
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis No. 38

A Pattern Language for Modeling
the Provisioning of Applications

Christian Endres

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: Dipl.-Inf. Uwe Breitenbücher
M.Sc. Michael Falkenthal

Commenced: March 05, 2015

Completed: November 04, 2015

CR-Classification: D.2.11

Abstract

In cloud computing, there are various technologies that automate the provisioning of cloud
applications by employing different domain-specific languages and modeling techniques. These
domain-specific languages and modeling techniques encompass different extents of functional-
ity that the user have to know before the decision for or against a technology can be made.
This master thesis contributes by introducing the Application Provisioning Modeling Pattern
Language that enables the user to understand the underlying principles of the considered
technologies, choose one technology according the requirements, and model the provisioning
of the desired cloud application. The introduced Application Provisioning Modeling Pattern
Language fosters the understanding of cloud application provisioning and works out the differ-
ences of the considered technologies as well as shows how the concepts can be combined. The
Application Provisioning Modeling Pattern Language is validated by documenting systemati-
cally the occurrences of the concepts, their requirements and implications and by providing a
statistical basis that quantitatively proves the repeatedly occurrence of the found principles.

3

Contents

1 Introduction 7
1.1 Problem Domain and Motivation . 7
1.2 Research Issus and Contributions . 8
1.3 Research Method . 9
1.4 Structure of the Document . 9

2 Fundamentals and Related Work 11
2.1 Patterns . 11

2.1.1 On Patterns and Pattern Languages . 12
2.1.2 A Process for Pattern Identification, Authoring, and Application 13
2.1.3 Formulating Patterns . 13

2.2 Patterns in Computer Science and Information Technologies 14
2.3 State of the Art Management Technologies . 15

2.3.1 Bluemix . 16
2.3.2 Chef . 16
2.3.3 Juju . 18
2.3.4 TOSCA and OpenTOSCA . 18
2.3.5 General-purpose Infrastructure, Platform and Cloud Provider Technolo-

gies and APIs . 19

3 Research Design 21
3.1 Pattern Identification . 21
3.2 Authoring Pattern . 22
3.3 Pattern Application . 24
3.4 Summary of the Adapted Process . 25

4 Analyzed Artefacts 27
4.1 Chef Cookbooks . 27
4.2 Juju Charms . 28

5 Design of the Application Provisioning Modeling Pattern Language 31
5.1 Domain Definition and Constraints . 31

5.1.1 Domain Definition . 31
5.1.2 Domain Characteristic Problems . 32

5

5.2 Information Format Design . 33
5.2.1 Sequence Diagram . 33
5.2.2 Graphical Notation of Icons and Sketches 33

5.3 Pattern Primitives Definition . 35
5.4 Pattern and Pattern Language Design . 38

6 Application Provisioning Modeling Pattern Language 41
6.1 Imperative Provisioning . 42
6.2 Declarative Provisioning . 45
6.3 Parametrized Imperative Provisioning . 47
6.4 Local Management Operation Execution . 50
6.5 Component Lifecycle Interface . 52
6.6 Container Component Interface . 54
6.7 Explicit Dependency Model . 57
6.8 Implicit Dependency Model . 59
6.9 External Instance Data Access . 61
6.10 Overview of the Pattern Language . 63

7 Discussion 65
7.1 Overview of the Known Uses of the Patterns and Pattern Candidates 65
7.2 Maturity Evaluation of the Patterns and Pattern Candidates 65
7.3 Threats to Validity . 66
7.4 Limits of the Thesis . 67

8 Literature and Other Resources 69
8.1 Literature . 69
8.2 Online Resources . 72

9 Appendix 79
9.1 List of Figures . 79
9.2 List of Tables . 80

6

1 Introduction

In this chapter, the background of this master thesis is introduced. First, in Section 1.1, the
domain of cloud computing, application provisioning and their relevance are discussed as well
as why there is need for further research. Subsequent, in Section 1.2, the research issues in the
problem domain and the contributions are outlined. In Section 1.3, the research method is
described briefly. Also, the structure of the document is outlined in Section 1.4 to provide an
overview of this document.

1.1 Problem Domain and Motivation

Cloud computing is currently one of the major topics for companies that rely on or use infor-
mation technology. Figure 1.1 depicts a current statistic about the usage of cloud computing in
German companies. Between 403 and 458 executives of companies that have more than 20
employees took part in the surveys between 2011 and 2014. [KPM]

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

2011 2012 2013 2014

Nutzung von Cloud Computing in Unternehmen in
Deutschland in den Jahren 2011 bis 2014

Figure 1.1. Statistic about the usage of cloud computing in German
companies between 2011 and 2014 [KPM]

According to this statistic, cloud
computing becomes more and
more important. Contrary to
this trend, it is not realistic to
assume that all companies have
dedicated experts responsible
for the used cloud technology in
combination with their custom
business software. Cloud com-
puting promises reduced costs
and flexible usage that is fitted
to the dynamically changing demand [Ley09]. Fulfilling these promises introduces new chal-
lenges. Also, cloud computing offers to book computing power and storage in a remote and
public, on premise and private, or hybrid environment that is operated by oneself or a chosen
provider. But booking computing power and storage does not address the issue of whom
is responsible for provisioning and operating the custom business software, nor the issue of
handling the hidden infrastructure stack behind an arbitrary cloud computing interface and
the usage of that interface.

7

1 Introduction

To tackle the issues of provisioning and operating software in the virtualized context of the
cloud, there are different vendors and approaches. Famous and wide-spread representatives
are, for example, Chef [Cheh] and Juju [Canm]. Both provide a means of more or less easy
provisioning of applications in the cloud. New in this domain are the Bluemix called solution
of IBM [IBMg] and the OASIS standard TOSCA [OASb] with the open-source ecosystem
OpenTOSCA [Unia]. All these approaches tackle the issue of supporting users in their task of
provisioning and operating custom business software. Therefore, these approaches aim for a
high degree of automation of the provisioning and management of the applications, reusability
of the used artifacts, and a usage as easy as possible.

But the aforementioned standard and technologies differ in their modeling and execution
capabilities. The user has to model the application to be provisioned in the particular domain-
specific language that the standard or technology enforces. Consequently, the domain-specific
language are executed with different runtimes. Therefore, the users have to find out themselves
the right technology for their particular job according the technology’s functionalities and
mechanisms. The master thesis aims for supporting the users in their understanding of the
mechanisms, principles, and their combination. Consequently, the master thesis provides means
to select the right technology regarding abstract requirements, a design method to model
characteristics of the provisioning and the application to be provisioned in this technology, and
a deeper understanding of the underlying concepts.

1.2 Research Issus and Contributions

The provisioning of custom applications in the cloud encompasses many aspects, for example,
the provisioning of custom applications using the current technologies Bluemix, Chef, or Juju
or the standard TOSCA in combination with OpenTOSCA. The research issues of this master
thesis are the identification of often used mechanisms and the underlying principles regarding
the provisioning of arbitrary applications using the aforementioned standard and technologies,
the identification of the resulting requirements and implications, and the commonalities and
structured combination of the identified principles. To document the findings, a pattern
language has been formulated.

This master thesis contributes to the current research by providing a design method for
modeling reusable cloud application components regarding their provisioning in the cloud
using the aforementioned standard and technologies. The design method is provided in
the form of the Application Provisioning Modeling Pattern Language that documents the
identified principles, their combined usage and the supporting technologies. With this pattern
language, the readers are enabled to model their desired application and the provisioning of
this application, and to choose a standard or technology capable of realizing their model.

8

1.3 Research Method

1.3 Research Method

The aim of the master thesis is to formulate a pattern language. The patterns, pattern
candidate, and the pattern language follow the rules introduced and summed up by Buschmann
et al. [BHS07]. To formulate the pattern language, the iterative pattern identification and
writing process of Fehling et al. [FLRS+14] is used in combination with the writing process
of Wellhausen et al. [WF12]. The details and rules of the methodology are introduced and
defined in the Section 2.1 and Chapter 3.

To ensure the correctness and existence of the introduced patterns, they are evaluated by
explicitly stating their occurrence in the known uses Paragraph of each pattern in Chapter 6.
With this approach, each pattern fulfills the rule of three occurrences for being a pattern
[CA96]. If patterns occurred less than three times, they are marked as pattern candidates.
Counting occurrences are those in the aforementioned standard TOSCA and the technologies
Bluemix, Chef, Juju and OpenTOSCA and in addition other technologies, for example, the
Apache Tomcat. Scientific work may contribute with additional evidences, but do not count
because they are no dedicated solutions for provisioning cloud applications or are widely used
in that context.

1.4 Structure of the Document

The master thesis is structured as follows: In the first chapter, domain and research question
are stated. In Chapter 2 the fundamentals and related work are introduced. First the related
work covering patterns and pattern languages is introduced, followed by motivating examples
of patterns in the domain of computer technology and computer science, and an overview
of the considered technologies is outlined. Subsequent, in Chapter 3, the research design is
defined, followed by the analysis of core artifacts in Chapter 4. The utilized research process
produces besides the pattern language itself a set of definitions of the analyzed domain, the
documentation format, pattern primitives, and the pattern and pattern language design. These
results are documented in Chapter 5. The Chapter 6 documents the pattern language with its
patterns and pattern candidates. The results, threats to validity, and the limits of the master
thesis are discussed in Chapter 7, followed by the bibliography in Chapter 8.

9

2 Fundamentals and Related Work

This chapter introduces the fundamentals and existent works on which this master thesis bases.
First, this introduction outlines the pattern topic in general. Subsequent, some pattern works
in the information technology context are presented to provide motivating examples for this
thesis. Finally, this chapter sketches key management technologies for cloud applications in
which, as well as in scientific work, patterns may be found.

2.1 Patterns

Many pattern authors point to Christopher Alexander for being the founder of the pattern
movement, for example, Coplien et al. [CA96]. In 1977, Christopher Alexander et al. laid the
foundations for patterns and pattern languages by publishing the two books covering patterns
about "architecture, building and, planning" [AIS77; Ale79] and pattern thinking. Alexander
points out that thinking in patterns is a process that considers the living of and in the things
that are described by patterns, that patterns are precise but not directly applicable, so simple
that it seems to be childish to point out, and structured but always different like languages. In
the context of architecture, there are many patterns. On the first sight, some are more concrete,
for example, the "beer hall" [AIS77] and some more abstract, for example, the "tapestry of
light and dark" [AIS77], but all describe abstract principles of mechanisms that can be used to
achieve a certain effect. [AIS77]

The impact of this kind of thinking is also concise for disciplines that have nothing to do with
architecture, for example, the computer science. There are even conferences about patterns
and exploiting patterns in the field of computer science, for example, the PLoP [Theb] or in
Europe the EuroPLoP [Thea]. The "most relevant" [BHS07] pattern publications about the
pattern concepts in computer science are the works of Buschmann et al. [BMRS+96], Coplien
et al. [CA96], and Gamma et al. [GHJV94]. The book A system of patterns: Pattern-oriented
software architecture [BMRS+96] of Buschmann et al. is the first book of the so-called POSA
series that covers knowledge of patterns and concrete patterns in the field of computer science.
The Design patterns: elements of reusable object-oriented software [GHJV94] of Gamma et al.
could be the most famous book about software engineering patterns. At least these patterns
are taught at the University of Stuttgart as foundation for good software engineering. Also,
Coplien et al. contributed to the pattern movement by stating that "a good pattern should have

11

2 Fundamentals and Related Work

three examples that show three insightfully different implementations" [CA96]. This rule of
thumb describes the obstacle between pattern candidates and patterns in this master thesis.

In Section 2.1.1, the lessons learned of the book Pattern-oriented Software Architecture: On
Patterns and Pattern Language [BHS07] are outlined: Buschmann et al. documented their
years of experience with writing, authoring, and shepherding patterns. This book provides
comprehensive knowledge about the pattern concept, patterns and pattern languages, besides
other forms of pattern collections. The paper “A Process for Pattern Identification, Authoring,
and Application” [FBBL15] introduces a process for writing patterns in a structured, iterative
manner. Also, the authors point out to analyze software artifacts, for example, source code
or documentation, in addition to solely interview experts to find evidences for patterns. The
Section 2.1.2 and Chapter 3 describe the details and how the process is adapted for this master
thesis. The paper “How to Write a Pattern?: A Rough Guide for First-time Pattern Authors”
[WF12] proposes an approach for formulating a pattern that is described in Section 2.1.3 more
detailed.

2.1.1 On Patterns and Pattern Languages

The book Pattern-oriented Software Architecture: On Patterns and Pattern Language [BHS07]
focuses on patterns, what they should be and what not, and how they form pattern languages.
Towards well-built patterns, Buschmann et al. define patterns as follows:

Existing experience and best practice to solve certain problems can be documented as Patterns.
The formulated patterns should be independent of distinct project details, constraints, lan-
guages or paradigms. Patterns are abstract and never on the level of concrete objects, classes
or components. Patterns may contribute as a vocabulary to the transfer of knowledge about
design concepts. Patterns can contribute to document software architectures as well as to
design a software for distinct characteristics. [BHS07]

Contrary, the authors identified misapplication of or misconceptions about patterns: Not all
artifacts or solution attempts of software developers are patterns. Also, not all smart designs
or single design decisions are patterns. Patterns are not static pieces nor guidelines and are
not necessarily easy to understand, thus not easily to apply. Also, patterns may not contribute
to solve a given problem, but may be chosen nonetheless. Patterns cannot contribute to
new domains. Patterns are not components and cannot be applied directly. Patterns are not
buzzwords. [BHS07]

In addition to the patterns that are standing for themselves, pattern languages form a concept of
"systematic application of patterns" [BHS07]. A pattern language consists of "tightly integrated
patterns" [BHS07] and should answer to the following questions: Which domain is addressed
by the pattern language and what are the driving forces? Which problem areas are tackled
by the pattern language? How is the structure of the pattern language and are there paths

12

2.1 Patterns

between the single patterns which the reader can or should follow? What semantic have the
links between patterns that form the paths? [BHS07]

2.1.2 A Process for Pattern Identification, Authoring, and Application

In [FBBL15], a process is introduced that guides authors to identify commonalities, formulate
them to pattern, and to work the patterns up for better usability. Figure 2.1 depicts the three
main phases that the paper defines. The phases are iterative, the second depends on the results
of the first phase. In contrast, the third phase is independent as soon as patterns are produced.
However, the third phase is included in the iterative circle.

Pattern Process

Pattern Application

Pattern Identification Pattern Authoring

Figure 2.1. Sketch of the Pattern Identification, Authoring, and
Application Process [FBBL15]

The first main phase serves to iden-
tify commonalities that could be pat-
terns. The results of the phase are a
definition of the target domain and
the constraints limiting it, how the
analyzed data has to be prepared
for better processing, a vocabulary
of specific language elements of the
domain and the collected informa-
tion in which the pattern can be
found.

In the second phase, the found com-
monalities are authored to patterns.
This results into the definition of the
documentation structure, the revi-
sion of the already existing vocabu-
lary, the definition of how this vocabulary can be composed to patterns, the actual patterns
and how they are interrelated.

The third phase helps to make the found pattern applicable for pattern users. The produced re-
sults are a better searchable summary of the patterns, reference implementations or references
to known implementations, guidelines to apply the patterns in the specific problem domain,
and techniques and tooling for reducing the manual effort of the pattern users.

2.1.3 Formulating Patterns

In their paper “How to Write a Pattern?: A Rough Guide for First-time Pattern Authors” [WF12],
the authors Wellhausen et al. propose an approach of how to write patterns. In contrast to
Fehling et al., the approach is not an overall process, but the detailed steps of writing the
pattern.

13

2 Fundamentals and Related Work

A pattern often starts with a statement about the problem that should be solved or the context
in which the pattern can be found and ends with the results of applying the pattern. Contrary
to this reading direction, the authors advise to write the pattern in another succession. The
approach is depicted in Figure 2.2.

Problem Domain Solution Domain

 Forces Consequences

 Solution Problem

Figure 2.2. Sketch of the pattern writing approach [WF12]

In search of patterns the pattern au-
thors do not find the problem or con-
text first. Instead, repeating occurrences
of slightly different implementations are
found. These implementations should
be documented on an abstract layer,
forming the solution part of the pattern.
Based on that solution the problem state-
ment can be formulated by answering
the question of what the solution solves
or why it should be considered. But
the authors should avoid trivial problem-
solution pairs, for example, "How to do
x?" and "Do x!". Knowing the solution
and the problem, the authors can aim
for enumerating the consequences of the

pattern application. This encompasses the benefits as well as the drawbacks. Further, to state
the forces Paragraph completes the depicted circle in Figure 2.2. The forces are sometimes
called motivation and answer the questions of why the solution is difficult to apply and why
other solutions are not suitable. Encompassing the problem statement and forces the context
can be formulated. It should state the pattern’s prerequisites without the problem cannot be
found. Last but not least, the pattern needs a name that should be short and easy to remember
as well as fitting to describe the proposition of the pattern. [WF12]

2.2 Patterns in Computer Science and Information Technologies

The Section 2.1 outlined patterns in general and approaches of how to acquire and formulate
them. In this section, some motivating examples of pattern works in the field of computer
science and information technologies are described.

The first pattern work to mention is the pattern catalog of the so-called Gang of Four, published
in the book Design patterns: elements of reusable object-oriented software by Gamma et al.
[GHJV94]. Gamma et al. introduce their patterns in three classifications: creational, structural,
and behavioral. The creational patterns describe how to hide the creation process and free
the rest of the application from the dependency of how the described component has to be
created. One basic pattern of this class is the Singleton pattern that describes exactly one,

14

2.3 State of the Art Management Technologies

globally accessible object. The structural patterns describe compositions of components to
a greater application. One representative of this class is the Adapter pattern that describes
how to enable the collaboration of two components that originally are not able to because of
their interface design. The third pattern class describes behavior patterns that describe how
components and their interaction are designed. One famous behavior pattern is the Observer
pattern that describes a one-to-many relation of one observed component to other observer
components. This relation depicts a mechanism of propagating a state change of the observed
component to the other observer components and enables the observer components react on
the state change. These three patterns and the others described in Gamma et al. may be the
basic literature for each adept of software engineering. [GHJV94]

With their book A system of patterns: Pattern-oriented software architecture [BMRS+96], the
authors Buschmann et al. describe a catalog of patterns that enables the users to design
software applications. Similar to the pattern book of Gamma et al., the authors divided their
patterns into three classifications: the architectural patterns, the design patterns, and idioms.
The architectural patterns describe possible structures of applications on the abstraction level
of the software architecture. Well-known examples are the Model-View-Controller pattern or
the Pipes and Filters pattern. The design patterns describe the interplay of components and
are more fine-grained as architectural patterns. The Proxy, for example, is a design pattern
which decouples the client from the actual component that should be not accessible directly.
These patterns are on a high abstraction layer and can be applied to different object-oriented
program languages, for example, Java. Contrary, there are idioms that describe principles on a
low level according their abstraction. They are specific to a program language and describe
characteristics of a component or the interplay between components. Buschmann et al. state
as examples for idioms the two different Singleton implementations in C++ and Smalltalk.
[BMRS+96]

The book Cloud Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Applica-
tions [FLRS+14] describes architectural patterns for cloud computing. The superior question is
how to design a cloud application architecture according common goals of cloud computing
strategies. Therefore, Fehling et al. describe categories of patterns, for example, the decomposi-
tion of components according the distribution of functionality or the component characteristics
according the faced workload. The patterns of this pattern language can be used by the reader
as a toolbox for designing cloud application architectures to face common challenges in the
cloud environment. [FLRS+14]

2.3 State of the Art Management Technologies

This section introduces provisioning and management technologies for cloud applications. This
introduction serves to get a better understanding of the technologies, but does not provide
all information contained in the respective documentations. The details of the technologies,

15

2 Fundamentals and Related Work

with which the patterns were found, are documented in combination with this section and the
known uses Paragraph in each pattern section in Chapter 6.

2.3.1 Bluemix

Bluemix is a cloud platform service of IBM with which users can host their application in the
cloud. Bluemix offers multiple platforms for different types of applications, for example, Java,
PHP, or Go as well as container solutions or virtual machines. Also, Bluemix offers enterprise
solutions and services, for example, to integrate applications with iOS, Internet of Things,
context mining, or hybrid cloud applications. Bluemix is able to host various offerings from
Bluemix itself, third parties and the community. [IBMd; IBMh; IBMj]

In Bluemix an application is called App and is developed and provided by the user. An App
can be provisioned into a runtime which is provided by Bluemix. Bluemix offers so-called
services to enable the App using other functionalities, for example, a database or caching,
which the user has not to provide. Boilerplates encompass multiple components, for example,
a predefined App, a respective runtime, and services for a distinct domain. A buildpack defines
dependencies of the App to, for example, other services. [IBMd]

There are two ways of managing utilized services of Bluemix: On the one hand, the users can
manage their applications using the graphical user interface [IBMj]. On the other hand, users
can exploit the cf command line interface of Cloud Foundry on which Bluemix bases [IBMc].
Additionally, Bluemix supports DevOps approaches by offering dedicated DevOps services, for
example, a delivery pipeline for better software development [IBMl].

2.3.2 Chef

Chef is a software that enables the automated provisioning and management of cloud applica-
tions [Cheh]. The cloud applications are described with cookbooks and recipes. The machines
can be any physical or virtual machines that runs the chef-client. Therefore, with Chef almost
any bootstrapped machine can be utilized. If not cited otherwise, the information for this
section can be found at [Chej].

Chef uses a central Chef server which is responsible for the management of Chef resources,
for example, cookbooks, the metadata about the application, and to respond to requests of
the chef-client for configuration details [Chei]. The chef-client is the agent which runs in the
application environment. The chef-client requests all needed configuration information from
the Chef server, compiles the specific sequence of management tasks to apply in the application
environment and processes them. This specific sequence of management tasks is called run-list
and is built anew for each chef-client run.

16

2.3 State of the Art Management Technologies

Chef serverchef-client

1) get local data

2) get node object

3) compile run-list

4) synchronize cookbooks

5) complete node object
6) compile phase
7) execution phase

8) report success

Notification
Service

9) report details

opt

Figure 2.3. Chef-client configuration process of an appli-
cation [Chej]

The cookbooks are the basic resources to de-
scribe configuration characteristics of com-
ponents. The cookbooks also contain the re-
sources needed for the configuration char-
acteristics, for example, recipes, policies, at-
tributes, and files [Cheb]. Attributes describe
details about applications, for example, the
current IP address. The attributes are man-
aged by the Chef server. The chef-client col-
lects additional resources during its run from
the Chef server or ad-hoc values from Ohai.
A cookbook can be used by another cookbook
which needs functionality from the aforemen-
tioned cookbook. Therefore, a cookbook can
expose its functional capabilities via an API
like definition called Resources. These Re-
sources are implemented by Providers which
represent distinct management operations to
realize the desired functionality represented
by the Resource, for example, on different
operating systems.

The configuration steps taken by the chef-client are depicted in Figure 2.3 and described by
the following enumeration:

1. All locally existing configuration information like the node name are collected. Sources
are the client.rb file and Ohai.

2. If available, the remote configuration information are downloaded from the Chef server
and rebuild. This configuration information collection is called node object and contains
also the previously processed run-list or a default run-list.

3. The list of roles and recipes is compiled in their exact order to apply. The sequence is
stored in the run-list of the node object.

4. The cookbooks and resources required to apply the run-list are loaded.

5. The local node object is completed by finalizing the attribute data stored in it. The
previous attributes are reset and updated with the current values

6. The resource collection is compiled and loaded.

7. The chef-client invokes actions to alter the bootstrapped machine according the node
object.

17

2 Fundamentals and Related Work

8. If the execution phase is successful, the node object of the Chef server is replaced with
the local node object.

9. Report details to a notification service like mail or logging.

2.3.3 Juju

Juju in version 1.24 promises to "[m]odel, build and scale your environments on any cloud"
[Canm]. Similar to Chef, the user is able to provision applications on physical machines and
virtual ones in the cloud on the service level and not on the machine level. In addition to its
own capabilities Juju also supports Ansible, Chef, Docker, and Puppet. If not cited otherwise,
the information in this section can be found at [Cana; Canb].

With Juju one can model an abstract service landscape. Services interacting with each other
are modeled with relations between them. Due these relations the services can react on events
with which is signaled, that the application has been altered. This is used from the very start
on, also during the provisioning of the application. If an instantiation event is triggered, a
so-called hook is executing the represented code to deal with the new situation. Such service
landscapes can be modeled with so-called Juju bundles. [Cana; Canc; Cani; Cank]

The service landscape encompasses modeled services. With Juju these services are defined in
charms which contain the "application-specific knowledge" [Cana] like integration options,
dependencies, or events. The services can be connected with each other using relations. If an
event happens, for example, triggered through such a relation, hooks are activated. Juju uses
an event-driven approach for structuring the execution sequence of management tasks as well
as enabling reusability. If two services are connected with each other and one has a change,
for example, regarding its lifecycle, the other service is able to react by letting the unit agent
execute the according hook. [Canc]

2.3.4 TOSCA and OpenTOSCA

The "Topology and Orchestration Specification for Cloud Applications" [OASb] (TOSCA) is
available in version 1.0 since November 2013. If not cited otherwise the information in
this section can be found at [OASa; OASb]. As the naming suggests there are two main
focuses aimed for in this specification: the definition of cloud application topologies and the
orchestration of those.

The definition of a cloud application structure is graph-based: The topology template consists
of node templates and relationship templates. Node templates represent a component of the
application, for example, an operating system or a web application. These node templates
can be connected with relationship templates. Relationship templates describe a logical
connection between two Node Templates, for example, a web application is hosted on an

18

2.3 State of the Art Management Technologies

Apache Tomcat or a web application connects to a MySQL database server. Both node templates
and relationship templates are typed to enable reusability. The composition of the node
templates and relationship templates is called a service template. The service template is the
blueprint for a specific, reusable service.

Node types and relationship types enables to define reusable characteristics. The node type
defines characteristics for a node template, requirements, capabilities, and its interfaces. The
relationship type defines the characteristics of a relationship template, which source and target
interfaces are available, and which source and target nodes are valid. Nodes and relations are
completed by the respective node type implementations and relationship type implementations
that contain the executables like code, scripts, and files.

In addition to the declarative definition of the topology by the topology template, the service
template is able to implement its management operations imperatively. Therefore, process
models are exploited, for example, BPEL 2.0 or BPMN 2.0. These management operations are
exposed in the boundary definitions of the service template to enable users or agents to manage
the described service.

The academic prototype OpenTOSCA implements TOSCA. OpenTOSCA is developed at Univer-
sity of Stuttgart since 2012. OpenTOSCA is an ecosystem for TOSCA cloud services packaged
in so-called CSARs. The OpenTOSCA container is the runtime environment with which the
CSARs can be deployed. With the Winery, the user can graphically model TOSCA applications.
The self-service portal for TOSCA applications is called Vinothek. [BBHK+13; Unia]

2.3.5 General-purpose Infrastructure, Platform and Cloud Provider Technologies and
APIs

In this section, other technologies that provide evidences for found patterns are briefly out-
lined.

Infrastructure Provider: Everything computed runs eventually on physical machines, the
so-called bare metal. Besides other advantages, this hardware layer can be virtualized to better
distribute workload. One provider is VMware with the products ESX, ESXi and vSphere. With
these technologies, virtual machines can be hosted. The virtual machines behave like common,
physical machines. Only the desired operating system has to be able to work on the virtualized
hardware. [VMw]

Platform Provider: In the cloud, there are multiple offerings for platforms that enable users
to provision and host easily their applications. One example is Docker that follows the concept
of containers: Every application and its dependencies are placed inside a container. Instead
of a general-purpose hypervisor layer like with VMWare, every container is placed on the

19

2 Fundamentals and Related Work

Docker Engine. Therefore, the portability and efficiency can be enhanced because there are no
different, underlying infrastructure or hypervisor layers to consider. [Docg]

JBoss and Tomcat follow a more targeted approach. While with Docker the contained and
hosted application has only to fit into a container, JBoss and Tomcat focuses on distinct
application types, for example, WAR applications. [Apab; Reda; Redb]

Cloud Technologies: The aforementioned technologies have in common that they host other
applications, for example, located in the data center of a company. The same principle can
be found in cloud technologies: A virtualized layer hosts other applications. One example
is Bluemix that was introduced in Section 2.3.1. Bluemix does not only enable to host Java
web applications like with Tomcat. Also, Bluemix enables to host multiple applications or
services that are in interplay in the same environment. Therefore, the users are able to develop
their applications with a high degree of homogeneity despite the heterogeneity of the used
components.

Workflow Engines: Workflow engines are able to process workflows that describe, for
example, sequences of activities or tasks. Activiti is an example for processing BPMN 2.0
processes and Apache ODE processes BPEL 2.0 processes. Both BPEL and BPMN are imperative
workflows that describe in detail what has to be done in which order. [Alfa; Apaa]

20

3 Research Design

This chapter describes the research design of the master thesis. The research design bases
on the process introduced by Christoph Fehling et al. [FBBL15] and is shortly described in
Section 2.1.2. The Sections 3.1 to 3.4 describe how the steps are performed. The iteratively
produced definitions and designs are documented in Chapter 5: In Section 5.1 the domain of
the pattern language is defined as well as the constraints limiting the domain to the specific
topics considered by this master thesis. In Section 5.2, the format is introduced that is used
to document the collected information. Part of the information format design as well as the
pattern language design is a vocabulary of pattern primitives that are defined in Section 5.3.
These pattern primitives are parts that each describe one specific characteristic or element
in the target domain. In Section 5.4, the design of the patterns and the pattern language is
defined.

3.1 Pattern Identification

Pattern
Identification

Domain
Definition

Coverage
Consideration Information

Format Design

Information
Review

Information
Collection

Figure 3.1. Sketch of the phase Pattern Identification [FBBL15]

The first main phase "pattern iden-
tification" [FBBL15] describes the
goal to find reoccurring solutions
that have the potential for being pat-
terns. Figure 3.1 depicts the phase
with its steps, each described in the
next five paragraphs.

Domain Definition: First, the tar-
geted domain has to be defined and
documented. This serves to create
a common knowledge about the tar-
get domain and enables persons to
use a common taxonomy and terminology to describe domain characteristics. The results are
refined in each iteration and are documented together with the results of the next step in the
Section 5.1.

21

3 Research Design

Coverage Consideration: To cover a whole domain may not be feasible depending on its
size and complexity. Thus, the amount of information can be reduced by focusing on specific
and relevant topics or by formulating constraints to the domain. A possible result can be a
domain structure and characteristic problems of the domain. The pattern then should provide a
solution to the characteristic problems. These considerations are documented in Section 5.1.

Information Format Design: Depending on the domain, there can be prevalent language
elements and concepts. To process and express information homogeneously a format design is
defined in this step. This serves to enable multiple people to express their individual findings
in a unified way. For the reader the perception is eased. [Zdu07] These defined elements are
referred to as pattern primitives and are documented and iteratively refined in Section 5.3.

Information Collection: After defining the terminology of the found information, the infor-
mation can be gathered and documented. One way to identify and elaborate patterns is to
gather experts of the domain as information source and let them discuss the best solutions. On
the one hand, it may be difficult to gather these experts and, on the other hand, the knowledge
about the domain may be persisted also in existing artifacts produced by these experts. Thus,
as proposed by Fehling et al. [FBBL15], an alternative approach to gather information as basis
for the pattern identification is to document existing solutions and artifacts in the previously
defined information format. The introduced process relies on this approach for the information
collection, also to meet the limitations of a master thesis. The gathered information are
documented in Section 2.3 and Chapter 4.

Information Review: At this point of the process the information collection may encompass
many solutions to characteristic problems of the domain. The amount of information may be
not feasible to be considered completely. Thus, the domain structure is to be refined towards
smaller, manageable sets of solutions. Also, similar or duplicate solutions can be identified and
grouped or pruned.

3.2 Authoring Pattern

After the information basis is collected and refined, patterns can be extracted out of similarities
of existing solutions. Figure 3.2 depicts the phase and its steps.

Pattern Language Design: Although there are similar documentation formats following a
structure like "intent", "forces", "driving question", and "context", a format fitting all domains
generally does not exist [AIS77; GHJV94; Han12; Zdu07]. Thus, the custom design is basing
on well-established pattern formats and has to be adjusted to specific needs of the targeted

22

3.2 Authoring Pattern

domain. The pattern language design that is conducted in this step and used in this master
thesis is introduced in Section 5.4.

Pattern
Authoring

Pattern Language
Design

Primitive
Definition Composition

Language Design

Pattern Language
Revision

Pattern Writing

Figure 3.2. Sketch of the phase Pattern Authoring [FBBL15]

Primitive Definition: In addition
to the pattern primitives defined in
the information format design step
of the main phase pattern identifi-
cation, there may be the need of
new pattern primitives for the pat-
tern description. Thus, the catalog
of pattern primitives is revised and
extended. Also, the results are doc-
umented in Section 5.3.

Composition Language Definition:
In this step, the graphical elements
and their composition are defined. The definition serves a common look and feel. The
formalization of the composition enables a verification of correctness. The resulting definition
is documented in Section 5.2.

Pattern Writing: After identifying different solutions and defining a common pattern format,
the pattern writing begins. This step serves mainly the creation of a pattern. After this initial
description, the pattern is discussed by other pattern authors and users. The pattern can be
discussed and refined by a much broader community because to the high abstraction level
of a pattern in contrast to the solutions it was extracted of. In later iterations, the existing
patterns are revisited and compared to solutions which are found after the last refinement of
the pattern. In this step, the collaboration with other authors and users is assumed [FBBL15].
The results were discussed with experts of the Institute of Architecture of Application Systems
at the University of Stuttgart in form of the mentoring during the conduction of the master
thesis. Unfortunately, it is not possible in this master thesis to conduct workshops, for example,
at a pattern conference or with experts of multiple companies working in the domain. The
documentation of the pattern can be found in Chapter 6.

Pattern language revision: The patterns found are not isolated. They are interconnected and
form relations like alternative to or composable with [BHS07; FBBL15]. Due to the iterative
nature of this approach, the amount of relations is growing with the amount of found patterns.
In this step, the task is to revision existing relations and check for new relations between
patterns as well as check if the relations apply unidirectional or bidirectional.

23

3 Research Design

3.3 Pattern Application

Whilst the preceding main phases pattern identification and pattern authoring iteratively
identify and document new pattern and their interrelations, the phase pattern application
serves to improve the access and application of the pattern for pattern user. This can be done
independently of the other two phases, as soon as there are patterns found. Figure 3.3 depicts
the phase and its steps.

Pattern
Application

Pattern Search and
Recommendation

Pattern-based
Solution Design

Refinement of the
Solution Design

Instantiation of the
Solution Design

Figure 3.3. Sketch of the phase Pattern Application [FBBL15]

Pattern Search and Recommendation:
The detailed description of patterns has
to be summarized. This enables the
user to review pattern information more
quickly. After that, the detailed docu-
ments and relations between patterns
can be read to get the full set of infor-
mation. These summaries are the intro-
ducing descriptions of the Chapter 6. To
simplify the process model, this step will
be done with the pattern writing step of
the pattern authoring phase.

Pattern-based Solution Design: Each pattern is an abstraction of multiple concrete solutions.
Due this abstraction, a pattern is not applicable at once and has to be adapted to the concrete
problem and environment at which the user aims. To support the user, "reference implementa-
tions" [FBBL15] or documentation about existing solutions can be provided. This is done in
the known uses Paragraph of each pattern in Chapter 6. To simplify the process model, this
step will be done with the pattern writing step of the pattern authoring phase.

Refinement of the Solution Design: The problem tackled by this step is the heterogeneity of
the infrastructure stack in which the solutions are implemented. To reduce this cost driver the
paper suggests to not only constraint the environment, but also the pattern. In the best case,
this results into the developer being supported by "automated infrastructure management,
deployment functionality and code templates" [FBBL15]. The aim of this master thesis is to
identify and author new pattern. Therefore, this step is skipped.

Instantiation of the Solution Design: The patterns are introduced to techniques and tools
for configuring, and deploying pattern refinements. This would reduce the amount of manual
and redundant tasks for the pattern users. Therefore, the found pattern language is transferred

24

3.4 Summary of the Adapted Process

into the pattern tool PatternPedia [Unib]. This is done as a follow-up to the creation of this
document, therefore, this step is not included into the process.

3.4 Summary of the Adapted Process

Pattern Identification 1 Pattern Identification 2

Technology Learning & Literature Research

Pattern Authoring 1 Pattern Authoring 2

Figure 3.4. Sketch of the Adapted Process

In the Sections 3.1 to 3.3,
the three phases of the un-
derlying process are de-
scribed. The process en-
ables to work collabo-
ratively on the patterns,
which is not the case for
this master thesis. Also,
two steps of the third
phase are skipped. There-
fore, the process can be
simplified, as aforemen-
tioned. The Figure 3.4 depicts the adapted process. The pattern identification phase con-
centrates on finding commonalities for solving the same or similar problems. The pattern
authoring phase puts the found data on an abstract level to improve the perception of pattern
users. Both phases are realized in the previously described, iterative manner. Additional
the master thesis encompasses to learn new technology. Therefore, the knowledge has to be
obtained continuously which is depicted in the lower arrow in Figure 3.4.

Adapted
Pattern

Authoring

Pattern Language
Design

Primitive
Definition

Composition
Language Design

Pattern Language
Revision

Pattern Writing

Pattern SummaryReference
Implementations

Figure 3.5. Sketch of the Adapted Pattern Authoring Phase

The step pattern search
and recommendation pro-
vides a summary of single
patterns as well as pattern
groups. The step pattern-
based solution design pro-
vides one or multiple ref-
erence implementations of
the pattern or at least ref-
erences to already existing
ones. The results of both
steps are of great value for
this master thesis, there-
fore, they are integrated
into the pattern authoring
phase. This results in the
adapted pattern authoring phase which is depicted in Figure 3.5.

25

4 Analyzed Artefacts

In this section, the artifact analysis is introduced. To analyze artifacts with a preferably high
degree of significance the artifacts are selected according their distribution. For Chef and
Juju there are public marketplaces [Canl; Chel], which provide to sort the offered artifacts
according their download or instantiation count. Bluemix offers many artifacts that comply
with the functionality of the cf command line interface [IBMc]. OpenTOSCA is an academic
prototype that has no marketplace yet. Therefore, for the latter two technologies no dedicated
artifact analysis was conducted.

The next two subsequent sections describe the analyzed artifacts, how they were selected in
detail, and which management capabilities they expose.

4.1 Chef Cookbooks

In this section, the ten most downloaded cookbooks of the Chef marketplace are analyzed
[Chel]. Unfortunately, the sixth cookbook bacon, which is just a dummy application, is not
suitable for this analysis [Var]. Thus, bacon is skipped in favor of the eleventh cookbook
artefact. In Table 4.1, the ranking regarding the count of total downloads is shown. The
analyzed sources can be downloaded from the respective pages cited in Table 4.1.

No. Cookbook Owner Version Downloads
1 Mysql [Cheo] Chef Software, Inc. 6.0.22 105,353,280
2 Java [Agi] Agile Orbit 1.30 63,296,631
3 Apache2 [vZoe] van Zoest 3.1.0 62,748,068
4 Docker [Fla] Flad 1.0.0 62,716,620
5 New Relic [Esc] Escape Studios Development 2.12.2 59,254,308
6 Bacon [Var] Vargo 11.0.13977... 59,094,009
7 Nginx [Fie] Fiedler 2.7.6 53,446,238
8 Chef-client [Chek] Chef Software, Inc. 4.3.0 52,729,508
9 Windows [McL] McLellan 1.37.0 52,637,365
10 Apt [Cheg] Chef Software, Inc. 2.7.0 50,034,998
11 Artifact [Win] Winsor 1.11.3 49,093,711

Table 4.1. Chef marketplace - total downloads ranking [Chel]

27

4 Analyzed Artefacts

Chef enables developers of cookbooks to expose management operations [Chea; Chec; Chee].
Table 4.2 summarizes the characteristics of the available APIs of the analyzed cookbooks and
their components. The Xsymbol indicates an explicitly exposed management operation of the
type indicated by the column heading. If a cell is empty, there is no such method available.
The last column, implicit configuration, indicates that either the management operations of the
first two columns accept configuration attributes or configuration attributes can be provided
for the cookbooks without explicitly exposed operations.

Cookbook Install / Remove
Methods

Start / Stop
Methods

Configura-
tion

Implicit
Configuration

Mysql X X X

Java X X X

Apache2 X

Docker X X X X

New Relic X X

Nginx X

Chefclient X X X

Windows X X X X

Apt X X

Artifact X X

Table 4.2. Cookbook API characteristics

4.2 Juju Charms

In this section, the ten most deployed charms of the Juju store [Canl] are analyzed. Table 4.3
depicts the ranking of the charms according their deployment count. The deployment count
information are taken from the store page of each particular charm and not from the overview
page of the store, because the shown deployment counts are different. The deployment counts
of the charm pages match to the order of the ranking on the overview page, thus, they are
sound. Contrary, the deployment counts of the overview page do not match to the order of
the ranking despite both is shown on the same page [chaa; chab; chac; chad; chae; Canl; Juj;
Opea; Opeb; Opec; Oped]. The analyzed sources can be download from the respective pages
cited in Table 4.3.

Juju defines hooks for reacting on events. A hook triggers, for example, a specific Python script
in case of a distinct event. In Table 4.4, the characteristics of the hooks are summarized. A
Xsymbol indicates an explicitly exposed hook of the type indicated by the column heading. If a
cell is empty, there is no hook available. Juju defines unit hooks for the operations of installing,
starting, stopping, reconfiguring, and upgrading the charm [Canc]. However, it is not required
to implement them.

28

4.2 Juju Charms

No. Charm Owner Revision Deploy
Count

1 juju gui [Juj] "Juju GUI Charmers" team 33 38442
2 rabbitmq server [chae] "charmers" team 32 35380
3 mysql [chac] "charmers" team 25 30390
4 keystone [Opeb] "OpenStack Charmers" team 26 25498
5 postgresql [chad] "charmers" team 23 18047
6 apache2 [chaa] "charmers" team 14 17660
7 haproxy [chab] "charmers" team 11 17129
8 glance [Opea] "OpenStack Charmers" team 22 16900
9 nova cloud controller [Opec] "OpenStack Charmers" team 58 16577
10 openstack dashboard [Oped] "OpenStack Charmers" team 14 16176

Table 4.3. Juju store - total deployment ranking [Canl]

Charm Install / Remove Methods Start / Stop Methods Configuration
jujugui X X X

rabbitmq X X X

mysql X X X

keystone X X X

postgresql X X X

apache2 X X X

haproxy X X X

glance X X X

nova cloud controller X X X

openstack dashboard X X X

Table 4.4. Charm API characteristics

29

5 Design of the Application Provisioning
Modeling Pattern Language

In this chapter, the design of the Application Provisioning Modeling Pattern Language is
defined. This encompasses the definition of the domain in which the patterns can be found in
Section 5.1, the information format design that is used to document the found information in
Section 5.2, the pattern primitives in Section 5.3, and the definition of the patterns and pattern
language design in Section 5.4.

5.1 Domain Definition and Constraints

In this section, the domain of the pattern language that is described in this master thesis is
documented. Resulting, the characteristic problems are deviated.

5.1.1 Domain Definition

There are multiple approaches for hosting and managing applications. On the enterprise level,
manual provisioning and management of applications is very costly and, thus, not appreciated.
Thus, technologies like Bluemix, Chef, and Juju, and OpenTOSCA and standardizing approaches
like TOSCA are developed. These approaches have in common to utilize small components
to compose bigger applications. In the domain of cloud computing, these approaches aim for
automated provisioning and management. From infrastructure up to services topologies and
also the operation of all, each layer should be covered.

However, there are significant differences between the implemented approaches: Whilst Chef
[Cheh] is a script-based product which clearly aims for DevOps, TOSCA [OASb] is a standard
for modeling whole business applications on enterprise level, independently from the DevOps
approach. All these approaches have in common to compose whole application topologies out
of smaller components. But these components are implemented and glued together in different
ways. Nevertheless, the common aim is to provision and manage enterprise applications in an
automated fashion by using the aforementioned, reusable components.

This master thesis aims for finding commonalities of the different approaches regarding the
modeling of components, their wiring, their combined usage, and, foremost, the modeling of

31

5 Design of the Application Provisioning Modeling Pattern Language

the provisioning of applications that consist of these components. The goal is to develop a
pattern language that supports the modeling of new applications by systematically reusing
proven knowledge that results from analyzing different and often used technologies.

5.1.2 Domain Characteristic Problems

In this section, common problems are introduced that are tackled by the technologies intro-
duced in Section 2.3.

In the domain of cloud applications, there is a huge heterogeneity according the employed
software solutions. There are few standards like TOSCA [OASb] and best practices, for example,
published in the Chef and Juju manuals, are not always used and implemented. Therefore,
there are not many obvious commonalities on which can be relied on when building a cloud
application out of components, for example, obtained from marketplaces.

But these marketplaces and the there offered components are very important. To repeatedly
develop and implement the same software solution component for the same or slightly different
requirement would be too expensive. The reusability and supposedly easy usage of artifacts is
one of the main concerns of the technologies examined in this master thesis.

But to use these offered artifacts does not solve all problems. As a house cannot be built
solely by piling bricks and without cement, arbitrarily arraying software components does not
create an application. An application has a structure which has to be considered as well as the
interplay between the components. Therefore, the next challenge to mention is the wiring of
components and the orchestration to applications of arbitrarily size and complexity.

Also, having a plan and the materials of the house does not automatically result in a built
house. The question of how the house has to be built remains, for example, if the roof is
finished before or after the basement. The examined technologies offer different approaches
of how to construct the application. These approaches differ in the methodology, the tooling,
and the degree of automation, although, all have a high degree of automation compared to
installing and managing the whole application by hand.

But then, the automation opens new issues regarding the control and knowledge of the
management and state of the application. The examined technologies are still programs that
are solely capable of their functionality, but not of any intelligence compared to a software
architect. Another tackled problem is the abstraction and implementation of management logic
as well as how the management logic knows the current and desired state of the application
and all the steps between.

Therefore, the superior question raised in this master thesis is, how the users of the examined
technologies are enabled to model their imagination, so that the aforementioned technologies
are able to fulfill the imagination according their functional capabilities to provision cloud
applications.

32

5.2 Information Format Design

5.2 Information Format Design

The master thesis encompasses and documents knowledge about different technologies, arti-
facts, scientific works, and concepts. The primarily used format to document this knowledge
is the textual description of the findings. Text is not only used in text blocks, but also in
combination with common enumerations and tables, which is not defined explicitly. In addition
to the textual descriptions, this section defines the used graphical notations of diagrams, icons,
and sketches in which the knowledge is documented. The introduced information format
design applies for the Section 2.3 and Chapters 4 and 6.

5.2.1 Sequence Diagram

NodeServer

2) prepare

3) manage

4) report results

1) manage request

Figure 5.1. Example Sequence Diagram

A sequence diagram describes the behavior
of and interaction between components. In
this master thesis, sequence diagrams follow
the rules of the Unified Modeling Language
[Objc] which are implemented as shapes in
the program Visio 2013 [Mic]. Figure 5.1
shows an example that is additionally de-
scribed by an enumeration:

1. Server receives a request.

2. Server prepares for management.

3. Server invokes the management.

4. Node returns the results.

5.2.2 Graphical Notation of Icons and Sketches

A sequence diagram is very specific in its notation and the type of information it describes. For
describing the patterns a less rigorous notation is picked. Subsequent, the notation of the icons
and sketches is defined.

Figure 5.2. Example Imperative
Process Model

Imperative Process Model: The imperative process model is
described exemplarily with the BPMN notation of Visio 2013
[Mic]. The circle with the thin border depicts the start event
with which the process model instance is started. The inner
rectangle with the rounded corners depicts an activity that may,
for example, implement a management task. The circle with the

33

5 Design of the Application Provisioning Modeling Pattern Language

thick border depicts the end event of the process model. The rectangle with the round corners
encompassing the start event, activity, and end event depicts the process model borders.

Figure 5.3. Example Topology

M
an

a
ge

m
en

t
Sy

st
em

Figure 5.4. Example Management
System

Figure 5.5. Example Management
Access

Figure 5.6. Example Technical
Statements

All other elements used inside a process model, but not de-
fined here, follow the notation of BPMN 2.0 [Obja; Objb].
Figure 5.2 shows an example process model.

Components and Application Topology: Components are
depicted as a rectangle with rounded corners and thick, dark
borders. If components are connected with a dark arrow, they
form a topology.
Components have requirements that are to be satisfied for
correct operation. The existence of requirements is depicted
with the pointy end of a chevron. Also, components may
expose their functionality as capabilities. The graphical nota-
tion is the part of a chevron that the pointy end of a chevron
can dock. Matching capabilities and requirements can be
indicated with the same color. Figure 5.3 shows on the left
side a component with exposed capabilities and requirements,
on the right side a component without exposed capabilities
and requirements, and in the middle an arrow depicting the
relation between both components to form a topology.

Management System and Management Access: A manage-
ment system is depicted as a rectangle that has a shadow
and is named Management System. Declarative management
systems access applications to manage, for example, to provi-
sion an application modeled by an application topology. This
access is depicted with blue, directed arrows with dotted line.
In this context, the difference between a modeled application
topology and an instantiated application topology instance
is neither depicted nor textual differentiated. In Figure 5.4,
a management system is depicted that accesses four compo-
nents of an application topology. In contrast to Figure 5.4,
in Figure 5.5, an imperative process model is managing, for
example provisioning, an application topology.

Technical Statements: The symbols for technical statements are two overlapping gears or
one gear. Figure 5.6 shows both variations. The gear symbols may occur inside activities
of imperative process models and components of application topologies. The occurrence
location hints for the location of the execution of the technical statements as well as for a very
fine-grained, low level implementation of management logic.

34

5.3 Pattern Primitives Definition

d

Figure 5.7. Example Data Access

Instance Data, Data Access and Data Persistences: For the
management of applications, for example, the provisioning, the
imperative process model and the management system need in-
stance data. The instance data as transferable object is depicted
as a sheet of paper and the instance data persistence is depicted
as a database, for example, a CMDB. The access to instance data
is visualized with a green, dotted line. The line may be directed to emphasize the flow of
instance data or not directed to symbolize general access to instance data. In Figure 5.7, an
activity is connected to a database. The access line symbolizes the general access for the
instance data d. In this example, the activity may read or write the instance data d.

5.3 Pattern Primitives Definition

Domains and subdomains consist of elements with specific names that are well-known to the
experts in these fields. Similar elements may occur with different names in various subdomains
and domains. Despite the different names, the elements describe the same thing with the same
characteristics or purpose. To enable the experts of these various fields to communicate and
discuss about common principles, first, a common vocabulary has to be established. Therefore,
in this section, a catalog of pattern primitives is introduced. A pattern primitive describes such
an element that may occur in various domains and subdomains with different names but the
same characteristics or purpose. [FBBL15; Zdu07] The pattern primitives have a name with
which they can be referred to and a semantically defined meaning. Table 5.1 lists the pattern
primitives used in the Application Provisioning Modeling Pattern Language.

Name Description
Application An application satisfies the whole business functionality or a part of

it. The application usually consists of multiple software components
that may be installed on multiple operating systems and are working
together to realize the encompassed business functionality.

Component A component is one, reusable part of an application. Components
can be divided into either application-specific components or general-
purpose components.

Dependency Component’s dependencies describe functionalities that the component
needs to run but does not implement by its own. So that an application
operates correctly, all dependencies inside that application have to be
satisfied.

Relation A relation exists between two components and expresses their interplay,
for example, a dependency of on to the other or the wiring between
both.

Table 5.1. Definition of the pattern primitives of the Application Provisioning Modeling Pattern Language

35

5 Design of the Application Provisioning Modeling Pattern Language

Name Description
Application-
specific compo-
nents

The LAMP stack describes besides common general-purpose compo-
nents also an application-specific component: The PHP application that
is dedicated to the business functionality of the user. Such application-
specific components are not as common, heavily used in industry, well-
maintained and, thus, easy to use as, for example, a MySQL server.

Container compo-
nent

A container component is a component which is able to operate another
component, typically an application-specific component. The operated
component has to be of a specific type.

General-purpose
components

The LAMP stack describes mostly general-purpose components: a Linux
operating system, an application server, and a MySQL database server.
Contrary to the application-specific components, the general-purpose
components are not developed for a specific need of, for example, one
or a few customers or companies. These components are heavily used
in industry, well-maintained and, thus, easy to use.

Application topol-
ogy

The application topology describes the structure of an application.
An application topology is a graph consisting of nodes that represent
application-specific and general-purpose components and relations that
describe the interplay and wiring between exactly two components.

Application envi-
ronment

The application environment describes the instance of the application
topology and its surroundings, for example, the virtual machines and
the installed operating systems. In the application environment, tech-
nical statements, scripts, and programs can be executed, for example,
invoked by an imperative process model or a management system.

Configuration The configuration describes the properties of an application as well as
how a component has to fit into an application. Also, the configura-
tion may be used for describing the current state of an application or
component.

Instance data All components have specific characteristics in the form of their state
and configuration, for example, endpoint information, or credentials.
These data are instance data.

Table 5.1. Definition of the pattern primitives of the Application Provisioning Modeling Pattern Language

36

5.3 Pattern Primitives Definition

Name Description
Imperative provi-
sioning

Imperative provisioning describes a way of how to provision an ap-
plication. To provision in the imperative way means to model what
has to be provisioned and how the provisioning has to be conducted
in detail. The management system simply executes or invokes imper-
ative provisioning logic, for example, a process model that defines
the how. Contrary to the declarative provisioning, the management
system does not derive provisioning logic from the modeled application.
However, to provide specific information about the application to the
process model, the what is modeled as well, but not in the extent of the
declarative provisioning. [BBKK+14]

Declarative provi-
sioning

Declarative provisioning describes a way of how to provision an applica-
tion. To provision in the declarative way means to only model what has
to be provisioned, without modeling how to conduct the provisioning.
Everything else to do for provisioning is done by a management system
which understands the declarative model. Therefore, management sys-
tems derive and conduct the provisioning logic from the declaratively
modeled application. [BBKK+14]

Management sys-
tem

A management system provides the functionality to automatically pro-
vision or manage applications, for example, install, configure, or ter-
minate applications or application components. Management systems
typically support pure declarative or imperative provisioning, or a
hybrid of both.

Management inter-
face

A component may expose distinct operations with which users or man-
agement systems can operate the component. These operations define
clear semantics and are called a management interface.

Management oper-
ation

A management operation is part of a management interface and can
be executed to partly or wholly provision a component or change
a component instance. To adapt the execution of the management
operation to the desired configuration, the management operation may
accept parameters. Also, the management operation may report the
result of the execution.

Management task A management task is an abstract task of the management of applica-
tions, for example, the provisioning of a component may encompass the
tasks install, configure, and start. A management task can be conducted
by invoking and executing one or multiple management operations, for
example, in the application environment.

Table 5.1. Definition of the pattern primitives of the Application Provisioning Modeling Pattern Language

37

5 Design of the Application Provisioning Modeling Pattern Language

Name Description
Process model An imperative process model is an imperative approach to describe in

detail what has to be done. An imperative process model describes
typically a sequence of multiple management tasks and, if run, executes
or invokes management operations. Examples for process models are
workflows, for example, BPEL plans, or scripts, for example, shell
scripts.

Technical state-
ment

A technical statement is one distinct command, for example, a com-
mand in a shell script. A reoccurring sequence of technical statements
may be bundled as a management operation.

Table 5.1. Definition of the pattern primitives of the Application Provisioning Modeling Pattern Language

5.4 Pattern and Pattern Language Design

This section defines the design of the Application Provisioning Modeling Pattern Language
and its patterns and pattern candidates that are used in the Chapter 6 to describe the findings.
The format of a pattern or pattern candidate is similar to the format of other, aforementioned
pattern works, for example, outlined in the Sections 2.1, 2.1.1 to 2.1.3 and 2.2 and adapted
iteratively to the needs of the master thesis. The hereby introduced design covers patterns
as well as pattern candidates. This is due to the mere fact that pattern candidates may be
patterns. Therefore, the patterns and pattern candidates shall not be distinguished in their
format. The decision of whether a pattern candidate is a pattern or not is made by applying
the rule of three that is introduced by Coplien et al. [CA96] and depicted in Section 7.2.

Example Icon

Figure 5.8. Example place-
holder for an icon

Problem: The problem Paragraph states the difficulty or problem
one can be confronted with while modeling, for example, a compo-
nent to be provisioned. Additional to the problem statement, each
pattern specifies an icon which is represented together with the prob-
lem statement to ease the visual recognition. Contrary to Figure 5.8,
the icons in Chapter 6 have no captions. Also, this enables a visual
representation of the pattern.

Context: The context paragraph states shortly the situation in which the problem may
occur.

38

5.4 Pattern and Pattern Language Design

Example Sketch

Figure 5.9. Example of a solution sketch

Forces: The forces Paragraph states the rea-
soning for the need of a pattern, why it may
be difficult to solve, and other possible solu-
tions and their advantages and drawbacks,
for example, also not working solutions.

Solution: The solution Paragraph provides
an abstract description of how to solve the
described problem. Additionally, the textual
description is enhanced with a solution sketch
that visualizes the solution. For example, in
computer science a sequence diagram could
be chosen to describe the interaction between a process model and a component during the
provisioning of a component. Figure 5.9 depicts such a solution sketch.

Results: The results Paragraph states what outcome the pattern has. Both advantages
and drawbacks have to be documented to enable the reader to be prepared for desired and
unwanted consequences.

Next: The next Paragraph states the relations of the proposed pattern to other patterns. This
section improves the simple collection of patterns to a pattern language by defining in detail
the relations between patterns, for example, cannot be combined because of reasons, should be
considered, and so on.

Known Uses: The known uses Paragraph states the sources from which the pattern had been
extracted or where it has been successfully applied. This substantiates the maturity evaluation
of the pattern by providing links to provisioning technologies, artifacts, or scientific works
where the pattern is documented or implemented.

39

6 Application Provisioning Modeling Pattern
Language

In this chapter, the Application Provisioning Modeling Pattern Language, its patterns, and pat-
tern candidates are presented that had been found during the analysis of existing technologies,
their documentation, and artifacts. These patterns and pattern candidates follow the pattern
language design introduced in Chapter 5. Contrary to patterns, the pattern candidates describe
principles which are best of breed, but did not succeed yet according their distribution. To
distinguish, the rule of three [CA96] is applied. If the pattern is realized in three different
technologies, the pattern complies with the rule of three. If not, there is need for further
research if the pattern candidate is truly a pattern. Nevertheless, the pattern candidates are
worthy to be communicated.

The patterns and pattern candidates in this section are describing technical mechanisms of the
technologies introduced in Section 2.3 and Chapter 4. The viewpoint for these patterns is a
conceptual one and the superior question is how to exploit the conceptual techniques of the
analyzed technologies for provisioning an application and how to model or build components
for being provisioned in a composed application. The interested users may be developers
who want to automate the provisioning of an application and the encompassed components.
Therefore, they want to know the mechanisms of a potentially used technology to optimally
benefit from the different strengths and possibilities as well as knowing the drawbacks which
might be considered. In addition, the patterns guide users in selecting the right technology
according their aims. Each pattern and pattern candidate describes in its next Paragraph which
other patterns should or should not be considered as well as the causation for it.

The Sections 6.1 to 6.8 describe the patterns of the Application Provisioning Modeling Pattern
Language. The first pattern Imperative Provisioning describes the imperative mechanism
with which an application provisioning can be modeled by defining in detail each step of the
provisioning to be executed. Contrary, the Declarative Provisioning pattern describes how to
provision an application by modeling only the structure and configuration of the application
without explicitly modeling the steps of the provisioning to be executed. The Parametrized
Imperative Provisioning pattern describes in addition to the Imperative Provisioning pattern
how to adapt the imperative provisioning process model according similar scenarios. The
Local Management Operation Execution pattern describes how to separate the high level
provision logic from the low level technical statements. The pattern Component Lifecycle
Interface describes how a component can expose its management behavior regarding its

41

6 Application Provisioning Modeling Pattern Language

lifecycle. The pattern Container Component Interface describes how a component can expose
its management behavior regarding to host another component of a specific type. The pattern
Explicit Dependency Model describes how an application structure can be modeled explicitly.
The pattern Implicit Dependency Model describes how an application structure can be modeled
incompletely.

In Section 6.9, the External Instance Data Access pattern candidate describes in addition to
the Imperative Provisioning pattern how to let the imperative provisioning process model
independently access and handle instance data.

The Section 6.10 depicts graphically the connections of the patterns and pattern candidates,
which is described in each next Paragraph.

6.1 Imperative Provisioning

Problem: How to automate the provisioning of a big, complex
application that requires application-specific customization?

Context: An application shall be provisioned automatically.

Forces: Complex business applications typically consist of many different software compo-
nents that have to be provisioned, deployed, configured, and wired. These components often
require individual configurations and cannot always be achieved automatically by analyzing
structural models and desired configurations. A structural model specifies the components,
their configurations, and their relations to other components, but not how to achieve this.
Although, technologies according the Declarative Provisioning pattern exist that are able to
provision applications based on structural models, for example, Bluemix, in general they cannot
be customized arbitrarily for complex business applications.

Besides common general-purpose components, such as web servers or databases, business
applications typically also consist of application-specific components that are not common.
Examples are application components that provide a certain functionality which are devel-
oped for a specific customer need. Management systems basically not know these types of
components and, thus, are not able to provision them automatically in general.

Therefore, a means is required that allows the automatically provisioning of an application by
modeling in detail the required provisioning steps.

42

6.1 Imperative Provisioning

Webserver

OS/VM

PHP
Module

Web
Application

x +

Figure 6.1. Solution Sketch: Imperative Provisioning pattern

Solution: Create an exe-
cutable process model, for
example, a workflow or
a script that imperatively
describes in detail each
management task that has
to be executed for pro-
visioning the application.
This can be combined
with various other pat-
terns of other pattern lan-
guages, such as the Paral-
lel Split workflow pattern
[vDTKB03] to enable exe-
cuting statements in par-
allel. Also, this approach
can be supported by us-
ing the Component Life-
cycle Interface and Con-
tainer Component Inter-
face patterns to model the
components to be provisioned.

Figure 6.1 shows a graphical sketch of the solution. A simple stack consisting of an operating
system running in a virtual machine, a web server, its PHP module, and a web application shall
be provisioned. The workflow below is provisioning each of these components. Each activity is
caring for one component whilst the provisioning of the PHP module and the web application
is processed in parallel.

Results: The process model can be executed automatically by a suited runtime, for example,
the Apache ODE that is a workflow engine for running BPEL workflows. The process model
imperatively prescribes all management operations to be invoked, which enables to customize
arbitrarily the provisioning. Therefore, general-purpose components as well as individual,
application-specific components can be provisioned arbitrarily by specifying all the management
operations in detail, for example, all technical statements needed. Especially, the Imperative
Provisioning pattern enables modeling the provisioning of complex applications that cannot
be provisioned using a declarative model due to the potentially enormous complexity of
individualization of components. Also, parameterizing the process model, as described by the
Parametrized Imperative Provisioning pattern in Section 6.3, enables the customization of the
same characteristics with different values and, therefore, the reusability for slightly different

43

6 Application Provisioning Modeling Pattern Language

provisioning scenarios. If the process model and runtime supports compensation mechanisms
[LR98; KMO98], failed provisioning can be automatically compensated.

On the other hand, the Imperative Provisioning may be more complex for the user to model
than the Declarative Provisioning pattern. Whilst with the Declarative Provisioning pattern the
user only specifies the application’s structure and configuration, the Imperative Provisioning
pattern requires modeling an additional process model that explicitly describes each step to
execute. However, to solve this manual modeling issue, there are approaches for automatically
generating provisioning process models based on structural application models, for example,
[BBKK+14; BBKL13; BBKL+13; EEKS11; EMEK+06; Mie10]. With the Imperative Provisioning
pattern, the user has to specify also in detail how to provision or manage this application
additionally.

Next: The Imperative Provisioning pattern can be combined with the Component Lifecycle
Interface pattern and the Container Component Interface pattern to ease the modeling of the
imperative provision logic. The Declarative Provisioning pattern is using this pattern eventually
for provisioning and adapting components. If the instance data is not complex, this pattern
can be combined with the Parametrized Imperative Provisioning pattern. Otherwise, the
External Instance Data Access pattern candidate should be considered. The Local Management
Operation Execution pattern describes how to imperatively execute the technical statements
specified by the imperative process model in the application environment and not in the
management system itself.

Known Uses: Bluemix exposes its interface via the cf command line interface. [IBMc] This
command line interface can be used manually to control applications and services or exploited
with scripts.

Within Chef, imperative provisioning process models can be found in form of the run-list
[Chej]. Also, with the commands run-list add, remove, and set beneath others the run-list can
be influenced to customize, if needed [Chef].

Juju internally uses imperative provisioning logic represented by hooks [Canc]. Also, the user
may invoke Actions with parameters to execute provisioning logic [Cang].

TOSCA enables explicitly two ways of application provisioning: Declarative provisioning via
the topology model and imperative provisioning by using plans that are executable process
models [OASa; OASb].

For the OpenTOSCA runtime environment [BBHK+13; Unia] a generator component has been
presented to generate provisioning plans automatically [BBKK+14], thus, easing applying the
pattern as the generated plans can be customized individually for certain needs.

44

6.2 Declarative Provisioning

Also, there are other academic evidences that provide evidences for this pattern, for example,
[BBKL14; BBKL+13; FLRS12].

6.2 Declarative Provisioning

M
an

ag
em

en
t

Sy
st

em

Problem: How to automate the provisioning of a simple application that
consists of common components and which requires only little, individual
customization?

Context: An application shall be provisioned automatically.

Forces: Applications typically encompass well-known, general-purpose components, for
example, a virtual machine running a LTS Ubuntu, a Tomcat application server, and a MySQL
server. As these components are heavily used in industry, they are well-maintained and,
as a result, easy to use. One could copy prepared configuration files to the right place in
the file system, use well-known APIs with which the configuration can be done by invoking
with the right parameters, or copy and execute prepared scripts which do not need adaption.
To provision applications that consists only of such components by applying the Imperative
Provisioning pattern is not efficient and too costly, because the Imperative Provisioning pattern
implies to create individual process models.

Therefore, a means is required that allows the automatically provisioning of an application by
modeling the application and without defining the required provisioning steps.

Solution: To model the provisioning of such, aforementioned applications, create a detailed
model of the application’s structure, for example, the required components, their interplay, and
their configuration. The modeling can be supported by applying the Explicit Dependency Model
pattern to model the dependency relation between two modeled components. Alternatively, if,
for example, only the requirements of one component are known, the Implicit Dependency
Model pattern can be applied.

To model components that need the execution of specific operations for being provisioned,
apply the Component Lifecycle Interface pattern, if the employed management system supports
the pattern.

In Figure 6.2, the application is provisioned by a management system. For that the management
system analyzes the application topology depicted on the left and, for example, derives the
imperative provisioning logic from it.

45

6 Application Provisioning Modeling Pattern Language

M
an
ag
em

e
n
t

Sy
st
em

Figure 6.2. Solution Sketch: Declarative Provisioning
pattern

Results: The application is modeled primar-
ily with common, well-known components.
These components can be prepared to be
modeled for processing in the declarative way.
The application consists mostly of general-
purpose components that are reusable and
can be selected from a catalog of available
components. In addition, the application
structure is modeled with relations that are
understood by the employed management
system.

The application topology can be processed au-
tomatically by a suited management system.
Adaption of the characteristics of the compo-
nents according the desired application topol-
ogy is supported by the management system.
Therefore, the management system can pro-
vision the modeled application topology or

parts of it in an automated manner. Scenarios like horizontal scalability invoked by a watchdog
benefit from the automated management.

Next: As already mentioned, the Declarative Provisioning pattern describes an approach
contrary to the Imperative Provisioning pattern. However, the management system imple-
menting the Declarative Provisioning pattern is eventually executing imperative provisioning
logic. To support the modeling of the application structure the Explicit Dependency Model
pattern and the Implicit Dependency Model pattern can be used. The Component Lifecycle
Interface pattern and the Container Component Interface patter support the modeling of com-
ponents. Because the declarative management system is caring for the provisioning logic the
Parametrized Imperative Provisioning, External Instance Data Access, and Local Management
Operation Execution may be only of interest for the developers of components, which shall be
operated by a declarative management system.

Known Uses: In Bluemix an App can be described by a manifest in the manifest.yml file. The
manifest contains information like the used buildpack, how often the App shall be instantiated
or with which services the App shall be bound. Using the manifest the provisioning can be
automated. [IBMa] Also, Bluemix supports boilerplates which are application containers. The
underlying application model consists of the runtime environment and predefined services
for a distinct domain, for example, for hosting Java applications [IBMe]. Boilerplates can
be instantiated by the user without interacting with imperative management. The user has
only to specify characteristics of the topology and the payment method. For example, there

46

6.3 Parametrized Imperative Provisioning

are multiple options for the database size or monitoring capabilities. [IBMi] Additionally,
application topologies can be combined with functionality like automatic scaling [IBMb].
Similarly, runtime environments need no input of how the underlying operating system or the
hosting infrastructure are defined [IBMk].

With Chef, the user has not to model imperatively the steps for provisioning. Instead, the
user may write just a cookbook importing other cookbooks according the desired functionality.
Then, before the chef-client executes the sequences of operations, various information, for
example, cookbooks, recipes, files, or attributes, are collected. This information are considered
by the chef-client to compile the imperative run-list to execute for provisioning the desired
application. [Chej] Then the "chef-client configures the system based on the information that
has been collected" [Ched].

Juju supports bundles that are describing services and their configuration. The application
topology is represented by the relations linking the services. The user can provision such
bundles without modeling imperative provisioning logic. [Cane]

TOSCA enables to model an application topology to enable according declarative approach
[OASa; OASb]. Also, there are approaches to combine the declarative provisioning with the
imperative provisioning [BBKK+14].

Additional evidences can be found, for example, within the deployment management system
Engage that enables to describe application topologies by metadata containing dependen-
cies between components and configuration parameters. With this information Engage can
provision the application automatically. [FME12]

6.3 Parametrized Imperative Provisioning

Problem: How to model an imperative provisioning process model
in a way that it does not have to care about externally stored appli-
cation instance data?

Context: The Imperative Provisioning pattern is applied to provision an application and
the instance data about the application is handled by an external component, for example, a
CMDB.

Forces: To provision a whole application, typically, different kinds of instance data of the
involved components are required. For example, for provisioning a virtual machine the
installing software requires the endpoint information of the virtual machine for executing the
installation. But the instance data are unlikely to be unified for all possible applications which
shall be provisioned. Credentials are not always just username and password, endpoints might

47

6 Application Provisioning Modeling Pattern Language

reference a certain driver, describing the connection mechanism, instead of only stating an IP.
But these instance data can be handled if the application is not arbitrarily big and complex
as Bluemix shows with its environment variable [IBMm]. This is important if the instance
data are managed by the management system. Otherwise, the process model has to care for
it which means an overhead: The management of the instance data are tasks which are not
related distinctly to the provisioning.

Also, it is very important to control the instance data. On the one hand, it is necessary to
provide the correct instance data to the imperative process model. On the other hand, it is
required to update configuration and instance data created by the execution of the process
model in the CMDB.

Therefore, a means is required that allows modeling the required parameters of an imperative
process model.

d_out

d_in

Figure 6.3. Solution Sketch: Pa-
rameterized Imperative Provision-
ing pattern

Solution: Model the imperative process model without hard-
coded instance data and without coupling the process model
to an external persistence, for example, a CMDB. Therefore,
let the management system provide all required input data as
parameters with the invocation mechanism and ensure that all
further produced instance data are handled within the process
model without calling an external storage, such as CMDBs. Also,
the instance data can be altered locally. The instance data
resulting of the imperative process model are returned to the
invoker, who has to care for the persistence and management
of the returned instance data.

In Figure 6.3, the start event contains a sheet of paper symboliz-
ing instance data that is passed as parameter when invoking the
process model. These instance data are passed, used, and mod-
ified accordingly through all the activities until the end activity
which contains also a sheet of paper symbolizing the return of
the resulting instance data. The accepted sheet of paper d_in

alters according to the change of instance data to the sheet of
paper d_out that is then returned to the invoker.

Results: The imperative process model exposes the informa-
tion about which instance data are needed and returned. There-
fore, the invoker, for example, a management system or an
administrator, is enabled to analyze and handle the required and
produced instance data. Also, the resulting instance data are
reported back to the management system which is responsible

48

6.3 Parametrized Imperative Provisioning

for the management and persistence of the instance data. Therefore, the imperative process
model is not responsible for caring about the persistence of the instance data or other issues
like security. Also, the performance of the imperative process model is not reduced by the
overhead of retrieving instance data on its own.

On the other hand, the management system has to understand the invocation mechanism
of the imperative process model and how to set the parameters for being able to provide
the required instance data. This includes issues like security and data complexity. Also, the
management system has to manage new instance data which are returned after the execution
of the provisioning process model, as these instance data are required for further management
activities on the application. Therefore, the management system has to understand completely
the instance data for not only effectively store them, but also being able to identify them again
later. Thus, this pattern is only applicable to applications with simple instance data consisting
of common and well-known input and output parameters that can be handled generically, for
example, independently of a certain application.

Next: The Parametrized Imperative Provisioning pattern describes characteristics of the
Imperative Provisioning pattern. Therefore, this pattern may be combined with the Component
Lifecycle Interface pattern, the Container Component Interface pattern, and the Local Manage-
ment Operation Execution pattern. On the other hand, this pattern is opposite to the External
Instance Data Access pattern candidate and is independent of the Explicit Dependency Model
and Implicit Dependency Model patterns. But the Declarative Provisioning pattern may use
the Imperative Provisioning pattern and, therefore, the Parametrized Imperative Provisioning
pattern eventually, too.

Known Uses: With Bluemix, the user is able to provide parameters to the commands of the
cf command line interface. Therefore, the invoked command accepts parameters for reacting
on, for example, different computing power requirements of the user. The resulting data is
printed onto the console. [IBMc]

The chef-client injects instance data into prepared files, for example, configuration files, recipes,
or scripts, during the "compile phase" [Chej]. Results produced may be reported to a logging
service or sent by a mail. Thus, the used imperative process models are not forced to deal with
getting and storing instance data. After the compilation phase, the system is configured by the
chef-client running the run-list.

Juju provides a mechanism called Actions which accepts "complex, nested arguments" [Cang]
provided by the user. Also, Juju commands accept parameters in form of key-value pairs, for
example, to define machine constraints [Cand; Canj].

49

6 Application Provisioning Modeling Pattern Language

In TOSCA Definitions, operations and their parameters can be defined for example, in Interfaces
of the Boundary Definitions of Service Templates [OASa; OASb]. OpenTOSCA uses these
information to enable the invocation of BPEL workflows with the correct input data. [End13]

6.4 Local Management Operation Execution

Problem: How to model the provisioning of a component on a
general-purpose infrastructure component, for example, an operating
system, which requires multiple operations to be executed?

Context: The provision of an application shall be controlled centrally.

Forces: Usually components have to be adapted to the application. To provision a component
on a general-purpose infrastructure component, multiple technical statements have to be
executed, for example, copying files. If the component does not implement and expose these
technical statements as operations, the operation cannot be invoked by one call. To invoke
each single technical statement, for example, by executing each technical statement as shell
command using SSH or another mechanism, would imply different drawbacks: The persistent
communication over the network consumes resources and introduces a higher latency, thus, is
not efficient, and introduces new issues, for example, what happens if the network connection
breaks in the middle of a sequence of technical statements to invoke?

Also, the provision logic may not be able to encompass each detail of the management task. A
process model may not be designed for implementing and executing technical statements, for
example, there is no way to execute single technical statements in the application environment.
Also, to model technical statements in the provision logic would clash with a clear separation
between the high level provisioning logic implemented in, for example, the process model and
low level provisioning logic represented, for example, by a sequence of technical statements
and executed in the application environment.

Therefore, a means is required that allows the execution and, if not yet available, prior transfer
of multiple operations or sequences of technical statements in a bundled manner in the
application environment.

Solution: For all the component’s provisioning operations create programs or scripts that are
executable on the infrastructure component that shall host the component to be provisioned.
These programs or scripts implement all steps needed for accomplishing the provisioning tasks
of the component. Transfer these programs or scripts to the infrastructure component to enable
the execution of the provisioning operations in a bundled manner.

50

6.4 Local Management Operation Execution

In Figure 6.4, the Local Management Operation Execution pattern is combined with the Impera-
tive Provisioning pattern. The process model on the right side encompasses a provisioning tasks,
represented by the second activity, for a component on the left side. To accomplish the provi-
sioning, the provisioning operation implementations are transferred onto the infrastructure
component in the application environment.

Infrastructure
Component

Figure 6.4. Solution Sketch: Local Management
Operation Execution pattern

Results: Required management operations are
deployable in form of, for example, programs or
scripts. Therefore, all technical statements are
eventually located in the application environment
and executed on the infrastructure component
that shall host the component to be provisioned.
Thus, to transfer and execute the management
operations in a bundled manner minimizes the
communication over the network and the resulting
latency, compared to call each technical statement
separately.

The provisioning logic describes all management
tasks to be executed in the correct order to provi-
sion the component, for example, by modeling the
provisioning logic using the Imperative Provision-
ing pattern. To achieve the provisioning of compo-
nents the management operations are transferred
and executed on the infrastructure components
that shall host the component. Therefore, while
modeling the provisioning logic the implementation of management operations has not to
be modeled. Thus, modeling the provisioning logic to transfer and execute management
operations in a bundled manner is easier than modeling each call of technical statements
separately.

Next: The Local Management Operation Execution pattern describes characteristics of the
Imperative Provisioning pattern. If a component exposes interfaces described by the Component
Lifecycle Interface or Container Component Interface patterns they can be combined with this
pattern to, for example, deploy and execute interface operations. The Declarative Provisioning
pattern may be using the Local Management Operation Execution pattern in combination with
the Imperative Provisioning pattern as a management system derives imperative provisioning
logic, for example, from the application topology. Just in combination with the Declarative
Provisioning pattern the Implicit Dependency Model pattern and the Explicit Dependency
Model pattern should be considered. For retrieving instance data this pattern can be combined
with the Parametrized Imperative Provisioning and External Instance Data Access.

51

6 Application Provisioning Modeling Pattern Language

Known Uses: Applications in Bluemix are hosted in runtimes and are to be deployed,
installed, and configured there. The cf command line interface enables the user to run scripts
that are deployed with the application, for example, by executing the command cf push
AppName -c "bash ./configuration_script.sh". [IBMc; IBMm]

To provision an application with Chef the run-list is executed after the chef-client transferred
every needed resource on the bootstrapped infrastructure component. The run-list is executed
on the aforementioned infrastructure components. [Chej]

With Juju all charms are deployed onto the infrastructure component before the provisioning
is executed. Direct actions on units are defined by hooks and are invoked on events on the
infrastructure component. [Canc; Canf]

With TOSCA this pattern is explicitly compatible: "Deployment artifacts are the installables
of the components" [OASa] that are deployed into the application environment. "The global
management behaviour covering the complete lifecycle of a cloud application is defined
by means of plans." [OASa]. OpenTOSCA is implementing this pattern by first deploying
the application resources and then instantiating the application by running a build plan.
[BBHK+13]

6.5 Component Lifecycle Interface

l

Hosting
Environment

Problem: How to model a component to enable its automated operation on
a general-purpose infrastructure or platform, for example, a virtual machine,
which has not explicitly been built to run solely this component type?

Context: A component shall be hosted on another component.

Forces: To operate a component on a general infrastructure or platform component typically
several management tasks are required to be performed: The component has to be installed,
configured, started, and so on. If the semantics of these management operations are not
defined clearly, invoking them in the correct order by a management system is not possible in
general.

In addition, the modeled component maybe should be hosted on different infrastructure
systems or platforms. To enable this portability, it is required to implement the management
operations for each supported host. For example, to enable running the modeled component
both on Linux and Windows implies distinct sequences of technical statements.

Therefore, a means is required that allows modeling a component to expose its capabilities to
be managed regarding its lifecycle.

52

6.5 Component Lifecycle Interface

Install
Configure

Start
Stop

Uninstall

l

Hosting
Environment

install.sh
Linux

install.exe
Windows

Figure 6.5. Solution Sketch: Component Lifecycle
Interface pattern

Solution: Let the component expose an inter-
face that provides all management operations
needed regarding the component’s lifecycle. The
exposed interface and its operations are clearly
defined regarding their functionality. The func-
tionality shall enable to accomplish the following
management task types: installation, configura-
tion, start, stop, and deletion. Further, define
arbitrarily the required input and output param-
eters of the management operations as needed.
The component needs to implement management
operations capable of the aforementioned man-
agement task types for all the underlying environments you possibly want to employ. For
example, employ Bash scripts for operating the component on Linux systems.

In Figure 6.5, the lower component shall host the upper component with the dotted line. The
upper component exposes a lifecycle interface with five operations according the five proposed
management task types. The Install management operation has two different implementations:
one for Linux and one for Windows.

Results: External management systems or process models are enabled to invoke the exposed
management operations of the modeled component, as the semantics of the management task
types are clearly defined. Therefore, if an external management system is able to understand
the modeled management operations, it can invoke them in the correct order for accomplishing
the desired management tasks. Thus, the management systems are not only enabled to
provision a component automatically, but also to operate the component automatically.

On the other hand, the invocation mechanism may still differ between different implementa-
tions of this pattern. For example, there are differences between the handling of scripts and
Java implementations. This is up to the invoking management system.

Furthermore, no knowledge is needed about the management operation implementation
regarding the underlying component. Only the right management operation implementations
has to be selected and invoked to accomplish the management task, for example, by exploiting
the Strategy pattern [GHJV94] to automatically choose the right implementation regarding the
underlying infrastructure component. The different implementations of how to accomplish
the management task enables the easy operation of the component on various underlying
components.

Next: The Component Lifecycle Interface pattern can be used by process models that are
described by the Imperative Provisioning pattern. Therefore, the Parametrized Imperative
Provisioning pattern and External Instance Data Access pattern candidate should be considered

53

6 Application Provisioning Modeling Pattern Language

to enable the imperative provision logic to provide needed parameters. Also, the Component
Lifecycle Interface pattern is benefiting the Local Management Operation Execution pattern by
describing local management operations. Furthermore, the Declarative Provisioning pattern is
enabled, if the management system is able to understand the modeled management operations.
Although it is not necessary, this pattern can be combined with the Container Component
Interface pattern. This pattern is independent of the Explicit Dependency Model pattern and
Implicit Dependency Model pattern.

Known Uses: Bluemix services can be managed with the cf command line interface that
supports the operations of the Component Lifecycle Interface. For example, the command cf
push AppName creates an application, cf delete AppName deletes the application instance, cf
start AppName and cf stop AppName starts and stops application instance, and with cf set-env
AppName key value the input data can be set in form of an environment variable to configure
the application instance. The information can be found in the documentation [IBMc] and in
the help-dialog of the cf command line interface itself.

There are four Chef cookbooks among the analyzed ones which expose management operations
that implement functionality for install, start, stop, and delete [Chek; Cheo; Fla; McL]. Also,
there are three cookbooks among the analyzed ones which expose configuration operations
[Agi; Fla; McL].

Juju charms implement so-called "unit-hooks" [Canc] which comply the functionality of instal-
lation, changed configuration, starting and stopping, and upgrading the component with a
new charm version. All analyzed charms are exposing these hooks [chaa; chab; chac; chad;
chae; Juj; Opea; Opeb; Opec; Oped].

OASIS is advising to expose a lifecycle related interface when using TOSCA [OASb]. Addition-
ally, with OpenTOSCA it is possible to implement the Strategy pattern [GHJV94] to enable easy
management on multiple underlying components or environments [HLNW14].

The management framework for cloud applications c-Eclipse picks up and implements the
notion of the lifecycle interface proposed by TOSCA [SLTP+14].

6.6 Container Component Interface

Container
Component c

Problem: How to model a container component for automated operation of
components that has been built to be run by the container component?

Context: A component shall host another component.

54

6.6 Container Component Interface

Forces: To operate a component on a container component takes several management tasks
to be accomplished: First, the container component needs all resources of the component.
Before the component can be launched, it maybe needs to be prepared for operation. Also,
the component maybe needs to be stopped and restarted or even decommissioned. These
management tasks can also be bundled in management operations with clear semantics.
Contrary, if the semantics are not defined clearly, the correct invocation is not possible in an
automated way.

Modeling a container component to enable the operation of other components requires a
definition of the operation capabilities of the container component. This encompasses the type
or types of all possible components that can be operated.

Therefore, a means is required that allows modeling a component to expose its capabilities to
operate other components of specific types.

Deploy
StartContainer

Component

File

URLc
Stop

Undeploy

Figure 6.6. Solution Sketch: Container Component
Interface pattern

Solution: Let the container component expose
an interface that enables the operation of other
components of one or multiple specific types. The
exposed functionality shall enable to accomplish
the following management task types: Deploy and
undeploy a component, start and stop a deployed
component. The container component needs to
implement each of the management operations for
all the types of components which shall be oper-
ated. For the deployment management task type,
define all mechanisms with which the container
component can be supplied with the component files to operate.

In Figure 6.6, the upper component with the dotted line shall be hosted on the lower container
component. The lower component exposes a container interface with management operations
regarding the four aforementioned management task types. In the depicted example, the
deploy provisioning operation has two different implementations: One for accepting a file and
one for accepting an URL pointing to the file that contains the component resources to host.

Results: External management systems are enabled to invoke the exposed management
operations of the modeled container component. The semantics of the four management
task types are clearly defined. Therefore, if an external management system understands the
semantics the management task types, they are usable correctly to accomplish the desired
management task. Thus, the management systems are enabled to operate a component hosted
by the container component automatically.

55

6 Application Provisioning Modeling Pattern Language

On the other hand, the invocation mechanism may still differ between different implemen-
tations of this pattern. Also, the transportation protocol to provide all needed component
resources to the container component may differ. All this is up to the invoking management
system.

Next: The Container Component Interface pattern can be used by an imperative process
model described by the Imperative Provisioning pattern. Therefore, the Parametrized Im-
perative Provisioning pattern and External Instance Data Access pattern candidate should
be considered to enable the imperative process model to provide needed parameters. Also,
this pattern is benefiting the Local Management Operation Execution pattern by describing
local management operations. Otherwise, to use the Container Component Interface pattern
declaratively the Declarative Provisioning pattern should be considered. Although it is not
necessary, this pattern can be combined with the Component Lifecycle Interface pattern. This
pattern is independent of the Explicit Dependency Model pattern and Implicit Dependency
Model pattern.

Known Uses: There are several general-purpose container components, for example, ap-
plication servers. The pattern is supported, for example, by two application servers: The
Apache Tomcat supports a HTTP interface with the operations deploy, start, stop, and undeploy
[Apab]. Also, the application server JBoss Application Server 7.0 supports with its command
line interface the operations deploy and undeploy [BK].

Other container components that implement the Container Component Interface pattern are
workflow engines that are able to execute workflows. Activiti is such a workflow engine
that implements this pattern within its classes RepositoryService and RuntimeService. The two
operations createDeployment and deleteDeployment of the class RepositoryService match the
deploy and undeploy management task types [Alfb]. The two operations startProcessInstanceById
and deleteProcessInstance of the class RuntimeService match the management task types start
and stop [Alfc]. Another example is the Apache ODE [Apaa] which is used in the uniform BPEL
management layer to process BPEL workflows. The proposed uniform BPEL management layer
exposes operations for deploying and undeploying BPEL plans in the UniformProcessDeployment.
As the plan is deployed, it is also started. The implemented prototype is capable of using the
versions 1.3.5 and 1.3.6. of the Apache ODE. [HLWL14]

Also, offerings of platform-as-a-service support this pattern: the cf command line interface of
Bluemix [IBMc] as well as Docker with its operations pull, run, start, stop, rm, and rmi [Doca;
Docb; Docc; Docd; Doce; Docf].

There are two cookbooks among the analyzed cookbooks that contain container components
and could support the pattern: The apache2 cookbook enables with its definitions apache_site
and web_app to configure a new virtual host and install a web application [vZoe]. The Docker
cookbook supports with its container and image provider to manage containers and the hosted

56

6.7 Explicit Dependency Model

images with the operations docker_image pull and remove as well as docker_container run and
kill [Fla].

Also there are ambitions of standardizing container interfaces in science with the COAPS API.
[HKOH13; MSSM+]

6.7 Explicit Dependency Model

Problem: How to model dependencies of a component that have to be
fulfilled specifically by other components?

Context: A component to provision has dependencies to other compo-
nents.

Forces: In software engineering, it is well-known that the monolithic approach does not
work well. Component based software development is known since years [Sam97]. Therefore,
the monolithic approach is unlikely to work for the provisioning of applications. Modularized
applications cannot be provisioned as a whole without considering its several components.
Thus, the components have to be provisioned separately and wired, according the application
structure. To enable the automated provisioning of the components and their correct wiring, the
application structure has to be known as well as be interpretable by the automated provisioning
mechanism. But to decompose the application by using only components would result in a
loss of the information about the structure of the application and the interplay between the
components.

Therefore, a means is required that allows modeling the interplay between components, for
example, the hosted on relation between an application server and an operating system. While
modeling the components in a loosely coupled manner may be enough in some cases, often
it is required to model explicitly how these dependencies of a component have to be fulfilled
specifically.

Solution: Model explicitly all dependencies between components of the application as fol-
lows: For each component model’s requirement model a dependency relation to the component
that satisfies the requirement. Type the dependency relation according the requirement to
define the semantics.

In Figure 6.7, the application topology is modeled with two elements: the components and
arrows. The arrows connect one component having a need with another component satisfying
the need.

57

6 Application Provisioning Modeling Pattern Language

Figure 6.7. Solution Sketch: Explicit Dependency Model
pattern

Results: By modeling explicitly the depen-
dency relations of one component to others
a management system is able to interpret the
application structure. By defining the seman-
tic of the dependency relations an automated
provisioning mechanism is enabled to iden-
tify the order in which the components have
to be provisioned. The explicitly modeling
of dependency relations enables the declara-
tive provisioning described by the Declarative
Provisioning pattern. Also, in a visual notion
additional ways of modeling are enabled, for

example, by drawing an arrow to specify the dependency relation.

A management system that is capable of interpreting explicit dependency relations may identify
parallel processable provisioning tasks. This boosts the speed of provisioning a new application.
Also, the Imperative Provisioning pattern benefits with additional understanding of the modeler,
even if the pattern does not need an explicit application topology. With modeling the application
structure the author of the imperative provisioning logic can identify parallel processable tasks
and improve the imperative provisioning logic accordingly [BBKK+14].

Next: The Explicit Dependency Model pattern serves to model explicitly an application
topology, contrary to the Implicit Dependency Model pattern. But both can be combined, if
the management system supports this. The Explicit Dependency Model pattern is needed for
considering the Declarative Provisioning pattern. In general the Explicit Dependency Model
pattern is helpful for the user to understand the application topology, but not necessary to
apply the other patterns.

Known Uses: With Bluemix the dependencies between runtimes and services can be fulfilled
by so-called bindings. Instead of binding the service instances according their dependency
relations manually, the user can model relations explicitly in the manifest file by stating which
other services have to be bound during the instantiation [IBMa].

In the file metadata.rb in Chef cookbooks, the modeler can state explicitly which other cookbook
satisfies dependencies of the own [Chen]. This can be visualized using the tool knife [Chem].

Juju enables the user to model the relation between components, for example, while defining
a bundle. In the definition of the bundle, the user not only models encompassed services,
but also how these services are to be connected to enable their interplay. [Cane] Another
dependency relation called implicit relation enables services to observe other service’s lifecycle
events [Cani].

58

6.8 Implicit Dependency Model

TOSCA defines so-called Relationship Templates with which components called Node Templates
can be connected [OASa]. With the graph formed by these dependency relations imperative
provisioning plans can be generated out of the declarative TOSCA models [BBKK+14].

Within the deployment management system Engage "intercomponent dependencies" [FME12]
are subdivided into three types: The inside dependency describes a hosting relation, the
environment dependency describes a requirement relation fulfilled on the same node of the
graph, and the peer dependency describes a requirement dependency on any node of the
modeled application.

6.8 Implicit Dependency Model

Problem: How to model the dependencies of a component without
modeling explicitly how to fulfill the dependency?

Context: A component to provision has dependencies to other compo-
nents or the target environment.

Forces: It is not always desired or possible to explicitly model how to satisfy a dependency.
Users may not want to limit the relation to one explicit other component. Also, users may
not want to or are not able to model the whole application topology from the application-
specific layer down to the infrastructure. This would mean a modeling overhead because all
characteristics on the infrastructure and platform layer have to be modeled, too. Therefore,
the users may want to state solely which dependencies of their component the rest of the
application topology has to satisfy.

Therefore, a means is required that allows modeling the interplay between components, for
example, the dependency of an application server to be hosted on an operating system, without
explicitly model how to satisfy the dependency.

Solution: For all components having dependencies that are not to be explicitly modeled, for
example, by whom to be satisfied, model the requirements and capabilities of the component
and attach it to the component model. Employ a management system which is able to
automatically satisfy requirements that are not modeled how to be satisfied.

In Figure 6.8, the user models the PHP App. This component exposes its requirement which is
an application server capable of running a PHP application. The management system cares for
realizing the rest of the application topology. The user may know that an application server
may need a PHP module to run the PHP App, but does not model it. Also, the user does not

59

6 Application Provisioning Modeling Pattern Language

know which application server the management system is using and therefore is not able to
model the components depicted with a question mark in the lower part of the topology.

Results: It is possible to model incomplete application topologies containing only the
components which the user can or want to define explicitly. The components expose their
requirements as well as their capabilities. The relations between components are modeled in a
loosely coupled manner instead of explicitly.

PHP module

PHP App

?

?

App Server

Injected by
Management System

Figure 6.8. Solution Sketch: Implicit Depen-
dency Model pattern

Therefore, there is no way to model components which
satisfy requirements of not modeled components. The
satisfaction of modeled requirements has to be en-
sured by the management system. This enables to hide
components which are not managed by the user, for
example, the lower parts of the application layer.

But on the other hand, it enforces the user to use a
management system which is capable of automatically
handling incomplete application topologies.

To use such a management system reduces the model-
ing overhead. From the management system perspec-
tive, it enables to offer, for example, infrastructure or
platform as a service. The user only books according
the own requirements and the rest is automatically
done as a managed service.

Next: The Implicit Dependency Model pattern serves
to model an application topology in a loosely coupled
manner, contrary to the Explicit Dependency Model
pattern. But both can be combined, if the management
system supports this. The Implicit Dependency Model

pattern is needed for considering the Declarative Provisioning pattern. In general the Implicit
Dependency Model pattern is helpful for the user to understand the application topology, but
not necessary to apply the other patterns.

Known Uses: Using the manifest file for modeling the application to push and host with
Bluemix, requirements to the underlying application can be defined without modeling the
whole application. For example, within the manifest file the disk quota or available memory
can be defined without modeling the operating system or virtual machine. [IBMf]

In the file metadata.rb in Chef, the user can define the requirements and capabilities of the
cookbook with the keywords depends and provides. Additionally, with the keyword depends

60

6.9 External Instance Data Access

version constraints can be defined to enable Chef to choose one cookbook with a matching
version of different available cookbooks. No explicit dependency has to be defined. While the
deployment process, the chef-client cares for retrieving cookbooks from the Chef server that are
satisfying the dependencies. [Chen] Two cookbooks state dependencies to the hosting platform
like the operating system or the infrastructure component like a virtual machine [Chek; Win]
and the other eight do not [Agi; Cheg; Cheo; Esc; Fie; Fla; McL; vZoe].

Juju uses a similar concept: Within the file metadata.yaml, the requirements can be defined
in the sections peers and requires as well as the capabilities in the section provides. To
specify a dependency the relation name and an interface are named, but not the specific
component implementing the interface [Canh]. For example, none of the analyzed artifacts
state a requirement to the specific hosting platform like the operating system. They only state
functional requirements [chaa; chab; chac; chad; chae; Juj; Opea; Opeb; Opec; Oped]. But
this is not to confuse with Implicit Relations which enables the exchange of "lifecycle-oriented
events and data" [Cani].

The definition of capabilities and requirements in TOSCA enables such mechanisms. [OASa;
OASb] But up to now OpenTOSCA is not supporting such a feature. However, the TOSCA
modeling tool winery [Unic] supports completing topology models encompassing capability
and requirement definitions to specify dependencies between node types [HBBL14].

6.9 External Instance Data Access

Problem: How to model the imperative provisioning logic to enable
it to independently access and handle the instance data of big and
complex applications at an external persistence?

Context: The Imperative Provisioning pattern is applied to provision an application and
the instance data about the application is handled by an external component, for example, a
CMDB.

Forces: It has to be ensured that the imperative process model has all the needed instance
data. Also, the instance data resulting of, for example, provisioning tasks may be needed later
by others. The management system is not able to ensure the management of instance data in
general. Also, the management system is not able to react or be adapted to all possible changes
of instance data in general.

To customize a component towards the application different instance data are usually needed.
These instance data are, for example, IP-address and credentials of the operating system on
which the component has to be provisioned, credentials and endpoints to where store customer
data, and so on. But the instance data are unlikely to be unified for all possible applications

61

6 Application Provisioning Modeling Pattern Language

that shall be managed. For example, credentials are not always just username and password,
endpoints might reference a certain driver describing the connection mechanism instead of
only stating an IP.

The unification of instance data is not possible in general for arbitrarily big and complex
applications. Therefore, the management system may not be able to identify instance data to
provide them to a parameterized process model, for example, described by the Parametrized
Imperative Provisioning pattern.

Therefore, a means is required that allows an imperative provisioning logic to independently
access and handle instance data at an external persistence.

d

d'

Figure 6.9. Solution Sketch: External In-
stance Data Access pattern candidate

Solution: Implement or use an external instance data
persistence with which instance data can be accessed
and managed. Model the imperative process model to
access, retrieve, create, and update the instance data
persistence.

In Figure 6.9, neither the start nor the end event is param-
eterized as it would be with the Parametrized Imperative
Provisioning pattern. With the External Instance Data
Access pattern, the activities are enabled to access an
external persistence to get or store instance data that
symbolized by the sheets of paper. The first activity re-
trieves instance data d from the instance data persistence
and the second activity stores the results d′.

Results: The provisioning logic, modeled as a process
model, is enabled to manage the instance data on its
own. For that, the imperative process model accesses the
instance data persistence directly to retrieve and update
instance data. Therefore, the management system has
not to be able to provide and, thus, identify the right
instance data for a distinct process model instance. The
management tasks know only their needed instance data
and not all the instance data of the provisioning logic.

The complexity for the management system is reduced because it has not to manage and,
therefore, not to understand the instance data. The management system is not the limiting
factor because of its inability of understanding arbitrarily big and complex applications.

62

6.10 Overview of the Pattern Language

On the other hand, the instance data has to be confidential and not to be changeable by the
wrong people. For all security issues has to be cared for in the access mechanism of the instance
data persistence and the instance data persistence itself.

Next: The External Instance Data Access pattern candidate describes characteristics of the
Imperative Provisioning pattern. Therefore, this pattern may be combined with the Component
Lifecycle Interface pattern and Container Component Interface pattern to invoke predefined
management operations that are described by the interfaces and with the Local Management
Operation Execution pattern, if the management operations are not available in the application
environment yet. On the other hand, this pattern is opposite to the Parametrized Imperative
Provisioning pattern. Also, this pattern is independent of the Explicit Dependency Model pattern
and Implicit Dependency Model pattern. But, this pattern may be used by the Declarative
Provisioning pattern as a declarative management system eventually has to execute or invoke
imperative provisioning logic.

Known Uses: In Bluemix instance data, for example, endpoint information and credentials
needed to connect to other Services, are accessible in a VCAP_SERVICES called environment
variable [IBMa; IBMm].

OpenTOSCA persists instance data for provisioned applications. These instance data are
accessible via a dedicated instance data API. [Eis13]

6.10 Overview of the Pattern Language

In Figure 6.10, the pattern language is visualized. Each pattern is connected with the other
patterns according the next Paragraph in the respective pattern sections in the Chapter 6.
To improve the readability the connecting arrows are reduced to the minimum and arrows
describing transitive connections are omitted. This means that only connections of the type:
"If you use A, consider B" are depicted, but not "If you use A, consider B, if you also use C".
For example, the Parametrized Imperative Provisioning pattern describes the characteristics
of the Imperative Provisioning pattern. Therefore, both are connected. The Imperative Provi-
sioning pattern is used by the Declarative Provisioning pattern in general, but the Declarative
Provisioning pattern is not using the Parametrized Imperative Provisioning pattern explicitly.
Therefore, the Declarative Provisioning pattern points to the Imperative Provisioning pattern,
but not to the Parametrized Imperative Provisioning pattern.

63

6 Application Provisioning Modeling Pattern Language

Lo
cal M

a
n

age
m

e
n

t
O

p
e

ra
tio

n
 E

xe
cu

tio
n

Extern
al In

stan
ce D

ata
A

ccess

P
aram

etrize
d

 Im
p

e
rative

P

ro
v

isio
n

ing

Im
p

licit D
ep

en
d

en
cy

M
o

d
elExp

licit D
ep

en
d

en
cy

M
o

d
el

Im
p

erative P
ro

visio
n

in
g

C
o

m
p

o
n

en
t Lifecycle

In

te
rfa

ce

l

In
frastru

ctu
re

C

o
m

p
o

n
e

n
t

C
o

n
taine

r C
o

m
po

n
en

t
In

te
rface

C
o

n
ta

in
e

r
C

o
m

p
o

n
e

n
t
c

D
eclarative P

ro
visio

n
in

g

Management
System

Figure 6.10. Overview of the Pattern Language

64

7 Discussion

This Chapter discusses the validity of the proposed results. In Section 7.1, an overview of the
known uses of the patterns introduced in Chapter 6 is depicted. Subsequent, in Section 7.2,
the maturity evaluation is presented. In Section 7.3, the potential threats to validity and in
Section 7.4, the limits of theses master thesis are mentioned.

7.1 Overview of the Known Uses of the Patterns and Pattern
Candidates

In this section, an overview is depicted which relates the known uses of the proposed patterns
to the analyzed technologies.

In Table 7.1, each pattern is correlated to the four analyzed technologies and standard as well
as to additional evidences summed up as others. These others are either other technologies
or scientific works. A Xsymbol indicates that the pattern is supported in the technology or
suggested in the scientific work. If a cell is left empty, the pattern is not supported. The
detailed explanations of the known uses are in the known uses paragraphs of the patterns in
the Chapter 6.

7.2 Maturity Evaluation of the Patterns and Pattern Candidates

In Table 7.1, an overview of the patterns, pattern candidates, and their evidences is depicted.
Subsequent, in Table 7.2, the derived maturity evaluation is presented. The first column states
the pattern or pattern candidate name. The second column presents the coverage of the pattern
in the considered technologies. The third column states, if there are additional evidences,
for example, in scientific works or prototypes. The fourth and fifth column state, if the rule
of three is fulfilled and, therefore, the identified principle conforms to a pattern or a pattern
candidate.

65

7 Discussion

Name Bluemix Chef Juju TOSCA
OpenTOSCA

Other Tech-
nologies

Scientific
Work

Component Lifecycle
Interface

X X X X X

Container Component
Interface

X X X X

Declarative Provisioning X X X X X

Explicit Dependency
Model

X X X X X

External Instance Data
Access

X X

Imperative Provisioning X X X X X

Implicit Dependency
Model

X X X X

Local Management
Operation Execution

X X X X X

Parametrized Imperative
Provisioning

X X X X

Table 7.1. Overview of the Known Uses of the patterns and pattern candidates

7.3 Threats to Validity

The in this document proposed pattern language was conducted as a master thesis. The master
thesis did not encompass expert interviews as it is common in the pattern community. The
used process [FBBL15] explicitly states that implemented technologies and their artifacts
and documentations are valid as information source for working out patterns. Although
this approach in combination with the rule of three [CA96] provides a statistical basis that
quantitatively proves the repeatedly occurrence of the found principles and, therefore, the
existence of the found patterns, in the pattern community it is common to discuss patterns in
workshops with other experts. Whilst the proposed pattern language was presented to and
discussed with members of the Institute of Architecture of Application Systems, a dedicated and
structured workshop with experts from different companies or institutes was not conducted
yet. Therefore, these workshops will be part of future research to also include further expert
knowledge in this pattern language.

66

7.4 Limits of the Thesis

Name Coverage in
Considered

Technologies

Additional
Evidences

Rule of
Three

Rating

Component Lifecycle
Interface

80% X X Pattern

Container Component
Interface

60% X X Pattern

Declarative Provisioning 80% X X Pattern
Explicit Dependency
Model

80% X X Pattern

External Instance Data
Access

40% Pattern
Candidate

Imperative Provisioning 80% X X Pattern
Implicit Dependency
Model

80% X Pattern

Local Management
Operation Execution

80% X X Pattern

Parametrized Imperative
Provisioning

80% X Pattern

Table 7.2. Maturity evaluation of the patterns and pattern candidates

7.4 Limits of the Thesis

The proposed pattern language does not claim completeness. It is certain that there are other
patterns that should be considered for the proposed pattern language. Also, the proposed
pattern candidates are likely to fulfill the rule of three, if the scope of considered technologies is
extended. Similarly, the pattern language can be extended, if the limit of provisioning tasks is
extended to management tasks regarding the management and operation of cloud application
components during their whole lifecycle.

67

8 Literature and Other Resources

8.1 Literature

[Ale79] Christopher Alexander. The timeless way of building. New York: Oxford University
Press, 1979.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A pattern lan-
guage: Towns, buildings, construction (Center for environmental structure series).
Oxford University Press, 1977.

[BBHK+13] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,
Alexander Nowak, and Sebastian Wagner. “OpenTOSCA - A Runtime for TOSCA-
based Cloud Applications.” In: Proceedings of 11th International Conference on
Service-Oriented Computing (ICSOC’13). Springer Berlin Heidelberg, 2013.

[BBKK+14] Uwe Breitenbücher, Tobias Binz, Kálmán Képes, Oliver Kopp, Frank Leymann,
and Johannes Wettinger. “Combining Declarative and Imperative Cloud Appli-
cation Provisioning based on TOSCA.” In: Proceedings of the IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2014.

[BBKL13] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, and Frank Leymann. “Pattern-
based Runtime Management of Composite Cloud Applications.” In: Proceedings of
the 3rd International Conference on Cloud Computing and Service Science, CLOSER
2013. SciTePress, 2013.

[BBKL14] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, and Frank Leymann. “Automating
Cloud Application Management Using Management Idioms.” In: Proceedings
of the Sixth International Conferences on Pervasive Patterns and Applications
(PATTERNS 2014). Xpert Publishing Services, 2014.

[BBKL+13] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, and Johannes
Wettinger. “Integrated Cloud Application Provisioning: Interconnecting Service-
Centric and Script-Centric Management Technologies.” In: Proceedings of the
21st International Conference on Cooperative Information Systems (CoopIS 2013).
Springer Berlin Heidelberg, 2013.

[BHS07] Frank Buschmann, Kelvin Henney, and Douglas Schimdt. Pattern-oriented Soft-
ware Architecture: On Patterns and Pattern Language. John Wiley & Sons, Ltd.,
2007.

69

8 Literature and Other Resources

[BMRS+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. A system of patterns: Pattern-oriented software architecture. Wi-
ley West Sussex, England, 1996.

[CA96] James O Coplien and A Word On Alexander. Software patterns. Citeseer, 1996.

[EEKS11] Tamar Eilam, Michael Elder, Alexander V Konstantinou, and Ed Snible. “Pattern-
based Composite Application Deployment.” In: Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on. IEEE, May 2011.

[Eis13] Marcus Eisele. Verwaltung von Instanzdaten eines TOSCA-Cloud-Services. 2013.

[EMEK+06] Kaoutar El Maghraoui, Alok Meghranjani, Tamar Eilam, Michael Kalantar, and
Alexander V. Konstantinou. “Model Driven Provisioning: Bridging the Gap Be-
tween Declarative Object Models and Procedural Provisioning Tools.” In: Pro-
ceedings of the ACM/IFIP/USENIX 2006 International Conference on Middleware.
Springer-Verlag New York, Inc., 2006.

[End13] Christian Endres. Management von Cloud Applikationen in OpenTOSCA. 2013.

[FBBL15] Christoph Fehling, Johanna Barzen, Uwe Breitenbücher, and Frank Leymann. “A
Process for Pattern Identification, Authoring, and Application.” In: Proceedings
of the 19th European Conference on Pattern Languages of Programs (EuroPLoP).
ACM, 2015.

[FLRS+14] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. Cloud Computing Patterns: Fundamentals to Design, Build, and Manage
Cloud Applications. Springer Science & Business Media, 2014.

[FLRS12] Christoph Fehling, Frank Leymann, Jochen Rütschlin, and David Schumm.
“Pattern-Based Development and Management of Cloud Applications.”
In: Future Internet Special Issue “Recent Advances in Web Services” (pdf)
(2012).

[FME12] Jeffrey Fischer, Rupak Majumdar, and Shahram Esmaeilsabzali. “Engage: A
Deployment Management System.” In: SIGPLAN Not. (2012).

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[Han12] Robert Hanmer. Pattern-oriented software architecture for dummies. John Wiley
& Sons, 2012.

[HLWL14] Simon Harrer, Jörg Lenhard, Guido Wirtz, and Tammo van Lessen. “Towards
Uniform BPEL Engine Management in the Cloud.” In: Proceedings des CloudCy-
cle14 Workshops auf der 44. Jahrestagung der Gesellschaft für Informatik e.V. (GI).
Gesellschaft für Informatik e.V. (GI), 2014.

70

8.1 Literature

[HLNW14] Florian Haupt, Frank Leymann, Alexander Nowak, and Sebastian Wagner.
“Lego4TOSCA: Composable Building Blocks for Cloud Applications.” In: Proceed-
ings of the 7th IEEE International Conference on Cloud Computing (CLOUD 2014).
IEEE, 2014.

[HBBL14] Pascal Hirmer, Uwe Breitenbücher, Tobias Binz, and Frank Leymann. “Automatic
Topology Completion of TOSCA-based Cloud Applications.” In: Proceedings des
CloudCycle14 Workshops auf der 44. Jahrestagung der Gesellschaft für Informatik
e.V. (GI). Gesellschaft für Informatik eV (GI), Sept. 2014.

[HKOH13] Eman Hossny, Sherif Khattab, Felix Omara, and Haitham Hassan. “A Case
Study for Deploying Applications on Heterogeneous PaaS Platforms.” In: 2013
International Conference on Cloud Computing and Big Data (CloudCom-Asia).
IEEE, 2013.

[KMO98] Bartek Kiepuszewski, Ralf Muhlberger, and Maria E. Orlowska. “FlowBack: Pro-
viding Backward Recovery for Workflow Management Systems.” In: Proceedings
of the 1998 ACM SIGMOD International Conference on Management of Data. ACM,
1998.

[Ley09] Frank Leymann. “Cloud Computing: The Next Revolution in IT.” In: Wichmann
Verlag, 2009.

[LR98] Frank Leymann and Dieter Roller. “Building A Robust Workflow Management
System With Persistent Queues and Stored Procedures.” In: Proceedings of the
Fourteenth International Conference on Data Engineering (ICDE). IEEE, 1998.

[Mie10] Ralph Mietzner. “A method and implementation to define and provision variable
composite applications, and its usage in cloud computing.” 2010.

[Sam97] Johannes Sametinger. Software engineering with reusable components. Springer
Science & Business Media, 1997.

[SLTP+14] Chrystalla Sofokleous, Nicholas Loulloudes, Demetris Trihinas, George Pallis, and
MariosD. Dikaiakos. “c-Eclipse: An Open-Source Management Framework for
Cloud Applications.” In: Euro-Par 2014 Parallel Processing. Springer International
Publishing, 2014.

[vDTKB03] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and Alistair
P Barros. “Workflow patterns.” In: Distributed and Parallel Databases (2003).

[WF12] Tim Wellhausen and Andreas Fiesser. “How to Write a Pattern?: A Rough Guide
for First-time Pattern Authors.” In: Proceedings of the 16th European Conference
on Pattern Languages of Programs. ACM, 2012.

[Zdu07] Uwe Zdun. “Systematic pattern selection using pattern language grammars and
design space analysis.” In: Software: Practice and Experience (2007).

71

8 Literature and Other Resources

8.2 Online Resources

[Agi] Agile Orbit. java Cookbook - Chef Supermarket. URL: https://supermarket.chef.
io/cookbooks/java (visited on 06/16/2015).

[Alfa] Alfresco Software, Inc. Activiti. URL: http : / / activiti . org/ (visited on
10/13/2015).

[Alfb] Alfresco Software, Inc. RepositoryService (Activiti - Engine 5.18.0 API). URL:
http://activiti.org/javadocs/index.html (visited on 10/01/2015).

[Alfc] Alfresco Software, Inc. RuntimeService (Activiti - Engine 5.18.0 API). URL: http:
//activiti.org/javadocs/index.html (visited on 10/01/2015).

[Apaa] Apache Software Foundation. Apache ODE textendash Apache ODEtexttrademark.
URL: http://ode.apache.org/ (visited on 10/09/2015).

[Apab] Apache Software Foundation. Apache Tomcat 7 (7.0.64) - Manager App HOW-TO:
URL: https://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html

(visited on 08/26/2015).

[BK] Heiko Braun and Kabir Khan. Admin Guide - JBoss AS 7.0 - Project Documentation
Editor. URL: https://docs.jboss.org/author/display/AS7/Admin+Guide#
AdminGuide-HTTPManagementEndpoint (visited on 10/01/2015).

[Cana] Canonical Ltd. About Juju | Documentation | Juju. URL: https://jujucharms.
com/docs/stable/about-juju (visited on 07/01/2015).

[Canb] Canonical Ltd. About Juju | Juju. URL: https://jujucharms.com/about (visited
on 10/12/2015).

[Canc] Canonical Ltd. Charm hooks | Documentation | Juju. URL: https://jujucharms.
com/docs/stable/authors-charm-hooks (visited on 07/06/2015).

[Cand] Canonical Ltd. Constraints | Documentation | Juju. URL: https://jujucharms.
com/docs/devel/reference-constraints (visited on 09/28/2015).

[Cane] Canonical Ltd. Creating and using Bundles | Documentation | Juju. URL: https:
//jujucharms.com/docs/stable/charms-bundles (visited on 09/28/2015).

[Canf] Canonical Ltd. Deploying Services | Documentation | Juju. URL: https : / /

jujucharms.com/docs/devel/charms-deploying (visited on 09/13/2015).

[Cang] Canonical Ltd. implementing actions in juju charms | Documentation | Juju. URL:
https://jujucharms.com/docs/stable/authors-charm-actions (visited on
09/12/2015).

[Canh] Canonical Ltd. Implementing Relations in Juju charms | Documentation | Juju.
URL: https://jujucharms.com/docs/stable/authors-relations (visited on
09/13/2015).

72

https://supermarket.chef.io/cookbooks/java
https://supermarket.chef.io/cookbooks/java
http://activiti.org/
http://activiti.org/javadocs/index.html
http://activiti.org/javadocs/index.html
http://activiti.org/javadocs/index.html
http://ode.apache.org/
https://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html
https://docs.jboss.org/author/display/AS7/Admin+Guide#AdminGuide-HTTPManagementEndpoint
https://docs.jboss.org/author/display/AS7/Admin+Guide#AdminGuide-HTTPManagementEndpoint
https://jujucharms.com/docs/stable/about-juju
https://jujucharms.com/docs/stable/about-juju
https://jujucharms.com/about
https://jujucharms.com/docs/stable/authors-charm-hooks
https://jujucharms.com/docs/stable/authors-charm-hooks
https://jujucharms.com/docs/devel/reference-constraints
https://jujucharms.com/docs/devel/reference-constraints
https://jujucharms.com/docs/stable/charms-bundles
https://jujucharms.com/docs/stable/charms-bundles
https://jujucharms.com/docs/devel/charms-deploying
https://jujucharms.com/docs/devel/charms-deploying
https://jujucharms.com/docs/stable/authors-charm-actions
https://jujucharms.com/docs/stable/authors-relations

8.2 Online Resources

[Cani] Canonical Ltd. Implicit Relations | Documentation | Juju. URL: https : / /

jujucharms . com / docs / devel / authors - implicit - relations (visited on
09/13/2015).

[Canj] Canonical Ltd. Machine Constraints | Documentation | Juju. URL: https://

jujucharms.com/docs/stable/charms-constraints (visited on 09/28/2015).

[Cank] Canonical Ltd. Managing Relationships | Documentation | Juju. URL: https:

//jujucharms.com/docs/stable/charms-relations (visited on 09/28/2015).

[Canl] Canonical Ltd. Store | Juju. URL: https://jujucharms.com/store (visited on
07/06/2015).

[Canm] Canonical Ltd. Welcome to the Juju charm browser | Juju. URL: https : / /

jujucharms.com (visited on 05/19/2015).

[chaa] "charmers" team. apache2 | Juju. URL: https://jujucharms.com/apache2/

trusty/14 (visited on 07/06/2015).

[chab] "charmers" team. haproxy | Juju. URL: https://jujucharms.com/haproxy/

trusty/11 (visited on 07/06/2015).

[chac] "charmers" team. mysql | Juju. URL: https://jujucharms.com/mysql/trusty/25
(visited on 07/06/2015).

[chad] "charmers" team. postgresql | Juju. URL: https://jujucharms.com/postgresql/
trusty/23 (visited on 07/06/2015).

[chae] "charmers" team. rabbitmq server | Juju. URL: https : / / jujucharms . com /

rabbitmq-server/trusty/32 (visited on 07/06/2015).

[Chea] Chef Software, Inc. About Cookbooks textemdash Chef Docs. URL: https://docs.
chef.io/cookbooks.html (visited on 10/12/2015).

[Cheb] Chef Software, Inc. About Cookbooks textemdash chef-client 12.4 Documentation.
URL: https://docs.chef.io/release/12- 4/cookbooks.html (visited on
10/12/2015).

[Chec] Chef Software, Inc. About Definitions textemdash Chef Docs. URL: https://docs.
chef.io/definitions.html (visited on 10/12/2015).

[Ched] Chef Software, Inc. About Nodes textemdash Chef Docs. URL: https://docs.chef.
io/nodes.html (visited on 09/28/2015).

[Chee] Chef Software, Inc. About Resources textemdash Chef Docs. URL: https://docs.
chef.io/resource.html (visited on 10/12/2015).

[Chef] Chef Software, Inc. About Run-lists textemdash Chef Docs. URL: https://docs.
chef.io/run_lists.html (visited on 09/28/2015).

[Cheg] Chef Software, Inc. apt Cookbook - Chef Supermarket. URL: https://supermarket.
chef.io/cookbooks/apt (visited on 06/16/2015).

[Cheh] Chef Software, Inc. Chef. URL: https://www.chef.io/ (visited on 05/19/2015).

73

https://jujucharms.com/docs/devel/authors-implicit-relations
https://jujucharms.com/docs/devel/authors-implicit-relations
https://jujucharms.com/docs/stable/charms-constraints
https://jujucharms.com/docs/stable/charms-constraints
https://jujucharms.com/docs/stable/charms-relations
https://jujucharms.com/docs/stable/charms-relations
https://jujucharms.com/store
https://jujucharms.com
https://jujucharms.com
https://jujucharms.com/apache2/trusty/14
https://jujucharms.com/apache2/trusty/14
https://jujucharms.com/haproxy/trusty/11
https://jujucharms.com/haproxy/trusty/11
https://jujucharms.com/mysql/trusty/25
https://jujucharms.com/postgresql/trusty/23
https://jujucharms.com/postgresql/trusty/23
https://jujucharms.com/rabbitmq-server/trusty/32
https://jujucharms.com/rabbitmq-server/trusty/32
https://docs.chef.io/cookbooks.html
https://docs.chef.io/cookbooks.html
https://docs.chef.io/release/12-4/cookbooks.html
https://docs.chef.io/definitions.html
https://docs.chef.io/definitions.html
https://docs.chef.io/nodes.html
https://docs.chef.io/nodes.html
https://docs.chef.io/resource.html
https://docs.chef.io/resource.html
https://docs.chef.io/run_lists.html
https://docs.chef.io/run_lists.html
https://supermarket.chef.io/cookbooks/apt
https://supermarket.chef.io/cookbooks/apt
https://www.chef.io/

8 Literature and Other Resources

[Chei] Chef Software, Inc. Chef Server Components textemdash chef-client 12.4 Documen-
tation. URL: https://docs.chef.io/release/12-4/server_components.html
(visited on 10/12/2015).

[Chej] Chef Software, Inc. Chef-client. URL: https://docs.chef.io/chef_client.html
(visited on 06/15/2015).

[Chek] Chef Software, Inc. chef-client Cookbook - Chef Supermarket. URL: https://

supermarket.chef.io/cookbooks/chef-client (visited on 06/16/2015).

[Chel] Chef Software, Inc. Cookbooks - Chef Supermarket. URL: https://supermarket.
chef.io/cookbooks?order=most_downloaded (visited on 06/16/2015).

[Chem] Chef Software, Inc. knife deps | Chef Docs. URL: http://docs.chef.io/knife_

deps.html (visited on 08/22/2015).

[Chen] Chef Software, Inc. metadata.rb | Chef Docs. URL: http://docs.chef.io/

config_rb_metadata.html (visited on 08/22/2015).

[Cheo] Chef Software, Inc. mysql Cookbook - Chef Supermarket. URL: https : / /

supermarket.chef.io/cookbooks/mysql (visited on 06/16/2015).

[Doca] Docker, Inc. pull. URL: https://docs.docker.com/reference/commandline/
pull/ (visited on 10/01/2015).

[Docb] Docker, Inc. rm. URL: https://docs.docker.com/reference/commandline/rm/
(visited on 10/01/2015).

[Docc] Docker, Inc. rmi. URL: https://docs.docker.com/reference/commandline/rmi/
(visited on 10/01/2015).

[Docd] Docker, Inc. run. URL: https://docs.docker.com/reference/commandline/run/
(visited on 10/01/2015).

[Doce] Docker, Inc. start. URL: https://docs.docker.com/reference/commandline/
start/ (visited on 10/01/2015).

[Docf] Docker, Inc. stop. URL: https://docs.docker.com/reference/commandline/
stop/ (visited on 10/01/2015).

[Docg] Docker, Inc. What is Docker? URL: https://www.docker.com/whatisdocker

(visited on 10/13/2015).

[Esc] Escape Studios Development. newrelic Cookbook - Chef Supermarket. URL: https:
//supermarket.chef.io/cookbooks/newrelic (visited on 06/16/2015).

[Fie] Mike Fiedler. nginx Cookbook - Chef Supermarket. URL: https://supermarket.
chef.io/cookbooks/nginx (visited on 06/16/2015).

[Fla] Brian Flad. docker Cookbook - Chef Supermarket. URL: https://supermarket.
chef.io/cookbooks/docker (visited on 06/16/2015).

[IBMa] IBM Corporation. Anwendungen bereitstellen. URL: https://www.ng.bluemix.
net/docs/manageapps/deployingapps.html (visited on 10/08/2015).

74

https://docs.chef.io/release/12-4/server_components.html
https://docs.chef.io/chef_client.html
https://supermarket.chef.io/cookbooks/chef-client
https://supermarket.chef.io/cookbooks/chef-client
https://supermarket.chef.io/cookbooks?order=most_downloaded
https://supermarket.chef.io/cookbooks?order=most_downloaded
http://docs.chef.io/knife_deps.html
http://docs.chef.io/knife_deps.html
http://docs.chef.io/config_rb_metadata.html
http://docs.chef.io/config_rb_metadata.html
https://supermarket.chef.io/cookbooks/mysql
https://supermarket.chef.io/cookbooks/mysql
https://docs.docker.com/reference/commandline/pull/
https://docs.docker.com/reference/commandline/pull/
https://docs.docker.com/reference/commandline/rm/
https://docs.docker.com/reference/commandline/rmi/
https://docs.docker.com/reference/commandline/run/
https://docs.docker.com/reference/commandline/start/
https://docs.docker.com/reference/commandline/start/
https://docs.docker.com/reference/commandline/stop/
https://docs.docker.com/reference/commandline/stop/
https://www.docker.com/whatisdocker
https://supermarket.chef.io/cookbooks/newrelic
https://supermarket.chef.io/cookbooks/newrelic
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/nginx
https://supermarket.chef.io/cookbooks/docker
https://supermarket.chef.io/cookbooks/docker
https://www.ng.bluemix.net/docs/manageapps/deployingapps.html
https://www.ng.bluemix.net/docs/manageapps/deployingapps.html

8.2 Online Resources

[IBMb] IBM Corporation. Auto-Scaling - IBM Bluemix. URL: https : / / console . ng .

bluemix.net/catalog/auto-scaling/ (visited on 10/01/2015).

[IBMc] IBM Corporation. Befehlszeilenschnittstelle. URL: https://www.ng.bluemix.net/
docs/cli/cli.html#container_cli (visited on 08/22/2015).

[IBMd] IBM Corporation. Bluemix - Übersicht. URL: https://www.ng.bluemix.net/docs/
overview/overview.html#ov_arch (visited on 10/08/2015).

[IBMe] IBM Corporation. Boilerplates. URL: https://www.ng.bluemix.net/docs/

starters/boilerplates.html (visited on 09/28/2015).

[IBMf] IBM Corporation. Deploying with Application Manifests | Pivotal Docs. URL: http:
//docs.pivotal.io/pivotalcf/devguide/deploy- apps/manifest.html#

precedence (visited on 10/22/2015).

[IBMg] IBM Corporation. IBM Bluemix. URL: http://www.ibm.com/cloud-computing/
bluemix/ (visited on 05/19/2015).

[IBMh] IBM Corporation. IBM Bluemix - Entwicklungsplattform für Cloud-Apps der näch-
sten Generation. URL: https://console.ng.bluemix.net/home/ (visited on
10/08/2015).

[IBMi] IBM Corporation. Java DB Web Starter - IBM Bluemix. URL: https://console.ng.
bluemix.net/catalog/java-db-web-starter/ (visited on 10/01/2015).

[IBMj] IBM Corporation. Katalog - IBM Bluemix. URL: https://console.ng.bluemix.
net/catalog/ (visited on 10/08/2015).

[IBMk] IBM Corporation. Laufzeiten - Übersicht. URL: https://www.ng.bluemix.net/
docs/starters/rt_landing.html (visited on 09/28/2015).

[IBMl] IBM Corporation. Webanwendungen erstellen. URL: https://www.ng.bluemix.
net/docs/starters/index.html (visited on 10/08/2015).

[IBMm] IBM Corporation. Wert der Umgebungsvariable VCAP_SERVICES abrufen. URL:
https : / / www . ng . bluemix . net / docs / cli / retrieving . html (visited on
10/02/2015).

[Juj] "Juju GUI Charmers" team. juju gui | Juju. URL: https://jujucharms.com/juju-
gui/trusty/33 (visited on 07/06/2015).

[KPM] KPMG AG in collaboration with Bitkom Research GmbH. Cloud-Monitor 2015.
Cloud-Computing in Deutschland textendash Status quo und Perspektiven -
Cloud_Monitor_2015_KPMG_Bitkom_Research.pdf. URL: https://www.bitkom.
org/Publikationen/2015/Studien/Cloud- Monitor- 2015/Cloud_Monitor_

2015_KPMG_Bitkom_Research.pdf (visited on 10/28/2015).

[McL] Bryan McLellan. windows Cookbook - Chef Supermarket. URL: https : / /

supermarket.chef.io/cookbooks/windows (visited on 06/16/2015).

75

https://console.ng.bluemix.net/catalog/auto-scaling/
https://console.ng.bluemix.net/catalog/auto-scaling/
https://www.ng.bluemix.net/docs/cli/cli.html#container_cli
https://www.ng.bluemix.net/docs/cli/cli.html#container_cli
https://www.ng.bluemix.net/docs/overview/overview.html#ov_arch
https://www.ng.bluemix.net/docs/overview/overview.html#ov_arch
https://www.ng.bluemix.net/docs/starters/boilerplates.html
https://www.ng.bluemix.net/docs/starters/boilerplates.html
http://docs.pivotal.io/pivotalcf/devguide/deploy-apps/manifest.html#precedence
http://docs.pivotal.io/pivotalcf/devguide/deploy-apps/manifest.html#precedence
http://docs.pivotal.io/pivotalcf/devguide/deploy-apps/manifest.html#precedence
http://www.ibm.com/cloud-computing/bluemix/
http://www.ibm.com/cloud-computing/bluemix/
https://console.ng.bluemix.net/home/
https://console.ng.bluemix.net/catalog/java-db-web-starter/
https://console.ng.bluemix.net/catalog/java-db-web-starter/
https://console.ng.bluemix.net/catalog/
https://console.ng.bluemix.net/catalog/
https://www.ng.bluemix.net/docs/starters/rt_landing.html
https://www.ng.bluemix.net/docs/starters/rt_landing.html
https://www.ng.bluemix.net/docs/starters/index.html
https://www.ng.bluemix.net/docs/starters/index.html
https://www.ng.bluemix.net/docs/cli/retrieving.html
https://jujucharms.com/juju-gui/trusty/33
https://jujucharms.com/juju-gui/trusty/33
https://www.bitkom.org/Publikationen/2015/Studien/Cloud-Monitor-2015/Cloud_Monitor_2015_KPMG_Bitkom_Research.pdf
https://www.bitkom.org/Publikationen/2015/Studien/Cloud-Monitor-2015/Cloud_Monitor_2015_KPMG_Bitkom_Research.pdf
https://www.bitkom.org/Publikationen/2015/Studien/Cloud-Monitor-2015/Cloud_Monitor_2015_KPMG_Bitkom_Research.pdf
https://supermarket.chef.io/cookbooks/windows
https://supermarket.chef.io/cookbooks/windows

8 Literature and Other Resources

[Mic] Microsoft Corporation. Professionelle Diagramm- und Flowchart-Software | Mi-
crosoft Visio. URL: https://products.office.com/de-de/visio/flowchart-
software (visited on 10/16/2015).

[MSSM+] Mohamed Sellami, Sami Yangui, Samir Tata, Mohamed Mohamed, and Chan
Ngoc Nguyen. COAPS API. URL: http://www-inf.it-sudparis.eu/SIMBAD/
tools/COAPS/ (visited on 10/01/2015).

[OASa] OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA)
Primer Version 1.0. URL: docs.oasis-open.org/tosca/tosca-primer/v1.0/
cnd01/tosca-primer-v1.0-cnd01.html (visited on 05/25/2015).

[OASb] OASIS. Topology and Orchestration Specification for Cloud Applications Version
1.0. URL: http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
(visited on 05/25/2015).

[Obja] Object Management Group, Inc. BPMN Specification - Business Process Model and
Notation. URL: http://www.bpmn.org/ (visited on 10/16/2015).

[Objb] Object Management Group, Inc. Business Process Model and Notation (BPMN)
Version 2.0. URL: http://www.omg.org/spec/BPMN/2.0/PDF/ (visited on
10/16/2015).

[Objc] Object Management Group, Inc. Unified Modeling Language (UML). URL: http:
//www.uml.org/ (visited on 10/16/2015).

[Opea] "OpenStack Charmers" team. glance | Juju. URL: https://jujucharms.com/

glance/trusty/22 (visited on 07/06/2015).

[Opeb] "OpenStack Charmers" team. keystone | Juju. URL: https://jujucharms.com/
keystone/trusty/26 (visited on 07/06/2015).

[Opec] "OpenStack Charmers" team. nova cloud controller | Juju. URL: https : / /

jujucharms.com/nova-cloud-controller/trusty/58 (visited on 07/06/2015).

[Oped] "OpenStack Charmers" team. openstack dashboard | Juju. URL: https : / /

jujucharms.com/openstack-dashboard/trusty/14 (visited on 07/06/2015).

[Reda] Red Hat, Inc. JBoss Developer. URL: http : / / www . jboss . org/ (visited on
10/13/2015).

[Redb] Red Hat, Inc. JBoss Web - JBoss Web Web Application Deployment. URL: https:
/ / docs . jboss . org / jbossweb / 3 . 0 . x / deployer - howto . html (visited on
10/13/2015).

[Thea] The Hillside Group. EuroPLoP. URL: http : / / hillside . net / conferences /

europlop (visited on 10/19/2015).

[Theb] The Hillside Group. PLoP. URL: http : / / hillside . net / conferences / plop

(visited on 10/19/2015).

76

https://products.office.com/de-de/visio/flowchart-software
https://products.office.com/de-de/visio/flowchart-software
http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS/
http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS/
docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
docs.oasis-open.org/tosca/tosca-primer/v1.0/cnd01/tosca-primer-v1.0-cnd01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://www.bpmn.org/
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.uml.org/
http://www.uml.org/
https://jujucharms.com/glance/trusty/22
https://jujucharms.com/glance/trusty/22
https://jujucharms.com/keystone/trusty/26
https://jujucharms.com/keystone/trusty/26
https://jujucharms.com/nova-cloud-controller/trusty/58
https://jujucharms.com/nova-cloud-controller/trusty/58
https://jujucharms.com/openstack-dashboard/trusty/14
https://jujucharms.com/openstack-dashboard/trusty/14
http://www.jboss.org/
https://docs.jboss.org/jbossweb/3.0.x/deployer-howto.html
https://docs.jboss.org/jbossweb/3.0.x/deployer-howto.html
http://hillside.net/conferences/europlop
http://hillside.net/conferences/europlop
http://hillside.net/conferences/plop

8.2 Online Resources

[Unia] Universität Stuttgart - Institut für Architektur von Anwendungssystemen. Open-
TOSCA - Open Source TOSCA Ecosystem. URL: http://www.iaas.uni-stuttgart.
de/OpenTOSCA/ (visited on 05/21/2014).

[Unib] Universität Stuttgart - Institut für Architektur von Anwendungssystemen. Pat-
ternPedia - Wiki-based Pattern Repository. URL: http://www.iaas.uni-stuttgart.
de/forschung/projects/PatternPedia/index.php (visited on 10/23/2015).

[Unic] Universität Stuttgart - Institut für Architektur von Anwendungssystemen. Winery
| projects.eclipse.org. URL: https://projects.eclipse.org/projects/soa.

winery (visited on 10/22/2015).

[vZoe] Sander van Zoest. apache2 Cookbook - Chef Supermarket. URL: https : / /

supermarket.chef.io/cookbooks/apache2 (visited on 06/16/2015).

[Var] Seth Vargo. bacon Cookbook - Chef Supermarket. URL: https://supermarket.
chef.io/cookbooks/bacon (visited on 06/16/2015).

[VMw] VMware, Inc. Bare-Metal-Hypervisor vSphere ESXi | VMware Deutschland. URL:
https://www.vmware.com/de/products/esxi-and-esx/overview (visited on
10/13/2015).

[Win] Jamie Winsor. artifact Cookbook - Chef Supermarket. URL: https://supermarket.
chef.io/cookbooks/artifact (visited on 06/16/2015).

77

http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.iaas.uni-stuttgart.de/forschung/projects/PatternPedia/index.php
http://www.iaas.uni-stuttgart.de/forschung/projects/PatternPedia/index.php
https://projects.eclipse.org/projects/soa.winery
https://projects.eclipse.org/projects/soa.winery
https://supermarket.chef.io/cookbooks/apache2
https://supermarket.chef.io/cookbooks/apache2
https://supermarket.chef.io/cookbooks/bacon
https://supermarket.chef.io/cookbooks/bacon
https://www.vmware.com/de/products/esxi-and-esx/overview
https://supermarket.chef.io/cookbooks/artifact
https://supermarket.chef.io/cookbooks/artifact

9 Appendix

In the appendix, all figures and tables included in this document are listed.

9.1 List of Figures

1.1 Statistic about the usage of cloud computing in German companies between
2011 and 2014 . 7

2.1 Sketch of the Pattern Identification, Authoring, and Application Process 13
2.2 Sketch of the pattern writing approach . 14
2.3 Chef-client configuration process of an application 17

3.1 Sketch of the phase Pattern Identification . 21
3.2 Sketch of the phase Pattern Authoring . 23
3.3 Sketch of the phase Pattern Application . 24
3.4 Sketch of the Adapted Process . 25
3.5 Sketch of the Adapted Pattern Authoring Phase 25

5.1 Example Sequence Diagram . 33
5.2 Example Imperative Process Model . 33
5.3 Example Topology . 34
5.4 Example Management System . 34
5.5 Example Management Access . 34
5.6 Example Technical Statements . 34
5.7 Example Data Access . 35
5.8 Example placeholder for an icon . 38
5.9 Example of a solution sketch . 39

6.1 Solution Sketch: Imperative Provisioning pattern 43
6.2 Solution Sketch: Declarative Provisioning pattern 46
6.3 Solution Sketch: Parameterized Imperative Provisioning pattern 48
6.4 Solution Sketch: Local Management Operation Execution pattern 51
6.5 Solution Sketch: Component Lifecycle Interface pattern 53
6.6 Solution Sketch: Container Component Interface pattern 55
6.7 Solution Sketch: Explicit Dependency Model pattern 58

79

9 Appendix

6.8 Solution Sketch: Implicit Dependency Model pattern 60
6.9 Solution Sketch: External Instance Data Access pattern candidate 62
6.10 Overview of the Pattern Language . 64

9.2 List of Tables

4.1 Chef marketplace - total downloads ranking . 27
4.2 Cookbook API characteristics . 28
4.3 Juju store - total deployment ranking . 29
4.4 Charm API characteristics . 29

5.1 Definition of the pattern primitives of the Application Provisioning Modeling
Pattern Language . 38

7.1 Overview of the Known Uses of the patterns and pattern candidates 66
7.2 Maturity evaluation of the patterns and pattern candidates 67

80

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

Done at Stuttgart, 04 November 2015.

	1 Introduction
	1.1 Problem Domain and Motivation
	1.2 Research Issus and Contributions
	1.3 Research Method
	1.4 Structure of the Document

	2 Fundamentals and Related Work
	2.1 Patterns
	2.1.1 On Patterns and Pattern Languages
	2.1.2 A Process for Pattern Identification, Authoring, and Application
	2.1.3 Formulating Patterns

	2.2 Patterns in Computer Science and Information Technologies
	2.3 State of the Art Management Technologies
	2.3.1 Bluemix
	2.3.2 Chef
	2.3.3 Juju
	2.3.4 TOSCA and OpenTOSCA
	2.3.5 General-purpose Infrastructure, Platform and Cloud Provider Technologies and APIs

	3 Research Design
	3.1 Pattern Identification
	3.2 Authoring Pattern
	3.3 Pattern Application
	3.4 Summary of the Adapted Process

	4 Analyzed Artefacts
	4.1 Chef Cookbooks
	4.2 Juju Charms

	5 Design of the Application Provisioning Modeling Pattern Language
	5.1 Domain Definition and Constraints
	5.1.1 Domain Definition
	5.1.2 Domain Characteristic Problems

	5.2 Information Format Design
	5.2.1 Sequence Diagram
	5.2.2 Graphical Notation of Icons and Sketches

	5.3 Pattern Primitives Definition
	5.4 Pattern and Pattern Language Design

	6 Application Provisioning Modeling Pattern Language
	6.1 Imperative Provisioning
	6.2 Declarative Provisioning
	6.3 Parametrized Imperative Provisioning
	6.4 Local Management Operation Execution
	6.5 Component Lifecycle Interface
	6.6 Container Component Interface
	6.7 Explicit Dependency Model
	6.8 Implicit Dependency Model
	6.9 External Instance Data Access
	6.10 Overview of the Pattern Language

	7 Discussion
	7.1 Overview of the Known Uses of the Patterns and Pattern Candidates
	7.2 Maturity Evaluation of the Patterns and Pattern Candidates
	7.3 Threats to Validity
	7.4 Limits of the Thesis

	8 Literature and Other Resources
	8.1 Literature
	8.2 Online Resources

	9 Appendix
	9.1 List of Figures
	9.2 List of Tables

