Institute of Parallel and Distributed Systems

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Master Thesis

Design and implementation of a
Domain Specific Language for
defining ECM workloads in elastic
cloud environments using TOSCA

Sergey Kukhtichev

Course of Study: Infotech
Examiner: Prof. Dr.-Ing. habil. Bernhard Mitschang
Supervisor: Dipl.-Inf. Tim Waizenegger, Dipl.-Phys.

Cataldo Mega

Commenced: 2014-11-01

Completed: 2015-05-03

CR-Classification: 1.7.2

Abstract

Each year the volume of the content produced by enterprises increases by 35%-50%. Most of
this information is stored by companies as unstructured data. Organizations implement En-
terprise Content Management (ECM) to structure content and to mitigate legal risks. ECM
includes strategies and tools for increasing the effectiveness of content management. Using
the right ECM components is one of the factors for successful implementation of ECM.
There is a gap between business customers who implement ECM strategies and ECM archi-
tects and cloud providers, who create and deploy ECM solutions. On the one side, there are
no generally accepted terms, which precisely describe the ECM domain. Different develop-
ers of the ECM systems could use the same name for ECM components, which implement
different functionality, or they could use different names for ECM components with similar
functionality. On the other side, each customer has unique workloads for Enterprise Content
Management. ECM architects have to define these workloads and deploy an ECM solution
that will fulfill the customer’s requirements.

The goal of the Thesis is to develop a Domain Specific Language (DSL) for ECM domain,
which will be understandable by business customers, ECM architects and cloud providers.
The language should define terms and workloads that are related to the ECM domain. The
business customers should be able to create a description of the requirements to ECM solution
using a language that they understand. The ECM architect should be able to define the ECM
related terms and associated workloads from the customer’s description, design a topology,
and publish it in a specialized catalog. The cloud provider should be able to map the high
level topology to the exact infrastructure.

Contents

Acronyms

1 Introduction
1.1 Problem description
1.2 Fundamentals
1.2.1 Cloud computing L
1.2.2 Domain specific languages L.
1.2.3 Ontology based domain analysis
1.2.4 Topology and orchestration specification for cloud applications

2 Related work

3 Domain specific languages development methodology
3.1 Commonality and variability analysis of ECM solutions
3.2 ECM domain analysis
3.2.1 Determination of the domain and scope of the ontology
3.2.2 Definition of classes and class hierarchy
3.3 DSL design methodology

4 DSL modeling results
4.1 ECM domain model
4.1.1 Classes and properties description
4.2 Design of ECM DSL o
4.2.1 ECM language descriptiono oL
4.2.2 TOSCA implementation

5 Evaluation

6 Conclusion

7 Appendix A: ECM ontology

8 Appendix B: ECM foundation service template using TOSCA

Bibliography

11
12
13
13
14
15
16

19

23
23
27
27
28
34

37
37
38
47
47
52

65
67
69
81

87

List

1.1

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1

of Figures

TOSCA service template scheme [Tos13b] 17
Functional ECM framework, [GHHT06] 20
Major ECM issues, [PeMO5] 21
ECM reference architecture, conceptual view, [oT14] 22
ECM layers o . o 25
Generalized architecture of Enterprise Content Management System (ECMS) . 26
Simplified ontology class hierarchy 40
Hierarchy of enterprise classes 41
Example of Enterprise Content Storage Class Extension 42
Hierarchical structure of ECM classes 43
ECM ontology ”relationship” class hierarchy 44
ECM ontology class hierarchy with relationships 46
An example of the DSL topology 48
Topology deployment scheme 52
ECM node types hierarchy 0 oL 54
ECM execution environment node example 56
ECM DSL requirements types L Y4
ECM DSL capabilities types 57
ECM DSL relationship types L 58
ECM DSL content flow relationship example 59
ECM DSL depends on relationship example 60
ECM DSL supports relationship example 60
ECM DSL foundation scheme example 62
ECM DSL CSAR archive structure 63
ECM records management service template 66

Acronyms

AlIM Association for Information and Image Management
APl Application Programming Interface

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

CMIS Content Management Interoperability Services
CSAR Cloud Service Archive

CRUD Create Retrieve Update Delete

CRUDS Create Retrieve Update Delete Search
DAML DARPA Agent Markup Language

DMOZ Directory Mozilla

DoD US Department of Defense

DS Directory Services

DSL Domain Specific Language

ECM Enterprise Content Management

ECMS Enterprise Content Management System
eDA electronic Discovery Agent

EDI Electronic Data Interchange

eDM electronic Discovery Manager

FEF Functional Enterprise Content Management Framework
GPL General Purpose Language

laaS Infrastructure as a Service

IDG International Data Group

ILG Information Lifecycle Governance

IMAP Internet Message Access Protocol

IT Information Technology

Acronyms

KPI Key Performance Indicator

LDAP Lightweight Directory Access Protocol

NAS Network-attached storage

NIST National Institute of Standards and Technology
0S Operating System

PaaS Platform as a Service

SaaS Software as a Service

SAN Storage Area Network

SFTP Secure File Transfer Protocol

SIFS Short Interframe Space

SLA Service Level Agreement

SMTP Simple Mail Transfer Protocol

SSL Secure Sockets Layer

SSO Single sign-on

TOSCA Topology and Orchestration Specification for Cloud Applications
WS Web Services

XML Extensible Markup Language

10

1 Introduction

Each year the volume of the content produced by enterprises increases by 35%-50%. Most of
this information is stored by companies as an unstructured data [BBFRS12]. To structure the
content and to mitigate legal risks companies use ECM [LBMCW13]. Content management
systems manage the lifecycle of content from creation to disposal. Association for Information
and Image Management (AIIM) gives the following definition of ECM: ”Enterprise Content
Management (ECM) is the strategies, methods and tools used to capture, manage, store,
preserve, and deliver content and documents related to organizational processes” [AII14].
Since 2004 Gartner analyses the ECM market and publishes ” Magic Quadrant for Enterprise
Content Management”, where it defines the changes on the ECM market and describes the
strengths and weaknesses of ECMS developers. Gartner divides the term ECM in two frame-
works: a strategic framework and a technical architecture. The strategic framework allows
companies to increase the productivity, take control of their content, enable content-centric
processes. The technical architecture, consists of the platform - set of services that provide
core ECM functionality, and additional modules that extend platform’s functionality. The
platform includes the following components: document management, web content manage-
ment, records management, image-processing applications, social content, content workflow,
and extended components [GSCT14].

Examination of the solutions of ECM vendors shows that most of the leaders from Gartner’s
quadrant provide cloud solutions for their ECM systems. According to the annual Inter-
national Data Group (IDG) Enterprise Cloud Computer Study that was made across more
than 1600 IT and Security decision-makers, investments to the cloud have increased by 19%
since 2012 [idgl4]. Nowadays more and more companies move their IT infrastructure from
on-premise solutions, when the companies maintain their own servers and buy software, to
cloud solutions, when the companies rent infrastructure or/and software. By using the clouds
the companies could focus on their enterprises and do not need to think about maintenance of
servers or about a disaster recovery. Moving ECM solutions to the cloud make new demand
to the cloud IT infrastructure. For example, location and disaster recovery policies should
be applied. According to the law, some type of data (e.g. personal data) should be stored
on servers inside the countries, and that data should be stored in a such way, that it could
be restored in a case of the disaster. Enterprises also make demands to the cloud providers.
They define additional Key Performance Indicator (KPI)s, like maximum response time or
maximum recovery time, that should be satisfied by the cloud provider.

The report is structured as follows: chapter 1 ”Introduction” gives the overview of ECM,
states the problems that occur between business consumers, ECM and cloud providers and
describes technologies, that were used for DSL design. Chapter 2 ”Related work” gives the
overview of work that was made in the area of the ECM domain analysis. Chapter 3 "DSL
development methodology” provides commonality and variability analysis of the ECM domain

11

1 Introduction

and describes an ontology method for the domain analysis, and methodology for implementa-
tion of DSL using Topology and Orchestration Specification for Cloud Applications (TOSCA).
The results of the DSL development are described in chapter 4 "DSL design results”. They
describe ECM ontology, concepts and implementation of ECM DSL. The evaluation of DSL
was done by creating a ECM solution topology, providing this topology and a questionnaire
to the IBM developers and receiving feedback from them. An appendix A contains detailed
ECM ontology.

1.1 Problem description

There is a gap between business customers who implement ECM strategies and developers
and providers of ECM solutions. On the one side, there are no generally accepted terms,
which precisely describe the ECM domain. Different developers of ECM systems could use
the same name for ECM components, which implement different functionality, or they could
use different names for ECM components with similar functionality. Developers could also
introduce the new terms to differentiate their ECM solutions from the competitors. As a
result, the customers of the ECM systems couldn’t clearly understand the functions provided
by the developers of ECM solutions. It is also hard to identify the potential of the new software
since the functionality do not necessarily coincide with the names used by ECM developers
[Bo14].

On the other side, each customer has unique workloads for ECM. These workloads depend
on the different factors [Jen04]. For example, a records management is an important part of
ECM strategy. Implementation of this strategy depends on the geographical location of the
customer’s business. The requirements to ECM solutions for European and US companies
will be different and, for example, capabilities developed according Furopean standard will
not be accepted by US customers, who implement US Department of Defense (DoD)5015.2
standard.

Moving ECM solutions into the clouds creates new demands for that systems: different types
of policies, interoperability and portability of cloud services.

The goal of the thesis is to define the terms of general ECM components, their functional
and non-functional requirements, and to design a declarative language for ECM domain. The
language should be understandable by the business customers, who want to use ECMS to
increase the productivity and mitigate the legal risks, by the ECM architects who design
topologies of ECM solutions and by the cloud providers, who deploy ECM solutions. ECM
service architects should have the possibility to design ECM topologies and to define an
orchestration between ECM components. The business customer should be able to define
functional and non-functional requirements and policies of ECMS. Business users should also
understand the operations, which each component supports. Cloud providers should have the
possibility to map the service topology to the their cloud infrastructure.

The possible use case of ECM language can be defined as follows:

1. The business customer creates the description of requirements to ECMS and sends them
to the ECM architect.

12

1.2 Fundamentals

2. The ECM architect defines ECM related terms from the customer’s description, designs
topology, and publishes it in specialized catalog.

3. The business customer fills the properties of the template and initiates the deployment
process.

4. The cloud provider defines the mapping of a high level topology to the exact infrastruc-
ture. It could be done by developing a special adapter that will transform a high level
framework to a low level architecture.

Mapping the requirements of the problem domain to the ECMS architecture is out of the
scope of the thesis, and could be implemented by ECM providers as additional adapters that
will convert the user’s specification into the final ECM solution.

1.2 Fundamentals

This section includes the definition and description of the technologies that are used in the
master thesis.

1.2.1 Cloud computing

The National Institute of Standards and Technology (NIST) of the U.S. Department of Com-
merce defines Cloud computing as ”a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.” NIST defines three service models of cloud
computing [MG11]:

e Software as a Service (Software as a Service (SaaS)): the consumer uses the provider’s
application deployed on cloud infrastructure;

e Platform as a Service (Platform as a Service (PaaS)): the provider gives the ability to
deploy consumer’s applications on its cloud infrastructure;

e Infrastructure as a Service (Infrastructure as a Service (IaaS)): when the consumer has
the ability to deploy arbitrary applications (including operating systems) on provider’s
core resources (networks, storage, CPUs, and etc.).

NIST also defines four deployment models of cloud computing [MG11]:
e Private cloud: the cloud infrastructure is used by one organization;

e Community cloud: the cloud infrastructure is used by several organizations that share
the same concerns (mission, policy, security requirements, and etc.);

e Public cloud: the cloud infrastructure is used by the general public;

e Hybrid cloud: composition of Private, Community and Public clouds;

13

1 Introduction

1.2.2 Domain specific languages

DSL is a language that is dedicated to a specific problem area [Gholl]. It consists of se-
mantics and syntax. Semantics define a language vocabulary that includes terms and their
meanings. Syntax consists of rules that describe how language terms are related to each other.
DSL provides syntax and semantics at the same level of abstraction as a problem domain.
DSL users focus only on the problem domain model, and should not think, how this model
will be implemented. Typical DSL consists of the problem domain, which is related to the
analyzed business, and the solution domain, which refers to the techniques and tool that form
the solution for the problem domain model. Implementation of DSL maps problem domain
artifacts to solution domain artifacts. For the better understanding between domain experts
and solution developers, DSLs share the common vocabulary, which provides the following
benefits [Gholl]:

e Vocabulary is used as a glue between modelers and domain experts. Usage of the same
terms helps the modeler to speak in the same language with the domain experts.

e Common terminology during tests. Modelers, Testers and Domain Specialists shares
the same vocabulary during establishment and execution of test cases.

e Common vocabulary during development allows developers to use the same terms as
the domain experts.

DSLs can be divided in two categories: external and internal languages. The internal DSL is
developed based on an existed General Purpose Language (GPL). The external language is
developed from scratch.

DSLs can be also divided on textual and graphical languages [KKP*14].

Development of DSL includes several steps: decision that the DSL is necessary, analysis of
the domain, language design and implementation [MHSO05].

In the first step the aim of the language and its uses should be defined. Definition of the
language uses impacts on the concepts of DSL. Common uses of the language are: docu-
mentation of knowledge, code generation, test definition and generation, automatic analysis,
formal verification, and simulation [KKP*14].

The second step is an analysis of the domain. The analysis includes an identification of the
problem domain and gathering knowledge about it from different sources. The results of the
domain analysis are the definitions of the domain scope, domain model that defines terminol-
ogy that are related to the domain and description of domain concepts. The defined domain
model is used as an input for the DSL design. The following analysis patterns can be used:
informal, formal, and derivation from code. Informal methodology allows to analyze the do-
main in an informal way. Formal analysis requires application of the domain analysis methods
(Family Oriented Abstraction, Specification, and Translation, Ontology-based Domain engi-
neering, etc.). The derivation from code defines domain related terminology by analyzing
source code and deployment scripts [MHSO05].

The design of DSL can be done by creating DSL from scratch or by developing DSL on the top
of the existing language. The latter approach is easier, because reusing of the GPL syntax is
available. A DSL designer should not create own type system. Language design can be done

14

1.2 Fundamentals

using formal and informal approaches. Informal approach describes the language specifica-
tion using natural language, including DSL examples. Formal approach requires specification
written using one of the semantic definition methods [MHSO05].

1.2.3 Ontology based domain analysis

Ontologies describe ”explicit formal specifications of the terms in the domain and relations
among them” [NM]. An ontology consists of classes, that describe the concepts of the domain,
class properties and restrictions. Classes can have subclasses that inherit properties of the
parent class. The ontology based analysis consists of the several steps [NM].

Step 1: Determination of the domain and the scope of the ontology. This step
includes the definition of the domain and a purpose of ontology creation. It also includes a
creation of the questions that will be used for the verification of the ontology completeness.

Step 2: Existing ontologies reusing. It allows to use the already existed knowledge
about the domain. There are several ontology databases: Ontolingua, DARPA Agent Markup
Language (DAML), RosettaNet, Directory Mozilla (DMOZ).

Step 3: Listing of the important domain-related terms. It simplifies development of
a class hierarchy. The definition of the classes and their properties can be chosen from the
predefined list of all domain-related terms.

Step 4: Development of the ontology class hierarchy. It includes a creation of
hierarchical structure by defining classes and subclasses from the list of terms. There are
several guidelines for the class hierarchy definitions [NM]:

e Class hierarchy correctness: The guideline includes the rules for verification of ”is-a”
relations, transitivity of class relationships, class uniqueness (different classes should not
represent the same concept), prevention of Class cycles (two classes should not be the
superclasses of each other).

e Class hierarchy sibling analysis: The guideline defines that ”all the sibling classes in the
hierarchy must be at the same level of granularity” [NM]. It also defines the number
of subclasses that the class should contain. The class should not contain only one
subclass or dozen subclasses. Such hierarchy could indicate to a modeling problem or
to incompleteness of the ontology.

e Multiple inheritance: the guideline allows one class to inherit properties from more than
one superclass.

e New class introduction guideline: Set of rules that helps to introduce new classes in
class hierarchy: ”Subclasses of a class usually (1) have additional properties that the
superclass does not have, or (2) restrictions different from those of the superclass, or (3)
participate in different relationships than the superclass” [NM]. Another rule defines
that the ”classes in terminological hierarchies do not have to introduce new properties”
[NM]. There are also rules that help to define whether the term represents the new class

15

1 Introduction

or can be defined as a property of the already existed class. If the such property becomes
restrictions for properties in other classes, then the new class should be introduced.

e Limiting the scope: the guideline says that the ontology should not include all possi-
ble information about domain and properties, but should only include the information
important for specific application.

e Create disjoint subclasses: different classes should not contain the common instance.

Step 5: Definition of the class properties (slots). This step adds the additional infor-
mation to the classes that help to answer the questions from step 1. There are different types
of properties: ”intrinsic”, ”extrinsic”, parts, and relationships properties. Class properties
describe variabilities between components.

Step 6: Declaration of the properties boundaries. It describes allowed values and
a number of values (single, multiple, minimum and maximum number of values) that the
properties can have. [NM] defines the following attribute value types:

e The string represents the simple text value.

e The number describes numeric values and could be defined as more specific Integer, float
or double value.

e Boolean could have two instances: true or false.

Enumerated represents the list of predefined values of a specific type.

Instance allows to define the relationship between instances, and should include the list
of allowed classes.

Step 7: Instances of the classes creation. The final step includes selecting and creating
the instance of the class, and filling it’s properties.

1.2.4 Topology and orchestration specification for cloud applications

The Topology and Orchestration Specification for Cloud Applications (TOSCA) standard is a
language for the description of a service topology and management procedures for the service
creation and modification. A service template defines topology and orchestration that enable
the interoperable deployment of the cloud services.

The figure 1.1 shows the main components of the TOSCA service template. A topology

model defines a structure of a service. It consists of node templates and relationship tem-
plates. These components represent a directed graph.
The node template is an instance of the node type that describes the properties and oper-
ations of the service component. Node types define a structure of properties by providing
property definition. The actual property values should be filled in node template. The node
type can derive properties from another node type. Derivation rules say that XML element
of node type properties should extend XML element of the node from which a target node is
derived. Requirement, capabilities, instance states and interfaces of the node type can also
be inherited.

16

1.2 Fundamentals

Service Template

/ Node Types N\
Topology Template
poloey P e Node Type ™\
/ \ Capability Definitions
............] 5
: type f £)
e for 3
Relationship P E,-i §
Template / N\, . . Q— Requiremefit Definitions “"/
| Relationship Types
! (. RelationshipType
| | type for = =
g =
Node l:15_’ 2
Template - Plans 2/
e |- ™
a

Figure 1.1: TOSCA service template scheme [Tos13b]

Relationship template is an instance of the relationship type that represent a connection be-
tween different components and defines the direction by providing source and target elements.
Plans describe the management aspects of service instances. Business Process Model and No-
tation (BPMN) and Business Process Execution Language (BPEL) as well as any language
for process model definition can be used for the orchestration. The plan contains tasks that
refer to the node and relationship interfaces. It is also possible to call the external services
[Tos13b].

TOSCA supports the following use cases [Tos13b]:

e Service as a marketable entities: service developer can create different templates and
publish them in the service provider’s catalog. Cloud provider can map the published
topology on his infrastructure.

e Portability of service templates.

e Service composition allows to compose the service from the components provided by
different developers.

e Relation to virtual images: if the cloud provider hosts the services based on middleware
stacks (the virtual images), then node in the service template can correspond to such
virtual image.

TOSCA supports declaration of requirements and capabilities for the service components.
It allows to define dependencies between nodes. For example, a database requires installed
Operating System (OS) before the database can be installed. In TOSCA it could be defined
by assigning ”OS requirement” and ”OS capability” to the database and OS nodes. Differ-
ent requirements of one node can be satisfied by capabilities of different nodes. Declaration

17

1 Introduction

of dependencies could be done by defining requirements and capabilities definitions, which
represent instances of corresponding requirement and capabilities types. These types support
derivation. Derivation rules say that XML element of requirement or capability type should
extend XML element of the corresponding type from which it is derived. Requirements and
capabilities could be matched in two ways: using direct relationships between components in
the same template, or the matching could be done by the TOSCA container during instanti-
ation.

One node template could be substituted by another service template if they have the same
boundaries (properties, capabilities, etc.).

Nonfunctional characteristics (e.g. quality-of-services) are provided by the definition of poli-
cies. One node template can be associated with different policies. Declaration of the policies
is done by defining policy templates that are the instances of the policy types. The properties
of one policy type could be derived from another policy type.

TOSCA primer [Tos13a] defines a processing environment to process TOSCA definitions that
are operated by the cloud provider. It consists of the following components:

e TOSCA modeling allows to model service templates.

e Cloud Service Archive (CSAR): an archive file with predefined structure that contains
all definitions, artifacts, plans, images.

e TOSCA Container processes the CSAR file and supports all steps needed for provisioning
and management of cloud application

e A process engine is an optional component and is used in the case when the service
template provides plans.

18

2 Related work

The chapter gives a review of the work that was done in the analysis of ECM domain.

Functional ECM Framework. Knut R. Grahlmann et. al. review the enterprise content
management from the functional perspective. Their work consists of two parts. In the first
part the definition of ECM is given, and in the second the Functional Enterprise Content
Management Framework (FEF), which describes the functionalities of ECM systems (ECMS),
is introduced. The work is based on the reviewing of academic literature about ECM. The
found papers were categorized according to four perspectives [GHHT06]:

e A content perspective that includes three views: user view, content view, and system
view
e A technology perspective describes "basic technologies used for ECMS” [GHHT06]

e An enterprise perspective ” considers organizational, social, and business issues” [GHHT06]

e A process perspective includes "research about both the development and deployment

of ECMS” [GHH™06]

Knut R. Grahlmann et. al. found that all ECM definitions from the papers they reviewed
could be split in two groups: the first group defines ECM from content and technical perspec-
tive, and the second group defines ECM based on enterprise or process perspective. Based
on these papers, the authors give the following definition of ECM: ”Enterprise Content Man-
agement comprises the strategies, processes, methods, systems, and technologies that are
necessary for capturing, creating, managing, using, publishing, storing, preserving, and dis-
posing content within and between organizations.” [GHH™06]

The second part of their work is dedicated to the description of the functional ECM framework.
The authors derive several scenarios, when FEF can be used:

e A description of ECM functionalities in organizations
e A future research
e A comparison of functionalities of the existing ECMS

The authors indicate five guidelines for the framework. FEF should be comprehensible and
usable, complete, generic, distinguishing enough, and future-proof. The final framework is
shown on figure 2.1

The model consists of four layers:

19

2 Related work

client desktop) . organization's Access
application . EAl interface intranet extranet .
N . application website
integration
e R R 1 Process
H Workflow Management ! ! Collaboration } Analysis '
1 i 1l 1
] 2 1
1| adnoc support || €25 handiing production digital 11| collaborative project team " builln.e[ss usiness |1
h L support support signatures |} { editing management | | communication | 1 activity intelligence |!
i 1 } 1 |__monitoring 1
__ pEs e e]
(TTTTTTO TN e T B Service
1 Capture 1y Management & Use |1 Publication 1
‘ P b]
1 1
K . ! L
1| content digital forms ||} (| information component digital assets e-mails | 1| broadcasting digital rights |}
H aggregation H : retrieval content n management :
[} [| : 1
1 1y ' 1
1| digita sources imaging |1 | | localization siectronlc shoctronic Inatant | p—— printing |
H H : documents records messages V1 :
1 [[1
------------------- L : : 1
b physical Vo - 4
structured data web content | syndication
| records : ']
i 1
¢ | L)
Repository
auditing content metadata & version
support storage taxonomy management

Figure 2.1: Functional ECM framework, [GHHT06]

e "Access” layer includes functionalities for users and other systems for interacting with

ECMS.

e "Process” layer describes functionalities for workflow management, collaboration and
analysis.

e "Service” layer provides capturing, management and publication functionalities of con-
tent.

e "Repository” layer includes functionalities for storage and preservation of content.

The evaluation of the FEF was made by examining ECMS in three organizations and review-
ing the framework by ECM consultant. Examination of ECMS in particular organizations
showed that all these companies use software components from different developers. The FEF
helped to describe, which functionalities different software products support. The ECM ex-
pert claimed that ”the FEF is in line with experience from ECM-projects at various clients”
and can be ”easily mutable and considered future-proof” [GHH™06].

Enterprise content management: an integrated perspective on information management.
Tero Péivarinta et. al. introduced the ECM framework from the organizational point of view.
Their work is based on the analysis of 56 ECM projects shared by the AIIM organization
[PeMO05]. The developed ECM framework is shown on Figure 2.2 and consists of the following
components:

e The concept of a content model refers to content structure and view, its life cycle, meta-
data, and taxonomy. It allows to understand, how the content should be transported to
the ECM system;

20

e Enterprise model defines the business workloads and roles in the organization;

e Infrastructure describes the technological aspects of ECMS implementation such as stan-
dard application and tools integration throughout content lifecycle, user interface de-
velopment to content management, software, hardware, and technology updates, imple-
mentation of security issues;

e Administration of ECM refers to policies, regulations, and administrative procedures to
content management.

e Change management indicates to the changes between enterprise and content models

over time.
Enterprise Model
Objectives ? Impacts

Content Model

Administration

Change Management

Figure 2.2: Major ECM issues, [PeMO05]

The authors indicate the following ECM objectives: improved collaboration, reliability and
quality of information content, tracking of transactions, cost savings, compliance to standards
and legislations.

California’s department of technology definition of ECM reference architecture California
department of technology defines the ECM reference architecture based on the AIIM’s ECM
101 poster and derives five key areas of ECM [0T14]:

e "Capture” includes different technologies for document creation and capturing, and
formats, in which the content can be saved.

e "Manage” defines the operations related to content lifecycle management and includes
the following components: document management, web content management, forms
management, records management, digital assets management, business process man-
agement and workflow, and content management services.

e "Store” is responsible for persisting and accessing data.
e "Preserve” is responsible for long-storage persistence of data.

e "Deliver” returns content to the user and includes formats and technologies for content
delivery.

21

2 Related work

The ECM reference architecture is based on these key areas and consists of three vertical
layers (Figure 2.3):

e Capture and deliver components, which include the technologies for creating/capturing
and delivering the content.

e Manage components include components and core services for management of the con-

tent lifecycle.

e Content repositories include technologies for storage of different type of content.

= = N
Capture Deliver
Scanning! N M
A Business Business
Digital Fax/ COLD/ERM I Office] [’ F I o I COLD/ERM Iestalemeﬂts]
[MEPs][Apps](J Applications
[Imaging][EDI][Rich IlediaI Browser] Printer l EDI I Internet I [:“e(\):(lb':s]
Image
Capture and | Enhancement & [S e](Microfilm I Email] PDF s Web I Extranet I Email]
Dellm Clean ervices ErvIiCeS
Cg)mponents Recognition Eonns
{OCR, ICR, XML Portal Archive Intranet
HCR, OMR, IDR! LT
(Document Identification) C Output Management)
@ Document Classification M Document Syndication)
(Document Aggregation and categorization) (Document Compmssmn)
(Data Extraction and Validation) (Format and Personallzatlon)
(Indexing) (Layout and Publishing)
X s,

Interoperability

Standards Based Interface
Development and Administration Tools

eForms
Database

Content

Datal Archive

Metadata

XML Store

Figure 2.3: ECM reference architecture, conceptual view, [0T14]

The horizontal components of the reference architecture are applied to all vertical layers and
includes interface interoperability standards and development and administration tools. The
document focuses on ECM concepts at the enterprise architecture level and does not include
other areas for implementation of ECM solutions like legislations and corporate policies. It
also defines, which components should be considered during ECM implementation and does
not define, which capabilities should be provided.

The described frameworks were used for the classification of the concrete ECM solutions and
for the definition of the ontology classes.

22

3 Domain specific languages development
methodology

DSL is the language that is bounded by the specific problem domain. It consists of semantics
and syntax. Semantics define terms and their meaning that describe the problem domain.
The terms and their definitions form DSL vocabulary. Syntax declares rules that define how
terms are related to each other. Declaration of the DSL semantics was done by definition of
the ECM ontology. DSL syntax is declared by TOSCA language.

Development of DSL includes several steps: decision that the language is necessary, analysis
of the domain, language design and implementation. The detailed description of the DSL
development steps is done in section 2.2.2 of the introduction chapter.

This chapter starts with an analysis of commonalities and variabilities of the ECM domain.
Then the definition of the domain scope and the description of the applied methodologies for
the domain analysis and DSL design using TOSCA is introduced. The result of the domain
analysis, the abstract description of DSL and the concrete implementation using TOSCA
language is done in chapter 4 ”DSL Modeling results”.

3.1 Commonality and variability analysis of ECM solutions

For the definition of the commonalities and variabilities of ECM solutions I defined the com-
ponents that are provided by IBM, Alfresco, ECM. These companies were selected from the
leader group of Gartner’s magic quadrant [GSCt14]. Then I arranged the components ac-
cording to the FEF [GHHT06]. After that I defined common operations for each component
type.

I started the definition of the commonalities and variabilities with the analysis of the compo-
nents that form foundation of the ECM system.

Alfresco ECM foundation consists of three layers:

e Content repository describes low level I'T components that are used for the preservation
of content and its metadata. It consists of file system and relational database.

e The application server unites content, control and collaboration services. The content
services allow to manage content lifecycle, convert content from one type to another,
extract metadata and generate tags. Control services enable content workflow that
consists of a sequence of steps. Collaboration services consist of a social graph that
represents people and relationships between them, continuous personalized feed, creation
and edition of interlinked webpages, threaded conversations.

23

3 Domain specific languages development methodology

e The client layer describes the services that allow user to access the content stored in
Alfresco repository. It includes web, mobile and office clients.

The architecture of the EMC ECM foundation solution ”Documentum” consists of the fol-
lowing groups [EMCO08]:

e The kernel group consists of the security (audit, access control, authentication, etc.)
and the repository services (lifecycle, storage, users, etc.), and repository infrastructure
(database, full-text index, etc.).

e The application services group consists of the process (analytics, project tracking, etc.),
content (transformations, classification, etc.) and compliance (records, retention, etc.)
services.

e The experience group defines an access layer of ECM domain that allows users to interact
with an ECM application and kernel service and includes WDK based platform for
deployment extensional applications. The interaction between experience layer and
application services is implemented through the Application Programming Interface
(API).

e Tools allow design, configure and administrate ECM solution.
IBM P8 ECM foundation consists of three main layers [ZBO™11]:

e Information infrastructure unites data and storage services, that allows to call the data
from data stores and provides abstraction between P8 platform and the data and storage
services.

e ECM/BPM services are defined by the content and process engines and enable the core
content and process operations for content management.

e Input, presentation and output services allows to interact users with ECM solution.
They also provide API for third party applications. According to the FEF that was
described in Chapter 3 "Related work”, all described ECM solutions can be grouped
into the following layers: repository layer, service and process layer, and access layer.

The examination of the ECM vendors architectures showed that all ECM related terms can
be grouped into the following layers according to FEF [GHH"06] (Figure 3.1):

e Access layer is defined by capture and delivery terms and includes the technologies and
components for the content creation, acquisition as well as for showing and exporting
the queried content (APIs, Web Clients, etc.).

e Manage Layer includes service and process layer and defines services for the manage-
ment of enterprise content. According to the examination of technical documentation,
management layer consists of the core components that describe core ECM services,
and extension components that add functionality to the core component (e.g. Records
Management).

e Repository Layer includes technologies and components for the content storage (Databases,
File Storages, etc.).

24

3.1 Commonality and variability analysis of ECM solutions

Access Layer

Alfresco Client EMC Experience IBM Input, Presentation, Delivery

Manage Layer (Content and Process layer)
Alfresco Content Server EMC Documentum IBM FileNet P8

Repository Layer

Alfresco Content Repository. |[EMC Kernel IBM Informational
Infrustructure

Figure 3.1: ECM layers

The analysis showed that most of the solutions have the same general architecture: there are
core components, that form the foundation for ECM solutions. All examined vendors have
the repository and library services as the central component, which provide core function-
ality for capturing, storing, retrieving, and management of the content. There are different
definitions of ECMS core components. Alfresco defines the central component as an content
application server. IBM’s P8 core services unite object stores - the storage where content
and its metadata are stored, content engine - services that provide core content management
functions, and process engine - core component, that provide basic business process manage-
ment operations [ZBO111]. Academic literature [GHH'06] distinguishes "Repository”, that
provide storage functions for content and metadata, and library services, which implement
access interfaces to that data. In my model I used definition ”Repository”, which includes
storage for content and its metadata, and the library services that implement core Create
Retrieve Update Delete Search (CRUDS) operations. This repository stores the content and
information about it in the storage (file system, database, etc.), and manages access to the
repository using Directory Services (DS) Server (DS server could be implemented as a part
of ECMS solution, or the customer’s DS server can be used). All additional components
(Records Management, e-discovery, advanced search services, etc.) extends the functionality
of the repository. Third party software could access repository through the API. Most of
the ECMS developers uses Content Management Interoperability Services (CMIS) standard
to provide an interface to the repository. This standard describes the main functions that
should be supported by the repository. The Figure 3.2 shows the generic architecture of the
ECMS system.

After the analysis of the different architectures, I examined the particular components that
are provided by each company. I started with the core component that forms a foundation

25

3 Domain specific languages development methodology

Third Party Connects to Direqtory
Software Services
Server
L——= AP|
; = Reposito
ECM Extenstion P v
Component Storage
Records | _ . Extends
Manager EelseuEy Functionality File DEiERsE
System

Figure 3.2: Generalized architecture of ECMS

of ECM management solution. The following components were examined: Alfresco Content
Repository, ECM Documentum, IBM FileNet P8. For each component were defined work-
loads that consist of operations that are supported by the component. The common workloads
were defined. A list of the ECM component and supported workloads is shown in Table 3.1.
The analysis of the supported workloads shows that examined ECM solutions have common

ECM Component Supported workloads

Alfresco Content Server | Folder services, versioning services, check-in, check-out, au-
dit services, Authority services, Permission Services (ACLs),
Content lifecycle management, transformation services,
metadata extraction, tagging, workflow support (jPDL pro-
cess language for definition states, transitions, tasks, events,
actions)

ECM Documentum Check-in, Check-out, versioning, Full-text indexing, Secu-
rity (authority, permission control (repository level, ACLs)),
accountability (auditing), Process Management features
(document workflows and automated lifecycle stages)

IBM FileNet P8 Check-in, Check-out, versioning, security (authority, per-
mission control), lifecycle management, foldering, full-text
indexing, workflow supports (step processes and user inbox
operations)

Table 3.1: List of supported workloads by different ECM vendors

workload names. The more detailed analysis showed that the workloads with the same names
can include different operations that the customer can execute. For example, all examined
components support workflow management, that describes document worklflow operations.
EMC Documentum workflows management workload includes also operations for automation
of lifecycle stages. The same analysis was done with other ECM components (records man-
agement, e-discovery, etc.) and the workloads with the same names and different supported
operations were found.

The analysis of commonalities and variabilities of ECM solutions from different vendors
showed that the components from the examined vendors can be classified according FEF
[GHH'06]. Additionally all examined solutions have the common generalized architecture:

26

3.2 ECM domain analysis

there is core a component that consists of the repository and library services. All other com-
ponents extends the functionality of that component. The variabilities are provided by the
workloads that are associated with the ECM components. The workloads with the same name
can provide different operations. These variabilities should be solved by ECM DSL.

3.2 ECM domain analysis

Most of the resources dedicated to the DSL design does not cover in detail methods for the
domain analysis. In this section the overview of the domain analysis methods will be given,
and an application of the ontology based methodology to the ECM domain analysis will be
described.

The goal of the domain analysis is to define terms of the ECM domain, their commonalities
and variabilities, and interconnections between them. The result of the analysis is the domain
model that will be the input for the DSL design. The abstraction, information hidden and
prediction of future changes are important terms in the domain analysis.

There are different patterns for the domain analysis: informal, formal and derivation from a
code [MHSO05]. The formal facility includes different methodologies like family-oriented ab-
straction, specification, and translation (FAST), ontology-based domain analysis, and others.
During the studying different methodologies, I decided to use the ontology based methodol-
ogy, that describes ”explicit formal specifications of the terms in the domain and relations
among them” [NM]. The ontology defines classes and their hierarchy. According to the ECM
domain, classes define terms that form the DSL vocabulary. The ontology based methodology
has relative concepts as a TOSCA metamodel (definition of classes, property types, relation-
ships) and could be mapped to TOSCA terminology. In the following sections application of
the ontology development steps defined by [NM] will be described.

3.2.1 Determination of the domain and scope of the ontology

The development of the ontology model starts from the definition of the domain and its scope,
and should cover the following aspects: description of the domain, purposes for the ontology
creation, definition of the main users, who will use the ontology, and the list of the questions
for approval of the domain completeness [NM].

First, the definition of ECM will be introduced. AIIM defines ECM as ”the strategies, meth-
ods and tools used to capture, manage, store, preserve, and deliver content and documents
related to organizational processes” [AIT14]. Gartner divides the term ECM in two frameworks:
a strategic framework and a technical architecture. The strategic framework allows companies
to increase the productivity, take control of their content, enable content-centric processes.
The technical architecture consists of the platform - set of services that provide core ECM
functionality, and additional modules that extend platform’s functionality [GSCT14]. Both
these definitions emphasize that the successful implementation of ECM includes not only the
usage of a technical system that allows to manage of informational assets, but also an appli-
ance of strategies for effective content management. Based on these definitions I focused the

27

3 Domain specific languages development methodology

ECM domain analysis on the content lifecycle and terms definition of ECM. Term definition
helps to understand the terms and their workload that form an intelligible to business cus-
tomer language, and includes the analysis of the academic literature, technical documentation
of particular ECM solutions, and the discussions with the developers of ECM systems. The
content lifecycle view allows to understand factors that impact on enterprise content during
its life cycle. It helps to describe the existing enterprise architecture related to content ac-
quisition, storage, management, and delivery. This view includes the analysis of standards,
corporate governance, and academic literature.

The purpose of the ontology creation is to identify the functional and non-functional require-
ments to the ECMS. These requirements will be used as the inputs to the ECM DSL.

The primary users of this ontology are business customers, who want to implement ECM
solution in their organizations, ECM architects, who will design ECM solution topology, and
cloud providers, who will deploy ECM system. Business users have to define functional and
non-functional requirements to the ECM solution . These requirements can be declared as
a "request for proposal” document, where customer defines requirements using terms that
he/she understands. Architects have to design ECM service templates according to the cus-
tomer requirements. Providers have to transform these requirements of particular ECM ar-
chitecture.

A questionnaire will be used to check whether the domain model is complete. The following
questions were stated:

e s the presented language useful for the definition of the quantitative and qualitative
characteristics and policies of ECM System?

e Are ECM components described using high level abstraction and are they independent
from particular components from the different vendors (IBM, Alfresco, Oracle, etc.)?

e Does the presented ECM template allow to define components that should be deployed?

e Is it possible to define Quantitative characteristics (max number of concurrent users,
average size of files, number of file shares, etc.) from the provided ECM service template?

[NM] defines the guidelines for ontology creation. One of these guidelines tells that the scope
of the Ontology should be limited by its application. Because of that the developing ontology
will be limited by the definition of the common classes that are important in ECM.

3.2.2 Definition of classes and class hierarchy

The definition of a class hierarchy starts from the searching of the already existed ontologies
that could be reused. Then the list of terms will be created for classes and their hierarchy
definition. In the last step the properties of the classes should be described.

For the determination of ECM terms I used the following sources: ontology databases, aca-
demic literature, technical documentation about ECM, developer’s documentation, deploy-
ment scripts provided by IBM. I used the following searching constructions for the ECM
terms: "ECM”, ”Enterprise Content Management”, ”Content Management”, "ECM Refer-
ence architecture”, " ECM blueprint”. Reusing of the existing ontologies allows to develop a

28

3.2 ECM domain analysis

domain model based on the already existed knowledge. There are several ontology databases:
Ontologia library, DAML, RosettaNet, DMOZ.

Examination of the ontology databases gave no result. Studying of the academic articles
showed that some work was done in defining ECM architecture from different points of view.
[GHH106] introduces the Functional ECM Framework, which describes the different layers
and components of ECMS. [0T14] also overviews ECM from functional perspective but has
a different definition of layers and components. It adds two additional vertical layers: ”stan-
dard based interface interoperability” and ”Development and Administration tools” These
two functional frameworks were used as a basis for definition of functional requirements of
ECMS.

[PeMO05] describes ECM domain from the Enterprise Perspective. The connection between
enterprise architecture and a content model is shown. This framework shows that the com-
pany should define not only requirements to the ECMS, but should also provide information
about the enterprise architecture.

Studying Academic literature dedicated to Information Lifecycle Governance (ILG) showed
that there are different factors that impacts on ECM. There are different standards, govern-
ment legislations and regulations provided by governments that every industry has to comply.
Companies develop a corporate governance, which includes best practices, policies and pro-
cedures to follow the compliances. In addition to the business requirements, there are also
legal requirements that should be mentioned during ECM implementation [Smal4]. These
requirements include:

e Records management complies enterprises to store the documents that have legislation
value as records. Records can not be modified and should be stored and disposed
according to the records retention schedule.

e Legal holds complies enterprises to hold records in the case of a government investigation.
These records shouldn’t be disposed according to the retention schedule during the
investigation

e E-discovery allows companies to search the records and content according to the inves-
tigation cases.

IBM’s questionnaire allows to define terms of ECM and provides additional knowledge about
information that should be gathered from the customer. This information includes qualitative
and quantitative requirements of ECM. The quantitative characteristics include: average size
of the different type of content, maximum upload/search/retrieve operations per time unit
(week/month /year), peak usage periods, number of e-Discovery tasks, number of File Shares,
number of ECM systems, maximum and average number of concurrent users. The qualitative
characteristics include a description of basic archive operations such as Ingest, Classification,
Indexing, Search, Retrieve, Update, eDiscovery, Retention or Records Management. This in-
formation helps to the cloud provider to define which components should be deployed and to
build the IT architecture that will fulfill Service Level Agreement (SLA).

The technical documentation provided the information about the characteristics of the ECM
components. For example, IBM has a ” Content Collection” component, that allows to acquire
the content from enterprise resources (file and mail servers, other repositories, etc.) and store
it in ECMS. For the correct deployment of this component, the information about the content

29

3 Domain specific languages development methodology

sources should be provided by the business customer. For example, the customer could have
the requirement to store all content from a mail server in the ECM system. For these pur-
poses he/she should provide the information about the characteristics of the mail services such
as type of the server (Microsoft Exchange, Simple Mail Transfer Protocol (SMTP), Internet
Message Access Protocol (IMAP), etc.), location of the server, IP address of the server, etc.
Additionally, deployment scripts provided by IBM have been studied. They provided infor-
mation about the parameters such as users, groups, roles, and others. They also define the
administration operations that each ECM node can support (install, uninstall, start, stop,

etc.).

The result of the literature analysis is the list of terms that can be used for the class and
properties definition, The list is shown in Table 3.2.

Literature Term Type Terms

Source

Functional ECM | ECM Layers Access Layer, Process Layer, Service Layer,
Framework Repositories

[GHH™T06]

California’s ECM
Reference Archi-
tecture

Capture Compo-
nents

Deliver Compo-
nents
ECM Manage-
ment Compo-
nents
Store Compo-
nents

API, Document Scanning, Digital Faxes, Recog-
nition Technologies, Automatic capture, Semi-
automatic capture, Image Enhancement and
clean-up, Document Identification, Document
Classification, Document Categorization, Data
Extraction, Indexing, Metadata Creation, Con-
tent based indexing, Metadata based indexing
On-Premise ECM, Software-as-a-Service ECM,
Hybrid ECM, Transformation Technologies,
Converters, Viewers, Compression, Syndication,
Security Technologies, E-Signature, Public Key
infrastructure, Distribution and Output Man-
agement, Internet, E-mail. Fax, Electronic Data
Interchange (EDI), Extensible Markup Lan-
guage (XML), Mobile, Multimedia, Paper
Content Management Services, Document Man-
agement, Web Content Management, Forms
Management, Records Management, Digital As-
set Management, Core Management Services,
Library Services, Check-in, Check-out, Index-
ing, Search Services, Digital Right Management,
Security and access control, E-Signature

File System, Database, Storage Technolo-
gies, Storage Area Network (SAN), Network-
attached storage (NAS)

30

Continued on next page

3.2 ECM domain analysis

Literature
Source

Term Type

Terms

Enterprise
Content Man-
agement: an
Integrated Per-
spective on
Information
management

Layer

Content model, Enterprise Model, process-based
Enterprise model, role-based Enterprise Model,
project-Based Enterprise Model, Infrastructure

IBM Question-
naire

Qualitative Char-
acteristics

Quantitative
Characteristics

Ingest Character-
istics

OnDemand Char-
acteristics

Scanning Charac-
teristics

Viewing for doc-
uments by Client
Application

Ingest, Classification, Indexing, Search, Re-
trieve, Update, Retention, Records Manage-
ment, eDiscovery, Holds, Reporting, Audit-
ing, Disposal, Exporting, Compliance work-
flows, External Services

Maximum number of concurrent users users, Av-
erage Number if concurrent users, Number of
Docs loaded per time, Number of Retrieves per
time, Number of Updates per Time, Number of
FileShares

Import methods, Windows desktop via Naviga-
tor, File Servers, Protocols (Secure File Trans-
fer Protocol (SFTP), Short Interframe Space
(SIFS)), Batch import via IBM Content Col-
lector, Batch import via CMIS, Batch import
via Web Services (WS), Batch Import via API,
Number of Filers, Number of File Shares, Un-
structured Repositories, Number of documents
loaded per time, Average document size, Docu-
ment Formats (Word2k3, PDF, TIFF, JPEG),
Black list of document types, Steaming media,
Archive Storage, Pre-processing Requierements,
Electronic Report Distribution, E-mail Notifica-
tion

High speed front-end data loading solution,
PDF Indexer, Report Mining, electronic Report
Distribution

Partner Solution, Number of documents per day,
OS Client

Content Navigator, Native Viewing, Plugin or
application, Applet, electronic Discovery Man-
ager (eDM), electronic Discovery Agent (eDA),
Rendition, Rendition formats, Native, PDF,
HTML, XML, EDRM

Continued on next page

31

3 Domain specific languages development methodology

Literature Term Type Terms
Source

Parametric Taxonomy, Document Classes, Search At-

Search ~ Charac- | tributes, Relationships, wild card search, sort-

teristics ing, Retention Management

Full text search | document types to be indexed, volume of full

characteristics text indexed documents per day

Records Manage- | Retention Management, File Plan, RM Stan-

ment Characteris- | dards (Base, DoD, European), Integration with

tics viewers

Content Classifi- | Automatic classification, classifier, statistical

cation analysis

Security Lightweight Directory Access Protocol (LDAP),
LDAP Version, LDAP Type (Domino, AD),
Number of domains, Secure Sockets Layer
(SSL), Single sign-on (SSO)

Internationalization Languages

Business Continu- | Backup, Restore, High Availability, Disaster Re-

ity covery

Resources and | Departments, Roles

Responsibilities

characteristics

Communication Connection to Archive, Document Metrics, Net-

and Networking work Bandwidth, Host Naming Conventions, IP
Adresses

Enterprise Con- | Acquisition Corporate desktops, INTERNET, e-forms, scan-
tent Manage- ning centers, multifunctional devices, repository,
ment: A business e-mail, enterprise agreement formats, original
and Technical formats (paper, electronic), cataloging, index-
Guide [Cam11] ing.

Storage Enterprise storage (distributed, federated,
cloud), Enterprise repository (shelves, file stor-
age, etc.), Number of versions, access control,
digital right protection, retention life of content.

Delivery Searching, web page, downloading, printing.

Table 3.2: List of the ECM domain terms

After the gathering information about the ECM terms, the classes and class hierarchy could
be defined. There are different approaches for class hierarchy modeling:

32

e Top-down approach: the class definition starts from the more generalized classes, and

then more concrete classes are defined

3.2 ECM domain analysis

e Bottom-up approach: the definition of classes starts from the initialization of the par-
ticular terms, which then are combined with more general classes

e Combination development: combines top-down and bottom-up approaches. The defi-
nition of hierarchy could start from the concrete terms and then more specialized and
generalized classes can be defined.

I used the combination development approach. The method described in [NM] for definition
of the class hierarchy was applied: first, the classes from the term list were selected, then
the sub- and parent- classes were defined. The next step was to define the properties of the
classes, which were derived also from the term list. The resulted classes were examined, and
the more generalized and specialized classes were defined. The generalized class was intro-
duced if several classes contain the same parameters and are part of the same parent class.
During the definition of the classes the guidelines for class hierarchy correctness, sibling anal-
ysis, new class introduction and scope limitation described in [NM] were used. The more
detailed definition of these guidelines is described in section 2.2.3 of the fundamentals section
of the introductory chapter.

The common layers and definition of generalized architecture that were described in common-
ality and variability analysis section were used as a starting point for the class hierarchies
definition. Then more concrete and more generic classes were selected.

Additionally, IBM Questionnaire defines the qualitative and quantitative information that
should be provided by the business customer about already existed enterprise infrastructure.
That information is used by ECMS providers during deployment stage. Quantitative data
helps to choose correct Information Technology (IT) architecture that will satisfy Service
Level Agreement (SLA). Qualitative data allows the provider to choose the correct compo-
nents. For example, the core ECM component requires the information about LDAP servers
for security considerations, or content collector requires the information about the enterprise
storages (servers, unstructured repositories) where the data that should be collected is stored
and the corporate taxonomy that defines in which way a content should be categorized.

Definition of class properties and it's boundaries. The property definition usually is done
as a part of the class hierarchy definition. Properties should have two important boundaries:
cardinality and value-type. Cardinality defines the minimum and maximum number of the
parameter occurrence. For example, the parameter ”Standard Browsers” of the policy class
defines the list of the browsers that should be supported by Web Client. This parameter could
contain several values of the same type (”Google Chrome”, ”Mozilla Firefox”, etc.). If the
minimum number of values equals 0, then it means, that the parameter is not required. Value-
type defines the type of the value that the property could contain and could be one of the
following values: string, numeric, boolean, enumerated, instance. More detailed description
of value-types is done in the section 2.2.3 of introduction.

The definition of the parameters was done by the selecting of the remaining terms from the
list (Table 3.2). IBM questionnaire was used as a basis for properties definition. Not all the
terms from Table 3.2 were used for declaration of classes and their. Only terms that allow to
create the ontology that will describe the core principals of ECM and enable a creation of the
extensible class hierarchy were selected. The qualitative characteristics of IBM’s questionnaire,

33

3 Domain specific languages development methodology

the terms defined in functional ECM framework, California’s ECM reference architecture, and
integrative perspective on information management were used for definition of classes and their
hierarchies. The properties of classes were defined based on the quantitative parameters of
IBM’s questionnaire.

The result ontology of the ECM domain is described in ”DSL modeling Results” chapter.

3.3 DSL design methodology

DSL defines semantics (terms and their definition that form a language vocabulary) and syn-
tax (rules for logic connection of vocabulary items) that describe the problem domain. There
are two main types of domain specific languages: internal and external DSLs. The internal
DSL is based on the existing GPL, and the external DSL is developed from the scratch.

The internal DSL based on the TOSCA language was used for definition of the ECM work-
loads. Exploitation of TOSCA allows to develop the language based on the already existed
syntax. TOSCA is the standard that was developed for cloud services deployment automa-
tion. This section is focused on the description of the TOSCA application for ECM purposes
and definition of basic features that should be supported by the language. The detailed de-
scription of the TOSCA standard was done in the introduction chapter.

TOSCA was selected as the basis of DSL because it was designed for supporting portability
of topology templates and services composition. Portability means that the service developer
could define topology, plan and policies and publish them as a service template in the catalog.
Cloud provider could map this service template to his infrastructure. A service composition
allows the cloud provider to use the topology templates from different developers [Tos13b].
Applying to the ECM domain, it allows to define the high level architecture of ECMS and
publish it in the catalog. Then, cloud providers could map this architecture to their infrastruc-
ture and substitute high level nodes with the exact topologies provided by ECM developers.
TOSCA also describes the processing environment for the service templates [Tos13a]. It al-
lows cloud providers to automate the provisioning of the ECMS and reduce the total time
needed for the solution deployment.

The usage of the TOSCA will be limited by the usage of the nodes, relationships, requirements
and capabilities, and policies. These components allow to model the syntax of the language.
Instantiation of the TOSCA types is done in the service template. It defines the boundaries,
topology of the components, policies, and plans.

Nodes definition The classes of the ECM ontology represent the semantics of the language.
It describes ECM terms and the relationships between them. Applying to TOSCA, ontology
classes could be mapped to the node types, and the properties that describe the links to other
ontology classes could be mapped to the relationship types. The node types have hierarchical
structure that allows to use almost the same hierarchy as in the ECM ontology.

Instead of the ontology classes, TOSCA node types do not support multi inheritance. It means
that the classes that have more than one parent should be declared in a different way. During
domain analysis, an assumption was made that some nodes that could be defined in future
could be inherited from multiple classes. For example, an enterprise portal, that could be

34

3.3 DSL design methodology

defined in future by the service architect, can derive properties from both capture and deliver
nodes, because this term can be used for the description of content uploading and retrieving.
On the other hand, ”scanner” term could be used only for description of the content captur-
ing. Unification of the classes and definition of the property boundaries could be applied as
a solution. Capture and delivery classes could be united in one class named ” Access”, that
will describe the properties for both term types. If the exact node (e.g. scanner) does not
support one of the properties (e.g. retrieving formats), then that property could be omitted
(minimum number of parameter occurrence should be set to 0).

TOSCA node types support declaration of requirements and capabilities, that can be used
by the processing environment for the definition of dependencies between ECM terms. Each
requirement and capability definition contains the lower and the upper bound, that the node
should match or can serve. For the requirement definition the default lower and upper bound
is one. If the lower bound equals zero, then it means that this requirement is optional. The
upper and lower bounds for a capabilities definition equals one. In ECM DSL definitions
of the requirements and capabilities can be used to validate a completeness of the topology
template. For example, ”Records Management” node could have ”File Plan requirement”
that can be satisfied by ”File Plan capability” that is provided by ”File Plan” node. If the
user of the language adds ”Records Management” node in the topology, then he/she has to
add ”File Plan” node that describes Enterprise File Plan.

The TOSCA node types allow to define interfaces and operations. Each interface contains
the operations that are supported by the node, and can be used in the plans for defining the
sequence of deployment actions. In ECM DSL interface describes actions that are associated
with the ECM term. For example, the following operations are related to ”ECM Repository”
term: ”create document”, ”upload document”, ”retrieve document”, ” check-in”, ” check-out”.
Interfaces help Cloud provider to map DSL terms to ECMS components and will be defined
only for the ECM related terms.

The user interface will contain the list of supported by the node operations (e.g. for "ECM
Repository” it could be ”check-in”, ”check-out”, ”create”, "retrieve”, "update”, etc.). For
the business customer such listing allows to define which functionalities are supported by the
node. For cloud provider, it gives the ability to select the correct substitution node for the
term, that support same operations.

Relationships definition Relationships in TOSCA are represented by relationship types and
templates. The relationship type defines the type of one or more relationship template.
Ontology properties that have references to another class can be mapped to the relationship
types. It is not necessary to create relationships for all ontology references. According to the
TOSCA standard [Tos13b] processing environment can create relationships between nodes
during the execution process depending on the requirements and the capabilities of the nodes.
Relationship types could inherit the properties from the parents. The valid source and the
valid target types can be specified by defining the requirement and capability parameters
of nodes. Sources and targets define the restriction of relationship types. The relationship
could be established between nodes that contains same requirement and capability as the
relationship’s source and target types.

35

3 Domain specific languages development methodology

Policies definition the definition of the policies in the ontology was made by introducing
”policy” class that describes corporate policies and quality of service requirements. The
TOSCA standard allows to create policy types that represent classes with declared properties
that could be applied to the nodes. Policy template allows to instantiate the policy type by
providing concrete property values. Several types of policies could be related with one node.
For the ECM domain the policy properties represent the non-functional characteristics that
could be included in SLA, or could be provided by local litigation (e.g. location of ECM storage
that stores personal or confidential data could be restricted by the law). These parameters
are included in the policy type and are assigned to the ”ECM Node”. All other ECM related
nodes are derived from this node and inherit the policies. The user of DSL can provide
exact values for the properties in topology template. The concrete syntax of ECM DSL using
TOSCA is described in section 4.2.2 of ”DSL modeling Results” chapter.

36

4 DSL modeling results

This chapter describes the results of the ECM domain analysis. First, the ECM Ontology was
defined. It consists of the terms and their meaning that form the semantics of the language.
Section 4.2.1 provides the abstract description of the ECM language that is based on the
defined ECM ontology. The description of the language was done in informal way and is
based on the example.

Section 4.2.2 provides the definition of the ECM language using TOSCA syntax. DSL that is
defined in this section extends TOSCA XML schema.

4.1 ECM domain model

The result of the domain modeling is the ontology that defines ECM classes, properties and
relationships between them. The ontology class represents an ECM term. Definitions of the
ECM ontology terms are presented in Appendix A. It consists of the definition and description
of the classes and the class hierarchy, parameters of the classes and their boundaries. This
section describes in detail the ontology structure and it defines a reason, why such structure
was selected.

I avoid using the word ”component” during the definition of a language vocabulary. It was
done to prevent misunderstanding of the language terms. The classes that were defined in the
ECM ontology does not describe components of ECMS. They describe the terms that are used
by business customers to define ECM requirements. Different properties can be associated
with each term. In the thesis I replaced word ”component” with the following words: ”term”,
"node” and ”instance of a class”.

As was described in ” Domain specific language methodology” chapter, all components of ECM
solutions from different vendors can be classified using following layers: access layer, manage
layer, and repository layer. These layers was selected as the starting point for the ontology
definition. I defined "ECM” class as a root class for ECM access and manage terms. It
allows to inherit properties by all classes that are derived from "ECM” class. The ”interface”
parameter defines the operations that should be associated with ECM terms. As was shown
in chapter 3, workloads with the same names that are defined by different vendors, could
declare different operations. The ”interface” term should provide the normalized definition of
operations that are associated with ECM term.

Repository layer represents low level components that describe how the information is stored
in the ECM solution. For this layer I defined ”Execution environment” class that describe
all terms related to IT infrastructure components of the ECM solution. After that I defined
more concrete ECM classes. For the ECM access class the following common terms can be

37

4 DSL modeling results

defined: web client, API, content collection. All examined vendors provide web solutions
for the accessing ECM components (Alfresco Web Client, EMC Webtop, IBM Navigator).
All analyzed vendors also support access to ECM functions through API. The variabilities
of APIs are defined by the types of the interfaces (Java, web services, etc.). For the ECM
manage class were created subclasses that define architecture of core ECM components. As
was described above, manage components can be divided into core component and extension
components. I created "ECM Foundation” class that describes core services that should be
presented in all ECM solutions, and "ECM extension” class that describe the terms that add
additional functions to the foundation.

Examination of the Record management components of different vendors showed that they
requires information about enterprise information structure (information taxonomy, file plan,
retention schedule). The ”Enterprise” root ontology class was introduced. It includes the
subclasses that allow to describe business and IT infrastructure of the enterprise. Examination
of the IBM questionnaire showed that the characteristics of the enterprise IT infrastructure
should be defined. For these purpose I introduced the ”Enterprise I'T” class that allows to
define software and hardware resource for the content capture, storage and delivery. The
integrated perspective on information management introduces definition of the content model
[PeMO05]. According to this framework I introduced ”content” class that allows to define
parameters of that should be stored in ECMS. It allows to define different attributes that can
be analyzed by the cloud provider (metadata that should be extracted, supported mimetypes,
etc.).

A simplified class hierarchy of the main ECM terms is shown on Figure 4.1. Black lines
show inheritances between classes. Dashed lines show root classes of the ontology. The
relationships between classes are not shown on this figure. According to the class definition
guidelines [NM], classes of one layer should have the same level of abstraction. For example,
"ECM Access” class and ”Records management” class should not be the sibling classes.The
ontology guidelines also tell that classes can have multiple parents.

The following sections describe in details the ontology classes.

4.1.1 Classes and properties description

The ontology root layer is defined by the following classes: ” Content”, ” Enterprise”, "ECM” |
”Policy”, ”Execution Environment” and ” Relationship”.

”Content” allows to describe the content types of the enterprise information that are acquired
and/or created by enterprise departments. Introduction of the ”content” class allows to
describe information that is captured or created by the enterprise. The properties that are
defined for this node are defined in Table 4.1.

Content Class Properties

Name Value Minimum oc- | Maximum oc-
currences currences
Department String 1 1

Continued on next page

38

4.1 ECM domain model

Content Class Properties

Name Value Minimum oc- | Maximum oc-
currences currences

ContentType Enumerated: paper OR | 1 1

electronic

ContentFormat Enumerated 0 Unbounded

AverageContentSizeln | Integer 1 1

MB

TaxonomyCategory Class DocumentType 1 1

Table 4.1: Properties of the content node class

”Department” defines the name of the enterprise department that acquires the content of the
specified type. The boundaries tell that one type of the content could only be captured by
one department. ”ContentType” specifies the type of the format that is captured by the orga-
nization and can be paper or electronic.” ContentFormat” describes a format of an electronic
content. One Content object could have several formats. ” AverageContentSizeInMB” speci-
fies an average size of the document with an associated document category. This value is used
to define load to the ECMS. During the execution of the ECM model, Cloud provider can
calculate, the average size of all uploaded documents. This information can be used during
the design stage of the exact ECM solution to balance the workload and provide appropriate
Quality-of-Service. ”TaxonomyCategory” defines related taxonomy category. This property
allows to define a taxonomy of enterprise information and has dependencies with different
ECM terms (e.g. content collector can decide, which documents by specifying appropriate
taxonomy category). Information can be categorized by document types, business processes
to which it relates, departments, business entities, and others [BB07].

”Enterprise” class has no properties and is introduced to support the logical structure of
the ontology. This term describes information and IT structure of the enterprise. ”Informa-
tion structure” defines organizational structure of content, records hierarchy, and others. ”IT
Structure” defines hardware and software components that are used by enterprises to capture,
store and delivery of the content.

"ECM” class is a generic class for the ECM related terms. A declaration of its subclasses
was made based on the functional ECM framework [GHH"06] and includes: "ECM Access”,
"ECM Manage”, and "ECM Govern” subclasses. "ECM Access” is a term that defines com-
munication methods between enterprise and ”ECM manage” classes. This class has associ-
ated Create Retrieve Update Delete (CRUD) operations and could support different manage
classes. "ECM Manage” defines high level abstraction classes of management terms. The
class has two subclasses that define core management and extension terms.

”Relationship” class describes relationships that can be established between classes. Each
subclass of this class has ”source” and "target” properties that define between which classes,
relationship can be established.

”Policy” class describes corporate policies and quality of service requirements. The properties
of the class were derived from quantitative characteristics of IBM Questionnaire.

39

4 DSL modeling results

ECM DSL!
— - / ECM Policy| | Execution]]
Content Ente%prlse Environment Relationship
: Enterprise 2Chi ECM =cli
Enterprise IT (- Access Manage Govern
Structure
Structure f
ECM ECM

Foundation| |[Extension

Figure 4.1: Simplified ontology class hierarchy

Enterprise class Enterprise class enables DSL user to define enterprise related properties that
help to create ECMS architecture. ECMS requires information about enterprise for effective
ECM. For example, records management is done according to the enterprise file plan, retention
schedule, and information taxonomy. It has three direct subclasses: ”Enterprise Information
Structure”, ”Enterprise I'T Structure” and ”Disposal”. Figure 4.2 shows the hierarchical
structure of Enterprise terms.

”Enterprise Information Structure” describes the classification of enterprise information.
”Information Taxonomy” term defines the classification scheme of information and its access
control. It contains categories that help to structure content. For each type of the content the
”Taxonomy Category” can be defined. ”EnterpriseTaxonomy” class can have an unbounded
number of references to ” Taxonomy Category” class.

"File Plan” class defines the hierarchical structure and access control to records across the
enterprise. The typical file plan consists of the hierarchy of categories and subcategories, and
can have the following levels [HEIOT7]:

e Functions describe the responsibilities of organizations that help to fulfill its goals and
usually does not represent organizational tasks [ZAB109].

e Activities and sub-activities are major tasks of organization that allows to execute func-
tions. One function may contain several activities. Each activity can be split into several
sub-activities [ZAB109).

e Records series unites the records that are related to a particular subject or function.

”File Plan” class allows business users to define the record structure that can be used for
the records management purposes. It contains the ”classification scheme” and ”Record Cat-
egories” properties. ”Record Categories” has the reference to ”File plan Category” class as a

40

4.1 ECM domain model

Enterprise
Enterprise : .
Information %r;gr%rs'z? EnttT_rrprlse
Structure P
7 1
| | 1 | 1 |
. _ Retention Enterpise | |Enterprise| |Enterprise
!Pformatlon FilePlan Content || Content | | Content
ey % Schedule Capture || Storage | | Delivery
Taxonomy | |File Plan | |[Retention
Category | |Category Rule

Figure 4.2: Hierarchy of enterprise classes

value that describes functions, activities, sub-activities and records series of file plan.”
”Retention schedule” defines records retention rules. It is associated with the ECMS records
management for definition of periods during which content should be preserved. When the
retention period is expired the record should be disposed according to the disposal method
defined by retention schedule rule. ”Retention schedule” class has retention rule properties
that have a reference to ”Retention Rule” class as a value.

”Enterprise I'T Structure” class is a generic class for all components that describe capture,
store and delivery methods of content within the enterprise. This component allows to define
capture requirements of ECMS. For example, a declaration of ”Enterprise Content Storage”
defines from which sources enterprise content should be collected. This information helps
cloud provider to define correct content collection components depending on the places where
the data is stored. For example, a definition of SM'TP mail server requires a usage of collection
component that has the possibility to collect the data from SMTP mail servers.

”Enterprise IT” class inherits properties from ”Enterprise”. ”Enterprise Content Capture”,
”Enterprise Content Storage” and ” Enterprise Content Delivery” classes are derived from ” En-
terprise I'T” class. ”Enterprise Content Capture” is a generic class that defines hardware and
software acquisition and capturing methods. It has the following properties: ” Manufacturer”,
”Version”, ”DocumentsCapturePerDay”. ”Manufacturer” defines the developer of software
or hardware component. It describes, which capture manufacturers should be supported by
ECMS. For example, ECMS imaging software can support drivers from different imaging sys-
tem manufacturers. ” Version” defines a revision of hardware component or release number of
software component. ”DocumentsCapturePerDay” defines the approximate number of docu-
ments that are acquired by the component. This property allows to define the total enterprise
load when all capture components are defined. ” Enterprise Content Storage” defines sources
where the enterprise content is stored. It could be file or mail servers, different unstructured
repositories, and others. This class has no own properties and can be extended by the storage
subclasses (servers, repositories, cloud storage, etc.). An example of the extension is shown

41

4 DSL modeling results

on Figure 4.3.
”Enterprise Content Delivery” class defines content delivery methods within the enterprise.

Enterprise Content
Storage

T

Server

IPAdress: String
OS: String
OSVersion: Double
#users: Integer

Mail Server File Server

MailProtocol: Enumerated X
FileSystem: Enumerated

Figure 4.3: Example of Enterprise Content Storage Class Extension

Its instances can include software and hardware components: printers, viewers, etc. It is a
generic class, from which concrete classes can be derived.

According to the ontology development guideline [NM], there is no need to define all possible
classes of the domain, but only classes that will be used by application. Because of that, I
defined only generic classes of the Enterprise I'T Structure. There are some IT terms that
could describe capturing and delivering of information. Such classes could be distinguished
in a separate class that will be derived from ”Enterprise Content Capture” and ”Enterprise
Content Delivery” classes.

”Disposal” term defines the final stage of ECM lifecycle. It describe actions, that should be
applied to information after the expiration of retention period.

ECM classes The ECM related terms are represented by "ECM” class from which all other
ECM classes are derived. Figure 4.4 shows the hierarchical structure of ECM classes.
"ECM?” class ”Interface” property describes operations that are associated with ECM terms.
For example, the following basic ECM operations are associated with ”ECM Repository”:
”Check-in”, ”Check-out”, ”Retrieve”, ”Update”, ”"Delete”, and others. The supported op-
erations for each ECM term were derived from technical documentation of different ECM
vendors. CMIS standard was also used to define operations.
The ECM terms are split logically on three categories: ECM Access, ECM Manage, and ECM
Govern categories.
The access category is represented by "ECM Access” class and declares terms that describe
capture and delivery of the content that is stored in ECMS. Different ECM frameworks
present different definitions of the capture and delivery layers. [GHH'06] defines the access
layer that unites all capture and delivery classes. [0T14] distinguishes capture and delivery
classes as separate layers. I used the common term that describes properties of both types
of layers because in ECMS one class (Web client, portal, etc.) can describe both capture

42

4.1 ECM domain model

ECM ECM ECM
Access Manage Govern
" Web Content ECM ECM
el Client A Collection Foundation Extension
i | |
ECM Records :
Repository Management B B

Figure 4.4: Hierarchical structure of ECM classes

and delivery functionality (exceptions are imaging and content collection terms that describe
uploading of a content to the ECM repository).

The manage category is represented by "ECM Manage” class and describes management as-
pects of enterprise content. The Gartner’s definition of ECM consists of two framework: a
strategic framework and a technical architecture. The technical architecture is divided on two
parts: a platform and ECM extensions. The platform defines core functionalities of ECMS.
Extensions define additional components that extend basic functionality [GSCT14]. Analysis
of ECM solutions from different vendors shows, that there are a basic components that form
ECM foundation. All other components adds functionality to ECMS.

Based on Gartner’s definition of ECM and ECMS architectures from different vendors, I de-
cided to introduce two terms: " ECM Foundation” and "ECM Extension”. " ECM Foundation”
represents terms that are mandatory for the ECM language. All extension terms requires the
definition of "ECM Foundation”. For example, if a user of the language defines ”Records
Management”, he also must define ”ECM Repository”, because ” Records Managament” adds
functionality to ”ECM Repository”.

"ECM repository” is derived from "ECM foundation” class. It describes a storage that pre-
serves content and its metadata and library services that implements the basic ECM opera-
tions: create, retrieve, update, delete, search, check-in check-out, manage document life cycle
and control access to information "ECM Extension” class defines terms that describe concepts
of management of enterprise content but are not a part of the foundation. I defined ”Records
Management”, ”E-Discovery” and ”Search” terms as children. Other terms can be defined
as children of "ECM Extension” class. "ECM Extension” class has ”extends” property that
declares the dependency of this class from "ECM Foundation”.

There are different factors that impact on content management: business, records manage-
ment, legal, IT. Business have to capture, manage, analyze and properly dispose enterprise
information. Records Management defines, which content should be declared as records and
defines retention rules. Legal declares that the enterprise content should be available in a
case of government investigation. ”Records management” and ”E-discovery” terms describe

43

4 DSL modeling results

concepts that help to mitigate the ECM risks.

”Records management” term defines the concept that describes initialization and maintenance
of enterprise records. It uses a corporate file plan and retention schedule to define records
structure and retention periods for the records series. The following record and retention
management operations are associated with ”Records Management” term: define a corporate
taxonomy, create a file plan, define retention policies, declare documents as records, define
disposition schedules, dispose of records, create disposition reports and keep an audit trail of
all relevant operations to comply with corporate and legal retention rules.

”E-discovery” term defines requirements for a process of discovery in civil litigation that is
carried out in electronic format.

"ECM Govern” term is a generic class. It declares the possibility to execute the following
operation: retention policy and schedule management, e-discovery process management, dis-
posal and governance management for I'T. This component can be used as substitution in
cases when the Enterprise structure is not provided.

Relationship class ”Relationship” class defines classes that allow to link ECM terms. The

2 ” ” ”

following subclasses are defined (Figure 4.5): ”capturedBy”, ”exportedTo”, "flows”, ” collect-

edBy” ”Supports”, "appliedTo”, ”dependsOn”, ”extends”, ”"requires”.
Fach subclass of the ”Relationship” class contains the following properties: ”source” and

Relationship

|capturedBy||exportedTol |flows ||collectedBy||supports| (appliedTo| ‘dependsOn| ‘extends‘ ‘requires|

Figure 4.5: ECM ontology ”relationship” class hierarchy

"target” that have references to the ontology classes as a value. These parameters define the
direction of the relationship. ”source” defines from which class the relationship is established.
"target” declares a destination of the relationship.

”CapturedBy”, ”exportedTo”, ”flows”, ” collected By” defines content flow relationships within
organization and ECMS. ”CapturedBy” relationship can be defined between ”Content” and
"ECM Access” classes. It defines, how the content is acquired by ECMS. ”ExportedTo”
has "ECM Access” class as a source and ”Content” class as a property. It defines to which
formats content that is stored in the ECM repository can be exported. ”Flows” class defines
on which Enterprise IT resources the content is stored. It has ”"Content” class defined as
a source and "Enterprise I'T” class as a target property. ”CollectedBy” class defines a link
between Enterprise IT storage resources and "ECM Access” terms, and defines from which
enterprise storage resources the data should be collected and stored in the ECM repository.
Introduction of this relationship was derived from analysis of IBM technical documentation.
IBM provides the possibility to collect content from customer’s storage resources (e.g. mail or
file servers). It requires the information about the enterprise data storages (e.g. protocols).
”CollectedBy” relationship links enterprise storage resources that are defined by instantiation
of ”Enterprise I'T” and ”Content Collection” classes. ”Content Collection” class is a subclass

44

4.1 ECM domain model

of the "ECM Access” class.

”Supports” relationship can be established between "ECM Access” and "ECM Manage”
classes and defines which operations that are associated with ECM manage terms should be
also associated with ECM access terms. For example, if ”Web client” (instance of "ECM Ac-
cess” class) has ”supports” relationship with an instance of ”Records Management” class, then
it means that operations that are defined for ”Records Management” (e.g ”declare record”),
should be also supported by ”Web client” (the user should has the possibility to declare records
using web client). This relationship shows how enterprise content is captured and retrieved
by ECMS.

” AppliedTo” relationship defines to which terms should be applied a policy. This relationship
can be declared between ”Policy” class and all classes that are inherited from "ECM” class.
It defines ”Policy” class as a valid value for the ”source” property, and "ECM” class for the
"target” property.

”DependsOn” relationship defines dependencies between ECM and execution environment. It
declares that an instance of " ECM?” class requires a presence of the instance of ” Execution en-
vironment” class. The following relationship can be established: ” ECM repository” depends
on "Database” and ”Storage”. For cloud provider this information means that the storage
and the database with defined properties should be deployed before the ECM Repository
deployment. ”DependsOn” class defines "ECM” class as a valid value for ”source” property,
and ” Execution Environment” class as a "target” property.

”Extends” relationship can be defined between "ECM extension” and "ECM Repository” in-
stances. It declares that instance of "ECM extension” class adds functionality to the "ECM
repository”. This relationship was derived from an examination of the ECM solutions from
different vendors. The analysis showed, that ECMS consist of platform component, that is
defined by a storage, databases, and library services that allow to store enterprise content
and its metadata and execute operations (create, retrieve, update, delete, etc.) on it, and the
extension components that define additional operations that are associated with an extension
component.

”"Requires” relationship defines dependencies between "ECM extension” and ”Enterprise”
classes. It declares that an instance of " ECM Extension” requires information about the en-
terprise. This class defines ” ECM extension” as a ”source” property, and ” Enterprise” class as
"target” property. This class can be extended to provide more concrete relationships between
ECM extensions and an enterprise.

Complete ECM Ontology including relationships between classes is shown on Figure 4.6. Blue
boxes declare ontology classes that define ECM DSL terms. Relationships between terms
are represented by ontology classes that have source and target references (green nodes and
edges).

45

4 DSL modeling results

sdigsuorje[or Ym AyoreIorg sse[A30[01U0 NOH 9§ I3

ooinos | Sedinbal
yoreas| |Kianoosig-g ||uewebeuen 1obrey
. SpJo2ay
Aolsoday
INO3
\VA
uoIsualx3 uonepuno4
IND3 poinos SPUsSIX9 1960 Nex|
ITEYNoI5) abeuel SS90y
IND3 IND3 1ob1e) sWoddns 22In0y |ND3
| _ |
)
NDO3
JUSWUOIIAUT
uonnoax3y |abiey uospuadap 921N0S
AdIIod |~ 55inos | OLPaNdde| 5

a|ny Alobajed| | Aiobared
uonualay||ueld 94| | Awouoxe|
3|npayas ueld a|i Awouoxe]
uonualey || o idias uolew.oU|
asudisug| asudiayug
aInonas
uoewoyu)|| fesodsia 1 obre)
asudigyug ||@sHdisiug |lasudisiug SMol
_ _ T 931N0S
Y
asudiaug ELEET)
somnos LAGRA3II09| 1567,
5oinos | OLPayodX3| 1567e)
1908 Agpaimded 92JN0S

46

4.2 Design of ECM DSL

4.2 Design of ECM DSL

This section describes abstract and concrete syntax based on the developed ontology. The
abstract description of the language was done in informal way by providing an example.
Concrete description was done using TOSCA language.

4.2.1 ECM language description

The goal of the DSL is to create high-level topology of ECM solution and to declare functional
and non-functional requirements of it. The functional requirements define basic operations
that ECM user wants to perform, and include qualitative characteristics of the system. The
qualitative parameters define type of components and their workloads (list of operations that
are supported by component). The non-functional requirements define quantitative charac-
teristics and policies that should be applied to ECMS. Quantitative parameters include infor-
mation about customer’s workload to the system and define the number of concurrent users,
average document size, maximum and minimum create, update, retrieve, delete and search
operations. Policies indicate availability, business continuity, target application, performance
characteristics of ECMS and should satisfy business and legal requirements. Business require-
ments could be defined by SLA and could contain main KPI indicators. Legal requirements
define parameters that describe application of ECMS according local litigations (e.g. location
of the system, or disaster recovery parameters).

Resulted DSL defines syntax and semantics and allows users to define requirements to ECMS.
Semantics define the vocabulary of the DSL and according to the developed ontology is de-
fined by classes and subclasses. Syntax defines rules that describe how the components are
related to each other.

The main users of the DSL are business users, ECM architects, and Cloud providers.
Business users define functional and non-functional requirements to ECMS. ECM architects
create ECM topologies using ECM language and define the parameters that should be pro-
vided by business customers.

Cloud provider translates ECM topology to the particular architecture. The abstract syntax
of the ECM language represents an informal description by providing an example.

As a basis of the example the following use case was used: ”As the Business User I want
to create a document in the repository and apply version control. Additionally I want to
store all the documents from enterprise storage in the repository. As a Record Manager of
my enterprise I want to define the corporate taxonomy being able to classify documents and
business relevant information into mandate corporate record categories.”

47

Depends On

4 DSL modeling results

A3o10doy 79 oY) jo odurexe uy :) 'y oIngig

| salinbay + 9|0YSS2929Y
| :pasojDareq
:pauadoareq
! parealnaleq
| ** 1ssB|DIUsWNd0Qg
1 Smhay— .
| salinbay #oop|aweualns|areq Ag quswabuelly
1 1 (fesodsiq) renbigliaded ewlio4ploday
| 1 m>_£o.._< :uonduosaqg
| 1
! | (s@o10AU]) S3LI3S SPl023aYy
! salinbay
_ | ! 9|0y SSa20Y
| L e e e e e e e e e e e e - »| :uonduasag
| 1 salnbay -di
|j————— - :aweN
" ! :uonayuoysodsig Ainnoy
| ”vo__mn_:o_ucmﬁm 19]0YSS302Y
| Splo2al jo asodsip - 1 ‘uonduosaqg :uonduosag
1 S3|npayas uonisodsip aulap « | :S811aSp1009Yy R al
1 Spl0o2al Sk SUBWNoop 2Ie[0ap - - —p iy UoNUS1S aweN
1 saloljod uonua}al aulyap - INy uohusioy uonoung
1~ 3 cm_mm__,_ ES[esl « = (ammpayoss [euoneziuehio [193lqns | jeuonoun4 :sWayISUONRIYISSE|D
P! LIOLOXE) 21e10ai03 € Suljap - uonualayasudiaul) (uejdaji4asidiaug)
| 1 .w:o_ﬁmhoac UOtOQQ:W O_Stwcow :o_HCOHOE Cﬂ-ﬁ—@—-”—
! |enue|direwoIny :uoleIlIsse D -
[(ruswiabeuenspioday)
! jusawabeue |\ Spioaay
Pl F======= === - s e e e e e e e e e e e e e e e e e m e — - - - = - -
salnba
! Sl Inbay Y
| 1 m 1
! w« :uoneso
P! ‘UONeWIo}UI 0) SS3IJE [01}U0D Bulxapu Juaiio - EDIE
| I I J UONBINISSE|D JUBUOD » :U0ISI3,
I | 910A2 3y Juawnoop abeuew « UOR930D JUSUOD A|r : >M% (Awouo
I | “IN0-93U2 UI-{23YD - —— :suojesado pajioddns :sseipvdl [xelastidiog)
I | ‘yoreass ‘alg|ap ‘arepdn ‘ansinal ‘a1esid . | Eo_uow OOu:wucoov Agpa109]|9D ‘waIsAsali4 smo Awouoxey
| | :suonesado pauoddns || 10109 _hv usuo
ey 199]]03 JU3U0D (abreiors1iasidinul) T e
15 (A1oyisodayND3) I abeiols asudisyug SR Jeul om
| 2 f1ojisoday I 4
g | - | reIpaiy
g A | <sdiysuopeje! Juawiredaq
_ : LRI loddn I .__to%:wﬁ“ - um:mmov - Agpainde
' 1,| uguonnoax3) sl S _ :suonesado pauoddns gpainded e
uswiuoliAug I Guaiogam) juawnsoqg
uonnosaxy | ucw__o gqam
T uQ spuadaq '
|||||||||||||| - I
- e e — = — — _ _ _ Yospuedeg _ _ _ _ _]

48

4.2 Design of ECM DSL

Based on the provided use case, ECM architect models the ECM topology. The example
of te topology of DSL terms and relationships between them is shown on figure 4.7. The
topology represents a graph, which vertices are represented by instances of the content, ECM
and enterprise classes. The edges of the graph are represented by the relationships between
nodes. Green nodes describe content, that defines documents created or acquired by enter-
prise. Yellow nodes describe enterprise related terms. Blue nodes define ECM related terms
and red node describe ECM execution environment.

At the basis of ECM DSL lies the content lifecycle. Content describes the different types
of enterprise content and defines its characteristics: format, type, name of department that
creates or captures content. Green line on Figure 4.7 shows the content flow within enter-
prise. An example shows that the "Document” (instance of the content class) can be stored
on ” Enterprise storage” node or can be directly uploaded to the ECM system using ECM web
client. The content stored on "ECM Storage Node” should be collected using ECM content
collection instance. Figure 4.7 shows only one case of the content flow within enterprise. The
description of the content creation can be shown more detailed. Subclasses of ” Enterprisel T”
class allows to create instances that allow to describe capture, retrieval and store enterprise
components. For example, user can define that the document was created by ”Word Proces-
sor” and then stored on ”Enterprise Content Storage” node. ”Enterprise Content Capture”,
”Enterprise Content Storage” and ” Enterprise Content Delivery” classes could describe soft-
ware and hardware components that are used to capture, store and deliver of content within
enterprise.

"ECM Access” class and its subclasses are used as boundary components between enterprise
and ECM Manage classes. They are used to enable ECM related operations and can support
operations of ECM manage components. ”Support” relationship is used to link access and
management terms. For example, ”Web client” supports ”Repository” and ”Records Man-
ager” components. It means, that ”Web client” allows to perform operations that are sup-
ported by these component (e.g. create, retrieve, delete, search content, declare records, etc.).
Each ECM node provides two types of interfaces: user interface, that unites the operations
that can be executed by the end user, and administration interface, that define provisioning
and deprovisioning operations.

End user interface allows cloud provider to choose correct ECM components based on the
workloads that are associated with ECM terms.

Examination of the technical documentation from different ECM developers showed that all
ECM solutions have the same principle: there is a core component that implements basic
content management operations and provides repository for content and metadata. All other
components extend functionality of the core component or connect to this component using
API. According to this information, the ECM DSL has the following structure: Reposi-
tory (instance of "ECMRepository” class) declares the term that defines mandatory ECM
functionality. All other terms define additional functionality and require the presence of the
repository. The restriction that describes dependencies between core and extension ECM
nodes should be defined. This restriction should not allow to introduce ECM extension term
without introducing core ECM term ("ECM Foundation”). The validation of the topology
could be done before its execution. For example, the topology is incomplete if ”Repository”
is not presented.

All ECM components depend on execution environment. This term describe components that

49

4 DSL modeling results

should be deployed before the ECM component deployment. This term can be substituted by
the low level components during a translation step of the high level topology to the low level
architecture, that defines components from ECM vendors. For example, "Repository” node
depends on the database, file system and text index components. In that case the execution
sequence will be defined as follow:

1. Rational database should be installed, database schema and tables should be created.
2. Storage with appropriate file system should be allocated.

3. Text index engine should be installed;

4. Repository component should be installed

5. Extension and access components could be installed;

ECM components may also require the information about enterprise architecture. For ex-
ample, "records management” requires information about the corporate file plan for records
categorization and retention schedule for the records disposition.

There are two possibilities to provide enterprise architecture. The user can provide the infor-
mation about corporate taxonomy, file plan, and retention schedule, or he/she can define the
"ECM govern component” that indicates that ECM solution should support the interface for
enterprise parameters description.

Relationships between instances Relationships between instances of the ECM ontology
classes define dependencies between them. There are three types of relationships: Content
flow, compatibility and dependency relationship types.

"Flows”, ”capturedBy”,” exportedTo”, ” collectedBy” form content flow relationships and de-
fine dependencies between instances of the content, enterprise, and ECM access classes. It
allows to define the content properties that are captured by "ECM access”. For example, the
user can link several content nodes with web client. It means that content of the declared type
is directly uploaded to the ECMS. The following types of information could be derived by
analyzing content flow relationships: supported content formats, the average size of the con-
tent object, etc. Additional properties could be defined by ECM architect or cloud provider
depending on information he/she needs for ECMS deployment.

Establishing ”flows” relationship between ”Content” and ”Enterprise Content Capture” node
defines which types of content are captured (delivered) using access component.

Defining ”flows” relationship between ” Content” node and ” Enterprise Content Storage” node
declares, which type of content is stored on storage component.

Defining ”capturedBy” relationship between content node and "ECM Access Component”
declares which types of content can be uploaded directly to the ECMS using ECM Access
nodes. Creating content flow relationships between enterprise and ECM access nodes defines
that export/import of the defined types of content should be supported by enterprise soft-
ware using appropriate ECM access node. For example, enterprise can have already existed
software that supports CMIS interface, and it wants to use this software to upload/retrieve
enterprise content to ECMS. Then a service topology should define content nodes, enterprise

50

4.2 Design of ECM DSL

access node that will be connected to ECM API node.

Declaring ”collectedBy” relationship between ”Enterprise Content Storage” node and ECM
”Content Collection” node defines, from which resources enterprise content should be col-
lected. Compatibility relationships are defined on Figure 4.7 by ”supports” interactions be-
tween ECM access and manage nodes. They define operations of which nodes should be
supported by ECM access node. All operations that are associated with an instance of the
"ECM manage” class should be also associated with an instance of the "ECM access” class
that has ”supports” connection to that manage node. For example, the ”Web Client” compo-
nent has to support ”Repository” and ”Records Management” component. It means that the
user should have the possibility to perform repository and records management operations
defined by these components through ECM web client. There is a possibility to add compat-
ibility relationships between any ECM access and management nodes.

Dependency relationships define dependencies between ECM components and between ECM
and Enterprise components. This type of the relationships is presented on Figure 4.7 by ”Re-
quires”, ”DependsOn” and ”extends” relationships.

”Requires” relationships are established between ECM and Enterprise nodes. This dependen-
cies indicate that the ECM node needs information about enterprise. For example, ” Records
Management” node requires information about corporate file plan, retention schedule and
disposition methods.

It allows to validate completeness of the topology. For example, if the ECM architect defined
only ”Records Management” component and does not specify the file plan, then the topology
will not be executed, or execution engine has to complete topology automatically.

"Extends” relationships are established between foundation and extension ECM nodes. This
dependency indicates that the extension node adds functionality to the instance of "ECM
foundation” class and requires it.

”Depends on” relationship defines dependencies between instances of ECM and execution envi-
ronment classes. The dependency indicates that ECM node requires the presence of execution
environment node. An execution environment node could describe infrastructure components
that are required for ECMS deployment. The use case defines only definition of qualitative
requirements. Additionally, the instance of the policy class can be defined and ”appliedTo”
relationships between policies and instances of "ECM” subclasses can be established.

Topology design use case The typical use case of ECM topology design and execution is
shown on Figure 4.8 and is defined as follows:

1. Business user defines functional and non-functional requirements of ECMS and sends
them to ECM architect. The requirements can be defined as "request for proposal”
document.

2. ECM architect defines ECM language terms and actions that are associated with these
terms, creates a service template and publishes resulted topologies in the specialized
catalog.

3. Business user defines types of enterprise content and content flow within enterprise.
He/she also fills the properties of the topology nodes and policies. After that user sends

51

4 DSL modeling results

the resulted topology to cloud provider.

4. Cloud Provider deploys the ECM solution according to the received topology. Cloud
provider translates the high level topology to the low level components. He could execute
topology by using created adapter that validates the topology, derives qualitative and
quantitative parameters from service topology and deploys ECMS system according
derived information. The choice of the exact nodes can be made based on the operations
that should be supported by the ECM high level nodes. If operations, requirements
and capabilities that are supported by the high level terms coincide with operations,
requirements and capabilities supported by the exact component, then the high level
node can be substituted by the exact component.

1. Customer Sends requirements to ECM Architect

3. Architect publishes solution template in catalog

ECM Templates ECM Solution
Catalog Template A
Topology template

ECM Foundation

2. Architect designs > ‘
ECM RM Solution —— —)
ECM solution template
ECM Solution A
Business Customer ECM Architect

Deploy Policy

4. Customer fills parameters

Cloud Environment

e 5. Provider
U —
o deploys Solution

Cloud Provider

Figure 4.8: Topology deployment scheme

4.2.2 TOSCA implementation

An implementation of ECM DSL using concrete syntax was done by the designing TOSCA
node types, requirements and capabilities, relationships, and policies. The goal of the lan-
guage implementation using TOSCA is to allow user of the language (ECM architect, cloud
provider or business user) to develop a service template that will define the functional and
non-functional requirements of ECMS. The functional requirements should define workloads
that ECMS should support. The non-functional requirements should specify criteria that
allows to evaluate performance of ECMS (e.g. maximum response time, availability, etc.).
Cloud provider have to satisfy defined performance criteria. For these purposes, business user

52

4.2 Design of ECM DSL

have to provide quantitative characteristics of the ECMS load (e.g. maximum concurrent
users, average content size, locations).

The developed ECM ontology is used as a basis for the DSL concrete syntax. The ECM
ontology defines the classes and properties that describe ECM and enterprise terms and re-
lationships between them. The implementation of the ECM language was done by mapping
ontology classes and properties to TOSCA node types. The ontology relationship classes were
mapped to TOSCA relationships. ”Source” and ”Target” properties were substituted by the
”validSource” and ”validTarget” properties of the TOSCA relationships.

The ECM language description section defines the statement that the designed ECM topology
should be complete (all required components should be presented). Requirements and capa-
bilities were used to describe dependencies between ECM nodes. According to the TOSCA
specification [Tos13b] each node requirement should be satisfied by appropriate capability. It
allows to verify service template completeness.

Node types definition Node types hierarchical structure is shown on Figure 4.9. The defi-
nition of the ECM node types was done by mapping the following classes and their subclasses
to the TOSCA node types: ”Content”, ”Enterprise”, "ECM”, and ”ExecutionEnvironment”.
For the ” Content Node”, ” Enterprise Node”, and ”ECM Node” types the parent ”Main Node”
node type was defined. This node type describes the main concepts of the language. For ”Ex-
ecution Environment Node” the ”Supplementary Node” type was introduced.

The ontology methodology supports multi inheritance for classes. The TOSCA specification
allows to have only one parent for each node type [Tos13b]. According to this statement,
enterprise content capture and delivery classes were united in one node type: ”Enterprise
Content Access Node”. It combines properties of the capture and delivery nodes. If an in-
stance of this node type implements capture and delivery content functionality, then all node
type properties can be used. If the instance implements only capture (delivery) of content,
then only capture (delivery) properties should be filled, and delivery (capture) parameters can
be omitted. The same scheme is defined for ECM access nodes. To support such functionality
the minimum occurs for property elements were set to 0.

”Taxonomy Category”, ”"File Plan Category” and ”Retention Rule” classes defines contain-
ment classes of ”Enterprise” subclasses in the ECM ontology. In TOSCA these classes were
replaced by the properties of ”Enterprise” nodes. For example, ECM ontology ”Enterprise
Retention Schedule” class has the containment reference to ” Retention Rule” class, that define
retention rules. In TOSCA an implementation of this reference was replaced by a ” Retention
Rule” property element of ”Enterprise Retention Schedule” node.

Node types have hierarchical structure. Each node type(except Root Node) inherits prop-
erties from parent node type. The inheritance behavior is defined by the TOSCA standard
[Tos13b]. The following node parameters are inherited: node type properties, requirements
and capabilities, interfaces.

53

4 DSL modeling results

Agorerory sodAy opou NDH :6°F oINS

SPON
Aionsoday
INO3
q 9PON SpPON SPON
SPON 9pON abeio1s SS90y 3|NpPayds 9poN 3PON
uonuaxg uonepunoo Jus)u0)D (V=) 1]o]g) uonuaey ue|d a4 Awouoxe]
NeE O3 asudisug asudisug mm_s_wﬁﬁ_mm:o_/mﬁ_m_\cgwéo%c_
9PON SPON 9PON 3PON SPON SPON
ulenos abeuely SS220Y 11 @sudiaug [esodsig Delliing]

asudiaug asudiaug

INO3 NO3 INO4

3PON SpON SPON SPON
INETNNIE NDT asudisug Jusu0)
uonnoax3y

NO3

a

SPON
Arejuswsa|ddng 3PON urep

sodAL
9PON VYOSOL

54

4.2 Design of ECM DSL

The structure of the node type is defined by TOSCA standard and is shown in the following
listing;:

<NodeType name="xs:string”>
<documentation> xs:string </documentation>
<DerivedFrom typeRef="xs:QName’ />
<PropertiesDefninition element="xs:QName’ />
<RequirementDefinitions>
<RequirementDefinition
requirementType="xs :QName”
name="xs:string”
lowerBound="xs:integer”
upperBound="xs:integer” />
</RequirementDefinitions>
<CapabilityDefinitions >
<CapabilityDefinition name="xs:string”
capabilityType="xs:QName”
lowerBound="xs:integer”
upperBound="xs:integer” />
</CapabilityDefinitions >
<Interfaces>
<Interface name="UserInterface”’>
<Operation name="xs:string” />
</Interface>
<Interface name="AdministrationInterface”>
<Operation name="xs:string” />
</Interface>
</Interfaces>
</NodeType>

DSL defines two interfaces for ECM nodes: user and administration interfaces. User interface
defines operations that are supported by ECM element. These operations describe ECM
component workload. This interface is defined by DSL to describe which functionality is
supported by components. The interface can be extended by the introduction of a new
node type and deriving properties from the parent node type. The new node type derives
interfaces from the parent node type. If the new node type declares same interfaces, then
these interfaces overwrite parent interfaces [Tos13b]. In that case the list of the operations that
represents operation of parent node and introduced node should be defines. For example, if the
"ECM Repository” contains ”User Interface” with following operations: ”create”, ”delete”,
"retrieve”, "update”, and the new node type "Custom ECM Repository” is introduced that
adds additionally ”versioning” operation to user interface, then the new node should define
also parent operations for ”User Interface”. ”User Interface” for the new node type will be
defined as follows: ”create”, ”delete”, "retrieve”, update”, ”versioning”. Cloud provider uses
user interface during mapping high level nodes to particular components. The particular ECM
component can be deployed if its user interface coincides with DSL node interface.For example,

55

4 DSL modeling results

"ECM Repository Node” defines the following user interface operations: createDocument,
retrieveDocument, updateDocument, deleteDocument, searchDocument, checkIn, checkOut.
Vendor’s repository component (or set of components) should support these operations to be
able to substitute the "ECM Repository Node”.

The administration interface defines operations for the component de/provisioning.

"ECM Execution Environment Node” is a generic node type, from which more concrete nodes
can be instantiated. For example, before the repository can be deployed, the appropriate
environment that contains installed rational database, allocated storage and text index, should
be deployed. An example of the new node types that are derived from "ECM Execution
Environment Node” is shown on Figure 4.10. Node Types marked with green color represent

ECM
Execution
Environment
Node

e

RationalData TextIndex Storage
BaseNode Node Node

Figure 4.10: ECM execution environment node example

components created by ECM Architect to define execution nodes for ECM Repository.

Requirements and capabilities Requirements and capabilities define dependencies between
nodes. Their hierarchical structures are shown on Figures 4.11 and 4.12.

Requirements and capabilities types were designed based on the ”source” and ”target” prop-
erties of the ECM ontology relationship classes. These properties define the references to
the ontology classes and declare between which classes the relationship can be established.
According to the value types of these properties requirements and capabilities were defined.
For example, the ontology ”dependsOn” relationship can be established between ”ECM” and
”ExecutionEnvironment” ontology classes. ”ExecutionEnvironmentRequirement” and ”Exe-
cutionEnvironmentCapabilities” types were created to support ”dependsOn” relationship in
TOSCA notation.

Requirement and capability types have hierarchical structure. Each type(except Root Types)
inherits properties from the parent type. The inheritance behavior is defined by the TOSCA
standard [Tos13b]. The following requirement and capability parameters are inherited: re-
quirement and capability type properties.

By default lower and upper bounds of the requirements and capabilities are set to 1. The
lower bound of Requirement that equals one indicates that requirement must be fulfilled by
appropriate capability and must be instantiated in Node Template. If the lower bound of the
requirement equals 0, then the requirement is optional. The lower bound for capability must
be more than 0.

The requirements and capabilities in ECM DSL are used to show dependencies between nodes,

56

4.2 Design of ECM DSL

ECM DSL
Requirements

Enterprise ECM Execution

Content Disposal -
: Node Node . Environment
AL EE! Requirement Requirement S I Requirement

Taxonomy FilePlan Retention ECM

Requirement Requirement ScP€dule — Repository
Requirement Requirement

Interface
Requirement

Figure 4.11: ECM DSL requirements types

ECM DSL
Capabilities
Enterprise ECM . Execution
Content Node Node B'Spos_?![Environment
Capability Capability Capability apability Capability
Taxonomy FilePlan Retention ECM Interface
ili Capabili Schedul i
Capability apability chedule Repository Capabilly

Capability Capability

Figure 4.12: ECM DSL capabilities types

to define which relationships between nodes can be established, and for topology verification.
According to the TOSCA standard each requirement should be fulfilled by the appropriate
capability [Tos13b].

Content requirement and capability define between which nodes content flow can be estab-
lished. Content Container Requirement is applied to the following node types: ”Content
Node”, ”Enterprise Access Node”, ”Enterprise Content Storage Node”. It declares that the
node type should be connected with the node type that can accept content. Content capabil-
ity is applied for the following nodes: ”ContentNode” ” EnterpriseAccessNode”, ” EnterpriseS-
torageNode”, "EECMAccessNode”. This capability describes that the node type can accept
content objects.

Enterprise node requirement and capability define the dependency between the ECM and
enterprise nodes. For example, ”Records Management” requires information about corporate
file plan and retention schedule, and ” Records Management node” type contains appropriate
requirements that can be fulfilled by File plan (”EnterpriseFilePlanNode” type) and reten-
tion schedule (”EnterpriseRetentionScheduleNode” type) capabilities. "ECM Repository re-
quirement” and appropriate capability define the dependency of ECM extension components

57

4 DSL modeling results

from Repository component. ”ECM Repository Requirement” is applied to "ECM Extension
Node” type and is inherited by all children of this node type. "ECM Repository Capability”
is applied to "ECM Foundation Node” type and declares, that the repository functional-
ity can be extended by another nodes. ”Disposal requirement” and appropriate capability
define dependency between ECM node types and Disposition methods that should be ap-
plied to a content according to the enterprise retention schedule. ”Interface Requirement”
and appropriate capability define between which nodes ” Supports” relationship can be estab-
lished. ”InterfaceRequirement”is applied to "ECM Access node” type. This requirement is
not mandatory and its lower bound equals 0. Upper bound equals "unbounded”. It means
that the ECM access nodes can support interfaces of different ECM manage nodes. ”Interface
capability” is defined for ECM manage nodes. Its lower bound equals 1 and upper bound
equals "unbounded”. It means that node supports interface capability.

”Execution Environment Requirement” and appropriate capability define dependencies be-
tween ECM node and terms that represent execution environment. It means that execution
environment node has to be deployed before ECM component deployment

Relationships definition Relationships between nodes represent instances of the TOSCA
relationship types. The ontology classes that represent link between terms were mapped to
TOSCA relationship types. ”source” and "target” properties were substituted by ”valid-
Sources” and ”validTargets” parameters that are defined by the TOSCA standard [Tos13b].
Ontology ”Relationship” classes use references to other classes as values. TOSCA relationship
types define source and target nodes by providing valid requirements and capabilities. ”cap-
turedBy”, "exportedTo”, "flows”, ”CollectedBy” ontology relationship classes were mapped
to ”ContentFlow” relationship type. ”Supports”, ”dependsOn”, "extends” and ”requires”
relationship ontology classes were mapped to the TOSCA types using the same names. ” Ap-
pliedTo” relationship class was not mapped, because it defines dependencies between ” Policy”
and "ECM” ontology classes, and TOSCA provides own definition for Policy type.

In the ECM language relationships define not only dependencies between nodes, but are also
used for the analysis of the ECM requirements. For example, ”Supports” relationship de-
clares, which ECM manage node interfaces should be supported by "ECMAccessNode”. The
hierarchical structure is shown on Figure 4.13

The relationship types have hierarchical structure. Each type(except Root Types) inherits

ECM DSL

Relationships

ContentFlow DependsOn extends requires

Figure 4.13: ECM DSL relationship types

properties from the parent type. The inheritance behavior is defined by the TOSCA standard
[Tos13b]. The following relationship parameters are inherited: relationship type properties,

o8

4.2 Design of ECM DSL

valid source and target, Interfaces. ”Valid source” parameter defines the requirement type,
and ”valid target” parameter defines capability type. These two parameters are optional and
define relationship restrictions: the relationship can be created only between nodes that con-
tain valid requirement and capability types.

”ContentFlow” relationship defines the flow of content within enterprise. TOSCA provide
reuse of the relationship types [Tos13b]. ”flows”, ”capturedBy”, ”exportedTo”, and ” Collect-
edBy” ontology relationships were substituted by ”ContentFlow” relationship. It allows to
define which type of content, on which enterprise resources is stored, and it defines the way,
how the content have to be uploaded to ECMS. ”ContentFlow” relationship type defines the
connection between Node types that contain ” Content Container Requirement” and ” Content
Container Capability”.

The example of relationship establishment is shown on Figure 4.14. The Content Flow rela-

Employee Content Content
Contracts | Content Content F|Ie Server Content Content Content Collection
(Content Requwement Capability /(Enterprise Reqmrement Capability (ECM Access

Fl
Node) ow Storage Node) Node)

I T

Figure 4.14: ECM DSL content flow relationship example

7 2

tionship between ” Employee Contract” and ”FileServer” indicates that ” Employee Contract”
content type is stored on ”FileServer”. Content Flow relationship between ”FileServer” and
”ContentCollector” defines that the content is collected from ”FileServer” using ” Content Col-
lection” component. The analysis of that graph could provide the following information:

e Types of the content that should be collected and stored in ECMS;

e The way how the content is uploaded to ECMS (e.g. using Content Collection, Web
Client, ECM API);

e From which enterprise resources the content could be collected
e Quantitative parameters of the content (e.g. average document size)

”DependsOn” relationship defines connections between ECM nodes that contain ”Execution
Environment Node Requirement”, and Execution Environment nodes that contain ” Execution
Environment Node Capability”. It allows to define which environment components (databases,
storage, etc.) are used by the ECM node. Figure 4.15 shows an example of ”DependsOn” Re-
lationships. This examples defines that "ECM Repository” requires a definition of ” Rational
Database”, ” TextIndex” and ”Storage”. Each of ECM and ” Execution Environment” nodes
provides administration interface that can be used to define, which provisioning operations
are supported by each node. ”Extends” relationships are established between ECM extension
and repository nodes. This relationship defines that extension node extends repository func-
tionality and depends on it. This relationship can be established between nodes that contain

59

4 DSL modeling results

\Eﬁ:icr‘;:?:;\ Rational
Capability// Database

ECM
Repository Node

N\ X AN \
. ECM User Interface: Execution DependsOn "\ Execution
) Repository «Create Document Enqunmem) SEnvironment) Textindex
/" Capability/ *Delete Document | Requirement / / Capability
*Update Document /

*Checkin
*CheckOut

L N J
\

Execution \
MEnvironment) Storage
Capability

Figure 4.15: ECM DSL depends on relationship example

"ECM Repository Requirement” and "ECM Repository Capability”. One repository can be
extended by the different extension components.

”Supports” relationship can be created between ECM Access and manage nodes. It indicates
that ECM access node supports interface operations provided by the ECM manage node.
This relationship has ”Interface Requirement” and ”Interface Capability” as valid source and
target parameters. For example, if the ”Supports” relationship is established between Web
Client and Repository, then it means that it should be possible by the user to execute repos-
itory operations using the web client (Figure 4.16).

[X] ECM
Repository Node
\\ Web Client Supports User Interface: Execution
) o (ECMAccess ————————> *Create Document | Environment \;
 CeeElty Node) +Delete Document | Requirement
S *Update Document
*Checkin
*CheckOut

Figure 4.16: ECM DSL supports relationship example

”Requires” relationships define that the ECM node requires the information about the en-
terprise business structure (Taxonomy, File Plan, etc.). This relationship can be established
between node types that contains ”EnterpriseNodeRequirement” and ”EnterpriseNodeCa-
pability”. ECM Govern component supports ”EnterpriseNodeCapabity”. Presence of this
components indicates that business structure will be provided by the user after ECMS de-

60

4.2 Design of ECM DSL

ployment.

In this section I defined requirements and capabilities for all TOSCA relationship types. To
evaluate the behavior of the DSL user, I omit the definition of requirements and capabilities
for the following relationship types: ”Content Flow” and "Depends On”. It allows to evaluate,
how DSL user uses connection during early iteration stages of the ECM language. ”Extends”
and "Requires” relationships are mandatory, because there are node types that requires a
presence of these relationships (e.g the file plan and retention schedule should be associated
with ”Records management”).

Policies definition Policies in the ECM ontology were defined by the introduction of ” Policy”
class and creating a ”appliedTo” link between it and ECM classes. The TOSCA standard
supports policy type that allows to define policies and assign them to node type [Tosl3b].
The exact values should be provided in ”Policy Template”, and the reference to it should be
defined for each ECM node template.

ECM language declares "ECM Policy Type” that is applied to ECM Node. It allows to define
corporate policies, quantitative properties that will be need during ECMS deployment. The
following properties can be defined:

e 7 Availability” defines the time during which the ECMS is not reachable by user.

e "Target Environment” defines the purposes of ECMS deployment (e.g. ”DevelopmentEn-
vironment”, ”ProductionEnvironment”).

Additionally, quantitative parameters can be declared. The final ECMS architecture depends
on policy properties. For example, availability parameter impacts on type of components that
should be deployed. ”Target Environment” impacts on number of components that should
be deployed. Additional parameters (e.g. ”location”) can be added by the ECM architect.
Policy parameters can be defined by the business customer or could reflect requirements of
the law.

Service template definition The output of ECM DSL is a service template that represents
the high level description of the ECM and enterprise terms and defines the functional and
non-functional requirements of ECMS. Policy, node and relationship templates should be
declared in the service template. The listing provided in Appendix B shows an example of
ECM foundation service template.

The foundation defines the mandatory nodes. For example, IBM ECM solution defines Con-
tent Navigator (Web Client) and P8 Server (ECM repository) as mandatory components. All
following declarations are put in ”Definitions” document:

e The policy templates instantiate policy types and contain values provided by the business
users

e The boundary definitions provide user Interface operations that should be supported by
ECMS system. The given example define repository operations.

61

4 DSL modeling results

e The topology template defines nodes instances, their properties and relationships be-
tween them.

Figure 4.17 shows the schematic structure of the ECM foundation service template. The

Service Template

Topology Template

Rational
Database

Employee
Contracts c
(Content Node) ontent ECM
Flow WebClient Supports Repgsitory
Department: HR (ECM Access Node) Component
ContentType: electronic
ContentFormat: PDF
AverageDocSize: 5

TextIndex

Storage

ECM Policy Template

Availability: HighAvailability
TargetEnvironment: DevEnv
MaxNumberOfConcurrentUsers: 100
MaxUploadOperationsPerDay:20
MaxRetrieveOperationsPerDay:40
SupportedLanguages: English, German

Figure 4.17: ECM DSL foundation scheme example

analysis of the requirements can be done by cloud provider by parsing the resulted service
template.

DSL output The resulted service template as well as type definitions have to be included in
CSAR archive. CSAR archive has the following structure (Figure 4.18):

e "Definitions” folder contains ECM DSL definitions (Node, Relationship, Policy, Require-
ment, Capability types).

e "Types” folder contains properties for node and policy types.
e "ECMPoliciyProperties.xml” contains xsd schema for the policy properties.

e "ECMBaseTypes.xml” contains Node, Relationship, Requirements, Capabilities, Poli-
cies types definition of ECM DSL that define the basis of the language.

e "ECMSpecificTypes.xml” contains Node, Relationship, Requirements, Capabilities, Poli-
cies types definition of ECM DSL that define specific components of the language that
can be instantiated in template.

62

4.2 Design of ECM DSL

@ ECMTopology.CSAR
_ Definitions
— T s

é ECMPolicyProperties.xsd

ECMTypes.xsd

— % ECMBaseTypes.xml
— % ECMSpecificTypes.xml

- _E TOSCA-v1.0.xsd

—— |=] ServiceTemplate.xml

_ TOSCA-metadata
_ Plans

Figure 4.18: ECM DSL CSAR archive structure

e "TOSCA-metadata” folder contains information about CSAR file that is used by exe-
cution environment.

e "Plans” folder contains deployment plans.

e "ServiceTemplate.xml” contains Service template, where Policy, Node, Relationship
templates are defined.

DSL execution The TOSCA standard defines execution environment (TOSCA container)
that can process CSAR archive and deploy service instance. It requires definition of the ar-
tifacts, providing component binaries, etc. ECM DSL defines ECM components using high
level abstraction. It means that nodes are independent from the particular solution. Addi-
tionally, ECM language defines node types that are used only for definition of non-functional
characteristics and should not be deployed in the ECM solution (e.g. Content Node, Busi-
ness Node, IT Node). These non-functional terms allow to define requirements of ECMS.
For example, definition of ”Mail Server” and ”File Server” and declaration of ” ContentFlow”
relationships from these components to ”Content Collector” node declares that the content
should be collected from mail and file servers and should be stored in the ECM repository. It
defines additional requirements for content collector for mail and file server protocols support.
According to this description, TOSCA execution environment can not be used, because it

63

4 DSL modeling results

does not allow to make an analysis of the ECM topology (calculation of average documents
size, definition of enterprise storage resources, etc.).

An additional adapter, that will be able to analyze ECM topology and translate high level
terms to particular ECM components, can be developed by cloud providers.

64

5 Evaluation

The development of the ECM language was done in an iterative way. The concepts of the
language were discussed with IBM developers, and changes were made according to their
feedback. For example, on the early stage of the DSL development, quantitative parameters
of ECMS was provided as properties of the ECM classes. After the presenting of the language
solution, it was decided to declare these parameters as a part of a policy class, because they
reflect properties of a corporate policy.

The evaluation of the DSL was done by implementing the use case provided by IBM. Then
the example of the defined topology was presented to the IBM ECM developers and the feed-
back was received by providing the questionnaire that was defined during the domain analysis
phase. The modeling was done using Winery tool.

In the use case records manager of the enterprise describes records management requirements
using a language that he/she understands: ”As the Record Manager of my enterprise I want
to define the corporate taxonomy being able to classify documents and business relevant in-
formation into mandate corporate record categories.”

ECM architect defines ECM related terms and actions that should be supported by ECMS.
From the following example the architect defines the following terms: ”enterprise”, ”taxon-
omy”, "document”, ”business information”, "record category”. The architect also defines the
following actions: ”define”, ”classify”, "mandate”. After the definition of the vocabulary,
ECM architect models a template using ECM language by choosing nodes, that represent the
ECM vocabulary. He chooses "Records Management” that supports operations defined by
the Record Manager. If the node supports not all operations, that were defined by Record
Manager, then ECM architect creates new node, that inherits properties of the already existed
node, and adds operations that should be supported by the node. In the current example,
the ”"Records Management” node should be extended if it supports not all operations defined
by Records Manager. Then ECM architect adds additional nodes that should be defined for
the topology completeness. In this case the following nodes should be added to the template:
"ECM Repository”, "File Plan”, ”Retention Schedule”. Additionally, ECM Architect can
define ECM Access nodes that will describe, how a user will interact with ECMS. He/she
also can specify execution environment nodes and the policy that should be applied to ECMS.
Then business customer fills policy and topology properties. The result of the ECM service
template modeling is shown on Figure 5.1.

After the description of the ECM language and presentation of the use case, the following
questions were asked:

e Is the presented language useful for definition of quantitative and qualitative character-
istics and policies of ECM System?

65

5 Evaluation

e Are the ECM components described using high level abstraction and are they indepen-
dent from particular components from different vendors (IBM, Alfresco, Oracle, etc.)?

e Does the presented ECM template allow to define components that should be deployed?

e Is it possible to define Quantitative characteristics (maximum number of concurrent

users, average size of files, number of file shares, etc.) from provided ECM service
template?

Service Template

Topology Template
Rational
Database
Employee .
Contracts ECM Repository Component
(Content Node) Content Supports —— Textindex
M WebClient «create, retrieve, update, delete, search,
Department: HR (ECM Access Node) «check-in check-out,
ContentType: electronic -mantagle document "f'e cycle
+ control access to information.
ContentFormat: PDF
AverageDocSize: 5 Storage
1%2]
2
i [}
File Plan <
)
Records Management
q Interface:
. Requires «define a corporate taxonomy
Retention «create a fileplan
Schedule «define retention policies

+declare documents as records
+define disposition schedules
«dispose of records

ECM Policy Template

Availability: HighAvailability
TargetEnvironment: DevEnv
MaxNumberOfConcurrentUsers: 100
MaxUploadOperationsPerDay:20
MaxRetrieveOperationsPerDay:40
SupportedLanguages: English, German

Figure 5.1: ECM records management service template

The results of the evaluation show that the presented language can be useful for solutions
following IBM’s architecture patterns for ECM. The components from different vendors can
be subsumed under one or other term of the ontology, but the discussion with other ECM
vendors is required. The attributes that were provided by the language template allow to
define quantitative requirements. Additionally, was stated that the usage of TOSCA for the
concrete syntax definition provides limitations to the developed language. The usage of the
TOSCA language does not allow to use XML parser for the model validation. Additional
tools (e.g. Winery) should used for the modeling and validation purposes.

66

6 Conclusion

In this thesis I developed DSL for ECM domain. The result of the work is ECM ontology and
the TOSCA based declarative language that allows ECM architect to define functional and
non-functional requirements provided by the customer. The definition of the requirements can
be done by creating a service template, that consists of the ECM terms, their definitions, and
the set of operations that are associated with each term. The analysis of the commonalities
and variabilities of the ECM solutions from different vendors showed that the workloads with
the same names can provide different meanings. ECM DSL solves this problem by normalizing
ECM related terms and providing operations that are associated with each term. The applied
domain analysis method allows to use the developed ontology as a basis for the future research
of ECM domain. It was designed in a such way that new classes can be added as children
of the existed classes without changing structure of the ontology. Introduction of content
node allows to define all types of the content captured by enterprise. Enterprise components
and content flow relationships allows to describe business and IT components of enterprise
and show how the information is categorized and stored within enterprise. ECM nodes and
relationships between them allow to design the ECM topology and define workloads of ECM
components.

TOSCA modeling tools (e.g Winery) and custom adapters can be used for designing, analysis
and deployment of the ECM service template. The exploitation of the TOSCA language al-
lows to define ECM related terms, their properties and associated operations. The node types
represent ECM and Enterprise terms in high abstraction level. It means that the node types
do not depend on the particular ECM solution, and can be used by different ECM developers
and architects. For each ECM related term the TOSCA node type and the interface, that
describes supported operations was created . Appliance of the TOSCA policies to ECM allows
to define required KPIs and provide deployment restrictions. Cloud providers can analyze the
resulted graph represented by the TOSCA topology and derive qualitative and quantitative
information from it.

Usage of the TOSCA language was limited by the definition of node, requirement and capa-
bility, relationship and policy types and templates. TOSCA was designed for the deployment
automation of cloud services and most of its syntax was not used during ECM language de-
velopment. Usage of TOSCA language was provided as a part of the thesis topic.

The evaluation of the model was done by creating the ECM service template based on the
typical ECM requirements provided by IBM and presenting them to ECMS developers. The
feedback was received by providing questionnaire to ECM developers. The feedback showed
that the developed language can be used for solutions following IBM’s architecture patterns
for ECM. It is possible to define qualitative and quantitative parameters from the provided
service template. Additionally, it was noticed that the usage of the TOSCA language limits
the application of DSL because it requires too much custom logic to verify different ECM

67

6 Conclusion

solutions. This limitation can be overcome by extending TOSCA XML schema and creating
ECM elements that extends TOSCA node types defined in schema. It allows to use XML
parsers for the validation of the created templates.

68

7 Appendix A: ECM ontology

69

7 Appendix A: ECM ontology

abvd jToU U0 PaNUUO))

A10 uorjed 9INJONIYG
891eH)AUWOU | -JISSR[D UOIJRULIOJUI I0J POST £10809€) uoryeurioju] o9stidio) | uoryeurtojul | AWOUOXR T,
OX®J, SSB[) | oI Je() SOSSB[)) IJUOWNIO(] | AWOUOXRT, | -UH JO SWLYDIS UOIIROYISSR])) osudrojuy] | ostadiajuy
9INJONI)S
QINJONI)G UOT)RULIOFU]
- - - | ssoursng ostidIojur] SoqLIOSI(] ostrdioyuy ostrdioyuy
ostrdrogury
ur oInjonI)s JJ pue ssouisngg
1U99U0d J1} saamnboe SOQLIOSOP JeY} SOSSR[IQNS
- | ey} yuowyredop oY) JO owRN OWRN | SojIUN JRY) SSB[O OLIOUSY) Y - ostadrojur]
L10
8orenAou 100[qO JUSYU0D JUDIIND £10399R)
oxeJ, SSB[) | oY} I10] AI0891BD JUOWNIO(] | JULWNIO0(]
dN
so1Aqe8oy ur odA) o) Jo | 9zZIgrULTND
JoSOJU] | JUSWINOOP 9} JO OZIS 9FRIOAY | O(JOSRIOAY
TINX|
DA |
Add yuouodwod paany 1%L
‘pojetownuy] | -ded OTUO0I09[e 9Y) JO JeULIO | IO JIUSIU0)
OTuOI}09[|
Jodeq od
‘pojetownuy | JULUOO paImboe o) jo odAT, | AT, 3u09uU0)
1U9)U0d J1} saImboe ostrdIojuo Ul
surng | geyy yuowiredop oY) Jo owrey | juewdreds(] | JUSIUOD) INOJR UOIYeULIOU] 9PON1I00Y MUOJU0))
onyeA uordrIosa(] oure N
soryrodorg uorpdrioso(] | sse[otadng sse[)

70

abod jToUu U0 panUUO))

JuU23U09d dstIdIa)ury

JO 98RI09S 10J Pos ST R} JUSU L 93101
- - - | -odwoo srempiey 10 aremyjog | [estadisjuy | gostadrojuy
Juouoduwod o) Ae(q
Aq pojeard/pomjdes ore jer) | IwJoinide))
JIOSOJUT | SHUOTWNOOP JO JOQUINU 9FRIOAY | SIUOWNIO(]
quouodurod
9IBRMIJOS JO UOISIOA 10 juouod
SULI}G | -WI0D 9IRMPIRH JO [opOW oY], UOTSIOA
uorjel
-1ojut ostdioyury soanjded 10
Jyueuoduo)) ostid S99RaID Jer) Juouoduwiod oIem L amjde))
SULI}G | -19JUS JO JIDINJORJNURUWL oY, JOINJORINURIN | -1JOS I0 oremplel osudiojury | [ostrdiojury | ostadiajury
JUSIUOD
osLIdIogus] IOAI[R(] PUe ‘910G
Jusuodurod ‘omgden) I10J posn sI ey | juouoduio)) I
Surng | oyl jo uoreso] reorydersoor) uoryeoo] | eanjonaiseruy [osudiojuy | astadiojury | [estadisjury
OSTIdIo)UG UL 9INIIILIYS
WP | SPI0O9Y SOQLIOSOP 1Y) SOLIOS
1009y SSB[)) | SPI00dY I0 AJAIJOY ‘UOIIOUN | WS PIOIY
[euon
-eZIuUR3I()
100lqng QINJONIIG
[euonoun,g osudIogur] ut oWOYoQUO Sp109a1 9S11dI9IUd | UOIYRULIOFU]
‘pojeIowNUY | SWSYDS UOI)ROYISSR[O SPIOOSY | [9ROIJISSR)) | JO SINJONI)S [eIIYDIRISIY O, ostrdioguyy uR[oIt
potiad jey) 10je
uorjoe UoIjoe UoNIsodsip puer
potrod yey) 9jeriIul 1ey} Suor) SPI0991 9S1IdIoIUD JO SPOYJoU 9INJONI)G
o[nyuory | -ov ‘uorjesrssord spioddl 10y oy | suorysodsip pur spouod | UOI)RULIOJU] o[npoT
U030y sse[) | pouod oY) seuyep ey} oMYy UOTJUO)OY | UOTJUOIOI IOJ SOILI SUIRIUO)) osudIojus] | QUOIIUL}OY
onyeA uorpdrIosa(g oure N
sorppdorg uorpdrioso(g | sse[oaadng sse[n

71

7 Appendix A: ECM ontology

abvd jToU U0 PaNUIUO))

suorjerad() jusw
-oGRURIN N 92 0} SuIssed

- - - | -oe 10} juouodwion poseq oA\ | SSEOOVIADM | IUSIDYO M
quouoduIod
surdew] oy} Aq pojroddns aq S}euLl
pojeIoWINUY | P[NOYS e} S}RULIO] 87} JO SI'T | O J8UTUURIG
SopooIR(Q 9} JO UOT}
-TUS009.1 - 9POdIR(Q UOIHTUS0IL
1X99) USLIMPURY - YOH U0 USSR U
-Tu300a1 %01 podL} - YOO odew] ‘uorjiugdooar ‘Surd
;ueuodwod Surgewrt oy} Aq so | -ueds 10] 10dO[0Ad(]/IOPIAOI]
poytoddns oq pmoys jey) so1d | 1soouyod], | INOH oy Aq popraoxd
pojelownuy] | -0[OUYDY) UOIIUS009Y JO ISIT | UOIU3009Y | juouoduio)) 9IRMIJOS | SSOOOYVINDH gurdeur]
UOT)RULIOJ
-ut ostidiojuo Jo AIoArPp pue
oinyded soqLIOSOp 9Jer) WLIT, WOH | SS90V INDH
apou oty £q perroddns aq
Q0rJIOU | pnoys Jey) suorpersdo poje
TINDH SSB[)) | -100SSe puR SPRO[NIOM dUYd(] 90®JIoU]
ssepo Ayorero
SULIG | OYJ JO 90URISUL O} JO OUWIRN owreN | -Iq swIe} NOH JO opou 00y - WOH
9[OADAJI] §,)UIU0D A} JO PUD
oYY Je JUOIU0D d) JO SPOYJoU
- - - | uonytsodstp oY) SALINSA(T ostrdioguryy Tesodsi(q
ATOAT[OP u
Juojuod 10j juouodwod orem | suodwon) T, AIDATR(Q
- - - | -prey 10 aremyog ostudrsjuy | [estidisjury | ostidisjuy
onyeA uordrIosa(] oure N
sorppdorg uorpdrioso(] | sse[otadng sse[n

72

abod jrou uo panuuoy)

BIRPRIOU
S} pUR JUIU0D 10J 98RIO)S ©

juouoduwo pue (-0 ‘INO-XOOYD ‘UI-}IOD
NHUOISU)XT | £109150doY JO A}[eUOr}ouny ors £ | ‘ypress ‘9oep ‘oyepdn ‘osdLr) uone L1001
INDH sse[) | -eq spueixe jey) sjusuodwio)) | gpPopua)xy | -01 ‘9)eald) sodlales Areiqr] | punogNDH | SOdoygNDH
o8 uorye
- - - | uonnos DY jo uonepunog | RURNINOH | PUNOAINDH
ueju0d ostrdiojuo
JO JuowoSeURW € M PIIRID
- - - | -osse oIe 1ey) SULIO) (LIISA(] DY [e8eurtNDH
WY} WOIJ XopUl
o) SUIASLIJOI pPUR ‘AUWOUOXE)
ostidiojue 0} SUIPIOOOR JUSY
-uod SIY) UOIPRZII0SDIRD ‘(090
‘sorjoarsodou panjonijsun
‘SIOAIOG [IR]N ‘SIOAIDG) ogw
-109s osLIdIoyur] WO JUSju0)) I0909[[0))
- - - | Surpooron 10§ Juouodwio)) | SSEOOVINOH ishli(elg)
SOOIAIOS om
uIsn spurwwiod SN oyoA
-9 - SOOIAIOGUOA\ PIRPUR)G
Ayiqerodoroju] JuomaSRURTA
yuoyuo) Aq poyoddns ore
1e1y) suorjerodo - QN o8ens
-] SINDH 9AIJRU SUISTL SUOTY} SuorjouIy
-ounj [edo 03 SMO[R - JALL juouoduoo JUOWOFRURIN
-VN :uouoduwod dFeURIA DM Sseooe 03 axremijos Arred
WOH £q poyiddns oq p[noys PIY} 0} SMO[[R 1RJ 9DRIIDIUT
pojerownuy | ey} odLA} gV oY} JO ISIT odATIdV | Surmurersorq uoryeorddy | sse0oyYINDH Idv
onyeA uorpdrIosa(g oure N
sorppdorg uorpdrioso(g | sse[oaadng sse[n

73

7 Appendix A: ECM ontology

abvd 1ToU U0 PaNUUO))

W
SuLg | p1odey oY) jo uondrwso | uordrosa(g
suLig 90UeISUI 9} JO (II al
A10309%R0 URd o[w K£J1ATY) £10399
SULIIG | POALIOP O[) JO PI 9} SOIR[D9(] | OIPOALIOP | -0V IO uorounyg Ny Soquoso(] - | epuRIgoNg
sutng 90uR)SUI O[3 JO (I] dal
A1089700 Amrouoxe) Juouodwod [edryd A10397R))
SULIYG | POALIOP 97} JO PI 9} SOIe[09(] | WOIJPOALIOP | -Ietdly s, AWOouoxe) ostIdIojur] - | Awouoxe J,
LI 107 yuourage
-URJ\ 9OURIISAOY) pur [esod
-S[(] ‘yuomo8eur]y SS900IJ A
IOAODSIPH ‘JUOWOSEUR]N Ol
-poydg pue ADI[0J UOIIUS)IY u
- - - | JO uOIyeAID SO[qRUD ULIOY SIY T, WO | 190D NDH
OIBoS
ouowrered pue 9x91 0] uory}
- - - | 107 sjuewoambey IowolsN)) | USIXHNDH JoIedg
1RULIOJ OTUOI}
-09[@ Ul INO POLLIBD SI ey}
UOIIRSIY[[IAID ULl AISAOISIP uory}
- - - | 30 sseo01d e 10} syuowWRINDOI | UAIXHINDH | AIOA0COSIPH
Juouoduod Juou o[npoYds
Ju | -oGeuRN SPIOOSY JO UOIINID uonueley pur uUe[J O[]
ouodwoN)PI | -X0 POJIDIIOD 93} I0J PoUuLop ostrdiojusy oy 03 SUIPIOdOR uors JuowoSeU
009} sse[) | oq pnoys 9jey] sjyueuoduro)) soImboy] | sp1009y osudiojuy sodeue]y | USIXHNDH | BRINSPIOd9Y
UOI)RPUNOJ
INDH 03 Aj[RUOIOUNJ [RUOT) uory}
- i | “TPP® SPP® 18U} SSE[oLU9y) | SPONINDH | WIXHINOH
onyeA uordrIosa(] oure N
sorppdorg uorpdrioso(] | sse[otadng sse[n

74

abvd jToU U0 PaNUUO))

potiod uorjuelel 199
-Je pasodsIp 9 J0U [[IM PIOIDI
913 Je(3} P[OHUO St plooal oy}
JI pesodsip oQq M pIodal

S

v OPIYM IYe ‘uoljeArsssid | [JUOINPOLID
089Ul | pI0%91 10j porod UONUSY | JUOIIUSIOY
suLng 9oueIsuI 9} JO (II a1
potrad jey) 10je
UoIjoR UOIJOR UOIISOdSIp pue
potrad jey) 9jerIul Jey) suory
[y -or ‘uorjearsseld SpIodRI 10J oy
SuLng | uorgualel oy} jo uonduoss(| uonduoss(| poued oy} seuyep ey} oSy - UOTIUOY
are(PI0081 JY[] JO 8)€(T 9SO | Paso[DIe(]
P
are(PI00dI B[} JO 9)e(] UOI)RAL)) | 9)BAINdIR(]
P
are(pIooal oy Jo oye(] wad() | suad(yore(]
Io
quInNjuaW
Noo(] ‘owreu
-mg - ‘ore(q £
‘pojerownuy | JUIWRSURILIR SPI0ddI JO odAT, | gposurIIy 7
OTUOI)IdH uory)
‘rodegq jewr | -ouny Io joalqns remorred oy 10399 so
‘pojeIownNuL PI02dI 9} JO JeULIO | I0PI020Y | 0} Poje[eI oIe ey} SPIodDY | BDHUR[JO[I] | IOSSPIodoy
Q[0 SS90 SPI0JAI 0] $S900R S
Oy SSB[D) | oY} oARY JRY[} SO[0I 9} 0F U] | 9[0Y SS90y
onyeA uorpdrIosa(g oure N
sorppdorg uorpdrioso(g | sse[oaadng sse[n

75

7 Appendix A: ECM ontology

abod jrou uo panuuo,)

ouILT,
surpeol yoyeq | 10 JpopeoT
suump pepeordn oIe JRYY} | SIUSWNIO(]
IoSoquy | s300(qo Juejuod jo Ioquuny | JOIoquInN
Kep 10d quou Le(q
-odwoo e 3ursn osuop sjsonbol | 19 JS0YdIRD
Io8ou] | [DIRSS JO IOQUINU WINUWIIXR]N | SUIMUWIXRIN
Aep
Tod juouodwiod JUSIINO 3Ul Ae
-STL POASLIJOI dI€ Jer) S$100[qO0 | ([T JSASLILD
JIoSOJUT | JUOJU0D JO IOqUINU WNWIXEN | YWNWIXR]N
Aep
Jod jusuoduwiod JueIINO 3Ul Ae
-sn pepeordn are jer) syoalqo | (Jrogspeord
JIOSOJUT | JUOJU0D JO IOqUINU WNWIXEN | () WNWIXRA
Quury aures oy e jusuod SI9S[)JUd
-TOD 9} 1M YIOM JeT[) SIOST | IINdUO0DJOI
o8ou] | NOH JO Ioquunu WINUWIXR]N | 9QUINNXBN
quouodwod O Aq sogensue
pojerownuy | segengue] peorroddns jo 9sr7 | Tperroddng
uon
ssepo -njos NOH 03 porjdde prnoys
SULIYG | Y] JO 90URISUL S} JO SUWRN owreN | 2eyy Aorjod o) Jo uOHIUYpP Y - ALo1104
pojress st porrod uory I
pojeIoWINUY | -US)OI UOIYM I9)Je UOIJOe UY | 98SLLTIIRIG
PI099I O} JO UOTIONI)S
-9p - POIYS SAIYDIR ULID) FUO]
UL 9ARS - QATYDIY :poliad uor)
-I9)01 O} I9YR POJNISXd d(Uo1)Oy
pojeIoWINUY | PIMOYS Ry} UOIIOR uolysodsy(] | uorgrsodsi(]
onyeA uordrIosa(] oure N
sorppdorg uorpdrioso(] | sse[otadng sse[n

76

abod jrou uo panuuoy)

JIestd
93U, SSe[D ssepd 10318, 10318)
PoYsT
Juoy | -qeiso st diysuorjear oY) SSe[o -oSTIAI0NUD UTY)IM MO JUIUOD
-0)),, SSB[D) | YOIYM WIOIJ SOULYdP 9dIN0G 90IN0s | 9Y) soquIosop diysuoryeal oy [, | diysuorjeoy Smoy
FU9Y
-uoy),, SSe[) SSR[D 103IR], 10818)
[SEL | pourLIOJSuRI}
(SSOOOYN | -qelse st dIysuorjeyad o) sse[o 9 P[NOYS JUSIUOD 9} S)RULIO]
D, SSB[D | YOIYM WO} Soulysp 9dINo0g 90In0s | Yorym o3 seuygep diysuorjerey |drgsuone@y | oJ,poiiodxo
(SS000Y
INOH:,
Sse[)) sse[o jo8Ie], 1081€]
SR poylew $s900Y JNDH Sulsn
Juoy | -qeiso st dIiysuorjear oY) SSe[o POOS[[00 9q PINOYS JUOIUOD
-0)),, SSB[D) | YOIYM WOIJ SOUYdp 9dIN0G 90Inos | YPIym soqusep diysuoryedy] |drgsuorjepy | Agpoanjdes
sur19) 98ens
sseo -ue] Ueamjlaq sdIysuorie[ol
SULIIG | 9YJ JO 90URISUL S} JO SUWIRN QWIRN | SOQLIOSOD B[} SSB[O OLIOUSL) - | digsuoryeoyq
SIOSMOI(SIOSMOIg
pejerswmuy | gem perroddns oyjy jo 9sry | pajroddng
q1uauoduio
DPI0DINDH
“yuouodwo
DHUOISUIIXH JUSI[) oA\ OU) Aq pojrod
WOH sse[) | -dns oire jeyy sjusuoduwo)) syproddng
onyeA uorpdrIosa(g oure N
sorppdorg uorpdrioso(g | sse[oaadng sse[n

77

7 Appendix A: ECM ontology

abvd jToU U0 PaNUIUO))

JUOWUO
ITAUG[UOTITO drysuoryeyar o) Jjo
9Xf,, SSB[)) | UOIJRUIISOP B SOIR[IOP 10SIRT, 1081€)
paysY "SOPOU JUSWIUOIIAUSD UOIINID
JNDM, | -qedse st digsuorje[ar oy sse[o X[pue W) Ueomioq Aousp
SSB[) | YOIYM TWOIJ SOULOP 9IINO0G oo1nos | -uadep ouyep drysuorjepr oy, |diysuonyey | uQspuadop
XD drysuoryear o) jo
SSR[) | UOIJRUIISOP R SOIR[IDD J9TIRT, 1081R)
perdde oq pnoys
Aorjod psuyep oy} sepou NOH
SEL | UOTYM O} SOIR[O9p)] "SULId)
AOT | -qeyse st dIysuorje[ad oy} sse[o WOH pue Ao1rjod usemiaq Uy
-10d,, SSB[D | YOIyM WO} SoUlydp 9dIN0G 901nos | o) souygep diysuorjear oy, |diysuorjeey o perdde
(QSRURI\[IN diysuoryeror o) jo
D™, SSB[) | UOIJRUIISOD B SOIR[IAD J98IR], j081€)
TWLI9Y) $S900Y INOH
(SSP00Y paysT M PoOJRIDOSSE 9q PINOYS
INDH,, | -qeise st dIysuorje[or oy} Sseyo sooevIOqUI oSeuUR]N NDH
SSe[D) | YOIyM WOJJ SoUPSp 92INOS 90Inos | Yorgm ougep drysuorjepd oy} | digsuorye[oy] sjproddns
(SS900Y
NDOH,
sse) sse[o josIR], 108189
KL109150d01
NDH Ul Palojs pur Pajdd[[od
SEL S| 9(PINOYS ®IeP O} SOOINOS
LLesudr | -qeyse st dIysuorie[or o) SSeyo -o1 oFel10)s osudiojue YOIMm
QYU SSB[D) | YOIYM WOJJ Soulyep 9dIN0g 901nos | wogj seugep drysuorjepd oy], |diysuorjepy | Agpojosyiod
anpeA uondrioss (g QIR N
sorppdorg uonydrioso(] | sse[opaadng sse[n

78

(ostrdrey diysuorjera1 a3 Jo
-U5, SSB[)) | UOIIRUIISOP B SOIR[IAP 1931€], 1081€)
ostidrojus
uR INOQR UOIJRULIOJUL SoIInbax
LJUOISURIXH INDH , JO 90UR)SUT
uR JRY) SOIR[OAP 9] - SOSSR[D
U SEL | QOsudiojuy, pue | UOISU9)XO
OTSUIXHIN | -qeiso st dIYSUOIjR[oI oY) SSB[D WDH,., Ueamisq somuspuad
N, SSB[D | YOIyM WO} Soulyep odINog 90IN0s | -op sougep drysuorjepy oy, |drysuoryeoy soxmbou
U0
1jepuUno N drysuoryerar o) jo
D™, SSB[) | UOIJRUIISOD B SOIR[IAD J93Ie], j031R)
ULI9) UOL)RPUNO]
NDH uo spuadop uLId) UOTIUDY
-Xo NDH ey} SoIe[oap OS[R 1]
M SEL | ‘“uoryepunoj NOH 03 A[euory
OTSUIXHIN | -(qeise ST dIYSUOIjR[oI 9} SSB[D -Ounj sppe suonualxe DA
N, SSB[D | YOIYM WO} SOoulyop odINog 90In0s | Yorym ougep diysuorje[or oy], | drysuoryeoy] SpU0IXo
onyeA uorpdrIosa(g oure N
sorppdorg uorpdrioso(g | sse[oaadng sse[n

79

8 Appendix B: ECM foundation service
template using TOSCA

<Definitions id="ECMFoundation”

<Import

<Import

targetNamespace="http://docs.oasis—open.org/tosca/ns/2011/12”
xmlns="http://docs.oasis—open.org/tosca/ns/2011/12”

xmlns: ns1="URI"

xmlns : ns2="URI"

xmlns: xsi="URI">

importType="http://www.w3.org /2001 /XMLSchema”
location="Definitions/types/ECMTypes. xsd”
namespace="http://boeblingen.de.ibm.com/tosca/types/ECM’ />
importType="http://www.w3.o0rg/2001/XMLSchema”
location="Definitions /ECMSpecificTypes.xml”
namespace="http://boeblingen.de.ibm.com/tosca/
types/ECMSpecificTypes” />

<!—— Policy Template —>
<PolicyTemplate type="nsl:ECMPolicy” id="ECMPolicyTemplate”’>

<Properties>
<ns2: ECMPolicyProperties>
<Availability >HighAvailability </Availability >
<TargetEnvironment>DevEnv</TargetEnvironment>
<MaxNumberOfConcurrentUsers>10
</MaxNumberOfConcurrentUsers>
<MaxUploadsPerDay>20</MaxUploadsPerDay>
<MaxRetrievesPerDay >40</MaxRetrievesPerDay>
<MaximumSearchesPerDay >55
</MaximumSearchesPerDay>
<NumberOfDocumentsLoadedPerTime >90
</NumberOfDocumentsLoadedPerTime>
<SupportedLanguages>
<Language>English </Language>
<Language>German</Language>
</SupportedLanguages>
</ns2: ECMPolicyProperties>
</Properties>

81

8 Appendix B: ECM foundation service template using TOSCA

</PolicyTemplate>

<ServiceTemplate id="ECMFoundation” name="ECMFoundation”
targetNamespace="http://docs.oasis—open.org/tosca/ns/2011/12” >
<BoundaryDefinitions>
<Interfaces>
<Interface name="RepositoryUserInterface”>
<Operation name="createDocument”>
<NodeOperation operationName="createDocument”
nodeRef="ECMRepositoryNode”
interfaceName="UserInterface” />
</Operation>
<Operation name="retrieveDocument”>
<NodeOperation operationName="retrieveDocument”
nodeRef="ECMRepositoryNode”
interfaceName="UserInterface” />
</Operation>
<Operation name="updateDocument”>
<NodeOperation operationName="updateDocument”
nodeRef="ECMRepositoryNode”
interfaceName="UserInterface” />
</Operation>
<Operation name="deleteDocument”>
<NodeOperation operationName="deleteDocument”
nodeRef="ECMRepositoryNode”
interfaceName="UserInterface” />
</Operation>
<Operation name="searchDocument”>
<NodeOperation operationName="searchDocument”
nodeRef="ECMRepositoryNode”
interfaceName="UserInterface” />
</Operation>
<Operation name="checkIn”>
<NodeOperation operationName="checkIn”
nodeRef="ECMRepositoryNode”
interfaceName="UserInterface” />
</Operation>
<Operation name="checkOut”>
<NodeOperation operationName="checkOut”
nodeRef="ECMRepositoryNode”
interfaceName="UserInterface” />
</Operation>
</Interface>
</Interfaces>
</BoundaryDefinitions>

82

<TopologyTemplate>
<!—— Enterprise Nodes —>
<NodeTemplate name="Employee Contract” id="ContentNode”
type="nsl:ContentNode”>
<Properties>
<ns2:ContentNodeProperties>
<Department>HR</Department>
<ContentType>Electronic </ContentType>
<ContentFormat>PDF</ContentFormat>
<AverageDocSize>5</AverageDocSize>
</ns2:ContentNodeProperties>
</Properties>
</NodeTemplate>

<l— ECM Nodes —>
<NodeTemplate name="WebClient” id="WebClient”

type="nsl: WebClient”>
<Policies>
<Policy policyType="nsl:ECMPolicy”
policyRef="ECMPolicyTemplate” />
</Policies>
</NodeTemplate>

<NodeTemplate name="Repository” id="ECMRepositoryNode”
type="nsl: ECMRepositoryNode” >
<Requirements>
<Requirement name="DataBaseRequirement”
type="nsl:RationalDataBaseRequirement”
id="DBRequirement” />
<Requirement name="StorageRequirement”
type="nsl:StorageRequirement”
id="StorageRequirement” />
<Requirement name="TextIndexRequirement”
type="nsl: TextIndexRequirement”
id="TextIndexRequirement” />
</Requirements>
<Capabilities >
<Capability name="ECMAddOnCapability”
type="nsl: AddonContainerCapability’
id="AddOnCapability” />

)

</Capabilities>
<Policies >
<Policy policyType="nsl:ECMPolicy”
policyRef="ECMPolicyTemplate” />

</Policies>

83

8 Appendix B: ECM foundation service template using TOSCA

</NodeTemplate>

<!l—— Execution Environment Node —>
<NodeTemplate name="TextIndex” id="TextIndex”
type="nsl: TextIndex”>
<Capabilities>
<Capability name="TextIndexCapability”
type="nsl: TextIndexCapability”
id="textIndexCpability” />
</Capabilities>
</NodeTemplate>

<NodeTemplate name="Storage” id="Storage”
type="nsl:Storage”>
<Capabilities>
<Capability name="StorageCapability”
type="nsl:StorageCapability”
id="StorageCapability”/>
</Capabilities>
</NodeTemplate>

<NodeTemplate name="RationalDatabase”
id="RationalDatabase”
type="nsl:RationalDatabase”>

<Capabilities >
<Capability name="DBCapability”
type="nsl: RationalDataBaseCapability’
id="RDBCapability” />
</Capabilities >
</NodeTemplate>

)

<!—— Relationships Between Nodes —>

<RelationshipTemplate
name="ContentNode_WebClient_ContentFlow”

id="contentflowl” type="nsl:ContentFlow”>

<SourceElement ref="ContentNode” />

<TargetElement ref="WebClient” />
</RelationshipTemplate >

<RelationshipTemplate
name="WebClient_supports_Repository”

id="supportsl” type="nsl:Supports’>
<SourceElement ref="WebClient” />
<TargetElement ref="ECMRepositoryNode” />

</RelationshipTemplate >

84

<RelationshipTemplate
name="Repository_dependsOn_TextIndex”
id="dependsonl” type="nsl:DependsOn”>
<SourceElement ref="ECMRepositoryNode” />
<TargetElement ref="TextIndex” />
</RelationshipTemplate >

<RelationshipTemplate
name="Repository_DependsOn_Storage”
id="dependson2” type="nsl:DependsOn”>
<SourceElement ref="ECMRepositoryNode” />
<TargetElement ref="Storage” />
</RelationshipTemplate >

<RelationshipTemplate
name="Repository_DependsOn_DB”
id="dependson3d” type="nsl:DependsOn”>
<SourceElement ref="ECMRepositoryNode” />
<TargetElement ref="RationalDatabase” />
</RelationshipTemplate>
</TopologyTemplate>
</ServiceTemplate>
</Definitions >

85

Bibliography

[ATT14]

[BBO7]

[BBFRS12]

[Bo14]

[Cam11]

[EMCOS]

[GHHT06]

[Gholl]

[GSCT14]

[HEIO7]

[idg14]

[Jen04]
[KKP+14]

What is enterprise content management (ecm)? http://www.aiim.org/What-
is-ECM-Enterprise-Content-Management, 2014.

Joseph A. Busch and Lisa Butcher. Getting started with business taxonomy de-
sign. http://www.taxonomystrategies.com/presentations/2010/Business2007.
Accessed: 2015-04-20.

Cynthia Beth, Irma Becerra-Fernandez, Jeanne Ross, and James Short. Finding
values in the information explosion. MIT Sloan Management Review, 53(4),
2012.

Martin Bohn. The market of ecm software. Enterprise Content Management in
Information Systems Research, pages 23-36, 2014.

Stephen Cameron. Enterprise Content Management: A business and Technical
Guide. 2011.

Emc documentum architecture: Delivering the foundations and services for
managing content across the enterprise, 2008.

Knut R. Grahlmann, Remko Helms, Cokky Hilhorst, Sjaak Brinkkemper, and
Sander van Amerongen. Reviewing enterprise content management: A func-
tional framework. 2006.

Debasish Ghosh. Dsls in action. Manning Pupblications Co., 2011.

Mark R. Gilbert, Karen M. Shegda, Kenneth Chin, Gavin Tay, and Hanns
Koehler-Kruener. Magic quadrant for enterprise content management, 2014.

Hei records management. guidance on developing a file plan.
http://tools.jiscinfonet.ac.uk /downloads/bcs-rrs/developing-a-file-plan.pdf,
2007. Accessed: 2015-04-05.

Investments and upgrades in cloud solutions drive business agility and innova-
tion. http://www.idgenterprise.com/press/investments-and-upgrades-in-cloud-
solutions-drives-business-agility-and-innovation/, 2014.

Tom Jenkins. Enterprise Content Management. Open Text Corporation, 2004.

Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Volker. Design guidelines for domain specific languages.
2014.

87

Bibliography

[Kum10]
[LBMCW13]

IMG11]

[MHSO05]
[NM]
[0T14]

[PeMOS5]

[Smal4]
[Tos13a]
[Tos13b]

[ZAB+09)

[ZBO*11]

88

Pawan Kumar. Documentum 6.5 Content Management Foundations. 2010.

Dr. Sven Laumer, PD Dr. Daniel Beimborn, Dipl.-Wirtsch.Inf. Christian
Maier, and M.Sc. Christoph Weiner. Enterprise content management.
WIRTSCHAFTSINFORMATIK, 55(6), 2013.

Peter Mell and Tymothy Grance. The nist definition of cloud computing. rec-
ommendations of the national institute of standards and technology. National
Institute of Standards and Technology Special Publication 800-145, 2011.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316-344, 2005.

Natalya F. Noy and Deborah L. McGuiness. Ontology development 101: A
guide to creating your first ontology.

California Department of Technology. Enterprise content management (ecm).
reference architecture. 2014.

Tero Paivarinta and Bjorn erik Munkvold. Enterprise content management:
An intergated perspective on information management. Proceedings of the 38th
Hawaii International Conference on System Sciences, 2005.

Robert F. Smallwood. Information Governance for business documents and
records. 2014.

Topology and Orchestration Specification for Cloud Applications Primer Version
1.0. 2013.

Topology and Orchestration Specification for Cloud Applications Version 1.0,
OASIS Standard. 2013.

Wei-Dong Zhu, Richard Aitchison, Eric Bonner, Hector Casals Mendez, Ron
Rathgeber, Amit Yadat, and Harry Yessayan. Understanding IBM FileNet
Records Manager. 2009.

Wei-Dong Zhu, Nicholas Buchanan, Michael Oland, Thorsten Poggensee,
Pablo E Romero, Chuck Snow, and Margaret Worel. IBM FileNet P8 Plat-
form and Architeture. 2011.

Bibliography

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

89

