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Abstract

High-performance architectures are becoming more and more complex with the
passage of time. These large scale, heterogeneous architectures and multi-core system
are difficult to program. New programming models are required to make expression of
parallelism easier, while keeping productivity of the developer higher.

Partition Global Address-space (PGAS) languages such as UPC appeared to augment
developer’s productivity for distributed memory systems. UPC provides a simpler,
shared memory-like model with a user control over data layout. But it is developer’s
responsibility to take care of the data locality, by using appropriate data layouts.

SMPSs/StarSs programming model tries to simplify the parallel programming on multi-
core architectures. It offers task level parallelism, where dependencies among the
tasks are determined at the run time. In addition, runtime take cares of the data
locality, while scheduling tasks. Hence, providing two-folds improvement in
productivity; first, saving developer’s time by using automatic dependency detection,
instead of hard coding them. Second, save cache optimization time, as runtime take
cares of data locality.

The purpose of this thesis is to use the PGAS programming model e.qg. UPC for different
nodes with the shared memory task based parallelization model i.e. StarSs to take the
advantage of the multi core systems and contrast this approach to the legacy MPI and
OpenMP combination. Performance as well as programmability is considered in the
evaluation.

The combination UPC + SMPSs, results in approximately the same execution time as
MPI and OpenMP. The current lack of features such as multi-dimensional data
distribution or virtual topologies in UPC, make the hybrid UPC + SMPSs/StarSs
programming model less programmable than MPI + OpenMP for the application
studied in this thesis.
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1 Introduction

Traditionally, HPC applications are developed using MPI [1] for distributed memory
and OpenMP [2] for shared memory. Writing codes using MPI for message
communication among nodes is a time consuming task. As user has to restructure its
sequential code, data stored locally in the sequential code may lie on the remote node
in the MPI version. Messages need to be sent to fetch remote data. OpenMP is the de
facto way of exploiting shared memory architectures. But it suffers from the problem
of scalability for very large number of cores.

Up till now for HPC applications, mostly MPI is used for distributed parallel computing.
Its programming model is quite complex which makes it hard to write and maintain
code. PGAS (Partition global address space) languages such as Unified Parallel C (UPC)
[3] provide a simpler programming model which is easy to understand. Thus providing
an ideal candidate for easy to write and maintain code. Until recently, PGAS compilers
and runtime are inefficient. A situation - destined to change in the coming years.

UPC reduces the development time, by improving programmability. It brings in the
ease of accessing memory location, in the shared memory systems to the distributed
memory systems i.e. remote memory location can be referenced using normal
assignment operators. In contrast to MPI, where we have to send messages for
exchanging data, in UPC data can be exchanged by using normal assignment operator.
Hence for data exchange, less number of lines of code needs to be written. Or we can
say that, in UPC programs code overhead is significantly reduced as compared to the
MPI programs.

New advancements in chip fabrication technology have allowed putting couple of
billions of transistors on the chip. Several complex issues have discouraged, design of
the complex processors. For a way out, people start increasing numbers of cores
present on the chip. Multi-core chips are readily available in the market and in future
we may have chips with 1000 of cores (many-core). Our hardware is developing quite
rapidly as compared to programming tools. The StarSs parallel programming model is
an effort to meet new hardware requirements.

Most of the applications are compromised of tasks, where every task implements a
specific functionality and its output might be used by another tasks to produce final
results. SMPSs/StarSs [4] provides a way for scheduling these tasks in the optimal way
while taking care of the data locality.



In order to evaluate the performance, SUMMA (Scalable universal matrix
multiplication algorithm) algorithm is implemented using pure UPC, pure MPI, UPC +
StarSs combination and MPI + OpenMP combination. Their execution times are
compared and discussed. In addition to the performance analysis, UPC and StarSs are
also analyzed for programmability.

Work done in the thesis is organized as fallow: Chapter 2 discusses different parallel
programming models. Chapter 3 conveys information about the SMP superscalar
(SMPSs/StarSs) programming model. Overview of the Unified Parallel C (UPC) can be
seen in Chapter 4. Chapter 5 describes implementation details and present results.
Performance among different versions is compared in Chapter 6. Chapter 7 provides a
general discussion on StarSs and UPC.



2 Parallel programming models
and paradigms

In 1980’s decade, it was widely believed that the computer performance was best
improved by making faster and more efficient processor. The concept of the parallel
processing challenged this belief. In the parallel processing two or more computers
are linked together to solve a computation intensive problem. From 1990 onwards
people start building the super computer (so called clusters) by making network of
simple/readily available processors instead of using stand alone high performance
massively parallel processors. This trend is further enhanced by increasing high
availability and low price of network equipment for connecting computers. Because of
these options it’s an appealing choice to build supercomputer by connecting the
computers together.

Once parallel processing computer networks are built next step is to look for
suitable parallel programming models. The coding of a suitable parallel program for a
given algorithm is strongly influenced by the parallel programming model to be used.
Important factors which need to be considered before the usage are programmability,
scalability and how well it matches to your computation problem. In order to develop
understanding of these models, it is better to look first at the levels of parallelism. And
then continue further on.

2.1 Levels of parallelism

2.1.1 Bitlevel parallelism

In the early stages of processor design speedup is obtained by increasing computer
word size. For example, consider that computer word size is of 16 bits and addition of
two 32 bits integers needs to done. Only possible way of doing it to first add 16 lower
bits with a standard add instruction and then add the upper 16 bits using add-with-
carry instruction. This one extra instruction can be removed if we migrate from 16 bit
to 32 bit processor.



2.1.2 Instruction-level parallelism

In general, a computer program is a series of instructions run in sequence by the
processors. These instructions can be shuffled and combined in groups which can be
executed in parallel. Only precursor condition for instructions shuffling is that there
should be no data dependency among instructions. Processor uses concept of
pipelining to achieve this kind of parallelism.

Modern processors are divided in to multiple stages — which run in parallel. Each
stage corresponds to different action that processor performs according to
instruction. Example of a Reduced Instruction Set Computer (RISC) processor is given
below. It consists of five different stages Instruction Fetch (IF), Instruction Decode (ID),
Instruction Execute (IE), Memory Access (MEM) and Write Back (WB). This concept is
known as pipelining.

IF ID EX ME WB
IF ID EX ME WB
IF ID EX ME WB
IF ID EX ME WB
IF ID EX ME WB

Figure 2.1: Pipeline of RISC processor

2.1.3 Data parallelism

In most data intensive applications, the same operation has to be performed on the
large set of data, e.g. add 1 to all elements in the array. This is normally done by
iterating through all elements of the array by using a loop. Data parallel programming
models exploit this by distributing loop iterations among different threads. Only
problem in this approach is data dependencies among different loop iterations. As
shown in Figure 2.2 (a) every element of A is dependent upon previous element, i.e.
data dependency on preceding element, which makes this loop unsuitable for data
parallelism. Whereas in Figure 2.2 (b) no such condition exists which makes it an ideal
candidate for data parallelization.

for (i =0 ; i< 100 ; i++) for (i =0 ; i< 100 ; i++)
A[il =A[i-1] + 1; A [i] = A [i] + 1;
end for; end for;

(a) (b)

Figure 2.2: Data dependency example



2.1.4 Task parallelism

In task based parallelism, the code is decomposed into several independent tasks. It’s
the responsibility of programmer to identify these parallel tasks and convey this
information to special run time environment. Run time environment is responsible for
scheduling and synchronization of these tasks. Run time environment normally
creates one master thread and a number of helper threads, which executes the tasks
as they become available. This scheme works fine in the case of independent tasks.
For dependent tasks, parent tasks should be finished before proceeding with the child
tasks. Two approaches are possible to detect dependency among the tasks. One way
requires that programmer should explicitly code dependency of tasks into the
algorithm, as for example through locks as in Pthreads or synchronization barriers in
OpenMP. And another way is that runtime detects dependency between tasks by
looking at task input and output parameters as done in StarSs. [1]

Set of tasks that are ready to be executed are placed inside a queue, from where the
idle helper thread selects them. For improving locality and reducing contention
among processing cores for accessing queue, a distributed data structure is used.
Every thread has its own queue where tasks, ready to be executed, are placed. A
thread first looks for tasks in its own queue. If no task is there, it looks for tasks in
another thread’s queue. If task is found there, it steals it. This mechanism is known as
work stealing.[1]

2.2 Programming models

Programming model provides the abstract representation of how data and
instructions are stored in memory and how processing of these instructions takes
place. In single core processor, most commonly used model is sequential
programming model. In this model, there is only one memory in which, both
instructions and data are stored. The processor fetches the instruction from memory,
decodes it. And access relevant memory location and manipulates data accordingly. In
parallel model things are more complex. First of all, we have multiple processors and
possibly multiple memory subsystems. Parallel programming model aids programmer
mapping applications on parallel architecture. It tries to exploit common features in
architectures in order to enable efficient mapping of applications. For portability
reasons, they should be independent of specific details of parallel architectures and
should remain easy to use. Popular programming models include are message
passing, shared memory, data parallel and distributed shared memory.

2.2.1 Message passing model

Message passing programming model as shown in Figure 2.3 (a) is based on the
abstraction of parallel computer with distributed address space. Most popular
implementation is Message Passing Interface (MPI) [2]. In MPI each processor has
access to its local memory only. Other processors can access local memory through
explicitly messages passing only. To transfer data from local memory of A to local
memory of processor B, processor A should send message containing data to
processor B. B should than receive the data into a buffer in its own local memory.
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An MPI program is executed by a set of process where each process has its own local
memory. Each process gets a unique id, called rank. Normally, each process is
executed on one processor or core of execution platform. Number of process under
execution is fixed at run time. Each process talks to other process using message
passing over the network. In most cases, message-passing programming model acts
as Single Program Multiple Data (SPMD) i.e. same set of program on multiple chunks
of data. But this is not a restriction in the programming model; on the basis of rank
different process can run different code i.e. Multiple Program Multiple Data (MPMD).

2.2.2 Shared memory model

Many computing platforms such as multi-core platforms offer a shared address space.
A suitable programming model for these types of architectures is model in which all
threads have access to shared variables. These shared variables can be used for
synchronization and data exchange purposes. Figure 2.3 (b) depicts this kind of
programming model. Pthreads, OpenMP and SMP superscalar (StarSs) are popular
shared memory programming models.

POSIX threads (Pthreads) is a standard for programming with threads based on the
programming language C. All the threads of a process have a common address space,
which means that all threads can access global and dynamically generated data. Every
thread has got its own stack to keep track of functions called and to store local
variables. Pthreads are not easy to work with, programmer has to decompose an
application to make benefit of it, i.e. rewriting whole sequential program. Race
conditions are common occurrence in Pthreads based programs, which makes it a bad
choice for productive development.

In contrast to Pthreads, OpenMP provides an incremental way for parallelism i.e. one
can change its sequential program to a parallel one step by step. Normally OpenMP is
used to parallelize loops. Parallel regions such as loops can be marked with specific
compiler directives. When execution enters the parallel region, specific number of
slave threads is forked and work is shared among threads (work in case of loops can
be number of iterations). After the end of execution region threads are joined again
i.e. OpenMP works on fork/join model. As compared to Pthreads, OpenMP is
relatively easy to work with. Less lines of code are required to parallelize a program.
Sequential code can be parallelized easily without any major rework. On the other
hand, race condition can still also occur in OpenMP. In order to prevent race
conditions, OpenMP provides a way to mark variables accessed by multiple threads as
shared. But it is responsibility of programmer to convey this information.

2.2.3 Data parallel model

Data parallel programming model is shown in Figure 2.3 (c), its name comes from the
fact that it processes many data item in parallel in the same way. In this model we
have only one executing process which runs the same set of instructions on identical
data items. It can be said that this model is the extension of the classical sequential
programming model where operations on scalars are replaced by the operations on
vectors. Problem with this model is that it doesn’t allow independent branching
within the process [2]. Thus doesn’t allow processing particular data items differently,



which make it unsuitable for certain applications. C* and HPF [6]are example of
languages that follows this programming model.

2.2.4 Distributed shared memory model

Distributed shared memory programming model (DSM), also known as the partitioned
global address space (PGAS) model can be seen in Figure 2.3 (d). This model tries to
achieve the required balance between programmability and exploiting data locality
while avoiding the problem of independent branching in the data parallel model. In
this model independent thread concept of the shared address space is realized using
shared global arrays. These shared global arrays are distributed among the threads.
Through specific syntax programmer can dictate array distribution. Access to part of
array which is present in the thread memory will be local. One can declare the data to
be processed by a given thread in such a manner that it has affinity to that thread.
Exploiting locality of access in this manner eliminates or minimizes unnecessary
remote accesses from the beginning. Unified Parallel C (UPC) and Co-array Fortran [8]
are examples of this programming model.
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Figure 2.3: Address space and execution in parallel programming models [2]



3 SMP superscalar(SMPSs/StarSs)

In general, a computer program is a series of instruction run in sequence by the
processor. These instructions can be shuffled and combined in groups which can be
executed in parallel. Only precursor condition for instructions shuffling is that there
should be no data dependency among instructions. The StarSs programming model
family takes this concept from instruction level to task level. It looks at dependencies
among tasks, combined them in groups and executes tasks from different group
concurrently on multiple cores.

StarSs provides a programming environment called SMPSs, which was developed
specifically for multi-cores and symmetric multiprocessors (SMP) for increasing
programmability, portability and flexibility. It improves programmability, as task based
parallelization is used and memory locations are easy to reference. Because of shared
memory systems, memory locations are accessed, using simple assignment operator.

SMPSs offer a simple programming model, based on the sequential programming
which can utilize multiple cores by using automatic parallelization at runtime. The
same C code can be compiled by a regular compiler and can run sequentially on the
single core machine. Or it can be compiled by the SMPSs compiler, which extracts
parallelism, and linked with its run time library to run in parallel on multi-core
platforms. Only requirement on the programmer is that application should be
composed of coarse-grain functions (called tasks) and these functions should not have
any side effects (global variables are not accessed). These functions are identified
using annotations in pragmas. Source-to-source translator looks up for these pragmas
and generates intermediate C file with some extra information. This information is
used by the runtime to parallelize these functions.

SMPSs source-to-source compiler, on the basis of annotated functions with pragmas,
separates them from main code. In contrast to other programming models such as
OpenMP annotation here does not mean the start of the parallel region. SMPSs run
time library builds up a dependency tree on the basis of tasks. Where nodes
represents instance of task and edges between nodes specify data dependencies.
SMPSs force the programmer to identify directionality of function parameters i.e.
input, output and input/output. Dependency graph is built up by looking at function
parameters directionality information. Using dependency graph, runtime schedules
tasks on different cores. Techniques such as data dependency analysis, data renaming
and data locality exploitation are implemented in the runtime to improve
performance.



In SMPSs the programmer only specifies functions which can potentially run
concurrently. SMPSs will do the data dependency analysis and will determine which
functions can run in parallel. In some other programming models such as OpenMP one
has to specify these things explicitly. Therefore, SMPSs provides a flexible
programming model, which offers an adaptive parallelism influenced by the data
dependencies and the cores present.

3.1 Programming model

A SMPSs program is a sequential program where the functions that can potentially run
in parallel are annotated with pragmas. In SMPSs nomenclature, these functions are
known as the tasks. Annotation with pragmas declares that a function is a task and it
also conveys information regarding size and directionality of the parameters. The
syntax of the task construct is given below.

#pragma css task [clause [clause] ...] function-
declaration

where clause is one of the following:
input(parameter-list)

output (parameter-list)

inout (parameter-list)

high priority
. input clause: Lists parameters whose input value will be read.
. inout clause: Lists parameters that will be read and written.
J output clause: Lists parameters that will be written to.
. high priority clause: Specifies that the task will be scheduled for execution

earlier than tasks without this clause.

Parameters in the directionality clauses (First three clauses) may optionally have
dimension specifies with the following syntax:

identifier [ [expr] [ [expr] ..]

where identifier is the name of a parameter and expr is a C99 expression. This is
required for proper operation of runtime, when the parameter is an array and its size
is not present in the parameter declaration. The programming environment consists
of a source-to-source compiler and a supporting runtime library. The compiler
translates C code with the annotations into standard C99 code with required calls to
the supporting runtime library and compiles it using the platform native compiler.

The runtime takes as input the memory address, size and directionality of every
parameter at each task’s invocation. Further it uses this information to find
dependencies between tasks. Whenever in the code a task is called, a node is added in
the task graph with a series of edges indicating their dependencies. At the same time
it picks up task by looking at the dependency graph and schedules them on the
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available cores. The SMPSs runtime uses parameter renaming to remove some data
dependencies. This behavior is true for all data types except those of type void *.
Which in SMPSs are called as “opaque pointers” as they are not changed by the
runtime and are not considered in task dependency analysis.

StarSs runtime detects dependency between tasks by looking at the starting memory
address. Consider the case, in which one task access/updates a block of memory and
another task which updates/access the middle part of the same block. As StarSs
detects dependency by looking at the starting address, which in this case will be
different; dependency between the tasks will not be detected. In order to solve this
problem, dummy variable can be used to create artificial dependency. These dummy
variables are called sentinels in StarSs nomenclature. Sentinels will be placed in the
parameter list of both tasks. To creates dependency between the tasks, in one task
sentinels will be marked as output where as in another as input.

Once all the tasks have been specified, the next step is how to use them. In order to
invoke the tasks, annotated functions must be called within a block surrounded by
below mentioned directives.

#ipragma css start
#pragmacss finish

These two directives can only be used once in the program. It is not possible to write a
start directive after finish directive. These directives are mandatory and all annotated
function must be called inside the region surrounded by them.

Race conditions can occur when the data used inside the tasks needs to be
manipulated by the master running code outside of any tasks. Dependency tracking by
the runtime is not enough to tackle these dependencies. In order to solve this issue,
SMPSs provides synchronization directives. One of them is given below

#pragma css barrier

This synchronization directive forces all tasks generated up till now, should be
completed before the master moves further on. In some cases this synchronization
can be counterproductive. For example code in (a) has two arrays a and b which are
initialized to 1. Task A and task B performs some operations on these arrays. At the
end, inside main code (outside tasks), array a is printed out. Task A should be finished,
before printing of the array. One way of doing is to use a barrier directive as
mentioned above. But if barrier directive is used, it will also wait for task B to finish i.e.
inefficient approach. For tackling this problem SMPSs provides below mentioned
directive.

#pragmacss wait on(<list of variables>)
In this case main (master) waits until all listed variable values are available. The data
unit to be waited on should be consistent with the data unit of the task. For example,

if the task is operating on the full range of an array, we cannot wait on a single
element arr [i] but on its base address arr. [3]
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#pragmacss task inout (a)
void taskA (int a [5])

{
for (i = 0; i< 5; i++)
a [i] += 1;

#pragmacss task inout (a)
voidtaskB (int b [5])
{
for (i = 0; i< 5; i++)
a [i] += 5;
}

void main ()

int a [5] = {1,1,1,1,1};

int b [5] = {1,1,1,1,1};

#pragma start

taskA (&a [0]);
taskB (&b [0]);

#pragmacssbarrier

for (i = 0; i< 5; i++)
printf ("%i ", a [i]);

printf ("\n");
#pragma finish

(a)

#pragmacss task inout (a)
void taskA (int a [5])

{
for (i = 0; i< 5; i++)
a [1] += 1;

#pragmacss task inout (a)
voidtaskB (int b [5])
{
for (i = 0; i< 5; i++)
a [i] += 5;
}

void main ()

int a [5] = {1,1,1,1,1};

int b [5] = {1,1,1,1,1};

#pragma start

taskA (&a [0]1);
taskB (&b [0]1);

#pragma wait on a [0]

for (i = 0; i< 5; i++)
printf ("%i ", a [1]1);

printf ("\n");
#pragma finish

(b)

Figure 3.1: Wait and barrier directives example code

3.2 Scheduling

Exploiting data locality is one of the major goals in the SMPSs scheduler. For improving
data locality, the scheduler makes use of graph information and schedules dependent
tasks sequentially to the same core. So that the data present in the cache can be



reused. Scheduler maintains two global ready queues, one is for the high priority tasks
and another is for the normal priority tasks. High priority tasks are scheduled as soon
as their dependencies are resolved. High priority tasks can be scheduled on any
available core. Data locality improvement is not considered while scheduling high
priority tasks. Normal priority tasks list is used by worker threads to gather tasks
whenever they are idle. Main (Master) thread runs the main code and it creates as
many worker threads as cores to keep them busy. Master thread looks up for tasks
dependencies and add them to the task graph. If the added task doesn’t have any
dependencies it is moved to the high priority list, ready to be scheduled by the worker
threads. In addition, every worker thread has its own ready list. When a thread
finishes running a task, it updates the graph and moves all tasks whose dependencies
are resolved to its local ready list. Worker threads priority for fetching tasks, for
execution, is given below, where the lowest number represents the highest priority.

Look into global high priority queue.

Look into own ready queue.

Look into global ready queue.

Steal tasks form other worker thread queue.

PwnNpE

Worker threads while selecting tasks from their own ready queue follow Last In First
Out (LIFO) method. They take tasks from global ready queue in First In First Out (FIFO)
order. They steal tasks for other worker threads ready queue also in FIFO order. As
mentioned in the last paragraph, when worker thread finishes a task - it looks for its
child tasks in the dependency graph. Then it updates the dependency graph and
brings in all child tasks (form global to local ready queue). For data locality purpose,
newly added task whose dependency is just resolved should be selected for execution.
LIFO policy for local ready queue serves this purpose well. FIFO policy for global ready
gueue tries to increase number of tasks, available for execution, by selecting top
nodes in the data dependency graph.

As mentioned earlier SMPSs tries to improve data locality. Child nodes in the data
dependency graph might be using the data produced by their parent nodes. It is good
for data locality purposes that the same core which has executed the parent node
(task) also executes the child node (task). Parents and child tasks lies in sequence in
the local ready queue and to maintain this structure other tasks steal tasks from other
end i.e. FIFO policy. Work-stealing is always done in FIFO order, in order tries to
minimize the cache effect. As selected task has spent most time on the queue and has
high probability that most of its input data is not present in cache. A snapshot of
SMPSs runtime is present in Figure 3.2.

The scheduler design tries to give worker threads different region of the dependency
graph to work on, in order to stop accessing the same data for minimizing cache
coherency overhead. As long as the worker thread can find ready tasks in the region it
is exploring (thread ready queue), if there are unexplored regions in the graph (global
ready queue), it will not steal tasks from other worker threads. Thus every worker
thread would have independent working set.
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In some cases, where communication calls are present inside the tasks, it is better to
schedule them as soon as possible. So that more data processing tasks becomes
available for execution. If they are present at end of local queue, it is better to change
fetching policy for work stealing - so that the idle worker threads could fetch task with
communication calls. For tackling this kind of cases, StarSs provides with a runtime
switch, to change tasks fetching policy.

CPRU, CPU, CPU,
Main thread | Worker Swead 1 Waorker thread 2
' | ' .
TE— ISI.I’S:. runtime library I . SMPSs runtime lbeany | SHIP:

I | [soheduing I ‘-E Scheduling H
Oramal :>|% N o o f|m..;.,m, Rl # = Do |
FAY

1 z
) [
I
Giobal Thread 1
z i Ready task guewes I Rﬂdy\islweue I1 Ready task queue
AT
» wow_ | [} S TIT—py——-=>TII1T
] 11T Wk seaing
- _Loups i s

Memary

Figure 3.2: SMPSs run time environment [4]
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4 Unified Parallel C

UPC is a parallel extension of ISO C, as it inherits most of the features e.g. dynamic
memory, pointers etc from ISO C. In addition, it extends ISO C’s syntax and semantics
for facilitating expression of parallelism. Therefore it’s right to say, UPC is a parallel
extension of ISO C which uses shared and distributed programming model.[4]

General trend in computing world is to move from uniform shared memory towards
distributed memory. But shared programming model has some good features for
users. For example, to reading and writing remote memory with assignment
statement is more user friendly than using message-passing library. One of objectives
while designing Unified Parallel C (UPC) was to make sure that the presence of
parallelism and remote access should not make program difficult to understand. Users
should be able to see a collection of threads operating in a common global address
space and should not worry about the hardware topology. In UPC, a small number of
changes to the C language are made, as we have to differentiate between local and
remote memory access. Mainly pointers and arrays are the two C constructs which
deal with addresses. Introduction of the additional keywords gives the programmer
the ability to distinguish between data that is strictly private to a given thread and
data that is shared among all threads in the parallel program. In UPC, arrays can be
distributed among threads in number of ways, which gives programmer flexibility in
the data layout. [5]

4.1 Programming Model

In the UPC programming model, a number of so called threads work independently
without any implicit synchronization except that they should start and finish together.
These UPC threads may run on different nodes in a distributed memory setting as a
cluster. UPC memory and execution model can be seen in figure 4.1. The Integer
variable THREADS tells about total number of threads present in the environment.
Each thread can get its unique id through integer variable MYTHREAD. THREADS
variable is a global constant visible to all threads i.e. same value at each thread.
MYTHREAD is a private constant at each thread i.e. different value at each thread. The
total number of threads (THREADS) can be specified at either run time or compile
time, using appropriate command.

The UPC programming model is a variant of SPMD. Each thread runs the same piece of
code. In UPC different threads can run different part of codes, by using conditional
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Shared Address

Space

Private Address

Space

statements based on MYTHREAD identifier. Hence, allowing independent branching
for specific set of the data. UPC follows DSM paradigm with some enhancements
because it provides private memory for computations on the same node. In UPC,
memory consists of the global shared memory space and private memory space. All
threads can access any memory location in the global shared memory space.
Whereas, private memory space can only be referenced by the local thread only. The
global shared space is partitioned among threads, each with an association (affinity) to
a given thread. UPC provides programmer, a way to keep shared data affinity with the
specific thread that needs it for computation in the future.

Thread (Threads - 1)

__________ Private (threads {1

Figure 4.1: UPC memory and programming model [4]

4.2 Shared and Private Variables

This section closely follows the introduction given in UPC — Distributed shared memory
programming book ([4]).

In UPC, an object/variable could be declared as shared or private. Reserve keyword
shared is one of the extensions that UPC uses to implement its memory model.

In UPC every thread gets its own copy of private variable; this includes both local and
global variables. Thread 0 is unique among all threads because all declared scalar
shared objects/variables have affinity to thread 0. UPC treats all standard C style
declaration as private variable. For example below mentioned declaration creates a
copy of x variable for each thread. Each thread can only reference and manipulate its
own instance of x.

int x; //x is private, one x in the private space o feach
thread.
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Reserve keyword shared is prefixed, to the standard C declaration for creating shared
variables. For example below mentioned example defines a scalar shared variable.
This will create only one copy of variable, which can be accessed and manipulated by
all the threads. As already stated in previous paragraph, this scalar shared variable will
have affinity to thread 0.

For declaring an object to be shared, however, requires explicit use of the
sharedqualifier. For example:

shared inty; // y is shared, only one y at thread 0in
the shared space

UPC places a restriction on shared variables that they should not have automatic
storage. Let suppose shared variable are allowed to have automatic storage. Consider
the case in which they are defined inside a function. One thread executes that
function updates shared variable contents and exits from the function — variable
destroyed. Another thread may access this shared variable, which causes the problem
as respective shared variable is already destroyed. To avoid this problem, shared
variables are restricted not to have automatic storage.

void foo (void)

{

shared int x; // not allowed ~ ------ ()

static shared inty; // allowed ------ (1

shared int *p; // allowed - (1)

int *shared q; // not allowed - (V)

}

Inside above function all declarations which have automatic storage durations
are illegal/not allowed. (ll) Declaration is allowed as static variables don’t have
automatic storage duration. (lll) Declaration is also allowed as it creates a pointer in
private space which points to a memory in the shared space. Statement (IV) creates a
shared pointer which points to the private memory. As pointer is created in shared
memory space, it is not allowed.

One way of solving this problem is to make statement (I) and (IV) global as shown
below.

shared int x;

int *shared q;

void foo(void)

{

static shared int y; // allowed
shared int *p;
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}

UPC allows type conversion between shared and private objects/variables, using cast
and assignment it can be done. In general, private objects can’t be cast to shared
objects and assignment of private to shared objects has undefined results.

4.3 Shared Arrays

This section closely follows the introduction given in UPC — Distributed shared memory
programming book ([4]).

Shared arrays are placed in the shared global address space. By default, the shared
array’s elements are distributed among threads in round-robin fashion i.e. first
element of array is created in the shared memory that has affinity to thread 0, the
second element in the shared space that has affinity to thread 1, and so on. Or in
other words, the first element goes to thread 0, the second to thread 1, and so on.
The following example declarations demonstrate how a shared vector declaration
behaves compared to shared scalar and private scalar declarations.

The declarations

shared int x; /*x is a shared scalar and will have
affinity to thread 0 */

shared int y [THREADS]; /*shared array*/
int z; /*private scalar*/

For four threads, default layout is shown in Figure 4.2, where x and y were placed in
the shared space and z copies were placed in the private memory space of each
thread. If the statement

shared inty [THREADS];

was replaced with
inty [THREADS];

Then every thread will have its own complete private version of the array y.

Thread 0 Thread | Thread 2 Thread 3
X
y[0] vl y[2] yl3]
A z z i

Figure 4.2: Memory layout of variables[4]

In the case of higher-dimensional arrays, the elements of a shared array are still
distributed in round-robin way. For example, the statement present below will result
into layout shown in Figure 4.3.
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shared int v [4][THREADS];

Thread Thread | Threadrppaps. |

vi0][0] ¥[O[1] v[0] THREADS-1]
v[1][0] w1011 v[ 1 JITHREADS-1]
v[2][0] vi2101] V2)[THREADS- 1]
vi3][0] ¥[3)01] v[3][THREADS-1]

Figure 4.3: Array distribution among threads for block size 4 [4]

The default shared array distribution scheme may not be appropriate for optimal
execution, in some cases. A different approach for distributing array elements could
improve data locality exploitation and execution efficiency. Shared array default
distribution can be changed by mentioning a given block size, also known as blocking
factor. Declaration for altering the default distribution is given below.

shared [block-size]array [number-of-elements]

For example:
shared [4] int a [16];

In above statement, array a [] has 16 elements which are distributed among four
threads. First four elements of array will go to thread 0; next 4 elements will go to
thread 1 and so on. Block size and total number of threads (THREADS) determines
affinity to threads using following equation.

[
[blocksizeJ mod threads

shared [3] int x [12];
Above statement has a blocking size of 3, which means that array elements in a block

of 3 are distributed across the threads in round-robin way. The resulting layout for 3
threads is shown in Figure 4.4.
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Thread #

Thread 1

Thread 2

x[0] x[3] x[€]
x[1] x[4] x[7]
x[2] x[3] x[8]
x[9]
x[10]
x[11]

Figure 4.4: Array distribution among threads for block size 3[4]

If the previous statement is changed to
shared [12] int x [12];

Then all array elements would have affinity to thread 0. Omitting the block size or
making it zero in the brackets would result in making all array elements have affinity
to thread0. Using such indefinite block size, the previous statement’s result/effect can
also becreated.

shared [] int x [12];

or
shared [0] int x [12];

In many cases it is desirable that array’s data should be distributed in contiguous
blocks such that, whenever possible each thread should get one of the chunks. One
way of doing of it is to put * in block size place. For example,

shared [*] int y [8];

would produce the layout shown in Figure 4.5 for the case of three threads. This
works in the same way with two- and higher-dimensional arrays as in the case of one-
dimensional arrays.

Thread @ Thread 1 Thread 2

v[0] v[3] v[&]
y[1] v[4] v[7]
¥[2] ¥[5]
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Figure 4.5: Contiguous array distribution among threads [4]




shared [3] int A [4][4];

In the case of above statement, array elements are blocked by a factor of 3.
Therefore, blocks of three elements each is distributed across the threads in round-
robin fashion untilall the array elements are allocated. The resulting layout in the case

of four threads is shown in Figure 4.6.

Thread 0 Thread | Thread 2
A[D][0] AJD][3] All][2]

AlO][L] A[1]0] Al1]13]

A[0]12] Al A2]10]

A[3][0] A[3][3]

A[3]1]

A[3]12]

Thread

3

Al2][1]

A[2][2]

A[Z113]

Figure 4.6: Two dimensional array distribution among threads[4]

4.4 UPC Pointers

This section closely follows the introduction given in UPC — Distributed shared memory

programming book ([4]).

UPC has similar syntax for pointer declarations as in ISO C. But because of memory
model which is partitioned between shared and private memory space. UPC pointers
can be divided into four major classes as shown in Figure.

Private Shared
Where )
does the Private PP PS
pointer
reside?
Shared SP SS

Figure 4.7: Pointer classes[4]

int *p1; // private to private

Legend :

PP — private to private
PS — private to shared
SP — shared to private
SS — shared to shared

Above declaration declares a pointer, which resides in private memory space and can
be used to point memory location in private space.

shared int *p2; // private to shared
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Above declaration declares a pointer, which resides in private memory space and can
be used to point memory location in shared space. As it lies in private memory space,
every thread will get one private copy of this pointer.

int *shared p3; // shared to private

Here a pointer which lies in shared memory space and points to a memory location in
private memory is declared. It is against the principle that shared space should be
visible to all threads and private space should only be visible to respective thread;
therefore, it should be avoided.

shared int *shared p4; // shared to shared

In above statement p4 is a shared pointer pointing to the shared space; thus, it has
one instance with affinity to thread 0.

Memory region where the pointers mentioned above are located and to which region
they are pointing to is shown in Figure 4.8. There exists one copy of each pointer in
each threads private space. Only one instance of P3 and P4 is created in the shared
space with affinity to thread 0. Each of the pl pointers points to its associated private
space and can also point to the shared space that has affinity to that pointer. Each of
the p2 pointers can point anywhere in the shared data space. The pointer p4 can also
point anywhere in the shared space. As a shared pointer, p3 has only one instance
created in the shared space of thread 0.

Thread 0 Thread | Threadrppeans-1

pil'—l—-h
I
A
""---..._,_‘____‘_‘_‘14\
Private Spaces
3 Py l P, I
S O L : o,

Figure 4.8: Pointer classes memory layout and referencing space [4]

I Shared Space

o —
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5 Implementation details and
results

For evaluating performance of hybrid UPC and StarSs version, | first start with
implementing a matrix multiplication with StarSs. | try out row and square block data
distributions. Then after that | start looking up for optimal block size and data
distribution required to get best performance. After that | start developing matrix
multiplication code using UPC for distributed memory and StarSs for shared memory
i.e. hybrid code.

For testing purposes, | have used NEC Nehalem cluster installed at HLRS. This cluster
has 700 computing nodes connected together using a InfiniBand network. Each node
has two sockets with Intel Xeon Processor X5560 Quad core running at 2.8 GHz with 8
MB. Software used and their respective versions can be seen in Table 5-1.

Softwares Version
gnu 4.6.1
Open MPI 153
OpenMP 3
Berkeley UPC translator 2.13.6
Berkeley UPC run time 2.13.6
SMPSs/StarSs 2.4

Table 5-1: Software and their versions

Berkeley UPC implementation 2.13.6 (translator/run time) has limitation of block size
1048576 (2%°). So, some values in the graphs (where this limit is crossed) in the next
sections will be missing.
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5.1 StarSs

Matrix multiplication algorithms can be divided into two major stages. For example
consider the case in which two matrices A and B are multiplied and resultant matrix is
stored in C. First phase is the initialization phase in which A and B is initialized with
random values. Second one is the computation phase where C matrix is calculated. In
both phases, the same set of operations or same piece of code will be executed on
different sets of data. Hence, these two phases can be written as two functions.

Definition of these two functions along with StarSs pragmas notation is mentioned
below. These functions accept address of memory locations to identify the set of data
to work on. StarSs run time uses memory address location and parameter
directionality info to buildup dependency graph.

#pragma css task input (n) output(subMat)
void initWithRand (double *subMat, int n)
n: Number of elements to be initialized.

subMat: Starting address of respective Matrix sub-b lock.
#pragma css task input(subMatA , subMatB) output(su bMatC)
void multiply (double *subMatA, double *subMatB, do uble
*subMatC)

subMatA: Starting address of respective Matrix A su b-
block.

subMatB: Starting address of respective Matrix B su b-
block.

subMatC: Starting address of respective Matrix C su b-
block.

Once the tasks inside the matrix algorithm are identified, the next step is to look for
appropriate data distribution among tasks. | first tried row block distribution for
simplicity reason and to reduce number of cache misses. Data distribution of matrices
in this case is present in Figure 5.1. As shown in Figure 5.1 with shaded blocks, for
calculating results of one row block of matrix C, respective row block of matrix A and
complete matrix B is required. This means that initialization of respective matrix A’s
block and complete matrix B should be finished before calculation can be started.
StarSs builds up the dependency graph (shown in Figure 5.2) by looking at the starting
address of data set. In order to calculate sub-block C1 multiply task needs complete
matrix B and sub-block Al. But multiply task receives starting address of sub-block Al
and sub-block B2, so dependencies created by the sub-block Al and sub-block Bl
could only be identified. But multiply task needs complete matrix B - other sub-blocks
(B1, B2, B3) of matrix B might not be done with initialization. To avoid this problem, a
StarSs barrier pragma is used between initialization and computation phase.
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Figure 5.1: Row block distribution of matrices

Multiply

@000 OO
@006

Figure 5.2: Dependency tree for row block distribution

Another distribution | tried is block-wise as shown in Figure 5.3. Barrier statement in
row-wise distribution introduces synchronization control which can cause
performance degradation. To calculate results for one block of matrix C, all respective
blocks of matrix A and B need to be multiplied and added to C as shown in Figure 5.3.
In this scenario, we have two initialization and one computation dependency
(previous computation of C should be finished before next can start). Here
computation of sub-block C1 requires, only sub-block A1 and B1. And multiply task is
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provided with the starting address of sub-block A1 and B1. So, no StarSs barrier
pragma is needed; all dependencies can be detected by looking at the starting
address. Dependency map is presented in Figure 5.4. In contrast to the row-wise
distribution, here multiple tasks calculate same block of matrix C. Thus matrix C needs
to be initialized first, so a new function mentioned below is added.

#pragma css task input (n) output(subMat)
void initWithO (double *subMat, int n)

n: Number of elements to be initialized.

subMat: Starting address of respective matrix C sub -block.
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Figure 5.3: Block wise data distribution of matrices
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initWith0

Multiply

Figure 5.4: Dependency tree for block wise data distribution

For evaluating the performance, | execute above mentioned approaches with multiple
matrix dimensions and block sizes, which can be seen in Figure 5.1. One of the factors
influencing performance is the size of the blocks as this is the which is number of rows
assigned to each task for working on in the case of row wise distribution and
dimensions of block in the case of square block distribution. It can be seen from Figure
5.1 that when dimensions of block are increased, execution time also increases.
Because number of tasks decreases with increase in block dimensions, so not enough
work is available for workers. Same case is true for block wise distribution in Figure
5.2. By looking at the Figure 5.1 and Graph 5.2, it can be judge that we get good
results for block size of 32 and 64. As difference between them is not so significant, |
took block size of 64 for further analysis.
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Graph 5.3 tries to compare execution time of matrices for row wise and block wise
data distribution. Only block size of 64 is taken as it shows good results, as mentioned
above. It can be seen clearly that block wise distribution performs better than row
wise. One of the reasons, for better performance of block wise distribution is that

there is no barrier statement. The computation tasks (multiply
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for all initialization tasks (initWithRand) and (initWithQ) to finish. They can start
execution as soon as their respective blocks are ready.
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0.1
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Matrix dimensions

Graph 5.3: Row wise and block wise data distribution

Graph 5.4 and Graph 5.5 looks at the scalability of StarSs; number of cores is increased
from 1 to 8, for row wise and block wise distribution. From the graphs they look like
perfectly scalable, if enough work is available for all the workers. For block wise
distribution, in the of matrix size 256X256 not enough work is available for all workers.
So it doesn’t scale any further when core number is increased from 4 to 8.
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Graph 5.4: Scalability plot (square block distribution)
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For evaluating UPC, the SUMMA matrix multiplication algorithm is implemented using
UPC specific constructs.

Pseudo algorithm of SUMMA

Every UPC thread initializes its part of A and B block.

For (Traverse over all the required blocks — shaded ones in
Graph 5.2)
If (both respective A and B blocks ready)
Compute respective C block.

Else if (any A or B block not available/ready)
Wait for respective A or B block.
Compute C block.

End if
End for

Figure 5.5 shows the matrix storage scheme in the memory. First all the sub-blocks of
matrix are stacked up as shown in Figure 5.5 (b). Then each sub-block is stored as a
one-dimensional array as shown in Figure 5.5 (c). Hence two levels of indexing need to
be done to reach the desired element location.
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Figure 5.5: Matrix layout in memory

(c)

First, square block wise distribution shown in Figure 5.3, for matrix multiplication is
used because it gives good results in the case of StarSs. In order to check scalability,
different matrix dimensions for a range of threads are tried out, its execution time is
noted down and results are plotted in Graph 5.6. Graph 5.7 shows UPC threads across
multiple nodes. Execution time decreases if we move from 1 node (8 cores) to 2 nodes
(16 cores). Because of the Square block distribution we can only have threads in

multiples of 4 i.e. 1, 4, 16, ..., 4". Computer nodes used for testing purposes has go

t

only 8 cores. It means that when number of threads is increased from 4 to 16 - 16
threads will be running on 8 cores which can lead to the performance degradation. To
avoid problem of threads only in the powers of 4, row wise data distribution shown in
Figure 5.1 is implemented. Results of this implementation are shown in Graph 5.8.
Here we have only 8 threads for 8 cores, so performance degradation (because of the
core over-subscription) is eliminated. As mentioned in the start of section 5 Berkeley
UPC implementation used has limit on block size. So, some points, in Graph 5.7 and

Graph 5.8, for matrix dimensions 2048X2048 are missing.
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5.3 StarSs + UPC

The SUMMA matrix multiplication algorithm is implemented to check performance of
hybrid (StarSs + UPC) version. Here two levels of data distribution are done, one for
distributed memory (on UPC threads level) and second is for shared memory (on
StarSs tasks level). Block-wise data distribution is performed on both levels which can
be seen in Figure 5.6. Previous results show that StarSs performs well for block
dimensions 64 X 64. So on StarSs tasks level block dimensions are set to 64 X 64.
Whereas on UPC threads level block dimensions of block depends on the number of

nodes.
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Pseudo algorithm for hybrid SUMMA

Call initRand for all Matrix A StarSs-level blocks.
Call initRand for all Matrix B StarSs-level blocks.
Call initZero for all StarSs-level C blocks.

Call checkAlIBlksInit for matrix A.

Call checkAlIBlksInit for matrix B.

For (Traverse over all the required blocks — shaded ones in
Graph 5.2)

Call copyRmtBIKA.
Call copyRmtBIKA.
Calculate all 2™ level C blocks. //StarSs tasks

End for

To store matrices the same storage scheme as mentioned in Figure 5.5 is used. The
following global arrays are used to store matrices.

shared double [blockSize] A [rows * cols];
shared double [blockSize] B [rows * cols];
shared double [blockSize] C [rows * cols];

blockSize: number of elements in a block i.e. 16 el ements
for matrix in Figure 5.5.

As already discussed in section 5.1, the first phase in matrices multiplication algorithm
is the initialization of the matrix. In hybrid approach UPC threads, running on different
nodes, will access each other’s UPC-level data block. A way needs to be established to
inform adjacent UPC threads when initialization of a local block is complete. A new
shared array is declared to indicate status of UPC-level blocks.

shared int [1] 1stLvIBlIks [THREADS];

In hybrid version, initialization is done by a number of StarSs tasks. Above array
(1stLviBlks) element can only be set if all the tasks are finished. So a local array is
needed to keep track status of all StarSs-level data blocks for both A and B matrix.

int 2ndLvIBIksA [y];
2ndLvIBIksB [y];

y: Number of the StarSs-level blocks i.e. 4 for matrix in Figure 5.5.

Initialization task (initRand) defined in section 5.1 is modified to accommodate
above new requirements i.e. respective location of 2ndLvIBIk.

#pragma css task output(ptr, bIkCmpl);
void initRand (double *ptr, int *blIkCmpl);
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*blkCmpl: Holds address of respective 2ndLvIBIK's
location.

Initialization task (initZero) for initialization of matrix 0 remains same.
#pragma css task output(ptr)
void initZero (double *ptr);
New StarSs task is added to check when all sub-blocks are initialized and set
corresponding location in 1stLvIBlks global array in order to notify other threads.
#pragma css task input(blkCmpl, mat)
void checkAlIBlksInit (int*blkCmpl, char mat);

int *blkCmpl: Will hold starting address of array
2ndLvIBIks.

char mat: Required matrix name needs to be checked

#pragma css task input(blkLoc, locA) output(strLoc, AFIg)
void copyRmtBIKA (double *strLoc, intblkLoc, intloc A, int
*AFIlg);

double *strLoc: Temporary location for storage.

int blkLoc: Which block from shared memory needs to be
copied.

int locA: Which 1stLviIBlks [threads] needs to be ch ecked.

int *AFIg: Used to introduce dependency.

New StarSs tasks are needed to fetch required blocks from UPC threads,
running on remote nodes, and store them in a temporary location for later used by
the multiply task (mul). These routines copy UPC-level block from remote nodes. In
order to stop multiply task (mul) for continuing further on before the results are
copied, an artificial dependency is created by using AFlg, BFlg variables.

#pragma css task input(blkLoc, locB) output(strLoc, BFIg)
void copyRmtBIkB (double *strLoc, intblkLoc, intloc B, int
*BFIg);

double *strLoc: Temporary location for storage.

int blkLoc: Which block from shared memory needs to be
copied.

int locB: Which 1stLvIBIks [threads] needs to be ch ecked.

int *AFIg: Used to introduce dependency.

Multiply task (mul) almost remains the same with some additional variables to create
artificial dependency.

#pragma css task input(A, B, AFlg, BFIg) inout(C)

void mul (double *A, double *B, double *C,int *AFIg , int
*BFIQ);

double *A: Holds starting address of matrix A StarS s-Level
block.
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double *B: Holds starting address of matrix B StarS s-Level
block.

double *C:Holds Starting address of matrix C StarSs -Level
block.

int *AFlg: Used to introduce dependency.
int *BFIg: Used to introduce dependency.

Graph 5.9 shows improvement in execution time when number of cores is increased.
In the case of 128 cores, there is no improvement when we move from 128X128 to
256X256. As matrix 1*" level block size is smaller and more time is spent in moving the
blocks (communication) rather than computing the results i.e. over head of
communication becomes prominent in the case of small data transfers. Same
argument can also be made for not having linear graphs for 32 and 128 cores. As
mentioned in the start of section 5 Berkeley UPC implementation used has limit on
block size. So, a point in the case of matrix dimensions 2048X2048 in Graph 5.9 and
Graph 5.10 is missing.
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Graph 5.9: Improvement in performance by increasing number of cores - square
block-wise distribution.

Graph 5.10 looks at the scalability of UPC for various matrix sizes. Communication
network is more optimized for sending large data transfers. So less speedup can be
seen for matrix size: 1024X1024 etc, when we move from 32 to 128 cores, as compare
to matrix size: 2048X2048.
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5.4 MPI

Use of virtual topologies simplifies the program structure and makes code
understandable, provided that data distribution matches the virtual topology. MPI
provides us with multiple virtual topologies such as graph and Cartesian. Data
distribution in Figure 5.3 resembles the Cartesian topology so it is used. Figure 5.7
shows the block distribution among different process, i.e. process with Cartesian
coordinates (0, 0) holds first block of all matrices.

FT_TTW.FT_TTW L0 b i i
=73 Y117 L fo o ) R N & BT T
0013 (01T 10013 1.0, ¢
T_-i__i__l_-|1 I__I__I-I_ -I_-i__i__l_—lll I__I__I_I_
e o P N EE s P Lot L XN
i__l_l__l_i:_ll : |:_ | |_: : :ILI_: -::_
I | 1 1 II 1 1 1 I | 1 I II 1 | 1
ey e
AR R AR AR
L — .J.I_. ._;_J . J.I__ — 1
Matrix A Matrix C
AR
| 1 | || | |
1_£:O_I_!Q _|_| Klgo.)f_l_
[ I IR
T YR
e R
JI'___:__; |__:| IL;___;__ |_:_
R R AR
I
Figure 5.7: Data blocks with respective owner =557 1;-r;-";---;-1r
process Cartesian coordinates —
Matrix B

37



In the case of matrix multiplication, every process needs to share its data block with
all other processes in its respective row and column. For example, process with
Cartesian coordinates (0, 0) will share its data block with all blocks in its row group
(Figure 5.8 (b)) and with (Figure 5.8 (c)). Or it can be said that every process
broadcasts its data block among its respective row and column groups. So, all rows
and column process are grouped together for ease of use.
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Figure 5.8: Row and column grouping of data blocks

Next step is determining the communication strategy among row and column process.
MPI provides a number of options i.e. blocking send/receive, non-blocking
send/receive and collective communication calls. Non-blocking send/receive and
collective communication calls are singled out for further usage. Non-blocking
send/receive is given preference as they allows an asynchronous program flow i.e. if
data is available, computations can be done alongside waiting for the next block of
data. Collective communication calls, use fine/optimal communication algorithm
which gives good result — normally difficult to achieve using send/receive calls.

In non-blocking send/receive communication algorithm every process send its data
block to its right neighbor process (in case of row group) or its downward process (in
case of column group) and receives data block from left process (in case of row group)
or up process (in case of column group). For example, the process with Cartesian
coordinates (0, 1) sends it block to all other process in its row and column. And
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receives blocks from all other process in its rows and columns. This sending and
receiving pattern can be seen in Figure 5.9.
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Figure 5.9: Non blocking send/recv messages for process with
Cartessian coordinates (0, 1)

Pseudo Algorithm for MPI approach using non-blocking send/receive

Call MPI_Cart_create (vu, ...) // creating Cartesian topology.
Create row and columns groups as mentioned Figure 5.8.
Every process set receives for all row and column blocks.
Every process initializes its assigned block.

Every process sends its block to all row and column process.

For (Traverse over all the required blocks — shaded ones in Figure 5.7)
As soon as required blocks available compute respective C block.

End for

In the second communication scheme, all non-blocking send/receive is replaced by the
collective communication call MPI_Allgather. As already known from discussions in
previous sections, for the calculating a block of matrix C, all respective row blocks of
matrix A and column blocks of matrix B are needed. So collective communication call
MPI_Allgather is used to collect respective row or column blocks.

Pseudo Algorithm for MPI approach using MPI_Allgather

Call MPI_Cart_create (vu, ...) // creating Cartesian topology.
Create row and columns groups as mentioned in Figure 5.8.
Every process initializes its assigned block.

Everyprocess gets required data using all-gather-all.
Everyprocess computes its data block as shown in Figure 5.7.
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For (Traverse over all the required blocks — shaded ones in Figure 5.7)
Every process computes its respective C block.

End for

Final result matrix (C) is distributed among all the process as shown in Figure 5.10 (a).
As processes are arranged in Cartesian topology, we can take benefit of it for
gathering final matrix. First all root process (first process) in each row collects matrix
using MPI_Gather call, so all row blocks of matrix are present at first column group
Figure 5.10 (b).After that first process in the first column group gathers complete
matrix using MPI_Gather call.
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Figure 5.10: Result matrix (C) gathering scheme.

Graphs with execution time for various matrices dimension are given below. It can be
seen from Graph 5.15 that for intra node communication MPI_Allgather performs
better as compare to non-blocking approach.
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Graph 5.11: Execution time for various matrix sizes (non-blocking send/recv)
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5.5 OpenMP

OpenMP provides us with the incremental way to parallelize sequential programs.
Sequential matrix multiplication algorithm, implemented using loops, is parallelized
using OpenMP compiler pragmas. Iteration of the loops (initialization and
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multiplication) is equally divided among OpenMP threads running on different cores.
For initialization only one loop is needed, so the matrices array is divided among
OpenMP threads to work on. For matrix multiplication, three loops are present, only
outer loop is parallelized. Iteration of the outermost loop will be divided equally
among all OpenMP threads; or it can also be said that each thread will calculate
specific number of C matrix rows.

Pseudo code for matrix multiplication using OpenMP

NRA: Number of rows of A.

NCA: Number of columns of A.

NCB: Number of columns of B.

CPUS: Number of CPUS i.e. 8 in our case.

#pragmaompfor schedule (static, NRA / CPUS)
fori=0; i< NRA; i++
forj=0; j< NCA; j++
a [i] [j] =rand ();
end for
end for

#pragmaomp for schedule (static, NRB / CPUS)
fori = 0; i< NCA; i++
for j =0; j< NCB; j++
b [i] [j]= rand ();
end for
end for

#pragmaompfor schedule (static, NRA / CPUS)
fori = 0; i< NRA; i++
forj=0; j< NCB; j++

fork=0; k< NCA; k++

clil[j] += alil[k] * bIKI[j];
end for
end for

end for

Performance of OpenMP can be seen in Graph 5.16 and Graph 5.17. In contrast to the
above mentioned approaches, i.e. StarSs in section 5.1 and UPC in section 5.2,
OpenMP perform well even for small matrix sizes. Reduction in execution time can be
observed for all matrix sizes, when core number is increased.
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5.6 MPI + OpenMP

From section 5.4 it is learnt that collective communication calls perform better. So it is
used for developing hybrid version i.e. MPI for distributed memory systems and
OpenMP for shared memory systems. In the MPI code, initialization and matrix
computation loops are parallelized using OpenMP directives as described in the
previous section. MPI is used for parallelization at the node level (at the distributed
memory level) and OpenMP is used for parallelization at the cores level (at the shared
memory level).
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Pseudo Algorithm for MPI + OpenMP approach

Call MPI_Cart_create (vu, ...) // creating Cartesian topology.
Create row and columns groups as mentioned in Graph 5.8.
Every process initializes its assigned block.

Everyprocess gets required data using all-gather-all.
Everyprocess computes its data block as shown in Figure 5.7.

For (Traverse over all the required blocks — shaded ones in Figure 5.7)
Everyprocess computes its respective C block using OpenMP for loop
parallelization.

End for

Final result is collected using scheme mentioned in Figure 5.10.

Graph 5.18 shows execution time of various matrix sizes for 8, 32 and 128 cores. In the
case of large number of cores i.e. 128, matrix multiplications for smaller matrix sizes
(such as 128X128, 256X256, 512X512) takes more time to complete. Because in the
case of smaller matrix sizes, data transferred through messages among the nodes is of
smaller size and network is optimized for large data transfers. Graph 5.19 shows
scalability graph, it can be noticed that for smaller matrix sizes it doesn’t scales well
because of smaller size message transfers.
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Graph 5.18: Execution time for various matrix sizes (all gather)
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6 Comparative performance

Graph 6.1, Graph 6.2and Graph 6.3 show shared memory comparison between
OpenMP, StarSs and UPC for the matrix sizes of 2048X2048, 1024X1024 and 512X512.
These tests are run on a Nehalem cluster node; details about the node can be seen in
the start of section 5Implementation details and results. It can be seen that UPC
performs better than the others for all matrix sizes. In Graph 6.3 UPC doesn’t scale
well, when cores are increased from 4 to the 8 as more time will be spent in moving
around the data than computing the results. As mentioned in the start of section 5
Berkeley UPC implementation used has limit on block size. So, a point in the case of
matrix dimensions 2048X2048 in Graph 6.1 and Graph 6.4 is missing.
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Graph 6.1: Shared memory comparison for 2048X2048
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Graph 6.5 and Graph 6.6 shows comparison between hybrid memory systems. Legacy
combination OpenMP/MPI (OpenMP for shared memory, MPI for distributed
memory) is compared with StarSs/UPC (StarSs for shared memory, UPC for distributed
memory) combination. Both of them show almost same results. It should be noted
that even for small message transfers UPC + StarSs combination performs relatively
better as compare to the MPIl + OpenMP combination.
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7 Discussion

MPI is the most common programming model used to write applications for
distributed memory computing systems. In MPI user can fine tune their applications as
they have complete control over data layout, communication, and load balance.
Another advantage of MPI is portability i.e. developers don’t have to rewrite
application for new/different machines. One of the major drawbacks in using MPl is its
difficulty in changing the sequential code to the parallel one.

UPC provides a way to solve this problem by retaining most of features of the
sequential programming. It introduces the concept of global shared arrays which may
be distributed over multiple nodes. In contrast to MPI, where one has to pack local
data into the messages sharing with other nodes, remote data can be reached by
accessing elements of the array. Therefore development time reduces. UPC also
provides with the collectives communication call to support bulk data transfers as
most communication architectures are optimized for bulk data transfers.

In many applications multi dimensional blocking is required to simplify the program
structure. For example, take the case of the blocked matrix multiplication in Figure
5.3. The natural block-wise data distribution of the matrices cannot easily be
implemented with UPC, as this supports only one-dimensional data distribution, not a
two-dimensional as required. An alternative way needs to be devised for the
distribution of the matrices using only UPC's one-dimensional blocking. This way,
shown in Figure 5.5, increases the complexity of code.

As discussed in section 5.4, the use of virtual topologies in MPI simplifies the
programming structure. If topology matches the underlying data distribution it
improves the understandability of code which leads to less development time.

Because of the problems stated above developing SUMMA matrix multiplication for
UPC takes considerable more time as compared to the MPI. As the lack of
multidimensional blocking complicates the layout of the data (matrix storage in the
memory) and lack of virtual topologies reduces the understandability of the code.

OpenMP is one of the most popular programming models used for shared memory
parallelization. It consists of a collection of compiler directives, library routines, and
environment variables that can be easily inserted into a sequential program to create
a portable program that will run in parallel on shared memory architectures. It
provides options for both task and data based parallelism. However, it is up to the
user to ensure that performance does not suffer as a result of poor cache locality.
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StarSs is designed for shared memory systems with specific attention paid to get a
good cache performance. As discussed in section 3 it provides task based parallelism.
So if our application is comprised of tasks, than using StarSs is the better way. If our
problem requires data based parallelism, than using OpenMP will be the better
choice.

Development of matrix multiplication algorithm, using StarSs and UPC generates
comparable performance results as with OpenMP and MPI. But if we look at the
development time required UPC and StarSs take longer time because of the reasons
mentioned above. Therefore, it is right to say that UPC with features multidimensional
blocking, virtual topology features and for applications which can be decomposed as
tasks, StarSs + UPC combination will no doubt increase developers productivity.
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Appendix A
A.1. Graph data tables

Block Size Matrix dimensions Execution Time
128X128 0.0108
256X256 0.046961
512X512 0.212409
1024X1024 1.979849
32 2048X2048 34.016667
128X128 0.019785
256X256 0.06277
512X512 0.20896
1024X1024 2.033456
64 2048X2048 35.045333
128X128 0.027429
256X256 0.115471
512X512 0.400823
1024X1024 2.057425
128 2048X2048 33.726667
256X256 0.190936
512X512 0.757126
1024X1024 4.066777
256 2048X2048 33.337

Table 8-1: Data for Graph 5.1
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Matrix dimensions Block Size Execution Time
32 0.006777
64 0.011809
128X128 128 0.031536
32 0.038298
64 0.04441
128 0.059496
256X256 256 0.192635
32 0.168071
64 0.172193
128 0.206418
512X512 256 0.401219
32 1.232803
64 1.259045
128 1.299592
1024X1024 256 1.910967
32 9.575
64 10.717
128 11.434
2048X2048 256 12.616667

Table 8-2: Data for Graph 5.2

Matrix dimensions

row-wise distribution

block-wise distribution

128X128 0.011809 0.046961
256X256 0.04441 34.016667
512X512 0.172193 2.033456
1024X1024 1.259045 0.400823
2048X2048 10.717 0.757126

Table 8-3: Data for Graph 5.3
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Matrix dimensions

cores

Execution Time

2048X2048

76.21

39.567333

20.387

10.717

1024X1024

9.164759

4.628079

2.352953

1.259045

512X512

1.123815

0.573751

0.297292

R IN|FRPO|PRIN|FRP|IO|S|IN|[F

0.172193

Table 8-4: Data for Graph 5.4

Matrix dimensions

cores

Execution Time

512X512

1.12349

0.726774

0.381239

0.20896

1024X1024

9.201482

15.064337

4.124423

2.033456

2048X2048

232.104667

135.938333

70.911333

0| P |IN|(FRP|IO(AIN|FR|O(H|IN|F

35.045333

Table 8-5: Data for Graph 5.5
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UPC Threads

Matrix Dimensions

Execution Time

512X512 0.589
1 1024X1024 9.057
512X512 0.139
4 1024X1024 1.088
2048X2048 19.61
512X512 0.046
16 1024X1024 0.423
2048X2048 8.484
Table 8-6: Data for Graph 5.6
UPC Threads Matrix Dimensions Execution Time
1 512X512 0.571333333
1024X1024 10.25633333
512X512 0.182
4 1024X1024 1.512333333
2048X2048 24.3255952
512X512 0.585333333
16 1024X1024 0.348611
2048X2048 6.542146333
512X512 0.030975
64 1024X1024 0.098644333
2048X2048 0.739362333

Table 8-7: Data for Graph 5.7
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Matrix Dimensions

UPC Threads

Execution Time

512X512 1 0.608
2 0.279
4 0.134
8 0.081
1024X1024 1 9.069
2 4.622
4 0.985169
8 0.494
2048X2048 4 18.241
8 9.024
Table 8-8: Data for Graph 5.8
Cores Matrix dimensions Execution time
8 128X128 0.010966333
256X256 0.047194667
512X512 0.263851
1024X1024 2.039269
32 128X128 0.007601667
256X256 0.022133667
512X512 0.097608667
1024X1024 0.732649667
2048%X2048 5.744350333
128 128X128 0.010528667
256X256 0.010528667
512X512 0.035588
1024X1024 0.141151
2048X2048 1.144329333

Table 8-9: Data for Graph 5.9
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Matrix dimensions Cores Execution time

8 0.263851

512X512 32 0.097608667
128 0.035588
8 2.039269

1024X1024 32 0.732649667
128 0.141151

32 5.744350333

2048X2048
128 1.144329333
Table 8-10: Data for Graph 5.10
Cores Matrix dimensions Execution time

128X128 0.023921
256X256 0.150875
1 512X512 1.145826
1024X1024 10.934753

2048X2048 184.040243
128X128 0.009492
256X256 0.050021
4 512X512 0.408666
1024X1024 3.213493
2048X2048 29.454429
128X128 0.024115
256X256 0.034381

16 512X512 0.09383
1024X1024 0.640018
2048X2048 5.27758

128X128 0.066712
256X256 0.068726
64 512X512 0.090489
1024X1024 0.199949
2048X2048 1.723633

Table 8-11: Data for Graph 5.11
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Matrix dimensions Cores Execution time
1 1.145826
512X512 4 0.408666
16 0.09383
64 0.090489
1 10.934753
1024X1024 1 3.213493
16 0.640018
64 0.199949
1 184.040243
5048X2048 4 29.454429
16 5.27758
64 1.723633
Table 8-12: Data for Graph 5.12
Cores Matrix dimensions Execution time
128X128 0.028033
256X256 0.149834
1 512X512 1.292971
1024X1024 12.073521
2048%X2048 202.51187
128X128 0.006765
256X256 0.040909
4 512X512 0.294649
1024X1024 2.515457
2048X2048 27.285554
128X128 0.015953
256X256 0.035936
16 512X512 0.088719
1024X1024 0.57715
2048%X2048 4.587071
128X128 0.040586
256X256 0.051999
64 512X512 0.071215
1024X1024 0.174
2048X2048 1.141919
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Matrix dimensions Cores Execution time
1 1.292971
4 0.294649
512X512
16 0.088719
64 0.071215
1 12.073521
4 2.515457
1024X1024
16 0.57715
64 0.174
1 202.51187
4 27.285554
2048X2048
16 4.,587071
64 1.141919

Table 8-14: Data for Graph 5.14

Matrix dimension

Cores

Execution time (all

Execution time (non-

gather) blocking send/recv)
1 202.51187 184.040243
4 27.285554 29.454429
2048X2048
16 4.587071 5.27758
64 1.141919 1.723633

Table 8-15: Data for Graph 5.15
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Matrix dimensions

cores

Execution time

128X128

0.030218

0.016432

0.010132

0.008193

256X256

0.180215

0.097103

0.055562

0.044641

512X512

1.438879

0.709328

0.3719

0.215667

1024X1024

14.604642

9.051743

3.87567

1.90028

2048X2048

241.106132

147.968762

73.062732

RPN |IFRP[O|PARIN|IRP[O|ARIN|FRPI[O|RRIN RSN

34.634772

Table 8-16: Data for Graph 5.16

Matrix dimensions

Cores

Execution time

512X512

=

1.438879

0.709328

0.3719

0.215667

1024X1024

14.604642

9.051743

3.87567

1.90028

2048X2048

241.106132

147.968762

73.062732

R[NP IN(R[O|>|N

34.634772

Table 8-17: Data for Graph 5.17
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Cores Matrix dimensions Execution time
128X128 0.016755
256X256 0.054899
8 512X512 0.231178
1024X1024 2.037397
2048X2048 35.664118
128X128 0.021096
256X256 0.035470333
32 512X512 0.098574
1024X1024 0.526931
2048X2048 9.63201
128X128 0.031051667
256X256 0.040283
128 512X512 0.068761333
1024X1024 0.170891667
2048X2048 2.395041

Table 8-18: Data for Graph 5.18

Matrix dimensions Cores Execution time

8 0.231178

32 0.098574

512X512 128 0.068761333

8 2.037397

32 0.526931

1024X1024 128 0.170891667

8 35.664118

32 9.63201

2048%X2048 128 2.395041

Table 8-19: Data for Graph 5.19
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Matrix dimension Cores OpenMp StarSs UPC
1 255.378054 74.69
2 139.550865 39.12
4 72.599632 20.51 18.251
2048X2048 8 35.639446 10.77 9.046
Table 8-20: Data for Graph 6.1
Matrix dimension Cores OpenMp StarSs UPC
1 13.742839 10.17 9.15
2 7.420541 5.178 4.625
4 4.051131 2.623 0.959
1024X1024 8 1.873649 1.406 0.494
Table 8-21: Data for Graph 6.2
Matrix dimension Cores OpenMp StarSs UPC
1 1.378361 1.23 0.59
2 0.698123 0.628 0.285
4 0.369102 0.325 0.138
512X512 8 0.215002 0.188 0.082
Table 8-22: Data for Graph 6.3
Matrix dimension Cores StarSs+UPC MPI+OpenMp
8 35.664118
2048X2048 32 5.74435 9.63201
128 1.144329 2.395041

Table 8-23: Data for Graph 6.4
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Matrix dimension Cores StarSs+UPC MPI+OpenMp
8 2.039269 2.037397
1024X1024 32 0.732649667 0.526931
128 0.141151 0.170891667

Table 8-24: Data for Graph 6.5

Matrix dimension Cores StarSs+UPC MPI+OpenMp
8 0.263851 0.231178
512X512 32 0.097608667 0.098574
128 0.035588 0.068761333

Table 8-25: Data for Graph 6.6

65




Appendix B

B.1. StarSs row-wise matrix multiplication code

//Writtern By Muhammad Wahaj Sethi

/[Email muhammad.wahaj@gmail.com

/[Following program multiplies two matrix using sta
/IMatrix date breakdown for initialization: Each St
assigned

/la block to work on. BlockSize parameter decides d
/[Data breakdown for computation: Matrix is partiti
/Iblockwise.

/IDimensions of block: blockSize X blockSize
/IEach thread has to work on submatrix of size bloc

#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include "time.h"

#include "math.h"
#include "rdtsc.h"

#define blockSize 4

#define ARows 8

#define ACols 8

#define BRows 8

#define BCols 8

#define blkinCols (BCols / blockSize)

int ARowsP, AColsP, BRowsP, BColsP;

/[Print complete matrix including padded values.
void printMatriceDebug (double A [], char matName)

inti;
int rows, cols;

if (matName =="A")

{

rows = ARowsP;
cols = AColsP;
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else if (matName == 'B')

{
rows = BRowsP;
cols = BColsP;

}

else if (matName =='C")

{
rows = ARowsP;
cols = BColsP;

}

else

printf ("Function printMatrice: Wrong Matrix name
values 'A', 'B' and 'C' \n");

for (i=0; i < (rows * cols); i++)
printf ("%f ", A [i]);

if (((i + 1) % cols) == 0)
printf ("\n");

}

/lInput matrice start address and matrice name whic
or C.
/[Function: Prints actual matrix only.
void printMatrice (double A [], char matName)
{ o
inti, j;
int rows, rowsP, cols, colsP;
double *temp = &A [0];

if (matName =="A")

{
rows = ARows;
rowsP = ARowsP;
cols = ACols;
colsP = AColsP;

}

else if (matName == 'B’)

{
rows = BRows;
rowsP = BRowsP;
cols = BCols;
colsP = BColsP;

}

else if (matName =='C")

{
rows = ARows;
rowsP = ARowsP;
cols = BCols;
colsP = BColsP;

}

else
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printf ("Function printMatrice: Wrong Matrix name
values 'A', 'B' and 'C' \n");

/[Prints matrice here. Just print out actual eleme
ones.
for (i=0; i < (rowsP * colsP); i++)

/Iprintf ("%i:%i:%i:%i:%i ", i, i%colsP, i/colsP
colsP, (i / colsP)); Ili % colsP tells column numbe

i % rowsP tells row number

//if both of above within matrix dim print the el

/lelse do nothing.

if (((i % colsP) < cols) && ((i / colsP) < rows))

{

i=0;
printf ("%f ", A [i]);
}

/lkeep tracks of row. If next element is not on s
print next line character.

/I((i ] rowsP) < rows) condition make sure that n
character when row exceds

/lactual dimension.

if ((((i+1) % colsP) == 0) && ((i / colsP) < rows

printf ("\n");
}

printf ("\n");
}

#pragma css task output (subMat)
void initWithZero (double *subMat)

{

0);
}

#pragma css task input(rowLimit, colLimit, rows, co
void initWithRand (double *subMat, int rowLimit, in
rows, int cols)

{

memset (&subMat [0], blockSize * blockSize * sizeo

inti, j;

/Imatrix initilazation here. Actual matrix entries
some random value

/land padding bit is set to 0.

/IrowLimit and colLimit variable are used to diffe
between actual and padding entries.

for (i = 0; i < blockSize; i++)

{

for (j = 0; j < blockSize; j++)
if ((j < colLimit) && (i < rowLimit))

subMat [i * cols + j] = 1;

else
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subMat [i * cols + j] = 0;

}
}
}
}
#pragma css task input(subMatA , subMatB) inout(sub MatC)
void multiply (double *subMatA, double *subMatB, do uble *subMatC)
int row, col, i;

for (row = 0; row < blockSize; row++)

{

for (col = 0; col < blockSize; col++)

{
for (i=0 ;i< blockSize; i++)

subMatC [row * BColsP + col] += subMatA [row *
AColsP + i] * subMatB [col + i * BColsP];

}
}

}

/lcompares two values and returns minimum.
int min (inta , int b)

{

if (a<b)
return a;

else
return b;

}
int main ()

unsigned long long clkO, clk1;
double timeDiff, timeDiff1;
time_t t0, t1;

intk =0;

if (ACols !'= BRows) //Checking matrice dimension

{
printf ("Matrice dimension doesn't matches.\n");
exit (0);

}

/Nloop index variables
inti, j;

/[Determining how many blocks present in matrices dimensions.

When dimensions are not multiple of blockSize addin gan
Ilextra block.
int blkARows = ceil (((double) ARows / blockSize)) ;
int blkACols = ceil (((double) ACols / blockSize)) ;
int blkBRows = ceil (((double) BRows / blockSize)) ;
int blkBCols = ceil (((double) BCols / blockSize)) ;
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/[These variables are used to note program start a
clock_t start, end, diff;

/lused for storing size of matrices.
int sizeA, sizeB, sizeC;

sizeA = blkARows * blkACols * blockSize * blockSiz
sizeB = blkBRows * blkBCols * blockSize * blockSiz
sizeC = blkARows * blkBCols * blockSize * blockSiz

//Used for matrice storage.

double A [sizeA]; //Creating Matrice A
double B [sizeB]; //Creating Matrice B
double C [sizeC]; //Creating Matrice C

/Ivariable used to store size of ARows, ACols, BRo
after padding

ARowsP = blkARows * blockSize;

AColsP = blkACols * blockSize;

BRowsP = blkBRows * blockSize;

BColsP = blkBCols * blockSize;

/luse in initilazation phase to store upper limits
int colLimit, rowLimit;

#pragma css start
start = clock ();
t0 = time (NULL);
clkO = rdtsc ();

W T§T
1

/[This portion initialize matrices.

//Matrice is divided between different tasks depen
of rows present in a matrice.

for (i = 0; i < bIkARoOwsS; i++)
{
for (j = 0;j < blkACols; j++)

[ffirst calculating upper limits of block. Then
comparing it with matrix dimension

/land chossing minimum. After that subtracting
starting pos of block to get relative

/ldisplacement inside a block

colLimit = min (j * blockSize + blockSize, ACols
j * blockSize;

rowLimit = min (i * blockSize + blockSize, ARows
i * blockSize;

initWithRand (&A [i * blockSize * AColsP +j *
blockSize], rowLimit, colLimit, ARowsP, AColsP);

}
}
for (i = 0; i < blkBRows; i++)
{

for (j = 0;j < blkBCols; j++)
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colLimit = min (j * blockSize + blockSize, BCols
j * blockSize;

rowLimit = min (i * blockSize + blockSize, BRows
i * blockSize;

initwithRand (&B [i * blockSize * BColsP + j *
blockSize], rowLimit, colLimit, BRowsP, BColsP);

}
}
for (i = 0; i < blkARows; i++)

for (j = 0; j < blkBCols; j++)
{
initwithZero (&C [i * blockSize * BColsP + j *
blockSize]);

}

T
1

for (i = 0; i < bIkARoOwS; i++)

{
for (j = 0;j < blkBCols; j++)

//Getting to appropriate A row's index. First at
then at multiple of block

/IGetting to appropriate B col's position

/ICheck rough sheet for detail example

/IC [i * AColsP * blockSize + j * blockSize]

/li * AColsP * blockSize determines row displace

/IblkACols * blockSize tells about total element
arow of C

/IblockSize here tells in how many rows a block
occupies

for (k = 0; k < blkInCols; k++)

{
multiply (&A [k * blockSize + i * AColsP * blockSi

M

ment
sin

ze], &B [k *

BColsP * blockSize + j * blockSize], &C[i * BColsP * blockSize +j *

blockSize]);
}

}

#pragma css barrier
end = clock ();
t1 = time (NULL);
clkl = rdtsc ();

#pragma css finish
/Istop cache stats gather here
diff = end - start;

printf ("CPU_Time_taken: %6.6f\n", (double) diff /

CLOCKS_PER_SEC);

printf ("Wall_Time_taken: %Id\n", (long) (t 1 -t0));
printf ("Wall_Time_taken_rdtsc %f \n", (clk 1 -clk0) /(2.8 *

1e9));
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B.2. StarSs block-wise matrix multiplication code

//Writtern By Muhammad Wabhaj Sethi
/[Email muhammad.wahaj@gmail.com
/[Following program multiplies two matrix using sta

/MMatrix date breakdown for initialization: Each St
/lassigned

/Inumber of rows to work on. BlockSize parameter de
/lrows to be allocated.

/IData breakdown for computation: Each thread has a
/Irows to work on.

/IblockSize parameter used to determine number of r
/Ithread.

#include "stdio.h"
#include "string.h"
#include "stdlib.h"
#include "time.h"

#include "math.h"

#include "rdtsc.h"

#define blockSize 32
#define ARows 2048
#define ACols 2048
#define BRows 2048
#define BCols 2048

int ARowsP, AColsP, BRowsP, BColsP;

void printMatriceDebug (double A [], char matName)
{

inti;

int rows, cols;

if (matName =="A")

{

rows = ARowsP;
cols = AColsP;
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else if (matName == 'B’)

{

rows = BRowsP;
cols = BColsP;

else if (matName =='C")

{

rows = ARowsP;
cols = BColsP;

else

printf ("Function printMatrice: Wrong Matrix name II'Valid
values 'A', 'B' and 'C' \n");

for (i=0;i < (rows * cols); i++)

{
printf ("%f ", A i]);
if (i + 1) % cols) ==0)
printf ("\n");
}
}
/lInput matrice start address and matrice name whic h can only be A, B
or C.

/[Function: Prints actual matrix only.
void printMatrice (double A [], char matName)
{

inti, j;

int rows, rowsP, cols, colsP;

double *temp = &A [0];

if (matName =="A")

{

rows = ARows;

rowsP = ARowsP;
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cols = ACols;
colsP = AColsP;

else if (matName == 'B')

{

rows = BRows;
rowsP = BRowsP;

cols = BCaols;

colsP = BColsP;

else if (matName =='C")

{

else

rows = ARows;
rowsP = ARowsP;
cols = BCols;
colsP = BColsP;

printf ("Function printMatrice: Wrong Matrix name

values 'A', 'B' and 'C' \n");

/[Prints matrice here. Just print out actual eleme

ones.

for (i=0; i < (rowsP * colsP); i++)

{

/i % colsP tells column number
/i % rowsP tells row number
//if both of above within matrix dim print the el

/lelse do nothing.

if (((i % colsP) < cols) && ((i / colsP) < rows))
{

j=0;

printf ("%f ", A [i]);
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/lkeep tracks of row. If next element is not on s
print next line character.

/I((i / rowsP) < rows) condition make sure that no
character when row exceds

/lactual dimension.

if ((((i+1) % colsP) == 0) && ((i / colsP) < rows
printf ("\n");

printf ("\n");

#pragma css task input(test, mat, task_no) output(s
void initWithRand (double *subMat, char mat, int te
{

inti, j;

int cols, colsP, rows;

if (mat =="A")

{
cols = ACols;
colsP = AColsP;

rows = ARows;

else if (mat == 'B")

{
cols = BCaols;
colsP = BColsP;
rows = BRows;
}
else

printf ("Function printMatrice: Wrong Matrix name
values 'A', 'B' and 'C' \n");

/Imatrix initilazation here. Actual matrix entries
some random value

/land padding bit is set to 0.

/] < temp condition takes care of col limit
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/[((task_no * blockSize + i) < temp) takes care of row limit.

for (i = 0; i < blockSize; i++)

{
for (j = 0; j < colsP; j++)
{
if ((j < cols) && ((task_no * blockSize + i) <
rows))
{
subMat [i * colsP + j] = 1;
}
else
{
subMat [i * colsP + j] = 0;
}
}
}
}
#pragma css task input(subMatA , subMatB, rowLimit) output(subMatC)
void multiply (double *subMatA, double *subMatB, do uble *subMatC, int
rowLimit)
{
int row, col, i;

for (row = 0; row < rowLimit; row++)

{

for (col = 0; col < BColsP; col++)

{
subMatC [row * BColsP + col] = 0;

for (i=0 ;i< AColsP; i++)
{

subMatC [row * BColsP + col] += subMatA [row *
AColsP + i] * subMatB [col + i * BColsP];

}
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int min (int a, int b)

{
if (a<b)
return a;
else
return b;
}
int main ()
{
if (ACols !'= BRows) //Checking matrice dimension
{
printf ("Matrice dimension doesn't matches.\n");
exit (0);
}
/Nloop index variables
inti, j;
time_t 10, t1; //used for wall time.
unsigned long long clkO, clk1, diff;
double timeDiff, timeDiff1;
/[Determining how many blocks present in matrices dimensions.
When dimensions are not multiple of blockSize addin gan

Ilextra block.

int blkARows = ceil (((double) ARows / blockSize)) ;
int blkACols = ceil (((double) ACols / blockSize))

int blkBRows = ceil (((double) BRows / blockSize))

int blkBCols = ceil (((double) BCols / blockSize))

/[These variables are used to note program start a nd end time.

clock_t start, end, diffMine, diffMkl; //used for cpu time.

/lused for storing size of matrices.

int sizeA, sizeB, sizeC;
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sizeA = blkARows * blkACols * blockSize * blockSiz e;
sizeB = blkBRows * blkBCols * blockSize * blockSiz e;
sizeC = blkARows * blkBCols * blockSize * blockSiz e;

//Used for matrice storage.

double A [sizeA]; //Creating Matrice A
double B [sizeB]; //Creating Matrice B
double CMine [sizeC]; //Creating Matrice C
double CMKI [sizeC];

/Ivariable used to store size of ARows, ACols, BRow s, BCols
after padding

ARowsP = blkARows * blockSize;
AColsP = blkACols * blockSize;
BRowsP = blkBRows * blockSize;
BColsP = blkBCols * blockSize;

int rowLimit;

#pragma css start

i M
1

/[This portion initialize matrices.

/IMatrice is divided between different tasks depen ding on blocks
of rows present in a matrice.

start = clock ();
t0 = time (NULL);
clkO = rdtsc ();

for (i = 0; i < bIkARoOwsS; i++)

{
initWithRand (&A [i * blockSize * AColsP], 'A', 1 )

for (i = 0; i < blkBRows; i++)

{
initWithRand (&B [i * blockSize * BColsP], 'B', 1 )
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# pragma css barrier

for (i = 0; i < blkARows; i++)
{

/IGetting to appropriate A row's index. First at

then at multiple of block

/IGetting to appropriate B col's position

/ICheck rough sheet for detail example

/IC [i * AColsP * blockSize + j * blockSize]

/li * AColsP * blockSize determines row displace

/IblkACols * blockSize tells about total element

arow of C

/IblockSize here tells in how many rows a block
occupies

rowLimit = min (i * blockSize + blockSize, ARows
i * blockSize;

multiply (&A [i * AColsP * blockSize], &B [0],

&CMine]i * BColsP * blockSize], rowLimit);

}

#pragma css barrier

end = clock ();

tl = time (NULL);

clk1 = rdtsc ();

#pragma css finish

diffMine = end - start;

timeDiffl = (clkl - clk0) / (2.8 * 1e9);

printf ("CPU_Time_taken: %6.6f \n", (double) diffM

CLOCKS_PER_SEC):

printf ("Wall_Time_taken: %Id \n", (long) (t1 - tO
printf ("Wall_Time_taken_rdtsc %f \n", timeDiffl);

printf ("Matrice A %i X %i...\n", ARows, ACols);
printMatrice (A, 'A");

printf ("Matrice B %i X %i...\n", BRows, BCols);
printMatrice (B, 'B");
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printf ("Matrice C %i X %i...\n", ARows, BCols);
printMatrice (CMine, 'C");

B.3. StarSs + UPC matrix multiplication code

B.3.1. starSs.h

#ifndef __starSs_h
#define __starSs_h

#include "hybrid.h"

#pragma css task input (blkCmpl, MYTHREAD, mat)
void checkAlIBIksInit (int *bIkCmpl, int MYTHREAD,

void masterThread (int MYTHREAD, double * aPtr, dou
*cPtr);

#pragma css task input(A, B, MYTHREAD, row, col, AF

void mul (double *A, double *B, double *C, int MYTH
col, int *AFlg, int *BFIg);

#pragma css task input(MYTHREAD, start) output(ptr,
void initRand (double *ptr, int MYTHREAD, int start

#pragma css task input(MYTHREAD, start) output(ptr)
void initZero (double *ptr, int MYTHREAD, int start

#pragma css task input(blkLoc, locA) output(strLoc,
void copyRmtBIKA (double *strLoc, int blkLoc, int |

#pragma css task input (blkLoc, locB) output (strLo
highpriority

void copyRmtBIkB (double *strLoc, int blkLoc, int |
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#endif

B.3.2. starSs.c

#include "hybrid.h"
#include "stdio.h"
#include "stdlib.h"
#include "starSs.h"
#include "string.h"

/[This function calls mul with relavent index depe
thread number.
/[For details on data decomposition see read me fi

void masterThread (int MYTHREAD, double *aPtr, dou

double *cPtr)
{

temp4Row, I, m;
double *tempAPtr, *tempBPtr, *tempCPtr;
double *rmtBIKAArr, *rmtBIKBArT;
int I2ABIks [I2BIkInRows * 12BIkInCols];
int 12BBIlks [I2BIkInRows * 12BIkInCols];
int locA, locB; //Contains location of remote bloc

inti, j, k, tempA, tempB, tempC, temp, temp4Caol,

int ACopiedFlg [I1BIkInRows], BCopiedFlg [I1BIKINR

/[Extra storage used can be removed here. only I1B

required.

rmtBIkKAArr = (double *) malloc (11BIkSize * 11BIKI
(double));

rmtBIkBArr = (double *) malloc (11BlkSize * 11BIKkI
(double));

memset ((void *) &I2ABIks [0], O, sizeof (int) * |
[2BIKInCols);

memset ((void *) &I2BBlks [0], O, sizeof (int) * |
I2BIkInCols);

memset ((void *) &ACopiedFlg [0], 1, sizeof (int)
I1BIkInRows);

memset ((void *) &BCopiedFlg [0], 1, sizeof (int)
[1BIKInNRows);

#pragma css start

for (i = 0; i < 12BIkInRows; i++)

{
for (j = 0; j < I12BIkInCols; j++)
{

[2BIkInCols], MYTHREAD, MYTHREAD * I11BIkSize + i *
[2BIkSize + j * 12Cols, &I2ABIks [i * 2BIkInCols +

}
}
for (i = 0; i < 12BIkInRows; i++)

initRand (&aPtr [j * 12Cols + i * I2BIkSize *
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for (j = 0; j < 12BIKInCols; j++)

{
initRand (&bPtr [j * 12Cols + i * I2BIkSize *
12BIkInCols], MYTHREAD, MYTHREAD * I11BIkSize + i * I2BIKkInCols *
I2BIkSize + j * 12Cols, &I2BBIks [i * 12BIkInCols + in;
}

}
for (i = 0; i < 12BIkInRows; i++)
for (j = 0; j < I12BIkInCols; j++)

{
initZero (&cPtr [j * 12Cols + i * 12BIkSize *

12BIkInCols], MYTHREAD, MYTHREAD * I11BIkSize + i * [2BIKInCols *

12BIkSize +j * 12Cols);
}
}

checkAlIBlksInit (&12ABlks [0] , MYTHREAD, 'A’);
checkAlIBlksInit (&12BBlks [0] , MYTHREAD, 'B');

[Iperform calculations untill all blocks computed.
for (k = 0; k < 11BlkInRows ; k++)

{
/lexactly one 11 block in each col. True when res
blocal present in local memory.
/lcondition used to avoid calculation of already
calculated block.

locA = (MYTHREAD / I1BIkInCols) * I1BIkInCols + k
locB = (MYTHREAD % I1BIkInCols) + k * [1BIkInCols

if ((k%I1BIkInCols) == (MYTHREAD%I1BIKInCols)) &
(MYTHREAD/I1BIKInCols)))
{

tempAPtr = &aPtr [0];
tempBPtr = &bPtr [0];
ACopiedFlg [k] = 1;
BCopiedFlg [k] = 1;

}

else if (k%I1BIkIinCols) == (MYTHREAD%I1BIkInCols
{
tempAPtr = &aPtr [0];
tempB = (k * 11BlkInCols + (MYTHREAD % I1BIkInCo
* |1BIkSize;
ACopiedFlg [k] = 1;
copyRmtBIkB (&rmtBIkBArr [k * 11BIkSize], tempB,
locB, &BCopiedFlg [K]);
tempBPtr = &rmtBIkBArr [k * [1BIkSize];
}

/[Exactly one |1 block in each row. True when res
block present in local memory.
else if (k == (MYTHREAD/I1BIkInRows))

{
tempBPtr = &bPtr [0];
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tempA = k * [1BIkSize + (MYTHREAD / [1BIkInCols) *
[1BIkInCols * I1BIkSize;

copyRmtBIKA (&rmtBIKAArr [k * 11BIkSize], tempA,
locA, &ACopiedFlg [K]);

BCopiedFlg [K] = 1;

tempAPtr = &rmtBIKAArr [k * I1BIkSize];

}
/ICols blocks taken care of by first part of expr ession
/IRow block will be taken care of by second part of
expression.
/[Expression second part first determines block r ow number
/Ithan Xly it with number of blocks in a col to g et block
number
/land atlast its Xlied by number elements in a bl ock to
get appropriate array
/lindex.
else if (1((k%I1BIkInCols) == (MYTHREAD%I1BIkInCo Is)) &&
I(k == (MYTHREAD/I1BIkInRows)))
tempA = k *|1BIkSize + (MYTHREAD / |1BIkInCols ) *
[1BIkInCols * I1BIkSize;
tempB = (k * 11BlkInCols + (MYTHREAD % I1BIkInCo Is))

* |1BIkSize;

copyRmtBIKA (&rmtBIkAArr [k * 11BIkSize], tempA,
locA, &ACopiedFlg [K]);

copyRmtBIkB (&rmtBIkBArr [k * I1BIkSize], tempB,
locB, &BCopiedFlg [K]);

tempAPtr = &rmtBIkAArr [k * [1BIkSize];

tempBPtr = &rmtBIkBArr [k * I1BIkSize];

}
for (1 = 0; | < 12BIkInRows; I++)
{
for (m = 0; m < 12BIkInCols; m++)
{
for (j = 0; j < 12BIkInRows; j++)
mul (&tempAPtr[l * I2Rows * ILRows + j * 12Cols] , &tempBPtr [j *
[2Rows * [1Cols + m * |2Cols], &cPtr [I * I2Rows * [1Cols + m *
[2Cols], MYTHREAD, |, m, &ACopiedFlg [k], &BCopiedF lg [K]);
}
}
}

}

#pragma css finish

free (rmtBIKAATrT);
free (rmtBIKBArr);

}

#pragma css task input (blkCmpl, MYTHREAD, mat)

void checkAlIBIksInit (int *blkCmpl, int MYTHREAD , char mat)
{

int temp, i;
void (*funcPtr) (int) = NULL;

83



if (mat =="A")
funcPtr = &setFlagA;

else
funcPtr = &setFlagB;
while (1)
{
temp = 0;
for (i=0; i < (I2BIKInCols * I2BIkInRows); i++)
if (bIkCmpl [i] == 0)
temp = 1;
}
if (temp == 0)
(*funcPtr) (MYTHREAD);
return;
}
}
}
#pragma css task input(A, B, MYTHREAD, row, col, AF lg, BFlg) inout (C)
void mul (double *A, double *B, double *C, int MYTH READ, int row, int
col, int *AFlg, int *BFIg)
{
inti, j, k,temp;
for (i=0; i <I2Rows; i++)
{
for (j = 0; j < I2Cols; j++)
for (k = 0; k < I2Rows; k++)
{
temp =i *[1Cols + j;
C [temp] +=A[i *11Cols + k] * B [j + I1Cols
}
}
}
}
#pragma css task input (MYTHREAD, start) output(ptr , blkCmpl)
void initRand (double *ptr, int MYTHREAD, int start , int *blkCmpl)
{
inti, j;
for (i=0; i <I2Rows; i++)
{
for j=0;j<I2Cols; j++)
ptr[i * I1Cols +j] = 1;
}
blkCmpl [0] = 1;
}
#pragma css task input (MYTHREAD, start) output(ptr )
void initZero (double *ptr, int MYTHREAD, int start )
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inti, j

for (i=0; i <I2Rows; i++)

{
for (j = 0; j <I2Cols; j++)
ptr [i * I1Cols + j] = 0;

}

#pragma css task input (blkLoc, locA) output (strLo
highpriority
void copyRmtBIKA (double *strLoc, int blkLoc, int |

{
while (getFlagA (locA) == 0);
copyRemoteBlockA (strLoc, blkLoc);
}

#pragma css task input (blkLoc, locB) output (strLo
highpriority
void copyRmtBIkB (double *strLoc, int blkLoc, int |

{
while (getFlagB (locB) == 0);
copyRemoteBlockB (strLoc, blkLoc);

B.3.3. hybrid.h

#ifndef __hybrid_h___
#define __hybrid_h___

/IMandatory conditions for levell (11) and level2 (
/N2 <= 11 and 12 should be multiple of 11

/N1 <= (dimensions of matrices) and should be mult
dimensions.

#include "starSs.h"

#define ARows 2048

#define ACols 2048

#define BRows 2048

#define BCols 2048

#define I1Rows 1024

#define I1Cols 1024

#define I2Rows 1024

#define 12Cols 1024

#define 11BIkSize (I1Rows * [1Cols)
#define 11BIkInRows (ARows / I1Rows)
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#define 11BIkInCols (ACols / I1Cols)
#define 12BIkSize (I2Rows * [2Cols)
#define 12BIkInRows (ILRows / I2Rows)
#define 12BIkInCols (11Cols / 12Cols)

void memGet (double *ptr);

void barrier ();

void copyRemoteBlockA (double *APtr, int ALoc);
void copyRemoteBlockB (double *BPtr, int BLoc);
int getFlagA (int loc);

int getFlagB (int loc);

void setFlagA (int loc);

void setFlagB (int loc);

#endif

B.3.4. hybrid.upc

#include "hybrid.h"
#include "upc_relaxed.h"
#include "time.h"
#include "unistd.h"
#include "rdtsc.h"

shared [I1BIkSize] double a [ARows * ACols];
shared [I1BIkSize] double b [BRows * BCols];
shared [I1BIkSize] double ¢ [ARows * BCols];
shared [1] int blkFlagsA [ILRows * |1Cols];
shared [1] int blkFlagsB [ILRows * |1Cols];

int getFlagA (int loc)

return blkFlagsA [loc];
}

int getFlagB (int loc)

return blkFlagsB [loc];
}

void setFlagA (int loc)

blkFlagsA [loc] = 1;
}

void setFlagB (int loc)

blkFlagsB [loc] = 1;
}

void barrier ()
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{

upc_barrier;
}
void copyRemoteBlockA (double *APtr, int ALoc)
{
inti;
upc_memget (APtr, &a [ALoc], I1BIkSize * sizeof (d ouble));
}
void copyRemoteBlockB (double *BPtr, int BLoc)
inti;
upc_memget (BPtr, &b [BLoc], I1BIkSize * sizeof (d ouble));
}
void printArray (char mat)
{
inti, j, k, I, m, n;
for (I = 0; | < 11BIkInRows; I++)
{
for (i=0; i <I1Rows; i++)
{
for (j = 0; j < I1BIKInCals; j++)
for (k = 0; k < 11Cols; k++)
{
if (mat =="A")
printf ("%6.2f", a[k +j*
I1BIkSize + i * [1Cols + | * 11BIkSize * I1BIkInCol s));
}
else if (mat =="'B")
{
printf ("%6.2f", b [k +j *
[1BIkSize + i * I1Rows + | * [1BIkSize * [1BIkInCol s));
}
else if (mat =="'C’)
{
printf ("%6.2f ", c [k +j*
[1BIkSize + i * I1Rows + | * [1BIkSize * [1BIkInCol s));
}
}
}
printf ("\n");
}
}
}
int main ()
inti, j;

double *aPtr, *bPtr, *cPtr;
clock_t start, end, diff;
unsigned long long clkO, clk1;
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double timeDiff;

aPtr = (double *) &a [MYTHREAD * [1BIkSize];
bPtr = (double *) &b [MYTHREAD * 11BIkSize];
cPtr = (double *) &c [MYTHREAD * |11BIkSize];

upc_barrier;
printf ("here\n");

if (MYTHREAD == 0)
{

start = clock (); //Noting start time of computat
clkO = rdtsc ();

}

masterThread (MYTHREAD, aPtr, bPtr, cPtr);
upc_barrier;

if (MYTHREAD == 0)
{

end = clock (); //Noting end time of computation.

clk1 = rdtsc ();
}

if MYTHREAD == 0)
diff = end - start;

timeDiff = (clkl1 - clkQ) / (2.8 * 1e9);
printf ("Time_taken ... %6.6f \n", (double) diff

CLOCKS_PER_SEC);

/*

*/

printf ("Time_taken_rdtsc ... %6.6f \n", timeDiff

printf ("Matrice A %i X %i ... \n", ARows, ACo
printArray (‘A");

printf ("Matrice B %i X %i ... \n", BRows, BCols
printArray (‘B");

printf ("Matrice C %i X %i ... \n", ARows, BCols
printArray ('C";

}

return O;
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