
Institut für Architektur von Anwendungssystemen

Universität Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Aktualisierung und
Änderungsweitergabe in

Workflow-Choreographien

Markus Nemet

Studiengang: Informatik

Prüfer/in: Prof. Dr. Dr. h. c. Frank Leymann

Betreuer/in: M.Sc. Wirt.-Inf. Andreas Weiß

Beginn am: 22. November 2016

Beendet am: 24. Mai 2017

CR-Nummer: D.2.11, G.2.2, H.4.1, I.7.0

Kurzfassung

Das Forschungsfeld e-Science beschäftigt sich unter anderem mit Simulationen in der Wissen-

schaft. Eine Strategie besteht darin, die etablierten Standards, aus der Geschäftswelt, auf die

Anforderungen von Wissenschaftlern, für Scientific-Workflows, zu übertragen.

Die angebotene Werkzeuge für Wissenschaftler sollten das Modellieren mit der Trial and
Error Methode unterstützen, da dies eine natürliche Vorgehensweise bei der Erstellung von

Experimenten darstellt. Die Experimente werden als Workflow-Choreographien beschrieben.

Diese Arbeit beschäftigt sich damit, wie Aktualisierungen von Workflow-Choreographien

an die beteiligten Partner propagiert und gleichzeitig diese Aktualisierungen automatisch

in das bestehende Modell des Partners übernommen werden können. Dazu wird ein Model-

Integration-Konzept erarbeitet und anschließend in einem Proof of Concept die Funktionalität

innerhalb eines wissenschaftlichen Prototyps bereitgestellt.

3

Inhaltsverzeichnis

Abbildungsverzeichnis 7

Verzeichnis der Listings 9

Verzeichnis der Algorithmen 11

1. Einleitung 13
1.1. Motivation . 14

1.2. Szenario . 15

1.3. Hintergrund . 19

1.4. Ziel der Arbeit . 19

1.5. Gliederung . 20

2. Grundlagen 21
2.1. Workflow-Management . 21

2.2. Kompositionen . 23

2.3. Modellierung . 24

2.4. Technologien . 25

2.5. Notation . 28

2.6. Verarbeitung . 29

3. Verwandte Arbeiten 31
3.1. Business Process Management . 31

3.2. Data Engineering . 35

3.3. Software Engineering . 36

4. Anforderungsanalyse 37
4.1. Aktualisierung und Änderungsweitergabe . 37

4.2. Fusion von Modellen . 40

4.3. Änderungsmuster . 45

4.4. Artefakte . 47

5

5. Konzept 49
5.1. Anforderungen . 49

5.2. Annahmen . 50

5.3. Vergleichen und Verschmelzen . 51

5.4. Beispiel . 53

5.5. Algorithmus . 55

6. Prototyp 61
6.1. BPEL4Chor Designer . 61

6.2. Verwendung . 62

6.3. Architektur . 63

6.4. Eigenschaften . 64

6.5. Anpassungen . 64

6.6. Beurteilung . 65

7. Implementierung 67
7.1. Komponenten . 67

7.2. JDOM Bibliothek . 70

7.3. Integrierung in den Prototyp . 72

8. Evaluierung 77
8.1. Anforderungen . 77

8.2. Funktionsweise . 78

8.3. Schwächen . 79

8.4. Laufzeitabschätzung . 80

9. Zusammenfassung und Ausblick 81
9.1. Zusammenfassung . 81

9.2. Ausblick . 82

A. Klassifizierung des Match und Merge-Operators 85

B. Typische Referenzpunkte 87
B.1. BPEL-Datei . 87

B.2. Deployment-Datei . 87

B.3. WSDL-Datei . 88

C. Abkürzungsverzeichnis 89

Literaturverzeichnis 91

6

Abbildungsverzeichnis

1.1. Vorgehen beim Fusionieren zweier Modelle . 15

1.2. Beschreibung einer Festkörpersimulation . 16

1.3. Modellierte Choreographie innerhalb des Prototyps 17

1.4. Verfeinerte Orchestrierung des MD Teilnehmers 18

2.1. Die drei Workflow-Dimensionen . 22

2.2. Lebenszyklus von a) Business Workflows und b) Scientific Workflows 23

2.3. Orchestrierung und Choreographie . 24

2.4. Top-down Modellierungsansatz mit Beispiel 25

2.5. Graphische Darstellung einer Orchestrierung mit BPMN 26

2.6. BPEL4Chor Artefakte . 27

2.7. XML-Datei und DOM-Knotenbaum . 30

4.1. Aktualisierung der Choreographie und Änderungsweitergabe an die betroffe-

nen Orchestrierungen . 38

4.2. Evolution einer Version durch Ableitung . 39

4.3. Ablaufstruktur für das Modell Änderungsmanagement 41

4.4. Knoten hinzufügen und entfernen . 45

4.5. Knoten ersetzen und verschieben . 46

4.6. Gruppierungen von Knoten . 47

4.7. Graph zu XML Übersetzung . 48

4.8. Graph mit Ebenen . 48

5.1. Fusionieren zweier Modelle mit Hilfe von Versions-Beziehungen 52

5.2. Das neue Modell (Links) und altes Modell (Rechts), wird zum fusionierten

Modell (Mitte) vereinigt . 54

6.1. Von der Problembeschreibung bis zum ausführbaren BPEL-Prozess 62

6.2. Erweiterung um ein Merging-Modul . 63

6.3. Optionsseite für den Transformation Assistenten 65

7.1. Komponentendiagramm der Implementierung 68

7.2. EMF Compare Funktionsweise . 75

8.1. Aktualisierung und Änderungsweitergabe von Choreographie zur Orchestrierung 79

7

Verzeichnis der Listings

7.1. Match-Strategy Interface . 68

7.2. Merge-Strategy Interface . 69

7.3. Laden eins Modells mit dem DocumentBuilder 71

7.4. Konvertierung eines DOM-Baums zu einem JDOM-Baum 71

7.5. Konvertierung eines JDOM-Baums zu einem DOM-Baum 71

7.6. Ergänzungen im existierenden TransformChoreographyHandler 73

9

Verzeichnis der Algorithmen

5.1. Referenzpunkte werden identifiziert . 56

5.2. Identifizierung der Aktualisierungen . 57

5.3. Identifizierung der Verfeinerungen . 57

5.4. Finde Referenzpunkt für Knoten . 58

5.5. Verfeinerungen mit Skelett verbinden . 58

5.6. Fusionieren von Attributen . 59

5.7. Aktualisierung eines Modells . 60

11

1. Einleitung

In allen Bereichen finden inzwischen computergestützte Arbeiten statt. Der Computer dient

nicht nur als Unterstützung oder zur Effizienzsteigerung, sondern auch dazu Abläufe zu

dokumentieren, analysieren und zu automatisieren. Eine Variante Arbeitsabläufe mit Hilfe

von Computern zu modellieren sind Workflows. Diese Workflows können mit Hife eines

Workflow-Management-Systeme (WfMS) ausgeführt und verwaltet werden [LR00].

In der Geschäftswelt haben sich Workflows und Workflow-Management etabliert [BG07],

dadurch entwickelten sich eine Reihe von Standards und Konzepten [Wee+05][Whi04][KL08].

Es liegt nahe die bewährten Standards und Konzepte [Aal12] auch für andere Domänen,

ausserhalb der Business-Workflows, einzusetzen [SHK12]. So wird versucht die gereiften

Standards aufzugreiffen und fürwissenschaftlicheWorkflows, sogennante Scientific-Workflows,

zu verwenden [SKD10].

Ein Herausforderung, sowohl in Scientific-Workflows als auch in Business-Workflows, ist es

existierende Workflow-Modelle bequem anzupassen. Ein wichtiger Aspekt für Unternehmen

ist das reibungslose Modellieren und Ausführen von Prozessen [RWR06b]. Ein Unternehmen,

welches schnell seine Prozesse anpassen kann, hat enorme wirtschaftliche Vorteile [RWR06a],

da bei der Überarbeitung eines Workflow-Modells oftmals viele Experten und Personenstunden

involviert sind [LR+10]. Diese Flexibilität erlaubt es Unternehmen beispielsweise sich auf neue

Geschäftspartner mit anderen Vorgehensweisen einzustellen oder auf Einwirkungen von außen,

wie Gesetzesänderungen, reagieren zu können.

Eine Zusammenarbeit mit Partnern kann in der Welt der Workflows mit Hilfe einer Workflow-

Choreographie modelliert werden. Innerhalb dieser Choreographie ist zum Beispiel der Nach-

richtenaustausch zwischen den Teilnehmern spezifiziert. Wird die Choreographie geändert,

ist es gegebenenfalls erforderlich die Choreographie-Teilnehmer über die Änderungen zu

informieren, damit weiterhin eine Kommunikation und damit eine Zusammenarbeit zwischen

den Teilnehmern möglich ist.

Im Bereich des e-Science werden Scientific-Workflows für die Modellierung und Ausführung

von Simulationen verwendet [RSM11]. An die Werkzeuge der Scientific-Workflows bestehen

jedoch andere Anforderungen im Vergleich zu Business-Workflows [BG07]. Das resultiert nicht

nur aus den unterschiedlichen Verwendungsweisen [SKL10]. Daher sind eine Reihe neuer

Workflow-Management-Systeme entstanden, welche sich an die Bedürfnisse von Wissen-

schaftler richten [Lud+06][Tay+07][Hul+06]. Innerhalb dieser Systeme können Simulationen

modelliert und ausgeführt werden [KR][SK10].

13

1. Einleitung

Die Universität Stuttgart entwickelt einen Prototyp, in dem wissenschaftliche Workflows

modellierbar und ausführbar sind. Dafür werden die Standards und Konzepte der Geschäftswelt

aufgriffen und zu diesem Zwecke eingesetzt.

In dieser Arbeit werden Aktualisierungen der Workflow-Choreographie betrachtet und wie

diese Änderungen an die betroffenen Choreographie-Teilnehmer mitgeteilt werden können.

Die Änderungen sollen automatisch in den Workflow der Choreographie-Teilnehmer integriert

werden. Dazu wird ein Model-Integration-Konzept erarbeitet und anschließend in einem Proof
of Concept die Funktionalität innerhalb des wissenschaftlichen Prototyps bereitgestellt.

1.1. Motivation

Mit Hilfe von Scientific-Workflow Werkzeugen können Wissenschaftler bei der Modellierung,

Durchführung und Dokumentation ihrer Experimente unterstützt werden. Die Workflow-

Management-Umgebungen sind dafür auf die Bedürfnisse der Wissenschaftler abgestimmt,

damit sich diese voll und ganz auf ihre Kernkompetenzen konzentrieren können.

An der Universität Stuttgart wird ein Prototyp entwickelt, der einfaches Modellieren und Aus-

führen von Scientific-Workflows ermöglichen soll. Die Modellierung, innerhalb des Prototyps,

findet mit Hilfe des Konzepts der Workflow-Choreographie statt.

Ein wichtiger Aspekt des Prototyps ist die flexible und unkomplizierte Modellierung, welche

bereitgestellt werden soll. Hierzu kann per drag and drop ein Experiment über die grafische

Oberfläche erstellt werden. Weiter sollen Simulationen mit Hilfe der trial and error Methode

modellierbar sein, da typischerweise in der Wissenschaft das gewünschte Ergebnis bekannt,

aber der Weg dorthin unerforscht ist.

Durch die trial and error Methode entwickelt sich ein Modell schrittweise weiter. Hierbei entste-

hen mehrere ähnliche Versionen eines Modells. Zwei Modelle zu vergleichen und Passagen mit

Unterschieden festzustellen, um diese in ein neues Modell zu übernehmen, ist zeitaufwendig

und behindert den Arbeitsfluss (Abbildung 1.1).

Deshalb ist es notwendig, den Wissenschaftlern eine praktikable Lösung bereitzustellen, die

das Vergleichen und Verschmelzen zweier Modelle problemlos ermöglicht. Dies beinhaltet

Aktualisierungen am Modell zu erkennen und diese gegebenenfalls an den betroffenen Stellen

einzuarbeiten. Im besten Fall passiert das automatisch und ohne weiteres Zutun des Wissen-

schaftlers. So soll eine Verbesserung des Arbeitsablaufs bei der Modellierung entstehen, die

Fehlervermeidung fördert und Arbeitszeit einspart.

14

1.2. Szenario

Abbildung 1.1.: Vorgehen beim Fusionieren zweier Modelle

1.2. Szenario

Das aktuelle Modellieren mit dem Prototyp wird im folgenden Szenario beschrieben. Zunächst

ist eine initiale Modellierung des Experiments erforderlich, welche meist aus einer textuellen

Beschreibung hervorgeht. Daraus entsteht ein Modell, welches gerade so viele Informationen

beinhaltet, dass dieses ausgeführt und Ergebnisse betrachtet werden können. Der Wissen-

schaftler modifiziert dieses Modell dann weiter, bis das gewünschte Ergebnis vorliegt. Dieser

Ablauf wird beliebig oft wiederholt.

Im Folgendenwird einModell betrachtet, welches in vorherigenArbeiten [WK16][Hin14][WKM]

entstanden ist. Das Modell zeigt ein Experiment in Form einer Simulation. Innerhalb der Simu-

lation werden Festkörper physikalischen Vorgängen wie Krafteinwirkung und thermischer

Alterung ausgesetzt, um später das Materialverhalten beurteilen zu können. Die Festkörpersi-

mulation besteht aus mehreren Simulationen, die zusammen das Experiment bilden. Es werden

für dieses Beispiel zwei Simulationen herausgegriffen, um die Zusammenarbeit zu demonstrie-

ren. Betrachtet wird die Monte-Carlo-Simulation (KMC) und die Molekulardynamik-Simulation

(MD). Sie sind Teilnehmer der Choreographie.

Diese zwei Simulationen tauschen während des Experimentes Nachrichten miteinander aus.

Ausgehend von der KMC-Simulation wird ein Zwischenstand an die MD-Simulation gesendet.

Die MD-Simulation bearbeitet den empfangenen Zwischenstand und schickt das Ergebnis

zurück. In Abbildung 1.2a ist der Nachrichtenaustausch innerhalb des Ablaufdiagramms dar-

gestellt. Das Senden einer Nachricht wird durch einen ausgefüllten und das Empfangen durch

einen leeren Brief symbolisiert. In diesem ersten Versuch wird ein einzelner Zwischenstand

ausgetauscht.

Dem Wissenschaftler genügt dieser einzelne Zwischenstand nicht für eine Beurteilung, er

möchte mehr Details. Deshalb entscheidet er im nächsten Versuch mehrere Zwischenstände

analysieren zu lassen. Er erweitert das Modell so, dass die KMC-Simulation mehrere Zwi-

schenstände von der MD-Simulation berechnen lässt. Diese Modifikation ist in Abbildung 1.2b

15

1. Einleitung

(a) Erster Versuch

(b) Zweiter Versuch

Abbildung 1.2.: Beschreibung einer Festkörpersimulation

dargestellt und zeigt, wie ausgehend von der KMC-Simulation mehrere Nachrichten gesendet

und empfangen werden. Dies ist durch ein Wiederholungssymbol dargestellt.

Diese theoretische Betrachtung muss innerhalb des Prototyps umgesetzt werden. Die Durch-

führung eines Experiments kann mit Hilfe des Prototyps wie folgt umgesetzt werden: Die

Modellierung der Simulation entsteht grafisch als Choreographie innerhalb des ChorDesigners.

Hierbei wird lediglich ein rudimentäres Modell und die Kommunikationsaktivitäten der Teil-

16

1.2. Szenario

Abbildung 1.3.:Modellierte Choreographie innerhalb des Prototyps

nehmer modelliert. Das entstandene Diagramm wird anschließend so transformiert, dass jeder

Teilnehmer einen Workflow in Form einer Orchestrierung erhält. Die Orchestrierung muss

dann für jeden Teilnehmer mit Geschäftslogik verfeinert werden. Dadurch wird das Modell

ausführbar. Das Modell kann schließlich simuliert und die Ergebnisse vom Wissenschaftler

analysiert werden. Der Wissenschaftler trifft Entscheidungen aufgrund der Ergebnisse und

modifiziert das Modell gegebenenfalls.

Eine detailliertere Ansicht der modellierten Festkörpersimulation, innerhalb des Prototyps, ist

in Abbildung 1.3 zu sehen. Hier sind in der Choreographie zusätzlich, über die Kommunikation

hinaus, weitere Aktivitäten und Ablaufstrukturen für jeden Teilnehmer ergänzt worden. Der

Nachrichtenaustausch wird über die Pfeile angezeigt. Die KMC-Simulation ist auf der linken

Seite zu sehen und die MD-Simulation auf der rechten Seite.

Das gezeigte Modell beschreibt die Interaktion zwischen den Teilnehmern und die Struktur

des Experiments. Es ist noch nicht ausführbar und muss zunächst von jedem Teilnehmer

individuell verfeinert werden. Dazu erhält jeder Teilnehmer seine Verhaltensbeschreibung aus

diesem Choreographie-Modell. Diese Verhaltensbeschreibung wird aus der Choreographie

heraus generiert. Die Beschreibung des eigenen Ablaufs wird Orchestrierung genannt. Jeder

Teilnehmer fügt weitere Elemente in seine Orchestrierung ein, damit diese ausführbar wird.

17

1. Einleitung

Abbildung 1.4.: Verfeinerte Orchestrierung des MD Teilnehmers

Sind alle Orchestrierungen verfeinert und ausführbar, kann die Choreographie ausgeführt

werden.

Repräsentativ sind in Abbildung 1.4 die Verfeinerung der MD-Simulation Orchestrierung durch

weitere Aktivitäten zu sehen. In diesem Fall wurden benötigte Vorbereitungsschritte hinzuge-

fügt, beispielsweise die prepareRunMDSimulation Aktivität. Diese manuellen Verfeinerungen

müssen aktuell bei jedem neuen Versuchsmodell erneut eingearbeitet werden, da sie durch

eine erneute Generierung der Orchestrierung überschrieben werden.

Entwickelt sich das Choreographie-Modell weiter und erhält Modifizierungen, ist jedes Mal

eine erneute Generierung der Teilnehmer-Orchestrierungen notwendig. Die Modifizierungen

können dabei einfache Verschiebungen der Aktivitäten, bis hin zu komplexen Ablaufänderun-

gen umfassen.

Die Teilnehmer erhalten die neue Version der Orchestrierung. Das hat zur Folge, dass die

Verfeinerungen der Teilnehmer erneut in das neue Modell hinzugefügt oder angepasst werden

müssen, obwohl diese dem alten Modell ähnlich sind. Das Anpassen der Verfeinerungen

bedeutet jedes Mal einen zeitlichen Aufwand. Deshalb ist ein automatisches Integrieren des

alten verfeinerten Modells in das neue noch unverfeinerte Modell eine große Erleichterung,

welche sonst müßig und fehleranfällig mit copy and paste erledigt werden müsste.

18

1.3. Hintergrund

1.3. Hintergrund

Das Institut für Architektur von Anwendungssystemen (IAAS) ist Teil des Exzellenzcluster

„Simulation Technology“ (SimTech), welches im Rahmen der Exzellenzinitiative von Bund und

Ländern (DFG) gefördert wird
1
. Eines der Unterprojekte beschäftigt sich mit der Modellierung

von Multiskalen- und Multiphysiksimulationen
2
. In diesem Rahmen entsteht unter anderem

eine Anwendung, welche Wissenschaftler bei der Modellierung von Simulationen unterstützen

soll. Eine Anforderung an diese Anwendung ist, dass die Modellierung der Simulationen

mit Hilfe der trial and error Methode durchgeführt werden kann, da dies als eine natürliche

Vorgehensweise bei der Durchführung von Experimenten angesehen wird.

1.4. Ziel der Arbeit

Aktuell wird von dem Prototyp für jede gespeicherte Änderung eine neue Modell-Revision

angelegt oder das bestehende alte Modell überschrieben. Anpassungen am bestehenden al-

ten Modell werden entweder im Falle einer neuen Revision nicht übernommen oder durch

Überschreiben verworfen. Es sind weitere manuelle Schritte notwendig, um die Änderungen

aus beiden Modellen in ein gemeinsames Modell zu überführen. Das händische Verschmelzen

beider Modelle ist ein aufwendiger, fehleranfälliger Vorgang. Zudem behindert es den trial and
error Arbeitsablauf, da diese Schritte für jeden Versuch erneut vorgenommen werden müssen.

Deshalb soll das Verschmelzen beider Modelle automatisiert werden.

Um die trial and error Methode besser zu unterstützen, muss die existierende Transformation,

aus dem Choreographie-Modell zu den einzelnen Teilnehmer-Workflows, erweitert werden. Die

Erweiterung umfasst die Weitergabe und Einarbeitung der Änderungen in bereits bestehende

und verfeinerte Workflows der Teilnehmer. Dabei sollen transitive Änderungen beachtet und

entsprechend an betroffene Choreographie-Teilnehmer propagiert werden. Dazu soll zunächst

einModel-Integration-Konzept für die Integration undWeitergabe der Aktualisierungen erarbei-

tet werden. Später soll die Funktionalität in einem Proof of Concept im Prototyp implementiert

und anschließend evaluiert werden.

1
http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/

2
http://www.simtech.uni-stuttgart.de/forschung/pn/PN6/index.html

19

1. Einleitung

1.5. Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 1 – Einleitung: Es wird mit einer Hinführung zum Thema begonnen, welche eine

Übersicht über den Themenkomplex bietet. Darauf folgt die Motivation dieser Arbeit,

sowie ein Beispielszenario, in der die Ergebnisse dieser Arbeit Anwendung finden können.

Des weiteren wird der wissenschaftlichen Rahmen genannt und zuletzt die Ziele der

Arbeit aufgezeigt.

Kapitel 2 – Grundlagen Die für diese Arbeit erforderlichen Begriffe, Definitionen und Kon-

zepte werden in diesem Kapitel erläutert. Zusätzlich wird ein Einblick auf die grundle-

genden Technologien ermöglicht.

Kapitel 3 – Verwandte Arbeiten Verschiedene Publikationen beschäftigen sich mit dem be-

arbeiteten Themenkomplex. Hier werden exemplarisch einige relevante Arbeiten vor-

gestellt. Sie dienen dazu Unterschiede und Gemeinsamkeiten darzustellen, sowie einen

weiteren Einblick in das Thema zu gewähren.

Kapitel 4 – Anforderungsanalyse Basierend auf den Grundlagen und verwandten Arbeiten

wird das Thema genauer untersucht. Zudem wird die weitere Vorgehensweise erarbeitet.

Kapitel 5 – Konzept Die Anforderungen und Annahmen werden erörtert. Die getroffenen

Entscheidungen werden festgehalten und Algorithmen für die Realisierung vorgeschla-

gen.

Kapitel 6 – Prototyp Der wissenschaftliche Prototyp wird präsentiert. Zudem wird die exis-

tierende Architektur analysiert und benötigte Anpassungen für die Umsetzung des

Konzeptes vorgestellt.

Kapitel 7 – Implementierung Das vorgestellte Konzept wird imwissenschaftlichen Prototyp

implementiert. Hierzu werden die entwickelten Komponenten betrachtet und Details

der Implementierung erläutert.

Kapitel 8 – Evaluierung Die Algorithmen werden auf die Anforderungen geprüft. Danach

wird eine kurze Laufzeitanalyse durchgeführt.

Kapitel 9 – Zusammenfassung und Ausblick Die Ergebnisse der Arbeit werden zusam-

mengefasst und abschließend beurteilt. Danach wird ein Ausblick auf weiterführende

Forschungen in Bezug auf mögliche Verbesserungen und Weiterentwicklungen gegeben.

Hinweis Diese Arbeit ist auf Deutsch verfasst, dennoch werden Fachbegriffe aus dem Engli-

schen übernommen, um ein gemeinsames Vokabular sicherzustellen und weitere Recherchen

zu vereinfachen. Oftmals ist auch keine adäquate Übersetzung vorhanden, weshalb auf die

englische Bezeichnung zurückgegriffen wird.

20

2. Grundlagen

In der vorhergehenden Einleitung wurde die Motivation dieser Arbeit beschrieben und mittels

einem Beispiel Szenario begründet. Zusätzlich wurden die Ziele dieser Arbeit vorgestellt.

In diesen Kapitel werden Grundlagen, sowie Definitionen, Konzepte und Technologien, welche

für diese Arbeit von Relevanz sind, präsentiert.

Begonnen wird in Abschnitt 2.1 mit einer kurzen Einführung zu Workflows und in das

Workflow-Management. Darauf folgt in Abschnitt 2.2 die Gegenüberstellung von Workflow

Kompositionen. Anschließend wird in Abschnitt 2.3 ein Einblick auf die Workflow Modellie-

rung gegeben. In Abschnitt 2.4 wird auf konkrete Technologien eingegangen und in Abschnitt

2.5 die verwendete Notationen für Workflows vorgestellt. Abschließend wird in Abschnitt 2.6

eine Verarbeitungsmethode für Workflow-Modelle beschrieben.

2.1. Workflow-Management

Aus dem Bedürfnis heraus Arbeitsabläufe computergestützt zu verwalten und zu realisieren

entstanden Systeme und Hilfsmittel um Arbeitsabläufe auf dem Computer durchzuführen

[Gan+07]. Aus diesem Bedürfnis heraus resultierten Workflows, welche unter anderem spezifi-

ziert, analysiert, modelliert und optimiert werden müssen. Mit diesem Thema beschäftigt sich

das Workflow-Management.

Das Feld des Workflow-Managements „[...] umfasst alle Aufgaben, die bei der Modellierung,

Spezifikation, Simulation sowie bei der Ausführung und Steuerung der Workflows erfüllt

werden müssen“ [LLS10].

Ein Workflow besteht aus drei Dimensionen (Abbildung 2.1). Eine Dimension beschreibt,

welche Aktivitäten erledigt werden müssen (Was-Dimension), ein weiterer Aspekt, welche Per-

sonen oder Programme diese erledigen (Wer-Dimension), und zuletzt, welche IT-Infrastruktur

verwendet wird (Womit-Dimension) [LR00].

Eine Möglichkeit der Repräsentation der Prozesslogik ist in der Form eines Graphen, dieser

beschreibt die Abarbeitungsfolge von Aktivitäten. In Abbildung 2.1 ist eine schematische

Darstellung eines Prozessgraphen(Was-Dimension) zu sehen.

21

2. Grundlagen

Abbildung 2.1.: Die drei Workflow-Dimensionen nach [LR00]

Business-Workflow und Scientific-Workflow Workflows werden durch das zu erreichen-

de Ziel unterschieden [RSM11]. Für die vorliegende Arbeit sind zwei Workflow Typen rele-

vant.

Zum einen existieren die Business Workflows mit Workflow-Umgebungen, die auf Geschäfts-

prozesse und deren Anforderungen spezialisiert sind. Hierzu zählt das Automatisieren von

Geschäftsprozessen innerhalb eines Unternehmens. In Abbildung 2.2 (a) ist der Lebenszy-

klus eines Business Workflows zu sehen. Dieser besteht aus mehreren Phasen, welche von

unterschiedlichen Personen ausgeführt und mit unterschiedlichen Werkzeugen durchlaufen

wird.

Zum anderen gibt es die Scientific-Workflows, welche auf die Bedürfnisse vonWissenschaftlern

zugeschnitten sind. In Abbildung 2.2 (b) ist der Lebenszyklus eines Scientific-Workflows

abgebildet. Hier werden die Phasen von einemWissenschaftler selbständig durchlaufen. Dieser

verwendet ein Werkzeug das auf seine Anforderungen angepasst ist, um sich ganz auf seine

Kernkompetenzen konzentrieren zu können. Als eine einfach zu benutzende Software, zur

Unterstützung in allen Phasen, wurde das Mayflower-Framework [SHK12] entwickelt.

22

2.2. Kompositionen

Abbildung 2.2.: Lebenszyklus von a) Business Workflows und b) Scientific Workflows

[SHK12][WK14]

2.2. Kompositionen

Es existieren zwei Ansätze für die Komposition von Aktivitäten im Rahmen eines Workflows.

Sind die Aktivitäten aus der Sicht eines Teilnehmers beschrieben und hat dieser alleinige

Kontrolle über sämtliche Aktivitäten, dann handelt es sich um eine Orchestrierung. Inner-

halb der Orchestrierung existiert ein zentraler Koordinator. Zur Veranschaulichung kann ein

Orchester herangezogen werden. Der Dirigent, repräsentativ für die zentrale Steuereinheit

und Koordination, leitet das Ensemble durch das Musikstück, welches stellvertretend für die

Aktivitäten und den Prozess stehen.

Interagieren hingegen mehrere Teilnehmer gleichwertig miteinander, das heißt ohne zen-

tralen Koordinator, wird von einer Choreographie gesprochen. Eine Choreographie umfasst

mindestens zwei Teilnehmer. Es ist durchaus möglich, dass ein Teilnehmer in mehreren Cho-

reographien gleichzeitig involviert ist. Um sich eine Choreographie vorzustellen greift die

Analogie eines gemeinsamen Tanzes. Alle Teilnehmer wollen ein gemeinsames Ziel erreichen.

Um dieses Ziel zu erreichen muss sich auf ein Folge von Interaktionen geeinigt werden.

In Abbildung 2.3 wird der Zusammenhang zwischen Orchestrierung und Choreographie

verdeutlicht. Die Orchestrierung legt den Fokus auf das interne Verhalten und wird daher auch

lokale Sicht genannt. Hingegen fokussiert sich die Choreographie auf die Kommunikation

der Teilnehmer und bietet so eine globale Sicht auf den Prozess. In der globalen Sicht sind die

Aktivitäten zur Kommunikation notwendigerweise für den Partner sichtbar. So verbinden die

Paare invoke, receive und reply, receive die beiden Orchestrierungen miteinander.

23

2. Grundlagen

Abbildung 2.3.: Orchestrierung und Choreographie nach [Wee+05]

Eine Choreographie kann auch als Vertrag zwischen den Teilnehmern interpretiert werden, in

dem sich die Teilnehmer auf den Kommunikationsablauf geeinigt haben.

2.3. Modellierung

Bei der Modellierung von Workflow Modellen wird typischerweise entweder mit der Top-down
oder Bottom-upMethode vorgegangen. Wird die Top-down Methode verwendet, wird zunächst

von oben mit einem allgemeinen Modell begonnen und dieses nach unten immer detaillierter

spezifiziert.

Für die Modellierung einer Choreographie nach der Top-down Methode hat dies folgende

Bedeutung (Abbildung 2.4): Zunächst wird mit einer Analyse des Problems begonnen. Diese

umfasst unter anderem das Herausfinden beteiligter Choreographie-Teilnehmer und die not-

wendige Kommunikation untereinander. Aus der Analyse entsteht dann ein Choreographie

Modell, welches die Teilnehmer und die Konversation, das heißt die Kommunikationsaktivitä-

ten jedes Teilnehmers, enthält. Dieses Modell wird dann automatisch in abstrakte Workflows

transformiert. Jeder Teilnehmer erhält einen abstrakten Workflow, welcher nur die eigenen

Kommunikationsaktivitäten beinhaltet. Der abstrakte Workflow ist noch nicht ausführbar

und muss für jeden Teilnehmer mit den eigentlichen Arbeitsschritten verfeinert werden. So-

bald der Workflow vollständig verfeinert wurde besitzt jeder Teilnehmer eine ausführbare

Orchestrierung. Wird das Modell hingegen Bottom-up konstruiert, werden die Schritte in die

entgegengesetzte Richtung abgearbeitet. Zuerst wird mit der Modellierung der einzelnen Or-

chestrierungen begonnen. Aus den einzelnen Orchestrierungen wird dann eine Choreographie

generiert.

24

2.4. Technologien

Abbildung 2.4.: Top-down Modellierungsansatz mit Beispiel, nach [WK16]

2.4. Technologien

Es hat sich etabliert, dass sich Aktivitäten eines Workflows einem Service bedienen um die

Aktivität durchzuführen. Typischerweise werden die Services in Form von Webservices (WS)

bereitgestellt.

Die Webservice Technologie (WST) umfasst eine große Anzahl
1
von Standards. Zwei wichtige

Standards, die Grundlage für den Kern der WST sind, bilden die Web Service Description

Language (WSDL) und SOAP. Alle entwickelten Standards werden unter dem Namen WS-

Technologie Stack oder kurz WS-* zusammengefasst. Der Stern steht stellvertretend für die

Namen der Standards, weil die Webservice Erweiterungen alle ein WS vorangestellt haben

und mit dem Eigennamen enden. Die Spezifikationen aus WS-* basieren wiederum auf dem

Extensible Markup Language (XML) Standard.

Extensible Markup Language Die Extensible Markup Language (XML) ist eine Auszeich-

nungssprache, mit der hierarchisch strukturierte Daten in Textdateien abgelegt werden kön-

nen.

1
"There are more than 150 WS-* Specs!"[Wee+05]

25

2. Grundlagen

Abbildung 2.5.: Graphische Darstellung einer Orchestrierung mit BPMN [WKM]

Web Services Description Language Die bereitgestellte Funktionalität des Webservices

wird mit Hilfe der Web Services Description Language (WSDL) beschrieben. Innerhalb der

WSDL-Datei wird unter anderem festgehalten, welche eingehenden und ausgehenden Nach-

richten vom Service erwartet werden und welche Operationen ausgeführt werden können.

WS-BPEL Die Web-Service Business Process Execution Language, oder kurz BPEL, erlaubt

es Geschäftsprozesse in Form von Orchestrierungen zu spezifizieren. Hierfür werden drei Ka-

tegorien von Sprachbestandteilen angeboten. Dazu gehören die Basisaktivitäten, strukturierte

Aktivitäten und Bereiche.

Business Process Model and Notation Für die graphische Darstellung der durch BPEL

modellierten Prozesse gibt es keinen offiziellen Standard. Oft wird die grafische Business

Process Model and Notation (BPMN) Sprache zu diesem Zweck herangezogen [Ley10]. In

Abbildung 2.5 ist die grafische Darstellung einer Orchestrierung mit BPMN zu sehen. Sie

zeigt den vereinfachten Workflow der Molekulardynamik-Simulation. Die Aktivitäten sind als

Webservice implementiert [Nem14].

WS-BPEL4Chor Die Sprache BPEL ist für Orchestrierungen ein akzeptierter Standard,

jedoch bietet sie keine Möglichkeit Choreographien zu beschreiben. Eine Lösung bevorzugt

es, BPEL diesbezüglich zu erweitern. Mit der Erweiterung des Sprachumfangs von BPEL zu

BPEL4Chor ist es möglich Choreographien modellieren zu können [Dec+07]. Hierfür wird

BPEL so erweitert, dass an BPEL selbst keine Änderung vorgenommen werden. Dadurch wird

ein nahtloses Zusammenbringen von Orchestrierungen und Choreographien erreicht.

26

2.4. Technologien

Abbildung 2.6.: BPEL4Chor Artefakte [Dec+07]

Die Erweiterung besteht aus drei Typen von Artefakten, welche zusammen BPEL4Chor bilden

(Abbildung 2.6).

Für jeden Teilnehmer existiert ein Participant Behavior Description (PBD) Artefakt. Jedes

Artefakt beinhaltet die Abhängigkeiten der Aktivitäten und beschreibt damit insbesondere

den Kontrollfluss und jene Aktivitäten, welche für den Nachrichtenaustausch verantwortlich

sind. In diesem Artefakt wird das Verhalten für jeden Teilnehmer separat festgehalten.

Die Participant Topology (PTop) beschreibt die strukturelle Ansicht der Choreographie. Hier

werden die beteiligten Teilnehmer aufgeführt und die untereinander ausgetauschten Nachrich-

ten aufgelistet. Das Artefakt verbindet so die einzelnen PBDs zu einer Gesamtheit.

In den vorherigen zwei Artefakten wurde das Verhalten und die Beziehung beschrieben. Im

dritten Artefakt sind die technischen Details untergebracht. Diese Aufteilung realisiert ein

entkoppeln der nicht-technischen und technischen Spezifikationen. Das erlaubt es, die Beschrei-

bungen wiederzuverwenden und gegen unterschiedliche Implementierungen zu binden.

Das Participant Grounding (PG) Artefakt schlägt den Bogen von nicht-technischen Spezifi-

kationen zu technischen Konfigurationen. Hier können konkrete Webservices an die vorher

definierten Beschreibungen gebunden werden. Dies geschieht, indem innerhalb des Participant

Groundings auf WSDL-Dateien referenziert wird.

27

2. Grundlagen

2.5. Notation

Workflow Modelle können über Graphen-basierte Formalismen wie beispielsweise Petri-Netze,

UML Aktivitätsdiagramme, BPMN und Event-driven Process Chain (EPC) beschrieben wer-

den. Um nicht auf eine spezifische Beschreibungsart festgelegt zu sein, wird in dieser Arbeit

eine allgemeine Darstellung als Graph vorgezogen. Außerdem lassen sich etablierte Graph-

Algorithmen für die Verarbeitung der Modelle durch die Darstellung als Graph verwenden. Ein

Graph lässt sich in die spezifischeren Beschreibungsarten transformieren, so dass dies keine

Einschränkung darstellt.

Das Modell eines Workflows kann als Repräsentation eines (annotierten) Graphen verstanden

werden. Der Graph enthält dabei Knoten, die stellvertretend für Aktionen stehen, und Kanten,

welche die Reihenfolge der Abarbeitung festlegen. Die Pfeilspitze signalisiert die Richtung der

Reihenfolge, in welcher die Knoten besucht werden.

Definition 2.5.1 (Graph, endlich und gerichtet, nach [Wei12])
Ein Graph G, bestehend aus einer endlichen Menge von Knoten V und einer endlichen Menge von
Kanten E, ist ein 2-Tupel (V, E). Die Knoten und Kanten sind disjunkt, V ∩ E = ∅. Eine Kante
ei ∈ E verbindet zwei unterschiedliche Knoten vi, vi+1 ∈ V . Eine Kante E ⊆ V × V : { ei =
(vi, vi+1) | ei ∈ E, vi, vi+1 ∈ V } ist ein geordnetes Paar, wobei an erster Stelle der Startknoten
und an zweiter Stelle der Endknoten notiert ist.

Wird ein Ausschnitt aus einemWorkflow Modell betrachtet, entspricht dies einem Teilgraph.

Definition 2.5.2 (Teilgraph, nach [Wei12])
Gegeben sind zwei Graphen G = (V, E) und G′ = (V ′, E ′). Falls V ′ ⊆ V und E ′ ⊆ E gilt, dass
bedeutet G′ umfasst nur Knoten und Kanten aus G, dann ist G′ ein Teilgraph von G, notiert als
G′ ⊆ G.

Eine Sequenz von Aktionen, welche über Kanten verbunden sind, wird als Weg bezeichnet.

Hierbei ist die Richtung der Kanten zu beachten.

Definition 2.5.3 (Weg, nach [Wei12])
Ein Weg W ist ein Teilgraph, für den ein Startknoten xs und einen Endknoten xe existiert. Alle
Knoten und Kanten in W sind so gewählt, dass von Knoten xs gerichtete Kanten zu Knoten xe

existieren. Alle aufeinander folgende Knoten xi und xi+1 sind durch gerichtete Kanten (xi, xi+1)
verbunden.

Sofern es möglich ist den Weg beliebig oft zu durchlaufen, wird der Weg auch Zyklus genannt.

Das bedeutet, dass jeder Knoten des Weges mindestens eine eingehende und ausgehende Kante

besitzt.

Definition 2.5.4 (Zyklus, nach [Wei12])
Ist bei einem Weg der Startknoten xs und Endknoten xe identisch, so heißt der Weg Zyklus.

28

2.6. Verarbeitung

Bei einem ungerichteten Graph kann die Kante in beide Richtungen gelesen werden. Deshalb

wird oft bei der Kante auf den richtungsweisenden Pfeil verzichtet.

Definition 2.5.5 (Graph, ungerichtet, nach [Wei12])
Ein Graph ist ungerichtet, falls für jede Kante e = (xi, xi+1) eine Kante e′ = (xi+1, xi) existiert.

Ein Baum entspricht einer Spezialform des ungerichteten Graphen. Ein Knoten des Baumes

kann (beliebig) bestimmt werden. Dieser Knoten wird als Wurzel bezeichnet. Ausgehend von

der Wurzel verzweigt sich der Baum in die Breite. Zwei Verzweigungen dürfen sich nicht

wieder verbinden.

Definition 2.5.6 (Baum, nach [Wei12])
Als Baum wird ein Graph bezeichnet, der ungerichtet ist und keine Zyklen enthält.

Die Single-Entry-Single-Exit Region [JPP94] ist eine kanonische Form eines Teilgraphen.

Definition 2.5.7 (Single-Entry-Single-Exit Region, nach [JPP94])
Eine Single-Entry-Single-Exit (SESE) Region ist ein Teilgraph mit einem Eingangsknoten xs und
Ausgangsknoten xe. Jeder Knoten x ∈ V ist vom Eingangsknoten xs erreichbar. Für jeden Knoten
existiert mindestens ein Weg zum Ausgangsknoten xe. Der Eingangsknoten xs hat eine eingehende
Kante und der Ausgangsknoten xe eine ausgehende Kante. Es darf weder eine zusätzliche Kante
in die Region hinein, noch hinaus zeigen.

2.6. Verarbeitung

Für eine Transformation, der formalen Beschreibungen der Modelle in einen Baum, kann das

Document Object Model (DOM) [Woo+00] herangezogen werden. Dies ist möglich, da die

Beschreibungen in Form von strukturierten XML-Dokumenten vorliegen. Eine Konvertierung

ist in beide Richtungen einfach möglich (Abbildung 2.7). Das DOM wurde als Schnittstelle für

den Zugriff auf XML-Dokumente entwickelt. Es ermöglicht nicht nur das Navigieren durch

das Dokument, sondern auch das Ändern von Inhalten.

Jeder DOM-Knotenbaum beinhaltet das Dokument als Wurzel. Der Baum lässt sich mit Be-

ziehungen zwischen den Knoten beschreiben. Die direkt nachfolgenden Knoten werden als

Kinder bezeichnet. Der vorherige Knoten entspricht dem Elternteil. Diese Verwandtschaftsbe-

ziehungen lassen sich von jedem beliebigen Knoten aus beginnen.

Nachfolgend werden weitere Definitionen eingeführt, welche die Struktur des DOM beschrei-

ben. Jeder Knoten erhält eine Nummer. Die Nummer wird ausgehend von der Wurzel, via einer

Breitensuche, aufsteigend vergeben. Durch diese Nummerierung der Knoten lässt sich später

die relative Position der Knoten bestimmen.

29

2. Grundlagen

Abbildung 2.7.: XML-Datei und DOM-Knotenbaum

Definition 2.6.1 (Nummerierung der Knoten)
Gegeben sei ein Baum B = (V, E) und ein Knoten w ∈ V , welcher die Wurzel bildet. Ausgehend
von der Wurzel erhält jeder Knoten eine Nummer. Nummer : Knoten→ N0 Die Wurzel erhält
die 0 zugewiesen. Die Nummern der Kinder werden via Besuchsreihenfolge der Breitensuche
bestimmt.

Durch die Nummerierung der Knoten lässt sich zwischen allen Knoten eine Vorgänger- und

Nachfolger-Beziehung formulieren. Ausgehend von einem Knoten x heißen alle anderen

Knoten y mit Nummer(y) < Nummer(x) Vorgänger- und alle Knoten mit Nummer(x) <
Nummer(y) Nachfolger-Knoten.

Definition 2.6.2 (Ebene eines Knoten)
Gegeben sei ein Baum B = (V, E), dann ist jedem Knoten eine Ebene zugeordnet.
Ebene : Knoten→ N0 Die Wurzel erhält die Ebene 0 zugewiesen. Die Ebene eines Knoten wird
via Expandierungsschritt der Breitensuche bestimmt.

Die Ebene eines Knoten wird später für die Verschachtelungstiefe der XML-Elemente benö-

tigt.

An einen Eltern-Knoten kann ein Ast lokalisiert werden, um einen Teilgraphen zu erhalten.

Ein Ast enthält alle Kinder des Eltern-Knotens, die sich nicht auf derselben Ebene wie der

Eltern-Knoten befinden.

Definition 2.6.3 (Ast)
Gegeben sei ein Baum B = (V, E) und ein Knoten x ∈ V mit Ebene(x) = i.
Dann sind alle von x erreichbaren Kinder, mit einer höheren Ebene, ein Ast. Ast(x) =
{ (Va, Ea) | Es existiert ein Weg von x nach Va ∧ Ebene(x) < Ebene(Va) }

30

3. Verwandte Arbeiten

In dem vorherigen Kapitel wurden Grundlagen und Definitionen vermittelt. In diesem Kapitel

werden verwandte Arbeiten vorgestellt.

Eine Reihe von ähnlichen und angrenzenden Arbeiten beschäftigen sich mit Aktualisierungen

und Änderungsweitergabe innerhalb von Workflow-Choreographien. Darunter sind Arbeiten

zu finden, welche sich mit dem Zusammenlegen von Prozessen oder dem identifizieren von

betroffenen Teilnehmern bei einer Prozessänderung beschäftigen. Nachfolgend sind einige

ausgesuchte Arbeiten beschrieben, welche Einfluss auf diese Arbeit genommen haben.

Es werden drei Themenbereiche untersucht. Zunächst wird die Domain Business Process

Management (BPM) (Abschnitt 3.1) betrachtet, der diese Arbeit ebenfalls zuzuordnen ist. Hier

beschäftigen sich die ausgewählten Arbeiten größtenteils mit Aktualisierungen in Prozess-

modellen. Darauffolgend werden die angrenzenden Themengebiete des Data Engineerings

(Abschnitt 3.2) und Software Engineerings (Abschnitt 3.3) mit einbezogen. Die Methoden des

Data Engineerings sind hilfreich um identische oder ähnliche Aktivitäten innerhalb eines Pro-

zessmodells zu identifizieren. Für das Zusammenlegen der Prozessmodelle sind die etablierten

Algorithmen des Software Engineerings ein solider Ausgangspunkt.

3.1. Business Process Management

Das Optimieren von Geschäftsprozessen spielt im Business Process Management eine wich-

tige Rolle. Um einen Prozess zu optimieren ist es erforderlich, dass bestehende Modell zu

analysieren und anzupassen. Eine Veränderung eines bestehenden Prozesses bringt jedoch

Herausforderungen mit sich. Möchte beispielsweise ein Unternehmen Prozesse, an dem Partner

beteiligt sind anpassen, müssen diese entsprechend informiert werden. Jedoch sollen dabei

Teile von privaten Prozessen nicht veröffentlicht werden, da der Partner zu einem fremden

Unternehmen gehören könnte und dies somit Geschäftsgeheimnisse verraten würde.

Change Propagation in Collaborative Processes Scenarios Die Arbeit von Fdhila et

al. [FRMR12] untersucht verteilte und gemeinschaftliche Prozesse. Die beteiligten Partner

handeln dabei eigenständig. Ändert ein Partner seinen privaten Prozess, ist die Frage, wie

diese Änderungen an den Partner weitergeben werden können. Da der Partner meist selbst

31

3. Verwandte Arbeiten

wieder eigene Partner involviert, können diese Änderungen weitere transitive Änderungen

zur Folge haben.

Zur Lösung dieses Problems wird ein generischer Ansatz für Change Propagation auf Basis

eines Refined Process Structure Tree (RPST) [VVK09] vorgeschlagen. Der Ansatz besteht aus

vier Schritten: (i) identifizieren der betroffenen Aktivitäten und Partner, (ii) aushandeln der

Change Operationen für den betroffenen Partner, (iii) abschließen der Verhandlungen mit dem

Partner und (iv) überprüfen der Konsistenz und Kompatibilität. Für transitive Änderungen

muss der Vorgang entsprechend mit jedem Partner wiederholt werden.

Dieser Ansatz ist für einzelne Änderungen ausgelegt, welche einmalig an einen Partner über-

mittelt werden. Für eine größere Anzahl von Änderungen, welche gesamtheitlich an alle

beteiligten Partner gesendet werden, ist dieses Verfahren nicht geeignet. Jedoch fließen die

Überlegungen, zur Auswahl der betroffenen Partner, in die vorliegende Arbeit ein.

Change patterns and change support features In der Arbeit vonWeber et al. [WRRM08]

wurden typische Änderungen an Prozessen analysiert. Als Grundlage für die Analyse dienten

mehrere Fallstudien. Daraus resultierten 18 Änderungsmuster (Change-Pattern), welche jeweils
einen Änderungsvorgang an einem Prozess beschreiben. Die Änderungsmuster können als

Referenz verwendet werden oder dazu Systeme, an Hand der Unterstützung der Muster, zu

vergleichen.

Es lassen sich 14 der Änderungsmuster als Adaption Pattern identifizieren, die das direkte

Modifizieren des Prozesses behandeln. Darunter sind Muster wie: Einfügen, Löschen, Bewegen

oder Ersetzen von Prozessfragmenten zu finden.

Die vorliegenden Modelle dieser Arbeit unterliegen diesen Änderungsmustern. Das zu erstel-

lende Konzept muss sich mit den Änderungsmustern auseinandersetzen und Mittel bieten

diese zu unterstützen.

Merging Event-Driven Process Chains Wie zwei Prozessmodelle, welche als Event-

driven Process Chains (EPC) [KSN92] modelliert wurden, zu einem einzigen Prozessmodell

zusammengeführt werden können, wird in der Arbeit von Gottschalk et al. [GAJV08] vorge-

stellt. Die beschriebene Funktionalität wird zusätzlich im ProM (Process Mining) Framwork
1

bereitgestellt.

Die Motivation dieser Arbeit liegt in der Übernahme beziehungsweise Zusammenlegung zweier

Unternehmen begründet, welche ihre Prozesse als EPCmodelliert haben. Die Eingliederung des

Unternehmens spiegelt sich in den EPC wieder. Deshalb müssen die EPC beider Unternehmen

auf ein gemeinsames Modell gebracht werden. Für diesen Vorgang wird ein Merge-Algorithmus

vorgeschlagen. Der Merge-Algorithmus besteht aus drei Phasen. Zunächst werden die EPC auf

1
http://www.promtools.org

32

3.1. Business Process Management

ein Graphen basierendes Modell reduziert. Die beiden Graphen werden dann vereinigt. Dies

passiert über die jeweilige Zusammenlegung der Knoten und der Kanten. Zuletzt wird der neu

entstandene Graph in ein EPC zurückgeführt.

Dieses Vorgehen dient als Ausgangssituation für weitere Schritte. Die EPCwurden zwar Zusam-

mengelegt, jedoch wurden Abhängigkeiten und Semantik der Aktivitäten nicht berücksichtige.

Das so entstandene Modell muss auf jeden Fall von einem Experten überarbeitet werden, bevor

es verwendet werden kann.

Der vorgeschlagene Ansatz von [GAJV08] ist sehr stark an EPC geknüpft und wird deshalb im

Kontext der vorliegenden Arbeit nicht verwendet.

Die von Experten durchgeführten Änderungen werden in der Regel dokumentiert. In sogenann-

ten Änderungshistorien (Change-Log) werden die Änderungen festgehalten. Ein Change-Log

wird häufig automatisch erstellt. Jedoch kann es vorkommen, dass alte über die Zeit gewachse-

ne Modelle keine Change-Log aufweisen. Weitere Probleme können sein, dass der Change-Log

falsch, unvollständig oder verlorengegangen ist. Doch auch ohne Change-Log müssen die

Änderungen an den Modellen nachvollziehbar sein.

Business Process Merging - An Approach based on Single-Entry-Single-Exit Regi-
ons In seiner Diplomarbeit [Ger07] präsentiert Gerth einen Ansatz für Business Process

Merging, der nicht auf einen initialen Change-Log angewiesen ist.

In diesem wird wie folgt vorgegangen: Zunächst werden die Unterschiede der Prozess Mo-

delle, unter Beachtung der Abhängigkeiten, erkannt. Dazu wird das Prozess-Modell in SESE

Regionen partitioniert, um eine hierarchische Zerlegung zu erhalten. Durch die Zerlegung

in SESE Regionen kann das Modell einfacher auf Unterschiede untersucht werden. Aus den

Unterschieden wird dann ein Change-Log generiert der minimal ist, also keine unnötigen Ope-

rationen enthält. Der Change-Log beinhaltet alle Schritte, welche durchgeführt werden müssen

um die Unterschiede aufzulösen. Als letztes werden die Unterschiede, durch Anwendung des

Change-Log, aufgelöst.

Die Übernahme der Änderungen erfolgt mit Hilfe einer grafischen Oberfläche. In dieser kön-

nen die ermittelten Unterschiede schrittweise in das neue Modell integriert werden. Eine

automatische Integration erfolgt nicht.

In der Arbeit von Gerth werden als zusätzliches Hilfsmittel „Fixpunkte“ verwendet. Diese

Fixpunkte dürfen nicht von einer Änderung im Change-Log betroffen sein und dienen zur

Positionierung der anderen Aktivitäten. Das Konzept der Fixpunkte wird aufgenommen und

dem Kontext der vorliegenden Arbeit angepasst. In der vorliegenden Arbeit dürfen diese

Punkte von Änderungen betroffen sein und dienen zum relativen positionieren der Aktivitäten.

Zudem ist keine Generierung eines Change-Log erforderlich.

Aus dieser Arbeit gingen weitere Arbeiten hervor. So wird beispielsweise die Rekonstruktion

des Change-Log in der folgenden Arbeit näher beschrieben.

33

3. Verwandte Arbeiten

Detecting and Resolving Process Model Differences in the Absence of a Change Log
In der Arbeit von Küster et al. [Küs+08] wird das Verfahren aus [Ger07] aufgegriffen. Es wird

gezeigt, wie die Unterschiede der Modelle erkannt und der Change-Log durch Berechnen der

notwendigen Änderungsoperationen wiederhergestellt werden kann. Der berechnete Change-

Log kann schließlich innerhalb des IBM WebSphere Business Modeler
2
verwendet werden, um

die Änderungen von Hand durchzuführen.

Das Konzept der Correspondence [PB03] und SESE Fragmente wird, für Business Modelle,

eingeführt. In der vorliegenden Arbeit findet das Prinzip der Correspondence auch seine An-

wendung.

Eine weitere Arbeit von Gerth et al. beschäftigt sich mit der konzeptionellen Durchführung

von Änderungen an Prozessmodellen. Diese Erkenntnisse sind in der folgenden Arbeit nieder-

geschrieben.

Towards Rich Change Management for Business Process Models Wie konzeptionell

zwei oder mehrere Prozessmodelle vereinigt werden können, ist in der Arbeit [GL12] beschrie-

ben. Dazu wird ein Framework für Change-Management vorgestellt. Das Framework erlaubt

es Modelle unterschiedlicher Modellierungssprachen zu verarbeiten und darüber hinaus die

Semantik dieser beim Vergleich zu berücksichtigen.

Die Umsetzung dieser Arbeit orientiert sich direkt an dem vorgeschlagene Framework. Das

Framework und die notwendige Adaption an den Kontext dieser Arbeit ist in Abschnitt 4.2

beschrieben.

In der Arbeit von Pottinger und Bernstein [PB03] wird das generische Verschmelzen zweier

Modelle, wie Datenbank Schemata, UML Modelle oder Ontologien untersucht. Das vorge-

stellte Konzept liefert eine „duplikatsfreie“ Vereinigung der Modelle. Das Vorgehen ist für

Prozessmodelle ungeeignet und richtet sich primär an Modelle wie Klassendiagramme.

Für ein weitergehendes Verständnis sind außerdem Teilbereiche aus den Themengebieten des

Data Engineerings und des Software Engineerings hilfreich. Im Folgenden wird der Zusam-

menhang dieser Gebiete erläutert.

2
http://www.ibm.com/software/products/en/business-process-manager-family

34

3.2. Data Engineering

3.2. Data Engineering

Modelle werden im Laufe der Bearbeitung selten von einer Person alleine modelliert. Das ist ei-

ner von vielen Gründen, warum für Modelle keine einheitliche Bezeichnungen der Aktivitäten

verwendet werden. So könnten Aktivitäten aus verschiedenen Modellen mit der Beschrif-

tung „erhitzen“ und „aufwärmen“ vorliegen. Liegt dann für die Aktivitäten kein eindeutiger

Identifikationsschlüssel vor, ist es schwierig diese Zugehörigkeit zu erkennen.

Ein Ausschnitt des Data Engineerings beschäftigt sich mit dem Finden von semantisch iden-

tischen Entitäten. Dies ist wiederum ein Teilbereich aus dem Gebiet des Schema Alignment.
Dieses Konzept lässt sich für das Finden von semantisch identischen Aktivitäten in Workflow

Modellen übertragen. Die Methoden des Data Engineering sind hilfreich um Aktivitäten zu

identifizieren, die unterschiedlich beschriftet aber logisch identisch sind, um sie weiter zu

verarbeiten.

Aligning Business Process Models In der Veröffentlichung von Dijkam et al. [Dij+09]

werden zwei Vorschläge mit mehreren Varianten für das Zuordnen ähnlicher Elemente in

Prozessmodellen vorgestellt und evaluiert. Der erste Versuch beinhaltet einen Vergleich der

Elemente auf lexikalischer Basis. Dazu werden die Beschriftungen der Elemente herangezogen

und wortweise verglichen.

Weitere Versuche betrachten die Struktur der Prozesse. Dazu wird das Prozessmodell als Graph

interpretiert. Hier wird zusätzlich zum Vergleich der Beschriftungen die eingehenden und

ausgehenden Kanten herangezogen. Abschließendwird festgestellt, dass von allen vorgestellten

Varianten der strukturelle Vergleich, mittels einem Greedy-Algorithmus, die höchste Präzision

aufweist.

Die Arbeit von [Dij+09] zeigt, dass ein simples Vergleichen, der Beschriftungen in Verbin-

dung der Graph-Struktur, meistens die besten Ergebnisse erzielt und legitimiert damit diese

Vorgehensweise.

Eine weitere interessante Arbeit stammt von La Rosa et al. [LR+10]. In dieser werden Prozesse,

welche als EPC vorliegen, als annotierte Graphen aufgefasst. Bevor die Graphen verschmolzen

werden, müssen zusammengehörige Knoten und Kanten gefunden werden. Die Knoten und

Kanten des Graphen werden mit einer Matching Score bewertet, welche ausdrückt wie ähnlich
sich diese sind.

Die Aktivitäten der verwendeten Modelle in dieser Arbeit haben alle eine Identifikationsnum-

mer, weshalb eine eindeutige Zuordnung zwischen mehreren Modellen einfacher möglich ist,

und nicht auf die Methoden des Data Engineerings zurückgegriffen werden muss. Jedoch bieten

diese Arbeiten einen Einstiegspunkt, falls bei den Elementen keine Identifikationsnummer

verfügbar sein sollte.

35

3. Verwandte Arbeiten

3.3. Software Engineering

Formelle Workflow Beschreibungen liegen in der Form von textuellen Dokumenten vor. Das

Problem, Unterschiede und Gemeinsamkeiten in Dokumenten zu finden, besteht auch im Soft-

ware Engineering. Es ist für Programmemit Versionsverwaltung von fundamentaler Bedeutung

und legt den Grundstein für einMerge zweier Versionen. Es gibt bereits etablierte Algorithmen,

wie beispielsweise den Three-way Merge, um Text-Dokumente zu verschmelzen.

Using Versioned Tree Data Structure, Change Detection and Node Identity for Three-
Way XML Merging Thao undMunson [TM10] greifen die Methode des Three-waymerges auf
und präsentieren ein Konzept, um damit XML formatierte Dateien zu vereinen. Der Algorithmus

verwendet dabei den herkömmlichen Three-way Merge. Der Three-way Merge wurde so

erweitert, dass die XML-Dokumente als Baum verarbeitet werden. Die zu vereinigenden Knoten

werden über eine Longest Common Subsequence (LCS) bestimmt. Für den vorgeschlagenen

Ansatz sind eindeutige Identifikatoren für die Knoten notwendig, damit dieser angewendet

werden kann.

In der vorliegenden Arbeit wird die Repräsentation der XML-Dokumente als Graph übernom-

men. Jedoch erfolgt die Verarbeitung der XML-Dokumente in [TM10] ereignisbasiert, mittels

SAX (Simple API for XML) und nicht baumbasiert (DOM).

Die Arbeit von Alanen und Porres [AP03] präsentiert Algorithmen, für die Berechnung von

Unterschieden und Vereinigungen, auf der Basis von Meta Object Facility (MOF) Modellen

(entspricht einem Meta-Meta-Modell). Das Eclipse Modeling Framework Ecore-Metamodell

basiert auf einer Teilmenge des MOF-Standards. Die Algorithmen behandelt jedoch keine

Unterschiede, welche Abhängigkeiten oder verschobene Elemente umfassen.

Dies waren nur einige wenige Veröffentlichungen aus dem GebietModell-Merging. Das Problem
der Modell-Fusionierung ist allgegenwärtig und tritt in den unterschiedlichsten Themenberei-

chen auf. Dies hebt die Bedeutung dieser Herausforderung weiter hervor. Es ist somit nicht

verwunderlich, dass bereits eine Vielzahl divergenter und kongruenter Vorschläge inklusiver

Varianten existieren.

Aus diesem Grund wird in der Arbeit von Brunet et al. [Bru+06] ein Framework vorgeschlagen,

mit der vorhandeneMethoden verglichen werden sollen. Dazu werden algebraische Operatoren

für den merge, sowie match, diff, split und slice eingeführt. Mit Hilfe dieser Operationen sollen

die Verfahren kategorisiert und verglichen werden können.

36

4. Anforderungsanalyse

In dem vorherigen Kapitel wurden verwandte Arbeiten bezüglich des Themas Modell-Fusion

vorgestellt. Auf dieser Basis wird im folgenden Kapitel weiter aufgebaut und Vorarbeit für das

Konzept geleistet. Die Anforderungsanalyse beginnt auf einer hohen Abstraktionsebene und

wird daraus konkretisiert.

Nachfolgend wird in Abschnitt 4.1 präsentiert, was unter Aktualisierung und Änderungsweiter-

gabe in dieser Arbeit verstanden wird. Danach werden in Abschnitt 4.2 die allgemeinen Schritte

vorgestellt, welche für das Erreichen des Ziels erforderlich sind. Die allgemeine Vorgehenswei-

se wird an die Rahmenbedingung dieser Arbeit angepasst. Daraufhin werden in Abschnitt 4.3

verschiedene Änderungsmuster bei der Modelländerung betrachtet. Abschließend werden in

Abschnitt 4.4 die Auswirkungen auf die BPEL4Chor Artefakte untersucht.

4.1. Aktualisierung und Änderungsweitergabe

Die Begriffe Aktualisierung und Änderungsweitergabe werden im Kontext der Modellie-

rung mit Workflow-Choreographien verwendet. Sie beziehen sich auf die Veränderung

des Choreographie-Modells und die damit verbundene Weitergabe der Änderungen an die

Choreographie-Teilnehmer. Die Choreographie-Teilnehmer müssen die weitergegebenen Än-

derungen in ihre Orchestrierung einpflegen. Dies passiert beides in der Phase der Modellierung.

Um dies zu verdeutlichen, wird der Ablauf der Modellierung im folgenden schematisch darge-

stellt.

Ein Wissenschaftler verfolgt eine Idee und möchte seine Idee unter zur Hilfenahme einer

Simulation verifizieren. Den Versuchsaufbau erstellt er am Computer. In diesem Fall möchte

er den Versuchsaufbau als Scientific-Workflow modellieren, um diesen direkt nach der Mo-

dellierung auszuführen und die Ergebnisse zu untersuchen. Innerhalb des Versuchsaufbaus

werden verschiedene existierende Simulationen verwendet und zu einer neuen kombiniert.

Um das Zusammenspiel der Simulationen zu beschreiben, wird der Workflow in Form einer

Choreographie modelliert. Aus dieser beschriebenen Choreographie wird wiederum für jede

Simulation ein separater Workflow generiert. In diesen generierten Workflows wird das indivi-

duelle Verhalten ergänzt. Für jede in der Choreographie beteiligte Simulation existiert nun

eine Orchestrierung, welche die konkreten Anweisungen enthält.

37

4. Anforderungsanalyse

Abbildung 4.1.: Aktualisierung der Choreographie und Änderungsweitergabe an die betroffe-

nen Orchestrierungen

Auf Grund des systematischen ausprobierens von unterschiedlichen Versuchsaufbauten ist es

erforderlich, dass Versuchsmodell, und damit die Choreographie, zu verändern. Eine Verände-

rung des Zusammenspiels macht es wiederum erforderlich die konkreten Orchestrierungen

entsprechend anzupassen. In Abbildung 4.1 ist der Zusammenhang zwischen Choreographie

und Orchestrierung dargestellt. Der Versuchsaufbau wird aktualisiert und Änderungen müssen

an die betroffenen Simulationen weitergeben werden.

Die betroffenen Choreographie-Teilnehmer müssen die vorgenommenen Änderungen um-

setzen. Nur so ist weiterhin eine Kommunikation und somit eine Zusammenarbeit unter

den Teilnehmern möglich. Im Zuge dessen erhält jeder Teilnehmer die neue Choreographie

Beschreibung, um den alten Workflow anzupassen.

Mit dem Erhalt der neuen Choreographie werden die alten Beschreibungen als obsolet betrach-

tet. Dennoch werden alte Versionen nicht einfach gelöscht, sondern archiviert. So sind sie

für den Prüfzweck (Audit) verfügbar und können darüber hinaus als Nachschlagewerk oder

Dokumentation verwendet werden.

Eine neue Version entsteht für gewöhnlich aus einer Ableitung einer Version oder aus ei-

ner Kombination mehrerer Versionen. Die Versionen teilen sich deshalb mindestens eine

Gemeinsamkeit. Die Gemeinsamkeiten werden aus den ursprünglichen Versionen vererbt.

Die Weitergabe der Änderungen erfolgt mit Hilfe der Teilnehmer-Verhaltens-Beschreibung

(Siehe 2.4 PBD). Die Änderungshistorien (Change-Log) verbleiben beim Partner, der die Än-

derungen vorgenommen hat und werden meist nicht weitergegeben. Es kann nur auf eigene

oder veröffentlichte Change-Log zurückgegriffen werden. Jeder Teilnehmer erhält aus der

Choreographie nur seine PBD.

38

4.1. Aktualisierung und Änderungsweitergabe

Abbildung 4.2.: Evolution einer Version durch Ableitung

Die neue Version der Choreographie wird nur an Teilnehmer weitergegeben, welche von einer

Änderung betroffen sind, um diese vor unnötigen Nachrichten zu bewahren. Diese können die

existierende Orchestrierung weiterhin verwenden.

Die Ereignisse und der Dokumentenfluss sind in Abbildung 4.2 zu sehen. Die Abbildung stellt

den Ablauf aus der Sicht eines einzelnen Teilnehmers dar. (a) Zunächst existiert eine initiale

Beschreibung der Choreographie, woraus für jeden Teilnehmer seine PBD generiert wird. (b)

Die PBD wird mit weiteren Verhalten zu einer ausführbaren Orchestrierung verfeinert. Die

Verfeinerungen können in einem Change-Log vermerkt werden. (c) Eine neue Version der

Choreographie wird erstellt. (d) Die Änderungen werden mitgeteilt. Bei der Mitteilung kann

ein Change-Log mit zusätzlichen Informationen enthalten sein. (e) Der Teilnehmer besitzt eine

alte Version Va mit Verfeinerung und eine neue Version Vb ohne Verfeinerung. (e) Aus den

beiden Versionen wird die neue Version Vn generiert, welche die Neuerungen aus Vb, sowie

die Verfeinerungen aus Va enthält. Ein vorhandener Change-Log kann für eine Verbesserung

des Ergebnisses herangezogen werden, sofern dieser vorliegt.

Das Vorgehen, wie zwei Modelle fusioniert werden können, wird im nächsten Abschnitt

vorgestellt.

39

4. Anforderungsanalyse

4.2. Fusion von Modellen

Das Fusionieren von Modellen bringt verschiedene Herausforderungen mit sich. In der Arbeit

von Gerth und Luckey [GL12](siehe Verwandte Arbeiten) wird eine Ablaufstruktur für das

Modell Änderungsmanagement vorgestellt, welches die wichtigsten Schritte zum fusionieren

von Modellen festhält. Diese Struktur wird aufgegriffen und das weitere Vorgehen an Hand

dieser organisiert.

Die Struktur besteht aus sieben Komponenten, welche in Abbildung 4.3 dargestellt sind. Aus-

gangspunkt stellen die Eingabe-Modelle dar, welche zu einem neuen Modell fusioniert werden

sollen. Die erste Komponente beschreibt die Notwendigkeit die Modelle in ein einheitliches

abstraktes Zwischenformat zu konvertieren. Dadurch können Modelle mit unterschiedlichen

Sprachen der Modellierung weiterverarbeitet werden. Im nächsten Schritt werden die Modelle

abgeglichen. Das Abgleichen der Modelle bedeutet Elemente zu erkennen und zu finden, die zu-

sammengehören. Daraufhin lassen sich die Unterschiede zwischen den Modellen herausfinden.

Es kann sein, dass Elemente Abhängigkeiten untereinander aufweisen. Abhängigkeiten können

beispielsweise in der Reihenfolge der Elemente oder durch die Existenz anderer Elemente

auftreten. Die vorhandenen Abhängigkeiten müssen bedacht werden. Treten Widersprüche

innerhalb der Modelle auf, so müssen diese soweit möglich aufgelöst werden. Dies kann be-

sonders dann der Fall sein, wenn mehr als zwei Modelle miteinander fusioniert werden sollen.

Wurden all diese Schritte durchlaufen, findet zuletzt der Schritt des Fusionierens statt. Hierbei

werden nach vordefinierten Regeln die Modelle miteinander verbunden und zurück auf ein

konkretes Datenformat gebracht.

Im Folgenden werden die notwendigen Schritte im Kontext dieser Arbeit betrachtet.

Zwischenformat Die vorliegenden Choreographien sind mit Hilfe der BPEL4Chor Artefakte

beschrieben. Diese werden wiederum in einem XML konformen Format bereitgestellt. Dennoch

wird nicht direkt mit den XML-Daten gearbeitet, sondern es werden die Dateien eingelesen

und in eine abstrahierte Graph-Repräsentation gebracht. Dies erlaubt eine leichtere Weiter-

verarbeitung und Formalisierung. Zudem kann auf bewährte Graph-basierte Algorithmen

zurückgegriffen werden. Die Repräsentation als Graph erlaubt es außerdem, zwei Dateien mit

verschiedenemXML-Standards zu vergleichen. Das Konzept lässt sich daher für alle BPEL4Chor

Artefakte anwenden.

Zudem wird die Struktur der zu integrierenden Modelle durch das Abstrahieren vereinfacht.

Einzelne Elemente des Modells werden zu Knoten und der Kontrollfluss zu Kanten degradiert.

Dies erlaubt komplexe Strukturen wie beispielsweise Schleifen einfacher zu behandeln. Eine

Schleife umschließt mehrere Elemente die öfters ausgeführt werden sollen. Im ursprünglichen

Modell stellt dies einen Zyklus dar, der schwer zu verarbeiten ist. In der Repräsentation als

Graph ist eine Schleife ein Knoten, an dessen Ast wiederum die umschlossenen Elemente

hängen. Es ist in erster Linie nicht relevant, wie oft und ob überhaupt die Schleife durchlaufen

wird. Deshalb führt eine Schleife nur eine weitere Ebene im Graph ein, ohne einen Zyklus

40

4.2. Fusion von Modellen

Abbildung 4.3.: Ablaufstruktur für das Modell Änderungsmanagement nach [GL12]

zu bilden. Zusätzliche Informationen werden nicht verworfen, sondern an den entsprechend

Knoten oder den Kanten angehängt. Durch diese einfache Konvertierung ist es möglich, den

Graph wieder in das Ursprungsformat zurückzuführen.

Das bedeutet, dass der Aufbau und das ursprüngliche Format der Modelle für die Verarbeitung

nicht relevant ist, sofern sich diese in einen Graph und zurück konvertieren lassen.

Definition 4.2.1 (Modell)
Ein Modell M ist ein gerichteter endlicher Graph ohne Zyklen.

Einem Knoten x ∈ V aus dem Modell können Attribute zugewiesen sein. Die Werte werden

via den Namen des Attributs und den Knoten referenziert. Hierfür werden die Funktionen

Hat-Attribut : Knoten × Name 7→ Wahrheitswert und Attribut : Knoten × Name 7→
Wert verwendet. Der Wahrheitswert liefert ein ⊤, falls das Attribut definiert ist, ansonsten
wird ein ⊥ zurückgegeben. Der Name des Attributs kann auch per Indexschreibweise angeben

werden AttributName.

Jeder Knoten erhält als Wert alle zusätzlichen Informationen, die mit ihm in Verbindung stehen,

zugewiesen. Dazu zählen beispielsweise vorhandene XML-Attribute.

41

4. Anforderungsanalyse

Identifikation Für die Modelle wird angenommen, dass diese als gerichteter endlicher Graph

ohne Zyklen vorliegen. Das reduziert die Identifikation von Elementen auf das Identifizieren

von Knoten.

Die vorliegenden Modelle verwenden für einen Großteil der Elemente eine eindeutige Iden-

tifikationsnummer (ID). Über diese ID lässt sich ein Element und folglich auch der Knoten

eindeutig identifizieren. Für die ID kann die Kurzschreibweise ID(x) = AttributID(x) ver-
wendet werden.

Besitzt ein Knoten keine ID, muss die Identifikation anders durchgeführt werden. Dies kann

beispielsweise über den Namen oder der relativen Position des Knoten erfolgen. Für die

vorliegenden Modelle ist dieses Vorgehen ausreichend. Komplizierte neue Heuristiken (Vgl.

Kapitel 3.2) werden nicht benötigt.

Abgleichen Um Modelle zu einem neuen Modell fusionieren zu können, muss zunächst

die Beziehung zwischen den Knoten festgestellt werden. Mit Hilfe des Zwischenformats

reduziert sich das Feststellen der Beziehungen auf den Vergleich der Graphen. Es reicht aus,

für jeden Knoten die An- oder Abwesenheit im anderen Modell zu analysieren. Für diese Art

der Beziehung wird der Begriff der Zuordnung[PB03] verwendet.

Eine Zuordnung (vgl. [Ger07]) ist eine Abbildung von gleichwertigen Knoten oder Kanten

zwischen Modellen. Es herrscht eine Gleichwertigkeit zwischen zwei Knoten, wenn zum

Beispiel die gleiche Funktionalität von diesen Knoten bereitgestellt wird. Die Zuordnung

lässt sich analog für Kanten durchführen. Je nachdem, ob eine Komponente des Graphen ein

Gegenstück in einem anderen Modell hat, wird der Typ der Zuordnung unterschieden.

Definition 4.2.2 (Gleichwertige Knoten)
Zwei Knoten x ∈ Va und y ∈ Vb sind gleich, genau dann wenn diese identisch oder übereinstim-
mend sind.

• Identisch: Die Knoten haben beide eine ID, welche zudem identisch ist.Hat-AttributID(x) =
⊤ und Hat-AttributID(y) = ⊤ mit ID(x) = ID(y).

• Übereinstimmend: Die Knoten haben beide keine ID und die Namen der Knoten stim-
men überein. Hat-AttributID(x) = ⊥ und Hat-AttributID(y) = ⊥ mit Name(x) =
Name(y).

Für diese Arbeit sind drei Zuordnungstypen relevant. Entweder ein Knoten besitzt genau einen

Partnerknoten im anderen Modell oder nicht. Beim Fehlen eines Partnerknotens wird festge-

halten, in welchem Modell der Knoten vorhanden ist. Deshalb existieren für die Abwesenheit

eins Knoten zwei Zuordnungstypen. Es ergibt sich die adaptierte Definition der Zuordnung

nach [Ger07].

42

4.2. Fusion von Modellen

Definition 4.2.3 (Zuordnung, nach [Ger07])
Sind Ma = (Va, Ea) und Mb = (Vb, Eb) ein Modell und x ∈ Va und y ∈ Vb Knoten. Dann werden
die folgenden Typen unterschieden:

• 1-0 Zuordnung: Ein Knoten x hat eine 1-0 Zuordnung, genau dann wenn ∀y ∈ Vb : x ̸= y.
Geschrieben als C1−0(x, y) = ⊤

• 0-1 Zuordnung: Ein Knoten y hat eine 0-1 Zuordnung, genau dann wenn ∀x ∈ Va : y ̸= x.
Geschrieben als C0−1(x, y) = ⊤

• 1-1 Zuordnung: Ein Knoten x hat eine 1-1 Zuordnung zu einem Knoten y, genau dann
wenn x = y. Geschrieben als C1−1(x, y) = ⊤

Die Beziehungenwerden in der Regel zwischen zweiModellen festgelegt. Für die 1-1 Zuordnung

gilt eine symmetrische C1−1(x, y) = ⊤ ⇔ C1−1(y, x) = ⊤ und transitive C1−1(x, y) =
⊤ ∧ C1−1(y, z) = ⊤ ⇒ C1−1(x, z) = ⊤ Beziehung.

Mehrwertige Beziehungen wie 1-n, n-1 oder n-m werden nicht betrachtet. Eine 1-n oder n-1
Beziehung würde bedeuten, dass einem Knoten im anderen Graph mehrere gleichwertige

Knoten zugeordnet werden. Dies kann aufgrund der ID nicht passieren. Eine ID wird keinen

zwei XML-Elementen gleichzeitig zugeteilt. Deshalb kann auch keine n-m Beziehung vorliegen.

Dies würde sonst bedeuten, dass in beiden Modellen mehrere gleichwertige Knoten vertreten

sind.

Aus den Zuordnungstypen kann direkt festgestellt werden, welche Art von Veränderungen

zwischen zwei Modellen vorgenommen worden sind. Unterschiede werden hierbei von der

1-0 und 0-1 Zuordnung ausgedrückt. Diese signalisieren das Entfernen oder Hinzufügen von

Komponenten. Gemeinsamkeiten lassen sich durch 1-1 Zuordnungen erkennen. In diesem Fall

ist die Komponente in beiden Modellen vertreten.

Abhängigkeiten Manche Änderungen setzen sich aus mehreren kleinen Teilmodifikationen

zusammen, die nur gemeinsam einen Sinn ergeben und nur gemeinsam übernommen werden

dürfen. Das heißt, alle zusammengehörende Teile einer Änderung werden gruppiert und nur

ganz oder gar nicht umgesetzt.

Eine semantische Abhängigkeit besteht in der Anordnung der Aktivitäten, die Wiederrum

die Reihenfolge der Abarbeitung festlegt. Wird zum Beispiel eine Aktivität ersetzt, reicht es

nicht aus, die alte Aktivität zu entfernen. Es muss auch die neue Aktivität eingefügt werden.

Andernfalls ist die Intention der Änderung missachtet worden.

Im Rahmen dieser Arbeit sollen alle Änderungen automatisiert und auf einmal übernommen

werden. Eine Schrittweise Integration einzelner Änderungen ist nicht vorgesehen. Dies verhin-

dert zugleich semantisch inkonsistente Zustände, welche durch unvollständige Änderungen

hervorgebracht werden. Jedoch müssen die Vorgänger- und Nachfolger-Beziehungen der Akti-

vitäten eingehalten werden. Es ist davon auszugehen, dass sich alle eingefügten Verfeinerungen

auf eine vorherige Kommunikationsaktivität beziehen.

43

4. Anforderungsanalyse

Alternativen Bei der Transformation zurück in die Artefakte muss der Graph in das XML-

Format gebracht werden. Dabei können keine alternativen Varianten entstehen. Der Inhalt

ist eindeutig und das Format wohlstrukturiert. Es ist demnach nicht erforderlich zwischen

mehreren Repräsentationsarten zu wählen. Dieser Schritt kann daher übersprungen werden.

Konfliktmanagement Beide Modelle stehen zwar in Relation, werden jedoch unabhängig

voneinander verändert. Dies kann dazu führen, dass gleichwertige Knoten unterschiedliche

Eigenschaften aufweisen. Hier muss ausgewählt werden, welche Attribute für das neue Modell

übernommen und welche zugunsten des Anderen verworfen werden.

Ein Konflikt tritt ein, falls in beiden Modellen ein gleichwertiger Knoten existiert und dieser

für das gleiche Attribut unterschiedliche Werte aufweist.

Definition 4.2.4 (Attribut Widerspruch)
Sind Ma = (Va, Ea) und Mb = (Vb, Eb) ein Modell und x ∈ Va und y ∈ Vb Knoten. Dann besteht
ein Konflikt, wenn sich Attribute widersprechen:

• AttributWiderspruch: Es gilt C1−1(x, y) mit Hat-Attributz(x) und Hat-Attributz(y)
wobei Attributz(x) ̸= Attributz(y)

Der Konflikt sollte automatisch gelöst werden, vorausgesetzt es gelingt eine Herleitung der

Lösung aus beiden Modellen oder letztendlich über einen Change-Log. Kann keine Lösung

gefunden werden, sollte der Benutzer um eine Entscheidung gebeten werden. Auch dann,

wenn es mehrere gleichwertige Lösungen gibt und keine automatische Entscheidung getroffen

werden kann. Möchte oder kann der Benutzer jedoch keine Entscheidung treffen, muss eine

automatische Lösung nach bestem Bestreben gefunden werden, so dass diese im Zweifel später

modifiziert werden kann.

Modellfusion Die beiden Modelle müssen im letzten Schritt kombiniert werden. Dies ge-

schieht mit den gewonnen Informationen aus den vorherigen Schritten. Aus den Informationen

werden Regeln hergeleitet, die eine deterministische Fusion gewährleisten.

Definition 4.2.5 (Regel)
Eine Regel ist eine Abbildung (Va ∪ Vb, Ea ∪ Eb) 7→ (Vn, En).

Eine Regel kombiniert zwei Graphen zu einem neuen Graphen.

Definition 4.2.6 (Modellfusion)
Sind Ma und Mb Modelle, dann beschreibt die Funktion Fusion : Modell×Modell×Regeln 7→
Modell, wie aus den Modellen Ma und Mb und eine Menge von Regeln ein neues Modell entsteht.

Das Fusionieren der Modelle findet mit Hilfe von Graph-Operationen statt. Die Operationen

werden im Abschnitt ?? genauer betrachtet. Am Ende wird das fusionierte Modell wieder in

das XML-Format gebracht.

44

4.3. Änderungsmuster

(a) hinzufügen (b) entfernen

Abbildung 4.4.: Knoten hinzufügen und entfernen

4.3. Änderungsmuster

Als Zwischenformat für die Modelle wurde im vorherigen Abschnitt eine Graph-Repräsentation

gewählt. Alle Modifikationen am Modell erfordern daher die Manipulation eines Graphen.

Das typische Vorgehen bei Änderungen von Modellen in Graph-Repräsentation wurde von

Weber, Reichert und Rinderle-Ma[WRRM08] (siehe Verwandte Arbeiten) analysiert und nie-

dergeschrieben. Es werden aus den so genannten Adaptation-Patterns fünf benötigt, um die

Änderungen umsetzen zu können. Diese fünf Muster beschreiben, wie Knoten am Graph

hinzugefügt, entfernt, verschoben, vertauscht und ersetzt werden können. Diese Operationen

werden im Folgenden betrachtet.

Zur Verdeutlichung dienen die Abbildungen 4.4, 4.5, welche die Strukturänderungen eines

Graphen zeigen. Auf der linken Seite ist jeweils die vorherige Struktur zu sehen. Auf der

rechten Seite ist die resultierende Struktur abgebildet. Die modifizierten Knoten sind mit einem

gestricheltem Rand ausgezeichnet. Vertikale Kanten stehen für Knoten in der selben Ebene.

Horizontale Kanten signalisieren ein Absteigen in die nächst tiefere Ebene.

Das Hinzufügen eines Elements ist gleichbedeutend mit dem Hinzufügen eines Knoten zum

Graphen. In Abbildung 4.4a wird das Einfügen zweier unterschiedlicher Elemente dargestellt.

Ein Element soll zwischen zwei bestehenden Elementen eingefügt werden. Einweiteres Element

soll ein bestehendes Element ergänzen. Der erste Knoten wird mit Hilfe der Nachfolger-

Beziehung und der zweite Knoten mit Kind-Beziehung eingefügt. Auf der linken Seite besteht

der Graph zunächst aus zwei Knoten. Der Knoten mit der Nachfolger-Beziehung wird zwischen

die bestehenden Knoten eingefügt. Der zweite Knoten ergänzt den letzten Knoten. Deshalb

wird dieser eine Ebene tiefer an den letzten Knoten angehängt.

Das Entfernen eines Elements entspricht dem Entfernen eines Knoten aus dem Graphen. Wird

ein Knoten entfernt, werden an diesem Knoten angeheftete Elemente nicht mehr benötigt.

Darum müssen alle an den Knoten angehefteten Elemente mit entfernt werden. In Abbildung

4.4b wird ein Knoten der Ebene i entfernt. Mit ihm müssen alle verbundenen Knoten der

nächsten Ebene i + 1 und größer entfernt werden. Das führt zum kompletten Abschneiden

eines Astes am Graphen. Im Beispiel wird somit der angeheftete Knoten mit entfernt und

45

4. Anforderungsanalyse

(a) ersetzen (b) verschieben

Abbildung 4.5.: Knoten ersetzen und verschieben

es bleibt ein Graph mit zwei Knoten übrig. Die zurückbleibenden Knoten sind jeweils die

Vorgänger und Nachfolger des entfernten Knotens.

Für das Ersetzen eines Elements muss ein Knoten im Graph ersetzt werden. Dies lässt sich über

die zwei vorherigen Muster Entfernen und Hinzufügen realisieren. Hierzu wird zunächst der zu

ersetzende Knoten entfernt und der neue Knoten an die frei gewordene Position eingefügt.

Ein verändertes Attribut (hinzugefügt, entfernt oder ersetzt) spiegelt sich über eine Ersetzung

des Knoten im Graphen wieder. Hierzu wird der betroffene Knoten mit einer modifizierten

Kopie, welche die veränderten Attribute enthält, ersetzt. In Abbildung 4.5a ist die Ersetzung

dargestellt, die Attribute der Knoten sind dabei nicht sichtbar.

Wird ein Element verschoben, muss auch der Knoten im Graphen neu positioniert werden. In

Abbildung 4.5b soll der markierte Knoten um eine Stelle verschoben werden. Es ist zu beachten,

dass alle verbundenen Knoten der nächsten Ebenen angeheftet bleiben müssen. Der Knoten,

welcher verschoben werden soll, wird mit samt seinen angehefteten Knoten ausgewählt und

an die neue Position mittels des einfügen Musters kopiert. Danach werden die Knoten an der

alten Position entfernt.

Das Tauschen von Elementen bedeutet, dass Knoten im Graphen ihre Position austauschen.

Dies wird durch zweimaliges anwenden des verschieben Musters erreicht.

Unabhängig von den oben genannten Änderungsmustern wird zusätzlich die Strategie der

Gruppierung eingeführt. Bei der Gruppierung wird ein Teilgraph aus dem Graphen extrahiert.

Diese Gruppierung von Knoten erlaubt es einfacher eine Menge von Knoten auszuwählen. Die

ausgewählte Menge kann dann eingefügt, entfernt, verschoben oder als Vorlage gespeichert

und wiederverwendet werden (vgl. [Sch+11]). Eine Gruppierung lässt sich der Kategorie Frag-

ment und Zweig zuordnen (Abbildung 4.6). Ein Fragment ist eine Gruppierung aus mehreren

zusammenhängenden Knoten (vgl. [Sch+11]). Das Fragment ist in Abbildung 4.6b als Rechteck

dargestellt.

Durch eine spezielle Gruppierung zu einem Zweig lassen sich alle verbundenen Knoten eines

Astes zusammenfassen. Ein Zweig besteht somit aus genau einem Knoten der Ebene i und
kann beliebig viele verbundene Knoten in den Ebenen größer i umfassen. Ein Zweig ist in

46

4.4. Artefakte

(a) Zweig (b) Fragment

Abbildung 4.6.: Gruppierungen von Knoten

Abbildung 4.6a dargestellt. Ein einzelner Zweig ist ein Fragment, jedoch ist ein Fragment nicht

zwangsläufig ein Zweig.

Die Auswirkungen der Änderungen des Modells auf den Graphen wurden betrachtet. Nachfol-

gend wird analysiert, welche Konsequenzen dies auf die BPEL4Chor Artefakte hat.

4.4. Artefakte

Der Graph ist nicht nur ein geeignetes Zwischenformat für die Manipulation, sondern dieser

abstrahiert auch die BPEL4Chor Artefakte mit den darunter liegenden Dateien. Jede Verände-

rung muss sich in den Dateien widerspiegeln, damit diese persistent gespeichert werden. In

diesem Zug muss der Graph zurück in das XML-Format übersetzt werden. Dieser Schritt wird

als Serialisieren bezeichnet.

Die BPEL4Chor Dateien haben unterschiedliche Eigenschaften bezüglich der Struktur des

Inhalts und deren Darstellungsform innerhalb der grafischen Oberfläche (siehe Kapitel 6). Für

die PBDs spielt die Struktur und Reihenfolge des Inhalts eine bedeutende Rolle. Durch sie wird

unmittelbar die Semantik des Inhalts mitbestimmt. Für die PGs hingegen ist die Reihenfolge

des Inhalts vernachlässigbar, lediglich die Struktur muss berücksichtigt werden.

Dies hat zur Folge, dass die Struktur des Graphen und die Reihenfolge der Knoten für die PBDs

exakt übernommen werden müssen. In Abbildung 4.7 ist die Übersetzung von Graph zu XML

schematisch dargestellt.

Jeder Knoten wird auf ein XML-Element abgebildet. Die Vorgänger und Nachfolger Bezie-

hungen werden jeweils für Knoten auf derselben Ebene übernommen. Im XML-Dokument

teilen die Elemente die gleiche Beziehung. Daraus resultiert, dass die Ebene eines Knoten der

direkten Verschachtelungstiefe des XML-Elementes entspricht. Die Ebene 0 korrespondiert

folglich mit der Tiefe des XML Wurzel-Elements. Knoten aus der nächsten Ebene werden eine

Verschachtelungstiefe weiter, unter den zugehörigen Elternknoten, einsortiert. Hier gilt auch

wieder die Vorgänger- und Nachfolger-Beziehung.

47

4. Anforderungsanalyse

Abbildung 4.7.: Graph zu XML Übersetzung

Abbildung 4.8.: Graph mit Ebenen

48

5. Konzept

In dem vorherigen Kapitel wurden die Anforderungen analysiert. Ferner wurde das allgemeine

Vorgehen besprochen und in den Kontext dieser Arbeit einsortiert. Auf dieser Basis wird in

diesem Kapitel weiter aufgebaut und ein Konzept zur Realisierung vorgeschlagen.

Es werden zunächst in Abschnitt 5.1 die Anforderungen an die Fusion der Modelle genannt

und die getroffenen Annahmen in Abschnitt 5.2 besprochen. Danach werden die verwendeten

Regeln für die Modell-Fusion in Abschnitt 5.3 vorgestellt. Daraufhin wird in Abschnitt 5.4 ein

Beispiel geliefert, wie Modelle an Hand der Regeln fusioniert werden. Abschließend wird der

entworfene Algorithmus vorgestellt.

5.1. Anforderungen

Das Fusionieren von Modellen findet immer unter verschiedensten Bedingungen statt. Die be-

stehenden Rahmenbedingungen werden vom Anwendungsfall bestimmt. Nachfolgend werden

die Anforderungen besprochen, die an das Konzept gestellt werden und für den Anwendungs-

fall zugeschnitten sind. Die Anforderungen finden sich später in definierten Regeln wieder, die

vom Algorithmus verwendet werden.

Änderungsübernahme Alle durchgeführten Änderungen am Choreographie-Modell müs-

sen im fusionierten Modell des Teilnehmers enthalten sein. Bestehende unveränderte Struktu-

ren und Aktivitäten aus der Choreographie sind ebenso zu übernehmen.

Schnittstellen-Charakter Das Choreographie-Modell wird als Schnittstelle angesehen, die

eine erfolgreiche Kommunikation der Teilnehmer sicherstellt. Die Reihenfolge von Aktivitäten,

welche aus der Choreographie-Beschreibung stammen, darf nicht verändert werden.

Ergänzungsübernahme Im fusionierten Modell müssen die Verfeinerungen des alten Mo-

dells enthalten sein. Das fusionierte Modell vereint die neue Choreographie mit den alten

Verfeinerungen.

49

5. Konzept

Syntaktisch korrekt Das Ergebnis der Fusion entspricht einem syntaktisch korrekten Mo-

dell. Das Modell ist wohlgeformt und lässt sich mit dem Prototyp verwenden.

Eigenständig Für ein erfolgreiches Fusionierenmüssen nur die zu verschmelzendenModelle

vorliegen. Dem Teilnehmer kann die neue Choreographie-Beschreibung übermittelt werden.

Diese reicht ihm aus um seine neue Orchestrierung zu erstellen.

Unabhängig Jede zusätzliche Information, welche nicht im Modell selbst enthalten ist, muss

als optional anzusehen sein. Die Verwendung dieser Information führt zu einer Verbesserung

des Resultates, ist aber nicht für eine erfolgreiche Fusion der Modelle erforderlich. Dies umfasst

beispielsweise die Hinzunahme einer Änderungshistorie.

Verlustfreies verschmelzen Die Modelle sollen verlustfrei verschmolzen werden. Verlust-

frei bedeutet, dass keine Information, welche zuvor in einem Modell vorhanden war, verloren

gehen darf. Das umfasst alle bekannten Eigenschaften die Elemente und Attribute betreffen.

Daraus folgt, dass jedes Elemente im fusionierten Modell enthalten ist. Sowie, dass jedes

zugehörige Attribut eines jeden Elements sich auch im fusionierten Modell wiederfindet.

Automatische Integration Der Algorithmus, zum Fusionieren der Modelle, soll wenig

Benutzerinteraktion erfordern. Soweit möglich werden Entscheidungen automatisch getroffen.

Dies soll eine nahtlose Integration in den bestehenden Ablauf gewährleisten.

Darüber hinaus werden die üblichen Anforderungen an die Algorithmen gestellt. Die Algo-

rithmen sollen nach endlicher Zeit terminieren und ein Ergebnis liefern. Des Weiteren soll

das Ergebnis deterministisch berechnet werden, so dass identische Eingaben immer dasselbe

Ergebnis liefert.

5.2. Annahmen

Im Folgenden werden die getroffenen Annahmen vorgestellt.

Schema Evolution Es werden Workflows betrachtet die auf Schema Ebene verändert wer-

den. Somit betrachtet das Konzept Modifikationen am Modell und nicht an abgeleiteten Instan-

zen.

50

5.3. Vergleichen und Verschmelzen

Träge Weitergabe Eine Änderung am Schema hat keinen Einfluss auf bereits laufende

Instanzen. Außerdem erfolgt keine Weitergabe der Änderungen an laufende Prozesse. Diese

werden nach Vorgabe des ursprünglichen Modells abgeschlossen. Die Änderungen treten nur

für nachfolgend gestartete Instanzen in Kraft.

Lokales Wissen Jeder Choreographie-Teilnehmer verfügt nur über lokales Wissen der

Aktivitäten und zusätzlicher Informationen, welche von den Partnern veröffentlicht wurden.

Ein Teilnehmer kennt damit nicht zwangsläufig die gesamte Choreographie, sondern nur die

Kommunikationsaktivitäten in denen er direkt beteiligt ist.

Ähnlichkeit Die neue Modellversion lässt sich aus der alten Version mit beliebig vielen

Änderungsschritten ableiten. Die Versionen haben danach noch mindestens eine Gemeinsam-

keit.

Aktivitäten Beziehung Ein Fragment von verfeinerten Aktivitäten hängt unmittelbar von

einem eindeutigen Referenzpunkt ab. Es wird angenommen, dass der Referenzpunkt ein

vorheriger Knoten ist, der in beiden Modellen existiert. Der Referenzpunkt könnte eine Kom-

munikationsaktivität der Choreographie sein.

Eine weitere Annahme ist, dass ein neues fusioniertes Modell immer aus zwei Modellen erstellt

wird. Außerdem wird angenommen, das ein Zugriff auf die alte Choreographie möglich ist.

5.3. Vergleichen und Verschmelzen

Es werden immer zwei Modelle als Eingabe verwendet. Durch die Annahme, dass eine neue

Version aus einer alten Version heraus entstanden ist, lässt sich eine Beziehung zwischen dem

alten und neuen Modell definieren, welche die Evolution der Version beschreibt.

Definition 5.3.1 (Evolution der Version)
Ein Modell M ′ ist eine neuere Version des Modells M , wenn M ′ aus Änderungen von M entstanden
ist und M ′ noch mindestens ein Knoten von M enthält.

• Änderungen: M ⇒∗

Änderungen
M ′

• Gemeinsamkeit: ∃ x ∈ VM ′ , y ∈ VM : C1−1(x, y) = ⊤

Der Operator
⇒

Änderung
beschreibt eine ausgeführte Änderung an dem Modell M , welche in

das geänderte Modell M ′
resultiert. Unter dem Operator befindet sich die Bezeichnung der

Änderung. Die Anwendung einzelner Änderungen können über diesen Operator dargestellt

werden. Eine Änderungssequenz, in der ein Knoten einen anderen ersetzen würde, lässt sich

wie folgt darstellen: M ⇒
delete(V1)M

′ ⇒
insert(V2)M

′′
. Um eine Sequenz abzukürzen wird ein Stern an

51

5. Konzept

Abbildung 5.1.: Fusionieren zweier Modelle mit Hilfe von Versions-Beziehungen

den Operator angefügt. Mit dem Operator lässt sich auch die Anwendung eines Change-Log,

welche eine Sequenz von einzelnen Änderungen umfasst, darstellen.

In der Abbildung 5.1 ist die Beziehung der alten und neuen Choreographie über den gestrichel-

ten Pfeil skizziert. Die Beziehung bezieht sich dabei auf die Version in der ursprünglich noch

keine Verfeinerungen durchgeführt worden sind. Aufgrund dieser Beziehung sind in beiden

Versionen gemeinsame Knoten enthalten.

Würden die Versionen keine gemeinsamen Knoten teilen, ist die Frage berechtigt, in wie fern

eine automatisierte Verfeinerung zweier verschiedener Modelle legitim ist. Zudem müsste auf

die Entscheidung eines Menschen zurückgriffen werden oder auf einen lernenden Algorithmus,

der über die Syntax hinaus auch die Semantik der Knoten versteht.

Ausgehend von Vb bedeuten alle 1-0 Zuordnungen mit V neu hinzugefügte Aktivitäten zur

Choreographie. Alle 0-1 Zuordnungmit V stehen für entfernte Aktivitäten. Diese Zuordnungen

werden gespeichert, um später nicht unnötige Aktivitäten, welche in Va enthalten sind, zu

übernehmen.

Jetzt werden die gemeinsamen Knoten zwischen Va und Vb bestimmt. Die Knoten mit 1-1

Zuordnung dienen als Referenzpunkte, um die verbleibenden Knoten zu positionieren. Die

verbleibenden Knoten bestehen nur noch aus Verfeinerungen (Knoten), sowie den gelöschten

Aktivitäten. Für jede Verfeinerung wird ein Referenzpunkt ausgewählt. Die Auswahl wird so

getroffen, dass die Verfeinerung auf einemWeg vom Referenzpunkt erreichbar und gleichzeitig

der kürzeste Weg ist.

Definition 5.3.2 (Referenzpunkt)
Ein Knoten wird als Referenzpunkt bezeichnet, genau dann wenn eine 1-1 Zuordnung besteht und
die Knoten Teil der zu fusionierenden Modelle sind.

DieMenge aller Referenzpunkte bilden zusammen ein Skelett. Dieses Skelett bildet das Grundge-

rüst für das fusionierte Modell. Um das Skelett zu vervollständigen, werden die Verfeinerungen

52

5.4. Beispiel

hinzugefügt. Jede Verfeinerung wird unter den zuvor ausgewählten Referenzpunkt gehängt.

Dazu wird ein kompletter Zweig genommen oder ein ganzes Fragment, welches sich zwischen

zwei Referenzpunkten befindet.

Das fusionierte Modell besitzt nach diesen Vorgang die vereinigte Struktur beider Modelle. Als

nächstes müssen die Attribute der Knoten fusioniert werden. Es kann vorkommen, dass ein

Knoten in den Modellen unterschiedliche Attribute besitzt. Hier muss entschieden werden,

welcherWert demAttribut zugewiesenwird. Dazuwird zunächst für jedes Attribut festgehalten,

aus welchen Modell dieses stammt.

Die Modelle erhalten ein Stimmrecht, mit der sie für ihr Attribut wählen dürfen. Bei der

Wahl sind alle Modelle wahlberechtigt, welche selbst ein Attribut des betroffenen Namens

besitzen. Der Wert mit den meisten Stimmen gewinnt die Wahl und wird in das fusionierte

Modell aufgenommen. Bei einem Gleichstand wird ein Entscheidungsträger benötigt. Ein

Entscheidungsträger bekommt ein bevorzugtes Wahlrecht und überstimmt damit die anderen

Modelle. Als Entscheidungsträger wird das neuste Modell gewählt. Dieses dominiert damit die

anderen Modelle.

Definition 5.3.3 (Dominanz)
Ein Modell M ′ dominiert ein Modell M genau dann wenn M ′ eine neuere Version von M ist. Die
Beziehung wird als M ≺ M ′ geschrieben. Die dominierten Modelle werden als zurückhaltend
bezeichnet.

Ein Konflikt wird folglich gelöst, indem das dominanteModell entscheidet. Diese Vorgehenswei-

se ist, für zwei in der Wahl beteiligte Modelle, in der Funktion 5.1 beschrieben. Das dominante

Modell stimmt für sein eigenes Attribut, sofern es eins mit dem Namen besitzt. Die Funktion

erwartet zwei Knoten und den Namen des Attributs und bildet dies auf das gewählte Attribut

ab: WähleAttribut : Attribut×Knoten×Knoten 7→ Attribut.

WähleAttribut(x, V, V ′) :=

Attribut(V ′, x) , falls Hat-Attributx(V ′) = ⊤
Attribut(V, x) , falls Hat-Attributx(V ′) = ⊥

(5.1)

5.4. Beispiel

Bevor der formale Algorithmus vorgestellt wird, werden die einzelnen Schritte an Hand eines

kurzen Beispiels erklärt. In Abbildung 5.2 sind dazu drei Graphen zu sehen. Auf der linken

Seite befindet sich das neue dominante Modell. Auf der rechten Seite das alte Modell, mit

den bestehenden Verfeinerungen. Das Ergebnis aus der Fusion beider Modelle ist in der Mitte

abgebildet.

Zur besseren Unterscheidung der Eigenschaften sind die Knoten markiert. Die Knoten mit

Verfeinerungen sind mit einem Netz bedeckt. Wohingegen die Knoten mit Kommunikationsak-

tivitäten, aus der Choreographie Beschreibung, schraffiert dargestellt sind. Gemeinsamkeiten in

53

5. Konzept

Abbildung 5.2.: Das neue Modell (Links) und altes Modell (Rechts), wird zum fusionierten

Modell (Mitte) vereinigt

Form von Referenzpunkten besitzen einen ausgefüllten Knoten. Knoten die keine Markierung

haben sind aus dem alten Modell und haben keine Zuordnung. Sie sind aus dem neuen Modell

entfernt oder ersetzt worden.

Es wird angenommen, dass die Knoten bereits nach Typ klassifiziert sind. Deshalb wird gleich

aus dem neuen Modell ein Skelett erstellt. Dazu werden alle Knoten aus den neuen Modell in

den mittleren Graph kopiert. Aus dem alten Modell wird nun das Skelett stückweise ergänzt.

In den kommenden Absätzen wird die Übernahme von Verfeinerungen, in der Reihenfolge

von oben nach unten und von links nach rechts, besprochen.

Die oberste Verfeinerung wird nicht in das fusionierte Modell übernommen. Das liegt daran,

weil der dazugehörige Referenzpunkt der Wurzelknoten ist und dieser im neuen Modell ersetzt

wurde. Die Verfeinerung wird als obsolet betrachtet und nicht ergänzt.

Die nächste Verfeinerung betrifft direkt einen Referenzpunkt. Dieser wird direkt mit den

Verfeinerungen ergänzt und in das fusionierte Modell übernommen.

Die dritte Verfeinerung ist ein Kind auf einem Ast. Zwar ist diesem Knoten ein gültiger

Referenzpunkt im fusionierten Modell zugeordnet, jedoch befindet sich ein gelöschter Knoten

auf dem Weg zu seinem Referenzpunkt. Der gelöschte Knoten muss passiert werden um auf

die gleiche Ebene wie der Referenzpunkt zu gelangen. Durch die Annahme der Vorgänger-

Beziehung ist davon auszugehen, dass der Knoten vom gelöschten Knoten abhängig ist. Deshalb

wird diese Verfeinerung nicht in das Modell übernommen.

Darauffolgend ist eine Verfeinerung unter einem Referenzpunkt, auf der selben Ebene. Dieser

besitzt wieder den selben Referenzpunkt, wie die Verfeinerung davor. Der gelöschte Knoten

liegt optisch auf dem Weg, allerdings befinden sich Verfeinerung und Referenzpunkt auf der

selben Ebene. Die Verfeinerung ist dadurch nicht vom gelöschten Knoten abhängig und wird

in das fusionierte Modell übernommen. Es ist dennoch nicht klar, wozu genau der Knoten

54

5.5. Algorithmus

gehört. Aus diesem Grund wird er unmittelbar unter den Referenzpunkt, vor den anderen

Knoten, angefügt.

Die nächsten beiden Verfeinerungen sind eindeutig. Sie befinden sich unmittelbar an ihrem

jeweiligen Referenzpunkt. Diese können ohne weiteres in das Modell ergänzt werden. Für die

letzte Verfeinerung trifft erneut der Fall zu, dass ein gelöschter Knoten passiert werden muss,

um auf die gleiche Ebene wie der Referenzpunkt zu kommen. Demnach wird dieser nicht in

das fusionierte Modell übernommen.

5.5. Algorithmus

Der Algorithmus besteht aus drei Phasen. Die erste Phase ist die Vorbereitungsphase, in der

die Vorbedingungen und Annahmen überprüft werden. Darüber hinaus werden die Daten-

strukturen initialisiert. Die zweite Phase generiert die neue Struktur. Abschließend wird in der

dritten Phase das Modell konsolidiert.

Jeder Partner durchläuft diese drei Phasen, um seinen Workflow zu aktualisieren. Die Schritte,

welche in den Phasen umgesetzt werden müssen, sind die folgenden:

1. Vorbereitung

a) Referenzpunkte werden identifiziert

b) Hinzugefügte und entfernte Knoten werden im aktualisiertem Modell identifiziert

c) Verfeinerungen werden aus dem alten Modell identifiziert

2. Strukturierung

a) Skelett wird aufgebaut

b) Verfeinerungen werden einem Referenzpunkt zugeordnet

c) Verfeinerungen werden dem Skelett an den Referenzpunkten angehängt

3. Konsolidierung

a) Konflikte werden gelöst

b) Optimierungen werden durchgeführt (optional)

Für die Umsetzung der einzelnen Schritte werden Funktionen in Pseudocode vorgeschlagen.

Eine Realisierung kann unter Umständen effizienter implementiert werden. Die Algorithmen

dienen nur zur Veranschaulichung des Konzeptes.

55

5. Konzept

Algorithmus 5.1 Referenzpunkte werden identifiziert

function findeReferenzpunkte(Modell x, Modell y)
Referenzpunkte← ∅
for all a ∈ gibKnoten(x) do

for all b ∈ gibKnoten(y) do
if true == C1−1(a, b) then

Referenzpunkte← Referenzpunkte ∪ {(a, b)}
end if

end for
end for
return Referenzpunkte

end function

Referenzpunkte werden identifiziert - Pseudocode 5.1 Für das Identifizieren der Refe-

renzpunkte wird als Eingabe das neue und alte Modell benötigt. Innerhalb der Funktion werden

die Knoten auf eine 1-1 Zuordnung untersucht. Sofern eine 1-1 Zuordnung vorliegt wird das

Knotenpaar in die Menge der Referenzpunkte aufgenommen. Ist die Untersuchung der Knoten-

paare abgeschlossen werden alle gefundenen Referenzpunkte zurückgegeben. Referenzpunkte

können selbst von Änderungen, wie Verschiebungen, betroffen sein.

Identifizierung der Aktualisierungen - Pseudocode 5.2 Um Aktualisierungen zu identi-

fizieren wird entweder ein vorhandener Change-Log benötigt oder das ursprüngliche Modell

ohne Verfeinerungen. Es wird eine Variante ohne Change-Log vorgeschlagen. Als Eingabe

werden zwei Modelle erwartet. Das erstes Argument der Funktion ist das weiterentwickelte

Modell. Es ist das neuste unter den Modellen und damit das dominante. Die Zuordnungen

werden aus Sicht des ersten Modells erstellt. Die Knoten werden paarweise auf 1-0 und 0-1

Zuordnungen untersucht. Knoten mit 1-0 Zuordnungen werden in die Menge der neu hin-

zugefügten Knoten aufgenommen. Die Knoten mit 0-1 Zuordnung werden der Menge der

gelöschten Knoten zugewiesen. Sind alle Vergleiche vollzogen, werden die Mengen mit den

klassifizierten Knoten zurückgegeben.

Identifizierung der Verfeinerungen - Pseudocode 5.3 Aus dem alten Modell werden

die Verfeinerungen extrahiert. Eine Variante benötigt dazu das alte Modell, die gefundenen

Referenzpunkte und die gelöschten Knoten als Eingabe. Als Alternative kann wieder ein

Change-Log verwendet werden. Der Algorithmus geht wie folgt vor: Für das Modell wird jeder

Knoten betrachtet und in die Menge der Verfeinerungen aufgenommen, sofern der Knoten

kein Referenzpunkt darstellt oder im neuen Modell entfernt wurde. Referenzpunkt sind bereits

im Skelett enthalten und gelöschte Knoten sind nicht mehr relevant. Zum Schluss wird die

Menge der Verfeinerungen zurückgegeben.

56

5.5. Algorithmus

Algorithmus 5.2 Identifizierung der Aktualisierungen

function findeHinzugefügteUndEntfernteKnoten(Modell x, Modell y)
// Modell x ist eine neue Version von Modell y

Aktualisierungen+ ← ∅ // hinzugefügte Knoten

Aktualisierungen− ← ∅ // entfernte Knoten

for all a ∈ gibKnoten(x) do
for all b ∈ gibKnoten(y) do

if true == C1−0(a, b) then
Aktualisierungen+ ← Aktualisierungen+ ∪ {(a, b)}

end if
if true == C0−1(a, b) then

Aktualisierungen− ← Aktualisierungen− ∪ {(a, b)}
end if

end for
end for
return Aktualisierungen

end function

Algorithmus 5.3 Identifizierung der Verfeinerungen

function findeVerfeinerungen(Modell x, Referenzpunkte r, Aktualisierungen−a) //
Finde Verfeinerungen im alten Modell und ignoriere obsolete Knoten

Verfeinerungen← ∅
obsoleteKnoten← a
for all a ∈ gibKnoten(x) do

if a /∈ Referenzpunkte ∧ a /∈ obsoleteKnoten then
Verfeinerungen← Verfeinerungen ∪ {a}

end if
end for
return Verfeinerungen

end function

57

5. Konzept

Algorithmus 5.4 Finde Referenzpunkt für Knoten

function findeReferenzpunkt(Knoten x, Modell m, Referenzpunkte r)
return Referenzpunkte← Breitensuche(x, m, r) // Traversiere Modell und merke

letzten Referenzpunkt

end function

Algorithmus 5.5 Verfeinerungen mit Skelett verbinden

function ergänzeVerfeinerungen(Verfeinerungen v, Modell m)

verfeinertesModell← m
for all v ∈ Verfeinerungen do

Referenzpunkt← v.gehörtZuReferenzpunkt()
Position← verfeinertesModell.geheZuReferenzpunkt(Referenzpunkt)
Position.ergänzeVerfeinerung(v)

end for
return verfeinertesModell

end function

Finde Referenzpunkt für Knoten - Pseudocode 5.4 Für jeden Wurzelknoten eines Frag-

ments muss ein Referenzpunkt gefunden werden um diesen an das Skelett anzufügen. Die

Funktion benötigt dafür den Wurzelknoten für den der Referenzpunkt gefunden werden soll,

das Modell in dem der Knoten vorhanden ist und alle verfügbaren Referenzpunkte. Auf dem

Modell wird eine modifizierte Breitensuche gestartet die nach dem Wurzelknoten sucht. Auf

dem kürzesten Weg zum Knoten wird sich der letzte passierte Referenzpunkt gemerkt. Dieser

Referenzpunkt wird dem Wurzelknoten zugeordnet und zurückgegeben.

Verfeinerungen mit Skelett verbinden - Pseudocode 5.5 Das Skelett wird mit den Ver-

feinerungen ergänzt. Die Funktion erhält als Argument die Menge der Verfeinerungen und

das Modell in Form des Skeletts. Für jedes Fragment wird der Referenzpunkt ausgelesen um

im Skelett die geeignete Position zu finden. An dieser Position wird das Fragment eingefügt.

Nachdem alle Fragmente eingefügt worden sind, wird das verfeinerte Modell zurückgegeben.

58

5.5. Algorithmus

Algorithmus 5.6 Fusionieren von Attributen

// Knoten x dominiert Knoten y
function fusioniereAttribute(Knoten x, Knoten y)

neuerKnoten← x
alterKnoten← y
Attribute← ∅
for all a ∈ gibAttribute(neuerKnoten) do

Attribute← Attribute ∪ {a}
end for
for all a ∈ gibAttribute(alterKnoten) do

if a /∈ Attribute then
Attribute← Attribute ∪ {a}

end if
end for
return Attribute

end function

Fusionieren von Attributen - Pseudocode 5.6 Um die Attribute der Knoten zu fusionie-

ren, werden alle Knoten mit 1-1 Zuordnung als Eingabe benötigt. Das erste Argument ist ein

Knoten aus dem neuen Modell und dominiert somit den Knoten aus dem zweiten Argument.

Zunächst werden alle Attribute vom dominanten Modell übernommen. Danach werden die

übrigen Attribute ergänzt, sofern diese nicht bereits bestimmt worden sind. Die Menge der

fusionierten Attribute wird zurückgegeben und kann in das Modell übernommen werden. Es

müssen nur für Knoten mit 1-1 Zuordnung Attribute fusioniert werden, da nur für diese ein

Konflikt auftreten kann.

59

5. Konzept

Algorithmus 5.7 Aktualisierung eines Modells

procedure aktualisiereModell(Modell Va, Modell Vb)

R← findeReferenzpunkte(Va, Vb)
if R = ∅ then

Abbruch: Modelle haben keine Gemeinsamkeiten

end if
Skelett← Vb // Kopiere gesamtes Modell als Skelett

A← findeHinzugefügteUndEntfernteKnoten(Vb, Va) // Erstes Argument ist

neues Modell

Fragmente← findeVerfeinerungen(Va, R, A)
for all f ∈ Fragmente do

p← findeReferenzpunkt(f.Wurzel, Va, R) // Suche ein Referenzpunkt für die

Wurzel eines Fragments

Verfeinerungen← Verfeinerungen ∪ {(f, p)}
end for
fusioniertesModell← ergänzeVerfeinerungen(V erfeinerungen, Skelett)
for all knoten ∈ gibKnoten(fusioniertesModell) do

if knoten ∈ R then // Konflikte können nur bei Knoten auftreten die in beiden

Modellen vorhanden sind

attribute← fusioniereAttribute(R.a, R.b)
knoten.attribute← attribute

end if
end for
return fusioniertesModell

end procedure

Aktualisierung eines Modells - Pseudocode 5.7 Durch das Zusammensetzen der einzel-

nen Funktionenwird die Aktualisierung vorgenommen. Als Eingabewird das zu aktualisierende

alte Modell als erstes Argument und das neue Modell als zweites Argument erwartet. Optional

kann ein vorhandener Change-Log zusätzlich mit übergeben werden um das Ergebnis zu

verbessern. Im Beispiel wird darauf verzichtet. Zu Beginn werden die Referenzpunkte gesucht.

Existieren keine so kann das Modell nicht aktualisiert werden. Dies ist eine Ausnahmesitua-

tion, den für gewöhnlich stammen die Modelle voneinander ab und teilen mindestens die

Wurzelknoten. Dieser schlechteste Fall würde zu einer einfachen Vereinigung beider Modelle

führen. Danach wird das Skelett aus dem neuen Modell gewonnen. Daraufhin werden die

Änderungen analysiert und die Verfeinerungen in Form von Fragmenten extrahiert. Für jedes

Fragment wird ein geeigneter Referenzpunkt gesucht und zugeordnet. Das fusionierte Modell

wird dann aus Skelett und Verfeinerungen aufgebaut. Die Fragmente werden dazu an den

Referenzpunkten des Skeletts angefügt. Zuletzt werden die Konflikte gelöst und die gewählten

Attribute übernommen. Damit sind beide Modelle in ein Modell fusioniert.

60

6. Prototyp

In dem vorherigen Kapitel wurde ein Konzept vorgestellt, wie eine überarbeitete Choreographie

an die Choreographie Teilnehmer weitergegeben werden kann und diese die Änderungen

erkennen und in ihre lokale Orchestrierung übernehmen können.

In diesem Kapitel wird das erarbeitete Konzept realisiert. Hierfür wird der Algorithmus inner-

halb eines wissenschaftlichen Prototyps implementiert und Details der Realisierung bespro-

chen.

Zunächst wird der BPEL4Chor Designer in Abschnitt 6.1 vorgestellt und eine kurze Einfüh-

rung in die Verwendungsweise in Abschnitt 6.2 gegeben. Darauffolgend wird die Architektur

des BPEL4Chor Designers in Abschnitt 6.3 betrachtet und erforderliche Änderungen in Ab-

schnitt 6.5 präsentiert. Die durchgeführten Anpassungen werden beschrieben und zuletzt eine

Beurteilung in Abschnitt 6.6 abgegeben.

6.1. BPEL4Chor Designer

Der wissenschaftliche Prototyp mit dem Namen BPEL4Chor Designer (kurz ChorDesigner) ist

ein Editor für Modellierer. Mit ihm lassen sich Choreographien grafisch modellieren. Aus den

modellierten Choreographien lassen sich wiederum ausführbare BPEL Prozesse generieren.

Der Editor verwendet für die Transformation das BPEL4Chor Modell, worauf auch der Name

zurückzuführen ist.

Im Rahmen der Arbeit [Son13] wurde der Editor ausgearbeitet und wird seitdem in verschiede-

nen Arbeiten [Sch14], [Wol15], [Wei+15] weiterentwickelt. Der Editor basiert auf dem Eclipse

BPEL-Designer
1
und wurde als Eclipse-Plugin konzipiert. Inzwischen umfasst der Prototyp

selbst eine Reihe von Erweiterungen. Zum Stand dieser Arbeit wird Eclipse Helios in der

Version 3.2.2 in Kombination mit Java 1.5 eingesetzt. Für die Umsetzung des grafischen Editors

wird das Graphical Modeling Framework (GMF)
2
verwendet, was wiederum das Eclipse Mo-

deling Framework (EMF)
3
für die Meta-Modellierung der Modelle und das Graphical Editing

Framework (GEF)
4
für die Darstellung der Modelle benutzt.

1
https://projects.eclipse.org/projects/soa.bpel

2
http://www.eclipse.org/gmf-tooling/

3
http://www.eclipse.org/modeling/emf/

4
http://www.eclipse.org/gef/

61

6. Prototyp

Abbildung 6.1.: Von der Problembeschreibung bis zum ausführbaren BPEL-Prozess, nach

[And+13], [Dec+09]

6.2. Verwendung

Bevor das Modellieren beginnt wird angenommen, dass eine Beschreibung des zu lösenden

Problems in Form von einem Text oder als BPMN-Diagramm vorliegt. Auf dieser Basis wird

das Modell mit dem Choreographie Editor von Hand erstellt. Das passiert mit Hilfe von

bereitgestellten Modellierungselementen, die sich durch Drag and Drop verbinden lassen.

Das Choreographie-Modell liegt nun in einer Choreographie-Datei (.chor) vor und kann

exportiert werden. Beim Exportieren werden automatisch die BPEL4Chor Artefakte aus dem

Modell generiert. Es entstehen eine Topologie-Datei (.xml) und für jeden Chorographie-

Teilnehmer jeweils eine Deployment-Datei (deploy.xml) und ein abstrakter BPEL-Prozess. Aus

den BPEL4Chor Artefakten werden abschließend automatisch die Webservice Beschreibungen

(.wsdl) und ausführbaren BPEL-Prozesse (.bpel) erstellt. Die ausführbaren BPEL-Prozesse

werden daraufhin wieder manuell mit Geschäftslogik verfeinert.

Wird das bestehende Choreographie-Modell verändert, werden die einzelnen Schritte der

Transformation neu durchlaufen und es entstehen neue ausführbarer BPEL-Prozesse, die erneut

verfeinert werden müssen. Durch die Implementierung der vorgestellten Algorithmen wird es

ermöglicht, diesen Ablauf zu vereinfachen und Änderungen in der Choreographie automatisch

in vorhandene verfeinerte Prozesse zu integrieren (Abbildung 6.1). Eine Modifikationen an

der Choreographie wird so direkt an die betroffenen Prozesse weitergegeben und automatisch

integriert.

62

6.3. Architektur

Abbildung 6.2.: Erweiterung um ein Merging-Modul

6.3. Architektur

Die bestehende Architektur des Editors wird um ein neues Modul, innerhalb der Transformati-

on, erweitert (Abbildung 6.2). Das Modul kann eigenständig verwendet werden und übernimmt

alle Aufgaben, welche für das Verschmelzen der Modelle erforderlich sind. Das Merging-Modul

wird für jene Modelle ausgeführt, für die bereits ein verfeinertes Modell existiert. Auch werden

nur Modelle fusioniert die von einer Änderung betroffen sind. Dies simuliert gleichzeitig die

Weitergabe der BPEL4Chor Beschreibung an betroffene Teilnehmer. Modelle ohne Verfeinerung

werden von der Transformation wie vorher behandelt.

Es wurde sich gegen das direkte Bearbeiten des Transformations-Moduls entschieden. In-

nerhalb des Transformations-Moduls wären mehr Kontext-Informationen vorhanden, da die

gesamte Choreographie bekannt ist. Ein direktes bearbeiten des Tranformations-Moduls hat

jedoch entscheidende Nachteile. Beim damaligen Schreiben des bestehenden Codes wurde

kein Augenmerk auf Wartbarkeit gelegt und Änderungen würden sich durch die Codebasis

propagieren. Darüber hinaus ist es fraglich, ob das Integrieren eines bestehenden Modells zu

den Aufgaben des Transformations-Moduls zählen sollte. Wird das Prinzip der Separation of
Concerns (SoC) berücksichtigt, dass bedeutet das strikte Trennen von Zuständigkeiten, wird

klar, dass eine Modellfusion kein trivialen Bestandteil der Transformation darstellt und daher

ausgelagert werden muss. Es ist zudem realistischer, dass kein globales Wissen über die Cho-

reographie vorhanden ist und nur vom Partner mitgeteilte, sowie lokale Informationen in die

Bearbeitung mit einbezogen werden können. Ein weiteres Argument für die die Bereitstellung

eines neuen Moduls ist, dass sich die Funktionalität einerseits direkt in die automatische

Codegenerierungsphase integrieren und andererseits als eigenständiges Plugin ansprechen

und verwenden lässt.

63

6. Prototyp

Es wurde bei der Modulerstellung darauf geachtet, dass Komponenten leicht ersetzt werden

können. Das erhöht die Wartbarkeit und ermöglicht jederzeit eine Verbesserung leicht umzu-

setzen. So kann beispielsweise bei der Zuordnung der Modellelemente die verwendete Strategie

ausgetauscht oder der konkrete Algorithmus, der die Modelle verschmelzt, ersetzt werden.

6.4. Eigenschaften

Der Editor enthält zwei hilfreiche Funktionen, die Verschmelzungen der Modelle begünstigen.

Es wird bereits eine Änderungshistorie in Form eines Change-Log bereitgestellt. Außerdem

wird jede aus der Choreographie transformierte Orchestrierung in einem neuen Ordner abge-

legt, der mit einer Versionsnummer gekennzeichnet ist.

Bei der Bearbeitung des Choreographie-Modells wird automatisch ein Change-Log angelegt.

Der Inhalt des Change-Log enthält jedes Element, welches während des Bearbeitens angeklickt

worden ist. Ein Element wird auch dann in den Log aufgenommen, wenn keine Änderung

vorgenommen wurde. Dadurch wächst der Change-Log sehr schnell und enthält unnötige

Informationen.

Jedem Eintrag im Change-Log wird eine Änderungskategorie zugeordnet. Aktuell existie-

ren zwei Kategorien. Die eine Kategorie umfasst strukturelle Aspekte und gruppiert damit

Änderungen wie Hinzufügen und Entfernen von Elementen. Wird ein Element verschoben,

werden die Operationen in die Änderungs-Primitiven Hinzufügen und Entfernen zerlegt und

jeweils separat im Change-Log aufgeführt. Die andere Kategorie umfasst Änderungen an den

Eigenschaften der Elemente. Dazu zählen Attribute und Werte, welche hinzugefügt, entfernt

oder geändert werden. Zusätzlich werden für jeden Eintrag immer der Zeitpunkt, der Name

und die aktuelle Position des betroffenen Objekts festgehalten.

6.5. Anpassungen

Unabhängig vom neu hinzugefügten Modul mussten am bestehenden Code Änderungen

vorgenommen werden. Davon betroffen war die Änderungshistorie und der Transformation-

Assistent. Mit Hilfe des Transformations-Assistenten lassen sich die Einstellungen konfigurie-

ren. Hier wird zum Beispiel der Speicherort des Resultats angegeben oder die Optionen für

den Algorithmus bestimmt.

Zunächst wurden die zu speichernden Details der Änderungshistorie angepasst. Ab sofort

wird für jeden Change-Log-Eintrag zusätzlich die Identifikationsnummer des Elements gespei-

chert. Dadurch ist es möglich, direkt nach Elementen zu suchen, ohne die komplette Historie

nachvollziehen zu müssen.

64

6.6. Beurteilung

Abbildung 6.3.: Optionsseite für den Transformation Assistenten

Danach wurde der existierende Transformation-Assistent um eine weitere Optionsseite er-

weitert (Abbildung 6.3). Auf der zusätzlichen Seite lässt sich das automatische Integrieren

ausschalten. Es kann darüber hinaus die Modell-Version bestimmt werden, welche für die

Verfeinerung verwendet wird. Außerdem kann entschieden werden, ob eine manuelle oder

automatische Konfliktlösung bevorzugt ist.

Der Transformationsprozess wird wie vor den Änderungen angestoßen und abgearbeitet. So-

bald die Transformation abgeschlossen und die Modell-Integration im Assistenten ausgewählt

ist, wird das Merging-Modul ausgeführt. Dieses holt sich die betroffenen Dateien und führt

die gewünschten Aktionen aus. Das verfeinerte Modell wird in einem Ordner innerhalb der

aktuellen Modell-Version abgelegt.

6.6. Beurteilung

Die Erweiterung des BPEL4Chor Designers bringt folgende Vorteile mit sich:

Die neue Funktionalität wird nahtlos im Editor zur Verfügung gestellt, ohne den bekannten

Ablauf zu unterbrechen. Deshalb kann der Benutzer den Editor wie vor den Anpassungen

verwenden und wird nicht seines gewohnten Ablaufes beraubt.

Es bleiben alle Modell-Versionen erhalten und werden sortiert in der Ordnerstruktur abgelegt.

So können die Modelle auch später noch einfach verglichen werden. Darüber hinaus kann

jede alte Version zum Verfeinern des neusten Modells herangezogen werden und nicht nur die

Letzte.

Das automatische Verfeinern bereits existierender Modelle spart wertvolle Arbeitszeit, die

vorher in das Kopieren und Einfügen der fehlenden Elemente von Hand investiert werden

musste. Gleichzeitig werden Fehler in der Positionierung vermieden.

65

7. Implementierung

Im vorherigen Kapitel wurde der wissenschaftliche Prototyp präsentiert und die notwendigen

Anpassungen vorgestellt. In diesemKapitel wird das Konzept und die entworfenen Algorithmen

implementiert. Als Programmiersprache wird Java verwendet.

Zunächst werden in Abschnitt 7.1 die erstellten Komponenten und ihre Beziehungen präsentiert.

Anschließend werden verwendete Bibliotheken und Techniken in Abschnitt 7.2 vorgestellt.

Danach wird in Abschnitt 7.3 gezeigt, wie die Komponenten in den Prototypen integriert wur-

den. Außerdem werden getroffene Entscheidungen des beschrittenen Implementierungswegs

diskutiert.

7.1. Komponenten

In Abbildung 7.1 sind die implementierten Komponenten und ihre Beziehung untereinander

dargestellt. Der Kern wird aus dem Fragment-Sucher, Fragment-Verbinder und der Modell-

analyse gebildet. Die Komponenten sind eigenständig und können unabhängig voneinander

verwendet werden. Der Modell-Verschmelzer kombiniert diese Bausteine, um zwei Model-

le zu fusionieren. Die Modelle implementieren das Document-Interface, welches aus dem
org.w3c.dom Paket stammt und zur Java API für XML Verarbeitung (JAXP) gehört.

Modellanalyse Die Modellanalyse-Komponente realisiert das Konzept der Zuordnung. Ihre

Aufgabe besteht darin die Modelle zu untersuchen und 1-1 Zuordnungen, sowie 1-0 und 0-1

Zuordnungen, aus den Modellen herauszuarbeiten. Die gefundenen Zuordnungen werden

dann in geeigneten Datenstrukturen bereitgestellt.

Die Komponente erwartet als Eingabe die zu untersuchenden Modelle. Die Modelle werden

daraufhin analysiert. Dazu müssen die DOM-Knoten verglichen werden. Beim Vergleichen der

DOM-Knoten wird auf verschiedene Vergleichsstrategien zurückgegriffen. Eine Vergleichsstra-

tegie stellt hierfür eine Schnittstelle zur Verfügung. Die Schnittstelle erlaubt es zwei Elemente

hinsichtlich ihrer Gleichwertigkeit (Listing 7.1) zu beurteilen. Die gewünschte Logik wird in

konkrete Vergleichsstrategien implementiert.

Aktuell werden zwei Vergleichsstrategien angeboten. Zum einen bietet eine Strategie den

Vergleich über die ID an. Hierbei werden die Knoten auf die Existenz einer ID inspiziert.

67

7. Implementierung

Abbildung 7.1.: Komponentendiagramm der Implementierung

Listing 7.1Match-Strategy Interface

1 interface MatchStrategy {

2 public Boolean match(Element left, Element right);

3 }

Besitzen beide Knoten eine ID und stimmt diese ID gleichzeitig überein, dann wird die Gleich-

wertigkeit der Knoten mit einem true bestätigt. Als Alternative wird ein Vergleich über den

Namen angeboten. Hierzu wird der exakte Namen beider Knoten verglichen. Im Falle einer

Übereinstimmung des Namens wird mit einem true bestätigt, andernfalls mit einem false
verneint.

Da dies unter Umständen nicht ausreichend ist, wird außerdem ein zusammengesetzter Ver-

gleich angeboten. In diesem können beliebig viele Strategien kombiniert werden. Ein zusam-

mengesetzter Vergleich kann sogar wieder einen zusammengesetzten Vergleich beinhalten. So

lassen sich komplexe Vergleiche aus einfachen Strategien kombinieren.

Mit diesem Konstrukt kann zum Beispiel erst die ID überprüft werden und falls keine ID

vorhanden ist, doch noch der Name zur Entscheidung hinzugezogen werden. Darüber hinaus

können in der Zukunft einfach neue Vergleichsstrategien ergänzt werden.

68

7.1. Komponenten

Listing 7.2 Merge-Strategy Interface

1 interface MergeStrategy {

2 public Fragment merge(Fragment left, Fragment right);

3 }

Nach abgeschlossener Analyse werden die gewonnenen Erkenntnisse in Datenstrukturen

bereitgestellt. Gleichwertige Knoten werden dabei als Referenzpunkte markiert und die ge-

scheiterten Vergleiche entsprechend als Unterschiede.

Fragment-Sucher Die Aufgabe des Fragment-Suchers ist es, ein Modell nach Fragmenten

abzusuchen, die später in ein anderes Modell eingefügt werden sollen. In erster Linie wird hier

gezielt nach Verfeinerungen gesucht. Die gefundenen Fragmente werden dann bereitgestellt.

Als Eingabe wird das Modell erwartet, das durchsucht werden soll. Zusätzlich werden wei-

tere Informationen benötigt, die es erlauben die Knoten zu unterscheiden. Dazu werden die

Datenstrukturen mit den Änderungen und Referenzpunkten herangezogen, welche zuvor

von der Modellanalyse gefunden wurden. Diese weiteren Informationen werden als Filter

verwendet, um gezielt nach den Fragmenten suchen zu können. Für die Suche werden her-

kömmliche Traversierungs-Algorithmen auf den Graphen angewandt, darunter vorrangig die

Breitensuche.

Für jedes gefundene Fragment wird zusätzlich der nächste Referenzpunkt bestimmt. Der

Referenzpunkt mit dem kürzesten Weg zum Fragment ist am nächsten. Die Position des

Fragments lässt sich so relativ zum Referenzpunkt festlegen. Gehören zu einem Referenzpunkt

mehrere Fragmente, werden die Fragmente zusätzlich mit einer Nummerierung versehen. Die

Nummerierung legt die absolute Reihenfolge der Fragmente fest. Die Nummer wird an Hand

des tatsächlichen Abstands vom Referenzpunkt zum Fragment bestimmt.

Fragment-Verbinder Mit Hilfe des Fragment-Verbinders können zwei Fragmente miteinan-

der verbunden werden. Die Regeln, die beschreiben wie Fragmente transformiert und zusam-

mengefügt werden, finden hier ihren Platz. Für gewöhnlich wird jeweils das Modell-Skelett

mit einem Fragment zusammengeführt.

Der Fragment-Verbinder benötigt zwei Fragmente als Eingabe. Hier ist zu beachten, dass ein

Fragment auch aus nur einem einzelnen Knoten bestehen darf. Es können also sowohl ganze

Teilbäume, als auch einzelne Knoten verbunden werden. Die Entscheidung wie zwei Fragmente

verbunden werden, wird über eine Fusionsstrategie getroffen. Eine Fusionsstrategie bietet über

die Schnittstelle die Möglichkeit zwei Fragmente zusammenzuführen (Listing 7.2).

Es sind drei Fusionsstrategien implementiert. Bei der Strategie der Vereinigung wird ein

Knoten aus einem Fragment ausgewählt. Der ausgewählte Knoten wird typischerweise an

Hand des Referenzpunktes bestimmt, der dem Fragment zuvor zugeordnet wurde. Unter diesem

69

7. Implementierung

Referenzpunkt wird dann das andere Fragment, auf der gleichen Ebene, angefügt. Aus Sicht

des XML-Dokuments wären die Elemente jetzt Nachbarn.

Bei der Strategie der Komposition wird das Fragment als Kind angehängt. Allerdings eine

Ebene höher wie der ursprüngliche Knoten. Dies würde einer weiteren Verschachtelungstiefe

im XML-Dokument entsprechen. Der Inhalt würde von einem Element umschlossen sein.

Die Strategie der Dominanz (siehe Definition 5.3.3) ergänzt das dominante Fragment mit den

zusätzlichen Informationen des anderen Fragments. Das dominante Modell ist in der Regel das

Skelett, welches sich durch Verfeinerungen vervollständigt.

Durch die Bereitstellung des Interfaces können auch hier sehr einfach neue Strategien entwi-

ckelt und das Verbinden weiter optimiert werden.

Modell-Verschmelzer Der Modell-Verschmelzer bringt alle Komponenten zusammen und

koordiniert das Verschmelzen der Modelle. Er dient außerdem als Einstiegspunkt für das

Eclipse-Plugin. Als Eingabe werden die zu fusionierenden Modelle benötigt. Des weiteren

muss eine Konfiguration zur Verfügung gestellt werden. Näheres dazu wird in Abschnitt 7.3

beschrieben.

Zunächst werden die Modelle über die Methode normalizeDocument() normalisiert. Dies ist

unbedingt erforderlich, damit der Graph keine unterschiedlichen Repräsentationen besitzt und

somit eindeutig ist. Deshalb muss diese Methode vor und nach der vollständigen Modifizierung

ausgeführt werden.

Die Modellanalyse und die Fragmentsuche wird gestartet. Anschließend wird aus dem neueren

Modell das Skelett gebaut und schließlich mit dem Fragment-Verbinder vervollständigt. Das

fertig fusionierte Modell wird zum Schluss wieder serialisiert und persistent gespeichert.

7.2. JDOM Bibliothek

Mit JDOM kann ein XML-Dokument gelesen, geschrieben, erstellt oder modifiziert werden.

Für die Bearbeitung des DOM-Baums wird nicht die JAXP Programmierschnittstelle, sondern

JDOM
1
in der Version 2.0.6 verwendet. Der Programmcode von JDOM steht unter einer

angepassten Apache Lizenz
2
. Diese Lizenz ist mit Eclipse-Plugins kompatibel

3
und darf somit

verwendet werden.

JDOM selbst bringt keine Möglichkeit mit ein Dokument als DOM einzulesen. Deshalb muss

das Dokument bereits geparst vorliegen. Zum Parsen kann der DOM-Parser benutzt werden

1
http://www.jdom.org/

2
http://jdom.org/docs/faq.html#a0030

3
https://eclipse.org/legal/eplfaq.php#3RDPARTY

70

7.2. JDOM Bibliothek

Listing 7.3 Laden eins Modells mit dem DocumentBuilder

1 public org.w3c.dom.Document FileToDocument(File file) {

2 DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory

3 .newInstance();

4 DocumentBuilder documentBuilder =

documentBuilderFactory.newDocumentBuilder();

5 return document = documentBuilder.parse(file);

6 }

Listing 7.4 Konvertierung eines DOM-Baums zu einem JDOM-Baum

1 public org.jdom2.Document convertDOM2JDOM(org.w3c.dom.Document document) {

2 DOMBuilder builder = new DOMBuilder();

3 return builder.build(document);

4 }

(Listing 7.3). Es ist jedoch auch möglich das Dokument mit dem SAX- oder StAX-Parser

einzulesen.

Der eingelesene DOM-Baum wird dann in einen JDOM-Baum konvertiert (Listing 7.4). Eine

Konvertierung zurück in einen DOM-Baum ist ebenfalls einfach möglich (Listing 7.5). In den

Listings ist der vollständige Name der Klassen angegeben, um die Zugehörigkeit der Domäne

zu verdeutlichen.

Der Hauptunterschied zwischen DOM und JDOM ist, dass ein XML-Knoten nicht als DOM
Node, sondern via Java-Objekt repräsentiert wird. Wie auch bei DOM, wird der gesamte Graph

im Hauptspeicher gehalten.

Ein Vorteil von JDOMgegenüber DOM ist, dass dieses extra für Java entwickelt wurde und daher

komfortabel zu benutzen ist. Gleichzeitig bringt es neue Funktionen mit, die das Bearbeiten

und Durchsuchen des Baums erleichtern. So erlaubt es JDOM, Filter zu erstellen, welche über

die Knoten des Baums gelegt werden können. Die Filter unterstützen nach Name, Typ, Wert

oder nach anderen Parametern zu selektieren. Zusätzlich können diese mit Logik-Operatoren

(∧, ∨, ¬) verknüpft werden.

Listing 7.5 Konvertierung eines JDOM-Baums zu einem DOM-Baum

1 public org.w3c.dom.Document convertJDOM2DOM(org.jdom2.Document document)

throws JDOMException {

2 DOMOutputter outputter = new DOMOutputter();

3 return outputter.output(document);

4 }

71

7. Implementierung

Darüber hinaus wird die XML Path Language (XPath) unterstützt, die das Abfragen des Baumes

erleichtert. Sowie ein Paket für XSL Transformation (XSLT), mit der ein XML-Dokument über

eine formale Beschreibung transformiert werden kann.

7.3. Integrierung in den Prototyp

Das fertige Modul wird schließlich in den Prototyp integriert. Dieses muss als weiterer Schritt

nach der Transformation ausgeführt werden. Dafür wird zunächst für den geschriebenen

Code ein neues Paket erstellt. Der Modell-Verschmelzer und seine Eingabe Konfiguration

werden initialisiert. Anschließend wird der Modell-Verschmelzer im Transformation-Modul

eingefügt.

In Listing 7.6 sind die erforderlichen Änderungen am Prototypen zu sehen. Zu erst wird

eine Konfiguration erstellt, die Optionen für die Transformation und die Modell-Integrierung

beinhaltet. Die Optionen können über die grafische Oberfläche gesetzt werden. Dies passiert

über den in Abschnitt 6.5 gezeigten Transformations-Assistenten. Um die neuen Optionen im

Assistenten einzufügen, wurde der alte Assistent (TransformationWizardOptions) abgeleitet und

ein neuer Assistent erstellt. Der AdvancedTransformationWizard erweitert den Assistenten um

eine weitere Optionsseite.

Nachdem die Transformation abgeschlossen ist wird überprüft, ob der Benutzer eine automati-

sche Integration des neuen Modells wünscht. Dieses Vorgehen ist standardmäßig eingeschaltet.

Dann werden die gewählten Optionen, für die Verwendung innerhalb des Merge-Moduls,

aufbereitet. Das Merge-Modul erhält die Eingabe und führt die notwendigen Schritte aus. Nach

Fertigstellung der Integration wird wie gehabt fortgesetzt.

Durch diese Art der Implementierung lässt sich das Modul sowohl innerhalb des Prototypen,

als auch eigenständig als Anwendung verwenden. Es wäre außerdem denkbar das Modul

beispielsweise als Kommandozeilenprogramm bereitzustellen. Dafür müssten lediglich die

Argumente in das Konfigurationsobjekt gebracht werden.

72

7.3. Integrierung in den Prototyp

Listing 7.6 Ergänzungen im existierenden TransformChoreographyHandler

1 //[...]

2 // Explizite Typumwandlung zur Verdeutlichung

3 Configuration options = new MergeConfiguration();

4 ((MergeConfiguration) options).setWorkspaceDirectory(/*...*/);

5 ((MergeConfiguration) options).setValidRevisionOptions(/*...*/);

6 ((MergeConfiguration) options).setLatestRevisionAsDefaultRevision();

7 //[...]

8 WizardDialog wizardDialog = new WizardDialog(/*...*/, new

AdvancedTransformationWizard(options));

9 //[...]

10 Transformer handler = new Transformer((TransformationWizardOptions)

options);

11 handler.transform(result, chorEditor);

12 //[...]

13 if (((MergeConfiguration) options).isAutoIntegrationEnabled()) {

14 MergerInput input = new MergerInput((MergeConfiguration)options);

15 input.setChoreographieName(result.getChoreographyName().getLocalPart());

16

17 ModelMerger merger = new ModelMerger(input);

18 merger.process();

19 }

20 //[...]

73

7. Implementierung

EMF Compare

Innerhalb des Prototyps wird das Eclipse Modelling Framework verwendet, um die Modelle

abzubilden. Zu dem EMF gehört darüber hinaus das EMF Compare Projekt. Das EMF Compare

Projekt erlaubt es, mit EMF erstellte Modelle (.ecore Dateien) zu vergleichen und zu vereinen.

Für eigene Modelle bietet EMF Compare eine Grundstruktur (Abbildung 7.2) zum Durchführen

von Modell-Vergleichen und zur Modell-Integration an. Die Rollen der Komponenten müssen

mit selbst erstellten Klassen besetzt werden. Leider ist die Entwickler-Dokumentation von

EMF Compare lückenhaft und weist besonders Defizite im Abschnitt „Modelle verschmelzen“

auf
4
. Dies macht EMF Compare schwer zugänglich. Nach einer ausgiebigen Recherche wurde

der weitere zeitliche Aufwand als zu hoch eingestuft und mit einer eigenen unabhängigen

Implementierung begonnen.

Die Struktur ist der in dieser Arbeit verwendeten sehr ähnlich. Jedoch ist bei EMF Compare

hauptsächlich eine Interaktionmit demBenutzer vorgesehen. Diesermuss jeden Unterschied im

Modell über eine Vergleichsansicht selbst auf Richtigkeit überprüfen und via Bestätigung in das

andere Modell übernehmen. EMF Compare ist für Schrittweise Integration von Unterschieden

konzipiert. Dies ist im vorliegenden Konzept nicht gewünscht. Die Modelle sollen für den

Benutzer automatisch vereinigt werden, außer der Benutzer wünscht dies explizit.

Weitere Punkte sind, dass EMF-Compare sich auf strukturierte Diagramme, wie z.B. Klassen-

diagramme, fokussiert und nicht auf Graphen-basierte Modelle, wie es Prozessmodelle sind

[GKE09]. Es wird auch kein Modell-Strukturbaum verwendet [GKE09]. Vergleiche werden Kno-

tenweise durchgeführt ohne die Umgebung zu berücksichtigen, was Abhängigkeiten zu anderen

Knoten missachtet. Das führt dazu, dass keine Änderungsoperationen, sondern Änderungspri-

mitiven unterstützt werden, welche ungeeignet für Prozessmodell-Änderungsmanagement

sind [KGE09]. Aus diesen Gründen wurde von einer Implementierung mit Hilfe von EMF

Compare abgesehen.

4
http://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide.html, Stand: 31.03.2017

74

7.3. Integrierung in den Prototyp

Abbildung 7.2.: EMF Compare Funktionsweisen, nach [Bru11]

75

8. Evaluierung

Im vorherigen Kapitel wurden Details der Implementierung vorgestellt. In diesem Kapitel wird

das Konzept und die Implementierung kritisch untersucht.

Wie gut das vorgestellte Konzept in der Praxis funktioniert, wird in den kommenden Abschnit-

ten gezeigt. Zunächst werden in Abschnitt 8.1 die Anforderungen betrachtet und gezeigt, wie

diese sichergestellt wurden. Danach wird in Abschnitt 8.2 präsentiert, dass eine durchgeführte

Änderung am Modell übernommen wird. Zuletzt werden in Abschnitt 8.3 die Schwächen des

Konzeptes aufgezeigt und eine Laufzeitabschätzung in Abschnitt 8.4 abgegeben.

8.1. Anforderungen

Das fusionierte Modell muss die Aktualisierungen der Choreographie beinhalten. Das wird

sichergestellt, indem der Teilnehmer seine neu generierte Orchestrierung aus der Choreogra-

phie erhält. Die generierte Orchestrierung beinhaltet die Änderungen der Choreographie. Aus

der generierten Orchestrierung wird das Skelett, an dem später die Verfeinerungen angefügt

werden, gebildet. Das Skelett ist demnach eine einfache Kopie der neuen Orchestrierung und

enthält damit alle Aktualisierungen. Durch dieses Vorgehen sind außerdem Unterscheidungen

der vorgenommen Änderungen, wie Einfügungen, Löschungen und Verschiebungen, nicht

notwendig. Sie sind bereits im vorliegenden Skelett abgebildet.

An dem Skelett darf die Reihenfolge der initialen Elemente nicht verändert werden. Dies

könnte einerseits die Aktualisierungen rückgängig machen oder andererseits die Abfolge

der Kommunikationsaktivitäten zerstören. Deshalb werden nur Einfügungen am Skelett vor-

genommen. Durch Einfügungen werden die Vorgänger- und Nachfolger-Beziehungen der

Kommunikationsaktivitäten nicht verändert.

Die Einfügungen am Skelett bestehen ausschließlich aus Verfeinerungen des alten Modells. Es

werden keine zusätzlichen Elemente eingefügt. Die alten Kommunikationsaktivitäten werden

ignoriert und dienen nur zur relativen Positionierung. So wird nicht ungewollt eine alte

gelöschte Kommunikationsaktivität in das fusionierte Modell eingebracht.

Durch die Manipulation des Skeletts kann kein syntaktisch inkorrektes Modell entstehen.

Die verwendete Bibliothek JDOM stell zu jeder Zeit sicher, dass ein darunterliegendes XML-

77

8. Evaluierung

Dokument wohlgeformt ist
1
. Es kann somit kein Modell erzeugt werden, welches syntaktisch

inkorrekt ist. Darüber hinaus wird der generierte XML-Code automatisch leserlich formatiert.

Die präsentierten Algorithmen erwarten jeweils die zu fusionierenden Modelle als Eingabe.

Aus diesen werden die Gemeinsamkeiten und Unterschiede ausgewertet. Es werden nur die

Unterschiede in das fusionierte Modell eingearbeitet, welche einen Referenzpunkte in der

neuen Version haben. Die Positionierung geschieht relativ zu den bestimmten Referenzpunkten,

welche aus der Analyse von Gemeinsamkeiten und Unterschieden gewonnen wurden. Das

Fusionieren kommt somit gänzlich ohne Change-Log aus.

Mit Hilfe eines vorhandenen Change-Log kann jedoch das Ergebnis verbessert werden, da

durch diesen die genaue Abhängigkeit zu anderen Elementen rekonstruiert werden kann. Das

erlaubt die Entscheidung zu optimieren, ob und wo ein Element eingefügt werden soll. Dadurch

müssten weniger händische Nachbearbeitungen getätigt werden.

8.2. Funktionsweise

Um zu zeigen, dass die vorgestellte Methode zur automatischen Integration von Änderungen

an Prozessmodellen, geeignet ist wird das Szenario der Einleitung aufgegriffen.

In der Abbildung 8.1a ist ein angepasster Choreographie-Ausschnitt der MD-Simulation zu se-

hen. Der Choreographie wurden zwei Aktivitäten (configureNotfication, sendEMailNotification)
hinzugefügt. Mit diesen soll es dem Wissenschaftler ermöglicht werden, eine E-Mail Benach-

richtigung zu konfigurieren. Möchte der Wissenschaftler eine Benachrichtigung erhalten, so

kann er dies über configureNotfication mitteilen. Eine E-Mail wird dann an die hinterlegte

E-Mail Adresse gesendet, sobald ein neuer Zwischenstand bekannt ist. Über diese Änderungen

wird der Teilnehmer informiert.

Der Teilnehmer erhält die neue Choreographie-Beschreibung und muss nun seine Orches-

trierung anpassen. Das neue Modell wird integriert und automatisch mit Verfeinerungen

vervollständigt. In Abbildung 8.1b ist dargestellt, wie die Änderungen automatisch in die lokale

Orchestrierung des Teilnehmers eingearbeitet wurden. Die Aktualisierungen müssen nicht

mehr von Hand eingepflegt werden.

Das präsentierte Konzept genügt damit allen Anforderungen und kann für eine automatische

Änderungsweitergabe erfolgreich verwendet werden.

1
http://www.jdom.org/docs/faq.html#a0140

78

8.3. Schwächen

(a) Choreographie, modifizierter MD-Simulation Teilnehmer (b) Orchestrierung, mit Aktualisierung und

Verfeinerungen

Abbildung 8.1.: Aktualisierung und Änderungsweitergabe von Choreographie zur Orches-

trierung

8.3. Schwächen

Das vorgestellte Konzept weißt allerdings auch Schwächen auf, die im Folgenden geschildert

werden. Für die Ziele dieser Arbeit stellen diese jedoch keine Einschränkung dar.

Neu hinzugefügte Elemente werden problemlos übernommen. Für diese existieren im alten

Modell noch keine Verfeinerungen. Auch verschobene Elemente stellen keine Schwierigkeit

dar, da dies ein neu Positionieren und Umhängen von Teilbäumen darstellt. Werden allerdings

Knoten entfernt, ist kein globales Wissen vorhanden, welche andere Knoten ebenfalls entfernt

werden sollten. Damit keine Verfeinerungen verloren gehen, werden deshalb nur Knoten

entfernt, die eindeutig vom entfernten Knoten abhängig waren. Dies kann dazu führen, dass

im fusionierten Modell Verfeinerungen vorhanden bleiben, obwohl diese nicht mehr benötigt

werden. Es wird jedoch angenommen, dass das Entfernen von überflüssigen Knoten leichter

von Hand durchzuführen ist und eine deutlichere Erleichterung darstellt, als fehlende Knoten

ausfindig zu machen und diese hinzuzufügen.

Eine andere Schwäche liegt in der Implementierung mittels DOM. Das komplette Modell wird

mit DOM in den Arbeitsspeicher geladen. Das ermöglicht ein komfortables bearbeiten, jedoch

begrenzt es die Größe von Modellen die behandelt werden können. Sie müssen in den Arbeits-

speicher passen. Heutzutage umfasst der Arbeitsspeicher in herkömmlichen Computern eine

Größe von mehreren Gigabyte. Modelle, welche diese Größe überschreiten, müssen anders

verarbeitet werden. Für diese bedarf es eine Methode, welche nicht das gesamte Modell in den

Arbeitsspeicher lädt. Vorzugsweise werden diese Modelle partiell, strombasiert oder ereignisba-

79

8. Evaluierung

siert verarbeitet. Die generierten und verarbeiteten Modelle, im betrachteten Anwendungsfall,

sind alle deutlich kleiner, so dass dies keine Beeinträchtigung darstellt.

8.4. Laufzeitabschätzung

Im Folgenden wird eine einfache Laufzeitabschätzung für das Fusionieren der Modelle präsen-

tiert. Dafür wird der konzipierte Algorithmus betrachtet.

Die Transformation des Modells in einen Graphen ist als Eingabe anzusehen, sowie die Trans-

formation zurück in das ursprüngliche Format als Ausgabe. Für beides müssen alle Elemente

einmal betrachtet werden und ist daher für die Abschätzung nicht relevant. Die Eingabe und

Ausgabe erfolgt jeweils in linearer Laufzeit.

Um Referenzpunkte zu identifizieren werden zwei Graphen benötigt. Jeder Knoten aus einem

Graphen muss paarweise mit einem Knoten aus dem anderen Graphen verglichen und dafür

besucht werden. Angenommen die Graphen besitzen jeweils n und m Knoten und die Anzahl

der Knoten beider Graphen unterscheiden sich um einen konstanten Faktor c, dann lässt sich

die Anzahl der Vergleiche durch O(c1 ∗ n × c2 ∗ m) formulieren. Für die Analyse können

konstante Faktoren jedoch vernachlässigt werden, so dass sich O(n×m) Besuche ergeben.
Analog wird für das Erkennen der eingefügten und gelöschten Knoten vorgegangen.

Zum Finden der relevanten Verfeinerungen muss der Graph einmal mit der Liste der Referenz-

punkten und Änderungen traversiert werden. Beim Durchlaufen werden die Verfeinerungen

notiert. Dazu werden wieder alle Knoten einmal besucht. Für das Nachschlagen, ob ein Kno-

ten in der Liste mit Referenzpunkten oder Änderungen steht, wird ein konstanter Zeitfaktor

angenommen. Das Finden benötigt somit O(n) Knotenbesuche.

Für jede gefundene Verfeinerung muss ein Referenzpunkt zugeordnet werden. Dafür wird wie-

der der Graph traversiert und der auf demWeg zuletzt passierte Referenzpunkt zurückgegeben.

Angenommen, es wurden zuvor v Verfeinerungen gefunden, dann entspricht dies O(v × n)
Knotenbesuchen. Die Anzahl der Verfeinerungen pro Graphen ist immer echt kleiner als n,
sonst wären die Graphen disjunkt und hätten keine Gemeinsamkeit. Außerdem können direkt

innerhalb eines Durchlaufs alle Verfeinerungen zugeordnet werden. Daraus resultieren wieder

O(n) Knotenbesuchen.

DasModell-Skelett wird durch Kopieren eines Graphen initialisiert. Dieser Schritt des Kopierens

benötigt konstante Zeit. Auch das Einfügen der Verfeinerungen, am konkreten Referenzpunkt,

kann mit konstanter Zeit durchgeführt werden. Das Erstellen des fusionierten Modells fällt

mit O(v) ins Gewicht.

Zuletzt müssen die restlichen Attribute übernommen werden. Dafür wird das fusionierte

Modell, welchesn+v Knoten enthält, traversiert und fehlendeAttribute ergänzt. Dies entspricht
O(n + v) Knotenbesuche, wobei wie angemerkt v < n zutrifft. Insgesamt ergibt sich eine

Laufzeitkomplexität in O(n2) für das Fusionieren zweier Graphen.

80

9. Zusammenfassung und Ausblick

Abschließend wird ein Überblick über das erarbeitete Konzept für die Aktualisierung und

Änderungsweitergabe in Workflow-Choreographien gegeben und die wichtigsten Aspekte

zusammengefasst. Anschließend erfolgt ein Ausblick auf weitere Forschungspunkte.

9.1. Zusammenfassung

Änderungen an der Workflow-Choreographie spiegeln sich in den Orchestrierungen der Teil-

nehmer wieder. Dafür müssen zunächst die betroffenen Teilnehmer über die Aktualisierungen

informiert und zur Anpassung der eigenenOrchestrierung aufgefordert werden. Ein Teilnehmer

möchte die Bestandteile der alten Orchestrierung in die neu spezifizierte Orchestrierung über-

nehmen. Dazu muss dieser die Änderungen erkennen und entsprechend in eine kombinierte

Orchestrierung, aus alt und neu, einpflegen.

Diese Arbeit beschreibt ein Konzept, wie Aktualisierungen einer Workflow-Choreographie in

eine bestehe Orchestrierung weitergegeben werden. Teil des Konzeptes ist es eine automatische

Integration zu ermöglichen. Dies unterscheidet das Konzept zu bestehenden Arbeiten, welche

halb-automatisch verfahren oder auf Eingabe eines Anwenders bestehen, um die Aktualisie-

rungen einarbeiten zu können.

Das Konzept bedient sich dem Rahmenwerk zur Ablaufstruktur für Modell-Änderungs-

Management[GL12], dieses definiert die notwendigen Schritte, um zwei Modelle zu fusionieren.

Hierbei werden zunächst die Workflow-Modelle auf ein mathematisches Graph-Modell abstra-

hiert. Die Abstraktion als Graph erlaubt es, die Modelle zu vergleichen und Aktualisierungen,

sowie vorhandene Bestandteile des alten Modells zu identifizieren.

Der Vergleich der Modelle erfolgt über den Graphen. Die Beziehung der Knoten beider Modelle

wird mittels einer Zuordnung[Ger07] beschrieben. Eine Zuordnung kann zwischen zwei

Knoten bestehen und gibt an, ob diese entweder in einem oder beiden Modellen vorhanden

sind. Je nachdem welche Zuordnungen auf einen Knoten zutrifft, kann ermittelt werden, ob

dieser hinzugefügt oder entfernt wurde. Zudem werden Knoten, welche in beiden Modellen

vorhanden sind, als Referenzpunkte definiert.

Als nächster Schritt wird ein Skelett aus Knoten erstellt. Dazu werden die Knoten aus dem

neuen Modell kopiert. Im Skelett fehlen damit noch die alten Bestandteile aus dem vorherigen

81

9. Zusammenfassung und Ausblick

Modell. Jedoch sind im Skelett bereits alle Änderungen (Hinzufügungen, Löschungen, Ver-

schiebungen) enthalten. Dadurch müssen die Verschiebungen, welche im Vergleich zum alten

Modell erfolgten, nicht detailliert ermittelt werden. Der Vorteil dieses Vorgehens zeigt sich vor

allem bei komplexeren Aktualisierungen.

Im Anschluss werden die Bestandteile des alten Modells in das Skelett eingefügt. Dazu werden

die Bestandteile relativ positioniert. Die Positionierung erfolgt unter einem zuvor ermittelten

Referenzpunkt. Konflikte zwischen den Modellen werden durch die Dominanz des neueren

Modells gelöst, welches den Ausgang des Konflikts bestimmt.

Zudem wurde das präsentierte Konzept in den wissenschaftlichen Prototyp implementiert,

welcher mit nötigen Anpassungen versehen wurde.

Das Konzept erlaubt es Aktualisierungen an die betroffenen Teilnehmer weiterzuleiten und

automatisch zu integrieren. Dies bringt eine erhebliche Einsparung an Arbeitszeit, welche für

die Integration der Änderungen aufgewendet werden müsste.

9.2. Ausblick

Ob sich das Konzept in der Praxis bewährt, muss für weitere Anwendungsfälle geprüft werden.

Die Implementierung ist unter Beachtung möglicher Erweiterungen umgesetzt worden. Dies

erlaubt das vorgeschlagene Konzept einerseits zu optimieren, und andererseits Modelle mit

anderen darunter liegenden technischen Realisierungen zu unterstützen. Hier können weitere

Optimierungen in Form von Vergleichs- und Vereinigungsstrategien entwickelt werden.

Das Konzept betrachtet die Weitergabe der Aktualisierungen innerhalb der Top-down Model-

lierung. Die automatische Weitergabe der Aktualisierungen innerhalb der Bottom-up Modellie-

rung benötigt weitere Untersuchungen, damit Änderungen aus den einzelnen Orchestrierung

hin zur Choreographie realisierbar sind.

Durch eine Versionierung von Choreographien könnten Änderungen langfristig verfolgt, sowie

auf frühere Modelldefinitionen zurückgegriffen werden. Hier ist weiter Forschung nötig, wie

eine solche Versionierung durchgeführt und in den Prototyp integriert werden kann.

In diesem Zusammenhang wäre auch eine Vergleichsansicht wünschenswert, in der Modelle

verglichen und Änderungen übernommen werden können.

82

Anhang

• Klassifizierung des Match und Merge-Operators

• Typische Referenzpunkte

• Abkürzungsverzeichnis

83

A. Klassifizierung des Match und
Merge-Operators

Die Klassifizierung desMatch (match : model×model 7→ relationship) undMerge-Operators

(merge : model ×model × relationship 7→ model) erfolgt nach Brunet et al. [Bru+06]. Die

Beziehung der Modelle basiert auf den Zuordnungen.

Merge-Operator

• Idempotenz merge(m1, m1) = m1:

Die Idempotenz des Operators ist gegeben, das bedeutet ein Modell das mit sich selbst

fusioniert wird resultiert im identischen Modell.

• Kommutativität merge(m1, m2) = merge(m2, m1):
Die Kommutativität ist nicht gegeben. Es wird angenommen, dass ein Modell in das

andere Modell integriert wird.

• Assoziativität merge(merge(m1, m2), m3) = merge(m1, merge(m2, m3)):
Die Assoziativität ist nicht gegeben. Die Reihenfolge der Anwendung des Merge-

Operators ist aufgrund der Modell-Dominanz entscheidend.

• Monotonie m1 ≼ m′
1 ∧m2 ≼ m′

2 ⇒ merge(m1, m2) ≼ merge(m′
1, m′

2):
Die Monotonie ist gegeben, falls die Relation für übernommene Änderungen steht.

• Totalität ∀m1, m2 ∈ model : merge(m1, m2) ∈ model:
Die Totalität ist gegeben, aus zwei Modellen resultiert wieder ein gültiges Modell.

Match-Operator Der Match-Operator liefert eine binäre Relation für die Knoten V der

Modelle A, B. Die Relation wird durch A × B 7→ (Va, Vb) beschrieben. Ein Knoten V ist

maximal einmal in der Relationsmenge enthalten.

85

B. Typische Referenzpunkte

Innerhalb der verwendeten Modelle zeichnen sich typische Referenzpunkte ab.

B.1. BPEL-Datei

Typische Referenzpunkte der BPEL-Datei sind folgende Elemente:

• process

• extensions

• partnerLinks

• messageExchanges

• variables

• correlationSets

• faultHandlers

• eventHandlers

• onAlarm

• activity Aktivitäten mit ID.

Für Aktivitäten ohne ID muss Similarity-Matching verwendet werden.

B.2. Deployment-Datei

Typische Referenzpunkte der Deployment-Datei sind folgende Elemente:

• deploy

• process

87

B. Typische Referenzpunkte

B.3. WSDL-Datei

Typische Referenzpunkte der WSDL-Datei sind folgende Elemente:

• definitions

• types

• message

• portType

• binding

• service

88

C. Abkürzungsverzeichnis

API Application Programming Interface

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

DOM Document Object Model

EMF Eclipse Modeling Framework

EPC Event-driven Process Chain

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

JAXP Java API for XML Processing

KMC Kinetic Monte Carlo Simulation

Mayflower Model-as-you-go Workflow Developer

MD Molekulardynamik Simulation

MOF Meta Object Facility

PBD Participant Behavior Description

PG Participant Grounding

PTop Participant Topology

RPST Refined Process Structure Tree

SAX Simple API for XML

SESE Single-Entry-Single-Exit

SimTech Simulation Technologie

SOA Service orientierte Architektur

SoC Separation of Concerns

StAX Streaming API for XML

89

C. Abkürzungsverzeichnis

URI Uniform Resource Identifier

UML Unified Modeling Language

W3C World Wide Web Consortium

WfMs Workflow-Management-System

WS Webservice

WSDL Web Services Description Language

WST Webservice Technologie

WS-* Webservice Stack

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XPath XML Path Language

90

Literaturverzeichnis

[Aal12] W.M. van der Aalst. „A decade of business process management conferences:

personal reflections on a developing discipline“. In: International Conference on
Business Process Management. Springer. 2012, S. 1–16 (zitiert auf S. 13).

[And+13] V. Andrikopoulos, S. Gómez Sáez, D. Karastoyanova, K. Vukojevic-Haupt et al.

Modeling Choreographies using the BPEL4Chor Designer: an Evaluation Based on
Case Studies. Stuttgart, Germany, Universität Stuttgart, 2013 (zitiert auf S. 62).

[AP03] M. Alanen, I. Porres. „Difference and union of models“. In: International Con-
ference on the Unified Modeling Language. Springer. 2003, S. 2–17 (zitiert auf

S. 36).

[BG07] R. Barga, D. Gannon. „Scientific versus business workflows“. In:Workflows for
e-Science. Springer, 2007, S. 9–16 (zitiert auf S. 13).

[Bru+06] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, M. Sabetzadeh. „A

manifesto for model merging“. In: Proceedings of the 2006 international workshop
on Global integrated model management. ACM. 2006, S. 5–12 (zitiert auf S. 36, 85).

[Bru11] C. Brun. What every developer should know about EMF Compare. 2011. url: https:
//www.slideshare.net/cbrun/what-every-developer-should-know-about-emf-

compare (zitiert auf S. 75).

[Dec+07] G. Decker, O. Kopp, F. Leymann, M. Weske. „BPEL4Chor: Extending BPEL for

modeling choreographies“. In: Web Services, 2007. ICWS 2007. IEEE International
Conference on. IEEE. 2007, S. 296–303 (zitiert auf S. 26, 27).

[Dec+09] G. Decker, O. Kopp, F. Leymann, M. Weske. „Interacting services: From specifica-

tion to execution“. In: Data & Knowledge Engineering 68.10 (2009), S. 946–972

(zitiert auf S. 62).

[Dij+09] R. Dijkman, M. Dumas, L. Garcia-Banuelos, R. Kaarik. „Aligning business process

models“. In: Enterprise Distributed Object Computing Conference, 2009. EDOC’09.
IEEE International. IEEE. 2009, S. 45–53 (zitiert auf S. 35).

[FRMR12] W. Fdhila, S. Rinderle-Ma, M. Reichert. „Change propagation in collaborative

processes scenarios“. In: Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2012 8th International Conference on. IEEE. 2012,
S. 452–461 (zitiert auf S. 31).

91

https://www.slideshare.net/cbrun/what-every-developer-should-know-about-emf-compare
https://www.slideshare.net/cbrun/what-every-developer-should-know-about-emf-compare
https://www.slideshare.net/cbrun/what-every-developer-should-know-about-emf-compare

Literaturverzeichnis

[GAJV08] F. Gottschalk, W. van der Aalst, M. Jansen-Vullers. „Merging event-driven process

chains“. In: On the Move to Meaningful Internet Systems: OTM 2008 (2008), S. 418–
426 (zitiert auf S. 32, 33).

[Gan+07] D. Gannon, E. Deelman, M. Shields, I. Taylor. „Introduction“. In:Workflows for
e-Science. Hrsg. von I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields. London:

Springer London, 2007, S. 1–8. isbn: 978-1-84628-519-6 (zitiert auf S. 21).

[Ger07] C. Gerth. „Business Process Merging-An Approach based on Single-Entry-Single-

Exit Regions“. Masterarbeit. 2007 (zitiert auf S. 33, 34, 42, 43, 81).

[GKE09] C. Gerth, J.M. Küster, G. Engels. „Language-independent change management

of process models“. In: International Conference on Model Driven Engineering
Languages and Systems. Springer. 2009, S. 152–166 (zitiert auf S. 74).

[GL12] C. Gerth, M. Luckey. „Towards Rich Change Management for Business Process

Models“. In: Softwaretechnik-Trends 32.4 (2012), S. 32–34 (zitiert auf S. 34, 40, 41,
81).

[Hin14] K. Hintermayer. „Modellierung und Ausführung einer gekoppelten Festkörpersi-

mulation mit Workflow-Choreographien“. Masterarbeit. 2014 (zitiert auf S. 15).

[Hul+06] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, T. Oinn. „Ta-

verna: a tool for building and running workflows of services“. In: Nucleic acids
research 34 (2006), W729–W732 (zitiert auf S. 13).

[JPP94] R. Johnson, D. Pearson, K. Pingali. „The program structure tree: Computing

control regions in linear time“. In: ACM SigPlan Notices. Bd. 29. 6. ACM. 1994,

S. 171–185 (zitiert auf S. 29).

[KGE09] J.M. Küster, C. Gerth, G. Engels. „Dependent and conflicting change operati-

ons of process models“. In: European Conference on Model Driven Architecture-
Foundations and Applications. Springer. 2009, S. 158–173 (zitiert auf S. 74).

[KL08] O. Kopp, F. Leymann. „Choreography Design Using WS-BPEL.“ In: IEEE Data
Eng. Bull. 31.3 (2008), S. 31–34 (zitiert auf S. 13).

[KR] K. G.M.S. D. Karastoyanova, F. L.M. Reiter. Conventional workflow technology for
scientific simulation, S. 22 (zitiert auf S. 13).

[KSN92] G. Keller, A.-W. Scheer, M. Nüttgens. Semantische Prozeßmodellierung auf der
Grundlage ¨Ereignisgesteuerter Prozeßketten (EPK)". Inst. für Wirtschaftsinforma-

tik, 1992 (zitiert auf S. 32).

[Küs+08] J.M. Küster, C. Gerth, A. Förster, G. Engels. „Detecting and resolving process

model differences in the absence of a change log“. In: International Conference on
Business Process Management. Springer. 2008, S. 244–260 (zitiert auf S. 34).

[Ley10] F. Leymann. „BPEL vs. BPMN 2.0: Should you care?“ In: International Workshop
on Business Process Modeling Notation. Springer. 2010, S. 8–13 (zitiert auf S. 26).

92

Literaturverzeichnis

[LLS10] K. C. Laudon, J. P. Laudon, D. Schoder.Wirtschaftsinformatik: Eine Einführung.
Pearson Deutschland GmbH, 2010 (zitiert auf S. 21).

[LR+10] M. La Rosa, M. Dumas, R. Uba, R. Dijkman. „Merging business process models“. In:

OTM Confederated International Conferences¨ On the Move to Meaningful Internet
Systems". Springer. 2010, S. 96–113 (zitiert auf S. 13, 35).

[LR00] F. Leymann, D. Roller. „Production workflow: concepts and techniques“. In: (2000)

(zitiert auf S. 13, 21, 22).

[Lud+06] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,

J. Tao, Y. Zhao. „Scientific workflow management and the Kepler system“. In:

Concurrency and Computation: Practice and Experience 18.10 (2006), S. 1039–1065
(zitiert auf S. 13).

[Nem14] M. Nemet. „Kapselung von bestehenden Simulationsanwendungen mit Hilfe von

Web Services“. Bachelorarbeit. 2014 (zitiert auf S. 26).

[PB03] R. A. Pottinger, P. A. Bernstein. „Merging models based on given correspon-

dences“. In: Proceedings of the 29th international conference on Very large data
bases-Volume 29. VLDB Endowment. 2003, S. 862–873 (zitiert auf S. 34, 42).

[RSM11] P. Reimann, H. Schwarz, B. Mitschang. „Design, implementation, and evalua-

tion of a tight integration of database and workflow engines“. In: Journal of
Information and Data Management 2.3 (2011), S. 353 (zitiert auf S. 13, 22).

[RWR06a] S. Rinderle, A. Wombacher, M. Reichert. „Evolution of process choreographies in

DYCHOR“. In: On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE (2006), S. 273–290 (zitiert auf S. 13).

[RWR06b] S. Rinderle, A. Wombacher, M. Reichert. „On the controlled evolution of process

choreographies“. In: Data Engineering, 2006. ICDE’06. Proceedings of the 22nd
International Conference on. IEEE. 2006, S. 124–124 (zitiert auf S. 13).

[Sch+11] D. Schumm, D. Karastoyanova, F. Leymann, S. Strauch. „Fragmento: advanced

process fragment library“. In: Information Systems Development. Springer, 2011,
S. 659–670 (zitiert auf S. 46).

[Sch14] J. Schilling. „Analyse und Erweiterung eines bestehenden Choreographiewerk-

zeugs“. Studienarbeit. 2014 (zitiert auf S. 61).

[SHK12] M. Sonntag, M. Hahn, D. Karastoyanova. „Mayflower-Explorative Modeling of

Scientific Workflows with BPEL.“ In: BPM (Demos). 2012, S. 45–50 (zitiert auf
S. 13, 22, 23).

[SK10] M. Sonntag, D. Karastoyanova. „Next generation interactive scientific experi-

menting based on the workflow technology“. In: Proceedings of MS’10 (2010),

S. 349–356 (zitiert auf S. 13).

93

Literaturverzeichnis

[SKD10] M. Sonntag, D. Karastoyanova, E. Deelman. „Bridging the gap between business

and scientific workflows: Humans in the loop of scientific workflows“. In: e-
Science (e-Science), 2010 IEEE Sixth International Conference on. IEEE. 2010, S. 206–
213 (zitiert auf S. 13).

[SKL10] M. Sonntag, D. Karastoyanova, F. Leymann. „The Missing Features of Work-

flow Systems for Scientific Computations.“ In: Software Engineering (Workshops).
Citeseer. 2010, S. 209–216 (zitiert auf S. 13).

[Son13] O. Sonnauer. „Modellierung von Scientific Workflows mit Choreographien“.

Diplomarbeit. 2013 (zitiert auf S. 61).

[Tay+07] I. Taylor, M. Shields, I. Wang, A. Harrison. „The triana workflow environment:

Architecture and applications“. In:Workflows for e-Science. Springer, 2007, S. 320–
339 (zitiert auf S. 13).

[TM10] C. Thao, E. V. Munson. „Using versioned tree data structure, change detection

and node identity for three-way XML merging“. In: Proceedings of the 10th ACM
symposium on Document engineering. ACM. 2010, S. 77–86 (zitiert auf S. 36).

[VVK09] J. Vanhatalo, H. Völzer, J. Koehler. „The refined process structure tree“. In: Data
& Knowledge Engineering 68.9 (2009), S. 793–818 (zitiert auf S. 32).

[Wee+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web services
platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-
reliable messaging and more. Prentice Hall PTR, 2005 (zitiert auf S. 13, 24, 25).

[Wei+15] A. Weiß, V. Andrikopoulos, M. Hahn, D. Karastoyanova. „Enabling the extraction

and insertion of reusable choreography fragments“. In:Web Services (ICWS), 2015
IEEE International Conference on. IEEE. 2015, S. 686–694 (zitiert auf S. 61).

[Wei12] A. Weiß. „Merging of TOSCA cloud topology templates“. Masterarbeit. 2012

(zitiert auf S. 28, 29).

[Whi04] S. A. White. „Introduction to BPMN“. In: IBM Cooperation 2 (2004) (zitiert auf

S. 13).

[WK14] A. Weiß, D. Karastoyanova. „A life cycle for coupled multi-scale, multi-field

experiments realized through choreographies“. In: Enterprise Distributed Object
Computing Conference (EDOC), 2014 IEEE 18th International. IEEE. 2014, S. 234–
241 (zitiert auf S. 23).

[WK16] A. Weiß, D. Karastoyanova. „Enabling coupled multi-scale, multi-field experi-

ments through choreographies of data-driven scientific simulations“. In: Compu-
ting 98.4 (2016), S. 439–467 (zitiert auf S. 15, 25).

[WKM] A. Wei, D. Karastoyanova, D. Molnar. „Coupling of Existing Simulations using

Bottom-up Modeling of“. In: Workshop on Simulation Technology: Systems for
Data Intensive. Gesellschaft für Informatik eV (GI), S. 1–12 (zitiert auf S. 15, 26).

[Wol15] N. Wolter. „Konzept und Implementierung für Choreographiecontainer“. Master-

arbeit. 2015 (zitiert auf S. 61).

94

[Woo+00] L. Wood, G. Nicol, J. Robie, M. Champion, S. Byrne. Document object model (DOM)
level 3 core specification. 2000 (zitiert auf S. 29).

[WRRM08] B. Weber, M. Reichert, S. Rinderle-Ma. „Change patterns and change support

features–enhancing flexibility in process-aware information systems“. In: Data
& knowledge engineering 66.3 (2008), S. 438–466 (zitiert auf S. 32, 45).

Alle URLs wurden zuletzt am 22. 05. 2017 geprüft.

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-

ben. Ich habe keine anderen als die angegebenen Quellen

benutzt und alle wörtlich oder sinngemäß aus anderen Wer-

ken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren

bisher Gegenstand eines anderen Prüfungsverfahrens. Ich

habe diese Arbeit bisher weder teilweise noch vollständig

veröffentlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	Abbildungsverzeichnis
	Verzeichnis der Listings
	Verzeichnis der Algorithmen
	1 Einleitung
	1.1 Motivation
	1.2 Szenario
	1.3 Hintergrund
	1.4 Ziel der Arbeit
	1.5 Gliederung

	2 Grundlagen
	2.1 Workflow-Management
	2.2 Kompositionen
	2.3 Modellierung
	2.4 Technologien
	2.5 Notation
	2.6 Verarbeitung

	3 Verwandte Arbeiten
	3.1 Business Process Management
	3.2 Data Engineering
	3.3 Software Engineering

	4 Anforderungsanalyse
	4.1 Aktualisierung und Änderungsweitergabe
	4.2 Fusion von Modellen
	4.3 Änderungsmuster
	4.4 Artefakte

	5 Konzept
	5.1 Anforderungen
	5.2 Annahmen
	5.3 Vergleichen und Verschmelzen
	5.4 Beispiel
	5.5 Algorithmus

	6 Prototyp
	6.1 BPEL4Chor Designer
	6.2 Verwendung
	6.3 Architektur
	6.4 Eigenschaften
	6.5 Anpassungen
	6.6 Beurteilung

	7 Implementierung
	7.1 Komponenten
	7.2 JDOM Bibliothek
	7.3 Integrierung in den Prototyp

	8 Evaluierung
	8.1 Anforderungen
	8.2 Funktionsweise
	8.3 Schwächen
	8.4 Laufzeitabschätzung

	9 Zusammenfassung und Ausblick
	9.1 Zusammenfassung
	9.2 Ausblick

	A Klassifizierung des Match und Merge-Operators
	B Typische Referenzpunkte
	B.1 BPEL-Datei
	B.2 Deployment-Datei
	B.3 WSDL-Datei

	C Abkürzungsverzeichnis
	Literaturverzeichnis

