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Kurzfassung

Eine Querschnittlähmung kann jeden Menschen treffen, sei es durch durch Unfall oder Er-

krankung. Tetraplegikern bleiben im schlimmsten Fall lediglich motorische Fähigkeiten im

Bereich von Kopf, Hals und eventuell Schulter erhalten. Für sie – aber auch für Menschen

mit vergleichbaren motorischen Einschränkungen – werden kleinste manuelle Verrichtungen

plötzlich zu einer – oftmals sogar unlösbaren – Herausforderung. Aus diesem Grund können

Tetraplegiker von einem Smarthome und mobilen Endgeräten zu seiner Steuerung erheblich

profitieren. Dafür muss jedoch das Endgerät eine barrierefreie Eingabemethode unterstützen.

Die Barrierefreiheit bei der Eingabe ist realisierbar in Form von Bedienungshilfen und / oder

durch Hilfsmittel-Hardware.

Das Ziel dieser Arbeit ist die Konzeptionierung einer barrierefreien Smarthome-Steuerung für

Tetraplegiker sowie deren prototypische Realisierung als Android App. Das Hauptaugenmerk

dabei liegt auf einem größtmöglichen Verzicht auf Hilfsmittel-Hardware und auf einer guten

Individualisier- und Erweiterbarkeit. Für Ersteres wird unter anderem Face-Tracking basierend

auf der Mobile Vision API von Google als Eingabemethode realisiert. Abschließend findet

sowohl eine qualitative als auch quantitative Evaluation des Prototyps statt. Verglichen werden

dazu die Bandbreite des Face-Trackings mit weiteren barrierefreien sowie klassischen Eingabe-

methoden. Das Konzept und der Prototyp für die Anwendung zur Steuerung eines barrierefreien

Smarthomes eignen sich für betroffene Personen und Angehörige aus der Zielgruppe, welche

unterschiedliche Eingabemethoden ausprobieren möchten, ebenso für Entwickler, die an der

Erweiterung des Prototyps interessiert sind. Ihnen liefert die Evaluation zudem Erkenntnisse

zur Leistungsfähigkeit eines kostengünstigen Face-Trackings sowie weiterer barrierefreien

Eingabemethoden.
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Abstract

Spinal-cord injury can happen to anyone, whether through traumatic injury or due to illness.

Tetraplegics retain mobility – in a worst case scenario – only in the head and neck area,

possibly including the shoulder area. For those affected – as for people with similarly limited

mobility through other causes – the smallest manual movement becomes a challenge, often

an impossible one. Thus tetraplegics may profit immensely by a smart home with mobile

controlling devices. However, for that purpose the controlling device needs to support barrier-

free input methods. Barrier-free input can be implemented by assisting features in the use of

control devices, and/or by specialized hardware.

The aim of this thesis is the conceptualization of a barrier-free smart home control device for

tetraplegics, as well as its prototypical implementation as an Android App. The main focus is

on doing without specialized hardware as much as possible, and on options to individualize

and expand functionality. For the prototype, face-tracking based on Mobile Vision API by

Google is used as an input method, among others. In conclusion there is an evaluation process

of the prototype regarding criteria of quality and quantity. The evaluation includes comparing

the range of performance of face-tracking with other barrier-free, as well as classic input

methods. The concept and the prototype for this application for the controlling of barrier-

free smart homes are suitable for affected persons and their family members in the target

group who would like to try out various methods of input. Software developers may also be

interested in expanding the functionality and input methods of the prototype. The evaluation

provides insight into the performance of cost-effective face-tracking as well as barrier-free

input methods.
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1. Einleitung

Ein ’smartes’ Zuhause kann für dessen Bewohner in vielerlei Hinsicht komfortabel sein. Für

manche von ihnen mag es darüber hinaus auch ein technisches ’Spielzeug’ sein. Ist es jedoch

konzipiert, so dass es Tetraplegiker oder andere Bewohner mit vergleichbaren motorischen

Einschränkungen selbstständig benutzen können, stellt es eine viel größere Bedeutung dar.

Denn das Smarthome ist für diesen Personenkreis ein Zugewinn an Selbstständigkeit und

damit an Lebensqualität.

1.1. Motivation

Nach Angaben der Weltgesundheitsorganisation erleiden jedes Jahr zwischen 250000 und

500000 Menschen eine Querschnittslähmung (vgl. [Org13, S. 14-15]). Wyndaele et al. [WW06]

kamen in ihrer Studie zu dem Ergebnis, dass es sich bei einem Drittel der betrachteten Quer-

schnittsfälle um eine Tetraplegie handelte (vgl. [WW06]). Bei dieser ist die Verletzung des

Rückenmarks so hoch, dass die betroffenen Personen nur noch eingeschränkte oder gar keine

motorischen Fähigkeiten mehr in ihren Händen besitzen (vgl. [AA14]). Obwohl der von Wyn-

daele et al. ermittelte Tetraplegikeranteil nicht repräsentativ für eine weltweite Schätzung ist

(vgl. [WW06]), lässt er die Annahme zu, dass eine erhebliche Anzahl an Personen betroffen ist,

zumal weitere Quellen in Abschnitt 2.2.3 einen noch höheren Anteil nennen.

Für Tetraplegiker und Menschen mit vergleichbaren Einschränkungen sind im Alltag schon

kleine Handgriffe, wie zum Beispiel das Öffnen eines Fensters oder das Umschalten des Fernseh-

programms, nur mit erheblichen Aufwand oder überhaupt nicht bewältigbar. In Folge dessen

benötigen sie eine umfangreiche Unterstützung. Deshalb, stellt für sie ein Smarthome, das per

Definition Technologien und Dienste im Zuhause integriert, um damit die Lebensqualität in

diesem zu steigern, ein weitaus größeres Potenzial dar, als für den Rest der Bevölkerung (vgl.

[Sma16] u. [Pec14]).

Allerdings sind dafür einige Voraussetzung zu erfüllen. Zum einen erfolgt die Bedienung des

Smarthomes idealerweise über eines oder mehrere mobile Endgeräte. Sie haben den Vorteil,

dass sie klein und handlich sind und sich somit am Rollstuhl des Benutzers einfacher an-

bringen lassen, damit für diesen die Steuerung im Bedarfsfall erreichbar ist. Zum anderen

muss die Benutzerschnittstelle barrierefrei sein. Insbesondere für Menschen mit motorischen

Einschränkungen an ihren Händen erfolgt die Herstellung der Barrierefreiheit oft noch durch

11



1. Einleitung

Hilfsmittel-Hardware und nicht über Bedienungshilfen des Geräts. Im Rahmen der in Ab-

schnitt 3.1 behandelten Interviews, wurde die Erfahrung geäußert, dass Erstere gegenüber

vergleichbaren Eingabegeräten für Unversehrte oftmals teurer seien. Dies kann insbesondere

Betroffene in ärmeren Regionen der Erde vor Probleme stellen.

1.2. Ziele der Arbeit

Das Ziel dieser Arbeit ist die Planung und prototypische Realisierung einer App zur Steuerung

eines barrierefreien Smarthomes, das auf die Belange von Benutzern mit Mobilitätseinschrän-

kungen an den Händen abgestimmt ist. Aus diesem Grund handelt es sich bei der primären

Zielgruppe des barrierefreien Smarthomes um Personen, die vom Hals ab querschnittsgelähmt

sind.

Die App soll sich zum einen durch eine hohe Individualisierbarkeit auszeichnen, wodurch

sie an die Anforderungen sowie Einschränkungen des jeweiligen Benutzers anpassbar ist.

Zum anderen liegt ein Schwerpunkt auf ihrer Erweiterbarkeit. Dadurch lassen sich zu einem

späteren Zeitpunkt weitere Geräte in das Smarthome integrieren.

Um die Bedienbarkeit für die Zielgruppe sicherzustellen, soll die App zur Steuerung des

barrierefreien Smarthomes unter anderem eine Sprachsteuerung sowie Face-Tracking als

Eingabemethode anbieten. In Bezug auf die Eingabemethoden liegt der Fokus auf den Kosten.

Durch den weitestgehenden Verzicht auf Hilfsmittel-Hardware, wird versucht diese niedrig zu

halten. Hierzu wird das Face-Tracking über die Mobile Vision API von Google realisiert (vgl.

[Goo16b]). Sie kann über die Frontkamera eines Android Geräts das Gesicht des Benutzers

ohne zusätzliche Hardware verfolgen.

Sowohl die Eingabemethoden und von diesen insbesondere das Face-Tracking als auch die

Benutzeroberfläche der App sollen nach der Fertigstellung des Prototyps evaluiert werden.

Dabei soll zum einen die Bandbreite der Eingabemethoden ermittelt werden und zum anderen

inklusive der Benutzeroberfläche eine qualitative Bewertung durch Personen aus der Zielgruppe

erfolgen.

1.3. Vorgehensweise

Zur Erreichung der im Abschnitt zuvor genannten Ziele, findet zunächst eine Definition des

Begriffs Smarthome statt. Anschließend werden die Grundlagen der Querschnittslähmung und

die damit einhergehenden Einschränkungen für die Betroffenen erläutert.

Der nächste Schritt ist eine Analyse des Forschungsstandes zu barrierefreien Smarthomes für

Benutzer mit Mobilitätseinschränkungen an den Händen. Bedingt durch die Ziele liegt der

Fokus hierbei auf mobilen Endgeräten und dem Face-Tracking.
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1.3. Vorgehensweise

Die darauf folgende Benutzungskontext-Analyse besteht aus Vorbereitung, Durchführung und

Auswertung der Interviews mit Personen aus der Zielgruppe des barrierefreien Smarthomes.

Die Interviews dienen zum einen zur Ideensammlung im Hinblick auf die Benutzeroberfläche

und die Eingabemethoden. Sie dienen andererseits dazu, einen besseren Eindruck von der

Lebenssituation der Betroffenen zu bekommen, um daraus verschiedene Anwendungsszenarien

für das barrierefreie Smarthome zu entwerfen. Im nächsten Schritt findet anhand der dadurch

gewonnen Erkenntnisse die Anforderungsdefinition statt.

Basierend auf den Anforderungen und dem Wissen über die Einschränkungen in Folge einer

Querschnittslähmung erfolgt darauf die Konzeptionierung einer Anwendung zur Steuerung

des barrierefreien Smarthomes sowie der Eingabemethoden, mittels derer sie sich von den

Benutzern barrierefrei bedienen lässt. Nach der Erstellung des Konzepts wird dieses in Form

eines Prototyps umgesetzt. Die Konzept-Realisierung startet mit der Auswahl geeigneter

Technologien und Systeme für die zur Implementation ausgewählten Anwendungsszenarien.

Danach werden die schon im Konzept entworfenen Komponenten verfeinert und im nächsten

Schritt implementiert.

Nach der Fertigstellung des Prototyps wird dieser evaluiert. Hierzu gibt es zum einen quanti-

tative und zum anderen qualitative Benutzbarkeitstests. Erstere ermitteln die Bandbreite der

Eingabemethoden, um die barrierefreien mit den herkömmlichen, wie zum Beispiel Touch,

vergleichen zu können. Um von jeder Eingabemethode deren maximale Leistungsfähigkeit zu

erhalten, erfolgt die Durchführung der quantitativen Benutzbarkeitstests mit unversehrten

Probanden. Hingegen handelt es sich bei den qualitativen Benutzbarkeitstests um Testpersonen

die entsprechend der Zielgruppe Mobilitätseinschränkungen an ihren Händen aufweisen. Sie

sollen die Benutzeroberfläche sowie die barrierefreien Eingabemethoden des Prototyps auf

seine Alltagstauglichkeit hin bewerten.

Abschließend erfolgt eine Zusammenfassung, welche die gewonnen Ergebnisse aus den Benutz-

barkeitstests zusammenfasst und einen Übersicht über den Realisierungsstand der einzelnen

Anforderungen im Prototyp gibt. Des Weiteren wird der Mehrwert gegenüber den Android

Bedienungshilfen und anderen barrierefreien Eingabemethoden aufgeführt sowie ein Ausblick

auf mögliche Erweiterungen des Konzepts und Prototyps gegeben.
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2. Grundlagen und verwandte Arbeiten

Das Kapitel Grundlagen und verwandte Arbeiten definiert zunächst den Begriff Smarthome.

Im Anschluss daran geht es auf die Thematik Querschnittlähmung ein. Der Schwerpunkt dabei

liegt auf ihren Ausprägungen und welche Einschränkungen diese jeweils zur Folge haben, um

den Bedarf an unterschiedlichen Eingabemethoden in den folgenden Kapiteln nachvollziehen

zu können. Des Weiteren stellt es die Bedienungshilfen des Betriebssystems Android vor, die

eine barrierefreie Bedienung von diesem ermöglichen sollen. Das letzte Unterkapitel fasst

verwandte Arbeiten zusammen, um einen Überblick über den Stand der Forschung zu geben.

2.1. Smarthome

Die Bezeichnung Smarthome umfasst mehrere Forschungsbereiche. Zu diesen gehören un-

ter anderem die Heimautomatisierung sowie das Selbständige Wohnen. Obwohl der Begriff

Smarthome folglich interdisziplinär ist, steht er für ein gemeinsames Ziel, das Leben im Zu-

hause komfortabler und qualitativer zu machen. Gelingen soll das durch die Integration von

Technologien und Services. (vgl. [Pec14, S. 212] u. [Sma16])

Was ein Smarthome ausmacht, ist nicht seine Architektur beziehungsweise das Erscheinungs-

bild und eine ressourcenschonende Ausstattung, wie zum Beispiel Solaranlagen, sondern die

interaktiven Technologien. Dennoch treffen erstere Faktoren häufig auf Smarthomes zu (vgl.

[Har03, S. 1-2]). Zu den interaktiven Technologien zählen beispielsweise drahtlose Energie-

und Datennetzwerke, intelligente und variable Zuschnitte der Räume sowie Sensoren (vgl.

[Pec14, S. 212]). Diese und weitere unterstützen die Bewohner eines Smarthomes bei den ge-

wöhnlichen Arbeiten in diesem sowie dessen Umfeld (vgl. [Pec14, S. 212]). Typische Merkmale

dieser Unterstützung sind Komfort als auch Interaktivität (vgl. [Pec14, S. 212]).

Jedoch besteht ein Smarthome nicht nur aus den innerhalb des Gebäudes oder auchGrundstücks

installierten Systemen und Anwendungen. Vielmehr umfasst es auch die Benutzung von

Diensten in Form von Anwendungen, deren Ausführung zum Beispiel in einem Rechenzentrum

erfolgt oder - allgemein ausgedrückt - die Vernetzung mit räumlich betrachtet entfernten

Systemen. Sprich ein Smarthome ist keine Inselanwendung, die sich auf das jeweilige Gebäude

beschränkt. (vgl. [Sma16])
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2. Grundlagen und verwandte Arbeiten

2.2. Querschnittlähmung

Dieses Unterkapitel beschreibt zunächst den Aufbau der Wirbelsäule. Aufbauend darauf führt

es in die unterschiedlichen Formen einer Querschnittlähmung und geht abschließend noch auf

die Fallzahlen ein.

2.2.1. Aufbau der Wirbelsäule

Die Wirbelsäule besteht aus insgesamt 33 Wirbeln. Sie unterteilt sich ausgehend von oben

in die Hals-, die Brust- und die Lendenwirbelsäule sowie 5 Kreuzwirbeln und das Steißbein,

bestehend aus 4 Steißwirbeln. Die Halswirbelsäule setzt sich aus 7 Wirbeln zusammen, welche

als C1-C7 bezeichnet werden. Die anschließende Brustwirbelsäule besitzt die 12 Wirbel T1-T12.

Die Lendenwirbelsäule besteht aus den 5 Wirbeln L1-L5. Die nach ihr folgenden 5 Kreuzwirbel

tragen die Bezeichnungen S1-S5. (vgl. [NW11, S. 158])

Die einzelnen Wirbel schützen das Rückenmark, welches in ihnen verläuft. Sie bilden den

Spinalkanal. Entlang derWirbelsäule treten 31 Nervenpaare aus. Nervenpaare deshalb, da unter

jedem Wirbelbogen jeweils ein Nerv zur linken sowie einer zu rechten Seite den Spinalkanal

verlässt. Im Detail setzen sich die 31 Nervenpaare aus 8 zervikalen, welche die Halswirbelsäule

verlassen, 12 thorakalen zur Brustwirbelsäule gehörenden, jeweils 5 lumbalen und sakralen

Nervenpaaren die zur Lendenwirbelsäule beziehungsweise den Kreuzwirbeln gehören sowie

einem kokzygealen Nervenpaar des Steißbeins zusammen. (vgl. [NW11, S. 159])

Grundsätzlich haben die Nervenpaare jeweils dieselbe Bezeichnung wie der Wirbel, unter

dem sie den Spinalkanal verlassen. Da das Hinterhaupt jedoch auch noch als Halswirbel gilt,

aber als C0 gezählt wird, verlassen die zervikalen Nervenpaare C1-C8 den Spinalkanal jeweils

oberhalb der gleichnamigen Wirbel. Das 31. Nervenpaar von oben betrachtet verlässt den

Rückenmarkskanal auf Höhe des Steißbeins und besizt die Bezeichnung kokzygealer Nerv.

(vgl. [NW11, S. 158-159] u. [Org13, S. 5])

Die Abbildung 2.1 veranschaulicht den beschriebenen Aufbau der Wirbelsäule. Die grauweißen

Elemente stellen die Wirbelkörper dar und beinhalten ihre Bezeichnung. Die roten Linien

zwischen ihnen sind die Nervenpaare. Ihre Bezeichnung befindet sich jeweils am rechten

Linienende. Am linken Rand der Abbildung befinden sich die Bezeichnungen für die Wirbel-

säulenabschnitte und am rechten jene zur Gruppierung der Nervenpaare.

2.2.2. Formen der Querschnittlähmung

Es gibt unterschiedliche Formen der Querschnittlähmungen. Bei der kompletten Querschnitt-

lähmung ist unterhalb der Verletzungshöhe keine Nervenfunktion mehr vorhanden. Die Betrof-

fene Person hat in Folge dessen von dieser Stelle abwärts keine sensorischen und motorischen
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Abbildung 2.1.: Aufbau der Wirbelsäule in Anlehnung an [Org13, S. 5].
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Fähigkeiten mehr. Eine komplette Querschnittlähmung wird auch als Querschnittsplegie be-

zeichnet. Eine inkomplette Querschnittlähmung, beziehungsweise Querschnittsparese liegt vor,

wenn unterhalb der Verletzungshöhe noch eine Restfunktion vorhanden ist. Zusätzlich findet

eine Unterscheidung durch die Verletzungshöhe statt. Sind die Nervenpaare C1 bis T1 von

dieser betroffen beziehungsweise die oberen Extremitäten in Folge dessen eingeschränkt, ist

die Rede von einer Tetraplegie beziehungsweise bei einer inkompletten Querschnittlähmung

von Tetraparese. Kommt es zur einer Verletzung der Nervenpaare T2-S5, wird diese Form der

Querschnittlähmung Paraplegie beziehungsweise Paraparese genannt. (vgl. [AA14])

Aus dem vorherigen Absatz lässt sich schlussfolgern, dass die Auswirkungen einer Querschnitt-

lähmung grundsätzlich von der Verletzungshöhe des Rückenmarks abhängig ist (vgl. [Org13,

S. 6]). Die folgende Auflistung bietet einen groben Überblick über diese in Abhängigkeit von

den Nervenpaaren. Dabei gilt, dass zu den jeweiligen Auswirkungen noch jene hinzu kommen,

welche bei einer Verletzung eines weiter unten liegenden Nervenpaares auftreten.

• Bei einer Verletzung der sakralen Nervenpaare S2-S5 kommt es zu Beeinträchtigungen

beim Stuhlgang, der Blasenfunktion sowie der sexuellen Funktionalität. (vgl. [Org13, S.

5-6])

• Wenn die Nervenpaare L1-S1 der Lendenwirbelsäule verletzt sind, ist hierdurch die

Beweglichkeit und das Empfingen von der Hüfte abwärts eingeschränkt oder nicht mehr

gegeben. (vgl. [Org13, S. 5-6])

• Eine Verletzung der thorakalen Nervenpaare T1-T12 beeinträchtigt die Kontrolle des

Rumpfes und der Bauchmuskeln sowie das Gefühl in dieser Körperregion. Des Weiteren

sind diese Nerven für die Regulierung der Körpertemperatur verantwortlich. (vgl. [Org13,

S. 5-6])

• Die Nervenpaare C4-T1 dienen zur Regulierung der Herzfrequenz sowie der Beweglich-

keit der Oberarme. Im Detail betrachtet, wirkt sich eine Verletzung von C8 oder T1 auf

die Sensorik und Motorik der Finger aus. Ist eines der Nervenpaare C5-C7 verletzt, sind

hiervon die Abschnitte der Arme zwischen Ellbogen und Handgelenk betroffen. (vgl.

[Org13, S. 5-6])

• Die zervikalen Nervenpaare C1-C4 sind für die Atmung sowie die Bewegung von Kopf

und Nacken zuständig, welche durch eine Verletzung beeinträchtigt werden. (vgl. [Org13,

S. 5-6])

Die Ursachen für eine Querschnittlähmung sind entweder traumatische oder nichttraumatische

Ereignisse. Erstere können aus diversen Arten von Unfällen resultieren. Zweitere hingegen

sind die Folge von Krankheiten - unter anderem Infektionen und Tumore - sowie angeborene

Behinderungen. (vgl. [Org13, S. 6])
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2.2.3. Verbreitung

Laut einem Bericht der Weltgesundheitsorganisation aus dem Jahr 2013 erleiden jährlich

weltweit zwischen 250000 und 500000 Menschen eine Querschnittlähmung. Wie viele quer-

schnittgelähmte Menschen auf der Welt zum Zeitpunkt der Erstellung selbigen Berichts lebten,

ist laut diesem unbekannt. (vgl. [Org13, S. 14-15])

Wyndaele et al. [WW06] versuchten in ihrer 2006 veröffentlichten Arbeit anhand von Literatur,

die bis in das Jahr 1995 zurückreichte sowie älteren Studien einen Überblick über die weltweite

Verbreitung von Querschnittlähmungen zu geben. Eines der Ergebnisse davon war, dass es

sich bei einem Drittel der gemeldeten Querschnittlähmungen um eine Tetraplegie handelte.

Ihre Daten waren allerdings nicht ausreichend für eine weltweite Schätzung. (vgl. [WW06])

Bezogen auf Deutschland kann von ungefähr 1000 neuen Querschnittlähmungen pro Jahr

ausgegangen werden. Ahne et al. [AA14] nennen in einem im Jahr 2014 veröffentlichten

Artikel die Zahl 1300 bis 1500 (vgl. [AA14]). Spahn spricht hingegen von ca. 1000 neuen

Querschnittlähmungen pro Jahr in Deutschland und, dass davon 40% tetraplegische Fälle sind

(vgl. [Spa91, S. 206]). Allerdings wurde das entsprechende Buch schon 1991 veröffentlicht, was

bedeutet, dass seine Zahlen mindestens 25 Jahre alt sind (vgl. [Spa91, S. 206]).

Exner kommt auf ähnliche Fallzahlen sowie einen ähnlichen Anteil an Tetraplegikern für

Deutschland. Zwischen 1976 und 2003 hatten sie einen Anteil von 37% bei den in diesem

Zeitraum 33974 behandelten Fällen in deutschen Spezialeinrichtungen zur Behandlung Quer-

schnittgelähmter. Der Tetraplegikeranteil hat sich in den Jahren 1996 bis 2003 zudem nur um

2% reduziert, weshalb Exner zu der Schlussfolgerung kommt, dass das Verhältnis zwischen

Tetraplegikern und Paraplegikern auch zukünftig konstant bleibt. (vgl. [Exn04])

Nach Angaben des statistischen Bundesamtes lebten am 31.12.2013 in Deutschland 17031

Menschen, deren schwerste Behinderung eine Querschnittlähmung ist. Eine Unterscheidung

zwischen der Verletzungshöhen nimmt es nicht vor. Jedoch geht aus deren Bericht hervor, dass

zusätzlich zu diesen in Deutschland noch 22099 Menschen mit Funktionseinschränkungen an

beiden Armen sowie 94096 an beiden Armen und Beinen in Deutschland lebten. Des Weiteren

waren 493217 Personen von Funktionseinschränkungen an der Wirbelsäule als auch den

Gliedmaßen betroffen. Um welche es sich dabei handelte, geht aus den Zahlen nicht hervor.

(vgl. [Sta16])

2.3. Bedienungshilfen in Android

Das Betriebssystem Android bietet schon für bestimmte Benutzergruppen barrierefreie oder

zumindest barrierearme Bedienungshilfen (vgl. [Goo16k]). Die folgende Auflistung zählt diese

für Android 7.0 auf (vgl. [Goo16k]):
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• TalkBack ist eine Sprachausgabe für die auf der Benutzeroberfläche dargestellten Inhalte.

Des Weiteren gibt es akkustisches Feedback zu Benutzereingaben. TalkBack zielt somit

darauf ab, die Bedienung für sehbehinderte und blinde Menschen zu erleichtern. (vgl.

[Goo16k])

• Außerdem unterstützt Android eine aktualisierbare Braillezeile. Diese ist zudem in

Kombination mit TalkBack verwendbar. Dadurch ist sowohl eine Interaktion mit dem

Android-Gerät als auch Texteditierung gewährleistet. (vgl. [Goo16k])

• Die App Voice Access, die sich zum Zeitpunkt der Erstellung dieser Arbeit noch in der

Betaphase befindet, soll das Betriebssystem dem Benutzer via Sprachbefehlen zugänglich

machen. Mittels diesen ist es möglich, innerhalb von Android und den installierten Apps,

zu navigieren und Texteingaben vorzunehmen. Die Sprachsteuerung soll Benutzern,

welche ihre Hände nicht mehr zur Bedienung nutzen können, diese ermöglichen. (vgl.

[Goo16k])

• Benutzer, die Schwierigkeiten bei der Wahrnehmung der Inhalte haben, finden ebenfalls

Unterstützung. Es ist möglich Untertitel zu aktivieren, die Kontrast- und Farbeinstel-

lungen anzupassen sowie die Schrift zu vergrößern. Darüber hinaus ist noch eine Art

Lupenfunktion vorhanden. (vgl. [Goo16k])

• Ab Android 5.0 ermöglicht es der Schalterzugriff den Benutzern, welche ihre Hände nur

noch eingeschränkt benutzen können, beispielsweise Tetraplegikern mit einer tiefen

Verletzungshöhe im Bereich der Halswirbelsäule, mittels Eingabegeräten, welche Tas-

tatursignale senden, die sichtbaren Menüelemente zu scannen und auszuwählen. Bei

den Eingabegeräten kann es sich um eine herkömmliche Maus und Tastatur, Hilfsmittel-

Hardware oder Tasten des Android-Geräts handeln. Zwischen 1 und 5 Tasten sind mit

Funktionen belegbar. Dies ist bei der Gruppenauswahl nützlich, da es je Taster eine

Gruppe gibt und sich dadurch die Auswahl des gewünschten Elements beschleunigt.

Neben der Gruppenauswahl gibt es noch das automatiche Scannen mit 1 Taster, welches

alle Elemente der Reihe nach fokussiert und bei Betätigung des Tasters das fokussierte

auswählt. Das Scannen ist aber auch schrittweie möglich, wenn 2 Taster verfügbar sind.

Jeweils einer ist dann für den Fortschritt und die Betätigung des fokussierten Elements

zuständig. Des Weiteren lassen sich noch spezielle Menüs auswählen, mit deren Hilfe

derer weitere Eingaben, wie zum Beispiel das Scrollen, möglich sind. (vgl. [Goo16k],

[Goo16g], [Goo16h] u. (vgl. [Goo16j]))

2.4. Verwandte Arbeiten

Aus den zurückliegenden Jahren existiert eine Reihe von Arbeiten, welche sich mit barriere-

freien Eingabemethoden für Tetraplegiker sowie vergleichbare Benutzergruppen befassen.
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Caltenco et al. führten eine Befragungen von Tetraplegikern zu deren Nutzungsverhalten im

Hinblick auf Eingabegeräte und den damit verbundenen Erfahrungen durch. Hierbei zeigte

sich, dass die genutzten Eingabemethoden in erster Linie auf die Einbindung des Benutzers

seiner Hände verzichten. Diejenigen Benutzer, die noch händische motorische Fähigkeiten

besitzen, gaben an Joysticks oder Handsticks in Kombination mit einer Tastatur zu verwenden.

Hinsichtlich der Eigenschaften von den verwendeten Eingabemethode ergab die Befragung,

dass die Geschwindigkeit von Blick-Trackern, Mund-Joysticks sowie Tastatursticks befriedi-

gend ist, jene von den Mundsticks allerdings nicht. Zu den Blick-Trackern ist das Ergebnis

insofern zwiespältig, als dass er einerseits als diskrete und andererseits als unzuverlässige

Eingabemethode bewertet wurde. Darüber hinaus sei die Fehlerkorrektur schwierig. Bei den

meisten anderen Eingabemethoden hingegen nicht. Auch seien diese zuverlässiger. Dafür

haben die Sprachsteuerung sowie über das Kinn bediente Joysticks das Problem, dass sie nicht

diskret sind. (vgl. [CBJA12])

Aufgrund der zuvor genannten Ergebnisse der Befragung findet als nächstes eine Betrach-

tung bisheriger Forschungsarbeiten zu barrierefreien Eingabemethoden statt, welche keine

motorischen Fähigkeiten in den Händen erfordern.

Williams et al. testeten zwei barrierefreie Eingabemethoden für Tetraplegiker beziehungsweise

Benutzer mit vergleichbaren Einschränkungen als Alternative zur Cursor-Steuerung mittels

einer Maus. Dabei handelte es sich zum einen um einen am Kopf des Benutzers befestigten

Lagesensors und zum anderen um eine Elektromyografie von 3 Muskeln im Hals- und Kopf-

bereich. Über Letztere war eine Steuerung des Cursors ähnlich zu einem Joystik möglich.

Für die Tests nutzten sie unversehrte Probanden. Messungen erfolgten quantitativ. Als dritte

Eingabemethode testeten sie eine herkömmliche Maus. Bei der unter anderem durchgeführten

Bandbreitenmessung der 3 Eingabemethoden zeigte sich, dass die Maus die beiden anderen

um ca. das Fünffache übertrifft. Der Lagesensor wies eine etwas bessere Bandbreite als die

Elektromyografie auf. Zudem stellte Ersterer vom Benutzungserlebnis aus betrachtet den

besten Mausersatz. Die Elektromyografie hingegen war schneller, aber erreichte nicht die selbe

Präzision wie der Lagesensor. (vgl. [WK08])

Chen entwickelte eine Mausalternative in Form eines Headsets zur Steuerung des Cursors.

Hierfür besitzt dieses 2 Neigungssensoren, welche die Bewegungen des Kopfes erkennen

und den Cursor, entsprechend horizontal und vertikal bewegen. Über einen Touch-Switch

an der Backe kann der Benutzer einen Mausklick durchführen, indem er diese aufbläst. Eine

Evaluierung fand mit versehrten sowie unversehrten Probanden statt. Es kam zu keinen

erheblichen Abweichungen zwischen diesen beiden Gruppen. Ein Vergleich mit anderen

Eingabemethoden fand leider nicht statt. (vgl. [Che01])

Grigorescu et al. entwickelten einen Roboterassistenten für Menschen mit Mobilitätseinschrän-

kungen an den Armen, der sich beispielsweise in Form eines künstlichen Arms an einem

Rollstuhl befestigen lässt. Für die Steuerung setzten sie eine nichtinvasive Kopf-Computer-

Schnittstelle ein. Die Nichtinvasivität erreichten sie durch 5 in jeweils unterschiedlichen

Frequenzen blickende LEDs, die über einen Displayrand verteilt waren. Fokussiert der Be-

nutzer eine von ihnen, findet im Gehirn eine visuelle Stimulation statt, welche sogenannte
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Steady State Visually Evoked Potentials Signale auslöst. Diese unterscheiden sich in Folge der

verschiedenen Blinkfrequenzen voneinander und sind mittels Elektroenzephalografie messbar.

Wenn der Benutzer 1 von den 5 LEDs fokussiert, entspricht dies der Betätigung einer der 4

Pfeiltasten oder der Eingabetaste. Damit ist es möglich, einen Cursor zu steuern und Elemente

auszuwählen. (vgl. [GLF+12])

Jeong et al. konstruierten eine Maussteuerung für Tetraplegiker, über das Zusammenbei-

ßen der Zähne in Kombination mit einem kleinen am Kopf des Benutzers befestigten

Elektromyographie-Geräts. Beim Zähnezusammenbeißen wird unterschieden, ob dieser nur

die linken beziehungsweise rechten oder alle zusammenbeißt. Des Weiteren wird zwischen

der Dauer unterschieden. Dadurch ist es möglich, den Mauszeiger um seine eigene Achse zu

drehen, ihn in die Richtung zu bewegen, in die er zeigt sowie die linke und rechte Maustaste

zu betätigen. Bei einem Test mit lediglich einem Probanden stellte sich heraus, dass dieser

im Vergleich zu einer herkömmlichen Maus, für die selben Aufgaben im Durchschnitt ca. die

siebenfache Zeit benötigte. (vgl. [JKS05])

Kauhanen et al. fanden in ihrer Studie heraus, dass die Elektroenzephalografie im Vergleich

zur Magnetoenzephalographie für eine Kopf-Computer-Schnittstelle besser geeignet ist. Einer

der Gründe hierfür ist, dass sie weniger anfällig für magnetisches Rauschen ist. Die Magneto-

enzephalographie hätte jedoch den Vorteile, dass sich seine Signale einfacher interpretieren

lassen. (vgl. [KNL+06])

Jedoch scheint auch die Elektroenzephalografie nicht bedingungslos geeignet zu sein. Denn

Felzer et al. hatten die Motivation eine muskelbasierte Steuerung der Maus für Personen zu

entwickeln, die ohne Elektroenzephalografie möglich ist. Ihr Ansatz nutzt die Erkennung einer

einzelnen sowie doppelten Kontraktion eines Muskels mittels eines auf ihm angebrachten

Sensors, wodurch es weniger Probleme mit Rauschen im Vergleich zur Elektromyografie

gibt. Die Verarbeitung der beiden Eingabesignale übernimmt ein endlicher Automat. Durch

geschickte Anordnung der Zustände und Übergänge in diesem, gelang es ihnen dadurch,

den Mauszeiger in alle 4 Richtungen bewegen sowie 2 verschiedene Mausklicks umsetzen

zu können. In einer ersten Studie untersuchten sie, ob potenzielle Benutzer in der Lage sind,

das Eingabekonzept zu verstehen. Die Probanden, welche trotz ihrer Einschränkungen das

System bedienen konnten, benötigten zwischen 5 und 15 Minuten, bis sie es eigenständig

nutzen konnten. (vgl. [FN08])

Lund et al. zeigten in ihrer Arbeit, wie Betroffene ohne den Einsatz ihrer Hände, sondern ledig-

lich ihrer Zunge mittels Ferromagnetismus Eingaben vornehmen können. Dazu entwickelten

sie eine zungenbasierte Rollstuhlsteuerung. Sie besteht aus einer Art SZahnspange", welche

18 Sensoren besitzt. 10 in Form von Tasten und 8 als Joystick. Über ein ferromagnetisches

Piercing in der Zunge kann sie der Benutzer ansprechen. Die Eingabebefehle werden drahtlos

an eine externe Steuereinheit gesendet, welche diese nutzt, um den eigentlichen Joystick des

Rollstuhls zu simulieren. (vgl. [LCC+10])

Bian et al. entwickelten eine Maussteuerung anhand der Nasenposition. Des Weiteren nutzten

sie den Mund des Benutzers für Gesten. Die Gesten wurde dazu genutzt, um einen Mausklick
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zu tätigen oder die Bewegung des Cursors ein- bzw. auszuschalten. Letzteres hat den Vorteil,

dass der Bewegungsspielraum der Nase nicht auf die komplette Benutzeroberfläche abgebildet

werden muss, sondern der Benutzer nach dem Ausschalten der Cursorbewegung zunächst

seine Nase wieder in eine angenehme Position bringen kann, um danach die Cursorbewegung

wieder einzuschalten und diesen weiter in Richtung Ziel bewegen zu können. Ein weiterer

Vorteil hiervon ist, dass keine Kalibrierung notwendig ist. Die Verwendung einer Tiefenkamera

hatte den Vorteil, dass sie unabhängig von den Lichtverhältnissen ist, im Gegensatz zu einer

RGB Kamera. Bei einem Leistungstest zeigte sich, dass je nach verwendeter Mundgeste zur

Ausführung des Mausklicks, die Probanden ungefähr doppelt so lange für die Testaufgaben

benötigten, wie mit einer herkömmlichen Maus. (vgl. [BHCM14])

Aus Abschnitt 2.2.2 geht hervor, dass bei einer niedrigeren Verletzungshöhe, die Tetraplegie

nicht ganz so gravierend ist, wodurch die Betroffenen in manchen Fällen noch eingeschränkte

motorische Fähigkeiten besitzen. Aus diesem Grund gibt es neben den zuvor aufgeführten

handlosen Eingabemethoden Ansätze, die verbliebenen motorischen Fähigkeiten bestmöglich

zu nutzen.

Ueno entwickelte dazu eine Benutzerschnittstelle bestehend aus 2 Tastern zur Steuerung des

Mauscursors auf einem Smartphone. Mit einem der beiden Taster kann der Benutzer zwischen

8 Modi wechseln und mit dem zweiten innerhalb von diesen eine Aktion ausführen. Über LEDs

erhält der Benutzer unter anderem Feedback zu den ausgewählten Modi. In einem Modus ist

beispielsweise die Bewegung des Mauscursors steuerbar. Die Aktion dieses Modus ist, dass der

Mauszeiger die Richtung jeweils um 90 Grad im Uhrzeigersinn ändert. Die 7 anderen Modi

gibt es unter anderem um eine Maustaste zu betätigen. (vgl. [Uen14])

Tanimoto et al. konstruierten eine Maus für Tetraplegiker mit einer Querschnittlähmung

im unteren Halswirbelbereich. Dadurch, dass sie noch ihre Schultern und Arme bewegen

können, ist für sie beispielsweise die Benutzung einer Ballmaus möglich. Jedoch benötigen sie

dafür zum Teil beide Hände oder sind beim Bewegen des Eingabegerät in Kombination mit

Klickoperationen langsam. Um die Eingabegeschwindigkeit zu erhöhen, kombinierten sie eine

Switch-Box mit einem optischen Maussensor. Über erstere führt der Benutzer mit einer Hand

die Mausklicks aus. Zweitere erkennt die Bewegung des Benutzers zweiter Hand, worüber sich

der Cursor bewegen lässt. (vgl. [TRF+05])

Für manche Benutzer mit eingeschränkten motorischen Fähigkeiten an den Händen ist es

trotzdem möglich, ein Touchdisplay als Benutzerschnittstelle zu verwenden.

Um sie dabei unterstützen zu können evaluierten Froehlich et al. 5 verschiedene Interaktions-

konzepte an Touchdisplays mit einer erhöhten Umrandung. Diese erleichtert die Auswahl von

Menüelemente an den Rändern und Ecken mittels eines Stylus, da ihn diese abbremsen. Eines

der Interaktionskonzepte war eine normale Touch-Eingabe. Die anderen 4 waren speziell auf

die Umrandung ausgelegt. Bei der statistischen Auswertung, konnte keines hervorstechen. Es

zeigte sich jedoch, dass 2 der versehrten Probanden von einem Interaktionskonzept besonders

profitierten. Bei diesem befinden sich die Buttons jeweils in den Display-Ecken. Ihre Betäti-

gung erfolgt, indem der Benutzer mit dem Stylus auf dem Touchdisplay in die entsprechende
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Ecke wischt und ihn danach anhebt. Diese Verfahren war deshalb so erfolgreich, da die Hand

während der Eingabe sowohl vom Touchdisplay als auch der Ecke stabilisiert wird. Auch sind

Fehlerkorrekturen durch Ändern der Richtung einfach möglich. (vgl. [FWK07])

Guerreiro et al. untersuchten in ihrer Studie unterschiedliche Eingabemethoden für Tetra-

plegiker an einem mobilen Touchgerät. Schwerpunkt war die Bestimmung der Zielgröße

sowie -position auf dem Display. Bei den Eingabemethoden handelte es sich um die klassi-

sche Touch-Eingabe sowie die Gesten Ziel durchwischen, ausschneiden sowie wischen in

eine bestimmte Richtung. Bei dem Ziel handelte es sich um einen Kreis mit wahlweise 7, 12

und 17mm Durchmesser. Die Studie kommt zu dem Ergebnis, dass für Tetraplegiker bei allen

Eingabemethoden bis auf das Ausschneiden eine Zielgröße von 12mm ausreichend ist. Für

Letztere sind 17mm erforderlich. Nichtsdestotrotz war die Fehlerrate mehr als doppelt so

hoch, wie in vergleichbaren Studien mit unversehrten Probanden. Die Zielposition auf dem

Display hatte keine Auswirkungen auf die Fehlerhäufigkeit. Jedoch bietet die Displayumran-

dung Stabilität, welche die Genauigkeit positiv beeinflusst. Das klassische Touch sowie das

Durchwischen des Ziels waren am erfolgreichsten. Die Mehrheit der Probanden würde Ersteres

bevorzugen. Zusammenfassend betrachtet, kamen Guerreiro et al. zu der Schlussfolgerung,

dass eine gemeinsame touchbasierte Benutzerschnittstelle für unversehrte Benutzer und jenen

mit motorischen Einschränkungen an den Händen entwickelbar ist. Des Weiteren können

Tetraplegiker mittels herkömmlichen Touch Ziele am unteren Displayrand sowie in der Nähe

ihres bevorzugten Arms leichter auswählen. Einen erheblichen Einfluss hat zudem die Position

des Displays. (vgl. [GNJG10a] u. [GNJG10b])

Da das Eye-Tracking und Blickgesten jedoch nicht nur von Tetraplegikern sowie ähnlich

eingeschränkten Benutzern verwendet wird, gibt es eine Reihe von Arbeiten, die sich mit

diesen Eingabemethoden ohne den Kontext Barrierefreiheit beschäftigen und dennoch für die

Herstellung von dieser hilfreich sein können.

Lee et al. entwickelten in 2012 einen Eye-Tracker für ein Smartphone. Hierfür befestigten sie

eine Webcam mit Zoomlinse und 3 Infrarot LEDs an diesem. Dies war nötig, da die damals

übliche VGA-Auflösung nicht ausreichend war. Des Weiteren erfolgte die Bildverarbeitung

nicht auf dem Smartphone sondern einem Computer. Zusätzlich zur Blickverfolgung konnten

sie unter anderem auch eine Blinzelerkennung umsetzen. In der Studie erreichten die Probanden

mit dem Eye-Tracker auf einer Benutzeroberfläche des Smartphones mit 5x4 Feldern zudem

eine Trefferquote von 94,6%. (vgl. [EM13])

Drewes et al. analysierten in einer Benutzerstudie, wie sich Eye-Tracking zur Bedienung von

Mobiltelefonen nutzen lässt. Diese stellen im Vergleich zum Eye-Tracking an Computern eine

Herausforderung hinsichtlich der Lichtintensität sowie Kalibrierungsproblemen. Aus diesem

Grund testen sie neben dem klassischen Eye-Tracking mit Auswahl durch Verweilen auch

ein Verfahren, welches lediglich aus Blickgesten Eingabebefehle ableitete. Da hierfür nur die

relativen Koordinaten erforderlich sind, ist eine Kalibrierung nicht erforderlich. Des Weiteren

ist der Gestenansatz hardwareressourcenschonender. In der Benutzerstudie hatte keiner der

Probanden größere Schwierigkeiten bei der Nutzung der Blick-Gesten. Jedoch gab die Mehrheit
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von ihnen an, das klassische Eye-Tracking zu bevorzugen. Dies erfolgte über eine externe

Kamera ebenso fand die Verarbeitung nicht auf dem Mobiltelefon statt. (vgl. [DLS07])

Hingegen schlagen Dybdal et al. basierend auf den Ergebnissen ihrer Studie vor, dass Gesten

die geeignetste Auswahlart für berührungslose Eingaben auf kleinen Bildschirmen sind. In

dieser analysierten sie, ob Verweilen oder eine Geste zur Auswahl auf einem mobilen Endgerät

geeigneter ist. Hierzu testeten sie beide mittels Touch, Gaze-Tracking sowie dem Accelero-

meter. Zweiteres erfolgte über eine externe Kamera und Computer. Touch war bei beiden

Auswahlarten am schnellsten und fehlerarmsten. Beim Gaze-Tracking war die Geste hingegen

das bessere Auswahlverfahren, insbesondere bei kleinen Zielen. Zu berücksichtigen ist, dass

die Probanden Gesten anstrengender empfanden. (vgl. [DAH12])

Kangas et al. fanden in einer Benutzerstudie heraus, dass sich Blickgesten auf mobilen Endge-

räten mittels vibrotaktilen Feedback als Eingabebestätigung verbessern lassen. Hierzu nutzten

sie einen Gaze-Tracker. Die Gestenerkennung erfolgte auf einem Computer, welcher diese

anschließend an ein Smartphone weiterleitete. Aus der Befragung der Probanden ging hervor,

dass die Testaufgaben durch das vibrotaktile Feedback einfacher und komfortabler zu lösen

waren, als ohne. Die Auswertung der Testergebnisse ergab zusätzlich, dass ohne Feedback bis

zu 15% mehr Blickgesten erforderlich waren. (vgl. [KAR+14])

Agustin et al. zeigten in ihrer Studie, dass ein guter Eye-Tracker nicht teuer sein muss. Dazu

verglichen sie einen mit einer 20$ Webcam, mit eingebauten Infrarot-LEDs selbstgebauten

Eye-Tracker mit 2 kommerziellen sowie einer optischen Maus. Der Vergleich erfolgte via

Eye-Typing und Zielauswahl. In Ersterem erzielten alle 4 Eingabegeräte nahezu die selben

Werte. Bei der Zielauswahl hingegen, erreichte der selbstgebaute Eye-Tracker den höchsten

Durchsatz. (vgl. [SSHH09])

Bulbul et al. entwickelten einen Face-Tracking Algorithmus, der mit den Einschränkungen

von mobilen Geräten zurechtkam. Als Interaktionsbeispiel entwickelten sie unter anderem

eine Anwendung, die es ermöglichte mittels Kopfbewegungen durch ein Bild zu scrollen. (vgl.

[BCC])

Die zuvor genannten Arbeiten nutzten größtenteils zusätzlich Hardware, um eine barrierefreie

Eingabemethode für Tetraplegiker anzubieten. Ähnlich verhält es sich bei den beschriebenen

Studien zum Eye- und Face-Tracking. Diese nutzten oftmals externe Kameras bzw. Tracker.

Jedoch zeigten zum einen Augustin et al. mit ihrer Arbeit, dass ein leistungsfähiges Eye-

Tracking keine teure Kamera voraussetzt und Bulbul et al. veranschaulichten mit ihrem Face-

Tracking Algorithmus, dass sich dieses schon vor mehreren Jahren auf einem mobilen Endgerät

realisieren lies (vgl. [SSHH09] u. [BCC]). Aufbauend darauf wird in den folgenden Kapiteln

dieser Arbeit versucht, eine Anwendung zur Steuerung von einem barrierefreien Smarthome

für Tetraplegiker mittels Face-Tracking zu realisieren, welche auf einem mobilen Endgerät

lauffähig ist, auf zusätzliche Hardware verzichtet und damit den Ansatz mit den niedrigen

Kosten von Agustin et al. aufnimmt (vgl. [SSHH09]).
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3. Benutzungskontext-Analyse

Dieses Kapitel beschreibt zunächst die Interviews, die zur Ideenfindung sowie zur Unterstüt-

zung bei der Definition der Anforderungen, durchgeführt wurden. Im Anschluss daran erfolgt

diese für eine Anwendung zur Steuerung eines barrierefreien Smarthome für Menschen mit

Mobilitätseinschränkungen an ihren Händen.

3.1. Interviews

Interviews sind ein zentrales Element innerhalb von Forschungsprojekten und haben somit

einen erheblichen Einfluss auf den Erfolg oder auch das Scheitern eines solchen Projektes.

Besonders wichtig ist es, geeignete Interviewpartner auszuwählen sowie diese im weiteren

Verlauf richtig zu interviewen. (vgl. [KGM12, S. 83])

Folglich behandelt dieses Unterkapitel zunächst die Auswahl der Interviewpartner sowie die

Erstellung des Fragebogens für die Interviews. Des Weiteren berichtet es über deren Verlauf

und schließt mit ihrer Auswertung ab.

3.1.1. Auswahl der Interviewpartner

Die Auswahl der richtigen Interviewpartner ist wichtig, denn das Interviewen von Personen

ist nur zielführend, wenn diese auch der Zielgruppe des späteren Produktes, also dem bar-

rierefreien Smarthome für Menschen mit Mobilitätseinschränkungen im Bereich der Hände

angehören (vgl. [KGM12, S. 83]). Des Weiteren bietet es sich an, die ausgewählten Interview-

partner nicht nur in die Phase der Anforderungsdefinition mit einzubeziehen, sondern auch in

die Benutzbarkeitstests zu einem späteren Zeitpunkt, wodurch sich der Aufwand für die Suche

nach Probanden reduziert. Für die in Kapitel 6 beschriebenen Benutzbarkeitstests ist es wichtig,

Probanden zu haben, welche im Umgang mit vergleichbaren Anwendungen vertraut sind, um

evaluieren zu können, welche Vor- und Nachteile das barrierefreie Smarthome gegenüber

diesen besitzt (vgl. [KGM12, S. 85]). Aus den genannten Gründen wurden für die Interviews im

Hinblick auf die Benutzbarkeitstests Interviewpartner beziehungsweise Testpersonen gesucht,

welche ihre Hände nicht mehr benutzen können. Hierzu bot sich die Vorgehensweise von

Kuniavsky an, zunächst die Zielgruppe zu definieren, im Anschluss daran Probanden zu suchen,

welche dieser angehören und sie zur Teilnahme zu überzeugen (vgl. [KGM12, S. 84]).
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Definition der Zielgruppe
Die Zielgruppendefinition stellt sicher, dass sich ein Projekt beziehungsweise ein Produkt nicht

in die falsche Richtung entwickelt, indem es von Interviewpartnern beeinflusst wird, auf die

es gar nicht abzielt. Vermeiden lässt sich das durch eine präzise Definition der zukünftigen

Benutzer. Dies erfolgt idealerweise ausgehend von demographischen Rahmenbedingungen

sowie bisherigen Erfahrungen im Umgang mit ähnlichen Produkten und engt die Zielgruppe

darüber hinaus weiter ein. (vgl. [KGM12, S. 84-85])

Folgende Kriterien definierten die Zielgruppe für die Interviews:

• Volljährigkeit: Sie erleichtert die verwaltungstechnische Abwicklung bezüglich dem

Datenschutz.

• Tetraplegie im Bereich C1-T1, sodass die Hände nicht mehr zur Bedienung von elek-

tronischen Geräten benutzbar sind (vgl. [Org13, S. 5-6]). Es kommen jedoch genauso

Personen mit vergleichbaren motorischen Einschränkungen in Frage.

• Keine bis wenig geistige Einschränkungen, um möglicherweise daraus resultierende

Verständnisprobleme bei den späteren Benutzbarkeitstests ausschließen zu können. Des

Weiteren muss es möglich sein, im Zuge des Interviews ein Gespräch führen zu können.

• Eine grundsätzlich offene Einstellung gegenüber neuen Technologien, wie zum Beispiel

Smartphones und Tablets.

• Im Hinblick auf die Benutzbarkeitstests ist es von Vorteil, wenn die Person ihren Kopf

bewegen (insbesondere drehen) und mit den Augen blinzeln kann. Da die Nervenpaare

im Bereich C1-C4 für die Kopfbewegungen verantwortlich sind, sollte die Verletzung bei

den Probanden wiederum auch nicht zu hoch sein (vgl. [Org13, S. 5]).

Ursprünglich war es geplant, dass die Zielgruppe des barrierefreien Smarthomes Tetraple-

giker sind, die ihren Kopf noch bewegen können. Im Rahmen der im nächsten Abschnitt

beschriebenen Suche nach geeigneten Interviewpartnern stellte sich jedoch heraus, dass viele

Personen zwar ihre Hände nicht mehr hinreichen nutzen können, aber nach medizinischen

Kriterien keine Querschnittlähmung haben. Stattdessen sind ihre Einschränkungen auf andere

Krankheiten und / oder Verletzungen zurück zu führen. Aus diesem Grund ist in der Definition

der Zielgruppe nicht ausschließlich von vom Hals ab Querschnittgelähmten die Rede, sondern

zusätzlich auch von jenen, die ihre Hände nicht mehr benutzen können.

Suche nach den Interviewteilnehmer
Obwohl mehrere Einrichtungen angefragt wurden, gestaltete sich die Suche zunächst schwie-

rig. Zum einen antworteten nicht alle Angefragten und zum anderen hatten auch nicht alle

solche Personen in ihren Einrichtungen / Verbänden, welche die Kriterien der Zielgruppen-

definition erfüllten. Letztendlich fanden sich 5 Personen, die im Groben die Kriterien der

Zielgruppendefinition erfüllten und bereit zur Teilnahme an einem Interview waren.

28



3.1. Interviews

Da die 5 Interviewpartner die Kriterien der Zielgruppendefinition nur bedingt erfüllten, war

eine Lockerung von diesen notwendig. Der Grund ist darauf zurückzuführen, dass nur 1 von

den 5 Personen ihre Hände aufgrund einer Querschnittlähmung vom Hals ab nicht mehr

benutzen kann. Bei den 4 anderen Personen und damit dem Großteil, ist jeweils bei 2 eine

Krankheit oder eine schwere Kopfverletzung in der Vergangenheit ursächlich. Bei letzterer

Ursache ist es so, dass durch die Schwere der Verletzung nicht nur Mobilitätseinschränkungen

sondern auch geistige Einschränkungen die Folge sind. Dies führte zu der Erkenntnis, dass

die Zielgruppe eines barrierefreien Smarthomes für Benutzer mit einer Querschnittlähmung

von Hals ab, eigentlich viel größer ist, da auch Menschen davon profitieren würden, die ihre

Hände aus anderen Gründen als einer Querschnittlähmung, nicht mehr benutzen können.

Des Weiteren war es sinnvoll, das ursprüngliche Kriterium „keine geistige Einschränkungen“

insoweit zu lockern, dass Interviews noch möglich sind, aber im Gegenzug nicht alle Inter-

viewpartnern auch für die zum späteren Zeitpunkt stattfindende Bandenbreitenmessung der

unterschiedlichen Eingabemethoden geeignet sind und für diese deshalb noch zusätzliche

Probanden gesucht werden müssen. Eine solche Aufsplittung in unterschiedliche Gruppen, um

sicherzustellen, dass es überhaupt potenzielle Interviewpartner beziehungsweise Testpersonen

gibt, empfiehlt auch Kuniavsky (vgl. [KGM12, S. 87]).

Kuniavsky empfiehlt zu dem, im Vorfeld der Interviews zunächst ein paar Basisinformationen

über die Interviewpartner mittels eines per E-Mail zugesandeten Fragebogens zu ermitteln (vgl.

[KGM12, S. 88]). Diesen Zwischenschritt hat der Autor ausgelassen, da er für die betroffenen

Personen einen zu hohen Aufwand dargestellt hätte. Stattdessen werden diese Informationen

am Anfang des im folgenden Unterkapitels beschriebenen Fragebogens erhoben.

Ebenfalls weggefallen ist das von Kuniavsky vorgeschlagene Screening zur Auswahl der von

der zur Verfügung stehenden Interviewpartnern am besten geeignetsten (vgl. [KGM12, S.

94-95]). Die Gründe hierfür waren, dass bei lediglich 5 Interviewpartnern eine engere Auswahl

wenig zielführend gewesen wäre und der Autor zudem davon ausgehen konnte, dass sie wegen

ihrer unmittelbaren Betroffenheit ausreichend motiviert sind.

3.1.2. Erstellung des Fragebogens für die Interviews

Der Fragebogen orientiert sich an der von Kuniavsky vorgeschlagenen Interviewstruktur,

welche verbildlicht mit der Form einer Sanduhr vergleichbar ist. Diese sieht vor, dass ein

Interview mit allgemeinen Fragen startet und im weiteren Verlauf die primäre Forschungsfrage

immer weiter konkretisiert. Abschließend folgen nochmals breiter aufgestellte Fragen, um

einen Überblick und eine Zusammenfassung zu erhalten. Im Detail handelt es sich dabei um

folgende 6 Phasen: Einleitung, Aufwärm-Phase, Allgemeine Fragen, Schwerpunkt-Fragen,

Rückblick sowie Abschluss. (vgl. [KGM12, S. 117-118])

Im Folgenden wird der Aufbau des Fragebogens anhand der 6 Phasen detaillierter beschrieben.

Der Fragebogen befindet sich zusätzlich im Anhang A.1 dieser Arbeit:
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• Einleitung:

Die Einleitung beinhaltet die Vorstellung des Interviewers. Des Weiteren soll sie sicher-

stellen, dass dieser neutral wahrgenommen wird. (vgl. [KGM12, S. 118]

Hierzu beinhaltet der Fragebogen zunächst einmal die Vorstellung des Autors und

Ablaufs. Darüber hinaus werden in dieser Phase auch die Formalitäten abgehandelt.

Dies umfasst die Unterzeichnung der Einverständniserklärung durch den jeweiligen

Interviewpartner sowie die Auszahlung der Aufwandsentschädigung an diesen.

• Aufwärm-Phase:

Die Aufwärm-Phase soll den Interviewpartner in die Situation des Interviewtwerdens

einführen und dessen Aufmerksamkeit auf das Themengebiet des Interviews lenken (vgl.

[KGM12, S. 118]). Als Einstieg wird in dieser Phase die noch ausstehende Ermittlung der

Basisinformationen gewählt. Bei diesen handelt es sich primär um demographische Daten

sowie der Frage, ob dieser schon einmal an einem Interview teilgenommen hat. Laut

Kuniavsky ist das wichtig zu wissen, da Personen, die schon einmal an einer Befragung

teilgenommen haben, dazu tendieren, die Untersuchung mittels ihren Antworten zu

unterstützen, was zu einer Verfälschung des Ergebnisses führen kann (vgl. [KGM12, S.

101]).

Im Anschluss daran bilden Fragen zu bisherigen Nutzung von elektronischen Geräten

den Übergang zum Thema Smarthome. Konkret geht es darum, welche Hardware und

Software der Interviewte bisher nutzt und wie intensiv er das tut. Auch geht der Fra-

gebogen in dieser Phase darauf ein, welche der verwendeten Geräte und Programme

speziell auf die Bedürfnisse der jeweiligen Behinderung(en) abgestimmt sind.

• Allgemeine Fragen:

Diese Phase lenkt den Fokus auf das eigentliche Thema des Interviews, also das Produkt

oder Forschungsprojekt zu dem der Interviewte befragt wird (vgl. [KGM12, S. 118]).

Der Fragebogen trägt dem Rechnung, indem er zunächst einmal das Hintergrundwissen

des Interviewpartners und seine Erfahrungen auf dem Gebiet der Smarthomes ermittelt.

Darüber hinaus führt er das Thema Barrierefreiheit mit sehr offen formulierten Fragen im

Bezug darauf, wie ein ideales Smarthome aus Sicht der interviewten Person auszusehen

hätte, ein.

• Schwerpunkt-Fragen:

Die Schwerpunkt-Fragen eines Interviews gehen im Detail auf das Produkt oder die

Idee ein, indem dem Interviewpartner Fragen zu einzelnen Aspekten, beispielsweise

Funktionalitäten, gestellt werden und er um seine eigene Einschätzung gebeten wird

(vgl. [KGM12, S. 118]).

Für die Interviews im Rahmen dieser Arbeit bedeutet dies, dass der Moderator in dieser

Phase Fragen zu der Bedienung sowie Hardware eines barrierefreien Smarthomes stellt.

Im Bereich der Bedienung geht es darum, festzustellen, ob es unter den Interviewpartnern

eine bevorzugte Eingabemethode gibt und was aus ihrer Sicht die Vor- und Nachteile
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einer Sprachsteuerung und des Face-Trackings sind. Darüber hinaus gibt es Fragen zu

der Menüführung. Bezüglich der Hardware konzentriert sich der Fragebogen auf das

Finden einer geeigneten Platzierung für das Tablet / Smartphone, das die Anwendung

zur Steuerung des barrierefreien Smarthomes ausführt sowie um die Displaygröße.

Weiterhin geht der Fragebogen in der Phase Schwerpunkt-Fragen auf den Aspekt der

Privatsphäre ein, um festzustellen, ob und wenn ja welche Bedenken die Interviewten bei

einem Smarthome im Allgemeinen sowie der Steuerung via Sprache oder Face-Tracking

haben, da hierfür das Mikrofon beziehungsweise die Kamera des aktiv sein müsste.

• Rückblick:

Während des Rückblicks soll der Interviewpartner das vorgestellte Produkt oder die Idee

im Kontext zu den Problemen die es beziehungsweise sie lösen soll bewerten. Dieser

Teil des Interviews beabsichtigt eine allgemeinere Bewertung durch den Interviewten,

die sich im Gegensatz zu der vorherigen Phase nicht mehr so sehr auf einzelne Aspekte

konzentriert. (vgl. [KGM12, S. 118])

Der Fragebogen nutzt diesen Abschnitt der Interviews, um den Interviewpartnern die

Möglichkeit zu geben, Themen anzusprechen, die ihrer Meinung nach wichtig, aber noch

nicht berücksichtigt sind. Zudem ermöglicht er es ihnen, Verbesserungsvorschläge sowie

mögliche Probleme zu nennen. Dem Autor erschien darüber hinaus diese Phase des

Interviews als am besten geeignet, um den interviewten Personen Fragen bezüglich ihrer

körperlichen Einschränkungen zu stellen. Dies war nötig um festzustellen, welche Einga-

bemöglichkeiten für das barrierefreie Smarthome geeignet sein könnten. Beispielsweise

ist es für die Entwicklung des Face-Trackings wichtig, dass der Benutzer seinen Kopf

bewegen und blinzeln kann. Als am besten geeignet erschien dieser Zeitpunkt deshalb,

da diese Fragen, die für den Interviewten womöglich unangenehm oder zumindest sehr

persönlich sind und nur erforderlich sein würden, wenn der Autor sie sich im bisherigen

Verlauf des Interviews nicht schon selbst durch Beobachtungen beantworten kann.

• Abschluss:

Diese Phase schließt das Interview ab. Sie sieht keine gesonderten Fragen vor. (vgl.

[KGM12, S. 118])

Der Fragebogen weicht hiervon nicht ab. Der Abschluss wird dazu genutzt, sich bei

dem Interviewpartner zu bedanken und um ihm einen Ausblick auf das weitere Vor-

gehen für die Erstellung dieser Arbeit zu geben. Letzteres soll auch dazu dienen, die

Interviewpartner zur Teilnahme an den Benutzbarkeitstests zu motivieren.

Unabhängig von den einzelnen Phasen wurde während der Vorbereitung der Interviews beim

Formulieren der Fragen darauf geachtet, dass diese sich jeweils nur auf ein Thema beziehen,

also im Endeffekt nicht nach 2 Sachverhalten fragen. Dies vereinfacht die Auswertung der

Interviews, da sich hierdurch die Antwort eindeutig auf eine Frage oder ein Thema bezieht

und auch garantiert ist, dass die Antwort vollständig ist. (vgl. [KGM12, S. 121])
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Genauso vermeidet der Fragebogen Fragen, die sich mit „Ja“ oder „Nein“ beantworten lassen.

Das hat den Vorteil, dass der Interviewte seine tatsächliche Meinung, welche womöglich

zwischen „Ja“ und „Nein“ liegt, nicht an eine von den 2 Antwortmöglichkeiten anpassen und

somit einen Kompromiss schließen muss (vgl. [KGM12, S. 122]).

Des Weiteren wird soweit möglich vermieden, dass der Interviewteilnehmer durch spätere

Fragen das Gefühl vermittelt bekommt, dass er eine vorherige Frage falsch beantwortet hat (vgl.

[KGM12, S. 121]). Dies ist nur deshalb bedingt möglich, da die Fragen – wie von Kuniavsky

empfohlen – wo immer möglich, offen formuliert sind, es also keine vorgegebene Auswahl an

Antworten gibt (vgl. [KGM12, S. 121]). Der Grund hierfür ist, dass die Interviewteilnehmer

beispielsweise zunächst gefragt werden, mittels welcher Eingabemethode sie das barrierefreie

Smarthome am liebsten bedienen würden, was eine offene Frage ist. Jedoch gibt es im Rahmen

dieser Arbeit auch hardwaretechnische, finanzielle sowie aus der Zielsetzung resultierende Ein-

schränkungen, weshalb nicht sämtliche theoretisch möglichen Eingabemethoden realisierbar

sind. In Folge dessen umfasst der Fragebogen im Anschluss an die offenen Fragen auch welche

zur Sprachsteuerung und dem Face-Tracking, was in gewisserweise dem ein oder anderen

Interviewten das Gefühlt vermitteln kann, die Frage nach der besten Eingabemethode falsch

beantwortet zu haben.

Die schon angesprochenen offenen Fragen haben den Vorteil, dass der Interviewteilnehmer

seine tatsächliche Meinung äußern kann (vgl. [KGM12, S. 121]). Hätte er nur die Wahl zwischen

vorgegebenen Antwortmöglichkeiten, würde er aus ihnen jene auswählen, die derjenigen am

nächsten kommt, die er eigentlich gerne geben würde (vgl. [KGM12, S. 121]). Exemplarisch

lässt sich das anhand der Frage nach dem Gerät, auf welchem die Anwendung für barrierefreie

Smarthome ausgeführt werden soll, verdeutlichen. Würde der Interviewpartner bei dieser

Frage nur gefragt, ob er ein Tablet oder Smartphone bevorzugt, könnte es passieren, dass das

von ihm favorisierte Gerät weder ein Smartphone noch ein Tablet ist, aber diese Information

verloren geht, da er sich für 1 von den 2 Antwortmöglichkeiten entscheiden muss.

Neben den offenen Fragen empfiehlt Kuniavsky auch Fragen mit einem offenen Ende (vgl.

[KGM12, S. 102]). Er empfiehlt diese für die Vorauswahl der Interviewteilnehmer, da sich

hierdurch deren Artikulierfähigkeit sehr gut bestimmbar ist (vgl. [KGM12, S. 102]). Da im

Rahmen dieser Arbeit keine Vorauswahl nötig und möglich war, hat es sich angeboten, im

Rahmen der Interviews zu erfassen, wie gut sich der jeweilige Teilnehmer artikulieren kann,

indem insbesondere in der Retrospective Phase Fragen gestellt wurden, die den Einstieg in

eine Diskussion ermöglichten. Für die Auswertung der Interviews sind die dadurch gewonnen

Erkenntnisse hilfreich, da sie eine Erklärung dafür sein können, warum es bei den offenen

Fragen teilweise schwierig war, ausführliche Antworten zu erhalten. Mit dieser Problematik

beschäftigt sich das folgende Unterkapitel welches den Verlauf der Interviews beschreibt, unter

anderem.
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3.1.3. Verlauf der Interviews

Die 5 Interviews fanden auf 2 Tage verteilt statt. Die Termine hierfür richteten sich nach den

Wünschen und zeitlichen Möglichkeiten der Interviewteilnehmer, so wie es auch Kuniavsky

vorschlägt (vgl. [KGM12, S. 104]). Jeder Interviewte erhielt eine Aufwandsentschädigung in

Höhe von 15€, was die Wertschätzung für die Mitarbeit zum Ausdruck bringen sollte (vgl.

[KGM12, S. 108]). Des Weiteren dient eine Aufwandsentschädigung auch zur Motivation

der Interviewpartner (vgl. [KGM12, S. 108]). Im vorliegenden Fall war die Motivation der

Teilnehmer schon alleine durch ihre unmittelbare Betroffenheit sehr hoch.

Während der Interviews achtete der Autor darauf, die Teilnehmer direkt anzusprechen, sprich

sie zum Beispiel zu fragen, wie für sie persönlich ein ideales Smarthome aussieht und nicht

allgemeiner, wie ein ideales Smarthome aussieht. Dies präzisiert die Fragen und beugt Miss-

verständnissen sowie in Folge dessen unzuverlässigen Antworten vor (vgl. [KGM12, S. 120]).

Zusätzlich wurden die Interviews, nach vorheriger Einverständniserklärung des Interviewten,

audiovisuell aufgezeichnet. Dies entlastete den Autor, da er weniger protokollieren musste und

ermöglichte es, das jeweilige Interview im Nachhinein besser auszuwerten und zu verhindern,

dass er Antworten aufgrund falscher Erinnerungen missinterpretiert.

Alle 5 Interviewteilnehmer waren sehr engagiert und haben sämtliche Fragen verstanden,

sprich es gab keine Frage, die aufgrund geistiger Probleme unbeantwortbar war. Lediglich bei

einem Probanden waren die Fragen ausführlicher und mehrmals zu erklären. Problematisch

hingegen sind die offenen Fragen und solche mit offenem Ende gewesen, bei welchen es um

Visionen ging beziehungsweise die eine Diskussion starten sollten. Beides konnten 3 der 5

Interviewteilnehmer nicht entwickeln. Die offenen Fragen, welche eigentlich den Vorteil haben,

dass die interviewte Person in ihrer Antwort nicht eingeschränkt und beeinflusst wird und

somit den besten Beitrag zu den Ergebnissen liefern sollten, bewirkten also tendenziell eher

das Gegenteil. Als Ursache hierfür vermutet der Autor unter anderem folgende Gründe:

• Ein Proband äußerte, dass er nichts Neues mehr brauche und es sich auch nicht kaufen

würde, weil er bis zur Fertigstellung womöglich gar nicht mehr lebe oder kurz nach der

Anschaffung sterben würde und diese sich dann nicht mehr gelohnt hätte.

• Bei mehreren Interviewpartnern entstand der Eindruck, dass sie keine Visionen mehr

entwickeln können, da sie aufgrund geistiger Unterforderung im Alltag in diesem Bereich

weit abgebaut haben. Ursächlich könnte hierfür sein, dass die Bewohner über den Tag

verteilt nicht viel selbst erledigen und planen müssen, beziehungsweise es aufgrund der

Gesamtsituation auch nicht können. Offensichtlich wurde das massiv bei den Fragen,

wie das ideale Smarthome für sie aussehen würde und in welchen Bereichen es sie

unterstützen könnte. Insbesondere bei letzterer Frage hätte der Autor im Vorfeld damit

gerechnet, dass ihn die Teilnehmer des Interviews in Folge ihrer Situation mit Ideen und

Wünschen überhäufen.

• Des Weiteren gibt es vermutlich auch ein Abfinden mit der aktuellen Situation. Eine

interviewte Person brachte zum Beispiel als Gegenargument zu Anwendungsbeispielen
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eines barrierefreien Smarthome, welche der Autor eingebracht hat, dass diese derzeit

das Pflegepersonal abdeckt und es dadurch keinen Bedarf gibt.

3.1.4. Auswertung der Interviews

Die folgende Auswertung der Interviews ist unterteilt nach den Aspekten Demographie,

Erfahrung mit elektronischen Geräten, Ideen für ein Smarthome, Bedienung, Hardware sowie

Privatsphäre.

Demographie
Folgende demographische Daten lassen sich aus den Interviews gewinnen:

• Bei den 5 Teilnehmern handelte es sich um 2 Frauen und 3 Männer.

• Die jüngste Person war 32 und die älteste 70 Jahre alt. Das durchschnittliche Alter der

Interviewteilnehmer betrug 47,6 ±13,48 Jahre.

• Der Bildungshintergrund, den die Teilnehmer mitbrachten, war breit gestreut. Folgende

jeweils höchste Bildungsabschlüsse gab es: 1 Hauptschulabschluss, 1 Abitur, 2 Berufs-

ausbildungen und 1 Diplom

Erfahrung mit elektronischen Geräten
Eine interviewte Person gab an, keine elektronischen Geräte zu nutzen. Jedoch bedient sie

eigenständig einen Fernseher, wie sich herausstellte. 4 von 5 gaben an, elektronische Geräte

zu nutzen. Mit Abstand am häufigsten genannt wurden der Fernseher sowie der Computer

beziehungsweise Laptop. Des Weiteren nutzen diese 4 Personen Radios, Stereoanlagen oder

CD-Player zum Konsum audiovisueller Medien. Die Benutzung von Smartphone und Handys

ist hingegen nicht so sehr verbreitet. Eine interviewte Person nutzt ein Handy und würde

auch gerne ein Smartphone benutzen, aber glaubt, dass sie dieses aufgrund ihrer körperlichen

Einschränkungen nicht bedienen kann. Eine weitere interviewte Person nutzt sowohl Han-

dys als auch Smartphones. Insgesamt lässt sich sagen, dass primär elektronische Geräte zu

Unterhaltungs- und Kommunikationszwecken genutzt werden.

Während der Interviews wurden die Teilnehmer auch zu den Erfahrungen befragt, die sie

mit den elektronischen Geräten im Hinblick auf ihre Bedienbarkeit haben. Die Ergebnisse

hierzu fallen sehr unterschiedlich aus, was auf verschiedene Einschränkungen zurückzuführen

ist. Eine Person kann das Radio und den Fernseher nicht selbst bedienen, sondern benötigt

hierfür das Pflegepersonal. Eine weitere Person äußerte, dass die Geräte von der Bedienung

eher nicht so gut auf ihre Bedürfnisse ausgelegt seien. Die 2 anderen Interviewpartner von

den 4, die regelmäßig elektronische Geräte nutzen, können dies den Umständen entsprechend

gut. Voraussetzung dafür sind entsprechende Hilfsmittel. Eine Person bedient ihren Fernseher

und die Stereoanlage mittels eines Holzsticks über ihren Mund und den Computer mittels
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Head-Tracking. Die zweite Person nutzt für die Bedienung des Computers einen Mundstick

als Mausersatz und für den Fernseher und die Stereoanlage ein Blasrohr. Der Mundstick ist

ihr zu langsam und zu häufig kaputt. Letzteres ist problematisch, da die Reparaturzeit 2 bis 3

Monate beträgt und sie solange den Computer nicht nutzen kann.

Die Interviewpartner wurden nicht nur zu ihren Erfahrungen mit elektronischen Geräten

sondern auch konkret zu Smarthomes befragt. Zwei der interviewten Personen gaben an, den

Begriff Smarthome zu kennen, 1 sagte, sie kenne ihn ein wenig, 1 weitere Person wusste nicht,

was ein Smarthome ist und bei der 5. Person war im Nachhinein nicht mehr sicher feststellbar,

ob sie „Smarthome“ mit „Smartphone“ verwechselt hatte. Genutzt hat ein Smarthome bisher

nur 1 der interviewten Personen. Hierbei handelt es sich jene, die mittels Blasrohr ihren

Fernseher sowie die Stereoanlange steuern kann. Hinzu kommt, dass sich über dieses Gerät

auch Steckdosen schalten lassen, weshalb der Autor dies als Nutzung eines Smarthomes

wertet.

Ideen für ein Smarthome
Wie schon im vorherigen Unterkapitel 3.1.3 beschrieben, war es sehr schwierig, Visionen von

den Interviewpartnern zu erhalten. Folglich gibt es weniger Vorschläge für Anwendungsgebiete

eines barrierefreien Smarthomes als erwartet. Einer der Interviewpartner will kein Smarthome

und die anderen 4 nannten folgende Ideen:

• Steuerung der Heizkörper, Beleuchtung und Rollläden im Zimmer.

• Via Smarthome steuerbare Musikwiedergabe.

• Eine sprachgesteuerte Suchfunktion für Filme im Internet.

• Die Einstellpositionen des Betts sollen via Smarthome steuerbar sein.

• Eine Bedienung für den Fernseher, die mehr Funktionen unterstützt, als die bisherige

Eingabemöglichkeit von einer der interviewten Personen.

Bedienung
Hinsichtlich der Eingabemöglichkeiten wurden den Teilnehmern der Interviews Fragen zu der

Benutzeroberfläche und den Eingabemethoden gestellt.

Bezüglich Ersterer resultierten aus den Interviews nur wenige Vorschläge. 2 Interviewpartner

nannten große Schaltflächen sowie eine große Schrift als wichtige Eigenschaft. Gegenüber

einer baumartigen Menüstruktur, wie sie der Autor vorschlug, gab es keine Einwände. Des

Weiteren hat er die Teilnehmer in den Interviews nach ihrer Meinung zu einer raumadaptiven

Benutzeroberfläche gefragt. Diese würde sich an den Raum, indem sich das Gerät zur Steuerung

des barrierefreien Smarthomes befindet, anpassen. Zum Beispiel könnte es die Steuerung für

die Beleuchtung im aktuellen Raum bevorzugt darstellen, sodass weniger Bedienschritte für

diese erforderlich sind. Darin erkannten die 4 Interviewpartner, die einen Nutzen in einem

barrierefreien Smarthome sehen keinen Vorteil. 2 von ihnen sogar einen Nachteil, da sie eine
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konstante Benutzeroberfläche bevorzugen. Eine Erklärung hierfür ist vermutlich, dass die

Interviewten jeweils nur ein einzelnes Zimmer für sich haben und dadurch der Bedarf für eine

raumadaptive Benutzeroberfläche nicht existiert.

Für die Bedienung des barrierefreien Smarthomes sind im Rahmen der Interviews folgende

Eingabemöglichkeiten vorgeschlagen worden:

• Eine Kombination aus Sprachsteuerung und großen Schaltflächen.

• Eine Kombination aus Sprachsteuerung und Blasrohr sowie für die Steuerung vom

Rollstuhl aus durch die Verwendung von dessen Joystick.

• Steuerung mittels Touch über ein fest installiertes Tablet.

• Steuerung via Touch mit einer Hand.

• Steuerung durch Kopfbewegungen.

Eine Sprachsteuerung finden 4 Interviewteilnehmer möglich oder gar praktisch. Einer sagte,

dass es ihm via Sprachsteuerung zu langsam wäre. Von den 4 würden 2 sie mit einer weiteren

Eingabemöglichkeit kombinieren. Als weitere Eingabemethode nannten sie das Face-Tracking

sowie ein Touch-Display.

Direkt für das Face-Tracking haben sich nur 2 Teilnehmer ausgesprochen. Allerdings konn-

ten es 2 weitere Interviewpartner ihrer Meinung nach nicht beurteilen, da sie es noch nie

ausprobiert haben, aber stehen dieser Eingabemethode offen gegenüber. Lediglich eine in-

terviewte Person sprach sich explizit dagegen aus, da sie diese Art der Eingabe schon als

Mausersatz am Computer ausprobiert hat und sie dabei nicht gut fand, weil sie häufig die

Maustastenfunktionen versehentlich betätigte.

Zu der Bedienung gehört zudem die Fragestellung, wie sich die Steuerung eines barriere-

freien Smarthomes ein- und ausschalten lässt, da es womöglich nicht gewollt ist, dass eine

Sprachsteuerung permanent aktiv ist. Hierzu schlugen die Interviewteilnehmer folgendes

vor:

• Das Ein- und Ausschalten soll durch das Pflegepersonal erfolgen.

• Automatische Abschaltung nach 10 Minuten und das Einschalten über eine Eingabe mit

den Fingern.

• Schaltfläche / Taste für das Ein- und Ausschalten, welche mittels einem Stick / Stift über

den Mund betätigbar ist.
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Hardware
Bei der bevorzugten Hardware ergibt sich ein geteiltes Bild. Von den 4 Interviewteilnehmern,

die das barrierefreie Smarthome nutzen würden, findet jeweils die Hälfte ein kleineres Gerät

in der Größe eines Handys / Smartphones beziehungsweise ein sehr großes Tablet gut. Bei den

kleineren Geräten äußerte eine Person sogar denWunsch nach einer Smartwatch. DesWeiteren

sollte das Gerät tendenziell an einem bestimmten Ort im Raum fest installiert sein. Allerdings

äußerte eine Person auch den Wunsch, dass das Gerät bei ihr und somit ortsungebunden sein

sollte. Eine weitere Person, die zwar eine stationär Platzierung möchte, könnte sich zusätzlich

auch noch eine Befestigung am Rollstuhl vorstellen.

Privatsphäre
Bezüglich der Privatsphäre sind die Ergebnisse der Interviews sehr homogen. Von den 5 Inter-

viewpartnern hat sich nur 1 gegen ein mit dem Internet verbundenes barrierefreies Smarthome

ausgesprochen. Genauso verhält es sich im Hinblick auf die Kamera und das Mikrofon. Sie

wären für eine Steuerung via Face-Tracking beziehungsweise Sprache erforderlich. Eine in-

terviewte Person gab an, dass sie sich dadurch beobachtet fühlen würde. Sie fügte jedoch

ihre Aussage bei, dass falls ein Mikrofon zur Steuerung erforderlich sei, müsse das akzeptiert

werden.

3.2. Definition der Anforderungen

Über die Anforderungen lassen sich die Ziele definieren, welche das barrierefreie Smarthome

erfüllen soll. Die Ziele resultieren hauptsächlich aus den im Unterkapitel 3.1.4 ausgewerteten

Interviews.

Die Anforderungsdefinition erfolgt mit User-Stories beziehungsweise Epics. Ob es sich um

Erstere oder Letztere handelt, ist abhängig von der Detailtiefe. Bei Epics handelt es sich um

große User-Stories, die zu einem späteren Zeitpunkt der Realisierung in mehrere kleinere

und somit konkretere User-Stories aufgeteilt werden. Folglich finden Epics vor allem in der

Anfangsphase einer Umsetzung Anwendung, wenn es darum geht, das System zu beschreiben,

so wie es auch in diesem Unterkapitel der Fall ist. (vgl. [Wir11, S. 60])

Die Beschreibung der User-Stories folgt dem Muster von Mike Cohn (vgl. [Wir11, S. 59]): „Als
<Benutzerrolle> will ich <das Ziel>[, so dass <Grund für das Ziel>].“ [Wir11, S. 59]

Bei der Benutzerrolle unterscheidet die Ausarbeitung zwischen Benutzern und Entwicklern.

Dies soll der Übersichtlichkeit dienen. Zwar wäre es möglich, auch noch zwischen Benutzer und

Administrator unterscheiden, jedoch wird es sehr stark von den jeweiligen Einschränkungen

des Benutzers abhängen, ob er selbst der Administrator ist oder nicht, weshalb auf eine

Diversifizierung verzichtet wird. Das Ziel beschreibt die eigentliche Anforderung. Der Grund

für das Ziel ist optional und soll die Hintergründe des Ziels erläutern. (vgl. [Wir11, S. 59])
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Die Folgende Auflistung definiert zunächst die funktionalen und anschließend die nichtfunk-

tionalen Anforderungen:

• F1 Unterschiedliche Eingabemethoden

Als Benutzer des barrierefreien Smarthomes möchte ich zwischen unterschiedlichen

Eingabemethoden auswählen können, so dass ich die für mich am geeignetste benutzen

kann.

Begründung: Die Auswertung der Interviews im Unterkapitel 3.1.4 zeigt, dass nicht

alle Benutzer mit Mobilitätsproblemen an ihren Händen, dieselben Einschränkungen

beziehungsweise Probleme haben. Des Weiteren geht aus ihr nicht hervor, dass alle

interviewten Personen eine Eingabemethode, wie zum Beispiel die Sprachsteuerung,

favorisieren. Darüber hinaus ist zu berücksichtigen, dass die zukünftigen Benutzer des

barrierefreien Smarthomes womöglich schon andere elektronische Geräte und in die-

sem Zusammenhang auch Eingabegeräte zur Herstellung der Barrierefreiheit benutzen,

wodurch sie im Umgang mit diesen geübt sind. Wenn sie die schon gewohnte Einga-

bemethode auch zur Steuerung des barrierefreien Smarthomes benutzen können, stellt

dies eine Erleichterung dar.

• F2 Unterstützung der Bedienungshilfen von Android

Als Benutzer des barrierefreien Smarthomes möchte ich, dass dieses die Bedienungshilfen

von Android unterstützt, so dass ich es vergleichbar mit anderen Apps benutzen kann

und es für so viele Personen wie möglich nutzbar ist.

Begründung: Das Betriebssystem Android besitzt schon selbst Funktionen zur Sicherstel-

lung der Barrierefreiheit, welche in Abschnitt 2.3 beschrieben sind. Ebenso wie schon

bei der Begründung zur Anforderung F1 gilt auch hier, dass eine Unterstützung von

Eingabemöglichkeiten, mit welchen der Benutzer schon vertraut ist, die Benutzung

erleichtert. Eine Unterstützung der Android Bedienungshilfen ist deshalb sinnvoll.

• F3 Steuerung via Face-Tracking

Als Benutzer des barrierefreien Smarthomes möchte ich dieses mittels meines Gesichts

bedienen können, so dass ich meine vorhandenen motorischen Fähigkeiten nutzen kann

und auf möglichst wenig Hilfe durch andere Personen angewiesen bin.

Begründung: Das Unterkapitel 2.2 erläutert, dass viele vom Hals ab querschnittsgelähmte

Menschen lediglich noch ihren Kopf bewegen können. Dadurch ist die Gesichtsverfol-

gung zur Steuerung des barrierefreien Smarthome eine mögliche Eingabemethode. Zu-

dem werden zumindest ähnliche Eingabemethoden schon genutzt, wie die Umfrage von

Caltenco et al. zeigt (vgl. [CBJA12]). Hierdurch sind manche Personen aus der Zielgruppe

des barrierefreien Smarthomes mit dieser Eingabemethode schon vertraut. Des Weiteren

waren viele Interviewteilnehmer dem Face-Tracking gegenüber nicht abgeneigt, wie die

Auswertung in 3.1.4 zeigt.

• F4 Sprachsteuerung

Als Benutzer des barrierefreien Smarthomes möchte ich dieses mittels einer Sprachsteue-

rung bedienen, so dass ich meine vorhandenen sprachlichen Fähigkeiten nutzen kann

sowie auf möglichst wenig Hilfe durch andere Personen angewiesen bin.
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Begründung: Das Unterkapitel 2.2 beschreibt, dass es bei einer Querschnittlähmung vom

Hals an abwärts passieren kann, dass die betroffene Person in der Beweglichkeit ihres

Kopfes eingeschränkt ist. Für diese Personengruppe ist eine Steuerung des barrierefreien

Smarthomes mittels Gesichtsverfolgung nicht möglich. Des Weiteren sprachen sich

die interviewten Personen nicht ausschließlich für eine Bedienung über Face-Tracking,

sondern teilweise auch für eine Sprachsteuerung aus, wie die Auswertung in Abschnitt

3.1.4 zeigt.

• F5 Steuerung mittels Taster oder Tastatur

Als Benutzer des barrierefreien Smarthomes möchte ich dieses mit einem Taster oder

einer Tastatur steuern können, so dass ich mit gar keiner oder nur wenig spezieller

Hardware das barrierefreie Smarthome entsprechend meiner motorischen Fähigkeiten

so bequem und optimal wie es geht nutzen kann.

Begründung: Die Auswertung der Interviews verdeutlicht, dass es nicht für alle In-

terviewpartner unmöglich ist, mittels einer Hand oder beiden Händen eine Tastatur,

Spezialtastatur oder einen Taster zu bedienen.

• F6 Konfigurierbare Anzahl an Buttons

Als Benutzer des barrierefreien Smarthomes möchte ich sowohl die Button-Anzahl in

horizontale als auch vertikaler Richtung, die auf der Benutzeroberfläche gleichzeitig dar-

gestellt sind, konfigurieren können, so dass die Bedienung für mich nicht zu kompliziert

ist.

Begründung: Für eine konfigurierbare Anzahl an Buttons beziehungsweise Menüelemen-

te sprechen mehrere Gründe. Zunächst einmal macht die Auswertung der Interviews

deutlich, dass es keine Displaygröße gibt, welche alle interviewten Personen favorisieren.

Eine Festlegung hinsichtlich der Displaygröße wäre auch nicht sinnvoll. Vielmehr bietet

es sich an, eine größere Bandbreite von diesen zu unterstützen, indem der Benutzer

die Anzahl der dargestellten Schaltflächen und Menüelemente an die Größe des Dis-

plays anpasst. Des Weiteren können die Personen aus der Zielgruppe unterschiedliche

kognitive und motorische Fähigkeiten haben, wodurch zu viele Auswahlmöglichkei-

ten auf einmal sie überfordern könnten. Zuletzt ist die geeignete Anzahl an Buttons

auch von der verwendeten Eingabemethode abhängig. Zum Beispiel ist es denkbar,

dass das Face-Tracking nicht so präzise ist wie eine Tastatur, weshalb größere und im

Gegenzug weniger Buttons eine Benutzung von Ersterer erleichtern. Bei einer Tastatur

hingegen, würde die Benutzeroberfläche mit genau so vielen Buttons das Potenzial der

Eingabemethode womöglich nicht ausnutzen.

• F7 Konfigurierbare Schriftgröße

Als Benutzer des barrierefreien Smarthomes möchte ich die Schriftgröße für die Button-

Beschriftung konfigurieren können, so dass ich die Benutzeroberfläche an meine eigene

Fähigkeiten sowie die räumliche Situation anpassen kann.

Begründung: In den Interviews wurde der Wunsch geäußert, dass die Schriftgröße

einstellbar sein sollte. Dessen Umsetzung ist sinnvoll, da die späteren Benutzer des

barrierefreien Smarthomes unterschiedlich gut sehen und lesen könnten und zudem die
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räumliche Positionierung des Gerätes frei wählbar sein soll. Dadurch kann nicht von

einer konstanten Entfernung zwischen den Benutzern sowie dem Gerät ausgegangen

werden. Durch eine konfigurierbare Größe der Button-Beschriftung ist es möglich, dass

beispielsweise ein Benutzer, welcher das barrierefreie Smarthome aus einer größeren

Entfernung bedienen möchte, eine höhere Schriftgröße auswählt.

• F8 Ein- und Ausschalten

Als Benutzer möchte ich das barrierefreie Smarthome selbstständig ein- und ausschalten

können, so dass dieses nicht permanent eingeschaltet ist und ich dafür auch nicht auf

die Unterstützung einer anderen Person angewiesen bin. Begründung: Die Steuerung

des barrierefreien Smarthomes sollte nicht immer aktiv sein, da dies je nach Einga-

bemethode einen mehr oder wenigen hohen Ressourcenverbrauch an Rechenleistung

darstellen würde und manche Benutzer es vielleicht auch nicht wollen. Zum Beispiel

könnten sie sich von einer permanent aktiven Sprachsteuerung oder Kamera für das

Face-Tracking beobachtet fühlen. Zusätzlich könnte es insbesondere bei den 2 zuvor

genannten Eingabemöglichkeiten zu ungewollten Fehleingaben kommen, wenn sich der

Benutzer beispielsweise mit einer anderen Person unterhält und die Sprachsteuerung

dabei Gesprochenes irrtümlicherweise als Eingabe interpretiert.

• N1 Eignung für unterschiedlich Geräte

Als Benutzer möchte ich das barrierefreie Smarthome sowohl mit einem Tablet als auch

mit einem Smartphone steuern können, so dass ich eventuell vorhandene und die meiner

jeweiligen Situation am besten geeignete Hardware nutzen kann.

Begründung: Die im Unterkapitel 3.1.4 durchgeführte Auswertung der Interviews kommt

zu dem Ergebnis, dass die interviewten Personen das barrierefreie Smarthome mittels

unterschiedlich großen Geräten steuern möchte. Dem zu Folge bietet es sich an, die

Anwendung so zu gestalten, dass sie sowohl auf Smartphones als auch auf Tablets

ein gutes Benutzererlebnis bietet. Zusätzlich erhöht dies die Wahrscheinlichkeit, dass

der Benutzer die Anwendung zur Steuerung des barrierefreien Smarthomes auf schon

vorhandener Hardware ausführen kann. Ein weiterer Vorteil ist, dass deren Größe

an den Einsatzort anpassbar ist. Falls ein Benutzer das barrierefreie Smarthome zum

Beispiel von seinem Rollstuhl aus steuern können will, bietet sich hierfür aufgrund der

kleineren Abmessungen ein Smartphone an. Hingegen wäre womöglich ein Tablet für

einen Benutzer, der das barrierefreie Smarthome nur von einer bestimmten Position

innerhalb des Gebäudes bedienen können will, besser geeignet, da es entweder mehr

oder größere Schaltflächen darstellen kann.

• N2 Verzicht auf Hilfsmittel-Hardware

Als Benutzer möchte ich ein barrierefreies Smarthome, das keine Hilfsmittel-Hardware

erfordert, die es schon heute für Menschen mit einer hohen Querschnittlähmung er-

möglichen, mit elektronischen Geräten zu interagieren, so dass ich gängige Hardware

verwenden kann, welche billiger und leichter ersetzbar ist.

Begründung: Hilfsmittel-Hardware, die es schon heute vom Hals ab querschnittsgelähm-

ten Menschen ermöglicht, mit elektronischen Geräten zu interagieren, hat den Nachteil,
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dass sie gegenüber vergleichbaren Eingabegeräten für unversehrte Menschen, erheblich

teurer ist. Die hohen Preise ließen sich durch die Verwendung von Standard-Hardware

umgehen. Gängige Hardware ist zudem vermutlich schneller reparier- oder ersetzbar und

durch die geringeren Anschaffungskosten wäre es günstiger, Ersatz vor zu halten. Idea-

lerweise reduziert sich der Bedarf an Hardware dadurch, dass für die vom barrierefreien

Smarthome angebotenen Eingabemethoden keine zusätzliche erfordern.

• N3 Erweiterbares Menü

Als Benutzer und Entwickler möchte ich das Menü des barrierefreien Smarthomes um

weitere Menüelemente ergänzen können, so dass für das Hinzufügen von neuen Funk-

tionalitäten keine Arbeiten am Quellcode der Benutzeroberfläche erforderlich sind.

Begründung: Die Benutzer werden unterschiedliche Wünsche und Anforderungen be-

züglich der Geräte haben, die sie über das barrierefreie Smarthome bedienen möchten.

Ebenso werden mit der Zeit neue hinzukommen. Eine Benutzeroberfläche, welche so ent-

wickelt ist, dass sie später von einem Benutzer ohne Programmierkenntnisse erweiterbar

ist, bietet vielfältige, individuelle und vor allem kostengünstige Erweiterungsmöglich-

keiten.

• N4 Unterstützung von Erweiterungen

Als Entwickler möchte ich das barrierefreie Smarthome in Form eines Baukastensystems

um Funktionalitäten erweitern können, ohne dass hierzu Arbeiten am schon vorhande-

nen Quellcode erforderlich sind.

Begründung: Vergleichbar mit der Anforderung N3, werden die Benutzer des barriere-

freien Smarthomes unterschiedliche Geräte mit diesem bedienen wollen. Um noch nicht

unterstützte leicht in das barrierefreie Smarthome integrieren zu können, ist es prak-

tisch, die gerätespezifischen Funktionalitäten in Form von Erweiterungen umzusetzen.

Dadurch sind sie von Dritten programmierbar, ohne dass diese Kenntnis und Zugriff

vom beziehungsweise auf den Quellcode des barrierefreien Smarthomes haben.

• N5 Erweiterbarkeit der Eingabemöglichkeiten

Als Benutzer und Entwickler möchte ich, dass sich das barrierefreie Smarthome ohne

großen Aufwand um neue Eingabemethoden erweitern lässt, so dass ich von diesen

profitiere.

Begründung: Es ist nicht ausgeschlossen, dass in den nächsten Jahren bessere Eingabe-

methoden für die Zielgruppe entwickelt werden. Damit von diesen auch das barrierefreie

Smarthome möglichst schnell und ohne großen Aufwand profitiert, sollte dessen Archi-

tektur die Ergänzung der Eingabemethoden berücksichtigen.
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Dieses Kapitel beschreibt das Konzept für das barrierefreie Smarthome. Hierzu gibt es am

Anfang imUnterkapitel 4.1 zunächst einenÜberblick über das System und dessen Komponenten.

Im Anschluss daran erläutert das Unterkapitel 4.2 den Aufbau der Benutzeroberfläche und

die darin enthaltenen Navigationsmöglichkeiten. Das vorletzte Unterkapitel 4.3 konzentriert

sich auf die angebotenen Eingabemethoden, bevor das Unterkapitel 4.4 die Vorstellung des

Konzepts abschließt, indem es die Verarbeitung der Eingabeergebnisse beschreibt.

4.1. Systemübersicht

Die Abbildung 4.1 zeigt das barrierefreie Smarthome auf einer sehr abstrahierten Ebene. Die

grünen Rechtecke stellen die Zielgeräte dar, welche in der Regel nicht auf der selben Hardware,

wie die Anwendung zur Steuerung des barrierefreien Smarthomes, ausgeführt werden. Typische

Zielgeräte wären beispielsweise Funksteckdosen, ein Fernseher sowie Funkthermostate.

Das blaue Rechteck in Abbildung 4.1 stellt das Gerät dar, welches die Anwendung für das

barrierefreie Smarthome ausführt. Diese lässt sich in 2 Bereiche unterteilen. Das wären zum

Abbildung 4.1.: Aufbau des barrierefreien Smarthomes.
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einen die Anwendung im eigentlichen Sinne sowie die Erweiterungen. Erstere besteht aus

folgenden Komponenten:

• Eingabemethoden: Die Komponente bietet dem Benutzer unterschiedliche Eingabeme-

thoden an, wodurch er zwischen diesen wählen kann, wie in Anforderungen F1 gefordert.

Eine detailliertere konzeptionelle Beschreibung der Eingabemethoden erfolgt in 4.3.

• Benutzeroberfläche: Die Anwendung generiert die Benutzeroberfläche aus einer Datei,

welche zu der Erweiterbarkeit gehört. Dadurch ist es möglich, dass, wie in Anforde-

rung N3 gefordert, die Benutzeroberfläche nachträglich um Menüelemente erweitert

oder reduziert werden kann. Demzufolge definiert diese Komponente nicht die Be-

nutzeroberfläche, sondern bietet die erforderlichen Funktionen, um sie dynamisch zur

Laufzeit aus einer Datei generieren zu können. Des Weiteren bietet die Anwendung

innerhalb der Komponente Benutzeroberfläche die entsprechende Funktionalität, welche

zur Navigation innerhalb des Menüs erforderlich ist. Eine ausführliche Beschreibung der

Benutzeroberfläche bietet das Unterkapitel 4.2.

• Handhabung der Erweiterungen: Diese Komponente erhält die Eingabebefehle von der

Benutzeroberfläche und leitet sie an die passenden Erweiterungen weiter. Sie stellt somit

eine Verbindung zwischen diesen und der Komponente Benutzeroberfläche dar. Welche

Erweiterung ausgewählt werden soll und welchen Eingabebefehl sie erhält, resultiert aus

der Definitionsdatei für die Benutzeroberfläche, in welcher für jeden Button festgelegt

ist, ob und wenn ja, welche Aktion auszuführen ist.

Der zweite Bereich besteht aus den Erweiterungen sowie der Datei für die Definition der

Menüstruktur. Letztere nutzt die Komponente Benutzeroberfläche um gleichnamige zu er-

zeugen. Die Erweiterungen bestehen aus mehreren Dateien. Das Konzept sieht je Zielgerät

eine Erweiterung vor. Sprich, bezogen auf die zuvor genannten möglichen Zielgeräte, könnte

es jeweils eine Erweiterung für die Funksteckdose, eine für den Fernseher und eine für die

Thermostate geben. Dadurch, dass die Ansteuerung der Zielgeräte über die Erweiterungen

und nicht die Anwendung für das barrierefreie Smarthome erfolgt, lässt sich die Anforderung

N4, welche die Möglichkeit zum nachträglichen Hinzufügen von Funktionalitäten durch Drit-

te fordert, realisieren. Selbiges gilt auch für die Definitionsdatei der Menüstruktur bezogen

auf die Anforderung N3. Die Kommunikation zwischen Erweiterung und entsprechendem

Zielgerät ist durch das Konzept nicht vorgegeben, woraus eine höhere Flexibilität gegeben

ist. Die Kommunikationsmöglichkeiten sind lediglich durch die Fähigkeiten der verwendeten

Hardware sowie des Betriebssystems begrenzt.

4.2. Benutzeroberfläche

Dieses Unterkapitel beschreibt die Definition der Menüstruktur, welche die Benutzeroberfläche

anzeigen soll. Des Weiteren erläutert es das Navigationskonzept innerhalb der Menüstruktur

sowie die Individualisierbarkeit der Benutzeroberfläche.
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Abbildung 4.2.: Baumhierarchie als Menüstruktur

4.2.1. Menüstruktur

Die Struktur des Menüs entspricht einer Baumhierarchie. Die Abbildung 4.2 soll dies exempla-

risch an einem Ausschnitt eines potenziellen Menüs für einen Fernseher veranschaulichen.

Die Wurzel auf der Ebene 0 ist für den Benutzer nicht sichtbar. Die höchste für ihn sichtbare

Ebene ist die darauffolgende Ebene 1. Sie ist das Hauptmenü. Jedes Rechteck in Abbildung 4.2

beziehungsweise jeder Knoten der Baumstruktur entspricht einemMenüelement. Die Benutzer-

oberfläche stellt diese als Buttons dar. Abbildung 4.4 zeigt den Entwurf der Benutzeroberfläche

exemplarisch anhand der Menüelemente aus der Senderliste von Ebene 3. Aus Platzgründen

sind auf dieser Ebene in Abbildung 4.2 nicht alle Menüelemente dargestellt. Sowohl die Defi-

nition der einzelnen Menüelemente als auch ihre Einordnung in die Baumstruktur erfolgt in

der Definitionsdatei für die Menüstruktur. Ein Menüelement besteht in dieser aus folgenden

Elementen:

• ID: Die ID dient zur eindeutigen Identifikation des jeweiligen Menüelements. Durch

sie lassen sich in der Definitionsdatei einem Menüelement seine Untermenüelemente

beziehungsweise Kindknoten zuordnen.

• Name: Der Name ist die Bezeichnung des jeweiligen Menüelements. Ihn gibt es in drei

unterschiedlichen Versionen. Diese wären zum einen die Lang- und Kurzform. Sie dient

dazu, die Anforderungen F6 und F7, die eine konfigurierbare Anzahl an gleichzeitig

sichtbaren Buttons und Schriftgröße verlangen. Die Kurzversion des Namens lässt sich

in Situationen verwenden, in welchen für den langen Namen nicht mehr ausreichend
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Platz ist. Des Weiteren kommt diese auch der Forderung N1 nach der Unterstützung

unterschiedlicher Displaygrößen zu Gute. Darüber hinaus gibt es als dritte Version des

Namens noch eine aussprechbare Variante. Sie dient zur Umsetzung der Anforderung F2.

Diese fordert die Unterstützung der Android Bedienungshilfen. Im Rahmen von dieser

wird der aussprechbare Name für Google TalkBack verwendet, worüber blinde und

sehbehinderte sich die Funktion des jeweiligen Menüelements mittels Sprachausgabe

ermitteln können (vgl. [Goo16e]). Zusätzlich zu den 3 Versionen des Namens lassen sich

noch Sprachbefehle für das Menüelement definieren. Diese dienen der Umsetzung der

Anforderung F4, welche eine Sprachsteuerung fordert.

• Icon: Das Icon soll eine intuitive Bedienung gewährleisten, indem der Benutzer durch

dieses nicht die Bezeichnung des Menüelements lesen muss. Denkbar wäre zum Beispiel,

dass die Menüelemente in Abbildung 4.4 für die Fernsehsender das jeweilige Senderlogo

als Icon verwenden.

• Erweiterung: Hier wird spezifiziert, ob und wenn ja, welche Erweiterung eine Aktion

ausführen soll, wenn der Benutzer den Button betätigt. Sofern eine Aktion ausgeführt

werden soll, wird der Dateipfad zu der entsprechenden Erweiterung angegeben sowie

innerhalb von dieser, der Klassenpfad zu der auszuführenden Klasse. Zusätzlich ist

es möglich Parameter in Form von Schlüssel-Wert-Paaren festzulegen, auf welche die

Erweiterung Zugriff hat.

4.2.2. Navigation

Der Benutzer kann innerhalb der baumartigen Menüstruktur sowohl vertikal als auch horizon-

tal navigieren. Mittels der vertikalen Navigation kann er zwischen den Ebenen beziehungsweise

zwischen den Eltern- und Kindknoten wechseln. In dem in Abbildung 4.3 dargestellten Menü

kann er beispielsweise über den Button „TV“ eine Ebene tiefer in das Untermenü des Fernsehers

gelangen. Zurück zu der nächst höheren Ebene, gelangt er über den Button „eine Menüebene

nach oben“. Die Ebene 0 ist für die Benutzer nicht erreichbar. Der Button „eine Menüebene nach

oben“ gehört zu insgesamt 3 Navigations-Buttons. Sie dienen zur Navigation innerhalb des

Menüs und sind nicht Teil der Definitionsdatei für die Menüstruktur, sondern der Anwendung.

Die 2 noch nicht beschriebenen Navigations-Buttons dienen zur Navigation innerhalb der

Kindknoten eines Elternknotens, also einem Untermenü. In Abbildung 4.2 stellen beispiels-

weise die TV-Sender in der Senderliste ein Untermenü dar. Die Navigation innerhalb eines

Untermenüs ist erforderlich, da die Anzahl der gleichzeitig angezeigten Buttons konfigurierbar

sein soll und die Größe eines Untermenüs unbegrenzt ist, wodurch es passieren kann, dass

dessen Menüelemente nicht alle gleichzeitig darstellbar sind. In der skizzenhaft dargestellten

Benutzeroberfläche in Abbildung 4.4 ist dies zum Beispiel der Fall. Sie stellt das Untermenü

Senderliste dar, welches mehr Elemente beziehungsweise Programme beinhaltet, als auf einmal

anzeigbar sind. Aus diesem Grund befindet sich in der unteren rechten Ecke der Benutzer-

oberfläche der Navigations-Button „nächste Menüelemente“. Über sie gelangt der Benutzer

zu weiteren Elementen des Untermenüs. Abbildung 4.5 zeigt die Benutzeroberfläche wie sie

46



4.2. Benutzeroberfläche
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Abbildung 4.3.: Hauptmenü im Entwurf für die Benutzeroberfläche.

aussehen würde, nachdem der Benutzer in Abbildung 4.4 den Navigations-Button „nächste

Menüelemente“ getätigt hat. Um zurück zu den vorherigen Elementen des Untermenüs zu

gelangen, gibt es den Navigations-Button „vorherige Menüelemente“, wie er auch in Abbildung

4.5 zu sehen ist. Für die vertikale Navigation in dem Menü kann der Benutzer zudem einstellen,

ob er, wenn er in ein Untermenü gelangt, in dem er zuvor schon einmal war, innerhalb von

diesem an die vorherige Position kommen möchte oder an den Anfang.

Die Verwendung von Buttons zur Navigation hat 3 Vorteile. Erstens lässt sich über sie dem

Benutzer signalisieren, in welche Richtungen er ausgehend von der aktuellen Position im

Menü navigieren kann. Angenommen er befindet sich in Abbildung 4.2 gerade auf der Ebene

1, könnte er keine Menüebene mehr weiter nach oben in der Baumstruktur gehen. In dieser

Situation ist es möglich, dem Benutzer den entsprechenden Navigations-Button nicht oder

nur deaktiviert, sprich so, dass er sie nicht betätigen kann, darzustellen. Des Weiteren ist

mittels Buttons möglich, mit jeder der in Abschnitt 4.3 beschriebenen Eingabemethoden durch

das Menü zu navigieren. Um dies beispielhaft zu beschreiben, ist ein Vergleich zwischen den

Eingabemethoden Sprachsteuerung und Face-Tracking hilfreich. Für Erste ließen sich entspre-

chende Sprachbefehle für die Navigation innerhalb des Menüs definieren. Diese wären bei der
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Abbildung 4.4.: Beginn des Untermenüs Senderliste im Entwurf für die Benutzeroberfläche.

Gesichtsverfolgung nutzlos. Stattdessen bräuchte es Buttons zum Navigieren oder es müssten

bestimmte Wertebereiche für die Positionen des Gesichtes zur Navigation festgelegt werden.

Zum Beispiel, dass der Benutzer die nächsten Elemente eines Untermenüs auswählen kann, in

dem er den Kopf über einen bestimmten Winkel hinaus nach rechts dreht. Diese Lösung würde

dazu führen, dass die Benutzeroberfläche nicht mehr eingabemethodenübergreifend konsistent

ist. Mittels des Navigations-Buttons hingegen, ist die Oberfläche sowie die Navigation für den

Benutzer bei jeder Eingabemethode dieselbe.

4.2.3. Individualisierbarkeit

Sowohl die Anforderungen bezüglich der Größe der Hardware als jenen an die Eingabeme-

thoden zeigen, dass es nicht die eine Benutzeroberfläche gibt, welche die Bedürfnisse aller

Benutzer abdeckt. Aus diesem Grund bietet sie eine hohe Individualisierbarkeit hinsichtlich

des jeweiligen Benutzers. Dabei handelt es sich um folgende Bereiche:
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Abbildung 4.5.: Weitere Menüelemente im Untermenü Senderliste im Entwurf für die Benut-

zeroberfläche.

• Die Anzahl der Buttons ist sowohl in horizontaler als auch in vertikaler Richtung kon-

figurierbar, wie in Anforderung F6 verlangt. Bezogen auf die Abbildung 4.4 bedeutet

dies, dass sich die Benutzeroberfläche in ihrer Konfiguration beispielsweise so ändern

lässt, dass sie anstelle von 3 Zeilen mit jeweils 3 Buttons, 3 Zeilen mit jeweils 2 Buttons

darstellt. Hierdurch lässt sich die Benutzeroberfläche sehr gut an die jeweilige Display-

größe anpassen. Die Notwendigkeit dazu resultiert aus der Anforderung N1, welche die

Benutzbarkeit sowohl auf Tablets als auch Smartphones verlangt.

• Auf die selbe Anforderung ist auch die Konfigurierbarkeit der Schriftgröße für die

Button-Texte zurückzuführen. Darüber hinaus verlangt diese jedoch auch explizit die

Anforderung F7.

• Die Navigations-Buttons können entweder dauerhaft oder nur im betätigbaren Zustand

sichtbar sein, wenn sie also aufgrund der aktuellen Position im Menü auch nutzbar sind.

Dies hat den Vorteil, dass der Benutzer die Navigationsschaltflächen in deaktiviertem

Zustand ausblenden kann, wodurch sich mehr Menüelemente gleichzeitig darstellen

lassen.
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• Des Weiteren kann der Benutzer einstellen, dass bei der vertikalen Navigation im Menü

je Untermenü die zuletzt angezeigten Menüelemente gespeichert werden. Dies hat den

Vorteil, dass der Benutzer bei einer hohen Anzahl an Elementen in einem Untermenü,

durch dieses womöglich nicht erneut sehr weit „durchblättern“ muss, um bei dem benö-

tigten Menüelement anzukommen, wenn er dieses zuvor kurz verlassen musste, um die

Funktionalität eines anderen Untermenüs zu nutzen.

4.3. Eingabemöglichkeiten

Die Anwendung zur Steuerung des barrierefreien Smarthomes unterstützt mehrere Eingabe-

möglichkeiten, wie es die Anforderung F1 verlangt. Aus dem Abschnitt 2.2 sowie der Aus-

wertung der Interviews in 3.1.4 geht hervor, dass es sowohl aufgrund der physischen sowie

geistigen Fähigkeiten als auch wegen der unterschiedlichen persönlichen Präferenzen, nicht die

eine perfekte Eingabemethode zur Bedienung des barrierefreien Smarthomes für die Benutzer

aus der Zielgruppe gibt.

Aus diesem Grund lässt sich die Anwendung für das barrierefreie Smarthome neben den

herkömmlichen Eingabemethoden mittels Maus, Tastatur und Touch auch via Sprachsteue-

rung, Face-Tracking sowie Scanning bedienen. Letztere drei Eingabemethoden sind speziell

auf die Bedürfnisse der Zielgruppe abgestimmt und sollen ihr die eigenständige Benutzung

ermöglichen.

4.3.1. Face-Tracking

Die Steuerung mittels Gesichtsverfolgung wird mit Hilfe der Mobile Vision API von Google

realisiert. Sie ermöglicht die Erkennung und Verfolgung von Gesichtern in Bildern beziehungs-

weise einem Video (vgl. [Goo16b]). Die Verwendung der Mobile Vision API zur Steuerung

des barrierefreien Smarthomes mittels Gesichtsverfolgung eignet sich aus mehreren Gründen.

Da sie auf Tablets und Smartphones, deren Betriebssystem Android oder iOS ist, verwend-

bar ist und deren vorhandene Frontkamera nutzen kann, fällt kein Bedarf an zusätzlicher

Hardware oder gar solcher, die speziell auf die Bedürfnisse der Zielgruppe abgestimmt ist, an

(vgl. [Goo16b]). Hierdurch lässt sich sehr gut die Anforderung N2 realisieren. Darüber hinaus

lässt sich die Anforderung N1, welche die Unterstützung von Hardware in unterschiedlicher

Größe fordert, mittels der Mobile Vision API, was das Face-Tracking betrifft, ebenfalls sehr

gut realisieren, da sie sowohl für Smartphones als auch Tablets verfügbar ist. Des Weiteren

entstehen durch ihre Verwendung keine Kosten (vgl. [Goo16c]).

Zu einem erkannten Gesicht liefert die Mobile Vision API mehrere Informationen (vgl.

[Goo16b]). Unter anderem handelt es sich dabei um folgende für das Face-Tracking benö-

tigte:
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Abbildung 4.6.: Steuerung des Cursors auf der vertikalen Achse durch Neigen des Kopfes.

• Die Position als Koordinaten in Form von Pixelwerten von diversen Merkmalen im

Gesicht, wie zum Beispiel den Augen sowie der Nasenwurzel. (vgl. [Goo16b] u. [Goo16f])

• Rotation des Gesichts in Grad. Sprich, ob die Person frontal auf die Kamera schaut oder

nach links / rechts an dieser vorbei sieht. (vgl. [Goo16b])

• Öffnungswahrscheinlichkeit für das linke und rechte Auge (vgl. [Goo16d]). Jedoch

ist diese bisher (Stand 09.12.2016) nur in der API Version für Android verfügbar (vgl.

[Goo16b]).

Die Neigung und Rotation von dem Kopf des Benutzers werden auf die Position eines Kreises

abgebildet, welcher über den Buttons in der Benutzeroberfläche angezeigt wird. Er ist somit

eine Art Cursor. In Abbildung 4.6 ist er grün dargestellt. Indem der Benutzer seinen Kopf in

Richtung Brust oder „leicht“ in den Nacken legt, ändert er die vertikale Position des Cursors.

Die Abbildung 4.6 veranschaulicht das. Realisiert wird die vertikale Steuerung, indem das

Intervall mit den möglichen Werten der Kopfneigung auf jenes mit den möglichen Positionen

des Cursors auf der vertikalen Achse ausgehend von 0 abgebildet wird. Dafür sind folgende

Variablen von Bedeutung:
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• Eingabewert ev: Bei dem Eingabewert handelt es sich um die ermittelte Kopfneigung.

• Eingabewert für die minimale vertikale Cursor-Position eminv: Dies ist der kleinste

Eingabewert für die Kopfneigung.

• Eingabewert für die maximale vertikale Cursor-Position emaxv: Dies ist der größte Ein-

gabewert für die Kopfneigung.

• Maximale vertikale Cursor-Position pmaxv: Das ist die maximale Position des Cursors

auf der vertikalen Achse.

• Vertikale Cursor-Position pv: Hierbei handelt es sich um die aus der Kopfneigung be-

rechnete Position des Cursors auf der vertikalen Achse.

Die mathematische Formel in vereinfachter Form hierfür lautet wie folgt:

pv = ev − eminv

emaxv − eminv

· pmaxv

Bei der Formel handelt es sich um eine vereinfachte Form, weil sie davon ausgeht, dass die

Eingabewerte größer oder gleich dem minimalen Eingabewert und kleiner oder gleich dem

maximalen Eingabewert sind. In der Praxis ist dies jedoch nicht der Fall, da aus Komfortgründen

nicht die aus körperlicher Sicht maximal möglichen Werte für die Kopfneigung verwendet

werden.

Da in der Mobile Vision API die Bestimmung der Kopfneigung noch nicht implementiert

ist, muss diese über die vertikale Positionsveränderung eines Merkmals im Gesicht, zum

Beispiel der Nasenwurzel, bestimmt werden (vgl. [Goo16b]). Dies ist möglich, da sich beim

Neigen des Kopfes auch die Position der Nasenwurzel oder anderer Merkmale in der Vertikalen

verändert.

Über das Drehen seines Kopfes nach links oder rechts kann der Benutzer den Cursor auf der

horizontalen Achse bewegen. Die in Abbildung 4.7 gezeigten Beispiele veranschaulichen das.

Die Rotation des Kopfes lässt sich direkt über die Mobile Vision API ermitteln, da diese in ihr

schon implementiert ist (vgl. [Goo16b]). Die Mobile Vision API gibt die Drehung des Kopfes

in Grad zurück. Wenn der Benutzer seinen Kopf nach links dreht, handelt es sich um einen

positiven und bei einer Drehung nach rechts, um einen negativen Wert (vgl. [Goo16b]). Auch

hier muss das Intervall der Eingabewerte auf jenes mit den möglichen Positionen des Cursors

auf der horizontalen Achse ausgehend von 0 abgebildet werden. Dafür sind folgende Variablen

von Bedeutung:

• Eingabewert eh: Drehung des Kopfes in Grad.

• Eingabewert für die minimale horizontale Cursor-Position eminh: Dies ist der kleinste

Eingabewert für die Drehung des Kopfes.

• Eingabewert für die maximale horizontale Cursor-Position emaxh: Dies ist der größte

Eingabewert für die Drehung des Kopfes.
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• Maximale horizontale Cursor-Position pmaxh: Das ist die maximale Position des Cursors

auf der horizontalen Achse.

• Horizontale Cursor-Position ph: Hierbei handelt es sich um die aus der Kopfdrehung

berechnete Position des Cursors auf der horizontalen Achse.

Die dazugehörige Formel in vereinfachter Form lautet wie folgt:

ph = eh − eminh

emaxh − eminh

· pmaxh

Die Eingabewerte für die minimale und maximale horizontale Position können nicht größer als

ungefähr +18 Grad beziehungsweise kleiner als -18 Grad sein. Ursächlich hierfür ist, dass ande-

renfalls die Öffnungswahrscheinlichkeit für das linke und rechte Auge nicht mehr feststellbar

ist. (vgl. [Goo16b])

Die Augenöffnungswahrscheinlichkeit dient zur Erkennung des Blinzelns. Mittels diesem kann

der Benutzer den Button betätigen, den er mit dem Cursor ausgewählt hat. Gegen Verweilen

als Auswahlmethode spricht, dass Dybdal et al. in ihrer Studie zu dem Ergebnis kamen, dass

Kopf ist zur Brust geneigt
Kopf ist aufrecht (in keine 

Richtung geneigt)
Kopf ist in den Nacken 

gelegt

Steuerung des Cursors auf der vertikalen Achse durch Neigen des Kopfes 
nach vorne / hinten

Kopf ist nach links gedreht
Kopf ist weder nach links 
noch nach rechts gedreht

Kopf ist nach rechts 
gedreht

Steuerung des Cursors auf der horizontalen Achse durch Drehen des 
Kopfes nach links / rechts

Abbildung 4.7.: Steuerung des Cursors auf der horizontalen Achse durch Drehen des Kopfes.
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sich Gesten zur Bestätigung einer Auswahl auf kleinen Displays besser eignen als Verweilen

(vgl. [DAH12]). Des Weiteren möchten die potenziellen Benutzer mit der Anwendung zur

Steuerung des barrierefreien Smarthomes nicht permanent mit diesem interagieren, sondern

zwischendurch andere Tätigkeiten durchführen, weshalb eine Betätigung der Buttons durch

Verweilen auch deshalb als weniger geeignet erscheint. Das Blinzeln lässt sich in 3 Arten

unterscheiden:

• Blinzeln mit dem linken Auge.

• Blinzeln mit dem rechten Auge.

• Gleichzeitiges Blinzeln mit beiden Augen.

DesWeiteren wäre es nochmöglich, die Dauer des Blinzelns auszuwerten, sodass beispielsweise

zwischen schnellem und langsamen Blinzeln unterschieden werden kann. Dieser Ansatz wird

im Rahmen der Abschlussarbeit jedoch nicht weiter verfolgt, da ohne die Berücksichtigung

der Geschwindigkeit beim Blinzeln schon 3 Eingabebefehle möglich sind. Das Konzept für

das Face-Tracking sieht vor, dass mittels Blinzeln ein Button betätigbar ist. Zusätzlich soll

der Benutzer das Face-Tracking pausieren und fortsetzen können. Jedoch besteht schon bei

diesen 2 verschiedenen Eingabebefehlen das Problem, dass nicht alle Menschen mit nur einem

Auge blinzeln können. Es ist aber auch möglich, mittels allen 3 Blinzelarten ein und dieselbe

Funktion auszuführen, zum Beispiel, dass der Button betätigt wird, unabhängig davon, ob

mit dem linken, rechten oder beiden Auge(n) geblinzelt wurde. Das kann für Benutzer, die

Schwierigkeiten beim Blinzeln haben, die Betätigung einer Schaltfläche erleichtern.

4.3.2. Scanning

Diese Eingabemethode fokussiert die Buttons nacheinander in einer definierten Reihenfolge.

Der Fortschritt der Fokussierung kann wahlweise manuell oder automatisch erfolgen. Bei

letzterer ist festlegbar, wie lange ein Button fokussiert bleiben soll. Je kürzer dies ist, desto

schneller ist der Fortschritt. Optional ist einem Eingabebefehl die Funktionalität zuweisbar,

die automatische Fokussierung zu pausieren oder fortzusetzen. Wenn der Fortschritt manuell

erfolgt, muss der Benutzer für jede Fokussierung eine Eingabe vornehmen. Unabhängig davon,

ob der Fortschritt der Fokussierung automatisch oder manuell erfolgt, kann der Benutzer über

eine Eingabe den zu diesem Zeitpunkt fokussierten Button betätigen. Erfolgt die Fokussierung

des jeweils nächsten Buttons automatisch, ist auch die Rede von 1-Button-Scanning, da der

Benutzer in diesem Fall nur 1 Taster beziehungsweise einen Eingabebefehl zur Bedienung

benötigt. Führt er den Fortschritt hingegen selbst durch, sind 2 erforderlich, weshalb diese

Eingabemöglichkeit 2-Button-Scanning genannt wird. Der Benutzer soll das Scanning sowohl

über eine Tastatur als auch mittels Blinzeln bedienen können. Für Erstere ist theoretisch die

Verwendung einer normalen Tastatur möglich. Jedoch ist das Scanning für Benutzer, welche

eine herkömmliche Tastatur noch bedienen können, unpraktisch. Vielmehr ist es für Personen

gedacht, die eine Tastatur nur noch sehr eingeschränkt oder gar nicht nutzen können. Für

Erstere bietet sich die Benutzung eines wie in Abbildung 4.8 dargestellten Button-Switch an.
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Abbildung 4.8.: Button Switch, der sich für das 1- und 2-Button-Scanning eignet.

Bei diesem handelt es sich um eine spezielle Tastatur, welche aus lediglich 2, aber dafür sehr

großen, Tasten besteht. Dadurch können ihn Personen nutzen, die eine oder beide Hände

noch eingeschränkt bewegen können. Beim 1-Button-Scanning kann der Benutzer über eine

der beiden Tasten die fokussierte Schaltfläche betätigen und optional mit der zweiten den

Fortschritt pausieren oder fortsetzen. Bei der Eingabemethode 2-Button-Scanning dient die

zweite Taste zur Fokussierung des nächsten Buttons. Analog dazu soll auch das Scanning

via Blinzeln funktionieren. Die Erkennung von diesem erfolgt über die Mobile Vision API

von Google, welche auch das im vorherigen Unterkapitel beschriebene Face-Tracking nutzt.

Sofern der Benutzer sowohl mit einem einzelnen als auch mit beiden Augen blinzeln kann,

stehen drei verschiedene Eingabebefehle zur Verfügung. Für das 2-Button-Scanning muss der

Benutzer 2 Blinzelarten beherrschen, vergleichbar mit den 2 Tasten beim Bluetooth Switch.

Beim 1-Button-Scanning ist es hingegen ausreichend, eine der Blinzelarten zu können, da das

Pausieren und Fortsetzen optional ist.
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4.3.3. Sprachsteuerung

Bei dieser Eingabemethode kann der Benutzer die Schaltflächen via Sprache bedienen. Diese

Arbeit verfolgt die Sprachsteuerung konzeptionell nur soweit, dass das in 4.2.1 beschriebene

Konzept für die Definition der Menüstruktur die Zuweisung von Sprachbefehlen in den einzel-

nen Menüelementen vorsieht. Der Grund dafür, dass das Konzept die Sprachsteuerung nur am

Rande unterstützt ist der, dass Google derzeit an einer Sprachsteuerung für das Betriebssystem

Android arbeitet, um Benutzern, welche ihre Hände nicht zur Bedienung verwenden können,

diese zu ermöglichen (vgl. [Goo16m]). Bei der Sprachsteuerung handelt es sich um die App

Voice Access, welche sich zum Erstellungszeitpunkt dieser Arbeit noch in der Entwicklung

befindet (vgl. [Goo16m]), aber zu Testzwecken schon verwendbar ist. Die Spracheingabe mittels

Voice Access funktioniert, indem der Benutzer entweder den Button-Text des Buttons, den

er betätigen möchte, oder die Zahl sagt, welche die Sprachsteuerung an jedem klickbaren

Element der Benutzeroberfläche einblendet (vgl. [Goo16l]). Das Betätigen einer Schaltfläche

über die zwei zuvor genannten Möglichkeiten funktioniert schon gut, weshalb die mittels

Voice Access mögliche Sprachsteuerung für die im Kapitel 6 beschriebenen Benutzbarkeitstests

ausreichend ist. Eine eigene Umsetzung der Sprachsteuerung zum jetzigen Zeitpunkt wäre in

den Augen des Autors nicht sinnvoll gewesen, da es besser ist, zunächst abzuwarten, wie gut

die App Voice Access nach ihrer Fertigstellung funktionieren wird. Wenn ihre Funktionsweise

zufriedenstellend ist, wäre es sowohl für die Benutzung als auch die Entwicklung beziehungs-

weise Pflege der Anwendung zur Steuerung des barrierefreien Smarthomes einfacher, die

vom Betriebssystem zur Verfügung gestellte Sprachsteuerung zu verwenden, als eine eigene

zu entwickeln. Nachteilig an der Sprachsteuerung mittels Voice Access ist , dass sie für die

Spracherkennung auf eine Internetverbindung angewiesen ist (vgl. [Goo16i]).

4.3.4. Vergleich der Eingabemethoden

Die Bedienung des Smarthomes via Touch, Maus oder Tastatur ist für die in Abschnitt 3.1.1

beschriebene Zielgruppe nur schwer oder gar nicht möglich. Aus diesem Grund soll sich die

Anwendung für das barrierefreie Smarthome durch eine der in den vorherigen 3 Unterkapiteln

beschriebenen Eingabemethoden barrierefrei bedienen lassen. Auf den ersten Blick erscheint

es vielleicht als unnötig, dass zur Herstellung der Barrierefreiheit für Benutzer, welche ihre

Hände nur noch eingeschränkt oder gar nicht mehr verwenden können, mehrere Eingabe-

methoden entwickelt werden sollen. Jedoch haben diese Benutzer trotz der Gemeinsamkeit,

dass sie ihre Hände nur noch eingeschränkt oder gar nicht mehr verwenden können, unter-

schiedliche Fähigkeiten und Bedürfnisse. Das ist zum einen darauf zurück zu führen, dass sich

ihre Behinderung beziehungsweise Krankheit unterschiedlich auswirkt oder sie an mehreren

leiden. Zum anderen haben sie unterschiedliche Wünsche und Bedürfnisse hinsichtlich der

Bedienung, wie auch die Auswertung der Interviews in 3.1.4 im Bereich der Eingabemethoden

ergab. Die Interviewteilnehmer wurden nach ihrer Meinung zu der Sprachsteuerung sowie

dem Face-Tracking gefragt. Die Tabelle 4.1 soll den zuerst genannten Aspekt untermauern,
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Tabelle 4.1.: Benötigte Fähigkeiten je Eingabemethode

Eingabemethode erforderliche Fähigkeit(en)

Touch eingeschränkte Motorik an einer Hand

Maus uneingeschränkte Motorik an einer Hand

Tastatur uneingeschränkte Motorik an einer Hand

1-Button-Scanning via Taster 1 Taster bedienbar

1-Button-Scanning via Blinzeln 1 Blinzelart beherrschen

2-Button-Scanning via Taster 2 Taster bedienbar

2-Button-Scanning via Blinzeln 2 Blinzelarten beherrschen

Face-Tracking Kopf bewegen u. 1 Blinzelart beherrschen

Sprachsteuerung sehr verständliche Aussprache

indem sie die Eingabemethoden für das barrierefreie Smarthome sowie die jeweils für sie

benötigten Fähigkeiten auflistet.

Die Tabelle 4.1 zeigt, dass sich das Face-Tracking für Personen eignet, die ihren Kopf bewegen

und blinzeln können. Jedoch kann die Querschnittlähmung auch so hoch sein, dass eine betrof-

fene Person ihren Kopf nicht mehr bewegen kann, wie in Abschnitt 2.2.2 näher beschrieben.

Für sie stellt die Sprachsteuerung dann eine Alternative dar. Letztere könnte grundsätzlich auch

von den Personen genutzt werden, die ihren Kopf noch bewegen können. Jedoch bringt auch

die Sprachsteuerung Einschränkungen mit sich. Zum einen können sie Umgebungsgeräusche

stören und zum anderen gibt es Benutzer, die neben der Querschnittlähmung zusätzlich noch

Sprachprobleme haben, was die Sprachsteuerung zumindest erschwert oder gar unmöglich

macht, weshalb diese vom Face-Tracking profitieren können. Darüber hinaus ist es möglich,

dass ein Benutzer weder seinen Kopf bewegen noch für die Sprachsteuerung ausreichend

gut sprechen kann. Für diesen Benutzer eignet sich dann das Scanning mittels Blinzeln. Das

Scanning ist in Kombination mit einer speziellen Tastatur mit großen Tasten darüber hinaus für

Benutzer geeignet, die ihre Hände zwar noch bewegen können, aber denen es an der Präzision

zur Bedienung einer herkömmlichen Tastatur oder Maus fehlt. Für die selbe Benutzergruppe

wäre es teilweise auch möglich die App zur Steuerung des barrierefreien Smarthomes mittels

Touch zu bedienen, da sich die Anzeigegröße der Buttons einstellen und somit an die motori-

schen Fähigkeiten der Hand des Benutzers anpassen lässt. Für die Bedienung einer Maus oder

Tastatur muss die Funktionsfähigkeit der Hand hingegen besser erhalten sein.

4.4. Eingabeverarbeitung

Die Anforderungen F1 sowie N5 verlangen zum einen die Unterstützung mehrerer Einga-

bemethoden und zum anderen, dass sich weitere zu einem späteren Zeitpunkt problemlos

hinzufügen lassen. Deshalb ist es sinnvoll, die Realisierung der Eingabemethoden Scanning
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Abbildung 4.9.: Konzeptionelle Eingabeverarbeitung

sowie Face-Tracking, welche nicht vom Betriebssystem aus angeboten werden, von der Be-

nutzeroberfläche zu trennen. Dadurch ist es zu einem späteren Zeitpunkt mit wenig Aufwand

möglich, eine weitere Eingabemethode hinzuzufügen. Die Abbildung 4.9 zeigt den Ablauf,

welchen ein Eingabeereignis in der Anwendung zur Steuerung des barrierefreien Smarthomes

nimmt und dadurch auch, wie die 2 zuvor genannten Eingabemethoden gekapselt sind.

Auf der zweiten Ebene befindet sich die Benutzeroberfläche. Sie besteht aus den Buttons. Wenn

der Benutzer die Eingabe via Touch, Tastatur, Maus oder der Sprachsteuerung vornimmt, wird

diese vom Betriebssystem verarbeitet und an den entsprechenden Button weiter geleitet. Die

Eingaben, die der Benutzer mittels Scanning oder Face-Tracking tätigt, kann das Betriebs-

system dagegen nicht weiterleiten, da diese Eingabemethoden nicht Bestandteil von diesem

sind. Stattdessen sind sie Teil der Anwendung zur Steuerung des barrierefreien Smarthomes

und befinden sich in der Abbildung 4.9 auf der Ebene 1. Aus der Perspektive eines Buttons

verhalten sich die beiden Eingabemethoden jedoch vergleichbar wie die anderen, da sie wie

das Betriebssystem das Eingabeereignis an ihn weitergeben.

Da das Konzept für die Benutzeroberfläche vorsieht, dass der Benutzer diese selbst um Menü-

elemente beziehungsweise Buttons erweitern kann, ist es für die Anwendung zur Steuerung

des barrierefreien Smarthomes gar nicht möglich, zu wissen, an welches Ziel sich der Einga-

bebefehl richtet. Bei den nicht bekannten Zielen handelt es sich um die im Unterkapitel 4.1

beschriebenen Erweiterungen. Für solche Situationen, in denen es also unklar ist, was genau
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passieren soll, wenn der Benutzer eine Button tätigt, eignet sich das Befehls-Entwurfsmuster

(vgl. [GR04, S. 173]). Der in Abbildung 4.9 dargestellte Ablauf der Eingabeverarbeitung ent-

spricht diesem. Wenn ein Button ein Eingabeereignis erhalten hat, leitet er einen Befehl an

eine zentrale Ausführungseinheit auf Ebene 3 weiter. Der Befehl beinhaltet die Funktionalität,

welche als Folge der Button-Betätigung auszuführen ist. Entsprechend den im Unterkapitel

4.2.1 beschriebenen Menüelementen besteht die auszuführende Funktionalität aus einem Na-

vigationsschritt in der Menüstruktur und / oder dem Aufruf einer Erweiterung. Durch die

zentrale Ausführung der Befehle ist die Logik für die Steuerung des barrierefreien Smarthomes

von deren Benutzeroberfläche getrennt.
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Dieses Kapitel behandelt die prototypische Implementierung der Anwendung zur Steuerung

des barrierefreien Smarthomes. Hierzu begründet es zunächst, welche Anforderungen in Form

des Prototyps realisiert und was für Technologien dafür verwendet werden. Anschließend stellt

es dessen Architektur vor und beschreibt die Implementation ihrer einzelnen Komponenten.

5.1. Begründung für die prototypische Umsetzung
ausgewählter Anforderungen

Die Realisierung des Prototyps umfasst einen Großteil der in Abschnitt 3.2 definierten An-

forderungen. Das Hauptaugenmerk der Realisierung liegt dabei auf den barrierefreien Ein-

gabemethoden Face-Tracking (Anforderung F3), Sprachsteuerung (Anforderung F4) sowie 1-

und 2-Button-Scanning (Anforderung F5), um diese im Rahmen der in Kapitel 6 beschriebenen

Benutzbarkeitstests mit den herkömmlichen Eingabemethoden Touch, Maus und Tastatur

vergleichen zu können.

Lediglich zwei Anforderungen werden gar nicht oder nur teilweise implementiert. Dabei

handelt es sich zum einen um die Anforderung F8, welche fordert, dass der Benutzer das barrie-

refreie Smarthome selbstständig ein- und ausschalten können soll. Im Verlauf der Interviews

und Kozeptionierung hat sich herausgestellt, dass diese Funktion besondere Herausforderungen

mit sich bringt, welche im Rahmen dieser Arbeit nicht umsetzbar sind. Darüber hinaus liegt der

Schwerpunkt, wie schon weiter oben beschrieben, auf dem Vergleich der verschiedenen Einga-

bemethoden zur Steuerung des barrierefreien Smarthomes, weshalb das Ein- und Ausschalten

von diesem zunächst als zweitrangig betrachtet werden kann. Zumal ein Großteil der Personen

aus der in Abschnitt 3.1.1 beschriebenen Zielgruppe die meiste Zeit eine Hilfsperson in ihrer

Nähe hat, welche das Ein- und Ausschalten zunächst übernehmen kann. Zum anderen wird

die in der Anforderung F5 verlangte Sprachsteuerung nicht implementiert, sondern mit Hilfe

der App Voice Access von Google, welche sich derzeit noch in der Entwicklung befindet (Stand

08.12.2016), in den Benutzbarkeitstests getestet (vgl. [Goo16m]). Zwar könnte eine eigene

Implementierung womöglich besser funktionieren, jedoch würde es sich bei dieser dann um

eine Sprachsteuerung handeln, welche nur innerhalb der App zur Steuerung des barrierefreien

Smarthomes verwendbar ist. Langfristig könnte das zu Schwierigkeiten mit der Voice Access

App von Google führen oder mit dieser konkurrieren, weshalb es aus der Sicht des Autors

wenig sinnvoll gewesen wäre, in eine eigene Sprachsteuerung zum jetzigen Zeitpunkt zu

61



5. Umsetzung Prototyp

investieren. Zumal die Funktionalität der App Voice Access zum Vergleich der Eingabemethode

Sprachsteuerung mit den anderen Eingabemethoden grundsätzlich ausreichend ist und sie

später sogar eine Möglichkeit zur Umsetzung des Ein- und Ausschaltens der Steuerung des

barrierefreien Smarthomes sein könnte, da sich mit ihr das gesamte Android Betriebssystem

bedienen lassen können soll (vgl. [Goo16m]).

In den in Abschnitt 3.1 beschriebenen Interviews äußerten die Teilnehmer mehrere Wünsche

hinsichtlich Geräten, welche sie mit der App zur Steuerung des barrierefreien Smarthomes

bedienen können möchten. Dazu gehörten unter anderem die Rollläden, Heizung sowie die

Einstellung der Liegeposition im Bett. Jedoch müsste für die Ansteuerung von diesen zunächst

entsprechende Hardware angeschafft werden, was mit Kosten verbunden gewesen wäre. Dar-

über hinaus eignen sich diese Geräte nicht für Demonstrationszwecke und Benutzbarkeitstests,

da sie entweder fest in einem Gebäude installiert oder nur schwer zu transportieren sind. Die

Auswertung der Interviews in Abschnitt 3.1.4 zeigt aber auch, dass die Teilnehmer sehr viel

Zeit mit dem Konsum von Fernsehen und Radio verbringen. Darüber hinaus äußerte eine

interviewte Person den Wunsch, an ihrem Fernseher mehr Funktionen eigenständig bedienen

zu können. Eine weitere gab als mögliches Anwendungsszenario an, mittels einer Sprachsteue-

rung nach Filmen im Internet suchen zu können. Deshalb bietet es sich an, einen Fernseher als

ein Zielgerät für die Anwendung zur Steuerung des barrierefreien Smarthomes zu benutzen,

denn zum einen würde er vermutlich von einem Großteil der Personen aus der Zielgruppe

häufig genutzt und zum anderen lässt er sich leicht transportieren und es muss keine Hardware

gekauft werden, da für die Benutzbarkeitstests auch ein Laptop als „Fernseher“ ausreicht. In

Abhängigkeit der genutzten TV-Software wäre es zudem sogar möglich, eine Onlinefilmsu-

che inklusive Streaming zu realisieren. Zusätzlich zu der Ansteuerung eines Fernsehers soll

jedoch noch eine eher klassische Smarthome-Funktion realisiert werden. Hierzu bieten sich

Funksteckdosen als zweites Zielgerät an, da sie sehr flexibel sind. Zum Beispiel lässt sich mit

ihnen ohne großen Aufwand die Steuerung einer Beleuchtung aufbauen, da sich herkömmliche

Lampen über sie ein- und ausschalten lassen. Des Weiteren sind sie transportabel, was für die

Benutzbarkeitstests von Vorteil ist.

5.2. Verwendete Systeme und Technologien

Die App zur Steuerung des barrierefreien Smarthomes wird für das Betriebssystem Android

prototypisch umgesetzt. Sie setzt den API-Level 21 oder höher beim Android Software Deve-

lopment Kit voraus. Optimiert ist sie auf den API-Level 23. Die Entwicklung und das Testen der

App zur Steuerung des barrierefreien Smarthomes erfolgt auf dem Tablet Pixel C, auf welchem

Android 7.0 installiert ist. Selbiges findet auch Verwendung für die in Kapitel 6 durchgeführten

Benutzerstudien. Die Erweiterungen und in die App eingebundene Bibliotheken basieren auf

der Java Version 6.

Als Smart-TV Zielgerät sollte ursprünglich das Programm Kodi TV, installiert auf einem Com-

puter, dienen. Dabei handelt es sich um ein umfangreiches Media Center Programm, welches
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nicht nur das Fernsehen, Filmeschauen und Musikhören ermöglicht, sondern zusätzlich durch

Addons erweiterbar ist (vgl. [Kod16a]). Hierdurch wäre es möglich, nicht nur lineares Fern-

sehen und Radio, sondern auch Videoplattformen, wie von einer der interviewten Personen

gewünscht, zu unterstützen. Jedoch ist Kodi TV auf die Bedienung via Fernbedienung ausgelegt

(vgl. [Kod16c]). Dies ist vermutlich ursächlich dafür, dass die angebotene API nur die Navigati-

onsmöglichkeiten bietet, welche mittels einer Fernbedienung möglich sind, wahrscheinlich

um die Entwicklung von Apps als Ersatz für diese zu unterstützen (vgl. [Kod16b]). Bei den

Navigationsmöglichkeiten handelt es sich um die Pfeiltasten sowie die Auswahlbestätigung

(vgl. [Kod16b]). Es ist jedoch nicht möglich, mittels einer Anfrage, einen bestimmten Fernseh-

beziehungsweise Radiosender auszuwählen, unabhängig davon, wie dieser empfangen wird

(vgl. [Kod16b]). Dadurch müsste der Benutzer von der App zur Steuerung des barrierefreien

Smarthomes in dieser jedes Mal eine Eingabe vornehmen, um in der Benutzeroberfläche von

Kodi TV einen „Schritt“ zu navigieren oder eine Auswahl zu bestätigen. Zum Einstellen eines

Senders wäre eine Folge von Eingaben in der App erforderlich. Darüber hinaus wäre es unbe-

quem, wenn der Benutzer mit dem Blick ständig zwischen zwei Benutzeroberflächen wechseln

müsste. Denn die App zur Steuerung des barrierefreien Smarthomes wäre im Endeffekt eine

virtuelle Tastatur mit welcher der Benutzer in der Oberfläche von Kodi TV navigiert. Aus den

genannten Nachteilen von Kodi TV in Kombination mit dem Konzept, wurde nach andere

Optionen gesucht. Bei dieser Suche stellte sich der VLC-Player als eine Alternative heraus.

Zwar besitzt dieser eine Benutzeroberfläche, die für Fernseher weniger geeignet und zudem

nicht über Addons erweiterbar ist, was zur Konsequenz hat, dass Videoplattformen nicht

ohne weiteres integrierbar sind (vgl. [Vid16a]), aber seine API ermöglicht es, mittels einer

Anfrage und damit auch einer Benutzereingabe in der App zur Steuerung des barrierefreien

Smarthomes, einen Fernseh- oder Radiosender auszuwählen (vgl. [Vid16b]). Dadurch ist es

möglich in der Benutzeroberfläche der App, eine Senderauswahl in Form mehrerer Buttons

darzustellen, wo jeder einen Sender repräsentiert und der Benutzer den gewünschten durch

Betätigen des entsprechenden Buttons auswählen kann.

Für die Funksteckdosen wird eine WLAN-Steckdosenleiste der Wöhlke EDV-Beratung GmbH

verwendet (vgl. [Wöh16a]). Sie besitzt drei Steckdosen, welche sich unter anderem mittels

HTTP-Anfragen einzeln an- und ausschalten lassen (vgl. [Wöh16b]). Für die prototypische Rea-

lisierung ist sie ideal, da sie leicht zu transportieren und vielfältig einsetzbar ist. Beispielsweise

ist es denkbar, mit ihr im Rahmen von Benutzbarkeitstests oder zu Demonstrationszwecken

nicht nur Leuchtmittel, sondern auch Klimaanlagen beziehungsweise elektrische Heizungen

ein- und auszuschalten.

5.3. Architektur

Dieses Unterkapitel beschreibt die Architektur des Prototypen, ausgehend von einem UML-

Komponentendiagramm. Im Anschluss daran gibt es in Form eines UML-Klassendiagramms

einen Überblick über die Eingabemethoden und wie diese hinsichtlich der Architektur in den
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<<component>>
App

<<component>>
Extensions

<<component>>
Usability Testing

<<component>>
User Interface & 
Input Methods

<<component>>
Command 
Executor

<<component>>
Menu

<<component>>
VLC-Player

<<component>>
Power-Outlet-

Strip

Abbildung 5.1.: UML-Komponentendiagramm für die App zur Steuerung des barrierefreien

Smarthomes.

Prototypen integriert sind. Das Unterkapitel schließt im Anschluss daran mit einer abstrakten

Beschreibung der Abhandlung einer Benutzereingabe mit Hilfe eines UML-Sequenzdiagramms

ab. Die in diesem Abschnitt beschriebene Architektur ist nicht vollständig, beinhaltet also nicht

alle Klassen, sondern gibt einen Überblick über die wichtigsten Komponenten des Prototyps.

5.3.1. Komponenten

Das UML-Komponentendiagramm in Abbildung 5.1 zeigt die prototypische Realisierung des

barrierefreien Smarthomes unterteilt in Module. Grundsätzlich kann zwischen zwei Bereichen

unterschieden werden. Die Komponente App fasst alle Komponenten zusammen, welche

Bestandteil der Steuerung des barrierefreien Smarthomes sind und auf einem Gerät mit dem

Betriebssystem Android ausgeführt werden. Bei den zwei Komponenten, die sich außerhalb

davon befinden, handelt es sich um die Zielgeräte, welche über die App bedienbar sind. Diese

wären zum einen die Komponente VLC-Player, welche auf einem Computer ausgeführt wird

und den Smart-TV darstellen soll und zum anderen die Komponente Power-Outlet-Strip. Beide

Zielgeräte behandelt der Abschnitt 5.4.6 noch ausführlicher.
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Die Komponente User Interface & Input Methods umfasst die Benutzeroberfläche sowie die

unterstützten Eingabemethoden. Zu ihr gehört die Darstellung der Menüelemente in Form von

Buttons und Meldungen an den Benutzer. Nicht Bestandteil der Komponente User Interface &

Input Methods ist die Menüstruktur.

Die Menüstruktur ist in einer eigenen Komponente namens Menu realisiert. Ihre Aufgabe ist

es zum einen, die Menüstruktur beim Start der App aus einer XML-Datei zu generieren und

zum anderen, die Navigation in ihr. Für Letzteres verfolgt sie die aktuelle Position innerhalb

der Menüstruktur und bietet eine Schnittstelle um in dieser zu navigieren. Das Ergebnis

eines Navigationsbefehls sind die im Anschluss an diesen darzustellenden Menüelemente

beziehungsweise Buttons. Hierdurch ist die komplette Menüstruktur sowie die Navigation in

der Komponente Menu gekapselt.

Die Schnittstelle der Komponente Menu nutzt die Komponente Command Executor. Diese

führt einen Befehl aus, wenn der Benutzer einen Button tätigt. Den entsprechenden Befehl

erhält sie hierfür von der Komponente User Interface & Input Methods. Für die Ausführung

eines Befehls nutzt die Komponente Command Executor Schnittstellen der Komponenten

Menu und Extensions. Letztere nutzt er, um die Zielgeräte anzusteuern. Die Schnittstelle der

Komponente Menu nutzt er, um Navigationsbefehle in der Menüstruktur auszuführen und um

die als nächstes anzuzeigenden Menüelemente zu erhalten. Durch die Anwendung des Befehl-

Entwurfmusters in Form der Komponente Command Executor findet die Ausführung aller

Benutzereingaben an einer zentralen Stelle statt, was auch für die Protokollierung während

der im Abschnitt 6.2 beschriebenen qualitativen Benutzbarkeitstests von Vorteil ist.

Für diese gibt es eigens die Komponente Usability Testing. Sie bietet eine Schnittstelle zur

Protokollierung der Benutzereingaben in einer CSV-Datei. Über sie kann die Komponente

Command Executor während den qualitativen Benutzbarkeitstests die Eingaben der Probanden

festhalten.

Die Komponente Extensions fasst sämtliche Erweiterungen zusammen, welche zur Ansteue-

rung der Zielgeräte dienen. Für jede Art von Zielgerät wird es dazu in der Regel jeweils eine

JAR-Datei geben, weshalb die Komponente Extensions sozusagen aus mehreren Unterkompo-

nenten besteht. Im Rahmen der Implementierung des Prototyps gibt es jeweils eine Erweiterung

zur Ansteuerung des VLC-Players und der WLAN-Steckdosenleiste.

Die Komponente User Interface & Input Methods besitzt zudem noch drei Rückrufschnitt-

stellen (engl. callback interfaces). Sie sind in dem in Abbildung 5.1 dargestellten UML-

Komponentendiagramm der Übersichtlichkeit wegen in Hellblau hervorgehoben. Eine der

Rückrufschnittstellen nutzt die Komponente Usability Testing um den Benutzer die zu lösende

Aufgaben und das Ende des Tests in der Benutzeroberfläche anzeigen zu können. Auf die zweite

Rückrufschnittstelle greift die Komponente Command Executor zu, um im Anschluss an die

Ausführung eines Navigationsbefehls die neu anzuzeigenden Menüelemente beziehungsweise

Buttons an die Benutzeroberfläche übergeben zu können. Die dritte Rückrufschnittstelle nutzt

die Komponente Extensions. Über sie können die Erweiterungen dem Benutzer Fehlermeldun-

gen oder andersweitige Informationen anzeigen.
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AbstractActivity 
{Abstract}

AbstractFace
TrackingActivity 

{Abstract}
DefaultActivity KeyboardActivity

DirectFace
TrackingActivity

BlinkScanning
Activity

KeyboardScanning
Activity

<<interface>>
IScanner

Scanner

11

Komponente: Klassendiagramm Eingabemethoden     Stand: 05.12.2016 7:15:17 

Abbildung 5.2.: UML-Klassendiagramm mit den wichtigen Klassen der Eingabemethoden.

5.3.2. Eingabemethoden

Das UML-Klassendiagramm in Abbildung 5.2 zeigt eine Übersicht über die Klassen der Einga-

bemethoden und wie diese zueinander in Beziehung stehen. Sämtliche in diesem Diagramm

gezeigten Klassen gehören zu der im vorherigen Abschnitt unter anderem beschriebenen

Komponente User Interface & Input Methods. Das UML-Klassendiagramm besteht jedoch nur

aus den wichtigsten Klassen je Eingabemethoden. Hilfsklassen wurden der Übersichtlichkeit

wegen weg gelassen.

Die Klasse AbstractActivity erweitert die Activity Klasse von Android. Erstere besitzt die

Funktionalität, welche alle Eingabemethoden benötigen. Hierbei handelt es sich in erster Linie

um Funktionen zur Darstellung der Menüelemente sowie um die drei Rückruf-Funktionen für

die Komponenten Usability Testing, Command Executor und Extensions.

Die DefaultActivity erweitert die Klasse AbstractActivity. Sie besitzt keine spezifischen

Funktionen, da sie die Eingabemethoden nutzen, welche das Betriebssystem Android schon un-

terstützt. Dies wären Touch, Maus sowie die Sprachsteuerung mittels der App Voice Access.

Die Klasse KeyboardActivity beinhaltet die Implementation für die Eingabemethode Tastatur.

Diese ist nicht in der DefaultActivity realisiert, da in den Einstellungen festlegbar ist, welcher

der angezeigten Buttons standardmäßig fokussiert ist. Ohne diese Option wäre eine eigene
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Klasse nicht nötig, da die Eingabe mittels Tastatur das Betriebssystem Android ebenfalls schon

unterstützt.

Die abstrakte Klasse AbstractFaceTrackingActivity generalisiert die erforderlichen Funk-

tionalitäten des Face-Trackings, die sowohl für die Eingabemethode Face-Tracking als auch die

beiden Eingabemethoden 1- und 2-Button-Scanning mittels Blinzeln erforderlich sind. Erstere

ist vollends in der Klasse DirectFaceTrackingActivity realisiert. Für das Face-Tracking

sind jedoch im erheblichen Umfang noch weitere Klassen erforderlich, welche der Abschnitt

5.4.4 detaillierter beschreibt. Das 1- und 2-Button-Scanning mittels Blinzeln ist in der Klas-

se BlinkScanningActivity implementiert, da es für die Blinzelerkennung Funktionen des

Face-Trackings benötigt.

Für die Eingabemethoden 1- und 2-Button-Scanning mittels einer Tastatur oder Tasters ist die

Klasse KeyboardScanningActivity zuständig. Da das 1-Button-Scanning mittels Blinzelns

und jenes mit Tastatur, für die automatische Fokussierung des nächsten Buttons sowie die

Möglichkeit zur Pausierung und Fortsetzung von dieser, die selbe Funktionalität benötigen,

aber es keine Mehrfachvererbung in Java gibt, ist dieser Teil der Implementierung in die Klasse

Scanner, welche die Schnittstelle IScanner implementiert, ausgelagert.

5.3.3. Ablauf einer Eingabe

Das UML-Sequenzdiagramm in Abbildung 5.3 zeigt den Ablauf einer Benutzereingabe und soll

damit das Zusammenspiel der zuvor beschriebenen Komponenten und Klassen verdeutlichen.

Wenn der Benutzer mittels einer der zur Verfügung stehenden Eingabemethoden einen Button

betätigt, wird dessen Methode performClick, wenn es sich um keine betriebssystemseitig un-

terstützte Eingabemethode handelt, durch eine der von der Klasse AbstractActivity erbende

Klasse aufgerufen. Im anderen Fall übernimmt das Android Betriebssystem die Verarbeitung

des Eingabeereignisses. In beiden Fällen finden im Vorfeld noch weitere Methodenaufrufe

statt, die für das Verständnis des Ablaufs jedoch unbedeutend sind und in Folge dessen in dem

UML-Sequenzdiagramm in Abbildung 5.3 nicht enthalten sind.

In Folge des Aufrufs der Methode performClick beziehungsweise der Eingabeverar-

beitung durch das Android Betriebssystem wird die Methode onClick des jeweiligen

View.OnClickListeners aufgerufen. Jeder der betätigbaren Buttons besitzt einen. Dieser

greift daraufhin auf eine Instanz der Klasse CommandExecutor zu, welche als Singleton im-

plementiert und Kern der Komponente Command Executor ist, um mittels des Aufrufs der

Methode executeCommand eine Instanz einer, die Klasse AbstractCommand erweiternde Klasse,

auszuführen. Eine solche Instanz besitzt jeder Button. Sie beinhaltet die jeweilige Funktionali-

tät, welche ausgeführt werden soll, wenn der Benutzer den entsprechenden Button betätigt.

Eine genauere Beschreibung davon findet in Abschnitt 5.4.2 statt.

Der CommandExecutor ruft die Methode executeCommand an einer Instanz der Klasse

AbstractCommand auf und führt, sofern qualitative Benutzbarkeitstests durchgeführt wer-

den, eine Protokollierung der Eingabe durch. Diese ist in dem UML-Sequenzdiagramm nicht
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Abbildung 5.3.: UML-Sequenzdiagramm, das die Verarbeitung einer Eingabe in der App zur

Steuerung des barrierefreien Smarthomes zeigt.
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dargestellt. Wenn das Menüelement, welches der betätigte Button repräsentiert, den Aufruf

einer Erweiterung beinhaltet, beispielsweise die Auswahl eines Fernsehsenders, wird in der Me-

thode executeCommand der Klasse AbstractCommand zunächst die Methode executeAction

in der Klasse MyClassLoader aufgerufen. Diese greift anschließend auf eine der Erweiterungen

aus der Komponente Extensions zu, welche daraufhin die Kommunikation mit dem entspre-

chenden Zielgerät vornimmt. Diese ist nicht mehr in demUML-Sequenzdiagramm in Abbildung

5.3 enthalten. Des Weiteren findet dieser Schritt nebenläufig statt, wodurch die Ausführung

der Methode executeCommand in der Klasse AbstractCommand nicht verzögert oder schlimms-

tenfalls blockiert wird. Wenn es sich bei dem betätigten Button um einen Navigationsbutton

handelt, mit dem also in der Menüstruktur nach oben, unten, links oder rechts navigiert werden

kann, instanziiert die Methode executeCommand über den Aufruf der Methode createButtons

anschließend die neuen Buttons. Hierfür muss Letztere auf die Schnittstelle der Komponente

Menu zugreifen. Dieser Zugriff sowie die erforderlichen Schritte zur Instanziierung der Buttons

sind in dem UML-Sequenzdiagramm in Abbildung 5.3 nicht mehr dargestellt. Nach der Instan-

ziierung der neuen Buttons sind diese noch an die Benutzeroberfläche zu übergeben, damit

sie für den Benutzer sichtbar werden. Hierfür ruft die Methode executeCommand die Methode

updateUI der Klasse AbstractActivity auf und übergibt dieser die neuen Buttons. Bei der

Methode updateUI handelt es sich um eine der drei Rückrufschnittstellen der Komponente

User Interface & Input Methods.

5.4. Implementierung

Dieses Unterkapitel befasst sich mit der Implementierung des Prototyps. Dazu startet es mit der

Benutzeroberfläche sowie der Menüstruktur. Anschließend beschreibt es, wie die Komponente

Command Executor sowie die Eingabemethoden realisiert wurden. Den Abschluss dieses

Unterkapitels bildet die Implementierung der Erweiterungen.

5.4.1. Menüstruktur und Benutzeroberfläche

Dieses Unterkapitel behandelt die Implementierung der Menüstruktur sowie der Benutzer-

oberfläche. Zunächst beschreibt es jedoch, wie sich die Menüstruktur in einer XML-Datei

definieren lässt.

Definition der Menüstruktur
Die Definition der Menüstruktur findet in einer XML-Datei statt, welche beim Start der App

mittels JDOM geparst wird um die entsprechende Java-Objekte zu erzeugen (vgl. [JDO16]).

Das Parsen der XML-Datei ist Bestandteil der Komponente Menu ebenso die entsprechenden

Klassen, deren Instanzen die XML-Elemente zur Laufzeit repräsentieren.
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Der Quellcodeausschnitt 5.1 zeigt eine Übersicht der XML-Datei, welche die Menüstruktur

des Prototyps beinhaltet. Sie besteht aus 4 Elementen, welche jeweils eine Liste mit weiteren

Elementen beinhaltet.

1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <menu xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
4

5 <supported_languages>
6 ....
7 </supported_languages>
8

9 <shared_attributes>
10 ...
11 </shared_attributes>
12

13 <menu_items>
14 ...
15 </menu_items>
16

17 <menu_hierarchy>
18 ...
19 </menu_hierarchy>
20

21 </menu>

Quellcodeausschnitt 5.1: Aufbau der Menüstruktur in der XML-Datei.

Das Element supported_languages beinhaltet die Sprachen, welche die definierte Benutzer-

oberfläche unterstützt. Eine Mehrsprachigkeit ist vorgesehen, aber im Prototyp nicht vollstän-

dig umgesetzt, weshalb diesem Element bis jetzt keine weitere Bedeutung zukommt.

Das Element shared_attributes kann beliebig viele shared_attribute Elemente beinhal-

ten. Ein Shared-Attribute besteht aus einem eindeutigen Schlüssel als Attribut, sowie einem

Datentyp und einem Wert als Unterelement. Bei dem Datentyp und dem Wert handelt es sich

um Strings. Der Quellcodeausschnitt 5.2 zeigt exemplarisch ein Shared-Attribute, welches

die IP-Adresse des Zielgeräts mit VLC-Player beinhaltet. Auf die Shared-Attributes können

alle Erweiterungen zugreifen. Sie stellen somit auch eine Möglichkeit zum Datenaustausch

zwischen ihnen her. Des Weiteren lassen sie sich als Session-Attribute nutzen, welche nur

zur Laufzeit der App existieren. In diesem Fall sind sie dann nicht Bestandteil der XML-Datei,

sondern werden erst zur Laufzeit erzeugt. Ihr Schlüssel muss trotzdem eindeutig sein. Die

Shared-Attributes lassen sich aber auch zur Definition von globalen Parametern verwenden.

Ein globaler Parameter ist beispielsweise die exemplarisch gezeigte IP-Adresse des Zielgeräts

mit dem VLC-Player. Diese steht der Erweiterung zur Ansteuerung des VLC-Players somit

immer zur Verfügung, weshalb sie nicht in jedem Menüelement, das einen Befehl an diesen

beinhaltet, als Parameter definiert sein muss.

1 <shared_attributes>
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2 <shared_attribute key="/vlc/ip">
3 <type>String</type>
4 <value>192.168.137.1</value>
5 </shared_attribute>
6 ...
7 </shared_attributes>

Quellcodeausschnitt 5.2: Shared-Attribute in der XML-Datei.

Das Element menu_items beinhaltet sämtliche Menüelemente, die in der Menüstruktur enthal-

ten sind. Ein Menüelement wird repräsentiert durch ein Element menu_item. Der Quellcode-

ausschnitt 5.3 zeigt die Definition des Menüelements zur Auswahl des Fernsehsenders ZDF. Das

Attribut id dient zur eindeutigen Identifizierung eines Menüelements. Diese ist erforderlich,

um weiter unten in der XML-Datei die Menühierarchie zu definieren. Das Unterelement names

beinhaltet mindestens ein Element name. Dadurch, dass es von diesem mehrere geben kann,

lässt sich eine Mehrsprachigkeit realisieren. Die jeweilige Sprache eines name Elements defi-

niert das Attribut language. Des Weiteren besitzt jedes name Element sowohl eine Langversion

als auch eine Kurzversion als Bezeichnung. Hierbei handelt es sich um die Bezeichnung, die

auch auf den Button zu sehen ist. Der Prototyp lässt sich zu einem späteren Zeitpunkt so

erweitern, dass in Abhängigkeit des zur Verfügung stehenden Platzes auf dem Button entweder

die Lang- oder Kurzversion zu sehen ist. Darüber hinaus gibt es eine aussprechbare Version

der Bezeichnung. Diese wird zur Sprachwiedergabe mittels TalkBack genutzt, um auch die

Barrierefreiheit für blinde und sehbehinderte Nutzer zu gewährleisten (vgl. [Goo16e]). Die

speech_recognition_values stellen das vierte Unterelement da. Es beinhaltet mindestens

eine Bezeichnung, über welche der Button mittels Sprachsteuerung zu einem fortgeschritte-

neren Entwicklungszeitpunkt betätigbar ist. Der Prototyp verwendet diese Einträge jedoch

noch nicht. Das Element icon_path ist optional. Über es lässt sich eine Grafik verlinken, die

auf dem entsprechenden Button angezeigt wird. Über die Unterelemente action_class und

parameters des Elements menu_item ist eine Funktionalität festlegbar, welche beim Betätigen

des Buttons ausgeführt wird. Ersteres Unterelement legt die zu verwendende Erweiterung

fest. Das Element source_file_path beinhaltet den Pfad zu der JAR-Datei, welche die Er-

weiterung darstellt. Das Element class_path enthält den Pfad zu der aufzurufenden Klasse

innerhalb der JAR-Datei. In dem Element parameters lassen sich Parameter in Form von

Schlüssel-Wert-Paaren definieren, die beim Aufruf der Erweiterung an diese übergeben werden.

Bei der Definition eines Menüelements zur Auswahl eines Fernsehsenders, ist dessen Position

innerhalb der Playlist des VLC-Players als Parameter definiert, sowie eine Bezeichnung für die

Aktion welche in der über das Element class_path festgelegten Klasse auszuführen ist, um

den Fernsehsender auszuwählen.

1 <menu_item id="tv_zdf">
2 <names>
3 <name language="Deutsch">
4 <long_name>ZDF</long_name>
5 <short_name>ZDF</short_name>
6 <speakable_name>ZDF</speakable_name>
7 <speech_recognition_values>
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8 <speech_recognition_value>ZDF</speech_recognition_value>
9 </speech_recognition_values>
10 </name>
11 </names>
12 <icon_path>/bfs/menu/icons/channels/tv/zdf.png</icon_path>
13 <action_class>
14 <source_file_path>/bfs/vlc/VlcActionClasses.jar</source_file_path>
15 <class_path>de.ableitner.vlcactions.VlcActionClass</class_path>
16 </action_class>
17 <parameters>
18 <parameter>
19 <name>methodName</name>
20 <value>playTvChannel</value>
21 </parameter>
22 <parameter>
23 <name>itemId</name>
24 <value>27</value>
25 </parameter>
26 </parameters>
27 </menu_item>

Quellcodeausschnitt 5.3:Menülement zur Auswahl des Fernsehsenders ZDF in der XML-

Datei.

Der vierte und letzte Teil der XMl-Datei zur Definition der Benutzeroberfläche ist das Ele-

ment menu_hierarchy. Es definiert die Struktur des Menüs. Dazu besitzt es ein Unterelement

root_menu, welches die IDs derjenigen Menüelemente beinhaltet, die Teil des Hauptmenüs,

also der obersten, für den Benutzer sichtbaren Menüebene, sind. Die IDs befinden sich je-

weils als Attribut in einem Element sub_menu_item. Neben dem Hauptmenü gibt es noch

Untermenüs. Je Untermenü gibt es ein Element sub_menu, welches ein Unterelement von dem

Element root_menu ist. Der Quellcodeausschnitt 5.4 zeigt exemplarisch die Definition eines

Untermenüs anhand der Favoriten-Sender des Fernsehers. Jedes sub_menu Element besitzt die

ID des Vorgängerknotens als Attribut. Die enthaltenen Menüelemente sind anschließend, wie

schon beim Hauptmenü, als Unterelemente definiert. Mit Hilfe des Elements menu_hierarchy

ist es möglich, im Anschluss an das Parsen der XML-Datei, die einzelnen Menüelemente als

baumartige Menühierarchie zu verknüpfen.

1 <menu_hierarchy>
2 ...
3 <sub_menu id_of_parent_menu_item="tv_favorites">
4 <sub_menu_item id_of_sub_menu_item="tv_ard"/>
5 <sub_menu_item id_of_sub_menu_item="tv_zdf"/>
6 <sub_menu_item id_of_sub_menu_item="tv_swrBW"/>
7 <sub_menu_item id_of_sub_menu_item="tv_rtl"/>
8 <sub_menu_item id_of_sub_menu_item="tv_sat1"/>
9 <sub_menu_item id_of_sub_menu_item="tv_pro7"/>
10 <sub_menu_item id_of_sub_menu_item="tv_vox"/>
11 </sub_menu>
12 ...
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13 </menu_hierarchy>

Quellcodeausschnitt 5.4: Untermenü Favoriten des Menüs für den Fernseher in der XML-

Datei.

Implementierung der Menüstruktur
Die Klasse Menu beinhaltet die Logik für die Navigation in der Menüstruktur. Sie ist Bestand-

teil der gleichnamigen Komponente Menu und bildet die Schnittstelle von dieser, welche die

Komponente Command Executor nutzt, um die Navigationsbefehle durchzuführen. Der Quell-

codeausschnitt 5.5 stellt die Signaturen der vier wichtigsten Methoden dieser Schnittstelle dar.

Für jede Navigationsrichtung gibt es eine. Die Methoden up und down dienen zur vertikalen

Navigation um zwischen den in Abbildung 4.2 dargestellten Ebenen zu wechseln. Zur horizon-

talen Navigation innerhalb eines Untermenüs gibt es die Methoden left und right. Alle 4

Methoden geben als Ergebnis die Menüelemente zurück, welche die Benutzeroberfläche im

Anschluss an den Navigationsschritt darstellt. Da die maximale Anzahl an Buttons konfigu-

rierbar ist, wird diese über den Parameter countOfMenuItemsToDisplay übergeben. Dieser

limitiert die Anzahl der zurückgegebenen Menüelemente und ermöglicht es zudem, zur Lauf-

zeit festzuhalten, welche gegenwärtig angezeigt werden, was für die horizontale Navigation

erforderlich ist. Die Methoden up und down besitzen zudem noch den booleschen Parameter

usePreviousPosition. Ist dieser wahr, geben die beiden Methoden die im anzuzeigenden

Untermenü jeweils zuletzt sichtbaren Menüelemente zurück. Anderenfalls handelt es sich um

die ersten Menüelemente des Untermenüs. Der Parameter menuItem in der Methode down

übergibt die Referenz auf das Menüelement, dessen Untermenü ausgewählt wurde.

1 public List<MenuItem> up(int countOfMenuItemsToDisplay, boolean

usePreviousPosition){

2 // implementation

3 }

4

5 public List<MenuItem> down(int countOfMenuItemsToDisplay, boolean

usePreviousPosition, MenuItem menuItem){

6 // implementation

7 }

8

9 public List<MenuItem> left(int countOfMenuItemsToDisplay){

10 // implementation

11 }

12

13 public List<MenuItem> right(int countOfMenuItemsToDisplay){

14 // implementation

15 }

Quellcodeausschnitt 5.5: Bestimmung des als nächstes zu betätigenden Buttons.
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Implementierung Benutzeroberfläche
Ein Hauptteil der Benutzeroberfläche ist in der Klasse AbstractActivity implementiert.

Sie gehört zu der Komponente User Interface & Input Methods. Die Funktionalität dieser

Klasse beschränkt sich auf das Einfügen der Buttons, welche sie von der Komponente Com-

mand Executor erhält, auf deren Implementation der folgende Abschnitt eingeht, sowie

die Anzeige von Fehlermeldungen und Debug-Daten. Darüber hinaus enthält die Klasse

AbstractActivity noch Funktionalität für die in Kapitel 6 beschriebenen Benutzbarkeitstests.

Die Klasse AbstractActivity besitzt deshalb so wenig Komplexität, da die Ausführung der

Navigationsschnitte in der Menüstruktur die Komponenten Menu und Command Executor

übernehmen. Aus diesem Grund muss sie lediglich die Benutzeroberfläche aktualisieren, indem

sie die vorhandenen Buttons durch die neu erhaltenen ersetzt.

Wie in Anforderung F6 gefordert, ist die Anzahl der gleichzeitig sichtbaren Buttons sowohl

in der horizontalen als auch der vertikalen Ausdehnung konfigurierbar. Aus diesem Grund

muss sich die Größe eines Buttons dynamisch an den zur Verfügung stehenden Platz anpassen.

Dies wird dadurch erreicht, dass keine statischen Abmessungen hinterlegt sind, sondern die

Buttons die Layout-Eigenschaften besitzen, das Elternlayout sowohl vertikal als auch horizon-

tal maximal auszufüllen. Bei diesem handelt es sich um ein Linear Layout mit horizontaler

Ausrichtung. Für jede Button-Zeile gibt es eines. Damit sich die Buttons innerhalb von die-

sem die zur Verfügung stehende Fläche gleichmäßig teilen, sind sie gleich gewichtet. Da es

mehrere Zeilen mit Buttons geben können soll, befinden sich die Linear Layouts, die jeweils

eine Button-Zeile beinhalten, wiederum selbst in einem Linear Layout, das jedoch vertikal

ausgerichtet ist. Auch hier wird die gleichmäßige Verteilung des zur Verfügung stehenden

Platzes durch eine Gewichtung erreicht. Die Abbildung 5.4 zeigt anhand eines Screenshots

den zuvor beschriebenen Aufbau der Benutzeroberfläche.

Da die Anzahl der anzuzeigenden Menüelemente nicht immer der maximalen Anzahl an

Buttons entspricht, Letztere aber dennoch eine einheitliche Größe besitzen sollen, füllen die

freien Flächen sogenannte Platzhalter-Buttons auf, die weder betätigbar noch sichtbar sind.

Der Quellcodeausschnitt 5.6 beinhaltet die Methode updateUI der Klasse AbstractActivity.

In ihr findet die Aktualisierung der Benutzeroberfläche statt. Hierzu werden zunächst die

vorhandenen Linear Layouts, welche jeweils eine Button-Zeile bilden, entfernt. Anschließend

wird das Linear Layout für die oberste Button-Zeile in einer eigens dafür zuständigen Methode

sowie ein Zähler initialisiert, der die Anzahl der je Linear Layout schon eingefügten Buttons

zählt. Im Anschluss daran iteriert eine for-each-Schleife über die Liste mit den neuen Buttons.

Innerhalb von dieser werden die Buttons der Reihe nach in ein horizontales Linear Layout

eingefügt und der Zähler inkrementiert. Entspricht dieser der maximal zulässigen Anzahl an

Buttons in horizontaler Richtung, wird das horizontale Linear Layout in das vertikale Linear

Layout eingefügt, ein neues initialisiert sowie der Zähler zurückgesetzt. Im letzten if-Ausdruck

wird in jedem Button noch eine Referenz auf dessen linken und rechten Nachbarn gesetzt.

Dadurch ist es möglich, dass der Benutzer bei der Eingabemethode Tastatur, wenn er möchte,

mit den beiden Pfeiltasten links und rechts nicht nur innerhalb einer Button-Zeile sondern
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über diese hinweg, navigieren kann. Sprich er kann, aber muss nicht, die Pfeiltasten aufwärts

oder abwärts benutzen, um die Button-Zeile zu wechseln.

1 public void updateUI(List<MyButton> newButtons) {

2 this.linearLayoutForButtons.removeAllViews();

3 int buttonsOfOneHorizontalLinearLayout = 0;

4 LinearLayout horizontalLinearLayout = this.createLinearLayout();

5 int id = 0;

6 Button previousButton = null;

7 for(Button button : newButtons){

8 horizontalLinearLayout.addView(button);

9 buttonsOfOneHorizontalLinearLayout++;

10 if(buttonsOfOneHorizontalLinearLayout ==

Settings.getInstance().menuGetNumberOfHorizontalButtons()){

11 this.linearLayoutForButtons.addView(horizontalLinearLayout);

12 buttonsOfOneHorizontalLinearLayout = 0;

13 horizontalLinearLayout = this.createLinearLayout();

14 }

15 if(previousButton != null){

16 previousButton.setNextFocusRightId(button.getId());

17 button.setNextFocusLeftId(previousButton.getId());

18 }

19 previousButton = button;

20 }

21 }

Quellcodeausschnitt 5.6: Einfügen neuer Buttons zur Aktualisierung der

Benutzeroberfläche.

Die Instanziierung der Buttons übernimmt die Klasse ButtonFactory. Sie besitzt statische

Methoden, über deren Aufruf jeweils ein bestimmter Button erstellbar ist. Grundsätzlich kann

zwischen 3 unterschiedlichen Arten von Buttons unterschieden werden. Dabei handelt es

sich um den Platzhalter-Button, einen Button mit Beschriftung sowie einen mit Grafik und

Beschriftung. Bei ersteren 2 handelt es sich um die Klasse MyButton, welche von der Android

Klasse Button erbt. Die Klasse MyButton kann im Vergleich zu dieser zusätzlich eine Refernz

auf eine Instanz einer Klasse, welche die Schnittstelle ICommand implementiert, besitzen. Diese

ist erforderlich zur Ausführung der Funktionalität des jeweiligen Buttons in der Komponente

Command Executor. Der Platzhalter-Button besitzt eine solche Referenz nicht, da er keine

Funktionalität enthält. Aus diesem Grund werden seine Sichtbar- und Klickbarkeit schon

bei der Erzeugung in der Klasse ButtonFactory auf false gesetzt. Für beide Buttons mit

Beschriftung ist die Schriftgröße von dieser einstellbar, wie in Anforderung F7 verlangt. Für die

Buttons mit Grafiken gibt es nochmals eine eigene Klasse MyIconButton, welche von MyButton

erbt. In ihr ist die Methode onDraw, welche das Android Betriebssystem zum Zeichnen des
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Abbildung 5.4.: Screenshot von der Benutzeroberfläche. (Die Icons auf den Buttons stammen

von: https://material.io/icons/ (16.12.2016))

Buttons auf der Benutzeroberfläche aufruft, überschrieben um die Grafik einzufügen. Bei

dieser handelt es sich um jene, die in der in Abschnitt 5.4.1 beschriebenen XML-Datei zu

Definition einer Benutzeroberfläche durch Angeben eines Dateipfads zu dieser im Element

icon_path festlegbar ist. Da die Anzahl der Buttons sowie die Schriftgröße konfigurierbar

sind und die Button-Beschriftungen unterschiedlich lang sind, müssen die Grafiken jeweils

so skaliert werden, dass sie sich in den noch freien Bereich eines Buttons einfügen. Diese

Skalierung findet in der überschriebenen onDrawMethode statt. Im Anschluss daran ruft diese

noch die onDraw Methode der Oberklasse auf.

Insbesondere bei einer hohen Anzahl an Buttons und der Verwendung von Grafiken mit einer

großen Dateigröße ist es zunächst zu einer für den Benutzer wahrnehmbaren Verzögerung beim

Aktualisieren der Benutzeroberfläche gekommen. Dies lies sich durch puffern der Grafiken

nach ihrer erstmaligen Verwendung reduzieren. Hierzu gibt es eigens die Klasse IconLoader.

Sie puffert die Grafiken in einer HashMap. Als Schlüssel dient deren jeweiliger Dateipfad. Die

Anzahl der maximal gleichzeitig gepufferten Grafiken ist über eine Konstante festgelegt. Wenn

die maximale Anzahl an gepufferten Grafiken erreicht ist, aber eine neue zu puffern ist, entfernt
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Komponente: Klassendiagramm Command Executor     Stand: 17.12.2016 12:13:14 

Abbildung 5.5.: Klassendiagramm mit den Klassen der Komponente Command Executor.

die Klasse IconLoader eine aus dem Puffer. Die Auswahl von dieser Grafik erfolgt nach dem

Least-recently-used-Prinzip.

5.4.2. Komponente Command Executor

Das UML-Klassendiagramm in Abbildung 5.5 zeigt die Klassen der Komponente Command

Executor. Sie bilden, abgesehen von der Klasse MyClassLoader zusammen das Befehls-

Entwurfsmuster (vgl. [GR04, S. 273-277]). Insgesamt gibt es 4 Befehle. Für jede Navigati-

onsmöglichkeit innerhalb der Menüstruktur einen. Jeder Befehl hat seine eigene Klasse. Die

Gemeinsamkeiten von diesen sind in den abstrakten Oberklassen AbstractCommand sowie

AbstractCommandVertical zusammengefasst. Im vorherigen Abschnitt 5.4.1 wurde erwähnt,

dass jeder Button mit Ausnahme der Platzhalter-Buttons, eine Referenz auf eine Instanz ei-

ner Klasse besitzt, welche die Schnittstelle ICommand implementiert. Dabei handelt es sich

jeweils um eine der 4 Klassen CommandUp, CommandDown, CommandLeft und CommandRight.

Das UML-Sequenzdiagramm in Abbildung 5.3 stellt den Ablauf dar, wenn der Benutzer einen

Button betätigt. Teil dieses Ablaufs ist auch die Komponente Command Executor, denn die

zu ihr gehörende Klasse CommandExecutor führt die von den Buttons referenzierten Befehle

aus. Innerhalb der Klasse ist dafür die Methode executeCommand verantwortlich, welche im

Normalfall lediglich die gleichnamige Methode executeCommand der Schnittstelle ICommand

aufruft. Normalfall deshalb, weil sie im Rahmen der in Abschnitt 6.2 beschriebenen qualitativen

Benutzbarkeitstests auch noch die Protokollierung der Benutzereingabe durchführt.

Die Methode executeCommand der Klasse CommandDown führt zunächst den Aufruf einer Er-

weiterung aus, wenn in der XML-Datei für das entsprechende Menüelement eine spezifiziert

ist, was nicht immer der Fall ist. Manchmal betätigt der Benutzer nur deshalb einen Button mit
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einer Referenz auf eine Instanz der Klasse CommandDown, um in ein Untermenü zu gelangen,

das sich eine Ebene tiefer in der Menüstruktur befindet. Ist eine Erweiterung hinterlegt, ruft die

Methode executeCommand die Methode executeAction der als Singleton realisierten Klasse

MyClassLoader auf. Diese bekommt unter anderem als Parameter den Verzeichnispfad zu

der Erweiterung beziehungsweise der JAR-Datei sowie einen Klassenpfad zu einer Klasse in

dieser übergeben. Dadurch lässt sich diese Klasse mittels Java Reflections instanziieren. Dieser

Vorgang ist im Quellcodeausschnitt 5.7 zu sehen, welchem die Fehlerbehandlung zum Zweck

der Übersichtlichkeit fehlt. Daneben wird noch eine Reihe weiterer Parameter übergeben.

Diese sind zum einen die Shared-Attributes sowie Parameter, jeweils in Form einer HashMap,

eine Referenz auf die Benutzeroberfläche als Rückrufschnittstelle und ein Kontext-Objekt.

Letzteres beinhaltet androidspezifische Funktionen, welche in den Erweiterungen benötigt

werden. Im Quellcodeausschnitt 5.7 wird in Anschluss an die Instanziierung der Klasse eine

Methode action ausgeführt. Ihr Aufruf erfolgt in einem eigenen Thread um sicher zu stellen,

dass eine Erweiterung die Ausführung der App zu Steuerung des barrierefreien Smarthomes

nicht blockieren kann.

1 public void executeAction(String dexFilePath, String actionClassPath,

ConcurrentHashMap<String, SharedAttribute> sharedAttributes, final

ConcurrentHashMap<String, String> parameters, ICallbackUserInterface

callbackUserInterface, Context context){

2 String fullPath = Environment.getExternalStorageDirectory() +

dexFilePath;

3 String optimizedDirectoryPath =

context.getCodeCacheDir().getAbsolutePath();

4

5 DexClassLoader dexClassLoader = new DexClassLoader(fullPath,

optimizedDirectoryPath, null, this.getClass().getClassLoader());

6 Class<Object> actionClass =

(Class<Object>)dexClassLoader.loadClass(actionClassPath);

7

8 Constructor<Object> actionClassConstructor =

actionClass.getConstructor(ConcurrentHashMap.class,

ICallbackUserInterface.class, Context.class);

9

10 final Object actionClassInstance = (Object)

actionClassConstructor.newInstance(sharedAttributes,

callbackUserInterface, context);

11

12 final Method methodAction = actionClass.getMethod("action",

ConcurrentHashMap.class);

13 Runnable runnable = new Runnable() {

14 @Override

15 public void run() {
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16 methodAction.invoke(actionClassInstance, parameters);

17 }

18 };

19 Thread thread = new Thread(runnable);

20 thread.start();

21 }

Quellcodeausschnitt 5.7: Aufruf der Erweiterungen mittels Java Reflections.

Danach generiert die Methode executeCommand eine Liste mit neuen Buttons. Dieser Schritt

findet unabhängig davon statt, umwelche Unterklasse es sich von der Klasse AbstractCommand

handelt. Die einzige Ausnahme stellt die Implementierung der Methode executeCommand in

der Klasse CommandDown dar. Befindet sich der betätigte Button schon auf der untersten Ebene

der Menüstruktur, kann es sprichwörtlich nicht mehr weiter runter gehen. In diesem Fall

bleibt die Aktualisierung der Benutzeroberfläche aus. In allen anderen Fällen ermittelt sie

zunächst, wie viele Menüelemente als nächstes in der Benutzeroberfläche anzeigbar sind. Das

ist von der konfigurierbaren maximalen Anzahl an Buttons sowie von den anzuzeigenden

Navigations-Buttons abhängig. Letztere müssen nicht immer zu sehen sein. Befinden sich im

Hauptmenü (oberste für den Benutzer sichtbare Menüebene) beispielsweise genauso viele

oder weniger Menüelemente als die eingestellte maximale Anzahl an Buttons, müssen keine

Navigationsbuttons angezeigt werden. Im Sinne einer kontinuierlichen Benutzeroberfläche

kann der Benutzer jedoch einstellen, dass diese immer sichtbar, aber in vergleichbaren Fällen

wie dem beschriebenen, nicht betätigbar sind. Nachdem die Anzahl der darstellbaren Menü-

elemente bekannt ist, führt sie den Navigationsbefehl über die Schnittstelle der Komponente

Menu aus. Als Rückgabe erhält sie von dieser die anzuzeigenden Menüelemente. Mit Hilfe der

Klasse ButtonFactory erzeugt sie für jedes Menüelement einen Button. Sofern die Anzahl der

erhaltenen Menüelemente kleiner ist, als die der anzeigbaren Buttons, erzeugt sie der Differenz

entsprechend zusätzliche Platzhalter-Buttons.

Am Ende übergibt die Methode sämtliche erstellten Buttons in Form einer Liste an die Benut-

zeroberfläche. Hierfür ruft sie die Methode updateUI der Klasse AbstractMenuActivity auf,

welche eine der drei Rückrufschnittstellen der Komponente User Interface & Input Methods

darstellt. Der Quellcodeausschnitt 5.6 in Abschnitt 5.4.1 zeigt die Methode updateUI. Aus ihm

geht hervor, dass die Methode updateUI die übergebenen Buttons entsprechend der Reihen-

folge in der Liste von links nach rechts in die jeweilige Button-Zeile und Letztere von oben

nach unten in die Benutzeroberfläche einfügt. Deshalb übergibt die Methode executeCommand

die Buttons schon in der erforderlichen Reihenfolge.

5.4.3. Eingabemethoden Touch, Maus, Tastatur und Sprachsteuerung

Aus der in Abschnitt 5.3 beschriebenen Architektur geht hervor, dass die Eingabemethoden

Touch, Maus sowie die Sprachsteuerung die Klasse DefaultActivity nutzen. Diese erbt von

der abstrakten Klasse AbstractActivity und erweitert diese um keine Funktionalität. Der
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Grund hierfür ist, dass die Eingabemethoden Touch, Maus und Sprachsteuerung schon das

Android Betriebssystems ausreichend unterstützt, weshalb keine eigene Implementierung für

sie erforderlich ist. Das gleiche gilt grundsätzlich auch für das Eingabemittel Tastatur. Allerdings

ist bei dieser Eingabemethode standardmäßig der oberste linke Button fokussiert, was zur

Folge hat, dass der Benutzer durchschnittlich die Pfeiltasten häufiger betätigen muss, um den

gewünschten Button auszuwählen, wie wenn zu Beginn ein Button in der Mitte fokussiert

ist. Da manche Benutzer aus Gewohnheit jedoch vielleicht Ersteres bevorzugen, können sie

einstellen, ob zu Beginn der Button oben links, unten rechts oder in der Mitte fokussiert ist.

Sollte die Anzahl der vertikalen und / oder horizontalen Buttons ein Vielfaches von 2 sein,

wird ausgehend von der Mitte der obere bzw. linkere Button fokussiert, sofern der Benutzer

eingestellt hat, dass zu Beginn der mittlere fokussiert sein soll. Die Fokussierung findet in

der Methode updateUI der Klasse KeyboardActivity statt, da sie jedes Mal aufgerufen wird,

wenn neue Buttons in die Benutzeroberfläche einzufügen sind. Für Letzteres ruft sie zunächst

die Methode updateUI in der Oberklasse, also der AbstractActivity auf. Im Anschluss daran

fokussiert sie entsprechend der Konfiguration entweder den ersten oder letzten Button aus der

Liste über die Methode requestFocus der Klasse Button oder berechnet zur Fokussierung des

mittleren Buttons dessen Index in der Liste.

5.4.4. Face-Tracking

Das UML-Klassendiagramm in Abbildung 5.6 zeigt die wichtigsten Klassen und Methoden des

Face-Trackings. Die Klassen AbstractActivity und DirectFaceTrackingActivity initiali-

sieren das Face-Tracking und beinhalten einen Teil der face-tracking-spezifischen Funktionali-

täten für die Benutzeroberfläche. Das Face-Tracking selbst ist in der Mobile Vision API von

Google realisiert (vgl. [Goo16b]). Die Klasse FaceTracker verarbeitet die Ergebnisse von dieser,

indem sie diese in Benutzereingaben übersetzt. Bei diesen handelt es sich zum einen um die

vertikale und horizontale Bewegung des Cursors. Für Erstere ist die Klasse NoseYTracker und

für Zweitere die Klasse EulerYTracker verantwortlich. Beide implementieren die Schnittstelle

ITracker, über welche die Klasse FaceTracker auf sie zugreift. Dadurch lassen sich ohne

Anpassungen an dieser die Tracker auswechseln. Zum anderen wertet die Klasse FaceTracker

für beide Augen des Benutzers deren Öffnungswahrscheinlichkeit aus, um ein Blinzeln zu

erkennen und in Folge dessen eine Aktion auszuführen. Die Erkennung des Blinzelns findet

entweder in der Klasse OneBlinkTracker oder TwoBlinksTracker statt.

Die Eingabemethoden 1- und 2-Button-Scanning nutzen ebenfalls das Face-Tracking. Wie in

Abbildung 5.2 in Abschnitt 5.3.2 zu erkennen ist, erbt die Klasse BlinkScanningActivity

ebenfalls von der Klasse AbstractFaceTrackingActivity. Da Erstere sowie die Klasse

DirectFaceTrackingActivty jedoch nicht ein und dieselben Funktionalitäten benötigen,

ist die Instanziierung der Klasse FaceTracker in der Klasse AbstractFaceTrackingActivity

generalisiert. Hierzu definiert diese die in dem UML-Klassendiagramm in Abbildung 5.6 zu

sehenden abstrakten Methoden, welche ihre Unterklassen implementieren müssen. Je nach
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Abbildung 5.6.: Klassendiagramm mit den Klassen des Face-Trackings.
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Eingabemethode und deren Einstellungen, wird in diesen Methoden ein Tracker / Beobachter /

Cursor erzeugt und der Instanz der Klasse FaceTracker als Referenz übergeben.

Die Methode onUpdate ist die wichtigste in der Klasse FaceTracker. Die Mobile Vision API

ruft sie auf, wenn sich an dem Gesicht des Benutzers etwas verändert und übergibt die Ergeb-

nisse als Parameter. Im Anschluss daran leitet die Methode onUpdate diese zur Auswertung

an die Tracker weiter. Der Quellcodeausschnitt 5.8 zeigt, dass hierfür zunächst alle registrier-

ten Debugger über die Ergebnisse informiert werden. Als Debugger können sich alle Klasse

registrieren, welche die Schnittstelle IFaceTrackerDebugger implementieren. Auf die Klasse

DirectFaceTrackingActivity trifft dies zu. Hierdurch kann sich der Benutzer oder Entwick-

ler bei Bedarf die Ergebnisse des Face-Trackings am unteren Rand der Benutzeroberfläche

anzeigen lassen. Im Anschluss daran überprüft die Methode onUpdate, ob sich die Eingabeme-

thode Face-Tracking gerade im Standby befindet. Standby bedeutet in diesem Fall, dass der

Cursor sich durch Kopfbewegungen nicht bewegen und sich mittels Blinzeln auch kein Button

betätigen lässt. Dies soll Fehleingaben vermeiden, während der Benutzer sich zwar im Blickfeld

der Kamera befindet, aber die App zur Steuerung des barrierefreien Smarthomes gerade nicht

bedienen möchte. Wie in dem Konzept in Abschnitt 4.3.1 beschrieben, kann zwischen 3 Arten

beim Blinzeln unterschieden werden. In den Einstellungen kann der Benutzer einstellen, ob die

Funktion Standby aktiv sein soll und wenn ja, mit welchem Blinzeltyp er diese aktivieren sowie

deaktivieren möchte. Befindet sich das Face-Tracking nicht im Standby, leitet die Methode

onUpdate die Ergebnisse an den horizontalen und vertikalen Tracker weiter. Hierzu ruft sie

jeweils die Methode getPixelValue der Schnittstelle ITracker auf. Diese berechnet anhand

der von der Mobile Vision API erhaltenen Ergebnisse die neue horizontale / vertikale Position

des Cursors aus. Da es nicht zwingend erforderlich ist, sowohl einen horizontalen als auch ver-

tikalen Tracker zu benutzen, prüft die Methode onUpdate im Vorfeld des Aufrufs der Methode

getPixelValue, ob eine Referenz auf einen Tracker gesetzt ist. Wenn die zukünftige Position

des Cursors berechnet ist und eine Referenz auf ihn existiert, informiert die Methode onUpdate

diesen über seine neue Position. Selbiges gilt auch für den Gesichts-Positions-Beobachter.

Unabhängig davon, ob sich die Eingabemethode Face-Tracking im Standby befindet, muss der

Tracker für das Blinzeln mit den Daten aus der Mobile Vision API versorgt werden, weil sich

hierüber der Standby wieder deaktivieren lässt.

1 public void onUpdate(FaceDetector.Detections<Face> detectionResults, Face

face) {

2 for(IFaceTrackerDebugger faceTrackerDebugger :

this.faceTrackerDebuggers){

3 faceTrackerDebugger.onUpdate(face);

4 }

5 if(this.standby == false){

6 int xCursorPositionInPixels = -1;

7 int yCursorPositionInPixels = -1;

8 if(this.horizontalTracker != null){
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9 xCursorPositionInPixels =

this.horizontalTracker.getPixelValue(face);

10 }

11 if(this.verticalTracker != null){

12 yCursorPositionInPixels =

this.verticalTracker.getPixelValue(face);

13 }

14 if(this.cursor != null){

15 this.cursor.onPositionUpdate(xCursorPositionInPixels,

yCursorPositionInPixels);

16 }

17 if(facePositionListener != null){

18 this.facePositionListener.onFacePositionUpdate(xCursorPositionInPixels,

yCursorPositionInPixels);

19 }

20 }

21 if(this.blinkTracker != null){

22 this.blinkTracker.onUpdate(face);

23 }

24 }

Quellcodeausschnitt 5.8: Verarbeitung eines Updates der Mobile Vision API von Google.

Die folgenden 2 Abschnitte beschreiben, wie die Verarbeitung der Daten innerhalb der Tracker

zum einen für die Steuerung des Cursors und zum anderen zur Erkennung des Blinzelns

erfolgt. Im Anschluss daran folgt ein dritter Abschnitt, der sich mit den Anpassungen der

Benutzeroberfläche an das Face-Tracking befasst.

Steuerung des Cursors
Der Quellcodeausschnitt 5.9 zeigt die wichtigsten Zeilen der Klasse Tracker. Die 4 Attribute

minPixelValue, maxPixelValue, inputValueForMinPixelValue und

inputValueForMaxPixelValue definieren 2 Intervalle. Die ersten 2 Attribute definieren das

Intervall für die horizontale / vertikale Achse des Cursors, auf welcher der Benutzer diesen

bewegen kann. Die Werte dafür werden während der Initialisierung des Face-Trackings gesetzt.

Betrachtet man den Bereich der Benutzeroberfläche mit den Buttons wie in Abbildung 5.7

dargestellt als Koordinatensystem, welches die Displayauflösung als Grundlage besitzt, wird

das Attribut minPixelValue mit dem kleinsten noch in der Benutzeroberfläche befindlichen

Punkt der Y- / X-Achse initialisiert. Der Wert 0 ist nicht standardmäßig verwendbar, da ein

Teil der verfügbaren Displayauflösung manchmal für eine Benachrichtigungs- und / oder

Navigationsleiste des Android Betriebssystems verwendet wird. Bei dem Wert für das Attribut

maxPixelValue handelt es sich folglich um den größten in der Benutzeroberfläche befind-

lichen Punkt der Y- / X-Achse. Bildlich betrachtet handelt es sich dabei um den unteren /

rechten Rand der Benutzeroberfläche der App zur Steuerung des barrierefreien Smarthomes.
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Die Attribute inputValueForMinPixelValue und inputValueForMaxPixelValue bilden das

zweite Intervall. Es beinhaltet die möglichen Eingabewerte, also im Fall der prototypischen

Realisierung, zum einen wie weit der Benutzer seinen Kopf nach links und rechts drehen muss,

um den Cursor an den linken bzw. rechten Rand der Benutzeroberfläche zu bewegen und

zum anderen in welchem Bereich des Kamerabildes er seine Nase auf- und absenken kann,

um den Cursor auf der vertikalen Achse zu bewegen. Die Werte für diese Intervall legt der

Benutzer in den Einstellungen selbst fest. Grundsätzlich ist es so, je größere das Intervall ist

desto höher ist die Präzision bei der Bedienung des Cursors, was im Gegenzug jedoch auch eine

entsprechende Beweglichkeit erfordert. Benutzer die ihren Kopf nur noch in einem geringen

Umfang drehen können, stellen ein entsprechend kleines Intervall für die Eingabewerte ein

und müssen aufgrund der dadurch nachlassenden Präzision gegebenenfalls die Anzahl der

Buttons je Zeile verringern.

1 private int minPixelValue;

2 private int maxPixelValue;

3

4 private float inputValueForMinPixelValue;

5 private float inputValueForMaxPixelValue;

6

7 private IFilter filter;

8

9

10 protected abstract float getInputValue(Face face);

11

12 public int getPixelValue(Face face){

13 int pixelValue =

this.convertInputValueToPixelValueLinear(this.getInputValue(face));

14 if(pixelValue != -1 && this.filter != null){

15 pixelValue = this.filter.filterValue(pixelValue);

16 }

17 return pixelValue;

18 }

19

20 protected int convertInputValueToPixelValueLinear(float inputValue){

21 float pixelValue = -1;

22 float tmp = (inputValue - this.inputValueForMinPixelValue) /

(this.inputValueForMaxPixelValue - this.inputValueForMinPixelValue);

23 tmp = Math.max(0, tmp);

24 tmp = Math.min(1, tmp);

25 pixelValue = ((this.maxPixelValue - this.minPixelValue) * tmp) +

this.minPixelValue;

26 return Math.round(pixelValue);

27 }
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Quellcodeausschnitt 5.9: Abbildung der Gesichtsposition auf die des Cursors.

Die Klasse FaceTracker ruft den vertikalen sowie den horizontalen Tracker über die Methode

getPixelValue auf, welche auch im Quellcodeausschnitt 5.9 in einer vereinfachten Form

zu sehen ist. Diese bekommt als Parameter eine Instanz der Klasse Face übergeben, welche

die von der Google Mobile Vision API berechneten Werte beinhaltet. Die abstrakte Methode

getInputValue liest aus diesem Objekt anschließend den benötigten Wert aus. Die Klasse

Tracker definiert sie lediglich. Ihre Implementierung erfolgt erst in den Unterklassen, welche

jeweils ein Gesichtsmerkmal verfolgen. Hierdurch kann der Benutzer in den Einstellungen

zwischen verschiedenen Gesichtsmerkmalen wählen, die zur Eingabe verfolgt werden sollen.

Da die Unterklassen dafür alle dieselbe Methode getInputValue implementieren, lässt sich die

Klasse FaceTracker mit diesen beliebig konfigurieren, ohne dafür Anpassungen vornehmen

zu müssen. Im Rahmen der prototypischen Realisierung wird der Cursor durch Drehen des

Kopfes horizontal bewegt. Den hierfür benötigten Tracker stellt die Klasse EulerYTracker dar.

Sie liest den gleichnamigen Euler-Y-Winkel aus der Instanz der Klasse Face aus (vgl. [Goo16b]).

Ursprünglich war es geplant, den Euler-X-Winkel, welcher die Neigung des Kopfes nach vorne

beziehungsweise hinten beschreibt, zu verwenden, um den Cursor in vertikaler Richtung zu be-

wegen (vgl. [Goo16b]). Jedoch ist dieser in der Mobile Vision API von Google bisher noch nicht

implementiert, sondern nur in der Dokumentation für die Zukunft schon einmal vorgemerkt

(vgl. [Goo16b]). Aus diesem Grund wird stattdessen die Y-Koordinate der Nasenwurzel genutzt.

Sie eignet sich dafür besonders gut, da sie zu jenen Gesichtsmerkmalen gehört, die mittels

Googles Mobile Vision API bis zu einem Euler-Y-Winkel > -36 beziehungsweise < 36 erkennbar

sind und damit bei einer Drehung des Kopfes am längsten verfolgbar sind (vgl. [Goo16b]). Das

Auslesen der Y-Koordinate von der Nasenwurzel findet in der Klasse NoseYTracker statt.

Im Anschluss daran leitet die Methode getPixelValue den Eingabewert an die Methode

convertInputValueToPixelValueLinear weiter, die ebenfalls in dem Quellcodeauschnitt

5.9 zu sehen ist. In ihr findet die Abbildung des Intervalls für den Eingabewert auf jenes

der horizontalen / vertikalen Achse des Cursors statt. Dies entspricht grundsätzlich der im

Abschnitt 4.3.1 im Rahmen des Konzepts beschriebenen beiden Formeln. Jedoch wird in den

Zeilen 23 und 24 der Multiplikationsfaktor tmp auf einen Wertebereich >= 0 und <= 1 limitiert.

Das ist nötig, da anders als im Konzept, in der Realität der Eingabewert auch außerhalb

des durch die Attribute inputValueForMinPixelValue und inputValueForMaxPixelValue

definierten Intervalls liegen kann. Des Weiteren muss auf die berechnete Position auf der

vertikalen / horizontalen Achse des Cursors noch das Attribut minPixelValue addiert werden,

weil der linke / obere Rand der Benutzeroberfläche mit den Buttons nicht zwingend bei 0

beginnt. Zum Abschluss rundet die Methode convertInputValueToPixelValueLinear das

Ergebnis noch auf eine Ganzzahl, da die Position des Cursors in Pixel bestimmt wird.

Zurück in der Methode getPixelValue kann das Ergebnis anschließend noch mittels eines

Filters geglättet werden. Dies ist im Prototyp mittels eines Tiefpassfilters möglich. Der Benutzer

kann diesen in den Einstellungen sowohl für den vertikalen als auch den horizontalen Tracker
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Abbildung 5.7.: Die Benutzeroberfläche in einem Koordinatensystem.

aktivieren und darüber hinaus den Glättungsfaktor festlegen. Die Nutzung des Tiefpassfilters

erfolgt über die Schnittstelle IFilter. Dadurch ist es möglich, zu einem späteren Zeitpunkt

weitere Filter hinzuzufügen und sie gegebenenfalls auch zu kombinieren.

Die Klasse NoseYTracker unterscheidet sich von der Klasse EulerYTracker dadurch, dass sie

nicht nur den Eingabewert aus der Instanz der Klasse Face abruft, sondern diese teilweise

mittels linearer Regression vorhersagt. Dies ist erforderlich, da zumindest auf dem Pixel C, die

Mobile Vision API nicht in jedem Frame alle Gesichtsmerkmale, zu welchen die Nasenwurzel

zählt, erkennt. Dies tritt insbesondere dann auf, wenn der Benutzer seinen Kopf bewegt.

Der Euler-Y-Winkel für die Kopfdrehung ist hiervon nicht betroffen. Für den Cursor hatte

dies ursprünglich zur Folge, dass seine Bewegungen in vertikaler Richtung weniger flüssig

waren, da er solange auf seiner letzten Position verblieb, bis die Nasenwurzel wieder erkannt

wurde. Durch die Verwendung einer linearen Regression hat sich dieses Problem reduziert.

Wenn die Nasenwurzel in einem Frame nicht erkannt wurde, sagt die Klasse NoseYTracker

deren Y-Koordinate mittels der linearen Regression basierend auf den 4 zuletzt erkannten

Y-Koordinaten voraus. Eine weitere Möglichkeit wäre gewesen, neben der Nasenwurzel noch
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von weiteren Gesichtsmerkmalen die jeweilige Y-Koordinate zu verwenden und so einzelne

fehlende Gesichtsmerkmale kompensieren zu können. Allerdings zeigte sich beim Betrachten

entsprechender Log-Ausgaben, dass in den Fällen, wo die Nasenwurzel nicht erkannt wurde,

dies meistens auch auf die anderen Gesichtsmerkmale zutraf, weshalb dieser Ansatz nicht

weiter verfolgt wurde.

Die im Quellcodeausschnitt 5.8 enthaltene Methode onUpdate der Klasse Face-Tracker

aktualisiert nach der Berechnung der neuen Cursorposition diesen, indem sie dessen

onPositionUpdate Methode aufruft, was zur Folge hat, dass der Cursor auf der errech-

neten Position neu gezeichnet wird. Der Cursor ist als Overlay realisiert. Dadurch ist

es möglich, ihn über die Buttons zu zeichnen. Des Weiteren benachrichtigt die Methode

onUpdate die DirectFaceTrackingActivity über die neue Position des Cursors, damit diese

jenen Button fokussieren kann, über dem er sich befindet. Dazu implementiert die Klasse

DirectFaceTrackingActivity die Schnittstelle IFacePositionListener.

Blinzelerkennung
Das Erkennen des Blinzelns erfolgt über die Augenöffnungswahrscheinlichkeit. Für diese gibt

die Mobile Vision API von Google je Auge einen Wert zwischen 0 und 1 an (vgl. [Goo16d]). 0

bedeutet, dass das Auge geschlossen ist und 1, dass es geöffnet ist (vgl. [Goo16d]). Allerdings

handelt es sich bei 0 und 1 um Extremwerte, die in der Praxis nur selten vorkommen. Vielmehr

befinden sich die Werte für die Augenöffnungswahrscheinlichkeit im Bereich zwischen 0 und

1. Des Weiteren sind die Werte nach den Erfahrungen des Autors dieser Arbeit von der Größe

und dem Aussehen des Auges abhängig. Augen die klein und / oder von Natur aus nicht so

weit geöffnet sind, haben im geöffneten Zustand eine geringere Augenöffnungswahrschein-

lichkeit, als Augen, die größer und / oder weiter geöffnet sind. Aus diesem Grund kann in

den Einstellungen von der App zur Steuerung des barrierefreien Smarthomes sowohl für das

linke als auch das rechte Auge jeweils ein Wertebereich angegeben werden, in dem sie das

Auge als geschlossen und einen in dem sie es als geöffnet wertet. Bei richtiger Konfiguration

stellt diese Einstellungsmöglichkeit eine Bandsperre da, durch welche nur die Extremwerte,

also jene die nahe bei 0 oder 1 liegen, berücksichtigt werden. Darüber hinaus lässt sich in

den Einstellungen jeweils für das linke und rechte Auge festlegen, wie viele Millisekunden

dieses mindestens geschlossen sein muss, damit es als Blinzeln gilt. Dies soll vermeiden, dass

unbewusstes Blinzeln als solches von der App erkannt wird. Genauso gibt es jedoch auch

eine Maximaldauer, die ein Auge geschlossen sein darf, um es noch als Blinzeln zu werten.

Diese Funktionalität ist vergleichbar mit den Maustasten, auf welche ein Benutzer im Falle

einer noch rechtzeitig bemerkten Fehleingabe länger als üblich gedrückt halten kann, um beim

anschließenden Loslassen kein Klickereignis auszulösen.

Die Blinzelerkennung ist in den Klassen OneBlinkTracker und TwoBlinksTracker imple-

mentiert. Erstere kann nur erkennen, ob mit dem linken oder dem rechten Augen geblinzelt

wurde. Zweitere ist zusätzlich in der Lage, zu erkennen, ob der Benutzer mit beiden Augen

oder nur einem geblinzelt hat. Beim Blinzeln mit beiden Augen gibt es jedoch das Problem,

dass die Updaterate der Mobile Vision API so hoch ist, dass die Benutzer es nur selten schaffen,
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beide Augen zwischen ein und den selben Updates zu öffnen. Aus diesem Grund muss nach

dem Öffnen des ersten Auges eine Zeit lang abgewartet werden, ob sich auch noch das andere

Auge öffnet. Wenn ja, dann gilt dies als Blinzeln mit beiden Augen und wenn nein, als Blinzeln

mit dem linken beziehungsweise rechten Auge. Wie lange abgewartet werden soll, lässt sich

ebenfalls in den Einstellungen festlegen. Das Abwarten führt in der Realität dazu, dass die,

dem Blinzelereignis zugeordnete Aktion, merklich verzögert ausgeführt wird. Welche der

beiden Klassen verwendet wird, hängt davon ab, welchen Blinzelarten in den Einstellungen

eine Funktionalität zugeordnet ist. Soll beim Blinzeln mit beiden Augen nichts passieren, wird

die Klasse OneBlinkTracker verwendet, um keine Verzögerung bei der Eingabe zu haben.

Ist dem Blinzeln mit beiden Augen hingegen eine Funktionalität zugeteilt, ist die Verwen-

dung der Klasse TwoBlinksTracker notwendig. Allerdings kann der Benutzer bei der Klasse

OneBlinkTracker ebenfalls mit beiden Augen blinzeln, wenn zwischen dem Blinzeln mit dem

linken und rechten Auge nicht unterschieden werdenmuss. Dies führt dann dazu, dass zunächst

zwei getrennte Blinzelereignisse erkannt werden. Das spätere ist jedoch ignorierbar, indem der

Benutzer in den Einstellungen einen zeitlichen Mindestabstand zwischen dem Blinzeln festlegt.

Dieser ist empfehlenswert, da hierdurch vermeidbar ist, dass der Benutzer bei mehrmaligen,

unmittelbar hintereinander stattfindenden Blinzeln für den Fall, dass das Blinzeln nicht immer

erkannt wird, versehentlich mehrere Buttons ungewollt betätigt.

Wenn die beiden Klassen OneBlinkTracker und TwoBlinksTracker ein Blinzeln erkennen,

rufen sie die Methode onBlink in Ersterer auf. Diese benachrichtigt dann die bei ihr re-

gistrierten Beobachter darüber, dass ein Blinzeln stattgefunden hat und um welche Art

des Blinzelns es sich dabei handelt, sprich ob der Benutzer mit dem linken / rechten Au-

ge oder beiden Augen geblinzelt hat. Um sich als Beobachter registrieren zu können, muss

die entsprechende Klasse die Schnittstelle IOnBlinkListener implementieren. Bei der Klasse

DirectFaceTrackingActivity ist dies der Fall, weshalb sie sich als Beobachter registrieren

lässt und dadurch von der Klasse OneBlinkTracker oder TwoBlinksTracker über das Blinzeln

in Kenntnis gesetzt wird.

Anpassungen an der Benutzeroberfläche für das Face-Tracking
Die Klasse DirectFaceTrackingActivity besitzt die Methode onBlink, da sie die Schnitt-

stelle IOnBlinkListener implementiert. Die Methode wird von einer der beiden Klassen

OneBlinkTracker oder TwoBlinkTracker aufgerufen, wenn sie ein Blinzeln des Benutzers

erkannt haben. Sie prüft zunächst, ob und welche Funktionalität der jeweiligen Blinzelart

zugeordnet ist. Diese wäre entweder das Ein- oder Ausschalten des Standbys oder das Betätigen

eines Buttons.

Ist Letzteres der Fall, muss die Methode onBlink zuerst anhand des Cursors Position herausfin-

den, welcher Button zu betätigen ist. Hierzu besitzt die Klasse DirectFaceTrackingActivity

eine Hash-Map vom Typ TreeMap, welche die Schnittstelle NavigableMap implementiert. Sie

erlaubt es, auf die Einträge zuzugreifen, ohne den konkreten Schlüssel zu kennen. Hierzu sucht

sie für einen Schlüssel in der Hash-Map bei Benutzung der Methode floorKey den nächst

kleineren oder größeren beziehungsweise gleichgroßen Schlüssel. Dadurch lässt sich indirekt
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Tabelle 5.1.: Exemplarische Werte einer Hash-Map mit jenen der Button-Zeilen.

Schlüssel Wert

1 NULL

2 Referenz auf die Hash-Map der 1. Button-Zeile (von oben)

6 NULL

7 Referenz auf die Hash-Map der 2. Button-Zeile (von oben)

11 NULL

12 Referenz auf die Hash-Map der 3. Button-Zeile (von oben)

16 NULL

ein Schlüsselbereich für einen Eintrag definieren. Die Klasse DirectFaceTrackingActivity

nutzt dies, um den Displaybereich, in dem sich ein Button befindet, als Schlüssel für diesen

zu verwenden. Dadurch lässt sich anhand der Position des Cursors dann der Button finden,

auf dem sich dieser gerade befindet. Für jede Button-Zeile gibt es eine Hash-Map. In dieser

befindet sich für jeden Button sowie dem Abstand zwischen diesen oder dem Displayrand ein

Eintrag. Als Schlüssel dient dabei die horizontale Position von deren oberen linken Ecke. Die

Bildschirmauflösung des Android-Geräts wird dafür als ein Koordinatensystem betrachtet, das

seinen Ursprung in der Ecke oben links hat. Die Abbildung 5.7 veranschaulicht dies. Jedes Karo

des Koordinatensystems stellt ein Pixel dar. Folglich handelt es sich bei den Schlüsseln um

Pixelwerte. Gehört der Schlüssel zu einem Button, so verweist er auf diesen. Gehört er zu einem

Abstand, ist der dazugehörige Wert ein NULL-Zeiger. Dadurch ist anhand der horizontalen

Position des Cursors, die ebenfalls in Pixeln angegeben ist, feststellbar, ob und wenn ja, auf

welchem Button einer Button-Zeile er sich gerade befindet, indem in der Hash-Map nach

dem Eintrag mit dem gleichen oder nächst kleineren Schlüssel gesucht wird. Oftmals wird es

jedoch so sein, dass auf der Benutzeroberfläche, genauso wie in Abbildung 5.7, mehr als eine

Button-Zeile sichtbar ist. Aus diesem Grund befinden sich die Hash-Maps der Button-Zeilen

selbst in einer Hash-Map vom Typ TreeMap. Als Schlüssel dienen für diese aber die vertikalen

Positionen der oberen linken Ecken der Button-Zeilen sowie den Abständen zwischen diesen

oder dem Displayrand. Durch die Verschachtelung der Hash-Maps ist, wenn ein Button in Folge

eines Blinzelns zu betätigen ist, anhand der vertikalen Position des Cursors ermittelbar, ob und

wenn ja, auf welcher Button-Zeile er sich gerade befindet. Ist er auf einer, gibt die Hash-Map,

welche jene für die Button-Zeilen beinhaltet, die Referenz auf eine von diesen zurück. In dieser

Hash-Map kann anschließend mittels der horizontalen Position des Cursors ermittelt werden,

ob und wenn ja, auf welchem Button er sich befindet. Befindet sich der Cursor auf einem, gibt

die Hash-Map, der ihn beinhaltenden Button-Zeile, eine Referenz auf ihn zurück. Die Tabellen

5.1 und 5.2 stellen exemplarisch 2 dieser Hash-Maps dar, basierend auf der in Abbildung 5.7 zu

sehenden Benutzeroberfläche. Die Tabelle 5.1 beinhaltet die Referenzen auf die Hash-Maps der

3 Button-Zeilen sowie 4 NULL-Zeiger für die Abstände zwischen diesen. In Tabelle 5.2 befinden

sich die Schlüssel-Wert-Paare, wie sie sich auch in der Hash-Map der obersten Button-Zeile

befinden würden.
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Tabelle 5.2.: Exemplarische Werte einer Hash-Map für eine Button-Zeile.

Schlüssel Wert

1 NULL

2 Referenz auf den Button „eine Menüebene nach oben“

8 NULL

9 Referenz auf den Button „ARD“

15 NULL

16 Referenz auf den Button „ZDF“

22 NULL

Über die aus den Hash-Maps erhaltene Referenz auf den Button lässt sich dieser im An-

schluss betätigen. Dazu wird dessen Methode performClick aufgerufen, welche wiederum

die onClick Methode seines Klick-Beobachters aufruft, was dann zu der im Abschnitt 5.4.2

beschriebenen Ausführung eines Befehls in der Komponente Command Executor führt. Durch

den Aufruf der Methode performClick ist es für den Benutzer jedoch nicht direkt ersichtlich,

dass er den Button betätigt hat, da ein visuelles Feedback ausbleibt. Die Studie von Kangas et

al. zeigte, dass ein vibrotaktiles Feedback bei der Bedienung eines mobiles Endgeräts mittels

Blickgesten hilfreich ist (vgl. [KAR+14]). Dies trifft auf die Eingabemethode Face-Tracking

vermutlich ebenfalls zu. Jedoch ist ein visuelles Feedback für die Benutzergruppe des barrie-

refreien Smarthomes leichter wahrnehmbar, weshalb darüber die Bestätigung erfolgen soll.

Der Quellcodeausschnitt 5.10 zeigt die Realisierung des visuellen Feedbacks. Hierzu wird der

Status des Buttons zunächst über die Methode setPressed auf gedrückt gesetzt. Die Methode

invalidate veranlasst, dass er neu gezeichnet wird. Anschließend wird ein Runnable-Objekt

erzeugt, das die Methode performClick aufruft, den Status des Buttons zurücksetzt und ihn

erneut zeichnet, jedoch mit einer Verzögerung von 100 Millisekunden. In diesen ist das Layout

des Buttons sichtbar, welches der Benutzer sehen würde, wenn er ihn mittels Touch betätigt.

1 button.setPressed(true);

2 button.invalidate();

3 button.postDelayed(new Runnable(){

4 @Override

5 public void run(){

6 button.performClick();

7 button.setPressed(false);

8 button.invalidate();

9 }

10 }, 100);

Quellcodeausschnitt 5.10: Animation des Button-Klicks beim Face-Tracking.
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Damit die Hash-Maps die derzeitig sichtbaren Buttons beinhalten, wird nach jedem Aufruf

der Methode updateUI in der Klasse AbstractActivity die Hash-Map mit den Button-Zeilen

geleert und anschließend neu befüllt.

Die Hash-Maps mit den Buttons haben noch eine weitere Funktion. Damit der Benutzer mittels

des Face-Trackings ein vergleichbares Bedienerlebnis mit jenem bei den Eingabemethode Tasta-

tur und 1- sowie 2-Button-Scanning hat, fokussiert die Klasse DirectFaceTrackingActivity

den Button, auf dem sich der Cursor befindet. Ist dieser auf keinem Button, wird auch keiner

fokussiert. Welcher Button zu fokussieren ist, ermittelt sie ebenfalls über die Hash-Maps.

Das Vorgehen hierzu ist das selbe, wie bei der Betätigung eines Buttons. Um die Positionsän-

derungen des Cursors zu erhalten, implementiert die Klasse DirectFaceTrackingActivity

die Schnittstelle IFacePositionListener, mit Hilfe derer sie sich bei der Instanz der Klasse

FaceTracker als Beobachter registrieren kann, welche sie anschließend mittels der in der

Schnittstelle definierten Methode onFacePositionUpdate über alle Positionsänderungen des

Cursors informiert.

5.4.5. Scanning

Bei der Eingabemethode Scanning kann der Benutzer wählen, ob die Buttons von links nach

rechts und oben nach unten in einem bestimmten Zeitabstand automatisch fokussiert werden

oder er den Fortschritt in Form der Fokussierung selbst steuern möchte. Im Falle von Ersteren

lässt sich der Zeitabstand in den Einstellungen festlegen. Des Weiteren kann der Benutzer

den automatischen Fortschritt pausieren und im Anschluss daran auch wieder fortsetzen. Wie

schon in Abschnitt 5.3.2 erwähnt, beinhaltet die Klasse Scanner die Funktionalität für den

manuellen sowie automatischen Fortschritt bei der Fokussierung. Hierzu besitzt sie eine Liste,

die alle angezeigten Buttons enthält. Beim automatischen Fortschritt iteriert ein eigens dafür

zuständiger Thread über diese und fokussiert der Reihe nach die Buttons in der konfigurierten

Geschwindigkeit. Zudem besitzt die Klasse Scanner eine Referenz auf den zum jeweiligen

Zeitpunkt fokussierten Button. Für das Scanning mit dem automatischen Fortschritt ist ein

Eingabeereignis erforderlich, um den fokussierten Button zu betätigen sowie optional ein

weiteres, um das Scanning zu pausieren und im Anschluss daran wieder fortsetzen zu können.

Für das 1-Button-Scanning kann der Benutzer zwei Tasten in den Einstellungen als Einga-

beereignisse auswählen. Zum Beispiel die Tastencodes der beiden Tasten des in Abbildung

4.8 gezeigten Button Switch, wobei die zweite Taste nicht zwingend erforderlich ist, da das

Anhalten und Pausieren des Scannings optional ist. Vergleichbar verhält es sich beim Scanning

mittels Blinzeln. Hier hat der Benutzer die 3 Blinzelarten linkes Auge, rechtes Auge, beide

Augen als Eingabeereignis zur Auswahl. In den Einstellungen kann er diesen jeweils eine

der beiden Funktionalitäten „Button betätigen“ und „automatischen Fortschritt pausieren /

fortsetzen“ zuordnen. Den Blinzelarten, deren Auftreten kein Ereignis auslösen soll, weißt der

Benutzer keine Funktionalität zu. Bei der Eingabemethode 2-Button-Scanning beziehungsweise

dem Scanning ohne automatischen Fortschritt, sind 2 Eingabeereignisse erforderlich. Eines

um den jeweils nächsten Button zu fokussieren und eines um den fokussierten Button zu
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betätigen. Das heißt, dass beim 2-Button-Scanning, 2 Tasten beziehungsweise Blinzelarten

erforderlich sind. Die Eingabeverarbeitung des 1- und 2-Button-Scannings ist in der Klasse

KeyboardActivity realisiert. Sie wertet die Eingabeereignisse aus und ruft entsprechend der

ihnen zugeordneten Funktionalität die passende Methode in der Klasse Scanner auf. Die Klasse

BlinkScanningActivity implementiert dagegen die Eingabeverarbeitung für das 1- und 2-

Button-Scanning via Blinzeln. Dazu erbt sie von der Klasse AbstractFaceTrackingActivity.

Wie in Abschnitt 5.4.4 beschrieben, beinhaltet diese die Initialisierung des Face-Trackings. Die

erbende Klasse muss dafür die in dem UML-Klassendiagramm in Abbildung 5.6 enthaltenen

abstrakten Methoden der Klasse AbstractFaceTrackingActivity erweitern. Da nur die Blin-

zelerkennung erforderlich ist, muss sie lediglich in der Methode createBlinkTracker - je nach

ausgewählten Blinzelarten als Eingabeereignisse - ein Objekt der Klasse OneBlinkTracker

oder TwoBlinksTracker erzeugen. In den anderen zu implementierenden Methoden genügt

es, eine NULL-Referenz zurück zu geben. Während des Scanning wertet die Instanz der Klasse

FaceTracker in der Methode onUpdate, welche auch im Quellcodeausschnitt 5.8 zu sehen ist,

nur die Augenöffnungswahrscheinlichkeiten aus und leitet die Blinzelereignisse an die Klasse

BlinkScanningActivity weiter, welche dann wie die Klasse KeyboardScanningActivity

die entsprechenden Methoden der Klasse Scanner aufruft.

5.4.6. Erweiterungen

Die Erweiterungen lassen sich in Form von JAR-Dateien in die App zur Steuerung des barriere-

freien Smarthomes einbinden. Die Klassen in diesen Erweiterungen, die direkt über die Klasse

MyClassLoader der Komponente Command Executor aufrufbar sein sollen, müssen dafür

einen Konstruktor besitzen, welcher als Parameter eine Hash-Map für die Shared-Attributes,

eine Rückrufschnittstelle vom Typ ICallbackUserInterace für die AbstractActivity so-

wie ein Kontext-Objekt vom Typ Context besitzt. Des Weiteren benötigen sie eine Methode

namens action, welche ebenfalls eine Hash-Map als Parameter für die in dem jeweiligen

menu_item der XML-Datei definierten Parameter in Form von Schlüssel-Wert-Paaren besitzt,

da diese von der Klasse MyClassLoader aufgerufen wird, um die entsprechende Funktionalität

auszuführen.

VLC-Player
Im Rahmen des Prototyps dient der VLC-Player als Fernseher und Radio. Die Sender für beide

befinden sich in einer gemeinsamen Wiedergabeliste. Im Rahmen der Benutzbarkeitstests

handelte es sich dabei um im Vorfeld aufgezeichnete Ausschnitte aus Fernseh- und Radiosen-

dungen. Dadurch konnten möglich Probleme aufgrund mangelnder Internetverbindung sowie

schlechtem Fernseh- u. Radioempfangs vermieden werden.

Die Kommunikation zwischen der Erweiterung zur Steuerung des VLC-Players erfolgt über

dessen Web-Schnittstelle (vgl. [Vid16b]). Sie ermöglicht es, die wichtigsten Funktionen

mit Steuerbefehlen mittels HTTP zu senden. Für jeden dieser Steuerbefehle ist ein eige-

ner HTTP-GET-Parameter festgelegt, an den bei Bedarf weitere Parameter anhängbar sind
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(vgl. [Vid16b]). Die URL einer HTTP-Anfrage zur Steuerung des VLC-Players hat folgen-

den Aufbau: http://:[Passwort]@[IP-Adresse des VLC-Players]:[Portnummer des

VLC-Players]/requests/status.xml?[Steuerbefehl als HTTP-GET-Parameter] (vgl.

[Vid16b])

Unter sicherheitstechnischen Aspekten ist es suboptimal, dass das Passwort unverschlüsselt

übertragen wird. Da es sich hierbei jedoch ausschließlich um eine prototypische Realisierung

handelt, die zudem in keinem öffentlichen Netzwerk verwendet wird, ist die Verschlüsselung

des Passworts vernachlässigbar.

Die Erweiterung besteht aus den 2 Klassen AndroidHttpClient, die als HTTP-Client dient

und zum anderen um die Klasse VlcActionClass. Letztere stellt die Schnittstelle der Erweite-

rung dar, welche die Komponente Command Executor beziehungsweise in dieser die Klasse

MyClassLoader verwendet. In dem Quellcodeausschnitt 5.3 in Abschnitt 5.4.1 ist erkennbar,

dass bei den Menüelementen zur Steuerung des Fernsehers und Radios immer ein Methoden-

name als Parameter definiert ist. Dieser dient dazu, innerhalb der Methode action der Klasse

VlcActionClass, zu unterscheiden, welcher Steuerbefehl an den VLC-Player zu senden ist.

Auf diesen Parameter könnte auch verzichtet werden, wenn es innerhalb der Erweiterung für

jeden Steuerbefehl eine eigene Klasse mit passender Implementierung der Methode action

geben würde. Im Fall des VLC-Players wäre diese Alternative jedoch deutlich aufwendiger zu

implementieren gewesen.

Im Folgenden werden die Steuerbefehle sowie deren Verwendungszweck, welche die Erweite-

rung zur Ansteuerung des barrierefreien Smarthomes nutzt, beschrieben:

• command=pl_stop

Stoppt die Wiedergabe eines Fernseh- / Radiosenders. (vgl. [Vid16b])

• command=pl_play&id=<id>

Startet die Wiedergabe eines Fernseh- / Radiosenders. Bei dem Parameter id handelt es

sich um die ID des Fernseh- / Radiosenders in der Wiedergabeliste. Wenn der Benutzer

die Wiedergabe im Fernseher- beziehungsweise Radiomenü startet, ist die Erweiterung

so implementiert, dass der zuletzt geschaute Sender wiedergegeben wird. Dazu gibt es

sowohl für das Radio als auch den Fernseher ein Shared-Attribute, das die ID des zuletzt

wiedergegebenen Senders beinhaltet. Dieses wird bei jedem Senderwechsel aktualisiert.

Da es im Prototyp nicht möglich ist, zur Laufzeit erstellte oder veränderte Shared-

Attributes in der XML-Datei zur Definition der Benutzeroberfläche zu speichern, handelt

es sich nach einem Neustart der App zu Steuerung des barrierefreien Smarthomes bei

den zuletzt wiedergegebenen Sendern immer um die in der XML-Datei definierten. (vgl.

[Vid16b])

• command=pl_next und ?command=pl_previous

Mittels ihnen kann durch die Einträge einer Wiedergabeliste gezappt werden. Die Erwei-

terung zur Steuerung des VLC-Players nutzt die beiden Befehle, damit der Benutzer zum

nächsten oder vorherigen Fernseh- / Radiosender wechseln kann. Da sich in der Wieder-

gabeliste die Sender vom Fernsehen und Radio befinden, könnte es passieren, dass der
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Benutzer durch das Zapping versehentlich das Medium wechselt. Um dies zu vermeiden

gibt es sowohl für das Radio als auch das Fernsehen jeweils ein Shared-Attribute mit der

kleinsten sowie der größten ID. Dadurch kann die Erweiterung, wenn der Benutzer einen

vorherigen oder nächsten Sender auswählen möchte, anhand von der ID des aktuell

wiedergegebenen Senders überprüfen, ob es im aktuellen Medium einen vorherigen /

nächsten gibt. Wenn nicht, bricht die Erweiterung die Ausführung der Eingabe ab. (vgl.

[Vid16b])

• command=fullscreen

Diesen Steuerbefehl nutzt die Erweiterung, damit der Benutzer beim Fernseher den

Vollbildmodus ein- und ausschalten kann. (vgl. [Vid16b])

• command=volume&val=<val>

Über diesen Steuerbefehl lässt sich die Lautstärke des VLC-Players über den Parameter

val entweder als Absolutwert setzen, oder mittels einem vorangestellten Plus / Minus um

den Wert des Parameters val erhöhen / reduzieren (vgl. [Vid16b]). Die Erweiterung zur

Steuerung des VLC-Players nutzt diesen Steuerbefehl zum einen, damit der Benutzer die

Lautstärke des Radios / Fernsehers reduzieren und erhöhen kann. Die Größe der Schritte,

in welchen die Erhöhung / Reduzierung von der Lautstärke erfolgt, ist jeweils in einem

Parameter des Menüelements festgelegt. Zum anderen ermöglicht die Erweiterung dem

Benutzer über diesen Steuerbefehl das Radio / den Fernseher stumm sowie den Tonwieder

einzuschalten. Um beim Wiedereinschalten des Tons die vorherige Lautstärke setzen zu

können, existiert ein Shared-Attribute mit der zum Zeitpunkt vor dem Stummschalten.

Die Implementierung des Zappings durch die Fernseh- beziehungsweise Radiosender zeigt,

dass die Verwendung einer gemeinsamen Wiedergabeliste nicht ideal ist. Jedoch bietet die

Web-Schnittstelle des VLC-Players keinen Steuerbefehl zur Auswahl einer Wiedergabeliste

oder zum Wechsel zwischen mehreren Wiedergabelisten (vgl. [Vid16b]). Eine Alternative

zur Vermeidung einer gemeinsamen Wiedergabeliste wäre es, auf diese zu verzichten und

stattdessen den wiederzugebenden Sender als Media Resource Locator an den VLC-Player

zu senden (vgl. [Vid16b]). Das hätte jedoch zur Folge, dass ein Zapping nicht mehr möglich

ist, oder die Erweiterung zur Steuerung des VLC-Players ihre eigene interne Wiedergabeliste

benötigt, was diese wiederum komplexer macht.

WLAN-Steckdosenleiste
Die Erweiterung zur Ansteuerung der WLAN-Steckdosenleiste der Wöhlke EDV-Beratung

GmbH (vgl. [Wöh16a]) besteht ebenfalls aus 2 Klassen. Die WLAN-Steckdosenleisten besitzt

einen eigenen Web-Server, über den sich die einzelnen Steckdosen mittels HTTP-Anfragen ein-

und ausschalten lassen (vgl. [Wöh16a] u. [Wöh16b]). Aus diesemGrund handelt es sich bei einer

der beiden Klassen ebenfalls um eine mit dem Namen AndroidHttpClient. Die Steckdose

sowie, ob diese ein- oder ausgeschaltet werden soll, ist in der HTTP-Anfrage als HTTP-

GET-Parameter spezifizierbar (vgl. [Wöh16b]). Die URL für diese besitzt folgenden Aufbau:

http://[IP-Adresse der WLAN-Steckdosenleiste]/websteckdose/cgi-bin/schalten
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?steckdose_nr=[Nummer der Steckdose]&steckdose_soll=[ob die Steckdose ein-

oder ausgeschaltet werden soll] (vgl. [Wöh16b]) Für die Nummer der Steckdose sind die

Zahlen 1, 2 und 3 möglich (vgl. [Wöh16b]). Der zweite Parameter muss den Wert 1 besitzen,

um die Steckdose einzuschalten oder den Wert 0, um sie auszuschalten (vgl. [Wöh16b]). Bei

der Klasse WoehlkeActionClass handelt es sich um die zweite Klasse in der Erweiterung zur

Steuerung der WLAN-Steckdosenleiste. Die Methode action in ihr, bekommt als Hash-Map 2

Parameter übergeben, die in den dazugehörigen Menüelementen festgelegt sind. Bei diesen

handelt es sich zum einen um die Nummer der zu schaltenden Steckdose sowie um deren

zukünftigen Schaltzustand.

95





6. Evaluation

Dieses Kapitel beschreibt die Evaluierung der Anwendung zur Steuerung des barrierefreien

Smarthomes. Das Unterkapitel 6.1 konzentriert sich auf die quantitative Beurteilung. Diese

untersucht die unterstützten Eingabemethoden in Kombination mit der Benutzeroberfläche

auf ihre Geschwindigkeit sowie Genauigkeit. Sprich, wie viele Entscheidungen der Benutzer

in einer bestimmten Zeiteinheit tätigen kann.

Das Unterkapitel 6.2 besitzt den selben Aufbau wie das Unterkapitel 6.1, fokussiert jedoch

die qualitative Evaluierung der Eingabemethoden sowie der Benutzeroberfläche durch Pro-

banden aus der Zielgruppe, um zu verdeutlichen, dass die entwickelten Eingabemethoden in

Abhängigkeit von den Einschränkungen des Benutzers unterschiedlich geeignet sind.

6.1. Quantitative Benutzbarkeitstests

In diesem Unterkapitel ist die Vorbereitung und Instrumentalisierung des Prototypen für die

quantitativen Benutzbarkeitstests mit unversehrten Probanden enthalten. Darüber hinaus

berichtet es über deren Durchführung und schließt mit einer Auswertung der gewonnenen

Daten ab.

6.1.1. Vorbereitung

Der Abschnitt Vorbereitung legt die Instrumentalisierung des Prototyps für die quantitativen

Benutzbarkeitstests dar und gibt danach einen Überblick über die verwendete Konfiguration

des Prototyps während diesen.

Instrumentalisierung

Die Abbildung 6.1 zeigt einen Screenshot der Einstellungen für die quantitativen Be-

nutzbarkeitstests. Sind diese eingeschaltet, wird in der Methode onCreate der Klasse

AbstractMenuActivity eine spezielle Benutzeroberfläche für die quantitativen Benutzbar-

keitstests erzeugt, anstelle des in der XML-Datei definierten Menüs zur Steuerung des barrie-

refreien Smarthomes. Die Abbildung 6.2 zeigt ebenfalls einen Screenshot. Auf diesem ist die

Benutzeroberfläche für die quantitativen Benutzbarkeitstests zu sehen. Sie zielen darauf ab, die
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Abbildung 6.1.: Screenshot des Einstellungsmenüs für Benutzbarkeitstests.

Geschwindigkeit und Präzision der verschiedenen Eingabemethode zu evaluieren. Aus diesem

Grund gibt es nur zwei Arten von Buttons. Sie unterscheiden sich durch das Icon, bei welchem

es sich entweder um ein Kreuzchen oder ein lachendes Smiley handelt. Letzteres besitzt immer

nur jeweils einen Button. Der Button mit dem Smiley ist derjenige, den der Benutzer betätigen

soll. Auf die Buttons der Benutzeroberfläche für das barrierefreie Smarthome wird verzichtet,

da es bei den quantitativen Benutzbarkeitstests um die Geschwindigkeit und Präzision der

Eingabemethoden geht. Diese sind am besten messbar, wenn der Proband eine möglichst

schlichte Benutzeroberfläche hat. Durch die Verwendung der zwei Icons auf den Buttons muss

er keine Button-Beschriftung lesen, keine unbekannten Icons interpretieren und sich auch

nicht mit der Navigation innerhalb der Menüstruktur beschäftigen. Stattdessen kann er sich

ganz darauf konzentrieren, den Button mit dem Smiley mit der zu testenden Eingabemethode

zu betätigen. Ein weiterer Vorteil dieser Buttons ist, dass sich immer exakt die maximale Anzahl

an Buttons, entsprechend der zu testenden Konfiguration darstellen lässt. Letzteres ist für die

im Kapitel 6.1.3 beschriebene Auswertung der quantitativen Benutzbarkeitstests erforderlich.

Mit dem Menü des barrierefreien Smarthomes wäre es hingegen sehr aufwendig, dieses so

zu konfigurieren, dass es immer so viele Menüelemente gibt, damit die maximale Anzahl an

Buttons zur Auswahl steht.
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Abbildung 6.2.: Screenshot der Benutzeroberfläche für die quantitativen Benutzbar-

keitstests. (Das Smiley- und X-Icon auf den Buttons stammen von:

https://material.io/icons/ (16.12.2016))

Bei welchem Button es sich um jenen mit dem Smiley handelt, entscheidet der Zufall. Jedoch

gibt es die Einschränkung, dass wenn die Zahl der Testfälle kleiner gleich der Anzahl der

Buttons ist, es sich nicht zwei Mal um den selben Button handeln darf. Dies zu gewährleisten

ist eine von den Aufgaben der Klasse BandwidthTester. Während der Initialisierung des Tests

erzeugt sie die Liste tests, wie der Quellcodeausschnitt 6.1 zeigt.

1 this.tests = new ArrayList<Integer>();

2

3 int limit = ((int)Math.ceil((double)this.numberOfTests /

(double)this.numberOfButtons)) *
4 this.numberOfButtons;

5

6 int j = 0;

7 for(int i = 0; i < limit; i++){

8 this.tests.add(j);

9 j++;
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10 if(j >= this.numberOfButtons){

11 j = 0;

12 }

13 }

Quellcodeausschnitt 6.1: Initialisierung der Testfälle.

Darüber hinaus besitzt die Klasse BandwidthTester eine Liste buttons, welche die darge-

stellten Buttons beinhaltet. Im Zuge der Initialisierung wird die Liste tests mit Index-Werten

der Buttons in der Liste buttons gefüllt. Hierzu wird zunächst die Anzahl der Testfälle, wel-

che sich in den in Abbildung 6.1 gezeigten Einstellungen festlegen lassen, durch die Anzahl

der Buttons dividiert, zur nächsten Ganzzahl aufgerundet und mit der Anzahl der Buttons

multipliziert. Das hieraus resultierende Ergebnis, im Quellcodeausschnitt 6.1 handelt es sich

hierbei um die Variable limit, ist die Anzahl der Indexe, welche in die Liste tests einzu-

fügen sind. Die Anzahl entspricht entweder der der Buttons oder einem Vielfachen von

ihnen. Das garantiert, dass alle Buttons mit derselben Wahrscheinlichkeit ausgewählt wer-

den, da ihr Index gleicht oft in der Liste tests enthalten ist. Die im Quellcodeausschnitt

6.1 zu sehende Schleife befüllt die Liste tests mit den Indexen, indem sie die Variable

j in diese einfügt, sie in jeder Iteration jeweils um 1 inkrementiert und sie auf 0 zurück-

setzt, wenn ihr Wert der Anzahl an Buttons entspricht. Die Anzahl der Iterationen limitiert

die berechnete Variable limit. Der Quellcodeausschnitt 6.2 zeigt die Auswahl des Buttons.

1 public List<MyButton> getButtonsForNextTest(){

2 List<MyButton> buttons = new ArrayList<MyButton>();

3 float random = (float)Math.random() * this.tests.size();

4 int roundRandom = (int) Math.floor(random);

5 int randomButton = this.tests.remove(roundRandom);

6 for(int i = 0; i < this.numberOfButtons; i++){

7 MyButton button;

8 if(i == randomButton){

9 button =

ButtonFactory.createCorrectButton(this.abstractMenuActivity);

10 }else{

11 button =

ButtonFactory.createFalseButton(this.abstractMenuActivity);

12 }

13 buttons.add(button);

14 }

15 return buttons;

16 }

Quellcodeausschnitt 6.2: Bestimmung des als nächstes zu betätigenden Buttons.

Sie erfolgt mit Hilfe der randomMethode von der Klasse Math. Die von ihr erzeugte Zufallszahl

wird mit der Anzahl der in der Liste tests enthaltenen Indexe multipliziert und danach abge-
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rundet. Der hierdurch berechnete Index dient dazu, den Index des Buttons in der Liste buttons,

aus der Liste tests abzufragen, den der Proband als nächstes betätigen soll und der deshalb das

Smiley als Icon bekommt. Wenn der Proband den richtigen Button betätigt hat und noch nicht

am Ende des Tests angelangt ist, wird die Darstellung der Buttons in der Benutzeroberfläche

über die Methode updateUI der Klasse AbstractMenuActivity aktualisiert. Hierbei handelte

es sich um die selbe Methode, die auch genutzt wird, um die Benutzeroberfläche zu aktua-

lisieren, wenn der Benutzer in der Menüstruktur der App zur Steuerung des barrierefreien

Smarthomes navigiert und in Folge dessen andere Buttons darzustellen sind. Diesen Vorgang

beschreibt das Unterkapitel 5.4 ausführlicher.

Die Abbildung 6.1 zeigt zudem, dass die zu testenden Button-Konfigurationen, in der Form

„AnzahlHorizontaleButtonsxAnzahlVertikaleButtons“, getrennt durch Semikolons einstell-

bar sind. Während des Tests einer Eingabemethode durchläuft der Proband diese Button-

Konfigurationen. Für jede gibt es einen Test mit der jeweils eingestellten Anzahl an Testfällen.

Zwischen den einzelnen Tests wird ein Dialog angezeigt, wie er auf dem in Abbildung 6.3 gezeig-

ten Screenshot zu erkennen ist. Dieser Dialog dient zum einen als Pause und zum anderen dazu,

dass die als nächste zu testende Button-Konfiguration auswählbar ist um beispielsweise einen

Test wiederholen zu können. Anderenfalls ist die nächste zu testende Button-Konfiguration

schon vorausgewählt und der Dialog muss lediglich über den Button „OK“ geschlossen werden,

um mit dem nächsten Test zu beginnen.

Neben der Durchführung der quantitativen Benutzbarkeitstests hat die Klasse BandwithTester

noch eine weitere Funktion. Sie protokolliert die Ergebnisse eines Tests und schreibt diese in

eine CSV-Datei. Folgende Daten erfasst sie grundsätzlich:

• Dauer des Tests

• Anzahl der richtig betätigten Buttons (Buttons mit Smiley)

• Anzahl der falsch betätigten Buttons (Buttons ohne Smiley)

• Datum und Uhrzeit des Testendes

• verwendete Eingabemethode

• verwendete Button-Konfiguration

Des Weiteren berechnet die Klasse BandwithTester aus den zuvor genannten Werten noch

weitere, welche die in Kapitel 6.1.3 beschriebene Auswertung der quantitativen Benutzbarkeits-

tests benötigt und schreibt sie ebenfalls in die CSV-Datei. Dies dient lediglich zur Erleichterung

der Auswertung.

Konfiguration

Neben der Implementierung der quantitativen Benutzbarkeitstests umfasste die Vorbereitung

zudem die Festlegung der Konfigurationen für das Face-Tracking und Scanning. Die Einstellung
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Abbildung 6.3.: Screenshot des Dialogs für die Button-Konfiguration des folgenden Tests. (Das
Smiley- und X-Icon auf den Buttons stammen von: https://material.io/icons/

(16.12.2016))

der Parameter für erstere Eingabemethode fand basierend auf den gewonnenen Erkenntnissen

während der Entwicklungszeit statt. Beim 1-Button-Scanning hat lediglich ein Parameter

Einfluss auf die quantitativen Benutzbarkeitstests. Bei diesem handelt es sich um die Geschwin-

digkeit beziehungsweise den Zeitabstand, der zwischen der Fokussierung eines Buttons und

der des nächsten liegt. Über eine Pilotstudie mit zwei Personen wurde eine geeignete Ge-

schwindigkeit ermittelt. Hierzu testete sie neun verschiedene Geschwindigkeiten im Bereich

von 700 bis 150 Millisekunden mit einer 4x4-Matrix als Button-Konfiguration und jeweils 18

Testfällen. Weitere Button-Konfigurationen waren nicht Gegenstand der Pilotstudie, da es in

dieser darum ging, wie kurz der zeitliche Abstand zwischen der Fokussierung zweier Buttons

mindestens sein muss, damit die Probanden in der Lage sind, den richtigen Button zu betätigen.

Dabei stellte sich heraus, dass ein zeitlicher Abstand von 300 Millisekunden zwischen der

Fokussierung zweier Buttons am besten geeignet zu sein scheint, da die durchschnittliche Test-

dauer bei diesem am geringsten war. Das lässt sich dadurch erklären, dass bei einer geringeren

Geschwindigkeit es im Durchschnitt länger dauert, bis der Button mit dem Smiley fokussiert

und vom Probanden betätigbar ist. Wenn der zeitliche Abstand zwischen der Fokussierung
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6.1. Quantitative Benutzbarkeitstests

zweier Buttons jedoch 250 Millisekunden oder weniger beträgt, ist das Scanning so schnell,

dass die Probanden den Button mit dem Smiley nicht rechtzeitig betätigen können und ihn

dadurch verpassen, was zu Folge hat, dass sie warten müssen, bis dieser erneut fokussiert

ist, wodurch sich die Testdauer erhöht. In Folge dessen wurde angenommen, dass mit einer

Geschwindigkeit von 300 Millisekunden in den quantitativen Benutzbarkeitstests die besten

Ergebnisse für die Eingabemethode 1-Button-Scanning erzielbar sind.

6.1.2. Durchführung

Die Benutzbarkeitstests zur quantitativen Evaluation fanden an drei aufeinander folgenden

Tagen mit insgesamt 16 Probanden statt. Sie testeten jeweils folgende Eingabemethoden:

• Touch

• Maus

• Tastatur

• Face-Tracking

• Scanning mit automatischem Fortschritt und Bluetooth Switch

• Scanning mit manuellem Fortschritt und Bluetooth Switch

• Sprachsteuerung

Das Scanning zusätzlich zum Bluetooth Switch noch mittels Blinzeln zu evaluieren, wurde

ausgelassen, da die Benutzbarkeitstests sonst je Proband länger als eine Stunde gedauert hätten,

wodurch es für die Probanden zu anstrengend geworden wäre.

Die Probanden testeten jede Eingabemethode mit 4 verschiedenen Button-Konfigurationen, um

zu untersuchen, wie präzise die einzelnen Eingabemethoden sind, da mit steigender Anzahl der

Schaltflächen sich deren Größe reduziert, wodurch sie sich mit manchen Eingabemethoden wo-

möglich schwieriger betätigen lassen. Folgende Anzahlen und Anordnungen von Schaltflächen

waren Gegenstand der quantitativen Evaluation:

• 9 Schaltflächen angeordnet in einer 3x3-Matrix

• 16 Schaltflächen angeordnet in einer 4x4-Matrix

• 25 Schaltflächen angeordnet in einer 5x5-Matrix

• 36 Schaltflächen angeordnet in einer 6x6-Matrix
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Die Anzahl an Buttons in vertikaler sowie horizontaler Richtung war bewusst in jeder der 4

Konfigurationen gleich gewählt. Hierdurch war sichergestellt, dass das Verhältnis von Höhe

und Breite eines einzelnen Buttons bei allen vier getesteten Konfigurationen gleich war. Mit

jeder Konfiguration und Eingabemethode mussten die Probanden 18 Buttons betätigen. Für

die Konfigurationen mit 25 und 36 Buttons war sichergestellt, dass der Proband pro Eingabe-

methode keinen Button zwei Mal betätigen soll. Bei den Konfigurationen mit 9 und 16 Buttons,

dass keiner mehr als zwei Mal vorkommt. Sowohl die Reihenfolge, in der die Probanden die

Eingabemethoden testeten als auch die, in welcher die Konfigurationen hinsichtlich der Button-

Anzahl getestet wurden, basierten auf einer Latin square Verteilung. Sie stellte sicher, dass die

Probanden nicht alle mit ein und derselben Eingabemethode den Benutzbarkeitstest beginnen

und beenden, wodurch mögliche Ermüdungseffekte über alle Eingabemethoden verteilt sind.

Für die verschiedenen Konfigurationen bei der Anzahl an Schaltflächen war die Latin sqare

Verteilung vor allem bei den für die Probanden eher unbekannten Eingabemethoden, sprich

dem 1- und 2-Button-Scanning, der Sprachsteuerung sowie dem Face-Tracking wichtig, um

den Lerneffekt zu kompensieren. Dieser trat insbesondere beim Face-Tracking auf, obwohl die

Probanden dieses im Vorfeld mehrere Minuten ausprobieren konnten.

Bei der Eingabemethode 1-Button-Scanning wurde die im Vorfeld ermittelte Geschwindigkeit

von 300 Millisekunden verwendet. Für die Bedienung mittels Maus wurde die bei Android

standardmäßig eingestellte Mauszeigergeschwindigkeit genutzt. Für die Sprachsteuerung durf-

ten die Probanden die Sprache wählen, in der sie ihrer Meinung nach am besten sind. 15

Personen entschieden sich für Deutsch und 1 Person für Englisch. Für die Eingabemethode

Face-Tracking gab es einerseits für alle Probanden gleichbleibende und andererseits Einstel-

lungen, die individuell an den jeweiligen Probanden anzupassen waren. Der Grund hierfür

ist, dass die Probanden unterschiedlich große und geformte Augen hatten, was sich auf die

Augenöffnungswahrscheinlichkeit auswirkt. Um das Blinzeln dennoch problemlos für die

Eingabe nutzen zu können, waren die Werte zur Erkennung, ob das linke / rechte Auge auf

oder zu ist, auf die jeweilige Testperson abzustimmen. Die konstanten Einstellungswerte für

die Steuerung mittels Gesichtsverfolgung waren folgende:

• Auflösung der Kamera: 800 x 600 Pixel

• Framerate der Kamera: 30 Frames pro Sekunde

• Zeit, die das linke / rechte Auge mindestens zum Blinzeln geschlossen sein musste: 150

Millisekunden

• Zeit, die das linke / rechte Auge maximal zum Blinzeln geschlossen sein durfte: 2000

Millisekunden

• Auge(n) mit dem / denen das Blinzeln möglich war: linkes Auge, rechtes Auge, beide

Augen (Die Probanden durften mit beide Augen blinzeln. Jedoch wurde nicht berücksich-

tigt, ob sie nur mit dem linken beziehungsweise dem rechten Auge oder beiden Augen

blinzeln. Sprich, wenn sie mit beiden Augen blinzelten, wurde das Blinzelereignis von

dem Auge ausgelöst, das als erstes wieder offen war oder, wenn sie gleichzeitig wieder

offen waren, das vom linken Auge. Dadurch gab es keine Verzögerung durch Abwarten,
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6.1. Quantitative Benutzbarkeitstests

ob sich das zweite Auge ebenfalls öffnet. Weshalb es zu der Verzögerung kommen würde,

erläutert der Abschnitt 5.4.4.)

• Zeitlicher Mindestabstand zwischen dem Blinzeln: 1499 Millisekunden

• Eingabewert für minimale horizontale Position des Cursors: +20 Grad (Kopfrotation)

• Eingabewert für maximale horizontale Position des Cursors: -20 Grad (Kopfrotation)

• Glättungsfaktor des Tiefpassfilters für die Eingabewerte zur Steuerung der horizontalen

Position des Cursors: 16

• Eingabewert für die minimale vertikale Position des Cursors: 240 Pixel (Y-Position der

Nasenwurzel im Bild)

• Eingabewert für die maximale vertikale Position des Cursors: 310 Pixel (Y-Position der

Nasenwurzel im Bild)

• Glättungsfaktor des Tiefpassfilters für die Eingabewerte zur Steuerung der vertikalen

Position des Cursors: 14

Die genannten konstanten Einstellungswerte resultieren aus den Erfahrungen des Autors

während der Entwicklungszeit. Nach seinemEmpfinden stellen sie eine geeignete Konfiguration

dar. Vermutlich gibt es bei diesen Einstellungswerten jedoch noch Optimierungspotenzial,

weshalb es für weitere Entwicklungsschritte ratsam ist, in einer ausführlichen Benutzerstudie

diverse Einstellungsparameter zu testen.

Zu Beginn des Benutzbarkeitstests wurden von den Probanden jeweils folgende Daten erho-

ben:

• Alter

• Geschlecht

• Brillenträger (ja / nein)

• Bart (ja / nein)

• Haare (ungefähre Länge, ob sie das Gesicht bedecken)

• verwendete Sprache bei der Sprachsteuerung

Das Alter und Geschlecht wurden standardmäßig erfasst. Ob jemand Brillenträger ist, sein Bart

sowie seine Frisur sind im Hinblick auf die Auswertung des Face-Trackings ermittelt worden,

falls diese Faktoren sich auf die Gesichtserkennung auswirken. Die verwendete Sprache bei

der Sprachsteuerung sollte es ermöglichen, gegebenenfalls sprachenspezifische Unterschiede

zu ermitteln beziehungsweise in den Ergebnissen zu berücksichtigen. Beispielsweise, wenn

in diesen erhebliche Abweichungen zwischen einer bestimmten Sprache und den übrigen

existieren.

105



6. Evaluation

Des Weiteren erhielten alle Teilnehmer der Benutzerstudie eine Erklärung zu den Eingabeme-

thoden. Diese umfasste neben einer Einführung in deren Bedienung auch eine Beschreibung

ihres Nutzens, sodass die Probanden nachvollziehen konnten, weshalb es wichtig ist, dass sie

Eingabemethoden testen, die aus ihrer Situation heraus betrachtet völlig unpraktisch sind.

Eine solche Eingabemethode war beispielsweise das Scanning mit dem Button Switch, der aus

der Sicht eines unversehrten Benutzers gegenüber einer herkömmlichen Tastatur oder der

Touch-Bedienung keinen Vorteil hat. Indem ihnen erklärt wurde, welche Einschränkungen die

Zielgruppe des barrierefreien Smarthomes hat und sie deshalb aus der Sicht der Probanden,

eher auf umständliche Eingabemöglichkeiten angewiesen sind und diese mit herkömmlichen

Eingabemethoden verglichen werden sollen. So konnten sie sich unter der Benutzerstudie

mehr vorstellen, was vermutlich auch die Motivation erhöht hat. Da das Face-Tracking für

die meisten Probanden vermutlich die schwierigste und unbekannteste Eingabemethode war,

konnten sie diese im Vorfeld mehrere Minuten ausprobieren. Dabei ließen sich gleich die

Einstellungen zur Erkennung des Blinzelns vornehmen. Die unterschiedliche Körpergröße der

Probanden wurde mittels eines höhenverstellbaren Stuhls ausgeglichen. Zum Abschluss des

Benutzbarkeitstests durften sich die Probanden bei Interesse jeweils ihre Ergebnisse anschauen,

was nebenbei zwei positive Effekte hatte. Zum einen konnte dabei gleich überprüft werden, ob

alle Testergebnisse korrekt gespeichert wurden und zum anderen entwickelte sich teilweise

noch eine Diskussion über die getesteten Eingabemethoden, in welcher die Probanden Verbes-

serungsvorschläge einbrachten. Einer der Testteilnehmer äußerte am Ende der Benutzerstudie

den Wunsch, die Steuerung via Gesichtsverfolgung mit mehr als 36 Schaltflächen ausprobieren

zu wollen.

Während der Durchführung der quantitativen Benutzbarkeitstests gab es auch Probleme,

welche nicht unerwähnt bleiben sollen. Eines war, dass manche Teilnehmer mit dem Face-

Tracking besser zurecht kamen als gedacht, wodurch die 36 Buttons zu wenige waren, um

diese Eingabemethode an ihre Grenzen zu bringen. Als Reaktion darauf, testeten 3 Probanden

im Anschluss an das eigentliche Testprogramm das Face-Tracking noch mit bis zu 100 Buttons.

Des Weiteren gab es bei dieser Eingabemethode noch Schwierigkeiten, das Blinzeln von

Brillenträgern zu erkennen. Jedoch trat dies nur bei 2 von 4 Probanden mit Brille auf, welche

das Face-Tracking in Folge dessen ohne diese testeten. Bei den beiden anderen Brillenträgern

gab es keine Probleme. Ein Proband dessen Bart, im Vergleich zu den anderen, groß und dicht

war, hatte ebenfalls Schwierigkeiten. Diesen äußerten sich darin, dass bei ihm der Cursor viel

unruhiger war, sodass für ihn in der Konfiguration mit 36 Buttons eine Bedienung nahezu

unmöglich war. Eine leichte Besserung schaffte das Verdecken des Bartes mit einem weißen

Blatt Papier. Neben dem Face-Tracking hatte auch die Sprachsteuerung Probleme. Bei Letzterer

waren diese zum einen auf Erkennungsprobleme und zum anderen auf die Tatsache, dass sie

nicht ausschließlich Bestandteil der getesteten App war, zurückzuführen. Die Schwierigkeiten

bei der Spracherkennung trat bei Probanden mit einem Dialekt auf. In Folge dessen kam es

insbesondere bei ihnen immer wieder vor, dass ein Test unterbrochen oder abgebrochen wurde,

weil die zur Sprachsteuerung verwendete App Voice Access aufgrund einer falsch verstandenen

Spracheingabe die App zur Steuerung des barrierefreien Smarthomes geschlossen oder eine

andere gestartet hat. Dies kann deshalb passieren, weil mittels der App Voice Access das
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gesamte Android Betriebssystem bedienbar ist. Da es sich bei dieser jedoch noch um eine

Testversion handelt (vgl. [Goo16m]), ist es nicht auszuschließen, dass das eine oder andere

Problem bei der Spracherkennung auch auf sie zurückzuführen ist.

6.1.3. Auswertung

An den quantitativen Benutzbarkeitstests nahmen 16 Probanden teil. Fünf von ihnen waren

Frauen und 11 Männer. Sie waren im Durchschnitt 25,44 ±3,45 Jahre alt. Die jüngste Person

war 20 und die älteste 34 Jahre alt. Für die Auswertung der quantitativen Benutzbarkeitstests

werden die Bandbreiten der jeweiligen Eingabemethoden verglichen sowie die Geschwindigkeit,

mit welcher die Probanden die Buttons nacheinander betätigten. Die Bandbreite ist in Bits

pro Sekunde angeben. Jedes Bit stellt einen Button dar, der zum Zeitpunkt der Betätigung

eines Buttons auf der Benutzeroberfläche sichtbar war. Wenn ein Proband folglich bei einer

3x3-Matrix einen Button betätigte, übertrug er damit 9 Bits. Bei einer 6x6-Matrix wären

es 36 Bits gewesen. Dies trägt dem Umstand Rechnung, dass bei einer höheren Anzahl an

Buttons zwischen mehr Optionen gewählt werden kann, weshalb eine Entscheidung durch

die Betätigung eines Buttons wertvoller ist. Die Geschwindigkeit resultiert aus der Testdauer

und der in dieser Zeit getätigten Eingaben. Hat der Proband beispielsweise in 10 Sekunden 5

Buttons betätigt, beträgt die Geschwindigkeit 0,5 Buttons pro Sekunde. Im Abschnitt A.2 des

Anhangs befinden sind in den Tabellen A.1 und A.2 für jede getestete Eingabemethode und

Button-Konfiguration die maximal, durchschnittlich und minimal übertragenen Bits / Sekunde

sowie betätigten Buttons / Sekunde gerundet auf 4 Stellen nach dem Komma.

Im Folgenden findet ein Vergleich aller getesteten Eingabemethoden und Button-Konfigurationen

hinsichtlich der Bandbreite und Geschwindigkeit statt. Eine ausführliche Betrachtung der

barrierefreien Eingabemethoden Face-Tracking, Sprachsteuerung, 1- und 2-Button-Scanning

schließt daran an. Die in diesem Zusammenhang getätigten Aussagen zu einer zu- oder ab-

nehmenden Anzahl an pro Sekunde übertragener Bits beziehungsweise betätigter Buttons

beschränken sich auf die Anzahl 9 bis 36 Buttons. Wie weit sich gewisse Trends fortsetzen,

kann erst mit Hilfe einer zweiten Studie, die noch weitere Button-Konfigurationen evaluiert,

ermittelt werden.

Vergleich der Eingabemethoden

Das Diagramm in Abbildung 6.4 zeigt die durchschnittlich übertragenen Bits pro Sekunde

je Eingabemethode und Button-Konfiguration. Bei sämtlichen Eingabemethoden nimmt die

Bandbreite mit der Anzahl der Buttons zu, was vermuten lässt, dass mit einer 6x6-Matrix in

Kombination mit den getesteten Eingabemethoden das Maximum noch nicht erreicht ist. Des

Weiteren zeigt das Diagramm inAbbildung 6.4, dass die Eingabemethoden Touch,Maus und Tas-

tatur ein Vielfaches von den Bandbreiten der barrierefreien Eingabemethoden Face-Tracking,

Sprachsteuerung, sowie 1- und 2-Button-Scanning erreicht haben. Die Eingabemethode Touch
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Abbildung 6.4.: Insgesamt übertragene Bits / Sekunde im Durchschnitt.

erzielte bei allen 4 getesteten Button-Konfigurationen die höchste Bandbreite. Das Diagramm

in Abbildung 6.4 zeigt die gesamte Anzahl an durchschnittlich übertragenen Bits. Das bedeutet,

dass dazu auch Fehleingaben zählen. Eine Fehleingabe liegt dann vor, wenn der Proband an-

stelle des Buttons mit dem Smiley einen anderen Button betätigte. Viele Fehleingaben können

ein Hinweis darauf sein, dass eine Eingabemethode weniger präzise ist als eine andere. Aus

diesem Grund unterscheidet das Diagramm in Abbildung 6.5 zwischen korrekt und falsch

übertragenen Bits pro Sekunde im Durchschnitt. Die Formulierung falsch übertragene Bits

pro Sekunde ist so zu verstehen, dass der Proband mittels der Eingabemethoden eine falsche

Eingabe „übertragen“ hat. Die falsch übertragenen Bits sind rot dargestellt und die korrekt

übertragenen Bits hellblau. Die Summe aus den richtig und falsch übertragenen Bits ergibt die

in Abbildung 6.4 dargestellten Ergebnisse. Aus dem Diagramm in Abbildung 6.5 geht hervor,

dass die barrierefreien Eingabemethoden Face-Tracking sowie 1-Button-Scanning die höchsten

Bandbreiten bei den falsch übertragenen Bits pro Sekunde haben.

Das Diagramm in Abbildung 6.6 veranschaulicht ausschließlich die im Durchschnitt falsch

übertragenen Bits pro Sekunde. Aus diesem lassen sich folgende 2 Erkenntnisse ableiten.

Zum einen unterscheiden sich die beiden barrierefreien Eingabemethoden Face-Tracking und

1-Button-Scanning mit den meisten falsch übertragenen Bits pro Sekunde hinsichtlich der

Zunahme bei diesen. Beim Face-Tracking nimmt die Anzahl der falsch übertragenen Bits mit
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Abbildung 6.5.: Durchschnittlich richtig beziehungsweise falsch übertragene Bits / Sekunde.

der Anzahl der getesteten Buttons zu, was darauf schließen lässt, dass bei einer Konfiguration

mit wenigen, es nicht so oft zu Fehleingaben kommt. Beim 1-Button-Scanning ist hingegen

genau das Umgekehrte der Fall. Bei den getesteten Button-Anzahlen nimmt die Bandbreite

an falsch übertragenen Bits kaum zu, was den Schluss zulässt, dass mit einer steigenden

Anzahl an Buttons bis mindestens 36 die Fehleingaben sinken. Zweitens zeigt das Diagramm

in Abbildung 6.6, dass es auch bei anderen Eingabemethoden zu Fehleingaben kam. In dem

Diagramm in Abbildung 6.5 waren diese aufgrund dessen Skalierung kaum sichtbar. Jedoch ist

es offensichtlich, dass die Eingabemethode Touch am besten abschneidet und die barrierefreien

Eingabemethoden Face-Tracking und 1-Button-Scanning am schlechtesten. Erstaunlich ist, dass

das 2-Button-Scanning und die Sprachsteuerung hinsichtlich der Fehleingaben nicht merklich

schlechter sind als Maus und Tastatur. Dies bezieht sich allerdings nur auf die Anzahl der

falsch übertragenen Bits. Bei den korrekt übertragenen Bits sind Maus und Tastatur überlegen.

Neben der Bandbreite in Form von Bits pro Sekunde ist es auch interessant, mit welcher

Eingabemethoden und Button-Konfiguration sich am schnellsten Entscheidungen treffen

lassen. Das Diagramm in Abbildung 6.7 zeigt die Anzahl der im Durchschnitt richtig und

falsch betätigten Buttons pro Sekunde je Eingabemethoden und Button-Konfiguration. Auch

hier sind Touch, Maus und Tastatur eindeutig besser als die barrierefreien Eingabemethoden.
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Abbildung 6.6.: Durchschnittlich falsch übertragene Bits / Sekunde.

Innerhalb der ersteren Drei, bleibt die Eingabemethode Touch mit zunehmender Anzahl an

getesteten Buttons stabil, was die Geschwindigkeit betrifft. Bei der Maus sowie der Tastatur

ist dies nicht der Fall. Bei ihnen lässt sich die mit der steigenden Anzahl an Buttons sinkende

Geschwindigkeit auf längere Wege zurückführen. Bei der Maus mussten die Probanden diese

bei der 6x6-Matrix im Durchschnitt weiter nach links, rechts, oben und unten bewegen als bei

der 3x3-Matrix. Des Weiteren werden die Buttons kleiner, wenn ihre Anzahl steigt, was dazu

führt, dass der Mauszeiger präziser und damit langsamer bewegt werden muss. Bei der Tastatur

entstehen längere Wege dadurch, dass bei einer höheren Anzahl an Buttons, durchschnittlich

mehr Eingaben mit den Pfeiltasten erforderlich sind, bis der richtig Button fokussiert und

betätigbar ist.

Bei den barrierefreien Eingabemethoden Face-Tracking sowie 1- und 2-Button-Scanning nimmt

die Geschwindigkeit mit steigender Anzahl der Buttons in der Benutzerstudie ebenfalls ab.

Jedoch beim Face-Tracking weniger stark als bei den anderen beiden. Bei diesen ist die Ursa-

che darin zu finden, dass vergleichbar zu der Eingabemethode Tastatur, der Zeitaufwand zur

Fokussierung des richtigen Buttons beziehungsweise im Rahmen der quantitativen Benutz-

barkeitstests jenen mit dem Smiley, im Durchschnitt mit der Anzahl der getesteten Buttons

gestiegen ist. Beim 1-Button-Scanning liegt das daran, dass es im Durchschnitt länger dauert,

bis der entsprechende Button fokussiert ist. Selbiges trifft auch auf das 2-Button-Scanning zu,
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Abbildung 6.7.: Durchschnittlich richtig beziehungsweise falsch betätigte Buttons / Sekunde.

wobei hier der Benutzer über einen Taster jeweils den nächsten Button fokussieren muss, bis

er den gewünschten erreicht und betätigen kann. Bei einer niedrigen Anzahl an Buttons sind

das 1- und 2-Button-Scanning aus diesem Grund jedoch am schnellsten unter den 4 evaluierten

barrierefreien Eingabemethoden, was daran liegt, dass der durchschnittliche Zeitaufwand, der

nötig ist, bis der richtige Button fokussiert ist, dann gering ist. Während den quantitativen

Benutzbarkeitstests war dies besonders deutlich bei den Button-Konfigurationen in Form

einer 3x3- oder 4x4-Matrix der Fall. Das Diagramm in Abbildung 6.7 zeigt auch, dass die

Sprachsteuerung die Eingabemethode mit der kontinuierlichsten Geschwindigkeit war.

1-Button-Scanning

Das Diagramm in Abbildung 6.5 zeigt unter anderem die durchschnittlich korrekt sowie

falsch übertragenen Bits pro Sekunde mittels der Eingabemethode 1-Button-Scanning. Die

zu ihr gehörenden grünen Balken zeigen, dass die Bandbreite mit der getesteten Anzahl der

Buttons nur gering zunimmt, insbesondere wenn man bedenkt, dass bei der 3x3-Matrix durch

die Betätigung eines Buttons 9 Bits und bei der 6x6-Matrix 36 Bits übertragen werden, was

einer Vervierfachung entspricht. Hingegen erhöht sich die durchschnittliche Bandbreite bei

36 Buttons im Vergleich zu 9 Buttons nur um ca. 1 Bit. Das liegt daran, dass mit der Anzahl
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der getesteten Buttons, im Mittel die Dauer zunimmt, bis der richtige Button fokussiert ist,

da die Geschwindigkeit der Fokussierung konstant ist. Diesen Umstand verdeutlicht auch

das Diagramm in Abbildung 6.7. Es zeigt die Anzahl der durchschnittlich korrekt und falsch

betätigten Buttons pro Sekunde. Mit Zunahme der Buttons bis einschließlich 36, nimmt diese

kontinuierlich ab, was bedeutet, dass der Zeitabstand zwischen den Eingaben zunimmt und

darauf zurückzuführen ist, dass es bei einer höheren Anzahl an Buttons länger dauert, bis der

richtige fokussiert ist, was sich wiederum negativ auf die Bandbreite auswirkt.

Erfreulich ist, dass die durchschnittlich falsch übertragenen Bits pro Sekunde mit der Anzahl

der getesteten Buttons nur minimal zunehmen, wie im Diagramm in Abbildung 6.6 zu sehen

ist. Betrachtet man die Anzahl der falsch betätigten Buttons in dem Diagramm aus Abbildung

6.7, dann hat diese mit einer steigenden Anzahl an Buttons in den Tests sogar abgenommen.

Ersterer Effekt ist darauf rückführbar, dass die Schwierigkeit für die Probanden beim 1-Button-

Scanning war, den richtigen Button, also jenen mit dem Smiley, rechtzeitig, sprich in den

300 Millisekunden, in welchen er fokussiert ist, zu betätigen und diese unabhängig von der

Button-Konfiguration ist. Der zweite Effekt, also die Abnahme der Fehleingaben mit steigender

Anzahl an Buttons ist dadurch erklärbar, dass die Probanden beispielsweise bei der 3x3-Matrix

im Vergleich zur 6x6-Matrix im Mittel weniger Zeit hatten, um den Button mit dem Smiley zu

„entdecken“, wodurch sie öfters zu langsam waren und fälschlicherweise den darauf folgenden

Button fokussiert haben. Dies war nach Beobachtung des Autors dieser Arbeit insbesondere

dann der Fall, wenn sich der Button mit den Smileys in der obersten Button-Zeile links

befunden hat. Dies ist plausibel, da das 1-Button-Scanning die Buttons von links nach rechts

ausgehend von oben fokussiert. In der Praxis wird die Anzahl der Fehleingaben bei erfahrenen

Benutzern vermutlich geringer sein, da sie aufgrund ihrer Erfahrung schon wissen, wo sich

der Button, den sie als nächstes zu betätigen haben, befindet. Dadurch fällt die Zeit für das

Suchen beziehungsweise den Überraschungseffekt weg.

2-Button-Scanning

Das Diagramm in Abbildung 6.5 zeigt die durchschnittliche Bandbreite der Eingabemethode

2-Button-Scanning. Wie schon beim 1-Button-Scanning nahmen die durchschnittlich richtig

übertragenen Bits mit der Anzahl der getesteten Buttons zu, jedoch kommt es auch hier zu einer

Reduzierung der Eingabegeschwindigkeit, wie in dem in Abbildung 6.7 enthaltenen Diagramm

zu erkennen ist, welches die durchschnittliche Anzahl der richtig und falsch betätigten Buttons

pro Sekunde darstellt. Der Grund hierfür ist, wie schon bei der Eingabemethode 1-Button-

Scanning der, dass der Zeitbedarf bis zur Fokussierung des richtigen Buttons mit deren Anzahl

steigt. Der Vergleich der Bandbreiten von den Eingabemethoden 1- und 2-Button-Scanning

zeigt, dass Zweitere eine höhere besitzt. Das ist darauf zurückzuführen, dass die Anzahl der

richtig betätigten Buttons pro Sekunden beim 2-Button-Scanning größer ist als beim 1-Button-

Scanning, was ein Vergleich mit dem Diagramm in der Abbildung 6.7 zeigt. Dies kann 2 Gründe

haben. Möglicherweise waren die Probanden im Durchschnitt schneller beim Fokussieren

des nächsten Buttons, als das 1-Button-Scanning. Sprich sie brauchten jeweils weniger als
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300 Millisekunden um den nächsten zu fokussieren. Der zweite mögliche Grund ist, dass

die Probanden beim 2-Button-Scanning im Vergleich zum 1-Button-Scanning seltener den

Button mit dem Smiley „verpassten“ und in Folge dessen fälschlicherweise auch nicht den

nachfolgenden Button betätigten, da sie das „Verpassen“ noch rechtzeitig bemerkten, denn das

Diagramm in Abbildung 6.7 veranschaulicht, dass es beim 2-Button-Scanning deutlich weniger

Fehleingaben als beim 1-Button-Scanning gab. Das „Verpassen“ bedeutete jeweils, dass die

Probanden erneut warten mussten, bis der richtige Button fokussiert ist, was zur Konsequenz

hatte, dass im Durchschnitt weniger Buttons pro Sekunde betätigt wurden. Möglich ist auch,

dass die höhere Bandbreite des 2-Button-Scannings gegenüber dem 1-Button-Scanning auf

eine Kombination aus beiden Gründen rückführbar ist.

Das 2-Button-Scanning hat unter den barrierefreien Eingabemethoden, abgesehen von der

3x3-Matrix als Button-Konfiguration, die niedrigste Bandbreite bei den falsch übertragenen Bits

beziehungsweise am wenigsten fälschlich betätigte Buttons, wie ein Blick auf das Diagramm

in der Abbildung 6.7 zeigt. Die wenigen Fehleingaben sind darauf zurückzuführen, dass die

Probanden die Fokussierung der Buttons selbst steuern konnten, es also seltener ein „Verpassen“

wie beim 1-Button-Scanning oder ein fälschliches Auswählen wie beim Face-Tracking gab.

Die wenigen Fehleingaben, die dennoch stattfanden, resultieren vermutlich daraus, dass die

Probanden manchmal sprichwörtlich über das Ziel hinausschossen, indem sie die Taste für die

Fokussierung des nächsten Buttons zu oft drückten und anschließend auch noch den Button

betätigten. Allerdings sind die Fehleingaben beim 2-Button-Scanning sehr gering, weshalb es

schwierig ist, eine oder mehrere Ursachen zu finden. Insgesamt machten die 16 Probanden 6

Fehleingaben. Dem gegenüber stehen 218 richtige. Deshalb ist es auch schwierig, eine Erklärung

dafür zu finden, weshalb die in Abbildung 6.6 dargestellte Bandbreite an falsch übertragenen

Bits bei der 4x4- und 5x5-Matrix größer ist als bei den beiden anderen Button-Konfigurationen.

Es kann schlichtweg Zufall sein.

Sprachsteuerung

Im Gegensatz zu den beiden Eingabemethode 1- und 2-Button-Scanning steigt die durchschnitt-

liche Bandbreite der Sprachsteuerung zwischen der 3x3- und 6x6-Matrix erheblich an. Das

Diagramm in Abbildung 6.5 veranschaulicht dies. Der konstante Anstieg der Bandbreite liegt an

der kontinuierlichen Eingabegeschwindigkeit. Das Diagramm in Abbildung 6.7 veranschaulicht,

dass die 16 Probanden im Durchschnitt ca. 0,2 Buttons je Sekunden betätigten und das bei allen

4 getesteten Button-Konfigurationen. Hieraus geht hervor, dass sich die im Rahmen der Tests

durchgeführte Erhöhung der Button-Anzahl nicht negativ auf die Eingabegeschwindigkeit

auswirken. Jedoch ist diese Entwicklung für eine beliebige Anzahl an Buttons ausgeschlossen,

da der Platz auf der Benutzeroberfläche begrenzt ist und die Beschriftung des Buttons oder

seine Nummer für den Benutzer lesbar bleiben müssen. Die Eingabegeschwindigkeit ist viel

mehr durch die derzeitige Umsetzung der verwendeten Voice Access App limitiert, denn der

Großteil des Zeitbedarfs für eine Eingabe war während der quantitativen Benutzbarkeits-

tests auf diese zurückzuführen. Dafür gab es folgende 3 Ursachen. Nachdem der Proband
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eine Spracheingabe tätigte, musste zunächst gewartet werden, bis die Voice Access App die

Spracherfassung beendet. Das ist erforderlich, da im Vorfeld nicht bekannt ist, wie lange die

Eingabe des Benutzers ist, weshalb sie deren Ende erst nach einer Phase, in der dieser nicht

redet, erkennen kann. Anschließend führt sie die Spracherkennung online durch, was ebenfalls

Zeit in Anspruch nimmt (vgl. [Goo16i]). Wenn die Spracheingabe einem Button anschließend

zuordenbar ist, betätigt sie ihn. Dies erfolgt animiert, was den dritten Grund für den Zeitbedarf

darstellt.

Die imDiagramm vonAbbildung 6.6 dargestellten durchschnittlich falsch übertragenen Bits pro

Sekunde sind sehr gering. Das lässt sich darauf zurückführen, dass die Probanden zur Betätigung

eines Buttons dessen entsprechende Nummer sagen mussten. Die Nummerierung der Buttons

erfolgte durch die Voice Access App (vgl. [Goo16a]). Dem geringen Anteil an Fehleingaben

nach, lassen sich die Zahlen bei der Spracheingabe sehr gut voneinander unterscheiden, was

dazu führte, dass die Probanden nur selten einen falschen Button betätigten. Das Diagramm

in Abbildung 6.7 zeigt eine geringe Zunahme der Fehleingaben mit einer steigenden Zahl

von Buttons. Hieraus lässt sich die Überlegung ableiten, dass die Spracherkennung größerer

Zahlen eventuell schwieriger ist. Bei einer 3x3-Matrix besaßen die Buttons die Nummern 4 bis

einschließlich 12. Bei der 6x6-Matrix waren sie von 4 bis einschließlich 39 durchnummeriert.

Was die Diagramme zu der Sprachsteuerung nur indirekt berücksichtigen, aber erhebliche

Probleme bereitete, waren falsch verstandene Spracheingaben, welche keinem der zur Auswahl

stehenden Buttons zuordenbar waren. Diese traten besonders intensiv bei Probanden auf,

welche einen Dialekt hatten. Das Diagramm in Abbildung 6.8 zeigt den maximalen, durch-

schnittlichen und minimalen je Probanden berechneten Durchschnitt an betätigten Buttons

pro Sekunde je Button-Konfiguration. Daraus, dass der Abstand zwischen den minimalen

und durchschnittlichen Werten deutlich größer als jener zwischen den durchschnittlichen

und maximalen ist, lässt sich ableiten, dass es bei einigen Probanden überdurchschnittlich

große Probleme bei der Spracherkennung gegeben haben muss. Diese sind in der Eingabe-

geschwindigkeit deshalb enthalten, weil die Probanden nicht verstandene Spracheingaben

so oft wiederholen mussten, bis sie das waren, was zu einer geringeren Eingabegeschwindig-

keit führte. Aus diesem Grund sind die falsch verstandenen Spracheingaben indirekt in den

Ergebnissen enthalten.

15 von den 16 Personen testeten die Sprachsteuerung auf Deutsch und 1 auf Englisch. Diemittels

Englisch erzielte Bandbreite an richtig übertragen Bits pro Sekunde liegt bei allen 4 getesteten

Button-Konfigurationen über dem Durchschnitt. Jedoch erlaubt dies hinsichtlich der Frage, ob

Deutsch oder Englisch besser oder gleich gut geeignet ist für die Sprachsteuerung mittels der

App Voice Access, aufgrund der ungleichen Verteilung an Tests, keine Schlussfolgerung.

Face-Tracking

Das Diagramm in Abbildung 6.5 zeigt, dass bei der Eingabemethode Face-Tracking die Anzahl

der durchschnittlich pro Sekunde richtig übertragenen Bits mit zunehmender Anzahl an
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Abbildung 6.8.: Maximal, durchschnittlich sowie minimal übertragene Bits / Sekunde mit der

Eingabemethode Sprachsteuerung.

getesteten Buttons gestiegen ist. Jedoch nimmt mit ihr auch deren Größe ab, was ihre Auswahl

und Betätigung mittels Face-Tracking erschwert. Dies geht aus dem Diagramm in Abbildung

6.7 hervor. Es zeigt die, mit der Anzahl an getesteten Buttons sinkende, durchschnittliche

Eingabegeschwindigkeit in Form von betätigten Buttons pro Sekunde.

Das Diagramm mit den im Durchschnitt übertragenen Bits pro Sekunde zeigt jedoch auch eine

steigende Zahl an falsch übertragenen Bits in Abhängigkeit zu einer zunehmenden Anzahl

an Buttons in den Tests. Die steigende Fehlerrate ist darauf zurückzuführen, dass je kleiner

die Buttons sind, desto schwieriger deren Auswahl ist, da der Cursor, der hierfür notwendig

ist und mittels Face-Tracking gesteuert wird, unruhig ist. Seine Unruhe ist jedoch nicht bei

allen Probanden gleich. Eine weitere Schwierigkeit, die insbesondere bei kleinen Buttons zum

Tragen kommt, ist vermutlich die, dass der Benutzer während des Blinzelns, welches den

ausgewählten Button betätigt, den Cursor ruhig halten muss, um nicht versehentlich einen

benachbarten Button auszuwählen und zu betätigten. Den Beobachtungen des Autors nach,

fiel dies einigen Probanden schwer.

Im Vorfeld der quantitativen Benutzbarkeitstests kam die Überlegung auf, ob das Tragen einer

Brille oder eines Bartes das Face-Tracking beeinflusst. Nachdem der Cursor je nach Proband
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unterschiedlich unruhig war, könnte ein Bart oder eine Brille die Ursache dafür sein. Von

den 16 Probanden hatten 5 einen Bart. Lediglich bei demjenigen mit dem ausgeprägtesten

Bart kam es zu offensichtlichen Problemen. Diese äußerten sich darin, dass bei ihm der Cur-

sor extrem unruhig war. Das Diagramm in Abbildung 6.9 lässt die Schlussfolgerung, dass

ein Bart das Face-Tracking beeinflusst, nicht zu. Sie zeigen die im Durchschnitt richtig und

falsch übertragenen Bits pro Sekunde der Probanden mit und jenen Probanden ohne Bart.

Offensichtliche Abweichungen zwischen Bartträgern und bartlosen Testpersonen sind nicht

erkennbar. Das Diagramm in Abbildung 6.10 unterscheidet zwischen Probanden mit sowie

ohne Brille. Im Gegensatz zum Bart, lässt sich aus ihnen ein möglicher Einfluss durch das

Tragen einer Brille auf das Face-Tracking ableiten. Sowohl die durchschnittlich falsch als auch

die im Durchschnitt richtig übertragenen Bits pro Sekunde sind bei den Probanden ohne Brille

etwas besser. Wichtiger als die Ergebnisse aus den Diagrammen ist jedoch die Erkenntnis,

dass bei 2 von den 6 Brillenträgern das Face-Tracking mit aufgesetzter Brille überhaupt nicht

nutzbar war, da das Blinzeln nur sehr eingeschränkt oder überhaupt nicht erkannt wurde.

Deshalb haben diese 2 Probanden die quantitativen Benutzbarkeitstests schließlich ohne Brille

durchgeführt. Das Diagramm mit den durchschnittlichen Bandbreitenwerten der Brillenträger

beinhaltet demzufolge nur die Werte von den 4 Probanden, bei denen die Brille keine Probleme

verursachte. Das lässt sich die These zu, dass offensichtliche nur manche Brillen negative

Auswirkungen auf das Face-Tracking hatten und die anderen wenige bis keine.

Das Diagramm in Abbildung 6.11 zeigt die durchschnittliche Bandbreite an richtig und falsch

übertragenen Bits je Sekunde mit einer höheren Anzahl an Buttons. Daneben befinden sich

die Ergebnisse in Form von Zahlen in den Tabellen A.3 und A.4 des Anhangs. Die 7x7-,

8x8, 9x9- sowie 10x10-Matrixen wurden im Anschluss an das eigentliche Testprogramm in

der Endphase der quantitativen Benutzbarkeitstests mit 3 beziehungsweise die 9x9-Matrix

lediglich mit 2 Testteilnehmern getestet. Der Anlass hierfür war, dass es mit den ursprünglich

getesteten Button-Konfigurationen bei der Eingabemethode Face-Tracking kontinuierlich zu

einem Anstieg der Bandbreite kam und die quantitativen Benutzbarkeitstests ursprüngliche

die Grenze des Möglichen von dieser ermitteln sollten, also jene Anzahl an Buttons, mit der

die höchste Bandbreite erzielbar ist. Auch wenn die Durchführung mit 3 Probanden keine so

aussagekräftigen Schlüsse erlaubt, lässt sich aus dem Diagramm ableiten, dass ungefähr bei der

8x8-Matrix beziehungsweise 64 Buttons die Grenze des Möglichen bei der Eingabemethode

Face-Tracking in Kombination mit dem Prototyp erreicht ist. Bei dieser Konfiguration wurden

durchschnittlich die meisten Bits pro Sekunde richtig übertragen. Bei der 9x9-Matrix sowie

der 10x10-Matrix als Button-Konfiguration ist die Bandbreite hingegen wieder geringer. Bei

Letzter übersteigt jene der im Durchschnitt falsch übertragenen Bits diese sogar.

Betrachtet man das Diagramm in Abbildung 6.6 zeigt sich unabhängig von den im vorherigen

Abschnitt behandelten erweiterten quantitativen Benutzbarkeitstests, dass das Face-Tracking

besonders bei den getesteten Konfigurationen mit den höheren Button Anzahlen die mit Ab-

stand meisten Fehleingaben respektive falsch übertragenen Bits pro Sekunde durchschnittlich

hatte. Mit dieser Erkenntnis sind die Durchschnittswerte bei den richtig übertragenen Bits pro

Sekunde immer in Kombination mit den Fehleingaben zu betrachten. Denn in der Praxis wird

es oftmals so sein, dass jede Fehleingabe mindestens eine richtige Eingabe zur Korrektor erfor-
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Abbildung 6.9.: Im Durchschnitt richtig sowie falsch übertragenen Bits / Sekunde in Abhän-

gigkeit mit sowie ohne Bart.

dert. Unter diesem Gesichtspunkt betrachtet, wird anhand des Diagramms in Abbildung 6.11

schnell deutlich, dass die Button-Konfiguration mit der durchschnittlich höchsten Bandbreite

an richtig übertragenen Bits pro Sekunde in der Praxis nicht unbedingte die leistungsfähigste

ist. Dies gilt natürlich für sämtliche getestete Eingabemethoden. Jedoch kommt dieser Aspekt

insbesondere beim Face-Tracking und 1-Button-Scanning, die im Vergleich zu den übrigen

einen sehr hohen Anteil an Fehleingaben besitzen, eine größere Bedeutung zu.

6.2. Qualitative Benutzbarkeitstests

Dieses Unterkapitel beschreibt die Vorbereitung und Durchführung der qualitativen Benutz-

barkeitstests mit Probanden aus der Zielgruppe des barrierefreien Smarthomes sowie deren

anschließende Auswertung.
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Abbildung 6.10.: Im Durchschnitt richtig sowie falsch übertragenen Bits / Sekunde mit sowie

ohne Brille.

6.2.1. Vorbereitung

Die Vorbereitung der qualitativen Benutzbarkeitstests umfasste die Instrumentalisierung des

Prototyps, um diese durchführen zu können. Hierzu zählte nachfolgend auch die Formulierung

geeigneter Testaufgaben. Des Weiteren fielen die Probandenauswahl sowie die Erstellung eines

Bewertungsbogen für deren qualitative Rückmeldungen in die Vorbereitungsphase. Diese 4

Aspekte werden im folgenden dargestellt.

Instrumentalisierung Prototyp

Die Abbildung 6.1 zeigt einen Screenshot von den Einstellungen für die qualitativen Benutz-

barkeitstests. Sind diese eingeschaltet, ändert sich im Gegensatz zu den in Abschnitt 6.1

beschriebenen quantitativen Benutzbarkeitstests nicht die Benutzeroberfläche. Allerdings be-

findet sich in dieser dann zusätzlich ein Textfeld am oberen Displayrand, welches dem Benutzer

die nächste Aufgabe im Rahmen des Benutzbarkeitstests anzeigt. Unter einer solchen ist zu

verstehen, dass der Proband beispielsweise den TV-Sender ZDF auswählen soll.
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Abbildung 6.11.: Durchschnittlich richtig und falsch übertragene Bits / Sekunde bei den 3

Probanden die das Face-Tracking mit bis zu 100 Buttons testeten.

In den in Abbildung 6.1 zu sehenden Einstellungen lässt sich der Pfad zu einer XML-Datei festle-

gen. Aus ihr werden die Aufgaben für die Benutzbarkeitstests geladen. Im Quellcodeausschnitt

6.3 ist der Teil einer solchen XML-Datei zu sehen.

1 <test_set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
2 <test id="1" name="Test">
3 <test_case>
4 <description>TV-Sender Pro7 in der Senderliste auswählen</description>
5 <destination>/tv/tv_channelList/tv_pro7</destination>
6 </test_case>
7 <test_case>
8 <description>Zum nächsten Kanal / TV-Sender wechseln</description>
9 <destination>/tv/tv_channelUp</destination>
10 </test_case>
11 ...
12 </test>
13 </test_set>

Quellcodeausschnitt 6.3: Auszug aus einer XML-Datei mit den Testaufgaben.

119



6. Evaluation

Sie besteht aus mindestens einem Test. In der XML-Datei handelt es sich bei diesem um das

Element test. Wenn die XML-Datei mehrere Tests beinhaltet, wird einer zufällig ausgewählt.

Jeder Test besteht aus mindestens einer Aufgabe, repräsentiert durch das Element test_case

in der XML-Datei. Jede Aufgabe besteht aus zwei Attributen. Bei diesen handelt es sich zum

einen um die Beschreibung der Aufgabe und zum anderen um den Pfad zu dem Button, den der

Proband betätigen soll. Bei der Aufgabenbeschreibung handelt es sich um den Text, der in dem

Textfeld angezeigt wird. Der Pfad setzt sich aus den IDs der Buttons zusammen, welche der

Proband ausgehend vom Hauptmenü betätigen muss, um das Ziel innerhalb der Menüstruktur

zu erreichen beziehungsweise die Aufgabe zu erledigen.

Die Überprüfung, ob die Aufgabe erledigt ist, findet in der Klasse UsabilityTestManager

statt. Sie ruft während der qualitativen Benutzbarkeitstests die in 5.4.2 beschriebene Klasse

CommandExecutor auf, wenn sie einen Befehl ausführt und überreicht ihr diesen als Parameter.

Da in diesem enthalten ist, welcher Button vom Proband betätigt wurde, kann die Klasse

UsabilityTestManager zum einen überprüfen, ob der Pfad von der Wurzel zum Button mit

jenem in der Aufgabe übereinstimmt und zum anderen die Benutzereingabe protokollieren.

Wenn der Proband das Ziel erreicht hat, also die beiden Pfade übereinstimmen, wählt die

Klasse UsabilityTestManager die nächste Aufgabe aus und macht deren Beschreibung im

dafür vorgesehenen Textfeld für den Benutzer sichtbar oder zeigt im Fall, dass der Test zu

Ende ist, dies an. Daneben ist die Klasse UsabilityTestManager für die Protokollierung der

Benutzereingaben verantwortlich. Bei jeder Ausführung eines Befehls schreibt sie folgende

Daten in eine CSV-Datei:

• Die Zeit in Millisekunden, die seit dem Start des Tests, nicht der einzelnen Aufgabe, bis

zum Zeitpunkt der protokollierten Eingabe vergangen ist.

• Die Art des Befehls, also ob der Proband in der Menü-Struktur nach oben, unten, links

oder rechts navigiert hat.

• Der Pfad von der Wurzel der Menü-Struktur zum Button, welchen der Proband betätigt

hat. Dadurch ist es möglich, im Nachhinein bei der Auswertung des Tests festzustellen, ob

der Proband den kürzest möglichen Weg zum Ziel durch die Menü-Struktur genommen

hat oder Fehleingaben stattgefunden haben und wie er diese korrigiert hat.

Probandenauswahl

Die Durchführung der qualitativen Benutzbarkeitstests fand mit den Interviewpartnern aus

Abschnitt 3.1 statt. Dadurch war keine erneute Suche nach geeigneten Personen aus der Ziel-

gruppe erforderlich. Des Weiteren passten sie aufgrund ihrer Einschränkungen sehr gut in

die Gruppe der möglichen zukünftigen Benutzer des barrierefreien Smarthomes. Letzterer

Aspekt ist nach Kuniavsky ein wichtiges Kriterium für die Auswahl geeigneter Probanden

(vgl. [KGM12, S. 265]). Selbiger weißt jedoch auch darauf hin, dass bei der Auswahl zusätzlich

zu beachten ist, dass die Probanden nicht nur in die Zielgruppe passen, sondern auch die Art

von Rückmeldungen zu dem getesteten Produkt geben können, welche die Organisatoren der
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Benutzerstudie benötigen (vgl. [KGM12, S. 265]). Aus diesem Grund wurden die qualitativen

im Gegensatz zu den quantitativen Benutzbarkeitstests nicht mit unversehrten Probanden

durchgeführt, sondern mit solchen, welche Einschränkungen bei der Benutzung ihrer Hände

haben und somit in die Zielgruppe des barrierefreien Smarthomes fallen. Der Grund hierfür

ist, dass die qualitativen Benutzbarkeitstests Erkenntnisse zu der Benutzeroberfläche, der

Navigation innerhalb des Menüs sowie der Eignung der barrierefreien Eingabemethoden

Face-Tracking, Sprachsteuerung und 1- sowie 2-Button-Scanning bringen sollten. Dies war

mit Probanden aus der Zielgruppe am besten möglich, zumal die Anwendung zur Steuerung

des barrierefreien Smarthomes auf ihre Bedürfnisse ausgelegt sein soll. Dagegen zielten die

quantitativen Benutzbarkeitstests auf einen Vergleich der Eingabemethoden hinsichtlich der

mittels ihnen maximal übertragbaren Entscheidungen pro Zeiteinheit ab. Durch Probanden

mit Einschränkungen, wäre es unklar gewesen, ob diese oder Charakteristika der Eingabeme-

thode der limitierende Faktor sind, weshalb für diese Art von Benutzbarkeitstests unversehrte

Probanden die geeigneteren waren.

Die Anzahl der Teilnehmer an den Interviews stimmte zudem mit den von Kuniavsky emp-

fohlenen 5 Probanden für einen Benutzbarkeitstest überein (vgl. [KGM12, S. 267]). Laut ihm

stellen 5 Probanden den besten Kompromiss zwischen den Ergebnissen, dem Aufwand und den

Kosten dar (vgl. [KGM12, S. 267]). Nichtsdestotrotz empfiehlt er, für jeden Benutzbarkeitstest

6 bis 10 Probanden zu suchen (vgl. [KGM12, S. 267]). Dadurch entsteht natürlich eine Aus-

fallsicherheit, welche aus der Sicht des Autors dieser Arbeit jedoch nicht im Verhältnis zum

Aufwand stand, da die Suche nach Probanden, welche in die Zielgruppe passen, sehr schwierig

ist. Des Weiteren wusste er von den Interviews, dass sich die Teilnehmer auf diese gefreut

hatten, da es eine Abwechslung in ihrem Alltag darstellt, weshalb es moralisch betrachtet

schwierig gewesen wäre, mehr Probanden zu suchen, als letztendlich dann wirklich an den

qualitativen Benutzbarkeitstests teilnehmen.

Testaufgaben

Benutzbarkeitstests entsprechen im Endeffekt Interviews, in deren Rahmen der Teilnehmer

eine Abfolge von Aufgaben erledigen soll (vgl. [KGM12, S. 259]). Zur Definition dieser Aufgaben

bietet es sich an, zunächst die zu evaluierenden Funktionen des Prototyps zu bestimmen (vgl.

[KGM12, S. 268]). Die qualitativen Benutzbarkeitstests sollten folgende Funktionalitäten der

Anwendung zur Steuerung des barrierefreien Smarthomes testen:

• Eingabemethode Face-Tracking

• Eingabemethode Sprachsteuerung

• Eingabemethoden 1- und 2-Button-Scanning

• Verständlichkeit der Benutzeroberfläche

• Navigation in der Menüstruktur
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• wenn möglich auch die Eingabemethoden Touch, Maus und Tastatur

Die 3 beziehungsweise 4 Eingabemethoden gegeneinander zu testen, stellt einen erhöhten Auf-

wand dar, bietet aber die Möglichkeit, Stärken und Schwächen von diesen besser zu ermitteln

(vgl. [KGM12, S. 270]]).

Als nächstes sind die einzelnen Aufgaben zu definieren. Sie sollten jeweils ein realistisches

Benutzungsszenario darstellen und sich auf eine oder eine Gruppe der zuvor zum Testen

festgelegten Funktionalitäten konzentrierten (vgl. [KGM12, S. 270]). Die im Rahmen dieser

Arbeit definierten Aufgaben sollen jeweils mit den Eingabemethoden getestet werden, die der

Proband benutzen kann. Bei der Anzahl der Buttons ist es geplant, mit einer 3x3-Matrix zu

starten und sie entsprechend den Fähigkeiten des jeweiligen Probanden zu steigern. Jedoch

ist es genauso möglich, die Tests mit weniger als 9 Buttons durchzuführen, wenn die Fähig-

keiten beziehungsweise Einschränkungen des Probanden dies erfordern. Die nachfolgende

Auflistung beinhaltet die Aufgaben, welche die Probanden der Reihe nach lösen sollten. Der

Ausgangspunkt für die erste Aufgabe ist das Hauptmenü.

• Auswahl des Fernsehsenders ARD im Untermenü Favoriten.

• Vollbild im Untermenü TV aktivieren.

• Auswahl des Radiosenders SWR 3 im Untermenü Senderliste.

• Auswahl des Fernsehsenders Pro7 im Untermenü Senderliste.

• Auswahl des nächsten Fernsehsenders im Untermenü TV.

Dadurch, dass die fünf Aufgaben mit jeder für den Probanden bedienbaren Eingabemethode

getestet wurden, stellten sie diesbezüglich eine breite Testabdeckung dar. Des Weiteren tes-

teten sie auch die Verständlichkeit der Benutzeroberfläche und Menü-Struktur. Bei ersterer

dadurch, dass sowohl Sender auszuwählen als auch Funktionalitäten, wie den Wechseln in

den Vollbildmodus zu betätigen waren und die entsprechenden Buttons sich in verschiedenen

Untermenüs befanden. Darüber hinaus ist es mit der aus 5 Aufgaben bestehenden Abfolge

auch möglich, die Navigation in der Menüstruktur zu testen. Durch den Wechsel zwischen

Fernseh- und Radiosendern muss der Proband in der Menüstruktur mehrmals vom Hauptmenü

bis zum tiefsten Untermenü und zurück navigieren. Zudem befindet sich der Radiosender SWR

3 im entsprechenden Untermenü sehr weit „hinten“, wodurch auch die horizontale Navigation

innerhalb eines solchen getestet wird.

Die Anzahl an Aufgaben ist bewusst gering gehalten. Auch wird vermutlich kein Proband in

der Lage sein, alle sieben Eingabemethoden zu testen. Beides soll sicherstellen, dass die Tests

nicht zu lange dauern. Zwar würde eine höhere Anzahl an Aufgaben kein Problem darstellen,

was die von Kuniavsky empfohlene Testdauer von ein bis zwei Stunden betrifft, jedoch werden

aufgrund ihrer Einschränkungen nicht alle Probanden in der Lage sein, den Prototyp in diesem

zeitlichen Umfang zu testen (vgl. [KGM12, S. 268]). Sofern die Probanden im Anschluss an

die qualitativen Benutzbarkeitstests, nachdem alle für sie möglichen Eingabemethoden und

Button-Konfigurationen getestet wurden, noch in der Lage und bereit zu weiteren Tests sind,
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war es geplant, die in Abschnitt 6.1 beschriebenen quantitativen Benutzbarkeitstests in einem

deutlich reduzierteren Umfang durchzuführen.

Feedback

Im Vergleich zu den in Kapitel 3.1 behandelten Interviews, war der Fragebogen klein. Er

setzte sich primär aus zwei Teilen zusammen. Der erste Teil bestand aus einer Bewertung

der getesteten Eingabemethoden. Diese sollten die Probanden anhand einer Likert-Skala

vornehmen. Hierzu konnten sie zwischen folgenden Likert-Items wählen:

• geeignet

• eher geeignet

• teils-teils geeignet

• eher ungeeignet

• ungeeignet

Die Bewertung fand unmittelbar nach dem Test der jeweiligen Eingabemethode statt, da zu

diesem Zeitpunkt die Erfahrungen am präsentesten waren. Gleichzeitig sollte dieses Verfah-

ren auch einen Vergleich der Eingabemethoden ermöglichen, weshalb die Probanden ihre

Bewertungen, nachdem sie alle Eingabemethoden getestet und sie somit für sich persönlich

vergleichen konnten, noch einmal ändern durften. Die Likert-Skala sollte die Eingabemethoden

einfacher vergleichbar machen, da sie trotz der qualitativen Benutzbarkeitstests quantitative

Daten liefert.

Der zweite Teil des Fragebogens enthielt qualitative Fragen. Diese bezogen sich auf die Vor-

und Nachteile der Eingabemethoden sowie die Meinung der Probanden bezüglich dieser und

der Benutzeroberfläche. Des Weiteren versuchte er auch Verbesserungsvorschläge im Bezug

auf den Prototypen zu erlangen.

6.2.2. Durchführung

Die Durchführung der qualitativen Benutzbarkeitstests fand auf zwei Tage verteilt statt. Von

den ursprünglich geplanten 5 Teilnehmern wurde leider einer kurzfristig krank, wodurch es nur

4 gab. Am Anfang erhielten die Teilnehmer jeweils eine Einführung in die Benutzeroberfläche.

Hierzu bekamen sie unter anderem auch eine Übersicht der Menüstruktur in Papierform

gezeigt. Des Weiteren konnten sie sich mit allen, von ihnen benutzbaren Eingabemethoden,

vertraut machen. Dieses Vorgehen sollte sicherstellen, dass während den Tests möglichst keine

Verständnisprobleme auftreten.
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Die Einstellungen für das Face-Tracking sind gegenüber den quantitativen Benutzbarkeitstests

gleich geblieben. Die Geschwindigkeit für die automatische Fokussierung des nächsten But-

tons beim 1-Button-Scanning ist mit den Probanden jeweils im Vorfeld an deren Fähigkeiten

angepasst worden. Sämtliche Tests wurden mit einer 3x3-Matrix als Button-Konfiguration

durchgeführt. Zwar hätten sie die Tests auch mit einer anderen Button-Konfiguration durch-

führen dürfen, jedoch wollte dies keiner. Mehrere Button-Konfigurationen zu testen, war nicht

möglich, da die einführenden Erklärungen, das Ausprobieren sowie die Tests für die Probanden

schon mit einer anstrengend waren. Dies war insbesondere bei den Testpersonen der Fall, die

wenig technikaffin sind und für die somit schon die Nutzung eines Tablets an sich, eine völlig

neue Erfahrung darstellte.

Während der Benutzbarkeitstests hat sich der Autor im Gespräch mit den Testpersonen im

Hinblick auf den Prototyp neutral verhalten, wie von Kuniavsky empfohlen (vgl. [KGM12,

S. 288]). Dieser rät darüber hinaus, mit den Probanden während der Tests einen Dialog zu

führen, indem der Moderator des Tests sie im Vorfeld einer Eingabe fragt, was sie in Folge

von dieser erwarten und warum sie sich für das jeweilige Vorgehen entschieden haben (vgl.

[KGM12, S. 288]]). Obwohl der Autor dieser Arbeit überzeugt ist, dass diese Fragen hilfreich

sind, hat er auf sie während den Tests verzichtet um die Teilnehmer nicht zu überfordern,

da er bei den meisten dein Eindruck hatte, dass die Testaufgaben an sich schon ihre volle

Aufmerksamkeit abverlangten. Stattdessen wurden die Probanden immer im Anschluss an

einen Test bezüglich ihrer Meinung zu der zuvor getesteten Eingabemethode befragt. Wenn

sie während des Tests schon von sich aus Dinge anmerkten, wurden diese natürlich erfasst.

Kuniavsky findet es zudem hilfreich, den Probanden in manchen Situationen beim Lösen einer

Testaufgabe zu unterstützen (vgl. [KGM12, S. 288-289]). Eine solche Unterstützung war je nach

Proband teilweise intensiv erforderlich.

Quantitative Benutzbarkeitstests, wie in Unterkapitel 6.1 beschrieben, durchzuführen um zu

ermitteln, wie sich die diversen Einschränkungen der Testteilnehmer auf die Bandbreiten der

unterschiedlichen Eingabemethoden und deren Verhältnis untereinander auswirken, war mit

keiner einzigen Testperson möglich. Der Grund hierfür war in der Regel Ermüdung in Folge

der qualitativen Benutzbarkeitstests und bei einem die Tatsache, dass ihrer Meinung nach

keine der verfügbaren Eingabemethoden für sie geeignet ist.

6.2.3. Auswertung

Die 4 an den qualitativen Benutzbarkeitstests teilnehmenden Personen waren im Durchschnitt

50,75 ±13,55, die jüngste 32 und die älteste 70 Jahre alt. Zudem handelte es sich bei ihnen

jeweils zur Hälfte um Frauen sowie Männer. Im Folgenden geht dieses Unterkapitel zunächst

auf die Eingabemethoden und anschließend auf die Benutzeroberfläche ein.

Die Tabelle 6.1 beinhaltet die Bewertungen sämtlicher getesteter Eingabemethoden anhand

der in Abschnitt 6.2.1 erstellten Likert-Items. Die Eingabemethoden, welche in der Tabelle 6.1

nicht enthalten sind, konnte keiner der Probanden testen. Ursächlich dafür war entweder, dass
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Tabelle 6.1.: Bewertung der Eingabemethoden (1 = geeignet, 2 = eher geeignet, 3 = teils-teils

geeignet, 4 = eher ungeeignet, 5 = ungeeignet).

Testperson

Eingabemethode A B C D Durchschnitt

Touch 2 3 - - teils-teils geeignet (2,5)

Face-Tracking 5 1 5 3 eher ungeeignet (3,5)

1-Button-Scanning 2 3 - - teils-teils geeignet (2,5)

2-Button-Scanning 2 - - - eher geeignet (2,0)

Sprachsteuerung 5 4 5 3 eher ungeeignet (4,25)

die Bedienung aufgrund der Einschränkungen nicht möglich war oder die Zeit beziehungs-

weise Konzentrationsfähigkeit der Probanden für weitere Tests nicht mehr ausreichte. Die

Eingabemethoden Face-Tracking sowie Sprachsteuerung hat jeder Proband ausprobiert. Zah-

lenmäßig betrachtet, erzielte das Face-Tracking im Durchschnitt eine etwas bessere Bewertung

als die Sprachsteuerung. Gerundet betrachtet haben beide entsprechend der Likert-Skala ein

„eher ungeeignet“ erhalten. Bei den anderen getesteten Eingabemethoden ist zwar ebenfalls

eine durchschnittliche Bewertung angegeben, jedoch ist diese wenig aussagekräftig, da sie

lediglich aus maximal zwei Werten resultiert. Interessant sind insbesondere die Bewertungen

der Probanden A und B, da sie viele Eingabemethoden testen konnten. Dadurch haben beide

eine oder mehrere für ihre Situation geeignete Eingabemethode(n) gefunden, was sich darin

widerspiegelt, dass beide mindestens eine mit „geeignet oder eher geeignet“ bewertet haben.

Aus der Tabelle 6.1 geht zudem hervor, dass das Face-Tracking sowie die Sprachsteuerung

die Eingabemethoden sind, die von Benutzern mit einer eingeschränkten Mobilität ihrer Hän-

de am ehesten nutzbar sind. Dass die Teilnehmer der qualitativen Benutzbarkeitstests das

Face-Tracking von „geeignet“ bis „ungeeignet“ bewerten haben, lässt den Schluss zu, dass für

dieses zwar Geschick und Übung erforderlich ist, es aber trotz der im Durchschnitt schlechten

Bewertung nicht grundsätzlich ungeeignet ist. Auf die Sprachsteuerung trifft dies nicht zu. Mit

ihr kam keiner der Probanden zufriedenstellend zurecht.

Die Tabelle 6.2 zeigt die Ergebnisse von der Durchführung der in Abschnitt 6.2.1 beschrie-

benen Testaufgaben. Die Testdauer ist in Sekunden angeben und umfasst die Zeit, welche

die Testperson zur Durchführung der Testaufgaben mit der jeweiligen Eingabemethode benö-

tigte. Die Fehleingaben sind die Differenz zwischen der Anzahl der betätigten Buttons und

jenen 21 Button-Betätigungen, die zur Abarbeitung der Testaufgaben mindestens erforder-

lich waren. Sprich, nicht jede Fehleingabe war selbst eine, jedoch die Folge einer solchen, da

zur Korrektur betätigte Buttons ebenfalls als Fehleingabe gezählt wurden. Ein Vergleich der

Eingabemethoden ist mit den Testergebnissen aus Tabelle 6.2 nur schlecht möglich, da die

wenigsten Probanden es schafften, eine größere Anzahl an Eingabemethoden mit ihnen zu

testen. Die Abweichung zwischen durchgeführten Tests und bewerteten Eingabemethoden

rührt daher, dass die Probanden zu Beginn der Benutzbarkeitstests sich mit diesen zunächst
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Tabelle 6.2.: Testdauer in Sekunden sowie die Fehleranzahl der Probanden bei der Lösung der

Testaufgaben, je Eingabemethode.

Testperson

A B C D Durchschnitt

Eingabemethode Dauer Fehler Dauer Fehler Dauer Fehler Dauer Fehler Dauer Fehler

Touch 294 24 - - - - - - 249 24

Face-Tracking - - 502 43 367 5 364 15 411 21

1-Button-Scanning 318 22 - - - - - - 318 22

2-Button-Scanning 405 30 - - - - - - 405 30

Sprachsteuerung - - - - - - 330 0 330 0

vertraut machen durften, wodurch sie sich zu ihnen eine Meinung bilden konnten. Die Aufga-

ben konnten sie jedoch aufgrund mangelnder Konzentrationsfähigkeit und Zeit nicht mehr

mit allen Eingabemethoden testen. Interessant an den Ergebnissen in Tabelle 6.2 ist dennoch,

dass Proband D bei der Spracheingabe 0 und beim Face-Tracking 15 Fehleingaben hatte, was

wie schon die Ergebnisse der quantitativen Benutzbarkeitstests in Abschnitt 6.1.3 zeigt, dass

bei der Sprachsteuerung selten Fehleingaben auftreten. Auffällig ist auch, dass Testperson C

die Eingabemethode Face-Tracking mit „ungeeignet“ bewertet hat, gleichzeitig beim Lösen

der Testaufgabe nur 5 Fehleingabe machte, was eigentlich zur Schlussfolgerung führen würde,

dass er mit dieser Eingabemethode zurechtkam. Der Grund dafür ist vermutlich der, dass die

Testperson C an ihrem Computer schon einen Face-Tracker mit Marker und hochwertiger

Kamera nutzt, welche eine präzisere Bedienung ermöglicht als das Face-Tracking der App zur

Steuerung des barrierefreien Smarthomes.

Die qualitativen Benutzbarkeitstests sollten jedoch nicht nur quantitative Ergebnisse, sondern

auch qualitatives Feedback hervorfördern. Hierzu werden zum einen die von den Teilnehmern

von sich aus getätigten Anmerkungen zu dem Prototyp, ihre Antworten auf die Frage nach

den Vor- und Nachteilen der jeweiligen Eingabemethode sowie die Beobachtungen des Autors

ausgewertet.

Die Testpersonen A und B probierten beide die Eingabemethode Touch aus. Für Erstere stellte

diese aufgrund der großen Buttons keine Schwierigkeiten dar. Die Testperson B hatte diese

hingegen, da sie die Bewegungen der zur Bedienung genutzten Hand nicht gut kontrollieren

kann. Laut ihrer eigenen Einschätzung würde sie viel Übung und Glück benötigen, um die App

zur Steuerung des barrierefreien Smarthomes mittels Touch erfolgreich bedienen zu können.

Die Eingabemethode Face-Tracking konnten drei der vier Testpersonen ausprobieren. Test-

person A konnte das Face-Tracking nicht zufriedenstellend bedienen, da sie aufgrund ihrer

Beeinträchtigungen die Bewegung ihres Kopfes nur schwer kontrollieren kann. Die Testper-

sonen C und D kritisierten an dem Face-Tracking, dass der Cursor zu unruhig ist und nicht

so reagiert, wie sie es sich vorstellen. Allerdings ist anzumerken, dass die Bedingungen für

das Face-Tracking bei der Testperson D erschwert waren, da diese die Benutzbarkeitstests

nur liegend durchführen konnte. Für die Testperson B war das Face-Tracking hingegen die
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beste der getesteten Eingabemethode. Kritik hatte sie keine an ihr anzumerken. Probleme, die

Bewegungen des Kopfes zu kontrollieren, hatte sie nach eigenen Angaben, jedoch würde sie das

Face-Tracking deshalb sogar gut finden, um eben genau diese durch Übung zu reduzieren.

Das 1-Button-Scanning konnte nicht mit einer Fortschrittsgeschwindigkeit von 300 Millise-

kunden, wie bei der Bandbreitenmessung in Unterkapitel 6.1 getestet werden, sondern mit

2 beziehungsweise 3 Sekunden. Testperson A kam damit sehr gut zurecht und meinte, dass

ihr diese Eingabemethode nach einer Eingewöhnungszeit lieber wäre als die herkömmliche

Fernbedienung für den Fernseher. Für Testperson B war die Bedienung der Taste des Button

Switches schwierig. Der Grund hierfür war, dass sie die Hand nicht so gut steuern kann,

wodurch für sie selbst eine Fortschrittsgeschwindigkeit von 3 Sekunden noch zu schnell war.

Darüber hinaus betätigte sie aufgrund der motorischen Schwierigkeiten im Bereich der Hand

den Taster häufig versehentlich mehrmals kurz hintereinander, was Fehleingaben zur Folge

hatte. Besonders problematisch war, dass in einem neuen Untermenü als erstes jener Button

fokussiert ist, der einen zurück in das übergeordnete Menü bringt, wodurch es mehrmals vor-

kam, dass die Testperson B den Button in ein Untermenü tätigte, aber durch die unkontrollierte

Mehrfachbetätigung des Tasters sofort wieder in eine oder mehrere Menüebenen weiter oben

gekommen ist.

Bei der Sprachsteuerung hatten alle 4 Testpersonen Probleme. Ursächlich hierfür war, dass

sie nicht laut und deutlich genug sprechen konnten, weshalb die App Voice Access es oftmals

gar nicht erkannt hat, wenn sie was sagten oder es falsch verstanden hat. Die Testpersonen A

und B hatten darüber hinaus noch weitere Schwierigkeiten mit der Sprachsteuerung als Einga-

bemethode. Erstere gab an, dass es sie schnell verunsichert hat, wenn die App zur Steuerung

des barrierefreien Smarthomes eine unbeabsichtigte Aktion ausführte in Folge eines falsch

verstandenen Sprachbefehls. Bei der Testperson B war neben dem lauten sowie deutlichen

Sprechen das Problem, dass sie nicht wie erforderlich mit der Sprachsteuerung interagieren

konnte. Anstatt die Zahl oder die Beschriftung von einem der angezeigten Buttons zu sagen,

redete sie dialogartig beziehungsweise in ganzen Sätzen, was die App Voice Access nicht

verarbeiten konnte. Auch war es für die Testperson in den Augen des Autors nicht verständlich,

dass nur die sichtbaren Buttons mittels Sprachsteuerung betätigbar sind und beispielsweise im

Radiomenü nicht der Fernsehsender 3sat einstellbar ist. Die Testpersonen A und D machten

zudem noch Verbesserungsvorschläge bezüglich der App Voice Access. Erstere würde es be-

grüßen, wenn der aus der Spracheingabe erkannte Text in der Benachrichtigungszeile durch

die App Voice Access in einer größeren Schrift dargestellt wird. Von der Testperson D kam die

Anregung, die akustische Rückmeldung im Anschluss an eine Spracheingabe, ob diese einem

Button zuordenbar ist oder nicht, wegzulassen.

Die Tabelle 6.3 zeigt die Bewertungen der Testpersonen zum einen für Verständlichkeit sowie

das Erscheinungsbild der Benutzeroberfläche und zum anderen das Navigationskonzept in

der Menüstruktur. Im Vergleich zu den Eingabemethoden fallen diese größtenteils positiv und

einheitlich aus. Keiner der Probanden bewertete schlechter als „teils-teils geeignet“. Testperson

A begründete ihre positive Bewertung zudem ausführlich damit, dass sich die Größe der Buttons

indirekt über deren Anzahl sowie die Schriftgröße ihrer Beschriftung individuell konfigurieren
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Tabelle 6.3.: Bewertung der Benutzeroberfläche (1 = geeignet, 2 = eher geeignet, 3 = teils-teils

geeignet, 4 = eher ungeeignet, 5 = ungeeignet).

Testperson

Eingabemethode A B C D Durchschnitt

Verständlichkeit 1 3 2 1 eher geeignet (1,75)

Navigation 1 2 2 1 eher geeignet (1,5)

lässt. Des Weiteren findet sie es speziell für die Steuerung eines Fernsehers praktisch, dass

das Menü auf dem mobilen Endgerät dargestellt ist, das näher bei ihr ist und nicht auf dem

entfernteren Fernseher, wodurch es für sie besser lesbar ist. Auch findet Testperson A die

Benutzeroberfläche insgesamt übersichtlicher im Vergleich zu jenen der Fernseher.
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Dieses Kapitel blickt zunächst mit einer Übersicht über den Realisierungsstatus der Anfor-

derungen zurück. Im nächsten Schritt arbeitet es den Mehrwert der Umsetzung gegenüber

den Bedienungshilfen von Android heraus. Im Anschluss daran fasst es die Ergebnisse der

im vorherigen Kapitel behandelten Benutzbarkeitstests zusammen und stellt sie zudem jenen

aus den verwandten Arbeiten aus Abschnitt 2.4 gegenüber. Zum Abschluss erfolgt noch ein

Ausblick auf Erweiterungsmöglichkeiten der Anwendung zur Steuerung des barrierefreien

Smarthomes.

7.1. Umgesetzte Anforderung

Die Tabelle 7.1 beinhaltet die in 3.2 definierten Anforderungen zusammen mit ihrem Reali-

sierungsstatus. Das Symbol ✓ bedeutet, dass sie umgesetzt und das Symbol ✗, dass sie nicht

realisiert wurden. Die Tabelle 7.1 unterscheidet zu dem, zwischen der Umsetzung des in Kapitel

4 beschriebenen Konzepts sowie dem Prototyp in Kapitel 5. Die vorherigen Kapitel haben

die umgesetzten Anforderungen schon ausführlich behandelt. Deshalb soll dieser Abschnitt

kurz zusammenfassen, was zu der Nichtrealisierung weniger Anforderungen führte. Das Kon-

zept unterstützt die Android Bedienungshilfen (Anforderung F2), indem es unter anderem

für jedes Menüelement auch eine aussprechbare Variante der Bezeichnung vorsieht, was die

Verständlichkeit der Sprachwiedergabe mittels TalkBack fördert. Der Prototyp implementiert

die dafür benötigten Methoden allerdings nicht, da blinde und sehbehinderte Personen nicht

dem Kreis der Testpersonen bei den in Kapitel 6 beschrieben Benutzbarkeitstests angehörten.

Aus diesem Grund unterstützt er die Android Bedienungshilfen nur teilweise. Die Anforderung

F4 Sprachsteuerung ist ebenfalls nur konzeptionell berücksichtigt, da für diese in den Benutz-

barkeitstest die App Voice Access von Google verwendet wurde. Werde prototypisch noch

konzeptionell wurde die Anforderung F8 Ein- und Ausschalten, welche es ermöglichen sollte,

die Steuerung des barrierefreien Smarthomes barrierefrei ein- und auszuschalten. Der Gründe

dafür waren zum einen, wie schon bei Anforderung F2, dass die Umsetzung im Prototyp für

die Benutzbarkeitstests nicht erforderlich war und zum anderen das Ein- und Ausschalten

eines Smartphones / Tablets ohne die Benutzung einer Hand, nicht ohne weiteres möglich ist.

Die Anforderung N2 Verzicht auf Hilfsmittelhardware, ist sowohl im Konzept als auch dem

Prototyp nur deshalb teilweise umgesetzt, da für die beiden Eingabemethoden 1- und 2-Button-

Scanning, Hilfsmittel-Hardware erforderlich ist, wenn diese mittels Taster von Personen aus

der Zielgruppe genutzt wird.
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Tabelle 7.1.: Übersicht der im Konzept und Prototyp realisierten (✓) sowie nicht realisierten

(✗) Anforderungen.

Anforderung Konzept Prototyp

F1 Unterschiedliche Eingabemethoden ✓ ✓

F2 Unterstützung der Android Bedienungshilfen ✓ ✓ / ✗

F3 Steuerung via Face-Tracking ✓ ✓

F4 Sprachsteuerung ✓ ✗

F5 Steuerung mittels Taster oder Tastatur ✓ ✓

F6 Konfigurierbare Anzahl an Buttons ✓ ✓

F7 Konfigurierbare Schriftgröße ✓ ✓

F8 Ein- und Ausschalten ✗ ✗

N1 Eignung für unterschiedliche Geräte ✓ ✓

N2 Verzicht auf Hilfsmittelhardware ✓ / ✗ ✓ / ✗

N3 Erweiterbares Menü ✓ ✓

N4 Unterstützung von Erweiterungen ✓ ✓

N5 Erweiterbarkeit der Eingabemöglichkeiten ✓ ✓

7.2. Mehrwert gegenüber den Android Bedienungshilfen

Die App zur Steuerung des barrierefreien Smarthomes bietet gegenüber den in 2.3 behandelten

Android Bedienungshilfen mehrere Vorteile.

In den Einstellungen der Benutzeroberfläche lässt sich die Anzahl der maximal gleichzeitig

dargestellten Buttons festlegen. Dadurch ist indirekt auch deren Größe beeinflussbar. Große

Buttons können die Bedienung mittels Touch für Benutzer mit motorischen Einschränkungen,

beispielsweise in Folge einer Tetraplegie mit tiefer Verletzungshöhe, erleichtern. Des Weiteren

ist die Schriftgröße für die Button-Beschriftung frei wählbar. Die Bedienungshilfe von Android

ermöglichen zwar ebenfalls Einstellungen für die Schrift- und Anzeigengröße, jedoch fällt die

maximale Vergrößerung kleiner aus (vgl. [Goo16k]). Ein weiterer Vorteil von der Benutzer-

oberfläche der App zur Steuerung des barrierefreien Smarthomes ist, dass sie einfach gehalten

und zudem über die Definitionsdatei für die Menüstruktur auch an die kognitiven Fähigkeiten

des Benutzers anpassbar ist.

Die Entwickelten Eingabemethoden 1- und 2-Button-Scanning ähneln jenem Scanning des

Schalterzugriffs der Android Bedienungshilfen (vgl. [Goo16g]). Im Detail haben Erstere 2

jedoch entscheidende Vorteile. Das 1- und 2-Button-Scanning zusätzlich zu Tastern auch über

Blinzeln möglich. Dadurch ist es für Benutzer zugänglich, welche gar keine motorischen Fähig-

keiten in ihren Händen besitzen. Des Weiteren ist beim Blinzeln keine Hilfsmittel-Hardware

erforderlich. Letzteres ist grundsätzlich auch beim Schalterzugriff von Android nicht nötig, da

die Gerätetasten nutzbar sind (vgl. [Goo16j]). Jedoch handelt es sich hierbei lediglich um eine
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Entwickleroption und es wäre für die Benutzer aus der Zielgruppe schwierig, die Gerätetasten,

welche häufig klein sind, zu bedienen (vgl. [Goo16j]). Insbesondere im Hinblick auf Benutzer

mit kognitiven Einschränkungen oder wenig Erfahrung in der Bedienung elektronischer gerät,

hat das 1- und 2-Button-Scanning, dadurch, dass es Bestandteil der App zur Steuerung des

barrierefreien Smarthomes ist, den Vorteil, dass sie diese nicht versehentlich verlassen können.

Auch müssen sie dadurch zwischen weniger Optionen wählen, da nur die Buttons der App

gescannt werden.

Dass keine Hilfsmittel-Hardware benötigt wird, ist auch ein Vorteil des Face-Trackings. Diese

barrierefreie Eingabemethode gibt es in den Bedienungshilfen von Android noch gar nicht.

Des Weiteren ist damit die App zur Steuerung des barrierefreien Smarthomes von Anwendern

bedienbar, die gar keine motorische Fähigkeiten mehr in ihren Händen besitzen. Sie könnten

die App alternativ nur über die Sprachsteuerung der Bedienungshilfen steuern oder müssten

auf Hilfsmittel-Hardware zurückgreifen. In den qualitativen Benutzbarkeitstests in 6.2 zeigte

sich aber, dass die Probanden erhebliche Probleme mit der Sprachsteuerung hatten, da ihre

Eingaben oftmals gar nicht oder falsch verstanden wurden. Bei den quantitativen Benutzbar-

keitstests in 6.1 mit unversehrten Probanden trat dies nicht so massiv auf, was womöglich

darauf zurückzuführen ist, dass wie in Abschnitt 2.2 beschrieben, je nach Verletzungshöhe

eine Querschnittlähmung auch die Atmung und dadurch indirekt die sprachlichen Fähigkei-

ten beeinträchtigt. Zusätzlich ist es möglich, dass die Sprache des Benutzers aufgrund einer

Mehrfachbehinderung oder zusätzlicher Krankheit / Verletzung für die Steuerung damit zu

eingeschränkt ist. Unabhängig von den körperlichen Voraussetzungen, kann zudem eine laute

Umgebung die Sprachsteuerung negativ beeinträchtigen. Jene von Google in Form der App

Voice Access hat darüber hinaus den Nachteil, dass sie eine Internetverbindung benötigt, wel-

che jedoch nicht in jeder Situation verfügbar oder bezahlbar ist (vgl. [Goo16i]). Die entwickelte

Eingabemethode Face-Tracking besitzt diese 2 Einschränkungen hingegen nicht.

7.3. Bewertung der Testergebnisse

In den in Abschnitt 6.1 durchgeführten quantitativen Benutzbarkeitstests erzielten die bar-

rierefreien Eingabemethoden deutlich geringere Bandbreiten als die herkömmlichen. Das ist

nicht außergewöhnlich. Die in Abschnitt 2.4 beschriebenen Studien zu barrierefreien Einga-

bemethoden haben vergleichbare Ergebniskonstellationen. Dies soll exemplarisch anhand

der getesteten Eingabemethoden Maus und Face-Tracking erläutert werden. Williams et al.

ermittelten in ihrer Studie mit einer Maus eine ungefähr 5 mal höhere Bandbreite, als mit ihren

barrierefreien Eingabemethoden, die auf einem Headset mit Lagesensoren beziehungsweise der

Elektromyografie basierten (vgl.[WK08]). Das Verhältnis von barrierefreien zu herkömmlichen

Eingabemethoden ähnelt somit jenem in dieser Arbeit. Die Eingabemethode Maus erzielte in

ihr ausgehend von der 3x3 Button-Matrix den 5,11-, 5,54-, 6,17- beziehungsweise 6,76-fachen

Durchsatz an richtig übertragenen Bits im Vergleich zum Face-Tracking. Ebenso erreichte in
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dem von Jeong et al. durchgeführten Benutzbarkeitstest die Maus gegenüber der barrierefreien

Eingabemethode ungefähr die 7-fache Geschwindigkeit (vgl. [JKS05]).

Das Diagramm in Abbildung 6.6 veranschaulicht, dass mit der Eingabemethode Face-Tracking

die meisten Fehleingaben passierten. Auch dabei handelt es sich nicht um ein Problem der

Umsetzung in dieser Arbeit, denn in der Studie von Caltenco et al. bewerteten die Teilnehmer

Gaze-Tracker als unzuverlässig, was die Vermutung zulässt, dass die hohe Fehlerrate ein

allgemeiner Nachteil dieser Eingabemethode ist (vgl. [CBJA12]). Zudem erzielten Lee et al.

mittels Eye-Tracking, welches auf einer USB-Webcam mit Infrarot LEDs basierte, bei einer 5x4

Button-Matrix eine Trefferquote von 94,6% (vgl. [EM13]). Dem gegenüber steht eine mit dem

Face-Tracking in dieser Arbeit ausgehend von der 3x3 Button-Matrix erzielte Trefferquote von

92,39%, 86,38%, 80,95% sowie 78,66%, welche im Anbetracht der Tatsache, dass die Frontkamera

eines Tablets verwendet wurde, nicht schlechter erscheint.

Die Vergleiche mit den Ergebnissen anderer Studien zeigen somit, dass sich über die Mobile

Vision API mittels Face-Tracking eine barrierefreie Eingabemethode realisieren lässt, die ohne

Hilfsmittel- oder anderer kostspieliger Hardware auskommt und dennoch vergleichbare oder

teilweise sogar bessere Ergebnisse erzielt als manch andere barrierefreie Eingabemethode.

Die Leistungsfähigkeit des Face-Trackings wäre über eine andere Kamera zudem noch stei-

gerbar. Bian et al. nutzten in ihrer Benutzerstudie eine Tiefenkamera um die Nasenposition

zu verfolgen (vgl. [BHCM14]). Die Tiefenkamera stellt sich dabei als vorteilhaft gegenüber

einer RGB-Kamera heraus (vgl. [BHCM14]). Je nach Umsetzung erreichten sie mehr als die

Hälfte der Bandbreite und Geschwindigkeit einer herkömmlichen Maus (vgl. [BHCM14]).

Dieser Optimierungsansatz setzt jedoch voraus, dass die Mobile Vision API Tiefenkameras

unterstützt oder die App zur Steuerung des barrierefreien Smarthomes eine andere Bibliothek

/ Schnittstelle nutzt, die dazu in der Lage ist.

Des Weiteren sollten die quantitativen Benutzbarkeitstests in einem nächsten Schritt mit

einer größeren Anzahl an Buttons durchgeführt werden. Denn die vorliegenden Ergebnisse

ermöglichen bis jetzt einen Vergleich der Eingabemethoden, aber noch keine Aussage zu deren

maximalen Bandbreite. Letzteres liegt daran, dass die Bandbreiten bis zu einer 6x6 Button-

Matrix zunehmen und nicht erkennbar ist, ab welcher Anzahl an Buttons das bei der jeweiligen

Eingabemethode nicht mehr der Fall und somit ihre maximale Bandbreite erreicht ist. Lediglich

beim Face-Tracking, welches mit 3 Probanden bis zu einer 10x10 Button-Matrix getestet wurde,

lassen die Ergebnisse vermuten, dass dessen Bandbreite bei mehr als 8x8 Buttons wieder

abnimmt und die maximale Bandbreite somit bei ungefähr 7 Bits / Sekunde liegt. Belastbarere

Datenwürde jedoch auch für das Face-Tracking eine zweite und umfangreichere Benutzerstudie

liefern.

Die Bewertung der Benutzeroberfläche ist in den qualitativen Benutzbarkeitstests positiv

ausgefallen. Das ist unter anderem auf die großen Buttons zurückzuführen. Sie hatten in der

Vertikalen einen Durchmesser von ca. 4,5cm und in der Horizontalen von ca. 7cm. Nach den

Beobachtungen des Autors wären die Testpersonen, welche mit ihren Händen die Eingabeme-

thode Touch nutzen konnten, mit der von Guerreiro et al. als ausreichend vorgeschlagenen
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Button-Größe von 12mm erheblich schwieriger zurecht gekommen (vgl. [GNJG10b]). In Folge

dessen lässt diese Arbeit im Hinblick auf die Gestaltung von Benutzeroberfläche eher die Emp-

fehlung zu, dass diese an die motorischen Fähigkeiten ihrer Benutzers anpassbar sein sollte und

es nicht, wie von Guerreiro et al. angedeutet, möglich ist, eine einheitliche Benutzeroberfläche

für Benutzer mit und ohne Einschränkungen zu entwickeln (vgl. [GNJG10b]).

7.4. Ausblick

Während der Implementierung des Prototyps sowie im Rahmen der Benutzbarkeitstests sind

Ideen zur Erweiterung und Optimierung der App zur Steuerung des barrierefreien Smarthomes

entstanden. Die folgenden Auflistung soll diese in einem kurzen Abriss darstellen:

• Die Eingabemethoden 1- und 2-Button-Scanning sollten in ihren Einstellungen um

einen Parameter erweitert werden, über den sich ein Mindestabstand zwischen 2 Button-

Betätigungen einstellen lässt. Grund hierfür ist, dass es in den qualitativen Benutzbar-

keitstests vorkam, dass ein Proband aufgrund geringer motorischer Fähigkeiten den

Taster versehentlich 2 mal betätigte, was somit zu einer Fehleingabe führte.

• Bisher ist die Größe der Buttons statisch. Das bedeutet, dass sie bei einer eingestellten 4x4

Button-Matrix immer solche Abmessungen haben, dass 16 Buttons gleichzeitig auf der

Benutzeroberfläche anzeigbar sind, auch wenn das ausgewählte Menü beispielsweise nur

5 Elemente besitzt. In solch einem Fall bleibt ein Teil der Displayfläche ungenutzt.Würden

sich die Größe der Buttons in dieser Situation dynamisch an den zur Verfügung stehenden

Platz anpassen, könnte das insbesondere bei der Eingabemethode Face-Tracking die

Bedienung erleichtern.

• Darüber hinaus ist für zukünftige Entwicklungen eine Kombinationsmöglichkeit von

Eingabemethoden interessant. Beispielsweise ließe sich das Face-Tracking mit einem

Taster, der eigentlich für das Scanning vorgesehen ist, kombinieren. In Folge dessen

wären Benutzer, die einen Taster noch bedienen können, in der Lage, die Auswahl des

gewünschten Buttons mittels Face-Tracking vorzunehmen und ihn über den Taster zu

betätigen, wodurch dann kein Blinzeln erforderlich ist.

• Ein weiterer interessanter Ansatz ist, in einer Benutzerstudie zu evaluieren, ob über eine

Gruppenauswahl oder einen binären Suchbaum die Bedienung verbesserbar ist. Würde

die Senderliste für den Fernseher beispielsweise in einem binären Suchbaum dargestellt,

müsste der Benutzer mehrmals eine Auswahl zwischen 2 Buttons treffen, welche im

Gegenzug dafür größer darstellbar sind.

• In den qualitativen Benutzbarkeitstests bewerteten einige Teilnehmer die Eingabemetho-

de Face-Tracking negativ, weil ihnen der Cursor zu unruhig war. Um dieses Problem zu

umgehen, könnte das Face-Tracking nicht nur den direkten Modus, der die Position des

Kopfes direkt auf jene des Cursors abbildet, sondern noch weitere Modi unterstützen.
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Zum Beispiel einen, der vergleichbar mit einem Joystick ist. Dieser könnte so konfiguriert

werden, dass sich der Cursor erst bewegt, wenn die Kopfbewegung einen Schwellenwert

überschritten hat. Als weiteren Modus bietet es sich an, die Kopfbewegungen in Tasta-

tureingaben zu wandeln, wodurch sich die Buttons in der Anwendung zur Steuerung

des barrierefreien Smarthomes tastaturähnlich via Face-Tracking fokussieren ließen.
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A. Anhang

A.1. Fragebogen für die Interviews

Die folgenden 5 Seiten beinhalten den Fragebogen, wie er in den im Unterkapitel 3.1 beschrie-

benen Interviews verwendet wurde.
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1 
 

Barrierefreies Smarthome – Interview 

 

Introduction 

Vorstellung 

 

Einleitung 

 

Einverständniserklärung 

 

Teilnahme bestätigen lassen 

 

Aufwandsentschädigung 

 

 

Warm-up 

Demographie 

1. Geschlecht:   

2. Alter:    

3. Sprachen:   

4. Abschluss:   

5. Haben Sie schon einmal an einem Interview teilgenommen?  

 

Bisherige Nutzung von elektronischen Geräten 

6. Welche elektronische Geräte nutzen Sie und wenn ja, seit wann? 

 

7. Für welche Zwecke nutzen Sie die einzelnen Geräte? 

 

8. Wie lange nutzen Sie die einzelnen Geräte durchschnittlich an einem Tag (in Stunden)? 
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2 
 

9. Welche Erfahrungen haben Sie mit den einzelnen Geräten? 

 

10. Sind diese Geräte speziell auf die Bedürfnisse Behinderter ausgelegt? 

 

11. Welche Software nutzen Sie und seit wann? 

 

12. Für welche Zwecke nutzen Sie die Software? 

 

13. Wie lange nutzen sie die jeweilige Software durchschnittlich an einem Tag? 

 

14. Welche Erfahrungen haben Sie mit den einzelnen Programmen? 

 

15. Sind diese Programme speziell auf die Bedürfnisse Behinderter ausgelegt? 

 

16. Mit welchen Betriebssystemen (Android, iOS, Windows, Linux) sind Sie vertraut? 

 

17. Welche Erfahrungen haben Sie mit den jeweiligen Betriebssystemen bisher gemacht? 

 

 

General issues 

Smarthome 

18. Kennen Sie den Begriff Smarthome? 

 

19. Was stellen Sie sich unter einem Smarthome vor? 

 

20. Welche Geräte / Anwendungen aus dem Smarthome-Bereich haben Sie schon genutzt? 

 

21. In welchen Bereichen könnten Sie sich allgemein vorstellen, dass ein Smarthome sinnvoll ist? 
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3 
 

Barrierefreies Smarthome 

22. Wie würde ein ideales Smarthome für Sie aussehen? 

 

23. In welchen Bereichen könnte ein barrierefreies Smarthome Sie unterstützen? 

 

 

Deep focus 

Produktvorstellung 

 

Bedienung 

24. Wie würden Sie das barrierefreie Smarthome am liebsten steuern / bedienen? 

 

25. Über welches Gerät würden Sie das barrierefreie Smarthome am liebsten steuern? 

 

26. Wie würden Sie eine Steuerung via Blick- oder Gesichtsverfolgung finden? 

 

27. Wie würden Sie eine vollständige / teilweise  Sprachsteuerung finden? 

 

28. Wie würden Sie die Menüführung / Benutzeroberfläche gestalten? 

 

29. Welche Vor- und Nachteile hätte Ihrer Meinung nach eine raumadaptive 

Benutzeroberfläche? 

 

 

Hardware 

30. Wo sollte sich das elektronische Gerät befinden (z. B. stationär, am Rollstuhl, etc.)? 

 

31. Welche Displaygröße? 
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Privatsphäre 

32. Wie sehen Sie das Thema Datenschutz im Bezug auf das barrierefreie Smarthome? 

 

33. Welche Vor- und Nachteile sehen Sie, wenn das barrierefreie Smarthome mit dem Internet 

verbunden ist? 

 

34. Wäre es für Sie ein Problem, dass die Kamera (bei einer Sprachsteuerung möglicherweise 

auch das Mikrofon) die ganze Zeit aktiv ist? 

 

35. Hätten Sie eine Idee, wie man barrierefreie Smarthome geschickterweise "ein-" und 

"ausschaltet"? 

 

 

Retrospective 

36. Welchen Eindruck haben Sie von der beschriebenen Idee eines barrierefreien Smarthomes? 

 

37. Was könnte Ihrer Meinung nach zu Problemen bei dem barrierefreien Smarthome führen? 

 

38. Gibt es von Ihrer Seite noch Verbesserungsvorschläge und / oder Kritik an dem barrierefreien 

Smarthome sowie dem gerade geführten Interview? 

 

 

Falls noch offen 

39. Können Sie Blinzeln? 

 

40. In wieweit können Sie Ihren Kopf bewegen (drehen, neigen)? 

 

41. Wie kommen Sie mit dem "Sprechen" zurecht? 
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42. Welche Behinderung(en) haben Sie? 

 

43. Haben Sie die Behinderung(en) von Geburt an? 

 

44. Welche Beeinträchtigungen bestehen durch die Behinderung(en) für Sie? 

 

45. Welche und wie viel Unterstützung ist dadurch erforderlich? 

 

 

Wrap-up 

Abschluss 

 

Ausblick auf die Nutzbarkeitstests 

 

Danke 
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A.2. Ergebnisse der quantitativen Benutzbarkeitstests

Die folgenden 4 Tabellen beinhaltet Ergebnisse der quantitativen Benutzbarkeitstests aus dem

Unterkapitel 6.1. Die Werte in den Tabelle sind auf 4 Stellen nach dem Komma gerundet.

Tabelle A.1.: Die Tabelle beinhaltet die für jede Eingabemethode und Button-Matrix die

insgesamt, richtig und falsch übertragenen Bits / Sekunde und davon noch

jeweils den maximalen (max), durchschnittlichen (Ø) und minimalen (min) Wert

gerundet auf 4 Nachkommastellen.

gesamt richtig falsch

Eingabemethode Matrix max Ø min max Ø min max Ø min

Touch 3x3 17,2469 13,7953 9,7720 17,2469 13,7527 9,7720 0,6817 0,0426 0,0000

4x4 28,3604 23,7948 19,0716 28,3604 23,7017 19,0716 1,4896 0,0931 0,0000

5x5 45,5419 37,6047 29,3446 45,5419 37,6047 29,3446 0,0000 0,0000 0,0000

6x6 63,6918 52,5066 39,0150 63,6918 52,5066 39,0150 0,0000 0,0000 0,0000

Maus 3x3 15,5769 12,0600 7,9187 15,5769 11,8741 7,9187 1,1503 0,1859 0,0000

4x4 22,9867 19,4695 15,8730 22,9867 19,3359 15,8730 1,1688 0,1336 0,0000

5x5 34,4748 30,0923 25,0000 34,4748 30,0923 25,0000 0,0000 0,0000 0,0000

6x6 49,0315 40,2690 31,8553 49,0315 39,9996 31,8553 2,3095 0,2694 0,0000

Tastatur 3x3 12,5952 9,6579 6,4342 12,5952 9,6579 6,4342 0,0000 0,0000 0,0000

4x4 17,8704 14,7568 11,5463 17,8704 14,7568 11,5463 0,0000 0,0000 0,0000

5x5 28,5950 21,0368 13,4682 28,5950 20,9667 13,4682 1,1214 0,0701 0,0000

6x6 34,7770 27,9552 20,4823 34,7770 27,7546 20,4823 1,7772 0,2006 0,0000

Face-Tracking 3x3 3,5373 2,5149 1,6079 3,5373 2,3235 1,2584 0,6113 0,1914 0,0000

4x4 5,7078 4,0400 1,7544 5,1370 3,4899 1,5790 1,2257 0,5501 0,1746

5x5 8,2966 6,0248 4,3120 7,1114 4,8771 2,5037 1,9184 1,1476 0,3864

6x6 9,6522 7,5272 4,9446 9,3651 5,9208 3,5601 4,3874 1,6065 0,0000

1-Button-Scanning 3x3 5,4871 4,7545 4,0667 4,9852 4,3557 3,1826 1,1224 0,3988 0,0000

4x4 6,0380 5,3280 4,6775 6,0380 4,8818 4,1854 0,7642 0,4463 0,0000

5x5 6,5967 5,7084 5,2196 6,5967 5,2407 4,0866 1,5892 0,4677 0,0000

6x6 7,5620 6,0766 4,9890 7,1640 5,5608 3,9044 1,0846 0,5157 0,0000

2-Button-Scanning 3x3 6,3629 5,3259 4,2033 6,3629 5,3090 4,2033 0,2697 0,0169 0,0000

4x4 8,3146 6,4998 4,2872 8,3146 6,4159 4,2872 0,6964 0,0839 0,0000

5x5 9,0532 7,0913 5,1462 9,0532 7,0117 5,1462 0,5720 0,0796 0,0000

6x6 9,3868 7,6914 6,2690 9,3868 7,6481 5,9391 0,3630 0,0433 0,0000

Sprachsteuerung 3x3 2,3756 1,9381 1,0845 2,3756 1,9306 1,0845 0,1204 0,0075 0,0000

4x4 4,2929 3,4469 1,7955 4,2929 3,3530 1,7010 0,4936 0,0939 0,0000

5x5 6,6791 5,3410 1,4168 6,6791 5,1947 1,2751 0,7330 0,1462 0,0000

6x6 8,8109 7,7044 5,9265 8,7057 7,4978 5,6146 0,7406 0,2067 0,0000
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Tabelle A.2.: Die Tabelle beinhaltet die für jede Eingabemethode und Button-Matrix die

Anzahl der insgesamt, richtig und falsch betätigten Buttons / Sekunde und davon

noch jeweils den maximalen (max), durchschnittlichen (Ø) und minimalen (min)

Wert gerundet auf 4 Nachkommastellen.

gesamt richtig falsch

Eingabemethode Matrix max Ø min max Ø min max Ø min

Touch 3x3 1,9163 1,5328 1,0858 1,9163 1,5281 1,0858 0,0757 0,0047 0,0000

4x4 1,7725 1,4872 1,1920 1,7725 1,4814 1,1920 0,0931 0,0058 0,0000

5x5 1,8217 1,5042 1,1738 1,8217 1,5042 1,1738 0,0000 0,0000 0,0000

6x6 1,7692 1,4585 1,0837 1,7692 1,4585 1,0837 0,0000 0,0000 0,0000

Maus 3x3 1,7308 1,3400 0,8799 1,7308 1,3193 0,8799 0,1278 0,0207 0,0000

4x4 1,4367 1,2168 0,9921 1,4367 1,2085 0,9921 0,0731 0,0084 0,0000

5x5 1,3790 1,2037 1,0000 1,3790 1,2037 1,0000 0,0000 0,0000 0,0000

6x6 1,3620 1,1186 0,8849 1,3620 1,1111 0,8849 0,0642 0,0075 0,0000

Tastatur 3x3 1,3995 1,0731 0,7149 1,3995 1,0731 0,7149 0,0000 0,0000 0,0000

4x4 1,1169 0,9223 0,7216 1,1169 0,9223 0,7216 0,0000 0,0000 0,0000

5x5 1,1438 0,8415 0,5387 1,1438 0,8387 0,5387 0,0449 0,0028 0,0000

6x6 0,9660 0,7765 0,5690 0,9660 0,7710 0,5690 0,0494 0,0056 0,0000

Face-Tracking 3x3 0,3930 0,2794 0,1787 0,3930 0,2582 0,1398 0,0679 0,0213 0,0000

4x4 0,3567 0,2525 0,1097 0,3211 0,2181 0,0987 0,0766 0,0344 0,0109

5x5 0,3319 0,2410 0,1725 0,2845 0,1951 0,1001 0,0767 0,0459 0,0155

6x6 0,2681 0,2091 0,1374 0,2601 0,1645 0,0989 0,1219 0,0446 0,0000

1-Button-Scanning 3x3 0,6097 0,5283 0,4519 0,5539 0,4840 0,3536 0,1247 0,0443 0,0000

4x4 0,3774 0,3330 0,2923 0,3774 0,3051 0,2616 0,0478 0,0279 0,0000

5x5 0,2639 0,2283 0,2088 0,2639 0,2096 0,1635 0,0636 0,0187 0,0000

6x6 0,2101 0,1688 0,1386 0,1990 0,1545 0,1085 0,0301 0,0143 0,0000

2-Button-Scanning 3x3 0,7070 0,5918 0,4670 0,7070 0,5899 0,4670 0,0300 0,0019 0,0000

4x4 0,5197 0,4062 0,2679 0,5197 0,4010 0,2679 0,0435 0,0052 0,0000

5x5 0,3621 0,2837 0,2058 0,3621 0,2805 0,2058 0,0229 0,0032 0,0000

6x6 0,2607 0,2137 0,1741 0,2607 0,2124 0,1650 0,0101 0,0012 0,0000

Sprachsteuerung 3x3 0,2640 0,2153 0,1205 0,2640 0,2145 0,1205 0,0134 0,0008 0,0000

4x4 0,2683 0,2154 0,1122 0,2683 0,2096 0,1063 0,0309 0,0059 0,0000

5x5 0,2672 0,2136 0,0567 0,2672 0,2078 0,0510 0,0293 0,0058 0,0000

6x6 0,2447 0,2140 0,1646 0,2418 0,2083 0,1560 0,0206 0,0057 0,0000
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Tabelle A.3.: Die Tabelle beinhaltet die insgesamt, richtig und falsch übertragenen Bits / Se-

kunde und davon noch jeweils den maximalen (max), durchschnittlichen (Ø) und

minimalen (min) Wert gerundet auf 4 Nachkommastellen der 3 beziehungsweise

2 Probanden, welche die Eingabemethode Face-Tracking mit mehr als 36 Buttons

testeten.

gesamt richtig falsch

Matrix max Ø min max Ø min max Ø min

3x3 3,3624 2,3068 1,6079 2,7510 1,9215 1,2584 0,6113 0,3853 0,1950

4x4 5,1377 4,1661 3,1517 4,0208 3,4337 2,8366 1,1169 0,7324 0,3152

5x5 6,5769 5,6566 4,3120 5,6373 4,4511 2,5037 1,8082 1,2055 0,8687

6x6 9,6522 7,4373 5,2524 6,0605 4,9872 3,6363 4,3874 2,4501 1,3468

7x7 9,7980 8,0901 7,1046 5,8788 4,8160 3,9964 3,9192 3,2740 2,7946

8x8 17,6113 12,6128 9,3152 9,9064 7,1782 5,0810 7,7049 5,4346 4,2342

9x9 12,8340 11,6448 10,4556 6,4897 6,2065 5,9234 6,9106 5,4383 3,9659

10x10 15,5846 12,9141 10,0293 9,0888 5,8793 3,5398 10,5753 7,0348 4,0395

Tabelle A.4.: Die Tabelle beinhaltet die insgesamt, richtig und falsch betätigten Buttons /

Sekunde und davon noch jeweils den maximalen (max), durchschnittlichen (Ø)

und minimalen (min) Wert gerundet auf 4 Nachkommastellen der 3 beziehungs-

weise 2 Probanden, welche die Eingabemethode Face-Tracking mit mehr als 36

Buttons testeten.

gesamt richtig falsch

Matrix max Ø min max Ø min max Ø min

3x3 0,3736 0,2563 0,1787 0,3057 0,2135 0,1398 0,0679 0,0428 0,0217

4x4 0,3211 0,2604 0,1970 0,2513 0,2146 0,1773 0,0698 0,0458 0,0197

5x5 0,2631 0,2263 0,1725 0,2255 0,1780 0,1001 0,0723 0,0482 0,0347

6x6 0,2681 0,2066 0,1459 0,1683 0,1385 0,1010 0,1219 0,0681 0,0374

7x7 0,2000 0,1651 0,1450 0,1200 0,0983 0,0816 0,0800 0,0668 0,0570

8x8 0,2752 0,1971 0,1456 0,1548 0,1122 0,0794 0,1204 0,0849 0,0662

9x9 0,1584 0,1438 0,1291 0,0801 0,0766 0,0731 0,0853 0,0671 0,0490

10x10 0,1558 0,1291 0,1003 0,0909 0,0588 0,0354 0,1058 0,0703 0,0404

143





Literaturverzeichnis

[AA14] T. Ahne, S. Ahne. „Risiko Querschnittslähmung–Was tun bei Wirbelsäulenverlet-

zungen?“ In: retten! 3.04 (2014), S. 258–265 (zitiert auf S. 11, 18, 19).

[BCC] A. Bulbul, Z. Cipiloglu, T. Capin. „A Face Tracking Algorithm for User Interaction

in Mobile Devices“. In: 2009 International Conference on CyberWorlds, S. 385–390.
doi: 10.1109/CW.2009.9 (zitiert auf S. 25).

[BHCM14] Z.-P. Bian, J. Hou, L.-P. Chau, N. Magnenat-Thalmann. „Human Computer In-

terface for Quadriplegic People Based on Face Position/Gesture Detection“. In:

Proceedings of the 22Nd ACM International Conference on Multimedia. MM ’14.

New York, NY, USA: ACM, 2014, S. 1221–1224. isbn: 978-1-4503-3063-3 (zitiert

auf S. 23, 132).

[CBJA12] H. A. Caltenco, B. Breidegard, B. Jönsson, L. N. Andreasen Struijk. „Understanding

Computer Users With Tetraplegia: Survey of Assistive Technology Users“. In:

International Journal of Human-Computer Interaction 28.4 (2012), S. 258–268. issn:
1044-7318 (zitiert auf S. 21, 38, 132).

[Che01] Y. L. Chen. „Application of tilt sensors in human-computer mouse interface for

people with disabilities“. In: IEEE transactions on neural systems and rehabilitation
engineering : a publication of the IEEE Engineering in Medicine and Biology Society
9.3 (2001), S. 289–294. issn: 1534-4320 (zitiert auf S. 21).

[DAH12] M. L. Dybdal, J. S. Agustin, J. P. Hansen. „Gaze Input for Mobile Devices by Dwell

and Gestures“. In: Proceedings of the Symposium on Eye Tracking Research and
Applications. ETRA ’12. Santa Barbara, California: ACM, 2012, S. 225–228. isbn:

978-1-4503-1221-9. doi: 10.1145/2168556.2168601. url: http://doi.acm.org/10.

1145/2168556.2168601 (zitiert auf S. 25, 54).

[DLS07] H. Drewes, A. de Luca, A. Schmidt. „Eye-gaze Interaction for Mobile Phones“. In:

Proceedings of the 4th International Conference on Mobile Technology, Applications,
and Systems and the 1st International Symposium on Computer Human Interaction
in Mobile Technology. Mobility ’07. New York, NY, USA: ACM, 2007, S. 364–371.

isbn: 978-1-59593-819-0. doi: 10.1145/1378063.1378122. url: http://doi.acm.org/

10.1145/1378063.1378122 (zitiert auf S. 25).

[EM13] Eui Chul Lee, Min Woo Park. „New Eye Tracking Method as a Smartphone

Interface“. In: KSII Transactions on Internet and Information Systems 7.4 (2013),
S. 834–848. issn: 19767277 (zitiert auf S. 24, 132).

145

http://dx.doi.org/10.1109/CW.2009.9
http://dx.doi.org/10.1145/2168556.2168601
http://doi.acm.org/10.1145/2168556.2168601
http://doi.acm.org/10.1145/2168556.2168601
http://dx.doi.org/10.1145/1378063.1378122
http://doi.acm.org/10.1145/1378063.1378122
http://doi.acm.org/10.1145/1378063.1378122


Literaturverzeichnis

[Exn04] G. Exner. „Der Arbeitskreis Querschnittlähmungen des Hauptverbandes der

gewerblichen Berufsgenossenschaften in Deutschland“. In: Trauma und Berufs-
krankheit 6.2 (2004). issn: 1436-6274 (zitiert auf S. 19).

[FN08] T. Felzer, R. Nordmann. „Evaluating the Hands-Free Mouse Control System:

An Initial Case Study“. In: Computers Helping People with Special Needs: 11th
International Conference, ICCHP 2008, Linz, Austria, July 9-11, 2008. Proceedings.
Hrsg. von K. Miesenberger, J. Klaus, W. Zagler, A. Karshmer. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, S. 1188–1195. isbn: 978-3-540-70540-6. doi:

10.1007/978-3-540-70540-6_179. url: http://dx.doi.org/10.1007/978-3-540-70540-

6_179 (zitiert auf S. 22).

[FWK07] J. Froehlich, J. O. Wobbrock, S. K. Kane. „Barrier Pointing: Using Physical Edges

to Assist Target Acquisition on Mobile Device Touch Screens“. In: Proceedings of
the 9th International ACM SIGACCESS Conference on Computers and Accessibility.
Assets ’07. New York, NY, USA: ACM, 2007, S. 19–26. isbn: 978-1-59593-573-1.

doi: 10.1145/1296843.1296849. url: http://doi.acm.org/10.1145/1296843.1296849

(zitiert auf S. 24).

[GLF+12] S.M. Grigorescu, T. Lüth, C. Fragkopoulos, M. Cyriacks, A. Gräser. „A BCI-

controlled robotic assistant for quadriplegic people in domestic and professional

life“. In: Robotica 30.03 (2012), S. 419–431. issn: 0263-5747 (zitiert auf S. 22).

[GNJG10a] T. J. V. Guerreiro, H. Nicolau, J. Jorge, D. Gonçalves. „Assessing Mobile Touch

Interfaces for Tetraplegics“. In: Proceedings of the 12th International Conference
on Human Computer Interaction with Mobile Devices and Services. MobileHCI

’10. New York, NY, USA: ACM, 2010, S. 31–34. isbn: 978-1-60558-835-3. doi:

10.1145/1851600.1851608. url: http://doi.acm.org/10.1145/1851600.1851608

(zitiert auf S. 24).

[GNJG10b] T. Guerreiro, H. Nicolau, J. Jorge, D. Gonçalves. „Towards Accessible Touch

Interfaces“. In: Proceedings of the 12th International ACM SIGACCESS Conference
on Computers and Accessibility. ASSETS ’10. Orlando, Florida, USA: ACM, 2010,

S. 19–26. isbn: 978-1-60558-881-0. doi: 10 .1145/1878803 .1878809. url: http :

//doi.acm.org/10.1145/1878803.1878809 (zitiert auf S. 24, 133).

[Goo16a] Google. Change Voice Access settings. 2016. url: https://support.google.com/

accessibility/android/answer/6151843 (besucht am 17. 12. 2016) (zitiert auf S. 114).

[Goo16b] Google. Face Detection Concepts Overview. 2016. url: https://developers.google.
com/vision/face-detection-concepts (besucht am 03. 11. 2016) (zitiert auf S. 12,

50–53, 80, 85).

[Goo16c] Google. Get Started with the Mobile Vision API. 2016. url: https://developers.
google.com/vision/android/getting-started (besucht am 09. 12. 2016) (zitiert auf

S. 50).

146

http://dx.doi.org/10.1007/978-3-540-70540-6_179
http://dx.doi.org/10.1007/978-3-540-70540-6_179
http://dx.doi.org/10.1007/978-3-540-70540-6_179
http://dx.doi.org/10.1145/1296843.1296849
http://doi.acm.org/10.1145/1296843.1296849
http://dx.doi.org/10.1145/1851600.1851608
http://doi.acm.org/10.1145/1851600.1851608
http://dx.doi.org/10.1145/1878803.1878809
http://doi.acm.org/10.1145/1878803.1878809
http://doi.acm.org/10.1145/1878803.1878809
https://support.google.com/accessibility/android/answer/6151843
https://support.google.com/accessibility/android/answer/6151843
https://developers.google.com/vision/face-detection-concepts
https://developers.google.com/vision/face-detection-concepts
https://developers.google.com/vision/android/getting-started
https://developers.google.com/vision/android/getting-started


Literaturverzeichnis

[Goo16d] Google. Google APIs for Android Face. 2016. url: https://developers.google.com/

android/reference/com/google/android/gms/vision/face/Face (besucht am

08. 12. 2016) (zitiert auf S. 51, 87).

[Goo16e] Google. Google TalkBack. 2016. url: https://play.google.com/store/apps/details?

id=com.google.android.marvin.talkback&hl=de (besucht am 08. 12. 2016) (zitiert

auf S. 46, 71).

[Goo16f] Google. Landmark. 2016. url: https://developers.google.com/android/reference/

com/google/android/gms/vision/face/Landmark (besucht am 09. 12. 2016) (zitiert

auf S. 51).

[Goo16g] Google. Schalterzugriff für Android einrichten. 2016. url: https://support.google.
com/accessibility/android/answer/6301490 (besucht am 14. 12. 2016) (zitiert auf

S. 20, 130).

[Goo16h] Google. Tipps für die Nutzung des Schalterzugriffs. 2016. url: https://support.
google.com/accessibility/android/answer/6395627 (besucht am 14. 12. 2016)

(zitiert auf S. 20).

[Goo16i] Google. Troubleshoot Voice Access. 2016. url: https : / / support . google . com /

accessibility/android/answer/6377053?hl=en&ref_topic=6151842 (besucht am

09. 12. 2016) (zitiert auf S. 56, 114, 131).

[Goo16j] Google. Über den Schalterzugriff für Android. 2016. url: https://support.google.
com/accessibility/android/answer/6122836 (besucht am 15. 12. 2016) (zitiert auf

S. 20, 130, 131).

[Goo16k] Google. Übersicht über die Android-Bedienungshilfen. 2016. url: https://support.
google . com / accessibility / android / answer / 6006564 ? hl = de (besucht am

14. 12. 2016) (zitiert auf S. 19, 20, 130).

[Goo16l] Google. Use Voice Access commands. 2016. url: https://support.google.com/

accessibility/android/answer/6151854 (besucht am 09. 12. 2016) (zitiert auf S. 56).

[Goo16m] Google. Voice Access (Unreleased). 2016. url: https://play.google.com/store/apps/

details?id=com.google.android.apps.accessibility.voiceaccess&hl=de (besucht am

08. 12. 2016) (zitiert auf S. 56, 61, 62, 107).

[GR04] E. Gamma, D. Riehle. Entwurfsmuster: Elemente wiederverwendbarer objektorien-
tierter Software. 1. Aufl., [Neuaufl.] Programmer’s choice. München und Boston

[u.a.]: Addison-Wesley, 2004. isbn: 3827321999 (zitiert auf S. 59, 77).

[Har03] R. Harper. Inside the smart home. London und New York: Springer, 2003. isbn:

978-1-85233-854-1 (zitiert auf S. 15).

[JDO16] JDOM. JDOM. 2016. url: http : / / www. jdom . org / index . html (besucht am

19. 12. 2016) (zitiert auf S. 69).

[JKS05] H. Jeong, J.-S. Kim, W.-H. Son. „An emg-based mouse controller for a tetraplegic“.

In: 2005 IEEE International Conference on Systems, Man and Cybernetics. Bd. 2.
IEEE. 2005, S. 1229–1234 (zitiert auf S. 22, 132).

147

https://developers.google.com/android/reference/com/google/android/gms/vision/face/Face
https://developers.google.com/android/reference/com/google/android/gms/vision/face/Face
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback&hl=de
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback&hl=de
https://developers.google.com/android/reference/com/google/android/gms/vision/face/Landmark
https://developers.google.com/android/reference/com/google/android/gms/vision/face/Landmark
https://support.google.com/accessibility/android/answer/6301490
https://support.google.com/accessibility/android/answer/6301490
https://support.google.com/accessibility/android/answer/6395627
https://support.google.com/accessibility/android/answer/6395627
https://support.google.com/accessibility/android/answer/6377053?hl=en&ref_topic=6151842
https://support.google.com/accessibility/android/answer/6377053?hl=en&ref_topic=6151842
https://support.google.com/accessibility/android/answer/6122836
https://support.google.com/accessibility/android/answer/6122836
https://support.google.com/accessibility/android/answer/6006564?hl=de
https://support.google.com/accessibility/android/answer/6006564?hl=de
https://support.google.com/accessibility/android/answer/6151854
https://support.google.com/accessibility/android/answer/6151854
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.voiceaccess&hl=de
https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.voiceaccess&hl=de
http://www.jdom.org/index.html


Literaturverzeichnis

[KAR+14] J. Kangas, D. Akkil, J. Rantala, P. Isokoski, P. Majaranta, R. Raisamo. „Gaze

Gestures and Haptic Feedback in Mobile Devices“. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’14. Toronto, Ontario,
Canada: ACM, 2014, S. 435–438. isbn: 978-1-4503-2473-1. doi: 10.1145/2556288.

2557040. url: http://doi.acm.org/10.1145/2556288.2557040 (zitiert auf S. 25, 90).

[KGM12] M. Kuniavsky, E. Goodman, A. Moed. Observing the user experience: A practitio-
ner’s guide to user research. 2nd ed. Waltham, MA: Morgan Kaufmann, 2012. isbn:

978-0123848697 (zitiert auf S. 27–33, 120–122, 124).

[KNL+06] L. Kauhanen, T. Nykopp, J. Lehtonen, P. Jylanki, J. Heikkonen, P. Rantanen,

H. Alaranta, M. Sams. „EEG and MEG brain-computer interface for tetraplegic

patients“. In: IEEE transactions on neural systems and rehabilitation engineering :
a publication of the IEEE Engineering in Medicine and Biology Society 14.2 (2006),

S. 190–193. issn: 1534-4320. doi: 10.1109/TNSRE.2006.875546 (zitiert auf S. 22).

[Kod16a] Kodi. About. 2016. url: https://kodi.tv/about/ (besucht am 08. 12. 2016) (zitiert

auf S. 63).

[Kod16b] Kodi. JSON-RPC API/v6. 2016. url: http://kodi.wiki/view/JSON-RPC_API/v6

(besucht am 08. 12. 2016) (zitiert auf S. 63).

[Kod16c] Kodi. Remote controls. 2016. url: http://kodi.wiki/view/Remote_controls (besucht

am 08. 12. 2016) (zitiert auf S. 63).

[LCC+10] M. E. Lund, H. V. Christiensen, H. A. Caltenco, E. R. Lontis, B. Bentsen, Andreasen

Struijk, Lotte N S. „Inductive tongue control of powered wheelchairs“. In: Confe-
rence proceedings : ... Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society.
Annual Conference 2010 (2010), S. 3361–3364. issn: 1557-170X (zitiert auf S. 22).

[NW11] M. Nerlich, B. Weigel. Praxisbuch Unfallchirurgie: Mit 161 Tabellen. 2., vollst.
überarb. und aktualisierte Aufl. Berlin [u.a.]: Springer, 2011. isbn: 3642107893

(zitiert auf S. 16).

[Org13] W.H. Organization. International Perspectives on Spinal Cord Injury. Nonserial
Publications. Geneva: World Health Organization, 2013. isbn: 978 92 4 156466 3

(zitiert auf S. 11, 16–19, 28).

[Pec14] L. Pecchia. Ambient assisted living and daily activities: 6th international work-
conference, IWAAL 2014, Belfast, UK, December 2-5, 2014 : proceedings. Bd. 8868.
LNCS sublibrary. SL 3, Information systems and applications, incl. Internet/Web,

and HCI490. Cham und New York: Springer, 2014. isbn: 978-3-319-13104-7 (zitiert

auf S. 11, 15).

[Sma16] Smart Homes. The integration of technology and services in the home environment.
2016. url: http://www.smart-homes.nl/Domotica.aspx (besucht am 11. 12. 2016)

(zitiert auf S. 11, 15).

148

http://dx.doi.org/10.1145/2556288.2557040
http://dx.doi.org/10.1145/2556288.2557040
http://doi.acm.org/10.1145/2556288.2557040
http://dx.doi.org/10.1109/TNSRE.2006.875546
https://kodi.tv/about/
http://kodi.wiki/view/JSON-RPC_API/v6
http://kodi.wiki/view/Remote_controls
http://www.smart-homes.nl/Domotica.aspx


Literaturverzeichnis

[Spa91] B. Spahn. „Fachkundenachweis Rettungsdienst“. In: Hrsg. von P. D.m. P.-M. O. Dr. med. Klaus

Ellinger Dr. med. Hartmuth Frobenius. Springer Berlin Heidelberg, 1991. Kap.Wir-

belsäulenverletzung und Querschnittslähmung, S. 206–212. isbn: 978-3-642-

97232-4 (zitiert auf S. 19).

[SSHH09] J. San Agustin, H. Skovsgaard, J. P. Hansen, D.W. Hansen. „Low-cost Gaze In-

teraction: Ready to Deliver the Promises“. In: CHI ’09 Extended Abstracts on
Human Factors in Computing Systems. CHI EA ’09. Boston, MA, USA: ACM,

2009, S. 4453–4458. isbn: 978-1-60558-247-4. doi: 10.1145/1520340.1520682. url:

http://doi.acm.org/10.1145/1520340.1520682 (zitiert auf S. 25).

[Sta16] Statistisches Bundesamt. Sozialleistungen: Schwerbehinderte Menschen. 2016. url:
https : / / www . destatis . de / DE / Publikationen / Thematisch / Gesundheit /

BehinderteMenschen / Schwerbehinderte2130510139004 . pdf ; jsessionid =

8D754AAAB4D613729528E85F675EA38E.cae2?__blob=publicationFile (besucht

am 09. 12. 2016) (zitiert auf S. 19).

[TRF+05] Y. Tanimoto, Y. Rokumyo, K. Furusawa, A. Tokuhiro, Y. Suzuki, K. Takami,

H. Yamamoto. „Development of a computer input device for patients with tetra-

plegia“. In: Computer Standards & Interfaces 28.2 (2005), S. 166–175. issn: 09205489
(zitiert auf S. 23).

[Uen14] T. Ueno. A development of the interface to operate Smartphones for quadriplegic
people (The 3rd). 2014. url: http://www.yokohama-rf.jp/common/pdf/report/26-

5.pdf (besucht am 15. 12. 2016) (zitiert auf S. 23).

[Vid16a] VideoLAN. VLC Features. 2016. url: http://www.videolan.org/vlc/features.html

(besucht am 08. 12. 2016) (zitiert auf S. 63).

[Vid16b] VideoLAN. VLC HTTP requests. 2016. url: https://wiki.videolan.org/VLC_HTTP_

requests/ (besucht am 08. 12. 2016) (zitiert auf S. 63, 92–94).

[Wir11] R. Wirdemann. Scrum mit User Stories. 2., erweiterte Auflage. München: Hanser,

Carl, 2011. isbn: 9783446426603 (zitiert auf S. 37).

[WK08] M. R. Williams, R. F. Kirsch. „Evaluation of head orientation and neck muscle

EMG signals as command inputs to a human-computer interface for individuals

with high tetraplegia“. In: IEEE transactions on neural systems and rehabilitation
engineering : a publication of the IEEE Engineering in Medicine and Biology Society
16.5 (2008), S. 485–496. issn: 1534-4320 (zitiert auf S. 21, 131).

[Wöh16a] Wöhlke EDV-Beratung. Wöhlke Websteckdose - Die IP-Steckdose mit WLAN. 2016.
url: https://www.woehlke-websteckdose.de/index.php?id=websteckdose_ip-

steckdose_servic (besucht am 08. 12. 2016) (zitiert auf S. 63, 94).

[Wöh16b] Wöhlke EDV-Beratung. Wöhlke Websteckdose - Häufig gestellte Fragen. 2016. url:
https://www.woehlke-websteckdose.de/index.php?id=websteckdose- faq0

(besucht am 08. 12. 2016) (zitiert auf S. 63, 94, 95).

149

http://dx.doi.org/10.1145/1520340.1520682
http://doi.acm.org/10.1145/1520340.1520682
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/BehinderteMenschen/Schwerbehinderte2130510139004.pdf;jsessionid=8D754AAAB4D613729528E85F675EA38E.cae2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/BehinderteMenschen/Schwerbehinderte2130510139004.pdf;jsessionid=8D754AAAB4D613729528E85F675EA38E.cae2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/BehinderteMenschen/Schwerbehinderte2130510139004.pdf;jsessionid=8D754AAAB4D613729528E85F675EA38E.cae2?__blob=publicationFile
http://www.yokohama-rf.jp/common/pdf/report/26-5.pdf
http://www.yokohama-rf.jp/common/pdf/report/26-5.pdf
http://www.videolan.org/vlc/features.html
https://wiki.videolan.org/VLC_HTTP_requests/
https://wiki.videolan.org/VLC_HTTP_requests/
https://www.woehlke-websteckdose.de/index.php?id=websteckdose_ip-steckdose_servic
https://www.woehlke-websteckdose.de/index.php?id=websteckdose_ip-steckdose_servic
https://www.woehlke-websteckdose.de/index.php?id=websteckdose-faq0


[WW06] M. Wyndaele, J.-J. Wyndaele. „Incidence, prevalence and epidemiology of spinal

cord injury: what learns a worldwide literature survey?“ In: Spinal cord 44.9

(2006), S. 523–529 (zitiert auf S. 11, 19).

Alle URLs wurden zuletzt am 19. 12. 2016 geprüft.



Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-

ben. Ich habe keine anderen als die angegebenen Quellen

benutzt und alle wörtlich oder sinngemäß aus anderen Wer-

ken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren

bisher Gegenstand eines anderen Prüfungsverfahrens. Ich

habe diese Arbeit bisher weder teilweise noch vollständig

veröffentlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren überein.

Ort, Datum, Unterschrift


	1 Einleitung
	1.1 Motivation
	1.2 Ziele der Arbeit
	1.3 Vorgehensweise

	2 Grundlagen und verwandte Arbeiten
	2.1 Smarthome
	2.2 Querschnittlähmung
	2.3 Bedienungshilfen in Android
	2.4 Verwandte Arbeiten

	3 Benutzungskontext-Analyse
	3.1 Interviews
	3.2 Definition der Anforderungen

	4 Konzept
	4.1 Systemübersicht
	4.2 Benutzeroberfläche
	4.3 Eingabemöglichkeiten
	4.4 Eingabeverarbeitung

	5 Umsetzung Prototyp
	5.1 Begründung für die prototypische Umsetzung ausgewählter Anforderungen
	5.2 Verwendete Systeme und Technologien
	5.3 Architektur
	5.4 Implementierung

	6 Evaluation
	6.1 Quantitative Benutzbarkeitstests
	6.2 Qualitative Benutzbarkeitstests

	7 Zusammenfassung und Ausblick
	7.1 Umgesetzte Anforderung
	7.2 Mehrwert gegenüber den Android Bedienungshilfen
	7.3 Bewertung der Testergebnisse
	7.4 Ausblick

	A Anhang
	A.1 Fragebogen für die Interviews
	A.2 Ergebnisse der quantitativen Benutzbarkeitstests

	Literaturverzeichnis

