Institut fur Formale Methoden der Informatik
Abteilung Sichere und Zuverlassige Softwaresysteme

Universitat Stuttgart
UniversitatsstralBe 38
D-70569 Stuttgart

Master Thesis Nr.3120

Program Analysis and
Probabilistic SAT-solving

Johannes Frederik Jesper Traub

Course of Study: Information Technology

Examiner: PD Dr. habil. Dirk Nowotka
Supervisor: Dipl. inf. Gordon Haak, Daimler AG
Commenced: 10th June 2010

Completed: 7th December 2010

CR-Classification: F.3.2, G3



Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Johannes Frederik Jesper Traub)



Contents

1 Introduction 4
2 Foundations 5
2.1 Program Analysis . . . . . . .. ... 5
2.1.1  Compiler Framework . . . . . .. ... ... ... ... ... 6
21.2 Clang . . . . . . e 6
2.1.3 Low Level Virtual Machine (LLVM) . . . . . ... ... .. .. 7
2.1.3.1 LLVM Intermediate Representation (IR) . . . . . .. 7
2.1.4 Techniques to reduce the problem size . . . .. .. ... ... 11
2.1.4.1  Program Slicing . . . . . .. ... ... 12
2.1.5 Model Checking . . . . . .. ... ..o 12
2.1.5.1 Satisfiability Problem . . . . . ... ... ... ... 12
2.1.5.2  Satisfiability Modulo Theories . . . . . . . . ... .. 13
2.1.5.3 hys Language . . . . . ... .. ... ... ... 14
2.2 Probabilistic SAT Solving . . . . . ... .. ... ... .. ... .. 17
221 SAT Solving . . . . . . . .. 17
2.2.2 Lovéasz Local Lemma (LLL) . . .. ... ... ... ... ... 19
2.2.2.1 Algorithms . . . . ... ... ... . 20
3 Program Analysis 23
3.1 Transformation from LLVM to hys Language . . . . . . . . ... ... 23
3.1.1 The hys Target Machine . . . . .. .. ... ... ... .... 23
3.1.1.1 hys State Machine . . . . ... ... ......... 25
3.1.1.2  hys Memory Manager . . .. ... ... ....... 28
3.1.1.3  hys Arithmetic Logic Unit . . . . . . ... ... ... 33
3.1.2 LLVM IR to hys Target Machine . . . ... ... ... .... 37
3.1.2.1 Transformation of the Type System . . . . . . .. .. 37

3.1.2.2 Transformation of the Memory Management and Ad-
dressing . . . . . . . . . ... 38
3.1.2.3 An Approach to the Transformation Process . . . . . 38
3.1.3 LLVM Backend (Assembly Writer) to hys Target Machine . . 39
3.1.3.1 Mapping Arithmetic and Logic Instructions . . . . . 40
3.1.3.2 Mapping Branch and Jump Instructions . . . . . .. 40



CONTENTS

3.1.3.3 Mapping Data Transfer Instructions . . . . ... ..
3.2 Conclusions . . . . . . . ...
3.2.1 Creating a new Target Machine . . . . .. ... .. ... ....

4 Probabilistic SAT Solving
4.1 Implementation of the LLL algorithms . . . . . . .. ... ... ...
4.1.1 Classes . . . . . . . e
4.2 Testcases . . . . . . . . .
4.2.1 Generation . . . . . ... ..
4.2.2  Analysis of the Results . . . . . ... ... ... ... . ....
4.3 Conclusions . . . . . . . ...

5 Conclusions
Bibliography

List of Listings

46
46
47
o1
o1
53
o7

59

60

64



Chapter 1

Introduction

In this thesis two aspects regarding the correctness of hardware and software of com-
puter systems are handled: Program Analysis [22] and Probabilistic SAT-solving
[24, 2]. These two topics have become more and more important over the last few
years as computer systems have captured an irreplaceable status in the current in-
dustry and everyday life. But with the increasing development of computer systems
their complexity increases even more. Therefore the proof for the correctness of
their hard- and software becomes more and more difficult.

The first challenge of this thesis — residing in the area of Program Analysis — is the
transformation of the Intermediate Representation of LLVM [17] describing a pos-
sible runtime error of a program into a SMT [11] formula in order to find a witness
or to prove the absence of this error.

The second challenge of this thesis — arranged in the domain of Probabilistic SAT-
solving — is the implementation and evaluation of algorithms Moser introduced in
his papers: “A constructive proof to the Lovédsz Local Lemma” [19] and “A con-
structive proof to the general Lovasz Local Lemma” [20]. The special interest of the
evaluation is the constraint on the structure of the input problem the algorithms
are bounded to and how the algorithms scale when the constraint is violated.

Another interest in this thesis is the question whether it is possible to let the two
challenges interact with each other and if this interaction leads to an improvement
of the design and analysis process in order to build correct hardware and software.



Chapter 2

Foundations

2.1 Program Analysis

In general, (Static) Program Analysis [22] describes the (automatic) analysis of the
behavior of programs. The process of Program Analysis on a given program in C
code used in this thesis is described in the following: Abstract Interpretation is
performed on the program in order to prove the absence of runtime errors (like for
example division by zero, overflow, ...).

Definition 1: Abstract Interpretation

Abstract Interpretation [8] is the approach to analyze the semantics of a program by
analyzing an abstraction of the concrete semantics. Therefore the concrete semantics
of the program is mapped to an abstract semantics. If the abstraction is sound, an
analysis result in the abstract semantics also holds in the concrete representation,
but might be easier to compute.

An intuitive example given by Sintzoff in [25] showing the rule of signs is illustrated
in the following.

Example:

Let -1515 * 17 be an instruction. From this instruction the abstraction to the
domain of signs {+, -} can be derived. The abstract operation * for the abstract
values + and - 1s as follows:

-(+) x (#) = (=) * (+) = ().

This leads to the conclusion, that -1515 * 17 will be a negative number without
computing its exact value.

The analysis performed by Abstract Interpretation is restricted to the Halting Prob-
lem.



CHAPTER 2. FOUNDATIONS 6

Definition 2: Halting Problem

The halting problem [27] is a decision problem. The question asked is: “Will the
program terminate or run forever?” In 1936 Alan Turing proved the non existence
of a general algorithm, which is able to solve the halting problem.

This result can be generalized to the theorem of Rice [14].

It is possible to build analysis for abstract semantics, which is not restricted by the
theorem of Rice, but for the price of imprecision. This imprecision in the abstraction
can lead to spurious errors, which do not occur in the concrete program.

The process of proving the absence or finding witnesses of runtime errors in C source
code, which have been detected by Abstract Interpretation, is based on a Compiler
Framework layout and its steps are illustrated in the following:

1. The LLVM Frontend Clang is responsible for parsing the code files and con-
verting them into the Intermediate Representation of LLVM.

2. In order to reduce the problem size in regard to the possible error tech-
niques like Abstract Interpretation, Program Slicing based on Data Flow
Analysis and so on are used.

3. The resulting portion of code and the error candidate are then transformed
into a Model Checking Problem and passed to a suitable Solver.

4. If the Solver finds an assignment to the problem, a witness to the error is
found, otherwise the error found by Abstract Interpretation is proven spurious.
(The solving process is also restricted by the halting problem).

In the next section a Compiler Framework is described in order to get an idea of
the hierarchy of Clang and LLVM.

2.1.1 Compiler Framework

A Compiler [1] is the tool used to transform source code into target code. Basically
a Compiler consists of three parts: Frontend, Middleend, Backend. The Frontend is
the interface between the text file (source code) and the internal code-representation:
the Intermediate Representation. The Middleend, which is operating on the Inter-
mediate Representation, is equipped with tools like an Optimizer - based on Data
Flow Analysis - in order analyze and optimize the code. Finally the Backend gen-
erates target code out of the optimized Intermediate Representation.

2.1.2 Clang

Clang [12] is a frontend for the C language family of LLVM - a Compiler Infrastruc-
ture, which is introduced in the next section. Clang is able to process the source



CHAPTER 2. FOUNDATIONS 7

code in several ways. Its main purpose is still the functionality as a Compiler which
produces executable target code. Another feature of Clang is the conversion of the
input source code into the LLVM Intermediate Representation. The result can either
be a text file or a bitcode file, which can both be read by LLVM. An equivalent tool
is for the Gnu C Compiler (gcc), but in this thesis Clang is used in order to generate
LLVM code. Therefore Clang is invoked either with the parameter “-emit-llvm” in
order to create a file in the LLVM text format or with the parameter “-emit-llvm-b¢”
in order to generate a LLVM bitcode file. In the next section LLVM including its
Intermediate Representation is introduced.

2.1.3 Low Level Virtual Machine (LLVM)

LLVM [17] the “low level virtual machine” is a Compiler Infrastructure. It provides
several language-dependent frontends like Clang (introduced in [Chapter 2.1.2]),
llvm-gce - the gnu ¢ compiler front end - and so on. It also features a middleend
including a collection of tools like an optimizer operating on the intermediate rep-
resentation, which is introduced in the following section, as well as a number of
language-dependent code generators.

2.1.3.1 LLVM Intermediate Representation (IR)

The LLVM Intermediate Representation (IR) consists of a target-independent vir-
tual instruction set and a language-independent typing system.

Virtual Instruction Set

The target-independent virtual instruction set is based on a RISC-like instruction
set, without providing architecture specific information like registers, pipelines and
calling conventions. Instead the instruction set features an infinite number of virtual
registers in Static Single Assignment (SSA) form, introduced in [Definition 3|. The
instruction set provides load and store instructions to transfer values between reg-
isters and memory. LLVM contains with only 31 instructions a quite small number
of instructions, because each instruction is only defined once and able to operate on
any operand with any type.

Definition 3: Static Single Assignment (SSA)

Static Single Assignment [3] ensures a unique variable assignment. For each assign-
ment of a variable a new variable is generated. In order to handle assignments, in
which a variable depends on a join node, phi nodes are introduced.

Example:

In table 2.1 an example for the transformation from C code to SSA form is shown.



CHAPTER 2. FOUNDATIONS 8

original statement | transformed to SSA
x = 0; X = 03
x=x+ 1; X;] = X9 + 0;
if (x < 0) if (x; < 0)

y =3 *x yo = 3 ¥ x1
else else

y=x+1 y1 =x3 +1
z = %; y2 = ¢(yo, y1)

Zy = ‘%2 >

Table 2.1: Transformation from C Source Code to SSA Form

FEach variable from the original statement results a new variable in the SSA form on
the right hand side. The assignment z = 4 results in a phi node in the SSA form,
as the value of y depends either on the if branch (y;) or on the else branch (y;).

Type System

The type system of LLVM is language-independent in respect to the source language
and features the most common types like: void, bool, signed and unsigned integer
with a size of 8 to 64 bits and single- and double-precision floating-point types of
size 32 to 128 bits. LLVM provides only four derived types: pointer, array, structure
and function. As the LLVM type system is language-independent and features no
high-level types, source-level types must be lowered to the LLVM type system. This
lowering process is based on the idea of lowering source level code to machine code.

Program Structure

The Intermediate Representation of a program in LLVM is provided by the LLVM
module - the in-memory representation. A LLVM module is a doubly-linked list
identified by the ModulelID. It contains the following items: a list of functions and
a list of global variables. Each function inside LLVM contains a list of Basic Blocks
(BBs), where each Basic Block contains a list of LLVM instructions. For each source
code file a separate module is created.

The following example helps to get an overview of the Intermediate Representation of
LLVM. A detailed description of the LLVM language can be found in the “Language
Reference Manual” [16].

Example:

In Figure 2.1 a thermostat is defined in C' code. It consists of two functions rep-
resenting the cool and heat functionality, which are triggered in the main function
using the boolean variable heating. Initially the temperature (current) is set to



CHAPTER 2. FOUNDATIONS 9

18°C and the variable heating is set to true - initiating the thermostat to the func-
tionality of a heater. As long as the temperature resides inside the interval 18 <
current < 22 il gets increased by 0.2°C per iteration. Once 22°C is passed the
variable heating is set to false, which puts the thermostat into cooling mode. In
this mode the temperature is decreased by 0.2°C per timestep as long as the temper-
ature stands in the interval 19 < current < 23.

double current = 0;

bool heating = true; int main() {
current = 18;
void cool() { heating = true;
if (current > 19 while (1) {
&& current <= 23) if (heating)
current -= 0.2; heat () ;
else
heating = true; else if ('heating)
} cool();
void heat() { else
if (current >= 18 break; // error state
&& current < 22) }
current += 0.2; return O;
else }

heating = false;

Figure 2.1: Simple Thermostat: C Source Code

In the following the LLVM Intermediate Representation, which has been generated
from the C code using Clang, is explained, starting in Figure 2.2 with the identi-
fier, the target architecture and the global variables current and heating from the
resulting LLVM module are shown.

; ModulelID = ’thermostat.c’

target triple = "i686-pc-win32"

@current = common global double 0.000000e+000, align 8
Gheating = common global i32 0, align 4

Figure 2.2: Simple Thermostat: LLVM IR - ID, globals



CHAPTER 2. FOUNDATIONS 10

The function cool is illustrated on the left hand side of Figure 2.3. A function
inside of LLVM is build out of basic blocks (BB). The first BB represents the first
condition of the if statement. Therefore the value of the global variable current is
loaded into the internal variable 71 and the result of the compare operation “signed
greater than” into %42. Each BB has to be completed by a “Terminator Instruction”,
in this case it is a conditional branch instruction. Based on the truth value of %2
the next BB can either be label %3 (the second condition of the if statement) or
label /12. BB label }6 represents the instruction current -= 0.2. First the
value of current is loaded in %7, the result of the subtraction is stored in %8 and
finally written back to the address of current. The else branch of the function cool
is inside BB label %9, in here the value of heating is set to true (1). The final BB
is Label 210, which returns the value void of the function.

On the right hand side of Figure 2.3 the function heat is shown. It has the almost
same functionality as function cool, except that instead of decreasing the tempera-
ture , it gets increased.

define void @cool() nounwind { define void @heat() nounwind {
%1 = load double* Qcurrent %1 = load double* Qcurrent
%2 = fcmp ogt double %1, 1.90e+001 %2 = fcmp oge double %1, 1.80e+001
br i1 %2, label %3, label %9 br i1 %2, label %3, label %9
; <label>:3 ; <label>:3
%4 = load double* Qcurrent %4 = load double* Qcurrent
%5 = fcmp ole double %4, 2.30e+001 %5 = fcmp olt double %4, 2.20e+001
br i1 %5, label %6, label %9 br i1 %5, label %6, label %9
; <label>:6 ; <label>:6
%7 = load double* Q@current %7 = load double* Q@current

%8 = fsub double %7, 2.000000e-001 %8 = fadd double %7, 2.0e-001
store double %8, double* Qcurrent store double %8, double* @current

br label %10 br label %10
; <label>:9 ; <label>:9
store 132 1, i32* @heating store 132 0, 132* @heating
br label %10 br label %10
; <label>:10 ; <label>:10
ret void ret void

Figure 2.3: Simple Thermostat: LLVM IR - function cool



CHAPTER 2. FOUNDATIONS 11

In Figure 2.4 the LLVM module of the function main of the thermostat example is
shown. The initial BB initiates the global variables current with 1.8 and heating
with 1 and closes with an unconditional branch instruction, which next label is 72.
BB label J2 represents the if statement in function main, which either leads to the
BB label /5 - the if branch calling function heat() - or BB label %6, the else if
statement. From BB label /6 depending on the else if condition either BB label
%49 - the else if branch calling function cool() - or BB label %13 - the else branch,
returning O - 1s reached. The next BB to BBs label 75 and label 79 is BB label
2. This loop represents the while statement.

define i32 @main(i32 %argc, i8+* jargv) nounwind {
%1 = alloca i32

hargc.addr = alloca 132 ; <label>:6
hargv.addr = alloca 18 %7 = load i32% Gheating
store i32 0, i32x* %1 %8 = icmp ne 132 %7, O

store i32 Yargc, i32* Jargc.addr  br il %8, label %13, label %9
store i8%x Jargv, i8%** jargv.addr

store double 1.800000e+001, doublex @current

store 132 1, i32* Qheating

br label %2 ; <label>:9
call void @cool()
; <label>:2 br label %2
%»3 = load i32* Gheating
#4 = icmp ne 132 %3, O ; <label>:13
br i1 %4, label %5, label %6 store 132 0, 132x* %1
%14 = load i32* %1
; <label>:5 ret i32 %14
call void Gheat() }

br label %2

Figure 2.4: Simple Thermostat: LLVM IR - function main

2.1.4 Techniques to reduce the problem size

As the model checking problem - refer to [Chapter 2.1.5] - is limited by the halt-
ing problem, it is necessary to reduce the size of the problem as much as possible.
There exist several approaches to reduce the problem size, like for example Abstract
Interpretation - introduced in [Definition 1] -, Program Slicing and so on.

In this thesis the technique of Program Slicing is used to reduce the code size of the
Intermediate Representation.



CHAPTER 2. FOUNDATIONS 12

2.1.4.1 Program Slicing

Program Slicing [30] is a technique used to delimit programs only to the relevant set
of instructions according to some given slicing criterion. The goal is to eliminate all
code artifacts which are not affecting the values of the point of interest, defined by
the slicing criteria. In this case Program Slicing is based on Data Flow Analysis.

Definition 4: Data Flow Analysis

Data Flow Analysis [15] is the process of gathering information about the program
semantics in a program. This process is based on a Control Flow Graph, the analysis
of the abstract semantics [Definition 1] and a Callgraph of the program.

2.1.5 Model Checking

In order to prove the absence or to find a witness of runtime errors in C source code
the Intermediate Representation of LLVM - introduced in [Chapter 2.1.3.1] - one
solution is the transformation into a model checking problem.

Definition 5: Model Checking

Model Checking [4] is the process to automatically verify if some model, which is
described by a finite state system, meets a given specification. Therefore the process
traverses over the state space of the specification’s underlying system. This process
is limited by the state explosion problem [28], as in the worst case the entire state
space is examined.

One of the simplest and earliest approaches to handle model checking is the Satis-
fiability Problem, which is introduced in the following section.

2.1.5.1 Satisfiability Problem

The Satisfiability Problem [7] is a decision problem of propositional logic. Given a
formula ® in propositional logic the goal is to determine, whether @ is satisfiable or
not. The formula @ itself is usually given in conjunctive normal form.

The Satisfiability Problem belongs to the class of NP problems. This means the
problem is verifiable in non-deterministic polynomial time.

Definition 6: Clause
A clause is the disjunction of literals, where a literal is either the positive or negative
occurrence of a variable.

Definition 7: Conjunctive Normal Form (CNF)
Conjunctive Normal Form (CNF) is the conjunction of clauses.



CHAPTER 2. FOUNDATIONS 13

Example:

Let ® = (aVb)A (—aV—b) be the input to the decision problem. For small input
problems a quite simple way to test ® for Satisfiability is to introduce a truthtable
for @, like shown in Table 2.2.

a|b| (avb) | (maV—b) | (aVb)A(—aV-b)
010 0 1 0
01 1 1 1
1]0 1 1 1
1)1 1 0 0

Table 2.2: Truthtable of ®

Obuviously a truthtable is not a suitable method for proving when the complexity of the
input problem increases. But there exist several tools, for example the SAT Solver,
which is based on the theory of SAT Solving introduced in [Chapter 2.2.1].

It is possible to transform LLVM into the Satisfiability Problem. But if this transfor-
mation has to cover the entire behavior of LLVM the resulting Satisfiability Problem
huge. Therefore some parts of the behavior are only mapped to abstract variables
in the Satisfiability Problem. But the resulting abstraction might be imprecise in
respect to the original behavior, because if there exists a satisfying solution for the
abstraction, the underlying arithmetic of those variables might not be feasible.

But there subsists another theory which is able to handle boolean and arithmetic
parts: the Satisfiability Modulo Theories. This theory is described in detail in
the next section.

2.1.5.2 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) Problem [11] is also a decision problem.
The input formula ¥ is not bound on boolean logic only, but is expendable with
a various number of theories, such as the theory of real numbers, the theory of
integers, etc. W is still treated as a conjunction of clauses, where a clause consists of
one literal or is a disjunction of at least two literals. But a literal does not have to be
boolean any more, it can also be a mathematical statement, equation or inequation.
Most of the Solvers for the SMT Problem depend on the SMTLIB standard input
format. But this standard only allows a static input formula and as C Code also
includes functions containing loops, jumps, etc., this format is not the suitable one.
These types of problems are usually handled by Bounded Model Checking.

Definition 8: Bounded Model Checking (BMC)
Bounded Model Checking [5] is a special case of Model Checking [Definition 5] and



CHAPTER 2. FOUNDATIONS 14

defined as the process to verify that a model meets a given specification for a fixed
number of time steps. Therefore the model is unrolled for at most k time steps into a
formula and checked in each step by a Solver until either time step k is reached or the
Solver proves a violation to the specification in one of those iterations. The process
of unrolling can be described as the sequence of instruction steps until timestep k.

Example:
Let M be a simple thermostat, which is shown in Figure 2.5. The thermostat has the
same behavior as the thermostat from Figure 2.1.

[ ) [ A
Heat X >= 22 ) Cool
x=18
—> X' =x+0.2 X'=x-0.2
x>=18 x<=19 X <= 23
. J( L J

Figure 2.5: Simple Thermostat: Automaton

In this example the goal is to prove that the thermostat never violates the safety
properties of state heat (z > 18) or state cool (z < 23). This task seems to be
quite easy at the first look at Figure 2.5, because the automaton looks like it is well
defined, but it is not possible to prove such criteria for a deterministic automaton.
The only proof that can be given is for a defined number k € N of timesteps. There-
fore the automaton can be unrolled into a formula @y, for example for timestep
k=1:
®)r = (zg = 18 A heat A not (cool) A...) A

-

g

k=0
((heat A zy > 18 — cool) A (z = 2o+ 0.2) A...)
k1

There exist a few Solvers, which perform BMC on the input problem in order to find
a satisfiable solution, operating on the hys language. This language is introduced in
the following section.

2.1.5.3 hys Language

The hys language was first introduced in [13] and in general describes the input
problem as some kind of state machine. This language is the form of Satisfiability
Problem the LLVM module is going to be transformed into. The detailed transfor-
mation process is described in [Chapter 3].



CHAPTER 2. FOUNDATIONS 15

The hys language contains four different sections: DECL, INIT, TRANS and TAR-
GET. In the first section DECL all the variables appearing in the input problem
are defined. The state machine or automaton corresponding to the input problem
is defined in the three sections INIT, TRANS and TARGET. The INIT section de-
scribes the initial state of the input problem and usually assigns the variables with
their initial values. In the section TRANS all possible transitions representing the
input problem are defined. TARGET finally introduces the target state representing
the code segment or condition which is tried to be reached by taking a sequence of
transitions from TRANS.

Accepted types are boolean, float or integer, where it is recommended for the nu-
merical types to append the range in which the variable is valid in order to keep
the search space as small as possible. According to the types there exist several
operators, which are shown in Table 2.3.

boolean operators: | arithmetic operators:
and +,—, %,
or abs
nand min
nor max
XOr exp
nxor (<) sin
impl (—) cos
not (!) nrt

Table 2.3: hys Language - Operators

In order to provide a possibility to handle temporal statements, the operator “’”
has been introduced. The operator is applicable to every type of variable (boolean,
float and integer). The statement: x’ = x + 1 at time interval zero is interpreted
as: x; = xo + 1. In Table 2.3 there exists no arithmetic operator for division, but
with the temporal operator “ it is easy to create an equivalent statement:

-y =
X=>ozxx =y
Example:

Let M again be the thermostat defined in Figure 2.5. In order to have a proper
TARGET for the hys language, let the given safety property be:

“Is it possible for  to reach a value, which is lower than 18 C or greater than
23 C?7



CHAPTER 2. FOUNDATIONS 16

The according definition of the thermostat in the hys language is given in Figure 2.6.
In DECL the temperature variable = is defined over the interval [17.0, 24.0], as
well as the two states of the thermostat: cool and heat. In the section INIT x is
initiated to 18° and the initial state is set to heat. The section TRANS represents
the actual transition system of the automaton. The first four logic statements de-
scribe the according transition to be taken due to the condition on the temperature
z, where for example cool’ states that in the next time step the automaton is inside
state cool. For example the first one: If the current state is heat and z > 22.0°,
then the next state is cool. The next two transitions represent the actions to be
executed if the thermostat is in mode cooling or heating. The last transition item
gquarantees that the thermostat is either in state cool or in state heat, but not in
both at the same time. In the section TARGET the stated safety property - “if  can
reach a temperature outside the bounds [18,23]” - is described.

DECL
cool and x <= 19.0 — heat’;
real [17.0 ,24.0] x; cool and x <= 23.0 — coo0l’;
boole cool, heat;
heat and heat’ —
x’ =x + 0.2;
INIT cool and cool’ —
x> =x - 0.2;
x = 18.0;

'cool and heat;

TRANS

heat and x >= 22.0 — cool’;
heat and x >= 18.0 — heat’;

cool’ + heat’ = 1;

TARGET

(x < 18) or (x > 23)

Figure 2.6: Simple Thermostat: hys Language



CHAPTER 2. FOUNDATIONS 17

2.2 Probabilistic SAT Solving

Probabilistic SAT Solving [24, 2] covers a wide range of approaches to handle SAT
Solving. In this thesis Probabilistic SAT Solving refers to the approach Moser
introduced in his paper: “A constructive proof of the Lovasz Local Lemma” [19],
which is based on the Lovasz Local Lemma [23]. The implementation, test and
research on the algorithms introduced by Moser is the second task of this thesis and
described in detail in [Chapter 4]. The fundamentals to this approach are given in
section 2.2.2, but first of all SAT Solving is introduced in the following section.

2.2.1 SAT Solving

SAT Solving [21] is the process to solve the Satisfiability Problem [Chapter 2.1.5.1]
and is in general the search for a satisfying assignment to a given input formula.
There exist several approaches to find such an assignment, but most state of the
art SAT Solvers are based on the DPLL algorithm, which is described in [Definition
12]. Another approach is for example the construction of a Binary Decision Diagram
(BDD), but the construction of such a BDD is quite expensive, because the size of
a BDD increases - depending on the variable ordering - either linear or in the worst
case even exponential. Due to this reason, BDDs are not used in most of the cases.

The successive definitions are necessary to understand the DPLL algorithm properly.

Definition 9: Satisfiability of clauses
A clause is satisfiable, if at least one of its containing literals is fulfilled.

Example:
Let 1 = (aVbV—c) be a clause, then 1 is satisfied, if for example a = 1 holds.

Definition 10: Unitclause

A clause is a unitclause (unit), if only one literal has no assignment, all other literals
are already assigned and the clause is not fulfilled under the current assignment.
Using the definition of satisfiability of clauses it follows that this last literal has to
be assigned with the correct truth value, because otherwise the clause could not be
satisfied any more.

Example:
Let 1 = (aVbV—c) be a clause, where b=0 and c=1 are already assigned, hence a
must be set to 1.

Definition 11: (Unit)Propagation
From the definition of a unitclause the definition of propagation follows straight



CHAPTER 2. FOUNDATIONS 18

forward. Unit propagation is the process to spread the value of a literal assign-
ment from a unit clause through the entire set of clauses. The consequence of unit
propagation could be new unit clauses, which recursively invoke unit propagation
themselves.

Example:

Let T = (avbV—c), m = (avVd), n = (—aVd), ... be a set of clauses with the
current assignment b = 0, ¢ = 1. Thus m is unit and a = 1 has to be the next
assignment, which leads to the result that m is satisfied and n becomes unit. So on
the next step d has to be assigned to 1 and so on.

Definition 12: DPLL Algorithm

The Davis Putnam Logemann Loveland (DPLL) [9, 10] algorithm is shown in Figure
2.7. The search process of most state of the art SAT Solvers is based on the DPLL
algorithm.

function DPLL(®)
if all clauses in ® are satisfied

return & = SAT
if one clause is unsatisfiable
return ® = UNSAT

for each unitclause ¢ € @
® = propagate(c, ®)
for each pure literal [ € @
® = assign(, P)
1 = nextLiteral(®P)
return DPLL(®A [) V DPLL(PA- [)

Figure 2.7: DPLL Algorithm

The algorithm has two return values: SAT or UNSAT. First of all it is checked, if
all clauses are satisfied, because in this case the formula ® is satisfied. Whereas if
only one clause is unsatisfied, the entire formula is as well. In the next step unit
propagation is performed and the assignment of literals occurring purely in ®. Then
a new literal is chosen and DPLL is called recursively once with ® Al and with ® A—l.

Usually the DPLL algorithm is extended with conflict analysis which includes a
backtracking mechanism in combination with a learning mechanism. Backtracking
enables undoing a decision, if a conflict during the search process has occurred, and
the learning mechanism will ensure that the same conflict will not happen any more
during the search process. The search algorithm is displayed in Figure 2.8.



CHAPTER 2. FOUNDATIONS 19

loop
propagate();
if !conflict
if all variables assigned
return SAT;
else
decide(); //pick new variable
else
analyze() ;
if conflict@top-level
return UNSAT;
else
backtrack();

Figure 2.8: SAT Search Algorithm

A quite new approach to solve SAT formulas has been derived from a lemma stated
in 1975 by L. Lovész in [23], the: Lovdsz Local Lemma. Basically the lemma is
defined on events, but when extending an event to a clause it is also applicable on
the satisfiability problem. The definition of the lemma is given in the next section.

2.2.2 Lovasz Local Lemma (LLL)

The Lovasz Local Lemma (LLL) [23] is a tool which is used in probability theory.
In order to describe the lemma in words, the succeeding definitions are required:

Let f be a k-cnf formula and let A = {Ay,..., A} be a set of events, where each
event A; € A is determined by a finite set of mutually independent random variables
p; € P,1 <i < nin a probability space, where each variable p; has its domain D;.
Let G be the dependency graph of f : Gy = (V, E) with vertices V = A and edges
E ={(A;, Aj) € f| (A; # Aj) A (vbl(A;) Nwbl(A;) # 0}, where vbl(A;) denotes the
set of variables occurring in A;.

Given a set of events, the lemma declares the probability that none of them occurs
is not zero if the probability of an event itself is smaller than the number of events
depending on it. The proof of the lemma itself is non-constructive and is therefore
not illustrated in this thesis.

Moser eased the LLL in [19] to the circumstances of the satisfiability problem. Under
the assumptions that: £ € N and f is an k-cnf formula and given a clause ¢ € f, the
set of neighbors of ¢ is defined as I'¢(c) = {ca € f|(c # ca) A (vbl(c) Nwbl(ca) # D)},



CHAPTER 2. FOUNDATIONS 20

where vbl(c) is the set of all variables occurring in ¢, the simplified version of the
LLL is shown in the following theorem:

Theorem 1 [23]
If f is a k-cnf formula and all clauses ¢ € f satisfy the characteristic |T'¢(c)| < 2872,
then f 1is satisfiable.

Extending the neighborhood of a clause ¢ € f to T'j(c) = T'y(c) U {c}, Moser
introduced a second theorem:

Theorem 2 [19]

If [ is a k-cnf formula and all clauses ¢ € [ satisfy the property \F}’(c)\ < 2k=5,
then f is satisfiable and there exists a randomized algorithm that finds a satisfying
assignment to f in expected time polynomial in | f| (independent of k).

Moser proved the lemma in [19] to be correct, which is at least for those problems
meeting the condition an aperture in SAT-solving, as the general satisfiability prob-
lem belongs to the class of AP problems. In the paper [20] Moser and Tardos even
refined the lemma and gave an expected run time in O(log®(m)), where m is the
number clauses occurring in f.

In the following section the algorithms to the LLL are described.

2.2.2.1 Algorithms

In general Moser introduced three algorithms based on the Lovasz Local Lemma,
the first one in [19], which is described in pseudo code in Figure 2.9.

function solve_111(f)
assignment = random assignment over variables v;;
run = 0;
while J clause € f : unsatisfied do
if (run++ > log(m) + 2 )
assignment = random assignment over variables v;;
run = 0;
restart;
assignment = logically_correct(f, assignment, clause);
return assignment;

Figure 2.9: Moser: First LLL Algorithm - solve_lll

Initially the function solve_111 creates a random assignment for all variables in



CHAPTER 2. FOUNDATIONS 21

the formula f and starts the search process. This process runs until all clauses are
satisfied under the current assignment. So in the worst case, if the function £ does
not meat the LLL constraint and f is unsatisfiable, the process will never terminate.
While there exists a clause which is not fulfilled under the current assignment, the
process updates the assignment by invoking logically correct and passing the
formula, the current assignment and the clause to it. Once the number of steps of a
run has passed the threshold log(m) + 2, the process is restarted with a new initial
assignment.

function logically_correct(F, A, C)
A=A :Vvar € C: Alvar] = rand(0,1);
while 3 clause € I'"(C): unsatisfied do
A = logically_correct(F, A, C);
return A;

Figure 2.10: Moser: First LLL Algorithm - logically_correct

The function logically_correct illustrated in Figure 2.10 updates the assignment
by random bits at all the positions of those variables which the clause C' contains.
In the following, for each clause which is a neighbor to C' and which is not fulfilled
under the updated assignment, the assignment will be updated again by invoking
logically_correct recursively with the corresponding clause.

In the paper [20] Moser released along with G. Tardos two algorithms, which are
derived from the first version.

function sequential_ 111
V var € P do
assignment [var] = rand(0,1);
while 3 A € A: A is violated do
assignment = assignment : V var € A: var = rand(0,1);
return assignment;

Figure 2.11: Moser and Tardos: Sequential LLL Algorithm

The function sequential 111 shown in Figure 2.11 is almost the simplified version
of solve_111 and its functional description follows straightforward from the pseudo
code. Starting from an initially random assignment, the process updates the bits
assignment until there is no event violated any more.



CHAPTER 2. FOUNDATIONS 22

function parallel 111
V var € P do in parallel
assignment [var] = rand(0,1);
while 3 A € A: A is violated do
S = maximal independent set in subgraph G4
induced by all A : violated(A) (constructed in parallel);
V var € ALéS do in parallel

assignment [var] = rand(0,1)

Figure 2.12: Moser and Tardos: Parallel LLL Algorithm

As parallel computing has become a large impact over the last few years, it is not
quaint that a parallel version in Figure 2.12 of the algorithm parallel 111 has
been introduced. In this version initially all bits of the assignment are assigned to
random values in parallel. In the recursive part of the function the process computes
in parallel the set of all clauses which are unfulfilled under the current assignment.
In order to keep the necessity of independent events the maximal independent set of
this set is calculated. During the following update all bits in the assignment, which
correspond to the variables occurring in the independent set of clauses, are set to a
random value in parallel.

Moser and Tardos also invented a deterministic variant of those algorithms. The
main idea of this variant is based on having witness trees with size in the range
[log(m), 21log(m)], where each node represents an entry from the entire truthtable
for the input problem. Due to the fact that for the computation of these input tables
the sequential algorithm is used and since the only purpose of this master thesis is
to abuse the algorithm for hopefully finding a solution in at most polynomial time
in respect to the size of the input problem, the deterministic variant will not be
discussed here any further.



Chapter 3

Program Analysis

In this thesis Program Analysis refers to the process of proving the absence or
finding witnesses of runtime errors in C source code as described in [Chapter 2.1].
The actual task is the transformation of LLVM, which represents the source code
[Chapter 2.1.3], into the hys language introduced in [Chapter 2.1.5.3].

3.1 Transformation from LLVM to hys Language

The hys language has been chosen as the target for the transformation process,
because it features the description of automata or state machines and the represen-
tation of the source code in LLVM characterizes some kind of state machine. There
exist other approaches, but in most of them it is necessary to statically perform
loop unrolling and “flattening” of the model, which is described by the Intermediate
Representation. Another advantage of the hys language is that the Solvers operating
on that language can use the feature of learning. The learning refers to the reuse
of some conflicts of previous iterations, which are still valid in the current iteration
and therefore do not need to be computed again. This feature can lead to a speedup
of the solving process.

The requirements for the hys language needed to describe the virtual machine of
LLVM are described in the next section.

3.1.1 The hys Target Machine

For the purpose of proving the absence or finding witnesses of runtime errors in
C source code, the hys language itself is a good choice, because of the featured
automaton (or state machine) description. A state machine describing the program
semantics from LLVM is the construction stone. But as the virtual machine of LLVM
is based on a Risk-like load and store architecture [Chapter 2.1.3], the machine
described in the hys language must have the same features. So the machine must

23



CHAPTER 3. PROGRAM ANALYSIS 24

provide a memory management in order to load data from the memory to a register
and store data vice versa. The values inside the virtual registers and the memory
of a LLVM module are in bitvector representation in order to be able to provide
signed and unsigned data types, but as the hys language only features the data
types boolean, float and integer - which must be defined over a fixed interval - a
solution to provide the same behavior must be found. Also exception handling is a
necessity the hys target machine must feature, like for example overflow exceptions
for arithmetic operations, the divide-by-zero exception or memory exceptions.

The witness the hys target machine is trying to find is a sequence of steps where the
goal is to reach and fulfill the TARGET section. The target defined in the TARGET
section is the defect candidate.

In Figure 3.1 the hys target machine meeting the above named constraints is shown.

( .ﬁ )
>( hys State Machine )

MM_ready ( memory instruction
L hys Memory Manager

ALU_ready signed arithmetic instruction
hys ALU

Figure 3.1: hys Target Machine: UML State Diagram

The hys target machine contains three states: the hys State Machine, the hys Mem-
ory Manager and the hys ALU. The registers and the memory of the hys target
machine are realized as variables of the according type (bool, float or int). In order
to be able to assign as well a signed as an unsigned value to a register or memory
address, the actual value of a variable in the hys target machine is stored as the
decimal number of the corresponding bitvector representation. So a 32 bit wide
integer is defined on the interval [0,23? — 1], which can either represent a signed
integer with a range of value from [—23! 231 — 1] or an unsigned integer with the
total range of value.

Most of the instructions are handled by the hys State Machine [Chapter 3.1.1.1], in
case of arithmetic logic instructions the value of the operands, which is stored inside
a register, must be of type unsigned. If the value is of type signed, the instruction
is handled by the hys ALU [Chapter 3.1.1.3]. Each memory instruction like a load
or store instruction is passed to the hys Memory Manager [Chapter 3.1.1.2].



CHAPTER 3. PROGRAM ANALYSIS 25

3.1.1.1 hys State Machine

The state machine in the hys language is responsible for handling the control flow
of the program described by the LLVM IR. In order to achieve a unique ID for the
states in this machine and to have a proper identification of the position in the IR,
a state in the hys machine is a boolean variable identified by the name, which is the
concatenation of the function name and the actual basic block. For the identification
of the instructions each basic block is fit with an instruction program counter.

In order to handle jumps to an instruction inside a basic block, like for example
when returning from a call, a jump table is required. Each instruction has a unique
entry in this table. The return address, which is represented by the index of the
table, has to be properly defined. Therefore the hys target machine features the
register JTI.

([ \

State Machine

common instruction

+states: vec<bool >

+instructions: vec<vec<instruction>>
+instructionPC int call instruction
+j unpTabl e: vec<pair<state, int> > terminator instruction

_

target

Figure 3.2: hys State Machine: UML Class and State Diagram

In Figure 3.2 the UML class diagram and the UML state diagram of the hys state
machine are illustrated. As described in advance, the state machine contains a vec-
tor of booleans representing the states. The instructions of the hys target machine
are ordered according to the containing function and basic block of the LLVM IR
in a vector of vectors. In addition the state machine features the instructionPC and
the jump table.

For the state machine diagram shown on the right hand side of Figure 3.2 in gen-
eral there exist three possible transitions to be fired. The first transition common
instruction represents the general instruction and has the following hys logic:

states; A instructionPC = k —
states;’ A instructions; A
instructionPC’ = instructionPC + 1;

The machine is in states; and the instructionPC equals k, which leads to the
execution of instructions; and the machine resides in states; but with an in-
cremented instructionPC. Once the target condition is reached and fulfilled the



CHAPTER 3. PROGRAM ANALYSIS 26

transition target is fired, which terminates the hys target machine and states that
a witness has been found.

The third possible transition is split into two transitions: the call instruction
and the terminator instruction. A call instruction has the following hys logic:

states; A instructionPC = k —
states giedFunction’ /\ instructionPC’ = 0 A
JTI’ = index(states;, instructionPC + 1);

In this case the machine is in states; and the current instruction is a call instruc-
tion. Then the machine changes into the initial state of the function to be called:
statesScaliedrunction, resets the instructionPC and assigns the value of the next
instruction from states; from the jump table to the register JTI.

For the terminator instruction two different cases must be compared. First if it
isa common terminator instruction versus second ifitisa return instruction.
The hys logic for the common terminator instruction is:

states; A instructionPC = k —
states,e,r’ A instructionPC’ = O;

The machine is in states; and the instructionPC equals the last instruction of
the current basic block, which leads to the activation of the next state (statesgexs)
and the reset of the instructionPC. A return instruction is mapped onto the
following hys logic:

states; A instructionPC = k —
jump’;

In this case the machine is in states; and the current instruction is a return
instruction. Then the machine changes into the state jump. In this state the
machine determines where to jump according to the return address previously set
by a call instruction to the register JTI. An entry in the jump table looks like:

12 — states;’ A instructionPC’ 0;

jump A JTI = =
jump A JTI = 13 — states;’ A instructionPC’ = 1;
jump A JTI = 29 — stateéj’ A instructionPC’ = O;

In order to provide a correct behavior of the state transition system, where the
machine can reside only in one state at a time - except for the concurrency of the
state machine with the memory manager or the arithmetic logic unit -, the following
equation has to be added to the machine:



CHAPTER 3. PROGRAM ANALYSIS 27

statesy’ + states;’ + ... + statesiust’ = 1

The following example illustrates the introduced semantics of the hys state machine.

Example:

The LLVM instruction Zadd = add 132 Jx Ay, where Jadd, iz and Zy are of type
unsigned int, is an example for the common instruction transition. The instruc-
tion resides inside the function sum and the basic block entry and is the third in-
struction in this block. The according hys logic is:

sumentry A instructionPC = 3 —
sumentry’ A add’ = x + y A
instructionPC’ = instructionPC + 1;

As an example for the LLVM terminator instruction the following branch in-
struction s taken: br t1 Jcmp, label /if.then, label Jif.else. The in-
struction is located in the function check and the basic block BBO and is the fifth
instruction of this block. The virtual register Zcmp contains a boolean value which
is identified by the 11. According to that value the branch instruction either jumps
to the label if.then or if.else. The resulting hys logic of this instruction is the
following:

checkBBO N instructionPC = 5 N\ cmp —
1f_then’ A instructionPC’ = 0;

checkBBO N instructionPC = 5 A lcmp —
1f_else’ N instructionPC’ = 0;

The labels ©f.then and if.else are replaced by ©f_then and if_else as the hys
language does not support the dot character in a variable name.

Forthe LLVM call instruction the instruction call wvoid @compute(i32 /tmp,
132 Jtmpl, 432*% Jres) is taken as an example. This example is located in func-
tion main, basic block entry and is the 10th instruction inside this block. The
function compute is defined as: compute (132 Jz, 132 Jy, 132* result) and its
initial basic block is also named entry. The corresponding hys logic for this instruc-
tion 1s:

mainentry N instructionPC = 10 —
computeentry’ A instructionPC’ = 0 A
JTI’ = index(mainentry, 11) A wvar_z’ = var_tmp A
var_y’ = wvar_-tmpl N wvar_result’ = wvar_res;

The terminator instruction ret wvoid of the function compute is a return
instruction which is located in basic block i1f.end and is the first and only in-
struction in this block. It is mapped to the following hys logic:



CHAPTER 3. PROGRAM ANALYSIS 28

computeif_end N instructionPC = 0 —
jump);

In the next section the hys memory manager is introduced.

3.1.1.2 hys Memory Manager

The memory manager of the hys target machine handles the transport of data values
between the registers inside the hys target machine and the memory addresses.

( )

Memory Manager

load instruction store instruction

+ap: int
+size: int MM_Ready

+dat aVal ue: int \'4 \ 2

+addr essVal ue: int
+nmenory: vec<int> [ MM_Load J [ MM_Store J

+lines: int

+nunLi nes: int

Figure 3.3: hys Memory Manager: UML Class and State Diagram

On the left hand side of Figure 3.3 the UML class diagram of the hys memory man-
ager is shown. The address pointer (ap) represents the register which points to the
current memory address. The item size defines the data size to be loaded or stored
from or to the memory. The register dataValue is the input-output register of the
memory manager. As the address size is fixed, the internal register addressValue
is used to transfer values between the register dataValue, which can contain values
of various type, and the actual memory cells, which are implemented as a vector of
integers.

On the right hand side of the Figure the UML state diagram of the memory manager
is illustrated. Initially the manager enters the state MM_Idle. Depending on the type
of memory instruction, the manager changes either to state MM_Load taking tran-
sition load instruction or state MM_Store taking transition store instruction.
Once the memory operation is finished, the manager enters state MM_Ready in order
to notify the waiting instruction.

The transition load instruction which enables the load operation of the hys mem-
ory manager has the following hys logic:



CHAPTER 3. PROGRAM ANALYSIS 29

states; A instructionPC = k A MM_Idle —

MM_Load’ A ap’ = address A size’ = datasize;
states; A instructionPC = k A MM_Ready —
states;’ A instructionPC’ = instructionPC + 1 A

data’ = dataValue;
states; A instructionPC = k A !MM_Ready —
states;’ A instructionPC’ = instructionPC;

The machine is in states;, the instruction k is a load instruction and the memory
manager is idle, then the memory manager is enabled and the MM_Load state entered
(first implication). Also the base address is set to the address pointer (ap) and the
data size is assigned to the register size. Once the signal MM_Ready is triggered
the machine increments the instructionPC and reads the loaded value from the
register dataValue (second implication). Until MM_ready is triggered the machine
resides in the current state at the current instruction (third implication).
Transition store instruction enables the store operation of the hys memory man-
ager and has the following hys logic:

states; A instructionPC = k A MM_Idle —
MM_Store’ A ap’ = address A dataValue’ = value A

size’ = datasize;
states; A instructionPC = k A MM_Ready —
states;’ A instructionPC’ = instructionPC + 1;
states; A instructionPC = k A !'MM_Ready —
states;’ A instructionPC’ = instructionPC;

In this case the instruction k in the current state states, is a store instruction and
the memory manager is idle, thus the memory manager enables the store process
via MM_Store. Like for the load instruction the address pointer (ap) and the data
size (size) are assigned, but in this case also the value, which has to be stored,
is assigned to the dataValue register. The machine also waits in the current state
at the current instruction until the signal MM_ready is triggered and then continues
with the next instruction.

In Figure 3.4 the state MM_Load - representing the load operation of the hys memory
manager - is shown in form of a UML state diagram. The underlying state transition
system of this diagram contains the states MM_Load_Init and MM_Load_computeWord.
The state MM_Load_init exists in order to ensure that the register addressValue
contains the correct value in respect to the current address pointer (ap). Therefore
the hys target machine has been extended with a table of entries, which uses the
state MM_Load_init as a trigger. The entry for memory address number 137 looks
like:

MM_Load_init A ap = 137 — addressValue’ = memory_0x137;



CHAPTER 3. PROGRAM ANALYSIS 30

MM_Load_init

init

~

( MM_Load_readWord

readLine

\_ _J

Figure 3.4: hys Memory Manager - state load: UML State Diagram

In order to start or continue with the computation of the value, which consists of
several values assigned to the register addressValue according to the size to be
loaded, the transition init is fired. The hys logic of this transition is as follows:

MM_Load_init —
ap’ = ap A lines’ = lines A startBit’ = startBit;

The state MM_Load_readWord is used for the computation of the value. The compu-
tation is triggered by the firing of transition readLine, which has the following hys
logic:

MM_Load_readWord A lines < numLines —
MM_Load_init’ A ap’ = ap + 1 A lines’ = lines + 1 A
dataValue’ = dataValue + addressValue x 25tartBit A
startBit’ = startBit + 8;

As long as the condition 1ines < numLines is fulfilled, the dataValue is updated
and the address pointer ap, the line counter lines and the factor for the current
address line startBit are incremented. If the condition is not fulfilled any more
the transition ready is taken, which indicates the termination of the load process
and puts the memory manager into state MM_Ready to notify the waiting instruction
that the word can be read from dataValue. It has the following hys logic:

MM_Load_readWord A lines > numlLines —
MM_Ready’;

Figure 3.5 shows the state MM_Store, which represents the store operation of the hys
memory manager.

Initially the state MM_Store_computeWord is entered. This state has two general
transitions to take. If the storage process is finished the transition ready is fired.
Until the word is totally stored in the memory some of the transitions: updateData,



CHAPTER 3. PROGRAM ANALYSIS 31

updateLineValue or writeLine are taken. Those three transitions do all have the
same precondition: lines < numLines.

MM_Store_computeWord
updateData
updateLineValue <>< ready

writeLine

é( MM_Store_writeWord

resetData

_ J

Figure 3.5: hys Memory Manager - state store: UML State Diagram

The transition updateData has the following hys logic:

MM_Store_computeWord A lines < numlLines A startBit > 0 —
MM _Store_computeWord’ A power’ = 2dataBit A
dataBit’ = dataBit - 1 A startBit’ = startBit - 1;

This transition updates the three internal registers: power, dataBit and startBit,
as long as the value in register startBit is greater or equal than zero.

The transition updateLineValue is used to update the value for the next line, which
is going to be written to the memory, and has the hys logic:

MM_Store_computeWord A lines < numLines A dataValue > power —
MM_Store_computeWord’ A addressValue’ = addressValue + power A
dataValue’ = dataValue - power;

The two transitions updateData and updatalineValue can be fired in parallel, but
as long as the condition startBit > 0 is fulfilled, transition updateData must be
fired.

Otherwise if the condition is violated the transition writeLine is fired and traverses
into state MM_Store_writeWord. The hys logic of this transition is:

MM_Store_computeWord A lines < numlLines A startBit < 0 —
MM_Store_writeWord’

From state MM_Store_writeWord only transition resetData can be taken, which has
the following hys logic:



CHAPTER 3. PROGRAM ANALYSIS 32

MM_Store_writeWord —
MM_Store_computeWord’ A addressValue’ = 0 A
startBit’ = 8 A ap’ = ap - 1 A lines’ = lines + 1;

The state MM_Store_writeWord (corresponding to the state MM_Load_init) is also
used as a trigger for the memory manager to write a value from the register addressValue
to a designated memory address. Therefore a table of entries is added to the hys

target machine, where for example the entry for the memory address number 137
looks like:

MM_Store_writeWord A ap = 137 — memory_0x137’ = addressValue;

The signal MM_Ready, which notifies the waiting instruction that the memory man-
ager has finished its current process, is only enabled for one cycle. Therefore the
following hys logic is added to the memory manager:

MM_Ready — MM_Idle’;

As the memory manager can also reside in one of states at a time, the following
equation must be added:

MM_Idle’ + MM_Load_readWord’ + MM_Store_computeWord’ +
MM_Store writeWord’ + MM_Ready’ = 1;

Example:

The LLVM instruction store 132 Jadd, 132% [z is an erxample for the store
instruction. This instruction is located in function sum, in basic block entry
and is the fourth instruction inside this block. The corresponding hys logic for this
instruction 1s:

sumentry A instructionPC = 4 N MM Idle —

MM_Store’ N ap’ = z_address N dataValue’ = add N size’ = 32;
sumentry A instructionPC = 4 N MM_Ready —

sumentry’ A instructionPC’ = 5;
sumentry A instructionPC = 4 N !MM_Ready —

sumentry’ A instructionPC’ = 4;

The first implication enters the memory manager and enables the store process. Also
the base address of the pointer %4z is set to the address pointer (ap), the value add
is assigned to the register dataValue and the datasize (size) is set to 32 bit. The
second implication is taken once the memory manager has finished the store process,
which is notified by the signal MM_Ready. The machine then continues with the next
instruction. Until this signal is enabled the third implication has to be taken, which
lets the machine wait in state sumentry at instruction 4.

Also in the function sum and in basic block entry resides the LLVM load instruc-
tion: Ja = load t32* Jb. It is the ninth instruction in this basic block and has
the following hys logic:



CHAPTER 3. PROGRAM ANALYSIS 33

sumentry A instructionPC = 9 N MM_Idle —

MM_Load’ AN ap’ = b_address N size’ = 32;
sumentry A instructionPC = 9 N MM_Ready —

sumentry’ N instructionPC’ = 10 A wvar_a’ = datalValue;
sumentry N instructionPC = 9 N !MM_Ready —

sumentry’ N instructionPC’ = 9;

Again the first transition enters the memory manager, but in this case the load
process is enabled. The base address of the pointer %z is set to the address pointer
(ap) and the datasize (size) is set to 32 bit. Once the memory manager has enabled
the signal MM_Ready the instruction number nine in function sum and basic block
entry wakes up and assigns the value to load from dataValue to var_a.

Exception Handling

The hys memory manager also has to feature exception handling like for example
a stack overflow. Therefore the hys memory manager has been extended with the
boolean variable stackOverflow, which can be treated as a signal. Once the address
pointer (ap) or the stack pointer (sp) are set to a value which is greater than the
index of the last memory address, stackOverflow is set to True. In the default case
the model checking process should find a witness, which does not contain a stack
overflow exception. Therefore the variable stackOverflow has been added to the
target section in negated form. If the user wants the hys target machine to terminate
in case of a stack overflow, he only needs to add the stackOverflow variable to the
target section. Usually the memory manager also has to feature exception handling
for addressing errors and so on, but as these are architecture specific errors, they
are discussed later on.

In the next section the hys arithmetic logic unit is introduced.

3.1.1.3 hys Arithmetic Logic Unit

The hys language provides a lot of operations [Chapter 2.1.5.3, Table 2.3]. But as
the values stored inside the memory address registers (variables) [Chapter 3.1.1.2]
are stored in bitvector representation, the operations can only be used straight
forward if the value inside a register is of type unsigned. In the other case - where
the value is of type signed - the value must first be converted from the bitvector
representation into the corresponding signed number which can then be assigned
to the operation. After the operation the result must be converted back into the
bitvector representation.

In order to handle this, the hys arithmetic logic unit has been created, which is
shown in Figure 3.6.



CHAPTER 3. PROGRAM ANALYSIS 34

Arithmetic Logic Unit

+op_reg: int
+il reg: int
+i2_reg: int
+0_reg: int

+tnpl_reg: int N
compute

convert2

ALU_signed2Bit ALU_bit2Signed

convertl

+tnmp2_reg: int
+tnmp3_reg: int L ALU_compute J

Figure 3.6: hys Arithmetic Logic Unit: UML State Diagram

On the left hand side of Figure 3.6 the UML class diagram of the hys arithmetic
logic unit is illustrated. The unit contains three input registers: op_reg, il_regand
i2_reg and one output register: o_reg. The three temporal registers: tmpl_reg,
tmp2_reg and tmp3_reg are used to store the signed values of the two input registers
(i1_reg and i2_reg) and the signed value of the result of the operation. These are
the only registers in the machine which are defined on the interval [—231 231 — 1].
The UML state diagram for the hys arithmetic unit is shown on the right hand side.
Initially the unit is set to idle mode. An arithmetic logic instruction is translated
into the hys logic as:

states; A instructionPC = k A ALU_idle —
ALU_bit2Signed’ A opreg’ = m A ilreg’ = opl A
i2_reg’ = op2;

states; A instructionPC = k A ALU_ready —
states;’ A instructionPC’ = instructionPC + 1 A
result’ = o_reg;

states; A instructionPC = k A !ALU_ready —
states;’ A instructionPC’ = instructionPC;

The first implication initiates the arithmetic logic unit and assigns the instruction
code to the op_reg, as well as the two operands of the current instruction to the
input registers il reg and i2_reg. The second implication is triggered once the
arithmetic logic unit enables the signal ALU_ready, reads the result from the output
register o_reg and increments the instruction program counter. The third implica-
tions ensures that the machine resides in the current and at the current instruction
until the signal ALU_ready is triggered.

From ALU_bit2Signed the bitvector values from the two input registers i1 reg and
i2_reg are converted to their according signed value and assigned to the tempo-
ral registers tmpl_reg and tmp2_reg by firing transition convertl, which has the
following hys logic:



CHAPTER 3. PROGRAM ANALYSIS 35

ALU bit2Signed — ALU_compute’;

ALU bit2Signed A il.reg > 23 —1
ALU bit2Signed A il.reg < 231 —1
ALU bit2Signed A i2.reg > 23 —1
ALU bit2Signed A i2reg < 23! —1

— tmpl_reg’ = il_reg - 23%;

— tmpl reg’ = il _reg;

— tmp2.reg’ = i2.reg - 2%;

— tmp2_reg’ = i2_reg;

The state ALU_compute is left firing the transition compute, which computes the
result of the operation according to the type of operation which is identified by
the value in op_reg. The result is assigned to the temporal register tmp3_reg. For
the operation add for example the operation code is 8, so the hys logic for the add
operation on transition compute is:

ALU_compute A op.-reg = 8 —
ALU_signed2Bit’ A tmp3._reg’ = tmpl_reg + tmp2_reg;

Once the result is computed, which is stored as a signed value in tmp3_reg, it must
be converted back into the bitvector representation, before it can be assigned to the
output register o_reg. This is achieved by taking transition convert2, which has
the following hys logic:

ALU_signed2Bit — ALU_ready’;
ALU_signed2Bit A tmp3.reg > 0 — o_reg’ = tmp3_reg;
ALU_signed2Bit A tmp3.reg <0 — o.reg’ = tmp3_reg + 2%;

After being in the state ALU_ready, which indicates the waiting instruction that the
result is stable at the output the arithmetic logic unit is set to sleep until the next
request is made. Therefore the transition sleep is fired. This transition has the hys
logic:

ALU_ready — ALU_idle’;

Also the arithmetic logic unit can only reside in one state at a time and therefore
the following hys logic must be added:

ALU_idle’ + ALU_convert_bit2Signed’ + ALU_compute’ +
ALU_convert_signed2Bit’ + ALU.ready’ = 1;

Example:

In this example the LLVM instruction Jadd = add nsw 132 Jz, Jy, where jadd,
sz and Jy are of type int. The short nsw stands for “no signed wrap”, which states
that the instruction might have the side affect of an overflow. As the registers Jiz and
4y are of signed type, the hys arithmetic logic unit must be used for the computation
of the result. The instruction itself is located in the function sum, in basic block
entry and is the third instruction of this block. It is translated into the following
hys logic:



CHAPTER 3. PROGRAM ANALYSIS 36

sumentry A instructionPC = 3 N ALU_idle —

ALU_bet2Signed’ N op_reg’ = 8 N 1l_reg’ = x N\ 12.reg’ = y;
sumentry A instructionPC = 3 N ALU.ready —

sumentry’ N instructionPC’ = 4 N 2’ = o_reg;
sumentry N instructionPC = 3 N !ALU.ready —

sumentry’ N instructionPC’ = 3;

The first implication initiates the ALU and sets the operation type (8 for addition)
and assigns the input registers with the correct values. The second implication s
only taken when the ALU finished the computation and the result is stable at the
output register o_reg. Then the value can be assigned to z and the instructionPC
is incremented in order to process the following instruction. Until the ALU has
finished the computation the machine must wait in the current state and the current
instruction. This is realized in the third implication.

Exception Handling

The hys arithmetic logic unit also provides exception handling for the exceptions:
overflow and div-by-zero. Therefore the two boolean variables ALU_overflow and
ALU_div-by-zero have been introduced, which are enabled if the corresponding
exception occurs. The overflow exception is checked via a 64 bit register, which
the result of the current instruction is assigned to. With the help of this register
the variable ALU_overflow is set to true, once the value assigned to the register
is greater than 232 — 1. The default value of the result register contains the wrap
around result, if an overflow has occurred. The signal ALU_div-by-zero is enabled
if the dividend of the divide instruction equals zero and in the default case the hys
target machine terminates in case of a div-by-zero exception. If the user wants the
hys target machine to terminate on an overflow exception, he has to assign the cor-
responding variable to the target section. In the other case the exception must not
occur in the witness, so the corresponding variable has to be added to the target
section in negated form. This triggers the solvers internal backtracking mechanism
if an exception occurred on the current trail.

In order to provide this exception handling also for unsigned instructions, the hys
arithmetic logic unit has been extended with the variable ALU_typeUnsigned. This
variable is added to the convert implications ALU_bit2Signed and ALU_signed2Bit.
If the variable is set to true the value inside the input registers is not converted, but
just passed to the internal register, which allows the arithmetic logic unit to operate
on the total value range of unsigned values.



CHAPTER 3. PROGRAM ANALYSIS 37

3.1.2 LLVM IR to hys Target Machine

In order to transform a program which is in LLVM IR onto the hys target machine,
every feature from the LLVM IR must be mapped into a corresponding hys feature
or if hys does not provide this feature, a workaround must be found.

3.1.2.1 Transformation of the Type System

The first task is the transformation of the type system of LLVM into the hys type
system, which differ a lot as shown in Table 3.1.

The three types “bool”, “float” and “integer” can be mapped straight forward from
the LLVM IR into the hys language. The absence of the type “void” is not a huge
problem, as it just declares for a function that nothing is returned.

LLVM IR hys language

simple types:

bool
float
integer

bool
float
integer

void -

array -
function -
pointer -
structure -

derived types:

Table 3.1: Differences in the Type Systems of the LLVM IR and the hys Language

The first challenge occurs with the “array” type, which is not featured in the hys
language. An array inside of the LLVM IR is an ordered sequence of pointers and
the hys language does also not support the type “pointer”. The dereferencing of
the pointer type can be mapped onto the hys memory manager with the help of
some additional logic for the interpretation of the intended value type, which has
to be defined. But in order to provide a instantiation method for pointers in the
hys machine the hys memory manager must also be extended with some kind of
allocation operation - refer to [Chapter 3.1.2.2].

Furthermore the “function” type is not supported in the hys language, but it is
possible to transform a function into a state transition system, which describes the
same behavior as the function itself. The type “structure” is also not featured in
the hys language. Whenever a variable of type structure is used in the LLVM IR, it
must be completely mapped into the hys language. So every item contained in the
structure must be mapped to a unique variable.



CHAPTER 3. PROGRAM ANALYSIS 38

3.1.2.2 Transformation of the Memory Management and Addressing

The memory management of the LLVM IR provides the instructions: alloca, load,
store and getelementptr. The instructions load and store can be mapped di-
rectly onto the operations provided the hys memory manager. But the instruction
alloca, which allocates memory and returns a pointer, is not supported in the
hys memory manager right now. The tasks occurring on the quest to realise the
allocation operation are:

1. to define a proper memory alignment,

2. to choose the correct endianess,

3. to create exception handling for memory operations and
4. to realise the pointer type.

In order to provide a proper stack management for the transformed LLVM module
inside the hys target machine, which reserves and frees memory for each function
and the variables of the module, the hys memory manager must be extended with
a equivalent allocation and free operation.

Another challenge for the transformation from the LLVM IR into the hys language,
which has not been mentioned till now, is the transformation of intrinsic functions
and phi functions.

3.1.2.3 An Approach to the Transformation Process

In the previous sections a lot of tasks have been stated, which would occur when
the LLVM IR is mapped onto the hys target machine. In order to solve these tasks
the idea was to take a look into the LLVM virtual machine, if some of their features
might be reused. During this process also the LLVM Backend got reviewed. This
Backend generates machine code for some specific computer architectures. Therefore
the LLVM IR is transformed into the corresponding machine code, which includes
providing a proper memory and stack generation, mapping the virtual registers to
the machine registers or to memory, dereferencing of pointers and the elimination
of phi nodes. So in the general with the help of the LLVM Backend most of the
challenges described in the previous sections can be avoided.

In Table 3.2 the pros and cons of the transformation process using the LLVM IR
directly compared to the LLVM Backend are illustrated.



CHAPTER 3. PROGRAM ANALYSIS 39

LLVM IR LLVM Backend
o target independent o compatible type system
pros: o compatible memory management
(including correct stack
management)

o no need for memory exception
handling, except for stack

overflow
o incompatible type system o target dependent
cons: | o incompatible memory manage- | o solution for mapping between
ment and solution for stack LLVM IR and assembly language
management required required

o solution for phi functions
and intrinsic functions

required

Table 3.2: LLVM IR versus LLVM Backend

The results of the Table show, that the advantages of the LLVM Backend outperform
the direct usage of the LLVM IR for the transformation process onto the hys target
machine. The negative aspect of being target dependent can almost be disregarded,
because in order to proper verify that a program contains a runtime error or that it
does not this verification has to be built based on a specific machine in respect to
the target architecture. The second aspect still needs to be realized in future, but
this task is quite simple compared the requirements needed to transform the LLVM
IR onto the hys target machine.

3.1.3 LLVM Backend (Assembly Writer) to hys Target Ma-
chine

The LLVM Backend is used to generate machine code from the LLVM IR for a spe-
cific target machine. The Backend provides a list of targets like arm, alpha, mips,
ppc, x86, etc.. Out of these target machines the Mips [26] architecture - especially
the Mips R2000 architecture - was chosen, because it has quite a small instruction
set, provides a memory management with Big-endian and Little-endian mode, as
well as 8byte alignment. The Mips Assembly Writer - used by the Backend - trans-
forms the LLVM IR into the Mips Assembly Language [6]. The resulting assembly
code already has a proper memory management with only load and store operations
and contains no array or pointer types, etc. In this case only the “simple” assembly
code must be transformed onto the hys target machine.



CHAPTER 3. PROGRAM ANALYSIS 40

Instead of operating on the generated assembly code, the Mips Assembly Writer,
which is based on the function pass manager of LLVM, has been rewritten. The un-
derlying function pass manager traverses over a LLVM module function by function,
for each function over all basic blocks and for each basic block over all instructions.
So the i-th instruction of function test in basic block BB2 in the hys target machine
is still encoded as:

testBB2 A instructionPC = i —
testBB2’ A instructions; A instructionPC’ = instructionPC + 1;

For a detailed description refer to [Chapter 3.1.1.1] (hys State Machine). In the
following sections the transformation of specific instructions from the mips assembly
language into the hys language is described.

3.1.3.1 Mapping Arithmetic and Logic Instructions

Arithmetic Instructions

The Mips instruction set consists of the basic arithmetic instructions like add,
addi, addiu, addu, sub, subu, mult, multu and div, divu. The instructions
for add and sub are mapped onto the hys logic instructions add, sub. The “i”
inside the Mips instruction add stands for immediate, which means that the sec-
ond operand is of type constant, all the other instructions accept only registers as
operands. All the instructions without a “u” at the end execute a trap, if an overflow
appears during the execution, which also has to be mapped into the hys logic. For
all other instructions no overflow check is performed. The instructions for mult and
div compute a 64bit value, whose high part (bits 63-32) is stored in the hi register
of the Mips machine and the low part (bits 31-0) in the low register. This is also
mapped one-to-one into hys logic.

Logic Instructions

The logic instructions in the Mips instruction set and, andi, or, ori, xor, nor,
slt, slti are also mapped one-to-one into hys logic, where slt represents set on
less than.

3.1.3.2 Mapping Branch and Jump Instructions

The branch instructions beq, bne (branch: on equal, not equal) inside the Mips
architecture can also be mapped directly into hys logic, because the destination is
always the id of a basic block. The same behavior is applied to the jump instructions
j, jr (jump: , to address), but the semantic of the jump instruction jal, jalr
(jump: and link, and link to address) differs. These types of jump instructions are
used when call instructions are invoked. The hys target machine still jumps to a
designated state, but the jump table index of the next instruction is stored in the
ra (return address) register.



CHAPTER 3. PROGRAM ANALYSIS 41

3.1.3.3 Mapping Data Transfer Instructions

The memory instructions 1b, 1h, 1w, 1d and sb, sh, sw, sd from the mips as-
sembly language can be mapped onto the load and store operations provided by the
hys memory manager. The prefix of the mips memory instructions stand for:

e b: byte e w: word

e h: half word e d: double word

The following example shows the transformation of a function defined in C source
code onto the hys target machine.

Example:
In this example the C function mult, which is shown in Figure 3.7, is transformed
into the hys language step by step.

int mult(int a, int b) {
return a * b;

Figure 3.7: Function mult - C Source Code

The function returns the result of the multiplication of the two input integers a and
b. In Figure 3.8 the intermediate representation of LLVM of the function mult is
shown.

For the return value Zretval and each of the two input values Ja and 4b, a pointer
15 created using the function alloca. In the next step the input values are stored
at the addresses of their corresponding pointers Ja.addr and %b.addr. Then the
values are loaded from the memory into the two new registers Ztmp and Jtmp2 in
order to satisfy the SSA form. In the following step they are multiplied with the
result assigned to the register Jmult, which is then stored at the address of the
return value pointer jretval. Finally the return value is loaded from the memory
to the new register 40 and returned.



CHAPTER 3. PROGRAM ANALYSIS 42

define 132 @mult(i32 %a, 132 %b) nounwind {

entry:
%hretval = alloca i32, align 4
%ha.addr = alloca i32, align 4

%b.addr = alloca i32, align 4
store i32 %a, i32* %a.addr
store i32 %b, 132* %b.addr
%tmp = load i32* %a.addr
%tmpl = load 132 %b.addr
%mul = mul i32 %tmp, %tmpl
store i32 Ymul, i32* Yretval
%0 = load i32% Yretval

ret i32 90

Figure 3.8: Function mult - LLVM IR

In Table 3.3 the mips assembly code and the hys target machine are illustrated, which
are both generated from the LLVM IR using the Mips Assembly Writer. The basic
block entry from the original LLVM IR has been translated to BBO in the mips as-
sembly language. Thus the state in the according hys target machine is: multBBO.
For each mips assembly instruction - shown on the left hand side - the corresponding
hys expression or expressions are displayed on the right hand side. In order to reduce
the size of the table hys expressions instructionPC = ¢ and instructionPC’ = j
have been mapped to: IPC; and IPC;’. All registers from the mips assembly language
are mapped to a variable inside the hys target machine, get the prefiz var and the
$ is erased as this character is not supported by the hys language. Only the stack
pointer ($sp) and the return address ($ra) do not have the prefix var.

The first mips instruction decrements the stack pointer ($sp) with a value of -32,
which means that for the function mult, 32 bytes are reserved on the stack. The
addition is of type unsigned and therefore the common add operation of the hys
language can be used. In the next two instructions the values of register $4 and $5
are stored in the stack at the positions $sp + 20 and $sp + 24. The hys target
machine uses the hys memory manager to store the values on the stack.



CHAPTER 3. PROGRAM ANALYSIS

43

‘mips assembly code

hys target machine

addiu $sp, $sp, -32

multBBO A IPCy —
multBBO’ A IPC;’ A sp’ = sp + -32 ;

sw $4, 20($sp)

multBBO A IPC; A MM_Idle —
MM_Store’ A ap’ = sp + 20 A
dataValue’ = var_4 A dataSize’

multBBO A IPC; A MM_Ready —
multBBO’ A IPCs’;

multBBO A IPC; A !'MM_Ready —
multBBO’ A IPCy’;

32;

sw $5, 24($sp)

multBBO A IPC; A MM_Idle —
MM_Store’ A ap’ = sp + 24 A
dataValue’ = var_.b A dataSize’

multBBO A IPC; A MM_Ready —
multBBO’ A IPC3’;

multBBO A IPCy; A !'MM_Ready —
multBBO’ A IPCs’;

32;

1w $2, 20($sp)

multBBO A IPC3 A MM_Idle —

MM_Load’ A ap’ = sp + 20 A

dataSize’ = 32;
multBBO A IPC3 A MM_Ready —

multBBO’ A var_2’ = dataValue A IPCy’;
multBBO A IPC3 A !'MM_Ready —

multBBO’ A IPC3’;

nop

mult $2, $5

multBBO A IPC4 A ALU_Idle —
ALU_bit2Signed’ A ALU_op_reg’ = 10 A
ALU_ il reg’ = var.2 A ALU_i2 reg’ = var.b;
multBBO A IPC4 A ALUReady —
multBBO’ A lo’ = ALU.o_reg A IPCs’;
multBBO A IPC4 A !'ALU Ready —
multBBO’ A IPC4’;

mflo $2

multBBO A IPCy; —
multBBO’ A var_2’ = lo A IPCg’;

sw $2, 16($sp)

multBBO A IPCg A MM_Idle —
MM_Store’ A ap’ = sp + 16 A
dataValue’ = var_2 A dataSize’ = 32;
multBBO A IPCs A MM_Ready —
multBBO’ A IPC;’;
multBBO A IPCs A !'MM_Ready —
multBBO’ A IPCg’;

addiu $sp, $sp, 32

multBBO A IPC; —
multBBO’ A IPCg’ A sp’ = sp + 32 ;

10

jr $ra

multBBO A IPCg — JUMP’ A JTI’ = ra;

11

nop

Table 3.3: Mips Assembly Language vs hys Language



CHAPTER 3. PROGRAM ANALYSIS 44

Instruction number four assigns the value of stack address: $sp + 20 to register
$2, which also uses the hys memory manager. The fifth instruction is a nop, which
follows each jump or load instruction and is not translated to any hys operation. The
actual multiplication of the function mult takes place at instruction number siz. In
this case, as the mult instruction is of type signed, the hys target machine must use
the hys arithmetic logic unit to compute the result. The next instruction number
seven assigns the result of the multiplication, which is stored in the lo register of
the mips machine, to register $2. Instruction eight stores the value of register $2
at the stack position: $sp + 16. The next instruction - number nine - increments
the stack pointer $sp with a value of 32, which frees the stack space reserved for the
current function mult. Finally instruction number ten jumps the address stored in
the return address register $ra. In the hys target machine the jump is handled by
the jump index table, which is part of the hys state machine. The last instruction
number eleven is another nop instruction, which as mentioned before has to follow
each jump instruction.



CHAPTER 3. PROGRAM ANALYSIS 45

3.2 Conclusions

In this chapter it is shown that it is possible to convert the intermediate representa-
tion of LLVM into the hys language for the purpose of finding a witness for possible
runtime errors or proving their absence. In order to avoid the tasks when mapping
the LLVM IR directly into the hys language, which are illustrated in [Chapter 3.1.2],
the Mips Assembly Writer of the LLVM Backend has been used for the transfor-
mation. The hys target machine, which is described in [Chapter 3.1.1], runs on the
instructions of the mips assembly language, which are generated from the LLVM
Backend. So it actually models a real mips architecture and if a solver finds a
solution for the model, this solution is a witness for the runtime error, which has
occurred on the mips machine.

In order to provide a dynamic target architecture, which is a goal for the future, it
is possible to create a new target machine for the LLVM Backend. In this case the
user can adopt the target machine to the architecture he needs the program to be
verified against.

Another interesting idea for future work is to vary the number of registers and the
stack size, as the complexity of the model described in the hys target machine might
change when the machine is equipped with more static registers, or the number of
registers is decreased and therefore the stack size is increased.

In the following section a short description on how to create a new target machine
for the LLVM Backend is given.

3.2.1 Creating a new Target Machine

For the creation of new Target Machine for the LLVM Backend the following steps
have to be performed:

1. Create a subclass of TargetMachine,
2. describe the register set with tablegen,
3. describe the instruction set with tablegen,

4. describe the selection and conversion from instructions in LLVM IR to target
instructions (DAG — DAG) and

5. create an assembly writer which produces hys code.

For a detailed documentation on how to create a Backend for LLVM, please refer to
[29].



Chapter 4

Probabilistic SAT Solving

In this chapter the implementation of the algorithms [Chapter 2.2.2.1] introduced
by Moser to the Lovasz Local Lemma [23], testcases to it and their according results
- which is the second task of this thesis - are described.

4.1 Implementation of the LLL algorithms

The implementation of the algorithms introduced by Moser to the Lovasz Local
Lemma is based on the process illustrated in Figure 4.1.

Set of
Clauses

Inputfile jmmmmmmmmmmmmm==—== >

compute
DepGraph()

parselnputFile() preprocessing() LLL-algorithm()

Set of
Clauses

Figure 4.1: Roadmap: Implementation of the LLL

The process can be separated in three parts. First the input formula is parsed into
an internal representation, which is a set of clauses. In the second step preprocessing
based on unit propagation [Definition 11] is performed on the set of clauses, which
either constructs a possibly reduced set of clauses or may lead to an early termination

46



CHAPTER 4. PROBABILISTIC SAT SOLVING 47

returning UNSAT. This step is not part of Moser’s algorithms, but as this feature
might result in a possible performance gain, it is inserted before the actual LLL
algorithm takes place. If the process is still running, the third part is entered,
in which the dependency graph over the set of clauses is computed and the LLL
condition d < 275 is checked. If the check fails, the user is notified by a message
and has the choice to terminate the program. In the following step one of the LLL
algorithms is invoked on the set of clauses, which either finds a satisfying assignment
to the input formula - in at most polynomial time, if the condition is fulfilled - and
returns SAT or might keep running “forever”.

4.1.1 Classes

For the implementation it has been necessary to design suitable structures. As
the entire implementation is in C++, the following classes have been introduced:
Assignment, Clause, DependencyGraph, Model, Search. The relationship between
these classes is shown in Figure 4.2.

1 1
—> Model < |

+get Sol ution(): bitset .

+par sel nput Fil e(): bool Clause
+sol ve(): bool

+getLits(): litCon&
+eraselLit(var:int&: void

1 +get Vertex(): DOvertex

+set Vertex(vertex: DGVertex&): void

-conputeDi fference(): vec<C ause*>
- preprocessing(): bool
- propagat e(cl auses: vec<C ause*>, vi ndex: i nt &) : bool

%

1 1

DependencyGraph

1 +addVer t ex(cl ause: O ause*): void
+conput eDepG aph(cl auses: vec<C ause*>, paral | el : bool =fal se): void
+conmput eSubDepG aph(cl auses: vec<C ause*>): void
+conput el ndependent Set (unFul Fi | | edd auses: vec<C ause*>,
paral l el : bool): vec<C ause*>
+get MaxDegr ee( cl auses: vec<C ause*>): unsigned int
+get Cccur ances(vi ndex:int): vec<d ause*>
+get Nei ghbour s(cl ause: C ause*): vec<C ause*>

Assignment

+ful Fill s(cl ause: d ause*): bool
+get Sol ution(): bitset

+i sUnit (vindex:int&: bool
+updat e( cl ause: Cl ause*): void

3

0

Search <>

+operator()(): void

<>ttsear ch(): bool
+checkSol ution(): bool

Figure 4.2: Dependency View of the Classes: UML Class Diagram

In the succeeding subsections the classes and their functionality are described in
detail.



CHAPTER 4. PROBABILISTIC SAT SOLVING 48

Class Assignment

The class Assignment represents the assignment through which it is tried to satisfy
the input formula. In Figure 4.3 the UML diagram of the class is shown.

Assignment

-_bv: vec<tri Bool >
-_nunVars: int
-_current: bitset
-_init: bitset

+ful Fill s(cl ause: d ause*): bool

+initFul Fills(clause: d ause*): bool

+get Sol ution(): bitset

+i sUnit(vindex:int&: bool

+set Val ue(vi ndex:int &, value:triBool & init:bool =false): void
+updat e( cl ause: Cl ause*): void

+updat e( cl auses: vec<Cd ause*>): void

Figure 4.3: Class Assignment: UML Class Diagram

The member _numVars represents the number of variables of the input formula. The
elements: _bv, _current and _init are containers of the size _numVars. The vector
_bv is introduced for preprocessing, because therefore the initial assignment has to
be undefined. During preprocessing each variable occurring or becoming unit is
assigned with the according truth value, which is set using the function setValue ()
in _bv and _init. In the bitvector _current the actual assignment is stored, which
can be updated using the functions update() at the variable positions of either
one clause or a set of clauses. The function fulFills() (analog: initFulFills())
checks whether the _current (_bv) assignment satisfies the clause or not. To check
if a variable has been set due to unit propagation the function isUnit() is used.
Finally the getSolution() returns the bitvector _current.

Class Clause

The class Clause incorporates a clause from the input formula. The UML diagram
of the class is illustrated in Figure 4.4.

The class consists of a vector of literals stored in _1its, which must contain at
least one. Each clause is also equipped with a _vertex, which represents its node
inside the dependency graph. Via the function getLits() a vector containing all
literals of the clause is returned. In order to erase a literal from a clause the function
eraseLit () is used. The functions getVertex() and setVertex() are introduced
in order to retrieve or set the node of a clause.



CHAPTER 4. PROBABILISTIC SAT SOLVING 49

Clause

- _lits: vec<int>

-_vertex: DGVertex

+getLits(): litCon&
+eraselLit(var:int&: void

+get Vertex(): DGvertex

+set Vertex(vertex: DGVertex&): void

Figure 4.4: Class Clause: UML Class Diagram

Class DependencyGraph

The class DependencyGraph is shown in Figure 4.5. It contains a matrix in which
the occurrence of a variable in a clause is stored. This is realized as a vector of
vectors _varDeps. From this matrix the dependency graph is built using the func-
tion computeDepGraph() over the set of clauses in the model, which is located
in _dependencyGraph. The member _subDepGraph - representing a sub-dependency
graph to an according set of clauses - is built using the function computeSubDepGraph (),
but is only invoked when the parallel version of the LLL algorithm is executed.

DependencyGraph

- _varDeps: vec<vec<Cd ause*> >
- _dependencyG aph: DepG aphT*
- _subDepGraph: DepG aphT

- _rankTabl e: vec<int>

+addVertex(cl ause: C ause*): void
+conput eDepG aph(cl auses: vec<d ause*>, paral | el : bool =fal se): void
+conput eSubDepG aph( cl auses: vec<C ause*>): void
+comput el ndependent Set (unFul Fi | | edCl auses: vec<C ause*>,
paral | el : bool): vec<C ause*>
+get MaxDegr ee(cl auses: vec<d ause*>): unsi gned int
+get Cccur ances(vi ndex:int): vec<d ause*>
+get Nei ghbour s(cl ause: C ause*): vec<d ause*>

Figure 4.5: Class DependencyGraph: UML Class Diagram

The function computeSubDepGraph() is constructed based on the algorithm for the
computation of the maximal or minimal set of Luby [18]. In the original algorithm
from Luby each node is associated with a processor, but as a computer in the present



CHAPTER 4. PROBABILISTIC SAT SOLVING 50

has a maximum of four processors with 8 or 12 cores each, it is only possible to run
at most 48 threads in parallel. So in most of the cases, where the input formula
has more than 10000 or even 100000 clauses, it is not possible to reach the runtime
theoretically proven for Luby’s algorithm.

For testing purposes the variable _rankTable has been introduced, which shows the
number of clauses of degree i for each i in 0 <17 < d.

Class Model

The class Model, which is illustrated in Figure 4.6, represents the basis for the
process described in Figure 4.1.

Model

-_fileName: string

- _clauses: vec<d ause*>

-_ffd auses: vec<C ause*>

-_d: int

-_k: int

-_nunCl ause: int

-_nunVars: int

-_assignment: Assignnent

- _dependencyG aph: DependencyG aph
- _search: threads<Search>

+get Sol ution(): bitset

+parsel nputFil e(): bool

+sol ve(): bool

-conputeDi fference(): vec<d ause*>

- preprocessing(): bool

- propagat e( cl auses: vec<Cl ause*>, vi ndex: i nt & : bool

Figure 4.6: Class Model: UML Class Diagram

With the function parseInputFile() the formula contained in _fileName is read
and the clauses are stored in _clauses as well as the maximal number of literals in a
clause is written to _k. In the next step the function solve () is invoked, which starts
with a call to the function preprocessing(). preprocessing() works on the set of
clauses, which computes the unit clauses and propagates their assignments through
the set of clauses, storing each fulfilled clause in _ffClauses and returning either
false (UNSAT) if unit propagation leads to a conflict or true. If the process is still
running, the new set of clauses is computed via the function computeDifference ()
and is passed on to the actual search process, which is represented by the class



CHAPTER 4. PROBABILISTIC SAT SOLVING o1

Search. The search process can be invoked in multiple threads, where each thread
has its own random initial assignment.

Class Search

The class Search - shown in Figure 4.7 - represents the actual implementation of the
LLL algorithms.

Search

-_assignnment: Assi gnment
-_stack: vec<d ause*>
-_solution: Assignment*

- _depGraph: DependencyG aph

+operator()(): void
+search(): bool
+checkSol ution(): bool

Figure 4.7: Class Search: UML Class Diagram

As input it gets the set of clauses, an initial assignment and the dependency graph.
The operator() () is necessary, because the search is invoked as a thread from
the function solve() in class Model. If the function search() finds a satisfying
assignment, it writes it to _solution and notifies the solve() process, in order to
terminate.

4.2 Testcases

In order to test the performance and to verify the behavior of the implemented algo-
rithms testcases are needed. In general - when testing SAT Solvers - the benchmarks
from the SAT competition web pages are used as testcases. But those benchmarks
are not used in this thesis as almost every benchmark from these sites does not fulfill
the condition required from the Lovdsz Local Lemma (d < 2+75).

4.2.1 Generation

A cnf generator has been created with which it is possible to create randomized
testcases fulfilling the condition or distracting it, thus to provide testcases and to
discuss the behavior of the LLL implementation. The generator is based on the
algorithm shown in Figure 4.8.



CHAPTER 4. PROBABILISTIC SAT SOLVING 52

The generator requires the parameters: k for the number of literals of a clause,
numClauses for the maximum number of clauses in the formula, numVars for the
number of variables in the formula and offset for being able to generate testcases
violating the LLL condition. First of all the bound for LLL is computed and the
set of clauses is initiated. In the following the actual computation of the clauses
is started. Therefore a variable is randomly picked and it is checked that the sum
of the maximum number of neighbors of any clause containing the variable and
the current neighbors is not greater than the bound. If the check is satisfied and
the variable is not already in the clause either the positive or negative value of the
variable is added to the clause. Once a clause has reached the maximum size of k
or there exists no new variable to choose, the clause is added to the set of clauses
and the generation of the next clause is started.

generate(k, numClauses, numVars, offset):
bound = 2(k72+offset)
clauses = []
while (len(clauses) < numClauses):
clausellen = 0
neighbors = 0
lits = []
while (clauselen < k):
var = random.randint(1,numVars)
maxNeighbors = getMaximumNumberofNeighbors(var)
if (neighbors + maxNeighbors < bound):
if ((var not in lits) and (-var not in lits)):
if (random.randint(0,1) == 0):
lits.append(var)
else:
lits.append(-var)
neighbors += maxNeighbors
clauseLen++
clauses.append(lits)

Figure 4.8: Random Testcase Generator: Algorithm

For the verification of the correct behavior of the implemented algorithm any testcase
satisfying the bound for the LLL condition d < 2¥~9 is suitable. But in order to test
the performance the upper corner case of the bound is of interest, where most of the
clauses are at the bound. It is also interesting to see how the algorithms perform if
the bound is violated by almost every clause.

In order to create usual testcases it is recommendable to choose the number of
variables to be larger than the number of clauses per testcase. If a violation of the



CHAPTER 4. PROBABILISTIC SAT SOLVING 53

bound of the LLL condition is of interest, the number of clauses has to outnumber
the number of variables per testcase a lot.

4.2.2 Analysis of the Results

All the testcases have been run on a Windows XP System running on an Intel(R)
Core(TM)2 Duo CPU with 2.53GHz clock frequency and 2.99GB RAM. This hard-
ware specification is good enough for the sequential algorithm, but not quite excel-
lent for the parallel algorithm - as it presumes one processor core per clause. The
parallel variant has still been tested, but only with some small testcases.

k10 k10
45 12000

rrrrr

10000

30 8000

ses [y]

6000

cpu time [s]

number of clau

15 4000

2000

0 20 40 60 80 100 0 5 10 15 20 25 30 35
testcase number [x] number of neighbours [x]

k10 k10
25 2500

2000

1500

of decision [y]

mber of d
e
5

1000

memory usage [MB]

0 0
0 10 20 30 40 50 60 70 80 % 100 0 20 40 60 80 100
testcase number [x] testcase number [x]

run | algorithm | d | bound | clauses | vars
1 | sequential | 31 | 25750 | 15597 | 43632
2 | parallel 31 | 28750 | 15597 | 43632

Figure 4.9: Random generated testcases with £ = 10

In Figure 4.9 the testcases with £ = 10 are shown. The testcases have been generated
using the random testcase generator with the request to create a formula, which
meets the LLL condition d < 2*7° having a maximum of 2134023 clauses and
43632 variables. As the number of clauses outnumbers the number of variables
and the bound met, the generator creates testcases where most of the clauses have
the maximum number of allowed neighbors, which is due to the definition of the



CHAPTER 4. PROBABILISTIC SAT SOLVING o4

neighborhood relationship I' = 2¥® — 1 = 31. This is shown on the upper right
chart in Figure 4.9. The two charts on the left show the CPU time (upper chart)
and the according number of decisions (lower chart) made by the algorithms. In case
of CPU time the sequential algorithm wins against the parallel one, but this is due
to the lack of available hardware for the test (as mentioned before). But in respect
to the number of decisions made, the parallel algorithm outperforms the sequential
one, with the number of decisions: log(m) for the parallel algorithm, where the
sequential one lasts m decisions. This result confirms the statement about the total
number of resampling steps from the paper [20]:

2.
A€eA

Where z(A) is the probability that event (clause) A is violated (not fulfilled) under
the current assignment and in respect 1 — z(A) is the probability that event A is

z(A)
1—z(A)

1fg(lll) for the sequential and %log( > ) for the parallel algorithm
A€A

not violated.

k10,

120

100

80

cpu time [s]

60

40

20

k10,

0 10 20 30 40 50 60 70 80
testcase nu

imber [x]

ion [y]

number of decisi

0 10 20 30 40 50

60 70 80

se number [x]

14000

k10,

12000

10000

ses [y]

8000

6000

number of clau

4000

2000

/

/
/

2500

20 40

60 80
number of neighbours [x]

k10,

100

120

2000

1500

1000

memory usage [MB]

500

0

10 20 30

40 50 60

testcase number [x]

run | algorithm | d bound | clauses | vars
1 | sequential | 63 | 28740 | 28400 | 43632
2 | parallel 63 | 2840 | 28400 | 43632
3 | sequential | 127 | 2F730 | 28400 | 43632

Figure 4.10: Random generated testcases with k = 10

70



CHAPTER 4. PROBABILISTIC SAT SOLVING 95

The testcases shown in Figure 4.10 are also of length £ = 10, but do not meet the
bound of LLL condition any more with d = 63 and d = 127. From the neighbor chart
in the upper right it is observable that all clauses violate the condition d < 2F~°
in both of the testcases, in the second one even by far. But still - as shown on
the decision chart c))n the lower left - the sequential algorithm performs in maximum

number of > % steps. And even the parallel algorithm works in predicted time
AeA

log( > 1f§;&)). The CPU time on the upper left chart varies a lot for the parallel
Ach
algorithm, whereas it is almost equal for the sequential one.

K7, K7,
6 - 5000

4500

4000

3500

ses [y]

3000

2500

cpu time [s]
w

number of clau

2000 /
H /

1500

1000

500 -

0 10 20 30 40 50 60 70 80 % 100 0 5 10 15 20 25 30 35
testcase number [x] number of neighbours [x]

K7y K7,
450 T T T 120

100

on [y]
[MB]

number of decisit
memory usage

\
TR TN N
S A A AR A AL A
ny Y ,."\s’\/\ /g\,,\\“ ,\/\ﬁﬂﬁ \‘("»‘V\;.‘ //\\/\v/\.\‘}x/\\’:\

0 10 20 30 40 50 60 70 80 EY 100 0 10 20 30 40 50 60 70 80 % 100
testcase number [x] testcase number [x]

run | algorithm | d | bound | clauses | vars
1 | sequential | 31 | 2¥=20 | 21340 | 87264
2 | sequential | 31 | 28=20 | 43632 | 87264
3 | sequential | 31 | 25720 | 21340 | 174528
4 | sequential | 31 | 28720 | 43632 | 174528

Figure 4.11: Random generated testcases with k =7

In Figure 4.11 the testcases, which have also been generated using the random test
generator, with £ = 7 are shown. This time the bound for the LLL condition is
violated quite far with d = 31, where 2¥=° = 4. But for the generation the number
of variables has been chosen greater in respect to the number of clauses per testcase.
The according neighbor chart is shown on the upper right and illustrates for all



CHAPTER 4. PROBABILISTIC SAT SOLVING 56

the testcases a normal distribution over the clauses according to their number of
neighbors. With an increasing number of clauses on a fixed amount of variables the
distribution drifts towards the bound. The peak of the curve is raised in respect to
the increased number of clauses. Responsible for the occupied amount of memory
used during the Search is also the number of clauses, which is shown on the lower
right chart. But from the CPU time chart - on the upper left - it is observable
that most of the testcases with the same amount of clauses have almost the same
computation time even if the number of variables differs a lot. This result is also
observable from the decision chart - shown on the lower left. So the number of
decision steps is bound to the number of clauses per testcase and not to the amount
of variables. The sequential algorithm still operates in expected time.

60 T 70000

60000

50000

es [y]

40000

cpu time [s]
@
8

30000

number of clause

20000

10000

testcase number [x] number of neighbours [x]

1400 T 1600

1400

1200

1200

1000 |-+

]

1000

800

memory usage [MB]

number of decision

600 -t

400

200

A AT AN A AN

0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

testcase number [x] testcase number [x]

run | algorithm | d bound | clauses | vars
1 | sequential | 31 | 28720 | 15034 | 21816
2 | parallel 31 | 2720 | 15034 | 21816
3 | sequential | 31 | 2¥720 | 30062 | 43632
4 | sequential | 31 | 2720 | 60123 | 87264
5 | sequential | 31 | 2F720 | 120236 | 174528
6 | sequential | 63 | 2F=10 | 56333 | 43632
7 | sequential | 127 | 25700 | 109427 | 43632

Figure 4.12: Random generated testcases with k =7



CHAPTER 4. PROBABILISTIC SAT SOLVING o7

The results from Figure 4.11 have shown that for the average testcases of length
k = 7 the algorithm computes in expected time. In order to check the corner
cases again, testcases with k = 7 have been generated where the amount of clauses
(2134023) outnumbers the amount of variables ({21816, 43632, 87264, 174528} )by
far. The results of those testcases are shown in Figure 4.12.

On the decision chart it is still observable that the algorithms behave in the expected
way. So the sequential algorithm is still operating in > 24 and the parallel one

AeA

1—z(A)

in log(fgA 12;‘(1,)4)
number of decisions steps is also noticeable on the lower left chart of Figure 4.12.
The testcases of rung, rung and run; have the same amount of variables, but differ a
lot on the number of clauses, as does the number of decision steps with an increasing
number of clauses. But the testcases of run, with 60123 clauses and of rung with
56333 clauses have almost the same amount of clauses and the sequential algorithm
needed almost the same number of decision steps for them. Also the testcases of
runs and run; are close together in respect to the number of decisions, but with a
difference of about 10000 clauses. The rest of the already observed behavior is also
noticeable on these results here.

) number of decision steps. The already observed behavior on the

4.3 Conclusions

From the results shown in [Chapter 4.2.2] the following conclusions can be made:

1. The algorithms provided by Moser and Tardos behave in the way they have
been predicted to and meet the according maximal number of decision steps:

) gA 1f¥&) for the sequential algorithm and

e log( > 1f¥&)) for the parallel algorithm.
AcA
2. But furthermore, if the constraint is violated by far like in the testcases from
Figure 4.12, the algorithms still perform in at most polynomial time.

In the future it would be interesting to cluster the parallel algorithm in order to
increase its computation time and really make use of the advantages of using as
many processor cores as possible for the computation of the maximal independent
set of violated clauses.

Another interesting quest would be to create a solver, where the common features
of SAT-solving are combined with the parallel algorithm of Moser. In the following
there are some ideas how this interaction could be performed:



CHAPTER 4. PROBABILISTIC SAT SOLVING 58

1. The trivial one, in which one or several threads of the common search pro-
cess operate on the same assignment stack and in another thread the parallel
algorithm of Moser runs on a separate assignment stack. So if the formula
satisfies the constraint d < 2=, the algorithm will find in at most polynomial
time a solution for the formula unless the other threads have not found one in
advance. And if the formula fulfills the constraint d < 2¥=2 at least one of the
SAT threads has to find a solution, as the constraint states that the formula
is satisfiable.

2. Again one or several threads perform the common search process operating
on the same assignment stack and in another thread the parallel algorithm of
Moser runs on a separate assignment stack. But in this case the assignment
stack of Moser’s algorithm gets updated with the current assignment from the
other threads. So the algorithm only updates those variables which are not
assigned under the current assignment of the common search process.

3. Another idea is to abuse the Dependency Graph to split the input formula into
its independent subsets of clauses. Each of these subsets can then be assigned
to a separate SAT or LLL thread.

4. If the input formula does not meet the LLL constraint, the following approach
can be applied:

(a) Perform the common SAT search based on the DPLL algorithm.

(b) After each decision step the variable which has just been assigned is
deleted from all clauses it occurs in, if the current assignment does not
lead to a conflict. Still the occurrences must be saved somewhere in order
to provide a proper backtracking mechanism.

(c¢) Until the “new” formula does not meet the LLL constraint, go to (a).

(d) The formula does now fulfill the LLL constraint and therefore a solution
must exist.

(e) Use for example the approach from 3. to split the “new” formula into its
independent subsets and compute the solution in parallel.

5. Usually the propagation process of the SAT can result in one conflict clause,
on which conflict analysis is performed in the next step. But due to the
current assignment there might be an entire set of conflict clauses. So if this
entire set is computed, Luby’s algorithm can be used to compute the maximal
independent set of clauses, which are currently unfulfilled. In the next step
the conflict analysis can then be performed in parallel threads on each of these
clauses from the set. On the other hand it might also be interesting to compute
the maximal dependent sets of violated clauses in order to find that clause from
these sets, which has been assigned the earliest in respect to the decision level.



Chapter 5

Conclusions

In this thesis two challenges have been dealt with: one in the domain of Program
Analysis and the other in the area of Probabilistic SAT-solving.

In the Program Analysis part [Chapter 3] it has been shown that the intermedi-
ate representation of LLVM describing a program can be transformed into a SMT
formula in order to find a witness or to prove the absence of runtime errors in the
program. The chosen SMT format is the hys language with which it has been pos-
sible to model the program as a state machine. Therefore it was not necessary
to apply loop unrolling on the program, because the solvers operating on the hys
language perform bounded model checking. The solvers can also take advantage of
the learning process in which earlier conflicts of the search process can be reused
forward and sometimes even backward.

The Probabilistic SAT-solving part [Chapter 4] has been the implementation and
evaluation of the algorithms Moser introduced in his works on the Lovasz Local
Lemma. The results have shown that the algorithms reside in the runtime Moser
has predicted and that they even scale pretty good if the constraint the input for-
mula is bound to is violated. The conclusions have also lead to some interesting
ideas, which might improve the SAT- and SMT-solving processes.

The results of the Probabilistic SAT-solving part are also applicable on the Program
Analysis part. This conclusion can be made due to the fact that a SMT formula
is an extended SAT formula, which can also be treated as a set of events, where
each event (clause) is determined by a finite set of mutually independent random
variables. So if the solver operating on the hys language would be extended with a
method to compute the dependency graph over the clauses of the input formula for
each iteration and if this graph fulfills the structural constraint that every event has
at most 272 neighbors, the Lovész Local Lemma predicts that it must be possible
to find a witness. This might be a huge advantage for the user, because an input

99



CHAPTER 5. CONCLUSIONS 60

problem of large size usually results in a long decision time for the solving process.
But if the user already knows that a solution for the formula exists, it is worth to
wait for the solver to find the witness.

In order to provide such information also the fourth idea from the conclusions in
[Chapter 4.3] might be used. In this idea the size of the input problem, which
does not fulfill the LLL constraint by default, gets reduced step by step of all those
variables, which have been assigned without raising a conflict in the search process.
After each reduction step the LLL constraint gets checked again and once it is sat-
isfied there must exist a solution for the remaining problem.



Bibliography

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

Kim Allan Andersen and Daniele Pretolani. Easy cases of probabilistic satisfi-
ability. Ann. Math. Artif. Intell., 33(1):69-91, 2001.

John Aycock and Nigel Horspool. Simple generation of static single assignment
form. In Proceedings of the 9th International Conference in Compiler Con-
struction, volume 1781 of Lecture Notes in Computer Science, pages 110—-125.
Springer, 2000.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, 2008.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and
Yunshan Zhu. Bounded model checking. volume 58 of Advances in Computers,
pages 117 — 148. Elsevier, 2003.

Robert Britton. MIPS Assembly Language Programming. Pearson Education,
2003.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the third annual ACM symposium on Theory of computing, STOC 71,
pages 151-158, New York, NY, USA, 1971. ACM.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL 77, pages 238252, New York,
NY, USA, 1977. ACM.

Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Commun. ACM, 5:394-397, July 1962.

61



BIBLIOGRAPHY 62

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. J. ACM, 7:201-215, July 1960.

Leonardo de Moura and Nikolaj Bjorner. Satisfiability Modulo Theories: An
Appetizer. In Marcel V. Oliveira and Jim Woodcock, editors, Formal Methods:
Foundations and Applications, volume 5902, chapter 3, pages 23-36. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

Dominic Fandrey.  Clang/LLVM Maturity Report.  June 2010.  See
http://www.iwi.hs-karlsruhe.de.

Martin Franzle and Christian Herde. Efficient proof engines for bounded model
checking of hybrid systems. FElectron. Notes Theor. Comput. Sci., 133:119-137,
May 2005.

John Hopcroft and Jeffrey Ullman. Introduction to automata theory, languages,
and computation., pages 185-192. Addison-Wesley, 1979.

Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis:
Theory and Practice. Taylor and Francis, 2009.

Chris Lattner. LLVM Language Reference Manual.
http://llvm.org/docs/LangRef.html.

Chris Lattner. Low Level Virtual Machine LLVM. http://llvm.org.

Michael Luby. A simple parallel algorithm for the maximal independent set
problem. SIAM J. Comput., 15:1036-1055, November 1986.

Robin A. Moser. A constructive proof of the lovasz local lemma. In STOC "09:

Proceedings of the 41st annual ACM symposium on Theory of computing, pages
343-350, New York, NY, USA, 2009. ACM.

Robin A. Moser and Gabor Tardos. A constructive proof of the general lovasz
local lemma. J. ACM, 57(2):1-15, 2010.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: engineering an efficient sat solver. In Proceedings of
the 38th annual Design Automation Conference, DAC ’01, pages 530-535, New
York, NY, USA, 2001. ACM.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.



BIBLIOGRAPHY 63

23]

[24]

[29]

[30]

Paul Erdos and Laszlé Lovéasz. Problems and results on 3-chromatic hyper-
graphs and some related questions. In COLLOQUIA MATHEMATICA SOCI-
ETATIS JANO5 BOLYAI 10. INFINITE AND FINITE SETS, KESZTHELY
(HUNGARY), 1973.

Emad Saad. Probabilistic reasoning by sat solvers. In Proceedings of the 10th
FEuropean Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, ECSQARU ’09, pages 663-675, Berlin, Heidelberg, 2009.
Springer-Verlag.

Michel Sintzoff. Calculating properties of programs by valuations on specific
models. In Proceedings of ACM conference on Proving assertions about pro-
grams, pages 203—-207, New York, NY, USA, 1972. ACM.

Dominic Sweetman. See MIPS Run, Second Edition. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2006.

Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):230-265,
1936.

Antti Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets, pages 429-528, London, UK, 1998. Springer-Verlag.

Mason Woo and Misha Brukman. Writing an LLVM Compiler Backend.
http://llvm.org/docs/WritingAnLLVMBackend.html.

Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief
survey of program slicing. SIGSOFT Softw. Eng. Notes, 30:1-36, March 2005.



List of Definitions

Definition 1 ~ Abstract Interpretation . . . . . . . ... ... .. ... .... 5
Definition 2  Halting Problem . . . . . . . . .. ... ... L. 6
Definition 3 Static Single Assignment (SSA) . . . . . .. .. ... ... ... 7
Definition 4 Data Flow Analysis . . . . . . . ... ... ... ... ..... 12
Definition 5 Model Checking . . . . . . . . ... ... ... ... 12
Definition 6 Clause . . . . . . . . . . L 12
Definition 7 Conjunctive Normal Form (CNF) . . . ... .. ... ... ... 12
Definition 8 ~ Bounded Model Checking (BMC) . . . ... ... ... .. ... 13
Definition 9  Satisfiability of clauses . . . . . . . . . .. ..o 17
Definition 10 Unitclause . . . . . . . . .. ... oo 17
Definition 11 (Unit)Propagation . . . . . . ... ... ... ... ... .... 17
Definition 12 DPLL Algorithm . . . . . . . . . . . ... ... ... ... ... 18

List of Figures

2.1 Simple Thermostat: C Source Code . . . . . . . . .. ... ... ... 9
2.2 Simple Thermostat: LLVM IR - ID, globals . . . .. ... ... ... 9
2.3 Simple Thermostat: LLVM IR - function cool . . . . .. ... .. .. 10
2.4 Simple Thermostat: LLVM IR - function main . . . . . . . . ... .. 11
2.5 Simple Thermostat: Automaton . . . . . . ... ... ... .. .... 14
2.6 Simple Thermostat: hys Language . . . . . . .. . ... .. ... ... 16
2.7 DPLL Algorithm . . . . . . . ... ... 18
2.8 SAT Search Algorithm . . . . .. .. ... ... ... ... . ..... 19
2.9 Moser: First LLL Algorithm - solve lll . . . . .. ... ... ..... 20
2.10 Moser: First LLL Algorithm - logically_correct . . . . . . . .. . ... 21
2.11 Moser and Tardos: Sequential LLL Algorithm . . . . . ... ... .. 21
2.12 Moser and Tardos: Parallel LLL Algorithm . . . . . . . ... ... .. 22
3.1 hys Target Machine: UML State Diagram . . . ... ... ... ... 24

64



3.2 hys State Machine: UML Class and State Diagram . . . . ... . .. 25
3.3 hys Memory Manager: UML Class and State Diagram . . . . . . .. 28
3.4 hys Memory Manager - state load: UML State Diagram . . . . . . . . 30
3.5 hys Memory Manager - state store: UML State Diagram . . . . . . . 31
3.6 hys Arithmetic Logic Unit: UML State Diagram . . . . . . . .. ... 34
3.7 Function mult - C Source Code . . . . . . . .. ... ... ... ... 41
3.8 Function mult - LLVM IR . . . . . ... ... ... ... 42
4.1 Roadmap: Implementation of the LLL . . . . . ... ... ... ... 46
4.2 Dependency View of the Classes: UML Class Diagram . . . . . . .. 47
4.3 Class Assignment: UML Class Diagram . . . . . . .. ... ... ... 48
4.4 Class Clause: UML Class Diagram . . . . . .. ... .. ... .... 49
4.5 Class DependencyGraph: UML Class Diagram . . . . . . .. .. ... 49
4.6 Class Model: UML Class Diagram . . . . . . .. ... .. ... .... 50
4.7 Class Search: UML Class Diagram . . . . . .. ... .. ... .... 51
4.8 Random Testcase Generator: Algorithm . . . . . .. ... ... ... 52
4.9 Random generated testcases with k=10 . . .. . .. ... ... ... 53
4.10 Random generated testcases with k=10 . . .. . .. ... ... ... 54
4.11 Random generated testcases with k=7. . . .. .. ... .. ... .. 55
4.12 Random generated testcases with k=7 . . . . . . .. ... ... ... 56

List of Tables

2.1
2.2
2.3

3.1
3.2
3.3

Transformation from C Source Code to SSA Form . . . . . .. .. .. 8
Truthtable of & . . . . . . . . .. ... 13
hys Language - Operators . . . . . . . . .. . . ... ... ...... 15
Differences in the Type Systems of the LLVM IR and the hys Language 37
LLVM IR versus LLVM Backend . . . . ... ... ... ... .... 39
Mips Assembly Language vs hys Language . . . . . ... .. .. ... 43

65



