Institute of Parallel and Distributed Systems

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Masterarbeit Nr. 42

Situation Recognition Based on
Complex Event Processing

Ana Cristina Franco da Silva

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Ing. habil. Bernhard Mitschang
Supervisor: Dipl.-Inf. Pascal Hirmer

Commenced: June 1, 2015

Completed: December 1, 2015

CR-Classification: 1.5,1.5.1,H.3.4,1.2.9

Abstract

In the Internet of Things, physical objects — the things — are connected through a net-
work and actively exchange information about themselves and their surroundings. This
paradigm enables the existence of so called smart environments, in which numerous
context-aware applications can be deployed. Such applications can have a significant
impact in the every-day life (e.g., smart homes, smart cities, etc.). Context-awareness
allows applications to recognize situations of interest and properly react to them
when necessary. However, deriving the large amount of raw, low-level sensor data
into higher-level knowledge is a challenging task. In the last years, Complex Event
Processing (CEP) has emerged as an important trend in applications that recognize
situations in real or near real time. CEP can be employed to process sensor data in a
continuous and timely fashion, in order to recognize situations as soon as they occur.
Within the scope of this master thesis, a Situation Recognition System based on sensor
data is developed using a CEP engine. This system can be used to monitor many
situations in parallel based on the perceived surroundings of things that send context
information, i.e. sensor values, to the system through the Internet. The recognition of
situations is based on a non-executable model called Situation Template, which offers
a means to easily describe the conditions for the occurring situations. Furthermore,
this master thesis presents a sensor push approach so that sensor data is available to
the Situation Recognition System as soon as possible. Moreover, this work analyzes
three different CEP engines and motivates the choice of a CEP engine that copes
with the powerfulness of Situation Templates. To execute the situation recognition
using CEP, this work implements mappings from Situation Templates onto executable
representations, i.e., CEP queries, to be deployed into the chosen CEP engine. Finally,
a prototypical implementation of the Situation Recognition System is presented and
evaluated via runtime measurements.

Contents

1 Introduction
1.1 Problem Definition and Objectives
1.2 Motivating Scenarios ol
1.3 Structureofthe Thesis, .

2 Basic Concepts
2.1 Internetof Things.,
2.2 Complex Event Processing
2.2.1 Example Applications
2.3 Situation Templates. L

3 Analysis — Complex Event Processing Engines
3.1 Esper. e e e e e e e e e
3.2 WSO2Siddhi e
3.3 Odysseuso e e e
3.4 Evaluation

4 Situation Recognition based on CEP
4.1 Situation Template Adaptation
4.2 Sensor Data Provisioning
4.2.1 Collecting SensorData
4.2.2 Sending Events to the Situation Recognition System
4.2.3 Receiving Events at the Situation Recognition System
4.3 Situation Template Transformation
4.4 Situation Recognition. L o

5 Evaluation
6 Related Work
7 Summary and Outlook

Bibliography

10
11
14

15
15
15
17
18

23
24
27
30
34

37
37
41
43
44
46
46
53

57
59
63

65

List of Figures

1.1

1.2

1.3

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1

4.2
4.3
4.4

Distance sensor placed above a conveyor belt to detect if an object is

upside-down 12
Distance sensors placed at a conveyor belt to detect if objects are

wrongly positioned L L e 12
Distance sensor placed above a container 13
Difference between database and event queries based on [1] 18
Structure of an event processing application basedon [2] 19
Process levels based on [3] 20
Situation Template modeled in XML basedon [3] 21
The Esperengine 25
The Siddhisystem, 28
The Odysseus Server i 31
Provisioning of sensor data to the Situation Recognition System using

MOTT © . oo et e e e e e, 42
Situation Template for monitoring a machine status 49
Situation Template for monitoring objects on a conveyor belt. 50
Situation Recognition System Architecture 54

List of Tables

4.1

5.1
5.2

Examples of supported conditions by the Situation Template 53
Runtime measurements of the prototype 58
Load test of the prototype 58

List of Listings

3.1 Adding a statement and sending events to the Esper engine 26
3.2 Adding listener to an EPL statement 26
3.3 Example of an event patternin Esper 27
3.4 Defining streams and sending data to the Siddhi engine 28
3.5 Example of a SiddhiQL query and callbacks 29
3.6 Example of an event patternin Siddhi 30
3.7 Example of a query to connect a data source to Odysseus 32
3.8 Example of a CQL query in Odysseus 32
3.9 Data source definitioninPQL 33
3.10 Example of an event pattern in Odysseus 33
3.11 Generating an Odysseus notification in PQL 33
4.1 XSD extensions at condition node elements 38
4.2 XSD extensions at condition node attributes 39
4.3 Situation Template extract of a time-based condition 39
4.4 Situation Template extract of a condition comparing sensor data of

different sensors e 40
4.5 Situation Template extract of a condition that aggregates sensor values

onthecontextlevel L 41
4.6 Python code to read the distance from an ultrasonic sensor 44
4.7 Python code to read data from a temperature sensor 45
4.8 Python code to set up a connection to the IBM IoT MQTT broker . .. 45
4.9 Python code to publishdataonatopic 46
4.10 Java code to connect to the IBM IoT MQTT broker and subscribe to topics 47
4.11 Java code to receive events from the MQTT Broker 48
4.12 Pattern expression for a simple condition 48
4.13 EPL statement to recognize the situation from “Monitoring machine

] L 49
4.14 Pattern expression for a time-based condition 50
4.15 Pattern expression for comparing data from different sensors 51
4.16 Alternative pattern expression for comparing data from different sensors 51
4.17 Pattern expression for aggregating data from different sensors 52

4.18 Pattern expression for recognizing if a situation stopped occurring . . .
4.19 Java code snippet for adding an EPL statement to the Esper engine and

adding a subscriber to the statement
4.20 The subscriber implementation

52

1 Introduction

In the Internet of Things (IoT), things are connected through a network and take
an active part in the Internet by exchanging information about themselves and their
surroundings [4]. These things (e.g., mobile phones, smart watches, smart bands)
are equipped with sensor technologies and network connectivity, what permits them
to gather and exchange data. Environments containing things that perceive their
surroundings and communicate with each other are called smart environments. They
enable the deployment of numerous applications, which can have a significant impact
on many aspects of the every-day life [5]. A smart environment can be a home, an
office, a factory, or even a city equipped with things, in which for example, incidents
can be prevented by proper monitoring and alarm systems.

If something happens in a smart environment that might require a reaction, i.e., a
situation occurs [2], a situation recognition system can recognize this occurrence and
send notifications of it to situation-aware applications. This enables such applications
to react to occurring situations. However, situation recognition systems need to deal
with a challenging aspect in the IoT, namely the management of the data within the IoT
context. When considering a set of things interconnected and constantly exchanging
all types of information, the volume of the generated data and how it is handled
become critical [6]. Therefore, the complexity of deriving knowledge from a large
amount of sensor data demands the use of sophisticated techniques to process this
data in a continuous and timely fashion, so that situations can be recognized as soon
as they occur [6].

Deriving higher-level knowledge from raw, low-level data has been approached using
different technologies from many independent research fields (discrete event sim-
ulation, active databases, network management, temporal reasoning, etc.), and in
different application fields (business activity monitoring, market data analysis, sensor
networks, etc.) [6]. In the last years, Complex Event Processing (CEP) has emerged
as an important trend in industry applications that need to detect situations in real
or near real time [6]. CEP contributes to the improvement of operational situational
awareness in many business scenarios, from network management to business opti-
mization, resulting in enhanced situational knowledge and the ability to sense, detect
and respond to situations more accurately [7].

1 Introduction

The main goal of this master thesis is the development of a system that uses Complex
Event Processing to recognize situations based on sensor data. Situations are specified
using a model called Situation Template [3] containing all essential information that
the Situation Recognition System needs for their recognition, i.e., the conditions that
have to apply for their occurrence. Section 1.1 describes the problem this work aims
to solve and the principal objectives. Section 1.2 describes three motivating scenarios
that are used throughout this work to explain the approach.

1.1 Problem Definition and Objectives

The cloud-based situation recognition service SitRS [3] has been developed within the
scope of the DFG! project SitOPT [8] at the University of Stuttgart. This service can
be used to integrate things into the internet by deriving their situational state based
on sensor data. Situations are modeled as Situation Templates, which are mapped
onto event- and flow-based representations (executable Situation Templates). These
representations are then deployed to an execution engine, for example Node-RED?, in
order to recognize the occurrence of the modeled situations. However, the prototypical
implementation of this service using Node-RED revealed some limitations during the
recognition of situations, mainly in respect to scalability and parallelism. By executing
Situation Templates inside a single runtime environment, it has been shown that the
runtime highly increases with the number of situations being monitored in parallel.
Moreover, the current Situation Template schema only allows to express situations
that compare sensor data with fixed predefined values. Conditions based on time are
not yet supported. Finally, intermediate data is stored in a data cache from which
the relevant data for the situation recognition is pulled in predefined time intervals,
which leads to stale sensor data [3]. Therefore, this work aims to further improve the
existing service by:

¢ Increasing the powerfulness of Situation Templates.

Modifications of Situation Templates are required in order to support time-based
conditions. In this way, conditions such as "temperature greater than 90 degrees
for 10 seconds" can be defined. Further modifications are required to enable
data from different sensors to be compared, for example "temperature of sensor
A greater than temperature of sensor B". Moreover, Situation Templates should

Thttp://www.dfg.de/
2http://www.nodered.org/

10

1.2 Motivating Scenarios

also support conditions that aggregate the data from different sensors, such as
"average temperature of sensors A and B greater than 90 degrees".

e Employing a direct sensor push approach.

Making sensor data available to the Situation Recognition System through a
direct approach, i.e., without caching sensor values, can lead to improvements
regarding efficiency and correctness for the recognition of occurring situations.

¢ Implementing mappings from Situation Templates to CEP queries.

In this work, situations are defined as Situation Templates, which can be mapped
onto representations to be deployed into execution environments. The mapping
from Situation Templates to CEP queries is necessary in order to support the
situation recognition using CEP execution engines. By using mappings, an
abstraction is provided that enables the modeling of situations in an easy way.
This relieves the user from modeling situations directly as CEP queries, which
can be long and complicated depending on the situation to be modeled.

¢ Executing the situation recognition using a CEP engine.

Finally, the execution of the situation recognition using CEP technologies enables
enhancements in respect to efficiency, scalability and parallelism. The analysis
and choice of a suitable CEP engine are an essential part of this work.

1.2 Motivating Scenarios

This section describes motivating scenarios for the Situation Recognition System
resulting from this master thesis and are used throughout this thesis to explain the
approach. It exclusively presents scenarios related to situations in manufacturing
environments, however, the results of this work can be applied to many other fields as
well.

e Monitoring objects on a conveyor belt.

The goal of this scenario is to monitor several distance sensors strategically
positioned near a conveyor belt. It aims to recognize when (i) an object on the
conveyor belt is upside down (Figure 1.1), or (ii) an object is not positioned
correctly on the conveyor belt (Figure 1.2).

11

1 Introduction

A Top Distance Sensor

Figure 1.1: Distance sensor placed above a conveyor belt to detect if an object is
upside-down

A Left Distance Sensor

7N

W Right Distance Sensor

Figure 1.2: Distance sensors placed at a conveyor belt to detect if objects are wrongly
positioned

e Monitoring level of containers.

The goal of this scenario is to monitor distance sensors positioned above different
types of material containers (Figure 1.3). It aims to recognize when (i) the
produced goods in a container have reached a maximum level, which means this

12

1.2 Motivating Scenarios

container must be emptied, or (ii) the materials in a container have reached a
minimum level, which means this container must be refilled.

l Level Sensor

~—

N

Figure 1.3: Distance sensor placed above a container

e Monitoring machine status.

The goal of this scenario is to monitor temperature sensors of a machine and
distance sensors positioned above containers that supply this machine with
material. It aims to recognize when (i) the machine is overheated, or (ii) a
material container has reached a minimum level, which leads the machine to be
in a blocked state.

For each of the previously described scenarios, the Situation Recognition System
developed in this work can additionally recognize when a situation stopped occurring
because some reactions took place. The situation-aware applications interested in
the situations can register themselves to the recognition system in order to receive
notifications when a situation is recognized and possibly react to it properly. The
sensor data used to recognize the situations is provided through a push approach,
which will be explained, along with how these scenarios were realized, in Chapter 4 —
Situation Recognition based on CEP.

13

1 Introduction

1.3 Structure of the Thesis

The remainder of this master thesis is structured as follows: Chapter 2 gives an
overview of the Internet of Things, Complex Event Processing and Situation Templates,
which are essential topics to comprehend this master thesis. Chapter 3 presents the
analysis of three CEP engines and motivates the choice of the CEP engine used in this
work. Furthermore, how the Situation Recognition System was realized using the
chosen CEP engine is explained in Chapter 4. Chapter 5 evaluates the prototypical
implementation of the Situation Recognition System. The related work of this master
thesis is presented in Chapter 6. Finally, Chapter 7 summarizes this work and describes
future work.

14

2 Basic Concepts

This chapter covers important topics necessary to comprehend the concepts of this
master thesis. An overview of the Internet of Things, Complex Event Processing, and
Situation Templates is given in the following sections.

2.1 Internet of Things

The Internet of Things (IoT) paradigm envisions the pervasive presence of an as-
sortment of things, interconnected through network connections and having unique
addressing schemes [6]. These things are then able to interact and cooperate with
each other to create new applications and reach common goals. The IoT contribution
is the value of information generated by the various interconnected things and the
consequent derivation of this information into knowledge that can be used to provide
better quality of life to the society. The goal of the IoT is “to enable things to be
connected anytime, anyplace, with anything and anyone ideally using any path/network
and any service” [6]. Furthermore, it aims to integrate real world information into
networks, services and applications by using technologies such as Wireless Sensor
Network (WSN) and Radio Frequency Identification (RFID). Advances in wireless
networking technology and standardization of communication protocols make it pos-
sible to collect data from wireless identifiable devices almost anywhere at any time
[9, 6]. The main goals of IoT are the creation of smart environments and self-aware
things (e.g., smart buildings, smart cities, smart transport, smart homes, etc.), which
facilitates the development of applications for many different sectors of our daily live
(climate, food, energy, mobility, digital society, health, manufacturing, etc.) [9].

2.2 Complex Event Processing

Etzion and Niblett [2] define an event as something that has happened in the real
world, within a particular system or domain. The word event is also used to imply

15

2 Basic Concepts

a programming entity or object that represents such an occurrence in a computing
system. Events, whether simple or complex, are common in our everyday live, for
example the arrival of an email, the missing of a flight, which causes the missing of a
connection, a broken machine at the production line, etc. The main reason for event
recognition is to have the opportunity to react to them. The reaction might be as
simple as responding to an email or something more complicated as choosing among
alternatives, for example, if a machine is malfunctioning in a production environment,
possible reactions are, depending on the currently available budget, to repair the
machine or to replace it. Events that might require a reaction are called situations [2].
Detecting and reporting them so that they can be reacted to is one of the main topics
in event processing, which can be simply defined as “computing that performs operations
in events” [2]. These operations include filtering certain events and examining a
collection of events to find a particular pattern [2].

The ability to detect a pattern of events, i.e., relationships among events, is a very
powerful feature in event processing [10]. Events tend to arrive in patterns, mixed up
with unrelated events, where one event alone might carry a piece of information that
only makes sense together with other related events [11]. By analyzing the several
events of a pattern, we gain knowledge about what is happening or going to happen,
where it is happening, and why. A pattern might contain only one significant event at
a given moment or contain hundreds of events, arriving during a millisecond or maybe
spread out over days. Because of that, it may not be possible to know in advance how
long the pattern will take to match, but event processing technologies still enable the
detection of interesting patterns [11].

Furthermore, event processing encompasses the following characteristics that open up
to a rich range of possibilities while developing highly scalable and dynamic systems:

e Abstraction. The event processing logic can be separated from the application
logic. This allows the event processing logic to be modified without having to
change applications [2].

e Decoupling. The events produced by one application can be consumed by com-
pletely different applications [2]. There is no need for producing and consuming
applications to know about each other [10].

e Real-world focus. “Event processing frequently deals with events that occur, or could
occur, in the real world” [2].

In the 1990s, a set of principles of event processing had emerged [2]. These principles,
called Complex Event Processing (CEP), encompasses methods, techniques and tools for
processing events while they occur, i.e., in a continuous and timely fashion [1]. Lower-
level events are derived into valuable higher-level knowledge, known as complex

16

2.2 Complex Event Processing

events. A complex event is a situation that can only occur if several other events
that are related to each other occurred [12]. CEP has many independent roots in
different research fields, including discrete event simulation, active databases, network
management, and temporal reasoning. But in recent years, CEP has emerged as an
important trend in industry applications [1, 6]. CEP provides a natural decoupling of
basic events with a strong relationship to the semantics of the underlying technology
(e.g., sensor readings) and complex events closer to the semantics of the application.
In this way;, it enables information systems to perform independent reconfigurations on
the technical and application level [10]. Moreover, the stepwise correlation of events
reduces the data load and thus contributes towards a highly scalable information
system [10].

There are two types of Complex Event Processing [1]: at the first type, complex events
are specified as a-priori known patterns. Such patterns are defined using event query
languages, which offer means to detect complex events efficiently. At the second type,
complex events should be detected from previously unknown patterns. In this case,
machine learning and data mining methods are used. This work focuses on the first
type of CEP, in which situations are well-known and defined as complex events with
help of event query languages. In contrast to database queries, which are executed on
a finite set of data, event queries are evaluated while the events occur, continuously on
a (conceptually) infinite stream of events [1]. Figure 2.1 shows the difference between
database and event queries, in which database queries are executed once on a finite set
of data and event queries are continuously executed on an infinite stream of events.

2.2.1 Example Applications

This section shows a few examples of how Complex Event Processing can be used for
today’s applications [2].

¢ A financial system to detect frauds: it collects events from banking systems and
analyzes them. Certain patterns of activity might suggest that a person is possibly
(but not necessarily) in the process of committing a fraud. In this system, event
processing is used to detect evolving phenomena.

e A manufacturing management system to diagnose mechanical failures based
on observable symptoms: in this case the events are symptoms that describe
things not working properly. The main purpose of the event processing is to find
the root cause of these symptoms. This system demonstrates the use of event
processing for problem determination and resolution.

17

2 Basic Concepts

? ? ?
Database E 6)
Queries >) /) /f‘ </»
o7 o7
Event ?2?7? | | | |
Q‘llleries 2292 \ \
4 &

J

®© ®

t

-
? queries @ answers | [data in databases |~ event data

Figure 2.1: Difference between database and event queries based on [1]

These applications are different from one another, but they follow the same method-
ology: (i) events are reported, sometimes by multiple event producers, (ii) some
processing of the events is done, and (iii) additional events are created and consumed
either by humans or by automated processes. Many event processing applications
keep the event processing logic separate from the event producers and consumers, as
depicted in Figure 2.2. By adopting this pattern, the event processing logic can be
done on a dedicated event processing platform. For examples of available platforms,
cf. Chapter 3 — Analysis — Complex Event Processing Engines. Such event processing
platforms provide at least: a language for expressing event processing logic, a runtime
to execute event processing logic and an event distribution mechanism.

2.3 Situation Templates

Hirmer et al. [3] argue that, to facilitate situation-awareness for the Internet of Things,
different levels of data processing are needed. The reason for this is that sensors
provide extensive amounts of low-level data, which are not easy to handle. Therefore,
sensor data needs to be interpreted in order to derive high-level situations, which can
be understood and further processed easier than low-level data.

18

2.3 Situation Templates

Event producers Event processing logic Event consumers

B B)

Systems m Data stores m
B Applications Dashboards Applications
H r
Sensors Actuators ‘

\ Business processcy \ Business processy

Figure 2.2: Structure of an event processing application based on [2]

Figure 2.3 shows an overview of the different processing levels presented in [3].
The first level, called data level, contains sensor devices and only raw sensor data is
available to it. This data is not easy to process and the context information (e.g., the
data type, the relation of the data to a thing) is not available at this level. Because of
that, sensors push their data to the next level, called information level. At this level,
sensor data (e.g., temperature) are enhanced with information about their relations
to real world things (such as machines in a smart factory), turning in this way into
information about the environment. Based on this information, situations are then
derived from sensor data, which leads to knowledge about the smart environment.
This knowledge facilitates producing situation-aware applications, since it can be
processed on a higher-level of abstraction.

To be able to recognize situations based on sensor data, it is necessary to define them
with all crucial information for their recognition. Hirmer et al. [3] provide a model,
called Situation Template (ST), that contains the monitored sensors and the conditions
that have to match for a certain situation to be recognized. This model is based on
Situation-Aggregation-Trees (SAT), which are directed graphs forming a tree structure.
The branches of a SAT are aggregated bottom-up, which leads to a single root node
that represents the situation [13].

19

2 Basic Concepts

1. Register situation
recognition for machine
2. Adapt to recognized

/\ situations

Application Level: Situation-aware Application

() Situation-Model,
Knowledge Level: Situation e.g. state of

§ _ machine “blocked”

) / N i

Context-Model,

Information Level: Observable Context .
e.g. Machine.Temp

/[AN

Data Level: Sensor Data

J
‘ observation f notification

Smart Environment Level: Observable Objects (Things)

Basic data types,
e.g. °C

-

. sl

Figure 2.3: Process levels based on [3]

Hirmer et al. [3] have proposed a XML-based schema for representing SATs. An
example of a Situation Template modeled in XML for the scenario “monitoring machine
status” is depicted in Figure 2.4, which is basically composed by various nodes from
different types reflecting the aforementioned processing levels: context nodes are leaf
nodes representing the monitored sensors of a certain thing. Such nodes correspond
to the data level (sensor devices) and information level (sensors’ relations to things).
Context nodes are connected to condition nodes, which filter sensor data based on
defined conditions. Condition nodes can be aggregated by operation nodes using
logical operations until the root node, i.e., the situation node, is reached. Finally, the
situation node represents the situation to be recognized. The combination of condition,
operation and situation nodes corresponds to the knowledge level, where sensor data
is aggregated, interpreted and derived to situations.

Once situations are defined as Situation Templates, they can be mapped onto rep-
resentations that can be deployed into execution environments, such as Node-RED,
Esper, etc. The mapping from a Situation Template to an executable representation

20

2.3 Situation Templates

********* -1 <SituationTemplate id="scenario_3"
name="Monitoring Machine Status">
<Situation id="A" name="Machine Blocked">

Blocked J\ <operationNode id="A4" name="Combine">
<parent parentID="A5"/>
<type>or</type

</operationNode >

fffffffffff <conditionNode id="A3" name="Low level">
<measureName >distance </measureName >
<opType>lowerThan</opType>
<condValue> <value>10</value>

- </condValue> <parent parentID="A4"/>
</conditionNode>

<contextNode id="A1" name= "Level Sensor"
77777 | type="DistanceMeterEvent">

,,,,,,, <parent parentID="A3"/>

</contextNode>

</Situation> </SituationTemplate >

Temperature Sensor Level Sensor

Figure 2.4: Situation Template modeled in XML based on [3]

is necessary in order to enable support of different execution engines. In this way, a

situation recognition system that uses Situation Templates can avoid being dependent
on a specific engine [3].

21

3 Analysis — Complex Event Processing
Engines

An essential task of this master thesis is the analysis and consequently the choice of
a suitable Complex Event Processing engine, which will process the execution of the
situation recognition.

Situations are modeled as Situation Templates, therefore the implementation of map-
pings from Situation Templates to corresponding CEP queries that recognize the
modeled situations is required. It is crucial that the CEP engine provides an event
query language capable to cope with the powerfulness of Situation Templates. Further-
more, it is also expected from the CEP engine to execute event queries in parallel, to
be scalable towards a large number of queries and to detect and notify situations in
real or near real time.

Several complex event and data stream processing engines were considered to be used
in this master thesis, namely the open-source engines Esper [14], Siddhi [15], and
Odysseus [16]. Sections 3.1, 3.2 and 3.3 give an overview of the engines and Section
3.4 evaluates them in order to motivate the engine choice for this work. These are
some important aspects taken into account during the analysis of the engines:

Access to events participating in situations. Such events contain the relevant data
to decide whether and how to react to situations [1]. When a situation is recognized,
the CEP engine must provide means to access the events involved in this situation, in
this way allowing the notified applications to react to it properly. For example, if a
machine is malfunctioning, events can provide the specific location or identifier of the
machine, so that an application can initiate its repair or replacement. Furthermore,
the CEP engine must provide straightforward ways to push events into the engine, in
order to facilitate the employment of a sensor data push approach.

23

3 Analysis — Complex Event Processing Engines

Composition of events. Events tend to arrive in patterns, where one event alone
might carry a piece of information that only makes sense together with other events [2].
The CEP engine must provide an event query language that allows to combine several
individual events, whether from the same source or different sources, so that their
combined occurrences result in a complex event [1]. This will enable the recognition of
situations based on data from different types of sensors, e.g., the scenario “monitoring
machine status” described in 1.2, which uses temperature and distance sensors. It
will also enable data coming from different sensors of the same type to be compared
and aggregated. Furthermore, some situations need to be expressed as specific events
that occur within a particular time interval or in a specific order. Therefore, it must
be possible to create queries that involve temporal conditions (correlation of events)
and that match patterns. For example, if a SmartHome application receives an alarm-
clock event and motion is detected in the corridor within 5 minutes, these events
are correlated and could mean the user got up and the application should start the
coffee machine. The application could also power off some devices (radio, television,
etc.) when it matches a pattern such as the user closed the door after turning off the
lights.

Accumulation of events. Queries involving aggregation of events or the absence
of a particular event are not applicable to infinite streams [1]. Consequently, the
event query language must allow to formulate queries that run on finite extracts of
event streams, known as windows. They can be sliding windows, which are moving
windows of past events based on a time interval or a number of events, or tumbling
windows, which buffer events and release them once on every specified time interval
or number of events. Especially important for this work is the possibility to run queries
to recognize situations happening for a specific period of time, so that conditions such
as “distance lower than 10 cm for 10 seconds” can be supported. Such a condition can
be formulated as the absence of an event measuring a distance greater than or equal
to 10 cm in a time window of 10 seconds.

3.1 Esper

This section is mostly based on [14, 17].

Esper is an open-source Java component for Complex Event Processing and Event
Series Analysis, which has been developed to address the requirements of applications
that need to process a large volume of incoming events and respond to situations of
interest.

24

3.1 Esper

Event Processing Language (EPL)
Statements

Data /
Event streams
Input processing — ., ,
Events statements S :)
S — Subscribers

Esper

Continuous Processing

Figure 3.1: The Esper engine

An overview of the Esper engine and its continuous processing is given in Figure
3.1. Esper provides a runtime API to send input events to the engine. Events can
be represented in different formats, e.g., POJO, Map, Object-array, or DOM Node.
Continuous queries, called statements in the context of Esper, specify how input events
should be processed and can be added, started, and stopped while the Esper engine
is running. Listing 3.1 shows how to use the Esper API to obtain an engine instance,
register statements, and send events to the engine. The example query returns the
average temperature over all TemperatureEvent events that arrived in the last 30
seconds.

Listeners can be attached to statements, which are invoked by the engine in response
to events that change the result of a statement. An example of a listener, which needs
to implement the UpdateListener interface, and how it is attached to a statement is
depicted in Listing 3.2.

Queries are formulated in a SQL-based language, which is called Event Processing
Language (EPL). In respect to the composition of events, the EPL enables to express
complex matching conditions that include temporal windows and joining two or more
different event streams. Esper offers an event pattern language that can be used
to specify event pattern matching based on expressions. It allows to derive complex

25

3 Analysis — Complex Event Processing Engines

Listing 3.1 Adding a statement and sending events to the Esper engine

// obtaining engine instance
EPServiceProvider epService = EPServiceProviderManager.getDefaultProvider();

// registering a continuous query
String expression = "select avg(temperature)

from org.myapp.event.TemperatureEvent.win:time(30 sec)";
EPStatement statement = epService.getEPAdministrator().createEPL(expression);

// sending events
TemperatureEvent event = new TemperatureEvent("thing", 25.0);
epService.getEPRuntime().sendEvent(event);

Listing 3.2 Adding listener to an EPL statement

public class MyListener implements UpdatelListener {
public void update(EventBean[] newEvents, EventBean[] oldEvents) {
EventBean event = newEvents[0];
System.out.println("avg=" + event.get("avg(temperature)"));

//adding listener to statement
MyListener listener = new MylListener();
statement.addListener(listener);

events from simple events by defining patterns that match sequences of events, absence
of events or combinations of events. Pattern expressions can consist of filter expressions
combined with the following pattern operators: operators controlling the pattern finder
creation and termination (every), logical operators (and, or, not), event order operators
(followed-by), guards filtering out events and causing termination of the pattern finder
(such as timer:within), and observers for time events (such as timer:interval, timer:at).
A sample pattern expression is shown in Listing 3.3. This pattern matches if the
temperature of a machine increases by 5 degrees within 5 min. In the example, the
tags el and e2 were assigned to the events in the pattern. Tags are important because
only tagged events are placed into the output events that listeners will receive when
the pattern matches. Moreover, Esper allows to filter events using user-defined static
methods that return a Boolean value (e.g., PositionEvent(MyLib.isInRange(x, y))) and it
is possible to do pattern matching based on regular expressions.

In respect to the accumulation of events, Esper allows the use of data windows (time,
length, etc.), which inform the engine about how long to retain relevant events or
under what conditions events can be discarded. Data windows can be sliding or

26

3.2 WSO2 Siddhi

Listing 3.3 Example of an event pattern in Esper

every el=TemperatureEvent -> e2=TemperatureEvent(el.machine_id = machine_id, temp >=
el.temp + 5) where timer:within(5 min)

tumbling. Additionally, Esper provides named windows, which are globally visible data
windows that share sets of events between queries efficiently, removing the need to
keep the same events in multiple places.

Furthermore, Esper provides scalability in the face of large numbers of continuous
queries and a high degree of parallelization while processing the same or multiple
queries [14]. According to the Esper documentation, it is not limited to be executed
on a single machine, has no dependencies on external services and does not require
any external storage. It offers high throughput by processing between 1,000 to 100k
events per second and low latency for reacting to situations (from a few milliseconds
to a few seconds) [14].

3.2 WSO2 Siddhi

Siddhi is an open-source, lightweight, easy-to-use Complex Event Processing engine.
It can process many data streams and notify complex events according to the event
queries specified by the user. The development of Siddhi started within a research
project at the University of Moratuwa and has been further developed by WSO2 Inc.}
[18].

An overview of the Siddhi engine and its relations to events and queries is given in
Figure 3.2. Siddhi is the standalone version of the WSO2 Complex Event Processor
(WSO2 CEP)? and can be easily embedded within a Java program. However, by using
WSO2 CEP running as a server, it is possible to send events to the system using, for
example, Web Services or emails. Siddhi receives events from the different event
sources through input adapters. Input events can be represented in different formats
(e.g., POJO, XML) but they are converted to tuples before they are passed to the Siddhi
engine. Then, Siddhi processes the incoming events according to the active queries and
generates output events as soon as queries match. Those events are either consumed
internally or sent to external subscribers through output adapters [19]. Listing 3.4
shows how to programmatically define event streams and send data to the Siddhi

Thttp://www.wso2.com
2http://www.wso2.com/products/complex-event-processor/

27

3 Analysis — Complex Event Processing Engines

SiddhiQL Queries

Streams Streams

| > > e)
Input)) Output
Events Siddhi Events

| > D))

Input Output
Adapters Adapters

WSO2 Complex Event Processor

Figure 3.2: The Siddhi system

Listing 3.4 Defining streams and sending data to the Siddhi engine

// Create Siddhi Manager
SiddhiManager siddhiManager = new SiddhiManager();

// Define stream
siddhiManager.defineStream("define stream distanceStream (id int, name string, value
float)");

// Pushing data
InputHandler distanceStream = siddhiManager.getInputHandler("distanceStream");
distanceStream.send(new Object[]{1l, "distance", 20});

engine. In this example, the defined event stream distanceStream receives events
representing measurements of distance sensors. The event is represented as a tuple
containing the sensor identifier, the measure name and the measured value. An event
is sent to the Siddhi engine by pushing it into the defined stream.

Siddhi provides a SQL-like query language (SiddhiQL) designed to process the event
streams, which are logical series of events ordered in time, and to identify complex
event occurrences. This language facilitates temporal correlations between event
streams with historic data, which enables the detection of complex event patterns

28

3.2 WSO2 Siddhi

Listing 3.5 Example of a SiddhiQL query and callbacks

// Creating query

String queryReference = siddhiManager.addQuery("from distanceStream [value <= 10] " +
"select id, value " +
"insert into outStream;");

siddhiManager.addCallback(queryReference, new QueryCallback() {
@Override
public void receive(long timeStamp, Event[] inEvents, Event[] removeEvents) {
EventPrinter.print(timeStamp, inEvents, removeEvents);
}
s

siddhiManager.addCallback("outStream", new StreamCallback() {
@Override
public void receive(Event[] events) {
EventPrinter.print(events);
}
s

[15]. Queries formulated in SiddhiQL are then submitted to Siddhi, converted to a
runtime representation and deployed into the Siddhi engine core. Queries can be
added or removed while the Siddhi engine is running. Callbacks can be added to the
Siddhi engine to get notified when a specific query matches. Furthermore, callbacks
to a specific event stream can also be added. Listing 3.5 shows a simple SiddhiQL
query, which filters events with a distance value lower than 10 ¢cm, and furthermore
shows how to add it to the Siddhi engine, as well how to register callbacks. Besides
formulating queries directly in SiddhiQL, it is also possible to build query objects using
a Java API.

In respect to the composition of events, joins can be used to merge up to two streams
based on a given condition, where each stream must be associated with a window.
During a join, each incoming event on each stream is matched against all events of
the other input event stream window. An output event is generated for all matching
event pairs. Moreover, SiddhiQL allows pattern processing, where event streams can
be correlated over time and event patterns can be detected based on the order of
arrival, however, there can be other events in between the events matching the pattern
condition. Events can be correlated over one or multiple input streams and each
matched event needs to be referenced in order to be available for further processing
and output generation. Listing 3.6 shows a pattern that matches if the temperature of
a machine increases by 5 degrees within 5 min. The every keyword makes sure that
the pattern matching does not stop after the first match.

29

3 Analysis — Complex Event Processing Engines

Listing 3.6 Example of an event pattern in Siddhi

define stream TempStream(machineID long, temp double);

from every(el=TempStream) -> e2=TempStream[el.machineID==machineID and (el.temp + 5)
<= temp 1]

within 5 min

select el.machineID, el.temp as initialTemp, e2.temp as finalTemp

insert into AlertStream;

SiddhiQL also provides means for sequence processing, where event streams can be
correlated over time and event sequences are detected based on their arrival order,
with the difference that there cannot be other events in between the events matching
the sequence condition [20]. Furthermore, Siddhi does not support negation and
handling out of order events [19].

In respect to the accumulation of events, windows are provided in order to capture a
subset of events from input event streams. Each input stream can have at most one
window. Siddhi supports sliding and batch (tumbling) windows, which can be further
divided into time-based and length-based [19].

Furthermore, on a PC with a 4 Core processor and 4 GB of memory, Siddhi can evaluate
per second up to 6M events generated from the same JVM, and about 100.000 events
per second over network connection [15].

3.3 Odysseus

This section is mostly based on [16].

Odysseus is an open-source in-memory data stream management system (DSMS)
designed for the real time processing of large volumes of data. It is a platform that
provides different data processing steps (also called operators), such as filter and
correlate, so that complex events and high-level information can be derived from
simple events. Odysseus is a research prototype that has been continuously developed
since 2007 by the University of Oldenburg and partners®.

Cugola and Margara [21] distinguish between the data stream processing model
and the complex event processing model as follows. The first model processes data
streams coming from different sources in order to produce new data streams as output,

3https://www.uni-oldenburg.de/informatik/is/forschung/projekte/odysseus/

30

3.3 Odysseus

where this processing model can be considered as an evolution of the traditional data
processing of database management systems (DBMS) [21]. On the other hand, the
complex event processing model interprets the flowing information as notifications
of events happening in the external world, which have to be filtered and combined
to understand what is happening [21]. It focuses on detecting particular patterns of
events whose occurrences have to be notified to the interested applications [21].

Odysseus implements a client-server architecture and is composed of the Odysseus
Server and the Odysseus Studio. The Odysseus Server is the core of the system and
provides the data processing operations, the query interface, and the user management.
The Odysseus Studio is an user interface developed for the administration of the
Odysseus Server and for the creation of queries, where it contains an integrated editor
to formulate them. Alternatively to the Odysseus Studio, the Odysseus Server can also
be administrated via a Web Service interface.

StreamSQL/CQL,
SASE+,
PQL Queries

web service
REST

Query Interface

complex
R S Odysseus I events out
Data : Server Data
sources > sinks

events in

Figure 3.3: The Odysseus Server

An overview of the Odysseus Server and its relations to events and queries can be
seen in Figure 3.3. Data sources send their data actively so that the processing is done
reactively when necessary. Then, Odysseus processes the incoming events according
to the active queries and forwards the results to applications through data sinks.
A flexible adapter interface for connecting data sources and data sinks is provided.
Listing 3.7 shows a query to create an incoming connection for a data source (outgoing

31

3 Analysis — Complex Event Processing Engines

Listing 3.7 Example of a query to connect a data source to Odysseus

CREATE STREAM distanceStream (id INTEGER, name STRING, value FLOAT)
WRAPPER 'GenericPush’
PROTOCOL 'CSV’
TRANSPORT ’'TCPClient’
DATAHANDLER 'Tuple’
OPTIONS (’'port’ '123', 'host’ ’'example.com’)

Listing 3.8 Example of a CQL query in Odysseus
SELECT id,value FROM distanceStream WHERE value <= 10

connections can be created by using CREATE SINK instead of CREATE STREAM). In
this example, a TCP connection to the specified host on the given port is opened,
through which the data is pushed to the Odysseus system. The incoming CSV data
is translated into a tuple of the form (integer, string, float). Odysseus allows various
event data formats, such as XML, CSV, HTML, JSON, or byte-based formats. It also
provides some protocols and transport mechanisms (TCP connections, files, serial
interfaces) but adding new ones is possible through interfaces and the component-
based architecture.

When data sources and data sinks are connected to Odysseus, queries can be defined
to tell Odysseus how the data should be processed. They are passed to the Odysseus
server through a query interface, which is provided as a Web Service and as REST
interface. They can be written in StreamSQL/CQL, a SQL-based language, or in
Procedural Query Language (PQL). Listing 3.8 shows an example of a simple CQL
query that filters events from the data stream distanceStream where value is lower than
or equal to 10.

In respect to the composition of events, the join operator can be used to combine
events from two different sources, but it is only possible if the time interval of the
two streams overlap and the join predicate evaluates to true. Moreover, for detecting
complex patterns the SASE+ language* can be used. For that, the additional plugin
CEP and Pattern Feature needs to be installed in order to enable Odysseus to perform
Complex Event Processing.

The SASE+ language focuses on temporal event patterns where they can specify a
sequence of events occurring in a specific order (sequencing) or the non-occurrences
of events (negation). A pattern can also be used to extract a finite number of events

“http://avid.cs.umass.edu/sase/index.php?page=Ilanguage

32

3.3 Odysseus

Listing 3.9 Data source definition in PQL

Arduino := ACCESS({ SOURCE = ’Arduino’,

TRANSPORT = 'RS232’,

DATAHANDLER = 'Tuple’,

WRAPPER = ’GenericPush’,

PROTOCOL = 'CSV’,

SCHEMA = [['temperature’, 'DOUBLE’], [’'distance’, 'DOUBLE’]],
OPTIONS = [['port’, ’/dev/ttyACM3'], [’'baud’, '9600']1]1 })

Listing 3.10 Example of an event pattern in Odysseus

match = SASE({schema=[[’'temperature’, 'Double’]],

type='Result’,

query="PATTERN SEQ(Arduino+ a[]) WHERE skip_till_any_match(all){
al[l].temperature >= 0.8 x a[a.LEN].temperature

} WITHIN 60 seconds RETURN a[a.LEN].temperature’

}, Arduino)

with a particular property (kleene closure). Furthermore, different events can be
compared via value-based and temporal constraints (parameterized predicates) and
sliding windows can be defined for patterns that need to occur within a specified
period of time [22].

Listing 3.10 shows a query written in PQL to detect a pattern in the stream of the
defined source in Listing 3.9. The SASE operator takes three parameters: the out-
put schema, the type name of the output, and the query, which receives a pattern
description written in the SASE pattern language. The pattern should match when
the temperature drops by more than 20% compared to some value during the last 60
seconds, for example, when someone opened a window in the room. When Odysseus
detects such a situation, it is possible to send the result of the SASE operator to an
application, for example, through a HTTP Request (see Listing 3.11).

Listing 3.11 Generating an Odysseus notification in PQL

out = SENDER({ SINK = ’'Sink’,

TRANSPORT = 'HTTP',

DATAHANDLER = ’'Tuple’,

WRAPPER = 'GenericPush’,

PROTOCOL = 'CSV',

OPTIONS = [['uri’, 'http://www.example.com’], [’'method’, ’'post’]]
}, match)

33

3 Analysis — Complex Event Processing Engines

In respect to the accumulation of events, Odysseus provides windows, which are
subsets of elements that should be treated together, for example aggregated. It
provides sliding windows and tumbling windows, which can be time-based (e.g., the
last 10 seconds) or element-based (e.g., the last 10 elements).

Furthermore, on a PC with Intel Core i5 2.5 GHz processor and 8 GB of memory;,
Odysseus can evaluate above 100.000 events per second and execute over 30,000
queries with more than 1,000,000 processing steps in parallel [16]. However, the
processing speed strongly depends on the defined data sources and queries.

3.4 Evaluation

It has been shown that all three options are good equipped with powerful mechanisms
to execute situation recognition by using Complex Event Processing (CEP) features.
While Esper and Siddhi engines are lightweight Java components and can be easily
embedded into any Java application, Odysseus offers a highly customizable OSGi-
based framework for creating event stream management systems. In order to simply
use the Odysseus Server, which does the actual needed processing, applications can
integrate a provided Java web service client into themselves, to be able to define data
sources, add, remove and run queries. Additionally, since Odysseus is primarily a data
management engine, in order to use pattern matching, the CEP Feature plug-in needs
to be installed to allow it to use event pattern matching. This is done via the user
interface Odysseus Studio.

For all engines, events can be represented in different formats so that the application
can choose which data format suits better. Input events can be easily made available
to the execution engine through push mechanisms. Esper and Siddhi provide APIs to
actively send events to them, while in Odysseus events will be made available to the
engine through specified data sources, for example through a TCP connection or serial
port. Esper and Siddhi allow to register listeners to queries, where they are informed
about the result of queries, including the events involved in the recognized situations.
In Odysseus, results are sent to the registered data sinks, for example, through a HTTP
request.

All three engines can express event queries on SQL-based languages, where those
queries describe how to process and combine event streams, as well how to create
new event streams. With respect to the composition of events, Siddhi and Odysseus
can join only up to two streams at a time, while Esper is able to join two or more
streams. For all three engines, it is possible to create queries able to use temporal

34

3.4 Evaluation

conditions and to match complex patterns. Esper provides a pattern language that
can be integrated into EPL statements, Odysseus uses the SASE+ language to define
patterns, and Siddhi is equipped with SiddhiQL, which directly allows the formulation
of patterns into its queries.

SiddhiQL limits pattern processing and sequence processing to at most two different
streams at a time when logical operators (e.g., and, or) are used. It does not support
patterns involving the absence of events, while both Esper and Odysseus can detect
such patterns. SASE+ focuses on temporal event patterns and can involve events
from different streams but only for patterns based on a sequence of events. However,
correlation of events and complex patterns can still be expressed based on the values
of event attributes. Esper can handle both pattern and sequence processing involving
multiple streams and additionally allows the utilization of user-defined functions on
the definition of patterns.

With respect to the accumulation of events, all engines support sliding and tumbling
windows, both based on time and length (i.e., number of events). Esper distinguishes
further between data windows (time, length, etc.) and named windows, which are
globally visible data windows that share event sets between queries efficiently.

Furthermore, Suhothayan et al. [19] compared the performance of Siddhi and Esper
by running different types of queries (simple filtering, filtering with time windows and
pattern matching). Siddhi had better performance results but both engines showed
high throughput and stable behaviors.

Esper is an established CEP engine and has been used as the core of many other CEP
engines. It is a lightweight engine that can be easily integrated into Java applications.
On the other hand, Odysseus, which is a powerful data management engine and built
for extensions, requires some more effort to be integrated due to its complex nature.
It provides various plug-ins for additional features, different event languages can be
used for different purposes. It can also be extended with new languages, operators,
data source connectors, and sink connectors. Moreover, Esper provides an event
language capable to cope with the current powerfulness of Situation Templates and
to the expected extensions to be executed by this work. Esper can join events from
two or more streams, supports pattern and sequence processing involving multiple
streams, can detect the absence of events, and allows patterns to employ user-defined
functions, while Siddhi and Odysseus presented some limitations in some of these
aspects. Ultimately, Esper provides comprehensive documentation that facilitates
its employment while formulating sophisticated event patterns for many different
situations of interest. Because of the above mentioned reasons, the Esper engine was
chosen for the recognition of situations in this master thesis.

35

4 Situation Recognition based on CEP

This chapter explains all steps necessary to realize the Situation Recognition System
using the Esper engine, which was described in Section 3.1 — Esper. These steps can be
divided into four categories (cf. Section 1.1 — Problem Definition and Objectives): (i)
the adaptation of the Situation Template schema, in order to increase its powerfulness,
(ii) the sensor data provisioning so that data can be actively pushed to the Situation
Recognition System, (iii) the transformation of Situation Templates to Event Process
Language (EPL) statements to be executed by the Esper engine, and (iv) the actual
execution of the situation recognition.

4.1 Situation Template Adaptation

The Situation Template schema proposed in [3] was extended in this master thesis to
support the features described in the following. These features are: (i) time-based
conditions, (ii) comparison of data from different sensors, and (iii) aggregation of data
from different sensors. Listings 4.1 and 4.2 depict the extended schema definition for
a condition node, i.e., the elements that a condition node contains and its attributes.
The modifications in the schema are marked with the color blue.

Time-based conditions. A time-based condition in the context of this work means a
condition that is valid for a specific period of time, such as "temperature greater than
90 degrees for 10 seconds". This enhancement enables the modeling of situations that
depend on time to be actually recognized. For example, if an object should not stay
more than one minute in some production processing step, a situation can be modeled
to recognize when a distance sensor detects a constant distance to the object for more
than one minute. Furthermore, time-based conditions avoid erroneous sensor readings
to be misinterpreted as a situation. For example, considering that a machine should
be turned off when its temperature is greater than 90 degrees. If the temperature
sensor reads a single value greater than 90 degrees but the following sensor values
are lower than that, this will be recognized as a situation and the machine will be

37

1

2
3
4
5

o ® N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

4 Situation Recognition based on CEP

Listing 4.1 XSD extensions at condition node elements

<xs:complexType name="tConditionNode">
<Xxs:sequence>
<xs:element name="measureName" type="xs:string" />
<xs:element name="opType" maxOccurs="1" minOccurs="1">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="lowerThan|greaterThan|equals|notEquals|between" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="condValue">
<xs:complexType>
<Xs:sequence>
<xs:element name="value" type="xs:string" maxOccurs="2" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<!-- element for comparing variable values -->
<xs:element name="condVariable" minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="variable" type="tVariableInput" minOccurs="2"
maxOccurs="2" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<!l-- Time interval in milliseconds -->
<xs:element name="timelnterval" type="xs:integer" minOccurs="0" maxOccurs="1" />
<xs:element name="parent" type="tParent" minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>

</xs:complexType>

turned off. This can be avoided by checking if the temperature stays greater than 90
degrees for a specific period of time. To realize time-based conditions, the condition
node was extended with the element timelnterval, where an integer value representing
a period of time in milliseconds can be defined (line 28 of Listing 4.1). An example
of a time-based condition modeled in XML is depicted in Listing 4.3. This condition
checks if the temperature of a machine is greater than 90 degrees for 10 seconds.

Comparison of data from different sensors. By comparing sensor values at the
situation recognition level, applications do not have to take care of such a processing

38

1

2

(3 I N)

® N o

9
10
11
12
13
14
15
16
17
18
19
20
21
22

1

9

4.1 Situation Template Adaptation

Listing 4.2 XSD extensions at condition node attributes

<xs:complexType name="tConditionNode">

<xs:attribute name="id" type="xs:ID" use="required" />
<xs:attribute name="name" type="xs:string" />
<!-- Condition node type: condValue (comparison to predefined value) or
condVariable (comparison of variables) -->
<xs:attribute name="type">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="condValue|condVariable" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<!-- can be used together only with condValue -->
<xs:attribute name="aggregation">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="avg|min|max" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

Listing 4.3 Situation Template extract of a time-based condition

<conditionNode id="A2" name="Overheated machine">
<measureName>temperature</measureName>
<opType>greaterThan</opType>
<condValue>

<value>90</value>

</condValue>
<timeInterval>10000</timeInterval>
<parent parentID="A4"/>

</conditionNode>

step themselves and they can thereby focus on the reaction to be executed. For example,
consider an application that should keep the temperature of a room uniform and the
room is equipped with two temperature sensors and two heating systems. To keep
the temperature uniform, the values of the two temperature sensors are periodically
compared in order to find out the room area with lower temperature. Then, the better
suitable heating system, i.e., the one closer to the room area, is activated. With the
enhancement realized in this master thesis, a situation can be modeled to recognize
when the room temperature is not uniform anymore, i.e., the temperature sensor

39

O Ny AW =

o

4 Situation Recognition based on CEP

values are different, and also which room area has the lower temperature. In this case,
the application is notified when the situation occurs and it just needs to activate the
appropriate heating system.

As mentioned in Section 2.3 — Situation Templates, context nodes represent the moni-
tored sensors and are connected to condition nodes. Originally, sensor data was always
compared with values defined in the element “condValue” (cf. line 11 of Listing 4.1).
To enable the comparison of two sensor values, the situation node was extended with
the attribute type (cf. line 7 of Listing 4.2). This attribute can assume the values
“condValue” or “condVariable”. The type “condVariable” defines that the data from two
different sensors will be compared with each other. The context nodes representing
the sensors of the comparison are explicitly referenced at the condVariable element of
the condition node (see line 22 of Listing 4.1). The provided comparison operators for
this type of condition node are: lower than, greater than, equal to and not equal to.

Listing 4.4 shows a condition node example in which the values of different sensors
are compared. Considering the scenario depicted in Figure 1.2 — Distance sensors placed
at a conveyor belt to detect if objects are wrongly positioned, the two distance sensors
placed at the conveyor belt can be represented by the context nodes A0 and Al. If the
measured distance value from sensor A0 is lower than the value from sensor A1 for 10
seconds, it means that the object is positioned more to the left of the conveyor belt.

Listing 4.4 Situation Template extract of a condition comparing sensor data of different

Sensors
<conditionNode id="A3" name="Package not centered" type="condVariable">
<measureName>distance</measureName>
<opType>lowerThan</opType>
<condVariable>
<variable contextNodeID="AQ"/>
<variable contextNodeID="Al"/>
</condVariable>
<timeInterval>10000</timeInterval>
<parent parentID="A4"/>
</conditionNode>

Aggregation of data from different sensors on the context level. For some sce-
narios, it might be more reasonable to process a value representing the readings of a
group of sensors than to process the readings of each sensor. For example, if there is
a machine equipped with many temperature sensors, and an application needs to be
notified when at least one sensor reads a temperature greater than 90 degrees. Instead
of checking if the measured value of each sensor is greater than 90 degrees, this can

40

L N o U A W N =

4.2 Sensor Data Provisioning

be simplified by first calculating the maximum temperature value, and then checking
if this resulting value is greater than 90 degrees.

Aggregating sensor values already on the context level, reduces the effort and time
that would be needed to model and process condition nodes for each monitored sensor.
Therefore, the condition node was enhanced with the attribute aggregation (see line
15 of Listing 4.2). This attribute enables data from different sensors to be aggregated
using various functions. The resulting value can be compared with predefined values
at condition nodes. If a condition node has this attribute, all sensor data coming from
the context nodes connected to this condition node will be aggregated prior to the
comparison. The provided aggregation functions are: average, minimum value and
maximum value.

Considering the scenario depicted in Figure 1.2, two distance sensors are placed on a
conveyor belt and can detect the position of objects on the conveyor belt together. If
the minimum distance value of the two sensors is lower than 10 cm, it means that the
object is wrongly positioned either left or right on the conveyor belt, what represents a
collision risk. Listing 4.5 shows an example of a condition node in which it checks if
the resulting minimum value of two measured distances is lower than 10 cm.

Listing 4.5 Situation Template extract of a condition that aggregates sensor values on
the context level
<conditionNode id="A2" name="Collision risk" type="condValue" aggregation="min">
<measureName>distance</measureName>
<opType>lowerThan</opType>
<condValue>
<value>10</value>
</condValue>
<parent parentID="A4"/>
</conditionNode>

4.2 Sensor Data Provisioning

This section explains how the collected data by sensors of a thing can be transferred
over the Internet to the Situation Recognition System developed in this master thesis.
The chosen approach uses the publish/subscribe (pub/sub) communication model
[23]. This model consists of three component types: subscriber, publisher and broker.
Subscribers are the components interested in consuming certain information, they
usually have to contact the broker explicitly to register their interest. Publishers
produce certain information by publishing them. The broker ensures that the data

41

4 Situation Recognition based on CEP

published is received by the subscribers [24]. The interested reader is referred to [23]
for further information regarding pub/sub systems.

This work uses pub/sub clients and a broker that are based on the MQTT (Message
Queue Telemetry Transport)! protocol. MQTT is a lightweight, topic-based pub/sub
protocol, which was designed to minimize bandwidth and assure the delivery of
messages at different Quality of Service (QoS) [25] levels. It is ideal to be used in
the IoT context where the connected things have low bandwidth and limited battery
power [26]. MQTT is a connection-oriented protocol, i.e., it requires the clients to set
up connections with the broker before they can publish or subscribe to topics [24].

Situation
.. events (POJO .
Recognition Esper Engine | events (POJO) | MQTT Client
System ‘ 1
Subscribe to topics Send events
topics: temperature
distance
Publish events
|
Sensor Data events .
Thing with Sensors Adapter MQTT Client
iP ull e.g., Raspberry Pi2
GPIO

AAAA

Figure 4.1: Provisioning of sensor data to the Situation Recognition System using
MQTT

Figure 4.1 illustrates the setup used to collect sensor data and to send this data to the
Situation Recognition System. A Raspberry Pi? was used to read data from different
sensors. A measured sensor value, its timestamp and the sensor identifier build an
event, which is formatted as a JSON string and published in the topic corresponding
to the type of the sensor (e.g., temperature, distance). The Raspberry Pi publishes

Thttp://www.mqtt.org/
2https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

42

4.2 Sensor Data Provisioning

events using the open-source MQTT Client Paho®. The Situation Recognition System is
also equipped with a Paho MQTT Client, which is used to subscribe to all the topics
and to automatically receive the events of the subscribed topics. The received events,
which are JSON formatted strings, are converted to Plain Old Java Objects (POJOs)
and are forwarded to the Esper engine. The IBM Bluemix IoT Service* is used as
the MQTT Broker for this work, but open-source MQTT Brokers (e.g., Mosquitto®,
Mogquette®, etc.) could be used as well. In order to use the IBM Bluemix IoT Service,
some configuration steps need to be executed. Please refer to the IBM developerWorks
homepage’ for more information regarding setting up the Bluemix IoT Service and
registering things.

4.2.1 Collecting Sensor Data

The Raspberry Pi is a very tiny general-purpose computer. It can be used to build
systems using sensors, actuators and microcontrollers by using its General Purpose
Input/Output (GPIO) port in order to communicate with external hardware [27].
Through the GPIO port, the Raspberry Pi receives sensor data, controls actuators and
communicates to other computing devices using different protocols, including Serial
Peripheral Interface (SPI) [27].

To simulate the scenarios presented in Section 1.2, the Raspberry Pi collects data from
ultrasonic distance sensors and a temperature sensor. Listing 4.6 shows the Python
code for setting up the GPIO port for the communication with an ultrasonic distance
sensor and for reading data from it. Such a sensor calculates the time taken to reflect
ultrasound waves between the sensor and a solid object. In line 14, a signal is sent to
the sensor through the GPIO port, which triggers the sensor to emit an ultrasonic pulse.
The sensor detects the reflected waves and measures the time between the trigger and
the returned pulse. Through the GPIO port, the sensor then sends a high signal to the
Raspberry Pi (see line 19). This signal has the duration of the time interval measured
by the sensor. The Python code must then calculate the distance based on the duration
of this high signal (see line 21).

Listing 4.7 contains the Python code for reading values from the temperature sensor.
To read and convert the analog output of the temperature sensor, the linker base

3http://www.eclipse.org/paho/

“http://www.ibm.com/Bluemix

Shttp://mosquitto.org/

bhttps://github.com/andsel/moquette
7https://www.ibm.com/developerworks/cloud/library/cl-mqtt-bluemix-iot-node-red-app/

43

1
2
3
4

o N o o«

10

12
13
14
15
16
17
18
19
20
21
22
23

4 Situation Recognition based on CEP

for Raspberry Pi®, which has the analog-to-digital converter (ADC) chip MCP3004
on-board, was used. The ADC chip communicates to the Raspberry Pi using a SPI
interface.

Listing 4.6 Python code to read the distance from an ultrasonic sensor

import RPi.GPIO as GPIO

import time

class ultraDist(object):

def __init__(self, ptrig, pecho):
self.ptrig = ptrig
self.pecho = pecho
GPIO.setmode(GPIO.BCM)
GPIO.setup(pecho, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(ptrig, GPIO.OUT)
GPIO.output(ptrig, 0)
def getValue(self): # in cm
GPIO.output(self.ptrig, 0)
time.sleep(0.1)
GPIO.output(self.ptrig, 1)
time.sleep(0.00001)
GPIO.output(self.ptrig, 0)
while(0 == GPIO.input(self.pecho)):
start = time.time()
while(1l == GPIO.input(self.pecho)):
None

delay = (time.time() - start) * 1000 * 1000
time.sleep(0.1)
return (delay / 58.0)

4.2.2 Sending Events to the Situation Recognition System

Once the Bluemix IoT Service is running and the Raspberry Pi is registered on it,
the Python code from Listing 4.8 can be used to set up the connection with the
IBM IoT MQTT Broker. Line 8 creates a MQTT client instance, which is used to
connect to the MQTT Broker in line 12. The MQTT broker is accessible at the host
“<mq_org>.messaging.internetofthings.ibmcloud.com”, where mq_org is created auto-
matically when the IoT service is configured.

After connecting to the MQTT Broker, the method sendMessage() in line 18 of Listing
4.9 is used to to publish the collected sensor data to a specific topic. Line 23 builds a

8http://www.linksprite.com/

44

4.2 Sensor Data Provisioning

Listing 4.7 Python code to read data from a temperature sensor

1 import spidev
2 class analogInputReader(object):

3 def __init__(self):

4 self.spi = spidev.SpiDev()

5 self.spi.open(0,0)

6 def readadc (self, adPin): # read SPI data from MCP3004 chip, 4 adc’s (0 thru 3)
7 if ((adPin > 3) or (adPin < 0)):

8 return -1

9 r = self.spi.xfer2([1,8+adPin <<4,0])

10 adcout = ((r[1] &3) <<8)+r[2]

11 return adcout

12 def getLevel (self, adPin):

13 value = self.readadc(adPin)

14 volts = (valuex3.3)/1024

15 return (volts, value)

16 def getTemperature (self):

17 vO = self.getLevel(0)

18 temp = (((vO[O] * 1000) - 500)/10) # celsius
19 return temp

Listing 4.8 Python code to set up a connection to the IBM IoT MQTT broker

1 import paho.mqgtt.client as mqtt
2

3 # data for ibm internet of things service
4 mg_org = "##"

s mg_clientId = "d:" + mg_org +
6

7 # create MQTT client, set user name and password, set mqtt client callbacks...
g8 client = mqtt.Client(client_id=mg_clientId, clean_session=True, userdata=None,
protocol=mqtt.MQTTv311)

+ mg_type + + mq_id

9 ...
10 # connects to IBM IoT MQTT Broker
11 mg_host = mg_org + ".messaging.internetofthings.ibmcloud.com"
12 client.connect(mg_host, 1883, 60)

JSON object containing the sensor identifier, the timestamp of the current measurement,
and the read distance from the sensor. This object is published as a string in the topic
distance. The MQTT Broker will then ensure that the Situation Recognition System,
which acts as a subscriber, receives each published event.

45

N T e =) T ¥ B S

—
o

1

o

12
13

4 Situation Recognition based on CEP

Listing 4.9 Python code to publish data on a topic

init GPIO ports for the distance sensors

distA = ultrasonicDistance.ultraDist (17, 18) # ptrig, pecho
topic_distance = "iot-2/evt/%s/fmt/json" % ("distance")

publishes message to MQTT broker
def sendMessage(topic, msg):
client.publish(topic=topic, payload=msg, qos=0, retain=False)

send message, topic: distance

t = datetime.utcnow().strftime(’'S%Y-%m-%d %H:%M:%S.%f")[:-3]

msg_sensor_0 = { "sensorID": "AO®","timestamp": t, "distance": "%.1f" %
(distA.getValue())}

sendMessage (topic_distance, json.dumps(msg_sensor_0))

send message, topic: temperature ...

4.2.3 Receiving Events at the Situation Recognition System

The Situation Recognition System uses the Paho Java Client to connect to the MQTT
Broker and to subscribe to topics. How the Situation Recognition System connects to
the IBM IoT MQTT Broker is shown in Listing 4.10. Line 18 shows how to subscribe
to the interesting topics. The Situation Recognition System needs to implement the
interface MqttCallback, in order to get notified when an event for the subscribed topics
arrives at the MQTT Client. The callback function messageArrived() is then executed
when an event arrives. The implementation of this callback function is depicted in
Listing 4.11. The received events, which are JSON formatted strings, are mapped to
POJOs and are then forwarded to the Esper engine for the recognition of situations.
Section 4.4 — Situation Recognition explains how the situation recognition is executed
using the Esper engine.

4.3 Situation Template Transformation

In order to use the Esper engine to execute the situation recognition, Situation Tem-
plates need to be mapped to continuous queries, called EPL statements in the Esper
context. This mapping has been implemented in Java and uses the Java Architec-
ture for XML Binding (JAXB) to parse the Situation Template to Java objects. As
mentioned in Section 3.1, Esper allows event pattern matching, where a Situation
Template defines a set of conditions that combined can be seen as a complex event
pattern in the context of Esper. Therefore, the conditions of a Situation Template

46

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23

4.3 Situation Template Transformation

Listing 4.10 Java code to connect to the IBM IoT MQTT broker and subscribe to topics

public class SitRSMqttClient implements MgttCallback {
private static final String MQ_EVENT_DISTANCE
private static final String MQ_EVENT_TEMPERATURE
MgttClient client;

"/evt/distance";
"/evt/temperature";

// connects to MQTT Broker and subscribe to topics
private void initialize() {
// data for ibm internet of things service ...
try {
// creates mqtt client, sets username, password, mqtt client callbacks
client = new MqttClient(mg_url, mg_clientId);
MgttConnectOptions options = new MgttConnectOptions();

// connects to Mqtt broker
client.connect(options);

// subscribes to topics
client.subscribe("iot-2/type/+/id/+" + MQ_EVENT_DISTANCE + "/fmt/json");
client.subscribe("iot-2/type/+/id/+" + MQ_EVENT_TEMPERATURE + "/fmt/json");
}
catch (MqgttException e) {...}

}

need to be formulated as an event pattern that will match when the modeled situation
occurs. Patterns alone just detect if a situation occurred. To have access to the pattern
match results, it is necessary to combine the pattern matching with event stream
analysis. In this way, it is possible to know exactly which events caused the situa-
tion. Each situation to be recognized can then be represented as the EPL statement
select *x from pattern ["corresponding_situation_template_pattern"]. To ex-
emplify how a Situation Template can be transformed to an event pattern, the scenarios
“Monitoring machine status” and “Monitoring objects on a conveyor belt” from Section
1.2 are used.

Figure 4.2 depicts the scenario “Monitoring machine status” modeled in XML and in a
corresponding tree representation. The situation “Machine is blocked” occurs if at least
one of the following conditions evaluate to true: (i) the temperature of the machine is
greater than 90 degrees, or (ii) the level of the material container of the machine is
lower than 10 cm, i.e., the material runs low.

To build a pattern expression for the first condition, we extract the monitored sensor
identifier (A0) from the context node A0, and the event type generated by the sensor

47

[N

o N O

10
11
12
13
14
15
16
17
18
19

-

4 Situation Recognition based on CEP

Listing 4.11 Java code to receive events from the MQTT Broker

SituationHandler sitHandler;
ObjectMapper mapper = new ObjectMapper();

@Override

public void messageArrived(String topic, MgttMessage message) throws Exception {
int beginIndex = topic.lastIndexO0f("/evt/"); // parse topic

int lastIndex = topic.lastIndexOf("/fmt/json");

if (beginIndex !'= -1 && lastIndex != -1) {
String eventName = topic.substring(beginIndex, lastIndex);

if (MQ_EVENT_DISTANCE.equals(eventName)) {
DistanceMeterEvent eventFromJSON = mapper.readValue(new String(
message.getPayload()), DistanceMeterEvent.class);
sitHandler.sendEvent(eventFromJSON) ;

} else if (MQ_EVENT_TEMPERATURE.equals(eventName)) {...}

(TemperatureEvent). From the condition node, we extract the measure variable name
(temperature), the comparison operator (greater than), and the predefined value for
the comparison (90). With all this information, we can then build a pattern that
matches on every TemperatureEvent event that was generated by the sensor A0 and has
a measured temperature greater than 90 degrees. This pattern is depicted in Listing
4.12.

Listing 4.12 Pattern expression for a simple condition

every AO_stream=TemperatureEvent(sensorID="A0’, temperature > 90)

We then create a pattern expression for the second condition as well, and combine
both expressions with the logical operator or. Finally, this results in an EPL statement
that recognizes the situation “Machine is blocked”. This statement is depicted in
Listing 4.13. AO stream in line 2 and Al stream in line 4 are called tags and they
are important because only tagged events are available to listeners when the pattern
matches.

Section 4.1 — Situation Template Adaptation explained, which changes were made in the
Situation Template schema in order to increase its powerfulness with (i) time-based
conditions, (ii) comparison of data from different sensors, and (iii) aggregation of
data from different sensors on the context level. The following paragraphs describe

48

N =

N

4.3 Situation Template Transformation

<SituationTemplate id="scenario_3" name="Machine Status">
<Situation id="A" name="Machine Blocked">
<situationNode id="A5" name="Machine Blocked"/>
<operationNode id="A4" name="Combine">
<parent parentID="A5"/> <type>or</type>
</operationNode >
<conditionNode id="A3" name="Low level" type="condValue">
<measureName>distance </measureName >
<opType>lowerThan</opType>
<condValue> <value>10</value> </condValue>
<parent parentID="A4"/> </conditionNode>
<conditionNode id="A2" name="High temp" type="condValue">
<measureName>temperature</measureName >
<opType>greaterThan</opType>
<condValue> <value>90</value> </condValue>
<parent parentID="A4"/> </conditionNode>
<contextNode id="Al" name="Level Sensor" type="DistanceEvent">
<parent parentID="A3"/> </contextNode>
<contextNode id="A0" name= "Temp Sensor" type="TempEvent">
<parent parentID="A2"/> </contextNode>
</Situation> </SituationTemplate >

Machine
Blocked

A0 Al

Temperature

Level Sensor
Sensor

Figure 4.2: Situation Template for monitoring a machine status

Listing 4.13 EPL statement to recognize the situation from “Monitoring machine

status”

select * from pattern [

(every AO_stream=TemperatureEvent(sensorID="AQ’, temperature > 90))

or

(every Al_stream=DistanceMeterEvent(sensorID='Al’, distance < 10))

]

how conditions involving such features can be mapped to corresponding pattern
expressions. Additionally, it shows how a pattern expression looks like for recognizing

when a situation stopped occurring.

Time-based conditions. The definition of a time-based condition was given in Sec-
tion 4.1. To explain how to formulate a pattern expression for a time-based condition,
the following example is used: “the temperature of the machine is greater than 90
degrees for 5000 milliseconds”. The pattern for such a condition first looks for an
event, in which the temperature is greater than 90 degrees. Then, it checks for the
next 5000 milliseconds if the temperature does not become lower than or equal to 90
degrees, i.e., the temperature stays greater than 90 degrees. This pattern is depicted in

49

4 Situation Recognition based on CEP

Listing 4.14 where it checks the absence of an event where “temperature lower than or
equal to 90 degrees”. To detect the absence of an event, it is recommended to use the
timer:interval observer together with and not operators. The followed by (->) operator
in line 2 means that first the left hand expression must occur and only then the right
hand expression is evaluated.

Listing 4.14 Pattern expression for a time-based condition

1 every AO_stream=TemperatureEvent(sensorID="A0', temperature > 90)
2 =>

3 (timer:interval (5sec) and not TemperatureEvent(sensorID='A0’, temperature <= 90))

<SituationTemplate id="scenario_1" name="Conveyor Belt">
<Situation id="A" name="0bject wrongly positioned">
<situationNode id="A6" name="0Object wrongly positioned"/>
<operationNode id="A5" name="Combine">
<parent parentID="A6"/> <type>or</type> </operationNode >
<conditionNode id="A4" name="Upside down" type="condValue">
<measureName>distance </measureName >
<opType>greaterThan</opType>
<condValue> <value>50</value> </condValue>
<parent parentID="A5"/> </conditionNode>
<conditionNode id="A3" name="pos on left" type="condVariable">
<measureName >distance </measureName >
<opType>lowerThan</opType> A3 A4
<condVariable> <variable contextNodeID="A0"/>
<variable contextNodeID="A1"/> </condVariable>
<parent parentID="A5"/> </conditionNode >
<contextNode id="A2" name="Top,, type="DistanceMeterEvent">
<parent parentID="A4"/> </contextNode>
<contextNode id="A1" name="Right, type="DistanceMeterEvent">
<parent parentID="A3"/> </contextNode>
<contextNode id="A0" name= "Left" type="DistanceMeterEvent"> Lot

A0 Al A2

n n Right Top
<parent parentID="A3"/> </contextNode> Distance Distance Distance
</Situation> </SituationTemplate > Sensor Sensor Sensor

Figure 4.3: Situation Template for monitoring objects on a conveyor belt

Comparison of data from different sensors. This feature was previously explained
in Section 4.1. To exemplify how to create an event pattern expression for it, the
scenario “Monitoring objects on a conveyor belt” from Section 1.2 — Motivating Scenarios
is used. Figure 4.3 depicts this scenario modeled in XML and in a corresponding tree
representation. The situation “object is wrongly positioned” occurs if at least one of the
following conditions is true: (i) an object on the conveyor belt is positioned left, (ii)
an object on the conveyor belt is positioned right, or (iii) an object is upside down.

50

AW N =

A W N

4.3 Situation Template Transformation

To determine if the first condition is true for the scenario depicted in Figure 1.2, the
measured distances from the left sensor and the right sensor are compared with each
other. The pattern for such a condition looks for an event from the left sensor, which is
followed by an event from the right sensor. Then, the measured distances from both
events is compared. Finally, the pattern matches if the measured distance of the left
sensor is lower than the distance of the right sensor. This pattern is depicted in Listing
4.15, where the left sensor corresponds to the sensor with identifier AO and the right
sensor to the sensor with identifier AI1. The not operator in line 4 makes sure that
always the last value of the left sensor is used when an event from the right sensor
arrives. This pattern considers that both sensors generate events continuously. In this
way, ordering the events with the followed by operator does not affect the evaluation
of the condition “distance from the left sensor is lower than the distance from the right
sensor”. Listing 4.16 shows an alternative pattern expression, where the order of the
events is not taken into consideration.

Listing 4.15 Pattern expression for comparing data from different sensors

every AO_stream=DistanceMeterEvent(sensorID = 'AQ")

->

(Al_stream=DistanceMeterEvent(sensorID = 'Al’, AO_stream.distance < distance)
and not DistanceMeterEvent(sensorID = 'AQ’))

Listing 4.16 Alternative pattern expression for comparing data from different sensors

every (AO_stream=DistanceMeterEvent(sensorID = 'AQ’)
and
Al_stream=DistanceMeterEvent(sensorID = 'Al’))

while (AO_stream.distance < Al_stream.distance)

Aggregation of data from different sensors. This feature was previously explained
in Section 4.1. To exemplify how to create a pattern expression for such a feature,
the scenario “Monitoring objects on a conveyor belt” is used (cf. Figure 1.2). In
this scenario, two distance sensors are placed at a conveyor belt and together they
can detect the position of objects on the conveyor belt. For example, they can be
used to detect if the position of an object on the conveyor belt represents a lateral
collision risk. For this situation, we can use a pattern expression that checks if the
minimum distance value of the two sensors is lower than 10 cm, which means the
object is wrongly positioned either left or right on the conveyor belt, and therefore
represents a collision risk. This pattern is depicted in Listing 4.17, which shows a
pattern expression for calculating the minimum value of two distance values and
comparing the result with a predefined value. Esper allows to invoke user-defined

51

AW N =

—

4 Situation Recognition based on CEP

static methods that return a Boolean value. In line 4 of Listing 4.17, the user-defined
method Aggregation.check_min computes the minimum value of all measured distances
and returns true if this value is lower than 10 cm.

Listing 4.17 Pattern expression for aggregating data from different sensors

every AO_stream=DistanceMeterEvent(sensorID = '"AQ")
and
Al_stream=DistanceMeterEvent(sensorID = 'Al’)

while (Aggregation.check_min(’<’, 1, {10, AO_stream.distance, Al_stream.distance}))

Recognizing when a situation stops occurring. Besides recognizing when a situ-
ation occurred, it is also necessary to recognize if this situation stopped occurring.
To exemplify how to create a pattern expression to recognize when a situation stops
occurring, the scenario “Monitoring level of containers” (cf. Figure 1.3) is used. In this
scenario, the distance sensor positioned above the container is used to measure the
current material level in the container. One important situation to detect is that the
material in the container runs low. When this situation is handled, i.e., the material
container is refilled, the situation stops occurring.

To recognize that the material runs low, we can use a pattern expression that matches
when it receives an event where the level of the material is lower than 10 cm. To rec-
ognize that the container was refilled, this pattern expression is extended to recognize
that such event was followed by an event where the measured level became greater
than or equal to 10 cm. This pattern is depicted in Listing 4.18. It recognizes that the
sensor A1 measured a distance lower than 10 cm, and after that it measured a distance
greater than or equal to 10 cm.

Listing 4.18 Pattern expression for recognizing if a situation stopped occurring

every Al_stream=DistanceMeterEvent(sensorID='Al’, distance < 10)
->
Al_stream_sitStopped=DistanceMeterEvent(sensorID="Al’, distance >= 10)

This section explained how Situation Templates are mapped onto EPL statements,
which are used by the Esper engine to recognize situations. Moreover, this work
increases the powerfulness of Situation Templates and implements corresponding map-
pings based on the enhanced Situation Template schema. This permits the modeling
of sophisticated situations involving: (i) time-based conditions, (ii) comparison of
data from different sensors, or (iii) aggregation of data from different sensors on the
context level. Table 4.1 shows examples of conditions using these features and how
they can be combined with each other.

52

4.4 Situation Recognition

simple condition time-based condition

distance distance
Comparison of sensor data lower than 10 cm lower than 10 cm
to predefined value for 10 seconds

Comparison of aggregated the minimum distance the minimum distance
sensor data of all sensors of all sensors
to predefined value lower than 10 cm lower than 10 cm
for 10 seconds

Comparison of data distance of sensor 1 distance of sensor 1
from different sensors lower than lower than
distance of sensor 2 distance of sensor 2

for 10 seconds

Table 4.1: Examples of supported conditions by the Situation Template
4.4 Situation Recognition

The architecture of the prototypical implementation of the Situation Recognition
System is depicted in Figure 4.4. The Situation Recognition System provides an API
(Situation Registration API) to register situations for starting its recognition, where
the thing identifier and the Situation Template identifier are provided. A registration
identifier is returned, which can be used to deregister the situation. The registration
process is taken care of at the Query Handler. If an EPL statement for the given
situation is not already active, the Query Handler triggers the mapping of the Situation
Template to EPL statements and adds it to the Esper engine. The implementation of the
mapping was previously explained in Section 4.3 — Situation Template Transformation.
How the Situation Recognition System receives events for processing was explained in
Section 4.2 — Sensor Data Provisioning.

In order to receive the results from the Esper engine when an EPL statement matches,
the Query Handler adds subscribers to the active queries. Listing 4.19 shows a code
snippet from the Query Handler that triggers the mapping of a Situation Template to an
EPL statement, which is added to the Esper engine to execute the situation recognition.
A subscriber object is then added to the EPL statement in line 10.

53

[

4 Situation Recognition based on CEP

— e

/ Esper Engine

Start EPL statement results
Situation Situati
iti iaaton | pegjster Situation t
Recognition Registration & Query Handler %Vgnos
System API (POJO)
Trigger Mapping
\\ ——> ST Mapper MQTT Client/
Send events

- - - T T T T T T T T T T T - - - T - - T - T = = T T T T T T T T T T T TTTT T T T T T T T T ———— \
l Things !

Figure 4.4: Situation Recognition System Architecture

Listing 4.19 Java code snippet for adding an EPL statement to the Esper engine and
adding a subscriber to the statement

SituationMapper mapper = new SituationMapper(file);
String situationTemplateID = mapper.getSituationTemplatelD();
String mappedStatement_sitOccurred = mapper.getQuerySituationOccurred();

// creates and starts running the query
EPStatement epStatement =
epService.getEPAdministrator().createEPL(mappedStatement_sitOccurred);

// sets subscriber for the query
EPLQuerySubscriber subscriber = new EPLQuerySubscriber(this, situationTemplatelD);
epStatement.setSubscriber(subscriber);

In this prototype, the occurring situations are published to the situation-aware workflow
management system called SitOPT [8] by using its situation model. SitOPT’s situation
model management manages all the occurring situations and notifies the registered
systems about the situation changes [8]. When a registered system is notified, it can
invoke a Situation Handler in order to handle the corresponding situation properly.
When the SitOPT system receives a notification from the situation model management,

54

4.4 Situation Recognition

it decides whether to invoke its Situation Handler for adapting the workflow so that
the notified situation can be handled [8].

Listing 4.20 shows the subscriber implementation, the class EPLQuerySubscriber. The
subscriber class needs to provide the method update() as shown in line 6, where the
results from the Esper engine for the EPL statement will be received. The events that
cause the situation to occur are then extracted from the results, formatted using the
situation model from [8] and published to SitOPT (see line 40).

Furthermore, the developed prototype uses the MQTT Client to publish occurring
situations to the IBM IoT MQTT Broker as well. This enables the Raspberry Pi to act as
a subscriber, where it receives notifications when situations occur. The Raspberry Pi
can then invoke a Situation Handler that reacts to occurring situations by controlling
the actuators connected to it, for example, by starting an audible alarm signal using a
buzzer.

55

4 Situation Recognition based on CEP

Listing 4.20 The subscriber implementation

1 public class EPLQuerySubscriber {

N=lE e R e Y e N]

—
o

11
12
13

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

private String situationTemplatelD;
private SituationHandler parent;

// Notification from Esper are received here in this method.
public void update(Map<String, Object> row) {
if (row.size() > 0) {
String timestamp = new SimpleDateFormat("yyyy-MM-dd h:mm:ss.SSS").
format(new Date());

List<SensorValue> values = new ArraylList<SensorValue>();

for (Object event : row.values()) {
if (event instanceof EventBean) {
EventBean eventBean = (EventBean) event;

if (DistanceMeterEvent.class.getSimpleName().
equals(eventBean.getEventType().getName())) {

DistanceMeterEvent eventObj=(DistanceMeterEvent) eventBean.
getUnderlying();

SensorValue sensorValue = new SensorValue();
sensorValue.setQuality(0);
sensorValue.setValue(eventObj.getDistance());
sensorValue.setTimestamp(eventObj.getTimestamp());
sensorValue.setSensor(eventObj.getSensorID());
values.add(sensorValue);

} else if (TemperatureEvent.class.getSimpleName().
equals(eventBean.getEventType().getName())) {
/...

}

// build matched situation obj

MatchedSituation matchedSituation = new MatchedSituation();
matchedSituation.setSituationtemplate(situationTemplatelD);
matchedSituation.setThing(thingId);
matchedSituation.setTimestamp(timestamp);
matchedSituation.setSensorvalues(values);

// notify system SitOPT
parent.onSituation(matchedSituation);

56

5 Evaluation

This chapter contains the evaluation of the Situation Recognition System developed
within this master thesis. It presents the runtime measurements and a load test based
on the prototypical implementation. To conduct the measurements, a machine running
the Windows 8 operating system with 8 GB of RAM and an Intel(R) Core(TM) i5-4300U
CPU @ 1,90GHz 2,49GHz processor was used.

The Situation Template used for the measurements monitors objects on a conveyor
belt (cf. Section 1.2), modeled as shown in Figure 4.3. The following was measured:
(i) the time taken to transform the Situation Template to an EPL statement, and (ii)
the time taken to recognize that the modeled situation occurs. The Situation Template
contains altogether 7 nodes to be transformed into an EPL statement, which detects
the modeled situation. To measure the time that the Esper engine requires to recognize
the modeled situation, this situation was induced by sending events locally to the
Esper engine that satisfy one condition of the used Situation Template, i.e., events that
satisfy the condition “distance measured by the top sensor is greater than 50 cm”.

Table 5.1 shows the measurement results for the transformation of a single Situation
Template. It also shows the measurement results for the situation recognition, where
only one EPL statement is active in the Esper engine. These measurements do not
include the time it would have taken to send events to the Esper engine over a
network. The measurements show that both the transformation step and the situation
recognition are executed in a reasonable time.

Furthermore, a load test was also conducted in order to find out how many Situation
Templates can be executed in parallel inside a single runtime environment using the
same Situation Template as above. The results are shown in Table 5.2. This load
test shows that the runtime slightly increases with the number of situations to be
monitored in parallel. It shows that the runtime increases only to 64,55 ms for each
situation when the Esper engine executes 100 EPL statements in parallel.

In conclusion, executing the situation recognition using the Esper engine overcomes
the limitations revealed by the prototypical implementation of SitRS [3], which uses
the Node-RED execution environment (cf. Section Evaluation in [3]). Hirmer et al.

57

5 Evaluation

Measurement ST Transformation Situation Recognition

1 142 ms 3 ms
2 168 ms 2 ms
3 147 ms 4 ms
4 136 ms 3 ms
5 135 ms 3 ms
& 145,6 ms 3 ms

Table 5.1: Runtime measurements of the prototype

ST Recognition Time / Situation &

1 3 ms

5 6,96 ms
10 12,78 ms
20 21,60 ms
50 33,30 ms
100 64,55 ms

Table 5.2: Load test of the prototype

show that the runtime highly increases with the number of monitored situations, what
happens due to the overhead produced by Node-RED while processing parallelized
flows [3].

58

6 Related Work

This chapter presents several works that realize situation recognition. Their approaches
to the recognition of situations are compared with the approach introduced in this
master thesis.

Because context is poorly used in our computing environments, we have a lack of
understanding what context is and how it can be used [28]. This thesis uses the
definition of context provided in [28, 29]:

“Context is any information that can be used to characterize the situation
of an entity, which can be a person, place or object”.

Abowd et al. [29] discuss how to efficiently provide context information to applica-
tions and how to make these applications aware and responsive. Their approach to
the development of context-aware applications is to collect contextual information
through automated means (e.g., using sensors instead of user input) and make it easily
accessible to the application’s runtime environment [28]. This context information
can be used to determine when relevant entities are in a particular state, i.e., when
a situation occurs [28]. This master thesis also adopts the approach of using context
information collected by sensors to identify situations. This is done by using Situation
Templates [3], a model that describes: (i) the relevant context information (i.e., the
monitored sensors), and (ii) how this information should be interpreted and pro-
cessed to recognize the occurrence of a situation. Situation Templates were previously
explained in Section 2.3.

This master thesis focuses on modeling situations as Situation Templates and using
them for the situation recognition, where Complex Event Processing (CEP) is employed
to execute the situation recognition. Several situation recognition systems using
different approaches have been proposed. Attard et al. [30] present an ontology-based
solution for the recognition of personal recurring situations, where context information
is generated by the devices a person owns. It employs a context matching technique
that periodically compares a person’s live context to previously identified situations and
also suggests matched situations, which are gradually characterized by the feedback of
the user.

59

6 Related Work

Dargie et al. [31] use an ontology to describe servers and a service management
system, which manages a video platform focusing on energy efficiency. Description
Logic (DL) reasoning is then employed to identify situations of interest. Dargie et al.
[31] argue that it cannot be assured that the available non-commercial reasoners are
fast enough to recognize complex situations for applications that require fast response
times.

Kokar et al. [32] claim that ontology-based situation recognition approaches have
the advantage that once facts about the world are stated, other facts can be inferred.
However, there is a missing commonality in the concepts used in the analysis and
synthesis of situation aware processing. For example the interpretation of situation
is different across different works even if they are within the same area [32, 33].
The approach followed in this thesis, i.e., using Situation Templates, is not limited to
recognize only particular situation types. Any kind of situation can be modeled based
on the available context model [3].

Further situation recognition approaches based on machine learning can be found in
[33, 13]. This master thesis considers that situations are well-known and all necessary
information for the recognition of a situation can be modeled as Situation Templates.
Therefore, the Situation Recognition System developed within this work does not
employ any learning techniques (e.g., machine learning) and neither relies on user
feedback to adapt the situation recognition.

Several situation recognition systems using CEP were proposed in [34, 35, 36]. Taylor
and Leidinger [34] propose the use of ontologies to specify and recognize complex
events, whose occurrence can be detected in digital messages streamed from multiple
sensor networks. The developed ontology is accessed through an user interface, where
the user specifies the events of interest. The specification of an event of interest is
then processed in order to generate configuration commands for a CEP system. The
CEP system monitors the specified data streams and generates notifications, which
can be delivered to clients when the event occurs [34]. In this master thesis, complex
events are not directly specified, but rather abstracted as situations. The approach in
this work also realizes transformations of the event specifications (i.e., the modeled
situations) into commands for a CEP system. The difference is that we use Situation
Templates to model situations of interest instead of an ontology. This enables not only
the employment of CEP systems but also other technologies for situation recognition.
An user interface for the modeling of situations of interest is part of future work (cf.
Section 7).

Hasan et al. [35] propose to use Complex Event Processing along with a dynamic
enrichment of sensor data in order to realize situation awareness. In this approach, the
situations of interest are directly defined in the CEP engine, i.e., the user formulates

60

the situations of interest using CEP query languages [35]. A dynamic enrichment
component processes and enriches the sensor data before the CEP engine evaluates
them against the situations of interest. This approach and the one in this master thesis
differ in following: No complex dynamic enrichment of the sensor data is done in this
master thesis. The necessary information about the sensor for the situation recognition
(e.g., the sensor identification) is kept at a minimum. This information together with
the sensor reading are made available directly to the CEP engine, dispensing any
further processing step of the sensor data. Furthermore, instead of defining situations
directly as CEP queries, which can be long and complicated depending of the situation,
this work defines the situations of interest as Situation Templates. The abstraction
provided through Situation Templates enables the employment of CEP engines as well
as the use of other technologies for the situation recognition. Besides that, the use of
Situation Templates also facilitates the modeling step of situations for the user, so that
the user does not have to deal with the complexity of formulating CEP queries. The
formulation of CEP queries is taken care of by mappings, which automatically create
the necessary CEP queries for a given Situation Template.

Glombiewski et al. [36] present the implementation of an event processing system
on top of JDBC! that enables standard database systems to provide event processing
functionality. Their approach for an event processing abstraction layer, called Java
Event Processing Connectivity (JEPC) [37], is currently implemented on top of different
event processing systems. JEPC provides an easy-to-use API and a powerful query
language, which are independent of the used event processing system [37]. It also
provides JEPC bridges to the different event processing systems, where the JEPC API
is mapped to the specific API of the underlying event processing system [37]. This
master thesis also provides an API, which is used to register and deregister situations
to be monitored. Though, this work models situations as Situation Templates. This
avoids dependency of any execution engine and therefore also avoids the direct use
of a query language. Similar to JEPC, we also realize mappings for the underlying
event processing system (i.e., Esper [14]) where currently only one event processing
system is supported for the recognition of situations. The utilization of others event
processing systems (e.g., Siddhi [15], Odysseus [16], etc.) to execute the recognition
of situations is part of future work (cf. Section 7).

Finally, as explained in Section 1.1 — Problem Definition and Objectives, this works builds
upon the situation recognition service SitRS presented in [3], where relevant context
information collected by sensors is used to identify situations. Situation Templates
contain the sensors being monitored as well as the conditions that have to match

thttp://www.oracle.com/technetwork/java/javase/jdbc/index.html

61

6 Related Work

for a certain situation. This work mainly (i) increases the powerfulness of Situation
Templates, (ii) provides a sensor data push approach, (iii) implements mappings from
Situation Templates to CEP queries, and (iv) uses a CEP engine to execute the situation
recognition (cf. Section 4).

62

7 Summary and Outlook

This master thesis presents a Situation Recognition System that employs Complex Event
Processing (CEP) to recognize situations of interest based on sensor data. Because
this system employs CEP for the situation recognition, it can be used to recognize
many situations in parallel and is able to process a large amount of sensor data in
a continuous and timely fashion. The used approach specifies situations of interest
as Situation Templates. A Situation Template contains all necessary information to
recognize the modeled situation, where it contains: (i) the monitored sensors, and (ii)
the instructions of how sensor data should be processed to recognize the occurrence of
the situation, i.e., the conditions that should match for the situation to occur.

Within the scope of this master thesis, the powerfulness of Situation Templates is
increased in order to enable the modeling of more sophisticated situations. Besides
expressing conditions that compare sensor data with fixed predefined values, Situation
Templates are enhanced to (i) express conditions that should hold for a specific time
interval, (ii) model conditions that compare the data of two different sensors, and (iii)
formulate conditions that first aggregate the data of many sensors before the resulting
value is compared with any predefined value. Furthermore, this work presents a sensor
push approach so that sensor data is sent to the Situation Recognition System as soon
as this data is available. This approach avoids any pull requests from the Situation
Recognition System and avoids any caching of sensor data as well. Moreover, this
work analyzes three different CEP engines and chooses a CEP engine that can cope
with the enhanced powerfulness of Situation Templates. In order to finally execute the
situation recognition using CEP, this work develops mappings from Situation Templates
onto executable representations to be deployed into the chosen CEP engine. These
representations, called CEP queries, evaluate the sensor data sent to the CEP engine
and generate notifications when a CEP query matches, i.e., when a situation occurs.

The developed Situation Recognition System provides an API to register situations for
starting their recognition and to stop their monitoring as well. Upon the registration
of a situation, the corresponding Situation Template is automatically mapped onto
a CEP query, which is handed to the CEP engine and executed in order to recognize
the occurrence of the situation. In the developed prototype, the recognized situations

63

7 Summary and Outlook

are published to the situation-aware workflow management system SitOPT [8] by using
its situation model, which notifies the registered systems about occurring situations
and their changes. Furthermore, this work shows a possibility to use the Situation
Recognition System to send notifications to actuators, which can then properly react
when a situation occurs. The results of the Situation Recognition System show that the
employment of CEP for the situation recognition allows the recognition of situations in
a reasonable time. Furthermore, it is shown that the system is capable of monitoring
many situations in parallel inside a single runtime environment.

As future work, the Situation Recognition System should be provided as a cloud-based
service. A step in this direction is already taken by the proposed sensor data push
approach, which uses the IBM Bluemix IoT Service! to integrate things into the internet
and to make sensor data available to the Situation Recognition System automatically.

This work does not take into account the quality of sensor measurements, i.e., it does
not support the uncertainty in measurements that sensors generally have. This aspect
plays an important role in the quality of the recognized situations. Therefore, a future
work is to increase the quality of the recognized situations, by enabling conditions to
have a tolerance degree while evaluating the sensor values.

Currently, situations are modeled directly in the XML language. To facilitate the
modeling of situations, an user interface should be provided, where the user can create
a graphical representation of the situation. The Situation Template in XML can then
be extracted from this graphical representation. Such an user interface also facilitates
the understanding of modeled situations, since a visual representation is better to
comprehend than a textual representation. Furthermore, other CEP engines (e.g.,
Siddhi [15], Odysseus [16], etc.) should be supported besides the Esper engine.

Thttp://www.ibm.com/Bluemix

64

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Michael Eckert and Francois Bry. Complex event processing (cep). Informatik-
Spektrum, 32(2):163-167, 2009. (Cited on pages 6, 16, 17, 18, 23 and 24)

Opher Etzion and Peter Niblett. Event processing in action. Manning Publications
Co., 2010. (Cited on pages 6, 9, 15, 16, 17, 19 and 24)

Pascal Hirmer, Matthias Wieland, Holger Schwarz, Uwe Breitenbiicher, and
Frank Leymann. SitRS - A Situation Recognition Service Based on Modeling and
Executing Situation Templates . In Proceedings of the 9th Symposium and Summer
School On Service-Oriented Computing (SummerSOC), 2015. (Cited on pages 6,
10, 18, 19, 20, 21, 37, 57, 58, 59, 60 and 61)

Commission of The European Communities (2008). Future networks and the
internet. early challenges regarding the internet of things. COM (2008) 594. SEC
(2008) 2507, 2008. (Cited on page 9)

Luigi Atzori, Antonio lera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787-2805, 2010. (Cited on page 9)

Ovidiu Vermesan and Peter Friess. Internet of things: converging technologies for
smart environments and integrated ecosystems. River Publishers, 2013. (Cited on
pages 9, 15 and 17)

The complex event processing blog. http://www.thecepblog.com/. (Cited on
page 9)

Matthias Wieland, Holger Schwarz, Uwe Breitenbiicher, and Frank Leymann. To-
wards Situation-Aware Adaptive Workflows. In Proceedings of the 11th Workshop
on Context and Activity Modeling and Recognition (COMOREA) IEEE Conference
on Pervasive Computing (PerCom), 2015. (Cited on pages 10, 54, 55 and 64)

Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Harald
Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura, Mark
Harrison, M Eisenhauer, et al. Internet of things strategic research roadmap. O.

65

http://www.thecepblog.com/

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

66

Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, et al.,
Internet of Things: Global Technological and Societal Trends, 1:9-52, 2011. (Cited
on page 15)

Alejandro Buchmann and Boris Koldehofe. Complex event processing. it-
Information Technology Methoden und innovative Anwendungen der Informatik
und Informationstechnik, 51(5):241-242, 2009. (Cited on pages 16 and 17)

David C Luckham. Event processing for business: organizing the real-time enterprise.
John Wiley & Sons, 2011. (Cited on page 16)

David Luckham. The power of events, volume 204. Addison-Wesley Reading,
2002. (Cited on page 17)

Oliver Zweigle, Kai Haussermann, Uwe-Philipp Képpeler, and Paul Levi. Super-
vised learning algorithm for automatic adaption of situation templates using
uncertain data. In Proceedings of the 2nd International Conference on Interaction
Sciences: Information Technology, Culture and Human, pages 197-200. ACM,
2009. (Cited on pages 19 and 60)

EsperTech. Event processing with esper and nesper. http://www.espertech.com/
esper/, . (Cited on pages 23, 24, 27 and 61)

WSO2. Wso02 complex event processor. http://wso2.com/products/
complex-event-processor/, . (Cited on pages 23, 29, 30, 61 and 64)

The Odysseus Team. Odysseus - the event processing system. http://odysseus.
informatik.uni-oldenburg.de/. (Cited on pages 23, 30, 34, 61 and 64)

EsperTech. Esper reference. http://www.espertech.com/esper/release-5.3.0/
esper-reference/html/index.html, . (Cited on page 24)

WSO02. Siddhi complex event processing engine. https://github.com/wso2/
siddhi, . (Cited on page 27)

Sriskandarajah Suhothayan, Kasun Gajasinghe, Isuru Loku Narangoda, Subash
Chaturanga, Srinath Perera, and Vishaka Nanayakkara. Siddhi: A second look
at complex event processing architectures. In Proceedings of the 2011 ACM
workshop on Gateway computing environments, pages 43-50. ACM, 2011. (Cited
on pages 27, 30 and 35)

WSO02. Siddhiql guide 3.0. https://docs.wso2.com/display/CEP400/SiddhiQL+
Guide+3.0, . (Cited on page 30)

http://www.espertech.com/esper/
http://www.espertech.com/esper/
http://wso2.com/products/complex-event-processor/
http://wso2.com/products/complex-event-processor/
http://odysseus.informatik.uni-oldenburg.de/
http://odysseus.informatik.uni-oldenburg.de/
http://www.espertech.com/esper/release-5.3.0/esper-reference/html/index.html
http://www.espertech.com/esper/release-5.3.0/esper-reference/html/index.html
https://github.com/wso2/siddhi
https://github.com/wso2/siddhi
https://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0
https://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0

Bibliography

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

Gianpaolo Cugola and Alessandro Margara. Processing flows of information:
From data stream to complex event processing. ACM Computing Surveys (CSUR),
44(3):15, 2012. (Cited on pages 30 and 31)

Sase - language. http://avid.cs.umass.edu/sase/index.php?page=language.
(Cited on page 33)

Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):
114-131, 2003. (Cited on pages 41 and 42)

Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. Mgqtt-s - a pub-
lish/subscribe protocol for wireless sensor networks. In Communication systems
software and middleware and workshops, 2008. comsware 2008. 3rd international
conference on, pages 791-798. IEEE, 2008. (Cited on page 42)

Daniel Menasce et al. Qos issues in web services. Internet Computing, IEEE, 6(6):
72-75, 2002. (Cited on page 42)

Mqtt. http://mgtt.org/. (Cited on page 42)

Eben Upton and Gareth Halfacree. Raspberry Pi user guide. John Wiley & Sons,
2014. (Cited on page 43)

Anind K Dey. Understanding and using context. Personal and ubiquitous comput-
ing, 5(1):4-7, 2001. (Cited on page 59)

Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a better understanding of context and context-awareness.
In Handheld and ubiquitous computing, pages 304-307. Springer, 1999. (Cited
on page 59)

Judie Attard, Simon Scerri, Ismael Rivera, and Siegfried Handschuh. Ontology-
based situation recognition for context-aware systems. In Proceedings of the 9th
International Conference on Semantic Systems, pages 113-120. ACM, 2013. (Cited
on page 59)

Waltenegus Dargie, J Mendez, C Mobius, K Rybina, V Thost, A-Y Turhan, et al.
Situation recognition for service management systems using owl 2 reasoners. In
Pervasive Computing and Communications Workshops (PERCOM Workshops), 2013
IEEE International Conference on, pages 31-36. IEEE, 2013. (Cited on pages 59
and 60)

67

http://avid.cs.umass.edu/sase/index.php?page=language
http://mqtt.org/

Bibliography

[32]

Mieczyslaw M Kokar, Christopher J Matheus, and Kenneth Baclawski. Ontology-
based situation awareness. Information fusion, 10(1):83-98, 2009. (Cited on
page 60)

[33] Vivek K Singh, Mingyan Gao, and Ramesh Jain. Situation recognition: an

[34]

[35]

[36]

[37]

evolving problem for heterogeneous dynamic big multimedia data. In Proceedings
of the 20th ACM international conference on Multimedia, pages 1209-1218. ACM,
2012. (Cited on page 60)

Kerry Taylor and Lucas Leidinger. Ontology-driven complex event processing in
heterogeneous sensor networks. In The Semanic Web: Research and Applications,
pages 285-299. Springer, 2011. (Cited on page 60)

Souleiman Hasan, Edward Curry, Mauricio Banduk, and Sean O’Riain. Toward
situation awareness for the semantic sensor web: Complex event processing with
dynamic linked data enrichment. SSN, 839:69-81, 2011. (Cited on pages 60
and 61)

Nikolaus Glombiewski, Bastian Ho3bach, Andreas Morgen, Franz Ritter, and
Bernhard Seeger. Event processing on your own database. In BTW workshops,
pages 33-42, 2013. (Cited on pages 60 and 61)

University of Marburg Database Research Group. Jepc - java event processing con-
nectivity. http://dbs.mathematik.uni-marburg.de/research/projects/jepc/.
(Cited on page 61)

All links were last followed on November 26, 2015.

68

http://dbs.mathematik.uni-marburg.de/research/projects/jepc/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem Definition and Objectives
	1.2 Motivating Scenarios
	1.3 Structure of the Thesis

	2 Basic Concepts
	2.1 Internet of Things
	2.2 Complex Event Processing
	2.2.1 Example Applications

	2.3 Situation Templates

	3 Analysis – Complex Event Processing Engines
	3.1 Esper
	3.2 WSO2 Siddhi
	3.3 Odysseus
	3.4 Evaluation

	4 Situation Recognition based on CEP
	4.1 Situation Template Adaptation
	4.2 Sensor Data Provisioning
	4.2.1 Collecting Sensor Data
	4.2.2 Sending Events to the Situation Recognition System
	4.2.3 Receiving Events at the Situation Recognition System

	4.3 Situation Template Transformation
	4.4 Situation Recognition

	5 Evaluation
	6 Related Work
	7 Summary and Outlook
	Bibliography

