
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 73

Protecting Private Information in
Event Processing Systems

Yves Grau

Course of Study: Informatik

Examiner: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Supervisor: Dr. rer. nat. Muhammad Adnan Tariq

Commenced: July 15, 2015

Completed: January 14, 2016

CR-Classification: C.2.1, C.2.4, D.4.6, K.6.5

Abstract

With the increasing number of sensors and smart objects in our daily use, the Internet of
Things (IoT) becomes realistic. Thereby, modern applications like “e-health applications”
or “smart homes” join our everyday life. These applications have the capability to
detect situations of the real world and react to them. Complex Event Processing (CEP)
systems can detect such occurring situations, which are in the form of event patterns,
efficiently.

Besides many benefits which such applications entail, it should not be forgotten that they
have a huge impact on privacy. Therefore, it is important that a user has the possibility
to decide on his own which complex information he wants to share and which not. This
thesis presents a pattern-based access control algorithm which tries to conceal all privacy
information in an event stream without destroying the public information. The idea is
to reorder a specific set of events of the event stream in such a way that patterns which
would result in privacy violations do not longer occur. The evaluation shows that a
reorganization of events is possible in many cases without loss of public information.

Kurzfassung

Das Internet der Dinge (InD) wird mit zunehmender Anzahl von Sensoren und „Smart
Objekten“ im täglichen Gebrauch immer realistischer. Dadurch erhalten neuartige
Anwendungen wie „E-Health Applikationen“ oder „Smart Homes“ Einzug in unseren
Alltag. Diese Anwendungen besitzen die Fähigkeit, Situationen aus der realen Welt
zu erkennen und entsprechend darauf zu reagieren. Complex Event Processing (CEP)
Systeme können solche auftretenden Situationen effizient in Form von Ereignismustern
erkennen.

Neben den vielen Vorteilen, die solche Anwendungen mit sich bringen, sollte jedoch nicht
vergessen werden, dass sie einen immensen Eingriff in die Privatsphäre vornehmen. Da-
her ist es wichtig, Nutzern die Möglichkeit zu bieten selbst zu entscheiden, welche ihrer
komplexen Informationen geteilt werden sollen und welche nicht. Diese Masterarbeit
stellt einen musterbasierten Algorithmus vor, welcher versucht alle privaten Informatio-
nen in einem Ereignisstrom zu verschleiern ohne dabei die öffentlichen Informationen zu
zerstören. Die Idee ist, ausgewählte Ereignisse des Ereignisstroms so umzustellen, dass
bestimmte Muster, welche eine Verletzung der Privatsphäre zur Folge hätten, nicht mehr
auftreten. Die Evaluierung zeigt, dass in vielen Fällen eine Umstellung von Ereignissen
ohne Verlust von öffentlichen Informationen möglich ist.

i

Contents

1 Introduction 1
1.1 Contribution . 3
1.2 Structure of the Thesis . 4

2 Related Work 5
2.1 Background of Event Processing Systems 5
2.2 Event Specification Languages . 6
2.3 Parallel Complex Event Processing . 8
2.4 Privacy in Event Processing Systems . 8

2.4.1 Access and Information Flow Control 8
2.4.2 Pattern-based Access Control . 9

3 System Model and Problem Description 13
3.1 System Model . 13

3.1.1 Event Data Model . 16
3.1.2 Query Model . 16
3.1.3 Selection Policy . 18
3.1.4 Consumption Policy . 19

3.2 Problem Description . 19

4 Pattern-based Access Control: Event Stream Reordering 23
4.1 Overview . 23

4.1.1 Impact of Potential Events for Reordering 24
4.1.2 Impact of Potential Positions for Reordering 28
4.1.3 Impact of the Inter Arrival Rate 31
4.1.4 ε-Range . 34

4.2 Graph-based Reordering Algorithm . 38
4.2.1 Graph Generation . 38
4.2.2 Algorithm . 40
4.2.3 Reordering Condition . 43
4.2.4 Choosing an Ordering Relation of the Private Pattern 44
4.2.5 Avoidance of False-Positives . 45

iii

4.2.6 Multiple Occurrences of the Same Event Type 46
4.2.7 Different Granularities . 48

4.3 ILP-based Reordering Algorithm . 49
4.3.1 ILP Formulation . 49
4.3.2 Choosing an Ordering Relation 51
4.3.3 Avoidance of False-Positives . 51
4.3.4 Multiple Occurrences of the Same Event Type 52

4.4 Algorithm Comparison . 52

5 Evaluation 53
5.1 Setup and Parameters . 53
5.2 Evaluation of the ε-Range . 55
5.3 Evaluation of the Window Size . 57
5.4 Evaluation of the Number of Queries . 59
5.5 Evaluation of the Selectivity of Patterns 61
5.6 Evaluation of the Number of Event Types 63
5.7 Discussion . 65

6 Conclusion and Future Work 67

Bibliography 69

iv

List of Figures

1.1 Architecture of a CEP system [CM13] . 1

2.1 Model of a Data Stream Management System[BW01] 6
2.2 An attacker can infer that P1 has a match because of the matches of Q1

and Q2 [WHRN13]. 10
2.3 Sub-optimal type-level solution [WHRN13]. 11

3.1 Model of a CEP system with an operator graph consisting of 3 producers,
5 operators and 2 consumers. The event definition rules specify the
resulting high-level events out of the incoming event streams. 13

3.2 Simplified model of a CEP system with the additional Pattern-based Access
Control component. 15

3.3 Example event stream. 16
3.4 An event stream with a match of query Q. 17
3.5 An event stream without a match of query Q. 17
3.6 An event stream with several possible combinations for a match of query Q. 18
3.7 An event stream with two matches of Q1 and one match of Q2. 19
3.8 An event stream with a match of the queries Q1, Q2 and Q3 as well as a

match of the private pattern P1. 20
3.9 The three possible modified event streams of the event suppression ap-

proach. Each of them introduces a false-negative. 21
3.10 Input (a) and result stream (b) of the event stream suppression approach. 22
3.11 Modified event stream of the reordering approach with a match of the

queries Q1, Q2 and Q3. No false-negative is introduced. 22

4.1 Input event stream with matching queries Q1 and Q2 as well as a match
of the private pattern P1. 24

4.2 Modified event stream with delayed event instance A1. The private
pattern P1 is concealed. 25

4.3 Modified event stream with delayed event instance C1. The private
pattern P1 is concealed. Not matching Q1 introduces a false-negative. . . 26

v

4.4 The modified event stream with event E1 moved to the position before
C1. P1 is concealed. A false-negative is introduced because Q2 has no
match. 26

4.5 Input event stream with a match of Q2 and P1. 27
4.6 Modified event stream with delayed event instance A1. Queries Q2 and

Q3 have a match. The reordering algorithm introduced a false-positive
because of Q3. 27

4.7 Modified event stream with delayed event E1. The private pattern is
concealed without introducing a false-positive or false-negative. 28

4.8 Input event stream with a match of Q1, Q2 and private pattern P1. 29
4.9 Modified event stream with moved event instance C1. A false-negative is

introduced because Q1 has no match anymore. 29
4.10 Three possible modified event streams to negate the ordering relation

or(A, C) by delaying the event instance A1. 30
4.11 Input event stream which contains a match of Q1, Q2, Q3 and P1. The

private pattern cannot be concealed without introducing a false-negative. 31
4.12 Input event stream (a) and the corresponding modified event stream (b)

after reordering. 32
4.13 Window size is smaller than the static inter arrival rate of 5. 33
4.14 Input event stream with events which have different static inter arrival

rates. 33
4.15 Input event stream (a) and the corresponding modified event stream (b)

with changed inter arrival rate. 34
4.16 Monitored inter arrival rates. 35
4.17 Monitored inter arrival rate (a) and the normal distribution (b) according

to which the event type is generated. 36
4.18 The probability distribution of an event type of the monitored event

stream should be the same as of the original event stream. 37
4.19 Input event stream with annotated inter arrival times. 38
4.20 Graph generation steps. 39
4.21 Changes of the graph transformation algorithm. 42
4.22 Resulting event stream of the graph-based reordering algorithm. 42
4.23 Visually interpretation of the reordering condition. 43
4.24 Graph generation with the ordering relation for negation. 44
4.25 Possible modified event stream of the reordering algorithm. 46
4.26 Graph with edge to avoid false-positive. 46
4.27 Input event stream with a double sized window. 47
4.28 Graph generation with multiple events of the same type. 47
4.29 Input event stream. 50
4.30 Modified event stream of the ILP-based algorithm. 51

vi

5.1 Evaluation of the ε-Range. 56
5.2 Evaluation of the window size. 58
5.3 Evaluation of the number of queries. 60
5.4 Evaluation of the selectivity of patterns. 62
5.5 Evaluation of the number of event types. 64

List of Tables

4.1 Summery of the possible solutions of the reordering approach to the
example of section 4.1. The table considers the two different ordering
relations of the private pattern P1 which define the events for reordering.
Additionally, the table shows the different positions where these events
can be placed on. 30

List of Algorithms

4.1 Topological Sorting [Kah62] . 40
4.2 Graph Transformation . 41

vii

1 Introduction

The Internet of Things (IoT) becomes more and more important. The number of items
and devices which are connected to the internet increases very strongly and this growth
is expected to hold on [Int14]. Therefore, security, privacy and scalability is a huge issue
in the field of IoT applications. Very powerful systems in the area of IoT are stream
processing systems [CM12a], especially complex event processing (CEP) systems.

CEP systems process primitive sensor data event streams to monitor and react to occur-
ring situations in the real world. An abstract architecture of a CEP system is shown in
Figure 1.1. A CEP system basically consists of a set of producers, a set of consumers, a
set of event definition rules and the CEP middleware. The producers generate primitive
events of a certain event type and send them to the CEP middleware. According to
the event definition rules, the CEP middleware processes the incoming event stream,
generates high-level events and routes these to interested consumers. The consumers
react according to the reported information [CM13]. In other words, physical sensors
(producers) observe the real world, the CEP middleware detects specific predefined
situations and the consumers react to them. For instance, consider a car tracking appli-
cation as a CEP system. Producers are the sensors in the car which capture information
like GPS-position, velocity, oil temperature, tire pressure and other sensors. The CEP
middleware can monitor the status of the car. This status will be routed to the consumers,
for example a car repair shop or the car insurance. According to the reported status, the
car repair shop can order spare parts in advance and make an appointment if a part of
the car seems to break down in near future. The car insurance can, for example, adjust

Figure 1.1: Architecture of a CEP system [CM13]

1

1 Introduction

its fees according to the driving behavior of the owner. Consequently, an owner can
influence the height of the fee he has to pay, for instance, by the treatment of his car, the
frequency and duration of driving and by following the traffic rules.

Along with the increasing number of IoT applications goes the rising amount of revealed
critical private data. The example above shows clearly that privacy and security are
huge issues in the field of IoT. It is quite easy to see that the fee of the car insurance
company will rise if a critical driving behavior is recognized. For that reason, the owner
needs a mechanism to restrict the stream of data to the IoT application or at least to
the different consumers. Current access control mechanisms mainly focus on restricting
the access on specific attributes or flows [CCFT09], [ARX11], [XRAG13], [MPE+10],
[SKRR13]. Often, those approaches are not sufficient. Just consider a case where a
pattern of ordered event types, and not an attribute value of appearing events, leads to a
privacy violation. Because of these privacy violations, there is a need for a pattern-based
access control mechanism to suppress unintended patterns in the revealed data of the
IoT application. All patterns which lead to a privacy violation are called private patterns
or concealed patterns. The patterns which should be revealed to the system, because
they capture no critical private information, are called public patterns. We talk about a
pattern match if the event stream contains this specific public or private pattern.

To the best of our knowledge, there is currently only one solution [WHRN13] challenging
the problem of pattern-based access control. Their basic idea is to modify the event stream
to the CEP middleware in such a way that it contains no private patterns. If a private
pattern occurs in the original event stream, their strategy is to suppress one event
instance which participates in that specific private pattern. Consequence is that no
private pattern remains in the modified event stream and therefore, the CEP middleware
cannot reveal the critical private information.

One problem with this approach is that in some cases also public patterns are suppressed.
Assume an original event stream which contains a match for a private and a match for a
public pattern. Due to the private pattern match, the algorithm suppresses one event
instance which participates in that. Therefore, the CEP middleware does not recognize
the private pattern and the critical private data stays hidden from the application. But
consider the case that the suppressed event instance also participates in the public
pattern. This means that the modified event stream does not only lose the information
of the private pattern but also the information of the public pattern. The suppression
introduces a not matching public pattern. Hence, the IoT application does not get some
uncritical privacy information which usually should be revealed. This has undoubtedly
a negative effect on the systems Quality of Service (QoS). Another aspect is the very
high impact of the suppression approach on the inter arrival rates of events. The inter
arrival rate defines the time span from the arrival of an event until the next arrival of
such an event of the same type at the system [Raq12]. Consider static inter arrival rates

2

1.1 Contribution

of events. For instance, an event type has an inter arrival rate of 5ms. Suppressing one
event of this type leads to a doubled inter arrival rate of 10ms in the modified event
stream. For an attacker it might be possible to detect these anomalies and reproduce
the original event stream without suppressed events, by simply observing the event
stream.

This thesis proposes a new approach of pattern-based access control. The basic idea is to
reorder the events of the event stream in such a way that possibly all public patterns
are preserved and at the same time all private patterns are concealed. This means that
the IoT application still reveals the whole uncritical public information while the critical
privacy information is hidden. With the idea of event stream reordering, we see a lot
of benefits according to the event stream suppression approach [WHRN13]. One big
advantage is that the number of events in the original and in the modified stream are the
same. Consider the case from above where the same event type participates in the public
and private pattern. If the suppression approach chooses this certain event type for
suppression, there is no possibility left to reveal the information of the public pattern to
the IoT application. In contrast, the reordering approach has the opportunity to conceal
the private pattern while preserving the public pattern in the event stream as long as the
patterns are not exactly the same. Therefore, the reordering approach has the potential
to reduce the number of public patterns which exists in the original stream but get lost
because of the modification. This results in a better QoS of the system.

1.1 Contribution

We developed two reordering algorithms to face the pattern-based access control problem.
One algorithm is based on a graph. It constructs a directed acyclic graph (DAG) out of
the matching public and private patterns. According to the transformation of this graph,
the algorithm tries to find a possible reordering of the event stream. The other algorithm
is based on an Integer Linear Programming (ILP) formulation. The matching public and
private patterns build the constraints of the ILP formulation. As a result, the ILP returns
the events which have to be reordered and the corresponding number of time units to
move this event on the stream.

The event stream reordering approach has also a high impact on the inter arrival rates
of events. Therefore, we introduced an ε-Range for each event type. The reordering
algorithm is restricted to reorder an event only in its corresponding ε-Range. The size
of this ε-Range mainly depends on the probability distribution according to which this
event type is generated. Due to the restriction of this ε-Range, it is not always possible
to find a solution in which the modified stream to the IoT application contains no private

3

1 Introduction

pattern. For that reason, we developed a reordering condition to check beforehand if
reordering of the event stream is possible or not.

We evaluated both reordering algorithms and compared the results with the event
stream suppression approach [WHRN13]. Our focus lay on the number of introduced
false-positives and false-negatives. We talk about a false-positive if the modification of
the event stream introduces an additional match of a query in the resulting stream. A
false-negative describes the other way around. The modification conceals in addition to
the private pattern also a public pattern.

1.2 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 – Related Work This chapter introduces fundamental background and
presents related work in the area of privacy in event processing systems.

Chapter 3 – System Model and Problem Description This part of the thesis defines
the considered underlying system, the event data model, the query model and the
selection as well as the consumption policy. In addition to that, it gives a detailed
problem description and reveals the problematic properties of the event stream
suppression approach [WHRN13].

Chapter 4 – Pattern-based Access Control: Event Stream Reordering Both reorder-
ing algorithms, the graph-based algorithm as well as the ILP-based algorithm, are
discussed in detail in this chapter. Furthermore, this chapter shows different types
of impact which have to be considered of a pattern-based access control approach.

Chapter 5 – Evaluation This chapter describes the setup of the evaluation and presents
the evaluated results of both developed reordering algorithms as well as the event
stream suppression algorithm.

Chapter 6 – Conclusion and Future Work The last chapter gives a summery of this
thesis and an outlook on interesting areas for future work.

4

2 Related Work

This chapter presents the fundamental background of event processing systems. Further-
more, it shows related work in the area of access control and describes the event stream
suppression approach [WHRN13] in detail.

2.1 Background of Event Processing Systems

The concept of event processing systems is based on a large number of applications
which together need to process different data flows of geographically distributed sources
to timely answer complex queries. The reason for the need of event processing systems
arises out of the fact that traditional database management systems (DBMS) do not fit in
the requirements of timeliness and flow processing. DBMS only process data after it is
stored and indexed. But in the concept of event processing is often no need for storing
the primitive sensor data because a reported complex event most often contains all the
relevant information. For instance, consider a smoke and a temperature sensor for the
detection of fire and the notification of a fire alert. If the sensors recognize the complex
event fire and notify a fire alert, there is no need to store the primitive sensor data which
led to the complex event [CM12b].

Many researchers with different background addressed the above problem of DBMS.
Therefore, a lot of solutions and models of different types exist. The most popular
models are the data stream processing model [BBD+02] and the complex event processing
model [Luc01]. The model of data stream processing evolves from the area of DBMS
and presents the type of Data Stream Management Systems (DSMS). DSMS differ a lot of
traditional DBMS. DBMSs work on persistent data with infrequently updates. A query is
executed only once and the corresponding answer is returned. Figure 2.1 shows a model
of a DSMS. DSMSs assume different streams of input data. In contrast to DBMS, the
DSMS works with many persistent queries which get answered as soon as data arrives.
The answers build the output stream. The store holds data which might change and is
needed to answer queries in future. Data which is useful to answer a query but is not
needed necessarily is stored by the scratch. The throw only indicates that unnecessary
data gets removed. Intention of DSMS is to update query answers as soon as they

5

2 Related Work

Figure 2.1: Model of a Data Stream Management System[BW01]

change because of new arrived data. Most often, the detection of sequences, ordering
relations or patterns [CM12b] is not considered of DSMS. This is the reason why this
thesis focuses on the second model, the complex event processing model. Chapter 1
already introduced the model in Figure 1.1 and explained the concept of CEP. In contrast
to the data stream processing model, this model assumes streams of primitive events,
observed by different real world sensors. Operators process the primitive event streams
to generate high-level events which represent complex situations of the real world.
Furthermore, CEP systems can detect sequences, ordering relations or patterns of events
in the event streams [CM12b]. The next section shows how such high-level events, also
called complex events, can be specified.

2.2 Event Specification Languages

The need for event specification languages is easy to see. Just consider the already
mentioned example of the detection of the complex event fire. The combination of
events, generated by a temperature and a smoke sensor, can lead to the detection of
fire. Furthermore, it is necessary to specify the complex event fire according to the raw
events of the sensors. Besides, it is possible to describe the high-level event fire in many
different ways. Below three descriptions are shown [CM10].

6

2.2 Event Specification Languages

• If a smoke event and a temperature event with a value higher than 45 degrees
occur within 3 minutes, there is fire [CM10].

• If the average temperature is higher than 45 degrees within the last 3 minutes and
a smoke event occurs, there is fire [CM10].

• If a smoke event and at least 10 temperature events with increasing values occur
within 3 minutes, there is fire [CM10].

These descriptions already show that an event specification language must have the
capability to express different constructs like selections or aggregations. Many different
event specification languages are developed [CM10], [ABW06], [BTW+06]. But the
Trio-based Event Specification LAnguage (TESLA) [CM10] seems to be the most expressive
one. Therefore, this section looks into detail of TESLA.

In TESLA an event consists of a certain type which defines the set of attributes of
this event. For instance, an event of type Temp has an attribute Room which defines
the location of the measurement and an attribute Value which contains the measured
temperature value. An example of this event type can have the following form [CM10]:

Temp@5(Room = ıRoom1, V alue = 20)

This temperature event is generated at time 5, in Room1 with a measured temperature
value of 20. TESLA uses so called TESLA rules to define the high-level events out of the
basic events. A TESLA rule has the following structure [CM10]:

define CE(Att1 : Type1, . . . , Attn : Typen)
from Pattern

where Att1 = f1, . . . , Attn = fn

consuming e1, . . . , en

The first line defines the resulting complex event with a set of attributes. The Pattern
of the second line defines the basic events which have to occur for the generation of
the complex event. The third line specifies, according to some predefined functions,
the values of the attributes in the complex event. The last line determines whether
the generation consumes basic events or not. If a basic event is consumed, it cannot
participate in the generation of further complex events [CM10]. With this structure
it is possible to formulate the example above of the complex event fire. As already
mentioned, there are many possibilities for a definition. Thus, also this TESLA rule is
only one possibility [CM10]:

define F ire(V alue)
from Smoke() and

each Temp(V alue > 45) within 3min from Smoke

where V alue = Temp.V alue

7

2 Related Work

This TESLA rule creates an complex event Fire with one attribute Value. The complex
event is generated for every temperature event with a value higher than 45 which occurs
within 3 minutes after a Smoke() event. The attribute value of the complex event is
equal to the value of the temperature event. The generation does not consume any
primitive events [CM10]. Because of the huge number of sensors it is important to have
an efficient detection of such complex events like the Fire event. Therefore, the next
section shows a strategy for parallel complex event processing.

2.3 Parallel Complex Event Processing

The timely detection of complex events is crucial for CEP systems. Otherwise, the
applications cannot react in time on occurring situations. For instance, to make an
early emergency call it is important to detect the fire as soon as possible. Because of
the increasing number of sensors, timeliness becomes very hard to achieve. Therefore,
Mayer et al. [MKR15] presents a strategy for parallel complex event processing. One
issue in terms of parallelization is to split the stream of events in such a way that no
patterns which lead to a complex event get lost. According to this problem, they propose
a model for pattern-sensitive stream partitioning. Idea is to split the stream by selections.
A selection contains all events which could participate in a pattern of a complex event.
After that it is possible that different operators process the selections parallel without
loosing any occurring complex events [MKR15].

2.4 Privacy in Event Processing Systems

This section presents approaches in the area of privacy and security in event processing
systems. Most of the existing approaches focus on access control and information flow
control [CCFT09], [ARX11], [XRAG13], [MPE+10], [SKRR13]. However, the event
stream suppression approach [WHRN13] considers the issue of pattern-based access
control.

2.4.1 Access and Information Flow Control

Schilling et al. [SKRR13] show an access control mechanism which holds over multiple
processing steps in the CEP system. Operators are only getting access to event attributes
if they fulfill the corresponding access requirements. Access policies for the event
attributes assure the inheritance of the access requirements for further operators in the

8

2.4 Privacy in Event Processing Systems

processing chain [SKRR13]. The access control mechanism of Cao et al. [CCFT09] is
role-based and works at query definition time. As soon as a query is submitted, their
algorithm checks if the user has the required access privileges. According to the access
privileges of the user, the system denies, partially grants or totally grants the submitted
query. If the query is only partially granted, the system rewrites the query in such a way
that the response contains only authorized data [CCFT09].

Adaikkalavan et al. [ARX11] and Xie et al. [XRAG13] present a flow control mechanism
which is based on a set of security levels. They classify the users and the information
in different security levels. In [ARX11], these security levels participate in a security
structure which defines a partial order between the different levels. The idea is to allow
the information flow only from dominated to dominating security levels. Therefore,
information of a certain security level can never reach a security level which has lower
security privileges [ARX11]. The approach of Migliavacca et al. [MPE+10] is also an
event flow control mechanism. But instead of security levels they use security tags.
Every event flow is forced to have a security tag. Events can just flow to processing units
with higher security privileges than the associated tag [MPE+10].

2.4.2 Pattern-based Access Control

Wang et al. [WHRN13] focus on pattern-based access control. In many situations pure
access control is not enough to hide all the critical private data. Just consider the case
where a pattern of occurring event types leads to a privacy violation. These patterns
are called private patterns. For instance, such a private pattern can be the following
[WHRN13]:

P1 : SEQ(Exit− patient− room, Enter − psychiatrist− office)
within 5 min

With such a pattern in the event stream it is possible to reveal the information that this
specific patient has psychic problems. The first intention of Wang et al. is to only report
the public patterns. Figure 2.2 shows that this idea cannot solve the problem. The
system reports a match of query Q1 : SEQ(Exit− patient− room, Sanitize) and query
Q2 : SEQ(Wash, Enter − psychiatrist − office). With this reported information an
attacker can infer that the event stream has also a match of P1 [WHRN13]. Therefore,
they present the event stream suppression approach. The idea is to suppress events
of the event stream in such a way that possible private patterns cannot have a match.
Suppression of one event of the private pattern in Figure 2.2 will ensure that either Q1
or Q2 loses the match. It is always a trade-off between revealing all public patterns and
concealing all private patterns [WHRN13].

9

2 Related Work

Figure 2.2: An attacker can infer that P1 has a match because of the matches of Q1 and
Q2 [WHRN13].

Wang et al. [WHRN13] present two algorithms to address the issue of pattern-based
access control. The first one is the optimal type-level algorithm. This algorithm is based
on an ILP formulation which returns the corresponding event type for suppression.
Σ = {Ei} is the set of event types. xi ∈ {0, 1} are the decision variables whether to
suppress (xi = 0) the event type Ei or not (xi = 1). The variables yj ∈ {0, 1} show
whether the corresponding query Qj ∈ Q is preserved (yj = 1) after suppression or not
(yj = 0). Same holds for the variables zk ∈ {0, 1} and the corresponding private pattern
Pk ∈ P . The objective function looks as follows [WHRN13]:

maximize
∑

Qj∈Q

w(Qj)NT (Qj)yj +
∑

Pk∈P

w(Pk)NT (Pk)zk

The function w(Qj) represents the utility weight and the importance of a query Qj. The
weight of a private pattern is always negative for indicating the utility loss. NT (Qj) gives
the expected number of matches of a query Qj over a period of time T . Goal of the
objective function is to maximize the overall utility. σ(Qj) defines the multi-set of event
types of a query Qj. Then the constraints which consider the queries have this form
[WHRN13]:

0 ≤ yj ≤
1
|Qj|

∑
Ei∈σ(Qj)

xi

A query is preserved (yj = 1) if none of the participating event types is suppressed.
And a private pattern is concealed (zk = 0) if one of the participating event types is
suppressed. Thus, these constraints look like this [WHRN13]:

1 ≥ zk ≥
1
|Pk|
− 1 + 1

|Pk|
∑

Ei∈σ(Pk)
zi

The ILP returns the event types which should be suppressed to reach the highest
utilization.
The second algorithm of Wang et al. [WHRN13] is the hybrid instance-level algorithm.
Problem of the algorithm above is that it uses the expected number of pattern matches

10

2.4 Privacy in Event Processing Systems

Figure 2.3: Sub-optimal type-level solution [WHRN13].

NT (Qj). This is only an average value and because of fluctuations it is possible that
this value changes and the algorithm gets sub-optimal. Figure 2.3 shows such a case.
Assume this private pattern P1 : SEQ(A, C, E). According to the solution of the ILP,
the algorithm suppresses all events of type C. Due to the missing of event A2 there is
no need to suppress C2. If a query exists which would have a match if the suppression
of C2 is prevented, then the type-level solution is sub-optimal. Therefore, the hybrid-
instance-level algorithm decides the suppression for every occurring event instance. For
an arrived event, the algorithm takes the partial match of a query into account and
estimates on the basis of the arrival times or some periodicity whether the query will
get a match or not. The algorithm does the same for the private pattern by comparing
the expected utility gain of the queries and the expected utility penalty of the private
patterns. If the expected utility penalty is higher than the utility gain, the algorithm
suppresses the considered event instance. This algorithm will not suppress event C2 of
Figure 2.3 because, by checking the partial match of the private pattern, the algorithm
recognizes that the private pattern cannot occur because of the absence of event A2
[WHRN13].

11

3 System Model and Problem Description

This chapter introduces the basic system model with the used event data and query
model. Moreover, it gives a detailed description of the problem and shows the main
drawbacks of the event stream suppression approach [WHRN13].

3.1 System Model

The underlying CEP system consists of a set of connected distributed nodes. Producers,
consumers and operators are deployed on these nodes. The CEP system and its behavior
can be modeled by an operator graph. Figure 3.1 shows such an operator graph. A
set of producers generate different types of primitive events and send them to the CEP
middleware. Usually a producer is any type of sensor, for instance a temperature sensor.
These sensors observe the real world and generate corresponding events. A generated

Figure 3.1: Model of a CEP system with an operator graph consisting of 3 producers, 5
operators and 2 consumers. The event definition rules specify the resulting
high-level events out of the incoming event streams.

13

3 System Model and Problem Description

primitive event is an instance of one specific type. It consists of a sequence number and
a set of attributes which are defined by the corresponding event type. In terms of such
a temperature sensor, the event is, for example, of type temperature and consists of a
temperature value and a timestamp.

The CEP middleware is built up of a set of interconnected operators which processes the
incoming event streams and generates high-level events according to some predefined
rules. An operator is one specific processing node in the CEP middleware. Its job is to
process and transform the incoming event stream according to predefined rules to one
or many outgoing event streams. These outgoing event streams are connected either to
another processing operator or to a consumer. In the area of CEP a number of different
operator types exists, for instance [CM12b]:

• Sequence: The sequence operator considers the ordering relations of incoming
events. If the predefined order of events occurs in the incoming event stream, then
we call that a match of the sequence operator.

• Selection: The selection operator filters the event stream according to a defined
event type or an attribute value.

• Aggregation: The aggregation operator combines multiple events. For example, by
calculating an average value of one attribute.

• Negation: The negation operator considers the non-appearance of events in the
event stream.

The cooperative processing of the different operators results in a high-level event. For
instance, a high value of a temperature sensor and the alarm of a smoke sensor can
result in a high-level event like the detection of fire [CM13]. In this thesis we only focus
on the sequence operator.

An operator does not check the whole event stream for a match at once. Usually only
small parts are considered by an operator. The size and location of this parts in the event
stream are defined by the window. The size of a window can either be time-based or
count-based. A time-based window considers all the arrived events in a specified period
of time, for instance all arrived events in the last 2 minutes. In contrast, a count-based
window contains only a defined number of events, for example the last 20 arrived
elements of the event stream [CM12b]. The characteristics of a sliding-window define
the location and movement on the event stream. As soon as a new event arrives or
some time threshold exceeds, the sliding-window increases its lower and upper bound
and moves one step further on the event stream [GÖ03]. This thesis uses a time-based
sliding-window. The window contains all events which arrive in a specified period of
time. The next window starts at the end point of the previous window.

14

3.1 System Model

Figure 3.2: Simplified model of a CEP system with the additional Pattern-based Access
Control component.

A pattern defines the exact ordering relations for a set of events. A sequence operator
checks the match of such patterns in a window. For instance, a pattern can define the
ordering relation that an event of a temperature sensor has to occur before an alarm
event of a smoke sensor in the event stream. As already mentioned in chapter 1, security
and privacy play a huge role in event processing systems. For this reason, we introduce
two types of patterns, the public patterns and the private patterns. A public pattern
is a pattern which should be revealed to the IoT application because it only contains
uncritical privacy information. In contrast, the private pattern or concealed pattern is
a pattern which deals with critical privacy information and should be hidden from the
application. We call a private pattern hard-constraint if absolutely no match is allowed to
be revealed [WHRN13]. Soft-constraint private patterns give the flexibility that private
pattern matches are not strictly forbidden, for example, if the suppression leads to the
not matching of very important public patterns. This property enables the algorithm
the opportunity to have a tradeoff between revealing important public patterns and
suppressing private patterns [WHRN13].

Finally, the CEP middleware routes these high-level events to interested consumers
which can react to the reported situations. According to a detected fire, the consumer
can make, for example, an emergency call.

The approach of this thesis adds a new component between the producers and the
CEP middleware into the already presented model. Figure 3.2 shows the already
presented system model with this additional Pattern-based Access Control component.
Main difference of the model is that the produced event stream first goes through the
Pattern-based Access Control component before it reaches the CEP middleware. Therefore,
the original event stream is only visible at the Pattern-based Access Control component.
The modified event stream is routed directly to the CEP middleware. We assume that
the event streams of the different producers are merged together into one input event
stream.

15

3 System Model and Problem Description

3.1.1 Event Data Model

An event represents an observation of the real world. Different producers generate
different types of events. The type defines the set of attributes in an event instance.
Additionally, all events contain a sequence number. The time of arrival at the first
component of the system defines a total order between all event streams of the different
producers. For instance, an event can have the following structure:

Distance(seq = 1, value = 5)

This is an event produced by a distance sensor with a sequence number of 1 and a
measured distance of 5 meters.

For the following examples this thesis uses a more abstract notation. We consider a
set of available event types Σ = {A, B, C, D, ...}. An event of type A with a sequence
number of 1 is written by:

A1

With this abstract notation an event stream can look like the one in Figure 3.3. The
order according to the arrival time is given from left (early) to right (late).

Figure 3.3: Example event stream.

3.1.2 Query Model

A query represents a request to the event processing system. It precisely defines the
situation or rather the information, the IoT application is interested in. As already
mentioned, in this thesis we only focus on the sequence operator [CM12b]. Therefore,
we also consider only sequence queries. A sequence query consists of exact one pattern
which defines the high-level event and has the following form [WHRN13]:

Q = SEQ(Smoke_Alarm, High_Temperature_Sensor_V alue)

This sequence query is interested in the Smoke_Alarm event and the High_Temperature_
Sensor_Value event. For simplicity, we use the High_Temperature_Sensor_Value event
which represents a temperature sensor event with an high attribute value of the measured
temperature. Moreover, the query defines the ordering relation that the Smoke_Alarm
event has to occur before the High_Temperature_Sensor_Value event. If this sequence
query finds a match on an event stream, the resulting high-level event might be the

16

3.1 System Model

detection of fire [CM13]. Figure 3.4 shows such an event stream with a match of the
sequence query. Each of the shortcuts represents an event and has the following meaning:
LTSV = Low_Temperature_Sensor_Value, HTSV = High_Temperature_Sensor_Value, SA =
Smoke_Alarm. We assume a window which contains all four events. It is easy to see that
the sequence query has a match because both necessary event types participate in the
event stream and the ordering relation is also fulfilled the Smoke_Alarm event (second
position) occurs before the High_Temperature_Sensor_Value event (forth position).

Figure 3.4: An event stream with a match of query Q.

An example for an event stream with no match of the sequence query is shown in Figure
3.5. Again, the window contains all four events. Both necessary event types participate
in the event stream, but the defined ordering relation of the sequence query is not
fulfilled. Therefore, the sequence query does not match.

Figure 3.5: An event stream without a match of query Q.

For the query model we also use a more abstract notation. We consider the same set
of event types Σ = {A, B, C, D, ...} like in section 3.1.1. An ordering relation is written
as or(A, B) which defines that event A has to occur before event B. A sequence query
which considers the event types {B, D, E} and the ordering relations or(D, B), or(B, E)
and due to transitivity also or(D, E), has this form:

Q = (D, B, E)

In terms of privacy we differentiate between queries and private patterns. Queries
consist of public patterns and should be revealed to the IoT application. In contrast,
Private patterns are defined exact like queries but handle critical privacy information
and should be suppressed. In notation we distinguish them by denoting all queries by
Qi = (...) and all private patterns by Pi = (...).

17

3 System Model and Problem Description

3.1.3 Selection Policy

In a window with multiple instances of the same event type, the selection policy defines
which event type to select for the query match [CM12b]. For instance, consider the
following query:

Q = (A, B)

Figure 3.6 shows the given input event stream. Assume that the window contains all six
events of the input stream. It is easy to see that several combinations exist to achieve a
match of the query. Overall, three combinations are possible:

(A1, B1)

(A2, B1)

(A3, B1)

The selection policy used in this thesis takes always the first occurrence of the specific
event type needed by the query. Therefore, the query in the given example selects the
first occurrence of event type A and out of that position the first event of type B. This
results in one match of the query with the combination (A1, B1).

Figure 3.6: An event stream with several possible combinations for a match of query Q.

18

3.2 Problem Description

3.1.4 Consumption Policy

The consumption policy defines if an event instance of the event stream can be used
multiple times in different query matches [CM12b]. In this thesis the used consumption
policy specifies that an event instance can only be used once by a particular query. That
means, different queries can use the same event instance in one window. Consider the
following example with the two queries:

Q1 = (A, B)

Q2 = (A, C)

The window with the event stream is shown in Figure 3.7. Due to the presented selection
and consumption policy, the sequence operator reports the following two matches of
query Q1:

(A1, B1)

(A2, B2)

An additional match of Q1, for example, like the combination (A3, B2) is not possible
because B2 is already used for the match (A2, B2). The considered window only contains
one event instance of type C. That is why query Q2 only results in one match: (A1, C1).

Figure 3.7: An event stream with two matches of Q1 and one match of Q2.

3.2 Problem Description

This thesis addresses the problem of preventing the event processing system from
revealing critical privacy information in terms of patterns. Given is a set of event types,
a set of queries and a set of private patterns. In this thesis we only consider cases with
one private pattern. Goal is to modify the original event stream in such a way that all
private patterns are concealed (hard-constraint) or at least the number of occurring
private patterns is minimized (soft-constraint). Furthermore, the modification should

19

3 System Model and Problem Description

not have a high impact on the QoS in terms of false-negatives and false-positives. We
talk about a false-negative if a matching query of the original event stream does not
have a match anymore after the modification. Thus, uncritical public information is lost
because of the modifications. A false-positive defines the other way round, a query has
a match in the modified event stream but has no match in the original stream. In this
case, the algorithm generates information and situations which did not occur in the real
world. Both are very important cases and an algorithm should try to avoid them.

The event stream suppression approach [WHRN13] already addresses this problem.
Their idea is to suppress one event instance which participates in the matching private
pattern. One drawback of this approach is that it might lead to a high number of false-
negatives. As soon as the suppressed event instance also participates in a matching query,
this query will not match in the modified event stream and consequently, a false-negative
is introduced. The following example shows this case. Consider this available set of
different event types Σ = {A, B, C, D, E}. Additionally, we assume the following queries
and the private pattern:

Q1 = (B, C, D) P1 = (A, C, E)

Q2 = (B, E)

Q3 = (A, D)

Figure 3.8 shows the window with the input event stream. In the window, all queries
and the private pattern have a match. Therefore, the event stream suppression approach
will suppress one event instance which participates in the private pattern.

Figure 3.8: An event stream with a match of the queries Q1, Q2 and Q3 as well as a
match of the private pattern P1.

Figure 3.9 shows the three possible modified event streams. In the first modified event
stream (Figure 3.9a) event A1 is suppressed, in the second (Figure 3.9b) C1 and in the
third (Figure 3.9c) E1. None of the modified event streams contain the private pattern
but problem in this example is that the matching queries contain all event types of the

20

3.2 Problem Description

(a) Suppression of event A1. (b) Suppression of event C1. (c) Suppression of event E1.

Figure 3.9: The three possible modified event streams of the event suppression approach.
Each of them introduces a false-negative.

private pattern. Event type A participates in Q3, C in Q1 and E in Q2. Suppressing an
event instance of one of these event types leads to a false-negative. The first modified
event stream does not have a match of Q3, the second no match of Q1 and the third no
match of Q2.

There is a second drawback of the approach because of the high impact on the inter
arrival rates. Suppression of one event instance of a certain type leads to a doubled
inter arrival rate. By observing the modified event stream, an attacker might detect
these anomalies and reproduce the original event stream without suppressed events.
The following example shows this problem in detail. Consider the same event types, the
same queries and the same private pattern like in the example above. The different event
types have these static inter arrival rates: (A, 5); (B, 5); (C, 5); (D, 5); (E, 15). The given
event stream is shown in Figure 3.10a. The first and the forth window contain a private
pattern match. We assume that the event stream suppression approach [WHRN13]
suppresses event instance C1 in the first window and C4 in the forth window. In Figure
3.10b is the modified event stream. The modified event stream shows these anomalies
where the suppressed event type C has a doubled inter arrival rate. Between the event
instances C3 and C5 is a doubled inter arrival rate of 10. In contrast, between C2 and C3
is the defined inter arrival rate 5.

This thesis proposes a new approach of pattern-based access control. The idea is to reorder
the original event stream in such a way that all private patterns are concealed. More
formally, the reordering approach gets a set of event types with different dynamic inter
arrival rates. Additionally, every considered window gives two different sets of ordering
relations. The first set of ordering relations is given by the queries which have a match
in the considered window and the second set results out of the ordering relations of
the matching private patterns. Goal is to conceal the private patterns while the number
of introduced false-negatives and false-positives should be minimized. Furthermore,
the reordering approach is restricted to reorder an event instance in the corresponding
ε-Range. The ε-Range depends on the probability distribution and its associated variance
[Weid]. Purpose of the ε-Range is to conceal the impact of the reordering approach on
the inter arrival rates.

21

3 System Model and Problem Description

(a) An event stream with two private pattern P1 matches in the first and the forth window.

(b) Modified event stream with suppressed event C1 and C4. P1 does not have a match.

Figure 3.10: Input (a) and result stream (b) of the event stream suppression approach.

The following example shows the benefits of the reordering approach towards the event
suppression approach. For this example we also consider the set of event types, the
queries and the private pattern from the example above. The event stream looks exactly
like in the example of the suppression approach in Figure 3.8. As already mentioned, the
suppression approach introduces a false-negative. In contrast, the reordering approach
can conceal the private pattern while preserving all matching queries. The modified
event stream after reordering is shown in Figure 3.11. All queries still match in this
modified event stream, but the considered private pattern has no match anymore.
Therefore, the reordering approach can achieve a lower number of false-negatives which
results in a better Quality of Service.

Figure 3.11: Modified event stream of the reordering approach with a match of the
queries Q1, Q2 and Q3. No false-negative is introduced.

22

4 Pattern-based Access Control: Event
Stream Reordering

This chapter gives a detailed description of the event stream reordering approach. First of
all, it presents fundamental aspects of the pattern-based access control. Furthermore, this
chapter shows different types of inter arrival rates and their influences on a reordering
solution. It describes the ε-Range and its intention in detail. At the end of this chapter,
the two event stream reordering solutions are presented.

We developed two different types of reordering solutions. The first algorithm constructs
a directed acyclic graph (DAG) out of the matching queries and private patterns. The
event instances represent the nodes and the ordering relations build the edges of the
graph. The algorithm transforms the generated graph to achieve a reordered event
stream with no private pattern matches. The second solution is based on an Integer
Linear Programming (ILP) formulation. The constraints consist of the ordering relations
of the matching queries and private patterns. The ILP returns the events for reordering
and the corresponding time differences to move these events on the event stream.

4.1 Overview

The goal of the event stream reordering is to conceal the critical privacy information
while preserving the uncritical public information. In addition, the number of introduced
false-negatives and false-positives should be minimal. Another aspect concerns the
impact on the inter arrival rates. For an attacker, it should not be possible to discover the
events with changed inter arrival rates. Otherwise, it also might be possible to rebuild
the original event stream and thus, to reveal the critical privacy information.

With the following example (slightly modified [WHRN13]) we describe the basic princi-
ples of the event stream reordering approach. Assume this set of available event types
Σ = {A, B, C, D, E}. The following queries and the private pattern are given to the
system:

23

4 Pattern-based Access Control: Event Stream Reordering

Q1 = (B, C, D) P1 = (A, C, E)

Q2 = (D, E)

Q3 = (E, A)

Figure 4.1 shows the input event stream. The window contains all five event instances.
The queries Q1 and Q2 and the private pattern P1 have a match in the window. Therefore,
the event stream reordering approach has to reorder the event stream in such a way
that P1 is hidden while the matching queries Q1 and Q2 are preserved. For a solution,
the reordering algorithm has to face two problems. The first problem is to find a set of
events to reorder. The second problem is to find the positions where the events should
be placed on. The following sections look at these two problems in detail.

Figure 4.1: Input event stream with matching queries Q1 and Q2 as well as a match of
the private pattern P1.

4.1.1 Impact of Potential Events for Reordering

Concerning the first problem, to find a set of events to reorder, take a look at the given
ordering relations of the example above in section 4.1. These are the ordering relations
of the matching queries and private pattern:

Q1 ⇒ or(B, C); or(C, D)

Q2 ⇒ or(D, E)

P1 ⇒ or(A, C); or(C, E)

It should be clear that the input event stream fulfills all these ordering relations, oth-
erwise the corresponding query or the private pattern has no match. The ordering
relations, defined by the matching queries, should be preserved so that the queries still
match in the modified event stream. But if one ordering relation of the private pattern is
not fulfilled in the modified event stream, the private pattern is concealed. Thus, the

24

4.1 Overview

reordering approach has to negate one of the ordering relations of the private pattern
P1. There are two possible ways to negate an ordering relation. For instance, to negate
the ordering relation or(A, C) we can either delay A to a position after C or move C

to a position before A. Thus, the events participating in this ordering relation define
the events which should be reordered. The decision of choosing one of the ordering
relations of the private pattern is not easy and has a huge impact on the result.

Assume the algorithm decides to negate the ordering relation or(A, C). With this
decision, the first mentioned problem is solved because A and C are the events to
reorder. A possible modified event stream with the negation of ordering relation or(A, C)
can have the form shown in Figure 4.2. The event instance A1 is delayed to the position
after event instance C1. Therefore, the ordering relation or(A, C) is not fulfilled anymore
and the private pattern has no match in the modified stream. The queries Q1 and Q2 have
a match while Q3 still has no match like in the original event stream. The reordering
produced neither a false-negative nor a false-positive. This is the best solution in terms of
false-negatives and false-positives a pattern-based access control algorithm can achieve.

Figure 4.2: Modified event stream with delayed event instance A1. The private pattern
P1 is concealed.

But now, consider the algorithm decides to negate the ordering relation or(C, E) instead
of or(A, C). Then a modified event stream can look like the one in Figure 4.3. To negate
the ordering relation or(C, E), event instance C1 is delayed to the position after event
instance E1. Thus, one of the ordering relations of P1 is not fulfilled and therefore, P1
has no match anymore. The query Q2 has a match and Q3 still has no match. Up to this
point, everything is the same like before, but because of the delayed event instance C1
also the ordering relation or(C, D) of Q1 does not apply in the modified event stream.
Therefore, the reordering approach introduces a false-negative because query Q1 has no
match anymore.

This small example shows already that the chosen events for reordering have an impact
on the number of false-positives and false-negatives. The negation of ordering relation
or(C, E) introduces a false-negative. With a deeper look at the matching queries and
their ordering relations it becomes clear why this is the case. Due to the transitivity,

25

4 Pattern-based Access Control: Event Stream Reordering

Figure 4.3: Modified event stream with delayed event instance C1. The private pattern
P1 is concealed. Not matching Q1 introduces a false-negative.

the ordering relations of the matching queries Q1 and Q2 build this additional ordering
relation:

(4.1) or(C, D) ∧ or(D, E)⇒ or(C, E)

The matching queries Q1 and Q2 also define the ordering relation or(C, E). In the
example above the algorithm chooses or(C, E) for negation. The expression 4.1 shows
that the negation of or(C, E) will result in the negation of either or(C, D) or or(D, E).
Which of these ordering relations are affected depends on the positions where the events
are placed on. The impact of these positions is shown in the next section 4.1.2. In the
example above or(C, D) is affected because event instance C1 is delayed to the position
after event instance E1. But it is also possible to move E1 to a position before event C1.
Figure 4.4 shows the resulting modified event stream. In this case, the other ordering
relation or(D, E) of expression 4.1 is affected. Difference of this modified event stream
and the solution from above is that here query Q1 has a match and Q2 has no match.
The overall number of false-negatives and false-positives stays the same. The decision
to negate the ordering relation or(C, E) was not as good as negating ordering relation
or(A, C). Because the negation of or(A, C) introduces neither a false-negative nor a
false-positive.

Figure 4.4: The modified event stream with event E1 moved to the position before C1.
P1 is concealed. A false-negative is introduced because Q2 has no match.

26

4.1 Overview

In the event stream suppression approach [WHRN13] it is impossible that the algorithm
introduces a false-positive as long as a query does not contain a negation, but event
negation is not supported. In contrast, the reordering approach can lead to false-
positives in the modified event stream. The following example shows this case. We
slightly modify the currently used queries and private pattern of section 4.1. Now, they
look as follows:

Q1 = (B, C, D) P1 = (A, E, C)

Q2 = (D, E)

Q3 = (E, A)

The given input event stream is shown in Figure 4.5. The window contains all five event
instances. Only query Q2 and the private pattern P1 have a match.

Figure 4.5: Input event stream with a match of Q2 and P1.

Assume the reordering approach takes the ordering relation or(A, E) of the private
pattern for negation. After reordering the result might be this modified event stream of
Figure 4.6. As expected, the generated event stream contains no match for the private
pattern P1. The match of query Q2 is preserved but additionally, the event stream
contains a match for Q3. The modification introduced a false-positive.

Figure 4.6: Modified event stream with delayed event instance A1. Queries Q2 and Q3
have a match. The reordering algorithm introduced a false-positive because
of Q3.

27

4 Pattern-based Access Control: Event Stream Reordering

In this example, it is also possible to reorder the event stream without a false-positive or
false-negative just by taking the second ordering relation or(E, C) of the private pattern.
With negation of or(E, C) the modified event stream is shown in Figure 4.7. This event
stream has only a match of Q2. Therefore, the reordering approach introduces neither a
false-positive nor a false-negative but it successfully conceals the private pattern.

Figure 4.7: Modified event stream with delayed event E1. The private pattern is con-
cealed without introducing a false-positive or false-negative.

The examples above clearly show that the chosen events for reordering have a huge
impact on the number of false-positives and false-negatives. A possible way to conceal a
private pattern is to negate one of its ordering relations. The events which participate
in that specific ordering relation are the events which should be reordered. Due to the
fact that a private pattern often consists of multiple ordering relations, the reordering
approach needs a mechanism to choose an ordering relation for negation out of the
private pattern, which leads to a minimum number of false-positives and false-negatives.
The quality of the result is not only influenced by the chosen events for reordering, also
the position where these events are placed on has an impact. The next section describes
this impact in detail.

4.1.2 Impact of Potential Positions for Reordering

The second problem is to find the positions where the events for reordering should be
placed on. In the examples of the previous section 4.1.1, the events for reordering are
just placed on one possible position. But in most cases, there are several positions with
a different impact on the result in terms of number of false-positives and false-negatives.
Once again, consider the example of section 4.1, to recap, this are the queries and
private pattern:

Q1 = (B, C, D) P1 = (A, C, E)

Q2 = (D, E)

Q3 = (E, A)

28

4.1 Overview

Figure 4.8: Input event stream with a match of Q1, Q2 and private pattern P1.

Figure 4.8 shows the window with the event stream. The private pattern P1 and the
queries Q1 and Q2 have a match. Assume the reordering approach takes the ordering
relation or(A, C) for negation. To negate or(A, C) it is either possible to delay event
A to a position after event C or move C to a position before A. Figure 4.9 shows the
case where event C is moved to a position before A. As expected, the private pattern
does not match. The query Q2 still has a match, but Q1 has no match anymore. These
positions for the reordered events introduces one false-negative.

Figure 4.9: Modified event stream with moved event instance C1. A false-negative is
introduced because Q1 has no match anymore.

Therefore, it might be better to negate the ordering relation or(A, C) by delaying event
A to a position after event C. There are several possible positions to place event A.
Figure 4.10 shows the three possible modified event streams. All event streams contain
no match for the private pattern P1. Furthermore, each of them has a match for query
Q1 and Q2. Therefore, none of the event streams introduces a false-negative. But the
third event stream (Figure 4.10c) has an additional match for query Q3. Thus, the third
possible solution is not preferable because it adds a false-positive.

The last two sections show the huge number of possible solutions for the reordering
approach. But not every solution achieves the same quality in terms of false-positives and
false-negatives. Table 4.1 summarizes the possible solutions from the example of Section
4.1. One row represents one possible solution with the modified event stream, the
chosen ordering relation for negation and the number of introduced false-positives and

29

4 Pattern-based Access Control: Event Stream Reordering

(a) Match for Q1 and Q2.
No false-negative or false-
positive.

(b) Match for Q1 and Q2.
No false-negative or false-
positive.

(c) Match for Q1, Q2 and Q3.
Adds a false-positive be-
cause of Q3.

Figure 4.10: Three possible modified event streams to negate the ordering relation
or(A, C) by delaying the event instance A1.

Table 4.1: Summery of the possible solutions of the reordering approach to the example
of section 4.1. The table considers the two different ordering relations of the
private pattern P1 which define the events for reordering. Additionally, the
table shows the different positions where these events can be placed on.

Modified Event Stream Negated
Ordering Relation

Number of
false-positives

Number of
false-negatives

C1 → A1 → B1 → D1 → E1 or(A, C) 0 1
B1 → C1 → A1 → D1 → E1 or(A, C) 0 0
B1 → C1 → D1 → A1 → E1 or(A, C) 0 0
B1 → C1 → D1 → E1 → A1 or(A, C) 1 0
A1 → B1 → E1 → C1 → D1 or(C, E) 0 1
A1 → E1 → B1 → C1 → D1 or(C, E) 0 1
E1 → A1 → B1 → C1 → D1 or(C, E) 1 1
A1 → B1 → D1 → E1 → C1 or(C, E) 0 1

false-negatives. Every solution with the negation of ordering relation or(C, E) introduces
a false-negative. Expression 4.1 of the previous section 4.1.1 showed the reason that due
to transitivity the ordering relation or(C, E) is also needed by the matching queries and
therefore, the negation of or(C, E) definitely leads to a false-negative. A better choice
is to negate the ordering relation or(A, C). In this example it is possible to achieve
a solution without any false-positives or false-negatives, with a good decision of the
positions to place the events. Row 2 and 3 show these solutions.

But it also should be clear that the event reordering approach as well as the event sup-
pression approach [WHRN13] cannot always achieve a solution without a false-positive
and a false-negative. Section 3.2 already showed an example for the event suppression

30

4.1 Overview

approach in which all event types of the private pattern are used by matching queries
and therefore, the suppression of one of these events leads to a false-negative. The
following example illustrates this problem for the event reordering approach. Consider
the same set of event types like in the examples before. The queries and the private
pattern have this form:

Q1 = (A, B, C) P1 = (A, C, E)

Q2 = (C, D)

Q3 = (D, E)

The window and the event stream is shown in Figure 4.11. All queries and the private
pattern have a match. Thus, the reordering approach takes one of the ordering relations
of the private pattern P1 for negation, but both ordering relations, or(A, C) and or(C, E),
are used by matching queries. The transitivity defines that or(A, C) is used by query Q1
and also that or(C, E) is used by the combination of Q2 and Q3.

Figure 4.11: Input event stream which contains a match of Q1, Q2, Q3 and P1. The
private pattern cannot be concealed without introducing a false-negative.

4.1.3 Impact of the Inter Arrival Rate

The inter arrival rate defines the time span from the arrival of one specific event type
until the next occurrence of this event type at the system [Raq12]. The inter arrival rate
does not directly influence the quality of the result of the reordering algorithm. The
reordering algorithm rather has to consider the different types of inter arrival rates. In
this thesis, we differentiate between three different types of inter arrival rates a system
can have. First, the same static inter arrival rates where all event types are generated
with the same static inter arrival rate. Second, the type of different static inter arrival
rates where the different event types have different but static inter arrival rates and
third, the dynamic inter arrival rates where the event generation of event types follow a
certain probability distribution.

31

4 Pattern-based Access Control: Event Stream Reordering

(a) Input event stream with events which have the same static inter arrival rate of 5.

(b) Modified event stream. Reordering only needs to be calculated for one window.

Figure 4.12: Input event stream (a) and the corresponding modified event stream (b)
after reordering.

The most simple and unrealistic case is the type of same static inter arrival rates. All
available sensors generate events with the same static inter arrival rate. If additionally
the window has an equal size to the inter arrival rate, then every window contains the
same set of events and the same order of these events. For instance, consider the same
set of event types Σ = {A, B, C, D, E} as in the previous section. These are the given
queries and private pattern:

Q1 = (B, C, D) P1 = (A, C, E)

Q2 = (B, E)

Q3 = (A, D)

All event types have the same static inter arrival rate of 5. Then an event stream can
have the form shown in Figure 4.12a. A window contains 5 events. All queries as well
as the private pattern P1 have a match in every window. In such a system the reordering
algorithm only needs to solve the reordering step for one window. Afterwards, this
solution can be used for every following window. A possible modified event stream of
the reordering approach can have the form of Figure 4.12b. The modified event stream
preserves all matches of the queries and conceals the private pattern. This is the most
easiest case.

32

4.1 Overview

A more general assumption is that the window size differs from the inter arrival rate.
Consider, for example, a window size of 4. Then the input event stream is splitted in
windows as shown in Figure 4.13. Windows with same content will repeat periodically.
Therefore, the reordering algorithm has to calculate the solution only for the number
of windows of one cycle. For every following cycle, it is possible to use the already
calculated solution.

Figure 4.13: Window size is smaller than the static inter arrival rate of 5.

The different static inter arrival rates are closely related to the last example. Also this
case is not very realistic. Difference to the same static inter arrival rates is that the event
types can have different inter arrival rates. For instance, the event types have these
different inter arrival rates: (A; 10), (B; 8), (C; 5), (D; 5), (E; 7). Figure 4.14 shows one
possible input event stream. Exactly as in the previous example, the windows with the
same set of events and the same order between these events repeat periodically. After
the calculation of the solution for one cycle the solution can also be applied for the
following cycles.

Figure 4.14: Input event stream with events which have different static inter arrival
rates.

The most general case is the type of dynamic inter arrival rates. It is also the most
realistic type of inter arrival rates for real world scenarios. The events are generated
according to a certain probability distribution. For event generation, this thesis uses
the normal distribution, also called Gaussian distribution [Weib]. This distribution takes

33

4 Pattern-based Access Control: Event Stream Reordering

fluctuations of the inter arrival rates into account. The reordering algorithm has to
calculate a solution for every window. In contrast to the other types, periodicity cannot
be assumed in this type of inter arrival rates. This thesis focuses on the type of dynamic
inter arrival rates because it is the most realistic one and the types of same static
inter arrival rates and different static inter arrival rates can nearly be simulated with
corresponding values for the mean [Weia] and the standard deviation [Weic] of the
normal distribution.

4.1.4 ε-Range

Up to this point the reordering approach mainly focused on avoiding private pattern
matches while trying to minimize the number of false-positives and false-negatives.
Another goal is that an attacker cannot reveal the changes in the modified event stream.
As soon as the reordering algorithm changes the position of one event instance, it also
changes the inter arrival rate of this event type. Therefore, the reordering algorithm is
restricted to reorder an event instance only in its specific ε-Range. The idea behind is to
minimize the fluctuations of the inter arrival rates.

(a) Input event stream with events which have different static inter arrival rates.

(b) Modified event stream with changed inter arrival rate of event C.

Figure 4.15: Input event stream (a) and the corresponding modified event stream (b)
with changed inter arrival rate.

34

4.1 Overview

(a) Event type with static inter arrival rate. (b) Event type generated according to a
probability distribution.

Figure 4.16: Monitored inter arrival rates.

The following example shows the problem of the changing inter arrival rates in the
modified event stream. This is the set of event types Σ = {A, B, C, D, E}. For simplicity,
this example uses different static inter arrival rates: (A; 10), (B; 8), (C; 5), (D; 5), (E; 7).
Also no queries and only the following private pattern is considered:

P1 = (C, D, B)

The given input event stream is shown in Figure 4.15a. The private pattern P1 has a
match in the second window. Thus, the reordering algorithm will change the order in
that window to conceal the match of P1. One possibility is to delay event instance C2
to a position after event instance D2. Figure 4.15b shows the possible modified event
stream. As expected, the modified event stream contains no match of the private pattern
P1. In this example, we are not interested in false-positives and false-negatives but in the
changed inter arrival rate of event type C. The inter arrival rate from C1 to C2 as well as
from C2 to C3 is effected because of the changed position of C2. Between C1 and C2 the
inter arrival rate increases from value 5 to 6, 5 and between C2 and C3 it decreases from
5 to 3, 5. Before event instance C1 and after C3 the inter arrival rate stays constant at
the defined value of 5 as long as no private pattern match occurs.

The problem with these changes of the inter arrival rate is that an attacker might detect
these anomalies if they occur very rarely. If an attacker monitors the modified event
stream with the events and the corresponding inter arrival rates, it could be possible to
create a chart like in Figure 4.16a. The chart shows the monitored inter arrival rate of
one specific event type over a period of time. Most of the time the inter arrival rate stays
constant at a value of 5, but there are two exceptions where the inter arrival rate first
increases to a value of 6, 5, then decreases to 3, 5 and afterwards goes back to 5. Such a
chart could be the monitored result of the previous example. The changes of the inter
arrival rate are easy to see. With that knowledge it could be possible to restore the input
event stream. But as already mentioned, the type of different static inter arrival rates,

35

4 Pattern-based Access Control: Event Stream Reordering

(a) ε-Range smaller than some fluctuations. (b) Normal distribution.

Figure 4.17: Monitored inter arrival rate (a) and the normal distribution (b) according
to which the event type is generated.

which is used in the example above and in the chart in Figure 4.16a, is very unrealistic
for the real world. In real world scenarios fluctuations are in the inter arrival rates
because there are many factors, for example the network, which influence the inter
arrival rate. This is why we focus on the type of dynamic inter arrival rates, which is
a more realistic type. Figure 4.16b shows the same chart as in Figure 4.16a but with
dynamic inter arrival rates. The difference is that the inter arrival rate does not stay at a
constant value of 5, but fluctuates around this value because of the standard deviation
of the normal distribution. Therefore, the two anomalies with the changed inter arrival
rates are a lot harder to see.

Both Figures 4.16a and 4.16b show the defined ε-Range. The ε-Range defines the
maximum range an event can be delayed or moved forward on the event stream.
According to the drawn ε-Ranges in the charts the reordering algorithm uses the full
range for concealing the private pattern in the example above. Goal of the ε-Range is
that an attacker cannot recognize any anomalies as it is possible in Figure 4.16a and
4.16b. Figure 4.17a shows a chart with an ε-Range where the changes of the inter
arrival rate are not recognizable because the ε-Range is smaller than the fluctuating inter
arrival rate values. Therefore, the ε-Range heavily depends on the normal distribution,
according the event type is generated. Figure 4.17b shows such a normal distribution.
In this thesis, the mean µ [Weia] represents the defined inter arrival rate for this event
type and the standard deviation σ [Weic] and the variance σ2 [Weid] defines the size of
the possible fluctuations. The ε-Range should be smaller than the possible size of the
fluctuations because extreme values are unusual according to the probability distribution
and the reordering approach might introduce a lot of them. Therefore, an ε-Range
which is smaller than the fluctuating inter arrival rate values is not enough to conceal
all the modifications. Additionally, also the probability distribution, according to which
an event type is generated, should not change because of the modification of the event
stream.

36

4.1 Overview

Figure 4.18: The probability distribution of an event type of the monitored event stream
should be the same as of the original event stream.

Figure 4.18 shows this scenario. The probability distribution of an event type of the
monitored event stream should be the same as of the original event stream. This thesis
only evaluates the impact of different sizes of the ε-Range on the reordering algorithm
because the reordering algorithm cannot always find a solution without a private pattern
match if the restriction of the ε-Range is too hard. Therefore, there is a tradeoff between
concealing all private patterns of the event stream and hiding the inter arrival rate
changes in the modified event stream. Achieving the condition that the probability
distribution does not change because of the modification, is an interesting area for future
work and is not investigated in this thesis.

37

4 Pattern-based Access Control: Event Stream Reordering

4.2 Graph-based Reordering Algorithm

This thesis presents two event stream reordering algorithms. This section gives a
detailed description of the graph-based algorithm. The matching queries and private
patterns of the corresponding window build a directed acyclic graph (DAG). The graph
G = (E, R) consists of a set of event instances e ∈ E and a set of ordering relations
or(ei, ej) ∈ R ⊆ (E × E). The algorithm transforms this graph to produce a modified
event stream without private pattern matches.

4.2.1 Graph Generation

The matching queries and private patterns of one window build a DAG. All event
instances which participate in a matching query represent a node of the graph. The
ordering relations of the matching queries define the edges of the graph. Additionally,
the event instances of the ordering relation for negation of the private pattern represent
two nodes and the negated ordering relation represent the corresponding edge. For
instance, consider the same set of event types like in the previous sections. These queries
and the private pattern are given:

Q1 = (B, C, D) P1 = (A, C, E)

Q2 = (B, E)

Q3 = (A, D)

The window consists of the event stream with annotated arrival times shown in Figure
4.19. All queries and the private pattern have a match in this window. We start with Q1
for the graph generation. First of all, three nodes, B, C and D, are added to the graph.
For the two ordering relations or(B, C) and or(C, D) of Q1 the graph gets the edges
(B, C) and (C, D). Figure 4.20a shows the current graph. After adding the nodes and

Figure 4.19: Input event stream with annotated inter arrival times.

38

4.2 Graph-based Reordering Algorithm

(a) Graph consists of Q1. (b) Graph consists of all queries.

(c) Graph consists of all queries and
the ordering relation for negation.

(d) Full graph with annotated arrival
times.

Figure 4.20: Graph generation steps.

edges for query Q2 and Q3, the graph has the form shown in Figure 4.20b. Next step
is to consider the private pattern and the chosen ordering relation for negation. How
to choose the ordering relation for negation is discussed in Section 4.2.4. Assume the
ordering relation for negation of the private pattern is or(A, C). Therefore, the private
pattern would add node A and C if they are not already part of the graph. The negated
ordering relation or(A, C) adds the edge (C, A). Note that this edge is directed from C

to A. Figure 4.20c shows the resulting graph.

The graph of Figure 4.20c contains all ordering relations of the queries. If all ordering
relations hold, then the queries have a match. Furthermore, the graph contains a negated
ordering relation of the private pattern. If this ordering relation holds, then the private
pattern has no match. Thus, the goal of the reordering algorithm is to generate an event
stream which fulfills all ordering relations of the graph.

39

4 Pattern-based Access Control: Event Stream Reordering

Algorithm 4.1 Topological Sorting [Kah62]

procedure TOPOLOGICALSORTING(g)
sortedList← []
while ISNOTEMPTY(g) do

n← GETNODEWITHOUTINCOMMINGEDGES(g)
sortedList← n

REMOVEALLOUTGOINGEDGES(n)
REMOVENODE(g,n)

end while
end procedure

Up to this point, no arrival times are taken into account. The given input event stream
shows the different arrival times of the event instances. Therefore, every node addition-
ally gets labeled with the arrival time of the corresponding event instance. The arrival
time of event instance e is denoted by t(e). For instance, the node representing event
instance C1 has the label C1(60). Finally, all edges get a label of its edge weight.

(4.2) w(ei, ej) = t(ej)− t(ei)

Equation 4.2 defines the weight w of edge (ei, ej). The edge weight is equal to the arrival
time difference between the source and target event instance of the edge. For instance,
edge (C1, D1) has the weight w = 78 − 60 = 18. The complete graph with annotated
nodes and edges is shown in Figure 4.20d.

4.2.2 Algorithm

Input for the reordering algorithm is the generated graph. At the beginning, for simplicity
the algorithm does not look at arrival times and the ε-Range. Therefore, the considered
input graph is shown in Figure 4.20c. As already mentioned, goal is to fulfill all ordering
relations of the given graph. In other words, the algorithm is looking for a linear order
of the nodes such that all edges (ordering relations) are fulfilled in that linear order.

Topological sorting [Kah62] is exactly doing this. Algorithm 4.1 shows a simple example
code for topological sorting. The input to the procedure is a graph g. If the graph is a
directed acyclic graph, this code returns the topological sorting in sortedList. As long
as the graph contains a node, it takes one node n without any incoming edges. At the
beginning, the graph must have a node without an incoming edge, otherwise the graph
is not acyclic. Then the algorithm adds this node n to the topological sorted list, removes
all outgoing edges of n and removes n from the graph.

40

4.2 Graph-based Reordering Algorithm

Algorithm 4.2 Graph Transformation

procedure GRAPHTRANSFORMATION(g)
while CONTAINSEDGEWITHNEGATIVEORZEROWEIGHT(g) do

edge← GETEDGEWITHNEGATIVEORZEROWEIGHT(g)
sNode← GETSOURCENODE(edge)
tNode← GETTARGETNODE(edge)
sNode.T ime← sNode.T ime− ⌊ |edge.weight|

2 ⌋
tNode.T ime← tNode.T ime + ⌈ |edge.weight|

2 ⌉+ 1
UPDATEEDGEWEIGHTS(g)

end while
end procedure

One possible topological sorting of the graph in Figure 4.20c can look like this:

B, C, A, D, E

Assume this order for the modified event stream. All matching queries of the example
in the previous section 4.2.1 still match and the private pattern is concealed. But
topological sorting cannot care about arrival times or the ε-Range. Therefore, another
algorithm is needed.

From now on, the reordering approach considers the graph of Figure 4.20d and cares
about the arrival times. All ordering relations of the graph have to be fulfilled. We
know that the ordering relations of the matching queries are already fulfilled, otherwise
they would not have a match. The only ordering relation which is not fulfilled is the
negated or(A, C) of the private pattern. Edge (C1, A1) of the graph represents the
negated ordering relation. Note that this edge is the only edge with a negative weight.
The weight defines the arrival time difference of the connected nodes which represent
the event instances. Therefore, a negative weight means that the currently used arrival
times do not fulfill the desired ordering relations. Goal of the algorithm is, to transform
the graph in such a way that no edge with a negative weight exists.

Algorithm 4.2 shows the graph transformation code. As input the procedure gets a
directed acyclic graph like the one in Figure 4.20d. As long as the graph contains an
edge with negative or 0 weight, it does the following: The algorithm takes such an edge
with negative or 0 weight. Then it gets the corresponding source and target node of that
edge. In the next step, the algorithm updates the arrival time of the source and target
node. Both, the arrival time of the source as well as of the target node, get modified by
nearly the same value, which is the half of the edge weight. Result of this modification
is a positive edge weight at least with a value of 1. At the end, the procedure updates
changing edge weights of the graph.

41

4 Pattern-based Access Control: Event Stream Reordering

(a) Graph after first while loop. (b) Resulting graph of the graph trans-
formation.

Figure 4.21: Changes of the graph transformation algorithm.

Figure 4.22: Resulting event stream of the graph-based reordering algorithm.

The graph of Figure 4.20d has only one negative edge (C1, A1). Therefore, the algorithm
takes this edge for transformation. The modified arrival time of the source node is
calculated by 60−⌊ |−59|

2 ⌋ = 31 and for the target node by 1 + ⌈ |−59|
2 ⌉+ 1 = 32. According

to equation 4.2, the new edge weight is 32 − 31 = 1. Because of the modified arrival
times, also other edge weights of the graph need to be updated. The resulting graph after
the first while loop is shown in Figure 4.21a. Figure 4.21b shows the end result of the
graph transformation. As expected, the graph contains no edge with a negative weight.
The resulting arrival times of the nodes define the exact position of the corresponding
event instance in the modified event stream. Therefore, the modified event stream
is shown in Figure 4.22. All queries have a match in the event stream. The private
pattern is concealed and neither false-positives nor false-negatives are introduced. But
the algorithm still does not take the restriction of the ε-Range into account. For this
reason, we developed the reordering condition which is discussed in the next section.

42

4.2 Graph-based Reordering Algorithm

4.2.3 Reordering Condition

The idea of the reordering condition is to check whether it is possible to reorder an event
stream under restriction of the ε-Range or not. Therefore, the reordering condition has
to check every possible path P (ni, nj) with source node ni and target node nj in the
generated graph G. Actually it is enough to check every path which contains at least
one edge with a negative weight because only those paths can contradict the reordering
condition. The reordering condition is defined as follows:

(4.3) ∀ P (ni, nj) ∈ G : ε(ni) + ε(nj) ≥ −
∑
e∈P

e.weight + |P |

The sum over the edge weights of a path define the arrival time difference of the source
and target node. The nodes are in the right order if the sum is positive, but if the
sum is negative, then the order of the source and target node is not the right one for a
solution. Thus, the reordering algorithm has to change the order of these two nodes
which represent the event instances. The reordering is only possible if the sum of the
edge weights plus the number of edges in the path is smaller or equal to the sum of the
ε-values of the source and target node. The number of edges is considered because the
resulting arrival times should differ at least by a value of 1 to fulfill the needed ordering
relation.

Figure 4.23 shows the reordering condition visually. The reordering condition checks for
two event instances, which have to be reordered, whether their ε-Ranges overlap or not.
The reordering is possible if the ε-Ranges overlap (Figure 4.23a), otherwise reordering
of these event instances is not possible (Figure 4.23b).

(a) Reordering condition fulfilled. (b) Reordering condition not fulfilled.

Figure 4.23: Visually interpretation of the reordering condition.

43

4 Pattern-based Access Control: Event Stream Reordering

4.2.4 Choosing an Ordering Relation of the Private Pattern

One unsolved problem is still to choose a good ordering relation for negation of the
private pattern. Section 4.1.1 already showed that this decision has an impact on the
number of false-positives and false-negatives. This section considers the same example
as Section 4.1.1. To recap, this is the set of event types Σ = {A, B, C, D, E}. The queries
and private pattern have the following form:

Q1 = (B, C, D) P1 = (A, C, E)

Q2 = (D, E)

Q3 = (E, A)

The input event stream is the same as in Figure 4.1. Therefore, query Q1 and Q2 and the
private pattern have a match. The generated graph out of the matching queries is shown
in Figure 4.24a. Now, the algorithm has to choose an ordering relation for negation of
the private pattern to add the corresponding edge to the graph.

(a) Graph consists of Q1 and Q2. (b) Graph with cycle C1, D1, E1, C1.

(c) Resulting event stream of the graph-based
reordering algorithm.

Figure 4.24: Graph generation with the ordering relation for negation.

44

4.2 Graph-based Reordering Algorithm

First of all, the algorithm gets all possible ordering relations for negation. Private pattern
P1 has to possible ordering relations, or(A, C) and or(C, E). Then, it sorts the ordering
relations according to the absolute arrival time distance d(ei, ej) = |ei.time− ej.time|
of the participating event instances. or(A, C) has a distance of d(A, C) = |1− 60| = 59
and or(C, E) of d(C, E) = |60− 100| = 40. With a lower distance it is more likely
that the reordering condition can be fulfilled. The algorithm would take ordering
relation or(C, E) for negation because of the lower distance. Thus, the algorithm adds
edge (E, C) into the graph. Figure 4.24b shows the resulting graph. Section 4.1.1
already discussed that or(C, E) is a bad choice and will introduce a false-negative. The
expression 4.1 showed due to transitivity that the ordering relation is also used by the
matching queries. This effect can also be seen in the graph because the adding of edge
(E, C) introduces a cycle (C1, D1, E1, C1). Therefore, the algorithm deletes edge (E, C)
and takes the other ordering relation or(A, C) of private pattern P1. The graph with
added edge (C, A) is shown in Figure 4.24c. This graph has no cycle, so reordering does
not introduce a false-negative. But also the reordering condition must hold, otherwise
reordering is not possible because of the ε-Range. If the reordering condition holds,
the reordering algorithm will get a solution without a private pattern and without a
false-positive or false-negative. But assume that the reordering condition does not hold.
Then the algorithm takes the other ordering relation or(C, E) and deletes one edge out
of the cycle. It chooses the edge which is used by the least number of queries. Thus,
the algorithm also introduces only the least number of false-negatives. If no ordering
relation of the private pattern fulfills the reordering condition, the algorithm cannot
generate a modified event stream without the private pattern match because of the
ε-Range.

If the reordering of an event stream is not possible without a false-negative, the algo-
rithm introduces the least possible number of false-negatives. But up to this point, no
mechanism takes the number of false-positives into account. Therefore, the next Section
4.2.5 presents the strategy to avoid the introduction of false-positives.

4.2.5 Avoidance of False-Positives

Amongst other things, the last Section 4.2.4 described how the algorithm avoids the
introduction of false-negatives. But the algorithm also tries to avoid the introduction of
false-positives. Consider the same example like in the last Section 4.2.4. The generated
graph is the one in Figure 4.24c. The only query which does not have a match in
the input event stream is query Q3. In worst case, a possible modified event stream
according to the generated graph can have the form shown in Figure 4.25.

45

4 Pattern-based Access Control: Event Stream Reordering

Figure 4.25: Possible modified event stream of the reordering algorithm.

This solution introduces a false-positive because the event stream contains a match for
query Q3. To prevent this, the algorithm handles a not matching query similar to a
private pattern. It chooses one of the ordering relations of the query for negation. In this
case, the query has only one ordering relation or(E, A). Therefore, the algorithm adds
the edge (A, E) to the graph, checks for a cycle and for the reordering condition. If no
cycle is introduced and the reordering condition is not contradicted, it is guaranteed that
the algorithm does not introduce a false-positive of this query. Otherwise, the reordering
step is not possible without the introduction of a false-positive. Figure 4.26 shows the
graph with edge (A, E). With this graph the modified event stream from above is not a
possible result anymore.

Figure 4.26: Graph with edge to avoid false-positive.

4.2.6 Multiple Occurrences of the Same Event Type

Up to this point, all examples had only one event instance of a certain type in the window.
The reordering algorithm has to consider the case where multiple event instances of
the same event type occur in a window because, for example, the ordering relation of
the private pattern has to be negated for every event occurrence of the participating
event types. The following example shows the issue. Assume the same set of event
types, queries and the private pattern of Section 4.2.4. Figure 4.27 shows the input
event stream.

46

4.2 Graph-based Reordering Algorithm

Figure 4.27: Input event stream with a double sized window.

(a) Graph consists of Q1 and Q2. (b) Graph with all edges corresponding to
the ordering relation for negation.

Figure 4.28: Graph generation with multiple events of the same type.

The window has double size and it contains the 10 given event instances. According to
the used selection and consumption policy, the queries Q1 and Q2 have two matches as
well as the private pattern P1. The graph generation for the matches of the queries work
exactly like already discussed. The graph in Figure 4.28a shows the generated graph. For
the private pattern it differs a bit. First of all, the number of matches of a private pattern
does not matter. Important is the number of event instances of an event type which
participates in the ordering relation for negation of the private pattern. As we already
know, the ordering relation or(A, C) is a good choice for negation. Therefore, the
algorithm would add edge (C, A) to the graph. But because of the multiple instances of
an event type, the algorithm needs to add the edge (C, A) for every possible combination
of these event instances. Thus, a total of 4 edges is added with the combinations
(C1, A1), (C1, A2), (C2, A1) and (C2, A2). The complete graph is shown in Figure 4.28b.
Same holds for the avoidance of false-positives. Rest of the algorithm works as already
discussed.

47

4 Pattern-based Access Control: Event Stream Reordering

4.2.7 Different Granularities

The graph-based reordering algorithm is able to use different granularities for the arrival
time changes in the graph transformation Algorithm 4.2. The used granularity has an
impact on the resulting arrival times of the reordered event instances. For instance, the
used granularity in Algorithm 4.2 has the effect that the reordered event instances have
arrival times which are very close to each other. This thesis considers the following three
different granularities:

|edge.weight|
2

(4.4a)

ε(ni)
(4.4b)

⌈ε(ni)
2k
⌉, k = 1, . . . , number of iteration

(4.4c)

The granularity of 4.4a is already used in Algorithm 4.2. It changes the inter arrival
times of the event instances by the half of the edge.weight which is equivalent to the
difference of the arrival times. As already mentioned, the effect is that the resulting
arrival times lie very close to each other. The granularity of 4.4b changes the arrival
time by the ε-value. Therefore, the full available range is always used for reordering.
In contrast to granularity 4.4a, the resulting arrival times tend to have a big distance
to each other. Granularity 4.4c is more an iterative way. With the increasing number
of iterations, the arrival time changes of the event instances become more and more
fine-grained.

48

4.3 ILP-based Reordering Algorithm

4.3 ILP-based Reordering Algorithm

The second reordering algorithm presented in this thesis is based on an Integer Linear
Programming (ILP) formulation. The objective function wants to minimize the total
arrival time changes of the event instances. The matching queries and private patterns
of a window as well as the ε-Range define the constraints of the ILP formulation.

4.3.1 ILP Formulation

Input for the ILP formulation is a set of event instances E of size n, a set of ordering
relations R and a set of ordering relations N . Furthermore, the ILP formulation needs
all ε(ei)-values of the different event instances ei to fulfill the ε-Range. x(ei) denotes
the arrival time changes of an event instance. The event instances of the considered
window are part of E. The set R consists of the ordering relations of the matching
queries whereas N consists of the ordering relations for negation of the matching private
patterns. N consists only of one ordering relation because this thesis considers only one
private pattern. The ILP formulation is defined as follows:

minimize
∑

ei∈E

|x(ei)|

subject to ∀ or(ej, ek) ∈ R : ej.time + x(ej) < ek.time + x(ek)
∀ or(ej, ek) ∈ N : ek.time + x(ek) < ej.time + x(ej)

−ε(ei) ≤ x(ei) ≤ ε(ei) i = 1, . . . , n

The objective function minimizes the total arrival time changes of all event instances.
Every ordering relation or(ej, ek) of a matching query adds a constraint ej.time+x(ej) <

ek.time + x(ek) to the ILP. The constraint specifies that the changed arrival time of event
instance ej has to be smaller than the changed arrival time of ek. If this is the case, the
ordering relation is fulfilled. The ordering relation or(ej, ek) for negation of the private
pattern adds an constraint ek.time + x(ek) < ej.time + x(ej) which is defined the other
way around as the one for the queries. Therefore, the constraint defines that the changed
arrival time of ej has to be greater than the one of ek because the ordering relation should
be unfulfilled. Finally, the ILP formulation contains constraints for the restriction of the
ε-Range. The constraints of the form −ε(ei) ≤ x(ei) ≤ ε(ei) assure that no arrival time
will be changed with a greater value than the allowed ε-Range of this event instance.
The result of the ILP is the difference x(ei) of the original arrival time for every event
instance ei. Then the algorithm only needs to place the event instances on the modified
event stream according to the updated arrival times ei.time = ei.time + x(ei).

49

4 Pattern-based Access Control: Event Stream Reordering

Figure 4.29: Input event stream.

The following example shows the generation of the ILP formulation. Consider the
available set of events Σ = {A, B, C, D, E}. The queries and the private pattern have
the following form:

Q1 = (B, C, D) P1 = (A, C, E)

Q2 = (D, E)

Q3 = (E, A)

The window and the input event stream is shown in Figure 4.29. The private pattern
P1 and the queries Q1 and Q2 have a match. Therefore, set R contains these ordering
relations R = {or(B1, C1), or(C1, D1), or(D1, E1)}. Assume ordering relation or(A, C) is
taken for negation, then set N has this form N = {or(A1, C1)}. In set E are all event
instances of the window E = {A1, B1, C1, D1, E1}. The example uses ε(ei) = 50. The
resulting ILP formulation looks as follows:

minimize
∑

ei∈E

|x(ei)|

subject to 55 + x(B1) < 60 + x(C1)
60 + x(C1) < 78 + x(D1)
78 + x(D1) < 100 + x(E1)
60 + x(C1) < 1 + x(A1)
−50 ≤ x(ei) ≤ 50 i = 1, . . . , n

The solution of the ILP returns these arrival time differences:

x(A1) = 50; x(B1) = −6; x(C1) = −10; x(D1) = 0; x(E1) = 0

Figure 4.30 shows the resulting modified event stream. The stream has a match for Q1
and Q2. The private pattern is concealed and neither a false-positive nor a false-negative
is introduced.

50

4.3 ILP-based Reordering Algorithm

Figure 4.30: Modified event stream of the ILP-based algorithm.

4.3.2 Choosing an Ordering Relation

This algorithm has the same problem like the graph-based reordering algorithm. The ILP-
based algorithm has to choose an ordering relation of the private pattern for negation.
As we already know, the ordering relation should not be the same as one of the ordering
relations of the matching queries and the restriction of the ε-Range needs to be fulfilled.
But without checking the reordering condition, the algorithm never knows beforehand,
whether the ILP can have a solution or not. Therefore, one possible way is to try all
ordering relations of the private pattern in the ILP until a solution is found. The other
way is to generate the graph of the graph-based algorithm and out of that get the
ordering relation for negation.

4.3.3 Avoidance of False-Positives

The ILP-based algorithm has the possibility to avoid false-positives because a non-
matching query can be treated the same way like a private pattern. Therefore, the
algorithm only needs to choose one ordering relation for negation of the query and
add the corresponding constraint to the ILP formulation in exact the same way as for a
private pattern. If the ILP formulation has a solution, it is guaranteed that this query does
not introduce a false-positive in the modified event stream. But as already mentioned in
the last Section 4.3.2, the ILP-based algorithm has no opportunity to check beforehand,
whether the ILP formulation with the taken ordering relation for negation has a solution
or not. Thus, the algorithm has the same possibilities as in the previous Section 4.3.2,
either to try all ordering relations of the non-matching query until the ILP has a solution
or to generate the graph of the graph-based algorithm and choose the ordering relation
according to the graph.

51

4 Pattern-based Access Control: Event Stream Reordering

4.3.4 Multiple Occurrences of the Same Event Type

The ILP-based algorithm also has to consider the case that multiple event instances of the
same event type occur in one window. Just as in the graph-based algorithm, the problem
is the ordering relation for negation. Also, the ILP-based algorithm has to consider all
possible combinations of event instances for the ordering relation. Assume the algorithm
chooses the ordering relation or(A, C) for negation. Then these four constraints need to
be added to the ILP formulation:

C1.time + x(C1) < A1.time + x(A1)
C1.time + x(C1) < A2.time + x(A2)
C2.time + x(C2) < A1.time + x(A1)
C2.time + x(C2) < A2.time + x(A2)

4.4 Algorithm Comparison

Both presented algorithms have their advantages and disadvantages. The graph-based
algorithm is complex but has more opportunities. In contrast, the ILP-based algorithm
is simple but has limitations. A big advantage of the graph-based algorithm is the
reordering condition. With the reordering condition the algorithm can decide which
ordering relation of the private pattern is the best choice for the negation. Same holds
for the avoidance of false-positives. Additionally, the graph-based algorithm has the
opportunity to use different granularities for placing the event instances. But on the
other hand, the generation of the graph is very complex, as well as choosing an ordering
relation for negation. The ILP-based algorithm is much simpler. The generation of the
ILP formulation is straight forward, but it is very restricted in consideration of the choice
of the ordering relation for negation. The algorithm has to run the ILP to find out
which ordering relation of the private pattern can be reordered in the defined ε-Range.
Furthermore, the ILP-based algorithm cannot influence the granularity of arrival time
changes of event instances like the graph-based algorithm. On the whole, the graph-
based reordering algorithm seems to be the better choice considering the number of
false-positives and false-negatives.

52

5 Evaluation

This chapter presents the results of the evaluation. The evaluation takes the graph-based
reordering algorithm of Section 4.2, the ILP-based reordering algorithm of Section 4.3
and the event stream suppression approach [WHRN13] into account. Focus of the
evaluation is on the number of false-positives and false-negatives as well as on the
number of private patterns which are not concealed because of the restriction of the
ε-Range. As already mentioned, this evaluation contains no experiments which examine
the impact of the event stream reordering algorithms on the probability distribution
according to the corresponding event type is generated. This is an interesting area for
future work.

5.1 Setup and Parameters

The underlying CEP system is based on the framework of Ruben et al.[MKR15]. Each
of the three approaches is implemented as an operator of the CEP system which gets
the input event stream and returns the modified event stream as a result. The used
linear programming solver is the GNU Linear Programming Kit (GLPK) for Java[15]. All
experiments were performed on a machine with an Intel Core i5-4670 3.40GHz CPU
and 16GB of RAM. The operating system is Windows 10 Pro with Java JRE 8.

Every experiment runs over a stream of 10.000 events. All events are generated according
to a normal distribution with the inter arrival rate as mean and a standard deviation
of 20%. The inter arrival rates of the event types are randomly chosen between 200ms
and 1000ms. The event types participating in the queries and private patterns are
also randomly chosen out of the set of available event types Σ = {A, B, C, . . .}. For an
easy comparison of the three algorithms, we developed a metric called utility which
summarizes the quality of an algorithm referring to the number of introduced false-
positives and false-negatives as well as to the number of private patterns which are not
concealed in the modified event stream. The utility is defined as follows:

utility = #matchingQueries− 2 ∗ (#falsePositives + #matchingPrivatePatterns)

53

5 Evaluation

With this utility metric every introduced false-positive or false-negative leads to a utility
penalty of −1. For every private pattern in the modified event stream, the utility
is decreased by −2. Note that #matchingQueries already contains the penalty for
the false-negatives because with every missing match the value #matchingQueries

is not incremented. In contrast, every false-positive incremented #matchingQueries.
Therefore, we need to subtract two times the value of #falsePositives to achieve a
utility penalty of −1. The optimal utility is the number of matching queries in the
original event stream.

In the evaluation, the event stream suppression approach [WHRN13] is hard-constraint.
Therefore, the algorithm will never report a private pattern match. Furthermore, this
thesis does not consider event negation. That is why suppression never introduces any
false-positives.

The evaluation examines the impact of the following parameters:

• ε-Range: The ε-Range is only a restriction for the reordering algorithms. It defines
the range in which the corresponding event can be reordered.

• Size of the window: The size of the window impacts the number of event instances
which has to be considered for a query or a private pattern match.

• Number of queries: The number of queries specifies the amount of public patterns
which the algorithms need to take into account to prevent false-positives and
false-negatives.

• Selectivity of queries: The selectivity of a query defines the size of a public pattern.
For instance, query Q = (A, B, C, D) has a selectivity of 4.

• Number of event types: The number of event type defines the size of the available
set of different event types Σ = {A, B, C, . . .}.

54

5.2 Evaluation of the ε-Range

5.2 Evaluation of the ε-Range

One very interesting parameter for the number of concealed private patterns is the
size of the ε-Range. Figure 5.1 shows the measured results of the evaluation refer-
ring to the ε-Range. The used parameters for the system are given by the following table:

Parameter window size #event types #queries #private patterns selectivity
Value 500ms 5 3 1 3

The selectivity parameter specifies the maximum possible number of participating
event types in a query. But every query has a selectivity of at least 2. The ε-Range varies
between 5% and 75% of the inter arrival rate of the corresponding event. Note that
different event types with different inter arrival rates will have different ε-Ranges.

The first chart in Figure 5.1 shows the utility in relation to the ε-Range. With increasing
percentage for the ε-value, the utility of the reordering algorithms also increases. A
low ε-value has the effect that reordering is not possible because of the big distance
between the events. Therefore, the algorithms can only conceal a small number of
private patterns. The second graph shows exactly this effect on the number of private
patterns. With an increasing ε-Range, the number of reported private patterns decreases
dramatically. With an ε-Range of at least 60%, the algorithms report no private patterns
anymore. But this point also depends on the window size and is not a fixed value.

The thesis already discussed that the reordering of events can lead to false-positives and
false-negatives. It is quite clear that the increasing number of concealed private patterns
leads to the fact that also more false-positives and false-negatives are introduced. But
the graphs in the second row show that the number of false-positives and false-negatives
only increases very slow. Compared to the event suppression approach, the reordering
algorithms achieve a higher utility with an ε-Range over at least 25% because the
event suppression introduces such a huge number of false-negatives. In this evaluation,
the suppression approach is hard-constraint and suppresses always one event of the
matching private pattern. This declares the huge number of false-negatives. As already
mentioned, the ε-Range has only an impact on the reordering algorithm. That is why
the utility of the suppression approach stays constant.

The diagram in the third row shows that the ε-Range has no impact on the average
execution time of a window.

55

5 Evaluation

Figure 5.1: Evaluation of the ε-Range.

56

5.3 Evaluation of the Window Size

5.3 Evaluation of the Window Size

The size of the window has an impact on the number of event instances which need to
be considered in one modification step. Figure 5.2 shows the results of the evaluation
with the following constant parameters:

Parameter #event types #queries #private patterns selectivity ε-Range
Value 5 3 1 3 40%

The first chart in Figure 5.2 shows the utility in relation to the window size. The utility
of all algorithms increases up to a window size of 2000ms. Afterwards, the utility of the
reordering algorithms slowly decreases. The reason is shown in the second graph. The
reordering algorithms report more private patterns in case of a bigger window. Reason is
the ε-Range. An ε-Rang with 40% of the inter arrival rate which has a range of 200m to
1000ms is enough for a window size of 1000ms to 2000ms. But afterwards, the ε-Rang
limits the quality of the reordering algorithms in terms of concealed number of private
patterns. The two graphs show that the reordering algorithms can achieve a higher
utility as long as the ε-Rang is no big limitation. The graph-based reordering algorithm
achieves a slightly higher utility than the ILP-based algorithm. The reason is that the
graph-based algorithm avoids more false-positives.

The graphs in the second row show that both reordering algorithms introduce a small
number of false-positives and false-negatives as long as the algorithms conceal a huge
number of private patterns. If the reordering algorithms do not conceal private patterns,
they also do not introduce false-positives or false-negatives. Equally as in the previous
section, the event suppression approach leads to a huge number of false-negatives. With
an increasing size of the window, the number of false-negatives also increases because
more queries have a match in a window and the suppression of one event effects more
matching queries.

Finally, the last chart shows that the window size has a huge impact on the average
execution time for the reordering algorithms. It is quite clear that the increasing number
of event instances in one window leads to a bigger graph and a bigger ILP formulation.
The difference to the event suppression approach results from the fact discussed in
Section 4.2.6 and Section 4.3.4. For the negation of an ordering relation the reordering
algorithms have to take all instances of an event type into account.

57

5 Evaluation

Figure 5.2: Evaluation of the window size.

58

5.4 Evaluation of the Number of Queries

5.4 Evaluation of the Number of Queries

Beside the concealing of private patterns, goal is also to prevent the loss of public
patterns. With a higher number of such public patterns (queries), it is harder for the
algorithms to conceal all private pattern matches without losing public patterns. The
constant parameters have the following form:

Parameter window size #event types #private patterns selectivity ε-Range
Value 500ms 15 1 3 40%

Figure 5.3 shows the results of this evaluation. This time, the utilities of all three
algorithms are very close to each other. Until a total number of 16 queries, the utility
is near by the optimal utility, but then it flattens. The two graphs in the second row
show the reason. The number of false-positives and false-negatives increases after the
total number of 16 queries stronger than before. Due to the big number of queries,
the reordering algorithms cannot find a reordered event stream which prevents false-
positives and false-negatives. Same holds for the suppression approach. With a higher
number of queries it is more likely that all possible event types for suppression are
also part of a query match. The second graph in the first row shows that the number
of reported private patterns is not effected. The reordering algorithms report a small
number of private patterns because of the ε-Range.

The last diagram in the third row shows that the number of queries has an substantial
impact on the execution time of all algorithms. The impact on the suppression approach
is very small. But the execution time of the reordering algorithms increases very strongly.
The problem is that the graph grows for every matching query to avoid false-negatives
and for every not matching query to avoid false-positives. Therefore, the number of
matching queries is not critical because the graph-based algorithm considers the total
number of queries anyway. Same holds for the ILP-based algorithm. Here the impact
is not that strong because the ILP-based algorithm does not try to avoid false-positives
explicitly.

59

5 Evaluation

Figure 5.3: Evaluation of the number of queries.

60

5.5 Evaluation of the Selectivity of Patterns

5.5 Evaluation of the Selectivity of Patterns

The previous section showed the impact of the number of queries in the system. This
section focuses on the selectivity of queries and private patterns. The selectivity defines
the maximum possible number of event types which can participate in a public or private
pattern. These are the used constant parameters:

Parameter window size #event types #queries #private patterns ε-Range
Value 500ms 15 3 1 40%

The results of the evaluation are shown in Figure 5.4. Like in the previous sections, the
first chart shows the utility of the algorithms compared to each other and the optimal
utility. With a selectivity of already 5, all algorithms have only a utility near 0. But the
optimal utility is also at a value near 0. Thus, the algorithms are quite good compared
to the optimal solution. Reason for such a low utility value is that the queries and also
the private pattern do not have a match on the event stream. With increasing selectivity,
the corresponding patterns are getting more specific and matches get rare. The right
chart shows the low number of private pattern matches. Therefore, the algorithms do
not have to reorder or suppress an event which results in a low number of false-positives
and false-negatives. This behavior is also shown in the diagrams of the second row. With
a selectivity of 3, both reordering algorithms introduce a small number of false-positives
and false-negatives but with a selectivity of already 5, the number decreases to a value
near 0.

The same effect is shown by the last chart considering the average execution time for
one window. The algorithms do not have to generate a graph or an ILP formulation
because the input event stream has no match of a private pattern.

61

5 Evaluation

Figure 5.4: Evaluation of the selectivity of patterns.

62

5.6 Evaluation of the Number of Event Types

5.6 Evaluation of the Number of Event Types

This section evaluates the impact on the size of the available set of different event types
Σ = {A, B, C, . . .}. The constant parameters are defined as follows:

Parameter window size #queries #private patterns selectivity ε-Range
Value 500ms 3 1 3 40%

The evaluation of the number of different event types is shown in Figure 5.5. As always,
the first chart shows the utility of the different algorithms. The utility of the reordering
algorithm is very close to the optimal utility. Excluding the first part, also the utility of
the suppression approach is quite close to the optimal. Reason for the difference in the
first part can be seen in the diagram about the false-negatives and the private patterns.
With a small number of different event types, the algorithms have to conceal a huge
number of private patterns. To achieve that, the suppression approach introduces a high
number of false-negatives which results in a lower utility. The reordering algorithms also
conceal nearly all private patterns but only introduce a small number of false-positives
and false-negatives.

The last chart in Figure 5.5 shows that the decreasing number of private patterns goes
along with the decreasing average execution time because the reordering algorithms do
not have to calculate a possible reordering and the suppression approach does not have
to look for an event type for suppression.

63

5 Evaluation

Figure 5.5: Evaluation of the number of event types.

64

5.7 Discussion

5.7 Discussion

The evaluation shows that both reordering algorithms can conceal the most private
patterns with a low number of introduced false-positives and false-negatives with a
well defined ε-Range. As expected, the results of the graph-based algorithm and of
the ILP-based algorithm are quite close to each other. They only differ in the number
of introduced false-positives in which the graph-based algorithm introduces a slightly
smaller number. Furthermore, the evaluation presents that in most cases the reordering
algorithms achieve a higher utility than the event suppression approach. Problem is the
introduced high number of false-negatives by the suppression approach. But benefit of
the hard-constraint suppression approach is that it never reports a private pattern and
it cannot introduce any false-positives as long as the patterns are not allowed to use
negation. Furthermore, the execution time of the event suppression approach is much
shorter as the one of the reordering algorithms.

Moreover, the evaluation presents that not all considered parameters have a direct impact
on the algorithms. For instance, the evaluation of the selectivity of patterns shows rather
its huge impact on the number of matches. This only effects the performance of the
algorithms indirectly.

65

6 Conclusion and Future Work

This thesis considers the issue of pattern-based access control in event processing systems.
Current access control mechanisms for event processing systems are not sufficient to
prevent the revelation of private information in form of event patterns. Two algorithms
focusing the problem of pattern-based access control are presented and evaluated in
this thesis. Both algorithms try to reorder the input event stream in such a way that
the information concerning critical privacy information is concealed and the public
information is preserved. At the same time, the goal is to minimize the number of
introduced false-positives and false-negatives.

Furthermore, this thesis examines the impact of the reordering algorithms on the inter
arrival rate of events. For an attacker it might be possible to detect huge changes of
the inter arrival rate in the modified event stream. With this additional knowledge,
it could be possible to restore the original input event stream with the corresponding
private patterns. Therefore, this thesis additionally presents the ε-Range to minimize the
changes of the reordering approaches on the inter arrival rates of events. The ε-Range is
a restriction to reorder an event only in its corresponding range. Due to this restriction,
it is not always possible to find a reordered event stream which does not contain a
private pattern.

Both developed reordering algorithms are evaluated and compared with an existing
pattern-based access control approach which conceals private patterns by suppressing
one of the participating events. The evaluation shows that the reordering algorithms
can conceal the most private patterns with a low number of introduced false-positives
and false-negatives despite of the restriction by the ε-Range. One big problem of the
event suppression approach is that it introduces a very high number of false-positives.
Therefore, the reordering algorithms in most cases achieve a higher utility than the
event suppression approach.

67

6 Conclusion and Future Work

Future Work

One interesting issue for the future work in the area of pattern-based access control
in event processing systems is to examine the impact of event negation in public and
private patterns. The suppression approach as well as both reordering algorithms do
not consider event negation. Another issue is to examine the impact of the reordering
algorithms on the probability distribution according to which an event type is generated.
Closely related is the issue of finding a well-defined ε-Range.

68

Bibliography

[15] GNU Linear Programming Kit for Java. 2015. URL: http://glpk-java.
sourceforge.net/ (cit. on p. 53).

[ABW06] A. Arasu, S. Babu, and J. Widom. “The CQL Continuous Query Language:
Semantic Foundations and Query Execution.” In: The VLDB Journal 15.2
(June 2006), pp. 121–142. URL: http://dx.doi.org/10.1007/s00778-
004-0147-z (cit. on p. 7).

[ARX11] R. Adaikkalavan, I. Ray, and X. Xie. “Multilevel Secure Data Stream Pro-
cessing.” English. In: Data and Applications Security and Privacy XXV. Ed.
by Y. Li. Vol. 6818. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 122–137. URL: http://dx.doi.org/10.1007/978-
3-642-22348-8_11 (cit. on pp. 2, 8, 9).

[BBD+02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. “Models and
Issues in Data Stream Systems.” In: Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.
PODS ’02. Madison, Wisconsin: ACM, 2002, pp. 1–16. URL: http://doi.
acm.org/10.1145/543613.543615 (cit. on p. 5).

[BTW+06] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo. “A Data Stream Lan-
guage and System Designed for Power and Extensibility.” In: Proceedings
of the 15th ACM International Conference on Information and Knowledge
Management. CIKM ’06. Arlington, Virginia, USA: ACM, 2006, pp. 337–346.
URL: http://doi.acm.org/10.1145/1183614.1183664 (cit. on p. 7).

[BW01] S. Babu and J. Widom. “Continuous Queries over Data Streams.” In: SIG-
MOD Rec. 30.3 (Sept. 2001), pp. 109–120. URL: http://doi.acm.org/10.
1145/603867.603884 (cit. on p. 6).

[CCFT09] J. Cao, B. Carminati, E. Ferrari, and K.-L. Tan. “ACStream: Enforcing Access
Control over Data Streams.” In: Data Engineering, 2009. ICDE ’09. IEEE
25th International Conference on. Mar. 2009, pp. 1495–1498 (cit. on pp. 2,
8, 9).

69

http://glpk-java.sourceforge.net/
http://glpk-java.sourceforge.net/
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/978-3-642-22348-8_11
http://dx.doi.org/10.1007/978-3-642-22348-8_11
http://doi.acm.org/10.1145/543613.543615
http://doi.acm.org/10.1145/543613.543615
http://doi.acm.org/10.1145/1183614.1183664
http://doi.acm.org/10.1145/603867.603884
http://doi.acm.org/10.1145/603867.603884

Bibliography

[CM10] G. Cugola and A. Margara. “TESLA: A Formally Defined Event Specification
Language.” In: Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems. DEBS ’10. Cambridge, United Kingdom:
ACM, 2010, pp. 50–61. URL: http://doi.acm.org/10.1145/1827418.
1827427 (cit. on pp. 6–8).

[CM12a] G. Cugola and A. Margara. “Processing Flows of Information: From Data
Stream to Complex Event Processing.” In: ACM Comput. Surv. 44.3 (June
2012), 15:1–15:62. URL: http://doi.acm.org/10.1145/2187671.2187677
(cit. on p. 1).

[CM12b] G. Cugola and A. Margara. “Processing Flows of Information: From Data
Stream to Complex Event Processing.” In: ACM Comput. Surv. 44.3 (June
2012), 15:1–15:62. URL: http://doi.acm.org/10.1145/2187671.2187677
(cit. on pp. 5, 6, 14, 16, 18, 19).

[CM13] G. Cugola and A. Margara. “Deployment strategies for distributed complex
event processing.” English. In: Computing 95.2 (2013), pp. 129–156. URL:
http://dx.doi.org/10.1007/s00607-012-0217-9 (cit. on pp. 1, 14, 17).

[GÖ03] L. Golab and M. T. Özsu. “Issues in Data Stream Management.” In: SIGMOD
Rec. 32.2 (June 2003), pp. 5–14. URL: http://doi.acm.org/10.1145/
776985.776986 (cit. on p. 14).

[Int14] International Data Corporation (IDC). The Digital Universe of Opportunities:
Rich Data and the Increasing Value of the Internet of Things. Apr. 2014.
URL: http://www.emc.com/leadership/digital-universe/2014iview/
internet-of-things.htm (cit. on p. 1).

[Kah62] A. B. Kahn. “Topological Sorting of Large Networks.” In: Commun. ACM
5.11 (Nov. 1962), pp. 558–562. URL: http://doi.acm.org/10.1145/

368996.369025 (cit. on pp. vii, 40).

[Luc01] D. C. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2001 (cit. on p. 5).

[MKR15] R. Mayer, B. Koldehofe, and K. Rothermel. “Predictable Low-Latency Event
Detection With Parallel Complex Event Processing.” In: Internet of Things
Journal, IEEE 2.4 (Aug. 2015), pp. 274–286 (cit. on pp. 8, 53).

[MPE+10] M. Migliavacca, I. Papagiannis, D. M. Eyers, B. Shand, J. Bacon, and P.
Pietzuch. “DEFCon: High-Performance Event Processing with Informa-
tion Security.” In: USENIX Annual Technical Conference (USENIX ATC’10).
USENIX. Boston, MA, USA: USENIX, June 2010. URL: http://www.doc.ic.
ac.uk/~prp/doc/research/sf-usenix10-camera.pdf (cit. on pp. 2, 8, 9).

70

http://doi.acm.org/10.1145/1827418.1827427
http://doi.acm.org/10.1145/1827418.1827427
http://doi.acm.org/10.1145/2187671.2187677
http://doi.acm.org/10.1145/2187671.2187677
http://dx.doi.org/10.1007/s00607-012-0217-9
http://doi.acm.org/10.1145/776985.776986
http://doi.acm.org/10.1145/776985.776986
http://www.emc.com/leadership/digital-universe/2014iview/internet-of-things.htm
http://www.emc.com/leadership/digital-universe/2014iview/internet-of-things.htm
http://doi.acm.org/10.1145/368996.369025
http://doi.acm.org/10.1145/368996.369025
http://www.doc.ic.ac.uk/~prp/doc/research/sf-usenix10-camera.pdf
http://www.doc.ic.ac.uk/~prp/doc/research/sf-usenix10-camera.pdf

[Raq12] Raquel. SIMUL8 blog. 2012. URL: http://blog.simul8.com/simul8-tip-
whats-the-difference-between-arrival-rates-and-inter-arrival-

times/ (cit. on pp. 2, 31).

[SKRR13] B. Schilling, B. Koldehofe, K. Rothermel, and U. Ramachandran. “Access
Policy Consolidation for Event Processing Systems.” In: Networked Systems
(NetSys), 2013 Conference on. Mar. 2013, pp. 92–101 (cit. on pp. 2, 8, 9).

[Weia] E. W. Weisstein. Mean. From MathWorld. A Wolfram Web Resource. URL:
http://mathworld.wolfram.com/Mean.html (cit. on pp. 34, 36).

[Weib] E. W. Weisstein. Normal Distribution. From MathWorld. A Wolfram Web
Resource. URL: http://mathworld.wolfram.com/NormalDistribution.

html (cit. on p. 33).

[Weic] E. W. Weisstein. Standard Deviation. From MathWorld. A Wolfram Web
Resource. URL: http://mathworld.wolfram.com/StandardDeviation.

html (cit. on pp. 34, 36).

[Weid] E. W. Weisstein. Variance. From MathWorld. A Wolfram Web Resource.
URL: http://mathworld.wolfram.com/Variance.html (cit. on pp. 21, 36).

[WHRN13] D. Wang, Y. He, E. Rundensteiner, and J. F. Naughton. “Utility-maximizing
Event Stream Suppression.” In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’13. New York,
New York, USA: ACM, 2013, pp. 589–600. URL: http://doi.acm.org/10.
1145/2463676.2465305 (cit. on pp. 2–5, 8–11, 13, 15, 16, 20, 21, 23, 27,
30, 53, 54).

[XRAG13] X. Xie, I. Ray, R. Adaikkalavan, and R. Gamble. “Information Flow Control
for Stream Processing in Clouds.” In: Proceedings of the 18th ACM Sympo-
sium on Access Control Models and Technologies. SACMAT ’13. Amsterdam,
The Netherlands: ACM, 2013, pp. 89–100. URL: http://doi.acm.org/10.
1145/2462410.2463205 (cit. on pp. 2, 8, 9).

All links were last followed on January 13, 2016.

http://blog.simul8.com/simul8-tip-whats-the-difference-between-arrival-rates-and-inter-arrival-times/
http://blog.simul8.com/simul8-tip-whats-the-difference-between-arrival-rates-and-inter-arrival-times/
http://blog.simul8.com/simul8-tip-whats-the-difference-between-arrival-rates-and-inter-arrival-times/
http://mathworld.wolfram.com/Mean.html
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/StandardDeviation.html
http://mathworld.wolfram.com/StandardDeviation.html
http://mathworld.wolfram.com/Variance.html
http://doi.acm.org/10.1145/2463676.2465305
http://doi.acm.org/10.1145/2463676.2465305
http://doi.acm.org/10.1145/2462410.2463205
http://doi.acm.org/10.1145/2462410.2463205

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu
haben. Ich habe keine anderen als die angegebenen
Quellen benutzt und alle wörtlich oder sinngemäß aus
anderen Werken übernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch wesentliche
Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder
teilweise noch vollständig veröffentlicht. Das elektro-
nische Exemplar stimmt mit allen eingereichten Exem-
plaren überein.

Ort, Datum, Unterschrift

	1 Introduction
	1.1 Contribution
	1.2 Structure of the Thesis

	2 Related Work
	2.1 Background of Event Processing Systems
	2.2 Event Specification Languages
	2.3 Parallel Complex Event Processing
	2.4 Privacy in Event Processing Systems
	2.4.1 Access and Information Flow Control
	2.4.2 Pattern-based Access Control

	3 System Model and Problem Description
	3.1 System Model
	3.1.1 Event Data Model
	3.1.2 Query Model
	3.1.3 Selection Policy
	3.1.4 Consumption Policy

	3.2 Problem Description

	4 Pattern-based Access Control: Event Stream Reordering
	4.1 Overview
	4.1.1 Impact of Potential Events for Reordering
	4.1.2 Impact of Potential Positions for Reordering
	4.1.3 Impact of the Inter Arrival Rate
	4.1.4 -Range

	4.2 Graph-based Reordering Algorithm
	4.2.1 Graph Generation
	4.2.2 Algorithm
	4.2.3 Reordering Condition
	4.2.4 Choosing an Ordering Relation of the Private Pattern
	4.2.5 Avoidance of False-Positives
	4.2.6 Multiple Occurrences of the Same Event Type
	4.2.7 Different Granularities

	4.3 ILP-based Reordering Algorithm
	4.3.1 ILP Formulation
	4.3.2 Choosing an Ordering Relation
	4.3.3 Avoidance of False-Positives
	4.3.4 Multiple Occurrences of the Same Event Type

	4.4 Algorithm Comparison

	5 Evaluation
	5.1 Setup and Parameters
	5.2 Evaluation of the -Range
	5.3 Evaluation of the Window Size
	5.4 Evaluation of the Number of Queries
	5.5 Evaluation of the Selectivity of Patterns
	5.6 Evaluation of the Number of Event Types
	5.7 Discussion

	6 Conclusion and Future Work
	Bibliography

