
Institut für Architektur von Anwendungssystemen

Universität Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. 104

Vergleich und Bewertung von
Methoden und Tools für den

Entwurf und die Realisierung von
REST APIs

Marcus Eisele

Studiengang: Softwaretechnik

Prüfer/in: Prof. Dr. Dr. h. c. Frank Leymann

Betreuer/in: Dipl.-Inf. Florian Haupt

Beginn am: 11. Mai 2016

Beendet am: 10. November 2016

CR-Nummer: D.2.2

Kurzfassung

REST-Schnittstellen haben sich die letzten Jahre in der Softwareindustrie etabliert. Abhängig

von der eingesetzten Technologie gibt es viele Möglichkeiten eine REST-Schnittstelle zu

entwerfen und umzusetzen. Für die Unterstützung des Entwurfs und der Realisierung von

REST-Schnittstellen existiert ein modellgetriebener Ansatz mit akademischem Hintergrund.

Neben diesem akademischen, modellgetriebenenAnsatz existierenweitere Ansätze basierend

auf Beschreibungssprachen wie Swagger oder RAML, die bei Entwurf und Realisierung

unterstützen. Diese Arbeit vergleicht den eben beschriebenen akademischen Ansatz mit zwei

Ansätzen, welche beide jeweils eine der eben genannten Beschreibungssprachen nutzen.

Der auf Swagger-basierende Ansatz wird durch eine bestehende Softwareentwicklung eines

Industriepartners repräsentiert.

Der akademische modellgetriebene Ansatz und seine Werkzeuge werden mit den beiden an-

deren Ansätzen und deren Werkzeuge hinsichtlich ihrer Brauchbarkeit zum Entwurf und zur

Umsetzung von REST-Schnittstellen in einem Industrieunternehmen untersucht. Dieser Ver-

gleich der Entwurfs- und Realisierungsmethoden von REST-Schnittstellen wird exemplarisch

an einem agil entwickelten Dienst zur Abfrage von Sonderzielen durchgeführt.

Der Vergleich betrachtet die verschiedenen Arbeitsweisen der vorgestellten Ansätze, die

dabei enstehenden Artefakte und Modelle sowie den von ihnen erzeugten Quellcode. Für die

Durchführung des Vergleichs der verschiedenen Ansätze wurden Nachbauten des Dienstes

des Industriepartners für den akademischen Ansatz und den Ansatz unter Verwendung

von RAML erstellt. Diese Nachbauten dienen als Grundlage für die Betrachtung des Ent-

wicklungsprozesses, die Befragung der Entwickler sowie die Durchführung einer statischen

Codeanalyse.

Die Befragung zeigt, dass die befragten Entwickler des Industriepartners die ihnen neu

vorgestellten Ansätze im Allgemeinen nicht als bereit und lohnenswert für den Entwurf und

die Umsetzung von REST-Schnittstellen in der Praxis erachteten. Die beteiligten Entwickler

waren sich aber einig, dass modellgetriebenen Ansätze attraktive Möglichkeiten bieten.

3

Inhaltsverzeichnis

1 Einleitung 13
1.1 Motivation . 13

1.2 Ziel . 14

1.3 Vorgehen . 15

1.4 Aufbau der Arbeit . 16

2 Grundlagen 17
2.1 Modellierung . 17

2.2 Programmierschnittstellen . 19

2.3 REST . 20

2.4 Scrum . 24

2.5 Statische Codeanalyse . 29

2.6 Microservice-Architektur . 30

2.7 Modellgetriebene Softwareentwicklung . 31

2.8 Modellbasierte Ansätze für REST-Schnittstellen 32

3 Verwandte Arbeiten 39
3.1 Modellgetriebene Erstellung von REST-Diensten 39

3.2 Vergleich von Werkzeugen und Entwicklungsansätzen 40

4 Projekt beim Industriepartner 41
4.1 Der Industriepartner . 41

4.2 Der Service . 46

4.3 Nutzung von Beschreibungssprachen für REST APIs 51

5 Methoden und Tools für den Entwurf von REST-APIs 53
5.1 Methoden und Tools des IST-Zustands . 53

5.2 Restful Api Modeling Language . 57

5.3 Akademischer Ansatz . 61

5.4 Erstellung der Modell-Artefakte . 64

6 Methoden und Tools für die Realisierung von REST-APIs 69
6.1 Methoden und Tools des IST-Zustands . 69

6.2 Restful Api Modeling Language . 72

5

6.3 Akademischer Ansatz . 73

7 Vergleich der Ansätze 75
7.1 Best-Practices: Entwurf von REST-Schnittstellen 75

7.2 Evaluierung durch den Autor . 78

7.3 Befragung der Entwickler . 82

7.4 Ergebnisse der Befragung . 88

7.5 Untersuchung mittels statischer Codeanalysewerkzeuge 91

7.6 Analyse und Zusammenfassung . 96

8 Zusammenfassung und Ausblick 99

Abkürzungsverzeichnis 103

Literaturverzeichnis 105

6

Abbildungsverzeichnis

1.1 Gantt-Diagramm: Durchführung der Arbeit 15

2.1 Das spätere Wasserfall-Modell . 25

2.2 Ablauf Referenz-Scrumprozess . 28

2.3 Metamodelle des akademischen Ansatzes 36

4.1 Unterschiedliche Zeitpunkte des Entwurfs von REST-APIs 45

4.2 Entwicklung des Fertigstellungsgrades von REST-APIs in unterschiedlichen

Projekttypen . 46

4.3 Logischer Aufbau: Dienst des Industriepartners 48

4.4 Layout der REST-Schnittstelle . 50

4.5 Nutzung von Swagger beim Industriepartner 51

5.1 Workflow: Entwurf und Realisierung von REST-Schnittstellen beim Indus-

triepartner . 54

5.2 Nachzeichnung: Whiteboard Entwurf der Personenschnittstelle im freien

Format . 55

5.3 Beispiel für RestRessource-Diagramm des akademischen Ansatzes 63

5.4 Screenshot: Grafische Ansicht des Akademischen Ansatzes 65

5.5 Screenshot: Darstellung der Parameter beim akademischen Ansatz 66

5.6 Screenshot: Schemadarstellung beim akademischen Ansatz 66

7.1 Layout der Person REST-Schnittstelle . 85

7.2 Ablauf der Entwicklerbefragung . 85

7.3 Akademischer Ansatz: Layout Personenschnittstelle 87

7.4 Layout der Information REST-Schnittstelle 87

7.5 Auswertung der Punktevergabe der Entwickler 90

7.6 SonarQube-Ergebnisse . 93

7

Tabellenverzeichnis

2.1 Idempotenz und Sicherheit der HTTP-Methoden 23

2.2 Umsetzung des CRUD-Musters mittels REST 23

4.1 Abweichungen von Referenzscrum . 42

7.1 Best-Practices in der Literatur . 76

7.2 AHP: Abstraktionsgrad . 80

7.3 AHP: Verständlichkeit . 80

7.4 AHP: Genauigkeit . 80

7.5 AHP: Prognose . 81

7.6 AHP: Aufwand . 81

7.7 Endgültige AHP-Matrix . 82

9

Verzeichnis der Listings

2.1 Beispiel für Swagger-Definition . 33

2.2 Beispiel für RAML-Definition in Version 0.8 35

4.1 Beispielhafte HTTP-Anfrage an ‘/information/v1/pois’ für einen Bereich in

der Stuttgarter Innenstadt . 49

4.2 Beispielhafte HTTP-Anfrage an ‘/information/v1/pois/radius’ für einen 3

km großen Bereich in der Stuttgarter Innenstadt 49

4.3 Beispielhafte HTTP-Antwort des Dienstes 50

4.4 Beispiel für Error-Objekt im JSON-Format 50

5.1 Beispiel für JSON-Format: Liste von Personen 58

5.2 Beispiel für Definition des Collection/Collection-Item Musters in RAML . . 60

5.3 Beispiel für die Verwendung des Collection/Collection-Item Muster in RAML 61

5.4 Beispiel für die Verwendung von JSON-Schema in RAML 62

5.5 Beispiel für die Verwendung der Types-Definitionen in RAML 1.0 62

6.1 Beispielhafte Ressource-Klasse in SpringBoot 70

6.2 Beispielhafte Methode mit Parametern in SpringBoot 71

6.3 Beispielhafte Datenklasse . 71

7.1 Beispielhafte HTTP-Anfrage mit Accept-Header 77

11

1 Einleitung

Dieses Kapitel dient der Einführung in diese Arbeit. Es besteht aus der Motivation (Ab-

schnitt 1.1), welche den Grund für diese Arbeit beschreibt, gefolgt von einem Abschnitt der

auf das Ziel der Arbeit (Abschnitt 1.2), inklusive der Aufgabenbeschreibung und der Abgren-

zung, eingeht. Darauf folgt ein Abschnitt (Abschnitt 1.3) der sich mit dem methodischen

Vorgehen der Durchführung der Arbeit beschäftigt. Abgeschlossen wird dieses Kapitel durch

einen Überblick (Abschnitt 1.4) über den Aufbau dieser Arbeit.

1.1 Motivation

In den letzten Jahren hat sich REpresentational State Transfer (REST) als Architekturstil für

Webservices etabliert und wird heute weitreichend eingesetzt. Viele REST-Schnittstellen

besitzen nicht die von Roy Fielding in seiner Dissertation [Fie00] geforderten Eigenschaf-

ten. Resultat dieser fehlenden Eigenschaften der REST-Schnittstellen sind Systeme, welche

die Vorteile des REST-Stils nicht vollständig ausschöpfen und dadurch viele der erhofften

Eigenschaften vermissen lassen.

Neben der Missachtung des Architekturstils gibt es bei dem Entwurf und der Umsetzung

von REST-Webservices oft ähnliche und sich wiederholende Arbeitsabläufe. Designent-

scheidungen für REST-Schnittstellen, wie das Definieren von Ressourcen, werden oftmals

anhand formloser Entwürfe an Whiteboards oder mit Hilfe anderer Medien entworfene

Skizzen, getroffen. Diese Skizzen dienen zum einen als Grundlage der späteren Implementie-

rung, oft aber auch als Teil der Dokumentation. Die Umsetzung ist dabei, bei ausreichender

Vollständigkeit der Skizzen, relativ trivial und bietet einen kleinen Handlungs- und Entschei-

dungsfreiraum. Unvollständige Entwürfe führen dabei oftmals zu Unterschieden zwischen

gewolltem Verhalten der Schnittstelle und tatsächlicher Umsetzung. Um Missachtungen

des Architekturstils beim Entwurf und Fehler während der Umsetzung zu vermeiden wäre

es von Vorteil, wenn diese Entwürfe bereits ein definiertes Format besäßen, welches al-

le Unklarheiten bereits im Voraus beseitigt und die zu implementierenden Schnittstellen

vollständig und ohne Mehrdeutigkeiten spezifiziert.

Neben der Einhaltung des Architekturstils ist die Aufgabe eines Entwicklers natürlich auch

die Implementierung der entworfenen REST-Schnittstelle. Diese Implementierung ist, falls

der Entwickler mit den eingesetzten Technologien bereits vertraut ist, eine oftmals sehr

13

1 Einleitung

repetitive Tätigkeit. Nach der Fertigstellung der Implementierung hat der Entwickler oftmals

auch die Aufgabe das im Entwurf entstandene Dokument, als Teil der Dokumentation, auf

aktuellem Stand zu halten. Sind also Änderungen an der Implementierung nötig, so müssen

diese in das bereits bestehende Dokument übernommen werden. Durch den weitverbrei-

teten Einsatz von agilen und iterativen Methoden zur Softwareentwicklung werden diese

Änderungen in vielen Projekten immer häufiger.

Mittlerweile gibt es bereits einige Methoden und Werkzeuge aus dem akademischen und

industriellen Umfeld, welche sich mit der Modellierung und späteren Erstellung von REST-

Schnittstellen beschäftigen. Die Wahl zwischen diesen Methode und den entsprechenden

Werkzeugen ist nicht einfach und es gibt bisher keinen bewährten Standard.

1.2 Ziel

Das konkrete Ziel dieser Arbeit ist es unterschiedliche Methoden für den Entwurf und die

Realisierung von REST-Schnittstellen zu untersuchen und zu vergleichen. Bei den unter-

schiedlichen Methoden sollen neben den reinen Entwurfs- und Implementierungsvorgängen

auch die Auswirkungen auf bestehende Entwicklungsprozesse untersucht werden.

Neben einer unabhängigen Untersuchung soll der Vergleich der Methoden auch anhand

einer Microservice-Implementierung eines Industriepartners durchgeführt werden. Diese

Microservice-Implementierung soll dazu mit im Zuge dieser Arbeit erstellten Nachbauten

unter Einsatz der unterschiedlichen Methoden verglichen werden.

Der Vergleich der Nachbauten und der bereitgestellten Implementierung soll eine Einschät-

zung über die realistischen Einsatzmöglichkeiten der verschiedenen Methoden für den

Entwurf und die Realisierung von REST-Schnittstellen geben. Neben der Einschätzung

kann nach dem Vergleich auch eine Qualitätsaussage über die zur Verfügung gestellte

REST-Schnittstelle des Industriepartners gegeben werden.

Abgrenzung

Dieser Abschnitt grenzt das Thema der vorliegenden Arbeit ein und zeigt Themen, welche

den Umfang dieser Arbeit übersteigen.

Vollständige Implementierung

Der vom Industriepartner zur Verfügung gestellte Microservice erfüllt neben den funktio-

nalen Anforderungen auch sehr viele nicht funktionale Anforderungen. Zu diesen nicht

14

1.3 Vorgehen

Mai Juni Juli August September Oktober November Dezember

Orientierung & Planung

Literaturrecherche

Präzisierung der Fragestellung

Entwurf Evaluierungsprozess

Einarbeit in die drei Ansätze

Erhebung der Daten bei Industriepartner

Erstellung der notwendigen Modelle

Vergleich der Ansätze

Erstellen Gliederung

Formulierung der Rohfassung

Eigene Überarbeitung

Review durch Betreuer

Einarbeiten von Feedback

Druck / Abgabe

Abbildung 1.1: Gantt-Diagramm: Durchführung der Arbeit

funktionalen Anforderungen gehören besondere Protokollierungseinstellungen, Qualitätsan-

forderungen und zusätzliche Funktionen für beispielsweise das spätere Monitoring während

des Produktivbetriebs.

Der Fokus dieser Arbeit liegt auf der REST-Schnittstelle des Dienstes, deshalb erfüllen die

erstellten Nachbauten lediglich den funktionalen Umfang der vom Industriepartner bereit

gestellten Implementierung. Sonstige Anforderungen sind eher kosmetischer Natur, werden

aber, sofern sie mit niedrigem Aufwand umsetzbar sind, umgesetzt.

Protokoll von REST-Schnittstellen

Fielding weißt in seiner Dissertation mehrmals darauf hin, dass prinzipiell der REST-

Architekturstil unabhängig von eingesetzten Protokollen ist [Fie00]. In der Praxis findet man

aufgrund der vorhanden Infrastruktur, wie HTTP-Server, HTTP-Bibliotheken und HTTP-

Clients aber fast ausschließlich REST-Schnittstellen auf Basis von HTTP. Diese Arbeit wird

sich daher ausschließlich mit der Erstellung von REST-Schnittstellen auf Basis von HTTP

und anderen Technologien des Internets beschränken.

1.3 Vorgehen

Die Arbeit wurde vom 11.05.2016 bis zum 10.11.2016 durchgeführt. Abbildung 1.1 zeigt eine

genaue Übersicht über den Verlauf der Arbeit. Das Projekt lässt sich grob in drei Phasen

einteilen: Einarbeitung, Umsetzung und Ergebnis.

15

1 Einleitung

Einarbeitung

Haupttätigkeit der Einarbeitung war es das Projekt zu organisieren und die Literaturre-

cherche durchzuführen. Die Literaturrecherche beschäftigte sich hauptsächlich mit dem

Identifizieren von Methoden zum Vergleich unterschiedlicher REST-Schnittstellen und Ent-

wicklungsmethodiken. Die Ergebnisse der Literaturrecherche finden sich zum einem im

Vergleich der verschiedenen Ansätze und zum anderem in Kapitel 3 bei den verwandten

Arbeiten wieder.

Umsetzung

Die Phase der Umsetzung bestand aus dem Erstellen der Nachbauten, der Evaluierung des

Entwicklungsprozesses und dem Vergleich der Methoden. Der Vergleich der Methoden

geschah parallel durch mehrere Aktivitäten. Eine der Aktivitäten war die Befragung der

Entwickler durch einen speziell dafür angefertigten Fragebogen. Weitere Aktivitäten waren

das Zusammenfassen der eigenen Erfahrungen mit den verschiedenen Ansätzen, sowie

eine Untersuchung der verschiedenen Ansätze mittels statischer Codeanalyse. Dem allen

ging noch eine Zeit der Nachforschungen voraus um eine solide Grundlage auf Basis der

gesichteten Literatur zu haben. Auf genauere Details zur Umsetzung wird in Kapitel 5

eingegangen.

Ergebnis

Die letzte Phase des Projekts beinhaltet zum einem die Evaluierung der in der Umsetzung

entstandenen Nachbauten, sowie das Verfassen der schriftlichen Ausarbeitung. Zusätzlich

wurde dem Industriepartner in dieser Phase auch Rückmeldung über die Qualität der zur

Verfügung gestellten REST-Schnittstelle gegeben.

1.4 Aufbau der Arbeit

Die Arbeit ist wie folgt aufgebaut: Das zweite Kapitel behandelt notwendige Grundlagen um

die Arbeit zu verstehen. Kapitel 3 gibt einen Überblick über die verwandten Arbeiten in den

verschiedenen betroffenen Themengebieten dieser Arbeit. Das vierte Kapitel beschreibt den

Industriepartner, welcher die Schnittstelle zum Vergleich zur Verfügung stellt, sowie das

Projektumfeld in welchem die Masterarbeit stattfindet. Kapitel 5 und Kapitel 6 beschäftigen

sich mit Methoden und Tools für den Entwurf bzw. für die Realisierung. Der Vergleich

der vorgestellten Ansätze wird in Kapitel 7 durchgeführt. In Kapitel 8 wird die Arbeit

zusammengefasst wiedergegeben und durch einen Ausblick abgeschlossen.

16

2 Grundlagen

Dieses Kapitel behandelt Themen, die wichtig für das Verständnis der vorliegenden Arbeit

sind. Es soll die Grundlagen für die weiteren Kapitel legen und dem Leser mit Hilfe von Infor-

mationen aus Fachliteratur und von den offiziellen Webseiten der eingesetzten Werkzeuge

und Methodiken die notwendigen Grundlagen vermitteln.

Das Kapitel teilt sich in mehrere Abschnitte auf, wobei jeder speziell auf ein Thema eingeht.

In Abschnitt 2.1 wird auf das Thema Modellierung eingegangen. Im Anschluss daran werden

in Abschnitt 2.2 die Grundlagen für Programmierschnittstellen erläutert. Abschnitt 2.3

führt den REST-Architekturstil ein und erklärt diesen. Das als Basis für den Vergleich des

Scrum-Prozesses dienende Referenz-Scrum wird in Abschnitt 2.4 vorgestellt.

Die restlichen Abschnitte gehen auf die weiteren Themen der Arbeit ein und erläutern

Microservice-Architektur (in Abschnitt 2.6), modellgetriebene Softwareentwicklung (in Ab-

schnitt 2.7) und die für die Arbeit wichtigen modellbasierten Ansätze für REST-Schnittstellen

(Abschnitt 2.8).

2.1 Modellierung

DasWort “Modell” ist nicht eindeutig definiert und so auch schwer einzugrenzen. Einige gän-

gige Definitionen beschreiben wichtige Eigenschaften welche einem Modell zugeschrieben

werden. Als “Eine in einer klar definierten Sprache geschriebene Beschreibung eines (einem

Teil eines) Systems. Äquivalent zu einer Spezifikation.” beschreiben Kleppe und andere ihre

Definition eines Modells (übersetzt aus [KWB03]). Eine weitere Definition stammt vom Ar-
chitecture Board ORMSC, welches ein Modell als eine Repräsentation eines Teils der Funktion,

der Struktur und/oder des Verhaltens eines Systems beschreibt [MM+01]. Miller und andere

beschreiben in ihrem MDA Guide ein Modell als eine Beschreibung oder Spezifikation des

Systems und seiner Umgebung für einen bestimmten Zweck [MM+03].

Wenn man diese drei Definitionen zusammennimmt vermitteln sie ein ganz gutes Bild, was

man sich unter einem Modell vorstellen kann. Modelle beschreiben also ein System oder

einen Teil davon und nutzen eine fest definierte Sprache um Funktion, Struktur und/oder

Verhalten zu beschreiben. Weitere Eigenschaften, welche ein Modell besitzen muss werden

von Selic in “The Pragmatics of Model-Driven Development” [Sel03] genannt:

17

2 Grundlagen

Abstrakt: Ein Modell ist immer eine reduzierte Darstellung des dargestellten Systems.

Durch das Entfernen oder Verstecken von für die Ansicht irrelevanten Details wird das

Wesentliche sichtbarer. In den immer funktionsfähigeren Softwaresystemen der heuti-

gen Zeit ist Abstraktion der einzigeWeg ummit der aus der gestiegenen Funktionalität

resultierenden Komplexität umzugehen.

Verständlich: Es reicht nicht nur Details zu abstrahieren, die verbleibenden Details des

Modells müssen auch in einer verständlichen Form vorliegen (z.B. einer Notation).

Genau: Ein Modell muss eine der Realität entsprechende Widerspiegelung der darzustel-

lenden Eigenschaften sein.

Prognostisch: Ein Modell muss einsetzbar sein um korrekte Aussagen über die Eigen-

schaften von Interesse zu treffen. Ein Modell kann für unterschiedliche Aussagen

unterschiedlich gut geeignet sein, Selic [Sel03] nennt hier als Beispiel ein mathemati-

sches Modell einer Brücke im Vergleich zu einem Modell gebaut aus Holz - das eine

kann gut für die Berechnung der Tragkraft genutzt werden, das andere ist dafür eher

schlecht geeignet, ist dafür aber gut geeignet um das Aussehen zu beurteilen.

Nicht zu aufwendig: Das Modell muss signifikant billiger herzustellen und zu analysieren

sein als das zu modellierende System.

Ein Modell hat nicht den Anspruch, dass das repräsentierte System tatsächlich existiert. Das

beschriebene System kann rein theoretischer Natur sein, oder auch noch nicht existieren. Bei

diesen noch nicht existierenden oder auch theoretischen Modellen spricht man von präskrip-
tiven, vorschreibenden, Modellen. Weit bekannte Beispiele dafür sind Baupläne, welche vor

dem Bau eines Hauses entstehen oder auch eine Aufbauanleitung für ein Möbelstück. Wird

ein Modell auf Basis eines bereits existierenden Systems erstellt, so spricht man von einem

deskriptiven, also beschreibenden, Modell. Eine Karte ist zum Beispiel ein gutes Beispiel für

ein eindeutig deskriptives Modell einer Stadt.

Oft ist die Trennung zwischen diesen beiden Modellarten aber nicht möglich, da für eine

genaue Bestimmung immer die Entstehungsgeschichte bekannt sein muss. Wenn man

beispielsweise einen Kabelplan für ein Stockwerk findet, so weiß man nicht ob es sich

dabei um ein präskriptives Modell oder ein deskriptives Modell handelt. Wurde er zur

zur Planung der Verkabelung erstellt, so wäre er ein präskriptives Modell, wenn er aber

als Dokumentation der bereits verlegten Kabel erstellt wurde, so handelt es sich um ein

eindeutig deskriptives Modell. Wie man sieht ist eine Aussage ohne die Herkunftsgeschichte

zu kennen nicht immer möglich.

18

2.2 Programmierschnittstellen

2.2 Programmierschnittstellen

Das Wort Schnittstelle ist in der Informatik sehr vieldeutig. Es gibt viele unterschiedli-

che Themen welche mit diesem Sammelbegriff in Verbindung gebracht werden. Neben

Hardwareschnittstellen, Benutzerschnittstellen und Schnittstellen in der objektorientierten

Programmierung gibt es noch viele weitere Arten von Schnittstellen. Sie alle haben gemein-

sam, dass sie den Zugriff auf Ressourcen abstrahieren und die spezifischere Implementierung

gegenüber dem Nutzer der Schnittstelle verstecken. Im Englischen wird für Schnittstellen

das Wort Interface benutzt, wir wollen in der Arbeit auf eine besondere Art der Schnittstellen

eingehen, auf die sogenannten Application Programming Interfaces (APIs). Sie beschreiben

eine Menge von Methodendefinitionen, Protokollen und Werkzeuge welche zusammen

genutzt werden können um auf Programme und Anwendungen zuzugreifen.

Wenn ein Programm Anwendern oder andere Programmen seine Funktionalität zur Verfü-

gung stellt, so wird es meist als Dienst (engl. service) bezeichnet. Um die Funktionalität zur

Verfügung zu stellen wird eine Schnittstelle zwischen dem anbietendem Dienst und dem

Nutzer des Dienstes benötigt.

Bei der Entwicklung von Schnittstellen gibt es in der Regel einen Kontrakt, welcher verbind-

lich die Schnittstelle beschreibt. Ein Schnittstellenanbieter verpflichtet sich seine Schnittstelle

entsprechend des Kontrakts implementiert zu haben. Mit der Schnittstellendefinition bzw.

Beschreibung kann ein Nutzer eines Dienstes sich so sicher sein, dass der Zugriff auf die

Schnittstelle wie im Kontrakt beschrieben abläuft.

Bei der Erstellung der beschriebenen Kontrakte und Schnittstellen gibt es zwei Arten von

Ansätzen. Der erste Ansatz wird top-down-Ansatz genannt. Er beschreibt die Entwick-

lungsrichtung ausgehend vom Abstraktionslevel, von oben nach unten bedeutet hier dem-

entsprechend, dass zuerst das abstraktere - also der Kontrakt - entwickelt wird. Bei einer

top-down-Entwicklung wird also zuerst der Kontrakt geschrieben, bevor mit der eigentlichen

Entwicklung begonnen wird. Dieser Ansatz kommt vor allem bei vertraglich gesicherten

Entwicklungen, unabhängigen Entwicklungen von Server- und Nutzeranwendungen und

Ablösung von bereits existierenden Schnittstellen zum Einsatz.

Beim zweiten Ansatz spricht man von einer bottom-up-Entwicklung. Hier wird die Implemen-

tierung durchgeführt und während der Entwicklung werden Funktionen der Anwendung

für andere Anwender offen gelegt indem eine Schnittstelle bereitgestellt wird. Ein gängiger

Ansatz ist hierbei, dass der während der Implementierung entstehende Code genutzt wird

um einen Kontrakt für die Nutzer der Schnittstelle zu generieren. Oftmals gibt es bei diesem

Ansatz die Möglichkeit den Kontrakt durch Verwendung von Annotationen im Quellcode

genauer zu machen.

REST-Schnittstellen bilden einen wichtigen Kern der Arbeit. Sie gehören zu den Webschnitt-

stellen auf Basis des HTTP-Protokolls. Webschnittstellen haben gemeinsam, dass sie einen

oder mehrere öffentlich verfügbare Endpunkte besitzen. Sie übertragen in den meisten

19

2 Grundlagen

Fällen ihre Informationen mittels Extensible Markup Language (XML) oder JavaScript Ob-

ject Notation (JSON). Weitere bekannte HTTP-Schnittstellenarten sind SOAP, XML-RPC

und viele weitere. Auf den REST-Architekturstil wird im nächsten Abschnitt noch genauer

eingegangen werden.

2.3 REST

Bei REST handelt es sich um einen Architekturstil für verteilte Hypermedia Systeme. Er

wurde von Roy Fielding in seiner Dissertation mit dem Titel “Architectural Styles and

the Design of Network-based Software Architectures” definiert [Fie00]. Die Definition

umfasst folgendeMenge von architektonischen Regeln (constraints), welche, wenn als Ganzes
eingehalten, positive Eigenschaften für die zu entwickelnde Anwendung mit sich bringen.

Eine dieser Regeln ist der Client-Server-Stil, er soll genutzt werden um eine Trennung von

Belangen (Separation of concerns) zu erreichen. Der Client-Server-Stil ist ein Konzept in

verteilten Anwendungen für die Aufgabenverteilung innerhalb eines Netzwerks. Dabei

existieren die Rollen Server, welcher Dienste oder Ressourcen anbietet, und Client, welcher
die angebotenen Dienste oder Ressourcen nutzt.

Die Regel der Zustandslosigkeit (statelessness) bedeutet, dass der Zustand einer Anwendung

vollständig auf Seite des Clients gehalten werden muss und, sofern notwendig, bei jeder

Anfrage mit übertragen werden muss. Durch diese Regel ist ein Client nun nicht mehr an

einen Server gebunden, da jede Anfrage mit den beinhalteten Daten verarbeitet werden kann.

Die Zustandslosigkeit führt zu den positiven Eigenschaften Sichtbarkeit, Zuverlässigkeit

und Skalierbarkeit. Was man unter diesen Eigenschaften versteht und wie diese genau durch

die Zustandslosigkeit erreicht werden ist in den folgenden Absätzen beschrieben.

Unter Sichtbarkeit versteht man die Möglichkeit die Kommunikation zwischen Servern und

Clienten zu überwachen und zu vermitteln. Diese Eigenschaft wird später in diesem Kapitel

nochmals aufgegriffen, wenn es um die einheitliche Schnittstelle geht. Die Zustandslosigkeit

ermöglicht es bei Fehlern in der Kommunikation lediglich den fehlgeschlagen oder betroffe-

nen Aufruf selbst betrachten zu müssen. Der Aufruf beinhaltet alle zur Analyse notwendigen

Informationen.

Die eben beschriebene Eigenschaft, dass eine Nachricht alle notwendigen Information

enthält verbessert auch die Zuverlässigkeit des gesamten Systems bei teilweisen Ausfällen.

Beim Betrieb mit mehreren Servern ist es so möglich, im Falle eines Serverausfalls, die

selbe Anfrage an gleichwertigen anderen Server (z.B. einen gespiegelten Server) zu stellen.

Aufgrund der vollständigen Informationen in der Anfrage, kann der Server diese dann

entgegennehmen und beantworten.

20

2.3 REST

Diese Vermittlung kann auch gezielt zur Skalierbarkeit von Anwendungen beitragen. Ser-

veranwendungen welche den Zustand auf dem Server speichern benötigen mehr Speicher,

da sie Informationen über mehrere Anfragen hinweg speichern müssen. Diese sogenannten

Sessions können bei einer zustandslosen Kommunikation schneller wieder freigegeben

werden.

Eine weitere Regel ist die Cache-Regel, welche der Implementierung auferlegt, dass für alle

Antworten explizit oder implizit definiert sein muss ob diese zwischenspeichert werden

können. Diese Einschränkung führt dazu, dass Anfragen bereits auf ihrem Weg durch das

Netzwerk aus einem Zwischenspeicher beantwortet werden können. Eine Anwendung wird

durch diese Einschränkung also effizienter, besser skalierend und die durch den Anwender

wahrgenommene Latenz sinkt, da viele Anfragen erst gar nicht an den eigentlichen Server

gestellt werden müssen.

Der Architekturstil fordert zusätzliche eine einheitliche Schnittstelle zwischen den einzelnen

Komponenten. Die Umsetzung dieser Einschränkung führt zu einer Vereinfachung der

Architektur des Gesamtsystems und einer Verbesserung der Sichtbarkeit von Interaktionen.

REST ist durch vier Schnittstellen Einschränkungen definiert:

Identifikation von Ressourcen: In Anfragen werden einzelne Ressourcen adressiert, dies

geschieht in webbasierten REST-Schnittstellen durch den Einsatz von Uniform Resour-

ce Identifiers (URIs). Konzeptionell sind dabei Ressourcen und Darstellungen strikt

von einander getrennt. Eine Ressource kann beispielsweise eine Darstellung in XML,

JSON oder Hypertext Markup Language (HTML) anbieten.

Selbstbeschreibende Nachrichten: Jede Nachricht enthält genug Informationen um her-

auszufinden wie sie verarbeitet werden kann. Die Wahl des passenden Parsers für die

Antwort kann beispielsweise durch die Angabe eines Content-type-Header angegeben
werden.

Manipulation von Ressourcen durch Darstellungen (representations): Wenn ein Cli-

ent eine Darstellung einer Ressource inklusive der Metadaten hat, so kann er mit

diesen Informationen diese Ressource ändern und löschen.

Hypermedia: Ein Client macht Zustandsübergänge nur über Aktionen welche dynamisch

durch Antworten, z.B. in Form von Hypermedia, vom Server identifizert wurden.

Außer den fixen Einstiegspunkten trifft der Client keine Annahmen über verfügbare

Aktionen irgendwelcher Ressourcen, außer der in den bisherigen Antworten des Server

enthaltenen. Dieses Prinzip wird auch als “Hypermedia as the Engine of Application

State (HATEOAS)” bezeichnet.

Die Layered System-Einschränkung zwingt dazu, dass Komponenten lediglich mit ihren

angrenzenden Systemschichten interagieren können und keine weiteren Systeme außerhalb

davon kennen. Sogenannte Intermediäre Systeme (Intermediaries) dienen so zur Limite-

rung der Komplexität von Systemen und zur Kapslung der Komponenten. Darüberhinaus

21

2 Grundlagen

ermöglichen sie verbesserte Skalierbarkeit, beispielsweise mit dem Einsatz von Lastvertei-

lungssystemen (Load-Balancers).

Allamaraju fasst in seinem Buch “RESTful Web Services Cookbook” [All10] treffend zu-

sammen, dass REST ein Architekturstil für vernetzte Anwendungen ist, welcher die oben

genannten Einschränkungen nutzt und zusammen mit dem HTTP-Protokoll und der Infra-

struktur des Internets eine attraktive Möglichkeit darstellt Dienste zu implementieren.

Umsetzung der REST-Prinzipien

Bei der Umsetzung einer HTTP-REST-Schnittstelle wird die Anforderung an einen einheit-

lichen Zugriff mittels einer einheitlichen Schnittstelle durch die Verwendung des HTTP

Protokolls erfüllt. HTTP bietet dabei für jede Ressource wohldefinierten Methoden. Die

meist genutzten Methoden sind: POST, GET, PUT, PATCH und DELETE. Die weiteren Me-

thoden OPTIONS und HEAD sind für die Beschreibung von REST-Schnittstellen weniger

relevant, weil sie eher im Hintergrund genutzt werden um Anforderungen wie Caching

umzusetzen.

Um Ressourcen zu verwenden werden die benötigten Operationen auf die Methoden des Pro-

tokolls übersetzt. Dabei müssen immer auch die Eigenheiten des unterliegenden Protokolls

beachtet werden. Betrachtet man die Methodendefinition der HTTP-Protokollspezifikation

[FGM+99] genauer, so fällt auf dass diese den oben genannten Methoden unterschiedliche

Eigenschaften zuweist.

Die zwei wichtigsten Eigenschaften sind dabei Sicherheit und Idempotenz der Methoden.

Sichere Methoden stellen den Anspruch, dass ein Aufruf ihrer keine Änderungen an der

Ressource zur Folge hat. Dieses Verhalten ist Grundvoraussetzung für viele unterliegende

Protokollvorteile wie z.B. für das Caching von Ressourcen. Zu den sicheren Methoden zählen

GET, HEAD und OPTIONS. An dieser Stelle sei angemerkt, dass dies nicht vom Protokoll

erzwungen werden kann. Ein Dienst kann schlecht implementiert sein, so dass sichere

Operationen dennoch Nebeneffekte erzielen. Dieses Verhalten kann aber im Zusammenspiel

mit anderen Komponenten zu Problemen führen, wenn diese von einer korrekten Umsetzung

des HTTP-Standards ausgehen und sich auf die Sicherheit der Methoden verlassen. Die

andere Eigenschaft ist die Idempotenz. Idempotente Methoden sind Methoden, welche

mehrmals aufgerufen werden können und dennoch dasselbe Ergebnis zur Folge haben.

Zu den idempotenten Methoden zählen OPTIONS, GET, HEAD, PUT, DELETE und PATCH.
Abbildung Tabelle 2.1 zeigt eine Übersicht über die Sicherheit und Idempotenz der HTTP-

Methoden.

Basierend auf den Gegebenheiten des HTTP-Protokolls ist die folgende Verwendung der

Methoden gegeben. Der RFC2616 [FGM+99] gibt die Anweisung nach der Identifizierung

und dem Entwurf von Ressourcen die GET -Methode zu nutzen um eine Repräsentation der

Ressource anzufordern. Die PUT -Methode wird genutzt um Änderungen an einer Ressource

22

2.3 REST

Tabelle 2.1: Idempotenz und Sicherheit der HTTP-Methoden nach Allamaraju [All10]

HTTP-Methode Idempotenz Sicherheit
OPTIONS ja ja

GET ja ja

HEAD ja ja

PUT ja nein

DELETE ja nein

POST nein nein

PATCH nein nein

Tabelle 2.2: Umsetzung des CRUD-Musters mittels REST

CRUD Operation HTTP Methode Anmerkung
CREATE POST

READ GET

UPDATE PUT Implementierung muss idempotent sein!

DELETE DELETE

vorzunehmen. Um potentiell nicht idempotente und unsichere Operationen auszuführen soll

die POST -Methode genutzt werden. Darüberhinaus wird die Verwendung von passenden

HTTP-Headern, um Anfrage und Antwort zu beschreiben, definiert.

Das “RESTful Web Services Cookbook” [All10] liefert ein Beispiel für eine mögliche korrekte

Verwendung des HTTP-Protokolls. Das Beispiel ist eine Umsetzung des gängigen Musters

“Erstellen”, “Lesen”, “Ändern”“Löschen” (zu Englisch: “create”, “read”, “update” and “delete” -

CRUD) auf die Methoden des HTTP-Protokolls. Eine mögliche Umsetzung ist in Abbildung

Tabelle 2.2 dargestellt. Wie man erkennen kann wird die abstrakte Operation “Lesen” mittels

der GET -Methode, die “Erstellen” Operation mittels der POST -Methode, die “Ändern” Ope-

ration mittels der PUT -Methode und die “Löschen”-Operation mittels der DELETE-Methode.

Durch diese allgemein anerkannte Mapping können viele Schnittstellen bereits weitgehend

ohne die Verwendung einer zusätzlichen Dokumentation benutzt werden.

Über diese Art der Umsetzung von REST-Diensten sind sich die meisten Entwickler und

Experten einig, bei anderen Themen haben sich aber zwei Lager gebildet. Auf der einen Seite

befinden sich die Puristen, welche ihre REST-Webdienste streng nach den Vorgaben von

Roy Fielding erstellen. Im Kontrast dazu gibt es einige Pragmatiker, welche diese Prinzipien

nicht voll umsetzen oder bewusst aufweichen um ihre Schnittstellen praktischer zu erstellen.

Durch diesen Konflikt kommt es dazu dass viele, wenn nicht sogar die meisten, als REST-

API betitelten Schnittstellen die Prinzipien von REST nicht beherzigen oder nicht voll

umsetzen.

23

2 Grundlagen

Fielding beschreibt diesen Missstand in seinem Blogbeitrag “REST APIs must be hypertext-

driven” [Fie08], in dem er anklagt wie oft vor allem die Anforderung von HATEOAS verletzt

wird und dennoch die jeweiligen Schnittstellen als REST-Schnittstellen bezeichnet werden.

Er fordert dazu auf, dass diese Schnittstellen doch ein anderes Buzzword als REST für ihre

Bezeichnung nutzen sollen. In der Praxis wird dieser Bitte nicht nachgegangen - deshalb

wird auch in dieser Arbeit der aufgeweichte Begriff der REST-Schnittstellen als Maßstab

genommen.

2.4 Scrum

Agile Vorgehensmodelle sind geschichtlich aus Problemen der klassischen Projektdurch-

führung im Softwareumfeld entstanden. Lange Zeit wurden Softwareprojekte ähnlich zu

anderen Ingenieursprojekten mit einer langen initialen Planungsphase und anschließender

Umsetzungsphase durchgeführt. Beispielhafte Projekte dafür sind der Bau eines Schiffes, die

Konstruktion einer Brücke oder der Bau eines Hauses. Dieses lineare nicht inkrementelle

Vorgehensmodell wird im Allgemeinen auch Wasserfallmodell genannt. Ursprünglich wurde

diese Art von Vorgehensmodell, wenn auch nicht unter dem Namen “Wasserfallmodell”,

das erste Mal von Royce in seiner Arbeit “Managing the Development of large Software

Systems” [Roy70] vorgestellt.

Der Name “Wasserfallmodell” kommt von der linearen Natur und der Tatsache, dass die

Phasenergebnisse als Basis für die jeweils nächsttiefere Phase dienen. Ähnlich wie bei einem

Wasserfall ist kein (Informations-)Fluss entgegen der eigentlichen Richtung möglich. Ab-

bildung 2.1 zeigt die einzelnen Phasen des Wasserfallmodells. Projekte bestehen in diesem

Modell aus den klar definierten Phasen: Systemanalyse, Softwarespezifikation, Architek-

turentwurf, Feinentwurf und Codierung, Integration und Test, Installation und Abnahme

und zuletzt der Betrieb und Wartung. Jede Phase wird hierbei von einem sogenannten

Meilenstein beendet, wessen Kriterien und Ergebnisdokumente für die Abnahme der Phase

erfüllt oder erstellt sein müssen. Es eignet sich besonders für Projekte, bei denen bereits

in der Planungsphase sehr präzise Anforderungen, Leistungen und Abläufe beschrieben

werden können.

In der Softwareentwicklung kam es bei linearen nicht-agilen Projekten immer wieder zu

Problemen: In einer Studie [Kom12] mit 457 Befragten, davon 375 aus agilen Projekten und

82 aus Projekten mit klassischem Projektmanagement, hat Komus zeigen können, dass die

Anwender klassischer, nicht agiler, Methoden den Erfolg ihre Projekte signifikant schlechter

einschätzen.

Scheinbar lässt sich die Durchführung eines Softwareprojektes im Vergleich zu klassischen

Ingenieurstätigkeiten weniger vorrausschauend planen. In der Literatur wird Software

oftmals als “ausführbares Wissen” beschrieben. Hier sieht Armour auch eins der Probleme

24

2.4 Scrum

Abbildung 2.1: Das spätere Wasserfallmodell nach Royce [Roy70]

bei der Anwendung des klassischen Projektmanagements auf Softwareprojekten. Er weist

in seinem Buch “The Laws of Software Process” [Arm03] daraufhin, dass eine Entwicklung

von solch “ausführbarem Wissen” vor allem eine auf Entdeckung basierte Tätigkeit ist.

Solche Entdeckungs- und Forschungsaktivitäten lassen sich nicht genauso planen wie sich

wiederholende Aufgaben oder Routineaufgaben. Seine Empfehlung ist deshalb rigoros alle

definierbaren Tätigkeiten durchzuplanen sich aber bewusst zu sein, dass dies nicht für alle

Tätigkeiten in einem Softwareprojekt möglich ist. Deshalb hält er es für notwendig gezielt

Möglichkeiten einzuplanen auf diese Unsicherheiten zu reagieren.

Agile Vorgehensmodelle haben ihren Ursprung in den 90er Jahren. Die Verwendung des

Wortes agil für die Bezeichnung der Art der Softwareentwicklung wurde auf einer Zu-

sammenkunft in Utah geprägt, das Treffen auf dem auch das bekannte “Agile Manifesto”

[BBV+01] entstanden ist. Es fasst bis heute die unterliegenden Prinzipien von agiler Soft-

25

2 Grundlagen

wareentwicklung zusammen. Die Teilnehmer dieser Versammlung hielten fest, dass obwohl

sie alle folgenden Werte für wichtig erachten dennoch einige für wichtiger empfinden. Sie

empfinden:

Individuen und Interaktionen wichtiger als Prozesse und Werkzeuge,

Funktionierende Software wichtiger als umfassende Dokumentation,

Zusammenarbeit mit dem Kunden wichtiger als Vertragsverhandlung,

Reagieren auf Veränderung wichtiger als das Befolgen eines Plans.

Eins der bekanntesten agilen Vorgehensmodelle ist Scrum.Wie alle agilen Vorgehensmodelle,

so verfolgt auch Scrum diese eben genannten Prinzipien. Scrum hat seine Wurzeln in der

Softwareentwicklung und wird deshalb dort sehr häufig eingesetzt - ist es ist aber prinzipiell

in jeder Projektart einsetzbar. In der Softwareentwicklung ist Scrum eins der am häufigst

eingesetzten agilen Vorgehensmodelle.

Bei Scrum handelt es sich um ein iteratives und inkrementelles Vorgehensmodell. Das

bedeutet, dass bei Scrum zum einem durch immer wiederkehrendes Einfließen von Feedback

das Produkt verbessert wird und zum anderem das Produkt schrittweise entwickelt wird.

Eine Iteration in Scrum nennt sich Sprint, die Länge eines Sprints ist in der Regel zwischen

zwei und vier Wochen. Jeder dieser Sprints muss aber ein funktionsfähiges, wenn auch

funktionsarmes, Produkt zur Folge haben.

Sutherland und Schwaber erklären auf ihrer Scrum Guides Webseite1 wie sie sich genau das

Vorgehensmodell vorstellen - dieser Guide kann wohl als Definition von Scrum in seiner

reinsten Form angesehen werden. Schwaber hat in einem Interview gesagt, dass Scrum viele

Schwächen und Unzulänglichkeiten in den Produkt- und Systementwicklungspraktiken von

Unternehmen aufzeigt, und es ihnen ermöglicht diese auszumerzen Seiner Ansicht nach

passiert dieses Ausmerzen in der Praxis selten, viel zu oft modifizieren Unternehmen Scrum

um diese Schwächen und Unzulänglichkeiten aufzunehmen [Jai].

Es gibt aber auch Unternehmen, die nach einer erfolgreichen Einführung von Scrum ent-

decken, dass Scrum nicht zu 100%ig auf ihre Bedürfnisse passt. Sie modifizieren Scrum

dann um ihre Abläufe zu optimieren. Grund für solche geplanten Modifikationen können

beispielsweise bestehende Hierarchien oder bestehende Arbeitsabläufe sein. Wie Diebold et

al. erkannt haben, ist es schwer zu sagen, wann und ob man verschiedene Aspekte von Scrum

anpassen sollte [DOWZ15]. Um die Vergleichbarkeit zu sichern und die Ergebnisse dieser

Arbeit möglichst allgemein anwendbar zu machen, wird ein Teil dieser Arbeit eine kurze

Betrachtung des beim Industriepartner praktizierten Scrums sein. Diese genaue Betrachtung

findet man in Kapitel 4. Folgend wird das Referenzvorgehensmodell nach Sutherland und

Schwaber [Jee], welches Grundlage für den späteren Vergleich ist, kurz beschrieben.

1
Scrum Guides: http://scrumguides.org/

26

2.4 Scrum

Scrum basiert auf Empirie, was bedeutet, dass Wissen aus Erfahrung gewonnen wird. Bereits

Bekanntes dient dabei als Basis für Entscheidungen. Scrum nutzt einen iterative, inkre-

mentellen Ansatz um Sicherheit in Vorhersagen zukünftiger Termine und Ergebnisse zu

optimieren. Die drei wichtigsten Säulen von Scrum sind Transparenz, Überprüfung und

Anpassung. Scrum versteht unter Transparenz, dass regelmäßig Fortschritt und Hindernisse

sichtbar festgehalten werden. Die Überprüfung bezieht sich nicht nur auf das gefertigte

Produkt, sondern auch auf den Enstehungsprozess welcher bei Scrum auch regelmäßig

beurteilt werden soll. Die Anpassung ist der agile Anteil in Scrum: Statt einer einmaligen

Festlegung aller Anforderungen, Vorgehen und Pläne werden diese kontinuierlich detailliert

und angepasst. Große Aufgaben werden so gezielt in kleiner Schritte zerlegt.

Scrum kennt drei Rollen, welche das Scrum Team ausmachen: Den Scrum Master (SM), den
Product Owner (PO) und das Entwicklungsteam. Ein Scrum Team ist selbstorganisierend und

interdisziplinär, die Teammitglieder entscheiden also zusammen selbst wie sie ihre Arbeit

erledigen und verfügen über alle Kompetenzen um diese zu erledigen.

Die einzelnen Rollen haben sehr unterschiedliche Aufgaben. Der SM sorgt im Wesentlichen

dafür, dass die Regeln von Scrum eingehalten werden. Er ist für das Verständnis und die

Durchführung von Scrum im Team verantwortlich. Der PO ist eine einzelne Person und

definiert die Aufgaben des Entwicklungsteams. Er ist außerdem für die Arbeit des Entwick-

lungsteams verantwortlich. Seine Aufgabe ist die Wertmaximierung des Produkts und die

Priorisierung und Definition der zu erledigenden Aufgaben verantwortlich. Das Entwick-
lungsteam besteht aus Entwicklern - einen anderen Titel gibt es in Scrum nicht. Es gibt auch

keine weitere Unterteilung zwischen verschiedenen Aufgabenbereichen. Das Entwicklungs-

team ist für die Umsetzung der vom PO definierten Aufgaben verantwortlich, dabei darf es

selbst entscheiden auf welche Weise es die Aufgaben umsetzen will. Neben Rollen gibt in

Scrum folgende Artefakte: Product Backlog, Sprint Backlog und das Inkrement. Das Product
Backlog ist eine Liste, welche alle möglichen Features, Funktionalitäten, Verbesserungen

und Fehlerbehebungen für zukünftige Releases beinhaltet. Es ist ein nie vollständiges, dyna-

misches Dokument und kann deshalb vom PO jederzeit ergänzt, umsortiert und bereinigt

werden. Product Backlog Einträge sind nach Priorität sortiert und enthalten zusätzlich eine

Beschreibung, eine Schätzung über den Aufwand und einen Wert. Das Sprint Backlog ist

das Equivalent für die Dauer des Sprints. Es enthält eine Teilmenge der Product Backlog

Einträge, welche im Sprint umgesetzt werden. Es ist eine Prognose des Entwicklungsteams,

was sie in dem jeweiligem Sprint leisten wollen - also welche Funktionalität das nächste

Inkrement beinhalten wird.

Das Inkrement ist das Ergebnis eines Sprints und setzt sich aus den Teileinträgen der fertig-

gestellten Product Backlog-Einträge zusammen. Das Inkrement muss am Ende eines Sprintes

einen “Done”-Zustand erreicht haben. Es muss also in einem verwendbaren Zustand sein

und die vorher definierten Abnahmekriterien müssen erfüllt worden sein. Es muss auch

auslieferbar sein, selbst wenn der PO eine Auslieferung noch gar nicht plant.

27

2 Grundlagen

Abbildung 2.2: Ablauf Referenz-Scrumprozess nach Scrum Inc. [Scr]

Abbildung 2.2 zeigt den Ablauf eines typischen Scrumprozesses. Die Abbildung soll genutzt

werden um die Ereignisse im Scrumprozess zu erklären. Das Vorgehensmodell ist ein sich

wiederholender Prozess, welcher auf dem Product Backlog beruht. Der Product Owner ist

wie bereits beschrieben für den Inhalt und die Priorisierung des Product Backlogs verant-

wortlich (siehe Punkt 1). Grundlage für Einträge in das Product Backlog können Einflüsse

verschiedener beteiligter des Projektes sein, wie zum Beispiel Endanwender, Kunden, das

Team selbst oder andere Personen.

In den nächsten Schritten entsteht das Sprint Backlog (siehe Punkt 2) im Sprint Planning

(Schritt 3). Das Team entscheidet im Sprint Planning zusammen mit dem Product Owner,

was nächsten Sprint umgesetzt werden wird. Dann beginnt der Sprint, welcher 1-4 Wochen

dauert. Während des Sprints gibt es jeden Tag das Daily Standup (siehe Punkt 4). Es ist Teil

des täglichen Arbeitens und dient dem Team sich auszutauschen. Nach dem Daily Standup

sollten im ganzen Team die gestrigen und tagesaktuellen Tätigkeiten und Hindernisse aller

Entwickler bekannt sein. Teil des Sprints sind auch die Punkte 5-7, Product Backlog Groom-

ing, das Sprint Review und die Sprint Retrospective. Bei dem Product Backlog Grooming

handelt es sich um eine Aktivität bei der PO Feedback zum Product Backlog einholen kann

um die Product Backlog Einträge bereits vor dem nächsten Sprint Planning ausreichend

zu zerlegen. Dies ermöglicht, dass die Product Backlog Einträge definiert genug sind um

in den nächsten Sprint mit aufgenommen zu werden. Das Sprint Review wird genutzt um

festzustellen welche Product Backlog Items im Sprint umgesetzt worden sind. Neben der

28

2.5 Statische Codeanalyse

reinen Abnahme durch den PO wird hier auch die Auswirkung des Sprints auf den Release

Plan diskutiert. Die letzte Aktivität ist die Sprint Retrospective, welche der langfristigen

Verbesserung der Prozesse dient. In der Sprint Retrospective findet das Team gemeinsam

Erfolge und Misserfolge des Sprints und arbeitet durch Disskusionen mögliche Verbesserun-

gen heraus. Die Verbesserungen sollen dann in das Team einfließen, indem während des

Meetings für jede Verbesserung ein Verantwortlicher bestimmt wird, der die Umsetzung

der Verbesserung vorantreibt und überwacht. Das Ergebnis des Sprints ist ein potentiell

auslieferbares Produktinkrement (siehe Punkt 8), welches der PO, falls er will, ausrollen

kann (siehe Punkt 9).

2.5 Statische Codeanalyse

Oftmals werden Programme durch verschiedene Verfahren getestet und validiert. In der

Praxis sind dabei in der Entwicklung die Modultests (sog. Unit-Tests) die Art der am häufigst

ausgeführten Tests. Bei geeigneter Testabdeckung stellen sie korrekte Ausgaben der geteste-

ten Module sicher und schützen vor dem versehentlichen Einfügen von neuen Fehlern. Neu

eingeführte Logik kann aber auch zu verminderter Wartbarkeit führen und so zukünftige

Änderungen erschweren. Im Projektumfeld hat sich für dieses Phänomen der Begriff tech-

nische Schuld (technical debt) eingebürgert. Sie beschreibt in welchem Umfang Arbeit an

der bisherigen Implementierung notwendig ist um sie von den angesammelten Mängeln

zu befreien. Während der Entwicklung einer Software muss oft zwischen Entwicklungsge-

schwindigkeit und technischer Schuld abgewogen werden. Ein weiterer häufig genutzter

Begriff in diesem Zusammenhang sind die “Code Smells”. Code Smells sind dabei ein von

Kent Beck geprägter und von Martin Fowler in seinem Buch “Refactoring: Improving the

Design of Existing Code” [Fow09] bekannt gemachter Begriff, den Fowler dort als “sichtbare

Symptome im Quellcode, welche auf tiefere Probleme hinweisen” beschreibt.

Ein Mittel um einen Überblick über die technische Schuld eines Projektes zu erhalten ist die

statische Codeanalyse. Im Unterschied zu dynamischen Analysen, welche das zu testende

Programm während der Ausführung untersuchen, untersuchen statischer Codeanalysen

lediglich den vorliegenden Programmquellcode. Der Begriff statische Codeanalyse wird

weitläufig für werkzeugunterstützte Tätigkeiten verwendet, auch wenn man Tätigkeiten wie

das Code Review ebenso in diese Kategorie einordnen könnte. Statische Analyseverfahren

werden in der Softwarentwicklung häufig eingesetzt um häufige Fehler zu erkennen und zu

beseitigen.

Zheng und andere haben in ihrer Arbeit “On the value of static analysis for fault detection in
software” [ZWN+06] anhand eines Beispiels aufgezeigt, dass eine statische Codeanalyse nicht

alle Fehler finden kann und findet und darüber hinaus auch viele sogenannte false positives,
also Treffer welche eigentlich keine sind, finden. Sie konnten jedoch zeigen, dass statische

Codeanalyse einen guten Beitrag zum Auffinden und Identifizieren von Fehlern leisten und

29

2 Grundlagen

Ergebnisse der Analyse ein guter Indikator - auch zum Vergleich verschiedener Module -

sind. Aus diesem Grund wird diese Arbeit statische Codeanalysen einsetzen um eine weitere,

zusätzlich zum Feedback der Entwickler, Möglichkeit zum Vergleich der unterschiedlichen

Lösungen zu haben.

2.6 Microservice-Architektur

Sam Newman beschreibt Microservices als kleine, miteinander kommunizierende, autonome

Dienste [New15]. Microservices sollen laut ihm klein sein und sich darauf beschränken

nur eine Funktion gut umzusetzen (’Focused on Doing One Thing Well’). Auf die Frage nach
dem tatsächlichen Umfang bleibt er vage. Er schreibt allerdings, dass Entwickler generell

ein gutes Gefühl für die Antwort auf die Frage ob ein Dienst zu groß ist - er rät daher

einen Dienst nach Möglichkeit solange zu verfeinern und einzugrenzen, bis dieses Gefühl

verschwindet. Eine weitere gefühlgetriebene Entscheidungsmöglichkeit kommt von Jon

Eaves von RealEstate.com.au
2
, welcher einen Microservice als einen Dienst beschreibt,

welcher in zwei Wochen neu geschrieben werden kann. Bei Microservices spricht man also

wenn man vom Umfang spricht meist von der fachlichen Funktionalität.

Fowler und Lewis haben eine noch genauer Definition des Begriffes “Microservice”. Sie

definieren einen Microservice kurzgefasst als einen Ansatz um eine einzelne Anwendung

als eine Menge von kleinen Diensten zu implementieren, welche alle in eigenen Prozessen

laufen und mittels leichtgewichtigen Mechanismen (meistens über HTTP Schnittstellen)

miteinander kommunzieren. Diese kleinen Dienste sind unabhängig von einander von

vollautomatischen Deploymentwerkzeugen ausrollbar. Die Dienste benötigen ein Minimum

an zentraler Verwaltung und können sehr unterschiedliche Technologien einsetzen (z.B.

unterschiedliche Programmiersprachen oder verschiedene Speichertechnologien) [FL].

Die Microservice-Architektur bietet einige allgemein anerkannte [Bad; Gol; Kum; LF; New15;

Ste;Wol] Vor- und Nachteile wennman sie mit der klassischen Architektur groß gewachsener

Systeme vergleicht. Ein Microservice ist vom Umfang her, wie der Name sagt, eher klein

und kann daher, im Vergleich zu einem größeren System, mit geringerem Aufwand ersetzt

werden. Die kleine Größe bietet aber außerdem noch den Vorteil, dass der Dienst von neuen

Entwicklern schneller zu verstehen ist und generell kleinere Teams eingesetzt werden können.

Das Einsetzen von kleineren Teams kann ggf. den Kommunikationsaufwand verringern.

Durch die strikte Trennung der Funktionalitäten in mehrere Dienste wird auch verhindert,

dass sich mit der Zeit Beziehungen zwischen Klassen und Funktionalitäten einschleichen.

Da die Kommunikation zwischen den Diensten nur über die bereitgestellten Schnittstellen

geschieht kann ohne bewusste Schnittstellenanpassung eine solche Änderung gar nicht erst

2
RealEstate: http://RealEstate.com.au

30

http://RealEstate.com.au

2.7 Modellgetriebene Softwareentwicklung

durchgeführt werden. Langfristig ist es deshalb so einfacher eine nachhaltige Architektur

aufrecht zu erhalten. Ein weiterer Vorteil der Aufteilung ist, dass jeder Dienst theoretisch

mit einem anderem Technologie-Stack umgesetzt werden könnte. Durch diese Freiheit in der

Wahl der Technologie, kann man für jede Funktionalität das richtige Werkzeug nutzen.

Für den Betrieb bieten die Microservices auch den Vorteil, dass eine Microservice-Architektur

robuster sein kann als eine Architektur mit einem großen Dienst. Fehler und Abstürze in

einer Komponente wirken sich nicht unbedingt auf alle anderen Dienste aus. Beispielsweise

betrifft ein Ausfall einer Login-Komponente nicht unbedingt bereits eingeloggte Nutzer.

Diese könnten in diesem einem Fall die eigentliche Funktion der Dienste weiter nutzen.

Neben den genannten Vorteilen gibt es auch einige Nachteile. Bei Microservices versteckt

sich die Komplexität in der Verbindung zwischen den Diensten anstatt in den Diensten

selber, sie verschwindet also nicht. Außerdem ist das Deployen und Testen von verteilten

Anwendungen in der Regel schwieriger als bei einer einzelnen Anwendung, beispielsweise

ist es einfacher eineWAR-Datei zu installieren als eine Microservice-Architektur aufzusetzen

und zu starten. Eine weitere Schwierigkeit ist, dass durch die benötigten Aufrufe anderer

Dienste zusätzliche Latenzen bei der Bearbeitung von Anfragen entstehen können.

Die Microservice-Architektur scheint sehr vielversprechend zu sein. In den letzten Jahren gab

es einige interessante und sehr erfolgreiche Umsetzungen, wie zum Beispiel die Microservice-

Architekturen von Netflix
3
, Spotify

4
oder Amazon

5
.

2.7 Modellgetriebene Softwareentwicklung

Modellgetriebene Softwareentwicklung (MDSD) ist ein Ansatz in der Softwareentwicklung

um automatisch, auf Grundlage von formalen Modellen, lauffähige Software zu erzeugen.

Stahl und andere haben in ihrem Buch “Model-Driven Software Development” [SVC06] die

modellgetriebene Softwareentwicklung als einen Ansatz beschrieben der die Modelle nicht

nur als Dokumentation ansieht. Im Gegensatz zur klassichen Programmierung stellen sie

Modelle auf eine Ebene mit dem Quellcode, da ihre Implementierung generiert wird. Im Buch

wird außerdem die modellgetriebene Softwareentwicklung als einWerkzeugmit erheblichem

Potential und Vorteilen beschrieben. Sie gehen sehr ausführlich auf die Grundlagen, wie

verschiedene Konzepte und verschiedenen Klassen der MDSD ein. Im Anschluss beschreiben

sie dort ausführlich domänenspezifische Modellierungssprachen und zeigen wie man diese

erstellt, verwendet und aus ihnen Code erzeugen kann. An dieser Stelle gehen sie auch

auf Modeltransformationstechniken ein und wie die Entwickler mit den entstehenden

3
Netflix: https://www.netflix.com/

4
Spotify: https://www.spotify.com/

5
Amazon: https://www.amazon.com

31

2 Grundlagen

Artefakten in der Versionierung und beim Testen umgehen können. Sie widmen außerdem

ein ganzes Kapitel dem MDSD aus Sicht des Managements und beschreiben verschiedene

Strategien um den MDSD-Ansatzes in einem Unternehmen oder in einem Projekt erfolgreich

einzuführen.

Als Vorteile der MDSD nennen sie eine, durch Automatisierung gewonnene, Erhöhung

der Geschwindigkeit in der Entwicklung. Außerdem führt der Einsatz von automatisier-

ten Transformationen und formal-definierten Modellierungssprachen zu einer erhöhten

Softwarequalität. Nach der Einführung von MDSD lassen sich die erstellten Architekturen,

Modelle und Transformationen für weitere Projekte und Vorhaben einsetzen und fordern

damit einen höheren Grad an Wiederverwendbarkeit und Wiederverwendung. Durch die

Einführung einer abstrakteren Sicht lassen sich komplexe Systeme besser beherrschen,

oft ermöglichen abstraktere Modelle auch das Beheben von Fehlern mehrerer Module an

einer zentralen Stelle. Durch all diese Vorteile und Möglichkeiten ist MDSD eine produktive

Umgebung und ein Bindeglied zwischen den Feldern: Technologie, Ingenieurskunst und

Management.

Neben dem Begriff MDSD muss aber an dieser Stelle noch ein weiterer eingeführt werden.

Waddington und Lardieri prägen den Begriff “Model-Centric Software Development” [WL06].

Sie beschreiben diesen Ansatz als noch weitreichender als MDSD, da er im Gegensatz zu

MDSD nicht Artefakte aus Modellen erstellt, sondern gezielt in jeder Phase eines Projektes

domänenspezifische Sprachen einsetzt um automatisch Teile der Implementierung zu erzeu-

gen. Der Vorteil dieses Ansatzes ist es, dass die Modelle und die tatsächliche Implementierung

nicht auseinanderlaufen, sprich Konflikte zwischen Modell und Implementierung enstehen,

können. Zusätzlich müssen die erzeugten Artefakte auch nicht in die Versionierung ein-

gepflegt werden und sind immer aktuell. Im Zuge einer ausführlichen Literaturrecherche

wurde klar, dass viele Autoren, wenn sie MDSD anwenden, ähnliche Ziele verfolgen. Die

Anwender von MDSD versuchen in der Praxis, aufgrund der gerade erwähnten Vorteil, auch

ihre Modelle als Grundlage für generierte Implementierungsartefakte zu nutzen. Somit ist

der Übergang zwischen diesen Begriffen sehr fließend. Diese Arbeit verfolgt wenn sie von

MDSD spricht auch den Ansatz aus Modellen Teile der Implementierung automatisch zu

generieren.

2.8 Modellbasierte Ansätze für REST-Schnittstellen

Für viele verschiedene Einsatzgebiete gibt es domänenspezifische Modellierungssprachen.

Dies ist für die Erstellung und Beschreibung von REST-Schnittstellen nicht anders. Dieser

Abschnitt soll auf die Sprachen Swagger und RAML eingehen und darüber hinaus noch den

akademischen Ansatz, welcher in dieser Arbeit ebenso evaluiert wird, vorstellen.

32

2.8 Modellbasierte Ansätze für REST-Schnittstellen

Listing 2.1 Beispiel für Swagger-Definition

swagger: "2.0"
info:
version: "1.0"
title: "Hello World API"

paths:
/hello/{user}:
get:
description: Returns a greeting to the user!
parameters:
- name: user
in: path
type: string
required: true
description: The name of the user to greet.

responses:
200:
description: Returns the greeting.
schema:
type: string

400:
description: Invalid characters in "user" were provided.

2.8.1 Swagger

Bei Swagger handelt es sich um eine Beschreibungssprache für REST-Schnittstellen. Für

Swagger gibt es mehrere Formate, Swagger kann mittels JSON und YAML
6
definiert wer-

den.

Swagger verfolgt einen deskriptiven Ansatz für die Beschreibung von REST-Schnittstellen.

Eine bestehende Swagger-Definition ermöglicht es zum einen Clients auf die beschriebene

Schnittstellen zuzugreifen ohne deren exakte Implementierung zu kennen. Der Zugriff auf die

Schnittstelle wird für viele Programmiersprachen dahingehend unterstützt, dass auf Basis von

den Swagger-Definitionen passender Client- und Servercode generiert werden kann. Neben

der Codegenerierung werden Entwickler durch Schnittstellendokumentationen unterstützt,

welche auf Basis der Swagger-Beschreibungen generiert werden können. Swagger ist für

Menschen und maschinell lesbar. Ein Beispiel für eine Swaggerdefinition ist in Listing 2.1

abgebildet.

6
YAML - vereinfachte Auszeichnungssprache: http://www.yaml.org

33

http://www.yaml.org

2 Grundlagen

2.8.2 RAML

Bei der Restful Api Modeling Language (RAML)
7
handelt es sich um eine auf YAML basie-

rende Spezifikationssprache für das Modellieren von REST-Schnittstellen.

RAML entstand aufgrund der Unzufriedenheit mit Swagger hinsichtlich der Möglichkeiten

im Schnittstellenentwurf. Uri Sarid (Mulesoft
8
) hat in einem Interview beschrieben, dass

seiner Ansicht nach Swagger zwar gut für die Dokumentation einer bereits implementieren

Schnittstelle nutzbar ist, aber für den Entwurf einer zu implementierenden Schnittstelle zu

wortreich und zu unübersichtlich sei. Er ist der Meinung, dass fehlende Wiederverwendbar-

keit und der fehlende Einsatz von Mustern (Patterns) Swagger für den Design First-Ansatz
unpraktisch machen [Cag].

RAML zielt auf die Unterstützung während allen Phasen der Entwicklung ab. Auf der offizel-

len Webseite wird explizit für die Unterstützung beim Entwurf, bei der Implementierung,

beim Testen, beim Dokumentieren, und beim Teilen der Spezifikation geworben.

Es gibt zwei unterschiedliche Versionen von RAML: Version 0.8 und Version 1.0. Die meisten

Werkzeuge für RAML 1.0 sind auch mit der älteren Version 0.8 kompatibel. Durch diese Ab-

wärtskompatibilität gibt es für RAML 0.8 tendenziell mehr Werkzeuge als für die Version 1.0.

Wenn es um die Beispiele und Tutorials geht, sieht es ähnlich aus. Aus diesen Gründen

wurde für den Vergleich die Version 0.8 genauer betrachtet.

Während der Arbeit stellte sich heraus, dass der Einsatz von RAML0.8 nicht nur Vorteile

brachte - RAML 1.0 hat einige neue Sprachelemente, welche die Arbeit mit der Sprache

komfortabler machen. Der Umfang dieser Nachteile wird im Abschnitt 5.2 genauer betrachtet.

Ein Beispiel für eine RAML-Definition in der Version 0.8 ist in Listing 2.2 zu sehen.

Akademisches Werkzeug

Die modellgetriebene Entwicklung von REST-Schnittstellen ist in der akademischen Welt

bisher ein recht junges Feld. Die meisten der Veröffentlichungen sind 2009 oder später

erschienen. Als eine der verwandten Arbeiten ist sicher das von Haupt und anderen veröf-

fentlichte Paper “A model-driven approach for REST compliant services” [HKLS14] zu sehen.

Sie beschreiben einen Ansatz zur modellgetriebenen Entwicklung von REST-Schnittstellen.

Dieser Ansatz umfasst neben mehreren Metamodellen für den Entwurf und die Realisierung

von REST-Schnittstellen, Diskussion über den Einsatz der Metamodelle und einem dazugehö-

rigen Beispiel auch eine prototypische Implementierung. Die prototypische Implementierung

umfasst einen grafischen Editor sowie eine vollständige Werkzeugkette um aus dem Modell

7
Restful Api Modeling Language: http://raml.org/

8
Mulesoft: https://www.mulesoft.com/

34

http://raml.org/
https://www.mulesoft.com/

2.8 Modellbasierte Ansätze für REST-Schnittstellen

Listing 2.2 Beispiel für RAML-Definition in Version 0.8

#%RAML 0.8
title: Amazon simple storage API
version: 1
baseUri: https://{destinationBucket}.s3.amazonaws.com
/:
post:
description: The POST operation adds an object to a specified bucket using HTML

forms.
body:
application/x-www-form-urlencoded:
formParameters:
AWSAccessKeyId:
description: The AWS Access Key ID of the owner of the bucket who grants an

Anonymous user access for a request that satisfies the set of constraints
in the Policy.

type: string
acl:
description: Specifies an Amazon S3 access control list. If an invalid access

control list is specified, an error is generated.
type: string

file:
- type: string
description: Text content. The text content must be the last field in the

form.
- type: file
description: File to upload. The file must be the last field in the form.

ein lauffähiges Javaprojekt zu generieren. Das von Haupt und anderen beschriebene Konzept

besteht aus mehreren Abstraktionsebenen. Die Hierarchie der Modelle ist in Abbildung 2.3

dargestellt. In der Abbildung sieht man das Domänenmodell, das zusammengesetzte Ressour-

cenmodell (“Composite Resource Model”), das atomare Ressourcenmodell, ein URL-Modell,

die Dienstbeschreibungen, das JAX-RS-Anwendungsmodell und den Java Code. Das Do-

mänenmodell beschreibt dabei ein von REST unabhängiges fachliches Modell, welches auf

einem zur Anwendungsdomäne passenden Metamodell basiert. Das Domänenmodell wird

auf das zusammengesetzte Ressourcenmodell oder das atomare Ressourcenmodell abgebil-

det. Den Kern des Konzepts ist das atomare Ressourcenmodell, es erlaubt das Modellieren

einer Anwendung hinsichtlich ihrer Schnittstellen, ihrer Ressourcen und den Beziehungen

zwischen den Ressourcen. Das zusammengesetzte Ressourcenmodell fasst mehrere Res-

sourcen des atomaren Ressourcenmodells zusammen um dessen Komplexität zu reduzieren.

Dieses atomare Ressourcenmodel kann zum einen in verschiedene Dienstbeschreibungen

transformiert werden, wie beispielsweise Web Application Description Language (WADL)

oder Swagger. Es dient aber auch zusammen mit dem URL-Modell als Grundlage für das

JAX-RS-Modell. Dabei definiert das URL-Modell unter welchen URIs die einzelnen Ressour-

cen des atomaren Ressourcenmodells erreichbar sind. Die letzte Modellart in dem Schaubild

35

2 Grundlagen

Abbildung 2.3:Metamodelle des akademischen Ansatzes nach Haupt et al. [HKLS14]

36

2.8 Modellbasierte Ansätze für REST-Schnittstellen

sind die Anwendungsmodelle, im Beispiel hier ein JAX-RS-Modell. Die Anwendungsmodelle

setzten die Ressourcen des atomaren Ressourcenmodells um und macht sie unter den im

URL-Modell definierten URIs erreichbar.

Im Zuge ihrer Arbeit haben Haupt und andere auch eine prototypische Implementierung

ihres Ansatzes erstellt, er ist eine der evaluierten Methoden dieser Arbeit. Auf genauere

Details dieses Prototypen wird im Hauptteil dieser Arbeit, in Abschnitt 5.3, eingegangen.

Das akademische Werkzeug unterstützt bei der Umsetzung des HATEOAS-Ansatzes. Dies

wird durch die strikte Trennung des atomaren Ressourcenmodells und des URL-Modells

erreicht. Durch die Umsetztung von HATEOAS ermöglicht der akademische Ansatzu auch

erweiterte Interaktionsmuster wie das von Haupt und anderen in “A conversation based

approach for modeling REST APIs” [HLP15] vorgestellte konverstationsbasierende Interakti-

onsmuster oder das in “Service Composition for REST” [HFK+14] vorgestellte Konzept zur

Service-Komposition von REST-Diensten.

37

3 Verwandte Arbeiten

Dieses Kapitel widmet sich der Beschreibung der verwandten Arbeiten. Dabei wird zum einen

auf die Themengebiete der modellgetriebenen Erstellung von REST-Diensten (Abschnitt 3.1)

und zum anderen auf andere Arbeiten, welchemehrereWerkzeuge bzw. Entwicklungsansätze

miteinander vergleichen (Abschnitt 3.2), eingegangen.

3.1 Modellgetriebene Erstellung von REST-Diensten

Das Thema dieser Arbeit ist eine Evaluierung von mehreren modellgetriebenen Ansätzen für

Entwurf und Realisierung von REST-Schnittstellen. Es wurden bereits ähnliche Arbeiten wie

diese durchgeführt. Beispielsweise hat RobertWideberg [Wid15] ähnlich zu dieser Arbeit eine

Fallstudie verschiedener Spezifikationsformate und HATEOAS in einem IT Unternehmen

durchgeführt. Er kam bei dem Vergleich zwischen Swagger, RAML und API Blueprint
1
zu der

Erkenntnis, dass alle Formate nicht die Anforderungen seines Vergleichs perfekt umsetzen,

aber Swagger und RAML die wohl am ehesten geeigneten Sprachen für den produktiven

Einsatz sind. Diese Arbeit fokussiert sich dabei sehr auf die Umsetzung von HATEOAS,

hält sich aber im Kontrast zu der vorliegenden Arbeit sehr zurück wenn es darum geht die

konkrete umgesetzte Schnittstelle, sowie den Prozess in der Firma zu beschreiben. Eine

weitere ähnliche Arbeit verfasste Tomás Procházka mit seiner Masterarbeit “Model-Driven
Development of REST APIs” [Pro15] in der er die Möglichkeit zur automatischen Erzeugung

von REST-Schnittstellen untersuchte. Im Unterschied zu dieser Arbeit untersuchte er zwar

ebenso RAML, Swagger und API Blueprint aber er baute auf Basis der drei Technologien

einen Codegenerator. Der Codegenerator unterstützt neben der Generierung des Layouts

ebenso die Anbindung an eine Datenbank und zusätzlich grundlegenden Verhaltensmuster.

Für die Generation setzte er dabei lediglich JavaScript-Projekte und JavaScript-Frameworks

ein, so dass seine Ergebnisse leider nicht Teil dieser Arbeit sein konnten. Die Entscheidung

gegen Java als Technologie fiel bei ihm bewusst, weil er der Meinung ist, dass faktisch

JavaScript Java als Technologie ablösen wird.

1
API Blueprint: https://apiblueprint.org/

39

https://apiblueprint.org/

3 Verwandte Arbeiten

3.2 Vergleich von Werkzeugen und
Entwicklungsansätzen

Dieses Arbeit vergleicht mehrere Werkzeuge und Entwicklungsansätze miteinander. Vor

Bearbeitung dieser Arbeit wurden daher Arbeiten mit einem methodisch ähnlichem Schwer-

punkt gesucht. Auffällig war, dass Arbeiten mit solchen Vergleichen in vielen unterschiedli-

chen Umfeldern stattfinden. Vergleiche von Werkzeugen und Methoden werden z.B. in der

Erkennung von Codeduplikaten (Klonerkennung) [BKA+07; RCK09], beim Vergleich von

Softwaretest Strategien [BS87; KL95; Mye78] durchgeführt. Die meisten dieser Arbeiten sind

allerdings reine Werkzeugvergleiche.

Eines der Umfelder, welches sich mit Arbeiten dieser Art beschäftigt, ist die Klonerkennung.

Beispiele für solche Arbeiten sind z.B. die Arbeiten von Roy, Cordy und Koschke [RCK09]

und Bellon et al. [BKA+07]. Roy, Cordy und Koschke [RCK09] vergleichen in ihrer Arbeit

“Comparison and evaluation of code clone detection techniques and tools” verschiedene

Ansätze zur Klonerkennung. Sie gehen dabei systematisch vor, indem sie zuerst die ver-

schiedenen Ansätze kategorisieren und im Anschluss daran Vergleichskriterien inklusive

konkreter Vergleichsattribute definieren. Letztendlich geht es in einem späteren Kapitel

dann um den Vergleich der Performance der verschiedenen Ansätze. Bellon et al. [BKA+07]

gehen dabei ähnlich vor. Sie kategorisieren ebenso die verschiedenen Ansätze und definieren

im Anschluss daran Metriken, anhand von denen sie die verschiedenen Ansätze vergleichen

wollen. Um die Metriken zu erheben definieren sie ebenso einen Benchmark.

Ein weiteres Umfeld ist der Vergleich von verschiedenen Softwareteststrategien. Eine Arbeit,

die bei der Literaturrecherche aufgefallen ist, ist die Arbeit von Basili und Selby [BS87]

“Comparing the Effectiveness of Software Testing Strategies”. Sie ist dahingehend interessant,

da sie neben rein werkzeugbasierten Ansätzen auch den Ansatz “Code Reading” untersucht,

welcher eine rein menschliche Tätigkeit ist. Die Ansätze sind dennoch sehr gut vergleichbar,

da sie für ihren Vergleich nur ergebnisorientierte Metriken genutzt haben. Zum Beispiel

nutzen sie die Anzahl der gefundenen Fehler, welche auch für das Durchlesen des Quellcodes

anwendbar ist. Diese Arbeit zeigt, dass es bei sehr unterschiedlichen Methoden wichtig ist

sinnvolle gemeinsame Metriken zu finden.

40

4 Projekt beim Industriepartner

Dieses Kapitel beschreibt den aktuellen Zustand des Projektes des Industriepartners. Dieses

Kapitel soll dem Leser sowohl einen Überblick über den untersuchten Dienst, als auch einen

Einblick in die agile Arbeitsweise des Unternehmens, sowie in die technische Details der

Implementierung geben. Der Leser soll nach Lesen des Kapitels die Möglichkeit haben, das

vorliegende Projekt mit anderen Projekten zu vergleichen und sich selbst ein Bild über die

Anwendbarkeit dieser Arbeit zu machen. Im Abschnitt 4.1 wird hierfür das in der Firma

praktizierten Scrums mit dem in Abschnitt 2.4 beschriebenen Referenzscrum verglichen.

Außerdem wird in Abschnitt 4.2 der untersuchte Service genauer beschrieben und auf seine

Eigenschaften eingegangen. Den Abschluss des Kapitels bildet Abschnitt 4.3 und beschreibt

in welchem Maße bereits jetzt MDSD-Techniken zum Einsatz kommen.

4.1 Der Industriepartner

Beim Industriepartner handelt es sich um ein Tochterunternehmen eines renommierten

Automobilherstellers, das ausschließlich für Kunden innerhalb des Konzerns arbeitet. Das

Tochterunternehmen nimmt dabei die Rolle des konzerninternen IT-Dienstleisters ein. Es

ordnet sich in die Kategorie “Mittelständisches Unternehmen mit zwischen 501 bis 2000 Mitar-
beitern” ein und hat mehrere Standorte in Deutschland, Indien, Malaysia und China.

Das Unternehmen beschäftigt sichmit denGeschäftsfeldern “Car IT andMobility”, “Analytics”,
“Security”, “Shared Services”, “Innovation” und “IT Retail”. Diese Arbeit wurde im Bereich der

“Car IT and Mobility”, in einem Team mit einer Teamgröße von 7 Mitglieder durchgeführt.

Das Team beschäftigte sich während der Arbeit mit der Entwicklung mehrerer Java Backend

Dienste. Die Dienste dienen als Datenquelle für unterschiedliche Clients für verschiedene

Plattformen, welche von anderen Teams des Tochterunternehmens entwickelt werden.

Im Rahmen der Arbeit konnten unterschiedlichste Eindrücke über den Entwicklungsprozess

gewonnen werden. Dies geschah zum einem durch regelmäßige Teilnahme an den Scrum-

Meetings des Teams und außerdem durch gezielte Rückfragen verschiedener beteiligten

Personen. Zur Durchführung dieser Arbeit ermöglichte der Industriepartner den Zugriff

auf den Quellcode, sowie auf alle relevanten Kommunikationsplattformen. Darüber hinaus

wurde auch der Zugriff auf die Schnittstellendatenbank des Unternehmens ermöglicht,

welche alle Definitionen der internen Schnittstellen verwaltet.

41

4 Projekt beim Industriepartner

Tabelle 4.1: Abweichungen von Referenzscrum

Abweichung

Scrum Ereignisse:
Daily Scrum keine

Sprint Planning keine

Sprint Review

- Entwicklungsteam stellt nicht wie gefordert dar was gut und schlecht lief

- PO stellt nicht aktuellen Stand vor (inkl. neuen Fertigstellungstermin)

Sprint Retro keine

Sprint keine

Personen:
Entwicklungsteam keine

SM Kein Coaching der Organisation, die neuen SMs nehmen an Schulung teil.

PO Keine einzelne Person (interner / externer PO)

Personalunion von interner PO und SM

Artefakte:
Product Backlog keine

Sprint Backlog keine

Inkrement keine

SCRUM

Wie bereits in Abschnitt 2.4 beschrieben folgt nun, um die Vergleichbarkeit der Arbeit zu

sichern, in diesem Abschnitt nun ein Vergleich des tatsächlich praktizierten Scrums mit

dem bereits beschriebenen Referenzscrum. Zur Durchführung des Vergleichs wurden alle

im Scrum Guide [Jee] beschrieben Rollen, Aktivitäten, Artefakte und Vorgehen zusammen-

gefasst und untersucht. Eine Visualisierung der Ergebnisse der Gegenüberstellung stellt

Tabelle 4.1 dar.

In einem ersten Schritt konnten allgemeine Punkte, wie beispielsweise die Timebox des Daily
Scrums oder die Dauer der unterschiedlichen Aktivitäten pro Sprint im Kalender gesichtet

und validiert werden. Im Anschluss daran stand der Scrum Master für die Klärung der noch

offenen Punkte und für weitere Rückfragen zur Verfügung.

Das praktizierte Scrum hat eine Sprintlänge von 14 Tagen, welche bisher nur in einem

Fall auf Grund von externen Abhängigkeiten und extremen Planungsunsicherheiten auf 7

Tage reduziert wurde. Die Sprintlänge erfüllt so den Anspruch, dass die Sprints alle gleich

lang sind und kürzer als einen Monat andauern. Die sonstigen Regeln für einen Sprint sind

genauso wie im Scrumguide vorgeschrieben. Es dürfen während eines Sprints weder Ände-

rungen vorgenommen werden, welche das Sprintziel gefährden, noch der Qualitätsanspruch

42

4.1 Der Industriepartner

geschmälert werden. Wie vorgesehen ist es allerdings möglich, bei neuen Erkenntnissen,

zwischen PO und Entwicklungsteam den Anforderungsumfang neu zu verhandeln.

Wenn man die Scrum Ereignisse betrachtet, so sind Daily Scrum, Sprint Planning und die

Sprint-Retrospective nahezu unverändert zum Referenzprozess. Das Daily Scrum ist auf 15

Minuten begrenzt und findet jeden Tag zur selben Uhrzeit statt. Die Entwickler berichten,

zum einem was sie gestern erreicht haben um zum Sprintziel beizutragen und was sie heute

erledigen wollen um den Sprint weiter voranzubringen. Außerdem spricht jeder Entwickler

hier Hindernisse (“Impediments”) an auf die er bei seiner Tätigkeit gestoßen ist und die

ihn nun behindern. Zusätzlich zum Referenzscrum wird hier noch geklärt ob es weiteren

Abstimmungsbedarf gibt. Weitere Diskussion geschehen korrekterweise nach dem Daily

Scrum.

Das Sprint Planning nimmt in etwa drei Stunden pro Sprint in Anspruch und ist so innerhalb

der vorgeschlagenen Timebox von maximal 4h (Scrumguide-Vorschlag ist hier 8h bezogen

auf einen 1 Monat langen Sprint). Hier wird, wie vorgesehen, im Team entschieden was

Teil des nächsten Produkt Inkrements sein wird und wie das Ziel erreicht werden soll. Das

Sprintplanning umfasst seitens des Entwicklerteams die Definition des Ziels des Sprints und

eine Prognose über den zukünftigen Funktionsumfang des Produktes. Lediglich das vom

Scrumguide geforderte Ausarbeiten der Umsetzung wird im Anschluss an das eigentliche

Sprintplanning durchgeführt.

Die Sprint Retrospective wird genau wie im Scrumguide beschrieben umgesetzt. Die ange-

dachten Prüfungen des vergangen Sprints in Bezug auf beteiligte Menschen, Beziehungen,

Prozesse und Werkzeuge werden durchgeführt und mögliche Verbesserungen werden identi-

fiziert und in eine Reihenfolge gebracht. Als Ergebnis der Retrospective werden Maßnahmen

vereinbart um die Probleme in Zukunft zu verbessern.

Das Sprint Review ist das einzige Scrum Event, was wirklich abweicht. Es hält zwar die

geplante Timebox von 2h ein, hat aber im Vergleich zum Referenzscrum doch einen anderen

Inhalt. Während im Referenzscrum hier noch viele Elemente wie eine Darstellung der ne-

gativen und positiven Punkte geschieht, hat der vorliegende Scrumprozess diese Elemente

lediglich in der Retrospective. Themen wie die Planung des nächsten Sprints und die Prä-

sentation des aktuellen Product Backlogs Seitens des POs sind Teil eigener Aktivitäten. Das

Product Backlog wird nur in der Refinement-Aktivität aktualisiert. Stattdessen nutzt das

Team diesen Termin um Risikomanagement zu betreiben.

Wenn man die Rollen des Referenzscrums betrachtet, so findet man diese auch im prak-

tiziertem Scrumprozess wieder. Dabei sind die Rollen des Entwicklungsteams, des Scrum

Masters und des Product Owners nahezu 1:1 übernommen worden. Das Entwicklungsteam

besteht aus Entwicklern und ist selbstorganisierend und interdisziplinär. Es liefert iterativ

und inkrementell. Eine Besonderheit des vorliegenden Scrumprozesses ist, dass die Rolle

des PO doppelt besetzt ist. Einer der POs ist aufgrund des Arbeitsmodells zwischen Tochter-

und Muttergesellschaft ein Mitarbeiter des Mutterunternehmens. Zusätzlich dazu ist er auch

43

4 Projekt beim Industriepartner

nicht immer für das Entwicklerteam direkt verfügbar, deshalb gibt es im Team noch einen

internen PO, welcher dem externen PO einige Aufgaben abnimmt und ihn unterstützt. Der

interne PO kümmert sich zusätzlich auch um alle organisatorischen und formalen Anforde-

rungen, dazu gehört zum Beispiel auch das Beantragen von Zugriffen und Freigaben auf

unterschiedliche Systeme, sowie speziell in diesem Projekt die Kommunikation mit den

unterschiedlichen Datendienstleistern.

Die Aufgaben des POs ist vor allem die Pflege des Product Backlogs, er sorgt dafür, dass

Einträge klar formuliert und nach Priorität sortiert sind. Außerdem ist er dafür verantwortlich

den Nutzen der Arbeit des Entwicklungsteams zu maximieren. Das erreicht er indem er

sicherstellt, dass zum einem das Product Backlog sichtbar ist - sprich es transparent ist und es

klar ist, woran das Scrum Team als nächstes arbeiten wird - und dass das Entwicklungsteam

die Einträge des Product Backlogs im erforderlichen Maß versteht.

Der SM ist für die Einhaltung des Scrumprozesses verantwortlich. Er vermittelt Techniken

für eine effektive und effiziente Verwaltung des Product Backlogs und vermittelt dabei ein

richtiges Verständniss von Agilität und ihrer Anwendung. Die Rolle im praktizierten Scrum

hat alle Aufgaben des Referenzscrums bis auf einen Aufgabenbereich: Die Dienste des Scrum

Masters an die gesamte Organisation wird nicht von ihm verantwortet. In der Organisation

geschieht das durch die Schulung von zukünftigen SMs durch interne Schulungen anstatt

bereits bestehende SMs damit zu beauftragen.

Zusammenfassend findet man eine Scrumimplementierung welche sich sehr nahe am Refe-

renzscrum orientiert. Es gibt kleinere aber bewusste Abweichungen, wobei die auffälligste

mit Sicherheit die doppelte Besetzung der PO-Rolle ist. Die kleinen Abweichungen sollten

einem Vergleich des Scrum-Prozesses mit anderen, nach dem Referenzscrum umgesetzten,

Scrum-Prozessen nicht im Wege stehen.

Erstellung und Umsetzung von REST-Schnittstellen in Scrum

Während der Betrachtung des Prozesses ist aufgefallen, dass ein mögliches Design der

REST-Schnittstellen prinzipiell an mehreren Stellen im Scrumprozess stattfinden kann. Die

im Folgenden beschriebenen zwei Zeitpunkte der möglichen Schnittstellenentwicklungen

sind in Abbildung 4.1 visualisiert. Auf der einen Seite gibt es Entwicklungen, bei denen die

Schnittstellen bereits vor Beginn der eigentlichen Implementierung entworfen und spezifi-

ziert werden (Zeitpunkt 1). Diesen Fall kennt man am ehesten aus Projekten zur Ablösung

einer bestehenden Implementierung inklusive Schnittstelle oder aus klassischen Projekten,

welche mit Pflichten- und Lastenheft arbeiten. Auf der anderen Seite befinden sich Ent-

wicklungen, welche bewusst agil gehalten werden und den Entwurf und die Umsetzung

der Schnittstelle während der inkrementellen Implementierung durchführen (Zeitpunkt 2).

Selbst dabei gibt es noch unterschiedliche Ansätze, je nachdem ob die Entwickler wie bereits

in den Grundlagen (Abschnitt 2.2) beschrieben einen Top-Down- oder Bottom-Up-Ansatz

44

4.1 Der Industriepartner

Project Planung /
Setup

Sprint Planning

ReviewAdjust

Fertiges Produkt

Zeitpunkt 2:
Entwurf / Realisierung von REST-
Schnittstelle während Projekt

Zeitpunkt 1:
Entwurf von REST-
Schnittstellen vor
Projektbeginn

Zeit

Develop Wrap

Abbildung 4.1: Unterschiedliche Zeitpunkte des Entwurfs von REST-APIs

wählen. Je nach gewählten Ansatz ist die Geschwindigkeit der Umsetung unterschiedlich.

Wir konnten drei unterschiedliche Arten von Schnittstellenentwicklungsstilen identifizieren:

Formale Schnittstelle, inkrementelle Entwicklung der Schnittstelle und einen Hybridansatz,
welcher beide Ansätze kombiniert. In Abbildung 4.2 werden die Unterschiede im Grad der

Fertigstellung der Schnittstellendefinition über die Zeit der verschiedenen Ansätze visuali-

siert. Die Abbildung verdeutlicht, dass bei dem Ansatz ‘Formale Schnittstelle’ der Großteil

der Spezifikationsarbeit am Anfang des Projektes stattfindet. Bei der “inkrementellen Ent-

wicklung der Schnittstelle” verläuft diese Entwicklung stetig. Der Hybrid-Ansatz kombiniert

beide Ansätze und hat deshalb auch ihre Eigenschaften. Hier wird ein großer Teil zuerst

spezifiziert aber dann später inkrementell weiterentwickelt.

Bei der Arbeit beim Industriepartner ist deutlich geworden, dass die Entwickler aller Teams

gerne einen Hybrid-Ansatz wählen würden. Sie würden gerne zu Beginn eine Schnittstel-

lendefinition besitzen, welche als Grundlage zur Arbeit und zur Diskussion zwischen den

Teams dient. Die Schnittstelle würde im optimalen Fall dann dennoch uneingeschränkt

stetig weiterentwickelt werden können. In der Praxis sieht es aber etwas anders aus. Bei der

Neuentwicklung einer Schnittstelle wird in einem relativ frühen Sprint eine erste Version

der Schnittstelle implementiert. Aus dieser ersten Version kann eine Schnittstellendefinition

erzeugt werden, welche dann als Grundlage zur Diskussion und Kommunikation dient. Die

weitere Entwicklung der Schnittstelle wird dann durch das Anpassen der Schnittstelle im

Quellcode durchgeführt. Andere Teams nutzen die aktuellen Schnittstellendefintionen um

mit den erstellten REST-Schnittstellen zu arbeiten. Dieser Prozess hat sich über längere Zeit

entwickelt, da ein Entwickler in diesem Prozess zum einen keine Schnittstellendefinition von

45

4 Projekt beim Industriepartner

ZeitProjektstart

Grad der
Spezifika
tion

ZeitProjektstart

Grad der
Spezifika
tion

ZeitProjektstart

Grad der
Spezifika
tion

Verschiedene Schnittstellentypen

Formale Schnittstelle Entwickelnde Schnittstelle Hybrid aus den ersten beiden
Ansätzen

Abbildung 4.2: Entwicklung des Fertigstellungsgrades von REST-APIs in unterschiedlichen

Projekttypen

Hand schreibenmuss und zum anderen es so einfacher ist die erstellte Schnittstellendefinition

auf aktuellem Stand zu halten.

Werkzeugunterstützung

Um die Teams bei der Durchführung der Projekte zu unterstützen wird auf das Tooling

der Firma Atlassian zurückgegriffen. Für die allgemeine Kollaboration, genauer gesagt

das Festhalten von Entscheidungen, Sammeln von Informationen und Bereitstellen von

Guidelines, kommt Atlassian Confluence
1
zum Einsatz. Die Versionierung und Historie des

Codes wird durch Atlassian Bitbucket Server
2
(ehemalig Stash) abgedeckt. Das speziell auf

Scrum zugeschnittene Tool Atlassian Jira
3
kommt für die ganze Verwaltung des Prozesses

zum Einsatz. Hier werden Sprints verwaltet, die Product Backlogs gepflegt und der Fortschritt

der einzelnen Aufgabenpakete (Issues) aktualisiert und verfolgt. Als Entwicklungsumgebung

wird im ganzen Team IntelliJ IDEA
4
von JetBrains eingesetzt. Doe Kommunikation im Team

geschieht über E-Mail, die Kommunationswerkzeuge Slack
5
und Skype for Business

6
.

4.2 Der Service

Der zentrale Punkt dieser Arbeit ist der Vergleich mehrerer Methodiken und der dazugehöri-

gen Werkzeuge und Modelle. Der Vergleich wird anhand eines Beispielservices durchgeführt.

Bei dem Beispielservice handelt es sich um eine bestehende Dienstimplementierung des

1
Atlassian Confluence: https://de.atlassian.com/software/confluence

2
Atlassian Bitbucket Server: https://de.atlassian.com/software/bitbucket/server

3
Atlassian Jira: https://de.atlassian.com/software/jira

4
IntelliJ IDEA: https://www.jetbrains.com/idea/

5
Slack: http://slack.com

6
Skype for Business: https://www.skype.com/de/business/skype-for-business/

46

https://de.atlassian.com/software/confluence
https://de.atlassian.com/software/bitbucket/server
https://de.atlassian.com/software/jira
https://www.jetbrains.com/idea/
http://slack.com
https://www.skype.com/de/business/skype-for-business/

4.2 Der Service

Industriepartners. Der bestehende Beispielservice wird für den Vergleich in dieser Arbeit

also mehrmals realisiert. Dieser Abschnitt soll erklären, um was für einen Dienst es sich

dabei handelt.

Fachliche Sicht

Fachlich gesehen bietet der Dienst die Möglichkeit anhand einer geographischen Position

verschiedene Sonderziele und Informationen über diese Sonderziele abzufragen.

Ein Sonderziel hat eine Menge an zugehörigen Informationen. Diese Informationen lassen

sich in zwei Klassen einteilen: statische und nicht-statische Informationen. Statische In-

formationen sind Informatioen, welche sich nicht oder kaum ändern, beispielsweise ein

Identifikator (ID), Position des Sonderziels oder auch die Telefonnummer der Verwaltung.

Nicht-statische Daten hingegen sind oftmals Daten die sich in unterschiedlichen, unre-

gelmäßigen und oft auch unvorhersehbaren Intervallen aktualisieren oder auf Basis von

anderen nicht-statischen Daten berechnet werden, wie zum Beispiel aktuelle Besucherzahlen

oder Angaben über eine geschätzte Wartezeit. Für diesen Dienst ist anzumerken, dass das

Datenmodell relativ groß ist. Das Ergebnis einer Anfrage an den Dienst ist ein JSON-Array

von gefunden Sonderzielen, welche wiederum selbst über 150 Name-Wert-Paare besitzen

kann.

Ein Benutzer kann den Suchbereich auf zwei unterschiedliche Arten einschränken: Zum

einem kann eine geographische Position und ein Radius, um die Position herum, angegeben

werden und zum anderem können zwei geographische Positionen angegeben werden, welche

dann die obere linke und untere rechte Ecke des Suchbereichs darstellen.

Technische Sicht

Aus technischer Sicht lässt sich der Dienst wie folgt beschreiben: Bei dem Dienst handelt es

sich um eine Spring Boot7-Anwendung. Der Dienst nutzt neben der Basisfunktionalität auch

erweiterte Funktionen des eingesetzten Frameworks und hat deshalb einige Abhängigkeiten,

welche bei einem Wechsel zu einem anderem Framework aufgelöst werden müssten. Diese

Tatsache muss berücksichtig werden, falls der Dienst mit Hilfe eines anderen Frameworks

umgesetzt werden soll.

Funktional bündelt der Dienst die Daten mehrere Datendienstleister für Sonderziele und

aggregiert diese in einem gemeinsamen Format, welches dem Nutzer dann bereitgestellt

wird. Der Service ist Teil einer groß angelegten Microservice-Architektur, er hat jedoch

recht wenige Abhängigkeiten zu anderen Diensten der Architektur.

7
Spring Boot: http://projects.spring.io/spring-boot/

47

4 Projekt beim Industriepartner

Abbildung 4.3: Logischer Aufbau: Dienst des Industriepartners

In Abbildung 4.3 sieht man mit welchen anderen Diensten ein Datenaustausch stattfindet.

Der Dienst benötigt Informationen anderer Dienste um zum einem die Berechtigungen der

anfragenden Nutzer zu Prüfen und zum anderem greift er auf die Datenanbieter zu um die

angefragten Informationen bereitzustellen.

Um die endgültigen Artefakte zu erzeugen wird Gradle
8
als Buildtool eingesetzt. Die Au-

tomatisierung des Builds ermöglicht einige weitere Automatismen, bei der Entwicklung

werden damit, zusätzlich neben dem Einsatz von statischen Codeanalysen und automati-

sierten Unittests, auch Maßnahmen hinsichtlich Continous Integration (CI) und Continous
Deployment (CD) umgesetzt.

Die REST-Schnittstelle

Die REST-Schnittstelle des Dienstes ist aufgrund der Microservice-Architektur sehr über-

schaubar und besteht hauptsächlich aus zwei Ressourcen. Die Ressourcen sind Teil eines

gemeinsamen Pfades (“/information/v1/”). Die Teilstücke des Pfades haben keine Funktion,

falls man sie dennoch aufruft antwortet der Dienst mit einer HTTP 404 Nachricht welche

noch zusätzliche Details wie den aufgerufenen Pfad und einen Zeitstempel enthält.

Die beiden Suchfunktionen sind auf die zwei Ressourcen verteilt. Die Suche in einem durch

ein Viereck definiertem Suchbereich ist in der Ressource “/information/v1/pois” verfügbar,
um die Suche mittels zentralem Punkt und Radius durchzuführen muss der Pfad “/informati-
on/v1/pois/radius” aufgerufen werden.

8
Gradle: https://gradle.org/

48

https://gradle.org/

4.2 Der Service

Listing 4.1 Beispielhafte HTTP-Anfrage an ‘/information/v1/pois’ für einen Bereich in der

Stuttgarter Innenstadt

GET /information/v1/pois?lat_tl=48.784269&long_tl=9.164285\tabularnewline
&lat_br=48.765490&long_br=9.200162

Host: meine-rest-api.de

Listing 4.2 Beispielhafte HTTP-Anfrage an ‘/information/v1/pois/radius’ für einen 3 km

großen Bereich in der Stuttgarter Innenstadt

GET /information/v1/pois/radius?lat=48.784269&long=9.164285&radius=3000
Host: meine-rest-api.de

Die Ressource “/information/v1/pois” besitzt entsprechend ihrer Funktion zur Suche in einem

quadratischem Suchbereich die Parameter zur Angabe der Geokoordinaten für die obere

linke und untere rechte Ecke lat_tl, long_tl, lat_br und long_br (wobie tl für top left und
br für bottom right steht). Eine beispielhafte HTTP-Anfrage für die Ressource ist in 4.1

dargestellt.

Die Ressource “information/v1/pois/radius” hat dementsprechend die Queryparameter lat,
long und radius um eine Geokoordinate sowie den Radius anzugeben (siehe Listing 4.2).

Beide Ressourcen haben die optionalen Parameter maxresults und offset um Funktionen zur

Paginierung anzubieten.

Die beiden eben genannten Ressourcen geben beide dasselbe Datenobjekt zurück, da sie sich

lediglich um die Art der Suche unterscheiden. Eine exemplarische Antwort des Dienstes ist

in Listing 4.3 dargestellt.

Die Schnittstelle erwartet zusätzlich zu den Parametern auch noch einen speziellen Anfrage-

Header (Request-Headers), welcher zur Authentifizierung bei dem . Diese sind aber einigen

technischen und fachlichen Anforderungen geschuldet und stehen deshalb nicht im Fokus

dieser Arbeit. Eine grafische Übersicht der Ressourcen und den Methoden befindet sich in

Abbildung 4.4.

Die beiden Teile des Pfades “/information” und “/v1” enthalten keine Geschäftslogik und

geben jeweils eine HTTP 404 Antwort zurück. Der Pfad dient lediglich als Einstiegspunkt für

den Dienst und um diesen von anderen Diensten zu differenzieren. Wenn in den Ressourcen

ein Fehler auftritt, so werden die Statusmeldungen 400 BAD REQUEST, im Falle eines Fehler

im Aufrufs, und der Status 500 INTERNAL SERVER ERROR, im Falle eines Fehler im Aufrufs,

genutzt um den Nutzer der Schnittstelle auf einen Fehler hinzuweisen. Dabei wird ein

sogenanntes Error-Objekt eingesetzt um die Fehler noch genauer zu beschreiben. Ein Beispiel

für ein solches Error-Objekt im JSON-Format stellt Listing 4.4 dar.

49

4 Projekt beim Industriepartner

Listing 4.3 Beispielhafte HTTP-Antwort des Dienstes

HTTP/1.1 200 OK
Date: Mon, 18 Jul 2016 12:28:53 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Mon, 18 Jul 20016 19:15:56 GMT
Content-Length: 2840
Content-Type: application/json
Connection: Closed

{
"moreItems": true,
"items": [
{
...

},
...

]
}

Listing 4.4 Beispiel für Error-Objekt im JSON-Format

{
’’errors’’: [
{

’’errorCode’’: 1234,
’’errorMessage’’: ’’Dies ist ein Beispielfehler der halt mal passiert!’’}

}
]

}

Abbildung 4.4: Layout der REST-Schnittstelle

50

4.3 Nutzung von Beschreibungssprachen für REST APIs

Abbildung 4.5: Nutzung von Swagger beim Industriepartner

4.3 Nutzung von Beschreibungssprachen für REST APIs

In der Organisation wird bereits die Codegenerierung von Swagger eingesetzt. Allerdings

wird diese nur für die Erzeugung von REST-Clients auf Basis desModells genutzt. Bei genauer

Betrachtung fällt auf, dass dieser Einsatz von Swagger nicht modellgetrieben ist. Im Mo-

ment ist es zwar so, dass alle implementierten REST-Dienste eine Swagger-Dokumentation

anbieten müssen. Die Erstellung der Swagger Definition geschieht allerdings nicht vor der

Implementierung, sondern wird auf Basis des Quellcodes und zusätzlicher Annotationen

erzeugt. Mit dieser Art der Verwendung ist das Modell letztendlich ein Produkt des Codes -

bei einer modellgetriebenen Variante würde der Code Produkt des Modells sein.

Die generierten Swagger Definitionen werden zentral verwaltet und sind jedem Entwickler

über einen internenWebserver zugänglich. Sie dienen der Organisation als Hilfe beim Zugriff

auf die entsprechenden Dienste. Wenn bei einer neuen Implementierung ein anderer Dienst

angesprochen werden muss, wird der Client für den entfernten Dienst aus der jeweiligen

Swagger Definition unter Einsatz der Codegenerierung des Swagger Editors
9
erzeugt. Dieser

Ablauf ist in Abbildung 4.5 skizziert.

Der beschriebene Dienst wurde selbst auch durch den Einsatz von Swagger dokumentiert.

Wie genau dabei vorgegangen wurde und welche Annotationen zum Einsatz kamen wird

im nächsten Kapitel genauer beschrieben werden.

9
Swagger Editor: https://github.com/swagger-api/swagger-editor

51

https://github.com/swagger-api/swagger-editor

5 Methoden und Tools für den Entwurf
von REST-APIs

Dieses Kapitel schildert, wie die drei unterschiedlichenMethodiken (Tools des IST-Zustandes,

RAML, und das akademische Tooling) genutzt werden können um den Entwurf von REST-

APIs durchzuführen bzw. zu unterstützen. Bei den Methoden und Tools des IST-Zustands

wird zusätzlich detailliert auf die genaue Erstellung der Schnittstellendokumentation mittels

Swagger, welche alsModell für die Clientgenerierung dient, eingegangen. Das nächste Kapitel

beschäftigt sich dann mit der Umsetzung und Implementierung der einzelnen Entwürfe.

Ein Hindernis für das Verständnis dieses Kapitel kann die Tatsache sein, dass es sich bei

der Art der Erstellung des IST-Zustands technisch gesehen um einen Bottom-Up-Ansatz

handelt. Im Ist-Zustand wird für die Schnittstelle ein deskriptives Swagger-Modell auf Basis

des Codes erstellt. Die beiden anderen Ansätze und deren Tools verfolgen hingegen den

Top-Down-Ansatz, welcher jeweils ein präskriptives Modell als Resultat hat. Allerdings ist

diese Abgrenzung nicht so hart wie hier zuerst dargestellt und angenommen. Der Prozess im

Ist-Zustand hat doch auch Ähnlichkeiten zum Top-Down-Ansatz, da die Entwickler sich vor

Beginn der Umsetzung natürlich auch ihre Gedanken zur zukünftigen Schnittstelle machen.

Diese Überlegungen und Gedanken spiegeln sich dann aber letztendlich doch nur indirekt im

Code wider, welcher dann typisch für einem Bottom-Up-Ansatz als Basis für das deskriptive

Modell dient.

5.1 Methoden und Tools des IST-Zustands

Wie bereits in Kapitel 4 beschrieben sind die beim IST-Zustand eingesetzten Tools eher

codezentrisch, dennoch werden auch hier Entwurfstätigkeiten durchgeführt. Anders als

bei den anderen Ansätzen macht der Entwickler sich vor der Implementierung der REST-

Schnittstelle zwar auch Überlegungen und Gedanken, aber er erstellt kein verbindliches

Modell über das Design der Schnittstelle. Der Fokus in diesem Kapitel liegt also auf der

Erstellung von zwei Arten von Modellen: Einmal die des unverbindlichen präskriptiven

Modells des Entwicklers, welches für ihn als Anhaltspunkt für die Entwicklung dient und

später verworfen wird, und die Erstellung des deskriptiven Swagger-Modells, welches später

für die Clientgenerierung und Dokumentation der Schnittstelle verwendet wird.

53

5 Methoden und Tools für den Entwurf von REST-APIs

Abbildung 5.1: Workflow: Entwurf und Realisierung von REST-Schnittstellen beim Indus-

triepartner

Der Prozess zum Entwurf und der Realisierung von REST-Schnittstellen beim Industrie-

partner ist grob in Abbildung 5.1 dargestellt. In der Grafik ist nicht ersichtlich, dass es

sich bei der Implementierung um eine iterative Tätigkeit handelt. Als Teil dieser Tätig-

keit werden dann die Schritte “Generierung der Swagger-Definiton” und “Feedback durch

Schnittstellenexperten” durchlaufen.

Der initiale Designprozess, also die Erstellung des unverbindlichen deskriptiven Modells,

ist abhängig von der Anzahl an Ressourcen in der zu entwickeltenden Schnittstelle. Viele

Entwickler gaben an, dass sie den Entwurf von Schnittstellen mit nur einer Ressource

gar nicht festhalten, sondern diese sobald sie ihre Überlegungen abgeschlossen haben

direkt umsetzen. Als Basis für die Diskussion mit anderen Entwicklern dient dann die

generierte Schnittstellendokumentation. Bei etwas größeren Schnittstellen werden Entwürfe

amWhiteboard oder auf Papier angefertigt, welche aber kein striktes formales Format haben.

Sie bestehen laut Aussage der Entwickler meistens aus hierarchischen Vierecken, welche ein

in sich selbst einheitliches aber frei gewähltes Farbschema besitzen können. Ein Beispiel für

eine nachgezeichnete Skizze in einem freien Format ist Abbildung 5.2. Hier sieht man wie

zum einem das Layout der Schnittstelle, sowie das kleine Datenmodell festgehalten wurde.

Auf die Frage wie eine Skizze eines größeren Datenmodells aussieht gaben die Entwickler an,

dass sie für größere Datenmodelle keine Skizze erstellen, da diese Information bei größeren

Schnittstellen sicherlich an anderer Stelle ausreichend dokumentiert ist. In so einem Fall wird

hier nur auf die entsprechende Stelle referenziert. Bei der Erstellung werden hier während

des Entwurfs gewisse Konventionen getroffen. Eine solche Konvention ist beispielsweise

hier das unterstreichen der Pflichtfelder im Datenmodell.

54

5.1 Methoden und Tools des IST-Zustands

Abbildung 5.2: Nachzeichnung: Whiteboard Entwurf der Personenschnittstelle im freien

Format

Dieser Entwurf dient, zusammen mit Wissen über definierte Best Practices und Guidelines,

als Grundlage für die Implementierung der REST-Schnittstelle, er ist unverbindlich und

dient bestenfalls zur Diskussion mit teaminternen Kollegen.

Zeitlich gesehen kommt nun im Anschluss an den groben Entwurf die Erstellung eines

Prototypes der Schnittstelle mittels SpringBoot. Dies ist nicht and die Implementierung

der Logik gebunden, diese kann zeitlich auch später angefangen und fertiggestellt werden.

Dieser Prototy besteht zu diesem Zeitpunkt lediglich aus den Klassen und den für die

Generierung des Modelles notwendigen Methodenköpfen. Der vorläufige Prototyp wird

meistens noch um Beispieldaten aus Textdateien ergänzt, welche von der Schnittstelle

exemplarisch zurückgegeben werden.

Die so frühzeitig generierten Swagger-Modelle können bereits zur Validierung und Diskussi-

on an unternehmensinterne Experten gegeben werden. Zukünftige Nutzer der Schnittstelle

können ebenso mit der Definition ihre Clients erzeugen und anhand der eventuell vorhan-

denen Beispieldaten die Schnittstelle bereits in ihre Anwendungen integrieren.

Um solch ein deskriptives Swagger-Modell auf Basis des Quellcode zu erzeugen bietet das

Swagger-Framework unterschiedliche Möglichkeiten den Quellcode mit Annotationen zu

versehen. Diese Annotationen werden später zusammen mit dem Quellcode interpretiert

um eine Schnittstellendefinition zu erzeugen. Alle Swagger-Annotationen können auf der

entsprechenden Wiki-Seite
1
des Swagger-Repositories im Detail nachgelesen werden, der

1
Swagger-Core Annotations: https://github.com/swagger-api/swagger-core/wiki/Annotations-1.5.X

55

https://github.com/swagger-api/swagger-core/wiki/Annotations-1.5.X

5 Methoden und Tools für den Entwurf von REST-APIs

folgende Auszug davon soll als grober Überblick dienen um die Techniken zur Erstellung

des Modells besser einschätzen zu können.

Die Annotationen von Swagger lassen sich ihrer Verwendung nach in drei Kategorien

einordnen: Zur Deklaration von Ressourcen, zur Deklaration von Operationen und die An-

notationen zur Deklaration des Datenmodells. Die Swagger-Annotationen bilden zusammen

mit den Spring-Annotationen die Grundlage für den bottom-up-Ansatz von Swagger. Die fol-

gende Aufzählung fasst die wichtigsten Spring-
2
und Swagger-Annotationen

3
zusammen:

@API: Swagger-Annotation - Definiert den Namen und eine Beschreibung der Schnittstelle.

@API-Operation: Swagger-Annotation - liefert Beschreibung für eine Operation auf einer

Ressource.

@API-Responses: Swagger-Annotation - liefert zusammen mit den Kindelementen API-
Response Auskunft über die möglichen HTTP-Codes der Antworten.

@ApiImplicitParams: Swagger-Annotation - dient dazu Parameter zu definieren, welche

nicht als Spring Parameter (s. RequestParam) definiert werden können.

@ApiParam: Swagger-Annotation - kann genutzt werden um dem API-Nutzer zusätzliche

Informationen zu einem Parameter zu liefern.

@RequestMapping: Spring-Annotation - wird genutzt um einkommende Anfragen an

spezielle Klassen oder Methoden zu verweisen.

@ResponseStatus: Spring-Annotation - setzt den HTTP-Statuscode, sowie den Grund

(bzw. reason), der HTTP-Antwort an den Client.

@RequestParam: Spring-Annotation - gibt an, dass ein Methodenparameter an einen

Parameter der Webanfragen gebunden werden soll.

Das Swagger-Framework bietet noch eine weitere Komponente namens Swagger-UI
4
wel-

che dazu genutzt werden kann um die Swagger-Spezifikation im Browser grafisch und

übersichtlich darzustellen. Neben der Verwendung als Dokumentation bietet Swagger-UI

auch die Möglichkeit direkt Aufrufe gegen eine Implementierung des Dienstes zu testen.

Diese Art von Dokumentation ist besonders bei Entwicklern beliebt, welche die Schnittstelle

für ihre Anwendung nutzen wollen, da sie hier alle Operationen und Paramter gesammelt

an einer Stelle finden können und diese gleich an dieser Stelle, ohne weitere Tools, direkt

ausprobieren können.

2
Spring Dokumentation: http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/

springframework/web/bind/annotation/

3
Swagger Dokumentation: http://docs.swagger.io/swagger-core/apidocs/

4
Swagger UI: http://swagger.io/swagger-ui/

56

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/
http://docs.swagger.io/swagger-core/apidocs/
http://swagger.io/swagger-ui/

5.2 Restful Api Modeling Language

Neben den Schnittstellenoperationen muss auch das Datenformat spezifiziert werden. Die

meisten der zur Zeit beim Industriepartner entwickelten Schnittstellen benutzen nur JSON

als Datenformat. In der Entwurfsphase werden die zurückgegebenen Daten in Form von

beispielhaften JSON-Antworten beschrieben. Dabei wird sehr genau darauf geachtet, dass

die gewählten Beispiele vollständig, konsistent und wohlüberlegt sind. Wohlüberlegt be-

deutet hierbei, dass die gewählten Beispieldaten auch das richtige Format beinhalten - was

besonders bei kombinierten Datentypen wie Zahlungsbeträgen (Währung + Betrag) und

Datumsangaben (z.B. ISO 8601) relevant ist. Wie so ein Beispiel für eine fiktive Datende-

finition einer Liste von Personen aussehen kann ist in der 5.1 gezeigt, welche eine Liste

bestehenden aus Daten zu drei Personen darstellt. Sie enthalten neben Information zu der

ID, dem Vornamen, Nachnamen auch zusätzlich Details zu der Rolle des Benutzers und des

Erstelldatums. Für die Spezifikation von JSON-Daten existieren Standards wie beispielsweise

“JSON Schema”
5
, welche hier aber bewusst nicht zum Einsatz kommen.

Die Umsetzung des in diesem Abschnitt aufgezeigten Schnittstellenentwurfs inklusive der

Datendefinition wird im Kapitel 6, das sich mit der Realisierung von REST-Schnittstellen

beschäftigt, gezeigt werden.

5.2 Restful Api Modeling Language

Dieser Abschnitt bezieht sich auf die konkreten, von RAML zur Verfügung gestellten Mög-

lichkeiten, Prozesse und verwendeten Tools zum Entwerfen von REST-Schnittstellen. Grund-

legend wurde RAML schon in Unterabschnitt 2.8.2 beschrieben.

In dieser Arbeit wurden mehrere Werkzeuge für die Arbeit mit RAML evaluiert. Zum einen

wurde ein Blick auf den Mulesoft Api Designer6 geworfen. Er kann mittels Node Package

Manager (npm)
7
, welcher Teil des NodeJS Toolings ist, einfach installiert werden und direkt

aus dem Terminal gestartet werden. Der Api Designer läuft nach dem Starten im Browser. Er

ist sehr übersichtlich: er bietet neben einem Fenster zur Bearbeitung der RAML-Definition

auch eine Swagger-UI ähnliche Ansicht, in der die bisherige Definition der Schnittstelle

betrachtet werden kann. Ein besonderes Feature ist die Möglichkeit einen Mock-Service zu

aktivieren, welcher die bereits spezifizierten Teile, durch das Zurückliefern der Beispiel auf

den entsprechenden Pfaden, zur Verfügung stellt.

Einziger Wermutstropfen ist der nötige Aufwand für das Importieren, Exportieren und

Speichern von Definitionen. Alle diese Operationen geschehen über Operationen im Menü

ohne Hotkeys, beim Speichern muss immer eine explizite Datei angegeben werden. Eine

5
JSON Schema http://json-schema.org/

6
Api Designer: https://github.com/mulesoft/api-designer

7
npm: https://www.npmjs.com/

57

http://json-schema.org/
https://github.com/mulesoft/api-designer
https://www.npmjs.com/

5 Methoden und Tools für den Entwurf von REST-APIs

Listing 5.1 Beispiel für JSON-Format: Liste von Personen

{
"persons": [
{
"id" : 1,
"first" : "Max",
"last" : "Mustermann",
"details" :
{
"created" : "2016-08-23T12:12+00:00",
"role" : "admin"

}
},
{
"id" : 2,
"first" : "Erika",
"last" : "Mustermann"
"details" :
{
"created" : "2016-08-25T13:37+00:00",
"role" : "group-owner"

}
},
{
"id" : 3,
"first" : "Marcus",
"last" : "Mustermann"
"details" :
{
"created" : "2016-10-23T16:32+00:00",
"role" : "user"

}
}

]
}

schnelle Möglichkeit eine bearbeitet Definition zu speichern besteht also nicht und wurde

bei der Verwendung sehr vermisst.

Das zweite betrachtete Werkzeug war die Api Workbench8 welche als Package für den Editor

Atom
9
installiert werden kann. Die ApiWorkbench konnte im Unterschied zumApi Designer

durch ihre Integration in das lokale Dateisystem sowie durch, die von Atom bereitgestellten,

Features des Editors überzeugen. Beide Werkzeuge boten eine gute Unterstützung beim

Schreiben der Spezifikation in Form von automatischer Vervollständigung.

8
Api Workbench: http://apiworkbench.com/

9
Atom: https://atom.io/

58

http://apiworkbench.com/
https://atom.io/

5.2 Restful Api Modeling Language

RAML verfolgt konsequent den Top-Down-Ansatz um REST-Schnittstellen umzusetzen. Aus

diesem Grund ist es auch nicht verwunderlich, dass die Sprachfeatures von RAML über

die ledigliche deskriptive Beschreibung hinausgehen. RAML ermöglicht an verschiedenen

Stellen einen hohen Grad an Wiederverwendung und setzt somit das DRY-Prinzip (Don’t
repeat yourself) um. Die Definition von sogenannten “resource types” erlaubt es gemeinsames

Verhalten mehrerer Ressourcen nur einmal zu definieren und dann wiederzuverwenden.

Ein Beispiel für die Umsetzung eines “collection/collection-item” Musters ist in Listing 5.2

aufgezeigt. Die exemplarische Verwendung ist in 5.3 aufgezeigt. In ihr kann man sehen,

wie kompakt Definitionen von gängigen Mustern aussehen können. In 5.2 kann man sehen

wie zwei unterschiedliche “resourceTypes” (collection und collection-item) definiert

werden und anschließend in 5.3 wiederverwendet werden.

Um einenmöglichst hohen Grad anWiederverwendung zu ermöglichen können die Beschrei-

bungen aus 5.2 abhängig von dem Namen der später implementierenden Ressource gemacht

werden. Dabei ist es möglich die variablen Teile mittels !singularize und !pluralize

anzupassen. In den resourceTypes werden die HTTP-Methoden, der HTTP-Status der Ant-

worten sowie die jeweiligen Nachrichtenbodies definiert. Für die Nachrichtenbodies können

auch explizite Beispiele definiert werden. Die definierten ResourceTypes können im An-

schluss für mehrere Resourcen verwendet werden. 5.3 zeigt wie dies genau funktioniert. Bei

der Definition einer Ressource wird einfach der vorher definierte ResourceType als type

angegeben. Die “/songs”-Ressource nutzt hier beispielsweise den “collection”-ResourceType

und die “/songId”-Ressource nutzt den “collection-item”-ResourceType

In Kombination mit den in RAML möglichen “Includes”, und der daraus resultierenden

Möglichkeit solche Blöcke auch auszulagern, können viele REST-Schnittstellen mit sehr

wenig Aufwand sehr detailliert spezifiziert werden.

Eine andere Form der Wiederverwendbarkeit bieten die sogenannten “Traits”, sie können,
ähnlich wie man es von abstrakten Klassen aus der Programmierung kennt, genutzt werden

um gemeinsames Verhalten abzubilden. Besonders ist hierbei, dass man einer Operation

mehrere Traits zuweisen kann. Dieses Sprachfeature ist vor allem sehr sinnvoll einsetzbar,

wennman viele Suchressourcen hat, welche Filterung und Paginierung unterstützen sollen.

Das Erstellen des Schnittstellenlayouts ist aber nur ein Teil der Aufgabe. Zusätzlich dazu

muss auch das Datenmodell definiert werden. In RAML gibt es generell zwei Möglichkeiten

um dies zu bewerkstelligen. Eine Möglichkeit ist es die einzelnen fachlichen Objekte mittels

JSON-Schema zu definieren. Wer mit JSON-Schema bereits gearbeitet hat wird so schnell

sein Datenmodell beschrieben haben - das Einbinden der Schemas in die RAML-Spezifikation

ist allerdings leider nicht ganz so einfach. An vielen Stellen ist unklar ob eine Referenz nun

auf das JSON-Schema geschieht oder ein Schema der RAML-Definition referenziert wird.

Ein weiteres Manko ist die Tatsache, dass es bei der Erstellung dieser Arbeit nicht gelungen

ist die, in die RAML-Definition eingebundenen, JSON-Schemas korrekt zu validieren und

gleichzeitig das Modell generierbar zu halten. Grund hierfür ist, dass der Editor der API

59

5 Methoden und Tools für den Entwurf von REST-APIs

Listing 5.2 Beispiel für Definition des Collection/Collection-Item Musters in RAML

resourceTypes:
- collection:

description: Collection of available <<resourcePathName>> in Jukebox.
get:
description: Get a list of <<resourcePathName>>.
responses:
200:
body:
application/json:

post:
description: |
Add a new <<resourcePathName|!singularize>> to Jukebox.

queryParameters:
access_token:
description: "The access token provided by the authentication application"
example: AABBCCDD
required: true
type: string

body:
application/json:
schema: <<resourcePathName|!singularize>>

responses:
200:
body:
application/json:
example: |

{ "message": "The <<resourcePathName|!singularize>> has been properly
entered" }

- collection-item:
description: Entity representing a <<resourcePathName|!singularize>>
get:
description: |
Get the <<resourcePathName|!singularize>>
with <<resourcePathName|!singularize>>Id =
{<<resourcePathName|!singularize>>Id}

responses:
200:
body:
application/json:

404:
body:
application/json:
example: |
{"message": "<<resourcePathName|!singularize>> not found" }

60

5.3 Akademischer Ansatz

Listing 5.3 Beispiel für die Verwendung des Collection/Collection-Item Muster in RAML

/songs:
type:
collection:
exampleCollection: !include jukebox-include-songs.sample
exampleItem: !include jukebox-include-song-new.sample

/{songId}:
type:
collection-item:
exampleItem: !include jukebox-include-song-retrieve.sample

Workbench mit Importen von Schemas wohl anders umgeht, wie der eingesetzte Java-

Codegenerator. Somit ist die Möglichkeit die definierten Beispiele gegen das entsprechende

JSON-Schema zu validieren nicht gegeben.

Die zweite Möglichkeit zur Definition von Datenmodellen ist der Einsatz von sogenannten

types. Type-Definitionen sind nicht im JSON-Schema-Format, sie sind in YAML geschrieben

und dabei einfacher als JSON-Schema gehalten. Prinzipiell ist die Anwendung von Type-

Definitionen zu empfehlen, da sie einige sehr praktische Möglichkeiten bieten. Zum Beispiel

vereinfacht der Einsatz von Type-Definitionen das Erstellen von Collection-Ressourcen

ungemein. Wenn man Abbildung 5.4, welche eine Array-Definition mittels JSON-Schema

darstellt, mit 5.5 vergleicht so kann man erkennen, dass die Arraydefinition unter Einsatz

von Type-Definitionen um einiges kürzer, übersichtlicher und einfacher ist. Die Verwendung

von JSON-Schema in RAML ist schlicht weg verwirrend, da hier JSON-Schema-Entitäten und

RAML-Entitäten gemischt werden - beispielweise ist die Referenz in persons auf person

eine Referenz aus dem JSON-Schema auf die RAML-Entität person.

Trotz der Nachteile kam in dieser Arbeit dennoch die JSON-Schema-Variante zum Einsatz, da

zum Zeitpunkt der Toolauswahl - und auch bis zum Ende der Arbeit - kein funktionaler Java-

Codegenerator mit Unterstützung für RAML 1.0 verfügbar war und die Type-Definitionen

eine Sprachfeature der Version 1.0 sind.

5.3 Akademischer Ansatz

Das Tooling rund um den akademischen Ansatz ist als Eclipse-Plugin verfügbar. Neben einer

Möglichkeit aus den erstellten Definitionen ein Maven-Dropwizard-Projekt zu erstellen,

beinhaltet es auch die Editoren für die unterschiedlichen Modelle des Ansatzes.

Alle Modelle des Toolings nutzen XML als Auszeichnungssprache und sind so gut zu versio-

nieren und auch von Hand bearbeitbar. Herzstück der Definition ist das sogenannte RestRes-
sourceModel. DasHerzstück der RestRessource sind die Ressourcendefinitionen. Sie definieren
die Ressourcen selbst, sowie deren angebotene HTTP-Methoden (GET/PUT/POST/DELETE).

61

5 Methoden und Tools für den Entwurf von REST-APIs

Listing 5.4 Beispiel für die Verwendung von JSON-Schema in RAML

schemas:
- person: |

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {

"id": { "type":"number" },
"first" : { "type":"string" },
"last" : { "type":"string" }

},
"required": ["first", "last"]

}
- persons: |

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "array",
"items": { "$ref": "person" }

}

Listing 5.5 Beispiel für die Verwendung der Types-Definitionen in RAML 1.0

types:
person:
type: object
properties:
id:
type: number

first:
type: string
required: true

last:
type: string
required: true

persons:
type: array
items: person

Für die HTTP-Methoden werden hierbei direkt die Parameter, sowie deren Datentypen, und

das Schema, das die Struktur der Antworten der Ressource definiert, spezifiziert. Zusätzlich

zu den Ressourcedefinitionen beinhaltet die RestRessource aber auch noch Navigiationsein-

träge, sogenannte Connections, welche Beziehungen zwischen den einzelnen Ressourcen

beschreiben. Diese werden genutzt um das HATEOAS-Prinzip umzusetzen. Das akademische

Tooling ist der einzige Ansatz, der den Einsatz von HATEOAS aktiv unterstützt und fördert.

Mit den anderen Tools ist der Einsatz von HATEOAS zwar auch möglich fordert aber sehr

viele zusätzliche Konventionen wie die Einführung von speziellen Feldern für die Verlinkung

von Ressourcen.

62

5.3 Akademischer Ansatz

Abbildung 5.3: Beispiel für RestRessource-Diagramm des akademischen Ansatzes

Zusätzlich zur RestRessource gibt es noch das RestRessourceDiagram, welches zusammen

mit dem mitgeliefertem Editor eine grafische Möglichkeit zur Betrachtung und Bearbeitung

der REST-Schnitststellendefinition liefert. Eine solche Darstellung kann zum Beispiel in

Abbildung 5.3 betrachtet werden. Diese Darstellung stellt die Schnittstelle als Graph dar und

kann genutzt werden um sich einen schnellen Überblick über Eigenschaften der Schnittstelle

zu verschaffen, welche aus anderen Arten der Definition nicht direkt ersichtlich sind. Zum

Beispiel kann der Breite und Tiefe sowie der Verlinkung zwischen den Ressourcen schnell

erkannt werden, wieviel verschiedene Ressourcen es gibt und wie mit ihnen interagiert wird.

Typische Ressourcenarten wie das Collection-Ressourcen, welche eine Liste von unterliegen-

den Item-Ressourcen bündeln, können schon nach wenigen Anwendungen schnell erkannt

werden, da sie ein auffälliges Layout haben. Es können schnell Ressourcen angelegt werden

und mit Hilfe von Navigationen miteinander verknüpft werden.

Die Erstellung des Datenmodells geschieht hier im Editor der RestRessource. Hier bietet das

Tooling an beliebig verschachtelte Strukturen zu erstellen und diese den entsprechenden

Methoden der Ressourcen zuzuweisen. Auf Basis der RestRessource können im Anschluss an

die Erstellung des Modells Deployment-Model, JaxRS-Modell und Maven-Modell generiert

werden. Diese Modelle können dann genutzt werden um mit dem Generator ein lauffähiges

63

5 Methoden und Tools für den Entwurf von REST-APIs

auf Dropwizard basierendes Mavenprojekt zu generieren. Das erstellte Projekt enthält dann

alle notwendigen Datenmodelle und Ressourcedefinitionen um die Implementierung des

REST-Dienstes zu beginnen. Um für die späterenNutzer der Schnittstelle eineDokumentation

anzubieten ist es möglich die Definition in ein Swagger-Modell zu transformieren. Die

Anwender können dann, wenn sie wollen, das von Swagger gewöhnte Tooling nutzen.

5.4 Erstellung der Modell-Artefakte

Die beiden Modelle für den Vergleich wurden auf Basis der bestehenden Dienst-

Implementierung erstellt. Die Intention dahinter ist es, den Entwicklern die Möglichkeit

zu geben ihre, händisch und mit viel Aufwand verbunden, entwickelte Schnittstelle mit

den generierten zu vergleichen. Neben der Erstellung der Modelle mussten auch passende

Java-Projekte erstellt werden um den lauffähigen Code auf Basis der Modelle zu generieren.

Akademischer Ansatz

Das Tooling des akademischen Ansatzes kommt als Eclipse Plugin inklusive einer Installa-

tionsanleitung daher. Nach der Installation des Plugins konnte direkt mit dem Einstieg in

die Arbeit mit dem Tooling gestartet werden. Grundlage für den Start der Verwendung des

akademischen Ansatzes war die kurze Einführung, welche Teil der Installationsanleitung ist.

In dieser Einführung wird kurz erklärt wie die Erzeugung der unterschiedlichen Modelle

und eines lauffähigen Modells funktioniert. Zur Nutzung der Editoren ist allerdings keine

Anleitung beigelegt. Das hatte zur Folge, dass die Editoren explorativ erlernt werden mussten

- was sich aber nicht als all zu schwer herausstellte.

Nach einer kurzen Einarbeitungszeit, welche sich vor allem mit der Erlernung der Bedienung

beschäftigte, konnte ziemlich schnell eine kleine beispielhafte REST-Schnittstelle modelliert

werden. Die ganze Modellierung spielte sich in der RestRessource ab, alle anderen Modelle

wurden daraus generiert und mussten nicht weiter angepasst werden.

Für die Erstellung des Modells für den Vergleich der Ansätze musste jedoch noch mehr

getan werden. Das grobe Layout, welches in diesem Schritt erstellt wurde ist im Screen-

shot in Abbildung 5.4 ersichtlich. Es enthält für jeden Pfadteil der Referenzschnittstelle

eine Ressource (information, v1, poi und radius), sowie eine WurzelRessource (root). Jede
Ressource bietet eine GET-Operation welche die Ressourcen, entsprechend der Hierarchie,

mit der entsprechenden KindRessource verknüpft. Die Anordnung der Knoten, Operationen

und Verbindungen ist durch den Benutzer des Modellierungstools zu definieren. Das Mo-

dellierungstool bietet hinsichtlich der Anordnung der Elemente ein automatisches Layout,

welches aber nicht immer zufriedenstellende Ergebnisse liefert.

64

5.4 Erstellung der Modell-Artefakte

Abbildung 5.4: Screenshot: Grafische Ansicht des Akademischen Ansatzes

Zur Definition der Parameter der einzelnen Methoden musste in die Ansicht der RestRes-

source gewechselt werden, da diese Möglichkeit in der jetzigen Version des Werkzeuges

noch nicht verfügbar ist. Hier konnten die Parameter dann direkt über das Kontextmenü

der GET-Operationen erstellt werden. Neben der Angabe des Namens und des Types des

Parameters muss hier noch angegeben werden ob der Parameter ein Pflichtparameter ist.

In Abbildung 5.5 sieht man einen Auszug des erstellten Modells, welcher die Parameter

der poi-Ressource darstellt. Die Abbildung zeigt außerdem den für die Paramtererstellung

relevanten Teil des Kontextmenüs.

Nach der Erstellung der Ressourcen und deren Operationen musste für die Operationen noch

ein Datenschema erzeugt werden, welches die genaue Form des Ergebnisses der Operationen

definiert. In diesem Fall teilen sich die beiden wichtigen Ressourcen poi und radius ein
und dasselbe Schema. Der akademische Ansatz unterscheidet bei den möglichen Typen

innerhalb eines Schemas zwischen Simple Types, Array Types und Object Types. Die Simple
Types sind recht einfach erklärt, sie sind einfache Datentypen und können einen der Typen

BOOLEAN, STRING, INTEGER oder NUMBER annehmen. Bei dem Array Types handelt es sich
um eine Möglichkeit ein Array von einem bestimmten Typ zu erstellen. Der letzte Typ

sind die Object Types, welche eine Komposition mehrere Typen erlaubt. Dieser Typ wird

65

5 Methoden und Tools für den Entwurf von REST-APIs

Abbildung 5.5: Screenshot: Darstellung der Parameter beim akademischen Ansatz

Abbildung 5.6: Screenshot: Schemadarstellung beim akademischen Ansatz

besonders für fachliche Domänenobjekte eingesetzt. Alle Typen können nahezu beliebig

geschachtelt werden, so dass sehr komplexe Zusammenhalte abgebildet werden können. Um

zum Beispiel eine Liste von Domänenklassen zurückzugeben, kann ein Array Type definiert
werden, welcher wiederrum einen Object Type mit den entsprechenden Simple Types enthält.
Abbildung 5.6 zeigt repräsentativ einen Auszug des erstellten Schemas. Der Array Type errors
ist ein Beispiel für die eben beschriebene Schachtelung mehrere Schematypen. Dieses Art der

Schemadefinition ermöglicht ähnliche Beschreibungen wie die Nutzung von JSON-Schema

zur Definition der Domänenklassen. Allerdings muss man hier anmerken, dass die Erstellung

im Vergleich zum JSON-Schema beachtlich einfacher, schneller und fehlerfreier geschieht.

66

5.4 Erstellung der Modell-Artefakte

RAML

Grundlage für die Erstellung des RAML-Modells waren die beiden Tutorials
10,11

auf der

offiziellen RAML-Webseite. Sie vermitteln ein gutes Gefühl für die Funktionen der Sprache

und zeigen, was notwendig ist um ein erstes generierbares Modell zu erstellen. Für weitere

Sprachfeatures wurde die Spezifikation der eingesetzten RAML Version 0.8
12
als Nachschla-

gewerk zu Rate gezogen. Das RAML-Modell wurde auf Basis des Quellcodes erstellt, das

entstandene REST-Layout deckt sich daher mit dem bereits vorgestellten aus Abbildung 4.4.

Ein relativ hoher Aufwand musste getrieben werden um die gesamte Dokumentation aus

den verschiedenen Swagger Annotationen in der Implementierung des Industriepartners in

die RAML-Definition zu übertragen.

Die Erstellung des Datenmodell geschah auf Basis der JSON-Antworten des vom Industrie-

partner implementierten Dienstes. Eine erste Grundversion wurde mit der Webanwendung

“JSONSchema”
13
erstellt. Die Anwendung ermöglicht ein konkretes JSON einzufügen und

auf Basis der vorhandenen Feldern ein grobes Schema zu erstellen. Die Generierung kann

an vielen Stellen nur vermuten ob ein Feld optional ist, deshalb wurde das Schema um

die Spezifikation von benötigten Feldern erweitert. Als letzten Schritt wurde das Schema

nochmals von Hand überprüft, dabei wurden Felder, welche laut Spezifikation vorhanden

sein müssen aber nicht in den Testdaten vorhanden waren, ergänzt um so ein vollständiges

Schema zu erhalten.

Das in diesem Kapitel erstellte RAML-Modell ist die Grundlage für die im nächsten Kapitel

beschriebene Erstellung eines lauffähigen RAML-Java-Projektes.

10
RAML 100 Tutorial: http://raml.org/developers/raml-100-tutorial#step-introduction

11
RAML 200 Tutorial: http://raml.org/developers/raml-200-tutorial#step-introduction

12
RAML 0.8 Spezifikation: https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md

13
JSONSchema: http://jsonschema.net/

67

http://raml.org/developers/raml-100-tutorial#step-introduction
http://raml.org/developers/raml-200-tutorial#step-introduction
https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md
http://jsonschema.net/

6 Methoden und Tools für die
Realisierung von REST-APIs

Dieses Kapitel beschäftigt sich nach der Betrachtung der Methoden und Tools für den

Entwurf nun mit der Betrachtung von Methoden und Tools für die Realisierung von REST-

APIs. Hierbei wird auf die Methoden und Tools des IST-Zustandes (Abschnitt 6.1), des

Ansatzes unter Verwendung von RAML (Abschnitt 6.2) und des akademischen Ansatzes

(Abschnitt 6.3) eingegangen werden.

6.1 Methoden und Tools des IST-Zustands

Bei den vom Industriepartner bereitgestellten Java-Projekten handelte es sich um SpringBoot-

Anwendungen, welche mit Hilfe von Swagger-Annotationen dokumentiert wurden. Spring-

Boot ist ein auf Spring-basierendes Framework. Bei der Implementierung des Entwick-

lers kam also kein JAX-RS zum Einsatz, sondern generell die Annotationen des Spring-

Frameworks. Durch das eingesetzte Framework SpringBoot sowie die Abhängigkeit Spring-

Fox
1
sind die Swagger-Dokumentationen während der Laufzeit des Dienstes über das REST-

Interface erreichbar und so immer aktuell. Das zusätzliche Einbinden von Swagger-UI stellt

ein grafisch ansprechendes und übersichtliches Webinterface zum Betrachten der Swagger

Dokumentation zur Verfügung. Swagger UI ermöglicht es außerdem Testaufrufe an die

Schnittstelle abzusetzen.

Der Industriepartner implementiert die RestRessourcen in dedizierten RessourceKlas-

sen. Klassen welche in SpringBoot für die Verarbeitung von REST-Anfragen verantwort-

lich sind müssen mit der RestController-Annotation versehen werden. Nur damit wer-

den die Pfadinformationen aus ihr extrahiert und zur Laufzeit zur Verfügung gestellt.

In den mit @RestController annotierten Klassen werden die einzelne Methoden nun mit

@RequestMapping-Annotationen versehen. Die @RequestMapping-Annotationen spezifi-

zieren den Pfad unter dem die Methode bereitgestellt wird, sowie die zugehörige HTTP-

Methode und den produzierten Mediatype. Eine beispielhafte Definition eines solchen

Mappings ist in in Listing 6.1 dargestellt. Die Klasse besitzt eine Methode, welche durch

1
SpringFox: https://springfox.github.io/springfox/

69

https://springfox.github.io/springfox/

6 Methoden und Tools für die Realisierung von REST-APIs

Listing 6.1 Beispielhafte Ressource-Klasse in SpringBoot

@RestController
public class RestaurantsResource {

@RequestMapping(value = "pointsofinterest/restaurants", method = RequestMethod.GET,
produces = MediaType.APPLICATION_JSON_UTF8_VALUE)

public RestaurantsResponse getRestaurants(...){...};
}

die @RequestMapping-Annotation immer aufgerufen wird, wenn eine GET-Anfrage an

den definierten Pfad (“pointsofinterest/restaurants”) gesendet wird. Außerdem wur-

de hier spezifiziert, dass die GET-Anfragen welche bei dieser Methode landen mit einer

JSON-Antwort beantwortet werden.

Umdie Paramter der REST-Methoden zu definieren kommt in SpringBoot die@RequestParam-

Annotation zum Einsatz, sie wird genutzt um den späteren Paramternamen zu definieren.

Eine Datentypangabe ist nicht notwendig, da das Framework die bereits vorhandene Infor-

mation über den Typ des Methodenparameters nutzt. SpringBoot unterstützt zusätzlich die

Verwendung der Javax.validation.constraints2, welche genutzt werden können um

zusätzlich zum abgeleiteten Typ und dem Namen auch noch Informationen über den Werte-

bereich der Methodenvariable zu definieren. Die Definition des Wertebereichs ermöglicht

eine Validierung zur Laufzeit. Eine Verletzung des gültigen Fehlerbereichs kann so auf eine

passende Fehlermeldung abgebildet werden. Die in Listing 6.1 dargestellte Klasse kann nun

so erweitert werden, dass die Methode drei Parameter erhält. Für unsere Beispiel könnte

man sich vorstellen, dass eine Restaurant anhand seiner Geokoordinaten und eines Radius

gesucht werden kann. Wenn man diese Paramter sinnvoll eingrenzt sieht die Definition der

Methode wie in Listing 6.2 aus. Hier sind Parameter lat (Breitengrad) und long (Längen-

grad) auf die Bereiche von -90 bis 90.0 bzw. auf -180 und 180 begrenzt. Der Radius ist hierbei

auf 200000 limitiert.

Neben der Hauptaufgabe der Implementierung der REST-Schnittstelle müssen zusätzlich

dazu noch Datenmodelle für die Ergebnisse der Anfrage implementiert werden. Der Stand im

Projekt ist, dass diese Klassen von Hand geschrieben werden. Die Felder undMethoden dieser

Klassen werden dann zusätzlich noch um eventuell sinnvolle und notwendige Swagger-

Annotationen zu Dokumentationszwecken erweitert. Die Serializierung der Objekte dieser

Klassen erfolgt dann unter Einsatz der in SpringBoot integrierten Jackson-Bibliothek
3
. Beim

Einsatz von Jackson sind weitgehend keinerlei gesonderte Annotationen notwendig um

Objekte erfolgreich zu serializieren und zu deserializieren. Daher ist das Erstellen dieser

Klassen weitgehend “Fleißarbeit” und muss sorgsam und korrekt durchgeführt werden. Um

2
Javax.validation.constraints: http://docs.oracle.com/javaee/6/api/javax/validation/constraints/package-

summary.html

3
Jackson-Bibliothek: https://github.com/FasterXML/jackson

70

http://docs.oracle.com/javaee/6/api/javax/validation/constraints/package-summary.html
http://docs.oracle.com/javaee/6/api/javax/validation/constraints/package-summary.html
https://github.com/FasterXML/jackson

6.1 Methoden und Tools des IST-Zustands

Listing 6.2 Beispielhafte Methode mit Parametern in SpringBoot

@RequestMapping(value = "pointsofinterest/restaurants", method = RequestMethod.GET,
produces = MediaType.APPLICATION_JSON_UTF8_VALUE)

public RestaurantsResponse getRestaurants(
@RequestParam("lat")
@DecimalMin(value = "-90.0", message = "latitude must be at least -90.0")
@DecimalMax(value = "90.0", message = "latitude can only be up to 90.0")

double latitude,
@RequestParam("long")
@DecimalMin(value = "-180.0", message = "longitude must be at least -180.0")
@DecimalMax(value = "180.0", message = "longitude can only be up to 180.0")

double longitude,
@RequestParam("radius")
@Min(value = 1, message = "radius must be at least 1")
@Max(value = 200000, message = "radius can only be up to 200000 meters")

int radius
){...};

}

Listing 6.3 Beispielhafte Datenklasse

public class Restaurant {
private String name;
private double latitude;
private double longitude;
private String type;

public void setName(String name){
this.name = name;

}

public void getName(){
return name;

}

... andere Getter und Setter ...
}

beim Beispiel des Restaurants aus den Listings 6.1 und 6.2 zu bleiben, zeigt Listing 6.3 eine

exemplarische Modelklasse für ein Restaurant an.

Die Implementierung des Datenmodells macht bei dem vorliegenden Dienst einen großen

Umfang, sowohl von Zeit und Codezeilen, aus. Es gibt zwei Gründe hierfür. Der Dienst

liefert eine Menge Informationen über die einzelnen Sonderziele, dementsprechend groß

ist dadurch natürlich auch das dazugehörige Modell. Der andere Grund ist, dass der Dienst

selbst ein Microservice ist und so die Anzahl der Ressourcen (hier effektiv zwei - “/poi” und

“/radius”) nicht sehr groß ist.

71

6 Methoden und Tools für die Realisierung von REST-APIs

Zusammenfassend kann man sagen, dass der Dienst effektiv und sorgfältig nach gängi-

gen Best-Practices entwickelt wurde und auch für die Nutzer der Schnittstelle, dank der

bereitgestellten Swagger-Dokumentation, leicht zugänglich ist.

6.2 Restful Api Modeling Language

Nachdem das RAML-Modell aus dem vorherigen Kapitel fertiggestellt war musste nun ein

passendes Java-Projekt dafür erzeugt werden.

Der dafür eingesetzte Generator ist Teil des RAML for JAX-RS4 Projektes. Das Projekt
beinhaltet Tools um mit JAX-RS und RAML zu arbeiten, dabei gibt es Tooling für beide

Richtungen, also sowohl für die Richtung von JAX-RS zu RAML als auch anders herum.

Diese Arbeit beschäftigt sich lediglich mit dem Tooling zum Erzeugen von JAX-RS Code

auf Basis von RAML-Modellen. Neben den Tools enthält das Repository auch noch einge

Beispiele zur Einbindung der Modelle in bestehende Projekte oder zum Aufsetzen neuer

Projekte unter Einsatz des Toolings. Neben einer CLI-Version gibt es auch Plugins für Gradle

und Maven, so dass das der Generator prinzipiell in jedes Build eingebaut werden kann.

Grundlage für das erstellte Java-Projekt war ein Beispiel des verwendeten RAML-JAX-

RS Generators
5
. Das vorliegende Beispiel ist ein Maven-Projekt, was ein von Mulesoft

6

bereitgestelltes Maven Plugin nutzt um die Codegenerierung in den Build zu integrieren.

Zu Beginn der Durchführung der Arbeit war das Aufsetzen des Maven-Projekts etwas

aufwendiger, da das entsprechende Maven-Plugin nicht in dem entsprechenden Maven-

Repository vorhanden war bzw. entfernt wurde. Ein Weg das Projekt dennoch erfolgreich

zu erstellen bestand darin das Maven-Plugin manuell in das lokale Maven-Repository zu

installieren und es im Anschluss dann in der pom.xml zu referenzieren. Zum Zeitpunkt des

Schreibens dieser Arbeit (genau: 05.10.2016) befindet sich das aktuelle Plugin mittlerweile

aber wieder zumindest in denMulesoft Repositories - in MVNCentral befindet sich allerdings

immer noch nur die ältere Version 1.3.4 statt der aktuellen Version 1.3.5.

Nach erfolgreicher Überarbeitung des Projektes, was vor allem darin bestand Beispielimple-

mentierungen zu entfernen und das neue Modell einzubinden, konnte die REST-Schnittstelle

generiert werden. Es ist angenehm aufgefallen, dass der generierte Code nicht in den Code-

stand des Projektes übergeht sondern lediglich jedes Mal im von Maven dafür vorgesehen

Buildschritt generate sources erzeugt wird. Der generierte Code ist so nicht Teil der Versio-

nierung, Änderungen am Modell haben also so nur Auswirkungen auf die eventuelle Logik

4
RAML for JAX-RS: https://github.com/mulesoft/raml-for-jax-rs

5
Beispiel Jersey RAML-to-JAXRS Projekt: https://github.com/mulesoft/raml-for-jax-rs/tree/master/raml-to-

jaxrs/examples/jersey-example

6
Mulesoft: https://www.mulesoft.com/

72

https://github.com/mulesoft/raml-for-jax-rs
https://github.com/mulesoft/raml-for-jax-rs/tree/master/raml-to-jaxrs/examples/jersey-example
https://github.com/mulesoft/raml-for-jax-rs/tree/master/raml-to-jaxrs/examples/jersey-example
https://www.mulesoft.com/

6.3 Akademischer Ansatz

und nicht auf sowieso generierte Artefakte. Dies führt zu einer (im Vergleich zu anderen

Lösungen) sauberen Historie. Einziger Nachteil ist, dass ein Entwickler in seiner Entwick-

lungsumgebung nach einem Säubern (Clean) nicht vergessen darf die REST-Schnittstelle

erneut zu generieren, da sonst das Programm nicht ausführbar ist.

Nachdem die Schnittstelle erzeugt worden ist musste nun die eigentliche Logik aus der

Implementierung des Industriepartners hinzugefügt werden. Dafür konnten glücklicherweise

große Teile der Implementierung wiederverwendet werden. Die Logik zum Verarbeiten

der JSON-Antworten der verschiedenen Content-Provider musste lediglich dahingehend

angepasst werden, dass sie in einer eigenen JSON-Parserinstanz läuft. Die Spring Boot

Implementierung des Industriepartners nutzt die Möglichkeit mittels RestTemplate (ein Teil

des Spring-Frameworks
7
) und der Injektion des passenden Deserializers die Antwort der

Datenanbieter bereits beim Empfangen in das passenden Format zu überführen. Bei der

Anpassung des Parsers wurde auch das Mapping überarbeitet, damit die empfangenen Daten

korrekt auf die nun generierten Domänenklassen passen.

Zuletzt musste die Schnittstelle noch ausimplementiert werden, damit alle REST-Operationen

die gerade beschriebe Logik aufrufen. Dies war letztendlich recht einfach durchzuführen,

es muss lediglich ein Interface ausimplementiert werden. Dabei hat jede HTTP-Operation

des REST-Interfaces eine eigene Methode welche die interne Logik aufrufen muss. Da der

vorher erstellte Parser genau die Datenmodelle der REST-Schnittstelle liefert bestand die

Logik letztenendlich darin einfach das Ergebnis des angepassten Parsers zurückzugeben.

6.3 Akademischer Ansatz

Nachdem das Modell in Form einer RestRessource mit zugehörigem RestRessourceDiagram
mit Hilfe des akademischen Ansatzes fertiggestellt war, konnte nun daraus ein Java-Projekt

generiert werden. Die Generation der Implementierung erfolgte mit dem integrierten Ge-

nerator, welcher Teil des Eclipse Plugins ist. Um das Java-Projekt zu generieren musste

die RestRessource zuerst durch mehrere Modell-zu-Modell-Transformationen umgewandelt

werden. Im ersten Schritt wurde aus der RestResource ein DeploymentModell generiert. Für
diesen einfachen Anwendungsfall musste nichts angepasst werden, allerdings ermöglicht die

händische Anpassung des DeploymentModells einen zusätzlichen Einfluss auf die genauen

Pfade zu den Ressourcen. Der nächste Schritt war die Umwandlung des DeploymentModells

zu einem JAX-RS-PSM Modells. Das JAX-RS-PSM Modell hat Einfluss auf die späteren Eigen-

schaften des generierten Projektes wie den Projektnamen, den verwendeten Paketnamen

und die definierte Projektversion. Neben diesen Eigenschaften können im JAX-RS-PSM auch

die genauen Klassennamen für die einzelnen Ressourcen definiert werden. Der vorletzte

7
Spring-Framework: https://spring.io/

73

https://spring.io/

6 Methoden und Tools für die Realisierung von REST-APIs

Schritt ist eine Transformation des eben erstellten JAX-RS-PSM-Modells in ein Maven-

Modell. Das Maven-Modell gibt Informationen über das zukünfige Maven-Artefakt an. Hier

können detaillierte Eigenschaften des zukünftigen Maven-Artefakts definiert werden wie

beispielsweise die groupID.

Auf Basis des Maven-Modells und den anderen Modellen kann ein lauffähiges Dropwizard-

Projekt, welches Maven als Buildtool nutzt, erzeugt werden. Die Ausimplementierung konnte

ähnlich wie bei dem bereits vorgestellten Ansatz unter Verwendung von RAML durchge-

führt werden. Um das generierte Projekt zu nutzen mussten die generierten Java-Interfaces

ausimplementiert werden. Die Hauptarbeit war wie bei der Verwendung von RAML die

Anpassung des bestehenden Parsers auf das neue generierte Datenmodell.

74

7 Vergleich der Ansätze

Dieses Kapitel vergleicht die während dieser Arbeit eingesetzten Ansätze und die daraus

resultierenden Modelle. Teil dieses Vergleichs sind zum einem die bei der Erstellungen

aufgefallenen Eigenschaften der verschiedenen Ansätze und zum anderem wurde eine

Befragung der Entwickler des Industriepartners durchgeführt, welche das Ziel hatte deren

Meinung in die Evaluierung mit einzubeziehen.

7.1 Best-Practices: Entwurf von REST-Schnittstellen

Bei der Umsetzung von REST-Schnittstellen haben sich einige sogenannte “Best-Practices”
herausgebildet. Um eine Sammlung von solchen Best-Practices zu erhalten, wurden während

der Literaturrecherche einige Quellen von REST-Best-Practices und Richtlinien gesammelt

und analysiert. Als Grundlage für den Vergleich gelten die folgenden Quellen:

• WhiteHouse Api Standards [The]: Besteht aus Richtlinien und Beispielen für die Schnitt-
stellen des “White House” (USA).

• „Musterlösungen und Best Practices für das Design und die Realisierung von REST-

Schnittstellen“ [SRD14]: Eine Fachstudie über verschiedene Best-Practices, welche

anhand der Schnittstelle der Plattform GitHub erklärt werden.

• Best Practices for the Design of RESTful Web Services [GGS+]: Ein Paper welches ver-

schiedene Best-Practices identifiziert, sammelt und kategorisiert.

• Best Practices for Designing a Pragmatic RESTful API [Sah]: Große Sammlungen von

Best-Practices mit anschaulichen Beispielen.

• Design Beautiful REST + JSON APIs [Haz]: Eine Präsentation über die Umsetzung von

REST-Schnittstellen. Besonders wird dabei auf Best-Practices eingegangen.

• 10 Best Practices for Better RESTful API [Jau]: Eine Sammlung von 10 ausführlich

beschriebenen Best-Practices für die Realisierung von REST-Schnittstellen.

75

7 Vergleich der Ansätze

Tabelle 7.1: Best-Practices in der Literatur

[The] [SRD14] [GGS+] [Sah] [Haz] [Jau]

Allgemeines:
URL identifiziert Ressource
Semantische Benamung: Menschlich lesbare URL
Plural bei Benennung von Ressourcen

Versionierung:
Version am Anfang der URL

Format
Format in URL (z.bB. /api/v1/magazines.json)
Einsatz verschiedener Header-Felder für Format

Fehlerbehandlung:
Nutzung von geeignetem HTTP Status Code
Nachricht enthält Nachricht für Entwickler
Nachricht enthält Nachricht für Endnutzer
Nachricht enthält internen Fehlercode
Nachricht enthält Verweis auf Fehlerdokumentation

Teilantworten:
Ermöglichen von Teilantworten
Einsatz von “optional” Feld in URL

Paginierung:
Standardwerte, wenn kein Limit gesetzt wurde
Nutzung von “limit” und “offset” als Parameter

Caching:
Einsatz von ETAG oder Last-Modified Header

Best-Practices müssen im Allgemeinen anerkannt sein. Bei der Sammlung der Best-Practices

ist aufgefallen, dass sich viele der Autoren hinsichtlich ihrer Meinungen sogar widersprechen.

Auffällig war, dass diese Widersprüche zwischen den Autoren nicht zufällig waren sondern

man die Autoren in zwei Gruppen einordnen könnte: Die einen, welche man als REST-

Puristen bezeichnen könnte, halten sich strikt an die von Roy Fielding definierten Prinzipien.

Die anderen, welche man als Pragmatiker bezeichnen könnte, weichen diese Prinzipien auf

um eine, ihrer Meinung, praktischere Umsetzung des REST-Musters zu erhalten.

Die Tabelle 7.1 zeigt das Ergebnis dieser Analyse inklusive vorhandener Widersprüche. Die

Tabelle zeigt die genannten Best-Practices in den verschiedenen Dokumenten, dabei steht ein

grünes Feld für das Vertreten der Meinung, rot für einen gegensätzige Meinung und gelb für

keine Nennung dieser Best-Practices. Die Tabelle ist lediglich eine grobe Zusammenfassung

der Best-Practice Analyse, Empfehlungenwelche nur in einem der Dokumente vorgekommen

76

7.1 Best-Practices: Entwurf von REST-Schnittstellen

Listing 7.1 Beispielhafte HTTP-Anfrage mit Accept-Header

GET /api/resource
Host: meine-rest-api.de
Accept: application/vnd.meine-rest-api+json;version=2

sind wurden außen vor gelassen. Zusammenfassend lässt sich sagen, dass sich beide Seiten

bei der Verwendung der HTTP Verben, der Benennung von Ressourcen, der Möglichkeit zur

Anfrage von Teilantworten, der Fehlerbehandlung und der Lösung der Paginierung einig

sind. Die größten Differenzen gab es bei der Umsetzung der Versionierung, bei der es die

Möglichkeit zur Nutzung des Headers oder der Versionierung innerhalb der URL gibt. Die

REST-Puristen haben hier den Standpunkt, dass es sich, unabhängig von der Version, fachlich

jederzeit um dieselbe Resource handelt und sie deshalb unter derselben URL erreichbar sein

muss. Sie raten, daher die Version mittels eines versionierten Content-Types im Accept-Header
anzugeben. REST-Pragmatiker hingegen empfehlen die Platzierung einer Version in der URL.

Ihre Argumente für dieses Art der Versionierung ist die damit erhaltene Zugänglichkeit

der Schnittstelle, sie kann so ohne das Setzen eines Headers aufgerufen werden. Damit

ist sie für einen Benutzer direkt im Browser eindeutig aufrufbar und muss nicht mittels

eines geeigneten headerfähigen HTTP-Client aufgerufen werden. Das beschleunigt die

Entwicklung und befähigt Entwickler schnell Testaufrufe an die Schnittstelle abzusetzen.

Pragmatisch umgesetzte Schnittstellen erkennt man direkt an der Version in der Url (z.B.

http://meine-rest-api.de/api/v1/resource), bei einer Umsetzung der Puristen ist dies nicht so

direkt ersichtlich, ihre Schnittstelle sieht auf den ersten Blick unversioniert aus (entsprechend

http://meine-rest-api.de/api/resource). Bei einer Anfrage an diese Schnittstelle wird sie

oftmals, sofernman bei der Anfrage keine Version imAccept-Header spezifiert standardmäßig

die aktuellste Version zurückgeben. Manche Schnittstellen zwingen die Nutzer auch eine

Version anzugeben. Für Clients ist es aus diesem Grund wichtig immer eine Version im

Anfrage-Header anzugeben, da sich sonst das Verhalten, bei einem Versionswechsel der

Schnittstelle, sehr schlagartig ändern würde und die Clientimplementierung auf einmal nicht

mehr funktionieren würde.

Die Anfrage einer speziellen Version könnte dann wie in der Beispielabfrage in 7.1 aussehen.

Hier wird der angefragte Typ mittels demAccept-Header gesetzt. In diesem Beispiel gibt er an,

dass die Repräsentation der Ressource bitte im application/vnd.meine-rest-api+json;version=2
Format zurückgegeben werden soll. Der vnd-Teil des wird von RFC6838 in Abschnitt 3.2

[FKH13] vorgeschlagen und ist für vendorspezifische Datentypen vorgesehen.

Der Teil im Anschluss (meine-rest-api+json) gibt an um was für ein Format es sich genau han-

delt. Oft sieht man hier, dass der Datentyp mittels eines Plus angehängt wird. Im Anschluss

daran wird dann mit einem Semikolon die gewünschte Version spezifiziert.

77

http://meine-rest-api.de/api/v1/resource
http://meine-rest-api.de/api/resource

7 Vergleich der Ansätze

Ein Ziel dieser Arbeit war es die unterschiedlichen Ansätze auf die Umsetzung der gerade

vorgestellten Best-Practices zu untersuchen. Leider konnte diese Untersuchung nicht sinnvoll

durchgeführt werden. Grund hierfür ist, dass keiner der Ansätze während des Entwurfs beim

Umsetzen der oben genannten Best-Practices unterstützend zur Seite steht. Unabhängig

vom verwendeten Ansatz ist der Anwender selbst für die Umsetzung und Einhaltung dieser

verantwortlich. Mit jedem der vorgestellten Ansätze lassen sich gute und schlecht konzipierte

REST-Schnittstellen entwerfen und umsetzen. Beispielsweise ist es mit allen Ansätzen

möglich eine Schnittstelle umzusetzen, welche URLs nutzt um Methoden anstatt Ressourcen

zu bennen.

7.2 Evaluierung durch den Autor

Dieser Abschnitt spiegelt primär die Erfahrung und Meinung des Autors bei der Arbeit

mit den verschiedenen Werkzeugen und deren Nutzung wider. Alle Aussagen und Infor-

mationen dieses Abschnittes beziehen sich auf die gesamte Werkzeugkette der jeweiligen

Lösung. Wir vergleichen hier somit alle drei Varianten bestehend aus den verschiedenen

Ansätzen zum Entwurf und der Realisierung von REST-Schnittstellen. Beim Ist-Zustand des

Industriepartners haben wir somit die Vorüberlegungen der Entwickler, sowie den dabei ggf.

entstehenden Schaubildern, und die Implementierung von Hand, welche mit Annotationen

versehen wird um das deskriptive Modell zu erzeugen. Die Vorüberlegungen der Entwickler

sind meist sehr abstrakt, ungeordnet und oftmals auch nur in den Köpfen der Entwickler

vorhanden. Die mit Annotationen versehen Methoden der Implementierung bilden also

die Referenz für diesen Vergleich. Die beiden anderen Varianten sind modellgetriebenen

Ansätze und bieten damit Werkzeuge für die Entwicklung des Modells, sowie für die spätere

Generierung der Schnittstelle.

Neben subjektiven Aussagen enthält dieser Abschnitt auch die Untersuchung und Bewer-

tung der drei Methodiken nach den verschiedenen Kriterien welche im Abschnitt 2.1 der

Grundlagen beschrieben wurden. Zur Wiederholung: Die 5 Eigenschaften nach denen wir

Modelle bewerten wollen sind der Abstraktionsgrad, Verständlichkeit, die Genauigkeit, die
Fähigkeit zur Voraussage und der benötigte Aufwand zur Erstellung des Modells.

Was in den Grundlagen nicht getan wurde aber für den Vergleich notwendig ist, ist die

Überlegung wie die Ansätze genau miteinander verglichen werden sollen. Die 5 Eigenschaf-

ten sind schwer in verschiedene Kategorien einzuordnen, wohl aber können die Ansätze

hinsichtlich dieser Eigenschaften paarweise miteinander verglichen werden. Beispielsweise

ist es schwerer eine genaue Bewertung für die Abstraktion der Ansätze auf einer Punkteskala

zu bestimmen, als sich darauf festzulegen, dass der akademische Ansatz um ein vielfaches

abstrakter ist als der Ansatz des Industriepartners.

78

7.2 Evaluierung durch den Autor

Aufgrund dieser Tatsache wurde der Analytische Hierarchieprozess (AHP), auch bekannt als

die Saaty-Methode, eingesetzt um die Ansätze miteinander zu vergleichen. Die paarweisen

Vergleiche können bei AHP mit 5 Bewertungen versehen werden. Eine Alternative kann

dabei folgende Bewertungen im Vergleich mit einer anderen Alternative annehmen:

Skalenwert 1: gleich groß

Skalenwert 3: etwas größer

Skalenwert 5: deutlich größer

Skalenwert 7: sehr viel größer

Skalenwert 9: absolut dominierend

Da es sich um paarweise Vergleiche handelt besitzt der gegensätzliche Vergleich den Kehr-

wert. Wenn z.B. ein Vergleich von Alternative A und B mit 5 bewertet wird, so ist der

Vergleich von B und A mit 1/5 zu bewerten.

Bei der konkreten Nutzung von AHPwurden die bereits genannten Kategorien als Grundlage

genutzt. Die Wichtigkeit der 5 Eigenschaften wurde dabei naiv als gleich eingestuft, jede

Kategorie geht also zu 20% in die Bewertung mit ein (bzw. Koeffizient 0,2). Das Ergebnis der

gesamten AHP ist dabei in der endgültigen AHP-Matrix Tabelle 7.7 dargestellt, die Erläute-

rung des Ergebnisses folgt im Anschluss an die Betrachtung der einzelnen Eigenschaften.

Die erste betrachtete Eigenschaft ist der Abstraktionsgrad. Der Ansatz des Industriepartners

ist, wenn man wie erwähnt von der mit Annotationen versehenen Implementierung ausgeht,

der am wenigsten abstrakte Ansatz. Im Vergleich zu dem Ansatz unter Verwendung von

RAML wurde er daher als deutlich weniger abstrakt eingestuft. Der akademische Ansatz

ist im Vergleich zu der Implementierung von Hand sehr viel abstrakter. Vergleicht man

den Ansatz mittels RAML mit dem akademischen Ansatz, so ist der akademische etwas

abstrakter, da er eine grafische Ansicht bietet und noch mehr Details der Implementierung

abstrahiert. Die resultierende Matrix ist in Tabelle 7.2 abgebildet.

Die zweite Eigenschaft ist die Verständlichkeit. Hier wurde verglichen wie gut aus den

verbleibenden abstrakten Informationen noch Schlüsse über die Schnittstelle möglich sind.

RAML demonstriert in dieser Kategorie Stärke als sehr ausdrucksstarke Sprache. Im Ver-

gleich zu sowohl dem Ansatz des Industriepartners als auch dem akademischen Ansatz

erreicht es RAML, dass bei sehr hoher Informationsdichte dennoch nahezu alle Informatio-

nen der Schnittstelle direkt ersichtlich sind. Dies ist etwas besser als bei dem Ansatz des

Industriepartners und deutlich besser als bei dem akademischen Ansatz. Die Lösung des

Industriepartner besitzt zwar eine weniger kompakte Ansicht, jedoch ist diese vollständig.

Der akademische Ansatz hingegen abstrahiert sehr stark und lässt einige Informationen

in der grafischen Ansicht, zumindest in der bei der Untersuchung vorliegenden Version,

vermissen. Vergleicht man den akademischen Ansatz mit der Lösung des Industriepartners

so wurden diese Ansätze als gleich eingestuft. Sie sind zwar total unterschiedlich, haben aber

79

7 Vergleich der Ansätze

Tabelle 7.2: AHP: Abstraktionsgrad

akademischer Ansatz RAML Industriepartner

akademischer Ansatz 1 3 7

RAML 1/3 1 5

Industriepartner 1/7 1/5 1

Tabelle 7.3: AHP: Verständlichkeit

akademischer Ansatz RAML Industriepartner

akademischer Ansatz 1 1/5 1

RAML 5 1 3

Industriepartner 1 1/3 1

beide ihre Stärken und Schwächen. Der akademische Ansatz ist sehr viel übersichtlicher als

der des Industriepartners, da man hier nicht die einzelnen Klassen untersuchen muss. Aller-

dings ist der Ansatz des Industriepartners sehr viel verständlicher, wenn es um die genauen

Parameter geht. Die AHP-Matrix für die Verständlichkeit ist in Tabelle 7.3 dargestellt.

Bei der Untersuchung der Genauigkeit der einzelnenAnsätze ist aufgefallen, dass alle Ansätze

sehr genau sind. Wenn in einem der Ansätze etwas definiert wird, so spiegelt es auch die

Eigenschaften der geplanten REST-Schnittstelle wider. Da alle Ansätze gleich zu einander

bewertet wurden enthält jede Zelle der zugehörigen AHP-Matrix eine 1 (vgl. Tabelle 7.4)

Bei der Bewertung über die Möglichkeit Prognosen mit Hilfe des Modells über die zukünftige

REST-Schnittstelle abzugeben hat der Ansatz des Industriepartners sehr gut abgeschnitten.

Er ist dadurch, dass er zum Teil aus der Implementierung besteht, nahezu identisch mit der

späteren Schnittstelle. Bei den beiden anderen Ansätzen wird hierbei die Codegenerierung

bewertet. Der akademische Ansatz hat einen sehr hohen Abstraktionsgrad und arbeitet

mit einigen Konventionen (z.B. wenn es um die Fehlerbehandlung geht), daher ist er eher

schwer einzuschätzen. Außerdem fehlen in der grafischen Ansicht (zumindest in der jetzigen

Version) noch einige nützliche Details, wie beispielsweise die Anzeige der Operationen

Tabelle 7.4: AHP: Genauigkeit

akademischer Ansatz RAML Industriepartner

akademischer Ansatz 1 1 1

RAML 1 1 1

Industriepartner 1 1 1

80

7.2 Evaluierung durch den Autor

Tabelle 7.5: AHP: Prognose

akademischer Ansatz RAML Industriepartner

akademischer Ansatz 1 1 1/7

RAML 1 1 1/7

Industriepartner 7 7 1

Tabelle 7.6: AHP: Aufwand

akademischer Ansatz RAML Industriepartner

akademischer Ansatz 1 7 5

RAML 1/7 1 1/3

Industriepartner 1/5 3 1

inklusive zugehöriger Parameter. Der Ansatz mittels RAML vermittelt durch die Syntax ein

gutes Gefühl, wenn es um die Prognose geht. Allerdings bleibt der Codegenerator hinter

den Erwartungen zurück und setzt die definierten Schnittstellen nicht immer vollständig

um. Die Bewertung ist daher wie folgt: Der Ansatz des Industriepartners ist sehr viel besser

zur Prognose geeignet als die beiden anderen Ansätze. Wenn man den Ansatz mittels RAML

mit dem akademischen Ansatz vergleicht so sind diese gleich gut einzuschätzen. RAML gibt

zwar ein sicheres Gefühl was die Syntax allein angeht, der akademische Syntax ist aber

besser wenn es um die Konsistenz zwischen Modell und wirklich generierten Code geht.

Die resultierende AHP-Matrix ist in Tabelle 7.5 dargestellt.

Bei der Eigenschaft des Erstellungsaufwands wird verglichen wie viel Aufwand in das Modell

gesteckt werden muss im Vergleich zur Implementierung der Schnittstelle selbst. Bei der

Implementierung des Industriepartners handelt es sich letztendlich um mindestens einen

Prototypen der Schnittstelle, der Aufwand ist daher nicht ganz unerheblich. Der Aufwand

des Ansatzes unter Verwendung von RAML hat auch einen ziemlich hohen Aufwand, was

vorallem an der Erstellung der JSON-Schemas liegt. Der akademische Ansatz schneidet hier

am besten ab. Er unterstützt den Nutzer durch den grafischen Editor sehr und nimmt auch

sehr viel Arbeit bei der Erstellung der Datendefinitionen ab. Der akademische Ansatz ist sehr

viel schneller zu erstellen als der Ansatz unter Verwendung von RAML. Im Vergleich zur

Lösung des Industriepartners ist er deutlich schneller umzusetzen, da bei dem bestehenden

Ansatz des Industriepartners die Datenklassen auch von Hand definiert werden müssen.

Vergleicht man den Ansatz des Industriepartners mit dem unter Verwendung von RAML,

so ist der des Industriepartners immer noch etwas schneller. Die AHP-Matrix für den

Erstellungsaufwand ist in Tabelle 7.6 abgebildet.

81

7 Vergleich der Ansätze

Tabelle 7.7: Endgültige AHP-Matrix

Abstraktion Verständlichkeit Genauigkeit Prognose Aufwand Ergebnis
akademischer Ansatz 0,649118 0,156182 0,333333 0,111111 0,73065 0,396079
RAML 0,278955 0,658644 0,333333 0,111111 0,08096 0,292601
Industriepartner 0,071927 0,185174 0,333333 0,777778 0,188394 0,311321

Ergebnisse des Analytischen Hierarchieprozesses

Die Bewertung innerhalb der einzelnen Kategorien wurden nun mittels der Berechnung der

Eigenvektoren der jeweiligen AHP-Matrix bestimmt. Das Ergebnis dieser Berechnungen ist

in der endgültigen AHP-Matrix aufgezeigt Tabelle 7.7. Basierend auf den Punkten der drei

Varianten in den 5 Kategorien und der gleichmäßigen Gewichtung der einzelnen Kategorien

hat der akademische Ansatz die beste Punktzahl (0,396079) erzielt. Der Ansatz des Industrie-

partners ist mit einer Bewertung von 0,311321 auf Platz zwei gelandet. Die Methode unter

Verwendung von RAML ist das Schlusslicht mit einer Wertung von 0,292601.

Bei genauerer Betrachtung erkennt man, dass diese Wertung sehr stark von der Gewichtung

abhängt, da jeder der Ansätze an anderen Stellen Stärken und Schwächen besitzt. Wählt

man die Gewichtung anders, so ist schnell einer der anderen Ansätze auf Platz 1. Dennoch

ist diese Analyse sehr wertvoll. Mit ihr kann man erkennen wo die einzelnen Ansätze ihre

Stärken und Schwächen besitzen. In der eben erwähnten AHP-Matrix Tabelle 7.7 sieht man,

dass beispielsweise der akademische Ansatz seine Stärken im Aufwand und der Abstraktion

besitzt, wohingegen der Ansatz des Industriepartners eher Stärken in der Möglichkeit zur

Prognose ausspielen kann.

7.3 Befragung der Entwickler

Während der gesamten Dauer der Arbeit bestand enger Kontakt zu den Entwicklern des

Industriepartners. Sie standen stets helfend zur Seite, wenn es Probleme bei der Nutzung

ihrer Implementierung gab und bei allgemeinen Fragen zu ihrem Arbeitsablauf und ihren

Tätigkeiten beim Entwurf und der Umsetzung ihrer REST-Schnittstellen. Darüber hinaus

konnte auch an vielen der planenden Meetings teilgenommen werden um auch dort einen

Eindruck über das Vorgehen und die Prozesse zu gewinnen.

Um die Meinung der Entwickler des Industriepartners in die Arbeit mit einfließen zu lassen

wurden während der Durchführung der Arbeit regelmäßig Gespräche durchgeführt. In

der Phase der Evaluierung wurden gezielte Einzelinterviews mit einigen der Entwicklern

durchgeführt. Ziel dieser Interviews war es zum einem ihre Grundhaltung gegenüber mo-

dellgetriebener Softwareentwicklung zu erfahren, aber auch mit Ihnen gemeinsam eine

82

7.3 Befragung der Entwickler

Einschätzung über die Brauchbarkeit der verschiedenen Ansätze in ihrem jetzigen Projekt-

umfeld zu entwickeln.

Zur Steuerung des Interviews wurde ein Fragebogen erstellt. Bei dem Entwurf des Fragebo-

gens ist etwas Arbeit vorausgegangen um einen größtmöglichen Nutzen aus der limitierten

Zeit der Entwickler zu ziehen. Der Fragebogen wurde mit Orientierung an dem Bericht von

Daniel W. Turner III [Tur10] und dem Buch “Qualitative Inquiry & Research Design” von

John W. Creswell [Cre13] erstellt.

Aufgrund deren Empfehlungen wurden geschlossene Fragen mit offenen Fragen kombiniert.

Außerdem empfehlen beide Autoren nicht direkt nach Rangfolgen zu fragen, sondern diese

Frage etwas zu verschleiern. In dem entwickelten Fragebogen wurde somit ein ganzzahliges

Punktesystem von 0 (schlecht) bis 10 (sehr gut) Punkten für die Ansätze verwendet, wenn

auch für die Auswertung lediglich die Reihenfolge der Ansätze von Interesse war. Keiner der

Entwickler vergab für mehrere Ansätze die gleiche Punktzahl wie für einen anderen. Der

Fragebogen für die Entwickler besteht aus den vier Abschnitten “Allgemein”, “Vorführung

Modellwerkzeuge”, “Vorführung generierter Code / Workflow”, “Feedback”. Der allgemeine

Teil zielt dient dabei als Einstieg in die Befragung und stellt Fragen zur bisherigen Erfahrung

des Entwicklers mit modellgetrieben Werkzeugen. Er enthält folgende Fragen mit den

dazugehörigen Antwortmöglickeiten:

1. “Hast du bereits modellgetriebene Werkzeuge bei der Softwareentwicklung
genutzt?”:
ja / nein

2. “Für welchen Zweck hast du diese Werkzeuge eingesetzt?”:
offene Frage

3. “Wie würdest du das modellgetriebene Werkzeug im Vergleich zu einer Ent-
wicklung ohne dieses Werkzeug bewerten?”:
sehr unterlegen / unterlegen / überlegen / sehr überlegen / neutral (keine Präferenz)

4. “Was war besser oder schlechter im Vergleich zur Entwicklung ohne das ver-
wendete Werkzeug?”:
offene Frage mit Einordnung in positiv und negativ

Der Teil der Befragung zur Vorführung der Modellwerkzeuge zielte direkt auf die Bewertung

der drei zu vergleichenden Ansätze ab. Er enthält folgende Fragen:

1. “Wieviel Punkte würdest du Variante 1 [Anmerkung: Ansatz des Industrie-
partners] geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

2. “Wieviel Punkte würdest du Variante 2 [Anmerkung: Akademischer Ansatz]
geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

83

7 Vergleich der Ansätze

3. “Wieviel Punkte würdest du Variante 3 [Anmerkung: Verwendung von
RAML] geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

4. “Was sind die Gründe für die einzelnen Bewertungen?”:
offene Frage

Ähnlich zur Befragung zu den Modellwerkzeugen wurde auch die Befragung im Abschnitt

“Vorführung generierter Code / Workflow” durchgeführt. Dieser Teil enthält die gleiche

Fragen wie im vorherigen Teil, diesmal nur bezogen auf die Codegenerierung und den

eingesetzten Workflow:

1. “Wieviel Punkte würdest du Variante 1 [Anmerkung: Ansatz des Industrie-
partners] geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

2. “Wieviel Punkte würdest du Variante 2 [Anmerkung: Akademischer Ansatz]
geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

3. “Wieviel Punkte würdest du Variante 3 [Anmerkung: Verwendung von
RAML] geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

4. “Was sind die Gründe für die einzelnen Bewertungen?”:
offene Frage

Der Abschluss der Befragung fand im Abschnitt “Feedback” statt. Hier hatte der Entwick-

ler nochmals die Möglichkeit in offenen Fragen seine Eindrücke zu schildern. Die drei

vorbereiteten Fragen waren dabei:

1. “Wo siehst du mögliche Vorteile / Nachteile der drei vorgestellten Werkzeu-
ge?”:
offene Frage

2. “Könntest du dir den Einsatz von Teilen der Werkzeugkette vorstellen?”:
offene Frage

3. “Was müsste ein Modellingwerkzeug können / was für Eigenschaften
müsste es haben um dich zu überzeugen es bei der Erstellung von REST-
Schnittstellen einzusetzen?”:
offene Frage

Ein Teil der Durchführung der Befragung war eine Präsentation der unterschiedlichen

Ansätze. Hierfür wurde zusammen mit dem Entwickler für die beiden neuen Ansätze eine

einfache REST-Schnittstelle modelliert und generiert. Die während der Befragung mittels

RAML und akademischen Ansatzes erzeugten REST-Schnittstellen entsprechen dem Layout

84

7.3 Befragung der Entwickler

Abbildung 7.1: Layout der Person REST-Schnittstelle

Abbildung 7.2: Ablauf der Entwicklerbefragung

aus Abbildung 7.1 mit den Domänenobjekt Person, bestehend aus Vor- und Nachname

(“first” und “last”). Der Ablauf der Befragung lief wie in Abbildung 7.2 dargestellt ab. Zuerst

wurde dem Entwickler die von ihm selbst mitentwickelte Lösung präsentiert um erneut

Eigenschaften dieser bewusst zu machen und eine Grundlage für den späteren Vergleich zu

schaffen. Die vom Industriepartner entwickelte Variante wurde als eine von Hand imple-

mentierte, auf Spring Boot basierende Lösung präsentiert. Besonderer Fokus lag hierbei auf

dem bewusst machen der unterschiedlichen verwendeten Annotationen für das Definieren

der REST-Schnittstelle und der Domänenklassen.

Danach wurde die akademische Lösung vorgestellt, hierzu wurden zuerst die Eigenschaften

dieses Ansatzes aufgelistet und im Anschluss daran wurde, zusammen mit dem Entwickler,

85

7 Vergleich der Ansätze

das einfache REST-Layout modelliert und generiert. Der Entwickler hatte dann die Möglich-

keit sich die daraus resultierende Schnittstelle genau anzuschauen und auch den generierten

Code genau zu untersuchen. Nachdem die Betrachtung des gemeinsam erzeugten Projek-

tes abgeschlossen war, wurde die in Abschnitt 5.4 vorgestellte Vergleichsimplementierung

des Dienstes des Industriepartners vorgestellt. Die Präsentation war ähnlich der Erstel-

lung, also wurde zuerst das Modell vorgestellt und im Anschluss daran die dazugehörige

Implementierung.

Im Anschluss daran wurde dasselbe mittels RAML umgesetzt. Zuerst die Modellierung und

Generierung der einfachen REST-Schnittstelle und im Anschluss daran die Betrachtung der

mittels RAML umgesetzte Variante der Dienstimplementierung des Industriepartners.

Präsentation des akademischer Ansatzes

Der akademische Ansatz wurde als ein modellgetriebener Ansatz mit grafischem Editor

vorgestellt. Es wurde hier bereits darauf hingewiesen, dass im Moment nur ein Generator

für das Dropwizard Framework existiert. Neben dem Hinweis auf das Framework, wurde

erwähnt, dass die später gezeigte Implementierung nicht der Qualität der vom Entwickler

bereits gekannten übereinstimmt, da in diese viel mehr Zeit investiert wurde. Das repräsen-

tative Beispiel für den akademischen Ansatz sollte lediglich die Arbeit mit der generierten

Schnittstelle und den Domänenklassen aufzeigen, weitere Implementierungsdetails wie Au-

thentifizierung und das Einbinden von Logging-Lösungen sollten nicht im Fokus der Arbeit

liegen. Nachdem der Ansatz vorgestellt war, wurde zusammenmit dem Entwickler eine einfa-

che REST-Schnittstelle modelliert und generiert. Das Layout dieser REST-Schnittstelle ist das

bereits vorgestellte aus Abbildung 7.1. Das Ergebnis dieser Modellierung ist in Abbildung 7.3

ersichtlich, das daraus generierte Projekt wurde mit dem Entwickler genauer inspiziert und

er konnte sich einen Eindruck machen was für Auswirkungen die Modellierung auf die

daraus generierte Implementierung hat.

Nach diesem kleinen Beispiel wurde dem Entwickler das Modell der Dienst Implementierung

gezeigt. Ein Bild dieses Modells ist in Abbildung 7.4 abgebildet. Der Großteil der Arbeit an

diesem Modell war allerdings nicht die Erstellung des Layouts der verschiedenen Ressourcen

sondern das Schema der Ressourcen, da ein Sonderziel viele Informationen enthält. Nachdem

der Entwickler sich mit dem Modell vertraut gemacht hatte wurde ihm das dazugehörige mit

dem Codegenerator erzeugte und anschließend ausimplementierte Projekt präsentiert. Bei

diesem Schritt wurde besonders auf die bereits in Abschnitt 5.4 erwähnten Unterschiede zur

ursprünglichen Implementierung, inklusive deren Ursachen, eingegangen. Dem Entwickler

wurde nun noch 10 Minuten Zeit gegeben sich die Implementierung selbstständig anzusehen,

während den 10 Minuten hatte der Entwickler ausserdem jederzeit die Möglichkeit Fragen zu

stellen. Im Anschluss daran wurde der Ansatz unter Verwendung von RAML präsentiert.

86

7.3 Befragung der Entwickler

Abbildung 7.3: Akademischer Ansatz: Layout Personenschnittstelle

Abbildung 7.4: Layout der Information REST-Schnittstelle

Präsentation des RAML-Ansatzes

RAML wurde ähnlich dem akademischen Ansatz als modellgetriebene Variante vorgestellt.

Zusätzlich wurde das RAML-System mit der Spezifikation und unterschiedlichem Tooling

vorgestellt. Besonders wurde darauf eingegangen, dass der eingesetzte Generator einer von

vielen ist und sich mit der Erzeugung von JAX-RS kompatiblen Schnittstellen beschränkt.

Es wurde ebenso darauf hingewiesen, dass die Qualität der Umsetzung des Dienstes des

Industriepartners, genauso wie bei dem akademischem Ansatz, nicht mit der des produktiv

eingesetzten Dienstes des Industriepartners vergleichbar ist.

Als nächsten Schritt wurde, wie beim akademischem Ansatz, ebenfalls zusammen mit

dem Entwickler ein Beispiel passend zum bereits vorgestellten Personen-Layout (siehe

87

7 Vergleich der Ansätze

Abbildung 7.1) erstellt. Das Resultat der Modellierung ist aufgrund der Spezifikationssprache

ein YAML-Artefakt.

Im Anschluss an die Erstellung des Modells wurde ein, während der Durchführung der

Arbeit, vorbereitetes Mavenprojekt präsentiert, was die automatische Generierung eines

beliebigen RAML-Modells bereits integriert hat. Im Unterschied zu dem akademischem

Ansatz verfolgt der Einsatz des RAML-JAX-RS-Generators das Ziel den generierten Code

nicht in die Versionierung einzupflegen. Dem Entwickler wurde dies verdeutlicht und die

Funktionsweise der Generierung wurde ihm dabei genau erläutert. Das Generieren der

Schnittstelle und des Datenmodells ist in die generate-sources-Phase der Builderstellung
integriert. Das hat zur Folge, dass die generierten Klassen lediglich im target-Verzeichnis des
Projektes liegen und so zwar zur Kompilier- und Laufzeit verfügbar sind aber, bei richtiger

Konfiguration der Versionierung, nicht Teil des versionierten Quellcodes sind. Der Vorteil

bei diesem Ansatz ist, dass man die Änderungen am Modell lediglich dort hat und nicht

zusätzlich an vielen Stellen der Generierung. Das Projekt wurde dann genutzt um den

Quellcode für das eben erstellte Personen-Modell zu erzeugen. Nun wurde dem Entwickler

noch gezeigt, wie er das Projekt ausimplementieren kann um die generierte Schnittstelle zu

nutzen. Die generierte Schnittstelle wurde nun noch genau mit dem Entwickler untersucht,

um ihm einen guten Einblick zu gewähren.

Nach der Erzeugung der Beispielschnittstelle wurde dazu übergegangen sich das RAML-

Projekt, das für die Umsetzung der Schnittstelle des Industriepartners mittels RAML erstellt

wurde, zu betrachten (vergleiche Abschnitt 5.4). Hier lag der Fokus ebenso wie bei der

Präsentation des akademischen Ansatzes auf der erstellten Schnittstelle, den generiertenen

Domänenklassen sowie der Umsetzung der Implementierung unter Verwendung der gene-

rierten Klassen. Dem Entwickler wurde ebenfalls die Möglichkeit gegeben sich die mit RAML

erstellte Umsetzung 10 Minuten lang, mit Möglichkeit zu Rückfragen, zu betrachten.

Im Anschluss daran wurden weitere Fragen des Entwicklers beantwortet und zusammen

mit ihm der Fragebogen bearbeitet.

7.4 Ergebnisse der Befragung

Dieser Abschnitt soll ein einheitliches Bild über die Befragung der Entwickler abgeben. Auf

die offenen Fragen über den Grund der Bewertung wird im folgenden Abschnitt “Analyse
und Zusammenfassung” eingegangen.

Die drei befragten Entwickler waren laut eigener Aussage allgemein gegenüber der modellge-

triebenen Entwicklung nicht voreingenommen. Sie haben alle bereits mit Codegenerierung

positive wie auch negative Erfahrungen sammeln können. Bei ihren Erfahrungen handelte es

sich immer um das Generieren von Domänenklassen aus UML-Modellen oder aus Swagger-

Definitionen. Einer der Entwickler gab hier explizit an, dass er bei Swagger-Definitionen

88

7.4 Ergebnisse der Befragung

oftmals sich nur die Domänenklassen generieren lässt um sie in einem selbst entwickelten

Client zu nutzen.

Alle Entwickler gaben an, dass sie bei der bisherigen Verwendung von modellbasierten

Werkzeuge keine Präferenz gegenüber Einsatz oder Nichteinsatz der Werkzeuge hatten.

Ein Vorteile den sie dabei erlebt haben, war dass das Modell einen übersichtlichen Über-

blick über alle Domänenklassen gab. Im weiterem Gespräch erwähnten sie, dass sie das

Modell während der weiteren Entwicklung an Änderungen aus dem Quellcode anpassen

mussten. Sie nutzen das Modell also zur initialen Generierung und später nur noch als ge-

trenntes Dokumentationsartefakt, welches von Hand auf aktuellem Stand gehalten werden

musste. Diesen zusätzlichen Aufwand empfanden sie auch als Nachteil. Betrachtet man

diese Verwendung genau so muss man feststellen, dass es sich streng genommen hierbei

nicht um modellgetriebene Entwicklung handelt - von den Entwicklern aber als solche

wahrgenommen wurde.

Bei der Bewertung der Modellierungstools konnte eine starke Präferenz für das klassiche

Vorgehen festgestellt werden. Es erhielt im Durchschnitt 8,3 Punkte (genauer: 9, 8 und 8

Punkte). Auf dem zweiten Platz landete die Modellierung mittels RAML, welche in der

Befragung durchschnittlich 6,3 Punkte erhalten hat (7, 6 und 6 Punkte). Das Schlusslicht

bildete hier knapp der akademische Ansatz mit durchschnittlich 5,6 Punkten (4, 7, 6). Auffällig

war hier, dass einer der Entwickler den akademischen Ansatz mehr Punkte gegeben hat als

dem Ansatz mit Verwendung von RAML.

Wenn man die Codeerzeugungen vergleicht, so ist der Unterschied der Ansätze hier noch

deutlicher, als bei dem Vergleich der Modellierungswerkzeuge. Hier hatten alle Entwickler

die gleiche Reihenfolge gewählt: Auf Platz 1 landete das klassische Vorgehen mit durch-

schnittlich 9,3 Punkten (9, 9, 10), gefolgt von RAML mit durchschnittlich 3,6 (4, 4, 3) und dem

akademischen Ansatz mit durchschnittlich 2,3 (3, 2, 2). Die Platzierungen der verschiedenen

Ansätze sowohl für die Modellierungswerkzeuge als auch für den Code und den Workflow

sind in Abbildung 7.5 visualisiert.

In der darauffolgenden Frage nach dem Grund gaben die Entwickler an, dass ihnen am

bestehenden Ansatz die volle Kontrolle über den Quellcode sehr zu sagt. Er ist technisch

unabhängig und leicht zu verstehen. Die beiden anderen Ansätze seien schwerer zu ver-

stehen und unübersichtlicher. Der Grund für das bessere Abschneiden des Ansatzes unter

Verwendung von RAML im Vergleich zum akademischen Ansatz war laut ihnen nicht die

Qualität des Quellcodes. Letztendlich gefiel ihnen der Workflow besser. Der Ansatz unter

Verwendung von RAML ermöglicht es den generierten Code innerhalb des Projektes regel-

mäßig erneut zu generieren. Dabei schafft er es durch die Trennung von generierten und

nicht generierten Code eine saubere Grundlage für die Versionierung zu legen. Als Nachteile

der modellgetriebenen Ansätze konnten sie die Bindung an das vom Generator verwendete

Framework identifizieren.

89

7 Vergleich der Ansätze

Abbildung 7.5: Auswertung der Punktevergabe der Entwickler

Nach dem Vergleich und der Betrachtung aller Varianten äußerten die Entwickler auf die

Frage für welche Einsatzzwecke sie sich Teile der Werkzeuge vorstellen könnten, dass die

grafische Ansicht des akademischen Ansatzes einen gewissen Reiz hat, da sie die technischen

Informationen gut graphisch visualisiert. Sie schränkten diese Aussage allerdings direkt

wieder ein indem sie daraufhin ergänzten, dass in einem Umfeld der Microservices, aufgrund

der Einfachheit der Schnittstellen, der Mehrnutzen einer solchen Visualisierung sehr gering

ist.

Als mögliche Vorteile der modellgetriebenen Ansätze nannten die Entwickler eine mögliche

schnellere Umsetzung einer REST-Schnittstelle als unter Verwendung ihrer bisherigen

Werkzeuge. Sie waren allerdings skeptisch gegenüber dem langfristigem Einsatz beider

modellgetriebener Ansätze, da ihnen zum einen die Codequalität nicht zusagte und sie der

90

7.5 Untersuchung mittels statischer Codeanalysewerkzeuge

Meinung waren, dass Änderungen sowohl am Modell als auch am Metamodell zu aufwendig

sind. Sie verglichen die Ansätze mit ihrer Lösung eines deskriptiven Swagger-Modells und

konnten für sich in der Phase der Weiterentwicklung der Schnittstelle keine wirklichen

Vorteile erkennen. Auf die Frage was eine Toolchain für den Entwurf und die Umsetzung von

REST-Schnittstellen können müsste antworteten zwei der Entwickler, dass sie ungern die

Hoheit über den generierten Code abgeben würden. Auf Frage nach dem Grund nannten sie,

dass sich ändernde Anforderungen damit wohl nicht so frei umsetzten lassen würden - oder

sie zumindest Bedenken hätten alle Anforderung mit dem generiertem Code umzusetzen.

7.5 Untersuchung mittels statischer
Codeanalysewerkzeuge

Um zusätzlich zum subjektiven qualitativen Feedback der Entwickler noch eine zusätzliche

objektive Aussage festzuhalten wurden die erzeugten Code-Artefakte mittels statischer

Codeanalysen untersucht.

Die Wahl des einzusetzenden Werkzeugs für diese Arbeit ist auf SonarQube
1
gefallen. Grund

hierfür ist die Aggregation von vielen unterschiedlichen Analyseverfahren wie die Überprü-

fung der Einhaltung von Richtlinien (Checkstyle), Bad practices und mögliche Programmfeh-

ler kombiniert und so einen sehr guten Gesamteindruck über den Zustand einer Software

gibt. Neben der Funktionalität überzeugt SonarQube auch durch die Verbreitung in der

Industrie, es ist wohl das meist benutzte Werkzeug für die Verwaltung der Codequalität.

In diesem Abschnitt werden zuerst die eingesetzten Metriken und Methodiken genannt,

beschrieben und den Grund für deren Einsatz erklärt. Im Anschluss daran werden die

Ergebnisse der statischen Codeanalyse gezeigt und detailliert analysiert - hier wird dann

auch auf die mögliche Interpretation der einzelnen Metriken und Methoden, sowie auf das

präsentierte Gesamtbild eingegangen.

7.5.1 Eingesetzte Metriken und Methodiken

SonarQube bietet einige Möglichkeiten zu Analyse von Softwareprojekten an. Im Detail

wurden diese schon in den Grundlagen beschrieben, deshalb folgt hier lediglich kurz die

Nennung der verwendeten Methoden und Metriken.

Für die mit den verschiedenen Ansätzen erstellten Projekte wurde jeweils ein, auf die REST-

Ressourcen und Modelklassen eingeschränkter, Analyselauf durchgeführt. Grundlage für

1
SonarQube: http://www.sonarqube.org/

91

http://www.sonarqube.org/

7 Vergleich der Ansätze

die spätere Auswertung waren die von SonarQube gelieferten Ergebnisse in den Kategorien

Zuverlässigkeit (Reliability), Sicherheit (Security), Wartbarkeit (Maintainability), Duplikate

(Duplications), Größe (Size) und Komplexität (Complexity). Die eben genannten Metriken

sind auf der entsprechenden Seite in der SonarQube Dokumentation
2
genau erläutert.

Die Kategorien werden im Testlauf durch die dazu passenden Metriken repräsentiert. Die

Zuverlässigkeit wurde im Testlauf durch die Metrik “Bugs” überprüft. Die Bugs-Metrik hat es

nicht in die Ergebnistabelle geschafft, da keiner der Ansätze einen Bug aufgewiesen hat. Die

Basis für die Kategorie Sicherheit stellt die Anzahl der Schwachstellen dar. Die Wartbarkeit

wurde durch die beiden Metriken “Code Smells” und Technische Schuld abgedeckt. Die

Anzahl der duplizierten Codestellen ist der Kategorie Duplikate zuzuordnen. Die Größe

wurde in diesem Test durch das einfache Zählen der Anzahl der Quellcodezeilen erhoben.

Die letzte Kategorie, die Komplexität, wurde direkt übernommen. Diese Metrik zählt die

Anzahl der Verzweigungen im Quellcode. Neben den eben genannten Kategorien liefert

SonarQube zusätzlich noch weitere Werte, welche nicht für die Analyse genutzt wurden.

Zum einen ist das die Kategorie Dokumentation (Documentation), welche den Anteil an

Kommentaren im Quellcode aufzeigt und zum anderen die Summe aller Probleme (Issues).

Der Dokumentationsgrad ist in der Literatur sehr umstritten. Viele Entwickler vertreten die

Meinung, dass Kommentare eher vermieden werden sollten und durch sprechende Methoden

und Variablennamen ersetzt werden können. Ein niedriger Dokumentationsgrad kann so also

auch ein Indikator für sehr hohe Codequalität sein. Die andere nicht verwendete Kategorie

sind die zusammengefassten Probleme (Issues), da sie eigentlich eine Zusammenfassung der

bereits vorliegenden Befunde sind und so keine zusätzlichen Informationen bieten.

7.5.2 Resultate der Analyseläufe

Dieser Abschnitt zeigt die Ergebnisse der Analyseläufe, eine Analyse der Ergebnisse wird

im darauffolgendem Abschnitt durchgeführt. Die folgende Beschreibung der Ergebnisse ist

in der Abbildung 7.6 visuell dargestellt.

Bei den Schwachstellen ist lediglich der Ansatz unter Verwendung von RAML aufgefallen, er

weist 3 Schwachstellen auf und ist damit der einzige Ansatz der überhaupt Schwachstellen

aufweist. Die Code Smells reichen von den 34 der Implementierung des Industriepartners

über 136 bei der generierten Variante unter Verwendung des akademischen Ansatzes bis zu

393 bei dem erzeugtem Quellcode unter Einsatz des RAML-Toolings. Die technische Schuld

ist erneut beim RAML-Ansatz am höchsten und beträgt dort drei Tage, gefolgt von der

technischen Schuld der Lösung des akademischen Ansatzes mit einem Tag. Am besten hat

hier erneut die Lösung des Industriepartners abgeschnitten - die technische Schuld dieser

Lösung beträgt zwei Stunden. Betrachtet man den prozentuallen Anteil an dupliziertem Code

2
SonarQube Dokumentation:

http://docs.sonarqube.org/display/SONAR/Metric+Definitions#MetricDefinitions-Reliability

92

http://docs.sonarqube.org/display/SONAR/Metric+Definitions#MetricDefinitions-Reliability

7.5 Untersuchung mittels statischer Codeanalysewerkzeuge

Abbildung 7.6: SonarQube-Ergebnisse

so fällt die Variante unter Einsatz des akademischen Ansatzes aus der Reihe. Wohingegen

die Lösung des Industriepartners (0%), sowie die mittels RAML erstellte Lösung (2,8%) frei

oder beinahe frei von erkannten Codeduplikaten sind, so hat die mittels des akademischen

Ansatzes erstellte Lösung eine sehr hohe Quote (70%). Der Umfang der Lösungen ist sehr

unterschiedlich, die kompakteste Variante bildet die Lösung des Industriepartners mit 1056

Zeilen Code, gefolgt von der Lösung mittels des akademischen Ansatzes mit 1883 Zeilen

Code, das Schlusslicht bildet hier die mittels RAML erzeugte Variante welche einen Umfang

von 3824 Zeilen Code hat. Bei der gemessenen Komplexität ergibt sich ein ähnliches Bild:

Hier ist die Lösung mittels RAML die komplexeste mit einer Punktzahl von 968, gefolgt von

93

7 Vergleich der Ansätze

der Lösung des akademischen Ansatzes mit 302, die niedrigste Komplexität hat die vom

Industriepartner erstellte Lösung mit einer Punktzahl von lediglich 37.

7.5.3 Analyse der Ergebnisse

Bereits bei der Betrachtung der Resultate ist aufgefallen, dass die Lösung mittels RAML die

einzige ist welche Schwachstellen aufweist. Schaut man sich das Ergebnis des Analyselaufs

genauer an, so fällt auf dass es sich bei den Schwachstellen mehrmals um das Werfen

einer generischen Ausnahme (Exception) in den REST-Ressourcen handelt. Scheinbar ist die

Fehlerbehandlung im generierten Code des RAML-Codegenerators nicht perfekt und sollte

für einen produktiven Einsatz verbessert werden.

Die Anzahl der Code Smells zeigt eine deutliche Abstufung zwischen den einzelnen Lö-

sungen auf. Die vom Industriepartner erzeugte Lösung hat mit Abstand am wenigsten.

Bei genauerer Betrachtung des akademischen Ansatzes fällt auf, dass viele der 136 Codes-

mells von ähnlichem Typ sind. Besonders häufig treten dabei ungenutzte Importe (23-mal),

fehlerhafte Variablen- und Klassenbenennung (17-mal), sowie der veraltete Einsatz des

Diamond-Operators (41-mal) auf. Allein mit der Behebung dieser recht simplen Änderungen

im Generator könnten die Codesmells auf 55 reduziert werden - was schon eher an die vom

Industriepartner entwickelte Variante herankommt. Die 393 Codesmells des generierten

Code des RAML-Codegenerators sind zumGroßteil auf den Einsatz von unnötigen Klammern

(244-mal), Duplizierung von Stringliteralen (40-mal) und der nicht korrekten Reihenfolge

von Modifikatoren (29-mal) zurückzuführen. Der Generator erweckt den Eindruck, dass er

zur Sicherung gegen Syntaxfehler eine Klammer zuviel benutzt. Durch eine Beseitigung der

Ursachen dieser Codesmells im Generator könnte für diesen Fall die Anzahl der Codesmells

beachtlich reduziert werden - von anfänglich 393 wären dann gerade noch 80 übrig.

Die technische Schuld setzt sich aus den gerade erläuterten Codesmells und Duplikaten

zusammen. Sie gibt aber ein genaueres Bild über den Zustand des Codes an, da die einzelnen

Codesmells unterschiedlich schwer auszumerzen sind. Die technische Schuld aggregiert

somit die geschätzte Zeit, welche ein Entwickler für das Ausmerzen aller Codesmells und

Codeduplikate benötigen würde. Sie ist in Kombination mit der Anzahl der Codesmells

viel aussagekräftiger als die pure Anzahl an Codesmells alleine. Auch wenn die Anzahl der

Codesmells nicht unbedingt im Verhältnis zur technischen Schuld stehen muss, so tut sie es

in diesem Fall. Die Implementierung des Industriepartners besitzt eine technische Schuld

von zwei Stunden, wohingegen die generierten Lösungen eine höhere technische Schuld

aufweisen - die technische Schuld für die Lösung mittels des akademischen Ansatzes beträgt

einen Tag und die der mittels RAML erstellten Lösung drei Tage.

Ein Maßstab für den Umfang des Quellcodes ist die Anzahl der Codezeilen. Wie bei den

anderen Metriken spiegelt sich hier ein ähnliches Bild wider. Die vom Industriepartner von

Hand geschriebene Implementierung ist mit 1056 Codezeilen mit Abstand am kürzesten.

94

7.5 Untersuchung mittels statischer Codeanalysewerkzeuge

Den zweiten Platz dieser Metrik belegt der erzeugte Code des akademischen Ansatzes mit

1883 Zeilen. Am längsten ist der erzeugte Code des RAML-Codegenerators mit insgesamt

3824 Zeilen. Zur Betrachtung hierfür ist eine weitere Metrik interessant und aufschlussreich:

Die Codeduplikate. Man sieht im Schaubild, dass die Codeduplikate für die Implementierung

des Industriepartners (0%), sowie für die mittels RAML-Tooling (2,8%) erzeugten Code ver-

nachlässigbar sind. Anders hingegen ist dies beim akademischen Ansatz - hier beträgt die

Codeduplikatrate beachtliche 70%. Wenn man eine Erklärung hierfür sucht wird man schnell

fündig. Das untersuchte Beispiel benutzt für zwei Ressourcen dasselbe Datenmodell. Bei der

händischen Implementierung und der mittels RAML erzeugten Variante gibt es für beide

Ressourcen ein gemeinsames Datenmodell, bei dem akademischen Ansatz allerdings nicht.

Da in der untersuchten Schnittstelle das Datenmodell im Vergleich zur REST-Schnittstelle

relativ groß ist bedeutet dies auch einen erheblichen Anteil an Codeduplikaten. Der akademi-

sche Ansatz sollte in Zukunft das Datenmodell außerhalb der Ressourcenklassen generieren.

Durch diese Maßnahme wären die unterschiedlichen Ressourcen zu einander kompatibel

und man könnte Hilfsklassen, Parser und andere Komponenten für beide Ressourcen nutzen.

Ein positiver Nebeneffekt wäre in diesem Beispiel die Reduzierung der Länge des erzeugten

Codes um etwa 850 Zeilen. Somit würde die Länge auf in etwa 1030 Zeilen zurückgehen

und wäre somit potentiell sogar kürzer als die händisch entwickelt Variante. Um allerdings

gerecht zu bleiben muss man gestehen, dass die von Hand geschrieben Variante einige Zeilen

nutzt um die Rest-Ressourcen sowie das Datenmodell für die Dokumentation mit Swagger

zu annotieren, wenn man diese Annotationen beim akademischen Ansatz einfügen würde,

so wäre diese in etwa 50 Zeilen länger als die Implementierung des Industriepartners. Der

Ausreißer in dieser Metrik ist wohl der vom RAML-Codegenerator erzeugte Quellcode mit

ganzen 3824 Zeilen Quellcode. Dies liegt daran, dass die erzeugten Modellklassen viel größer

sind als bei den anderen Ansätzen. Ursache hierfür sind zum einem erzeugte Hilfsfunktionen

und generische Getter, welche den Umgang mit den Modellklassen praktischer gestalten,

und zum anderem viele Annotationen welche Eigenschaften zur Serialisierung und De-

serialisierung explizit angeben und so robuster gegenüber Eigenheiten der verwendeten

JSON-Bibliothek sind.

Die verschiedenen Metriken geben ein recht eindeutiges Bild ab. Die statische Codeanalyse

hat Schwächen der beiden Generatoren für die modellgetriebenen Ansätze aufgedeckt und

die Überlegenheit der vom Industriepartner entwickelten Lösung aufgezeigt. Die Ergebnisse

der statischen Codeanalyse decken sich also mit der Meinung der Entwickler in der Befra-

gung. Sie haben darüber hinaus aber auch gezeigt, dass durch gegebenenfalls sehr einfache

Anpassungen an den Generatoren die Codequalität des generierten Codes stark gesteigert

werden kann.

Gerechterweise kann man nun anmerken, dass die Codequalität in einem modellgetriebenen

Ansatz eher sekundär ist, solange der generierte Code die geforderte Funktionalität besitzt.

Aber so einfach ist es nicht - man muss bedenken, dass Schwächen wie in diesem Kapitel

aufgezeigt auch eine Fehlersuche im Quellcode erschweren. Wenn man einen modellgetrie-

benen Ansatz einführt, so wird man dazu übergehen Fehler im Generator zu suchen und

95

7 Vergleich der Ansätze

auszumerzen. Bei all diesen Tätigkeiten ist eine möglichst gute generierte Implementierung

sehr erstrebenswert.

7.6 Analyse und Zusammenfassung

Die Entwickler waren in der Befragung generell von der bestehenden Lösung des Indus-

triepartners überzeugt. Prinzipiell ist dies nicht sehr überraschend, da sie diese Lösung

selbst nach ihren speziellen Anforderungen entwickelt haben. Dennoch äußerten sie ge-

rechtfertigte Kritik an den vorgestellten modellgetriebenen Ansätzen. Sie beschrieben, dass

die Kontrolle über den letztendlich entstehenden Code für sie von höchster Wichtigkeit ist

und sie ungern die Kontrolle über die Definition der Schnittstelle an einen Generator mit

ungewissen Regeln abgeben würden. Neben der generellen Kontrolle empfanden sie auch

die Bindung an die unterschiedlichen Tools und Frameworks (z.B. Eclipse, Dropwizard und

Jersey) für sehr störend. Weitere Tools sind bei der täglichen Arbeit eher störend und die

Bindung an ein bestimmtes Framework kann bei der Umsetzung spezieller Anforderungen

schnell zu einem Problem werden. Die größten Kritikpunkte waren letztendlich, dass die

Entwickler sich bei der Nutzung verunsichert über das Ergebnis der Modellierung fühlten

und dass der generierte Code im Anschluss nicht dem entsprach, was sie selbst implementiert

hätten. Die Entwickler beschrieben dies als ein fehlendes Vertrauen in das Mapping der

Generatoren, für sie war es auch schwer vorherzusagen was für Datentypen in dem später,

auf Basis des Modells, generierten Quellcodes genutzt werden. Laut ihrer Aussage war dies

vor allem beim akademischen Ansatz der Fall, aber auch bei RAML war diese Ungewissheit

vorhanden. Sie meinten, dass RAML eine bessere technische Übersicht über die Schnittstelle

gibt als das bei dem akademischen Ansatz der Fall ist, da bei ihm Parameter und Datentypen

nicht direkt im Schaubild ersichtlich sind. Für die Erkennung des Layouts einer Schnittstelle

sei der akademische Ansatz aber mit am besten geeignet.

Bei der Erstellung des Datenmodells waren die Entwickler recht verhalten und der Meinung,

dass sie weder Vor- und Nachteile für die Generierung des Datenmodells sehen. Die Gene-

rierung von Hand ist recht schnell, erfordert relativ wenig Denkarbeit und ist deshalb nicht

all zu fehlerbehaftet. Der Aufwand ist nicht so hoch und die Tätigkeit nicht so schwer, dass

die Entwickler hierbei unbedingt Unterstützung durch ein Werkzeug benötigen.

Bei der Betrachtung der von den Codegeneratoren erzeugten Quellcodes haben die Entwick-

ler auf den ersten Blick Mängel hinsichtlich der Einhaltung der Programmierrichtlinien,

beispielsweise bei der Groß- und Kleinschreibung von Variablennamen, entdeckt. Nach

diesem ersten negativen Eindruck waren die Entwickler, ihrer Aussage nach, etwas voreinge-

nommen und haben ihre Zweifel in die möglicherweise nicht ganz einwandfreie Übersetzung

der Modelle in Quellcode bestätigt gefühlt. Der erste Eindruck der Entwickler ließ sich in

96

7.6 Analyse und Zusammenfassung

den Ergebnissen der statischen Codeanalyse wieder finden. Die statische Codeanalyse bestä-

tigte, dass die Codegeneratoren komplexeren, längeren und mit höherer technischer Schuld

belasteten Code generieren.

Im Allgemeinen sahen die Entwickler wenig Vorteile in der modellgetriebenen Erzeugung

einer REST-Schnittstelle im Vergleich zu der bisherigen Methode. Für sie ist es komfortabler

eine Schnittstelle genau so zu implementieren, wie sie es sich vorstellen und dabei, oder

im Anschluss daran, die bestehenden Methoden mit dokumentierenden Annotationen zu

versehen. Ihrer Aussage nach haben sie mit diesem Ansatz das beste beider Welten, eine

immer aktuelle Dokumentation und volle Kontrolle über die technische Definition der

Schnittstelle selbst. Bei der Wahl des eingesetzten Dokumentationsframeworks haben sie

darauf geachtet, dass die Dokumentation sinnvoll in einem Browser anzeigbar ist und

zusätzlich schnell die Generierung eines passenden Clients in mehreren Sprachen erlaubt.

Swagger als Lösung für die Annotationen der Schnittstelle wird ihrem Anspruch dabei

gerecht.

Nichtsdestotrotz muss man festhalten, dass die modellgetriebenen Ansätze auch Vorteile

besitzen. Die Entwickler gaben an, dass sie eine grafische Ansicht der Schnittstelle in

manchen Situationen für sehr nützlich haltenwürden. Gerade die Darstellung in einemGraph

oder zumindest in einem Baum lasse sehr schnell Rückschlüsse auf das tatsächliche Layout

zu, was andere Ansätze nicht ermöglichen. Im Kontrast zu dem vorgegebenen akademischen

Ansatz würden sie es aber unterstützen, wenn eine solche Darstellung auf Basis ihres

Quellcodes erzeugt werden würde und nicht die Grundlage für weitere Modellierung und

spätere Übersetzung in Quellcode bilden würde.

Bei der Durchführung der Arbeit ist aufgefallen, dass die drei Ansätze für verschiedene

Einsatzzwecke unterschiedlich gut geeignet sind. Dies wurde durch die Befragung der

Entwickler deutlich und durch die Durchführung des AHP bestätigt. Der Ansatz des Indus-

triepartners ist in der Praxis sehr gut, solange man keine sehr große Schnittstelle umsetzen

will. Bei einer sehr großen Schnittstelle ist der Ansatz vermutlich weniger geeignet, da es

nicht mehr so schnell möglich sein wird eine erste Version der Schnittstellendefinition zu

erzeugen. Die Schnittstellendefinition basiert auf einer ersten Implementierung, welche sich

bei einer größeren Schnittstelle verzögern könnte.

Die Alleinstellungsmerkmale des akademischen Ansatzes sind sicherlich die Möglichkeiten

zur grafischen Modellierung und zur Umsetzung des HATEOAS-Prinzips. Er eignet sich so

prinzipiell für besonders große Schnittstellen mit vielen Ressourcen. Im jetzigen Zustand

wird man aber vermutlich für die Verwendung in der Praxis einen eigenen Codegenerator

zu schreiben bzw. den aktuellen anzupassen.

RAML hat von den Ansätzen die besten Ansätze für Wiederverwendbarkeit und Wiederver-

wendung. Dieser Ansatz eignet sich von der Art der Spezifikation für fast alle Schnittstel-

len, da gemeinsam genutztes Verhalten, wie beispielsweise das in der Arbeit vorgestellte

Collection/Collection-Item Pattern, auch für kleine Schnittstellen einfach importiert werden

97

7 Vergleich der Ansätze

könnte. Was die Codegeneration angeht ist der Zustand ähnlich wie beim akademischen

Ansatz - auch hier wird man das bestehende Tooling an die eigenen Bedürfnisse anpassen

müssen.

98

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde gezeigt wie eine bestehende Implementierung eines Industriepart-

ners in einem agilen Entwicklungsprozess mittels modellgetriebener Werkzeuge umgesetzt

werden kann. Im Laufe der Arbeit wurde die, auf Spring Boot basierende, bereits bestehende

REST-Schnittstelle unter Verwendung zweier unterschiedlicher Werkzeuge und Methoden

(RAML und der akademische Ansatz) umgesetzt. Um die Ergebnisse dieser Arbeit auf andere

Unternehmen mit anderen Entwicklern anwendbar zu machen wurde zu Beginn der Arbeit

ein Vergleich des vorliegenden Scrum-Entwicklungsprozesses mit dem Referenzscrumpro-

zess durchgeführt. Dieser Vergleich zeigte, dass trotz minimaler Abweichungen der Prozess

dennoch fast vollständig dem Referenzprozess und dem Gedanken von Scrum entspricht

und somit gut mit anderen Scrumprozessen verglichen werden kann.

Neben der Erstellung der REST-Schnittstelle mittels zweier modellgetriebener Methodiken

beschäftigte die Arbeit sich desweiteren mit dem Vergleich dieser, dann in Summe drei,

Varianten. Während der Erstellung der zwei modellgetriebenen Varianten konnten schon

einige Eindrücke, sowie Stärken und Schwächen der unterschiedlichen Varianten gesammelt

werden. Die entsprechenden Ergebnisse wurden im Abschnitt 7.2 gesammelt.

Anschließend dazu wurde eine Befragung der Entwickler des Industriepartners durchgeführt,

bei der sie die drei Varianten inklusive einiger Beispiele betrachten und bewerten konnten.

Die Durchführung und Ergebnisse der Befragung, sowie eine statische Codeanalyse der

verschiedenen Codeartefakte, bilden den Rest von Kapitel 7. In diesem Kapitel wurde deutlich,

dass der Einsatz von Modellen im Allgemeinen - der Industriepartner benutzt ja selbst

Swagger für die Beschreibung der Schnittstelle - sehr sinnvoll ist.

Die Befragung der Entwickler brachte ans Licht, dass die Nutzung von modellgetrieben

Werkzeugen für die Erzeugung von REST-Schnittstellen aus Sicht der befragten Entwickler

noch nicht zufriedenstellend umgesetzt worden ist. Die Entwickler waren sich zwar einig,

dass man sich vor der Implementierung einer Schnittstelle Gedanken über die Umsetzung

machen müsse, aber sahen die Erstellung einer genauen Spezifikation als einen zu hohen

Aufwand und eine zu hohe Verpflichtung an. In der agilen Softwareentwicklung, bei der

in vielen Fällen alle zwei Wochen ein neues Inkrement geliefert wird und während der

Entwicklung ständig neue Erkenntnisse gewonnen werden, hat ihrer Meinung nach eine

Spezifikation eher eine dokumentierende Aufgabe ohne Anspruch auf zukünftige Einhal-

tung. Ab eines gewissen Reifegrades, bzw. ab einer gewissen Anzahl an Nutzern, ist eine

Berücksichtigung von Kompatibilitäten unabdinglich, ob dies in einem deskriptiven (wie

99

8 Zusammenfassung und Ausblick

Swagger) oder einem präskriptiven Modell (einem der anderen beiden Ansätzen) geschieht

ist prinzipiell egal, da beide Modellarten den Ist-Zustand darstellen oder widerspiegeln.

Die Arbeit hat gezeigt, dass in dem vorliegendem Fallbeispiel die modellgetriebenen An-

sätze für die Entwickler kein zufriedenstellendes Ergebnis lieferten. Sie haben kaum einen

Mehrwert in der Arbeit mit den modellgetriebenen Ansätzen gesehen. Zu Beginn der Ar-

beit wurden die Vorteile der modellgetriebenen Softwareentwicklung genannt. Viele der

zu Beginn der Arbeit angesprochenen Vorteile von MDSD konnten bei der Generierung

von REST-Schnittstellen nicht recht ausgenutzt werden. Die Gründe hierfür sind vielseitig:

Einerseits konnte die erhoffte Steigerung der Produktivität nicht erreicht werden, da die

Entwickler sehr erfahren im Umgang mit dem eingesetzten Spring Boot Framework waren.

Andererseits ist der Vorteil der erhöhten Codequalität nicht in Erscheinung getreten, da die

Generatoren, nach Eindruck der Entwickler und auch nach den Ergebnissen der statischen

Codeanalyse, schlechteren Code erzeugen als die Entwickler selbst.

Die Entwickler stellen für ihre Arbeit zwei große Anforderung an den Einsatz ihrer Werkzeu-

ge: Zum einen benötigen sie im Umfeld ihrer Arbeit die Möglichkeit den Konsumenten ihrer

Schnittstelle eine Dokumentation inklusive der Möglichkeit zur Erzeugung unterschiedlicher

Clients bereit zustellen. Die andere Anforderung ist, dass sie die volle Kontrolle über den

Quellcode und die Wahl eines Frameworks benötigen. Dies ist vor allem darauf zurückzu-

führen, dass zu Beginn des Projektes noch nicht alle Anforderungen an die Schnittstelle

bekannt sind. Oft kommt es vor, dass im Laufe des Projektes weitere Anforderungen, wie

das Monitoring, Logging, besondere Fehlerbehandlung oder spezielle Authentifizerungs-

arten, hinzukommen. Im Falle einer generierten REST-Schnittstelle ist es dann oftmals

schwierig oder unmöglich diese Anforderungen ohne die Anpassung des Codes (oder des

Codegenerators) umzusetzen.

Insgesamt muss man also sagen, dass die beiden präskriptiven Varianten zwar auf die Anfor-

derung einer Beschreibung für die Schnittstelle eingehen aber aufgrund des erzeugten Codes

keine gänzlich zufriedenstellenden Ergebnisse liefern. Beim betrachteten Anwendungsfall

macht es keinen großen Sinn ein Modell zum Selbstzweck, also ohne die Verwendung von

späterer Codegenerierung, einzuführen. Der betrachtete Dienst ist nicht umfangreich genug

und rechtfertig solch ein Modell nicht. Ein solches präskriptives Modell selbstständig, ohne

den Einsatz von Codegeneratoren umzusetzen, macht hier auch nur bedingt Sinn da diese

Art zwangsläufig zu zwei zu pflegenden Artefakten führt. Die dabei entstehenden Artefakte

(Modell und der dazugehörige Quellcode) sind getrennt voneinander zu pflegen, was so

zu einem doppelten Wartungsaufwand führt. Sollten Änderungen am Quellcode nicht am

Modell nachgezogen werden, so entstehen Widersprüche, welche nicht einfach erkennbar

sind aber erhebliche Auswirkung für die generierten Clients der REST-Schnittstelle haben.

Der Einsatz von Swagger als deskriptives Modell für die manuell erstellte REST-Schnittstelle

ermöglicht eine an den aktuellen Code gebundene Generierung von Clients und einer Doku-

mentation. Diese Art von Modell hat den Vorteil, dass kaum Diskrepanzen zwischen Modell

und eigentlicher Implementierung entstehen können, da die Implementierung Grundlage

100

des Modells ist. Die händische Umsetzung und anschließende Erzeugung eines Modells hat

auch den weiteren Vorteil, dass die Entwickler die volle Kontrolle über den entstehenden

Quellcode haben. Diese Kontrolle führt zu mehr Freiheit bei der Umsetzung von Anforderun-

gen und einer höheren Qualität in Form von Konformität des Quellcodes gegenüber selbst

bestimmten oder ausgewählten Richtlinien.

Das sind im Wesentlichen auch die Gründe des Industriepartners für die bisherige Entschei-

dung für dieser Variante. Während dieser Arbeit hat sich diese Wahl im Vergleich mit den

anderen beiden modellgetriebene Ansätzen bewährt.

Ausblick

Die Verwendung von modellgetriebenen Ansätzen zum Entwurf und der Realisierung von

REST-Schnittstellen konnte die Entwickler des Industriepartners nicht überzeugen. Die Frage

nach den Gründen wurde bereits im vorherigen Abschnitt diskutiert. Zusammenfassend

kann man sagen, dass die Nutzung eines modellgetriebenen Ansatzes einen ähnlichen

Aufwand mit sich bringt, aber ein qualitativ schlechteres Ergebnis zur Folge hat. Dieser

Zusammenhang schreckt die Entwickler ab, da sie letztendlich an der Funktion und Qualität

ihrer Software gemessenwerden und nicht an der Art wie sie Software entwickeln. Außerdem

erschweren sie sich, durch die Generierung von Quellcode mit höherer technischer Schuld,

ihre zukünftige Arbeit bei der Weiterentwicklung und Wartung.

Wenn man diese Arbeit kritisch betrachtet so wird man sich damit auseinander setzen

müssen, dass der Vergleich zwischen den Ansätzen nicht ganz gerecht war. Die Entwickler

kannten ihre eigene Implementierung bereits und sind mit der Art der Umsetzung, bei-

spielsweise die Wahl des Frameworks, deshalb sicher sehr zufrieden. Die Entwickler waren

außerdem zum einen skeptisch aufgrund der unterschiedlichen Frameworks zwischen den

Ansätzen und zum anderen stark abgeschreckt von der Qualität des von den Generatoren er-

zeugten Quellcodes. Es wäre sicherlich interessant in einer zukünftigen Arbeit zu sehen wie

eine Befragung der Entwickler ausfallen würde, wenn die vorgestellten modellgetriebenen

Ansätze einen dem Code des Industriepartners sehr ähnlichen Quellcode erzeugen würde.

Für die Durchführung einer solchen Befragung im vorliegendem Projekt des Industriepart-

ners müsste für die beiden modellgetriebenen Ansätze jeweils ein SpringBoot-Codegenerator

entwickelt werden.

Weiterhin muss festgehalten werden, dass es im Moment keinen Standard zur Beschreibung

von REST-Schnittstellen gibt. Bei anderen Schnittstellenformaten wie Beispielsweise SOAP

hat sich ein Standard (die Web Service Description Language (WSDL)) etabliert. Vermut-

lich ist einer der Gründe für das Fehlen eines solchen Standards, nicht etwa das Alter des

REST-Architekturstils, sondern eher die fehlende Notwendigkeit. Die Verwendung einer

REST Schnittstelle besitzt eine niedrigere Einstiegsschwelle für den Anwender. Viele bei

101

8 Zusammenfassung und Ausblick

einer Kommunikation zu klärenden Parameter, wie die Wahl des Protokolls, die Definition

der Operationen und Datentypen werden einem durch den HTTP-Standard, sowie gängige

Best-Practices, bereits abgenommen. Einige REST-Puristen wie Roy Fielding erklären soge-

nannte ‘out-of-band’ Informationen, welche außerhalb des Primärkanals übermittelt werden

- wozu sicher auch Dokumentationen zählen, als problematisch und Indikator für fehlende

Umsetzung von HATEOAS. Aus ihrer Sicht ist ein solcher Standard nicht weiter notwendig

und deshalb vermeidbar. In der Praxis allerdings sind deskriptive Ansätze, wie Swagger,

weitverbreitet. Der REST-Architekturstil könnte von solch einem Standard für die Model-

lierung stark profitieren. Keiner der vorgestellten Ansätze überprüft die erstellten Modelle

auf Umsetzung von allgemein gültigen Best-Practices. Die Herausbildung eines allgemein

anerkannter Standards könnte die Entwicklung von Werkzeugen, welche den Entwickler

über die ledigliche Erstellung eines Modells hinaus unterstützen, extrem beschleunigen.

Prinzipiell fanden die Entwickler die modellgetriebenen Ansätze sehr interessant aber ver-

besserungswürdig. Um modellgetriebene Ansätze beim Entwurf und der Umsetzung von

REST-Schnittstellen in der Praxis weiterzubringen wird es sicherlich notwendig sein den

Entwicklern mehr als nur eine Möglichkeit geben ihre Schnittstellen zu beschreiben. Es muss

ein Bewusstsein dafür geschaffen werden, dass MDSD kein Allheilmittel für alle Probleme

der Entwickler ist, sondern eine Möglichkeit ihre eigene Produktivität und Leistung zu erhö-

hen. Diese eben erwähnte Produktivitätssteigerung bekommt man nicht geschenkt. Hierfür

muss die ganze Werkzeugkette verbessert werden. Es ist eine unrealistische Erwartung, aus

einer Spezifikation ein Artefakt zu generieren, welches genau so aussieht wie man es nach

langer Arbeit selber umgesetzt hätte - dieser Anforderung kann man nur gerecht werden,

wenn man den Generator selber geschrieben hat oder ihn seinen Ansprüchen entsprechend

angepasst hat. Für Entwickler ist es wichtig ihre verwendeten Werkzeuge anpassen zu kön-

nen, ganz besonders wenn sie Quellcode erzeugen, welcher unverändert später produktiv

eingesetzt werden soll. Deshalb sollten Entwickler bei den unterschiedlichen Ansätzen dazu

bemächtigt werden ihre Generatoren selbst zu konfigurieren oder zu verbessern um für sich

passende Lösungen zu finden. Die modellgetriebene Umsetzung einer REST-Schnittstelle

endet eben nicht mit der Erstellung eines Modells - sondern erst nach der Fertigstellung der

tatsächlichen REST-Schnittstelle.

102

Abkürzungsverzeichnis

Abkürzung Bedeutung Erstes Vorkommen

AHP Analytische Hierarchieprozess 79

API Application Programming Interface 19

CD Continous Deployment 48

CI Continous Integration 48

HATEOAS Hypermedia as the Engine of Application State 21

HTML Hypertext Markup Language 21

JSON JavaScript Object Notation 20

MDSD Modellgetriebene Softwareentwicklung 31

npm Node Package Manager 57

PO Product Owner 27

RAML Restful Api Modeling Language 34

REST REpresentational State Transfer 13

SM Scrum Master 27

URI Uniform Resource Identifier 21

WADL Web Application Description Language 35

WSDL Web Service Description Language 101

XML Extensible Markup Language 20

103

Literaturverzeichnis

[All10] S. Allamaraju. Restful web services cookbook: solutions for improving scalability
and simplicity. O’Reilly Media, Inc., 2010 (zitiert auf S. 22, 23).

[Arm03] P. G. Armour. The Laws of Software Process: A New Model for the Production
and Management of Software. CRC Press, 2003 (zitiert auf S. 25).

[Bad] V. Badola. Microservices architecture: advantages and drawbacks. url: http:
//cloudacademy.com/blog/microservices-architecture-challenge-advantage-

drawback/ (zitiert auf S. 30).

[BBV+01] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fow-

ler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al. Manifesto for agile
software development. 2001 (zitiert auf S. 25).

[BKA+07] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo. „Comparison and eva-

luation of clone detection tools“. In: IEEE Transactions on Software Engineering
33.9 (2007), S. 577–591 (zitiert auf S. 40).

[BS87] V. R. Basili, R.W. Selby. „Comparing the effectiveness of software testing

strategies“. In: IEEE transactions on software engineering 12 (1987), S. 1278–

1296 (zitiert auf S. 40).

[Cag] S. Caganoff. Anypoint for APIs: An Interview with Uri Sarid. url: https://www.

infoq.com/news/2014/02/anypoint-api-sarid (zitiert auf S. 34).

[Cre13] J.W. Creswell. Qualitative inquiry and research design: Choosing among five
approaches. Sage, 2013 (zitiert auf S. 83).

[DOWZ15] P. Diebold, J.-P. Ostberg, S. Wagner, U. Zendler. „What do practitioners vary

in using scrum?“ In: International Conference on Agile Software Development.
Springer. 2015, S. 40–51 (zitiert auf S. 26).

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee.

Rfc 2616, hypertext transfer protocol–http/1.1. 1999. url: https://www.w3.org/

Protocols/rfc2616/rfc2616.html (zitiert auf S. 22).

[Fie00] R. T. Fielding. „Architectural styles and the design of network-based software

architectures“. Diss. University of California, Irvine, 2000 (zitiert auf S. 13, 15,

20).

105

http://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
http://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
http://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://www.infoq.com/news/2014/02/anypoint-api-sarid
https://www.infoq.com/news/2014/02/anypoint-api-sarid
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html

Literaturverzeichnis

[Fie08] R. T. Fielding. „REST APIs must be hypertext-driven“. In: Untangled musings
of Roy T. Fielding (2008). url: http://roy.gbiv.com/untangled/2008/rest-apis-

must-be-hypertext-driven (zitiert auf S. 24).

[FKH13] N. Freed, J. Klensin, T. Hansen. Media type specifications and registration proce-
dures. Techn. Ber. 2013 (zitiert auf S. 77).

[FL] M. Fowler, J. Lewis. Microservices. url: http://www.martinfowler.com/articles/

microservices.html (zitiert auf S. 30).

[Fow09] M. Fowler. Refactoring: improving the design of existing code. Pearson Education
India, 2009 (zitiert auf S. 29).

[GGS+] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, S. Abeck. Best Practices for
the Design of RESTful Web Services (zitiert auf S. 75, 76).

[Gol] K. Goldsmith. How Spotify Builds Products (Organization. Architecture, Autono-
my, Accountability). Spotify. url: http://de.slideshare.net/kevingoldsmith/how-

spotify-builds-products-organization-architecture-autonomy-accountability

(zitiert auf S. 30).

[Haz] L. Hazlewood. Design Beautiful REST + JSON APIs. Stormpath. url: http :

//www.slideshare.net/stormpath/rest-jsonapis (zitiert auf S. 75, 76).

[HFK+14] F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, K. Vukojevic-Haupt.

„Service Composition for REST“. In: 2014 IEEE 18th International Enterprise
Distributed Object Computing Conference, EDOC 2014. IEEE, 2014, S. 110–119.
doi: 10.1109/EDOC.2014.24 (zitiert auf S. 37).

[HKLS14] F. Haupt, D. Karastoyanova, F. Leymann, B. Schroth. „A Model-Driven Ap-

proach for REST Compliant Services“. In: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS 2014). IEEE, 2014, S. 129–136. doi:
10.1109/ICWS.2014.30 (zitiert auf S. 34, 36).

[HLP15] F. Haupt, F. Leymann, C. Pautasso. „A conversation based approach for mode-

ling RESTAPIs“. In: 12thWorking IEEE / IFIP Conference on Software Architecture
- WICSA 2015. IEEE Computer Society, 2015 (zitiert auf S. 37).

[Jai] S. Jain. Interview with Ken Schwaber. url: https : / /web.archive .org/web/
20120316064715/http://www.agilecollab.com/interview-with-ken-schwaber

(zitiert auf S. 26).

[Jau] S. Jauker. 10 Best Practices for Better RESTful API. M-Way Solutions. url: http:

//blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-

api/ (zitiert auf S. 75, 76).

[Jee] K. S. Jeef Sutherland. Scrum Guides. url: http://scrumguides.org/ (zitiert auf

S. 26, 42).

106

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.martinfowler.com/articles/microservices.html
http://www.martinfowler.com/articles/microservices.html
http://de.slideshare.net/kevingoldsmith/how-spotify-builds-products-organization-architecture-autonomy-accountability
http://de.slideshare.net/kevingoldsmith/how-spotify-builds-products-organization-architecture-autonomy-accountability
http://www.slideshare.net/stormpath/rest-jsonapis
http://www.slideshare.net/stormpath/rest-jsonapis
http://dx.doi.org/10.1109/EDOC.2014.24
http://dx.doi.org/10.1109/ICWS.2014.30
https://web.archive.org/web/20120316064715/http://www.agilecollab.com/interview-with-ken-schwaber
https://web.archive.org/web/20120316064715/http://www.agilecollab.com/interview-with-ken-schwaber
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://scrumguides.org/

Literaturverzeichnis

[KL95] E. Kamsties, C.M. Lott. „An empirical evaluation of three defect-detection

techniques“. In: European Software Engineering Conference. Springer. 1995,
S. 362–383 (zitiert auf S. 40).

[Kom12] A. Komus. „Status Quo Agile“. In: Studie zur Verbreitung und Nutzen agiler
Methoden. Hochschule Koblenz (2012) (zitiert auf S. 24).

[Kum] S. Kumar. 8 Benefits of Microservices | Digital Transformation. url: http://blogs.
perficient .com/digitaltransformation/2015/06/01/microservices- and- its-

benefits/ (zitiert auf S. 30).

[KWB03] A. G. Kleppe, J. B. Warmer, W. Bast. MDA explained: the model driven archi-
tecture: practice and promise. Addison-Wesley Professional, 2003 (zitiert auf

S. 17).

[LF] J. Lewis, M. Fowler. Microservices. url: http://martinfowler.com/articles/

microservices.html (zitiert auf S. 30).

[MM+01] J. Miller, J. Mukerji et al. „Model driven architecture (mda)“. In: Object Manage-
ment Group, Draft Specification ormsc/2001-07-01 (2001) (zitiert auf S. 17).

[MM+03] J. Miller, J. Mukerji et al. MDA Guide Version 1.0. 1. 2003 (zitiert auf S. 17).

[Mye78] G. J. Myers. „A controlled experiment in program testing and code walkth-

roughs/inspections“. In: Communications of the ACM 21.9 (1978), S. 760–768

(zitiert auf S. 40).

[New15] S. Newman. Building Microservices. O’Reilly Media, Inc., 2015 (zitiert auf S. 30).

[Pro15] T. Procházka. Model-Driven Development of REST APIs. 2015 (zitiert auf S. 39).

[RCK09] C. K. Roy, J. R. Cordy, R. Koschke. „Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach“. In: Science of Computer
Programming 74.7 (2009), S. 470–495 (zitiert auf S. 40).

[Roy70] W.W. Royce. „Managing the development of large software systems“. In: pro-
ceedings of IEEE WESCON. Bd. 26. 8. Los Angeles. 1970, S. 328–338 (zitiert auf
S. 24, 25).

[Sah] V. Sahni. Best Practices for Designing a Pragmatic RESTful API. Enchant. url:
http://www.vinaysahni.com/best-practices- for-a-pragmatic- restful-api

(zitiert auf S. 75, 76).

[Scr] Scrum Inc. The Scrum Framework - Scrum Inc. Scrum Inc. url: https://www.

scruminc.com/scrum-framework/ (zitiert auf S. 28).

[Sel03] B. Selic. „The pragmatics of model-driven development“. In: IEEE software 20.5
(2003), S. 19 (zitiert auf S. 17, 18).

[SRD14] M. Schmid, T. Rohloff, P. Duwe. „Musterlösungen und Best Practices für das

Design und die Realisierung von REST-Schnittstellen“. In: (2014) (zitiert auf

S. 75, 76).

107

http://blogs.perficient.com/digitaltransformation/2015/06/01/microservices-and-its-benefits/
http://blogs.perficient.com/digitaltransformation/2015/06/01/microservices-and-its-benefits/
http://blogs.perficient.com/digitaltransformation/2015/06/01/microservices-and-its-benefits/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
https://www.scruminc.com/scrum-framework/
https://www.scruminc.com/scrum-framework/

[Ste] G. Steinacker. Von Monolithen und Microservices - Informatik Aktuell. url:
https://www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-

und-microservices.html (zitiert auf S. 30).

[SVC06] T. Stahl, M. Voelter, K. Czarnecki. Model-driven software development: techno-
logy, engineering, management. John Wiley & Sons, 2006 (zitiert auf S. 31).

[The] The White House.WhiteHouse Api Standards. The White House. url: https:

//github.com/WhiteHouse/api-standards (zitiert auf S. 75, 76).

[Tur10] D.W. Turner III. „Qualitative interview design: A practical guide for novice

investigators“. In: The qualitative report 15.3 (2010), S. 754 (zitiert auf S. 83).

[Wid15] R. Wideberg. RESTful Services in an Enterprise Environment: A Comparative
Case Study of Specification Formats and HATEOAS. 2015 (zitiert auf S. 39).

[WL06] D. Waddington, P. Lardieri. „Model-Centric Software Development“. In:

COMPUTER-IEEE COMPUTER SOCIETY 39.2 (2006), S. 2 (zitiert auf S. 32).

[Wol] E. Wolf. Microservice-Architekturen nicht nur für agile Projekte - Informatik
Aktuell. url: https://www.informatik-aktuell.de/entwicklung/methoden/

microservice-architekturen-nicht-nur-fuer-agile-projekte.html (zitiert auf

S. 30).

[ZWN+06] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, M. A. Vouk. „On

the value of static analysis for fault detection in software“. In: IEEE transactions
on software engineering 32.4 (2006), S. 240–253 (zitiert auf S. 29).

Alle URLs wurden zuletzt am 07. 11. 2016 geprüft.

https://www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-und-microservices.html
https://www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-und-microservices.html
https://github.com/WhiteHouse/api-standards
https://github.com/WhiteHouse/api-standards
https://www.informatik-aktuell.de/entwicklung/methoden/microservice-architekturen-nicht-nur-fuer-agile-projekte.html
https://www.informatik-aktuell.de/entwicklung/methoden/microservice-architekturen-nicht-nur-fuer-agile-projekte.html

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu ha-

ben. Ich habe keine anderen als die angegebenen Quellen

benutzt und alle wörtlich oder sinngemäß aus anderen Wer-

ken übernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren

bisher Gegenstand eines anderen Prüfungsverfahrens. Ich

habe diese Arbeit bisher weder teilweise noch vollständig

veröffentlicht. Das elektronische Exemplar stimmt mit allen

eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Ziel
	1.3 Vorgehen
	1.4 Aufbau der Arbeit

	2 Grundlagen
	2.1 Modellierung
	2.2 Programmierschnittstellen
	2.3 REST
	2.4 Scrum
	2.5 Statische Codeanalyse
	2.6 Microservice-Architektur
	2.7 Modellgetriebene Softwareentwicklung
	2.8 Modellbasierte Ansätze für REST-Schnittstellen

	3 Verwandte Arbeiten
	3.1 Modellgetriebene Erstellung von REST-Diensten
	3.2 Vergleich von Werkzeugen und Entwicklungsansätzen

	4 Projekt beim Industriepartner
	4.1 Der Industriepartner
	4.2 Der Service
	4.3 Nutzung von Beschreibungssprachen für REST APIs

	5 Methoden und Tools für den Entwurf von REST-APIs
	5.1 Methoden und Tools des IST-Zustands
	5.2 Restful Api Modeling Language
	5.3 Akademischer Ansatz
	5.4 Erstellung der Modell-Artefakte

	6 Methoden und Tools für die Realisierung von REST-APIs
	6.1 Methoden und Tools des IST-Zustands
	6.2 Restful Api Modeling Language
	6.3 Akademischer Ansatz

	7 Vergleich der Ansätze
	7.1 Best-Practices: Entwurf von REST-Schnittstellen
	7.2 Evaluierung durch den Autor
	7.3 Befragung der Entwickler
	7.4 Ergebnisse der Befragung
	7.5 Untersuchung mittels statischer Codeanalysewerkzeuge
	7.6 Analyse und Zusammenfassung

	8 Zusammenfassung und Ausblick
	Abkürzungsverzeichnis
	Literaturverzeichnis

