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Abstract 
 
 

High-performance architectures are becoming more and more complex with the 

passage of time. These large scale, heterogeneous architectures and multi-core system 

are difficult to program. New programming models are required to make expression of 

parallelism easier, while keeping productivity of the developer higher. 

Partition Global Address-space (PGAS) languages such as UPC appeared to augment 

developer’s productivity for distributed memory systems. UPC provides a simpler, 

shared memory-like model with a user control over data layout. But it is developer’s 

responsibility to take care of the data locality, by using appropriate data layouts.  

SMPSs/StarSs programming model tries to simplify the parallel programming on multi-

core architectures. It offers task level parallelism, where dependencies among the 

tasks are determined at the run time. In addition, runtime take cares of the data 

locality, while scheduling tasks. Hence, providing two-folds improvement in 

productivity; first, saving developer’s time by using automatic dependency detection, 

instead of hard coding them. Second, save cache optimization time, as runtime take 

cares of data locality. 

The purpose of this thesis is to use the PGAS programming model e.g. UPC for different 

nodes with the shared memory task based parallelization model i.e. StarSs to take the 

advantage of the multi core systems and contrast this approach to the legacy MPI and 

OpenMP combination. Performance as well as programmability is considered in the 

evaluation. 

The combination UPC + SMPSs, results in approximately the same execution time as 

MPI and OpenMP. The current lack of features such as multi-dimensional data 

distribution or virtual topologies in UPC, make the hybrid UPC + SMPSs/StarSs 

programming model less programmable than MPI + OpenMP for the application 

studied in this thesis. 
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1 Introduction 
Traditionally, HPC applications are developed using MPI [1] for distributed memory 

and OpenMP [2] for shared memory. Writing codes using MPI for message 

communication among nodes is a time consuming task. As user has to restructure its 

sequential code, data stored locally in the sequential code may lie on the remote node 

in the MPI version. Messages need to be sent to fetch remote data. OpenMP is the de 

facto way of exploiting shared memory architectures. But it suffers from the problem 

of scalability for very large number of cores. 

Up till now for HPC applications, mostly MPI is used for distributed parallel computing. 

Its programming model is quite complex which makes it hard to write and maintain 

code. PGAS (Partition global address space) languages such as Unified Parallel C (UPC) 

[3] provide a simpler programming model which is easy to understand. Thus providing 

an ideal candidate for easy to write and maintain code. Until recently, PGAS compilers 

and runtime are inefficient. A situation - destined to change in the coming years. 

UPC reduces the development time, by improving programmability. It brings in the 

ease of accessing memory location, in the shared memory systems to the distributed 

memory systems i.e. remote memory location can be referenced using normal 

assignment operators. In contrast to MPI, where we have to send messages for 

exchanging data, in UPC data can be exchanged by using normal assignment operator. 

Hence for data exchange, less number of lines of code needs to be written. Or we can 

say that, in UPC programs code overhead is significantly reduced as compared to the 

MPI programs. 

New advancements in chip fabrication technology have allowed putting couple of 

billions of transistors on the chip. Several complex issues have discouraged, design of 

the complex processors. For a way out, people start increasing numbers of cores 

present on the chip. Multi-core chips are readily available in the market and in future 

we may have chips with 1000 of cores (many-core). Our hardware is developing quite 

rapidly as compared to programming tools. The StarSs parallel programming model is 

an effort to meet new hardware requirements. 

Most of the applications are compromised of tasks, where every task implements a 

specific functionality and its output might be used by another tasks to produce final 

results. SMPSs/StarSs [4] provides a way for scheduling these tasks in the optimal way 

while taking care of the data locality. 
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In order to evaluate the performance, SUMMA (Scalable universal matrix 

multiplication algorithm) algorithm is implemented using pure UPC, pure MPI, UPC + 

StarSs combination and MPI + OpenMP combination. Their execution times are 

compared and discussed. In addition to the performance analysis, UPC and StarSs are 

also analyzed for programmability. 

Work done in the thesis is organized as fallow: Chapter 2 discusses different parallel 

programming models. Chapter 3 conveys information about the SMP superscalar 

(SMPSs/StarSs) programming model. Overview of the Unified Parallel C (UPC) can be 

seen in Chapter 4. Chapter 5 describes implementation details and present results. 

Performance among different versions is compared in Chapter 6. Chapter 7 provides a 

general discussion on StarSs and UPC. 
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2 Parallel programming models 

and paradigms 
In 1980’s decade, it was widely believed that the computer performance was best 

improved by making faster and more efficient processor. The concept of the parallel 

processing challenged this belief. In the parallel processing two or more computers 

are linked together to solve a computation intensive problem. From 1990 onwards 

people start building the super computer (so called clusters) by making network of 

simple/readily available processors instead of using stand alone high performance 

massively parallel processors. This trend is further enhanced by increasing high 

availability and low price of network equipment for connecting computers. Because of 

these options it’s an appealing choice to build supercomputer by connecting the 

computers together. 

              Once parallel processing computer networks are built next step is to look for 

suitable parallel programming models. The coding of a suitable parallel program for a 

given algorithm is strongly influenced by the parallel programming model to be used.  

Important factors which need to be considered before the usage are programmability, 

scalability and how well it matches to your computation problem. In order to develop 

understanding of these models, it is better to look first at the levels of parallelism. And 

then continue further on. 

2.1 Levels of parallelism 

2.1.1 Bit level parallelism 

In the early stages of processor design speedup is obtained by increasing computer 

word size. For example, consider that computer word size is of 16 bits and addition of 

two 32 bits integers needs to done. Only possible way of doing it to first add 16 lower 

bits with a standard add instruction and then add the upper 16 bits using add-with-

carry instruction.  This one extra instruction can be removed if we migrate from 16 bit 

to 32 bit processor. 
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2.1.2 Instruction-level parallelism 

In general, a computer program is a series of instructions run in sequence by the 

processors. These instructions can be shuffled and combined in groups which can be 

executed in parallel. Only precursor condition for instructions shuffling is that there 

should be no data dependency among instructions. Processor uses concept of 

pipelining to achieve this kind of parallelism. 

Modern processors are divided in to multiple stages – which run in parallel.  Each 

stage corresponds to different action that processor performs according to 

instruction. Example of a Reduced Instruction Set Computer (RISC) processor is given 

below. It consists of five different stages Instruction Fetch (IF), Instruction Decode (ID), 

Instruction Execute (IE), Memory Access (MEM) and Write Back (WB).  This concept is 

known as pipelining.  

 

 

 

 

 

 

 

 

2.1.3 Data parallelism 

In most data intensive applications, the same operation has to be performed on the 

large set of data, e.g. add 1 to all elements in the array. This is normally done by 

iterating through all elements of the array by using a loop. Data parallel programming 

models exploit this by distributing loop iterations among different threads. Only 

problem in this approach is data dependencies among different loop iterations.  As 

shown in Figure 2.2 (a) every element of A is dependent upon previous element, i.e. 

data dependency on preceding element, which makes this loop unsuitable for data 

parallelism. Whereas in Figure 2.2 (b) no such condition exists which makes it an ideal 

candidate for data parallelization. 

 

 

 

 

 

  

IF WB EX ME

M
ID 

IF WB EX ME

M
ID 

IF WB EX ME

M
ID 

IF WB EX ME

M
ID 

IF WB EX ME

M
ID 

for (i =0 ; i< 100 ; i++)                                                      
.    A [i] = A [i – 1] + 1;                               
end for; 

(a) 

for (i =0 ; i< 100 ; i++)                                                        
 A [i] = A [i] + 1;                               
end for; 

(b) 

Figure 2.1: Pipeline of RISC processor 

Figure 2.2: Data dependency example 
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2.1.4 Task parallelism 

In task based parallelism, the code is decomposed into several independent tasks.  It’s 

the responsibility of programmer to identify these parallel tasks and convey this 

information to special run time environment. Run time environment is responsible for 

scheduling and synchronization of these tasks. Run time environment normally 

creates one master thread and a number of helper threads, which executes the tasks 

as they become available. This scheme works fine in the case of independent tasks. 

For dependent tasks, parent tasks should be finished before proceeding with the child 

tasks. Two approaches are possible to detect dependency among the tasks. One way 

requires that programmer should explicitly code dependency of tasks into the 

algorithm, as for example through locks as in Pthreads or synchronization barriers in 

OpenMP. And another way is that runtime detects dependency between tasks by 

looking at task input and output parameters as done in StarSs.    [1] 

Set of tasks that are ready to be executed are placed inside a queue, from where the 

idle helper thread selects them.  For improving locality and reducing contention 

among processing cores for accessing queue, a distributed data structure is used.  

Every thread has its own queue where tasks, ready to be executed, are placed. A 

thread first looks for tasks in its own queue. If no task is there, it looks for tasks in 

another thread’s queue.  If task is found there, it steals it. This mechanism is known as 

work stealing.[1] 

2.2 Programming models 

Programming model provides the abstract representation of how data and 

instructions are stored in memory and how processing of these instructions takes 

place. In single core processor, most commonly used model is sequential 

programming model. In this model, there is only one memory in which, both 

instructions and data are stored. The processor fetches the instruction from memory, 

decodes it. And access relevant memory location and manipulates data accordingly. In 

parallel model things are more complex. First of all, we have multiple processors and 

possibly multiple memory subsystems.  Parallel programming model aids programmer 

mapping applications on parallel architecture.  It tries to exploit common features in 

architectures in order to enable efficient mapping of applications. For portability 

reasons, they should be independent of specific details of parallel architectures and 

should remain easy to use.  Popular programming models include are message 

passing, shared memory, data parallel and distributed shared memory. 

2.2.1 Message passing model 

Message passing programming model as shown in Figure 2.3 (a) is based on the 

abstraction of parallel computer with distributed address space. Most popular 

implementation is Message Passing Interface (MPI) [2]. In MPI each processor has 

access to its local memory only. Other processors can access local memory through 

explicitly messages passing only. To transfer data from local memory of A to local 

memory of processor B, processor A should send message containing data to 

processor B. B should than receive the data into a buffer in its own local memory.   
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An MPI program is executed by a set of process where each process has its own local 

memory. Each process gets a unique id, called rank. Normally, each process is 

executed on one processor or core of execution platform. Number of process under 

execution is fixed at run time. Each process talks to other process using message 

passing over the network.  In most cases, message-passing programming model acts 

as Single Program Multiple Data (SPMD) i.e. same set of program on multiple chunks 

of data. But this is not a restriction in the programming model; on the basis of rank 

different process can run different code i.e. Multiple Program Multiple Data (MPMD). 

2.2.2 Shared memory model 

Many computing platforms such as multi-core platforms offer a shared address space.  

A suitable programming model for these types of architectures is model in which all 

threads have access to shared variables. These shared variables can be used for 

synchronization and data exchange purposes. Figure 2.3 (b) depicts this kind of 

programming model. Pthreads, OpenMP and SMP superscalar (StarSs) are popular 

shared memory programming models.  

POSIX threads (Pthreads) is a standard for programming with threads based on the 

programming language C. All the threads of a process have a common address space, 

which means that all threads can access global and dynamically generated data. Every 

thread has got its own stack to keep track of functions called and to store local 

variables. Pthreads are not easy to work with, programmer has to decompose an 

application to make benefit of it, i.e. rewriting whole sequential program. Race 

conditions are common occurrence in Pthreads based programs, which makes it a bad 

choice for productive development. 

In contrast to Pthreads, OpenMP provides an incremental way for parallelism i.e. one 

can change its sequential program to a parallel one step by step. Normally OpenMP is 

used to parallelize loops. Parallel regions such as loops can be marked with specific 

compiler directives. When execution enters the parallel region, specific number of 

slave threads is forked and work is shared among threads (work in case of loops can 

be number of iterations). After the end of execution region threads are joined again 

i.e. OpenMP works on fork/join model.  As compared to Pthreads, OpenMP is 

relatively easy to work with. Less lines of code are required to parallelize a program. 

Sequential code can be parallelized easily without any major rework.  On the other 

hand, race condition can still also occur in OpenMP. In order to prevent race 

conditions, OpenMP provides a way to mark variables accessed by multiple threads as 

shared. But it is responsibility of programmer to convey this information. 

2.2.3 Data parallel model 

Data parallel programming model is shown in Figure 2.3 (c), its name comes from the 

fact that it processes many data item in parallel in the same way. In this model we 

have only one executing process which runs the same set of instructions on identical 

data items. It can be said that this model is the extension of the classical sequential 

programming model where operations on scalars are replaced by the operations on 

vectors.  Problem with this model is that it doesn’t allow independent branching 

within the process [2]. Thus doesn’t allow processing particular data items differently, 
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which make it unsuitable for certain applications. C* and HPF [6]are example of 

languages that follows this programming model. 

2.2.4 Distributed shared memory model 

Distributed shared memory programming model (DSM), also known as the partitioned 

global address space (PGAS) model can be seen in Figure 2.3 (d). This model tries to 

achieve the required balance between programmability and exploiting data locality 

while avoiding the problem of independent branching in the data parallel model. In 

this model independent thread concept of the shared address space is realized using 

shared global arrays. These shared global arrays are distributed among the threads. 

Through specific syntax programmer can dictate array distribution. Access to part of 

array which is present in the thread memory will be local. One can declare the data to 

be processed by a given thread in such a manner that it has affinity to that thread. 

Exploiting locality of access in this manner eliminates or minimizes unnecessary 

remote accesses from the beginning. Unified Parallel C (UPC) and Co-array Fortran [8] 

are examples of this programming model. 
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Figure 2.3: Address space and execution in parallel programming models [2] 
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3 SMP superscalar(SMPSs/StarSs) 
In general, a computer program is a series of instruction run in sequence by the 

processor. These instructions can be shuffled and combined in groups which can be 

executed in parallel.  Only precursor condition for instructions shuffling is that there 

should be no data dependency among instructions. The StarSs programming model 

family takes this concept from instruction level to task level. It looks at dependencies 

among tasks, combined them in groups and executes tasks from different group 

concurrently on multiple cores. 

StarSs provides a programming environment called SMPSs, which was developed 

specifically for multi-cores and symmetric multiprocessors (SMP) for increasing 

programmability, portability and flexibility. It improves programmability, as task based 

parallelization is used and memory locations are easy to reference. Because of shared 

memory systems, memory locations are accessed, using simple assignment operator. 

SMPSs offer a simple programming model, based on the sequential programming 

which can utilize multiple cores by using automatic parallelization at runtime. The 

same C code can be compiled by a regular compiler and can run sequentially on the 

single core machine. Or it can be compiled by the SMPSs compiler, which extracts 

parallelism, and linked with its run time library to run in parallel on multi-core 

platforms. Only requirement on the programmer is that application should be 

composed of coarse-grain functions (called tasks) and these functions should not have 

any side effects (global variables are not accessed).  These functions are identified 

using annotations in pragmas. Source-to-source translator looks up for these pragmas 

and generates intermediate C file with some extra information.  This information is 

used by the runtime to parallelize these functions. 

SMPSs source-to-source compiler, on the basis of annotated functions with pragmas, 

separates them from main code. In contrast to other programming models such as 

OpenMP annotation here does not mean the start of the parallel region.  SMPSs run 

time library builds up a dependency tree on the basis of tasks. Where nodes 

represents instance of task and edges between nodes specify data dependencies. 

SMPSs force the programmer to identify directionality of function parameters i.e. 

input, output and input/output. Dependency graph is built up by looking at function 

parameters directionality information. Using dependency graph, runtime schedules 

tasks on different cores. Techniques such as data dependency analysis, data renaming 

and data locality exploitation are implemented in the runtime to improve 

performance. 
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In SMPSs the programmer only specifies functions which can potentially run 

concurrently. SMPSs will do the data dependency analysis and will determine which 

functions can run in parallel. In some other programming models such as OpenMP one 

has to specify these things explicitly. Therefore, SMPSs provides a flexible 

programming model, which offers an adaptive parallelism influenced by the data 

dependencies and the cores present. 

3.1 Programming model 

A SMPSs program is a sequential program where the functions that can potentially run 

in parallel are annotated with pragmas. In SMPSs nomenclature, these functions are 

known as the tasks. Annotation with pragmas declares that a function is a task and it 

also conveys information regarding size and directionality of the parameters. The 

syntax of the task construct is given below. 

#pragma css task [clause [clause] ...] function-
declaration 

where clause is one of the following: 

input(parameter-list) 

output (parameter-list) 

inout (parameter-list) 

high priority 

 

• input clause:  Lists parameters whose input value will be read. 

• inout clause: Lists parameters that will be read and written. 

• output clause: Lists parameters that will be written to. 

• high priority clause:  Specifies that the task will be scheduled for execution    

earlier than tasks without this clause.                                             

Parameters in the directionality clauses (First three clauses) may optionally have 

dimension specifies with the following syntax: 

identifier [ [expr ] [ [expr ] ...] 

where identifier is the name of a parameter and expr is a C99 expression. This is 

required for proper operation of runtime, when the parameter is an array and its size 

is not present in the parameter declaration. The programming environment consists 

of a source-to-source compiler and a supporting runtime library. The compiler 

translates C code with the annotations into standard C99 code with required calls to 

the supporting runtime library and compiles it using the platform native compiler.  

The runtime takes as input the memory address, size and directionality of every 

parameter at each task’s invocation. Further it uses this information to find 

dependencies between tasks. Whenever in the code a task is called, a node is added in 

the task graph with a series of edges indicating their dependencies. At the same time 

it picks up task by looking at the dependency graph and schedules them on the 
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available cores. The SMPSs runtime uses parameter renaming to remove some data 

dependencies.  This behavior is true for all data types except those of type void *. 

Which in SMPSs are called as “opaque pointers” as they are not changed by the 

runtime and are not considered in task dependency analysis. 

StarSs runtime detects dependency between tasks by looking at the starting memory 

address. Consider the case, in which one task access/updates a block of memory and 

another task which updates/access the middle part of the same block. As StarSs 

detects dependency by looking at the starting address, which in this case will be 

different; dependency between the tasks will not be detected. In order to solve this 

problem, dummy variable can be used to create artificial dependency. These dummy 

variables are called sentinels in StarSs nomenclature. Sentinels will be placed in the 

parameter list of both tasks. To creates dependency between the tasks, in one task 

sentinels will be marked as output where as in another as input. 

Once all the tasks have been specified, the next step is how to use them. In order to 

invoke the tasks, annotated functions must be called within a block surrounded by 

below mentioned directives. 

#pragma css start 

#pragma css finish 

These two directives can only be used once in the program. It is not possible to write a 

start directive after finish directive. These directives are mandatory and all annotated 

function must be called inside the region surrounded by them. 

Race conditions can occur when the data used inside the tasks needs to be 

manipulated by the master running code outside of any tasks. Dependency tracking by 

the runtime is not enough to tackle these dependencies. In order to solve this issue, 

SMPSs provides synchronization directives. One of them is given below  

#pragma css barrier 

This synchronization directive forces all tasks generated up till now, should be 

completed before the master moves further on. In some cases this synchronization 

can be counterproductive. For example code in (a) has two arrays a and b which are 

initialized to 1. Task A and task B performs some operations on these arrays. At the 

end, inside main code (outside tasks), array a is printed out. Task A should be finished, 

before printing of the array. One way of doing is to use a barrier directive as 

mentioned above. But if barrier directive is used, it will also wait for task B to finish i.e. 

inefficient approach. For tackling this problem SMPSs provides below mentioned 

directive. 

#pragma css wait on(<list of variables>) 

In this case main (master) waits until all listed variable values are available. The data 

unit to be waited on should be consistent with the data unit of the task. For example, 

if the task is operating on the full range of an array, we cannot wait on a single 

element arr [i] but on its base address arr. [3] 
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Figure 3.1: Wait and barrier directives example code 

 

  

3.2 Scheduling 

Exploiting data locality is one of the major goals in the SMPSs scheduler. For improving 

data locality, the scheduler makes use of graph information and schedules dependent 

tasks sequentially to the same core. So that the data present in the cache can be 

#pragmacss task inout (a)                  
void taskA (int a [5]) 

{ 

 for (i = 0; i< 5; i++) 

 a [i] += 1; 

} 

 

#pragmacss task inout (a)                  

voidtaskB (int b [5]) 

{ 

 for (i = 0; i< 5; i++) 

  a [i] += 5; 

} 

void main ()                                                  
{ 

 int a [5] = {1,1,1,1,1};  

int b [5] = {1,1,1,1,1}; 

 

#pragma start 

 

 taskA (&a [0]); 

 taskB (&b [0]); 

  

#pragma wait on a [0] 

 

 for (i = 0; i< 5; i++) 

 printf ("%i ", a [i]); 

  

 printf ("\n");  

 #pragma finish 

} 

 

 

 

(b) (a) 

#pragmacss task inout (a)                  
void taskA (int a [5]) 

{ 

 for (i = 0; i< 5; i++) 

 a [i] += 1; 

} 

 

#pragmacss task inout (a)                  

voidtaskB (int b [5]) 

{ 

 for (i = 0; i< 5; i++) 

  a [i] += 5; 

} 

void main ()                                                  
{ 

 int a [5] = {1,1,1,1,1};  

int b [5] = {1,1,1,1,1}; 

 

 #pragma start 

  

taskA (&a [0]); 

 taskB (&b [0]); 

 

 #pragmacssbarrier 

 

 for (i = 0; i< 5; i++) 

 printf ("%i ", a [i]); 

 

 printf ("\n");  

 #pragma finish 

} 
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reused. Scheduler maintains two global ready queues, one is for the high priority tasks 

and another is for the normal priority tasks. High priority tasks are scheduled as soon 

as their dependencies are resolved. High priority tasks can be scheduled on any 

available core. Data locality improvement is not considered while scheduling high 

priority tasks. Normal priority tasks list is used by worker threads to gather tasks 

whenever they are idle. Main (Master) thread runs the main code and it creates as 

many worker threads as cores to keep them busy. Master thread looks up for tasks 

dependencies and add them to the task graph. If the added task doesn’t have any 

dependencies it is moved to the high priority list, ready to be scheduled by the worker 

threads. In addition, every worker thread has its own ready list. When a thread 

finishes running a task, it updates the graph and moves all tasks whose dependencies 

are resolved to its local ready list. Worker threads priority for fetching tasks, for 

execution, is given below, where the lowest number represents the highest priority. 

1. Look into global high priority queue. 

2. Look into own ready queue. 

3. Look into global ready queue. 

4. Steal tasks form other worker thread queue. 

Worker threads while selecting tasks from their own ready queue follow Last In First 

Out (LIFO) method. They take tasks from global ready queue in First In First Out (FIFO) 

order. They steal tasks for other worker threads ready queue also in FIFO order. As 

mentioned in the last paragraph, when worker thread finishes a task - it looks for its 

child tasks in the dependency graph.  Then it updates the dependency graph and 

brings in all child tasks (form global to local ready queue). For data locality purpose, 

newly added task whose dependency is just resolved should be selected for execution. 

LIFO policy for local ready queue serves this purpose well.  FIFO policy for global ready 

queue tries to increase number of tasks, available for execution, by selecting top 

nodes in the data dependency graph. 

As mentioned earlier SMPSs tries to improve data locality. Child nodes in the data 

dependency graph might be using the data produced by their parent nodes. It is good 

for data locality purposes that the same core which has executed the parent node 

(task) also executes the child node (task). Parents and child tasks lies in sequence in 

the local ready queue and to maintain this structure other tasks steal tasks from other 

end i.e. FIFO policy. Work-stealing is always done in FIFO order, in order tries to 

minimize the cache effect. As selected task has spent most time on the queue and has 

high probability that most of its input data is not present in cache. A snapshot of 

SMPSs runtime is present in Figure 3.2. 

The scheduler design tries to give worker threads different region of the dependency 

graph to work on, in order to stop accessing the same data for minimizing cache 

coherency overhead. As long as the worker thread can find ready tasks in the region it 

is exploring (thread ready queue), if there are unexplored regions in the graph (global 

ready queue), it will not steal tasks from other worker threads. Thus every worker 

thread would have independent working set.  



14 

 

In some cases, where communication calls are present inside the tasks, it is better to 

schedule them as soon as possible. So that more data processing tasks becomes 

available for execution. If they are present at end of local queue, it is better to change 

fetching policy for work stealing - so that the idle worker threads could fetch task with 

communication calls. For tackling this kind of cases, StarSs provides with a runtime 

switch, to change tasks fetching policy. 

 

 

 

Figure 3.2: SMPSs run time environment [4] 
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4 Unified Parallel C 
UPC is a parallel extension of ISO C, as it inherits most of the features e.g. dynamic 

memory, pointers etc from ISO C. In addition, it extends ISO C’s syntax and semantics 

for facilitating expression of parallelism. Therefore it’s right to say, UPC is a parallel 

extension of ISO C which uses shared and distributed programming model.[4] 

General trend in computing world is to move from uniform shared memory towards 

distributed memory. But shared programming model has some good features for 

users. For example, to reading and writing remote memory with assignment 

statement is more user friendly than using message-passing library. One of objectives 

while designing Unified Parallel C (UPC) was to make sure that the presence of 

parallelism and remote access should not make program difficult to understand. Users 

should be able to see a collection of threads operating in a common global address 

space and should not worry about the hardware topology. In UPC, a small number of 

changes to the C language are made, as we have to differentiate between local and 

remote memory access. Mainly pointers and arrays are the two C constructs which 

deal with addresses. Introduction of the additional keywords gives the programmer 

the ability to distinguish between data that is strictly private to a given thread and 

data that is shared among all threads in the parallel program. In UPC, arrays can be 

distributed among threads in number of ways, which gives programmer flexibility in 

the data layout. [5] 

4.1 Programming Model 

In the UPC programming model, a number of so called threads work independently 

without any implicit synchronization except that they should start and finish together. 

These UPC threads may run on different nodes in a distributed memory setting as a 

cluster. UPC memory and execution model can be seen in figure 4.1. The Integer 

variable THREADS tells about total number of threads present in the environment. 

Each thread can get its unique id through integer variable MYTHREAD. THREADS 

variable is a global constant visible to all threads i.e. same value at each thread. 

MYTHREAD is a private constant at each thread i.e. different value at each thread. The 

total number of threads (THREADS) can be specified at either run time or compile 

time, using appropriate command.  

The UPC programming model is a variant of SPMD. Each thread runs the same piece of 

code. In UPC different threads can run different part of codes, by using conditional 
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statements based on MYTHREAD identifier. Hence, allowing independent branching 

for specific set of the data. UPC follows DSM paradigm with some enhancements 

because it provides private memory for computations on the same node. In UPC, 

memory consists of the global shared memory space and private memory space. All 

threads can access any memory location in the global shared memory space. 

Whereas, private memory space can only be referenced by the local thread only. The 

global shared space is partitioned among threads, each with an association (affinity) to 

a given thread. UPC provides programmer, a way to keep shared data affinity with the 

specific thread that needs it for computation in the future. 

 

 

 

 

 

 

 

 

 

 

 

4.2 Shared and Private Variables 

This section closely follows the introduction given in UPC – Distributed shared memory 

programming book ([4]). 

In UPC, an object/variable could be declared as shared or private.  Reserve keyword 

shared is one of the extensions that UPC uses to implement its memory model. 

In UPC every thread gets its own copy of private variable; this includes both local and 

global variables. Thread 0 is unique among all threads because all declared scalar 

shared objects/variables have affinity to thread 0. UPC treats all standard C style 

declaration as private variable. For example below mentioned declaration creates a 

copy of x variable for each thread. Each thread can only reference and manipulate its 

own instance of x. 

int x; //x is private, one x in the private space o f each 
thread. 

Figure 4.1: UPC memory and programming model [4] 

Private 0 Private 1 

Shared Address    

Space 

Private Address    

Space 

Thread 0 Thread 1 Thread (Threads – 1) 

Private (threads ­1) 
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Reserve keyword shared is prefixed, to the standard C declaration for creating shared 

variables. For example below mentioned example defines a scalar shared variable. 

This will create only one copy of variable, which can be accessed and manipulated by 

all the threads. As already stated in previous paragraph, this scalar shared variable will 

have affinity to thread 0. 

For declaring an object to be shared, however, requires explicit use of the 

sharedqualifier. For example: 

shared int y; // y is shared, only one y at thread 0 in 
the shared space 

UPC places a restriction on shared variables that they should not have automatic 

storage. Let suppose shared variable are allowed to have automatic storage. Consider 

the case in which they are defined inside a function. One thread executes that 

function updates shared variable contents and exits from the function – variable 

destroyed.  Another thread may access this shared variable, which causes the problem 

as respective shared variable is already destroyed. To avoid this problem, shared 

variables are restricted not to have automatic storage. 

void foo (void) 

{ 

shared int x; // not allowed ------ (I) 

static shared int y; // allowed ------ (II) 

shared int *p; // allowed  ------ (III) 

int *shared q; // not allowed  ------ (IV) 

... 

} 

 Inside above function all declarations which have automatic storage durations 

are illegal/not allowed. (II) Declaration is allowed as static variables don’t have 

automatic storage duration. (III) Declaration is also allowed as it creates a pointer in 

private space which points to a memory in the shared space. Statement (IV) creates a 

shared pointer which points to the private memory. As pointer is created in shared 

memory space, it is not allowed. 

One way of solving this problem is to make statement (I) and (IV) global as shown 

below. 

shared int x; 

int *shared q; 

void foo(void) 

{ 

static shared int y; // allowed 

shared int *p; 

... 
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} 

UPC allows type conversion between shared and private objects/variables, using cast 

and assignment it can be done.  In general, private objects can’t be cast to shared 

objects and assignment of private to shared objects has undefined results. 

4.3 Shared Arrays 

This section closely follows the introduction given in UPC – Distributed shared memory 

programming book ([4]). 

Shared arrays are placed in the shared global address space. By default, the shared 

array’s elements are distributed among threads in round-robin fashion i.e. first 

element of array is created in the shared memory that has affinity to thread 0, the 

second element in the shared space that has affinity to thread 1, and so on. Or in 

other words, the first element goes to thread 0, the second to thread 1, and so on. 

The following example declarations demonstrate how a shared vector declaration 

behaves compared to shared scalar and private scalar declarations. 

The declarations 

shared int x; /*x is a shared scalar and will have 
affinity to thread 0 */ 

shared int y [THREADS]; /*shared array*/ 

int z; /*private scalar*/ 

For four threads, default layout is shown in Figure 4.2, where x and y were placed in 

the shared space and z copies were placed in the private memory space of each 

thread. If the statement  

shared int y [THREADS]; 

was replaced with 

int y [THREADS]; 

Then every thread will have its own complete private version of the array y. 

 

Figure 4.2: Memory layout of variables[4] 

In the case of higher-dimensional arrays, the elements of a shared array are still 

distributed in round-robin way.  For example, the statement present below will result 

into layout shown in Figure 4.3. 
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shared int v [4][THREADS]; 

 

Figure 4.3: Array distribution among threads for block size 4 [4] 

 

The default shared array distribution scheme may not be appropriate for optimal 

execution, in some cases. A different approach for distributing array elements could 

improve data locality exploitation and execution efficiency. Shared array default 

distribution can be changed by mentioning a given block size, also known as blocking 

factor. Declaration for altering the default distribution is given below. 

 

shared [block-size]array [number-of-elements] 

For example: 

shared [4] int a [16]; 

In above statement, array a [] has 16 elements which are distributed among four 

threads. First four elements of array will go to thread 0; next 4 elements will go to 

thread 1 and so on. Block size and total number of threads (THREADS) determines 

affinity to threads using following equation.  

� �
�������	
��
�	�ℎ�
��� 

shared [3] int x [12]; 

Above statement has a blocking size of 3, which means that array elements in a block 

of 3 are distributed across the threads in round-robin way. The resulting layout for 3 

threads is shown in Figure 4.4.  
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Figure 4.4: Array distribution among threads for block size 3[4] 

 

If the previous statement is changed to 

shared [12] int x [12]; 

Then all array elements would have affinity to thread 0. Omitting the block size or 

making it zero in the brackets would result in making all array elements have affinity 

to thread0. Using such indefinite block size, the previous statement’s result/effect can 

also becreated. 

shared [] int x [12]; 

or 

shared [0] int x [12]; 

In many cases it is desirable that array’s data should be distributed in contiguous 

blocks such that, whenever possible each thread should get one of the chunks. One 

way of doing of it is to put * in block size place. For example, 

shared [*] int y [8]; 

would produce the layout shown in Figure 4.5 for the case of three threads. This 

works in the same way with two- and higher-dimensional arrays as in the case of one-

dimensional arrays.  

 

Figure 4.5: Contiguous array distribution among threads [4] 
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shared [3] int A [4][4]; 

In the case of above statement, array elements are blocked by a factor of 3. 

Therefore, blocks of three elements each is distributed across the threads in round-

robin fashion untilall the array elements are allocated. The resulting layout in the case 

of four threads is shown in Figure 4.6. 

 

 

Figure 4.6: Two dimensional array distribution among threads[4] 

4.4 UPC Pointers 

This section closely follows the introduction given in UPC – Distributed shared memory 

programming book ([4]). 

UPC has similar syntax for pointer declarations as in ISO C. But because of memory 

model which is partitioned between shared and private memory space. UPC pointers 

can be divided into four major classes as shown in Figure. 

 

 

Figure 4.7: Pointer classes[4] 

 

int *p1; // private to private 

Above declaration declares a pointer, which resides in private memory space and can 

be used to point memory location in private space. 

shared int *p2; // private to shared 
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Above declaration declares a pointer, which resides in private memory space and can 

be used to point memory location in shared space. As it lies in private memory space, 

every thread will get one private copy of this pointer. 

int *shared p3; // shared to private 

Here a pointer which lies in shared memory space and points to a memory location in 

private memory is declared. It is against the principle that shared space should be 

visible to all threads and private space should only be visible to respective thread; 

therefore, it should be avoided. 

shared int *shared p4; // shared to shared 

In above statement p4 is a shared pointer pointing to the shared space; thus, it has 

one instance with affinity to thread 0. 

Memory region where the pointers mentioned above are located and to which region 

they are pointing to is shown in Figure 4.8. There exists one copy of each pointer in 

each threads private space. Only one instance of P3 and P4 is created in the shared 

space with affinity to thread 0. Each of the p1 pointers points to its associated private 

space and can also point to the shared space that has affinity to that pointer. Each of 

the p2 pointers can point anywhere in the shared data space. The pointer p4 can also 

point anywhere in the shared space. As a shared pointer, p3 has only one instance 

created in the shared space of thread 0. 

 

 

Figure 4.8: Pointer classes memory layout and referencing space [4] 
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5 Implementation details and 

results 
For evaluating performance of hybrid UPC and StarSs version, I first start with 

implementing a matrix multiplication with StarSs. I try out row and square block data 

distributions. Then after that I start looking up for optimal block size and data 

distribution required to get best performance. After that I start developing matrix 

multiplication code using UPC for distributed memory and StarSs for shared memory 

i.e. hybrid code. 

For testing purposes, I have used NEC Nehalem cluster installed at HLRS. This cluster 

has 700 computing nodes connected together using a InfiniBand network. Each node 

has two sockets with Intel Xeon Processor X5560 Quad core running at 2.8 GHz with 8 

MB. Software used and their respective versions can be seen in Table 5-1. 

 

Softwares Version 

gnu 4.6.1 

Open MPI 1.5.3 

OpenMP 3 

Berkeley UPC translator 2.13.6 

Berkeley UPC run time 2.13.6 

SMPSs/StarSs 2.4 

Table 5­1: Software and their versions 

 

Berkeley UPC implementation 2.13.6 (translator/run time) has limitation of block size 

1048576 (220). So, some values in the graphs (where this limit is crossed) in the next 

sections will be missing. 
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5.1 StarSs 

Matrix multiplication algorithms can be divided into two major stages. For example 

consider the case in which two matrices A and B are multiplied and resultant matrix is 

stored in C. First phase is the initialization phase in which A and B is initialized with 

random values.  Second one is the computation phase where C matrix is calculated. In 

both phases, the same set of operations or same piece of code will be executed on 

different sets of data. Hence, these two phases can be written as two functions.  

Definition of these two functions along with StarSs pragmas notation is mentioned 

below. These functions accept address of memory locations to identify the set of data 

to work on. StarSs run time uses memory address location and parameter 

directionality info to buildup dependency graph.  

#pragma css task input (n) output(subMat) 

void initWithRand (double *subMat, int n) 

n: Number of elements to be initialized. 

subMat: Starting address of respective Matrix sub-b lock. 

#pragma css task input(subMatA , subMatB) output(su bMatC)  

void multiply (double *subMatA, double *subMatB, do uble 
*subMatC) 

subMatA: Starting address of respective Matrix A su b-
block. 

subMatB: Starting address of respective Matrix B su b-
block. 

subMatC: Starting address of respective Matrix C su b-
block. 

 

Once the tasks inside the matrix algorithm are identified, the next step is to look for 

appropriate data distribution among tasks. I first tried row block distribution for 

simplicity reason and to reduce number of cache misses. Data distribution of matrices 

in this case is present in Figure 5.1.  As shown in Figure 5.1 with shaded blocks, for 

calculating results of one row block of matrix C, respective row block of matrix A and 

complete matrix B is required. This means that initialization of respective matrix A’s 

block and complete matrix B should be finished before calculation can be started. 

StarSs builds up the dependency graph (shown in Figure 5.2) by looking at the starting 

address of data set. In order to calculate sub-block C1 multiply task needs complete 

matrix B and sub-block A1. But multiply task receives starting address of sub-block A1 

and sub-block B2, so dependencies created by the sub-block A1 and sub-block B1 

could only be identified. But multiply task needs complete matrix B - other sub-blocks 

(B1, B2, B3) of matrix B might not be done with initialization. To avoid this problem, a 

StarSs barrier pragma is used between initialization and computation phase.  
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Another distribution I tried is block-wise as shown in Figure 5.3. Barrier statement in 

row-wise distribution introduces synchronization control which can cause 

performance degradation. To calculate results for one block of matrix C, all respective 

blocks of matrix A and B need to be multiplied and added to C as shown in Figure 5.3. 

In this scenario, we have two initialization and one computation dependency 

(previous computation of C should be finished before next can start). Here 

computation of sub-block C1 requires, only sub-block A1 and B1. And multiply task is 

Figure 5.1: Row block distribution of matrices 

Figure 5.2: Dependency tree for row block distribution 
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provided with the starting address of sub-block A1 and B1. So, no StarSs barrier 

pragma is needed; all dependencies can be detected by looking at the starting 

address. Dependency map is presented in Figure 5.4. In contrast to the row-wise 

distribution, here multiple tasks calculate same block of matrix C. Thus matrix C needs 

to be initialized first, so a new function mentioned below is added.  

 

#pragma css task input (n) output(subMat) 

void initWith0 (double *subMat, int n) 

n: Number of elements to be initialized. 

subMat: Starting address of respective matrix C sub -block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Block wise data distribution of matrices 
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For evaluating the performance, I execute above mentioned approaches with multiple 

matrix dimensions and block sizes, which can be seen in Figure 5.1. One of the factors 

influencing performance is the size of the blocks as this is the which is number of rows 

assigned to each task for working on in the case of row wise distribution and 

dimensions of block in the case of square block distribution. It can be seen from Figure 

5.1 that when dimensions of block are increased, execution time also increases. 

Because number of tasks decreases with increase in block dimensions, so not enough 

work is available for workers. Same case is true for block wise distribution in Figure 

5.2. By looking at the Figure 5.1 and Graph 5.2, it can be judge that we get good 

results for block size of 32 and 64. As difference between them is not so significant, I 

took block size of 64 for further analysis. 

 

Figure 5.4: Dependency tree for block wise data distribution 
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Graph 5.1: Row block distribution 

 

 

 

 

 

Graph 5.2: Square block distribution 

 

Graph 5.3 tries to compare execution time of matrices for row wise and block wise 

data distribution.  Only block size of 64 is taken as it shows good results, as mentioned 

above. It can be seen clearly that block wise distribution performs better than row 

wise. One of the reasons, for better performance of block wise distribution is that 

there is no barrier statement. The computation tasks (multiply ) don’t have to wait 
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for all initialization tasks (initWithRand) and (initWith0) to finish. They can start 

execution as soon as their respective blocks are ready. 

 

 

Graph 5.3: Row wise and block wise data distribution 

 

Graph 5.4 and Graph 5.5 looks at the scalability of StarSs; number of cores is increased 

from 1 to 8, for row wise and block wise distribution.  From the graphs they look like 

perfectly scalable, if enough work is available for all the workers. For block wise 

distribution, in the of matrix size 256X256 not enough work is available for all workers. 

So it doesn’t scale any further when core number is increased from 4 to 8.  

 

 

Graph 5.4: Scalability plot (square block distribution) 
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Graph 5.5: Scalability plot (row block distribution) 

 

5.2 UPC 

For evaluating UPC, the SUMMA matrix multiplication algorithm is implemented using 

UPC specific constructs. 

 

Pseudo algorithm of SUMMA 

Every UPC thread initializes its part of A and B block. 

 

For (Traverse over all the required blocks – shaded ones in  

Graph 5.2) 

If (both respective A and B blocks ready) 

Compute respective C block. 

 

Else if (any A or B block not available/ready) 

Wait for respective A or B block. 

Compute C block. 

End if 

End for 

 

Figure 5.5 shows the matrix storage scheme in the memory. First all the sub-blocks of 

matrix are stacked up as shown in Figure 5.5 (b). Then each sub-block is stored as a 

one-dimensional array as shown in Figure 5.5 (c). Hence two levels of indexing need to 

be done to reach the desired element location.  
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First, square block wise distribution shown in Figure 5.3, for matrix multiplication is 

used because it gives good results in the case of StarSs. In order to check scalability, 

different matrix dimensions for a range of threads are tried out, its execution time is 

noted down and results are plotted in Graph 5.6. Graph 5.7 shows UPC threads across 

multiple nodes. Execution time decreases if we move from 1 node (8 cores) to 2 nodes 

(16 cores). Because of the Square block distribution we can only have threads in 

multiples of 4 i.e. 1, 4, 16, …, 4n. Computer nodes used for testing purposes has got 

only 8 cores. It means that when number of threads is increased from 4 to 16 - 16 

threads will be running on 8 cores which can lead to the performance degradation. To 

avoid problem of threads only in the powers of 4, row wise data distribution shown in 

Figure 5.1 is implemented. Results of this implementation are shown in Graph 5.8. 

Here we have only 8 threads for 8 cores, so performance degradation (because of the 

core over-subscription) is eliminated. As mentioned in the start of section 5 Berkeley 

UPC implementation used has limit on block size. So, some points, in Graph 5.7 and 

Graph 5.8, for matrix dimensions 2048X2048 are missing. 

 

Figure 5.5: Matrix layout in memory 
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Graph 5.6: UPC matrix multiplication (using block wise distribution) on one node 

 

 

 

Graph 5.7: Scalability plot(using block wise distribution) on multiple nodes 
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Graph 5.8: Scalability plot (using row wise distribution) on one node 

 

5.3 StarSs + UPC 

The SUMMA matrix multiplication algorithm is implemented to check performance of 

hybrid (StarSs + UPC) version. Here two levels of data distribution are done, one for 

distributed memory (on UPC threads level) and second is for shared memory (on 

StarSs tasks level). Block-wise data distribution is performed on both levels which can 

be seen in Figure 5.6. Previous results show that StarSs performs well for block 

dimensions 64 X 64. So on StarSs tasks level block dimensions are set to 64 X 64. 

Whereas on UPC threads level block dimensions of block depends on the number of 

nodes. 
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Pseudo algorithm for hybrid SUMMA 

Call initRand for all Matrix A StarSs-level blocks. 

Call initRand for all Matrix B StarSs-level blocks. 

Call initZero for all StarSs-level C blocks. 

Call checkAllBlksInit for matrix A. 

Call checkAllBlksInit for matrix B. 

 

For (Traverse over all the required blocks – shaded ones in  

Graph 5.2) 

 Call copyRmtBlkA. 

 Call copyRmtBlkA. 

Calculate all 2nd level C blocks. //StarSs tasks 

End for 

To store matrices the same storage scheme as mentioned in Figure 5.5 is used. The 

following global arrays are used to store matrices. 

shared double [blockSize] A [rows * cols]; 

shared double [blockSize] B [rows * cols]; 

shared double [blockSize] C [rows * cols]; 

blockSize: number of elements in a block i.e. 16 el ements 
for matrix in Figure 5.5. 

As already discussed in section 5.1, the first phase in matrices multiplication algorithm 

is the initialization of the matrix. In hybrid approach UPC threads, running on different 

nodes, will access each other’s UPC-level data block. A way needs to be established to 

inform adjacent UPC threads when initialization of a local block is complete. A new 

shared array is declared to indicate status of UPC-level blocks. 

shared int [1] 1stLvlBlks [THREADS]; 

In hybrid version, initialization is done by a number of StarSs tasks. Above array 

(1stLvlBlks) element can only be set if all the tasks are finished. So a local array is 

needed to keep track status of all StarSs-level data blocks for both A and B matrix. 

int 2ndLvlBlksA [y]; 

2ndLvlBlksB [y]; 

y: Number of the StarSs-level blocks i.e. 4  for matrix in Figure 5.5. 

Initialization task (initRand) defined in section 5.1 is modified to accommodate 

above new requirements i.e. respective location of 2ndLvlBlk. 

#pragma css task output(ptr, blkCmpl); 

void initRand (double *ptr, int *blkCmpl); 
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*blkCmpl: Holds address of respective 2ndLvlBlk’s 
location. 

Initialization task (initZero) for initialization of matrix 0 remains same. 

#pragma css task output(ptr) 

void initZero (double *ptr); 

New StarSs task is added to check when all sub-blocks are initialized and set 

corresponding location in 1stLvlBlks global array in order to notify other threads. 

#pragma css task input(blkCmpl, mat) 

void checkAllBlksInit (int*blkCmpl, char mat); 

int *blkCmpl: Will hold starting address of array 
2ndLvlBlks. 

char mat:  Required matrix name needs to be checked . 

 

#pragma css task input(blkLoc, locA) output(strLoc,  AFlg) 

void copyRmtBlkA (double *strLoc, intblkLoc, intloc A, int 
*AFlg); 

double *strLoc: Temporary location for storage. 

int blkLoc: Which block from shared memory needs to  be 
copied. 

int locA: Which 1stLvlBlks [threads] needs to be ch ecked. 

int *AFlg: Used to introduce dependency. 

  New StarSs tasks are needed to fetch required blocks from UPC threads, 

running on remote  nodes, and store them in a temporary location for later used by 

the multiply task (mul). These routines copy UPC-level block from remote nodes. In 

order to stop multiply task (mul) for continuing further on before the results are 

copied, an artificial dependency is created by using AFlg, BFlg variables. 

#pragma css task input(blkLoc, locB) output(strLoc,  BFlg) 

void copyRmtBlkB (double *strLoc, intblkLoc, intloc B, int 
*BFlg); 

double *strLoc: Temporary location for storage. 

int blkLoc: Which block from shared memory needs to  be 
copied. 

int locB: Which 1stLvlBlks [threads] needs to be ch ecked. 

int *AFlg: Used to introduce dependency. 

Multiply task (mul) almost remains the same with some additional variables to create 

artificial dependency. 

#pragma css task input(A, B, AFlg, BFlg) inout(C) 

void mul (double *A, double *B, double *C,int *AFlg , int 
*BFlg); 

double *A: Holds starting address of matrix A StarS s-Level 
block. 
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double *B: Holds starting address of matrix B StarS s-Level 
block. 

double *C:Holds Starting address of matrix C StarSs -Level 
block. 

int *AFlg: Used to introduce dependency. 

int *BFlg: Used to introduce dependency. 

 

Graph 5.9 shows improvement in execution time when number of cores is increased. 

In the case of 128 cores, there is no improvement when we move from 128X128 to 

256X256. As matrix 1st level block size is smaller and more time is spent in moving the 

blocks (communication) rather than computing the results i.e. over head of 

communication becomes prominent in the case of small data transfers. Same 

argument can also be made for not having linear graphs for 32 and 128 cores. As 

mentioned in the start of section 5 Berkeley UPC implementation used has limit on 

block size. So, a point in the case of matrix dimensions 2048X2048 in Graph 5.9 and 

Graph 5.10 is missing. 

 

 

Graph 5.9: Improvement in performance by increasing number of cores - square 

block-wise distribution. 

  

Graph 5.10 looks at the scalability of UPC for various matrix sizes. Communication 

network is more optimized for sending large data transfers. So less speedup can be 

seen for matrix size: 1024X1024 etc, when we move from 32 to 128 cores, as compare 

to matrix size: 2048X2048. 
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Graph 5.10: Scalability plot (multiple nodes) - square block-wise distribution. 

 

5.4 MPI 

Use of virtual topologies simplifies the program structure and makes code 

understandable, provided that data distribution matches the virtual topology. MPI 

provides us with multiple virtual topologies such as graph and Cartesian. Data 

distribution in Figure 5.3 resembles the Cartesian topology so it is used. Figure 5.7 

shows the block distribution among different process, i.e. process with Cartesian 

coordinates (0, 0) holds first block of all matrices. 
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In the case of matrix multiplication, every process needs to share its data block with 

all other processes in its respective row and column. For example, process with 

Cartesian coordinates (0, 0) will share its data block with all blocks in its row group 

(Figure 5.8 (b)) and with (Figure 5.8 (c)). Or it can be said that every process 

broadcasts its data block among its respective row and column groups. So, all rows 

and column process are grouped together for ease of use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next step is determining the communication strategy among row and column process. 

MPI provides a number of options i.e. blocking send/receive, non-blocking 

send/receive and collective communication calls. Non-blocking send/receive and 

collective communication calls are singled out for further usage. Non-blocking 

send/receive is given preference as they allows an asynchronous program flow i.e. if 

data is available, computations can be done alongside waiting for the next block of 

data. Collective communication calls, use fine/optimal communication algorithm 

which gives good result – normally difficult to achieve using send/receive calls. 

In non-blocking send/receive communication algorithm every process send its data 

block to its right neighbor process (in case of row group) or its downward process (in 

case of column group) and receives data block from left process (in case of row group) 

or up process (in case of column group). For example, the process with Cartesian 

coordinates (0, 1) sends it block to all other process in its row and column. And 

(b) Row wise groups 
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Figure 5.8: Row and column grouping of data blocks 



39 

 

receives blocks from all other process in its rows and columns. This sending and 

receiving pattern can be seen in Figure 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudo Algorithm for MPI approach using non-blocking send/receive 

Call MPI_Cart_create (vu, …) // creating Cartesian topology. 

Create row and columns groups as mentioned Figure 5.8. 

Every process set receives for all row and column blocks. 

Every process initializes its assigned block. 

Every process sends its block to all row and column process. 

 

For (Traverse over all the required blocks – shaded ones in Figure 5.7) 

 As soon as required blocks available compute respective C block. 

End for 

 

In the second communication scheme, all non-blocking send/receive is replaced by the 

collective communication call MPI_Allgather. As already known from discussions in 

previous sections, for the calculating a block of matrix C, all respective row blocks of 

matrix A and column blocks of matrix B are needed. So collective communication call 

MPI_Allgather is used to collect respective row or column blocks. 

 

Pseudo Algorithm for MPI approach using MPI_Allgather 

Call MPI_Cart_create (vu, …) // creating Cartesian topology. 

Create row and columns groups as mentioned in Figure 5.8. 

Every process initializes its assigned block. 

Everyprocess gets required data using all-gather-all. 

Everyprocess computes its data block as shown in Figure 5.7. 

Figure 5.9: Non blocking send/recv messages for process with 
Cartessian coordinates (0, 1) 
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For (Traverse over all the required blocks – shaded ones in Figure 5.7) 

 Every process computes its respective C block. 

End for 

 

Final result matrix (C) is distributed among all the process as shown in Figure 5.10 (a). 

As processes are arranged in Cartesian topology, we can take benefit of it for 

gathering final matrix. First all root process (first process) in each row collects matrix 

using MPI_Gather call, so all row blocks of matrix are present at first column group 

Figure 5.10 (b).After that first process in the first column group gathers complete 

matrix using MPI_Gather call. 

 

 

 

 

 

 

 

 

 

Graphs with execution time for various matrices dimension are given below. It can be 

seen from Graph 5.15 that for intra node communication MPI_Allgather performs 

better as compare to non-blocking approach. 

 

Graph 5.11: Execution time for various matrix sizes (non-blocking send/recv) 
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Graph 5.12: Scalability plot (non-blocking send/recv) 

 

 

Graph 5.13: Execution time for various matrix sizes (all gather) 
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Graph 5.14: Scalability plot (all gather) 

 

 

Graph 5.15: Comparison for matrix size 2048X2048 
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multiplication) is equally divided among OpenMP threads running on different cores. 

For initialization only one loop is needed, so the matrices array is divided among 

OpenMP threads to work on. For matrix multiplication, three loops are present, only 

outer loop is parallelized. Iteration of the outermost loop will be divided equally 

among all OpenMP threads; or it can also be said that each thread will calculate 

specific number of C matrix rows. 

 

Pseudo code for matrix multiplication using OpenMP 

NRA: Number of rows of A. 

NCA: Number of columns of A. 

NCB: Number of columns of B. 

CPUS: Number of CPUS i.e. 8 in our case. 

 

#pragmaompfor schedule (static, NRA / CPUS)  

fori=0; i< NRA; i++ 

forj=0; j< NCA; j++ 

  a [i] [j] = rand (); 

 end for 

end for 

 

#pragmaomp for schedule (static, NRB / CPUS) 

fori = 0; i< NCA; i++ 

for j =0; j< NCB; j++ 

  b [i] [j]= rand (); 

 end for 

end for 

 

#pragmaompfor schedule (static, NRA / CPUS)  

fori = 0; i< NRA; i++ 

forj=0; j< NCB; j++       

  fork=0; k< NCA; k++ 

   c[i][j] += a[i][k] * b[k][j]; 

  end for 

 end for 

end for 

 

Performance of OpenMP can be seen in Graph 5.16 and Graph 5.17. In contrast to the 

above mentioned approaches, i.e. StarSs in section 5.1 and UPC in section 5.2, 

OpenMP perform well even for small matrix sizes. Reduction in execution time can be 

observed for all matrix sizes, when core number is increased. 
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Graph 5.16: Matrix execution time for various cores 

 

 

Graph 5.17: Scalability plot 
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Pseudo Algorithm for MPI + OpenMP approach 

Call MPI_Cart_create (vu, …) // creating Cartesian topology. 

Create row and columns groups as mentioned in Graph 5.8. 

Every process initializes its assigned block. 

Everyprocess gets required data using all-gather-all. 

Everyprocess computes its data block as shown in Figure 5.7. 

 

For (Traverse over all the required blocks – shaded ones in Figure 5.7) 

 Everyprocess computes its respective C block using OpenMP for loop 

parallelization. 

End for 

 

Final result is collected using scheme mentioned in Figure 5.10. 

 

Graph 5.18 shows execution time of various matrix sizes for 8, 32 and 128 cores. In the 

case of large number of cores i.e. 128,matrix multiplications for smaller matrix sizes 

(such as 128X128, 256X256, 512X512) takes more time to complete. Because in the 

case of smaller matrix sizes, data transferred through messages among the nodes is of 

smaller size and network is optimized for large data transfers.  Graph 5.19 shows 

scalability graph, it can be noticed that for smaller matrix sizes it doesn’t scales well 

because of smaller size message transfers. 

 

 

Graph 5.18: Execution time for various matrix sizes (all gather) 
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Graph 5.19: Scalability plot 
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6 Comparative performance 
Graph 6.1, Graph 6.2and Graph 6.3 show shared memory comparison between 

OpenMP, StarSs and UPC for the matrix sizes of 2048X2048, 1024X1024 and 512X512. 

These tests are run on a Nehalem cluster node; details about the node can be seen in 

the start of section 5Implementation details and results. It can be seen that UPC 

performs better than the others for all matrix sizes. In Graph 6.3 UPC doesn’t scale 

well, when cores are increased from 4 to the 8 as more time will be spent in moving 

around the data than computing the results. As mentioned in the start of section 5 

Berkeley UPC implementation used has limit on block size. So, a point in the case of 

matrix dimensions 2048X2048 in Graph 6.1 and Graph 6.4 is missing. 

 

 

Graph 6.1: Shared memory comparison for 2048X2048 
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Graph 6.2: Shared memory comparison for 1024X1024 

 

 

Graph 6.3: Shared memory comparison for 512X512 

 

Graph 6.5 and Graph 6.6 shows comparison between hybrid memory systems. Legacy 

combination OpenMP/MPI (OpenMP for shared memory, MPI for distributed 

memory) is compared with StarSs/UPC (StarSs for shared memory, UPC for distributed 

memory) combination. Both of them show almost same results. It should be noted 

that even for small message transfers UPC + StarSs combination performs relatively 

better as compare to the MPI + OpenMP combination. 

 

 

0

2

4

6

8

10

12

14

16

1 2 4 8

E
x

e
cu

ti
o

n
 T

im
e

 [
s]

Lo
g

ri
th

m
ic

1024X1024

OpenMp

StarSs

UPC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 4 8

E
x

e
cu

ti
o

n
 t

im
e

 [
s]

 

Lo
g

ri
th

m
ic

512X512

OpenMp

StarSs

UPC



49 

 

 

Graph 6.4: Hybrid (shared + distributed) memory comparison for 2048X2048 matrix 

 

 

Graph 6.5: Hybrid (shared + distributed) memory comparison for 1024X1024 matrix 
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Graph 6.6: Hybrid (shared + distributed) memory comparison for 512X512 matrix 
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7 Discussion 
MPI is the most common programming model used to write applications for 

distributed memory computing systems. In MPI user can fine tune their applications as 

they have complete control over data layout, communication, and load balance. 

Another advantage of MPI is portability i.e. developers don’t have to rewrite 

application for new/different machines. One of the major drawbacks in using MPI is its 

difficulty in changing the sequential code to the parallel one.  

UPC provides a way to solve this problem by retaining most of features of the 

sequential programming. It introduces the concept of global shared arrays which may 

be distributed over multiple nodes. In contrast to MPI, where one has to pack local 

data into the messages sharing with other nodes, remote data can be reached by 

accessing elements of the array. Therefore development time reduces. UPC also 

provides with the collectives communication call to support bulk data transfers as 

most communication architectures are optimized for bulk data transfers.  

In many applications multi dimensional blocking is required to simplify the program 

structure. For example, take the case of the blocked matrix multiplication in Figure 

5.3. The natural block-wise data distribution of the matrices cannot easily be 

implemented with UPC, as this supports only one-dimensional data distribution, not a 

two-dimensional as required. An alternative way needs to be devised for the 

distribution of the matrices using only UPC's one-dimensional blocking. This way, 

shown in Figure 5.5, increases the complexity of code.   

As discussed in section 5.4, the use of virtual topologies in MPI simplifies the 

programming structure. If topology matches the underlying data distribution it 

improves the understandability of code which leads to less development time. 

Because of the problems stated above developing SUMMA matrix multiplication for 

UPC takes considerable more time as compared to the MPI. As the lack of 

multidimensional blocking complicates the layout of the data (matrix storage in the 

memory) and lack of virtual topologies reduces the understandability of the code. 

OpenMP is one of the most popular programming models used for shared memory 

parallelization. It consists of a collection of compiler directives, library routines, and 

environment variables that can be easily inserted into a sequential program to create 

a portable program that will run in parallel on shared memory architectures. It 

provides options for both task and data based parallelism. However, it is up to the 

user to ensure that performance does not suffer as a result of poor cache locality. 
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StarSs is designed for shared memory systems with specific attention paid to get a 

good cache performance. As discussed in section 3 it provides task based parallelism. 

So if our application is comprised of tasks, than using StarSs is the better way. If our 

problem requires data based parallelism, than using OpenMP will be the better 

choice. 

Development of matrix multiplication algorithm, using StarSs and UPC generates 

comparable performance results as with OpenMP and MPI. But if we look at the 

development time required UPC and StarSs take longer time because of the reasons 

mentioned above. Therefore, it is right to say that UPC with features multidimensional 

blocking, virtual topology features and for applications which can be decomposed as 

tasks, StarSs + UPC combination will no doubt increase developers productivity. 
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Appendix A 
A.1. Graph data tables 

 

Block Size Matrix dimensions Execution Time 

32 

128X128 0.0108 

256X256 0.046961 

512X512 0.212409 

1024X1024 1.979849 

2048X2048 34.016667 

64 

128X128 0.019785 

256X256 0.06277 

512X512 0.20896 

1024X1024 2.033456 

2048X2048 35.045333 

128 

128X128 0.027429 

256X256 0.115471 

512X512 0.400823 

1024X1024 2.057425 

2048X2048 33.726667 

256 

256X256 0.190936 

512X512 0.757126 

1024X1024 4.066777 

2048X2048 33.337 

Table 8­1: Data for Graph 5.1 
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Matrix dimensions Block Size Execution Time 

128X128 

32 0.006777 

64 0.011809 

128 0.031536 

256X256 

32 0.038298 

64 0.04441 

128 0.059496 

256 0.192635 

512X512 

32 0.168071 

64 0.172193 

128 0.206418 

256 0.401219 

1024X1024 

32 1.232803 

64 1.259045 

128 1.299592 

256 1.910967 

2048X2048 

32 9.575 

64 10.717 

128 11.434 

256 12.616667 

Table 8­2: Data for Graph 5.2 

 
 

Matrix dimensions row­wise distribution block­wise distribution 

128X128 0.011809 0.046961 

256X256 0.04441 34.016667 

512X512 0.172193 2.033456 

1024X1024 1.259045 0.400823 

2048X2048 10.717 0.757126 

Table 8­3: Data for Graph 5.3 
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Matrix dimensions cores Execution Time 

2048X2048 

1 76.21 

2 39.567333 

4 20.387 

8 10.717 

1024X1024 

1 9.164759 

2 4.628079 

4 2.352953 

8 1.259045 

512X512 

1 1.123815 

2 0.573751 

4 0.297292 

8 0.172193 

Table 8­4: Data for Graph 5.4 

 

 

Matrix dimensions cores Execution Time 

512X512 

1 1.12349 

2 0.726774 

4 0.381239 

8 0.20896 

1024X1024 

1 9.201482 

2 15.064337 

4 4.124423 

8 2.033456 

2048X2048 

1 232.104667 

2 135.938333 

4 70.911333 

8 35.045333 

Table 8­5: Data for Graph 5.5 
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UPC Threads Matrix Dimensions Execution Time 

1 
512X512 0.589 

1024X1024 9.057 

4 

512X512 0.139 

1024X1024 1.088 

2048X2048 19.61 

16 

512X512 0.046 

1024X1024 0.423 

2048X2048 8.484 

Table 8­6: Data for Graph 5.6 

 

 

UPC Threads Matrix Dimensions Execution Time 

1 
512X512 0.571333333 

1024X1024 10.25633333 

4 

512X512 0.182 

1024X1024 1.512333333 

2048X2048 24.3255952 

16 

512X512 0.585333333 

1024X1024 0.348611 

2048X2048 6.542146333 

64 

512X512 0.030975 

1024X1024 0.098644333 

2048X2048 0.739362333 

Table 8­7: Data for Graph 5.7 
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Matrix Dimensions UPC Threads Execution Time 

512X512 1 0.608 

2 0.279 

4 0.134 

8 0.081 

1024X1024 1 9.069 

2 4.622 

4 0.985169 

8 0.494 

2048X2048 4 18.241 

8 9.024 

Table 8­8: Data for Graph 5.8 

 

 

 

Cores Matrix dimensions Execution time 

8 128X128 0.010966333 

256X256 0.047194667 

512X512 0.263851 

1024X1024 2.039269 

32 128X128 0.007601667 

256X256 0.022133667 

512X512 0.097608667 

1024X1024 0.732649667 

2048X2048 5.744350333 

128 128X128 0.010528667 

256X256 0.010528667 

512X512 0.035588 

1024X1024 0.141151 

2048X2048 1.144329333 

Table 8­9: Data for Graph 5.9 
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Matrix dimensions Cores Execution time 

512X512 

8 0.263851 

32 0.097608667 

128 0.035588 

1024X1024 

8 2.039269 

32 0.732649667 

128 0.141151 

2048X2048 
32 5.744350333 

128 1.144329333 

Table 8­10: Data for Graph 5.10 

 

 

Cores Matrix dimensions Execution time 

1 

128X128 0.023921 

256X256 0.150875 

512X512 1.145826 

1024X1024 10.934753 

2048X2048 184.040243 

4 

128X128 0.009492 

256X256 0.050021 

512X512 0.408666 

1024X1024 3.213493 

2048X2048 29.454429 

16 

128X128 0.024115 

256X256 0.034381 

512X512 0.09383 

1024X1024 0.640018 

2048X2048 5.27758 

64 

128X128 0.066712 

256X256 0.068726 

512X512 0.090489 

1024X1024 0.199949 

2048X2048 1.723633 

Table 8­11: Data for Graph 5.11 

 

  



60 

 

Matrix dimensions Cores Execution time 

512X512 

1 1.145826 

4 0.408666 

16 0.09383 

64 0.090489 

1024X1024 

1 10.934753 

4 3.213493 

16 0.640018 

64 0.199949 

2048X2048 

1 184.040243 

4 29.454429 

16 5.27758 

64 1.723633 

Table 8­12: Data for Graph 5.12 

 

Cores Matrix dimensions Execution time 

1 

128X128 0.028033 

256X256 0.149834 

512X512 1.292971 

1024X1024 12.073521 

2048X2048 202.51187 

4 

128X128 0.006765 

256X256 0.040909 

512X512 0.294649 

1024X1024 2.515457 

2048X2048 27.285554 

16 

128X128 0.015953 

256X256 0.035936 

512X512 0.088719 

1024X1024 0.57715 

2048X2048 4.587071 

64 

128X128 0.040586 

256X256 0.051999 

512X512 0.071215 

1024X1024 0.174 

2048X2048 1.141919 

Table 8­13: Data for Graph 5.13 
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Matrix dimensions Cores Execution time 

512X512 

1 1.292971 

4 0.294649 

16 0.088719 

64 0.071215 

1024X1024 

1 12.073521 

4 2.515457 

16 0.57715 

64 0.174 

2048X2048 

1 202.51187 

4 27.285554 

16 4.587071 

64 1.141919 

Table 8­14: Data for Graph 5.14 

 

 

Matrix dimension Cores 
Execution time (all 

gather) 
Execution time (non­

blocking send/recv) 

2048X2048 

1 202.51187 184.040243 

4 27.285554 29.454429 

16 4.587071 5.27758 

64 1.141919 1.723633 

Table 8­15: Data for Graph 5.15 
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Matrix dimensions cores Execution time 

128X128 

1 0.030218 

2 0.016432 

4 0.010132 

8 0.008193 

256X256 

1 0.180215 

2 0.097103 

4 0.055562 

8 0.044641 

512X512 

1 1.438879 

2 0.709328 

4 0.3719 

8 0.215667 

1024X1024 

1 14.604642 

2 9.051743 

4 3.87567 

8 1.90028 

2048X2048 

1 241.106132 

2 147.968762 

4 73.062732 

8 34.634772 

Table 8­16: Data for Graph 5.16 

 

Matrix dimensions Cores Execution time 

512X512 

1 1.438879 

2 0.709328 

4 0.3719 

8 0.215667 

1024X1024 

1 14.604642 

2 9.051743 

4 3.87567 

8 1.90028 

2048X2048 

1 241.106132 

2 147.968762 

4 73.062732 

8 34.634772 

Table 8­17: Data for Graph 5.17 

 

 

 



63 

 

Cores Matrix dimensions Execution time 

8 

128X128 0.016755 

256X256 0.054899 

512X512 0.231178 

1024X1024 2.037397 

2048X2048 35.664118 

32 

128X128 0.021096 

256X256 0.035470333 

512X512 0.098574 

1024X1024 0.526931 

2048X2048 9.63201 

128 

128X128 0.031051667 

256X256 0.040283 

512X512 0.068761333 

1024X1024 0.170891667 

2048X2048 2.395041 

Table 8­18: Data for Graph 5.18 

 

 

Matrix dimensions Cores Execution time 

512X512 

8 0.231178 

32 0.098574 

128 0.068761333 

1024X1024 

8 2.037397 

32 0.526931 

128 0.170891667 

2048X2048 

8 35.664118 

32 9.63201 

128 2.395041 

Table 8­19: Data for Graph 5.19 
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Matrix dimension Cores OpenMp StarSs UPC 

2048X2048 

1 255.378054 74.69   

2 139.550865 39.12   

4 72.599632 20.51 18.251 

8 35.639446 10.77 9.046 

Table 8­20: Data for Graph 6.1 

 

 

Matrix dimension Cores OpenMp StarSs UPC 

1024X1024 

1 13.742839 10.17 9.15 

2 7.420541 5.178 4.625 

4 4.051131 2.623 0.959 

8 1.873649 1.406 0.494 

Table 8­21: Data for Graph 6.2 

 

 

Matrix dimension Cores OpenMp StarSs UPC 

512X512 

1 1.378361 1.23 0.59 

2 0.698123 0.628 0.285 

4 0.369102 0.325 0.138 

8 0.215002 0.188 0.082 

Table 8­22: Data for Graph 6.3 

 

Table 8­23: Data for Graph 6.4  

 

 

 

 

 

Matrix dimension Cores StarSs+UPC MPI+OpenMp 

2048X2048 

8 
 

35.664118 

32 5.74435 9.63201 

128 1.144329 2.395041 
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Matrix dimension Cores StarSs+UPC MPI+OpenMp 

1024X1024 

8 2.039269 2.037397 

32 0.732649667 0.526931 

128 0.141151 0.170891667 

Table 8­24: Data for Graph 6.5 

 

Matrix dimension Cores StarSs+UPC MPI+OpenMp 

512X512 

8 0.263851 0.231178 

32 0.097608667 0.098574 

128 0.035588 0.068761333 

Table 8­25: Data for Graph 6.6  
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Appendix B 

B.1. StarSs row-wise matrix multiplication code  

 

//Writtern By Muhammad Wahaj Sethi 
//Email muhammad.wahaj@gmail.com 
//Following program multiplies two matrix using sta rSs 
//Matrix date breakdown for initialization: Each St arSs thread has 
assigned 
//a block to work on. BlockSize parameter decides d imension of block 
//Data breakdown for computation: Matrix is partiti oned among threads 
//blockwise. 
//Dimensions of block: blockSize X blockSize 
//Each thread has to work on submatrix of size bloc kSize X blockSize 
 
#include "stdio.h" 
#include "string.h" 
#include "stdlib.h" 
#include "time.h" 
#include "math.h" 
#include "rdtsc.h" 
 
#define blockSize 4 
#define ARows 8 
#define ACols 8 
#define BRows 8 
#define BCols 8 
#define blkInCols (BCols / blockSize) 
 
int ARowsP, AColsP, BRowsP, BColsP; 
 
//Print complete matrix including padded values. 
void printMatriceDebug (double A [], char matName) 
{ 
 int i; 
 int rows, cols; 
  
 if (matName == 'A') 
 { 
  rows = ARowsP; 
  cols = AColsP; 
 } 
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 else if (matName == 'B') 
 { 
  rows = BRowsP; 
  cols = BColsP; 
 } 
  
 else if (matName == 'C') 
 { 
  rows = ARowsP; 
  cols = BColsP; 
 } 
  
 else 
  printf ("Function printMatrice: Wrong Matrix name !! Valid 
values 'A', 'B' and 'C' \n"); 
 
 for (i = 0; i < (rows * cols); i++) 
 { 
  printf ("%f ", A [i]); 
   
  if (((i + 1) % cols) == 0) 
   printf ("\n"); 
 } 
} 
 
//Input matrice start address and matrice name whic h can only be A, B 
or C. 
//Function: Prints actual matrix only.  
void printMatrice (double A [], char matName) 
{ 
 int i, j; 
 int rows, rowsP, cols, colsP; 
 double *temp = &A [0]; 
  
 if (matName == 'A') 
 { 
  rows = ARows; 
  rowsP = ARowsP; 
  cols = ACols; 
  colsP = AColsP; 
 } 
 
 else if (matName == 'B') 
 { 
  rows = BRows; 
  rowsP = BRowsP; 
  cols = BCols; 
  colsP = BColsP; 
 } 
   
 else if (matName == 'C') 
 { 
  rows = ARows; 
  rowsP = ARowsP; 
  cols = BCols; 
  colsP = BColsP; 
 } 
  
 else 
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  printf ("Function printMatrice: Wrong Matrix name !! Valid 
values 'A', 'B' and 'C' \n"); 
 
 
 //Prints matrice here. Just print out actual eleme nts not padded 
ones. 
 for (i = 0; i < (rowsP * colsP); i++) 
 { 
  //printf ("%i:%i:%i:%i:%i  ", i, i%colsP, i/colsP , (i+1) % 
colsP, (i / colsP)); //i % colsP tells column numbe r 
  //i % rowsP tells row number 
  //if both of above within matrix dim print the el ement 
  //else do nothing. 
  if (((i % colsP) < cols) && ((i / colsP) < rows))  
  { 
   j = 0; 
   printf ("%f ", A [i]); 
  } 
   
  //keep tracks of row. If next element is not on s ame row 
print next line character. 
  //((i / rowsP) < rows) condition make sure that n o newline 
character when row exceds   
  //actual dimension. 
  if ((((i+1) % colsP) == 0) && ((i / colsP) < rows )) 
   printf ("\n"); 
 } 
  
 printf ("\n"); 
} 
 
#pragma css task output (subMat) 
void initWithZero (double *subMat) 
{ 
 memset (&subMat [0], blockSize * blockSize * sizeo f (double), 
0); 
} 
 
#pragma css task input(rowLimit, colLimit, rows, co ls) output(subMat) 
void initWithRand (double *subMat, int rowLimit, in t colLimit, int 
rows, int cols) 
{ 
 int i, j; 
   
 //matrix initilazation here. Actual matrix entries  have assigned 
some random value 
 //and padding bit is set to 0. 
 //rowLimit and colLimit variable are used to diffe rentiate 
between actual and padding entries. 
 
 for (i = 0; i < blockSize; i++) 
 { 
  for (j = 0; j < blockSize; j++) 
  { 
   if ((j < colLimit) && (i < rowLimit)) 
   { 
    subMat [i * cols + j] = 1; 
   } 
    
   else 
   {  
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    subMat [i * cols + j] = 0; 
   } 
  } 
 } 
   
} 
 
#pragma css task input(subMatA , subMatB) inout(sub MatC)  
void multiply (double *subMatA, double *subMatB, do uble *subMatC) 
{ 
 int row, col, i; 
 
 for (row = 0; row < blockSize; row++) 
 { 
  for (col = 0; col < blockSize; col++) 
  { 
 
   for (i = 0 ; i < blockSize; i++) 
   { 
    subMatC [row * BColsP + col] += subMatA [row * 
AColsP + i] * subMatB [col + i * BColsP]; 
   } 
  } 
 } 
} 
 
//compares two values and returns minimum. 
int min (int a , int b) 
{ 
 
 if ( a < b) 
  return a; 
 
 else 
  return b; 
} 
 
int main () 
{ 
 unsigned long long clk0, clk1; 
        double timeDiff, timeDiff1; 
        time_t t0, t1; 
 int k = 0; 
 
 if (ACols != BRows) //Checking matrice dimension 
 { 
  printf ("Matrice dimension doesn't matches.\n"); 
  exit (0); 
 } 
 
 //loop index variables 
 int i, j; 
  
 //Determining how many blocks present in matrices dimensions. 
When dimensions are not multiple of blockSize addin g an 
 //extra block. 
 int blkARows = ceil (((double) ARows / blockSize)) ;  
 int blkACols = ceil (((double) ACols / blockSize)) ; 
 int blkBRows = ceil (((double) BRows / blockSize)) ;  
 int blkBCols = ceil (((double) BCols / blockSize)) ; 
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 //These variables are used to note program start a nd end time. 
 clock_t start, end, diff; 
 
 
 //used for storing size of matrices. 
 int sizeA, sizeB, sizeC; 
 
 sizeA = blkARows * blkACols * blockSize * blockSiz e;  
 sizeB = blkBRows * blkBCols * blockSize * blockSiz e; 
 sizeC = blkARows * blkBCols * blockSize * blockSiz e; 
 
 //Used for matrice storage. 
 double A [sizeA]; //Creating Matrice A 
 double B [sizeB]; //Creating Matrice B 
 double C [sizeC]; //Creating Matrice C 
 
 //variable used to store size of ARows, ACols, BRo ws, BCols 
after padding 
 ARowsP = blkARows * blockSize;  
 AColsP = blkACols * blockSize; 
 BRowsP = blkBRows * blockSize; 
 BColsP = blkBCols * blockSize; 
 
 //use in initilazation phase to store upper limits . 
 int colLimit, rowLimit; 
 
 #pragma css start         
 start = clock (); 
        t0 = time (NULL); 
        clk0 = rdtsc (); 
 
 ////////////////////////////////////////////////// //////////////
///// 
 //This portion initialize matrices. 
 //Matrice is divided between different tasks depen ding on blocks 
of rows present in a matrice. 
 
 for (i = 0; i < blkARows; i++) 
 { 
  for (j = 0;j < blkACols; j++) 
  { 
   //first calculating upper limits of block. Then 
comparing it with matrix dimension 
   //and chossing minimum. After that subtracting 
starting pos of block to get relative 
   //displacement inside a block  
   colLimit = min (j * blockSize + blockSize, ACols ) - 
j * blockSize;  
   rowLimit = min (i * blockSize + blockSize, ARows ) - 
i * blockSize; 
 
   initWithRand (&A [i * blockSize * AColsP + j * 
blockSize], rowLimit, colLimit, ARowsP, AColsP); 
 
  } 
 } 
  
 for (i = 0; i < blkBRows; i++) 
 { 
  for (j = 0;j < blkBCols; j++) 
  { 
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   colLimit = min (j * blockSize + blockSize, BCols ) - 
j * blockSize;  
   rowLimit = min (i * blockSize + blockSize, BRows ) - 
i * blockSize; 
   initWithRand (&B [i * blockSize * BColsP + j * 
blockSize], rowLimit, colLimit, BRowsP, BColsP); 
  } 
 } 
 
 for (i = 0; i < blkARows; i++) 
 { 
  for (j = 0; j < blkBCols; j++) 
  { 
   initWithZero (&C [i * blockSize * BColsP + j * 
blockSize]); 
  } 
 } 
   
 ////////////////////////////////////////////////// //////////////
///// 
 
 
 for (i = 0; i < blkARows; i++) 
 { 
  for (j = 0;j < blkBCols; j++) 
  { 
   //Getting to appropriate A row's index. First at  0 
then at multiple of block 
   //Getting to appropriate B col's position 
   //Check rough sheet for detail example 
   //C [i * AColsP * blockSize + j * blockSize] 
   //i * AColsP * blockSize determines row displace ment 
   //blkACols * blockSize tells about total element s in 
a row of C 
   //blockSize here tells in how many rows a block 
occupies 
 
   for (k = 0; k < blkInCols; k++) 
   { 
 multiply (&A [k * blockSize + i * AColsP * blockSi ze], &B [k * 
BColsP * blockSize + j * blockSize], &C[i * BColsP * blockSize + j * 
blockSize]); 
   } 
  } 
 } 
  
 #pragma css barrier 
        end = clock (); 
        t1 = time (NULL); 
        clk1 = rdtsc (); 
 
 #pragma css finish 
        //stop cache stats gather here 
        diff = end - start; 
        printf ("CPU_Time_taken: %6.6f\n", (double)  diff / 
CLOCKS_PER_SEC); 
        printf ("Wall_Time_taken: %ld\n", (long) (t 1 - t0)); 
        printf ("Wall_Time_taken_rdtsc %f \n", (clk 1 -clk0) / (2.8 * 
1e9)); 
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} 

 

B.2. StarSs block-wise matrix multiplication code  

 

//Writtern By Muhammad Wahaj Sethi 

//Email muhammad.wahaj@gmail.com 

//Following program multiplies two matrix using sta rSs 

//Matrix date breakdown for initialization: Each St arSs thread has 
//assigned 

//number of rows to work on. BlockSize parameter de cides number of 
//rows to be allocated. 

//Data breakdown for computation: Each thread has a ssigned number of 
//rows to work on. 

//blockSize parameter used to determine number of r ows allocated per 
//thread. 

 

#include "stdio.h" 

#include "string.h" 

#include "stdlib.h" 

#include "time.h" 

#include "math.h" 

#include "rdtsc.h" 

 

#define blockSize 32 

#define ARows 2048 

#define ACols 2048 

#define BRows 2048 

#define BCols 2048 

 

int ARowsP, AColsP, BRowsP, BColsP; 

 

void printMatriceDebug (double A [], char matName) 

{ 

 int i; 

 int rows, cols; 

  

 if (matName == 'A') 

 { 

  rows = ARowsP; 

  cols = AColsP; 
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 } 

 

 else if (matName == 'B') 

 { 

  rows = BRowsP; 

  cols = BColsP; 

 } 

  

 else if (matName == 'C') 

 { 

  rows = ARowsP; 

  cols = BColsP; 

 } 

  

 else 

  printf ("Function printMatrice: Wrong Matrix name !! Valid 
values 'A', 'B' and 'C' \n"); 

 

 for (i = 0; i < (rows * cols); i++) 

 { 

  printf ("%f ", A [i]); 

   

  if (((i + 1) % cols) == 0) 

   printf ("\n"); 

 } 

} 

 

//Input matrice start address and matrice name whic h can only be A, B 
or C. 

//Function: Prints actual matrix only.  

void printMatrice (double A [], char matName) 

{ 

 int i, j; 

 int rows, rowsP, cols, colsP; 

 double *temp = &A [0]; 

  

 if (matName == 'A') 

 { 

  rows = ARows; 

  rowsP = ARowsP; 
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  cols = ACols; 

  colsP = AColsP; 

 } 

 

 else if (matName == 'B') 

 { 

  rows = BRows; 

  rowsP = BRowsP; 

  cols = BCols; 

  colsP = BColsP; 

 } 

   

 else if (matName == 'C') 

 { 

  rows = ARows; 

  rowsP = ARowsP; 

  cols = BCols; 

  colsP = BColsP; 

 } 

  

 else 

  printf ("Function printMatrice: Wrong Matrix name !! Valid 
values 'A', 'B' and 'C' \n"); 

 

 

 //Prints matrice here. Just print out actual eleme nts not padded 
ones. 

 for (i = 0; i < (rowsP * colsP); i++) 

 { 

  //i % colsP tells column number 

  //i % rowsP tells row number 

  //if both of above within matrix dim print the el ement 

  //else do nothing. 

 

  if (((i % colsP) < cols) && ((i / colsP) < rows))  

  { 

   j = 0; 

   printf ("%f ", A [i]); 

  } 
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  //keep tracks of row. If next element is not on s ame row 
print next line character. 

  //((i / rowsP) < rows) condition make sure that no newline 
character when row exceds   

  //actual dimension. 

 

  if ((((i+1) % colsP) == 0) && ((i / colsP) < rows )) 

   printf ("\n"); 

 } 

  

 printf ("\n"); 

} 

 

#pragma css task input(test, mat, task_no) output(s ubMat) 

void initWithRand (double *subMat, char mat, int te st, int task_no) 

{ 

 int i, j; 

 int cols, colsP, rows; 

 

 if (mat == 'A') 

 { 

  cols = ACols; 

  colsP = AColsP; 

  rows = ARows; 

 } 

  

 else if (mat == 'B') 

 { 

  cols = BCols; 

  colsP = BColsP; 

  rows = BRows; 

 } 

 

 else 

  printf ("Function printMatrice: Wrong Matrix name !! Valid 
values 'A', 'B' and 'C' \n"); 

   

 //matrix initilazation here. Actual matrix entries  have assigned 
some random value 

 //and padding bit is set to 0. 

 //j < temp condition takes care of col limit 
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 //((task_no * blockSize + i) < temp) takes care of  row limit. 

 

 for (i = 0; i < blockSize; i++) 

 { 

  for (j = 0; j < colsP; j++) 

  { 

   if ((j < cols) && ((task_no * blockSize + i) < 
rows)) 

   { 

    subMat [i * colsP + j] = 1; 

   } 

    

   else 

   {  

    subMat [i * colsP + j] = 0; 

   } 

  } 

 } 

   

} 

 

#pragma css task input(subMatA , subMatB, rowLimit)  output(subMatC)  

void multiply (double *subMatA, double *subMatB, do uble *subMatC, int 
rowLimit) 

{ 

 int row, col, i; 

 

 for (row = 0; row < rowLimit; row++) 

 { 

  for (col = 0; col < BColsP; col++) 

  { 

   subMatC [row * BColsP + col] = 0; 

 

   for (i = 0 ; i < AColsP; i++) 

   { 

    subMatC [row * BColsP + col] += subMatA [row * 
AColsP + i] * subMatB [col + i * BColsP]; 

   } 

  } 

 } 

} 
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int min (int a, int b) 

{ 

 if ( a < b) 

  return a; 

 

 else 

  return b; 

} 

 

int main () 

{ 

 if (ACols != BRows) //Checking matrice dimension 

 { 

  printf ("Matrice dimension doesn't matches.\n"); 

  exit (0); 

 } 

 

 //loop index variables 

 int i, j; 

 time_t t0, t1; //used for wall time. 

 unsigned long long clk0, clk1, diff; 

 double timeDiff, timeDiff1; 

  

 //Determining how many blocks present in matrices dimensions. 
When dimensions are not multiple of blockSize addin g an 

 //extra block. 

 int blkARows = ceil (((double) ARows / blockSize)) ;  

 int blkACols = ceil (((double) ACols / blockSize)) ; 

 int blkBRows = ceil (((double) BRows / blockSize)) ;  

 int blkBCols = ceil (((double) BCols / blockSize)) ; 

 

 //These variables are used to note program start a nd end time. 

 clock_t start, end, diffMine, diffMkl; //used for cpu time. 

 

 

 //used for storing size of matrices. 

 int sizeA, sizeB, sizeC; 
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 sizeA = blkARows * blkACols * blockSize * blockSiz e;  

 sizeB = blkBRows * blkBCols * blockSize * blockSiz e; 

 sizeC = blkARows * blkBCols * blockSize * blockSiz e; 

  

 //Used for matrice storage. 

 double A [sizeA]; //Creating Matrice A 

 double B [sizeB]; //Creating Matrice B 

 double CMine [sizeC]; //Creating Matrice C 

 double CMkl [sizeC]; 

 

 

 //variable used to store size of ARows, ACols, BRow s, BCols 
after padding 

 ARowsP = blkARows * blockSize;  

 AColsP = blkACols * blockSize; 

 BRowsP = blkBRows * blockSize; 

 BColsP = blkBCols * blockSize; 

 

 int rowLimit; 

  

 #pragma css start 

 ////////////////////////////////////////////////// //////////////
///// 

 //This portion initialize matrices. 

 //Matrice is divided between different tasks depen ding on blocks 
of rows present in a matrice. 

 

 start = clock (); 

 t0 = time (NULL); 

 clk0 = rdtsc (); 

 

 for (i = 0; i < blkARows; i++) 

 { 

  initWithRand (&A [i * blockSize * AColsP], 'A', 1 , i); 

 } 

  

 for (i = 0; i < blkBRows; i++) 

 { 

  initWithRand (&B [i * blockSize * BColsP], 'B', 1 , i); 

 } 
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 ////////////////////////////////////////////////// //////////////
///// 

 # pragma css barrier 

 

 for (i = 0; i < blkARows; i++) 

 { 

   //Getting to appropriate A row's index. First at  0 
then at multiple of block 

   //Getting to appropriate B col's position 

   //Check rough sheet for detail example 

   //C [i * AColsP * blockSize + j * blockSize] 

   //i * AColsP * blockSize determines row displace ment 

   //blkACols * blockSize tells about total element s in 
a row of C 

   //blockSize here tells in how many rows a block 
occupies 

    

   rowLimit = min (i * blockSize + blockSize, ARows ) - 
i * blockSize; 

   multiply (&A [i * AColsP * blockSize], &B [0], 
&CMine[i * BColsP * blockSize], rowLimit);   

 } 

  

 #pragma css barrier 

 end = clock (); 

 t1 = time (NULL); 

 clk1 = rdtsc (); 

 #pragma css finish 

 diffMine = end - start; 

 timeDiff1 = (clk1 - clk0) / (2.8 * 1e9); 

 

 printf ("CPU_Time_taken: %6.6f \n", (double) diffM ine / 
CLOCKS_PER_SEC); 

 printf ("Wall_Time_taken: %ld \n", (long) (t1 - t0 )); 

 printf ("Wall_Time_taken_rdtsc %f \n", timeDiff1);  

 

 printf ("Matrice A %i X %i...\n", ARows, ACols); 

 printMatrice (A, 'A'); 

  

 printf ("Matrice B %i X %i...\n", BRows, BCols); 

 printMatrice (B, 'B'); 
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 printf ("Matrice C %i X %i...\n", ARows, BCols); 

 printMatrice (CMine, 'C'); 

 

} 

 

 

 

B.3. StarSs + UPC matrix multiplication code  

 

B.3.1. starSs.h 

 

#ifndef __starSs_h__ 

#define __starSs_h__ 

 

#include "hybrid.h" 

 

#pragma css task input (blkCmpl, MYTHREAD, mat) 

void checkAllBlksInit (int *blkCmpl, int MYTHREAD, char mat); 

 

void masterThread (int MYTHREAD, double * aPtr, dou ble *bPtr, double 
*cPtr); 

 

#pragma css task input(A, B, MYTHREAD, row, col, AF lg, BFlg) inout(C) 

void mul (double *A, double *B, double *C, int MYTH READ, int row, int 
col, int *AFlg, int *BFlg); 

 

#pragma css task input(MYTHREAD, start) output(ptr,  blkCmpl) 

void initRand (double *ptr, int MYTHREAD, int start , int *blkCmpl); 

 

#pragma css task input(MYTHREAD, start) output(ptr)  

void initZero (double *ptr, int MYTHREAD, int start ); 

 

#pragma css task input(blkLoc, locA) output(strLoc,  AFlg) highpriority 

void copyRmtBlkA (double *strLoc, int blkLoc, int l ocA, int *AFlg); 

 

#pragma css task input (blkLoc, locB) output (strLo c, BFlg) 
highpriority 

void copyRmtBlkB (double *strLoc, int blkLoc, int l ocB, int *BFlg); 
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#endif 

 

 

 

B.3.2. starSs.c 

 

#include "hybrid.h" 
#include "stdio.h" 
#include "stdlib.h" 
#include "starSs.h" 
#include "string.h" 
 
 //This function calls mul with relavent index depe nding on 
thread number. 
 //For details on data decomposition see read me fi le. 
 void masterThread (int MYTHREAD, double *aPtr, dou ble *bPtr, 
double *cPtr) 
 { 
  int i, j, k, tempA, tempB, tempC, temp, temp4Col,  
temp4Row, l, m; 
  double *tempAPtr, *tempBPtr, *tempCPtr; 
  double *rmtBlkAArr, *rmtBlkBArr; 
 int l2ABlks [l2BlkInRows * l2BlkInCols]; 
 int l2BBlks [l2BlkInRows * l2BlkInCols]; 
 int locA, locB; //Contains location of remote bloc k. 
 int ACopiedFlg [l1BlkInRows], BCopiedFlg [l1BlkInR ows]; 
  
 
 //Extra storage used can be removed here. only l1B lkInRows space 
required. 
 rmtBlkAArr = (double *) malloc (l1BlkSize * l1BlkI nRows * sizeof 
(double)); 
 rmtBlkBArr = (double *) malloc (l1BlkSize * l1BlkI nRows * sizeof 
(double)); 
 
 memset ((void *) &l2ABlks [0], 0, sizeof (int) * l 2BlkInRows * 
l2BlkInCols); 
 memset ((void *) &l2BBlks [0], 0, sizeof (int) * l 2BlkInRows * 
l2BlkInCols); 
 memset ((void *) &ACopiedFlg [0], 1, sizeof (int) * 
l1BlkInRows); 
 memset ((void *) &BCopiedFlg [0], 1, sizeof (int) * 
l1BlkInRows); 
 
 #pragma css start 
   
 for (i = 0; i < l2BlkInRows; i++) 
 { 
  for (j = 0; j < l2BlkInCols; j++) 
  { 
   initRand (&aPtr [j * l2Cols + i * l2BlkSize * 
l2BlkInCols], MYTHREAD, MYTHREAD * l1BlkSize + i * l2BlkInCols * 
l2BlkSize + j * l2Cols, &l2ABlks [i * l2BlkInCols +  j]); 
  } 
 } 
  
 for (i = 0; i < l2BlkInRows; i++) 
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 { 
  for (j = 0; j < l2BlkInCols; j++) 
  { 
   initRand (&bPtr [j * l2Cols + i * l2BlkSize * 
l2BlkInCols], MYTHREAD, MYTHREAD * l1BlkSize + i * l2BlkInCols * 
l2BlkSize + j * l2Cols, &l2BBlks [i * l2BlkInCols +  j]); 
  } 
 } 
 
 for (i = 0; i < l2BlkInRows; i++) 
 { 
  for (j = 0; j < l2BlkInCols; j++) 
  { 
  initZero (&cPtr [j * l2Cols + i * l2BlkSize * 
l2BlkInCols], MYTHREAD, MYTHREAD * l1BlkSize + i * l2BlkInCols * 
l2BlkSize + j * l2Cols); 
  } 
 } 
 
 
 checkAllBlksInit (&l2ABlks [0] , MYTHREAD, 'A'); 
 checkAllBlksInit (&l2BBlks [0] , MYTHREAD, 'B'); 
 
  
  
 //perform calculations untill all blocks computed.  
 for (k = 0; k < l1BlkInRows ; k++) 
 { 
  //exactly one l1 block in each col. True when res pective A 
blocal present in local memory. 
  //condition used to avoid calculation of already 
calculated block. 
 
  locA = (MYTHREAD / l1BlkInCols) * l1BlkInCols + k ; 
  locB = (MYTHREAD % l1BlkInCols) + k * l1BlkInCols ; 
 
  if (((k%l1BlkInCols) == (MYTHREAD%l1BlkInCols)) & & (k == 
(MYTHREAD/l1BlkInCols))) 
  { 
   tempAPtr = &aPtr [0];  
   tempBPtr = &bPtr [0]; 
   ACopiedFlg [k] = 1; 
   BCopiedFlg [k] = 1; 
  } 
 
  else if ((k%l1BlkInCols) == (MYTHREAD%l1BlkInCols )) 
  {  
   tempAPtr = &aPtr [0]; 
   tempB = (k * l1BlkInCols + (MYTHREAD % l1BlkInCo ls)) 
* l1BlkSize; 
   ACopiedFlg [k] = 1; 
   copyRmtBlkB (&rmtBlkBArr [k * l1BlkSize], tempB,  
locB, &BCopiedFlg [k]); 
   tempBPtr = &rmtBlkBArr [k * l1BlkSize]; 
  } 
   
  //Exactly one l1 block in each row. True when res pective B 
block present in local memory. 
  else if (k == (MYTHREAD/l1BlkInRows)) 
  { 
   tempBPtr = &bPtr [0]; 
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   tempA = k * l1BlkSize + (MYTHREAD / l1BlkInCols)  * 
l1BlkInCols * l1BlkSize; 
   copyRmtBlkA (&rmtBlkAArr [k * l1BlkSize], tempA,  
locA, &ACopiedFlg [k]); 
   BCopiedFlg [k] = 1; 
   tempAPtr = &rmtBlkAArr [k * l1BlkSize]; 
  } 
 
  //Cols blocks taken care of by first part of expr ession 
  //Row block will be taken care of by second part of 
expression. 
  //Expression second part first determines block r ow number 
  //than Xly it with number of blocks in a col to g et block 
number 
  //and atlast its Xlied by number elements in a bl ock to 
get appropriate array 
  //index. 
  else if (!((k%l1BlkInCols) == (MYTHREAD%l1BlkInCo ls)) && 
!(k == (MYTHREAD/l1BlkInRows))) 
  { 
   tempA = k  * l1BlkSize + (MYTHREAD / l1BlkInCols ) * 
l1BlkInCols * l1BlkSize; 
   tempB = (k * l1BlkInCols + (MYTHREAD % l1BlkInCo ls)) 
* l1BlkSize; 
   copyRmtBlkA (&rmtBlkAArr [k * l1BlkSize], tempA,  
locA, &ACopiedFlg [k]); 
   copyRmtBlkB (&rmtBlkBArr [k * l1BlkSize], tempB,  
locB, &BCopiedFlg [k]); 
   tempAPtr = &rmtBlkAArr [k * l1BlkSize]; 
   tempBPtr = &rmtBlkBArr [k * l1BlkSize]; 
  } 
 
   
  for (l = 0; l < l2BlkInRows; l++) 
  { 
   for (m = 0; m < l2BlkInCols; m++) 
   { 
     for (j = 0; j < l2BlkInRows; j++) 
     { 
 
mul (&tempAPtr[l * l2Rows * l1Rows + j * l2Cols] , &tempBPtr [j * 
l2Rows * l1Cols + m * l2Cols], &cPtr [l * l2Rows * l1Cols + m * 
l2Cols], MYTHREAD, l, m, &ACopiedFlg [k], &BCopiedF lg [k]); 
     } 
   } 
  } 
 } 
 
 #pragma css finish 
 
 
 free (rmtBlkAArr); 
 free (rmtBlkBArr); 
} 
 
#pragma css task input (blkCmpl, MYTHREAD, mat) 
void checkAllBlksInit (int *blkCmpl, int MYTHREAD ,  char mat) 
{ 
 int temp, i; 
 void (*funcPtr) (int) = NULL; 
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 if (mat == 'A') 
  funcPtr = &setFlagA; 
 
 else 
  funcPtr = &setFlagB; 
 
 while (1) 
 {  
  temp = 0; 
 
  for (i = 0; i < (l2BlkInCols * l2BlkInRows); i++)  
  { 
   if (blkCmpl [i] == 0) 
    temp = 1; 
  } 
   
  if (temp == 0) 
  { 
   (*funcPtr) (MYTHREAD); 
   return; 
  } 
    
 } 
} 
 
#pragma css task input(A, B, MYTHREAD, row, col, AF lg, BFlg) inout (C) 
void mul (double *A, double *B, double *C, int MYTH READ, int row, int 
col, int *AFlg, int *BFlg) 
{ 
 int i, j, k,temp; 
 
 for (i = 0; i < l2Rows; i++) 
 { 
  for (j = 0; j < l2Cols; j++) 
  { 
   for (k = 0; k < l2Rows; k++) 
   { 
    temp = i * l1Cols + j; 
    C [temp] += A [i * l1Cols + k] * B [j + l1Cols 
* k]; 
   } 
  } 
 } 
}  
 
#pragma css task input (MYTHREAD, start) output(ptr , blkCmpl) 
void initRand (double *ptr, int MYTHREAD, int start , int *blkCmpl) 
{ 
 int i, j; 
 
 for (i = 0; i < l2Rows; i++) 
 { 
  for (j = 0; j < l2Cols ; j++) 
   ptr [i * l1Cols + j] = 1; 
 } 
 
 blkCmpl [0] = 1; 
} 
 
#pragma css task input (MYTHREAD, start) output(ptr ) 
void initZero (double *ptr, int MYTHREAD, int start ) 
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{ 
 int i, j; 
  
 for (i = 0; i < l2Rows; i++) 
 { 
  for (j = 0; j < l2Cols; j++) 
   ptr [i * l1Cols + j] = 0; 
 } 
} 
 
#pragma css task input (blkLoc, locA) output (strLo c, AFlg) 
highpriority 
void copyRmtBlkA (double *strLoc, int blkLoc, int l ocA, int *AFlg) 
{ 
 while (getFlagA (locA) == 0); 
 copyRemoteBlockA (strLoc, blkLoc); 
} 
 
#pragma css task input (blkLoc, locB) output (strLo c, BFlg) 
highpriority 
void copyRmtBlkB (double *strLoc, int blkLoc, int l ocB, int *BFlg) 
{ 
 while (getFlagB (locB) == 0); 
 copyRemoteBlockB (strLoc, blkLoc); 
} 
 

 

B.3.3. hybrid.h 

 

#ifndef __hybrid_h__ 

#define __hybrid_h__ 

 

//Mandatory conditions for level1 (l1) and level2 ( l2) blk conditions. 

//l2 <= l1 and l2 should be multiple of l1 

//l1 <= (dimensions of matrices) and should be mult iple of matrice 
dimensions. 

 

#include "starSs.h" 

#define ARows 2048 

#define ACols 2048 

#define BRows 2048 

#define BCols 2048 

#define l1Rows 1024 

#define l1Cols 1024 

#define l2Rows 1024 

#define l2Cols 1024 

#define l1BlkSize (l1Rows * l1Cols) 

#define l1BlkInRows (ARows / l1Rows) 
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#define l1BlkInCols (ACols / l1Cols) 

#define l2BlkSize (l2Rows * l2Cols) 

#define l2BlkInRows (l1Rows / l2Rows) 

#define l2BlkInCols (l1Cols / l2Cols) 

 

void memGet (double *ptr); 

void barrier (); 

void copyRemoteBlockA (double *APtr, int ALoc); 

void copyRemoteBlockB (double *BPtr, int BLoc); 

int getFlagA (int loc); 

int getFlagB (int loc); 

void setFlagA (int loc); 

void setFlagB (int loc); 

 

#endif 

 

B.3.4. hybrid.upc 

 

#include "hybrid.h" 
#include "upc_relaxed.h" 
#include "time.h" 
#include "unistd.h" 
#include "rdtsc.h" 
 
shared [l1BlkSize] double a [ARows * ACols]; 
shared [l1BlkSize] double b [BRows * BCols]; 
shared [l1BlkSize] double c [ARows * BCols]; 
shared [1] int blkFlagsA [l1Rows * l1Cols]; 
shared [1] int blkFlagsB [l1Rows * l1Cols]; 
 
int getFlagA (int loc) 
{ 
 return blkFlagsA [loc]; 
} 
 
int getFlagB (int loc) 
{ 
 return blkFlagsB [loc]; 
} 
 
void setFlagA (int loc) 
{ 
 blkFlagsA [loc] = 1; 
} 
 
void setFlagB (int loc) 
{ 
 blkFlagsB [loc] = 1; 
} 
 
void barrier () 
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{ 
 upc_barrier; 
} 
 
void copyRemoteBlockA (double *APtr, int ALoc) 
{ 
 int i; 
 upc_memget (APtr, &a [ALoc], l1BlkSize * sizeof (d ouble)); 
} 
 
void copyRemoteBlockB (double *BPtr, int BLoc) 
{ 
 int i; 
 upc_memget (BPtr, &b [BLoc], l1BlkSize * sizeof (d ouble)); 
} 
 
void printArray (char mat) 
{ 
 int i, j, k, l, m, n; 
 
 for (l = 0; l < l1BlkInRows; l++) 
 { 
  for (i = 0; i < l1Rows; i++) 
  { 
   for (j = 0; j < l1BlkInCols; j++) 
   { 
    for (k = 0; k < l1Cols; k++) 
    { 
     if (mat == 'A') 
     { 
      printf ("%6.2f ", a [k + j * 
l1BlkSize + i * l1Cols + l * l1BlkSize * l1BlkInCol s]);  
     } 
 
     else if (mat == 'B') 
     { 
      printf ("%6.2f ", b [k + j * 
l1BlkSize + i * l1Rows + l * l1BlkSize * l1BlkInCol s]);  
     } 
 
     else if (mat == 'C') 
     { 
      printf ("%6.2f ", c [k + j * 
l1BlkSize + i * l1Rows + l * l1BlkSize * l1BlkInCol s]);  
     } 
    } 
       
   } 
    
   printf ("\n"); 
  }  
 } 
} 
 
 
int main () 
{ 
 int i, j; 
 double *aPtr, *bPtr, *cPtr; 
 clock_t start, end, diff; 
 unsigned long long clk0, clk1; 
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 double timeDiff; 
 
 aPtr = (double *) &a [MYTHREAD * l1BlkSize];  
 bPtr = (double *) &b [MYTHREAD * l1BlkSize]; 
 cPtr = (double *) &c [MYTHREAD * l1BlkSize]; 
 
 upc_barrier; 
 printf ("here\n"); 
 
 if (MYTHREAD == 0) 
 { 
  start = clock (); //Noting start time of computat ion. 
  clk0 = rdtsc (); 
 } 
 
 masterThread (MYTHREAD, aPtr, bPtr, cPtr); 
 upc_barrier; 
 
 if (MYTHREAD == 0) 
 { 
  end = clock (); //Noting end time of computation.  
  clk1 = rdtsc (); 
 } 
 
 if (MYTHREAD == 0) 
 { 
  diff = end - start; 
  timeDiff = (clk1 - clk0) / (2.8 * 1e9); 
  printf ("Time_taken ... %6.6f \n", (double) diff / 
CLOCKS_PER_SEC); 
  printf ("Time_taken_rdtsc ... %6.6f \n", timeDiff ); 
 
/*  printf ("Matrice A  %i X %i ... \n", ARows, ACo ls); 
  printArray ('A'); 
 
  printf ("Matrice B  %i X %i ... \n", BRows, BCols ); 
  printArray ('B'); 
   
  printf ("Matrice C  %i X %i ... \n", ARows, BCols ); 
  printArray ('C'); 
*/ 
 } 
   
 return 0; 
} 
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