dritten Artefakt sind die technischen Details untergebracht. Diese Aufteilung realisiert ein
entkoppeln der nicht-technischen und technischen Spezifikationen. Das erlaubt es, die Beschrei-
bungen wiederzuverwenden und gegen unterschiedliche Implementierungen zu binden.

Das Participant Grounding (PG) Artefakt schlagt den Bogen von nicht-technischen Spezifi-
kationen zu technischen Konfigurationen. Hier konnen konkrete Webservices an die vorher
definierten Beschreibungen gebunden werden. Dies geschieht, indem innerhalb des Participant
Groundings auf WSDL-Dateien referenziert wird.

27

2. Grundlagen

2.5. Notation

Workflow Modelle konnen iiber Graphen-basierte Formalismen wie beispielsweise Petri-Netze,
UML Aktivitatsdiagramme, BPMN und Event-driven Process Chain (EPC) beschrieben wer-
den. Um nicht auf eine spezifische Beschreibungsart festgelegt zu sein, wird in dieser Arbeit
eine allgemeine Darstellung als Graph vorgezogen. Auflerdem lassen sich etablierte Graph-
Algorithmen fir die Verarbeitung der Modelle durch die Darstellung als Graph verwenden. Ein
Graph lasst sich in die spezifischeren Beschreibungsarten transformieren, so dass dies keine
Einschrankung darstellt.

Das Modell eines Workflows kann als Reprasentation eines (annotierten) Graphen verstanden
werden. Der Graph enthalt dabei Knoten, die stellvertretend fiir Aktionen stehen, und Kanten,
welche die Reihenfolge der Abarbeitung festlegen. Die Pfeilspitze signalisiert die Richtung der
Reihenfolge, in welcher die Knoten besucht werden.

Definition 2.5.1 (Graph, endlich und gerichtet, nach [Wei12])

Ein Graph G, bestehend aus einer endlichen Menge von Knoten V' und einer endlichen Menge von
Kanten E, ist ein 2-Tupel (V, E). Die Knoten und Kanten sind disjunkt, V N E = (). Eine Kante
e; € E verbindet zwei unterschiedliche Knoten v;,v;y1 € V. EineKante E CV xV : { e; =
(vi,vi41) | €; € E, v;,v;41 € V' } ist ein geordnetes Paar, wobei an erster Stelle der Startknoten
und an zweiter Stelle der Endknoten notiert ist.

Wird ein Ausschnitt aus einem Workflow Modell betrachtet, entspricht dies einem Teilgraph.

Definition 2.5.2 (Teilgraph, nach [Wei12])
Gegeben sind zwei Graphen G = (V, E) und G' = (V' E'). Falls V' CV und E' C F gilt, dass
bedeutet G’ umfasst nur Knoten und Kanten aus GG, dann ist G' ein Teilgraph von G, notiert als

G'CG.

Eine Sequenz von Aktionen, welche tiber Kanten verbunden sind, wird als Weg bezeichnet.
Hierbei ist die Richtung der Kanten zu beachten.

Definition 2.5.3 (Weg, nach [Wei12])

Ein Weg W ist ein Teilgraph, fiir den ein Startknoten x; und einen Endknoten x. existiert. Alle
Knoten und Kanten in W sind so gewdhlt, dass von Knoten x; gerichtete Kanten zu Knoten x.
existieren. Alle aufeinander folgende Knoten x; und x;, 1 sind durch gerichtete Kanten (x;, x;,1)
verbunden.

Sofern es moglich ist den Weg beliebig oft zu durchlaufen, wird der Weg auch Zyklus genannt.
Das bedeutet, dass jeder Knoten des Weges mindestens eine eingehende und ausgehende Kante
besitzt.

Definition 2.5.4 (Zyklus, nach [Wei12])
Ist bei einem Weg der Startknoten x; und Endknoten x. identisch, so heifSt der Weg Zyklus.

28

2.6. Verarbeitung

Bei einem ungerichteten Graph kann die Kante in beide Richtungen gelesen werden. Deshalb
wird oft bei der Kante auf den richtungsweisenden Pfeil verzichtet.

Definition 2.5.5 (Graph, ungerichtet, nach [Wei12])
Ein Graph ist ungerichtet, falls fiir jede Kante ¢ = (x;,x;11) eine Kante ¢’ = (x;11, ;) existiert.

Ein Baum entspricht einer Spezialform des ungerichteten Graphen. Ein Knoten des Baumes
kann (beliebig) bestimmt werden. Dieser Knoten wird als Wurzel bezeichnet. Ausgehend von
der Wurzel verzweigt sich der Baum in die Breite. Zwei Verzweigungen diirfen sich nicht
wieder verbinden.

Definition 2.5.6 (Baum, nach [Wei12])
Als Baum wird ein Graph bezeichnet, der ungerichtet ist und keine Zyklen enthidilt.

Die Single-Entry-Single-Exit Region [JPP94] ist eine kanonische Form eines Teilgraphen.

Definition 2.5.7 (Single-Entry-Single-Exit Region, nach [JPP94])

Eine Single-Entry-Single-Exit (SESE) Region ist ein Teilgraph mit einem Eingangsknoten x; und
Ausgangsknoten .. Jeder Knoten x € V' ist vom Eingangsknoten x4 erreichbar. Fiir jeden Knoten
existiert mindestens ein Weg zum Ausgangsknoten x.. Der Eingangsknoten x5 hat eine eingehende
Kante und der Ausgangsknoten x. eine ausgehende Kante. Es darf weder eine zusdtzliche Kante
in die Region hinein, noch hinaus zeigen.

2.6. Verarbeitung

Fiir eine Transformation, der formalen Beschreibungen der Modelle in einen Baum, kann das
Document Object Model (DOM) [Woo0+00] herangezogen werden. Dies ist moglich, da die
Beschreibungen in Form von strukturierten XML-Dokumenten vorliegen. Eine Konvertierung
ist in beide Richtungen einfach méglich (Abbildung 2.7). Das DOM wurde als Schnittstelle fiir
den Zugriff auf XML-Dokumente entwickelt. Es erméglicht nicht nur das Navigieren durch
das Dokument, sondern auch das Andern von Inhalten.

Jeder DOM-Knotenbaum beinhaltet das Dokument als Wurzel. Der Baum lasst sich mit Be-
ziehungen zwischen den Knoten beschreiben. Die direkt nachfolgenden Knoten werden als
Kinder bezeichnet. Der vorherige Knoten entspricht dem Elternteil. Diese Verwandtschaftsbe-
ziehungen lassen sich von jedem beliebigen Knoten aus beginnen.

Nachfolgend werden weitere Definitionen eingefiihrt, welche die Struktur des DOM beschrei-
ben. Jeder Knoten erhélt eine Nummer. Die Nummer wird ausgehend von der Wurzel, via einer
Breitensuche, aufsteigend vergeben. Durch diese Nummerierung der Knoten lasst sich spater
die relative Position der Knoten bestimmen.

29

2. Grundlagen

7

Transformation f f‘
OO
x %
(. (
_ SRy
XML-Datei) O Q)

DOM Knotenbaum

Abbildung 2.7.: XML-Datei und DOM-Knotenbaum

Definition 2.6.1 (Nummerierung der Knoten)

Gegeben sei ein Baum B = (V, E) und ein Knoten w € V, welcher die Wurzel bildet. Ausgehend
von der Wurzel erhdlt jeder Knoten eine Nummer. Nummer : Knoten — Ngy Die Wurzel erhdlt
die 0 zugewiesen. Die Nummern der Kinder werden via Besuchsreihenfolge der Breitensuche
bestimmit.

Durch die Nummerierung der Knoten lésst sich zwischen allen Knoten eine Vorgénger- und
Nachfolger-Beziehung formulieren. Ausgehend von einem Knoten z heiflen alle anderen
Knoten y mit Nummer(y) < Nummer(x) Vorganger- und alle Knoten mit Nummer(z) <
Nummer(y) Nachfolger-Knoten.

Definition 2.6.2 (Ebene eines Knoten)

Gegeben sei ein Baum B = (V, E), dann ist jedem Knoten eine Ebene zugeordnet.

Ebene : Knoten — Ny Die Wurzel erhdlt die Ebene 0 zugewiesen. Die Ebene eines Knoten wird
via Expandierungsschritt der Breitensuche bestimmdt.

Die Ebene eines Knoten wird spater fiir die Verschachtelungstiefe der XML-Elemente beno-
tigt.

An einen Eltern-Knoten kann ein Ast lokalisiert werden, um einen Teilgraphen zu erhalten.
Ein Ast enthalt alle Kinder des Eltern-Knotens, die sich nicht auf derselben Ebene wie der
Eltern-Knoten befinden.

Definition 2.6.3 (Ast)

Gegeben sei ein Baum B = (V,E) und ein Knoten x € V mit Ebene(x) = 1.
Dann sind alle von x erreichbaren Kinder, mit einer hoheren Ebene, ein Ast. Ast(x) =
{ (Va., E,) | Es existiert ein Weg von x nach V, A\ Ebene(x) < Ebene(V,) }

30

3. Verwandte Arbeiten

In dem vorherigen Kapitel wurden Grundlagen und Definitionen vermittelt. In diesem Kapitel
werden verwandte Arbeiten vorgestellt.

Eine Reihe von dhnlichen und angrenzenden Arbeiten beschaftigen sich mit Aktualisierungen
und Anderungsweitergabe innerhalb von Workflow-Choreographien. Darunter sind Arbeiten
zu finden, welche sich mit dem Zusammenlegen von Prozessen oder dem identifizieren von
betroffenen Teilnehmern bei einer Prozessanderung beschaftigen. Nachfolgend sind einige
ausgesuchte Arbeiten beschrieben, welche Einfluss auf diese Arbeit genommen haben.

Es werden drei Themenbereiche untersucht. Zunéchst wird die Domain Business Process
Management (BPM) (Abschnitt 3.1) betrachtet, der diese Arbeit ebenfalls zuzuordnen ist. Hier
beschaftigen sich die ausgewahlten Arbeiten grofitenteils mit Aktualisierungen in Prozess-
modellen. Darauffolgend werden die angrenzenden Themengebiete des Data Engineerings
(Abschnitt 3.2) und Software Engineerings (Abschnitt 3.3) mit einbezogen. Die Methoden des
Data Engineerings sind hilfreich um identische oder ahnliche Aktivitaten innerhalb eines Pro-
zessmodells zu identifizieren. Fiir das Zusammenlegen der Prozessmodelle sind die etablierten
Algorithmen des Software Engineerings ein solider Ausgangspunkt.

3.1. Business Process Management

Das Optimieren von Geschiaftsprozessen spielt im Business Process Management eine wich-
tige Rolle. Um einen Prozess zu optimieren ist es erforderlich, dass bestehende Modell zu
analysieren und anzupassen. Eine Verdnderung eines bestehenden Prozesses bringt jedoch
Herausforderungen mit sich. Mochte beispielsweise ein Unternehmen Prozesse, an dem Partner
beteiligt sind anpassen, miissen diese entsprechend informiert werden. Jedoch sollen dabei
Teile von privaten Prozessen nicht verdffentlicht werden, da der Partner zu einem fremden
Unternehmen gehéren kénnte und dies somit Geschéftsgeheimnisse verraten wiirde.

Change Propagation in Collaborative Processes Scenarios Die Arbeit von Fdhila et
al. [FRMR12] untersucht verteilte und gemeinschaftliche Prozesse. Die beteiligten Partner
handeln dabei eigenstindig. Andert ein Partner seinen privaten Prozess, ist die Frage, wie
diese Anderungen an den Partner weitergeben werden konnen. Da der Partner meist selbst

31

3. Verwandte Arbeiten

wieder eigene Partner involviert, konnen diese Anderungen weitere transitive Anderungen
zur Folge haben.

Zur Losung dieses Problems wird ein generischer Ansatz fiir Change Propagation auf Basis
eines Refined Process Structure Tree (RPST) [VVK09] vorgeschlagen. Der Ansatz besteht aus
vier Schritten: (i) identifizieren der betroffenen Aktivititen und Partner, (ii) aushandeln der
Change Operationen fiir den betroffenen Partner, (iii) abschlieffen der Verhandlungen mit dem
Partner und (iv) tiberpriifen der Konsistenz und Kompatibilitat. Fiir transitive Anderungen
muss der Vorgang entsprechend mit jedem Partner wiederholt werden.

Dieser Ansatz ist fiir einzelne Anderungen ausgelegt, welche einmalig an einen Partner iiber-
mittelt werden. Fiir eine groiere Anzahl von Anderungen, welche gesamtheitlich an alle
beteiligten Partner gesendet werden, ist dieses Verfahren nicht geeignet. Jedoch flieflen die
Uberlegungen, zur Auswahl der betroffenen Partner, in die vorliegende Arbeit ein.

Change patterns and change support features In der Arbeit von Weber et al. [WRRMO08]
wurden typische Anderungen an Prozessen analysiert. Als Grundlage fiir die Analyse dienten
mehrere Fallstudien. Daraus resultierten 18 Anderungsmuster (Change-Pattern), welche jeweils
einen Anderungsvorgang an einem Prozess beschreiben. Die Anderungsmuster konnen als
Referenz verwendet werden oder dazu Systeme, an Hand der Unterstiitzung der Muster, zu
vergleichen.

Es lassen sich 14 der Anderungsmuster als Adaption Pattern identifizieren, die das direkte
Modifizieren des Prozesses behandeln. Darunter sind Muster wie: Einfiigen, Loschen, Bewegen
oder Ersetzen von Prozessfragmenten zu finden.

Die vorliegenden Modelle dieser Arbeit unterliegen diesen Anderungsmustern. Das zu erstel-
lende Konzept muss sich mit den Anderungsmustern auseinandersetzen und Mittel bieten
diese zu unterstiitzen.

Merging Event-Driven Process Chains Wie zwei Prozessmodelle, welche als Event-
driven Process Chains (EPC) [KSN92] modelliert wurden, zu einem einzigen Prozessmodell
zusammengefithrt werden konnen, wird in der Arbeit von Gottschalk et al. [GAJV08] vorge-
stellt. Die beschriebene Funktionalitit wird zusatzlich im ProM (Process Mining) Framwork®
bereitgestellt.

Die Motivation dieser Arbeit liegt in der Ubernahme beziehungsweise Zusammenlegung zweier
Unternehmen begriindet, welche ihre Prozesse als EPC modelliert haben. Die Eingliederung des
Unternehmens spiegelt sich in den EPC wieder. Deshalb miissen die EPC beider Unternehmen
auf ein gemeinsames Modell gebracht werden. Fiir diesen Vorgang wird ein Merge-Algorithmus
vorgeschlagen. Der Merge-Algorithmus besteht aus drei Phasen. Zunachst werden die EPC auf

http://www.promtools.org

32

3.1. Business Process Management

ein Graphen basierendes Modell reduziert. Die beiden Graphen werden dann vereinigt. Dies
passiert iiber die jeweilige Zusammenlegung der Knoten und der Kanten. Zuletzt wird der neu
entstandene Graph in ein EPC zuriickgefiihrt.

Dieses Vorgehen dient als Ausgangssituation fiir weitere Schritte. Die EPC wurden zwar Zusam-
mengelegt, jedoch wurden Abhéngigkeiten und Semantik der Aktivitdten nicht beriicksichtige.
Das so entstandene Modell muss auf jeden Fall von einem Experten tiberarbeitet werden, bevor
es verwendet werden kann.

Der vorgeschlagene Ansatz von [GAJV08] ist sehr stark an EPC gekniipft und wird deshalb im
Kontext der vorliegenden Arbeit nicht verwendet.

Die von Experten durchgefithrten Anderungen werden in der Regel dokumentiert. In sogenann-
ten Anderungshistorien (Change-Log) werden die Anderungen festgehalten. Ein Change-Log
wird haufig automatisch erstellt. Jedoch kann es vorkommen, dass alte iiber die Zeit gewachse-
ne Modelle keine Change-Log aufweisen. Weitere Probleme konnen sein, dass der Change-Log
falsch, unvollstdndig oder verlorengegangen ist. Doch auch ohne Change-Log miissen die
Anderungen an den Modellen nachvollziehbar sein.

Business Process Merging - An Approach based on Single-Entry-Single-Exit Regi-
ons In seiner Diplomarbeit [Ger07] prasentiert Gerth einen Ansatz fiir Business Process
Merging, der nicht auf einen initialen Change-Log angewiesen ist.

In diesem wird wie folgt vorgegangen: Zunichst werden die Unterschiede der Prozess Mo-
delle, unter Beachtung der Abhangigkeiten, erkannt. Dazu wird das Prozess-Modell in SESE
Regionen partitioniert, um eine hierarchische Zerlegung zu erhalten. Durch die Zerlegung
in SESE Regionen kann das Modell einfacher auf Unterschiede untersucht werden. Aus den
Unterschieden wird dann ein Change-Log generiert der minimal ist, also keine unnétigen Ope-
rationen enthalt. Der Change-Log beinhaltet alle Schritte, welche durchgefithrt werden miissen
um die Unterschiede aufzuldsen. Als letztes werden die Unterschiede, durch Anwendung des
Change-Log, aufgelost.

Die Ubernahme der Anderungen erfolgt mit Hilfe einer grafischen Oberfliche. In dieser kon-
nen die ermittelten Unterschiede schrittweise in das neue Modell integriert werden. Eine
automatische Integration erfolgt nicht.

In der Arbeit von Gerth werden als zusitzliches Hilfsmittel ,Fixpunkte® verwendet. Diese
Fixpunkte diirfen nicht von einer Anderung im Change-Log betroffen sein und dienen zur
Positionierung der anderen Aktivitidten. Das Konzept der Fixpunkte wird aufgenommen und
dem Kontext der vorliegenden Arbeit angepasst. In der vorliegenden Arbeit diirfen diese
Punkte von Anderungen betroffen sein und dienen zum relativen positionieren der Aktivititen.
Zudem ist keine Generierung eines Change-Log erforderlich.

Aus dieser Arbeit gingen weitere Arbeiten hervor. So wird beispielsweise die Rekonstruktion
des Change-Log in der folgenden Arbeit naher beschrieben.

33

3. Verwandte Arbeiten

Detecting and Resolving Process Model Differences in the Absence of a Change Log
In der Arbeit von Kiister et al. [Kiis+08] wird das Verfahren aus [Ger07] aufgegriffen. Es wird
gezeigt, wie die Unterschiede der Modelle erkannt und der Change-Log durch Berechnen der
notwendigen Anderungsoperationen wiederhergestellt werden kann. Der berechnete Change-
Log kann schliefSlich innerhalb des IBM WebSphere Business Modeler® verwendet werden, um
die Anderungen von Hand durchzufiihren.

Das Konzept der Correspondence [PB03] und SESE Fragmente wird, fiir Business Modelle,
eingefiihrt. In der vorliegenden Arbeit findet das Prinzip der Correspondence auch seine An-
wendung.

Eine weitere Arbeit von Gerth et al. beschéftigt sich mit der konzeptionellen Durchfithrung
von Anderungen an Prozessmodellen. Diese Erkenntnisse sind in der folgenden Arbeit nieder-
geschrieben.

Towards Rich Change Management for Business Process Models Wie konzeptionell
zwei oder mehrere Prozessmodelle vereinigt werden konnen, ist in der Arbeit [GL12] beschrie-
ben. Dazu wird ein Framework fir Change-Management vorgestellt. Das Framework erlaubt
es Modelle unterschiedlicher Modellierungssprachen zu verarbeiten und dariiber hinaus die
Semantik dieser beim Vergleich zu beriicksichtigen.

Die Umsetzung dieser Arbeit orientiert sich direkt an dem vorgeschlagene Framework. Das
Framework und die notwendige Adaption an den Kontext dieser Arbeit ist in Abschnitt 4.2
beschrieben.

In der Arbeit von Pottinger und Bernstein [PB03] wird das generische Verschmelzen zweier
Modelle, wie Datenbank Schemata, UML Modelle oder Ontologien untersucht. Das vorge-
stellte Konzept liefert eine ,duplikatsfreie® Vereinigung der Modelle. Das Vorgehen ist fir
Prozessmodelle ungeeignet und richtet sich primar an Modelle wie Klassendiagramme.

Fiir ein weitergehendes Verstandnis sind aulerdem Teilbereiche aus den Themengebieten des
Data Engineerings und des Software Engineerings hilfreich. Im Folgenden wird der Zusam-
menhang dieser Gebiete erldutert.

*http://www.ibm.com/software/products/en/business-process-manager-family

34

3.2. Data Engineering

3.2. Data Engineering

Modelle werden im Laufe der Bearbeitung selten von einer Person alleine modelliert. Das ist ei-
ner von vielen Griinden, warum fiir Modelle keine einheitliche Bezeichnungen der Aktivitdten
verwendet werden. So konnten Aktivitaten aus verschiedenen Modellen mit der Beschrif-
tung ,erhitzen® und ,aufwarmen® vorliegen. Liegt dann fiir die Aktivititen kein eindeutiger
Identifikationsschliissel vor, ist es schwierig diese Zugehorigkeit zu erkennen.

Ein Ausschnitt des Data Engineerings beschiftigt sich mit dem Finden von semantisch iden-
tischen Entitdten. Dies ist wiederum ein Teilbereich aus dem Gebiet des Schema Alignment.
Dieses Konzept lasst sich fiir das Finden von semantisch identischen Aktivitaten in Workflow
Modellen iibertragen. Die Methoden des Data Engineering sind hilfreich um Aktivitaten zu
identifizieren, die unterschiedlich beschriftet aber logisch identisch sind, um sie weiter zu
verarbeiten.

Aligning Business Process Models In der Veréffentlichung von Dijkam et al. [Dij+09]
werden zwei Vorschlidge mit mehreren Varianten fiir das Zuordnen dhnlicher Elemente in
Prozessmodellen vorgestellt und evaluiert. Der erste Versuch beinhaltet einen Vergleich der
Elemente auf lexikalischer Basis. Dazu werden die Beschriftungen der Elemente herangezogen
und wortweise verglichen.

Weitere Versuche betrachten die Struktur der Prozesse. Dazu wird das Prozessmodell als Graph
interpretiert. Hier wird zusatzlich zum Vergleich der Beschriftungen die eingehenden und
ausgehenden Kanten herangezogen. AbschliefSend wird festgestellt, dass von allen vorgestellten
Varianten der strukturelle Vergleich, mittels einem Greedy-Algorithmus, die hochste Prazision
aufweist.

Die Arbeit von [Dij+09] zeigt, dass ein simples Vergleichen, der Beschriftungen in Verbin-
dung der Graph-Struktur, meistens die besten Ergebnisse erzielt und legitimiert damit diese
Vorgehensweise.

Eine weitere interessante Arbeit stammt von La Rosa et al. [LR+10]. In dieser werden Prozesse,
welche als EPC vorliegen, als annotierte Graphen aufgefasst. Bevor die Graphen verschmolzen
werden, miissen zusammengehdrige Knoten und Kanten gefunden werden. Die Knoten und
Kanten des Graphen werden mit einer Matching Score bewertet, welche ausdriickt wie dhnlich
sich diese sind.

Die Aktivitaten der verwendeten Modelle in dieser Arbeit haben alle eine Identifikationsnum-
mer, weshalb eine eindeutige Zuordnung zwischen mehreren Modellen einfacher mdoglich ist,
und nicht auf die Methoden des Data Engineerings zuriickgegriffen werden muss. Jedoch bieten
diese Arbeiten einen Einstiegspunkt, falls bei den Elementen keine Identifikationsnummer
verfiigbar sein sollte.

35

3. Verwandte Arbeiten

3.3. Software Engineering

Formelle Workflow Beschreibungen liegen in der Form von textuellen Dokumenten vor. Das
Problem, Unterschiede und Gemeinsamkeiten in Dokumenten zu finden, besteht auch im Soft-
ware Engineering. Es ist fiir Programme mit Versionsverwaltung von fundamentaler Bedeutung
und legt den Grundstein fiir ein Merge zweier Versionen. Es gibt bereits etablierte Algorithmen,
wie beispielsweise den Three-way Merge, um Text-Dokumente zu verschmelzen.

Using Versioned Tree Data Structure, Change Detection and Node Identity for Three-
Way XML Merging Thao und Munson [TM10] greifen die Methode des Three-way merges auf
und prasentieren ein Konzept, um damit XML formatierte Dateien zu vereinen. Der Algorithmus
verwendet dabei den herkommlichen Three-way Merge. Der Three-way Merge wurde so
erweitert, dass die XML-Dokumente als Baum verarbeitet werden. Die zu vereinigenden Knoten
werden iiber eine Longest Common Subsequence (LCS) bestimmt. Fiir den vorgeschlagenen
Ansatz sind eindeutige Identifikatoren fiir die Knoten notwendig, damit dieser angewendet
werden kann.

In der vorliegenden Arbeit wird die Reprasentation der XML-Dokumente als Graph ibernom-
men. Jedoch erfolgt die Verarbeitung der XML-Dokumente in [TM10] ereignisbasiert, mittels
SAX (Simple API for XML) und nicht baumbasiert (DOM).

Die Arbeit von Alanen und Porres [AP03] prasentiert Algorithmen, fiir die Berechnung von
Unterschieden und Vereinigungen, auf der Basis von Meta Object Facility (MOF) Modellen
(entspricht einem Meta-Meta-Modell). Das Eclipse Modeling Framework Ecore-Metamodell
basiert auf einer Teilmenge des MOF-Standards. Die Algorithmen behandelt jedoch keine
Unterschiede, welche Abhéngigkeiten oder verschobene Elemente umfassen.

Dies waren nur einige wenige Verdffentlichungen aus dem Gebiet Modell-Merging. Das Problem
der Modell-Fusionierung ist allgegenwértig und tritt in den unterschiedlichsten Themenberei-
chen auf. Dies hebt die Bedeutung dieser Herausforderung weiter hervor. Es ist somit nicht
verwunderlich, dass bereits eine Vielzahl divergenter und kongruenter Vorschldge inklusiver
Varianten existieren.

Aus diesem Grund wird in der Arbeit von Brunet et al. [Bru+06] ein Framework vorgeschlagen,
mit der vorhandene Methoden verglichen werden sollen. Dazu werden algebraische Operatoren
fiir den merge, sowie match, diff, split und slice eingefiithrt. Mit Hilfe dieser Operationen sollen
die Verfahren kategorisiert und verglichen werden kénnen.

36

4. Anforderungsanalyse

In dem vorherigen Kapitel wurden verwandte Arbeiten beziiglich des Themas Modell-Fusion
vorgestellt. Auf dieser Basis wird im folgenden Kapitel weiter aufgebaut und Vorarbeit fiir das
Konzept geleistet. Die Anforderungsanalyse beginnt auf einer hohen Abstraktionsebene und
wird daraus konkretisiert.

Nachfolgend wird in Abschnitt 4.1 prasentiert, was unter Aktualisierung und Anderungsweiter-
gabe in dieser Arbeit verstanden wird. Danach werden in Abschnitt 4.2 die allgemeinen Schritte
vorgestellt, welche fiir das Erreichen des Ziels erforderlich sind. Die allgemeine Vorgehenswei-
se wird an die Rahmenbedingung dieser Arbeit angepasst. Daraufhin werden in Abschnitt 4.3
verschiedene Anderungsmuster bei der Modellanderung betrachtet. AbschlieSend werden in
Abschnitt 4.4 die Auswirkungen auf die BPEL4Chor Artefakte untersucht.

4.1. Aktualisierung und Anderungsweitergabe

Die Begriffe Aktualisierung und Anderungsweitergabe werden im Kontext der Modellie-
rung mit Workflow-Choreographien verwendet. Sie beziehen sich auf die Verdnderung
des Choreographie-Modells und die damit verbundene Weitergabe der Anderungen an die
Choreographie-Teilnehmer. Die Choreographie-Teilnehmer miissen die weitergegebenen An-
derungen in ihre Orchestrierung einpflegen. Dies passiert beides in der Phase der Modellierung.
Um dies zu verdeutlichen, wird der Ablauf der Modellierung im folgenden schematisch darge-
stellt.

Ein Wissenschaftler verfolgt eine Idee und mochte seine Idee unter zur Hilfenahme einer
Simulation verifizieren. Den Versuchsaufbau erstellt er am Computer. In diesem Fall mochte
er den Versuchsaufbau als Scientific-Workflow modellieren, um diesen direkt nach der Mo-
dellierung auszufiihren und die Ergebnisse zu untersuchen. Innerhalb des Versuchsaufbaus
werden verschiedene existierende Simulationen verwendet und zu einer neuen kombiniert.
Um das Zusammenspiel der Simulationen zu beschreiben, wird der Workflow in Form einer
Choreographie modelliert. Aus dieser beschriebenen Choreographie wird wiederum fiir jede
Simulation ein separater Workflow generiert. In diesen generierten Workflows wird das indivi-
duelle Verhalten ergénzt. Fiir jede in der Choreographie beteiligte Simulation existiert nun
eine Orchestrierung, welche die konkreten Anweisungen enthalt.

37

4. Anforderungsanalyse

Aktualisierung

”

/.--"" - _"'H-.,v/’ I'.
p _
P e |
/ .f'/ S \
| |
'\\ lt\\ L —
\ — _,-/\ I ™y

Anderungsweitergabe "x.\ —0—0)

{ - _/
| > e
g’ g ‘ \f\o o/

Choreogra phie Orchestrierungen

Abbildung 4.1.: Aktualisierung der Choreographie und Anderungsweitergabe an die betroffe-
nen Orchestrierungen

Auf Grund des systematischen ausprobierens von unterschiedlichen Versuchsaufbauten ist es
erforderlich, dass Versuchsmodell, und damit die Choreographie, zu verdndern. Eine Verénde-
rung des Zusammenspiels macht es wiederum erforderlich die konkreten Orchestrierungen
entsprechend anzupassen. In Abbildung 4.1 ist der Zusammenhang zwischen Choreographie
und Orchestrierung dargestellt. Der Versuchsaufbau wird aktualisiert und Anderungen miissen
an die betroffenen Simulationen weitergeben werden.

Die betroffenen Choreographie-Teilnehmer miissen die vorgenommenen Anderungen um-
setzen. Nur so ist weiterhin eine Kommunikation und somit eine Zusammenarbeit unter
den Teilnehmern moglich. Im Zuge dessen erhalt jeder Teilnehmer die neue Choreographie
Beschreibung, um den alten Workflow anzupassen.

Mit dem Erhalt der neuen Choreographie werden die alten Beschreibungen als obsolet betrach-
tet. Dennoch werden alte Versionen nicht einfach geldscht, sondern archiviert. So sind sie
fir den Prifzweck (Audit) verfiigbar und konnen dartiber hinaus als Nachschlagewerk oder
Dokumentation verwendet werden.

Eine neue Version entsteht fiir gewohnlich aus einer Ableitung einer Version oder aus ei-
ner Kombination mehrerer Versionen. Die Versionen teilen sich deshalb mindestens eine
Gemeinsamkeit. Die Gemeinsamkeiten werden aus den urspriinglichen Versionen vererbt.

Die Weitergabe der Anderungen erfolgt mit Hilfe der Teilnehmer-Verhaltens-Beschreibung
(Siehe 2.4 PBD). Die Anderungshistorien (Change-Log) verbleiben beim Partner, der die An-
derungen vorgenommen hat und werden meist nicht weitergegeben. Es kann nur auf eigene
oder veroéffentlichte Change-Log zuriickgegriffen werden. Jeder Teilnehmer erhélt aus der
Choreographie nur seine PBD.

38

4.1. Aktualisierung und Anderungsweitergabe

~ Legende)

Choreographie

Orchestrierung @

Change-Log :_:_'.Z:.;.: & b)

EJ

_|
|
|
|
|
|
|
|
|
|
|
|

Ergebnis

Abbildung 4.2.: Evolution einer Version durch Ableitung

Die neue Version der Choreographie wird nur an Teilnehmer weitergegeben, welche von einer
Anderung betroffen sind, um diese vor unnétigen Nachrichten zu bewahren. Diese konnen die
existierende Orchestrierung weiterhin verwenden.

Die Ereignisse und der Dokumentenfluss sind in Abbildung 4.2 zu sehen. Die Abbildung stellt
den Ablauf aus der Sicht eines einzelnen Teilnehmers dar. (a) Zunachst existiert eine initiale
Beschreibung der Choreographie, woraus fiir jeden Teilnehmer seine PBD generiert wird. (b)
Die PBD wird mit weiteren Verhalten zu einer ausfithrbaren Orchestrierung verfeinert. Die
Verfeinerungen koénnen in einem Change-Log vermerkt werden. (c) Eine neue Version der
Choreographie wird erstellt. (d) Die Anderungen werden mitgeteilt. Bei der Mitteilung kann
ein Change-Log mit zusétzlichen Informationen enthalten sein. (e) Der Teilnehmer besitzt eine
alte Version V, mit Verfeinerung und eine neue Version V}, ohne Verfeinerung. (e) Aus den
beiden Versionen wird die neue Version V,, generiert, welche die Neuerungen aus V,, sowie
die Verfeinerungen aus V, enthélt. Ein vorhandener Change-Log kann fiir eine Verbesserung
des Ergebnisses herangezogen werden, sofern dieser vorliegt.

Das Vorgehen, wie zwei Modelle fusioniert werden kénnen, wird im nachsten Abschnitt
vorgestellt.

39

4. Anforderungsanalyse

4.2. Fusion von Modellen

Das Fusionieren von Modellen bringt verschiedene Herausforderungen mit sich. In der Arbeit
von Gerth und Luckey [GL12](siehe Verwandte Arbeiten) wird eine Ablaufstruktur fiir das
Modell Anderungsmanagement vorgestellt, welches die wichtigsten Schritte zum fusionieren
von Modellen festhalt. Diese Struktur wird aufgegriffen und das weitere Vorgehen an Hand
dieser organisiert.

Die Struktur besteht aus sieben Komponenten, welche in Abbildung 4.3 dargestellt sind. Aus-
gangspunkt stellen die Eingabe-Modelle dar, welche zu einem neuen Modell fusioniert werden
sollen. Die erste Komponente beschreibt die Notwendigkeit die Modelle in ein einheitliches
abstraktes Zwischenformat zu konvertieren. Dadurch kénnen Modelle mit unterschiedlichen
Sprachen der Modellierung weiterverarbeitet werden. Im néchsten Schritt werden die Modelle
abgeglichen. Das Abgleichen der Modelle bedeutet Elemente zu erkennen und zu finden, die zu-
sammengehoren. Daraufhin lassen sich die Unterschiede zwischen den Modellen herausfinden.
Es kann sein, dass Elemente Abhéngigkeiten untereinander aufweisen. Abhéngigkeiten kénnen
beispielsweise in der Reihenfolge der Elemente oder durch die Existenz anderer Elemente
auftreten. Die vorhandenen Abhéngigkeiten miissen bedacht werden. Treten Widerspriiche
innerhalb der Modelle auf, so miissen diese soweit moglich aufgelost werden. Dies kann be-
sonders dann der Fall sein, wenn mehr als zwei Modelle miteinander fusioniert werden sollen.
Wurden all diese Schritte durchlaufen, findet zuletzt der Schritt des Fusionierens statt. Hierbei
werden nach vordefinierten Regeln die Modelle miteinander verbunden und zuriick auf ein
konkretes Datenformat gebracht.

Im Folgenden werden die notwendigen Schritte im Kontext dieser Arbeit betrachtet.

Zwischenformat Die vorliegenden Choreographien sind mit Hilfe der BPEL4Chor Artefakte
beschrieben. Diese werden wiederum in einem XML konformen Format bereitgestellt. Dennoch
wird nicht direkt mit den XML-Daten gearbeitet, sondern es werden die Dateien eingelesen
und in eine abstrahierte Graph-Reprasentation gebracht. Dies erlaubt eine leichtere Weiter-
verarbeitung und Formalisierung. Zudem kann auf bewéhrte Graph-basierte Algorithmen
zuriickgegriffen werden. Die Représentation als Graph erlaubt es auflerdem, zwei Dateien mit
verschiedenem XML-Standards zu vergleichen. Das Konzept lasst sich daher fiir alle BPEL4Chor
Artefakte anwenden.

Zudem wird die Struktur der zu integrierenden Modelle durch das Abstrahieren vereinfacht.
Einzelne Elemente des Modells werden zu Knoten und der Kontrollfluss zu Kanten degradiert.
Dies erlaubt komplexe Strukturen wie beispielsweise Schleifen einfacher zu behandeln. Eine
Schleife umschlie3t mehrere Elemente die 6fters ausgefithrt werden sollen. Im urspriinglichen
Modell stellt dies einen Zyklus dar, der schwer zu verarbeiten ist. In der Reprasentation als
Graph ist eine Schleife ein Knoten, an dessen Ast wiederum die umschlossenen Elemente
hangen. Es ist in erster Linie nicht relevant, wie oft und ob iberhaupt die Schleife durchlaufen
wird. Deshalb fiihrt eine Schleife nur eine weitere Ebene im Graph ein, ohne einen Zyklus

40

4.2. Fusion von Modellen

Va Vt':
| T |

Ablaufstruktur fiir das Modell
Anderungsmanagment

1. Modelle abstrahieren
2. Modelle abgleichen
3. Unterschiede erkennen
4, Abhangigkeiten klaren
5. Alternativen analysieren
6. Konflikte l6sen

7. Modelle fusionieren

Abbildung 4.3.: Ablaufstruktur fiir das Modell Anderungsmanagement nach [GL12]

zu bilden. Zusétzliche Informationen werden nicht verworfen, sondern an den entsprechend
Knoten oder den Kanten angehangt. Durch diese einfache Konvertierung ist es moglich, den
Graph wieder in das Ursprungsformat zuriickzufiithren.

Das bedeutet, dass der Aufbau und das urspriingliche Format der Modelle fiir die Verarbeitung
nicht relevant ist, sofern sich diese in einen Graph und zuriick konvertieren lassen.

Definition 4.2.1 (Modell)
Ein Modell M ist ein gerichteter endlicher Graph ohne Zyklen.

Einem Knoten € V aus dem Modell konnen Attribute zugewiesen sein. Die Werte werden
via den Namen des Attributs und den Knoten referenziert. Hierfiir werden die Funktionen
Hat-Attribut : Knoten x Name — Wahrheitswert und Attribut : Knoten x Name +—>
Wert verwendet. Der Wahrheitswert liefert ein T, falls das Attribut definiert ist, ansonsten
wird ein L zuriickgegeben. Der Name des Attributs kann auch per Indexschreibweise angeben
werden Attribut ngme.

Jeder Knoten erhélt als Wert alle zusétzlichen Informationen, die mit ihm in Verbindung stehen,
zugewiesen. Dazu zéhlen beispielsweise vorhandene XML-Attribute.

41

4. Anforderungsanalyse

Identifikation Fir die Modelle wird angenommen, dass diese als gerichteter endlicher Graph
ohne Zyklen vorliegen. Das reduziert die Identifikation von Elementen auf das Identifizieren
von Knoten.

Die vorliegenden Modelle verwenden fiir einen Grof3teil der Elemente eine eindeutige Iden-
tifikationsnummer (ID). Uber diese ID lisst sich ein Element und folglich auch der Knoten
eindeutig identifizieren. Fur die ID kann die Kurzschreibweise I D(z) = Attribut;p(x) ver-
wendet werden.

Besitzt ein Knoten keine ID, muss die Identifikation anders durchgefithrt werden. Dies kann
beispielsweise iiber den Namen oder der relativen Position des Knoten erfolgen. Fiir die
vorliegenden Modelle ist dieses Vorgehen ausreichend. Komplizierte neue Heuristiken (Vgl.
Kapitel 3.2) werden nicht benétigt.

Abgleichen Um Modelle zu einem neuen Modell fusionieren zu kénnen, muss zunachst
die Beziehung zwischen den Knoten festgestellt werden. Mit Hilfe des Zwischenformats
reduziert sich das Feststellen der Beziehungen auf den Vergleich der Graphen. Es reicht aus,
fir jeden Knoten die An- oder Abwesenheit im anderen Modell zu analysieren. Fiir diese Art
der Beziehung wird der Begriff der Zuordnung[PB03] verwendet.

Eine Zuordnung (vgl. [Ger07]) ist eine Abbildung von gleichwertigen Knoten oder Kanten
zwischen Modellen. Es herrscht eine Gleichwertigkeit zwischen zwei Knoten, wenn zum
Beispiel die gleiche Funktionalitat von diesen Knoten bereitgestellt wird. Die Zuordnung
lasst sich analog fiir Kanten durchfithren. Je nachdem, ob eine Komponente des Graphen ein
Gegenstiick in einem anderen Modell hat, wird der Typ der Zuordnung unterschieden.

Definition 4.2.2 (Gleichwertige Knoten)
Zwei Knoten x € V, undy € V}, sind gleich, genau dann wenn diese identisch oder iibereinstim-
mend sind.

e Identisch: Die Knoten haben beide eine ID, welche zudem identisch ist. Hat-Attribut;p(z) =
T und Hat-Attribut;p(y) = T mit ID(x) = ID(y).

e Ubereinstimmend: Die Knoten haben beide keine ID und die Namen der Knoten stim-
men iiberein. Hat-Attribut;p(x) = L und Hat-Attribut;p(y) = L mit Name(z) =
Name(y).

Fiir diese Arbeit sind drei Zuordnungstypen relevant. Entweder ein Knoten besitzt genau einen
Partnerknoten im anderen Modell oder nicht. Beim Fehlen eines Partnerknotens wird festge-
halten, in welchem Modell der Knoten vorhanden ist. Deshalb existieren fur die Abwesenheit
eins Knoten zwei Zuordnungstypen. Es ergibt sich die adaptierte Definition der Zuordnung
nach [Ger07].

42

4.2. Fusion von Modellen

Definition 4.2.3 (Zuordnung, nach [Ger07])
Sind M, = (Vy,, E,) und My, = (Vy, E) ein Modell und x € V,, undy € Vj, Knoten. Dann werden
die folgenden Typen unterschieden:

¢ 1-0 Zuordnung: Ein Knoten x hat eine 1-0 Zuordnung, genau dann wenn¥y € Vj, : x # .
Geschrieben als C_o(x,y) = T

* 0-1Zuordnung: Ein Knoten y hat eine 0-1 Zuordnung, genau dann wennVx € V,, : y # x.
Geschrieben als Cy_1(z,y) = T

e 1-1 Zuordnung: Ein Knoten x hat eine 1-1 Zuordnung zu einem Knoten y, genau dann
wenn x = y. Geschrieben als Cy_1(z,y) = T

Die Beziehungen werden in der Regel zwischen zwei Modellen festgelegt. Fiir die 1-1 Zuordnung
gilt eine symmetrische C;_1(z,y) = T < C1_1(y,x) = T und transitive Cy_;(z,y) =
TAC-1(y,2) =T = Ci_1(x, 2) = T Beziehung.

Mehrwertige Beziehungen wie 1-n, n-1 oder n-m werden nicht betrachtet. Eine 1-n oder n-1
Beziehung wiirde bedeuten, dass einem Knoten im anderen Graph mehrere gleichwertige
Knoten zugeordnet werden. Dies kann aufgrund der ID nicht passieren. Eine ID wird keinen
zwei XML-Elementen gleichzeitig zugeteilt. Deshalb kann auch keine n-m Beziehung vorliegen.
Dies wiirde sonst bedeuten, dass in beiden Modellen mehrere gleichwertige Knoten vertreten
sind.

Aus den Zuordnungstypen kann direkt festgestellt werden, welche Art von Veranderungen
zwischen zwei Modellen vorgenommen worden sind. Unterschiede werden hierbei von der
1-0 und 0-1 Zuordnung ausgedriickt. Diese signalisieren das Entfernen oder Hinzufiigen von
Komponenten. Gemeinsamkeiten lassen sich durch 1-1 Zuordnungen erkennen. In diesem Fall
ist die Komponente in beiden Modellen vertreten.

Abhangigkeiten Manche Anderungen setzen sich aus mehreren kleinen Teilmodifikationen
zusammen, die nur gemeinsam einen Sinn ergeben und nur gemeinsam ibernommen werden
diirfen. Das heifit, alle zusammengehorende Teile einer Anderung werden gruppiert und nur
ganz oder gar nicht umgesetzt.

Eine semantische Abhangigkeit besteht in der Anordnung der Aktivititen, die Wiederrum
die Reihenfolge der Abarbeitung festlegt. Wird zum Beispiel eine Aktivitat ersetzt, reicht es
nicht aus, die alte Aktivitdt zu entfernen. Es muss auch die neue Aktivitat eingefiigt werden.
Andernfalls ist die Intention der Anderung missachtet worden.

Im Rahmen dieser Arbeit sollen alle Anderungen automatisiert und auf einmal ibernommen
werden. Eine Schrittweise Integration einzelner Anderungen ist nicht vorgesehen. Dies verhin-
dert zugleich semantisch inkonsistente Zustiande, welche durch unvollstindige Anderungen
hervorgebracht werden. Jedoch miissen die Vorgénger- und Nachfolger-Beziehungen der Akti-
vititen eingehalten werden. Es ist davon auszugehen, dass sich alle eingefiigten Verfeinerungen
auf eine vorherige Kommunikationsaktivitat beziehen.

43

4. Anforderungsanalyse

Alternativen Bei der Transformation zuriick in die Artefakte muss der Graph in das XML-
Format gebracht werden. Dabei konnen keine alternativen Varianten entstehen. Der Inhalt
ist eindeutig und das Format wohlstrukturiert. Es ist demnach nicht erforderlich zwischen
mehreren Reprasentationsarten zu wéhlen. Dieser Schritt kann daher iibersprungen werden.

Konfliktmanagement Beide Modelle stehen zwar in Relation, werden jedoch unabhangig
voneinander verandert. Dies kann dazu fithren, dass gleichwertige Knoten unterschiedliche
Eigenschaften aufweisen. Hier muss ausgewahlt werden, welche Attribute fiir das neue Modell
iibernommen und welche zugunsten des Anderen verworfen werden.

Ein Konflikt tritt ein, falls in beiden Modellen ein gleichwertiger Knoten existiert und dieser
fir das gleiche Attribut unterschiedliche Werte aufweist.

Definition 4.2.4 (Attribut Widerspruch)
Sind M, = (V,,, E,) und My, = (Vy, E) ein Modell und x € V,, undy € Vj, Knoten. Dann besteht
ein Konflikt, wenn sich Attribute widersprechen:

e Attribut Widerspruch: Es gilt Cy 1 (z,y) mit Hat-Attribut,(x) und Hat-Attribut ,(y)
wobei Attribut,(x) # Attribut,(y)

Der Konflikt sollte automatisch gelost werden, vorausgesetzt es gelingt eine Herleitung der
Loésung aus beiden Modellen oder letztendlich iiber einen Change-Log. Kann keine Losung
gefunden werden, sollte der Benutzer um eine Entscheidung gebeten werden. Auch dann,
wenn es mehrere gleichwertige Losungen gibt und keine automatische Entscheidung getroffen
werden kann. Mdchte oder kann der Benutzer jedoch keine Entscheidung treffen, muss eine
automatische Losung nach bestem Bestreben gefunden werden, so dass diese im Zweifel spater
modifiziert werden kann.

Modellfusion Die beiden Modelle miissen im letzten Schritt kombiniert werden. Dies ge-
schieht mit den gewonnen Informationen aus den vorherigen Schritten. Aus den Informationen
werden Regeln hergeleitet, die eine deterministische Fusion gew&hrleisten.

Definition 4.2.5 (Regel)
Eine Regel ist eine Abbildung (V, UV, E, U Ep) — (V,,, E,,).

Eine Regel kombiniert zwei Graphen zu einem neuen Graphen.

Definition 4.2.6 (Modellfusion)
Sind M, und M, Modelle, dann beschreibt die Funktion F'usion : Modell x Modell X Regeln
Modell, wie aus den Modellen M, und M, und eine Menge von Regeln ein neues Modell entsteht.

Das Fusionieren der Modelle findet mit Hilfe von Graph-Operationen statt. Die Operationen
werden im Abschnitt ?? genauer betrachtet. Am Ende wird das fusionierte Modell wieder in
das XML-Format gebracht.

44

4.3. Anderungsmuster

o,

{"""\. -

- N
() w, L

’_:> (] () E>
¢y /'L PN ,/L Pt
o U U)

(a) hinzufiigen (b) entfernen

./

Abbildung 4.4.: Knoten hinzufiigen und entfernen

4.3. Anderungsmuster

Als Zwischenformat fiir die Modelle wurde im vorherigen Abschnitt eine Graph-Reprisentation
gewahlt. Alle Modifikationen am Modell erfordern daher die Manipulation eines Graphen.
Das typische Vorgehen bei Anderungen von Modellen in Graph-Reprisentation wurde von
Weber, Reichert und Rinderle-Ma[WRRMO08] (siehe Verwandte Arbeiten) analysiert und nie-
dergeschrieben. Es werden aus den so genannten Adaptation-Patterns funf benétigt, um die
Anderungen umsetzen zu konnen. Diese finf Muster beschreiben, wie Knoten am Graph
hinzugefiigt, entfernt, verschoben, vertauscht und ersetzt werden konnen. Diese Operationen
werden im Folgenden betrachtet.

Zur Verdeutlichung dienen die Abbildungen 4.4, 4.5, welche die Strukturdnderungen eines
Graphen zeigen. Auf der linken Seite ist jeweils die vorherige Struktur zu sehen. Auf der
rechten Seite ist die resultierende Struktur abgebildet. Die modifizierten Knoten sind mit einem
gestricheltem Rand ausgezeichnet. Vertikale Kanten stehen fiir Knoten in der selben Ebene.
Horizontale Kanten signalisieren ein Absteigen in die nichst tiefere Ebene.

Das Hinzufiigen eines Elements ist gleichbedeutend mit dem Hinzufiigen eines Knoten zum
Graphen. In Abbildung 4.4a wird das Einfiigen zweier unterschiedlicher Elemente dargestellt.
Ein Element soll zwischen zwei bestehenden Elementen eingefiigt werden. Ein weiteres Element
soll ein bestehendes Element ergénzen. Der erste Knoten wird mit Hilfe der Nachfolger-
Beziehung und der zweite Knoten mit Kind-Beziehung eingefiigt. Auf der linken Seite besteht
der Graph zunéchst aus zwei Knoten. Der Knoten mit der Nachfolger-Beziehung wird zwischen
die bestehenden Knoten eingefiigt. Der zweite Knoten ergéanzt den letzten Knoten. Deshalb
wird dieser eine Ebene tiefer an den letzten Knoten angehéngt.

Das Entfernen eines Elements entspricht dem Entfernen eines Knoten aus dem Graphen. Wird
ein Knoten entfernt, werden an diesem Knoten angeheftete Elemente nicht mehr benétigt.
Darum miissen alle an den Knoten angehefteten Elemente mit entfernt werden. In Abbildung
4.4b wird ein Knoten der Ebene i entfernt. Mit ihm miissen alle verbundenen Knoten der
niachsten Ebene 7 + 1 und grofier entfernt werden. Das fithrt zum kompletten Abschneiden
eines Astes am Graphen. Im Beispiel wird somit der angeheftete Knoten mit entfernt und

45

4. Anforderungsanalyse

I/"_‘-\.

'i—.:_H
p
al"

_A L
D
\II‘—!_
x
L/
.—""-_“\-,l
.

—,

ll'f-_
p-
<
_—
'
-

(a) ersetzen (b) verschieben

Abbildung 4.5.: Knoten ersetzen und verschieben

es bleibt ein Graph mit zwei Knoten iibrig. Die zuriickbleibenden Knoten sind jeweils die
Vorgéanger und Nachfolger des entfernten Knotens.

Fiir das Ersetzen eines Elements muss ein Knoten im Graph ersetzt werden. Dies lasst sich iiber
die zwei vorherigen Muster Entfernen und Hinzufiigen realisieren. Hierzu wird zunéchst der zu
ersetzende Knoten entfernt und der neue Knoten an die frei gewordene Position eingefiigt.

Ein verandertes Attribut (hinzugefiigt, entfernt oder ersetzt) spiegelt sich iiber eine Ersetzung
des Knoten im Graphen wieder. Hierzu wird der betroffene Knoten mit einer modifizierten
Kopie, welche die verdnderten Attribute enthilt, ersetzt. In Abbildung 4.5a ist die Ersetzung
dargestellt, die Attribute der Knoten sind dabei nicht sichtbar.

Wird ein Element verschoben, muss auch der Knoten im Graphen neu positioniert werden. In
Abbildung 4.5b soll der markierte Knoten um eine Stelle verschoben werden. Es ist zu beachten,
dass alle verbundenen Knoten der nachsten Ebenen angeheftet bleiben miissen. Der Knoten,
welcher verschoben werden soll, wird mit samt seinen angehefteten Knoten ausgewahlt und
an die neue Position mittels des einfiigen Musters kopiert. Danach werden die Knoten an der
alten Position entfernt.

Das Tauschen von Elementen bedeutet, dass Knoten im Graphen ihre Position austauschen.
Dies wird durch zweimaliges anwenden des verschieben Musters erreicht.

Unabhingig von den oben genannten Anderungsmustern wird zusitzlich die Strategie der
Gruppierung eingefiihrt. Bei der Gruppierung wird ein Teilgraph aus dem Graphen extrahiert.
Diese Gruppierung von Knoten erlaubt es einfacher eine Menge von Knoten auszuwahlen. Die
ausgewihlte Menge kann dann eingefiigt, entfernt, verschoben oder als Vorlage gespeichert
und wiederverwendet werden (vgl. [Sch+11]). Eine Gruppierung lasst sich der Kategorie Frag-
ment und Zweig zuordnen (Abbildung 4.6). Ein Fragment ist eine Gruppierung aus mehreren
zusammenhangenden Knoten (vgl. [Sch+11]). Das Fragment ist in Abbildung 4.6b als Rechteck
dargestellt.

Durch eine spezielle Gruppierung zu einem Zweig lassen sich alle verbundenen Knoten eines
Astes zusammenfassen. Ein Zweig besteht somit aus genau einem Knoten der Ebene ¢ und
kann beliebig viele verbundene Knoten in den Ebenen grofier ¢ umfassen. Ein Zweig ist in

46

4.4. Artefakte

OQ KL} O—Q
AN (O
() y — =

v Y
() IC_}_ > 2
v \ —
(a) Zweig (b) Fragment

Abbildung 4.6.: Gruppierungen von Knoten

Abbildung 4.6a dargestellt. Ein einzelner Zweig ist ein Fragment, jedoch ist ein Fragment nicht
zwangslaufig ein Zweig.

Die Auswirkungen der Anderungen des Modells auf den Graphen wurden betrachtet. Nachfol-
gend wird analysiert, welche Konsequenzen dies auf die BPEL4Chor Artefakte hat.

4.4. Artefakte

Der Graph ist nicht nur ein geeignetes Zwischenformat fiir die Manipulation, sondern dieser
abstrahiert auch die BPEL4Chor Artefakte mit den darunter liegenden Dateien. Jede Verande-
rung muss sich in den Dateien widerspiegeln, damit diese persistent gespeichert werden. In
diesem Zug muss der Graph zuriick in das XML-Format iibersetzt werden. Dieser Schritt wird
als Serialisieren bezeichnet.

Die BPEL4Chor Dateien haben unterschiedliche Eigenschaften beziiglich der Struktur des
Inhalts und deren Darstellungsform innerhalb der grafischen Oberflache (siehe Kapitel 6). Fiir
die PBDs spielt die Struktur und Reihenfolge des Inhalts eine bedeutende Rolle. Durch sie wird
unmittelbar die Semantik des Inhalts mitbestimmt. Fiir die PGs hingegen ist die Reihenfolge
des Inhalts vernachlassigbar, lediglich die Struktur muss beriicksichtigt werden.

Dies hat zur Folge, dass die Struktur des Graphen und die Reihenfolge der Knoten fiir die PBDs
exakt ibernommen werden miissen. In Abbildung 4.7 ist die Ubersetzung von Graph zu XML
schematisch dargestellt.

Jeder Knoten wird auf ein XML-Element abgebildet. Die Vorganger und Nachfolger Bezie-
hungen werden jeweils fiir Knoten auf derselben Ebene iibernommen. Im XML-Dokument
teilen die Elemente die gleiche Beziehung. Daraus resultiert, dass die Ebene eines Knoten der
direkten Verschachtelungstiefe des XML-Elementes entspricht. Die Ebene 0 korrespondiert
folglich mit der Tiefe des XML Wurzel-Elements. Knoten aus der néchsten Ebene werden eine
Verschachtelungstiefe weiter, unter den zugehorigen Elternknoten, einsortiert. Hier gilt auch
wieder die Vorgénger- und Nachfolger-Beziehung.

47

4. Anforderungsanalyse

48

<A
S
B>
<Cr
< C=
< /B=
<D=
<Ex
<F=
</F=
</E=
<G=
<G>
<D=

Abbildung 4.7.: Graph zu XML Ubersetzung

\

A

A

Ebene

Kx i

Ebene Ebene
i+1 i+2

|
Ebene

i+3

/

Abbildung 4.8.: Graph mit Ebenen

5. Konzept

In dem vorherigen Kapitel wurden die Anforderungen analysiert. Ferner wurde das allgemeine
Vorgehen besprochen und in den Kontext dieser Arbeit einsortiert. Auf dieser Basis wird in
diesem Kapitel weiter aufgebaut und ein Konzept zur Realisierung vorgeschlagen.

Es werden zunichst in Abschnitt 5.1 die Anforderungen an die Fusion der Modelle genannt
und die getroffenen Annahmen in Abschnitt 5.2 besprochen. Danach werden die verwendeten
Regeln fiir die Modell-Fusion in Abschnitt 5.3 vorgestellt. Daraufhin wird in Abschnitt 5.4 ein
Beispiel geliefert, wie Modelle an Hand der Regeln fusioniert werden. Abschlieffend wird der
entworfene Algorithmus vorgestellt.

5.1. Anforderungen

Das Fusionieren von Modellen findet immer unter verschiedensten Bedingungen statt. Die be-
stehenden Rahmenbedingungen werden vom Anwendungsfall bestimmt. Nachfolgend werden
die Anforderungen besprochen, die an das Konzept gestellt werden und fiir den Anwendungs-
fall zugeschnitten sind. Die Anforderungen finden sich spéter in definierten Regeln wieder, die
vom Algorithmus verwendet werden.

Anderungsiibernahme Alle durchgefithrten Anderungen am Choreographie-Modell miis-
sen im fusionierten Modell des Teilnehmers enthalten sein. Bestehende unverinderte Struktu-
ren und Aktivititen aus der Choreographie sind ebenso zu iibernehmen.

Schnittstellen-Charakter Das Choreographie-Modell wird als Schnittstelle angesehen, die
eine erfolgreiche Kommunikation der Teilnehmer sicherstellt. Die Reihenfolge von Aktivitaten,
welche aus der Choreographie-Beschreibung stammen, darf nicht verdndert werden.

Erganzungsibernahme Im fusionierten Modell miissen die Verfeinerungen des alten Mo-
dells enthalten sein. Das fusionierte Modell vereint die neue Choreographie mit den alten
Verfeinerungen.

49

5. Konzept

Syntaktisch korrekt Das Ergebnis der Fusion entspricht einem syntaktisch korrekten Mo-
dell. Das Modell ist wohlgeformt und lasst sich mit dem Prototyp verwenden.

Eigenstandig Fiir ein erfolgreiches Fusionieren miissen nur die zu verschmelzenden Modelle
vorliegen. Dem Teilnehmer kann die neue Choreographie-Beschreibung iibermittelt werden.
Diese reicht ihm aus um seine neue Orchestrierung zu erstellen.

Unabhéngig Jede zusitzliche Information, welche nicht im Modell selbst enthalten ist, muss
als optional anzusehen sein. Die Verwendung dieser Information fithrt zu einer Verbesserung
des Resultates, ist aber nicht fiir eine erfolgreiche Fusion der Modelle erforderlich. Dies umfasst
beispielsweise die Hinzunahme einer Anderungshistorie.

Verlustfreies verschmelzen Die Modelle sollen verlustfrei verschmolzen werden. Verlust-
frei bedeutet, dass keine Information, welche zuvor in einem Modell vorhanden war, verloren
gehen darf. Das umfasst alle bekannten Eigenschaften die Elemente und Attribute betreffen.
Daraus folgt, dass jedes Elemente im fusionierten Modell enthalten ist. Sowie, dass jedes
zugehorige Attribut eines jeden Elements sich auch im fusionierten Modell wiederfindet.

Automatische Integration Der Algorithmus, zum Fusionieren der Modelle, soll wenig
Benutzerinteraktion erfordern. Soweit moglich werden Entscheidungen automatisch getroffen.
Dies soll eine nahtlose Integration in den bestehenden Ablauf gewahrleisten.

Dariiber hinaus werden die iblichen Anforderungen an die Algorithmen gestellt. Die Algo-
rithmen sollen nach endlicher Zeit terminieren und ein Ergebnis liefern. Des Weiteren soll
das Ergebnis deterministisch berechnet werden, so dass identische Eingaben immer dasselbe
Ergebnis liefert.

5.2. Annahmen

Im Folgenden werden die getroffenen Annahmen vorgestellt.

Schema Evolution Es werden Workflows betrachtet die auf Schema Ebene verdandert wer-
den. Somit betrachtet das Konzept Modifikationen am Modell und nicht an abgeleiteten Instan-
zen.

50

5.3. Vergleichen und Verschmelzen

Trage Weitergabe Eine Anderung am Schema hat keinen Einfluss auf bereits laufende
Instanzen. Aulerdem erfolgt keine Weitergabe der Anderungen an laufende Prozesse. Diese
werden nach Vorgabe des urspriinglichen Modells abgeschlossen. Die Anderungen treten nur
fiir nachfolgend gestartete Instanzen in Kraft.

Lokales Wissen Jeder Choreographie-Teilnehmer verfiigt nur iiber lokales Wissen der
Aktivitaten und zusatzlicher Informationen, welche von den Partnern veroffentlicht wurden.
Ein Teilnehmer kennt damit nicht zwangslaufig die gesamte Choreographie, sondern nur die
Kommunikationsaktivitdten in denen er direkt beteiligt ist.

Ahnlichkeit Die neue Modellversion lisst sich aus der alten Version mit beliebig vielen
Anderungsschritten ableiten. Die Versionen haben danach noch mindestens eine Gemeinsam-
keit.

Aktivitaten Beziehung FEin Fragment von verfeinerten Aktivitaten hidngt unmittelbar von
einem eindeutigen Referenzpunkt ab. Es wird angenommen, dass der Referenzpunkt ein
vorheriger Knoten ist, der in beiden Modellen existiert. Der Referenzpunkt konnte eine Kom-
munikationsaktivitat der Choreographie sein.

Eine weitere Annahme ist, dass ein neues fusioniertes Modell immer aus zwei Modellen erstellt
wird. Auflerdem wird angenommen, das ein Zugriff auf die alte Choreographie méoglich ist.

5.3. Vergleichen und Verschmelzen

Es werden immer zwei Modelle als Eingabe verwendet. Durch die Annahme, dass eine neue
Version aus einer alten Version heraus entstanden ist, lasst sich eine Beziehung zwischen dem
alten und neuen Modell definieren, welche die Evolution der Version beschreibt.

Definition 5.3.1 (Evolution der Version)
Ein Modell M’ ist eine neuere Version des Modells M, wenn M’ aus Anderungen von M entstanden
ist und M' noch mindestens ein Knoten von M enthiilt.

o Anderungen: M , = M’

Anderungen

e Gemeinsamkeit: 3 x € Vyp,y € Vi : Croq(x,y) =T

Der Operator ;. d:;ung beschreibt eine ausgefithrte Anderung an dem Modell M, welche in
das gednderte Modell M’ resultiert. Unter dem Operator befindet sich die Bezeichnung der
Anderung. Die Anwendung einzelner Anderungen konnen tiber diesen Operator dargestellt
werden. Eine Anderungssequenz, in der ein Knoten einen anderen ersetzen wiirde, lasst sich

wie folgt darstellen: M delet:;(Vl) ! mse::(vg) M".Um eine Sequenz abzukiirzen wird ein Stern an

51

5. Konzept

Abbildung 5.1.: Fusionieren zweier Modelle mit Hilfe von Versions-Beziehungen

den Operator angefiigt. Mit dem Operator lasst sich auch die Anwendung eines Change-Log,
welche eine Sequenz von einzelnen Anderungen umfasst, darstellen.

In der Abbildung 5.1 ist die Beziehung der alten und neuen Choreographie tiber den gestrichel-
ten Pfeil skizziert. Die Beziehung bezieht sich dabei auf die Version in der urspriinglich noch
keine Verfeinerungen durchgefithrt worden sind. Aufgrund dieser Beziehung sind in beiden
Versionen gemeinsame Knoten enthalten.

Wiirden die Versionen keine gemeinsamen Knoten teilen, ist die Frage berechtigt, in wie fern
eine automatisierte Verfeinerung zweier verschiedener Modelle legitim ist. Zudem miisste auf
die Entscheidung eines Menschen zuriickgriffen werden oder auf einen lernenden Algorithmus,
der iber die Syntax hinaus auch die Semantik der Knoten versteht.

Ausgehend von V;, bedeuten alle 1-0 Zuordnungen mit V' neu hinzugefiigte Aktivitaten zur
Choreographie. Alle 0-1 Zuordnung mit V' stehen fiir entfernte Aktivitaten. Diese Zuordnungen
werden gespeichert, um spater nicht unnotige Aktivitaten, welche in V,, enthalten sind, zu
tbernehmen.

Jetzt werden die gemeinsamen Knoten zwischen V,, und V, bestimmt. Die Knoten mit 1-1
Zuordnung dienen als Referenzpunkte, um die verbleibenden Knoten zu positionieren. Die
verbleibenden Knoten bestehen nur noch aus Verfeinerungen (Knoten), sowie den geldschten
Aktivitaten. Fir jede Verfeinerung wird ein Referenzpunkt ausgewahlt. Die Auswahl wird so
getroffen, dass die Verfeinerung auf einem Weg vom Referenzpunkt erreichbar und gleichzeitig
der kiirzeste Weg ist.

Definition 5.3.2 (Referenzpunkt)
Ein Knoten wird als Referenzpunkt bezeichnet, genau dann wenn eine 1-1 Zuordnung besteht und
die Knoten Teil der zu fusionierenden Modelle sind.

Die Menge aller Referenzpunkte bilden zusammen ein Skelett. Dieses Skelett bildet das Grundge-
rist fiir das fusionierte Modell. Um das Skelett zu vervollstdndigen, werden die Verfeinerungen

52

5.4. Beispiel

hinzugefiigt. Jede Verfeinerung wird unter den zuvor ausgewiahlten Referenzpunkt gehangt.
Dazu wird ein kompletter Zweig genommen oder ein ganzes Fragment, welches sich zwischen
zwei Referenzpunkten befindet.

Das fusionierte Modell besitzt nach diesen Vorgang die vereinigte Struktur beider Modelle. Als
nachstes miissen die Attribute der Knoten fusioniert werden. Es kann vorkommen, dass ein
Knoten in den Modellen unterschiedliche Attribute besitzt. Hier muss entschieden werden,
welcher Wert dem Attribut zugewiesen wird. Dazu wird zunéchst fiir jedes Attribut festgehalten,
aus welchen Modell dieses stammt.

Die Modelle erhalten ein Stimmrecht, mit der sie fiir ihr Attribut wahlen diirfen. Bei der
Wahl sind alle Modelle wahlberechtigt, welche selbst ein Attribut des betroffenen Namens
besitzen. Der Wert mit den meisten Stimmen gewinnt die Wahl und wird in das fusionierte
Modell aufgenommen. Bei einem Gleichstand wird ein Entscheidungstrager benétigt. Ein
Entscheidungstrager bekommt ein bevorzugtes Wahlrecht und tiberstimmt damit die anderen
Modelle. Als Entscheidungstrager wird das neuste Modell gewéhlt. Dieses dominiert damit die
anderen Modelle.

Definition 5.3.3 (Dominanz)

Ein Modell M’ dominiert ein Modell M genau dann wenn M’ eine neuere Version von M ist. Die
Beziehung wird als M < M’ geschrieben. Die dominierten Modelle werden als zuriickhaltend
bezeichnet.

Ein Konflikt wird folglich gelost, indem das dominante Modell entscheidet. Diese Vorgehenswei-
se ist, fiir zwei in der Wahl beteiligte Modelle, in der Funktion 5.1 beschrieben. Das dominante
Modell stimmt fiir sein eigenes Attribut, sofern es eins mit dem Namen besitzt. Die Funktion
erwartet zwei Knoten und den Namen des Attributs und bildet dies auf das gewahlte Attribut
ab: WahleAttribut : Attribut x Knoten x Knoten — Attribut.

Attribut(V',z) , falls Hat-Attribut, (V")
Attribut(V,z) , falls Hat-Attribut, (V') =

(5.1)

T
WahleAttribut(z, V, V') := { N

5.4. Beispiel

Bevor der formale Algorithmus vorgestellt wird, werden die einzelnen Schritte an Hand eines
kurzen Beispiels erklart. In Abbildung 5.2 sind dazu drei Graphen zu sehen. Auf der linken
Seite befindet sich das neue dominante Modell. Auf der rechten Seite das alte Modell, mit
den bestehenden Verfeinerungen. Das Ergebnis aus der Fusion beider Modelle ist in der Mitte
abgebildet.

Zur besseren Unterscheidung der Eigenschaften sind die Knoten markiert. Die Knoten mit
Verfeinerungen sind mit einem Netz bedeckt. Wohingegen die Knoten mit Kommunikationsak-
tivitaten, aus der Choreographie Beschreibung, schraffiert dargestellt sind. Gemeinsamkeiten in

53

5. Konzept

Neues Modell

:

Altes Modell

)

L@%emsmweu rﬁ)_,(%)_@
| @
%@ (a‘;

Legende) Z (
(e i
‘EE[Verfeinerung . (_)_’@
O Referenzpunkt é é

Abbildung 5.2.: Das neue Modell (Links) und altes Modell (Rechts), wird zum fusionierten
Modell (Mitte) vereinigt

Form von Referenzpunkten besitzen einen ausgefiillten Knoten. Knoten die keine Markierung
haben sind aus dem alten Modell und haben keine Zuordnung. Sie sind aus dem neuen Modell
entfernt oder ersetzt worden.

Es wird angenommen, dass die Knoten bereits nach Typ klassifiziert sind. Deshalb wird gleich
aus dem neuen Modell ein Skelett erstellt. Dazu werden alle Knoten aus den neuen Modell in
den mittleren Graph kopiert. Aus dem alten Modell wird nun das Skelett stiickweise ergénzt.

In den kommenden Absitzen wird die Ubernahme von Verfeinerungen, in der Reihenfolge
von oben nach unten und von links nach rechts, besprochen.

Die oberste Verfeinerung wird nicht in das fusionierte Modell iibernommen. Das liegt daran,
weil der dazugehorige Referenzpunkt der Wurzelknoten ist und dieser im neuen Modell ersetzt
wurde. Die Verfeinerung wird als obsolet betrachtet und nicht erganzt.

Die néachste Verfeinerung betrifft direkt einen Referenzpunkt. Dieser wird direkt mit den
Verfeinerungen ergénzt und in das fusionierte Modell ibernommen.

Die dritte Verfeinerung ist ein Kind auf einem Ast. Zwar ist diesem Knoten ein giltiger
Referenzpunkt im fusionierten Modell zugeordnet, jedoch befindet sich ein geloschter Knoten
auf dem Weg zu seinem Referenzpunkt. Der geloschte Knoten muss passiert werden um auf
die gleiche Ebene wie der Referenzpunkt zu gelangen. Durch die Annahme der Vorganger-
Beziehung ist davon auszugehen, dass der Knoten vom geldschten Knoten abhéngig ist. Deshalb
wird diese Verfeinerung nicht in das Modell iibernommen.

Darauffolgend ist eine Verfeinerung unter einem Referenzpunkt, auf der selben Ebene. Dieser
besitzt wieder den selben Referenzpunkt, wie die Verfeinerung davor. Der geloschte Knoten
liegt optisch auf dem Weg, allerdings befinden sich Verfeinerung und Referenzpunkt auf der
selben Ebene. Die Verfeinerung ist dadurch nicht vom geldschten Knoten abhangig und wird
in das fusionierte Modell iibernommen. Es ist dennoch nicht klar, wozu genau der Knoten

54

5.5. Algorithmus

gehort. Aus diesem Grund wird er unmittelbar unter den Referenzpunkt, vor den anderen
Knoten, angefiigt.

Die néachsten beiden Verfeinerungen sind eindeutig. Sie befinden sich unmittelbar an ihrem
jeweiligen Referenzpunkt. Diese konnen ohne weiteres in das Modell erganzt werden. Fiir die
letzte Verfeinerung trifft erneut der Fall zu, dass ein geloschter Knoten passiert werden muss,
um auf die gleiche Ebene wie der Referenzpunkt zu kommen. Demnach wird dieser nicht in
das fusionierte Modell iibernommen.

5.5. Algorithmus

Der Algorithmus besteht aus drei Phasen. Die erste Phase ist die Vorbereitungsphase, in der
die Vorbedingungen und Annahmen tberpriift werden. Dariiber hinaus werden die Daten-
strukturen initialisiert. Die zweite Phase generiert die neue Struktur. Abschliefend wird in der
dritten Phase das Modell konsolidiert.

Jeder Partner durchlauft diese drei Phasen, um seinen Workflow zu aktualisieren. Die Schritte,
welche in den Phasen umgesetzt werden miissen, sind die folgenden:

1. Vorbereitung
a) Referenzpunkte werden identifiziert
b) Hinzugefiigte und entfernte Knoten werden im aktualisiertem Modell identifiziert
c) Verfeinerungen werden aus dem alten Modell identifiziert
2. Strukturierung
a) Skelett wird aufgebaut
b) Verfeinerungen werden einem Referenzpunkt zugeordnet
c) Verfeinerungen werden dem Skelett an den Referenzpunkten angehéngt
3. Konsolidierung
a) Konflikte werden gelost

b) Optimierungen werden durchgefiihrt (optional)

Fiir die Umsetzung der einzelnen Schritte werden Funktionen in Pseudocode vorgeschlagen.
Eine Realisierung kann unter Umsténden effizienter implementiert werden. Die Algorithmen
dienen nur zur Veranschaulichung des Konzeptes.

55

5. Konzept

Algorithmus 5.1 Referenzpunkte werden identifiziert

function FINDEREFERENZPUNKTE(Modell z, Modell y)
Referenzpunkte < ()
for all o € ciBKNOTEN(z) do
for all b € ciBKNOTEN(y) do
if true == C1_1(a, b) then
Referenzpunkte < Referenzpunkte U {(a, b)}
end if
end for
end for
return Referenzpunkte
end function

Referenzpunkte werden identifiziert - Pseudocode 5.1 Fiir das Identifizieren der Refe-
renzpunkte wird als Eingabe das neue und alte Modell benétigt. Innerhalb der Funktion werden
die Knoten auf eine 1-1 Zuordnung untersucht. Sofern eine 1-1 Zuordnung vorliegt wird das
Knotenpaar in die Menge der Referenzpunkte aufgenommen. Ist die Untersuchung der Knoten-
paare abgeschlossen werden alle gefundenen Referenzpunkte zuriickgegeben. Referenzpunkte
kénnen selbst von Anderungen, wie Verschiebungen, betroffen sein.

Identifizierung der Aktualisierungen - Pseudocode 5.2 Um Aktualisierungen zu identi-
fizieren wird entweder ein vorhandener Change-Log benétigt oder das urspriingliche Modell
ohne Verfeinerungen. Es wird eine Variante ohne Change-Log vorgeschlagen. Als Eingabe
werden zwei Modelle erwartet. Das erstes Argument der Funktion ist das weiterentwickelte
Modell. Es ist das neuste unter den Modellen und damit das dominante. Die Zuordnungen
werden aus Sicht des ersten Modells erstellt. Die Knoten werden paarweise auf 1-0 und 0-1
Zuordnungen untersucht. Knoten mit 1-0 Zuordnungen werden in die Menge der neu hin-
zugefiigten Knoten aufgenommen. Die Knoten mit 0-1 Zuordnung werden der Menge der
geloschten Knoten zugewiesen. Sind alle Vergleiche vollzogen, werden die Mengen mit den
klassifizierten Knoten zuriickgegeben.

Identifizierung der Verfeinerungen - Pseudocode 5.3 Aus dem alten Modell werden
die Verfeinerungen extrahiert. Eine Variante benotigt dazu das alte Modell, die gefundenen
Referenzpunkte und die geloschten Knoten als Eingabe. Als Alternative kann wieder ein
Change-Log verwendet werden. Der Algorithmus geht wie folgt vor: Fiir das Modell wird jeder
Knoten betrachtet und in die Menge der Verfeinerungen aufgenommen, sofern der Knoten
kein Referenzpunkt darstellt oder im neuen Modell entfernt wurde. Referenzpunkt sind bereits
im Skelett enthalten und geloschte Knoten sind nicht mehr relevant. Zum Schluss wird die
Menge der Verfeinerungen zuriickgegeben.

56

5.5. Algorithmus

Algorithmus 5.2 Identifizierung der Aktualisierungen

function FINDEHINZUGEFUGTEUNDENTFERNTEKNOTEN(Modell z, Modell)
// Modell z ist eine neue Version von Modell y
Aktualisierungen, <+ () // hinzugefiigte Knoten
Aktualisierungen_ < () // entfernte Knoten
for all @ € GiBKNOTEN(z) do
for all b € ciBKNOTEN(y) do
if true == C1_¢(a, b) then
Aktualisierungen, < Aktualisierungen, U {(a,b)}
end if
if true == Cy_1(a, b) then
Aktualisierungen_ < Aktualisierungen_ U {(a,)}
end if
end for
end for
return Aktualisierungen
end function

Algorithmus 5.3 Identifizierung der Verfeinerungen

function FINDEVERFEINERUNGEN(Modell =, Referenzpunkte r, Aktualisierungen_a) //
Finde Verfeinerungen im alten Modell und ignoriere obsolete Knoten
Verfeinerungen < ()
obsoleteKnoten < a
for all @ € GiBKNOTEN(z) do
if a ¢ Referenzpunkte A a ¢ obsoleteKnoten then
Verfeinerungen <— Verfeinerungen U {a}
end if
end for
return Verfeinerungen
end function

57

5. Konzept

Algorithmus 5.4 Finde Referenzpunkt fiir Knoten

function FINDEREFERENZPUNKT(Knoten z, Modell m, Referenzpunkte)

return Referenzpunkte <— BREITENSUCHE(z, m, r) // Traversiere Modell und merke
letzten Referenzpunkt
end function

Algorithmus 5.5 Verfeinerungen mit Skelett verbinden

function ERGANZEVERFEINERUNGEN(Verfeinerungen v, Modell m)
verfeinertesModell < m
for all v € Verfeinerungen do
Referenzpunkt <— v.GEHORTZUREFERENZPUNKT|()
Position < verfeinertesModell. GEHEZUREFERENZPUNKT(Re ferenzpunkt)
Position.ERGANZEVERFEINERUNG (V)
end for
return verfeinertesModell
end function

Finde Referenzpunkt fiir Knoten - Pseudocode 5.4 Fiir jeden Wurzelknoten eines Frag-
ments muss ein Referenzpunkt gefunden werden um diesen an das Skelett anzufiigen. Die
Funktion benétigt dafiir den Wurzelknoten fiir den der Referenzpunkt gefunden werden soll,
das Modell in dem der Knoten vorhanden ist und alle verfiigbaren Referenzpunkte. Auf dem
Modell wird eine modifizierte Breitensuche gestartet die nach dem Wurzelknoten sucht. Auf
dem kiirzesten Weg zum Knoten wird sich der letzte passierte Referenzpunkt gemerkt. Dieser
Referenzpunkt wird dem Wurzelknoten zugeordnet und zuriickgegeben.

Verfeinerungen mit Skelett verbinden - Pseudocode 5.5 Das Skelett wird mit den Ver-
feinerungen ergianzt. Die Funktion erhélt als Argument die Menge der Verfeinerungen und
das Modell in Form des Skeletts. Fiir jedes Fragment wird der Referenzpunkt ausgelesen um
im Skelett die geeignete Position zu finden. An dieser Position wird das Fragment eingefiigt.
Nachdem alle Fragmente eingefiigt worden sind, wird das verfeinerte Modell zuriickgegeben.

58

5.5. Algorithmus

Algorithmus 5.6 Fusionieren von Attributen

// Knoten = dominiert Knoten y

function FUSIONIEREATTRIBUTE(Knoten z, Knoten v)
neuerKnoten +— x
alterKnoten < y
Attribute <— ()
for all @ € GIBATTRIBUTE(neuer Knoten) do
Attribute < Attribute U {a}
end for
for all « € GIBATTRIBUTE (alter Knoten) do
if a ¢ Attribute then
Attribute < Attribute U {a}
end if
end for
return Attribute
end function

Fusionieren von Attributen - Pseudocode 5.6 Um die Attribute der Knoten zu fusionie-
ren, werden alle Knoten mit 1-1 Zuordnung als Eingabe benétigt. Das erste Argument ist ein
Knoten aus dem neuen Modell und dominiert somit den Knoten aus dem zweiten Argument.
Zunachst werden alle Attribute vom dominanten Modell iibernommen. Danach werden die
iibrigen Attribute erginzt, sofern diese nicht bereits bestimmt worden sind. Die Menge der
fusionierten Attribute wird zuriickgegeben und kann in das Modell iibernommen werden. Es
missen nur fiir Knoten mit 1-1 Zuordnung Attribute fusioniert werden, da nur fiir diese ein

Konflikt auftreten kann.

59

5. Konzept

Algorithmus 5.7 Aktualisierung eines Modells

procedure AKTUALISIEREMODELL(Modell V,,, Modell V)
R < FINDEREFERENZPUNKTE(V, V})

if R = () then
Abbruch: Modelle haben keine Gemeinsamkeiten
end if
Skelett <V, // Kopiere gesamtes Modell als Skelett
A < FINDEHINZUGEFUGTEUNDENTFERNTEKNOTEN(V}, V) // Erstes Argument ist

neues Modell
Fragmente <— FINDEVERFEINERUNGEN(V,, R, A)
for all f € Fragmente do
p <— FINDEREFERENZPUNKT(f.Wurzel,V,, R) // Suche ein Referenzpunkt fiir die
Wurzel eines Fragments
Verfeinerungen <— Verfeinerungen U {(f,p)}
end for
fusioniertesModell <~ ERGANZEVERFEINERUNGEN (Ver feinerungen, Skelett)
for all knoten € GIBKNOTEN(fusioniertesModell) do
if knoten € Rthen // Konflikte konnen nur bei Knoten auftreten die in beiden
Modellen vorhanden sind
attribute < FUSIONIEREATTRIBUTE(R.a, R.b)
kEnoten.attribute < attribute
end if
end for
return fusioniertesModell
end procedure

Aktualisierung eines Modells - Pseudocode 5.7 Durch das Zusammensetzen der einzel-
nen Funktionen wird die Aktualisierung vorgenommen. Als Eingabe wird das zu aktualisierende
alte Modell als erstes Argument und das neue Modell als zweites Argument erwartet. Optional
kann ein vorhandener Change-Log zusétzlich mit ibergeben werden um das Ergebnis zu
verbessern. Im Beispiel wird darauf verzichtet. Zu Beginn werden die Referenzpunkte gesucht.
Existieren keine so kann das Modell nicht aktualisiert werden. Dies ist eine Ausnahmesitua-
tion, den fiir gewohnlich stammen die Modelle voneinander ab und teilen mindestens die
Wurzelknoten. Dieser schlechteste Fall wiirde zu einer einfachen Vereinigung beider Modelle
fiuhren. Danach wird das Skelett aus dem neuen Modell gewonnen. Daraufhin werden die
Anderungen analysiert und die Verfeinerungen in Form von Fragmenten extrahiert. Fiir jedes
Fragment wird ein geeigneter Referenzpunkt gesucht und zugeordnet. Das fusionierte Modell
wird dann aus Skelett und Verfeinerungen aufgebaut. Die Fragmente werden dazu an den
Referenzpunkten des Skeletts angefiigt. Zuletzt werden die Konflikte gelost und die gewahlten
Attribute ibernommen. Damit sind beide Modelle in ein Modell fusioniert.

60

6. Prototyp

In dem vorherigen Kapitel wurde ein Konzept vorgestellt, wie eine tiberarbeitete Choreographie
an die Choreographie Teilnehmer weitergegeben werden kann und diese die Anderungen
erkennen und in ihre lokale Orchestrierung tibernehmen kénnen.

In diesem Kapitel wird das erarbeitete Konzept realisiert. Hierfiir wird der Algorithmus inner-
halb eines wissenschaftlichen Prototyps implementiert und Details der Realisierung bespro-
chen.

Zunéachst wird der BPEL4Chor Designer in Abschnitt 6.1 vorgestellt und eine kurze Einfiih-
rung in die Verwendungsweise in Abschnitt 6.2 gegeben. Darauffolgend wird die Architektur
des BPEL4Chor Designers in Abschnitt 6.3 betrachtet und erforderliche Anderungen in Ab-
schnitt 6.5 prasentiert. Die durchgefithrten Anpassungen werden beschrieben und zuletzt eine
Beurteilung in Abschnitt 6.6 abgegeben.

6.1. BPEL4Chor Designer

Der wissenschaftliche Prototyp mit dem Namen BPEL4Chor Designer (kurz ChorDesigner) ist
ein Editor fiir Modellierer. Mit ihm lassen sich Choreographien grafisch modellieren. Aus den
modellierten Choreographien lassen sich wiederum ausfithrbare BPEL Prozesse generieren.
Der Editor verwendet fiir die Transformation das BPEL4Chor Modell, worauf auch der Name
zuriickzufiihren ist.

Im Rahmen der Arbeit [Son13] wurde der Editor ausgearbeitet und wird seitdem in verschiede-
nen Arbeiten [Sch14], [Wol15], [Wei+15] weiterentwickelt. Der Editor basiert auf dem Eclipse
BPEL-Designer' und wurde als Eclipse-Plugin konzipiert. Inzwischen umfasst der Prototyp
selbst eine Reihe von Erweiterungen. Zum Stand dieser Arbeit wird Eclipse Helios in der
Version 3.2.2 in Kombination mit Java 1.5 eingesetzt. Fiir die Umsetzung des grafischen Editors
wird das Graphical Modeling Framework (GMF)? verwendet, was wiederum das Eclipse Mo-
deling Framework (EMF)? fiir die Meta-Modellierung der Modelle und das Graphical Editing
Framework (GEF)* fiir die Darstellung der Modelle benutzt.

https://projects.eclipse.org/projects/soa.bpel
Zhttp://www.eclipse.org/gmf-tooling/
Shttp://www.eclipse.org/modeling/emf/
*http://www.eclipse.org/gef/

61

6. Prototyp

Domain problem
described astext
or BPMMN dizgram

Manual Modeling £5ELa0har Deserintion ST wEDL
h J _Definiticns
‘ Parficipant Topo oy |
Choreopgr sphy E 7 Absctract BPEL proceses
N asgraphical Py y— > s N T p—— with references to WSDL
f/ f| metamodel Transforamtion| [FE=t Transfaramtion definitions
) '/\\J'I T Beh awior Parfcipant
I 'l 1| Descrigtions - Sroundings I
l'. I ==l 1 Manual Refinement
\ .
\‘-»:: _-f-’/
Refined
U pd ate |||| execurable

BPEL processes

Change propagation

Abbildung 6.1.: Von der Problembeschreibung bis zum ausfithrbaren BPEL-Prozess, nach
[And+13], [Dec+09]

6.2. Verwendung

Bevor das Modellieren beginnt wird angenommen, dass eine Beschreibung des zu 16senden
Problems in Form von einem Text oder als BPMN-Diagramm vorliegt. Auf dieser Basis wird
das Modell mit dem Choreographie Editor von Hand erstellt. Das passiert mit Hilfe von
bereitgestellten Modellierungselementen, die sich durch Drag and Drop verbinden lassen.

Das Choreographie-Modell liegt nun in einer Choreographie-Datei (.chor) vor und kann
exportiert werden. Beim Exportieren werden automatisch die BPEL4Chor Artefakte aus dem
Modell generiert. Es entstehen eine Topologie-Datei (.xml) und fiir jeden Chorographie-
Teilnehmer jeweils eine Deployment-Datei (deploy.xml) und ein abstrakter BPEL-Prozess. Aus
den BPEL4Chor Artefakten werden abschlielend automatisch die Webservice Beschreibungen
(.wsdl) und ausfithrbaren BPEL-Prozesse (.bpel) erstellt. Die ausfithrbaren BPEL-Prozesse
werden daraufhin wieder manuell mit Geschéftslogik verfeinert.

Wird das bestehende Choreographie-Modell verandert, werden die einzelnen Schritte der
Transformation neu durchlaufen und es entstehen neue ausfithrbarer BPEL-Prozesse, die erneut
verfeinert werden miissen. Durch die Implementierung der vorgestellten Algorithmen wird es
ermoglicht, diesen Ablauf zu vereinfachen und Anderungen in der Choreographie automatisch
in vorhandene verfeinerte Prozesse zu integrieren (Abbildung 6.1). Eine Modifikationen an
der Choreographie wird so direkt an die betroffenen Prozesse weitergegeben und automatisch
integriert.

62

6.3. Architektur

BPELAChor Descriptian Transformation BPEL Abstract
Participant Topology A Processes
7 N
s 7
Participant
PBDs = =1 Groundings| \
‘: Refined BPEL
/ Processes
/
.f’
WSDL ;
Mergin
Definitions gine \ WSDL
Definitions
Refined BPEL
Change-log Processes

Abbildung 6.2.: Erweiterung um ein Merging-Modul

6.3. Architektur

Die bestehende Architektur des Editors wird um ein neues Modul, innerhalb der Transformati-
on, erweitert (Abbildung 6.2). Das Modul kann eigenstandig verwendet werden und tibernimmt
alle Aufgaben, welche fiir das Verschmelzen der Modelle erforderlich sind. Das Merging-Modul
wird fiir jene Modelle ausgefiihrt, fiir die bereits ein verfeinertes Modell existiert. Auch werden
nur Modelle fusioniert die von einer Anderung betroffen sind. Dies simuliert gleichzeitig die
Weitergabe der BPEL4Chor Beschreibung an betroffene Teilnehmer. Modelle ohne Verfeinerung
werden von der Transformation wie vorher behandelt.

Es wurde sich gegen das direkte Bearbeiten des Transformations-Moduls entschieden. In-
nerhalb des Transformations-Moduls waren mehr Kontext-Informationen vorhanden, da die
gesamte Choreographie bekannt ist. Ein direktes bearbeiten des Tranformations-Moduls hat
jedoch entscheidende Nachteile. Beim damaligen Schreiben des bestehenden Codes wurde
kein Augenmerk auf Wartbarkeit gelegt und Anderungen wiirden sich durch die Codebasis
propagieren. Dariiber hinaus ist es fraglich, ob das Integrieren eines bestehenden Modells zu
den Aufgaben des Transformations-Moduls zéhlen sollte. Wird das Prinzip der Separation of
Concerns (SoC) beriicksichtigt, dass bedeutet das strikte Trennen von Zustandigkeiten, wird
klar, dass eine Modellfusion kein trivialen Bestandteil der Transformation darstellt und daher
ausgelagert werden muss. Es ist zudem realistischer, dass kein globales Wissen tiber die Cho-
reographie vorhanden ist und nur vom Partner mitgeteilte, sowie lokale Informationen in die
Bearbeitung mit einbezogen werden konnen. Ein weiteres Argument fiir die die Bereitstellung
eines neuen Moduls ist, dass sich die Funktionalitat einerseits direkt in die automatische
Codegenerierungsphase integrieren und andererseits als eigenstandiges Plugin ansprechen
und verwenden lasst.

63

6. Prototyp

Es wurde bei der Modulerstellung darauf geachtet, dass Komponenten leicht ersetzt werden
konnen. Das erhoht die Wartbarkeit und ermdéglicht jederzeit eine Verbesserung leicht umzu-
setzen. So kann beispielsweise bei der Zuordnung der Modellelemente die verwendete Strategie
ausgetauscht oder der konkrete Algorithmus, der die Modelle verschmelzt, ersetzt werden.

6.4. Eigenschaften

Der Editor enthalt zwei hilfreiche Funktionen, die Verschmelzungen der Modelle begiinstigen.
Es wird bereits eine Anderungshistorie in Form eines Change-Log bereitgestellt. Auierdem
wird jede aus der Choreographie transformierte Orchestrierung in einem neuen Ordner abge-
legt, der mit einer Versionsnummer gekennzeichnet ist.

Bei der Bearbeitung des Choreographie-Modells wird automatisch ein Change-Log angelegt.
Der Inhalt des Change-Log enthélt jedes Element, welches wahrend des Bearbeitens angeklickt
worden ist. Ein Element wird auch dann in den Log aufgenommen, wenn keine Anderung
vorgenommen wurde. Dadurch wiachst der Change-Log sehr schnell und enthalt unnétige
Informationen.

Jedem Eintrag im Change-Log wird eine Anderungskategorie zugeordnet. Aktuell existie-
ren zwei Kategorien. Die eine Kategorie umfasst strukturelle Aspekte und gruppiert damit
Anderungen wie Hinzuftigen und Entfernen von Elementen. Wird ein Element verschoben,
werden die Operationen in die Anderungs-Primitiven Hinzuftigen und Entfernen zerlegt und
jeweils separat im Change-Log aufgefiihrt. Die andere Kategorie umfasst Anderungen an den
Eigenschaften der Elemente. Dazu zéhlen Attribute und Werte, welche hinzugefiigt, entfernt
oder gedndert werden. Zusétzlich werden fiir jeden Eintrag immer der Zeitpunkt, der Name
und die aktuelle Position des betroffenen Objekts festgehalten.

6.5. Anpassungen

Unabhingig vom neu hinzugefiigten Modul mussten am bestehenden Code Anderungen
vorgenommen werden. Davon betroffen war die Anderungshistorie und der Transformation-
Assistent. Mit Hilfe des Transformations-Assistenten lassen sich die Einstellungen konfigurie-
ren. Hier wird zum Beispiel der Speicherort des Resultats angegeben oder die Optionen fiir
den Algorithmus bestimmt.

Zunichst wurden die zu speichernden Details der Anderungshistorie angepasst. Ab sofort
wird fiir jeden Change-Log-Eintrag zusétzlich die Identifikationsnummer des Elements gespei-
chert. Dadurch ist es moglich, direkt nach Elementen zu suchen, ohne die komplette Historie
nachvollziehen zu miissen.

64

6.6. Beurteilung

Transformation Assistent

Es existiert bereits ein verfeinertes Modell. Soll dieses integriert werden?

» | Ja, Model sutomatisch integrieren

/| Konflike sutomatisch 1Gzen

Werfeinertes Modell zum integrieren
[<] rev.azvwomo1011970

- m | Fetig | | Abbeachen

Abbildung 6.3.: Optionsseite fiir den Transformation Assistenten

Danach wurde der existierende Transformation-Assistent um eine weitere Optionsseite er-
weitert (Abbildung 6.3). Auf der zusétzlichen Seite lasst sich das automatische Integrieren
ausschalten. Es kann dariiber hinaus die Modell-Version bestimmt werden, welche fiir die
Verfeinerung verwendet wird. Aulerdem kann entschieden werden, ob eine manuelle oder
automatische Konfliktlosung bevorzugt ist.

Der Transformationsprozess wird wie vor den Anderungen angestof3en und abgearbeitet. So-
bald die Transformation abgeschlossen und die Modell-Integration im Assistenten ausgewahlt
ist, wird das Merging-Modul ausgefiihrt. Dieses holt sich die betroffenen Dateien und fiihrt
die gewtinschten Aktionen aus. Das verfeinerte Modell wird in einem Ordner innerhalb der
aktuellen Modell-Version abgelegt.

6.6. Beurteilung

Die Erweiterung des BPEL4Chor Designers bringt folgende Vorteile mit sich:

Die neue Funktionalitat wird nahtlos im Editor zur Verfiigung gestellt, ohne den bekannten
Ablauf zu unterbrechen. Deshalb kann der Benutzer den Editor wie vor den Anpassungen
verwenden und wird nicht seines gewohnten Ablaufes beraubt.

Es bleiben alle Modell-Versionen erhalten und werden sortiert in der Ordnerstruktur abgelegt.
So konnen die Modelle auch spéter noch einfach verglichen werden. Dariiber hinaus kann
jede alte Version zum Verfeinern des neusten Modells herangezogen werden und nicht nur die
Letzte.

Das automatische Verfeinern bereits existierender Modelle spart wertvolle Arbeitszeit, die
vorher in das Kopieren und Einfiigen der fehlenden Elemente von Hand investiert werden
musste. Gleichzeitig werden Fehler in der Positionierung vermieden.

65

7. Implementierung

Im vorherigen Kapitel wurde der wissenschaftliche Prototyp prasentiert und die notwendigen
Anpassungen vorgestellt. In diesem Kapitel wird das Konzept und die entworfenen Algorithmen
implementiert. Als Programmiersprache wird Java verwendet.

Zunichst werden in Abschnitt 7.1 die erstellten Komponenten und ihre Beziehungen présentiert.
Anschlieflend werden verwendete Bibliotheken und Techniken in Abschnitt 7.2 vorgestellt.
Danach wird in Abschnitt 7.3 gezeigt, wie die Komponenten in den Prototypen integriert wur-
den. Auflerdem werden getroffene Entscheidungen des beschrittenen Implementierungswegs
diskutiert.

7.1. Komponenten

In Abbildung 7.1 sind die implementierten Komponenten und ihre Beziehung untereinander
dargestellt. Der Kern wird aus dem Fragment-Sucher, Fragment-Verbinder und der Modell-
analyse gebildet. Die Komponenten sind eigenstindig und konnen unabhangig voneinander
verwendet werden. Der Modell-Verschmelzer kombiniert diese Bausteine, um zwei Model-
le zu fusionieren. Die Modelle implementieren das Document-Interface, welches aus dem
org.w3c.dom Paket stammt und zur Java API fir XML Verarbeitung (JAXP) gehort.

Modellanalyse Die Modellanalyse-Komponente realisiert das Konzept der Zuordnung. IThre
Aufgabe besteht darin die Modelle zu untersuchen und 1-1 Zuordnungen, sowie 1-0 und 0-1
Zuordnungen, aus den Modellen herauszuarbeiten. Die gefundenen Zuordnungen werden
dann in geeigneten Datenstrukturen bereitgestellt.

Die Komponente erwartet als Eingabe die zu untersuchenden Modelle. Die Modelle werden
daraufhin analysiert. Dazu miissen die DOM-Knoten verglichen werden. Beim Vergleichen der
DOM-Knoten wird auf verschiedene Vergleichsstrategien zuriickgegriffen. Eine Vergleichsstra-
tegie stellt hierfiir eine Schnittstelle zur Verfiigung. Die Schnittstelle erlaubt es zwei Elemente
hinsichtlich ihrer Gleichwertigkeit (Listing 7.1) zu beurteilen. Die gewiinschte Logik wird in
konkrete Vergleichsstrategien implementiert.

Aktuell werden zwei Vergleichsstrategien angeboten. Zum einen bietet eine Strategie den
Vergleich uiber die ID an. Hierbei werden die Knoten auf die Existenz einer ID inspiziert.

67

7. Implementierung

yrssssessessens e Vereinigung
H
H
ki
1% Mcclntesrface e
... Jzusammengesetzter ; - BrgeStrategy |4 ... iti
: Vergleich Fragment-Verbinder g— K] Komposition
H
: 7 7
: : fessssmsssmnnnsnn Dominanz
H H
H H
M c\f.rn't_'asnara:) 1+
. MatchStrate, - M Il-
HE BY | @ Modellanalyse pG------ Verscﬁﬁelzer ..

Veessees P, . Erstes Modell Zweites Modell
. H
h H

=<intarfaces=>
Document

[»] Name

.....

. Document Object Modellj

KEesssssmssssssssnnssnsnnnnnns

ey Unterschiede &
L

E - Zuordnungen Fragment-Sucher

.
oo wr
3

Referenzpunkte =&

N

Abbildung 7.1.: Komponentendiagramm der Implementierung

Listing 7.1 Match-Strategy Interface

interface MatchStrategy {
public Boolean match(Element left, Element right);

Besitzen beide Knoten eine ID und stimmt diese ID gleichzeitig tiberein, dann wird die Gleich-
wertigkeit der Knoten mit einem true bestatigt. Als Alternative wird ein Vergleich iiber den
Namen angeboten. Hierzu wird der exakte Namen beider Knoten verglichen. Im Falle einer
Ubereinstimmung des Namens wird mit einem true bestitigt, andernfalls mit einem false
verneint.

Da dies unter Umstidnden nicht ausreichend ist, wird aulerdem ein zusammengesetzter Ver-
gleich angeboten. In diesem konnen beliebig viele Strategien kombiniert werden. Ein zusam-
mengesetzter Vergleich kann sogar wieder einen zusammengesetzten Vergleich beinhalten. So
lassen sich komplexe Vergleiche aus einfachen Strategien kombinieren.

Mit diesem Konstrukt kann zum Beispiel erst die ID iiberpriift werden und falls keine ID
vorhanden ist, doch noch der Name zur Entscheidung hinzugezogen werden. Dartiber hinaus
konnen in der Zukunft einfach neue Vergleichsstrategien erganzt werden.

68

7.1. Komponenten

Listing 7.2 Merge-Strategy Interface

interface MergeStrategy {
public Fragment merge(Fragment left, Fragment right);

Nach abgeschlossener Analyse werden die gewonnenen Erkenntnisse in Datenstrukturen
bereitgestellt. Gleichwertige Knoten werden dabei als Referenzpunkte markiert und die ge-
scheiterten Vergleiche entsprechend als Unterschiede.

Fragment-Sucher Die Aufgabe des Fragment-Suchers ist es, ein Modell nach Fragmenten
abzusuchen, die spéter in ein anderes Modell eingefiigt werden sollen. In erster Linie wird hier
gezielt nach Verfeinerungen gesucht. Die gefundenen Fragmente werden dann bereitgestellt.

Als Eingabe wird das Modell erwartet, das durchsucht werden soll. Zusétzlich werden wei-
tere Informationen benétigt, die es erlauben die Knoten zu unterscheiden. Dazu werden die
Datenstrukturen mit den Anderungen und Referenzpunkten herangezogen, welche zuvor
von der Modellanalyse gefunden wurden. Diese weiteren Informationen werden als Filter
verwendet, um gezielt nach den Fragmenten suchen zu konnen. Fir die Suche werden her-
kémmliche Traversierungs-Algorithmen auf den Graphen angewandt, darunter vorrangig die
Breitensuche.

Fir jedes gefundene Fragment wird zusétzlich der nachste Referenzpunkt bestimmt. Der
Referenzpunkt mit dem kiirzesten Weg zum Fragment ist am nachsten. Die Position des
Fragments lasst sich so relativ zum Referenzpunkt festlegen. Gehoren zu einem Referenzpunkt
mehrere Fragmente, werden die Fragmente zusatzlich mit einer Nummerierung versehen. Die
Nummerierung legt die absolute Reihenfolge der Fragmente fest. Die Nummer wird an Hand
des tatsachlichen Abstands vom Referenzpunkt zum Fragment bestimmt.

Fragment-Verbinder Mit Hilfe des Fragment-Verbinders konnen zwei Fragmente miteinan-
der verbunden werden. Die Regeln, die beschreiben wie Fragmente transformiert und zusam-
mengefiigt werden, finden hier ihren Platz. Fiir gewohnlich wird jeweils das Modell-Skelett
mit einem Fragment zusammengefiihrt.

Der Fragment-Verbinder benétigt zwei Fragmente als Eingabe. Hier ist zu beachten, dass ein
Fragment auch aus nur einem einzelnen Knoten bestehen darf. Es konnen also sowohl ganze
Teilbdume, als auch einzelne Knoten verbunden werden. Die Entscheidung wie zwei Fragmente
verbunden werden, wird tiber eine Fusionsstrategie getroffen. Eine Fusionsstrategie bietet iiber
die Schnittstelle die Moglichkeit zwei Fragmente zusammenzufithren (Listing 7.2).

Es sind drei Fusionsstrategien implementiert. Bei der Strategie der Vereinigung wird ein
Knoten aus einem Fragment ausgewahlt. Der ausgewiahlte Knoten wird typischerweise an
Hand des Referenzpunktes bestimmt, der dem Fragment zuvor zugeordnet wurde. Unter diesem

69

7. Implementierung

Referenzpunkt wird dann das andere Fragment, auf der gleichen Ebene, angefiigt. Aus Sicht
des XML-Dokuments wiren die Elemente jetzt Nachbarn.

Bei der Strategie der Komposition wird das Fragment als Kind angehéngt. Allerdings eine
Ebene hoher wie der urspriingliche Knoten. Dies wiirde einer weiteren Verschachtelungstiefe
im XML-Dokument entsprechen. Der Inhalt wiirde von einem Element umschlossen sein.

Die Strategie der Dominanz (siehe Definition 5.3.3) ergénzt das dominante Fragment mit den
zusétzlichen Informationen des anderen Fragments. Das dominante Modell ist in der Regel das
Skelett, welches sich durch Verfeinerungen vervollstandigt.

Durch die Bereitstellung des Interfaces konnen auch hier sehr einfach neue Strategien entwi-
ckelt und das Verbinden weiter optimiert werden.

Modell-Verschmelzer Der Modell-Verschmelzer bringt alle Komponenten zusammen und
koordiniert das Verschmelzen der Modelle. Er dient auflerdem als Einstiegspunkt fiir das
Eclipse-Plugin. Als Eingabe werden die zu fusionierenden Modelle benétigt. Des weiteren
muss eine Konfiguration zur Verfiigung gestellt werden. Naheres dazu wird in Abschnitt 7.3
beschrieben.

Zunichst werden die Modelle iiber die Methode normalizeDocument() normalisiert. Dies ist
unbedingt erforderlich, damit der Graph keine unterschiedlichen Reprasentationen besitzt und
somit eindeutig ist. Deshalb muss diese Methode vor und nach der vollstandigen Modifizierung
ausgefithrt werden.

Die Modellanalyse und die Fragmentsuche wird gestartet. Anschliefend wird aus dem neueren
Modell das Skelett gebaut und schliefllich mit dem Fragment-Verbinder vervollstandigt. Das
fertig fusionierte Modell wird zum Schluss wieder serialisiert und persistent gespeichert.

7.2. JDOM Bibliothek

Mit JDOM kann ein XML-Dokument gelesen, geschrieben, erstellt oder modifiziert werden.
Fiir die Bearbeitung des DOM-Baums wird nicht die JAXP Programmierschnittstelle, sondern
JDOM! in der Version 2.0.6 verwendet. Der Programmcode von JDOM steht unter einer
angepassten Apache Lizenz®. Diese Lizenz ist mit Eclipse-Plugins kompatibel® und darf somit
verwendet werden.

JDOM selbst bringt keine Méglichkeit mit ein Dokument als DOM einzulesen. Deshalb muss
das Dokument bereits geparst vorliegen. Zum Parsen kann der DOM-Parser benutzt werden

http://www.jdom.org/
®http://jdom.org/docs/faq.html#a0030
Shttps://eclipse.org/legal/eplfaq.php#3RDPARTY

70

7.2. JDOM Bibliothek

Listing 7.3 Laden eins Modells mit dem DocumentBuilder

public org.w3c.dom.Document FileToDocument(File file) {
DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory
.newInstance();
DocumentBuilder documentBuilder =
documentBuilderFactory.newDocumentBuilder();
return document = documentBuilder.parse(file);

Listing 7.4 Konvertierung eines DOM-Baums zu einem JDOM-Baum

public org.jdom2.Document convertDOM2JDOM(org.w3c.dom.Document document) {
DOMBuilder builder = new DOMBuilder();
return builder.build(document);

(Listing 7.3). Es ist jedoch auch moglich das Dokument mit dem SAX- oder StAX-Parser
einzulesen.

Der eingelesene DOM-Baum wird dann in einen JDOM-Baum konvertiert (Listing 7.4). Eine
Konvertierung zuriick in einen DOM-Baum ist ebenfalls einfach méglich (Listing 7.5). In den
Listings ist der vollstaindige Name der Klassen angegeben, um die Zugehorigkeit der Doméne
zu verdeutlichen.

Der Hauptunterschied zwischen DOM und JDOM ist, dass ein XML-Knoten nicht als DOM
Node, sondern via Java-Objekt reprasentiert wird. Wie auch bei DOM, wird der gesamte Graph
im Hauptspeicher gehalten.

Ein Vorteil von JDOM gegentiber DOM ist, dass dieses extra fiir Java entwickelt wurde und daher
komfortabel zu benutzen ist. Gleichzeitig bringt es neue Funktionen mit, die das Bearbeiten
und Durchsuchen des Baums erleichtern. So erlaubt es JDOM, Filter zu erstellen, welche tiber
die Knoten des Baums gelegt werden konnen. Die Filter unterstiitzen nach Name, Typ, Wert
oder nach anderen Parametern zu selektieren. Zusatzlich konnen diese mit Logik-Operatoren
(A, V, 7) verkniipft werden.

Listing 7.5 Konvertierung eines JDOM-Baums zu einem DOM-Baum

public org.w3c.dom.Document convertJDOM2DOM(org.jdom2.Document document)
throws JDOMException {
DOMOutputter outputter = new DOMOutputter();
return outputter.output(document);

71

7. Implementierung

Dariiber hinaus wird die XML Path Language (XPath) unterstiitzt, die das Abfragen des Baumes
erleichtert. Sowie ein Paket fiir XSL Transformation (XSLT), mit der ein XML-Dokument tiber
eine formale Beschreibung transformiert werden kann.

7.3. Integrierung in den Prototyp

Das fertige Modul wird schliellich in den Prototyp integriert. Dieses muss als weiterer Schritt
nach der Transformation ausgefithrt werden. Dafiir wird zunéchst fiir den geschriebenen
Code ein neues Paket erstellt. Der Modell-Verschmelzer und seine Eingabe Konfiguration
werden initialisiert. Anschlieflend wird der Modell-Verschmelzer im Transformation-Modul
eingefiigt.

In Listing 7.6 sind die erforderlichen Anderungen am Prototypen zu sehen. Zu erst wird
eine Konfiguration erstellt, die Optionen fir die Transformation und die Modell-Integrierung
beinhaltet. Die Optionen konnen tiber die grafische Oberflache gesetzt werden. Dies passiert
iiber den in Abschnitt 6.5 gezeigten Transformations-Assistenten. Um die neuen Optionen im
Assistenten einzufiigen, wurde der alte Assistent (TransformationwizardOptions) abgeleitet und
ein neuer Assistent erstellt. Der AdvancedTransformationWizard erweitert den Assistenten um
eine weitere Optionsseite.

Nachdem die Transformation abgeschlossen ist wird iberpriift, ob der Benutzer eine automati-
sche Integration des neuen Modells wiinscht. Dieses Vorgehen ist standardmafig eingeschaltet.
Dann werden die gewahlten Optionen, fiir die Verwendung innerhalb des Merge-Moduls,
aufbereitet. Das Merge-Modul erhilt die Eingabe und fiihrt die notwendigen Schritte aus. Nach
Fertigstellung der Integration wird wie gehabt fortgesetzt.

Durch diese Art der Implementierung lasst sich das Modul sowohl innerhalb des Prototypen,
als auch eigenstandig als Anwendung verwenden. Es wire auflerdem denkbar das Modul
beispielsweise als Kommandozeilenprogramm bereitzustellen. Dafiir miissten lediglich die
Argumente in das Konfigurationsobjekt gebracht werden.

72

11

12

13

15

16

17

18

20

7.3. Integrierung in den Prototyp

Listing 7.6 Ergianzungen im existierenden TransformChoreographyHandler

//0. ..]

// Explizite Typumwandlung zur Verdeutlichung

Configuration options = new MergeConfiguration();

((MergeConfiguration) options).setWorkspaceDirectory(/*...*/);

((MergeConfiguration) options).setValidRevisionOptions(/*...*/);

((MergeConfiguration) options).setlLatestRevisionAsDefaultRevision();

//0...]

WizardDialog wizardDialog = new WizardDialog(/*...*/, new
AdvancedTransformationWizard(options));

//0...1]

Transformer handler = new Transformer((TransformationWizardOptions)
options);

handler.transform(result, chorEditor);

//0...1]

if (((MergeConfiguration) options).isAutoIntegrationEnabled()) {
MergerInput input = new MergerInput((MergeConfiguration)options);

input.setChoreographieName(result.getChoreographyName().getLocalPart());

ModelMerger merger = new ModelMerger(input);
merger.process();

73

7. Implementierung

EMF Compare

Innerhalb des Prototyps wird das Eclipse Modelling Framework verwendet, um die Modelle
abzubilden. Zu dem EMF gehort dariiber hinaus das EMF Compare Projekt. Das EMF Compare
Projekt erlaubt es, mit EMF erstellte Modelle (.ecore Dateien) zu vergleichen und zu vereinen.

Fiir eigene Modelle bietet EMF Compare eine Grundstruktur (Abbildung 7.2) zum Durchfithren
von Modell-Vergleichen und zur Modell-Integration an. Die Rollen der Komponenten miissen
mit selbst erstellten Klassen besetzt werden. Leider ist die Entwickler-Dokumentation von
EMF Compare liickenhaft und weist besonders Defizite im Abschnitt ,Modelle verschmelzen®
auf®. Dies macht EMF Compare schwer zugéinglich. Nach einer ausgiebigen Recherche wurde
der weitere zeitliche Aufwand als zu hoch eingestuft und mit einer eigenen unabhéngigen
Implementierung begonnen.

Die Struktur ist der in dieser Arbeit verwendeten sehr dhnlich. Jedoch ist bei EMF Compare
hauptséchlich eine Interaktion mit dem Benutzer vorgesehen. Dieser muss jeden Unterschied im
Modell iiber eine Vergleichsansicht selbst auf Richtigkeit tiberpriifen und via Bestatigung in das
andere Modell tibernehmen. EMF Compare ist fiir Schrittweise Integration von Unterschieden
konzipiert. Dies ist im vorliegenden Konzept nicht gewiinscht. Die Modelle sollen fiir den
Benutzer automatisch vereinigt werden, au3er der Benutzer wiinscht dies explizit.

Weitere Punkte sind, dass EMF-Compare sich auf strukturierte Diagramme, wie z.B. Klassen-
diagramme, fokussiert und nicht auf Graphen-basierte Modelle, wie es Prozessmodelle sind
[GKEO09]. Es wird auch kein Modell-Strukturbaum verwendet [GKE09]. Vergleiche werden Kno-
tenweise durchgefiihrt ohne die Umgebung zu beriicksichtigen, was Abhangigkeiten zu anderen
Knoten missachtet. Das fithrt dazu, dass keine Anderungsoperationen, sondern Anderungspri-
mitiven unterstiitzt werden, welche ungeeignet fiir Prozessmodell-Anderungsmanagement
sind [KGE09]. Aus diesen Griinden wurde von einer Implementierung mit Hilfe von EMF
Compare abgesehen.

*http://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide html, Stand: 31.03.2017

74

7.3. Integrierung in den Prototyp

match model diff model
=5 =

=== —
ad * [}
yo P 1
--==" --» diffbuilder | .---" |
¥

Abbildung 7.2.: EMF Compare Funktionsweisen, nach [Brul1]

75

8. Evaluierung

Im vorherigen Kapitel wurden Details der Implementierung vorgestellt. In diesem Kapitel wird
das Konzept und die Implementierung kritisch untersucht.

Wie gut das vorgestellte Konzept in der Praxis funktioniert, wird in den kommenden Abschnit-
ten gezeigt. Zunachst werden in Abschnitt 8.1 die Anforderungen betrachtet und gezeigt, wie
diese sichergestellt wurden. Danach wird in Abschnitt 8.2 prasentiert, dass eine durchgefiihrte
Anderung am Modell iibernommen wird. Zuletzt werden in Abschnitt 8.3 die Schwichen des
Konzeptes aufgezeigt und eine Laufzeitabschatzung in Abschnitt 8.4 abgegeben.

8.1. Anforderungen

Das fusionierte Modell muss die Aktualisierungen der Choreographie beinhalten. Das wird
sichergestellt, indem der Teilnehmer seine neu generierte Orchestrierung aus der Choreogra-
phie erhélt. Die generierte Orchestrierung beinhaltet die Anderungen der Choreographie. Aus
der generierten Orchestrierung wird das Skelett, an dem spiter die Verfeinerungen angefiigt
werden, gebildet. Das Skelett ist demnach eine einfache Kopie der neuen Orchestrierung und
enthélt damit alle Aktualisierungen. Durch dieses Vorgehen sind auflerdem Unterscheidungen
der vorgenommen Anderungen, wie Einfiigungen, Loschungen und Verschiebungen, nicht
notwendig. Sie sind bereits im vorliegenden Skelett abgebildet.

An dem Skelett darf die Reihenfolge der initialen Elemente nicht verdndert werden. Dies
konnte einerseits die Aktualisierungen riickgéngig machen oder andererseits die Abfolge
der Kommunikationsaktivitaten zerstoren. Deshalb werden nur Einfiigungen am Skelett vor-
genommen. Durch Einfiigungen werden die Vorgénger- und Nachfolger-Beziehungen der
Kommunikationsaktivitdten nicht verandert.

Die Einfiigungen am Skelett bestehen ausschliefilich aus Verfeinerungen des alten Modells. Es
werden keine zusétzlichen Elemente eingefiigt. Die alten Kommunikationsaktivititen werden
ignoriert und dienen nur zur relativen Positionierung. So wird nicht ungewollt eine alte
geloschte Kommunikationsaktivitét in das fusionierte Modell eingebracht.

Durch die Manipulation des Skeletts kann kein syntaktisch inkorrektes Modell entstehen.
Die verwendete Bibliothek JDOM stell zu jeder Zeit sicher, dass ein darunterliegendes XML-

77

8. Evaluierung

Dokument wohlgeformt ist'. Es kann somit kein Modell erzeugt werden, welches syntaktisch
inkorrekt ist. Dariiber hinaus wird der generierte XML-Code automatisch leserlich formatiert.

Die prasentierten Algorithmen erwarten jeweils die zu fusionierenden Modelle als Eingabe.
Aus diesen werden die Gemeinsamkeiten und Unterschiede ausgewertet. Es werden nur die
Unterschiede in das fusionierte Modell eingearbeitet, welche einen Referenzpunkte in der
neuen Version haben. Die Positionierung geschieht relativ zu den bestimmten Referenzpunkten,
welche aus der Analyse von Gemeinsamkeiten und Unterschieden gewonnen wurden. Das
Fusionieren kommt somit génzlich ohne Change-Log aus.

Mit Hilfe eines vorhandenen Change-Log kann jedoch das Ergebnis verbessert werden, da
durch diesen die genaue Abhangigkeit zu anderen Elementen rekonstruiert werden kann. Das
erlaubt die Entscheidung zu optimieren, ob und wo ein Element eingefiigt werden soll. Dadurch
miussten weniger handische Nachbearbeitungen getatigt werden.

8.2. Funktionsweise

Um zu zeigen, dass die vorgestellte Methode zur automatischen Integration von Anderungen
an Prozessmodellen, geeignet ist wird das Szenario der Einleitung aufgegriffen.

In der Abbildung 8.1a ist ein angepasster Choreographie-Ausschnitt der MD-Simulation zu se-
hen. Der Choreographie wurden zwei Aktivitaten (configureNotfication, sendEMailNotification)
hinzugefiigt. Mit diesen soll es dem Wissenschaftler erméglicht werden, eine E-Mail Benach-
richtigung zu konfigurieren. Méchte der Wissenschaftler eine Benachrichtigung erhalten, so
kann er dies Uiber configureNotfication mitteilen. Eine E-Mail wird dann an die hinterlegte
E-Mail Adresse gesendet, sobald ein neuer Zwischenstand bekannt ist. Uber diese Anderungen
wird der Teilnehmer informiert.

Der Teilnehmer erhalt die neue Choreographie-Beschreibung und muss nun seine Orches-
trierung anpassen. Das neue Modell wird integriert und automatisch mit Verfeinerungen
vervollstandigt. In Abbildung 8.1b ist dargestellt, wie die Anderungen automatisch in die lokale
Orchestrierung des Teilnehmers eingearbeitet wurden. Die Aktualisierungen miissen nicht
mehr von Hand eingepflegt werden.

Das présentierte Konzept geniigt damit allen Anforderungen und kann fiir eine automatische
Anderungsweitergabe erfolgreich verwendet werden.

http://www.jdom.org/docs/faq.html#a0140

78

8.3. Schwachen

4 MDSimulation
2 MDSimulation T flow

= main sequence sequence

| flow @) receiveSnapshat | configureNatification

= sequence = sequence
& | configurehatification & | receiveSnapshot
X flow

@ ifCompilationlsNecessary @ configuresmulation

= sequence

& compileSourceCode

& runMDSimulation

& | callbackFrom MDSimulationService
& sendResult
(& sendEMailNotification

(a) Choreographie, modifizierter MD-Simulation Teilnehmer (b) Orchestrierung, mit Aktualisierung und
Verfeinerungen

Abbildung 8.1.: Aktualisierung und Anderungsweitergabe von Choreographie zur Orches-
trierung

8.3. Schwachen

Das vorgestellte Konzept weif}t allerdings auch Schwéchen auf, die im Folgenden geschildert
werden. Fir die Ziele dieser Arbeit stellen diese jedoch keine Einschrankung dar.

Neu hinzugefiigte Elemente werden problemlos ibernommen. Fiir diese existieren im alten
Modell noch keine Verfeinerungen. Auch verschobene Elemente stellen keine Schwierigkeit
dar, da dies ein neu Positionieren und Umhéangen von TeilbAumen darstellt. Werden allerdings
Knoten entfernt, ist kein globales Wissen vorhanden, welche andere Knoten ebenfalls entfernt
werden sollten. Damit keine Verfeinerungen verloren gehen, werden deshalb nur Knoten
entfernt, die eindeutig vom entfernten Knoten abhangig waren. Dies kann dazu fiithren, dass
im fusionierten Modell Verfeinerungen vorhanden bleiben, obwohl diese nicht mehr benétigt
werden. Es wird jedoch angenommen, dass das Entfernen von tiberfliissigen Knoten leichter
von Hand durchzufiihren ist und eine deutlichere Erleichterung darstellt, als fehlende Knoten
ausfindig zu machen und diese hinzuzufiigen.

Eine andere Schwache liegt in der Implementierung mittels DOM. Das komplette Modell wird
mit DOM in den Arbeitsspeicher geladen. Das erméglicht ein komfortables bearbeiten, jedoch
begrenzt es die Grofle von Modellen die behandelt werden kdnnen. Sie miissen in den Arbeits-
speicher passen. Heutzutage umfasst der Arbeitsspeicher in herkémmlichen Computern eine
Grofle von mehreren Gigabyte. Modelle, welche diese Grofle tiberschreiten, miissen anders
verarbeitet werden. Fiir diese bedarf es eine Methode, welche nicht das gesamte Modell in den
Arbeitsspeicher ladt. Vorzugsweise werden diese Modelle partiell, strombasiert oder ereignisba-

79

8. Evaluierung

siert verarbeitet. Die generierten und verarbeiteten Modelle, im betrachteten Anwendungsfall,
sind alle deutlich kleiner, so dass dies keine Beeintrachtigung darstellt.

8.4. Laufzeitabschatzung

Im Folgenden wird eine einfache Laufzeitabschatzung fiir das Fusionieren der Modelle prasen-
tiert. Dafiir wird der konzipierte Algorithmus betrachtet.

Die Transformation des Modells in einen Graphen ist als Eingabe anzusehen, sowie die Trans-
formation zuriick in das urspriingliche Format als Ausgabe. Fiir beides miissen alle Elemente
einmal betrachtet werden und ist daher fiir die Abschatzung nicht relevant. Die Eingabe und
Ausgabe erfolgt jeweils in linearer Laufzeit.

Um Referenzpunkte zu identifizieren werden zwei Graphen benoétigt. Jeder Knoten aus einem
Graphen muss paarweise mit einem Knoten aus dem anderen Graphen verglichen und dafiir
besucht werden. Angenommen die Graphen besitzen jeweils 7 und m Knoten und die Anzahl
der Knoten beider Graphen unterscheiden sich um einen konstanten Faktor ¢, dann lasst sich
die Anzahl der Vergleiche durch O(c¢; * n X ¢y * m) formulieren. Fir die Analyse konnen
konstante Faktoren jedoch vernachlédssigt werden, so dass sich O(n x m) Besuche ergeben.
Analog wird fur das Erkennen der eingefiigten und geldschten Knoten vorgegangen.

Zum Finden der relevanten Verfeinerungen muss der Graph einmal mit der Liste der Referenz-
punkten und Anderungen traversiert werden. Beim Durchlaufen werden die Verfeinerungen
notiert. Dazu werden wieder alle Knoten einmal besucht. Fiir das Nachschlagen, ob ein Kno-
ten in der Liste mit Referenzpunkten oder Anderungen steht, wird ein konstanter Zeitfaktor
angenommen. Das Finden bendétigt somit O(n) Knotenbesuche.

Fiir jede gefundene Verfeinerung muss ein Referenzpunkt zugeordnet werden. Dafiir wird wie-
der der Graph traversiert und der auf dem Weg zuletzt passierte Referenzpunkt zuriickgegeben.
Angenommen, es wurden zuvor v Verfeinerungen gefunden, dann entspricht dies O(v x n)
Knotenbesuchen. Die Anzahl der Verfeinerungen pro Graphen ist immer echt kleiner als n,
sonst wiren die Graphen disjunkt und hatten keine Gemeinsamkeit. Auflerdem konnen direkt
innerhalb eines Durchlaufs alle Verfeinerungen zugeordnet werden. Daraus resultieren wieder
O(n) Knotenbesuchen.

Das Modell-Skelett wird durch Kopieren eines Graphen initialisiert. Dieser Schritt des Kopierens
benotigt konstante Zeit. Auch das Einfiigen der Verfeinerungen, am konkreten Referenzpunkt,
kann mit konstanter Zeit durchgefithrt werden. Das Erstellen des fusionierten Modells fallt
mit O(v) ins Gewicht.

Zuletzt miissen die restlichen Attribute tibernommen werden. Dafiir wird das fusionierte
Modell, welches n+v Knoten enthélt, traversiert und fehlende Attribute ergénzt. Dies entspricht
O(n + v) Knotenbesuche, wobei wie angemerkt v < n zutrifft. Insgesamt ergibt sich eine
Laufzeitkomplexitit in O(n?) fiir das Fusionieren zweier Graphen.

80

9. Zusammenfassung und Ausblick

Abschlielend wird ein Uberblick tiber das erarbeitete Konzept fiir die Aktualisierung und
Anderungsweitergabe in Workflow-Choreographien gegeben und die wichtigsten Aspekte
zusammengefasst. Anschlieffend erfolgt ein Ausblick auf weitere Forschungspunkte.

9.1. Zusammenfassung

Anderungen an der Workflow-Choreographie spiegeln sich in den Orchestrierungen der Teil-
nehmer wieder. Dafiir miissen zunichst die betroffenen Teilnehmer tiber die Aktualisierungen
informiert und zur Anpassung der eigenen Orchestrierung aufgefordert werden. Ein Teilnehmer
mochte die Bestandteile der alten Orchestrierung in die neu spezifizierte Orchestrierung tiber-
nehmen. Dazu muss dieser die Anderungen erkennen und entsprechend in eine kombinierte
Orchestrierung, aus alt und neu, einpflegen.

Diese Arbeit beschreibt ein Konzept, wie Aktualisierungen einer Workflow-Choreographie in
eine bestehe Orchestrierung weitergegeben werden. Teil des Konzeptes ist es eine automatische
Integration zu ermdglichen. Dies unterscheidet das Konzept zu bestehenden Arbeiten, welche
halb-automatisch verfahren oder auf Eingabe eines Anwenders bestehen, um die Aktualisie-
rungen einarbeiten zu konnen.

Das Konzept bedient sich dem Rahmenwerk zur Ablaufstruktur fir Modell-Anderungs-
Management[GL12], dieses definiert die notwendigen Schritte, um zwei Modelle zu fusionieren.
Hierbei werden zunéchst die Workflow-Modelle auf ein mathematisches Graph-Modell abstra-
hiert. Die Abstraktion als Graph erlaubt es, die Modelle zu vergleichen und Aktualisierungen,
sowie vorhandene Bestandteile des alten Modells zu identifizieren.

Der Vergleich der Modelle erfolgt tiber den Graphen. Die Beziehung der Knoten beider Modelle
wird mittels einer Zuordnung[Ger07] beschrieben. Eine Zuordnung kann zwischen zwei
Knoten bestehen und gibt an, ob diese entweder in einem oder beiden Modellen vorhanden
sind. Je nachdem welche Zuordnungen auf einen Knoten zutrifft, kann ermittelt werden, ob
dieser hinzugefiigt oder entfernt wurde. Zudem werden Knoten, welche in beiden Modellen
vorhanden sind, als Referenzpunkte definiert.

Als nachster Schritt wird ein Skelett aus Knoten erstellt. Dazu werden die Knoten aus dem
neuen Modell kopiert. Im Skelett fehlen damit noch die alten Bestandteile aus dem vorherigen

81

9. Zusammenfassung und Ausblick

Modell. Jedoch sind im Skelett bereits alle Anderungen (Hinzufigungen, Léschungen, Ver-
schiebungen) enthalten. Dadurch miissen die Verschiebungen, welche im Vergleich zum alten
Modell erfolgten, nicht detailliert ermittelt werden. Der Vorteil dieses Vorgehens zeigt sich vor
allem bei komplexeren Aktualisierungen.

Im Anschluss werden die Bestandteile des alten Modells in das Skelett eingefiigt. Dazu werden
die Bestandteile relativ positioniert. Die Positionierung erfolgt unter einem zuvor ermittelten
Referenzpunkt. Konflikte zwischen den Modellen werden durch die Dominanz des neueren
Modells gelost, welches den Ausgang des Konflikts bestimmt.

Zudem wurde das préasentierte Konzept in den wissenschaftlichen Prototyp implementiert,
welcher mit notigen Anpassungen versehen wurde.

Das Konzept erlaubt es Aktualisierungen an die betroffenen Teilnehmer weiterzuleiten und
automatisch zu integrieren. Dies bringt eine erhebliche Einsparung an Arbeitszeit, welche fiir
die Integration der Anderungen aufgewendet werden miisste.

9.2. Ausblick

Ob sich das Konzept in der Praxis bewahrt, muss fiir weitere Anwendungsfalle geprift werden.
Die Implementierung ist unter Beachtung moéglicher Erweiterungen umgesetzt worden. Dies
erlaubt das vorgeschlagene Konzept einerseits zu optimieren, und andererseits Modelle mit
anderen darunter liegenden technischen Realisierungen zu unterstiitzen. Hier konnen weitere
Optimierungen in Form von Vergleichs- und Vereinigungsstrategien entwickelt werden.

Das Konzept betrachtet die Weitergabe der Aktualisierungen innerhalb der Top-down Model-
lierung. Die automatische Weitergabe der Aktualisierungen innerhalb der Bottom-up Modellie-
rung benotigt weitere Untersuchungen, damit Anderungen aus den einzelnen Orchestrierung
hin zur Choreographie realisierbar sind.

Durch eine Versionierung von Choreographien konnten Anderungen langfristig verfolgt, sowie
auf frithere Modelldefinitionen zuriickgegriffen werden. Hier ist weiter Forschung nétig, wie
eine solche Versionierung durchgefiihrt und in den Prototyp integriert werden kann.

In diesem Zusammenhang wire auch eine Vergleichsansicht wiinschenswert, in der Modelle
verglichen und Anderungen iibernommen werden kénnen.

82

Anhang

e Klassifizierung des Match und Merge-Operators
e Typische Referenzpunkte

e Abkiirzungsverzeichnis

83

A.

Klassifizierung des Match und
Merge-Operators

Die Klassifizierung des Match (match : model x model — relationship) und Merge-Operators
(merge : model x model x relationship — model) erfolgt nach Brunet et al. [Bru+06]. Die
Beziehung der Modelle basiert auf den Zuordnungen.

Merge-Operator

Idempotenz merge(my, my) = my:
Die Idempotenz des Operators ist gegeben, das bedeutet ein Modell das mit sich selbst
fusioniert wird resultiert im identischen Modell.

Kommutativitit merge(my, ms) = merge(ms, my):
Die Kommutativitat ist nicht gegeben. Es wird angenommen, dass ein Modell in das
andere Modell integriert wird.

Assoziativitdt merge(merge(my, ms), ms) = merge(my, merge(ms, ms)):
Die Assoziativitat ist nicht gegeben. Die Reihenfolge der Anwendung des Merge-
Operators ist aufgrund der Modell-Dominanz entscheidend.

Monotonie my = mj A ma < mh = merge(my, ms) < merge(m}, mb):
Die Monotonie ist gegeben, falls die Relation fiir ibernommene Anderungen steht.

Totalitdt Ymy, my € model : merge(my, my) € model:
Die Totalitét ist gegeben, aus zwei Modellen resultiert wieder ein giiltiges Modell.

Match-Operator Der Match-Operator liefert eine binare Relation fiir die Knoten V' der
Modelle A, B. Die Relation wird durch A x B +— (V,,V}) beschrieben. Ein Knoten V" ist
maximal einmal in der Relationsmenge enthalten.

85

B. Typische Referenzpunkte

Innerhalb der verwendeten Modelle zeichnen sich typische Referenzpunkte ab.

B.1. BPEL-Datei

Typische Referenzpunkte der BPEL-Datei sind folgende Elemente:

® process

extensions
partnerLinks
messageExchanges
variables
correlationSets
faultHandlers
eventHandlers
onAlarm

activity Aktivitaten mit ID.

Fir Aktivitiaten ohne ID muss Similarity-Matching verwendet werden.

B.2. Deployment-Datei

Typische Referenzpunkte der Deployment-Datei sind folgende Elemente:

e deploy

process

87

B. Typische Referenzpunkte

B.3. WSDL-Datei

Typische Referenzpunkte der WSDL-Datei sind folgende Elemente:
e definitions

e lypes

e message

portType
binding

® service

88

C. Abkirzungsverzeichnis

API Application Programming Interface
BPEL Business Process Execution Language
BPMN Business Process Model and Notation
DOM Document Object Model

EMF Eclipse Modeling Framework

EPC Event-driven Process Chain

GEF Graphical Editing Framework

GMF Graphical Modeling Framework
JAXP Java API for XML Processing

KMC Kinetic Monte Carlo Simulation
Mayflower Model-as-you-go Workflow Developer
MD Molekulardynamik Simulation

MOF Meta Object Facility

PBD Participant Behavior Description

PG Participant Grounding

PTop Participant Topology

RPST Refined Process Structure Tree

SAX Simple API for XML

SESE Single-Entry-Single-Exit

SimTech Simulation Technologie

SOA Service orientierte Architektur

SoC Separation of Concerns

StAX Streaming API for XML

89

C. Abkurzungsverzeichnis

URI
UML
W3C
W{Ms
WS
WSDL
WST
WS-*
XML
XSL
XPath

90

Uniform Resource Identifier
Unified Modeling Language
World Wide Web Consortium
Workflow-Management-System
Webservice

Web Services Description Language
Webservice Technologie
Webservice Stack

Extensible Markup Language
Extensible Stylesheet Language
XML Path Language

Literaturverzeichnis

[Aal12]

[And+13]

[AP03]

[BGO7]

[Bru+06]

[Bruili]

[Dec+07]

[Dec+09]

[Dij+09]

[FRMR12]

W. M. van der Aalst. ,A decade of business process management conferences:
personal reflections on a developing discipline®. In: International Conference on
Business Process Management. Springer. 2012, S. 1-16 (zitiert auf S. 13).

V. Andrikopoulos, S. Gémez Saez, D. Karastoyanova, K. Vukojevic-Haupt et al.
Modeling Choreographies using the BPEL4Chor Designer: an Evaluation Based on
Case Studies. Stuttgart, Germany, Universitat Stuttgart, 2013 (zitiert auf S. 62).

M. Alanen, I. Porres. ,Difference and union of models®. In: International Con-
ference on the Unified Modeling Language. Springer. 2003, S. 2—-17 (zitiert auf
S. 36).

R. Barga, D. Gannon. ,Scientific versus business workflows®. In: Workflows for
e-Science. Springer, 2007, S. 9-16 (zitiert auf S. 13).

G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, M. Sabetzadeh. ,A
manifesto for model merging®“. In: Proceedings of the 2006 international workshop
on Global integrated model management. ACM. 2006, S. 5-12 (zitiert auf S. 36, 85).

C. Brun. What every developer should know about EMF Compare. 2011. URL: https:
//www.slideshare.net/cbrun/what-every-developer-should-know-about-emf-
compare (zitiert auf S. 75).

G. Decker, O. Kopp, F. Leymann, M. Weske. ,BPEL4Chor: Extending BPEL for
modeling choreographies®. In: Web Services, 2007. ICWS 2007. IEEE International
Conference on. IEEE. 2007, S. 296-303 (zitiert auf S. 26, 27).

G. Decker, O. Kopp, F. Leymann, M. Weske. ,Interacting services: From specifica-
tion to execution®. In: Data & Knowledge Engineering 68.10 (2009), S. 946-972
(zitiert auf S. 62).

R. Dijkman, M. Dumas, L. Garcia-Banuelos, R. Kaarik. , Aligning business process
models®. In: Enterprise Distributed Object Computing Conference, 2009. EDOC’09.
IEEE International. IEEE. 2009, S. 45-53 (zitiert auf S. 35).

W. Fdhila, S. Rinderle-Ma, M. Reichert. ,Change propagation in collaborative
processes scenarios”. In: Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2012 8th International Conference on. IEEE. 2012,
S. 452-461 (zitiert auf S. 31).

91

https://www.slideshare.net/cbrun/what-every-developer-should-know-about-emf-compare
https://www.slideshare.net/cbrun/what-every-developer-should-know-about-emf-compare
https://www.slideshare.net/cbrun/what-every-developer-should-know-about-emf-compare

Literaturverzeichnis

[GAJV08]

[Gan+07]

[Ger07]

[GKE09]

[GL12]

[Hin14]

[Hul+06]

[JPP94]

[KGE09]

[KLO08]

[KR]

[KSN92]

[Kis+08]

[Ley10]

92

F. Gottschalk, W. van der Aalst, M. Jansen-Vullers. ,Merging event-driven process
chains®. In: On the Move to Meaningful Internet Systems: OTM 2008 (2008), S. 418-
426 (zitiert auf S. 32, 33).

D. Gannon, E. Deelman, M. Shields, I. Taylor. ,Introduction®. In: Workflows for
e-Science. Hrsg. von L. J. Taylor, E. Deelman, D. B. Gannon, M. Shields. London:
Springer London, 2007, S. 1-8. 1SBN: 978-1-84628-519-6 (zitiert auf S. 21).

C. Gerth. ,Business Process Merging-An Approach based on Single-Entry-Single-
Exit Regions“. Masterarbeit. 2007 (zitiert auf S. 33, 34, 42, 43, 81).

C. Gerth, J. M. Kiister, G. Engels. ,Language-independent change management
of process models®. In: International Conference on Model Driven Engineering
Languages and Systems. Springer. 2009, S. 152-166 (zitiert auf S. 74).

C. Gerth, M. Luckey. ,Towards Rich Change Management for Business Process
Models®. In: Softwaretechnik-Trends 32.4 (2012), S. 32—34 (zitiert auf S. 34, 40, 41,
81).

K. Hintermayer. ,Modellierung und Ausfithrung einer gekoppelten Festkorpersi-
mulation mit Workflow-Choreographien®. Masterarbeit. 2014 (zitiert auf S. 15).

D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, T. Oinn. ,Ta-
verna: a tool for building and running workflows of services®. In: Nucleic acids
research 34 (2006), W729-W732 (zitiert auf S. 13).

R. Johnson, D. Pearson, K. Pingali. ,The program structure tree: Computing
control regions in linear time". In: ACM SigPlan Notices. Bd. 29. 6. ACM. 1994,
S. 171-185 (zitiert auf S. 29).

J. M. Kaster, C. Gerth, G. Engels. ,Dependent and conflicting change operati-
ons of process models®. In: European Conference on Model Driven Architecture-
Foundations and Applications. Springer. 2009, S. 158-173 (zitiert auf S. 74).

O. Kopp, F. Leymann. ,,Choreography Design Using WS-BPEL.“ In: IEEE Data
Eng. Bull. 31.3 (2008), S. 31-34 (zitiert auf S. 13).

K.G.M.S. D. Karastoyanova, F. L. M. Reiter. Conventional workflow technology for
scientific simulation, S. 22 (zitiert auf S. 13).

G. Keller, A.-W. Scheer, M. Niittgens. Semantische ProzefSmodellierung auf der
Grundlage “Ereignisgesteuerter ProzefSketten (EPK)". Inst. fiir Wirtschaftsinforma-
tik, 1992 (zitiert auf S. 32).

J. M. Kiister, C. Gerth, A. Forster, G. Engels. ,Detecting and resolving process
model differences in the absence of a change log®. In: International Conference on
Business Process Management. Springer. 2008, S. 244-260 (zitiert auf S. 34).

F. Leymann. ,BPEL vs. BPMN 2.0: Should you care?” In: International Workshop
on Business Process Modeling Notation. Springer. 2010, S. 8-13 (zitiert auf S. 26).

Literaturverzeichnis

[LLS10]

[LR+10]

[LROO]

[Lud+06]

[Nem14]

[PB03]

[RSM11]

[RWRO06a]

[RWRO06b]

[Sch+11]

[Sch14]

[SHK12]

[SK10]

K. C. Laudon, J.P. Laudon, D. Schoder. Wirtschaftsinformatik: Eine Einfiihrung.
Pearson Deutschland GmbH, 2010 (zitiert auf S. 21).

M. La Rosa, M. Dumas, R. Uba, R. Dijkman. ,Merging business process models®. In:
OTM Confederated International Conferences™ On the Move to Meaningful Internet
Systems". Springer. 2010, S. 96-113 (zitiert auf S. 13, 35).

F. Leymann, D. Roller. ,Production workflow: concepts and techniques®. In: (2000)
(zitiert auf S. 13, 21, 22).

B. Ludéascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, Y. Zhao. ,Scientific workflow management and the Kepler system®. In:
Concurrency and Computation: Practice and Experience 18.10 (2006), S. 1039-1065
(zitiert auf S. 13).

M. Nemet. ,Kapselung von bestehenden Simulationsanwendungen mit Hilfe von
Web Services®. Bachelorarbeit. 2014 (zitiert auf S. 26).

R. A. Pottinger, P. A. Bernstein. ,Merging models based on given correspon-
dences®. In: Proceedings of the 29th international conference on Very large data
bases-Volume 29. VLDB Endowment. 2003, S. 862-873 (zitiert auf S. 34, 42).

P. Reimann, H. Schwarz, B. Mitschang. ,Design, implementation, and evalua-
tion of a tight integration of database and workflow engines®. In: Journal of
Information and Data Management 2.3 (2011), S. 353 (zitiert auf S. 13, 22).

S. Rinderle, A. Wombacher, M. Reichert. ,Evolution of process choreographies in
DYCHOR?®. In: On the Move to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE (2006), S. 273-290 (zitiert auf S. 13).

S. Rinderle, A. Wombacher, M. Reichert. ,On the controlled evolution of process
choreographies®. In: Data Engineering, 2006. ICDE’ 06. Proceedings of the 22nd
International Conference on. IEEE. 2006, S. 124-124 (zitiert auf S. 13).

D. Schumm, D. Karastoyanova, F. Leymann, S. Strauch. ,Fragmento: advanced
process fragment library®. In: Information Systems Development. Springer, 2011,
S. 659-670 (zitiert auf S. 46).

J. Schilling. ,Analyse und Erweiterung eines bestehenden Choreographiewerk-
zeugs”. Studienarbeit. 2014 (zitiert auf S. 61).

M. Sonntag, M. Hahn, D. Karastoyanova. ,Mayflower-Explorative Modeling of
Scientific Workflows with BPEL.“ In: BPM (Demos). 2012, S. 45-50 (zitiert auf
S. 13, 22, 23).

M. Sonntag, D. Karastoyanova. ,Next generation interactive scientific experi-
menting based on the workflow technology®. In: Proceedings of MS’10 (2010),
S. 349-356 (zitiert auf S. 13).

93

Literaturverzeichnis

[SKD10]

[SKL10]

[Son13]

[Tay+07]

[TM10]

[VVK09]

[Wee+05]

[Wei+15]

[Wei12]

[Whi04]

[WK14]

[WK16]

[WKM]

[Wol15]

94

M. Sonntag, D. Karastoyanova, E. Deelman. ,Bridging the gap between business
and scientific workflows: Humans in the loop of scientific workflows®. In: e-
Science (e-Science), 2010 IEEE Sixth International Conference on. IEEE. 2010, S. 206—
213 (zitiert auf S. 13).

M. Sonntag, D. Karastoyanova, F. Leymann. ,The Missing Features of Work-
flow Systems for Scientific Computations.” In: Software Engineering (Workshops).
Citeseer. 2010, S. 209-216 (zitiert auf S. 13).

O. Sonnauer. ,Modellierung von Scientific Workflows mit Choreographien®.
Diplomarbeit. 2013 (zitiert auf S. 61).

L. Taylor, M. Shields, I. Wang, A. Harrison. ,,The triana workflow environment:
Architecture and applications®. In: Workflows for e-Science. Springer, 2007, S. 320—
339 (zitiert auf S. 13).

C. Thao, E. V. Munson. ,,Using versioned tree data structure, change detection
and node identity for three-way XML merging®. In: Proceedings of the 10th ACM
symposium on Document engineering. ACM. 2010, S. 77-86 (zitiert auf S. 36).

J. Vanhatalo, H. Volzer, J. Koehler. , The refined process structure tree®. In: Data
& Knowledge Engineering 68.9 (2009), S. 793-818 (zitiert auf S. 32).

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson. Web services
platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-
reliable messaging and more. Prentice Hall PTR, 2005 (zitiert auf S. 13, 24, 25).

A. Weif3, V. Andrikopoulos, M. Hahn, D. Karastoyanova. ,Enabling the extraction
and insertion of reusable choreography fragments®. In: Web Services (ICWS), 2015
IEEE International Conference on. IEEE. 2015, S. 686—-694 (zitiert auf S. 61).

A. Weifi. ,Merging of TOSCA cloud topology templates®. Masterarbeit. 2012
(zitiert auf S. 28, 29).

S. A. White. ,Introduction to BPMN®. In: IBM Cooperation 2 (2004) (zitiert auf
S. 13).

A. Weif3, D. Karastoyanova. ,A life cycle for coupled multi-scale, multi-field
experiments realized through choreographies®. In: Enterprise Distributed Object
Computing Conference (EDOC), 2014 IEEE 18th International. IEEE. 2014, S. 234-
241 (zitiert auf S. 23).

A. Weif3, D. Karastoyanova. ,Enabling coupled multi-scale, multi-field experi-
ments through choreographies of data-driven scientific simulations®. In: Compu-
ting 98.4 (2016), S. 439-467 (zitiert auf S. 15, 25).

A. Wei, D. Karastoyanova, D. Molnar. ,Coupling of Existing Simulations using
Bottom-up Modeling of". In: Workshop on Simulation Technology: Systems for
Data Intensive. Gesellschaft fiir Informatik eV (GI), S. 1-12 (zitiert auf S. 15, 26).

N. Wolter. ,Konzept und Implementierung fiir Choreographiecontainer®. Master-
arbeit. 2015 (zitiert auf S. 61).

[Woo+00] L. Wood, G. Nicol, J. Robie, M. Champion, S. Byrne. Document object model (DOM)
level 3 core specification. 2000 (zitiert auf S. 29).

[WRRMO08] B. Weber, M. Reichert, S. Rinderle-Ma. ,,Change patterns and change support
features—enhancing flexibility in process-aware information systems®. In: Data
& knowledge engineering 66.3 (2008), S. 438-466 (zitiert auf S. 32, 45).

Alle URLs wurden zuletzt am 22.05. 2017 gepriift.

Erklirung

Ich versichere, diese Arbeit selbststandig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngemaf3 aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priiffungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	Abbildungsverzeichnis
	Verzeichnis der Listings
	Verzeichnis der Algorithmen
	1 Einleitung
	1.1 Motivation
	1.2 Szenario
	1.3 Hintergrund
	1.4 Ziel der Arbeit
	1.5 Gliederung

	2 Grundlagen
	2.1 Workflow-Management
	2.2 Kompositionen
	2.3 Modellierung
	2.4 Technologien
	2.5 Notation
	2.6 Verarbeitung

	3 Verwandte Arbeiten
	3.1 Business Process Management
	3.2 Data Engineering
	3.3 Software Engineering

	4 Anforderungsanalyse
	4.1 Aktualisierung und Änderungsweitergabe
	4.2 Fusion von Modellen
	4.3 Änderungsmuster
	4.4 Artefakte

	5 Konzept
	5.1 Anforderungen
	5.2 Annahmen
	5.3 Vergleichen und Verschmelzen
	5.4 Beispiel
	5.5 Algorithmus

	6 Prototyp
	6.1 BPEL4Chor Designer
	6.2 Verwendung
	6.3 Architektur
	6.4 Eigenschaften
	6.5 Anpassungen
	6.6 Beurteilung

	7 Implementierung
	7.1 Komponenten
	7.2 JDOM Bibliothek
	7.3 Integrierung in den Prototyp

	8 Evaluierung
	8.1 Anforderungen
	8.2 Funktionsweise
	8.3 Schwächen
	8.4 Laufzeitabschätzung

	9 Zusammenfassung und Ausblick
	9.1 Zusammenfassung
	9.2 Ausblick

	A Klassifizierung des Match und Merge-Operators
	B Typische Referenzpunkte
	B.1 BPEL-Datei
	B.2 Deployment-Datei
	B.3 WSDL-Datei

	C Abkürzungsverzeichnis
	Literaturverzeichnis

