L d

*
0‘.
& ¢

* e,
R/

CRARS
* 0

CRNAS
CAAS
./

XA XX
'R RAAS
*

*
*

*
*

*
*

*
**

*
*

-
:0’0
»

R30S
S5
"
XX

*
OO *
’0’00

‘0

' 2

3
S

4
o

o

‘o.o *
* &
SAAAN

* 0.0

*

-
)
*

105

*,
e

e e
NG
YOO
000.0..
oo

University of Stuttgart

Faculty of Computer Science, Electrical
Engineering and Information
. Technology

Masterarbeit Nr. 3254

Memory-efficient Lossless
Video Compression Using

Temporal Extended JPEG-LS
and On-line Compression

Debasish Chanda

Course of Study: INFOTECH

Examiner:

Supervisor:

Commenced:

Completed:

Prof. Dr. Sven Simon

M.Sc. Zhe Wang

February 01, 2011

October 31, 2011

CR-Classification: B.3.0, E4, 1.3.1, 1.4.2

Institut fiir Parallele und

P

Verteilte Systeme
P as Abteilung Parallele Systeme
\/ Universitatsstrale 38

D-70569 Stuttgart



Acknowledgement

I would like to thank Zhe Wang and Simeon Wahl for their continuous
supervision and guidance with rigorous reviews and inspiring suggestions
throughout my work on this thesis. I would also like to thank professor
Sven Simon for providing me the opportunity to contribute to such a research
field, making one of my most important achievements.

I am eternally grateful to my parents for their constant encouragement
and support, without which this work would not have been completed.



Abstract

Use of temporal predictors in lossless video coders play a significant role
in terms of compression gain, but comes with a cost of significant mem-
ory requirement since this approach requires to save at least one frame in
buffer for residue calculation. An improvement to standard JPEG-LS based
lossless video coding algorithm is proposed in this work which requires very
small amount of memory comparing to the regular approach keeping the
computational complexity low. To obtain a higher compression, a combi-
nation of spatial and temporal predictor model has been used where appro-
priate mode is selected adaptively on a pixel based analysis. Using only
one reference frame, the context based temporal coder performs its calcula-
tion regarding mode selection and prediction error calculation with already
reconstructed pixels. This method eliminates the overhead of transmitting
the coding mode in the decoder side. The need for storage space to save
the only reference frame is further reduced by introducing on-line lossy com-
pression on that frame. Relevant pixels from the stored reference frame are
obtained by partial on-the-fly decompression. The combination of tempo-
rally extended context based prediction and on-line compression achieves a
significant gain in compression ratio comparing to standard frame-by-frame
JPEG-LS video coding keeping the memory requirement low, making it us-
able as a lightweight lossless video coder for embedded systems.



Contents

1 Introduction 5
1.1 Need for anew videocoder . . .. .. ... ... ....... 5
1.2 Organization of this thesis . . . . . . .. ... ... ... ... 6

2 Background 7
2.1 Video compression and lossless video coders . . . . .. .. .. 7
2.2 JPEG-LS as a Lossless Encoder . . . . . .. ... ... .... 8

2.2.1 Basic block diagram . . . .. ... ... 8
2.2.2 JPEG-LS modular description . . . .. .. ... ... 8
223 Summary . . ... ... 14
2.3 Lossy coders . . . .. .. ... ... 14
23.1 JPEG . ... ... 15
2.3.2 JPEG2000. . . . . .. ... 17
2.3.3 Near lossless mode of JPEG-LS . . . . ... ... ... 18
2.4 Summary ... oL oL e e 19

3 Improvement over frame-by-frame JPEG-LS video coder 20
3.1 Target applications . . . . . .. ... ... ... L. 20
3.2 Problem analysis . . . . ... ... .00 21

3.2.1 TIssue 1: Baseline encoder selection . . . . . ... ... 21
3.2.2 Issue 2: Enhancement of compression gain . . . . . . . 22
3.2.3 Issue 3: Memory efficiency in lossless coders . . . . . . 22
3.3 The proposed system . . . . . . ... ... L. 23

4 Predictor Model: Temporal extension of MED predictor 25
4.1 Selector . . . . .. 25
4.2 Spatial predictor . . . . .. ..o 28
4.3 Temporal predictor . . . . . . .. ..o 28

5 Improving memory efficiency by on-line compression of the

reference frame 31
5.1 Storageunit . . . . . ... 31
5.2 Working procedure . . . . . . .. ..o oL 31

5.3 Memory reduction . . .. ..o oL 32



CONTENTS

54 Lossy codecs . . . . . . . ... e 34
6 Implementation and experimentation results 36
6.1 Implementation outline . . . .. ... ... ... ... .... 36
6.2 Test parameters. . . . . . . . . . . ... 38
6.2.1 Test input samples . . . . . ... ... 38
6.2.2 Performance measurement terms . . . . . ... .. .. 38
6.2.3 Tunable parameters of the lossless framework . . . . . 39
6.2.4 Tunable parameters of the lossy codecs . . ... ... 39

6.3 Analysis of video compression gain over compression ratio of
lossy coders . . . . . . ..o 40

6.4 Analysis of performance gain over similar memory efficiency . 46

7 Discussions and Conclusion 49
7.1 Summary of the whole work . . . . . . . ... ... ... ... 49
7.2 Limitations of the design . . . . . . ... .. ... .. ..... 50
7.3 Futureworks . . .. . ... ... ... 51



List of Figures

2.1 Simplified JPEG-LS block diagram with regular mode . . .. 9
2.2 Context Modeling Template. . . . . .. .. ... ... .... 9
2.3 Two-sided geometric distribution . . . . .. ... .. ... .. 11
2.4 JPEG encoder model . . . . . . ... ... Lo, 16
2.5 JPEG2000 encoder and decoder . . . . . . ... ... ... .. 17
3.1 Block diagram of the proposed model . . . .. .. ... ... 23
4.1 Temporal Prediction and Adaptive Correction block . . . . . 26
4.2 Current frame of temporal predictor . . . . ... ... .. .. 26
4.3 Past frame of temporal predicotr . . . . . ... ... 26
4.4  Predictor switching process . . . .. .. .. ... ... 27
4.5 Quantizer model for bias cancellation . . . . . . .. ... ... 29
4.6 Quantizer model for error coding . . . . .. ... ... L. 30
5.1 Reference Frame Storage Module block . . . . . . ... .. .. 32
5.2 Work-flow of the memory unit. . . . . ... ... ... .... 33
6.1 Analysis on JPEG on-linesave . .. .. ... ... ...... 41
6.2 Analysis on JPEG-LS near lossless on-line save . . . . .. .. 41
6.3 Analysis on JPEG2000 on-linesave . . . . . .. ... ... .. 41
6.4 Analysis on JPEG on-linesave . . ... .. ... ... .... 42
6.5 Analysis on JPEG-LS near lossless on-line save . . . . . . .. 42
6.6 Analysis on JPEG2000 on-line save . . . . . ... ... .. .. 42
6.7 Analysis on JPEG on-linesave . ... ... ... ....... 43
6.8 Analysis on JPEG-LS near lossless on-line save . . . . .. .. 43
6.9 Analysis on JPEG2000 on-linesave . . . . . .. ... ... .. 43
6.10 Analysis on JPEG on-linesave . . . .. ... ... ...... 44
6.11 Analysis on JPEG-LS near lossless on-line save . . . . .. .. 44

6.12 Analysis on JPEG on-linesave . . .. ... ... ... .... 44



List of Tables

6.1 Usedsamples ... ... ....

6.2 Complession ratio matching of lossy module . . . . . . .. ..

6.3 Outcome of the proposed model



Chapter 1

Introduction

1.1 Need for a new video coder

In digital media systems, there is a constant need for improvement of video
coders since the concept of image and video encoding is considered as one of
the essential concepts which has a profound impact in today’s commercial,
technical and social life. The continuous application of advanced mathe-
matics and other statistical analysis into the media science creates a variety
of possibilities of encoding performance enhancements in various fields of
application. In general, amount of compression becomes highly scalable
depending upon the implementation of appropriate mathematical and algo-
rithmic models in relevant applications, making things interesting from a
research point of view. On the other hand, over the last few decades, digital
image and video coding systems have transformed from pure academic re-
search works into massive commercial use which also made coding standards
evolve more according to specific fields of interests. Many technologies and
standards are available today for such wide range of applications including
medical imaging, digital HDTV broadcasting, multimedia database service,
video on demand and so forth; and still growing. This combination of per-
sistent commercial demand and compelling academic topic is sufficient to
make it evolve even further.

Among the available primary coding techniques[10][11], lossless video
coders have specific needs in both research and commercial purpose where
cost of storage and transmission becomes less significant comparing to the
need for available details in video frames. Example applications can be
divided into 3 basic catagories: (1)molecule and medical imaging, image
archiving, military purposes where details of every pixel is required for a
successful analysis, (2)Computerized applications where analysis is done by
something other than human eyes and where the term “perceptually loss-
less” does not make any sense, and (3)applications where subject is to be
encoded repeatedly (studios for example) where lossy encoding means an



Introduction

accumulation of errors over each iteration of encoding. These applications
require a lossless reconstruction of data since tiny difference between pre
and post compressed media is enough to alter the application’s reliability of
outcome.

Over past few decades the use of embedded systems has grown expo-
nentially since it offers a very good integration of a multi modular device
designed to perform a specific task. The lossless video coders are also sub-
ject to be embedded into other systems as a compression tool for storage
and retrieval. Unlike standalone machines, embedded systems always suf-
fer from lack of space and higher memory cost and therefore, things get
more challenging for lossless video coders. So memory efficiency becomes an
important issue considering the complexity and cost.

This work aims at designing a lossless video coder with competitive speed
and compression performance, taking memory constraints of embedded sys-
tems into consideration. The achievement of this work will bridge the gap
between high performance lossless video coders and lightweight coders with
much lower compression gain. Designing such a system is challenging be-
cause higher compression performance of lossless video requires a larger
amount of memory. The term lossless consumes most of the freedoms of
being memory efficient since it can not lose information which is the case
for lossy coders with a very high compression ratio. Still, usage of proper
analysis into the problem and adoption of relevant solutions are done and
tested for better compression gain with memory efficiency.

1.2 Organization of this thesis

This work is separated into some basic parts. Chapter 1 (this) is the intro-
ductory chapter where the motivation and the project objective is described.
Some background theory and concepts relevant to this work are described
in Chapter 2. In Chapter 3, a theoretical proposal of the proposed model
is introduced with relevant explanation for the approached sub-solutions.
The outline of the model is also presented in that chapter. Detailed de-
scription of the two basic modular upgrade over basic model are explained
in the following two chapters; where Chapter 4 focuses the improvement on
the predictor model and Chapter 5 explains the proposed way of obtaining
memory efficiency. The desired outcome of the proposed system is analyzed
in using several test inputs and performance in terms of compression ratio
and memory efficiency is measured using several approaches in Chapter 6.
Detailed environment setup and implementation strategy are also included
there. Finally Chapter 7 illustrates the overall outcome of this thesis, point-
ing out the possibilities of foreseeable improvements.



Chapter 2

Background

Before jumping into details, some background theories and concepts are to be
reviewed to have a through understanding of the proposed approach. Since
this system deals with several compression algorithms, outline of these are
also an issue to discuss. This chapter is dedicated to serving this purpose and
idea behind usage of some of the procedures are explained later in Chapter 3.

2.1 Video compression and lossless video coders

The term video compression refers to the reduction of data amount that rep-
resents the digital video. Practically video is a sequence of images or frames
that interpret some temporal events. Video compression is the method to
compress the video data exploiting the intra and/or inter frame redundancy
of those sequences. The goal of such compression is to save space and to
reduce amount of bandwidth in video storage and communications. Over
the last few decades, usage of digital video has raised exponentially and thus
video compression has become one of the key topics among the academic
researchers and commercial users.

Like the other multimedia compression strategies, video compression can
also be lossy and lossless. As the name depicts, lossless videos are those
where each pixel of any frame can be reconstructed without losing any in-
formation. Generally video codecs use lossy algorithms as these give better
compression and amount of small losses in a video are hard to recognize by
human eyes. But there are cases where detailed analysis of frames are to be
done for further usage, and storage or transmission cost becomes less sig-
nificant comparing to need of details. As a result, it has been an important
issue in various applications where videos are subject to further processing,
intensive editing and archiving.

As the working ground of the proposed video coder the lossless mode
JPEG-LS is used and therefore a detailed description of this coding is pre-
sented in the next section. Unless otherwise stated, this description is based



Background

upon [1] and [4].

2.2 JPEG-LS as a Lossless Encoder

JPEG-LS[4] standard is aimed for a very high compression ratio maintaining
the implementation complexity very low. The core of this standard is based
upon the LOCO-I (LOw COmplexity LOssless COmpression for Images)|[1]
algorithm which combines design simplicity and compression gain in a very
well formed manner. This approach offers both lossless and near lossless
approaches of compression for continuous tone images. High compression
gain is achieved using a simple and less complex implementation of the
universal context modeling paradigm[5].

In terms of compression ratio, it is within the range of few percentages
comparing to very sophisticated algorithms (CALIC[16] for example) and all
of these done keeping the computational complexity very low. The structural
simplicity of the design is very useful for the researchers to add up extra
features. As a result, it has become a very suitable tool for image/video
compression researchers around the world. For the same reason, JPEG-LS
has been selected as the foundation of this work as well.

As we said in the previous section, video is a sequence of still images.
Because of its competitive performance and low computational complexity,
a natural first step of this thesis is to investigate the compression of video
on a frame-by-frame basis using JPEG-LS as a framework. In later chapters
we will try to improve compression performance / memory efficiency within
this framework using lossy coders. Therefore it is important now to have a
basic understanding of JPEG-LS.

2.2.1 Basic block diagram

JPEG-LS consists of two fundamental blocks, namely Modeling and Coding.
Figure 2.1 shows the simplified modular block diagram separating working
entities into those modeler and encoder parts.

2.2.2 JPEG-LS modular description

The modeling of JPEG-LS is performed using the template illustrated in
Figure 2.2. Here, x denotes the current pixel for which prediction value
is being generated and a, b, ¢, d are the neighboring samples relative to x
upon which the prediction modeling is depended. For the rest of this section,
the letter notations a, b, ¢, d and x will denote both the positions and the
magnitudes of pixels of their respective positions for simplicity. To work on
the current pixel z, pixel values from left and top of that point are used for
modeling and prediction as the scanning order supports the fact that those
helping pixel values are already known for that certain point of time. Only



Background

1 1 |
|
1 1
: l l 1 :
. ' 1
: image samples Gradients \ \ :
_______________ ' 1 \
' i ! | | X
1 X ) 1 |
: X Fixed : context \ h :
R | 1
: : Predictor I prediction | prediction | : Compressed
\ 1 ! error Context | __error, | Golomb |1 bitstream
I ! i Modeler | | codespec. | Coder !
1 X
image \ : Adaptl\{e : Predictor : : 1
samples 1 1| Correction I ) , X
! \ ! 1 |
s ! l l :
: l l \
1 ! ! 1
i Modeler ! ! Coder 1

e e e e - e m e —

Figure 2.1: Simplified JPEG-LS block diagram with regular mode

a X g Scan row i

>  Scanrowi+ 1

Figure 2.2: Context Modeling Template.

problem arises for the samples of very first row and column. For JPEG-LS,
upper neighbors (b, ¢, d) for the first row are assumed zero and the for the
vertical order positions, value of ¢ and d are assigned as the values of b.

Prediction

In this step, a value z} is guessed denoting the actual pixel value z;. This
guessing is performed using the values obtained from the previous samples
x;_; from the same image. In general, this guess or prediction may be
performed using any kind of fixed scheme and should be able to perform
edge detection for best results. However, accuracy of predicted value comes
with a price of calculation complexity which opposes the main goal of JPEG-
LS. Still, a simpler but effective version of edge detection is made possible
to use in JPEG-LS. A fixed predictor loaded with a very basic vertical and
horizontal edge check serves as the predictor in this standard. To be more
specific, the model predicts the value (PError) using the following equation:

min (a,b) if ¢ > max (a,b)
PError =< mazx (a,b) if ¢ < min(a,b) (2.1)
a+b—c if otherwise

This model is a simple combination of three fixed predictors and a dy-
namic switch is used to choose the best possible one guessing the probable



Background

occurrences of edges. It tries to take the value of a if horizontal edge is
detected and tries to predict a value close to b in case of a vertical one.
In absence of any possible occurrence of edge, the value a+b-c is selected
as the predicted value. In absence of corners, this ensures the expected
flat behavior since it calculates a possible similar value depending upon the
neighboring samples. This predictor model is also known as the Median
Edge Detector (MED) predictor because of its behavior of combination of
edge detection and median value calculation for possible non-edge pixels.

In practice, this model does not deliver the accuracy comparing to other
state of the art models, but it ensures an optimal value considering the
amount of computational complexity and hardware requirement. Still some
more correction of this predicted value is done later in terms of context
modeling which is discussed in the next section.

Context modeling

A simple context model is used in JPEG-LS to extend its efficiency by error
value correction and encoding parameter optimization. Data on the context
of a specific pixel is used to improve the probabilistic model to correct the
predicted pixel magnitude. The context model used here is established using
quantized local gradients. The whole process is divided into three fundamen-
tal steps: (1)Parameterization, (2)Context determination, and (3)Adaptive
correction.

1. Parameterization: Two sided geometrical distribution (TSGD) cen-
tered at zero is capable of modeling the statistical data of residuals obtained
from a fixed predictor used upon continuous toned images very well[2]. Ac-
cording to this model, the probability of any value of prediction error € is
proportional to 0!/, Here 6 is the controller of the exponential decay rate;
mathematically 6 € (0,1). But in context based error signals, a DC value is
typically present; which is obvious because of the presence of possible bias
in prediction step and other statistical constraints, presence of non-integer
values for instance. To control this phenomenon, addition of a new param-
eter u makes things more suitable for the model. If u is capable of taking
non integer values, it can capture the context based prediction errors very
efficiently. If we split this prediction offset value into a whole bias (R) and a
fractional shift (s) part so that 4 = R—s, we can state the TSGD parametric
class P for each context as

(1 B 9) €e— s
Py, (€) = mel Rtsl e =0,+1,+2, ... (2.2)

In the predictor, R is an integer adaptive term which is to be tuned out by
the prediction model. This tuning out tends to keep the average residual
values within the range of 0 and -1 in the probability distribution model.

10



Background

PI.'J'.HILE)
s
TH
S e
s T
7 .
..... ® : E T
-3 -2 -1 —5 0 1 2 €

Figure 2.3: Two-sided geometric distribution[1].

Using this theory, the procedure of error correction is introduced in JPEG-
LS. After prediction error correction the Equation 2.2 is further reduced

to

(1 - 9) 9|e+s|
(9173 + 93) ’
This equation is illustrated in Figure 2.3 which shows a TSGD centered at
zero. Considering the X axis value as s, if s = 1/2, P resembles as bi-modal
distribution. This figure shows the dependency upon context parameters
very well. The coding scheme used in JPEG-LS matches this new reduced
variable range and so this value is further used in the encoding module.

Po (€) = e=0,41,42, .. (2.3)

2. Context determination: In JPEG-LS context parameter is defined
using the surrounding properties of the working pixels. These properties are
obtained using the local gradients that captures the statistical behavior of
the prediction error. Mathematically, the gradients are defined as g1 = d—b,
g2=b—cand g3 =c—a.

Each gradient value obtained from the neighboring pixels are quantized
for further model size reduction. The quantized values are then converted
into some smaller numbers of equal probabilities regardless of the context
parameter values. These numbers are indexed maintaining an integer range
of T'such as: -T,...,-1,0,1, ..., T keeping the symmetry of the numbers,
which defines the “regions” in context term. As a result, this offers a total
of (2T + 1)? numbers of equal probable regions to be modeled. In practice,
this number can be also reduced by handling the sign of the number more
carefully. For negative context numbers, the sign of the error values are
inverted before encoding. As the decoder measures the context parameters
in the same manner, this sign toggling is captured casually while decoding;
resulting no errors in the decoder side. So just by taking care of the context
values of the opposite signs, the total number of context becomes [(2T +

11



Background

1)3 4+ 1]/2, almost half the size we needed before. In JPEG-LS the value of
T is set to 4, resulting a total of 365 contexts. As the storage requirement
for implementation of such models is equivalent to this number, this leads
to a quite optimized outcome in terms of space complexity.

3. Adaptive correction: The predictor model used in JPEG-LS is fixed
MED predictor which introduces some bias considering the actual value. As
discussed before, the adaptive part of the predictor is designed to cancel the
integer part of the offset (R) using the context parameters.

Typically the value of R can be estimated using the median of the pre-
diction errors obtained in a particular point of scanning / encoding. How-
ever, this general procedure requires additional storage for saving required
data for exact median value calculation. As a result, a smarter approach is
adopted to calculate the value equivalent to R. In practice, using the cumu-
lated sum of the prediction error (D) and the total number of occurrence
of that particular context (N) gives an usable average value that resembles
that fixed offset. Using this, a correction value (C”) is calculated as

¢ =[(D/N)] (2.4)

and added to the error value obtained from that relevant pixel magnitude.
In spite of being simple, this approach comes with some two major set-
backs as well. First problem comes due to the division of the values as
this cost severe computational effort. And secondly, this value of estimated
average can deviate from accuracy in occurrence of unexpectedly ”large”
prediction error magnitudes. These problems can be avoided by changing

the equation (2.4) into
D=NC+B (2.5)

Here, B remains in a specific range (—N < B <0). Values of, B and C
are stored and updated maintaining the constraints of that range in each
context. In practice, B is added to the corrected error value, followed by
arbitrary number of addition of subtraction with N until the resultant value
is in that required range. The update of C' is performed considering that
number of addition/subtraction of N in the previous step.

In JPEG-LS, the above mentioned procedure of adaptive correction is
modified further. Here, the number of addition/subtraction is limited to one
per update and if required, the value of B is forced to be in the appropriate
range as discussed above. In Listing 2.1, the pseudo-code of this bias com-
putation is shown where B’ and C” is substituted by the estimated values
of B and C. Initial values of B and C are set to zero and a division free
update is possible using this procedure.

Listing 2.1: Bias cancellation procedure

B =B + error; // Prediction error accumulation

12



Background

N =N+ 1; // Context occurrence counter

/* Update bias register and error correction value %/
if (B <= -N){

CcC=0C- 1;
B=B+ N;

}

else if (B > —N){
C=0C+ 1;
B=B-N;
if (B>0)
B = 0;

}

Here we can see that if the value of C fails to remain in desired range,
it is incremented/decremented, followed by further adjustment of B with
respect to the change of C. If this adjustment still fails to keep B in range,
it is forced to do so. This controlled update prepares C to be equivalent to
the value of R which is used to correct the prediction error. For the record,
C is also clamped within the range of (-128, 127) for space requirement
reduction.

To sum up, by using this approach, the adaptive correction of the pre-
diction error is now estimated just by storing and updating few variables for
each context doing some basic calculation maintaining a very low memory
requirement.

Coding

JPEG-LS standard uses limited length Golomb-Rice codes for regular mode
coding. As seen in the previous section, the corrected prediction residuals
resemble the TSGD (Figure 2.3), as in presence of more zero values around
the center and larger values in two sides. Golomb-Rice coding handles such
distributions very efficiently and with an extra advantage of independence
of code tables, which is common among the similar prefix coders.

The working procedure of Golomb coders is very simple as well. To
encode, it divides the positive integer value N (which has to be encoded) in
two main parts, ¢ and r with the help of another tunable non-zero positive
integer parameter M. g is the quotient parameter obtained by dividing N by
M (|[N/M|) and unary coding is applied to it. Then the remainder part r
is calculated by doing a mod operation of N and M (N%M) and thereafter
coded by using binary representation. Code length of r is kept as |log M |
bits if N < 2M" — M or simply kept as M bits if otherwise happens where
M = [log M. In JPEG-LS, the parameter M is tuned as M = 2* to coupe
properly with the TSGD model, yielding a code length of k 4+ 1 + LN/2kJ

Theoretically, The parameter space in TSGD is divided into some spatial
regions and for each region there is a magnitude of M yielding the minimum

13



Background

possible code length for that specific region using Golomb-Rice code. In
JPEG-LS, this rule is used in a much simplified form. For each of 365
contexts, along with other parameters for context updates, the summation
of prediction errors are also stored in a dedicated register A and value of k
can be defined in a single line code

for(k=0;(N <<k)<Ak++);

This on-line adaptive context depended selection of Golomb parameter k
ensures a very good code length optimization, resulting nearly similar per-
formance of arithmetic coding][1].

2.2.3 Summary

To summarize, the lossless approach of JPEG-LS uses the combination of
MED prediction, context-based error correction and context-based adaptive
Golomb coding to produce a very good compression gain. Its lightweight
but efficient fixed predictor is capable of edge detection in an optimal way.
The context model uses the image data in a very efficient way using state
of the art statistical method. By using only the already scanned adjacent
pixel densities, this model offers a well optimized adaptive correction of
the prediction residuals which keeps the sum-of-error of the whole image
lower. Comparing to the complexity and usability of this model, the memory
requirement and number computational units are kept very low with some
clever modifications in implementation model. The coding model, which
is based on the extension of the Golomb coder family, also takes the best
advantage of the context model, resulting significant reduction in average
code length.

Along with lossless mode of JPEG-LS as the base of the proposed system,
usage of lossy codecs are also subject of discussion to complete the system
structure; which is the topic of the next section.

2.3 Lossy coders

Unlike the lossless coders, lossy coders compromise the quality of the image
to obtain better compression. The amount of loss or distortion is depended
upon the efficiency of the encoding algorithm and requirement of the user
application.

Typically these encoders use some transform coding where a block of
image data are transformed into another domain to find out relevant simi-
larities. On that transformed domain, redundancy can be used in a greater
scale and be quantized thereafter. Another approach for coding lossy im-
ages is performed by calculating residue based on some prediction algorithm
and quantizing the error value. These quantized values are then coded or

14



Background

entropy coded depending upon the coding criteria. The common procedure
of “quantization” is responsible for the loss of the image quality, as well as
the provider of a higher compression gain.

The proposed design consists of lossy coders to improve the memory
module for its higher compression capabilities. This design supports adop-
tion of arbitrary lossy coders in the relevant module. However, the overall
outcome of the system is still a subject of discussion which will be covered
in the later chapters. To test this proposed approach, three widely avail-
able lossy encoders are selected, namely JPEG, JPEG2000 and near lossless
mode of JPEG-LS. Concise description of each of these are given below.

2.3.1 JPEG

JPEG[26] (acronym for Joint Photographic Expert Group) is one of the
most popular lossy compression standard for continuous tone still images.
The term “joint”
standard organizations, namely International Organization for Standardiza-
tion (ISO), and the International Electrotechnical Commission (IEC) and
International Telegraph and Telephone Consultative Committee (CCITT).
The goal of this group was to standardize the image compression format
in a common platform which was a requirement in late 1980s and JPEG
compression format is one of the greatest achievements of that effort that
can be seen today.

This standard defines several compression formats to satisfy the require-
ments of wide variety of use cases. Among those, the format known as the
“Baseline JPEG”, a subset of lossy DCT (Discrete Cosine Transform) based
mode of operation matches the relevance to be integrated to the proposed
system for its simple lossy coding capabilities and unmatched popularity. A
concise description of this standard is therefore described below.

in JPEG refers to the co-operation of three international

Outline of Baseline JPEG

The basic layout of baseline JPEG encoder is illustrated in Figure 2.4. A
brief description of each of the basic blocks follows:

Encoder model The encoder model of JPEG is responsible for transfor-
mation of the input images so that the encoding procedure becomes more
abstract and suitable for further processing. Here, the input image is parti-
tioned into non-overlapping 8X8 pixel blocks. Values of each block is then
converted into signed integer and a block based DCT operation is performed
thereafter. This transformation converts each block into values with repre-
sentation of spatial frequencies. As a result, for each block, the pixel values
with lower spatial frequencies are separated from those with the higher ones.
Since the most of the usable image data are stored in the lower frequency

15



Background

Encoder Model Entropy Encoder
Input . Statistical Huffman ‘:I
Image P DCT [ Quantizer Model ™ Encoder | i~ Output Bitstream
Quantization Huffman
Tables Tables

Figure 2.4: JPEG encoder model

zone, these can be easily identified by this transformation and separated
from the data with higher frequencies, which becomes close to zero after the
transformation.

This transformation eventually separates the important data into less
significant ones, which offers the opportunity to discard some of the visually
redundant details, which is done by quantization. This is performed using
a predefined quantization table. However, custom tables are also possible
to use for specific applications which gives the freedom to choose the final
image quality by the user group. This standard becomes a “lossy” one
because of this adoption of selection through quantization, resulting a very
good compression ratio. The data in the output matrix are named as the
quantized DCT coefficients, that are subject to be processed further for
entropy coding.

Entropy encoder Within DCT matrix blocks the important data are
located in the upper left corner keeping the less important ones on the
other side. To get the best out of this structure these values are scanned
in a zig-zag order to preserver the importance of the pixels in a sequential
1 dimensional order. The very first coefficient in each block is called DC
coefficient which has the value with the highest magnitude. This value is
coded using a DCPM (Differential Pulse Code Modulation) by comparing
to the DC coefficient of the previous block, which generally contains a small
or no difference in magnitude comparing to the present one. The other 63
coefficients, known as AC coefficients, with smaller (mostly zero or close to
zero) values are coded using run length coding technique.

The entropy coder uses Huffman algorithm with predefined or user de-
fined Huffman table. To perform optimized encoding the DC and AC co-
efficient coding procedure use separate tables for their different statistical
behavior. The outcome of the coder is a series of encoded bit stream. These
are saved into storage media along with embedded quantization Huffman
tables that are to be used by the decoder whenever needed.

Although JPEG suffers from the limitations of losing image details, it

16



Background

offers the users to choose the quality factor which defines the amount of
loss of quality and more importantly the amount of final file size. As a
result users have the ability to tune the required quality comparing to the
estimated savings of storage space. The decoding procedure of JPEG is the
reverse of encoding flow with simple inversion of each of the blocks. Detailed
description of this standard along with available file formats are available
on [26] and [31] for further understanding.

2.3.2 JPEG2000

Another codec used for the lossy compression in this work is the JPEG2000[14],
developed by the JPEG community (see previous section) to outperform the
capabilities of standard JPEG. Adoption of advanced transformation algo-
rithms and coding structures, in conjunction with various dimensions of
usability has made it a very suitable standard for users of various domains.

Basic working procedure A basic block diagram of JPEG2000 encoder
and decoder is illustrated in Figure 2.5. A very brief description of the
working procedure of this standard relating to the block diagram is stated
below.

Encoder
Source Forward s Entropy
— —>1 ] t — Compressed Image
Image Transform Quantization Encoding H P g
Decoder
‘ Compressed Image }__> Entropy De— ) Inverse | | Reconstructed
Decoding quantization Transform Image

Figure 2.5: JPEG2000 encoder and decoder

Preprocessing The sample image has to be undergone some preprocess-
ing before getting into the transformation engine. The image samples are
level shifted to have an weighted average of zero. JPEG2000 allows an op-
tional inter-component transform after level shifting. For multi component
images, this helps the separate components to docorrelate efficiently. Af-
ter that, the image is split into equal sized tiles. These tiles are the unit
component to be encoded separately giving the advantage of distribution of
needed memory for encoding larger images.

Wavelet transformation The tiles are then undergone the Discrete Wavelet
Transformation(DWT). This transformation is used to perform similar task

17



Background

as done by the Discrete Cosine Transformation (DCT) performed in JPEG.
In practice, DWT performs better in case of discontinuation of image prop-
erties than DCT. This results in fewer artifacts for sharp fluctuations in
images. Depending upon the lossy or lossless mode of operation, reversible
and irreversible DWT is performed in JPEG2000. The outcome of this phase
are DWT coefficients that are to be processed further.

Quantization Quantization of the DW'T done to have a better compres-
sion with the cost of loss of final quality. Like JPEG, the amount of losing
details can also be tuned by choosing a parameter called “quantization step”:
higher step value yields better compression with lower quality images. This
is the only irreversible step where information can be lost.

Entropy coding After quantization, the DWT coefficients are Data to
be encoded are rearranged into 2 dimensional arrays called code blocks of
equal sizes, and data in each code block are assumed as accumulation of bit
planes. The term bit plane refers to the bits having the similar magnitudes
in every samples. Each bit planes are encoded generating a series of binary
symbols that are encoded using entropy arithmetic coding with the help
of an adaptive probability model. The outcome of this stage is binary bit
stream which are to be packetized and thereafter the final compressed output
is obtained, known as the JPEG2000 codestream.

Summary In spite of having several advantages over JPEG, JPEG2000 is
still is not a replacement of the original JPEG due to its heavy computational
complexity. For the proposed system in this thesis, the expected lower
amount of artifacts in higher compression ratio might get useful to obtain
a better memory efficient model; which is to be figured out in later part of
this report. The detailed description of JPEG2000 can be obtained from
[15] and [14] for further consideration.

2.3.3 Near lossless mode of JPEG-LS

JPEG-LS standard is equipped with a near lossless mode[4] of operation
which also is a candidate as a lossy coder in the proposed system. Near loss-
less mode is a specific type of compression which sets a bound in magnitudes
in the amount of introduced loss. Unlike the lossy one, near lossless coders
ensures that no pixel difference between the original and encoded ones cross
a certain amount of difference[7]. This provides a control over final image
quality by the users.

In JPEG-LS, the near lossless mode is operated by a variable, NEAR
for example, which denotes the magnitude of tolerable errors by number.
NEAR=0 represents the lossless and any positive integer number sets it
to the quantization tolerance within + N EAR range. Detailed description

18



Background

of JPEG-LS is present in previous section, and as for its usability in the
proposed system, amount of memory efficiency with respect to compression
ratio with near lossless mode is used as an addition of the regular lossy com-
pression algorithms, making it an interesting topic to proceed and therefore
included in the model.

2.4 Summary

Lossy, lossless and near lossless codecs described above are the key compo-
nents of the proposed design that are used during the rest of the work done
in this thesis. In the next chapter, a detailed discussion about design and
development analysis of the proposed system is presented.

19



Chapter 3

Improvement over
frame-by-frame JPEG-LS
video coder

Designing lightweight lossless video coder with low memory cost introduces
several challenges due to its conflicting requirements. A theoretical analysis
of possible challenges with their solutions are described step by step in this
chapter. Each possible issue in developing such a system is discussed here
and suitable solutions for those issues are proposed keeping the overall goal of
improving the compression gain over frame-by-frame JPEG-LS based video
coder while maintaining high memory efficiency in mind. Before starting this
analysis, a brief description of the target environment and the requirement
is provided in the following section.

3.1 Target applications

The target applications of this work are the ones that handle videos with
high frame rate with mostly static background. This scenario is very com-
mon where properties of a moving particle is the subject to detailed analysis
which is captured in a high frame rate keeping a high image quality. Exam-
ple applications may include molecular level particle analysis, medical and
astronomical pattern analysis and so forth. This is useful for any kind of
motion based research area where tiny movement of the subject is a matter
of deeper evaluation.

In general, such applications come as a part of a bigger system used for
the relevant purpose. For example, for medical imaging applications, the
lossless encoder has to be integrated into the sensor chip to save storage
space on the external server. Therefore, the encoder has to be developed to
be usable for smaller scale embedded systems. This requirement enhances
the need for more optimization in terms of computational complexity and



Improvement over frame-by-frame JPEG-LS video coder

memory efficiency.

The following section discusses the key design considerations, which are
(1)Baseline encoder selection as a framework, (2)Enhancement of compres-
sion gain, and (3) Memory efficiency achievement for the target environment.

3.2 Problem analysis

3.2.1 Issue 1: Baseline encoder selection

Keeping the target environment discussed in Section 3.1 in mind, use of
any lossless video coders gets expensive. Typically, the compression ratio of
lossless coders are not as high as the lossy ones. Since videos are sequence
of still images, standard image compression algorithms can also be used
for video coding. Such intra frame encoding techniques are very popular
as lossless video coders. Example encoders include lossless mode of JPEG,
JPEG2000, JPEG-LS, CALIC etc. Among these, JPEG-LS and CALIC
serves particularly well in terms of compression gain for lossless operations.
Both of these use adaptive context based approach to remove the most
of the redundancies an image could have in lossless mode. In practice,
CALIC has a highly sophisticated computational mechanism that makes
it the perform slightly better[l] than JPEG-LS in terms of compression
gain. But as for the target of this work, the system has to be light-weight
also. As discussed in Chapter 2, JPEG-LS on the other hand provides
nearly the same performance (ranging within a few percentages) comparing
to CALIC keeping computational complexity very low. Considering the
target environment, JPEG-LS is a better candidate for the job.

Other types of lossless video coders use the temporal redundancy along
with the spatial ones. H.264 is widely used these days which also provides
a lossless mode. But encoders like these are computationally heavyweight
since these consist of state of the art computational mechanism including
motion estimation and compensation. Moreover, to achieve high perfor-
mance, these coders use several reference frames simultaneously. This in-
troduces a gigantic space complexity for lossless images which conflicts with
the fundamental goal of memory efficiency of this work.

Considering the competitive facts about being less complex and more
memory efficient, JPEG-LS algorithm stands out to be a very good choice
as the framework for the lossless video coder framework. Its simple but ef-
fective context based design extracts a very good compression while keeping
low memory requirement, which matches the objective of being efficient in
compression gain with a lightweight structure.

21



Improvement over frame-by-frame JPEG-LS video coder

3.2.2 Issue 2: Enhancement of compression gain

To obtain a higher compression ratio, utilization of the vast amount of inter
frame redundancy of the high speed sequence are needed, therefore, tempo-
ral prediction has to be introduced to the system. Since the target video has
mostly stationary backgrounds, temporal prediction would be very handy
to enhance compression efficiency. Several works have already been done
to improve compression efficiency over plain JPEG-LS utilizing temporal
redundancy. Among those, the idea behind [17] and [3] are very suitable
primarily because the temporal extension of the MED predictor of JPEG-LS
has been achieved using only one past frame as reference. In [17], a com-
bination of four prediction algorithms including bilinear interpolation and
motion compensation, creating some computational overhead. Moreover, to
represent the selected predictor choice that has been used for coding any
block, some extra bits have to be encoded along with the image data. This
increases the average code length of the encoded file.

On the other hand, the approach stated in [3] adopts context based
adaptive prediction with a separate temporal module. This design offers a
remarkably good compression gain (14.1% and 15.9% gain over static JPEG-
LS in two test samples) for lossless videos with complexity of a usable range.
However, the temporal extension used in the proposed system is a slightly
modified version of this idea. The design in [3] is equipped with a near
lossless mode of prediction. Since the goal of this work is to develop a
lossless video coder, this near lossless mode has no relevance to the fully
lossless framework. Therefore, this specific part has been ommitted from
the proposed model, saving some computational load.

3.2.3 Issue 3: Memory efficiency in lossless coders

Lossless coders suffer from large memory requirements because of the funda-
mental criterion of being lossless. Since no distortion or loss is tolerable in
such formats, the file size remains relatively large depending on the amount
of details or noise, as well as the dimension of the image. This situation is
also true for the proposed system where one frame has to be stored to be
used as the reference. To make the system memory efficient, the reference
frame storage procedure is further improved by adoption of lossy coding
before saving. The concept used here is to save the reference frame after
lossy encoding, and decode the compressed image partially whenever needed
for the current frame’s temporal prediction on the fly. Since the reference
frame is lossy compressed before storing, the amount of memory required
to save the whole frame is much lower than saving a lossless one. Clearly,
this approach will require less memory to support temporal prediction and
make the system more memory efficient.

22



Improvement over frame-by-frame JPEG-LS video coder

3.3 The proposed system

Summing up all the issues in Section 3.2, the target system is an extended
version of standard JPEG-LS algorithm since it offers a good compression of
lossless images with a very low computational complexity. But in order to
achieve better compression ratio for a high speed image sequence, temporal
prediction is introduced. The temporal predictor model chosen for the job is
equipped with context based bias cancellation and coding length optimiza-
tion. This method ensures a very good compression gain [3]. On the other
hand inter-frame prediction techniques usually increase the memory require-
ments due to the need for storage of a complete previous frame locally for
predicting the next frame. To solve this problem, the storage module for
reference frame is to be replaced by a lossy compression based storage sys-
tem where frames are coded using lossy encoder before storing and decoded
partially whenever needed for the current frame prediction. The simplified
block diagram of the proposed system is illustrated in Figure 3.1.

Spatial Prediction

and
:—E Adaptive Correction
: Compressed

Frame i B Golomb bitstream
Selector ................................... : —
: : Coder

Temporal Prediction
and

! 1f ;) Adaptive Correction

Frame i-1

Reference Frame
Storage Module

Figure 3.1: Block diagram of the proposed model

As seen in Figure 3.1, the work-flow of the proposed model can be di-
vided into five basic blocks. Measuring the intra and intra frame gradients,
the Selector enables the appropriate prediction mode for encoding the cur-
rent pixel. Depending upon the chosen prediction method, either the cur-
rent frame data is passed through the Spatial Prediction and Adaptive
Correction block or both the current and reference frame data is sent to
the Temporal Predictor and Adaptive Correction block. The con-

23



Improvement over frame-by-frame JPEG-LS video coder

text based spatial predictor used here is similar to the one used in standard
JPEG-LS (see Section 2.2.2). The temporal predictor also supports con-
text based prediction bias cancellation and Golomb parameter specification.
Detailed description of the working principal of the prediction model is ex-
plained later in Chapter 4.

Regardless of the used prediction method, the Golomb Coder does the
encoding of the error value using code specifications delivered from the used
predictor. This coder model is similar to the one used in standard JPEG-
LS (see 2.2.2). Along with the temporal extension of the predictor model,
another feature added to JPEG-LS framework is the Reference Frame
Storage Module. It contains a lossy encoder and decoder, a storage space
and a controller to handle the runtime store/load operation. Detailed de-
scription of the reference frame storage unit is available in Chapter 5.

The approach outlined in Figure 3.1 is designed to (1)ensure higher
compression gain over static JPEG-LS and (2)maintain a very low mem-
ory requirement. The detailed description of the two additions (inter-frame
predictor and lossy storage unit) in JPEG-LS are provided in the following
chapters.

24



Chapter 4

Predictor Model: Temporal
extension of MED predictor

The predictor model of the proposed system is context based and is equipped
with spatial and temporal components. The spatial part is similar to the
MED predictor used in the standard JPEG-LS. The temporal part is de-
pended upon the pixel values from the previous frame and so is a purely
temporal predictor. The appropriate coding scheme is selected adaptively
depending on the image characteristics or context of the applicable part of
the image. The block diagram of the predictor model is illustrated in Fig-
ure 4.1. Brief working procedure of these sub modules of the model are
stated in the following sections.

4.1 Selector

The adaptive selector figures out the appropriate coding scheme for the
current pixel using neighboring pixels of the current and the past frame as
demonstrated in Figure 4.2 and Figure 4.3. For the purpose, it uses the
already constructed neighbors which is available for the decoder as well. It
calculates the spatial and temporal variation (Vi and V; respectively):

Vs = ’Rd — Rb‘ + ’Rb — Rc‘ + ’Rc — Ra| (4.1)
V; = |Ra — R,| + |Ry — Ry| + |R. — RL.| + |Ra — R} (4.2)

Here, the term V; is the summation of the absolute local gradient values
which shows the property of the current context using probable smoothness
or roughness of the adjacent area of the present frame. On the other hand,
V; is a way to measure the change in the individual neighboring pixel magni-
tudes with respect to the previous frame which shows the temporal changing
behavior. Then these two parameters are compared using a variation factor



Predictor Model: Temporal extension of MED predictor

Spatial
Gradients
MED context
i @—> -
Frame i Predictor -

Spatial

Context

- Modeler

o> Adaptlye
Correction
Frame i . . prediction
Selector .. ................................................... : error,
Frame i-1 : - code spec.
: Frame i l ,
- L Adaptive
( ; Correction

Temporal

Context

/{\ Modeler

Frame i-1 ) context

Temporal
Gradients

Figure 4.1: Temporal Prediction and Adaptive Correction block

Re Rb Ra R'c R'p R'd
Ra | & Ra | Po |
Figure 4.2: Current frame Figure 4.3: Past frame
I,: Current sample P,: Located in the same spatial
R, Ry, R. and R4: Reconstructed location as I,
neighboring samples R!,, R}, Rl and R/;: Reconstructed

values of equivalent location with
respect to the present frames Ry,
Ry, R. and Ry

a to choose between these two predictors by measuring
Select; = (Vi < a.Vy) (4.3)

If the boolean Select; is true, the temporal predictor is used. Another
interpretation would be, if the temporal change with respect to the past

26



Predictor Model: Temporal extension of MED predictor

frame is smaller than current frame’s spatial change, the temporal predictor
should be used. If this specific change is too large, the regular spatial pre-
dictor would yield better result or smaller code length. However, the choice
of prediction mode can be partially controlled by changing «. If o is more
than 1, the temporal predictor is chosen more often. Values less than 1
makes the selector to choose the spatial predictor more. For example, a zero
value o will always run the model in the spatial mode since in that case the
right hand side part of Equation (4.3) will always be false. This parameter
« can be used as a tuner of the selection logic for testing. Figure 4.4 shows
the basic step-by-step procedure of the predictor switching model.

Predictor
Switch

y
| Past Frame > Calculate Vs, Vt < Current Frame

e —

No

Yes
A J v

Temporal Spatial
Prediction Prediction

Encode —

‘ Done ’

Figure 4.4: Predictor switching process

The adaptive selector logic defined by (4.1)- (4.3) enables the model to
smartly exploit the temporal data in addition to the already existing spatial
predictor. This kind of co-existing and clever switching uses the advantages
of the both worlds in one system and generates better result in terms of
overall compression ratio of the encoder. The detailed description of both
the predictors are provided in the following sections.

27



Predictor Model: Temporal extension of MED predictor

4.2 Spatial predictor

The spatial predictor used in this model is the same MED predictor defined
in Chapter 2 (see Section 2.2.2). This context based predictor uses the
already generated/available neighboring pixel densities of the current frame
to do the prediction, context generation and error coding. The working and
neighboring pixel magnitudes and locations of the current frame are similar
and therefore referenced as the Figure 4.2 for this section.

First of all, with the help of a, b, ¢ and d it generates a predicted value
I,. This is achieved by including a simple but effective approach for edge
detection. I, is then used for generating prediction error value Errval for
further processing. Afterwards, with the help of the same neighboring pixel
magnitudes, three local gradients D; are calculated to generate a total of 365
contexts (J; showing the working pixel’s probable properties. This value @;
is already optimized for model simplification with the help of quantization
and sign reduction.

With the help of the context parameter, the bias generated in prediction
error is reduced which is called bias cancellation. Moreover, the error coder
also exploits the context to tune itself for average code length reduction. An
extended version of Golomb family coder is used for coding the error signals
and its tunable parameter uses the context parameter to enhance efficiency
with few basic calculations, yielding a comparable result obtained by the
use of more efficient arithmetic coders.

Implementation of this spatial predictor is also straightforward. The
edge detection engine is kept very light-weight, with only three simple con-
ditions for horizontal edge, vertical edge and smooth area determination
and one line calculation of predicted value for each of those conditions. The
context modeler uses few registers to aggregate few parameters like context
frequency, accumulated error values to adjust the bias cancellation and code
optimization. These registers contain these values for each of these 365 con-
texts and updates in each iteration. As a result, we get a context based
spatial predictor with a very low computational and space complexity.

4.3 Temporal predictor

Unlike the spatial one, the temporal predictor exploits the redundancies ob-
tained from the immediate past frame. For the rest of this section, reference
values for both present and past frames are taken from Figure 4.2 and Fig-
ure 4.3 where each working and neighboring pixel subscripted as a, b, ¢, d
and z shows both their locations and magnitudes.

The predicted value I, in this case is the pixel magnitude of the same
spatial location of the working pixel in current frame. The prediction error P;

28



Predictor Model: Temporal extension of MED predictor

is calculated and optimized using a context based algorithm.Mathematically,
P, = (I, — P;)+ B(Cy) (4.4)

where C; is the bias context and B is the bias register that contains the
respective bias value. Rest of the parameters are similar to the model shown
in Figure 4.2 and Figure 4.2.

Context determination for error correction For the temporal pre-
dictor, the context parameter is defined using the changing properties of
the individual pixels surrounding the candidate with respect to the previous
frame. These properties are obtained by measuring the summation of the
four inter-frame differences of the surrounding pixels.

Ci=(Ro—R,)+ (Ry— R) + (Rc — R.) + (Rg — R}}) (4.5)

A O

25| -10 3 E 10 25 | Cr

-2

Figure 4.5: Quantizer model for bias cancellation context.
C}: Temporal gradients
Q¢: Quantized value

This C] is then quantized into 7 levels (Figure 4.5) to obtain a concrete
usable value and a further reduction of the model size is obtained by convert-
ing the quantized magnitudes into some smaller values. Here, the step size
after reducing the sign is 4 (=7'), and total number of temporal gradients is
also 4. This yields the number of contexts as [(27 + 1)* +1]/2 = 3281.This

29



Predictor Model: Temporal extension of MED predictor

can not be called a small number, but it makes sense for proper bias cancel-
lation for temporal predictor where such higher range of necessary gradients
are to be considered.

Context determination for error coding The corrected value is then
coded using similar extended Golomb family coding algorithm, which is used
by the regular JPEG-LS standard. As the prediction error calculated this
way can be modeled as Figure 2.3, the average coding length can also be re-
duced with the help of context based tuning[1]. For the purpose, the coding
context is determined using equation (4.2) since it is the value V; depicts the
property of temporal change mathematically. For further simplification, the
value V; is quantized using a 5 level quantizer of [3, 10, 25, 50](Figure 4.6)
and converted into smaller integers for simplicity in the model. This way,
the size of the coding context remains 5.

A O

3 10 | 25 50 |

\/

14
0

Figure 4.6: Quantizer model for error coding context.
Vi: Absolute temporal variation (4.2)
Q¢: Quantized value

The integration of these two adaptive context based correction and tun-
ing yields significant reduction in average code length. Sample simulation
results [3] shows this temporal predictor in combination with MED predictor
in JPEG-LS gives almost 15% reduction in bits per pixel value comparing to
regular JPEG-LS video coder. As for the predictor model for this work, in
conjunction with the satisfactory compression gain, it is very much suitable
in terms of computational effort, space requirement as in model cost.

30



Chapter 5

Improving memory efficiency
by on-line compression of the
reference frame

Memory efficiency is a key issue for video coders which exploit temporal
correlations among the frames since it requires at least one past frame to be
stored in the buffer. The predictor used in the proposed model also needs
one reference frame to perform its operation. The amount of space required
to store a complete lossless frame is considerably large and therefore becomes
expensive for lightweight applications. In the proposed model, an effective
approach is proposed to alleviate this problem by introducing on-line lossy
compression based storage unit to save the reference frame.

5.1 Storage unit

The frame storage unit used in this model uses an intermediate lossy encoder
and decoder package to store and load the frame to be saved. Before saving
any image to the unit, the whole frame is compressed using a lossy image
coder. And when this data is to be used for calculation later, it is decoded
again to obtain the individual pixel magnitudes. For a lossy codec with
compression ratio of N:1, this model will also reduce the memory require-
ment by a factor of N at most. A simplified block diagram of the proposed
storage unit is illustrated in Figure 5.1.

5.2 Working procedure

Normally, a temporal video coder which uses only one past frame, deals
with two images simultaneously. Omne of these is the operating(current)
frame F'rame; and other one is the reference(past) frame Frame;_; to deal



Improving memory efficiency by on-line compression of the reference frame

i Loss Loss -
Frame i y .| Controller . y Frame i-1
Encoder Decoder

Frame Storage
Memory

Figure 5.1: Reference Frame Storage Module block

with the run-time temporal calculations. For a totally sequential system,
one set of calculation is done in one pixel scan and therefore rest of the pixels
in F'rame;_1 are redundant for the computational module. So, the system
saves the Frame;_1 using the lossy encoder in the memory and thereafter
decodes and loads only the necessary pixel values from that frame at that
particular time of calculation and discards afterwards. The logical work-flow
model is shown in Figure 5.2. Let’s say a video consists of M number of
frames, each with n number of pixels. After working on a particular frame,
the system has to save this frame as the past frame for the next frame
calculation. Before saving this, the frame is coded using a lossy encoder
to save space in the memory module. During the next frame iteration this
frame becomes the past frame Frame;_1 and the current frame is Frame;,
which is scanned sequentially from top-left to bottom-right by the system.
At a particular scanning point z, along with the current frame’s pixel I,
let’s say that the pixel magnitude of the previous frame’s point z is also
needed, noted as P,. At that particular time, the system checks if P, is
already decoded and ready for use. If not, it decodes that, uses for the
calculation, and discards afterwards if it’s not supposed to be needed on a
later point. Except for the lossy codec, the implementation does not require
heavy calculation, but offers a huge save in memory. The precise memory
reduction is described in the following section.

5.3 Memory reduction

Case 1: Regular mode without lossy save In regular JPEG-LS based
video coder with temporal predictor, one whole frame must be saved to use
later. In this case, for a video with b bit depth, the amount of memory
required B, to save each frame can be noted as

B. = b.nbits (5.1)

32



Improving memory efficiency by on-line compression of the reference frame

Load-Store
Frames

Load Compressed
Frame i-1

Initialize

Is Px

No

A

Decompress
Block

Scan Px -

Do
Calculation

A

Increment x

Compress and
Save Frame i

A

‘ Done ’

Figure 5.2: Work-flow of the memory unit.

Case 2: Using lossy save with decompression unit of 1 pixel If the
lossy codec with a compression ratio of 1: R has the capability of decoding
one pixel per time, the required memory B,, would be

By = b. (% +1) bits (5.2)

33



Improving memory efficiency by on-line compression of the reference frame

Comparing to case 1, this method reduces the memory requirement almost
by a factor of R. Amount of memory gain can be calculated using the fol-
lowing equation using case 1 as reference:

B. — By;
MemoryGaing = ———= (5.3)
B
which yields the gain for case 2 as:
M Gai 1 C (5.4)
emoryGaing = (1 — —= — — .
Yy nl R n

Case 3: Using lossy save with decompression unit of blocks In
practice, lossy codecs encodes and decodes the images by blocks rather than
by a pixel. So, for a typical case if the lossy coder decodes one block at a
time with block size of height Xwidth, required memory is

B = b. (% n hez‘ghtXwidth) bits (5.5)

And the amount of gain using (5.3) is:

(5.6)

1 heightXwidth
MemoryGaing,s = <1 R w)
n

5.4 Lossy codecs

The proposed memory efficient video compression framework in Figure 3.1
is compatible with a large variety of lossy image coders. For initial investi-
gation perpose, we have tested several coders including JPEG, JPEG2000
and near lossless JPEG-LS. However it should be mentioned that the overall
performance would require certain properties of the lossy coder used, such as
scanning order, compression ratio and the amount of distortions introduced
after compression which is relevant for the temporal prediction quality. The
proposed system has a row major pixel per pixel scanning order like JPEG-
LS. In this regard, most of the existing lossy compression algorithms are
suitable to used in this system. As mentioned in the previous section, only
drawback is that lossy encoders adopt block based compression system for
the intermediate co related transformation mostly. As a result, a bunch
of pixel values are decoded at a time, even though only one or few more
neighboring pixels are needed for a particular operation. This causes a re-
dundancy of the pixels that has to be saved or discarded for later use. If rest
of the pixels are stored, it consumes memory, which of course contradicts the
theory of memory efficient model of this work. And if we discard those, it
saves memory, but introduces a huge computational burden. This way, each
pixel in an image has to be decoded more than once, and for bigger block

34



Improving memory efficiency by on-line compression of the reference frame

size, this number is unacceptable. So, this is always a trade-off between the
cost for storage and computational burden. Still, a suitable approach to
handle this problem would be to match the most with the JPEG-LS based
scan. For instance, for the lossy decoder a row of pixels can be saved at a
time discarding the rests. Because we know that the pixels in right positions
(of the same row) are to be used for the following computations. Rest of the
rows of that blocks will be used only after finishing all the vertical blocks
of that image, so decoding this block on that much later point makes more
sense.

Compression ratio is an important factor for choosing the type of lossy
coders. As we can see in the previous section, the memory efficiency is di-
rectly proportional to R. But with the increase compression, quality of the
image also falls which affects the temporal prediction badly. The predic-
tion accuracy of such predictors goes down with the loss of image quality.
As a result, with the use of a lossy coder with higher compression abil-
ity, the predictor model tends to choose the spatial predictor more often
reducing the advantage of usage of temporal predictor and therefore reduc-
ing the compression ratio of the whole system. If a lossless codec is used
for intermediate save, memory efficiency goes down, but results in a very
good overall compression of the video. And usage of a lossy coder with
high compression gain, less memory is needed, but compression gain of the
video coder becomes less than before. Once again, this introduces another
trade-off between the system’s memory efficiency and compression gain.

For the implementation and simulation purpose, JPEG, JPEG2000 and
near lossless mode of JPEG-LS are used for the lossy save. Implementation
and detailed analysis and performance measurements using the proposed
model are presented in the next chapter.

35



Chapter 6

Implementation and
experimentation results

In the last two chapters, the improvement potential of the frame-by-frame
JPEG-LS based video coder has been proposed using temporal extension of
the prediction model while maintaining the memory efficiency by perform-
ing on-line compression as a pre-processing step in the memory block. In
this chapter, extensive simulations have been performed in order to check
performance and usability of the proposed model. A brief outline of the im-
plementation procedure is provided in the following section to understand
the overall experiment’s environment.

6.1 Implementation outline

To test the proposed model’s outcome, the software model of the system
illustrated in Figure 3.1 has been implemented. Development of the model
is primarily based on standard C language in Microsoft Windows platform.
The implementation is performed following three basic steps to maintain a
disciplined and error free model generation:

Step 1: Implementation of baseline JPEG-LS Since this model is an
improvement over standard JPEG-LS, the first step of the implementation
is also to develop the baseline JPEG-LS encoder model. Implementation
and simulations in this chapter are based upon 8 bit grayscale lossless video
samples. The implementation is based upon the regular mode of operation
of the baseline JPEG-LS encoder since regular mode is mainly operational
for lossless compression of natural images. Other than that, the detailed
design description has been followed from [4] to maintain the standard and
future extendibility. The outcome of this encoder has been tested comparing
standard encoded image for accuracy measurement.



Implementation and experimentation results

Step 2: Implementation of the temporal predictor The temporal
predictor model described in chapter 4 is then developed and added to the
standard JPEG-LS model. The temporal predictor of the proposed model is
also context based like the prediction unit of baseline JPEG-LS. Therefore,
integration of the proposed prediction model into the baseline JPEG-LS
based framework is logically convenient. One drawback of the proposed
temporal prediction unit is that the number of contexts used for bias can-
cellation and error coding is too few, specifically 4 and 5. Although such
small number of contexts provide much better result over usage of only regu-
lar MED predictor model, intermediate test results has shown some further
improvements in adoption of larger number of contexts for bias cancella-
tion. As a result, context numbers for this particular part are increased for
a better outcome of the overall model.

Step 3: Implementation of on-line memory module In Chapter 5,
a modular description of the memory model was presented. Such a model is
to be implemented next and integrated to the model. Since implementation
of this part includes the usage of few lossy encoders and decoders, namely
JPEG, JPEG2000 and Near lossless mode of JPEG-LS, this turned out to
be a rather lengthy process than expected. For limited time span for this
particular implementation part of the project, lossy codecs were adopted
from open source implementations. Since this work merely depends upon
thorough understanding of all these lossy codec standards, adoption of ex-
ternal sources does not affect the system’s outcome or reliability. However,
a detailed analysis and implementation of baseline JPEG encoder and de-
coder has been done and integrated to the system for integration ability
verification.

Step 4: Integration After all the modular development mentioned above,
the whole system was integrated to be used as a video coder for further us-
age and evaluation purpose. This integration step made this model to be
used for sequence of gray-scale bitmap image sequences to be simulated as
a lossless video input. The constraints of these input files are similar to
standard JPEG-LS and outcome of the system is also a series of files that
represent the encoded video.

The system is built keeping further research and development in mind,
several tunable parameters are kept open for later adjustment and evalua-
tion. For example, the parameter « (stated in chapter 4) that controls the
choice bias between spatial and temporal predictor for a particular scenario,
is left open. It has been set to 1.0 for the simulation purpose. The choice
of lossy coder is also left open which is something to be changed whenever
needed depending upon the user group and their specific needs.

A decoder of the proposed system is also implemented to check the ac-

37



Implementation and experimentation results

Sample Frame Resolution | Number of Frames
salesman 360 X 288 449
container 352 X 288 300

tennis 352 X 240 151

mother and daughter 352 X 288 300

Table 6.1: Used samples

curacy and usability of the system. The bit level match between the input
files of the encoder and the outputs of the decoder has proven the expected
lossless behavior of the model. The inputs and outcomes of the software
model are further subject to be analyzed and discussed for the success of
the proposed design, which is performed if the following sections.

6.2 Test parameters

6.2.1 Test input samples

The outcome of the system has been tested using four distinct gray-scale
lossless video samples:

All samples are taken from [23] and [24]. Although, samples with
similar names are available in several sources, similarities in file types are
required to get a comparable result. For example, while testing the sample
“salesman” during the implementation of the temporal predictor model, sig-
nificant difference in result has been encountered comparing to the results
from [3] because of the difference in resolution and possible earlier down sam-
pling. Appropriate samples have been selected considering their resolution,
frame rate and file type. After selection, frames from the sample videos are
separated and converted into a certain color space using a video post pro-
duction tool Avysinth[25]. For the record, the sample “tennis” was already
separated into frames from the source, therefore, no manual extraction was
needed.

Each of these frames were then encoded using the frame-by-frame JPEG-
LS encoder to introduce a ground for comparison. Afterwards, these samples
are encoded using the proposed encoder model to test the improvement of
performance in terms of gain in compression ratio and reduction in memory.

6.2.2 Performance measurement terms

Calculation of compression gain The gain in compression ratio of
the system is calculated using Equation (6.1) where Bitratejppa—rs and
Bitrateproposea denotes the calculated bit rate of frame-by-frame JPEG-LS

38



Implementation and experimentation results

encoded video and bit rate of the proposed model respectively.

Bitratejppa—rs — Bitrateproposed

x 100 (6.1)

Gain d= -

propose Bitratejppa_rLs
The resultant term in Equation 6.1 gives a clear indication of amount of
relative improvement in overall compression potential.

Calculation of memory efficiency Since the memory efficiency using
on-line compression method corresponds closely to the used lossy compres-
sion codec in the system, this efficiency term can be calculated simply by
measuring the compression ratio of that used lossy compression algorithm
for the test sample.

6.2.3 Tunable parameters of the lossless framework

The o parameter The spatiotemporal predictor model introduced in
Chapter 4 works by selecting one of the prediction submodules (intra or
inter frame predictor) depending on the runtime behavior of the current
and the reference frame. However, an input variable «, can be used to make
some biasness for the choice criteria of the prediction algorithm. If the value
if «v is set to greater than 1, the system tends to choose the temporal predic-
tor more often. The opposite tendencies are visible for values near to zero.
For the test and simulation purpose, it is set to 1.

Frame save option Since the proposed model uses several lossy codecs
for the memory module, the parameter FRAMESAVEOPTION can be set
to to choose one of the available codecs. For FRAMESAVEOPTION = 0,
the lossless mode of frame save is performed, keeping the raw data in the
buffer for next frame processing.

6.2.4 Tunable parameters of the lossy codecs

Three lossy codecs are used in the memory module as described in Chapter 5
to reduce the amount of storage space for saving the lossless reference frame.
These are the baseline implementation of JPEG, JPEG2000 and near loss-
less mode of JPEG-LS. Required description of these three have been briefly
discussed in Chapter 2, where further references have been provided. The
compression ratio of each of these codecs are tunable for convenience, and
for the test purpose, the outcome of the proposed system are also subjects
of analysis with the variation of the compression ratio of the lossy coders. A
brief description of tunable parameters of these codecs from an implemen-
tation point of view is given below.

39



Implementation and experimentation results

JPEG The JPEG encoder and decoder model used in this system is a open
source implementation [19] of standard JPEG algorithm. The compression
performance of this system can be tuned using a integer number N;pgra,
ranging from 0 to 100. With bigger N;jpgrqg, quality of the reconstructed
image gets higher decreasing the amount of compression.

JPEG2000 Unlike JPEG, the tunable parameter in JPEG2000 used in
the system uses Njs; which represents approximate amount of resulting
compression ratio. The used model is taken from [21] and integrated to the
proposed model for test purpose.

Near lossless mode of JPEG-LS In this mode, the amount of com-
pression range is set by choosing NEAR parameter which sets the bound of
maximum possible range of change in pixel magnitudes. Therefore, higher
value of NEAR results in higher memory efficiency and lower quality recon-
structed image. The software model of this codec is developed using C and
integrated to the lossless coder.

6.3 Analysis of video compression gain over com-
pression ratio of lossy coders

The primary goal of the proposed lossless video compression algorithm is to
reduce the amount of data needed to represent a fully reconstructible video
file. To test the system’s outcome in terms of compression gain, the sam-
ple video files are compressed using both the proposed model and frame-
by-frame JPEG-LS video coder to measure the Gainproposeqa using Equa-
tion (6.1). Any positive value of computed Gainp,oposea Would represent its
improvement over standard JPEG-LS.

To have a thorough test result, each sample was tested enabling all three
lossy codecs (by varying FRAMESAVEOPTION )for the memory module.
Variation of the lossy tuning was done for a deeper analysis of the system’s
behavior with respect to the quality of the reference frame. The detailed out-
come of the implemented system has been illustrated in Figure 6.1 through
Figure 6.12 for a detailed analysis. In these plots, behavior of the proposed
system over change of lossy compression (by tuning Njpeq, Njor or NEAR
as described in the previous section) for all three lossy compression based
implementations has been illustrated. The first 50 frames from each of the
four samples were subject to this test.

40



Implementation and experimentation results

Salesman
10

2 \
2 4 6 8 10 12\? 16

Compression Ratio of JPEG

frame-by-frame JPEG-LS
S

Compression gain (in %) over

Figure 6.1: Analysis on JPEG on-line save

Salesman
10

5 1 2 3 4 5 6\7 8

-4

Compression gain (in %) over
frame-by-frame JPEG-LS
N

Compression Ratio of near lossless JPEG-LS

Figure 6.2: Analysis on JPEG-LS near lossless on-line save

Salesman

_ 10 r
[
>n 9
3 8 \\
o 7
< M—
(= : 6 \
85 s
ce 4 \
S 3 g
g2 3
go o
o

0 v v v v v ,

0 2 4 6 8 10 12
Compression Ratio of JPEG2000

Figure 6.3: Analysis on JPEG2000 on-line save

41



Implementation and experimentation results

Container
_ 25
s
°
gg \
SEa
T2 15
g2 \
g i ° \
22
£g s
g5 \
EE
© 0 . . . . . . . ,
0 2 4 6 8 10 12 14 16
Compression Ratio of JPEG
Figure 6.4: Analysis on JPEG on-line save
Container
30
gtﬂ 25 o~
g \
£4& 20
<3 \
SE 15
&3 \
75 10
L @
E—Lg 5 \
S* '\
0 . . . . . . )
0 1 2 3 4 5 6 7
Compression Ratio of near lossless JPEG-LS
Figure 6.5: Analysis on JPEG-LS near lossless on-line save
Container
_ 30
) «
2425
o
£8 20 \
£ \
.gg 1 \
s %
% 2 10
£ S
E&
© 0 . . . . . s
0 2 4 6 8 10 12
Compression Ratio of JPJEG2000

Figure 6.6: Analysis on JPEG2000 on-line save

42




Implementation and experimentation results

i
N

10

Compression gain (in %) over
frame-by-frame JPEG-LS
o

Tennis

Compression Ratio of JPEG

16

Figure 6.7: Analysis on JPEG on-line save

14
12

Compression gain (in %) over
frame-by-frame JPEG-LS

o N B O

Tennis

Compression Ratio of near lossless JPEG-LS

Figure

6.8: Analysis on JPEG-LS near lossless on-line

save

i
'

5
39 12
8D 10
£8
Eg 8
[~
(=2
g€ ©
23 4
o

<
EE ?
© 0

Tennis
.
N\
.
N
\
\‘.

Compression Ratio of JPEG2000

12

Figure 6.9: Analysis on JPEG2000 on-line save

43




Implementation and experimentation results

Mother and Daughter

10

Compression gain (in %) over
frame-by-frame JPEG-LS
N

Compression Ratio of JPEG

Figure 6.10: Analysis on JPEG on-line save

Mother and Daughter

12

Compression gain (in %) over
frame-by-frame JPEG-LS

1 2 3 4 5 6 \7 8

Compression Ratio of Near mode of JPEG-LS

A N O N M O

Figure 6.11: Analysis on JPEG-LS near lossless on-line save

Mother and Daughter

10 N
8 \

4 \

i
N

Compression gain (in %) over

frame-by-frame JPEG-LS
a

0 2 4 6 8 10 12
Compression Ratio of JPEG2000

Figure 6.12: Analysis on JPEG on-line save

44



Implementation and experimentation results

From the plots in Figure 6.1 to Figure 6.12, the domination of positive
values of Gaing,oposeq sShows a clear indication of better compression perfor-
mance over frame-by-frame JPEG-LS video coders. However, the amount of
magnitude of Gaing,oposeq varies with the change of compression parameter
of the lossy codecs. The common behavior seen in all the charts is that,
with the increase of lossy codec’s compression ratio, the outcome potential
of the proposed system in terms of compression gain gets lower. The high-
est gain of the system is observed when the least or no amount of loss in
intermediate reconstruction of lossy images has occurred. For example, for
all four samples peak Gainpyroposed is observed whenever NEAR=0 in Near
lossless mode of JPEG-LS or Njg, = 1 in JPEG2000 is chosen. The amount
of highest Gaingy,oposed ranges between roughly 9% (Figure 6.3) to 25% (Fig-
ure 6.5 and Figure 6.6). However, the peak gain in case of usage of JPEG
save does not incline to such a high point for any of the samples, making it
inferior in higher video compression gain outcome.

In the higher compression zone of the lossy coders, both JPEG and
JPEG2000 based systems offers better gain than near lossless JPEG-LS
based systems. For all four samples, Gainproposeqa T€aches to a point of 0
within range of compression ratio roughly between 6 to 7 for near JPEG-LS
based approach. For JPEG2000 based systems this range remains between
approximately 6 to 13 depending upon the video samples. But JPEG based
implementation offers such positive Gaingroposed giving a compression ratio
of about 12 (Figure 6.1) at least, and this number gets bigger for other
samples. As a result, a constant higher memory efficiency is observed in
case of JPEG based approach comparing to the other two implementations.

To summarize, the proposed system offers better compression of lossless
video comparing to standard frame-by-frame JPEG-LS based video coders
regardless of whatever intermediate lossy compression algorithm is used.
Among the three lossy codecs used for memory efficiency, JPEG performs
best in higher compression ratio (of JPEG) zone, offering a good reduction
of in-processor space requirement. In the similar zone, the near lossless
mode of JPEG-LS performs the worst of all three. On the other hand, in
higher compression gain of video (lower compression ratio of lossy coders)
region, both JPEG2000 and near lossless JPEG-LS based implementations
offer superior video compression comparing to the standard JPEG based
approach. Since computational overhead of JPEG2000 is much higher then
near lossless JPEG-LS, the latter one would be the better choice of lossy
coder whenever a higher range of video compression is demanded.

45



Implementation and experimentation results

6.4 Analysis of performance gain over similar mem-
ory efficiency

Introduction of the on-line compression of reference frame as described in
Chapter 5, has been designed to save the amount of memory required for
storing one past frame for temporal prediction. The amount of compression
ratio extracted from the lossy codec is the measurement of the term memory
efficiency for the proposed model. As seen on the test runs (Figure 6.1
through Figure 6.12) of all four samples, positive amount of Gainpoposed
has been seen using various compression ratio of different lossy algorithms.

The magnitude of the outcome of the system depends upon the amount
of applied compression ratio of the lossy codec (or memory efficiency for this
system). From all the tests, a gradual decrease of Gainpyoposed is observed
with the increase of compression in frame storage, making the memory effi-
ciency inversely proportional to system’s compression potential. Mathemati-
cally,memory efficiency of this proposed model (MemoryE f ficiencyproposed)
can be defined as,

Ef ficiencyFactor
Gainproposed

MemoryE f ficiencyproposed = (6.2)
Here, the term EfficiencyFactor depends upon variables like the behavior of
the used lossy codec, information of the samples and overall frame handling
procedure of the proposed model. Measurement of quantitative memory
efficiency is tricky since it is delivered as an outcome of the lossy compression
rather than input of the system. However, by fixing the target system’s
requirement of memory efficiency, the compression of the overall outcome
can be analyzed for further analysis.

To perform this analysis, a two step approach is followed. On the first
step, a fixed amount of compression ratio of the intermediate lossy encoder is
set by tuning the lossy parameter of the respective lossy encoder. Afterwards
the amount of Gaing,eposeq is calculated for that specific amount of generated
loss on the previous step. This method is performed using all four test
samples to get an overview of the system’s outcome over a specific memory
efficiency measurement.

For the test purpose the amount of MemoryE f ficiencyy,oposed is set to
around 5 by tuning the lossy parameters Njpeq, Njor and NEAR for JPEG,
JPEG2000 and near lossless mode of JPEG-LS respectively. Table 6.2 shows
the exact amount of compression gained over the raw input file along with
relevant lossy parameters. Here, the term CR is the amount of compression
ratio comparing to the size of the respective samples.

Afterwards video coding of the samples are performed using all three
lossy codecs with their relevant lossy tune parameter determined in the
Table 6.2. The outcome of the system is stated in Table 6.3. Here, BR,.¢
is the bit rate in bpp (bits per pixel) of the frame-by-frame JPEG-LS based

46



Implementation and experimentation results

Sample Near losssless

Sample size JPEG JPEG2000
JPEG-LS
(bytes)

Njpeg [ CR NEAR [ CR | Njai [ CR
salesman 47,036,342 82 5.22 5 5.12 5 5.09
container 12,919,258 75 5.1 7 5.23 5 5.09
tennis 30,736,200 81 5.13 10 5 5 5.11
mother and daughter | 30,736,200 91 5.16 3 5.48 5 5.08

Table 6.2: Complession ratio matching of lossy module

encoded samples which is used as the reference point to measure the system’s
performance. BR is the bit rate of the proposed system after encoding
using the proposed model. Then this BR for a particular implementation is
compared with BR,.y to calculate the Gain(%) in output compression ratio
of the proposed model. For the record, this Gain(%) = Gainpoposed defined
in Equation (6.1) using each of the lossy algorithm based implementation.

Using Near

Using Using
Sample BRyey losssless
JPEG JPEG-LS JPEG2000
BR | Gain(%) | BR | Gain(%) | BR | Gain(%)
salesman 4.39 4.06 7.49 4.22 3.85 4.06 7.51
container 4.38 3.90 10.93 4.03 8.04 3.70 15.46
tennis 5.19 4.93 5.03 4.95 4.68 4.84 8.07
mother and daughter 3.36 3.16 5.83 3.25 3.15 3.13 6.85
| Average | 336 [316] 58 [325] 315 [313] 6.85

Table 6.3: Outcome of the proposed model

From Table 6.2 and Table 6.3, the performance of the proposed system is
seen with fixed memory efficiency with a factor of approximately 5. Keeping
the memory reduction constant, an average bit rate of the compressed files
results in compression gain of 5.83%, 3.15% and 6.85% over standard frame-
by-frame based JPEG-LS video coder. This shows a very good compression
outcome from the proposed model keeping the memory requirement very
low (as a factor of approx. 5), which is the primary goal of this work.

As for the comparison of the lossy codecs, all three implementations de-
liver better compression over JPEG-LS frame based approach. However, as
seen in Table 6.3, the average amount of Gain(%) (Gaingroposed in other
words) is the highest for the JPEG2000 based implementation. For all four
test samples, this specific implementation results higher compression gain
over other two with similar memory requirements. The only exception can
be seen for the sample “salesman” where Gaing,oposed is comparable with
the implementation with standard JPEG. But reflecting on the unmatched
dominance in compression performance in other three samples and signifi-

47



Implementation and experimentation results

cantly higher amount of average compression, it can be concluded that the
proposed model performs best in terms of compression ratio with JPEG2000
based memory save option.

The next best choice of lossy codec for the proposed system would be
JPEG since it gives better compression over near lossless JPEG-LS based
system for all four samples. The amount of average Gainy oposed is also fairly
higher than near lossless JPEG-LS based implementation to call it better in
terms of compression performance.

48



Chapter 7

Discussions and Conclusion

7.1 Summary of the whole work

In the presented work, a new method for memory efficient lossless video
compression has been proposed. The framework of the proposed design is
based upon standard JPEG-LS encoder with temporal extension of the MED
predictor for higher compression and introduction of on-line lossy compres-
sion of the reference frame for memory reduction. These two additions in
JPEG-LS based video coding structure offer a very good compression of
lossless video with low memory requirement. The improvement of compres-
sion performance has been verified comparing with regular frame-by-frame
JPEG-LS based video encoder as seen in the previous chapter. The pre-
diction model used in this approach uses a combination of context based
spatial and temporal predictor where context parameters control the predic-
tion bias cancellation and error coding optimization for both the predictors
(see Chapter 4). This prediction model plays the key role for achievement
of such higher compression as observed during the testing phase. More-
over, the temporal predictor part uses only one past frame for error calcu-
lation keeping a very low memory requirement. Need for space to store one
frame is further reduced using the new on-line lossy compression method
(see Chapter 5) which resulted in higher memory optimization while en-
coding. The amount of memory reduction with respect to compression
gain has been measured using three implementations based upon JPEG,
JPEG2000 and near lossless JPEG-LS algorithms. Reflecting on the test re-
sults, all these three implementations delivered better compression gain over
frame-by-frame JPEG-LS video coder, making the design a successful one.
However, the amount of compression of these three implementations differ
depending upon the amount of used memory reduction. As seen in the re-
sults, to obtain higher video compression from the system, use of JPEG2000
or near lossless JPEG-LS based implementation delivered relatively bet-
ter result than the one with JPEG. However, use of near lossless mode of



Discussions and Conclusion

JPEG-LS over JPEG2000 would be a better choice for higher amount video
compression gain since it has a significantly lower computational complexity
comparing to JPEG2000. On the other hand, in the higher amount of mem-
ory reduction region, JPEG based implementation performed much better
than the other two. The outcome of the system based upon JPEG2000 has
been relatively stable throughout the various memory optimization range.
This observation is verified when average compression gain has been mea-
sured and compared among all three implementation keeping the memory
reduction amount in a similar mid range (around 5). From the latter analy-
sis, a rough comparison of the three implementations has been made which
ranks JPEG2000 and JPEG as the first and the second choice of suitable
lossy compression algorithms for the on-line memory reduction module of
the proposed model. To sum up, near lossless JPEG-LS based implementa-
tion would be the most suitable choice for systems with high compression
gain requirement. In contrast, systems with JPEG codec for on-line frame
storage delivers usable amount of video compression in higher memory effi-
ciency region. The outcome of JPEG2000 based models has a more stable
compression outcome comparing the other two, which makes it more suitable
for standard implementation.

7.2 Limitations of the design

In spite of delivering good performance regarding both compression gain
and memory efficiency, the proposed system lacks some features. One of
these would be the range of video categories it can handle to extract good
compression. Since it has been designed to work with videos with relatively
stationary backgrounds, it does not promise a very good temporal prediction
in case of video samples with moving backgrounds or with very large mov-
ing objects. In such cases the intra-frame predictor is chosen more often,
resulting almost similar compression comparing frame-by-frame JPEG-LS
video coder model. Occurrence of such samples however does not deliver
worse compression than regular JPEG-LS since temporal predictor is not
used much in such cases.

The introduction of lossy compression increases the computational load
of the model since it includes the encoding and decoding procedure of a full
image for processing one frame. Increase in computational load depends
upon the choice of used lossy codec. This problem can be reduced by using
any lossy compression method with relatively lower requirement of compu-
tational effort. Such convenient change in choice of lossy coders is possible
due to the model’s adaptability of arbitrary lossless or lossy coders to be
used in the memory module. Another option to avoid this problem is to
store the raw frame for future reference. This will however take away the
“memory efficient” feature from the system, but will deliver very good com-

50



Discussions and Conclusion

pression of video. No lossy compression on reference frame also means no
noise in the reconstructed image, and this is the reason behind such increase
in compression gain.

7.3 Future works

As seen in the previous chapter, the choice of the lossy coder for on-line frame
save plays a significant role in memory efficiency. So, the framework of the
proposed lossless video coder model has been tested with JPEG, JPEG2000
and near lossless mode of JPEG-LS as the lossy codec for memory module.
However, the implemented framework can also be tested with other available
lossy codecs in persuit of better memory optimization and compression gain.

In order to make the system usable for samples with non-stationary
backgrounds and larger moving objects, the motion estimation and com-
pensation methods[29][20] can be introduced. Since adoption of this feature
would result in higher computational complexity, some lower performance
lightweight version of the motion estimation and compensation algorithms
can be integrated with the framework to check the adaptability of the system
in terms of compression gain and computational complexity.

Although the predictor model used in the proposed design is good enough
to deliver a very good compression, its performance might be improved even
further by combining other existing prediction algorithms [6] [7] with the
proposed model.

o1



Bibliography

1]

M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I Lossless Im-
age Compression Algorithm: Principles and Standardization into JPEG-
LS”, Proc. IEEE Transactions on Image Processing, Vol. 9, No. 8, August
2000.

A. Netravali and J. O. Limb, “Picture coding: A review”, Proc. IEEE,
vol. 68, pp. 366406, 1980.

K. H. Yang and A. F. Faryar, “A contezx-based predictive coder for loss-
less and near-lossless compression of video”, Proc. ICIP 2000, Vol. I,
Vancouver, BC, Canada, September. 2000, pp.144-147.

“JPEG-LS; Lossless and near-lossless coding of continuous tone still im-
ages (JPEG-LS)”,ISO/IEC JTC 1/SC 29/WG 1 FCD 14 495, July 1997.

M. J.Weinberger, J. Rissanen, and R. Arps, “Applications of universal
context modeling to lossless compression of gray-scale images”, Proc.
IEEE Trans. Image Process., vol. 5, no. 4, pp. 575586, Apr. 1996.

X. Wu and N. Memon, “Context-based, adaptive, lossless image coding”,
IEEE Trans. Communications, vol. 45, no. 4, pp. 437-444, Apr. 1997.

R. Ansari, N. Memon and E. Ceran, “Near-lossless Image Compression
Techniques”, Journal of Electronic Imaging. 7(03):486-494, July 1998.

G. C. K. Abhayaratne and D. M. Monro, “Embedded to lossless cod-
ing of motion compensated prediction residuals in lossless video coding”,
ISO/IEC 14495-1 and ITU Recommendation T.87, 1999.

“Information technology  Lossless and near-lossless compression of
continuous-tone still images Baseline”, Proc. SPIE (4310) Visual Com-
mumications and Image Processing (VCIP), Jan. 2001.

[10] ISOISO/IEC Document 13818-2, “Information technology - Generic

coding of moving pictures and associated audio information: Video”,
International Standard, 2000.



BIBLIOGRAPHY

[11] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview
of the H.264/AVC Video Coding Standard”, in IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 560-576
July 2003.

[12] P. G. Howard and J. S. Vitter, “Fast and efficient lossless image com-
pression”, Proc. IEEE DCC 93. Los Alamitos, CA: IEEE Comput. Soc.
Press, 1993, xiii+505, pp. 351360.

[13] Gary J. Sullivan, Pankaj Topiwala and Ajay Luthra, “The H.264/AVC
Advanced Video Coding Standard: Owerview and Introduction to the
Fidelity Range Extensions”, SPIE Conference on Applications of Dig-
ital Image Processing XXVII, Special Session on Advances in the New
Emerging Standard: H.264/AVC, August, 2004.

[14] “Information TechnologyJPEG2000 Image Coding System”, ISO 15444-
1 Final Committee Draft (FCD) Version 1.0 March, 2000.

[15] A. N. Skodras, C. A. Christopoulos and T. Ebrahimi, “/JPEG2000: The
Upcoming Still Image Compression Standard”, Proc. 11th Portuguese
Conference on Pattern Recognition (RECPAOOD 20; invited paper),
pp.359-366, May. 2000.

[16] Xiaolin Wu and Memon, N., “CALIC-a context based adaptive lossless
image codec”, Proc. 1996 IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1996, pp. 18901893.

[17] D. Brunello, G. Calvagno, G.A. Mian, R. Rinaldo, “Lossless compres-
sion of video using temporal information”, Proc. IEEE Transactions on
Image Processing, vol. 12. no. 2, pp.132-139, Feb. 2003.

[18] Sonja Grgic, Marta Mrak, Mislav Grgic, “Comparison of JPEG Image
Coders”, Proc. 3rd International Symposium on Video Processing and
Multimedia Communications, VIPromCom-2001, Zadar, Croatia, 2001,
pp. 79-85.

[19] The independent JPEG Group, http://www.ijg.org/

[20] J. Jain and A. Jain, “Displacement Measurement and Its Application
in Interframe Image Coding”, IEEE Trans. Comm., vol. 29, no. 12, pp.
1799-1808, 1981.

[21] The OpenJPEG Library, http://www.openjpeg.org/

[22] N.D. Memon and K. sayood, “Lossless compression of video sequences”,
IEEE Trans. Communications, vol. 44, no. 10, pp.1340-1345, Oct. 1996.

[23] Arizona State University online repository http://trace.eas.asu.
edu/yuv/

93



BIBLIOGRAPHY

[24] xipf.org test media repository, http://trace.eas.asu.edu/yuv/
[25] Avysinth homepage, http://avisynth.org/mediawiki/Main_Page

[26] Gregory K. Wallace, “The JPEG Still Picture Compression Standard”,
Multimedia Engineering, Digital Equipment Corp., submitted for pub-
lication in IEEE Transactions on Consumer Electronics, DECEMBER
1991.

[27] A. N. Netravali and B.G. Haskel, “Digital Pictures: Representation,
Compression, and Standards”, 2nd Ed., Plenum Press, 1995.

[28] G. J. Sullivan and R. L. Baker, “Motion compensation for video com-
pression using control grid interpolation”, Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 1991, vol. 4, pp. 27132716.

[29] B. Martins and S. Forchhammer, “Lossless compression of video using
motion compensation”, in Proc. IEEE DCC 98, xvi+589, Los Alamitos,
CA, USA, 1998, p. 560.

[30] M. Chan, Y. Yu, and A. Constantinides, “Variable size block matching
motion compensation with applications to video coding”, Proc. IEEE, vol.
137, no. 4, pt. 1, pp. 205212, Aug. 1990.

[31] ITU and CCITT, “Information Technology Digital Compression and
Coding of Continuous-Tone Still Images Requirements and Guidelines”,
ISO/IEC IS 10918-1, ITU-T T.81, SEPTEMBER 1992.

54



Declaration

All the work contained within this thesis, except otherwise acknowledged,
was solely the effort of the author. At no stage was any collaboration en-
tered into with any other party.

(Debasish Chanda)



