Institut fiir Architektur von Anwendungssystemen
Universitat Stuttgart

Universitatsstrafie 38
D-70569 Stuttgart

Masterarbeit Nr. 104

Vergleich und Bewertung von
Methoden und Tools fiir den
Entwurf und die Realisierung von
REST APIs

Marcus Eisele

Studiengang;: Softwaretechnik

Priifer/in: Prof. Dr. Dr. h. c. Frank Leymann
Betreuer/in: Dipl.-Inf. Florian Haupt

Beginn am: 11. Mai 2016

Beendet am: 10. November 2016

CR-Nummer: D.2.2

Kurzfassung

REST-Schnittstellen haben sich die letzten Jahre in der Softwareindustrie etabliert. Abhéngig
von der eingesetzten Technologie gibt es viele Moglichkeiten eine REST-Schnittstelle zu
entwerfen und umzusetzen. Fiir die Unterstiitzung des Entwurfs und der Realisierung von
REST-Schnittstellen existiert ein modellgetriebener Ansatz mit akademischem Hintergrund.
Neben diesem akademischen, modellgetriebenen Ansatz existieren weitere Ansatze basierend
auf Beschreibungssprachen wie Swagger oder RAML, die bei Entwurf und Realisierung
unterstiitzen. Diese Arbeit vergleicht den eben beschriebenen akademischen Ansatz mit zwei
Ansatzen, welche beide jeweils eine der eben genannten Beschreibungssprachen nutzen.
Der auf Swagger-basierende Ansatz wird durch eine bestehende Softwareentwicklung eines
Industriepartners représentiert.

Der akademische modellgetriebene Ansatz und seine Werkzeuge werden mit den beiden an-
deren Ansitzen und deren Werkzeuge hinsichtlich ihrer Brauchbarkeit zum Entwurf und zur
Umsetzung von REST-Schnittstellen in einem Industrieunternehmen untersucht. Dieser Ver-
gleich der Entwurfs- und Realisierungsmethoden von REST-Schnittstellen wird exemplarisch
an einem agil entwickelten Dienst zur Abfrage von Sonderzielen durchgefiihrt.

Der Vergleich betrachtet die verschiedenen Arbeitsweisen der vorgestellten Ansatze, die
dabei enstehenden Artefakte und Modelle sowie den von ihnen erzeugten Quellcode. Fiir die
Durchfithrung des Vergleichs der verschiedenen Ansatze wurden Nachbauten des Dienstes
des Industriepartners fiir den akademischen Ansatz und den Ansatz unter Verwendung
von RAML erstellt. Diese Nachbauten dienen als Grundlage fiir die Betrachtung des Ent-
wicklungsprozesses, die Befragung der Entwickler sowie die Durchfithrung einer statischen
Codeanalyse.

Die Befragung zeigt, dass die befragten Entwickler des Industriepartners die ihnen neu
vorgestellten Ansétze im Allgemeinen nicht als bereit und lohnenswert fiir den Entwurf und
die Umsetzung von REST-Schnittstellen in der Praxis erachteten. Die beteiligten Entwickler
waren sich aber einig, dass modellgetriebenen Ansétze attraktive Moglichkeiten bieten.

Inhaltsverzeichnis

1 Einleitung
1.1 Motivation e
1.2 Ziel . . . e
1.3 Vorgehen
1.4 Aufbauder Arbeit

2 Grundlagen
2.1 Modellierung L
2.2 Programmierschnittstellen 00 0oL
23 REST
24 Scrum
2.5 Statische Codeanalyse
2.6 Microservice-Architektur L o Lo
2.7 Modellgetriebene Softwareentwicklung
2.8 Modellbasierte Ansétze fiir REST-Schnittstellen

3 Verwandte Arbeiten
3.1 Modellgetriebene Erstellung von REST-Diensten
3.2 Vergleich von Werkzeugen und Entwicklungsansatzen

4 Projekt beim Industriepartner
4.1 Der Industriepartner
42 DerService
43 Nutzung von Beschreibungssprachen fiir RESTAPIs

5 Methoden und Tools fir den Entwurf von REST-APIs
5.1 Methoden und Tools des IST-Zustands
5.2 Restful Api Modeling Language
5.3 Akademischer Ansatz
54 Erstellung der Modell-Artefakte

6 Methoden und Tools fiir die Realisierung von REST-APIs
6.1 Methoden und Tools des IST-Zustands
6.2 Restful Api Modeling Language

13
13
14
15
16

17
17
19
20
24
29
30
31
32

39
39
40

41
41
46
51

53
53
57
61
64

6.3 Akademischer Ansatz 73

7 Vergleich der Ansitze 75
7.1 Best-Practices: Entwurf von REST-Schnittstellen 75
7.2 Evaluierung durchden Autor L L. 78
7.3 Befragung der Entwickler o oL 82
7.4 Ergebnisse der Befragungo 88
7.5 Untersuchung mittels statischer Codeanalysewerkzeuge 91
7.6 Analyse und Zusammenfassung Lo 96
8 Zusammenfassung und Ausblick 929
Abkirzungsverzeichnis 103
Literaturverzeichnis 105

Abbildungsverzeichnis

1.1

2.1
2.2
2.3

4.1
4.2

4.3
4.4
4.5

5.1

5.2

5.3
54
5.5
5.6

7.1
7.2
7.3
7.4
7.5
7.6

Gantt-Diagramm: Durchfithrung der Arbeit.

Das spatere Wasserfall-Modell
Ablauf Referenz-Scrumprozess
Metamodelle des akademischen Ansatzes

Unterschiedliche Zeitpunkte des Entwurfs von REST-APIs
Entwicklung des Fertigstellungsgrades von REST-APIs in unterschiedlichen
Projekttypen
Logischer Aufbau: Dienst des Industriepartners
Layout der REST-Schnittstelle
Nutzung von Swagger beim Industriepartner

Workflow: Entwurf und Realisierung von REST-Schnittstellen beim Indus-
triepartner
Nachzeichnung: Whiteboard Entwurf der Personenschnittstelle im freien
Format
Beispiel fiir RestRessource-Diagramm des akademischen Ansatzes
Screenshot: Grafische Ansicht des Akademischen Ansatzes
Screenshot: Darstellung der Parameter beim akademischen Ansatz
Screenshot: Schemadarstellung beim akademischen Ansatz

Layout der Person REST-Schnittstelle
Ablauf der Entwicklerbefragung
Akademischer Ansatz: Layout Personenschnittstelle
Layout der Information REST-Schnittstelle
Auswertung der Punktevergabe der Entwickler.
SonarQube-Ergebnisse

15

25
28
36

45

46
48
50
51

54

55
63
65
66
66

85
85
87
87
90
93

Tabellenverzeichnis

2.1
2.2

4.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Idempotenz und Sicherheit der HTTP-Methoden
Umsetzung des CRUD-Musters mittels REST

Abweichungen von Referenzscrum

Best-Practices in der Literatur

AHP: Abstraktionsgrad
AHP: Verstandlichkeit .
AHP: Genauigkeit . . .
AHP: Prognose
AHP: Aufwand
Endgiiltige AHP-Matrix

23
23

42

76
80
80
30
81
81
82

Verzeichnis der Listings

2.1
2.2

4.1

4.2

4.3
4.4

5.1
5.2
5.3
54
5.5

6.1
6.2
6.3

7.1

Beispiel fiir Swagger-Definition
Beispiel fir RAML-Definition in Version 0.8 . .

Beispielhafte HTTP-Anfrage an ‘/information/v1/pois’ fiir einen Bereich in

der Stuttgarter Innenstadt

Beispielhafte HTTP-Anfrage an ‘/information/v1/pois/radius’ fir einen 3

km grofien Bereich in der Stuttgarter Innenstadt
Beispielhafte HTTP-Antwort des Dienstes . . .
Beispiel fiir Error-Objekt im JSON-Format . . .

Beispiel fiir JSON-Format: Liste von Personen .

Beispiel fiir Definition des Collection/Collection-Item Musters in RAML . .

Beispiel fiir die Verwendung des Collection/Collection-Item Muster in RAML

Beispiel fur die Verwendung von JSON-Schema in RAML
Beispiel fur die Verwendung der Types-Definitionen in RAML 1.0

Beispielhafte Ressource-Klasse in SpringBoot . .

Beispielhafte Methode mit Parametern in SpringBoot

Beispielhafte Datenklasse

Beispielhafte HTTP-Anfrage mit Accept-Header

33
35

49

49
50
50

58
60

62
62

70
71
71

77

11

1 Einleitung

Dieses Kapitel dient der Einfithrung in diese Arbeit. Es besteht aus der Motivation (Ab-
schnitt 1.1), welche den Grund fiir diese Arbeit beschreibt, gefolgt von einem Abschnitt der
auf das Ziel der Arbeit (Abschnitt 1.2), inklusive der Aufgabenbeschreibung und der Abgren-
zung, eingeht. Darauf folgt ein Abschnitt (Abschnitt 1.3) der sich mit dem methodischen
Vorgehen der Durchfithrung der Arbeit beschaftigt. Abgeschlossen wird dieses Kapitel durch
einen Uberblick (Abschnitt 1.4) iiber den Aufbau dieser Arbeit.

1.1 Motivation

In den letzten Jahren hat sich REpresentational State Transfer (REST) als Architekturstil fiir
Webservices etabliert und wird heute weitreichend eingesetzt. Viele REST-Schnittstellen
besitzen nicht die von Roy Fielding in seiner Dissertation [Fie00] geforderten Eigenschaf-
ten. Resultat dieser fehlenden Eigenschaften der REST-Schnittstellen sind Systeme, welche
die Vorteile des REST-Stils nicht vollstandig ausschopfen und dadurch viele der erhofften
Eigenschaften vermissen lassen.

Neben der Missachtung des Architekturstils gibt es bei dem Entwurf und der Umsetzung
von REST-Webservices oft dhnliche und sich wiederholende Arbeitsabldufe. Designent-
scheidungen fiir REST-Schnittstellen, wie das Definieren von Ressourcen, werden oftmals
anhand formloser Entwiirfe an Whiteboards oder mit Hilfe anderer Medien entworfene
Skizzen, getroffen. Diese Skizzen dienen zum einen als Grundlage der spéateren Implementie-
rung, oft aber auch als Teil der Dokumentation. Die Umsetzung ist dabei, bei ausreichender
Vollstandigkeit der Skizzen, relativ trivial und bietet einen kleinen Handlungs- und Entschei-
dungsfreiraum. Unvollstandige Entwiirfe fithren dabei oftmals zu Unterschieden zwischen
gewolltem Verhalten der Schnittstelle und tatsachlicher Umsetzung. Um Missachtungen
des Architekturstils beim Entwurf und Fehler wahrend der Umsetzung zu vermeiden wére
es von Vorteil, wenn diese Entwurfe bereits ein definiertes Format besif3en, welches al-
le Unklarheiten bereits im Voraus beseitigt und die zu implementierenden Schnittstellen
vollstandig und ohne Mehrdeutigkeiten spezifiziert.

Neben der Einhaltung des Architekturstils ist die Aufgabe eines Entwicklers natiirlich auch
die Implementierung der entworfenen REST-Schnittstelle. Diese Implementierung ist, falls
der Entwickler mit den eingesetzten Technologien bereits vertraut ist, eine oftmals sehr

13

1 Einleitung

repetitive Tatigkeit. Nach der Fertigstellung der Implementierung hat der Entwickler oftmals
auch die Aufgabe das im Entwurf entstandene Dokument, als Teil der Dokumentation, auf
aktuellem Stand zu halten. Sind also Anderungen an der Implementierung nétig, so miissen
diese in das bereits bestehende Dokument ibernommen werden. Durch den weitverbrei-
teten Einsatz von agilen und iterativen Methoden zur Softwareentwicklung werden diese
Anderungen in vielen Projekten immer haufiger.

Mittlerweile gibt es bereits einige Methoden und Werkzeuge aus dem akademischen und
industriellen Umfeld, welche sich mit der Modellierung und spéteren Erstellung von REST-
Schnittstellen beschaftigen. Die Wahl zwischen diesen Methode und den entsprechenden
Werkzeugen ist nicht einfach und es gibt bisher keinen bewahrten Standard.

1.2 Ziel

Das konkrete Ziel dieser Arbeit ist es unterschiedliche Methoden fiir den Entwurf und die
Realisierung von REST-Schnittstellen zu untersuchen und zu vergleichen. Bei den unter-
schiedlichen Methoden sollen neben den reinen Entwurfs- und Implementierungsvorgangen
auch die Auswirkungen auf bestehende Entwicklungsprozesse untersucht werden.

Neben einer unabhédngigen Untersuchung soll der Vergleich der Methoden auch anhand
einer Microservice-Implementierung eines Industriepartners durchgefithrt werden. Diese
Microservice-Implementierung soll dazu mit im Zuge dieser Arbeit erstellten Nachbauten
unter Einsatz der unterschiedlichen Methoden verglichen werden.

Der Vergleich der Nachbauten und der bereitgestellten Implementierung soll eine Einschét-
zung iiber die realistischen Einsatzmdglichkeiten der verschiedenen Methoden fiir den
Entwurf und die Realisierung von REST-Schnittstellen geben. Neben der Einschiatzung
kann nach dem Vergleich auch eine Qualitdtsaussage iiber die zur Verfiigung gestellte
REST-Schnittstelle des Industriepartners gegeben werden.

Abgrenzung

Dieser Abschnitt grenzt das Thema der vorliegenden Arbeit ein und zeigt Themen, welche
den Umfang dieser Arbeit ibersteigen.

Volistandige Implementierung

Der vom Industriepartner zur Verfiigung gestellte Microservice erfiillt neben den funktio-
nalen Anforderungen auch sehr viele nicht funktionale Anforderungen. Zu diesen nicht

14

1.3 Vorgehen

Orientierung & Planung 1
Literaturrecherche |
Prazisierung der Fragestellung |
Entwurf Evaluierungsprozess |

Einarbeit in die drei Ansatze
Erhebung der Daten bei Industriepartner |
Erstellung der notwendigen Modelle |
Vergleich der Ansatze |

Erstellen Gliederung 1
Formulierung der Rohfassung 1
Eigene Uberarbeitung 1
Review durch Betreuer |
Einarbeiten von Feedback 1
Druck / Abgabe 1
Mai Juni Juli Auéust September Oktober November Dezember

Abbildung 1.1: Gantt-Diagramm: Durchfithrung der Arbeit

funktionalen Anforderungen gehéren besondere Protokollierungseinstellungen, Qualitétsan-
forderungen und zusétzliche Funktionen fiir beispielsweise das spatere Monitoring wahrend
des Produktivbetriebs.

Der Fokus dieser Arbeit liegt auf der REST-Schnittstelle des Dienstes, deshalb erfiillen die
erstellten Nachbauten lediglich den funktionalen Umfang der vom Industriepartner bereit
gestellten Implementierung. Sonstige Anforderungen sind eher kosmetischer Natur, werden
aber, sofern sie mit niedrigem Aufwand umsetzbar sind, umgesetzt.

Protokoll von REST-Schnittstellen

Fielding weiflt in seiner Dissertation mehrmals darauf hin, dass prinzipiell der REST-
Architekturstil unabhangig von eingesetzten Protokollen ist [Fie00]. In der Praxis findet man
aufgrund der vorhanden Infrastruktur, wie HTTP-Server, HTTP-Bibliotheken und HTTP-
Clients aber fast ausschlielich REST-Schnittstellen auf Basis von HTTP. Diese Arbeit wird
sich daher ausschliefilich mit der Erstellung von REST-Schnittstellen auf Basis von HTTP
und anderen Technologien des Internets beschréanken.

1.3 Vorgehen

Die Arbeit wurde vom 11.05.2016 bis zum 10.11.2016 durchgefiihrt. Abbildung 1.1 zeigt eine
genaue Ubersicht iiber den Verlauf der Arbeit. Das Projekt lasst sich grob in drei Phasen
einteilen: Einarbeitung, Umsetzung und Ergebnis.

15

1 Einleitung

Einarbeitung

Haupttatigkeit der Einarbeitung war es das Projekt zu organisieren und die Literaturre-
cherche durchzufiihren. Die Literaturrecherche beschiftigte sich hauptsachlich mit dem
Identifizieren von Methoden zum Vergleich unterschiedlicher REST-Schnittstellen und Ent-
wicklungsmethodiken. Die Ergebnisse der Literaturrecherche finden sich zum einem im
Vergleich der verschiedenen Ansétze und zum anderem in Kapitel 3 bei den verwandten
Arbeiten wieder.

Umsetzung

Die Phase der Umsetzung bestand aus dem Erstellen der Nachbauten, der Evaluierung des
Entwicklungsprozesses und dem Vergleich der Methoden. Der Vergleich der Methoden
geschah parallel durch mehrere Aktivitaten. Eine der Aktivititen war die Befragung der
Entwickler durch einen speziell dafiir angefertigten Fragebogen. Weitere Aktivititen waren
das Zusammenfassen der eigenen Erfahrungen mit den verschiedenen Ansatzen, sowie
eine Untersuchung der verschiedenen Ansitze mittels statischer Codeanalyse. Dem allen
ging noch eine Zeit der Nachforschungen voraus um eine solide Grundlage auf Basis der
gesichteten Literatur zu haben. Auf genauere Details zur Umsetzung wird in Kapitel 5
eingegangen.

Ergebnis

Die letzte Phase des Projekts beinhaltet zum einem die Evaluierung der in der Umsetzung
entstandenen Nachbauten, sowie das Verfassen der schriftlichen Ausarbeitung. Zusétzlich
wurde dem Industriepartner in dieser Phase auch Riickmeldung tiber die Qualitit der zur
Verfiigung gestellten REST-Schnittstelle gegeben.

1.4 Aufbau der Arbeit

Die Arbeit ist wie folgt aufgebaut: Das zweite Kapitel behandelt notwendige Grundlagen um
die Arbeit zu verstehen. Kapitel 3 gibt einen Uberblick iiber die verwandten Arbeiten in den
verschiedenen betroffenen Themengebieten dieser Arbeit. Das vierte Kapitel beschreibt den
Industriepartner, welcher die Schnittstelle zum Vergleich zur Verfiigung stellt, sowie das
Projektumfeld in welchem die Masterarbeit stattfindet. Kapitel 5 und Kapitel 6 beschaftigen
sich mit Methoden und Tools fiir den Entwurf bzw. fiir die Realisierung. Der Vergleich
der vorgestellten Ansétze wird in Kapitel 7 durchgefiihrt. In Kapitel 8 wird die Arbeit
zusammengefasst wiedergegeben und durch einen Ausblick abgeschlossen.

16

2 Grundlagen

Dieses Kapitel behandelt Themen, die wichtig fiir das Verstandnis der vorliegenden Arbeit
sind. Es soll die Grundlagen fiir die weiteren Kapitel legen und dem Leser mit Hilfe von Infor-
mationen aus Fachliteratur und von den offiziellen Webseiten der eingesetzten Werkzeuge
und Methodiken die notwendigen Grundlagen vermitteln.

Das Kapitel teilt sich in mehrere Abschnitte auf, wobei jeder speziell auf ein Thema eingeht.
In Abschnitt 2.1 wird auf das Thema Modellierung eingegangen. Im Anschluss daran werden
in Abschnitt 2.2 die Grundlagen fiir Programmierschnittstellen erlautert. Abschnitt 2.3
fihrt den REST-Architekturstil ein und erklart diesen. Das als Basis fiir den Vergleich des
Scrum-Prozesses dienende Referenz-Scrum wird in Abschnitt 2.4 vorgestellt.

Die restlichen Abschnitte gehen auf die weiteren Themen der Arbeit ein und erldutern
Microservice-Architektur (in Abschnitt 2.6), modellgetriebene Softwareentwicklung (in Ab-
schnitt 2.7) und die fiir die Arbeit wichtigen modellbasierten Ansatze fiir REST-Schnittstellen
(Abschnitt 2.8).

2.1 Modellierung

Das Wort “Modell” ist nicht eindeutig definiert und so auch schwer einzugrenzen. Einige gén-
gige Definitionen beschreiben wichtige Eigenschaften welche einem Modell zugeschrieben
werden. Als “Eine in einer klar definierten Sprache geschriebene Beschreibung eines (einem
Teil eines) Systems. Aquivalent zu einer Spezifikation.” beschreiben Kleppe und andere ihre
Definition eines Modells (iibersetzt aus [KWB03]). Eine weitere Definition stammt vom Ar-
chitecture Board ORMSC, welches ein Modell als eine Reprasentation eines Teils der Funktion,
der Struktur und/oder des Verhaltens eines Systems beschreibt [MM+01]. Miller und andere
beschreiben in ihrem MDA Guide ein Modell als eine Beschreibung oder Spezifikation des
Systems und seiner Umgebung fiir einen bestimmten Zweck [MM+03].

Wenn man diese drei Definitionen zusammennimmt vermitteln sie ein ganz gutes Bild, was
man sich unter einem Modell vorstellen kann. Modelle beschreiben also ein System oder
einen Teil davon und nutzen eine fest definierte Sprache um Funktion, Struktur und/oder
Verhalten zu beschreiben. Weitere Eigenschaften, welche ein Modell besitzen muss werden
von Selic in “The Pragmatics of Model-Driven Development” [Sel03] genannt:

17

2 Grundlagen

Abstrakt: Ein Modell ist immer eine reduzierte Darstellung des dargestellten Systems.
Durch das Entfernen oder Verstecken von fiir die Ansicht irrelevanten Details wird das
Wesentliche sichtbarer. In den immer funktionsfidhigeren Softwaresystemen der heuti-
gen Zeit ist Abstraktion der einzige Weg um mit der aus der gestiegenen Funktionalitat
resultierenden Komplexitat umzugehen.

Verstandlich: Es reicht nicht nur Details zu abstrahieren, die verbleibenden Details des
Modells miissen auch in einer verstandlichen Form vorliegen (z.B. einer Notation).

Genau: Ein Modell muss eine der Realitét entsprechende Widerspiegelung der darzustel-
lenden Eigenschaften sein.

Prognostisch: Ein Modell muss einsetzbar sein um korrekte Aussagen iiber die Eigen-
schaften von Interesse zu treffen. Ein Modell kann fiir unterschiedliche Aussagen
unterschiedlich gut geeignet sein, Selic [Sel03] nennt hier als Beispiel ein mathemati-
sches Modell einer Briicke im Vergleich zu einem Modell gebaut aus Holz - das eine
kann gut fiir die Berechnung der Tragkraft genutzt werden, das andere ist dafiir eher
schlecht geeignet, ist dafiir aber gut geeignet um das Aussehen zu beurteilen.

Nicht zu aufwendig: Das Modell muss signifikant billiger herzustellen und zu analysieren
sein als das zu modellierende System.

Ein Modell hat nicht den Anspruch, dass das reprasentierte System tatsdchlich existiert. Das
beschriebene System kann rein theoretischer Natur sein, oder auch noch nicht existieren. Bei
diesen noch nicht existierenden oder auch theoretischen Modellen spricht man von prdskrip-
tiven, vorschreibenden, Modellen. Weit bekannte Beispiele dafiir sind Bauplane, welche vor
dem Bau eines Hauses entstehen oder auch eine Aufbauanleitung fiir ein Mobelstiick. Wird
ein Modell auf Basis eines bereits existierenden Systems erstellt, so spricht man von einem
deskriptiven, also beschreibenden, Modell. Eine Karte ist zum Beispiel ein gutes Beispiel fiir
ein eindeutig deskriptives Modell einer Stadkt.

Oft ist die Trennung zwischen diesen beiden Modellarten aber nicht méglich, da fiir eine
genaue Bestimmung immer die Entstehungsgeschichte bekannt sein muss. Wenn man
beispielsweise einen Kabelplan fiir ein Stockwerk findet, so weifs man nicht ob es sich
dabei um ein praskriptives Modell oder ein deskriptives Modell handelt. Wurde er zur
zur Planung der Verkabelung erstellt, so wére er ein praskriptives Modell, wenn er aber
als Dokumentation der bereits verlegten Kabel erstellt wurde, so handelt es sich um ein
eindeutig deskriptives Modell. Wie man sieht ist eine Aussage ohne die Herkunftsgeschichte
zu kennen nicht immer mdglich.

18

2.2 Programmierschnittstellen

2.2 Programmierschnittstellen

Das Wort Schnittstelle ist in der Informatik sehr vieldeutig. Es gibt viele unterschiedli-
che Themen welche mit diesem Sammelbegriff in Verbindung gebracht werden. Neben
Hardwareschnittstellen, Benutzerschnittstellen und Schnittstellen in der objektorientierten
Programmierung gibt es noch viele weitere Arten von Schnittstellen. Sie alle haben gemein-
sam, dass sie den Zugriff auf Ressourcen abstrahieren und die spezifischere Implementierung
gegeniiber dem Nutzer der Schnittstelle verstecken. Im Englischen wird fiir Schnittstellen
das Wort Interface benutzt, wir wollen in der Arbeit auf eine besondere Art der Schnittstellen
eingehen, auf die sogenannten Application Programming Interfaces (APIs). Sie beschreiben
eine Menge von Methodendefinitionen, Protokollen und Werkzeuge welche zusammen
genutzt werden konnen um auf Programme und Anwendungen zuzugreifen.

Wenn ein Programm Anwendern oder andere Programmen seine Funktionalitét zur Verfii-
gung stellt, so wird es meist als Dienst (engl. service) bezeichnet. Um die Funktionalitit zur
Verfiigung zu stellen wird eine Schnittstelle zwischen dem anbietendem Dienst und dem
Nutzer des Dienstes bendtigt.

Bei der Entwicklung von Schnittstellen gibt es in der Regel einen Kontrakt, welcher verbind-
lich die Schnittstelle beschreibt. Ein Schnittstellenanbieter verpflichtet sich seine Schnittstelle
entsprechend des Kontrakts implementiert zu haben. Mit der Schnittstellendefinition bzw.
Beschreibung kann ein Nutzer eines Dienstes sich so sicher sein, dass der Zugriff auf die
Schnittstelle wie im Kontrakt beschrieben ablauft.

Bei der Erstellung der beschriebenen Kontrakte und Schnittstellen gibt es zwei Arten von
Ansitzen. Der erste Ansatz wird top-down-Ansatz genannt. Er beschreibt die Entwick-
lungsrichtung ausgehend vom Abstraktionslevel, von oben nach unten bedeutet hier dem-
entsprechend, dass zuerst das abstraktere - also der Kontrakt - entwickelt wird. Bei einer
top-down-Entwicklung wird also zuerst der Kontrakt geschrieben, bevor mit der eigentlichen
Entwicklung begonnen wird. Dieser Ansatz kommt vor allem bei vertraglich gesicherten
Entwicklungen, unabhangigen Entwicklungen von Server- und Nutzeranwendungen und
Ablésung von bereits existierenden Schnittstellen zum Einsatz.

Beim zweiten Ansatz spricht man von einer bottom-up-Entwicklung. Hier wird die Implemen-
tierung durchgefithrt und wahrend der Entwicklung werden Funktionen der Anwendung
fiir andere Anwender offen gelegt indem eine Schnittstelle bereitgestellt wird. Ein gangiger
Ansatz ist hierbei, dass der wihrend der Implementierung entstehende Code genutzt wird
um einen Kontrakt fiir die Nutzer der Schnittstelle zu generieren. Oftmals gibt es bei diesem
Ansatz die Moglichkeit den Kontrakt durch Verwendung von Annotationen im Quellcode
genauer zu machen.

REST-Schnittstellen bilden einen wichtigen Kern der Arbeit. Sie gehoren zu den Webschnitt-
stellen auf Basis des HTTP-Protokolls. Webschnittstellen haben gemeinsam, dass sie einen
oder mehrere offentlich verfiiggbare Endpunkte besitzen. Sie iibertragen in den meisten

19

2 Grundlagen

Féllen ihre Informationen mittels Extensible Markup Language (XML) oder JavaScript Ob-
ject Notation (JSON). Weitere bekannte HTTP-Schnittstellenarten sind SOAP, XML-RPC
und viele weitere. Auf den REST-Architekturstil wird im nachsten Abschnitt noch genauer
eingegangen werden.

2.3 REST

Bei REST handelt es sich um einen Architekturstil fiir verteilte Hypermedia Systeme. Er
wurde von Roy Fielding in seiner Dissertation mit dem Titel “Architectural Styles and
the Design of Network-based Software Architectures” definiert [Fie00]. Die Definition
umfasst folgende Menge von architektonischen Regeln (constraints), welche, wenn als Ganzes
eingehalten, positive Eigenschaften fiir die zu entwickelnde Anwendung mit sich bringen.

Eine dieser Regeln ist der Client-Server-Stil, er soll genutzt werden um eine Trennung von
Belangen (Separation of concerns) zu erreichen. Der Client-Server-Stil ist ein Konzept in
verteilten Anwendungen fiir die Aufgabenverteilung innerhalb eines Netzwerks. Dabei
existieren die Rollen Server, welcher Dienste oder Ressourcen anbietet, und Client, welcher
die angebotenen Dienste oder Ressourcen nutzt.

Die Regel der Zustandslosigkeit (statelessness) bedeutet, dass der Zustand einer Anwendung
vollstandig auf Seite des Clients gehalten werden muss und, sofern notwendig, bei jeder
Anfrage mit iibertragen werden muss. Durch diese Regel ist ein Client nun nicht mehr an
einen Server gebunden, da jede Anfrage mit den beinhalteten Daten verarbeitet werden kann.
Die Zustandslosigkeit fithrt zu den positiven Eigenschaften Sichtbarkeit, Zuverlassigkeit
und Skalierbarkeit. Was man unter diesen Eigenschaften versteht und wie diese genau durch
die Zustandslosigkeit erreicht werden ist in den folgenden Absatzen beschrieben.

Unter Sichtbarkeit versteht man die Moglichkeit die Kommunikation zwischen Servern und
Clienten zu iiberwachen und zu vermitteln. Diese Eigenschaft wird spater in diesem Kapitel
nochmals aufgegriffen, wenn es um die einheitliche Schnittstelle geht. Die Zustandslosigkeit
ermoglicht es bei Fehlern in der Kommunikation lediglich den fehlgeschlagen oder betroffe-
nen Aufruf selbst betrachten zu miissen. Der Aufruf beinhaltet alle zur Analyse notwendigen
Informationen.

Die eben beschriebene Eigenschaft, dass eine Nachricht alle notwendigen Information
enthalt verbessert auch die Zuverléssigkeit des gesamten Systems bei teilweisen Ausfallen.
Beim Betrieb mit mehreren Servern ist es so moglich, im Falle eines Serverausfalls, die
selbe Anfrage an gleichwertigen anderen Server (z.B. einen gespiegelten Server) zu stellen.
Aufgrund der vollstindigen Informationen in der Anfrage, kann der Server diese dann
entgegennehmen und beantworten.

20

2.3 REST

Diese Vermittlung kann auch gezielt zur Skalierbarkeit von Anwendungen beitragen. Ser-
veranwendungen welche den Zustand auf dem Server speichern bendtigen mehr Speicher,
da sie Informationen iiber mehrere Anfragen hinweg speichern miissen. Diese sogenannten
Sessions konnen bei einer zustandslosen Kommunikation schneller wieder freigegeben
werden.

Eine weitere Regel ist die Cache-Regel, welche der Implementierung auferlegt, dass fiir alle
Antworten explizit oder implizit definiert sein muss ob diese zwischenspeichert werden
konnen. Diese Einschriankung fithrt dazu, dass Anfragen bereits auf ihrem Weg durch das
Netzwerk aus einem Zwischenspeicher beantwortet werden kénnen. Eine Anwendung wird
durch diese Einschriankung also effizienter, besser skalierend und die durch den Anwender
wahrgenommene Latenz sinkt, da viele Anfragen erst gar nicht an den eigentlichen Server
gestellt werden miissen.

Der Architekturstil fordert zusatzliche eine einheitliche Schnittstelle zwischen den einzelnen
Komponenten. Die Umsetzung dieser Einschrankung fithrt zu einer Vereinfachung der
Architektur des Gesamtsystems und einer Verbesserung der Sichtbarkeit von Interaktionen.
REST ist durch vier Schnittstellen Einschrankungen definiert:

Identifikation von Ressourcen: In Anfragen werden einzelne Ressourcen adressiert, dies
geschieht in webbasierten REST-Schnittstellen durch den Einsatz von Uniform Resour-
ce Identifiers (URIs). Konzeptionell sind dabei Ressourcen und Darstellungen strikt
von einander getrennt. Eine Ressource kann beispielsweise eine Darstellung in XML,
JSON oder Hypertext Markup Language (HTML) anbieten.

Selbstbeschreibende Nachrichten: Jede Nachricht enthélt genug Informationen um her-
auszufinden wie sie verarbeitet werden kann. Die Wahl des passenden Parsers fiir die
Antwort kann beispielsweise durch die Angabe eines Content-type-Header angegeben
werden.

Manipulation von Ressourcen durch Darstellungen (representations): Wenn ein Cli-
ent eine Darstellung einer Ressource inklusive der Metadaten hat, so kann er mit
diesen Informationen diese Ressource andern und léschen.

Hypermedia: Ein Client macht Zustandsiibergange nur tiber Aktionen welche dynamisch
durch Antworten, z.B. in Form von Hypermedia, vom Server identifizert wurden.
Auf3er den fixen Einstiegspunkten trifft der Client keine Annahmen iiber verfiigbare
Aktionen irgendwelcher Ressourcen, auf3er der in den bisherigen Antworten des Server
enthaltenen. Dieses Prinzip wird auch als “Hypermedia as the Engine of Application
State (HATEOAS)” bezeichnet.

Die Layered System-Einschrankung zwingt dazu, dass Komponenten lediglich mit ihren
angrenzenden Systemschichten interagieren kénnen und keine weiteren Systeme auflerhalb
davon kennen. Sogenannte Intermediédre Systeme (Intermediaries) dienen so zur Limite-
rung der Komplexitit von Systemen und zur Kapslung der Komponenten. Dariiberhinaus

21

2 Grundlagen

ermdglichen sie verbesserte Skalierbarkeit, beispielsweise mit dem Einsatz von Lastvertei-
lungssystemen (Load-Balancers).

Allamaraju fasst in seinem Buch “RESTful Web Services Cookbook” [All10] treffend zu-
sammen, dass REST ein Architekturstil fiir vernetzte Anwendungen ist, welcher die oben
genannten Einschrankungen nutzt und zusammen mit dem HTTP-Protokoll und der Infra-
struktur des Internets eine attraktive Moglichkeit darstellt Dienste zu implementieren.

Umsetzung der REST-Prinzipien

Bei der Umsetzung einer HTTP-REST-Schnittstelle wird die Anforderung an einen einheit-
lichen Zugriff mittels einer einheitlichen Schnittstelle durch die Verwendung des HTTP
Protokolls erfiillt. HTTP bietet dabei fiir jede Ressource wohldefinierten Methoden. Die
meist genutzten Methoden sind: POST, GET, PUT, PATCH und DELETE. Die weiteren Me-
thoden OPTIONS und HEAD sind fiir die Beschreibung von REST-Schnittstellen weniger
relevant, weil sie eher im Hintergrund genutzt werden um Anforderungen wie Caching
umzusetzen.

Um Ressourcen zu verwenden werden die benétigten Operationen auf die Methoden des Pro-
tokolls ibersetzt. Dabei miissen immer auch die Eigenheiten des unterliegenden Protokolls
beachtet werden. Betrachtet man die Methodendefinition der HT TP-Protokollspezifikation
[FGM+99] genauer, so fallt auf dass diese den oben genannten Methoden unterschiedliche
Eigenschaften zuweist.

Die zwei wichtigsten Eigenschaften sind dabei Sicherheit und Idempotenz der Methoden.
Sichere Methoden stellen den Anspruch, dass ein Aufruf ihrer keine Anderungen an der
Ressource zur Folge hat. Dieses Verhalten ist Grundvoraussetzung fiir viele unterliegende
Protokollvorteile wie z.B. fiir das Caching von Ressourcen. Zu den sicheren Methoden zéhlen
GET, HEAD und OPTIONS. An dieser Stelle sei angemerkt, dass dies nicht vom Protokoll
erzwungen werden kann. Ein Dienst kann schlecht implementiert sein, so dass sichere
Operationen dennoch Nebeneffekte erzielen. Dieses Verhalten kann aber im Zusammenspiel
mit anderen Komponenten zu Problemen fithren, wenn diese von einer korrekten Umsetzung
des HTTP-Standards ausgehen und sich auf die Sicherheit der Methoden verlassen. Die
andere Eigenschaft ist die Idempotenz. Idempotente Methoden sind Methoden, welche
mehrmals aufgerufen werden kénnen und dennoch dasselbe Ergebnis zur Folge haben.
Zu den idempotenten Methoden zahlen OPTIONS, GET, HEAD, PUT, DELETE und PATCH.
Abbildung Tabelle 2.1 zeigt eine Ubersicht tiber die Sicherheit und Idempotenz der HTTP-
Methoden.

Basierend auf den Gegebenheiten des HTTP-Protokolls ist die folgende Verwendung der
Methoden gegeben. Der RFC2616 [FGM+99] gibt die Anweisung nach der Identifizierung
und dem Entwurf von Ressourcen die GET-Methode zu nutzen um eine Repréasentation der
Ressource anzufordern. Die PUT-Methode wird genutzt um Anderungen an einer Ressource

22

2.3 REST

Tabelle 2.1: Idempotenz und Sicherheit der HTTP-Methoden nach Allamaraju [All10]

HTTP-Methode | Idempotenz | Sicherheit
OPTIONS ja ja
GET ja ja
HEAD ja ja
PUT ja nein
DELETE ja nein
POST nein nein
PATCH nein nein

Tabelle 2.2: Umsetzung des CRUD-Musters mittels REST

CRUD Operation | HTTP Methode Anmerkung

CREATE POST

READ GET

UPDATE PUT Implementierung muss idempotent sein!
DELETE DELETE

vorzunehmen. Um potentiell nicht idempotente und unsichere Operationen auszufiithren soll
die POST-Methode genutzt werden. Dariiberhinaus wird die Verwendung von passenden
HTTP-Headern, um Anfrage und Antwort zu beschreiben, definiert.

Das “RESTful Web Services Cookbook” [All10] liefert ein Beispiel fir eine mogliche korrekte
Verwendung des HTTP-Protokolls. Das Beispiel ist eine Umsetzung des gangigen Musters
“Erstellen”, “Lesen”, “Andern”“Loschen” (zu Englisch: “create”, “read”, “update” and “delete” -
CRUD) auf die Methoden des HTTP-Protokolls. Eine mogliche Umsetzung ist in Abbildung
Tabelle 2.2 dargestellt. Wie man erkennen kann wird die abstrakte Operation “Lesen” mittels
der GET-Methode, die “Erstellen” Operation mittels der POST-Methode, die “Andern” Ope-
ration mittels der PUT-Methode und die “Léschen”Operation mittels der DELETE-Methode.
Durch diese allgemein anerkannte Mapping konnen viele Schnittstellen bereits weitgehend
ohne die Verwendung einer zusatzlichen Dokumentation benutzt werden.

Uber diese Art der Umsetzung von REST-Diensten sind sich die meisten Entwickler und
Experten einig, bei anderen Themen haben sich aber zwei Lager gebildet. Auf der einen Seite
befinden sich die Puristen, welche ihre REST-Webdienste streng nach den Vorgaben von
Roy Fielding erstellen. Im Kontrast dazu gibt es einige Pragmatiker, welche diese Prinzipien
nicht voll umsetzen oder bewusst aufweichen um ihre Schnittstellen praktischer zu erstellen.
Durch diesen Konflikt kommt es dazu dass viele, wenn nicht sogar die meisten, als REST-
API betitelten Schnittstellen die Prinzipien von REST nicht beherzigen oder nicht voll
umsetzen.

23

2 Grundlagen

Fielding beschreibt diesen Missstand in seinem Blogbeitrag “REST APIs must be hypertext-
driven” [Fie08], in dem er anklagt wie oft vor allem die Anforderung von HATEOAS verletzt
wird und dennoch die jeweiligen Schnittstellen als REST-Schnittstellen bezeichnet werden.
Er fordert dazu auf, dass diese Schnittstellen doch ein anderes Buzzword als REST fiir ihre
Bezeichnung nutzen sollen. In der Praxis wird dieser Bitte nicht nachgegangen - deshalb
wird auch in dieser Arbeit der aufgeweichte Begriff der REST-Schnittstellen als Maf3stab
genommen.

2.4 Scrum

Agile Vorgehensmodelle sind geschichtlich aus Problemen der klassischen Projektdurch-
fihrung im Softwareumfeld entstanden. Lange Zeit wurden Softwareprojekte dhnlich zu
anderen Ingenieursprojekten mit einer langen initialen Planungsphase und anschlieflender
Umsetzungsphase durchgefiihrt. Beispielhafte Projekte dafiir sind der Bau eines Schiffes, die
Konstruktion einer Briicke oder der Bau eines Hauses. Dieses lineare nicht inkrementelle
Vorgehensmodell wird im Allgemeinen auch Wasserfallmodell genannt. Urspriinglich wurde
diese Art von Vorgehensmodell, wenn auch nicht unter dem Namen “Wasserfallmodell”,
das erste Mal von Royce in seiner Arbeit “Managing the Development of large Software
Systems” [Roy70] vorgestellt.

Der Name “Wasserfallmodell” kommt von der linearen Natur und der Tatsache, dass die
Phasenergebnisse als Basis fiir die jeweils nachsttiefere Phase dienen. Ahnlich wie bei einem
Wasserfall ist kein (Informations-)Fluss entgegen der eigentlichen Richtung méglich. Ab-
bildung 2.1 zeigt die einzelnen Phasen des Wasserfallmodells. Projekte bestehen in diesem
Modell aus den klar definierten Phasen: Systemanalyse, Softwarespezifikation, Architek-
turentwurf, Feinentwurf und Codierung, Integration und Test, Installation und Abnahme
und zuletzt der Betrieb und Wartung. Jede Phase wird hierbei von einem sogenannten
Meilenstein beendet, wessen Kriterien und Ergebnisdokumente fiir die Abnahme der Phase
erfiilllt oder erstellt sein miissen. Es eignet sich besonders fiir Projekte, bei denen bereits
in der Planungsphase sehr prazise Anforderungen, Leistungen und Abldufe beschrieben
werden konnen.

In der Softwareentwicklung kam es bei linearen nicht-agilen Projekten immer wieder zu
Problemen: In einer Studie [Kom12] mit 457 Befragten, davon 375 aus agilen Projekten und
82 aus Projekten mit klassischem Projektmanagement, hat Komus zeigen konnen, dass die
Anwender klassischer, nicht agiler, Methoden den Erfolg ihre Projekte signifikant schlechter
einschétzen.

Scheinbar lasst sich die Durchfithrung eines Softwareprojektes im Vergleich zu klassischen
Ingenieurstatigkeiten weniger vorrausschauend planen. In der Literatur wird Software
oftmals als “ausfiihrbares Wissen” beschrieben. Hier sieht Armour auch eins der Probleme

24

2.4 Scrum

Abbildung 2.1: Das spitere Wasserfallmodell nach Royce [Roy70]

bei der Anwendung des klassischen Projektmanagements auf Softwareprojekten. Er weist
in seinem Buch “The Laws of Software Process” [Arm03] daraufhin, dass eine Entwicklung
von solch “ausfithrbarem Wissen” vor allem eine auf Entdeckung basierte Tatigkeit ist.
Solche Entdeckungs- und Forschungsaktivititen lassen sich nicht genauso planen wie sich
wiederholende Aufgaben oder Routineaufgaben. Seine Empfehlung ist deshalb rigoros alle
definierbaren Téatigkeiten durchzuplanen sich aber bewusst zu sein, dass dies nicht fiir alle
Tatigkeiten in einem Softwareprojekt moglich ist. Deshalb halt er es fiir notwendig gezielt
Moglichkeiten einzuplanen auf diese Unsicherheiten zu reagieren.

Agile Vorgehensmodelle haben ihren Ursprung in den 90er Jahren. Die Verwendung des
Wortes agil fiir die Bezeichnung der Art der Softwareentwicklung wurde auf einer Zu-
sammenkunft in Utah geprégt, das Treffen auf dem auch das bekannte “Agile Manifesto”
[BBV+01] entstanden ist. Es fasst bis heute die unterliegenden Prinzipien von agiler Soft-

25

2 Grundlagen

wareentwicklung zusammen. Die Teilnehmer dieser Versammlung hielten fest, dass obwohl
sie alle folgenden Werte fiir wichtig erachten dennoch einige fiir wichtiger empfinden. Sie
empfinden:

Individuen und Interaktionen wichtiger als Prozesse und Werkzeuge,
Funktionierende Software wichtiger als umfassende Dokumentation,
Zusammenarbeit mit dem Kunden wichtiger als Vertragsverhandlung,
Reagieren auf Veranderung wichtiger als das Befolgen eines Plans.

Eins der bekanntesten agilen Vorgehensmodelle ist Scrum. Wie alle agilen Vorgehensmodelle,
so verfolgt auch Scrum diese eben genannten Prinzipien. Scrum hat seine Wurzeln in der
Softwareentwicklung und wird deshalb dort sehr haufig eingesetzt - ist es ist aber prinzipiell
in jeder Projektart einsetzbar. In der Softwareentwicklung ist Scrum eins der am haufigst
eingesetzten agilen Vorgehensmodelle.

Bei Scrum handelt es sich um ein iteratives und inkrementelles Vorgehensmodell. Das
bedeutet, dass bei Scrum zum einem durch immer wiederkehrendes EinflieBen von Feedback
das Produkt verbessert wird und zum anderem das Produkt schrittweise entwickelt wird.
Eine Iteration in Scrum nennt sich Sprint, die Lange eines Sprints ist in der Regel zwischen
zwei und vier Wochen. Jeder dieser Sprints muss aber ein funktionsfihiges, wenn auch
funktionsarmes, Produkt zur Folge haben.

Sutherland und Schwaber erklaren auf ihrer Scrum Guides Webseite' wie sie sich genau das
Vorgehensmodell vorstellen - dieser Guide kann wohl als Definition von Scrum in seiner
reinsten Form angesehen werden. Schwaber hat in einem Interview gesagt, dass Scrum viele
Schwichen und Unzulanglichkeiten in den Produkt- und Systementwicklungspraktiken von
Unternehmen aufzeigt, und es ihnen ermoglicht diese auszumerzen Seiner Ansicht nach
passiert dieses Ausmerzen in der Praxis selten, viel zu oft modifizieren Unternehmen Scrum
um diese Schwichen und Unzulénglichkeiten aufzunehmen [Jai].

Es gibt aber auch Unternehmen, die nach einer erfolgreichen Einfithrung von Scrum ent-
decken, dass Scrum nicht zu 100%ig auf ihre Bediirfnisse passt. Sie modifizieren Scrum
dann um ihre Abldufe zu optimieren. Grund fiir solche geplanten Modifikationen kénnen
beispielsweise bestehende Hierarchien oder bestehende Arbeitsablaufe sein. Wie Diebold et
al. erkannt haben, ist es schwer zu sagen, wann und ob man verschiedene Aspekte von Scrum
anpassen sollte [DOWZ15]. Um die Vergleichbarkeit zu sichern und die Ergebnisse dieser
Arbeit moglichst allgemein anwendbar zu machen, wird ein Teil dieser Arbeit eine kurze
Betrachtung des beim Industriepartner praktizierten Scrums sein. Diese genaue Betrachtung
findet man in Kapitel 4. Folgend wird das Referenzvorgehensmodell nach Sutherland und
Schwaber [Jee], welches Grundlage fiir den spateren Vergleich ist, kurz beschrieben.

'Scrum Guides: http://scrumguides.org/

26

2.4 Scrum

Scrum basiert auf Empirie, was bedeutet, dass Wissen aus Erfahrung gewonnen wird. Bereits
Bekanntes dient dabei als Basis fiir Entscheidungen. Scrum nutzt einen iterative, inkre-
mentellen Ansatz um Sicherheit in Vorhersagen zukiinftiger Termine und Ergebnisse zu
optimieren. Die drei wichtigsten Sdulen von Scrum sind Transparenz, Uberprifung und
Anpassung. Scrum versteht unter Transparenz, dass regelméflig Fortschritt und Hindernisse
sichtbar festgehalten werden. Die Uberpriifung bezieht sich nicht nur auf das gefertigte
Produkt, sondern auch auf den Enstehungsprozess welcher bei Scrum auch regelmaflig
beurteilt werden soll. Die Anpassung ist der agile Anteil in Scrum: Statt einer einmaligen
Festlegung aller Anforderungen, Vorgehen und Pliane werden diese kontinuierlich detailliert
und angepasst. Grofle Aufgaben werden so gezielt in kleiner Schritte zerlegt.

Scrum kennt drei Rollen, welche das Scrum Team ausmachen: Den Scrum Master (SM), den
Product Owner (PO) und das Entwicklungsteam. Ein Scrum Team ist selbstorganisierend und
interdisziplinar, die Teammitglieder entscheiden also zusammen selbst wie sie ihre Arbeit
erledigen und verfiigen iiber alle Kompetenzen um diese zu erledigen.

Die einzelnen Rollen haben sehr unterschiedliche Aufgaben. Der SM sorgt im Wesentlichen
dafiir, dass die Regeln von Scrum eingehalten werden. Er ist fiir das Verstandnis und die
Durchfithrung von Scrum im Team verantwortlich. Der PO ist eine einzelne Person und
definiert die Aufgaben des Entwicklungsteams. Er ist auflerdem fiir die Arbeit des Entwick-
lungsteams verantwortlich. Seine Aufgabe ist die Wertmaximierung des Produkts und die
Priorisierung und Definition der zu erledigenden Aufgaben verantwortlich. Das Entwick-
lungsteam besteht aus Entwicklern - einen anderen Titel gibt es in Scrum nicht. Es gibt auch
keine weitere Unterteilung zwischen verschiedenen Aufgabenbereichen. Das Entwicklungs-
team ist fiir die Umsetzung der vom PO definierten Aufgaben verantwortlich, dabei darf es
selbst entscheiden auf welche Weise es die Aufgaben umsetzen will. Neben Rollen gibt in
Scrum folgende Artefakte: Product Backlog, Sprint Backlog und das Inkrement. Das Product
Backlog ist eine Liste, welche alle mdglichen Features, Funktionalitdten, Verbesserungen
und Fehlerbehebungen fiir zukiinftige Releases beinhaltet. Es ist ein nie vollstdndiges, dyna-
misches Dokument und kann deshalb vom PO jederzeit ergénzt, umsortiert und bereinigt
werden. Product Backlog Eintrage sind nach Prioritat sortiert und enthalten zusétzlich eine
Beschreibung, eine Schiatzung iiber den Aufwand und einen Wert. Das Sprint Backlog ist
das Equivalent fiir die Dauer des Sprints. Es enthilt eine Teilmenge der Product Backlog
Eintrage, welche im Sprint umgesetzt werden. Es ist eine Prognose des Entwicklungsteams,
was sie in dem jeweiligem Sprint leisten wollen - also welche Funktionalitat das néchste
Inkrement beinhalten wird.

Das Inkrement ist das Ergebnis eines Sprints und setzt sich aus den Teileintragen der fertig-
gestellten Product Backlog-Eintrdge zusammen. Das Inkrement muss am Ende eines Sprintes
einen “Done”-Zustand erreicht haben. Es muss also in einem verwendbaren Zustand sein
und die vorher definierten Abnahmekriterien miissen erfiillt worden sein. Es muss auch
auslieferbar sein, selbst wenn der PO eine Auslieferung noch gar nicht plant.

27

2 Grundlagen

g &

IS
) Team p
Team “
Kunde Product B?cklog . SM
e Grooming Daily
Einfluss von Endnutzern, d s) Standup
Kunden, Teams und Team PO
anderen Stakeholdern SM
Sprint Review
[)
O
@a "
Team “
. SM
4o Sprint Retrospektive 1-4 Wochen
PO e Y
1 - “
e @ 00 2 °0
D o
D o »
Team
SM
Potentiell auslieferbares Inkrementelles
Product Sprint Sprint Produktinkrement Produktrelease

Backlog Backlog Planning

Abbildung 2.2: Ablauf Referenz-Scrumprozess nach Scrum Inc. [Scr]

Abbildung 2.2 zeigt den Ablauf eines typischen Scrumprozesses. Die Abbildung soll genutzt
werden um die Ereignisse im Scrumprozess zu erklaren. Das Vorgehensmodell ist ein sich
wiederholender Prozess, welcher auf dem Product Backlog beruht. Der Product Owner ist
wie bereits beschrieben fiir den Inhalt und die Priorisierung des Product Backlogs verant-
wortlich (siehe Punkt 1). Grundlage fiir Eintrage in das Product Backlog konnen Einfliisse
verschiedener beteiligter des Projektes sein, wie zum Beispiel Endanwender, Kunden, das
Team selbst oder andere Personen.

In den nachsten Schritten entsteht das Sprint Backlog (sieche Punkt 2) im Sprint Planning
(Schritt 3). Das Team entscheidet im Sprint Planning zusammen mit dem Product Owner,
was nachsten Sprint umgesetzt werden wird. Dann beginnt der Sprint, welcher 1-4 Wochen
dauert. Wahrend des Sprints gibt es jeden Tag das Daily Standup (siehe Punkt 4). Es ist Teil
des tiglichen Arbeitens und dient dem Team sich auszutauschen. Nach dem Daily Standup
sollten im ganzen Team die gestrigen und tagesaktuellen Tatigkeiten und Hindernisse aller
Entwickler bekannt sein. Teil des Sprints sind auch die Punkte 5-7, Product Backlog Groom-
ing, das Sprint Review und die Sprint Retrospective. Bei dem Product Backlog Grooming
handelt es sich um eine Aktivitat bei der PO Feedback zum Product Backlog einholen kann
um die Product Backlog Eintrége bereits vor dem néchsten Sprint Planning ausreichend
zu zerlegen. Dies ermdglicht, dass die Product Backlog Eintrage definiert genug sind um
in den néchsten Sprint mit aufgenommen zu werden. Das Sprint Review wird genutzt um
festzustellen welche Product Backlog Items im Sprint umgesetzt worden sind. Neben der

28

2.5 Statische Codeanalyse

reinen Abnahme durch den PO wird hier auch die Auswirkung des Sprints auf den Release
Plan diskutiert. Die letzte Aktivitat ist die Sprint Retrospective, welche der langfristigen
Verbesserung der Prozesse dient. In der Sprint Retrospective findet das Team gemeinsam
Erfolge und Misserfolge des Sprints und arbeitet durch Disskusionen mégliche Verbesserun-
gen heraus. Die Verbesserungen sollen dann in das Team einflieflen, indem wahrend des
Meetings fiir jede Verbesserung ein Verantwortlicher bestimmt wird, der die Umsetzung
der Verbesserung vorantreibt und iiberwacht. Das Ergebnis des Sprints ist ein potentiell
auslieferbares Produktinkrement (siehe Punkt 8), welches der PO, falls er will, ausrollen
kann (siehe Punkt 9).

2.5 Statische Codeanalyse

Oftmals werden Programme durch verschiedene Verfahren getestet und validiert. In der
Praxis sind dabei in der Entwicklung die Modultests (sog. Unit-Tests) die Art der am haufigst
ausgefiihrten Tests. Bei geeigneter Testabdeckung stellen sie korrekte Ausgaben der geteste-
ten Module sicher und schiitzen vor dem versehentlichen Einfiigen von neuen Fehlern. Neu
eingefithrte Logik kann aber auch zu verminderter Wartbarkeit fithren und so zukiinftige
Anderungen erschweren. Im Projektumfeld hat sich fiir dieses Phanomen der Begriff tech-
nische Schuld (technical debt) eingebiirgert. Sie beschreibt in welchem Umfang Arbeit an
der bisherigen Implementierung notwendig ist um sie von den angesammelten Méangeln
zu befreien. Wahrend der Entwicklung einer Software muss oft zwischen Entwicklungsge-
schwindigkeit und technischer Schuld abgewogen werden. Ein weiterer haufig genutzter
Begriff in diesem Zusammenhang sind die “Code Smells”. Code Smells sind dabei ein von
Kent Beck geprégter und von Martin Fowler in seinem Buch “Refactoring: Improving the
Design of Existing Code” [Fow09] bekannt gemachter Begriff, den Fowler dort als “sichtbare
Symptome im Quellcode, welche auf tiefere Probleme hinweisen” beschreibt.

Ein Mittel um einen Uberblick tiber die technische Schuld eines Projektes zu erhalten ist die
statische Codeanalyse. Im Unterschied zu dynamischen Analysen, welche das zu testende
Programm wéhrend der Ausfithrung untersuchen, untersuchen statischer Codeanalysen
lediglich den vorliegenden Programmgquellcode. Der Begriff statische Codeanalyse wird
weitlaufig fiir werkzeugunterstiitzte Tatigkeiten verwendet, auch wenn man Téatigkeiten wie
das Code Review ebenso in diese Kategorie einordnen konnte. Statische Analyseverfahren
werden in der Softwarentwicklung haufig eingesetzt um haufige Fehler zu erkennen und zu
beseitigen.

Zheng und andere haben in ihrer Arbeit “On the value of static analysis for fault detection in
software” [ZWN+06] anhand eines Beispiels aufgezeigt, dass eine statische Codeanalyse nicht
alle Fehler finden kann und findet und dariiber hinaus auch viele sogenannte false positives,
also Treffer welche eigentlich keine sind, finden. Sie konnten jedoch zeigen, dass statische
Codeanalyse einen guten Beitrag zum Auffinden und Identifizieren von Fehlern leisten und

29

2 Grundlagen

Ergebnisse der Analyse ein guter Indikator - auch zum Vergleich verschiedener Module -
sind. Aus diesem Grund wird diese Arbeit statische Codeanalysen einsetzen um eine weitere,
zusétzlich zum Feedback der Entwickler, Moglichkeit zum Vergleich der unterschiedlichen
Loésungen zu haben.

2.6 Microservice-Architektur

Sam Newman beschreibt Microservices als kleine, miteinander kommunizierende, autonome
Dienste [New15]. Microservices sollen laut ihm klein sein und sich darauf beschranken
nur eine Funktion gut umzusetzen (’Focused on Doing One Thing Well’). Auf die Frage nach
dem tatsachlichen Umfang bleibt er vage. Er schreibt allerdings, dass Entwickler generell
ein gutes Gefiihl fiir die Antwort auf die Frage ob ein Dienst zu grof} ist - er rat daher
einen Dienst nach Moglichkeit solange zu verfeinern und einzugrenzen, bis dieses Gefiihl
verschwindet. Eine weitere gefiihlgetriebene Entscheidungsméglichkeit kommt von Jon
Faves von RealEstate.com.au?, welcher einen Microservice als einen Dienst beschreibt,
welcher in zwei Wochen neu geschrieben werden kann. Bei Microservices spricht man also
wenn man vom Umfang spricht meist von der fachlichen Funktionalitat.

Fowler und Lewis haben eine noch genauer Definition des Begriffes “Microservice”. Sie
definieren einen Microservice kurzgefasst als einen Ansatz um eine einzelne Anwendung
als eine Menge von kleinen Diensten zu implementieren, welche alle in eigenen Prozessen
laufen und mittels leichtgewichtigen Mechanismen (meistens iiber HTTP Schnittstellen)
miteinander kommunzieren. Diese kleinen Dienste sind unabhéingig von einander von
vollautomatischen Deploymentwerkzeugen ausrollbar. Die Dienste benétigen ein Minimum
an zentraler Verwaltung und konnen sehr unterschiedliche Technologien einsetzen (z.B.
unterschiedliche Programmiersprachen oder verschiedene Speichertechnologien) [FL].

Die Microservice-Architektur bietet einige allgemein anerkannte [Bad; Gol; Kum; LF; New15;
Ste; Wol] Vor- und Nachteile wenn man sie mit der klassischen Architektur grofy gewachsener
Systeme vergleicht. Ein Microservice ist vom Umfang her, wie der Name sagt, eher klein
und kann daher, im Vergleich zu einem grofieren System, mit geringerem Aufwand ersetzt
werden. Die kleine Grof3e bietet aber auflerdem noch den Vorteil, dass der Dienst von neuen
Entwicklern schneller zu verstehen ist und generell kleinere Teams eingesetzt werden konnen.
Das Einsetzen von kleineren Teams kann ggf. den Kommunikationsaufwand verringern.

Durch die strikte Trennung der Funktionalitaten in mehrere Dienste wird auch verhindert,
dass sich mit der Zeit Beziehungen zwischen Klassen und Funktionalititen einschleichen.
Da die Kommunikation zwischen den Diensten nur iiber die bereitgestellten Schnittstellen
geschieht kann ohne bewusste Schnittstellenanpassung eine solche Anderung gar nicht erst

RealEstate: http://RealEstate.com.au

30

http://RealEstate.com.au

2.7 Modellgetriebene Softwareentwicklung

durchgefiihrt werden. Langfristig ist es deshalb so einfacher eine nachhaltige Architektur
aufrecht zu erhalten. Ein weiterer Vorteil der Aufteilung ist, dass jeder Dienst theoretisch
mit einem anderem Technologie-Stack umgesetzt werden konnte. Durch diese Freiheit in der
Wahl der Technologie, kann man fiir jede Funktionalitat das richtige Werkzeug nutzen.

Fir den Betrieb bieten die Microservices auch den Vorteil, dass eine Microservice-Architektur
robuster sein kann als eine Architektur mit einem grof3en Dienst. Fehler und Abstiirze in
einer Komponente wirken sich nicht unbedingt auf alle anderen Dienste aus. Beispielsweise
betrifft ein Ausfall einer Login-Komponente nicht unbedingt bereits eingeloggte Nutzer.
Diese konnten in diesem einem Fall die eigentliche Funktion der Dienste weiter nutzen.

Neben den genannten Vorteilen gibt es auch einige Nachteile. Bei Microservices versteckt
sich die Komplexitat in der Verbindung zwischen den Diensten anstatt in den Diensten
selber, sie verschwindet also nicht. Auflerdem ist das Deployen und Testen von verteilten
Anwendungen in der Regel schwieriger als bei einer einzelnen Anwendung, beispielsweise
ist es einfacher eine WAR-Datei zu installieren als eine Microservice-Architektur aufzusetzen
und zu starten. Eine weitere Schwierigkeit ist, dass durch die benoétigten Aufrufe anderer
Dienste zusétzliche Latenzen bei der Bearbeitung von Anfragen entstehen konnen.

Die Microservice-Architektur scheint sehr vielversprechend zu sein. In den letzten Jahren gab
es einige interessante und sehr erfolgreiche Umsetzungen, wie zum Beispiel die Microservice-
Architekturen von Netflix?, Spotify* oder Amazon®.

2.7 Modellgetriebene Softwareentwicklung

Modellgetriebene Softwareentwicklung (MDSD) ist ein Ansatz in der Softwareentwicklung
um automatisch, auf Grundlage von formalen Modellen, lauffdhige Software zu erzeugen.
Stahl und andere haben in ihrem Buch “Model-Driven Software Development” [SVC06] die
modellgetriebene Softwareentwicklung als einen Ansatz beschrieben der die Modelle nicht
nur als Dokumentation ansieht. Im Gegensatz zur klassichen Programmierung stellen sie
Modelle auf eine Ebene mit dem Quellcode, da ihre Implementierung generiert wird. Im Buch
wird auflerdem die modellgetriebene Softwareentwicklung als ein Werkzeug mit erheblichem
Potential und Vorteilen beschrieben. Sie gehen sehr ausfiihrlich auf die Grundlagen, wie
verschiedene Konzepte und verschiedenen Klassen der MDSD ein. Im Anschluss beschreiben
sie dort ausfiihrlich doménenspezifische Modellierungssprachen und zeigen wie man diese
erstellt, verwendet und aus ihnen Code erzeugen kann. An dieser Stelle gehen sie auch
auf Modeltransformationstechniken ein und wie die Entwickler mit den entstehenden

*Netflix: https://www.netflix.com/
“Spotify: https://www.spotify.com/
> Amazon: https://www.amazon.com

31

2 Grundlagen

Artefakten in der Versionierung und beim Testen umgehen konnen. Sie widmen aufierdem
ein ganzes Kapitel dem MDSD aus Sicht des Managements und beschreiben verschiedene
Strategien um den MDSD-Ansatzes in einem Unternehmen oder in einem Projekt erfolgreich
einzufiihren.

Als Vorteile der MDSD nennen sie eine, durch Automatisierung gewonnene, Erhéhung
der Geschwindigkeit in der Entwicklung. Auflerdem fiihrt der Einsatz von automatisier-
ten Transformationen und formal-definierten Modellierungssprachen zu einer erhéhten
Softwarequalitat. Nach der Einfithrung von MDSD lassen sich die erstellten Architekturen,
Modelle und Transformationen fiir weitere Projekte und Vorhaben einsetzen und fordern
damit einen héheren Grad an Wiederverwendbarkeit und Wiederverwendung. Durch die
Einfihrung einer abstrakteren Sicht lassen sich komplexe Systeme besser beherrschen,
oft ermoglichen abstraktere Modelle auch das Beheben von Fehlern mehrerer Module an
einer zentralen Stelle. Durch all diese Vorteile und Moglichkeiten ist MDSD eine produktive
Umgebung und ein Bindeglied zwischen den Feldern: Technologie, Ingenieurskunst und
Management.

Neben dem Begriftf MDSD muss aber an dieser Stelle noch ein weiterer eingefithrt werden.
Waddington und Lardieri pragen den Begriff “Model-Centric Software Development” [WL06].
Sie beschreiben diesen Ansatz als noch weitreichender als MDSD, da er im Gegensatz zu
MDSD nicht Artefakte aus Modellen erstellt, sondern gezielt in jeder Phase eines Projektes
doménenspezifische Sprachen einsetzt um automatisch Teile der Implementierung zu erzeu-
gen. Der Vorteil dieses Ansatzes ist es, dass die Modelle und die tatsachliche Implementierung
nicht auseinanderlaufen, sprich Konflikte zwischen Modell und Implementierung enstehen,
konnen. Zusatzlich miissen die erzeugten Artefakte auch nicht in die Versionierung ein-
gepflegt werden und sind immer aktuell. Im Zuge einer ausfiithrlichen Literaturrecherche
wurde klar, dass viele Autoren, wenn sie MDSD anwenden, dhnliche Ziele verfolgen. Die
Anwender von MDSD versuchen in der Praxis, aufgrund der gerade erwahnten Vorteil, auch
ihre Modelle als Grundlage fiir generierte Implementierungsartefakte zu nutzen. Somit ist
der Ubergang zwischen diesen Begriffen sehr flieBend. Diese Arbeit verfolgt wenn sie von
MDSD spricht auch den Ansatz aus Modellen Teile der Implementierung automatisch zu
generieren.

2.8 Modellbasierte Ansatze fur REST-Schnittstellen

Fiir viele verschiedene Einsatzgebiete gibt es doméanenspezifische Modellierungssprachen.
Dies ist fiir die Erstellung und Beschreibung von REST-Schnittstellen nicht anders. Dieser
Abschnitt soll auf die Sprachen Swagger und RAML eingehen und dariiber hinaus noch den
akademischen Ansatz, welcher in dieser Arbeit ebenso evaluiert wird, vorstellen.

32

2.8 Modellbasierte Ansatze fiir REST-Schnittstellen

Listing 2.1 Beispiel fiir Swagger-Definition

swagger: "2.0"
info:
version: "1.0"
title: "Hello World API"

paths:
/hello/{user}:
get:
description: Returns a greeting to the user!
parameters:
- name: user
in: path
type: string
required: true
description: The name of the user to greet.
responses:
200:
description: Returns the greeting.
schema:
type: string
400:

description: Invalid characters in "user" were provided.

2.8.1 Swagger

Bei Swagger handelt es sich um eine Beschreibungssprache fiir REST-Schnittstellen. Fiir
Swagger gibt es mehrere Formate, Swagger kann mittels JSON und YAML® definiert wer-
den.

Swagger verfolgt einen deskriptiven Ansatz fiir die Beschreibung von REST-Schnittstellen.
Eine bestehende Swagger-Definition ermdglicht es zum einen Clients auf die beschriebene
Schnittstellen zuzugreifen ohne deren exakte Implementierung zu kennen. Der Zugriff auf die
Schnittstelle wird fiir viele Programmiersprachen dahingehend unterstiitzt, dass auf Basis von
den Swagger-Definitionen passender Client- und Servercode generiert werden kann. Neben
der Codegenerierung werden Entwickler durch Schnittstellendokumentationen unterstiitzt,
welche auf Basis der Swagger-Beschreibungen generiert werden konnen. Swagger ist fiir
Menschen und maschinell lesbar. Ein Beispiel fiir eine Swaggerdefinition ist in Listing 2.1
abgebildet.

®YAML - vereinfachte Auszeichnungssprache: http://www.yaml.org

33

http://www.yaml.org

2 Grundlagen

2.8.2 RAML

Bei der Restful Api Modeling Language (RAML)’ handelt es sich um eine auf YAML basie-
rende Spezifikationssprache fiir das Modellieren von REST-Schnittstellen.

RAML entstand aufgrund der Unzufriedenheit mit Swagger hinsichtlich der Moglichkeiten
im Schnittstellenentwurf. Uri Sarid (Mulesoft®) hat in einem Interview beschrieben, dass
seiner Ansicht nach Swagger zwar gut fiir die Dokumentation einer bereits implementieren
Schnittstelle nutzbar ist, aber fiir den Entwurf einer zu implementierenden Schnittstelle zu
wortreich und zu uniibersichtlich sei. Er ist der Meinung, dass fehlende Wiederverwendbar-
keit und der fehlende Einsatz von Mustern (Patterns) Swagger fiir den Design First-Ansatz
unpraktisch machen [Cag].

RAML zielt auf die Unterstiitzung wahrend allen Phasen der Entwicklung ab. Auf der offizel-
len Webseite wird explizit fiir die Unterstiitzung beim Entwurf, bei der Implementierung,
beim Testen, beim Dokumentieren, und beim Teilen der Spezifikation geworben.

Es gibt zwei unterschiedliche Versionen von RAML: Version 0.8 und Version 1.0. Die meisten
Werkzeuge fiir RAML 1.0 sind auch mit der alteren Version 0.8 kompatibel. Durch diese Ab-
wartskompatibilitat gibt es fiir RAML 0.8 tendenziell mehr Werkzeuge als fiir die Version 1.0.
Wenn es um die Beispiele und Tutorials geht, sieht es dhnlich aus. Aus diesen Griinden
wurde fiir den Vergleich die Version 0.8 genauer betrachtet.

Wihrend der Arbeit stellte sich heraus, dass der Einsatz von RAML 0.8 nicht nur Vorteile
brachte - RAML 1.0 hat einige neue Sprachelemente, welche die Arbeit mit der Sprache
komfortabler machen. Der Umfang dieser Nachteile wird im Abschnitt 5.2 genauer betrachtet.
Ein Beispiel fiir eine RAML-Definition in der Version 0.8 ist in Listing 2.2 zu sehen.

Akademisches Werkzeug

Die modellgetriebene Entwicklung von REST-Schnittstellen ist in der akademischen Welt
bisher ein recht junges Feld. Die meisten der Veroffentlichungen sind 2009 oder spater
erschienen. Als eine der verwandten Arbeiten ist sicher das von Haupt und anderen verof-
fentlichte Paper “A model-driven approach for REST compliant services” [HKLS14] zu sehen.
Sie beschreiben einen Ansatz zur modellgetriebenen Entwicklung von REST-Schnittstellen.
Dieser Ansatz umfasst neben mehreren Metamodellen fiir den Entwurf und die Realisierung
von REST-Schnittstellen, Diskussion iiber den Einsatz der Metamodelle und einem dazugeho-
rigen Beispiel auch eine prototypische Implementierung. Die prototypische Implementierung

umfasst einen grafischen Editor sowie eine vollstindige Werkzeugkette um aus dem Modell

"Restful Api Modeling Language: http://raml.org/
$Mulesoft: https://www.mulesoft.com/

34

http://raml.org/
https://www.mulesoft.com/

2.8 Modellbasierte Ansatze fiir REST-Schnittstellen

Listing 2.2 Beispiel fiir RAML-Definition in Version 0.8

#%RAML 0.8
title: Amazon simple storage API
version: 1
baseUri: https://{destinationBucket}.s3.amazonaws.com
/:
post:
description: The POST operation adds an object to a specified bucket using HTML
forms.
body:
application/x-www-form-urlencoded:
formParameters:
AWSAccessKeyId:
description: The AWS Access Key ID of the owner of the bucket who grants an
Anonymous user access for a request that satisfies the set of constraints
in the Policy.
type: string
acl:
description: Specifies an Amazon S3 access control list. If an invalid access
control list is specified, an error is generated.
type: string
file:
- type: string
description: Text content. The text content must be the last field in the
form.
- type: file
description: File to upload. The file must be the last field in the form.

ein lauffahiges Javaprojekt zu generieren. Das von Haupt und anderen beschriebene Konzept
besteht aus mehreren Abstraktionsebenen. Die Hierarchie der Modelle ist in Abbildung 2.3
dargestellt. In der Abbildung sieht man das Domadnenmodell, das zusammengesetzte Ressour-
cenmodell (“Composite Resource Model”), das atomare Ressourcenmodell, ein URL-Modell,
die Dienstbeschreibungen, das JAX-RS-Anwendungsmodell und den Java Code. Das Do-
manenmodell beschreibt dabei ein von REST unabhangiges fachliches Modell, welches auf
einem zur Anwendungsdoméne passenden Metamodell basiert. Das Domanenmodell wird
auf das zusammengesetzte Ressourcenmodell oder das atomare Ressourcenmodell abgebil-
det. Den Kern des Konzepts ist das atomare Ressourcenmodell, es erlaubt das Modellieren
einer Anwendung hinsichtlich ihrer Schnittstellen, ihrer Ressourcen und den Beziehungen
zwischen den Ressourcen. Das zusammengesetzte Ressourcenmodell fasst mehrere Res-
sourcen des atomaren Ressourcenmodells zusammen um dessen Komplexitét zu reduzieren.
Dieses atomare Ressourcenmodel kann zum einen in verschiedene Dienstbeschreibungen
transformiert werden, wie beispielsweise Web Application Description Language (WADL)
oder Swagger. Es dient aber auch zusammen mit dem URL-Modell als Grundlage fiir das
JAX-RS-Modell. Dabei definiert das URL-Modell unter welchen URIs die einzelnen Ressour-
cen des atomaren Ressourcenmodells erreichbar sind. Die letzte Modellart in dem Schaubild

35

2 Grundlagen

Abbildung 2.3: Metamodelle des akademischen Ansatzes nach Haupt et al. [HKLS14]

2.8 Modellbasierte Ansatze fiir REST-Schnittstellen

sind die Anwendungsmodelle, im Beispiel hier ein JAX-RS-Modell. Die Anwendungsmodelle
setzten die Ressourcen des atomaren Ressourcenmodells um und macht sie unter den im
URL-Modell definierten URIs erreichbar.

Im Zuge ihrer Arbeit haben Haupt und andere auch eine prototypische Implementierung
ihres Ansatzes erstellt, er ist eine der evaluierten Methoden dieser Arbeit. Auf genauere
Details dieses Prototypen wird im Hauptteil dieser Arbeit, in Abschnitt 5.3, eingegangen.

Das akademische Werkzeug unterstiitzt bei der Umsetzung des HATEOAS-Ansatzes. Dies
wird durch die strikte Trennung des atomaren Ressourcenmodells und des URL-Modells
erreicht. Durch die Umsetztung von HATEOAS erméglicht der akademische Ansatzu auch
erweiterte Interaktionsmuster wie das von Haupt und anderen in “A conversation based
approach for modeling REST APIs” [HLP15] vorgestellte konverstationsbasierende Interakti-
onsmuster oder das in “Service Composition for REST” [HFK+14] vorgestellte Konzept zur
Service-Komposition von REST-Diensten.

37

3 Verwandte Arbeiten

Dieses Kapitel widmet sich der Beschreibung der verwandten Arbeiten. Dabei wird zum einen
auf die Themengebiete der modellgetriebenen Erstellung von REST-Diensten (Abschnitt 3.1)
und zum anderen auf andere Arbeiten, welche mehrere Werkzeuge bzw. Entwicklungsansatze
miteinander vergleichen (Abschnitt 3.2), eingegangen.

3.1 Modellgetriebene Erstellung von REST-Diensten

Das Thema dieser Arbeit ist eine Evaluierung von mehreren modellgetriebenen Ansétzen fiir
Entwurf und Realisierung von REST-Schnittstellen. Es wurden bereits dhnliche Arbeiten wie
diese durchgefiihrt. Beispielsweise hat Robert Wideberg [Wid15] dhnlich zu dieser Arbeit eine
Fallstudie verschiedener Spezifikationsformate und HATEOAS in einem IT Unternehmen
durchgefiihrt. Er kam bei dem Vergleich zwischen Swagger, RAML und API Blueprint' zu der
Erkenntnis, dass alle Formate nicht die Anforderungen seines Vergleichs perfekt umsetzen,
aber Swagger und RAML die wohl am ehesten geeigneten Sprachen fiir den produktiven
Einsatz sind. Diese Arbeit fokussiert sich dabei sehr auf die Umsetzung von HATEOAS,
halt sich aber im Kontrast zu der vorliegenden Arbeit sehr zuriick wenn es darum geht die
konkrete umgesetzte Schnittstelle, sowie den Prozess in der Firma zu beschreiben. Eine
weitere dhnliche Arbeit verfasste Tomas Prochazka mit seiner Masterarbeit “Model-Driven
Development of REST APIs” [Pro15] in der er die Mglichkeit zur automatischen Erzeugung
von REST-Schnittstellen untersuchte. Im Unterschied zu dieser Arbeit untersuchte er zwar
ebenso RAML, Swagger und API Blueprint aber er baute auf Basis der drei Technologien
einen Codegenerator. Der Codegenerator unterstiitzt neben der Generierung des Layouts
ebenso die Anbindung an eine Datenbank und zusétzlich grundlegenden Verhaltensmuster.
Fiir die Generation setzte er dabei lediglich JavaScript-Projekte und JavaScript-Frameworks
ein, so dass seine Ergebnisse leider nicht Teil dieser Arbeit sein konnten. Die Entscheidung
gegen Java als Technologie fiel bei ihm bewusst, weil er der Meinung ist, dass faktisch
JavaScript Java als Technologie ablésen wird.

! API Blueprint: https://apiblueprint.org/

39

https://apiblueprint.org/

3 Verwandte Arbeiten

3.2 Vergleich von Werkzeugen und
Entwicklungsansatzen

Dieses Arbeit vergleicht mehrere Werkzeuge und Entwicklungsansétze miteinander. Vor
Bearbeitung dieser Arbeit wurden daher Arbeiten mit einem methodisch dhnlichem Schwer-
punkt gesucht. Auffallig war, dass Arbeiten mit solchen Vergleichen in vielen unterschiedli-
chen Umfeldern stattfinden. Vergleiche von Werkzeugen und Methoden werden z.B. in der
Erkennung von Codeduplikaten (Klonerkennung) [BKA+07; RCK09], beim Vergleich von
Softwaretest Strategien [BS87; KL95; Mye78] durchgefiihrt. Die meisten dieser Arbeiten sind
allerdings reine Werkzeugvergleiche.

Eines der Umfelder, welches sich mit Arbeiten dieser Art beschéftigt, ist die Klonerkennung.
Beispiele fiir solche Arbeiten sind z.B. die Arbeiten von Roy, Cordy und Koschke [RCK09]
und Bellon et al. [BKA+07]. Roy, Cordy und Koschke [RCK09] vergleichen in ihrer Arbeit
“Comparison and evaluation of code clone detection techniques and tools” verschiedene
Ansitze zur Klonerkennung. Sie gehen dabei systematisch vor, indem sie zuerst die ver-
schiedenen Ansatze kategorisieren und im Anschluss daran Vergleichskriterien inklusive
konkreter Vergleichsattribute definieren. Letztendlich geht es in einem spateren Kapitel
dann um den Vergleich der Performance der verschiedenen Ansétze. Bellon et al. [BKA+07]
gehen dabei dhnlich vor. Sie kategorisieren ebenso die verschiedenen Ansatze und definieren
im Anschluss daran Metriken, anhand von denen sie die verschiedenen Ansétze vergleichen
wollen. Um die Metriken zu erheben definieren sie ebenso einen Benchmark.

Ein weiteres Umfeld ist der Vergleich von verschiedenen Softwareteststrategien. Eine Arbeit,
die bei der Literaturrecherche aufgefallen ist, ist die Arbeit von Basili und Selby [BS87]
“Comparing the Effectiveness of Software Testing Strategies”. Sie ist dahingehend interessant,
da sie neben rein werkzeugbasierten Anséatzen auch den Ansatz “Code Reading” untersucht,
welcher eine rein menschliche Tatigkeit ist. Die Ansatze sind dennoch sehr gut vergleichbar,
da sie fiir ihren Vergleich nur ergebnisorientierte Metriken genutzt haben. Zum Beispiel
nutzen sie die Anzahl der gefundenen Fehler, welche auch fiir das Durchlesen des Quellcodes
anwendbar ist. Diese Arbeit zeigt, dass es bei sehr unterschiedlichen Methoden wichtig ist
sinnvolle gemeinsame Metriken zu finden.

40

4 Projekt beim Industriepartner

Dieses Kapitel beschreibt den aktuellen Zustand des Projektes des Industriepartners. Dieses
Kapitel soll dem Leser sowohl einen Uberblick tiber den untersuchten Dienst, als auch einen
Einblick in die agile Arbeitsweise des Unternehmens, sowie in die technische Details der
Implementierung geben. Der Leser soll nach Lesen des Kapitels die Moglichkeit haben, das
vorliegende Projekt mit anderen Projekten zu vergleichen und sich selbst ein Bild iiber die
Anwendbarkeit dieser Arbeit zu machen. Im Abschnitt 4.1 wird hierfiir das in der Firma
praktizierten Scrums mit dem in Abschnitt 2.4 beschriebenen Referenzscrum verglichen.
Auflerdem wird in Abschnitt 4.2 der untersuchte Service genauer beschrieben und auf seine
Eigenschaften eingegangen. Den Abschluss des Kapitels bildet Abschnitt 4.3 und beschreibt
in welchem Maf3e bereits jetzt MDSD-Techniken zum Einsatz kommen.

4.1 Der Industriepartner

Beim Industriepartner handelt es sich um ein Tochterunternehmen eines renommierten
Automobilherstellers, das ausschlief8lich fir Kunden innerhalb des Konzerns arbeitet. Das
Tochterunternehmen nimmt dabei die Rolle des konzerninternen IT-Dienstleisters ein. Es
ordnet sich in die Kategorie “Mittelstindisches Unternehmen mit zwischen 501 bis 2000 Mitar-
beitern” ein und hat mehrere Standorte in Deutschland, Indien, Malaysia und China.

Das Unternehmen beschaftigt sich mit den Geschaftsfeldern “Car IT and Mobility”, “Analytics”,
“Security”, “Shared Services”, “Innovation” und “IT Retail”. Diese Arbeit wurde im Bereich der
“Car IT and Mobility”, in einem Team mit einer Teamgrofle von 7 Mitglieder durchgefiihrt.
Das Team beschaftigte sich wahrend der Arbeit mit der Entwicklung mehrerer Java Backend
Dienste. Die Dienste dienen als Datenquelle fiir unterschiedliche Clients fiir verschiedene
Plattformen, welche von anderen Teams des Tochterunternehmens entwickelt werden.

Im Rahmen der Arbeit konnten unterschiedlichste Eindriicke iiber den Entwicklungsprozess
gewonnen werden. Dies geschah zum einem durch regelméfiige Teilnahme an den Scrum-
Meetings des Teams und auflerdem durch gezielte Riickfragen verschiedener beteiligten
Personen. Zur Durchfithrung dieser Arbeit erméglichte der Industriepartner den Zugriff
auf den Quellcode, sowie auf alle relevanten Kommunikationsplattformen. Dartiber hinaus
wurde auch der Zugrift auf die Schnittstellendatenbank des Unternehmens ermdoglicht,
welche alle Definitionen der internen Schnittstellen verwaltet.

41

4 Projekt beim Industriepartner

Tabelle 4.1: Abweichungen von Referenzscrum

Abweichung
Scrum Ereignisse:
Daily Scrum
Sprint Planning
. . - Entwicklungsteam stellt nicht wie gefordert dar was gut und schlecht lief
Sprint Review
- PO stellt nicht aktuellen Stand vor (inkl. neuen Fertigstellungstermin)
Sprint Retro
Sprint
Personen:
Envicdungieon T
SM Kein Coaching der Organisation, die neuen SMs nehmen an Schulung teil.
PO Keine einzelne Person (interner / externer PO)
Personalunion von interner PO und SM
Artefakte:
Product Backlog
Sprint Backlog
Inkrement
SCRUM

Wie bereits in Abschnitt 2.4 beschrieben folgt nun, um die Vergleichbarkeit der Arbeit zu
sichern, in diesem Abschnitt nun ein Vergleich des tatsachlich praktizierten Scrums mit
dem bereits beschriebenen Referenzscrum. Zur Durchfithrung des Vergleichs wurden alle
im Scrum Guide [Jee] beschrieben Rollen, Aktivititen, Artefakte und Vorgehen zusammen-
gefasst und untersucht. Eine Visualisierung der Ergebnisse der Gegeniiberstellung stellt
Tabelle 4.1 dar.

In einem ersten Schritt konnten allgemeine Punkte, wie beispielsweise die Timebox des Daily
Scrums oder die Dauer der unterschiedlichen Aktivitaten pro Sprint im Kalender gesichtet
und validiert werden. Im Anschluss daran stand der Scrum Master fiir die Klarung der noch
offenen Punkte und fiir weitere Riickfragen zur Verfiigung.

Das praktizierte Scrum hat eine Sprintlinge von 14 Tagen, welche bisher nur in einem
Fall auf Grund von externen Abhangigkeiten und extremen Planungsunsicherheiten auf 7
Tage reduziert wurde. Die Sprintlange erfiillt so den Anspruch, dass die Sprints alle gleich
lang sind und kiirzer als einen Monat andauern. Die sonstigen Regeln fiir einen Sprint sind
genauso wie im Scrumguide vorgeschrieben. Es diirfen wihrend eines Sprints weder Ande-
rungen vorgenommen werden, welche das Sprintziel gefdhrden, noch der Qualititsanspruch

42

4.1 Der Industriepartner

geschmilert werden. Wie vorgesehen ist es allerdings moglich, bei neuen Erkenntnissen,
zwischen PO und Entwicklungsteam den Anforderungsumfang neu zu verhandeln.

Wenn man die Scrum Ereignisse betrachtet, so sind Daily Scrum, Sprint Planning und die
Sprint-Retrospective nahezu unveriandert zum Referenzprozess. Das Daily Scrum ist auf 15
Minuten begrenzt und findet jeden Tag zur selben Uhrzeit statt. Die Entwickler berichten,
zum einem was sie gestern erreicht haben um zum Sprintziel beizutragen und was sie heute
erledigen wollen um den Sprint weiter voranzubringen. Aulerdem spricht jeder Entwickler
hier Hindernisse (“Impediments”) an auf die er bei seiner Tatigkeit gestoflen ist und die
ihn nun behindern. Zusétzlich zum Referenzscrum wird hier noch geklért ob es weiteren
Abstimmungsbedarf gibt. Weitere Diskussion geschehen korrekterweise nach dem Daily
Scrum.

Das Sprint Planning nimmt in etwa drei Stunden pro Sprint in Anspruch und ist so innerhalb
der vorgeschlagenen Timebox von maximal 4h (Scrumguide-Vorschlag ist hier 8h bezogen
auf einen 1 Monat langen Sprint). Hier wird, wie vorgesehen, im Team entschieden was
Teil des nachsten Produkt Inkrements sein wird und wie das Ziel erreicht werden soll. Das
Sprintplanning umfasst seitens des Entwicklerteams die Definition des Ziels des Sprints und
eine Prognose iiber den zukiinftigen Funktionsumfang des Produktes. Lediglich das vom
Scrumguide geforderte Ausarbeiten der Umsetzung wird im Anschluss an das eigentliche
Sprintplanning durchgefiihrt.

Die Sprint Retrospective wird genau wie im Scrumguide beschrieben umgesetzt. Die ange-
dachten Priifungen des vergangen Sprints in Bezug auf beteiligte Menschen, Beziehungen,
Prozesse und Werkzeuge werden durchgefithrt und mogliche Verbesserungen werden identi-
fiziert und in eine Reihenfolge gebracht. Als Ergebnis der Retrospective werden Maf3nahmen
vereinbart um die Probleme in Zukunft zu verbessern.

Das Sprint Review ist das einzige Scrum Event, was wirklich abweicht. Es hélt zwar die
geplante Timebox von 2h ein, hat aber im Vergleich zum Referenzscrum doch einen anderen
Inhalt. Wahrend im Referenzscrum hier noch viele Elemente wie eine Darstellung der ne-
gativen und positiven Punkte geschieht, hat der vorliegende Scrumprozess diese Elemente
lediglich in der Retrospective. Themen wie die Planung des néachsten Sprints und die Pra-
sentation des aktuellen Product Backlogs Seitens des POs sind Teil eigener Aktivitaten. Das
Product Backlog wird nur in der Refinement-Aktivitat aktualisiert. Stattdessen nutzt das
Team diesen Termin um Risikomanagement zu betreiben.

Wenn man die Rollen des Referenzscrums betrachtet, so findet man diese auch im prak-
tiziertem Scrumprozess wieder. Dabei sind die Rollen des Entwicklungsteams, des Scrum
Masters und des Product Owners nahezu 1:1 iibernommen worden. Das Entwicklungsteam
besteht aus Entwicklern und ist selbstorganisierend und interdisziplinar. Es liefert iterativ
und inkrementell. Eine Besonderheit des vorliegenden Scrumprozesses ist, dass die Rolle
des PO doppelt besetzt ist. Einer der POs ist aufgrund des Arbeitsmodells zwischen Tochter-
und Muttergesellschaft ein Mitarbeiter des Mutterunternehmens. Zusatzlich dazu ist er auch

43

4 Projekt beim Industriepartner

nicht immer fiir das Entwicklerteam direkt verfiigbar, deshalb gibt es im Team noch einen
internen PO, welcher dem externen PO einige Aufgaben abnimmt und ihn unterstiitzt. Der
interne PO kiimmert sich zuséatzlich auch um alle organisatorischen und formalen Anforde-
rungen, dazu gehort zum Beispiel auch das Beantragen von Zugriffen und Freigaben auf
unterschiedliche Systeme, sowie speziell in diesem Projekt die Kommunikation mit den
unterschiedlichen Datendienstleistern.

Die Aufgaben des POs ist vor allem die Pflege des Product Backlogs, er sorgt dafiir, dass
Eintrage klar formuliert und nach Prioritat sortiert sind. Aulerdem ist er dafiir verantwortlich
den Nutzen der Arbeit des Entwicklungsteams zu maximieren. Das erreicht er indem er
sicherstellt, dass zum einem das Product Backlog sichtbar ist - sprich es transparent ist und es
klar ist, woran das Scrum Team als nachstes arbeiten wird - und dass das Entwicklungsteam
die Eintrage des Product Backlogs im erforderlichen Maf versteht.

Der SM ist fiir die Einhaltung des Scrumprozesses verantwortlich. Er vermittelt Techniken
fiir eine effektive und effiziente Verwaltung des Product Backlogs und vermittelt dabei ein
richtiges Verstandniss von Agilitit und ihrer Anwendung. Die Rolle im praktizierten Scrum
hat alle Aufgaben des Referenzscrums bis auf einen Aufgabenbereich: Die Dienste des Scrum
Masters an die gesamte Organisation wird nicht von ihm verantwortet. In der Organisation
geschieht das durch die Schulung von zukiinftigen SMs durch interne Schulungen anstatt
bereits bestehende SMs damit zu beauftragen.

Zusammenfassend findet man eine Scrumimplementierung welche sich sehr nahe am Refe-
renzscrum orientiert. Es gibt kleinere aber bewusste Abweichungen, wobei die auffilligste
mit Sicherheit die doppelte Besetzung der PO-Rolle ist. Die kleinen Abweichungen sollten
einem Vergleich des Scrum-Prozesses mit anderen, nach dem Referenzscrum umgesetzten,
Scrum-Prozessen nicht im Wege stehen.

Erstellung und Umsetzung von REST-Schnittstellen in Scrum

Wihrend der Betrachtung des Prozesses ist aufgefallen, dass ein mogliches Design der
REST-Schnittstellen prinzipiell an mehreren Stellen im Scrumprozess stattfinden kann. Die
im Folgenden beschriebenen zwei Zeitpunkte der mdglichen Schnittstellenentwicklungen
sind in Abbildung 4.1 visualisiert. Auf der einen Seite gibt es Entwicklungen, bei denen die
Schnittstellen bereits vor Beginn der eigentlichen Implementierung entworfen und spezifi-
ziert werden (Zeitpunkt 1). Diesen Fall kennt man am ehesten aus Projekten zur Ablésung
einer bestehenden Implementierung inklusive Schnittstelle oder aus klassischen Projekten,
welche mit Pflichten- und Lastenheft arbeiten. Auf der anderen Seite befinden sich Ent-
wicklungen, welche bewusst agil gehalten werden und den Entwurf und die Umsetzung
der Schnittstelle wahrend der inkrementellen Implementierung durchfithren (Zeitpunkt 2).
Selbst dabei gibt es noch unterschiedliche Ansétze, je nachdem ob die Entwickler wie bereits
in den Grundlagen (Abschnitt 2.2) beschrieben einen Top-Down- oder Bottom-Up-Ansatz

44

4.1 Der Industriepartner

Pro;ecSteI::j!:ung / g Sprint Planning Fertiges Produkt

Adjust

Review

Zeitpunkt 1:

Entwurf von REST- Zeitpunkt 2: -
Schnittstellen vor Entwurf / Realisierung von REST-

Projektbeginn Schnittstelle wahrend Projekt

Zeit

Abbildung 4.1: Unterschiedliche Zeitpunkte des Entwurfs von REST-APIs

wihlen. Je nach gewéahlten Ansatz ist die Geschwindigkeit der Umsetung unterschiedlich.
Wir konnten drei unterschiedliche Arten von Schnittstellenentwicklungsstilen identifizieren:
Formale Schnittstelle, inkrementelle Entwicklung der Schnittstelle und einen Hybridansatz,
welcher beide Ansétze kombiniert. In Abbildung 4.2 werden die Unterschiede im Grad der
Fertigstellung der Schnittstellendefinition iiber die Zeit der verschiedenen Ansitze visuali-
siert. Die Abbildung verdeutlicht, dass bei dem Ansatz ‘Formale Schnittstelle’ der Grofiteil
der Spezifikationsarbeit am Anfang des Projektes stattfindet. Bei der “inkrementellen Ent-
wicklung der Schnittstelle” verlauft diese Entwicklung stetig. Der Hybrid-Ansatz kombiniert
beide Ansétze und hat deshalb auch ihre Eigenschaften. Hier wird ein grofier Teil zuerst
spezifiziert aber dann spater inkrementell weiterentwickelt.

Bei der Arbeit beim Industriepartner ist deutlich geworden, dass die Entwickler aller Teams
gerne einen Hybrid-Ansatz wéhlen wiirden. Sie wiirden gerne zu Beginn eine Schnittstel-
lendefinition besitzen, welche als Grundlage zur Arbeit und zur Diskussion zwischen den
Teams dient. Die Schnittstelle wiirde im optimalen Fall dann dennoch uneingeschrankt
stetig weiterentwickelt werden konnen. In der Praxis sieht es aber etwas anders aus. Bei der
Neuentwicklung einer Schnittstelle wird in einem relativ frithen Sprint eine erste Version
der Schnittstelle implementiert. Aus dieser ersten Version kann eine Schnittstellendefinition
erzeugt werden, welche dann als Grundlage zur Diskussion und Kommunikation dient. Die
weitere Entwicklung der Schnittstelle wird dann durch das Anpassen der Schnittstelle im
Quellcode durchgefiihrt. Andere Teams nutzen die aktuellen Schnittstellendefintionen um
mit den erstellten REST-Schnittstellen zu arbeiten. Dieser Prozess hat sich iiber ldngere Zeit
entwickelt, da ein Entwickler in diesem Prozess zum einen keine Schnittstellendefinition von

45

4 Projekt beim Industriepartner

Formale Schnittstelle Entwickelnde Schnittstelle Hybrid aus den ersten beiden
Ansdtzen

A
Grad der t Grad der Grad der t
Spezifika Spezifika Spezifika

tion tion 7l— tion
‘7 _
,,,,,flffr

Projektstart Zeit Projektstart Zeit Projektstart Zeit

l_,I—

Abbildung 4.2: Entwicklung des Fertigstellungsgrades von REST-APIs in unterschiedlichen
Projekttypen

Hand schreiben muss und zum anderen es so einfacher ist die erstellte Schnittstellendefinition
auf aktuellem Stand zu halten.

Werkzeugunterstiitzung

Um die Teams bei der Durchfithrung der Projekte zu unterstiitzen wird auf das Tooling
der Firma Atlassian zuriickgegriffen. Fiir die allgemeine Kollaboration, genauer gesagt
das Festhalten von Entscheidungen, Sammeln von Informationen und Bereitstellen von
Guidelines, kommt Atlassian Confluence' zum Einsatz. Die Versionierung und Historie des
Codes wird durch Atlassian Bitbucket Server? (ehemalig Stash) abgedeckt. Das speziell auf
Scrum zugeschnittene Tool Atlassian Jira®> kommt fiir die ganze Verwaltung des Prozesses
zum Einsatz. Hier werden Sprints verwaltet, die Product Backlogs gepflegt und der Fortschritt
der einzelnen Aufgabenpakete (Issues) aktualisiert und verfolgt. Als Entwicklungsumgebung
wird im ganzen Team Intelli] IDEA* von JetBrains eingesetzt. Doe Kommunikation im Team
geschieht iiber E-Mail, die Kommunationswerkzeuge Slack® und Skype for Business®.

4.2 Der Service

Der zentrale Punkt dieser Arbeit ist der Vergleich mehrerer Methodiken und der dazugehori-
gen Werkzeuge und Modelle. Der Vergleich wird anhand eines Beispielservices durchgefiihrt.
Bei dem Beispielservice handelt es sich um eine bestehende Dienstimplementierung des

! Atlassian Confluence: https://de.atlassian.com/software/confluence

2 Atlassian Bitbucket Server: https://de.atlassian.com/software/bitbucket/server
3 Atlassian Jira: https://de.atlassian.com/software/jira

“Intelli] IDEA: https://www.jetbrains.com/idea/

>Slack: http://slack.com

8Skype for Business: https://www.skype.com/de/business/skype-for-business/

46

https://de.atlassian.com/software/confluence
https://de.atlassian.com/software/bitbucket/server
https://de.atlassian.com/software/jira
https://www.jetbrains.com/idea/
http://slack.com
https://www.skype.com/de/business/skype-for-business/

4.2 Der Service

Industriepartners. Der bestehende Beispielservice wird fiir den Vergleich in dieser Arbeit
also mehrmals realisiert. Dieser Abschnitt soll erklaren, um was fiir einen Dienst es sich

dabei handelt.

Fachliche Sicht

Fachlich gesehen bietet der Dienst die Moglichkeit anhand einer geographischen Position
verschiedene Sonderziele und Informationen tiber diese Sonderziele abzufragen.

Ein Sonderziel hat eine Menge an zugehorigen Informationen. Diese Informationen lassen
sich in zwei Klassen einteilen: statische und nicht-statische Informationen. Statische In-
formationen sind Informatioen, welche sich nicht oder kaum adndern, beispielsweise ein
Identifikator (ID), Position des Sonderziels oder auch die Telefonnummer der Verwaltung.
Nicht-statische Daten hingegen sind oftmals Daten die sich in unterschiedlichen, unre-
gelmafigen und oft auch unvorhersehbaren Intervallen aktualisieren oder auf Basis von
anderen nicht-statischen Daten berechnet werden, wie zum Beispiel aktuelle Besucherzahlen
oder Angaben iiber eine geschitzte Wartezeit. Fiir diesen Dienst ist anzumerken, dass das
Datenmodell relativ grof} ist. Das Ergebnis einer Anfrage an den Dienst ist ein JSON-Array
von gefunden Sonderzielen, welche wiederum selbst iiber 150 Name-Wert-Paare besitzen
kann.

Ein Benutzer kann den Suchbereich auf zwei unterschiedliche Arten einschranken: Zum
einem kann eine geographische Position und ein Radius, um die Position herum, angegeben
werden und zum anderem konnen zwei geographische Positionen angegeben werden, welche
dann die obere linke und untere rechte Ecke des Suchbereichs darstellen.

Technische Sicht

Aus technischer Sicht lasst sich der Dienst wie folgt beschreiben: Bei dem Dienst handelt es
sich um eine Spring Boot’-Anwendung. Der Dienst nutzt neben der Basisfunktionalitit auch
erweiterte Funktionen des eingesetzten Frameworks und hat deshalb einige Abhéngigkeiten,
welche bei einem Wechsel zu einem anderem Framework aufgelost werden miissten. Diese
Tatsache muss beriicksichtig werden, falls der Dienst mit Hilfe eines anderen Frameworks
umgesetzt werden soll.

Funktional biindelt der Dienst die Daten mehrere Datendienstleister fiir Sonderziele und
aggregiert diese in einem gemeinsamen Format, welches dem Nutzer dann bereitgestellt
wird. Der Service ist Teil einer grof3 angelegten Microservice-Architektur, er hat jedoch
recht wenige Abhangigkeiten zu anderen Diensten der Architektur.

’Spring Boot: http://projects.spring.io/spring-boot/

47

4 Projekt beim Industriepartner

Dienst des Industriepartners

Dienstnutzer

(User, APP oder anderer Dienst)
Content- Content-Provider

Adapter

REST- Geschafts
API logik

Content- Content-Provider
Adapter

Dienstnutzer
(User, APP oder anderer Dienst)

Gemeinsames Format

Dienstnutzer

(User, APP oder anderer Dienst)

Interner
Authentifizierungsdienst

Abbildung 4.3: Logischer Aufbau: Dienst des Industriepartners

In Abbildung 4.3 sieht man mit welchen anderen Diensten ein Datenaustausch stattfindet.
Der Dienst benotigt Informationen anderer Dienste um zum einem die Berechtigungen der
anfragenden Nutzer zu Priifen und zum anderem greift er auf die Datenanbieter zu um die
angefragten Informationen bereitzustellen.

Um die endgiiltigen Artefakte zu erzeugen wird Gradle® als Buildtool eingesetzt. Die Au-
tomatisierung des Builds ermoglicht einige weitere Automatismen, bei der Entwicklung
werden damit, zusétzlich neben dem Einsatz von statischen Codeanalysen und automati-
sierten Unittests, auch Mafinahmen hinsichtlich Continous Integration (CI) und Continous
Deployment (CD) umgesetzt.

Die REST-Schnittstelle

Die REST-Schnittstelle des Dienstes ist aufgrund der Microservice-Architektur sehr iiber-
schaubar und besteht hauptsachlich aus zwei Ressourcen. Die Ressourcen sind Teil eines
gemeinsamen Pfades (“/information/v1/”). Die Teilstiicke des Pfades haben keine Funktion,
falls man sie dennoch aufruft antwortet der Dienst mit einer HTTP 404 Nachricht welche
noch zusétzliche Details wie den aufgerufenen Pfad und einen Zeitstempel enthalt.

Die beiden Suchfunktionen sind auf die zwei Ressourcen verteilt. Die Suche in einem durch
ein Viereck definiertem Suchbereich ist in der Ressource “/information/v1/pois” verfiigbar,
um die Suche mittels zentralem Punkt und Radius durchzufithren muss der Pfad “informati-
on/v1/pois/radius” aufgerufen werden.

8Gradle: https://gradle.org/

48

https://gradle.org/

4.2 Der Service

Listing 4.1 Beispielhafte HTTP-Anfrage an ‘/information/v1/pois’ fiir einen Bereich in der
Stuttgarter Innenstadt

GET /information/vl/pois?lat_t1=48.784269&long_t1=9.164285\tabularnewline
&lat_br=48.765490&long_br=9.200162
Host: meine-rest-api.de

Listing 4.2 Beispielhafte HTTP-Anfrage an ‘/information/v1/pois/radius’ fiir einen 3 km
grofien Bereich in der Stuttgarter Innenstadt

GET /information/vl/pois/radius?lat=48.784269&long=9.164285&radius=3000
Host: meine-rest-api.de

Die Ressource “/information/v1/pois” besitzt entsprechend ihrer Funktion zur Suche in einem
quadratischem Suchbereich die Parameter zur Angabe der Geokoordinaten fiir die obere
linke und untere rechte Ecke lat tl, long tl, lat_br und long_br (wobie ¢l fur top left und
br fiir bottom right steht). Eine beispielhafte HTTP-Anfrage fiir die Ressource ist in 4.1
dargestellt.

Die Ressource “information/v1/pois/radius” hat dementsprechend die Queryparameter lat,
long und radius um eine Geokoordinate sowie den Radius anzugeben (siehe Listing 4.2).
Beide Ressourcen haben die optionalen Parameter maxresults und offset um Funktionen zur
Paginierung anzubieten.

Die beiden eben genannten Ressourcen geben beide dasselbe Datenobjekt zuriick, da sie sich
lediglich um die Art der Suche unterscheiden. Eine exemplarische Antwort des Dienstes ist
in Listing 4.3 dargestellt.

Die Schnittstelle erwartet zusatzlich zu den Parametern auch noch einen speziellen Anfrage-
Header (Request-Headers), welcher zur Authentifizierung bei dem . Diese sind aber einigen
technischen und fachlichen Anforderungen geschuldet und stehen deshalb nicht im Fokus
dieser Arbeit. Eine grafische Ubersicht der Ressourcen und den Methoden befindet sich in
Abbildung 4.4.

Die beiden Teile des Pfades “information” und “/v1” enthalten keine Geschaftslogik und
geben jeweils eine HTTP 404 Antwort zuriick. Der Pfad dient lediglich als Einstiegspunkt fiir
den Dienst und um diesen von anderen Diensten zu differenzieren. Wenn in den Ressourcen
ein Fehler auftritt, so werden die Statusmeldungen 400 BAD REQUEST, im Falle eines Fehler
im Aufrufs, und der Status 500 INTERNAL SERVER ERROR, im Falle eines Fehler im Aufrufs,
genutzt um den Nutzer der Schnittstelle auf einen Fehler hinzuweisen. Dabei wird ein
sogenanntes Error-Objekt eingesetzt um die Fehler noch genauer zu beschreiben. Ein Beispiel
fiir ein solches Error-Objekt im JSON-Format stellt Listing 4.4 dar.

49

4 Projekt beim Industriepartner

Listing 4.3 Beispielhafte HTTP-Antwort des Dienstes

HTTP/1.1 200 OK

Date: Mon, 18 Jul 2016 12:28:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Mon, 18 Jul 20016 19:15:56 GMT
Content-Length: 2840

Content-Type: application/json

Connection: Closed

{
"moreltems": true,
"items": [
{
}I
1
}

Listing 4.4 Beispiel fiir Error-Objekt im JSON-Format

{
"'errors’’: [
{
"’errorCode’’: 1234,
""errorMessage’’: ’'’'Dies ist ein Beispielfehler der halt mal passiert!’’}
}
]
}

Abbildung 4.4: Layout der REST-Schnittstelle

50

4.3 Nutzung von Beschreibungssprachen fur REST APls

Zentrale Schnittstellenverwaltung

Verwenden des
Swagger-Modells

Teilen des
Swagger-Modells

Abbildung 4.5: Nutzung von Swagger beim Industriepartner

4.3 Nutzung von Beschreibungssprachen fir REST APIs

In der Organisation wird bereits die Codegenerierung von Swagger eingesetzt. Allerdings
wird diese nur fir die Erzeugung von REST-Clients auf Basis des Modells genutzt. Bei genauer
Betrachtung fillt auf, dass dieser Einsatz von Swagger nicht modellgetrieben ist. Im Mo-
ment ist es zwar so, dass alle implementierten REST-Dienste eine Swagger-Dokumentation
anbieten miissen. Die Erstellung der Swagger Definition geschieht allerdings nicht vor der
Implementierung, sondern wird auf Basis des Quellcodes und zuséatzlicher Annotationen
erzeugt. Mit dieser Art der Verwendung ist das Modell letztendlich ein Produkt des Codes -
bei einer modellgetriebenen Variante wiirde der Code Produkt des Modells sein.

Die generierten Swagger Definitionen werden zentral verwaltet und sind jedem Entwickler
iber einen internen Webserver zuganglich. Sie dienen der Organisation als Hilfe beim Zugriff
auf die entsprechenden Dienste. Wenn bei einer neuen Implementierung ein anderer Dienst
angesprochen werden muss, wird der Client fiir den entfernten Dienst aus der jeweiligen
Swagger Definition unter Einsatz der Codegenerierung des Swagger Editors® erzeugt. Dieser
Ablauf ist in Abbildung 4.5 skizziert.

Der beschriebene Dienst wurde selbst auch durch den Einsatz von Swagger dokumentiert.
Wie genau dabei vorgegangen wurde und welche Annotationen zum Einsatz kamen wird
im néchsten Kapitel genauer beschrieben werden.

Swagger Editor: https://github.com/swagger-api/swagger-editor

51

https://github.com/swagger-api/swagger-editor

5 Methoden und Tools fur den Entwurf
von REST-APIs

Dieses Kapitel schildert, wie die drei unterschiedlichen Methodiken (Tools des IST-Zustandes,
RAML, und das akademische Tooling) genutzt werden konnen um den Entwurf von REST-
APIs durchzufithren bzw. zu unterstiitzen. Bei den Methoden und Tools des IST-Zustands
wird zusétzlich detailliert auf die genaue Erstellung der Schnittstellendokumentation mittels
Swagger, welche als Modell fiir die Clientgenerierung dient, eingegangen. Das nachste Kapitel
beschaftigt sich dann mit der Umsetzung und Implementierung der einzelnen Entwiirfe.
Ein Hindernis fiir das Verstdndnis dieses Kapitel kann die Tatsache sein, dass es sich bei
der Art der Erstellung des IST-Zustands technisch gesehen um einen Bottom-Up-Ansatz
handelt. Im Ist-Zustand wird fiir die Schnittstelle ein deskriptives Swagger-Modell auf Basis
des Codes erstellt. Die beiden anderen Ansatze und deren Tools verfolgen hingegen den
Top-Down-Ansatz, welcher jeweils ein praskriptives Modell als Resultat hat. Allerdings ist
diese Abgrenzung nicht so hart wie hier zuerst dargestellt und angenommen. Der Prozess im
Ist-Zustand hat doch auch Ahnlichkeiten zum Top-Down-Ansatz, da die Entwickler sich vor
Beginn der Umsetzung natiirlich auch ihre Gedanken zur zukiinftigen Schnittstelle machen.
Diese Uberlegungen und Gedanken spiegeln sich dann aber letztendlich doch nur indirekt im
Code wider, welcher dann typisch fiir einem Bottom-Up-Ansatz als Basis fiir das deskriptive
Modell dient.

5.1 Methoden und Tools des IST-Zustands

Wie bereits in Kapitel 4 beschrieben sind die beim IST-Zustand eingesetzten Tools eher
codezentrisch, dennoch werden auch hier Entwurfstatigkeiten durchgefiihrt. Anders als
bei den anderen Ansitzen macht der Entwickler sich vor der Implementierung der REST-
Schnittstelle zwar auch Uberlegungen und Gedanken, aber er erstellt kein verbindliches
Modell iiber das Design der Schnittstelle. Der Fokus in diesem Kapitel liegt also auf der
Erstellung von zwei Arten von Modellen: Einmal die des unverbindlichen praskriptiven
Modells des Entwicklers, welches fiir ihn als Anhaltspunkt fiir die Entwicklung dient und
spater verworfen wird, und die Erstellung des deskriptiven Swagger-Modells, welches spater
fir die Clientgenerierung und Dokumentation der Schnittstelle verwendet wird.

53

5 Methoden und Tools fiir den Entwurf von REST-APIs

unverbindliches
informelles

praskriptives
Madell

verbindliches
deskriptives
Madell

Im Falle von Anderungen
durch Experten

Wenn keine weiteren Anderungen
durchgeflihrt werden miissen

Abbildung 5.1: Workflow: Entwurf und Realisierung von REST-Schnittstellen beim Indus-
triepartner

Der Prozess zum Entwurf und der Realisierung von REST-Schnittstellen beim Industrie-
partner ist grob in Abbildung 5.1 dargestellt. In der Grafik ist nicht ersichtlich, dass es
sich bei der Implementierung um eine iterative Tatigkeit handelt. Als Teil dieser Tatig-
keit werden dann die Schritte “Generierung der Swagger-Definiton” und “Feedback durch
Schnittstellenexperten” durchlaufen.

Der initiale Designprozess, also die Erstellung des unverbindlichen deskriptiven Modells,
ist abhéngig von der Anzahl an Ressourcen in der zu entwickeltenden Schnittstelle. Viele
Entwickler gaben an, dass sie den Entwurf von Schnittstellen mit nur einer Ressource
gar nicht festhalten, sondern diese sobald sie ihre Uberlegungen abgeschlossen haben
direkt umsetzen. Als Basis fiir die Diskussion mit anderen Entwicklern dient dann die
generierte Schnittstellendokumentation. Bei etwas grofleren Schnittstellen werden Entwiirfe
am Whiteboard oder auf Papier angefertigt, welche aber kein striktes formales Format haben.
Sie bestehen laut Aussage der Entwickler meistens aus hierarchischen Vierecken, welche ein
in sich selbst einheitliches aber frei gewahltes Farbschema besitzen konnen. Ein Beispiel fiir
eine nachgezeichnete Skizze in einem freien Format ist Abbildung 5.2. Hier sieht man wie
zum einem das Layout der Schnittstelle, sowie das kleine Datenmodell festgehalten wurde.
Auf die Frage wie eine Skizze eines grof3eren Datenmodells aussieht gaben die Entwickler an,
dass sie fiir grofiere Datenmodelle keine Skizze erstellen, da diese Information bei grofieren
Schnittstellen sicherlich an anderer Stelle ausreichend dokumentiert ist. In so einem Fall wird
hier nur auf die entsprechende Stelle referenziert. Bei der Erstellung werden hier wahrend
des Entwurfs gewisse Konventionen getroffen. Eine solche Konvention ist beispielsweise
hier das unterstreichen der Pflichtfelder im Datenmodell.

54

5.1 Methoden und Tools des IST-Zustands

/ GET: Lsle voy Pfam‘ol,,e,.\

,.
— ‘?ch DL §
) - PE.’(S,‘OM-'
2 i
st - o
~) /g t(/{f # @0‘5—‘: ' S‘}ﬁ"\i

GeET™: Pog oL

Abbildung 5.2: Nachzeichnung: Whiteboard Entwurf der Personenschnittstelle im freien
Format

Dieser Entwurf dient, zusammen mit Wissen uber definierte Best Practices und Guidelines,
als Grundlage fiir die Implementierung der REST-Schnittstelle, er ist unverbindlich und
dient bestenfalls zur Diskussion mit teaminternen Kollegen.

Zeitlich gesehen kommt nun im Anschluss an den groben Entwurf die Erstellung eines
Prototypes der Schnittstelle mittels SpringBoot. Dies ist nicht and die Implementierung
der Logik gebunden, diese kann zeitlich auch spater angefangen und fertiggestellt werden.
Dieser Prototy besteht zu diesem Zeitpunkt lediglich aus den Klassen und den fiir die
Generierung des Modelles notwendigen Methodenkopfen. Der vorldufige Prototyp wird
meistens noch um Beispieldaten aus Textdateien ergédnzt, welche von der Schnittstelle
exemplarisch zuriickgegeben werden.

Die so frithzeitig generierten Swagger-Modelle konnen bereits zur Validierung und Diskussi-
on an unternehmensinterne Experten gegeben werden. Zukiinftige Nutzer der Schnittstelle
konnen ebenso mit der Definition ihre Clients erzeugen und anhand der eventuell vorhan-
denen Beispieldaten die Schnittstelle bereits in ihre Anwendungen integrieren.

Um solch ein deskriptives Swagger-Modell auf Basis des Quellcode zu erzeugen bietet das
Swagger-Framework unterschiedliche Moglichkeiten den Quellcode mit Annotationen zu
versehen. Diese Annotationen werden spater zusammen mit dem Quellcode interpretiert
um eine Schnittstellendefinition zu erzeugen. Alle Swagger-Annotationen kénnen auf der
entsprechenden Wiki-Seite! des Swagger-Repositories im Detail nachgelesen werden, der

'Swagger-Core Annotations: https://github.com/swagger-api/swagger-core/wiki/Annotations-1.5.X

55

https://github.com/swagger-api/swagger-core/wiki/Annotations-1.5.X

5 Methoden und Tools fiir den Entwurf von REST-APIs

folgende Auszug davon soll als grober Uberblick dienen um die Techniken zur Erstellung
des Modells besser einschitzen zu konnen.

Die Annotationen von Swagger lassen sich ihrer Verwendung nach in drei Kategorien
einordnen: Zur Deklaration von Ressourcen, zur Deklaration von Operationen und die An-
notationen zur Deklaration des Datenmodells. Die Swagger-Annotationen bilden zusammen
mit den Spring-Annotationen die Grundlage fiir den bottom-up-Ansatz von Swagger. Die fol-
gende Aufzihlung fasst die wichtigsten Spring-* und Swagger-Annotationen® zusammen:

@QAPI: Swagger-Annotation - Definiert den Namen und eine Beschreibung der Schnittstelle.

@QAPI-Operation: Swagger-Annotation - liefert Beschreibung fiir eine Operation auf einer
Ressource.

@QAPI-Responses: Swagger-Annotation - liefert zusammen mit den Kindelementen API-
Response Auskunft iiber die moglichen HTTP-Codes der Antworten.

@QApilmplicitParams: Swagger-Annotation - dient dazu Parameter zu definieren, welche
nicht als Spring Parameter (s. RequestParam) definiert werden kénnen.

@ApiParam: Swagger-Annotation - kann genutzt werden um dem API-Nutzer zusétzliche
Informationen zu einem Parameter zu liefern.

@QRequestMapping: Spring-Annotation - wird genutzt um einkommende Anfragen an
spezielle Klassen oder Methoden zu verweisen.

@ResponseStatus: Spring-Annotation - setzt den HTTP-Statuscode, sowie den Grund
(bzw. reason), der HTTP-Antwort an den Client.

@QRequestParam: Spring-Annotation - gibt an, dass ein Methodenparameter an einen
Parameter der Webanfragen gebunden werden soll.

Das Swagger-Framework bietet noch eine weitere Komponente namens Swagger-UI* wel-
che dazu genutzt werden kann um die Swagger-Spezifikation im Browser grafisch und
tibersichtlich darzustellen. Neben der Verwendung als Dokumentation bietet Swagger-UI
auch die Moglichkeit direkt Aufrufe gegen eine Implementierung des Dienstes zu testen.
Diese Art von Dokumentation ist besonders bei Entwicklern beliebt, welche die Schnittstelle
fiir ihre Anwendung nutzen wollen, da sie hier alle Operationen und Paramter gesammelt
an einer Stelle finden konnen und diese gleich an dieser Stelle, ohne weitere Tools, direkt
ausprobieren konnen.

*Spring Dokumentation: http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/
springframework/web/bind/annotation/

*Swagger Dokumentation: http://docs.swagger.io/swagger-core/apidocs/

“Swagger UL http://swagger.io/swagger-ui/

56

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/
http://docs.swagger.io/swagger-core/apidocs/
http://swagger.io/swagger-ui/

5.2 Restful Api Modeling Language

Neben den Schnittstellenoperationen muss auch das Datenformat spezifiziert werden. Die
meisten der zur Zeit beim Industriepartner entwickelten Schnittstellen benutzen nur JSON
als Datenformat. In der Entwurfsphase werden die zuriickgegebenen Daten in Form von
beispielhaften JSON-Antworten beschrieben. Dabei wird sehr genau darauf geachtet, dass
die gewahlten Beispiele vollstandig, konsistent und wohliiberlegt sind. Wohliiberlegt be-
deutet hierbei, dass die gewéhlten Beispieldaten auch das richtige Format beinhalten - was
besonders bei kombinierten Datentypen wie Zahlungsbetragen (Wahrung + Betrag) und
Datumsangaben (z.B. ISO 8601) relevant ist. Wie so ein Beispiel fiir eine fiktive Datende-
finition einer Liste von Personen aussehen kann ist in der 5.1 gezeigt, welche eine Liste
bestehenden aus Daten zu drei Personen darstellt. Sie enthalten neben Information zu der
ID, dem Vornamen, Nachnamen auch zusitzlich Details zu der Rolle des Benutzers und des
Erstelldatums. Fir die Spezifikation von JSON-Daten existieren Standards wie beispielsweise
“JSON Schema™, welche hier aber bewusst nicht zum Einsatz kommen.

Die Umsetzung des in diesem Abschnitt aufgezeigten Schnittstellenentwurfs inklusive der
Datendefinition wird im Kapitel 6, das sich mit der Realisierung von REST-Schnittstellen
beschiftigt, gezeigt werden.

5.2 Restful Api Modeling Language

Dieser Abschnitt bezieht sich auf die konkreten, von RAML zur Verfiigung gestellten Mog-
lichkeiten, Prozesse und verwendeten Tools zum Entwerfen von REST-Schnittstellen. Grund-
legend wurde RAML schon in Unterabschnitt 2.8.2 beschrieben.

In dieser Arbeit wurden mehrere Werkzeuge fiir die Arbeit mit RAML evaluiert. Zum einen
wurde ein Blick auf den Mulesoft Api Designer® geworfen. Er kann mittels Node Package
Manager (npm)’, welcher Teil des Node]S Toolings ist, einfach installiert werden und direkt
aus dem Terminal gestartet werden. Der Api Designer lauft nach dem Starten im Browser. Er
ist sehr ibersichtlich: er bietet neben einem Fenster zur Bearbeitung der RAML-Definition
auch eine Swagger-UI dhnliche Ansicht, in der die bisherige Definition der Schnittstelle
betrachtet werden kann. Ein besonderes Feature ist die Moglichkeit einen Mock-Service zu
aktivieren, welcher die bereits spezifizierten Teile, durch das Zuriickliefern der Beispiel auf
den entsprechenden Pfaden, zur Verfiigung stellt.

Einziger Wermutstropfen ist der notige Aufwand fiir das Importieren, Exportieren und
Speichern von Definitionen. Alle diese Operationen geschehen iiber Operationen im Menii
ohne Hotkeys, beim Speichern muss immer eine explizite Datei angegeben werden. Eine

JSON Schema http://json-schema.org/
® Api Designer: https://github.com/mulesoft/api-designer
"npm: https://www.npmjs.com/

57

http://json-schema.org/
https://github.com/mulesoft/api-designer
https://www.npmjs.com/

5 Methoden und Tools fiir den Entwurf von REST-APIs

Listing 5.1 Beispiel fiir JSON-Format: Liste von Personen

{
"persons": [
{
"id" 1,
"first" : "Max",
"last" : "Mustermann",
"details" :
{
"created" : "2016-08-23T12:12+00:00",
"role" : "admin"
}
+
{
"id" . 2,
"first" : "Erika",
"last" : "Mustermann"
"details" :
{
"created" : "2016-08-25T13:37+00:00",
"role" : "group-owner"
}
}
{
"id" 3,
"first" : "Marcus",
"last" : "Mustermann"
"details" :
{
"created" : "2016-10-23T16:32+00:00",
"role" : "user"
}
}
1
1

schnelle Moglichkeit eine bearbeitet Definition zu speichern besteht also nicht und wurde
bei der Verwendung sehr vermisst.

Das zweite betrachtete Werkzeug war die Api Workbench® welche als Package fiir den Editor
Atom’ installiert werden kann. Die Api Workbench konnte im Unterschied zum Api Designer
durch ihre Integration in das lokale Dateisystem sowie durch, die von Atom bereitgestellten,
Features des Editors iiberzeugen. Beide Werkzeuge boten eine gute Unterstiitzung beim
Schreiben der Spezifikation in Form von automatischer Vervollstandigung.

8 Api Workbench: http://apiworkbench.com/
° Atom: https://atom.io/

58

http://apiworkbench.com/
https://atom.io/

5.2 Restful Api Modeling Language

RAML verfolgt konsequent den Top-Down-Ansatz um REST-Schnittstellen umzusetzen. Aus
diesem Grund ist es auch nicht verwunderlich, dass die Sprachfeatures von RAML tiber
die ledigliche deskriptive Beschreibung hinausgehen. RAML erméglicht an verschiedenen
Stellen einen hohen Grad an Wiederverwendung und setzt somit das DRY-Prinzip (Don’t
repeat yourself) um. Die Definition von sogenannten “resource types” erlaubt es gemeinsames
Verhalten mehrerer Ressourcen nur einmal zu definieren und dann wiederzuverwenden.

Ein Beispiel fiir die Umsetzung eines “collection/collection-item” Musters ist in Listing 5.2
aufgezeigt. Die exemplarische Verwendung ist in 5.3 aufgezeigt. In ihr kann man sehen,
wie kompakt Definitionen von gangigen Mustern aussehen konnen. In 5.2 kann man sehen
wie zwei unterschiedliche “resourceTypes” (collection und collection-item) definiert
werden und anschlieffend in 5.3 wiederverwendet werden.

Um einen moglichst hohen Grad an Wiederverwendung zu ermdglichen konnen die Beschrei-
bungen aus 5.2 abhéngig von dem Namen der spéter implementierenden Ressource gemacht
werden. Dabei ist es moglich die variablen Teile mittels !singularize und !pluralize
anzupassen. In den resourceTypes werden die HTTP-Methoden, der HTTP-Status der Ant-
worten sowie die jeweiligen Nachrichtenbodies definiert. Fiir die Nachrichtenbodies kénnen
auch explizite Beispiele definiert werden. Die definierten ResourceTypes konnen im An-
schluss fiir mehrere Resourcen verwendet werden. 5.3 zeigt wie dies genau funktioniert. Bei
der Definition einer Ressource wird einfach der vorher definierte ResourceType als type
angegeben. Die “/songs”-Ressource nutzt hier beispielsweise den “collection”-ResourceType
und die “/songld”-Ressource nutzt den “collection-item”-ResourceType

In Kombination mit den in RAML moglichen “Includes”, und der daraus resultierenden
Moglichkeit solche Blocke auch auszulagern, konnen viele REST-Schnittstellen mit sehr
wenig Aufwand sehr detailliert spezifiziert werden.

Eine andere Form der Wiederverwendbarkeit bieten die sogenannten “Traits”, sie konnen,
ahnlich wie man es von abstrakten Klassen aus der Programmierung kennt, genutzt werden
um gemeinsames Verhalten abzubilden. Besonders ist hierbei, dass man einer Operation
mehrere Traits zuweisen kann. Dieses Sprachfeature ist vor allem sehr sinnvoll einsetzbar,
wenn man viele Suchressourcen hat, welche Filterung und Paginierung unterstiitzen sollen.

Das Erstellen des Schnittstellenlayouts ist aber nur ein Teil der Aufgabe. Zusétzlich dazu
muss auch das Datenmodell definiert werden. In RAML gibt es generell zwei Moglichkeiten
um dies zu bewerkstelligen. Eine Moglichkeit ist es die einzelnen fachlichen Objekte mittels
JSON-Schema zu definieren. Wer mit JSON-Schema bereits gearbeitet hat wird so schnell
sein Datenmodell beschrieben haben - das Einbinden der Schemas in die RAML-Spezifikation
ist allerdings leider nicht ganz so einfach. An vielen Stellen ist unklar ob eine Referenz nun
auf das JSON-Schema geschieht oder ein Schema der RAML-Definition referenziert wird.
Ein weiteres Manko ist die Tatsache, dass es bei der Erstellung dieser Arbeit nicht gelungen
ist die, in die RAML-Definition eingebundenen, JSON-Schemas korrekt zu validieren und
gleichzeitig das Modell generierbar zu halten. Grund hierfiir ist, dass der Editor der API

59

5 Methoden und Tools fiir den Entwurf von REST-APIs

Listing 5.2 Beispiel fiir Definition des Collection/Collection-Item Musters in RAML

resourceTypes:
- collection:
description: Collection of available <<resourcePathName>> in Jukebox.
get:
description: Get a list of <<resourcePathName>>.
responses:
200:
body:
application/json:
post:
description: |
Add a new <<resourcePathName|!singularize>> to Jukebox.
queryParameters:
access_token:
description: "The access token provided by the authentication application"
example: AABBCCDD
required: true
type: string
body:
application/json:
schema: <<resourcePathName|!singularize>>
responses:
200:
body:
application/json:
example: |
{ "message": "The <<resourcePathName|!singularize>> has been properly
entered" }
- collection-item:
description: Entity representing a <<resourcePathName|!singularize>>
get:
description: |
Get the <<resourcePathName|!singularize>>
with <<resourcePathName|!singularize>>Id =
{<<resourcePathName|!singularize>>Id}
responses:
200:
body:
application/json:
404:
body:
application/json:
example: |
{"message": "<<resourcePathName|!singularize>> not found" }

60

5.3 Akademischer Ansatz

Listing 5.3 Beispiel fiir die Verwendung des Collection/Collection-Item Muster in RAML

/songs:
type:
collection:
exampleCollection: !include jukebox-include-songs.sample
exampleItem: !include jukebox-include-song-new.sample
/{songId}:
type:
collection-item:
exampleItem: !include jukebox-include-song-retrieve.sample

Workbench mit Importen von Schemas wohl anders umgeht, wie der eingesetzte Java-
Codegenerator. Somit ist die Moglichkeit die definierten Beispiele gegen das entsprechende
JSON-Schema zu validieren nicht gegeben.

Die zweite Moglichkeit zur Definition von Datenmodellen ist der Einsatz von sogenannten
types. Type-Definitionen sind nicht im JSON-Schema-Format, sie sind in YAML geschrieben
und dabei einfacher als JSON-Schema gehalten. Prinzipiell ist die Anwendung von Type-
Definitionen zu empfehlen, da sie einige sehr praktische Moglichkeiten bieten. Zum Beispiel
vereinfacht der Einsatz von Type-Definitionen das Erstellen von Collection-Ressourcen
ungemein. Wenn man Abbildung 5.4, welche eine Array-Definition mittels JSON-Schema
darstellt, mit 5.5 vergleicht so kann man erkennen, dass die Arraydefinition unter Einsatz
von Type-Definitionen um einiges kiirzer, ibersichtlicher und einfacher ist. Die Verwendung
von JSON-Schema in RAML ist schlicht weg verwirrend, da hier JSON-Schema-Entitdten und
RAML-Entitaten gemischt werden - beispielweise ist die Referenz in persons auf person
eine Referenz aus dem JSON-Schema auf die RAML-Entitat person.

Trotz der Nachteile kam in dieser Arbeit dennoch die JSON-Schema-Variante zum Einsatz, da
zum Zeitpunkt der Toolauswahl - und auch bis zum Ende der Arbeit - kein funktionaler Java-
Codegenerator mit Unterstiitzung fiir RAML 1.0 verfigbar war und die Type-Definitionen
eine Sprachfeature der Version 1.0 sind.

5.3 Akademischer Ansatz

Das Tooling rund um den akademischen Ansatz ist als Eclipse-Plugin verfiigbar. Neben einer
Moglichkeit aus den erstellten Definitionen ein Maven-Dropwizard-Projekt zu erstellen,
beinhaltet es auch die Editoren fiir die unterschiedlichen Modelle des Ansatzes.

Alle Modelle des Toolings nutzen XML als Auszeichnungssprache und sind so gut zu versio-
nieren und auch von Hand bearbeitbar. Herzstiick der Definition ist das sogenannte RestRes-
sourceModel. Das Herzstiick der RestRessource sind die Ressourcendefinitionen. Sie definieren
die Ressourcen selbst, sowie deren angebotene HTTP-Methoden (GET/PUT/POST/DELETE).

61

5 Methoden und Tools fiir den Entwurf von REST-APIs

Listing 5.4 Beispiel fiir die Verwendung von JSON-Schema in RAML

schemas:
- person: |
{

"$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",

"properties": {
"id": { "type":"number" },
"first" : { "type":"string" },
"last" : { "type":"string" }

}I
"required": ["first", "last"]
}
- persons: |

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "array",
"items": { "$ref": "person" }

1

Listing 5.5 Beispiel fiir die Verwendung der Types-Definitionen in RAML 1.0

types:
person:
type: object
properties:
id:
type: number
first:

type: string
required: true
last:
type: string
required: true
persons:
type: array
items: person

Fiir die HTTP-Methoden werden hierbei direkt die Parameter, sowie deren Datentypen, und
das Schema, das die Struktur der Antworten der Ressource definiert, spezifiziert. Zusatzlich
zu den Ressourcedefinitionen beinhaltet die RestRessource aber auch noch Navigiationsein-
trage, sogenannte Connections, welche Beziehungen zwischen den einzelnen Ressourcen
beschreiben. Diese werden genutzt um das HATEOAS-Prinzip umzusetzen. Das akademische
Tooling ist der einzige Ansatz, der den Einsatz von HATEOAS aktiv unterstiitzt und férdert.
Mit den anderen Tools ist der Einsatz von HATEOAS zwar auch méglich fordert aber sehr
viele zusétzliche Konventionen wie die Einfithrung von speziellen Feldern fiir die Verlinkung

von Ressourcen.

62

5.3 Akademischer Ansatz

root

GET
collection
collection
GET POST
itermn
item
GET DELETE

Abbildung 5.3: Beispiel fiir RestRessource-Diagramm des akademischen Ansatzes

Zusétzlich zur RestRessource gibt es noch das RestRessourceDiagram, welches zusammen
mit dem mitgeliefertem Editor eine grafische Moglichkeit zur Betrachtung und Bearbeitung
der REST-Schnitststellendefinition liefert. Eine solche Darstellung kann zum Beispiel in
Abbildung 5.3 betrachtet werden. Diese Darstellung stellt die Schnittstelle als Graph dar und
kann genutzt werden um sich einen schnellen Uberblick tiber Eigenschaften der Schnittstelle
zu verschaffen, welche aus anderen Arten der Definition nicht direkt ersichtlich sind. Zum
Beispiel kann der Breite und Tiefe sowie der Verlinkung zwischen den Ressourcen schnell
erkannt werden, wieviel verschiedene Ressourcen es gibt und wie mit ihnen interagiert wird.
Typische Ressourcenarten wie das Collection-Ressourcen, welche eine Liste von unterliegen-
den Item-Ressourcen biindeln, konnen schon nach wenigen Anwendungen schnell erkannt
werden, da sie ein auffilliges Layout haben. Es konnen schnell Ressourcen angelegt werden
und mit Hilfe von Navigationen miteinander verkniipft werden.

Die Erstellung des Datenmodells geschieht hier im Editor der RestRessource. Hier bietet das
Tooling an beliebig verschachtelte Strukturen zu erstellen und diese den entsprechenden
Methoden der Ressourcen zuzuweisen. Auf Basis der RestRessource konnen im Anschluss an
die Erstellung des Modells Deployment-Model, JaxRS-Modell und Maven-Modell generiert
werden. Diese Modelle kénnen dann genutzt werden um mit dem Generator ein lauffahiges

63

5 Methoden und Tools fiir den Entwurf von REST-APIs

auf Dropwizard basierendes Mavenprojekt zu generieren. Das erstellte Projekt enthélt dann
alle notwendigen Datenmodelle und Ressourcedefinitionen um die Implementierung des
REST-Dienstes zu beginnen. Um fiir die spateren Nutzer der Schnittstelle eine Dokumentation
anzubieten ist es moglich die Definition in ein Swagger-Modell zu transformieren. Die
Anwender konnen dann, wenn sie wollen, das von Swagger gewohnte Tooling nutzen.

5.4 Erstellung der Modell-Artefakte

Die beiden Modelle fiir den Vergleich wurden auf Basis der bestehenden Dienst-
Implementierung erstellt. Die Intention dahinter ist es, den Entwicklern die Moglichkeit
zu geben ihre, handisch und mit viel Aufwand verbunden, entwickelte Schnittstelle mit
den generierten zu vergleichen. Neben der Erstellung der Modelle mussten auch passende
Java-Projekte erstellt werden um den lauffahigen Code auf Basis der Modelle zu generieren.

Akademischer Ansatz

Das Tooling des akademischen Ansatzes kommt als Eclipse Plugin inklusive einer Installa-
tionsanleitung daher. Nach der Installation des Plugins konnte direkt mit dem Einstieg in
die Arbeit mit dem Tooling gestartet werden. Grundlage fiir den Start der Verwendung des
akademischen Ansatzes war die kurze Einfithrung, welche Teil der Installationsanleitung ist.
In dieser Einfithrung wird kurz erklart wie die Erzeugung der unterschiedlichen Modelle
und eines lauffahigen Modells funktioniert. Zur Nutzung der Editoren ist allerdings keine
Anleitung beigelegt. Das hatte zur Folge, dass die Editoren explorativ erlernt werden mussten
- was sich aber nicht als all zu schwer herausstellte.

Nach einer kurzen Einarbeitungszeit, welche sich vor allem mit der Erlernung der Bedienung
beschaftigte, konnte ziemlich schnell eine kleine beispielhafte REST-Schnittstelle modelliert
werden. Die ganze Modellierung spielte sich in der RestRessource ab, alle anderen Modelle
wurden daraus generiert und mussten nicht weiter angepasst werden.

Fir die Erstellung des Modells fiir den Vergleich der Ansatze musste jedoch noch mehr
getan werden. Das grobe Layout, welches in diesem Schritt erstellt wurde ist im Screen-
shot in Abbildung 5.4 ersichtlich. Es enthélt fiir jeden Pfadteil der Referenzschnittstelle
eine Ressource (information, v1, poi und radius), sowie eine WurzelRessource (root). Jede
Ressource bietet eine GET-Operation welche die Ressourcen, entsprechend der Hierarchie,
mit der entsprechenden KindRessource verkniipft. Die Anordnung der Knoten, Operationen
und Verbindungen ist durch den Benutzer des Modellierungstools zu definieren. Das Mo-
dellierungstool bietet hinsichtlich der Anordnung der Elemente ein automatisches Layout,
welches aber nicht immer zufriedenstellende Ergebnisse liefert.

64

5.4 Erstellung der Modell-Artefakte

root

GET

information . .
information

GET

vl
vl

GET

poi
poi

GET

radius)
radius

GET

Abbildung 5.4: Screenshot: Grafische Ansicht des Akademischen Ansatzes

Zur Definition der Parameter der einzelnen Methoden musste in die Ansicht der RestRes-
source gewechselt werden, da diese Moglichkeit in der jetzigen Version des Werkzeuges
noch nicht verfiigbar ist. Hier konnten die Parameter dann direkt {iber das Kontextmenii
der GET-Operationen erstellt werden. Neben der Angabe des Namens und des Types des
Parameters muss hier noch angegeben werden ob der Parameter ein Pflichtparameter ist.
In Abbildung 5.5 sieht man einen Auszug des erstellten Modells, welcher die Parameter
der poi-Ressource darstellt. Die Abbildung zeigt auflerdem den fiir die Paramtererstellung
relevanten Teil des Kontextmeniis.

Nach der Erstellung der Ressourcen und deren Operationen musste fiir die Operationen noch
ein Datenschema erzeugt werden, welches die genaue Form des Ergebnisses der Operationen
definiert. In diesem Fall teilen sich die beiden wichtigen Ressourcen poi und radius ein
und dasselbe Schema. Der akademische Ansatz unterscheidet bei den moglichen Typen
innerhalb eines Schemas zwischen Simple Types, Array Types und Object Types. Die Simple
Types sind recht einfach erklart, sie sind einfache Datentypen und kénnen einen der Typen
BOOLEAN, STRING, INTEGER oder NUMBER annehmen. Bei dem Array Types handelt es sich
um eine Moglichkeit ein Array von einem bestimmten Typ zu erstellen. Der letzte Typ
sind die Object Types, welche eine Komposition mehrere Typen erlaubt. Dieser Typ wird

65

5 Methoden und Tools fiir den Entwurf von REST-APIs

4 < Resource Diagram

< Resource information

4 < Resource vl

4 Get Method

4 < Resource poi
4 Get Method
Parameter lat_tl
Parameter long_tl
Parameter lat_br
Parameter long_br
Parameter maxResults

b

s

s

Parameter offset
4 <= Resource radius

- |4 Get Method
. 4 Re New Child v | *¥ Parameter |

4 N3 Mew Sibling v

Abbildung 5.5: Screenshot: Darstellung der Parameter beim akademischen Ansatz

4 < Schema poi_5Schema
4 Schema Element Simple Type moreltems
4 4 Schema Element Array Type errors
4 < Schema Element Object Type error
4 Schema Element Simple Type errorMessage
< Schema Element Simple Type errorCode
4 <4 Schema Element Array Type items
+ 4 Schema Element Object Type item
< Schema linksOnlySchema

Abbildung 5.6: Screenshot: Schemadarstellung beim akademischen Ansatz

besonders fiir fachliche Doménenobjekte eingesetzt. Alle Typen konnen nahezu beliebig
geschachtelt werden, so dass sehr komplexe Zusammenhalte abgebildet werden kénnen. Um
zum Beispiel eine Liste von Doménenklassen zuriickzugeben, kann ein Array Type definiert
werden, welcher wiederrum einen Object Type mit den entsprechenden Simple Types enthalt.
Abbildung 5.6 zeigt reprasentativ einen Auszug des erstellten Schemas. Der Array Type errors
ist ein Beispiel fiir die eben beschriebene Schachtelung mehrere Schematypen. Dieses Art der
Schemadefinition ermdglicht ahnliche Beschreibungen wie die Nutzung von JSON-Schema
zur Definition der Doménenklassen. Allerdings muss man hier anmerken, dass die Erstellung
im Vergleich zum JSON-Schema beachtlich einfacher, schneller und fehlerfreier geschieht.

66

5.4 Erstellung der Modell-Artefakte

RAML

Grundlage fiir die Erstellung des RAML-Modells waren die beiden Tutorials'®!! auf der
offiziellen RAML-Webseite. Sie vermitteln ein gutes Gefiihl fiir die Funktionen der Sprache
und zeigen, was notwendig ist um ein erstes generierbares Modell zu erstellen. Fiir weitere
Sprachfeatures wurde die Spezifikation der eingesetzten RAML Version 0.8'? als Nachschla-
gewerk zu Rate gezogen. Das RAML-Modell wurde auf Basis des Quellcodes erstellt, das
entstandene REST-Layout deckt sich daher mit dem bereits vorgestellten aus Abbildung 4.4.
Ein relativ hoher Aufwand musste getrieben werden um die gesamte Dokumentation aus
den verschiedenen Swagger Annotationen in der Implementierung des Industriepartners in
die RAML-Definition zu iibertragen.

Die Erstellung des Datenmodell geschah auf Basis der JSON-Antworten des vom Industrie-
partner implementierten Dienstes. Eine erste Grundversion wurde mit der Webanwendung
“JSONSchema”®? erstellt. Die Anwendung ermdglicht ein konkretes JSON einzufiigen und
auf Basis der vorhandenen Feldern ein grobes Schema zu erstellen. Die Generierung kann
an vielen Stellen nur vermuten ob ein Feld optional ist, deshalb wurde das Schema um
die Spezifikation von benétigten Feldern erweitert. Als letzten Schritt wurde das Schema
nochmals von Hand tiberprift, dabei wurden Felder, welche laut Spezifikation vorhanden
sein miissen aber nicht in den Testdaten vorhanden waren, ergénzt um so ein vollstandiges
Schema zu erhalten.

Das in diesem Kapitel erstellte RAML-Modell ist die Grundlage fiir die im néchsten Kapitel
beschriebene Erstellung eines lauffadhigen RAML-Java-Projektes.

ORAML 100 Tutorial: http://raml.org/developers/raml-100-tutorial#step-introduction

RAML 200 Tutorial: http://raml.org/developers/raml-200-tutorial#step-introduction

I2RAML 0.8 Spezifikation: https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md
BBJSONSchema: http://jsonschema.net/

67

http://raml.org/developers/raml-100-tutorial#step-introduction
http://raml.org/developers/raml-200-tutorial#step-introduction
https://github.com/raml-org/raml-spec/blob/master/versions/raml-08/raml-08.md
http://jsonschema.net/

6 Methoden und Tools fur die
Realisierung von REST-APIs

Dieses Kapitel beschaftigt sich nach der Betrachtung der Methoden und Tools fir den
Entwurf nun mit der Betrachtung von Methoden und Tools fiir die Realisierung von REST-
APIs. Hierbei wird auf die Methoden und Tools des IST-Zustandes (Abschnitt 6.1), des
Ansatzes unter Verwendung von RAML (Abschnitt 6.2) und des akademischen Ansatzes
(Abschnitt 6.3) eingegangen werden.

6.1 Methoden und Tools des IST-Zustands

Bei den vom Industriepartner bereitgestellten Java-Projekten handelte es sich um SpringBoot-
Anwendungen, welche mit Hilfe von Swagger-Annotationen dokumentiert wurden. Spring-
Boot ist ein auf Spring-basierendes Framework. Bei der Implementierung des Entwick-
lers kam also kein JAX-RS zum Einsatz, sondern generell die Annotationen des Spring-
Frameworks. Durch das eingesetzte Framework SpringBoot sowie die Abhangigkeit Spring-
Fox' sind die Swagger-Dokumentationen wihrend der Laufzeit des Dienstes iiber das REST-
Interface erreichbar und so immer aktuell. Das zusétzliche Einbinden von Swagger-UI stellt
ein grafisch ansprechendes und iibersichtliches Webinterface zum Betrachten der Swagger
Dokumentation zur Verfiigung. Swagger Ul ermoglicht es auflerdem Testaufrufe an die
Schnittstelle abzusetzen.

Der Industriepartner implementiert die RestRessourcen in dedizierten RessourceKlas-
sen. Klassen welche in SpringBoot fiir die Verarbeitung von REST-Anfragen verantwort-
lich sind miissen mit der RestController-Annotation versehen werden. Nur damit wer-
den die Pfadinformationen aus ihr extrahiert und zur Laufzeit zur Verfiigung gestellt.
In den mit @RestController annotierten Klassen werden die einzelne Methoden nun mit
@RequestMapping-Annotationen versehen. Die @RequestMapping-Annotationen spezifi-
zieren den Pfad unter dem die Methode bereitgestellt wird, sowie die zugehorige HTTP-
Methode und den produzierten Mediatype. Eine beispielhafte Definition eines solchen
Mappings ist in in Listing 6.1 dargestellt. Die Klasse besitzt eine Methode, welche durch

1SpringFox: https://springfox.github.io/springfox/

69

https://springfox.github.io/springfox/

6 Methoden und Tools fir die Realisierung von REST-APls

Listing 6.1 Beispielhafte Ressource-Klasse in SpringBoot

@RestController
public class RestaurantsResource {
@RequestMapping(value = "pointsofinterest/restaurants", method = RequestMethod.GET,
produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
public RestaurantsResponse getRestaurants(...){...};

die @RequestMapping-Annotation immer aufgerufen wird, wenn eine GET-Anfrage an
den definierten Pfad (“pointsofinterest/restaurants”) gesendet wird. Aulerdem wur-
de hier spezifiziert, dass die GET-Anfragen welche bei dieser Methode landen mit einer
JSON-Antwort beantwortet werden.

Um die Paramter der REST-Methoden zu definieren kommt in SpringBoot die @RequestParam-
Annotation zum Einsatz, sie wird genutzt um den spateren Paramternamen zu definieren.
Eine Datentypangabe ist nicht notwendig, da das Framework die bereits vorhandene Infor-
mation tiber den Typ des Methodenparameters nutzt. SpringBoot unterstiitzt zusatzlich die
Verwendung der Javax.validation.constraints? welche genutzt werden kénnen um
zusétzlich zum abgeleiteten Typ und dem Namen auch noch Informationen tiber den Werte-
bereich der Methodenvariable zu definieren. Die Definition des Wertebereichs ermoglicht
eine Validierung zur Laufzeit. Eine Verletzung des giiltigen Fehlerbereichs kann so auf eine
passende Fehlermeldung abgebildet werden. Die in Listing 6.1 dargestellte Klasse kann nun
so erweitert werden, dass die Methode drei Parameter erhalt. Fiir unsere Beispiel konnte
man sich vorstellen, dass eine Restaurant anhand seiner Geokoordinaten und eines Radius
gesucht werden kann. Wenn man diese Paramter sinnvoll eingrenzt sieht die Definition der
Methode wie in Listing 6.2 aus. Hier sind Parameter lat (Breitengrad) und long (Langen-
grad) auf die Bereiche von -90 bis 90.0 bzw. auf -180 und 180 begrenzt. Der Radius ist hierbei
auf 200000 limitiert.

Neben der Hauptaufgabe der Implementierung der REST-Schnittstelle miissen zuséatzlich
dazu noch Datenmodelle fiir die Ergebnisse der Anfrage implementiert werden. Der Stand im
Projekt ist, dass diese Klassen von Hand geschrieben werden. Die Felder und Methoden dieser
Klassen werden dann zusatzlich noch um eventuell sinnvolle und notwendige Swagger-
Annotationen zu Dokumentationszwecken erweitert. Die Serializierung der Objekte dieser
Klassen erfolgt dann unter Einsatz der in SpringBoot integrierten Jackson-Bibliothek®. Beim
Einsatz von Jackson sind weitgehend keinerlei gesonderte Annotationen notwendig um
Objekte erfolgreich zu serializieren und zu deserializieren. Daher ist das Erstellen dieser
Klassen weitgehend “Fleiflarbeit” und muss sorgsam und korrekt durchgefiithrt werden. Um

?Javax.validation.constraints: http://docs.oracle.com/javaee/6/api/javax/validation/constraints/package-
summary.html
*Jackson-Bibliothek: https://github.com/FasterXML/jackson

70

http://docs.oracle.com/javaee/6/api/javax/validation/constraints/package-summary.html
http://docs.oracle.com/javaee/6/api/javax/validation/constraints/package-summary.html
https://github.com/FasterXML/jackson

6.1 Methoden und Tools des IST-Zustands

Listing 6.2 Beispielhafte Methode mit Parametern in SpringBoot

@RequestMapping(value = "pointsofinterest/restaurants", method = RequestMethod.GET,
produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
public RestaurantsResponse getRestaurants(
@RequestParam("lat")
@ecimalMin(value = "-90.0", message = "latitude must be at least -90.0")
@ecimalMax(value = "90.0", message = "latitude can only be up to 90.0")
double latitude,
@RequestParam("long")
@ecimalMin(value = "-180.0", message = "longitude must be at least -180.0")
@ecimalMax(value = "180.0", message = "longitude can only be up to 180.0")
double longitude,
@RequestParam("radius")
@Min(value = 1, message = "radius must be at least 1")
@Max(value = 200000, message = "radius can only be up to 200000 meters")
int radius

{...}

Listing 6.3 Beispielhafte Datenklasse

public class Restaurant {
private String name;
private double latitude;
private double longitude;
private String type;

public void setName(String name){
this.name = name;

}

public void getName(){
return name;

}

. andere Getter und Setter ...

beim Beispiel des Restaurants aus den Listings 6.1 und 6.2 zu bleiben, zeigt Listing 6.3 eine
exemplarische Modelklasse fiir ein Restaurant an.

Die Implementierung des Datenmodells macht bei dem vorliegenden Dienst einen grof3en
Umfang, sowohl von Zeit und Codezeilen, aus. Es gibt zwei Griinde hierfiir. Der Dienst
liefert eine Menge Informationen tiber die einzelnen Sonderziele, dementsprechend grof3
ist dadurch natiirlich auch das dazugehorige Modell. Der andere Grund ist, dass der Dienst
selbst ein Microservice ist und so die Anzahl der Ressourcen (hier effektiv zwei - “/poi” und
“/radius”) nicht sehr grof} ist.

71

6 Methoden und Tools fir die Realisierung von REST-APls

Zusammenfassend kann man sagen, dass der Dienst effektiv und sorgfaltig nach géngi-
gen Best-Practices entwickelt wurde und auch fiir die Nutzer der Schnittstelle, dank der
bereitgestellten Swagger-Dokumentation, leicht zuganglich ist.

6.2 Restful Api Modeling Language

Nachdem das RAML-Modell aus dem vorherigen Kapitel fertiggestellt war musste nun ein
passendes Java-Projekt dafiir erzeugt werden.

Der dafiir eingesetzte Generator ist Teil des RAML for JAX-RS* Projektes. Das Projekt
beinhaltet Tools um mit JAX-RS und RAML zu arbeiten, dabei gibt es Tooling fiir beide
Richtungen, also sowohl fiir die Richtung von JAX-RS zu RAML als auch anders herum.
Diese Arbeit beschéftigt sich lediglich mit dem Tooling zum Erzeugen von JAX-RS Code
auf Basis von RAML-Modellen. Neben den Tools enthalt das Repository auch noch einge
Beispiele zur Einbindung der Modelle in bestehende Projekte oder zum Aufsetzen neuer
Projekte unter Einsatz des Toolings. Neben einer CLI-Version gibt es auch Plugins fiir Gradle
und Maven, so dass das der Generator prinzipiell in jedes Build eingebaut werden kann.

Grundlage fiir das erstellte Java-Projekt war ein Beispiel des verwendeten RAML-JAX-
RS Generators®. Das vorliegende Beispiel ist ein Maven-Projekt, was ein von Mulesoft®
bereitgestelltes Maven Plugin nutzt um die Codegenerierung in den Build zu integrieren.
Zu Beginn der Durchfithrung der Arbeit war das Aufsetzen des Maven-Projekts etwas
aufwendiger, da das entsprechende Maven-Plugin nicht in dem entsprechenden Maven-
Repository vorhanden war bzw. entfernt wurde. Ein Weg das Projekt dennoch erfolgreich
zu erstellen bestand darin das Maven-Plugin manuell in das lokale Maven-Repository zu
installieren und es im Anschluss dann in der pom.xml zu referenzieren. Zum Zeitpunkt des
Schreibens dieser Arbeit (genau: 05.10.2016) befindet sich das aktuelle Plugin mittlerweile
aber wieder zumindest in den Mulesoft Repositories - in MVN Central befindet sich allerdings
immer noch nur die altere Version 1.3.4 statt der aktuellen Version 1.3.5.

Nach erfolgreicher Uberarbeitung des Projektes, was vor allem darin bestand Beispielimple-
mentierungen zu entfernen und das neue Modell einzubinden, konnte die REST-Schnittstelle
generiert werden. Es ist angenehm aufgefallen, dass der generierte Code nicht in den Code-
stand des Projektes tibergeht sondern lediglich jedes Mal im von Maven dafiir vorgesehen
Buildschritt generate sources erzeugt wird. Der generierte Code ist so nicht Teil der Versio-
nierung, Anderungen am Modell haben also so nur Auswirkungen auf die eventuelle Logik

“RAML for JAX-RS: https://github.com/mulesoft/raml-for-jax-rs

>Beispiel Jersey RAML-to-JAXRS Projekt: https://github.com/mulesoft/raml-for-jax-rs/tree/master/raml-to-
jaxrs/examples/jersey-example

$Mulesoft: https://www.mulesoft.com/

72

https://github.com/mulesoft/raml-for-jax-rs
https://github.com/mulesoft/raml-for-jax-rs/tree/master/raml-to-jaxrs/examples/jersey-example
https://github.com/mulesoft/raml-for-jax-rs/tree/master/raml-to-jaxrs/examples/jersey-example
https://www.mulesoft.com/

6.3 Akademischer Ansatz

und nicht auf sowieso generierte Artefakte. Dies fithrt zu einer (im Vergleich zu anderen
Losungen) sauberen Historie. Einziger Nachteil ist, dass ein Entwickler in seiner Entwick-
lungsumgebung nach einem Sdubern (Clean) nicht vergessen darf die REST-Schnittstelle
erneut zu generieren, da sonst das Programm nicht ausfithrbar ist.

Nachdem die Schnittstelle erzeugt worden ist musste nun die eigentliche Logik aus der
Implementierung des Industriepartners hinzugefiigt werden. Dafiir konnten gliicklicherweise
grofle Teile der Implementierung wiederverwendet werden. Die Logik zum Verarbeiten
der JSON-Antworten der verschiedenen Content-Provider musste lediglich dahingehend
angepasst werden, dass sie in einer eigenen JSON-Parserinstanz lauft. Die Spring Boot
Implementierung des Industriepartners nutzt die Moglichkeit mittels RestTemplate (ein Teil
des Spring-Frameworks’) und der Injektion des passenden Deserializers die Antwort der
Datenanbieter bereits beim Empfangen in das passenden Format zu tiberfithren. Bei der
Anpassung des Parsers wurde auch das Mapping tiberarbeitet, damit die empfangenen Daten
korrekt auf die nun generierten Doménenklassen passen.

Zuletzt musste die Schnittstelle noch ausimplementiert werden, damit alle REST-Operationen
die gerade beschriebe Logik aufrufen. Dies war letztendlich recht einfach durchzufithren,
es muss lediglich ein Interface ausimplementiert werden. Dabei hat jede HTTP-Operation
des REST-Interfaces eine eigene Methode welche die interne Logik aufrufen muss. Da der
vorher erstellte Parser genau die Datenmodelle der REST-Schnittstelle liefert bestand die
Logik letztenendlich darin einfach das Ergebnis des angepassten Parsers zuriickzugeben.

6.3 Akademischer Ansatz

Nachdem das Modell in Form einer RestRessource mit zugehorigem RestRessourceDiagram
mit Hilfe des akademischen Ansatzes fertiggestellt war, konnte nun daraus ein Java-Projekt
generiert werden. Die Generation der Implementierung erfolgte mit dem integrierten Ge-
nerator, welcher Teil des Eclipse Plugins ist. Um das Java-Projekt zu generieren musste
die RestRessource zuerst durch mehrere Modell-zu-Modell-Transformationen umgewandelt
werden. Im ersten Schritt wurde aus der RestResource ein DeploymentModell generiert. Fiir
diesen einfachen Anwendungsfall musste nichts angepasst werden, allerdings ermdglicht die
handische Anpassung des DeploymentModells einen zusatzlichen Einfluss auf die genauen
Pfade zu den Ressourcen. Der nachste Schritt war die Umwandlung des DeploymentModells
zu einem JAX-RS-PSM Modells. Das JAX-RS-PSM Modell hat Einfluss auf die spateren Eigen-
schaften des generierten Projektes wie den Projektnamen, den verwendeten Paketnamen
und die definierte Projektversion. Neben diesen Eigenschaften konnen im JAX-RS-PSM auch
die genauen Klassennamen fiir die einzelnen Ressourcen definiert werden. Der vorletzte

’Spring-Framework: https://spring.io/

73

https://spring.io/

6 Methoden und Tools fir die Realisierung von REST-APls

Schritt ist eine Transformation des eben erstellten JAX-RS-PSM-Modells in ein Maven-
Modell. Das Maven-Modell gibt Informationen tiber das zukiinfige Maven-Artefakt an. Hier
konnen detaillierte Eigenschaften des zukiinftigen Maven-Artefakts definiert werden wie
beispielsweise die groupID.

Auf Basis des Maven-Modells und den anderen Modellen kann ein lauffahiges Dropwizard-
Projekt, welches Maven als Buildtool nutzt, erzeugt werden. Die Ausimplementierung konnte
ahnlich wie bei dem bereits vorgestellten Ansatz unter Verwendung von RAML durchge-
fithrt werden. Um das generierte Projekt zu nutzen mussten die generierten Java-Interfaces
ausimplementiert werden. Die Hauptarbeit war wie bei der Verwendung von RAML die
Anpassung des bestehenden Parsers auf das neue generierte Datenmodell.

74

7 Vergleich der Ansatze

Dieses Kapitel vergleicht die wahrend dieser Arbeit eingesetzten Ansitze und die daraus
resultierenden Modelle. Teil dieses Vergleichs sind zum einem die bei der Erstellungen
aufgefallenen Eigenschaften der verschiedenen Ansitze und zum anderem wurde eine
Befragung der Entwickler des Industriepartners durchgefiihrt, welche das Ziel hatte deren
Meinung in die Evaluierung mit einzubeziehen.

7.1 Best-Practices: Entwurf von REST-Schnittstellen

3

Bei der Umsetzung von REST-Schnittstellen haben sich einige sogenannte “Best-Practices’
herausgebildet. Um eine Sammlung von solchen Best-Practices zu erhalten, wurden wihrend
der Literaturrecherche einige Quellen von REST-Best-Practices und Richtlinien gesammelt
und analysiert. Als Grundlage fiir den Vergleich gelten die folgenden Quellen:

« WhiteHouse Api Standards [The]: Besteht aus Richtlinien und Beispielen fiir die Schnitt-
stellen des “White House” (USA).

+ ,Musterlosungen und Best Practices fiir das Design und die Realisierung von REST-
Schnittstellen“ [SRD14]: Eine Fachstudie iiber verschiedene Best-Practices, welche
anhand der Schnittstelle der Plattform GitHub erklart werden.

« Best Practices for the Design of RESTful Web Services [GGS+]: Ein Paper welches ver-
schiedene Best-Practices identifiziert, sammelt und kategorisiert.

« Best Practices for Designing a Pragmatic RESTful API [Sah]: Grofle Sammlungen von
Best-Practices mit anschaulichen Beispielen.

o Design Beautiful REST + JSON APIs [Haz]: Eine Prasentation iiber die Umsetzung von
REST-Schnittstellen. Besonders wird dabei auf Best-Practices eingegangen.

« 10 Best Practices for Better RESTful API [Jau]: Eine Sammlung von 10 ausfiihrlich
beschriebenen Best-Practices fiir die Realisierung von REST-Schnittstellen.

75

7 Vergleich der Ansatze

Tabelle 7.1: Best-Practices in der Literatur
[The] | [SRD14] | [GGS+] | [Sah] | [Haz] | [Jau]

Allgemeines:

URL identifiziert Ressource

Semantische Benamung: Menschlich lesbare URL

Plural bei Benennung von Ressourcen

Versionierung;:
Version am Anfang der URL

|

|
- r
e

N e e
Format
Format in URL (z.bB. /api/vl/magazines.json)
Einsatz verschiedener Header-Felder fiir Format _
Fehlerbehandlung;:
Nutzung von geeignetem HTTP Status Code
Nachricht enthilt Nachricht fiir Entwickler
Nachricht enthilt Nachricht fiir Endnutzer

Nachricht enthilt internen Fehlercode
Nachricht enthilt Verweis auf Fehlerdokumentation

Teilantworten:

Erméglichen von Teilantworten
Einsatz von “optional” Feld in URL

Paginierung:

o e —F—— =T

Nutzung von “limit” und “offset” als Parameter

Caching:

Einsatz von ETAG oder Last-Modified Header _:-—

Best-Practices miissen im Allgemeinen anerkannt sein. Bei der Sammlung der Best-Practices
ist aufgefallen, dass sich viele der Autoren hinsichtlich ihrer Meinungen sogar widersprechen.
Auffallig war, dass diese Widerspriiche zwischen den Autoren nicht zufillig waren sondern
man die Autoren in zwei Gruppen einordnen konnte: Die einen, welche man als REST-
Puristen bezeichnen kénnte, halten sich strikt an die von Roy Fielding definierten Prinzipien.
Die anderen, welche man als Pragmatiker bezeichnen konnte, weichen diese Prinzipien auf
um eine, ihrer Meinung, praktischere Umsetzung des REST-Musters zu erhalten.

Die Tabelle 7.1 zeigt das Ergebnis dieser Analyse inklusive vorhandener Widerspriiche. Die
Tabelle zeigt die genannten Best-Practices in den verschiedenen Dokumenten, dabei steht ein
grines Feld fiir das Vertreten der Meinung, rot fiir einen gegensatzige Meinung und gelb fiir
keine Nennung dieser Best-Practices. Die Tabelle ist lediglich eine grobe Zusammenfassung
der Best-Practice Analyse, Empfehlungen welche nur in einem der Dokumente vorgekommen

76

7.1 Best-Practices: Entwurf von REST-Schnittstellen

Listing 7.1 Beispielhafte HTTP-Anfrage mit Accept-Header
GET /api/resource

Host: meine-rest-api.de

Accept: application/vnd.meine-rest-api+json;version=2

sind wurden auflen vor gelassen. Zusammenfassend lasst sich sagen, dass sich beide Seiten
bei der Verwendung der HTTP Verben, der Benennung von Ressourcen, der Moglichkeit zur
Anfrage von Teilantworten, der Fehlerbehandlung und der Losung der Paginierung einig
sind. Die grofiten Differenzen gab es bei der Umsetzung der Versionierung, bei der es die
Moglichkeit zur Nutzung des Headers oder der Versionierung innerhalb der URL gibt. Die
REST-Puristen haben hier den Standpunkt, dass es sich, unabhéngig von der Version, fachlich
jederzeit um dieselbe Resource handelt und sie deshalb unter derselben URL erreichbar sein
muss. Sie raten, daher die Version mittels eines versionierten Content-Types im Accept-Header
anzugeben. REST-Pragmatiker hingegen empfehlen die Platzierung einer Version in der URL.
Ihre Argumente fiir dieses Art der Versionierung ist die damit erhaltene Zuganglichkeit
der Schnittstelle, sie kann so ohne das Setzen eines Headers aufgerufen werden. Damit
ist sie fiir einen Benutzer direkt im Browser eindeutig aufrufbar und muss nicht mittels
eines geeigneten headerfahigen HTTP-Client aufgerufen werden. Das beschleunigt die
Entwicklung und befahigt Entwickler schnell Testaufrufe an die Schnittstelle abzusetzen.

Pragmatisch umgesetzte Schnittstellen erkennt man direkt an der Version in der Url (z.B.
http://meine-rest-api.de/api/v1/resource), bei einer Umsetzung der Puristen ist dies nicht so
direkt ersichtlich, ihre Schnittstelle sieht auf den ersten Blick unversioniert aus (entsprechend
http://meine-rest-api.de/api/resource). Bei einer Anfrage an diese Schnittstelle wird sie
oftmals, sofern man bei der Anfrage keine Version im Accept-Header spezifiert standardméaflig
die aktuellste Version zuriickgeben. Manche Schnittstellen zwingen die Nutzer auch eine
Version anzugeben. Fiir Clients ist es aus diesem Grund wichtig immer eine Version im
Anfrage-Header anzugeben, da sich sonst das Verhalten, bei einem Versionswechsel der
Schnittstelle, sehr schlagartig andern wiirde und die Clientimplementierung auf einmal nicht
mehr funktionieren wiirde.

Die Anfrage einer speziellen Version konnte dann wie in der Beispielabfrage in 7.1 aussehen.
Hier wird der angefragte Typ mittels dem Accept-Header gesetzt. In diesem Beispiel gibt er an,
dass die Représentation der Ressource bitte im application/vnd. meine-rest-api+json;version=2
Format zuriickgegeben werden soll. Der vnd-Teil des wird von RFC6838 in Abschnitt 3.2
[FKH13] vorgeschlagen und ist fiir vendorspezifische Datentypen vorgesehen.

Der Teil im Anschluss (meine-rest-api+json) gibt an um was fiir ein Format es sich genau han-
delt. Oft sieht man hier, dass der Datentyp mittels eines Plus angehéngt wird. Im Anschluss
daran wird dann mit einem Semikolon die gewiinschte Version spezifiziert.

77

http://meine-rest-api.de/api/v1/resource
http://meine-rest-api.de/api/resource

7 Vergleich der Ansatze

Ein Ziel dieser Arbeit war es die unterschiedlichen Ansétze auf die Umsetzung der gerade
vorgestellten Best-Practices zu untersuchen. Leider konnte diese Untersuchung nicht sinnvoll
durchgefithrt werden. Grund hierfiir ist, dass keiner der Ansatze wahrend des Entwurfs beim
Umsetzen der oben genannten Best-Practices unterstiitzend zur Seite steht. Unabhéngig
vom verwendeten Ansatz ist der Anwender selbst fiir die Umsetzung und Einhaltung dieser
verantwortlich. Mit jedem der vorgestellten Ansatze lassen sich gute und schlecht konzipierte
REST-Schnittstellen entwerfen und umsetzen. Beispielsweise ist es mit allen Ansitzen
moglich eine Schnittstelle umzusetzen, welche URLs nutzt um Methoden anstatt Ressourcen
zu bennen.

7.2 Evaluierung durch den Autor

Dieser Abschnitt spiegelt priméar die Erfahrung und Meinung des Autors bei der Arbeit
mit den verschiedenen Werkzeugen und deren Nutzung wider. Alle Aussagen und Infor-
mationen dieses Abschnittes beziehen sich auf die gesamte Werkzeugkette der jeweiligen
Losung. Wir vergleichen hier somit alle drei Varianten bestehend aus den verschiedenen
Ansitzen zum Entwurf und der Realisierung von REST-Schnittstellen. Beim Ist-Zustand des
Industriepartners haben wir somit die Voriiberlegungen der Entwickler, sowie den dabei ggf.
entstehenden Schaubildern, und die Implementierung von Hand, welche mit Annotationen
versehen wird um das deskriptive Modell zu erzeugen. Die Voriiberlegungen der Entwickler
sind meist sehr abstrakt, ungeordnet und oftmals auch nur in den Képfen der Entwickler
vorhanden. Die mit Annotationen versehen Methoden der Implementierung bilden also
die Referenz fiir diesen Vergleich. Die beiden anderen Varianten sind modellgetriebenen
Ansétze und bieten damit Werkzeuge fiir die Entwicklung des Modells, sowie fiir die spatere
Generierung der Schnittstelle.

Neben subjektiven Aussagen enthéilt dieser Abschnitt auch die Untersuchung und Bewer-
tung der drei Methodiken nach den verschiedenen Kriterien welche im Abschnitt 2.1 der
Grundlagen beschrieben wurden. Zur Wiederholung: Die 5 Eigenschaften nach denen wir
Modelle bewerten wollen sind der Abstraktionsgrad, Verstindlichkeit, die Genauigkeit, die
Fahigkeit zur Voraussage und der benoétigte Aufwand zur Erstellung des Modells.

Was in den Grundlagen nicht getan wurde aber fiir den Vergleich notwendig ist, ist die
Uberlegung wie die Ansitze genau miteinander verglichen werden sollen. Die 5 Eigenschaf-
ten sind schwer in verschiedene Kategorien einzuordnen, wohl aber kénnen die Ansatze
hinsichtlich dieser Eigenschaften paarweise miteinander verglichen werden. Beispielsweise
ist es schwerer eine genaue Bewertung fiir die Abstraktion der Ansitze auf einer Punkteskala
zu bestimmen, als sich darauf festzulegen, dass der akademische Ansatz um ein vielfaches
abstrakter ist als der Ansatz des Industriepartners.

78

7.2 Evaluierung durch den Autor

Aufgrund dieser Tatsache wurde der Analytische Hierarchieprozess (AHP), auch bekannt als
die Saaty-Methode, eingesetzt um die Ansétze miteinander zu vergleichen. Die paarweisen
Vergleiche konnen bei AHP mit 5 Bewertungen versehen werden. Eine Alternative kann
dabei folgende Bewertungen im Vergleich mit einer anderen Alternative annehmen:

Skalenwert 1: gleich grof
Skalenwert 3: etwas grofier
Skalenwert 5: deutlich grofler
Skalenwert 7: sehr viel grofier
Skalenwert 9: absolut dominierend

Da es sich um paarweise Vergleiche handelt besitzt der gegensatzliche Vergleich den Kehr-
wert. Wenn z.B. ein Vergleich von Alternative A und B mit 5 bewertet wird, so ist der
Vergleich von B und A mit 1/5 zu bewerten.

Bei der konkreten Nutzung von AHP wurden die bereits genannten Kategorien als Grundlage
genutzt. Die Wichtigkeit der 5 Eigenschaften wurde dabei naiv als gleich eingestuft, jede
Kategorie geht also zu 20% in die Bewertung mit ein (bzw. Koeffizient 0,2). Das Ergebnis der
gesamten AHP ist dabei in der endgiiltigen AHP-Matrix Tabelle 7.7 dargestellt, die Erlaute-
rung des Ergebnisses folgt im Anschluss an die Betrachtung der einzelnen Eigenschaften.

Die erste betrachtete Eigenschaft ist der Abstraktionsgrad. Der Ansatz des Industriepartners
ist, wenn man wie erwahnt von der mit Annotationen versehenen Implementierung ausgeht,
der am wenigsten abstrakte Ansatz. Im Vergleich zu dem Ansatz unter Verwendung von
RAML wurde er daher als deutlich weniger abstrakt eingestuft. Der akademische Ansatz
ist im Vergleich zu der Implementierung von Hand sehr viel abstrakter. Vergleicht man
den Ansatz mittels RAML mit dem akademischen Ansatz, so ist der akademische etwas
abstrakter, da er eine grafische Ansicht bietet und noch mehr Details der Implementierung
abstrahiert. Die resultierende Matrix ist in Tabelle 7.2 abgebildet.

Die zweite Eigenschaft ist die Verstandlichkeit. Hier wurde verglichen wie gut aus den
verbleibenden abstrakten Informationen noch Schliisse iiber die Schnittstelle moglich sind.
RAML demonstriert in dieser Kategorie Starke als sehr ausdrucksstarke Sprache. Im Ver-
gleich zu sowohl dem Ansatz des Industriepartners als auch dem akademischen Ansatz
erreicht es RAML, dass bei sehr hoher Informationsdichte dennoch nahezu alle Informatio-
nen der Schnittstelle direkt ersichtlich sind. Dies ist etwas besser als bei dem Ansatz des
Industriepartners und deutlich besser als bei dem akademischen Ansatz. Die Losung des
Industriepartner besitzt zwar eine weniger kompakte Ansicht, jedoch ist diese vollstandig.
Der akademische Ansatz hingegen abstrahiert sehr stark und lasst einige Informationen
in der grafischen Ansicht, zumindest in der bei der Untersuchung vorliegenden Version,
vermissen. Vergleicht man den akademischen Ansatz mit der Losung des Industriepartners
so wurden diese Ansétze als gleich eingestuft. Sie sind zwar total unterschiedlich, haben aber

79

7 Vergleich der Ansatze

Tabelle 7.2: AHP: Abstraktionsgrad

akademischer Ansatz | RAML | Industriepartner
akademischer Ansatz 1 3 7
RAML 1/3 1 5
Industriepartner 1/7 1/5 1

Tabelle 7.3: AHP: Verstiandlichkeit

akademischer Ansatz | RAML | Industriepartner
akademischer Ansatz 1 1/5 1
RAML 5 1 3
Industriepartner 1 1/3 1

beide ihre Starken und Schwéchen. Der akademische Ansatz ist sehr viel iibersichtlicher als
der des Industriepartners, da man hier nicht die einzelnen Klassen untersuchen muss. Aller-
dings ist der Ansatz des Industriepartners sehr viel verstandlicher, wenn es um die genauen
Parameter geht. Die AHP-Matrix fiir die Verstandlichkeit ist in Tabelle 7.3 dargestellt.

Bei der Untersuchung der Genauigkeit der einzelnen Ansétze ist aufgefallen, dass alle Ansatze
sehr genau sind. Wenn in einem der Ansétze etwas definiert wird, so spiegelt es auch die
Eigenschaften der geplanten REST-Schnittstelle wider. Da alle Ansatze gleich zu einander
bewertet wurden enthilt jede Zelle der zugehorigen AHP-Matrix eine 1 (vgl. Tabelle 7.4)

Bei der Bewertung tiber die Moglichkeit Prognosen mit Hilfe des Modells tiber die zukiinftige
REST-Schnittstelle abzugeben hat der Ansatz des Industriepartners sehr gut abgeschnitten.
Er ist dadurch, dass er zum Teil aus der Implementierung besteht, nahezu identisch mit der
spateren Schnittstelle. Bei den beiden anderen Ansatzen wird hierbei die Codegenerierung
bewertet. Der akademische Ansatz hat einen sehr hohen Abstraktionsgrad und arbeitet
mit einigen Konventionen (z.B. wenn es um die Fehlerbehandlung geht), daher ist er eher
schwer einzuschatzen. Auf3erdem fehlen in der grafischen Ansicht (zumindest in der jetzigen
Version) noch einige niitzliche Details, wie beispielsweise die Anzeige der Operationen

Tabelle 7.4: AHP: Genauigkeit

akademischer Ansatz | RAML | Industriepartner
akademischer Ansatz 1 1 1
RAML 1 1 1
Industriepartner 1 1 1

80

7.2 Evaluierung durch den Autor

Tabelle 7.5: AHP: Prognose

akademischer Ansatz | RAML | Industriepartner
akademischer Ansatz 1 1 1/7
RAML 1 1 1/7
Industriepartner 7 7 1

Tabelle 7.6: AHP: Aufwand

akademischer Ansatz | RAML | Industriepartner
akademischer Ansatz 1 7 5
RAML 1/7 1 1/3
Industriepartner 1/5 3 1

inklusive zugehoriger Parameter. Der Ansatz mittels RAML vermittelt durch die Syntax ein
gutes Gefiihl, wenn es um die Prognose geht. Allerdings bleibt der Codegenerator hinter
den Erwartungen zuriick und setzt die definierten Schnittstellen nicht immer vollstandig
um. Die Bewertung ist daher wie folgt: Der Ansatz des Industriepartners ist sehr viel besser
zur Prognose geeignet als die beiden anderen Ansiatze. Wenn man den Ansatz mittels RAML
mit dem akademischen Ansatz vergleicht so sind diese gleich gut einzuschatzen. RAML gibt
zwar ein sicheres Gefithl was die Syntax allein angeht, der akademische Syntax ist aber
besser wenn es um die Konsistenz zwischen Modell und wirklich generierten Code geht.
Die resultierende AHP-Matrix ist in Tabelle 7.5 dargestellt.

Bei der Eigenschaft des Erstellungsaufwands wird verglichen wie viel Aufwand in das Modell
gesteckt werden muss im Vergleich zur Implementierung der Schnittstelle selbst. Bei der
Implementierung des Industriepartners handelt es sich letztendlich um mindestens einen
Prototypen der Schnittstelle, der Aufwand ist daher nicht ganz unerheblich. Der Aufwand
des Ansatzes unter Verwendung von RAML hat auch einen ziemlich hohen Aufwand, was
vorallem an der Erstellung der JSON-Schemas liegt. Der akademische Ansatz schneidet hier
am besten ab. Er unterstiitzt den Nutzer durch den grafischen Editor sehr und nimmt auch
sehr viel Arbeit bei der Erstellung der Datendefinitionen ab. Der akademische Ansatz ist sehr
viel schneller zu erstellen als der Ansatz unter Verwendung von RAML. Im Vergleich zur
Losung des Industriepartners ist er deutlich schneller umzusetzen, da bei dem bestehenden
Ansatz des Industriepartners die Datenklassen auch von Hand definiert werden miissen.
Vergleicht man den Ansatz des Industriepartners mit dem unter Verwendung von RAML,
so ist der des Industriepartners immer noch etwas schneller. Die AHP-Matrix fiir den
Erstellungsaufwand ist in Tabelle 7.6 abgebildet.

81

7 Vergleich der Ansatze

Tabelle 7.7: Endgiiltige AHP-Matrix

Abstraktion | Verstiandlichkeit | Genauigkeit | Prognose | Aufwand Ergebnis
akademischer Ansatz 0,649118 0,156182 0,333333 0,111111 | 0,73065 0,396079
RAML 0,278955 0,658644 0,333333 0,111111 | 0,08096 0,292601
Industriepartner 0,071927 0,185174 0,333333 0,777778 | 0,188394 0,311321

Ergebnisse des Analytischen Hierarchieprozesses

Die Bewertung innerhalb der einzelnen Kategorien wurden nun mittels der Berechnung der
Eigenvektoren der jeweiligen AHP-Matrix bestimmt. Das Ergebnis dieser Berechnungen ist
in der endgiiltigen AHP-Matrix aufgezeigt Tabelle 7.7. Basierend auf den Punkten der drei
Varianten in den 5 Kategorien und der gleichmafligen Gewichtung der einzelnen Kategorien
hat der akademische Ansatz die beste Punktzahl (0,396079) erzielt. Der Ansatz des Industrie-
partners ist mit einer Bewertung von 0,311321 auf Platz zwei gelandet. Die Methode unter
Verwendung von RAML ist das Schlusslicht mit einer Wertung von 0,292601.

Bei genauerer Betrachtung erkennt man, dass diese Wertung sehr stark von der Gewichtung
abhéngt, da jeder der Ansitze an anderen Stellen Starken und Schwichen besitzt. Wahlt
man die Gewichtung anders, so ist schnell einer der anderen Ansétze auf Platz 1. Dennoch
ist diese Analyse sehr wertvoll. Mit ihr kann man erkennen wo die einzelnen Ansétze ihre
Starken und Schwichen besitzen. In der eben erwahnten AHP-Matrix Tabelle 7.7 sieht man,
dass beispielsweise der akademische Ansatz seine Starken im Aufwand und der Abstraktion
besitzt, wohingegen der Ansatz des Industriepartners eher Stiarken in der Moglichkeit zur
Prognose ausspielen kann.

7.3 Befragung der Entwickler

Wihrend der gesamten Dauer der Arbeit bestand enger Kontakt zu den Entwicklern des
Industriepartners. Sie standen stets helfend zur Seite, wenn es Probleme bei der Nutzung
ihrer Implementierung gab und bei allgemeinen Fragen zu ihrem Arbeitsablauf und ihren
Tatigkeiten beim Entwurf und der Umsetzung ihrer REST-Schnittstellen. Dariiber hinaus
konnte auch an vielen der planenden Meetings teilgenommen werden um auch dort einen
Eindruck iiber das Vorgehen und die Prozesse zu gewinnen.

Um die Meinung der Entwickler des Industriepartners in die Arbeit mit einflielen zu lassen
wurden wahrend der Durchfithrung der Arbeit regelmaflig Gesprache durchgefiihrt. In
der Phase der Evaluierung wurden gezielte Einzelinterviews mit einigen der Entwicklern
durchgefiihrt. Ziel dieser Interviews war es zum einem ihre Grundhaltung gegeniiber mo-
dellgetriebener Softwareentwicklung zu erfahren, aber auch mit IThnen gemeinsam eine

82

7.3 Befragung der Entwickler

Einschatzung iiber die Brauchbarkeit der verschiedenen Ansatze in ihrem jetzigen Projekt-
umfeld zu entwickeln.

Zur Steuerung des Interviews wurde ein Fragebogen erstellt. Bei dem Entwurf des Fragebo-
gens ist etwas Arbeit vorausgegangen um einen grofitmoglichen Nutzen aus der limitierten
Zeit der Entwickler zu ziehen. Der Fragebogen wurde mit Orientierung an dem Bericht von
Daniel W. Turner III [Tur10] und dem Buch “Qualitative Inquiry & Research Design” von
John W. Creswell [Cre13] erstellt.

Aufgrund deren Empfehlungen wurden geschlossene Fragen mit offenen Fragen kombiniert.
Auflerdem empfehlen beide Autoren nicht direkt nach Rangfolgen zu fragen, sondern diese
Frage etwas zu verschleiern. In dem entwickelten Fragebogen wurde somit ein ganzzahliges
Punktesystem von 0 (schlecht) bis 10 (sehr gut) Punkten fiir die Ansétze verwendet, wenn
auch fir die Auswertung lediglich die Reihenfolge der Ansdtze von Interesse war. Keiner der
Entwickler vergab fiir mehrere Ansatze die gleiche Punktzahl wie fiir einen anderen. Der
Fragebogen fir die Entwickler besteht aus den vier Abschnitten “Allgemein”, “Vorfithrung
Modellwerkzeuge”, “Vorfithrung generierter Code / Workflow”, “Feedback”. Der allgemeine
Teil zielt dient dabei als Einstieg in die Befragung und stellt Fragen zur bisherigen Erfahrung
des Entwicklers mit modellgetrieben Werkzeugen. Er enthalt folgende Fragen mit den

dazugehorigen Antwortmoglickeiten:

1. “Hast du bereits modellgetriebene Werkzeuge bei der Softwareentwicklung
genutzt?”:
ja/ nein

2. “Fir welchen Zweck hast du diese Werkzeuge eingesetzt?”:
offene Frage

3. “Wie wiirdest du das modellgetriebene Werkzeug im Vergleich zu einer Ent-
wicklung ohne dieses Werkzeug bewerten?”:
sehr unterlegen / unterlegen / iiberlegen / sehr iiberlegen / neutral (keine Praferenz)

4. “Was war besser oder schlechter im Vergleich zur Entwicklung ohne das ver-
wendete Werkzeug?”:
offene Frage mit Einordnung in positiv und negativ

Der Teil der Befragung zur Vorfithrung der Modellwerkzeuge zielte direkt auf die Bewertung
der drei zu vergleichenden Ansatze ab. Er enthélt folgende Fragen:

1. “Wieviel Punkte wiirdest du Variante 1 [Anmerkung: Ansatz des Industrie-
partners] geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

2. “Wieviel Punkte wiirdest du Variante 2 [Anmerkung: Akademischer Ansatz]
geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

83

7 Vergleich der Ansatze

3. “Wieviel Punkte wiirdest du Variante 3 [Anmerkung: Verwendung von
RAML] geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

4. “Was sind die Griinde fiir die einzelnen Bewertungen?”:
offene Frage

Ahnlich zur Befragung zu den Modellwerkzeugen wurde auch die Befragung im Abschnitt
“Vorfithrung generierter Code / Workflow” durchgefiithrt. Dieser Teil enthélt die gleiche
Fragen wie im vorherigen Teil, diesmal nur bezogen auf die Codegenerierung und den
eingesetzten Workflow:

1. “Wieviel Punkte wiirdest du Variante 1 [Anmerkung: Ansatz des Industrie-
partners] geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

2. “Wieviel Punkte wiirdest du Variante 2 [Anmerkung: Akademischer Ansatz]
geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

3. “Wieviel Punkte wiirdest du Variante 3 [Anmerkung: Verwendung von
RAML] geben (1 schlecht bis 10 perfekt)?”:
Antwort von 1-10

4. “Was sind die Griinde fiir die einzelnen Bewertungen?”:
offene Frage

Der Abschluss der Befragung fand im Abschnitt “Feedback” statt. Hier hatte der Entwick-
ler nochmals die Moglichkeit in offenen Fragen seine Eindriicke zu schildern. Die drei
vorbereiteten Fragen waren dabei:

1. “Wo siehst du mogliche Vorteile / Nachteile der drei vorgestellten Werkzeu-
ge?”:
offene Frage

2. “Konntest du dir den Einsatz von Teilen der Werkzeugkette vorstellen?”:
offene Frage

3. “Was miisste ein Modellingwerkzeug konnen / was fiir Eigenschaften
miisste es haben um dich zu iiberzeugen es bei der Erstellung von REST-
Schnittstellen einzusetzen?”:
offene Frage

Ein Teil der Durchfithrung der Befragung war eine Préasentation der unterschiedlichen
Ansatze. Hierfiir wurde zusammen mit dem Entwickler fiir die beiden neuen Ansétze eine
einfache REST-Schnittstelle modelliert und generiert. Die wiahrend der Befragung mittels
RAML und akademischen Ansatzes erzeugten REST-Schnittstellen entsprechen dem Layout

84

7.3 Befragung der Entwickler

Person:
« first

« last

Abbildung 7.1: Layout der Person REST-Schnittstelle

Prasentation Eigenschaften Présentation Eigenschaften Présentation Eigenschaften
Inspektion Quellcode Erstellung Person-Model Erstellung Person-Model
Inspektion Person-Projekt Inspektion Person-Projekt
Inspektion der Dienstimplementierung Inspektion der Dienstimplementierung

Abbildung 7.2: Ablauf der Entwicklerbefragung

aus Abbildung 7.1 mit den Domanenobjekt Person, bestehend aus Vor- und Nachname
(“first” und “last”). Der Ablauf der Befragung lief wie in Abbildung 7.2 dargestellt ab. Zuerst
wurde dem Entwickler die von ihm selbst mitentwickelte Losung prasentiert um erneut
Eigenschaften dieser bewusst zu machen und eine Grundlage fiir den spéteren Vergleich zu
schaffen. Die vom Industriepartner entwickelte Variante wurde als eine von Hand imple-
mentierte, auf Spring Boot basierende Losung prasentiert. Besonderer Fokus lag hierbei auf
dem bewusst machen der unterschiedlichen verwendeten Annotationen fiir das Definieren
der REST-Schnittstelle und der Doméanenklassen.

Danach wurde die akademische Losung vorgestellt, hierzu wurden zuerst die Eigenschaften
dieses Ansatzes aufgelistet und im Anschluss daran wurde, zusammen mit dem Entwickler,

7 Vergleich der Ansatze

das einfache REST-Layout modelliert und generiert. Der Entwickler hatte dann die Moglich-
keit sich die daraus resultierende Schnittstelle genau anzuschauen und auch den generierten
Code genau zu untersuchen. Nachdem die Betrachtung des gemeinsam erzeugten Projek-
tes abgeschlossen war, wurde die in Abschnitt 5.4 vorgestellte Vergleichsimplementierung
des Dienstes des Industriepartners vorgestellt. Die Prasentation war dhnlich der Erstel-
lung, also wurde zuerst das Modell vorgestellt und im Anschluss daran die dazugehorige
Implementierung.

Im Anschluss daran wurde dasselbe mittels RAML umgesetzt. Zuerst die Modellierung und
Generierung der einfachen REST-Schnittstelle und im Anschluss daran die Betrachtung der
mittels RAML umgesetzte Variante der Dienstimplementierung des Industriepartners.

Prasentation des akademischer Ansatzes

Der akademische Ansatz wurde als ein modellgetriebener Ansatz mit grafischem Editor
vorgestellt. Es wurde hier bereits darauf hingewiesen, dass im Moment nur ein Generator
fir das Dropwizard Framework existiert. Neben dem Hinweis auf das Framework, wurde
erwahnt, dass die spater gezeigte Implementierung nicht der Qualitat der vom Entwickler
bereits gekannten iibereinstimmt, da in diese viel mehr Zeit investiert wurde. Das reprasen-
tative Beispiel fiir den akademischen Ansatz sollte lediglich die Arbeit mit der generierten
Schnittstelle und den Doménenklassen aufzeigen, weitere Implementierungsdetails wie Au-
thentifizierung und das Einbinden von Logging-Losungen sollten nicht im Fokus der Arbeit
liegen. Nachdem der Ansatz vorgestellt war, wurde zusammen mit dem Entwickler eine einfa-
che REST-Schnittstelle modelliert und generiert. Das Layout dieser REST-Schnittstelle ist das
bereits vorgestellte aus Abbildung 7.1. Das Ergebnis dieser Modellierung ist in Abbildung 7.3
ersichtlich, das daraus generierte Projekt wurde mit dem Entwickler genauer inspiziert und
er konnte sich einen Eindruck machen was fiir Auswirkungen die Modellierung auf die
daraus generierte Implementierung hat.

Nach diesem kleinen Beispiel wurde dem Entwickler das Modell der Dienst Implementierung
gezeigt. Ein Bild dieses Modells ist in Abbildung 7.4 abgebildet. Der Grofteil der Arbeit an
diesem Modell war allerdings nicht die Erstellung des Layouts der verschiedenen Ressourcen
sondern das Schema der Ressourcen, da ein Sonderziel viele Informationen enthalt. Nachdem
der Entwickler sich mit dem Modell vertraut gemacht hatte wurde ihm das dazugehédrige mit
dem Codegenerator erzeugte und anschlieffend ausimplementierte Projekt prasentiert. Bei
diesem Schritt wurde besonders auf die bereits in Abschnitt 5.4 erwahnten Unterschiede zur
urspriinglichen Implementierung, inklusive deren Ursachen, eingegangen. Dem Entwickler
wurde nun noch 10 Minuten Zeit gegeben sich die Implementierung selbststindig anzusehen,
wiahrend den 10 Minuten hatte der Entwickler ausserdem jederzeit die Moglichkeit Fragen zu
stellen. Im Anschluss daran wurde der Ansatz unter Verwendung von RAML prasentiert.

86

7.3 Befragung der Entwickler

/persons

POST GET

/{person}

GET

Abbildung 7.3: Akademischer Ansatz: Layout Personenschnittstelle

root

GET
information

information

GET vl

vl
GET o8

pois
GET -
radius

radius
GET

Abbildung 7.4: Layout der Information REST-Schnittstelle

Prasentation des RAML-Ansatzes

RAML wurde dhnlich dem akademischen Ansatz als modellgetriebene Variante vorgestellt.
Zusatzlich wurde das RAML-System mit der Spezifikation und unterschiedlichem Tooling
vorgestellt. Besonders wurde darauf eingegangen, dass der eingesetzte Generator einer von
vielen ist und sich mit der Erzeugung von JAX-RS kompatiblen Schnittstellen beschrankt.
Es wurde ebenso darauf hingewiesen, dass die Qualitiat der Umsetzung des Dienstes des
Industriepartners, genauso wie bei dem akademischem Ansatz, nicht mit der des produktiv
eingesetzten Dienstes des Industriepartners vergleichbar ist.

Als niachsten Schritt wurde, wie beim akademischem Ansatz, ebenfalls zusammen mit
dem Entwickler ein Beispiel passend zum bereits vorgestellten Personen-Layout (siehe

87

7 Vergleich der Ansatze

Abbildung 7.1) erstellt. Das Resultat der Modellierung ist aufgrund der Spezifikationssprache
ein YAML-Artefakt.

Im Anschluss an die Erstellung des Modells wurde ein, wahrend der Durchfithrung der
Arbeit, vorbereitetes Mavenprojekt prasentiert, was die automatische Generierung eines
beliebigen RAML-Modells bereits integriert hat. Im Unterschied zu dem akademischem
Ansatz verfolgt der Einsatz des RAML-JAX-RS-Generators das Ziel den generierten Code
nicht in die Versionierung einzupflegen. Dem Entwickler wurde dies verdeutlicht und die
Funktionsweise der Generierung wurde ihm dabei genau erlautert. Das Generieren der
Schnittstelle und des Datenmodells ist in die generate-sources-Phase der Builderstellung
integriert. Das hat zur Folge, dass die generierten Klassen lediglich im target-Verzeichnis des
Projektes liegen und so zwar zur Kompilier- und Laufzeit verfiigbar sind aber, bei richtiger
Konfiguration der Versionierung, nicht Teil des versionierten Quellcodes sind. Der Vorteil
bei diesem Ansatz ist, dass man die Anderungen am Modell lediglich dort hat und nicht
zusatzlich an vielen Stellen der Generierung. Das Projekt wurde dann genutzt um den
Quellcode fiir das eben erstellte Personen-Modell zu erzeugen. Nun wurde dem Entwickler
noch gezeigt, wie er das Projekt ausimplementieren kann um die generierte Schnittstelle zu
nutzen. Die generierte Schnittstelle wurde nun noch genau mit dem Entwickler untersucht,
um ihm einen guten Einblick zu gewahren.

Nach der Erzeugung der Beispielschnittstelle wurde dazu tibergegangen sich das RAML-
Projekt, das fiir die Umsetzung der Schnittstelle des Industriepartners mittels RAML erstellt
wurde, zu betrachten (vergleiche Abschnitt 5.4). Hier lag der Fokus ebenso wie bei der
Prasentation des akademischen Ansatzes auf der erstellten Schnittstelle, den generiertenen
Domainenklassen sowie der Umsetzung der Implementierung unter Verwendung der gene-
rierten Klassen. Dem Entwickler wurde ebenfalls die Moglichkeit gegeben sich die mit RAML
erstellte Umsetzung 10 Minuten lang, mit Moglichkeit zu Riickfragen, zu betrachten.

Im Anschluss daran wurden weitere Fragen des Entwicklers beantwortet und zusammen
mit ihm der Fragebogen bearbeitet.

7.4 Ergebnisse der Befragung

Dieser Abschnitt soll ein einheitliches Bild iiber die Befragung der Entwickler abgeben. Auf
die offenen Fragen tiber den Grund der Bewertung wird im folgenden Abschnitt “Analyse
und Zusammenfassung” eingegangen.

Die drei befragten Entwickler waren laut eigener Aussage allgemein gegentiber der modellge-
triebenen Entwicklung nicht voreingenommen. Sie haben alle bereits mit Codegenerierung
positive wie auch negative Erfahrungen sammeln kénnen. Bei ihren Erfahrungen handelte es
sich immer um das Generieren von Doménenklassen aus UML-Modellen oder aus Swagger-
Definitionen. Einer der Entwickler gab hier explizit an, dass er bei Swagger-Definitionen

88

7.4 Ergebnisse der Befragung

oftmals sich nur die Domanenklassen generieren lasst um sie in einem selbst entwickelten
Client zu nutzen.

Alle Entwickler gaben an, dass sie bei der bisherigen Verwendung von modellbasierten
Werkzeuge keine Priaferenz gegeniiber Einsatz oder Nichteinsatz der Werkzeuge hatten.
Ein Vorteile den sie dabei erlebt haben, war dass das Modell einen iibersichtlichen Uber-
blick iiber alle Doménenklassen gab. Im weiterem Gesprach erwahnten sie, dass sie das
Modell wihrend der weiteren Entwicklung an Anderungen aus dem Quellcode anpassen
mussten. Sie nutzen das Modell also zur initialen Generierung und spéter nur noch als ge-
trenntes Dokumentationsartefakt, welches von Hand auf aktuellem Stand gehalten werden
musste. Diesen zusitzlichen Aufwand empfanden sie auch als Nachteil. Betrachtet man
diese Verwendung genau so muss man feststellen, dass es sich streng genommen hierbei
nicht um modellgetriebene Entwicklung handelt - von den Entwicklern aber als solche
wahrgenommen wurde.

Bei der Bewertung der Modellierungstools konnte eine starke Praferenz fiir das klassiche
Vorgehen festgestellt werden. Es erhielt im Durchschnitt 8,3 Punkte (genauer: 9, 8 und 8
Punkte). Auf dem zweiten Platz landete die Modellierung mittels RAML, welche in der
Befragung durchschnittlich 6,3 Punkte erhalten hat (7, 6 und 6 Punkte). Das Schlusslicht
bildete hier knapp der akademische Ansatz mit durchschnittlich 5,6 Punkten (4, 7, 6). Auffillig
war hier, dass einer der Entwickler den akademischen Ansatz mehr Punkte gegeben hat als
dem Ansatz mit Verwendung von RAML.

Wenn man die Codeerzeugungen vergleicht, so ist der Unterschied der Anséatze hier noch
deutlicher, als bei dem Vergleich der Modellierungswerkzeuge. Hier hatten alle Entwickler
die gleiche Reihenfolge gew#&hlt: Auf Platz 1 landete das klassische Vorgehen mit durch-
schnittlich 9,3 Punkten (9, 9, 10), gefolgt von RAML mit durchschnittlich 3,6 (4, 4, 3) und dem
akademischen Ansatz mit durchschnittlich 2,3 (3, 2, 2). Die Platzierungen der verschiedenen
Ansatze sowohl fiir die Modellierungswerkzeuge als auch fiir den Code und den Workflow
sind in Abbildung 7.5 visualisiert.

In der darauffolgenden Frage nach dem Grund gaben die Entwickler an, dass ihnen am
bestehenden Ansatz die volle Kontrolle iiber den Quellcode sehr zu sagt. Er ist technisch
unabhingig und leicht zu verstehen. Die beiden anderen Ansétze seien schwerer zu ver-
stehen und uniibersichtlicher. Der Grund fiir das bessere Abschneiden des Ansatzes unter
Verwendung von RAML im Vergleich zum akademischen Ansatz war laut ihnen nicht die
Qualitat des Quellcodes. Letztendlich gefiel ihnen der Workflow besser. Der Ansatz unter
Verwendung von RAML erméglicht es den generierten Code innerhalb des Projektes regel-
maflig erneut zu generieren. Dabei schafft er es durch die Trennung von generierten und
nicht generierten Code eine saubere Grundlage fiir die Versionierung zu legen. Als Nachteile
der modellgetriebenen Ansatze konnten sie die Bindung an das vom Generator verwendete
Framework identifizieren.

89

7 Vergleich der Anséatze

Bewertung Modellwerkzeuge

Akademischer Ansatz _ 5,67
ot I -

2 3 4 5 6 7 8 9 10

[

Bewertung Code/Workflow

Industriepartner 9,33

Akademischer Ansatz - 2,33

2 3 4 5 6 7 8 9 10

[y

Abbildung 7.5: Auswertung der Punktevergabe der Entwickler

Nach dem Vergleich und der Betrachtung aller Varianten duflerten die Entwickler auf die
Frage fiir welche Einsatzzwecke sie sich Teile der Werkzeuge vorstellen konnten, dass die
grafische Ansicht des akademischen Ansatzes einen gewissen Reiz hat, da sie die technischen
Informationen gut graphisch visualisiert. Sie schrankten diese Aussage allerdings direkt
wieder ein indem sie daraufhin erganzten, dass in einem Umfeld der Microservices, aufgrund
der Einfachheit der Schnittstellen, der Mehrnutzen einer solchen Visualisierung sehr gering
ist.

Als mogliche Vorteile der modellgetriebenen Ansatze nannten die Entwickler eine mogliche
schnellere Umsetzung einer REST-Schnittstelle als unter Verwendung ihrer bisherigen
Werkzeuge. Sie waren allerdings skeptisch gegeniiber dem langfristigem Einsatz beider
modellgetriebener Ansétze, da ihnen zum einen die Codequalitat nicht zusagte und sie der

90

7.5 Untersuchung mittels statischer Codeanalysewerkzeuge

Meinung waren, dass Anderungen sowohl am Modell als auch am Metamodell zu aufwendig
sind. Sie verglichen die Ansétze mit ihrer Losung eines deskriptiven Swagger-Modells und
konnten fiir sich in der Phase der Weiterentwicklung der Schnittstelle keine wirklichen
Vorteile erkennen. Auf die Frage was eine Toolchain fiir den Entwurf und die Umsetzung von
REST-Schnittstellen konnen miisste antworteten zwei der Entwickler, dass sie ungern die
Hoheit iber den generierten Code abgeben wiirden. Auf Frage nach dem Grund nannten sie,
dass sich andernde Anforderungen damit wohl nicht so frei umsetzten lassen wiirden - oder
sie zumindest Bedenken hatten alle Anforderung mit dem generiertem Code umzusetzen.

7.5 Untersuchung mittels statischer
Codeanalysewerkzeuge

Um zusétzlich zum subjektiven qualitativen Feedback der Entwickler noch eine zusatzliche
objektive Aussage festzuhalten wurden die erzeugten Code-Artefakte mittels statischer
Codeanalysen untersucht.

Die Wahl des einzusetzenden Werkzeugs fiir diese Arbeit ist auf SonarQube’ gefallen. Grund
hierfiir ist die Aggregation von vielen unterschiedlichen Analyseverfahren wie die Uberprii-
fung der Einhaltung von Richtlinien (Checkstyle), Bad practices und mogliche Programmfeh-
ler kombiniert und so einen sehr guten Gesamteindruck tiber den Zustand einer Software
gibt. Neben der Funktionalitat iiberzeugt SonarQube auch durch die Verbreitung in der
Industrie, es ist wohl das meist benutzte Werkzeug fiir die Verwaltung der Codequalitat.

In diesem Abschnitt werden zuerst die eingesetzten Metriken und Methodiken genannt,
beschrieben und den Grund fiir deren Einsatz erklart. Im Anschluss daran werden die
Ergebnisse der statischen Codeanalyse gezeigt und detailliert analysiert - hier wird dann
auch auf die mogliche Interpretation der einzelnen Metriken und Methoden, sowie auf das
prasentierte Gesamtbild eingegangen.

7.5.1 Eingesetzte Metriken und Methodiken

SonarQube bietet einige Moglichkeiten zu Analyse von Softwareprojekten an. Im Detail
wurden diese schon in den Grundlagen beschrieben, deshalb folgt hier lediglich kurz die
Nennung der verwendeten Methoden und Metriken.

Fiir die mit den verschiedenen Ansétzen erstellten Projekte wurde jeweils ein, auf die REST-
Ressourcen und Modelklassen eingeschrankter, Analyselauf durchgefiihrt. Grundlage fiir

'SonarQube: http://www.sonarqube.org/

91

http://www.sonarqube.org/

7 Vergleich der Ansatze

die spatere Auswertung waren die von SonarQube gelieferten Ergebnisse in den Kategorien
Zuverlassigkeit (Reliability), Sicherheit (Security), Wartbarkeit (Maintainability), Duplikate
(Duplications), Grofle (Size) und Komplexitat (Complexity). Die eben genannten Metriken
sind auf der entsprechenden Seite in der SonarQube Dokumentation ? genau erldutert.
Die Kategorien werden im Testlauf durch die dazu passenden Metriken reprasentiert. Die
Zuverlassigkeit wurde im Testlauf durch die Metrik “Bugs” tiberpriift. Die Bugs-Metrik hat es
nicht in die Ergebnistabelle geschafft, da keiner der Ansétze einen Bug aufgewiesen hat. Die
Basis fiir die Kategorie Sicherheit stellt die Anzahl der Schwachstellen dar. Die Wartbarkeit
wurde durch die beiden Metriken “Code Smells” und Technische Schuld abgedeckt. Die
Anzahl der duplizierten Codestellen ist der Kategorie Duplikate zuzuordnen. Die Grofie
wurde in diesem Test durch das einfache Zahlen der Anzahl der Quellcodezeilen erhoben.
Die letzte Kategorie, die Komplexitat, wurde direkt iibernommen. Diese Metrik z&hlt die
Anzahl der Verzweigungen im Quellcode. Neben den eben genannten Kategorien liefert
SonarQube zusitzlich noch weitere Werte, welche nicht fiir die Analyse genutzt wurden.
Zum einen ist das die Kategorie Dokumentation (Documentation), welche den Anteil an
Kommentaren im Quellcode aufzeigt und zum anderen die Summe aller Probleme (Issues).
Der Dokumentationsgrad ist in der Literatur sehr umstritten. Viele Entwickler vertreten die
Meinung, dass Kommentare eher vermieden werden sollten und durch sprechende Methoden
und Variablennamen ersetzt werden kénnen. Ein niedriger Dokumentationsgrad kann so also
auch ein Indikator fiir sehr hohe Codequalitit sein. Die andere nicht verwendete Kategorie
sind die zusammengefassten Probleme (Issues), da sie eigentlich eine Zusammenfassung der
bereits vorliegenden Befunde sind und so keine zusatzlichen Informationen bieten.

7.5.2 Resultate der Analyselaufe

Dieser Abschnitt zeigt die Ergebnisse der Analyseldufe, eine Analyse der Ergebnisse wird
im darauffolgendem Abschnitt durchgefiihrt. Die folgende Beschreibung der Ergebnisse ist
in der Abbildung 7.6 visuell dargestellt.

Bei den Schwachstellen ist lediglich der Ansatz unter Verwendung von RAML aufgefallen, er
weist 3 Schwachstellen auf und ist damit der einzige Ansatz der iiberhaupt Schwachstellen
aufweist. Die Code Smells reichen von den 34 der Implementierung des Industriepartners
tiber 136 bei der generierten Variante unter Verwendung des akademischen Ansatzes bis zu
393 bei dem erzeugtem Quellcode unter Einsatz des RAML-Toolings. Die technische Schuld
ist erneut beim RAML-Ansatz am hochsten und betrigt dort drei Tage, gefolgt von der
technischen Schuld der Losung des akademischen Ansatzes mit einem Tag. Am besten hat
hier erneut die Losung des Industriepartners abgeschnitten - die technische Schuld dieser
Losung betragt zwei Stunden. Betrachtet man den prozentuallen Anteil an dupliziertem Code

2SonarQube Dokumentation:
http://docs.sonarqube.org/display/SONAR/Metric+Definitions#MetricDefinitions-Reliability

92

http://docs.sonarqube.org/display/SONAR/Metric+Definitions#MetricDefinitions-Reliability

7.5 Untersuchung mittels statischer Codeanalysewerkzeuge

Schwachstellen (Anzahl)

0 1 2 3 4

RAML m Akademischer Ansatz M Industriepartner

Codeduplikate (Prozent)

2,8
I

0

0 20 40 60 80 100

RAML m Akademischer Ansatz M Industriepartner

Komplexitat (Score)

302
37

0 200 400 600 800 1000 1200

968

RAML m Akademischer Ansatz M Industriepartner

Code Smell (Anzahl)

136
34

0 100 200 300 400 500

393

RAML m Akademischer Ansatz B Industriepartner

Lines of Code (Anzahl)

1883
1056

0 1000 2000 3000 4000 5000

3824

RAML m Akademischer Ansatz M Industriepartner

Technische Schuld (Tage)

1
0,083

0 il 2 3 4

RAML m Akademischer Ansatz B Industriepartner

Abbildung 7.6: SonarQube-Ergebnisse

so fallt die Variante unter Einsatz des akademischen Ansatzes aus der Reihe. Wohingegen
die Losung des Industriepartners (0%), sowie die mittels RAML erstellte Losung (2,8%) frei
oder beinahe frei von erkannten Codeduplikaten sind, so hat die mittels des akademischen
Ansatzes erstellte Losung eine sehr hohe Quote (70%). Der Umfang der Losungen ist sehr
unterschiedlich, die kompakteste Variante bildet die Losung des Industriepartners mit 1056
Zeilen Code, gefolgt von der Losung mittels des akademischen Ansatzes mit 1883 Zeilen
Code, das Schlusslicht bildet hier die mittels RAML erzeugte Variante welche einen Umfang
von 3824 Zeilen Code hat. Bei der gemessenen Komplexitat ergibt sich ein ahnliches Bild:
Hier ist die Losung mittels RAML die komplexeste mit einer Punktzahl von 968, gefolgt von

93

7 Vergleich der Ansatze

der Losung des akademischen Ansatzes mit 302, die niedrigste Komplexitat hat die vom
Industriepartner erstellte Losung mit einer Punktzahl von lediglich 37.

7.5.3 Analyse der Ergebnisse

Bereits bei der Betrachtung der Resultate ist aufgefallen, dass die Losung mittels RAML die
einzige ist welche Schwachstellen aufweist. Schaut man sich das Ergebnis des Analyselaufs
genauer an, so fallt auf dass es sich bei den Schwachstellen mehrmals um das Werfen
einer generischen Ausnahme (Exception) in den REST-Ressourcen handelt. Scheinbar ist die
Fehlerbehandlung im generierten Code des RAML-Codegenerators nicht perfekt und sollte
fiir einen produktiven Einsatz verbessert werden.

Die Anzahl der Code Smells zeigt eine deutliche Abstufung zwischen den einzelnen L6-
sungen auf. Die vom Industriepartner erzeugte Losung hat mit Abstand am wenigsten.
Bei genauerer Betrachtung des akademischen Ansatzes fallt auf, dass viele der 136 Codes-
mells von dhnlichem Typ sind. Besonders hiufig treten dabei ungenutzte Importe (23-mal),
fehlerhafte Variablen- und Klassenbenennung (17-mal), sowie der veraltete Einsatz des
Diamond-Operators (41-mal) auf. Allein mit der Behebung dieser recht simplen Anderungen
im Generator konnten die Codesmells auf 55 reduziert werden - was schon eher an die vom
Industriepartner entwickelte Variante herankommt. Die 393 Codesmells des generierten
Code des RAML-Codegenerators sind zum Grof3teil auf den Einsatz von unnétigen Klammern
(244-mal), Duplizierung von Stringliteralen (40-mal) und der nicht korrekten Reihenfolge
von Modifikatoren (29-mal) zuriickzufithren. Der Generator erweckt den Eindruck, dass er
zur Sicherung gegen Syntaxfehler eine Klammer zuviel benutzt. Durch eine Beseitigung der
Ursachen dieser Codesmells im Generator konnte fiir diesen Fall die Anzahl der Codesmells
beachtlich reduziert werden - von anfanglich 393 wiren dann gerade noch 80 uibrig.

Die technische Schuld setzt sich aus den gerade erlduterten Codesmells und Duplikaten
zusammen. Sie gibt aber ein genaueres Bild iiber den Zustand des Codes an, da die einzelnen
Codesmells unterschiedlich schwer auszumerzen sind. Die technische Schuld aggregiert
somit die geschitzte Zeit, welche ein Entwickler fiir das Ausmerzen aller Codesmells und
Codeduplikate benétigen wiirde. Sie ist in Kombination mit der Anzahl der Codesmells
viel aussagekraftiger als die pure Anzahl an Codesmells alleine. Auch wenn die Anzahl der
Codesmells nicht unbedingt im Verhéltnis zur technischen Schuld stehen muss, so tut sie es
in diesem Fall. Die Implementierung des Industriepartners besitzt eine technische Schuld
von zwei Stunden, wohingegen die generierten Losungen eine hohere technische Schuld
aufweisen - die technische Schuld fiir die Losung mittels des akademischen Ansatzes betragt
einen Tag und die der mittels RAML erstellten Losung drei Tage.

Ein Maf3stab fiir den Umfang des Quellcodes ist die Anzahl der Codezeilen. Wie bei den
anderen Metriken spiegelt sich hier ein dhnliches Bild wider. Die vom Industriepartner von
Hand geschriebene Implementierung ist mit 1056 Codezeilen mit Abstand am kiirzesten.

94

7.5 Untersuchung mittels statischer Codeanalysewerkzeuge

Den zweiten Platz dieser Metrik belegt der erzeugte Code des akademischen Ansatzes mit
1883 Zeilen. Am langsten ist der erzeugte Code des RAML-Codegenerators mit insgesamt
3824 Zeilen. Zur Betrachtung hierfiir ist eine weitere Metrik interessant und aufschlussreich:
Die Codeduplikate. Man sieht im Schaubild, dass die Codeduplikate fiir die Implementierung
des Industriepartners (0%), sowie fiir die mittels RAML-Tooling (2,8%) erzeugten Code ver-
nachléssigbar sind. Anders hingegen ist dies beim akademischen Ansatz - hier betréagt die
Codeduplikatrate beachtliche 70%. Wenn man eine Erklarung hierfiir sucht wird man schnell
findig. Das untersuchte Beispiel benutzt fiir zwei Ressourcen dasselbe Datenmodell. Bei der
handischen Implementierung und der mittels RAML erzeugten Variante gibt es fiir beide
Ressourcen ein gemeinsames Datenmodell, bei dem akademischen Ansatz allerdings nicht.
Da in der untersuchten Schnittstelle das Datenmodell im Vergleich zur REST-Schnittstelle
relativ grof3 ist bedeutet dies auch einen erheblichen Anteil an Codeduplikaten. Der akademi-
sche Ansatz sollte in Zukunft das Datenmodell auflerhalb der Ressourcenklassen generieren.
Durch diese Ma3inahme wéren die unterschiedlichen Ressourcen zu einander kompatibel
und man konnte Hilfsklassen, Parser und andere Komponenten fiir beide Ressourcen nutzen.
Ein positiver Nebeneffekt wire in diesem Beispiel die Reduzierung der Lange des erzeugten
Codes um etwa 850 Zeilen. Somit wiirde die Lange auf in etwa 1030 Zeilen zuriickgehen
und wire somit potentiell sogar kiirzer als die handisch entwickelt Variante. Um allerdings
gerecht zu bleiben muss man gestehen, dass die von Hand geschrieben Variante einige Zeilen
nutzt um die Rest-Ressourcen sowie das Datenmodell fiir die Dokumentation mit Swagger
zu annotieren, wenn man diese Annotationen beim akademischen Ansatz einfiigen wiirde,
so wire diese in etwa 50 Zeilen ldnger als die Implementierung des Industriepartners. Der
Ausreifier in dieser Metrik ist wohl der vom RAML-Codegenerator erzeugte Quellcode mit
ganzen 3824 Zeilen Quellcode. Dies liegt daran, dass die erzeugten Modellklassen viel grofler
sind als bei den anderen Ansétzen. Ursache hierfiir sind zum einem erzeugte Hilfsfunktionen
und generische Getter, welche den Umgang mit den Modellklassen praktischer gestalten,
und zum anderem viele Annotationen welche Eigenschaften zur Serialisierung und De-
serialisierung explizit angeben und so robuster gegeniiber Eigenheiten der verwendeten
JSON-Bibliothek sind.

Die verschiedenen Metriken geben ein recht eindeutiges Bild ab. Die statische Codeanalyse
hat Schwichen der beiden Generatoren fiir die modellgetriebenen Ansatze aufgedeckt und
die Uberlegenheit der vom Industriepartner entwickelten Losung aufgezeigt. Die Ergebnisse
der statischen Codeanalyse decken sich also mit der Meinung der Entwickler in der Befra-
gung. Sie haben dartiber hinaus aber auch gezeigt, dass durch gegebenenfalls sehr einfache
Anpassungen an den Generatoren die Codequalitit des generierten Codes stark gesteigert
werden kann.

Gerechterweise kann man nun anmerken, dass die Codequalitat in einem modellgetriebenen
Ansatz eher sekundar ist, solange der generierte Code die geforderte Funktionalitét besitzt.
Aber so einfach ist es nicht - man muss bedenken, dass Schwachen wie in diesem Kapitel
aufgezeigt auch eine Fehlersuche im Quellcode erschweren. Wenn man einen modellgetrie-
benen Ansatz einfithrt, so wird man dazu iibergehen Fehler im Generator zu suchen und

95

7 Vergleich der Ansatze

auszumerzen. Bei all diesen Téatigkeiten ist eine moglichst gute generierte Implementierung
sehr erstrebenswert.

7.6 Analyse und Zusammenfassung

Die Entwickler waren in der Befragung generell von der bestehenden Losung des Indus-
triepartners iberzeugt. Prinzipiell ist dies nicht sehr iiberraschend, da sie diese Losung
selbst nach ihren speziellen Anforderungen entwickelt haben. Dennoch duflerten sie ge-
rechtfertigte Kritik an den vorgestellten modellgetriebenen Ansétzen. Sie beschrieben, dass
die Kontrolle iber den letztendlich entstehenden Code fiir sie von hochster Wichtigkeit ist
und sie ungern die Kontrolle iiber die Definition der Schnittstelle an einen Generator mit
ungewissen Regeln abgeben wiirden. Neben der generellen Kontrolle empfanden sie auch
die Bindung an die unterschiedlichen Tools und Frameworks (z.B. Eclipse, Dropwizard und
Jersey) fiir sehr stérend. Weitere Tools sind bei der tdglichen Arbeit eher storend und die
Bindung an ein bestimmtes Framework kann bei der Umsetzung spezieller Anforderungen
schnell zu einem Problem werden. Die grofiten Kritikpunkte waren letztendlich, dass die
Entwickler sich bei der Nutzung verunsichert tiber das Ergebnis der Modellierung fiihlten
und dass der generierte Code im Anschluss nicht dem entsprach, was sie selbst implementiert
hatten. Die Entwickler beschrieben dies als ein fehlendes Vertrauen in das Mapping der
Generatoren, fiir sie war es auch schwer vorherzusagen was fiir Datentypen in dem spéter,
auf Basis des Modells, generierten Quellcodes genutzt werden. Laut ihrer Aussage war dies
vor allem beim akademischen Ansatz der Fall, aber auch bei RAML war diese Ungewissheit
vorhanden. Sie meinten, dass RAML eine bessere technische Ubersicht iiber die Schnittstelle
gibt als das bei dem akademischen Ansatz der Fall ist, da bei ihm Parameter und Datentypen
nicht direkt im Schaubild ersichtlich sind. Fiir die Erkennung des Layouts einer Schnittstelle
sei der akademische Ansatz aber mit am besten geeignet.

Bei der Erstellung des Datenmodells waren die Entwickler recht verhalten und der Meinung,
dass sie weder Vor- und Nachteile fiir die Generierung des Datenmodells sehen. Die Gene-
rierung von Hand ist recht schnell, erfordert relativ wenig Denkarbeit und ist deshalb nicht
all zu fehlerbehaftet. Der Aufwand ist nicht so hoch und die Tatigkeit nicht so schwer, dass
die Entwickler hierbei unbedingt Unterstiitzung durch ein Werkzeug benétigen.

Bei der Betrachtung der von den Codegeneratoren erzeugten Quellcodes haben die Entwick-
ler auf den ersten Blick Mangel hinsichtlich der Einhaltung der Programmierrichtlinien,
beispielsweise bei der Grof3- und Kleinschreibung von Variablennamen, entdeckt. Nach
diesem ersten negativen Eindruck waren die Entwickler, ihrer Aussage nach, etwas voreinge-
nommen und haben ihre Zweifel in die moglicherweise nicht ganz einwandfreie Ubersetzung
der Modelle in Quellcode bestatigt gefiihlt. Der erste Eindruck der Entwickler lief3 sich in

96

7.6 Analyse und Zusammenfassung

den Ergebnissen der statischen Codeanalyse wieder finden. Die statische Codeanalyse besta-
tigte, dass die Codegeneratoren komplexeren, langeren und mit héherer technischer Schuld
belasteten Code generieren.

Im Allgemeinen sahen die Entwickler wenig Vorteile in der modellgetriebenen Erzeugung
einer REST-Schnittstelle im Vergleich zu der bisherigen Methode. Fiir sie ist es komfortabler
eine Schnittstelle genau so zu implementieren, wie sie es sich vorstellen und dabei, oder
im Anschluss daran, die bestehenden Methoden mit dokumentierenden Annotationen zu
versehen. Threr Aussage nach haben sie mit diesem Ansatz das beste beider Welten, eine
immer aktuelle Dokumentation und volle Kontrolle iber die technische Definition der
Schnittstelle selbst. Bei der Wahl des eingesetzten Dokumentationsframeworks haben sie
darauf geachtet, dass die Dokumentation sinnvoll in einem Browser anzeigbar ist und
zusatzlich schnell die Generierung eines passenden Clients in mehreren Sprachen erlaubt.
Swagger als Losung fiir die Annotationen der Schnittstelle wird ihrem Anspruch dabei
gerecht.

Nichtsdestotrotz muss man festhalten, dass die modellgetriebenen Ansétze auch Vorteile
besitzen. Die Entwickler gaben an, dass sie eine grafische Ansicht der Schnittstelle in
manchen Situationen fiir sehr niitzlich halten wiirden. Gerade die Darstellung in einem Graph
oder zumindest in einem Baum lasse sehr schnell Riickschliisse auf das tatsdchliche Layout
zu, was andere Ansétze nicht ermoglichen. Im Kontrast zu dem vorgegebenen akademischen
Ansatz wiirden sie es aber unterstiitzen, wenn eine solche Darstellung auf Basis ihres
Quellcodes erzeugt werden wiirde und nicht die Grundlage fiir weitere Modellierung und
spatere Ubersetzung in Quellcode bilden wiirde.

Bei der Durchfithrung der Arbeit ist aufgefallen, dass die drei Ansitze fiir verschiedene
Einsatzzwecke unterschiedlich gut geeignet sind. Dies wurde durch die Befragung der
Entwickler deutlich und durch die Durchfithrung des AHP bestatigt. Der Ansatz des Indus-
triepartners ist in der Praxis sehr gut, solange man keine sehr grofie Schnittstelle umsetzen
will. Bei einer sehr grofien Schnittstelle ist der Ansatz vermutlich weniger geeignet, da es
nicht mehr so schnell méglich sein wird eine erste Version der Schnittstellendefinition zu
erzeugen. Die Schnittstellendefinition basiert auf einer ersten Implementierung, welche sich
bei einer grofleren Schnittstelle verzogern konnte.

Die Alleinstellungsmerkmale des akademischen Ansatzes sind sicherlich die Moglichkeiten
zur grafischen Modellierung und zur Umsetzung des HATEOAS-Prinzips. Er eignet sich so
prinzipiell fiir besonders grofie Schnittstellen mit vielen Ressourcen. Im jetzigen Zustand
wird man aber vermutlich fiir die Verwendung in der Praxis einen eigenen Codegenerator
zu schreiben bzw. den aktuellen anzupassen.

RAML hat von den Ansitzen die besten Anséatze fiir Wiederverwendbarkeit und Wiederver-
wendung. Dieser Ansatz eignet sich von der Art der Spezifikation fiir fast alle Schnittstel-
len, da gemeinsam genutztes Verhalten, wie beispielsweise das in der Arbeit vorgestellte
Collection/Collection-Item Pattern, auch fiir kleine Schnittstellen einfach importiert werden

97

7 Vergleich der Ansatze

konnte. Was die Codegeneration angeht ist der Zustand dhnlich wie beim akademischen
Ansatz - auch hier wird man das bestehende Tooling an die eigenen Bediirfnisse anpassen

miussen.

98

8 Zusammenfassung und Ausblick

In dieser Arbeit wurde gezeigt wie eine bestehende Implementierung eines Industriepart-
ners in einem agilen Entwicklungsprozess mittels modellgetriebener Werkzeuge umgesetzt
werden kann. Im Laufe der Arbeit wurde die, auf Spring Boot basierende, bereits bestehende
REST-Schnittstelle unter Verwendung zweier unterschiedlicher Werkzeuge und Methoden
(RAML und der akademische Ansatz) umgesetzt. Um die Ergebnisse dieser Arbeit auf andere
Unternehmen mit anderen Entwicklern anwendbar zu machen wurde zu Beginn der Arbeit
ein Vergleich des vorliegenden Scrum-Entwicklungsprozesses mit dem Referenzscrumpro-
zess durchgefiihrt. Dieser Vergleich zeigte, dass trotz minimaler Abweichungen der Prozess
dennoch fast vollstindig dem Referenzprozess und dem Gedanken von Scrum entspricht
und somit gut mit anderen Scrumprozessen verglichen werden kann.

Neben der Erstellung der REST-Schnittstelle mittels zweier modellgetriebener Methodiken
beschiftigte die Arbeit sich desweiteren mit dem Vergleich dieser, dann in Summe drei,
Varianten. Wahrend der Erstellung der zwei modellgetriebenen Varianten konnten schon
einige Eindriicke, sowie Starken und Schwiachen der unterschiedlichen Varianten gesammelt
werden. Die entsprechenden Ergebnisse wurden im Abschnitt 7.2 gesammelt.

Anschlieffend dazu wurde eine Befragung der Entwickler des Industriepartners durchgefiihrt,
bei der sie die drei Varianten inklusive einiger Beispiele betrachten und bewerten konnten.
Die Durchfithrung und Ergebnisse der Befragung, sowie eine statische Codeanalyse der
verschiedenen Codeartefakte, bilden den Rest von Kapitel 7. In diesem Kapitel wurde deutlich,
dass der Einsatz von Modellen im Allgemeinen - der Industriepartner benutzt ja selbst
Swagger fiir die Beschreibung der Schnittstelle - sehr sinnvoll ist.

Die Befragung der Entwickler brachte ans Licht, dass die Nutzung von modellgetrieben
Werkzeugen fiir die Erzeugung von REST-Schnittstellen aus Sicht der befragten Entwickler
noch nicht zufriedenstellend umgesetzt worden ist. Die Entwickler waren sich zwar einig,
dass man sich vor der Implementierung einer Schnittstelle Gedanken tiber die Umsetzung
machen miisse, aber sahen die Erstellung einer genauen Spezifikation als einen zu hohen
Aufwand und eine zu hohe Verpflichtung an. In der agilen Softwareentwicklung, bei der
in vielen Fallen alle zwei Wochen ein neues Inkrement geliefert wird und wahrend der
Entwicklung standig neue Erkenntnisse gewonnen werden, hat ihrer Meinung nach eine
Spezifikation eher eine dokumentierende Aufgabe ohne Anspruch auf zukiinftige Einhal-
tung. Ab eines gewissen Reifegrades, bzw. ab einer gewissen Anzahl an Nutzern, ist eine
Beriicksichtigung von Kompatibilitdten unabdinglich, ob dies in einem deskriptiven (wie

99

8 Zusammenfassung und Ausblick

Swagger) oder einem préskriptiven Modell (einem der anderen beiden Ansatzen) geschieht
ist prinzipiell egal, da beide Modellarten den Ist-Zustand darstellen oder widerspiegeln.

Die Arbeit hat gezeigt, dass in dem vorliegendem Fallbeispiel die modellgetriebenen An-
satze fir die Entwickler kein zufriedenstellendes Ergebnis lieferten. Sie haben kaum einen
Mehrwert in der Arbeit mit den modellgetriebenen Ansétzen gesehen. Zu Beginn der Ar-
beit wurden die Vorteile der modellgetriebenen Softwareentwicklung genannt. Viele der
zu Beginn der Arbeit angesprochenen Vorteile von MDSD konnten bei der Generierung
von REST-Schnittstellen nicht recht ausgenutzt werden. Die Griinde hierfiir sind vielseitig:
Einerseits konnte die erhoffte Steigerung der Produktivitét nicht erreicht werden, da die
Entwickler sehr erfahren im Umgang mit dem eingesetzten Spring Boot Framework waren.
Andererseits ist der Vorteil der erhéhten Codequalitat nicht in Erscheinung getreten, da die
Generatoren, nach Eindruck der Entwickler und auch nach den Ergebnissen der statischen
Codeanalyse, schlechteren Code erzeugen als die Entwickler selbst.

Die Entwickler stellen fiir ihre Arbeit zwei grofie Anforderung an den Einsatz ihrer Werkzeu-
ge: Zum einen benoétigen sie im Umfeld ihrer Arbeit die Moglichkeit den Konsumenten ihrer
Schnittstelle eine Dokumentation inklusive der Moglichkeit zur Erzeugung unterschiedlicher
Clients bereit zustellen. Die andere Anforderung ist, dass sie die volle Kontrolle iiber den
Quellcode und die Wahl eines Frameworks benétigen. Dies ist vor allem darauf zuriickzu-
fihren, dass zu Beginn des Projektes noch nicht alle Anforderungen an die Schnittstelle
bekannt sind. Oft kommt es vor, dass im Laufe des Projektes weitere Anforderungen, wie
das Monitoring, Logging, besondere Fehlerbehandlung oder spezielle Authentifizerungs-
arten, hinzukommen. Im Falle einer generierten REST-Schnittstelle ist es dann oftmals
schwierig oder unméglich diese Anforderungen ohne die Anpassung des Codes (oder des
Codegenerators) umzusetzen.

Insgesamt muss man also sagen, dass die beiden praskriptiven Varianten zwar auf die Anfor-
derung einer Beschreibung fiir die Schnittstelle eingehen aber aufgrund des erzeugten Codes
keine ganzlich zufriedenstellenden Ergebnisse liefern. Beim betrachteten Anwendungsfall
macht es keinen grofien Sinn ein Modell zum Selbstzweck, also ohne die Verwendung von
spaterer Codegenerierung, einzufithren. Der betrachtete Dienst ist nicht umfangreich genug
und rechtfertig solch ein Modell nicht. Ein solches praskriptives Modell selbststandig, ohne
den Einsatz von Codegeneratoren umzusetzen, macht hier auch nur bedingt Sinn da diese
Art zwangslaufig zu zwei zu pflegenden Artefakten fithrt. Die dabei entstehenden Artefakte
(Modell und der dazugehorige Quellcode) sind getrennt voneinander zu pflegen, was so
zu einem doppelten Wartungsaufwand fiihrt. Sollten Anderungen am Quellcode nicht am
Modell nachgezogen werden, so entstehen Widerspriiche, welche nicht einfach erkennbar
sind aber erhebliche Auswirkung fiir die generierten Clients der REST-Schnittstelle haben.

Der Einsatz von Swagger als deskriptives Modell fiir die manuell erstellte REST-Schnittstelle
ermoglicht eine an den aktuellen Code gebundene Generierung von Clients und einer Doku-
mentation. Diese Art von Modell hat den Vorteil, dass kaum Diskrepanzen zwischen Modell
und eigentlicher Implementierung entstehen konnen, da die Implementierung Grundlage

100

des Modells ist. Die handische Umsetzung und anschlieende Erzeugung eines Modells hat
auch den weiteren Vorteil, dass die Entwickler die volle Kontrolle uber den entstehenden
Quellcode haben. Diese Kontrolle fithrt zu mehr Freiheit bei der Umsetzung von Anforderun-
gen und einer hoheren Qualitit in Form von Konformitét des Quellcodes gegeniiber selbst
bestimmten oder ausgewahlten Richtlinien.

Das sind im Wesentlichen auch die Griinde des Industriepartners fiir die bisherige Entschei-
dung fiir dieser Variante. Wahrend dieser Arbeit hat sich diese Wahl im Vergleich mit den
anderen beiden modellgetriebene Ansatzen bewahrt.

Ausblick

Die Verwendung von modellgetriebenen Anséitzen zum Entwurf und der Realisierung von
REST-Schnittstellen konnte die Entwickler des Industriepartners nicht iiberzeugen. Die Frage
nach den Griinden wurde bereits im vorherigen Abschnitt diskutiert. Zusammenfassend
kann man sagen, dass die Nutzung eines modellgetriebenen Ansatzes einen dhnlichen
Aufwand mit sich bringt, aber ein qualitativ schlechteres Ergebnis zur Folge hat. Dieser
Zusammenhang schreckt die Entwickler ab, da sie letztendlich an der Funktion und Qualitat
ihrer Software gemessen werden und nicht an der Art wie sie Software entwickeln. Auflerdem
erschweren sie sich, durch die Generierung von Quellcode mit hoherer technischer Schuld,
ihre zukiinftige Arbeit bei der Weiterentwicklung und Wartung.

Wenn man diese Arbeit kritisch betrachtet so wird man sich damit auseinander setzen
miissen, dass der Vergleich zwischen den Ansatzen nicht ganz gerecht war. Die Entwickler
kannten ihre eigene Implementierung bereits und sind mit der Art der Umsetzung, bei-
spielsweise die Wahl des Frameworks, deshalb sicher sehr zufrieden. Die Entwickler waren
auflerdem zum einen skeptisch aufgrund der unterschiedlichen Frameworks zwischen den
Ansatzen und zum anderen stark abgeschreckt von der Qualitat des von den Generatoren er-
zeugten Quellcodes. Es wire sicherlich interessant in einer zukiinftigen Arbeit zu sehen wie
eine Befragung der Entwickler ausfallen wiirde, wenn die vorgestellten modellgetriebenen
Ansitze einen dem Code des Industriepartners sehr dhnlichen Quellcode erzeugen wiirde.
Fir die Durchfithrung einer solchen Befragung im vorliegendem Projekt des Industriepart-
ners misste fir die beiden modellgetriebenen Ansétze jeweils ein SpringBoot-Codegenerator
entwickelt werden.

Weiterhin muss festgehalten werden, dass es im Moment keinen Standard zur Beschreibung
von REST-Schnittstellen gibt. Bei anderen Schnittstellenformaten wie Beispielsweise SOAP
hat sich ein Standard (die Web Service Description Language (WSDL)) etabliert. Vermut-
lich ist einer der Grunde fur das Fehlen eines solchen Standards, nicht etwa das Alter des
REST-Architekturstils, sondern eher die fehlende Notwendigkeit. Die Verwendung einer
REST Schnittstelle besitzt eine niedrigere Einstiegsschwelle fiir den Anwender. Viele bei

101

8 Zusammenfassung und Ausblick

einer Kommunikation zu klarenden Parameter, wie die Wahl des Protokolls, die Definition
der Operationen und Datentypen werden einem durch den HTTP-Standard, sowie gangige
Best-Practices, bereits abgenommen. Einige REST-Puristen wie Roy Fielding erklaren soge-
nannte ‘out-of-band’ Informationen, welche aufferhalb des Primérkanals tibermittelt werden
- wozu sicher auch Dokumentationen zédhlen, als problematisch und Indikator fiir fehlende
Umsetzung von HATEOAS. Aus ihrer Sicht ist ein solcher Standard nicht weiter notwendig
und deshalb vermeidbar. In der Praxis allerdings sind deskriptive Ansétze, wie Swagger,
weitverbreitet. Der REST-Architekturstil konnte von solch einem Standard fiir die Model-
lierung stark profitieren. Keiner der vorgestellten Ansétze tiberpriift die erstellten Modelle
auf Umsetzung von allgemein giiltigen Best-Practices. Die Herausbildung eines allgemein
anerkannter Standards konnte die Entwicklung von Werkzeugen, welche den Entwickler
tiber die ledigliche Erstellung eines Modells hinaus unterstiitzen, extrem beschleunigen.

Prinzipiell fanden die Entwickler die modellgetriebenen Ansétze sehr interessant aber ver-
besserungswiirdig. Um modellgetriebene Ansiatze beim Entwurf und der Umsetzung von
REST-Schnittstellen in der Praxis weiterzubringen wird es sicherlich notwendig sein den
Entwicklern mehr als nur eine Méglichkeit geben ihre Schnittstellen zu beschreiben. Es muss
ein Bewusstsein dafiir geschaffen werden, dass MDSD kein Allheilmittel fiir alle Probleme
der Entwickler ist, sondern eine Moglichkeit ihre eigene Produktivitdt und Leistung zu erho-
hen. Diese eben erwahnte Produktivitatssteigerung bekommt man nicht geschenkt. Hierfiir
muss die ganze Werkzeugkette verbessert werden. Es ist eine unrealistische Erwartung, aus
einer Spezifikation ein Artefakt zu generieren, welches genau so aussieht wie man es nach
langer Arbeit selber umgesetzt hitte - dieser Anforderung kann man nur gerecht werden,
wenn man den Generator selber geschrieben hat oder ihn seinen Anspriichen entsprechend
angepasst hat. Fiir Entwickler ist es wichtig ihre verwendeten Werkzeuge anpassen zu kon-
nen, ganz besonders wenn sie Quellcode erzeugen, welcher unverandert spater produktiv
eingesetzt werden soll. Deshalb sollten Entwickler bei den unterschiedlichen Ansétzen dazu
bemachtigt werden ihre Generatoren selbst zu konfigurieren oder zu verbessern um fiir sich
passende Losungen zu finden. Die modellgetriebene Umsetzung einer REST-Schnittstelle
endet eben nicht mit der Erstellung eines Modells - sondern erst nach der Fertigstellung der
tatsachlichen REST-Schnittstelle.

102

Abkurzungsverzeichnis

Abkiirzung Bedeutung Erstes Vorkommen
AHP Analytische Hierarchieprozess 79
API Application Programming Interface 19
CD Continous Deployment 48
CI Continous Integration 48
HATEOAS Hypermedia as the Engine of Application State 21
HTML Hypertext Markup Language 21
JSON JavaScript Object Notation 20
MDSD Modellgetriebene Softwareentwicklung 31
npm Node Package Manager 57
PO Product Owner 27
RAML Restful Api Modeling Language 34
REST REpresentational State Transfer 13
SM Scrum Master 27
URI Uniform Resource Identifier 21
WADL Web Application Description Language 35
WSDL Web Service Description Language 101
XML Extensible Markup Language 20

103

Literaturverzeichnis

[All10]
[Armo03]

[Bad]

[BBV+01]

[BKA+07]

[BS87]

[Cag]
[Cre13]

[DOWZ15]

[FGM+99]

[Fie00]

S. Allamaraju. Restful web services cookbook: solutions for improving scalability
and simplicity. O’Reilly Media, Inc., 2010 (zitiert auf S. 22, 23).

P.G. Armour. The Laws of Software Process: A New Model for the Production
and Management of Software. CRC Press, 2003 (zitiert auf S. 25).

V. Badola. Microservices architecture: advantages and drawbacks. URL: http:
//cloudacademy.com/blog/microservices-architecture-challenge-advantage-
drawback/ (zitiert auf S. 30).

K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fow-
ler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al. Manifesto for agile
software development. 2001 (zitiert auf S. 25).

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo. ,,Comparison and eva-
luation of clone detection tools“. In: IEEE Transactions on Software Engineering
33.9 (2007), S. 577-591 (zitiert auf S. 40).

V.R. Basili, R.W. Selby. ,Comparing the effectiveness of software testing
strategies”. In: IEEE transactions on software engineering 12 (1987), S. 1278-
1296 (zitiert auf S. 40).

S. Caganoft. Anypoint for APIs: An Interview with Uri Sarid. URL: https://www.
infoq.com/news/2014/02/anypoint-api-sarid (zitiert auf S. 34).

J. W. Creswell. Qualitative inquiry and research design: Choosing among five
approaches. Sage, 2013 (zitiert auf S. 83).

P. Diebold, J.-P. Ostberg, S. Wagner, U. Zendler. ,What do practitioners vary
in using scrum?” In: International Conference on Agile Software Development.
Springer. 2015, S. 40-51 (zitiert auf S. 26).

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee.
Rfc 2616, hypertext transfer protocol-http/1.1. 1999. URL: https://www.w3.org/
Protocols/rfc2616/rfc2616.html (zitiert auf S. 22).

R.T. Fielding. ,Architectural styles and the design of network-based software
architectures®. Diss. University of California, Irvine, 2000 (zitiert auf S. 13, 15,
20).

105

http://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
http://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
http://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://www.infoq.com/news/2014/02/anypoint-api-sarid
https://www.infoq.com/news/2014/02/anypoint-api-sarid
https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.w3.org/Protocols/rfc2616/rfc2616.html

Literaturverzeichnis

[Fie08]

[Fow09]

[GGS+]

[Gol]

[Haz]

[HFK+14]

[HKLS14]

[HLP15]

[Jai]

[Jau]

[Jee]

106

R.T. Fielding. ,REST APIs must be hypertext-driven®. In: Untangled musings
of Roy T. Fielding (2008). UrL: http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven (zitiert auf S. 24).

N. Freed, J. Klensin, T. Hansen. Media type specifications and registration proce-
dures. Techn. Ber. 2013 (zitiert auf S. 77).

M. Fowler, J. Lewis. Microservices. URL: http://www.martinfowler.com/articles/
microservices.html (zitiert auf S. 30).

M. Fowler. Refactoring: improving the design of existing code. Pearson Education
India, 2009 (zitiert auf S. 29).

P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, S. Abeck. Best Practices for
the Design of RESTful Web Services (zitiert auf S. 75, 76).

K. Goldsmith. How Spotify Builds Products (Organization. Architecture, Autono-
my, Accountability). Spotify. URL: http://de.slideshare.net/kevingoldsmith/how-
spotify-builds-products-organization-architecture-autonomy-accountability
(zitiert auf S. 30).

L. Hazlewood. Design Beautiful REST + JSON APIs. Stormpath. URL: http:
/Iwww.slideshare.net/stormpath/rest-jsonapis (zitiert auf S. 75, 76).

F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, K. Vukojevic-Haupt.
sService Composition for REST®. In: 2014 IEEE 18th International Enterprise
Distributed Object Computing Conference, EDOC 2014. IEEE, 2014, S. 110-119.
por: 10.1109/EDOC.2014.24 (zitiert auf S. 37).

F. Haupt, D. Karastoyanova, F. Leymann, B. Schroth. ,A Model-Driven Ap-
proach for REST Compliant Services®“. In: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS 2014). IEEE, 2014, S. 129-136. DoT1:
10.1109/ICWS.2014.30 (zitiert auf S. 34, 36).

F. Haupt, F. Leymann, C. Pautasso. ,A conversation based approach for mode-
ling REST APIs". In: 12th Working IEEE / IFIP Conference on Software Architecture
- WICSA 2015. IEEE Computer Society, 2015 (zitiert auf S. 37).

S. Jain. Interview with Ken Schwaber. URL: https://web.archive.org/web/
20120316064715/http://www.agilecollab.com/interview-with-ken-schwaber
(zitiert auf S. 26).

S. Jauker. 10 Best Practices for Better RESTful API. M-Way Solutions. URL: http:
//blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-
api/ (zitiert auf S. 75, 76).

K.S. Jeef Sutherland. Scrum Guides. URL: http://scrumguides.org/ (zitiert auf
S. 26, 42).

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.martinfowler.com/articles/microservices.html
http://www.martinfowler.com/articles/microservices.html
http://de.slideshare.net/kevingoldsmith/how-spotify-builds-products-organization-architecture-autonomy-accountability
http://de.slideshare.net/kevingoldsmith/how-spotify-builds-products-organization-architecture-autonomy-accountability
http://www.slideshare.net/stormpath/rest-jsonapis
http://www.slideshare.net/stormpath/rest-jsonapis
http://dx.doi.org/10.1109/EDOC.2014.24
http://dx.doi.org/10.1109/ICWS.2014.30
https://web.archive.org/web/20120316064715/http://www.agilecollab.com/interview-with-ken-schwaber
https://web.archive.org/web/20120316064715/http://www.agilecollab.com/interview-with-ken-schwaber
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-restful-api/
http://scrumguides.org/

Literaturverzeichnis

[KL95]

[Kom12]

[Kum]

[KWB03]

[LF]
[MM+01]
[MM+03]

[Mye78]

[New15]
[Proi15]
[RCK09]

[Roy70]

[Sah]

[Scr]
[Sel03]

[SRD14]

E. Kamsties, C. M. Lott. ,An empirical evaluation of three defect-detection
techniques®. In: European Software Engineering Conference. Springer. 1995,
S. 362-383 (zitiert auf S. 40).

A. Komus. ,Status Quo Agile“. In: Studie zur Verbreitung und Nutzen agiler
Methoden. Hochschule Koblenz (2012) (zitiert auf S. 24).

S. Kumar. 8 Benefits of Microservices | Digital Transformation. URL: http://blogs.
perficient.com/digitaltransformation/2015/06/01/microservices-and-its-
benefits/ (zitiert auf S. 30).

A.G. Kleppe, J. B. Warmer, W. Bast. MDA explained: the model driven archi-
tecture: practice and promise. Addison-Wesley Professional, 2003 (zitiert auf
S. 17).

J. Lewis, M. Fowler. Microservices. URL: http://martinfowler.com/articles/
microservices.html (zitiert auf S. 30).

J. Miller, J. Mukerji et al. ,Model driven architecture (mda)®. In: Object Manage-
ment Group, Draft Specification ormsc/2001-07-01 (2001) (zitiert auf S. 17).

J. Miller, J. Mukerji et al. MDA Guide Version 1.0. 1. 2003 (zitiert auf S. 17).

G.J. Myers. ,A controlled experiment in program testing and code walkth-
roughs/inspections®. In: Communications of the ACM 21.9 (1978), S. 760-768
(zitiert auf S. 40).

S. Newman. Building Microservices. O’Reilly Media, Inc., 2015 (zitiert auf S. 30).
T. Prochazka. Model-Driven Development of REST APIs. 2015 (zitiert auf S. 39).

C.K. Roy, J.R. Cordy, R. Koschke. ,Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach®. In: Science of Computer
Programming 74.7 (2009), S. 470-495 (zitiert auf S. 40).

W. W. Royce. ,Managing the development of large software systems®. In: pro-
ceedings of IEEE WESCON. Bd. 26. 8. Los Angeles. 1970, S. 328-338 (zitiert auf
S. 24, 25).

V. Sahni. Best Practices for Designing a Pragmatic RESTful APL Enchant. URL:
http://www.vinaysahni.com/best- practices-for-a- pragmatic- restful - api
(zitiert auf S. 75, 76).

Scrum Inc. The Scrum Framework - Scrum Inc. Scrum Inc. URL: https://www.
scruminc.com/scrum-framework/ (zitiert auf S. 28).

B. Selic. , The pragmatics of model-driven development®. In: IEEE software 20.5
(2003), S. 19 (zitiert auf S. 17, 18).

M. Schmid, T. Rohloff, P. Duwe. ,Musterlésungen und Best Practices fiir das
Design und die Realisierung von REST-Schnittstellen®. In: (2014) (zitiert auf
S. 75, 76).

107

http://blogs.perficient.com/digitaltransformation/2015/06/01/microservices-and-its-benefits/
http://blogs.perficient.com/digitaltransformation/2015/06/01/microservices-and-its-benefits/
http://blogs.perficient.com/digitaltransformation/2015/06/01/microservices-and-its-benefits/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api
https://www.scruminc.com/scrum-framework/
https://www.scruminc.com/scrum-framework/

[Ste]

[SVC06]

[The]

[Tur10]

[Wid15]

[WL06]

[Wol]

[ZWN+06]

G. Steinacker. Von Monolithen und Microservices - Informatik Aktuell. URL:
https://www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-
und-microservices.html (zitiert auf S. 30).

T. Stahl, M. Voelter, K. Czarnecki. Model-driven software development: techno-
logy, engineering, management. John Wiley & Sons, 2006 (zitiert auf S. 31).

The White House. WhiteHouse Api Standards. The White House. URL: https:
//github.com/WhiteHouse/api-standards (zitiert auf S. 75, 76).

D. W. Turner IIL. ,Qualitative interview design: A practical guide for novice
investigators®. In: The qualitative report 15.3 (2010), S. 754 (zitiert auf S. 83).

R. Wideberg. RESTful Services in an Enterprise Environment: A Comparative
Case Study of Specification Formats and HATEOAS. 2015 (zitiert auf S. 39).

D. Waddington, P. Lardieri. ,Model-Centric Software Development®. In:
COMPUTER-IEEE COMPUTER SOCIETY 39.2 (2006), S. 2 (zitiert auf S. 32).

E. Wolf. Microservice-Architekturen nicht nur fiir agile Projekte - Informatik
Aktuell. UrL: https://www.informatik-aktuell.de/entwicklung/methoden/
microservice-architekturen-nicht-nur-fuer-agile-projekte.html (zitiert auf
S. 30).

J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, M. A. Vouk. ,On
the value of static analysis for fault detection in software®. In: IEEE transactions
on software engineering 32.4 (2006), S. 240-253 (zitiert auf S. 29).

Alle URLs wurden zuletzt am 07.11. 2016 gepriift.

https://www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-und-microservices.html
https://www.informatik-aktuell.de/entwicklung/methoden/von-monolithen-und-microservices.html
https://github.com/WhiteHouse/api-standards
https://github.com/WhiteHouse/api-standards
https://www.informatik-aktuell.de/entwicklung/methoden/microservice-architekturen-nicht-nur-fuer-agile-projekte.html
https://www.informatik-aktuell.de/entwicklung/methoden/microservice-architekturen-nicht-nur-fuer-agile-projekte.html

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu ha-
ben. Ich habe keine anderen als die angegebenen Quellen
benutzt und alle wortlich oder sinngeméf} aus anderen Wer-
ken tibernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren
bisher Gegenstand eines anderen Priifungsverfahrens. Ich
habe diese Arbeit bisher weder teilweise noch vollstandig
veroffentlicht. Das elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

	1 Einleitung
	1.1 Motivation
	1.2 Ziel
	1.3 Vorgehen
	1.4 Aufbau der Arbeit

	2 Grundlagen
	2.1 Modellierung
	2.2 Programmierschnittstellen
	2.3 REST
	2.4 Scrum
	2.5 Statische Codeanalyse
	2.6 Microservice-Architektur
	2.7 Modellgetriebene Softwareentwicklung
	2.8 Modellbasierte Ansätze für REST-Schnittstellen

	3 Verwandte Arbeiten
	3.1 Modellgetriebene Erstellung von REST-Diensten
	3.2 Vergleich von Werkzeugen und Entwicklungsansätzen

	4 Projekt beim Industriepartner
	4.1 Der Industriepartner
	4.2 Der Service
	4.3 Nutzung von Beschreibungssprachen für REST APIs

	5 Methoden und Tools für den Entwurf von REST-APIs
	5.1 Methoden und Tools des IST-Zustands
	5.2 Restful Api Modeling Language
	5.3 Akademischer Ansatz
	5.4 Erstellung der Modell-Artefakte

	6 Methoden und Tools für die Realisierung von REST-APIs
	6.1 Methoden und Tools des IST-Zustands
	6.2 Restful Api Modeling Language
	6.3 Akademischer Ansatz

	7 Vergleich der Ansätze
	7.1 Best-Practices: Entwurf von REST-Schnittstellen
	7.2 Evaluierung durch den Autor
	7.3 Befragung der Entwickler
	7.4 Ergebnisse der Befragung
	7.5 Untersuchung mittels statischer Codeanalysewerkzeuge
	7.6 Analyse und Zusammenfassung

	8 Zusammenfassung und Ausblick
	Abkürzungsverzeichnis
	Literaturverzeichnis

