Institut fiir Visualisierung und Interaktive Systeme

Universitat Stuttgart
Universitétsstrafie 38
D-70569 Stuttgart

Masterarbeit Nr. 115

Barrierefreies Smarthome

Tobias Ableitner
Studiengang;: Informatik
Priifer/in: Prof. Dr. Albrecht Schmidt
Betreuer/in: Prof. Dr. Gottfried Zimmermann
Beginn am: 20. Juni 2016
Beendet am: 20. Dezember 2016

CR-Nummer: HS5.2

Kurzfassung

Eine Querschnittlahmung kann jeden Menschen treffen, sei es durch durch Unfall oder Er-
krankung. Tetraplegikern bleiben im schlimmsten Fall lediglich motorische Fahigkeiten im
Bereich von Kopf, Hals und eventuell Schulter erhalten. Fiir sie — aber auch fiir Menschen
mit vergleichbaren motorischen Einschrankungen — werden kleinste manuelle Verrichtungen
plotzlich zu einer - oftmals sogar unlésbaren — Herausforderung. Aus diesem Grund kénnen
Tetraplegiker von einem Smarthome und mobilen Endgeréten zu seiner Steuerung erheblich
profitieren. Dafiir muss jedoch das Endgerét eine barrierefreie Eingabemethode unterstiitzen.
Die Barrierefreiheit bei der Eingabe ist realisierbar in Form von Bedienungshilfen und / oder
durch Hilfsmittel-Hardware.

Das Ziel dieser Arbeit ist die Konzeptionierung einer barrierefreien Smarthome-Steuerung fiir
Tetraplegiker sowie deren prototypische Realisierung als Android App. Das Hauptaugenmerk
dabei liegt auf einem grofitmoglichen Verzicht auf Hilfsmittel-Hardware und auf einer guten
Individualisier- und Erweiterbarkeit. Fiir Ersteres wird unter anderem Face-Tracking basierend
auf der Mobile Vision API von Google als Eingabemethode realisiert. Abschliefend findet
sowohl eine qualitative als auch quantitative Evaluation des Prototyps statt. Verglichen werden
dazu die Bandbreite des Face-Trackings mit weiteren barrierefreien sowie klassischen Eingabe-
methoden. Das Konzept und der Prototyp fiir die Anwendung zur Steuerung eines barrierefreien
Smarthomes eignen sich fiir betroffene Personen und Angehdrige aus der Zielgruppe, welche
unterschiedliche Eingabemethoden ausprobieren mdchten, ebenso fiir Entwickler, die an der
Erweiterung des Prototyps interessiert sind. Ihnen liefert die Evaluation zudem Erkenntnisse
zur Leistungsfiahigkeit eines kostengiinstigen Face-Trackings sowie weiterer barrierefreien
Eingabemethoden.

Abstract

Spinal-cord injury can happen to anyone, whether through traumatic injury or due to illness.
Tetraplegics retain mobility — in a worst case scenario — only in the head and neck area,
possibly including the shoulder area. For those affected — as for people with similarly limited
mobility through other causes — the smallest manual movement becomes a challenge, often
an impossible one. Thus tetraplegics may profit immensely by a smart home with mobile
controlling devices. However, for that purpose the controlling device needs to support barrier-
free input methods. Barrier-free input can be implemented by assisting features in the use of
control devices, and/or by specialized hardware.

The aim of this thesis is the conceptualization of a barrier-free smart home control device for
tetraplegics, as well as its prototypical implementation as an Android App. The main focus is
on doing without specialized hardware as much as possible, and on options to individualize
and expand functionality. For the prototype, face-tracking based on Mobile Vision API by
Google is used as an input method, among others. In conclusion there is an evaluation process
of the prototype regarding criteria of quality and quantity. The evaluation includes comparing
the range of performance of face-tracking with other barrier-free, as well as classic input
methods. The concept and the prototype for this application for the controlling of barrier-
free smart homes are suitable for affected persons and their family members in the target
group who would like to try out various methods of input. Software developers may also be
interested in expanding the functionality and input methods of the prototype. The evaluation
provides insight into the performance of cost-effective face-tracking as well as barrier-free
input methods.

Inhaltsverzeichnis

1. Einleitung
1.1. Motivation e
1.2. Zieleder Arbeit
1.3. Vorgehensweise

2. Grundlagen und verwandte Arbeiten
2.1. Smarthome
2.2. Querschnittladhmung o o
2.3. Bedienungshilfenin Android oo Lo
24. Verwandte Arbeiten L Lo

3. Benutzungskontext-Analyse
3.1. Interviews L
3.2. Definition der Anforderungen

4. Konzept
4.1. Systemibersicht
4.2. Benutzeroberfliche
4.3. Eingabemoglichkeiteno Lo
4.4. Eingabeverarbeitung

5. Umsetzung Prototyp
5.1. Begriindung fiir die prototypische Umsetzung ausgewéahlter Anforderungen .
5.2. Verwendete Systeme und Technologien
5.3. Architektur.
54. Implementierung

6. Evaluation
6.1. Quantitative Benutzbarkeitstests oL
6.2. Qualitative Benutzbarkeitstests. L.

7. Zusammenfassung und Ausblick
7.1. Umgesetzte Anforderung Lo
7.2. Mehrwert gegeniiber den Android Bedienungshilfen
7.3. Bewertung der Testergebnisse
7.4. Ausblick

11
11
12
12

15
15
16
19
20

27
27
37

43
43
44
50
57

61
61
62
63
69

97
97
117

129
129
130
131
133

A. Anhang
A.1. Fragebogen fiir die Interviews oL
A.2. Ergebnisse der quantitativen Benutzbarkeitstests

Literaturverzeichnis

Abbildungsverzeichnis

2.1.

4.1.
4.2.
4.3.
4.4.
4.5.

4.6.
4.7.
4.8.
4.9.

5.1.

5.2.
5.3.

54.

5.5.
5.6.
5.7.

6.1.
6.2.

6.3.

6.4.
6.5.
6.6.
6.7.

Aufbau der Wirbelsaule in Anlehnung an [Org13,S.5]. 17
Aufbau des barrierefreien Smarthomes. 0000 43
Baumbhierarchie als Mentistruktur 000000 45
Hauptmeni im Entwurf fiir die Benutzeroberflache. 47
Beginn des Untermeniis Senderliste im Entwurf fiir die Benutzeroberflache. . . 48
Weitere Meniielemente im Untermeni Senderliste im Entwurf fiir die Benut-

zeroberflache. L 49
Steuerung des Cursors auf der vertikalen Achse durch Neigen des Kopfes. . . 51
Steuerung des Cursors auf der horizontalen Achse durch Drehen des Kopfes. . 53
Button Switch, der sich fiir das 1- und 2-Button-Scanning eignet. 55
Konzeptionelle Eingabeverarbeitung 58

UML-Komponentendiagramm fiir die App zur Steuerung des barrierefreien

Smarthomes. 64
UML-Klassendiagramm mit den wichtigen Klassen der Eingabemethoden. . . 66
UML-Sequenzdiagramm, das die Verarbeitung einer Eingabe in der App zur

Steuerung des barrierefreien Smarthomes zeigt. 68
Screenshot von der Benutzeroberflache. (Die Icons auf den Buttons stammen

von: https://material.io/icons/ (16.12.2016)) 76
Klassendiagramm mit den Klassen der Komponente Command Executor. . . . 77
Klassendiagramm mit den Klassen des Face-Trackings. 81
Die Benutzeroberflache in einem Koordinatensystem. 86
Screenshot des Einstellungsmeniis fiir Benutzbarkeitstests. 98

Screenshot der Benutzeroberfliache fiir die quantitativen Benutzbarkeitstests.

(Das Smiley- und X-Icon auf den Buttons stammen von: https://material.io/icons/
(16.12.2016)) + o o o o e e e e 99
Screenshot des Dialogs fiir die Button-Konfiguration des folgenden Tests. (Das
Smiley- und X-Icon auf den Buttons stammen von: https://material.io/icons/

(16.12.2016)) + o o oo e e 102
Insgesamt tibertragene Bits / Sekunde im Durchschnitt. 108
Durchschnittlich richtig beziehungsweise falsch tibertragene Bits / Sekunde. . 109
Durchschnittlich falsch ibertragene Bits / Sekunde. 110

Durchschnittlich richtig beziehungsweise falsch betétigte Buttons / Sekunde. . 111

6.8.

6.9.

6.10.

6.11.

Maximal, durchschnittlich sowie minimal {ibertragene Bits / Sekunde mit der
Eingabemethode Sprachsteuerung.
Im Durchschnitt richtig sowie falsch iibertragenen Bits / Sekunde in Abhan-
gigkeit mit sowie ohne Bart. Lo oL
Im Durchschnitt richtig sowie falsch iibertragenen Bits / Sekunde mit sowie
ohneBrille. L
Durchschnittlich richtig und falsch tibertragene Bits / Sekunde bei den 3 Pro-
banden die das Face-Tracking mit bis zu 100 Buttons testeten.

Tabellenverzeichnis

4.1.

5.1.
5.2.

6.1.

6.2.

6.3.

7.1.

Al

A2

A3.

A4

Benotigte Fahigkeiten je Eingabemethode 57
Exemplarische Werte einer Hash-Map mit jenen der Button-Zeilen. 89
Exemplarische Werte einer Hash-Map fiir eine Button-Zeile. 90

Bewertung der Eingabemethoden (1 = geeignet, 2 = eher geeignet, 3 = teils-teils

geeignet, 4 = eher ungeeignet, 5 = ungeeignet). 125
Testdauer in Sekunden sowie die Fehleranzahl der Probanden bei der Lésung
der Testaufgaben, je Eingabemethode. 126
Bewertung der Benutzeroberflache (1 = geeignet, 2 = eher geeignet, 3 = teils-
teils geeignet, 4 = eher ungeeignet, 5 = ungeeignet). 128

Ubersicht der im Konzept und Prototyp realisierten (v') sowie nicht realisierten
(X) Anforderungen. 130

Die Tabelle beinhaltet die fiir jede Eingabemethode und Button-Matrix die
insgesamt, richtig und falsch tibertragenen Bits / Sekunde und davon noch
jeweils den maximalen (max), durchschnittlichen (@) und minimalen (min)
Wert gerundet auf 4 Nachkommastellen. 141
Die Tabelle beinhaltet die fiir jede Eingabemethode und Button-Matrix die
Anzahl der insgesamt, richtig und falsch betatigten Buttons / Sekunde und da-
von noch jeweils den maximalen (max), durchschnittlichen (&) und minimalen
(min) Wert gerundet auf 4 Nachkommastellen. 142
Die Tabelle beinhaltet die insgesamt, richtig und falsch tibertragenen Bits /
Sekunde und davon noch jeweils den maximalen (max), durchschnittlichen
(@) und minimalen (min) Wert gerundet auf 4 Nachkommastellen der 3 bezie-
hungsweise 2 Probanden, welche die Eingabemethode Face-Tracking mit mehr
als 36 Buttons testeten. 143
Die Tabelle beinhaltet die insgesamt, richtig und falsch betétigten Buttons /
Sekunde und davon noch jeweils den maximalen (max), durchschnittlichen
(@) und minimalen (min) Wert gerundet auf 4 Nachkommastellen der 3 bezie-
hungsweise 2 Probanden, welche die Eingabemethode Face-Tracking mit mehr
als 36 Buttons testeten. 143

1. Einleitung

Ein ’smartes’ Zuhause kann fiir dessen Bewohner in vielerlei Hinsicht komfortabel sein. Fiir
manche von ihnen mag es dariiber hinaus auch ein technisches ’Spielzeug’ sein. Ist es jedoch
konzipiert, so dass es Tetraplegiker oder andere Bewohner mit vergleichbaren motorischen
Einschrankungen selbststandig benutzen konnen, stellt es eine viel grofiere Bedeutung dar.
Denn das Smarthome ist fiir diesen Personenkreis ein Zugewinn an Selbststindigkeit und
damit an Lebensqualitat.

1.1. Motivation

Nach Angaben der Weltgesundheitsorganisation erleiden jedes Jahr zwischen 250000 und
500000 Menschen eine Querschnittslahmung (vgl. [Org13, S. 14-15]). Wyndaele et al. [WW06]
kamen in ihrer Studie zu dem Ergebnis, dass es sich bei einem Drittel der betrachteten Quer-
schnittsfille um eine Tetraplegie handelte (vgl. [WWO06]). Bei dieser ist die Verletzung des
Riickenmarks so hoch, dass die betroffenen Personen nur noch eingeschrankte oder gar keine
motorischen Fahigkeiten mehr in ihren Handen besitzen (vgl. [AA14]). Obwohl der von Wyn-
daele et al. ermittelte Tetraplegikeranteil nicht reprasentativ fiir eine weltweite Schatzung ist
(vgl. [WWO06)), lasst er die Annahme zu, dass eine erhebliche Anzahl an Personen betroffen ist,
zumal weitere Quellen in Abschnitt 2.2.3 einen noch héheren Anteil nennen.

Fiir Tetraplegiker und Menschen mit vergleichbaren Einschrankungen sind im Alltag schon
kleine Handgriffe, wie zum Beispiel das Offnen eines Fensters oder das Umschalten des Fernseh-
programms, nur mit erheblichen Aufwand oder iberhaupt nicht bewéltigbar. In Folge dessen
bendtigen sie eine umfangreiche Unterstiitzung. Deshalb, stellt fiir sie ein Smarthome, das per
Definition Technologien und Dienste im Zuhause integriert, um damit die Lebensqualitat in
diesem zu steigern, ein weitaus grofieres Potenzial dar, als fiir den Rest der Bevolkerung (vgl.
[Sma16] u. [Pec14]).

Allerdings sind dafiir einige Voraussetzung zu erfiillen. Zum einen erfolgt die Bedienung des
Smarthomes idealerweise tiber eines oder mehrere mobile Endgeréte. Sie haben den Vorteil,
dass sie klein und handlich sind und sich somit am Rollstuhl des Benutzers einfacher an-
bringen lassen, damit fiir diesen die Steuerung im Bedarfsfall erreichbar ist. Zum anderen
muss die Benutzerschnittstelle barrierefrei sein. Insbesondere fiir Menschen mit motorischen
Einschrankungen an ihren Handen erfolgt die Herstellung der Barrierefreiheit oft noch durch

11

1. Einleitung

Hilfsmittel-Hardware und nicht iiber Bedienungshilfen des Gerats. Im Rahmen der in Ab-
schnitt 3.1 behandelten Interviews, wurde die Erfahrung geduflert, dass Erstere gegentiiber
vergleichbaren Eingabegeriten fiir Unversehrte oftmals teurer seien. Dies kann insbesondere
Betroffene in d&rmeren Regionen der Erde vor Probleme stellen.

1.2. Ziele der Arbeit

Das Ziel dieser Arbeit ist die Planung und prototypische Realisierung einer App zur Steuerung
eines barrierefreien Smarthomes, das auf die Belange von Benutzern mit Mobilitdtseinschran-
kungen an den Handen abgestimmt ist. Aus diesem Grund handelt es sich bei der priméren
Zielgruppe des barrierefreien Smarthomes um Personen, die vom Hals ab querschnittsgelahmt
sind.

Die App soll sich zum einen durch eine hohe Individualisierbarkeit auszeichnen, wodurch
sie an die Anforderungen sowie Einschrankungen des jeweiligen Benutzers anpassbar ist.
Zum anderen liegt ein Schwerpunkt auf ihrer Erweiterbarkeit. Dadurch lassen sich zu einem
spateren Zeitpunkt weitere Geréate in das Smarthome integrieren.

Um die Bedienbarkeit fiir die Zielgruppe sicherzustellen, soll die App zur Steuerung des
barrierefreien Smarthomes unter anderem eine Sprachsteuerung sowie Face-Tracking als
Eingabemethode anbieten. In Bezug auf die Eingabemethoden liegt der Fokus auf den Kosten.
Durch den weitestgehenden Verzicht auf Hilfsmittel-Hardware, wird versucht diese niedrig zu
halten. Hierzu wird das Face-Tracking iiber die Mobile Vision API von Google realisiert (vgl.
[Goo16b]). Sie kann tiber die Frontkamera eines Android Gerits das Gesicht des Benutzers
ohne zusiatzliche Hardware verfolgen.

Sowohl die Eingabemethoden und von diesen insbesondere das Face-Tracking als auch die
Benutzeroberfliche der App sollen nach der Fertigstellung des Prototyps evaluiert werden.
Dabei soll zum einen die Bandbreite der Eingabemethoden ermittelt werden und zum anderen
inklusive der Benutzeroberflache eine qualitative Bewertung durch Personen aus der Zielgruppe
erfolgen.

1.3. Vorgehensweise

Zur Erreichung der im Abschnitt zuvor genannten Ziele, findet zunéachst eine Definition des
Begriffs Smarthome statt. AnschlieSend werden die Grundlagen der Querschnittslahmung und
die damit einhergehenden Einschrankungen fiir die Betroffenen erlautert.

Der nichste Schritt ist eine Analyse des Forschungsstandes zu barrierefreien Smarthomes fiir
Benutzer mit Mobilitatseinschrankungen an den Handen. Bedingt durch die Ziele liegt der
Fokus hierbei auf mobilen Endgeraten und dem Face-Tracking.

12

1.3. Vorgehensweise

Die darauf folgende Benutzungskontext-Analyse besteht aus Vorbereitung, Durchfithrung und
Auswertung der Interviews mit Personen aus der Zielgruppe des barrierefreien Smarthomes.
Die Interviews dienen zum einen zur Ideensammlung im Hinblick auf die Benutzeroberflache
und die Eingabemethoden. Sie dienen andererseits dazu, einen besseren Eindruck von der
Lebenssituation der Betroffenen zu bekommen, um daraus verschiedene Anwendungsszenarien
fur das barrierefreie Smarthome zu entwerfen. Im nachsten Schritt findet anhand der dadurch
gewonnen Erkenntnisse die Anforderungsdefinition statt.

Basierend auf den Anforderungen und dem Wissen iiber die Einschrankungen in Folge einer
Querschnittsldhmung erfolgt darauf die Konzeptionierung einer Anwendung zur Steuerung
des barrierefreien Smarthomes sowie der Eingabemethoden, mittels derer sie sich von den
Benutzern barrierefrei bedienen lasst. Nach der Erstellung des Konzepts wird dieses in Form
eines Prototyps umgesetzt. Die Konzept-Realisierung startet mit der Auswahl geeigneter
Technologien und Systeme fiir die zur Implementation ausgewéhlten Anwendungsszenarien.
Danach werden die schon im Konzept entworfenen Komponenten verfeinert und im nachsten
Schritt implementiert.

Nach der Fertigstellung des Prototyps wird dieser evaluiert. Hierzu gibt es zum einen quanti-
tative und zum anderen qualitative Benutzbarkeitstests. Erstere ermitteln die Bandbreite der
Eingabemethoden, um die barrierefreien mit den herkémmlichen, wie zum Beispiel Touch,
vergleichen zu konnen. Um von jeder Eingabemethode deren maximale Leistungsfahigkeit zu
erhalten, erfolgt die Durchfiihrung der quantitativen Benutzbarkeitstests mit unversehrten
Probanden. Hingegen handelt es sich bei den qualitativen Benutzbarkeitstests um Testpersonen
die entsprechend der Zielgruppe Mobilitatseinschrankungen an ihren Handen aufweisen. Sie
sollen die Benutzeroberflaiche sowie die barrierefreien Eingabemethoden des Prototyps auf
seine Alltagstauglichkeit hin bewerten.

Abschlieflend erfolgt eine Zusammenfassung, welche die gewonnen Ergebnisse aus den Benutz-
barkeitstests zusammenfasst und einen Ubersicht tiber den Realisierungsstand der einzelnen
Anforderungen im Prototyp gibt. Des Weiteren wird der Mehrwert gegeniiber den Android
Bedienungshilfen und anderen barrierefreien Eingabemethoden aufgefiihrt sowie ein Ausblick
auf mogliche Erweiterungen des Konzepts und Prototyps gegeben.

13

2. Grundlagen und verwandte Arbeiten

Das Kapitel Grundlagen und verwandte Arbeiten definiert zunédchst den Begriff Smarthome.
Im Anschluss daran geht es auf die Thematik Querschnittlihmung ein. Der Schwerpunkt dabei
liegt auf ihren Auspragungen und welche Einschrankungen diese jeweils zur Folge haben, um
den Bedarf an unterschiedlichen Eingabemethoden in den folgenden Kapiteln nachvollziehen
zu konnen. Des Weiteren stellt es die Bedienungshilfen des Betriebssystems Android vor, die
eine barrierefreie Bedienung von diesem erméglichen sollen. Das letzte Unterkapitel fasst
verwandte Arbeiten zusammen, um einen Uberblick iiber den Stand der Forschung zu geben.

2.1. Smarthome

Die Bezeichnung Smarthome umfasst mehrere Forschungsbereiche. Zu diesen geh6ren un-
ter anderem die Heimautomatisierung sowie das Selbstandige Wohnen. Obwohl der Begriff
Smarthome folglich interdisziplinar ist, steht er fiir ein gemeinsames Ziel, das Leben im Zu-
hause komfortabler und qualitativer zu machen. Gelingen soll das durch die Integration von
Technologien und Services. (vgl. [Pec14, S. 212] u. [Smal6])

Was ein Smarthome ausmacht, ist nicht seine Architektur beziehungsweise das Erscheinungs-
bild und eine ressourcenschonende Ausstattung, wie zum Beispiel Solaranlagen, sondern die
interaktiven Technologien. Dennoch treffen erstere Faktoren hiaufig auf Smarthomes zu (vgl.
[Har03, S. 1-2]). Zu den interaktiven Technologien zahlen beispielsweise drahtlose Energie-
und Datennetzwerke, intelligente und variable Zuschnitte der Raiume sowie Sensoren (vgl.
[Pec14, S. 212]). Diese und weitere unterstiitzen die Bewohner eines Smarthomes bei den ge-
wohnlichen Arbeiten in diesem sowie dessen Umfeld (vgl. [Pec14, S. 212]). Typische Merkmale
dieser Unterstiitzung sind Komfort als auch Interaktivitat (vgl. [Pec14, S. 212]).

Jedoch besteht ein Smarthome nicht nur aus den innerhalb des Gebaudes oder auch Grundstiicks
installierten Systemen und Anwendungen. Vielmehr umfasst es auch die Benutzung von
Diensten in Form von Anwendungen, deren Ausfithrung zum Beispiel in einem Rechenzentrum
erfolgt oder - allgemein ausgedriickt - die Vernetzung mit raumlich betrachtet entfernten
Systemen. Sprich ein Smarthome ist keine Inselanwendung, die sich auf das jeweilige Gebaude
beschréankt. (vgl. [Smal6])

15

2. Grundlagen und verwandte Arbeiten

2.2. Querschnittlahmung

Dieses Unterkapitel beschreibt zundchst den Aufbau der Wirbelsaule. Aufbauend darauf fithrt
es in die unterschiedlichen Formen einer Querschnittlihmung und geht abschliefend noch auf
die Fallzahlen ein.

2.2.1. Aufbau der Wirbelsaule

Die Wirbelsdule besteht aus insgesamt 33 Wirbeln. Sie unterteilt sich ausgehend von oben
in die Hals-, die Brust- und die Lendenwirbelsiule sowie 5 Kreuzwirbeln und das Steifbein,
bestehend aus 4 Steifiwirbeln. Die Halswirbelsiule setzt sich aus 7 Wirbeln zusammen, welche
als C1-C7 bezeichnet werden. Die anschlieflende Brustwirbelsaule besitzt die 12 Wirbel T1-T12.
Die Lendenwirbelsdule besteht aus den 5 Wirbeln L1-L5. Die nach ihr folgenden 5 Kreuzwirbel
tragen die Bezeichnungen S1-S5. (vgl. [NW11, S. 158])

Die einzelnen Wirbel schiitzen das Riickenmark, welches in ihnen verliuft. Sie bilden den
Spinalkanal. Entlang der Wirbelsdule treten 31 Nervenpaare aus. Nervenpaare deshalb, da unter
jedem Wirbelbogen jeweils ein Nerv zur linken sowie einer zu rechten Seite den Spinalkanal
verlasst. Im Detail setzen sich die 31 Nervenpaare aus 8 zervikalen, welche die Halswirbelsdule
verlassen, 12 thorakalen zur Brustwirbelsdule gehorenden, jeweils 5 lumbalen und sakralen
Nervenpaaren die zur Lendenwirbelsdule beziehungsweise den Kreuzwirbeln gehoren sowie
einem kokzygealen Nervenpaar des Steiflbeins zusammen. (vgl. [NW11, S. 159])

Grundsitzlich haben die Nervenpaare jeweils dieselbe Bezeichnung wie der Wirbel, unter
dem sie den Spinalkanal verlassen. Da das Hinterhaupt jedoch auch noch als Halswirbel gilt,
aber als C0 gezahlt wird, verlassen die zervikalen Nervenpaare C1-C8 den Spinalkanal jeweils
oberhalb der gleichnamigen Wirbel. Das 31. Nervenpaar von oben betrachtet verlasst den
Riickenmarkskanal auf Hoéhe des Steiflbeins und besizt die Bezeichnung kokzygealer Nerv.
(vgl. [NW11, S. 158-159] u. [Org13, S. 5])

Die Abbildung 2.1 veranschaulicht den beschriebenen Aufbau der Wirbelsaule. Die grauweiflen
Elemente stellen die Wirbelkdrper dar und beinhalten ihre Bezeichnung. Die roten Linien
zwischen ihnen sind die Nervenpaare. Thre Bezeichnung befindet sich jeweils am rechten
Linienende. Am linken Rand der Abbildung befinden sich die Bezeichnungen fiir die Wirbel-
saulenabschnitte und am rechten jene zur Gruppierung der Nervenpaare.

2.2.2. Formen der Querschnittlahmung

Es gibt unterschiedliche Formen der Querschnittlidhmungen. Bei der kompletten Querschnitt-
lahmung ist unterhalb der Verletzungshohe keine Nervenfunktion mehr vorhanden. Die Betrof-
fene Person hat in Folge dessen von dieser Stelle abwirts keine sensorischen und motorischen

16

2.2. Querschnittlahmung

Hinterhaupt /CO ——
P

Halswirbelsaule

Brustwirbelsaule

Lendenwirbelsaule

Kreuzwirbel

SteilRbein

<

<

<

<

N

N

h

C1
C2
Cc3
c4
C5
C6
Cc7
Tl
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
L1
L2
L3
L4
L5
S1
S2
S3
S4
S5

c1)
C2

c3

c4

c5

C6

c7

c8
T1)
T2

T3

T4

T5

T6

T7

T8

T9
T10
T11
T12)
L1
L2

L3

L4

L5
S1)
S2

S3

S4

S

~ zervikalen Nervenpaare

>~ thorakala Nervenpaare

>~ lumbale Nervenpaare

>~ sakrale Nervenpaare

kokzygeales Nervenpaar

Abbildung 2.1.: Aufbau der Wirbelsdule in Anlehnung an [Org13, S. 5].

17

2. Grundlagen und verwandte Arbeiten

Fahigkeiten mehr. Eine komplette Querschnittlihmung wird auch als Querschnittsplegie be-
zeichnet. Eine inkomplette Querschnittlahmung, beziehungsweise Querschnittsparese liegt vor,
wenn unterhalb der Verletzungshohe noch eine Restfunktion vorhanden ist. Zusatzlich findet
eine Unterscheidung durch die Verletzungshohe statt. Sind die Nervenpaare C1 bis T1 von
dieser betroffen beziehungsweise die oberen Extremitéten in Folge dessen eingeschréankt, ist
die Rede von einer Tetraplegie beziehungsweise bei einer inkompletten Querschnittlihmung
von Tetraparese. Kommt es zur einer Verletzung der Nervenpaare T2-S5, wird diese Form der
Querschnittlihmung Paraplegie beziehungsweise Paraparese genannt. (vgl. [AA14])

Aus dem vorherigen Absatz lasst sich schlussfolgern, dass die Auswirkungen einer Querschnitt-
lahmung grundsétzlich von der Verletzungshoéhe des Riickenmarks abhéngig ist (vgl. [Org13,
S. 6]). Die folgende Auflistung bietet einen groben Uberblick iiber diese in Abhiangigkeit von
den Nervenpaaren. Dabei gilt, dass zu den jeweiligen Auswirkungen noch jene hinzu kommen,
welche bei einer Verletzung eines weiter unten liegenden Nervenpaares auftreten.

+ Bei einer Verletzung der sakralen Nervenpaare S2-S5 kommt es zu Beeintrachtigungen
beim Stuhlgang, der Blasenfunktion sowie der sexuellen Funktionalitat. (vgl. [Org13, S.
5-6])

« Wenn die Nervenpaare L1-S1 der Lendenwirbelsdule verletzt sind, ist hierdurch die
Beweglichkeit und das Empfingen von der Hiifte abwérts eingeschrankt oder nicht mehr
gegeben. (vgl. [Orgl3, S. 5-6])

+ Eine Verletzung der thorakalen Nervenpaare T1-T12 beeintrichtigt die Kontrolle des
Rumpfes und der Bauchmuskeln sowie das Gefiihl in dieser Korperregion. Des Weiteren
sind diese Nerven fiir die Regulierung der Kérpertemperatur verantwortlich. (vgl. [Org13,
S. 5-6])

« Die Nervenpaare C4-T1 dienen zur Regulierung der Herzfrequenz sowie der Beweglich-
keit der Oberarme. Im Detail betrachtet, wirkt sich eine Verletzung von C8 oder T1 auf
die Sensorik und Motorik der Finger aus. Ist eines der Nervenpaare C5-C7 verletzt, sind
hiervon die Abschnitte der Arme zwischen Ellbogen und Handgelenk betroffen. (vgl.
[Org13, S. 5-6])

« Die zervikalen Nervenpaare C1-C4 sind fiir die Atmung sowie die Bewegung von Kopf
und Nacken zustindig, welche durch eine Verletzung beeintrachtigt werden. (vgl. [Org13,
S. 5-6])

Die Ursachen fiir eine Querschnittlahmung sind entweder traumatische oder nichttraumatische
Ereignisse. Erstere konnen aus diversen Arten von Unfillen resultieren. Zweitere hingegen
sind die Folge von Krankheiten - unter anderem Infektionen und Tumore - sowie angeborene
Behinderungen. (vgl. [Org13, S. 6])

18

2.3. Bedienungshilfen in Android

2.2.3. Verbreitung

Laut einem Bericht der Weltgesundheitsorganisation aus dem Jahr 2013 erleiden jahrlich
weltweit zwischen 250000 und 500000 Menschen eine Querschnittldhmung. Wie viele quer-
schnittgeldhmte Menschen auf der Welt zum Zeitpunkt der Erstellung selbigen Berichts lebten,
ist laut diesem unbekannt. (vgl. [Org13, S. 14-15])

Wyndaele et al. [WWO06] versuchten in ihrer 2006 veroffentlichten Arbeit anhand von Literatur,
die bis in das Jahr 1995 zuriickreichte sowie #lteren Studien einen Uberblick iiber die weltweite
Verbreitung von Querschnittlihmungen zu geben. Eines der Ergebnisse davon war, dass es
sich bei einem Drittel der gemeldeten Querschnittlahmungen um eine Tetraplegie handelte.
Thre Daten waren allerdings nicht ausreichend fiir eine weltweite Schatzung. (vgl. [WWO06])

Bezogen auf Deutschland kann von ungefidhr 1000 neuen Querschnittlahmungen pro Jahr
ausgegangen werden. Ahne et al. [AA14] nennen in einem im Jahr 2014 vero6ffentlichten
Artikel die Zahl 1300 bis 1500 (vgl. [AA14]). Spahn spricht hingegen von ca. 1000 neuen
Querschnittlahmungen pro Jahr in Deutschland und, dass davon 40% tetraplegische Falle sind
(vgl. [Spa91, S. 206]). Allerdings wurde das entsprechende Buch schon 1991 verdffentlicht, was
bedeutet, dass seine Zahlen mindestens 25 Jahre alt sind (vgl. [Spa91, S. 206]).

Exner kommt auf dhnliche Fallzahlen sowie einen &hnlichen Anteil an Tetraplegikern fiir
Deutschland. Zwischen 1976 und 2003 hatten sie einen Anteil von 37% bei den in diesem
Zeitraum 33974 behandelten Féllen in deutschen Spezialeinrichtungen zur Behandlung Quer-
schnittgeldhmter. Der Tetraplegikeranteil hat sich in den Jahren 1996 bis 2003 zudem nur um
2% reduziert, weshalb Exner zu der Schlussfolgerung kommt, dass das Verhiltnis zwischen
Tetraplegikern und Paraplegikern auch zukiinftig konstant bleibt. (vgl. [Exn04])

Nach Angaben des statistischen Bundesamtes lebten am 31.12.2013 in Deutschland 17031
Menschen, deren schwerste Behinderung eine Querschnittlihmung ist. Eine Unterscheidung
zwischen der Verletzungshéhen nimmt es nicht vor. Jedoch geht aus deren Bericht hervor, dass
zusatzlich zu diesen in Deutschland noch 22099 Menschen mit Funktionseinschrankungen an
beiden Armen sowie 94096 an beiden Armen und Beinen in Deutschland lebten. Des Weiteren
waren 493217 Personen von Funktionseinschrinkungen an der Wirbelsédule als auch den
Gliedmafien betroffen. Um welche es sich dabei handelte, geht aus den Zahlen nicht hervor.
(vgl. [Sta16])

2.3. Bedienungshilfen in Android

Das Betriebssystem Android bietet schon fiir bestimmte Benutzergruppen barrierefreie oder
zumindest barrierearme Bedienungshilfen (vgl. [Goo16k]). Die folgende Auflistung zahlt diese
fir Android 7.0 auf (vgl. [Goo16k]):

19

2. Grundlagen und verwandte Arbeiten

« TalkBack ist eine Sprachausgabe fiir die auf der Benutzeroberflache dargestellten Inhalte.
Des Weiteren gibt es akkustisches Feedback zu Benutzereingaben. TalkBack zielt somit
darauf ab, die Bedienung fiir sehbehinderte und blinde Menschen zu erleichtern. (vgl.
[Goo16k])

« Auflerdem unterstiitzt Android eine aktualisierbare Braillezeile. Diese ist zudem in
Kombination mit TalkBack verwendbar. Dadurch ist sowohl eine Interaktion mit dem
Android-Gerit als auch Texteditierung gewéhrleistet. (vgl. [Goo16k])

« Die App Voice Access, die sich zum Zeitpunkt der Erstellung dieser Arbeit noch in der
Betaphase befindet, soll das Betriebssystem dem Benutzer via Sprachbefehlen zuganglich
machen. Mittels diesen ist es moglich, innerhalb von Android und den installierten Apps,
zu navigieren und Texteingaben vorzunehmen. Die Sprachsteuerung soll Benutzern,
welche ihre Hande nicht mehr zur Bedienung nutzen konnen, diese erméglichen. (vgl.
[Goo16k])

« Benutzer, die Schwierigkeiten bei der Wahrnehmung der Inhalte haben, finden ebenfalls
Unterstiitzung. Es ist moglich Untertitel zu aktivieren, die Kontrast- und Farbeinstel-
lungen anzupassen sowie die Schrift zu vergrofiern. Dariiber hinaus ist noch eine Art
Lupenfunktion vorhanden. (vgl. [Goo16k])

« Ab Android 5.0 ermdglicht es der Schalterzugriff den Benutzern, welche ihre Hande nur
noch eingeschrankt benutzen koénnen, beispielsweise Tetraplegikern mit einer tiefen
Verletzungshohe im Bereich der Halswirbelsédule, mittels Eingabegeréten, welche Tas-
tatursignale senden, die sichtbaren Meniielemente zu scannen und auszuwéhlen. Bei
den Eingabegeraten kann es sich um eine herkommliche Maus und Tastatur, Hilfsmittel-
Hardware oder Tasten des Android-Gerits handeln. Zwischen 1 und 5 Tasten sind mit
Funktionen belegbar. Dies ist bei der Gruppenauswabhl niitzlich, da es je Taster eine
Gruppe gibt und sich dadurch die Auswahl des gewiinschten Elements beschleunigt.
Neben der Gruppenauswahl gibt es noch das automatiche Scannen mit 1 Taster, welches
alle Elemente der Reihe nach fokussiert und bei Betatigung des Tasters das fokussierte
auswahlt. Das Scannen ist aber auch schrittweie moglich, wenn 2 Taster verfiigbar sind.
Jeweils einer ist dann fiir den Fortschritt und die Betatigung des fokussierten Elements
zustandig. Des Weiteren lassen sich noch spezielle Meniis auswéhlen, mit deren Hilfe
derer weitere Eingaben, wie zum Beispiel das Scrollen, moglich sind. (vgl. [Goo16k],
[Goo16g], [Goo16h] u. (vgl. [Goo16j]))

2.4. Verwandte Arbeiten

Aus den zuriickliegenden Jahren existiert eine Reihe von Arbeiten, welche sich mit barriere-
freien Eingabemethoden fiir Tetraplegiker sowie vergleichbare Benutzergruppen befassen.

20

2.4. Verwandte Arbeiten

Caltenco et al. fithrten eine Befragungen von Tetraplegikern zu deren Nutzungsverhalten im
Hinblick auf Eingabegerite und den damit verbundenen Erfahrungen durch. Hierbei zeigte
sich, dass die genutzten Eingabemethoden in erster Linie auf die Einbindung des Benutzers
seiner Hénde verzichten. Diejenigen Benutzer, die noch handische motorische Fahigkeiten
besitzen, gaben an Joysticks oder Handsticks in Kombination mit einer Tastatur zu verwenden.
Hinsichtlich der Eigenschaften von den verwendeten Eingabemethode ergab die Befragung,
dass die Geschwindigkeit von Blick-Trackern, Mund-Joysticks sowie Tastatursticks befriedi-
gend ist, jene von den Mundsticks allerdings nicht. Zu den Blick-Trackern ist das Ergebnis
insofern zwiespaltig, als dass er einerseits als diskrete und andererseits als unzuverléssige
Eingabemethode bewertet wurde. Dariiber hinaus sei die Fehlerkorrektur schwierig. Bei den
meisten anderen Eingabemethoden hingegen nicht. Auch seien diese zuverlassiger. Dafiir
haben die Sprachsteuerung sowie tiber das Kinn bediente Joysticks das Problem, dass sie nicht
diskret sind. (vgl. [CBJA12])

Aufgrund der zuvor genannten Ergebnisse der Befragung findet als néchstes eine Betrach-
tung bisheriger Forschungsarbeiten zu barrierefreien Eingabemethoden statt, welche keine
motorischen Fahigkeiten in den Hénden erfordern.

Williams et al. testeten zwei barrierefreie Eingabemethoden fiir Tetraplegiker beziehungsweise
Benutzer mit vergleichbaren Einschrankungen als Alternative zur Cursor-Steuerung mittels
einer Maus. Dabei handelte es sich zum einen um einen am Kopf des Benutzers befestigten
Lagesensors und zum anderen um eine Elektromyografie von 3 Muskeln im Hals- und Kopt-
bereich. Uber Letztere war eine Steuerung des Cursors dhnlich zu einem Joystik moglich.
Fiir die Tests nutzten sie unversehrte Probanden. Messungen erfolgten quantitativ. Als dritte
Eingabemethode testeten sie eine herkommliche Maus. Bei der unter anderem durchgefiihrten
Bandbreitenmessung der 3 Eingabemethoden zeigte sich, dass die Maus die beiden anderen
um ca. das Fiinffache tibertrifft. Der Lagesensor wies eine etwas bessere Bandbreite als die
Elektromyografie auf. Zudem stellte Ersterer vom Benutzungserlebnis aus betrachtet den
besten Mausersatz. Die Elektromyografie hingegen war schneller, aber erreichte nicht die selbe
Prazision wie der Lagesensor. (vgl. [WK08])

Chen entwickelte eine Mausalternative in Form eines Headsets zur Steuerung des Cursors.
Hierfiir besitzt dieses 2 Neigungssensoren, welche die Bewegungen des Kopfes erkennen
und den Cursor, entsprechend horizontal und vertikal bewegen. Uber einen Touch-Switch
an der Backe kann der Benutzer einen Mausklick durchfiuhren, indem er diese aufblist. Eine
Evaluierung fand mit versehrten sowie unversehrten Probanden statt. Es kam zu keinen
erheblichen Abweichungen zwischen diesen beiden Gruppen. Ein Vergleich mit anderen
Eingabemethoden fand leider nicht statt. (vgl. [Che01])

Grigorescu et al. entwickelten einen Roboterassistenten fiir Menschen mit Mobilitatseinschran-
kungen an den Armen, der sich beispielsweise in Form eines kiinstlichen Arms an einem
Rollstuhl befestigen lasst. Fiir die Steuerung setzten sie eine nichtinvasive Kopf-Computer-
Schnittstelle ein. Die Nichtinvasivitit erreichten sie durch 5 in jeweils unterschiedlichen
Frequenzen blickende LEDs, die iiber einen Displayrand verteilt waren. Fokussiert der Be-
nutzer eine von ihnen, findet im Gehirn eine visuelle Stimulation statt, welche sogenannte

21

2. Grundlagen und verwandte Arbeiten

Steady State Visually Evoked Potentials Signale auslost. Diese unterscheiden sich in Folge der
verschiedenen Blinkfrequenzen voneinander und sind mittels Elektroenzephalografie messbar.
Wenn der Benutzer 1 von den 5 LEDs fokussiert, entspricht dies der Betitigung einer der 4
Pfeiltasten oder der Eingabetaste. Damit ist es moglich, einen Cursor zu steuern und Elemente
auszuwéhlen. (vgl. [GLF+12])

Jeong et al. konstruierten eine Maussteuerung fiir Tetraplegiker, iiber das Zusammenbei-
flen der Zihne in Kombination mit einem kleinen am Kopf des Benutzers befestigten
Elektromyographie-Gerats. Beim Zahnezusammenbeifien wird unterschieden, ob dieser nur
die linken beziehungsweise rechten oder alle zusammenbeif3t. Des Weiteren wird zwischen
der Dauer unterschieden. Dadurch ist es moéglich, den Mauszeiger um seine eigene Achse zu
drehen, ihn in die Richtung zu bewegen, in die er zeigt sowie die linke und rechte Maustaste
zu betdtigen. Bei einem Test mit lediglich einem Probanden stellte sich heraus, dass dieser
im Vergleich zu einer herkommlichen Maus, fiir die selben Aufgaben im Durchschnitt ca. die
siebenfache Zeit benétigte. (vgl. [JKS05])

Kauhanen et al. fanden in ihrer Studie heraus, dass die Elektroenzephalografie im Vergleich
zur Magnetoenzephalographie fiir eine Kopf-Computer-Schnittstelle besser geeignet ist. Einer
der Griunde hierfiir ist, dass sie weniger anfillig fiir magnetisches Rauschen ist. Die Magneto-
enzephalographie hitte jedoch den Vorteile, dass sich seine Signale einfacher interpretieren
lassen. (vgl. [KNL+06])

Jedoch scheint auch die Elektroenzephalografie nicht bedingungslos geeignet zu sein. Denn
Felzer et al. hatten die Motivation eine muskelbasierte Steuerung der Maus fiir Personen zu
entwickeln, die ohne Elektroenzephalografie moglich ist. Ihr Ansatz nutzt die Erkennung einer
einzelnen sowie doppelten Kontraktion eines Muskels mittels eines auf ihm angebrachten
Sensors, wodurch es weniger Probleme mit Rauschen im Vergleich zur Elektromyografie
gibt. Die Verarbeitung der beiden Eingabesignale tibernimmt ein endlicher Automat. Durch
geschickte Anordnung der Zustinde und Uberginge in diesem, gelang es ihnen dadurch,
den Mauszeiger in alle 4 Richtungen bewegen sowie 2 verschiedene Mausklicks umsetzen
zu konnen. In einer ersten Studie untersuchten sie, ob potenzielle Benutzer in der Lage sind,
das Eingabekonzept zu verstehen. Die Probanden, welche trotz ihrer Einschrankungen das
System bedienen konnten, benétigten zwischen 5 und 15 Minuten, bis sie es eigenstandig
nutzen konnten. (vgl. [FN08])

Lund et al. zeigten in ihrer Arbeit, wie Betroffene ohne den Einsatz ihrer Hande, sondern ledig-
lich ihrer Zunge mittels Ferromagnetismus Eingaben vornehmen kénnen. Dazu entwickelten
sie eine zungenbasierte Rollstuhlsteuerung. Sie besteht aus einer Art SZahnspange", welche
18 Sensoren besitzt. 10 in Form von Tasten und 8 als Joystick. Uber ein ferromagnetisches
Piercing in der Zunge kann sie der Benutzer ansprechen. Die Eingabebefehle werden drahtlos
an eine externe Steuereinheit gesendet, welche diese nutzt, um den eigentlichen Joystick des
Rollstuhls zu simulieren. (vgl. [LCC+10])

Bian et al. entwickelten eine Maussteuerung anhand der Nasenposition. Des Weiteren nutzten
sie den Mund des Benutzers fiir Gesten. Die Gesten wurde dazu genutzt, um einen Mausklick

22

2.4. Verwandte Arbeiten

zu tatigen oder die Bewegung des Cursors ein- bzw. auszuschalten. Letzteres hat den Vorteil,
dass der Bewegungsspielraum der Nase nicht auf die komplette Benutzeroberflache abgebildet
werden muss, sondern der Benutzer nach dem Ausschalten der Cursorbewegung zunéchst
seine Nase wieder in eine angenehme Position bringen kann, um danach die Cursorbewegung
wieder einzuschalten und diesen weiter in Richtung Ziel bewegen zu kénnen. Ein weiterer
Vorteil hiervon ist, dass keine Kalibrierung notwendig ist. Die Verwendung einer Tiefenkamera
hatte den Vorteil, dass sie unabhéngig von den Lichtverhéltnissen ist, im Gegensatz zu einer
RGB Kamera. Bei einem Leistungstest zeigte sich, dass je nach verwendeter Mundgeste zur
Ausfithrung des Mausklicks, die Probanden ungefahr doppelt so lange fiir die Testaufgaben
benotigten, wie mit einer herkommlichen Maus. (vgl. [BHCM14])

Aus Abschnitt 2.2.2 geht hervor, dass bei einer niedrigeren Verletzungshohe, die Tetraplegie
nicht ganz so gravierend ist, wodurch die Betroffenen in manchen Féllen noch eingeschrankte
motorische Fahigkeiten besitzen. Aus diesem Grund gibt es neben den zuvor aufgefithrten
handlosen Eingabemethoden Ansétze, die verbliebenen motorischen Fahigkeiten bestmdoglich
zu nutzen.

Ueno entwickelte dazu eine Benutzerschnittstelle bestehend aus 2 Tastern zur Steuerung des
Mauscursors auf einem Smartphone. Mit einem der beiden Taster kann der Benutzer zwischen
8 Modi wechseln und mit dem zweiten innerhalb von diesen eine Aktion ausfithren. Uber LEDs
erhalt der Benutzer unter anderem Feedback zu den ausgewahlten Modi. In einem Modus ist
beispielsweise die Bewegung des Mauscursors steuerbar. Die Aktion dieses Modus ist, dass der
Mauszeiger die Richtung jeweils um 90 Grad im Uhrzeigersinn &dndert. Die 7 anderen Modi
gibt es unter anderem um eine Maustaste zu betatigen. (vgl. [Uen14])

Tanimoto et al. konstruierten eine Maus fiir Tetraplegiker mit einer Querschnittlahmung
im unteren Halswirbelbereich. Dadurch, dass sie noch ihre Schultern und Arme bewegen
konnen, ist fiir sie beispielsweise die Benutzung einer Ballmaus moglich. Jedoch benétigen sie
dafiir zum Teil beide Hande oder sind beim Bewegen des Eingabegerat in Kombination mit
Klickoperationen langsam. Um die Eingabegeschwindigkeit zu erh6hen, kombinierten sie eine
Switch-Box mit einem optischen Maussensor. Uber erstere fithrt der Benutzer mit einer Hand
die Mausklicks aus. Zweitere erkennt die Bewegung des Benutzers zweiter Hand, woriiber sich
der Cursor bewegen lasst. (vgl. [TRF+05])

Fiir manche Benutzer mit eingeschriankten motorischen Fahigkeiten an den Hénden ist es
trotzdem moglich, ein Touchdisplay als Benutzerschnittstelle zu verwenden.

Um sie dabei unterstiitzen zu konnen evaluierten Froehlich et al. 5 verschiedene Interaktions-
konzepte an Touchdisplays mit einer erhdhten Umrandung. Diese erleichtert die Auswahl von
Mentielemente an den Rédndern und Ecken mittels eines Stylus, da ihn diese abbremsen. Eines
der Interaktionskonzepte war eine normale Touch-Eingabe. Die anderen 4 waren speziell auf
die Umrandung ausgelegt. Bei der statistischen Auswertung, konnte keines hervorstechen. Es
zeigte sich jedoch, dass 2 der versehrten Probanden von einem Interaktionskonzept besonders
profitierten. Bei diesem befinden sich die Buttons jeweils in den Display-Ecken. Ihre Betati-
gung erfolgt, indem der Benutzer mit dem Stylus auf dem Touchdisplay in die entsprechende

23

2. Grundlagen und verwandte Arbeiten

Ecke wischt und ihn danach anhebt. Diese Verfahren war deshalb so erfolgreich, da die Hand
wiahrend der Eingabe sowohl vom Touchdisplay als auch der Ecke stabilisiert wird. Auch sind
Fehlerkorrekturen durch Andern der Richtung einfach moglich. (vgl. [FWKO07])

Guerreiro et al. untersuchten in ihrer Studie unterschiedliche Eingabemethoden fiir Tetra-
plegiker an einem mobilen Touchgerat. Schwerpunkt war die Bestimmung der Zielgrofle
sowie -position auf dem Display. Bei den Eingabemethoden handelte es sich um die klassi-
sche Touch-Eingabe sowie die Gesten Ziel durchwischen, ausschneiden sowie wischen in
eine bestimmte Richtung. Bei dem Ziel handelte es sich um einen Kreis mit wahlweise 7, 12
und 17mm Durchmesser. Die Studie kommt zu dem Ergebnis, dass fiir Tetraplegiker bei allen
Eingabemethoden bis auf das Ausschneiden eine Zielgréfle von 12mm ausreichend ist. Fiir
Letztere sind 17mm erforderlich. Nichtsdestotrotz war die Fehlerrate mehr als doppelt so
hoch, wie in vergleichbaren Studien mit unversehrten Probanden. Die Zielposition auf dem
Display hatte keine Auswirkungen auf die Fehlerhaufigkeit. Jedoch bietet die Displayumran-
dung Stabilitat, welche die Genauigkeit positiv beeinflusst. Das klassische Touch sowie das
Durchwischen des Ziels waren am erfolgreichsten. Die Mehrheit der Probanden wiirde Ersteres
bevorzugen. Zusammenfassend betrachtet, kamen Guerreiro et al. zu der Schlussfolgerung,
dass eine gemeinsame touchbasierte Benutzerschnittstelle fiir unversehrte Benutzer und jenen
mit motorischen Einschrankungen an den Handen entwickelbar ist. Des Weiteren kénnen
Tetraplegiker mittels herkoémmlichen Touch Ziele am unteren Displayrand sowie in der Néhe
ihres bevorzugten Arms leichter auswiahlen. Einen erheblichen Einfluss hat zudem die Position
des Displays. (vgl. [GN]JG10a] u. [GNJG10b])

Da das Eye-Tracking und Blickgesten jedoch nicht nur von Tetraplegikern sowie dhnlich
eingeschriankten Benutzern verwendet wird, gibt es eine Reihe von Arbeiten, die sich mit
diesen Eingabemethoden ohne den Kontext Barrierefreiheit beschaftigen und dennoch fiir die
Herstellung von dieser hilfreich sein kénnen.

Lee et al. entwickelten in 2012 einen Eye-Tracker fiir ein Smartphone. Hierfiir befestigten sie
eine Webcam mit Zoomlinse und 3 Infrarot LEDs an diesem. Dies war notig, da die damals
iibliche VGA-Auflosung nicht ausreichend war. Des Weiteren erfolgte die Bildverarbeitung
nicht auf dem Smartphone sondern einem Computer. Zusétzlich zur Blickverfolgung konnten
sie unter anderem auch eine Blinzelerkennung umsetzen. In der Studie erreichten die Probanden
mit dem Eye-Tracker auf einer Benutzeroberflache des Smartphones mit 5x4 Feldern zudem
eine Trefferquote von 94,6%. (vgl. [EM13])

Drewes et al. analysierten in einer Benutzerstudie, wie sich Eye-Tracking zur Bedienung von
Mobiltelefonen nutzen lasst. Diese stellen im Vergleich zum Eye-Tracking an Computern eine
Herausforderung hinsichtlich der Lichtintensitdt sowie Kalibrierungsproblemen. Aus diesem
Grund testen sie neben dem klassischen Eye-Tracking mit Auswahl durch Verweilen auch
ein Verfahren, welches lediglich aus Blickgesten Eingabebefehle ableitete. Da hierfiir nur die
relativen Koordinaten erforderlich sind, ist eine Kalibrierung nicht erforderlich. Des Weiteren
ist der Gestenansatz hardwareressourcenschonender. In der Benutzerstudie hatte keiner der
Probanden groflere Schwierigkeiten bei der Nutzung der Blick-Gesten. Jedoch gab die Mehrheit

24

2.4. Verwandte Arbeiten

von ihnen an, das klassische Eye-Tracking zu bevorzugen. Dies erfolgte iber eine externe
Kamera ebenso fand die Verarbeitung nicht auf dem Mobiltelefon statt. (vgl. [DLS07])

Hingegen schlagen Dybdal et al. basierend auf den Ergebnissen ihrer Studie vor, dass Gesten
die geeignetste Auswabhlart fiir beriihrungslose Eingaben auf kleinen Bildschirmen sind. In
dieser analysierten sie, ob Verweilen oder eine Geste zur Auswahl auf einem mobilen Endgerat
geeigneter ist. Hierzu testeten sie beide mittels Touch, Gaze-Tracking sowie dem Accelero-
meter. Zweiteres erfolgte iber eine externe Kamera und Computer. Touch war bei beiden
Auswahlarten am schnellsten und fehlerarmsten. Beim Gaze-Tracking war die Geste hingegen
das bessere Auswahlverfahren, insbesondere bei kleinen Zielen. Zu beriicksichtigen ist, dass
die Probanden Gesten anstrengender empfanden. (vgl. [DAH12])

Kangas et al. fanden in einer Benutzerstudie heraus, dass sich Blickgesten auf mobilen Endge-
raten mittels vibrotaktilen Feedback als Eingabebestatigung verbessern lassen. Hierzu nutzten
sie einen Gaze-Tracker. Die Gestenerkennung erfolgte auf einem Computer, welcher diese
anschlieffend an ein Smartphone weiterleitete. Aus der Befragung der Probanden ging hervor,
dass die Testaufgaben durch das vibrotaktile Feedback einfacher und komfortabler zu 16sen
waren, als ohne. Die Auswertung der Testergebnisse ergab zusatzlich, dass ohne Feedback bis
zu 15% mehr Blickgesten erforderlich waren. (vgl. [KAR+14])

Agustin et al. zeigten in ihrer Studie, dass ein guter Eye-Tracker nicht teuer sein muss. Dazu
verglichen sie einen mit einer 20$ Webcam, mit eingebauten Infrarot-LEDs selbstgebauten
Eye-Tracker mit 2 kommerziellen sowie einer optischen Maus. Der Vergleich erfolgte via
Eye-Typing und Zielauswahl. In Ersterem erzielten alle 4 Eingabegerite nahezu die selben
Werte. Bei der Zielauswahl hingegen, erreichte der selbstgebaute Eye-Tracker den hochsten
Durchsatz. (vgl. [SSHH09])

Bulbul et al. entwickelten einen Face-Tracking Algorithmus, der mit den Einschrankungen
von mobilen Geraten zurechtkam. Als Interaktionsbeispiel entwickelten sie unter anderem
eine Anwendung, die es ermoglichte mittels Kopfbewegungen durch ein Bild zu scrollen. (vgl.
[BCCI)

Die zuvor genannten Arbeiten nutzten grofitenteils zusatzlich Hardware, um eine barrierefreie
Eingabemethode fiir Tetraplegiker anzubieten. Ahnlich verhilt es sich bei den beschriebenen
Studien zum Eye- und Face-Tracking. Diese nutzten oftmals externe Kameras bzw. Tracker.
Jedoch zeigten zum einen Augustin et al. mit ihrer Arbeit, dass ein leistungsfahiges Eye-
Tracking keine teure Kamera voraussetzt und Bulbul et al. veranschaulichten mit ihrem Face-
Tracking Algorithmus, dass sich dieses schon vor mehreren Jahren auf einem mobilen Endgerét
realisieren lies (vgl. [SSHH09] u. [BCC]). Aufbauend darauf wird in den folgenden Kapiteln
dieser Arbeit versucht, eine Anwendung zur Steuerung von einem barrierefreien Smarthome
fiir Tetraplegiker mittels Face-Tracking zu realisieren, welche auf einem mobilen Endgerat
lauffahig ist, auf zusatzliche Hardware verzichtet und damit den Ansatz mit den niedrigen
Kosten von Agustin et al. aufnimmt (vgl. [SSHHO09]).

25

3. Benutzungskontext-Analyse

Dieses Kapitel beschreibt zunéchst die Interviews, die zur Ideenfindung sowie zur Unterstiit-
zung bei der Definition der Anforderungen, durchgefithrt wurden. Im Anschluss daran erfolgt
diese fiir eine Anwendung zur Steuerung eines barrierefreien Smarthome fiir Menschen mit
Mobilitatseinschrankungen an ihren Handen.

3.1. Interviews

Interviews sind ein zentrales Element innerhalb von Forschungsprojekten und haben somit
einen erheblichen Einfluss auf den Erfolg oder auch das Scheitern eines solchen Projektes.
Besonders wichtig ist es, geeignete Interviewpartner auszuwéhlen sowie diese im weiteren
Verlauf richtig zu interviewen. (vgl. [KGM12, S. 83])

Folglich behandelt dieses Unterkapitel zunachst die Auswahl der Interviewpartner sowie die
Erstellung des Fragebogens fiir die Interviews. Des Weiteren berichtet es iiber deren Verlauf
und schlieft mit ihrer Auswertung ab.

3.1.1. Auswahl der Interviewpartner

Die Auswahl der richtigen Interviewpartner ist wichtig, denn das Interviewen von Personen
ist nur zielfithrend, wenn diese auch der Zielgruppe des spateren Produktes, also dem bar-
rierefreien Smarthome fiir Menschen mit Mobilitdtseinschrankungen im Bereich der Hande
angehoren (vgl. [KGM12, S. 83]). Des Weiteren bietet es sich an, die ausgewahlten Interview-
partner nicht nur in die Phase der Anforderungsdefinition mit einzubeziehen, sondern auch in
die Benutzbarkeitstests zu einem spateren Zeitpunkt, wodurch sich der Aufwand fiir die Suche
nach Probanden reduziert. Fiir die in Kapitel 6 beschriebenen Benutzbarkeitstests ist es wichtig,
Probanden zu haben, welche im Umgang mit vergleichbaren Anwendungen vertraut sind, um
evaluieren zu konnen, welche Vor- und Nachteile das barrierefreie Smarthome gegeniiber
diesen besitzt (vgl. [KGM12, S. 85]). Aus den genannten Griinden wurden fiir die Interviews im
Hinblick auf die Benutzbarkeitstests Interviewpartner beziehungsweise Testpersonen gesucht,
welche ihre Hande nicht mehr benutzen kénnen. Hierzu bot sich die Vorgehensweise von
Kuniavsky an, zunachst die Zielgruppe zu definieren, im Anschluss daran Probanden zu suchen,
welche dieser angehoren und sie zur Teilnahme zu iiberzeugen (vgl. [KGM12, S. 84)).

27

3. Benutzungskontext-Analyse

Definition der Zielgruppe

Die Zielgruppendefinition stellt sicher, dass sich ein Projekt beziehungsweise ein Produkt nicht
in die falsche Richtung entwickelt, indem es von Interviewpartnern beeinflusst wird, auf die
es gar nicht abzielt. Vermeiden lasst sich das durch eine prazise Definition der zukiinftigen
Benutzer. Dies erfolgt idealerweise ausgehend von demographischen Rahmenbedingungen
sowie bisherigen Erfahrungen im Umgang mit ahnlichen Produkten und engt die Zielgruppe
dariiber hinaus weiter ein. (vgl. [KGM12, S. 84-85])

Folgende Kriterien definierten die Zielgruppe fiir die Interviews:

« Volljahrigkeit: Sie erleichtert die verwaltungstechnische Abwicklung beziiglich dem
Datenschutz.

« Tetraplegie im Bereich C1-T1, sodass die Hinde nicht mehr zur Bedienung von elek-
tronischen Geraten benutzbar sind (vgl. [Org13, S. 5-6]). Es kommen jedoch genauso
Personen mit vergleichbaren motorischen Einschrankungen in Frage.

+ Keine bis wenig geistige Einschrankungen, um moglicherweise daraus resultierende
Verstandnisprobleme bei den spateren Benutzbarkeitstests ausschlieffen zu konnen. Des
Weiteren muss es moglich sein, im Zuge des Interviews ein Gespréach fithren zu kénnen.

« Eine grundsitzlich offene Einstellung gegeniiber neuen Technologien, wie zum Beispiel
Smartphones und Tablets.

 Im Hinblick auf die Benutzbarkeitstests ist es von Vorteil, wenn die Person ihren Kopf
bewegen (insbesondere drehen) und mit den Augen blinzeln kann. Da die Nervenpaare
im Bereich C1-C4 fiir die Kopfbewegungen verantwortlich sind, sollte die Verletzung bei
den Probanden wiederum auch nicht zu hoch sein (vgl. [Org13, S. 5]).

Urspriinglich war es geplant, dass die Zielgruppe des barrierefreien Smarthomes Tetraple-
giker sind, die ihren Kopf noch bewegen konnen. Im Rahmen der im nachsten Abschnitt
beschriebenen Suche nach geeigneten Interviewpartnern stellte sich jedoch heraus, dass viele
Personen zwar ihre Hinde nicht mehr hinreichen nutzen konnen, aber nach medizinischen
Kriterien keine Querschnittlahmung haben. Stattdessen sind ihre Einschrankungen auf andere
Krankheiten und / oder Verletzungen zuriick zu fithren. Aus diesem Grund ist in der Definition
der Zielgruppe nicht ausschliellich von vom Hals ab Querschnittgelahmten die Rede, sondern
zusatzlich auch von jenen, die ihre Hande nicht mehr benutzen konnen.

Suche nach den Interviewteilnehmer

Obwohl mehrere Einrichtungen angefragt wurden, gestaltete sich die Suche zunéchst schwie-
rig. Zum einen antworteten nicht alle Angefragten und zum anderen hatten auch nicht alle
solche Personen in ihren Einrichtungen / Verbanden, welche die Kriterien der Zielgruppen-
definition erfullten. Letztendlich fanden sich 5 Personen, die im Groben die Kriterien der
Zielgruppendefinition erfiillten und bereit zur Teilnahme an einem Interview waren.

28

3.1. Interviews

Da die 5 Interviewpartner die Kriterien der Zielgruppendefinition nur bedingt erfiillten, war
eine Lockerung von diesen notwendig. Der Grund ist darauf zurtickzufithren, dass nur 1 von
den 5 Personen ihre Hande aufgrund einer Querschnittlihmung vom Hals ab nicht mehr
benutzen kann. Bei den 4 anderen Personen und damit dem Grof3teil, ist jeweils bei 2 eine
Krankheit oder eine schwere Kopfverletzung in der Vergangenheit ursichlich. Bei letzterer
Ursache ist es so, dass durch die Schwere der Verletzung nicht nur Mobilitatseinschrankungen
sondern auch geistige Einschrankungen die Folge sind. Dies fiihrte zu der Erkenntnis, dass
die Zielgruppe eines barrierefreien Smarthomes fiir Benutzer mit einer Querschnittlihmung
von Hals ab, eigentlich viel grofler ist, da auch Menschen davon profitieren wiirden, die ihre
Hénde aus anderen Griinden als einer Querschnittlahmung, nicht mehr benutzen kénnen.
Des Weiteren war es sinnvoll, das urspriingliche Kriterium ,keine geistige Einschrankungen®
insoweit zu lockern, dass Interviews noch moglich sind, aber im Gegenzug nicht alle Inter-
viewpartnern auch fiir die zum spiteren Zeitpunkt stattfindende Bandenbreitenmessung der
unterschiedlichen Eingabemethoden geeignet sind und fiir diese deshalb noch zusétzliche
Probanden gesucht werden miissen. Eine solche Aufsplittung in unterschiedliche Gruppen, um
sicherzustellen, dass es tiberhaupt potenzielle Interviewpartner beziehungsweise Testpersonen
gibt, empfiehlt auch Kuniavsky (vgl. [KGM12, S. 87]).

Kuniavsky empfiehlt zu dem, im Vorfeld der Interviews zunachst ein paar Basisinformationen
tiber die Interviewpartner mittels eines per E-Mail zugesandeten Fragebogens zu ermitteln (vgl.
[KGM12, S. 88]). Diesen Zwischenschritt hat der Autor ausgelassen, da er fiir die betroffenen
Personen einen zu hohen Aufwand dargestellt hitte. Stattdessen werden diese Informationen
am Anfang des im folgenden Unterkapitels beschriebenen Fragebogens erhoben.

Ebenfalls weggefallen ist das von Kuniavsky vorgeschlagene Screening zur Auswahl der von
der zur Verfiigung stehenden Interviewpartnern am besten geeignetsten (vgl. [KGM12, S.
94-95]). Die Griinde hierfiir waren, dass bei lediglich 5 Interviewpartnern eine engere Auswahl
wenig zielfilhrend gewesen wire und der Autor zudem davon ausgehen konnte, dass sie wegen
ihrer unmittelbaren Betroffenheit ausreichend motiviert sind.

3.1.2. Erstellung des Fragebogens fir die Interviews

Der Fragebogen orientiert sich an der von Kuniavsky vorgeschlagenen Interviewstruktur,
welche verbildlicht mit der Form einer Sanduhr vergleichbar ist. Diese sieht vor, dass ein
Interview mit allgemeinen Fragen startet und im weiteren Verlauf die primére Forschungsfrage
immer weiter konkretisiert. AbschlieBend folgen nochmals breiter aufgestellte Fragen, um
einen Uberblick und eine Zusammenfassung zu erhalten. Im Detail handelt es sich dabei um
folgende 6 Phasen: Einleitung, Aufwarm-Phase, Allgemeine Fragen, Schwerpunkt-Fragen,
Riickblick sowie Abschluss. (vgl. [KGM12, S. 117-118])

Im Folgenden wird der Aufbau des Fragebogens anhand der 6 Phasen detaillierter beschrieben.
Der Fragebogen befindet sich zusétzlich im Anhang A.1 dieser Arbeit:

29

3. Benutzungskontext-Analyse

30

« Einleitung:

Die Einleitung beinhaltet die Vorstellung des Interviewers. Des Weiteren soll sie sicher-
stellen, dass dieser neutral wahrgenommen wird. (vgl. [KGM12, S. 118]

Hierzu beinhaltet der Fragebogen zunéchst einmal die Vorstellung des Autors und
Ablaufs. Dariiber hinaus werden in dieser Phase auch die Formalitaten abgehandelt.
Dies umfasst die Unterzeichnung der Einverstidndniserklarung durch den jeweiligen
Interviewpartner sowie die Auszahlung der Aufwandsentschadigung an diesen.

Aufwiarm-Phase:

Die Aufwarm-Phase soll den Interviewpartner in die Situation des Interviewtwerdens
einfithren und dessen Aufmerksamkeit auf das Themengebiet des Interviews lenken (vgl.
[KGM12, S. 118]). Als Einstieg wird in dieser Phase die noch ausstehende Ermittlung der
Basisinformationen gewahlt. Bei diesen handelt es sich primar um demographische Daten
sowie der Frage, ob dieser schon einmal an einem Interview teilgenommen hat. Laut
Kuniavsky ist das wichtig zu wissen, da Personen, die schon einmal an einer Befragung
teilgenommen haben, dazu tendieren, die Untersuchung mittels ihren Antworten zu
unterstiitzen, was zu einer Verfilschung des Ergebnisses fithren kann (vgl. [KGM12, S.
101]).

Im Anschluss daran bilden Fragen zu bisherigen Nutzung von elektronischen Geréten
den Ubergang zum Thema Smarthome. Konkret geht es darum, welche Hardware und
Software der Interviewte bisher nutzt und wie intensiv er das tut. Auch geht der Fra-
gebogen in dieser Phase darauf ein, welche der verwendeten Gerite und Programme
speziell auf die Bediirfnisse der jeweiligen Behinderung(en) abgestimmt sind.

Allgemeine Fragen:
Diese Phase lenkt den Fokus auf das eigentliche Thema des Interviews, also das Produkt
oder Forschungsprojekt zu dem der Interviewte befragt wird (vgl. [KGM12, S. 118]).

Der Fragebogen tragt dem Rechnung, indem er zunéchst einmal das Hintergrundwissen
des Interviewpartners und seine Erfahrungen auf dem Gebiet der Smarthomes ermittelt.
Dariiber hinaus fithrt er das Thema Barrierefreiheit mit sehr offen formulierten Fragen im
Bezug darauf, wie ein ideales Smarthome aus Sicht der interviewten Person auszusehen
hatte, ein.

Schwerpunkt-Fragen:
Die Schwerpunkt-Fragen eines Interviews gehen im Detail auf das Produkt oder die
Idee ein, indem dem Interviewpartner Fragen zu einzelnen Aspekten, beispielsweise
Funktionalitaten, gestellt werden und er um seine eigene Einschiatzung gebeten wird
(vgl. [KGM12, S. 118]).

Fir die Interviews im Rahmen dieser Arbeit bedeutet dies, dass der Moderator in dieser
Phase Fragen zu der Bedienung sowie Hardware eines barrierefreien Smarthomes stellt.
Im Bereich der Bedienung geht es darum, festzustellen, ob es unter den Interviewpartnern
eine bevorzugte Eingabemethode gibt und was aus ihrer Sicht die Vor- und Nachteile

3.1. Interviews

einer Sprachsteuerung und des Face-Trackings sind. Dariiber hinaus gibt es Fragen zu
der Meniifithrung. Beziiglich der Hardware konzentriert sich der Fragebogen auf das
Finden einer geeigneten Platzierung fiir das Tablet / Smartphone, das die Anwendung
zur Steuerung des barrierefreien Smarthomes ausfithrt sowie um die Displaygrofe.

Weiterhin geht der Fragebogen in der Phase Schwerpunkt-Fragen auf den Aspekt der
Privatsphére ein, um festzustellen, ob und wenn ja welche Bedenken die Interviewten bei
einem Smarthome im Allgemeinen sowie der Steuerung via Sprache oder Face-Tracking
haben, da hierfiir das Mikrofon beziehungsweise die Kamera des aktiv sein miisste.

Riickblick:

Wihrend des Riickblicks soll der Interviewpartner das vorgestellte Produkt oder die Idee
im Kontext zu den Problemen die es beziehungsweise sie 16sen soll bewerten. Dieser
Teil des Interviews beabsichtigt eine allgemeinere Bewertung durch den Interviewten,

die sich im Gegensatz zu der vorherigen Phase nicht mehr so sehr auf einzelne Aspekte
konzentriert. (vgl. [KGM12, S. 118])

Der Fragebogen nutzt diesen Abschnitt der Interviews, um den Interviewpartnern die
Moglichkeit zu geben, Themen anzusprechen, die ihrer Meinung nach wichtig, aber noch
nicht beriicksichtigt sind. Zudem ermoglicht er es ihnen, Verbesserungsvorschliage sowie
mogliche Probleme zu nennen. Dem Autor erschien dariiber hinaus diese Phase des
Interviews als am besten geeignet, um den interviewten Personen Fragen beziiglich ihrer
korperlichen Einschrankungen zu stellen. Dies war notig um festzustellen, welche Einga-
bemoglichkeiten fiir das barrierefreie Smarthome geeignet sein konnten. Beispielsweise
ist es fur die Entwicklung des Face-Trackings wichtig, dass der Benutzer seinen Kopf
bewegen und blinzeln kann. Als am besten geeignet erschien dieser Zeitpunkt deshalb,
da diese Fragen, die fiir den Interviewten womdglich unangenehm oder zumindest sehr
personlich sind und nur erforderlich sein wiirden, wenn der Autor sie sich im bisherigen
Verlauf des Interviews nicht schon selbst durch Beobachtungen beantworten kann.

Abschluss:
Diese Phase schliefit das Interview ab. Sie sieht keine gesonderten Fragen vor. (vgl.
[KGM12, S. 118])

Der Fragebogen weicht hiervon nicht ab. Der Abschluss wird dazu genutzt, sich bei
dem Interviewpartner zu bedanken und um ihm einen Ausblick auf das weitere Vor-
gehen fiir die Erstellung dieser Arbeit zu geben. Letzteres soll auch dazu dienen, die
Interviewpartner zur Teilnahme an den Benutzbarkeitstests zu motivieren.

Unabhéangig von den einzelnen Phasen wurde wahrend der Vorbereitung der Interviews beim
Formulieren der Fragen darauf geachtet, dass diese sich jeweils nur auf ein Thema beziehen,
also im Endeffekt nicht nach 2 Sachverhalten fragen. Dies vereinfacht die Auswertung der
Interviews, da sich hierdurch die Antwort eindeutig auf eine Frage oder ein Thema bezieht
und auch garantiert ist, dass die Antwort vollstandig ist. (vgl. [KGM12, S. 121])

31

3. Benutzungskontext-Analyse

Genauso vermeidet der Fragebogen Fragen, die sich mit ,Ja“ oder ,Nein“ beantworten lassen.
Das hat den Vorteil, dass der Interviewte seine tatsdchliche Meinung, welche womdglich
zwischen ,Ja“ und ,Nein® liegt, nicht an eine von den 2 Antwortmoglichkeiten anpassen und
somit einen Kompromiss schlieen muss (vgl. [KGM12, S. 122]).

Des Weiteren wird soweit moglich vermieden, dass der Interviewteilnehmer durch spatere
Fragen das Gefiihl vermittelt bekommt, dass er eine vorherige Frage falsch beantwortet hat (vgl.
[KGM12, S. 121]). Dies ist nur deshalb bedingt moglich, da die Fragen — wie von Kuniavsky
empfohlen — wo immer méglich, offen formuliert sind, es also keine vorgegebene Auswahl an
Antworten gibt (vgl. [KGM12, S. 121]). Der Grund hierfiir ist, dass die Interviewteilnehmer
beispielsweise zunachst gefragt werden, mittels welcher Eingabemethode sie das barrierefreie
Smarthome am liebsten bedienen wiirden, was eine offene Frage ist. Jedoch gibt es im Rahmen
dieser Arbeit auch hardwaretechnische, finanzielle sowie aus der Zielsetzung resultierende Ein-
schrankungen, weshalb nicht sdmtliche theoretisch moglichen Eingabemethoden realisierbar
sind. In Folge dessen umfasst der Fragebogen im Anschluss an die offenen Fragen auch welche
zur Sprachsteuerung und dem Face-Tracking, was in gewisserweise dem ein oder anderen
Interviewten das Gefiihlt vermitteln kann, die Frage nach der besten Eingabemethode falsch
beantwortet zu haben.

Die schon angesprochenen offenen Fragen haben den Vorteil, dass der Interviewteilnehmer
seine tatsachliche Meinung dufiern kann (vgl. [KGM12, S. 121]). Hétte er nur die Wahl zwischen
vorgegebenen Antwortmoglichkeiten, wiirde er aus ihnen jene auswéhlen, die derjenigen am
nachsten kommt, die er eigentlich gerne geben wiirde (vgl. [KGM12, S. 121]). Exemplarisch
lasst sich das anhand der Frage nach dem Gerét, auf welchem die Anwendung fiir barrierefreie
Smarthome ausgefithrt werden soll, verdeutlichen. Wiirde der Interviewpartner bei dieser
Frage nur gefragt, ob er ein Tablet oder Smartphone bevorzugt, konnte es passieren, dass das
von ihm favorisierte Gerat weder ein Smartphone noch ein Tablet ist, aber diese Information
verloren geht, da er sich fiir 1 von den 2 Antwortmoéglichkeiten entscheiden muss.

Neben den offenen Fragen empfiehlt Kuniavsky auch Fragen mit einem offenen Ende (vgl.
[KGM12, S. 102]). Er empfiehlt diese fiir die Vorauswahl der Interviewteilnehmer, da sich
hierdurch deren Artikulierfahigkeit sehr gut bestimmbar ist (vgl. [KGM12, S. 102]). Da im
Rahmen dieser Arbeit keine Vorauswahl nétig und moglich war, hat es sich angeboten, im
Rahmen der Interviews zu erfassen, wie gut sich der jeweilige Teilnehmer artikulieren kann,
indem insbesondere in der Retrospective Phase Fragen gestellt wurden, die den Einstieg in
eine Diskussion ermoglichten. Fiir die Auswertung der Interviews sind die dadurch gewonnen
Erkenntnisse hilfreich, da sie eine Erklarung dafiir sein konnen, warum es bei den offenen
Fragen teilweise schwierig war, ausfithrliche Antworten zu erhalten. Mit dieser Problematik
beschiftigt sich das folgende Unterkapitel welches den Verlauf der Interviews beschreibt, unter
anderem.

32

3.1. Interviews

3.1.3. Verlauf der Interviews

Die 5 Interviews fanden auf 2 Tage verteilt statt. Die Termine hierfiir richteten sich nach den
Wiinschen und zeitlichen Méglichkeiten der Interviewteilnehmer, so wie es auch Kuniavsky
vorschlagt (vgl. [KGM12, S. 104]). Jeder Interviewte erhielt eine Aufwandsentschiadigung in
Hohe von 15€, was die Wertschatzung fiir die Mitarbeit zum Ausdruck bringen sollte (vgl.
[KGM12, S. 108]). Des Weiteren dient eine Aufwandsentschadigung auch zur Motivation
der Interviewpartner (vgl. [KGM12, S. 108]). Im vorliegenden Fall war die Motivation der
Teilnehmer schon alleine durch ihre unmittelbare Betroffenheit sehr hoch.

Wihrend der Interviews achtete der Autor darauf, die Teilnehmer direkt anzusprechen, sprich
sie zum Beispiel zu fragen, wie fiir sie personlich ein ideales Smarthome aussieht und nicht
allgemeiner, wie ein ideales Smarthome aussieht. Dies prazisiert die Fragen und beugt Miss-
verstindnissen sowie in Folge dessen unzuverlassigen Antworten vor (vgl. [KGM12, S. 120]).
Zusatzlich wurden die Interviews, nach vorheriger Einverstandniserklarung des Interviewten,
audiovisuell aufgezeichnet. Dies entlastete den Autor, da er weniger protokollieren musste und
ermoglichte es, das jeweilige Interview im Nachhinein besser auszuwerten und zu verhindern,
dass er Antworten aufgrund falscher Erinnerungen missinterpretiert.

Alle 5 Interviewteilnehmer waren sehr engagiert und haben sdmtliche Fragen verstanden,
sprich es gab keine Frage, die aufgrund geistiger Probleme unbeantwortbar war. Lediglich bei
einem Probanden waren die Fragen ausfiihrlicher und mehrmals zu erklaren. Problematisch
hingegen sind die offenen Fragen und solche mit offenem Ende gewesen, bei welchen es um
Visionen ging beziehungsweise die eine Diskussion starten sollten. Beides konnten 3 der 5
Interviewteilnehmer nicht entwickeln. Die offenen Fragen, welche eigentlich den Vorteil haben,
dass die interviewte Person in ihrer Antwort nicht eingeschriankt und beeinflusst wird und
somit den besten Beitrag zu den Ergebnissen liefern sollten, bewirkten also tendenziell eher
das Gegenteil. Als Ursache hierfiir vermutet der Autor unter anderem folgende Griinde:

« Ein Proband auflerte, dass er nichts Neues mehr brauche und es sich auch nicht kaufen
wiirde, weil er bis zur Fertigstellung womdglich gar nicht mehr lebe oder kurz nach der
Anschaffung sterben wiirde und diese sich dann nicht mehr gelohnt hitte.

« Bei mehreren Interviewpartnern entstand der Eindruck, dass sie keine Visionen mehr
entwickeln konnen, da sie aufgrund geistiger Unterforderung im Alltag in diesem Bereich
weit abgebaut haben. Ursachlich konnte hierfiir sein, dass die Bewohner tiber den Tag
verteilt nicht viel selbst erledigen und planen miissen, beziehungsweise es aufgrund der
Gesamtsituation auch nicht konnen. Offensichtlich wurde das massiv bei den Fragen,
wie das ideale Smarthome fiir sie aussehen wiirde und in welchen Bereichen es sie
unterstiitzen konnte. Insbesondere bei letzterer Frage hétte der Autor im Vorfeld damit
gerechnet, dass ihn die Teilnehmer des Interviews in Folge ihrer Situation mit Ideen und
Wiinschen iiberhaufen.

« Des Weiteren gibt es vermutlich auch ein Abfinden mit der aktuellen Situation. Eine
interviewte Person brachte zum Beispiel als Gegenargument zu Anwendungsbeispielen

33

3. Benutzungskontext-Analyse

eines barrierefreien Smarthome, welche der Autor eingebracht hat, dass diese derzeit
das Pflegepersonal abdeckt und es dadurch keinen Bedarf gibt.

3.1.4. Auswertung der Interviews

Die folgende Auswertung der Interviews ist unterteilt nach den Aspekten Demographie,
Erfahrung mit elektronischen Geréten, Ideen fiir ein Smarthome, Bedienung, Hardware sowie
Privatsphiére.

Demographie
Folgende demographische Daten lassen sich aus den Interviews gewinnen:

« Bei den 5 Teilnehmern handelte es sich um 2 Frauen und 3 Minner.

+ Die jiingste Person war 32 und die alteste 70 Jahre alt. Das durchschnittliche Alter der
Interviewteilnehmer betrug 47,6 £13,48 Jahre.

+ Der Bildungshintergrund, den die Teilnehmer mitbrachten, war breit gestreut. Folgende
jeweils hochste Bildungsabschliisse gab es: 1 Hauptschulabschluss, 1 Abitur, 2 Berufs-
ausbildungen und 1 Diplom

Erfahrung mit elektronischen Geraten

Eine interviewte Person gab an, keine elektronischen Geréte zu nutzen. Jedoch bedient sie
eigenstandig einen Fernseher, wie sich herausstellte. 4 von 5 gaben an, elektronische Gerate
zu nutzen. Mit Abstand am héaufigsten genannt wurden der Fernseher sowie der Computer
beziehungsweise Laptop. Des Weiteren nutzen diese 4 Personen Radios, Stereoanlagen oder
CD-Player zum Konsum audiovisueller Medien. Die Benutzung von Smartphone und Handys
ist hingegen nicht so sehr verbreitet. Eine interviewte Person nutzt ein Handy und wiirde
auch gerne ein Smartphone benutzen, aber glaubt, dass sie dieses aufgrund ihrer korperlichen
Einschrankungen nicht bedienen kann. Eine weitere interviewte Person nutzt sowohl Han-
dys als auch Smartphones. Insgesamt lasst sich sagen, dass primar elektronische Gerite zu
Unterhaltungs- und Kommunikationszwecken genutzt werden.

Waihrend der Interviews wurden die Teilnehmer auch zu den Erfahrungen befragt, die sie
mit den elektronischen Geraten im Hinblick auf ihre Bedienbarkeit haben. Die Ergebnisse
hierzu fallen sehr unterschiedlich aus, was auf verschiedene Einschrankungen zuriickzufithren
ist. Eine Person kann das Radio und den Fernseher nicht selbst bedienen, sondern benétigt
hierfir das Pflegepersonal. Eine weitere Person duflerte, dass die Gerite von der Bedienung
eher nicht so gut auf ihre Bediirfnisse ausgelegt seien. Die 2 anderen Interviewpartner von
den 4, die regelmaflig elektronische Geréte nutzen, konnen dies den Umstanden entsprechend
gut. Voraussetzung dafiir sind entsprechende Hilfsmittel. Eine Person bedient ihren Fernseher
und die Stereoanlage mittels eines Holzsticks tiber ihren Mund und den Computer mittels

34

3.1. Interviews

Head-Tracking. Die zweite Person nutzt fiir die Bedienung des Computers einen Mundstick
als Mausersatz und fiir den Fernseher und die Stereoanlage ein Blasrohr. Der Mundstick ist
ihr zu langsam und zu haufig kaputt. Letzteres ist problematisch, da die Reparaturzeit 2 bis 3
Monate betrdgt und sie solange den Computer nicht nutzen kann.

Die Interviewpartner wurden nicht nur zu ihren Erfahrungen mit elektronischen Geraten
sondern auch konkret zu Smarthomes befragt. Zwei der interviewten Personen gaben an, den
Begriff Smarthome zu kennen, 1 sagte, sie kenne ihn ein wenig, 1 weitere Person wusste nicht,
was ein Smarthome ist und bei der 5. Person war im Nachhinein nicht mehr sicher feststellbar,
ob sie ,Smarthome” mit ,Smartphone” verwechselt hatte. Genutzt hat ein Smarthome bisher
nur 1 der interviewten Personen. Hierbei handelt es sich jene, die mittels Blasrohr ihren
Fernseher sowie die Stereoanlange steuern kann. Hinzu kommt, dass sich tiber dieses Gerat
auch Steckdosen schalten lassen, weshalb der Autor dies als Nutzung eines Smarthomes
wertet.

Ideen flr ein Smarthome

Wie schon im vorherigen Unterkapitel 3.1.3 beschrieben, war es sehr schwierig, Visionen von
den Interviewpartnern zu erhalten. Folglich gibt es weniger Vorschldge fiir Anwendungsgebiete
eines barrierefreien Smarthomes als erwartet. Einer der Interviewpartner will kein Smarthome
und die anderen 4 nannten folgende Ideen:

« Steuerung der Heizkdrper, Beleuchtung und Rollldden im Zimmer.
+ Via Smarthome steuerbare Musikwiedergabe.

« Eine sprachgesteuerte Suchfunktion fiir Filme im Internet.

Die Einstellpositionen des Betts sollen via Smarthome steuerbar sein.

+ Eine Bedienung fiir den Fernseher, die mehr Funktionen unterstiitzt, als die bisherige
Eingabemoglichkeit von einer der interviewten Personen.

Bedienung
Hinsichtlich der Eingabemoglichkeiten wurden den Teilnehmern der Interviews Fragen zu der
Benutzeroberfliche und den Eingabemethoden gestellt.

Bezuiglich Ersterer resultierten aus den Interviews nur wenige Vorschlage. 2 Interviewpartner
nannten grof3e Schaltflaichen sowie eine grof3e Schrift als wichtige Eigenschaft. Gegeniiber
einer baumartigen Meniistruktur, wie sie der Autor vorschlug, gab es keine Einwénde. Des
Weiteren hat er die Teilnehmer in den Interviews nach ihrer Meinung zu einer raumadaptiven
Benutzeroberfliche gefragt. Diese wiirde sich an den Raum, indem sich das Gerét zur Steuerung
des barrierefreien Smarthomes befindet, anpassen. Zum Beispiel konnte es die Steuerung fiir
die Beleuchtung im aktuellen Raum bevorzugt darstellen, sodass weniger Bedienschritte fiir
diese erforderlich sind. Darin erkannten die 4 Interviewpartner, die einen Nutzen in einem
barrierefreien Smarthome sehen keinen Vorteil. 2 von ihnen sogar einen Nachteil, da sie eine

35

3. Benutzungskontext-Analyse

konstante Benutzeroberfliche bevorzugen. Eine Erklarung hierfiir ist vermutlich, dass die
Interviewten jeweils nur ein einzelnes Zimmer fiir sich haben und dadurch der Bedarf fiir eine
raumadaptive Benutzeroberflache nicht existiert.

Fir die Bedienung des barrierefreien Smarthomes sind im Rahmen der Interviews folgende
Eingabemoglichkeiten vorgeschlagen worden:

+ Eine Kombination aus Sprachsteuerung und grofien Schaltflachen.

« Eine Kombination aus Sprachsteuerung und Blasrohr sowie fiir die Steuerung vom
Rollstuhl aus durch die Verwendung von dessen Joystick.

« Steuerung mittels Touch iiber ein fest installiertes Tablet.

« Steuerung via Touch mit einer Hand.

Steuerung durch Kopfbewegungen.

Eine Sprachsteuerung finden 4 Interviewteilnehmer moglich oder gar praktisch. Einer sagte,
dass es ihm via Sprachsteuerung zu langsam wére. Von den 4 wiirden 2 sie mit einer weiteren
Eingabemoglichkeit kombinieren. Als weitere Eingabemethode nannten sie das Face-Tracking
sowie ein Touch-Display.

Direkt fiir das Face-Tracking haben sich nur 2 Teilnehmer ausgesprochen. Allerdings konn-
ten es 2 weitere Interviewpartner ihrer Meinung nach nicht beurteilen, da sie es noch nie
ausprobiert haben, aber stehen dieser Eingabemethode offen gegeniiber. Lediglich eine in-
terviewte Person sprach sich explizit dagegen aus, da sie diese Art der Eingabe schon als
Mausersatz am Computer ausprobiert hat und sie dabei nicht gut fand, weil sie haufig die
Maustastenfunktionen versehentlich betatigte.

Zu der Bedienung gehort zudem die Fragestellung, wie sich die Steuerung eines barriere-
freien Smarthomes ein- und ausschalten lasst, da es womdglich nicht gewollt ist, dass eine
Sprachsteuerung permanent aktiv ist. Hierzu schlugen die Interviewteilnehmer folgendes
vor:

« Das Ein- und Ausschalten soll durch das Pflegepersonal erfolgen.

+ Automatische Abschaltung nach 10 Minuten und das Einschalten iiber eine Eingabe mit
den Fingern.

o Schaltflache / Taste fiir das Ein- und Ausschalten, welche mittels einem Stick / Stift iber
den Mund betatigbar ist.

36

3.2. Definition der Anforderungen

Hardware

Bei der bevorzugten Hardware ergibt sich ein geteiltes Bild. Von den 4 Interviewteilnehmern,
die das barrierefreie Smarthome nutzen wiirden, findet jeweils die Hélfte ein kleineres Gerét
in der Grofle eines Handys / Smartphones beziehungsweise ein sehr grofies Tablet gut. Bei den
kleineren Geraten duf3erte eine Person sogar den Wunsch nach einer Smartwatch. Des Weiteren
sollte das Gerét tendenziell an einem bestimmten Ort im Raum fest installiert sein. Allerdings
auflerte eine Person auch den Wunsch, dass das Gerét bei ihr und somit ortsungebunden sein
sollte. Eine weitere Person, die zwar eine stationar Platzierung mdchte, konnte sich zuséatzlich
auch noch eine Befestigung am Rollstuhl vorstellen.

Privatsphiére

Beziiglich der Privatsphére sind die Ergebnisse der Interviews sehr homogen. Von den 5 Inter-
viewpartnern hat sich nur 1 gegen ein mit dem Internet verbundenes barrierefreies Smarthome
ausgesprochen. Genauso verhilt es sich im Hinblick auf die Kamera und das Mikrofon. Sie
wiren fiir eine Steuerung via Face-Tracking beziehungsweise Sprache erforderlich. Eine in-
terviewte Person gab an, dass sie sich dadurch beobachtet fithlen wiirde. Sie fiigte jedoch
ihre Aussage bei, dass falls ein Mikrofon zur Steuerung erforderlich sei, miisse das akzeptiert
werden.

3.2. Definition der Anforderungen

Uber die Anforderungen lassen sich die Ziele definieren, welche das barrierefreie Smarthome
erfiillen soll. Die Ziele resultieren hauptséachlich aus den im Unterkapitel 3.1.4 ausgewerteten
Interviews.

Die Anforderungsdefinition erfolgt mit User-Stories beziehungsweise Epics. Ob es sich um
Erstere oder Letztere handelt, ist abhangig von der Detailtiefe. Bei Epics handelt es sich um
grofe User-Stories, die zu einem spateren Zeitpunkt der Realisierung in mehrere kleinere
und somit konkretere User-Stories aufgeteilt werden. Folglich finden Epics vor allem in der
Anfangsphase einer Umsetzung Anwendung, wenn es darum geht, das System zu beschreiben,
so wie es auch in diesem Unterkapitel der Fall ist. (vgl. [Wir11, S. 60])

Die Beschreibung der User-Stories folgt dem Muster von Mike Cohn (vgl. [Wirl1, S. 59]): ,Als
<Benutzerrolle> will ich <das Ziel>[, so dass <Grund fiir das Ziel>].“ [Wir11, S. 59]

Bei der Benutzerrolle unterscheidet die Ausarbeitung zwischen Benutzern und Entwicklern.
Dies soll der Ubersichtlichkeit dienen. Zwar wire es moglich, auch noch zwischen Benutzer und
Administrator unterscheiden, jedoch wird es sehr stark von den jeweiligen Einschrankungen
des Benutzers abhidngen, ob er selbst der Administrator ist oder nicht, weshalb auf eine
Diversifizierung verzichtet wird. Das Ziel beschreibt die eigentliche Anforderung. Der Grund
fiir das Ziel ist optional und soll die Hintergriinde des Ziels erlautern. (vgl. [Wir11, S. 59])

37

3. Benutzungskontext-Analyse

Die Folgende Auflistung definiert zunachst die funktionalen und anschlielend die nichtfunk-
tionalen Anforderungen:

38

« F1 Unterschiedliche Eingabemethoden

Als Benutzer des barrierefreien Smarthomes mochte ich zwischen unterschiedlichen
Eingabemethoden auswéhlen konnen, so dass ich die fiir mich am geeignetste benutzen
kann.

Begriindung: Die Auswertung der Interviews im Unterkapitel 3.1.4 zeigt, dass nicht
alle Benutzer mit Mobilitatsproblemen an ihren Hénden, dieselben Einschrankungen
beziehungsweise Probleme haben. Des Weiteren geht aus ihr nicht hervor, dass alle
interviewten Personen eine Eingabemethode, wie zum Beispiel die Sprachsteuerung,
favorisieren. Dartiber hinaus ist zu beriicksichtigen, dass die zukiinftigen Benutzer des
barrierefreien Smarthomes womoglich schon andere elektronische Geréte und in die-
sem Zusammenhang auch Eingabegerite zur Herstellung der Barrierefreiheit benutzen,
wodurch sie im Umgang mit diesen geiibt sind. Wenn sie die schon gewohnte Einga-
bemethode auch zur Steuerung des barrierefreien Smarthomes benutzen konnen, stellt
dies eine Erleichterung dar.

F2 Unterstiitzung der Bedienungshilfen von Android

Als Benutzer des barrierefreien Smarthomes mochte ich, dass dieses die Bedienungshilfen
von Android unterstiitzt, so dass ich es vergleichbar mit anderen Apps benutzen kann
und es fiir so viele Personen wie moglich nutzbar ist.

Begriindung: Das Betriebssystem Android besitzt schon selbst Funktionen zur Sicherstel-
lung der Barrierefreiheit, welche in Abschnitt 2.3 beschrieben sind. Ebenso wie schon
bei der Begriindung zur Anforderung F1 gilt auch hier, dass eine Unterstiitzung von
Eingabemoglichkeiten, mit welchen der Benutzer schon vertraut ist, die Benutzung
erleichtert. Eine Unterstiitzung der Android Bedienungshilfen ist deshalb sinnvoll.

F3 Steuerung via Face-Tracking

Als Benutzer des barrierefreien Smarthomes mochte ich dieses mittels meines Gesichts
bedienen koénnen, so dass ich meine vorhandenen motorischen Fahigkeiten nutzen kann
und auf moglichst wenig Hilfe durch andere Personen angewiesen bin.

Begriindung: Das Unterkapitel 2.2 erldutert, dass viele vom Hals ab querschnittsgeldhmte
Menschen lediglich noch ihren Kopf bewegen konnen. Dadurch ist die Gesichtsverfol-
gung zur Steuerung des barrierefreien Smarthome eine mogliche Eingabemethode. Zu-
dem werden zumindest dhnliche Eingabemethoden schon genutzt, wie die Umfrage von
Caltenco et al. zeigt (vgl. [CBJA12]). Hierdurch sind manche Personen aus der Zielgruppe
des barrierefreien Smarthomes mit dieser Eingabemethode schon vertraut. Des Weiteren
waren viele Interviewteilnehmer dem Face-Tracking gegeniiber nicht abgeneigt, wie die
Auswertung in 3.1.4 zeigt.

F4 Sprachsteuerung

Als Benutzer des barrierefreien Smarthomes mochte ich dieses mittels einer Sprachsteue-
rung bedienen, so dass ich meine vorhandenen sprachlichen Fahigkeiten nutzen kann
sowie auf moglichst wenig Hilfe durch andere Personen angewiesen bin.

3.2. Definition der Anforderungen

Begriindung: Das Unterkapitel 2.2 beschreibt, dass es bei einer Querschnittldhmung vom
Hals an abwérts passieren kann, dass die betroffene Person in der Beweglichkeit ihres
Kopfes eingeschrankt ist. Fiir diese Personengruppe ist eine Steuerung des barrierefreien
Smarthomes mittels Gesichtsverfolgung nicht méglich. Des Weiteren sprachen sich
die interviewten Personen nicht ausschliellich fiir eine Bedienung tiber Face-Tracking,
sondern teilweise auch fiir eine Sprachsteuerung aus, wie die Auswertung in Abschnitt
3.1.4 zeigt.

F5 Steuerung mittels Taster oder Tastatur

Als Benutzer des barrierefreien Smarthomes mochte ich dieses mit einem Taster oder
einer Tastatur steuern konnen, so dass ich mit gar keiner oder nur wenig spezieller
Hardware das barrierefreie Smarthome entsprechend meiner motorischen Fahigkeiten
so bequem und optimal wie es geht nutzen kann.

Begrindung: Die Auswertung der Interviews verdeutlicht, dass es nicht fiir alle In-
terviewpartner unmoglich ist, mittels einer Hand oder beiden Hénden eine Tastatur,
Spezialtastatur oder einen Taster zu bedienen.

F6 Konfigurierbare Anzahl an Buttons

Als Benutzer des barrierefreien Smarthomes mochte ich sowohl die Button-Anzahl in
horizontale als auch vertikaler Richtung, die auf der Benutzeroberfliche gleichzeitig dar-
gestellt sind, konfigurieren kénnen, so dass die Bedienung fiir mich nicht zu kompliziert
ist.

Begriindung: Fiir eine konfigurierbare Anzahl an Buttons beziehungsweise Meniielemen-
te sprechen mehrere Griinde. Zunichst einmal macht die Auswertung der Interviews
deutlich, dass es keine Displaygrofle gibt, welche alle interviewten Personen favorisieren.
Eine Festlegung hinsichtlich der Displaygroie ware auch nicht sinnvoll. Vielmehr bietet
es sich an, eine groflere Bandbreite von diesen zu unterstiitzen, indem der Benutzer
die Anzahl der dargestellten Schaltflichen und Meniielemente an die Grof3e des Dis-
plays anpasst. Des Weiteren kénnen die Personen aus der Zielgruppe unterschiedliche
kognitive und motorische Fahigkeiten haben, wodurch zu viele Auswahlmoglichkei-
ten auf einmal sie iberfordern kénnten. Zuletzt ist die geeignete Anzahl an Buttons
auch von der verwendeten Eingabemethode abhiangig. Zum Beispiel ist es denkbar,
dass das Face-Tracking nicht so prazise ist wie eine Tastatur, weshalb grofiere und im
Gegenzug weniger Buttons eine Benutzung von Ersterer erleichtern. Bei einer Tastatur
hingegen, wiirde die Benutzeroberfliche mit genau so vielen Buttons das Potenzial der
Eingabemethode womoglich nicht ausnutzen.

F7 Konfigurierbare Schriftgrofie

Als Benutzer des barrierefreien Smarthomes mochte ich die Schriftgrof3e fiir die Button-
Beschriftung konfigurieren kénnen, so dass ich die Benutzeroberfliche an meine eigene
Fahigkeiten sowie die raumliche Situation anpassen kann.

Begriindung: In den Interviews wurde der Wunsch geduflert, dass die Schriftgrofie
einstellbar sein sollte. Dessen Umsetzung ist sinnvoll, da die spéateren Benutzer des
barrierefreien Smarthomes unterschiedlich gut sehen und lesen kénnten und zudem die

39

3. Benutzungskontext-Analyse

40

raumliche Positionierung des Gerites frei wéhlbar sein soll. Dadurch kann nicht von
einer konstanten Entfernung zwischen den Benutzern sowie dem Gerét ausgegangen
werden. Durch eine konfigurierbare Grof3e der Button-Beschriftung ist es moglich, dass
beispielsweise ein Benutzer, welcher das barrierefreie Smarthome aus einer grofieren
Entfernung bedienen mochte, eine hohere Schriftgrofie auswéhlt.

F8 Ein- und Ausschalten

Als Benutzer mochte ich das barrierefreie Smarthome selbststandig ein- und ausschalten
konnen, so dass dieses nicht permanent eingeschaltet ist und ich dafiir auch nicht auf
die Unterstiitzung einer anderen Person angewiesen bin. Begriindung: Die Steuerung
des barrierefreien Smarthomes sollte nicht immer aktiv sein, da dies je nach Einga-
bemethode einen mehr oder wenigen hohen Ressourcenverbrauch an Rechenleistung
darstellen wiirde und manche Benutzer es vielleicht auch nicht wollen. Zum Beispiel
konnten sie sich von einer permanent aktiven Sprachsteuerung oder Kamera fiir das
Face-Tracking beobachtet fithlen. Zuséatzlich konnte es insbesondere bei den 2 zuvor
genannten Eingabemoglichkeiten zu ungewollten Fehleingaben kommen, wenn sich der
Benutzer beispielsweise mit einer anderen Person unterhélt und die Sprachsteuerung
dabei Gesprochenes irrtiimlicherweise als Eingabe interpretiert.

N1 Eignung fiir unterschiedlich Gerate

Als Benutzer mochte ich das barrierefreie Smarthome sowohl mit einem Tablet als auch
mit einem Smartphone steuern kénnen, so dass ich eventuell vorhandene und die meiner
jeweiligen Situation am besten geeignete Hardware nutzen kann.

Begriindung: Die im Unterkapitel 3.1.4 durchgefiithrte Auswertung der Interviews kommt
zu dem Ergebnis, dass die interviewten Personen das barrierefreie Smarthome mittels
unterschiedlich groflen Geréten steuern mochte. Dem zu Folge bietet es sich an, die
Anwendung so zu gestalten, dass sie sowohl auf Smartphones als auch auf Tablets
ein gutes Benutzererlebnis bietet. Zusétzlich erhoht dies die Wahrscheinlichkeit, dass
der Benutzer die Anwendung zur Steuerung des barrierefreien Smarthomes auf schon
vorhandener Hardware ausfithren kann. Ein weiterer Vorteil ist, dass deren Grofle
an den Einsatzort anpassbar ist. Falls ein Benutzer das barrierefreie Smarthome zum
Beispiel von seinem Rollstuhl aus steuern kénnen will, bietet sich hierfiir aufgrund der
kleineren Abmessungen ein Smartphone an. Hingegen ware womdoglich ein Tablet fiir
einen Benutzer, der das barrierefreie Smarthome nur von einer bestimmten Position
innerhalb des Gebaudes bedienen konnen will, besser geeignet, da es entweder mehr
oder groflere Schaltflachen darstellen kann.

N2 Verzicht auf Hilfsmittel-Hardware

Als Benutzer mochte ich ein barrierefreies Smarthome, das keine Hilfsmittel-Hardware
erfordert, die es schon heute fiir Menschen mit einer hohen Querschnittldhmung er-
moglichen, mit elektronischen Geréten zu interagieren, so dass ich giangige Hardware
verwenden kann, welche billiger und leichter ersetzbar ist.

Begriindung: Hilfsmittel-Hardware, die es schon heute vom Hals ab querschnittsgelahm-
ten Menschen ermdglicht, mit elektronischen Geréten zu interagieren, hat den Nachteil,

3.2. Definition der Anforderungen

dass sie gegentiber vergleichbaren Eingabegeraten fiir unversehrte Menschen, erheblich
teurer ist. Die hohen Preise lielen sich durch die Verwendung von Standard-Hardware
umgehen. Gangige Hardware ist zudem vermutlich schneller reparier- oder ersetzbar und
durch die geringeren Anschaffungskosten wire es giinstiger, Ersatz vor zu halten. Idea-
lerweise reduziert sich der Bedarf an Hardware dadurch, dass fiir die vom barrierefreien
Smarthome angebotenen Eingabemethoden keine zusatzliche erfordern.

N3 Erweiterbares Meni

Als Benutzer und Entwickler mochte ich das Menii des barrierefreien Smarthomes um
weitere Mentielemente ergédnzen kénnen, so dass fiir das Hinzufiigen von neuen Funk-
tionalititen keine Arbeiten am Quellcode der Benutzeroberflidche erforderlich sind.
Begriindung: Die Benutzer werden unterschiedliche Wiinsche und Anforderungen be-
zliglich der Geriate haben, die sie {iber das barrierefreie Smarthome bedienen mochten.
Ebenso werden mit der Zeit neue hinzukommen. Eine Benutzeroberflache, welche so ent-
wickelt ist, dass sie spater von einem Benutzer ohne Programmierkenntnisse erweiterbar
ist, bietet vielfiltige, individuelle und vor allem kostengiinstige Erweiterungsmoglich-
keiten.

N4 Unterstiitzung von Erweiterungen

Als Entwickler mochte ich das barrierefreie Smarthome in Form eines Baukastensystems
um Funktionalitiaten erweitern konnen, ohne dass hierzu Arbeiten am schon vorhande-
nen Quellcode erforderlich sind.

Begriindung: Vergleichbar mit der Anforderung N3, werden die Benutzer des barriere-
freien Smarthomes unterschiedliche Gerate mit diesem bedienen wollen. Um noch nicht
unterstiitzte leicht in das barrierefreie Smarthome integrieren zu konnen, ist es prak-
tisch, die geratespezifischen Funktionalitaten in Form von Erweiterungen umzusetzen.
Dadurch sind sie von Dritten programmierbar, ohne dass diese Kenntnis und Zugrift
vom beziehungsweise auf den Quellcode des barrierefreien Smarthomes haben.

N5 Erweiterbarkeit der Eingabemoglichkeiten

Als Benutzer und Entwickler mochte ich, dass sich das barrierefreie Smarthome ohne
groflen Aufwand um neue Eingabemethoden erweitern lasst, so dass ich von diesen
profitiere.

Begriindung: Es ist nicht ausgeschlossen, dass in den néchsten Jahren bessere Eingabe-
methoden fiir die Zielgruppe entwickelt werden. Damit von diesen auch das barrierefreie
Smarthome moglichst schnell und ohne groflen Aufwand profitiert, sollte dessen Archi-
tektur die Ergdnzung der Eingabemethoden beriicksichtigen.

41

4. Konzept

Dieses Kapitel beschreibt das Konzept fiir das barrierefreie Smarthome. Hierzu gibt es am
Anfang im Unterkapitel 4.1 zunéchst einen Uberblick iiber das System und dessen Komponenten.
Im Anschluss daran erldautert das Unterkapitel 4.2 den Aufbau der Benutzeroberfliche und
die darin enthaltenen Navigationsméglichkeiten. Das vorletzte Unterkapitel 4.3 konzentriert
sich auf die angebotenen Eingabemethoden, bevor das Unterkapitel 4.4 die Vorstellung des
Konzepts abschlief3t, indem es die Verarbeitung der Eingabeergebnisse beschreibt.

4.1. Systemiubersicht

Die Abbildung 4.1 zeigt das barrierefreie Smarthome auf einer sehr abstrahierten Ebene. Die
griinen Rechtecke stellen die Zielgerite dar, welche in der Regel nicht auf der selben Hardware,
wie die Anwendung zur Steuerung des barrierefreien Smarthomes, ausgefiithrt werden. Typische
Zielgerate wiren beispielsweise Funksteckdosen, ein Fernseher sowie Funkthermostate.

Das blaue Rechteck in Abbildung 4.1 stellt das Gerat dar, welches die Anwendung fiir das
barrierefreie Smarthome ausfiihrt. Diese lisst sich in 2 Bereiche unterteilen. Das waren zum

Gerat zur Steuerung des barrierefreien
Smarthomes Laptop
Anwendung Erweiterbarkeit ﬁl VLC-Player
Eingabe- Datei mit der e
methoden _~7_Mendstruktur /"
Benutzer- /" Erweiterungs- |, A WLAN-
oberflache A dateien ' Steckdosenleiste
Zu g I‘i ff l,” ~§“s3
Erweiterungen HTTP-Server

Abbildung 4.1.: Aufbau des barrierefreien Smarthomes.

43

4. Konzept

einen die Anwendung im eigentlichen Sinne sowie die Erweiterungen. Erstere besteht aus
folgenden Komponenten:

 Eingabemethoden: Die Komponente bietet dem Benutzer unterschiedliche Eingabeme-
thoden an, wodurch er zwischen diesen wahlen kann, wie in Anforderungen F1 gefordert.
Eine detailliertere konzeptionelle Beschreibung der Eingabemethoden erfolgt in 4.3.

+ Benutzeroberfliche: Die Anwendung generiert die Benutzeroberfliche aus einer Datei,
welche zu der Erweiterbarkeit gehort. Dadurch ist es moglich, dass, wie in Anforde-
rung N3 gefordert, die Benutzeroberflache nachtréglich um Meniielemente erweitert
oder reduziert werden kann. Demzufolge definiert diese Komponente nicht die Be-
nutzeroberflache, sondern bietet die erforderlichen Funktionen, um sie dynamisch zur
Laufzeit aus einer Datei generieren zu konnen. Des Weiteren bietet die Anwendung
innerhalb der Komponente Benutzeroberflache die entsprechende Funktionalitit, welche
zur Navigation innerhalb des Meniis erforderlich ist. Eine ausfiihrliche Beschreibung der
Benutzeroberflache bietet das Unterkapitel 4.2.

« Handhabung der Erweiterungen: Diese Komponente erhdlt die Eingabebefehle von der
Benutzeroberflache und leitet sie an die passenden Erweiterungen weiter. Sie stellt somit
eine Verbindung zwischen diesen und der Komponente Benutzeroberflache dar. Welche
Erweiterung ausgewéhlt werden soll und welchen Eingabebefehl sie erhélt, resultiert aus
der Definitionsdatei fiir die Benutzeroberflache, in welcher fiir jeden Button festgelegt
ist, ob und wenn ja, welche Aktion auszufiihren ist.

Der zweite Bereich besteht aus den Erweiterungen sowie der Datei fiir die Definition der
Mentstruktur. Letztere nutzt die Komponente Benutzeroberfliche um gleichnamige zu er-
zeugen. Die Erweiterungen bestehen aus mehreren Dateien. Das Konzept sieht je Zielgerat
eine Erweiterung vor. Sprich, bezogen auf die zuvor genannten méglichen Zielgerate, konnte
es jeweils eine Erweiterung fiir die Funksteckdose, eine fiir den Fernseher und eine fir die
Thermostate geben. Dadurch, dass die Ansteuerung der Zielgerate iiber die Erweiterungen
und nicht die Anwendung fiir das barrierefreie Smarthome erfolgt, lasst sich die Anforderung
N4, welche die Moglichkeit zum nachtraglichen Hinzufiigen von Funktionalitaten durch Drit-
te fordert, realisieren. Selbiges gilt auch fiir die Definitionsdatei der Meniistruktur bezogen
auf die Anforderung N3. Die Kommunikation zwischen Erweiterung und entsprechendem
Zielgerat ist durch das Konzept nicht vorgegeben, woraus eine hohere Flexibilitat gegeben
ist. Die Kommunikationsmdglichkeiten sind lediglich durch die Fahigkeiten der verwendeten
Hardware sowie des Betriebssystems begrenzt.

4.2. Benutzeroberflache

Dieses Unterkapitel beschreibt die Definition der Meniistruktur, welche die Benutzeroberflache
anzeigen soll. Des Weiteren erldutert es das Navigationskonzept innerhalb der Meniistruktur
sowie die Individualisierbarkeit der Benutzeroberflache.

44

4.2. Benutzeroberflache

Ebene 0 Wourzel

[?

Ebene 1 TV
| [i
. nachster vorheriger .
Ebene 2 Senderliste Favoriten
Kanal Kanal
-----------] _—_——————————
| . '
1 1
Ebene 3 ARD ZDF ZDF

Abbildung 4.2.: Baumbhierarchie als Meniistruktur

4.2.1. Menustruktur

Die Struktur des Meniis entspricht einer Baumhierarchie. Die Abbildung 4.2 soll dies exempla-
risch an einem Ausschnitt eines potenziellen Meniis fiir einen Fernseher veranschaulichen.
Die Wurzel auf der Ebene 0 ist fiir den Benutzer nicht sichtbar. Die hochste fiir ihn sichtbare
Ebene ist die darauffolgende Ebene 1. Sie ist das Hauptmenii. Jedes Rechteck in Abbildung 4.2
beziehungsweise jeder Knoten der Baumstruktur entspricht einem Meniielement. Die Benutzer-
oberflache stellt diese als Buttons dar. Abbildung 4.4 zeigt den Entwurf der Benutzeroberflache
exemplarisch anhand der Mentielemente aus der Senderliste von Ebene 3. Aus Platzgriinden
sind auf dieser Ebene in Abbildung 4.2 nicht alle Meniielemente dargestellt. Sowohl die Defi-
nition der einzelnen Meniielemente als auch ihre Einordnung in die Baumstruktur erfolgt in
der Definitionsdatei fiir die Menustruktur. Ein Mentielement besteht in dieser aus folgenden
Elementen:

« ID: Die ID dient zur eindeutigen Identifikation des jeweiligen Meniielements. Durch
sie lassen sich in der Definitionsdatei einem Meniielement seine Untermeniielemente
beziehungsweise Kindknoten zuordnen.

« Name: Der Name ist die Bezeichnung des jeweiligen Meniielements. Ihn gibt es in drei
unterschiedlichen Versionen. Diese wiren zum einen die Lang- und Kurzform. Sie dient
dazu, die Anforderungen F6 und F7, die eine konfigurierbare Anzahl an gleichzeitig
sichtbaren Buttons und Schriftgrofie verlangen. Die Kurzversion des Namens lasst sich
in Situationen verwenden, in welchen fiir den langen Namen nicht mehr ausreichend

45

4. Konzept

Platz ist. Des Weiteren kommt diese auch der Forderung N1 nach der Unterstiitzung
unterschiedlicher Displaygrofien zu Gute. Dariiber hinaus gibt es als dritte Version des
Namens noch eine aussprechbare Variante. Sie dient zur Umsetzung der Anforderung F2.
Diese fordert die Unterstiitzung der Android Bedienungshilfen. Im Rahmen von dieser
wird der aussprechbare Name fiir Google TalkBack verwendet, woriiber blinde und
sehbehinderte sich die Funktion des jeweiligen Meniielements mittels Sprachausgabe
ermitteln konnen (vgl. [Gool6e]). Zusatzlich zu den 3 Versionen des Namens lassen sich
noch Sprachbefehle fiir das Mentielement definieren. Diese dienen der Umsetzung der
Anforderung F4, welche eine Sprachsteuerung fordert.

+ Icon: Das Icon soll eine intuitive Bedienung gewéhrleisten, indem der Benutzer durch
dieses nicht die Bezeichnung des Meniielements lesen muss. Denkbar wire zum Beispiel,
dass die Meniielemente in Abbildung 4.4 fiir die Fernsehsender das jeweilige Senderlogo
als Icon verwenden.

« Erweiterung: Hier wird spezifiziert, ob und wenn ja, welche Erweiterung eine Aktion
ausfithren soll, wenn der Benutzer den Button betatigt. Sofern eine Aktion ausgefiihrt
werden soll, wird der Dateipfad zu der entsprechenden Erweiterung angegeben sowie
innerhalb von dieser, der Klassenpfad zu der auszufiihrenden Klasse. Zusatzlich ist
es moglich Parameter in Form von Schliissel-Wert-Paaren festzulegen, auf welche die
Erweiterung Zugriff hat.

4.2.2. Navigation

Der Benutzer kann innerhalb der baumartigen Meniistruktur sowohl vertikal als auch horizon-
tal navigieren. Mittels der vertikalen Navigation kann er zwischen den Ebenen beziehungsweise
zwischen den Eltern- und Kindknoten wechseln. In dem in Abbildung 4.3 dargestellten Menii
kann er beispielsweise iiber den Button ,TV* eine Ebene tiefer in das Untermenii des Fernsehers
gelangen. Zuriick zu der niachst hoheren Ebene, gelangt er iiber den Button ,eine Mentiebene
nach oben®. Die Ebene 0 ist fiir die Benutzer nicht erreichbar. Der Button ,,eine Meniiebene nach
oben” gehort zu insgesamt 3 Navigations-Buttons. Sie dienen zur Navigation innerhalb des
Meniis und sind nicht Teil der Definitionsdatei fiir die Mentistruktur, sondern der Anwendung,.
Die 2 noch nicht beschriebenen Navigations-Buttons dienen zur Navigation innerhalb der
Kindknoten eines Elternknotens, also einem Untermenii. In Abbildung 4.2 stellen beispiels-
weise die TV-Sender in der Senderliste ein Untermenii dar. Die Navigation innerhalb eines
Untermenis ist erforderlich, da die Anzahl der gleichzeitig angezeigten Buttons konfigurierbar
sein soll und die Grofle eines Untermeniis unbegrenzt ist, wodurch es passieren kann, dass
dessen Menitielemente nicht alle gleichzeitig darstellbar sind. In der skizzenhaft dargestellten
Benutzeroberflache in Abbildung 4.4 ist dies zum Beispiel der Fall. Sie stellt das Untermenii
Senderliste dar, welches mehr Elemente beziehungsweise Programme beinhaltet, als auf einmal
anzeigbar sind. Aus diesem Grund befindet sich in der unteren rechten Ecke der Benutzer-
oberflache der Navigations-Button ,nachste Meniielemente®. Uber sie gelangt der Benutzer
zu weiteren Elementen des Untermeniis. Abbildung 4.5 zeigt die Benutzeroberfliche wie sie

46

4.2. Benutzeroberflache

Radio Videos

Funksteck-
dosen

Abbildung 4.3.: Hauptmeni im Entwurf fiir die Benutzeroberfldche.

aussehen wiirde, nachdem der Benutzer in Abbildung 4.4 den Navigations-Button ,nachste
Mentielemente® getatigt hat. Um zuriick zu den vorherigen Elementen des Unterments zu
gelangen, gibt es den Navigations-Button ,vorherige Mentielemente®, wie er auch in Abbildung
4.5 zu sehen ist. Fiir die vertikale Navigation in dem Menii kann der Benutzer zudem einstellen,
ob er, wenn er in ein Untermenii gelangt, in dem er zuvor schon einmal war, innerhalb von
diesem an die vorherige Position kommen mdochte oder an den Anfang.

Die Verwendung von Buttons zur Navigation hat 3 Vorteile. Erstens lasst sich tiber sie dem
Benutzer signalisieren, in welche Richtungen er ausgehend von der aktuellen Position im
Menii navigieren kann. Angenommen er befindet sich in Abbildung 4.2 gerade auf der Ebene
1, konnte er keine Meniiebene mehr weiter nach oben in der Baumstruktur gehen. In dieser
Situation ist es mdglich, dem Benutzer den entsprechenden Navigations-Button nicht oder
nur deaktiviert, sprich so, dass er sie nicht betatigen kann, darzustellen. Des Weiteren ist
mittels Buttons moglich, mit jeder der in Abschnitt 4.3 beschriebenen Eingabemethoden durch
das Menii zu navigieren. Um dies beispielhaft zu beschreiben, ist ein Vergleich zwischen den
Eingabemethoden Sprachsteuerung und Face-Tracking hilfreich. Fiir Erste lielen sich entspre-
chende Sprachbefehle fiir die Navigation innerhalb des Meniis definieren. Diese wiren bei der

47

4. Konzept

T

eine Meniiebene
nach oben

->

nachste
Meniielemente

Abbildung 4.4.: Beginn des Untermeniis Senderliste im Entwurf fiir die Benutzeroberflache.

Gesichtsverfolgung nutzlos. Stattdessen brauchte es Buttons zum Navigieren oder es miissten
bestimmte Wertebereiche fiir die Positionen des Gesichtes zur Navigation festgelegt werden.
Zum Beispiel, dass der Benutzer die nachsten Elemente eines Untermeniis auswahlen kann, in
dem er den Kopf tiber einen bestimmten Winkel hinaus nach rechts dreht. Diese Lésung wiirde
dazu fithren, dass die Benutzeroberfliche nicht mehr eingabemethodentibergreifend konsistent
ist. Mittels des Navigations-Buttons hingegen, ist die Oberfliche sowie die Navigation fiir den
Benutzer bei jeder Eingabemethode dieselbe.

4.2.3. Individualisierbarkeit

Sowohl die Anforderungen beziiglich der Grofle der Hardware als jenen an die Eingabeme-
thoden zeigen, dass es nicht die eine Benutzeroberflache gibt, welche die Bediirfnisse aller
Benutzer abdeckt. Aus diesem Grund bietet sie eine hohe Individualisierbarkeit hinsichtlich
des jeweiligen Benutzers. Dabei handelt es sich um folgende Bereiche:

48

4.2. Benutzeroberflache

T «-

eine Meniiebene vorherige
nach oben Meniielemente

-5

nachste
Menilielemente

Kabel 1

Abbildung 4.5.: Weitere Meniielemente im Untermenii Senderliste im Entwurf fiir die Benut-
zeroberflache.

« Die Anzahl der Buttons ist sowohl in horizontaler als auch in vertikaler Richtung kon-
figurierbar, wie in Anforderung F6 verlangt. Bezogen auf die Abbildung 4.4 bedeutet
dies, dass sich die Benutzeroberflache in ihrer Konfiguration beispielsweise so andern
lasst, dass sie anstelle von 3 Zeilen mit jeweils 3 Buttons, 3 Zeilen mit jeweils 2 Buttons
darstellt. Hierdurch lasst sich die Benutzeroberfliche sehr gut an die jeweilige Display-
grofe anpassen. Die Notwendigkeit dazu resultiert aus der Anforderung N1, welche die
Benutzbarkeit sowohl auf Tablets als auch Smartphones verlangt.

« Auf die selbe Anforderung ist auch die Konfigurierbarkeit der Schriftgrofie fir die
Button-Texte zuriickzufithren. Dariiber hinaus verlangt diese jedoch auch explizit die
Anforderung F7.

« Die Navigations-Buttons konnen entweder dauerhaft oder nur im betatigbaren Zustand
sichtbar sein, wenn sie also aufgrund der aktuellen Position im Menii auch nutzbar sind.
Dies hat den Vorteil, dass der Benutzer die Navigationsschaltflichen in deaktiviertem
Zustand ausblenden kann, wodurch sich mehr Meniielemente gleichzeitig darstellen
lassen.

49

4. Konzept

+ Des Weiteren kann der Benutzer einstellen, dass bei der vertikalen Navigation im Menii
je Unterment die zuletzt angezeigten Meniielemente gespeichert werden. Dies hat den
Vorteil, dass der Benutzer bei einer hohen Anzahl an Elementen in einem Untermend,
durch dieses womdglich nicht erneut sehr weit ,durchblattern” muss, um bei dem beno-
tigten Meniielement anzukommen, wenn er dieses zuvor kurz verlassen musste, um die
Funktionalitit eines anderen Untermeniis zu nutzen.

4.3. Eingabemoglichkeiten

Die Anwendung zur Steuerung des barrierefreien Smarthomes unterstiitzt mehrere Eingabe-
moglichkeiten, wie es die Anforderung F1 verlangt. Aus dem Abschnitt 2.2 sowie der Aus-
wertung der Interviews in 3.1.4 geht hervor, dass es sowohl aufgrund der physischen sowie
geistigen Fahigkeiten als auch wegen der unterschiedlichen personlichen Praferenzen, nicht die
eine perfekte Eingabemethode zur Bedienung des barrierefreien Smarthomes fiir die Benutzer
aus der Zielgruppe gibt.

Aus diesem Grund lasst sich die Anwendung fiir das barrierefreie Smarthome neben den
herkémmlichen Eingabemethoden mittels Maus, Tastatur und Touch auch via Sprachsteue-
rung, Face-Tracking sowie Scanning bedienen. Letztere drei Eingabemethoden sind speziell
auf die Bediirfnisse der Zielgruppe abgestimmt und sollen ihr die eigenstdndige Benutzung
ermoglichen.

4.3.1. Face-Tracking

Die Steuerung mittels Gesichtsverfolgung wird mit Hilfe der Mobile Vision API von Google
realisiert. Sie ermoglicht die Erkennung und Verfolgung von Gesichtern in Bildern beziehungs-
weise einem Video (vgl. [Goo16b]). Die Verwendung der Mobile Vision API zur Steuerung
des barrierefreien Smarthomes mittels Gesichtsverfolgung eignet sich aus mehreren Griinden.
Da sie auf Tablets und Smartphones, deren Betriebssystem Android oder iOS ist, verwend-
bar ist und deren vorhandene Frontkamera nutzen kann, fallt kein Bedarf an zusatzlicher
Hardware oder gar solcher, die speziell auf die Bediirfnisse der Zielgruppe abgestimmt ist, an
(vgl. [Goo16b]). Hierdurch lasst sich sehr gut die Anforderung N2 realisieren. Dariiber hinaus
lasst sich die Anforderung N1, welche die Unterstiitzung von Hardware in unterschiedlicher
Grofle fordert, mittels der Mobile Vision API, was das Face-Tracking betrifft, ebenfalls sehr
gut realisieren, da sie sowohl fiir Smartphones als auch Tablets verfiigbar ist. Des Weiteren
entstehen durch ihre Verwendung keine Kosten (vgl. [Goo16c]).

Zu einem erkannten Gesicht liefert die Mobile Vision API mehrere Informationen (vgl.
[Goo16b]). Unter anderem handelt es sich dabei um folgende fiir das Face-Tracking beno-
tigte:

50

4.3. Eingabemdglichkeiten

Steuerung des Cursors auf der vertikalen Achse durch Neigen des Kopfes
nach vorne / hinten

eine Meniiebene eine Menilebene eine Meniiebene
nach oben nach oben nach oben

néchste
Menielemente

o n “ o n “ o “
- -
CNBC : nachste CNBC ndchste CNBC
Meniielemente Meniielemente

Kopf ist aufrecht (in keine Kopf ist in den Nacken

Kopf ist zur Brust geneigt Richtung geneigt) gelegt

Abbildung 4.6.: Steuerung des Cursors auf der vertikalen Achse durch Neigen des Kopfes.

« Die Position als Koordinaten in Form von Pixelwerten von diversen Merkmalen im
Gesicht, wie zum Beispiel den Augen sowie der Nasenwurzel. (vgl. [Goo16b] u. [Goo16f])

« Rotation des Gesichts in Grad. Sprich, ob die Person frontal auf die Kamera schaut oder
nach links / rechts an dieser vorbei sieht. (vgl. [Goo16b])

« Offnungswahrscheinlichkeit fiir das linke und rechte Auge (vgl. [Goo16d]). Jedoch
ist diese bisher (Stand 09.12.2016) nur in der API Version fiir Android verfigbar (vgl.
[Goo16b]).

Die Neigung und Rotation von dem Kopf des Benutzers werden auf die Position eines Kreises
abgebildet, welcher iber den Buttons in der Benutzeroberflache angezeigt wird. Er ist somit
eine Art Cursor. In Abbildung 4.6 ist er griin dargestellt. Indem der Benutzer seinen Kopf in
Richtung Brust oder ,leicht” in den Nacken legt, dndert er die vertikale Position des Cursors.
Die Abbildung 4.6 veranschaulicht das. Realisiert wird die vertikale Steuerung, indem das
Intervall mit den moglichen Werten der Kopfneigung auf jenes mit den méglichen Positionen
des Cursors auf der vertikalen Achse ausgehend von 0 abgebildet wird. Dafiir sind folgende
Variablen von Bedeutung:

51

4. Konzept

« Eingabewert e,: Bei dem Eingabewert handelt es sich um die ermittelte Kopfneigung.

« Eingabewert fiir die minimale vertikale Cursor-Position e,,;,,: Dies ist der kleinste
Eingabewert fiir die Kopfneigung.

« Eingabewert fiir die maximale vertikale Cursor-Position e,,,,,: Dies ist der grofite Ein-
gabewert fiir die Kopfneigung.

« Maximale vertikale Cursor-Position p,,q.,: Das ist die maximale Position des Cursors
auf der vertikalen Achse.

« Vertikale Cursor-Position p,: Hierbei handelt es sich um die aus der Kopfneigung be-
rechnete Position des Cursors auf der vertikalen Achse.

Die mathematische Formel in vereinfachter Form hierfiir lautet wie folgt:

o €v — Cminv
Pv = * Pmazv

Emazv — Cminv

Bei der Formel handelt es sich um eine vereinfachte Form, weil sie davon ausgeht, dass die
Eingabewerte grof3er oder gleich dem minimalen Eingabewert und kleiner oder gleich dem
maximalen Eingabewert sind. In der Praxis ist dies jedoch nicht der Fall, da aus Komfortgriinden
nicht die aus korperlicher Sicht maximal moéglichen Werte fiir die Kopfneigung verwendet
werden.

Da in der Mobile Vision API die Bestimmung der Kopfneigung noch nicht implementiert
ist, muss diese iiber die vertikale Positionsveranderung eines Merkmals im Gesicht, zum
Beispiel der Nasenwurzel, bestimmt werden (vgl. [Goo16b]). Dies ist moglich, da sich beim
Neigen des Kopfes auch die Position der Nasenwurzel oder anderer Merkmale in der Vertikalen
verandert.

Uber das Drehen seines Kopfes nach links oder rechts kann der Benutzer den Cursor auf der
horizontalen Achse bewegen. Die in Abbildung 4.7 gezeigten Beispiele veranschaulichen das.

Die Rotation des Kopfes lasst sich direkt iiber die Mobile Vision API ermitteln, da diese in ihr
schon implementiert ist (vgl. [Goo16b]). Die Mobile Vision API gibt die Drehung des Kopfes
in Grad zuriick. Wenn der Benutzer seinen Kopf nach links dreht, handelt es sich um einen
positiven und bei einer Drehung nach rechts, um einen negativen Wert (vgl. [Goo16b]). Auch
hier muss das Intervall der Eingabewerte auf jenes mit den moglichen Positionen des Cursors
auf der horizontalen Achse ausgehend von 0 abgebildet werden. Dafiir sind folgende Variablen
von Bedeutung:

« Eingabewert e;,: Drehung des Kopfes in Grad.

« Eingabewert fiir die minimale horizontale Cursor-Position €,,;,;: Dies ist der kleinste
Eingabewert fiir die Drehung des Kopfes.

 Eingabewert fiir die maximale horizontale Cursor-Position €,,,.4: Dies ist der grofite
Eingabewert fiir die Drehung des Kopfes.

52

4.3. Eingabemdglichkeiten

« Maximale horizontale Cursor-Position p,,q.: Das ist die maximale Position des Cursors
auf der horizontalen Achse.

+ Horizontale Cursor-Position p,: Hierbei handelt es sich um die aus der Kopfdrehung
berechnete Position des Cursors auf der horizontalen Achse.

Die dazugehorige Formel in vereinfachter Form lautet wie folgt:

o €n — Eminh
Ph = * Pmazh
€mazh — Eminh

Die Eingabewerte fiir die minimale und maximale horizontale Position konnen nicht gréf3er als
ungefihr +18 Grad beziehungsweise kleiner als -18 Grad sein. Ursachlich hierfiir ist, dass ande-
renfalls die Offnungswahrscheinlichkeit fiir das linke und rechte Auge nicht mehr feststellbar
ist. (vgl. [Goo16b])

Die Augenoffnungswahrscheinlichkeit dient zur Erkennung des Blinzelns. Mittels diesem kann
der Benutzer den Button betétigen, den er mit dem Cursor ausgewahlt hat. Gegen Verweilen
als Auswahlmethode spricht, dass Dybdal et al. in ihrer Studie zu dem Ergebnis kamen, dass

Steuerung des Cursors auf der horizontalen Achse durch Drehen des

Kopfes nach links / rechts

eine Meniiebene eine Menuebene
nach oben

nathste
Menielemente

-
- "“hsm - M -
Menielemente Menielemente

Kopf ist weder nach links Kopf ist nach rechts

Kopfist nach links gedreht noch nach rechts gedreht gedreht

Abbildung 4.7.: Steuerung des Cursors auf der horizontalen Achse durch Drehen des Kopfes.

53

4. Konzept

sich Gesten zur Bestatigung einer Auswahl auf kleinen Displays besser eignen als Verweilen
(vgl. [DAH12]). Des Weiteren mochten die potenziellen Benutzer mit der Anwendung zur
Steuerung des barrierefreien Smarthomes nicht permanent mit diesem interagieren, sondern
zwischendurch andere Téatigkeiten durchfithren, weshalb eine Betatigung der Buttons durch
Verweilen auch deshalb als weniger geeignet erscheint. Das Blinzeln lasst sich in 3 Arten
unterscheiden:

+ Blinzeln mit dem linken Auge.
« Blinzeln mit dem rechten Auge.
+ Gleichzeitiges Blinzeln mit beiden Augen.

Des Weiteren wire es noch moglich, die Dauer des Blinzelns auszuwerten, sodass beispielsweise
zwischen schnellem und langsamen Blinzeln unterschieden werden kann. Dieser Ansatz wird
im Rahmen der Abschlussarbeit jedoch nicht weiter verfolgt, da ohne die Beriicksichtigung
der Geschwindigkeit beim Blinzeln schon 3 Eingabebefehle moglich sind. Das Konzept fiir
das Face-Tracking sieht vor, dass mittels Blinzeln ein Button betatigbar ist. Zusétzlich soll
der Benutzer das Face-Tracking pausieren und fortsetzen kénnen. Jedoch besteht schon bei
diesen 2 verschiedenen Eingabebefehlen das Problem, dass nicht alle Menschen mit nur einem
Auge blinzeln kénnen. Es ist aber auch moglich, mittels allen 3 Blinzelarten ein und dieselbe
Funktion auszufiihren, zum Beispiel, dass der Button betatigt wird, unabhéngig davon, ob
mit dem linken, rechten oder beiden Auge(n) geblinzelt wurde. Das kann fiir Benutzer, die
Schwierigkeiten beim Blinzeln haben, die Betatigung einer Schaltflache erleichtern.

4.3.2. Scanning

Diese Eingabemethode fokussiert die Buttons nacheinander in einer definierten Reihenfolge.
Der Fortschritt der Fokussierung kann wahlweise manuell oder automatisch erfolgen. Bei
letzterer ist festlegbar, wie lange ein Button fokussiert bleiben soll. Je kiirzer dies ist, desto
schneller ist der Fortschritt. Optional ist einem Eingabebefehl die Funktionalitat zuweisbar,
die automatische Fokussierung zu pausieren oder fortzusetzen. Wenn der Fortschritt manuell
erfolgt, muss der Benutzer fiir jede Fokussierung eine Eingabe vornehmen. Unabhéngig davon,
ob der Fortschritt der Fokussierung automatisch oder manuell erfolgt, kann der Benutzer iiber
eine Eingabe den zu diesem Zeitpunkt fokussierten Button betatigen. Erfolgt die Fokussierung
des jeweils nachsten Buttons automatisch, ist auch die Rede von 1-Button-Scanning, da der
Benutzer in diesem Fall nur 1 Taster beziehungsweise einen Eingabebefehl zur Bedienung
bendtigt. Fiihrt er den Fortschritt hingegen selbst durch, sind 2 erforderlich, weshalb diese
Eingabemdglichkeit 2-Button-Scanning genannt wird. Der Benutzer soll das Scanning sowohl
iber eine Tastatur als auch mittels Blinzeln bedienen konnen. Fiir Erstere ist theoretisch die
Verwendung einer normalen Tastatur moglich. Jedoch ist das Scanning fiir Benutzer, welche
eine herkommliche Tastatur noch bedienen kdnnen, unpraktisch. Vielmehr ist es fiir Personen
gedacht, die eine Tastatur nur noch sehr eingeschriankt oder gar nicht nutzen kénnen. Fir
Erstere bietet sich die Benutzung eines wie in Abbildung 4.8 dargestellten Button-Switch an.

54

4.3. Eingabemdglichkeiten

Abbildung 4.8.: Button Switch, der sich fiir das 1- und 2-Button-Scanning eignet.

Bei diesem handelt es sich um eine spezielle Tastatur, welche aus lediglich 2, aber dafiir sehr
groflen, Tasten besteht. Dadurch konnen ihn Personen nutzen, die eine oder beide Hande
noch eingeschrankt bewegen konnen. Beim 1-Button-Scanning kann der Benutzer iiber eine
der beiden Tasten die fokussierte Schaltfldche betatigen und optional mit der zweiten den
Fortschritt pausieren oder fortsetzen. Bei der Eingabemethode 2-Button-Scanning dient die
zweite Taste zur Fokussierung des nachsten Buttons. Analog dazu soll auch das Scanning
via Blinzeln funktionieren. Die Erkennung von diesem erfolgt iiber die Mobile Vision API
von Google, welche auch das im vorherigen Unterkapitel beschriebene Face-Tracking nutzt.
Sofern der Benutzer sowohl mit einem einzelnen als auch mit beiden Augen blinzeln kann,
stehen drei verschiedene Eingabebefehle zur Verfiigung. Fiir das 2-Button-Scanning muss der
Benutzer 2 Blinzelarten beherrschen, vergleichbar mit den 2 Tasten beim Bluetooth Switch.
Beim 1-Button-Scanning ist es hingegen ausreichend, eine der Blinzelarten zu konnen, da das
Pausieren und Fortsetzen optional ist.

55

4. Konzept

4.3.3. Sprachsteuerung

Bei dieser Eingabemethode kann der Benutzer die Schaltflaichen via Sprache bedienen. Diese
Arbeit verfolgt die Sprachsteuerung konzeptionell nur soweit, dass das in 4.2.1 beschriebene
Konzept fiir die Definition der Meniistruktur die Zuweisung von Sprachbefehlen in den einzel-
nen Meniielementen vorsieht. Der Grund dafiir, dass das Konzept die Sprachsteuerung nur am
Rande unterstiitzt ist der, dass Google derzeit an einer Sprachsteuerung fiir das Betriebssystem
Android arbeitet, um Benutzern, welche ihre Hande nicht zur Bedienung verwenden koénnen,
diese zu ermdglichen (vgl. [Gool6m]). Bei der Sprachsteuerung handelt es sich um die App
Voice Access, welche sich zum Erstellungszeitpunkt dieser Arbeit noch in der Entwicklung
befindet (vgl. [Gool6ml]), aber zu Testzwecken schon verwendbar ist. Die Spracheingabe mittels
Voice Access funktioniert, indem der Benutzer entweder den Button-Text des Buttons, den
er betatigen mochte, oder die Zahl sagt, welche die Sprachsteuerung an jedem klickbaren
Element der Benutzeroberflache einblendet (vgl. [Goo16l]). Das Betdtigen einer Schaltflache
iiber die zwei zuvor genannten Mdoglichkeiten funktioniert schon gut, weshalb die mittels
Voice Access mogliche Sprachsteuerung fiir die im Kapitel 6 beschriebenen Benutzbarkeitstests
ausreichend ist. Eine eigene Umsetzung der Sprachsteuerung zum jetzigen Zeitpunkt wiare in
den Augen des Autors nicht sinnvoll gewesen, da es besser ist, zunachst abzuwarten, wie gut
die App Voice Access nach ihrer Fertigstellung funktionieren wird. Wenn ihre Funktionsweise
zufriedenstellend ist, wire es sowohl fiir die Benutzung als auch die Entwicklung beziehungs-
weise Pflege der Anwendung zur Steuerung des barrierefreien Smarthomes einfacher, die
vom Betriebssystem zur Verfiigung gestellte Sprachsteuerung zu verwenden, als eine eigene
zu entwickeln. Nachteilig an der Sprachsteuerung mittels Voice Access ist , dass sie fiir die
Spracherkennung auf eine Internetverbindung angewiesen ist (vgl. [Goo16i]).

4.3.4. Vergleich der Eingabemethoden

Die Bedienung des Smarthomes via Touch, Maus oder Tastatur ist fiir die in Abschnitt 3.1.1
beschriebene Zielgruppe nur schwer oder gar nicht méglich. Aus diesem Grund soll sich die
Anwendung fiir das barrierefreie Smarthome durch eine der in den vorherigen 3 Unterkapiteln
beschriebenen Eingabemethoden barrierefrei bedienen lassen. Auf den ersten Blick erscheint
es vielleicht als unnétig, dass zur Herstellung der Barrierefreiheit fiir Benutzer, welche ihre
Hiande nur noch eingeschrankt oder gar nicht mehr verwenden kénnen, mehrere Eingabe-
methoden entwickelt werden sollen. Jedoch haben diese Benutzer trotz der Gemeinsamkeit,
dass sie ihre Hande nur noch eingeschrankt oder gar nicht mehr verwenden konnen, unter-
schiedliche Fahigkeiten und Bediirfnisse. Das ist zum einen darauf zuriick zu fithren, dass sich
ihre Behinderung beziehungsweise Krankheit unterschiedlich auswirkt oder sie an mehreren
leiden. Zum anderen haben sie unterschiedliche Wiinsche und Bediirfnisse hinsichtlich der
Bedienung, wie auch die Auswertung der Interviews in 3.1.4 im Bereich der Eingabemethoden
ergab. Die Interviewteilnehmer wurden nach ihrer Meinung zu der Sprachsteuerung sowie
dem Face-Tracking gefragt. Die Tabelle 4.1 soll den zuerst genannten Aspekt untermauern,

56

4.4. Eingabeverarbeitung

Tabelle 4.1.: Benétigte Fahigkeiten je Eingabemethode

Eingabemethode erforderliche Fahigkeit(en)
Touch eingeschrankte Motorik an einer Hand
Maus uneingeschriankte Motorik an einer Hand
Tastatur uneingeschriankte Motorik an einer Hand
1-Button-Scanning via Taster 1 Taster bedienbar

1-Button-Scanning via Blinzeln 1 Blinzelart beherrschen
2-Button-Scanning via Taster 2 Taster bedienbar

2-Button-Scanning via Blinzeln 2 Blinzelarten beherrschen

Face-Tracking Kopf bewegen u. 1 Blinzelart beherrschen
Sprachsteuerung sehr verstandliche Aussprache

indem sie die Eingabemethoden fiir das barrierefreie Smarthome sowie die jeweils fiir sie
benoétigten Fahigkeiten auflistet.

Die Tabelle 4.1 zeigt, dass sich das Face-Tracking fiir Personen eignet, die ihren Kopf bewegen
und blinzeln kénnen. Jedoch kann die Querschnittlahmung auch so hoch sein, dass eine betrof-
fene Person ihren Kopf nicht mehr bewegen kann, wie in Abschnitt 2.2.2 ndher beschrieben.
Fiir sie stellt die Sprachsteuerung dann eine Alternative dar. Letztere konnte grundsatzlich auch
von den Personen genutzt werden, die ihren Kopf noch bewegen kénnen. Jedoch bringt auch
die Sprachsteuerung Einschrankungen mit sich. Zum einen kénnen sie Umgebungsgerdusche
storen und zum anderen gibt es Benutzer, die neben der Querschnittlihmung zusatzlich noch
Sprachprobleme haben, was die Sprachsteuerung zumindest erschwert oder gar unméglich
macht, weshalb diese vom Face-Tracking profitieren kénnen. Dariiber hinaus ist es mdglich,
dass ein Benutzer weder seinen Kopf bewegen noch fiir die Sprachsteuerung ausreichend
gut sprechen kann. Fiir diesen Benutzer eignet sich dann das Scanning mittels Blinzeln. Das
Scanning ist in Kombination mit einer speziellen Tastatur mit grof3en Tasten dariiber hinaus fiir
Benutzer geeignet, die ihre Hande zwar noch bewegen konnen, aber denen es an der Prézision
zur Bedienung einer herkommlichen Tastatur oder Maus fehlt. Fiir die selbe Benutzergruppe
wire es teilweise auch moglich die App zur Steuerung des barrierefreien Smarthomes mittels
Touch zu bedienen, da sich die Anzeigegrofle der Buttons einstellen und somit an die motori-
schen Fahigkeiten der Hand des Benutzers anpassen lasst. Fir die Bedienung einer Maus oder
Tastatur muss die Funktionsfahigkeit der Hand hingegen besser erhalten sein.

4.4. Eingabeverarbeitung

Die Anforderungen F1 sowie N5 verlangen zum einen die Unterstiitzung mehrerer Einga-
bemethoden und zum anderen, dass sich weitere zu einem spéateren Zeitpunkt problemlos
hinzufiigen lassen. Deshalb ist es sinnvoll, die Realisierung der Eingabemethoden Scanning

57

4. Konzept

[Betriebs-] [Scanning /]

system Face-Tracking

Eingabeereignis

[Button]

lBefehI

[zentrale Ausfihrungseinheit]

[Benutzer-]

oberflache [Erweiterung]

Abbildung 4.9.: Konzeptionelle Eingabeverarbeitung

sowie Face-Tracking, welche nicht vom Betriebssystem aus angeboten werden, von der Be-
nutzeroberflache zu trennen. Dadurch ist es zu einem spateren Zeitpunkt mit wenig Aufwand
moglich, eine weitere Eingabemethode hinzuzufiigen. Die Abbildung 4.9 zeigt den Ablauf,
welchen ein Eingabeereignis in der Anwendung zur Steuerung des barrierefreien Smarthomes
nimmt und dadurch auch, wie die 2 zuvor genannten Eingabemethoden gekapselt sind.

Auf der zweiten Ebene befindet sich die Benutzeroberflache. Sie besteht aus den Buttons. Wenn
der Benutzer die Eingabe via Touch, Tastatur, Maus oder der Sprachsteuerung vornimmt, wird
diese vom Betriebssystem verarbeitet und an den entsprechenden Button weiter geleitet. Die
Eingaben, die der Benutzer mittels Scanning oder Face-Tracking tatigt, kann das Betriebs-
system dagegen nicht weiterleiten, da diese Eingabemethoden nicht Bestandteil von diesem
sind. Stattdessen sind sie Teil der Anwendung zur Steuerung des barrierefreien Smarthomes
und befinden sich in der Abbildung 4.9 auf der Ebene 1. Aus der Perspektive eines Buttons
verhalten sich die beiden Eingabemethoden jedoch vergleichbar wie die anderen, da sie wie
das Betriebssystem das Eingabeereignis an ihn weitergeben.

Da das Konzept fiir die Benutzeroberfliche vorsieht, dass der Benutzer diese selbst um Menii-
elemente beziehungsweise Buttons erweitern kann, ist es fiir die Anwendung zur Steuerung
des barrierefreien Smarthomes gar nicht moglich, zu wissen, an welches Ziel sich der Einga-
bebefehl richtet. Bei den nicht bekannten Zielen handelt es sich um die im Unterkapitel 4.1
beschriebenen Erweiterungen. Fiir solche Situationen, in denen es also unklar ist, was genau

58

4.4. Eingabeverarbeitung

passieren soll, wenn der Benutzer eine Button tatigt, eignet sich das Befehls-Entwurfsmuster
(vgl. [GRO04, S. 173]). Der in Abbildung 4.9 dargestellte Ablauf der Eingabeverarbeitung ent-
spricht diesem. Wenn ein Button ein Eingabeereignis erhalten hat, leitet er einen Befehl an
eine zentrale Ausfithrungseinheit auf Ebene 3 weiter. Der Befehl beinhaltet die Funktionalitat,
welche als Folge der Button-Betatigung auszufiihren ist. Entsprechend den im Unterkapitel
4.2.1 beschriebenen Meniielementen besteht die auszufithrende Funktionalitdt aus einem Na-
vigationsschritt in der Meniistruktur und / oder dem Aufruf einer Erweiterung. Durch die
zentrale Ausfithrung der Befehle ist die Logik fiir die Steuerung des barrierefreien Smarthomes
von deren Benutzeroberfliche getrennt.

59

5. Umsetzung Prototyp

Dieses Kapitel behandelt die prototypische Implementierung der Anwendung zur Steuerung
des barrierefreien Smarthomes. Hierzu begriindet es zunachst, welche Anforderungen in Form
des Prototyps realisiert und was fiir Technologien dafiir verwendet werden. Anschlieffend stellt
es dessen Architektur vor und beschreibt die Implementation ihrer einzelnen Komponenten.

5.1. Begrundung fur die prototypische Umsetzung
ausgewahlter Anforderungen

Die Realisierung des Prototyps umfasst einen Grof3teil der in Abschnitt 3.2 definierten An-
forderungen. Das Hauptaugenmerk der Realisierung liegt dabei auf den barrierefreien Ein-
gabemethoden Face-Tracking (Anforderung F3), Sprachsteuerung (Anforderung F4) sowie 1-
und 2-Button-Scanning (Anforderung F5), um diese im Rahmen der in Kapitel 6 beschriebenen
Benutzbarkeitstests mit den herkommlichen Eingabemethoden Touch, Maus und Tastatur
vergleichen zu konnen.

Lediglich zwei Anforderungen werden gar nicht oder nur teilweise implementiert. Dabei
handelt es sich zum einen um die Anforderung F8, welche fordert, dass der Benutzer das barrie-
refreie Smarthome selbststiandig ein- und ausschalten konnen soll. Im Verlauf der Interviews
und Kozeptionierung hat sich herausgestellt, dass diese Funktion besondere Herausforderungen
mit sich bringt, welche im Rahmen dieser Arbeit nicht umsetzbar sind. Dariiber hinaus liegt der
Schwerpunkt, wie schon weiter oben beschrieben, auf dem Vergleich der verschiedenen Einga-
bemethoden zur Steuerung des barrierefreien Smarthomes, weshalb das Ein- und Ausschalten
von diesem zunichst als zweitrangig betrachtet werden kann. Zumal ein Grofiteil der Personen
aus der in Abschnitt 3.1.1 beschriebenen Zielgruppe die meiste Zeit eine Hilfsperson in ihrer
Nihe hat, welche das Ein- und Ausschalten zunichst iibernehmen kann. Zum anderen wird
die in der Anforderung F5 verlangte Sprachsteuerung nicht implementiert, sondern mit Hilfe
der App Voice Access von Google, welche sich derzeit noch in der Entwicklung befindet (Stand
08.12.2016), in den Benutzbarkeitstests getestet (vgl. [Gool6m]). Zwar konnte eine eigene
Implementierung womdglich besser funktionieren, jedoch wiirde es sich bei dieser dann um
eine Sprachsteuerung handeln, welche nur innerhalb der App zur Steuerung des barrierefreien
Smarthomes verwendbar ist. Langfristig konnte das zu Schwierigkeiten mit der Voice Access
App von Google fithren oder mit dieser konkurrieren, weshalb es aus der Sicht des Autors
wenig sinnvoll gewesen wiére, in eine eigene Sprachsteuerung zum jetzigen Zeitpunkt zu

61

5. Umsetzung Prototyp

investieren. Zumal die Funktionalitat der App Voice Access zum Vergleich der Eingabemethode
Sprachsteuerung mit den anderen Eingabemethoden grundsétzlich ausreichend ist und sie
spater sogar eine Moglichkeit zur Umsetzung des Ein- und Ausschaltens der Steuerung des
barrierefreien Smarthomes sein konnte, da sich mit ihr das gesamte Android Betriebssystem
bedienen lassen konnen soll (vgl. [Gool6m]).

In den in Abschnitt 3.1 beschriebenen Interviews dufierten die Teilnehmer mehrere Wiinsche
hinsichtlich Geraten, welche sie mit der App zur Steuerung des barrierefreien Smarthomes
bedienen kdonnen mochten. Dazu gehorten unter anderem die Rollladen, Heizung sowie die
Einstellung der Liegeposition im Bett. Jedoch miisste fiir die Ansteuerung von diesen zunachst
entsprechende Hardware angeschaftt werden, was mit Kosten verbunden gewesen wére. Dar-
tiber hinaus eignen sich diese Geréte nicht fiir Demonstrationszwecke und Benutzbarkeitstests,
da sie entweder fest in einem Gebaude installiert oder nur schwer zu transportieren sind. Die
Auswertung der Interviews in Abschnitt 3.1.4 zeigt aber auch, dass die Teilnehmer sehr viel
Zeit mit dem Konsum von Fernsehen und Radio verbringen. Dariiber hinaus duflerte eine
interviewte Person den Wunsch, an ihrem Fernseher mehr Funktionen eigenstidndig bedienen
zu konnen. Eine weitere gab als mogliches Anwendungsszenario an, mittels einer Sprachsteue-
rung nach Filmen im Internet suchen zu kdnnen. Deshalb bietet es sich an, einen Fernseher als
ein Zielgeriat fir die Anwendung zur Steuerung des barrierefreien Smarthomes zu benutzen,
denn zum einen wiirde er vermutlich von einem Grofiteil der Personen aus der Zielgruppe
haufig genutzt und zum anderen lésst er sich leicht transportieren und es muss keine Hardware
gekauft werden, da fir die Benutzbarkeitstests auch ein Laptop als ,Fernseher” ausreicht. In
Abhiangigkeit der genutzten TV-Software wire es zudem sogar moglich, eine Onlinefilmsu-
che inklusive Streaming zu realisieren. Zusétzlich zu der Ansteuerung eines Fernsehers soll
jedoch noch eine eher klassische Smarthome-Funktion realisiert werden. Hierzu bieten sich
Funksteckdosen als zweites Zielgerat an, da sie sehr flexibel sind. Zum Beispiel ldsst sich mit
ihnen ohne groflen Aufwand die Steuerung einer Beleuchtung aufbauen, da sich herkémmliche
Lampen iiber sie ein- und ausschalten lassen. Des Weiteren sind sie transportabel, was fiir die
Benutzbarkeitstests von Vorteil ist.

5.2. Verwendete Systeme und Technologien

Die App zur Steuerung des barrierefreien Smarthomes wird fiir das Betriebssystem Android
prototypisch umgesetzt. Sie setzt den API-Level 21 oder héher beim Android Software Deve-
lopment Kit voraus. Optimiert ist sie auf den API-Level 23. Die Entwicklung und das Testen der
App zur Steuerung des barrierefreien Smarthomes erfolgt auf dem Tablet Pixel C, auf welchem
Android 7.0 installiert ist. Selbiges findet auch Verwendung fiir die in Kapitel 6 durchgefiihrten
Benutzerstudien. Die Erweiterungen und in die App eingebundene Bibliotheken basieren auf
der Java Version 6.

Als Smart-TV Zielgerat sollte urspriinglich das Programm Kodi TV, installiert auf einem Com-
puter, dienen. Dabei handelt es sich um ein umfangreiches Media Center Programm, welches

62

5.3. Architektur

nicht nur das Fernsehen, Filmeschauen und Musikhoren ermdglicht, sondern zusétzlich durch
Addons erweiterbar ist (vgl. [Kod16a]). Hierdurch ware es moglich, nicht nur lineares Fern-
sehen und Radio, sondern auch Videoplattformen, wie von einer der interviewten Personen
gewlinscht, zu unterstiitzen. Jedoch ist Kodi TV auf die Bedienung via Fernbedienung ausgelegt
(vgl. [Kod16c]). Dies ist vermutlich ursachlich dafiir, dass die angebotene API nur die Navigati-
onsmoglichkeiten bietet, welche mittels einer Fernbedienung méglich sind, wahrscheinlich
um die Entwicklung von Apps als Ersatz fur diese zu unterstiitzen (vgl. [Kod16b]). Bei den
Navigationsmoglichkeiten handelt es sich um die Pfeiltasten sowie die Auswahlbestétigung
(vgl. [Kod16b]). Es ist jedoch nicht méglich, mittels einer Anfrage, einen bestimmten Fernseh-
beziehungsweise Radiosender auszuwéhlen, unabhéngig davon, wie dieser empfangen wird
(vgl. [Kod16b]). Dadurch miisste der Benutzer von der App zur Steuerung des barrierefreien
Smarthomes in dieser jedes Mal eine Eingabe vornehmen, um in der Benutzeroberfldche von
Kodi TV einen ,Schritt” zu navigieren oder eine Auswahl zu bestéitigen. Zum Einstellen eines
Senders wire eine Folge von Eingaben in der App erforderlich. Dariiber hinaus ware es unbe-
quem, wenn der Benutzer mit dem Blick standig zwischen zwei Benutzeroberflachen wechseln
misste. Denn die App zur Steuerung des barrierefreien Smarthomes wire im Endeffekt eine
virtuelle Tastatur mit welcher der Benutzer in der Oberflache von Kodi TV navigiert. Aus den
genannten Nachteilen von Kodi TV in Kombination mit dem Konzept, wurde nach andere
Optionen gesucht. Bei dieser Suche stellte sich der VLC-Player als eine Alternative heraus.
Zwar besitzt dieser eine Benutzeroberflache, die fiir Fernseher weniger geeignet und zudem
nicht Giber Addons erweiterbar ist, was zur Konsequenz hat, dass Videoplattformen nicht
ohne weiteres integrierbar sind (vgl. [Vid16a]), aber seine API ermdglicht es, mittels einer
Anfrage und damit auch einer Benutzereingabe in der App zur Steuerung des barrierefreien
Smarthomes, einen Fernseh- oder Radiosender auszuwéhlen (vgl. [Vid16b]). Dadurch ist es
moglich in der Benutzeroberfliche der App, eine Senderauswahl in Form mehrerer Buttons
darzustellen, wo jeder einen Sender repréasentiert und der Benutzer den gewiinschten durch
Betatigen des entsprechenden Buttons auswahlen kann.

Fiir die Funksteckdosen wird eine WLAN-Steckdosenleiste der Wohlke EDV-Beratung GmbH
verwendet (vgl. [W6h16a]). Sie besitzt drei Steckdosen, welche sich unter anderem mittels
HTTP-Anfragen einzeln an- und ausschalten lassen (vgl. [W6h16b)). Fiir die prototypische Rea-
lisierung ist sie ideal, da sie leicht zu transportieren und vielfaltig einsetzbar ist. Beispielsweise
ist es denkbar, mit ihr im Rahmen von Benutzbarkeitstests oder zu Demonstrationszwecken
nicht nur Leuchtmittel, sondern auch Klimaanlagen beziehungsweise elektrische Heizungen
ein- und auszuschalten.

5.3. Architektur

Dieses Unterkapitel beschreibt die Architektur des Prototypen, ausgehend von einem UML-
Komponentendiagramm. Im Anschluss daran gibt es in Form eines UML-Klassendiagramms
einen Uberblick tiber die Eingabemethoden und wie diese hinsichtlich der Architektur in den

63

5. Umsetzung Prototyp

<<component>> 2 |
App
<<component>s_| <<component>2_| <<component> |
User Interface & Extensions —(={}(O— VLC-Player
Input Methods \C
\®)

<<component>z_|
<<component>s | <<component>3 | Power-(?utlet-
Usability Testing O) Command Strip

Executor
<<component>2_|
Menu

Abbildung 5.1.: UML-Komponentendiagramm fiir die App zur Steuerung des barrierefreien
Smarthomes.

Prototypen integriert sind. Das Unterkapitel schliefft im Anschluss daran mit einer abstrakten
Beschreibung der Abhandlung einer Benutzereingabe mit Hilfe eines UML-Sequenzdiagramms
ab. Die in diesem Abschnitt beschriebene Architektur ist nicht vollstandig, beinhaltet also nicht
alle Klassen, sondern gibt einen Uberblick tiber die wichtigsten Komponenten des Prototyps.

5.3.1. Komponenten

Das UML-Komponentendiagramm in Abbildung 5.1 zeigt die prototypische Realisierung des
barrierefreien Smarthomes unterteilt in Module. Grundsatzlich kann zwischen zwei Bereichen
unterschieden werden. Die Komponente App fasst alle Komponenten zusammen, welche
Bestandteil der Steuerung des barrierefreien Smarthomes sind und auf einem Gerét mit dem
Betriebssystem Android ausgefiithrt werden. Bei den zwei Komponenten, die sich auflerhalb
davon befinden, handelt es sich um die Zielgerite, welche iiber die App bedienbar sind. Diese
wiren zum einen die Komponente VLC-Player, welche auf einem Computer ausgefithrt wird
und den Smart-TV darstellen soll und zum anderen die Komponente Power-Outlet-Strip. Beide
Zielgerite behandelt der Abschnitt 5.4.6 noch ausfiihrlicher.

64

5.3. Architektur

Die Komponente User Interface & Input Methods umfasst die Benutzeroberfliche sowie die
unterstiitzten Eingabemethoden. Zu ihr gehort die Darstellung der Meniielemente in Form von
Buttons und Meldungen an den Benutzer. Nicht Bestandteil der Komponente User Interface &
Input Methods ist die Meniuistruktur.

Die Meniistruktur ist in einer eigenen Komponente namens Menu realisiert. Thre Aufgabe ist
es zum einen, die Menistruktur beim Start der App aus einer XML-Datei zu generieren und
zum anderen, die Navigation in ihr. Fir Letzteres verfolgt sie die aktuelle Position innerhalb
der Menistruktur und bietet eine Schnittstelle um in dieser zu navigieren. Das Ergebnis
eines Navigationsbefehls sind die im Anschluss an diesen darzustellenden Meniielemente
beziehungsweise Buttons. Hierdurch ist die komplette Meniistruktur sowie die Navigation in
der Komponente Menu gekapselt.

Die Schnittstelle der Komponente Menu nutzt die Komponente Command Executor. Diese
fihrt einen Befehl aus, wenn der Benutzer einen Button tétigt. Den entsprechenden Befehl
erhalt sie hierfiir von der Komponente User Interface & Input Methods. Fiir die Ausfithrung
eines Befehls nutzt die Komponente Command Executor Schnittstellen der Komponenten
Menu und Extensions. Letztere nutzt er, um die Zielgerate anzusteuern. Die Schnittstelle der
Komponente Menu nutzt er, um Navigationsbefehle in der Meniistruktur auszufithren und um
die als néchstes anzuzeigenden Meniielemente zu erhalten. Durch die Anwendung des Befehl-
Entwurfmusters in Form der Komponente Command Executor findet die Ausfithrung aller
Benutzereingaben an einer zentralen Stelle statt, was auch fiir die Protokollierung wéhrend
der im Abschnitt 6.2 beschriebenen qualitativen Benutzbarkeitstests von Vorteil ist.

Fir diese gibt es eigens die Komponente Usability Testing. Sie bietet eine Schnittstelle zur
Protokollierung der Benutzereingaben in einer CSV-Datei. Uber sie kann die Komponente
Command Executor wihrend den qualitativen Benutzbarkeitstests die Eingaben der Probanden
festhalten.

Die Komponente Extensions fasst samtliche Erweiterungen zusammen, welche zur Ansteue-
rung der Zielgerate dienen. Fir jede Art von Zielgerit wird es dazu in der Regel jeweils eine
JAR-Datei geben, weshalb die Komponente Extensions sozusagen aus mehreren Unterkompo-
nenten besteht. Im Rahmen der Implementierung des Prototyps gibt es jeweils eine Erweiterung
zur Ansteuerung des VLC-Players und der WLAN-Steckdosenleiste.

Die Komponente User Interface & Input Methods besitzt zudem noch drei Riickrufschnitt-
stellen (engl. callback interfaces). Sie sind in dem in Abbildung 5.1 dargestellten UML-
Komponentendiagramm der Ubersichtlichkeit wegen in Hellblau hervorgehoben. Eine der
Riickrufschnittstellen nutzt die Komponente Usability Testing um den Benutzer die zu 16sende
Aufgaben und das Ende des Tests in der Benutzeroberflache anzeigen zu konnen. Auf die zweite
Rickrufschnittstelle greift die Komponente Command Executor zu, um im Anschluss an die
Ausfiihrung eines Navigationsbefehls die neu anzuzeigenden Meniielemente beziehungsweise
Buttons an die Benutzeroberflache iibergeben zu kénnen. Die dritte Riickrufschnittstelle nutzt
die Komponente Extensions. Uber sie konnen die Erweiterungen dem Benutzer Fehlermeldun-
gen oder andersweitige Informationen anzeigen.

65

5. Umsetzung Prototyp

AbstractActivity
{Abstract}
AN
KeyboardScannin AbstractFace
y Activit g DefaultActivity TrackingActivity KeyboardActivity
¥ {Abstract}
1 <<interface>> 1 BlinkScanning DirectFace
IScanner Activity TrackingActivity

Scanner

Abbildung 5.2.: UML-Klassendiagramm mit den wichtigen Klassen der Eingabemethoden.

5.3.2. Eingabemethoden

Das UML-Klassendiagramm in Abbildung 5.2 zeigt eine Ubersicht iiber die Klassen der Einga-
bemethoden und wie diese zueinander in Beziehung stehen. Samtliche in diesem Diagramm
gezeigten Klassen gehoren zu der im vorherigen Abschnitt unter anderem beschriebenen
Komponente User Interface & Input Methods. Das UML-Klassendiagramm besteht jedoch nur
aus den wichtigsten Klassen je Eingabemethoden. Hilfsklassen wurden der Ubersichtlichkeit
wegen weg gelassen.

Die Klasse AbstractActivity erweitert die Activity Klasse von Android. Erstere besitzt die
Funktionalitét, welche alle Eingabemethoden benétigen. Hierbei handelt es sich in erster Linie
um Funktionen zur Darstellung der Meniielemente sowie um die drei Riickruf-Funktionen fiir
die Komponenten Usability Testing, Command Executor und Extensions.

Die DefaultActivity erweitert die Klasse AbstractActivity. Sie besitzt keine spezifischen
Funktionen, da sie die Eingabemethoden nutzen, welche das Betriebssystem Android schon un-
terstiitzt. Dies waren Touch, Maus sowie die Sprachsteuerung mittels der App Voice Access.

Die Klasse KeyboardActivity beinhaltet die Implementation fiir die Eingabemethode Tastatur.
Diese ist nicht in der DefaultActivity realisiert, da in den Einstellungen festlegbar ist, welcher
der angezeigten Buttons standardméflig fokussiert ist. Ohne diese Option wére eine eigene

66

5.3. Architektur

Klasse nicht noétig, da die Eingabe mittels Tastatur das Betriebssystem Android ebenfalls schon
unterstutzt.

Die abstrakte Klasse AbstractFaceTrackingActivity generalisiert die erforderlichen Funk-
tionalitdten des Face-Trackings, die sowohl fiir die Eingabemethode Face-Tracking als auch die
beiden Eingabemethoden 1- und 2-Button-Scanning mittels Blinzeln erforderlich sind. Erstere
ist vollends in der Klasse DirectFaceTrackingActivity realisiert. Fiir das Face-Tracking
sind jedoch im erheblichen Umfang noch weitere Klassen erforderlich, welche der Abschnitt
5.4.4 detaillierter beschreibt. Das 1- und 2-Button-Scanning mittels Blinzeln ist in der Klas-
se BlinkScanningActivity implementiert, da es fiir die Blinzelerkennung Funktionen des
Face-Trackings benotigt.

Fiir die Eingabemethoden 1- und 2-Button-Scanning mittels einer Tastatur oder Tasters ist die
Klasse KeyboardScanningActivity zustandig. Da das 1-Button-Scanning mittels Blinzelns
und jenes mit Tastatur, fiir die automatische Fokussierung des nachsten Buttons sowie die
Maoglichkeit zur Pausierung und Fortsetzung von dieser, die selbe Funktionalitit benétigen,
aber es keine Mehrfachvererbung in Java gibt, ist dieser Teil der Implementierung in die Klasse
Scanner, welche die Schnittstelle IScanner implementiert, ausgelagert.

5.3.3. Ablauf einer Eingabe

Das UML-Sequenzdiagramm in Abbildung 5.3 zeigt den Ablauf einer Benutzereingabe und soll
damit das Zusammenspiel der zuvor beschriebenen Komponenten und Klassen verdeutlichen.
Wenn der Benutzer mittels einer der zur Verfiigung stehenden Eingabemethoden einen Button
betatigt, wird dessen Methode performClick, wenn es sich um keine betriebssystemseitig un-
terstiitzte Eingabemethode handelt, durch eine der von der Klasse AbstractActivity erbende
Klasse aufgerufen. Im anderen Fall ibernimmt das Android Betriebssystem die Verarbeitung
des Eingabeereignisses. In beiden Fallen finden im Vorfeld noch weitere Methodenaufrufe
statt, die fiir das Verstandnis des Ablaufs jedoch unbedeutend sind und in Folge dessen in dem
UML-Sequenzdiagramm in Abbildung 5.3 nicht enthalten sind.

In Folge des Aufrufs der Methode performClick beziehungsweise der Eingabeverar-
beitung durch das Android Betriebssystem wird die Methode onClick des jeweiligen
View.OnClickListeners aufgerufen. Jeder der betdtigbaren Buttons besitzt einen. Dieser
greift daraufhin auf eine Instanz der Klasse CommandExecutor zu, welche als Singleton im-
plementiert und Kern der Komponente Command Executor ist, um mittels des Aufrufs der
Methode executeCommand eine Instanz einer, die Klasse AbstractCommand erweiternde Klasse,
auszufithren. Eine solche Instanz besitzt jeder Button. Sie beinhaltet die jeweilige Funktionali-
tat, welche ausgefiihrt werden soll, wenn der Benutzer den entsprechenden Button betatigt.
Eine genauere Beschreibung davon findet in Abschnitt 5.4.2 statt.

Der CommandExecutor ruft die Methode executeCommand an einer Instanz der Klasse
AbstractCommand auf und fiihrt, sofern qualitative Benutzbarkeitstests durchgefiithrt wer-
den, eine Protokollierung der Eingabe durch. Diese ist in dem UML-Sequenzdiagramm nicht

67

5. Umsetzung Prototyp

_ _ _ _ _ B R —
_ _ _ _ e
| | | |
“ “ “ -
“ “ R
| A
|
I
I
! S e R I
|
|
i >
| (suonangmau : <uonnNghA>IsI])INarepdn
I
i »
i
i
| <uonngAN>1sI
| ()suoningmana1e24d
|
— \\\\\\\\\\\\\\\\\v
T
! (~*)uonoyaindaxs
|
|
] \\Jummon_wwm_ubz\\\v
: ()2oueisujyas
m ()@oueisupes
| _
! ! ()puewwonaindaxa
I I
m m ! (puewwod : puew
! ! ! Wwo)|)puewWo)aINIDXS
| | F\\\\\\\\\\\\\\\\\v
i i J01ndaxjpuewiwo)
i i : ()aouejsujyad
| |
i | | ()soueisupnasd
| | |
I I I «
| | | | ()32110U0
I I I I
| | | |
| | | | i (PPRIDWIoRd
| | i i i / 1U3A3 I
I I I I I
I I I I I T
| | | | | | uaAa Indul
i i i i i i
| | | | | |
| | | | | |
1 1 1 1 1 1
Japeoisse AN umogpuewwo) 10inmaax3 19uS3st uonng Annnoyloensqy
puewwo) MIDUO MIIA o

Abbildung 5.3.: UML-Sequenzdiagramm, das die Verarbeitung einer Eingabe in der App zur

Steuerung des barrierefreien Smarthomes zeigt.

68

5.4. Implementierung

dargestellt. Wenn das Meniielement, welches der betitigte Button reprasentiert, den Aufruf
einer Erweiterung beinhaltet, beispielsweise die Auswahl eines Fernsehsenders, wird in der Me-
thode executeCommand der Klasse AbstractCommand zunichst die Methode executeAction
in der Klasse MyClassLoader aufgerufen. Diese greift anschlieSend auf eine der Erweiterungen
aus der Komponente Extensions zu, welche daraufhin die Kommunikation mit dem entspre-
chenden Zielgerat vornimmt. Diese ist nicht mehr in dem UML-Sequenzdiagramm in Abbildung
5.3 enthalten. Des Weiteren findet dieser Schritt nebenldufig statt, wodurch die Ausfithrung
der Methode executeCommand in der Klasse AbstractCommand nicht verzogert oder schlimms-
tenfalls blockiert wird. Wenn es sich bei dem betatigten Button um einen Navigationsbutton
handelt, mit dem also in der Meniistruktur nach oben, unten, links oder rechts navigiert werden
kann, instanziiert die Methode executeCommand Uber den Aufruf der Methode createButtons
anschlieend die neuen Buttons. Hierfiir muss Letztere auf die Schnittstelle der Komponente
Menu zugreifen. Dieser Zugriff sowie die erforderlichen Schritte zur Instanziierung der Buttons
sind in dem UML-Sequenzdiagramm in Abbildung 5.3 nicht mehr dargestellt. Nach der Instan-
ziierung der neuen Buttons sind diese noch an die Benutzeroberfliche zu tibergeben, damit
sie fiir den Benutzer sichtbar werden. Hierfiir ruft die Methode executeCommand die Methode
updateUI der Klasse AbstractActivity auf und iibergibt dieser die neuen Buttons. Bei der
Methode updateUI handelt es sich um eine der drei Riickrufschnittstellen der Komponente
User Interface & Input Methods.

5.4. Implementierung

Dieses Unterkapitel befasst sich mit der Implementierung des Prototyps. Dazu startet es mit der
Benutzeroberflache sowie der Menitistruktur. Anschliefend beschreibt es, wie die Komponente
Command Executor sowie die Eingabemethoden realisiert wurden. Den Abschluss dieses
Unterkapitels bildet die Implementierung der Erweiterungen.

5.4.1. Menustruktur und Benutzeroberflache

Dieses Unterkapitel behandelt die Implementierung der Meniistruktur sowie der Benutzer-
oberfliche. Zunéchst beschreibt es jedoch, wie sich die Meniistruktur in einer XML-Datei
definieren lasst.

Definition der Menustruktur

Die Definition der Mentistruktur findet in einer XML-Datei statt, welche beim Start der App
mittels JDOM geparst wird um die entsprechende Java-Objekte zu erzeugen (vgl. [J[DO16]).
Das Parsen der XML-Datei ist Bestandteil der Komponente Menu ebenso die entsprechenden
Klassen, deren Instanzen die XML-Elemente zur Laufzeit reprasentieren.

69

O 0 N O\ U W N

5. Umsetzung Prototyp

Der Quellcodeausschnitt 5.1 zeigt eine Ubersicht der XML-Datei, welche die Mentistruktur
des Prototyps beinhaltet. Sie besteht aus 4 Elementen, welche jeweils eine Liste mit weiteren
Elementen beinhaltet.

<?xml version="1.0" encoding="UTF-8"7?>
<menu xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<supported_languages>
</suppé;£éd,languages>
<shared_attributes>
</sharé&;attributes>
<menu_items>
</menu;i£ems>
<menu_hierarchy>
</menuihierarchy>

</menu>

Quellcodeausschnitt 5.1: Aufbau der Meniistruktur in der XML-Datei.

Das Element supported_languages beinhaltet die Sprachen, welche die definierte Benutzer-
oberflache unterstiitzt. Eine Mehrsprachigkeit ist vorgesehen, aber im Prototyp nicht vollstan-
dig umgesetzt, weshalb diesem Element bis jetzt keine weitere Bedeutung zukommt.

Das Element shared_attributes kann beliebig viele shared_attribute Elemente beinhal-
ten. Ein Shared-Attribute besteht aus einem eindeutigen Schliissel als Attribut, sowie einem
Datentyp und einem Wert als Unterelement. Bei dem Datentyp und dem Wert handelt es sich
um Strings. Der Quellcodeausschnitt 5.2 zeigt exemplarisch ein Shared-Attribute, welches
die IP-Adresse des Zielgerats mit VLC-Player beinhaltet. Auf die Shared-Attributes konnen
alle Erweiterungen zugreifen. Sie stellen somit auch eine Moglichkeit zum Datenaustausch
zwischen ihnen her. Des Weiteren lassen sie sich als Session-Attribute nutzen, welche nur
zur Laufzeit der App existieren. In diesem Fall sind sie dann nicht Bestandteil der XML-Datei,
sondern werden erst zur Laufzeit erzeugt. Ihr Schliissel muss trotzdem eindeutig sein. Die
Shared-Attributes lassen sich aber auch zur Definition von globalen Parametern verwenden.
Ein globaler Parameter ist beispielsweise die exemplarisch gezeigte IP-Adresse des Zielgerits
mit dem VLC-Player. Diese steht der Erweiterung zur Ansteuerung des VLC-Players somit
immer zur Verfiigung, weshalb sie nicht in jedem Meniielement, das einen Befehl an diesen
beinhaltet, als Parameter definiert sein muss.

<shared_attributes>

70

N NG W

N NG W =

5.4. Implementierung

<shared_attribute key="/vlc/ip">
<type>String</type>
<value>192.168.137.1</value>

</shared_attribute>

</shared_attributes>

Quellcodeausschnitt 5.2: Shared-Attribute in der XML-Datei.

Das Element menu_items beinhaltet samtliche Meniielemente, die in der Meniistruktur enthal-
ten sind. Ein Mentielement wird repréasentiert durch ein Element menu_item. Der Quellcode-
ausschnitt 5.3 zeigt die Definition des Mentielements zur Auswahl des Fernsehsenders ZDF. Das
Attribut id dient zur eindeutigen Identifizierung eines Meniielements. Diese ist erforderlich,
um weiter unten in der XML-Datei die Meniithierarchie zu definieren. Das Unterelement names
beinhaltet mindestens ein Element name. Dadurch, dass es von diesem mehrere geben kann,
lasst sich eine Mehrsprachigkeit realisieren. Die jeweilige Sprache eines name Elements defi-
niert das Attribut language. Des Weiteren besitzt jedes name Element sowohl eine Langversion
als auch eine Kurzversion als Bezeichnung. Hierbei handelt es sich um die Bezeichnung, die
auch auf den Button zu sehen ist. Der Prototyp léasst sich zu einem spéiteren Zeitpunkt so
erweitern, dass in Abhéngigkeit des zur Verfiigung stehenden Platzes auf dem Button entweder
die Lang- oder Kurzversion zu sehen ist. Dariiber hinaus gibt es eine aussprechbare Version
der Bezeichnung. Diese wird zur Sprachwiedergabe mittels TalkBack genutzt, um auch die
Barrierefreiheit fiir blinde und sehbehinderte Nutzer zu gewahrleisten (vgl. [Gool6e]). Die
speech_recognition_values stellen das vierte Unterelement da. Es beinhaltet mindestens
eine Bezeichnung, iiber welche der Button mittels Sprachsteuerung zu einem fortgeschritte-
neren Entwicklungszeitpunkt betétigbar ist. Der Prototyp verwendet diese Eintrage jedoch
noch nicht. Das Element icon_path ist optional. Uber es lasst sich eine Grafik verlinken, die
auf dem entsprechenden Button angezeigt wird. Uber die Unterelemente action_class und
parameters des Elements menu_item ist eine Funktionalitat festlegbar, welche beim Betatigen
des Buttons ausgefiihrt wird. Ersteres Unterelement legt die zu verwendende Erweiterung
fest. Das Element source_file_path beinhaltet den Pfad zu der JAR-Datei, welche die Er-
weiterung darstellt. Das Element class_path enthélt den Pfad zu der aufzurufenden Klasse
innerhalb der JAR-Datei. In dem Element parameters lassen sich Parameter in Form von
Schliissel-Wert-Paaren definieren, die beim Aufruf der Erweiterung an diese iibergeben werden.
Bei der Definition eines Mentuelements zur Auswahl eines Fernsehsenders, ist dessen Position
innerhalb der Playlist des VLC-Players als Parameter definiert, sowie eine Bezeichnung fiir die
Aktion welche in der iiber das Element class_path festgelegten Klasse auszufithren ist, um
den Fernsehsender auszuwéhlen.

<menu_item id="tv_zdf">
<names>
<name language="Deutsch">
<long_name>ZDF</long_name>
<short_name>ZDF</short_name>
<speakable_name>ZDF</speakable_name>
<speech_recognition_values>

71

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

O 00 N QN U W -

—_ =
N = O

5. Umsetzung Prototyp

<speech_recognition_value>ZDF</speech_recognition_value>
</speech_recognition_values>
</name>
</names>
<icon_path>/bfs/menu/icons/channels/tv/zdf.png</icon_path>
<action_class>
<source_file_path>/bfs/vlc/VlcActionClasses.jar</source_file_path>
<class_path>de.ableitner.vlcactions.VlcActionClass</class_path>
</action_class>
<parameters>
<parameter>
<name>methodName</name>
<value>playTvChannel</value>
</parameter>
<parameter>
<name>itemId</name>
<value>27</value>
</parameter>
</parameters>
</menu_item>

Quellcodeausschnitt 5.3: Meniilement zur Auswahl des Fernsehsenders ZDF in der XML-
Datei.

Der vierte und letzte Teil der XMI-Datei zur Definition der Benutzeroberfliache ist das Ele-
ment menu_hierarchy. Es definiert die Struktur des Meniis. Dazu besitzt es ein Unterelement
root_menu, welches die IDs derjenigen Meniielemente beinhaltet, die Teil des Hauptmeniis,
also der obersten, fiir den Benutzer sichtbaren Meniiebene, sind. Die IDs befinden sich je-
weils als Attribut in einem Element sub_menu_item. Neben dem Hauptmeni gibt es noch
Untermeniis. Je Untermenii gibt es ein Element sub_menu, welches ein Unterelement von dem
Element root_menu ist. Der Quellcodeausschnitt 5.4 zeigt exemplarisch die Definition eines
Untermeniis anhand der Favoriten-Sender des Fernsehers. Jedes sub_menu Element besitzt die
ID des Vorgangerknotens als Attribut. Die enthaltenen Meniielemente sind anschlieend, wie
schon beim Hauptmenii, als Unterelemente definiert. Mit Hilfe des Elements menu_hierarchy
ist es moglich, im Anschluss an das Parsen der XML-Datei, die einzelnen Mentielemente als
baumartige Meniihierarchie zu verkniipfen.

<menu_hierarchy>

<sub_menu id_of_parent_menu_item="tv_favorites">
<sub_menu_item id_of_sub_menu_item="tv_ard"/>
<sub_menu_item id_of_sub_menu_item="tv_zdf"/>
<sub_menu_item id_of_sub_menu_item="tv_swrBW"/>
<sub_menu_item id_of_sub_menu_item="tv_rtl"/>
<sub_menu_item id_of_sub_menu_item="tv_satl"/>
<sub_menu_item id_of_sub_menu_item="tv_pro7"/>
<sub_menu_item id_of_sub_menu_item="tv_vox"/>

</sub_menu>

72

13

U1 W N

O 0 N

10
11
12
13
14
15

5.4. Implementierung

</menu_hierarchy>

Quellcodeausschnitt 5.4: Untermenii Favoriten des Meniis fiir den Fernseher in der XML-
Datei.

Implementierung der Menustruktur

Die Klasse Menu beinhaltet die Logik fiir die Navigation in der Meniistruktur. Sie ist Bestand-
teil der gleichnamigen Komponente Menu und bildet die Schnittstelle von dieser, welche die
Komponente Command Executor nutzt, um die Navigationsbefehle durchzufithren. Der Quell-
codeausschnitt 5.5 stellt die Signaturen der vier wichtigsten Methoden dieser Schnittstelle dar.
Fiir jede Navigationsrichtung gibt es eine. Die Methoden up und down dienen zur vertikalen
Navigation um zwischen den in Abbildung 4.2 dargestellten Ebenen zu wechseln. Zur horizon-
talen Navigation innerhalb eines Untermentis gibt es die Methoden left und right. Alle 4
Methoden geben als Ergebnis die Meniielemente zuriick, welche die Benutzeroberflaiche im
Anschluss an den Navigationsschritt darstellt. Da die maximale Anzahl an Buttons konfigu-
rierbar ist, wird diese iiber den Parameter countOfMenuItemsToDisplay iibergeben. Dieser
limitiert die Anzahl der zuriickgegebenen Meniielemente und erméglicht es zudem, zur Lauf-
zeit festzuhalten, welche gegenwirtig angezeigt werden, was fiir die horizontale Navigation
erforderlich ist. Die Methoden up und down besitzen zudem noch den booleschen Parameter
usePreviousPosition. Ist dieser wahr, geben die beiden Methoden die im anzuzeigenden
Untermenii jeweils zuletzt sichtbaren Meniielemente zuriick. Anderenfalls handelt es sich um
die ersten Meniielemente des Untermeniis. Der Parameter menuItem in der Methode down
tibergibt die Referenz auf das Mentielement, dessen Untermenii ausgewahlt wurde.

public List<MenuItem> up(int countOfMenuItemsToDisplay, boolean
usePreviousPosition){
// implementation

public List<MenuItem> down(int countOfMenuItemsToDisplay, boolean
usePreviousPosition, MenuIltem menultem){
// implementation

public List<MenuItem> left(int countOfMenuItemsToDisplay){
// implementation

public List<MenuItem> right(int countOfMenuItemsToDisplay){
// implementation

Quellcodeausschnitt 5.5: Bestimmung des als nachstes zu betitigenden Buttons.

73

5. Umsetzung Prototyp

Implementierung Benutzeroberflache

Ein Hauptteil der Benutzeroberflache ist in der Klasse AbstractActivity implementiert.
Sie gehort zu der Komponente User Interface & Input Methods. Die Funktionalitét dieser
Klasse beschrankt sich auf das Einfiigen der Buttons, welche sie von der Komponente Com-
mand Executor erhalt, auf deren Implementation der folgende Abschnitt eingeht, sowie
die Anzeige von Fehlermeldungen und Debug-Daten. Dariiber hinaus enthalt die Klasse
AbstractActivity noch Funktionalitat fiir die in Kapitel 6 beschriebenen Benutzbarkeitstests.
Die Klasse AbstractActivity besitzt deshalb so wenig Komplexitat, da die Ausfithrung der
Navigationsschnitte in der Meniistruktur die Komponenten Menu und Command Executor
tibernehmen. Aus diesem Grund muss sie lediglich die Benutzeroberfliche aktualisieren, indem
sie die vorhandenen Buttons durch die neu erhaltenen ersetzt.

Wie in Anforderung F6 gefordert, ist die Anzahl der gleichzeitig sichtbaren Buttons sowohl
in der horizontalen als auch der vertikalen Ausdehnung konfigurierbar. Aus diesem Grund
muss sich die Grofie eines Buttons dynamisch an den zur Verfiigung stehenden Platz anpassen.
Dies wird dadurch erreicht, dass keine statischen Abmessungen hinterlegt sind, sondern die
Buttons die Layout-Eigenschaften besitzen, das Elternlayout sowohl vertikal als auch horizon-
tal maximal auszufiillen. Bei diesem handelt es sich um ein Linear Layout mit horizontaler
Ausrichtung. Fiir jede Button-Zeile gibt es eines. Damit sich die Buttons innerhalb von die-
sem die zur Verfiigung stehende Flache gleichmaflig teilen, sind sie gleich gewichtet. Da es
mehrere Zeilen mit Buttons geben konnen soll, befinden sich die Linear Layouts, die jeweils
eine Button-Zeile beinhalten, wiederum selbst in einem Linear Layout, das jedoch vertikal
ausgerichtet ist. Auch hier wird die gleichmafige Verteilung des zur Verfiigung stehenden
Platzes durch eine Gewichtung erreicht. Die Abbildung 5.4 zeigt anhand eines Screenshots
den zuvor beschriebenen Aufbau der Benutzeroberflache.

Da die Anzahl der anzuzeigenden Meniielemente nicht immer der maximalen Anzahl an
Buttons entspricht, Letztere aber dennoch eine einheitliche Grof3e besitzen sollen, fiillen die
freien Flachen sogenannte Platzhalter-Buttons auf, die weder betatigbar noch sichtbar sind.

Der Quellcodeausschnitt 5.6 beinhaltet die Methode updateUI der Klasse AbstractActivity.
In ihr findet die Aktualisierung der Benutzeroberfliche statt. Hierzu werden zunachst die
vorhandenen Linear Layouts, welche jeweils eine Button-Zeile bilden, entfernt. Anschlieffend
wird das Linear Layout fiir die oberste Button-Zeile in einer eigens dafiir zustandigen Methode
sowie ein Zahler initialisiert, der die Anzahl der je Linear Layout schon eingefiigten Buttons
zéhlt. Im Anschluss daran iteriert eine for-each-Schleife iiber die Liste mit den neuen Buttons.
Innerhalb von dieser werden die Buttons der Reihe nach in ein horizontales Linear Layout
eingefiigt und der Zahler inkrementiert. Entspricht dieser der maximal zuldssigen Anzahl an
Buttons in horizontaler Richtung, wird das horizontale Linear Layout in das vertikale Linear
Layout eingefiigt, ein neues initialisiert sowie der Zahler zuriickgesetzt. Im letzten if-Ausdruck
wird in jedem Button noch eine Referenz auf dessen linken und rechten Nachbarn gesetzt.
Dadurch ist es moglich, dass der Benutzer bei der Eingabemethode Tastatur, wenn er mochte,
mit den beiden Pfeiltasten links und rechts nicht nur innerhalb einer Button-Zeile sondern

74

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21

5.4. Implementierung

tiber diese hinweg, navigieren kann. Sprich er kann, aber muss nicht, die Pfeiltasten aufwarts
oder abwarts benutzen, um die Button-Zeile zu wechseln.

public void updateUI(List<MyButton> newButtons) {
this.linearLayoutForButtons.removeAllViews();
int buttonsOfOneHorizontallLinearLayout = 0;
LinearLayout horizontallLinearlLayout = this.createlLinearLayout();
int id = 0;
Button previousButton = null;
for(Button button : newButtons)({
horizontalLinearLayout.addView(button);
buttonsOfOneHorizontallLinearLayout++;
if(buttonsOfOneHorizontalLinearLayout ==
Settings.getInstance().menuGetNumberOfHorizontalButtons()){
this.linearlLayoutForButtons.addView(horizontallLinearLayout);
buttonsOfOneHorizontalLinearLayout = 0;
horizontallLinearLayout = this.createlLinearLayout();
}
if(previousButton !'= null){
previousButton.setNextFocusRightId(button.getId());
button.setNextFocusLeftId(previousButton.getId());
}
previousButton = button;
}
}
Quellcodeausschnitt 5.6: Einfiigen = neuer Buttons zur Aktualisierung der

Benutzeroberflache.

Die Instanziierung der Buttons {ibernimmt die Klasse ButtonFactory. Sie besitzt statische
Methoden, tiber deren Aufruf jeweils ein bestimmter Button erstellbar ist. Grundsatzlich kann
zwischen 3 unterschiedlichen Arten von Buttons unterschieden werden. Dabei handelt es
sich um den Platzhalter-Button, einen Button mit Beschriftung sowie einen mit Grafik und
Beschriftung. Bei ersteren 2 handelt es sich um die Klasse MyButton, welche von der Android
Klasse Button erbt. Die Klasse MyButton kann im Vergleich zu dieser zusétzlich eine Refernz
auf eine Instanz einer Klasse, welche die Schnittstelle ICommand implementiert, besitzen. Diese
ist erforderlich zur Ausfithrung der Funktionalitat des jeweiligen Buttons in der Komponente
Command Executor. Der Platzhalter-Button besitzt eine solche Referenz nicht, da er keine
Funktionalitiat enthilt. Aus diesem Grund werden seine Sichtbar- und Klickbarkeit schon
bei der Erzeugung in der Klasse ButtonFactory auf false gesetzt. Fiir beide Buttons mit
Beschriftung ist die Schriftgréfie von dieser einstellbar, wie in Anforderung F7 verlangt. Fiir die
Buttons mit Grafiken gibt es nochmals eine eigene Klasse MyIconButton, welche von MyButton
erbt. In ihr ist die Methode onDraw, welche das Android Betriebssystem zum Zeichnen des

75

5. Umsetzung Prototyp

N e v

eine Mentiebene nach oben Senderliste Favoriten

+

nachster Kanal vorheriger Kanal letzter Sender

9

Vollbild nachste Meniielemente

Abbildung 5.4.: Screenshot von der Benutzeroberflache. (Die Icons auf den Buttons stammen
von: https://material.io/icons/ (16.12.2016))

Buttons auf der Benutzeroberfliche aufruft, iberschrieben um die Grafik einzufiigen. Bei
dieser handelt es sich um jene, die in der in Abschnitt 5.4.1 beschriebenen XML-Datei zu
Definition einer Benutzeroberfliche durch Angeben eines Dateipfads zu dieser im Element
icon_path festlegbar ist. Da die Anzahl der Buttons sowie die Schriftgrofle konfigurierbar
sind und die Button-Beschriftungen unterschiedlich lang sind, miissen die Grafiken jeweils
so skaliert werden, dass sie sich in den noch freien Bereich eines Buttons einfiigen. Diese
Skalierung findet in der iiberschriebenen onDraw Methode statt. Im Anschluss daran ruft diese
noch die onDraw Methode der Oberklasse auf.

Insbesondere bei einer hohen Anzahl an Buttons und der Verwendung von Grafiken mit einer
groflen Dateigrofie ist es zunéchst zu einer fiir den Benutzer wahrnehmbaren Verzégerung beim
Aktualisieren der Benutzeroberfliche gekommen. Dies lies sich durch puffern der Grafiken
nach ihrer erstmaligen Verwendung reduzieren. Hierzu gibt es eigens die Klasse IconLoader.
Sie puffert die Grafiken in einer HashMap. Als Schliissel dient deren jeweiliger Dateipfad. Die
Anzahl der maximal gleichzeitig gepufferten Grafiken ist iiber eine Konstante festgelegt. Wenn
die maximale Anzahl an gepufferten Grafiken erreicht ist, aber eine neue zu puffern ist, entfernt

76

5.4. Implementierung

Command 1 MvClassLoader AbstractCommand
Executor y {Abstract}
AN
Abstract
CommandVertical
{Abstract}
CommandLeft CommandRight CommandUp CommandDown

Abbildung 5.5.: Klassendiagramm mit den Klassen der Komponente Command Executor.

die Klasse IconLoader eine aus dem Puffer. Die Auswahl von dieser Grafik erfolgt nach dem
Least-recently-used-Prinzip.

5.4.2. Komponente Command Executor

Das UML-Klassendiagramm in Abbildung 5.5 zeigt die Klassen der Komponente Command
Executor. Sie bilden, abgesehen von der Klasse MyClassLoader zusammen das Befehls-
Entwurfsmuster (vgl. [GR04, S. 273-277]). Insgesamt gibt es 4 Befehle. Fiir jede Navigati-
onsmoglichkeit innerhalb der Meniistruktur einen. Jeder Befehl hat seine eigene Klasse. Die
Gemeinsamkeiten von diesen sind in den abstrakten Oberklassen AbstractCommand sowie
AbstractCommandVertical zusammengefasst. Im vorherigen Abschnitt 5.4.1 wurde erwahnt,
dass jeder Button mit Ausnahme der Platzhalter-Buttons, eine Referenz auf eine Instanz ei-
ner Klasse besitzt, welche die Schnittstelle ICommand implementiert. Dabei handelt es sich
jeweils um eine der 4 Klassen CommandUp, CommandDown, CommandLeft und CommandRight.
Das UML-Sequenzdiagramm in Abbildung 5.3 stellt den Ablauf dar, wenn der Benutzer einen
Button betitigt. Teil dieses Ablaufs ist auch die Komponente Command Executor, denn die
zu ihr gehorende Klasse CommandExecutor fiithrt die von den Buttons referenzierten Befehle
aus. Innerhalb der Klasse ist dafiir die Methode executeCommand verantwortlich, welche im
Normalfall lediglich die gleichnamige Methode executeCommand der Schnittstelle ICommand
aufruft. Normalfall deshalb, weil sie im Rahmen der in Abschnitt 6.2 beschriebenen qualitativen
Benutzbarkeitstests auch noch die Protokollierung der Benutzereingabe durchfiihrt.

Die Methode executeCommand der Klasse CommandDown fithrt zunachst den Aufruf einer Er-
weiterung aus, wenn in der XML-Datei fiir das entsprechende Meniielement eine spezifiziert
ist, was nicht immer der Fall ist. Manchmal betétigt der Benutzer nur deshalb einen Button mit

77

1

10

11
12

13
14
15

5. Umsetzung Prototyp

einer Referenz auf eine Instanz der Klasse CommandDown, um in ein Untermenii zu gelangen,
das sich eine Ebene tiefer in der Menistruktur befindet. Ist eine Erweiterung hinterlegt, ruft die
Methode executeCommand die Methode executeAction der als Singleton realisierten Klasse
MyClassLoader auf. Diese bekommt unter anderem als Parameter den Verzeichnispfad zu
der Erweiterung beziehungsweise der JAR-Datei sowie einen Klassenpfad zu einer Klasse in
dieser iibergeben. Dadurch lésst sich diese Klasse mittels Java Reflections instanziieren. Dieser
Vorgang ist im Quellcodeausschnitt 5.7 zu sehen, welchem die Fehlerbehandlung zum Zweck
der Ubersichtlichkeit fehlt. Daneben wird noch eine Reihe weiterer Parameter iibergeben.
Diese sind zum einen die Shared-Attributes sowie Parameter, jeweils in Form einer HashMap,
eine Referenz auf die Benutzeroberfliche als Riickrufschnittstelle und ein Kontext-Objekt.
Letzteres beinhaltet androidspezifische Funktionen, welche in den Erweiterungen benétigt
werden. Im Quellcodeausschnitt 5.7 wird in Anschluss an die Instanziierung der Klasse eine
Methode action ausgefiihrt. Ihr Aufruf erfolgt in einem eigenen Thread um sicher zu stellen,
dass eine Erweiterung die Ausfithrung der App zu Steuerung des barrierefreien Smarthomes
nicht blockieren kann.

public void executeAction(String dexFilePath, String actionClassPath,

ConcurrentHashMap<String, SharedAttribute> sharedAttributes, final

ConcurrentHashMap<String, String> parameters, ICallbackUserInterface

callbackUserInterface, Context context){

String fullPath = Environment.getExternalStorageDirectory() +
dexFilePath;

String optimizedDirectoryPath =
context.getCodeCacheDir().getAbsolutePath();

DexClassLoader dexClassLoader = new DexClassLoader(fullPath,
optimizedDirectoryPath, null, this.getClass().getClassLoader());

Class<0Object> actionClass =
(Class<Object>)dexClassLoader.loadClass(actionClassPath);

Constructor<Object> actionClassConstructor =
actionClass.getConstructor(ConcurrentHashMap.class,
ICallbackUserInterface.class, Context.class);

final Object actionClassInstance = (Object)
actionClassConstructor.newInstance(sharedAttributes,
callbackUserInterface, context);

final Method methodAction = actionClass.getMethod("action",
ConcurrentHashMap.class);

Runnable runnable = new Runnable() {
@Override
public void run() {

78

16
17
18
19
20
21

5.4. Implementierung

methodAction.invoke(actionClassInstance, parameters);
}
}
Thread thread = new Thread(runnable);
thread.start();
}

Quellcodeausschnitt 5.7: Aufruf der Erweiterungen mittels Java Reflections.

Danach generiert die Methode executeCommand eine Liste mit neuen Buttons. Dieser Schritt
findet unabhéngig davon statt, um welche Unterklasse es sich von der Klasse AbstractCommand
handelt. Die einzige Ausnahme stellt die Implementierung der Methode executeCommand in
der Klasse CommandDown dar. Befindet sich der betatigte Button schon auf der untersten Ebene
der Meniistruktur, kann es sprichwdrtlich nicht mehr weiter runter gehen. In diesem Fall
bleibt die Aktualisierung der Benutzeroberflache aus. In allen anderen Féllen ermittelt sie
zunichst, wie viele Meniielemente als nachstes in der Benutzeroberfliche anzeigbar sind. Das
ist von der konfigurierbaren maximalen Anzahl an Buttons sowie von den anzuzeigenden
Navigations-Buttons abhingig. Letztere miissen nicht immer zu sehen sein. Befinden sich im
Hauptmenii (oberste fiir den Benutzer sichtbare Mentiebene) beispielsweise genauso viele
oder weniger Meniielemente als die eingestellte maximale Anzahl an Buttons, miissen keine
Navigationsbuttons angezeigt werden. Im Sinne einer kontinuierlichen Benutzeroberflache
kann der Benutzer jedoch einstellen, dass diese immer sichtbar, aber in vergleichbaren Fillen
wie dem beschriebenen, nicht betétigbar sind. Nachdem die Anzahl der darstellbaren Menii-
elemente bekannt ist, fihrt sie den Navigationsbefehl iiber die Schnittstelle der Komponente
Menu aus. Als Riickgabe erhilt sie von dieser die anzuzeigenden Meniielemente. Mit Hilfe der
Klasse ButtonFactory erzeugt sie fiir jedes Meniielement einen Button. Sofern die Anzahl der
erhaltenen Meniielemente kleiner ist, als die der anzeigbaren Buttons, erzeugt sie der Differenz
entsprechend zusatzliche Platzhalter-Buttons.

Am Ende tibergibt die Methode sdmtliche erstellten Buttons in Form einer Liste an die Benut-
zeroberflache. Hierfiir ruft sie die Methode updateUI der Klasse AbstractMenuActivity auf,
welche eine der drei Rickrufschnittstellen der Komponente User Interface & Input Methods
darstellt. Der Quellcodeausschnitt 5.6 in Abschnitt 5.4.1 zeigt die Methode updateUI. Aus ihm
geht hervor, dass die Methode updateUI die iibergebenen Buttons entsprechend der Reihen-
folge in der Liste von links nach rechts in die jeweilige Button-Zeile und Letztere von oben
nach unten in die Benutzeroberflache einfiigt. Deshalb tibergibt die Methode executeCommand
die Buttons schon in der erforderlichen Reihenfolge.

5.4.3. Eingabemethoden Touch, Maus, Tastatur und Sprachsteuerung

Aus der in Abschnitt 5.3 beschriebenen Architektur geht hervor, dass die Eingabemethoden
Touch, Maus sowie die Sprachsteuerung die Klasse DefaultActivity nutzen. Diese erbt von
der abstrakten Klasse AbstractActivity und erweitert diese um keine Funktionalitit. Der

79

5. Umsetzung Prototyp

Grund hierfiir ist, dass die Eingabemethoden Touch, Maus und Sprachsteuerung schon das
Android Betriebssystems ausreichend unterstiitzt, weshalb keine eigene Implementierung fiir
sie erforderlich ist. Das gleiche gilt grundsétzlich auch fiir das Eingabemittel Tastatur. Allerdings
ist bei dieser Eingabemethode standardmaf3ig der oberste linke Button fokussiert, was zur
Folge hat, dass der Benutzer durchschnittlich die Pfeiltasten hdufiger betatigen muss, um den
gewiinschten Button auszuwihlen, wie wenn zu Beginn ein Button in der Mitte fokussiert
ist. Da manche Benutzer aus Gewohnheit jedoch vielleicht Ersteres bevorzugen, kénnen sie
einstellen, ob zu Beginn der Button oben links, unten rechts oder in der Mitte fokussiert ist.
Sollte die Anzahl der vertikalen und / oder horizontalen Buttons ein Vielfaches von 2 sein,
wird ausgehend von der Mitte der obere bzw. linkere Button fokussiert, sofern der Benutzer
eingestellt hat, dass zu Beginn der mittlere fokussiert sein soll. Die Fokussierung findet in
der Methode updateUI der Klasse KeyboardActivity statt, da sie jedes Mal aufgerufen wird,
wenn neue Buttons in die Benutzeroberflache einzufiigen sind. Fiir Letzteres ruft sie zunachst
die Methode updateUI in der Oberklasse, also der AbstractActivity auf. Im Anschluss daran
fokussiert sie entsprechend der Konfiguration entweder den ersten oder letzten Button aus der
Liste tiber die Methode requestFocus der Klasse Button oder berechnet zur Fokussierung des
mittleren Buttons dessen Index in der Liste.

5.4.4. Face-Tracking

Das UML-Klassendiagramm in Abbildung 5.6 zeigt die wichtigsten Klassen und Methoden des
Face-Trackings. Die Klassen AbstractActivity und DirectFaceTrackingActivity initiali-
sieren das Face-Tracking und beinhalten einen Teil der face-tracking-spezifischen Funktionali-
taten fir die Benutzeroberflache. Das Face-Tracking selbst ist in der Mobile Vision API von
Google realisiert (vgl. [Goo16b]). Die Klasse FaceTracker verarbeitet die Ergebnisse von dieser,
indem sie diese in Benutzereingaben iibersetzt. Bei diesen handelt es sich zum einen um die
vertikale und horizontale Bewegung des Cursors. Fiir Erstere ist die Klasse NoseYTracker und
fiir Zweitere die Klasse EulerYTracker verantwortlich. Beide implementieren die Schnittstelle
ITracker, uiber welche die Klasse FaceTracker auf sie zugreift. Dadurch lassen sich ohne
Anpassungen an dieser die Tracker auswechseln. Zum anderen wertet die Klasse FaceTracker
fiir beide Augen des Benutzers deren Offnungswahrscheinlichkeit aus, um ein Blinzeln zu
erkennen und in Folge dessen eine Aktion auszufithren. Die Erkennung des Blinzelns findet
entweder in der Klasse OneBlinkTracker oder TwoBlinksTracker statt.

Die Eingabemethoden 1- und 2-Button-Scanning nutzen ebenfalls das Face-Tracking. Wie in
Abbildung 5.2 in Abschnitt 5.3.2 zu erkennen ist, erbt die Klasse BlinkScanningActivity
ebenfalls von der Klasse AbstractFaceTrackingActivity. Da Erstere sowie die Klasse
DirectFaceTrackingActivty jedoch nicht ein und dieselben Funktionalititen benétigen,
ist die Instanziierung der Klasse FaceTracker in der Klasse AbstractFaceTrackingActivity
generalisiert. Hierzu definiert diese die in dem UML-Klassendiagramm in Abbildung 5.6 zu
sehenden abstrakten Methoden, welche ihre Unterklassen implementieren miissen. Je nach

80

5.4. Implementierung

AbstractFaceTrackingActivity
{Abstract}

+ createVerticalTracker() : ITracker

+ createHorizontalTracker() : ITracker
+ createBlinkTracker() : IBlinkTracker
+ createCursor() : ICursor

<<interface>>
10nBlinkListener

DirectFaceTrackingActivity

<}____

<<interface>> *
IFaceTracker <
Debugger

*

+ createHorizontalTracker() : ITracker
+ createBlinkTracker() : IBlinkTracker

I
I
I
I
+ createVerticalTracker() : ITracker :
I
I
I
I
I

+ createCursor() : ICursor

<<interface>>
IFacePosition
Listener

1

FaceTracker

0..1

<<interface>>
IBlinkTracker

AN

OneBlinkTracker

0..2

<<interface>>
ITracker

AN

Tracker {Abstract}

0.1

<<interface>>
ICursor

AN

Cursor {Abstract}

AN

CircleCursor

AN élk
TwoBlinksTracker EulerYTracker LandmarkTracker
{Abstract}
AN
NoseYTracker

Abbildung 5.6.: Klassendiagramm mit den Klassen des Face-Trackings.

81

1

[\

O 3 O U1 B~ W

5. Umsetzung Prototyp

Eingabemethode und deren Einstellungen, wird in diesen Methoden ein Tracker / Beobachter /
Cursor erzeugt und der Instanz der Klasse FaceTracker als Referenz iibergeben.

Die Methode onUpdate ist die wichtigste in der Klasse FaceTracker. Die Mobile Vision API
ruft sie auf, wenn sich an dem Gesicht des Benutzers etwas verandert und tibergibt die Ergeb-
nisse als Parameter. Im Anschluss daran leitet die Methode onUpdate diese zur Auswertung
an die Tracker weiter. Der Quellcodeausschnitt 5.8 zeigt, dass hierfiir zunachst alle registrier-
ten Debugger iiber die Ergebnisse informiert werden. Als Debugger konnen sich alle Klasse
registrieren, welche die Schnittstelle IFaceTrackerDebugger implementieren. Auf die Klasse
DirectFaceTrackingActivity trifft dies zu. Hierdurch kann sich der Benutzer oder Entwick-
ler bei Bedarf die Ergebnisse des Face-Trackings am unteren Rand der Benutzeroberflache
anzeigen lassen. Im Anschluss daran tiberprift die Methode onUpdate, ob sich die Eingabeme-
thode Face-Tracking gerade im Standby befindet. Standby bedeutet in diesem Fall, dass der
Cursor sich durch Kopfbewegungen nicht bewegen und sich mittels Blinzeln auch kein Button
betétigen lasst. Dies soll Fehleingaben vermeiden, wahrend der Benutzer sich zwar im Blickfeld
der Kamera befindet, aber die App zur Steuerung des barrierefreien Smarthomes gerade nicht
bedienen mochte. Wie in dem Konzept in Abschnitt 4.3.1 beschrieben, kann zwischen 3 Arten
beim Blinzeln unterschieden werden. In den Einstellungen kann der Benutzer einstellen, ob die
Funktion Standby aktiv sein soll und wenn ja, mit welchem Blinzeltyp er diese aktivieren sowie
deaktivieren mochte. Befindet sich das Face-Tracking nicht im Standby, leitet die Methode
onUpdate die Ergebnisse an den horizontalen und vertikalen Tracker weiter. Hierzu ruft sie
jeweils die Methode getPixelValue der Schnittstelle ITracker auf. Diese berechnet anhand
der von der Mobile Vision API erhaltenen Ergebnisse die neue horizontale / vertikale Position
des Cursors aus. Da es nicht zwingend erforderlich ist, sowohl einen horizontalen als auch ver-
tikalen Tracker zu benutzen, prift die Methode onUpdate im Vorfeld des Aufrufs der Methode
getPixelValue, ob eine Referenz auf einen Tracker gesetzt ist. Wenn die zukiinftige Position
des Cursors berechnet ist und eine Referenz auf ihn existiert, informiert die Methode onUpdate
diesen iiber seine neue Position. Selbiges gilt auch fiir den Gesichts-Positions-Beobachter.
Unabhingig davon, ob sich die Eingabemethode Face-Tracking im Standby befindet, muss der
Tracker fiir das Blinzeln mit den Daten aus der Mobile Vision API versorgt werden, weil sich
hieriiber der Standby wieder deaktivieren lasst.

public void onUpdate(FaceDetector.Detections<Face> detectionResults, Face
face) {
for(IFaceTrackerDebugger faceTrackerDebugger :
this. faceTrackerDebuggers){
faceTrackerDebugger.onUpdate(face);
}
if(this.standby == false){
int xCursorPositionInPixels -1;
int yCursorPositionInPixels -1;
if(this.horizontalTracker !'= null){

82

5.4. Implementierung

9 xCursorPositionInPixels =
this.horizontalTracker.getPixelValue(face);

10 }

11 if(this.verticalTracker !'= null){

12 yCursorPositionInPixels =
this.verticalTracker.getPixelValue(face);

13 }

14 if(this.cursor !'= null){

15 this.cursor.onPositionUpdate(xCursorPositionInPixels,
yCursorPositionInPixels);

16 }

17 if(facePositionListener !'= null){

18 this.facePositionListener.onFacePositionUpdate(xCursorPositionInPixels,
yCursorPositionInPixels);

19 }

20 }

21 if(this.blinkTracker '= null){

22 this.blinkTracker.onUpdate(face);

23 }

24 '}

Quellcodeausschnitt 5.8: Verarbeitung eines Updates der Mobile Vision API von Google.

Die folgenden 2 Abschnitte beschreiben, wie die Verarbeitung der Daten innerhalb der Tracker
zum einen fiir die Steuerung des Cursors und zum anderen zur Erkennung des Blinzelns
erfolgt. Im Anschluss daran folgt ein dritter Abschnitt, der sich mit den Anpassungen der
Benutzeroberfliche an das Face-Tracking befasst.

Steuerung des Cursors

Der Quellcodeausschnitt 5.9 zeigt die wichtigsten Zeilen der Klasse Tracker. Die 4 Attribute
minPixelValue, maxPixelValue, inputValueForMinPixelValue und
inputValueForMaxPixelValue definieren 2 Intervalle. Die ersten 2 Attribute definieren das
Intervall fur die horizontale / vertikale Achse des Cursors, auf welcher der Benutzer diesen
bewegen kann. Die Werte dafiir werden wéhrend der Initialisierung des Face-Trackings gesetzt.
Betrachtet man den Bereich der Benutzeroberfliche mit den Buttons wie in Abbildung 5.7
dargestellt als Koordinatensystem, welches die Displayauflosung als Grundlage besitzt, wird
das Attribut minPixelValue mit dem kleinsten noch in der Benutzeroberfliche befindlichen
Punkt der Y- / X-Achse initialisiert. Der Wert 0 ist nicht standardmaf3ig verwendbar, da ein
Teil der verfiigbaren Displayauflosung manchmal fiir eine Benachrichtigungs- und / oder
Navigationsleiste des Android Betriebssystems verwendet wird. Bei dem Wert fiir das Attribut
maxPixelValue handelt es sich folglich um den grofiten in der Benutzeroberfliche befind-
lichen Punkt der Y- / X-Achse. Bildlich betrachtet handelt es sich dabei um den unteren /
rechten Rand der Benutzeroberfliche der App zur Steuerung des barrierefreien Smarthomes.

83

O OO0 1 O Ul v W DN =

e =Y
w N =R O

14
15
16
17
18
19
20
21
22

23
24
25

26
27

5. Umsetzung Prototyp

Die Attribute inputValueForMinPixelValue und inputValueForMaxPixelValue bilden das
zweite Intervall. Es beinhaltet die moglichen Eingabewerte, also im Fall der prototypischen
Realisierung, zum einen wie weit der Benutzer seinen Kopf nach links und rechts drehen muss,
um den Cursor an den linken bzw. rechten Rand der Benutzeroberflache zu bewegen und
zum anderen in welchem Bereich des Kamerabildes er seine Nase auf- und absenken kann,
um den Cursor auf der vertikalen Achse zu bewegen. Die Werte fiir diese Intervall legt der
Benutzer in den Einstellungen selbst fest. Grundsatzlich ist es so, je grofiere das Intervall ist
desto hoher ist die Préazision bei der Bedienung des Cursors, was im Gegenzug jedoch auch eine
entsprechende Beweglichkeit erfordert. Benutzer die ihren Kopf nur noch in einem geringen
Umfang drehen konnen, stellen ein entsprechend kleines Intervall fiir die Eingabewerte ein
und missen aufgrund der dadurch nachlassenden Prazision gegebenenfalls die Anzahl der
Buttons je Zeile verringern.

private int minPixelValue;
private int maxPixelValue;

private float inputValueForMinPixelValue;
private float inputValueForMaxPixelValue;

private IFilter filter;

protected abstract float getInputValue(Face face);

public int getPixelValue(Face face){
int pixelValue =
this.convertInputValueToPixelValueLinear(this.getInputValue(face));
if(pixelValue '= -1 && this.filter != null){
pixelValue = this.filter.filterValue(pixelValue);
}

return pixelValue;

protected int convertInputValueToPixelValuelLinear(float inputValue){

float pixelValue = -1;

float tmp = (inputValue - this.inputValueForMinPixelValue) /
(this.inputValueForMaxPixelValue - this.inputValueForMinPixelValue);

tmp = Math.max(@, tmp);

tmp = Math.min(1, tmp);

pixelValue = ((this.maxPixelValue - this.minPixelValue) * tmp) +
this.minPixelValue;

return Math.round(pixelValue);

84

5.4. Implementierung

Quellcodeausschnitt 5.9: Abbildung der Gesichtsposition auf die des Cursors.

Die Klasse FaceTracker ruft den vertikalen sowie den horizontalen Tracker tiber die Methode
getPixelValue auf, welche auch im Quellcodeausschnitt 5.9 in einer vereinfachten Form
zu sehen ist. Diese bekommt als Parameter eine Instanz der Klasse Face iibergeben, welche
die von der Google Mobile Vision API berechneten Werte beinhaltet. Die abstrakte Methode
getInputValue liest aus diesem Objekt anschlieffend den benétigten Wert aus. Die Klasse
Tracker definiert sie lediglich. IThre Implementierung erfolgt erst in den Unterklassen, welche
jeweils ein Gesichtsmerkmal verfolgen. Hierdurch kann der Benutzer in den Einstellungen
zwischen verschiedenen Gesichtsmerkmalen wihlen, die zur Eingabe verfolgt werden sollen.
Da die Unterklassen dafiir alle dieselbe Methode getInputValue implementieren, lasst sich die
Klasse FaceTracker mit diesen beliebig konfigurieren, ohne dafiir Anpassungen vornehmen
zu mussen. Im Rahmen der prototypischen Realisierung wird der Cursor durch Drehen des
Kopfes horizontal bewegt. Den hierfiir bendtigten Tracker stellt die Klasse EulerYTracker dar.
Sie liest den gleichnamigen Euler-Y-Winkel aus der Instanz der Klasse Face aus (vgl. [Goo16b]).
Urspriinglich war es geplant, den Euler-X-Winkel, welcher die Neigung des Kopfes nach vorne
beziehungsweise hinten beschreibt, zu verwenden, um den Cursor in vertikaler Richtung zu be-
wegen (vgl. [Goo16b]). Jedoch ist dieser in der Mobile Vision API von Google bisher noch nicht
implementiert, sondern nur in der Dokumentation fiir die Zukunft schon einmal vorgemerkt
(vgl. [Goo16b]). Aus diesem Grund wird stattdessen die Y-Koordinate der Nasenwurzel genutzt.
Sie eignet sich dafiir besonders gut, da sie zu jenen Gesichtsmerkmalen gehort, die mittels
Googles Mobile Vision API bis zu einem Euler-Y-Winkel > -36 beziehungsweise < 36 erkennbar
sind und damit bei einer Drehung des Kopfes am langsten verfolgbar sind (vgl. [Goo16b]). Das
Auslesen der Y-Koordinate von der Nasenwurzel findet in der Klasse NoseYTracker statt.

Im Anschluss daran leitet die Methode getPixelValue den Eingabewert an die Methode
convertInputValueToPixelValueLinear weiter, die ebenfalls in dem Quellcodeauschnitt
5.9 zu sehen ist. In ihr findet die Abbildung des Intervalls fiir den Eingabewert auf jenes
der horizontalen / vertikalen Achse des Cursors statt. Dies entspricht grundsatzlich der im
Abschnitt 4.3.1 im Rahmen des Konzepts beschriebenen beiden Formeln. Jedoch wird in den
Zeilen 23 und 24 der Multiplikationsfaktor tmp auf einen Wertebereich >= 0 und <= 1 limitiert.
Das ist notig, da anders als im Konzept, in der Realitdat der Eingabewert auch aufierhalb
des durch die Attribute inputValueForMinPixelValue und inputValueForMaxPixelValue
definierten Intervalls liegen kann. Des Weiteren muss auf die berechnete Position auf der
vertikalen / horizontalen Achse des Cursors noch das Attribut minPixelValue addiert werden,
weil der linke / obere Rand der Benutzeroberfliche mit den Buttons nicht zwingend bei 0
beginnt. Zum Abschluss rundet die Methode convertInputValueToPixelValuelLinear das
Ergebnis noch auf eine Ganzzahl, da die Position des Cursors in Pixel bestimmt wird.

Zurick in der Methode getPixelValue kann das Ergebnis anschliefend noch mittels eines
Filters geglattet werden. Dies ist im Prototyp mittels eines Tiefpassfilters moglich. Der Benutzer
kann diesen in den Einstellungen sowohl fiir den vertikalen als auch den horizontalen Tracker

85

5. Umsetzung Prototyp

0|1 8 15 22 X
1 ~
_ ? ARD ZDF
eine Meniiebene nach
6
SWR BW RTL Sat.1
11
Pro7 VOX 3sat
16
y\/

Abbildung 5.7.: Die Benutzeroberflache in einem Koordinatensystem.

aktivieren und dartiber hinaus den Glattungsfaktor festlegen. Die Nutzung des Tiefpassfilters
erfolgt iiber die Schnittstelle IFilter. Dadurch ist es moglich, zu einem spéteren Zeitpunkt
weitere Filter hinzuzufiigen und sie gegebenenfalls auch zu kombinieren.

Die Klasse NoseYTracker unterscheidet sich von der Klasse EulerYTracker dadurch, dass sie
nicht nur den Eingabewert aus der Instanz der Klasse Face abruft, sondern diese teilweise
mittels linearer Regression vorhersagt. Dies ist erforderlich, da zumindest auf dem Pixel C, die
Mobile Vision API nicht in jedem Frame alle Gesichtsmerkmale, zu welchen die Nasenwurzel
zahlt, erkennt. Dies tritt insbesondere dann auf, wenn der Benutzer seinen Kopf bewegt.
Der Euler-Y-Winkel fiir die Kopfdrehung ist hiervon nicht betroffen. Fiir den Cursor hatte
dies urspringlich zur Folge, dass seine Bewegungen in vertikaler Richtung weniger fliissig
waren, da er solange auf seiner letzten Position verblieb, bis die Nasenwurzel wieder erkannt
wurde. Durch die Verwendung einer linearen Regression hat sich dieses Problem reduziert.
Wenn die Nasenwurzel in einem Frame nicht erkannt wurde, sagt die Klasse NoseYTracker
deren Y-Koordinate mittels der linearen Regression basierend auf den 4 zuletzt erkannten
Y-Koordinaten voraus. Eine weitere Moglichkeit wére gewesen, neben der Nasenwurzel noch

86

5.4. Implementierung

von weiteren Gesichtsmerkmalen die jeweilige Y-Koordinate zu verwenden und so einzelne
fehlende Gesichtsmerkmale kompensieren zu konnen. Allerdings zeigte sich beim Betrachten
entsprechender Log-Ausgaben, dass in den Fallen, wo die Nasenwurzel nicht erkannt wurde,
dies meistens auch auf die anderen Gesichtsmerkmale zutraf, weshalb dieser Ansatz nicht
weiter verfolgt wurde.

Die im Quellcodeausschnitt 5.8 enthaltene Methode onUpdate der Klasse Face-Tracker
aktualisiert nach der Berechnung der neuen Cursorposition diesen, indem sie dessen
onPositionUpdate Methode aufruft, was zur Folge hat, dass der Cursor auf der errech-
neten Position neu gezeichnet wird. Der Cursor ist als Overlay realisiert. Dadurch ist
es moglich, ihn Gber die Buttons zu zeichnen. Des Weiteren benachrichtigt die Methode
onUpdate die DirectFaceTrackingActivity iiber die neue Position des Cursors, damit diese
jenen Button fokussieren kann, iber dem er sich befindet. Dazu implementiert die Klasse
DirectFaceTrackingActivity die Schnittstelle IFacePositionListener.

Blinzelerkennung

Das Erkennen des Blinzelns erfolgt iiber die Augenéffinungswahrscheinlichkeit. Fir diese gibt
die Mobile Vision API von Google je Auge einen Wert zwischen 0 und 1 an (vgl. [Goo16d]). 0
bedeutet, dass das Auge geschlossen ist und 1, dass es gedftnet ist (vgl. [Goo16d]). Allerdings
handelt es sich bei 0 und 1 um Extremwerte, die in der Praxis nur selten vorkommen. Vielmehr
befinden sich die Werte fiir die Augenéffnungswahrscheinlichkeit im Bereich zwischen 0 und
1. Des Weiteren sind die Werte nach den Erfahrungen des Autors dieser Arbeit von der Grofle
und dem Aussehen des Auges abhangig. Augen die klein und / oder von Natur aus nicht so
weit geoffnet sind, haben im geéffneten Zustand eine geringere Augendffnungswahrschein-
lichkeit, als Augen, die grofler und / oder weiter gedffnet sind. Aus diesem Grund kann in
den Einstellungen von der App zur Steuerung des barrierefreien Smarthomes sowohl fiir das
linke als auch das rechte Auge jeweils ein Wertebereich angegeben werden, in dem sie das
Auge als geschlossen und einen in dem sie es als gedffnet wertet. Bei richtiger Konfiguration
stellt diese Einstellungsmoglichkeit eine Bandsperre da, durch welche nur die Extremwerte,
also jene die nahe bei 0 oder 1 liegen, beriicksichtigt werden. Dariiber hinaus lasst sich in
den Einstellungen jeweils fiir das linke und rechte Auge festlegen, wie viele Millisekunden
dieses mindestens geschlossen sein muss, damit es als Blinzeln gilt. Dies soll vermeiden, dass
unbewusstes Blinzeln als solches von der App erkannt wird. Genauso gibt es jedoch auch
eine Maximaldauer, die ein Auge geschlossen sein darf, um es noch als Blinzeln zu werten.
Diese Funktionalitit ist vergleichbar mit den Maustasten, auf welche ein Benutzer im Falle
einer noch rechtzeitig bemerkten Fehleingabe langer als tiblich gedriickt halten kann, um beim
anschlieffenden Loslassen kein Klickereignis auszuldsen.

Die Blinzelerkennung ist in den Klassen OneBlinkTracker und TwoBlinksTracker imple-
mentiert. Erstere kann nur erkennen, ob mit dem linken oder dem rechten Augen geblinzelt
wurde. Zweitere ist zusatzlich in der Lage, zu erkennen, ob der Benutzer mit beiden Augen
oder nur einem geblinzelt hat. Beim Blinzeln mit beiden Augen gibt es jedoch das Problem,
dass die Updaterate der Mobile Vision API so hoch ist, dass die Benutzer es nur selten schaffen,

87

5. Umsetzung Prototyp

beide Augen zwischen ein und den selben Updates zu 6ffnen. Aus diesem Grund muss nach
dem Offnen des ersten Auges eine Zeit lang abgewartet werden, ob sich auch noch das andere
Auge 6ffnet. Wenn ja, dann gilt dies als Blinzeln mit beiden Augen und wenn nein, als Blinzeln
mit dem linken beziehungsweise rechten Auge. Wie lange abgewartet werden soll, lasst sich
ebenfalls in den Einstellungen festlegen. Das Abwarten fiithrt in der Realitat dazu, dass die,
dem Blinzelereignis zugeordnete Aktion, merklich verzogert ausgefiithrt wird. Welche der
beiden Klassen verwendet wird, hangt davon ab, welchen Blinzelarten in den Einstellungen
eine Funktionalitat zugeordnet ist. Soll beim Blinzeln mit beiden Augen nichts passieren, wird
die Klasse OneBlinkTracker verwendet, um keine Verzogerung bei der Eingabe zu haben.
Ist dem Blinzeln mit beiden Augen hingegen eine Funktionalitat zugeteilt, ist die Verwen-
dung der Klasse TwoBlinksTracker notwendig. Allerdings kann der Benutzer bei der Klasse
OneBlinkTracker ebenfalls mit beiden Augen blinzeln, wenn zwischen dem Blinzeln mit dem
linken und rechten Auge nicht unterschieden werden muss. Dies fithrt dann dazu, dass zunachst
zwei getrennte Blinzelereignisse erkannt werden. Das spatere ist jedoch ignorierbar, indem der
Benutzer in den Einstellungen einen zeitlichen Mindestabstand zwischen dem Blinzeln festlegt.
Dieser ist empfehlenswert, da hierdurch vermeidbar ist, dass der Benutzer bei mehrmaligen,
unmittelbar hintereinander stattfindenden Blinzeln fur den Fall, dass das Blinzeln nicht immer
erkannt wird, versehentlich mehrere Buttons ungewollt betéatigt.

Wenn die beiden Klassen OneBlinkTracker und TwoBlinksTracker ein Blinzeln erkennen,
rufen sie die Methode onBlink in Ersterer auf. Diese benachrichtigt dann die bei ihr re-
gistrierten Beobachter dariiber, dass ein Blinzeln stattgefunden hat und um welche Art
des Blinzelns es sich dabei handelt, sprich ob der Benutzer mit dem linken / rechten Au-
ge oder beiden Augen geblinzelt hat. Um sich als Beobachter registrieren zu konnen, muss
die entsprechende Klasse die Schnittstelle I0nBlinkListener implementieren. Bei der Klasse
DirectFaceTrackingActivity ist dies der Fall, weshalb sie sich als Beobachter registrieren
lasst und dadurch von der Klasse OneBlinkTracker oder TwoBlinksTracker iiber das Blinzeln
in Kenntnis gesetzt wird.

Anpassungen an der Benutzeroberflache fiir das Face-Tracking

Die Klasse DirectFaceTrackingActivity besitzt die Methode onBlink, da sie die Schnitt-
stelle I0nBlinkListener implementiert. Die Methode wird von einer der beiden Klassen
OneBlinkTracker oder TwoBlinkTracker aufgerufen, wenn sie ein Blinzeln des Benutzers
erkannt haben. Sie priift zunéchst, ob und welche Funktionalitit der jeweiligen Blinzelart
zugeordnet ist. Diese wire entweder das Ein- oder Ausschalten des Standbys oder das Betatigen
eines Buttons.

Ist Letzteres der Fall, muss die Methode onBlink zuerst anhand des Cursors Position herausfin-
den, welcher Button zu betatigen ist. Hierzu besitzt die Klasse DirectFaceTrackingActivity
eine Hash-Map vom Typ TreeMap, welche die Schnittstelle NavigableMap implementiert. Sie
erlaubt es, auf die Eintrdge zuzugreifen, ohne den konkreten Schliissel zu kennen. Hierzu sucht
sie fiir einen Schliissel in der Hash-Map bei Benutzung der Methode floorKey den néchst
kleineren oder grofieren beziehungsweise gleichgrofien Schliissel. Dadurch lasst sich indirekt

88

5.4. Implementierung

Tabelle 5.1.: Exemplarische Werte einer Hash-Map mit jenen der Button-Zeilen.

Schlissel Wert

1 NULL

2 Referenz auf die Hash-Map der 1. Button-Zeile (von oben)
6 NULL

7 Referenz auf die Hash-Map der 2. Button-Zeile (von oben)
11 NULL

12 Referenz auf die Hash-Map der 3. Button-Zeile (von oben)
16 NULL

ein Schlisselbereich fiir einen Eintrag definieren. Die Klasse DirectFaceTrackingActivity
nutzt dies, um den Displaybereich, in dem sich ein Button befindet, als Schliissel fiir diesen
zu verwenden. Dadurch lasst sich anhand der Position des Cursors dann der Button finden,
auf dem sich dieser gerade befindet. Fiir jede Button-Zeile gibt es eine Hash-Map. In dieser
befindet sich fiir jeden Button sowie dem Abstand zwischen diesen oder dem Displayrand ein
Eintrag. Als Schliissel dient dabei die horizontale Position von deren oberen linken Ecke. Die
Bildschirmauflosung des Android-Geréats wird dafiir als ein Koordinatensystem betrachtet, das
seinen Ursprung in der Ecke oben links hat. Die Abbildung 5.7 veranschaulicht dies. Jedes Karo
des Koordinatensystems stellt ein Pixel dar. Folglich handelt es sich bei den Schliisseln um
Pixelwerte. Gehort der Schliissel zu einem Button, so verweist er auf diesen. Gehort er zu einem
Abstand, ist der dazugehorige Wert ein NULL-Zeiger. Dadurch ist anhand der horizontalen
Position des Cursors, die ebenfalls in Pixeln angegeben ist, feststellbar, ob und wenn ja, auf
welchem Button einer Button-Zeile er sich gerade befindet, indem in der Hash-Map nach
dem Eintrag mit dem gleichen oder nachst kleineren Schliissel gesucht wird. Oftmals wird es
jedoch so sein, dass auf der Benutzeroberflache, genauso wie in Abbildung 5.7, mehr als eine
Button-Zeile sichtbar ist. Aus diesem Grund befinden sich die Hash-Maps der Button-Zeilen
selbst in einer Hash-Map vom Typ TreeMap. Als Schliissel dienen fiir diese aber die vertikalen
Positionen der oberen linken Ecken der Button-Zeilen sowie den Abstinden zwischen diesen
oder dem Displayrand. Durch die Verschachtelung der Hash-Maps ist, wenn ein Button in Folge
eines Blinzelns zu betétigen ist, anhand der vertikalen Position des Cursors ermittelbar, ob und
wenn ja, auf welcher Button-Zeile er sich gerade befindet. Ist er auf einer, gibt die Hash-Map,
welche jene fiir die Button-Zeilen beinhaltet, die Referenz auf eine von diesen zuriick. In dieser
Hash-Map kann anschlieBend mittels der horizontalen Position des Cursors ermittelt werden,
ob und wenn ja, auf welchem Button er sich befindet. Befindet sich der Cursor auf einem, gibt
die Hash-Map, der ihn beinhaltenden Button-Zeile, eine Referenz auf ihn zuriick. Die Tabellen
5.1 und 5.2 stellen exemplarisch 2 dieser Hash-Maps dar, basierend auf der in Abbildung 5.7 zu
sehenden Benutzeroberflache. Die Tabelle 5.1 beinhaltet die Referenzen auf die Hash-Maps der
3 Button-Zeilen sowie 4 NULL-Zeiger fiir die Abstdnde zwischen diesen. In Tabelle 5.2 befinden
sich die Schliissel-Wert-Paare, wie sie sich auch in der Hash-Map der obersten Button-Zeile
befinden wiirden.

89

O 00 1 N U1 o W DN

—_
]

5. Umsetzung Prototyp

Tabelle 5.2.: Exemplarische Werte einer Hash-Map fiir eine Button-Zeile.

Schliissel Wert

1 NULL

2 Referenz auf den Button ,eine Meniiebene nach oben®
8 NULL

9 Referenz auf den Button ,ARD*

15 NULL

16 Referenz auf den Button ,ZDF*

22 NULL

Uber die aus den Hash-Maps erhaltene Referenz auf den Button lasst sich dieser im An-
schluss betatigen. Dazu wird dessen Methode performClick aufgerufen, welche wiederum
die onClick Methode seines Klick-Beobachters aufruft, was dann zu der im Abschnitt 5.4.2
beschriebenen Ausfithrung eines Befehls in der Komponente Command Executor fithrt. Durch
den Aufruf der Methode performClick ist es fiir den Benutzer jedoch nicht direkt ersichtlich,
dass er den Button betitigt hat, da ein visuelles Feedback ausbleibt. Die Studie von Kangas et
al. zeigte, dass ein vibrotaktiles Feedback bei der Bedienung eines mobiles Endgeréts mittels
Blickgesten hilfreich ist (vgl. [KAR+14]). Dies trifft auf die Eingabemethode Face-Tracking
vermutlich ebenfalls zu. Jedoch ist ein visuelles Feedback fiir die Benutzergruppe des barrie-
refreien Smarthomes leichter wahrnehmbar, weshalb dariiber die Bestétigung erfolgen soll.
Der Quellcodeausschnitt 5.10 zeigt die Realisierung des visuellen Feedbacks. Hierzu wird der
Status des Buttons zunichst iiber die Methode setPressed auf gedriickt gesetzt. Die Methode
invalidate veranlasst, dass er neu gezeichnet wird. Anschlieflend wird ein Runnable-Objekt
erzeugt, das die Methode performClick aufruft, den Status des Buttons zuriicksetzt und ihn
erneut zeichnet, jedoch mit einer Verzégerung von 100 Millisekunden. In diesen ist das Layout
des Buttons sichtbar, welches der Benutzer sehen wiirde, wenn er ihn mittels Touch betatigt.

button.setPressed(true);
button.invalidate();
button.postDelayed(new Runnable(){
@Override
public void run(){
button.performClick();
button.setPressed(false);
button.invalidate();

}
}, 100);

Quellcodeausschnitt 5.10: Animation des Button-Klicks beim Face-Tracking.

90

5.4. Implementierung

Damit die Hash-Maps die derzeitig sichtbaren Buttons beinhalten, wird nach jedem Aufruf
der Methode updateUI in der Klasse AbstractActivity die Hash-Map mit den Button-Zeilen
geleert und anschlieffend neu befullt.

Die Hash-Maps mit den Buttons haben noch eine weitere Funktion. Damit der Benutzer mittels
des Face-Trackings ein vergleichbares Bedienerlebnis mit jenem bei den Eingabemethode Tasta-
tur und 1- sowie 2-Button-Scanning hat, fokussiert die Klasse DirectFaceTrackingActivity
den Button, auf dem sich der Cursor befindet. Ist dieser auf keinem Button, wird auch keiner
fokussiert. Welcher Button zu fokussieren ist, ermittelt sie ebenfalls iiber die Hash-Maps.
Das Vorgehen hierzu ist das selbe, wie bei der Betitigung eines Buttons. Um die Positionsan-
derungen des Cursors zu erhalten, implementiert die Klasse DirectFaceTrackingActivity
die Schnittstelle IFacePositionListener, mit Hilfe derer sie sich bei der Instanz der Klasse
FaceTracker als Beobachter registrieren kann, welche sie anschlieflend mittels der in der
Schnittstelle definierten Methode onFacePositionUpdate tiber alle Positionsanderungen des
Cursors informiert.

5.4.5. Scanning

Bei der Eingabemethode Scanning kann der Benutzer wahlen, ob die Buttons von links nach
rechts und oben nach unten in einem bestimmten Zeitabstand automatisch fokussiert werden
oder er den Fortschritt in Form der Fokussierung selbst steuern méchte. Im Falle von Ersteren
lasst sich der Zeitabstand in den Einstellungen festlegen. Des Weiteren kann der Benutzer
den automatischen Fortschritt pausieren und im Anschluss daran auch wieder fortsetzen. Wie
schon in Abschnitt 5.3.2 erwahnt, beinhaltet die Klasse Scanner die Funktionalitit fiir den
manuellen sowie automatischen Fortschritt bei der Fokussierung. Hierzu besitzt sie eine Liste,
die alle angezeigten Buttons enthélt. Beim automatischen Fortschritt iteriert ein eigens dafiir
zustandiger Thread tiber diese und fokussiert der Reihe nach die Buttons in der konfigurierten
Geschwindigkeit. Zudem besitzt die Klasse Scanner eine Referenz auf den zum jeweiligen
Zeitpunkt fokussierten Button. Fiir das Scanning mit dem automatischen Fortschritt ist ein
Eingabeereignis erforderlich, um den fokussierten Button zu betétigen sowie optional ein
weiteres, um das Scanning zu pausieren und im Anschluss daran wieder fortsetzen zu konnen.
Fir das 1-Button-Scanning kann der Benutzer zwei Tasten in den Einstellungen als Einga-
beereignisse auswéhlen. Zum Beispiel die Tastencodes der beiden Tasten des in Abbildung
4.8 gezeigten Button Switch, wobei die zweite Taste nicht zwingend erforderlich ist, da das
Anhalten und Pausieren des Scannings optional ist. Vergleichbar verhalt es sich beim Scanning
mittels Blinzeln. Hier hat der Benutzer die 3 Blinzelarten linkes Auge, rechtes Auge, beide
Augen als Eingabeereignis zur Auswahl. In den Einstellungen kann er diesen jeweils eine
der beiden Funktionalititen ,Button betétigen” und ,automatischen Fortschritt pausieren /
fortsetzen® zuordnen. Den Blinzelarten, deren Auftreten kein Ereignis auslosen soll, weif3t der
Benutzer keine Funktionalitat zu. Bei der Eingabemethode 2-Button-Scanning beziehungsweise
dem Scanning ohne automatischen Fortschritt, sind 2 Eingabeereignisse erforderlich. Eines
um den jeweils nachsten Button zu fokussieren und eines um den fokussierten Button zu

91

5. Umsetzung Prototyp

betatigen. Das heifdt, dass beim 2-Button-Scanning, 2 Tasten beziehungsweise Blinzelarten
erforderlich sind. Die Eingabeverarbeitung des 1- und 2-Button-Scannings ist in der Klasse
KeyboardActivity realisiert. Sie wertet die Eingabeereignisse aus und ruft entsprechend der
ihnen zugeordneten Funktionalitit die passende Methode in der Klasse Scanner auf. Die Klasse
BlinkScanningActivity implementiert dagegen die Eingabeverarbeitung fiir das 1- und 2-
Button-Scanning via Blinzeln. Dazu erbt sie von der Klasse AbstractFaceTrackingActivity.
Wie in Abschnitt 5.4.4 beschrieben, beinhaltet diese die Initialisierung des Face-Trackings. Die
erbende Klasse muss dafiir die in dem UML-Klassendiagramm in Abbildung 5.6 enthaltenen
abstrakten Methoden der Klasse AbstractFaceTrackingActivity erweitern. Da nur die Blin-
zelerkennung erforderlich ist, muss sie lediglich in der Methode createBlinkTracker - je nach
ausgewahlten Blinzelarten als Eingabeereignisse - ein Objekt der Klasse OneBlinkTracker
oder TwoBlinksTracker erzeugen. In den anderen zu implementierenden Methoden geniigt
es, eine NULL-Referenz zuriick zu geben. Wéahrend des Scanning wertet die Instanz der Klasse
FaceTracker in der Methode onUpdate, welche auch im Quellcodeausschnitt 5.8 zu sehen ist,
nur die Augenéffnungswahrscheinlichkeiten aus und leitet die Blinzelereignisse an die Klasse
BlinkScanningActivity weiter, welche dann wie die Klasse KeyboardScanningActivity
die entsprechenden Methoden der Klasse Scanner aufruft.

5.4.6. Erweiterungen

Die Erweiterungen lassen sich in Form von JAR-Dateien in die App zur Steuerung des barriere-
freien Smarthomes einbinden. Die Klassen in diesen Erweiterungen, die direkt tiber die Klasse
MyClassLoader der Komponente Command Executor aufrufbar sein sollen, miissen dafiir
einen Konstruktor besitzen, welcher als Parameter eine Hash-Map fiir die Shared-Attributes,
eine Riickrufschnittstelle vom Typ ICallbackUserInterace fiir die AbstractActivity so-
wie ein Kontext-Objekt vom Typ Context besitzt. Des Weiteren benétigen sie eine Methode
namens action, welche ebenfalls eine Hash-Map als Parameter fir die in dem jeweiligen
menu_item der XML-Datei definierten Parameter in Form von Schlissel-Wert-Paaren besitzt,
da diese von der Klasse MyClassLoader aufgerufen wird, um die entsprechende Funktionalitat
auszufiihren.

VLC-Player

Im Rahmen des Prototyps dient der VLC-Player als Fernseher und Radio. Die Sender fiir beide
befinden sich in einer gemeinsamen Wiedergabeliste. Im Rahmen der Benutzbarkeitstests
handelte es sich dabei um im Vorfeld aufgezeichnete Ausschnitte aus Fernseh- und Radiosen-
dungen. Dadurch konnten méglich Probleme aufgrund mangelnder Internetverbindung sowie
schlechtem Fernseh- u. Radioempfangs vermieden werden.

Die Kommunikation zwischen der Erweiterung zur Steuerung des VLC-Players erfolgt iiber
dessen Web-Schnittstelle (vgl. [Vid16b]). Sie ermdglicht es, die wichtigsten Funktionen
mit Steuerbefehlen mittels HTTP zu senden. Fiir jeden dieser Steuerbefehle ist ein eige-
ner HTTP-GET-Parameter festgelegt, an den bei Bedarf weitere Parameter anhangbar sind

92

5.4. Implementierung

(vgl. [Vid16b]). Die URL einer HTTP-Anfrage zur Steuerung des VLC-Players hat folgen-
den Aufbau: http://:[Passwort]@[IP-Adresse des VLC-Players]:[Portnummer des
VLC-Players]/requests/status.xml?[Steuerbefehl als HTTP-GET-Parameter] (vgl.
[Vid16b])

Unter sicherheitstechnischen Aspekten ist es suboptimal, dass das Passwort unverschliisselt
tibertragen wird. Da es sich hierbei jedoch ausschliefllich um eine prototypische Realisierung
handelt, die zudem in keinem o6ffentlichen Netzwerk verwendet wird, ist die Verschlisselung
des Passworts vernachlassigbar.

Die Erweiterung besteht aus den 2 Klassen AndroidHttpClient, die als HTTP-Client dient
und zum anderen um die Klasse VlcActionClass. Letztere stellt die Schnittstelle der Erweite-
rung dar, welche die Komponente Command Executor beziehungsweise in dieser die Klasse
MyClassLoader verwendet. In dem Quellcodeausschnitt 5.3 in Abschnitt 5.4.1 ist erkennbar,
dass bei den Meniielementen zur Steuerung des Fernsehers und Radios immer ein Methoden-
name als Parameter definiert ist. Dieser dient dazu, innerhalb der Methode action der Klasse
VlcActionClass, zu unterscheiden, welcher Steuerbefehl an den VLC-Player zu senden ist.
Auf diesen Parameter konnte auch verzichtet werden, wenn es innerhalb der Erweiterung fiir
jeden Steuerbefehl eine eigene Klasse mit passender Implementierung der Methode action
geben wiirde. Im Fall des VLC-Players wire diese Alternative jedoch deutlich aufwendiger zu
implementieren gewesen.

Im Folgenden werden die Steuerbefehle sowie deren Verwendungszweck, welche die Erweite-
rung zur Ansteuerung des barrierefreien Smarthomes nutzt, beschrieben:

« command=pl_stop
Stoppt die Wiedergabe eines Fernseh- / Radiosenders. (vgl. [Vid16b])

« command=pl_play&id=<id>
Startet die Wiedergabe eines Fernseh- / Radiosenders. Bei dem Parameter id handelt es
sich um die ID des Fernseh- / Radiosenders in der Wiedergabeliste. Wenn der Benutzer
die Wiedergabe im Fernseher- beziehungsweise Radiomenii startet, ist die Erweiterung
so implementiert, dass der zuletzt geschaute Sender wiedergegeben wird. Dazu gibt es
sowohl fiir das Radio als auch den Fernseher ein Shared-Attribute, das die ID des zuletzt
wiedergegebenen Senders beinhaltet. Dieses wird bei jedem Senderwechsel aktualisiert.
Da es im Prototyp nicht moéglich ist, zur Laufzeit erstellte oder veranderte Shared-
Attributes in der XML-Datei zur Definition der Benutzeroberfliche zu speichern, handelt
es sich nach einem Neustart der App zu Steuerung des barrierefreien Smarthomes bei
den zuletzt wiedergegebenen Sendern immer um die in der XML-Datei definierten. (vgl.

[Vid16b])

« command=pl_next und ?command=pl_previous
Mittels ihnen kann durch die Eintrdge einer Wiedergabeliste gezappt werden. Die Erwei-
terung zur Steuerung des VLC-Players nutzt die beiden Befehle, damit der Benutzer zum
nachsten oder vorherigen Fernseh- / Radiosender wechseln kann. Da sich in der Wieder-
gabeliste die Sender vom Fernsehen und Radio befinden, konnte es passieren, dass der

93

5. Umsetzung Prototyp

Benutzer durch das Zapping versehentlich das Medium wechselt. Um dies zu vermeiden
gibt es sowohl fiir das Radio als auch das Fernsehen jeweils ein Shared-Attribute mit der
kleinsten sowie der grofiten ID. Dadurch kann die Erweiterung, wenn der Benutzer einen
vorherigen oder nachsten Sender auswihlen mdchte, anhand von der ID des aktuell
wiedergegebenen Senders iiberpriifen, ob es im aktuellen Medium einen vorherigen /
nichsten gibt. Wenn nicht, bricht die Erweiterung die Ausfithrung der Eingabe ab. (vgl.
[Vid16b])

o command=fullscreen
Diesen Steuerbefehl nutzt die Erweiterung, damit der Benutzer beim Fernseher den
Vollbildmodus ein- und ausschalten kann. (vgl. [Vid16b])

« command=volume&val=<val>
Uber diesen Steuerbefehl lisst sich die Lautstarke des VLC-Players iiber den Parameter
val entweder als Absolutwert setzen, oder mittels einem vorangestellten Plus / Minus um
den Wert des Parameters val erhohen / reduzieren (vgl. [Vid16b]). Die Erweiterung zur
Steuerung des VLC-Players nutzt diesen Steuerbefehl zum einen, damit der Benutzer die
Lautstarke des Radios / Fernsehers reduzieren und erhohen kann. Die Grofle der Schritte,
in welchen die Erhéhung / Reduzierung von der Lautstéarke erfolgt, ist jeweils in einem
Parameter des Meniielements festgelegt. Zum anderen ermdglicht die Erweiterung dem
Benutzer tiber diesen Steuerbefehl das Radio / den Fernseher stumm sowie den Ton wieder
einzuschalten. Um beim Wiedereinschalten des Tons die vorherige Lautstirke setzen zu
konnen, existiert ein Shared-Attribute mit der zum Zeitpunkt vor dem Stummschalten.

Die Implementierung des Zappings durch die Fernseh- beziehungsweise Radiosender zeigt,
dass die Verwendung einer gemeinsamen Wiedergabeliste nicht ideal ist. Jedoch bietet die
Web-Schnittstelle des VLC-Players keinen Steuerbefehl zur Auswahl einer Wiedergabeliste
oder zum Wechsel zwischen mehreren Wiedergabelisten (vgl. [Vid16b]). Eine Alternative
zur Vermeidung einer gemeinsamen Wiedergabeliste wire es, auf diese zu verzichten und
stattdessen den wiederzugebenden Sender als Media Resource Locator an den VLC-Player
zu senden (vgl. [Vid16b]). Das hatte jedoch zur Folge, dass ein Zapping nicht mehr moglich
ist, oder die Erweiterung zur Steuerung des VLC-Players ihre eigene interne Wiedergabeliste
benotigt, was diese wiederum komplexer macht.

WLAN-Steckdosenleiste

Die Erweiterung zur Ansteuerung der WLAN-Steckdosenleiste der Wohlke EDV-Beratung
GmbH (vgl. [W6h16a]) besteht ebenfalls aus 2 Klassen. Die WLAN-Steckdosenleisten besitzt
einen eigenen Web-Server, iber den sich die einzelnen Steckdosen mittels HT TP-Anfragen ein-
und ausschalten lassen (vgl. [Woh16a] u. [W6h16b]). Aus diesem Grund handelt es sich bei einer
der beiden Klassen ebenfalls um eine mit dem Namen AndroidHttpClient. Die Steckdose
sowie, ob diese ein- oder ausgeschaltet werden soll, ist in der HTTP-Anfrage als HTTP-
GET-Parameter spezifizierbar (vgl. [Woh16b]). Die URL fiir diese besitzt folgenden Aufbau:
http://[IP-Adresse der WLAN-Steckdosenleiste]/websteckdose/cgi-bin/schalten

94

5.4. Implementierung

?steckdose_nr=[Nummer der Steckdosel]&steckdose_soll=[ob die Steckdose ein-
oder ausgeschaltet werden soll] (vgl. [W6h16b]) Fiir die Nummer der Steckdose sind die
Zahlen 1, 2 und 3 moglich (vgl. [W6h16b]). Der zweite Parameter muss den Wert 1 besitzen,
um die Steckdose einzuschalten oder den Wert 0, um sie auszuschalten (vgl. [W6h16b]). Bei
der Klasse WoehlkeActionClass handelt es sich um die zweite Klasse in der Erweiterung zur
Steuerung der WLAN-Steckdosenleiste. Die Methode action in ihr, bekommt als Hash-Map 2
Parameter iibergeben, die in den dazugehorigen Meniielementen festgelegt sind. Bei diesen
handelt es sich zum einen um die Nummer der zu schaltenden Steckdose sowie um deren
zukiinftigen Schaltzustand.

95

6. Evaluation

Dieses Kapitel beschreibt die Evaluierung der Anwendung zur Steuerung des barrierefreien
Smarthomes. Das Unterkapitel 6.1 konzentriert sich auf die quantitative Beurteilung. Diese
untersucht die unterstiitzten Eingabemethoden in Kombination mit der Benutzeroberflache
auf ihre Geschwindigkeit sowie Genauigkeit. Sprich, wie viele Entscheidungen der Benutzer
in einer bestimmten Zeiteinheit titigen kann.

Das Unterkapitel 6.2 besitzt den selben Aufbau wie das Unterkapitel 6.1, fokussiert jedoch
die qualitative Evaluierung der Eingabemethoden sowie der Benutzeroberflaiche durch Pro-
banden aus der Zielgruppe, um zu verdeutlichen, dass die entwickelten Eingabemethoden in
Abhiangigkeit von den Einschrankungen des Benutzers unterschiedlich geeignet sind.

6.1. Quantitative Benutzbarkeitstests

In diesem Unterkapitel ist die Vorbereitung und Instrumentalisierung des Prototypen fiir die
quantitativen Benutzbarkeitstests mit unversehrten Probanden enthalten. Dariiber hinaus
berichtet es iiber deren Durchfithrung und schlief3t mit einer Auswertung der gewonnenen
Daten ab.

6.1.1. Vorbereitung

Der Abschnitt Vorbereitung legt die Instrumentalisierung des Prototyps fiir die quantitativen
Benutzbarkeitstests dar und gibt danach einen Uberblick iiber die verwendete Konfiguration
des Prototyps wihrend diesen.

Instrumentalisierung

Die Abbildung 6.1 zeigt einen Screenshot der Einstellungen fiir die quantitativen Be-
nutzbarkeitstests. Sind diese eingeschaltet, wird in der Methode onCreate der Klasse
AbstractMenuActivity eine spezielle Benutzeroberflache fiir die quantitativen Benutzbar-
keitstests erzeugt, anstelle des in der XML-Datei definierten Meniis zur Steuerung des barrie-
refreien Smarthomes. Die Abbildung 6.2 zeigt ebenfalls einen Screenshot. Auf diesem ist die
Benutzeroberflache fiir die quantitativen Benutzbarkeitstests zu sehen. Sie zielen darauf ab, die

97

6. Evaluation

-
I Usability testing

QUALITATIVE

Usability testing

QUANTITATIVE
Quantitative usability testing

Number of tests
18

Button configurations
3x3;4x4;5x5;6x6

Test results directory
/bfs/testResults/

Test person name
Max Mustermann

O

Abbildung 6.1.: Screenshot des Einstellungsmeniis fiir Benutzbarkeitstests.

Geschwindigkeit und Prézision der verschiedenen Eingabemethode zu evaluieren. Aus diesem
Grund gibt es nur zwei Arten von Buttons. Sie unterscheiden sich durch das Icon, bei welchem
es sich entweder um ein Kreuzchen oder ein lachendes Smiley handelt. Letzteres besitzt immer
nur jeweils einen Button. Der Button mit dem Smiley ist derjenige, den der Benutzer betétigen
soll. Auf die Buttons der Benutzeroberfliche fiir das barrierefreie Smarthome wird verzichtet,
da es bei den quantitativen Benutzbarkeitstests um die Geschwindigkeit und Prézision der
Eingabemethoden geht. Diese sind am besten messbar, wenn der Proband eine moglichst
schlichte Benutzeroberflache hat. Durch die Verwendung der zwei Icons auf den Buttons muss
er keine Button-Beschriftung lesen, keine unbekannten Icons interpretieren und sich auch
nicht mit der Navigation innerhalb der Mentistruktur beschéaftigen. Stattdessen kann er sich
ganz darauf konzentrieren, den Button mit dem Smiley mit der zu testenden Eingabemethode
zu betatigen. Ein weiterer Vorteil dieser Buttons ist, dass sich immer exakt die maximale Anzahl
an Buttons, entsprechend der zu testenden Konfiguration darstellen lasst. Letzteres ist fiir die
im Kapitel 6.1.3 beschriebene Auswertung der quantitativen Benutzbarkeitstests erforderlich.
Mit dem Meni des barrierefreien Smarthomes ware es hingegen sehr aufwendig, dieses so
zu konfigurieren, dass es immer so viele Meniielemente gibt, damit die maximale Anzahl an
Buttons zur Auswabhl steht.

98

w

O 0 1 N U1

6.1. Quantitative Benutzbarkeitstests

Abbildung 6.2.: Screenshot der Benutzeroberfliche fiir die quantitativen Benutzbar-
keitstests. (Das Smiley- und X-Icon auf den Buttons stammen von:
https://material.io/icons/ (16.12.2016))

Bei welchem Button es sich um jenen mit dem Smiley handelt, entscheidet der Zufall. Jedoch
gibt es die Einschrankung, dass wenn die Zahl der Testfélle kleiner gleich der Anzahl der
Buttons ist, es sich nicht zwei Mal um den selben Button handeln darf. Dies zu gewahrleisten
ist eine von den Aufgaben der Klasse BandwidthTester. Wahrend der Initialisierung des Tests
erzeugt sie die Liste tests, wie der Quellcodeausschnitt 6.1 zeigt.

this.tests = new ArrayList<Integer>();

int limit = ((int)Math.ceil((double)this.numberOfTests /
(double)this.numberOfButtons)) =
this.numberOfButtons;

int j = 0;

for(int i = 0; i < limit; i++){
this.tests.add(j);
j++;

99

10
11
12
13

O OO0 1 ON Ul v W DN =

10
11

12
13
14
15
16

6. Evaluation

if(j >= this.numberOfButtons){

Quellcodeausschnitt 6.1: Initialisierung der Testfalle.

Dariiber hinaus besitzt die Klasse BandwidthTester eine Liste buttons, welche die darge-
stellten Buttons beinhaltet. Im Zuge der Initialisierung wird die Liste tests mit Index-Werten
der Buttons in der Liste buttons gefiillt. Hierzu wird zunéchst die Anzahl der Testfalle, wel-
che sich in den in Abbildung 6.1 gezeigten Einstellungen festlegen lassen, durch die Anzahl
der Buttons dividiert, zur nachsten Ganzzahl aufgerundet und mit der Anzahl der Buttons
multipliziert. Das hieraus resultierende Ergebnis, im Quellcodeausschnitt 6.1 handelt es sich
hierbei um die Variable 1imit, ist die Anzahl der Indexe, welche in die Liste tests einzu-
figen sind. Die Anzahl entspricht entweder der der Buttons oder einem Vielfachen von
ihnen. Das garantiert, dass alle Buttons mit derselben Wahrscheinlichkeit ausgewahlt wer-
den, da ihr Index gleicht oft in der Liste tests enthalten ist. Die im Quellcodeausschnitt
6.1 zu sehende Schleife befiillt die Liste tests mit den Indexen, indem sie die Variable
j in diese einfiigt, sie in jeder Iteration jeweils um 1 inkrementiert und sie auf 0 zuriick-
setzt, wenn ihr Wert der Anzahl an Buttons entspricht. Die Anzahl der Iterationen limitiert
die berechnete Variable 1imit. Der Quellcodeausschnitt 6.2 zeigt die Auswahl des Buttons.

public List<MyButton> getButtonsForNextTest(){
List<MyButton> buttons = new ArrayList<MyButton>();
float random = (float)Math.random() * this.tests.size();
int roundRandom = (int) Math.floor(random);
int randomButton = this.tests.remove(roundRandom);
for(int i = 0; i < this.numberOfButtons; i++){
MyButton button;
if(i == randomButton){
button =
ButtonFactory.createCorrectButton(this.abstractMenuActivity);

}else{
button =
ButtonFactory.createFalseButton(this.abstractMenuActivity);

}
buttons.add(button);

}

return buttons;

Quellcodeausschnitt 6.2: Bestimmung des als nachstes zu betatigenden Buttons.

Sie erfolgt mit Hilfe der random Methode von der Klasse Math. Die von ihr erzeugte Zufallszahl
wird mit der Anzahl der in der Liste tests enthaltenen Indexe multipliziert und danach abge-

100

6.1. Quantitative Benutzbarkeitstests

rundet. Der hierdurch berechnete Index dient dazu, den Index des Buttons in der Liste buttons,
aus der Liste tests abzufragen, den der Proband als nachstes betatigen soll und der deshalb das
Smiley als Icon bekommt. Wenn der Proband den richtigen Button betétigt hat und noch nicht
am Ende des Tests angelangt ist, wird die Darstellung der Buttons in der Benutzeroberflache
tiber die Methode updateUI der Klasse AbstractMenuActivity aktualisiert. Hierbei handelte
es sich um die selbe Methode, die auch genutzt wird, um die Benutzeroberflache zu aktua-
lisieren, wenn der Benutzer in der Meniistruktur der App zur Steuerung des barrierefreien
Smarthomes navigiert und in Folge dessen andere Buttons darzustellen sind. Diesen Vorgang
beschreibt das Unterkapitel 5.4 ausfiihrlicher.

Die Abbildung 6.1 zeigt zudem, dass die zu testenden Button-Konfigurationen, in der Form
»~AnzahlHorizontaleButtonsxAnzahlVertikaleButtons®, getrennt durch Semikolons einstell-
bar sind. Wahrend des Tests einer Eingabemethode durchlauft der Proband diese Button-
Konfigurationen. Fiir jede gibt es einen Test mit der jeweils eingestellten Anzahl an Testfallen.
Zwischen den einzelnen Tests wird ein Dialog angezeigt, wie er auf dem in Abbildung 6.3 gezeig-
ten Screenshot zu erkennen ist. Dieser Dialog dient zum einen als Pause und zum anderen dazu,
dass die als nichste zu testende Button-Konfiguration auswahlbar ist um beispielsweise einen
Test wiederholen zu konnen. Anderenfalls ist die nachste zu testende Button-Konfiguration
schon vorausgewihlt und der Dialog muss lediglich iiber den Button ,,OK® geschlossen werden,
um mit dem néchsten Test zu beginnen.

Neben der Durchfithrung der quantitativen Benutzbarkeitstests hat die Klasse BandwithTester
noch eine weitere Funktion. Sie protokolliert die Ergebnisse eines Tests und schreibt diese in
eine CSV-Datei. Folgende Daten erfasst sie grundsatzlich:

« Dauer des Tests

« Anzahl der richtig betatigten Buttons (Buttons mit Smiley)
« Anzahl der falsch betitigten Buttons (Buttons ohne Smiley)
« Datum und Uhrzeit des Testendes

 verwendete Eingabemethode

- verwendete Button-Konfiguration

Des Weiteren berechnet die Klasse BandwithTester aus den zuvor genannten Werten noch
weitere, welche die in Kapitel 6.1.3 beschriebene Auswertung der quantitativen Benutzbarkeits-
tests benotigt und schreibt sie ebenfalls in die CSV-Datei. Dies dient lediglich zur Erleichterung
der Auswertung.

Konfiguration

Neben der Implementierung der quantitativen Benutzbarkeitstests umfasste die Vorbereitung
zudem die Festlegung der Konfigurationen fiir das Face-Tracking und Scanning. Die Einstellung

101

6. Evaluation

Select the number of buttons, press start and select the smiley-
buttons!

3x3

Cancel

Abbildung 6.3.: Screenshot des Dialogs fiir die Button-Konfiguration des folgenden Tests. (Das
Smiley- und X-Icon auf den Buttons stammen von: https://material.io/icons/
(16.12.2016))

der Parameter fiir erstere Eingabemethode fand basierend auf den gewonnenen Erkenntnissen
wihrend der Entwicklungszeit statt. Beim 1-Button-Scanning hat lediglich ein Parameter
Einfluss auf die quantitativen Benutzbarkeitstests. Bei diesem handelt es sich um die Geschwin-
digkeit beziehungsweise den Zeitabstand, der zwischen der Fokussierung eines Buttons und
der des nichsten liegt. Uber eine Pilotstudie mit zwei Personen wurde eine geeignete Ge-
schwindigkeit ermittelt. Hierzu testete sie neun verschiedene Geschwindigkeiten im Bereich
von 700 bis 150 Millisekunden mit einer 4x4-Matrix als Button-Konfiguration und jeweils 18
Testfallen. Weitere Button-Konfigurationen waren nicht Gegenstand der Pilotstudie, da es in
dieser darum ging, wie kurz der zeitliche Abstand zwischen der Fokussierung zweier Buttons
mindestens sein muss, damit die Probanden in der Lage sind, den richtigen Button zu betatigen.
Dabei stellte sich heraus, dass ein zeitlicher Abstand von 300 Millisekunden zwischen der
Fokussierung zweier Buttons am besten geeignet zu sein scheint, da die durchschnittliche Test-
dauer bei diesem am geringsten war. Das lasst sich dadurch erklédren, dass bei einer geringeren
Geschwindigkeit es im Durchschnitt langer dauert, bis der Button mit dem Smiley fokussiert
und vom Probanden betatigbar ist. Wenn der zeitliche Abstand zwischen der Fokussierung

102

6.1. Quantitative Benutzbarkeitstests

zweier Buttons jedoch 250 Millisekunden oder weniger betragt, ist das Scanning so schnell,
dass die Probanden den Button mit dem Smiley nicht rechtzeitig betatigen konnen und ihn
dadurch verpassen, was zu Folge hat, dass sie warten miissen, bis dieser erneut fokussiert
ist, wodurch sich die Testdauer erhoht. In Folge dessen wurde angenommen, dass mit einer
Geschwindigkeit von 300 Millisekunden in den quantitativen Benutzbarkeitstests die besten
Ergebnisse fiir die Eingabemethode 1-Button-Scanning erzielbar sind.

6.1.2. Durchfiihrung

Die Benutzbarkeitstests zur quantitativen Evaluation fanden an drei aufeinander folgenden
Tagen mit insgesamt 16 Probanden statt. Sie testeten jeweils folgende Eingabemethoden:

+ Touch

« Maus

» Tastatur

« Face-Tracking

« Scanning mit automatischem Fortschritt und Bluetooth Switch
+ Scanning mit manuellem Fortschritt und Bluetooth Switch

« Sprachsteuerung

Das Scanning zusatzlich zum Bluetooth Switch noch mittels Blinzeln zu evaluieren, wurde
ausgelassen, da die Benutzbarkeitstests sonst je Proband langer als eine Stunde gedauert hatten,
wodurch es fiir die Probanden zu anstrengend geworden wire.

Die Probanden testeten jede Eingabemethode mit 4 verschiedenen Button-Konfigurationen, um
zu untersuchen, wie prazise die einzelnen Eingabemethoden sind, da mit steigender Anzahl der
Schaltflachen sich deren Grofle reduziert, wodurch sie sich mit manchen Eingabemethoden wo-
moglich schwieriger betétigen lassen. Folgende Anzahlen und Anordnungen von Schaltflichen
waren Gegenstand der quantitativen Evaluation:

+ 9 Schaltflachen angeordnet in einer 3x3-Matrix
« 16 Schaltflachen angeordnet in einer 4x4-Matrix
« 25 Schaltflaichen angeordnet in einer 5x5-Matrix

« 36 Schaltflachen angeordnet in einer 6x6-Matrix

103

6. Evaluation

Die Anzahl an Buttons in vertikaler sowie horizontaler Richtung war bewusst in jeder der 4
Konfigurationen gleich gewahlt. Hierdurch war sichergestellt, dass das Verhaltnis von Hohe
und Breite eines einzelnen Buttons bei allen vier getesteten Konfigurationen gleich war. Mit
jeder Konfiguration und Eingabemethode mussten die Probanden 18 Buttons betatigen. Fir
die Konfigurationen mit 25 und 36 Buttons war sichergestellt, dass der Proband pro Eingabe-
methode keinen Button zwei Mal betétigen soll. Bei den Konfigurationen mit 9 und 16 Buttons,
dass keiner mehr als zwei Mal vorkommt. Sowohl die Reihenfolge, in der die Probanden die
Eingabemethoden testeten als auch die, in welcher die Konfigurationen hinsichtlich der Button-
Anzahl getestet wurden, basierten auf einer Latin square Verteilung. Sie stellte sicher, dass die
Probanden nicht alle mit ein und derselben Eingabemethode den Benutzbarkeitstest beginnen
und beenden, wodurch mégliche Ermiidungseffekte iiber alle Eingabemethoden verteilt sind.
Fiir die verschiedenen Konfigurationen bei der Anzahl an Schaltflachen war die Latin sqare
Verteilung vor allem bei den fiir die Probanden eher unbekannten Eingabemethoden, sprich
dem 1- und 2-Button-Scanning, der Sprachsteuerung sowie dem Face-Tracking wichtig, um
den Lerneffekt zu kompensieren. Dieser trat insbesondere beim Face-Tracking auf, obwohl die
Probanden dieses im Vorfeld mehrere Minuten ausprobieren konnten.

Bei der Eingabemethode 1-Button-Scanning wurde die im Vorfeld ermittelte Geschwindigkeit
von 300 Millisekunden verwendet. Fiir die Bedienung mittels Maus wurde die bei Android
standardmafig eingestellte Mauszeigergeschwindigkeit genutzt. Fiir die Sprachsteuerung durf-
ten die Probanden die Sprache wéhlen, in der sie ihrer Meinung nach am besten sind. 15
Personen entschieden sich fiir Deutsch und 1 Person fiir Englisch. Fir die Eingabemethode
Face-Tracking gab es einerseits fiir alle Probanden gleichbleibende und andererseits Einstel-
lungen, die individuell an den jeweiligen Probanden anzupassen waren. Der Grund hierfiir
ist, dass die Probanden unterschiedlich grofie und geformte Augen hatten, was sich auf die
Augenoéffnungswahrscheinlichkeit auswirkt. Um das Blinzeln dennoch problemlos fiir die
Eingabe nutzen zu konnen, waren die Werte zur Erkennung, ob das linke / rechte Auge auf
oder zu ist, auf die jeweilige Testperson abzustimmen. Die konstanten Einstellungswerte fiir
die Steuerung mittels Gesichtsverfolgung waren folgende:

+ Auflésung der Kamera: 800 x 600 Pixel
« Framerate der Kamera: 30 Frames pro Sekunde

« Zeit, die das linke / rechte Auge mindestens zum Blinzeln geschlossen sein musste: 150
Millisekunden

+ Zeit, die das linke / rechte Auge maximal zum Blinzeln geschlossen sein durfte: 2000
Millisekunden

+ Auge(n) mit dem / denen das Blinzeln moglich war: linkes Auge, rechtes Auge, beide
Augen (Die Probanden durften mit beide Augen blinzeln. Jedoch wurde nicht beriicksich-
tigt, ob sie nur mit dem linken beziehungsweise dem rechten Auge oder beiden Augen
blinzeln. Sprich, wenn sie mit beiden Augen blinzelten, wurde das Blinzelereignis von
dem Auge ausgeldst, das als erstes wieder offen war oder, wenn sie gleichzeitig wieder
offen waren, das vom linken Auge. Dadurch gab es keine Verzogerung durch Abwarten,

104

6.1. Quantitative Benutzbarkeitstests

ob sich das zweite Auge ebenfalls 6ffnet. Weshalb es zu der Verzégerung kommen wiirde,
erlautert der Abschnitt 5.4.4.)

o Zeitlicher Mindestabstand zwischen dem Blinzeln: 1499 Millisekunden
- Eingabewert fiir minimale horizontale Position des Cursors: +20 Grad (Kopfrotation)
« Eingabewert fiir maximale horizontale Position des Cursors: -20 Grad (Kopfrotation)

« Glattungsfaktor des Tiefpassfilters fiir die Eingabewerte zur Steuerung der horizontalen
Position des Cursors: 16

« Eingabewert fiir die minimale vertikale Position des Cursors: 240 Pixel (Y-Position der
Nasenwurzel im Bild)

« Eingabewert fur die maximale vertikale Position des Cursors: 310 Pixel (Y-Position der
Nasenwurzel im Bild)

« Glattungstaktor des Tiefpassfilters fiir die Eingabewerte zur Steuerung der vertikalen
Position des Cursors: 14

Die genannten konstanten Einstellungswerte resultieren aus den Erfahrungen des Autors
wahrend der Entwicklungszeit. Nach seinem Empfinden stellen sie eine geeignete Konfiguration
dar. Vermutlich gibt es bei diesen Einstellungswerten jedoch noch Optimierungspotenzial,
weshalb es fiir weitere Entwicklungsschritte ratsam ist, in einer ausfithrlichen Benutzerstudie
diverse Einstellungsparameter zu testen.

Zu Beginn des Benutzbarkeitstests wurden von den Probanden jeweils folgende Daten erho-
ben:

o Alter
« Geschlecht

Brillentrager (ja / nein)

Bart (ja / nein)
« Haare (ungefiahre Lange, ob sie das Gesicht bedecken)
« verwendete Sprache bei der Sprachsteuerung

Das Alter und Geschlecht wurden standardmaf3ig erfasst. Ob jemand Brillentrager ist, sein Bart
sowie seine Frisur sind im Hinblick auf die Auswertung des Face-Trackings ermittelt worden,
falls diese Faktoren sich auf die Gesichtserkennung auswirken. Die verwendete Sprache bei
der Sprachsteuerung sollte es ermoglichen, gegebenenfalls sprachenspezifische Unterschiede
zu ermitteln beziehungsweise in den Ergebnissen zu beriicksichtigen. Beispielsweise, wenn
in diesen erhebliche Abweichungen zwischen einer bestimmten Sprache und den iibrigen
existieren.

105

6. Evaluation

Des Weiteren erhielten alle Teilnehmer der Benutzerstudie eine Erkldrung zu den Eingabeme-
thoden. Diese umfasste neben einer Einfithrung in deren Bedienung auch eine Beschreibung
ihres Nutzens, sodass die Probanden nachvollziehen konnten, weshalb es wichtig ist, dass sie
Eingabemethoden testen, die aus ihrer Situation heraus betrachtet vollig unpraktisch sind.
Eine solche Eingabemethode war beispielsweise das Scanning mit dem Button Switch, der aus
der Sicht eines unversehrten Benutzers gegeniiber einer herkommlichen Tastatur oder der
Touch-Bedienung keinen Vorteil hat. Indem ihnen erklart wurde, welche Einschrankungen die
Zielgruppe des barrierefreien Smarthomes hat und sie deshalb aus der Sicht der Probanden,
eher auf umstandliche Eingabemdoglichkeiten angewiesen sind und diese mit herkdmmlichen
Eingabemethoden verglichen werden sollen. So konnten sie sich unter der Benutzerstudie
mehr vorstellen, was vermutlich auch die Motivation erhoht hat. Da das Face-Tracking fiir
die meisten Probanden vermutlich die schwierigste und unbekannteste Eingabemethode war,
konnten sie diese im Vorfeld mehrere Minuten ausprobieren. Dabei lielen sich gleich die
Einstellungen zur Erkennung des Blinzelns vornehmen. Die unterschiedliche Kérpergrofie der
Probanden wurde mittels eines hohenverstellbaren Stuhls ausgeglichen. Zum Abschluss des
Benutzbarkeitstests durften sich die Probanden bei Interesse jeweils ihre Ergebnisse anschauen,
was nebenbei zwei positive Effekte hatte. Zum einen konnte dabei gleich tiberprift werden, ob
alle Testergebnisse korrekt gespeichert wurden und zum anderen entwickelte sich teilweise
noch eine Diskussion iiber die getesteten Eingabemethoden, in welcher die Probanden Verbes-
serungsvorschliage einbrachten. Einer der Testteilnehmer duflerte am Ende der Benutzerstudie
den Wunsch, die Steuerung via Gesichtsverfolgung mit mehr als 36 Schaltflachen ausprobieren
zu wollen.

Wihrend der Durchfithrung der quantitativen Benutzbarkeitstests gab es auch Probleme,
welche nicht unerwahnt bleiben sollen. Eines war, dass manche Teilnehmer mit dem Face-
Tracking besser zurecht kamen als gedacht, wodurch die 36 Buttons zu wenige waren, um
diese Eingabemethode an ihre Grenzen zu bringen. Als Reaktion darauf, testeten 3 Probanden
im Anschluss an das eigentliche Testprogramm das Face-Tracking noch mit bis zu 100 Buttons.
Des Weiteren gab es bei dieser Eingabemethode noch Schwierigkeiten, das Blinzeln von
Brillentragern zu erkennen. Jedoch trat dies nur bei 2 von 4 Probanden mit Brille auf, welche
das Face-Tracking in Folge dessen ohne diese testeten. Bei den beiden anderen Brillentragern
gab es keine Probleme. Ein Proband dessen Bart, im Vergleich zu den anderen, grof3 und dicht
war, hatte ebenfalls Schwierigkeiten. Diesen duf3erten sich darin, dass bei ihm der Cursor viel
unruhiger war, sodass fir ihn in der Konfiguration mit 36 Buttons eine Bedienung nahezu
unmoglich war. Eine leichte Besserung schaffte das Verdecken des Bartes mit einem weifien
Blatt Papier. Neben dem Face-Tracking hatte auch die Sprachsteuerung Probleme. Bei Letzterer
waren diese zum einen auf Erkennungsprobleme und zum anderen auf die Tatsache, dass sie
nicht ausschliefllich Bestandteil der getesteten App war, zuriickzufithren. Die Schwierigkeiten
bei der Spracherkennung trat bei Probanden mit einem Dialekt auf. In Folge dessen kam es
insbesondere bei ihnen immer wieder vor, dass ein Test unterbrochen oder abgebrochen wurde,
weil die zur Sprachsteuerung verwendete App Voice Access aufgrund einer falsch verstandenen
Spracheingabe die App zur Steuerung des barrierefreien Smarthomes geschlossen oder eine
andere gestartet hat. Dies kann deshalb passieren, weil mittels der App Voice Access das

106

6.1. Quantitative Benutzbarkeitstests

gesamte Android Betriebssystem bedienbar ist. Da es sich bei dieser jedoch noch um eine
Testversion handelt (vgl. [Goo16m]), ist es nicht auszuschlieffen, dass das eine oder andere
Problem bei der Spracherkennung auch auf sie zuriickzufiihren ist.

6.1.3. Auswertung

An den quantitativen Benutzbarkeitstests nahmen 16 Probanden teil. Fiinf von ihnen waren
Frauen und 11 Méanner. Sie waren im Durchschnitt 25,44 +3,45 Jahre alt. Die jiingste Person
war 20 und die alteste 34 Jahre alt. Fiir die Auswertung der quantitativen Benutzbarkeitstests
werden die Bandbreiten der jeweiligen Eingabemethoden verglichen sowie die Geschwindigkeit,
mit welcher die Probanden die Buttons nacheinander betétigten. Die Bandbreite ist in Bits
pro Sekunde angeben. Jedes Bit stellt einen Button dar, der zum Zeitpunkt der Betatigung
eines Buttons auf der Benutzeroberflache sichtbar war. Wenn ein Proband folglich bei einer
3x3-Matrix einen Button betitigte, ibertrug er damit 9 Bits. Bei einer 6x6-Matrix wiren
es 36 Bits gewesen. Dies tragt dem Umstand Rechnung, dass bei einer hoheren Anzahl an
Buttons zwischen mehr Optionen gewahlt werden kann, weshalb eine Entscheidung durch
die Betatigung eines Buttons wertvoller ist. Die Geschwindigkeit resultiert aus der Testdauer
und der in dieser Zeit getatigten Eingaben. Hat der Proband beispielsweise in 10 Sekunden 5
Buttons betitigt, betragt die Geschwindigkeit 0,5 Buttons pro Sekunde. Im Abschnitt A.2 des
Anhangs befinden sind in den Tabellen A.1 und A.2 fiir jede getestete Eingabemethode und
Button-Konfiguration die maximal, durchschnittlich und minimal iibertragenen Bits / Sekunde
sowie betatigten Buttons / Sekunde gerundet auf 4 Stellen nach dem Komma.

Im Folgenden findet ein Vergleich aller getesteten Eingabemethoden und Button-Konfigurationen
hinsichtlich der Bandbreite und Geschwindigkeit statt. Eine ausfiihrliche Betrachtung der
barrierefreien Eingabemethoden Face-Tracking, Sprachsteuerung, 1- und 2-Button-Scanning
schlief3t daran an. Die in diesem Zusammenhang getétigten Aussagen zu einer zu- oder ab-
nehmenden Anzahl an pro Sekunde iibertragener Bits beziehungsweise betétigter Buttons
beschréanken sich auf die Anzahl 9 bis 36 Buttons. Wie weit sich gewisse Trends fortsetzen,
kann erst mit Hilfe einer zweiten Studie, die noch weitere Button-Konfigurationen evaluiert,
ermittelt werden.

Vergleich der Eingabemethoden

Das Diagramm in Abbildung 6.4 zeigt die durchschnittlich iibertragenen Bits pro Sekunde
je Eingabemethode und Button-Konfiguration. Bei sémtlichen Eingabemethoden nimmt die
Bandbreite mit der Anzahl der Buttons zu, was vermuten lasst, dass mit einer 6x6-Matrix in
Kombination mit den getesteten Eingabemethoden das Maximum noch nicht erreicht ist. Des
Weiteren zeigt das Diagramm in Abbildung 6.4, dass die Eingabemethoden Touch, Maus und Tas-
tatur ein Vielfaches von den Bandbreiten der barrierefreien Eingabemethoden Face-Tracking,
Sprachsteuerung, sowie 1- und 2-Button-Scanning erreicht haben. Die Eingabemethode Touch

107

6. Evaluation

® @ Bits / Sekunde

60,0

50,0

40,0

) I I

N I I I I

0,0 -
||/ € €|/€E|/E|E E|€E E|E|E|E|E <ES|/E|E|E|E|E E E|E E|E E|E
- - - L L - - - - - - - - - - - L - - - - - Ll - - - L L
© © © © © (© (© © © O O (© © © © (© © (© (© © © © (1] © © © © (©
S| 2|z 2|22 2222|2222 |2|2|=22|=2|=2|2|2|2|=2|=2|=2/=2|=2
o < wn [\e) o < wn oM< n | O o < wn [\e) o < wn o oM < wn Yo o < wn o
x x x x x x x x x X x x x x x x x x x x x x x x x x x x
o < wn =) on < wn o | m| < n | O o < wn O on < wn o | oM < n o o < wn)

Touch Maus Tastatur Face-Tracking 1-Button- 2-Button- Sprach-
Scanning Scanning steuerung

Abbildung 6.4.: Insgesamt iibertragene Bits / Sekunde im Durchschnitt.

erzielte bei allen 4 getesteten Button-Konfigurationen die hochste Bandbreite. Das Diagramm
in Abbildung 6.4 zeigt die gesamte Anzahl an durchschnittlich Gibertragenen Bits. Das bedeutet,
dass dazu auch Fehleingaben zahlen. Eine Fehleingabe liegt dann vor, wenn der Proband an-
stelle des Buttons mit dem Smiley einen anderen Button betétigte. Viele Fehleingaben konnen
ein Hinweis darauf sein, dass eine Eingabemethode weniger prazise ist als eine andere. Aus
diesem Grund unterscheidet das Diagramm in Abbildung 6.5 zwischen korrekt und falsch
iibertragenen Bits pro Sekunde im Durchschnitt. Die Formulierung falsch tibertragene Bits
pro Sekunde ist so zu verstehen, dass der Proband mittels der Eingabemethoden eine falsche
Eingabe ,ubertragen® hat. Die falsch iibertragenen Bits sind rot dargestellt und die korrekt
tibertragenen Bits hellblau. Die Summe aus den richtig und falsch iibertragenen Bits ergibt die
in Abbildung 6.4 dargestellten Ergebnisse. Aus dem Diagramm in Abbildung 6.5 geht hervor,
dass die barrierefreien Eingabemethoden Face-Tracking sowie 1-Button-Scanning die hochsten
Bandbreiten bei den falsch ibertragenen Bits pro Sekunde haben.

Das Diagramm in Abbildung 6.6 veranschaulicht ausschlieflich die im Durchschnitt falsch
iibertragenen Bits pro Sekunde. Aus diesem lassen sich folgende 2 Erkenntnisse ableiten.
Zum einen unterscheiden sich die beiden barrierefreien Eingabemethoden Face-Tracking und
1-Button-Scanning mit den meisten falsch iibertragenen Bits pro Sekunde hinsichtlich der
Zunahme bei diesen. Beim Face-Tracking nimmt die Anzahl der falsch iibertragenen Bits mit

108

6.1. Quantitative Benutzbarkeitstests

@ richtige Bits / Sekunde B @ falsche Bits / Sekunde

60,0
50,0
40,0 =
30,0
20,0 —
10,0
|} . — — — - _—
0,0
c/c|E€|€E <€|€E|/€E/ €|/€|€E €|/€E|E <€|E€E|/E €| E|E E|E|E E|/E € <£|E|EC
- L d - - - Ll - - - - - - - - - - - - Ll - - - Ll - - - L d -
© ©
S 2|2z 22222z z22=z=2=2=2=2|2/=z=2|2|=2/=2|=2=22=2|2|=2
o < wn o o < wn o o < wn o o < mn O o < n O o™ < n O o < mn X
x x
o™ < wn o) o™ <t wn (o) o™ <t wn (o) o < n (o) o < n (o) o < n O (2] < n o)
Touch Maus Tastatur Face-Tracking 1-Button- 2-Button- Sprach-
Scanning Scanning steuerung

Abbildung 6.5.: Durchschnittlich richtig beziehungsweise falsch iibertragene Bits / Sekunde.

der Anzahl der getesteten Buttons zu, was darauf schlieflen lasst, dass bei einer Konfiguration
mit wenigen, es nicht so oft zu Fehleingaben kommt. Beim 1-Button-Scanning ist hingegen
genau das Umgekehrte der Fall. Bei den getesteten Button-Anzahlen nimmt die Bandbreite
an falsch tibertragenen Bits kaum zu, was den Schluss zulasst, dass mit einer steigenden
Anzahl an Buttons bis mindestens 36 die Fehleingaben sinken. Zweitens zeigt das Diagramm
in Abbildung 6.6, dass es auch bei anderen Eingabemethoden zu Fehleingaben kam. In dem
Diagramm in Abbildung 6.5 waren diese aufgrund dessen Skalierung kaum sichtbar. Jedoch ist
es offensichtlich, dass die Eingabemethode Touch am besten abschneidet und die barrierefreien
Eingabemethoden Face-Tracking und 1-Button-Scanning am schlechtesten. Erstaunlich ist, dass
das 2-Button-Scanning und die Sprachsteuerung hinsichtlich der Fehleingaben nicht merklich
schlechter sind als Maus und Tastatur. Dies bezieht sich allerdings nur auf die Anzahl der
falsch tibertragenen Bits. Bei den korrekt iibertragenen Bits sind Maus und Tastatur iiberlegen.

Neben der Bandbreite in Form von Bits pro Sekunde ist es auch interessant, mit welcher
Eingabemethoden und Button-Konfiguration sich am schnellsten Entscheidungen treffen
lassen. Das Diagramm in Abbildung 6.7 zeigt die Anzahl der im Durchschnitt richtig und
falsch betatigten Buttons pro Sekunde je Eingabemethoden und Button-Konfiguration. Auch
hier sind Touch, Maus und Tastatur eindeutig besser als die barrierefreien Eingabemethoden.

109

6. Evaluation

W @ falsche Bits / Sekunde

1,8
1,6
1,4
1,2
1,0
0,8
0,6
0,4
N I I I
:
— — — — — . — — — — — — — — — — — — — — — . — — — — — —
=3 = = = = = = = - = =3 = = =3 = = = = = =3 = - - =3 = - =3 =
(T (© (3] (T © (T (T © (T © (] © (3] (T (© (3] (T (© (T (T (© (T O (] © © (© ©
2 2|2z 222|222 2/2|z2|2|2/=2/=2|=2/2|2/=2=2/2|2|2 =2/ 2|/2|=2
om < n o o < n o o < N o [sg] < wn o om < n o o < n o o < n o
x x
(a2} < wn (o] [42] < wn [} o < n o) on < wn o) (22} < wn (o] [42] < wn (o} o < n o
Touch Maus Tastatur Face-Tracking 1-Button- 2-Button- Sprach-
Scanning Scanning steuerung

Abbildung 6.6.: Durchschnittlich falsch tibertragene Bits / Sekunde.

Innerhalb der ersteren Drei, bleibt die Eingabemethode Touch mit zunehmender Anzahl an
getesteten Buttons stabil, was die Geschwindigkeit betrifft. Bei der Maus sowie der Tastatur
ist dies nicht der Fall. Bei ihnen lasst sich die mit der steigenden Anzahl an Buttons sinkende
Geschwindigkeit auf lingere Wege zuriickfithren. Bei der Maus mussten die Probanden diese
bei der 6x6-Matrix im Durchschnitt weiter nach links, rechts, oben und unten bewegen als bei
der 3x3-Matrix. Des Weiteren werden die Buttons kleiner, wenn ihre Anzahl steigt, was dazu
fithrt, dass der Mauszeiger préziser und damit langsamer bewegt werden muss. Bei der Tastatur
entstehen lingere Wege dadurch, dass bei einer hoheren Anzahl an Buttons, durchschnittlich
mehr Eingaben mit den Pfeiltasten erforderlich sind, bis der richtig Button fokussiert und

betétigbar ist.

Bei den barrierefreien Eingabemethoden Face-Tracking sowie 1- und 2-Button-Scanning nimmt
die Geschwindigkeit mit steigender Anzahl der Buttons in der Benutzerstudie ebenfalls ab.
Jedoch beim Face-Tracking weniger stark als bei den anderen beiden. Bei diesen ist die Ursa-
che darin zu finden, dass vergleichbar zu der Eingabemethode Tastatur, der Zeitaufwand zur
Fokussierung des richtigen Buttons beziehungsweise im Rahmen der quantitativen Benutz-
barkeitstests jenen mit dem Smiley, im Durchschnitt mit der Anzahl der getesteten Buttons
gestiegen ist. Beim 1-Button-Scanning liegt das daran, dass es im Durchschnitt langer dauert,
bis der entsprechende Button fokussiert ist. Selbiges trifft auch auf das 2-Button-Scanning zu,

110

6.1. Quantitative Benutzbarkeitstests

@ richtig betatigte Buttons / Sekunde B @ falsch betétigte Buttons / Sekunde

1,8
1,6
1,4
-
1,2 5
1,0
0,8 —
0,6
|
0,4 —
-
- - B
0,2 . — T
0,0
c|€|/€|/<€|c|€|€E|E|E €/ €|c|€S|E|E €/ E€|€|€|ES|E/ E <€/ <€/ <€|/c|E|t
- Ll - - - - - Ll - - - - - - Ll - - - - - - - - - - - - Ll
© © (© ©
S 2|22z =222z |2/=2=z=z=2/z2|2|2/=2=2=2|=2|=2|2|2|=2/=2/=2|=2
o < n o om < wn o o < wn o om < n o o < wn \e) o < wn o om < wn o
x X x
(a2} < n o o < wn (o] (32] < wn O o < n o [32] < wn o) on < wn o o < wn (o]
Touch Maus Tastatur Face-Tracking 1-Button- 2-Button- Sprach-
Scanning Scanning steuerung

Abbildung 6.7.: Durchschnittlich richtig beziehungsweise falsch betétigte Buttons / Sekunde.

wobei hier der Benutzer tiber einen Taster jeweils den nachsten Button fokussieren muss, bis
er den gewiinschten erreicht und betétigen kann. Bei einer niedrigen Anzahl an Buttons sind
das 1- und 2-Button-Scanning aus diesem Grund jedoch am schnellsten unter den 4 evaluierten
barrierefreien Eingabemethoden, was daran liegt, dass der durchschnittliche Zeitaufwand, der
noétig ist, bis der richtige Button fokussiert ist, dann gering ist. Wahrend den quantitativen
Benutzbarkeitstests war dies besonders deutlich bei den Button-Konfigurationen in Form
einer 3x3- oder 4x4-Matrix der Fall. Das Diagramm in Abbildung 6.7 zeigt auch, dass die
Sprachsteuerung die Eingabemethode mit der kontinuierlichsten Geschwindigkeit war.

1-Button-Scanning

Das Diagramm in Abbildung 6.5 zeigt unter anderem die durchschnittlich korrekt sowie
falsch iibertragenen Bits pro Sekunde mittels der Eingabemethode 1-Button-Scanning. Die
zu ihr gehorenden griinen Balken zeigen, dass die Bandbreite mit der getesteten Anzahl der
Buttons nur gering zunimmt, insbesondere wenn man bedenkt, dass bei der 3x3-Matrix durch
die Betédtigung eines Buttons 9 Bits und bei der 6x6-Matrix 36 Bits iibertragen werden, was
einer Vervierfachung entspricht. Hingegen erhoht sich die durchschnittliche Bandbreite bei
36 Buttons im Vergleich zu 9 Buttons nur um ca. 1 Bit. Das liegt daran, dass mit der Anzahl

111

6. Evaluation

der getesteten Buttons, im Mittel die Dauer zunimmt, bis der richtige Button fokussiert ist,
da die Geschwindigkeit der Fokussierung konstant ist. Diesen Umstand verdeutlicht auch
das Diagramm in Abbildung 6.7. Es zeigt die Anzahl der durchschnittlich korrekt und falsch
betatigten Buttons pro Sekunde. Mit Zunahme der Buttons bis einschlief3lich 36, nimmt diese
kontinuierlich ab, was bedeutet, dass der Zeitabstand zwischen den Eingaben zunimmt und
darauf zuriickzufiihren ist, dass es bei einer hoheren Anzahl an Buttons langer dauert, bis der
richtige fokussiert ist, was sich wiederum negativ auf die Bandbreite auswirkt.

Erfreulich ist, dass die durchschnittlich falsch iibertragenen Bits pro Sekunde mit der Anzahl
der getesteten Buttons nur minimal zunehmen, wie im Diagramm in Abbildung 6.6 zu sehen
ist. Betrachtet man die Anzahl der falsch betétigten Buttons in dem Diagramm aus Abbildung
6.7, dann hat diese mit einer steigenden Anzahl an Buttons in den Tests sogar abgenommen.
Ersterer Effekt ist darauf riickfithrbar, dass die Schwierigkeit fiir die Probanden beim 1-Button-
Scanning war, den richtigen Button, also jenen mit dem Smiley, rechtzeitig, sprich in den
300 Millisekunden, in welchen er fokussiert ist, zu betatigen und diese unabhangig von der
Button-Konfiguration ist. Der zweite Effekt, also die Abnahme der Fehleingaben mit steigender
Anzahl an Buttons ist dadurch erklarbar, dass die Probanden beispielsweise bei der 3x3-Matrix
im Vergleich zur 6x6-Matrix im Mittel weniger Zeit hatten, um den Button mit dem Smiley zu
Lentdecken®, wodurch sie ofters zu langsam waren und félschlicherweise den darauf folgenden
Button fokussiert haben. Dies war nach Beobachtung des Autors dieser Arbeit insbesondere
dann der Fall, wenn sich der Button mit den Smileys in der obersten Button-Zeile links
befunden hat. Dies ist plausibel, da das 1-Button-Scanning die Buttons von links nach rechts
ausgehend von oben fokussiert. In der Praxis wird die Anzahl der Fehleingaben bei erfahrenen
Benutzern vermutlich geringer sein, da sie aufgrund ihrer Erfahrung schon wissen, wo sich
der Button, den sie als nachstes zu betatigen haben, befindet. Dadurch féllt die Zeit fiir das
Suchen beziehungsweise den Uberraschungseffekt weg.

2-Button-Scanning

Das Diagramm in Abbildung 6.5 zeigt die durchschnittliche Bandbreite der Eingabemethode
2-Button-Scanning. Wie schon beim 1-Button-Scanning nahmen die durchschnittlich richtig
iibertragenen Bits mit der Anzahl der getesteten Buttons zu, jedoch kommt es auch hier zu einer
Reduzierung der Eingabegeschwindigkeit, wie in dem in Abbildung 6.7 enthaltenen Diagramm
zu erkennen ist, welches die durchschnittliche Anzahl der richtig und falsch betétigten Buttons
pro Sekunde darstellt. Der Grund hierfiir ist, wie schon bei der Eingabemethode 1-Button-
Scanning der, dass der Zeitbedarf bis zur Fokussierung des richtigen Buttons mit deren Anzahl
steigt. Der Vergleich der Bandbreiten von den Eingabemethoden 1- und 2-Button-Scanning
zeigt, dass Zweitere eine hohere besitzt. Das ist darauf zuriickzufiithren, dass die Anzahl der
richtig betatigten Buttons pro Sekunden beim 2-Button-Scanning gréfier ist als beim 1-Button-
Scanning, was ein Vergleich mit dem Diagramm in der Abbildung 6.7 zeigt. Dies kann 2 Griinde
haben. Méglicherweise waren die Probanden im Durchschnitt schneller beim Fokussieren
des nichsten Buttons, als das 1-Button-Scanning. Sprich sie brauchten jeweils weniger als

112

6.1. Quantitative Benutzbarkeitstests

300 Millisekunden um den néchsten zu fokussieren. Der zweite mogliche Grund ist, dass
die Probanden beim 2-Button-Scanning im Vergleich zum 1-Button-Scanning seltener den
Button mit dem Smiley ,verpassten® und in Folge dessen falschlicherweise auch nicht den
nachfolgenden Button betatigten, da sie das ,Verpassen® noch rechtzeitig bemerkten, denn das
Diagramm in Abbildung 6.7 veranschaulicht, dass es beim 2-Button-Scanning deutlich weniger
Fehleingaben als beim 1-Button-Scanning gab. Das ,Verpassen® bedeutete jeweils, dass die
Probanden erneut warten mussten, bis der richtige Button fokussiert ist, was zur Konsequenz
hatte, dass im Durchschnitt weniger Buttons pro Sekunde betétigt wurden. Moglich ist auch,
dass die hohere Bandbreite des 2-Button-Scannings gegeniiber dem 1-Button-Scanning auf
eine Kombination aus beiden Griinden riickfithrbar ist.

Das 2-Button-Scanning hat unter den barrierefreien Eingabemethoden, abgesehen von der
3x3-Matrix als Button-Konfiguration, die niedrigste Bandbreite bei den falsch iibertragenen Bits
beziehungsweise am wenigsten falschlich betatigte Buttons, wie ein Blick auf das Diagramm
in der Abbildung 6.7 zeigt. Die wenigen Fehleingaben sind darauf zuriickzufiithren, dass die
Probanden die Fokussierung der Buttons selbst steuern konnten, es also seltener ein ,Verpassen®
wie beim 1-Button-Scanning oder ein falschliches Auswiahlen wie beim Face-Tracking gab.
Die wenigen Fehleingaben, die dennoch stattfanden, resultieren vermutlich daraus, dass die
Probanden manchmal sprichwortlich iiber das Ziel hinausschossen, indem sie die Taste fiir die
Fokussierung des niachsten Buttons zu oft driickten und anschlieflend auch noch den Button
betatigten. Allerdings sind die Fehleingaben beim 2-Button-Scanning sehr gering, weshalb es
schwierig ist, eine oder mehrere Ursachen zu finden. Insgesamt machten die 16 Probanden 6
Fehleingaben. Dem gegeniiber stehen 218 richtige. Deshalb ist es auch schwierig, eine Erklarung
dafiir zu finden, weshalb die in Abbildung 6.6 dargestellte Bandbreite an falsch iibertragenen
Bits bei der 4x4- und 5x5-Matrix grofier ist als bei den beiden anderen Button-Konfigurationen.
Es kann schlichtweg Zufall sein.

Sprachsteuerung

Im Gegensatz zu den beiden Eingabemethode 1- und 2-Button-Scanning steigt die durchschnitt-
liche Bandbreite der Sprachsteuerung zwischen der 3x3- und 6x6-Matrix erheblich an. Das
Diagramm in Abbildung 6.5 veranschaulicht dies. Der konstante Anstieg der Bandbreite liegt an
der kontinuierlichen Eingabegeschwindigkeit. Das Diagramm in Abbildung 6.7 veranschaulicht,
dass die 16 Probanden im Durchschnitt ca. 0,2 Buttons je Sekunden betatigten und das bei allen
4 getesteten Button-Konfigurationen. Hieraus geht hervor, dass sich die im Rahmen der Tests
durchgefiihrte Erh6hung der Button-Anzahl nicht negativ auf die Eingabegeschwindigkeit
auswirken. Jedoch ist diese Entwicklung fiir eine beliebige Anzahl an Buttons ausgeschlossen,
da der Platz auf der Benutzeroberfliche begrenzt ist und die Beschriftung des Buttons oder
seine Nummer fiir den Benutzer lesbar bleiben miissen. Die Eingabegeschwindigkeit ist viel
mehr durch die derzeitige Umsetzung der verwendeten Voice Access App limitiert, denn der
Grofiteil des Zeitbedarfs fiir eine Eingabe war wahrend der quantitativen Benutzbarkeits-
tests auf diese zuriickzufithren. Dafiir gab es folgende 3 Ursachen. Nachdem der Proband

113

6. Evaluation

eine Spracheingabe titigte, musste zunachst gewartet werden, bis die Voice Access App die
Spracherfassung beendet. Das ist erforderlich, da im Vorfeld nicht bekannt ist, wie lange die
Eingabe des Benutzers ist, weshalb sie deren Ende erst nach einer Phase, in der dieser nicht
redet, erkennen kann. Anschlieffend fiihrt sie die Spracherkennung online durch, was ebenfalls
Zeit in Anspruch nimmt (vgl. [Goo16i]). Wenn die Spracheingabe einem Button anschlieffend
zuordenbar ist, betétigt sie ihn. Dies erfolgt animiert, was den dritten Grund fiir den Zeitbedarf
darstellt.

Die im Diagramm von Abbildung 6.6 dargestellten durchschnittlich falsch ibertragenen Bits pro
Sekunde sind sehr gering. Das lasst sich darauf zuriickfithren, dass die Probanden zur Betatigung
eines Buttons dessen entsprechende Nummer sagen mussten. Die Nummerierung der Buttons
erfolgte durch die Voice Access App (vgl. [Gool6a]). Dem geringen Anteil an Fehleingaben
nach, lassen sich die Zahlen bei der Spracheingabe sehr gut voneinander unterscheiden, was
dazu fithrte, dass die Probanden nur selten einen falschen Button betétigten. Das Diagramm
in Abbildung 6.7 zeigt eine geringe Zunahme der Fehleingaben mit einer steigenden Zahl
von Buttons. Hieraus lasst sich die Uberlegung ableiten, dass die Spracherkennung groflerer
Zahlen eventuell schwieriger ist. Bei einer 3x3-Matrix besaflen die Buttons die Nummern 4 bis
einschliefilich 12. Bei der 6x6-Matrix waren sie von 4 bis einschlieflich 39 durchnummeriert.

Was die Diagramme zu der Sprachsteuerung nur indirekt beriicksichtigen, aber erhebliche
Probleme bereitete, waren falsch verstandene Spracheingaben, welche keinem der zur Auswahl
stehenden Buttons zuordenbar waren. Diese traten besonders intensiv bei Probanden auf,
welche einen Dialekt hatten. Das Diagramm in Abbildung 6.8 zeigt den maximalen, durch-
schnittlichen und minimalen je Probanden berechneten Durchschnitt an betétigten Buttons
pro Sekunde je Button-Konfiguration. Daraus, dass der Abstand zwischen den minimalen
und durchschnittlichen Werten deutlich grofler als jener zwischen den durchschnittlichen
und maximalen ist, lasst sich ableiten, dass es bei einigen Probanden iiberdurchschnittlich
grofie Probleme bei der Spracherkennung gegeben haben muss. Diese sind in der Eingabe-
geschwindigkeit deshalb enthalten, weil die Probanden nicht verstandene Spracheingaben
so oft wiederholen mussten, bis sie das waren, was zu einer geringeren Eingabegeschwindig-
keit fithrte. Aus diesem Grund sind die falsch verstandenen Spracheingaben indirekt in den
Ergebnissen enthalten.

15 von den 16 Personen testeten die Sprachsteuerung auf Deutsch und 1 auf Englisch. Die mittels
Englisch erzielte Bandbreite an richtig ibertragen Bits pro Sekunde liegt bei allen 4 getesteten
Button-Konfigurationen tiber dem Durchschnitt. Jedoch erlaubt dies hinsichtlich der Frage, ob
Deutsch oder Englisch besser oder gleich gut geeignet ist fiir die Sprachsteuerung mittels der
App Voice Access, aufgrund der ungleichen Verteilung an Tests, keine Schlussfolgerung.

Face-Tracking

Das Diagramm in Abbildung 6.5 zeigt, dass bei der Eingabemethode Face-Tracking die Anzahl
der durchschnittlich pro Sekunde richtig tibertragenen Bits mit zunehmender Anzahl an

114

6.1. Quantitative Benutzbarkeitstests

maximal richtige Bits / Sekunde =~ —e=@ richtige Bits / Sekunde —=minimal richtige Bits / Sekunde
10,0

9,0
8,0
7,0
6,0
5,0
4,0
3,0
2,0
1,0

0,0
3x3 Matrix 4x4 Matrix 5x5 Matrix 6x6 Matrix

Abbildung 6.8.: Maximal, durchschnittlich sowie minimal iibertragene Bits / Sekunde mit der
Eingabemethode Sprachsteuerung.

getesteten Buttons gestiegen ist. Jedoch nimmt mit ihr auch deren Grofle ab, was ihre Auswahl
und Betétigung mittels Face-Tracking erschwert. Dies geht aus dem Diagramm in Abbildung
6.7 hervor. Es zeigt die, mit der Anzahl an getesteten Buttons sinkende, durchschnittliche
Eingabegeschwindigkeit in Form von betatigten Buttons pro Sekunde.

Das Diagramm mit den im Durchschnitt iibertragenen Bits pro Sekunde zeigt jedoch auch eine
steigende Zahl an falsch iibertragenen Bits in Abhangigkeit zu einer zunehmenden Anzahl
an Buttons in den Tests. Die steigende Fehlerrate ist darauf zuriickzufithren, dass je kleiner
die Buttons sind, desto schwieriger deren Auswahl ist, da der Cursor, der hierfiir notwendig
ist und mittels Face-Tracking gesteuert wird, unruhig ist. Seine Unruhe ist jedoch nicht bei
allen Probanden gleich. Eine weitere Schwierigkeit, die insbesondere bei kleinen Buttons zum
Tragen kommt, ist vermutlich die, dass der Benutzer wahrend des Blinzelns, welches den
ausgewahlten Button betatigt, den Cursor ruhig halten muss, um nicht versehentlich einen
benachbarten Button auszuwéhlen und zu betatigten. Den Beobachtungen des Autors nach,
fiel dies einigen Probanden schwer.

Im Vorfeld der quantitativen Benutzbarkeitstests kam die Uberlegung auf, ob das Tragen einer
Brille oder eines Bartes das Face-Tracking beeinflusst. Nachdem der Cursor je nach Proband

115

6. Evaluation

unterschiedlich unruhig war, konnte ein Bart oder eine Brille die Ursache dafiir sein. Von
den 16 Probanden hatten 5 einen Bart. Lediglich bei demjenigen mit dem ausgepréagtesten
Bart kam es zu offensichtlichen Problemen. Diese aufierten sich darin, dass bei ihm der Cur-
sor extrem unruhig war. Das Diagramm in Abbildung 6.9 lasst die Schlussfolgerung, dass
ein Bart das Face-Tracking beeinflusst, nicht zu. Sie zeigen die im Durchschnitt richtig und
falsch ibertragenen Bits pro Sekunde der Probanden mit und jenen Probanden ohne Bart.
Offensichtliche Abweichungen zwischen Barttragern und bartlosen Testpersonen sind nicht
erkennbar. Das Diagramm in Abbildung 6.10 unterscheidet zwischen Probanden mit sowie
ohne Brille. Im Gegensatz zum Bart, lasst sich aus ihnen ein méglicher Einfluss durch das
Tragen einer Brille auf das Face-Tracking ableiten. Sowohl die durchschnittlich falsch als auch
die im Durchschnitt richtig tibertragenen Bits pro Sekunde sind bei den Probanden ohne Brille
etwas besser. Wichtiger als die Ergebnisse aus den Diagrammen ist jedoch die Erkenntnis,
dass bei 2 von den 6 Brillentragern das Face-Tracking mit aufgesetzter Brille iiberhaupt nicht
nutzbar war, da das Blinzeln nur sehr eingeschrankt oder tiberhaupt nicht erkannt wurde.
Deshalb haben diese 2 Probanden die quantitativen Benutzbarkeitstests schliefSlich ohne Brille
durchgefiihrt. Das Diagramm mit den durchschnittlichen Bandbreitenwerten der Brillentrager
beinhaltet demzufolge nur die Werte von den 4 Probanden, bei denen die Brille keine Probleme
verursachte. Das lasst sich die These zu, dass offensichtliche nur manche Brillen negative
Auswirkungen auf das Face-Tracking hatten und die anderen wenige bis keine.

Das Diagramm in Abbildung 6.11 zeigt die durchschnittliche Bandbreite an richtig und falsch
iibertragenen Bits je Sekunde mit einer hoheren Anzahl an Buttons. Daneben befinden sich
die Ergebnisse in Form von Zahlen in den Tabellen A.3 und A.4 des Anhangs. Die 7x7-,
8x8, 9x9- sowie 10x10-Matrixen wurden im Anschluss an das eigentliche Testprogramm in
der Endphase der quantitativen Benutzbarkeitstests mit 3 beziehungsweise die 9x9-Matrix
lediglich mit 2 Testteilnehmern getestet. Der Anlass hierfiir war, dass es mit den urspriinglich
getesteten Button-Konfigurationen bei der Eingabemethode Face-Tracking kontinuierlich zu
einem Anstieg der Bandbreite kam und die quantitativen Benutzbarkeitstests urspriingliche
die Grenze des Moglichen von dieser ermitteln sollten, also jene Anzahl an Buttons, mit der
die hochste Bandbreite erzielbar ist. Auch wenn die Durchfithrung mit 3 Probanden keine so
aussagekraftigen Schliisse erlaubt, lasst sich aus dem Diagramm ableiten, dass ungefahr bei der
8x8-Matrix beziehungsweise 64 Buttons die Grenze des Moglichen bei der Eingabemethode
Face-Tracking in Kombination mit dem Prototyp erreicht ist. Bei dieser Konfiguration wurden
durchschnittlich die meisten Bits pro Sekunde richtig iibertragen. Bei der 9x9-Matrix sowie
der 10x10-Matrix als Button-Konfiguration ist die Bandbreite hingegen wieder geringer. Bei
Letzter Gibersteigt jene der im Durchschnitt falsch iibertragenen Bits diese sogar.

Betrachtet man das Diagramm in Abbildung 6.6 zeigt sich unabhangig von den im vorherigen
Abschnitt behandelten erweiterten quantitativen Benutzbarkeitstests, dass das Face-Tracking
besonders bei den getesteten Konfigurationen mit den hoheren Button Anzahlen die mit Ab-
stand meisten Fehleingaben respektive falsch iibertragenen Bits pro Sekunde durchschnittlich
hatte. Mit dieser Erkenntnis sind die Durchschnittswerte bei den richtig iibertragenen Bits pro
Sekunde immer in Kombination mit den Fehleingaben zu betrachten. Denn in der Praxis wird
es oftmals so sein, dass jede Fehleingabe mindestens eine richtige Eingabe zur Korrektor erfor-

116

6.2. Qualitative Benutzbarkeitstests

—o—@ richtige Bits / Sekunde mit Bart —#—@ falsche Bits / Sekunde mit Bart
@ richtige Bits / Sekunde ohne Bart =@—@ falsche Bits / Sekunde ohne Bart
7,0

6,0 o
50 -

4,0 -

3,0 - /

2,0
1,0

0,0
3x3 Matrix 4x4 Matrix 5x5 Matrix 6x6 Matrix

Abbildung 6.9.: Im Durchschnitt richtig sowie falsch tibertragenen Bits / Sekunde in Abhan-
gigkeit mit sowie ohne Bart.

dert. Unter diesem Gesichtspunkt betrachtet, wird anhand des Diagramms in Abbildung 6.11
schnell deutlich, dass die Button-Konfiguration mit der durchschnittlich hochsten Bandbreite
an richtig iibertragenen Bits pro Sekunde in der Praxis nicht unbedingte die leistungsfahigste
ist. Dies gilt natiirlich fiir simtliche getestete Eingabemethoden. Jedoch kommt dieser Aspekt
insbesondere beim Face-Tracking und 1-Button-Scanning, die im Vergleich zu den iibrigen
einen sehr hohen Anteil an Fehleingaben besitzen, eine grof3ere Bedeutung zu.

6.2. Qualitative Benutzbarkeitstests

Dieses Unterkapitel beschreibt die Vorbereitung und Durchfithrung der qualitativen Benutz-
barkeitstests mit Probanden aus der Zielgruppe des barrierefreien Smarthomes sowie deren
anschliefende Auswertung.

117

6. Evaluation

—4—@ richtige Bits / Sekunde mit Brille ~#=@ falsche Bits / Sekunde mit Brille
@ richtige Bits / Sekunde ohne Brille =@—@ falsche Bits / Sekunde ohne Brille
7,0

6,0

5,0

4,0

3,0

2,0

1,0

0,0
3x3 Matrix 4x4 Matrix 5x5 Matrix 6x6 Matrix

Abbildung 6.10.: Im Durchschnitt richtig sowie falsch tibertragenen Bits / Sekunde mit sowie
ohne Brille.

6.2.1. Vorbereitung

Die Vorbereitung der qualitativen Benutzbarkeitstests umfasste die Instrumentalisierung des
Prototyps, um diese durchfithren zu kénnen. Hierzu zéhlte nachfolgend auch die Formulierung
geeigneter Testaufgaben. Des Weiteren fielen die Probandenauswahl sowie die Erstellung eines
Bewertungsbogen fiir deren qualitative Riickmeldungen in die Vorbereitungsphase. Diese 4
Aspekte werden im folgenden dargestellt.

Instrumentalisierung Prototyp

Die Abbildung 6.1 zeigt einen Screenshot von den Einstellungen fiir die qualitativen Benutz-
barkeitstests. Sind diese eingeschaltet, andert sich im Gegensatz zu den in Abschnitt 6.1
beschriebenen quantitativen Benutzbarkeitstests nicht die Benutzeroberflache. Allerdings be-
findet sich in dieser dann zusétzlich ein Textfeld am oberen Displayrand, welches dem Benutzer
die nachste Aufgabe im Rahmen des Benutzbarkeitstests anzeigt. Unter einer solchen ist zu
verstehen, dass der Proband beispielsweise den TV-Sender ZDF auswihlen soll.

118

O 00 N1 QN U W=

—
N = O

13

6.2. Qualitative Benutzbarkeitstests

@ richtige Bits / Sekunde ~ —#i=@ falsche Bits / Sekunde
8,0

7,0
6,0
5,0
4,0
3,0
2,0
1,0

0,0
3x3 Matrix 4x4 Matrix 5x5 Matrix 6x6 Matrix 7x7 Matrix 8x8 Matrix 9x9 Matrix 10x10 Matrix

Abbildung 6.11.: Durchschnittlich richtig und falsch iibertragene Bits / Sekunde bei den 3
Probanden die das Face-Tracking mit bis zu 100 Buttons testeten.

In den in Abbildung 6.1 zu sehenden Einstellungen ldsst sich der Pfad zu einer XML-Datei festle-
gen. Aus ihr werden die Aufgaben fiir die Benutzbarkeitstests geladen. Im Quellcodeausschnitt
6.3 ist der Teil einer solchen XML-Datei zu sehen.

<test_set xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<test id="1" name="Test">
<test_case>
<description>TV-Sender Pro7 in der Senderliste auswahlen</description>
<destination>/tv/tv_channellList/tv_pro7</destination>
</test_case>
<test_case>
<description>Zum nachsten Kanal / TV-Sender wechseln</description>
<destination>/tv/tv_channelUp</destination>
</test_case>
</test>
</test_set>

Quellcodeausschnitt 6.3: Auszug aus einer XML-Datei mit den Testaufgaben.

119

6. Evaluation

Sie besteht aus mindestens einem Test. In der XML-Datei handelt es sich bei diesem um das
Element test. Wenn die XML-Datei mehrere Tests beinhaltet, wird einer zufillig ausgewahlt.
Jeder Test besteht aus mindestens einer Aufgabe, reprasentiert durch das Element test_case
in der XML-Datei. Jede Aufgabe besteht aus zwei Attributen. Bei diesen handelt es sich zum
einen um die Beschreibung der Aufgabe und zum anderen um den Pfad zu dem Button, den der
Proband betétigen soll. Bei der Aufgabenbeschreibung handelt es sich um den Text, der in dem
Textfeld angezeigt wird. Der Pfad setzt sich aus den IDs der Buttons zusammen, welche der
Proband ausgehend vom Hauptmeni betédtigen muss, um das Ziel innerhalb der Meniistruktur
zu erreichen beziehungsweise die Aufgabe zu erledigen.

Die Uberpriifung, ob die Aufgabe erledigt ist, findet in der Klasse UsabilityTestManager
statt. Sie ruft wahrend der qualitativen Benutzbarkeitstests die in 5.4.2 beschriebene Klasse
CommandExecutor auf, wenn sie einen Befehl ausfuhrt und iiberreicht ihr diesen als Parameter.
Da in diesem enthalten ist, welcher Button vom Proband betitigt wurde, kann die Klasse
UsabilityTestManager zum einen iiberpriifen, ob der Pfad von der Wurzel zum Button mit
jenem in der Aufgabe ibereinstimmt und zum anderen die Benutzereingabe protokollieren.
Wenn der Proband das Ziel erreicht hat, also die beiden Pfade iibereinstimmen, wahlt die
Klasse UsabilityTestManager die ndchste Aufgabe aus und macht deren Beschreibung im
dafiir vorgesehenen Textfeld fiir den Benutzer sichtbar oder zeigt im Fall, dass der Test zu
Ende ist, dies an. Daneben ist die Klasse UsabilityTestManager fiir die Protokollierung der
Benutzereingaben verantwortlich. Bei jeder Ausfithrung eines Befehls schreibt sie folgende
Daten in eine CSV-Datei:

« Die Zeit in Millisekunden, die seit dem Start des Tests, nicht der einzelnen Aufgabe, bis
zum Zeitpunkt der protokollierten Eingabe vergangen ist.

« Die Art des Befehls, also ob der Proband in der Menii-Struktur nach oben, unten, links
oder rechts navigiert hat.

+ Der Pfad von der Wurzel der Menii-Struktur zum Button, welchen der Proband betétigt
hat. Dadurch ist es moglich, im Nachhinein bei der Auswertung des Tests festzustellen, ob
der Proband den kiirzest moglichen Weg zum Ziel durch die Menii-Struktur genommen
hat oder Fehleingaben stattgefunden haben und wie er diese korrigiert hat.

Probandenauswahl

Die Durchfithrung der qualitativen Benutzbarkeitstests fand mit den Interviewpartnern aus
Abschnitt 3.1 statt. Dadurch war keine erneute Suche nach geeigneten Personen aus der Ziel-
gruppe erforderlich. Des Weiteren passten sie aufgrund ihrer Einschrankungen sehr gut in
die Gruppe der moglichen zukiinftigen Benutzer des barrierefreien Smarthomes. Letzterer
Aspekt ist nach Kuniavsky ein wichtiges Kriterium fiir die Auswahl geeigneter Probanden
(vgl. [KGM12, S. 265]). Selbiger weifit jedoch auch darauf hin, dass bei der Auswahl zusétzlich
zu beachten ist, dass die Probanden nicht nur in die Zielgruppe passen, sondern auch die Art
von Riickmeldungen zu dem getesteten Produkt geben konnen, welche die Organisatoren der

120

6.2. Qualitative Benutzbarkeitstests

Benutzerstudie benoétigen (vgl. [KGM12, S. 265]). Aus diesem Grund wurden die qualitativen
im Gegensatz zu den quantitativen Benutzbarkeitstests nicht mit unversehrten Probanden
durchgefiihrt, sondern mit solchen, welche Einschrankungen bei der Benutzung ihrer Hande
haben und somit in die Zielgruppe des barrierefreien Smarthomes fallen. Der Grund hierfiir
ist, dass die qualitativen Benutzbarkeitstests Erkenntnisse zu der Benutzeroberfliche, der
Navigation innerhalb des Meniis sowie der Eignung der barrierefreien Eingabemethoden
Face-Tracking, Sprachsteuerung und 1- sowie 2-Button-Scanning bringen sollten. Dies war
mit Probanden aus der Zielgruppe am besten mdglich, zumal die Anwendung zur Steuerung
des barrierefreien Smarthomes auf ihre Bediirfnisse ausgelegt sein soll. Dagegen zielten die
quantitativen Benutzbarkeitstests auf einen Vergleich der Eingabemethoden hinsichtlich der
mittels ihnen maximal ibertragbaren Entscheidungen pro Zeiteinheit ab. Durch Probanden
mit Einschrankungen, wire es unklar gewesen, ob diese oder Charakteristika der Eingabeme-
thode der limitierende Faktor sind, weshalb fiir diese Art von Benutzbarkeitstests unversehrte
Probanden die geeigneteren waren.

Die Anzahl der Teilnehmer an den Interviews stimmte zudem mit den von Kuniavsky emp-
fohlenen 5 Probanden fiir einen Benutzbarkeitstest iiberein (vgl. [KGM12, S. 267]). Laut ihm
stellen 5 Probanden den besten Kompromiss zwischen den Ergebnissen, dem Aufwand und den
Kosten dar (vgl. [KGM12, S. 267]). Nichtsdestotrotz empfiehlt er, fiir jeden Benutzbarkeitstest
6 bis 10 Probanden zu suchen (vgl. [KGM12, S. 267]). Dadurch entsteht natiirlich eine Aus-
fallsicherheit, welche aus der Sicht des Autors dieser Arbeit jedoch nicht im Verhéiltnis zum
Aufwand stand, da die Suche nach Probanden, welche in die Zielgruppe passen, sehr schwierig
ist. Des Weiteren wusste er von den Interviews, dass sich die Teilnehmer auf diese gefreut
hatten, da es eine Abwechslung in ihrem Alltag darstellt, weshalb es moralisch betrachtet
schwierig gewesen wéare, mehr Probanden zu suchen, als letztendlich dann wirklich an den
qualitativen Benutzbarkeitstests teilnehmen.

Testaufgaben

Benutzbarkeitstests entsprechen im Endeffekt Interviews, in deren Rahmen der Teilnehmer
eine Abfolge von Aufgaben erledigen soll (vgl. [KGM12, S. 259]). Zur Definition dieser Aufgaben
bietet es sich an, zunéchst die zu evaluierenden Funktionen des Prototyps zu bestimmen (vgl.
[KGM12, S. 268]). Die qualitativen Benutzbarkeitstests sollten folgende Funktionalititen der
Anwendung zur Steuerung des barrierefreien Smarthomes testen:

« Eingabemethode Face-Tracking
« Eingabemethode Sprachsteuerung
+ Eingabemethoden 1- und 2-Button-Scanning

Verstiandlichkeit der Benutzeroberflache

Navigation in der Meniistruktur

121

6. Evaluation

« wenn moglich auch die Eingabemethoden Touch, Maus und Tastatur

Die 3 beziehungsweise 4 Eingabemethoden gegeneinander zu testen, stellt einen erhéhten Auf-
wand dar, bietet aber die Moglichkeit, Starken und Schwéchen von diesen besser zu ermitteln
(vgl. [KGM12, S. 270])).

Als néchstes sind die einzelnen Aufgaben zu definieren. Sie sollten jeweils ein realistisches
Benutzungsszenario darstellen und sich auf eine oder eine Gruppe der zuvor zum Testen
festgelegten Funktionalititen konzentrierten (vgl. [KGM12, S. 270]). Die im Rahmen dieser
Arbeit definierten Aufgaben sollen jeweils mit den Eingabemethoden getestet werden, die der
Proband benutzen kann. Bei der Anzahl der Buttons ist es geplant, mit einer 3x3-Matrix zu
starten und sie entsprechend den Fahigkeiten des jeweiligen Probanden zu steigern. Jedoch
ist es genauso moglich, die Tests mit weniger als 9 Buttons durchzufiithren, wenn die Fahig-
keiten beziehungsweise Einschrankungen des Probanden dies erfordern. Die nachfolgende
Auflistung beinhaltet die Aufgaben, welche die Probanden der Reihe nach l6sen sollten. Der
Ausgangspunkt fiir die erste Aufgabe ist das Hauptmenti.

« Auswahl des Fernsehsenders ARD im Untermenii Favoriten.
« Vollbild im Untermenii TV aktivieren.

« Auswahl des Radiosenders SWR 3 im Untermenii Senderliste.
« Auswahl des Fernsehsenders Pro7 im Untermeni Senderliste.
« Auswahl des niachsten Fernsehsenders im Untermenii TV.

Dadurch, dass die fiinf Aufgaben mit jeder fiir den Probanden bedienbaren Eingabemethode
getestet wurden, stellten sie diesbeziiglich eine breite Testabdeckung dar. Des Weiteren tes-
teten sie auch die Verstandlichkeit der Benutzeroberflache und Menii-Struktur. Bei ersterer
dadurch, dass sowohl Sender auszuwihlen als auch Funktionalitiaten, wie den Wechseln in
den Vollbildmodus zu betitigen waren und die entsprechenden Buttons sich in verschiedenen
Untermeniis befanden. Dariiber hinaus ist es mit der aus 5 Aufgaben bestehenden Abfolge
auch moglich, die Navigation in der Meniistruktur zu testen. Durch den Wechsel zwischen
Fernseh- und Radiosendern muss der Proband in der Meniistruktur mehrmals vom Hauptmenii
bis zum tiefsten Untermenii und zuriick navigieren. Zudem befindet sich der Radiosender SWR
3 im entsprechenden Untermenii sehr weit ,hinten®, wodurch auch die horizontale Navigation
innerhalb eines solchen getestet wird.

Die Anzahl an Aufgaben ist bewusst gering gehalten. Auch wird vermutlich kein Proband in
der Lage sein, alle sieben Eingabemethoden zu testen. Beides soll sicherstellen, dass die Tests
nicht zu lange dauern. Zwar wiirde eine héhere Anzahl an Aufgaben kein Problem darstellen,
was die von Kuniavsky empfohlene Testdauer von ein bis zwei Stunden betrifft, jedoch werden
aufgrund ihrer Einschrankungen nicht alle Probanden in der Lage sein, den Prototyp in diesem
zeitlichen Umfang zu testen (vgl. [KGM12, S. 268]). Sofern die Probanden im Anschluss an
die qualitativen Benutzbarkeitstests, nachdem alle fiir sie moglichen Eingabemethoden und
Button-Konfigurationen getestet wurden, noch in der Lage und bereit zu weiteren Tests sind,

122

6.2. Qualitative Benutzbarkeitstests

war es geplant, die in Abschnitt 6.1 beschriebenen quantitativen Benutzbarkeitstests in einem
deutlich reduzierteren Umfang durchzufiihren.

Feedback

Im Vergleich zu den in Kapitel 3.1 behandelten Interviews, war der Fragebogen klein. Er
setzte sich primir aus zwei Teilen zusammen. Der erste Teil bestand aus einer Bewertung
der getesteten Eingabemethoden. Diese sollten die Probanden anhand einer Likert-Skala
vornehmen. Hierzu konnten sie zwischen folgenden Likert-Items wiahlen:

+ geeignet

« eher geeignet

. teils-teils geeignet
« eher ungeeignet

+ ungeeignet

Die Bewertung fand unmittelbar nach dem Test der jeweiligen Eingabemethode statt, da zu
diesem Zeitpunkt die Erfahrungen am prasentesten waren. Gleichzeitig sollte dieses Verfah-
ren auch einen Vergleich der Eingabemethoden erméglichen, weshalb die Probanden ihre
Bewertungen, nachdem sie alle Eingabemethoden getestet und sie somit fiir sich personlich
vergleichen konnten, noch einmal dndern durften. Die Likert-Skala sollte die Eingabemethoden
einfacher vergleichbar machen, da sie trotz der qualitativen Benutzbarkeitstests quantitative
Daten liefert.

Der zweite Teil des Fragebogens enthielt qualitative Fragen. Diese bezogen sich auf die Vor-
und Nachteile der Eingabemethoden sowie die Meinung der Probanden beziiglich dieser und
der Benutzeroberflache. Des Weiteren versuchte er auch Verbesserungsvorschlage im Bezug
auf den Prototypen zu erlangen.

6.2.2. Durchfiihrung

Die Durchfithrung der qualitativen Benutzbarkeitstests fand auf zwei Tage verteilt statt. Von
den urspriinglich geplanten 5 Teilnehmern wurde leider einer kurzfristig krank, wodurch es nur
4 gab. Am Anfang erhielten die Teilnehmer jeweils eine Einfithrung in die Benutzeroberflache.
Hierzu bekamen sie unter anderem auch eine Ubersicht der Mentistruktur in Papierform
gezeigt. Des Weiteren konnten sie sich mit allen, von ihnen benutzbaren Eingabemethoden,
vertraut machen. Dieses Vorgehen sollte sicherstellen, dass wiahrend den Tests moglichst keine
Verstandnisprobleme auftreten.

123

6. Evaluation

Die Einstellungen fiir das Face-Tracking sind gegeniiber den quantitativen Benutzbarkeitstests
gleich geblieben. Die Geschwindigkeit fiir die automatische Fokussierung des néachsten But-
tons beim 1-Button-Scanning ist mit den Probanden jeweils im Vorfeld an deren Fahigkeiten
angepasst worden. Samtliche Tests wurden mit einer 3x3-Matrix als Button-Konfiguration
durchgefiihrt. Zwar hétten sie die Tests auch mit einer anderen Button-Konfiguration durch-
fithren diirfen, jedoch wollte dies keiner. Mehrere Button-Konfigurationen zu testen, war nicht
moglich, da die einfithrenden Erklarungen, das Ausprobieren sowie die Tests fiir die Probanden
schon mit einer anstrengend waren. Dies war insbesondere bei den Testpersonen der Fall, die
wenig technikaffin sind und fiir die somit schon die Nutzung eines Tablets an sich, eine vollig
neue Erfahrung darstellte.

Wihrend der Benutzbarkeitstests hat sich der Autor im Gesprach mit den Testpersonen im
Hinblick auf den Prototyp neutral verhalten, wie von Kuniavsky empfohlen (vgl. [KGM12,
S. 288)). Dieser rit dariiber hinaus, mit den Probanden wahrend der Tests einen Dialog zu
fihren, indem der Moderator des Tests sie im Vorfeld einer Eingabe fragt, was sie in Folge
von dieser erwarten und warum sie sich fiir das jeweilige Vorgehen entschieden haben (vgl.
[KGM12, S. 288]]). Obwohl der Autor dieser Arbeit iiberzeugt ist, dass diese Fragen hilfreich
sind, hat er auf sie wihrend den Tests verzichtet um die Teilnehmer nicht zu tiberfordern,
da er bei den meisten dein Eindruck hatte, dass die Testaufgaben an sich schon ihre volle
Aufmerksambkeit abverlangten. Stattdessen wurden die Probanden immer im Anschluss an
einen Test beziliglich ihrer Meinung zu der zuvor getesteten Eingabemethode befragt. Wenn
sie wahrend des Tests schon von sich aus Dinge anmerkten, wurden diese natiirlich erfasst.
Kuniavsky findet es zudem hilfreich, den Probanden in manchen Situationen beim Losen einer
Testaufgabe zu unterstiitzen (vgl. [KGM12, S. 288-289]). Eine solche Unterstiitzung war je nach
Proband teilweise intensiv erforderlich.

Quantitative Benutzbarkeitstests, wie in Unterkapitel 6.1 beschrieben, durchzufithren um zu
ermitteln, wie sich die diversen Einschrankungen der Testteilnehmer auf die Bandbreiten der
unterschiedlichen Eingabemethoden und deren Verhiltnis untereinander auswirken, war mit
keiner einzigen Testperson moglich. Der Grund hierfiir war in der Regel Ermiidung in Folge
der qualitativen Benutzbarkeitstests und bei einem die Tatsache, dass ihrer Meinung nach
keine der verfiigbaren Eingabemethoden fiir sie geeignet ist.

6.2.3. Auswertung

Die 4 an den qualitativen Benutzbarkeitstests teilnehmenden Personen waren im Durchschnitt
50,75 +13,55, die jingste 32 und die <este 70 Jahre alt. Zudem handelte es sich bei ihnen
jeweils zur Halfte um Frauen sowie Manner. Im Folgenden geht dieses Unterkapitel zunachst
auf die Eingabemethoden und anschlieflend auf die Benutzeroberflache ein.

Die Tabelle 6.1 beinhaltet die Bewertungen samtlicher getesteter Eingabemethoden anhand
der in Abschnitt 6.2.1 erstellten Likert-Items. Die Eingabemethoden, welche in der Tabelle 6.1
nicht enthalten sind, konnte keiner der Probanden testen. Ursachlich dafiir war entweder, dass

124

6.2. Qualitative Benutzbarkeitstests

Tabelle 6.1.: Bewertung der Eingabemethoden (1 = geeignet, 2 = eher geeignet, 3 = teils-teils
geeignet, 4 = eher ungeeignet, 5 = ungeeignet).

Testperson
Eingabemethode A B C D Durchschnitt
Touch 2 3 - - teils-teils geeignet (2,5)
Face-Tracking 5 1 5 3 eherungeeignet (3,5)
1-Button-Scanning 2 3 - - teils-teils geeignet (2,5)
2-Button-Scanning 2 - - - eher geeignet (2,0)
Sprachsteuerung 5 4 5 3 eherungeeignet (4,25)

die Bedienung aufgrund der Einschrankungen nicht méglich war oder die Zeit beziehungs-
weise Konzentrationsfiahigkeit der Probanden fiir weitere Tests nicht mehr ausreichte. Die
Eingabemethoden Face-Tracking sowie Sprachsteuerung hat jeder Proband ausprobiert. Zah-
lenméafig betrachtet, erzielte das Face-Tracking im Durchschnitt eine etwas bessere Bewertung
als die Sprachsteuerung. Gerundet betrachtet haben beide entsprechend der Likert-Skala ein
~eher ungeeignet” erhalten. Bei den anderen getesteten Eingabemethoden ist zwar ebenfalls
eine durchschnittliche Bewertung angegeben, jedoch ist diese wenig aussagekriftig, da sie
lediglich aus maximal zwei Werten resultiert. Interessant sind insbesondere die Bewertungen
der Probanden A und B, da sie viele Eingabemethoden testen konnten. Dadurch haben beide
eine oder mehrere fiir ihre Situation geeignete Eingabemethode(n) gefunden, was sich darin
widerspiegelt, dass beide mindestens eine mit ,geeignet oder eher geeignet” bewertet haben.
Aus der Tabelle 6.1 geht zudem hervor, dass das Face-Tracking sowie die Sprachsteuerung
die Eingabemethoden sind, die von Benutzern mit einer eingeschrankten Mobilitat ihrer Han-
de am ehesten nutzbar sind. Dass die Teilnehmer der qualitativen Benutzbarkeitstests das
Face-Tracking von ,geeignet” bis ,ungeeignet” bewerten haben, lasst den Schluss zu, dass fur
dieses zwar Geschick und Ubung erforderlich ist, es aber trotz der im Durchschnitt schlechten
Bewertung nicht grundséatzlich ungeeignet ist. Auf die Sprachsteuerung trifft dies nicht zu. Mit
ihr kam keiner der Probanden zufriedenstellend zurecht.

Die Tabelle 6.2 zeigt die Ergebnisse von der Durchfithrung der in Abschnitt 6.2.1 beschrie-
benen Testaufgaben. Die Testdauer ist in Sekunden angeben und umfasst die Zeit, welche
die Testperson zur Durchfithrung der Testaufgaben mit der jeweiligen Eingabemethode bens-
tigte. Die Fehleingaben sind die Differenz zwischen der Anzahl der betétigten Buttons und
jenen 21 Button-Betatigungen, die zur Abarbeitung der Testaufgaben mindestens erforder-
lich waren. Sprich, nicht jede Fehleingabe war selbst eine, jedoch die Folge einer solchen, da
zur Korrektur betatigte Buttons ebenfalls als Fehleingabe gezihlt wurden. Ein Vergleich der
Eingabemethoden ist mit den Testergebnissen aus Tabelle 6.2 nur schlecht moglich, da die
wenigsten Probanden es schaftten, eine grofiere Anzahl an Eingabemethoden mit ihnen zu
testen. Die Abweichung zwischen durchgefithrten Tests und bewerteten Eingabemethoden
rithrt daher, dass die Probanden zu Beginn der Benutzbarkeitstests sich mit diesen zunachst

125

6. Evaluation

Tabelle 6.2.: Testdauer in Sekunden sowie die Fehleranzahl der Probanden bei der Losung der
Testaufgaben, je Eingabemethode.

Testperson
A B C D Durchschnitt
Eingabemethode Dauer Fehler Dauer Fehler Dauer Fehler Dauer Fehler Dauer Fehler
Touch 294 24 - - - - - - 249 24
Face-Tracking - - 502 43 367 5 364 15 411 21
1-Button-Scanning 318 22 - - - - - - 318 22
2-Button-Scanning 405 30 - - - - - - 405 30
Sprachsteuerung - - - - - - 330 0 330 0

vertraut machen durften, wodurch sie sich zu ihnen eine Meinung bilden konnten. Die Aufga-
ben konnten sie jedoch aufgrund mangelnder Konzentrationsfahigkeit und Zeit nicht mehr
mit allen Eingabemethoden testen. Interessant an den Ergebnissen in Tabelle 6.2 ist dennoch,
dass Proband D bei der Spracheingabe 0 und beim Face-Tracking 15 Fehleingaben hatte, was
wie schon die Ergebnisse der quantitativen Benutzbarkeitstests in Abschnitt 6.1.3 zeigt, dass
bei der Sprachsteuerung selten Fehleingaben auftreten. Auffallig ist auch, dass Testperson C
die Eingabemethode Face-Tracking mit ,ungeeignet” bewertet hat, gleichzeitig beim Losen
der Testaufgabe nur 5 Fehleingabe machte, was eigentlich zur Schlussfolgerung fithren wiirde,
dass er mit dieser Eingabemethode zurechtkam. Der Grund dafiir ist vermutlich der, dass die
Testperson C an ihrem Computer schon einen Face-Tracker mit Marker und hochwertiger
Kamera nutzt, welche eine prézisere Bedienung ermoglicht als das Face-Tracking der App zur
Steuerung des barrierefreien Smarthomes.

Die qualitativen Benutzbarkeitstests sollten jedoch nicht nur quantitative Ergebnisse, sondern
auch qualitatives Feedback hervorfordern. Hierzu werden zum einen die von den Teilnehmern
von sich aus getatigten Anmerkungen zu dem Prototyp, ihre Antworten auf die Frage nach
den Vor- und Nachteilen der jeweiligen Eingabemethode sowie die Beobachtungen des Autors
ausgewertet.

Die Testpersonen A und B probierten beide die Eingabemethode Touch aus. Fiir Erstere stellte
diese aufgrund der grofien Buttons keine Schwierigkeiten dar. Die Testperson B hatte diese
hingegen, da sie die Bewegungen der zur Bedienung genutzten Hand nicht gut kontrollieren
kann. Laut ihrer eigenen Einschitzung wiirde sie viel Ubung und Gliick benétigen, um die App
zur Steuerung des barrierefreien Smarthomes mittels Touch erfolgreich bedienen zu kénnen.

Die Eingabemethode Face-Tracking konnten drei der vier Testpersonen ausprobieren. Test-
person A konnte das Face-Tracking nicht zufriedenstellend bedienen, da sie aufgrund ihrer
Beeintrachtigungen die Bewegung ihres Kopfes nur schwer kontrollieren kann. Die Testper-
sonen C und D kritisierten an dem Face-Tracking, dass der Cursor zu unruhig ist und nicht
so reagiert, wie sie es sich vorstellen. Allerdings ist anzumerken, dass die Bedingungen fiir
das Face-Tracking bei der Testperson D erschwert waren, da diese die Benutzbarkeitstests
nur liegend durchfithren konnte. Fiir die Testperson B war das Face-Tracking hingegen die

126

6.2. Qualitative Benutzbarkeitstests

beste der getesteten Eingabemethode. Kritik hatte sie keine an ihr anzumerken. Probleme, die
Bewegungen des Kopfes zu kontrollieren, hatte sie nach eigenen Angaben, jedoch wiirde sie das
Face-Tracking deshalb sogar gut finden, um eben genau diese durch Ubung zu reduzieren.

Das 1-Button-Scanning konnte nicht mit einer Fortschrittsgeschwindigkeit von 300 Millise-
kunden, wie bei der Bandbreitenmessung in Unterkapitel 6.1 getestet werden, sondern mit
2 beziehungsweise 3 Sekunden. Testperson A kam damit sehr gut zurecht und meinte, dass
ihr diese Eingabemethode nach einer Eingewohnungszeit lieber wire als die herkommliche
Fernbedienung fir den Fernseher. Fiir Testperson B war die Bedienung der Taste des Button
Switches schwierig. Der Grund hierfir war, dass sie die Hand nicht so gut steuern kann,
wodurch fiir sie selbst eine Fortschrittsgeschwindigkeit von 3 Sekunden noch zu schnell war.
Dartiber hinaus betitigte sie aufgrund der motorischen Schwierigkeiten im Bereich der Hand
den Taster haufig versehentlich mehrmals kurz hintereinander, was Fehleingaben zur Folge
hatte. Besonders problematisch war, dass in einem neuen Untermenii als erstes jener Button
fokussiert ist, der einen zuriick in das iibergeordnete Meni bringt, wodurch es mehrmals vor-
kam, dass die Testperson B den Button in ein Untermeni tatigte, aber durch die unkontrollierte
Mehrfachbetatigung des Tasters sofort wieder in eine oder mehrere Mentiebenen weiter oben
gekommen ist.

Bei der Sprachsteuerung hatten alle 4 Testpersonen Probleme. Ursachlich hierfiir war, dass
sie nicht laut und deutlich genug sprechen konnten, weshalb die App Voice Access es oftmals
gar nicht erkannt hat, wenn sie was sagten oder es falsch verstanden hat. Die Testpersonen A
und B hatten dariiber hinaus noch weitere Schwierigkeiten mit der Sprachsteuerung als Einga-
bemethode. Erstere gab an, dass es sie schnell verunsichert hat, wenn die App zur Steuerung
des barrierefreien Smarthomes eine unbeabsichtigte Aktion ausfiihrte in Folge eines falsch
verstandenen Sprachbefehls. Bei der Testperson B war neben dem lauten sowie deutlichen
Sprechen das Problem, dass sie nicht wie erforderlich mit der Sprachsteuerung interagieren
konnte. Anstatt die Zahl oder die Beschriftung von einem der angezeigten Buttons zu sagen,
redete sie dialogartig beziehungsweise in ganzen Siatzen, was die App Voice Access nicht
verarbeiten konnte. Auch war es fiir die Testperson in den Augen des Autors nicht verstiandlich,
dass nur die sichtbaren Buttons mittels Sprachsteuerung betatigbar sind und beispielsweise im
Radiomenii nicht der Fernsehsender 3sat einstellbar ist. Die Testpersonen A und D machten
zudem noch Verbesserungsvorschlage beziiglich der App Voice Access. Erstere wiirde es be-
grifien, wenn der aus der Spracheingabe erkannte Text in der Benachrichtigungszeile durch
die App Voice Access in einer grofieren Schrift dargestellt wird. Von der Testperson D kam die
Anregung, die akustische Riickmeldung im Anschluss an eine Spracheingabe, ob diese einem
Button zuordenbar ist oder nicht, wegzulassen.

Die Tabelle 6.3 zeigt die Bewertungen der Testpersonen zum einen fiir Verstindlichkeit sowie
das Erscheinungsbild der Benutzeroberfliche und zum anderen das Navigationskonzept in
der Meniistruktur. Im Vergleich zu den Eingabemethoden fallen diese grofitenteils positiv und
einheitlich aus. Keiner der Probanden bewertete schlechter als ,teils-teils geeignet®. Testperson
A begriindete ihre positive Bewertung zudem ausfiihrlich damit, dass sich die Gré3e der Buttons
indirekt tiber deren Anzahl sowie die Schriftgr68e ihrer Beschriftung individuell konfigurieren

127

6. Evaluation

Tabelle 6.3.: Bewertung der Benutzeroberflache (1 = geeignet, 2 = eher geeignet, 3 = teils-teils
geeignet, 4 = eher ungeeignet, 5 = ungeeignet).

Testperson
Eingabemethode A B C D Durchschnitt

Verstandlichkeit 1 3 2 1 eher geeignet (1,75)
Navigation 1 2 2 1 ehergeeignet(1,5)

lasst. Des Weiteren findet sie es speziell fiir die Steuerung eines Fernsehers praktisch, dass
das Meni auf dem mobilen Endgerit dargestellt ist, das naher bei ihr ist und nicht auf dem
entfernteren Fernseher, wodurch es fir sie besser lesbar ist. Auch findet Testperson A die
Benutzeroberfliche insgesamt iibersichtlicher im Vergleich zu jenen der Fernseher.

128

7. Zusammenfassung und Ausblick

Dieses Kapitel blickt zunichst mit einer Ubersicht iiber den Realisierungsstatus der Anfor-
derungen zuriick. Im néachsten Schritt arbeitet es den Mehrwert der Umsetzung gegeniiber
den Bedienungshilfen von Android heraus. Im Anschluss daran fasst es die Ergebnisse der
im vorherigen Kapitel behandelten Benutzbarkeitstests zusammen und stellt sie zudem jenen
aus den verwandten Arbeiten aus Abschnitt 2.4 gegeniiber. Zum Abschluss erfolgt noch ein
Ausblick auf Erweiterungsmoglichkeiten der Anwendung zur Steuerung des barrierefreien
Smarthomes.

7.1. Umgesetzte Anforderung

Die Tabelle 7.1 beinhaltet die in 3.2 definierten Anforderungen zusammen mit ihrem Reali-
sierungsstatus. Das Symbol v bedeutet, dass sie umgesetzt und das Symbol X, dass sie nicht
realisiert wurden. Die Tabelle 7.1 unterscheidet zu dem, zwischen der Umsetzung des in Kapitel
4 beschriebenen Konzepts sowie dem Prototyp in Kapitel 5. Die vorherigen Kapitel haben
die umgesetzten Anforderungen schon ausfithrlich behandelt. Deshalb soll dieser Abschnitt
kurz zusammenfassen, was zu der Nichtrealisierung weniger Anforderungen fiihrte. Das Kon-
zept unterstiitzt die Android Bedienungshilfen (Anforderung F2), indem es unter anderem
fiir jedes Meniielement auch eine aussprechbare Variante der Bezeichnung vorsieht, was die
Verstandlichkeit der Sprachwiedergabe mittels TalkBack fordert. Der Prototyp implementiert
die dafiir bendtigten Methoden allerdings nicht, da blinde und sehbehinderte Personen nicht
dem Kreis der Testpersonen bei den in Kapitel 6 beschrieben Benutzbarkeitstests angehorten.
Aus diesem Grund unterstiitzt er die Android Bedienungshilfen nur teilweise. Die Anforderung
F4 Sprachsteuerung ist ebenfalls nur konzeptionell beriicksichtigt, da fiir diese in den Benutz-
barkeitstest die App Voice Access von Google verwendet wurde. Werde prototypisch noch
konzeptionell wurde die Anforderung F8 Ein- und Ausschalten, welche es ermdglichen sollte,
die Steuerung des barrierefreien Smarthomes barrierefrei ein- und auszuschalten. Der Griinde
dafiir waren zum einen, wie schon bei Anforderung F2, dass die Umsetzung im Prototyp fiir
die Benutzbarkeitstests nicht erforderlich war und zum anderen das Ein- und Ausschalten
eines Smartphones / Tablets ohne die Benutzung einer Hand, nicht ohne weiteres moglich ist.
Die Anforderung N2 Verzicht auf Hilfsmittelhardware, ist sowohl im Konzept als auch dem
Prototyp nur deshalb teilweise umgesetzt, da fiir die beiden Eingabemethoden 1- und 2-Button-
Scanning, Hilfsmittel-Hardware erforderlich ist, wenn diese mittels Taster von Personen aus
der Zielgruppe genutzt wird.

129

7. Zusammenfassung und Ausblick

Tabelle 7.1.: Ubersicht der im Konzept und Prototyp realisierten (v') sowie nicht realisierten

(X) Anforderungen.
Anforderung Konzept Prototyp
F1 Unterschiedliche Eingabemethoden v v
F2 Unterstiitzung der Android Bedienungshilfen v I X
F3 Steuerung via Face-Tracking v v
F4 Sprachsteuerung v X
F5 Steuerung mittels Taster oder Tastatur 4 v
F6 Konfigurierbare Anzahl an Buttons v 4
F7 Konfigurierbare Schriftgrofie v v
F8 Ein- und Ausschalten X X
N1 Eignung fiir unterschiedliche Gerate 4 v
N2 Verzicht auf Hilfsmittelhardware I X I X
N3 Erweiterbares Menii v v
N4 Unterstiitzung von Erweiterungen v v
N5 Erweiterbarkeit der Eingabemdglichkeiten v v

7.2. Mehrwert gegenuber den Android Bedienungshilfen

Die App zur Steuerung des barrierefreien Smarthomes bietet gegeniiber den in 2.3 behandelten
Android Bedienungshilfen mehrere Vorteile.

In den Einstellungen der Benutzeroberfldche ldsst sich die Anzahl der maximal gleichzeitig
dargestellten Buttons festlegen. Dadurch ist indirekt auch deren Grofie beeinflussbar. Grofie
Buttons konnen die Bedienung mittels Touch fiir Benutzer mit motorischen Einschrankungen,
beispielsweise in Folge einer Tetraplegie mit tiefer Verletzungshohe, erleichtern. Des Weiteren
ist die Schriftgrofie fiir die Button-Beschriftung frei wahlbar. Die Bedienungshilfe von Android
ermoglichen zwar ebenfalls Einstellungen fiir die Schrift- und Anzeigengrofle, jedoch fallt die
maximale Vergroflerung kleiner aus (vgl. [Goo16k]). Ein weiterer Vorteil von der Benutzer-
oberflache der App zur Steuerung des barrierefreien Smarthomes ist, dass sie einfach gehalten
und zudem iiber die Definitionsdatei fiir die Mentistruktur auch an die kognitiven Féhigkeiten
des Benutzers anpassbar ist.

Die Entwickelten Eingabemethoden 1- und 2-Button-Scanning &dhneln jenem Scanning des
Schalterzugriffs der Android Bedienungshilfen (vgl. [Goo16g]). Im Detail haben Erstere 2
jedoch entscheidende Vorteile. Das 1- und 2-Button-Scanning zusatzlich zu Tastern auch tber
Blinzeln mdglich. Dadurch ist es fiir Benutzer zugénglich, welche gar keine motorischen Fahig-
keiten in ihren Handen besitzen. Des Weiteren ist beim Blinzeln keine Hilfsmittel-Hardware
erforderlich. Letzteres ist grundséatzlich auch beim Schalterzugriff von Android nicht nétig, da
die Geratetasten nutzbar sind (vgl. [Goo16j]). Jedoch handelt es sich hierbei lediglich um eine

130

7.3. Bewertung der Testergebnisse

Entwickleroption und es wire fir die Benutzer aus der Zielgruppe schwierig, die Geratetasten,
welche haufig klein sind, zu bedienen (vgl. [Goo16j]). Insbesondere im Hinblick auf Benutzer
mit kognitiven Einschrankungen oder wenig Erfahrung in der Bedienung elektronischer gerit,
hat das 1- und 2-Button-Scanning, dadurch, dass es Bestandteil der App zur Steuerung des
barrierefreien Smarthomes ist, den Vorteil, dass sie diese nicht versehentlich verlassen konnen.
Auch miissen sie dadurch zwischen weniger Optionen wéhlen, da nur die Buttons der App
gescannt werden.

Dass keine Hilfsmittel-Hardware bendtigt wird, ist auch ein Vorteil des Face-Trackings. Diese
barrierefreie Eingabemethode gibt es in den Bedienungshilfen von Android noch gar nicht.
Des Weiteren ist damit die App zur Steuerung des barrierefreien Smarthomes von Anwendern
bedienbar, die gar keine motorische Fahigkeiten mehr in ihren Handen besitzen. Sie kénnten
die App alternativ nur iiber die Sprachsteuerung der Bedienungshilfen steuern oder miissten
auf Hilfsmittel-Hardware zurtickgreifen. In den qualitativen Benutzbarkeitstests in 6.2 zeigte
sich aber, dass die Probanden erhebliche Probleme mit der Sprachsteuerung hatten, da ihre
Eingaben oftmals gar nicht oder falsch verstanden wurden. Bei den quantitativen Benutzbar-
keitstests in 6.1 mit unversehrten Probanden trat dies nicht so massiv auf, was womdoglich
darauf zurtckzufiihren ist, dass wie in Abschnitt 2.2 beschrieben, je nach Verletzungshohe
eine Querschnittlahmung auch die Atmung und dadurch indirekt die sprachlichen Fahigkei-
ten beeintrachtigt. Zusétzlich ist es moglich, dass die Sprache des Benutzers aufgrund einer
Mehrfachbehinderung oder zusétzlicher Krankheit / Verletzung fiir die Steuerung damit zu
eingeschrankt ist. Unabhéngig von den korperlichen Voraussetzungen, kann zudem eine laute
Umgebung die Sprachsteuerung negativ beeintrachtigen. Jene von Google in Form der App
Voice Access hat dariiber hinaus den Nachteil, dass sie eine Internetverbindung benétigt, wel-
che jedoch nicht in jeder Situation verfiighar oder bezahlbar ist (vgl. [Goo16i]). Die entwickelte
Eingabemethode Face-Tracking besitzt diese 2 Einschrankungen hingegen nicht.

7.3. Bewertung der Testergebnisse

In den in Abschnitt 6.1 durchgefithrten quantitativen Benutzbarkeitstests erzielten die bar-
rierefreien Eingabemethoden deutlich geringere Bandbreiten als die herkdmmlichen. Das ist
nicht aulergewohnlich. Die in Abschnitt 2.4 beschriebenen Studien zu barrierefreien Einga-
bemethoden haben vergleichbare Ergebniskonstellationen. Dies soll exemplarisch anhand
der getesteten Eingabemethoden Maus und Face-Tracking erlautert werden. Williams et al.
ermittelten in ihrer Studie mit einer Maus eine ungefiahr 5 mal hohere Bandbreite, als mit ihren
barrierefreien Eingabemethoden, die auf einem Headset mit Lagesensoren beziehungsweise der
Elektromyografie basierten (vgl.[WKO08]). Das Verhéltnis von barrierefreien zu herkémmlichen
Eingabemethoden dhnelt somit jenem in dieser Arbeit. Die Eingabemethode Maus erzielte in
ihr ausgehend von der 3x3 Button-Matrix den 5,11-, 5,54-, 6,17- beziehungsweise 6,76-fachen
Durchsatz an richtig tibertragenen Bits im Vergleich zum Face-Tracking. Ebenso erreichte in

131

7. Zusammenfassung und Ausblick

dem von Jeong et al. durchgefithrten Benutzbarkeitstest die Maus gegeniiber der barrierefreien
Eingabemethode ungefihr die 7-fache Geschwindigkeit (vgl. [JKS05]).

Das Diagramm in Abbildung 6.6 veranschaulicht, dass mit der Eingabemethode Face-Tracking
die meisten Fehleingaben passierten. Auch dabei handelt es sich nicht um ein Problem der
Umsetzung in dieser Arbeit, denn in der Studie von Caltenco et al. bewerteten die Teilnehmer
Gaze-Tracker als unzuverlassig, was die Vermutung zulasst, dass die hohe Fehlerrate ein
allgemeiner Nachteil dieser Eingabemethode ist (vgl. [CBJA12]). Zudem erzielten Lee et al.
mittels Eye-Tracking, welches auf einer USB-Webcam mit Infrarot LEDs basierte, bei einer 5x4
Button-Matrix eine Trefferquote von 94,6% (vgl. [EM13]). Dem gegeniiber steht eine mit dem
Face-Tracking in dieser Arbeit ausgehend von der 3x3 Button-Matrix erzielte Trefferquote von
92,39%, 86,38%, 80,95% sowie 78,66%, welche im Anbetracht der Tatsache, dass die Frontkamera
eines Tablets verwendet wurde, nicht schlechter erscheint.

Die Vergleiche mit den Ergebnissen anderer Studien zeigen somit, dass sich iiber die Mobile
Vision API mittels Face-Tracking eine barrierefreie Eingabemethode realisieren lasst, die ohne
Hilfsmittel- oder anderer kostspieliger Hardware auskommt und dennoch vergleichbare oder
teilweise sogar bessere Ergebnisse erzielt als manch andere barrierefreie Eingabemethode.

Die Leistungsfahigkeit des Face-Trackings wire iiber eine andere Kamera zudem noch stei-
gerbar. Bian et al. nutzten in ihrer Benutzerstudie eine Tiefenkamera um die Nasenposition
zu verfolgen (vgl. [BHCM14]). Die Tiefenkamera stellt sich dabei als vorteilhaft gegentiber
einer RGB-Kamera heraus (vgl. [BHCM14]). Je nach Umsetzung erreichten sie mehr als die
Hilfte der Bandbreite und Geschwindigkeit einer herkémmlichen Maus (vgl. [BHCM14]).
Dieser Optimierungsansatz setzt jedoch voraus, dass die Mobile Vision API Tiefenkameras
unterstiitzt oder die App zur Steuerung des barrierefreien Smarthomes eine andere Bibliothek
/ Schnittstelle nutzt, die dazu in der Lage ist.

Des Weiteren sollten die quantitativen Benutzbarkeitstests in einem nachsten Schritt mit
einer grofleren Anzahl an Buttons durchgefiihrt werden. Denn die vorliegenden Ergebnisse
ermoglichen bis jetzt einen Vergleich der Eingabemethoden, aber noch keine Aussage zu deren
maximalen Bandbreite. Letzteres liegt daran, dass die Bandbreiten bis zu einer 6x6 Button-
Matrix zunehmen und nicht erkennbar ist, ab welcher Anzahl an Buttons das bei der jeweiligen
Eingabemethode nicht mehr der Fall und somit ihre maximale Bandbreite erreicht ist. Lediglich
beim Face-Tracking, welches mit 3 Probanden bis zu einer 10x10 Button-Matrix getestet wurde,
lassen die Ergebnisse vermuten, dass dessen Bandbreite bei mehr als 8x8 Buttons wieder
abnimmt und die maximale Bandbreite somit bei ungefahr 7 Bits / Sekunde liegt. Belastbarere
Daten wiirde jedoch auch fiir das Face-Tracking eine zweite und umfangreichere Benutzerstudie
liefern.

Die Bewertung der Benutzeroberfliche ist in den qualitativen Benutzbarkeitstests positiv
ausgefallen. Das ist unter anderem auf die grofien Buttons zuriickzufiihren. Sie hatten in der
Vertikalen einen Durchmesser von ca. 4,5cm und in der Horizontalen von ca. 7cm. Nach den
Beobachtungen des Autors wiren die Testpersonen, welche mit ihren Hianden die Eingabeme-
thode Touch nutzen konnten, mit der von Guerreiro et al. als ausreichend vorgeschlagenen

132

7.4. Ausblick

Button-Grofle von 12mm erheblich schwieriger zurecht gekommen (vgl. [GNJG10b]). In Folge
dessen lasst diese Arbeit im Hinblick auf die Gestaltung von Benutzeroberflache eher die Emp-
fehlung zu, dass diese an die motorischen Fahigkeiten ihrer Benutzers anpassbar sein sollte und
es nicht, wie von Guerreiro et al. angedeutet, moglich ist, eine einheitliche Benutzeroberflache
fiir Benutzer mit und ohne Einschrankungen zu entwickeln (vgl. [GNJG10b]).

7.4.

Ausblick

Wihrend der Implementierung des Prototyps sowie im Rahmen der Benutzbarkeitstests sind
Ideen zur Erweiterung und Optimierung der App zur Steuerung des barrierefreien Smarthomes
entstanden. Die folgenden Auflistung soll diese in einem kurzen Abriss darstellen:

Die Eingabemethoden 1- und 2-Button-Scanning sollten in ihren Einstellungen um
einen Parameter erweitert werden, uber den sich ein Mindestabstand zwischen 2 Button-
Betatigungen einstellen lasst. Grund hierfiir ist, dass es in den qualitativen Benutzbar-
keitstests vorkam, dass ein Proband aufgrund geringer motorischer Fahigkeiten den
Taster versehentlich 2 mal betdtigte, was somit zu einer Fehleingabe fiihrte.

Bisher ist die Grof3e der Buttons statisch. Das bedeutet, dass sie bei einer eingestellten 4x4
Button-Matrix immer solche Abmessungen haben, dass 16 Buttons gleichzeitig auf der
Benutzeroberflache anzeigbar sind, auch wenn das ausgewéhlte Menii beispielsweise nur
5 Elemente besitzt. In solch einem Fall bleibt ein Teil der Displayflache ungenutzt. Wiirden
sich die Grof3e der Buttons in dieser Situation dynamisch an den zur Verfiigung stehenden
Platz anpassen, konnte das insbesondere bei der Eingabemethode Face-Tracking die
Bedienung erleichtern.

Dariiber hinaus ist fiir zukiinftige Entwicklungen eine Kombinationsméglichkeit von
Eingabemethoden interessant. Beispielsweise lief3e sich das Face-Tracking mit einem
Taster, der eigentlich fiir das Scanning vorgesehen ist, kombinieren. In Folge dessen
waren Benutzer, die einen Taster noch bedienen konnen, in der Lage, die Auswahl des
gewlnschten Buttons mittels Face-Tracking vorzunehmen und ihn iiber den Taster zu
betatigen, wodurch dann kein Blinzeln erforderlich ist.

Ein weiterer interessanter Ansatz ist, in einer Benutzerstudie zu evaluieren, ob iiber eine
Gruppenauswahl oder einen bindren Suchbaum die Bedienung verbesserbar ist. Wiirde
die Senderliste fiir den Fernseher beispielsweise in einem bindren Suchbaum dargestellt,
musste der Benutzer mehrmals eine Auswahl zwischen 2 Buttons treffen, welche im
Gegenzug dafiir grofier darstellbar sind.

In den qualitativen Benutzbarkeitstests bewerteten einige Teilnehmer die Eingabemetho-
de Face-Tracking negativ, weil ihnen der Cursor zu unruhig war. Um dieses Problem zu
umgehen, konnte das Face-Tracking nicht nur den direkten Modus, der die Position des
Kopfes direkt auf jene des Cursors abbildet, sondern noch weitere Modi unterstiitzen.

133

7. Zusammenfassung und Ausblick

134

Zum Beispiel einen, der vergleichbar mit einem Joystick ist. Dieser konnte so konfiguriert
werden, dass sich der Cursor erst bewegt, wenn die Kopfbewegung einen Schwellenwert
iiberschritten hat. Als weiteren Modus bietet es sich an, die Kopfbewegungen in Tasta-
tureingaben zu wandeln, wodurch sich die Buttons in der Anwendung zur Steuerung
des barrierefreien Smarthomes tastaturahnlich via Face-Tracking fokussieren lieflen.

A. Anhang

A.1. Fragebogen flr die Interviews

Die folgenden 5 Seiten beinhalten den Fragebogen, wie er in den im Unterkapitel 3.1 beschrie-
benen Interviews verwendet wurde.

135

A. Anhang

136

Barrierefreies Smarthome — Interview

Introduction

Vorstellung

Einleitung

Einversténdniserkldrung

Teilnahme bestdtigen lassen

Aufwandsentschddigung

Warm-up

Demographie

1.

2.

Geschlecht:
Alter:
Sprachen:
Abschluss:

Haben Sie schon einmal an einem Interview teilgenommen?

Bisherige Nutzung von elektronischen Geriten

6.

7.

8.

Welche elektronische Gerate nutzen Sie und wenn ja, seit wann?

Fur welche Zwecke nutzen Sie die einzelnen Gerate?

Wie lange nutzen Sie die einzelnen Gerate durchschnittlich an einem Tag (in Stunden)?

A.1. Fragebogen fir die Interviews

10.

11.

12.

13.

14.

15.

16.

17.

Welche Erfahrungen haben Sie mit den einzelnen Geraten?

Sind diese Gerate speziell auf die Bedirfnisse Behinderter ausgelegt?

Welche Software nutzen Sie und seit wann?

Flr welche Zwecke nutzen Sie die Software?

Wie lange nutzen sie die jeweilige Software durchschnittlich an einem Tag?

Welche Erfahrungen haben Sie mit den einzelnen Programmen?

Sind diese Programme speziell auf die Bedirfnisse Behinderter ausgelegt?

Mit welchen Betriebssystemen (Android, i0S, Windows, Linux) sind Sie vertraut?

Welche Erfahrungen haben Sie mit den jeweiligen Betriebssystemen bisher gemacht?

General issues

Smarthome

18.

19.

20.

21.

Kennen Sie den Begriff Smarthome?

Was stellen Sie sich unter einem Smarthome vor?

Welche Gerate / Anwendungen aus dem Smarthome-Bereich haben Sie schon genutzt?

In welchen Bereichen kdnnten Sie sich allgemein vorstellen, dass ein Smarthome sinnvoll ist?

137

A. Anhang

Barrierefreies Smarthome

22. Wie wiirde ein ideales Smarthome fiir Sie aussehen?

23. In welchen Bereichen kdnnte ein barrierefreies Smarthome Sie unterstiitzen?

Deep focus

Produktvorstellung

Bedienung

24. Wie wiirden Sie das barrierefreie Smarthome am liebsten steuern / bedienen?

25. Uber welches Gerit wiirden Sie das barrierefreie Smarthome am liebsten steuern?

26. Wie wirden Sie eine Steuerung via Blick- oder Gesichtsverfolgung finden?

27. Wie wirden Sie eine vollsténdige / teilweise Sprachsteuerung finden?

28. Wie wiirden Sie die Menufiihrung / Benutzeroberflache gestalten?

29. Welche Vor- und Nachteile hatte lhrer Meinung nach eine raumadaptive

Benutzeroberflache?

Hardware

30. Wo sollte sich das elektronische Gerat befinden (z. B. stationar, am Rollstuhl, etc.)?

31. Welche DisplaygroRe?

138

A.1. Fragebogen fir die Interviews

Privatsphare

32. Wie sehen Sie das Thema Datenschutz im Bezug auf das barrierefreie Smarthome?

33. Welche Vor- und Nachteile sehen Sie, wenn das barrierefreie Smarthome mit dem Internet

verbunden ist?

34. Ware es fir Sie ein Problem, dass die Kamera (bei einer Sprachsteuerung moglicherweise

auch das Mikrofon) die ganze Zeit aktiv ist?

35. Hatten Sie eine Idee, wie man barrierefreie Smarthome geschickterweise "ein-" und

"ausschaltet"?

Retrospective

36. Welchen Eindruck haben Sie von der beschriebenen Idee eines barrierefreien Smarthomes?

37. Was konnte Ihrer Meinung nach zu Problemen bei dem barrierefreien Smarthome fiihren?

38. Gibt es von Ihrer Seite noch Verbesserungsvorschlage und / oder Kritik an dem barrierefreien

Smarthome sowie dem gerade geflihrten Interview?

Falls noch offen

39. Konnen Sie Blinzeln?

40. In wieweit konnen Sie lhren Kopf bewegen (drehen, neigen)?

41. Wie kommen Sie mit dem "Sprechen" zurecht?

4

139

A. Anhang

140

42. Welche Behinderung(en) haben Sie?

43. Haben Sie die Behinderung(en) von Geburt an?

44, Welche Beeintrachtigungen bestehen durch die Behinderung(en) fir Sie?

45. Welche und wie viel Unterstiitzung ist dadurch erforderlich?

Wrap-up

Abschluss

Ausblick auf die Nutzbarkeitstests

Danke

A.2. Ergebnisse der quantitativen Benutzbarkeitstests

A.2. Ergebnisse der quantitativen Benutzbarkeitstests

Die folgenden 4 Tabellen beinhaltet Ergebnisse der quantitativen Benutzbarkeitstests aus dem
Unterkapitel 6.1. Die Werte in den Tabelle sind auf 4 Stellen nach dem Komma gerundet.

Tabelle A.1.: Die Tabelle beinhaltet die fiir jede Eingabemethode und Button-Matrix die
insgesamt, richtig und falsch tibertragenen Bits / Sekunde und davon noch
jeweils den maximalen (max), durchschnittlichen () und minimalen (min) Wert
gerundet auf 4 Nachkommastellen.

gesamt richtig falsch
Eingabemethode Matrix = max %] min max (%] min max %] min
Touch 3x3 17,2469 13,7953 9,7720 17,2469 13,7527 9,7720 10,6817 0,0426 0,0000

4x4 28,3604 23,7948 19,0716 28,3604 23,7017 19,0716 1,4896 0,0931 0,0000
5x5 45,5419 37,6047 29,3446 45,5419 37,6047 29,3446 10,0000 0,0000 0,0000
6x6 63,6918 52,5066 39,0150 63,6918 52,5066 39,0150 0,0000 0,0000 0,0000
Maus 3x3 15,5769 12,0600 7,9187 15,5769 11,8741 7,9187 1,1503 10,1859 0,0000
4x4 22,9867 19,4695 15,8730 22,9867 19,3359 15,8730 1,1688 0,1336 0,0000
5x5 34,4748 30,0923 25,0000 34,4748 30,0923 25,0000 0,0000 0,0000 0,0000
6x6 49,0315 40,2690 31,8553 49,0315 39,9996 31,8553 12,3095 0,2694 0,0000
Tastatur 3x3 12,5952 9,6579 6,4342 12,5952 9,6579 6,4342 10,0000 0,0000 0,0000
4x4 17,8704 14,7568 11,5463 17,8704 14,7568 11,5463 0,0000 0,0000 0,0000
5x5 28,5950 21,0368 13,4682 28,5950 20,9667 13,4682 1,1214 0,0701 0,0000
6x6 34,7770 27,9552 20,4823 34,7770 27,7546 20,4823 1,7772 0,2006 0,0000

Face-Tracking 3x3 3,5373 25149 1,6079 3,5373 2,3235 1,2584 0,6113 10,1914 0,0000
4x4 5,7078 4,0400 11,7544 5,1370 3,4899 11,5790 1,2257 10,5501 0,1746
5x5 8,2966 6,0248 43120 7,1114 48771 2,5037 11,9184 11,1476 0,3864
6x6 9,6522 7,5272 4,9446 9,3651 59208 3,5601 4,3874 11,6065 0,0000
1-Button-Scanning 3x3 5,4871 4,7545 4,0667 4,9852 4,3557 3,1826 1,1224 10,3988 0,0000
4x4 6,0380 5,3280 4,6775 6,0380 4,8818 4,1854 10,7642 0,4463 0,0000
5x5 6,5967 5,7084 5,2196 6,5967 5,2407 4,0866 1,5892 0,4677 0,0000
6x6 7,5620 6,0766 4,9890 7,1640 55608 3,9044 1,0846 0,5157 0,0000
2-Button-Scanning 3x3 6,3629 53259 4,2033 6,3629 5,3090 4,2033 0,2697 0,0169 0,0000
4x4 8,3146 6,4998 4,2872 8,3146 6,4159 4,2872 0,6964 0,0839 0,0000
5x5 9,0532 7,0913 5,1462 9,0532 7,0117 5,1462 0,5720 0,0796 0,0000
6x6 9,3868 7,6914 6,2690 9,3868 7,6481 5,9391 10,3630 0,0433 0,0000
Sprachsteuerung 3x3 2,3756 1,9381 11,0845 2,3756 19306 11,0845 0,1204 0,0075 0,0000
4x4 4,2929 34469 1,7955 4,2929 3,3530 1,7010 10,4936 0,0939 0,0000
5x5 6,6791 53410 1,4168 6,6791 5,1947 1,2751 10,7330 0,1462 0,0000
6x6 8,8109 7,7044 59265 8,7057 7,4978 5,6146 0,7406 0,2067 0,0000

141

A. Anhang

Tabelle A.2.: Die Tabelle beinhaltet die fiir jede Eingabemethode und Button-Matrix die
Anzahl der insgesamt, richtig und falsch betétigten Buttons / Sekunde und davon
noch jeweils den maximalen (max), durchschnittlichen (@) und minimalen (min)
Wert gerundet auf 4 Nachkommastellen.

gesamt richtig falsch
Eingabemethode Matrix max 4] min max 4] min max 4] min
Touch 3x3 1,9163 11,5328 11,0858 1,9163 11,5281 1,0858 0,0757 0,0047 0,0000
4x4 1,7725 11,4872 11,1920 11,7725 11,4814 11,1920 0,0931 0,0058 0,0000
5x5 1,8217 11,5042 1,1738 11,8217 1,5042 1,1738 0,0000 0,0000 0,0000
6x6 1,7692 11,4585 11,0837 1,7692 1,4585 1,0837 0,0000 0,0000 0,0000
Maus 3x3 1,7308 11,3400 10,8799 1,7308 1,3193 0,8799 10,1278 0,0207 0,0000

4x4 1,4367 11,2168 0,9921 11,4367 11,2085 0,9921 10,0731 0,0084 0,0000
5x5 1,3790 11,2037 11,0000 1,3790 11,2037 1,0000 0,0000 0,0000 0,0000
6x6 1,3620 11,1186 0,8849 1,3620 1,1111 10,8849 10,0642 0,0075 0,0000

Tastatur 3x3 1,3995 11,0731 0,7149 1,3995 1,0731 0,7149 0,0000 0,0000 0,0000
4x4 1,1169 10,9223 0,7216 1,1169 10,9223 0,7216 0,0000 0,0000 0,0000
5x5 1,1438 10,8415 10,5387 11,1438 10,8387 0,5387 0,0449 0,0028 0,0000
6x6 0,9660 0,7765 0,5690 0,9660 0,7710 0,5690 0,0494 0,0056 0,0000
Face-Tracking 3x3 0,3930 0,2794 0,1787 0,3930 0,2582 0,1398 0,0679 0,0213 0,0000

4x4 0,3567 10,2525 0,1097 0,3211 0,2181 0,0987 0,0766 0,0344 0,0109
5x5 0,3319 0,2410 0,1725 0,2845 0,1951 0,1001 0,0767 0,0459 0,0155
6x6 0,2681 0,2091 0,1374 0,2601 0,1645 0,0989 0,1219 0,0446 0,0000
1-Button-Scanning 3x3 0,6097 0,5283 0,4519 0,5539 0,4840 0,3536 0,1247 0,0443 0,0000
4x4 0,3774 0,3330 0,2923 0,3774 0,3051 0,2616 0,0478 0,0279 0,0000
5x5 0,2639 0,2283 0,2088 0,2639 0,2096 0,1635 0,0636 0,0187 0,0000
6x6 0,2101 0,1688 0,138 0,1990 0,1545 0,1085 0,0301 0,0143 0,0000
2-Button-Scanning 3x3 0,7070 0,5918 0,4670 0,7070 0,5899 0,4670 0,0300 0,0019 0,0000
4x4 0,5197 0,4062 0,2679 0,5197 0,4010 0,2679 0,0435 0,0052 0,0000
5x5 0,3621 10,2837 0,2058 0,3621 0,2805 0,2058 0,0229 0,0032 0,0000
6x6 0,2607 0,2137 0,1741 0,2607 0,2124 0,1650 0,0101 0,0012 0,0000
Sprachsteuerung 3x3 0,2640 0,2153 0,1205 0,2640 0,2145 0,1205 0,0134 0,0008 0,0000
4x4 0,2683 0,2154 0,1122 0,2683 0,2096 0,1063 0,0309 0,0059 0,0000
5x5 0,2672 0,2136 0,0567 0,2672 0,2078 0,0510 0,0293 0,0058 0,0000
6x6 0,2447 0,2140 0,1646 0,2418 0,2083 0,1560 0,0206 0,0057 0,0000

142

A.2. Ergebnisse der quantitativen Benutzbarkeitstests

Tabelle A.

3.: Die Tabelle beinhaltet die insgesamt, richtig und falsch tibertragenen Bits / Se-
kunde und davon noch jeweils den maximalen (max), durchschnittlichen (@) und
minimalen (min) Wert gerundet auf 4 Nachkommastellen der 3 beziehungsweise
2 Probanden, welche die Eingabemethode Face-Tracking mit mehr als 36 Buttons
testeten.

Matrix

gesamt richtig falsch
max (%] min max %] min max %) min

3x3
4x4
5x5
6x6
7x7
8x8
9x9
10x10

3,3624 2,3068 1,6079 2,7510 11,9215 1,2584 0,6113 0,3853 0,1950
5,1377 4,1661 3,1517 4,0208 3,4337 2,8366 1,1169 0,7324 0,3152
6,5769 5,6566 4,3120 5,6373 4,4511 2,5037 1,8082 1,2055 0,8687
9,6522 7,4373 5,2524 6,0605 49872 3,6363 4,3874 2,4501 11,3468
9,7980 8,0901 7,1046 5,8788 4,8160 3,9964 3,9192 3,2740 2,7946
17,6113 12,6128 9,3152 9,9064 7,1782 5,0810 7,7049 5,4346 4,2342
12,8340 11,6448 10,4556 6,4897 6,2065 5,9234 6,9106 5,4383 3,9659
15,5846 12,9141 10,0293 19,0888 5,8793 3,5398 10,5753 7,0348 4,0395

Tabelle A.4.: Die Tabelle beinhaltet die insgesamt, richtig und falsch betatigten Buttons /

Sekunde und davon noch jeweils den maximalen (max), durchschnittlichen (@)
und minimalen (min) Wert gerundet auf 4 Nachkommastellen der 3 beziehungs-
weise 2 Probanden, welche die Eingabemethode Face-Tracking mit mehr als 36
Buttons testeten.

gesamt richtig falsch

Matrix max %] min max %] min max %] min

3x3 0,3736 0,2563 10,1787 0,3057 10,2135 0,1398 0,0679 0,0428 0,0217
4x4 0,3211 0,2604 0,1970 0,2513 10,2146 0,1773 0,0698 0,0458 0,0197
5x5 0,2631 0,2263 0,1725 0,2255 10,1780 0,1001 0,0723 0,0482 0,0347
6x6 0,2681 0,2066 0,1459 0,1683 0,1385 0,1010 0,1219 0,0681 0,0374
7x7 0,2000 0,1651 0,1450 0,1200 0,0983 0,0816 0,0800 0,0668 0,0570
8x8 0,2752 10,1971 0,1456 0,1548 10,1122 0,0794 0,1204 0,0849 0,0662
9x9 0,1584 10,1438 10,1291 10,0801 10,0766 0,0731 0,0853 0,0671 0,0490
10x10 0,1558 0,1291 0,1003 0,0909 0,0588 0,0354 0,1058 0,0703 0,0404

143

Literaturverzeichnis

[AA14]

[BCC]

[BHCM14]

[CBJA12]

[Che01]

[DAH12]

[DLS07]

[EM13]

T. Ahne, S. Ahne. ,Risiko Querschnittslahmung—Was tun bei Wirbelsaulenverlet-
zungen?“ In: retten! 3.04 (2014), S. 258-265 (zitiert auf S. 11, 18, 19).

A. Bulbul, Z. Cipiloglu, T. Capin. , A Face Tracking Algorithm for User Interaction
in Mobile Devices®. In: 2009 International Conference on CyberWorlds, S. 385-390.
por: 10.1109/CW.2009.9 (zitiert auf S. 25).

Z.-P. Bian, J. Hou, L.-P. Chau, N. Magnenat-Thalmann. ,Human Computer In-
terface for Quadriplegic People Based on Face Position/Gesture Detection®. In:
Proceedings of the 22Nd ACM International Conference on Multimedia. MM ’14.
New York, NY, USA: ACM, 2014, S. 1221-1224. 1sBN: 978-1-4503-3063-3 (zitiert
auf S. 23, 132).

H. A. Caltenco, B. Breidegard, B. Jonsson, L. N. Andreasen Struijk. ,Understanding
Computer Users With Tetraplegia: Survey of Assistive Technology Users®. In:
International Journal of Human-Computer Interaction 28.4 (2012), S. 258—268. I1SSN:
1044-7318 (zitiert auf S. 21, 38, 132).

Y. L. Chen. ,Application of tilt sensors in human-computer mouse interface for
people with disabilities®. In: IEEE transactions on neural systems and rehabilitation
engineering : a publication of the IEEE Engineering in Medicine and Biology Society
9.3 (2001), S. 289-294. 1sSN: 1534-4320 (zitiert auf S. 21).

M. L. Dybdal, J.S. Agustin, J. P. Hansen. ,Gaze Input for Mobile Devices by Dwell
and Gestures®“. In: Proceedings of the Symposium on Eye Tracking Research and
Applications. ETRA *12. Santa Barbara, California: ACM, 2012, S. 225-228. 1SBN:
978-1-4503-1221-9. por: 10.1145/2168556.2168601. URL: http://doi.acm.org/10.
1145/2168556.2168601 (zitiert auf S. 25, 54).

H. Drewes, A. de Luca, A. Schmidt. ,Eye-gaze Interaction for Mobile Phones®. In:
Proceedings of the 4th International Conference on Mobile Technology, Applications,
and Systems and the 1st International Symposium on Computer Human Interaction
in Mobile Technology. Mobility '07. New York, NY, USA: ACM, 2007, S. 364-371.
ISBN: 978-1-59593-819-0. po1: 10.1145/1378063.1378122. URL: http://doi.acm.org/
10.1145/1378063.1378122 (zitiert auf S. 25).

Eui Chul Lee, Min Woo Park. ,New Eye Tracking Method as a Smartphone
Interface”. In: KSII Transactions on Internet and Information Systems 7.4 (2013),
S. 834-848. 1ssN: 19767277 (zitiert auf S. 24, 132).

145

http://dx.doi.org/10.1109/CW.2009.9
http://dx.doi.org/10.1145/2168556.2168601
http://doi.acm.org/10.1145/2168556.2168601
http://doi.acm.org/10.1145/2168556.2168601
http://dx.doi.org/10.1145/1378063.1378122
http://doi.acm.org/10.1145/1378063.1378122
http://doi.acm.org/10.1145/1378063.1378122

Literaturverzeichnis

[Exn04]

[EN08]

[FWKO07]

[GLF+12]

[GNJG10a]

[GNJG10b]

[Goo16a]

[Goo16b]

[Goo16c]

146

G. Exner. ,Der Arbeitskreis Querschnittladhmungen des Hauptverbandes der
gewerblichen Berufsgenossenschaften in Deutschland®. In: Trauma und Berufs-
krankheit 6.2 (2004). 1sSN: 1436-6274 (zitiert auf S. 19).

T. Felzer, R. Nordmann. ,Evaluating the Hands-Free Mouse Control System:
An Initial Case Study®“. In: Computers Helping People with Special Needs: 11th
International Conference, ICCHP 2008, Linz, Austria, July 9-11, 2008. Proceedings.
Hrsg. von K. Miesenberger, J. Klaus, W. Zagler, A. Karshmer. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, S. 1188-1195. 1sBN: 978-3-540-70540-6. DOTI:
10.1007/978-3-540-70540-6_179. URL: http://dx.doi.org/10.1007/978-3-540-70540-
6_179 (zitiert auf S. 22).

J. Froehlich, J. O. Wobbrock, S. K. Kane. ,Barrier Pointing: Using Physical Edges
to Assist Target Acquisition on Mobile Device Touch Screens®. In: Proceedings of
the 9th International ACM SIGACCESS Conference on Computers and Accessibility.
Assets ’07. New York, NY, USA: ACM, 2007, S. 19-26. 1SBN: 978-1-59593-573-1.
DOI: 10.1145/1296843.1296849. URL: http://doi.acm.org/10.1145/1296843.1296849
(zitiert auf S. 24).

S.M. Grigorescu, T. Luth, C. Fragkopoulos, M. Cyriacks, A. Graser. ,A BCI-
controlled robotic assistant for quadriplegic people in domestic and professional
life“. In: Robotica 30.03 (2012), S. 419-431. 1ssN: 0263-5747 (zitiert auf S. 22).

T.]J. V. Guerreiro, H. Nicolau, J. Jorge, D. Gongalves. , Assessing Mobile Touch
Interfaces for Tetraplegics®. In: Proceedings of the 12th International Conference
on Human Computer Interaction with Mobile Devices and Services. MobileHCI
’10. New York, NY, USA: ACM, 2010, S. 31-34. 1sBN: 978-1-60558-835-3. DOTI:
10.1145/1851600.1851608. URL: http://doi.acm.org/10.1145/1851600.1851608
(zitiert auf S. 24).

T. Guerreiro, H. Nicolau, J. Jorge, D. Gongalves. ,Towards Accessible Touch
Interfaces®. In: Proceedings of the 12th International ACM SIGACCESS Conference
on Computers and Accessibility. ASSETS ’10. Orlando, Florida, USA: ACM, 2010,
S. 19-26. 1sBN: 978-1-60558-881-0. po1: 10.1145/1878803.1878809. URL: http:
//doi.acm.org/10.1145/1878803.1878809 (zitiert auf S. 24, 133).

Google. Change Voice Access settings. 2016. URL: https://support.google.com/
accessibility/android/answer/6151843 (besucht am 17. 12. 2016) (zitiert auf S. 114).

Google. Face Detection Concepts Overview. 2016. URL: https://developers.google.
com/vision/face-detection-concepts (besucht am 03. 11. 2016) (zitiert auf S. 12,
50-53, 80, 85).

Google. Get Started with the Mobile Vision APL 2016. URL: https://developers.
google.com/vision/android/getting-started (besucht am 09. 12. 2016) (zitiert auf
S. 50).

http://dx.doi.org/10.1007/978-3-540-70540-6_179
http://dx.doi.org/10.1007/978-3-540-70540-6_179
http://dx.doi.org/10.1007/978-3-540-70540-6_179
http://dx.doi.org/10.1145/1296843.1296849
http://doi.acm.org/10.1145/1296843.1296849
http://dx.doi.org/10.1145/1851600.1851608
http://doi.acm.org/10.1145/1851600.1851608
http://dx.doi.org/10.1145/1878803.1878809
http://doi.acm.org/10.1145/1878803.1878809
http://doi.acm.org/10.1145/1878803.1878809
https://support.google.com/accessibility/android/answer/6151843
https://support.google.com/accessibility/android/answer/6151843
https://developers.google.com/vision/face-detection-concepts
https://developers.google.com/vision/face-detection-concepts
https://developers.google.com/vision/android/getting-started
https://developers.google.com/vision/android/getting-started

Literaturverzeichnis

[Goo16d]

[Gool6e]

[Goo16f]

[Gool6g]

[Goo16h]

[Goo16i]

[Goo16j]

[Goo16k]

[Goo16l]

[Gool6m]

[GRO4]

[Har03]
[JDO16]

[JKS05]

Google. Google APIs for Android Face. 2016. URL: https://developers.google.com/
android/reference/com/google/android/gms/vision/face/Face (besucht am
08.12.2016) (zitiert auf S. 51, 87).

Google. Google TalkBack. 2016. URL: https://play.google.com/store/apps/details?
id=com.google.android.marvin.talkback&hl=de (besucht am 08. 12. 2016) (zitiert
auf S. 46, 71).

Google. Landmark. 2016. URL: https://developers.google.com/android/reference/
com/google/android/gms/vision/face/Landmark (besucht am 09. 12. 2016) (zitiert
auf S. 51).

Google. Schalterzugriff fiir Android einrichten. 2016. URL: https://support.google.
com/accessibility/android/answer/6301490 (besucht am 14. 12. 2016) (zitiert auf
S. 20, 130).

Google. Tipps fiir die Nutzung des Schalterzugriffs. 2016. URL: https://support.
google.com/accessibility/android/answer/ 6395627 (besucht am 14.12.2016)
(zitiert auf S. 20).

Google. Troubleshoot Voice Access. 2016. URL: https://support.google.com/
accessibility/android/answer/6377053?hl=en&ref_topic=6151842 (besucht am
09.12.2016) (zitiert auf S. 56, 114, 131).

Google. Uber den Schalterzugriff fiir Android. 2016. URL: https://support.google.
com/accessibility/android/answer/6122836 (besucht am 15. 12. 2016) (zitiert auf
S. 20, 130, 131).

Google. Ubersicht iiber die Android-Bedienungshilfen. 2016. URL: https://support.
google . com / accessibility / android / answer / 6006564 ? hl = de (besucht am
14.12. 2016) (zitiert auf S. 19, 20, 130).

Google. Use Voice Access commands. 2016. URL: https://support.google.com/
accessibility/android/answer/6151854 (besucht am 09. 12. 2016) (zitiert auf S. 56).

Google. Voice Access (Unreleased). 2016. URL: https://play.google.com/store/apps/
details?id=com.google.android.apps.accessibility.voiceaccess&hl=de (besucht am
08.12.2016) (zitiert auf S. 56, 61, 62, 107).

E. Gamma, D. Riehle. Entwurfsmuster: Elemente wiederverwendbarer objektorien-
tierter Software. 1. Aufl., [Neuaufl.] Programmer’s choice. Miinchen und Boston
[u.a.]: Addison-Wesley, 2004. 1SBN: 3827321999 (zitiert auf S. 59, 77).

R. Harper. Inside the smart home. London und New York: Springer, 2003. 1SBN:
978-1-85233-854-1 (zitiert auf S. 15).

JDOM. JDOM. 2016. URL: http://www.jdom.org/index.html (besucht am
19.12.2016) (zitiert auf S. 69).

H. Jeong, J.-S. Kim, W.-H. Son. ,An emg-based mouse controller for a tetraplegic”.
In: 2005 IEEE International Conference on Systems, Man and Cybernetics. Bd. 2.
IEEE. 2005, S. 1229-1234 (zitiert auf S. 22, 132).

147

https://developers.google.com/android/reference/com/google/android/gms/vision/face/Face
https://developers.google.com/android/reference/com/google/android/gms/vision/face/Face
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback&hl=de
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback&hl=de
https://developers.google.com/android/reference/com/google/android/gms/vision/face/Landmark
https://developers.google.com/android/reference/com/google/android/gms/vision/face/Landmark
https://support.google.com/accessibility/android/answer/6301490
https://support.google.com/accessibility/android/answer/6301490
https://support.google.com/accessibility/android/answer/6395627
https://support.google.com/accessibility/android/answer/6395627
https://support.google.com/accessibility/android/answer/6377053?hl=en&ref_topic=6151842
https://support.google.com/accessibility/android/answer/6377053?hl=en&ref_topic=6151842
https://support.google.com/accessibility/android/answer/6122836
https://support.google.com/accessibility/android/answer/6122836
https://support.google.com/accessibility/android/answer/6006564?hl=de
https://support.google.com/accessibility/android/answer/6006564?hl=de
https://support.google.com/accessibility/android/answer/6151854
https://support.google.com/accessibility/android/answer/6151854
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.voiceaccess&hl=de
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.voiceaccess&hl=de
http://www.jdom.org/index.html

Literaturverzeichnis

[KAR+14]

[KGM12]

[KNL+06]

[Kod16a]
[Kod16b]
[Kod16c]

[LCC+10]

[NW11]

[Org13]

[Pec14]

[Sma16]

148

J. Kangas, D. Akkil, J. Rantala, P. Isokoski, P. Majaranta, R. Raisamo. ,Gaze
Gestures and Haptic Feedback in Mobile Devices®. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI "14. Toronto, Ontario,
Canada: ACM, 2014, S. 435-438. 1SBN: 978-1-4503-2473-1. por: 10.1145/2556288.
2557040. URL: http://doi.acm.org/10.1145/2556288.2557040 (zitiert auf S. 25, 90).

M. Kuniavsky, E. Goodman, A. Moed. Observing the user experience: A practitio-
ner’s guide to user research. 2nd ed. Waltham, MA: Morgan Kaufmann, 2012. 1sBN:
978-0123848697 (zitiert auf S. 27-33, 120-122, 124).

L. Kauhanen, T. Nykopp, J. Lehtonen, P. Jylanki, J. Heikkonen, P. Rantanen,
H. Alaranta, M. Sams. ,EEG and MEG brain-computer interface for tetraplegic
patients®. In: IEEE transactions on neural systems and rehabilitation engineering :
a publication of the IEEE Engineering in Medicine and Biology Society 14.2 (2006),
S. 190-193. 1sSN: 1534-4320. por: 10.1109/TNSRE.2006.875546 (zitiert auf S. 22).

Kodi. About. 2016. URL: https://kodi.tv/about/ (besucht am 08. 12.2016) (zitiert
auf S. 63).

Kodi. JSON-RPC API/v6. 2016. URL: http://kodi.wiki/view/JSON-RPC_API/v6
(besucht am 08. 12. 2016) (zitiert auf S. 63).

Kodi. Remote controls. 2016. URL: http://kodi.wiki/view/Remote_controls (besucht
am 08.12.2016) (zitiert auf S. 63).

M.E. Lund, H. V. Christiensen, H. A. Caltenco, E. R. Lontis, B. Bentsen, Andreasen
Struijk, Lotte N S. ,Inductive tongue control of powered wheelchairs®. In: Confe-
rence proceedings : ... Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society.
Annual Conference 2010 (2010), S. 3361-3364. 1ssN: 1557-170X (zitiert auf S. 22).

M. Nerlich, B. Weigel. Praxisbuch Unfallchirurgie: Mit 161 Tabellen. 2., vollst.
iiberarb. und aktualisierte Aufl. Berlin [u.a.]: Springer, 2011. 1SBN: 3642107893
(zitiert auf S. 16).

W. H. Organization. International Perspectives on Spinal Cord Injury. Nonserial
Publications. Geneva: World Health Organization, 2013. 1SBN: 978 92 4 156466 3
(zitiert auf S. 11, 16-19, 28).

L. Pecchia. Ambient assisted living and daily activities: 6th international work-
conference, IWAAL 2014, Belfast, UK, December 2-5, 2014 : proceedings. Bd. 8868.
LNCS sublibrary. SL 3, Information systems and applications, incl. Internet/Web,
and HCI490. Cham und New York: Springer, 2014. 1sBN: 978-3-319-13104-7 (zitiert
auf S. 11, 15).

Smart Homes. The integration of technology and services in the home environment.
2016. URL: http://www.smart-homes.nl/Domotica.aspx (besucht am 11. 12.2016)
(zitiert auf S. 11, 15).

http://dx.doi.org/10.1145/2556288.2557040
http://dx.doi.org/10.1145/2556288.2557040
http://doi.acm.org/10.1145/2556288.2557040
http://dx.doi.org/10.1109/TNSRE.2006.875546
https://kodi.tv/about/
http://kodi.wiki/view/JSON-RPC_API/v6
http://kodi.wiki/view/Remote_controls
http://www.smart-homes.nl/Domotica.aspx

Literaturverzeichnis

[Spa91] B. Spahn. ,Fachkundenachweis Rettungsdienst”. In: Hrsg. von P. D. m. P.-M. O. Dr. med. Klaus
Ellinger Dr. med. Hartmuth Frobenius. Springer Berlin Heidelberg, 1991. Kap. Wir-
belsdulenverletzung und Querschnittslihmung, S. 206-212. 1SBN: 978-3-642-

97232-4 (zitiert auf S. 19).

[SSHH09] J. San Agustin, H. Skovsgaard, J. P. Hansen, D. W. Hansen. ,Low-cost Gaze In-
teraction: Ready to Deliver the Promises®. In: CHI ’09 Extended Abstracts on
Human Factors in Computing Systems. CHI EA ’09. Boston, MA, USA: ACM,
2009, S. 4453-4458. 1sBN: 978-1-60558-247-4. pOI: 10.1145/1520340.1520682. URL:
http://doi.acm.org/10.1145/1520340.1520682 (zitiert auf S. 25).

[Sta16] Statistisches Bundesamt. Sozialleistungen: Schwerbehinderte Menschen. 2016. URL:
https : / / www . destatis . de / DE / Publikationen / Thematisch / Gesundheit /
BehinderteMenschen / Schwerbehinderte2130510139004 . pdf ; jsessionid =
8D754AAAB4D613729528E85F675EA38E.cae2?__blob=publicationFile (besucht
am 09.12.2016) (zitiert auf S. 19).

[TRF+05] Y. Tanimoto, Y. Rokumyo, K. Furusawa, A. Tokuhiro, Y. Suzuki, K. Takami,
H. Yamamoto. ,Development of a computer input device for patients with tetra-
plegia“. In: Computer Standards & Interfaces 28.2 (2005), S. 166—175. 1ssN: 09205489
(zitiert auf S. 23).

[Uen14] T. Ueno. A development of the interface to operate Smartphones for quadriplegic
people (The 3rd). 2014. URL: http://www.yokohama-rf.jp/common/pdf/report/26-
5.pdf (besucht am 15.12. 2016) (zitiert auf S. 23).

[Vid16a] VideoLAN. VLC Features. 2016. URL: http://www.videolan.org/vlc/features.html
(besucht am 08. 12. 2016) (zitiert auf S. 63).

[Vid16b] VideoLAN. VLC HTTP requests. 2016. URL: https://wiki.videolan.org/VLC_HTTP_
requests/ (besucht am 08. 12. 2016) (zitiert auf S. 63, 92-94).

[Wirl1] R. Wirdemann. Scrum mit User Stories. 2., erweiterte Auflage. Miinchen: Hanser,
Carl, 2011. 1sBN: 9783446426603 (zitiert auf S. 37).

[WKO08] M. R. Williams, R.F. Kirsch. ,Evaluation of head orientation and neck muscle
EMG signals as command inputs to a human-computer interface for individuals
with high tetraplegia®. In: IEEE transactions on neural systems and rehabilitation
engineering : a publication of the IEEE Engineering in Medicine and Biology Society
16.5 (2008), S. 485-496. 1sSN: 1534-4320 (zitiert auf S. 21, 131).

[Woh16a] Wohlke EDV-Beratung. Wohlke Websteckdose - Die IP-Steckdose mit WLAN. 2016.
URL: https://www.woehlke-websteckdose.de/index.php?id=websteckdose_ip-
steckdose_servic (besucht am 08. 12. 2016) (zitiert auf S. 63, 94).

[Wo6h16b] Wohlke EDV-Beratung. Wohlke Websteckdose - Haufig gestellte Fragen. 2016. URL:
https://www.woehlke - websteckdose.de/index. php ?id =websteckdose - faq0
(besucht am 08. 12. 2016) (zitiert auf S. 63, 94, 95).

149

http://dx.doi.org/10.1145/1520340.1520682
http://doi.acm.org/10.1145/1520340.1520682
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/BehinderteMenschen/Schwerbehinderte2130510139004.pdf;jsessionid=8D754AAAB4D613729528E85F675EA38E.cae2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/BehinderteMenschen/Schwerbehinderte2130510139004.pdf;jsessionid=8D754AAAB4D613729528E85F675EA38E.cae2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/BehinderteMenschen/Schwerbehinderte2130510139004.pdf;jsessionid=8D754AAAB4D613729528E85F675EA38E.cae2?__blob=publicationFile
http://www.yokohama-rf.jp/common/pdf/report/26-5.pdf
http://www.yokohama-rf.jp/common/pdf/report/26-5.pdf
http://www.videolan.org/vlc/features.html
https://wiki.videolan.org/VLC_HTTP_requests/
https://wiki.videolan.org/VLC_HTTP_requests/
https://www.woehlke-websteckdose.de/index.php?id=websteckdose_ip-steckdose_servic
https://www.woehlke-websteckdose.de/index.php?id=websteckdose_ip-steckdose_servic
https://www.woehlke-websteckdose.de/index.php?id=websteckdose-faq0

[(WWO06] M. Wyndaele, J.-J. Wyndaele. ,Incidence, prevalence and epidemiology of spinal
cord injury: what learns a worldwide literature survey?” In: Spinal cord 44.9
(2006), S. 523-529 (zitiert auf S. 11, 19).

Alle URLs wurden zuletzt am 19. 12. 2016 gepriift.

Erklirung

Ich versichere, diese Arbeit selbststandig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngemaf3 aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priiffungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
verdffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Ziele der Arbeit
	1.3 Vorgehensweise

	2 Grundlagen und verwandte Arbeiten
	2.1 Smarthome
	2.2 Querschnittlähmung
	2.3 Bedienungshilfen in Android
	2.4 Verwandte Arbeiten

	3 Benutzungskontext-Analyse
	3.1 Interviews
	3.2 Definition der Anforderungen

	4 Konzept
	4.1 Systemübersicht
	4.2 Benutzeroberfläche
	4.3 Eingabemöglichkeiten
	4.4 Eingabeverarbeitung

	5 Umsetzung Prototyp
	5.1 Begründung für die prototypische Umsetzung ausgewählter Anforderungen
	5.2 Verwendete Systeme und Technologien
	5.3 Architektur
	5.4 Implementierung

	6 Evaluation
	6.1 Quantitative Benutzbarkeitstests
	6.2 Qualitative Benutzbarkeitstests

	7 Zusammenfassung und Ausblick
	7.1 Umgesetzte Anforderung
	7.2 Mehrwert gegenüber den Android Bedienungshilfen
	7.3 Bewertung der Testergebnisse
	7.4 Ausblick

	A Anhang
	A.1 Fragebogen für die Interviews
	A.2 Ergebnisse der quantitativen Benutzbarkeitstests

	Literaturverzeichnis

