
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Master’s Thesis No. 3305

Adaptation of the Data Access Layer
to Enable Cloud Data Access

S.M. Mohsin Reza

Course of Study: Information Technology

Examiner: Prof. Dr. Frank Leymann
Supervisor: Steve Strauch
Commenced: March 01, 2012
Completed: August 31, 2012

CR-Classification: C.2.4, D.2.11, D.2.12, H.2.1, H.3.4

Abstract

In the current era of technology, Cloud computing has become significantly popular within
enterprise IT community, as it brings a large number of opportunities and provides solutions
for user’s data, software, and computations. As part of the Cloud computing the service
model Database-as-a-Service (DBaaS) has been recognized, where application can access
highly available, scaled, and elastic data store services on demand with the possibility
of paying only for the resources are actually consumed. While enterprise IT becoming
larger these days, the current challenges are to manage the traditional database with entire
enterprise data. One possible solution is to move the application data to the Cloud and then
accessing Cloud data from the traditional application on local server. Thus, ensuring the use
of economies of scale and reducing the capital expenditure of enterprise IT.

Moving data layer to the Cloud introduces an issue how an application can access data from
the Cloud data store services with full functionality of accessing like traditional database
service. To ensure this possibility, the application needs to be implemented a Data Access
Layer (DAL) separately in order to enable access to Cloud data, where DAL is responsible
for encapsulating the data access functionalities and interacts with business logic within the
application system. Thus reduces the application complexity and brings the solutions for
managing entire enterprise, data. However, accessing heterogeneous data store services the
DAL requires implementing necessary adaptations.

This master’s thesis focuses on investigating the adaptations of SQL statements required for
accessing Relational Database Management Systems (RDMS) in the Cloud. In this scope,
we perform testing on several RDMS (i.e. MySQL, Oracle, PostgreSQL) in different Cloud
services in order to determine the required adaptations. However, the adaptations are to
be implemented in DAL for enable accessing Cloud data. Evaluating the adaptations of
SQL statements, a software application called SQL Evaluation tool has been developed in
this master’s thesis, where the application has implemented a DAL explicitly and is capable
to execute the SQL statements simultaneously in different Cloud data store services. The
purpose of developing this application is verifying the concept of adaptation of DAL.

Contents

1. Introduction 1
1.1. Problem Statement and Scope . 2
1.2. Research Design and Questions . 4
1.3. Motivating Scenario . 6
1.4. Outline . 8
1.5. Conventions . 9

2. Fundamentals 13
2.1. Cloud Computing . 13

2.1.1. Cloud Deployment Models and Application Layers 15
2.1.2. Cloud Data Hosting Solution . 16

2.2. Cloud Services . 17
2.2.1. Amazon EC2 . 17
2.2.2. Amazon RDS . 17
2.2.3. Amazon VPC . 18
2.2.4. Amazon SimpleDB . 18

2.3. SQL Taxonomy . 18
2.3.1. General SQL Rules . 19

2.4. openCRX . 22

3. Related Works 25
3.1. VISION Cloud . 25

3.1.1. VISION Cloud Architecture . 26
3.2. JClouds . 29
3.3. Deltacloud . 30
3.4. Apache Libcloud . 32

4. Evaluation of SQL Support of Cloud Data Services 35
4.1. Test Setup . 36

4.1.1. openCRX Database . 37
4.1.2. Statements and Queries Covered by Test Cases 37

4.2. JUnit Test for Automatic Testing . 41
4.3. Test Scenario . 41

4.3.1. Default Scenario . 42
4.3.2. MySQL on Amazon EC2 . 43
4.3.3. Oracle on Amazon EC2 . 45
4.3.4. PostgreSQL on Amazon EC2 . 47
4.3.5. MySQL on Amazon RDS . 50

iii

Contents

4.3.6. Oracle on Amazon RDS . 52
4.3.7. MySQL on Amazon VPC . 54
4.3.8. Amazon SimpleDB Data Storage . 56

4.4. SQL Test Summary . 58

5. Concept and Specification 63
5.1. System Overview . 63
5.2. Functional Requirement . 65

5.2.1. Heterogeneous Data Access . 65
5.2.2. Application Extension Mechanism . 66
5.2.3. SSH Connection to Cloud Database . 67

5.3. Use Cases . 68
5.4. Non-Functional Requirements . 72

5.4.1. Extensibility . 72
5.4.2. Reusability . 72
5.4.3. Maintainability . 72
5.4.4. Installation Ease . 73

6. Design 75
6.1. Architectural Overview . 75
6.2. Class Diagram . 78

6.2.1. EvaluationWindow . 78
6.2.2. DatabaseConfiguration and DBConnectionStatus 81
6.2.3. FileImporter and SshUserInfoWrap . 81
6.2.4. FormUtility and TableDrawing . 82
6.2.5. ExtensionMechanism . 82
6.2.6. SQLStatementEvaluation . 83
6.2.7. Data Access Classes . 84

7. Implementation 85
7.1. Software Tool Implementation . 85

7.1.1. Application Controller . 85
7.1.2. Java Utility . 88
7.1.3. Configurations Setting . 89
7.1.4. Data Access Layer . 91
7.1.5. JSch Based Authentication . 93

7.2. Development Environment . 94
7.2.1. Eclipse . 94
7.2.2. Java Platform . 95
7.2.3. Java Libraries . 95

7.3. SQL Evaluation Tool Manual . 96
7.3.1. Installation . 98
7.3.2. User’s Manual . 100

8. Outcome and Future Work 107

iv

Contents

8.1. Future Works . 108

A. Results of SQL Statements Investigation 111
A.1. JUnit Test Results for Default Database . 111
A.2. JUnit Test Results for Oracle in Amazon EC2 115
A.3. JUnit Test Results for PostgreSQL in Amazon EC2 120
A.4. JUnit Test Results for Amazon SimpleDB . 124

Bibliography 133

v

Contents

vi

List of Figures

1.1. Research Design . 4
1.2. Cloud Database Access Layer Adaptation Scenario 6
1.3. Cloud-Enabled Data Access Layer Architecture 7

2.1. Cloud Deployment Models . 15
2.2. openCRX Application Architecture . 22

3.1. High Level Conceptual Architecture of the Data Access Layer 27
3.2. High Level Technical Architecture of the Data Access Layer 28
3.3. Deltacloud Working Principal Model . 31

4.1. Default Scenario of Traditional Database Running Locally 42
4.2. Scenario Overview of SQL Test Cases Running on MySQL Data Store Service

in Amazon EC2. 44
4.3. Scenario Overview of SQL Test Cases Running on Oracle Data Store Service in

Amazon EC2. 46
4.4. Scenario Overview of SQL Test Cases Running on PostgreSQL Data Store

Service in Amazon EC2. 49
4.5. Scenario Overview of SQL Test Cases Running on MySQL Data Store Service

in Amazon RDS. 51
4.6. Scenario Overview of SQL Test Cases Running on Oracle Data Store Service in

Amazon RDS. 53
4.7. Scenario Overview of SQL Test Cases Running on MySQL Data Store Service

in Amazon VPC. 55
4.8. Scenario Overview of SQL Test Cases Running on Amazon SimpleDB Data

Storage Service. 57

5.1. Layered Based Application Architecture Model 64
5.2. Overview of Java Application Extension Mechanism 67
5.3. Use Case Diagram . 71

6.1. Component Diagram of SQL Evaluation Tool 76
6.2. Class Diagram . 79

7.1. Eclipse Project Explorer for SQL Evaluation Tool Development 97
7.2. Default Application Window of SQL Evaluation Tool 99
7.3. File Menu . 100
7.4. Import SQL Statement File . 101
7.5. Import Corresponding SQL Statements Results 101

vii

List of Figures

7.6. Import Private Key . 102
7.7. Adding Data Access Classes to the Extension Mechanism 103
7.8. SQL Execution Starting Confirmation Dialogue 104
7.9. SQL Statements Evaluation Results . 105

viii

List of Tables

2.1. Overview of SQL Statements Based on SQL:2003 Standard 20

4.1. List of Cloud Data Storage to be Tested for the Evaluation of SQL Support . . 35
4.2. SQL Test Cases Default Scenario . 38
4.3. SQL Statement Test Summery . 59

5.1. Description of Use Case: View Evaluation Results SQL Statement Execution . 70

7.1. Usages SQL Statements Inputs and Corresponding Expected Results. 91
7.2. An Example of SQL CREATE TABLE Statement Adaptation 92
7.3. List of JDBC Drivers for Connecting Different Relational Data Store Services . 96

A.1. JUnit Test for Default SQL Test Cases on Local Machine 111
A.2. JUnit Test for Oracle Test Cases on Amazon EC2 115
A.3. JUnit Test for PostgreSQL Test Cases on Amazon EC2 120
A.4. JUnit Test for SQL Test Cases on Amazon SimpleDB 124

ix

List of Tables

x

List of Listings

7.1. Implementation of Multi-threaded Application Using Swing 86
7.2. Java Plugins Mechanism to Extend Application Functionality of Data Access

Layer . 87
7.3. Data Access Method Invocation by Calling Extended Data Access Class . . . 88
7.4. Data Store Service Configurations of Cloud Data Service Provider 90
7.5. Implementation of SQL CREATE TABLE Adaptation 92
7.6. Java SSH Tunneling with JSch . 94

xi

1. Introduction

Cloud computing is one of the most significant discovery over the last decade within enter-
prise Information Technology (IT). It is an Internet-based computing paradigm for offering
computing resources such as software, platform or even networking infrastructure through
Web interfaces as well as standardized protocols. The benefit of using Cloud computing is
that customers uses various computing resources including business applications, services,
storages, and virtual servers on-demand pay-as-consume basis [MG11]. Moreover, it brings
opportunity to an application to perform necessary computations through a required number
of computers that are running on online. In recent year, Cloud computing has considerably
become popular within the world of enterprise IT, as it brings an increasing number of
opportunities and provides solutions for the enterprises. The most important progress is that
an application can use highly available resources. Besides, an industry can be benefited by
reducing capital expenditure and minimizing maintenance cost, as the resources are available
on-demand. While enterprise IT becoming larger, a traditional infrastructure may not be
adequate to perform required services. A simple solution could be to enlarge the IT infrastruc-
ture, but it would be cost effective. To take advantage of Cloud computing, the concept is that
instead of increasing an infrastructure, it can be transformed into operational cost. Thus, it
will leverage the economies of scale in overall estimation, as the operational cost may always
lower than adding a new infrastructure [CAP], [Bak10].

With the concept of layering based application architecture, a typical application is built
using three layers consisting of a presentation layer, a business logic layer, and a data layer
[Eck95]. According to the application architecture, the presentation layer is the top most layer,
which is responsible for displaying the resulting information and illustrating the application-
user interactions. Besides, the business layer is responsible for realizing business logic and
performing comprehensive processing for controlling the functionality of an application. The
data layer is consisting of database server and responsible for managing application data
storage. Nevertheless, this thesis focuses on a four layers Cloud application architecture
model consisting of Presentation Layer (PL), Business Logic Layer (BLL), Data Access Layer
(DAL), and Database Layer (DBL). While comparing with typical application architecture, the
data layer is subdivided into a data access layer and a database layer, where DAL is placed
between business layer and database layer and responsible for encapsulating the data access
functionality. The DBL is the lower layer of an application system and responsible for data
persistence and data manipulation.

Within Cloud computing there are four deployment models introduced such as Private
Cloud, Public Cloud, Community Cloud, and Hybrid Cloud [MG11]. Using diverse Cloud
deployment models individual application layer can be hosted in a distributed manner. While
enterprise IT growing larger, it might appear a question how entire enterprise data could be

1

1. Introduction

managed with a traditional database server. Until today, one considerable solution would be
to move the whole application with entire data to the Cloud. However, this is not an adequate
solution, as with this approach the existing infrastructure may become unused. Therefore, this
thesis focuses on moving the application data completely or partially to the Cloud according
to their need and then accessing Cloud data from the traditional application on local server.
Additionally, to perform Cloud bursting, data analysis or backup and archiving, usually the
application data is moved to the Cloud. Now it is an important issue that how application
can access Cloud data store services with standard functionality of accessing a traditional
database system. To en ensure this opportunity,; the data access layer has to be adapted
accordingly in order to enable appropriate data access to the Cloud. The main goal of this
master’s thesis is to investigate the adaptations of SQL statements required to enable access
to the database layer hosted in the Cloud using storage and database services of established
Cloud providers (i.e. Amazon Web Services (AWS)).

The required adaptations of DAL are determined by performing a set of Structured Query
Language (SQL)-Standard based tests. The initial consideration of investigating the required
adaptations of DAL was based on tests of an example application (e.g. Customer Relationship
Management (CRM) application openCRX) hosting its data layer in the Cloud. Therefore,
initially we have decided adapting the DAL of openCRX application, then it is realized that
the data access functionality of openCRX has implemented with very complex structure
and accessing database via openMDX, an open source Model Driven Architecture (MDA)
application framework. To reduce the work effort and focusing on the core contributions of
the thesis then we decided using the database and the data only from the openCRX application
and migrate to different Cloud data store services. To evaluate the SQL support of Cloud
data services, we implement a tool called SQL Evaluation tool. The tool offers evaluating a set
of selected Cloud data store services by performing SQL-Standard based tests.

1.1. Problem Statement and Scope

Cloud computing allows provides serving DBaaS on demand via Internet, where Cloud
database may be a relational or non-relational database services. The example relational
database could be a traditional MySQL [Qui12] [MYS], Oracle [ORAa] or PostgreSQL [PSQ]
server and the non-relational database could be a NoSQL [SDB] data store service. This
enables the applications accessing highly available and scalable data store service with
standard functionalities over the Web. In the current trend of technology there are great
changes on world of enterprise IT where the technologies are still in progress. The industries
are fundamentally transforming, the enterprise applications and enterprise data are getting
larger and larger these days.

While the enterprise data are still growing, the current challenge is to manage the database
with entire enterprise data. With the large amount of data, using present infrastructure and the
traditional database is not sufficient to guarantee the data scalability as well as availability and
stability. However, for the betterment a possible solution may be increase the IT infrastructure
which is very cost effective and not an ideal solution, as the infrastructure may require further

2

1.1. Problem Statement and Scope

enlargement due to handling newly upcoming a large amount of data. Even though if the
infrastructure is increased radically, now the question is how the traditional database server
keeps their services alive. While the current infrastructure is not sufficient to manage the data,
the applications or platforms or even collaborations may migrate to the Cloud.

To reduce the capital expenditure, profit from economies of scale and ensuring solutions
for above problems the current approach is to move the database layer to the Cloud for an
existing application, where the application can benefit accessing database from the Cloud
services on demand via Internet. This means that the application including a presentation
layer, a business logic layer, and a data access layer are remained at previous place in the
local server, only database layer will move to the Cloud. Then application will access data
and computations from the Cloud services only whenever they need. Moreover, the concept
is that an application also can access various Cloud services and data storages simultaneously
for the different computations purposes. This enables vast advantages for the traditional
application systems, as different Cloud services established with unique and particular goals.
And different computations are appropriate in specific Cloud service.

As Cloud providers offers implementing a traditional database such as MySQL or Oracle
in the Cloud environment, the application can use Cloud computing to achieve elastic data
storage, optimized scaling, high availability, multi-tenancy and effective resource allocation.
So that the developers and enterprises are no longer needed to be worried about the database
scaling, tuning, upgrades and backups, as the several Cloud services providing solutions
regarding these issues. However, managing all the data within the enterprise, it is realized
that the database is the foundation for all enterprise software and moving to the Cloud the
core architecture of database is changed fundamentally [Fis10].

While moving database layer to the Cloud now it is an open issue how the application can
access data from the Cloud data service with full functionality of accessing as a traditional
database. As a possible solution we consider adapting DAL for accessing proper data from
Cloud database service where data access layer encapsulates the data access functionality.
In order to implement the data access functionality, it is necessary to investigate the existing
approaches for adaptation of the database layer to enable Cloud data access as well as the
adaptation of the DAL to enable Cloud data access, where the existing approaches can be
reused for the Catalog for DAL adaptation guidance for Cloud data access.

The main goal of this master’s thesis is to investigate the adaptations of SQL statements
required to enable access Cloud data store services. Therefore, we focus on SQL query
language and how SQL query should be adapted to support cloud data access. To evaluate
the SQL support of Cloud data services, it is considered to perform SQL-Standard based
tests in order to investigate the required adaptations. Out of scope of this master’s thesis
is considered implementing a secure data access while application accessing data from the
Cloud data store service. However, adapting the data access layer for the Cloud data access
must be facilitated. Also, data encryptions as well as data replication are not focused in this
work. Furthermore, this work does not present concepts for ensuring the performance of
Cloud data access from traditional application.

3

1. Introduction

1.2. Research Design and Questions

While enterprise data is increasing rapidly, the traditional database is becoming unable to
keep the performance of data handling. It requires a big amount of data storage to perform
the necessary computations; otherwise business model is failing to ensure the application
requirements. Initial solution might be to increase the IT infrastructure, which is however
raising the capital expenditure of a company. Therefore, to reduce the capital expenditure and
transforming it into operational costs, an existing application may be moved to the Cloud or
designed from the beginning to use Cloud technologies, as Cloud service providers offering
resources on-demand and can achieve optimized database scaling. Figure 1.1 describes in
detail steps of the master’s thesis research, where it shows a clear overview of how we proof
our concept of implementing and evaluating the Cloud data access.

Identification of an open-source
application implemented in Java

(e.g. customer relationship
management openCRX).

Migrating openCRX HSQLDB
database to a traditional MySQL
database for determining default

database setting.

Design SQL statement test cases
based on SQL taxonomy and
determine the expected test

results.

Writing JUnit test suites for
automatic testing the SQL

statement on database services.

Migrating traditional database on
Cloud data store service and run

test cases to investigate the
require adaptations.

Summarizing required
adaptations from different test

results.

Specification and design of a Java
tool called SQL Evaluation Tool

based on the outcome of
experimentation.

Implementation of SQL
Evaluation Tool to enable Cloud

data access.

Figure 1.1.: Research Design.

This master’s thesis purposes its goal of investigating the required adaptations of the data
access layer in order to enable Cloud data access through research on existing Cloud data
access approaches with tooling support concerning migration of database layer and adapting
a data access layer (i.e. a middleware). Therefore, an open-source Java application (e.g. a
CRM application openCRX) has been considered, where openCRX is generically shipped
with HSQLDB database. openCRX is a Java based open source Web application, which
provides functionality for Sales Force Automation (SFA), customer service, project and activity
management, products and services, etc. Also it is platform-independent and it runs on any
platform with Apache Tomcat or any J2EE-compliant AppServer [CRM12].

Moreover, it consider defining a set of test cases based on SQL taxonomy (see Table 2.1).
To find the maximum taxonomy, the test cases are designed mapping with corresponding
taxonomy (see Table 4.2). The default test cases are written based on traditional MySQL
database, however, to investigate the adaptation of SQL statements the same test cases have
to be executed on every selected Cloud database services (see Table 4.1) to perform testing
the SQL test cases. To achieve better results, it is consider selecting both relational and

4

1.2. Research Design and Questions

non-relational Cloud database services, as application might be benefited to access different
data models for the different types of computations.

In order to determine the default database setting, it is considered to migrate in a traditional
MySQL database, as a Cloud database can be a traditional database such as a MySQL [Qui12],
which is currently supported by several Cloud database service providers. Then, there are
number of SQL test cases are designed based on SQL-Standard Taxonomy. By running
a SQLqueryAnalyzer we determine the expected test results. These test results are to be
compared while executing the SQL test cases on different Cloud database systems for the
investigation, which SQL queries and statements have to be adapted. For comparing the test
result we presently using the JUnit test suites for automatic testing the SQL statement on
database services.

To run the SQL test cases on Cloud data store service and achieve acceptable results, it is
necessary to migrate the traditional database to Cloud database service correctly considering
the database compatibility and then summarize the required adaptations from different
test results after running on all possible Cloud services. The summarizing results shows
the distinguish adaptations required by the different Cloud services. After determining all
essential adaptations, the adaptations are to be considered for implementing in SQL Evaluation
Tool, which will be used as proof of concept implementation of a data access layer.

This master’s thesis analysis the state of art of existing approaches for adaptation of the
database layer in order to enable Cloud data access and also analysis of existing catego-
rizations of SQL statements, which might be reused for the Catalog for DAL adaptation
guidance for Cloud data access. There are number of general specifications on how to realize
the enabling data access layer within a Java application system and using these detailed
specifications it implements the a data access layer in order to enable access to the database
layer hosted in the Cloud. The concept and implementation of a Java tool (i.e. SQL Evaluation
Tool) including a data access layer are evaluated by accessing various Cloud database services
via data access layer with the knowledge of SQL statements adaptations.

All above concepts are considered to adapt a data access layer to enable Cloud data access
and support for the migration of the database layer to the Cloud. The following research
questions are defined the major goals, which are focused on and should be achieved in this
thesis.

• What are the differences in SQL support of selected Cloud Storage Services?

• Which adaptations of SQL queries are required to support the access to various Cloud
Storage Services?

• How the adaptations of SQL statements could be implemented in a data access layer
which allows the accessing of heterogeneous Cloud data store services concurrently for
a traditional application?

• How to implement the business logic in order to realize an adaptation of the SQL
queries in a prototype?

5

1. Introduction

The research questions define the goal of this thesis and they are addressed by designing,
implementing and evaluating of an example Java tool (i.e. SQL Evaluation Tool) in order to
proof the concept of implementation of data access layer.

1.3. Motivating Scenario

This section describes a concrete scenario of adapting data access layer within the application
architecture model and also describes why we need a data access layer that enables access
to the data has migrated to the different Cloud storage solutions. While enterprise data
becoming larger and requires a high amount of computations for handling the data, a tradi-
tional application can take advantages of accessing Cloud data storage. Thus, reduces the
application complexity. In Cloud computing approach, an important activity is that the data
can be exchanged between different Cloud data services. This allows applications accessing
multiple Cloud storage infrastructures for storing and retrieving data objects according to
their need [RW12].

Traditional

Presentation Layer
Eclipse IDE

Application

Business Layer
Java Application

Data Access
Layer*

Database Layer
MySQL Database

Ap
pl

ic
at

io
n

La
ye

rs

Data
Layer

Deployment
 Models

Database Layer
Oracle on

Amazon RDS

Database Layer
Amazon

SimpleDB

Cloud Database Service

Legend

Dataflow
Migration
Partial Migration
Modified Component

*

Data Access
Layer *

Data Access
Layer *

Data Access
Layer *

Database Layer
MySQL on

Amazon EC2

Figure 1.2.: Scenario of adapting a data access layer to enable Cloud data access.

Nowadays most of the applications are built considering a multiple layers architecture model
environment. This usually includes a presentation layer, a business rules, and database layer,
where database is an important part in an application architecture system. It is examined
that every application (i.e. Web, Windows, or even Web service) systems are normally
incorporating the database systems in order to store the application data. The database may
directly access from an application resource such as a Web page. If so, this would not be an
adequate solution for the application development. Because, if it is required to change the
database access it will dramatically increase the application maintenance work. Therefore, to
simplify the application architecture, it is necessary implementing a data access layer. The

6

1.3. Motivating Scenario

concept of introducing a data access layer is that, it makes interaction to the business logic
layer with encapsulating the data access functionality to the database layer. This means that a
data access layer is becoming a middleware between business logic and the database layer
in the application architecture model. Additionally, the data access layer can be adapted
implementing strategy to make the database independent. Then application can easily access
any kind of the database systems using store procedure created in the database [Pat06].

Figure 1.2 represents a conceptual scenario of adapting data access layer within a typical
application architecture model, where application accessing database systems using a set of
appropriate data access functionalities. The concept of implementing a data access to enable
Cloud data access is based on SQL Azure Migration Wizard (SQLAzureMW) tool [Mic12]
[Ber10] documentation, where they describe step by step migration process of Cloud database
layer migration. However, it is studied that there are various migration tools or scripts
available online can be used to migrate the traditional database to the Cloud data store
services. The tool SQLAzureMW allows user migrating SQL server version 2005 or greater
version of SQL server to SQL Azure. As a general view, migrating a database layer to the
Cloud environment, the very first step is to take a detail plan about data layer migration and
ensure the development environment by choosing an appropriate tool for data migration.

According to the definition of data migration with SQLAzureMW, it is necessary analyzing
the database compatibility issue between source database and the target database systems
(i.e. Cloud data storage). To resolve the compatibility issues, it may require adapt the source
database by modifying the database script. Upon launching the migration tool the data
migration scenario shall be realized. Besides selecting the source database over the migration
tool there are several options has to be selected for executing the source database script
against the target one. The one important option is to select the provider, to where database
should be migrated.

Traditional

Ap
pl

ic
at

io
n

La
ye

rs

Data
Layer

Deployment
 Models Cloud Database Service

Application

Presentation
Layer

Business
Layer

Cloud-Enabled Data Access Layer

Amazon EC2
MySQL, PostgreSQL

Figure 1.3.: Cloud-Enabled Data Access Layer Architecture [Str12].

7

1. Introduction

Based on the selected provider, the tool will adapt the data access functionalities and these
functionalities are to be considered a data access layer within the application architecture
of SQLAzureMW tool. Therefore, it can be determined that the SQLAzureMW migration
tool is using a data access layer for migrating database layer to the Cloud. This approach
triggers our interest and proofs the concept of implementing a data access layer within a
typical application architecture model to enable Cloud data access. Furthermore, there are
some more database and application migration examples investigated, such as Migrating
from MySQL to Amazon SimpleDB [MyS09], Netflix’s Transition to High-Availability Storage
Systems [Ana10] and Migration Scenario: Migrating Web Applications to the AWS Cloud
[MWA10]. From all these examples we determine that it explicitly makes clear the need for a
data access layer enabling cloud data access.

Figure 1.3 shows a motivational evaluation of Cloud-enabled data access Layer Architecture,
where application can access Cloud enabled data store services including both traditional and
Cloud based storage via an adapted data access layer. Here the data access layer should be
adapted based on required data access functionalities for individual database services. So that
application can access any of the database systems according to their wish. In this scenario,
in order to access data from particular Cloud data store service, the application will send
the SQL query including target database information to the data access layer. Then the data
access layer will route the SQL query execution to the target database based on destination
information. Thus, an application can access several data store services simultaneously
depending on the computation needed. Moreover, based on architecture model of Cloud-
enable data access layer, it may be determined that the data access layer is a middleware
between business logic and the database system.

1.4. Outline

After introducing the main goals and the scope of the work, the remainder of this thesis is
structured as follows.

Chapter 2 - Fundamentals: In the beginning, the important literature was studied, which
covers the fundamentals of this master’s thesis. This chapter describes the basic understand-
ing in enabling a data access layer in a traditional application in order to access Cloud data
and gives an explanation of Cloud computing, data hosting solutions, and different Cloud
services which is focusing on RDMS data store services. Moreover, the basic rules of SQL
statements and a CRM product openCRX are also explained.

Chapter 3 - Related Works: This chapter describes the common approaches and technologies
that are designed for accessing multiple Cloud services including data store service within
one application system. Several existing concepts and state-of-the-art systems were examined
for data access layer ideas. But there was no direct related work found in the existing
research. VISION Cloud introduces an abstraction of data access layer, whereas jclouds,
Apache Deltacloud, and Libcloud provides different libraries for accessing multiple Cloud
services with their unique purpose.

8

1.5. Conventions

Chapter 4 - Evaluation of SQL Support of Cloud Data Service: In order to determine the
required adaptations of SQL statements, this chapter describes a detailed procedure of test
setup and a default scenario for SQL statement testing. Also, it illustrates the overview
scenarios of running SQL test cases in different Cloud data store services and represents the
test results counting adaptations which are required for every selected Cloud services. Finally,
this chapter concludes a summary result with required adaptations of SQL statements.

Chapter 5 - Concept and Specification: This chapter emphasizes more precise concepts of
the thesis by considering the lessons learned from first chapter which was considered when
formalizing the functional requirements and non-functional requirements for adapting a data
access layer (DAL) within an application architecture model to enable Cloud data access. This
includes a conceptual overview, heterogeneous data access, system extension, secure data
access and a use-use case analysis.

Chapter 6 - Design: This chapter illustrates an architectural overview and class diagram
including technological explanations for fulfilling the described system requirements, where
the architectural design organizes necessary components and their relations. A Java GUI ap-
plication (i.e. SQL Evaluation tool) is described, which represents the general activities of the
adaptation of data access layer and the evolutionary result of SQL statement adaptations.

Chapter 7 - Implementation: A detailed implementation of a Java software application (i.e.
SQL Evaluation tool) including code listing and most significant classes are described in this
chapter, which clarifies how the system meet the necessary requirements. Also, it explains
about important technologies that are required to implement a complete software system.
Finally, a software tool manual is described in this chapter.

Chapter 8 - Outcome and Future Work: The last chapter concludes this thesis by describing
the main contributions of this thesis and suggests future work proposals.

1.5. Conventions

This section illustrates a list of abbreviations which are used throughout the thesis.

List of Abbreviations

The following list describes the significance of various abbreviations and acronyms used in
this document. Full names by convention not valid or not used any more are marked as
deprecated.

ACID Atomicity, Consistency, Isolation and Durability

ACL Access Control List

AMI Amazon Machine Image

API Application Programming Interface

9

1. Introduction

ASP Application Service Provider

AWS Amazon Web Services

BLL Business Logic Layer

CCI Content Centric Interface (deprecated)

CFI Cloud Federation and Interoperability (deprecated)

CRM Customer Relationship Management

DAL Data Access Layer

DB Database

DBL Database Layer

DBMS Database Management System

DBaaS Database-as-a-Service

DDL Data Definition Language

DML Data Manipulation Language

DNS Domain Name System

DNSaaS DNS-as-a-Service

DOL Data Operation Layer

DOM Document Object Model

EBS Elastic Block Store

EC2 Elastic Compute Cloud

ESB Enterprise Service Bus

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

IaaS Infrastructure-as-a-Service

IP Internet Protocol

ISO International Organization for Standardization (deprecated)

IT Information Technology (deprecated)

JAR Java Archive

10

1.5. Conventions

JDBC Java Database Connectivity

JDK Java Development Kit

JDT Java Development Tools

JRE Java Runtime Environment

JSch Java Secure Channel

LBaaS Load Balancers-as-a-Service

MDA Model Driven Architecture

MIL Management Interface Layer

MVC Model View Controller

NIST National Institute of Standards and Technology

NoSQL Not only SQL (deprecated)

OMG’s Object Management Group

OVF Open Virtualization Format

PL Presentation Layer

PaaS Platform-as-a-Service

RDMS Relational Database Management Systems

RDP Remote Desktop Protocol

RDS Relational Database Service

REST Representational State Transfer

S3 Simple Storage Service

SAI Secure Access Interface (deprecated)

SAX Simple API for XML

SBC Smart Business Desktop Cloud

SDB SimpleDB

SFA Sales Force Automation

SOA Service-Oriented Architectures

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSH Secure Shell

SaaS Software-as-a-Service

11

1. Introduction

TCP Transmission Control Protocol

UI User Interface

URL Uniform Resource Locator

VFS Virtual File System

VPC Virtual Private Cloud

VPN Virtual Private Network

XML Extensible Markup Language

12

2. Fundamentals

This chapter explains the common approaches in enabling data access layer in a traditional ap-
plication model and specifically focuses on technologies that are used for accessing data store
services in the Cloud. It defines and describes the hands-on knowledge for understanding
the concepts and principals of this work. Moreover, it represents an overview of basic terms
of technologies that are used in this thesis and all together they appearance a background for
the results of this thesis.

The first section defines the basic terms of Cloud computing. The goal of this work is to adapt
data access layer to access enabling heterogeneous Cloud storage services, which will be a
part of Cloud computing in the term of Platform-as-a-Service (PaaS). It also explains how the
data access layer facilitates implementing SQL taxonomy based SQL adaptations. The second
section gives the reader a basic impression about example Cloud services where database
layer can be implemented to evaluate the adaptation data access layer. The detail evaluation
procedures of SQL supports of Cloud services are demonstrated in Chapter 4. Moreover,
the next section is dedicated to present the SQL-standard rules (SQL taxonomy). This thesis
is a continuation of research outcomes of the authors Strauch et al. [SKLU11] where they
introduce a taxonomy for Cloud data hosting solutions, the summery results of their research
work are given in Section 2.1.2. This chapter introduces the available approaches and the
purposes of adapting data access layer by comparing against the previous works for the
further realization. Finally, this chapter describes the technologies are widely used in this
work.

2.1. Cloud Computing

While Internet technology has become highly available with significant speed of computation
capacity, the World Wide Web has introduced a widely spread innovative distribution channel
for application software. Over the last decade an increasing number of software retailers
have started marketing the computing services on a rental basis through online, which can be
recognized as Application Service Provider (ASP). An ASP brings a significant development
in networking infrastructure and computing technologies, and thus made it possible reducing
capital expenditure of an enterprise IT, distribution costs and a consistent user base. It also
reduces the installation and maintenance efforts of large scale application software to the
customers [Tao01].

Cloud computing is an innovative paradigm, which provides the facility of using various
application software services and configurable common computing resources. The computing
resources are for example storage, networks, servers, services and so on. These computing

13

2. Fundamentals

resources can be used on-demand with minimum management effort and low cost pay-per-
consume basis. According to the definition of Cloud computing of National Institute of
Standards and Technology (NIST), there are five essential characteristics of the Cloud model
[MG11]. The essential characteristics are On-demand self-service, Broad network access,
Resource pooling, Rapid elasticity and Measured service. On-demand self-service allows that
a consumer can provision computing resources automatically as needed without additional
involvement of the service provider. Broad network access denotes that the computing
resources are reachable over the network infrastructure and accessible by different types of
client platforms through standard protocols. Moreover, the resources are pooled serving
multiple tenants according to the customer demand, where resources are automatically
scaling elastic on growing demand. Measured service allows that the service provider can
automatically control and optimize resource usage to monitor computing capabilities and
billing customers. In Cloud computing, there are three service models with respect to the
computing capabilities provided to the Cloud service consumer. The definition of service
models are as follows [MG11]:

• Software-as-a-Service (SaaS) is a service model provided by Cloud service provider
where customer can employ and run applications on the Cloud infrastructure. The
customer can have access the applications from a verity of client devices, such as Web
browser. The underlying Cloud infrastructures are automatically managed or control by
the service system and enables Cloud characteristics such as elasticity and accessibility.
In this model the customer has only the possibility to control individual configuration
settings for a user-specific application.

• Platform-as-a-Service PaaS is s service model where customers are allowed to deploy
and configure their own created or acquired applications onto the Cloud infrastructure,
for example software applications, services, or libraries and so on. The acquired ap-
plications are defined using programming language or tools supported by the service
provider. In this model the customer has control over the deployed applications and
the configuration settings, but not the underlying Cloud infrastructure.

• Infrastructure-as-a-Service (IaaS) is a service model where the customers are allowed
to deploy and run random software. In this model the customer has control on operat-
ing systems, storage, deployed applications, virtual machines and select networking
components. Moreover, this model allows customer deploying applications that runs
on the existing operating systems.

To deploy an application in the Cloud four deployment models can be distinguished: Private
Cloud, Public Cloud, Community Cloud and Hybrid Cloud. A private Cloud infrastructure
is exclusively used by a single organization and can be included multiple business units. A
community Cloud infrastructure is shared by a specific community, this mean that a multiple
organizations can be used the Cloud infrastructure together. Both deployment models may
exist on-premises or off-premises. A public Cloud infrastructure is openly used by the general
public, which means it is not restricted to a single or group of organizations. This Cloud
infrastructure is off-premises of the Cloud consumer. A hybrid Cloud infrastructure is a
combination of two or more different Cloud infrastructures, which can be combined with

14

2.1. Cloud Computing

private, public and community Cloud infrastructure. In this model, the Cloud infrastructures
are staying unique entities and allowing data and application portability [MG11].

As part of the Cloud computing, Cloud Database-as-a-Service (DBaaS) has been introduced
where customer can access database on-demand via the Internet from service provider. Cur-
rently, there are both relational and non-relational database services supported by database
service providers. In Cloud computing, a database can be a traditional database such as
MySQL, Oracle, PostgreSQL, Microsoft SQL Server, NoSQL, etc. (see Sect. 2.2) and can guar-
antee scalability, high availability and stability [Qui12]. Therefore, application can benefit
using Cloud database service in order to maintain a big amount of IT enterprise data as well
as big data.

2.1.1. Cloud Deployment Models and Application Layers

Usually traditional application is designed using a three layer architecture model and the
layer are recognized as a presentation layer, business layer and data layer [DEF+08]. However,
this thesis focusing on Data Access Layer (DAL), which is responsible for encapsulating the
data access functionality and places between business layer and data layer [SKLU11]. This
means that the application accesses database through DAL.

Traditional

Presentation
Layer

Application

Business Layer

Data Access
Layer

Database Layer

Presentation
Layer

Business Layer

Data Access
Layer

Database Layer

Private
Cloud

Community
Cloud

Deployment
Models

Hybrid Cloud

Public
Cloud

Presentation
Layer

Presentation
Layer

Business Layer Business Layer

Data Access
Layer

Data Access
Layer

Database Layer Database Layer

Data
Layer

Application
Layers

Figure 2.1.: Overview of Cloud Deployment Models and Application Layers [SBK+12].

Designing an application with an additional layer do not have change effect on the respon-
sibilities of other layers, they are performing the same as traditional application layers. As

15

2. Fundamentals

Cloud infrastructures allow accessing data store service within the Cloud like a traditional
database server, the application has the possibility to move a traditional database to the Cloud.
By accessing data store service a traditional application can take advantages of using highly
available and scalable database service. However, adapting DAL in application architecture
model, now an application can access various data store services which brings a great com-
pensation in order to achieve the data computation, as different types of data computation
can be performed in a suitable, high performance data store service.

Figure 2.1 shows an overview of distribution of four layer application architectures where
DAL is a new layer and placed between business layer and database layer. The traditional
application accessing a traditional database is shown on the left side of this figure. Depending
on required data computations for an application system the database layer moved to the any
of one Cloud deployment models. Moving database layer to the Cloud current concern is how
traditional application can access data and perform data computation in the Cloud. Strauch
et al. have presented a taxonomy supporting decision making for data hosting, migrating or
building a database layer in the Cloud [SKLU11].

2.1.2. Cloud Data Hosting Solution

While Cloud computing becoming more and more popular these days, it is necessary ensuring
Cloud data accessibility and availability for and enterprise application, because in Cloud
computing different deployment models have unique approaches for Cloud data hosting.
Strauch et al. [SKLU11] investigates and categorized possible solutions in a taxonomy for
Cloud data hosting considering the scope of pure and hybrid Cloud. In order to organized
the solutions in taxonomy there are six properties consisting of application layer, deployment
model, location, service model, data store type and compatibility has been considered. This
taxonomy can help the developer deciding a suitable approach, how to build or migrate a
database layer in the Cloud. This reduces a lot of efforts for an application engineer.

Depending on used deployment models the pure (private, public and community) Cloud have
in total 60 Cloud data hosting solutions. However, with a straightforward calculation there are
72 possibilities can be found including off-premise hosted for public Cloud. These pre defined
off-premise hosted properties in public Cloud are invalid and have to be eliminated in the
final calculation of Cloud data hosting solutions. According to the principal of hybrid Cloud
the Cloud data hosting solutions are infinite, as hybrid Cloud infrastructure allows random
combinations or two or more different pure Cloud. In this taxonomy the classifications for
Cloud data hosting are distinguished using simple regular expression and the expressions
are preparing suing abbreviation of the properties. To present the explicit possibilities in
taxonomy the six properties have been discovered more importantly for classifying the
solutions because hybrid Cloud present an infinite solutions [SKLU11].

16

2.2. Cloud Services

2.2. Cloud Services

This section introduces a number of Cloud services where data store services have to be
tested for the SQL evaluation. It is studied that there are several databases supported on a
single Cloud infrastructure. For example, Amazon RDS supports MySQL, Oracle, Microsoft
SQL server. Therefore, this section will give an overview about access enabling DBaaS for
individual Cloud services.

2.2.1. Amazon EC2

Amazon Elastic Compute Cloud (EC2) is a Web service, which is designed to build Web-
scale computing simpler and provides elastic compute facility in the Cloud. It is a true
virtual computing environment. It allows developer to launch instances with different
types of operating systems and customize the application environment. It supports several
database services, likely MySQL, Oracle and PostgreSQL database services. With Amazon
EC2 instances application can benefit mounting on-demand volume of storage, i.e. block
level storage volume Amazon Elastic Block Store (EBS), Amazon Simple Storage Service (S3),
etc [EC2]. Now, application can take advantages of maintain a big amount of IT enterprise
data on Amazon EBS and easily archive the database on Amazon S3. With the concept of
Cloud computing, the data store services as well as mounted volumes on Cloud are scaling
automatically. In addition, it allows mounting multiple storage volumes in an instance,
if require [EBS]. Therefore, using these facilities IT industries are no more worries about
maintain a high amount of enterprise data, while they are moving to the Cloud.

2.2.2. Amazon RDS

Amazon Relational Database Service (RDS) is a Web service, which is especially designed to
manage the relational database in the Cloud and provides facility of accessing on-demand
storage capacity. It allows user to launch several types of relational database instances,
likely MySQL, Oracle, Microsoft SQL Server database services. According to the definition of
Amazon RDS, a traditional application can access a relational database with full functionalities.
In addition, Amazon RDS provides the facility of automatic scaling the compute resources,
easy storing backups and replication to enhance availability and reliability for production
databases [RDS]. Therefore, application can take advantages of maintain a big amount of
IT enterprise data on Amazon RDS Database (DB) instances and easily archive the database.
Using these facilities IT industries are no more worrying about maintain a high amount of
enterprise data, while they are moving to the Cloud. Purpose of this SQL statements testing
on Amazon RDS is to ensure the facility of enable accessing MySQL database service.

17

2. Fundamentals

2.2.3. Amazon VPC

Amazon Virtual Private Cloud (VPC) is a scalable private, isolated virtual networking envi-
ronment like a traditional network infrastructure. It allows user a full control over virtual
networking environment. For example, user can assign a range of Internet Protocol (IP)
address, create subnets, and configure routing tables and network gateways, which ensure a
complete control of networking infrastructure. The infrastructure can be divided into one
or more public or private subnets with Amazon VPC private IP address range. Each subnet
can be attached with one or more Amazon EC2 or Amazon RDS DB instances. On Amazon
VPC, it is possible to build a public-facing subnet, which can have Internet access, and have
access to the backend systems in a private-facing subnet where private-facing subnet has no
Internet access (e.g. application servers or database systems). However, to access an Amazon
VPC instance directly from the Internet, it is necessary to attach an Elastic IP address to the
instance [VPC].

2.2.4. Amazon SimpleDB

Amazon SimpleDB is a Web service providing highly available, simple, scalable and flexible
non-relational data store service in the Cloud. Using SimpleDB developers can reduce their
work load of database administration, as they will only store and query data items via Web
services requests and SimpleDB automatically index data, update schemas in case added a
new data, scale-out of domains, and so on. This mean that SimpleDB automatically manage
the database services, a structured data storage service in the Cloud to make Web-scale
computing easier. Moreover, SimpleDB is designed for running queries on structured data in
real time and store multiple data sets in an attributes [SDB].

Amazon SimpleDB is a NoSQL based data storage service, which introduces indexed (key)
base structured data storage, the keys must be unique. It is similar to spreadsheet and
structured with domains, items, attributes and values. Comparing with a relational database
model, Amazon SimpleDB Domain is similar to a Table where Attributes represented by
Columns and Items represented Rows and values are represented by cells. According to
the concept of SimpleDB data structure, a domain can have zero or more attributes and
an attribute can have multiple values [Ama09]. In Amazon SimpleDB there is no relation
between the domains, as it is freely structured. It is possible to access only a domain while
query to a database. Also it has no data types because query returns only Text (String) type of
data and the data are originally stored in Unicode character UTF-8 format.

2.3. SQL Taxonomy

SQL is a programming language designed for defining and maintaining relational database
systems, which is originally based upon relational algebra and tuple relational calculus. Its
scope includes data insert, query, update and delete, schema creation and modification, and

18

2.3. SQL Taxonomy

data access control [Dar05]. This section describes the basic SQL rules for managing data in
RDMS and illustrates the SQL test cases based on basic SQL queries and statements.

2.3.1. General SQL Rules

The SQL language is divided into several elements, including queries, statements, clauses,
expressions, predicates, insignificant whitespace, etc. [Ame03]. It is investigated that queries
and statements are the most important elements in database management systems. The
clauses, expressions and predicates are often using for the completeness of a query and
statement operation and they bring different working roles. For example, the clauses are
considering constituent components of queries and statements, where the expressions can
produce tabular data or scalar values which comprises of columns & rows and the predicates
are specifying the conditions.

SQL query is the most important element and common operation in SQL language. It is
used to retrieve data from the database based on specific conditions. The query operation
is performed with the declarative SELECT statement, which fetches data from one or more
tables, or expressions in a database scheme. In a normal use of SELECT statements it does
not have persistent effects on the database, but exceptions could be found in some special
implementations. For example, in some databases the SELECT INTO syntax is existed and
which can have persistent effects [INT]. The queries permit the user to describe expected data
and leaving the Database Management System (DBMS) accountable for planning, optimizing,
and performing the physical operation needed to produce the desired result.

In SQL language, the SQL statements are designed for controlling transactions, program
flow, connections, sessions, or diagnostics and it may has a persistent effect on schemata and
data manipulation. The Data Manipulation Language (DML) [RG02] is used to retrieve and
manipulate the data with SQL statements in a relational database. It is the subset of SQL used
to add (INSERT), update (UPDATE) and delete (DELETE) data. Table and index structure in
a relational database can be managed by Data Definition Language (DDL) [RG02]. The DDL
introduces with most frequently used SQL items, for example, CREATE, ALTER, RENAME,
DROP and TRUNCATE, etc. statements.

19

2. Fundamentals

Table 2.1.: Overview of SQL statements based on SQL:2003 standard.

SQL SELECT STATEMENTS SQL JOIN STATEMENTS
SELECT * FROM tbl
Select all rows and columns from table tbl

SELECT * FROM tbl1
INNER JOIN tbl2 ON join-conditions
Inner join table tbl1 with tbl2 based on join-conditions

SELECT c1,c2 FROM tbl
Select column c1, c2 and all rows from table tbl

SELECT * FROM tbl1
INNER JOIN tbl2 ON join-conditions
WHERE conditions
Inner join table tbl1 with tbl2 based on join-conditions
with specific criterion

SELECT c1,c2 FROM tbl
WHERE conditions
Select columns c1, c2 from table tbl with specific criterion

SELECT * FROM tbl1, tbl2
WHERE join-conditions
Select all values from table tbl1 and tbl2 based on join-
conditions

SELECT c1,c2 FROM tbl
WHERE conditions
ORDER BY c1 ASC, c2 DESC
Select columns c1, c2 with specific criterion and from table
tbl order result by column c1 in ascending order and c2 in
descending order

SELECT * FROM tbl1
LEFT JOIN tbl2 ON join-conditions
Left join table tbl1 with tbl2 based on join-conditions

SELECT DISTINCT c1,c2
FROM tbl
Select distinct (different) rows by columns c1 and c2 from
table tbl.

SELECT * FROM tbl1
RIGHT JOIN tbl2 ON join-conditions
Right join table tbl1 with tbl2 based on join-conditions

SELECT c1, aggregate (expr)
FROM tbl
GROUP BY c1
Select column c1 and use aggregate function on expression
expr, group columns by column c1

SELECT * FROM tbl1
FULL OUTER JOIN tbl2 ON join-conditions
Full outer join table tbl1 with tbl2 based on join-conditions

SELECT c1, aggregate(expr) AS c2
FROM tbl
GROUP BY c1
HAVING c2 > v1
Select column c1 and c2 as column alias of the result of
aggregate function on expr. Filter group of records with c2
greater than value v1

Example:
SELECT * FROM tbl1 AS at1
INNER JOIN tbl2 AS at1 ON at1.c1 = at2.c2

SQL OPERATORS SQL UPDATE DATABASE
SELECT * FROM tbl
WHERE c1 [NOT] BETWEEN v1 AND v2
Select all rows from table tbl where the value of column c1
is not in the inclusive range between v1 and v2

INSERT INTO tbl (c1, c2, . . .)
VALUES (v1, v2, . . .)
Insert data into table tbl

SELECT * FROM tbl
WHERE c1 [NOT] IN (v1,v2,. . .)
IN: to specify multiple possible values for a column

INSERT INTO tbl1 (c1, c2)
SELECT c1, c2 FROM tbl2
WHERE conditions
Insert data from tbl2 into tbl1

SELECT * FROM tbl
WHERE c1 > v1 AND c1 < v2
Select all rows from table tbl where the value of column c1
is greater than v1 and less than v2

UPDATE tbl
SET c1 = v1, C2 = v2, . . .
WHERE conditions
Update data in table tbl

SELECT * FROM tbl
WHERE c1 < v1 OR c1 > v2
Select all rows from table tbl where the value of column c1
is either less than v1 or greater than v2

DELETE FROM tbl
WHERE conditions
Delete records from table tbl based on specific criterion

SELECT * FROM tbl
WHERE c1 = v1
Select all rows from table tbl where the value of column c1
is equal to v1

TRUNCATE TABLE tbl
Drop table tbl and re-create it, all data is lost

Continued on next page

20

2.3. SQL Taxonomy

Table 2.1:Overview of SQL statements based on SQL:2003 standard – (continued from previous page)

SELECT * FROM tbl
WHERE c1 <> v1
Select all rows from table tbl where the value of column c1
is not equal v1

SQL TABLE STATEMENTS SQL VIEW STATEMENTS
CREATE TABLE tbl (
c1 datatype(length),
c2 datatype(length),
. . .
PRIMARY KEY (c1)
)
Create table tbl with primary key is c1

CREATE VIEW vw AS
SELECT c1, c2
FROM tbl
The view vw lists all active columns (c1 and c2) from the
tbl table.

DROP TABLE tbl
Remove table tbl from database

ALTER VIEW vw AS
SELECT c1, c2
FROM tbl
Update the view vw lists all active columns (c1 and c2) in
the tbl table

ALTER TABLE tbl
ADD COLUMN c1 datatype(length)
Add column c1 to table tbl

DROP VIEW vw
Remove view vw from the database

ALTER TABLE tbl
DROP COLUMN c1
Drop column c1 from table tbl

SQL INDEX STATEMENTS Abbreviations
CREATE UNIQUE
INDEX idx ON tbl (c1, c2, . . .)
Creates a unique index on tbl table. Duplicate values are
not allowed.

tbl: table name; c: column name; vw: view name; idx: index
name; v: value; at: table alias; aggregate: aggregate function

DROP INDEX tbl.idx
Drop an index idx from table tbl

The Table 2.1 represents an overview of SQL statements based on SQL:2003 standard [Dar05]
which covers the existing SQL rules in a relational or a nor-relational database system. The
initial design of the taxonomy is based on MySQL relational database, as most of the Cloud
services supports MySQL database these days. However, the taxonomy also has to be tested
on non-relational database, for example, Amazon SimpleDB, Amazon DynamoDB, these are
fully managed NoSQL database services. In the taxonomy, it is considered to cover the basic
and frequently used SQL statements, which include SQL select, operators, update database,
table, join, index and view statements. It is investigated that there are several SQL cheat sheets
implemented basic SQL taxonomy can be found online, but no one can be found covering 100
percent taxonomy. Therefore, in order to achieve maximum SQL taxonomy covering we have
followed the SQL tutorial from w3schools [W3S] as well as a book "Database Management
Systems" [RG02], those are recognized as SQL-standard.

21

2. Fundamentals

2.4. openCRX

In order to evaluate the adaptation of DAL for enable accessing Cloud data store service, we
consider using openCRX application. The openCRX is a popular enterprise-class open source
CRM solution, which is based on openMDX, an open source MDA framework software
development based on the Object Management Group (OMG’s) Model Driven Architecture
MDA modeling standards [CRI12].

Browser

openCRX
Database

openCRX GUI
(Servlet)

openCRX / Core EAR

TomEE / OpenEJB (container)

onencrx-kernel openmdx-
base

openMDX

openCRX Provider

http https

opencrx-security

Other
Systems

Application
Layer

Business
Layer

Data
Access
Layer
(DAL)

Database
Layer
(DBL)

openmdx-
portal

openmdx-
security

Figure 2.2.: openCRX application architecture model based on application layers.

Figure 2.2 shows an application architecture model of openCRX application where four
layers, such as application layer, business layer, data access layer and database layer are
clearly defined. openCRX is a Platform-independent, as it runs on any platform with Apache
Tomcat or any J2EE-compliant AppServer and also it is a platform-neutral, as it can support
with one of the major database management systems (e.g. HSQLDB, MySQL, PostgreSQL, MS
SQL, Oracle, or IBM DB2). Nevertheless, it is important to consider the compatible versions

22

2.4. openCRX

of each technology it is designed for. The initial plan was to adapt the DAL of openCRX, but
then we decided to use the database and the data only to reduce the effort in order to focus
on the core contributions of the thesis. As a result the openCRX application is not any more
part of a core contribution of this thesis. However, we decide using the database and data of
openCRX instead of adapting its DAL for each scenario.

The reason is to use database and data of openCRX instead of adapting its DAL, there are
various dependencies and lot of effort has to be done to deploy openCRX application. For
example, it is important to set-up the system environment before running the application.
To set-up the environment, it is required to install ant 1.8.2 and Java 6. However, it is not
sufficient to have a Java Runtime Environment (JRE) only, the full-blown Java Development
Kit (JDK) is essential to run openCRX. Moreover, it is depending on the version of openMDX,
as openMDX is an underlying platform of openCRX application. It is a component based
software system, the different functionalities and features are designed with individual
projects and packages. Therefore, it meant recognizing the necessary packages for DAL
implemented in openCRX can be easier. But, it is studied that the most of the DAL packages
are implemented in openMDX, which means the openCRX is accessing database through
openMDX. Then it becomes a high effort for adapting the DAL of openCRX. As we have
planned to use openCRX database and data for evaluation of SQL support of Cloud data
service, it is necessary investigating openCRX is running on MySQL database without any
problem because our default test setting is designed based on MySQL database.

23

2. Fundamentals

24

3. Related Works

This chapter represents the work of other authors who have designed data access layer in a
multi-layered traditional application setting in order to enable accessing data store service in
the Cloud. The VISION Cloud has developed a concept and describes how next generation
software approaches can benefit implementing Data Access Layer (DAL) where access layer
enables transparent and unified access to data in the Cloud storage. jclouds offers an open
source library Application Programming Interface (API), a portable API which can be used
to access Cloud resources with cloud-specific features. Apache Deltacloud offers a unified
RESTful-based API which can be used to manage a rising number of Cloud provides and
controlling the individual Cloud infrastructure. Apache Libcloud provides a client library,
which can be used for interacting with multiple Cloud service providers. Currently, there
are about 26 different Cloud providers are supported by Libcloud library. This analysis of
existing approaches towards data access layer shows, how existing concepts can be reused
for adapting data access layer to enable accessing Cloud data storage.

3.1. VISION Cloud

VISION Cloud is an EU-funded project, which has introduced a potential ICT infrastruc-
ture for consistent delivery of data-intensive storage services. Using this infrastructure the
developers can take advantages establishing secure and quality data storage services on
demand with an optimum and tolerable investment basis, instead of creating a new physical
datacenter which is cost effective [Lor10]. In this project various aspects of Cloud computing
have been considered, such as virtualization techniques, Cloud storage, secure data access,
Cloud federation and interoperability, and so on. However, the main focus of this project
is Cloud data storage services. To ensure secure data access in the Cloud, this project in-
troduces a new layered based architecture model for next generation software application
approaches. It includes two new layer concepts in the application architecture: Data Access
Layer (DAL) and Data Operation Layer (DOL). In the application setting, DAL is responsible
for establishing the communication between the application and the storage by providing
necessary functionalities. Precisely, it can be determined that this layer is allocating as the
transaction layer and placed between application layer and data storage layer. The DOL is an
underlying layer in the application setting which mainly responsible for implementing the
storage functionality [AAB+11].

With designing access layer, VISION Cloud introduces a significant potential activity that
Cloud data can be exchanged among different Cloud data services. This means that access
layer allows transparent and incorporate data access within Cloud data centers. This approach

25

3. Related Works

brings a lot of advantages to the Cloud application and can reduce application complication.
Additionally, in the design of access layer, it also offers security mechanisms for single and
community Cloud services. By using these mechanisms, it makes possible determining
the implementation of access model and enabling secure data access in the Cloud. In this
scope, DAL makes available the core interface and using this interface application can store
and retrieve data object from the Cloud store services. Moreover, DAL also introduces
content-based access to the Cloud storage, where DAL is representing an abstraction of Data
storages.

In VISION Cloud, there are several important functionalities can be performed by DAL
components, where the components are: Content centric interface, Cloud federation and
interoperability, Secure access and Computational storage. For example, it makes feasible to
achieve Cloud-grade distributed strategy enforcement to all process and access in the Cloud
through the security and access control, directly execute exhaustive computational task in the
Cloud storage by computational storage and also directly access to the content using content
centric interface component through interfacing with application. By using this approach, the
application are no more required storing and managing Uniform Resource Locator (URL)s or
use metadata for finding contents [AAB+11].

3.1.1. VISION Cloud Architecture

In vision Cloud application architecture, the DAL is considering a logical entry position
to the system, where DAL is ensuring a set of functionalities to the applications including
access to the data objects, secure data access, unified access to a federation of data store
services and allows changing object of data storage, a storlet [Vil12] in the Cloud. A storlet is
a computational mediator which has role to classify the computation and isolating metadata
automatically by performing the triggering conditions. In this scope, data storage modifica-
tion means create, delete or manage storlets using a user API. According to the software layer
architecture in VISION Cloud, the DAL is representing a communication media or translator
between application and the storage, where DAL is implementing data access functionalities
based on the DOL. The DOL is the lower layer in VISION Cloud application architecture,
which implements the core functionalities providing data objects in the application system in
order to access Cloud data storage. As a result applications or users have the opportunity to
use a common access layer for enabling Cloud data access.

Figure 3.1 shows an abstraction level conceptual architecture of Data Access Layer based
on VISION Cloud software context, where applications are communicating to the DAL
through a Hypertext Transfer Protocol (HTTP) server request processing and then the DAL is
communicating to the DOL, the storage of data objects. In this design concept, it is considered
that DAL has implemented with a set of components (i.e. Content Centric Interface (CCI) ,
Cloud Federation and Interoperability (CFI), Secure Access Interface (SAI) and Computational
Storage) and the functionalities depending on DOL, then the basic functionalities including
storage operations, metadata management, replication, etc. are performed by DOL. Within
DAL, the CCI has the responsibility to keep track the content information, where the CFI has
ensured the service quality, both approaches are using metadata to perform the allocated

26

3.1. VISION Cloud

Application

Data Access Layer

Data Operation Layer

http server – request processing

Content
Centric

Interface

Cloud
Federation

and Interop.

Secure
Access

Computati-
onal Storage

Figure 3.1.: High Level Conceptual Architecture of the Data Access Layer [AAB+11].

functionalities. Moreover, the SAI is dealing with authentication procedures in the system
where the applications are using Computational Storage component for interacting with DOL
objects. However, when application communicates to the DAL through a process request, the
Management Interface Layer (MIL) also establish a communication tunnel to the application
in order to achieve the management functionalities of VISION Cloud. Nevertheless, VISION
Cloud implements a layer based application architecture model, which is common and
standard approach for a software systems since a few last decades. Designing layering based
application is advantageous because in this approach the applications can be implemented
with separating different segments and functionalities in a logical blocks or components in
software system where components are often reusable [AAB+11].

Technical Architecture

As part of the project work VISION Cloud has presented a detail technical architecture for
the entire system on respected to the access layer shown in Figure 3.2. This architecture
describes how DAL implements interaction between application and the data storage service.
Also, it summarizes the important necessary relations with different components in the
system. Additionally, it show a detail functional implementation of DAL, means how DAL
performs data access functionalities within the VISION Cloud system. The applications are
communicating to the DAL using Representational State Transfer (REST) method request and
the authentications are required when calling a functional component. In this master’s thesis
we are not currently considering secure data access or data replication, however our goal is to

27

3. Related Works

adapt the DAL in order to enable Cloud data access. This is relatively similar approach but
we have focused on a concrete design how traditional application can benefit access a scaled
and stabled data store service in the Cloud to reduce the application complexity instead of
using traditional database.

Global View

Data Access Layer Management
Interface

Layer

Data Operation Layer

Application

User Service

Placement
Service

Identity/Policy
Repository

Storage
Service

Catalog
(logically one

for each cont.)

Replication
Manager

Access
Enforcer

Object
Services

Storlet
Execution

Request Processor

Access Manager

Content
Centric Access

Storlet
Manager

Identity and Policy
Service

Figure 3.2.: High Level Technical Architecture of the Data Access Layer [AAB+11].

Request processor is the only entry position to the application systems communicating to the
DAL, where it processes requests form the application and implements basic functionalities
including systems performance and scalability features for managing proper distribution
to the system. It forwards a request the Access Manager, a access control component to
control the systems implementing authentication and authorization. It also handles request
by request handler for the MIL to achieve the management functionalities, where MIL is a
one of the part of VISION Cloud system besides DAL. However, during processing a request
the request handler characterized the request separately for both DAL and MIL. Additionally,
in case errors during processing request, it has the responsibility to notify to the application
about occurring errors. In the technical point of view there are three components to be
considered as main in DAL, such as Content Centric Service, Computational Storage and
Secure Access.

The Content Centric Service is an important component in DAL which is responsible for

28

3.2. JClouds

accomplishing content-based access and interacting to the data objects service with necessary
metadata request, where the metadata are maintaining by DOL. According to the functional
point of view, it includes a number of modules where each modules are consisting of several
self-contained functions and performs basic object functions. For example, individual module
implements the basic functionality of rich metadata handling, putting and getting objects and
a matrices service and so on.

The Computational Storage is responsible to establishing an entry point in order to perform
the management of starlets by the application (or the user). Moreover, using functionality of
computational storage it makes possible the creation of starlets. The fundamental idea of this
component is that the user will define the necessary starlet functionalities and then the starlet
will automatically adapted with required configuration and the execution environment of the
DOL. The functioning principal of this component is significant a to our research work and
can be reused some of the concepts in this master’s thesis.

The Secure Access is responsible for ensuring feasible access control by implementing various
authentication and authorization to the system in order to restrict the computation as well
as Cloud data access. To achieve secure computation and data access this component has
included there sub component such as Access Manager, Access Enforcer, and Identity Policy
Services. The authentication and access control requests processing are done by the Access
Manager, where Access Control List (ACL) based access control can be performed by Access
Enforcer component. Furthermore, the policy-based authorization and various authentica-
tions (i.e. user provisioning, credential management, etc.) can be performed by the Identity
and Access Policy Services component [AAB+11].

3.2. JClouds

JClouds is an open source library written in Java and built upon based on Clojure program-
ming language. This library permits Cloud application developers to use Cloud-specific
features. Also, it allows the developers to use portable notions. With the Cloud models, this
library has implemented as PaaS where several applications can be plugged in this scope.
Using jclouds library the customers benefit accessing multiple Cloud services at the same
time and currently this library has supported by more than 30 Cloud providers and software
stacks, such as Amazon, Azure, GoGrid, Ninefold, vCloud, OpenStack, etc. The approach
is somewhat related to this master’s thesis where we are only focusing on access enabling
data store service in the Cloud with traditional application while traditional data has move to
the Cloud. This means that our focus is enabling Cloud DBaaS for traditional application. In
jclouds structure there are two packages introduced with jclouds library: ComputeService
and BlobStore. ComputeService is responsible for managing and controlling machines (i.e.
Instances) in the Cloud. For example, using ComputeService package it is possible to start
several machines at the same time and configure them by installing necessary software. On
the other hand BlobStore makes easy dealing with key-value providers like Amazon S3.
Using BlobStore package is it possible to determine a straightforward map view of a container
[jcl11b].

29

3. Related Works

For managing nodes in the clouds, the Compute API performs as one of the portable means.
The functionality of jclouds Compute API belongs to generate a basic abstraction among
common Compute APIs (e.g. Amazon EC2, VMware vCloud etc.). It has special features make
greater visibility which include a single connection for multi homes regions (e.g. resources of
all regions of EC2). Multiple node sets can be running under this cloud API. This is easily
controllable by Secure Shell (SSH) keys to the node on start up. Executing scripts can be
running on the machines in a set and to handle error it offers some special exception types.
By providing in memory blobstore to test provisioning instructions, it offers an infrastructure
as code implies testability. With it updated features, it offers a map to persist credentials
of nodes which can be used to keep track of all cloud nodes credential from single place
[jcl11c].

The idea of BlobStore API contains three concepts which include service, container and blob.
Container contains namespace for data and inside container one can store data as blob which
should be referenced by a particular name. Like Microsoft Azure Blob Service and Amazon
S3, BlobStore API provides key-value storage management which includes both synchronous
and asynchronous APIs. Asynchronous API provides most efficient access gain where the
access could be via threads or native asynchronous clients. This portable API supports map
based data access. It also has some popular tools integrated (e.g. Apache commons Virtual
File System (VFS)). The location API of BlobStore helps to portably identify location oriented
context (e.g. America or Europe). By using BlobRequestSinger, HTTP requests can be portably
generated and passed to the external system for execution or processing. BlobStore file system
allows for testing storage code without any proper credential. The same API can be used for
persistent disk, memory or a remote BlobStore (e.g. Amazon S3) [jcl11a].

Some important features are introduced while using jclouds library for connecting to the
Cloud services, jclouds focuses on following areas: Simple interface, Runtime portability,
Deal with Web complexity, Unit test ability, Performance, Location and Quality. While jclouds
provides Simple interface for managing Cloud envirionments, the developer can reuse their
ideas using common programming model without creating a new object type. So that it can
reduce the workload of troubleshooting and dealing with Web services or APIs. Moreover,
jclouds provides drivers for managing in restricted environment in the Cloud, such as Google
App Engine, which shows that jclouds is runtime portable. This library automatically handled
the transient failures and redirects. It also provides the facility of implementing automatic unit
testing for Cloud endpoints through Stub connections. In order to speed up the computations,
the tasks can be performed in parallel wherever straight Simple API for XML (SAX) for
Extensible Markup Language (XML) can be used. Furthermore, using this library it is also
possible to determine the location where computations or resources are runs in [jcl11b].

3.3. Deltacloud

Apache Dealtacloud is a unified RESTful-based API server which can be used to manage a
growing number of popular Cloud provides by connecting with any Cloud platform and
controlling the individual Cloud services through essential adapter called driver. While using

30

3.3. Deltacloud

Deltacloud API, it is possible to connect different Cloud service providers simultaneously
using compatible drivers on different ports. Currently, there are several drivers are available
for the subsequent Cloud platforms: Condor, VMware vSphere, OpenNebula, Eucalyptus,
RHEV-M, IBM Smart Business Desktop Cloud (SBC), GoGrid, Rackspace, RimuHosting,
Terremark, Amazon EC2, OpenStack. Also it has sifted with a number of storage drivers, for
example Amazon S3, Eucalyptus Walrus, Rackspace CloudFiles, Microsoft Azure, Google
Storage.

Deltacloud API has introduced a number of entities in the back-end provider Cloud, unfortu-
nately all features are not supported by every Cloud service providers. Some are supporting
all and some are supporting a few of entities. For example, the Microsoft Azure driver
presently supports only the ’Buckets’ collection. However, the drivers are dynamically per-
formed according to the Cloud infrastructure. The Deltacloud API entities are as follows:
Realms, Instances, Images, Instance States, Keys, Storage_Volume, Storage_Snapshot, Bucket,
Blob, Address, Load Balancer, Firewalls. Where Realms represents a datacenter of an organi-
zational unit, Instances represents the status of a back-end Cloud (i.e. server Images), Storage
Volume represents a virtual storage device attaching with an Instance, Storage Snapshot
represents a snapshots of a Storage Volume in a particular point in time, Bucket represents a
container for data blobs.

IAAS
Cloud

providers

HTTP
client Deltacloud

Deltacloud

REST API

Cloud
provider

APIs

Web browser
Deltacloud ruby client
curl
any custom client
any other client that
can make HTTP requests

on local machine
in server room
on network
a public Deltacloud
instance

Figure 3.3.: Overview of conceptual working procedure within Deltacloud infrastructure
where a HTTP client application accessing Cloud services through Deltacloud
server using REST API request call [Apa11].

Figure 3.3 shows that HTTP client (i.e. Web browser) makes HTTP request using Deltacloud
API to talk to the server and control the Cloud infrastructure, as HTTP client comes with
a simple HyperText Markup Language (HTML) interface. The HTML interface is usually
written in jQuery mobile framework. So that it make easier to connect using a thin client
(e.g. mobile or tablet devices). Furthermore, with Deltacloud it maintains a ruby client which
allowing application to interact with Deltacloud server programmatically controlling Cloud
services. Using Deltacloud client (Ruby), the clients intends to insulate users in order to
handle HTTP and REST directly. There are several ways to configure Deltacloud server, for
example it can be configure on local machine, in server room, on a network or even on a
public Deltacloud instance. The concept behind about working principal of Deltacloud, the

31

3. Related Works

HTTP client requesting computation to the Deltacloud server through REST API call and
Deltacloud server forwarding request to the specific Cloud providers APIs in order to perform
the computation in the Cloud. The approach is somewhat related to our work. This means
that in this scenario the Deltacloud server is a middleware between client (e.g. an application)
and the Cloud providers. This also can be considered a data access layer comparing our
application architecture models when applications are accessing Cloud data store service.

Within Deltacloud, while starting a number of Cloud service instances it provides a method
to instruct the server dynamically route to the specific Cloud service by using specific drivers
despite of the default driver that the server was invoked for the initial starting. The concept
of provider sometimes can be supported by some of the drivers which make accessible the
different instances of a Cloud using same driver, like accessing different regions of Amazon
EC2 at the same time using a same driver. Additionally, installing the Deltacloud client
automatically provides a deltacloud command line tool; this tool allows controlling Cloud
infrastructure form the command line basis. Other command line tool distribution is cURL
which is a Linux based HTTP client. It can also be used to speak to the Deltacloud server
using Deltacloud REST API. This tool reveals the flexibility and power of the Deltacloud
REST API. In order to access the Deltacloud API, it also provides a C/C++ library called
Libdeltacloud. Manipulating Cloud objects through Deltacloud API this library exports a
suitable structures and functions [Apa11].

3.4. Apache Libcloud

Apache Libcloud is a Python based library API for managing Cloud services. It provides
a standardized API and single interface for connecting to multiple Cloud provides as well
as various Cloud services like computing, storage and so on [Che12]. There are currently
about 26 Cloud providers can be supported by using Libcloud [Apa]. Developers can benefit
using this library in order to access multiple Cloud resources for different computations
purpose. The goal of this library is to provide a functional cross-cloud environment. In the
current version (i.e. Libcloud v0.10.1) of Libcloud, It has included multiple components
consisting of Cloud Servers (Compute), Cloud Storage, Load Balancers-as-a-Service (LBaaS),
DNS-as-a-Service (DNSaaS) for managing Cloud resources [AKM+12].

Compute component make feasible to the user managing Cloud infrastructure and virtual
instances accessible form available Cloud providers, for example Amazon EC2, Rackspace and
others. Additionally, using this component developer can run the deployment scripts in order
to manage and configure the newly created instances. Furthermore, this component represent
the available configurations and status information of an Instance which includes hardware
configuration, operating system, server location and the sever state. Storage component make
possible to the developer managing Cloud storage and services, for example CloudFiles,
Google Storage, Amazon S3, Amazon EBS, etc. This component has the inclusion of sub
component s or functionalities as Object and Container, where object represent the BLOB and
container has implemented with a concept that it can contain multiple objects.

32

3.4. Apache Libcloud

Load Balancer component make reasonable to the developer managing the services and
configuring the Load Balancer as a Service to several instances with the scope, such as GoGrid
Load Balancers, Rackspace Cloud Load Balancers, etc. This component can represent the
allocated members as well as load balancing algorithm with a load balancer instance. Domain
Name System (DNS) component allows developer managing the services and representing
the information about a Cloud domain. Using this component, it is also possible to manage
and configure the DNSaaS. The example DNSaaS are Zerigo DNS, Rackspace Cloud DNS as
so on. Each component is functioning moderately self-sustainable, as they are implemented
based on component based architecture, and exposes a straightforward way to make use
of base API with all supported Cloud providers. However, in some architectural views the
components are depending on each others. For example, in order to add a member to the
load balancer it reads the IP address from the Node object [Apa].

Apache Libcloud library has implemented drivers for specific cloud providers (i.e. Amazon
EC2, IBM SmartCloud Enterprise, etc.). The drivers are designed like as extension methods
besids base API where methods are implemented functionality connecting to a specific Cloud
provider. Therefore, according the design concept of Libcloud it is possible to connect with
multiple providers simultaneously using one library. The library is written using standard
Python programming language, so that it is compatible with multiple versions of Python.
Also, it brings advantages for the Cloud application to ease integration with various operating
systems and virtualization tools because Python is a language which can be supported by
various operating systems, such as Linux, Windows and others.

Apache Libcloud API is designed with a set of python classes and functions, which are to be
used to enclose and control an Infrastructure as a Service of a Cloud. The classes are designed
individually for specific Cloud providers so that it make feasible communicating a specific
Cloud service consistently, while services are provided equivalent features. The functions are
implemented based on core of the methods provided by different Cloud services that make
capable the user to discover the information in order to prepare and connecting the virtual
machines. Using Libcloud the developer can take advantages building applications that
extending uses of multiple Clouds and can be migrated to different Clouds in order to balance
the workload. However, Libcloud does not offer capabilities specifically managing storage
volume or data store service in the Cloud, which we are defining in this master’s thesis. In
order to determine the compute size of an instance, initially it simplifies consideration that
all available commute size is valid for every image. This means that the size is considered
as dynamic, for example some instances are not supporting micro instance or some are not
supporting large instance, the all conditions can be coped with this library. Furthermore,
using Libcloud’s SSH utilities or an open source tools, an Open Virtualization Format (OVF),
it is possible connecting to nodes and transferring data to the Cloud instances [AKM+12].

33

3. Related Works

34

4. Evaluation of SQL Support of Cloud Data Services

This chapter describes a test setup, default scenario, and the scenarios of running SQL test
cases on several selected Cloud data storages for the evaluation of SQL support of Cloud data
services. The test setup section describes a detailed organization of the testing environment
and the default test scenario section explains how the SQL taxonomy could be covered by
possible SQL test cases. The default SQL test cases are designed based on MySQL database,
as it is broadly accepted open source database among various database servers and there
are several Cloud data storage providers supporting the MySQL database. Also, MySQL
database is one of the world’s most used RDMS and supports most of the standard SQL
queries [DBC], [Tea12]. The default scenario of the test cases are built upon MySQL v5.5, this
version is currently available on several top listed Cloud services (i.e. Amazon EC2, Amazon
RDS, Eucalyptus, etc.).

However, each Cloud service has individual goal and principles. Therefore, to fulfill their
target they are established with different data storage service. On Cloud services the database
can be either a relational database or a non-relational database system. For example, Amazon
RDS is an optimized scale relational database service, where Amazon SimpleDB is a highly
available and flexible non-relational data store service and a fully managed NoSQL database.
So that the application can use an appropriate data storage service according to their compu-
tation need. An application may use several Cloud data store services simultaneously for
storing the data.

Service Provider Data Store Service

Amazon Elastic Compute Cloud (Amazon EC2) MySQL

Amazon Elastic Compute Cloud (Amazon EC2) Oracle

Amazon Elastic Compute Cloud (Amazon EC2) PostgreSQL

Amazon Relational Database Service (Amazon RDS) MySQL

Amazon Relational Database Service (Amazon RDS) Oracle

Amazon Virtual Private Cloud (Amazon VPC) with Amazon EC2 MySQL

Amazon SimpleDB NoSQL

Table 4.1.: List of Cloud data storage to be tested for the evaluation of SQL support.

Now, it is a considerable issue that how an application can access Cloud data storage, as Cloud
infrastructure and database service can be different than a traditional database. Therefore,
in order to enable Cloud data access, it is require to investigate the existing approaches to
adapt of the database layer. By running the SQL test cases, we are investigating which SQL

35

4. Evaluation of SQL Support of Cloud Data Services

statements have to be adapted in case the database layer is moved to the Cloud. That means
that the required adaptations of SQL statements are to be determined based on testing a
set of SQL test cases on the selected Cloud data store services. However, it also requires an
evaluation of SQL support to observe the adaptations, which are working accordingly. Table
4.1 shows the list of Cloud data storages, which are to be tested for the evaluation of SQL
support. The JUnit test results of SQL statements investigations are described in Appendix
A.

After achieving the SQL adaptation results, the required adaptations are to be stored in data
access layer within an application system to adapt the data access layer and then evaluate the
adaptation of data access layer accessing different Cloud storage service solutions based on
use case scenario. In order to test the system, a simple Java Application is to be used to send
SQL requests of the different categories of the SQL Taxonomy showing that the extended Data
Access Layer (DAL) is capable to perform the required transformations of the SQL statements
to query the different Cloud data storage services. However, the adaptation of data access
layer, we will specify, design, and realize in following chapters.

4.1. Test Setup

This section describes the detail procedure of test setup including preparation of testing
environment as well as how we define the test cases. Our initial plan was to use an open-
source application implemented in Java for the investigation, which adaptations of the data
access layer are required in order to enable Cloud data access. Due to reduce the complexity of
the work and focusing on actual research goal, we consider reusing the database of openCRX
only to have an example database containing data. Moreover, it is considered to use a simple
Java application instead of using a complex structured application (i.e. openCRX application)
to achieve the SQL statements testing results. This also reduces considerably the thesis
work load. Also, we have followed several tutorials available in online in order to prepare
the Cloud service environment and to migrate the openCRX database to the Cloud data
store service. Migrating traditional database to the Cloud is an important issue because the
implementation of Cloud base data store services can be different than a traditional one.
Therefore, it is necessary to investigate the proper database migration while database is
moved to the Cloud.

In order to perform the SQL statements testing in Cloud data store service, a set of SQL
statements test cases have defined. The test cases are designed based on SQL 2003 Standard
[Ame03]. Moreover, to finalize the test cases, we have followed the example statements form
w3schools [W3S], as currently w3schools is widely recognizable. The default test cases are
written based on traditional MySQL database because it is observed that currently there are
growing number of Cloud service providers offers MySQL database service and MySQL
database service is widely accepted to the software application.

36

4.1. Test Setup

4.1.1. openCRX Database

As described in Section 2.4, to setup testing environment, it is considered to use the database
version from openCRX version 2.9.1.

openCRX database is especially designed for the Web based application (i.e. Web service),
which is usually accessible over the Internet. And we are planning to test the accessibility of
Internet based database, Cloud data store services for a traditional application. Both services
are available and accessible through Internet technology. A traditional application is typically
accessing traditional database on local infrastructure, however this thesis focuses on accessing
Cloud data store services from traditional application. According to above concepts, it is
determined that openCRX database is certainly a solution for SQL statements testing. As
openCRX database is already compatible for a CRM application, it makes easy to investigate
the SQL statements adaptations and evaluates the database functionality with the application,
while moving the database layer to the Cloud.

It is studied that openCRX is launched with HSQLBD database by default. However, accord-
ing to the design specification of the application it is also run on MySQL database. Therefore,
it is required to investigate whether openCRX running perfectly with MySQL database locally
or not by considering default SQL test cases based on MySQL database. In order to pre-
pare a MySQL database for openCRX, a database migration is needed. However, migrating
database is become easier, as current version of openCRX provides tools to migrate from an
existing database to another database. It is found that there are two functionalities called
DbSchemaWizard and DbCopy are responsible for database migration, where DbSchemaWiz-
ard permits creating, validating or upgrading an openCRX database and DbCopy permits
copying the openCRX data to an assigned database [Ocr12]. These tools can be used to
migrate from an existing openCRX HSQLDB database to MySQL database.

4.1.2. Statements and Queries Covered by Test Cases

This section describes about how the SQL taxonomies are covered by designing the SQL
test cases based on openCRX database. SQL taxonomy (see Table 2.1) provides the basis
of SQL-standard, which is used to design and maintain a relational database system. The
SQL is generically based upon relational algebra and tuple relational calculus [Dar05]. The
basic SQL rules are fundamentally included in SQL taxonomy, for example, data insert, query,
update and delete, schema creation and modification, and data access control. The test cases
are however designed based on basic SQL standard rules.

Test Cases Covering

Table 4.2 shows all possible test cases mapping with SQL taxonomy where each test case is
designed depending on corresponding SQL taxonomy. The SQL test cases are initially written
based on a traditional MySQL database, however, these test cases are to be considered as
default test cases in order to accomplish SQL statement testing on Cloud data storage service.

37

4. Evaluation of SQL Support of Cloud Data Services

It does mean for investigating the SQL statement adaptations our concept is to execute
the same test cases on Cloud database service while moving the database to the Cloud.
However, it is examined that currently there are lot of Cloud services which does not support
MySQL database, the different Cloud services established with unique approaches and
different database services according to their need. Therefore, to enable accessing the same
functionality of SQL-standard with an existing application on different Cloud store services,
it is quite important to find the SQL adaptations and mapping with existing traditional SQL
approaches.

Also, our study analysis says that in order to accomplish the explicit goal of individual Cloud
services the Cloud service established with suitable data storage systems, some of them
are supporting relational database systems and some of them are supporting non-relational
database systems.

Table 4.2.: SQL Test cases default scenario based on SQL taxonomy.
SQL Taxonomy Test Case

SELECT * FROM tbl
Select all rows and columns from table tbl

SELECT * FROM oocke1_componentconfig

SELECT c1,c2 FROM tbl
Select column c1, c2 and all rows from table tbl

SELECT object_id, access_level_browse FROM oocke1_ac-
count

SELECT c1,c2 FROM tbl
WHERE conditions
Select columns c1, c2 from table tbl with specific criterion

SELECT object_id, access_level_browse FROM oocke1_ac-
count
WHERE object_id=’account/CRX/Standard/admin-
Standard’

SELECT c1,c2 FROM tbl
WHERE conditions
ORDER BY c1 ASC, c2 DESC
Select columns c1, c2 with specific criterion and from table tbl or-
der result by column c1 in ascending order and c2 in descending
order

SELECT object_id, name FROM oocke1_activitygroup
WHERE pparent=’activities/CRX/Mohsin’
ORDER BY object_id ASC, name DESC

SELECT DISTINCT c1,c2 FROM tbl
Select distinct (different) rows by columns c1 and c2 from table
tbl

SELECT DISTINCT object_id, name FROM oocke1_calen-
dar

SELECT c1, aggregate (expr) FROM tbl
GROUP BY c1
Select column c1 and use aggregate function on expression expr,
group columns by column c1

SELECT object_id, AVG (access_level_browse * access_-
level_delete) FROM oocke1_calendar
GROUP BY object_id

SELECT c1, aggregate(expr) AS c2 FROM tbl
GROUP BY c1
HAVING c2 > v1
Select column c1 and c2 as column alias of the result of aggregate
function on expr. Filter group of records with c2 greater than
value v1

SELECT object_id, AVG (access_level_browse * access_-
level_delete) AS access_level_browse FROM oocke1_cal-
endar
GROUP BY object_id
HAVING (access_level_browse > 4)

SELECT * FROM tbl
WHERE c1 [NOT] BETWEEN v1 AND v2
Select all rows from table tbl where the value of column c1 is not
in the inclusive range between v1 and v2

SELECT object_id, owner FROM oocke1_activityprocess_
WHERE IDX NOT BETWEEN 0 AND 1

SELECT * FROM tbl
WHERE c1 [NOT] IN (v1,v2,. . .)
IN: to specify multiple possible values for a column

SELECT object_id, owner FROM oocke1_activityprocess_
WHERE IDX NOT IN(0, 2)

SELECT * FROM tbl
WHERE c1 > v1 AND c1 < v2
Select all rows from table tbl where the value of column c1 is
greater than v1 and less than v2

SELECT object_id, owner FROM oocke1_activityprocess_
WHERE ((IDX > 0) AND (IDX < 2))

Continued on next page

38

4.1. Test Setup

Table 4.2: SQL Test cases default scenario based on SQL taxonomy – (continued from previous page)

SQL Taxonomy Test Case

SELECT * FROM tbl
WHERE c1 < v1 OR c1 > v2
Select all rows from table tbl where the value of column c1 is
either less than v1 or greater than v2

SELECT object_id, owner FROM oocke1_activityprocess_
WHERE ((IDX < 1) OR (IDX > 1))

SELECT * FROM tbl WHERE c1 = v1
Select all rows from table tbl where the value of column c1 is
equal to v1

SELECT object_id, owner FROM oocke1_activityprocess_
WHERE (IDX = 1)

SELECT * FROM tbl WHERE c1 <> v1
Select all rows from table tbl where the value of column c1 is not
equal v1

SELECT object_id, owner FROM oocke1_activityprocess_
WHERE (IDX <> 1)

CREATE VIEW vw AS
SELECT c1, c2 FROM tbl
The view vw lists all active columns (c1 and c2) from the tbl
table

CREATE VIEW oocke1_join_accthasassaddr (assigned_-
address, account) AS
SELECT addr.object_id AS assigned_address,
addr.authority AS account FROM oocke1_address
addr

ALTER VIEW vw AS
SELECT c1, c2 FROM tbl
Update the view vw lists all active columns (c1 and c2) in the
tbl table

ALTER VIEW oocke1_join_accthasassaddr (assigned_ad-
dress,account_) AS
SELECT addr.object_id AS assigned_address,
addr.authority AS account_ FROM oocke1_address
addr

DROP VIEW vw
Remove view vw from the database

DROP VIEW oocke1_join_accthasassaddr

INSERT INTO tbl (c1, c2, . . .)
VALUES (v1, v2, . . .)
Insert data into table tbl

INSERT INTO oocke1_segment (access_level_browse,
dtype, owner_, access_level_update, access_level_delete,
object_id)
VALUES (4, ’org:opencrx:kernel:account1:Segment’, 2, 3,
1, ’accounts/CRX/Masud’)

UPDATE tbl
SET c1 = v1, C2 = v2, . . .
WHERE conditions
Update data in table tbl based on specific criterion

UPDATE oocke1_segment
SET access_level_browse=3, owner_=1
WHERE (object_id=’accounts/CRX/Masud’)

DELETE FROM tbl
WHERE conditions
Delete records from table tbl based on specific criterion

DELETE FROM oocke1_segment
WHERE (object_id=’accounts/CRX/Masud’)

CREATE TABLE tbl (
c1 datatype(length),
c2 datatype(length),
. . .
PRIMARY KEY (c1)
)
Create table tbl with primary key is c1

CREATE TABLE test_table1 (
id INTEGER UNSIGNED NOT NULL AUTO_INCRE-
MENT,
name VARCHAR(250) NOT NULL,
age INTEGER UNSIGNED,
marks BIGINT UNSIGNED,
PRIMARY KEY (id))

INSERT INTO tbl1 (c1, c2)
SELECT c1, c2 FROM tbl2
WHERE conditions
Insert data from tbl2 into tbl1 based on specific criterion

INSERT INTO test_table3 (id, name)
SELECT id, name FROM test_table2
WHERE (id=1)

ALTER TABLE tbl
ADD COLUMN c1 datatype(length)
Add column c1 to table tbl

ALTER TABLE test_table3
ADD COLUMN birthday date

ALTER TABLE tbl
DROP COLUMN c1
Drop column c1 from table tbl

ALTER TABLE test_table3
DROP COLUMN birthday

CREATE UNIQUE
INDEX idx ON tbl (c1, c2, . . .)
Create a unique index on tbl table. Duplicate values are not
allowed

CREATE UNIQUE
INDEX idx ON test_table3 (id, name)

DROP INDEX tbl.idx
Drop an index idx from table tbl

DROP INDEX idx ON test_table3

Continued on next page

39

4. Evaluation of SQL Support of Cloud Data Services

Table 4.2: SQL Test cases default scenario based on SQL taxonomy – (continued from previous page)

SQL Taxonomy Test Case

TRUNCATE TABLE tbl
Drop table tbl and re-create it, all data is lost

TRUNCATE TABLE test_table3

DROP TABLE tbl
Remove table tbl from database

DROP TABLE test_table3

SELECT * FROM tbl1
INNER JOIN tbl2 ON join-conditions
Inner join table tbl1 with tbl2 based on join-conditions

SELECT access_level_browse, full_name FROM oocke1_-
account
INNER JOIN oocke1_account_ ON (oocke1_ac-
count.object_id=oocke1_account_.object_id)

SELECT * FROM tbl1
INNER JOIN tbl2 ON join-conditions
WHERE conditions
Inner join table tbl1 with tbl2 based on join-conditions with spe-
cific criterion

SELECT access_level_browse, full_name FROM oocke1_-
account
INNER JOIN oocke1_account_ ON (oocke1_ac-
count.object_id=oocke1_account_.object_id)
WHERE (oocke1_account_.idx=1) ORDER BY oocke1_ac-
count.full_name

SELECT * FROM tbl1
LEFT JOIN tbl2 ON join-conditions
Left join table tbl1 with tbl2 based on join-conditions

SELECT access_level_browse, full_name FROM oocke1_-
account
LEFT JOIN oocke1_account_ ON (oocke1_account.object_-
id=oocke1_account_.object_id)
WHERE (oocke1_account_.idx=2)

SELECT * FROM tbl1
RIGHT JOIN tbl2 ON join-conditions
Right join table tbl1 with tbl2 based on join-conditions

SELECT access_level_browse, full_name FROM oocke1_-
account
RIGHT JOIN oocke1_account_ ON (oocke1_ac-
count.object_id=oocke1_account_.object_id)
WHERE (oocke1_account_.idx=0)

SELECT * FROM tbl1, tbl2
WHERE join-conditions
Select all values from table tbl1 and tbl2 based on join-conditions

SELECT persons.LastName, persons.FirstName, or-
ders.OrderNo FROM persons, orders
WHERE ((persons.P_Id > 1) AND (orders.P_Id < 3))

SELECT * FROM tbl1
FULL OUTER JOIN tbl2 ON join-conditions
Full outer join table tbl1 with tbl2 based on join-conditions

SELECT persons.LastName, persons.FirstName, or-
ders.OrderNo FROM persons FULL JOIN orders ON
persons.P_Id=orders.P_Id ORDER BY persons.LastName

The SQL rule cannot be covered by the SQL test cases, as
MySQL lacks support for FULL OUTER JOIN.

Emulation of MySQL FULL JOIN:
SELECT Persons.LastName, Persons.FirstName, Or-
ders.OrderNo FROM Persons LEFT JOIN Orders ON
Persons.P_Id=Orders.P_Id
UNION
SELECT Persons.LastName, Persons.FirstName, Or-
ders.OrderNo FROM Persons RIGHT JOIN Orders ON
Persons.P_Id=Orders.P_Id

In default SQL test cases design, it is intended to cover complete taxonomy; therefore, in this
scope we consider the basic SQL rules, such that Select statements, Update database, Opera-
tors, Table statements, Join statements, Index statements, View statements. Unfortunately,
there is taxonomy in SQL join statements called FULL OUTER JOIN cannot be covered in
this scope, as MySQL lacks support for this taxonomy. It can be possible to emulate this
taxonomy by doing an UNION of a LEFT JOIN and a RIGHT JOIN of selected tables, but
having the question of original taxonomy use this SQL rule is included in the test cases set,
as FULL JOIN functionality is implemented perfectly in other database services, i.e. Oracle,

40

4.2. JUnit Test for Automatic Testing

PostgreSQL. Furthermore, to achieve the maximum SQL taxonomy the openCRX database is
extended with some tables.

4.2. JUnit Test for Automatic Testing

JUnit is an extensible unit testing framework for implementing testing easy by simplifying
the writing of test cases and by providing automated running of tests and test suites in Java.
It provides a straightforward manner to specifically test specific areas of a Java program. By
using JUnit framework, it is possible to employ testing a single or even multiple units of a
hierarchy of program code.

In order of testing full functionality of a Java program, JUnit testing framework is very
useful and advantageous to use. Because of according to the concept of JUnit framework and
achieving positive results, it is necessary to define explicit expected outcomes of a specific
program execution routes. However, a test can be written with expected outcomes during
debugging a program and the debugging can be preformed until the test comes out positive.
Moreover, a project can have several core-components and the components can be dependent
each other. In this situation, if we modify a specific areas of the project, it is possible to
monitor the immediate effect of the modification and also possible to observe the effect of
dependent components immediately. Another advantage of using JUnit testing is that before
coding it is possible to test all necessary units of a program [Mil05].

Therefore, for testing the SQL test cases, it is considered to use the JUnit testing because it
provides the facility of automatic running tests and also possible to compare the expected
results of specific test case in a simple way. To realize the explicit test result, the test cases are
defined with individual test methods. Using individual methods the test becomes easier to
observe, which SQL statements are passed and which are failed. In addition, a simple Java
application "SQLQueryAnalyzer" is developed to prepare the expected results. The query
analyzer is capable to execute a set of SQL queries on local database system and then return
the execution results, the achieving results might be considered as expected outputs for SQL
test cases.

4.3. Test Scenario

In order to determine the necessary adaptations of the SQL statements for accessing Cloud
data storage services, a set of SQL test cases are to be executed on different selected Cloud
data storage services. The SQL test cases are defined in previous section. The test cases
are to be executed on traditional SQL server as well as on Cloud database systems for the
investigation, which SQL queries and statements have to be adapted in case the database
layer is moved to the Cloud. This section describes the different scenarios and outcomes
of SQL test cases for both traditional and Cloud database services. In addition, the usage
diagram for corresponding test scenarios are originated from Strauch et al. publication on
Cloud Data Hosting Solutions [SKLU11].

41

4. Evaluation of SQL Support of Cloud Data Services

4.3.1. Default Scenario

This section describes default test scenario of SQL statements testing where application
accessing traditional MySQL database on local server. In order to achieve accurate results, it
is considered to use the same version of database setting for all similar testing. For example,
MySQL database can be implemented in several Cloud services and for all cases it should
considered implementing with MySQL version v5.5. Therefore, to setup default testing
scenario, it is considered by using MySQL version v5.5. In general, a traditional application is
built with three layer architecture, i.e. presentation layer, business logic layer and database
layer. However, according to the purpose of data accessing from Cloud data store services a
Data Access layer (DAL) has to be implemented in current application architecture model.
This introduces a four layer application architecture model. The DAL is placed between
Business Logic Layer and Database Layer where it is responsible for encapsulating the data
access functionality.

Traditional

Presentation Layer
(Eclipse IDE)

Application

Business Layer
(Java Application)

Data Access Layer
(JDBC Connection)

Database Layer
(MySQL Database)

Private
Cloud

Community
Cloud

Deployment
Models

Hybrid Cloud

Public
Cloud

Data
Layer

Application
Layers

Figure 4.1.: Scenario overview of traditional MySQL database version 5.5 running on local
server and submit the SQL queries.

Figure 4.1 shows a layer based architecture model of a traditional application where ap-
plication runs on local traditional database server. However, the application does not run
on any distributed computing or Cloud storage services. In default scenario setting, a Java
application is running on local server and accessing traditional MySQL database where the
application is implemented using JUnit framework in Eclipse platform. Having comparison
with traditional application layers, the Java application (SQL statements testing) is running on

42

4.3. Test Scenario

business layer where Java Database Connectivity (JDBC) connection and MySQL database rep-
resents DAL and DBL respectively. The Eclipse Integrated Development Environment (IDE)
is considered a presentation layer because the application is running in Eclipse platform to
investigate the results of JUnit testing. In addition, to setup the default testing scenario, it
is necessary to migrate the openCRX database to traditional MySQL database, as openCRX
originally comes with HSQLDB database. Furthermore, a middleware driver, JDBC connector
is required to connect the database from application. In order to establish the connection
to the traditional database server, a recent JDBC driver and standard connection string has
used.

Interpretation of Test Results

The default test settings are defined with expected outputs for every SQL statements designing
by individual JUnit test methods. The expected outputs are achieved by running a Java
application called SQLQueryAnalyzer. After successfully setting up the JUnit testing methods,
the JUnit test suite has run to compare the actual outputs with expected outputs automatically.
While running JUnit tests, it shows the outcomes which methods (e.g. SQL statements) are
passed and which are failed. Using JUnit testing framework it is also possible to visualize
of comparison result between expected and actual output in case a method fails. From
this comparison result one can easily realize why method fails and then adapt the method
immediately.

Table A.1 shows JUnit tests results for default test scenario where all SQL test cases are passed
on traditional MySQL database except MySQL FULL JOIN functionality, as MySQL lacks
supporting FULL JOIN. This feature can be emulated using UNION operation between LEFT
JOIN and RIGHT JOIN of two tables for achieving expected result. This is just a possible
solution, but the results may vary comparing with actual FULL JOIN feature depending
on table descriptions. Furthermore, while running SQL test cases it is realized that SQL
statements (i.e. create table, update, delete) are not returning a result set, as it has no way to
represent the result sets of a database changes. It can be proved the stored procedure runs
without error by using query analyzer.

4.3.2. MySQL on Amazon EC2

This section describes the test scenario of access enabling MySQL data store service on
Amazon EC2 public Cloud from traditional application. However, in default scenario the
application is accessing database on local server. By comparing with default scenario applica-
tion model, the presentation layer, business layer and data access layer are remaining in the
same place on local server, only database layer is now move to the Cloud.

In order to setup MySQL data store service testing environment on Amazon EC2 Cloud, there
are several steps have to be done. Using Web based AWS Management Console, we can control
the Cloud environment, for example, launch a new instance, start, reboot, stop and terminate
an instance. Amazon EC2 provides the opportunity to launch a few of pre-configured Machine

43

4. Evaluation of SQL Support of Cloud Data Services

Image [EC2]. To setup MySQL testing, a pre-configured Amazon Machine Image (AMI) is
chosen called amzn-ami-pv-2012.03.1.i386-ebs which is a Linux platform. During launching
an instance, it automatically checks monitor the AWS systems as well as the software and
network configuration for the instance. However, it is important to setup security groups
with declaring necessary ports, as application is accessing database service on Amazon EC2
Cloud using SSH tunneling. For example, the secure communication establishes on port 22,
the default MySQL accessing port is 3306 and so on.

For SQL statements testing on Amazon EC2, it is considered using MySQL version v5.5,
because default test cases are designed based on traditional MySQL v5.5. Different version of
database can produce different results; therefore, it is important to keep the same version of
database setting for achieving accurate results. To upload and migrate the openCRX database
to MySQL data store service on Amazon EC2, the MySQL Workbench tool can be used with
establishing a secure communication by SSH tunneling.

Traditional

Presentation Layer
(Eclipse IDE)

Application

Business Layer
(Java Application)

Data Access Layer
(JDBC Connection)

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Amazon EC2

Database Layer
(MySQL Database)

Database Layer
(MySQL Database)

Legend

Dataflow
Migration
Modified Component *

Ap
pl

ic
at

io
n

La
ye

rs

SSH Tunneling Data
Layer

Figure 4.2.: Scenario overview of SQL test cases running on MySQL data store service in
Amazon EC2.

While Amazon EC2 allow accessing MySQL data store service, the traditional application
can take advantage of accessing data with elastic volume of storage capacity and facility of
using high computations which required by the application. To ensure these facilities, it is
necessary to investigate that MySQL server supports full functionality of SQL-standard as
traditional MySQL server does. Therefore, it is considered to run SQL taxonomy based a set
of selected SQL statement test cases in MySQL database on Amazon EC2, to check whether all
test cases are passed. In order to test MySQL database on Amazon EC2, the same architecture
model is used. Figure 4.2 shows a four layer application architecture, where Eclipse IDE
is considering a presentation layer, the Java application is running on business layer and

44

4.3. Test Scenario

openCRX MySQL database (database layer) has moved to Cloud (Amazon EC2), and then
the application accessing MySQL database on Amazon EC2 through JDBC connection via
SSH tunneling.

Interpretation of Test Results

To setup JUnit testing for MySQL statements testing on Amazon EC2, we have followed the
same principles of default MySQL test setting. Even it is not necessary to adapt the MySQL
connection string, as the application is connecting with MySQL database on Amazon EC2
instance using SSH tunneling. Nevertheless, it is important to create SSH connection with a
specific port (e.g. 3306) in order to connect the MySQL data store service. After successfully
setting up the JUnit testing methods, we run the JUnit test suite to compare the actual results
with expected results automatically. While running JUnit testing, it is observed that we have
achieve same outcomes as default SQL testing (see Section 4.3.1). This means that all test
cases (SQL statements) are passed except MySQL FULL JOIN, JUnit results are described in
Table A.1. However, it is also realized that emulating FULL JOIN properties with UNION
operation between LEFT JOIN and RIGHT JOIN of two tables produces the same results.

4.3.3. Oracle on Amazon EC2

This section describes the test scenario of accessing Oracle data store service on Amazon EC2
public Cloud from traditional application. However, in default scenario the application is
accessing database on traditional server. By comparing with default application model, the
presentation layer, business layer and data access layer are remaining in the same place on
local infrastructure where only database layer is moved to the Cloud however.

In order to setup Oracle data store service testing environment on Amazon EC2 Cloud, there
are several steps have to be done. The first step is to setup and manage Oracle database
environment on Amazon EC2. Using a Web based AWS Management Console, we can control
the Amazon EC2 Cloud environment. Amazon EC2 provides the opportunity to launch
a few of pre-configured Machine Image [EC2] especially for Oracle database service. To
setup Oracle data store service testing, we have chosen a pre-configured Amazon Machine
Image (AMI) called Oracle Linux 5.6 x86_64 - Amazon Xen which is a Linux platform. After
successfully launching an instance on Amazon EC2 for Oracle database, it is important to
setup security groups with declaring necessary ports, as application is accessing database
service on Amazon EC2 Cloud using SSH tunneling. For example, the secure communication
establishes on port 22, the default Oracle accessing port is 1521 and so on.

To setup Oracle database service environment for SQL statements testing on Amazon EC2, it
is considered implementing Oracle version v11g enterprise edition. To upload and migrate
the openCRX database to Oracle data store service on Amazon EC2, the Oracle SQL Developer
tool can be used with establishing a secure communication by SSH tunneling. Migrating
openCRX MySQL database in Oracle is straightforward, however, there are adaptations
needed, for example tables, indexes and views are to be migrated individually. Also, it is

45

4. Evaluation of SQL Support of Cloud Data Services

required to rename the column as object_id because the column name automatically acquired
to object_id_ while copying data table from MySQL to Oracle. The column object_id is a
primary key for all openCRX data tables.

Traditional

Presentation Layer
(Eclipse IDE)

Application

Business Layer *
(Java Application)

Data Access Layer
(JDBC Connection)

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Amazon EC2

Database Layer
(MySQL Database)

Database Layer
(Oracle Database)

Legend

Dataflow
Migration
Modified Component *

Ap
pl

ic
at

io
n

La
ye

rs

SSH Tunneling Data
Layer

Figure 4.3.: Scenario overview of SQL test cases running on Oracle data store service in
Amazon EC2.

While Amazon EC2 allow accessing Oracle data store service, the traditional application can
take advantage of accessing data with elastic volume of storage capacity and facility of using
high amount of computations required by the application. To ensure these facilities, it is
necessary to investigate that Oracle server supports full functionality of SQL-standard on
Amazon EC2 as the traditional Oracle server does. Therefore, it is considered to run SQL
taxonomy based a set of selected SQL statement test cases in Oracle database on Amazon EC2,
to check whether all test cases are passed or not. In order to test Oracle database on Amazon
EC2, the same architecture model is used. Figure 4.3 shows a four layered application
architecture, where the Eclipse IDE is considering a presentation layer, the Java application
is running on business layer and openCRX Oracle database (database layer) has moved to
the Cloud (Amazon EC2.Then the application accessing Oracle database on Amazon EC2
through a JDBC connection via SSH tunneling.

Interpretation of Test Results

To setup JUnit testing for Oracle statements testing on Amazon EC2, we use the same
principles as default test setting (see Section 4.3.1). However, the Oracle database connection
string has to be adapted according to the Oracle default connection setting. This means that
traditional connection setting is enough to connect the Oracle data store service on Amazon

46

4.3. Test Scenario

EC2, as application is connecting Oracle database using SSH tunneling. In addition, it is
important to create SSH connection with a specific port (e.g. 1521) forwarding in order to
connect the Oracle data store service, as Oracle database specified with port 1521. After
successfully setting up the JUnit testing methods, we run the JUnit test suite to compare
the actual results with expected results automatically. While running JUnit testing, it is
observed that several SQL statements tests are failed which has to be adapted in order to
enable accessing Oracle data store service on Amazon EC2.

Table A.2 shows the JUnit test results for SQL statements testing on Oracle data store service
in Amazon EC2 Cloud where JUnit methods executes SQL statements on Oracle and compare
with expected SQL result sets. It is realized that Oracle supports FULL JOIN functionality.
According to the outcomes of JUnit SQL statements testing, we found that the test case
number 1, 6, 7, 15, 20, 22, 25, 29 and 33 are initially failed. However, the test case number
29 and 33 are returning the expected results, but in different order. They can be adapted
by simply adding SQL ORDER BY expression in the SQL statement. The result analysis in
test case 33, it can be noticed that the emulating result of FULL JOIN in MySQL produces
different ordering results than Oracle and PostgreSQL. By comparing the test case results, it is
observed that the Oracle and PostgreSQL returns the same results for test case 33. Some test
cases (i.e. test case number 1, 6, 7) failed because of accessing number format, for example,
Oracle returns only integer number value where MySQL returns floating point value with
point zero. More precisely, it can be determined that Oracle does not return a zero value after
point of a number, i.e. if the value is 3.0000 then it will return only 3. Moreover, the test case
number 7 is initially failed, as implementing GROUP BY expression in Oracle is different than
MySQL in this scope.

Furthermore, the test case numbers 15, 20, 22 and 25 are failed because of syntax the structure
implementing in Oracle is different than MySQL SQL syntax. For example, the MySQL
ALTER VIEW can be adapted by CREATE OR REPLACE VIEW and adding a column in
Oracle table it is not required to specify with keyword COLUMN. In order to create a table in
Oracle, it follows the same standard as MySQL does, but some of the data types are different.
Therefore, creating a table can be adapted by declaring correct data sets. To DROP an index
in Oracle, it is not necessary to specify the table name, the statement can be adapted by
eliminating the key word ON tableName. While running SQL test cases on Oracle database in
Amazon EC2 Cloud, it is also realized that SQL statements (i.e. create table, update, delete)
are not returning a result set of database changes like MySQL database. However, this can be
proved the stored procedure runs without error by using Oracle SQL Developer tool.

4.3.4. PostgreSQL on Amazon EC2

This section describes the test scenario of accessing PostgreSQL data store service on Amazon
EC2 public Cloud from traditional application. However, in default scenario the application
is accessing database on traditional server. By comparing with default application model, the
presentation layer, business layer and data access layer are remaining in the same place on
local infrastructure where only database layer, openCRX PostgreSQL database is moved to
the Cloud however.

47

4. Evaluation of SQL Support of Cloud Data Services

In order to setup PostgreSQL testing environment on Amazon EC2, there are several steps
have to be done. The first step is to setup and manage PostgreSQL database environment
on Amazon EC2. Using a Web based AWS Management Console, we can control the Amazon
EC2 Cloud environment. Amazon EC2 provides the opportunity to launch a few of pre-
configured Machine Image [EC2]. To setup PostgreSQL data store service testing, it is chosen
pre-configured Amazon Machine Image (AMI), a Linux platform and mount a new EBS
volume to store or archive the data. After successfully launching an instance on Amazon EC2
for PostgreSQL database, it is significant to setup security groups with declaring necessary
ports, as application is accessing database service on Amazon EC2 Cloud using SSH tunneling.
For example, the secure communication establishes on port 22, the default Oracle accessing
port is 5432 and so on.

After launching an instance on Amazon EC2, the next step is to migrate the openCRX MySQL
database to PostgreSQL database and we consider migrating in PostgreSQL version 9.0 using
PostgreSQL Maestro. Migrating openCRX MySQL database into PostgreSQL is straightforward,
however, adaptations are needed, for example tables, indexes and views are to be migrated
manually. After successfully preparing the database setup in Amazon EC2, the openCRX data
has to be inserted separately, which can be done using PostgreSQL Maestro with establishing
a SSH tunneling. However, it becomes a complex process in order of migrating a database.
There are several third party tools can be found in the current market which provides the
facility of migrating a MySQL database to PostgreSQL database. Unfortunately, none of
them are offering free. Therefore, to reduce the work load of database migration, initially we
migrate the database on local server and then dump the database to upload on Amazon EC2
Cloud.

To setup PostgreSQL database service environment for SQL statements testing on Amazon
EC2, it is considered implementing PostgreSQL version 9.0 because traditional PostgreSQL
migration is based on PostgreSQL v9.0. Different version of database can produce differ-
ent results. Therefore, it is important to keep the same version of database setting. To
upload and migrate the openCRX database to PostgreSQL data store service on Amazon
EC2, the PostgreSQL Maestro can be used with establishing a secure communication by SSH
tunneling.

While Amazon EC2 supports PostgreSQL database, the traditional application can take
advantages to access data with elastic volume of storage capacity and the facility of using
high amount of computations if required by the application. To ensure these facilities, it
is necessary to investigate that whether PostgreSQL server supports full functionality of
SQL-standard as traditional PostgreSQL server does. Therefore, it is considered to run SQL
taxonomy based selected SQL statement test cases in PostgreSQL database on Amazon EC2,
to check whether all test cases are passed or not. In order to test the PostgreSQL database on
Amazon EC2, the same architecture model is used as default application setting. Figure 4.4
shows a four layered application architecture, where Eclipse IDE is considering a presentation
layer, the Java application is running on business layer and PostgreSQL database (database
layer) has moved to the Cloud Amazon EC2. Then the application accessing PostgreSQL
database on Amazon EC2 through a JDBC connection via SSH tunneling.

48

4.3. Test Scenario

Traditional

Presentation Layer
(Eclipse IDE)

Application

Business Layer *
(Java Application)

Data Access Layer
(JDBC Connection)

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Amazon EC2

Database Layer
(MySQL Database)

Database Layer
(PostgreSQL Database)

Legend

Dataflow
Migration
Modified Component *

Ap
pl

ic
at

io
n

La
ye

rs

SSH Tunneling Data
Layer

Figure 4.4.: Scenario overview of SQL test cases running on PostgreSQL data store service
in Amazon EC2.

Interpretation of Test Results

To setup JUnit testing for PostgreSQL statements testing on Amazon EC2, we have followed
the same principles as default test setting (see Section 4.3.1). However, the PostgreSQL
database JDBC connection string has to be adapted according to the PostgreSQL default
connection setting. This means that traditional connection setting is enough to connect the
PostgreSQL data store service on Amazon EC2, as application is connecting PostgreSQL
database using SSH tunneling. In addition, it is required to create SSH connection with a
specific port (e.g. 5432) forwarding in order to connect the PostgreSQL data store service,
as PostgreSQL database is specified with port 5432. After successfully setting up the JUnit
testing methods, we run the JUnit test suite to compare the actual results with expected
results automatically. While running JUnit testing, it is observed that there are several SQL
statements tests are failed, which has to be adapted in order to enable accessing PostgreSQL
data store service on Amazon EC2.

Table A.3 shows the JUnit tests results for SQL statements testing on PostgreSQL data store
service in Amazon EC2 Cloud where JUnit methods executes SQL statements on PostgreSQL
and compare with expected SQL result sets. It is investigated that PostgreSQL supports FULL
JOIN functionality. According to the outcomes of JUnit SQL statements testing, we found
that test case number 1, 2, 5, 7, 15, 20, 25, 31, 32 and 33 are initially failed. However, the test
case number 2, 28, 31, 32 and 33 are returning the expected results, but in different order.
They can be adapted by simply adding SQL ORDER BY expression in the SQL statement.
The result analysis in test case 33, it can be noticed that the emulating result of FULL JOIN

49

4. Evaluation of SQL Support of Cloud Data Services

in MySQL produces different ordering results than Oracle and PostgreSQL. By comparing
the test case results, it is observed that the Oracle and PostgreSQL returns the same results
for test case 33. Moreover, some test cases (i.e. test case number 1, 6, 7) are failed because of
accessing number format, for example the time format in MySQL can be 18:06:38.0 where
PostgreSQL eliminates last point zero value in test case number 1. Also, in the case of fraction
number the MySQL can have four digit numbers after pointing where PostgreSQL returns
sixteen digits after point value, i.e. if the value is 6.0000 in MySQL then the PostgreSQL will
return 6.0000000000000000 correspondingly. This difference can be determined by analyzing
test case number 6 and 7. It is observed that returning these extra digit causes of different
data structure supporting between MySQL and PostgreSQL database systems. However, the
business layer in an application system has to deal with this issue. The structure of test case
number 7 is to be adapted, as implementing GROUP BY expression in PostgreSQL is different
than MySQL in this scope.

Furthermore, the test case number 15, 20 and 25 are failed because of syntax structure
implementing in PostgreSQL is different than MySQL SQL syntax. The MySQL ALTER VIEW
can be adapted by CREATE OR REPLACE VIEW. In order to create a table in PostgreSQL, it
follows the same standard as MySQL does, but some of the data types are different. Therefore,
creating a table can be adapted by declaring correct data sets. Also, to DROP an index
in PostgreSQL it is not necessary to specify the table name, the statement can be adapted
by eliminating the key word ON tableName. While running SQL test cases on PostgreSQL
database in Amazon EC2 Cloud, it is realized that SQL statements (i.e. create table, update,
delete) are not returning a result set of a database changes like MySQL (a default database). It
can be proved the stored procedure runs without error by using PostgreSQL Maestro tool.

4.3.5. MySQL on Amazon RDS

This section describes the test scenario of accessing MySQL data store service on Amazon
RDS public Cloud from traditional application. However, in default scenario the application
is accessing database on traditional server. By comparing with default application model, the
presentation layer, business layer and data access layer are remaining in the same place on
local infrastructure, only database layer is moved to the Cloud however.

In order to seup the MySQL data store service testing environment on Amazon RDS, there
are several steps have to be done. Using a Web based AWS Management Consol or Amazon
RDS APIs, it is easy to launch a DB instance and manage the Cloud environment. Amazon
RDS provides the opportunity to launch a pre-configured database instance for MySQL
community server where database port (i.e. 3306) is a default setup while launching a MySQL
DB instance. After successfully launching a DB instance, it is essential to add an appropriate
local IP address to the DB security group option where database has to be accessed. To
setup the SQL statements testing, we select MySQL version v5.5 because the default test
cases are designed based upon traditional MySQL v5.5. Using different version of database
can produce different result; therefore, it is significant to keep the same version of database
setting. To upload and migrating the openCRX MySQL database on Amazon RDS MySQL DB

50

4.3. Test Scenario

instance, the MySQL Workbench tool can be used with Amazon RDS endpoint of database
(host name).

Traditional

Presentation Layer
(Eclipse IDE)

Application

Business Layer *
(Java Application)

Data Access Layer
(JDBC Connection)

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Amazon RDS

Database Layer
(MySQL Database)

Database Layer
(MySQL Database)

Legend

Dataflow
Migration
Modified Component *

Ap
pl

ic
at

io
n

La
ye

rs

endpoint address,
host name

Data
Layer

Figure 4.5.: Scenario overview of SQL test cases running on MySQL data store service in
Amazon RDS.

While Amazon RDS allow accessing MySQL native database, the application can take advan-
tage to access data with on-demand storage capacity and the facility of using high amount
of computations which is required by the application. To ensure this facility, it is necessary
to investigate that MySQL server supports full functionality of SQL-standard on Amazon
RDS as traditional MySQL server does. Therefore, it is considered to run SQL taxonomy
based a set of selected SQL statement test cases on MySQL database in Amazon RDS, to
check whether all test cases are passed. In order to test the MySQL database on Amazon
RDS, the same architecture model is used as default application setting. Figure 4.5 shows
a four layered application architecture, where Eclipse IDE represents presentation layer,
the Java application running on business layer and MySQL database (database layer) has
moved to the Cloud (Amazon RDS). Then application accessing MySQL database on Amazon
RDS through JDBC connection with Amazon RDS endpoint of database, a host name i.e.
mysqldbinstance.ctdc07yqmwpy.us-east-1.rds.amazonaws.com.

Interpretation of Test Results

To setup JUnit testing for MySQL statements testing on Amazon RDS, we use the same
principles as default test setting. However, the MySQL database connection string has to
be adapted with endpoint of database (host name). After successfully setting up the JUnit
testing methods, we run the JUnit test suite to compare the expected results with actual results

51

4. Evaluation of SQL Support of Cloud Data Services

automatically. While running JUnit testing, it is observed that we achieve same outcomes
as default SQL testing (see Section 4.3.1). This means that all test cases (SQL statements) are
passed on MySQL data store service in Amazon RDS Cloud except MySQL FULL JOIN (see
Table A.1). However, it is also realized that emulating FULL JOIN properties with UNION
operation between LEFT JOIN and RIGHT JOIN of two tables produces the same results.
Furthermore, it is also realized that SQL statements (i.e. create table, update, delete) are
not returning a result set on MySQL database in Amazon RDS Cloud as we have the same
behavior in default SQL testing.

4.3.6. Oracle on Amazon RDS

This section describes the test scenario of accessing Oracle data store service on Amazon RDS
public Cloud from traditional application. However, in default scenario the application was
accessing database on traditional server. By comparing with default application model, the
presentation layer, business layer and data access layer are remaining in the same place on
local infrastructure, only database layer is moved to the Cloud however.

In order to setup the Oracle data store service testing environment on Amazon RDS, there
are several steps have to be done. The first step is to setup and manage Oracle database
environment on Amazon RDS. Using a Web based AWS Management Consol or Amazon
Oracle APIs, it is easy to launch a DB instance and manage the Cloud environment. Amazon
RDS provides the opportunity to launch a pre-configured database instance for Oracle where
database port (i.e. 1521) is automatically setup while launching an Oracle DB instance. After
successfully launching a DB instance, it is essential to add an appropriate local IP address to
the DB security group option where database has to be accessed like the way we have done
for MySQL test setting in Amazon RDS (see Section 4.3.5). To setup Oracle database service
environment for SQL statements testing on Amazon EC2 it is considered implementing Oracle
version v11g enterprise edition. Using the same version of database setting in similar types
of testing is beneficial for achieving a better comparison results. After successfully setting
up Oracle database environment on Amazon RDS, the next step is to migrate the openCRX
MySQL database to Oracle database. To migrate the database in Oracle, we have followed
the same procedure as is done for migrating Oracle database in Amazon EC2. The migration
procedure of openCRX database in Oracle database is described in Section 4.3.3. However,
to upload and migrating the openCRX Oracle database to Amazon RDS Oracle DB instance,
the Oracle SQL Development tool can be used with Amazon RDS endpoint of database (host
name).

While Amazon RDS allow accessing Oracle native database, the application can take advan-
tages to access data with on-demand storage capacity and facility of using high amount of
computations required by the application. To ensure this facility, it is necessary to investigate
that Oracle server supports full functionality of SQL-standard on Amazon RDS as traditional
Oracle server does. Therefore, it is considered to run a set of SQL taxonomy based SQL
statement test cases on Oracle database in Amazon RDS, to check whether all test cases are
passed. In order to test the Oracle database on Amazon RDS, the same architecture model
is used, as defined in default SQL test setting. Figure 4.6 shows a four layered application

52

4.3. Test Scenario

Traditional

Presentation Layer
(Eclipse IDE)

Application

Business Layer *
(Java Application)

Data Access Layer
(JDBC Connection)

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Amazon RDS

Database Layer
(MySQL Database)

Database Layer
(Oracle Database)

Legend

Dataflow
Migration
Modified Component *

Ap
pl

ic
at

io
n

La
ye

rs

Endpoint address,
Host name

Data
Layer

Figure 4.6.: Scenario overview of SQL test cases running on Oracle data store service in
Amazon RDS.

architecture, where Eclipse IDE represents presentation layer, the Java application running on
business layer and Oracle database (database layer) has moved to the Cloud (Amazon RDS).
Then application accessing Oracle database on Amazon RDS through JDBC connection with
Amazon RDS endpoint of database, a hostname i.e. oracledbinstance.ctdc07yqmwpy.us-east-
1.rds.amazonaws.com.

Interpretation of Test Results

To setup JUnit testing for Oracle statements testing on Amazon RDS, it is consider using
same principles as in Amazon EC2 Oracle test setting (see section 4.3.3). However, the Oracle
database connection string has to be adapted with endpoint of database (host name). After
successfully setting up the JUnit testing methods, we run the JUnit test suite to compare
the expected results with actual results automatically and we achieve same outcomes as in
Amazon EC2 Oracle testing (see Section 4.3.3). This means that JUnit tests results for SQL
statements testing on Oracle data store service on Amazon RDS Cloud where JUnit produces
same results as Amazon EC2 Oracle test results. The test case number 1, 2, 5, 6, 7, 15, 20, 25,
31 and 33 are failed in Oracle Amazon RDS which are the same results we achieved in Oracle
Amazon EC2 (see Table A.2).

53

4. Evaluation of SQL Support of Cloud Data Services

4.3.7. MySQL on Amazon VPC

This section describes the test scenario of accessing MySQL data store service from traditional
application on Amazon VPC private Cloud. However, in default scenario the application is
accessing database on traditional server. By comparing with default application model, the
presentation layer, business layer and data access layer are remaining in the same place on
local infrastructure, only database layer is moved to the Cloud however.

To setup MySQL data store service testing environment on Amazon VPC, there are several
steps has to be done. Amazon VPC offers the opportunities to launch four different types
of network infrastructures, i.e. VPC with a Single Public Subnet Only, VPC with Public
and Private Subnets, VPC with Public and Private Subnets and Hardware Virtual Private
Network (VPN) Access, and VPC with a Private Subnet Only and Hardware VPN Access.
For MySQL testing purpose we select a basic and simple structure, VPC with a Single Public
Subnet Only where instances run in a private, isolated section of the Amazon Cloud and
provide severe control over inbound and outbound network traffic to the instances. However,
there is a "Getting started guide" [VPC11] provided by Amazon Cloud service can be used
to set up the Amazon VPC environment. While launching an instance on Amazon VPC, it
is necessary to prepare and configure Amazon EC2 instance for attaching with VPC. The
configuration procedure of MySQL data store service in Amazon EC2 is described in Section
4.3.2. However, to setup the MySQL database on Amaton EC2 it is considered installing
MySQL version v5.5 because default test cases are designed based upon traditional MySQL
v5.5.

After launching Amazon EC2 instance now we have to setup VPC and Internet gateway.
In order to setup Amazon VPC, it is necessary to attach an Internet gateway, create subnet
and setup routing to the VPC. Then, the security groups have to be setup with declaring
necessary ports in inbound and outbound option, e.g. port 80 for allowing HTTP access, port
443 for Hypertext Transfer Protocol Secure (HTTPS) access, port 22 for SSH access and 3389
for Remote Desktop Protocol (RDP) access control. Also, it is important to assign an Elastic
IP address to the running instance. This Elastic IP address treating as public IP address to the
private instance, so that a VPC instance can be reached directly from the Internet. This means
that an application can access MySQL database on Amazon VPC using public IP address

While MySQL database can be access in a private Cloud infrastructure in Amazon VPC,
the traditional application can take advantage to access data with elastic volume of storage
capacity and facility of using high amount of computations required by the application
attaching with Amazon EC2 instance. To ensure this facility, it is essential to investigate that
MySQL server supports full functionality of SQL-standard on Amazon VPC as traditional
MySQL server does. Therefore, it is considered to run a set of SQL taxonomy based SQL
statement test cases in MySQL database on Amazon VPC, to check whether all test cases
are passed. In order to test the MySQL database on Amazon VPC, the same architecture
model is used as define in default test setting. Figure 4.7 represents a four layer application
architecture, where Eclipse IDE can be represented a presentation layer, the Java application
running on business layer and MySQL database (database layer) has moved to the Amazon

54

4.3. Test Scenario

Traditional

Presentation Layer
(Eclipse IDE)

Application

Business Layer *
(Java Application)

Data Access Layer
(JDBC Connection)

Private
Cloud

Amazon VPC

Community
Cloud

Deployment
Models

Public
Cloud

Database Layer
(MySQL Database)

Database Layer
(MySQL Database)

Legend

Dataflow
Migration
Modified Component *

Ap
pl

ic
at

io
n

La
ye

rs

Elastic IP address Data
Layer

Figure 4.7.: Scenario overview of SQL test cases running on MySQL data store service in
Amazon VPC.

VPC Cloud. Then application accesses MySQL database on Amazon VPC through JDBC
connection with Amazon VPC public IP address.

Interpretation of Test Results

To setup JUnit testing for MySQL statements testing on Amazon VPC, it is considered using
same principles as default MySQL test setting. However, the MySQL database connection
string has to be adapted with elastic IP address (host name). After successfully setting up the
JUnit testing methods, we run the JUnit test suite to compare the expected results with actual
results automatically. While running JUnit testing, it is observed that JUnit brings the same
outcomes as is in default MySQL testing (see Section 4.3.1). This means that all test cases
(SQL statements) are passed on MySQL data store service in Amazon VPC Cloud except
MySQL FULL JOIN (see Table A.1). It is also appreciated emulating FULL JOIN properties
with UNION operation between LEFT JOIN and RIGHT JOIN of two tables returns the same
results. In this scenario an application accessing MySQL data store service on Amazon VPC
Cloud, where MySQL database is originally configured on Amazon EC2 and VPC attach
Amazon EC2 instance. Furthermore, it is realized SQL statements (i.e. create table, update,
delete) are not returning a result set on MySQL database in Amazon VPC Cloud as it has the
same behavior in default SQL testing.

55

4. Evaluation of SQL Support of Cloud Data Services

4.3.8. Amazon SimpleDB Data Storage

This section describes the test scenario of accessing Amazon SimpleDB data store service from
traditional application. In default scenario an application is accessing database on traditional
server. By comparing with default application model, the presentation layer, business layer
and data access layer are remaining in the same place on local infrastructure; in this scope
only database layer is moved to the Cloud however.

While creating Amazon Web Service (AWS) account, it automatically signed up for Amazon
SimpleDB data storage in default setting. This mean that it is not required launching an
instance like Amazon EC2 or Amazon RDS. Using AWS Access Key and AWS Secret Key
it is easily feasible enable accessing data storage service in the Cloud. The database can
be implemented in several zones simultaneously if the database size is very large or with
a high amount of data tables. With Amazon SimpleDB initially it is possible to allocate a
maximum of 250 domains in each account and the size of an individual domain can grow up
to 10 GB. However, additional domains can be allocated on request to AWS. If the size of a
domain becomes more than the allocating storage, Amazon Simple automatically scale-out
architecture and store the data over several domains [SDB].

To setup Amazon SimpleDB data storage service for SQL statements testing, there is a tool
called SimpleDB (SDB) Explorer can be used. Using SDB Explorer with AWS Access Key and
AWS Secret Key, we can easily migrate and upload openCRX MySQL database on Amazon
SimpleDB. However, each data table has to be imported individually. Before importing
data into SimpleDB, it is necessary to create a domain manually in a SimpleDB zone. While
importing data into a domain the attributes are automatically allocated by corresponding
column name from the MySQL data table. The creation of an attribute is missing in case
the column contains empty data. However, it is possible to create an attribute manually
using SDB Explorer in SimpleDB data storage. During importing a MySQL table in SimpleDB
domain, it will offer selecting primary key for the data table. The primary key column
converted to index (itemName()) of a domain and the keys must be unique. In openCRX
MySQL database, some of the data tables contain same key multiple times, which has to be
adapted to import data in SimpleDB data storage. Furthermore, using SDB Explorer tool we
can query to the SimpleDB data store service, execute select statement with various operations
to retrieve expected results. SimpleDB supported operations are: =, !=, <, > <=, >=, like, not
like, between, is null, is not null, and every (keyword)[SDB].

While Amazon SimpleDB allow accessing structured data storage service, the application
can take advantage to access data with on-demand storage capacity and facility of using
high amount of computations required by the application. To ensure this facility, it is nec-
essary to investigate whether SimpleDB data storage service supports full functionality of
SQL-standard as traditional MySQL server does. Therefore, it is considered to run a set of
SQL taxonomy based SQL statement test cases on Amazon SimpleDB data store service, to
check whether all test cases are passed. In order to test the SimpleDB data store service on
Amazon Cloud, the same architecture model is used as default application setting. Figure 4.8
shows a four layer application architecture, where Eclipse IDE represents presentation layer,
the Java application running on business layer and MySQL database (database layer) has

56

4.3. Test Scenario

Traditional

Presentation Layer
(Eclipse IDE)

Application

Business Layer *
(Java Application)

Data Access Layer
(SimpleDB API)

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Amazon SimpleDB

Database Layer
(MySQL Database)

Database Layer
(NoSQL Database)

Ap
pl

ic
at

io
n

La
ye

rs

AWS Access Key
AWS Secret Key

Data
Layer

Legend

Dataflow
Migration
Modified Component *

Figure 4.8.: Scenario overview of SQL test cases running on Amazon SimpleDB data stor-
age service.

moved to the Cloud (Amazon SimpleDB). Then application enables accessing SimpleDB data
storage through either the Simple Object Access Protocol (SOAP) interface or the Query/ReST
interface using SimpleDB API call attaching with appropriate AWS Access key and AWS
Secret Key.

Interpretation of Test Results

In order to test SQL statements on Amazon SimpleDB, it is consider using JUnit testing
framework. Accessing SimpleDB data store service we have to reorganize JUnit testing
methods because we have to follow different procedure than default testing settings. In this
scenario the Java application connecting SimpleDB through SDB API call. After successfully
setting up the JUnit testing methods, we run the JUnit test suite to compare the expected
results with actual results automatically. While running JUnit testing, it is observed that all
test cases (SQL statements) are initially failed. With the concept of querying to SimpleDB
the SELECT statements can be adapted, but still there are some limitations found. However,
storing and manipulating data in SimpleDB are differing from traditional database; these
can be done by SDB API call. Comparing with RDMS the SimpleDB lacks supporting SQL
JOIN, SQL INDEX, and SQL VIEW operations within the domains. However, domains are
already indexed, as the domains are index (key) based structured data. The SQL JOIN and
SQL VIEW effects are to be implemented in application layer.

Table A.4 shows the JUnit test results while application accessing SimpleDB data storage

57

4. Evaluation of SQL Support of Cloud Data Services

service in the Cloud. By analyzing JUnit testing results it is determined that all test cases
are initially failed because the data model structure of SimpleDB is differing from a RDMS.
However, with a slight adaptation of SQL statement the test case numbers 1, 2, 3, 4, 8,
9, 10, 11 and 12 are achieved the expected outcomes. After proper adaptations they are
basically returning the same outputs but in different orders. There are several reasons
the SQL statements are required adapting, for example while uploading openCRX MySQL
database on Amazon SimpleDB the primary key column OBJECT_ID is converted to indexed
column itemName(), so that OBJECT_ID is no more valid in SimpleDB. Moreover, SimpleDB
is only allowing access text type value, so the statement has to be adapted according to the
SimpleDB structure.

Test case numbers 5, 6, and 7 are failed because SimpleDB lacks supporting MySQL DISTINCT
and AVG features. The effect of SQL DISTINCT feature can be covered in this scope, as
itemName() keys are unique. The SQL operation "<>" is missing in SimpleDB data accessing,
so that the test case 13 is failed. As SimpleDB also lacks supporting SQL VIEW, SQL INDEX,
and SQL JOIN features, the test case numbers 14, 15, 16, 24, 25, 28, 29, 30, 31, 32 and 33 are
failed. The features are possible to emulate in application layer. Furthermore, the test case
numbers 17, 18, 19, 20, 21, 22, 23, 26 and 27 are failed because storing procedure in SimpleDB
differing from a traditional database. Structure of data storage changes in SimpleDB have
to be done from application layer using SimpleDB API call, as it does not offer executing
statements like traditional one.

4.4. SQL Test Summary

This section describes the summery of JUnit testing results, the execution of SQL statement
test cases on different Cloud services. Table 4.3 shows the overview of test scenarios, the
evolutionary solutions of SQL adaptations of the Data Access Layer (DAL) to enable data
access in the Cloud. The table has only represented the required adaptations comparing with
default SQL statements. The adaptations are to be used to evaluate the adapter extending
for enabling data access in the Cloud. There are 33 SQL test cases are designed for achieving
maximum SQL taxonomy.

58

4.4. SQL Test Summary

Table 4.3.: SQL statement test summery.
Test Default Query/Statement Adapted Query/Statement

MySQL on Amazon EC2 or RDS or VPC

33 SELECT Persons.LastName, Persons.FirstName,
Orders.OrderNo FROM Persons FULL JOIN Or-
ders ON Persons.P_Id=Orders.P_Id ORDER BY
Persons.LastName

SELECT Persons.LastName, Persons.FirstName, Or-
ders.OrderNo FROM Persons LEFT JOIN Orders ON
Persons.P_Id=Orders.P_Id
UNION
SELECT Persons.LastName, Persons.FirstName, Or-
ders.OrderNo FROM Persons RIGHT JOIN Orders
ON Persons.P_Id=Orders.P_Id

Oracle on Amazon EC2 or RDS

07 SELECT object_id, AVG (access_level_browse * ac-
cess_level_delete) AS access_level_browse FROM
oocke1_calendar GROUP BY object_id HAVING (ac-
cess_level_browse > 4)

SELECT object_id, AVG (access_level_browse * ac-
cess_level_delete) AS access_level_browse FROM
oocke1_calendar GROUP BY object_id HAVING
AVG (access_level_browse * access_level_delete) > 4

15 ALTER VIEW oocke1_join_accthasassaddr (as-
signed_address,account_) AS SELECT addr.object_id
AS assigned_address, addr.authority AS account_-
FROM oocke1_address addr

CREATE OR REPLACE VIEW oocke1_join_acc-
thasassaddr (assigned_address,account_) AS SELECT
addr.object_id AS assigned_address,addr.authority
AS account_ FROM oocke1_address addr

20 CREATE TABLE test_table1 (id INTEGER UN-
SIGNED NOT NULL AUTO_INCREMENT, name
VARCHAR(250) NOT NULL, age INTEGER UN-
SIGNED, marks BIGINT UNSIGNED, PRIMARY
KEY (id))

CREATE TABLE test_table1 (id NUMBER(10, 0)
NOT NULL, name VARCHAR2(250) NOT NULL, age
NUMBER(10, 0), marks NUMBER(19, 0), PRIMARY
KEY (id))

22 ALTER TABLE test_table3 ADD COLUMN birthday
date

ALTER TABLE test_table3 ADD birthday date

25 DROP INDEX idx ON test_table3 DROP INDEX idx

PostgreSQL on Amazon EC2

07 SELECT object_id, AVG (access_level_browse * ac-
cess_level_delete) AS access_level_browse FROM
oocke1_calendar GROUP BY object_id HAVING (ac-
cess_level_browse > 4)

SELECT object_id, AVG (access_level_browse * ac-
cess_level_delete) AS access_level_browse FROM
oocke1_calendar GROUP BY object_id HAVING
AVG (access_level_browse * access_level_delete) > 4

15 ALTER VIEW oocke1_join_accthasassaddr (as-
signed_address,account_) AS SELECT addr.object_id
AS assigned_address, addr.authority AS account_-
FROM oocke1_address addr

CREATE OR REPLACE VIEW oocke1_join_acc-
thasassaddr (assigned_address,account) AS SELECT
addr.object_id AS assigned_address, addr.authority
AS account FROM oocke1_address addr

20 CREATE TABLE test_table1 (id INTEGER UN-
SIGNED NOT NULL AUTO_INCREMENT, name
VARCHAR(250) NOT NULL, age INTEGER UN-
SIGNED, marks BIGINT UNSIGNED, PRIMARY
KEY (id))

CREATE TABLE public.test_table1 (id serial NOT
NULL, name varchar(250) NOT NULL, age bigint,
marks bigint, PRIMARY KEY (id))

25 DROP INDEX idx ON test_table3 DROP INDEX idx

Amazon SimpleDB

01
02 SELECT object_id, access_level_browse FROM

oocke1_account
SELECT ACCESS_LEVEL_BROWSE FROM oocke1_-
account

03 SELECT object_id, access_level_browse
FROM oocke1_account WHERE object_-
id=’account/CRX/Standard/admin-Standard’

SELECT ACCESS_LEVEL_BROWSE
FROM oocke1_account WHERE
itemName()=’account/CRX/Standard/admin-
Standard’

04 SELECT object_id, name FROM oocke1_activity-
group WHERE p$$parent=’activities/CRX/Mohsin’
ORDER BY object_id ASC, name DESC

The specified query expression syntax is not valid in
SimpleDB

Continued on next page

59

4. Evaluation of SQL Support of Cloud Data Services

Table 4.3: SQL statement test summery – (continued from previous page)

Test Default Query/Statement Adapted Query/Statement

05 SELECT DISTINCT object_id, name FROM oocke1_-
calendar

The specified query expression syntax is not valid in
SimpleDB

06 SELECT object_id, AVG (access_level_browse * ac-
cess_level_delete) FROM oocke1_calendar GROUP
BY object_id

The specified query expression syntax is not valid in
SimpleDB

07 SELECT object_id, AVG (access_level_browse * ac-
cess_level_delete) AS access_level_browse FROM
oocke1_calendar GROUP BY object_id HAVING (ac-
cess_level_browse > 4)

The specified query expression syntax is not valid in
SimpleDB

08 SELECT object_id, owner FROM oocke1_activitypro-
cess_ WHERE IDX NOT BETWEEN 0 AND 1

SELECT OWNER FROM oocke1_activityprocess_-
WHERE IDX BETWEEN ’0’ AND ’1’

09 SELECT object_id, owner FROM oocke1_activitypro-
cess_ WHERE IDX NOT IN(0, 2)

SELECT OWNER FROM oocke1_activityprocess_-
WHERE IDX IN(’0’, ’2’)

10 SELECT object_id, owner FROM oocke1_activitypro-
cess_ WHERE ((IDX > 0) AND (IDX < 2))

SELECT OWNER FROM oocke1_activityprocess_-
WHERE ((IDX > ’0’) AND (IDX < ’2’))

11 SELECT object_id, owner FROM oocke1_activitypro-
cess_ WHERE ((IDX < 1) OR (IDX > 1))

SELECT OWNER FROM oocke1_activityprocess_-
WHERE ((IDX < ’1’) OR (IDX > ’1’))

12 SELECT object_id, owner FROM oocke1_activitypro-
cess_ WHERE (IDX = 1)

SELECT OWNER FROM oocke1_activityprocess_-
WHERE (IDX = ’1’)

13 SELECT object_id, owner FROM oocke1_activitypro-
cess_ WHERE (IDX <> 1)

The specified query expression syntax is not valid in
SimpleDB

14 CREATE VIEW oocke1_join_accthasassaddr (as-
signed_address, account) AS SELECT addr.object_id
AS assigned_address, addr.authority AS account
FROM oocke1_address addr

The specified query expression syntax is not valid in
SimpleDB

15 ALTER VIEW oocke1_join_accthasassaddr (as-
signed_address,account_) AS SELECT addr.object_id
AS assigned_address, addr.authority AS account_-
FROM oocke1_address addr

The specified query expression syntax is not valid in
SimpleDB

16 DROP VIEW oocke1_join_accthasassaddr The specified query expression syntax is not valid in
SimpleDB

17 INSERT INTO oocke1_segment (access_level_-
browse, dtype, owner_, access_level_update,
access_level_delete, object_id) VALUES (4,
’org:opencrx:kernel:account1:Segment’, 2, 3, 1,
’accounts/CRX/Masud’)

Use SimpleDB API

18 UPDATE oocke1_segment SET access_-
level_browse=3, owner_=1 WHERE (object_-
id=’accounts/CRX/Masud’)

The specified query expression syntax is not valid in
SimpleDB

19 DELETE FROM oocke1_segment WHERE (object_-
id=’accounts/CRX/Masud’)

Use SimpleDB API

20 CREATE TABLE test_table1 (id INTEGER UN-
SIGNED NOT NULL AUTO_INCREMENT, name
VARCHAR(250) NOT NULL, age INTEGER UN-
SIGNED, marks BIGINT UNSIGNED, PRIMARY
KEY (id))

Use SimpleDB API

21 INSERT INTO test_table3 (id, name) SELECT id,
name FROM test_table2 WHERE (id=1)

Use SimpleDB API

22 ALTER TABLE test_table3 ADD COLUMN birthday
date

Use SimpleDB API

23 ALTER TABLE test_table3 DROP COLUMN birthday Use SimpleDB API
24 CREATE UNIQUE INDEX idx ON test_table3 (id,

name)
The specified query expression syntax is not valid in
SimpleDB

25 DROP INDEX idx ON test_table3 The specified query expression syntax is not valid in
SimpleDB

26 TRUNCATE TABLE test_table3 Use SimpleDB API
Continued on next page

60

4.4. SQL Test Summary

Table 4.3: SQL statement test summery – (continued from previous page)

Test Default Query/Statement Adapted Query/Statement

27 DROP TABLE test_table3 Use SimpleDB API
28 SELECT access_level_browse, full_name FROM

oocke1_account INNER JOIN oocke1_account_ ON
(oocke1_account.object_id=oocke1_account_.object_-
id)

The specified query expression syntax is not valid in
SimpleDB

29 SELECT access_level_browse, full_name FROM
oocke1_account INNER JOIN oocke1_account_ ON
(oocke1_account.object_id=oocke1_account_.object_-
id) WHERE (oocke1_account_.idx=1) ORDER BY
oocke1_account.full_name

The specified query expression syntax is not valid in
SimpleDB

30 SELECT access_level_browse, full_name FROM
oocke1_account LEFT JOIN oocke1_account_ ON
(oocke1_account.object_id=oocke1_account_.object_-
id) WHERE (oocke1_account_.idx=2)

The specified query expression syntax is not valid in
SimpleDB

31 SELECT access_level_browse, full_name FROM
oocke1_account RIGHT JOIN oocke1_account_ ON
(oocke1_account.object_id=oocke1_account_.object_-
id) WHERE (oocke1_account_.idx=0)

The specified query expression syntax is not valid in
SimpleDB

32 SELECT Persons.LastName, Persons.FirstName, Or-
ders.OrderNo FROM Persons, Orders WHERE ((Per-
sons.P_Id > 1) AND (Orders.P_Id < 3))

The specified query expression syntax is not valid in
SimpleDB

33 SELECT Persons.LastName, Persons.FirstName,
Orders.OrderNo FROM Persons FULL JOIN Or-
ders ON Persons.P_Id=Orders.P_Id ORDER BY
Persons.LastName

The specified query expression syntax is not valid in
SimpleDB

Table 4.3 shows the required adaptations for corresponding SQL statements based on SQL
taxonomy to access different Cloud data store services by a traditional application. While
executing JUnit testing on different database services, it is observed that there are several
categories of results can be achieved. Some of the test cases are passed and some of them
are failed. However, in failing categories there are three types of decision can be made. For
example, some of the queries are actually returning same expected outcomes but in different
order, some of them have to be adapted to enable access data storage in the Cloud and some
of them are not valid for an individual database service. However, we are concerning about
required SQL adaptations in this work. In this table the blank test contains are returning same
results in different order and the invalid statements are to be noted.

During testing MySQL data storage service in the Cloud, it is investigated that all test cases
are passed except SQL FULL JOIN features which can be adapted using UNION operation
between LEFT JOIN and RIGHT JOIN of two tables. Furthermore, it is determined that
MySQL database server always present same behavior for different Cloud services, for
example, Amazon EC2, Amazon RDS and Amazon VPC. There are 9 test cases are failed
while testing Oracle data store service, however 4 of them are showing same outcomes. This
mean that it is necessary to adapt 5 SQL statements when an existing application accessing
Oracle database in the Cloud. Also, there are 10 test cases are failed while testing PostgreSQL
data store service, however only 4 SQL statements has to be adapted in order of enable
accessing database service in the Cloud from an existing application.

61

4. Evaluation of SQL Support of Cloud Data Services

With Amazon SimpleDB data store service testing it is observed that all SQL test cases are
initially failed. Amazon SimpleDB is a NoSQL based non-relational structured data store
service and offers only Text type data storing facility. Moreover, Amazon SimpleDB lacks
supporting SQL UPDATE, INDEX, VIEW and JOIN features, they can be emulated using
SimpleDB API from the application layer however. The storing procedure in SimpleDB is
differ than a traditional SQL database. For database changing (i.e. Create, Insert, Update,
Delete, etc) it does not support any statement like SQL-standard rule, it has to be done
using SimpleDB API. Nevertheless, the SELECT query can be executed as SQL-standard. By
analyzing SELECT query results it is realized that some of the queries are returning same
results as expected but in different sorted order. However, some of queries are failed because
they are lacks supporting features, for example, DISTINCT, <>, AVG, etc.

62

5. Concept and Specification

This section describes the systems requirements for adapting a Data Access Layer (DAL)
within an application architecture model to enable Cloud data access. Also, it explains how
future applications architecture should look like and how to design a complete application
system, which can take advantages of accessing Cloud computing resources. Previous chapter
has described the evaluation of SQL support of Cloud data services based on SQL statement
testing. With the outcomes of the SQL statements testing the required adaptations has been
determined. Moreover, the concept of adapting a data access layer to enable Cloud data access
is also depicted in this chapter. The key requirements including Cloud-enabled application
design as well as the necessity of implementing a data access layer is given in Section 5.1.
The Section 5.2 described more detail functional requirements including a use case analysis.
Moreover, this chapter also illustrates the non-functional requirements (see in Section 5.4) for
giving guidance values for some software qualities.

5.1. System Overview

A Data Access Layer (DAL) has to be extended with implementing required SQL adaptations
within a layering application architecture model that allows typical application to access
Cloud based data store services. The DAL is responsible for encapsulating the data access
functionalities and interacting with the business logic. However, the application has to define
the connection configuration explicitly in order to access a particular Cloud data storage.
There are different types of Cloud services currently running over the online. According to the
infrastructure of Cloud services some are accessible directly using a public URL address with
no authentication required (i.e. Amazon RDS), but some has to be accessed using a public
key authentication (i.e. Amazon EC2). Therefore, the data access layer has to be implemented
considering accordingly. Moreover, to access a particular Cloud data store service the data
access layer also has to be adapted with the required SQL statement adaptations. While
application send a database query to the data access layer, the data access layer adapt the
query with prior knowledge of SQL adaptation and then send it to the specific Cloud service
performing SQL execution.

For evaluating the adaptation of data access layer within an application system, a Java
Graphical User Interface (GUI) application has to be developed. It is assumes that the
application is running on local server and accessing the data and computation from Cloud
data store services on-demand through DAL. However, with this approach there are several
possible scenarios may be realized for an existing application.

63

5. Concept and Specification

Java Graphical User Interface
(GUI)

Application Controller

Extension
Mechanism

Java Utility

Table
Pattern

Extensible
Form Utility

Configuration Setting

Expected SQL
Results

SQL Test
Inputs

Presentation Layer

Business Logic Layer

Data Access Layer

Data Access Layer

Data access Class

Default

Google Storage RDS Oracle DynamoDB

Windows Azure EC2 MySQL EC2 PostgreSQL

JDBC Drivers
JSch API

SSH Port Forwarding
(optional)

Database Source

Cloud Data Store Services Traditional

Database Layer

Amazon EC2
MySQL, PostgreSQL

Database
Configuration

Private
Key

Figure 5.1.: Layered based application architecture model.

64

5.2. Functional Requirement

For example, if an application accessing a traditional database and the data is increasing
continuously, the database server might not able to handle the high amount of data. In this
situation the database layer may completely or partially outsourced to the Cloud to easily
scale the database layer. Thus will reduce the capital expenditure and maintenance cost for
an enterprise IT, as application is still using the current infrastructure and use the Cloud
resources only whenever it is required to be used. Another possible example scenario would
be an application may move the traditional database to the Cloud and use only Cloud data
store services for managing the high volume of data and growing amount of computations.

A layered based application architecture model is shown in Figure 5.1, where application
represents a four layer architecture model including a presentation layer, a business logic
layer, a data access layer, and a database layer. In this architecture model, the user interface
(SQL Evaluation tool) is representing a presentation layer and responsible for showing tool’s
activities how data access layer performing encapsulation of data access functionalities.
Application controller is the core of tooling system, which has to be implemented with a Java
extension mechanism in order to extend data access functionality.

In this master’s thesis, we focus on adapting a data access layer that typical application can
access both traditional database as well as various Cloud data store services. However, the
main target is to be able to access Cloud data store services through the data access layer.
Moreover, in this scope, for every Cloud services the access layer has to be designed and
deployed with specific data access configuration. The configuration for a Cloud data store
service to the data access layer may not interfere with the configuration of other Cloud data
store services. Furthermore, an acceptable data access has to be ensured by the data access
layer. In order to enable accessing Cloud data store services, usually the application would
have using JDBC drivers. According to the Cloud networking infrastructure in some cases the
application may require establishing a SSH tunneling with specific database port forwarding
to access data store services such as Amazon EC2.

5.2. Functional Requirement

This section describes the detail functional requirements for the SQL Evaluation Tool applica-
tion systems including and use case analysis. The application extension mechanism describes
how application can be facilitated using Java plugins mechanism in order to enable access
different Cloud data store services by uploading provider classes in runtime. Moreover, the
application has to be ensured accessing heterogeneous Cloud data to enhance the application
performance and reliable data computations.

5.2.1. Heterogeneous Data Access

As it is intended to access different Cloud data store services for the evaluation of adaptation of
data access layer, the application has to be ensured accessing heterogeneous data in the Cloud.
It is observed that each Cloud service has implemented with unique design philosophy and

65

5. Concept and Specification

individual purposes. Also, each database service has established with unique characteristics
(i.e. data model architecture) and exclusive goal of computations supports. More importantly,
data and data structures are differing while comparing with different database systems.
Moreover, it is realized that some databases are suitable for transactional data computations
and some are appropriate for non-transactional data computations. For example, PostgreSQL
is fully Atomicity, Consistency, Isolation and Durability (ACID)-complaint and has the highest
priority of reliability, data consistency, and data integrity supports [Man11], whereas MySQL
is not fully ACID-complaint but more flexible to database handling than PostgreSQL. Another
example is, both MySQL and Oracle provide supports for big data analysis. However, the
performance of big data analysis in Oracle is more powerful than MySQL database system.
In this case, in order to analyze the big data, the application can particularly take advantage
of accessing faster big data computation in Oracle data store service.

Furthermore, it is studied that using Amazon S3 Alaxa Web services [Ama12] stores and
delivers a millions of thumbnail images and then use SimpleDB to perform automatic index-
ing and efficient query to the accumulated images, where SimpleDB performs very faster
computations comparing with a traditional database like MySQL, PostgreSQL or even Oracle
database. From this above example the application may use SimpleDB data store service
when application is needed to be managed a high volume of data objects. From all above
examples, it can be easily determined that different data store services are appropriate for
different types of data computations. Therefore, now application has to decide which Cloud
data store services are to be used for what computation purposes.

5.2.2. Application Extension Mechanism

As a general view, using Java extension mechanism (i.e. plugins mechanism) a Java appli-
cation can be enhanced its application architecture as well as the functionalities in runtime.
An example scenario of Java extension mechanism is shown in Figure 5.2, where extensions
act as "add-on" modules to the Java platform. In this application system it is consider being
implemented Java application extension mechanism in order to enable accessing the several
data access functionalities in application running time.

The specific reason of implementing extension mechanism is that application may allow to
include a new Cloud data store service when it necessary to perform particular computations.
For example, a Web application has to be running 24x7 hours in a week and can not be
interrupted their service to extend a particular functionality. In this scenario, especially if
the application is needed to be extended the data access functionality in order to access a
new Cloud data store service, using extension mechanism the application can automatically
enhance the application architecture (e.g. loading a new provider class) runtime without
interrupting their service providing.

Furthermore, the concept is that if the data access functionality is updated by the adminis-
trator, the application may reload the updated provider classes upon notifying the updates
information. Nevertheless, to ensure these runtime extension facilities within SQLEvalu-
ationTool application system, a Java plugins mechanism (i.e. ClassLoader API) has to be

66

5.2. Functional Requirement

The Java Platform

Java Runtime Environment
Core System Classes

java.lang.*
java.io.*
java.awt.*
etc. …

Extension

Extension

Extension

Application

no class path
necessary

no class path
necessary

Figure 5.2.: An overview of Java application extension mechanism, where extensions are
acting as "add-on" modules to the Java platform. [Som].

implemented, as it is planned to enhance the data access functionalities uploading individual
provider class for different Cloud data access. Additionally, as the data access layer is imple-
mented with a bundle of provider classes, the user may choose a number of provider classes
to be performed evaluating the SQL adaptations simultaneously in different Cloud data store
services.

5.2.3. SSH Connection to Cloud Database

According to the Cloud computing network infrastructure some of the data store services (i.e.
MySQL and PostgreSQL on Amazon EC2) are not directly accessible through JDBC drivers
form a traditional application. Every Amazon EC2 account provides authentication key,
which can be used to connect o the Amazon EC2 Cloud the traditional server or application.
It is observed that there are several ways can be followed to establish connection to the
Amazon EC2 Cloud database, such as over SSH tunneling or RDP (Remote Desktop Protocol)
connection. In order to enable Cloud data access on Amazon EC2, in this system it is consider
using SSH tunneling over Transmission Control Protocol (TCP) port 22. To accomplish the
SSH tunneling with public key authentication, a Java API called Java Secure Channel (JSch)
[JCr] can be used. While establishing a SSH tunneling it is possible forwarding a local port
(with -L option) of the target database. Then the target database (i.e. MySQL on Amazon
EC2) becomes accessible over the forwarded port through JDBC driver for a traditional
application.

67

5. Concept and Specification

5.3. Use Cases

The basic use case illustrating the adaptation of SQL integration for a data access layer is
described in following. In this use case analysis an actor, a user takes part.

Name View Evaluation Results SQL Statement Execution

Goal The user wants to review the comparison results of SQL executing in different
Cloud database services.

Actor User

Pre-Condition The tool launching without prior knowledge of necessary database configuration,
a set of SQL statements inputs and expected SQL results, and the target Cloud
data store services. Additionally, it shows an example evolutionary results table
in an extensible form layout. While starting the execution of SQL statements, the
necessary results tables will be drawn dynamically based on checked data service
providers, where execution results are shown. Also, it appears another extensible
form for representing the chosen data service providers, which is initially empty
however.

Post-Condition The SQL execution results are shown in SQL evaluation results tables by compar-
ing with expected and actual results. And also comment on whether an execution
is passed or failed.

Post-Condition in
Special Case

JDBC driver returns database connection error for one or more target data store
services, then the user fix the necessary configuration and restart the SQL execu-
tion for achieving acceptable results.

68

5.3. Use Cases

Normal Case 1. User configures the database connection (i.e. add or update database config-
uration file) and selects necessary private keys for specific Cloud services.

2. User selects SQL statements input file, which contains a set of selected SQL
statements.

a) User selects a wrong SQL statement file.

b) The system indicates file loading error; the file can’t be loaded in the
system.

3. User selects expected SQL results for corresponding SQL statements inputs.

a) User selects a wrong SQL Results file.

b) The system indicates file loading error; the file can’t be loaded in the
system.

4. User selects the target data store services (data access classes) for enhancing
data access functionalities within the system.

5. The system extends the application architecture by loading data access
classes in extension mechanism.

6. The system represents the checkboxes for every selected data access classes.

a) User check the checkboxes of data service providers in Cloud
providers list, the checked data store services will be evaluated.

7. The System automatically checks the target databases connections.

a) The system indicates database connection error, in case any target
database connection is invalid.

b) User fixes the database connection error.

8. User starts SQL execution with checked Cloud data store services by press-
ing on Start Eval button.

9. The system asks the user to confirm the necessary configurations in order
to start SQL execution.

10. The user confirms.

11. The system removes all previous SQL results tables from the form layout
and dynamically creates new tables for checked data store services.

12. The System starts SQL execution based on checked Cloud data service
providers by creating multiple process threads.

13. The system adds SQL execution results in the evaluation results tables in
real-time.

14. The system shows the progress of execution process in process bar for every
checked data store services in percentage value.

15. The system finishes individual SQL execution and then disappears related
process bar.

69

5. Concept and Specification

Special Cases 5a. User wants to remove one or more data store service providers (i.e. data
access class) from the providers list.

a) User checks one or more the service providers in the providers list.

b) User clicks on remove button.

c) The system removes the checkboxes from the provider list.

d) The system deletes selected data access classes from the application
extension mechanism.

12a. One or more data store services stopped or Cloud instance is terminated.

a) The system indicates the data store services connection error.

b) User fixed the database configuration setup.

c) User restarts the SQL execution (repeat from the step 8 in normal
case).

Table 5.1.: Description of Use Case View Evaluation Results SQL Statement Execution.

70

5.3. Use Cases

D:\Thesis_IAAS\Diagrams\usecases_v3.ump (UseCaseDia) 08/28/12 18:19:54

©1998-2012 Altova GmbH http://www.altova.com Page 1Registered to Mohsin Reza (IAAS, Stuttgart)

View Evaluation Results SQL Statement Execution Adaptation evaluation SQL statement

ClassLoader extension mechanism

Update database configuration

Remove data access classes

Uncheck data service provider

Status database configuration

Setup database configuration

Check data service provider

Import expected results file

Add data access classes

Import private key file
Start SQL evaluation

Import SQL input file

User

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«extend»

«extend»

«extend»

«extend»

«extend»

«include»

«extend»

«include»

«extend»

pkg Component View

Figure 5.3.: Use case diagram.

71

5. Concept and Specification

5.4. Non-Functional Requirements

This section describes the non-functional requirements that the application systems should
satisfy with several categories of non-behavioral functionalities. Nevertheless, in this system,
the non-functional requirements are ensuring the quality of the software system. Therefore,
to ensure the detail and sufficient functional requirements of the application system, this
systems shall include several categories of non-functional requirements such as extensibil-
ity, reusability, maintainability, and installation ease. The following subsections list these
requirements in the specific category and explain them in detail.

5.4.1. Extensibility

In order to enhance the functionality of data access layer (i.e. add a new data store service),
the application system has to be implemented with Java extension mechanism. Implementing
an extension mechanism the application system then ensures the ability to extend the system
in runtime. Then the application can easily add a new data access class into the system to
enable accessing Cloud data store service. Moreover, using extension facility the application
also can remove data access functionality while it is not needed any more. Thus minimize the
complexity of Cloud data access for the application system.

5.4.2. Reusability

The code segment of DAL class can be reused for adding a new Cloud database service with
slight modification. The basic class architecture should be same, only may necessary to add
the required SQL adaptation in order to access a specific data store service. The classes can
be reused, because of the individual data access classes are designed for different specific
Cloud data store services, where DAL’s classes are responsible for only encapsulating the
data access functionalities, but not correcting or modifying the data. In this system, usually
DAL classes are receive SQL statement from the application controller and execute them
into the target data store service and then send back the achieving SQL execution results
to the application controller. From this concept of view, if another application wants to
access the same cloud data store service implementing a data access layer, they can reuse
the DAL classes without modification what is designed for this system. Furthermore, for
representing the SQL comparison results this system creates the same evaluation result tables
for all checked data store services. so that, the code segment of generating tables are to be
reused for every tables.

5.4.3. Maintainability

The source code has to be well documented and decoupling of system components has to
be facilitating changes in functionalities. In this system, the different components are to be
designed based on layered application architecture model, where components are working

72

5.4. Non-Functional Requirements

relatively independent. Thus makes the software easy maintainable with reducing a lot of
efforts to implement or modify new functionality.

Moreover, implementing extension mechanism make the system more maintainable, as
individual provider classes can be loaded in runtime to enable a specific Cloud data access.
In order to add a new data store service, the developer has to add only a new provider class
and update the data store service configuration in the configuration file, and then application
controller can load the new class into the system to access enable Cloud data store service.

5.4.4. Installation Ease

The installation procedure of SQL Evaluation tooling system has to be well documented step
by step in detail. Accomplishing all steps should lead to a running system on both Windows
and Linux platform.

73

5. Concept and Specification

74

6. Design

This chapter describes an architectural design including a class diagram and technological
solutions for the concepts and specified system requirements in Chapter 5. First an overall
system overview of SQL Evaluation tool is given in Section 5.1 and then the various used
technologies required by the system are illustrated in separated sections.

6.1. Architectural Overview

The overall system architecture of SQL Evaluation Tool is shown in Figure 6.1, where a Java
Graphical User Interface (GUI) application represents the general activities of the adaptation
of data access layer and the evolutionary result of SQL statement adaptations. According to
the layered based application architecture model, the application user interface (SQL Evalua-
tion Tool) is considered a presentation layer. In more comprehensive view, the tool represents
the evolutionary result of accessing different Cloud data store services simultaneously with
implementing multi-threaded facility. Moreover, to evaluate the adaptation of SQL statements
this tool gives user to choose a set of selected SQL statements from a SQL file and also it
provides the functionality to load the data access classes dynamically in runtime. The data
access classes contain the data access functionality and the required SQL adaptation in order
to access selected Cloud data store services. However, for accessing each data store services it
has to be designed with individual data access classes.

According to the application architecture model, the three main components consisting of
configuration setting, application controller, and Java utility are holding in business logic
layer together. The application interface is directly connected to the application controller,
where application controller is representing the business logic functionalities and responsible
for interacting with user interface as well as the data access functionalities within the SQL
Evaluation tool system. Nevertheless, the application controller is connected with several
components including database configuration, selected SQL inputs and expected SQL results,
Java utility classes, and private key file. Additionally, within the application controller it is
considered implementing Java extension mechanism for loading a number of data access
classes in runtime to extend the application architecture and data access functionalities.
During running the application, it is also consider loading a database configuration for
different Cloud data store services by using XML Document Object Model (DOM) parsing,
as necessary database configuration is stored in a XML file format. Moreover, the tool offers
the facility to update the database configuration in application running time. Once database
configuration file is updated the application can use the updated configuration.

75

6. Design
D

:\T
he

si
s_

IA
AS

\D
ia

gr
am

s\
Sq

lE
va

lC
om

po
ne

nt
D

ia
.u

m
p

(S
Q

LE
va

lC
om

po
ne

nt
D

ia
)

08
/1

2/
12

 2
0:

06
:4

2

©
19

98
-2

01
2

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.a

lto
va

.c
om

P
ag

e
1

R
eg

is
te

re
d

to
 M

oh
si

n
R

ez
a

(IA
A

S
, S

tu
ttg

ar
t)

«c
om

po
ne

nt
»

D
at

a
A

cc
es

s
La

ye
r

«c
om

po
ne

nt
»

De
fa

ul
t D

B
A

cc
es

s

«c
om

po
ne

nt
»

EC
2

M
yS

Q
L

Ac
ce

ss

«c
om

po
ne

nt
»

EC
2

O
ra

cl
e

Ac
ce

ss

«c
om

po
ne

nt
»

EC
2

Po
st

gr
eS

Q
L

A
cc

es
s

«c
om

po
ne

nt
»

RD
S

M
yS

Q
L

Ac
ce

ss

«c
om

po
ne

nt
»

RD
S

 O
ra

cl
e

Ac
ce

ss

«c
om

po
ne

nt
»

VP
C

M
yS

Q
L

Ac
ce

ss

«c
om

po
ne

nt
»

Da
ta

 S
ou

rc
e

«c
om

po
ne

nt
»

De
fa

ul
t D

B

«c
om

po
ne

nt
»

EC
2

M
yS

Q
L

DB

«c
om

po
ne

nt
»

EC
2

O
ra

cl
e

DB

«c
om

po
ne

nt
»

EC
2

Po
st

gr
eS

Q
L

D
B

«c
om

po
ne

nt
»

RD
S

M
yS

Q
L

DB

«c
om

po
ne

nt
»

RD
S

 O
ra

cl
e

DB

«c
om

po
ne

nt
»

VP
C

M
yS

Q
L

DB

«c
om

po
ne

nt
»

Co
nf

ig
ur

at
io

n
S

et
tin

g

«c
om

po
ne

nt
»

Da
ta

ba
se

 C
on

fig
ur

at
io

n

«c
om

po
ne

nt
»

Ex
pe

ct
ed

 S
Q

L
R

es
ul

ts

«c
om

po
ne

nt
»

SQ
L

Te
st

 In
pu

ts

«c
om

po
ne

nt
»

Pr
iv

at
e

Ke
y

«c
om

po
ne

nt
»

Ja
va

 U
til

ity

«c
om

po
ne

nt
»

E
xt

en
si

bl
e

Fo
rm

 U
til

ity

«c
om

po
ne

nt
»

Ta
bl

e
Pa

tte
rn

«c
om

po
ne

nt
»

Ta
bl

e
Ce

ll
Re

nd
er

er

«c
om

po
ne

nt
»

Ap
pl

ic
at

io
n

Co
nt

ro
lle

r

«c
om

po
ne

nt
»

E
xt

en
si

on
 M

ec
ha

ni
sm

«c
om

po
ne

nt
»

SQ
L

Ev
al

ua
tio

n
To

ol

U
se

r I
nt

er
fa

ce

JS
ch

_A
P

I_
S

SH
Tu

nn
el

in
g

D
at

aA
cc

es
s

JD
B

C
_D

riv
er

pk
g

Co
m

po
ne

nt
 V

ie
w

Fi
gu

re
6.

1.
:C

om
po

ne
nt

di
ag

ra
m

of
SQ

L
Ev

al
ua

ti
on

To
ol

76

6.1. Architectural Overview

Using this facility the user can add or remove any of the data store configuration without
interrupting the running application.

In this scope, the database configuration has to be designed with detail provider connection
information as well as the information of specific data store service connections. Then, using
knowledge of provider’s connection the application controller can easily determine routing
the SQL statement execution to a particular data store service. Furthermore, performing the
SQL statement execution in Cloud data store services and compare the SQL result sets, it
is considered uploading a set of selected SQL test input statements and the corresponding
SQL results. In this case the result sets are prepared based on default database. Additionally,
representing SQL statement evaluation results the tool has to be implemented dynamic
and extensible Frame utility, where components can be added or removed dynamically on
application running time. For example, user wants to evaluate N number of data store services
then he has to choose N number of data access classes. As a result N number of checkboxes
will be added in the frame utility and based on checked checkboxes the application will
draw the tables to represent the comparison results. Ensuring this facility, a Java form utility
(i.e. GridBagConstraints) is considered to be implemented and representing the multi-lined
table structure, a Java utility called TableCellRenderer is consider implementing with the
application controller.

The next component of the application system is a data access layer, which is responsible for
encapsulating the data access functionalities for access both traditional database as well as
Cloud data store services. In data access layer, it is considered including a list of data access
classes corresponding individual data store services. The required SQL statement adaptations
are to be stored in these data access classes. While data access layer is received a SQL query
request from the application controller, it will investigate whether this statement needs to
be adapted or not. If required to be adapted, the data access layer adapts the SQL statement
based on adaptation knowledge and send the adapted statement to the target data store
service for performing correct SQL execution.

To reduce the application complexity, initially the data access layer is not connected to the
application logic. It is assumed that the data access layer will be loaded in runtime of the
application system. For enhancing the functionality of application system, a Java extension
mechanism (i.e. ClassLoader) will be implemented within application controller. The concept
is that in order to access different Cloud data store services the application will use different
class interfaces. In this system accessing both traditional database and Cloud data store
services, the data access layer usually use JDBC drivers, as currently most of the popular
database providers provide the JDBC drivers. Nevertheless, it is observed that according to
the Cloud networking infrastructure, some data store services cannot be accessed directly
through JDBC driver (i.e. Amazon EC2 Cloud), as they require public key authentication in
order to enable Cloud data access.

In this scenario the data access layer may establish a SSH (Secure Shell) communication over
port 22 to the target Cloud service with specific database port forwarding. Upon establishing
a SSH tunneling the data access layer now can access Cloud data through JDBC drivers using
forwarded database port instead of using a local database port. For creating SSH tunneling

77

6. Design

session a JSch (Java Secure Channel) API is considered to be used in this system, as JSch
provides supports for secure remote login with public key authentication as well as the port
forwarding facilities. Nevertheless, this tool only represents the enable accessing of Cloud
data store services, but it does not ensure the security and performance of Cloud data access,
as promising the performance of Cloud data access is out of scope of this master’s thesis.

The top down component is the data source within the application system. To evaluate the
SQL adaptations, several database services including traditional as well as Cloud data store
services has been considered. The aim of adapting a data access layer is that, application
can take advantages of accessing Cloud resources including data and computations, while
traditional server is not sufficient to perform the necessary computations. However, in this
scope using data access layer, application can access both traditional and Cloud data store
services depending on their computations needed. The default SQL test inputs are design
based on traditional MySQL database. For performing the SQL evaluations, these test inputs
are considered to be executed on various RDMS Cloud storage services including MySQL,
Oracle, and PostgreSQL on Amazon EC2, MySQL and Oracle on Amazon RDS, and MySQL
on Amazon VPC Cloud. Furthermore, we have investigated Amazon SimpleDB, a NoSQL
data store service for the evaluation of SQL statements, the test outcomes are described
in Chapter 4. As we are focusing on accessing RDMS Cloud storage services for now, in
the design of data access layer the data access from Amazon SimpleDB has been omitted.
However, in the future work we will implement accessing NoSQL data store services from
traditional application.

6.2. Class Diagram

This section gives an overview of the classes of SQL Evaluation tool system, which is to
be implemented in Java platform. We will summarize the usages of most essential one
and provide a short explanation of attributes and methods. Figure 6.2 shows a detail
conceptual relationship diagram for the system. The system is designed based on component
based software systems, where each component is designed with several classes. Then all
components are merged together to build a complete system.

6.2.1. EvaluationWindow

The EvaluationWindow is the main class for creating a graphical tool window in the system,
which provides an interface for the application layer. This class is responsible for representing
and controlling all User Interface (UI) elements related actions. The methods of this class
are non-blocking, as different data store services have to be accessed simultaneously inde-
pendently, where one execution may not wait for another execution to be finished. In order
to perform desire computations, it has associated with several significant classes within the
system.

78

6.2. Class Diagram

D:\Thesis_IAAS\Diag...\UMLEvaluationTool_v7.ump (UMLEvaluationTool) 08/15/12 16:30:57

©1998-2012 Altova GmbH http://www.altova.com Page 1Registered to Mohsin Reza (IAAS, Stuttgart)

EvaluationWindow

sqlQueryList:Vector

expectedSqlResList:Vector

providerList:Vector

EvaluationWindow()

btnAddProviderMouseClicked():void

btnRemoveProviderMouseClicked():voi

btnStartEvaluateMouseClicked():void

StartSQLEvaluation():void

btnCloseAppMouseClicked():void

FileImporter

fileImportPath:String

menuImportPrivateKey_ActionPerformed():void

menuImportSqlQueryFile_ActionPerformed():void

menuImportQueryResults_ActionPerformed():void

Ec2PostgresqlAccess

selectAvg:String

replaceView:String

createTable:String

dropIndex:String

sqlStatementExecute():String

getSqlAdaptation():String

RdsOracleAccess

selectAvg:String

replaceView:String

createTable:String

alterTable:String

dropIndex:String

sqlStatementExecute():String

getSqlAdaptation():String

SshUserInfoWrap

getPassword():String

getPassphrase():String

promptPassphrase():boolean

promptPassword():boolean

promptKeyboardInteractive():String

TableCellTextRenderer

cellAdaptee:DefaultTableCellRenderer

tableCellSizes:Map

getTableCellRendererComponent():Componen

addCellSize():void

FormUtility

lastConstraints:GridBagConstraints

labelConstraints:GridBagConstraints

addLastField():void

addLabel():void

addLabel():JLabel

ExtensionMechanism

dalClassLoader:ClassLoader

loadClassPath:String

loadDataAccessClasses():void

removeExtendedClasses():void
TablePattern

reqDrawTable:JTable

columnNames:Object

drawResultsTable():JTable

DefaultMysqlAccess

fullJoin:String

sqlStatementExecute():String

getSqlAdaptation():String

TableDrawing

resultsTable:JTable

addNewResultsTable():void Ec2MysqlAccess

fullJoin:String

sqlStatementExecute():String

getSqlAdaptation():String

SQLStatementEvaluation

evaluateDataStoreService():void

compareResult():boolean

AppMain

main():void

DBConnectionStatus

getDatabaseConnectionStatus():boolean

DatabaseConfiguration

getDatabaseConfiguration():Vector

TableCellTextEditor

TableCellTextEditor()

pkg Component View

Figure 6.2.: Class diagram.

79

6. Design

In explicit view, this class is to be considered as an application controller, as it is controlling
the loading of data access layer classes to the extension mechanism and gives instruction for
the SQL statement execution. Moreover, it holds the information about loaded data access
classes in the system.

• In class EvaluationWindow, several attributes are to be defined. However, the three
main attributes are SqlQueryList, expectedSqlResList, and providerList. The Sql-
QueryList attribute is used to store a set of defined SQL statement inputs, which have
to be executed evaluating the Cloud data store service. Similarly, the expectedSqlRes-
List attribute stores the corresponding expected SQL results. These expected results are
to be used for comparing with actual SQL executed results, while SQL statements are
executing in different Cloud data store services. Moreover, the providerList attribute
is employing to keep the updated information about loaded data access classes.

• While running the application, the EvaluationWindow class constructs a graphical SQL
Evaluation tool window, where the tool has to be implemented two internal Frames
associated with extensible form layout. One is for adding data service provider’s
identity and another one is for representing the SQL evaluation results. Both Frames
have to be capable organizing the UI components dynamically. It is observed that In
order to draw an extensible form a Java form utility (i.e. GridBagConstraints) may
be used. Moreover, the tool has also included several buttons such as Add Provider,
Remove, Start Eval, and Close App to perform different actions. The Add Provider button
provides the functionality to add one or more data access classes in the system, where
Remove button removes one or more data access classes from the system. Furthermore,
the Start Eval button is to be used to start the SQL statement executing in different
selected data store services.

• While user wants to add a new data access class to the system and clicked on Add
Provider button, the method btnAddProviderMouseClick() is called to perform the
action, such as add a data access class to the extension mechanism. This method will
open a Java native file chooser window to add one or more data access classes. Also,
it will add the data service provider’s name including a checkbox to the provider list.
Moreover, while adding data access classes to the extension mechanism, this method
checks the data access connections status to the target data store services with the help
of DBConnectionStatus class. Furthermore, this method can also be used for updating
the added data access classes in the system.

• When a data access class needs to be removed from the system, the btnRemoveProvider-
MouseClicked() method is to be used. With clicking on Remove button, this method
is called to remove the data access classes from the system and also remove the data
service provider name from the provider list.

• Configuring the tool setup properly, importing all necessary configuration file (i.e. a
set of SQL statement inputs, corresponding expected SQL results, and required private
keys), now it is time to start the SQL execution evaluation. The btnStartEvalulate-
MouseClicked() method is responsible for starting the SQL execution preparations in
different Cloud data store services based on checked data service providers. Therefore,

80

6.2. Class Diagram

clicking on Start Eval button this method will be associated to start the SQL execution
evaluation preparation by calling startSQLEvaluation() method, as this method is
associated with Start Eval button.

• As it is planed to run the SQL statements simultaneously, the startSQLEvaluation()
method creates individual threads for every Cloud data accesses based on checked data
service providers. Then multiple threads will be run together simultaneously while
several data store services have to be accessed. Implementing multi-threaded facility,
the tool now can execute the SQL statements to the explicit Cloud data store services
independently. Therefore, one execution will not interfere to the other executions.

• Upon finishing the SQL statement evaluation the application can be exited using bt-
nCloseAppMouseClicked() method, as the method implemented an action listener for
Close App button.

6.2.2. DatabaseConfiguration and DBConnectionStatus

As data store service configuration setting is important for Cloud data accesses and can
be changed over time while updating the database setup in the Cloud, the tool provides
opportunity for user updating the database configuration in the system in runtime. The
getDatabaseConfiguration() method is used to retrieve both traditional database as well
as the Cloud data store service access configuration. The necessary configurations are stored
in dbconfig.xml file. Using DOM parser this method extracts the required configuration for
a specific Cloud data store service and returns the configuration information. Additionally, if
the database configuration is required to be updated in the system, the user will update the
configuration information in dbconfig.xml and then the system will automatically use the
updated configuration in runtime.

The DBConnectionStatus class is responsible for confirming the user about Cloud data access
connection status. When adding a data access class to the system, the getDatabaseConnec-
tionStatus() method informs the database connection status to the system. If the data
access is possible to establish the method returns success confirmation, otherwise it returns
unsuccessful. Using this method, user can determine about the data access configuration
setup before start evaluating the SQL statement execution in the Cloud.

6.2.3. FileImporter and SshUserInfoWrap

In order to evaluate the SQL statement execution in the Cloud, a set of SQL statement inputs
as well as the corresponding SQL results have to be given in the system. Using FileImporter
class, the tool can load the selected SQL inputs and the corresponding results. Moreover,
some Cloud infrastructures are required public key authentication accessing Cloud data store
services, this class also provides method to load the necessary private keys for performing
user authentications.

81

6. Design

The SshUserInfoWrap is an interface and a wrapper class, which is used to establish SSH tun-
neling by authenticating appropriate private key using JSch API. This wrapper is responsible
for validating the user authentication while a secure channel is required to be established for
Cloud data access.

6.2.4. FormUtility and TableDrawing

The FormUtility class is a simple wrapper class for creating extensible form layout applying
GridBagConstrains objects. This class hides the details of using GridBagLayout for the GUI
development tasks and capable to add several types of components including label, checkbox,
and table in the form [Ise06]. Using this FormUtility wrapper, it makes feasible to create
the GUI elements dynamically according the need. For example, representing the evaluation
results of SQL statement execution in different Cloud data store services, this system has
considered drawing individual tables for every checked data service providers. Using this
class, it makes feasible to add a dynamic number of tables in a form for individual Cloud
services. Moreover, adding a component to the FormUtility form, it will not necessary to
explicitly specify the relative positions and the sizing semantics, as the details of each added
component’s size and position are controlling by a GridBagConstrains object associated
with each component.

As it is considered representing the individual comparison results in a different table, the
TableDrawing class is responsible for creating a new table for every selected data service
providers. It is realized that every table has to be created with same number of rows and
columns for each data service provider, as the same set of SQL statements are to be executed
in every data store services. Therefore, using addNewResultsTable method of this class,
it can be added any number of tables. In addition, the number of rows of a table is to be
determined by the number of SQL statements inputs size. The numbers of columns are
fixed, as it will represent the similar results for every SQL execution such as Expected results,
Actual results and outcomes (pass or fail comments). As the size of the tables is always
same, a template table may be created. The number of rows of the template is equal to
the number of SQL statements inputs size. Then the same template can be used for every
comparison results representation. Furthermore, representing a multi-line table cell, the
TableCellTestRenderer method can be used.

6.2.5. ExtensionMechanism

This class is responsible for the managing of plugins mechanism by adding or updating the
data access classes in the system. It provides methods to add or remove a number of data
access classes in the extension mechanism from any directory. On startup of the system, the
data access classes are not binded automatically, the classes has to be loaded in runtime. The
concept of implementing extension mechanism is that system can load any number of data
access classes in order to evaluate SQL statement executions in the Cloud.

82

6.2. Class Diagram

• In order to make the application runtime extensible, a Classloader is to be imple-
mented, where several classes can be loaded depending on data access needed. The
dalClassLoader attribute invokes the class extension in the system.

• The method loadDataAccessClass is used to add or update the data access classes in
the extension mechanism. While adding a new data access class, this method informs
the EvaluationWindow class about the data store service connection status. However,
in order to load a data access class to the extension mechanism all classes have to be in
common structure, but can be modified one.

• To make the system robust the extended classes may require to remove from the
extension mechanism. Using removeExtendedClasses method, it is possible to remove
an added data access class in runtime.

Removing an added class from the extension mechanism is tricky, as it is realized that once
a class is added to the ClassLoader, it cannot be removed from the system without system
termination. However, this can be done using a temporary ClassLoader. The concept is
that creating a temporary ClassLoader and copies all the loaded classes except removed
one and then replace the original ClassLoader with the temporary ClassLoader. As a result
the intended class has removed from the original ClassLoader. So that after removing a
class form the ClassLoader, the same class can be loaded again if necessary. Moreover,
while removing a data access class form the ClassLoader, it also removes that data service
providers’ name from the provider list.

6.2.6. SQLStatementEvaluation

It is one of the most important classes in the system, as the SQL execution is started from this
class. Based on receiving target data store services name, this class invoke the targeted exe-
cution methods performing SQL execution. It provides the methods for evaluating the SQL
data store services and comparing achieving SQL execution results with the expected results.
Moreover, to determine the accurate execution results, this class implements individual eval-
uation method for each data store service. The method called evaluateDataStoreSerivce()
is used to route the SQL execution to the target data store service. While start evaluating
the SQL execution, a process bar is appeared for every checked data service providers. The
process bar indicates the process executions in percentage and it disappears upon finishing
the complete set of SQL statement executions. The execution processes are controlling by this
class.

During running the SQL execution, for each statement this method receives a result set of SQL
statement execution and then results are compared with predefined expected results through
compareReslult() method. The comparison results are then updated to the results tables in
real-time. It is realized that some of the achieving results are same as it is expected, but in
different order format. The compareResult() method is also responsible for taking care of
them. Furthermore, depending on the Cloud storage infrastructure some Cloud services are
directly accessible, but some are not. They can be accessed establishing secure channel (SSH
tunneling). This class provides supports for both direct data access as well as through SSH

83

6. Design

tunnel with specific database port forwarding. For establishing SSH tunneling, the JSch API
may be used.

6.2.7. Data Access Classes

A package of data access classes builds the data access layer in the system, where these classes
are implementing the concept of data access functionalities. These classes are responsible for
performing SQL statements executions in a specific Cloud data store service. The concept of
designing data access classes are that, a specific cloud data store service has to be accessed by
using an individual data access class. This means that for every Cloud data store services,
it has to be designed corresponding access classes and then the classes are loaded in the
extension mechanism in application running time to access Cloud data. Additionally, all
data access classes are designed with a common structured and the required adaptations are
implemented in these classes. Different data store services may require different adaptations.
So that, this approach makes the system simple.

The data access class provides the methods for SQL statements executions and adapting
the statements. The sqlStatementExecute() method is used to execute the SQL statement
in the Cloud data store service, where it returns the SQL execution results usually in SQL
ResultSet format. In addition, before executing a SQL statement, it will verify whether the
statement requires adapting or not. If requires, the getSqlAdaptation() method adapts the
statement accordingly. And then send the adapted SQL statement to the Cloud data store
service achieving acceptable results.

84

7. Implementation

This chapter illustrates the implementation details of SQL Evaluation tool based on require-
ments defined in Chapter 5 and the design issues discussed in Chapter 6. The software tool
development was performed using standard Java platform, as Java is one of the most popular
and common programming language for Cloud based application.

First of all, the Section 7.1 gives a detail implementation outline including code listings and
references to the usage of most important classes and methods. Then the next section will
define various technologies which are required for implementing a complete software system.
Furthermore, a software tool manual including installation procedure as well as user manual
is given in Section 7.3.

7.1. Software Tool Implementation

This section describes a detailed implementation of the core functionalities in SQL Evaluation
tool system. The implementation is performed based on conceptual class diagram described
in Figure 6.2, where the classes are designed according to the component based Software
application system (see Fig. 6.1). However, the software implementation follows the Model
View Controller (MVC) design, where wrapping objects are dealing with a model, the tool user
interface representing a view and the core functionalities are performing actions for controlling
the application system. Furthermore, this section explicitly describes the implementation of
configurations setting and the design implementation of a data access layer.

7.1.1. Application Controller

The application controller is the main component of SQL Evaluation tool system. It has imple-
mented various core functionalities of business logic for controlling core application system.
It has included several important classes such as EvaluationWindow, ExtensionMechanism
and SQLStatementEvaluation. The EvaluationWindow Class is responsible for representing
a Graphical User Interface (GUI) window for performing user interactions. Moreover, all
necessary User Interface (UI) element and UI related actions are performing by this class.
Whereas, the ExtensionMechanism class deals with the implementation of plugins mecha-
nism for providing opportunity to enhance application functionalities in runtime and the
SQLStatementExecution class controls the SQL statement execution related tasks.

In order to represent the SQL statement execution results and data service provider list, the
tool has two extensible Java forms using GridBagLayout. These forms allow application

85

7. Implementation

adding various Java UI components dynamically, which brings a great advantage for the
application systems representing a number of data services providers’ identity based on
chosen a number o data access classes. Also, using this facilities a variable number of SQL
statement evaluation results table are drawn. These results tables are created based on
checked data service providers. The access control of both data forms are implemented in
class EvaluationWindow. Using GridBagLayout form, the advantages is that the component
does not necessarily has to define explicitly related position and size, as the size and positions
are controlling by the GridBagConstraints object associated with each component. So that,
every new component will be added in the end position of the form. However, it is also
possible to recognize the components position in runtime.

1 ...
2

3 // SQL execution progress bar is visible
4 sqlExcProcessBar.setVisible(true);
5

6 new SwingWorker<Void, Void>() {
7

8 // Method to perform the background computation
9 protected Void doInBackground() throws Exception {

10 /*
11 * Method calling form SQLStatementEvaluation class to execute
12 * a set of SQL statements while the progress bar is running
13 */
14 sqlStateEval.evaluateDataStoreService("dataServiceName");
15 return null;
16 };
17

18 // Mehod is called when the SwingWorker’s doInBackground finishes
19 protected void done() {
20 // Hide SQL execution progress bar
21 sqlExcProcessBar.setVisible(false);
22 };
23 }.execute();
24

25 ...

Listing 7.1: Excerpt from EvaluationWindow.java focusing on implementation of Java
multi-threaded application using Swing. Only SwingWorker implementation
is shown and the detail implementations are omitted.

Providing opportunity to execute several data store services simultaneously this tool has
implemented multi-thread method execution. To ensure this facility, and to make the process
visible, a Java SwingWorker has been implemented, where SwingWorker is an abstract class
to carry out long running GUI interacting tasks in an enthusiastic thread. Implementing
doInBackgroud() method in SwingWorker class, it makes feasible a long running tasks (i.e. a
set of SQL statement execution) run in a background thread and gives update to the process
bar. In this implementation, it is considered that while a set of SQL statement execution
process is running the corresponding process bar will be visible to ensure the execution
process updates and upon completing the tasks the process bar will invisible from the

86

7.1. Software Tool Implementation

window. The code example in Listing 7.1 shows a sample of SwingWorker implementation,
the SwingWorker is used to implement a Java multi-threaded application.

Moreover, the ExtensionMechanism class is responsible for providing functionalities to ex-
tend the data access functionality by loading a data access class to the extension mechanism
in runtime. Also, it provides the functionality to remove an added class from the extension
mechanism container. As it is considered extending the application functionality by loading
only classes, a ClassLoader has been implemented. The implementation of ClassLoader is
straightforward and in implemented ClassLoader a multiple number of classes can be loaded.
So that it makes feasible adding any number of data access classes in the application systems
for accessing different data store services. Listing 7.2 shows a part of ExtensionMechanism
class, where a Java ClassLoader has been implemented. Usually, a as standard Java extension
mechanism offers the possibility to add a complete Java Archive (JAR) API into the extension
mechanism. As we are implementing individual data access classes for different data service
providers, it is considered implementing Java ClassLoader for loading different data access
classes.

1 public class ExtensionMechanism {
2

3 public ClassLoader dalClassLoader; // Java ClassLoader
4 public Class<?> dalClass; // Associated class object
5 private String classToBeLoaded = classPath + "." + dalClassName; // Class loading path
6 ...
7

8 public void loadDataAccessClasses(){
9 ...

10 try{
11 /*
12 * Load data access class to the extension mechanism and
13 * instantiate with local class object
14 */
15 dalClass = dalClassLoader.loadClass(classToBeLoaded);
16 }
17 ...
18 catch (ClassNotFoundException e) {
19 /*
20 * Thrown when application tries to load in a class through its string name,
21 * but no definition for the class with the specified name could be found.
22 */
23 }
24 ...
25 }
26 }

Listing 7.2: Excerpt from ExtensionMechanism.java emphasizing the implementation of
Java plugins mechanism to extend application functionality of data access layer.
Only ClassLoader implementation is shown and the detail implementations
are omitted.

Furthermore, the class SQLStatementExecution is the main class for starting SQL statement
execution. It provides the methods for routing statement execution to a specific Cloud data

87

7. Implementation

store service and comparing the execution results with expected results for representing the
outcomes of the execution, whether the SQL statement execution is passed or failed. The
evaluateDataStoreService() methods routes SQL statement execution by calling explicit
execution method to a specific Cloud data store service based on given service name.

1 private void evaluteRdsOracleDataStoreService(){
2 ...
3 try{
4 // Create new instance for rdsOracleClass which is loaded in extension mechanism
5 Object rdsOracleInstance = extMechanism.rdsOracleClass.newInstance();
6 // Data access method instanciation
7 Method sqlExecMethod = extMechanism.rdsOracleClass.getMethod("sqlStatementExecute",
8 new Class[] { Vector.class, String.class, int.class}
9);

10 // Receive query results with method invocation for Cloud data access
11 String queryResult = (String) sqlExecMethod.invoke(rdsOracleInstance,
12 new Object[] { dssConf, sqlStatement });
13 // Comparing actual SQL statement execution results with expected results
14 boolean resComp = compareResult(expectedResult, queryResult);
15 ...
16 }catch (SecurityException e) {
17

18 }
19 ...
20 }

Listing 7.3: Excerpt from SQLStatementEvaluation.java focusing on data access method
invocation in the extension mechanism. The detail implementations are
omitted and only a pseudo code of evaluteRdsOracleDataStoreService()
method is shown.

Listing 7.3) shows an abstract overview how application instantiate with the data access
functionality in order of evaluating SQL statement execution in Oracle data store service in
Amazon RDS and compare the results. First of all, the method of data access class has been
instantiate with a method variable with given specific number of parameters. Then invoke
the data access method calling with defined types of values (i.e. database configuration and
SQL statement) to perform the data access method execution. So that the data access method
returns the SQL statement execution results set in string format. Then the achieved results
are compared to the expected results for determining the outcomes decision, the status of the
SQL execution (i.e. passed or failed).

7.1.2. Java Utility

In order to represent a dynamic number of Cloud data service providers name and draw a
number of extensible tables for SQL statements evaluation, a Java extensible form layout as
well as a table template has been implemented in this system. The extensible form layout is
implemented with the help of FromUtility wrapper class, where FromUtility class provides
functionalities to add any component (e.g. label, checkbox) and Java table. In order to ensure

88

7.1. Software Tool Implementation

this extensible facility, the FromUtility class has implemented applying GridBagLayout
objects. So that, the component can be added dynamically into the form grid and then
the GridBagLayout automatically control the component size and position for each added
component.

While running the SQL statements execution on several data store service simultaneously, is
it quite important to represent the different execution results in a fashioned manner. As the
SQL statement test inputs are variable the table size must be varies. The rows of the table are
equal to the number of SQL statement test inputs. However, the columns are always same.

The all table representations are in same size, as the SQL input size is always same. Therefore,
a table template is implemented for drawing a variable size of table. Moreover, the tables
rows are consider representing a multi-lined table cell. Because of, the achieving result sets of
a SQL statement execution can be a table. It does mean, often we have to represent a table
inside a table.

7.1.3. Configurations Setting

This section describes the implementation of detailed configurations setting including database
configuration, SQL inputs, and expected results.

While Cloud data store services have to be accessed remotely through Internet, within this
systems a database configuration has been implemented explicitly. All required data service
configuration are stored in allocated database configuration file called dbconfig.xml with
XML data format. Listing 7.4 shows an example database configurations for a few Cloud
data store services, where the configurations are designed explicitly for every individual data
store services.

In every configuration setting, it is considered including both Cloud service connection
information as well as the specific data store service configuration. However, it is investigated
that some of the Cloud data store services are feasible accessing directly through public URL.
In this case the Cloud service connections information fields are holding null value, but
the data store services configuration fields are stored with necessary values. For example,
the database host would be the public URL of data store service. Furthermore, it is also
realized that some for the data store services have to be accessed implementing with a public
key authentication. In this case the application creates SSH tunneling session with specific
database port forwarding and then access Cloud data through forwarded port. Implementing
XML DOM parsing the getDatabaseConfiguration() method in DatabaseConfiguration
class, the system retrieves that necessary data store service configuration for a specific data
service provider.

In addition, the database configuration can be updated in system running time. Once the
database configuration is updated the system will automatically notify about the update
and will use the updated configuration for the further data access. Nevertheless, for every
data service provider the database configuration file has designed with fixed number of
elements item. If it is required to change the structure of database configuration, then also

89

7. Implementation

1 <?xml version="1.0" encoding="UTF-8"?>
2 <dbconf>
3

4 <defaultmysql id="0" name="defaultmysqldb">
5 <cloudurl>NULL</cloudurl>
6 <clouduser>NULL</clouduser>
7 <dburl>jdbc:mysql://localhost:3306/</dburl>
8 <dbname>dbName</dbname>
9 <dbusername>dbUser</dbusername>

10 <dbpassword>dbPass</dbpassword>
11 </defaultmysql>
12

13 <ec2postgresql id="1" name="ec2postgresqldb">
14 <cloudurl>ec2-xxx-xxx-xxx-xxx.eu-west-1.compute.amazonaws.com</cloudurl>
15 <clouduser>ec2-user</clouduser>
16 <dburl>jdbc:postgresql://localhost:5432/</dburl>
17 <dbname>dbName</dbname>
18 <dbusername>dbUser</dbusername>
19 <dbpassword>dbPass</dbpassword>
20 </ec2postgresql>
21

22 <rdsoracle id="2" name="rdsoracledb">
23 <cloudurl>NULL</cloudurl>
24 <clouduser>NULL</clouduser>
25 <dburl>jdbc:oracle:thin:@dbName.ctdc03yqnvpy.us-east-1.rds.amazonaws.com:1521:</dburl>
26 <dbname>dbName</dbname>
27 <dbusername>dbUser</dbusername>
28 <dbpassword>dbPass</dbpassword>
29 </rdsoracle>
30

31 </dbconf>

Listing 7.4: A part of data store service configuration dbconfg.xml for enable accessing
both traditional as well as the Cloud data.

it is necessary to update the data retrieving method in the system level accordingly, as
currently the getDatabaseConfiguration() method is implemented to get the fixed number
of configuration elements.

As we consider evaluating Cloud relational data store services, a set of SQL statement inputs
have been designed based on SQL standard 2003. In order to evaluate the adaptation of
data access layer, the same SQL statements are to be executed in different data store services.
Moreover, a set of corresponding expected SQL results are defined to the system for comparing
with actual SQL statement execution results. The expected results are prepared based on
traditional database server. The Table 7.1 shows a part of usages important SQL statements
inputs and corresponding expected results.

90

7.1. Software Tool Implementation

Table 7.1.: A part of usages important SQL statements inputs and corresponding expected
results.

SQL Statement Expected Result

SELECT object_id, access_level_browse FROM oocke1_-
account

account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/admin-Standard 3
account/CRX/Standard/admin-Standard Private 3
account/CRX/Standard/guest Private 3
account/CRX/Standard/NI7XwEIBEd29BeMf4vj8cA 3

SELECT object_id, access_level_browse
FROM oocke1_account WHERE object_-
id=’account/CRX/Standard/admin-Standard’

account/CRX/Standard/admin-Standard 3

SELECT object_id, AVG (access_level_browse * access_-
level_delete) FROM oocke1_calendar GROUP BY ob-
ject_id

calendar/CRX/Mohsin/9LPADU3ML74YP2C3LAQ
7XUCUX 3.0000
calendar/CRX/Standard/DefaultBusinessCalendar
6.0000
calendar/CRX/Standard/e5uf4EIBEd29BeMf4vj8cA
6.0000

SELECT access_level_browse, full_name FROM
oocke1_account INNER JOIN oocke1_account_ ON
(oocke1_account.object_id=oocke1_account_.object_id)
WHERE (oocke1_account_.idx=1) ORDER BY oocke1_-
account.full_name

3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 Guest,
3 guest Private

SELECT access_level_browse, full_name FROM oocke1_-
account LEFT JOIN oocke1_account_ ON (oocke1_-
account.object_id=oocke1_account_.object_id) WHERE
(oocke1_account_.idx=2)

3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 Guest,

SELECT persons.LastName, persons.FirstName, or-
ders.OrderNo FROM persons FULL JOIN orders ON per-
sons.P_Id=orders.P_Id ORDER BY persons.LastName

Hansen Ola 22456
Hansen Ola 24562
Pettersen Kari 77895
Pettersen Kari 44678
Svendson Tove null
null null 34764

7.1.4. Data Access Layer

As within Data Access Layer (DAL) it is considered implementing individual data access
classes for every data service provider, the data access classes are implemented based on
required SQL statement adaptations found in Chapter 4. The main concern of implementing
data access classes individually for every specific Cloud data service provider is that the
system can be extended data access functionalities by adding a new data access class in run-
time. The another reason for designing data access classes individually is that, for accessing
different Cloud data store services, it requires adapting the data access classes with different
tapes of SQL statement adaptations. Thus reduces the system complexity and ensuring the
correctness of data access feasibility.

In the design structure of data access classes, every class has implemented with two essen-
tial methods, such as sqlStatementExecution() and getSqlAdaptation(). However, the
classes can be included more functionalities due to perform internal processing tasks but

91

7. Implementation

above described methods are the least requirements. The sqlStatementExecute() method
performs executing SQL statements to the specific Cloud data store service, where as the get-
SqlAdaptation() method performs adapting the SQL statement, if require. For every SQL
statements execution, the sqlStatementExecute() method asks the getSqlAdaptation()
whether the statement requires adapting or not. If adaptation is required the getSqlAdap-
tation() method adapt the statement according to the adaptations described in Chapter 4
and returns the adapted SQL statement, otherwise it will confirm the statement is already
valid. As a result the sqlStatementExecute() only perform executing the valid statements.
So that, according to this concept, the system wills always adequate SQL results.

Original SQL Statement Adapted SQL Statement

CREATE TABLE test_table1 (
id INTEGER UNSIGNED NOT NULL AUTO_INCRE-
MENT,
name VARCHAR(250) NOT NULL,
age INTEGER UNSIGNED,
marks BIGINT UNSIGNED,
PRIMARY KEY (id)
)

CREATE TABLE test_table1 (
id NUMBER(10, 0) NOT NULL,
name VARCHAR2(250) NOT NULL,
age NUMBER(10, 0),
marks NUMBER(19, 0),
PRIMARY KEY (id)
)

Table 7.2.: An example of SQL CREATE TABLE Adaptation from default to Oracle.

1 /**
2 * Method to get the adaptation on SQL CREATE TABLE statement.
3 * SQL Statement migration from default to Oracle
4 *
5 * @param sqlStatement The SQL statement is to be adapted
6 * @return Returns the adapted SQL statement
7 */
8 private String getCreateTableAdaptation(String sqlStatement){
9 /*

10 * SQL statement is to be adapted by replacing with specific data types
11 */
12 String adaptedStatement = wordReplace(sqlStatement, " UNSIGNED", "");
13 adaptedStatement = wordReplace(adaptedStatement, " AUTO_INCREMENT", "");
14 adaptedStatement = wordReplace(adaptedStatement, "BIGINT", "NUMBER(19, 0)");
15 adaptedStatement = wordReplace(adaptedStatement, "INTEGER", "NUMBER(10, 0)");
16 adaptedStatement = wordReplace(adaptedStatement, "VARCHAR", "VARCHAR2");
17 ...
18 // Return the adapted SQL statement
19 return adaptedStatement;
20 }

Listing 7.5: Excerpt from Ec2OracleAccess.java focusing on implementation of SQL
CREATE TABLE Adaptation from default to Oracle. Only an example
implementation is shown based on Table 7.2 described and the detail
implementations are omitted.

Table 7.2 shows an example SQL CREATE TABLE statement and the possible adaptation,
where the Listing 7.5 describes the possible implementation solution when statement is

92

7.1. Software Tool Implementation

migrating to Oracle compatible.

As it is observed that some of the Cloud data store services have to be accessed through SSH
tunneling with public key authentication, the initial though was implementing SSH session
in data access layer. However, due to the fact that if the SSH session is created for every
statements executions, the system will take a large amount of time to finish the complete
set of SQL statement execution. Therefore, the implementation of SSH session has moved to
the SQLStatementEvaluation class within the system, where from the SQL statements are
started to be executing. The implementation steps are that create a SSH session for from the
system level and execute the complete set of statements and then release the SSH session
while all executions are done. Nevertheless, with this approach one problem could appear
that if the SSH session is broken for some reasons the system cannot automatically establish a
SSH session for completing the upcoming executions.

7.1.5. JSch Based Authentication

As some of the Cloud computing instances (i.e. Amazon EC2) act as a remote server and have
to be accessed through SSH tunneling, several Java libraries could be used, for example JSch,
MindTerm, orion-ssh2, Ganymed SSH-2, ssj, etc. For some reasons, it is considered using
JSch library in order to establish a SSH tunneling by public key authentication for accessing
Cloud data. Implementing JSch SSH tunneling session is very straightforward, as several
documentations could be found on online, which already stated the basic implementation.

Listing 7.6 describes the necessary steps for establishing SSH tunneling over port 22 and
forwarding MySQL database connection port 3306.

1. Create a new instance of JSch API class.

2. Add the private key identity to the JSch instance.

3. Create JSch session using specific Cloud host name and user name over SSH port 22.

4. Overwrite the JSch user information by implementing sshUserInfoWrap (SSH user
information wrapper) class.

5. Connect to the JSch SSH session.

6. Forward database port (i.e. 3306) with L option.

7. Access MySQl data store service using forwarding port.

8. Release the JSch SSH session.

93

7. Implementation

1 ...
2 try{
3 // Create new instance of JSch API class
4 JSch jsch = new JSch();
5 // Add private key identity to the JSch instance
6 jsch.addIdentity(privKeyPath);
7 // Create JSch session using Cloud host and user over SSH port 22
8 Session session = jsch.getSession(user, host, 22);
9 // Overwrite the JSch user information with wrapper interface

10 UserInfo uiWrapper = new SshUserInfoWrap();
11 // Set the wrapping user information to the session
12 session.setUserInfo(uiWrapper);
13 // Connect to the JSch SHH session
14 session.connect();
15 if(session.isConnected()){
16 // Forward database port with L option
17 session.setPortForwardingL(3307, "localhost", 3306);
18 ...
19 // Release the JSch SSH session
20 session.disconnect();
21 }
22 }catch(Exception e){
23 System.out.println(e);
24 }
25 ...

Listing 7.6: Java SSH tunneling with JSch API.

7.2. Development Environment

This section describes detail development environment including usages tool, platform and
technologies for the implementation of SQL Evaluation tool. The software application was
developed in Java programming language (Java 7) using Eclipse IDE (Integrated development
Environment) (Eclipse Juno version 4.2) under windows operating system. Moreover, several
Java technologies such as Java libraries APIs (Application Programming Interface) have been
used for building a complete tool system. The description of development environment and
usages technologies are given in the following subsections.

7.2.1. Eclipse

While SQL Evaluation tool has been implemented in Java, we have decided to develop
the application in Eclipse development environment using Java integrated development
environment (Java Development Tools (JDT)). As the application systems had build on
standard Java platform, it is consider using Eclipse IDE for Java developers, Eclipse Juno
version 4.2.

Eclipse IDE is a multi-platform supported open source development environment for build-
ing Java application. It is one of the wide accepted software development environment

94

7.2. Development Environment

within Java developers [Gee05], as it is an open source platform and have offered various
significant features such auto completing Java source code, integrated debugger, integrated
Java compiler, symbol reference, declaration locator and team development applying version
control system.

7.2.2. Java Platform

Developing a software tool was a major part of this master’s thesis, where the tool is using
for proofing the concept of adaptation of data access layer in order to enable access Cloud
data. The software development was based on layering application architecture model
standards described in Chapter 5 and 6. However, the tool is platform independent and
runs on both Windows and Linux platform, as Java applications are normally run on any
supported operating system platform such Windows, UNIX, Macintosh, and Solaris. The
software application was developed in Java platform, Standard Edition Development Kit
(JDK) version 7, which includes Java standard edition runtime environment 1.7. Additionally,
the tool has implemented some special features for example string switch cases. So that it
makes limitation for using Java runtime environment, as it can only run on JDK 7, not on
earlier version of JDK.

The reason for selecting Java programming language for the SQL Evaluation tool development
was that Java is an open source language platform itself and helps on developing open source
application. Also, Java is a popular and widely accepted for building Cloud based applications
nowadays. An additional reason for selecting Java was that the adaptation concept of data
access layer will be a part of Enterprise Service Bus (ESB) Apache ServiceMix, where Apache
ServiceMix is a Java based platform.

7.2.3. Java Libraries

This section illustrates the various technologies (i.e. Java libraries) that were used during
software tool implementation in order to provide that necessary functionalities in the system.
A short description of most important usages libraries are given in following in this section.

JDBC

While Java application accessing Cloud Relational Database Management System (RDMS), a
JDBC (Java Database Connectivity) database connector library was used. JDBC is an API for
building low-level JDBC drivers, where low-level driver is responsible for connecting and
accessing data source from the database system. It is standard for most of the popular RDMS
and currently a part of JDK.

As different database systems have implemented with its unique design structure philosophy,
every database has its own API for access data resources. For example, accessing MySQL
database resources, a MySQL Connector/J JDBC driver can be used. Similarly, ojdbc driver

95

7. Implementation

is used for accessing Oracle database and postgresql-jdbc driver is used for PostgreSQL
database. Therefore, accessing different relational Cloud data store services, following JDBC
drivers are used in this system.

Data Store Service Driver version

MySQL mysql-connector-java-5.1.18-bin.jar

Oracle ojdbc6.jar

PostgreSQL postgresql-9.1-902.jdbc4.jar

Table 7.3.: List of JDBC drivers for connecting different relational data store services.

JSch API

As SSH is not supported in Java native implementation, a third party API called JSch (Java
Secure Channel) was used to implement a SSH tunneling for accessing Cloud data, when
needed accessing the data through a secure channel. This means that using JSch, a secure chan-
nel is established and application accessing Cloud data through the channel. Implementing
SSH tunneling, this application has considered using JSch API version jsch-0.1.48.

JSch API is implemented in Java programming language, which can be used to connect
to remote sshd server for various purposes, such as SSH key authentication, using port
forwarding, X11 forwarding, SSH tunneling, file transfer, etc. However, in SQL Evaluation
tool system, it has implemented this API for accessing Cloud data storage (i.e. MySQL and
PostgreSQL database on Amazon EC2). The concept of using this API is that application
creates a secure channel (i.e. SSH tunneling) between local server and Cloud Instance over
port 22 and forwarding a specific database port. Then application connect to the data store
service using forwarded port [JCr].

7.3. SQL Evaluation Tool Manual

This section deals with detail software tool installation and user manual. The installation
illustrates a detail installation procedure and prerequisites for running the software tool
system. The user’s manual shows the steps, how to use the tool for evaluating SQL state-
ment adaptations while application accessing Cloud data. This tool has been developed for
accessing relational data store services in the Cloud.

96

7.3. SQL Evaluation Tool Manual

Figure 7.1.: An Overview of Eclipse project explorer for SQL Evaluation tool development.

97

7. Implementation

7.3.1. Installation

The software tool has been exported with a runnable JAR file, which is compatible running
on both Windows and Linux platform. However, the prerequisites and configurations setting
are important to meet in order of running the application system.

First of all, it is necessary to have the Java runtime environment within the operating system
and the application requires Java JDK 7.0 environment. Therefore, we will install Sun Java
JDK 7.0. The software tool has been developed in Java 7 using some new features such as
String based switch case structure and updated Java extension mechanism, etc. So that, the
early version of Java will not work. Moreover, installing a JRE only is not sufficient to run
the application. It is required to have a full-blown of JDK. While installing JDK on windows,
it is better to avoid paths containing blanks, as application may sometimes get confuse to
determine the Java runtime. However, it is investigated that this system is running perfectly
while installing Java in default directory (i.e. "C:/Program Files").

After installing JDK and Java runtime, it is necessary to set the environment variable JAVA_-
HOME, where environment variable is pointed to the JDK installation directory, e.g. "C:/Java
/jdk1.7.0/_06" on windows. Additionally, it is also necessary to set the path value for running
Java applications, such as "C:/Java/jdk1.7.0/_06/bin". After setting up Java environment
variable and path, it is time to test the Java runtime environment. On windows, open a
Console application and execute the command simply "Java -version". It will show the Java
version and runtime environment. Thus confirm Java environment is set up correctly.

The next step is to configure the application system to make ready the application for the
evaluation of SQL statements executions in different Cloud data store services. In order to
perform predictable computations, the application requires various configurations setting.
Figure 7.1 shows a project explorer view for SQL Evaluation tool development, where it
indicates the necessary packages required for the application system and the additional
directories for defining configuration settings. The necessary configurations are described in
the following:

1. Setup database configuration file (i.e. dbconfig.xml) in "/conectionfiles" directory.

2. Setup all required database connectivity libraries (i.e. JDBC drivers) in "/lib" directory.

3. Setup necessary private keys (i.e. awsmohsin.pem) in "/privkey" directory. The private
keys must be with *.pem extension.

4. Setup SQL statement input file (i.e. sqlinput.sql) in "/sqlinputfiles" directory. The SQL
input file must be with *.sql extension.

5. Setup corresponding SQL results file (i.e. expected_results.txt) in "/sqloutputfiles"
directory. The results file must be with *.txt extension.

Now we are ready to run the application and evaluate the adaptation of SQL statement in
order to access Cloud data. The next section will describe the steps of using the application in
detail.

98

7.3. SQL Evaluation Tool Manual

Fi
gu

re
7.

2.
:D

ef
au

lt
ap

pl
ic

at
io

n
w

in
do

w
of

SQ
L

Ev
al

ua
ti

on
to

ol
.

99

7. Implementation

7.3.2. User’s Manual

This section explains how to use the main functions of SQL Evaluation tool. The guide
provides supports in detail, from launching the application to evaluate the adaptation of SQL
statements.

Default Window

After installing detail setup configurations and met the prerequisites, the software tool
launches with the graphical window shown in Figure 7.2. In this main window it has
included various options such as menus, buttons and especially two extensible forms to
perform user interactions.

File Menu

The File Menu contains four submenus including Import Query File, Import Query Results, Import
Private Key and Exit. Figure 7.3 shows the File Menu with all submenus. Short descriptions of
submenus are given in the following:

Figure 7.3.: File Menu.

Import Query File: To perform SQL statement execution in the Cloud data store services, a
set of SQL statements has to be imported in the system. Using Import Query File menu user
may upload a SQL statement file (see Fig. 7.4), which contains a set of SQL statements. While
uploading a SQL statement input file, it is important to consider that the file must be with
*.sql extension.

100

7.3. SQL Evaluation Tool Manual

Figure 7.4.: Import SQL statements for executing in different data store services.

Figure 7.5.: Import corresponding SQL statement results for comparison with actual execu-
tion results.

101

7. Implementation

Import Query Results: In order to compare the SQL statements executions results, it is
necessary to import a set of corresponding SQL results based on selected SQL statements
input in the system. Using Import Query Results menu user will upload the corresponding
SQL results (see Fig. 7.5). However, the SQL results file must have *.txt extension.

Figure 7.6.: Import private key file for establishing SSH tunneling session.

Import Private Key: As some of the Cloud infrastructures requires public key authentication,
the user has to select an appropriate private key file (see Fig. 7.6) for establishing a secure
channel in order to access remote instances. Import Private Key menu allows user to upload
the private key file in the system. Moreover, it is important to have the private key with *.pem
extension.

Exit: Exit menu let the user close the application.

Add Provider

Add Provider button offers the possibility adding one or more data access classes to the
extension mechanism from any directory in order to enhance the data access functionalities
within the system. The data access classes files must be in *.Java extension. Clicking on Add
Provider button, a Java file chooser window appears (see Fig. 7.7), where user may chose one
or more data access classes. While adding data access classes to the system, the data service
providers name will be attached to the Cloud providers list with individual checkboxes for
every chosen data service providers. Additionally, during adding data access classes to the
system, it checks the data store service connection status for every service providers. The

102

7.3. SQL Evaluation Tool Manual

status reports are given in data connection status text area. Furthermore, a process bar has
set in above of connection status, which ensures the status checking processes, while adding
several data access classes.

Figure 7.7.: Adding data access classes to the extension mechanism for enhancing data
access functionalities within application system.

Remove Provider

Remove provider button permits user to remove the added data access classes from the
extension mechanism. In order to remove a data service provider from the system, the user
has to check the checkbox belongs to the data service provider name in Cloud providers list.
Then by clicking on Remove button the data service provider is removed from the Cloud
providers list as well as the extension mechanism.

Start Evaluation

After adding data access classes in the extension mechanism, it is time to select the checkboxes
based on success database connection status performing SQL statements execution. While
selecting data service providers in the Cloud providers list, it must be considered that the
failed connections cannot enable accessing Cloud data.

After selecting data service providers in Cloud providers list, the Start Eval button has to be
used for starting SQL statement execution. While clicking on Start Eval button, the system

103

7. Implementation

asks user confirmation (see Fig. 7.8) for starting execution and then user has to confirm by
clicking Yes. Upon confirming the execution, the system starts performing SQL statement
execution. Moreover, ensuring the SQL statements execution process, a process bar appears
for every selected data service providers behind their name. The process bar shows the
execution progress calculating percentage values. However, while finishing the execution the
process bar disappears. This has to be done for every individual process executions.

Figure 7.8.: SQL execution starting confirmation dialogue.

SQL Evaluation Results

While starting SQL statement executions on different Cloud data store services, the individual
results table has to be created based on selected data services providers. The results table
shows the comparison results including expected and actual results (see Fig. 7.9). It also
shows the outcomes (i.e. passed or failed) for every individual SQL statement executions.
Furthermore, when running the SQL execution processes in different Cloud data store services,
all results table are updating in run-time with comparing results.

Close Application

After finishing all processes for SQL statement evaluation, the Close App button may use to
close the application.

104

7.3. SQL Evaluation Tool Manual

Fi
gu

re
7.

9.
:S

Q
L

st
at

em
en

ts
ev

al
ua

ti
on

re
su

lt
s.

105

7. Implementation

106

8. Outcome and Future Work

In this master’s thesis, we have originated concepts and implementation strategies for a Data
Access Layer (DAL) with typical application architecture model in order to enable access
to Cloud data. However, implementing a DAL requires proper adaptations for accessing
different Cloud data store services. The main contribution of this thesis work is to investigate
the adaptations of SQL statements required for accessing various Relational Database Man-
agement Systems RDMS data store services in the Cloud. In order to determine the necessary
adaptations, a JUnit test [Mil05] application has been implemented where JUnit performs a set
of SQL statements execution in selected data store services. The SQL test cases are designed
based on SQL: 2003 standard [Ame03]. Moreover, to find out the required adaptations, SQL
test cases have been examined on different RDMS data store services including MySQL,
Oracle, and PostgreSQL in Amazon EC2, Amazon RDS, and Amazon VPC Cloud. The JUnit
test results of every test scenarios are described in Chapter 4. In Chapter 2, we have presented
relevant fundamentals, such as Cloud computing, Cloud data hosting solutions [SKLU11],
different Cloud services focusing on RDMS, ISO standard SQL taxonomy [Ame03], and a
CRM application (i.e. openCRX) [CRM12]. Furthermore, we have investigated previous
works related to implement a data access layer and multiple Cloud services accesses within
an application. An overview of related works is presented in Chapter 3. Nevertheless, after
investigating the previous works of accessing multiple Cloud services in a single application
system, we have introduces a concept for adapting SQL statements in a data access layer in
Chapter 5.

Commonly, a typical application is built today using three layer architecture model [Eck95],
however introducing a data access layer, now the application will lead a four layer architecture
model consisting of a presentation layer, a business logic layer, a data access layer, and a
database layer. Considering a four layer application, a conceptual application architecture
model has been described in Section 5.1. While comparing with typical application model,
the presentation layer and business logic layer are remaining identical, however the data
layer has subdivided into two layers such as data access layer (DAL) and database layer
(DBL). However, implementing a DAL within application system, the business logic has
to be adapted accordingly, as the data access layer is only considered component, which is
communicating to the data store services.

The fundamental concept of implementing a data access layer is that while typical database
server is not able to manage a high amount of data and computations, an application may
move the data layer to Cloud data store services for taking the advantages of Cloud computing.
Additionally, in this work we have been paying attention to accessing different data store
services with an application, as individual Cloud services have been established with unique
philosophy and computations goal. Therefore, the application may take advantages of

107

8. Outcome and Future Work

accessing different data store services for different computation purposes. This master’s
thesis has conceived developing a Java based application called SQL Evaluation tool, which
realizes the logic to adapt SQL statements in a prototypical implementation of a SQL testing
tool for discovering the adaptations found in Chapter 4. An use-case analysis has brought
out the evaluation concept for SQL statement adaptations. Furthermore, we have conceived
implementing an extension mechanism in the application system in order to ensure the
extension of data access functionality in runtime. Together, these concepts targeted a new
generation of application system.

These concepts have lead to a system design in Chapter 6 that describes a complete software
system, a Java application tool for evaluating SQL statements adaptations, where application
accessing different Cloud data store services. Additionally, an extension mechanism [Som]
has been designed for enhancing the data access functionality to the system. In extension
mechanism the application usually load the different data access classes depending on differ-
ent data and computations needed. In addition, the application system has designed based
on component-based applications [Aß03], which follows a MVC design pattern. However,
the data access layer has designed with a number of individual independent data access
classes for every different data service providers. So that, the application can access several
data store services simultaneously in runtime and thus ensures data isolation of accessing het-
erogeneous Cloud. To confirm this facility the application has designed with multi-threading
method execution by using Java SwingWorker [Orab] wrapper implementation. Moreover,
the application has taken care of accessing both public and private Cloud data. As some of
the Cloud computing infrastructures (i.e. Amazon EC2) have to be accessed through user
key based authentication, this system has also taken care of implementing SSH tunneling
with port forwarding using a Java library called JSch (Java Secure Channel) [JCr]. The detail
implementation of SSH tunneling session is described in Section 7.1.5.

8.1. Future Works

Currently, this system does not consider supporting for non-relational data store services,
as this master’s thesis focused on only relational database systems and we investigated the
adaptations of SQL statements required for several RDMS data store services. However,
the system has designed to handle the data access functionalities for as many as the data
store services needed to access by the application system. The concept is that whenever an
application wants to access a new data store service, the application will add a new data
access class with necessary SQL statement adaptations in the data access layer and load it to
the system extension mechanism and then the system will automatically enable data access
to the target Cloud data store service. In addition, we have investigated a NoSQL database
system called Amazon SimpleDB [SDB], which performs faster computations comparing
with a traditional one and provide solutions on strict requirements of a relational database
system. Therefore, in future, this system can be extended for non-relational database support
as well. For example, NoSQL based data store services such as Amazon SimpleDB, Amazon
DynamoDB, etc.

108

8.1. Future Works

While implementing data access layer for both relational and non-relational data services
supports, one has to implement a prototypical reference of the adapters (Apache ServiceMix
[ASM] middleware, an open source ESB) which would extend the data access layer in or-
der to enable access to the database layer hosted in the Cloud using storage and database
services of established Cloud providers. The ESB is one of the achievable building blocks
of a Platform-as-a-Service (PaaS), where ESB provides integration capabilities for Service-
Oriented Architectures (SOA). However, ensuring this possibility, the ESB requires adaptation
to enable access Cloud data store services. The concept is that the required adaptations will
be stored in service engine inside the ESB and with the knowledge of stored adaptations, the
ESB will route each appropriate message (i.e. SQL statement) to the target data store service,
while application request to execute a query.

Moreover, at present this system does not ensure the performance of accessing Cloud data
store services. But we have realized that accessing multiple Cloud data simultaneously it takes
more time, while comparing with traditional database accesses. Therefore, the performance
should be kept in mind when extending an ESB Apache ServiceMix to be used as DAL.

109

8. Outcome and Future Work

110

Appendix A.

Results of SQL Statements Investigation

This chapter illustrates the experimental results of SQL statements testing, which is performed
by using JUnit test. The detail procedure of test setup and overview scenario of SQL statement
testing for every selected data store services (See Table 4.1) are described in Chapter 4. When
a test case is failed, the results describes why it failed and how to adapt the statement to
enable access Cloud data store services. Furthermore, a possible solution is proposed in case
a test case is failed.

A.1. JUnit Test Results for Default Database

This section describes the experimental results of JUnit test for SQL statement testing on
default database. The detailed tentative procedure is described in Section 4.3.1.

Table A.1.: JUnit test for default SQL statement testing on local machine.
No. Expected Result Actual Result Outcomes

01 componentConfig/CRX/Root/WorkflowController
3 2 2 2008-06-24 18:06:38.0 1 null
1 WorkflowController 2 admin-
s/CRX/Root 2008-06-24 18:06:38.0
org:opencrx:kernel:admin1:ComponentConfiguration

componentConfig/CRX/Root/WorkflowController
3 2 2 2008-06-24 18:06:38.0 1 null
1 WorkflowController 2 admin-
s/CRX/Root 2008-06-24 18:06:38.0
org:opencrx:kernel:admin1:ComponentConfiguration

Passed

02 account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/admin-Standard 3
account/CRX/Standard/admin-Standard Pri-
vate 3
account/CRX/Standard/guest Private 3
account/CRX/Standard/NI7XwEIBEd29BeM
f4vj8cA 3

account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/admin-Standard 3
account/CRX/Standard/admin-Standard Pri-
vate 3
account/CRX/Standard/guest Private 3
account/CRX/Standard/NI7XwEIBEd29BeM
f4vj8cA 3

Passed

03 account/CRX/Standard/admin-Standard 3 account/CRX/Standard/admin-Standard 3 Passed
Continued on next page

111

Appendix A. Results of SQL Statements Investigation

Table A.1: JUnit test for default SQL statement testing on local machine – (continued from previous page)

No. Expected Result Actual Result Outcomes

04 activityTracker/CRX/Mohsin/9LPADUT9ZN
UN52C3LAQ7XUCUX Bugs + Features
activityTracker/CRX/Mohsin/9LPADUV90R
WM92C3LAQ7XUCUX E-Mails
activityTracker/CRX/Mohsin/9LPADUX81V
YLD2C3LAQ7XUCUX Tasks
activityTracker/CRX/Mohsin/9LPADUZ730
0KH2C3LAQ7XUCUX Polls
activityTracker/CRX/Mohsin/9LPADV1644
2JL2C3LAQ7XUCUX Meeting Rooms
activityTracker/CRX/Mohsin/9LPADV3558
4IP2C3LAQ7XUCUX Meetings
activityTracker/CRX/Mohsin/9LPADV546C
6HT2C3LAQ7XUCUX Phone Calls
activityTracker/CRX/Mohsin/9LPADV737G
8GX2C3LAQ7XUCUX Public

activityTracker/CRX/Mohsin/9LPADUT9ZN
UN52C3LAQ7XUCUX Bugs + Features
activityTracker/CRX/Mohsin/9LPADUV90R
WM92C3LAQ7XUCUX E-Mails
activityTracker/CRX/Mohsin/9LPADUX81V
YLD2C3LAQ7XUCUX Tasks
activityTracker/CRX/Mohsin/9LPADUZ730
0KH2C3LAQ7XUCUX Polls
activityTracker/CRX/Mohsin/9LPADV1644
2JL2C3LAQ7XUCUX Meeting Rooms
activityTracker/CRX/Mohsin/9LPADV3558
4IP2C3LAQ7XUCUX Meetings
activityTracker/CRX/Mohsin/9LPADV546C
6HT2C3LAQ7XUCUX Phone Calls
activityTracker/CRX/Mohsin/9LPADV737G
8GX2C3LAQ7XUCUX Public

Passed

05 calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX Default Business Calendar
calendar/CRX/Standard/DefaultBusine ss-
Calendar Default Working Calendar
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA Default Business Calendar

calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX Default Business Calendar
calendar/CRX/Standard/DefaultBusine ss-
Calendar Default Working Calendar
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA Default Business Calendar

Passed

06 calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX 3.0000
calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX 3.0000
calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

Passed

07 calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

Passed

08 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators

Passed

09 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

10 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

Continued on next page

112

A.1. JUnit Test Results for Default Database

Table A.1: JUnit test for default SQL statement testing on local machine – (continued from previous page)

No. Expected Result Actual Result Outcomes

11 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

Passed

12 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

13 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

Passed

14 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

15 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

16 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

17 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

18 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

19 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

20 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

Continued on next page

113

Appendix A. Results of SQL Statements Investigation

Table A.1: JUnit test for default SQL statement testing on local machine – (continued from previous page)

No. Expected Result Actual Result Outcomes

21 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

22 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

23 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

24 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

25 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

26 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

27 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

28 3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard Private
3 admin-Standard Private
3 guest Private
3 guest Private
3 Guest,
3 Guest,
3 Guest,

3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard Private
3 admin-Standard Private
3 guest Private
3 guest Private
3 Guest,
3 Guest,
3 Guest,

Passed

29 3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 Guest,
3 guest Private

3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 Guest,
3 guest Private

Passed

30 3 admin-Mohsin,
3 admin-Standard,
3 Guest,

3 admin-Mohsin,
3 admin-Standard,
3 Guest,

Passed

31 3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 Guest,

3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 Guest,

Passed

32 Svendson Tove 22456
Pettersen Kari 22456
Svendson Tove 24562
Pettersen Kari 24562

Svendson Tove 22456
Pettersen Kari 22456
Svendson Tove 24562
Pettersen Kari 24562

Passed

Continued on next page

114

A.2. JUnit Test Results for Oracle in Amazon EC2

Table A.1: JUnit test for default SQL statement testing on local machine – (continued from previous page)

No. Expected Result Actual Result Outcomes

33 Unknown column ’Persons.LastName’ in
’field list’

Adaptation:
SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons LEFT JOIN Orders ON Persons.P_-
Id=Orders.P_Id
UNION
SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons RIGHT JOIN Orders ON Persons.P_-
Id=Orders.P_Id

Query Result:
Hansen Ola 22456
Hansen Ola 24562
Svendson Tove null
Pettersen Kari 77895
Pettersen Kari 44678
null null 34764

Unknown column ’Persons.LastName’ in
’field list’

Adaptation:
SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons LEFT JOIN Orders ON Persons.P_-
Id=Orders.P_Id
UNION
SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons RIGHT JOIN Orders ON Persons.P_-
Id=Orders.P_Id

Query Result:
Hansen Ola 22456
Hansen Ola 24562
Svendson Tove null
Pettersen Kari 77895
Pettersen Kari 44678
null null 34764

Failed

A.2. JUnit Test Results for Oracle in Amazon EC2

This section describes the experimental results of JUnit test for SQL statement testing on
Oracle data store service in Amazon EC2. The detailed tentative procedure is described in
Section 4.3.3.

Table A.2.: JUnit test for Oracle statement testing on Amazon EC2.
No. Expected Result Actual Result Outcomes

01 componentConfig/CRX/Root/WorkflowController
3 2 2 2008-06-24 18:06:38.0 1 null
1 WorkflowController 2 admin-
s/CRX/Root 2008-06-24 18:06:38.0
org:opencrx:kernel:admin1:ComponentConfiguration

componentConfig/CRX/Root/WorkflowController
3 2 2 2008-06-24 18:06:38 1 null
1 WorkflowController 2 admin-
s/CRX/Root 2008-06-24 18:06:38
org:opencrx:kernel:admin1:ComponentConfiguration

Failed

02 account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/admin-Standard 3
account/CRX/Standard/admin-Standard Pri-
vate 3
account/CRX/Standard/guest Private 3
account/CRX/Standard/NI7XwEIBEd29BeM
f4vj8cA 3

account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/admin-Standard 3
account/CRX/Standard/admin-Standard Pri-
vate 3
account/CRX/Standard/guest Private 3
account/CRX/Standard/NI7XwEIBEd29BeM
f4vj8cA 3

Passed

03 account/CRX/Standard/admin-Standard 3 account/CRX/Standard/admin-Standard 3 Passed
Continued on next page

115

Appendix A. Results of SQL Statements Investigation

Table A.2: JUnit test for Oracle statement testing on Amazon EC2 – (continued from previous page)

No. Expected Result Actual Result Outcomes

04 activityTracker/CRX/Mohsin/9LPADUT9ZN
UN52C3LAQ7XUCUX Bugs + Features
activityTracker/CRX/Mohsin/9LPADUV90R
WM92C3LAQ7XUCUX E-Mails
activityTracker/CRX/Mohsin/9LPADUX81V
YLD2C3LAQ7XUCUX Tasks
activityTracker/CRX/Mohsin/9LPADUZ730
0KH2C3LAQ7XUCUX Polls
activityTracker/CRX/Mohsin/9LPADV1644
2JL2C3LAQ7XUCUX Meeting Rooms
activityTracker/CRX/Mohsin/9LPADV3558
4IP2C3LAQ7XUCUX Meetings
activityTracker/CRX/Mohsin/9LPADV546C
6HT2C3LAQ7XUCUX Phone Calls
activityTracker/CRX/Mohsin/9LPADV737G
8GX2C3LAQ7XUCUX Public

activityTracker/CRX/Mohsin/9LPADUT9ZN
UN52C3LAQ7XUCUX Bugs + Features
activityTracker/CRX/Mohsin/9LPADUV90R
WM92C3LAQ7XUCUX E-Mails
activityTracker/CRX/Mohsin/9LPADUX81V
YLD2C3LAQ7XUCUX Tasks
activityTracker/CRX/Mohsin/9LPADUZ730
0KH2C3LAQ7XUCUX Polls
activityTracker/CRX/Mohsin/9LPADV1644
2JL2C3LAQ7XUCUX Meeting Rooms
activityTracker/CRX/Mohsin/9LPADV3558
4IP2C3LAQ7XUCUX Meetings
activityTracker/CRX/Mohsin/9LPADV546C
6HT2C3LAQ7XUCUX Phone Calls
activityTracker/CRX/Mohsin/9LPADV737G
8GX2C3LAQ7XUCUX Public

Passed

05 calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX Default Business Calendar
calendar/CRX/Standard/DefaultBusine ss-
Calendar Default Working Calendar
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA Default Business Calendar

calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX Default Business Calendar
calendar/CRX/Standard/DefaultBusine ss-
Calendar Default Working Calendar
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA Default Business Calendar

Passed

06 calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX 3.0000
calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX 3
calendar/CRX/Standard/DefaultBusine ss-
Calendar 6
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6

Failed

07 calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

Error: ORA-00979: not a GROUP BY expres-
sion
Adaptation:
SELECT object_id, AVG (access_level_browse
* access_level_delete) AS access_level_browse
FROM oocke1_calendar GROUP BY object_id
HAVING AVG (access_level_browse * ac-
cess_level_delete) > 4

calendar/CRX/Standard/DefaultBusine
ssCalendar 6
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6

Failed

08 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators

Passed

09 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

Continued on next page

116

A.2. JUnit Test Results for Oracle in Amazon EC2

Table A.2: JUnit test for Oracle statement testing on Amazon EC2 – (continued from previous page)

No. Expected Result Actual Result Outcomes

10 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

11 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

Passed

12 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

13 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

Passed

14 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

Continued on next page

117

Appendix A. Results of SQL Statements Investigation

Table A.2: JUnit test for Oracle statement testing on Amazon EC2 – (continued from previous page)

No. Expected Result Actual Result Outcomes

15 Your SQL query has been executed success-
fully

Error: ORA-00922: missing or invalid option
Adaptation:
CREATE OR REPLACE VIEW oocke1_join_-
accthasassaddr (assigned_address,account_)
AS SELECT addr.object_id AS assigned_-
address,addr.authority AS account_ FROM
oocke1_address addr
=> Your SQL query has been executed
successfully

Failed

16 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

17 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

18 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

19 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

20 Your SQL query has been executed success-
fully

Error: ORA-00907: missing right parenthesis
Adaptation:
CREATE TABLE test_table1 (id NUMBER(10,
0) NOT NULL, name VARCHAR2(250) NOT
NULL, age NUMBER(10, 0), marks NUM-
BER(19, 0), PRIMARY KEY (id))
=> Your SQL query has been executed success-
fully

Failed

21 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

22 Your SQL query has been executed success-
fully

Error: ORA-00904: : invalid identifier
Adaptation:
ALTER TABLE test_table1 ADD birthday date
=> Your SQL query has been executed success-
fully

Failed

23 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

24 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

25 Your SQL query has been executed success-
fully

Error: ORA-00933: SQL command not prop-
erly ended
Adaptation:
DROP INDEX idx
=> Your SQL query has been executed success-
fully

Failed

26 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

27 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

Continued on next page

118

A.2. JUnit Test Results for Oracle in Amazon EC2

Table A.2: JUnit test for Oracle statement testing on Amazon EC2 – (continued from previous page)

No. Expected Result Actual Result Outcomes

28 3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard Private
3 admin-Standard Private
3 guest Private
3 guest Private
3 Guest,
3 Guest,
3 Guest,

3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard Private
3 admin-Standard Private
3 guest Private
3 guest Private
3 Guest,
3 Guest,
3 Guest,

Passed

29 3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 Guest,
3 guest Private

3 Guest,
3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 guest Private

Failed

30 3 admin-Mohsin,
3 admin-Standard,
3 Guest,

3 admin-Mohsin,
3 admin-Standard,
3 Guest,

Passed

31 3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 Guest,

3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 Guest,

Passed

32 Svendson Tove 22456
Pettersen Kari 22456
Svendson Tove 24562
Pettersen Kari 24562

Svendson Tove 22456
Pettersen Kari 22456
Svendson Tove 24562
Pettersen Kari 24562

Passed

33 Unknown column ’Persons.LastName’ in
’field list’

Adaptation:
SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons LEFT JOIN Orders ON Persons.P_-
Id=Orders.P_Id
UNION
SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons RIGHT JOIN Orders ON Persons.P_-
Id=Orders.P_Id

Query Result:
Hansen Ola 22456
Hansen Ola 24562
Svendson Tove null
Pettersen Kari 77895
Pettersen Kari 44678
null null 34764

Hansen Ola 22456
Hansen Ola 24562
Pettersen Kari 44678
Pettersen Kari 77895
Svendson Tove null
null null 34764

Failed

119

Appendix A. Results of SQL Statements Investigation

A.3. JUnit Test Results for PostgreSQL in Amazon EC2

This section describes the experimental results of JUnit test for SQL statement testing on
PostgreSQL data store service in Amazon EC2. The detailed tentative procedure is described
in Section 4.3.4.

Table A.3.: JUnit test for PostgreSQL statement testing on Amazon EC2.
No. Expected Result Actual Result Outcomes

01 componentConfig/CRX/Root/WorkflowController
3 2 2 2008-06-24 18:06:38.0 1 null
1 WorkflowController 2 admin-
s/CRX/Root 2008-06-24 18:06:38.0
org:opencrx:kernel:admin1:ComponentConfiguration

componentConfig/CRX/Root/WorkflowController
3 2 2 2008-06-24 18:06:38 1 null
1 WorkflowController 2 admin-
s/CRX/Root 2008-06-24 18:06:38
org:opencrx:kernel:admin1:ComponentConfiguration

Failed

02 account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/admin-Standard 3
account/CRX/Standard/admin-Standard Pri-
vate 3
account/CRX/Standard/guest Private 3
account/CRX/Standard/NI7XwEIBEd29BeM
f4vj8cA 3

account/CRX/Standard/admin-Standard Pri-
vate 3
account/CRX/Standard/guest Private 3
account/CRX/Standard/NI7XwEIBEd29BeMf4vj8cA
3
account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/admin-Standard 3

Failed

03 account/CRX/Standard/admin-Standard 3 account/CRX/Standard/admin-Standard 3 Passed
04 activityTracker/CRX/Mohsin/9LPADUT9ZN

UN52C3LAQ7XUCUX Bugs + Features
activityTracker/CRX/Mohsin/9LPADUV90R
WM92C3LAQ7XUCUX E-Mails
activityTracker/CRX/Mohsin/9LPADUX81V
YLD2C3LAQ7XUCUX Tasks
activityTracker/CRX/Mohsin/9LPADUZ730
0KH2C3LAQ7XUCUX Polls
activityTracker/CRX/Mohsin/9LPADV1644
2JL2C3LAQ7XUCUX Meeting Rooms
activityTracker/CRX/Mohsin/9LPADV3558
4IP2C3LAQ7XUCUX Meetings
activityTracker/CRX/Mohsin/9LPADV546C
6HT2C3LAQ7XUCUX Phone Calls
activityTracker/CRX/Mohsin/9LPADV737G
8GX2C3LAQ7XUCUX Public

activityTracker/CRX/Mohsin/9LPADUT9ZN
UN52C3LAQ7XUCUX Bugs + Features
activityTracker/CRX/Mohsin/9LPADUV90R
WM92C3LAQ7XUCUX E-Mails
activityTracker/CRX/Mohsin/9LPADUX81V
YLD2C3LAQ7XUCUX Tasks
activityTracker/CRX/Mohsin/9LPADUZ730
0KH2C3LAQ7XUCUX Polls
activityTracker/CRX/Mohsin/9LPADV1644
2JL2C3LAQ7XUCUX Meeting Rooms
activityTracker/CRX/Mohsin/9LPADV3558
4IP2C3LAQ7XUCUX Meetings
activityTracker/CRX/Mohsin/9LPADV546C
6HT2C3LAQ7XUCUX Phone Calls
activityTracker/CRX/Mohsin/9LPADV737G
8GX2C3LAQ7XUCUX Public

Passed

05 calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX Default Business Calendar
calendar/CRX/Standard/DefaultBusine ss-
Calendar Default Working Calendar
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA Default Business Calendar

calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX Default Business Calendar
calendar/CRX/Standard/DefaultBusine ss-
Calendar Default Working Calendar
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA Default Business Calendar

Passed

06 calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX 3.0000
calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX 3.0000000000000000
calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000000000000000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000000000000000

Failed

Continued on next page

120

A.3. JUnit Test Results for PostgreSQL in Amazon EC2

Table A.3: JUnit test for PostgreSQL statement testing on Amazon EC2 – (continued from previous page)

No. Expected Result Actual Result Outcomes

07 calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

ERROR: column "oocke1_calendar.access_-
level_browse" must appear in the GROUP BY
clause or be used in an aggregate function
Adaptation:
SELECT object_id, AVG (access_level_browse
* access_level_delete) AS access_level_browse
FROM oocke1_calendar GROUP BY object_id
HAVING AVG (access_level_browse * ac-
cess_level_delete) > 4
Query Result:
calendar/CRX/Standard/DefaultBusinessCalendar
6.0000000000000000
calendar/CRX/Standard/e5uf4EIBEd29BeMf4vj8cA
6.0000000000000000

Failed

08 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators

Passed

09 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

10 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

11 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

Passed

Continued on next page

121

Appendix A. Results of SQL Statements Investigation

Table A.3: JUnit test for PostgreSQL statement testing on Amazon EC2 – (continued from previous page)

No. Expected Result Actual Result Outcomes

12 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Passed

13 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

Passed

14 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

15 Your SQL query has been executed success-
fully

Error: ERROR: syntax error at or near "("
Assuming an equivalent adaptation:
CREATE OR REPLACE VIEW oocke1_join_-
accthasassaddr (assigned_address,account_)
AS SELECT addr.object_id AS assigned_ad-
dress, addr.authority AS account_ FROM
oocke1_address addr

Error: ERROR: cannot change name of
view column "account" to "account_"
Adaptation:
CREATE OR REPLACE VIEW oocke1_join_-
accthasassaddr (assigned_address,account)
AS SELECT addr.object_id AS assigned_-
address, addr.authority AS account FROM
oocke1_address addr
=> Your SQL query has been executed
successfully

Failed

16 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

17 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

18 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

19 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

Continued on next page

122

A.3. JUnit Test Results for PostgreSQL in Amazon EC2

Table A.3: JUnit test for PostgreSQL statement testing on Amazon EC2 – (continued from previous page)

No. Expected Result Actual Result Outcomes

20 Your SQL query has been executed success-
fully

Error: ERROR: syntax error at or near "UN-
SIGNED"
Adaptation:
CREATE TABLE public.test_table1 (id serial
NOT NULL, name varchar(250) NOT NULL,
age bigint, marks bigint, PRIMARY KEY (id))
=> Your SQL query has been executed success-
fully

Failed

21 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

22 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

23 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

24 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

25 Your SQL query has been executed success-
fully

Error: ERROR: syntax error at or near "ON"
Adaptation:
DROP INDEX idx
Your SQL query has been executed success-
fully

Failed

26 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

27 Your SQL query has been executed success-
fully

Your SQL query has been executed success-
fully

Passed

28 3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard Private
3 admin-Standard Private
3 guest Private
3 guest Private
3 Guest,
3 Guest,
3 Guest,

3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 Guest,
3 Guest,
3 admin-Standard Private
3 guest Private
3 admin-Mohsin,
3 Guest,

Failed

29 3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 Guest,
3 guest Private

3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 Guest,
3 guest Private

Passed

30 3 admin-Mohsin,
3 admin-Standard,
3 Guest,

3 admin-Mohsin,
3 admin-Standard,
3 Guest,

Passed

31 3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 Guest,

3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 admin-Mohsin,
3 Guest,

Failed

32 Svendson Tove 22456
Pettersen Kari 22456
Svendson Tove 24562
Pettersen Kari 24562

Svendson Tove 22456
Svendson Tove 24562
Pettersen Kari 22456
Pettersen Kari 24562

Failed

Continued on next page

123

Appendix A. Results of SQL Statements Investigation

Table A.3: JUnit test for PostgreSQL statement testing on Amazon EC2 – (continued from previous page)

No. Expected Result Actual Result Outcomes

33 Unknown column ’Persons.LastName’ in
’field list’

Adaptation:
(SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons LEFT JOIN Orders ON Persons.P_-
Id=Orders.P_Id)
UNION
(SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons RIGHT JOIN Orders ON Persons.P_-
Id=Orders.P_Id)

Query Result:
Hansen Ola 22456
Hansen Ola 24562
Svendson Tove null
Pettersen Kari 77895
Pettersen Kari 44678
null null 34764

Hansen Ola 22456
Hansen Ola 24562
Pettersen Kari 77895
Pettersen Kari 44678
Svendson Tove Null
null null 34764

Failed

A.4. JUnit Test Results for Amazon SimpleDB

This section describes the experimental results of JUnit test for SQL statement testing on
Amazon SimpleDB data store service. The detailed tentative procedure is described in Section
4.3.8.

Table A.4.: JUnit test for SQL statement testing on Amazon SimpleDB.
No. Expected Result Actual Result Outcomes

01 componentConfig/CRX/Root/WorkflowController
3 2 2 2008-06-24 18:06:38.0 1 null
1 WorkflowController 2 admin-
s/CRX/Root 2008-06-24 18:06:38.0
org:opencrx:kernel:admin1:ComponentConfiguration

componentConfig/CRX/Root/WorkflowController
2 2008-06-24 18:06:38.0 2 Workflow-
Controller 2008-06-24 18:06:38.0 2
org:opencrx:kernel:admin1:ComponentConfiguration
3 admins/CRX/Root 1 1

Failed

Continued on next page

124

A.4. JUnit Test Results for Amazon SimpleDB

Table A.4: JUnit test for SQL statement testing on Amazon SimpleDB – (continued from previous page)

No. Expected Result Actual Result Outcomes

02 account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/admin-Standard 3
account/CRX/Standard/admin-Standard Pri-
vate 3
account/CRX/Standard/guest Private 3
account/CRX/Standard/NI7XwEIBEd29BeM
f4vj8cA 3

Return the same results as we achieve after
adaptations. However, uploading data ta-
ble on SimpleDB, the column OBJECT_ID
becomes itemName(), a key for the entire
row. The itemName() column is automatically
selected while executing the query.
Adaptation:
SELECT ACCESS_LEVEL_BROWSE FROM
oocke1_account
account/CRX/Mohsin/admin-Mohsin 3
account/CRX/Standard/NI7XwEIBEd29BeM
f4vj8cA 3
account/CRX/Standard/admin-Standard 3
account/CRX/Standard/admin-Standard Pri-
vate 3
account/CRX/Standard/guest Private 3

Failed

03 account/CRX/Standard/admin-Standard 3 Adaptation:
SELECT ACCESS_LEVEL_BROWSE
FROM oocke1_account WHERE
itemName()=’account/CRX/Standard/admin-
Standard’
Result:
account/CRX/Standard/admin-Standard 3

Failed

04 activityTracker/CRX/Mohsin/9LPADUT9Z
NUN52C3LAQ7XUCUX Bugs + Features
activityTracker/CRX/Mohsin/9LPADUV90
RWM92C3LAQ7XUCUX E-Mails
activityTracker/CRX/Mohsin/9LPADUX81
VYLD2C3LAQ7XUCUX Tasks
activityTracker/CRX/Mohsin/9LPADUZ73
00KH2C3LAQ7XUCUX Polls
activityTracker/CRX/Mohsin/9LPADV164
42JL2C3LAQ7XUCUX Meeting Rooms
activityTracker/CRX/Mohsin/9LPADV355
84IP2C3LAQ7XUCUX Meetings
activityTracker/CRX/Mohsin/9LPADV546
C6HT2C3LAQ7XUCUX Phone Calls
activityTracker/CRX/Mohsin/9LPADV737
G8GX2C3LAQ7XUCUX Public

Client error : The specified query expression
syntax is not valid.
Invalid because neither itemName() nor
NAME is constrained by a predicate in the
where clause.
SELECT NAME FROM
oocke1_activitygroup WHERE
P$$PARENT=’activities/CRX/Mohsin’ OR-
DER BY NAME DESC
Client error : Invalid sort expression. The sort
attribute must be present in at least one of the
predicates, and the predicate cannot contain
the is null operator.
SELECT NAME FROM
oocke1_activitygroup WHERE
P$$PARENT=’activities/CRX/Mohsin’ OR-
DER BY P$$PARENT DESC
Result:
activityTracker/CRX/Mohsin/9LPADV737
G8GX2C3LAQ7XUCUX Public
activityTracker/CRX/Mohsin/9LPADV546
C6HT2C3LAQ7XUCUX Phone Calls
activityTracker/CRX/Mohsin/9LPADV355
84IP2C3LAQ7XUCUX Meetings
activityTracker/CRX/Mohsin/9LPADV164
42JL2C3LAQ7XUCUX Meeting Rooms
activityTracker/CRX/Mohsin/9LPADUZ73
00KH2C3LAQ7XUCUX Polls
activityTracker/CRX/Mohsin/9LPADUX81
VYLD2C3LAQ7XUCUX Tasks
activityTracker/CRX/Mohsin/9LPADUV90
RWM92C3LAQ7XUCUX E-Mails
activityTracker/CRX/Mohsin/9LPADUT9Z
NUN52C3LAQ7XUCUX Bugs + Features

Failed

Continued on next page

125

Appendix A. Results of SQL Statements Investigation

Table A.4: JUnit test for SQL statement testing on Amazon SimpleDB – (continued from previous page)

No. Expected Result Actual Result Outcomes

05 calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX Default Business Calendar
calendar/CRX/Standard/DefaultBusine ss-
Calendar Default Working Calendar
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA Default Business Calendar

Client error : The specified query expression
syntax is not valid.
DISTINCT feature is already covered in this
scope, as the itemName() keys are unique

Failed

06 calendar/CRX/Mohsin/9LPADU3ML74YP2C
3LAQ7XUCUX 3.0000
calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented in this scope.

Failed

07 calendar/CRX/Standard/DefaultBusine ss-
Calendar 6.0000
calendar/CRX/Standard/e5uf4EIBEd29B
eMf4vj8cA 6.0000

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented in this scope.

Failed

08 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators

Client error : The specified query expression
syntax is not valid.
Adaptation:
SELECT OWNER FROM oocke1_activitypro-
cess_ WHERE IDX BETWEEN ’0’ AND ’1’
The default table has to be adapted because
the column OBJECT_ID contain same id more
than once. But SimpleDB can only allow
unique key.
Result:
activityProcess/CRX/Mohsin/9LPADSS
9UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJ
WA2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Standard/BugAn
dFeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DY
EIBEd29BeMf4vj8cA Standard:admin-
Standard.User
activityProcess/CRX/Mohsin/9LPADSS
9UHTK12C3LAQ7XUCUX1 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJ
WA2L7L2C3LAQ7XUCUX1 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Standard/BugAn
dFeatureRequestProcess1 Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DY
EIBEd29BeMf4vj8cA1 Standard:admin-
Standard.User

Failed

Continued on next page

126

A.4. JUnit Test Results for Amazon SimpleDB

Table A.4: JUnit test for SQL statement testing on Amazon SimpleDB – (continued from previous page)

No. Expected Result Actual Result Outcomes

09 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Client error : The specified query expression
syntax is not valid.
Adaptation:
SELECT OWNER FROM oocke1_activitypro-
cess_ WHERE IDX IN(’0’, ’2’)
The default table has to be adapted because
the column OBJECT_ID contain same id more
than once. But SimpleDB can only allow
unique key.
Result:
activityProcess/CRX/Mohsin/9LPADSS
9UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJ
WA2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Standard/BugAn
dFeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DY
EIBEd29BeMf4vj8cA Standard:admin-
Standard.User
activityProcess/CRX/Mohsin/9LPADSS
9UHTK12C3LAQ7XUCUX1 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJ
WA2L7L2C3LAQ7XUCUX1 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Standard/BugAn
dFeatureRequestProcess1 Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DY
EIBEd29BeMf4vj8cA1 Standard:admin-
Standard.User

Failed

10 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Client error : The specified query expression
syntax is not valid.
Adaptation:
SELECT OWNER FROM oocke1_activitypro-
cess_ WHERE ((IDX > ’0’) AND (IDX < ’2’))
The default table has to be adapted because
the column OBJECT_ID contain same id more
than once. But SimpleDB can only allow
unique key.
Result:
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX1 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX1 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess1 Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA1 Standard:admin-
Standard.User

Failed

Continued on next page

127

Appendix A. Results of SQL Statements Investigation

Table A.4: JUnit test for SQL statement testing on Amazon SimpleDB – (continued from previous page)

No. Expected Result Actual Result Outcomes

11 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

Client error : The specified query expression
syntax is not valid.
Adaptation:
SELECT OWNER FROM oocke1_activitypro-
cess_ WHERE ((IDX < ’1’) OR (IDX > ’1’))
The default table has to be adapted because
the column OBJECT_ID contain same id more
than once. But SimpleDB can only allow
unique key.
Result:
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX2 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX2 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess2 Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA2 Standard:admin-
Standard.User

Failed

12 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:Users
activityProcess/CRX/Standard/BugAnd Fea-
tureRequestProcess Standard:Administrators
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:Administrators

Client error : The specified query expression
syntax is not valid.
Adaptation:
SELECT OWNER FROM oocke1_activitypro-
cess_ WHERE (IDX = ’1’)
The default table has to be adapted because
the column OBJECT_ID contain same id more
than once. But SimpleDB can only allow
unique key.
Result:
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX1 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX1 Mohsin:admin-
Mohsin.User
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess1 Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA1 Standard:admin-
Standard.User

Failed

Continued on next page

128

A.4. JUnit Test Results for Amazon SimpleDB

Table A.4: JUnit test for SQL statement testing on Amazon SimpleDB – (continued from previous page)

No. Expected Result Actual Result Outcomes

13 activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADSS9
UHTK12C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX Mohsin:admin-
Mohsin.User
activityProcess/CRX/Mohsin/9LPADTJW
A2L7L2C3LAQ7XUCUX
Mohsin:Administrators
activityProcess/CRX/Standard/BugAnd
FeatureRequestProcess Standard:admin-
Standard.User
activityProcess/CRX/Standard/eW3DYE
IBEd29BeMf4vj8cA Standard:admin-
Standard.User

Client error : The specified query expression
syntax is not valid.
Adaptation:
SELECT OWNER FROM oocke1_activitypro-
cess_ WHERE (IDX <> ’1’)
The query can’t be implemented in this scope.

Failed

14 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
SimpleDB lacks supporting SQL VIEW func-
tionality.

Passed

15 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
SimpleDB lacks supporting SQL VIEW func-
tionality.

Failed

16 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
SimpleDB lacks supporting SQL VIEW func-
tionality.

Failed

17 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
Inserted item (data) in SimpleDB data storage
has to be done using SimpleDB API call.

Failed

18 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
Update item (data) in SimpleDB data storage
has to be done using SimpleDB API call.

Failed

19 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
Update item (data) in SimpleDB data storage
has to be done using SimpleDB API call.

Failed

20 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
Create domain in SimpleDB data storage has
to be done using SimpleDB API call. First we
have to create a domain, and then have to cre-
ate necessary Attributes.

Failed

21 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
Copy a domain value into another similar do-
main has to be done using SimpleDB API call.
First we have to retrieve the item data using
select operation from the domain we want to
copy and then store to a destination domain.

Failed

Continued on next page

129

Appendix A. Results of SQL Statements Investigation

Table A.4: JUnit test for SQL statement testing on Amazon SimpleDB – (continued from previous page)

No. Expected Result Actual Result Outcomes

22 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
Adding an Attribute in a domain has to be
done using SimpleDB API call.

Failed

23 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
Deleting an Attribute from a domain has to be
done using SimpleDB API call.

Failed

24 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented, as SimpleDB
lacks supporting SLQ INDEX feature.

Failed

25 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented, as SimpleDB
lacks supporting SLQ INDEX feature.

Failed

26 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
SQL TRUNCATE effect can be implemented
in application layer using SimpleDB API call.

Failed

27 Your SQL query has been executed success-
fully

Client error : The specified query expression
syntax is not valid.
Delete a domain in SimpleDB data storage has
to be done using SimpleDB API call.

Failed

28 3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard,
3 admin-Standard Private
3 admin-Standard Private
3 guest Private
3 guest Private
3 Guest,
3 Guest,
3 Guest,

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented, as SimpleDB
lacks supporting SLQ JOIN feature.

Failed

29 3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 Guest,
3 guest Private

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented, as SimpleDB
lacks supporting SLQ INNER JOIN feature.

Failed

30 3 admin-Mohsin,
3 admin-Standard,
3 Guest,

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented, as SimpleDB
lacks supporting SLQ LEFT JOIN feature.

Failed

31 3 admin-Mohsin,
3 admin-Standard,
3 admin-Standard Private
3 guest Private
3 Guest,

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented, as SimpleDB
lacks supporting SLQ RIGHT JOIN feature.

Failed

32 Svendson Tove 22456
Pettersen Kari 22456
Svendson Tove 24562
Pettersen Kari 24562

Client error : The specified query expression
syntax is not valid.
This query can’t be implemented in SimpleDB
data storage in this scope.

Failed

Continued on next page

130

A.4. JUnit Test Results for Amazon SimpleDB

Table A.4: JUnit test for SQL statement testing on Amazon SimpleDB – (continued from previous page)

No. Expected Result Actual Result Outcomes

33 Unknown column ’Persons.LastName’ in
’field list’

Adaptation:
SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons LEFT JOIN Orders ON Persons.P_-
Id=Orders.P_Id
UNION
SELECT Persons.LastName, Per-
sons.FirstName, Orders.OrderNo FROM
Persons RIGHT JOIN Orders ON Persons.P_-
Id=Orders.P_Id

Query Result:
Hansen Ola 22456
Hansen Ola 24562
Svendson Tove null
Pettersen Kari 77895
Pettersen Kari 44678
null null 34764

Client error : The specified query expression
syntax is not valid.
The query can’t be implemented, as SimpleDB
lacks supporting SLQ FULL JOIN feature.

Failed

131

Appendix A. Results of SQL Statements Investigation

132

Bibliography

[Aß03] U. Aßmann. Invasive Software Composition. Springer, 2003.

[AAB+11] M. Allalouf, A. Averbuch, L. Bonelli, P. Brand, M. Dao, A. Eckert, M. C. Jaeger,
H. Kolodner, E. Levy, J. M. Lopez, M. Lorenz, A. Manieri, A. R. Messina,
M. Neumann, K. Ramasamybalraj, E. Salant, A. Shulman-Peleg, F. Solsvik, and
X. Su. Data Access Layer: Design and Open Spec. VISION Cloud, 2011. VI-
SION Cloud: Virtualized Storage Services Foundation for the Future Internet,
http://visioncloud.eu/content.php?s=248,389.

[AKM+12] A. Amies, S. Kusturica, M. M. (Max), Q. G. Tong, and Y. S. Wang. Use
the Apache Libcloud Python API to manage resources on IBM SmartCloud
Enterprise, 2012. http://www-03.ibm.com/support/techdocs/atsmastr.nsf/
5cb5ed706d254a8186256c71006d2e0a/5bfbf50420a468df86257a14006248f6/
$FILE/sce_libcloud_june2012.pdf.

[Ama09] Amazon Web Services. Amazon SimpleDB Developer Guide, 2009. API Version,
http://awsdocs.s3.amazonaws.com/SDB/latest/sdb-dg.pdf.

[Ama12] Amazon Web Services. AWS Case Study: Alexa, 2012. Alexa: The Web Im-
formation Company, http://aws.amazon.com/en/solutions/case-studies/
alexa/.

[Ame03] American National Standards Institute, ANSI. Database languages SQL - Part 2:
Foundation(SQL/Foundation). International Organization for Standardization,
ISO, 2003.

[Ana10] S. Anand. Netflix’s Transition to High-Availability Storage Systems, 2010. Net-
flix’s transition to AWS SimpleDB and S3, http://aws.amazon.com/articles/
3662538304152045.

[Apa] Apache Software Foundation. Apache Libcloud: A Unified Interface to the Cloud.
A standard Python library, http://libcloud.apache.org/index.html.

[Apa11] Apache Software Foundation. Deltacloud: Many Cloud. One API. No problems,
2011. Deltacoud API, http://deltacloud.apache.org/index.html.

[ASM] The Apache Software Foundation. Apache ServiceMix. http://servicemix.
apache.org/.

[Bak10] G. Baker. Why CIOs Should Shift from Capex to Opex,
2010. www.cioupdate.com/budgets/article.php/3905476/
Why-CIOs-Should-Shift-from-Capex-to-Opex.htm.

133

http://visioncloud.eu/content.php?s=248,389
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/5bfbf50420a468df86257a14006248f6/$FILE/sce_libcloud_june2012.pdf
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/5bfbf50420a468df86257a14006248f6/$FILE/sce_libcloud_june2012.pdf
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/5bfbf50420a468df86257a14006248f6/$FILE/sce_libcloud_june2012.pdf
http://awsdocs.s3.amazonaws.com/SDB/latest/sdb-dg.pdf
http://aws.amazon.com/en/solutions/case-studies/alexa/
http://aws.amazon.com/en/solutions/case-studies/alexa/
http://aws.amazon.com/articles/3662538304152045
http://aws.amazon.com/articles/3662538304152045
http://libcloud.apache.org/index.html
http://deltacloud.apache.org/index.html
http://servicemix.apache.org/
http://servicemix.apache.org/
www.cioupdate.com/budgets/article.php/3905476/Why-CIOs-Should-Shift-from-Capex-to-Opex.htm
www.cioupdate.com/budgets/article.php/3905476/Why-CIOs-Should-Shift-from-Capex-to-Opex.htm

Bibliography

[Ber10] W. W. Berry. Move Access Data to the Cloud, 2010. Microsoft SQL Server Mi-
gration Assistant for Access, http://social.technet.microsoft.com/wiki/
contents/articles/1575.move-access-data-to-the-cloud.aspx.

[CAP] The Open Group. Building Return on Investment from Cloud Computing: Discus-
sion - Financial Value Perspective of Moving from CAPEX to OPEX and Pay-as-
you-go. http://www.opengroup.org/cloud/whitepapers/ccroi/disc1.htm.

[Che12] J. Chen. Bookkeeping With Libcloud, 2012. A Simple Example of Libcloud,
http://undertitled.com/2012/04/11/bookkeeping-with-libcloud.html.

[CRI12] CRIXP Corp. openCRX Server Installation, 2012. http://www.opencrx.org/
opencrx/2.9/installerServer/installer_openCRX_server.html.

[CRM12] CRIXP Corp. The Professional Enterprise Class Open Source CRM Solution, 2012.
openCRX v 2.9.1, http://www.opencrx.org/.

[Dar05] H. Darwen. More on Relational Algebra versus Claculus, 2005. Database Ebunk-
ings, http://www.dbdebunk.com/page/page/1897740.htm.

[DBC] DB Gurus Pvt. Ltd. A Comparison of the Common Database Sys-
tems. Professional Database Solution, http://www.dbgurus.com.au/Files/A%
20Comparison%20of%20the%20Common%20Database%20Systems.pdf.

[DEF+08] J. Dunkel, A. Eberhart, S. Fischer, C. Kleiner, and A. Koschel. Systemarchitekturen
für Verteilte Anwendungen - Client-Server, Multi-Tier, SOA, Event-Driven Architec-
tures, P2P, Grid, Web 2.0. Hanser Verlag, 2008.

[EBS] Amazon Web Services. Amazon Elastic Block Store (EBS). http://aws.amazon.
com/ebs/.

[EC2] Amazon Web Services. Amazon Elastic Compute Cloud (Amazon EC2). http:
//aws.amazon.com/ec2/.

[Eck95] W. W. Eckerson. Three Tier Client/Server Architecture: Achieving Scalability,
Performance, and Efficiency in Client Server Applications. Open Information
Systems, 10, 1995.

[Fis10] S. Fisher. Introducing Database, 2010. http://blog.database.com/blog/2010/
12/06/introducing-database-com-2/.

[Gee05] D. Geer. Eclipse Becomes the Dominant Java IDE. volume Volume 38. IEEE
Computer Society., 2005.

[INT] w3schools.com. The SQL SELECT INTO Statement. http://www.w3schools.
com/sql/sql_select_into.asp.

[Ise06] P. Isenhour. GridBagLayout Example: A Simple Form Lay-
out, 2006. FormUtility, http://javatechniques.com/blog/
gridbaglayout-example-a-simple-form-layout/.

134

http://social.technet.microsoft.com/wiki/contents/articles/1575.move-access-data-to-the-cloud.aspx
http://social.technet.microsoft.com/wiki/contents/articles/1575.move-access-data-to-the-cloud.aspx
http://www.opengroup.org/cloud/whitepapers/ccroi/disc1.htm
http://undertitled.com/2012/04/11/bookkeeping-with-libcloud.html
http://www.opencrx.org/opencrx/2.9/installerServer/installer_openCRX_server.html
http://www.opencrx.org/opencrx/2.9/installerServer/installer_openCRX_server.html
http://www.opencrx.org/
http://www.dbdebunk.com/page/page/1897740.htm
http://www.dbgurus.com.au/Files/A%20Comparison%20of%20the%20Common%20Database%20Systems.pdf
http://www.dbgurus.com.au/Files/A%20Comparison%20of%20the%20Common%20Database%20Systems.pdf
http://aws.amazon.com/ebs/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://blog.database.com/blog/2010/12/06/introducing-database-com-2/
http://blog.database.com/blog/2010/12/06/introducing-database-com-2/
http://www.w3schools.com/sql/sql_select_into.asp
http://www.w3schools.com/sql/sql_select_into.asp
http://javatechniques.com/blog/gridbaglayout-example-a-simple-form-layout/
http://javatechniques.com/blog/gridbaglayout-example-a-simple-form-layout/

Bibliography

[jcl11a] jclouds, Inc. BlobStore Guide, 2011. BlobStore API, http://www.jclouds.org/
documentation/userguide/blobstore-guide/.

[jcl11b] jclouds, Inc. JClouds Overview, 2011. Multi-cloud Framework, http://www.
jclouds.org/.

[jcl11c] jclouds, Inc. User Guide: How to Use the Compute API and Tools, 2011. Compute
API, http://www.jclouds.org/documentation/userguide/compute/.

[JCr] JCraft, Inc. JSch - Java Secure Channel. SSH Port Forwarding, http://www.
jcraft.com/jsch/.

[Lor10] M. Lorenz. Vision Cloud: The Fact Sheet, 2010. http://www.visioncloud.eu/
content.php?s=30,47.

[Man11] A. Mandelbaum. PostgreSQL vs. MySQL: Which Is the Best Open
Source Database?, 2011. http://www.openlogic.com/wazi/bid/188125/
PostgreSQL-vs-MySQL-Which-Is-the-Best-Open-Source-Database.

[MG11] P. Mell and T. Grance. Cloud Computing Definition. National Institute of Stan-
dards and Technology, 2011. http://csrc.nist.gov/publications/nistpubs/
800-145/SP800-145.pdf.

[Mic12] Microsoft Corporation. SQL Azure Migration Wizard v3.9 & v4.0.3, 2012.
SQLAzureMW Documentation, http://sqlazuremw.codeplex.com/.

[Mil05] A. J. Mills. JUnit Testing Utility Tutorial, 2005. https://supportweb.cs.bham.
ac.uk/docs/tutorials/docsystem/build/tutorials/junit/junit.html.

[MWA10] Amazon Web Services. Migration Scenario: Migrating Web Applications to the
AWS Cloud, 2010. Web Application Architecture, http://d36cz9buwru1tt.
cloudfront.net/CloudMigration-scenario-wep-app.pdf.

[MYS] Oracle Corporation. MySQL Database. http://www.mysql.com/.

[MyS09] Amazon Web Services. Migrating from MySQL to Amazon SimpleDB, 2009.
http://aws.amazon.com/code/Amazon-SimpleDB/2996.

[Ocr12] Geeknet, Inc. How to Migrate an Existing openCRX Database, 2012. http://
sourceforge.net/apps/trac/opencrx/wiki/Sdk29.DatabaseMigration.

[ORAa] Oracle Corporation. Oracle Database. http://www.oracle.com/index.html.

[Orab] Oracle and/or its affiliates. Worker Threads and SwingWorker. Concurrency in
Swing, http://docs.oracle.com/javase/tutorial/uiswing/concurrency/
worker.html.

[Pat06] T. Patton. Use the Data Access Layer to Simplify Architecture, 2006. Im-
plementing a Data Access Layer, http://www.techrepublic.com/article/
use-the-data-access-layer-to-simplify-architecture/6078128.

[PSQ] The PostgreSQL Global Development Group. PostgreSQL. http://www.
postgresql.org/.

135

http://www.jclouds.org/documentation/userguide/blobstore-guide/
http://www.jclouds.org/documentation/userguide/blobstore-guide/
http://www.jclouds.org/
http://www.jclouds.org/
http://www.jclouds.org/documentation/userguide/compute/
http://www.jcraft.com/jsch/
http://www.jcraft.com/jsch/
http://www.visioncloud.eu/content.php?s=30,47
http://www.visioncloud.eu/content.php?s=30,47
http://www.openlogic.com/wazi/bid/188125/PostgreSQL-vs-MySQL-Which-Is-the-Best-Open-Source-Database
http://www.openlogic.com/wazi/bid/188125/PostgreSQL-vs-MySQL-Which-Is-the-Best-Open-Source-Database
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://sqlazuremw.codeplex.com/
https://supportweb.cs.bham.ac.uk/docs/tutorials/docsystem/build/tutorials/junit/junit.html
https://supportweb.cs.bham.ac.uk/docs/tutorials/docsystem/build/tutorials/junit/junit.html
http://d36cz9buwru1tt.cloudfront.net/CloudMigration-scenario-wep-app.pdf
http://d36cz9buwru1tt.cloudfront.net/CloudMigration-scenario-wep-app.pdf
http://www.mysql.com/
http://aws.amazon.com/code/Amazon-SimpleDB/2996
http://sourceforge.net/apps/trac/opencrx/wiki/Sdk29.DatabaseMigration
http://sourceforge.net/apps/trac/opencrx/wiki/Sdk29.DatabaseMigration
http://www.oracle.com/index.html
http://docs.oracle.com/javase/tutorial/uiswing/concurrency/worker.html
http://docs.oracle.com/javase/tutorial/uiswing/concurrency/worker.html
http://www.techrepublic.com/article/use-the-data-access-layer-to-simplify-architecture/6078128
http://www.techrepublic.com/article/use-the-data-access-layer-to-simplify-architecture/6078128
http://www.postgresql.org/
http://www.postgresql.org/

Bibliography

[Qui12] QuinStreet Inc. Cloud Database, 2012. http://www.webopedia.com/TERM/C/
cloud_database.html.

[RDS] Amazon Web Services. Amazon Relational Database Service (Amazon RDS).
http://aws.amazon.com/rds/.

[RG02] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill
Science Engineering, third edition edition, 2002.

[RW12] L. Rath-Wiggins. Activity III - Data Access Layer for Storage Cloud, 2012. VISION
Cloud, http://www.visioncloud.eu/content.php?s=248,389.

[SBK+12] S. Strauch, U. Breitenbücher, O. Kopp, F. Leymann, and T. Unger. Cloud Data
Patterns for Confidentiality. In Proceedings of the 2nd International Conference on
Cloud Computing and Service Science (CLOSER’12). SciTePress, 2012.

[SDB] Amazon Web Services. Amazon SimpleDB. http://aws.amazon.com/
simpledb/.

[SKLU11] S. Strauch, O. Kopp, F. Leymann, and T. Unger. A Taxonomy for Cloud Data
Hosting Solutions. In Proceedings of the IEEE International Conference on Cloud and
Green Computing, CGC 2011. IEEE Computer Society, 2011.

[Som] A. Sommerer. The Java Extension Mechanism. Oracle: The Java Tutorials, http:
//docs.oracle.com/javase/tutorial/ext/index.html.

[Str12] S. Strauch. A Novel Architecture and Methodology for Migration of the Data
Layer to the Cloud, 2012. Institute of Architecture of Application Systems, Univer-
sity of Stuttgart, http://www.summersoc.eu/wp-content/uploads/2012/07/
Steve-Strauch_poster_PhD-topic-SummerSOC-2012.pdf.

[Tao01] L. Tao. Shifting Paradigms with the Application Service Provider Model. Com-
puter, 34, 2001.

[Tea12] P. Team. Database Abstraction Layer, 2012. MySQL Is the World’s Most Used
RDBMS, http://phalconphp.com/documentation/db.

[Vil12] P. M. Villari. Storage Cloud Challenges: VISION Cloud EU Project. In Cloud
Standards Customer Council, CSCC Quarterly Meeting: Cloud in the Public Sector.
VISION Cloud, 2012.

[VPC] Amazon Web Services. Amazon Virtual Private Cloud (Amazon VPC). http:
//aws.amazon.com/vpc/.

[VPC11] Amazon Web Services. Get Started with Amazon VPC (Documentation), 2011.
Amazon VPC API version, http://docs.amazonwebservices.com/AmazonVPC/
latest/GettingStartedGuide/GetStarted.html.

[W3S] w3schools.com. SQL Tutorial. http://www.w3schools.com/sql/default.asp.

All links were last followed on August 30, 2012.

136

http://www.webopedia.com/TERM/C/cloud_database.html
http://www.webopedia.com/TERM/C/cloud_database.html
http://aws.amazon.com/rds/
http://www.visioncloud.eu/content.php?s=248,389
http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/
http://docs.oracle.com/javase/tutorial/ext/index.html
http://docs.oracle.com/javase/tutorial/ext/index.html
http://www.summersoc.eu/wp-content/uploads/2012/07/Steve-Strauch_poster_PhD-topic-SummerSOC-2012.pdf
http://www.summersoc.eu/wp-content/uploads/2012/07/Steve-Strauch_poster_PhD-topic-SummerSOC-2012.pdf
http://phalconphp.com/documentation/db
http://aws.amazon.com/vpc/
http://aws.amazon.com/vpc/
http://docs.amazonwebservices.com/AmazonVPC/latest/GettingStartedGuide/GetStarted.html
http://docs.amazonwebservices.com/AmazonVPC/latest/GettingStartedGuide/GetStarted.html
http://www.w3schools.com/sql/default.asp

Declaration

All the work contained within this thesis, except where otherwise
acknowledged, was solely the effort of the author. At no stage was
any collaboration entered into with any other party.

Stuttgart, August 31, 2012 ——————————–
(S.M. Mohsin Reza)

	Introduction
	Problem Statement and Scope
	Research Design and Questions
	Motivating Scenario
	Outline
	Conventions

	Fundamentals
	Cloud Computing
	Cloud Deployment Models and Application Layers
	Cloud Data Hosting Solution

	Cloud Services
	Amazon EC2
	Amazon RDS
	Amazon VPC
	Amazon SimpleDB

	SQL Taxonomy
	General SQL Rules

	openCRX

	Related Works
	VISION Cloud
	VISION Cloud Architecture

	JClouds
	Deltacloud
	Apache Libcloud

	Evaluation of SQL Support of Cloud Data Services
	Test Setup
	openCRX Database
	Statements and Queries Covered by Test Cases

	JUnit Test for Automatic Testing
	Test Scenario
	Default Scenario
	MySQL on Amazon EC2
	Oracle on Amazon EC2
	PostgreSQL on Amazon EC2
	MySQL on Amazon RDS
	Oracle on Amazon RDS
	MySQL on Amazon VPC
	Amazon SimpleDB Data Storage

	SQL Test Summary

	Concept and Specification
	System Overview
	Functional Requirement
	Heterogeneous Data Access
	Application Extension Mechanism
	SSH Connection to Cloud Database

	Use Cases
	Non-Functional Requirements
	Extensibility
	Reusability
	Maintainability
	Installation Ease

	Design
	Architectural Overview
	Class Diagram
	EvaluationWindow
	DatabaseConfiguration and DBConnectionStatus
	FileImporter and SshUserInfoWrap
	FormUtility and TableDrawing
	ExtensionMechanism
	SQLStatementEvaluation
	Data Access Classes

	Implementation
	Software Tool Implementation
	Application Controller
	Java Utility
	Configurations Setting
	Data Access Layer
	JSch Based Authentication

	Development Environment
	Eclipse
	Java Platform
	Java Libraries

	SQL Evaluation Tool Manual
	Installation
	User's Manual

	Outcome and Future Work
	Future Works

	Results of SQL Statements Investigation
	JUnit Test Results for Default Database
	JUnit Test Results for Oracle in Amazon EC2
	JUnit Test Results for PostgreSQL in Amazon EC2
	JUnit Test Results for Amazon SimpleDB

	Bibliography

