
Institut für Parallele und Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Masterarbeit Nr. 109

Plattformunabhängige lokale
SDN-Controller auf offener

Weiterleitungshardware durch
Anwendung von

Containertechnologie
Christian Bäumlisberger

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Betreuer/in: M.Sc. Thomas Kohler

Begonen am: 23. Mai 2016

Beendet am: 22. November 2016

CR-Nummer: C.2.0, C.2.1, C.2.2

Abstract

Neue und steigende Anforderungen an IT-Netzwerke stellen klassische Netzwerke vor
große Herausforderungen. Software-defined Networking (SDN) löst viele Probleme klas-
sischer Netzwerke und gewinnt daher immer mehr an Bedeutung. Dies geschieht unter
anderem durch Trennung von Data und Control Plane sowie der Zentralisierung der
Logik in einem logisch zentralisierten SDN-Controller. Für einige Anwendungsfälle bie-
tet der klassische dezentrale Ansatz aber weiterhin Vorteile wie z. B. geringere Latenz
und weniger Traffic Overhead. Diese Masterarbeit beschäftigst sich deshalb mit der Idee
auch beim Software-defined Networking lokale Kontrolllogik mitzuverwenden. Dazu wird
ein Konzept für den Einsatz eines virtualisierten und lokalen SDN-Controllers auf einem
SDN-Switch zur Umsetzung lokaler Kontrolllogik aufgezeigt. Anschließend folgt die Eva-
luation verfügbarer SDN-Controller und Virtualisierungstechnologien, ehe über geeignete
Anwendungsfälle das Konzept im Ganzen evaluiert wird.

3

Inhaltsverzeichnis

Abkürzungsverzeichnis 7

Abbildungsverzeichnis 9

Tabellenverzeichnis 11

1 Einleitung 13
1.1 Zielsetzung . 14
1.2 Gliederung . 14

2 Grundlagen 15
2.1 Software-defined Networking (SDN) . 15

2.1.1 OpenFlow (OF) . 17
2.1.2 SDN-Switch . 19

2.2 Virtualisierungstechnologien . 22
2.2.1 Virtuelle Maschinen (VM) . 23
2.2.2 Container . 23
2.2.3 Unikernels . 24

2.3 Literatur / Related Work . 25

3 Konzeption 27
3.1 Motivation . 27

3.1.1 Lokale Logik . 27
3.1.2 Anwendungsfelder . 28
3.1.3 Virtualisierung . 29

3.2 Klassische SDN-Systemarchitektur . 30
3.3 Umsetzungsvariationen . 32

3.3.1 Variante 1: Direkte Modifikation der Forwarding Engine 33
3.3.2 Variante 2: Integration eines Interpreter in die Forwarding Engine 34
3.3.3 Variante 3: Lokaler SDN-Controller auf dem Switch 34
3.3.4 Variante 4: Lokaler virtualisierter SDN-Controller auf dem Switch 35
3.3.5 Fazit Umsetzungsvarianten . 35

3.4 Systemmodel . 35
3.4.1 Systemarchitektur mit lokalem SDN-Controller 36
3.4.2 Kommunikation . 38
3.4.3 Funktionsweise . 39
3.4.4 Modifikation, Konfiguration und Erweiterbarkeit 41

5

Inhaltsverzeichnis

3.4.5 Life Cycle und Konsistenz . 42
3.5 Anforderungen an Umsetzung und Evaluation 43

4 Umsetzung 45
4.1 Hardware- und Softwareumgebung . 45
4.2 Vergleich und Auswahl von SDN-Controllern 47

4.2.1 Floodlight . 49
4.2.2 NOX . 49
4.2.3 Ryu . 50

4.3 Vergleich und Auswahl von Virtualisierungslösungen 51
4.3.1 Container . 51
4.3.2 Fazit Container . 53
4.3.3 Unikernel . 53
4.3.4 Fazit Rumprun . 56
4.3.5 Fazit Container und Unikernel . 58

4.4 Anwendungsszenarien . 59
4.4.1 Simple Switch . 59
4.4.2 Port Knocking . 61
4.4.3 Fast Failover . 63

5 Evaluation 65
5.1 TCP Performance verschiedener Virtualisierungslösungen 65
5.2 OpenFlow Performance Evaluation . 69

5.2.1 twink . 69
5.2.2 Ryu . 71
5.2.3 Open vSwitch . 72
5.2.4 Fazit OpenFlow Performance Evaluation 75

5.3 Evaluation von Anwendungsszenarien . 75
5.3.1 Simple Switch . 77
5.3.2 Port Knocking . 80
5.3.3 Fast Failover . 82
5.3.4 Fazit . 84

6 Zusammenfassung und Ausblick 87

Literatur 91

6

Abkürzungsverzeichnis

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CDPI Control to Data-Plane Interface

IoT Internet of Things

KVM Kernel-based Virtual Machine

LTS Long Term Support

OF OpenFlow

OF-DPA OpenFlow Data Plane Abstraction

ONF Open Networking Foundation

OVSDB Open vSwitch Database Management Protocol

QEMU Quick Emulator

REST Representational State Transfer

SDN Software-defined Networking

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtuelle Maschine

WAN Wide Area Network

7

Abbildungsverzeichnis

2.1 Überblick über den Aufbau der SDN-Architektur und die Trennung in
Control und Data Plane . 16

2.2 Struktur eines OpenFlow-Paket [14] . 18
2.3 Open vSwitch Architektur [40] . 20
2.4 Vergleich von Virtualisierungstechnologien 23

3.1 Klassische SDN-Architektur . 32
3.2 Überblick SDN-Architekturen . 33
3.3 Vergleich SDN-Architekturen . 36
3.4 Abläufe und Interaktionen auf dem SDN-Switch 40

4.1 SDN Hardware Testbed . 47
4.2 Ryu Architektur [8] . 50
4.3 Simple-Switch-Implementierung . 60
4.4 Port-Knocking-Implementierung . 62
4.5 Fast-Failover-Implementierung . 64

5.1 Versuchsaufbau für TCP-RTT-Messung 66
5.2 Ergebnisse der TCP-RTT-Messung der Virtualisierungslösungen 68
5.3 Ergebnisse der Encode- und Decode-Zeitmessung mit twink 71
5.4 Ergebnisse der OpenFlow-Decode-Zeitmessung mit Ryu 72
5.5 Ergebnisse der Decode- und Encode-Zeitmessung mit Open vSwitch . . . 74
5.6 Versuchsaufbau zum Messen der Zeit für die Kommunikation mit dem

lokalen bzw. zentralen SDN-Controller . 76
5.7 Ergebnisse der Zeitmessung für die Kommunikation mit dem lokalen bzw.

zentralen SDN-Controller . 77
5.8 Versuchsaufbau für das Simple-Switch-Anwendungsszenario 78
5.9 Ergebnisse der RTT-Messung des Simple-Switch-Anwendungsszenarios . . 79
5.10 Vergleich des Port Knocking Overhead . 81
5.11 Versuchsaufbau für das Fast-Failover-Anwendungsszenario 83
5.12 Erhöhung der Paketverlustrate im Vergleich 84

9

Tabellenverzeichnis

3.1 Formaler Aufbau eines klassischen SDN-Netzwerks 31
3.2 Formaler Aufbau eines SDN-Netzwerks mit lokalem SDN-Controller-Ansatz 37

4.1 Übersicht bekannter SDN-Controller . 48
4.2 Vergleich von Docker und LXC . 54
4.3 Übersicht Rumprun . 58
4.4 Vergleich zwischen LXC, Docker und Rumprun 59

5.1 Messergebnisse für die durchschnittliche TCP RTT (in Millisekunden) der
verschiedenen Virtualisierungslösungen . 68

5.2 Messergebnisse für die durchschnittliche Zeit (in Millisekunden) die twink
für das Decodieren bzw. Encodieren einer OpenFlow-Nachricht benötigt . 70

5.3 Messergebnisse für die durchschnittliche Zeit (in Millisekunden) die Ryu
für das Decodieren einer OpenFlow-Nachricht benötigt 73

5.4 Messergebnisse für die durchschnittliche Zeit (in Mikrosekunden) die Open
vSwitch für das Decodieren bzw. Encodieren einer OpenFlow-Nachricht
benötigt . 74

5.5 Messergebnisse für die Zeit (in Millisekunden) zwischen dem Absenden ei-
ner OpenFlow-Nachricht an den SDN-Controller und einer Antwort darauf. 77

5.6 Messergebnisse für die RTT (in Millisekunden) für das erste Paket beim
Simple-Swtich-Anwendungsszenario . 80

5.7 Messergebnisse für die Zeit (in Millisekunden) beim Port-Knocking-An-
wendungsszenario mit 5 Nachrichten . 80

5.8 Messergebnisse für die Zeit (in Millisekunden) beim Port-Knocking-An-
wendungsszenario mit 20 Nachrichten . 81

5.9 Messergebnisse der Paketverlustrate für UDP-Kommunikation zwischen
Sender und Empfänger beim Fast-Failover-Anwendungsszenario 83

11

1 Einleitung

Immer mehr Geräte sind heutzutage miteinander vernetzt und Netzwerke dadurch so gut
wie überall zu finden. Der Hauptgrund dafür sind die vielfältigen Möglichkeiten die durch
eine Anbindung an das Internet entstehen. Auch in Zukunft werden immer mehr Geräte
vernetzt sein, vor allem durch den Trend hin zum Internet of Things (IoT). Der damit
verbundene stetige Anstieg an Nutzern und Geräten erfordert immer bessere Netzwerke.
Auch die Rechenzentren der Anbieter müssen zum Ausgleich leistungsfähiger und besser
vernetzt werden. Sehr häufig fällt in diesem Zusammenhang auch der Begriff des Cloud
Computing und das damit verbundene Ziel immer mehr Anwendungen als Service über
das Internet anzubieten. Gerade in den letzten Jahren ist Cloud Computing durch mo-
derne Virtualisierungstechniken, die es erlauben Serverhardware effizienter und flexibler
zu nutzen, immer erfolgreicher geworden. Die dadurch steigenden Anforderungen an die
Rechenzentren, betreffen natürlich auch wieder die Netzwerke.

Netzwerke müssen deshalb nicht nur mit immer mehr Traffic zurechtkommen, sondern
sich auch flexibel an veränderte Topologien, ausfallende Geräte, variierende Netzwerklast
und weitere neue Anforderungen anpassen. Klassische Netzwerke sind dafür oft nicht
ideal geeignet, da sie aufwendig zu konfigurieren und nicht flexibel genug sind [vgl.
18].

Eine Lösung, um diese Einschränkungen klassischer Netzwerke zu überwinden bietet das
Software-defined Networking (SDN). Die Grundidee dabei ist die Trennung von Netz-
werkmanagement (Control Plane) und Datenweiterleitung (Data Plane bzw. Forwarding
Plane) [18]. Das Ziel dabei ist, eine flexible und weniger Hardware zentrierte Architektur,
die logisch zentralisiert und mit globaler Sicht auf das Netzwerk über einen program-
mierbaren logisch zentralisierten SDN-Controller gesteuert wird. Dies bietet den Vorteil,
dass das SDN-Netzwerk einfach softwareseitig über Änderungen am logisch zentralisier-
ten SDN-Controller an die aktuellen Anforderungen angepasst werden kann.

In den letzten Jahren hat deshalb viel Forschung im Bereich von Software-defined Net-
working stattgefunden. Auch in der Praxis wird Software-defined Networking bereits
immer öfter eingesetzt. Besonders große Firmen wie z. B. Google und Amazon haben
ein großes Interesse daran, weil sie darin gute Möglichkeiten zur Steigerung der Flexi-
bilität, Effizienz und Verwaltbarkeit ihrer Datencenter sehen. Google hat mit B4 z. B.
ein SDN-basiertes WAN zwischen ihren Datencentern erfolgreich im Einsatz [25]. Auch
AT&T setzt auf Software-defined Networking und plant bei seinen Netzwerken bis 2020
einen SDN Anteil von über 75% [1].

13

1 Einleitung

1.1 Zielsetzung

Bei typischen SDN-Architekturen befindest sich die Kontrolllogik im logischen zentrali-
sierten SDN-Controller. In manchen Fällen ist der klassische dezentrale Ansatz allerdings
ausreichend und kann wie in Kapitel 3 noch detaillierter beschrieben sogar Vorteile z. B.
bei der Latenz, dem Traffic Overhead oder der Fehlertoleranz bieten [17, 28]. Inzwischen
beschäftigen sich deswegen auch immer mehr Arbeiten mit der Kombination lokaler und
zentraler Kontrollentscheidungen in SDN-Netzwerken [2, 3, 34].

In dieser Arbeit soll deshalb das Thema lokaler Kontrollentscheidungen genauer betrach-
tet werden. Insbesondere in Bezug auf den Einsatz lokaler SDN-Controller auf offener
Weiterleitungshardware. Das Ziel dabei ist die Vorteile der klassischen dezentralen Netz-
werkarchitektur mit denen des logisch zentralisierten Ansatzes des SDN zu kombinieren.
Für die einfachere Anwendbarkeit, bessere Plattformunabhängigkeit und Isolation von
Erweiterungen für bestehende Switches, soll dabei außerdem die Kapselung über Vir-
tualisierungstechniken wie z. B. Containertechnologie sichergestellt werden. Die Gründe
für die Virtualisierung werden ebenfalls in Kapitel 3 noch detaillierter beschrieben.

Im Folgenden soll deshalb zuerst ein Überblick über die zugrundeliegenden Technologien
gegeben werden ehe dann mögliche Ansätze zur Umsetzung lokaler Kontrolllogik aufge-
zeigt werden. Anschließend wird ein Konzept für den gewählten virtualisierten lokalen
SDN-Controller-Ansatz erstellt. Darauf aufbauend erfolgt die Umsetzung verschiedener
Performance-Tests und die Implementierung einiger Anwendungsszenarien. Abschließend
folgt die Evaluation und die Auswertung der Ergebnisse.

1.2 Gliederung

Im Folgenden wird zuerst im Kapitel 2 auf die theoretischen Grundlagen wie Software-
defined Networking (SDN) und Virtualisierungstechniken eingegangen. Anschließend
folgt in Kapitel 3 die Konzeption. Dazu werden verschiedene Alternativen betrachtet
und das Konzept für einen virtualisierten lokalen SDN-Controller ausgearbeitet. Dar-
auf aufbauend wird dann die Auswahl geeigneter Technologieren wie Virtualisierungs-
lösungen und SDN-Controller sowie die Umsetzung von Anwendungsfällen in Kapitel 4
beschrieben. In Kapitel 5 folgt eine umfangreiche Evaluation mit Auswertung der Er-
gebnisse. Abschließend wird in Kapitel 6 eine kurze Zusammenfassung und ein Ausblick
gegeben.

14

2 Grundlagen

2.1 Software-defined Networking (SDN)

Steigende Anforderungen an Netzwerke haben dazu geführt, dass es für klassische Netz-
werkarchitekturen immer schwerer wird diese zu erfüllen [18]. Vor allem mangelnde Fle-
xibilität und aufwendige Konfiguration sind dabei immer wieder genannte Gründe. Im
Bereich der Netzwerktechnik ist deswegen Software-defined Networking (SDN), das dy-
namische, anpassbare, automatisierbare und leicht verwaltbare Netzwerke ermöglichen
soll, eines der angesagtesten Themen der letzten Jahre und gewinnt immer mehr an
Bedeutung [6].

Der wesentliche Unterschied des Software-defined Networking gegenüber klassischen Netz-
werken besteht darin, dass eine strikte Trennung von Control Plane und Data Plane wie
in Abbildung 2.1 dargestellt stattfindet was die zentrale Koordination des Netzwerks mit
einem logisch zentralisierten SDN-Controller erlaubt [15].

• Die Data Plane auch Forwarding Plane genannt ist für das Weiterleiten von
Paketen im Netzwerk zuständig. Das Weiterleiten der Pakete geschieht dabei auf
Basis von Regeln die von der Control Plane vorgegeben werden.

• Die Control Plane entscheidet wohin Pakete weitergeleitet werden und enthält
die Logik, Protokolle und Steuerfunktionalität des Netzwerks.

Dies führt zu einen Abstraktion der Data Plane gegenüber höheren Schichten wie der
Control Plane oder der noch eine Ebene höher liegenden Management Plane. Dies er-
möglicht es wiederum wesentlich einfachere Switches zu bauen, da komplexe Logik und
Protokolle nun nicht mehr deren Aufgabe sind. Außerdem erlaubt es, da das Management
nun über die Control Plane erfolgt, das Netzwerk leichter zu verwalten und einfacher
neue Protokolle zu nutzen. Vor allem da nun eine einfache logische Zentralisierung der
Kontrolllogik in einem programmierbaren logisch zentralisierten SDN-Controller möglich
wird [15]. Das bietet den Vorteil, dass nun ein logisch zentralisierter SDN-Controller mit
globaler Sicht auf das Netzwerk Entscheidungen treffen kann. Entscheidungen auf Basis
der globalen Netzwerksicht ermöglichen es z. B. das Netzwerk effizienter auszunutzen als
dezentrale Lösungen ohne Sicht auf das komplette Netzwerk. Ein Beispiel dafür ist das
Routing mit globaler Netzwerksicht, das es erlaubt bessere Routen zu finden wie der
dezentrale Ansatz.

15

2 Grundlagen

(a) SDN-Architektur (b) Klassischer Switch / SDN-Switch

Abbildung 2.1: Überblick über den Aufbau der SDN-Architektur und die Trennung in
Control und Data Plane

Ein klassisches SDN-Netzwerk verfügt also über einen zentralen SDN-Controller der über
die Control Plane die SDN-fähigen Switches steuert, die anhand der vom SDN-Controller
definierten Regeln Daten auf Ebene der Data Plane weiterleiten.

Die Anfänge des SDN gehen dabei auf Forschungen zum Thema programmierbare Netz-
werke, Netzwerkvirtualisierung und Ideen zur Control und Data Plane Separation zu-
rück. Die 2011 gegründete Open Networking Foundation (ONF) [15] nennt als wesent-
liche Eigenschaften der SDN-Architektur die Hauptmerkmale: direkte Programmierbar-
keit, Agilität, zentrales Management, programmatische Konfigurierbarkeit und Herstel-
lerunabhängigkeit durch offene Standards. Damit verbunden ist auch eine verbesserte
Automatisierung, schnellere Innovation durch Unabhängigkeit vom Hersteller, verbes-
serte Zuverlässigkeit und Sicherheit sowie eine besser Kontrolle über das Netzwerk [18,
15].

Die SDN-Idee unterscheidet sich damit deutlich von klassischen Netzwerken in denen
viele dezentrale proprietäre Geräte verschiedenste Funktionen implementieren und Wei-
terentwicklung, Funktionalität, unterstütze Protokolle usw. komplett vom Hersteller ab-
hängen [6]. Klassische Netzwerke haben außerdem das Problem, dass Netzwerkgeräte
wie Router, Switch, Middleboxes (z. B. Firewall, Intrusion Detection System, Network
Address Translator, Load Balancer), usw. sich dabei nicht nur je nach Aufgabe, sondern
oft auch je nach Hersteller und Version deutlich unterscheiden. Das liegt daran, dass
die Funktionalität der Geräte meist in proprietärer Software oder Hardware umgesetzt
ist. Bei älteren Geräten kommt noch dazu, dass es oft auch keine Updates mehr gibt,
so dass man auf einem bestimmten Entwicklungsstand stehen bleibt. Das führt dazu,
dass jedes Gerät immer nur bestimmte Protokolle und Konfigurationsschnittstellen in
bestimmten Versionen unterstützt. In Bezug auf Flexibilität und einfache Konfigurier-
barkeit bietet SDN mit seinem offen und herstellerunabhängigen auf Standards basieren-
dem Ansatz deshalb deutliche Vorteile. Zum Beispiel ist durch den logisch zentralisierten

16

2.1 Software-defined Networking (SDN)

SDN-Controller, der durch die Trennung von Data und Control Plane ermöglicht wird,
es relativ leicht neue Funktionen mit diesem zu implementieren. Eine Anpassung der
SDN-Switches ist dabei nicht nötig, da diese einfach nur die dafür nötigen Regeln vom
logisch zentralisierten SDN-Controller vorgegeben bekommen.

Abbildung 2.1 (a) zeigt die typische SDN-Architektur, die sich in die Ebenen Data Plane,
Control Plane und Management Plane einteilen lässt [28]. Die Control Plane leitet wie
bereits beschrieben die Daten weiter und enthält die dafür notwendigen Netzwerkgeräte
wie z. B. einen Switch. Darauf aufbauend folgt die Control Plane die über Southbound
Protokolle wie z. B. OpenFlow die Geräte der Data Plane steuert und festlegt wie Pakete
weitergeleitet werden. Außerdem kommuniziert die Control Plane über ihr Northbound
Interface mit den Software Services der Management Plane. Für Netzwerk-Services und
deren Anbindung an die Control Plane gibt es bisher keinen Standard. Die Northbound
API ist häufig einfach eine Schnittstelle in der Programmiersprache des SDN-Controllers
oder eine Representational State Transfer (REST) Schnittstelle. Die Aufgaben der Con-
trol Plane werden meist von einem einzelnen zentralen SDN-Controller übernommen
auch wenn prinzipiell die Verwendung mehrerer SDN-Controller möglich ist. Mehre
SDN-Controller sind vor allem dann interessant, wenn sie nötig sind Ausfallzeiten zu
minimieren oder Last auf mehre Rechner zu verteilen. Sie helfen also Skalierbarkeit und
Ausfallsicherheit zu erreichen. Wird im Laufe der Arbeit also von einem SDN-Controller
bzw. zentralen SDN-Controller gesprochen wäre also auch immer ein nur logisch zentrali-
sierter SDN-Controller denkbar. Die Auswahl an SDN-Controllern die eingesetzt werden
können ist groß, eine Übersicht dazu ist in Kapitel 4 zu finden.

Über die Southbound API auch Control to Data-Plane Interface (CDPI) genannt läuft
die Kommunikation des SDN-Controllers mit den der Data Plane. Für diesen Einsatz-
zweck hat sich mit OpenFlow bereits ein sehr gut unterstützter Standard etabliert der
große Verbreitung und sehr gute Unterstützung hat. OpenFlow wird dabei oft in Kom-
bination mit einem Managementprotokoll wie OVSDB oder OF-CONFIG eingesetzt.
Aber auch andere Ansätze wie ForCES, POF (= Protocol-Oblivious Forwarding) und
OpenState kommen als Southbound API in Frage [28]. Auf Ebene der Data Plane be-
finden sich die SDN-Switches. Dabei gibt es sowohl Hardwarelösungen als auch reine
Software Lösungen wie Open vSwitch die zum Beispiel für virtualisierte Umgebungen
sehr interessant sind.

2.1.1 OpenFlow (OF)

Als Kommunikationsprotokoll zwischen Control Plane und Data Plane, um das Weiter-
leiten der Daten zu steuern, hat sich beim SDN der OpenFlow-Standard durchgesetzt.
Das OpenFlow-Protokoll erlaubt die direkte Manipulation des Verhaltens der Data Pla-
ne, in dem über Regeln genau bestimmt wird was mit eintreffenden Netzwerkpakete auf
dem Switch passiert.

17

2 Grundlagen

Im Dezember 2009 wurde Version 1.0 der OpenFlow-Switch Spezifikation veröffentlicht
[15]. Daraufhin folgten weitere Versionen, die verschiedene Neuerungen einführten. Die
aktuelle Version ist die durch die Open Networking Foundation veröffentliche Open-
Flow Switch Spezifikation Version 1.5 [16]. Die meisten OpenFlow-Switches und SDN-
Controller unterstützen bisher aber meist nur ältere Versionen, da sich die neuen Ver-
sionen nur langsam durchsetzen.

Zentraler Teil des OpenFlow Standard sind die Flow-Regeln bzw. Einträge für einzelne
Paketströme sogenannte Flows. Diese Regeln legen anhand verschiedener Kriterien wie
z. B. Quelle oder Ziel eines Pakets fest was mit eingehenden Paketen passiert. Sie werden
SDN-Controller über OpenFlow-Nachrichten an den Switch gesendet und von diesem in
seine Flow Table aufgenommen. Jeder Eintrag in der Flow Table besteht dabei aus ei-
ner Matching-Regel und einer Aktion die ausgeführt wird wenn die Regel zutrifft. Die
Matching-Regel spezifiziert also für welche Pakete die dazugehörige Aktion ausgeführt
wird. Außerdem sind noch z. B. Counter per-table, per-flow, per-port und per-queue vor-
gesehen. Für aktuelle OpenFlow-Versionen wurden außerdem noch einige Erweiterungen
eingeführt so dass Version 1.5 nun als Felder die Matching-Regel, Priorität, Counter, Ac-
tion bzw. Instruktionen, Timeout, Cookie und Flags bietet [16].

OpenFlow-Nachrichten starten dabei alle wie in Abbildung 2.2 mit einem gleichen auf-
gebauten Header (Version, Type, Länge, Transaction Id / xid) auf den der Payload
folgt [14]. Es gibt dabei eine Vielzahl an Typen wie z. B. Hello-, FlowMod-, PortMod-,
PacketIn- PacketOut- und Error-Nachrichten die alle in der OpenFlow-Spezifikation
dokumentiert sind [16]. Die Hello-Nachricht z. B. dient dem Verbindungsaufbau und
über die PacketIn-Nachricht werden Pakete zum SDN-Controller weitergereicht. Über
FlowMod- und PortMod-Nachrichten hingegen konfiguriert der SDN-Controller den SDN-
Switch und mit PacketOut-Nachrichten kann er Pakete an den SDN-Switch senden die
dieser dann weiterleitet. OpenFlow-Nachrichten werden also sowohl vom SDN-Switch
zum informieren des SDN-Controllers über relevante Ereignisse als auch vom SDN-
Controller zum steuern des Forwarding Verhaltens eines SDN-Switches genutzt.

Abbildung 2.2: Struktur eines OpenFlow-Paket [14]

Der Ablauf ist dabei wie folgt. Erreicht ein Paket der Data Plane den OpenFlow-
Switch, wird in der Flow Table bzw. meist der ersten von mehreren ein Match mit
einer Matching-Regel auch Classifier genannt gesucht, um dann die damit verbundene

18

2.1 Software-defined Networking (SDN)

Aktion bzw. Instruktionen auszuführen. Am häufigsten wird ein Paket von Switch an-
hand von Regeln einfach über den passenden Port oder wenn es noch keine Regel gibt
an den SDN-Controller weitergeleitet. Das Matching kann dabei in erster Instanz auch,
wie im folgenden Abschnitt über SDN-Switches genauer beschrieben, auf einer Anwen-
dungsspezifischen integrierten Schaltung (ASIC) stattfinden ehe dann für größere Flow
Tables und komplexere Aktionen das deutlich langsamere Matching mit einer Software-
statt Hardwareimplementierung stattfindet. Beim Matching auf Softwareebene wird da-
bei einfach das Paket mit den Regeln der Flow Table bzw. den Flow Tables abgleichen
und wenn eine Regel zutrifft die damit verbundene Aktion ausgeführt.

Für die Matching-Regel stehen verschiedene Classifier-Felder zu Verfügung. Bei Open-
Flow 1.0 sind dies z. B. Port, Source MAC, Destination MAC, Type, Length, VLAN ID,
Priority, Protocol, Source Address, Destination Address, Source Port, Destination Port.
Inzwischen werden aber durch neuere OpenFlow-Protokoll-Versionen noch mehr Mög-
lichkeiten geboten die in der jeweiligen zur Version gehörten OpenFlow-Spezifikation
definiert sind [14, 16].

Aktionen, die bei neueren OpenFlow-Versionen auch Instruktionen genannt werden, sind
zum Beispiel das Verwerfen, Weiterleiten (an SDN-Controller, Port, mehre Ports, Sender,
usw.) und Modifizieren von Paketen möglich [16]. Neuere OpenFlow-Versionen bieten
auch hier wieder mehr Möglichkeiten wie z. B. eine größere Anzahl Felder von Paketen
bzw. Protokollen die modifiziert werden können. Eine weitere Art sind sogenannte Vendor
bzw. Experimenter Aktionen und Nachrichten, die für eigene Erweiterungen gedacht sind
[14].

Außerdem gibt es auch einige bereits existierende Erweiterungen für OpenFlow wovon
die Nicira Extensions die bekannteste und am breitesten unterstützte Erweiterung des
OpenFlow Protokolls ist [36]. Die Nicira Extensions erlauben z. B. komplexere Regeln
und Aktionen mit mehren Tabellen zu definieren und ermöglichen es auch z. B. eine
einfache L2 Switch Umsetzung direkt auf dem SDN-Switch darüber konfigurieren.

Das OpenFlow Protokoll ist somit sehr vielseitig, hat eine gute Dokumentation, ist frei
verfügbar und hat viele Unterstützter weshalb es sich inzwischen auch als Standard
Southbound API bzw. CDPI-Protokoll durchgesetzt hat. Der Fokus des OpenFlow Pro-
tokolls ist dabei rein auf der Konfiguration der Data Plane was dazu führt, dass es häufig
in Kombination mit einem zusätzlichen Managementprotokoll eingesetzt wird.

2.1.2 SDN-Switch

SDN-Switches verbinden die einzelnen Geräte im Netzwerk. Neben SDN-fähigen Hard-
ware Switches verschiedener Hersteller gibt es dabei auch reine Softwarelösungen, die vor
allem auf virtualisierte Umgebungen ausgerichtet sind. Die SDN-Switches unterscheiden
sich dabei wie zu Beginn in Abbildung 2.1 (b) dargestellt deutlich von klassischen Swit-
ches da sie sich nur noch um das Weiterleiten anhand von Regeln kümmern die ein
SDN-Controller vorgibt. SDN-Switches haben dazu meist einen Port über den sie mit

19

2 Grundlagen

dem Managementnetzwerk bzw. der Control Plane verbunden sind und ein große An-
zahl an Ports auf der Data-Plane-Ebene mit der sie zu anderen Switches und Endgeräten
verbunden sind. Das Weiterleiten über die Ports auf der Data-Plane-Ebene wird dabei
vom SDN-Controller konfiguriert. Pakete für die keine Regel zur Weiterleitung auf Data-
Plane-Ebene existiert werden dabei verworfen oder z. B. über eine Default-Regel, zum
Weiterleiten an den SDN-Controller, an den SDN-Controller gesendet, damit dieser den
Switch daraufhin passend konfigurieren kann. Für eine genauere Betrachtung ist da-
bei die Unterteilung in die eigentliche Forwarding Engine, die sich um das Weiterleiten
von Paketen kümmert, und den CDPI Agent, der über die Southbound API mit dem
SDN-Controller kommuniziert, möglich.

Software Switch / Open vSwitch (OVS)

Als SDN-fähige Software-Switch-Lösung hat sich beim SDN inzwischen Open vSwitch
(OVS) [49] durchgesetzt. Open vSwitch ist eine OpenFlow-fähige, für den Produk-
tiveinsatz geeignete Open-Source-Implementierung eines verteilten virtuellen Multilayer
Switch. Das Hauptziel des OVS-Projekts ist es einen Switching Stack für Umgebun-
gen mit Virtualisierung anzubieten, der viele Protokolle und Standards unterstützt [49].
Auch SDN-fähige Switch-Hardware, die Open vSwitch als Basis nutzt ist inzwischen ver-
fügbar. Der Code von Open vSwitch steht unter der Apache License 2.0 und neben der
aktuellsten Version (derzeit Version 2.6) wird auch immer noch eine Long Term Support
(LTS) Version aktiv unterstützt [49].

Abbildung 2.3: Open vSwitch Architektur [40]

Die OVS-Architektur wie in Abbildung 2.3 dargestellt besteht aus den Hauptkompo-
nenten ovs-vswitchd, ovsdb-server und dem Kernel-Datapath-Modul. Das Kernel-
Datapath-Modul ist dabei für das sehr schnelle Weiterleiten von Paketen zuständig. Die
ovs-vswitchd-Instanz hingegen für die Kommunikation mit dem SDN-Controller über
OpenFlow und dem ovsdb-server sowie das Matching neuer Pakete mit den komplet-
ten Flow Tables, die zu groß bzw. komplex für das Kernel-Datapath-Modul sein können.
Der ovsdb-server stellt die Datenbank bereit in der alle zum Betrieb nötigen Daten

20

2.1 Software-defined Networking (SDN)

gespeichert sind. Die Datenbank interagiert dabei intern direkt mit der Switching- und
Matching-Logik und kann von außen über das Open vSwitch Database Management
Protocol (OVSDB)[39] konfiguriert werden. Außerdem ist das Abrufen von Statusinfor-
mationen ebenfalls über das OVSDB-Protokoll möglich. Mit ovs-vsctl für die Konfi-
guration der OVS-Datenbank (ovsdb bzw. ovsdb-server) und ovs-ofctl zur Überwa-
chung und Administration von OpenFlow-Switches sowie ovs-dpctl und ovs-appctl
stehen außerdem komfortable Kommandozeilen Tools zur Verfügung. Gerade für eine
schnelle Konfiguration, Fehlersuche oder zu Tests sind diese sehr hilfreich.

Eingehende Pakete werden beim Open vSwitch zuerst in dem Kernel-Datapath-Modul
entgegengenommen und falls es dort kein Match gibt an ovs-vswitchd zum Matching
mit den User Space Flow Tables weitergereicht. Im Fall eines Matchs in einer der Tabellen
wird die damit verbundene Aktion ausgeführt bzw. das Paket entsprechend weitergelei-
tet. Gab es in keiner Flow Table ein Match wird je nach Konfiguration des Switches das
Paket verworfen oder an den SDN-Controller weitergeleitet.

Alternative Software-Switches sind z. B. ofsoftswitch13 und LINC-Switch die allerdings
lang nicht so bekannt und auch nicht so weitverbreitet sind [28].

Hardware Switch

SDN-fähige Hardware-Switches gibt es von verschiedenen Herstellern. Je nach Anforde-
rungen gibt es sie mit verschieden Anzahlen an Ports und verschieden leistungsfähiger
Hardware (CPU, RAM, ASIC, usw.). Dabei ist vor allem auch interessant wie viele Flow
Table-Einträge in Hardware also mit einer ASIC verglichen werden können, da dabei die
Performance erheblich besser ist wie bei einem Vergleich auf Softwareebene. Hauptgrund
für die sehr gute Performance beim Matching ist Ternary Content Addressable Memory
(TCAM). Darüber ist es möglich das Matching sehr schnell und für alle in der Hardware
vorgehalten Regeln parallel durchzuführen. Der Nachteil ist, dass der TCAM Speicher,
da er sehr teuer ist, meist nicht sonderlich groß ist und die Anzahl an Einträgen für die
ein Matching auf Hardwareebene möglich ist somit sehr begrenzt ist.

SDN-Switches werden häufig mit einem Linux basierten Betriebssystem betrieben. In-
zwischen gibt es deshalb verschiedene proprietäre aber auch einige Open-Source-Linux-
Betriebssysteme die speziell für den Einsatz auf einem Switch vorgesehen sind. Bekannte
Vertreter dieser Art sind z. B. PicOS (Pica8)[23], Open Network Linux[29] und OpenS-
witch (HP) [38]. Der Aufbau dieser Betriebssysteme ist dabei ähnlich. Ein angepasstes
Linux, die Ansteuerung der ASIC und der Softwareteil des Switches bilden die Haupt-
komponenten. Die Verbindung zum SDN-Controller erfolgt dabei meist mit OpenFlow
und wird häufig noch mit einem zusätzlichen Managementprotokoll wie OVSDB oder
OF-CONF ergänzt [28]. Manche Hersteller wie PicOS setzten dabei wieder einen modifi-
zieren und auf die Hardware angepassten Software-Switch wie Open vSwitch ein um ihre
Hardware SDN-tauglich zu machen [23]. Andere implementieren die SDN-Unterstützung

21

2 Grundlagen

oder Teile bzw. Komponenten davon komplett selbst. Teilweise wird auch eine Abstrak-
tionsschicht wie z. B. die von Broadcom entwickelte OpenFlow Data Plane Abstraction
(OF-DPA) [9] eingesetzt. Diese kommt zum Beispiel beim Indigo OpenFlow Agent auf
Open Network Linux zum Einsatz.

Auf einem Hardware Switch läuft also ein speziell angepasstes Betriebssystem und er ver-
fügt auf Hardwareebene über eine große Anzahl Ports und eine ASIC. Auf Softwareebene
hingegen läuft eine Forwarding Engine die direkt oder über eine Abstraktionsschicht auf
die ASIC zugreift und über einen CDPI Agent mit dem er zur Control Plane verbunden
ist.

Für diese Arbeit ist dabei vor allem wichtig, dass der Switch nicht nur auf die offe-
nen SDN-Standards aufbaut sondern auch insgesamt ein sehr offenes System bietet das
Modifikationen erlaubt. Die Zielplattform sind also insbesondere sogenannte White Box
Switches.

2.2 Virtualisierungstechnologien

Virtualisierung ist ein weit verbreitetes Konzept, das vor allem für den Betrieb von Ser-
vern unerlässlich geworden ist. Die Anfänge der Virtualisierung gehen dabei mehr als 50
Jahre zurück. Damals führte IBM Servervirtualisierung auf seinen Großrechnern ein, um
durch virtuelle Maschinen mehre Einzelbenutzersysteme zur besseren Auslastung paral-
lel auszuführen [33]. Inzwischen gibt es eine Vielzahl an Virtualisierungslösungen die sich
im Wesentlichen in die drei Kategorien Virtuelle Maschinen, Container und Unikernel
einteilen lassen. Eine Übersicht über diese im Folgenden noch genauer beschriebenen
Typen zeigt Abbildung 2.4.

Die Vorteile von Virtualisierung sind dabei vielfältig. Im Serverumfeld ist das Ziel vor
allem Hardware besser auszulasten und so weniger Hardware und damit weniger Strom
und Platz zu benötigen. Aber auch eine schnellere Server-Provisionierung und das ein-
fache Einrichten und Nutzen von Testumgebungen ist ein wichtiger Faktor. Außerdem
bietet Virtualisierung die Möglichkeit Software, die auf einem neuen System nicht mehr
laufen würde, durch die Virtualisierung eines älteren Systems weiter zu nutzten. Da Vir-
tualisierung auch zur Isolation beiträgt besteht hier außerdem der Vorteil, dass auch
neue oder experimentelle Software relativ gefahrlos in einer virtualisierten Umgebung
ausgeführt werden kann. Auch effektivere Administration und Wartung sowie einfachere
Backups und Wiederherstellungen und somit höhere Verfügbarkeit sind ein Vorteil. Vor
allem das leichte Hinzufügen, Entfernen und Verschieben virtualisierter Instanzen ist ein
großer Vorteil um optimal auf die aktuelle Last reagieren zu können. Es gibt aber nicht
nur Vorteile, denn Virtualisierung kostet immer, selbst bei guter Unterstützung durch
die Hardware, zumindest ein wenig an Performance.

22

2.2 Virtualisierungstechnologien

Abbildung 2.4: Vergleich von Virtualisierungstechnologien

2.2.1 Virtuelle Maschinen (VM)

Klassische virtuelle Maschinen (VM) existieren schon am längsten. Sie werden von einem
Hypervisor ausgeführt der entweder direkt auf der Hardware läuft oder als Software
wie z. B. VirtualBox auf einem Betriebssystem ausgeführt wird. Außerdem besteht die
Möglichkeit zur Verwaltung der VMs. Das bedeutet, es stehen Funktionen zum Anlegen,
Starten, Stoppen, oder Zuweisen von Ressourcen zur Verfügung. Hardwarevirtualisierung
also Software zur Abstraktion der Hardware ist dabei die Grundlage für die eigentliche
virtuelle Maschine auf der dann ein Gastbetriebssystem ausgeführt wird. Dies ermöglicht
es, dass die reale Hardware von verschiebenden virtuellen Maschinen gleichzeitig genutzt
werden kann. Die Gastbetriebssysteme die auf der VM laufen bemerken dabei keinen
Unterschied zu exklusiven Ausführung auf realer Hardware, so dass keine Anpassungen
der Software nötig sind.

Die Vorteile davon sind eine effizientere Auslastung der Hardware und die Isolation der
Betriebssysteme und der darauf ausgeführten Programme gegenüber. Virtuelle Maschi-
nen emulieren dabei immer eine bestimmte Hardware und sind von der Software darauf
unabhängig. Es laufen somit alle Betriebssysteme darauf die mit der emulierten Hard-
ware die von der Virtuellen Maschine zur Verfügung gestellt kompatibel sind. Somit
läuft auch jegliche Software die auf einem dieser Betriebssysteme läuft in einer VM. Der
Nachteil ist allerdings ein großer Overhead der viel Performance kostet, da absolut alles
virtualisiert ist. Man hat dafür aber eine sehr gute Isolation die sogar soweit geht, dass
eine andere Hardwarearchitektur wie die des Systems auf dem die Virtuelle Maschine
läuft emuliert werden kann.

2.2.2 Container

Der Preis für die Vorteile einer Virtualisierung mit VMs ist ein sehr großer Overhead, da
immer ein komplettes Betriebsamstem auf virtueller Hardware ausgeführt werden muss.

23

2 Grundlagen

Dies hat zur Entwicklung von leicht gewichtigeren Lösungen geführt, den sogenannten
Containern.

Container basieren auf der Idee Anwendungen auf dem Kernel eines Hostsystems auszu-
führen aber die Prozesse und Bibliotheken dennoch zu isolieren, indem Kernel-Ressourcen
virtualisiert und gegeneinander abgeschottet werden [30]. Sie bauen dazu auf Linux Tech-
niken wie Kernel Namespaces und cgroups auf. Für Anwendungen scheint es im Wesent-
lichen aber so als würden sie, wie bei VMs, auf einer komplett eigenen Betriebssystem
Instanz laufen. Bereits 2005 stand Google vor dem Problem, dass VMs ihr Anforderun-
gen nicht zufriedenstellend erfüllten und suchte deshalb nach Alternativen. Dies führte
zu der Entwicklung von cgroups die dann Anfang 2008 in den Linux Kernel aufgenom-
men wurden [4]. Darauf aufbauend erschienen dann im August 2008 die Linux Containers
(LXC). Diese haben das Ziel eine Umgebung zu schaffen, die so nah wie möglich an einer
extra Linux Installation ist, ohne einen separaten Kernel zu benötigen [30]. Den großen
Durchbruch haben Container aber erst mit dem Boom des Cloud Computing und dem
Erscheinen des sehr einfach verwendbaren Docker im Jahr 2013 geschafft [4].

Ihr Vorteil ist der geringe Overhead und somit gute Performance durch das nutzen
eines gemeinsamen Kernels. Die Isolation ist dafür geringer als z. B. bei den komplett
getrennten VMs doch es existieren Wege diese durch zusätzliche Mechanismen wieder
zu erhöhen. Container haben allerdings auch eine Einschränkung gegenüber VMs denn
es können nur Betriebssysteme mit gleichem Kernel virtualisiert werden.

2.2.3 Unikernels

Ein weiterer Ansatz sich von klassischen virtuellen Maschinen zu lösen bieten Unikernels.
Diese ermöglichen es Anwendungen zusammen mit den benötigten Systemkomponenten
zu kompilieren, so dass sie sich direkt auf einem Hypervisor oder Hardware ausführen
lassen [32, 48]. Ziel ist es, ein minimalistisches Image aus Anwendung und Betriebs-
systemdiensten in Form von Libraries zu erzeugen. Dieses Image braucht dann kein
Betriebssystem mehr als Zwischenschicht, da alles enthalten ist um direkt ausgeführt
zu werden. Das Betriebssystem liegt dazu in Form von einzelnen Bibliotheken vor, von
denen die zum Ausführen der Anwendung Benötigten zusammen mit der Anwendung
den Unikernel bilden. Zum Beispiel ein Webserver als Unikernel braucht dann Betriebs-
systemkomponenten wie ein Netzwerkstack.

Der Vorteil ist, man erhält ein Image mit den benötigten Betriebssystemteilen und der
Anwendung, das sehr leichtgewichtig ist und sich direkt auf Hardware oder einem Hyper-
visor ausführen lässt. Der Nachteil ist, dass die Anwendungen dafür häufig extra für den
Unikernel compiliert bzw. sogar speziell angepasst werden müssen. Dies kann in manchen
Fällen auch Anpassungen am Code erfordern oder ein Problem darstellen, wenn verwen-
dete Bibliotheken nichts als Sourcecode vorliegen. Auch unterstützt nicht jeder Unikernel
jede Programmiersprache, so dass bei der Wahl einer passenden Unikernel Lösung viel
mehr zu beachten ist als bei Container oder VMs, die ein vollwertiges Betriebssystem

24

2.3 Literatur / Related Work

als Umgebung bereitstellen. Unikernel bieten somit eine gute Isolation und verursachen
erheblich weniger Overhead als VMs da kein komplettes Betriebssystem, sondern nur die
benötigten Teile ausgeführt werden müssen. Eine bekannte Unikernel-Implementierung
ist zum Beispiel Rumprun das in Kapitel 4 genauer vorgestellt wird.

2.3 Literatur / Related Work

In den vorherigen Abschnitten wurden bereits die Grundlagen und der aktuelle Stand
auf dem diese Arbeit aufbaut aufgezeigt. Im Folgenden soll nun noch ein Blick auf
einige Arbeiten geworfen werden die sich ebenfalls mit dem Thema SDN und lokale
Entscheidungen beschäftigen.

Diese Arbeit folgt dabei auf eine vorhergehende Masterbarbeit zu ”Local Data Plane
Event Handling in Software-defined Networking” [12] die sich ebenfalls mit dem The-
ma lokale Entscheidungen beschäftigt hat. Der Fokus dabei lag aber auf der direkten
Integration in den Code des Switches während in dieser Arbeit nun der Fokus auf dem
Einsatz eines virtualisierten lokalen SDN-Controllers liegt.

Ein weit fortgeschrittenes Projekt das sich mit lokalen Aktionen auf SDN-Switches be-
schäftigt ist das in ”OpenState: Programming Platform-independent Stateful OpenFlow
Applications Inside the Switch” vorgestellte OpenState SDN Projekt [2, 5]. Von Bifulco
et al. wurde unter dem Titel ”Improving SDN with InSPired Switches” außerdem ein
solcher Ansatz vorgestellt der mit der InSP API es erlaubt Operationen im Switch zu
definieren, die Pakete senden bzw. Aktionen wie das Verändern oder Weiterleiten ei-
nes Pakets auslösen [3]. Ein nochmal etwas anderen Ansatz beschreiben Mekky et al. in
”Application-aware data plane processing in SDN” wo Module auf Ebene der User Space
Tables des Switches eingeklinkt werden [34].

Diese Arbeiten unterscheiden sich aber alle dahingehend von dieser Arbeit, dass sie eher
direkte Anpassungen im Switch umsetzen. Für diese Arbeit aber steht die Idee eines
zusätzlichen lokalen und mittels Virtualisierung isolierten SDN-Controllers im Vorder-
grund.

25

3 Konzeption

In diesem Kapitel wird das Konzept, das als Grundlage für die Implementierung und
Evaluation dient, beschrieben. Dazu wird zuerst auf die Motivation und mögliche Lö-
sungsansätze eingegangen, ehe das eigentliche Konzept für den gewählten Ansatz folgt.

3.1 Motivation

Im Folgenden wird die Motivation zum Entwurf des nachfolgenden Konzepts genauer
betrachtet. Dazu werden zuerst die Gründe für den Einsatz lokaler Logik bei Software-
defined Networking genauer dargelegt und Beispiele für praktische Anwendungsfälle vor-
gestellt. Anschließend folgen die Gründe für den Einsatz von Virtualisierung.

3.1.1 Lokale Logik

In herkömmlichen Netzwerken ist jedes Netzwerkgerät wie z. B. ein Switch eine eigenstän-
dige Einheit und muss individuell konfiguriert werden. Außerdem können Entscheidungen
nur auf Basis einer begrenzten lokalen Sicht auf das Netzwerk getroffen werden.

Software-defined Networking, das auf dem Grundprinzip einer Trennung von Control und
Data Plane aufbaut, bietet mit dem Einsatz eines logisch zentralisierten SDN-Controllers
daher, wie in Kapitel 2 beschrieben, viele Vorteile. Ein SDN-Switch als Element der Data
Plane z. B. ist beim Software-defined Networking nur noch für das Weiterleiten von
Paketen nach festen Regeln, die ihm ein logisch zentralisierter SDN-Controller vorgibt,
zuständig. Der Vorteil davon ist eine einfache Konfiguration und Steuerung aller Switches
über einen logisch zentralisierten SDN-Controller, der außerdem eine globale Sicht auf
das Netzwerk hat und von Anwendungen bereitgestellte Informationen nutzen kann um
das Netzwerk optimal auszunutzen.

Da nun aber der Switch keine Entscheidungen mehr trifft, müssen alle Ereignisse im fol-
genden auch Events genannt, die Entscheidungen erfordern, an den logisch zentralisierten
SDN-Controller weitergereicht werden. Dieser kann mit seiner Antwort den Switch dann
passend konfigurieren. Das bedeutet aber eine zusätzliche Latenz durch die Kommu-
nikation zum logisch zentralisierten SDN-Controller und wieder zurück. Viele Events
können aber auch effizient lokal verarbeitet werden, weil z. B. kein globales Wissen nötig
ist. Die Delegation dieser einfach lokal durchführbaren Entscheidungen an den Switch

27

3 Konzeption

bietet somit die Möglichkeit die Effizienz zu steigern, da die Latenz zum logisch zentra-
lisierten SDN-Controller wegfällt und die lokale Auswertung keine Nachteile mitbringt.
Im SDN-Umfeld wird dies meist als „Delegation of control“ bezeichnet, da nach dem
SDN Prinzip der SDN-Controller entscheidet welche Aufgaben er an den SDN-Switch
delegiert [17]. Lokale Entscheidungen laufen dabei nicht immer vollständig unabhängig
vom SDN-Controller, da wichtige Entscheidungen, Statusinformationen oder ähnliches
teilweise dennoch zum SDN-Controller geschickt werden müssen, auch wenn bereits eine
lokale Reaktion darauf ausgeführt wurde.

Im Folgenden sollen deswegen verschiedene Möglichkeiten für die Umsetzung lokaler Ent-
scheidungen aufgezeigt werden. Anschließend soll eine Lösung entwickelt und evaluiert
werden, die die Vorteile eines logisch zentralisierten SDN-Controllers mit denen lokaler
Entscheidungen kombiniert.

Mögliche Vorteile einer SDN-Architektur in der lokale Entscheidungen getroffen werden
können sind z. B.: [vgl. 28, 17]

• Geringere Latenz, da das Warten auf eine Antwort für die an den logisch zentrali-
sierten SDN-Controller geschickte Anfrage entfällt.

• Weniger Traffic Overhead, da weniger Pakete an den logisch zentralisierten SDN-
Controller gesendet bzw. weitergeleitet werden müssen.

• Geringere Last für den logisch zentralisierten SDN-Controller, da weniger Anfragen
von den Switches kommen.

• Erprobte Protokolle aus herkömmlichen Netzwerken können auf die gleiche Art
verwendet werden.

• Bessere Fehlertoleranz und Ausfallsicherheit, da rein lokale Funktionen auch bei
Ausfall des logisch zentralisierten SDN-Controller erhalten bleiben.

• In Switch-Hardware vorhanden Funktionen können besser genutzt werden (Coun-
ter, Timer, ...).

3.1.2 Anwendungsfelder

Im folgenden werden einige Beispiele für Anwendungsszenarien vorgestellt die sich be-
sonders gut für den Einsatz lokaler Kontrolllogik eignen: [vgl. 28, 17]

• MAC Learning / Simple Switch:
Grundfunktion klassischer L2-Switches: Lernen der Kombinationen aus MAC-Adresse
und Port, um Pakete, die am Switch ankommen, gezielt weiterleiten zu können.
Wenn zur Ziel-MAC-Adresse eines ankommenden Pakets der Port bekannt ist wird
nur über diesen Port weitergeleitet, ansonsten findet ein Flooding über alle Ports
statt. Globales Wissen ist dafür nicht nötig. Die Umsetzung kann somit auch ohne
Nachteile lokal erfolgen.

28

3.1 Motivation

• Fast Failover:
Merken alternativer Wege zu anderen Konten. Falls die Verbindung zu einem Kno-
ten zusammenbricht, kann nun direkt der alternative Weg genommen werden. So-
mit muss nicht nach einem neuen Weg gesucht werden bzw. der logisch zentrali-
sierte SDN-Controller nach einem gefragt werden. Pakete können somit erheblich
schneller wieder weitergeleitet werden was dazu führt, dass die Verbindung nicht
so lange unterbrochen ist.

• Threshold Crossing:
Überwachung von Traffic bzw. Performance um den logisch zentralisierten SDN-
Controller bei Problemen bzw. dem erreichen bestimmter Werte zu Informieren.
Auch hier liegen alle Informationen lokal auf dem Switch vor. Alle Zwischenwerte
zum logisch zentralisierten SDN-Controller zusenden würde viel Overhead verur-
sachen, der somit eingespart werden kann.

• Multicasting:
Beim Multicast werden Nachrichten zu einer Gruppe von Teilnehmern geschickt.
Die Verwaltung davon kann dabei lokal erfolgen und muss nicht komplett vom
logisch zentralisierten SDN-Controller durchgeführt werden. Kommen neue Teile-
nehmer dazu oder verlassen welche die Gruppe kann somit einfach lokal das nun
Weiterleiten oder nicht mehr Weiterleiten von Paketen der Gruppe über die davon
betroffen Ausgangsports durch Änderungen der Forwarding-Regeln angepasst wer-
den. Der Weg zum logisch zentralisierten SDN-Controller kann somit eingespart
werden.

• Port Knocking:
Beim Port Knocking werden Pakete in bestimmter Reihenfolge an bestimmte Ports
geschickt. Über eine State Machine wird dabei auf die korrekte Port-Knocking-
Sequenz geprüft, um bei einer korrekten Sequenz eine Aktion, wie z. B. einen Port
in der Firewall für den Client zu öffnen, auszuführen. Das Überprüfen der Sequenz
kann dabei komplett lokal ablaufen und es muss nicht jedes Paket an den logisch
zentralisierten SDN-Controller geschickt werden.

Lokale Entscheidungen sind also immer dann von Vorteil, wenn Aufgaben auszuführen
sind für die lokales Wissen ausreichend ist. Also die Anzahl an nötigen Nachrichten zum
zentraler SDN-Controller reduziert werden kann bzw. zumindest das Warten auf eine
Antwort entfällt.

3.1.3 Virtualisierung

Die Zielplattform für die Integration lokaler Entscheidungen ist ein SDN-fähiger Hard-
ware-Switch, betrieben mit einem dafür optimierten Betriebssystem. Außerdem kommt
meist eine ASIC für sehr schnelles Forwarding zum Einsatz. Je nach Hersteller und der
Offenheit des Systems ist dabei die Installation anderer Betriebssysteme möglich oder
auch nicht. Doch selbst wenn es möglich ist stellt sich noch immer die Frage welche

29

3 Konzeption

Betriebssysteme überhaupt in Frage kommen, da für die volle Funktionalität die Kom-
patibilität mit ASIC sichergestellt sein muss. Es ist somit nicht jeder Switch mit jedem
Betriebssystem kompatibel und daher anzunehmen, dass nicht nur ein offenes Betriebs-
system, sondern auch zum Teil proprietäre oder alternative offene Betriebssysteme auf
den SDN-Switches im Netzwerks im Einsatz sind. Genauso können verschiedene CDPI
Agents darauf zum Einsatz kommen. Außerdem ist es möglich, dass verschiedene Ver-
sionen eines Betriebssystems im Einsatz sind, weil nicht alle Hardware mit der neusten
Version kompatibel ist. Des Weiteren ist es oft so, dass solche Betriebssysteme, um mög-
lichst schlank und effizient zu sein, nicht alle Funktionen besitzen die man erwartet.

Um mit möglichst vielen Zielplattformen zurecht zu kommen wäre es also von großen
Vorteil nicht zu sehr vom Betriebssystem eines speziellen Switches abzuhängen. Des
Weiteren wäre auch von Vorteil, wenn die Integration lokaler Logik möglichst isoliert
und unabhängig vom Rest des Systems ist, um nicht durch unerwünschte Nebeneffekte
die eigentliche Switching Funktionalität zu beeinträchtigen.

Zum erreichen dieser Ziele bzw. Vorteile bietet sich der Einsatz geeigneter Virtualisie-
rungstechniken an. Der Grund ist sie ermöglichen die Isolation der lokalen Kontrolllogik
von Switch. Das bietet den Vorteil dass die einzige Abhängigkeit vom Switch bzw. dessen
Betriebssystem die Verfügbarkeit der Virtualisierungslösung darauf ist. Besonderheiten
der Zielplattform und Abhängigkeiten der Kontrolllogik führen so zu keinen Problem
mehr. Gleichzeitig hilft Virtualisierung die Sicherheit zu verbessern, da die Kontrolllogik
so kein Schaden auf dem Hostsystem anrichten kann. Des weiteren hilft die Virtuali-
sierung die Stabilität des Systems zu verbessern in dem z.B. der Anteil an Ressourcen
wie z. B. der CPU für die Kontrolllogik limitiert wird, so dass zu rechenintensive Funk-
tionen oder Bugs die Forwarding Funktionalität des Switches nicht beeinträchtigen. Ein
anderer Vorteil sind nützliche Managment Funktionen die Virtualisierungslösungen an-
bieten und gerade in Kombination mit der durch die Isolation erreichten relativ guten
Unabhängigkeit von Hostsystem das Deployment erheblich vereinfachen.

Virtualisierung bietet also viele Vorteile und hilft lokale Kontrolllogik möglichst Platt-
formunabhängig und ohne unerwünschte Seiteneffekte auf Betriebssystemen für SDN-
Switches lauffähig zu bekommen. Da Virtualisierung aber auch immer einen gewissen
Overhead bedeutet stellt sich die Frage nach der geeignetsten Virtualisierungstechnolo-
gie. Um eine möglichst geeignete Virtualisierungslösung zu finden, werden deshalb die
verfügbaren Techniken dazu in den folgenden Kapiteln noch genauer untersucht.

3.2 Klassische SDN-Systemarchitektur

Als Grundlage für die folgenden Teile der Arbeit ist es wichtig die wesentlichen Elemente
des Aufbaus eines klassischen SDN-Netzwerks zu definieren. Aus diesen Grund wird
im Folgenden noch etwas genauer der Aufbau einer klassischen SDN-Systemarchitektur
beschrieben.

30

3.2 Klassische SDN-Systemarchitektur

Das Wichtigste dabei sind die verschieden Hardwarebausteine bzw. Geräte, die z. B. über
Kabel oder Funk verbunden sind, und aus denen das Netzwerk besteht. Im Folgenden
werden all diese Geräte einfach abstrakt als Device d einer Menge D von Devices be-
zeichnet. Da diese irgendwie mit dem Netzwerk verbunden sein müssen, z. B. über ein
Kabel, verfügen sie alle über mindestens einen Netzwerkport dp der Menge DP aller
Ports auf Ebene der Data Plane. Während die meisten Geräte in einem Netzwerk wie
z. B. Server, Desktop-PCs, Smartphones und IoT Devices in der Regel nur einen Port
haben verfügen Switches oder Router, die als Verbindungsglieder dienen, in der Regel
über eine größere Anzahl an Ports sowieso einen Management Port cp aus der Menge
CP . Relevant sind an dieser Stelle die SDN-fähigen Switches s der Menge S über die alle
Devices auf Ebene der Data Plane durch eine Netzwerktopologie TDataP lane miteinander
verbunden sind. Diese müssen für den korrekten Betrieb außerdem mit einem logisch
zentralisierten SDN-Controller verbunden sein. Der Einfachheit halber ist in diesem Fall
ein einziger zentraler SDN-Controller (cc) also ein Device mit einer SDN-Controller-
Software c angenommen. Der zentrale SDN-Controller und die SDN-Switches sind dazu
über eine Netzwerktopologie TControlP lane auf Ebene der Control Plane verbunden. Auf
der Seite des Switches geschieht diese Anbindung über den mit der Forwarding Engine
verbunden CDPI Agent a des Switches der über den Management Port eine Verbindung
zum zentralen SDN-Controller aufbaut.

Formal lassen sich die wichtigsten Elemente eines klassischen SDN-Netzwerks somit fol-
gendermaßen beschreiben:

Data Plane Ports: DP := {dp1, ..., dpn}
Control Plane Ports: CP := {cp0, ..., cpm}
Data Plane topology function: TDataP lane ∈ DP → DP

Control Plane topology function: TControlP lane ∈ CP → CP

Devices: D := {d0, d1 = (dp1, ..., dpk), ..., dz = (dpl, ..., dpn)}
SDN Controller Software: C := {c0}
Forwarding Engine and CDPI
Agent: A := {a1, ..., am}

SDN-Switches S := {s1 = (d1, cp1, a1), ..., sm = (dm, cpm, am)}
Central SDN-Controller: cc := (d0, cp0, c0)

Tabelle 3.1: Formaler Aufbau eines klassischen SDN-Netzwerks

Für das Konzept sind dabei vor allem der Aufbau und die Interaktion von den SDN
Switches und dem logisch zentralisierten SDN-Controller relevant. In Abbildung 3.1 ist
deshalb der klassische Aufbau eines SDN-Switch und eines zentralen SDN-Controllers
einschließlich der Verbindungen grafisch dargestellt. Als logisch zentralisierter SDN-
Controller dient dabei meist wie Abgebildet ein Server auf dem eine SDN-Controller
Instanz läuft, denkbar wären aber auch mehre. Dieser zentralisierte oder zumindest lo-
gisch zentralisierte SDN-Controller kommuniziert mit allen SDN-Switches im Netzwerk
über ein CDPI-Protokoll, wie z. B. das OpenFlow-Protokoll, um diese zu steuern und

31

3 Konzeption

Abbildung 3.1: Klassische SDN-Architektur

Informationen über das Netzwerk zu bekommen. Die SDN-Switches von denen es belie-
big viele geben kann, laufen wie schon in Kapitel 2 beschrieben, meist mit einem speziell
angepassten Betriebssystem und verfügen über eine große Anzahl schneller Ports. Meist
verfügen sie für hohe Performance auch über einen ASIC. Diese wird von der Forwar-
ding Engine, in der Abbildung blau hervorgehoben, gesteuert. Über den auf dem Switch
laufen CDPI Agent, meist ein Open Flow Agent, besteht außerdem eine Verbindung der
Forwarding Engine zur Control Plane bzw. dem logisch zentralisierten SDN-Controller.
Außerdem ist der Switch noch auf Ebene der Data Plane mit anderen Devices wie z. B.
Switches oder direkt mit Endgeräten verbunden.

3.3 Umsetzungsvariationen

Für die Integration von lokalen Entscheidungen ist es nötig die klassische SDN-Struktur
anzupassen. Dabei sind verschieden Ansätze denkbar.

Ein sehr entscheidender Punkt dabei ist bereits der Punkt, an dem die Integration loka-
ler Logik eingebaut wird. Die erste Möglichkeit wäre sofern vorhanden direkt im Kernel
Modul bzw. der Kernel Flow Table der Forwarding Engine. Dies ist aber nur schwer
und kompliziert umzusetzen bietet dafür aber eine sehr hohe Performance. Die zweite
Möglichkeit wäre sich im Userspace Modul bzw. in einer User Space Flow Table der
Forwarding Engine einzuhängen. Dies ist bereits leichter umzusetzen und bietet immer
noch sehr gute Performance. Eine weitere Möglichkeit ist, statt die Forwarding Engine
direkt zu verändern beim CDPI Agent anzusetzen. Dies erlaubt einen sehr modularen

32

3.3 Umsetzungsvariationen

Aufbau und erfordert wenig Modifikationen an bestehenden Komponenten was eine ein-
fache Umsetzung erlaubt. Der Nachteil ist eine geringere Performance und zusätzlicher
Aufwand für das Packen und Entpacken von CDPI-Nachrichten.

Im folgenden werde nun einige Möglichkeiten, das Ziel lokaler Entscheidungen umzuset-
zen, genauer beschrieben.

(a) Variante 1: Direkte Modifi-
kation der Forwarding Engine

(b) Variante 2: Integration ei-
nes Interpreter in die Forwar-
ding Engine

(c) Variante 3: Lokaler SDN-
Controller auf dem Switch

Abbildung 3.2: Überblick SDN-Architekturen

3.3.1 Variante 1: Direkte Modifikation der Forwarding Engine

Die einfachste Möglichkeit wäre es, einfach direkt den Sourcecode der Forwarding Engi-
ne um die benötigte Funktionalität zu erweitern. Das liegt daran, dass dort alle Daten
direkt vorliegen und somit einfach auf die bestehenden Flow Tables und Forwarding
Techniken aufgebaut werden kann. Die nötige Logik kann so direkt an geeigneter Stelle
eingebaut werden und bietet den Vorteil, dass sie völlig frei von unnötigen Overhead und
daher auch sehr performant ist. Der Nachteil einen solchen Ansatzes ist, dass es prak-
tisch keine Kapselung gibt und Änderungen immer Änderungen am Forwarding Engine
Code zur Folge haben. Neue lokale Logik kann außerdem nicht zur Laufzeit des Switches
hinzugefügt werden, so dass für jede Änderung der Netzwerkverkehr unterbrochen wer-
den muss. Außerdem besteht das Problem, dass der Code für neue Forwarding Engine
Versionen oder andere Forwarding Engines immer neu angepasst werden muss. Die Tiefe
der Integration ist dabei variabel und es sind verschiedene Varianten denkbar.

a) Integration auf/nach Ebene der Kernel Flow Table

b) Integration auf/nach Ebene der User Space Flow Tables

33

3 Konzeption

Wobei erste Variante wie in der Einleitung dies Abschnitts angemerkt, zwar sehr schnell
wäre aber nur schwer umzusetzen, da die Möglichkeiten im Kernel Modul recht einge-
schränkt sind. Abbildung 3.2 (a) zeigt diese Variante mit einer direkten Modifikation
der Forwarding Engine.

3.3.2 Variante 2: Integration eines Interpreter in die Forwarding Engine

Eine mögliche Optimierung der Variante 1 wäre, wie in Abbildung 3.2 (b) zu sehen,
die lokale Logik nicht komplett hart in den Code der Forwarding Engine zu integrieren.
Stattdessen kann die Forwarding Engine beispielsweise um einen Interpreter für Module
mit lokalen Funktionen erweitert werden. Dazu kann z. B. ein einbaubarer Interpreter
wie Lua [21] verwendet werden. Der Vorteil ist dann, dass für neue Funktionen keine
Änderungen am Code des Switches mehr nötig sind und im Idealfall auch Änderungen
zur Laufzeit möglich sind. Als Nachteil bleibt die mangelnde Kapselung, so dass für jede
neue Version oder andere Forwarding Engine die Modifikationen extra wieder eingebaut
werden müssen. Außerdem erzeugt der Interpreter zusätzlichen Overhead.

3.3.3 Variante 3: Lokaler SDN-Controller auf dem Switch

Eine weitere Lösung für die Integration lokaler Entscheidungen ist es, die Forwarding
Engine selbst gar nicht zu modifizieren, sondern bei der CDPI-Schnittstelle anzusetzen.
Der Vorteil davon ist eine sehr saubere Trennung der lokalen Logik von der Forwarding
Engine, da wie wenn ein zentraler SDN-Controller eingesetzt wird, der CDPI Agent nun
als Schnittstelle dient und die Kommunikation über ein erprobtes CDPI-Protokoll statt-
finden kann. Außerdem bietet es den Vorteil, dass die Lösung von der Forwarding Engine
unabhängig ist, da nur ein kompatibler CDPI Agent existieren muss. Die Software, die
sich mit dem CDPI Agent verbindet, muss deshalb nur einmal geschrieben werden, um
eine große Anzahl von Software- und Hardware-Switches abzudecken. Möglich ist so
ein Ansatz in dem ein SDN-Controller lokal auf dem Switch ausgeführt wird, zu dem
sich der CDPI Agent anstelle des zentralen SDN-Controller verbindet, so dass dieser
seinen Platz einnimmt. Der lokale SDN-Controller wiederum hat die Möglichkeit sich
dann noch zu einem anderen SDN-Controller wie z. B. dem logisch zentralisierten SDN-
Controller zu verbinden, so dass der lokale SDN-Controller einfach dazwischengeschaltet
ist. Abbildung 3.2 (c) zeigt dieses Konzept. Der Nachteil dieser Variante ist, dass mehr
Overhead entsteht, da nun zwei Programme laufen müssen, die zwar lokal aber dennoch
über CDPI-Nachrichten, die erstellt und dann wieder geparst werden müssen, kommu-
nizieren. Da die lokal gesendeten CDPI-Protokoll-Nachrichten also entscheidend für den
Overhead sind, sind auch hier Varianten denkbar.

a) Nutzung eines etablierten CDPI-Protokolls wie z. B. OpenFlow

b) Nutzung eines weniger bekannten oder eigenen leicht gewichtigeren CDPI-Protokoll

c) Einbau einer speziellen direkten Schnittstelle in die Forwarding Engine

34

3.4 Systemmodel

Auch die Art der Kommunikation spielt dabei eine Rolle, da bestehende CDPI Agents
über eine Netzwerkschnittstelle kommunizieren und deshalb meist TCP zum Einsatz
kommt während bei Variante c) auch noch schnellere Techniken zur Interprozesskommu-
nikation einsetzbar sind. Dies würde aber wiederum die Unabhängigkeit von Forwarding
Engine und CDPI Agent beeinträchtigen und auch dort Anpassungen erfordern.

3.3.4 Variante 4: Lokaler virtualisierter SDN-Controller auf dem Switch

Eine weitere Modifikation der Variante 3 ist wie in der Abbildung 3.3 (b) zu sehen den
lokalen SDN-Controller zusätzlich zu virtualisieren also z. B. in einen Container zu ver-
packen. Das bietet den Vorteil, dass dieser noch besser von Betriebssystem des Switches
isoliert ist. Dies hat dann auch Vorteile z. B. beim Deployment und der Interoperabi-
lität. Der Nachteil ist natürlich zusätzlicher Oberhead für die Virtualisierungslösung.
Die Wahl geeigneter Virtualisierungstechniken wie z. B. Container oder Unikernels statt
klassischen VMs ist dabei dafür entscheidend wie viel Performance verloren geht.

3.3.5 Fazit Umsetzungsvarianten

Die hier beschriebenen Varianten bieten verschiedene Vor- und Nachteile. Für diese Ar-
beit liegt dabei im Folgenden der Fokus auf Variante 4 mit einem lokalen und virtualisier-
ten SDN-Controller. Der Grund dafür sind die gute Kapselung und Isolation vom Rest
des Switches, größere Unabhängigkeit vom OS und der Forwarding Engine des Switches,
sowie die klare Architektur bzw. Struktur der Lösung. Für die Integration im Code der
Forwarding Engine existiert sowieso bereits eine vorausgegangene Arbeit[12]. Der einzige
Nachteil dabei ist der Overhead für die Kommunikation über die CDPI-Schnittstelle und
den Container. Hier wird die Evaluation später zeigen wie groß diese Nachteile sind und
ob die bessere Trennung und der klarere Aufbau es wert sind diese in Kauf zu nehmen.

Abbildung 3.3 stellt den klassischen Aufbau dem neuen Konzept gegenüber, so dass
die Unterschiede zum Konzept des lokalen virtualisierten SDN-Controller klar zu sehen
sind. Auf den Switch läuft nun ein lokaler SDN-Controller innerhalb einer Virtualisie-
rungslösung. Abgesehen von der Kommunikation über ein Netzwerkinterface ist dieser
somit vom Rest der Software gut isoliert. Ein zentraler SDN-Controller kann dabei dem
lokalen SDN-Controller weiterhin übergeordnet sein. Es wäre nun aber auch eine di-
rekte SDN-Controller zu SDN-Controller Kommunikation z. B. in einer hierarchischen
Struktur denkbar anstatt oder in Kombination mit einem klassischen zentralen SDN-
Controller.

3.4 Systemmodel

Aufbauend auf das zuvor beschriebene klassische SDN Systemmodell wird im Folgenden
das eigentliche Konzept zur Umsetzung der Variante mit einem lokalen virtualisierten

35

3 Konzeption

(a) Klassische SDN-Architektur (b) Variante 4: Lokaler virtualisierter SDN-
Controller auf dem Switch

Abbildung 3.3: Vergleich SDN-Architekturen

SDN-Controller für lokale Entscheidungen aus dem vorherigen Abschnitt vorgestellt. Die
Idee dabei ist zur Isolation eine, z. B. mit einem Container, virtualisierte lokale SDN-
Controller-Instanz auf dem Switch auszuführen, wie in Abbildung 3.3 (b) zu sehen ist.
Das Ziel davon ist es die Vorteile einer bereits lokalen Verarbeitung bestimmter Events
zu nutzen, um eine höhere Effizienz zu erreichen.

3.4.1 Systemarchitektur mit lokalem SDN-Controller

Die klassische SDN Variante wurde bereits im Abschnitt klassische SDN-Systemarchitektur
beschrieben. Mit der Integration von lokalen SDN-Controllern ergeben sich aber einige
Änderungen. Im Folgenden ist deswegen die Struktur nochmal grob unter Einbeziehung
des lokalen SDN-Controller-Ansatzes formal definiert.

Der Unterschied zur klassischen SDN-Systemarchitektur ist also, dass auf jedem SDN-
Switch s nun auch ein SDN-Controller c existiert. Dadurch ist nicht mehr zwingend
nötig, dass der zentrale SDN-Controller cc als eigenständige Einheit existiert. Es wäre
genauso denkbar, dass die lokalen SDN-Controller direkt miteinander kommunizieren.
Dazu könnte z. B. eine hierarchische Struktur, wie ein Baum, mit den SDN-Controllern
der Switches erschaffen werden.

Für die Umsetzung der virtualisierten lokalen SDN-Controller Variante ist es also nötig
einen SDN-Controller auf den SDN-Switches auszuführen. Die Hauptaufgabe eines SDN-

36

3.4 Systemmodel

Data Plane Ports: DP := {dp1, ..., dpn}
Control Plane Ports: CP := {cp0, ..., cpm}
Data Plane topology function: TDataP lane ∈ DP → DP

Control Plane topology function: TControlP lane ∈ CP → CP

Devices: D := {d0, d1 = (dp1, ..., dpk), ..., dz = (dpl, ..., dpn)}
(Virtualized) SDN Controller
Software: C := {c0, ..., cm}

Forwarding Engine and CDPI
Agent: A := {a1, ..., am}

SDN-Switches S := {s1 = (d1, cp1, a1, c1), ..., sm = (dm, cpm, am, cm)}
Optional central SDN-Controller: cc := (d0, cp0, c0)

Tabelle 3.2: Formaler Aufbau eines SDN-Netzwerks mit lokalem SDN-Controller-Ansatz

Switches ist es dabei weiterhin Pakete, die über die Ports auf Data-Plane-Ebene eingehen,
über andere Ports wieder weiterzuleiten. Klassische Switches machen das lokal nach
einfachen Regeln. SDN-Switches hingegen leiten nach vom logisch zentralisierten SDN-
Controller vorgegeben Regeln weiter. Dies führt aber zu höheren Latenzen, weshalb für
diesen Ansatz ein lokaler SDN-Controller, neben Forwarding Engine und CDPI Agent
a, auf dem Switch dazu dient Entscheidungen, die lokal durchführbar sind, auch lokal
und ohne die Latenz zum logisch zentralisierten SDN-Controller zu verarbeiten.

Der SDN-Switch ist dabei weiterhin über den Managementnetzwerkport cp mit der Con-
trol Plane verbunden und verfügt über eine größere Anzahl an Ports dp auf Data-Plane-
Ebene. Die Forwarding Engine mit dazugehörigem CDPI Agent a ist dabei aber nicht
mehr wie bei klassischen Ansatz über den CDPI Agent direkt mit dem logisch zentrali-
sierten SDN-Controller verbunden sondern mit dem lokalen SDN-Controller. Der Grund
ist, gut lokal entscheidbare Probleme können so nun sofort vom lokalen SDN-Controller
gelöst werden. Nicht lokal durchführbare Kontrollentscheidungen hingegen werden ein-
fach vom lokalen SDN-Controller, der nun die Aufgabe der Verbindung zum logisch
zentralisierten SDN-Controller übernimmt, zum logisch zentralisierten SDN-Controller
weitergeleitet.

Auf dem SDN-Switch muss also ein lokaler SDN-Controller laufen. Dazu muss als Grund-
lage auf dem Switch natürlich erst einmal ein Betriebssystem laufen. Da darauf auch der
lokale SDN-Controller läuft, ist dabei ein halbwegs offenes System nötig, das es erlaubt
einen SDN-Controller darauf auszuführen. Hier kommt der Vorteil des Einsatzes einer
Virtualisierungslösung zum Tragen, da diese den SDN-Controller isoliert und vom Rest
des Systems weitgehend unabhängig macht. Für das Weiterleiten der Daten existiert da-
bei auch meist eine ASIC, die über eine dazu gehörende API angesprochen werden kann.
Je nach Switch bestehen auch große Unterschiede bei der Leistungsfähigkeit des Swit-
ches in Bezug auf Speicher, Rechenpower und ASIC. Alle auf dem Switch ausgeführten
Anwendungen sollten deswegen möglichst leichtgewichtig sein. Das ist auch vor allem für
den lokalen SDN-Controller relevant, da Switch-Hardware meist nicht so leistungsfähig

37

3 Konzeption

wie ein Server ist, auf dem sonst ein klassischer SDN-Controller läuft.

Da nun auf jedem Switch ein SDN-Controller läuft wäre an dieser Stelle wie schon zuvor
angemerkt auch eine Abweichung vom Einsatz eines extra zentralen SDN-Controllers
denkbar, weshalb dieser in der formalen Definition auch als optional gekennzeichnet ist.
Es wäre z. B. genauso möglich all diese SDN-Controller in einer Hierarchie anzuordnen
und nicht lokal verarbeitete Probleme dann immer zum nächst höheren Switch zu es-
kalieren. Dies ergibt zwar eine komplexere Struktur und manche Nachrichten müssen
eventuell mehre Stufen durchlaufen ehe sie verarbeitet werden, verteilt aber dafür die
Last im Netzwerk dafür besser. Das kann gerade in großen Netzwerken, wo eine größere
Anzahl an Switches an einem einzigen zentraleren SDN-Controller hängen, von Vorteil
sein.

3.4.2 Kommunikation

Für die Umsetzung relevant ist dabei vor allem auch der Ansatz, den eigentlichen Switch
bzw. die Forwarding Engine und den CDPI Agent mit dem lokalen SDN-Controller zu
verbinden bzw. allgemein den lokalen SDN-Controller zu integrieren.

Kommunikation zwischen Data und Control Plane

Für die Kommunikation zwischen dem klassischen SDN-Switch-Teil und dem neuen lo-
kalen SDN-Controller stehen verschiedene Möglichkeiten zur Verfügung.

Die nötige Kommunikation zwischen CDPI Agent und lokalem SDN-Controller kann
z. B. klassisch über CDPI-Protokolle wie OpenFlow stattfinden. Im Idealfall ist dabei
dann für den CDPI Agent kein wesentlicher Unterschied zum herkömmlichen Software-
defined Networking mit nur einem zentralen SDN-Controller zu erkennen. Dies ist mög-
lich, da nur die Verbindung zum logisch zentralisierten SDN-Controller zu einer Verbin-
dung zum lokalen SDN-Controller, geändert wird. Somit sind auch keine Anpassungen
am bestehenden Code notwendig.

Änderungen können aber nötig werden, sollte der Overhead beim Einsatz von erprob-
ten und komplexeren CDPI-Protokollen zu groß sein und wie bei Variante 3 b) und
c) im vorherigen Abschnitt beschrieben, ein eigenes Protokoll oder sogar eine direkte
Interprozesskommunikation gewünscht sein. Letzteres ist mit dem Einsatz von Virtuali-
sierungstechnologie aber vermutlich nur schwer bzw. nicht kombinierbar und würde auch
wieder die Idee der Isolation zum Teil verletzen.

Es bietet sich somit der Einsatz eines klassischen CDPI-Protokolls als Schnittstelle an.
Vor allem da es Anpassungen an erprobten Komponenten einspart und es ermöglicht
auf bewährte Protokolle zu setzen. Alternativen wie komplett eigene Protokolle oder gar
eine direkte Schnittstelle machen daher nur Sinn, wenn sie für die Performance nötig

38

3.4 Systemmodel

sind. Im Kapitel 5 findet deswegen eine Analyse der Performance im Zusammenhang
mit OpenFlow statt, um zu sehen wie viel der Einsatz davon an Performance kostet.

SDN-Controller zu SDN-Controller Kommunikation

Die Kommunikation auf Control-Plane-Ebene zu einem übergeordneten SDN-Controller
kann ebenfalls weiter über ein CDPI-Protokoll wie OpenFlow stattfinden. Das hat den
Vorteil, dass ein Switch mit lokalem SDN-Controller nach außen hin zu einem klas-
sischen SDN-Netzwerk kompatibel bleibt und z. B. lokale Logik eben vom zentralen
SDN-Controller über spezielle Nachrichten aktiviert und deaktiviert werden kann. Ohne
Aktivierung der Features würde der lokale SDN-Controller dann z. B. die Pakete nur
durchreichen. Aktiviert der übergeordnete SDN-Controller über spezielle Nachrichten
aber lokale Features kann der lokale SDN-Controller seine Vorteile nutzen. Es wäre aber
genauso denkbar für solche Switches ein völlig neues Protokoll zu nutzen, das genau auf
diesen Anwendungsfall zugeschnitten ist.

3.4.3 Funktionsweise

Im Folgenden wird für beide Kommunikationswege ein klassisches CDPI-Protokoll wie
OpenFlow angenommen. Für ein besseres Verständnis der Funktionsweise und Abläufe,
vor allem in Bezug auf den lokalen SDN-Controller, wird diese nun genauer vorgestellt.
Abbildung 3.4 zeigt dazu wie das Zusammenspiel zwischen lokalem SDN-Controller und
Switch dann aussieht.

Die Forwarding Engine mit dem CDPI Agent über den sie gesteuert wird ist dabei wie
bei klassischen SDN-Switches für alle Aktivitäten auf Ebene der Data Plane zustän-
dig. Neu ist aber der lokale SDN-Controller der ebenfalls auf dem Betriebssystem des
Switches läuft. Jegliche Kommunikation zwischen Control Plane und CDPI Agent läuft
nun über den lokalen SDN-Controller der für den CDPI Agent den einzigen Zugangs-
punkt zur Control Plane darstellt. Die große Änderung gegenüber dem klassischen SDN
ist also, dass es einen SDN-Controller (untere Hälfte in Abbildung 3.4) gibt der auf
dem Switch läuft und der CDPI Agent sich zu diesem, statt dem logisch zentralisierten
SDN-Controller, verbindet.

Der Ablauf, wenn ein Paket auf Ebene der Data Plane an einem Port ankommt ist
dann wie folgt und auch gut auf Abbildung 3.4 zu sehen. Als erstes findet ein Matching
auf bestehende Regeln mit der ASIC statt, die genau für diese Aufgabe optimiert, am
leichtesten mit großen Traffic Mengen umgehen kann. In der ASIC findet dazu ein sehr
schneller und effizienter Abgleich auf Hardwarebasis mit den Flow Regeln der ASIC statt,
wie bereits in Kapitel 2 beschrieben wurde. Ist bereits hier ein Weiterleiten möglich ist
dies ideal. Die Anzahl an Einträgen in der Flow Table der ASIC ist aber begrenzt und
manche komplexere Aktionen können dort auch nicht direkt verarbeitet werden.

39

3 Konzeption

Abbildung 3.4: Abläufe und Interaktionen auf dem SDN-Switch

Ist kein direktes Forwarding mit der ASIC möglich, weil für den Flow keine Regel in der
ASIC existiert, findet das weitere Matching auf Softwareebene der Forwarding Engine
statt. Das Matching mit Kernel und User Space Flow Tables ist zwar langsamer als mit
der ASIC doch dafür sind größere Flow Tables möglich. Im nächsten Schritt werden dafür
dann zuerst die fürs Flow Table Matching benötigte Informationen ausgelesen. Dann
findet ein Lookup in der ersten Flow Table statt. Bei einem Match werden die damit
verbundenen Aktionen ausführt. Gibt es kein Match wird überprüft, ob es als Table Miss
Entry eine auszuführende Aktion gibt. Falls auch das nicht der Fall ist wird das Paket
verworfen. Falls das Paket nicht verworfen wurde werden die damit verbunden Aktionen
ausgeführt. Das kann ein Aktualisieren von Statusdaten wie z. B. ein Paket Counter
sein und/oder das Ausführen einer damit verbundenen Aktion wie z. B. das Verändern
der Header des Pakets. Anschließend kann abhängig von der Action ein Match in einer
weiteren Tabelle gesucht werden, das Paket über einen oder mehrere Ports weitergeleitet
werden oder in eine CDPI-Nachricht verpackt zum SDN-Controller geschickt werden. In
diesem neuen Modell wird diese CDPI-Nachricht dann innerhalb des Switch verschickt
was sehr schnell und unabhängig von der Latenz zum zentralen SDN-Controller ist.

Kommt ein vom CDPI Agent geschicktes Paket am lokalen SDN-Controller an, wird
dieses entpackt und geprüft ob es lokal verarbeitet werden kann. Ist das der Fall wird
es lokal verarbeitet oder andernfalls an den logisch zentralisierten bzw. übergeordneten
SDN-Controller weitergeleitet. Verarbeitet der SDN-Controller ein Paket lokal muss er
sofern nötig anschließend den Switch also die Forwading Engine, in dem er eine Nachricht
an den CDPI Agent sendet, aktualisieren. War die Nachricht vom CDPI Agent und wurde

40

3.4 Systemmodel

lokal verarbeitet kann es außerdem auch noch nötig sein den logisch zentralisierteren
SDN-Controller mit einer Nachricht zu informieren. In diesem Fall würde also auch
noch eine Nachricht an den logisch zentralisierten bzw. überordneten SDN-Controller
geschickt.

Kommt ein Paket auf Ebene der Control Plane an wird es entpackt und verarbeitet. So-
fern nötig kann dann der Switch bzw. die Forwading Engine wieder über den CDPI Agent
informiert werden und/oder eine Antwortnachricht zum SDN-Controller geschickt wer-
den. Die nötigen Aktionen hängen dabei davon ab ob der übergeordnete SDN-Controller
nur Informationen abruft, von sich aus mit Anweisungen ins Weiterleiteverhalten ein-
greift oder es eine Antwort auf eine eigene Anfrage ist. Interaktion mit dem zentralen
oder übergeordneten SDN-Controller ist dabei vor allem dann nötig wenn eine Entschei-
dung nicht lokal verarbeitet werden kann, Statusinformation verarbeitet werden sollen
oder mit globaler Sicht das Netzwerk optimiert wird.

3.4.4 Modifikation, Konfiguration und Erweiterbarkeit

Ein wichtiger Punkt ist auch die Modifikation, Konfiguration und Erweiterbarkeit. Der
gewählte Ansatz mit einem lokalen virtualisierten SDN-Controller bietet dafür verschie-
dene Möglichkeiten. Ein großer Vorteil ist dabei, dass die Kommunikation über eine klare
Schnittstelle wie z. B. OpenFlow als CDPI-Protokoll stattfindet. Auf dem Switch wird
also nur eine Virtualisierungslösung ausgeführt und über das CDPI-Protokoll mit dem
darin laufenden SDN-Controller kommuniziert. Das führt zu einer nur losen und klar
definierten Verbindung mit dem SDN-Controller.

Änderungen am SDN-Controller oder der Umstieg auf einen anderen SDN-Controller
können also leicht erfolgen. Es muss nur der Container oder Unikernel auf dem Switch
ersetzt und neu gestartet werden, was im Prinzip auch automatisiert werden kann. Ge-
genüber einer Lösung ohne den Einsatz von Virtualisierung besteht aber der Overhead
des Starten der Virtualisierungslösung. Von Vorteil ist dafür, dass sich aber nichts an
den Abhängigkeiten gegenüber dem Hostsystem ändert, da der SDN-Controller gut iso-
liert ist. Dieser Vorteil überwiegt vor allem dann, wenn nicht alle Switches im Netzwerk
mit dem gleichen Betriebssystem laufen und der SDN-Controller sonst keine einheitliche
Umgebung in der er läuft hätte. Außerdem wäre es denkbar, da die alte und neue Version
ja durch die Virtualisierungslösung isoliert sind, die neue Version erst zu starten an die-
se zu übergeben und anschließend die alte zu beenden. Der Nachteil eines langsameren
neustarten kann somit vermieden werden und sogar ein Vorteil daraus werden.

Es sind aber nicht nur Updates die den ganzen SDN-Controller ersetzen denkbar. Wie
auch bei einem nicht virtualisierten lokalen SDN-Controller kann dieser Befehle von au-
ßen erhalten, so dass dieser Punkt unabhängig von Einsatz von Virtualisierungstechnik
ist. Dazu sind spezielle Nachrichten nötig die der SDN-Controller versteht. Bei den meis-
ten CDPI-Protokollen sind eigene Protokollerweiterungen aber sogar schon vorgesehen
z. B. kann wenn OpenFlow eingesetzt wird über Vendor- bzw. Experimenter-Nachrichten

41

3 Konzeption

der Austausch von Informationen erfolgen für die im Protokoll noch keine eigenen Nach-
richten Typen vorgesehen sind. Es wäre somit ohne Probleme möglich, wenn die SDN-
Controller hierarchisch strukturiert sind oder mit einem logisch zentralisierten SDN-
Controller kommunizieren auf diese Art Informationen auszutauschen. So kann z. B. von
zentraler Stelle bestimmt werden was lokal verarbeitet werden soll und was nicht oder
die Möglichkeit gegeben werden von zentraler Stelle Einfluss darauf zu nehmen wie der
lokale SDN-Controller seine Entscheidungen fällt. Die Möglichkeiten dabei sind vielfältig
und vermutlich stark vom geplanten Anwendungsfall abhängig.

Es ist alles ohne Weiteres möglich auch im Betrieb über spezielle Nachrichten Module mit
lokaler Logik zu aktivieren oder zu deaktivieren. Außerdem ist auch der Aufwand für das
Verteilen neuer SDN-Controller Versionen aufgrund der Virtualisierung nur sehr gering.
Es muss nur sichergestellt werden, dass bei Veränderungen zurück in einen Standard
Status gesprungen wird oder der aktuelle korrekt übergeben wird um nicht in die Gefahr
inkonsistenter Zustände zu laufen.

3.4.5 Life Cycle und Konsistenz

Um den SDN-Controller problemlos zu integrieren sollte die Ausführung des virtualisier-
ten SDN-Controllers automatisch nach dem Starten des Betriebssystems auf dem Switch
erfolgen. Das kann z. B. über ein Skript geschehen das den SDN-Controller bzw. dessen
Container oder Unikernel startet. Voraussetzung ist natürlich, dass jeder Switch initial
einmal für den Einsatz der Virtualisierungslösung konfiguriert wurde also z. B. LXC,
Docker oder QEMU/KVM drauf eingereicht wurde.

Sobald der lokale SDN-Controller sich dann mit dem CDPI Agent und seinem überge-
ordneten SDN-Controller verbunden hat ist der Switch einsatzbereit. Der einzige Un-
terschied gegenüber dem klassischen Ansatz ist der dazwischen geschaltete lokale SDN-
Controller. Für die lokalen Features bietet sich dabei an, um damit verbundene Pro-
bleme und Inkonsistenzen zu vermeiden, dass diese standardmäßig deaktiviert sind. Um
diese zu nutzen muss somit der lokale SDN-Controller sich erst zum übergeordneten
SDN-Controller verbinden, damit dieser die lokalen Features im lokalen SDN-Controller
aktivieren kann.

Neue Versionen könnten dabei immer leicht vor dem Start abgerufen und aktiviert wer-
den. Es wäre aber auch wie zuvor beschrieben theoretisch möglich neue SDN-Controller
Versionen zur Laufzeit einzuspielen. Dabei müsste aber eine korrekte Übergabe des ak-
tuellen Status oder ein Zurücksetzen in einen konsistenten Ausgangsstatus erfolgen.

Beim Beenden sollte der CDPI Agent die Verbindung als erster beenden, so dass der
SDN-Controller noch in der Lage ist diese Information an einen übergeordneten SDN-
Controller weiterzugeben. Die Abhängigkeiten sind aber durch die, Protokoll basierte,
Trennung an dieser Stelle sehr gering.

42

3.5 Anforderungen an Umsetzung und Evaluation

Probleme mit verschiedenen Versionen des lokalen SDN-Controllers im Netzwerk die
durchaus auftreten könnten, wenn man die Switches nach und nach auf eine neue lokale
SDN-Controller Version aktualisiert, können dabei z. B. damit umgangen werden in dem
der logisch zentralisierte oder in der Hierarchie höchste SDN-Controller neue Funktionen
erst dann über Nachrichten aktiviert, wenn alle lokalen SDN-Controller damit zurecht-
kommen. Somit arbeitet alles wie bereits erprobt bis alle lokale SDN-Controller bereit
sind.

Fällt der übergeordnete zentrale SDN-Controller aus steht erstmal, wie im klassischen
SDN-Netzwerk, die korrekte Funktionalität nicht mehr zu Verfügung. Da nun aber auf
jeden Switch ein SDN-Controller läuft der Events lokal verarbeiten kann, kann man
zur Verbesserung der Fehlertoleranz bzw. Ausfallsicherheit in einen eingeschränkten Be-
triebsmodus wechseln. Dieser würde zumindest die Grundfunktionalität mit Hilfe lokaler
Logik erhalten was die Verfügbarkeit des Netzwerks verbessert. Sind die SDN-Controller
was bei diesem Ansatz ja möglich ist, aber untereinander z. B. hierarchisch verbunden,
kann auch versucht werden nun zu einem anderen SDN-Controller zu verbinden um den
Ausgefallenen bis er wieder funktioniert zu umgehen.

3.5 Anforderungen an Umsetzung und Evaluation

Für eine bestmögliche Umsetzung des nun detailliert beschriebenen Ansatzes eines loka-
len und virtualisierten SDN-Controllers ist neben der eigentlichen Umsetzung auch eine
Evaluation und passende Auswahl eingesetzter Technologien nötig, weshalb im Folgen-
den die Anforderungen an eine Umsetzung zusammengefasst werden.

Offene Weiterleitungshardware (Open Switching Hardware) bildet die Grundlage für die
Umsetzung des lokalen SDN-Controller-Konzepts dieser Arbeit, da ein möglichst offe-
nes System das erweiterbar ist für diesen Ansatz nötig ist. Dazu gehört natürlich auch
ein Netzwerkbetriebssystem das darauf läuft und offen genug ist um neben seiner ei-
gentlichen Paket Switching Aufgabe einen virtualisierten SDN-Controller auszuführen.
Da die Rechenleistung und der Speicher auf der Hardware des Switch begrenzt sind ist
es dabei wichtig, dass sowohl Virtualisierungstechnologie als auch SDN-Controller mög-
lichst leichtgewichtig sind. Auch die Kommunikation zwischen lokalem SDN-Controller
und Switch sollte möglichst effizient sein. OpenFlow ist dabei der Standard, doch das
Verpacken und Entpacken der OpenFlow Nachrichten erzeugt Overhead, der ebenfalls
evaluiert werden sollte um sicherzustellen, dass eine Umsetzung damit sinnvoll mög-
lich ist oder ob andere Lösungen zu bevorzugen sind. Damit ergeben sich die folgenden
Arbeitsschritte:

• Umsetzung des Konzepts mit geeigneten Technologien

– Evaluation der/des OpenFlow Message Kosten/Overhead, um Eignung für
den geplanten Anwendungsfall sicherzustellen bzw. Alternativen suchen zu
können.

43

3 Konzeption

– Evaluation geeigneter SDN-Controller Software um eine leichtgewichtige Lö-
sung die alle nötigen Funktionen bietet und auf dem Switch eingesetzt werden
kann zu finden.

– Evaluation geeigneter Virtualisierungstechnologie um einen leichtgewichtigen
Container oder Unikernel zu finden der sich zum virtualisieren des lokalen
SDN-Controller eignet.

– Wahl eines geeigneten Netzwerkbetriebssystem

• Implementierung von Anwendungsfällen

• Evaluation des gesamten Konzepts bzw. der Anwendungsfälle

Zur Umsetzung ist also ein genaues Betrachten der eingesetzten Technologien nötig ehe
darauf aufbauend die eigentliche Umsetzung und Evaluation des Konzepts im Ganzen
stattfinden kann. Während die einzelnen Evaluationen der verschiedenen Technologien
dabei vor allem Teilaspekte untersuchen, ist über die Anwendungsszenarien die Evalua-
tion des gesamten Aufbaus geplant. Dazu wird der Ansatz eines lokalen SDN-Controllers
zusammen mit einigen, der im Abschnitt Anwendungsfelder beschrieben, Szenarien im
Folgenden umgesetzt, um Anwendungsszenarios für die dann folgende Evaluation zu
haben.

44

4 Umsetzung

Im vorangegangen Teil dieser Arbeit wurde die Idee für eine SDN-Architektur, in der
auch lokale Entscheidungen auf Switches stattfinden, vorgestellt und ein Konzept für die
Umsetzung erstellt. Die wesentliche Idee des dabei entstandenen Konzepts ist der Einsatz
eines lokalen SDN-Controllers auf dem Switch der es ermöglicht lokale Entscheidungen
zu treffen. Außerdem wurde zur Isolation des SDN-Controllers vom restlichen System
der Einsatz von Virtualisierungstechniken festgelegt. Im Folgenden wird nun zuerst die
vorgegebene Hardware- und Softwareumgebung beschrieben auf der die Umsetzung statt-
findet. Anschließend wird die eigentliche Umsetzung dieses Konzepts die als Grundlage
für die Evaluation im darauffolgenden Kapitel dient beschrieben. Dazu wird auf die ver-
schiedenen dafür in Frage kommenden existierenden SDN-Controller eingegangen ehe
die verschiedenen Virtualisierungsmöglichkeiten beschrieben werden. Anschließend folgt
der Teil zur eigentlichen Umsetzung und Implementierung der Anwendungsszenarien für
die Evaluation.

4.1 Hardware- und Softwareumgebung

Im Folgenden wird die bei der Umsetzung und Evaluation genutzte Hardware- und Soft-
wareumgebung kurz vorgestellt. Damit ist die Evaluationen leichter nachzuvollziehen
und Einschränkungen und Besonderheiten von Anfang an klar definiert.

Das SDN Hardware Testbed besteht aus einem Switch (vssdn2-sw) und zwei Endsyste-
men (vssdn2-1 und vssdn2-2). Der Switch vom Modell ”Edgecore AS5712-54X” [10] ist
dabei der wichtigste Teil und wurde mit dem proprietären PicOS und den freien Open
Network Linux (ONL) genutzt. Dieser verfügt über 48x 10GbE Ports für die Verbin-
dungen auf Data-Plane-Ebene und ist über einen 1GbE Port mit dem Managementnetz-
werk auf Control-Plane-Ebene verbunden. Als CPU ist eine Intel Atom C2538 CPU mit
4x 2.40 GHz verbaut und es stehen 8 GB DDR3 RAM zur Verfügung. Als Switching
Hardware dient ein Broadcom BCM56854 Trident II Chip mit 720Gbps. Sowohl das
eingesetzte PicOS als auch ONL kommen mit einsatzbereiter Forwarding Engine und
OpenFlow Agent. Zur Ausführung von Programmen zur Evaluation wurde außerdem
auf allen Betriebssystemen Python3 installiert. Zur Virtualisierung standen je nach Be-
triebssystem verscheide Virtualisierungslösungen zur Verfügung, weitere Informationen
folgen auch noch im Abschnitt 4.3 dieses Kapitels.

45

4 Umsetzung

• PicOS[23]:
Das prioritäre PicOS wird von Pica8 entwickelt und basiert auf einer um viele spe-
ziellen Netzwerkfunktionen erweiterte Debian Version und nutzt XORP und Open
vSwitch zur Realisierung seiner Funktionen. Außerdem verfügt es über eine Hard-
wareabstraktionsschicht, die es erlaubt ASICs verschiedener Hersteller zu nutzen.
Auf der Testhardware kam Version 2.7.2 von PicOS zum Einsatz. Containertechno-
logie wird von PicOS bisher nicht unterstützt, dafür steht KVM-Unterstützung zur
Verfügung. Zur Virtualisierung stand daher auf PicOS nur QEMU/KVM das zur
Ausführung des Rumprun Unikernel verwendet wurde zur Verfügung. Als Open-
Flow Agent wird bei PicOS wird eine angepasste Open vSwitch Installation ge-
nutzt die genau wie das Open vSwitch Projekt selbst gut dokumentiert ist und
sich schnell und einfach verwenden lässt [49, 23]. Diese nutzt anstelle eines klas-
sischen Open vSwitch Kernelmoduls eine spezielle Version von Pica8 die über die
Hardwareabstraktionsschicht die ASIC ansteuert.

• Open Network Linux (ONL)[29]:
Das freie unter der Eclipse Public License Version 1.0 veröffentliche Open Network
Linux basiert auf Debian und erweitert diese um Switching Features für den Be-
trieb auf offener Weiterleitungshardware. Open Network Linux kam dabei in zwei
Versionen zum Einsatz. Einmal in seiner Debian 7 basierten Version mit Kernel 3.2
im Folgenden als ONL V1 bezeichnet, da dies die einzige ONL Version mit funktio-
nierender ASIC auf der Testhardware ist. Außerdem wurde ONL in seiner Debian
8 basierten Version mit Kernel 3.18 genutzt im Folgenden als ONL V2 bezeichnet,
da nur auf dieser neueren Version Docker als Containerlösung eingesetzt werden
kann. Zur Virtualisierung standen auf ONL V1 QEMU und LXC zur Verfügung
und mit ONL V2 wurde Docker genutzt. ONL verwendet den Indigo OpenFlow
Agent und basiert auf der OpenFlow Data Plane Abstraction (OFD-PA) [9] von
Broadcom die etwas eingeschränkter ist und auch nicht ganz so gut dokumentiert
wie z. B. Open vSwitch.

Abbildung 4.1 zeigt eine Skizze des SDN Hardware Testbed. Vom Switch wurden dabei
die Ports 1-4, die mit dem ersten Endsystem verbunden sind, die Ports 5-8, die mit dem
zweiten Endsystem verbunden sind, und die Ports 18-21, die für zwei Schleifen genutzt
sind, verwendet. Der Zugriff auf die Geräte läuft dabei über das Frontend (vssdn2-fe),
das wie alle anderen Geräte am Managementnetzwerk hängt. Die Endsysteme (vssdn2-1
und vssdn2-2) laufen mit Cent OS. Unter CentOS standen QEMU/KVM und LXC zur
Virtualisierung zur Verfügung.

Außerdem wurde für Vorabtests und Entwicklung Mininet [45] eingesetzt, das es einfach
und komfortabel ermöglicht lokal in einem simulierten SDN-Netzwerk zu experimentie-
ren. Das spart in vielen Fällen den erheblich größeren Aufwand für das Deployment auf
der reale Hardware. Außerdem konnten so Versuche in einer sehr flexiblen Umgebung
mit allen Features gemacht werden ehe für Einschränkungen auf den Zielplattformen
spezielle Anpassungen gemacht wurden.

46

4.2 Vergleich und Auswahl von SDN-Controllern

Abbildung 4.1: SDN Hardware Testbed

4.2 Vergleich und Auswahl von SDN-Controllern

SDN-Controller oder oft auch SDN-Controller-Plattformen wurden bereits im Kapitel
2 zu den Grundlagen vorgestellt und steuern die Router und Switches die zu ihrem
Netzwerk gehören. Sie sind somit für den Fluss der Daten im Netzwerk zuständig. Sie
sind meist leicht um Funktionen bzw. Module erweiterbar und bieten Schnittstellen zur
Anwendungsebene. Am häufigsten ist dabei eine API in der Implementierungssprache in
Kombination mit einer REST Schnittelle vorzufinden.

In den letzten Jahren ist eine sehr große Anzahl an verschieden SDN-Controllern entwi-
ckelt worden. Inzwischen gibt es deswegen eine gewaltige Auswahl an SDN-Controllern
für die verschiedensten Einsatzzwecke. Einige Beispiele dafür sind:

Beacon, DISCO, Fleet, Floodlight, Flowvisor, Helios, HP VAN SDN, HyperFlow, IRIS, Ja-
xon, Kandoo, Maestro, Meridian, MobileFlow, MUL, NodeFlow, NOX, NOX-MT, NVP SDN-
Controller, OESS, Onix, ONOS, OpenContrail, OpenDaylight, ovs-SDN-Controller, PANE, POX,
ProgrammableFlow, Rosemary, RouteFlow, Ryu, SMaRtLight, SNAC, Trema, usw. [vgl. 28]

Einige dieser SDN-Controller sind dabei allgemein als SDN-Controller geeignet, andere
hingegen spezialisieren sich auf bestimme Einsatzgebiete. Sie sind in einer Vielzahl von

47

4 Umsetzung

Programmiersprachen geschrieben. Am häufigsten aber in C/C++, Python oder Java.
Für die Nutzung stehen aber oft mehrere Programmiersprachen zur Verfügung, da einige
SDN-Controller auch Schnittstellen zu anderen Programmiersprachen mitliefern. Auch
im Bereich aktiver Weiterentwicklung unterscheiden sich die SDN-Controller. Während
einige SDN-Controller stetig weiterentwickelt werden gibt es auch viele die einmal ent-
wickelt wurden und anschließend keine Updates mehr erhalten haben.

Für den produktiven Einsatz oder im speziellen für die Umsetzung dieses Konzepts,
sind viele der existierenden SDN-Controller allerdings nur bedingt geeignet. Der Grund
dafür ist, dass viele der SDN-Controller nicht mehr aktiv weiterentwickelt werden, kaum
dokumentiert sind, noch viel zu unausgereift sind oder auf sehr spezielle Anwendungsfälle
zugeschnitten sind [27, 44].

Welcher SDN-Controller am besten geeignet ist hängt dabei sehr stark von den indivi-
duellen Anforderungen ab. Auch mit welcher Programmiersprache der SDN-Controller
gesteuert wird kann dabei entscheidend sein wenn eine Anbindung oder Nutzung beste-
henden Codes nötig ist. Die große Anzahl von existierenden SDN-Controller sorgt dabei
für gute Chancen einen zu den Anforderungen passenden zu finden.

Eine Übersicht über bekannte SDN-Controller die für die verschiedensten Einsatzgebiete
geeignet sind zeigt Tabelle 4.1. Große und bekannte SDN-Controller die auch noch aktiv
weiterentwickelt werden und über eine umfangreiche Dokumentation verfügen sind z. B.
Ryu (Python) [8], Floodlight (Java) [13] und Trema (Ruby/C) [47]. Alle drei bieten
außerdem einen einfachen Weg um eine REST Schnittstelle als Northbound Interface zu
nutzen. Sehr bekannt ist auch der OpenDaylight-SDN-Controller (Java) [37] als Teil der
sehr umfangreichen OpenDaylight-Plattform und der rudimentäre ovs-controller (C) als
Teil des Open vSwitch Projects.

Auch die aktuell nicht mehr aktiv weiterentwickelten SDN-Controller POX (Python)
und dessen Vorgänger NOX (C++) sowie Beacon (Java) der Vorgänger von Floodlight
haben noch immer eine hohe Bekanntheit.

SDN-Controller Programmiersprache(n) Aktive Weiterentwicklung
Ryu Python Ja
Floodlight Java Ja
Trema Ruby, C Ja
OpenDaylight Java Ja
ovs-controller C Ja
Beacon Java Nein
POX Python Nein
NOX C++, Python Nein

Tabelle 4.1: Übersicht bekannter SDN-Controller

48

4.2 Vergleich und Auswahl von SDN-Controllern

Neben fertigen SDN-Controllern gibt es außerdem auch eine Reihe von OpenFlow Bi-
bliotheken, für die verschiedensten Programmiersprachen, die es erleichtern eigene zu
erstellen. Beispiele dafür sind loxigen[31] das Schnittstellen für verscheide Program-
miersprachen bietet, twink [26] für Python sowie libfluid [11] und rofl-common [19] für
C++.

Es gibt also eine große Auswahl an SDN-Controllern für die verschiedensten Einsatz-
gebiete und die durchdachte Wahl eines geeigneten SDN-Controller kann den Einsatz
erheblich vereinfachen.

Als interessante Kandidaten für den geplanten Einsatz bieten sich dabei vor allem Ryu,
Floodlight und NOX an. Floodlight und Ryu vor allem wegen ihrer sehr guten Dokumen-
tation, vielen Features und sehr aktiven Weiterentwicklung, NOX hingegen als schlanke
und native Alternative.

4.2.1 Floodlight

Der Floodlight-SDN-Controller ist ein Java basierter unter der Apache Lizenz stehender
OpenFlow-SDN-Controller [13]. Das erweitern der Funktionalität von Floodlight ist über
ein einfaches Modulsystem möglich. Hilfreich dabei ist auch die sehr gute Dokumentation
von Floodlight. Außerdem ist Floodlight einfach auf einem Zielsystem zu deployen da im
Prinzip eine einzige .jar-Datei erzeugt wird das dort von der Java Runtime ausgeführt
wird. Die einzige Abhängigkeit ist somit im Prinzip eine existierende Java Runtime.
Floodlight ist für den Einsatz in Kombination mit einer Vielzahl an verschieden virtuel-
len und physischen Switches geeignet und kommt auch mit einer Mischung aus OpenFlow
und nicht OpenFlow Netzwerken zurecht. Floodlight ist des Weiteren auf hohe Perfor-
mance ausgelegt und dient auch als Grundlage für Big Switch Networks kommerzielle
SDN-Lösung.

Floodlight ist damit ein im Prinzip von den Features her sehr gut geeigneter SDN-
Controller weshalb er für diese Arbeit auch in die engere Wahl kam. Aufgrund der im
Abschnitten 4.3 beschrieben Performance Probleme in Verbindung mit Rumprun zeigte
sich im Laufe der Arbeit allerdings dass Ryu für diese Arbeit besser geeignet ist.

4.2.2 NOX

NOX ist eine in C++ geschriebener unter der GNU General Public Lizenz stehende
SDN-Controller-Plattform [42]. NOX wurde ursprünglich von Nicira Networks entwickelt
und 2008 dann als Open Source der Allgemeinheit zur Verfügung gestellt. NOX gilt als
sehr schneller SDN-Controller und diente für viele Forschungsarbeiten als Grundlage.
Inzwischen wird NOX aber nicht mehr aktiv weiterentwickelt.

Dennoch ist NOX als in C++ geschriebener SDN-Controller im Prinzip gut geeignet
da er im Gegensatz zu Floodlight und Ryu keine große Laufzeitumgebung wie Python

49

4 Umsetzung

oder Java braucht, sondern nativ ausgeführt wird. Das macht ihn potenziell schneller
und leichtgewichtiger was für diesen Einsatzzweck ja gewünschte und sehr vorteilhafte
Eigenschaften sind. Allerdings ist NOX wie in Abschnitt 4.3 beschrieben nicht ohne
Anpassungen mit Rumprun kompatibel weshalb der Einsatz von NOX für diese Arbeit
dann doch nicht möglich war. Im Prinzip könnte eine Anpassung von NOX sich aber
lohnen da bei NOX Potential besteht aufgrund seiner Implementierung in C++Overhead
gegenüber anderen SDN-Controllern mit aufwendiger Laufzeitumgebung einzusparen.

4.2.3 Ryu

Im Folgenden wird nun der Ryu-SDN-Controller, der zur Umsetzung dieser Arbeit aus-
gewählt wurde, noch etwas genauer vorgestellt. Die Wahl viel dabei vor allem wegen der
guten Dokumentation, der sehr modernen Python3.5 kompatiblen Umsetzung mit vielen
nützlichen Features und der sehr aktiven stetigen Weiterentwicklung auf Ryu.

Ryu ist ein Komponenten basiertes unter der Apache 2.0 Lizenz stehendes SDN Fra-
mework mit dem Ziel es Entwicklern einfacher zu machen Netzwerkmanagement- und
Control-Anwendungen zu schreiben. Ryu unterstützt dazu verschiedene Protokolle wie
OpenFlow, Netconf, OF-CONFIG, usw. wobei der Support von OpenFlow dabei von
Version 1.0 bis 1.5 einschließlich Nicira Extensions reicht [8]. Ryu kommt außerdem mit
einer großen Anzahl von Beispiel-SDN-Controller-Anwendungen und bietet über eine
REST API die einfache Möglichkeit Aktionen auszuführen bzw. Informationen abzu-
rufen. Der Sourcecode von Ryu ist auf GitHub verfügbar, wen der Sourcecode nicht
verändert wird kann Ryu aber auch einfach über pip für Python3 installiert werden.

Anwendungen für den Ryu-SDN-Controller sind dabei von RyuApp abgeleitete ”App-
lications” und Implementieren für die Events die von Interesse sind passende Event-
Handler-Methoden. Abbildung 4.2 zeigt die wesentlichen Elemente der Ryu Architektur.
Eine genaue Beschreibung dieser ist in der Dokumentation von Ryu zu finden. Das Star-
ten von Ryu Anwendungen geschieht dann in dem der ryu-manager mit den genutzten
Applications als Parameter aufgerufen wird. Dabei kann auch ein passendes Log Level
gewählt werden was die Fehlersuche mit Ryu erheblich vereinfacht.

Abbildung 4.2: Ryu Architektur [8]

50

4.3 Vergleich und Auswahl von Virtualisierungslösungen

Die im Folgenden implementierten SDN-Controller sind aufgrund der Vorteile von Ryu
und der Kompatibilität mit allen genutzten Virtualisierungstechnologien alle auf Basis
von Ryu umgesetzt.

4.3 Vergleich und Auswahl von Virtualisierungslösungen

Ein wichtiges Element im Konzept stellt auch die Virtualisierung des SDN-Controllers
dar, um diesen möglichst portabel und vom System auf dem er läuft isoliert zu halten.
Dazu ist die Kapselung des SDN-Controllers z. B. in einer VM, einem Container oder
Unikernel nötig. Der Vorteil davon ist, dass der SDN-Controller dann vom Rest des
Systems isoliert ist was die Lösung unabhängiger von Hostsystem macht und Konflikte
mit anderen laufenden Programmen verhindert. Für die Kapselung des lokalen SDN-
Controllers auf dem Switch ist deswegen eine geeignete Virtualisierungstechnologie nötig.
Die Leistung der Hardware eines Switches ist aber meist eher begrenzt, so dass eine
leichtgewichtige Lösung nötig ist um nicht zu viele Ressourcen für die Visualisierung zu
verschwenden. Virtuelle Maschinen eignen sich deshalb nicht da sie einen relativ großen
Overhead haben und sowohl in Bezug auf Rechenleistung als auch Speicherbedarf für
diesen Einsatzzweck eher ungeeignet sind. Im Folgenden soll deswegen ein Blick auf
existierenden Containertechnologien und Unikernel Lösungen geworfen werden die wie im
Kapitel 2 beschrieben deutlich leichtgewichtigere und daher gut geeignete Alternativen
sind.

4.3.1 Container

Im Umfeld der Containertechnologie gibt es vor allem die zwei großen und bekannten
Vertreter LXC und Docker.

LXC

LinuX Container (LXC) [30] basieren auch dem Prinzip Prozesse zu isolieren indem
Kernel-Ressourcen virtualisiert und gegeneinander abgeschottet werden. Sie nutzen da-
zu Technologien wie Kernel Namespaces and cgroups. LXC ermöglichen es so Linux-
Systeme auf einem Host-Linux auszuführen die statt einem eigenen Kernel den Kernel
des Host-Linux gemeinsam nutzen. Der Vorteil davon ist, dass man gegenüber Virtuellen
Maschinen deutlich weniger Overhead hat, da keine Hardware emuliert werden muss und
auch nur ein einziger Kernel ausgeführt werden muss. Linux Containers (LXC) gibt es
bereits seit dem Jahr 2008 und seit Linux-Kernel Version 2.6 sind sie fester Bestandteil
von Linux [30].

Zur Installation muss nur das lxc Paket installiert werden und anschließend kann über
die Konsole mit lxc-checkconfig überprüft werden ob LXC voll funktionsfähig ist.

51

4 Umsetzung

Auf den Switch-Betriebssystemen waren z. B. cgroups die von LXC benötigt werden
standardmäßig nicht aktiv, so dass diese für die aktuell Session gemountet oder über
einen Eintrag in /etc/fstab dauerhaft aktiviert werden mussten. Unter PicOS war
dies aber nicht möglich und Container werden auch offiziell nicht unterstützt da bereits
eine gute KVM Unterstützung gepflegt wird. Anschließend können Container z. B. mit
lxc-create erstellt werden. Über lxc-start können diese dann gestartet werden und
mit lxc-attach oder lxc-console kann man sich mit dem laufenden Container dann
verbinden. Stoppen und löschen erfolgt über lxc-stop bzw. lxc-destroy.

Docker

Docker[22] hat mit seinem Erscheinen 2013 den Container vollends zum Durchbruch ver-
holfen und dabei stark vom Boom des Cloud Computing profitiert. Das Ziel von Docker
war es, es so einfach wie möglich zu machen Container zu erzeugen und auszuführen.
Ein wichtiger Bestandteil dabei ist das Dockerfile, das eine einfache Konfiguration von
Container erlaubt. Anwendungen die in einen Docker Container verpackt sind laufen in
jeder Docker-Umgebung, da alle benötigte Pakete im Container Image enthalten sind.
Von der Funktionsweise unterscheidet sich Docker dabei kaum von LXC. Bis Version 0.9
war die LXC-Bibliothek sogar die Grundlage von Docker ehe dann die Eigenentwicklung
libcontainer diese ablöste [22]. Großer Vorteil von Docker ist die große Auswahl an Do-
cker Images, die über den Docker Hub verfügbar sind und die sehr einfache Erstellung
und Konfiguration eigener Container über das Dockerfile, was den Umgang mit Docker
erheblich einfacher und effektiver macht wie die Arbeit mit LXC.

Für die Installation stehen Pakete bereit, die über das Hinzufügen der passenden URL
als Paketquelle genutzt werden können, sofern Docker nicht schon standardmäßig über
die Paketquellen der Linux Distributionen verfügbar ist. Auch Docker benötigt cgroups.
Sind diese wie unter PicOS nicht verfügbar funktioniert Docker nicht. Die komplette Kon-
figuration eines Containers erfolgt dann komfortabel über ein Dockerfile, wobei die gute
Dokumentation von Docker sehr hilfreich ist ehe der Container mit dem docker build
Befehl erstellt wird. Ein Dockerfile enthält dabei als erstes eine Zeile mit der Instruktion
FROM wie z. B. FROM ubuntu:16.04, die das als Basis dienende Image angibt. Weitere
Befehle wie z. B. RUN, COPY, ADD, WORKDIR, CMD sind optional und dienen z. B. dazu
Befehle auszuführen oder Dateien hinzuzufügen. Eine Liste aller mögliche Befehle ein-
schließlich ausführlicher Beschreibung der Funktionalität ist in der Dokumentation von
Docker zu finden. Ausgeführt wird ein Docker Container dann mit docker run. Dabei
bietet Docker per Parameter die Möglichkeit direkt beim Ausführen noch schnell gemein-
same Ordner einzubinden, Ports (UDP oder TCP) weiterzuleiten oder einen bestimmten
Befehl auszuführen. Stoppen und löschen von Container erfolgt über docker stop bzw.
docker rm.

52

4.3 Vergleich und Auswahl von Virtualisierungslösungen

4.3.2 Fazit Container

LXC und Docker sind somit zwei potenziell gut geeignete Kandidaten zur Virtualisie-
rung eines SDN-Controllers. Wechselt man aber von der theoretischen Sicht in den prak-
tischen Einsatz zeigen sich aber schnell einige Probleme. Das ist zu einem, dass cgroups
unterstützt werden müssen. Diese sind zwar seit Kernel 2.6 im prinzipiell unterstützt
funktionieren aber dennoch nicht auf jeder Linux Distribution die einen neueren Kernel
hat. So gibt es für PicOS von Pica8 z. B. offiziell keine Unterstützung für cgroups und
LXC/Docker. Stattdessen wird auf die gute KVM-Unterstützung verwiesen. Die zweite
Plattform auf der Testhardware ONL funktioniert ebenfalls nicht ohne Weiteres. ONL
gibt es in zwei Versionen einmal ONL V1 mit Debian 7 und einmal ONL V2 mit Debian
8. Debian 7 erschien mit Linux Kernel 3.2 und der LXC Support weist eine Reihe von
Problemen, die erst mit der Zeit weitgehend behoben wurden, auf. Mit der Debian 7
Kernel 3.2 basierten ONL Version die als einzige die ASIC des Switch ansteuern kann
läuft also kein Docker, da Docker einen Kernel Version 3.10 oder neuer braucht. Außer-
dem unterliegt der LXC Support einigen Problemen, wie z. B. dass nicht alle Container
Templates funktionieren, Probleme mit systemd existieren, kein lxc-attach möglich ist
und die Default-LXC-Netzwerkverbindung nicht funktioniert. Die Probleme mit LXC
lassen sich aber weitgehend umgehen, so dass LXC dennoch eingesetzt werden kann.
Mit der Debian 8 basierten ONL-Version laufen sowohl LXC als auch Docker aber diese
ONL-Version ist nicht mit der ASIC der Testhardware kompatibel. Zusammenfassend
lässt sich also festhalten, dass PicOS keine Container unterstützt und ONL V1 nur LXC
während ONL V2 sowohl Docker als auch LXC unterstützt vorausgesetzt die Hardware
ist mit ONL V2 kompatibel. Von Vorteil ist auch, dass sowohl LXC als auch Docker sich
per Shell-Skript ansteuern lassen, was dabei hilft das Erzeugen und Starten von Con-
tainer zu automatisieren. Nur die mangelnde lxc-attach-Unterstützung unter ONL V1
erwies sich dabei als störend, da nur damit Befehle mit root Rechten ohne manuellen
Login im Container ausgeführt werden können. Tabelle 4.2 fast die wesentlichen Punkte
der Container Evaluation nocheinmal übersichtlich zusammen.

Für den Einsatz von Container ist also wichtig, dass diese vom Zielsystem unterstützt
werden und es sollte eine möglichst aktuelle Linux-Kernel-Version auf den Switch laufen.
Während LXC vermutlich auf mehr Systemen lauffähig ist, da es geringere Anforderun-
gen an das System hat, ist Docker dafür aber die erheblich komfortablere Wahl. Im
Prinzip sind aber beide Lösungen für den geplanten Einsatz geeignet.

4.3.3 Unikernel

Die Unikernel Idee ist keine wirklich neue Entwicklung und schon relativ alt, dennoch
gewinnen Unikernel als Alternative zu VMs und Containern aber erst durch die Ent-
wicklungen der letzten Jahre an Bedeutung. Für das geplante Einsatzszenario wäre ein
Unikernel somit eine Alternative gegenüber Containern und VMs. Ihr Vorteil ist eine
hohe Sicherheit bzw. Isolation durch die Trennung in einzelne Betriebssysteminstanzen

53

4 Umsetzung

LXC Docker
Min. Kernel Version 2.6 3.10
Konfiguration teils etwas umständlich sehr einfach
Gastbetriebssysteme über LXC Templates Docker Images (Docker Hub)
Portweiterleitung manuell über Docker
Isolation gut sehr gut
Mit Shell Skript steuerbar Ja Ja
Läuft auf PicOS Nein Nein
Läuft auf ONL V1 Ja Nein
Läuft uaf ONL V2 Ja Ja

Tabelle 4.2: Vergleich von Docker und LXC

und die starke Reduktion von Code der deployed wird gegenüber VMs. Außerdem sind
sie klein und belegen nur wenig Speicherplatz während sie gleichzeitig sehr schnell boo-
ten, da nur wirklich benötigte Dienste geladen werden müssen und das Betriebssystem
für diesen Einsatz optimiert ist.

Im Umfeld der Unikernel gibt es inzwischen eine Vielzahl an Lösungen. Unikernel.org[48]
listet einige verfügbare Unikernel-Projekte auf seiner Webseite auf. Für den geplanten
Einsatz geeignete Lösungen sind dabei aber eher Wenige zu finden. Einer der bekann-
testen Vertreter ist z. B. MirageOS[35] für Software in der Programmiersprache OCaml.
MirageOS ist aber genau wie HaLVM für Haskell oder LING für Erlang und auch vie-
le weitere Unikernel-Lösungen für den geplanten Einsatzzweck eher ungeeignet da ein
speziell für diese Plattformen geschriebener SDN-Controller nötig wäre was den Einsatz
bestehender und erprobter SDN-Controller-Lösungen ausschließen würde. Andere Uni-
kernel wie z. B. runtimejs.org oder includeos.org stehen sowieso noch am Anfang der
Entwicklung und bezeichnen sich selbst als noch nicht ”production ready” [48].

Weitergehende Lösungen sind vor allem Rumprun[43] und OSv[7] für die es mit dem
noch recht jungen Unik-Projekt[41] auch ein Tool gibt, das anstrebt Unikernel-Lösungen
einfacher zu erstellen und ausführen zu können. Unik steht aber noch in den Anfängen
und man gelangt schnell in Situationen, für die es noch keine Dokumentation gibt, vor
allem wenn Probleme beim noch nicht ganz ausgereiften Tool auftreten. Dennoch könnte
Unik durch das Ziel Unikernel einfacher verwendbar zu machen, ähnlich wie Docker einst
für Container, in Zukunft noch eine für das Unikernel-Umfeld sehr wichtige Entwicklung
sein. OSv das Linux-Anwendungen, die bestimmte Bedingungen erfüllen ausführen kann
und außerdem Support für C, C++, JVM, Ruby and Node.js bietet zielt vor allem
auf Cloud und Server als Zielgruppe ab. Als geeignetste Lösung bietet sich deswegen
vor allem ein Rumpkernel bzw. Rumprun an. Das liegt daran, dass Rumprun nicht nur
für ein spezielles Einsatzgebiet gedacht ist und außerdem viele POSIX-Anwendungen
ohne große Modifikationen damit als Unikernel ausgeführt werden können. In der Praxis
zeigen sich aber auch hier noch einige Schwierigkeiten. Diese hängen vor allem damit

54

4.3 Vergleich und Auswahl von Virtualisierungslösungen

zusammen, dass ein Rumprun Unikernel immer genau ein statisches Binary ausführt und
Programme die aus verschieden Prozessen aufgebaut sind oder dynamische Libraries zur
Laufzeit laden somit nicht einfach so lauffähig sind.

Rumprun

Das Rumprun-Projekt[43] bietet die passenden Tools um einfach Unikernel auf Basis
der sehr bekannten Rump Kernels zu erzeugen. Das Rump-Kernel-Projekt ist aus dem
NetBSD-Projekt entstanden und orientiert sich am Anykernel-Konzept. Das Ziel dabei
war ursprünglich Treiber-Entwicklung im User Space zu ermöglichen. Der Vorteil von
Rum Kernels ist, dass sie es erlauben UNIX-Applikationen ohne große Änderungen un-
abhängig von einem kompletten Betriebssystem laufen zu lassen. Sie sind deshalb mit
einer erheblich größeren Anzahl an Anwendungen und Programmiersprachen kompatibel
als andere Unikernel-Projekte. Vor allem da mit dem rumprun-packages Repository auf
GitHub für eine große Anzahl an Programmiersprachen passende Build Unterstützung
bereitsteht. Um ein Unikernel mit Rumprun zu erzeugen wird die Anwendung mit dem
Corsscompieler des Rumprun-Projekts für die gewünschte Zielplattform des Unikernel
kompiliert. Die Unterstützten Plattformen sind dabei alle großen Hardwarearchitektu-
ren und Virtualisierungssysteme. Anschließend werden dem entstandene Binary beim
sogenannten ’baking’ die benötigten Betriebssystem Libarys hinzugefügt. Als weiteren
Schritt unterstützt Rumprun außerdem dieses Binary direkt lokal auf einem unterstütz-
ten Hypervisor auszuführen oder ein Bootable ISO daraus zu erzeugen.

In der Praxis zeigt sich, dass Rumprun für viele Einsatzzwecke sehr gut funktioniert.
Allerdings stößt man auch schnell auf Probleme, weil etwas nicht sofort funktioniert und
Anpassungen nötig sind. Im Prinzip sollte eine Anpassung für Rumprun fast immer mög-
lich sein und meist auch nur geringe Änderungen erfordern, dennoch ist der Aufwand
schnell erheblich größer wie bei Containern, wo keinerlei Modifikationen nötig sind. Au-
ßerdem ist zu beachten, dass immer nur ein Binary existiert bzw. alles als ein Prozess
ausgeführt wird. Anwendungen die aus verschiedenen zusammenarbeitenden Program-
men bestehen lassen sich also nicht direkt für Rumprun portieren. Auch ist es somit
nicht einfach möglich dynamisch Libraries zur Laufzeit zur laden, stattdessen müssen
alle Libraries statisch eingebunden werden.

Hypervisor: QEMU/KVM

Rumprun basiert auf dem Unikernel-Prinzip und läuft somit im Gegensatz zu den Con-
tainerlösungen nicht direkt auf einem Betriebssystem. Der Unikernel ist die Kombination
der Anwendung mit den benötigten Teilen des Betriebssystems und läuft somit wie ein
vollwertiges Betriebssystem direkt auf realer Hardware oder einem Hypervisor. Im Rah-
men dieser Arbeit kam Rumprun dazu in Kombination mit, QEMU kurz für Quick
Emulator, zum Einsatz. QEMU ist ein Open Source Hypervisor bzw. eine Hardware-
virtualisierungslösung die einen Rechner emuliert. Die doch relative teure Emulation

55

4 Umsetzung

von Hardware erzeugt aber einen gewissen Overhead. QEMU kann deswegen auch zu-
sammen mit der Kernel-based Virtual Machine (KVM) Funktionalität des Linux Kernels
verwendet werden. Dies ermöglicht die Ausführung mit beinahe nativer Geschwindigkeit,
erfordert aber Hardware mit Unterstürzung für Hardwarevirtualisierung, die dazu ver-
wendet wird. Auch wenn in dieser Arbeit ausschließlich QEMU/KVM eingesetzt werden
wäre im Prinzip die Ausführung aller Rumprun Unikernels mit jedem anderen Hyper-
visor oder direkt auf Hardware möglich. Für den Ansatz eines virtualisierten lokalen
SDN-Controllers ist dabei aber zu beachten, dass der Unikernel auf dem Betriebssystem
des Switch neben Forwarding Engine und OpenFlow Agent laufen muss, so dass eine
Ausführung direkt auf Hardware nicht möglich ist und nur einf für das Zielbetriebssys-
tem geeignete Hypervisor in Frage kommt.

4.3.4 Fazit Rumprun

Um den lokalen SDN-Controller als Unikernel auszuführen bietet sich also Rumprun an.
Für viele Einsatzzwecke funktioniert Rumprun auch sehr gut. Will man aber bestehende
Software oder speziell bestehende SDN-Controller damit verwenden stößt man schnell
auf Schwierigkeiten. Das liegt daran, dass Rumprun immer genau eine statische Binary
braucht die passend kompiliert und um Systembibliotheken ergänzt ausgeführt wird.

Der Test verschiedener SDN-Controller führte deswegen schnell z. B. zu folgenden Pro-
blemen:

• Der POX-SDN-Controller läuft, wie einige andere Python basierte SDN-Controller
nur mit Python2.X aber Rumprun bietet nur Support für Python3.5.

• Floodlight läuft zwar, aber der noch ganz neue Java 8 Support für Rumprun scheint
in Kombination mit Floodlight auf schwacher Hardware mit gewaltigen Performan-
ce Problemen zu kämpfen, die Floodlight unbrauchbar langsam machen. Allgemein
scheint der Java Support für diesen Einsatzzweck nicht ideal zu sein.

• Ryu als in Python3.5 geschriebene Anwendung wäre im Prinzip geeignet, aber
eine der Abhängigkeiten, die greenlet Library [20], ist nicht in Python sondern in
C geschrieben. Hier sind also Anpassungen nötig.

• NOX lief aus nicht ganz klarem Grund auch nicht. Das Problem ist vermutlich
ebenfalls auf die Einschränkung, dass der Cross Compiler ein statisches Binary
das als ein Prozess ausgeführt wird erzeugen muss zurückzuführen.

Python2.X nach Rumprun zu portieren damit POX läuft wäre im Prinzip möglich, da
es ähnlich wie die Python3.5 Portierung gelöst werden könnte. Dies stellt aber natürlich
sehr viel Aufwand dar. Es gibt bereits einer Feature Request dazu auf GitHub. Bisher
haben aber noch keine Entwickler die Zeit dafür investiert, da in den meisten Fällen
wohl eine Portierung der Anwendung nach Python3.5 weniger aufwendig, sinnvoller und
zukunftssicherer ist. Eine Portierung von POX nach Python3.5 wäre natürlich auch ei-
ne Lösung, ist für diese Arbeit aber ebenfalls etwas zu umfangreich. Die Performance

56

4.3 Vergleich und Auswahl von Virtualisierungslösungen

Probleme von Floodlight auf der neuen erst seit August 2016 existierendem Java 8 Por-
tierung sind vermutlich eher schwer zu lösen. Floodlight und andere Java-SDN-Controller
sind meist nicht gerade leichtgewichtig und die Java Runtime genauso wenig, was für
hohe Anforderungen sorgt. Dazu kommt auch, dass Probleme mit der sehr neuen noch
unausgereiften Portierung hier ein entscheidender Faktor sein könnten.

Ryu lauffähig zu machen erscheint auf den ersten Blick schon deutlich einfacher, ist das
Problem doch nur die in C geschriebene greenlet.so-Bibliothek [20], die normal in Bi-
närform beiliegend zur Laufzeit geladen wird. Ein Rumprun Unikernel hat aber nur eine
Binary und kann zur Laufzeit keine Bibliotheken nachladen. Der greenlet Support müss-
te also direkt in die Python Runtime integriert werden. Die Python-Unterstützung für
Rumprun die auf GitHub mit vielen anderen Erweiterungen für Rumprun im rumprun-
packages Repository liegt müsste also nur geringfügig angepasst werden. Das bedeutet
CPython, das als Runtime dient und über einige Patches an Rumprun angepasst wird,
muss zusammen mit greenlet manuell in ein Binary (zur Python Runtime mit greenlet
Modul) kompiliert werden, das dann den Python-Code ausführt. Erste Versuche damit
waren aber nicht sehr erfolgreich und Kontakt mit dem Rumprun-Python-Paket-Projekt
zeigte schnell, dass es zwar möglich aber doch recht umständlich ist nur eine einzelne
Library zusätzlich mit zu compilieren. Das liegt daran, dass es nicht vorgesehen war und
so noch realtiv tief in den Build-Prozess von Python3.5 für Rumprun integriert werden
musste. Für die Zukunft ist deswegen wohl geplant diesen Prozess deutlich zu verein-
fachen, um es Nutzern vom Rumprun-Python-Paket leichter zu machen auch Python
Module zu nutzen, die nicht rein in Python geschrieben sind. Die Chancen sind somit
gut das Python3-Code zukünftig auch mit binären Abhängigkeiten ohne zu großen Auf-
wand nutzbar ist.

Es ist also nicht immer ganz leicht Software mit Rumprun lauffähig zu bekommen weswe-
gen für diese Arbeit nur der Ryu-SDN-Controller auf Rumprun eingesetzt wird. Im Prin-
zip ist aber vermutlich mit ein wenig Aufwand der großteil existierender SDN-Controller
portierbar. Dennoch bietet es sich beim geplanten Einsatz von Rumprun an vorher die
Anwendung, die damit ausgeführt werden soll, genau anzuschauen, da es eben gewis-
se Einschränkungen gibt und nicht jede Anwendung sich ohne Weiteres portieren lässt.
Außerdem ist natürlich auch die Performance ein entscheidender Faktor, wenn ein An-
wendung wie Floodlight zu langsam läuft, weil zu viel Performance verloren geht, ist der
Nutzen nicht sehr groß.

Rumprun bietet aber auch einen großen Vorteil. Hat man erstmal einen Unikernel erzeugt
läuft dieser überall wo auch eine Linux Distribution laufen würde. Egal ob auf echter
Hardware oder einer Virtualisierungslösung wie z.B: QEMU/KVN oder XEN. Auf der
für die Evaluation vorhanden Hardware wo PicOS und ONL in Debian 7 und 8 Version
laufen ist somit der Einsatz von Rumprun problemlos möglich, da alle Betriebsysteme
QEMU/KVM-Unterstützung haben.

Zusammenfassend lässt sich also sagen, dass Rumprun eigentlich überall problemlos läuft
dafür aber mehr Aufwand nötig ist die Software mit Rumprun kompatibel zu bekommen.
Auch wie bei den Containern kann das Starten des Unikernel dann per Skript erfolgen

57

4 Umsetzung

was ein einfaches Deployment erlaubt. In Tabelle 4.3 sind die wichtigsten Punkte von
Rumprun noch einmal übersichtlich aufgelistet.

Rumprun
Konfiguration Aufwendig (App extra compilieren)
Sonstiges Nicht mit jeder Anwendung kompatibel
Netzwerkinterface mit Portweiterleitung über QEMU oder manuell
Isolation sehr gut
Mit Shell Skript steuerbar Ja, aber eingeschränkter wie Container
Läuft auf PicOS Ja mit z. B. QEMU
Läuft auf ONL V1 Ja mit z. B. QEMU
Läuft uaf ONL V2 Ja mit z. B. QEMU

Tabelle 4.3: Übersicht Rumprun

4.3.5 Fazit Container und Unikernel

Sowohl Container wie LXC und Docker als auch Unikernel wie Rumprun sind gut zur
Virtualisierung eines SDN-Controller geeignet, eine Übersicht über die Unterschiede bie-
tet Tabelle 4.4. Container bieten dabei den Vorteil, dass eigentlich jeder SDN-Controller
darauf problemlos läuft. Im Gegenzug aber haben Container dafür gewisse Anforderun-
gen an das System auf dem sie laufen. Ein SDN-Controller auf einem Unikernel zum
Laufen zu bringen ist aufwendiger und kann Anpassungen erfordern, da Einschränkun-
gen existieren. Dafür hat ein Unikernel aber keine Abhängigkeiten und läuft sowohl
direkt auf Hardware als auch auf sämtlichen Virtualisierungslösungen, wie z. B. dem
unter Linux weit verbreiten QEMU/KVM.

Sollen möglichst viele Switches und vor allem auch welche mit älteren Linux-Kernel-
Versionen unterstützt werden ist ein Unikernel wie Rumprun definitiv die beste Wahl.
Der Preis dafür sind aber eventuelle Sourcode-Anpassungen bzw. Einschränkungen bei
der Wahl des SDN-Controller. Container bieten hier den Vorteil, dass eigentlich alle SDN-
Controller darauf ohne Anpassung laufen. Unterstützen alle Zielgeräte bereits LXC ist
dies somit eine gute Alternative die den Aufwand für eine Anpassung des SDN-Controller
für Rumprun spart. Muss der SDN-Controller nur auf Geräten laufen, die modern genug
sind um Docker zu unterstützen spielt Docker seine Vorteile aus und ist dank vielen
Features und erheblich einfacher bzw. vor allem komfortableren Bedienbarkeit und Kon-
figuration gegenüber LXC deutlich im Vorteil.

Für die Ziele aus dem Konzept wie Isolation und Unabhängigkeit vom Switch bietet
sich deswegen Rumprun an. Container sind zwar auch gut geeignet stellen aber bereits
Anforderungen an den Switch die mangels älterer Kernel oder mangelndem Support des
Herstellers unter Umständen nicht überall erfüllt werden. Container können deshalb in
Bezug auf Plattformunabhängigkeit nicht mit Rumprun mithalten.

58

4.4 Anwendungsszenarien

Neben diesem allgemeinen Vergleich von LXC, Docker und Rumprun auf Basis der Funk-
tionalität folgt in Kapitel 5 noch ein Vergleich in Bezug auf die Performance, die ebenfalls
ein wichtiger Faktor bei der Wahl einer geeigneten Lösung ist.

LXC Docker Rumprun

Läuft ab/auf Linux Kernel 2.6
mit cgroups, usw

Linux Kernel 3.10
mit cgroups, usw

Hardware oder
Hypervisor

Anforderungen
an Anwendung

Linux kompatibel Linux kompatibel Extra compiliert

Netzwerkinterface
mit Portweiterleitung

manuell über Docker über QEMU
oder manuell

Isolation gut seht gut sehr gut
Mit Shell Skript
steuerbar

Ja Ja Ja, aber nicht
so umfangreich

Läuft auf PicOS Nein Nein Ja mit QEMU
Läuft auf ONL V1 Ja Nein Ja mit QEMU
Läuft uaf ONL V2 Ja Nein Ja mit QEMU

Tabelle 4.4: Vergleich zwischen LXC, Docker und Rumprun

4.4 Anwendungsszenarien

Im Folgenden wird die Implementierung der Anwendungsszenarien beschrieben die als
Grundlage für die Evaluation im folgenden Kapitel dienen. Dazu wurden die folgenden
drei Anwendungsszenarien ausgewählt:

• Simple Switch

• Port Knocking

• Fast Failover

Die Umsetzung dieser Anwendungsszenarien erfolgte in Python3 für den Ryu-SDN-
Controller, da dieser sich zuvor beim Betrachten der verschieden SDN-Controller als
ein sehr moderner, vielseitiger und gut dokumentierter SDN-Controller herausgestellt
hatte und auch für den Einsatz mit allen Virtualisierungsstechnicken geeignet ist.

4.4.1 Simple Switch

Die Simple-Switch-SDN-Controller-Implementierung setzt die Grundfunktionalität klas-
sischer L2-Switches um. Dazu setzt die mit Ryu umgesetzte SDN-Controller-Implementierung

59

4 Umsetzung

ein einfaches MAC lernen und damit verbundenes Flooding bzw. Installieren von Flows,
wenn das Ziel eines Pakets schon bekannt ist um.

Abbildung 4.3: Simple-Switch-Implementierung

Der Ablauf dabei ist wie in Abbildung 4.3 dargestellt folgendermaßen: Der SDN-Controller
installiert einen Standard-Flow, so dass Pakete für die noch kein Flow Entry existiert
zum SDN-Controller weitergeleitet werden. Kommt ein Paket, das zum SDN-Controller
weitergeleitet wurde, bei diesem an speichert dieser sich, sofern die Source-MAC-Adresse
noch unbekannt ist diese ab. Dazu prüft der SDN-Controller ob er schon einen Eintrag zu
der Source-MAC-Adresse hat und Speichert falls nicht unter der Source-MAC-Adresse
den Port, auf dem die Nachricht den Switch erreicht hat, ab. Anschließend schaut der
SDN-Controller ob ein Eintrag für die Ziel-MAC-Adresse existiert. Gibt es noch keinen
Eintrag kennt der SDN-Controller die Ziel-MAC-Adresse noch nicht und lässt den Switch
über eine Flooding Aufforderung das Paket über alle Ports weiterleiten. Hat der SDN-
Controller hingegen einen Eintrag für die Ziel-MAC-Adresse dann lässt er das Paket

60

4.4 Anwendungsszenarien

nur über den zu dieser Ziel-MAC-Adresse gespeicherten Port weiterleiten und installiert
einen Flow-Table-Eintrag für zukünftige Pakete. Auf Zukünftige Pakete mit gleichem
Absender und Ziel passt dann der Flow-Table-Eintrag, so dass ein direktes Weiterleiten
ohne Interaktion mit dem SDN-Controller möglich ist.

Als Grundlage und Ausgangsbasis zur Implementation des Simple-Switch-Anwendungs-
szenarios diente dabei das simple_switch_13.py Beispiel von Ryu und die auf GitHub
zu findende OF-DPA-Variante davon [24]. Am Ryu Beispiel das mit Open vSwitch unter
PicOS Problemlos funktioniert waren dabei kaum Änderungen nötig. Für die OFP-DPA
Version, die mit ONL und Indigo funktioniert, musste das schon etwas ältere Sample
neben einigen kleinen Anpassungen vor allem auch noch Python3.5 kompatibel gemacht
werden. Die Unterschiede zwischen PicOS mit Open vSwitch und ONL mit Indigo Agent
der OF-DPA nutzt sind dabei der Grund, dass zwei verschiedene Beispiele als Basis
dienten. Dabei zeigte sich außerdem, dass OF-DPA doch sehr viele Einschränkungen
hat, für die die Implementierung einzeln angepasst werden muss und dass auch nicht
alle Probleme ohne weiteres mit OF-DPA gelöst werden können. Ein Problem mit dem
Indigo Agent und OF-DPA auf ONL ist dabei vor allem, dass es nicht funktionierte Pa-
kete an den SDN-Controller zu senden und nur wenn nötig ein Flooding zu machen. Es
funktionierte nur die Variante aus dem Sample, die ein Flooding vor dem Weiterleiten
an den SDN-Controller macht. Somit war es nicht möglich alle Anwendungsfälle auch für
eine Evaluation unter ONL umzusetzen. Mangels Informationen zu diesem spezifischen
Problem ist nicht ganz klar ob es eine bestimmtes durch andere Konfiguration theore-
tisch lösbares Problem ist oder die auf dem Switch zum Einsatz kommenden Indigo- /
OF-DPA-Version dies einfach nicht unterstützt.

4.4.2 Port Knocking

Port Knocking ist ein Verfahren um über ”Anklopfen” an verschieden Ports eine be-
stimmte Aktion auszulösen. Dazu wird eine Sequenz von Paketen mit verschiedenen
Zielports gesendet. Eine State Maschine die auf ankommende Pakete achtet löst dann
bei korrekte Port-Knocking-Sequenz die damit verbundene Aktion aus. Der Hauptan-
wendungsfall dabei ist Ports in einer Firewall, die Server bzw. Serverdienste absichert,
freizuschalten. Der Client klopft dabei über das Senden von z. B. TCP-SYN- oder UDP-
Paketen an in dem er die Pakete in einer zuvor definierten Sequenz an verschiedene Ports
schickt. Erkennt die Firewall, dass der Client eine korrekte Port-Knocking-Sequenz ge-
schickt hat öffnet sie für den Client den damit verbunden Port, so dass dieser auf die über
diesen Port angebotene Dienste zugreifen kann. Ohne korrekte Port-Knocking-Sequenz
hingeben bleibt der Port geschlossen und ankommende Pakete werden verworfen. Der
Vorteil des Verfahrens ist, dass von außen z. B. mit einem Portscanner nun nicht zu
erkennen ist welche Dienste angeboten werden und nur bei bekannter Port-Knocking-
Sequenz darauf zugegriffen werden kann. Port Knocking kann so zum Beispiel dazu
verwendet werden um Fernzugriffsmöglichkeiten wie SSH zu verschleiern aber ersetzt
keine Authentifizierung und Verschlüsselung zur Absicherung von Diensten.

61

4 Umsetzung

Abbildung 4.4: Port-Knocking-Implementierung

Für das Port-Knocking-Anwendungsszenario wurde der SDN-Controller so angepasst,
dass er auf eingehende UDP-Pakete achtet. Abbildung 4.4 zeigt die Funktionsweise die-
ser Implementierung. Erreicht ein UDP-Paket den SDN-Controller schaut dieser auf
welchem Port das nächste Paket vom Sender erwartet wurde. Liegt noch kein Status-
eintrag für den Absender vor ist dies der Anfang der Port-Knocking-Sequenz, ansonsten
der gespeicherte Status. Kam das Paket auf dem erwarteten Port an geht es in der
Port-Knocking-Sequenz weiter und der neue Status wird gespeichert bis das nächste
Port-Knocking-Paket des Senders ankommt. Stimmt der Port nicht wird der Status ver-
worfen und als nächstes eine neu beginnende Port-Knocking-Sequenz erwartet. War der
Port korrekt und das Ende der Port-Knocking-Sequenz erreicht wird ein Flow-Eintrag
installiert, der dem Client die Kommunikation über den vereinbarten Port erlaubt.

62

4.4 Anwendungsszenarien

4.4.3 Fast Failover

Dem Fast-Failover-Ansatz liegen redundante Verbindungen im Netzwerk zugrunde. Ziel
dabei ist es durch Ausfälle von Verbindungen verursachte Unterbrechungen des Netz-
werks schneller zu beheben bzw. die Ausfallzeit zu minimieren. Statt sich nur die besten
Verbindungen zu merken, wie es im Normalfall ausreichen würde, liegt nun der Fokus auf
redundanten Verbindungen. Das bedeutet, wenn es eine alternative Verbindung gibt wird
diese ebenfalls gespeichert, für den Fall, dass die aktuell genutzte Verbindung ausfällt.
Fällt eine Verbindung aus kann so, wenn verfügbar sofort auf eine alternative Verbindung
gesetzt werden. Die Suche nach einem neuen Weg für die Daten entfällt somit, sofern
eine alternative Verbindung auf die ausgewichen werden kann bekannt ist. Dadurch wird
die Ausfallzeit reduziert.

Zur Umsetzung des Fast-Failover-Ansatzes wurde der SDN-Controller so erweitert, dass
er über Statusänderungen von Ports informiert wird. Fällt ein aktiv genutzter Port
aus, kann der SDN-Controller nun schauen ob er für die Flows über diesen Port Al-
ternativen kennt. Ist dies der Fall, kann der SDN-Controller dann sofort neue Flows,
die den Ausweichweg nutzen, installieren. Damit ist die Verbindung dann repariert und
die Ausfallzeit geringer als wenn erst beim Bekanntwerden des Verbindungsausfalls ei-
ne neue Verbindung gesucht werden muss. Abbildung 4.5 zeigt die Funktionsweise der
Fast-Failover-Implementierung.

63

4 Umsetzung

Abbildung 4.5: Fast-Failover-Implementierung

64

5 Evaluation

Im Folgenden wird das Konzept und dessen Umsetzung evaluiert. Dazu folgt als erstes
eine Evaluation zur Performance der verschiedenen Virtualisierungstechniken wozu de-
ren Performance in Form der Round Trip Time (RTT) bei der Kommunikation über
TCP betrachtet wird. Anschließend wird die Performance beim Einsatz von OpenFlow
untersucht, um zu sehen was das Erzeugen und Parsen von OpenFlow-Nachrichten an
Zeit kostet. Als letztes findet dann die Evaluation von drei Anwendungsszenarien satt.
Dies soll helfen den Nutzen des virtualisierten lokalen SDN-Controller-Ansatzes in prak-
tischen Einsatz aufzuzeigen.

5.1 TCP Performance verschiedener Virtualisierungslösungen

Bereits bei der Betrachtung der verschiedenen Virtualisierungslösungen im vorausge-
gangen Kapitel zeigte sich, dass Container und Unikernel für den geplanten Einsatz in
Frage kommen. In diesem Abschnitt folgt nun die Evaluation der Performance dieser ver-
schiedenen Virtualisierungstechniken auf der zur Verfügung stehenden Hardware. Dazu
wird die Performance der Netzwerkanbindung in Form der RTT von den in Kapitel 4
vorgestellten Containerlösungen LXC und Docker sowie des dort als am geeignetsten
bestimmten und näher beschriebenen Rumprun Unikernel untersucht.

Für den geplanten Einsatz, einen lokalen SDN-Controller zu virtualisieren, ist dabei vor
allem die Performance der Netzwerkanbindung relevant. Das liegt daran, dass diese die
entscheidende Verbindung sowohl zur Data Plane als auch zur Control Plane darstellt
und jegliche Interaktion darüber stattfindet. Als Protokoll kommt dabei vor allem TCP
zum Einsatz auf das z. B. auch OpenFlow aufbaut, weshalb der Fokus auf der Perfor-
mance in Verbindung mit TCP liegt.

Um die Performance einer TCP-Verbindung über die Netzwerkschnittstelle der Virtua-
lisierungslösungen zu evaluieren wurde deshalb eine kleine ab Python3.3 laufende Tes-
tanwendung entwickelt. Diese besteht aus einem TCP Responder (Server), der virtua-
lisiert wird, und einem TCP Sender (Client), der sich mit diesem verbindet. Der TCP
Responder übernimmt die Rolle des z. B. im Container oder als Unikernel ausgeführ-
ten SDN-Controllers. Der TCP Sender hingegen übernimmt die Rolle des CDPI Agent
und läuft direkt auf dem Betriebssystem, das auf der Switch-Hardware ausgeführt wird.
Dieses Setup ermöglicht es die Performance einer TCP-Verbindung über die Netzwerk-
schnittstelle in einer Testumgebung zu evaluieren, die sehr ähnlich mit der tatsächlichen
Nutzung ist.

65

5 Evaluation

Abbildung 5.1: Versuchsaufbau für TCP-RTT-Messung

In Abbildung 5.1 ist dazu der Testaufbau skizziert. Der TCP Sender ist dabei in blau
markiert und der TCP Responder innerhalb der Virtualisierungslösung in gelb hervor-
gehoben. Die Kommunikation über TCP zwischen TCP Sender und TCP Responder für
die, die RTT gemessen wurde ist rot markiert.

Der in Python3 geschriebene TCP Responder hat dabei die Aufgabe Verbindungen entge-
gen zu nehmen und alle ankommenden Pakete wieder zurück zum Absender zu schicken.
Hauptbestandteil ist dazu eine Schleife die alle ankommende Pakete wieder zurück zum
Absender schickt.

Listing 5.1: Funktionsweise TCP Responder
sock = socket . socke t (socke t .AF_INET, socket .SOCK_STREAM)
sock . bind ((ip , port))
sock . l i s t e n (1)
while True :
connect ion , address = sock . accept ()
while True :

data = connect ion . recv (1024)
i f not data : break
connect ion . send (data)

connect ion . c l o s e ()

Der TCP Sender ist das Gegenstück zum TCP Responder und ebenfalls mit Python3
umgesetzt. Seine Aufgabe ist der Aufbau einer Verbindung zum TCP Responder und
das senden von Paketen. Außerdem führt der TCP Sender auch das Messen der benö-
tigten Zeit bzw. der RTT durch. Dazu stoppt der TCP Sender die Zeit, die nötig ist
für eine vorgegebene Anzahl an Wiederholungen ein Paket bestimmter Größe zum TCP
Responder zu schicken und auf die Antwort darauf zu warten. Die Zeit für alle Wie-
derholungen wird dabei für eine möglichst genaue Zeitmessung mit time.perf_counter()
gemessen und am Ende durch die Anzahl an Wiederholungen geteilt um eine möglichst
genaue Round Trip Time (RTT) für ein einzelnes TCP-Paket zu ermitteln.

66

5.1 TCP Performance verschiedener Virtualisierungslösungen

Listing 5.2: Funktionsweise TCP Sender
sock = socket . socke t (socke t .AF_INET, socke t .SOCK_STREAM)
sock . connect ((ip , port))
timestamp = time . per f_counter ()

for i in range (1 , n+1):
sock . send (data)
data = sock . recv (1024)

timespan = (time . per f_counter () − timestamp) / n

Die Durchführung der Messungen fand sowohl auf PicOS als auch unter ONL V1 und
ONL V2 statt. Neben der Evaluation der Performance des virtualisierten TCP Responder
mit den je nach Plattform verschiedenen verfügbaren Virtualisierungstechniken erfolgte
dabei auch immer ein Test ohne Virtualisierungslösung, um einen Vergleichswert, für die
TCP Performance ohne den Overhead einer Virtualisierungslösung, zu haben.

Unter PicOS fand die Messung nativ und mit Rumprun auf QEMU/KVM statt. Un-
ter ONL V1 nativ, mit LXC und mit Rumprun auf QEMU ohne KVM Support. Auf
ONL V2 fand der Test nativ und mit Docker statt. Bei Rumprun wurden dabei immer
zwei Messungen gemacht. Einmal mit User Networking (SLIRP), das im Wiki[46] zu
QEMU als einfaches Standard Interface mit relativ viel Overhead und nicht so guter
Performance beschrieben wird. Dann ein zweites Mal mit einem Tap Interface, das ein
auf dem Host angelegte Tap-Netzwerkschnittstelle nutzt und im QEMU Wiki als schnel-
lere Alternative beschrieben wird. Wie die folgenden Performancetests zeigen sind die
Unterschiede zwischen diesen beiden Netzwerkinterfaces von QEMU aber zumindest in
diesem Szenario sehr gering.

Zur Festlegung der Anzahl an Wiederholungen wurden diese schrittweise erhöht bis ver-
schiedene Ausführungen des Programms zu keinen nennenswerten Schwankungen mehr
führten. Dabei zeigte sich, dass 50000 Wiederholungen genügen um ein zuverlässiges
Ergebnis zu erzielen. Da dennoch vereinzelt Abweichungen entstanden sind, die Vermut-
lich durch Prozesse, die im Hintergrund auf dem Switch laufen, entstehen, wurden allen
Tests mehrfach durchgeführt. Mit ausreichend Wiederholungen konnte verhindert wer-
den, dass einzelne Ausreißer, bei denen das Ergebnis durch Hintergrundprozesse auf dem
Host ein wenig abweicht, das Gesamtergebnis verfälschen. Ohne in die Quere kommen-
de Hintergrundprozesse blieben die Abweichungen zwischen verschieden Ausführungen
dann bei unter 0,001 ms. Für die Unterschiede zwischen den verschiedenen Virtualisie-
rungslösungen hingegen zeigte sich, dass diese größer als 0,01 ms sind. Für die für die
Evaluation interessanten Unterschiede zwischen den Virtualisierungslösungen sind somit
die um Faktor 10 geringen Abweichungen nicht störend.

Um verschiedene Paketgrößen zu simulieren wurden 50 Byte, 500 Byte und 1000 Byte
große Pakete verwendet. Wie die Tabelle 5.1 und Abbildung 5.2 zeigt spielt die Paket-
größe wenn genug Bandbreite vorhanden ist, jedoch keine sehr große Rolle. Direkt auf
dem Betriebssystem oder in einem Container ausgeführt war deshalb kein Unterschied
festzustellen. Für QEMU/KVM in Verbindung mit SLIRP-/TAP-Netzwerkinterface hin-

67

5 Evaluation

gegen zeigte sich, dass die Paketgröße durchaus eine Rolle spielt. Die dabei entstehenden
Abweichungen liegen aber im Bereich von unter 0,1 ms.

0

0,2

0,4

0,6

0,8

1

1,2

 Ø Nativ LXC VETH Docker Rumprun
KVM TAP

 Rumprun
KVM SLIRP

 Rumprun
QEMU TAP

 Rumprun
QEMU SLIRP

RT
T

in
 m

s

 50 Byte 500 Byte 1000 Byte

Abbildung 5.2: Ergebnisse der TCP-RTT-Messung der Virtualisierungslösungen: LXC,
Docker und native Ausführung in etwa gleichauf. Rumprun mit KVM
bereits etwas langsamer und ohne KVM erheblich langsamer.

OS Virtualisierung 50 Byte 500 Byte 1000 Byte
PicOS

Nativ 0,055 0,055 0,055
Rumprun KVM SLIRP 0,238 0,251 0,258
Rumprun KVM TAP 0,229 0,238 0,246

ONL V1 (3.2)
Nativ 0,056 0,056 0,056
LXC VETH 0,066 0,066 0,066
Rumprun QEMU SLIRP 0,999 1,083 1,095
Rumprun QEMU TAP 0,878 1,036 0,964

ONL V2 (3.18)
Nativ 0,055 0,055 0,055
Docker 0,070 0,070 0,070

Tabelle 5.1: Messergebnisse für die durchschnittliche TCP RTT (in Millisekunden) der
verschiedenen Virtualisierungslösungen

Wie in Tabelle 5.1 und Abbildung 5.2 ebenfalls zu sehen, ist LXC insgesamt mit einer
RTT von 0,066 ms die schnellste Virtualisierungslösung aber Docker ist mit 0,07 ms in

68

5.2 OpenFlow Performance Evaluation

etwa gleichauf. Die Container-Lösungen führen damit gegenüber dem Unikernel-Ansatz
deutlich. Rumprun mit KVM hat eine ca. dreimal so große RTT von im Schnitt 0,249 ms.
Ausgeführt mit QEMU (ohne KVM Support) bricht, wie durch die Virtualisierung ohne
Hardwareunterstützung zu erwarten, durch die deutlich langsamere Virtualisierung die
Performance sogar noch weiter ein und die RTT beträgt ca. 1 ms.

5.2 OpenFlow Performance Evaluation

Im Konzeptteil zeigte sich, dass eine Verwendung des OpenFlow-Protokolls zur Kom-
munikation zwischen OpenFlow Agent und lokalem SDN-Controller auf dem Switch
genauso wie zwischen lokalen SDN-Controller und übergeordnetem bzw. zentralem SDN-
Controller sehr praktisch ist, da dann nur wenige Anpassungen nötig sind. Dennoch stellt
sich die Frage ob OpenFlow dazu geeignet ist, da es doch einiges an Overhead mitbringt
und jeder der beiden Kommunikationswege eventuell durch einen anderen leicht gewich-
tigeren Ansatz noch effizienter werden könnte. Aus diesem Grund wird im Folgenden ein
Blick auf die Kosten, die das OpenFlow-Protokoll verursacht, geworfen. Dazu werden die
Kosten für das Encodieren und Decodieren von OpenFlow-Nachrichten in verschiedenen
Szenarien evaluiert.

5.2.1 twink

Eine erste grobe Evaluation dazu wurde mit der twink Library für Python gemacht, die
ausschließlich Funktionen zum Encodieren bzw. Decodieren von OpenFlow-Nachrichten
bietet. Das hat den Vorteil, dass verschiedene dieser Funktionen einfach wiederholt auf-
gerufen werden können während die Zeit mit time.perf_counter() gestoppt wird, ehe
am Ende die Zeit wieder auf einen Durchschnittswert für einen Aufruf herunter gebro-
chen wird. Ab 100000 Wiederholungen waren dabei die Abweichungen für das Enco-
ding wieder kleiner als 0,001 ms, so dass stabile Ergebnisse abgelesen werden konnten.
Beim Decodieren, das erheblich länger dauert, wurden 10000 Wiederholungen gemacht
womit die Abweichungen bei unter 0,02 ms lagen. Gemessenen wurden dabei die durch-
schnittlichen Kosten für eine OpenFlow-Nachricht, weswegen zur Messung verschiedene
OpenFlow-Nachrichtentypen verwendet wurden, um sowohl kleine Nachrichten wie z. B.
eine Hello-Nachricht aber auch größere wie z. B. eine PaketOut-Nachricht im Ergebnis
repräsentiert zu haben.

Leider zeigte sich, dass mit Rumprun keine Tests unter zu starker Last möglich sind, da
alle Funktionen in Bezug auf Uhrzeit oder Performance Counter unter Last versagen und
keine sinnvollen Werte mehr zurückgeben. Rumprun hat dazu auf GitHub auch ein offe-
nes Ticket mit der Bezeichnung ”Time jumps backwards when user code is cpu-bound for
long enough #71”. Die Lösung dort ist, unter C mit sched_yield() sicherzustellen, dass
das Zeitmanagement oft genug durchgeführt werden kann. Python kennt diese Funktion
aber nicht und dynamisch mit ctypes die Library (libc.so.6) zu laden geht aufgrund der

69

5 Evaluation

Unikernel-Architektur nicht. Die einzige Lösung war somit nur sehr kurze Schleifen zu
messen, die die CPU nicht zu lange blocken. Dabei treten aber die erheblich größeren
Schwankungen auf die bereits zuvor der Grund für mehr Wiederholungen waren. Aus
diesem Grund wurden nun viele Messungen mit 10 Wiederholungen gemacht und dazwi-
schen mit einem time.sleep() Aufruf dem System Zeit gegeben damit keine Probleme
mit der Zeitberechnung auftreten. Bei vorher z. B. 100000 Wiederholungen wurde nun
stattdessen 10000 mal eine einzelne Messung mit 10 Wiederholungen und darauf fol-
gender Pause ausgeführt. Der Durchschnitt der vielen kleinen Messungen ergab so eine
stabile und recht genaue Zeitmessung auch für Rumprun.

OS Virtualisierung Encode (ms) Decode (ms)
PicOS:

Nativ 0,024 4,284
Rumprun KVM 0,028 4,206

ONL V1 (3.2):
Nativ 0,024 4,247
LXC VETH 0,024 4,239
Rumprun QEMU 0,508 16,645

ONL V2 (3.18):
Nativ 0,019 3,811
Docker 0,021 3,819

Tabelle 5.2: Messergebnisse für die durchschnittliche Zeit (in Millisekunden) die twink
für das Decodieren bzw. Encodieren einer OpenFlow-Nachricht benötigt

Dabei zeigte sich wie in Tabelle 5.2 und Abbildung 5.3 zu sehen, sehr schnell, dass die
Kosten bei der twink Library vor allem beim Parsen des OpenFlow-Pakets liegen. Die
Pakete zum Senden werden meist Stück für Stück befüllt indem die Daten an die passen-
de Stelle geschrieben werden, was sowieso auch bei anderen Protokollen unvermeidbar ist
und keinen nennenswerten Overhead verursacht. Hier schlägt sich twink auch sehr gut.
Ein empfangenes Paket hingegen muss passend interpretiert werden was deutlich aufwen-
diger ist. Pakettypen, Keys und Längenangaben helfen dabei das Paket entsprechend der
Definitionen in der OpenFlow-Spezifikation, die viele verschiedene Pakettypen und In-
halte dieser spezifiziert, zu parsen. Das Parsen von OpenFlow ist also relativ aufwendig,
aber auch hier ist zu beachten, dass dieses Problem natürlich auch alternative Protokolle
haben. Alternativen wären also vor allem dann im Vorteil, wenn es sich dabei um ein
einfacheres und schlankeres Protokoll handelt das leichter zu parsen ist. Ein großer Teil
der hohen Kosten für das Parsen von OpenFlow-Nachrichten entfällt dabei sowieso auf
die scheinbar nicht sehr gut optimierte Implementierung der twink Library, da wie der
hierauf folgende Test mit Ryu zeigt Pakte mit Python auch deutlich schneller geparst
werden können. In Abbildung 5.3 sind auch die wichtigsten Zeiten im Diagramm gegen-
über gestellt. ONL V2 und Docker sind dabei vermutlich aufgrund des neueren Linux
Kernel schneller. Rumprun mit QEMU ohne KVM Support ist durch die Virtualisierung
ohne Hardwareunterstützung sehr langsam wenn die Performance wichtig ist würde man

70

5.2 OpenFlow Performance Evaluation

Rumprun mit QEMU ohne KVM Support nicht nutzen. Aus diesem Grund wurde es in
den Diagrammen auch weggelassen, da so die Unterschiede der anderen Lösungen besser
sichtbar bleiben.

0

0,01

0,02

0,03

(a) Encode Zeit in ms

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

(b) Decode zeit in ms

Abbildung 5.3: Ergebnisse der Encode- und Decode-Zeitmessung mit twink: Unterschie-
de zwischen den Virtualisierungslösungen sind von QEMU ohne KVM
abgesehen gering. Die Decodierung ist allerdings deutlich langsamer wie
das Encodieren.

5.2.2 Ryu

Wichtig beim Parsen ist vor allem die Effizienz des Codes, der diese Aufgabe über-
nimmt. Die recht simple twink Library zum Beispiel ist scheinbar nicht auf Performance
optimiert und für den produktiven Einsatz somit nicht so gut geeignet wie Ryu.

Tabelle 5.3 zeigt die Performance von Ryu beim Parsen von OpenFlow-Nachrichten. Da-
bei wurde die Zeit zum Parsen einfach während des Betriebs des SDN-Controller unter
realen Bedingungen mit gemessen. Damit der Ryu-SDN-Controller aber nicht nur Echo-
Nachrichten empfängt wurden Pakete durchs Netzwerkgeschick für die keine Regel im
Switch existierte, so dass PaketIn-Nachrichten erzeugt und an den Ryu-SDN-Controller

71

5 Evaluation

geschickt wurden. Auf der Ryu-SDN-Controller Seite wurde zu Evaluation dann das Par-
sen aller am Ryu-SDN-Controller ankommenden Nachrichten gemessen und die durch-
schnittliche Zeit für eine Nachricht berechnet. Die gemessenen Zeiten repräsentieren also
die durchschnittliche Zeit für das Parsen einer OpenFlow-Nachricht im normalen Be-
trieb.

Da dabei die QEMU und Rumprun Kombination nicht bis ans Limit ausgelastet war
funktionierte auch dort die Messung problemlos. Dafür war die Messung mit Docker in
diesem Fall nicht möglich, da Docker nur auf ONL V2 läuft und dort der OpenFlow
Agent nicht korrekt funktioniert. Ryu parsed die OpenFlow-Nachrichten dabei recht
schnell nativ auf dem Betriebssystem des Switches und mit einem LXC Container beträgt
die Zeit im Schnitt 0,08 ms. Auch Rumprun mit KVM ist mit 0,10 ms kaum langsamer
QEMU ohne KVM Support ist wie erwartet mit ca. 1 ms aber wieder deutlich langsamer,
da hier viel Performance beim virtualisieren des SDN-Controllers verloren geht.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1

Ø Nativ

LXC VETH

Rumprun KVM

Rumprun QEMU

Ø OpenFlow Message parsing Zeit in ms

Abbildung 5.4: Ergebnisse der OpenFlow-Decode-Zeitmessung mit Ryu: LXC und native
Ausführung sind ähnlich schnell. Ruprum ist selbst mit KVM minimal
langsamer und bricht ohne KVM weiter ein.

5.2.3 Open vSwitch

Als letzter Teil der OpenFlow Performance Evaluation wurde dann noch die Zeit für
das Encodieren und Decodieren von OpenFlow-Nachrichten Switchseitig beim Open
vSwitch analysiert. Dazu wurde das Open vSwitch 2.5.1 LTS Relase mit den für die
Evaluation nötigen Modifikationen zur Zeitmessung erweitert und nativ auf ONL ge-
baut und ausgeführt. Das erlaubte es ohne zu große Modifikationen am Code von Open

72

5.2 OpenFlow Performance Evaluation

OS Virtualisierung Zeit in ms
PicOS:

Nativ 0,085
Rumprun KVM 0,101

ONL V1 (3.2):
Nativ 0,085
LXC VETH 0,087
Rumprun QEMU 1,061

ONL V2 (3.18):
Nativ -
Docker -

Tabelle 5.3: Messergebnisse für die durchschnittliche Zeit (in Millisekunden) die Ryu für
das Decodieren einer OpenFlow-Nachricht benötigt

vSwitch über einen Ryu basierten SDN-Controller das Encodieren und Decodieren von
OpenFlow-Nachrichten anzustoßen. Dabei zeigte sich, dass die Implementierung des in
C geschriebenen Open vSwitch sehr schnell ist.

Die Messung eines einzigen Aufrufs einer Decode oder Encode Funktion lies sich dabei
nicht stoppen, da sämtliche Zeitmessfunktionen Probleme haben Aktionen <1 ms genau
zu erfassen und durch unterschiedliche Auslastung der CPU in diesem feinen Bereich auch
sehr viele Schwankungen auftreten. Um möglichst exakte Messergebnisse zu erhalten
wurde deswegen der Code des Open vSwitch so modifiziert, dass wenn von außen der
Aufruf einer Decode oder Encode Funktion ausgelöst wurde, dieser viele tausend Mal
ausgeführt wurde. Dabei wurde und die Zeit dabei gestoppt und durch das Teilen der
Gesamtzeit für z. B. 10000 Ausführungen durch 10000 konnte dann die durchschnittliche
Zeit, für die Ausführung von einem Aufruf ermittelt werden. Zum Messen der Zeit wurde
dabei clock_gettime() verwendet das mit einer Auflösung im Nanosekundenbereich
genauere Ergebnisse liefert als clock() das mit Millisekunden arbeitet. Im Prinzip ist
der Unterschied zwischen diesen aber unbedeutend, da sowieso sehr viele Wiederholungen
nötig waren.

Die einfache OpenFlow Hello Message die nur aus den die beim Verbindungsaufbau
ausgetauscht wird wurde dabei als erstes gemessen, da der Erwartung nach es die am
schnellsten zu verarbeitende Nachricht sein sollte. Hierbei war das Encodieren der Nach-
richt mit 0,407 µs sogar deutlich teuer als das Decodieren mit 0,015 µs. Das liegt vermut-
lich daran, dass für das Decodieren einer so einfachen Nachricht fast keine Zeit gebraucht
wird und alle Daten schon im Speicher existieren. Das Encodieren einer so einfachen Zeit
sollte zwar ebenfalls fast keine Zeit kosten aber das unvermeidbare Anlegen des Speicher-
bereichs für die Nachricht kostet zusätzlich Zeit.

Das Nächste war die Messung einer FlowMod Message, da dies eine relativ komplexe Nach-
richt ist die außerdem sehr häufig empfangen wird. Dazu wurde die Decode-Methode im

73

5 Evaluation

Open vSwitch die eine eingehende FlowMod Message entpackt und den Inhalt zur Wei-
terverarbeitung aufbereitet analysiert. Mit 0,554 µs geschieht auch das sehr schnell.

Anschließend wurde auch noch die Zeit für das Erstellen einer PaketIn Message ge-
messen. Diese dient zum Weiterleiten eines Paktes an den SDN-Controller. Mit 1,606 µs
dauerte das relativ lange was vermutlich daran liegt, dass zu einem eine Nachricht erstellt
werden muss und zu anderen eine komplette andere Nachricht in diese eingefügt werden
muss, was es erfordert relativ viel Speicher anzulegen und viele Bytes zu kopieren.

Abschließend lässt sich festhalten, dass der OpenFlow Overhead im Open vSwitch auf
jeden Fall nur sehr gering ist. Für viele Nachrichten scheint er bei unter 1 µs zu liegen
und nur aufwendige Funktionen wie das Weiterleiten eines Pakets scheinen über 1 µs zu
kommen.

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

Decode Flow Mod

Decode Hello

Encode Paket In

Encode Switch Features

Encode Hello

Zeit in µs

Abbildung 5.5: Ergebnisse der Decode- und Encode-Zeitmessung mit Open vSwitch

Aktion Zeit in ms
Encode Hello 0,407
Encode SwitchFeatures 0,415
Encode PaketIn 1,606
Decode Hello 0,015
Decode FlowMod 0,554

Tabelle 5.4: Messergebnisse für die durchschnittliche Zeit (in Mikrosekunden) die Open
vSwitch für das Decodieren bzw. Encodieren einer OpenFlow-Nachricht
benötigt

74

5.3 Evaluation von Anwendungsszenarien

Damit ist die Geschwindigkeit der C-Implementierung den Python basierten Lösungen
weit voraus. Die Gründe dafür sind die Ausführung des Python-Codes über die Python-
Runtime und ein vermutlich weniger effizientes Memory Management beim Durchreichen
und Verarbeiten der Nachrichten. Kommt es also auf maximale Effizienz an ist eine C
basierte Lösung deutlich im Vorteil.

5.2.4 Fazit OpenFlow Performance Evaluation

Für die Evaluation der OpenFlow-Performance wurde die twink Library, Ryu und Open
vSwitch betrachtet. Dabei zeigte sich ganz klar, dass die Performance beim Encodieren
und Decodieren von OpenFlow-Nachrichten sehr stark von der Effizienz der Implementie-
rung abhängt. Die recht simple und auch nicht mehr wirklich aktiv weiterentwickelte in
Python geschriebene twink Library würde beim Einsatz von OpenFlow deswegen unnö-
tig viel Overhead erzeugen. Die ebenfalls in Python geschriebene Ryu-Implementierung
zum parsen von OpenFlow ist bereits deutlich effizienter. Dennoch besteht auch hier ein
deutlicher Overhead. Open vSwitch das in C implementiert ist kann hier noch einmal
deutlich mehr Performance erreichen und ist deutlich schneller als die beiden Python-
Lösungen. Dafür ist der Einstieg mit Ryu und Python aber auch viel einfacher und kom-
fortabler. Für möglichst wenig Overhead und somit möglichst hohe Effizienz ist es also
wichtig eine schnelle OpenFlow-Implementierung zu nutzen. Eine in C oder einer ver-
gleichbaren Sprache geschriebene und gut optimierte OpenFlow-Implementierung bzw.
SDN-Controller-Plattform ist also vorzuziehen. Bei einer guten Implementierung ist der
Overhead für den Einsatz von OpenFlow überschaubar. Bei einer Schlechten kann die
Performance aber deutlich leiden. Die Implementierung eines eigenen Protokolls muss
also sehr gut sein und in einer schlanken Programmiersprache geschrieben sein, da sonst
vermutlich keine Vorteile erreicht werden können. In den meisten Fällen sollte deswe-
gen ohne Probleme eine gute OpenFlow-Implementierung genutzt werden können, ohne
dass dadurch zu viel Overhead entsteht. Die Vorteile den lokalen Controller über ein
etabliertes Protokoll anzubinden sollten dabei dann gegenüber des OpenFlow Overhead
überwiegen.

5.3 Evaluation von Anwendungsszenarien

Nach der Evaluation einzelner Teile folgt nun noch die Evaluation der drei bereits im Ka-
pitel 4 beschriebenen Anwendungsfällen. Als erstes kommt die Evaluation eines einfachen
Simple-Switch-Szenarios anschließend werden noch Port Knocking und Fast Failover eva-
luiert. Als Grundlage dafür findet an dieser Stelle die Evaluation der Zeit, die für die
Kommunikation mit dem SDN-Controller nötig ist, statt. Diese hat einen wesentlichen
Einfluss auf die folgenden Anwendungsszenarien, da sie in allen Messungen direkt oder
indirekt enthalten ist.

75

5 Evaluation

Abbildung 5.6: Versuchsaufbau zum Messen der Zeit für die Kommunikation mit dem
lokalen bzw. zentralen SDN-Controller

Zur Messung der Zeitspanne die zur Kommunikation mit dem SDN-Controller nötig
ist wird die Zeit gemessen, die vergeht bis auf eine Nachricht vom OpenFlow Agent
an den SDN-Controller dessen Antwort beim OpenFlow Agent ankommt. Dazu wurde
mit tshark der Paketverkehr mitgeschnitten und die Zeit zwischen einer Nachricht die
vom OpenFlow-Agent ausgeht bis zum Eingehen einer Flow Mod-Nachricht als Reaktion
darauf gemessen.

Da die Latenz zum zentralen SDN-Controller dabei erheblichen Einfluss hat werden ver-
schiedene RTT zum zentralen SDN-Controller emuliert. Dazu wird das Shell Tool tc
verwendet, das es erlaubt das Traffic Shaping des Linux-Kernels zu konfigurieren. Somit
konnte nicht nur mir der von der reellen Hardware Latenz vorgegeben Verzögerung, son-
dern auch mit auf 2, 4, 6 und 8 ms erhöhter Verzögerung zum zentralen SDN-Controller
gemessen werden. Abbildung 5.6 zeigt den Versuchsaufbau als Skizze. In gelb ist der
lokale SDN-Controller markiert, in rot der zentrale SDN Controller.

Tabelle 5.5 zeigt die dabei gemessen Zeiten bis auf eine gesendete Nachricht die Antwort
vom Controller zurück kommt. Dabei ist gut zu sehen, dass die Virtualisierung mit
Rumprun in diesem Fall knapp 2 ms kostet. Vermutlich aufgrund der begrenzten Leistung
des Switches ist außerdem der zentrale SDN-Controller bei einer nur sehr geringen Latenz

76

5.3 Evaluation von Anwendungsszenarien

schneller. Mit steigender Latenz zum zentralen SDN-Controller wird der lokale SDN-
Controller dessen Zeit konstant bleibt aber deutlich schneller. Sehr deutlich sieht man
dies im Diagramm in Abbildung 5.7.

0

2

4

6

8

10

12

14

0 0,3 2 4 6 8

Ze
it

in
 m

s

Zentral (Nativ) Zentral (Rumprun KVM) Lokal (Nativ) Lokal (Rumprun KVM)

Abbildung 5.7: Ergebnisse der Zeitmessung für die Kommunikation mit dem loka-
len bzw. zentralen SDN-Controller: Die Zeit für den zentralen SDN-
Controller steigt mit der Latenz zu diesem, die des lokalen SDN-
Controllers bleibt konstant. Die Virtualisierung sorgt in beiden Fällen
für einen geringfügigen Overhead.

Ansatz | RTT zum SDN-Controller Lokal 0,3 ms 2 ms 4 ms 6 ms 8 ms
Zentral (Nativ) 1,826 3,779 6,816 7,818 9,805
Zentral (Rumprun KVM) 3,675 5,660 7,541 9,475 11,493
Lokal (Nativ) 2,486
Lokal (Rumprun KVM) 5,259

Tabelle 5.5: Messergebnisse für die Zeit (in Millisekunden) zwischen dem Absenden einer
OpenFlow-Nachricht an den SDN-Controller und einer Antwort darauf.

5.3.1 Simple Switch

Die Simple-Switch-Implementierung wurde bereits in Kapitel 4 vorgestellt. Darauf auf-
bauend folgt nun die Evaluation des Simple-Switch-Anwendungsszenarios. Dazu wird die
RTT gemessen, die das erste TCP-Paket hat, das von einem Sender zu einem Empfänger
gesendet wird.

77

5 Evaluation

Dazu wird auf vssdn2-2 ein Python3-Skript ausgeführt, das als TCP Responder dient,
und auf vssdn2-1 ein Skript, das ein TCP-Paket sendet und die RTT misst. Als SDN-
Controller wird die im Implementierungsteil erstelle Simple-Switch-Implementierung ver-
wendet. Gemessen wird dann die Performance mit einem nativ ausgeführten lokalen
SDN-Controller auf dem Switch (vssdn2-sw) und wenn dieser mit verschiedenen Tech-
nologien virtualisiert ist. Zum Vergleich mit dem klassischen SDN-Ansatz folgt dann
außerdem die Evaluation mit einem zentralen statt lokalem SDN-Controller wozu der
SDN-Controller auf vssdn2-1 ausgeführt wird. Da für die Simple-Switch-Evaluation
nur die erste RTT, also die wo noch kein Flow installiert ist, interessant ist werden zwi-
schen den einzelnen Tests immer alle Flows zurückgesetzt. Da für den zentralen SDN-
Controller-Ansatz außerdem die Latenz zum SDN-Controller relevant ist wird neben der
Verzögerung durch die reale Hardware von 0,3ms außerdem mit einer künstlich erhöhten
Verzögerung von 2, 4, 6 und 8 ms gemessen.

Abbildung 5.8 skizziert die Testumgebung. In grün die ausgeführten Python-Skripte für
die Evaluation und in blau die Leitungen über die diese auf Ebene der Data Plane
kommunizieren. Außerdem ist der lokale SDN-Controller in gelb hervorgehoben und der
zentrale SDN-Controller so wie der Weg über die Control Plane zu diesem in rot.

Abbildung 5.8: Versuchsaufbau für das Simple-Switch-Anwendungsszenario

Alle Testkonfigurationen wurden dabei mehrfach durchgeführt um ein möglichst exaktes

78

5.3 Evaluation von Anwendungsszenarien

Ergebnis zu erzielen. Dabei zeigte sich, dass bereits relativ wenige Ausführungen ein
gutes Ergebnis liegen und Abweichungen meist deutlich unter 1ms liegen.

Tabelle 5.8 zeigt die dabei gemessen Durchschnittswerte unter PicOS. Der lokale Ansatz
ist zwar sobald er virtualisiert wird langsamer, allerdings wird er schnell wieder deutlich
performanter wenn die Verzögerung zum zentralen SDN-Controller steigt. Vergleicht
man mit einem ebenfalls Virtualisierten zentralen SDN-Controller ist der lokale Ansatz
immer schneller.

Wie in Tabelle 5.8 zu sehen ist kostet die Virtualisierung des lokalen SDN-Controller auf
vssdn2-sw ca. 1 Millisekunde. Dies ist zwar deutlich messbar sollte in der Praxis aber
nicht zu sehr in Gewicht fallen, vor allem da eine steigende Latenz zum SDN-Controller
diesen Nachteil sehr schnell aufwiegt und den lokalen Ansatz deutlich schneller macht
wie in Abbildung 5.9 zu sehen ist.

0

5

10

15

20

25

30

0 0,3 2 4 6 8

Ze
it

in
 m

s

Zentral (Nativ) Zentral (Rumprun KVM) Lokal (Nativ) Lokal (Rumprun KVM)

Abbildung 5.9: Ergebnisse der RTT-Messung des Simple-Switch-Anwendungsszenarios:
Nativ sind lokale und zentrale Variante fast gleich schnell ehe mit stei-
gender Latenz der zentrale Ansatz langsamer wird. Mit Rumprum ist der
lokale Ansatz von Anfang an schneller.

Abbildung 5.9 zeigt die Ergebnisse noch als Diagramm. Dabei sieht man wie mit stei-
gender Verzögerung zum zentralen SDN-Controller die zentrale SDN-Controller-Variante
immer langsamer wird während der lokale SDN-Controller-Ansatz davon natürlich nicht
betroffen ist.

79

5 Evaluation

Ansatz | RTT zum SDN-Controller Lokal 0,3 ms 2 ms 4 ms 6 ms 8 ms
Zentral (Nativ) 6,058 10,102 14,060 18,029 22,128
Zentral (Rumprun KVM) 8,772 12,727 16,731 20,718 24,744
Lokal (Nativ) 6,331
Lokal (Rumprun KVM) 7,296

Tabelle 5.6: Messergebnisse für die RTT (in Millisekunden) für das erste Paket beim
Simple-Swtich-Anwendungsszenario

5.3.2 Port Knocking

Die Port-Knocking-Implementierung läuft auf der gleichen Testumgebung wie das Simple-
Switch-Szenario dessen Aufbau in Abbildung 5.8 dargestellt ist. Gemessen wurde in die-
sem Fall die Zeit die benötigt wird um mit Hilfe der Port-Knocking-Sequenz einen Port
zu öffnen und eine Antwort auf ein über den Port gesendetes Paket zu bekommen.

Dazu wurde wieder ein Python3-Skript auf vssdn2-1 ausgeführt, das als Sender diente.
Dieses sendet bei Ausführung als erstes die Port-Knocking-Sequenz wobei zwischen je-
dem UDP-Paket der Port-Knocking-Sequenz je 2 ms gewartet wurde ehe es dann auf
die Antwort eines gesendeten Pakets wartet. Auf vssdn2-2 kam dabei wie auch im
Simple-Switch-Beispiel ein einfaches Responder-Skript dieses Mal aber UDP basiert zum
Einsatz, das ankommende Pakete direkt wieder zum Empfänger zurückschickt.

Tabelle 5.8 zeigt die dabei gemessen Durchschnittswerte unter PicOS. Dabei wurde mit
5 Paketen gearbeitet, wovon das 5. wenn die 4 vorherigen Pakete die korrekte Port-
Knocking-Sequenz repräsentierten auf dem freigeschalteten Port weitergeleitet wurde.
Die Abweichungen bei den einzelnen Messungen waren dabei kleiner 0,1 ms.

Ansatz | RTT zum SDN-Controller Lokal 0,3 ms 2 ms 4 ms 6 ms 8 ms
Zentral (Nativ) 14,620 18,689 22,669 26,644 30,823
Zentral (Rumprun KVM) 15,074 19,250 23,268 27,325 31,766
Lokal (Nativ) 15,687
Lokal (Rumprun KVM) 17,061

Tabelle 5.7: Messergebnisse für die Zeit (in Millisekunden) beim Port-Knocking-Anwen-
dungsszenario mit 5 Nachrichten

Da die Pakete dabei in einem festen Intervall gesendet werden dauert das Senden der
Port-Knocking-Sequenz mit länger werdender Sequenz natürlich länger. Zum Vergleich
wurde deshalb noch mit einer längeren Port-Knocking-Sequenz derselbe Test durchge-
führt. Die Ergebnisse des Tests sind in Tabelle 5.8 abgebildet. Die Abweichungen waren
auch dabei wieder kleiner 0,1 ms und es wurde mit 20 Paketen gearbeitet, wovon das
20. wenn die 19 vorherigen Pakete die korrekte Port-Knocking-Sequenz repräsentierten

80

5.3 Evaluation von Anwendungsszenarien

weitergeleitet wurde. Wie zuvor entsprach der Abstand zwischen den Paketen wieder
2 ms.

Ansatz | RTT zum SDN-Controller Lokal 0,3 ms 2 ms 4 ms 6 ms 8 ms
Zentral (Nativ) 47,369 51,508 55,590 59,586 63,464
Zentral (Rumprun KVM) 47,954 52,012 56,082 60,096 63,953
Lokal (Nativ) 48,555
Lokal (Rumprun KVM) 50,115

Tabelle 5.8: Messergebnisse für die Zeit (in Millisekunden) beim Port-Knocking-Anwen-
dungsszenario mit 20 Nachrichten

Abbildung 5.10 zeigt die Kosten je Paket, also die gemessene Zeit geteilt durch die
Anzahl gesendeter Pakete. Da der Overhead für die Kommunikation zum SDN-Controller
unabhängig von der Länge der Port-Knocking-Sequenz ist, da die Pakete ja in einem
festen Intervall gesendet werden, schneidet wie erwartet die Variante mit der längeren
Sequenz dabei besser ab. Je länger die Port-Knocking-Sequenz desto weniger fällt die
Latenz zum SDN-Controller also ins Gewichtt.

2

3

4

5

6

7

0 0,3 2 4 6 8

Ze
it

in
 m

s

Zentral (Nativ)

Zentral (Rumprun KVM)

Lokal (Nativ)

Lokal (Rumprun KVM)

(a) Zeit je Nachricht bei bei 5 Nachrichten

2

2,5

3

3,5

4

0 0,3 2 4 6 8

Ze
it

in
 m

s

Zentral (Nativ)

Zentral (Rumprun KVM)

Lokal (Nativ)

Lokal (Rumprun KVM)

(b) Zeit je Nachricht bei bei 20 Nachrichten

Abbildung 5.10: Vergleich des Port Knocking Overhead

Interessant ist hier eher der Vorteil, dass beim lokalen Ansatz keine Pakete über die Con-

81

5 Evaluation

trol Plane zum SDN-Controller geschickt werden müssen. Damit spart man auf dem Weg
zum zentralen SDN-Controller so viele Pakete ein wie die Port-Knocking-Sequenz lang
ist. Dies verteilt die Last deutlich besser als wenn wie bei einem zentralen SDN-Controller
die weitergeleiteten Pakete verschiedener Switches, an denen Clients anklopfen, verar-
beitet werden müssen. Besonders dann, wenn lange Port-Knocking-Sequenzen verwendet
werden.

5.3.3 Fast Failover

Der letzte Anwendungsfall der evaluiert wurde war das Fast-Failover-Szenario. Im Ge-
gensatz zu den anderen Anwendungsfällen wurde dabei aber nicht die Zeit gestoppt,
sondern gemessen wie viele UDP-Pakete das Ziel erreichen bzw. wie viele verloren ge-
hen.

Für den Fast-Failover-Anwendungsfalls war eine Anpassung der Testumgebung nötig, da
nun zwei redundante Verbindungen nötig waren. Abbildung 5.12 zeigt die neue Testum-
gebung als Skizze. In grün wieder die ausgeführten Python-Skripte für die Evaluation
und in blau die Leitungen über die diese auf Ebene der Data Plane kommunizieren.
Außerdem ist der lokale SDN-Controller in gelb hervorgehoben und der zentrale SDN-
Controller so wie der Weg über die Control Plane zu diesem in rot.

Das zusätzliche Skript für die Evaluation auf dem Switch das gegenüber den vorherigen
Testfällen hinzu kommt dient zur Simulation von Ausfällen einer der beiden redundanten
Verbindungen. Der Switch lief dazu mit zwei über Open vSwitch konfigurierten Bridges
und simulierte so zwei Switches die über eine redundante Verbindung verfügen. Dazu
waren von Port 18 zu 20 und Port 19 zu 21 zwei Loops eingerichtet die in der Abbildung
4.5 lila dargestellt sind. Bridge br0, die den ersten Switch simuliert, hatte als Ports
die Verbindung zu vssdn2-1 mit Port 1 und mit den redundanten Ports 18 und 19
eine Verbindung zum anderen Simulierten Switch. Die Bridge br1 hatte sich daraus
ergebend die Ports 20 und 21 als redundante Verbindung zu br0 sowie eine Verbindung
zu vssdn2-2 über Port 5. Aufgabe des Skripts auf dem Switch war es nun die Verbindung
von Port 18 zu 20 bzw. die Verbindung von Port 19 zu 21 im Wechsel zu unterbrechen
und wiederherzustellen. Die Pausen dazwischen wurden so gewählt, dass alle 6 Sekunden
eine der Verbindungen unterbrochen wurde.

Gemessen wurde dabei wie groß die Paketverluste bei einer UDP-Übertragung von
vssdn2-1 zu vssdn2-2 ist. Dazu lief auf vssdn2-1 ein in Python3 geschriebenes Skript,
das pro Millisekunde 10 Pakete mir einer Größe von 500 Byte an vssdn2-2 sendete bis
in Summe 1000000 Pakete verschickt wurden. Auf vssdn2-2 lief ein Python3-Skript das
als Empfänger diente und die Anzahl eingehender Pakete zählte. Die Anzahl gesendeter
Pakte abzüglich der Anzahl empfangener Pakete ergab dann die Anzahl verlorengegange-
ner Pakete. Geteilt durch die Anzahl gesendeter Pakete ergab sich dann der Prozentsatz
verlorener Pakete.

82

5.3 Evaluation von Anwendungsszenarien

Abbildung 5.11: Versuchsaufbau für das Fast-Failover-Anwendungsszenario

Tabelle 5.9 zeigt die dabei gemessen Paketverlustraten unter PicOS. Dabei zeigt sich,
dass auch hier der lokale Ansatz Vorteile bietet, vor allem dann, wenn die Verzögerung
zum zentralen SDN-Controller steigt. Abbildung 5.12 zeigt dazu die Unterschiede in
Prozent zur lokalen nativen Variante.

Ansatz | RTT zum SDN-Controller Lokal 0,3 ms 2 ms 4 ms 6 ms 8 ms
Zentral (Nativ) 21,00% 21,63% 21,91% 22,14% 22,44%
Zentral (Rumprun KVM) 21,41% 21,84% 22,07% 22,38% 23,14%
Lokal (Nativ) 20,70%
Lokal (Rumprun KVM) 21,12%

Tabelle 5.9: Messergebnisse der Paketverlustrate für UDP-Kommunikation zwischen
Sender und Empfänger beim Fast-Failover-Anwendungsszenario

83

5 Evaluation

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

0 0,3 2 4 6 8

Zentral (Nativ) Zentral (Rumprun KVM) Lokal (Nativ) Lokal (Rumprun KVM)

Abbildung 5.12: Erhöhung der Paketverlustrate im Vergleich

5.3.4 Fazit

Bei der Evaluation der Anwendungsszenarien zeigte sich schnell, dass die lokale Aus-
führung manchmal minimal langsamer ist als ein sehr gut angebundener zentraler SDN-
Controller. Das liegt daran, dass die Latenz zum zentralen SDN-Controller, wenn diese
sehr weit unter 1 ms liegt nicht wirklich in Gewicht fällt. Ein weiter Grund ist, dass
die rein lokale Verarbeitung mehr Last auf der CPU des Switches verursacht. Forwar-
ding Engine und lokaler SDN-Controller laufen ja nun beide auf dem Switch und teilen
sich dessen Leistung. Steigt die Latenz zum zentralen SDN-Controller ist aber die lokale
Variante viel vorteilhafter und ist im Vergleich schnell erheblich performanter.

Für den Overhead des OpenFlow-Protokolls zeigte sich, dass dieser stark von der Imple-
mentierung abhängt. Es lässt sich deshalb festhalten, dass bei einer guten Implementie-
rung wie dem in C geschriebenen Open vSwitch der OpenFlow Overhead nicht störend
auffällt. Bei der Wahl einer OpenFlow Library sollte also auf eine schnelle und schlanke
Implementierung geachtet werden.

Der Overhead durch die Virtualisierung liegt meist bei ca. 1 ms. Das ist aber kein großer
Nachteil und verschiebt den Punkt ab welchem die höhere Latenz zum zentralen SDN-
Controller diesen langsamer macht nur minimal. Die Vorteile von Virtualisierung dürften
daher in den meisten Fällen überwiegen.

In einem kleinen Netzwerk mit einem sehr schnell und ohne große Latenz angebundenem
zentralen SDN-Controller bietet der Ansatz eines virtualisierten lokalen SDN-Controllers
daher nur wenige Vorteile. Je größer die Latenz zum zentralen SDN-Controller wird desto

84

5.3 Evaluation von Anwendungsszenarien

größer wird aber der Performance Gewinn durch den lokalen SDN-Controller-Ansatz. Für
große Netze wo auch die Latenz zum zentralen SDN-Controller steigt bietet der Ansatz
eines virtualisierten lokalen SDN-Controllers deshalb deutliche Vorteile.

85

6 Zusammenfassung und Ausblick

Im Folgenden werden die wesentlichen Punkte und Erkenntnisse dieser Arbeit noch ein-
mal zusammengefasst und anschließend noch ein kurzer Ausblick gegeben.

Wie bereits in der Einleitung angemerkt steigen die Anforderungen an klassische IT-
Netzwerke immer weiter. Das Software-defined Networking, das eine Trennung in Data
und Control Plane einführt, auf offene Standards setzt und einen logisch zentralisierten
SDN-Controller ermöglicht, gewinnt deswegen immer mehr an Bedeutung. Ein Vorteil
davon sind relativ einfache SDN-Switches, die Daten anhand vom logisch zentralisierten
SDN-Controller vorgegeben Regeln weiterleiten.

Wie in Kapitel 3 beschrieben gibt es aber auch viele Situationen in denen weiterhin
eine lokale Verarbeitung wie bei klassischen Switches möglich wäre. Eine lokale Verar-
beitung bietet dabei die Chance die Latenz zum logisch zentralisierten SDN-Controller
zu vermeiden und gleichzeitig dessen Last zu reduzieren.

Um die Vorteile lokaler Logik beim Software-defined Networking nutzen zu können wurde
in Kapitel 3 ein Konzept für lokale Entscheidungen auf SDN-Switches entworfen. Dazu
wurde der Ansatz eines virtualisierten lokalen SDN-Controllers auf dem SDN-Switch
gewählt. Dabei wird mit Hilfe von Virtualisierungstechnologie, wie z. B. Containern oder
Unikernels, ein vom Rest des SDN-Switch weitgehend isolierter SDN-Controller wie z. B.
Ryu ausgeführt. Der CDPI Agent des SDN-Switches verbindet sich dann statt mit dem
logisch zentralisierten SDN-Controller mit dem virtualisierten lokalen SDN-Controller.
Dieser wiederum kann sich mit dem logisch zentralisierten SDN-Controller verbinden,
so dass der virtualisierte lokale SDN-Controller im Prinzip einfach zwischen den CDPI
Agent des SDN-Switches und den logisch zentralisierten SDN-Controller geschaltet ist.
Der virtualisierte lokale SDN-Controller-Ansatz bietet dadurch viele Vorteile:

• Geringere bzw. von der Verzögerung zum logisch zentralisierten SDN-Controller
unabhängige Latenz für Aktionen, die vom virtualisierten lokalen SDN-Controller
verarbeitet werden können.

• Weniger Traffic vom Switch zum logisch zentralisierten SDN-Controller, da der vir-
tualisierte lokale SDN-Controller viele der Anfragen vom OpenFlow Agent direkt
lokal verarbeiten kann, so dass keine Nachricht zu diesem gesendet werden muss.

• Geringere Last für den logisch zentralisierten SDN-Controller, da ihm der virtua-
lisierte lokale SDN-Controller lokal durchführbare Arbeit abnimmt. Es wäre sogar
eine hierarchische Organisation der virtualisierten lokalen SDN-Controller denk-
bar.

87

6 Zusammenfassung und Ausblick

• Erprobte dezentrale Protokolle aus klassischen Netzwerken können relativ leicht
portiert und auf dem virtualisierten lokalen SDN-Controller genutzt werden.

• Bessere Fehlertoleranz, da rein lokale Funktionen auch bei Ausfall des logisch zen-
tralisierten SDN-Controllers erhalten bleiben.

Es stellen sich dabei aber auch viele Fragen z. B. in Bezug auf die Effizienz der Virtua-
lisierung, den Overhead der Kommunikation, den geeignetsten SDN-Controller und den
praktischen Nutzen, weshalb eine umfangreiche Evaluation folgte.

Beim Vergleich und der Analyse der Virtualisierungstechnologien in Kapitel 4 und 5
zeigte sich, dass sowohl Container als auch Unikernel geeignet sind. Bei den Containern
kommen die zwei großen und bekannten Vertreter LXC und Docker für den Einsatz in
Frage. Bei den Unikernels ist die Auswahl theoretisch größer, sucht man aber nach einer
möglichst allgemeinen Lösung, die keine großen Einschränkungen hat, bleibt im Prinzip
nur Rumprun. Die anderen Unikernel-Projekte sind noch zu unausgereift oder speziell
für eine Programmiersprache oder ein Anwendungsgebiet gedacht.

Die Container können wie die Evaluation zeigte vor allem mit einer hohen Performance
punkten, die sich kaum von der nativen Ausführung unterscheidet. Der Grund ist der
gemeinsame Kernel mit dem Hostbetriebssystem, wodurch kaum Overhead anfällt. Der
Nachteil davon ist, dass Container Anforderungen, wie eine bestimmte minimale Linux-
Kernel-Version oder aktive cgroups, an das Betriebssystem stellen. Dies führt dazu, dass
Container nicht überall eingesetzt werden können, gerade in Bezug auf Betriebssysteme
für SDN-Switches, die unter Umständen noch ältere Linux Kernel Versionen nutzen oder
um möglichst leichtgewichtig zu sein nicht alle nötigen Features bieten.

Unikernel wie Rumprun punkten wie sich zeigte vor allem bei der Plattformunabhängig-
keit, da sie sowohl auf echter als auch virtueller Hardware, z. B. mit einem Hypervisor
wie QEMU, ausgeführt werden können. Die Unikernel bauen dabei auf der Idee auf, an-
statt einem ganzen Betriebssystem wie bei klassischen virtuellen Maschinen nur die für
Anwendung benötigten Teile eines Betriebssystems, das in Form vom Libraries vorliegt,
auszuführen. Der Nachteil dabei besteht darin, dass die Anwendung für den Uniker-
nel extra kompiliert und um Betriebssystemkomponenten erweitert werden muss. Dazu
muss die Anwendung komplett als Sourcecode vorliegen und mit den durch den Uni-
kernel gegebenen Einschränkungen kompatibel sein. Die Performance hängt dabei stark
vom Hypervisor bzw. der Unterstützung durch die darunterliegende Hardware ab. Mit
QEMU/KVM ist Rumprun fast so schnell wie die Containerlösungen, bei fehlendem
KVM Support bricht die Performance hingegen deutlich ein.

Bei der Betrachtung der vielen verschiedenen verfügbaren SDN-Controller in Kapitel 4
stellte sich außerdem heraus, dass die Auswahl zwar sehr groß ist aber nicht jeder SDN-
Controller für jeden Anwendungsfall gleich gut geeignet ist und viele nicht aktiv weiter-
entwickelt werden. Die großen und bekannten SDN-Controller wie z. B. Ryu, Floodlight
und NOX sind aber allgemein genug aufgebaut um theoretisch für jeden Anwendungsfall
verwendbar zu sein.

88

Bei der darauffolgenden Evaluation des OpenFlow-Protokolls in Kapitel 5 zeigte sich,
dass bei einer guten Implementierung wie z. B. beim in C geschriebenen Open vSwitch
nur wenig Overhead entsteht. Wird eine gute OpenFlow-Implementierung genutzt sollte
der Einsatz von OpenFlow als CDPI-Protokoll kein Problem darstellen. Somit sind auch
keine Anpassungen am CDPI Agent nötig, was die Anbindung vereinfacht.

Im Anschluss folgte dann die Evaluation von Anwendungsszenarien, die am Ende von
Kapitel 5 dokumentiert ist. Dabei zeigte sich, dass der Ansatz eines virtualisierten lo-
kalen SDN-Controllers in allen untersuchten Anwendungsszenarien auch Vorteile bringt.
Ist der logisch zentralisierte SDN-Controller sehr gut und mit einer Latenz von deutlich
unter 1 ms angebunden ist der Ansatz eines virtualisierten lokalen SDN-Controllers zwar
teilweise noch minimal langsamer aber mit steigender Latenz zum logisch zentralisierten
SDN-Controller ist dieser schnell deutlich langsamer. Das kommt daher, dass sich der
virtualisierte lokale SDN-Controller die Ressourcen des SDN-Switches mit der anderen
Software darauf teilt und auch die Virtualisierung, deren Vorteile aber deutlich überwie-
gen, einen kleinen Overhead erzeugt. In sehr kleinen und schnellen Netzwerken dürfte
der Ansatz eines virtualisierten lokalen SDN-Controllers deswegen nur geringe Vorteile
bringen. In großen Netzwerken hingegen, wo es auch eine große Latenz zum zentralen
SDN-Controller gibt und dieser durch eine größere Anzahl SDN-Switches stärker ausge-
lastet ist, kann der Ansatz eines virtualisierten lokalen SDN-Controllers aber durchaus
große Vorteile bringen.

Der Einsatz virtualisierter lokaler SDN-Controller für lokale Kontrolllogik bietet somit,
wie diese Arbeit zeigt, verschiedene Vorteile. Die Reduzierung der Last des logisch zentra-
lisierten SDN-Controllers, das Einsparen der Latenz zu diesem bei lokalen Entscheidun-
gen, die gute Isolation der dafür nötigen Anpassungen und die erhöhte Ausfallsicherheit
sind dabei vermutlich die entschiedensten Punkte.

Dennoch sind für die Zukunft einige Fragen offen. Aufgrund der noch relativ einfachen
Anwendungsszenarien für diese Arbeit wurde zum Beispiel noch nicht untersucht wie
groß die Vorteile bei komplexeren Anwendungsfällen oder nur teilweise lokal verarbeite-
ten Anwendungsfällen sind. Auch sind weitere Untersuchungen in größeren Netzwerken
als einem kleinen Testbed Setup denkbar, um noch bessere Aussagen über den Nutzen
in der Praxis machen zu können. Des Weiteren wäre auch ein Vergleich mit Alternativen
für lokale Kontrolllogik interessant, um zu sehen welche Ansätze die meisten Vorteile
bieten.

89

Literatur

[1] AT&T. AT&T SDN Network Design Challenge. 2016. url: http://about.att.
com/innovation/labs/SDNChallenge.

[2] Giuseppe Bianchi et al. „OpenState: programming platform-independent stateful
openflow applications inside the switch“. In: ACM SIGCOMM Computer Commu-
nication Review 44.2 (2014), S. 44–51.

[3] Roberto Bifulco et al. „Improving SDN with InSPired Switches“. In: Proceedings
of the Symposium on SDN Research. SOSR ’16. Santa Clara, CA, USA: ACM,
2016, 11:1–11:12. isbn: 978-1-4503-4211-7. doi: 10.1145/2890955.2890962. url:
http://doi.acm.org/10.1145/2890955.2890962.

[4] Dr. James Bottomley. What is All the Container Hype? 2014. url: http://www.
odin.com/fileadmin/media/hcap/pcs/documents/ParCloudStorage_Mini_
WP_EN_042014.pdf.

[5] Carmelo Cascone et al. OpenState SDN. 2016. url: http://openstate-sdn.org/.
[6] Citrix. SDN 101: Eine Einführung in softwaredefiniertes Networking. 2012. url:

https://www.citrix.com/content/dam/citrix/en_us/documents/oth/sdn-
101-an-introduction-to-software-defined-networking-de.pdf.

[7] Cloudius. OSv. 2016. url: http://osv.io/.
[8] Ryu SDN Framework Community. Ryu. 2016. url: https://osrg.github.io/

ryu/.
[9] Broadcom Corporation. OpenFlow Data Plane Abstraction (OF-DPA). 2014. url:

https://www.broadcom.com/docs/support/OF-DPA-Specs_v2.pdf.
[10] Edgecore Networks Corporation. AS5712-54X. 2016. url: http://www.edge-

core.com/productsInfo.php?cls=1&cls2=8&cls3=44&id=15.
[11] CPqD. libfluid. 2016. url: http://opennetworkingfoundation.github.io/

libfluid/.
[12] Matthias Fetzer. „Local Data Plane Event Handling in Software-defined Networ-

king“. Magisterarb. University of Stuttgart, 2016.
[13] Project Floodlight. Floodlight. 2016. url: http://www.projectfloodlight.org/

floodlight/.
[14] Flowgrammable. Flowgrammable. 2016. url: http://flowgrammable.org/.
[15] Open Networking Foundation. Open Networking Foundation. 2016. url: https:

//www.opennetworking.org.

91

http://about.att.com/innovation/labs/SDNChallenge
http://about.att.com/innovation/labs/SDNChallenge
http://dx.doi.org/10.1145/2890955.2890962
http://doi.acm.org/10.1145/2890955.2890962
http://www.odin.com/fileadmin/media/hcap/pcs/documents/ParCloudStorage_Mini_WP_EN_042014.pdf
http://www.odin.com/fileadmin/media/hcap/pcs/documents/ParCloudStorage_Mini_WP_EN_042014.pdf
http://www.odin.com/fileadmin/media/hcap/pcs/documents/ParCloudStorage_Mini_WP_EN_042014.pdf
http://openstate-sdn.org/
https://www.citrix.com/content/dam/citrix/en_us/documents/oth/sdn-101-an-introduction-to-software-defined-networking-de.pdf
https://www.citrix.com/content/dam/citrix/en_us/documents/oth/sdn-101-an-introduction-to-software-defined-networking-de.pdf
http://osv.io/
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
https://www.broadcom.com/docs/support/OF-DPA-Specs_v2.pdf
http://www.edge-core.com/productsInfo.php?cls=1&cls2=8&cls3=44&id=15
http://www.edge-core.com/productsInfo.php?cls=1&cls2=8&cls3=44&id=15
http://opennetworkingfoundation.github.io/libfluid/
http://opennetworkingfoundation.github.io/libfluid/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://flowgrammable.org/
https://www.opennetworking.org
https://www.opennetworking.org

Literatur

[16] Open Networking Foundation. OpenFlow Switch Specification. 2015. url: https:
//www.opennetworking.org/images/stories/downloads/sdn- resources/
onf-specifications/openflow/openflow-switch-v1.5.1.pdf.

[17] Open Networking Foundation. SDN architecture. 2014. url: https://www.opennetworking.
org/images/stories/downloads/sdn- resources/technical- reports/TR_
SDN_ARCH_1.0_06062014.pdf.

[18] Open Networking Fundation. „Software-defined Networking: The new norm for
networks“. In: ONF White Paper (2012).

[19] BISDN GmbH. libfluid. 2016. url: https://bisdn.github.io/rofl-core/rofl-
common/index.html.

[20] python greenlet. greenlet. 2016. url: https://github.com/python-greenlet/
greenlet.

[21] Roberto Ierusalimschy, Waldemar Celes und Luiz Henrique de Figueiredo. Lua.
2016. url: http://www.lua.org/about.html.

[22] Docker Inc. Docker. 2016. url: https://www.docker.com/.
[23] Pica8 Inc. PicOS. 2016. url: http://www.pica8.com/products/picos.
[24] InterfaceMasters. OF-DPA Simple Switch. 2014. url: https : / / github . com /

InterfaceMasters / ryu / blob / imt _ ofdpa _ simple _ switch _ 13 / ryu / app /
simple_switch_13.py.

[25] Sushant Jain et al. „B4: Experience with a globally-deployed software defined
WAN“. In: ACM SIGCOMM Computer Communication Review 43.4 (2013), S. 3–
14.

[26] Hiroaki KAWAI. twink. 2016. url: https://github.com/hkwi/twink/.
[27] Rahamatullah Khondoker et al. „Feature-based comparison and selection of Soft-

ware Defined Networking (SDN) SDN-Controllers“. In: Computer Applications and
Information Systems (WCCAIS), 2014 World Congress on. IEEE. 2014, S. 1–7.

[28] Diego Kreutz et al. „Software-defined Networking: A comprehensive survey“. In:
Proceedings of the IEEE 103.1 (2015), S. 14–76.

[29] Open Network Linux. Open Network Linux. 2016. url: https://opennetlinux.
org/.

[30] linuxcontainers.org. LXC. 2016. url: https://linuxcontainers.org/.
[31] loxigen. loxigen. 2016. url: https://github.com/floodlight/loxigen.
[32] Anil Madhavapeddy und David J Scott. „Unikernels: the rise of the virtual library

operating system“. In: Communications of the ACM 57.1 (2014), S. 61–69.
[33] C. Meinel et al. Virtualisierung und Cloud Computing: Konzepte, Technologiestu-

die, Marktübersicht. Technische Berichte des Hasso-Plattner-Instituts für Software-
systemtechnik an der Universität Potsdam. Univ.-Verlag, 2011. isbn: 9783869561134.

92

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://bisdn.github.io/rofl-core/rofl-common/index.html
https://bisdn.github.io/rofl-core/rofl-common/index.html
https://github.com/python-greenlet/greenlet
https://github.com/python-greenlet/greenlet
http://www.lua.org/about.html
https://www.docker.com/
http://www.pica8.com/products/picos
https://github.com/InterfaceMasters/ryu/blob/imt_ofdpa_simple_switch_13/ryu/app/simple_switch_13.py
https://github.com/InterfaceMasters/ryu/blob/imt_ofdpa_simple_switch_13/ryu/app/simple_switch_13.py
https://github.com/InterfaceMasters/ryu/blob/imt_ofdpa_simple_switch_13/ryu/app/simple_switch_13.py
https://github.com/hkwi/twink/
https://opennetlinux.org/
https://opennetlinux.org/
https://linuxcontainers.org/
https://github.com/floodlight/loxigen

Literatur

[34] Hesham Mekky et al. „Application-aware Data Plane Processing in SDN“. In: Pro-
ceedings of the Third Workshop on Hot Topics in Software Defined Networking.
HotSDN ’14. Chicago, Illinois, USA: ACM, 2014, S. 13–18. isbn: 978-1-4503-2989-
7. doi: 10.1145/2620728.2620735. url: http://doi.acm.org/10.1145/
2620728.2620735.

[35] Mirage. MirageOS. 2016. url: https://mirage.io/.
[36] Nicira. Nicira Extensions. 2016. url: https://github.com/openvswitch/ovs/

blob/master/include/openflow/nicira-ext.h.
[37] opendaylight.org. OpenDaylight. 2016. url: https://www.opendaylight.org/

platform-overview/.
[38] Hewlett Packard. OpenSwitch. 2016. url: http://www.openswitch.net/.
[39] Ben Pfaff und Bruce Davie. RFC 7047 The Open vSwitch Database Management

Protocol. 2013. url: http://www.ietf.org/rfc/rfc7047.txthttps://tools.
ietf.org/html/rfc7047.

[40] Ben Pfaff et al. „The design and implementation of open vswitch“. In: 12th USE-
NIX symposium on networked systems design and implementation (NSDI 15).
2015, S. 117–130.

[41] UniK Project. UniK. 2016. url: https://github.com/emc-advanced-dev/unik.
[42] NOX Repo. NOX. 2016. url: https://github.com/noxrepo/nox.
[43] Rumprun. Rumprun. 2016. url: https://github.com/rumpkernel/rumprun.
[44] Alexander Shalimov et al. „Advanced study of SDN/OpenFlow SDN-Controllers“.

In: Proceedings of the 9th central
& eastern european software engineering conference in russia. ACM. 2013, S. 1.

[45] Mininet Team. Mininet. 2016. url: http://mininet.org/.
[46] QEMU Team. QEMU. 2016. url: http://wiki.qemu.org/Main_Page.
[47] Trema. Trema. 2016. url: https://trema.github.io/trema/.
[48] unikernel.org. Unikernels. 2016. url: http://unikernel.org/.
[49] Open vSwitch. Open vSwitch. url: http://openvswitch.org/.

93

http://dx.doi.org/10.1145/2620728.2620735
http://doi.acm.org/10.1145/2620728.2620735
http://doi.acm.org/10.1145/2620728.2620735
https://mirage.io/
https://github.com/openvswitch/ovs/blob/master/include/openflow/nicira-ext.h
https://github.com/openvswitch/ovs/blob/master/include/openflow/nicira-ext.h
https://www.opendaylight.org/platform-overview/
https://www.opendaylight.org/platform-overview/
http://www.openswitch.net/
http://www.ietf.org/rfc/rfc7047.txt https://tools.ietf.org/html/rfc7047
http://www.ietf.org/rfc/rfc7047.txt https://tools.ietf.org/html/rfc7047
https://github.com/emc-advanced-dev/unik
https://github.com/noxrepo/nox
https://github.com/rumpkernel/rumprun
http://mininet.org/
http://wiki.qemu.org/Main_Page
https://trema.github.io/trema/
http://unikernel.org/
http://openvswitch.org/

Literatur

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt
und alle wörtlich oder sinngemäß aus anderen Werken über-
nommene Aussagen als solche gekennzeichnet. Weder diese
Arbeit noch wesentliche Teile daraus waren bisher Gegen-
stand eines anderen Prüfungsverfahrens. Ich habe diese Ar-
beit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten
Exemplaren überein.

Ort, Datum, Unterschrift

95

	Inhaltsverzeichnis
	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Einleitung
	Zielsetzung
	Gliederung

	Grundlagen
	Software-defined Networking (SDN)
	OpenFlow (OF)
	SDN-Switch

	Virtualisierungstechnologien
	Virtuelle Maschinen (VM)
	Container
	Unikernels

	Literatur / Related Work

	Konzeption
	Motivation
	Lokale Logik
	Anwendungsfelder
	Virtualisierung

	Klassische SDN-Systemarchitektur
	Umsetzungsvariationen
	Variante 1: Direkte Modifikation der Forwarding Engine
	Variante 2: Integration eines Interpreter in die Forwarding Engine
	Variante 3: Lokaler SDN-Controller auf dem Switch
	Variante 4: Lokaler virtualisierter SDN-Controller auf dem Switch
	Fazit Umsetzungsvarianten

	Systemmodel
	Systemarchitektur mit lokalem SDN-Controller
	Kommunikation
	Funktionsweise
	Modifikation, Konfiguration und Erweiterbarkeit
	Life Cycle und Konsistenz

	Anforderungen an Umsetzung und Evaluation

	Umsetzung
	Hardware- und Softwareumgebung
	Vergleich und Auswahl von SDN-Controllern
	Floodlight
	NOX
	Ryu

	Vergleich und Auswahl von Virtualisierungslösungen
	Container
	Fazit Container
	Unikernel
	Fazit Rumprun
	Fazit Container und Unikernel

	Anwendungsszenarien
	Simple Switch
	Port Knocking
	Fast Failover

	Evaluation
	TCP Performance verschiedener Virtualisierungslösungen
	OpenFlow Performance Evaluation
	twink
	Ryu
	Open vSwitch
	Fazit OpenFlow Performance Evaluation

	Evaluation von Anwendungsszenarien
	Simple Switch
	Port Knocking
	Fast Failover
	Fazit

	Zusammenfassung und Ausblick
	Literatur

