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Abstract
The development of a FEM structure solver for a coupled fluid-structure simulation
is presented in this thesis. Different aspects were created to evaluate existing FEM
libraries. The libMesh framework was considered to be best suitable and was used in
the development of the program. Two different element types of flat shell elements were
implemented, a three-node triangular and a four-node quadrilateral element. The shell
elements were constructed by the superposition of plane and plate elements. For both,
different existing models were considered. The developed program exists in two versions,
one coupled version to be used in multi-physics simulations and a stand-alone version
whose purpose was to validate the implemented finite element models. Every version
is capable of being executed in parallel with MPI. The coupling environment preCICE
is interfaced in the coupled program version. The validation of the elements showed
good accuracy for the plane element components compared to analytical solutions as
well as commercially available software. The plate element’s accuracy is lower compared
to the plane elements due to the chosen models that have a simpler approximation of
the physical circumstances. The superimposed shell element’s accuracy is well suited
to be used in the structure solver. For both implemented element types, the accuracy
can be increased by further subdividing the mesh structure. The parallelization test
showed a good scaling with the number of processes for the assembly of the system’s
matrix and right-hand side as well as for the solving step. In one coupling test, a fluid-
structure interaction between the developed program and an external fluid solver was
tested. The coupling via preCICE was successful. The developed structure solver showed
good performance in the simulation and is qualified for further multi-physics simulations
connected through preCICE.
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Kurzfassung
In dieser Arbeit wird die Entwicklung eines FEM Strukturlösers zur Kopplung in einer
Fluid-Struktur Simulation präsentiert. Verschiedene Aspekte wurden bei der Evaluierung
bestehender FEM Bibliotheken berücksichtigt. Das libMesh-Framework wurde dabei als
das am besten geeignetste angesehen. Zwei verschiedene Typen von ebenen Schalenele-
menten wurden implementiert; ein Dreieckselement bestehend aus drei Knoten und ein
Viereckselement mit vier Knoten. Die Schalenelemente entstanden durch die Über-
lagerung von Scheiben- und Plattenelementen. Für diese wurden bestehende Modelle
berücksichtigt. Das entwickelte Programm existiert in zwei unterschiedlichen Versio-
nen: einer gekoppelten Version, die in Multiphysik-Simulationen zum Einsatz kommen
kann und einer eigenständigen Version, die zur Validierung der implementierten finite
Element Modelle benutzt wurde. Beide Programmversionen sind mittels MPI paral-
lel ausführbar. Das Kopplungswerkzeug preCICE wird von der gekoppelten Program-
mversion angesprochen. Die Validierung der Elemente zeigte eine hohe Genauigkeit
bei Schalenelementen im Vergleich zu analytischen Lösungen, sowie zu kommerziell er-
hältlicher Software. Die Genauigkeit der Plattenelemente is geringer verglichen mit den
Scheibenelemente, was auf die gewählten Modelle zurückzuführen ist, die die physikalis-
chen Gegebenheiten etwas einfacher approximieren. Die Genauigkeit der Schalenele-
mente is so gut, dass sie sich für den Einsatz im Strukturlöser eignen. Eine Verfeinerung
des Strukturgitters hat für beide implementierten Elementtypen eine Erhöhung der
Genauigkeit zur Folge. Der Test der Parallelisierung zeigte gutes Skalieren mit der
Anzahl Prozesse in Bezug auf das Aufstellen der Systemmatrix und rechten Seite, sowie
das Lösen des Systems. In einem der Kopplungs-Tests wurde eine Fluid-Struktur Inter-
aktion zwischen dem entwickelten Programm und einem externen Fluid-Löser simuliert.
Die Kopplung mit Hilfe von preCICE was erfolgreich: Der entwickelte Löser zeigte gute
Resultate und eignet sich für den weiteren Einsatz in Multiphysik-Simulationen gekop-
pelt durch preCICE.
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1 Introduction

The finite element method (FEM) is a method for finding numerical approximate so-
lutions to field problems for partial differential equations [CMPW02]. It partitions the
whole problem domain into small parts, called finite elements, distinguishing them from
infinitesimal elements used in calculus. Since the spatial variation of each element is
described in simpler form, for example by polynomial terms, FEM only provides an
approximate solution. Despite the fact of inexact solutions by FEM, it is applicable to
many fields in practice: Fluid dynamics, heat transfer, stress analysis or magnetic fields,
for instance. The analyzed structure is not limited to any shape and by refining the
mesh, the approximation can be improved easily. Therefore, FEM is widely used in fluid
and structure simulations [CMPW02].
While simulations of fluids and structures for their own are present for many decades,

fluid-structure interactions (FSI) are much younger due to the computational complexity
when combining both physical fields in one simulation [Gat15]. Nowadays, FSI simula-
tions are not the only examples of multi-physics simulations: Fluid-structure-acoustics
([LKBD09], [SMU�10]) even combine three physical fields in one simulation. When
dealing with multi-physics problems one has two options: One can hold all parts of
the problem together in one application code, independent from other computing ap-
plications. This is also called the monolithic approach [Gat15]. The other option is to
break the problem apart into smaller pieces that can be better managed in development
and recombine them to a coupled solution. This is denoted as loose coupling or parti-
tioned approach [LCY�06]. The challenge of the second option is to preserve stability
of the simulation. The benefits on the other hand, are the possibilities to reuse existing
code and to encapsulate the solver codes from each other and the coupling functionality.
With preCICE, a coupling tool was introduced by [Gat15] that eases the combination of
multiple different solver codes into one simulation, following the idea of the partitioned
approach. It is used in this thesis to realize the coupling with other fluid solvers.

The goal of this work is to develop a structure solver with FEM that is applicable
to a multi-physics simulations like a fluid-structure coupling. The program uses a FEM
library, which provides data structures and functionalities to support programming parts
like the initialization, setup and solving of the system. In order to find a suitable frame-
work, an evaluation based on many aspects is performed on different FEM frameworks
in the thesis.
The solver works on two-dimensional meshes consisting of triangular and quadrilateral

elements. Within the scope of this thesis flat shell elements are implemented. A flat
shell element can be constructed by superimposing a plane and a plate element. For this
reason, six finite element models are implemented: One plane, plate and shell element
sharing a three-node triangular finite element approach, the others sharing a four-node
quadrilateral finite element approach. The triangular and quadrilateral plane element is
implemented based on the model description from [Ste15]. The triangular plate element
is based on a model from [Spe88], while the quadrilateral plate elements implements
the Discrete Kirchhoff Quadrilateral (DKQ) element introduced by [ZT00]. Both plate
elements belong to the group of models sharing the thin-plate theory of Kirchhoff [Ste15].
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The shell elements are then constructed by superimposing the corresponding plane and
plate elements and the adding a sixth degree of freedom for the twist in z-direction, that
cannot be modeled with the plane and plate elements implemented in this thesis.

The implementation of the FEM-code gets illustrated in detail, including practical
examples of features of the FEM framework that was chosen in the evaluation. The pro-
gram is parallelized with the help of MPI, while the preCICE API is integrated to make
it applicable for multi-physics coupling simulations. A validation of the implemented
models as well as the parallelization demonstrate the correctness and accuracy of the
implementation and benefits from parallel execution. The coupling through preCICE is
tested in two additional tests. One of the tests is a fluid-structure interaction, where a
beam is put into the cross-flow of a channel. For this, the thesis’ program is coupled
with an external fluid solver.

1.1 Organization
The thesis is made up of seven chapters including the introduction. A detailed list of
aspects used to evaluate several FEM frameworks is presented in Chapter 2, along with
short outlines of the surveyed libraries and a motivation of the chosen library. Chap-
ter 3 contains the mathematical derivations of the shell elements. After a motivation of
linear elastic problems, first the plane element in its triangular and quadrilateral form is
described, followed by the plate elements. Before the construction of the shell elements,
a section about coordinate transformation is presented. Chapter 4 describes details on
the implementation process of the FEM code. First, an introduction to libMesh is shown.
The remainder of this chapter describes the single parts of the code, like the mesh file
import or the system matrix assembly, as well as the parallelization of the program with
MPI. In Chapter 5 the coupling via preCICE is presented. An overview of preCICE is
given and details on the coupling with it is described, including the different coupling
methods, data mappings and communication methods it provides. The integration of
preCICE into the existing structure solver code closes this chapter. Chapter 6 contains
many example problems with the help of which the shell elements and its components
get validated. Also, the parallelization and the coupling is tested in this chapter. Chap-
ter 7 presents a summary and a discussion of the results and gives suggestions for future
development.

10



2 Framework Evaluation
Part of the thesis was to analyze several frameworks which ease the work with the finite
element method. An evaluation of frameworks was done to select a suitable one for the
given task. The evaluation’s criteria are presented in this chapter together with a short
description of the studied frameworks and a motivation for the library that were finally
chosen.

2.1 General Aspects
In preparation of evaluating the frameworks many criteria were created in order to find
the most suitable library. The individual aspects are as follows:

• Open-Source: All frameworks under consideration need to be published under a
free license that allows modification and redistribution. The implemented program
should be used by anyone without requiring to purchase additional commercial
software.

• Parallelization: Due to the need of accelerating calculations, the framework has to
support an implementation of the widely used Message Passing Interface (MPI).
The library should be able to use MPI internally for its own functions and proce-
dures, but also support the developer with auxiliary functions for communicating
framework-related data.

• The programming language was chosen to be C++. This aspect is subjective and
due to the individual experience of the author that is larger than, for example,
with Python. It is not required that the framework is internally written in C++,
but if not, it must provide an interface to C++ to work with.

• Mesh file import: Since the program should be able to work with complex geome-
tries, the definition of such a mesh cannot be done in source code. Therefore, the
library should provide the possibility to import meshes from file. The file must
contain definitions of the node positions as well as the topology of the elements.
Additionally, boundary conditions must be definable through identifiers at nodes
or edges. No specific mesh file format is prescribed, as long as it supports the
addressed requirements. A framework proprietary format would also be possible
if it is simply reproducible.

• Linked to the previous aspect is the variety of different finite element types the
library has to provide. The current program version uses triangles and quadrilat-
erals with three and four nodes, respectively. To be able to expand the program’s
functionality in the future, the library should support elements like six-node tri-
angles, nine-node quadrilaterals or three dimensional elements like tetrahedra and
hexahedra.

• Built-in solvers: The framework must provide a variety of different iterative solvers
that can be interchanged at runtime by the user, or at least easily in the source
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code. Thus, the user has a higher flexibility when optimizing a problem or com-
paring different solvers in order to find the best for his or her problem. In the
context of a structure solver for linear elastic problems the focus is especially on
the group of linear iterative solvers.

• Accessible and detailed documentation: In order to guarantee maintainability and
expandability, the framework has to offer a good documentation. This includes
a complete documentation of every class and function that is actively growing
with the library itself. Additional documented example codes help the developer
learning how to use the library correctly and efficiently. If problems with the
framework occur, the developer should be able to get in contact with the framework
developers via mailing lists or forums.

• Up-to-date: The framework should be well maintained and actively supported by
its developers to ensure a long term compatibility with new features of the program
code.

• The framework should be used by at least a few projects or has been part of
publications. This shows the framework’s importance and usability.

• Easy to learn syntax and structure: A rather subjective aspect, not less important.
The developer should be able to concentrate more on the mathematical/physical
problems and less on programming details. This accompanies the choice of the
programming language as well as the documentation aspect.

2.2 Frameworks Overview

The following list contains the FEM libraries which were evaluated in detail.

2.2.1 Feel++

Feel++ stands for “Finite Element Embedded Language in C++” and is a unified frame-
work for finite and spectral Galerkin methods in 1D, 2D and 3D to solve partial differ-
ential equations [PCD�12]. It was created in 2005 and is still actively maintained with
daily commits and the last release version from February, 2015. One main aspect of
Feel++ is to have syntax, semantics and pragmatics close to the mathematics. It allows
creation of versatile mathematical kernels for testing and comparing different techniques
and methods in solving problems. A second aim is to have a small library that is well
manageable but makes use of established libraries wherever possible, for example to solve
linear systems. It interfaces seamlessly with MPI simplifying the thesis’ program paral-
lelization. Different mesh file formats are available for import, like the GMSH format and
a collection of different finite element types are supported. It is currently used in projects
at Cemosis (Center for Modeling and Simulation in Strasbourg, France) including fluid
structure interactions, high field magnets simulation and optical tomography [Con].
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2.2.2 OOFEM

The “Object Oriented Finite Element Method” framework is a multi-physics finite el-
ement code with object oriented architecture [PB01]. The aim of it, is to provide an
efficient and robust tool for FEM computations as well as to offer highly modular and
extensible environment for development [Pat09]; extensible in terms of new element
types, boundary conditions or numerical algorithms that can be created by the user.
OOFEM focuses on efficient and robust solutions to mechanical, transport and fluid
problems providing corresponding modules for it. It is written in C++ with focus on
high portability between platforms and interfaces various external software libraries like
PETSc [BAA�15b], ParMETIS [KK98], and ParaView [AGL05]. The last stable release
was published on February, 2014 but it is still actively developed. The framework is
used in several publications [Pat].

2.2.3 GetFEM++

GetFEM++ [PR] is a generic finite element C++ library. It aims at providing finite
element method and elementary matrix computations for solving (non-)linear problems
numerically. The user describes a model by gathering the variables, data and terms of a
problem and some predefined building blocks representing classical models. It allows easy
switching from one method to another due to separation of geometric transformation or
integration methods, for instance. It uses MPI for parallelization, though it is stated
that “a certain number of procedures are still remaining sequential” [SPR] at the time
this thesis were created. While the framework is implemented in C++, it provides
interfaces to languages like Python and Matlab. Thus, the framework can be handled
by scripts written in non-C++ languages. The latest release is dated from July, 2015
with daily commits from the developers. GetFEM++ is used in project like IceTools [Jar]
(open source model for glaciers), EChem++ [BLSS] (Problem Solving Environment for
Electrochemistry) and SimNIBS [Thi] (software for Simulation of Non-invasive Brain
Stimulation) and is part of some publications [PR].

2.2.4 MFEM

The “Modular Finite Element Method” library acts as a toolbox that provides the build-
ing blocks for developing finite element algorithms. MFEM aims to enable research and
development of scalable finite element discretization and solver algorithms through gen-
eral finite element abstractions. It has a wide variety of 2D and 3D finite element types,
for example triangular and quadrilateral 2D elements, curved boundary elements or
topologically periodic meshes. In addition to Galerkin methods, MFEM supports mixed
finite elements, discontinuous Galerkin (DG) methods, or isogeometric analysis meth-
ods, to name such a few. The framework supports MPI-based parallelism throughout
the library with minimal changes to the code in order to parallelize the serial code. A
variety of linear and non-linear solvers are available, including PCG, MINRES and GM-
RES, serial and parallel smoothers and high-performance preconditioners from the hypre
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library [FY02], for instance [MFEa]. The latest release of MFEM is dated January, 2015
and is still under active development. The library is used in several publications [MFEb].

2.2.5 libMesh

The libMesh library provides a framework for the numerical simulation of partial dif-
ferential equations using arbitrary unstructured discretizations on serial and parallel
platforms. A major goal of the library is to provide support for adaptive mesh refine-
ment (AMR) computations in parallel while allowing research scientists to focus on the
physics they are modeling. It makes use of existing software whenever possible. PETSc
can be used for the solution of linear systems on both serial and parallel platforms, and
LASPack [LAS] is included with the library to provide linear solver support on serial
machines, for instance. LibMesh supports a variety of 1D, 2D, and 3D geometric and fi-
nite element types and seamlessly integrates parallel functionality with MPI throughout
the whole library [KPSC06]. The framework is actively developed with daily commits
and the latest release is dated from February, 2015. It is part of many publications [lib].

2.3 Conclusion

In Table 1 the evaluation of the frameworks is summarized. All analyzed libraries had
C++ as programming language and an open-source code in common. The differences
are denoted by the rating symbols in the table. All libraries provide parallelism, but

Feel++ OOFEM GetFEM++ MFEM libMesh
Parallelism o+ o o + +

Finite Elements o + + o +
Mesh Import o - o + +

Solver + + + + +
Documentation o+ o o o+ +

Actuality + -o + + +
Usage o - o + o

Learning curve / / / o +

Table 1: Comparison of the different FEM frameworks. The qualification of the frame-
work for the corresponding requirement is denoted by symbols, at which “–”
means not suitable, “o” means limited suitable and “+” means well suitable.
The “/” symbol denotes that this requirement was not tested with the according
framework.

especially MFEM and libMesh seem to have MPI integrated into themselves stronger
than the other tested frameworks. Regarding the variety of finite element models, all
frameworks provides at least the three-node triangular and four-node quadrilateral ele-
ment. The libMesh and GetFEM++ library offers a larger collection of elements than
the others, which is better for future extensions of the thesis’ program. The range of
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mesh file formats is high across the libraries: libMesh provides more than ten differ-
ent formats for import and export while OOFEM only supports a proprietary format
for input (to the authors knowledge), although there exist converters to bring specific
external formats into OOFEM format. All FEM frameworks offer the required linear
implicit solver type and all provide a variety of other solvers around it. All libraries
provides a documentation of their classes and functions. LibMesh and MFEM offers a
large collection of example codes and tutorials, which helps getting into the work with
the framework. Except for OOFEM, all frameworks have relatively recent major releases
and all are still actively developed. This includes bug-fixing, maintaining the documen-
tation and adding new features. The ongoing usage of the single frameworks can hardly
be examined as most of the frameworks are used in theses and other publications, where
it is not observable if it is still in use in the particular projects. Feel++ is currently used
in projects hosted by the Center for Modeling and Simulation in Strasbourg (Cemosis),
while MFEM is currently used in projects from the Lawrence Livermore National Lab-
oratory in Livermore, California. The last aspect – the learning curve – could only be
tested by working with the libraries. Due to the evaluation results of the other aspects,
two libraries were selected to be examined further: MFEM and libMesh.
LibMesh was chosen to be the most suitable framework for this thesis. Its seamlessly

integration of MPI reduces the effort of parallelization for the user, the required finite
element types are supported and a range of many more are available for future expan-
sions of the program’s code. Complex geometries can be defined in several different mesh
formats as well as in a simple libMesh particular format. The integration of external
libraries like PETSc gives a high flexibility for users to change solvers and/or precon-
ditioners at runtime. The library’s classes and functions are well documented and a
large collection of example codes are available. It is actively maintained by fixing bugs
and adding more features. Although the structure and components of the framework
are intuitive to understand guided by the documentation, support by the developers is
provided via mailing lists.
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3 Shell Elements
Shell elements are used when structures need to be modeled where plane stresses as
well as bending stresses are present. Different types of shell elements are available,
including curved shell elements, shells of revolution, generalized shells or flat shell ele-
ments [CMPW02]. The flat shell elements are subject of this work. Such an element
can be constructed by the superposition of a plane and a plate element. This section
contains the fundamentals of linear elastic problems - the field of application for the shell
element - as well as the mathematical derivation of the plane and plate element, their
combination resulting in the shell element and the necessary coordinate transformation
that is needed for the implementation.

3.1 Introduction to Linear Elastic Problems
In the following the fundamental equations of linear elasticity will be considered. Here,
the spatial case is used for demonstration, but every lower dimensional problem can
easily be derived from it. The following definitions will be used in this thesis:

~u �
�
u v w

�T displacement vector (1)
~f �

�
fx fy fz

�T external force vector (2)

The strains and stresses can either be described in form of tensors ε and σ, or as vectors
~ε and ~σ:

ε �

�
�εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

�

 (3)

σ �

�
�σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

�

 (4)

~ε �
�
εxx εyy εzz 2εxy 2εyz 2εzx

�T (5)

~σ �
�
σxx σyy σzz σxy σyz σzx

�T (6)

In the case of isotropic materials the strains and stresses are symmetrical, i.e. εxy �
εyx, εxz � εzx, εyz � εzy and σxy � σyx, σxz � σzx, σyz � σzy. As stated in [Ste15], the
relation between displacements and strains is as follows:

ε �
1
2 p∇~u� ~u∇q (7)

~ε � L~u

Equation (7) relates the displacement vector field ~u with the strain field ε, or ~ε respec-
tively. Here, L is a differential operator. This strain-displacement relation is also called
kinematic relationship [Ste15].
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In general, initial strains can exist inside the material, for example due to temperature
changes or shrinkage. Such initial strains are denoted by ~ε0 and the stresses will be
influenced by the difference between the current and initial strains. Additionally, one
can imagine initial residual stresses ~σ0 that can be added to the general equation:

~σ � D p~ε� ~ε0q � ~σ0 (8)

where D is the material matrix. In the simplest case of linear elasticity with isotropy,
D only contains of two parameters, namely the elastic modulus E (also known as the
Young’s modulus) and the Poisson’s ratio ν. The former one defines the relationship
between the stress and strain in a material, the latter one results as the quotient of the
fraction of expansion and the fraction of compression for small changes.
In the following the initial conditions are excluded, resulting in the a simpler form of

equation (8):
~σ � D ~ε (9)

For the said isotropic case, D results in [ZT00]:

D �
E

1� ν2

�
�1 ν 0
ν 1 0
0 0 1�ν

2

�

 (10)

The equilibrium conditions as described in [Ste15], are as follows:

L~σ �~b � ~0 (11)

where the vector ~b describes internal volume forces and ~0 is the zero vector.
Two different boundary conditions are distinguished: Essential and natural bound-

ary conditions. The first one is geometrically described. An initial displacement ~u0 is
impressed on a surface part Ωu of the object:

~u � ~u0 on Ωu (12)

The natural boundary conditions are represented by force conditions. They can be
described as follows:

n~σ � ~p0 on Ωp (13)

where the matrix n contains entries of the object boundary’s normal vector, ~p0 described
the edge stress and ~σ is the stress vector:

~n �

�
�nxny
nz

�

 (14)

n �

�
�nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx

�

 (15)
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In [Ste15] the principle of the total potential for the fundamental equations of linear
elasticity is illustrated. Initial point is the weak formulation of the equilibrium conditions
(11) for a body V : »

V

�
L~σ �~b

	
~λ dV � 0 (16)

The introduction of Lagrange multipliers ~λ lead to a weighting and can be expressed as
variation of δ~u � ~λ. The result of the derivation of the above equation is the expression
of the total potential Π:

Π �
1
2

»
V
~σT~ε dV �

�»
V

~bT~u dV �

»
Ωp

~p0T~u dΩp

�
� ΠD �Πe (17)

The first term describes the elastic deformation energy ΠD, the two terms in brackets
combine the potential of the external forces Πe

3.2 Plane Element
Plane elements are characterized by that loads are only applied in mid-surface directions
of an element and all displacements, strains and stresses happen in the mid-surface, too.
In this section plane elements are discussed in more detail and two different element
types, a three-node triangular element and a four-node quadrilateral element, are de-
scribed.

3.2.1 Problem Definition

x

y

z

l

t

cover-surfaces

mid-surface

Figure 1: Schematic view of a plane object with main dimension l and thickness t. The
two cover-surfaces are located at z � � t

2 , the mid-surface at z � 0.

In Figure 1 an object is shown which extends to the x and y axis as its primary
direction. The extend in z-direction is smaller and denoted by thickness t. The mid-
surface located in between the top and bottom surface areas has the coordinate z � 0.
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Its local z-axis equals the normal vector of the mid place. In the following, such an
object is called plane.

There are two different formulations regarding plane elements: Plane stress and plane
strain. The directions of displacements u and v along the orthogonal local x and y
axis defining its displacement field is a common feature of both problems. Also, both
have in common, that only strains and stresses in the xy-plane have to be considered:
Instead of nine, only three components remain. While in the case of plane stress all other
stress components are zero, in plane strain the stress in direction perpendicular to the
xy-plane is non-zero. In this thesis only plane stress will be discussed in further detail.
More information about plane strain is given in [ZT00] and [Bra07], for instance. The
following conditions must be satisfied, such that a plane can be in plane stress [Ste15]:

• The thickness t varies only slightly and it must hold: t{l ! 1, with l the extent of
the larger side of the plane element.

• The load is applied to the mid-surface.

• Displacements, strains and stresses are constant across the thickness.

The stress components σxz, σyz, σzz normal to the surface areas with z � t{2 vanish
(equals zero). Therefore only the two normal stress components σxx and σyy and the
transverse stress component σxy are left non-zero.

Displacements can only occur in x and y direction. u will be the displacement along
x and v along y. The displacement field ~u is as follows:

~u �
�
upx, yq vpx, yq

�T (18)

The vector for the strain components:

~ε �
�
εxx εyy 2εxy

�T (19)

Sometimes 2εxy is shortened to γxy [Ste15]. The vector holding the stress components
is similar to that of the strain vector:

~σ �
�
σxx σyy σxy

�T (20)

The kinematic relationship ~ε � L~u (eq. (7)) linking the displacements ~u with the strains
~ε can be written at full length:

~ε �

�
� εxx
εyy
2εxy

�

�

�
��

Bu
BxBv
By

Bu
By �

Bv
Bx

�
�
�

�
��

B
Bx 0
0 B

By
B
By

B
Bx

�
�
�u

v



� L~u (21)

With the strains known and considering equation (7), one can calculate the stresses ~σ:

~σ �

�
�σxxσyy
σxy

�

� E

1� ν2

�
�1 ν 0
ν 1 0
0 0 1�ν

2

�


�
� εxx
εyy
2εxy

�

� D~ε � D L~u (22)
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After Steinke [Ste15], the essential boundary conditions ~u � ~u0 and the natural bound-
ary conditions t n ~σ � ~q0 will be applied onto the objects boundary Γ, with t being the
object’s thickness and ~q0 representing an edge load. The matrix n looks as follows [Ste15]:

n �

�
nx 0 ny
0 ny nx



(23)

Beside line loads, nodal forces ~F �
�
Fx Fy

�T are also possible.
The total potential of the plane element problem looks as follows [Ste15]:

Π �
1
2

»
V
~εT~σdV �

»
V
~uT~b dV �

»
Γq

~uT ~q dγ � ~uT ~F (24)

The first term describes the elastic strain energy, the last three terms describe the
different external forces. The first of the three describes the potential of the volume
forces ~bT � ρ

�
gx gy

�
, where ρ is the object’s density and gx, gy represents accelerations

in the two directions. The second term stands for the line load along an edge Γq and
the last term contains the single nodal forces.
The external forces are summarized in this work to the last term only. Line loads and

volume forces can be converted to nodal load, assuming a linear distribution over the
edges and the interior of the element, respectively [Ste15]. Therefore, the total potential
of the plane element shrinks to the following:

Π �
1
2

»
V
~εT~σdV � ~uT ~F (25)

3.2.2 Tri-3 Plane Element

In Section 3.2.1 the plane element’s functional was derived (eq. (25)). Now, the focus
is on the functional discretization. The constructed finite element will be a three-node
triangular element in the following also denoted as Tri-3. Figure 2 shows a general,
planar object defined to be placed in the xy-plane. The first discretization step is to
divide the object into single triangles approximating the shape of it. This process is
called triangulation. Every one of these triangles then represents a finite element with
one node at every corner. The finer the triangulation is done the better the object and
its boundary are matched by its discrete complement, but also the more finite elements
have to be considered in later calculations.
One triangular finite element is shown in Figure 3. It is defined by the coordinates

pxi, yiq of its three nodes. Since the element is located in the xy-plane, the z-coordinate is
of no interest and will be ignored. At every node, forces can be applied denoted with Fxi

and Fyi . Accordingly, every node can be displaced. The movement along the x-axis is
denoted with ui and with vi along the y-axis, respectively. Note, that the node numbering
is in anti-clockwise direction. This convention will be kept throughout the thesis, and
is important when implementing the FEM code. In this thesis only triangles defined by
three nodes are discussed. There are many more finite elements forming triangles, such
as six-node triangles or even seven-node triangles. The main difference between these
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x

y

object boundary

triangular element

1

2

3

4

5
6

7

8

Figure 2: A plane object is partitioned into several triangular elements. This process is
called triangulation.

x

y

1

2

3

x1

y1
x2

y2

x3

y3

u1

v1

Fx2

Fy2

Figure 3: A three-node triangular element is shown with its coordinates projected onto
the axes. For the first node its nodal displacements and for the second node
its nodal forces are exemplarily illustrated.
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types of elements are the order of shape functions. More details about higher order
triangular finite elements can be found in [ZT00], [BF85], [CMPW02], [Bra07].
In the case of a three-node triangle the test functions for the two displacements u and

v are the same and thus u and v can be replaced by an arbitrary function ψ[Ste15]:

ψpx, yq � a0 � a1L1 � a2L2 �
�
1 L1 L2

���a0
a1
a2

�

� ~xT~a (26)

defined in triangular coordinates (see Figure 4).

x

y

1

2
3

P

L2
L2 � 1

L1L1 � 1

L3
L3 � 1

L3 � 0
L2 � 0

L1 � 0

Figure 4: Triangular coordinates L1, L2, L3 and sampling point P within a triangular
element. The nodes and edges represent special cases of triangular coordinates.

To get the unknown coefficients ai, values for the triangular coordinates are set. This
creates a system of linear equations:

ψpL1 � 1, L2 � 0q � ψ1 Ñ ψ1 � a0 � a1

ψpL1 � 0, L2 � 1q � ψ2 Ñ ψ2 � a0 � a2

ψpL1 � 0, L2 � 0q � ψ3 Ñ ψ3 � a0 (27)

Written as matrix and vector:

A~a � ~ψ�
�1 1 0

1 0 1
1 0 0

�


�
�a0
a1
a2

�

�

�
�ψ1
ψ2
ψ3

�

 (28)

With the inverting of matrix A, the coefficients can be found:

~a � A�1 ~ψ �

�
�0 0 1

1 0 �1
0 1 �1

�


�
�ψ1
ψ2
ψ3

�

 (29)
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If one puts equation (29) into (26), the shape functions for the three-node triangular
finite element will be derived:

u � ~xT~a � ~xTA�1~u � ~NT~u

~NT � ~xTA�1 �
�
1 L1 L2

���0 0 1
1 0 �1
0 1 �1

�



�
�
L1 L2 1� L1 � L2

�
�
�
N1 N2 N3

�
(30)

Characteristically for a shape function Ni is that it evaluates to 1 at node i and to 0 at
the two other nodes, as stated in [Ste15]. The functions are linear with respect to L1 and
L2 which can be seen in equation (30). As stated before, these shape functions are the
same for displacement u and v. With the knowledge of the displacement values of the
element’s nodes, one can formulate the displacement functions in triangular coordinate
notation as follows:

u � N1u1 �N2u2 �N3u3

v � N1v1 �N2v2 �N3v3 (31)

Or in matrix form:

~̃u � N~u

�
u
v



�

�
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3



�
�������

u1
v1
u2
v2
u3
v3

�
������


(32)

The vector ~̃u describes the element’s displacements as product of matrix N containing
the shape functions and vector ~u containing the displacements of the single triangle’s
nodes. Now, one can put equation (32) into (21):

~ε � L~̃u � L N~u � B~u (33)

The product of L and N is called strain-displacement matrix B. In order to calculate
the strain-displacement matrix, one has to assemble the L matrix containing the first
partial derivatives of the triangular element. With the chain rule applied, the partial
derivatives look as follows:

B

BL1
�

Bx

BL1

B

Bx
�

By

BL1

B

By
B

BL2
�

Bx

BL2

B

Bx
�

By

BL2

B

By
(34)
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or shortened in matrix and vector notation:

∇̃ � J∇�
B

BL1B
BL2

�
�

�
Bx
BL1

By
BL1Bx

BL2
By
BL2

�� B
BxB
By



, (35)

where J represents the Jacobian matrix, ∇ the partial derivatives in Cartesian coordi-
nates and ∇̃ the partial derivatives in triangular coordinates. To get the derivatives in
Cartesian form, the upper equation must be multiplied with the inverse Jacobian matrix
J�1:

J�1 �
1
|J |

� By
BL2

� By
BL1�Bx

BL2
Bx
BL1

�
(36)

where |J | denotes the determinant of the Jacobian matrix. The conversion between trian-
gular and Cartesian coordinates can be summarized as follows (see Figure 4 and [Ste15]):

L1 � L2 � L3 � 1 Ñ L3 � 1� L1 � L2

x � x1L1 � x2L2 � x3L3 � px1 � x3qL1 � px2 � x3qL2� x3 (37)
y � y1L1 � y2L2 � y3L3 � py1 � y3qL1 � py2 � y3qL2� y3

Considering equation (37) the Jacobian matrix can now be calculated:

J �

�
Bx
BL1

� x1 � x3 � x13
By
BL1

� y1 � y3 � y13
Bx
BL2

� x2 � x3 � x23
By
BL2

� y2 � y3 � y23

�
�

�
x13 y13
x23 y23



(38)

and hence the inverse Jacobian matrix:

J�1 �
1

2A4

�
y23 �y13
�x23 x13



(39)

The determinant of the Jacobian matrix is two times the area of the triangle. With the
help of equation (39), (35) can be reorganized:

∇ � J�1∇̃ (40)

and this finally yields the new version of the differential operator L [Ste15]:

L �
1

2A4

�
�� y23

B
BL1

� y13
B

BL2
0

0 �x23
B

BL1
� x13

B
BL2

�x23
B

BL1
� x13

B
BL2

y23
B

BL1
� y13

B
BL2

�
�
 (41)

25



Next, the strain-displacement matrix B can be calculated:

B � L N

�
1

2A4

�
�� y23

B
BL1

� y13
B

BL2
0

0 �x23
B

BL1
� x13

B
BL2

�x23
B

BL1
� x13

B
BL2

y23
B

BL1
� y13

B
BL2

�
�


�
L1 0 L2 0 1� L1 � L2 0
0 L1 0 L2 0 1� L1 � L2




�
1

2A4

�
� y23 0 �y13 0 y12 0

0 �x23 0 x13 0 �x12
�x23 y23 x13 �y13 �x12 y12

�

 (42)

With B known, one can insert equation (33) into (22) to get the stresses:

~σ � D B~u (43)

Finally, every term of the plane element’s functional (25) can be filled with the above
discretized terms:

Π �
1
2

»
V
~εT~σ dV � ~uT ~F

�
1
2

»
V
~uTBTD B~u dV � ~uT ~F

�
1
2~u

T

»
V
BTD B dV ~u� ~uT ~F

�
1
2~u

TK~u� ~uT ~F (44)

with K denoting the stiffness matrix and ~F the nodal force vector.
The variation of the functional (44) is as follows [Ste15]:

δΠ �
BΠ
B~u
δ~u � 0

�
1
2δ~u

T B~u
T

B~uT
K~u�

1
2~u

TK
B~u

B~u
δ~u� δ~u

B~uT

B~uT
~F

� δ~uT
�
K~u� ~F

	
� 0 (45)

In order to satisfy this equation, the term in between the parenthesis must be zero (δ~uT
can have arbitrary values). This leads to the equilibrium equation of the triangular plane
element as described in [Ste15]:

K~u � ~F (46)
Since the thickness t of the element is assumed to be constant, it holds dV � t dA and
therefore the integral of the stiffness matrix changes to:

K � t

»
A
BTD B dA � tA4B

TD B (47)
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3.2.3 Quad-4 Plane Element

It is sometimes beneficial to use quadrilateral elements when describing certain detailed
parts of a mesh or just to use less elements to describe a plane area. In contrast to
triangles which always lie, due to their simple shape, in a plane, quadrilateral can have
more complex forms. Such cases include for example: The fourth node does not lie in
the plane defined by the other three or the shape is not convex. It is difficult to deal with
such forms and one could be tempted to restrict the element to have rectangular shapes
only, because these are easy to formulate and work with. But they are impractical when
complicated geometry is to be modeled, especially if details should be emphasized in fine
graduation.
One solution to this problem is the use of isoparametric elements. They can be non-

rectangular. The trick is to use reference coordinates which map the physical element
into a reference element that is a square. Thus, the physical element can have a more
general shape, but a coordinate transformation and numerical integration is needed
which brings in more mathematical complexity [CMPW02].
In this section a quadrilateral isoparametric elements consisting of four nodes is de-

scribed and denoted by Quad-4. Figure 5 shows the two abstraction layers: On the
left side the original element is shown in physical space, on the right side the reference
element is shown. The square has a side length of 2. The coordinate system with the ξ
and η axis has its origin in the center of the square. Also note the ordering of the nodes
is counterclockwise.

x

y
ξ

η

ξ

η

1
p�1,�1q

2
p1,�1q

3
p1, 1q

4
p�1, 1q

1

2

3

4

�P pξ, ηq

�
P px, yq

Figure 5: Coordinate transformation of four-node quadrilateral element with physical
space on the left side and reference space on the right side

Similarly to the triangular element, interpolating the displacement field as well as the
element geometry is done by shape functions. They are defined in reference coordinates.
The displacement of a point within the element can be expressed by the displacements
at the nodes and shape functions N . Also, the position of that point can be expressed
in terms of the (global) nodal positions and shape functions Ñ . The element is called
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isoparametric if N is identical to Ñ . If Ñ is of lower degree than N , the element is called
subparametric and superparametric if it is the other way around [CMPW02].
Every node has two degrees of freedom: A displacement u along the x-axis and a dis-

placement v along the y-axis. To find the shape functions it does not matter which vari-
able to choose, so the following test function was used for φ representing u or v [Ste15]:

φpξ, ηq � a0 � a1ξ � a2η � a3ξη �
�
1 ξ η ξη

�
�
���
a0
a1
a2
a3

�
��
� ~xT~a (48)

The interpolation conditions at the nodes are as follows:

φp�1,�1q � φ1 Ñ φ1 � a0 � a1 � a2 � a3

φp1,�1q � φ2 Ñ φ2 � a0 � a1 � a2 � a3

φp1, 1q � φ3 Ñ φ3 � a0 � a1 � a2 � a3

φp�1, 1q � φ4 Ñ φ4 � a0 � a1 � a2 � a3 (49)

or in matrix-vector notation:

A~a � ~φ�
���

1 �1 �1 1
1 1 �1 �1
1 1 1 1
1 �1 1 �1

�
��

�
���
a0
a1
a2
a3

�
��
�

�
���
φ1
φ2
φ3
φ4

�
��
 (50)

Inversion of A yields the coefficients ai of ~a:

~a � A�1~φ �
1
4

�
���

1 1 1 1
�1 1 1 �1
�1 �1 1 1
1 �1 1 �1

�
��

�
���
φ1
φ2
φ3
φ4

�
��
 (51)

Inserting the last equation into (48), one gets the shape functions ~N for the quadrilateral
element:

φ � ~xTA�1~φ

� ~NT ~φ

�
1
4
�
1 ξ η ξη

�
�
���

1 1 1 1
�1 1 1 �1
�1 �1 1 1
1 �1 1 �1

�
��
~φ

�
�1

4p1� ξqp1� ηq 1
4p1� ξqp1� ηq 1

4p1� ξqp1� ηq 1
4p1� ξqp1� ηq

�
~φ (52)
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One can evaluate shape function i with the ξη-coordinates of node i. If it evaluates to 1
while at any other node coordinates it evaluates to zero, the shape function is correctly
set. Now, the displacements can be expressed as follows:

~̃u �

�
u
v



� N~u �

�
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4



�
�����������

u1
v1
u2
v2
u3
v3
u4
v4

�
����������


(53)

with N being the matrix containing the shape functions and ~u being the vector of the
nodal displacements.
The assembly of the strain-displacement matrix B is more complicated with isopara-

metric elements. Due to the ξη-coordinates one cannot easily describe an operator such
as B{Bx. The first step is to formulate a function φ � φpξ, ηq. Like in the derivation on
the shape functions φ can represent u or v. Derivatives with respect to ξ and η are as
follows [CMPW02]:

Bφ

Bξ
�
Bφ

Bx

Bx

Bξ
�
Bφ

By

By

Bξ

Bφ

Bη
�
Bφ

Bx

Bx

Bη
�
Bφ

By

By

Bη
(54)

or in matrix notation:
~̃φ � J~φ (55)

where J is the Jacobian matrix

J �

�°
Ni,ξxi

°
Ni,ξyi°

Ni,ηxi
°
Ni,ηyi



(56)

and Ni,j denotes the derivation of the i-th shape function with respect to j. xi is the
i-th component of the ~x-vector. The Jacobian matrix can be written out as follows:

J �
1
4

�
�p1� ηq p1� ηq p1� ηq �p1� ηq
�p1� ξq �p1� ξq p1� ξq p1� ξq


����
x1 y1
x2 y2
x3 y3
x4 y4

�
��


�

�
px12 � x34qη � x12 � x34 py12 � y34qη � x12 � y34
px12 � x34qξ � x13 � x24 py12 � y34qξ � y13 � y24



(57)

Next, equation (55) can be rearranged to get the derivatives with respect to x and y:

~φ � J�1 ~̃φ (58)
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With the derivatives calculated, the strain-displacement relation (7) can be obtained
[CMPW02]:

~ε �

�
��

Bu
BxBv
By

Bu
By �

Bv
Bx

�
�
�

�
�1 0 0 0

0 0 0 1
0 1 1 0

�



loooooooomoooooooon

�
���
Bu{Bx
Bu{By
Bv{Bx
Bv{By

�
��
 (59)

L

�
���
Bu{Bx
Bu{By
Bv{Bx
Bv{By

�
��
�

�
���
j11 j12 0 0
j21 j22 0 0
0 0 j11 j12
0 0 j21 j22

�
��


loooooooooooomoooooooooooon

�
���
Bu{Bξ
Bu{Bη
Bv{Bξ
Bv{Bη

�
��
 (60)

Ĵ

�
���
Bu{Bξ
Bu{Bη
Bv{Bξ
Bv{Bη

�
��
�

�
���
N1,ξ 0N2,ξ 0 N3,ξ 0 N4,ξ 0
N1,η 0N2,η 0 N3,η 0 N4,η 0

0 N1,ξ 0N2,ξ 0 N3,ξ 0 N4,ξ
0 N1,η 0N2,η 0 N3,η 0 N4,η

�
��


loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

�
�����������

u1
v1
u2
v2
u3
v3
u4
v4

�
����������


(61)

N̂

where ji denotes the i-th entry of the inverse Jacobian matrix. The composition of the
previous three equations forms the matrix B:

B � L Ĵ N̂ (62)

Together with the functional equation (44) and the material matrix D (eq. (22)), the
stiffness matrix for the quadrilateral isoparametric element can be written as:

K �

»
V
BTDB dV � t

»
A
BTDB dA � t

» 1

�1

» 1

�1
BTDB |J |dξdη (63)

For the Quad-4 element, a Gaussian quadrature needs four Gauss integration points
to satisfy the above equation [Ste15]. These four points are located at ξi � �

?
3

3 and
ηi � �

?
3

3 with weight factors ωi � 1. The equation for the stiffness matrix can then be
written in discretized form as follows:

K � t
2̧

i�1

2̧

j�1
ωiωjBpξi, ηjq

TDBpξi, ηjq|Jpξi, ηjq| (64)
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3.3 Plate Bending Element

In contrast to the plane element, the loads at the plate elements are applied transversal
to the element’s mid-surface producing plate bending. It has one deformation degree of
freedom and two rotational degrees of freedom. Plate elements are often used to model
floors or ceilings. In this section, the plate element is discussed in more detail and two
discretizations are described: The three-node triangular plate element and the four-node
quadrilateral plate element.

3.3.1 Problem Definition

x

y

z

l

t

cover-surfaces

mid-surface

p

Figure 6: Schematic drawing of a Kirchhoff plate with its main dimension l, thickness t
and loading p normal to the mid-surface

In contrast to a plane, where the load is located planar with respect to the mid-surface,
the load is perpendicular to the mid-surface at a plate. Therefore plate element problems
are important for supporting structures of bridges or ceilings and floors in buildings, for
instance. In Figure 6 one can see a generalized plate object. It has a main dimension
of l and a constant thickness t. With the assumption that t ! l, the problem becomes
two dimensional and, instead of the whole object, only the middle plane between the
two surface areas will be considered. The object has a local coordinate system with its
xy-plane the mid-surface and its z-axis perpendicular to this plane. The cover-surfaces
are located at z � �t{2. As stated in the beginning, the load is applied in z-direction,
i.e. normal to the mid-surface.

In this work Kirchhoff’s theory of thin plates is used. For thick plates or laminated
plates, the theory of Reissner-Mindlin is more applicable [Wer95]. The main difference is
that with Reissner-Mindlin plates one takes the shear deformations into account. Thus,
the normal to the mid-surface remains straight but not necessarily perpendicular to it;
instead of a Kirchhoff plate: Here, the normal remains normal to the mid-surface even
after deformation.
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The following conditions must be satisfied for a Kirchhoff plate [Ste15]:

• The thickness t must be much smaller than the main dimension l: t ! l.

• Straight lines normal to the mid-surface remain straight after deformation.

• Straight lines normal to the mid-surface remain normal to the mid-surface after
deformation.

• There is only a small amount of deformation w, i.e. w   t and it holds w � wpzq.

• The plate is symmetrical to the mid-surface and changes in thickness must be very
small.

• Normal stresses in z-direction σzz will be neglected.

With [Kle13] and [Ste15] the following displacement terms can be formulated:

w � wpx, yq (65)

u � �z
Bw

Bx
(66)

v � �z
Bw

By
(67)

The deformation w suffices to explain the whole displacement vector. The two derivatives
in the equations above describe the torsions around the x- and y-axis.
Similar to the plane element, the Kirchhoff plate element can be in plane strain or

plane stress, respectively [Ste15], i.e. equation (7) can be applied here, too:

~̂u �

�
u
v



� �z

�Bw
BxBw
By



� �z∇w

~ε � L~̂u � �zL∇w � �z~∆w � �z~κ (68)

~∆ � L∇ �

�
��

B
Bx 0
0 B

By
B
By

B
Bx

�
�
� B

Bx
B
By
	
�

�
��

B2

Bx2
B2

By2

2 B2

BxBy

�
�


~κ � ~∆w �

�
��

B2w
Bx2
B2w
By2

2 B2w
BxBy

�
�
 (69)

Referring [Kle13] (σzz � 0, τxz � τyz � 0), equation (8) can be filled with the above
information:

~σ � D~ε � �zD~κ

� �
Ez

1� ν2

�
�1 ν 0
ν 1 0
0 0 1�ν

2

�


�
� κx

κy
2κxy

�

 (70)
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The integration of the stresses ~σ over the thickness results in the vector of moments
~MT � pMxx Myy Mxyq [Ste15]:

~M �

» t{2
�t{2

z~σdz � �

» t{2
�t{2

z2D~κdz � �D~κ

» t{2
�t{2

z2dz � �
t3

12D~κ � �Dp~κ (71)

The above equation relates the moments with the curvatures of the plate. The integrals
over the transverse stresses σxz and σyz lead to the following shear forces, as described
in [Ste15]:

Qx �

» t{2
�t{2

σxzdz �

» t{2
�t{2

σmax
xz

�
1� 4

�z
t

	2


dz �

2
3σ

max
xz t

�
2
3σxzpz � 0qt (72)

Qy �

» t{2
�t{2

σyzdz �

» t{2
�t{2

σmax
yz

�
1� 4

�z
t

	2


dz �

2
3σ

max
yz t

�
2
3σyzpz � 0qt (73)

The transverse stress is distributed quadratically over the thickness t, i.e. they have
their maximum at z � 0 and vanish at z � � t

2 . The equilibrium of forces in z-direction
leads to:

BQx
Bx

�
BQy
By

� p � 0 (74)

with p being the load applied perpendicular to the mid-surface. Additionally the equi-
librium of moments around the x- and y-axis:

BMxx

Bx
�
BMxy

By
�Qx � 0

BMyy

By
�
BMxy

Bx
�Qy � 0 (75)

Putting equation (75) into (74) results in:

B2Mxx

Bx2 �
B2Myy

By2 � 2B
2Mxy

BxBy
� ~∆T ~M � p (76)

Now, one can insert the kinematic equation (69) into equation (71) and then into the
equilibrium relation (76):

~κ � ~∆w
~M � �Dp~κ � �Dp

~∆w
~∆T ~M � �~∆TDp

~∆w � p (77)
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The last equation leads to the partial differential equation of the plate bending [Kle13]:

B4w

Bx4 �
B4w

By4 � 2 B4w

Bx2By2 � �
12p1� ν2q

Et3
p �

p

k
(78)

with k denoted as plate stiffness.
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mid-surface

boundary Γ

Figure 7: Part of a plate’s boundary with its essential and natural boundary conditions

Let P be a point on the continuous boundary of the plate with a local Cartesian coor-
dinate system as described in [Ste15] (see Figure 7): The n coordinate is perpendicular
to the boundary surface, the s axis tangential to it. The third axis equals the global
z-axis of the plate. There are three essential and three natural boundary conditions
defined for P : The displacement w, the twists θn � Bw{Bs, θs � �Bw{Bn, the shear
force Qn and the moments Mns and Mnn. Since this leads to an inconsistency with the
differential equation above, [Ste15] stated that Kirchhoff introduced new forces:

Vn � Qn �
BMns

Bs
(79)

With them, only the four conditions for w, θs, Vn and Mnn occur. The plate can be
mounted in different ways:

• clamped: w � 0, θs � �Bw{Bn � 0

• simple supported: w � 0,Mnn � 0

• symmetrical edge: θs � �Bw{Bn � 0, Vn � 0

The plate’s functional as described in [Ste15] is given below:
1
2

»
V
~εT~σ dV (80)

One can insert equation (68) and (70) into the functional:
1
2

»
V
~εT~σ dV �

1
2

»
V
~κTD~κz2 dV �

1
2

»
A
~κTDp~κ dA (81)

34



Together with the potential of the external forces, the overall potential of the Kirchhoff
plate is:

Π �
1
2

»
A
~κTDp~κ dA�

»
A
p w dA�

»
Γ
pVnw �Mnnθsq dΓ (82)

Klein [Kle13] states that for the plate element discretization additional conditions must
be satisfied. They are: The bending wpx, yq as well as the normal derivative Bw{Bn at
the element’s boundary must be continuous to the neighboring elements. This would
be the case if the bending and the normal derivative are explicitly determined by the
nodal parameters at the border. Further, [Kle13] lists requirements for a plate element
approach:

• Totality of the displacement approach in order to guarantee good convergence.

• The terms 1, x, y, x2, xy, y2 should be included to get variable strains, curvatures
and rigid body motion.

Steinke [Ste15] expands the requirements as follows:

• Compatibility of the displacement variable at the element’s boundary (conformity
condition): If the steadiness of the deformation w and its first derivatives is not
satisfied the bending surface between two elements can have a sharp bend at which
the elements are overlapping at one side and diverge on the opposite side. If such
a behavior is shown, the element is called non-conforming.

• Rigid body motions must not create strains and stresses in the element. This
requires a constant term in the test function for the translative part of the motion
and a linear term for the rotatory.

• The test function must provide constant plain strain and plain stress: If the element
converges in its size until it becomes a point, a constant state of bending must
be describable in this situation. Since the bending is described as second order
derivatives of w, the test function must include quadratic terms.

The following sections show details of two discretizations of plate elements: A triangular
element with three nodes and a quadrilateral element with four nodes.

3.3.2 Tri-3 Plate Element

There exist many different types of triangular plate elements, introduced for example
in [BBH80], [Toc63] and [Spe88]. The three-node triangular element from [Toc63] has
three degrees of freedom (d.o.f) (w, θx, θy) per node. Its test function is a complete
cubic polynomial. The term xy was left out, because the polynomial has one coefficient
more than the element has d.o.f. This leads to the problem that no constant state of
bending can be described (non-conforming element) and this leads to wrong results at
convergence [Ste15]. Therefore, [Ste15] challenges the practical use of this element. A
possible way to use a complete cubic polynomial would be to add another node in the
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triangle’s center of mass and assign w as the only d.o.f to it [Ste15]. But the problem
of non-conformity persists, as the nodal twists don’t suffice to describe the twists along
the element’s edges, which are quadric. Here, additional nodes on the edges would be
needed. To get a conforming element, one can choose a test function with a complete
polynomial of fifth order. It has 21 coefficients and d.o.f. They are distributed as follows:
Every node has six d.o.f pw, Bw{Bx, Bw{By, B2w{Bx2, B2w{By2, B2w{BxByq and the mid-
node of every edge gets the d.o.f Bw{Bn. A conform element with continuous twists at
its edges follows from that. But the 21 d.o.f. per element leads to high computational
effort and second order derivatives at the boundaries are needed. Hence, Steinke advices
against using it in practice [Ste15].

In this work an element from Specht [Spe88] was implemented, which is also described
in [Ste15]. It has three nodes and also three d.o.f. per node: The deformation w and
the two twists θx and θy. The test function for the deformation w is as follows:

w �a0L1 � a1L2 � a2L3 � a3L1L2 � a4L2L3 � a5L3L1

� a6

�
L2L

2
1 �

1
2L1L2L3 p3p1� µ3qL1 � p1� 3µ3qL2 � p1� 3µ3qL3q




� a7

�
L3L

2
2 �

1
2L1L2L3 p3p1� µ1qL2 � p1� 3µ1qL3 � p1� 3µ1qL1q




� a8

�
L1L

2
3 �

1
2L1L2L3 p3p1� µ2qL3 � p1� 3µ2qL1 � p1� 3µ2qL2q



(83)

with

µ1 �
S21 � S31

S32

µ2 �
S32 � S21

S31

µ3 �
S31 � S32

S21
(84)

S32 � x2
32 � y2

32

S31 � x2
31 � y2

31

S21 � x2
21 � y2

21 (85)

Sij denotes the square of the length of the edge between node i and j. This can be
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written in vector form:

w � ~xT~a

~x �

�
�������������

L1
L2
L3
L1L2
L2L3
L3L1�

L2L
2
1 �

1
2L1L2L3 p3p1� µ3qL1 � p1� 3µ3qL2 � p1� 3µ3qL3q

��
L3L

2
2 �

1
2L1L2L3 p3p1� µ1qL2 � p1� 3µ1qL3 � p1� 3µ1qL1q

��
L1L

2
3 �

1
2L1L2L3 p3p1� µ2qL3 � p1� 3µ2qL1 � p1� 3µ2qL2q

�

�
������������


~a �
�
a0 a1 a2 a3 a4 a5 a6 a7 a8

�T (86)

The twists θx and θy are to be described in Cartesian coordinates. They must be
transformed into triangular coordinates with the help of equation (35):

~θ �

�
θx
θy



�

�
0 1
�1 0



∇w �

�
0 1
�1 0



J�1∇̃~xT~a � G~a (87)

with J�1 the inverse Jacobian matrix and ∇̃ the nabla operator in triangular coordinates.
The matrix G looks as follows:

G �
1

2A4

�
x32 x13
y32 y13


� Bx1
BL1

Bx2
BL1

� � � Bx9
BL1Bx1

BL2
Bx2
BL2

� � � Bx9
BL2

�
(88)

Next, the interpolation conditions at the three nodes for the three unknowns can be set
(cf. Figure 4). Following the notation of [Ste15]:

�
�������������

~xT p1, 0q
G1p1, 0q
G2p1, 0q
~xT p0, 1q
G1p0, 1q
G2p0, 1q
~xT p0, 0q
G1p0, 0q
G2p0, 0q

�
������������


looooomooooon

~a �

�
�������������

w1
θx1

θy1

w2
θx2

θy2

w3
θx3

θy3

�
������������


loomoon

(89)

A ~w (90)

where Gi is the i-th row of matrix G. The unknown coefficients ai can be computed by
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inverting the matrix A:

~a � A�1 ~w

A�1 �

�
�������������

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
�1 0 0 1 y12 x21 0 0 0
0 0 0 �1 0 0 1 y23 x32
1 y31 x13 0 0 0 �1 0 0
2 y21 x12 �2 y21 x12 0 0 0
0 0 0 2 y32 x23 �2 y32 x23
�2 y13 x31 0 0 0 2 y13 x31

�
������������


(91)

where xij and yij denotes the differences of the node’s coordinates xi � xj and yi � yj .
Now, the coefficients can be inserted into equation (86):

w � ~xT~a � ~xTA�1 ~w � ~NT ~w (92)

The vector ~N containing the shape functions Ni can then be calculated as follows:

~N �
�
A�1�T ~x (93)

Since the shape functions follow a pattern due to the regular order in the matrix A�1,
one can summarize the nine shape functions into three groups; one for every node:

Ni �

$'&
'%
χi � χi�3 � χk�3 � 2 pχi�6 � χk�6q for d.o.f. w
�yki pχk�6 � χk�3q � yjiχi�6 for d.o.f. θx
xki pχk�6 � χk�3q � xjiχi�6 for d.o.f. θy

(94)

The variables χi denotes the i-th component of the vector ~x, the indices i, j, k under χ
are cyclic permutations of p1, 2, 3q. xij and yij denote the coordinate differences xi � xj
and yi� yj . The index under N is incremented in such a way, that N1, N4, N7 describes
the d.o.f. w, N2, N5, N8 describes the d.o.f. θx and N3, N6, N9 describes the d.o.f. θy.
Similar to the plane elements, one can check the correctness of the shape functions by
evaluating them at the triangular coordinates of the three triangle’s nodes. For example,
shape function N7 will evaluate to 1 for the coordinates pL1 � 0, L2 � 0q (node 3) and
will be zero for pL1 � 1, L2 � 0q (node 1) and pL1 � 0, L2 � 1q (node 2).

The displacement-strain relation (68) introduced for the plate element contains an
operator living in the Cartesian space. It has to be converted into triangular coordinates.
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With equation (40) (∇ � J�1∇̃), one can describe a second order derivative operator ∆:

∆ � ∇∇T � J�1∇̃
�
J�1∇̃

�T
� J�1∇̃∇̃T

�
J�1�T � J�1∆̃

�
J�1�T (95)

∆ �

� B2

Bx2
B2

BxBy
B2

ByBx
B2

By2

�
Ñ ~∆ �

�
��

B2

Bx2
B2

By2

2 B2

BxBy

�
�


~∆ �
1

4A2
4

�
� y2

32 y2
31 y23y31

x2
32 x2

31 x13x32
2x32y23 2x13y31 x32y31 � x31y32

�


�
���

B2

BL2
1B2

BL2
2

2 B2

BL1BL2

�
��


~∆ � Y ~̃∆ (96)

Next, equation (68) can be rewritten for triangular coordinates:

~ε � �z~∆w � �zY ~̃∆w � �z~κ (97)

And additionally, with the help of equation (92), this yields a new version of equation
(69):

~κ � ~∆w � Y ~̃∆ ~NT ~w � Y B̃ ~w � B~w (98)

B̃ � ~̃∆ ~NT �

�
���

B2N1
BL2

1

B2N2
BL2

1
� � � B2N9

BL2
1B2N1

BL2
2

B2N2
BL2

2
� � � B2N9

BL2
2

2 B2N1
BL1BL2

2 B2N2
BL1BL2

� � � 2 B2N9
BL1BL2

�
��
 (99)

With the help of equation (98), the first term (denoted as Π1) of the plate element’s
functional (82) can be written out:

Π1 �
1
2

»
A
~κTDp~κ dA

�
1
2 ~w

T

»
A
BTDpB dA~w

�
1
2 ~w

TK~w (100)

where K describes the stiffness matrix for the three-node triangular plate element. The
stiffness matrix must be integrated in triangular coordinates. This is done by a Gaus-
sian quadrature with the Gauss points located at: pL11 � L21 � 1

6q, pL12 � 2
3 , L22 �

1
6q, pL13 �

1
6 , L23 �

2
3q and weights ωi � 1

6 for all three points. For an exact integration,
one would accumulate four sampling points, but [Ste15] states that this leads to an ele-
ment, that is too stiff; with only three samplings, a more natural element results. The
stiffness matrix K can then be written as:

K � 2A4

3̧

i�1
ωiB

T pL1i , L2iqDpBpL1i , L2iq (101)
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The plate’s functional (82) has two more terms including the surface load p and edge
loads Vn. These two can now be written as follows (see also [Ste15]):

»
A
p w dA � ~wT ~Fp � ~wT p

»
A

~N dA � 2~wTA4p

» 1

0

�» 1�L1

0
~N dL2



dL1 (102)

where ~Fp is a vector containing the nine forces and moments emerging from the surface
load p. As an example, an edge load Vn is applied to edge S13. This can be described
as follows [Ste15]: »

ΓV

Vn w dΓ �

»
ΓV

Vn ~w
T ~NpL2 � 0q dΓ (103)

with dΓ � S13dL1. With Vn being constant all over the edge:»
ΓV

Vn ~w
T ~NpL2 � 0q dΓ � ~wTS13Vn

» 1

0
~N dL1 � ~wT ~Fv (104)

The edge load applies forces and moments contained in ~Fv to the nodes forming that
edge. The above equation can be applied to every other edge.

3.3.3 Quad-4 Plate Element

The Quad-4 element implemented in this work is the so-called Discrete Kirchhoff Quadri-
lateral (DKQ) element, introduced by [BT82]. It is a four-node, 12 degrees-of-freedom
quadrilateral element for thin plates. It is based on a generalization of the Discrete
Kirchhoff Triangular (DKT) element which is a three-node, 9 d.o.f. triangular element.
Like the triangular element of the previous section, all the DKQ elements nodes have
three degrees of freedom: The displacement w and the rotations θx and θy around the
element’s local x- and y-axis. Figure 8 shows an example of such an element.
The formulation of the DKQ element by Batoz et al. [BT82] uses the discrete Kirch-

hoff technique. It is based on the discretization of the strain energy and neglects the
transverse shear energy. This results in the following functional:

Π �
1
2

»
A
~κTDp~κ dA (105)

where Dp is the material matrix as defined previously (equation (71)) and ~κ denotes:

~κ �

�
��

Bβx

BxBβy
By

Bβx

By �
Bβy

Bx

�
�
 (106)

βi is the rotation of the normal to the undeformed mid-surface in x-z-plane and y-z-
plane, respectively. For Π only C0 continuity is required. Further, [BT82] states that βx
and βy must be related to w in such a way, that the final element satisfies the following
requirements:
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z, w

y, θy

x, θx

w1, θx1 , θy1
w2, θx2 , θy2

w3, θx3 , θy3

w4, θx4 , θy4

Figure 8: 4-node quadrilateral plate element DKQ with 12 degrees-of-freedom, three per
node.

• The nodal variables must be w, θx and θy with respect to x and y at the four
element’s nodes (θx � Bw{By, θy � �Bw{Bx)

• The Kirchhoff boundary conditions must be satisfied.

Two incomplete cubic polynomial expressions define βx and βy:

βx �
8̧

i�1
Niβxi (107)

βy �
8̧

i�1
Niβyi (108)

Here, Nipξ, ηq are the shape functions with isoparametric coordinates ξ and η. They are
the same as of the “eight-node Serendipity” element, described for example in [ZT00],
or [Bra07] and seen in Figure 9. The shape functions of this element are achieved by
products of linear Lagrangian polynomials of the form 1

4pξ�1qpη�1q. For the eight-node
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element the following shape functions result:

N1pξ, ηq �
1
4p1� ξqp1� ηqp�ξ � η � 1q

N2pξ, ηq �
1
4p1� ξqp1� ηqpξ � η � 1q

N3pξ, ηq �
1
4p1� ξqp1� ηqpξ � η � 1q

N4pξ, ηq �
1
4p1� ξqp1� ηqp�ξ � η � 1q

N5pξ, ηq �
1
2p1� ξ2qp1� ηq

N6pξ, ηq �
1
2p1� ξqp1� η2q

N7pξ, ηq �
1
2p1� ξ2qp1� ηq

N8pξ, ηq �
1
2p1� ξqp1� η2q

βxi and βyi are transitory nodal variables at the four nodes and mid-sides of the element.

ξ

η

p�1, 1q p0, 1q p1, 1q

p�1, 0q p1, 0q

p�1,�1q p0,�1q p1,�1q

4 7 3

8 6

1 5 2

Figure 9: Eight-node quadrilateral element (“Seredipity”-element) with local ξ, η-
coordinates.

Next, Batoz et al. described the Kirchhoff assumptions at the corner nodes (cf. Figure 9
for the following): �

βxi � Bw{Bxi
βyi � Bw{Byi



�

�
0
0



, i � 1, 2, 3, 4 (109)

42



and at the mid-nodes:

βsk
� Bw{Bsk � 0, k � 5, 6, 7, 8 (110)

where s denotes the coordinate along the element boundary and Bw{Bsk is the derivative
of the displacement w with respect to the mid-node k:

Bw

Bsk
� �

3
2lij

pwi � wjq �
1
4

�
Bw

Bsi
�
Bw

Bsj



(111)

with k � 5, 6, 7, 8 being the mid-node of side ij � 12, 23, 34, 41 and lij denotes the length
of side ij. βn varies linearly along the sides:

βnk
�

1
2
�
βni � βnj

�
� �

1
2

�
Bw

Bni
�
Bw

Bnj



(112)

with k same as before. βx and βy can be rewritten as follows:

βx � ~Hxpξ, ηqT ~w (113)
βy � ~Hypξ, ηqT ~w (114)
~wT �

�
w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3

�

with

~HxT
�
�
Hx

1 . . . Hx
12
�

Hx
r1,4,7,10s �

3
2
�
ar5,6,7,8sNr5,6,7,8s � ar8,5,6,7sNr8,5,6,7s

�
Hx
r2,5,8,11s � br5,6,7,8sNr5,6,7,8s � br8,5,6,7sNr8,5,6,7s

Hx
r3,6,9,12s � Nr1,2,3,4s � cr5,6,7,8sNr5,6,7,8s � cr8,5,6,7sNr8,5,6,7s

~HyT
�
�
Hy

1 . . . Hy
12
�

Hy
r1,4,7,10s �

3
2
�
dr5,6,7,8sNr5,6,7,8s � dr8,5,6,7sNr8,5,6,7s

�
Hy
r2,5,8,11s � �Nr1,2,3,4s � er5,6,7,8sNr5,6,7,8s � er8,5,6,7sNr8,5,6,7s

Hy
r3,6,9,12s � �br5,6,7,8sNr5,6,7,8s � br8,5,6,7sNr8,5,6,7s

The function notation 
ri,j,k,ls groups four functions together. The first function of the
group gets the first index of the squared brackets, the second function the second index,
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and so on. The coefficients a, b, c, d and e are as follows:

ak � �
xij
l2ij

bk �
3
4
xijyij
l2ij

ck �

x2
ij

4 �
y2

ij

2
l2ij

dk � �
yij
l2ij

ek �

y2
ij

4 �
x2

ij

2
l2ij

where k � 5, 6, 7, 8 for the sides ij � 12, 23, 34, 41, xij � xi � xj , yij � yi � yj and
l2ij � x2

ij � y2
ij . For more details about the derivation of these coefficients and functions

Hx and Hy see [BT82].
Next, the Jacobian matrix J can be assembled, that is:

J �
1
4

�
px12 � x34qη � x12 � x34 py12 � y34qη � x12 � y34
px12 � x34qξ � x13 � x24 py12 � y34qξ � y13 � y24



�

�
J11 J12
J21 J22



(115)

With its determinant |J | and inverse J�1:

|J | � J11J22 � J12J21 (116)

J�1 �
1
|J |

�
J22 �J12
�J21 J11



�

�
j11 j12
j21 j22



(117)

The strain-displacement matrix can now be obtained:

B �

�
��

~Hx
x
~Hy
y

~Hx
y �

~Hy
x

�
�
�

�
�j11 j12 0 0

0 0 j21 j22
j21 j22 j11 j12

�


�
����
~Hx
ξ
~Hx
η
~Hy
ξ
~Hy
η

�
���
 (118)

The expressions ~Hx
ξ ,

~Hx
η ,

~Hy
ξ and ~Hy

η are vectors containing the derivatives of the corre-
sponding components of the vectors ~Hx and ~Hy with respect to ξ and η. The matrix B
can then be inserted into the displacement-strain relation, like equation (98):

~κ � B~w (119)
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Next, ~κ � B~w can be used in the functional to get the first term like equation (100):

Π1 �
1
2

»
A
~κTDp~κ dA

�
1
2 ~w

T

»
A
BTDpB dA~w

�
1
2 ~w

TK~w

with the stiffness matrix K of the DKQ element:

K �

»
A
BTDpB dA

�

» 1

�1

» 1

�1
BTDpB |J | dξdη (120)

The stiffness matrix can be numerically integrated with a 2�2 Gaussian integration
scheme. Batoz et al. states that four sampling points are enough, although a 3�3
point scheme would be necessary for exact integration on a rectangular element [BT82].
Those four Gauss points are located at ξi � �

?
3

3 and ηi � �
?

3
3 with weight factor

ωi � 1 equivalent to all four. The equation for the stiffness matrix can then be written
in discretized form as follows:

K �
2̧

i�1

2̧

j�1
ωiωjBpξi, ηjq

TDpBpξi, ηjq |Jpξi, ηjq| (121)

When all nodal values ~w are known, the moments ~M at point px, yq in the element can
be calculated:

~Mpx, yq � DpBpx, yq~w (122)

with

~M �

�
�Mx

My

Mxy

�

 (123)

3.4 Coordinate Transformation

The nodes and elements in the mesh are defined in a global three dimensional coordinate
system. The elements need to be transformed into a two dimensional local coordinate
system in order to be able to construct their local stiffness matrices. This local stiffness
matrix must then be transformed back into the global system before adding it to the
global stiffness matrix. This section describes the building of the transformation matrix,
that will be used in the following section for the addressed transformation steps. First
the transformation of an arbitrary triangle defined in 3D space is described.
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x

z
y

x̃ỹ

z̃

A

B

C

Figure 10: Arbitrary triangle with nodes A, B and C, defined in global xyz-coordinate
system. After transformation a new, local, x̃ỹz̃-coordinate system with node
A in its origin, is created.

Given a triangle with vertices ~A � pax, ay, azq
T , ~B � pbx, by, bzq

T and ~C � pcx, cy, czq
T

ordered in counterclockwise direction, as shown in Figure 10. Let ~u be the vector from
node ~A to ~B and ~v be the vector from node ~A to ~C:

~u � ~B � ~A �
�
bx � ax by � ay bz � az

�T
~v � ~C � ~A �

�
cx � ax cy � ay cz � az

�T
First local unit vector:

~̃x �
1
|~u|
~u

Second local unit vector:

~̃z � ~u� ~v

~̃z Ð
1��~̃z�� ~̃z

Third local unit vector:
~̃y � ~̃z � ~̃x

Define transformation matrix T as follows:

T �

�
�~̃xT~̃yT
~̃zT

�

�

�
�x̃x x̃y x̃z
ỹx ỹy ỹz
z̃x z̃y z̃z

�

 (124)

Assembly of element’s stiffness matrix needs partial derivatives. In order to get these
derivatives with less computational effort, every triangle can be translated in such a

46



way, that node ~A lies in the global origin before transforming it to local coordinates.
Node ~A stays at p0, 0, 0q coordinates which then simplifies getting the derivatives (see
Section 4.2.4). It follows:

~̃A �
�
0 0 0

�T
~̃B �

�
b̃x 0 0

�T
~̃C �

�
c̃x c̃y 0

�T
Node ~A will not be changed by the transformation with T , ~B will be projected onto the
local x-axis that is defined to be the normalized vector between ~A and ~B. Node ~C will
be projected onto the local xy-plane. One can see that the z-component vanishes by
transforming into local space, thus generating the two dimensional local space.

x

z

y

x̃
ỹ

z̃

D

A

B

C

L

K

J

I

Figure 11: Quadrilateral with nodes A, B, C and D, defined in global xyz coordinate
system. After transformation a new, local, x̃ỹz̃ coordinate system is created.

The other element described in this work is the quadrilateral. Let an arbitrary quadri-
lateral be given with vertices ~A � pax, ay, azq

T , ~B � pbx, by, bzq
T , ~C � pcx, cy, czq

T , ~D �

pdx, dy, dzq
T ordered in counterclockwise direction, cf. Figure 11. Next, let ~I be the

midpoint of edge AB:

~I � ~A�
1
2

�
~B � ~A

	

Analogously let ~J, ~K and ~L be the midpoints of the edges BC,CD and DA:

~J � ~B �
1
2

�
~C � ~B

	
~K � ~C �

1
2

�
~D � ~C

	
~L � ~D �

1
2

�
~A� ~D
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Let then ~u be the vector from node ~L to ~J and ~v be the vector from node ~I to ~K:

~u � ~J � ~L �
�
jx � lx jy � ly jz � lz

�T
~v � ~K � ~I �

�
kx � ix ky � iy kz � iz

�T
First local unit vector:

~̃x �
1
|~u|
~u

Second local unit vector:

~̃z � ~u� ~v

~̃z Ð
1��~̃z�� ~̃z

Third local unit vector:
~̃y � ~̃z � ~̃x

Define transformation matrix T as follows:

T �

�
�~̃xT~̃yT
~̃zT

�

�

�
�~̃xx ~̃xy ~̃xz
~̃yx ~̃yy ~̃yz
~̃zx ~̃zy ~̃zz

�

 (125)

Remark: In order to transform a quadrilateral element from 3D to a local two dimen-
sional space, the nodes of the original element must all be located on a common plane.
Otherwise such a transformation cannot be performed. Such shaped quadrilaterals can-
not be used as shell elements.

3.5 Shell Element

Shell elements combine the capability of both, plane and plate elements. Every time
a thin walled structure like a car body, dome structure or container with multi-axial
pressures is to be simulated, shell elements provide a good solution. In this work only the
so-called flat shell elements are described and used in the implementation. Details about
curved shell elements, shells of revolution and general shells can be found in [CMPW02].
Flat shell elements have a state of bending and membrane stress that can be described

by superposition of the plane and plate element [Kle13]. Figure 12 shows the superposi-
tion of plane and plate elements to a flat shell element. The degrees of freedom of plane
and plate at every node are combined at the node of the shell element. Obviously the
plane and plate element must be of the same finite element’s type, for example three-
node triangular or eight-node quadrilateral. The plane has displacements u and v with
dedicated forces Fx and Fy. The plate has the deformation w with assigned normal
force Fz and the two twists θx and θy with assigned moments Mx and My. Through the
linking of the elements the shell element node has now five natural degrees of freedom.
An additional twist around the local z-axis θz will be introduced [Ste15], increasing the
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Figure 12: Creation of a triangular flat shell element by superimposing a triangular plane
and a triangular plate element. The elements are described in the same local
coordinate system with their degrees of freedom shown exemplary at one node
per element.
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number to six degrees of freedom per node. In vector notation the resulting displacement
vector ~ui of a shell element’s node i is:

~u �

�
�������

u
v
w
θx
θy
θz

�
������


loomoon
�

�
�������

u
v
0
0
0
0

�
������


loomoon
�

�
�������

0
0
w
θx
θy
0

�
������


loomoon
�

�
�������

0
0
0
0
0
θz

�
������


(126)

shell plane plate (127)

For the two different finite elements in this work – the three-node triangular element
and the four-node quadrilateral element – the stiffness matrix for the shell element
is described by a block matrix of either 3�3 submatrices for the triangular case or
4�4 submatrices for the quadrilateral. The following equation shows the latter case as
example:

K~u � ~F�
���
K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

�
��

�
���
~u1
~u2
~u3
~u4

�
��
�

�
����
~F1
~F2
~F3
~F4

�
���
 (128)

where the vectors ~ui are the same as in equation (126). The single submatrices Kij of
K were created by the superposition of the stiffness matrices of the plane and the plate:

Kij �
�
K̂ij

	
m
�
�
K̂ij

	
p

(129)

The submatrix Kij has the following structure:

�
���������

u v w θx θy θz

� � 0 0 0 0
� � 0 0 0 0
0 0 � � � 0
0 0 � � � 0
0 0 � � � 0
0 0 0 0 0 0

�
��������


|u

| v

|w

| θx

| θy

| θz

�

�
���������

u v w θx θy θz

� � 0 0 0 0
� � 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

�
��������


|u

| v

|w

| θx

| θy

| θz

�

�
���������

u v w θx θy θz

0 0 0 0 0 0
0 0 0 0 0 0
0 0 � � � 0
0 0 � � � 0
0 0 � � � 0
0 0 0 0 0 0

�
��������


|u

| v

|w

| θx

| θy

| θz
(130)�

K̂ij

	
m

describes the submatrix of the stiffness matrix of the plane element for node i

and j and is marked with the �-symbol,
�
K̂ij

	
p
describes the corresponding matrix part

of the plate element’s stiffness matrix and is symbolized with a �. The degree of freedom
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θz does not exists in both, the plane and the plate element, and is introduced with
the shell element. Therefore pKijq66 is zero. The sixth degree of freedom is necessary
because the missing stiffness regarding a rotation around the axis normal to the element
could produce singularities in the overall stiffness matrix. This happens for example,
if all neighboring elements of a node lie in the same plane, i.e. they are coplanar. A
singularity can lead to a non-solvable system, so this case needs be excluded [Ste15].
One way is to introduce this sixth degree of freedom and give it a value that is so small
that it does not influence the displacements and stresses too much. The number of this
values varies: [Wer95] suggests a value of 1{10000 of the smallest diagonal entry of Kij ,
whereas [Kan04] used 1{1000 of the smallest diagonal entry of Kij . The value must be
small, but big enough to prevent the singularities. Since this value is an approximation,
one has to modify it, if the solution is not as expected or one cannot get a solution at
all due to the addressed singularities.
The stiffness matrix for the shell element was constructed in a local coordinate system

as described in Section 3.2, 3.3 and 3.4. The overall stiffness matrix contains information
about all elements and needs to be described in a global coordinate system. Before the
element stiffness matrix is added to the global stiffness matrix, it has to be transformed
from local to global. This can be achieved by transforming the single blocks of K from
equation (128) with the relation:

Ǩij
~̌uj �

~̌
Fi (131)

where “ ˇ ” denotes that the matrix and vector are represented in local coordinates. With
the help of the transformation matrix T̃ , the globally described displacement vector ~uj
and load vector ~Fi can be represented in local coordinates:

~̌uj � T̃ ~uj (132)
~̌Fi � T̃ ~Fi (133)

Since the load vector is to be defined in a global coordinate system and the resulting
displacements are to be defined globally, too, equation (131) will be multiplied by T̃ T

from left:
T̃
T
Ǩij T̃ ~uj � T̃

T
T̃ ~Fi � ~Fi (134)

Hence, the two vectors will be represented in global coordinates and only the local
element stiffness matrix need to be transformed. The addressed 6�6 transformation
matrix T̃ is made up of the 3�3 transformation matrix T from Section 3.4:

T̃ �

�
T 0
0 T



(135)

In order to get the local element stiffness matrix K transformed to the global coordi-
nate system, one has to transform the single submatrices Kij as follows:

Kij � T̃
T
Ǩij T̃ (136)

for 1 ¤ i, j ¤ 3 in the case of the triangular element and 1 ¤ i, j,¤ 4 for the quadrilateral
element, respectively.
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4 FEM Code Implementation

In this chapter the FEM framework “libMesh” is presented at first that was used in the
development of the program. Then, details on important parts of the implementation
like the system’s matrix assembly or mesh format requirements for import are illustrated.
The parallelization with MPI concludes this chapter, pointing out details about libMesh’s
requirements for MPI usage and important modifications to the program’s code.

4.1 Introduction to libMesh

The libMesh finite element library was started by Benjamin Kirk [Kir07]. It is a tool
for numerical simulation of partial differential equations on serial and parallel platforms
and uses the finite element method. A major goal is to provide data structures and
algorithms for applications that need implicit numerical methods, parallel computing,
adaptive mesh refinement techniques, or, a combination of them. Further, it simplifies
many programming details for the user such as: Importing mesh structures, providing
and initialize data structures for the equation systems, solving the discretized system
and writing out the results [KPS13].
LibMesh allows discretization of one, two and three dimensional problems using several

geometric element types, including: Edges, rectangles, triangles, tetrahedra, hexahedra,
pyramids, prisms and some infinite elements of quadrilaterals or hexahedra. Finite
elements include traditional first and second order Lagrange, as well as arbitrary order
hierarchical bases, and Nédélec elements of first type.
Mesh partitioning is available in libMesh through interfaces to several external pack-

ages, but also some internal partitioning algorithms are provided: Linear and centroid
partitioner as examples of internal algorithms, Metis and ParMetis [KK98] as examples
for external libraries. In addition to these two, libMesh includes interfaces to solver
libraries such as PETSc [BAA�15b] and LASPack [LAS]. Thus, libMesh offers several
linear equation solvers such as GMRES, CG, Bi-CGSTAB, QMR, and preconditioners
like Jacobi, incomplete LU factorization and incomplete Cholesky factorization. The
choice of an appropriate solver and preconditioner can be made by the user at runtime
or directly coded into the program.
A wide variety of mesh formats are supported by libMesh to facilitate the handling of

complex geometries. The following is an incomplete list of supported input and output
formats: Nemesis, TetGen, I-deas Universal UNV, AVS’s ASCII UCD, Visualization
Toolkit VTK, libMesh formats XDR/XDA, ExodusII, GMSH, LANL’s General Mesh
Viewer GMV, GnuPlot (only output), Matlab (only input) [KPS13].
An example program using the libMesh library would look like Listing 1.

1 #include "libmesh/libmesh.h"

2 // include additional libmesh components

3

4 using namespace libMesh;

5

6 void assemble_something(EquationSystems& es, const std::string& system_name);
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7

8 int main (int argc, char** argv)

9 {

10 LibMeshInit init(int argc, char** argv);

11

12 Mesh mesh( init.comm() );

13

14 // mesh generation via MeshTools::Generation::build_... or mesh import from file via

mesh.read(std::string filename)

15

16 EquationSystems es(mesh);

17

18 LinearImplicitSystem& system = es.add_system<LinearImplicitSystem> ("example system");

19

20 system.add_variable ("a", FIRST);

21 system.add_variable ("b", SECOND, LAGRANGE);

22

23 system.attach_assemble_function (assemble_something);

24

25 es.init();

26

27 system.solve();

28

29 VTKIO (mesh).write_equation_systems ("out.pvtu", es);

30

31 return 0;

32 }

Listing 1: Example libMesh program

In fact, this is the base construction of a usual libMesh program. It starts with including
libMesh (libmesh.h) and all its components that are needed by the program, e.g. mesh.h,
equation_systems.h, fe.h. Then, the library needs to be initialized (line 10). This is
necessary because it may depend on a number of other external applications like MPI
or PETSc that require initialization before use. Furthermore, if the LibMeshInit object
goes out of scope, the other libraries are finalized automatically by libMesh. Next, a Mesh

object is created (lines 12-14) on the default MPI communicator even if the program is
executed single-threaded. The mesh can either be read from file or created by internal
mesh generation tools. In line 16 an EquationSystems object is created. It can contain
multiple different systems and manage them. Here, only one linear implicit system is
added to the object (line 16). Any ...System object can contain multiple variables of
different approximation orders (see lines 20/21). Many systems require a user-defined
function that will assemble the (linear) system (lines 6 and 23). Now, the data structures
for the equation system must be initialized which is done in line 25. The solving of all
or just some of the systems added to the equation systems object is done in line 27 of
the code. This single line of code calls the assemble function defined earlier and invokes
the default numerical solver. If the external library PETSc is installed, the solver’s
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properties can be controlled from the command line by the user (cf. 4.2.1). After solving
the system, the solution can be written to file; here, for example, the results are written
to a VTK-formatted plot file (line 29).

4.2 Implementation Details
This section contains details about the program’s implementation supported by libMesh.
Different parts of the code like the initialization, loading of the mesh or the system’s
matrix assembly are described. The focus is put on the interaction between the libMesh
library and the user’s code. Requirements regarding mesh formats and user arguments
are pointed out as well.

4.2.1 Initialization

The program expects a few arguments set by the user through the command line at
start. All parameters are independent from libMesh. The ordering of these parameters
are not relevant; some are optional. Here is a complete list of all arguments that can be
set in the command line:

• -nu: The Poisson’s ratio ν is required by the material matrices. A value in the
range 0.0   ν ¤ 0.5 is recommended for most scenarios.

• -e: The elastic modulus or Young’s modulus E is also required by the material
matrices. Here, a value E " 0 is recommended.

• -t: The thickness t of the mesh. It is used at both, the material matrices and the
strain-displacement matrices and thus a required parameter to be set by the user.

• -d: This argument is mostly used for the debugging process. If set to “1” additional
messages regarding transformation matrix entries, strain-displacement matrices,
force load vectors and other internal mathematic structures are put out on the
console. This parameter is optional, as it only gives the user more information in
case of detecting errors. Since it slows down the calculation, it should only be set
if needed. To turn the messages off, it can simply be left out or set to “0”.

• -mesh: The mesh file to import. A required parameter, because no default mesh
is provided by the program to be used. The relative path to the file (+ extension)
must be specified. Allowed file formats are: libMesh format xda (ASCII) and xdr
(binary) as well as GMSH format msh. For more details, see the following section.

• -out: The relative path and filename (without extension) for the output of the
resulting mesh. This parameter is optional. If not set, no output file will be
created. The path to the filename must exist, otherwise no file can be created and
libMesh will terminate the program with an error message.

• -dt: The constant time step length value. This parameter is only available in the
preCICE-version of the program and is explained further in Section 5.5.4.
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If the external library PETSc is installed and libMesh is configured to use it, the user
can set additional optional command line arguments [BAA�15a]. In fact, if one uses
PETSc, it will look through all parameters to find those it can process by itself. The
following list is therefore limited to parameters that directly coincide with the need of
this program. For more PETSc command line arguments see [BAA�15a].

• -ksp_type: Specifies the Krylov subspace method. Options are: richardson,
chebyshev, cg, gmres, tcqmr, bcgs, cgs, tfqmr, cr, lsqr, bicg, preonly.

• -pc_type: To employ a particular preconditioning method used with the Krylov
space method, the user can select one using this argument. Options are: none,
jacobi, bjacobi, sor, eisenstat, icc, ilu, asm, gasm, gamg, bddc, ksp, composite, lu,
cholesky, shell.

4.2.2 Mesh file import

The mesh geometry needs to be defined in a mesh file. LibMesh can import meshes from
many different formats, including its own formats XDA and XDR, the first one stored
in human-readable ASCII format, the latter one written in binary code. Another one is
the GMSH format msh. There are other formats libMesh can import, but only the three
mentioned are currently supported by the thesis’ program. A mesh file must provide the
following information such that the program can work with it:

• A list of vertices. Every vertex must be specified with its xyz-coordinates defined
in the global coordinate system.

• A list of elements the mesh consists of. The elements are normally defined by their
type, for example a three-node triangle or a four-node quadrilateral, and a list of
vertex identifiers representing the element’s nodes.

• A list of boundary conditions. The program provides two different types of bound-
ary conditions. The type (or ID) has to be specified in form of identifiers on
element’s nodes or edges. In the latter case the boundary condition is used on
both nodes defining the edge.

Listing 2 shows a short example of a mesh defined in the xda-format. It displays the
unit square with its center at the global origin, composed of two three-node triangles.
It has different boundary conditions on the bottom and top edge.

1 libMesh-0.7.0+

2 2 # number of elements

3 4 # number of nodes

4 . # boundary condition specification file

5 n/a # subdomain id specification file

6 n/a # processor id specification file

7 n/a # p-level specification file

8 2 # n_elem at level 0, [ type (n0 ... nN-1) ]

9 3 0 1 2 # 3 -> triangle with 3 nodes, 0 1 2 -> vertices 0, 1 and 2
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10 3 1 3 2 # 1 3 2 -> vertices 1, 3 and 2

11 -1.0 -1.0 0.0 # x y z coordinates of vertex 0

12 1.0 -1.0 0.0 # vertex 1

13 -1.0 1.0 0.0 # vertex 2

14 1.0 1.0 0.0 # vertex 3

15 2 # number of boundary conditions

16 0 0 1 # 0 -> element 0, 0 -> edge 0 (between vertex 0 and 1), bc-type 1

17 1 1 0 # 1 -> element 1, 1 -> edge 1 (between vertex 3 and 2), bc-type 0

Listing 2: Example xda mesh file

Listing 3 shows the same example mesh but in the GMSH format. Here, libMesh has
some requirements on how the GMSH mesh file has to be structured: Every line defined
in the $Elements-section contains severals numbers, ordered as follows: Element index,
element type, number of tags, physical entity number, geometrical entity, additional
list of tags, list of node indices [GMS]. LibMesh requires the number of tags to be
at least two. The first tag (physical entity) will be used by libMesh to identify the
boundary condition ID; the second tag will be ignored - at least the author could not
find where libMesh uses this value. LibMesh also treats the element type in different
ways: The highest dimensional element types, for example 2D elements, like triangle
and quadrilaterals, will act as the mesh defining elements. Every element that has lower
dimension, (e.g. nodes or edges), will be seen as boundary condition definitions by
libMesh. See Listing 3 for clarification.

1 $MeshFormat

2 2.2 0 8

3 $EndMeshFormat

4 $Nodes

5 4

6 1 -1.0 -1.0 0.0

7 2 1.0 -1.0 0.0

8 3 -1.0 1.0 0.0

9 4 1.0 1.0 0.0

10 $EndNodes

11 $Elements

12 6

13 1 2 2 0 0 1 2 3

14 2 2 2 0 0 2 4 3

15 3 15 2 0 0 1

16 4 15 2 0 0 2

17 5 15 2 1 0 3

18 5 15 2 1 0 4

19 $EndElements

20

Listing 3: Example GMSH mesh file

There are six elements defined. Two triangles and four single nodes. The mesh only
exists of the two triangles. The four nodes will be used by libMesh to set boundary
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conditions at the corresponding nodes of the mesh. In this case node 1 and 2 gets
boundary conditions with ID 0, node 3 and 4 with ID 1. This behavior of libMesh must
be kept in mind when dealing with GMSH mesh files.

The program features two different types of boundary conditions whose identifiers
must be set in the mesh file:

• Simply supported boundaries are of type “0”. The boundary cannot be moved but
is free to rotate and have no moment resistance. In mathematical notation:

u � v � w � 0,Mx �My � 0

• Clamped boundary has type “1”. Here, the boundary is completely fixed with no
movement and no rotation possible. Mathematically:

u � v � w � 0, θx � θy � 0

In the stand-alone version of the program no coupled fluid solver provides it with pres-
sures/forces and moments at the nodes. Therefore, these values must be imported via
file, too. The data is stored in an extra file that requires the following naming conven-
tion: For a mesh file named “mesh.xda”, the corresponding force file must be named
“mesh_f” (without any extension). Therefore no additional command line argument is
necessary and the force file is independent from the format the mesh file has. The struc-
ture of a force file is simple: Listing 4 shows an example corresponding to the mesh of
Listing 2. The first line defines the number n of nodes/vertices the mesh has (in this case
n � 4). The second line holds a floating point number representing a global factor that
is multiplied by every force/moment component defined below. A value of 1.0 has no
effect on the load values. Lines 3 to n�2 are the xyz-components of the single forces put
on the corresponding mesh nodes followed by three values for the moments Mx,My,Mz.
The ordering is the same as for the vertices in the mesh file. The xyz-coordinates must
also be specified in the global coordinate system. In the example a load is applied on
the first and third node. The first load is directed along the negative z-axis, the second
load along the positive y-axis. The other two nodes have no forces and all nodes have
no moments applied.

1 4

2 1.0

3 0.0 0.0 -0.65 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 2.34 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.0 0.0

Listing 4: Example force file

The implementation’s code to import a mesh file is rather short (Listing 5). The first
line creates a 2D mesh distributed across the default MPI communicator (gathered by
the LibMeshInit-object). The mesh is read in line 3 from the file located at the place
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defined by in_filename. In line 4 information about the mesh is printed to the console.
A special detail is line 2: It is not guaranteed that the ordering of the nodes defined in
the mesh file is the same after libMesh has imported the mesh file. Since the program
uses the additional force file to apply the loads onto the mesh nodes, this mapping could
be destroyed. Therefore the function call in line 2 forbids libMesh to automatically
renumber the nodes of the mesh and let the ordering be as defined in the mesh file.

1 Mesh mesh(init.comm(), 2);

2 mesh.allow_renumbering(false);

3 mesh.read(in_filename);

4 mesh.print_info();

Listing 5: Loading mesh and prepare for use

4.2.3 System setup

After libMesh and possible external libraries are initialized and the mesh was created
and initialized, too, the equation system must be set up. Listing 6 shows the relevant
part of the implementation.

1 EquationSystems equation_systems (mesh);

2 LinearImplicitSystem& system = equation_systems.add_system<LinearImplicitSystem> ("

Elasticity");

3

4 unsigned int u_var = system.add_variable("u", FIRST, LAGRANGE);

5 unsigned int v_var = system.add_variable("v", FIRST, LAGRANGE);

6 unsigned int w_var = system.add_variable("w", FIRST, LAGRANGE);

7 unsigned int tx_var = system.add_variable("tx", FIRST, LAGRANGE);

8 unsigned int ty_var = system.add_variable("ty", FIRST, LAGRANGE);

9 unsigned int tz_var = system.add_variable("tz", FIRST, LAGRANGE);

10

11 system.attach_assemble_function (assemble_elasticity);

12

13 std::set<boundary_id_type> boundary_ids;

14 boundary_ids.insert(0);

15 std::vector<unsigned int> variables;

16 variables.push_back(u_var);

17 variables.push_back(v_var);

18 variables.push_back(w_var);

19 ConstFunction<Number> cf(0.0);

20 DirichletBoundary dirichlet_bc(boundary_ids, variables, &cf);

21

22 boundary_ids.clear();

23 boundary_ids.insert(1);

24 variables.push_back(tx_var);

25 variables.push_back(ty_var);

26 variables.push_back(tz_var);

27 DirichletBoundary dirichlet_bc2(boundary_ids, variables, &cf);

28
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29 system.get_dof_map().add_dirichlet_boundary(dirichlet_bc);

30 system.get_dof_map().add_dirichlet_boundary(dirichlet_bc2);

31

32 equation_systems.init();

33 equation_systems.print_info();

Listing 6: Setting up the equation system

In line 1 an EquationSystems-object is created. It contains and controls all equation
systems defined for a mesh, that is passed as parameter in its constructor. It can have
multiple systems or just one like in this case. Here, a linear implicit system is to be
used. LibMesh offers exactly such a system (LinearImplicitSystem). In line 2 the system
is created named “Elasticity” and added to the equation systems object. As discussed
in Section 3.5, the system has six variables, namely: u, v, w, θx, θy, θz. These variables
are added to the system in line 4 to 9. All of them are of first polynomial order and
members of the Lagrange finite element family. The add_variable-function returns a
unique number identifying the variable just added. In order to assemble the system
matrix and the right-hand side, a user-defined function must be attached to the system.
This is done in line 11. The assemble function will be discussed in Section 4.2.4. The
only part missing is the definition of the different boundary conditions. This is done
between the lines 13 and 30. As stated in the previous section, the program features
two types of boundary conditions: Simply supported and clamped with the ID “0” and
“1”, respectively. Because libMesh allows multiple IDs representing the same boundary
condition type, in line 13 a set is created and filled with the 0-ID in the next line.
After that, a vector containing the IDs of the system’s variables must be created. In the
case of a simply supported boundary only the three displacement variables u, v, w are
affected (lines 15-18). Before creating the DirichletBoundary-object, a function supplying
the Dirichlet value must be defined. In this case the value must be zero at the boundary.
A ConstFunction initialized with the value zero is therefore created in line 19. The
constructor for the Dirichlet object takes the ID-set, the variables-vector and the value-
function as parameters and copies their content into the boundary object. The set and
vector will be reused for the second boundary type. Now the 1-ID is inserted in the
cleared set in line 23 and the twist variables θx, θy, θz are added to the existing variables
in the vector (lines 24ff.). Another DirichletBoundary object is created with the new
initialization parameters. Finally, the two boundary types are added to the system in
line 29f. When the preparation steps are finished, the system can finally be initialized
and information about the system can be printed to the console.

4.2.4 Matrix and vector assembly

As stated in Section 4.1, libMesh tries to do as many programming tasks as possible on
its own and let the user concentrate on the mathematical/physical problems to model.
The last sections showed that this is often true, since the user often only need to set
parameters, create predefined objects or call libMesh functions. To solve the system,
libMesh calls a user-defined assembly function. This function is the part where the user
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gets involved at most, because here the system matrix and the right-hand side (RHS)
must be assembled. Nevertheless, libMesh helps the user with many auxiliary function
as can be seen further down. The main part of the assembly function is described in
Listing 7. The first step is to get a reference to the system whose matrix and vector needs
to be assembled. In this case the “Elasticity” system is used (line 1). Next, a reference to
a special object is retrieved from the system: The DofMap-object handles the numbering
of degrees of freedom on a mesh and manages the mapping of the local matrices to the
right positions in the overall system matrix. In line 3 to 9 several variables are defined:
Ke, Ke_m and Ke_p are matrices representing the shell element’s stiffness matrix, plane
(or membrane) stiffness matrix part and plate stiffness matrix part. The values of the
element’s RHS are stored in the vector Fe. The other three matrices are needed for the
transformation of the element to local coordinates (trafo), the storage of the transformed
nodes (transUV) and the partial derivatives (dphi). The element’s area is stored in the
variable of the same name.
The assembly function creates the local stiffness matrix and RHS for every single finite

element and adds it to the global system matrix and system right-hand side. Therefore,
one has to iterate over all the mesh elements. This is done in line 15 to 35. The following
steps are made in the exact same order:

• Get the mapping of the element’s degrees of freedom to their positions in the
system matrix (line 20).

• Transform the element from global to local coordinates, calculate its partial deriva-
tives and its area (line 23).

• Assemble the plane and plate stiffness matrix part of the shell element (line 25 +
26) and the construction of the shell stiffness matrix for the current element (line
27).

• Transform the local shell stiffness matrix back to global coordinates (line 28).

• Apply possible forces to the element in form of contributing to the local RHS (line
29).

• Constrain the local element’s stiffness matrix and RHS according to the set bound-
ary conditions (line 31): LibMesh provides a function that automatically constrains
the system matrix and right-hand side vector due to the boundary condition defi-
nitions in the initialization step.

• Add the element’s stiffness matrix to the global system matrix (line 33): The
final element’s stiffness matrix is added to the overall system matrix through the
function provided by libMesh. The vector storing the mappings of the degrees of
freedom ensures that the matrix is added at the correct position in the system
matrix.

• Add the element’s RHS to the global RHS (line 34): Same as before, but now for
the right-hand side vector.
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1 LinearImplicitSystem& system = es.get_system<LinearImplicitSystem>("Elasticity");

2 const DofMap& dof_map = system.get_dof_map();

3

4 DenseMatrix<Number> Ke, Ke_m, Ke_p;

5 DenseVector<Number> Fe;

6 DenseMatrix<Real> trafo;

7 DenseMatrix<Real> transUV;

8 DenseMatrix<Real> dphi;

9 Real area = 0.0;

10

11 std::vector<dof_id_type> dof_indices;

12 std::unordered_set<dof_id_type> processedNodes;

13 processedNodes.reserve(mesh.n_local_nodes());

14

15 MeshBase::const_element_iterator el = mesh.active_local_elements_begin();

16 const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

17 for (; el != end_el; ++el)

18 {

19 const Elem* elem = *el;

20 dof_map.dof_indices (elem, dof_indices);

21 ElemType type = elem->type();

22

23 initElement(&elem, transUV, trafo, dphi, &area);

24

25 calcPlane(type, transUV, dphi, &area, Ke_m);

26 calcPlate(type, dphi, &area, Ke_p);

27 constructStiffnessMatrix(type, Ke_m, Ke_p, Ke);

28 localToGlobalTrafo(type, trafo, Ke);

29 contribRHS(&elem, Fe, &processedNodes);

30

31 dof_map.constrain_element_matrix_and_vector(Ke, Fe, dof_indices);

32

33 system.matrix->add_matrix (Ke, dof_indices);

34 system.rhs->add_vector (Fe, dof_indices);

35 }

Listing 7: Assemble System Matrix and RHS
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In the following, some of the steps stated above are discussed in more detail, namely the
coordinate transformation, the construction of the shell element stiffness matrix and the
contribution to the right-hand side vector.
The transformation from global to local coordinates is described in Section 3.4. Let

Ã �
�
x1 � 0 y1 � 0

�T
, B̃ �

�
x2 y2 � 0

�T
, C̃ �

�
x3 y3

�
be the nodes of a trans-

formed triangular element. Then the partial derivatives are as follows:

x12 � x1 � x2 � �x2 y12 � y1 � y2 � 0
x31 � x3 � x1 � x3 y31 � y3 � y1 � y3

x23 � x2 � x3 y23 � y2 � y3 � �y3

For a transformed quadrilateral the derivatives are straightforward: xij � xi � xj , yij �
yi � yj , because no implicit positions can be assumed for the transformed nodes.
The area of a triangle can easily be calculated during the creation of the transformation

matrix. The cross product between the spanning vectors ~u and ~v (cf. Section 3.4) is 2
times the area of the triangle. Thus, the area is:

A4 �
1
2 |~u� ~v|

For the quadrilateral area A
�
one can use the Gauss’ area formula:

A
�
�

1
2

4̧

i�1

����
�
xi xpi�1q%4
yi ypi�1q%4


����
where “%” denotes the modulo-operator.
After the assembly of the plane stiffness part described in Section 3.2.2 for triangular

elements and in 3.2.3 for quadrilateral elements, a matrix Km with 2n�2n entries results,
n being the number of nodes the element has:

Km �

�
��������

u1 v1 u2 � � � un vn

m1,1 m1,2 m1,3 � � � m1,n�1 m1,n
m2,1 m2,2 m2,3 � � � m2,n�1 m2,n
m3,1 m3,2 m3,3 � � � m3,n�1 m3,n
...

...
... . . . � � �

...
mn�1,1 mn�1,2 mn�1,3 � � � mn�1,n�1 mn�1,n
mn,1 mn,2 mn,3 � � � mn,n�1 mn,n

�
�������


|u1
| v1
|u2

|
...
|un
| vn

The same holds for the plate stiffness part described in Sections 3.3.2 and 3.3.3. Here,
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the matrix has 3n�3n entries, n also the number of elements nodes:

Kp �

�
����������

w1 θx1 θy1 w2 � � � θxn
θyn

p1,1 p1,2 p1,3 p1,4 � � � p1,n�1 p1,n
p2,1 p2,2 p2,3 p2,4 � � � p2,n�1 p2,n
p3,1 p3,2 p3,3 p3,4 � � � p3,n�1 p3,n
p4,1 p4,2 p4,3 p4,4 � � � p4,n�1 p4,n
...

...
...

... . . . � � �
...

pn�1,1 pn�1,2 pn�1,3 pn�1,4 � � � pn�1,n�1 pn�1,n
pn,1 pn,2 pn,3 pn�1,4 � � � pn,n�1 pn,n

�
���������


|w1
| θx1

| θy1

|w2

|
...
| θxn

| θyn

In Section 3.5, it is described that the two stiffness matrices from plane and plate can
be superimposed to the shell element’s stiffness matrix. This results in a matrix K that
consists of n�n submatrices (6n�6n entries per submatrix):

K �

�
����
K11 K12 � � � K1n
K21 K22 � � � K2n
...

... . . . ...
Kn1 Kn2 � � � Knn

�
���


Every submatrix describes the stiffness for one node of the shell element, i.e.:

Kij �

�
�������

m2i,2j m2i,2j�1 0 0 0 0
m2i�1,2j m2i�1,2j�1 0 0 0 0

0 0 p3i,3j p3i,3j�1 p3i,3j�2 0
0 0 p3i�1,3j p3i�1,3j�1 p3i�1,3j�2 0
0 0 p3i�2,3j p3i�2,3j�1 p3i�2,3j�2 0
0 0 0 0 0 dij

�
������


where dij is a thousandth of the maximum of the diagonal entries ofKij (cf. Section 3.5):

dij �
1

1000 max tm2i,2j ,m2i�1,2j�1, p3i,3j , p3i�1,3j�1, p3i�2,3j�2u

After this step, the local stiffness matrix for the shell element is finally constructed.
Before it can be added to the overall system stiffness matrix, it must be transformed
back to the global coordinate system as discussed in Section 3.4. For this purpose let T̃
be the 6�6 transformation matrix from equation (135). Now, every submatrix Kij from
K must be transformed in the following way (Eq. (136)):

K̄ij � T̃ TKij T̃

for 1 ¤ i, j ¤ n.
The resulting global coordinate matrix K̄ij has the same structure as its local ancestor.
In order to add it to the system matrix, one has to modify its structure. Until now, the
ordering of columns and rows were as follows: All variables for node 1, followed by all
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variables for node 2, etc. (u1, v1, w1, . . . , θyn , θzn). LibMesh requires the system matrix
to be in another format: The first variable for all nodes, then the second variable for
all nodes, etc. (u1, u2, . . . , un, v1, v2, . . . , θzn). This change in format is achieved by the
following code (Listing 8):

for (α = 0..5)

for (β = 0..5)

for (i = 0..n-1)

for (j = 0..j-1)

Klibmeshpαn+i,βn+jq � K̄p6i+α,6j+βq;

Listing 8: Bring stiffness matrix into libMesh conform format

The right-hand side of the shell element is constructed in the function described in
Listing 9.

1 void contribRHS(const Elem **elem, DenseVector<Real> &Fe, std::unordered_set<unsigned int> *
processedNodes)

2 {

3 unsigned int nsides = (*elem)->n_sides();

4 Fe.resize(6*nsides);

5

6 DenseVector<Real> arg;

7 for (unsigned int side = 0; side < nsides; side++)

8 {

9 Node* node = (*elem)->get_node(side);

10 dof_id_type id = node->id();

11

12 if (processedNodes->find(id) == processedNodes->end())

13 {

14 processedNodes->insert(id);

15 arg = forces[id];

16 Fe(side) = arg(0);

17 Fe(side+nsides) = arg(1);

18 Fe(side+nsides*2) = arg(2);

19 }

20 }

21 }

Listing 9: Contribute RHS function

The local vector storing the forces and moments has 6n entries: Three forces and three
moments for each of the n nodes (n � 3 for the triangular element, n � 4 for the
quadrilateral). The values are stored in a global vector that was filled at the beginning
of the program with the entries of the force file. At first (line 3 and 4) the number of sides
of the element is get (equals the number of element’s nodes n) and the RHS-vector is
resized accordingly. Then, one has to iterate over the sides/nodes of the element. Here,
a problem occurs due to the iteration of the assembly function over all mesh elements:
The majority of mesh nodes belongs to more than one element. In order to keep the
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global RHS data consistent such a node must be processed only once. In Listing 7 in line
12 an unordered_set structure was created. This set keeps record of the IDs of already
processed nodes. In line 12 of the RHS contribution function it is checked if the current
element node’s ID is already existing in that set. If so, the node is skipped and the
function continues with the next one. If not, that node’s ID is inserted into the set and
the corresponding force/moment entries from the global vector is written to the local
RHS-vector.

4.2.5 Solving the system

The system’s solving is done in libMesh with only one call: equation_systems.solve().
This function performs two actions: It calls the user-defined assembly function that
constructs the system matrix and right-hand side and after that it starts the solver. The
rest is handled by libMesh or libraries like PETSc, respectively, though the user has some
options to control the solver’s behavior. Listing 10 shows the code section responsible
for the system’s solving.

1 // optionally set solver parameters:

2 const unsigned int max_iter = equation_systems.parameters.get<unsigned int>("linear solver

maximum iterations");

3 const Real tolerance = equation_systems.parameters.get<Real>("linear solver

tolerance");

4 equation_systems.parameters.set<unsigned int>("linear solver maximum iterations")= max_iter;

5 equation_systems.parameters.set<Real> ("linear solver tolerance") = tolerance;

6

7 equation_systems.solve();

8

9 std::vector<Number> sols;

10 equation_systems.build_solution_vector(sols);

11

12 MeshBase::const_node_iterator no = mesh.nodes_begin();

13 const MeshBase::const_node_iterator end_no = mesh.nodes_end();

14 for (; no != end_no; ++no)

15 {

16 Node *nd = *no;

17 int id = nd->id();

18 Real displ_x = sols[6*id];

19 Real displ_y = sols[6*id+1];

20 Real displ_z = sols[6*id+2];

21 (*nd)(0) += displ_x;

22 (*nd)(1) += displ_y;

23 (*nd)(2) += displ_z;

24 }

Listing 10: Solve the system and build solution

In line 7 the addressed solve-function is called. Before, one can modify the maximum
number of iterations the solver will do and the residual’s tolerance signaling when the
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solver should stop. In this case nothing is changed, since the original parameter values
are set. It was added to the source code to show the syntax and mention the possibility,
but was not used in the program. The equation systems object stores the calculated
solution internally. In order to get access to the results, one has to build a vector (line
9f.) where the solutions can be stored in. LibMesh resizes the vector automatically and
fills it with the solution values. The order hereby is as follows: First all six values for
the d.o.f. for the first node in the order of adding them to the system, then all six values
for the second node and so on, i.e. ÝÝÑ

sols �
�
u1 v1 w1 θx1 θy1 θz1 u2 . . . θzn

�
for a mesh with n nodes. The nodes are ordered as defined in the mesh file. Until this
position in the code, only the displacements and twists are calculated. What is left is
to apply the displacements to the mesh. This is done between line 12 and 24. One has
to iterate over all mesh nodes. LibMesh provides a special iterator-type for nodes to do
this. The current node’s ID is stored in a variable in line 17 and then the displacements
for the x-, y- and z-direction is get from the vector. Note, that the values are represented
in global coordinates like the coordinates of the nodes in the mesh object. Hence, no
transformation is necessary. The single direction displacements are then added to the
existing absolute values of the mesh nodes.

4.2.6 Output

When the system is solved and the results are applied to the mesh, the program can
write the displaced mesh with its additional data to a file. Listing 11 shows the relevant
function. First, the function checks if the user does wish any output to be made. If so,
an output stream is created with the filename specified by the user as command line
argument plus the ExodusII extension “.e”. Finally, the mesh with all additional data
(for example the relative displacements) is written to the specified file.

1 void writeOutput(Mesh &mesh, EquationSystems &es)

2 {

3 if (!isOutfileSet)

4 return;

5

6 std::ostringstream file_name;

7 file_name << out_filename << ".e";

8 ExodusII_IO (mesh).write_equation_systems(file_name.str(), es);

9 }

Listing 11: Store results in mesh file

The ExodusII-format was chosen as output format. First, libMesh can handle parallel
output for this format on multiple processes. An additional data gathering step is
therefore not needed. Additionally, the ExodusII format can be opened and analyzed
by ParaView - an open source multiple-platform application for interactive, scientific
visualization - which gives the user more flexibility for post-processing work and analysis.
It would be possible to use VTK as output format. Here, every process in parallel
execution will write the mesh partition it owns in a separate file. This can lead to
difficulties in post-processing analysis of the results.
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4.3 Parallelization with MPI

When the complexity of the mesh gets larger or the program is coupled with other
solvers and is executed multiple times per time step, it is important to parallelize the
computations in order to solve the system in shorter time. The parallelization process
with MPI has three major parts: The library itself, the partition of the mesh and the
solving of the system. In the following sections these parts are described in more detail.
Additionally, it will be stated what code changes had to be performed in order to make
the program code working with MPI.

4.3.1 libMesh build time requirements

Although MPI is used internally throughout the libMesh library as soon as the pro-
gram runs in MPI-mode, not everything will work as expected. If one tries to run a
theoretically fully MPI-compatible libMesh program and tries to solve a system like
the linear implicit system in this case, wrong solutions will result. The problem occurs,
when libMesh is built and configured without PETSc support. Then, libMesh will use an
Eigen sparse solver [Eig]; either a version installed in the user’s environment or a built-in
version from libMesh itself. These solvers are only serial and cannot be used with MPI,
referring to an answer on the libMesh-mailing list from Dr. John Peterson, one of the
libMesh developers. The solution would be to install PETSc and build libMesh against
it. The usage of PETSc when libMesh is executed in parallel is a strong recommendation
from the developers of libMesh [PSA�14].

4.3.2 Partitioning the mesh

The parallelization of the solving step is directly linked to the partitioning of the mesh.
Every process gets a part of the mesh and solves the system on its partition. LibMesh
provides different partitioning algorithms the user can choose from, namely:

• LinearPartitioner: The linear partitioning algorithm is the simplest of all available
partitioners. It takes the element list and splits it into equally-sized parts and
assigns them to each processor.

• CentroidPartitioner: The centroid partitioner partitions simply based on the loca-
tions of element centroids. It must be defined how to sort the element centroids,
i.e. the distance in the x, y or z-direction or the radial distance.

• MetisPartitioner: This partitioner uses the METIS graph partitioner to partition
the elements. This partitioner will be used by libMesh at default if no other
partitioner is specified.

• ParmetisPartitioner: Here, the ParMETIS graph partitioner will be used to par-
tition the elements. ParMETIS is an MPI-based parallel library and extends the
functionality provided by METIS.
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• HilbertSFCPartitioner: The Hilbert SFC partitioner uses a Hilbert space filling
curve to partition the elements.

• MortonSFCPartitioner: Same as before but with a Morton space filling curve to
partition the elements.

It is easy to use any of these partitioners in code. Listing 12 shows an example of the
ParMETIS partitioner. Instead of this partitioner, every other listed class can be placed
at line 7 with the corresponding header file included (line 1).

1 #include "libmesh/partmetis_partitionier.h"

2 // (...)

3 Mesh mesh(init.comm(), 2);

4 mesh.allow_renumbering(false);

5 mesh.read(in_filename);

6

7 ParmetisPartitioner partitioner;

8 partitioner.partition(mesh);

9 // (...)

Listing 12: Mesh partitioning example

4.3.3 Local elements

LibMesh uses a collection of different iterator-types to go through the mesh elements and
nodes. This collection can be split into two groups: Local and global iterators. In the
serial case there is no difference between the two, since all elements and nodes exist on
the same process. If the program is run with multiple processes on a partitioned mesh,
it gets important to use local iterators. Thus, the single processes only iterate over their
“own” elements and nodes without risking to interfere with the neighboring processes.
This behavior gets especially important in the assembly function (cf. Section 4.2.4).
Listing 13 shows a short code part of this function.

1 // (...)

2 MeshBase::const_element_iterator el = mesh.active_local_elements_begin();

3 const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

4 for (; el != end_el; ++el)

5 {

6 // (...)

7 }

8

Listing 13: Local elements iterator

Here, the for-loop header is shown that will iterate over the mesh elements in order
to assemble the element’s stiffness matrix and right-hand side and add them to the
global system matrix and right-hand side, respectively. Note that it will be iterated
over active_local_elements. In the serial case it is also possible to use active_elements,
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which allows iterating over all mesh elements. “active” in this case means, that only
non-deactivated elements from the mesh will be processed. Since the deactivation of
mesh parts is not used in this implementation, one can ignore this term.

An example where global iterators are still possible and useful is after the solving step
(see Section 4.2.5. Listing 14 shows parts of the code after the system gets solved.

1 // (...)

2 std::vector<Number> sols;

3 equation_systems.build_solution_vector(sols);

4

5 if (global_processor_id() == 0)

6 {

7 MeshBase::const_node_iterator no = mesh.nodes_begin();

8 const MeshBase::const_node_iterator end_no = mesh.nodes_end();

9 for (; no != end_no; ++no)

10 {

11 // (...)

12 }

13 // (...)

14 }

15 // (...)

Listing 14: Global nodes iterator

LibMesh produces the solution vector only on the master process which has ID 0 per
definition. Even when running the program with multiple processes, the solution vector
on process 0 contains the values for all mesh nodes. Every other process does not have
access to the solution vector. In order to apply the displacements onto the mesh nodes,
process 0 must iterate over all mesh nodes. Instead of local_nodes, in line 7 and 8 nodes

is used which represents all the nodes of the mesh.

4.3.4 Assembly changes

In Section 4.2.4 it was stated that a problem occurs at the creation of the local right-
hand side’s vector: Since nodes can be part of multiple elements, they can be processed
multiple times and contribute more than one time to the RHS. This was prevented by
creating an unordered_set that stores the ID of already processed nodes. In the serial
case this solves the problem. In case of parallel execution, every process generates
such a set for itself without knowing what the other processes have already stored in
theirs. This way, it cannot be decided if a node that is situated on the boundary
between two mesh partitions was already processed by one of these processes. One
solution would be to communicate the processed node IDs between the processes such
that the information is consistent throughout the mesh. But that would produce a lot
of communication overhead and would slow down the program down. With the help
of libMesh this problem can be solved without any inter-process communication at all.
Listing 15 contains extracts from the assembly function and the auxiliary function to
create the local right-hand side.
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1 // in the assemble_elasticity function:

2 std::unordered_set<dof_id_type> processedNodes;

3 processedNodes.reserve(mesh.n_local_nodes());

4

5 //-------------------------------------------------------------------

6

7 // in the contribRHS function:

8 Node* node = (*elem)->get_node(side);

9 int id = node->id();

10

11 if (node->processor_id() != global_processor_id())

12 continue;

13

14 if (processedNodes->find(id) == processedNodes->end())

15 {

16 processedNodes->insert(id);

17 // (...)

18 }

19 // (...)

Listing 15: Process local nodes only

Here, one can see in line 3 that every process will create a set with a size reserved to the
number of local elements that process has access to. When the mesh file is imported,
LibMesh stores the ID of the process in all nodes that are part of the partition assigned
to that process. This is exploited in line 11: If the stored ID of the node does not match
the process’ ID than it will be continued with the next node of the element. This can
only be the case for nodes situated on the partition’s boundary with another partition
neighboring. If the node does not belong to the calling process, it must belong to the
neighboring process. It is impossible to skip a node, since all nodes belong to at least
one process. With this line of code, one can ensure that a node is processed only once:
If it is not owned by the calling process, it is not processed at all. Otherwise it will be
processed once and than marked in line 16 such that the same process will not use it in
the future.
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5 Coupling through preCICE

When a physical problem becomes too complex, one often split it into smaller pieces
that are better manageable. These pieces, or physical fields, can be used to get separate
solutions which can then be combined to an overall solution. This approach is called
“partitioned approach” [Gat15]. It allows to reuse simulation code for the single fields
and simultaneously provides the possibility to encapsulate the coupling functionality
itself as a reusable component. This allows minimal access to solver codes; treating
them as black boxes. At the same time the solver code does not have to include the
whole coupling code making it less application dependent. The coupling tool preCICE
(precise Code Interaction Coupling Environment) offers coupling functionality to de-
velop a multi-physics simulation environment using existing solvers. In this work a
fluid-structure interaction (FSI) is to be simulated. The thesis’ program represents the
structure part whereas the fluid part can be dynamically exchanged due to the coupling
with preCICE. This Chapter gives an overview of preCICE and its main components
and shows the code modifications that were necessary to integrate preCICE and prepare
the program for coupling.

5.1 Overview of preCICE

The goal of preCICE is to provide all functionality to realize a multi-physics simulation
environment working with existing single-physics solvers. This includes simulations like
fluid-structure, fluid-acoustics, fluid-solid thermodynamics and porous-free flow interac-
tions, for instance. It provides technical inter-code communication via MPI or TCP/IP,
methods for data mapping between different grids and coupling methods based on quasi-
Newton methods to ease the development process. preCICE supports parallel solvers
through efficient point-to-point communication without the need of a server instance. It
also features a high-level API making its integration into existing solver code minimal
invasive [BLG�].
It supports partitioned coupling of black box solvers with focus on FSI and provides

a geometry interface for Cartesian grid solvers. Its API is available for C++, C and
Fortran and consists of methods enabling solvers to use coupling functionality in a flexible
way. After the preCICE integration into a solver’s code, a peer-to-peer communication
without central control instance is generated. The single solver codes can be run serial or
parallel without major modifications to the integrated API. Furthermore, the concrete
coupling algorithms in the simulation can be selected via an XML configuration file that
optimizes the solver adaption [Gat15].
Figure 13 shows a schematic view of the main functionality groups of preCICE. Two

solvers (A and B) are coupled through the preCICE tool. The three main functionalities
of preCICE are shown in the middle: Fix-point acceleration methods, point-to-point
solver process communication and data mapping between non-matching grids at the
coupling surface. Each of the solver runs in parallel with a master process controlling
tasks such as convergence for the corresponding solver as well as for the whole simulation.
The following sections describe each of the three addressed main functionalities in more
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Figure 13: Schematic view of a partitioned multi-physics simulation with two solvers (A
and B) coupled through preCICE. In the middle are the three main func-
tionalities of preCICE shown, that steer coupling iterations: Fix-point accel-
eration methods, point-to-point communication and data mapping between
non-matching grids at the coupling interface. Picture courtesy of Florian
Lindner [BLG�]

detail.

5.2 Coupling Methods

preCICE distinguishes two possible coupling schemes: Explicit and implicit coupling. A
single time step of multi-physics simulation partitioned into several solvers can be done
with only a small and fixed number of calls of time steps per solver. This is described
by an explicit coupling scheme. The alternative is an iterative procedure that achieves
convergence with respect to the monolithic (all solvers in one program) solution of the
system in each time step. An implicit coupling scheme then iterates over a coupling
equation until convergence is reached. Based on [BLG�], it is assumed that two solvers
S1 and S2 make up a coupled system. Vector spaces X1 and X2 describe data at the
coupling interface to be mapped between the two solvers in a single time step. The
output of S1 is required as an input by S2 and vice versa; it follows:

S1 : X1 Ð X2 and S2 : X2 Ð X1 (137)

The fluid-structure coupling done in this work, is an example for a Dirichlet-Neumann
type coupling. The displacements at the coupling interface of the structure solver is the
input for the fluid solver that gives forces to the structure solver as its output.
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5.2.1 Explicit Coupling Schemes

Two different implementations of explicit coupling schemes exist in preCICE: The stag-
gered scheme and the parallel scheme. The staggered scheme uses the old time step’s
values xpnq1 at the coupling surface for the execution of the nth time step (tn Ð tn�1) to
achieve xpn�1q

2 . These new values act as boundary values for the nth time step of S2:

x
pn�1q
2 � S

pnq
1

�
x
pnq
1

	
and x

pn�1q
1 � S

pnq
2

�
x
pn�1q
2

	
(138)

Since the two solvers are executed staggered, this scheme is not optimal with respect to
load balancing. In contrast, the parallel scheme does not have this drawback [BLG�].
It uses the old time step values xpnq1 and xpnq2 as inputs for both solvers:
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According to [BLG�] both explicit schemes yield consistent time steps but cause insta-
bilities that cannot be avoided, even if the time step length is reduced.

5.2.2 Implicit Coupling Schemes

All implicit coupling schemes in preCICE are based on fixed-point iterations using the
staggered or the parallel explicit scheme. The fixed-point iteration regarding the stag-
gered scheme is as follows:
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The fixed-point iteration corresponding to the parallel scheme can be written as:
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Here, the new iterates for xpn�1q,i�1
2 and x

pn�1q,i�1
2 are computed in parallel. pre-

CICE offers simple underrelaxation, adaptive Aitken underrelaxation and various quasi-
Newton solvers in order to solve these fixed-point equations as robust and stable as
possible [BLG�]. In the following a generic fixed-point equation

x � Hpxq (142)

is considered. Every fixed-point equation solver in preCICE is a combination of a fixed-
point iteration and a post-processing step that modifies the result of the fixed-point
iterator. Underrelaxed fixed-point iterations are the simplest solvers [BLG�]:

xi�1 � Hpxiq � pω � 1q
�
Hpxiq � xi

�
(143)

with ω P R, 0   ω ¤ 1 either a user-defined value or additionally adapted by the solver
throughout the iterations using Aitken underrelaxation. In order to get the full possibil-
ity of a parallel scheme, preCICE provides a class of convergence acceleration methods,
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called “quasi-Newton methods”. With these methods a fast convergence is achieved in
particular for difficult problems when using parallel fixed-point iterations [BLG�]. All
quasi-Newton methods in preCICE accelerate the fixed-point iteration by a subsequent
Newton step:

xk�1 � Hpxkqloomoon�J�1
R̃

�
Hpxkq � xklooooomooooon



(144)

�: x̃k � x̃k �H�1px̃kq

where R̃ � I �H�1 maps x̃k to the residual rk � R̃px̃kq � Hpxkq � xk. The inverse of
the Jacobian J�1

R̃
can be approximated (Ĵ�1

R̃,k
) in different ways in preCICE [BLG�]:

• The classical interface quasi-Newton (IQN) approach uses the approximated in-
verse Jacobian with minimal Frobenius norm:���Ĵ�1

R̃,k

���
F
Ð min (145)

• The multi-vector quasi-Newton (IMVJ) approach minimizes the distance between
Ĵ�1
R̃,k

and the approximate Ĵ�1,pnq
R̃,k

from the last time step:
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Ð min (146)

For more details, see [BLG�] and [Gat15].
Additional specifications can be made by the user to adapt the coupling method to

the problem. A statement of extrapolation in time can be made to get a better initial
guess for the next time step solution and with sub-cycling several small time steps are
done in one of the solvers while the others use a larger time step.

5.3 Data Mapping

Due to the fact that independent solvers are used for coupling in this case, it can happen
that the single solver meshes do not match each other at the coupling interface. This
requires a mapping of data that is sent by the above iterative coupling methods from the
coupling surface of one solver domain to the surface of the other solver domain. The case
where the two meshes matching each other is not very common when dealing with two
distinct solvers and would result in a simple copying of data values for transfer without
any interpolation or projection. In the case of non-conforming meshes, interpolation
algorithms are necessary and when the two grids overlap or gaps exist even projections
in some form are additionally required [Gat15]. preCICE offers some data mapping
methods but also provides the possibility for user-defined mapping implementations for
special cases [BLG�].
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5.3.1 Conservative vs. Consistent

The mapping of displacements and pressures, for example, usually requires a consistent
mapping, i.e. constants should be interpolated exactly. Let HAB P RnA�nB be the
matrix mapping values between variables from solver A to B. Then consistent mapping
can be expressed as follows:

ζ
B
� HABζA (147)

with the arbitrary variable ζ whose values are represented as matrix ζA,i � ζB,j � ζ �
const, 1 ¤ i ¤ nA, 1 ¤ j ¤ nB. The property of exact constant interpolation is satisfied
if and only if the row sums of the mapping matrix are equal to 1 [Gat15]:

ζB,i �
nA̧

j�1
HAB,ijζA,j � ζA,j � ζ @i (148)

A conservative mapping on the other hand is important for integral values like
forces. This mapping approach requires the sum of the data values to be equal on both
sides:
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This property holds only for the column sums of HAB to be equal to 1:
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Further details to the mathematical background of the two mapping approaches can be
found in [Gat15]. Both mappings are available for all methods described below.

5.3.2 Nearest-Neighbor

The Nearest-Neighbor mapping method works locally and requires only vertex positions,
i.e. only the data nodes of the solver surface meshes are required for the mapping. The
mapping itself is simple: In order to map values from mesh A to mesh B, for every node
of mesh B the geometrically closest neighbor to a node of mesh A needs to be determined.
Then, the data value from the closest node in mesh A is copied to the corresponding
node in mesh B. There are special cases for this projection method: A value from mesh
A can be copied to more than one node of mesh B if the node in mesh A is closest to all
of the B nodes. On the other hand, nodes in A can be omitted if no projection partner
in B were found, since the search for nearest neighbors is done on mesh B only. This is
a general issue of all projection methods [Gat15].
If the meshes have matching vertex positions then this mapping method is an adequate

choice. For non-conforming meshes the first order accuracy of Nearest-Neighbor makes
it a rather bad choice and other mapping methods should be taken into account [BLG�].
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5.3.3 Nearest-Projection

The Nearest-Projection mapping requires not only vertex positions but also topology
information of the source mesh. It searches for mesh nodes on the target mesh and
creates geometrical projections to a matching set of elements on the source mesh. An
interpolation is employed from nodes to mesh elements and vice versa. The finding
of closest neighbors is similar to Nearest-Neighbor, but Nearest-Projection uses faces
instead of points for its projections and several data nodes can be involved [Gat15]. Just
as for the Nearest-Neighbor mapping, nodes can be omitted here if the mesh widths
differ too much locally. This method is also of first order in theory due to the projection
step. In practice, due to the fact that often the distance between the two meshes normal
to the coupling interface is smaller than the mesh widths, a second order accuracy can
be observed [BLG�].

5.3.4 Radial Basis Function

This mapping method uses radial basis functions (RBF) centered at the mesh nodes
of the source mesh. It does not require topological information, projections or search-
algorithms. It works well on general non-conforming meshes, where overlapping meshes
or gaps between them can occur. Several different basis functions are implemented in
preCICE, including Gaussian, (Inverse) Multiquadrics, Thin Plate Splines and Volume
Splines (see [BLG�]); further functions can be added by the user. The global support
of some RBFs (Gaussian and Thin Plate, for instance) can be limited to a smaller
area by introducing a cut-off radius. This reduces the density of the system matrix for
interpolation and thus reduces the amount of communication between the solvers and
the computational complexity of the data mapping. This allows local communication
while one still benefit from the properties of the radial basis functions [BLG�].

5.4 Communication

During a multi-physics simulation the different solvers requires an efficient communi-
cation between each other. preCICE offers a communication per interaction of two or
more participants. Either MPI ports or low level TCP/IP sockets are available for com-
munication in preCICE. A fully parallel point-to-point data transfer is possible, since it
analyzes the mesh decomposition of all participants and constructs only local communi-
cation channels where they are needed [BLG�].

5.4.1 MPI Communication

The message passing interface (MPI) is used in preCICE with a multiple program multi-
ple data (MPMD) paradigm, i.e. two different codes are communicating with their own
data. Two MPI-based communication methods are implemented which differ in the way
how they set up the communication space. With the first method all executables are
put into the same communication space, called “communicator world”. All processes of
each participant are then grouped into separate communicators. An inter-communicator
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is used as the actual channel for data exchange. The second method establishes a con-
nection between processes started individually and in different communication spaces.
The exchange of connection information is done through a commonly accessible file that
stores the port names of the participants. In order to use the port variant, a MPI ver-
sion of 2 or greater is required [Gat15]. The result is the same as with the first method,
namely an inter-communicator.

5.4.2 Socket Communication

The communication by TCP/IP increases compatibility to closed-source software that
might be restricted to some MPI implementations [BLG�]. To abstract from platform
dependent socket interfaces like Pthreads or Winsock, the Boost.Asio (asynchronous net-
work and low-level input/output) library was used for implementing the socket communi-
cation in preCICE [Gat15]. The sending and receiving of data is managed by the transfer
control protocol (TCP) which is designed for failsafe data transfer and synchronization
between sender and receiver. Communication via TCP is not typical for multi-physics
simulations that often run on supercomputers, because it involves a synchronization step
and additional communication overhead compared to MPI. Other difficulties are that
ports used for socket communication may be blocked by default and each supercom-
puter node might have a different network address which requires automated checks on
a low-level socket layer [Gat15].

5.5 Integration of preCICE

The program developed within the scope of this thesis is to be coupled with a fluid
solver in a fluid-structure interaction simulation. The coupling is done with the help
of preCICE. This section contains the steps that were necessary to adapt the original
code to preCICE, including a general preCICE integration example, the introduction of
additional boundary conditions, the partitioning of the coupling surface and details on
the actual API integration.

5.5.1 preCICE Code Example

One goal of preCICE is that its API can be integrated into existing solver code with
minimal modifications to the original solver in order to make it part of a multi-physics
coupled simulation. Listing 16 shows an integration example of preCICE into an arbi-
trary solver code.

1 // ... solver specific initialization steps

2

3 precice::SolverInterface precice("SolverName", solverRank, solverThreadSize);

4 precice.configure("precice-config.xml");

5 int dataID = precice.getDataID("DataName");

6 int* vertexIDs = new int[n_nodes];

7 precice.setMeshVertices(meshID, dataSize, coordinates, vertexIDs);

8
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9 // ... setup solver data structures like forces, displacements, etc.

10

11 double preciceMaxDt = precice.initialize();

12

13 while (precice.isCouplingOngoing())

14 {

15 dt = min(preciceMaxDt, solverDt);

16

17 // ... computer solver time step

18

19 precice.writeBlockVectorData(dataID, dataSize, dataIndices, data);

20 preciceMaxDt = precice.advance(dt);

21 precice.readBlockVectorData(dataID, dataSize, dataIndices, data);

22 }

23

24 precice.finalize();

25 // ... solver specific finalization steps

Listing 16: preCICE Integration Example

The main parts of the preCICE code can be summarized as follows: The creation of an
SolverInterface object in line 3 and the loading of the XML-configuration file the line
below, the setup of the interface structures (line 5-7), the while-loop that is executed
as long as the simulation has not finished (line 13) and the exchange of data in line
19 and 21. The call of the precice.advance-function (line 20) executes the preCICE
coupling numerics, interpolations and communications, as stated in the previous sections.
More details on the single preCICE steps are described in the following when the actual
preCICE integration into the thesis’ program code is shown.

5.5.2 Additional Boundary Conditions

When the solver is part of a coupled simulation, a part of the mesh (or the whole) is
acting as the interface surface to the other side. preCICE uses this coupling interface
to exchange the data values between the two sides. In order to be flexible with respect
to the fluid solver part, this interface region is to be defined arbitrarily within the mesh
file that is imported by the structure solver. The definition which node is part of the
coupling interface and which not, is done by a separate boundary condition ID. This
guarantees no additional modifications to the mesh import, as only the mesh files itself
need to be changed accordingly. Such modified files can even be used without the coupled
version of the solver as the added boundary conditions will simply be ignored by the
stand-alone version of the solver.
The structure solver accepts two different types of boundary conditions in the unmod-

ified version: Simply supported (ID = 0) and clamped (ID = 1). These are defined at the
mesh’s boundary in general. With the coupling update three more boundary condition
IDs are required:

• ID 2: A node with this ID is defined to be part of the preCICE coupling interface.
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It can be positioned at the mesh’s boundary and within the mesh.

• ID 20: Such a node has a simply supported boundary condition and is additionally
part of the coupling interface. This ID is necessary, because the boundary condition
is required by the structure solver to work correctly and the coupling interface
definition is required by preCICE to exchange data at this node with the fluid
solver.

• ID 21: Here, the node has a clamped boundary condition and is part of the coupling
interface. The reason for this ID is the same as for the above.

The new definitions add only two more lines to the original code, as can be seen in
Listing 17. LibMesh uses a “set” data structure to be able to assign multiple different
IDs to one DirichletBoundary-object, which is exactly exploited here.

1 // (...)

2 std::set<boundary_id_type> boundary_ids;

3 boundary_ids.insert(0);

4 boundary_ids.insert(20); // NEW

5 // (...)

6 boundary_ids.clear();

7 boundary_ids.insert(1);

8 boundary_ids.insert(21); // NEW

9 // (...)

Listing 17: Additional boundary condition IDs

5.5.3 Partitioned Coupling Surface

As stated in the section above, preCICE expects a coupling interface region on the
solver’s mesh. The definition of this region happens in the mesh file that is imported
by the solver at the beginning of the simulation. The solver stores the mesh as an
internal libMesh Mesh-object. For the interface region, an own grid-like structure needs
to be defined that stores the vertex positions of the region nodes. Listing 18 is an
extract of the coupled program code. First, an advantage of libMesh and preCICE can
be seen in line 3 and 4: The code is usable with and without MPI without any code
modifications: With the usage of the prefix “local” for the node iterators, every MPI
process only searches its own mesh partition for coupling interface nodes. If no MPI is
used, local is equal to global and the only existing process goes through all mesh nodes.
On the other hand does preCICE not distinguish between a serial or parallel in the
solver programming code - although it handles parallel solvers different to serial solvers
internally (see [Gat15]).
In line 6 of Listing 18 a BoundaryInfo-object is created. This class contains information

relevant to boundary conditions: It can mark element faces and nodes with IDs useful
for identifying the type of boundary condition. The next line is needed when a mesh file
written in the libMesh-format XDR/XDA was imported. In such a file the boundary
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conditions can only be defined at elements sides. The BoundaryInfo-object then contains
only information regarding edges, not nodes.

1 // (...) preCICE successfully configured

2 MeshBase::const_node_iterator no = mesh.local_nodes_begin();

3 const MeshBase::const_node_iterator end_no = mesh.local_nodes_end();

4 int n_nodes = 0;

5 BoundaryInfo info = mesh.get_boundary_info();

6 info.build_node_list_from_side_list();

7 std::vector<const Node*> preCICEnodes;

8 for (; no != end_no; ++no)

9 {

10 const Node *nd = *no;

11 if (info.has_boundary_id(nd,2) ||

12 info.has_boundary_id(nd,20) ||

13 info.has_boundary_id(nd,21))

14 {

15 preCICEnodes.push_back(nd);

16 }

17 }

18 n_nodes = preCICEnodes.size();

19 int dimensions = interface.getDimensions();

20 double* grid = new double[dimensions * n_nodes];

21 // (...)

22 std::vector<const Node*>::iterator iter = preCICEnodes.begin();

23 for (int i = 0; iter != preCICEnodes.end(); ++iter,++i)

24 {

25 const Node *nd = *iter;

26 // (...)

27 grid[i*dimensions] = (*nd)(0);

28 grid[i*dimensions+1] = (*nd)(1);

29 grid[i*dimensions+2] = (*nd)(2);

30 }

31 // (...)

32 int meshID = interface.getMeshID("Structure_Nodes");

33 int *vertexIDs = new int[n_nodes];

34 interface.setMeshVertices(meshID, n_nodes, grid, vertexIDs);

Listing 18: Partition Coupling Surface

The function called in line 7 applies these information to the mesh nodes, too, such that
the boundary condition IDs can be accessed at the nodes. The for-loop between line
9 and 18 goes through all local nodes of the mesh partition. Inside of it, it is checked
whether the current node has a boundary condition ID that makes the node part of
the coupling interface. If so, a pointer to this node is stored in a vector for further
processing. After the for-loop, the number of nodes of the interface part is saved.
When it is known how many and which nodes are part of the coupling interface,

the grid-like structure needs to be created and filled. This is done in line 21 and 24
to 31. An array of double-values represents the structure. It has dimensions * n_nodes

82



entries. preCICE expects the ordering to be as follows: p1x , p1y , p1z , p2x , . . . , pny , pnz ,
with pi being the ith node defined in 3D space. The for-loop beginning in line 24 simply
iterates over the previously stored nodes and assigns their geometrical positions to the
corresponding entries in the grid-structure.

preCICE holds an ID for every mesh a solver contributes to the simulation. The ID
of the structure mesh is get from preCICE in line 32. Additionally, preCICE holds an
internal representation of the vertices of the coupling interface. Every such vertex has
a globally (throughout the solvers) unique ID. These IDs may be different to the node
IDs of the structure mesh. For the data exchange with preCICE to function properly
the IDs must be get from preCICE. This is done in line 33 and 34. According to the
single geometric vertex positions, preCICE finds the corresponding internal vertex and
returns its ID.

5.5.4 Integration of preCICE

The changes in the mesh import and the creation of the coupling interface partitions
were preprocessing steps that laid the foundation of the actual preCICE integration into
the solver code. Before any preCICE function can be used, a SolverInterface-object
of preCICE must be created with the specification of the solver’s name, the ID of the
calling process and the overall number of processes used for this solver (see Listing 19).
Next, the XML-configuration file must be loaded by preCICE.

1 // (...) libMesh Initialization and mesh import

2 SolverInterface interface(solverName, global_processor_id(), global_n_processors());

3 interface.configure(config_filename);

Listing 19: preCICE Integration Part 1

The structure solver in its current state gets forces as input from the fluid solver and
produces displacements as output sent back to the fluid solver. In order to accelerate
the data exchange, all data is sent at once and received at once. Therefore, in Listing 20
two arrays are created (line 1 and 2) with as many entries as the process owns nodes
of the coupling interface multiplied by the number of dimensions (typically 3). These
variables were defined by the XML-configuration file and are present in preCICE, too.
For the data exchange their IDs must be get from preCICE, which is done in line 5 and
6. Inside the for-loop that also fills the grid-like structure from Listing 18 with vertex
position, initial values for the displacements and forces are set. This must be done by
one of the coupled solvers; which one is defined in the XML-configuration file.

1 double *displ = new double[dimensions*n_nodes];

2 forces = new double[dimensions*n_nodes];

3 // (...)

4 int meshID = interface.getMeshID("Structure_Nodes");

5 int displID = interface.getDataID("Displacements", meshID);

6 int forceID = interface.getDataID("Forces", meshID);

7 // (...)

8 for (int i = 0 ; iter != preCICEnodes.end(); ++iter,++i)
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9 {

10 const Node *nd = *iter;

11 for (int dims = 0; dims < dimensions; dims++)

12 {

13 displ[i*dimensions+dims] = 0.0;

14 forces[i*dimensions+dims] = 0.0;

15 }

16 // (...)

17 }

Listing 20: preCICE Integration Part 2

As stated in Section 5.5.3, the vertex IDs of preCICE does not necessarily match the
IDs of the structure’s mesh node IDs. To be able to apply the correct forces to the
correct mesh nodes, a mapping is necessary. Listing 21 displays this in the lines 1 to
6: A for-loop iterates over the coupling interface nodes and stores the linking between
mesh nodes IDs and the iteration variable in a unordered_map-data structure. This data
structure is efficient in adding elements and finding them later. The id_map is used when
the right-hand side of the single elements is constructed and is described in further detail
in Listing 24.

1 iter = preCICEnodes.begin();

2 for (int i = 0 ; iter != preCICEnodes.end(); ++iter,++i)

3 {

4 std::pair<dof_id_type, int> pair( (*iter)->id(), i );

5 id_map.insert(pair);

6 }

7

8 interface.initialize();

9 if ( interface.isActionRequired(actionWriteInitialData()) )

10 {

11 interface.writeBlockVectorData(displID, n_nodes, vertexIDs, displ);

12 interface.fulfilledAction(actionWriteInitialData());

13 }

14 interface.initializeData();

15 if ( interface.isReadDataAvailable() )

16 interface.readBlockVectorData(forceID, n_nodes, vertexIDs, forces);

17

18 // (...) libMesh equation system setup etc.

Listing 21: preCICE Integration Part 3

With line 8 preCICE gets finally initialized. In line 9 to 13 the initial data set in
Listing 20) is sent to preCICE. The call in line 14 tells preCICE to communicate all
initial data to every solver, including the calling one. In line 16 possible available initial
force values are read.

Listing 22 contains the main while-loop that is executed until the complete simulation
is finished (isCouplingOngoing()) or a critical error happened which quits the simulation,
too. The lines 3 and 4 are only relevant when an implicit coupling scheme was chosen
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in the preCICE configuration; otherwise the if-clause simply evaluates to “false”. An
implicit coupling scheme requires so-called “Checkpoints” to be created. Because the
coupled solvers are only sub-components of the overall simulation, they cannot access all
information needed to control the simulation. preCICE is the control instance that de-
cides what kind of computation step has to be performed next by a solver. This includes
the responsibility for synchronized writing of outputs when a time step converged or
restarting a simulation step. For this, the old time step state needs to be saved and this
is realized by checkpoints. When a checkpoints is written to or read from is managed
by preCICE and the solver only does so when the corresponding action is required.
In line 6 the linear elastic problem with the given mesh and forces is solved by the

program. As addressed in Section 4.2.5, the solution is only accessible for the master
process. In the stand-alone version of the program this was not a problem, because
the master process can write the solution into a file or put it onto the console. When
the program is part of a coupled simulation, every single process must tell preCICE its
own displacement solutions. After building the solution vector in line 9, a broadcasting
of the results must be performed: Every slave process reserves enough space in its
solution vector to store the data. The master process broadcasts its solution to the slave
processes. If the program is not executed in parallel, this step is ignored through the
two if-clauses (line 10 and 12). When every process got the solution, they can assign
their displacements to the array that is used for data exchange.

1 while ( interface.isCouplingOngoing() )

2 {

3 if ( interface.isActionRequired(actionWriteIterationCheckpoint()) )

4 interface.fulfilledAction(actionWriteIterationCheckpoint());

5

6 equation_systems.solve();

7

8 std::vector<Number> sols;

9 equation_systems.build_solution_vector(sols);

10 if (global_processor_id() > 0)

11 sols.reserve(mesh.n_nodes()*6);

12 if (global_n_processors() > 1)

13 mesh.comm().broadcast(sols);

14

15 std::vector<const Node*>::iterator iter = preCICEnodes.begin();

16 for (int i = 0 ; iter != preCICEnodes.end(); ++iter,++i)

17 {

18 int id = (*iter)->id();

19 displ[i*dimensions] = sols[6*id];

20 displ[i*dimensions+1] = sols[6*id+1];

21 displ[i*dimensions+2] = sols[6*id+2];

22 }

Listing 22: preCICE main while-loop part 1

The actual data exchange is taken place in the lines 23 and 25. First, the solver writes its
data to preCICE. Then the advance-function of preCICE is called with a parameter that
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represents the actual used time step length of the solver. Since the structure solver in its
current version is time-independent, the dt-value is retrieved by the command-line argu-
ment “-dt”. The function updates the coupling state, maps data between non-matching
grids and exchanges data between the coupled solvers. Further, it applies iteration ac-
celeration schemes (cf. 5.2.2) and measures the convergence of coupling iterations when
implicit coupling is used [Gat15]. In line 25 the new force values are read and assigned
to the corresponding array.

23 interface.writeBlockVectorData(displID, n_nodes, vertexIDs, displ);

24 interface.advance(dt);

25 interface.readBlockVectorData(forceID, n_nodes, vertexIDs, forces);

26

27 if (interface.isActionRequired(actionReadIterationCheckpoint()))

28 interface.fulfilledAction(actionReadIterationCheckpoint());

29 else

30 {

31 t++;

32 writeOutput(mesh, equation_systems, t);

33 }

34 }

35 interface.finalize();

Listing 23: preCICE main while-loop part 2

The if-clause in line 27 checks whether the coupling iteration has already converged.
This is the case when no action for reading the iteration checkpoint is required. If the
iteration has converged then the else-part beginning from line 29 becomes active. Here,
the current time step is finally finished by increasing the local time variable (line 31).
For every finished time step, an output file is written (line 32), if desired by the user.
Line 34 is the closing bracket of the big while-loop. If the program proceeds to this
point, the simulation was finished, either correctly or quit due to errors. In both cases
the solver interface to preCICE must be correctly finalized, which is done by calling the
appropriate function in line 47.

In Listing 21 a data structure was created that stores the linking between libMesh
node IDs and the node numbers of the coupling interface. This mapping is necessary,
because the ID of a mesh node does not have to be equal with the node’s number created
earlier. When the right-hand side for a single element is generated, the forces received
from the fluid solver are processed.

1 // (...)

2 Node* node = (*elem)->get_node(side);

3 dof_id_type id = node->id();

4 // (...)

5 if (processedNodes->find(id) == processedNodes->end())

6 {

7 processedNodes->insert(id);

8

9 std::unordered_map<dof_id_type,int>::const_iterator preCICE_id = id_map.find(id);
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10 if (preCICE_id != id_map.end())

11 {

12 arg(0) = forces[preCICE_id->second*3];

13 arg(1) = forces[preCICE_id->second*3+1];

14 arg(2) = forces[preCICE_id->second*3+2];

15 }

16 }

17 // (...)

Listing 24: Modification of contribRHS-function

Listing 24 shows mostly the same code as in the stand-alone version of the solver. New
are the lines 9 and 10 where the correct node number linked with the mesh node “id” is
to be found in the map. If such an entry is found then the resulting iterator to this entry
is valid and the forces at the corresponding position in the force-array can be assigned
to the right-hand side vector.
The actual integration of preCICE into the solver’s code required not significantly

more lines of code than shown in the example in Listing 16. The use of implicit coupling
made it necessary to work with checkpoints that would not have been used with an
explicit coupling scheme and added a few more lines of code. Nevertheless, the goal of
preCICE to be minimal invasive with respect to integration into existing code can be
seen in this particular case.
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6 Validation

The developed program implemented flat shell elements. Two different discretizations
of shell elements are provided: A three-node triangular element (Tri-3) and a four-node
quadrilateral element (Quad-4). A plane and plate bending element were superimposed
to the final shell element. This chapter attends the validation with respect to accuracy
and convergence properties of the two shell element discretizations as well as their com-
ponents, the plane and plate elements. Several example problems were chosen that show
the correctness of the finite element types. The tests were taken from different sources,
namely [Kan04], [MH85], [Wil96] and [Jin94]. Many example problems have analytical
results to be compared with, the examples from [Kan04] used a commercial software
called SAP2000 [SAP00] as a benchmark for comparison. Since this software is used in
practice for over 30 years, it will be used here as a benchmark as well.

6.1 Test A: Tri-3 Plane Element Displacement

The three-node triangular plane element Tri-3 is validated with a cantilever beam shown
in Figure 14. The example problem was taken from [Kan04] (Test Example 2).
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Figure 14: Cantilever beam consisting of 32 triangular elements, clamped at the left side
and a total force of 40 kips applied in positive y-direction at the right side.
The numbers next to the elements denote the node IDs.

• Mesh dimensions
Length l � 48 in
Depth h � 12 in
Thickness t � 1 in

• Material properties
Young’s Modulus E � 30000ksi
Poisson’s ratio ν � 0.25

89



• Boundary conditions
Clamped boundary conditions at node 0, 9 and 18, i.e. left side of the cantilever
beam.

• Loading
A concentrated load of 40kips in total. Node 8 and 26 has a load of 62

3 , node 17
has a load of 262

3 .

Results: The displacements in x- and y-direction at node 22 and 26 are presented in
Table 2 together with the results from the SAP2000 software showed in [Kan04]. The
displacements of the thesis’ program deviate from the commercial software in all cases
for at most 0.027%. The triangle orientation in the example mesh contains both, the
square diagonal facing the upper right as well as the lower right corner of the square.
To show that the mixed usage of these orientation types increases the accuracy, two
additional tests were made, one with triangles only having their hypotenuse facing the
upper right corner of the square (m) and one with triangles of the other type (n) only.
The results of these tests can only be compared to the first test results of the program,
since no benchmark values are available. What can first be seen is that either of the new
variants is less accurate than the mixed version. Second, the m-variant is more accurate
than the n-variant and third, the accuracy in x-direction is better than in y-direction,
particularly for the n-orientation.

Node Displacement Results from
programpaq

Results from
SAP2000pbq

Difference (%)

22 ux �0.0255988 �0.025605 0.024%pbq

uy 0.0629549 0.062971 0.026%pbq

26 ux �0.0342621 �0.034271 0.027%pbq

uy 0.1944070 0.194456 0.025%pbq

m 22 ux �0.0243863 - 4.97%paq

uy 0.0552195 - 14.01%paq

m 26 ux �0.0328891 - 4.17%paq

uy 0.1829420 - 6.27%paq

n 22 ux �0.0235617 - 8.65%paq

uy 0.0440028 - 43.07%paq

n 26 ux �0.0322955 - 6.09%paq

uy 0.1564130 - 24.29%paq

Table 2: Displacements and deviations for Test A

6.2 Test B: Quad-4 Plane Element Displacement
The four-node quadrilateral plane element Quad-4 is validated with the same cantilever
beam that was used in Test A. The mesh configuration is shown in Figure 15. The
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example problem was also taken from [Kan04] (Test Example 5).
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Figure 15: Cantilever beam consisting of 16 quadrilateral elements, clamped at the left
side and a total force of 40 kips applied in positive y-direction at the right
side. The numbers next to the elements denote the node IDs.

• Mesh dimensions
Length l � 48 in
Depth h � 12 in
Thickness t � 1 in

• Material properties
Young’s Modulus E � 30000ksi
Poisson’s ratio ν � 0.25

• Boundary conditions
Clamped boundary conditions at node 0, 9 and 18, i.e. left side of the cantilever
beam.

• Loading
A concentrated load of 40kips in total. Node 8 and 26 has a load of 62

3 , node 17
has a load of 262

3 .

Results: The displacements in x- and y-direction at node 22 and 26 are presented
in Table 3. The results of SAP2000 were used for comparison. The displacements
calculated by the thesis’ program deviate from the commercial software in all cases for
at most 0.03%.

6.3 Test C: Tri-3 Plate Element Displacement

In this test the three-node triangular plate element Tri-3 was validated. The example
problem was taken from [Wil96]. The geometry of the mesh is shown in Figure 16. Four
different tests were made: At first the square plate were subdivided into 4�4 squares.
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Node Displacement Results from
program

Results from
SAP-2000

Difference (%)

22 ux �0.0427728 �0.042774 0.028%
uy 0.1012620 0.101265 0.030%

26 ux �0.0570728 �0.057074 0.021%
uy 0.3160560 0.316064 0.025%

Table 3: Displacements and deviations for Test B

Each square were divided into two triangles by a diagonal. Here, two possibilities are
given: From the upper left to the lower right (n) corner or from the upper right to the
lower left (m) corner. The former variant is shown in Figure 16. The other two tests
were made with the same triangle variants but with a 16�16 mesh subdivision.
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Figure 16: A square plate simply supported on all four sides with a mesh subdivision of
4�4 squares. Each square is divided into two triangles through a diagonal
going from the lower left to the upper right corner (“m”). In the center of the
plate, a concentrated load P is applied. The numbers denote the node IDs
as defined in the mesh file.

• Mesh dimensions
Side length l � 10.0
Thickness t � 1.0

• Material properties
Young’s Modulus E � 10.92
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Poisson’s ratio ν � 0.3

• Boundary conditions
All sides of the square plate are simply supported.

• Loading
A concentrated load of 1.0 is applied on the center node of the square.

Results: Wilson [Wil96] states that the exact thin-plate displacement of the central
node for this problem is wc � 1.16. The results of the test is presented in Table 4.
The program’s result is compared to the exact value as well as to the results of the
Discrete Kirchhoff Element (DKE) presented in [Wil96]. The DKE is also a three-node
triangular plate bending element. At first, the results show that no difference exists
between the different orientations of the triangles. For the 4�4 mesh subdivision the
difference between the program’s result and the benchmark is 10.69% while it is only
8.69% compared with the exact value. For the 16�16 mesh subdivision the difference
shrinks to only 0.72% compared to the exact value and 0.97% to the benchmark.

Mesh
variant

Displacement at
center node

Results from
program

Results of
DKE

Difference to
1.16 (%)

4�4 mesh subdivision
m wc12 1.06723 1.195 8.69%
n wc12 1.06723 1.195 8.69%

16�16 mesh subdivision
m wc144 1.15169 1.163 0.72%
n wc144 1.15169 1.163 0.72%

Table 4: Displacements and deviations for Test C

6.4 Test D: Quad-4 Plate Element Displacement
This example problem tests the four-node quadrilateral plate element Quad-4. The
test was taken from [Jin94]. Several different configurations were made: The square
plate was subdivided into 4, 8 and 16 square elements on each direction. Each mesh
subdivision was then tested with a concentrated load of 30000 applied on the central
node and with a uniformly distributed load of 300 per square unit. The geometry of one
of the six test configurations is shown in Figure 17.

• Mesh dimensions
Side length a � 10.0
Thickness t � 0.5

• Material properties
Young’s Modulus E � 107

Poisson’s ratio ν � 0.3
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Figure 17: The mesh of test D is shown with a subdivision level of 8�8 and concentrated
central loading configuration. The mesh can be subdivided coarser or finer
and the loading can be applied uniformly over the whole plate. The square
plate is in all cases simply supported on all four sides.
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• Boundary conditions
All sides of the square plate are simply supported.

• Loading
A uniform load of 300 is applied on the whole plate in a first test, while a con-
centrated load of 30000 is applied on the center node of the square in a second
test.

Results: For the test with the uniform load, [Jin94] states that the displacement of the
central node w�

c can be evaluated exactly with the help of the plate theory, that is:

w�
c � α

q0a
4

D
(151)

With α � 0.00406 and q0 � 300 being the uniform load, a � 10 the length of the square
plate and D � Et3

12p1�ν2q the material property, the central node’s displacement follows
as:

w�
c � 0.00406 300 � 104

1070.53

12p1�0.32q
� 0.1064045

The results with the different mesh subdivision levels are very accurate, the 8� 8-
subdivision is less than a thousands percents different to the analytical solution and
even the coarse level with only 4 elements per direction has only 0.35% difference to the
exact value.
For the concentrated load test, [Jin94] also proposes an analytic solution, namely:

w�
c � α

Pa2

D
(152)

where α � 0.0115999 and P � 30000 is the concentrated load at the center node. The
rest of the variables stays the same as in the uniform load test. The analytical solution
to this example problem is:

w�
c � 0.011599930000 � 102

1070.53

12p1�0.32q
� 0.30401019

The program’s results are far more inaccurate compared to the uniform load test with
a maximum difference of 8.62%. The fine subdivision of 16�16 elements is though
acceptably accurate with less than a percent difference to the analytically exact value.

6.5 Test E: Shell Elements Displacement
In Test A to D the single components of the Tri-3 and Quad-4 shell elements were
validated. This test shows the accuracy of the shell elements by an example problem
taken from [Kan04]. An I-beam is clamped on one end while loads are applied at the
flanges of the other end’s corners. Figure 18 shows details on the mesh geometry. The
force causes the beam to get twisted around the global x-axis. The I-beam will have
deformations in every direction for which shell elements are qualified. The Tri-3 element
is validated as well as the Quad-4 with the same geometry and load configuration.
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Mesh sub-
divisions

Displacement at
center node

Results from
program

Analytical
solution

Difference (%)

Uniform loading
4�4 wc12 0.106032

0.1064045
0.35%

8�8 wc40 0.106405 0.00047%
16�16 wc144 0.106454 0.046%

Concentrated loading
4�4 wc12 0.332677

0.30401019
8.62%

8�8 wc40 0.312851 2.83%
16�16 wc144 0.306664 0.86%

Table 5: Displacements and deviations for Test D
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Figure 18: The I-beam from Test E in a quadrilateral discretization. The I-beam is
clamped at the left side while two point loads of value 1.6 are applied at the
other end’s corners of the flanges in opposite directions.
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• Mesh dimensions
I-beam length l � 40.0
I-beam depth d � 10.0
I-beam height h � 5.0
Thickness t � 0.25

• Material properties
Young’s Modulus E � 10000
Poisson’s ratio ν � 0.3

• Boundary conditions
The left end of the I-beam is clamped, i.e. nodes 0, 9, 18, 27, 36 and 45.

• Loading
Two separate loads of 1.6 are applied on the flanges of the non-clamped end’s
corner. One on the top of the I-beam (node 53), the other on the bottom mirrored
at the xz-plane (node 26). The forces pointing horizontally to the middle of the
I-beam, cf. Figure 18.

Results: In Table 6 the results of the test are presented; Figure 19 shows a visualiza-
tion of the example problem after deformation where the displacement in x-direction
is displayed. In comparison to the commercial software SAP2000 the thesis’ elements
does not provide as good accuracy as can be. The Tri-3 element has a difference of at
most 3.31% for the planar displacements ux and uy and at most 5.67% for the vertical
displacement uz. The Quad-4 element is with about 10% difference less accurate.

Node Displacement Results from
program

Results from
SAP2000

Difference (%)

Triangular element

35
ux �0.0152698 �0.014921 2.34%
uy 0.0879212 0.085471 2.87%
uz 0.1543450 0.146070 5.67%

44
ux �0.0153249 �0.014834 3.31%
uy �0.0878749 �0.085475 2.81%
uz �0.1518410 �0.144533 5.06%

Quadrilateral element

35
ux �0.0246001 �0.027162 10.41%
uy 0.1373650 0.151049 9.96%
uz 0.2320180 0.255308 10.04%

44
ux �0.0246001 �0.027162 10.41%
uy �0.1373650 �0.151049 9.96%
uz �0.2320180 �0.255308 10.04%

Table 6: Displacements and deviations for Test E
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Figure 19: A screenshot from ParaView of the I-beam from Test E with Quad-4 elements.
The displacement in x-direction u is visualized by a color-map. Node 35 and
44 at located at the right end of the beam at the blue colored corners, the
forces were applied at the red colored corners.

6.6 Test F: Convergence (Increasing Number of Elements)
In this test an example problem from [MH85] is used. The convergence of the Quad-4
element is validated as an example. For this, the number of elements of a rectangular
plate is increased from one test to the other. The mesh has four different configurations:
A clamped and simply supported boundary condition variant as well as a uniform and a
concentrated loading at the central node of the mesh. Each of the four configurations are
tested with a mesh subdivision level of n � 2, 4, 8, 16, 32, 64, i.e. the mesh is subdivided
into n elements in each direction. An example for a 4�4 subdivision can be seen in
Figure 20.

• Mesh dimensions
Plate long side length a � 10.0
Plate short side length b � 2.0
Thickness t � 0.01

• Material properties
Young’s Modulus E � 1.7472� 107

Poisson’s ratio ν � 0.3

• Boundary conditions
SPL-configuration: All sides of the plate are simply supported.
CLA-configuration: All sides of the plate are clamped.

• Loading
UNI-configuration: A uniform load of 10�4 per square unit is applied to the entire
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Figure 20: Example of the mesh geometry of Test F: A rectangular simply supported
plate with a side length ratio of 1 : 5. In this configuration a concentrated
load P is applied to the center node (12) and the mesh is subdivided into 4
elements per axis. For better visibility, only some of the node IDs are drawn.

plate.
CON-configuration: A concentrated load of 4� 10�4 is applied to the center node
of the plate. For the different subdivision levels, that is in increasing order the
node with ID 4, 12, 40, 144, 544 and 2112.

Results: For the analytical solution to these problems one can use equation (151) for
the uniform loadings and (152) for the concentrated loadings, that is:

D �
Et3

12 p1� ν2q
� 1.6

For the four configurations the following exact solutions can be calculated:

w�
c � α

q0a
4

D
� 0.0129710�4 � 24

1.6 � 12.97� 10�6 (simply supported, uniform load)

w�
c � α

q0a
4

D
� 0.0025610�4 � 24

1.6 � 2.56� 10�6 (clamped, uniform load)

w�
c � α

Pa2

D
� 0.016954 � 10�4 � 22

1.6 � 16.95� 10�6 (simply supported, concentr. load)

w�
c � α

Pa2

D
� 0.007254 � 10�4 � 22

1.6 � 7.25� 10�6 (clamped concentr. load)

These values are the benchmarks that were compared with the program’s solutions.
The results are displayed in Table 7. A subdivision of only 2 elements on every axis
leads to a very poor accuracy that lies in the range from 11.03% to 57.81% difference
to the exact value. The accuracy gets better for each increase in the subdivision level
with two exceptions: The accuracy for the tests with a uniform loading and clamped
boundary conditions stuck at an accuracy of about 1.7%. The other exception is the
4�4 subdivision of the simply supported plate with concentrated loading: The accuracy
is much better than the following and a refinement of 32 is the first mesh that has better
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accuracy. Both phenomena cannot be explained so far, since it is neither caused by
the type of boundary condition nor by the type of loading. Otherwise the other two
configurations would not show as expected: A monotonically increasing accuracy with
the level of refinement. What can be said is that with a mesh subdivided into 64�64
elements, the analytically exact value is approximated well with nearly all tests below
1% of difference to it.

One difference between the two boundary conditions can be seen in the results: The
simply supported tests are more and faster accurate than the ones with clamped bound-
ary condition. This is due to the discretization of the element: The Quad-4 element
were designed with Kirchhoff’s plate theory. This ignored transverse shear deformation.
When the plate is simply supported the elements at the boundary can receive twists
while the clamped elements cannot get any deformation. This increase of stiffness at
the boundary cannot be simulated good enough with the thin-plate theory of Kirchhoff.
With increasing number of elements the boundary part of the mesh gets smaller and so
the bias are weighted less in the overall result.

6.7 Test G: MPI (Increasing Number of Processes)

This test aims to show the benefits of a parallel execution of the thesis’ program with
respect to runtime optimization. As example problem the same mesh as in Test D
(6.4 was used, too. A refinement of 64�64 elements was chosen in the test with the
Quad-4 element. For the Tri-3 element test, every such square element were divided at
its diagonal creating two triangular elements. The testing machine’s hardware was as
follows: Intel Core i3 CPU M380 @ 2.53GHz� 4 (Dual-Core + Intel Hyper-Threading),
4 GB RAM, 64-bit ubuntu 14.04 LTS. It was tested with 1, 2, 3 and 4 processes. In
order to measure the time, the built-in performance logging from libMesh was included
in the program. It collects data concerning the number a specified part of the code is
processed and the time it takes for this. Three time measurements were made for this
test: First, the overall execution time from the beginning of the program to the last line
of code. Second, the time needed to assemble the system matrix and right-hand side and
third, the time the system solver needs to calculate the solution. What is not explicitly
measured, is the time for the initialization and mesh importing step, the setup of the
system, the applying of the resulting displacements to the mesh and the writing of the
output file. These parts are basically independent from the parallelization. While the
solving step is done by libMesh, or more precisely by PETSc which is used in parallel
execution (cf. Section 4.3.1), the assembly code is program-specific.

• Mesh dimensions
Side length a � 10.0
Thickness t � 0.5

• Material properties
Young’s Modulus E � 107

Poisson’s ratio ν � 0.3
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Boundary
condition

Displacement Results from
program p10�6q

Analytical
results p10�6q

Difference (%)

Uniform Loading

SPL

wc4 14.4005

12.97

11.03%
wc12 12.6269 2.65%
wc40 12.8565 0.88%
wc144 12.9431 0.21%
wc544 12.9640 0.05%
wc2112 12.9691 0.0069%

CLA

wc4 3.82366

2.56

47.06%
wc12 2.45355 4.16%
wc40 2.60137 1.62%
wc144 2.60384 1.71%
wc544 2.60414 1.72%
wc2112 2.60420 1.73%

Concentrated Loading

SPL

wc4 11.5204

16.95

32.03%
wc12 17.3048 2.09%
wc40 18.1158 6.88%
wc144 17.4961 3.22%
wc544 17.1495 1.18%
wc2112 17.0215 0.42%

CLA

wc4 3.05893

7.25

57.81%
wc12 6.06564 16.34%
wc40 7.78902 7.43%
wc144 7.66573 5.73%
wc544 7.40552 2.14%
wc2112 7.29681 0.65%

Table 7: Displacements and deviations for Test F.
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• Boundary conditions
All sides of the plate are simply supported.

• Loading
A concentrated load of 30000 is applied to the center node of the plate.

Results: The exact solution to this problem is the same as in 6.4: w�
c � 0.1064045.

Independently from the number of processes the solutions are the same for each of the
two elements, namely: 0.106465 for Quad-4 (0.056% difference) and 0.106413 for Tri-3
(0.008% difference). Each of the four test runs for each element was repeated five times.
Thus, a minimum, a maximum and an average time followed from each test series. The
results are illustrated in Table 8 and visualized as graphs in Figure 21, 22 and 23.
What can be seen without further analysis is that the runtime for every studied code

part is shorter when using multiple processes in comparison to the sequential execution.
Although the mesh for the Quad-4 and Tri-3 was mainly the same, the test with the
triangular element has twice as much elements and the structure of the two system
matrices differ. Therefore the time for solving the system with the Quad-4 element
cannot be compared to the time for solving the Tri-3-system. The times for both elements
were nonetheless combined in the resulting graphs. The reduction in time for the solving
step by using multiple processes is largely dependent on the programming of PETSc and
cannot be reasoned, but only displayed in the framework of this thesis. One can see
a benefit of using multiple processes: Every time measurement for tests with multiple
processes is shorter than the serial execution test. A phenomenon that can be seen in
all graphs is an relative increase in time for three processes compared to two processes.
This might be due to the processor configuration used for the tests: It is a dual-core
processor that uses hyper-threading. When using four processes the hyper-threading is
beneficial: The two logical cores further reduce the execution time for each code part.
The improvement is not as much as if four physical cores would be used, as the hyper-
threading technology can only enhance the efficiency of a core and not replace an extra
physical processor.
The biggest improvement in performance can be seen for the assembly time. Here, two

processes nearly halved the time required for every element to contribute to the system
matrix and the system right-hand side. The two elements differ slightly in time, mostly
due to the complexer mathematics for the Quad-4 element (cf. 3.3.2 and 3.3.3) and the
one extra node to be considered.

6.8 Test H: Coupled “Bending Tower” with Fluid Solver Dummy

In order to validate the coupling functionality, the developed program was tested in
a coupled simulation. In order to keep the simulation for this validation simple, a
fluid solver dummy was used. Its pressure values results from simple algebraic and
trigonometric functions applied to the different mesh nodes. The example is based on
a “bending tower” problem, i.e. a simple channel flow around a tower-like obstacle is
simulated. The test is performed two times: First with single-threaded participants and
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No. processes Assembly time (s) Solver time (s) Overall time (s)
min avg max min avg max min avg max

Tri-3 element
1 1.93 1.97 2.09 49.35 49.78 50.96 51.57 52.52 53.61
2 0.98 0.98 0.99 35.65 36.48 37.36 38.39 39.24 40.14
3 1.02 1.04 1.05 40.47 41.13 41.57 43.67 44.33 44.23
4 0.79 0.80 0.82 33.31 34.29 34.93 36.27 37.26 37.90

Quad-4 element
1 1.99 2.01 2.04 31.88 32.25 33.29 34.43 34.83 35.94
2 1.03 1.03 1.03 23.67 24.11 24.75 26.21 26.65 27.28
3 1.01 1.08 1.09 26.05 26.59 26.95 28.79 29.36 29.88
4 0.83 0.84 0.85 21.53 22.12 23.05 24.14 24.73 25.66

Table 8: Time measurements for Test G
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the then again with parallelized solvers (2 processes for each solver). The setting of
the test is displayed in Figure 24. The mesh is composed of Tri-3 elements with m-
orientation and 2 divided square elements in x-direction and 20 divided square elements
in z-direction. The coupling interface between the two solvers are the left, top and right
border of the tower structure, i.e. 43 nodes (21 at every long side and one at the tip of
the tower). At edge a the fluid solver dummy produces forces ~fai for node i as follows:

~fai �

�
fx
fz



�

�
1� cos

�
τ
25
�

0




for 0 ¤ i ¤ 20. The τ -parameter denotes the current simulation time step: 0 ¤ τ ¤ 399q.
Since this example is reduced to two dimensions, only forces in x- and z-direction are
present, as well as displacements u and w. The forces are applied to the 21 nodes of
edge a. At the top and right edge no forces are applied to their nodes.

x

z

2

0 3 3.25

a

Figure 24: Sketch of the “Bending Tower” example. The rectangular structure has sim-
ply supported boundary conditions at its bottom edge. On the nodes at edge
a forces from the fluid solver dummy are applied, letting the tower lean forth
and back during the simulation.

• Mesh dimensions
Tower height ht � 2
Tower length lt � 0.25
Tower thickness t � 0.01

• Material properties
Young’s Modulus E � 1.0� 108

Poisson’s ratio ν � 0.3

• Boundary conditions
The bottom side of the tower is simply supported.

• Simulation settings
Time step length 0.01
Simulation time 4.0
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Time steps 400
preCICE coupling-scheme: serial-implicit
preCICE mapping-scheme: Nearest-Neighbor

Results: The coupling finished successfully after 400 simulated time steps without er-
rors. The analysis of the calculated displacements during the simulation showed the
intended behavior, as can be seen in Figure 25 for the two displacements u in x- and w
in z-direction. In Figure 26 the deformed mesh at different time steps are presented, vi-
sualizing the bending of the tower. Although this test was performed with a non-physical
fluid solver, the coupling itself between two different and independent solvers via pre-
CICE was successful. In this test, both participants were executed in serial as well as
in parallel (2 processes for each solver). Both simulations reached their end successfully
and showed the same results.

Figure 25: The displacements u in x- and w in z-direction for the topmost node of the
left edge is plotted over time. The smooth oscillating behavior of the tower
that was intended in the test is clearly visible. The motion in x-direction is
larger due to the forces facing the same direction.
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Figure 26: Single time steps of the bending tower test. A rainbow color gradient shows the absolute displacements in z-
direction, with red being maximal positive, green equals zero and blue being maximal negative. At time step 1,
the tip of the structure is already moving towards the positive x-axis, since the initial force applied to the left side
is 1. Time step 118 shows the reversal point (no force) at the left side and time step 197 shows the other reversal
point of the tower during the simulation where the force is maximal with a value of 2.107



6.9 Test I: Coupled “Bending Tower” with Fluid Solver
The developed program is tested in a fluid-structure interaction. In the simulation the
program is coupled through preCICE with a fluid solver developed with the OpenFOAM
adapter foam-extend [FOA]. The fluid solver is part of the “FOAM-FSI” project by
David Blom [BvZB15], developed at the University of Technology in Delft, Netherlands.
As example problem, a simple channel flow around a tower-like obstacle is simulated.
The geometry configuration can be seen in Figure 27. The fluid solver simulates the flow
coming in from the left side of the channel and moving towards the right side, where the
flow leaves the fluid domain. The tower is placed at the bottom side of the channel and
has simply supported boundary conditions at its bottom edge. The tower structure is
simulated by the thesis’ program. When the flow reaches the left side of the tower, it
will bend to the right side due to the pressure of the flow. After some time the tower
will not bend further, when an equilibrium of forces between the structure and the flow
is reached. The tower mesh consists of 4�8 Quad-4 elements (4 elements in x-, 8 in

x

y

4

2

0 3 3.5 10

Figure 27: Sketch of the “Bending Tower” example. An rectangular obstacle is put into
a channel and flow is driven from the left side towards the right side where
it leaves the fluid domain. The tower-like obstacle is represented by the
structure mesh, the channel by the fluid mesh.

y-direction). The fluid domain is divided into 36 cells on the x-axis and 16 cells on
the y-axis, except the part where the tower mesh is located. The coupling surface is
at the left, right and top border of the structure mesh, resulting in 21 nodes for both
participants.

• Mesh dimensions
Tower height ht � 2
Tower length lt � 0.5
Tower thickness t � 0.1
Channel height hc � 4
Channel length lc � 10

• Material properties
Young’s Modulus E � 1.0� 109

Poisson’s ratio ν � 0.3
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• preCICE setup
Maximum time step length 0.1
Maximum number of iterations per time step 100
Coupling-scheme: serial-implicit
Mapping-scheme: Nearest-Neighbor
Post-processing: IQN-ILS

• Fluid solver setup
Simulation time 8.0
Time step length 0.002
Initial flow velocity in x-direction: 0.0001
Inlet velocity ramped up to maximum value of 0.2

• Boundary conditions
The tower’s bottom side is simply supported. Zero Dirichlet boundary conditions
are present for flow velocity at top and bottom edge and for the pressure at the
outlet. Zero gradient Neumann boundary conditions is given for flow velocity at
the outlet and for the pressure at the inlet, top and bottom edge.

Results: The coupling of the two solvers through preCICE was successful, as Figure 28
shows single time steps of the simulation. One can see the interaction between the fluid
and structure by the motion of the tower and the reaction of the flow velocity around
it. The configuration of this simulation was still under progress when at the time this
thesis was completed. Problems with the stability of the simulation prevented further
analysis of the interaction between fluid and structure. But the first time steps already
showed correct behavior of both, the structure as well as the fluid.
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Figure 28: Different time steps of the FSI simulation. The magnitude of the velocity is
visualized in the fluid domain, while the displacement in y-direction is shown
in the structure domain. a) The tower starts to bend. b) The flow is affected
by the tower. c) The interaction between fluid and structure gets visible.
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7 Summary and Conclusions

This chapter summarizes the results achieved by the thesis and presents a discussion
of these results. In the remainder of this chapter an outlook to future development is
given.

7.1 Summary

The aim of this thesis was to develop a FEM-code being able to be coupled in a fluid-
structure interaction. The program development should be supported by a FEM frame-
work. Comparison aspects had to be created and an evaluation of several FEM libraries
was performed. The implemented FEM code was to be validated with example prob-
lems. The coupling part should be managed by the preCICE tool. The overall focus was
on creating a well documented and easily readable and maintainable code, applicable for
multi-physics simulations and qualified for future development and extensions.
For the FEM framework evaluation, different comparison aspects were introduced.

Besides organizational requirements like an open-source code, C++ as development pro-
gramming language and a wide and accurate documentation of the framework, numerical
and programmatic aspects were considered. The last aspects included the possibility to
parallelize the code via MPI, a large collection of finite element types and built-in itera-
tive linear solvers. During the evaluation process two libraries were practically tested, the
first one being “MFEM”. Because of difficulties in use, another library named “libMesh”
was tested and finally chosen for the program development.
In this thesis flat shell elements were implemented. Such an element is composed

of a plane and a plate element part that are superimposed in order to construct the
final shell element. Two different types of finite elements were considered: A three-node
triangular element, denoted as “Tri-3” and a four-node quadrilateral element, denoted
as “Quad-4”. Six models had to be implemented: A plane, plate and shell element for
each of the two discretizations. Therefore, existing models like the Discrete Kirchhoff
Quadrilateral were selected for implementation.
The libMesh framework supported the development of the FEM-code by providing

many components and classes that only needed to be configured and put into the program
like building bricks. The import of mesh files and the construction of the internal
representation of the mesh as nodes, edges and elements is done by libMesh. Also,
the creation of a solver and the boundary conditions is simplified by using predefined
classes. The solving of the system is done by libMesh or by the external library PETSc
which is required as soon as the program is executed in parallel. The major task was
to create the assembly function that constructs the overall system matrix and right-
hand side. Here, every element was transformed from global space to a local coordinate
system in order to assemble its local stiffness matrix. The local stiffness matrices were
then re-transformed into global space in order to add them to the global system matrix.
The adding step as well as the constraining of elements at the boundary is performed by
libMesh on the other hand. Due to the fact that MPI is integrated in libMesh throughout
the library, the parallelization of the program only required minor modifications to the
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code, although additional build time requirements for libMesh for the external library
PETSc were not evident in the beginning. The coupling tool preCICE was used to create
a second version of the program that is capable of being coupled with other solvers in
a multi-physics simulation. preCICE serves as connector between the single solvers,
managing data mapping and communication, for instance. One goal of preCICE is to
require only minimal changes to the solver’s code in order to integrate its API and make
it coupling-ready. This was confirmed, as only a few lines of code had to be changed
besides additional data structures necessary for inter-solver communication.

Every implemented element model was validated with respect to accuracy. In addition
to that, the convergence was tested, i.e. the behavior of accuracy with an increasing level
of mesh refinement. The parallelization was tested with an unchanged example problem,
solved by an increasing number of processes. The execution time of different code parts
like the matrix assembly or the solving step was then measured. The coupling via
preCICE was tested with two example problems. One was a fluid-structure interaction
with the developed program and an external fluid solver as participants. In the test,
a flow was driven through a channel with an elastic tower-like structure fixed at the
bottom side of the channel as deformable obstacle for the flow.

7.2 Conclusion

The evaluation of FEM frameworks yield two suitable libraries for the program’s devel-
opment. The first framework that was used was “MFEM”. A problem in the practical
use made it necessary to switch to another library: Two dimensional geometric elements
are processed with the thesis’ program. These elements can be positioned arbitrarily in
the three dimensional space. The definition of 2D elements in a mesh file that is specified
to be in 3D space, led to undefined behavior and program crashes when using MFEM.
If 2D elements were specified with 3D coordinates in a mesh file that were specified
to be in 2D space, the third coordinate component was simply ignored. The solution
to this problem would have lead to another problem with the definition of boundary
conditions at the element’s nodes. Therefore, the second library was taken into account.
The “libMesh” framework offered basically the same features as MFEM, although it has
other specializations like the focus on adaptive mesh refinements and parallelization.
With the help of this framework, the program could be developed without any major
issues. The possibilities of libMesh qualify for further use in future development of the
structure solver.
In order to offer an appropriate structure solver for coupling purposes, all element

components used for the implementation of flat shell elements were validated separately.
Hence, several example problems were selected that provided either an analytical solu-
tion or solutions created by approved software. The tests of the Tri-3 and Quad-4 plane
elements showed very good accuracy compared to the commercial software “SAP2000”
with a difference of less than 0.03% between the displacement values. The first example
problem also illustrated that the arrangement of elements in the mesh has an important
part to accuracy. The test of the Tri-3 plate element indicated a first impression of the
involvement of mesh subdivisions: While the accuracy difference was only around 9%
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for a 4�4 mesh refinement, the accuracy increased to only around 1% difference to the
exact value. Another factor involved in the accuracy got visible in the validation of the
Quad-4 plate element: The type of loading has different influence to the accuracy of
the example problem. A uniform load, where the forces are distributed throughout the
whole plate, leads to good accuracy even with coarse mesh refinement. For a concen-
trated loading applied on only one node at the center of the plate, the mesh refinement
must be increased to gain the same level of accuracy. This behavior can only be ob-
served with plate elements and is due to the chosen finite element models. A eight-node
quadrilateral element would approximate edge twists better and therefore lead to more
accurate results. The combinations of plane and plate elements produce the flat shell
elements. These were tested with an example problem where an I-beam was fixed at the
one end and nodal forces were applied at the other end, facing inwards to the middle
of the beam. This results in deformations in all three spatial axes. The accuracy of
the Tri-3 element was better compared to the Quad-4 element, although the differences
among the x-, y- and z-displacement is larger compared to the quadrilateral element.
In a separate series of tests the element’s convergence with respect to accuracy was

validated. The level of mesh subdivisions was increased from test to test. While all
tests showed that the higher the mesh refinement is the better the analytical solution
is approximated, the test with uniform loading and clamped boundary conditions sticks
out: The accuracy stagnates around 1.7% difference to the exact value independently
from the number of elements forming the plate. This behavior cannot be explained
and might only be specific to the tested scenario. The other tests confirmed previous
observations: With clamped boundary conditions, the solutions show small differences
to the analytical result if the mesh is subdivided very fine. With a uniform loading, the
accuracy is high even for coarse meshes, while concentrated loadings need finer meshes
to gain the same level of accuracy.
The parallelization of the program was also tested. For this, three different times

were measured while executing the program: The time needed to assembly the system
matrix and right-hand side, the time to solve the system and the overall time from the
beginning of the program to the last line of code. The test must be split in halves, since
it contains code that is outside of the scope of this thesis: The system solving is done by
PETSc in parallel. The benefits with respect to time saving can only be observed, not
motivated. The other half is the assembly of the system, which is controlled by the thesis’
program. Here, every element of the mesh must be processed. This task can be efficiently
partitioned between the single processes. Therefore, the time for assembling the matrix
is nearly halved from the sequential execution to the execution with two processes. This
would lead to a speedup of around 100% for this part of the code and without further tests
with more processes. Since every element can be processed predominantly independent
from the others, this speedup value is possible, though. The bottleneck in this case is
the adding of the local matrices to the overall system matrix that is done by libMesh,
because the local matrix entries can be have distributed positions in the overall matrix.
The solver behaves less efficient compared to the assembly function. Here, the benefit
of multiple processes is also visible, but not as significant as before. The tests were
performed on an Intel dual-core processor that uses hyper-threading. This technology
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lead to even shorter times when both, physical and logical cores are active. Though,
the two additional logical cores cannot replace a physical quad-core processor. This is
especially noticeable when using three processes, i.e. two physical cores and one logical
core: The computation times even rise compared to two processes but still stay below
the single-threaded run. When using three processes, it is imaginable that either the
operating system or the processor controller have difficulties to handle the extra logical
core besides the two physical cores that are used. This might lead to extra managements
like communication, memory transfer or context switches that slows down the execution
time. In summary, one can state that the solver is capable of being executed in parallel
and offers good performance with multiple processes. The solver takes the biggest part of
the runtime, at least for meshes with a large number of nodes. For small meshes, the time
to import the mesh, initialize the system and write the outputs - which would otherwise
need short time - dominates the execution time, instead of the system’s assembly or its
solving.

The last two tests were coupled simulations, the first one between the thesis’ program
and a fluid solver dummy, the second one a fluid-structure interaction, where the devel-
oped program was coupled with an external fluid solver written with the OpenFOAM
fork “foam-extend”. In both tests, the participants were connected via the preCICE tool.
The intention behind the test with the fluid solver dummy was to generally test the cou-
pling with preCICE. The forces produced by the dummy solver resulted from algebraic
and trigonometric functions and were dependent from the current time step only, not
from the displacements of the structure solver. Therefore, this test cannot be seen as
a fluid-structure interaction. But the example showed successfully that the developed
program can be coupled via preCICE with a totally independent and different solver and
is stable throughout the simulation. The parallel execution of both participants steered
by preCICE was also successful. For the second coupling test, an external fluid solver
developed with “foam-extend” was used in a fluid-structure interaction. Although the
simulation configuration is still to be adjusted at the time this thesis is completed, the
results already showed a successful coupling between the two solver through preCICE.
As a resumé one can state that the developed structure solver is qualified to participate

in multi-physics simulations. The accuracy of the implemented models is good, even for
a coarse mesh, but can be increased by additional refinement of the mesh. The good
performance in parallel scaling makes it possible to provide such a fine subdivision level
without spending too much time for the processing of the increased number of elements.
The integration of preCICE in the program code was successful, as seen by the two
coupling tests. The thesis’ program was able to be coupled with independent solvers in
a single-threaded setup as well as in parallel execution.

7.3 Future Development

The thesis’ program was designed to be easily extensible with new models for plane
and plate elements, for example quadratic or cubic quadrilateral elements with 8 or 9
nodes. Such elements would enhance the accuracy, especially for coarser meshes. At the
moment, the program can only process two dimensional elements (Tri-3 and Quad-4).
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One could expand this also to bar and beam elements of one dimension or to three
dimensional solid elements represented by tetrahedra or hexahedra, for instance. The
libMesh library provides such elements and the coupling tool preCICE support data
exchange of one or three dimensional vector data.
All influences to the structures considered in this work were seen as static. But there

are scenarios where the temporal change influences the behavior of the displacements
and stresses. The dynamic reaction of buildings to wind or earthquakes are only two
examples. Here, the inertial force of the structure results from the acceleration of masses.
If the external influences to the structure changes quickly in time, the inertial forces
become considerable. Simultaneously to the inertia, damping forces can be observed that
lead to a decay of the free oscillation. In order to model this dynamic, time-dependent
behavior, the current system must be extended by a mass matrix and damping matrix,
as well as node velocities and accelerations, which are then dependent on the time.
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