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Chapter 1

Introduction

1.1 Motivation and Objectives

In the recent years, Network-on-chip (NoC) has emerged as a new communication
infrastructure to decrease communication complexity of the current SoCs [11]. Like
any other digital system, NoC may become defect either during production or after
production.
The switches occupy bigger area on the NoC compared to the links. Therefore, the
probability of having fault in the switches is more than the links. Consequently,
dealing with the faulty switches is the main concern for designing fault-tolerant
routing algorithms [2][3]. On the other hand, recently a new structural test method
has been proposed [11] which can diagnose which port of defective switch is faulty,
and guarantees the healthiness of the other ports. So there is no need to disable the
defective switch. These two reasons, which are similar to each other from routing
algorithm point of view, motivated us to modify the available algorithms in order to
use the full capacity of the existing routing paths, and try to utilize all of the healthy
ports and links to achieve higher performance, less congestion and more throughput.
In this thesis, the capabilities of available fault tolerant routing algorithms will be
examined to find out which routing algorithm is able to deal with fully and partially
defective switches and defective links. The target is to develop an efficient deadlock
and live-lock free fault tolerant routing algorithm with the following properties:

1. Designed for mesh topology NoCs,

2. Deal with defective switches,

3. Deal with partially defective switches,

4. Deal with faulty links efficiently.
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1.2 Networks-on-Chip Concepts

In an NoC-based multi core system, processing elements are connected to each
other through NoC communication network. The Network-on-Chip(NoC) consists
of switches, links and network interfaces. Every processing element is connected to
the network through network interfaces. In the design of the NoC the most essen-
tial decisions are choosing a network topology, switching technique, and a routing
algorithm.

1.2.1 Network Topology

The shape of the wiring layout used to link switches is called the topology of the
network. Lots of topologies have been proposed for NoCs so far, such as mesh, torus,
star and octagon [27]. Several researchers have suggested that a mesh architecture
for NoC will be more efficient in terms of latency, power consumption and ease of
implementation, in comparison with the other topologies [28]. Due to the same
reason, mesh topology has been used in this thesis.

Switch Physical Port Bidirectional Channel

Figure 1.1: Example of 4 × 3 NoC mesh topology.

A 2-dimensional mesh network has m × n switches, where m and n are the radix
of dimension. Two neighboring switches are connected by a bidirectional channel,
which consists of two unidirectional physical ports. Figure 1.1 shows an example of
4 × 3 NoC mesh topology.

1.2.2 Switching Technique

The switching technique determines how and when the packet moves forward from
a switch. The switching techniques are categorized into three classes, called store-
and-forward switching, virtual cut-through switching and wormhole switching.
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Store-and-Forward Switching:
Store-and-forward is the simplest switching technique. Packets are forwarded in one
piece. The entire packet has to be stored in one switch buffer completely before
it is forwarded to the next switch. So, the buffer has to be large enough to store
the largest possible packets in the network. In this method an incoming packet is
completely stored in one switch and then is forwarded to the next switch. Once the
switch forwards a packet the communication can not be stopped [12].

Virtual Cut-Through Switching:
Virtual cut-through is an improved version of store-and-forward switching technique.
Part of the packet which contains the addressing information is called header. A
switch can begin to forward the packet to the next switch as soon as the addressing
information has arrived and the next switch gives a permission. The header contains
the required addressing information. This technique needs as much buffer as store-
and-forward but forwarding can be started before the whole packet arrives, so it has
less latency [12].

Wormhole Switching:
In wormhole switching, packets are divided into small and equal sized bit groups
which are called flits (flow control digit or flow control unit). Likewise for virtual
cut-through, forwarding begins as soon as the addressing information arrives. Ad-
dressing information is usually stored in the first flit of the packet which is called
header flit. The routing path chosen for the header flit to be forwarded is reserved
and the remaining flits of the packet are sent through the same path. The header flit
is forwarded only if it gets the permission of the next switch. Once the permission is
given the rest of flits must not wait for individual permission. Wormhole switching
requires less memory than the two other switching techniques, because there is no
need to store the entire packet into one switch. Due to the pipeline behavior of the
wormhole switching, the latency is less than the other methods. But this behavior
of wormhole switching makes it susceptible to deadlock because packets are allowed
to hold as many resources as their flits are, while requesting other resources [12].
Due to high cost of on-chip buffers and pipeline behavior, wormhole switching is
employed in many high-performance networks and almost all NoC architectures
proposed up to now.

1.2.3 Routing Algorithm

On chip communication must be fast and reliable, but it must not be complicated
and costly to implement. Considering on chip restrictions and application require-
ment, routing algorithm for network-on-chips have been introduced. There are many
kind of different algorithms for different systems to choose. Every system has its



4 1.2. Networks-on-Chip Concepts

own requirements for the routing algorithm.
Routing is the process of selecting a possible path for packet transmission over a
given network topology.
There are two main questions which must be answered before choosing a routing
algorithm. The first question is the place where the routing decision must be made.
There are two possibilities for the place where the decision can be made: The routing
decision can be made at the source upon packet sending, and the routing informa-
tion is stored in the packet header. Based on the destination address, the source
determines the routing path (switch by switch) through which the packet traverses
the network toward the destination. Therefore, no more routing decision has to be
made at intermediate switches.
In another manner, the decision making is done in intermediate switches and each
switch upon receiving packet can decide whether it should be delivered to the local
processor or neighboring switches.
The second question in choosing a routing algorithm is how the routing decision
must be made. In other words, how the routing algorithm must be implemented.
Table-based routing and algorithmic routing are two main possibilities for imple-
menting a routing algorithm.
In table-based routing, the destination address of the packet is used as an index in
the table, and the outcome is the address of the next switch where the packet must
be forwarded to. The routing table is used in every switch of the network to deter-
mine the best routing path. Although the decision making in table based approach
is fast, there is a disadvantage for this approach. The main disadvantage is that as
the size of the network is increased the table size also grows rapidly, consequently
the switch area, energy and latency are increased [24].
On the other hand, in algorithmic routing, the decision about where to forward the
packet is made by a routing algorithm. Destination address, network topology and
in some advanced routing algorithms network traffic and congestion are the param-
eters which are considered to make the routing decision.
Routing algorithms can be also categorized into three classes, deterministic routing,
adaptive routing and stochastic routing.
Deterministic routing algorithms always use the same routing path between certain
sources and destinations. In other words, for every pair of source and destination,
there is a unique routing path, which will never change. For instance XY routing
algorithm is deterministic [21].
A routing algorithm is denoted adaptive if the routing between a certain source and
destination changes according to the network state such as defective switches or
traffic congestion. For example FADyAD is an adaptive routing algorithm [22].
A stochastic routing selects the path randomly (probabilistic) and is based on a
coincidence and an assumption that every packet sooner or later reaches its desti-
nation [15]. Deflection routing which is presented in [19] is an example of stochastic
routing algorithm.
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Common Challenges of Routing Algorithms

The main challenges in the design of NoC routing algorithms are deadlock and live-
lock.
Ensuring that a routing algorithm is deadlock-free is one of the major issues. Dead-
lock occurs when packets are allowed to hold some resources while requesting others.
A common way to avoid deadlock is using virtual channel [17]. Because of the area
overhead, it is not used in this work. But, in a more sophisticated way the routing
algorithm itself can be designed so that a deadlock never happens. It will be de-
scribed in details in chapter 3.
Live-lock occurs when a packet moves around its destination without ever reaching
it. Live-lock may occur in stochastic routing algorithms [19]. The common solution
to avoid live-lock is using a counter in the packet. The counter counts how many
switches are traveled by the packet. When the counter reaches a predetermined
value, the packet will be dropped from the network [16]. The main problem of this
solution is that, for the dropped packet energy is consumed, but it doesn’t reach the
destination and must be resent. Besides, for non-adaptive rouitng algorithms, the
packet does not find any alternative path to be routed to the destination. Therefore,
the live-lock won’t be avoided.

State-of-the-Art Routing Algorithms

Several routing algorithms that require no virtual channel have been proposed for
mesh topology. Although virtual channels make the routing algorithm more flexible,
this achievement is not for free due to the big area overhead which is required for
the implementation of virtual channels.
XY routing is one of the most popular deterministic routing algorithms, due to
its simplicity, and fast decision making. The algorithm routes the packet first in x
dimension (row) until the packet reaches to the correct column where the destination
is located, and then routes the packet in y dimension (column) until the packet
reaches to its destination. The main problem of XY routing algorithm is that it
provides no adaptiveness [23].
Turn model algorithm is another approach that avoids the deadlock by prohibiting
the minimum number of turns. All turning limitations are required to prevent cyclic
dependencies that can cause deadlock. For instance, west-first routing algorithm
prevents all turns to the west. So, the packets which their destination is in the west
side must be first forwarded as far as necessary to the west and then forwarded to
the south or north. The main problem of these algorithms is that the adaptiveness
that is provided is highly uneven [23]. The odd- even (OE) turn model [23] is a newer
version of turn model algorithms, which classifies columns as either odd or even and
prevents different turns in the odd and even columns, unlike the turn model which
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prohibits certain turns in order to achieve deadlock free algorithm. The degree of
routing adaptiveness provided by this method is more even [23].

State-of-the-Art Fault Tolerant Routing Algorithms

The routing algorithm which doesn’t lost its functionality in presence of fault is
called fault tolerant routing algorithm. In the network-on-chip, the faults may oc-
cur in the switches, the links and in the network interface. Faults in the network
interface can be handled by processing element, and the fault tolerant routing al-
gorithm is dealing with the faults in the switches and in the links. The task of
a fault tolerant routing algorithm is to guarantee packet transmission between as
much processing elements as possible, even in the NoC with a certain number of
defective switches and links.
There has been significant works on fault tolerant routing algorithms for NoCs since
1995 [1]. Several fault tolerant routing algorithms have been developed which con-
sider both faulty links and faulty switches. Some of these algorithms are imple-
mented without virtual channels.
One of them is table-based algorithm such as the method presented in [4]. The
routing algorithm which is presented in this work reconfigures network routing table
in an offline process. Each switch contains a routing table, which lists an output
port for each destination in the network. But due to area overhead, table-based
algorithms generally are not recommended for the large NoCs.
One of the common solutions for fault tolerant routing algorithms is the region based
algorithms, which have been widely proposed since the mid of 90s [1][5][6][7][8][9].
The main idea is considering a rectangular area around the faulty switches and faulty
links and routes the packets around this region. In order to avoid deadlock, some
especial turns are prohibited. The main drawback is that a lot of healthy switches
have to be deactivated to guarantee deadlock free.
One of the region based fault tolerant routing algorithms that uses the odd-even turn
model has been presented in [5]. The algorithm can provide high routing control,
but it does not handle the defective switches in the network boundaries, and lots of
healthy switches have to be deactivated.
In 2010, a new region based algorithm has been proposed, which reduces the num-
ber of deactivated healthy switches [10]. Although it still deactivates a number of
healthy switches to achieve deadlock free, the main drawback is that a link failure
is modeled as two faulty switches. This point motivated us to provide an efficient
solution for faulty links. Another motivation for this thesis is that a new structural
test method has been proposed [11] which can diagnose which port of the defective
switch is faulty.
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1.3 Thesis Organization

This thesis is composed of six chapters. The current chapter states the motivation,
objectives and background on the subject. Chapter 2 discusses the proposed al-
gorithm. In chapter 3 we prove that the algorithm is deadlock-free. Chapter 4 is
intended to provide the experimental results and algorithm evaluation. And chapter
5 is the conclusion, where we will summarize our work within this thesis and mention
the future work. The last part of this thesis comprises the reference.





Chapter 2

The Fault Tolerant Routing
Algorithm

In this section, the fault tolerant routing algorithm is described in details. The pro-
posed algorithm is an enhancement of the available region-based approach for NoCs
[1]. The main problem of region-based algorithm is that the faulty link is represented
as two faulty switches [8]. This solution deactivates two partial defective switches.
On the other hand, a new structural method has been proposed recently[11] which
can diagnose which port of the defective switch is faulty. In our algorithm a switch
with one faulty port is not deactivated. In other words, we support partial-defective
switches.
The main idea of the routing algorithm is to create a rectangular shape faulty region
to achieve deadlock free and reduce routing difficulty. The rectangular shape faulty
region is constructed by deactivating healthy switches based on the state of the
neighboring switches in the configuration phase. The detail of switch deactivation
will be discussed in section 2.2.

2.1 Notations and Assumptions

The faulty switches are detected in production phase, and with diagnosis, the faulty
port of the faulty switch is distinguished [11]. This information is stored in the state
registers in each switch and will be used in configuration phase later on.
A switch is called faulty if it is not diagnosable which port is faulty. A switch is
called semi-faulty if it only has a single faulty port. According to these definitions,
the faulty switches can not be considered as source, destination and intermediate
switches. A semi-faulty switch might be source, destination, or intermediate switch,
it might be deactivated too, it depends on the state of its neighboring switches,
which is described in details.
The initial labeling is done based on the provided information by production test
and diagnosis. The initial labeling will be changed during configuration phase to
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the labels required for the routing: ring, deactivated, faulty, unsafe, active, chain
and s-chain.
The routing algorithm is divided into two main phases, configuration phase and
packet routing phase, which will be described separately.

2.2 Configuration Phase

2.2.1 Configuration

A configuration phase is required before routing algorithm able to route packets.
The configuration phase is divided into six steps: 1) switch deactivation, 2) Ring
construction, 3) Chain and s-chain construction, 4) Reference switch assignment,
5) Unsafe switches and 6) Highway concept. In the following these six steps are
described.

1- Switch Deactivation

The switches which are labeled faulty remain faulty in the configuration phase. But
the label of semi-faulty switches will be changed to either deactivated or unsafe based
on the location. Some of the non-faulty, and semi-faulty switches are deactivated in
this step, in order to construct rectangular shape faulty regions.
As it is shown in listing 2.1, a non-faulty switch is deactivated if there is at least one
faulty or deactivated neighbor switch in both row and column or if its two neighbor
switches in row are faulty [3], and a semi-faulty switch is deactivated if it has two
or more faulty, deactivated or semi-faulty neighboring switches.
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Listing 2.1: Switch deactivation procedure

While ( no more switch is deactivated)
{
for all n // number of switches
if (switch[n] has at least one faulty or deactivated neighbor

in both column and row or switch[n] has two faulty or
deactivated neighbor in row )

switch[n] is deactivated

for all n
if (switch[n] is semi-faulty and has more than one semi-

faulty, faulty or deactivated neighbor)
switch[n] is deactivated

}

Figure 2.1 shows the switch labeling after the deactivation step in a 7 × 7 NoC. Ac-
cording to the definition of faulty region, faulty, semi-faulty and deactivated switches
must form a rectangular area which is surrounded by non-faulty switches. In this
example, initial labeling says there are four faulty switches and five semi-faulty
switches. Switch (3,1) and (2,2) are deactivated due to having two faulty neigh-
bors. One of the semi-faulty switches, which is located at (5,5) is changed to the
deactivated switch, because of having two semi-faulty neighbors. But switches (1,5)
and (2,5) remain as semi-faulty switches due to having only one semi-faulty neigh-
bor. Deactivation procedure must be repeated until the procedure does not find any
switch to be deactivated.
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1 2 30 4 5 6

0
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Faulty Port

Healthy Port

Figure 2.1: An example of a faulty network.

2- Ring Construction

The second step is to construct the rings. The switches surround the faulty region
construct the ring. The switches in the ring are distinguished by two simple rules:

1. Each active switch which has a faulty or deactivate neighbor is a ring switch.
Figure 2.2 shows that all active switches around the (2,1), (3,1), (2,2) and
(3,2) are labeled as ring switches. Additionally the other four corner switches
of the faulty region are considered as a ring switch. For instance in figure 2.2,
the switches (1,0), (4,0), (4,3) and (1,3) are considered as ring switches.

2. Semi-faulty switches and their two out of four neighbors, which are orthogonal
with the faulty port of this switch are the ring switches. As an example in
figure 2.2, the semi-faulty switch (1,5) and its two neighbors (1,4) and (1,6)
are labeled as ring switches and also the semi-faulty switch (2,5) and its two
neighbors (2,4) and (2,6) are labeled as ring switches.

Figure 2.2 shows all of the ring switches in yellow boxes around the faulty regions.
After execution of step 1, switch deactivation, and step 2, ring construction, no
switch with semi-faulty label will remain. Some of them are labeled as deactivate in
step 1 and the rest will be labeled as ring switch during step 2.
A ring switch may be in two different rings. in this case an overlap flag is set in



2.2. Configuration Phase 13

the switch. There is a different routing algorithm for this condition, which will be
clarified in the packet routing section.

0

1

2

3

4

5

6

Deactivated

Ring

Faulty Switch

7

Active

1 2 30 4 5 6

Faulty Port

Healthy Port

Figure 2.2: Ring construction around the faulty region.

3- Chain and S-chain Construction

Faults in boundaries are not supported in some region-based algorithms. To extend
the routing algorithm for faults in the boundaries, two new switch labels called chain
and s-chain must be added. The ring is called chain if the faulty region touches
the west boundary of the mesh, and the ring is called s-chain if the faulty region
touches the south boundary of the mesh.
Figure 2.3 demonstrates eight possible location for faulty regions which touch the
NoC boundaries. According to our assumption switches around faulty regions 1
to 5 are labeled as ring switches. Faulty region 6 is surrounded by s-chain labeled
switches and the label chain is used for the switches around faulty regions in location
7 and 8.
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Figure 2.3: Possible position of the boundary ring, chain and s-chain.

As it is indicated in figure 2.4, there is a s-chain around the faulty switch (3,7), and
there is a chain around the faulty switch (0,3).

4- Reference Switch Assignment

The switch in the northeast corner of the ring is called reference switch of the ring.
The reference switch coordination must be stored in all of the ring switches. This
information is needed during the packet routing. In figure 2.4, there are five faulty
regions, which are distinguished with rectangular shapes, the switches (4,0), (1,2),
(6,4), (4,6) and (2,3) are the five reference switches of the rings, chain, and s-chain.
In an overlap ring switch like switch (1,4), two reference coordinations, (4,0) and
(1,2) must be stored.
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Figure 2.4: Ring creation around the faulty region.

5- Unsafe Switches

To reduce the number of deactivated switches, we define a new class of switches,
called unsafe switches, for them the connected processing element can send and
receive packets, but the switch itself can not be used as an intermediate switch.
Deactivated switch is labeled as unsafe if it has at least one healthy neighboring
switch in the west, south or east with healthy bidirectional communication link.
There is only one exception that may be considered as an intermediate switch.
The unsafe switch that is located in west-east highway can be considered as an
intermediate switch.
For instance in figure 2.4, all the deactivated switches are changed to the unsafe
switches. Switch (2,2) has a healthy neighboring switch in the west side, switch
(3,1) has a healthy neighboring switch in the east side and switch (5,5) has a healthy
neighboring switch in the east side.

6- Highway Concept

Decreasing the latency and having more balanced traffic is the motivation behind
the highway idea. This idea takes the advantages of the ability to find the faulty
port in a defective switch. The main idea of the highway is to route the packets
through the faulty region. In a highway the packets are allowed only to move in
one direction. Therefore destination address of the packet must be checked before
entering to the highway. Figure 2.5 shows an example of routing a packet through
the faulty region using a highway from west to east.



16 2.2. Configuration Phase

1 2 30 4

0

1

2

3

4

Ring

DS

Highway Flag

Switch (2,2)

Exit Address

F

(3
,2

)

F

TF

Faulty Port Healthy Port Highway

Figure 2.5: An example of the west-east highway.

In each ring switch, there are four highway flags and their corresponding exit ad-
dresses. The east highway flag is true if there is a healthy and direct path from
the west side of the ring to the east side. The exit address is the address of the
switch in the east boundary of the faulty region, where the packets exit from the
highway. The same definition is used for the other three highway flags and addresses
correspondingly.
For instance in figure 2.5, the south, west and north flags of the switch (2, 2) are set
false, because there is no highway for these three directions. Since there is a healthy
path from the west side to the east side of the faulty region, the highway flag in the
east is set to true and its corresponding exit address is set to (3,2).
Three rules must be applied during highway construction to ensure the deadlock
avoidance:

1. The condition for having the east-west and south-north highways is that: there
must be no unsafe switch in the highway path. Figure 2.6 shows an example
of east-west and south-north highways. The reason for this limitation will be
discussed in the deadlock-free proof section.
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Figure 2.6: The two possibility of south-north and east-west highways.

2. The entrance switch of the highway can not be an overlapped ring switch (A
ring switch which has more than one reference).

3. Only five turns (WS, SE, WN, SW and NE) are allowed for the packet enter-
ance to the highways.

The reason behind these rules will be discussed in the deadlock-free proof section.

2.3 Packet Routing

After configuration phase is completed, the network can be used for the communi-
cation. In this section, we explain how the routing algorithm works and we start
with packet structure.

2.3.1 Packet Header Structure

Figure 2.7 shows, the packet header which consists of source and destination ad-
dresses, packet type and reference fields.

Source Address Destination Address ReferencePacket Type

Figure 2.7: Packet header fields.

Source address indicates the switch address where the packet is generated in pro-
cessing element and is injected to the network. Destination address indicates the
switch address where the packet is going to reach and be delivered to the processing
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element.
The reference field saves the reference switch of the latest ring the packet has tra-
versed. The reference field of the packet is used for the routing of the packets of
type RO and where the switch has more than one reference switches (overlapped
condition).
There are three types of the packets, row first RF, column first CF and row only
RO. The usage of the packet type on routing algorithm will be described in the next
section.

2.3.2 Routing Algorithm

The routing algorithm is distributed, and each switch after receiving the packets
makes the routing decision according to the header information, the switch position
and the switch label. Each switch changes the packet type when the packet is
forwarded to the next switch. The packet type is set initially to the RF, and it
may be changed dynamically in its path to the destination base on the current and
destination coordinations. As it is shown in figure 2.8 the packet type is changed
from RF to CF either when current switch is located in the same column as the
destination or the destination switch is located in the east side of the current switch
but in a different row. The packet is called RO if the current and the destination
switches are located in the same row and the destination switch is located in the
east side of the current switch.

Current Node 

CF

CF

RO

Current Node 

Current Node 

Destination Node 

CF

CF

RF

Destination Node 

Destination Node 

NE

SE WN

WS

Figure 2.8: Packet type changing priority [6].

Once a packet type is changed to CF it can not be changed back to RF, and if a
packet type is changed to RO, it will not be changed to any other types.
Figure 2.9 shows the packet type modification while the packets are moving from
different sources to different destinations. Suppose that a packet is sent from S1
to destination D1. The packet starts as an RF packet since D1 is in the west of
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S1, the packet type changes to CF packet when it reaches switch (2,2), which is on
the same column. Now consider sending packet from source S2 to destination D2,
packet type is CF since D2 is in the east of S2, when the packet reaches to switch
(0,5) the packet type changes to the RO. The reason is that current switch and the
destination switch are in the same row and the destination is located in the east side
of the current switch. For the same reason the last packet which is traveling from
S3 to the D3 has RO packet type.

D31

2

3

4

5

S1

S3

S2

3

(RF)

D2

1 2 30 4 5

0 D1

(RO) (CF)

Figure 2.9: Example of packet type changing.

The routing algorithm for non-faulty regions has the same characteristic as XY
routing algorithm, in both of them four turns out of eight turns are not made. As
it is shown in figure 2.8 there exists only SE, NE, WN and WS turns in algorithm
and in XY routing algorithm exists ES, EN, WN and WS.
In the faulty situations, the ring switches are able to navigate the packets around
the faulty regions toward their destinations.
After packet type modification, the switch uses a decision tree to route the packet
based on the routing algorithm rules. Figure 2.10 shows the decision tree for the
routing algorithm according to the switch type and packet type.
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Figure 2.10: Routing algorithm decision tree.

As it is shown in figure 2.10, there are 16 different decisions that may occur during
routing of a packet in each switch. If the destination address is equal to the current
switch, the packet is delivered to the local processing element of that switch. In
addition if the destination is in the neighbor of the current switch and there is a
healthy link between them, the packet is forwarded directly to the destination re-
gardless of the switch label. In the following, the packets which intend to move from
north to south are called NS packets, and the packets that intend to move from
south to north are called SN packets, C stands for the current switch, D stands for
the destination switch and S stands for the source switch. In order to have a better
understanding, the decisions are described by pseudo-codes.
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2.3.3 Decisions of Active Switch

All healthy switches, except ring switches are labeled as an active switch. As it is
shown in listing 2.2, decisions of active switch only depends on the packet type and
the destination address.

Listing 2.2: Decisions of active switch

*********Decision 1, CF packet:
if (packet is NS)
forward the packet to the south port;

esle if (it is SN packet)
forward the packet to the north port;

*********Decision 2, RO packet:
The packet must be forwarded to the east port;

*********Decision 3, RF packet:
The packet must be forwarded to the west port;

2.3.4 Decisions of Ring Switch

Decision 4, CF packet:
The decision making in ring switches is based on the packet type, destination address
and the position of the ring switch in the ring. Listing 2.3 shows the pseudo code for
the CF packet type. CF packets can be divided also in two forms. The packets which
intend to move from south to north (SN packets), and the packets that intend to
move from north to south (NS packets). In the ring switches there are three different
ways of routing the SN packets, forwarding to north port, routing clockwise and
routing counterclockwise. It is the same for the SN packets but instead of forwarding
the packets to north port the packets are forwarded to the south port. For instance,
when the SN packet is in the north boundary of the ring, it will be routed to the
north port, or when the NS packet is in the north boundary of the ring, it will be
routed counterclockwise.
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Listing 2.3: Decisions of ring switch for CF packets

Decision 4, CF packet:
if (packet is SN)
{
if (highway north direction flag is true and the north exit

address is greater than destination.y)
forward the packet to the north port;

if (C is on the north boundary of the ring)
forward the packet to the north port;

else if (C is on the west boundary of the ring and D is in the
same column as C)

forward the packet to the north port;

else if (D is lower than reference switch of the ring and C is
in the same column as D and C is in the west side of the
reference switch and D is not one column before the
reference switch)

route counterclockwise;

else if (D is lower than reference switch of the ring and D is
in the next column of the C and D is in the west side of the
reference switch and D is not one column before the

reference switch)
route counterclockwise;

else if (the destination is lower than reference switch of the
ring)

route counterclockwise;

else
route clockwise;

}
else if (packet is NS)
{
if (highway south direction flag is true and the south exit

address is less than destination.y)
forward the packet to the south port;

else if (C is on the east or south boundary of the ring)
forward the packet to the south port;

else if (C is on the west boundary of the ring and the west
port is available)

forward the packet to the west port;

else
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forward it counterclockwise;
}

Figure 2.11 shows an example of an NS packet which is traveling from north to the
south part of the network. Since the source and destination switch are located in
the same column address, the packet type is CF. Later on, when the packet reaches
to the destination row, the packet type is changed to the RO.

D
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S

Faulty SwitchCF Packet

5

RO Packet

Figure 2.11: Example of an NS packet which is routed counterclockwise.

Figure 2.12 shows another example for CF packets which are traveling from south
to north part of the network. As it is shown, when the destination address (D1) is
higher than reference switch the packet is routed clockwise, but when the destination
address (D2) is lower than reference switch the packet is routed counterclockwise.
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Figure 2.12: Example of SN packets which are routed counterclockwise and
clockwise.

Decision 5, RO packet:
Listing 2.4 shows the pseudo code for the RO packet type. The decision making
for RO packets in the ring switch is almost the same as active switches. The only
difference is that when there is no possibility to forward the RO packets to the east
port, the packets are routed counterclockwise.

Listing 2.4: Decisions of ring switch for RO packets

if (highway east direction flag is true and the east exit
address is less than destination.x)

forward the packet to the east port;

else if (C is in the same row as D and the east port is
available)

forward the packet to the east port;

else
route counterclockwise;

Figure 2.13 shows an example of an RO packet. As already mentioned, the packet
type is RO when the destination switch and current switch are in the same row, and
the destination is located on the east side of current switch. Switch (1,2) is an active
switch, so the packet is forwarded to the east port. Switch (2,2) is a ring switch and
the east port is not available so the packet is routed counterclockwise. For the other
switches in figure 2.13 the east port is available so the packet is routed to the east
port.
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Figure 2.13: Example of RO packet.

Decision 6, RF packet:
Listing 2.5 shows the pseudo code for the RF packet type. The decision making
for RF packets in the ring switch is almost the same as active switches. The only
difference is that when there is no possibility to forward the RF packets to the west
port, the packets are routed clockwise.

Listing 2.5: Decisions of ring switch for RF packets

if (highway west direction flag is true and the west exit
address is greater than destination.x)

forward the packet to the west port;

else if (the west port is valid)
forward the packet to the west port;

else
route clockwise;

Figure 2.14 shows an example of an RF packet. As already mentioned, the packet
type is RF when the destination is located on the west side of current switch. Switch
(5,2) is an active switch, so the packet is forwarded to the east port. Switch (4,2)
is a ring switch and the west port is not available so the packet is routed clockwise.
For the other switches in figure 2.14 the west port is available so the packet is routed
to the west port of each switch.
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Figure 2.14: Example of RF packet.

2.3.5 Decisions of Chain Switch

As already mentioned in section 2.2, the ring is called chain if the faulty region
touches the west boundary of the mesh. Since there is no possibility of routing
packet in the west side of the chain, the routing algorithm is much simpler than a
normal ring. The listing 2.6 shows how the routing is performed in chain switches
for three different packet types.

Listing 2.6: Decisions of chain switch

*********Decision 7, CF packet:
if (packet is NS )
{
if (south port is available and D is not in the west of C)

forward the packet to the south port;

else
route clockwise;

}
else if (packet is SN)
{
if (north port is available and D is not in the west of C)

forward the packet to the north port;

else
route counterclockwise;

}
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*********Decision 8, RO packet:
if (C is in the same row as D and the east port is available)
forward the packet the east port;

else
route counterclockwise;

*********Decision 9, RF packet:
if (C is in the same row as D and the east port is available)
forward the packet to the west port;

else if (D is higher than C)
route counterclockwise;

else
route clockwise;

2.3.6 Decisions of S-Chain Switch

As already mentioned in section 2.2, the ring is called s-chain if the faulty region
touches the south boundary of the mesh. The listing 2.7 shows how the routing
is performed in s-chain switches for three different packet types. Basically, an RF
packet is always routed along west port as long as the west port is available, otherwise
it is forwarded counterclockwise. For an RO packet if current switch is in the same
row as destination switch and the east port is available the packed is forwarded to
the east port, otherwise it is routed clockwise. When the packet type is CF, for an
NS packet, it is routed clockwise and for SN packet, it is routed counterclockwise.

Listing 2.7: Decisions of s-chain switch

*********Decision 10, CF packet:
if (packet is NS)
{
if (C and D is in the west boundary of s-chain)
forward the packet to the south port;

else
route clockwise;

}
else if (packet is SN)
{
if (C is in the north or east boundary of s-chain and the north

port is available)
forward the packet to the north port;
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else if (C is in the west boundary of s-chain and the west port
is available)

forward the packet to the west port;

else
route counterclockwise;

}

*********Decision 11, RO packet:
if (C is in the same row as destination switch and the east

port is available)
forward the packet to the east port;

else
route clockwise;

*********Decision 12, RF packet:
if (the west port is available)

forward the packet to the west port;

else
route counterclockwise;

2.3.7 Decisions of Overlap Situtation

Decision 13, CF packet:
The overlap may occur between two or three rings. Each ring has its own reference
switch. The reference switches coordinates is compared, and if the packet is a SN
packet then the ring that its reference switch is more northwards is selected, and if
it is NS packet then the ring that its reference switch is more southwards is selected,
and after ring selection it is the same as decision 4 in the selected ring. There is
only one exception for the NS packet, if the packet is NS packets and C is on the
west boundary of the one of the rings (because of the overlap) and the west port is
available then the packet is forwarded to the west.

Decision 14, RO packet:
Overlap situation in the RO packet type is more complicated than the other packet
types, and only in this case the reference field of the packet header is required. If
the current switch is in the same row as the destination switch and current switch
is in the north east or south east corner of the previous ring then the ring that its
reference switch is more eastward is selected otherwise the ring is not changed, and
the ring that its reference switch is equal to the reference (already saved in to the
packet header) is selected, and after ring selection, decision 5 in the selected ring
will be taken.
Figure 2.15 shows two examples for two different cases. The switch (3,3) is the
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first overlapped switch, and it is located in the south east of the left ring. For the
blue packet, the current switch and the destination (D1) are in the same row so the
ring with the leftmost reference switch is selected, but the green packet selects the
ring which its reference switch is the same as reference field, which in this case the
reference field is (3,1).
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Figure 2.15: An example for decision 14 with RO packet.

Decision 15, RF packet:
The reference switches coordinate are compared, and the ring that its reference
switch is more westwards is selected, and then the rules of decision 6 in the selected
ring will be applied.

2.3.8 Decision of Unsafe Switch

Decision 16:
In the unsafe switch, no matter what the packet type is, the packet is forwarded to
the healthy neighboring switch, via the healthy port.





Chapter 3

Proof of Deadlock-Free

Deadlock may occur if the packets have the permission to hold some resources while
requesting for the other resources. In other words, if two or more than two packets
are waiting for each other resources in a cycle then deadlock occurs. The only way to
be relieved of the deadlock situation is that at least one packet releases the resources.
In the wormhole switching method the resources are the buffers of the channels in
which the packets are stored. Figure 3.1 shows an example of a deadlock situation.
In this example, four packets are waiting for each other’s resources in a cycle. Each
packet is represented with a color and the arrows show the direction of the packet to
be routed. The bold arrow indicates the resources which are currently occupied by
the packet while the dotted arrow shows the resources which are requested by the
packet. The red packet (to be routed from C to A) holds channel 3 and is requesting
channel 2 which is hold by yellow packet. In the same time the yellow packet is
requesting channel 1 which is hold by blue packet, while the blue packet requests
channel 4 which is hold by the green packet. Finally, the green packet requests
channel 3 which is hold by the red packet. In a cycle, all the packets hold a channel
and requesting another channel which is hold by a packet in the waiting cycle. This
is a deadlock situation. To avoid deadlock situations, the algorithm must route the
packets in a way that these kind of circular wait never happens.

B A

DC

1

2

3

4

A C

Source Destination

D B

C A

B D

Figure 3.1: Example of a deadlock situation involving four packets.
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To prove that the algorithm is deadlock-free, we use the alignment theorem [1],
explained in 3.1, and the theorem of channel dependency graph [14], explained in
3.2.

3.1 Alignment Theorem

Each channel is located between two neighboring switches. A turn consists of a
horizontal channel and a vertical channel. The channels have one switch in common
such that the source switch of one channel is the destination switch of the other; the
common switch of these two channels is called the turning switch of the turn[1].
As it is shown in figure 3.2, in the mesh architecture eight turns are possible. A turn
is called ES turn if the direction changes from east to south. In other words, an ES
turn consists of two channels, the first one to the east and the second one to the
south. According to the direction of the channels in the turn, rest of the turns are
called EN (form east to north), WN (from west to north), WS (from west to south),
SE (from south to east), NE (form north to east), NW (from north to west) and SW
(from south to west). The routing algorithm may prohibit some of the turns to avoid
deadlock. For instance, one of the consequence of the packet type is occurrence of
the four turns (WS, SE, WN and NE) which are allowed in all switches. The other
four turns may happen only in the ring, s-chain and chain switches.

WS

SE

EN

NW NE

WN

SW

ES

Figure 3.2: The eight available turns in mesh topology.

Allignment: Two turns are aligned if the turning switches of them are in the same
column, and there exists a set of packets, {P1, P2, .., Pi} such that: when P1 takes
the first turn, Pi takes the second turn, and there exists routing possibility through
the switches between two turns so that for all 1 ≤ j ≤ i , packet Pj waits for Pj+1
resources. For instance in figure 3.3, two turns EN, and NW respectively in switches
(4,5) and (4,1) are aligned, because they are in the same column and the blue arrows
show the possible routing path between these two turns.
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Figure 3.3: Example of two turns alignment.

Theorem 1: In the deadlock situation, at least one ES turn is aligned with one SW
turn, or at least one EN turn is aligned with one NW turn [1].

Proof: The deadlock situation may happen when a set of packets are in the waiting
cycle ( clockwise or counterclockwise like figure 3.3). The waiting cycle includes
both horizontal and vertical channels. Considering the right most column of a coun-
terclockwise waiting cycle (figure 3.3), it is observed that an EN turn is aligned with
a NW turn. For instance in figure 3.3, column 4 is the right most column of the
waiting cycle, and the NW turn at switch (4,1) is aligned with the EN turn at switch
(4,5). In the right most column of a clockwise waiting cycle, an ES turn is aligned
with a SW turn.
To avoid deadlock, such a cycle must not exist. Therefore, if the algorithm guar-
antees that the ES turn never is aligned with the SW turn (in a clockwise cycle)
the cycle is never made. In addition, to avoid the counterclockwise cycles it is suffi-
cient to show that an EN turn is never aligned with an NW turn. Consequently,the
deadlock is avoided.

3.2 Channel Dependency Graph

Definition 3: A channel dependency graph [14], D, for a given interconnection
network, I, and routing function, R, is a directed graph, D=G(C,E). The vertices of
D are the channels of I. The edges of D, are the pairs of channels connected by R:

E = {(ci, cj)‖R(ci, n) = cj for some n ∃ N}
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I interconnection network, a directed graph I=G(N,C)
N the set of switches
C the set of channels
R a routing function R: C × N → C
D the channel dependency graph
E the edges of D
ni a switch
ci a channel

Table 3.1: Summary of notation

Figure 3.4 shows an interconnected network and its corresponding dependency graphs.
The channels of the network are the nodes of the channel dependency graph. The
interconnected network in figure 3.4 has 8 channels, as a result the corresponding
channel dependency graph has also 8 nodes.

. . .

n1 n2

n4n3

c2

c3

c4

c1 c5c1

c8

c7

c6

Interconnection network Dependency graph Dependency graph

. . .

. . .

. . .
. . . . . .

. 
. 

.
. 

. 
.

. .
 .

. .
 .

. .
 .

. .
 .

c2

c1 c3

c4

. . . . . .

. .
 .

. .
 .

c8

c5 c7

c6

Figure 3.4: Channel dependencies in a bidirectional interconnected network.

Theorem 2: A routing function, R, for an interconnection network, I, is deadlock-
free iff there are no cycles in the channel dependency graph, D [14].

3.3 Deadlock-free Proof for Non-Faulty Regions

Based on the packet type rules the ES and EN turns are never happened in a non-
faulty network. As a result, according to the theorem 1, the algorithm is deadlock-
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free for non-faulty region.

3.4 Deadlock-free Proof for Non-Boundary Faulty
Regions

As mentioned earlier, when a fault occurs in the network, a ring around the faulty
switches or links is constructed. The basic idea of the routing algorithm in faulty
cases is to turn the packets around the faulty region using the ring. The faulty
region may contain either one or more faulty switches, or just a faulty link. Around
a faulty region, we can imagine four areas in the north, west, south and east. In
each of the areas, current switch or destination switch may exist. Figure 3.5 shows
four areas next to each other. There are twelve combinations of placing current and
destination switches around the faulty region. As an example, the current switch
may be on the west side of the faulty region and the destination on the east side of
the faulty region. This combination is presented by an arrow between the current
and the destination location (west → east). Based on the packet type rule, four
of these combinations which are north → west, south → west, west → north and
west → south will never meet the faulty region. But there are eight other cases
that may meet the faulty region. Figure 3.5 shows the eight possible routing paths
which meet the faulty region. Packets in the path 1, path 2, path 3 and path 4 are
routed counterclockwise around the faulty region. The other four cases are routed
clockwise around the faulty region. The corresponding decision for the packets in
path 1, path 2 and path 4 are decision 4, and the corresponding decision for packets
in path 3 is decision 5 which forwards the packet counterclockwise. According to
decision 6, all the packets which their current address is on the east side of the ring
and during traveling meet that area( i.e., path 5, path 6 and path 7), are forwarded
clockwise. Finally, (south→ north) packets (i.e, path 8) are routed clockwise since
their destination address are upper than the reference switch (decision 4).
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Faulty Region Faulty Region

Path 5,6,7Path 3

Path 1,2

Path 8Path 4

West North

South

East

West North

South

East
ES

EN

Figure 3.5: path 1(north→ east), path 2(north→ south), path 3(west→ east),
path 4(south→ east), path 5(east→ west), path 6(east→ north),
path 7(east→ south), path 8(south→ north)

Because of routing rule around the faulty region, all eight turns occur and the
deadlock may happen. In order to prove the algorithm is deadlock-free, according
to the theorem 1, we need to prove that ES turn is not aligned with SW turn and
EN turn is not aligned with NW turn. As it is shown in figure 3.5, the ES turn can
only be made in the west side of the ring, and EN turn can only be made in the
southeast corner of the ring. In the following these two cases are analyzed and we
will show that the critical turns are never aligned with each other and the algorithm
is deadlock free.

3.4.1 Case 1: EN Turn

As presented in the previous section, an EN turn can be made only in the southeast
corner switch of the ring. In figure 3.6, the ring switch in which the EN turn may
happen is shown by an east-north green arrow.
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Figure 3.6: Example of an EN turn on the southeast corner switch of the ring.

In order to have a deadlock-free algorithm, we need to show that EN turn is never
aligned with a possible NW turn in the same column. First we must show that the
NW turn never occurs in the right most column of the same ring. For example, our
algorithm must not allow any NW turn in switches (4,3) and (4,2) in the ring of
figure 3.6. The NW turn in switch (4,3) will route the packet into the faulty region,
which is not a correct routing decision. According to figure 3.5 there is no possibility
to have a turn in the switch (4,2), the main reason is that path 5, path 6 and path
7 are always routed clockwise (decision 6) and the path 8 is also routed clockwise
because the destination is higher than the reference switch (4,2) (decision 4).
Another position that NW turn may occur is higher than the reference switch of
the current ring, for example switch (4,1) in figure 3.6. Although this turn and EN
turn are in the same column (4), we will prove that there is no possible routing path
between these two turns; Therefore, they are not aligned. In order to have a routing
path between EN turn in switch (4,4) and NW turn in switch (4,1), there must be
a possible routing path between channel 1 (blue arrow) and channel 2 (black arrow)
presented in figure 3.6. In other words, if a packet uses channel 1 to be routed in the
north direction, it will then choose channel 2 to continue its path toward the north.
Now, we will show that the case will never happen. The reason that there is no
connection between channel 1 and channel 2 is that any packet traveling from south
to north will never use the east boundary of a ring except if its destination is located
lower than the reference switch of the ring (decision 4). Therefore, in spite of having
EN and NW turns on the same column, there exist no possible routing path which
connects these two turns. Therefore, they are not aligned. Consequently, there will
not cause a deadlock.
Since the small ring is a new idea in this work, for the sake of completeness we have
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investigated the situation for the smaller rings too. In the example of figure 3.7 the
same situation has been shown with a smaller ring. In this case, we can use the
same explanation and prove that this case is also deadlock-free.

1 2 30 4 5

1

2

3

4

Faulty Switch  EN Turn

0

5

NW TurnFaulty Port Healthy Port

Figure 3.7: Faulty network for a vertical small ring.

Figure 3.8 shows another possible example with the smaller rings. The point is that
there is no possibility of EN turn in the south east corner of the small horizontal ring.
The reason is that, EN turn will be only made if the east side of the ring consists
of at least three ring switches. But in a small horizontal ring, the east boundary of
the ring consists of two switches.
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Figure 3.8: Faulty network for a horizontal small ring.
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3.4.2 Case 2: ES Turn

As already mentioned the only place which ES turn may occur is on the west bound-
ary of the ring. In figure 3.9, the ring switch in which the ES turn may happen is
shown by an east-south green arrow.
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Figure 3.9: Example of ES turn in the west side of the ring.

In order to have a deadlock-free algorithm, we need to show that ES turn is never
aligned with SW turn.
The first possible case that SW turn may happen is in the west side of the same
ring, the same as switch (2,3) in figure 3.9. But as it is shown in figure 3.5 there is
no SW turn in the west side of the ring, and the SW turn only occurs in the north
or southeast of the ring.
The second possible case that the SW turn occurs outside the ring is in the north
side of another ring. Figure 3.9 shows an example of this situation. Although the
SW turn (2,4) and ES turn (2,2) are in the same column, we will show that they are
not aligned, and these two turns cannot be the cause of deadlock. The reason is that,
the NS packets (figure 3.9 ) which travel from north to south and their destination is
under the south boundary of the ring are not allowed to use the west boundary of the
ring, and they are routed one step toward the west as long as a channel is available
(decision 4), so there is no possible path between these two turns. The packets
which their destination is on the east side of the ring are routed counterclockwise,
and only these packets are allowed to use west boundary ring switches.
Accordingly, all of the SW turns under the south boundary of the ring cannot be
the cause of deadlock.
The same proof can be used for the smaller rings too. Figure 3.10 shows a vertical
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small ring in which ES turn at the switch (2,2) is possible. Since the same rules for
packet routing is used for the smaller rings, the same proof can be used to explain
the situation of figure 3.10 is deadlock-free
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Figure 3.10: An example of vertical small ring.

Since the small ring is a new idea in this work, for the sake of completeness another
situation of the small ring is shown in figure 3.11.
If the RO packet faces to the faulty or deactivated switches in the west boundary
of ring ES turn will be made. Since there is no faulty or deactivated switch in the
west boundary of the small vertical ring, there is no possibility of ES turn. In order
to have consistent algorithm for the rings the NS packet are not allowed to use west
boundary of the ring.

1 2 30 4 5

0

1

2

3

Ring Faulty Port Healthy PortFigure 3.11: An example of horizontal small ring.
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3.5 Deadlock-free Proof for Boundary Faulty
Region

As it was already discussed in the configuration phase, if there is a faulty switch in
the west boundary of the network, special rules must be applied for packet routing.
The ring around the faulty switch in the west boundary is called chain. Also, having
a faulty switch in the south boundary of the network enforces defining a set of rules
for the ring switches around it. The ring is called s-chain. Figure 3.12 and figure 3.13
show these two faulty regions. As it is shown in figure 3.12 the ES turn can be made
in northeast of chain and s-chain, and EN turn can be made in the southeast corner
of the chain. Since the chain and the s-chain are in the boundary of network the and
the boundary switches are faulty, no cycle can be formed in their channel dependency
graph. For instance in figure 3.12 the channel 4, 8 and 11 are not connected to any
other nodes of the channel dependency graph. As a result, according to the theorem
2, these two turns can not be the cause of deadlock.
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Figure 3.12: Deadlock free proof for chain and s-chain, there is no cycle in the
channel dependency graph.

Figure 3.13 shows all possible paths around the s-chain switches. Path 1 shows the
routing path of the packet which is traveling from east side of the network and meets
the faulty region. Since the packet type is RF the packet is routed counterclockwise,
and the corresponding rule is decision 12.
Path 2 shows the routing path of the packet which is traveling from west side of the
network and its destination is in the east side of faulty region. Since the packet type
is RO the packet is routed clockwise, and the corresponding rule is decision 11.
Path 3 shows the routing path of the packet which is traveling from north side of
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the network and meets the faulty region, and its destination is in the east side of
faulty region. Since the packet type is CF the packet is routed clockwise, and the
corresponding rule is decision 10.

Faulty Region
s-chain

Faulty Region
s-chain

path 3

path 2

path 1

East

North

west

East

North

west

Figure 3.13: All possible paths around the s-chain switches.

As it is shown in figure 3.13 an EN turn can be made in the west side of the s-
chain. As an example, figure 3.14 shows the s-chain switch (2,3) which the EN turn
may happen. If we can prove that EN turns in the west side of the s-chain are not
aligned with NW then according to theorem one, this case is deadlock-free. As it
is shown in figure 3.13 there is no NW in the west side of the s-chain. So the first
possible position for the NW turn is upper than the north side of s-chain switch
(2,1). Although these two turns are in the same column, there is no possible routing
path between these two turns. The reason is that, according to the decision 10, the
CF packets which are in the west side of the s-chain are always forwarded one step
to the west.
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Figure 3.14: EN turn in the west side of the s-chain.

3.6 Deadlock-free Proof for Highway

3.6.1 Highway Without Unsafe Switches

Figure 3.15 shows possible path around the ring the same as figure 3.5 and the
highways which may exist. As shown earlier in section 2.2, only five turns (WS, SE,
WN, SW and NE) are allowed for the packet entrance to the highways. As mentioned
in configuration phase, the highway may contain unsafe switches. In this section, we
will discuss both cases and prove in any case the algorithm is deadlock-free. Firstly,
let’s assume that there is no unsafe switch in the highway.
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Figure 3.15: The four possible entrance to the highway and corresponding
turns, WS, SE, WN and SW.

According to the alignment theorem, two turns SW and ES turns, and also EN and
NW turns must not be aligned, in order to prove that the algorithm is deadlock-free.
Among the four turns, highways create only SW turns, which must be proven that
will never be aligned with ES turns.
The ES turn can be made in the west side of the ring but the SW can only be made
in the east side of the ring in case of a highway. Therefore, the only possible case
that these two turns are in the same column, is having two rings. This situation is
shown in figure 3.16.
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Figure 3.16: SW turn in the east side of the ring in case of highway.
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In this example, the packet is forwarded through the highway, and the SW turn is
made in the east side of the lower ring. Although the ES and SW turns are in the
same column, it has been already proven in section 3.4.2 that there is no possible
routing path between an ES turn in the upper ring and an SW turn which is made
lower than the south side of the upper ring. As a result these two turns are not
aligned and this situation is deadlock-free.

3.6.2 Highway With Unsafe Switches

As mentioned in section 2.2, the west-east highway is the only highway that supports
unsafe switches. Looking into figure 3.17, we observe that using west-east highway
may create SE and NE turns which are not one of the turns considered in alignment
theory. Therefore, using highway with unsafe switches will never cause deadlock.
The reason is that, SE and NE turns are the only possible turns for accessing this
highway (figure 3.17), and based on the alignment theorem we need to only consider
SW, ES, EN and NW turns, so these two turns are allowed to be used in each switch.
Hence, the deadlock can never happen.

Unsafe Switch
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Figure 3.17: Highway with unsafe switch.





Chapter 4

Simulation and Results

In this chapter, we present the experimental studies to evaluate the performance of
our algorithm in a defective NoCs. The quality of algorithm in terms of throughput,
latency and drop ratio in faulty cases is investigated, and compared with the state-
of-the-art region-based fault tolerant routing algorithm [7]. The simulation platform
for experimental results in this work is an open source systemC based NoC simulator,
which has been modified to implement our routing algorithm.

4.1 NoC Simulator

NoC architecture consists of many switches which are running in parallel, and in-
teracting concurrently. Since evaluating the performance of our algorithm in real
chip is complicated and time consuming, systemC based molding is preferred. The
systemC library accelerates simulation by using interface method calls (IMC) to im-
plement communication between hardware components [25].
Among available open source simulators the noxim network on chip simulator is
selected in this study. Noxim is an academic open source NoC simulator that takes
advantages of systemC library and developed at university of Catania (Italy) [26].
Noxim structure consists of switch module and a top level module that connects
the switches in a mesh form. Each switch module has two routers and processing
element sub-modules. The routing algorithm is performed in router module and
processing element handles the network traffic. Noxim has a command line user
interface, in which the network size, input buffer size, packet size, packet injection
rate and traffic pattern can be customize by the user.
Total number of received packets/flits, average throughput and max/min average
delay are the main monitoring parameters of the Noxim. The intermediate transac-
tions can be logged to monitor the packets transmission switch by switch.
Since Noxim was not designed for faulty network, fault injection feature, and re-
lated evaluation metric such as drop ratio was not provided. We have modified the
simulator in order to support faulty network features.
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4.2 Simulation Setup

This section describes how simulation is performed and what are the conditions that
is considered in our evaluation.

We evaluated our algorithm on 2D mesh network. The network size during sim-
ulation is fixed to 12×12 tiles. The input port of each switch has a FIFO size of 4
flits and we used uniform traffic model to simulate the performance of the network.
Under the uniform traffic model a PE sends a 4-flit packet to other PE with equal
probability. Simulation time is 6000 cycles and 1000 cycles as warm-up time. The
warm-up time means that the statistic results are considered after 1000 simulation
cycles in order to have more realistic evaluation. In non-faulty network each node
can generates 85 packets in 6000 simulation cycles without any packet loss.

We have simulated seven faulty conditions for the 12×12 network by injecting 1,
3, 5, 7, 10, 15 ,20 faults in the entire network. Simulation of each faulty condition
has been repeated 100 times, in each of them the faults are located randomly in
some of the network switches. To have a realistic distribution among the faults
which corrupt only one switch port (single port deactivation) , and the faults which
corrupt the entire switch operation (switch deactivation) the statistics provided by
[11] is used. Accordingly, 60% of the faults lead to port deactivation and the rest
40% have switch deactivation effect. The result are averaged over 100 simulations
for each faulty condition.

4.2.1 Evaluation Metrics

The performance metric used in evaluation are drop ratio, average latency and
throughput. which are defined as follows:

Drop ratio: Drop ratio shows the rate of unsuccessful packet deliveries, which
is defined by the following formula [11]:

drop ratio =
#injected packets−#received packets

#injected packets
× 100% (1)

In a network with live-lock and deadlock free routing algorithm, injected packets are
delivered to the destination when there exist enough resources in the network. Upon
packet injection by the sender processing elements, available network resources (i.e.,
buffer space for packet storage in the connected switch) are considered. When the
resources are not enough for the packet injection, PE cannot inject the packet. Ac-
cording to the application the packet may be dropped or wait until some resources
get released. In our simulations, we evaluate the network metrics under certain
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loads. When due to the non-enough resource packet injection must be postponed, it
is considered as a drop. Therefore, drop ratio parameter implicitly indicates to the
cases where resources are not enough to achieve certain load in the network.

Packet Latency: Packet latency is defined for each packet as the time between
packet injection by the sender and packet delivery at the destination, and it is com-
monly measured in clock cycle (simulation cycle). The latency has direct relation
with the network load (loadnet). Latency of a packet is less when the network load
is lower. The minimum time between packet injection and delivery can be counted
by the switch delays and the number of switches in the routing path. However, due
to network traffic, the packet has to wait in some switches to get required resources.
In this thesis, packet latency is calculated by the following formula:

latency = Treceive − Tsend (2)

In which Tsend is the time that the header flit of the packet leaves the source PE,
and Treceive is the time that the tail flit of the packet reaches the destination PE.

Throughput: Throughput refers to how many packets can be transferred and
received by destination switch in network in a given amount of time. It is used
to measure the performance of NoCs. Normalized throughput is obtained by the
following formula:

throughput =
#received packets

simulation cycle × network size
(3)

Saturation Throughput: Saturation throughput is the maximum throughput
that the network can produce, and the throughput cannot be more than saturation
throughput [12].

4.3 Experiments

4.3.1 Experiment 1: Connectivity

The purpose of the connectivity test is to be assure that all processing elements,
which are connected to non-faulty and non-deactivated switches, can communicate
with each other.
For this purpose, we have simulated 7 faulty conditions and each faulty condition
has been repeated 100 times in different location. To check pair to pair connection,
each processing element sends a packet to all other PEs, (e.g., in a 12×12 non-faulty
network, each PE sends packets to the other 143 PEs).
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We have monitored drop ratio in each condition. The results show 0% drop ratio.
It means that, all PEs, connected to the non-faulty and non-deactivated switches,
can communicate with each other. In other words, there exists a routing path
among each pair of PEs in the network using the routing algorithm presented in this
thesis.

4.3.2 Experiment 2: ∆tmin

In our evaluation each processing element (PE) is sending packet to any other PE
with the same time interval. The minimum time interval required between two
consecutive packet injections is called ∆tmin [11]. If PE injects the first packet at
time t = t1, and the second packet at time t = t2, then t2 − t1 ≥ ∆tmin otherwise
the packet is dropped in PE. Minimum time interval varies based on the network
size, buffer size, traffic model, packet size and other network switch parameters. In
order to find ∆tmin, we have reduced the time interval and monitor the drop ratio
in a non-faulty network.
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Figure 4.1: ∆tmin for uniform traffic model.

As it is shown in figure 4.1, for uniform traffic, when the time interval is less than 60
cycles, the packets are dropped in the non-faulty network. So the ∆tmin for uniform
traffic model is 60 cycles.
By having the minimum time interval, the load per PE is defined as:

loadPE =
∆tmin

∆tavg
(4)

Where ∆tavg is the average time between two consecutive packet injection and is
greater than ∆tmin [11].
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loadnet has a direct relation with loadPE and the number of the PEs that are able
to inject packet. The network load is defined as:

loadnet = loadPE ×
active PEs

network size
(5)

In a non-faulty network loadnet is equal with loadPE since all PEs contribute in the
network traffic. But in the faulty network loadnet is less than loadPE .

4.3.3 Experiment 3: Saturation Throughput

In order to achieve the saturation throughput we increase the loadPE by decreasing
the ∆tavg. As it is shown in figure 4.2, increasing the packet injection rate doesn’t
lead to further increase of network throughput. The red and yellow part of the figure
show the situations where the ∆tavg is less than ∆tmin and we have packet loss in
these situations. Sheet4

Page 1

0 0.2 0.4 0.6 0.8 1 1.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

drop ratio = 0%
PE load > 100% , 
drop ratio > 0%
saturation

injection rate (flit/cycle/IP)

th
ro

u
h

p
u

t (
fli

t/c
yc

le
/IP

)

Figure 4.2: Saturation throughput in non-faulty network.

4.3.4 Experiment 4: Performance Comparison

To demonstrate the effectiveness of our fault tolerant routing algorithm, we com-
pare it to a state-of-the-art fault tolerant routing algorithm [7] which use the same
network architecture and switching technique.
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Variable Load

In the first experiment, both routing algorithms are computed in presence of 5 in-
jected faults in the network. In our simulation the traffic model is uniform. LoadPE

is the same in two networks but loadnet depends on the available PEs. Figure 4.3
(a) shows that in reference algorithm ten switches are deactivated, but in proposed
algorithm only two switches are deactivated.
Figure 4.3 (b) shows that when the network load is under 40 percents the through-
put of the two algorithms are the same. Drop ratio is zero percent and all generated
packets reach their destinations. But when the network load is increased the pro-
posed algorithm has higher throughput due to the less drop ratio. The reason is
that in the reference algorithm more switches are deactivated so the available rout-
ing paths (network resources) are less than the proposed algorithm. With the same
reason, as it can be seen from the figure 4.3 (c) the proposed algorithm has less
average latency than the reference algorithm. Figure 4.3 (d) shows that both algo-
rithms have no drop ratio in low loads. And the reason is that the algorithms are
fault tolerant and all generated packets reach their destinations, but in higher loads,
since reference algorithm has less network resources, more packets are dropped.
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Average Result
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Figure 4.3: Performance comparison of the algorithms under the uniform traf-
fic when the fault counts are 5, and the network size is 12× 12 (a)
Number of not available processing elements (b) Average through-
put (c) Average packet latency (d) Average drop ratio.

To further compare the proposed algorithm with the reference algorithm, the number
of faults are increased to 10 faults.
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Average Result
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Figure 4.4: Performance comparison of the algorithms under the uniform when
the fault counts are 10, and the network size is 12×12 (a) Number
of not available processing elements (b) Average throughput (c)
Average packet latency (d) Average drop ratio.

Figure 4.4 (a) shows that in reference algorithm forty switches are deactivated, but
in proposed algorithm only ten switches are deactivated. Figure 4.4 (b) indicates
that, due to the number of the available PE the maximum possible loadnet improves
from 70% to 97%, which results in higher throughput in our algorithm. Figure
4.4 (c) shows that reference algorithm has higher latency. The main reason is that
forty switches are deactivated in the reference algorithm, on the other hand only
ten switches are deactivated in our algorithm. As a result there are less available
routing paths in reference algorithm. As it is shown in figure 4.4 (d), the same
as previous examine the higher drop ratio of the reference algorithm is due to less
available routing path.
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In the next section we compare the algorithms in terms of throughput and latency
with a variable number of faults.

Variable Faults

In this experiment the uniform traffic has been applied, and the average latency,
throughput and number of deactivated switches are compared in presence of various
number of faults in 12× 12 NoCs with a fixed loadPE = 10%. Due to the low load
there is no packet loss and the drop ratio is zero percent.
Figure 4.5 (a) shows that the network with the proposed algorithm is able to deliver
more packets and the proposed algorithm has always higher throughput. The result
shows that difference between the throughputs has direct relation to the number of
the injected faults. As it is shown in figure 4.5 (b) when the number of faults are
less than 10, the average latency of the proposed algorithm is less than the reference
algorithm due to more possible routing paths. But by increasing the fault density,
the result is the opposite, since the number of generated packets in the reference
algorithm decreased and the network is less loaded.
Figure 4.5 (c) shows that the number of not available PEs in the proposed algorithm
is higher than the reference algorithm especially with high fault densities. This is due
to two factors. First, the PEs that are connected to the semi-faulty switch are often
still reachable because only a port towards a neighboring switch is affected. Second,
because of having smaller faulty region less switches are deactivated in proposed
algorithm.
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Figure 4.5: Performance comparison of the algorithms under the uniform traffic
when the processing element load is 10%, and the network size is
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Chapter 5

Conclusion

5.1 Summary and Main Contributions

Finding out a routing algorithm which is able to deal with fully and partially de-
fective switches and defective interconnects is the main objective of this thesis. The
objective was achieved, and we found out the non-deterministic algorithm that ful-
fills our requirements.
The first step was reviewing the literature. In this step we found out that there are
some algorithms that support the faulty links by taking advantage of table based
idea[4], virtual channel [17] and probability based algorithms[18]. The problem of
virtual channel and table is the area overhead, and the probability based algorithms
are not deterministic. Another common solutions for fault tolerant routing algo-
rithms is region based algorithms, which have been widely proposed since the mid
of 90s. The main disadvantages are that a lot of healthy switches have to be deac-
tivated to guarantee deadlock free, and also a link failure is modeled as two faulty
switches.
The proposed algorithm is an enhancement of the available region-based approach
for NoCs [1]. The novelty of our approach is that link failures are modeled as semi-
faulty switches and as a result the faulty region is smaller and less healthy switches
are deactivated.
Due to distinguishing faulty-links [11] we proposed a new idea (highway) that let the
packets forwarded through the faulty-region which results in less traffic congestion.
In chapter 3 by using alignment theorem [6] and channel dependency graph [14] we
proved that our algorithm is deadlock-free.
The performance comparison in chapter 4 shows the advantages of the proposed
algorithm with state-of-the-art fault tolerant routing algorithms [7]. Since our algo-
rithm has less deactivated switches it has always higher throughput and less latency.
And by increasing the number of faults the throughput gain is increased, which is
the main achievement.
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5.2 Future Work

Overall, this thesis was a success. This dissertation extended the previous fault
tolerant routing algorithms and supports partial defective switches. In order to
complete the thesis several possible directions for future research are expected.
The majority of future developments are focused on hardware implementation of the
proposed algorithm, within this step the area overhead of the proposed algorithm
will be measurable. Moreover by implementing on a real chip the flexibility and
feasibility of the idea can be determined.
Since the routing algorithm for non-faulty region is the same as XY algorithm,
another research direction would be investigating in a congestion aware algorithm
for non-faulty region.
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