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ABSTRACT

Image compression is a well-established and extensively researched field. The huge
interest in it has been aroused by the rapid enhancements introduced in imaging
techniques and the various applications that use high-resolution images (e.g. medical,
astronomical, Internet applications). The image compression algorithms should not only
give state-of-art performance, they should also provide other features and
functionalities such as progressive transmission. Often, a rough approximation
(thumbnail) of an image is sufficient for the user to decide whether to continue the
image transmission or to abort; which accordingly helps to reduce time and bandwidth.
That in turn necessitated the development of multi-resolution image compression
schemes. The existed multi-resolution schemes (e.g., Multi-Level Progressive method)
have shown high computational efficiency, but with a lack of the compression
performance, in general. In this thesis, a LOw Complexity Multi-resolution Image
Compression (LOCMIC) based on the Hierarchical INTerpolation (HINT) framework
is presented. Moreover, a novel integration of the Just Noticeable Distortion (JND) for
perceptual coding with the HINT framework to achieve a visual-lossless multi-
resolution scheme has been proposed. In addition, various prediction formulas, a
context-based prediction correction model and a multi-level Golomb parameter

adaption approach have been investigated.

The proposed LOCMIC (the lossless and the visual lossless) has contributed to the
compression performance. The lossless LOCMIC has achieved a 3% reduced bit rate
over LOCO-I, about 1% over JPEG2000, 3% over SPIHT, and 2% over CALIC.

The Perceptual LOCMIC has been better in terms of bit rate than near-lossless JPEG-
LS (at NEAR=2) with about 4.7%. Moreover, the decorrelation efficiency of the
LOCMIC in terms of entropy has shown an advance of 2.8%, 4.5% than the MED and

the conventional HINT respectively.
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1 Introduction

1.1 Motivation

With the ever tighter weave of today’s interactive multimedia and Internet applications, new
strategies of information processing have emerged in recent years. In particular, image
compression techniques have become very essential to achieve efficient storage and
transmission of digital data. Despite of the significant improvements in media storage, e.g.,
DVD (Digital Versatile Disk), and transmission performance, e.g. ADSL (Asymmetric Digital
Subscriber Line), the need for larger storage capacity and faster transmission speeds will
continue to be a serious demand and outstrip the available capacity. Accordingly, the image
compression algorithms should not only give state-of-art performance, they should also
provide other features and functionalities such as progressive transmission in terms of image
resolution [9]. In progressive transmission, image information is transmitted in many stages
starting from a low resolution version of the image until the full restoration of it. At each
stage, the restored image progressively improves as more information is transmitted [10].
Progressive scheme is very significant in multimedia and telebrowsing applications where the
user can abort the transmission at an intermediate stage, if the image is not of interest. Thus,
using the above scheme leads to significant savings in time and bandwidth. These
requirements provoked the need for multi-resolution image compression algorithms to be
used, and hence, well-established and extensive studies have been conducted in this field.
Nevertheless, one of the paradoxes of technologies evolution is that despite of the above
mentioned advances, there is still room for further research in image compression, in general
[11].

The fundamental goal of this work in this thesis is to explore the potentials of the multi-
resolution framework in the field of image compression at reasonable complexity. Complexity
and power-constraints of embedded systems, e.g., digital cameras put a significant challenge
on the design of a low complexity and high performance image compression algorithm. In
accordance, a Low Complexity Multi-resolution Image Compression (LOCMIC) algorithm,
based on the Hierarchical INTerpolation framework [12, 18] is proposed. On the other hand,
the higher demands of a good reconstructed image quality while minimizing the file size,
necessitated the development of the so-called near-lossless concept, in which an additional

block, i.e., quantization is added to the lossless algorithm. As a consequence, a novel
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integration of the proposed algorithm with the Just Noticeable Distortion (JND) [20] for
perceptual coding, i.e., adaptive near lossless compression based on the Human Visual System
(HVS), is introduced. JND profile can dynamically adjust the quantization step size based on

human perception.

1.2 Image compression

The weave of communication systems, computing, networking and social web has a dominant
role in one’s life. In the last decade, the world has been witnessing a transformation in the way
we communicate. This transformation included the ever-growing Internet and the
development of mobile and video communications, particularity the multimedia revolution.
However, despite of the emerging growth studies in mass-storage and bandwidth
optimization, the evolution of image-intensive applications, e.g., web applications, on the
other hand, have been increasing. Storing the image, especially with high resolution, without
any kind of compression, consumes a lot of storage space, time, and bandwidth, particularly,
in image acquisition and transmission applications. To imagine that, the storage or the
transmission of a one-second video (625 lines per frame, 720 samples per line) without
compressing it, would require over 20 MB, i.e., 70 GB for a two-hour video. In recent years,
image compression techniques have introduced impressive progress e.g., [1, 4, 13, and 18].
These techniques aim to represent the image efficiently, i.e., at lower bit rates. In general,
image compression is defined as the processes of observing regularities, i.e., redundancy in
the image and trying to eliminate “unnecessary” information about it. One can roughly
classify image compression algorithms into two main categories: 1) Lossy image compression
2) Lossless or error free compression. Lossless image compression aims at the exact
reconstruction of the original image from compressed representation. However, due to the
statistical properties of the spatial distributions in natural images which cannot be well
predicted, the lossless scheme seldom reaches significant compression performance. On the
other hand, the error-free reconstruction of the image has been an attractive propriety to
various applications, e.g., medical applications, where the correctness and the quality of the
image are of main concern.

Lossless Image compression adopts two distinct and independent phases: 1) Modeling. 2)
Coding. The modeling can be interpreted as an inductive interference problem in which the
image is processed in a predefined order, e.g., raster scan. At each time instant of scanning the

past image data, an inference is made on the next sample values. The inferred value which is
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considered redundant information is subtracted from the real pixel value, and only the
difference or the residual is encoded using any of the variable length coders, e.g. Huffman,
Golomb or Arithmetic.

In lossy or near lossless algorithm, every pixel value in the reconstructed picture is guaranteed
to differ from the corresponding original value by a small amount 6. Thus, the lossless mode
is a special case when 6=0. To achieve this, the algorithm quantizes regions of image to get
higher compression ratios and in consequence sacrificing in the reconstructed image quality.
The near lossless perceptual coding will be discussed later in this thesis.

1.3 Background of some lossless image compression algorithms

1.3.1 CALIC: Context-Based Adaptive Lossless Image Codec

In 1996, CALIC has been described, even counted today, among the best, considering only
the compression performance. However, the algorithm is computationally complex to
implement in a standard. To better understand the CALIC complexity, consider the following

table which illustrates the mathematical operations and how many times executed.

Table 1. CALIC complexity [29]

Operation Times
ADD/MINUS 4
MUL/DIV 1
SHIFT 3
ABS 1
Comparison 11

CALIC gives an average lossless bit rate of 2.99 bits per pixel on 18 8-bit tested images in [4]
verses 3.89 bits per pixel for lossless JPEG. The prediction in CALIC is based on 12 nearby
pixels, which are encoded before the current pixel. Using these pixels, four gradients are
calculated in four directions (vertical, horizontal, both diagonals). These gradients can be used
as a context for the adaptive prediction formula. In other words, they can determine one of
eight different cases of prediction, whether there are sharp edges in the previously mentioned

directions or flat regions. Thereafter, the correction factor which is based on six neighboring
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pixels is added to the prediction. Finally, the prediction error, i.e., residual is Huffman or

Arithmetic coded with conditioning one of the eight cases [12].

1.3.2 FELICS: Fast Efficient Lossless Image Compression System

FELICS is a lossless raster scan based coding algorithm proposed in 1993. It has presented a
novel idea of using two neighboring pixels for both the prediction and the error modeling. The
nearest neighbors (N1, N2) of the pixel N, as shown in Figure 1, are used to obtain an

approximate probability distribution for its intensity.

N1 | N2 NI [ N2 | N
N

N2

N1 | N

Figure 1 Neighborhood definition in FLICS algorithm

FELICS algorithm assumes the probability distribution of N in its region relative to the
nearest neighbors, and coding this region using Huffman coder. For example, the probability
of N to be in between N1 and N2 is 50%. This fact is coded using only one bit. Considering
other cases where N lies above the maximum of N1, N2 and below their minimum. Each of
which occurs 25% and hence coded with two bits. There has been an extension to use Golomb
coder recently. This algorithm is very comparable to the lossless JPEG with about five times
the throughput [13], but the huge growth in multimedia and telebrowsing applications
necessitated the development of a much faster, progressive version of FELICS [13]. The

algorithm will be illustrated in the next Chapter.

1.3.3 JPEG-LS

JPEG-LS is a lossless/near lossless image compression standard for continuous-tone images.
Like all lossless compression schemes, it consists of two distinct parts: prediction part and
coding part. According to JPEG-LS [1], the image is read and processed in raster scan. It

follows the structure pioneered by Sunset algorithm, includes [1]:
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e The prediction of the value xt+1 is based on a causal template of the past encoded

data.
e Determination of the context in which they symbol xt+1 occurs and it is also a

function of that causal template.
e The selection of the probabilistic model for encoding the prediction error conditioned

with the context.

The JPEG-LS predictor consists of fixed and adaptive part. The fixed part must have some
prior knowledge and capable of detecting edges in the image. Specifically, it predicts:

max(a, b) if c1 < min (a,b)
P ={min(a,b)if c1 = max (a,b))) (D
a+b—c, otherwise

Where P is the predicted value and (a, b, c) are the pixels available to predict the next symbol

as shown in Figure 2 which illustrates the functional block of JPEG-LS.

. [ .
Fixed Bias % | Residual |€ | Residual _L; Golomb |
prediction | | cancellation computation mapping coding
Context update G
- iolomb
c[B]d]| fnput Bias DI S— cor
alx] |pixels | computation parame ?] k| =
L compufation | 1A.B.N,C) computation §'
Gradient . e 5
.t Quantization - =
computation context index B A
4 L——D—————————————————>f%»
at Fegion ; o
N £ Run mode “?
»  Run mode > .
Golomb coding

Figure 2 JPEG-LS functional block [15]

Although JPEG-LS ranks among the best in terms of compression performance and
complexity, but it has some drawbacks, for example, the neighborhood of the past values,
called the causal template is too restricted, i.e., only four pixels can be used in prediction. In
consequence, the prediction may not consider higher order complexities of the nearby pixels
without employing context modeling in some cases. Furthermore, with the accelerating
advances in web technologies, some web applications use a lower resolution of the image, i.e.,
thumbnail, to save bandwidth and time in case that image is unwanted by the user. Whereas in

JPEG-LS and the above schemes, one could not find this important feature.
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1.4 Thesis scope

In this thesis, a Low Complexity Multi-resolution Image Compression (LOCMIC) approach,
based on the Hierarchical Interpolation (HINT) framework is to be investigated. Lossless
compression and near-lossless compression are both in the scope of this thesis. For lossless
compression, the performance of various variations of proposed prediction methods is to be
investigated. Furthermore, a context based predication correction that is adaptively computed
is to be investigated. In addition, a multi-level Golomb coder and a multi-level prediction
error correction scheme are in the scope of the thesis as well. For the near-lossless
compression, new functional blocks i.e., perceptual quantization will be added to the lossless
model. The encoder and the decoder are fully implemented using MATLAB as the developing

tool.

1.5 Thesis structure

The thesis will be organized in the following structure:

Chapter 2- Multi-resolution image compression and progressive transmission: This Chapter
illustrates the theoretical background of multi-resolution scheme, especially the HINT
framework, in addition to a brief illustration of the progressive transmission and its

importance.

Chapter 3- LOCMIC Hierarchical Interpolation: This Chapter illustrates the proposed
prediction schemes and formulas applied on the proposed algorithm.

Chapter 4- Context based prediction correction: A full explanation of the contexts being used
to correct the prediction, and conditional Golomb coding are described. Furthermore, a

justification of using different context formulations and components is explained.
Chapter 5- LOCMIC perceptual coding: A superior combination between the HINT

framework and the JND perceptual scheme to achieve near lossless compression based on

adaptive quantization has been illustrated in this chapter.
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Chapter 6- Multi-Level Golomb coding schemes: Three schemes of multi-level Golomb

coding have been presented here.

Chapter 7- Comparative results: The compression performance, the time complexity and the
image quality are the contents here. In addition, a comparison will be held among different
coding algorithms in terms of performance, time and quality and in each level (Prediction,

context corrected, and coded).

Chapter 8- Conclusions and future work: This chapter aims to build some conclusions and

comments further improvements and future work.
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2  Multi-resolution image compression and progressive transmission

2.1 Background of the multi-resolution scheme (HINT)

Multi-resolution image model represents the image with varying spatial resolutions, i.e.,
pyramid like representation. Each layer serves as a prediction model for the layer lies
immediately below. One of the unique proprieties of the multi-resolution image compression
algorithms, e.g., Laplacian Pyramid, is the progressive transmission that allows an early
visual inspection of the image at different stages. Many important image applications use
some processing (e.g., filtering, adjustment, contrast enhancements) that is applied to the
transmitted or the stored images. Lossy compression, if used, can add some artifacts that may
lead to erroneous interpretation. Particularly, the user in such applications needs to have
control over the represented pixels precision and preferably encodes them without any loss or
discard. Images in this scheme can be visually inspected and simultaneously fully recovered,
but only when necessary. These unique proprieties can only be achieved if a multi-resolution
scheme is used. One more advantage of the multi-resolution schemes is related to the coding
efficiency. The single resolution image schemes build some assumptions on the image
statistical models, e.g., stationary for coding. These models are seldom encountered in real
images and hence may lead to higher complexity. Whereas the multi-resolution representation
has a unique recursive structure which serves to do the higher complex transformations as a
sequence of simple and low order transformations. One of the popular frameworks of multi-
resolution model is known as Hierarchical INTerpolation (HINT), suggested by Endoh and
Yamakazi [12, 18, 31] on which the basics of this work have been done. The HINT algorithm
starts by reducing the original image horizontally and vertically to its half size, and then
encodes that low-resolution version. In other words, the process starts by obtaining the
residual corresponding to pixels labeled (A) in Figure 3 using any lossless algorithm, e.g.,
DPCM. Then, the intermediate pixels labeled (o) are estimated by the reconstructed labeled
pixels (A), using a linear prediction formula. Only the resulted residual is sent or achieved.
Then, using the available (o), (A) pixels, (X) labeled pixels can be interpolated. Finally, from
the known pixels, the labeled (*) and (e) pixels can be interpolated as well. The
reconstruction process proceeds in the same manner. In practice, an 8x8 window size is used

for HINT rather than 5x5 window size as shown in Figure 3.
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X X X
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X X X

Alel x| olale]|x]|ela

Figure 3 the HINT scheme for hierarchical prediction [12]

The HINT implementation results in [31] have been achieved using the DPCM. Based on [31]
also, the HINT has relatively poor compression performance. That is partly due to the five-
pass interlaced sampling transversal scheme. In this scheme, the first three passes have to
encode sub-sampled images of little correlation. In this work, some enhancements, e.g.,
proposed interpolation formulas, have been introduced to overcome the compression
performance problem. The decorrelation efficiency of the proposed work has been better in

about 4.5 % in terms of the first order entropy than the conventional HINT described here.

2.2 Progressive transmission

The amount of information stored as images has been rapidly increasing, especially the
remotely sensed images (e.g. weather images, satellite images) and the medical images (e.g.
Computed Tomography CT scan, Mammograms). Suppose a user wants to pass over a
number of images in a remote database and connected via a 1 Mbps modem. Suppose also that
the images size is 1024x1024, and that user browses more than 30 images before finding the
image he is looking for. If the image is grayscale i.e., 8 bit per pixel, this process would take
some time and consumes bandwidth. Thus, this case is not very practical even with some sort
of compression. A good solution is to send an approximation of each image where the
approximated version does not need too many bits and sufficiently gives the user a clear idea
about the image. In case the user finds it to be of interest, further refinements will be sent or
the complete image. To achieve that, the image is divided into blocks and a representative
pixel for the block is sent. In other words, an image of 1024x1024 can be approximated with
128x128 sub-sampled image using a block size of 8x8. If this approximation is not sufficient,
the user can ask for further refinements, i.e., divide the 8x8 block into four 4x4 blocks.

Figure 4 illustrates that difference between the raster scan transmission and the progressive

scheme.
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Recently, the world has witnessed a rapid growth of social networks, e.g., Facebook,
MySpace, alongside with the great progress in the digital cameras resolution. Hence, the

interest in progressive transmission algorithms is expected to increase in accordance.

Figure 4. The progressive transmission verses raster scan transmission [12]

The widely known multi-Resolution algorithms are: Multi Level Prediction (MLP) [16],
Laplacian and Gaussian Pyramids [17], Wavelet transformation [9] and the Hierarchical
INTerpolation algorithm (HINT) [12, 18]. The following sections illustrate these algorithms in
brief.

2.3 MLP: Multi-Level Progressive method

In this lossless progressive multi-resolution method [14, 16], the prediction model is based on
using nearby pixels in all directions. At the first level, as shown in Figure 5 (a), the known
pixels form a square grid. The small dots (midpoints) will be interpolated at this level. After
coding these small dots, as shown in Figure 5 (b), the known pixels form a check-board. After

scaling the pixel values by V2 , they are rotated by 45 degrees as shown in Figure 5(c). The
known pixels form a square grid again as in (a). In the next level, the midpoints are

interpolated and coded, namely all the remaining pixels.
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Figure 5. MLP last level prediction neighborhood and coefficients [14]

The algorithm for each successive level L can be briefly illustrated as following:
1. For all pixels Pe L, P’ is predicted and the residual is computed in accordance.
2. For all pixels Pe L, the variance is computed to be used in encoding the residual.
3. For all pixels Pe L, the residual is finally encoded by any variable length coders, e.g.,

Rice.

4. Rotation of the pixels by 45 degrees and scaling them by % as shown in Figure 5 (c).

The predication model proceeds in levels. At each level, pixels are interpolated using specific
number of nearby pixels which have been already predicted in the previous levels. The last
level uses a 4x4 nearby group for the interpolation. Typically, the predicted value will be the
weighted sum of this pixel group. The pixels near the edges have some missing neighbors;
hence, the weights of the missing neighbors will be set to zero.

Clearly this method is progressive, where the values of pixels at each level are uniformly
selected from the entire image. Suppose that the last level is left without being encoded, the
decoder has already half of the original image pixels, and hence can interpolate the remaining
pixels using any prediction formula. In practice, skipping the last two levels and letting the
decoder interpolate, will end up with an indistinguishable reconstructed image in comparison
with the original image.

It has been shown in [32], that MLP scan order is generally worse than the raster scan pixel
order that uses all nearby pixels up to distance 2 in terms of the first order entropy in about
1.35% on four selected natural images and one MRI. Using thee of these images, namely,
Lena, Goldhill, Barb. The proposed LOCMIC has shown an 8.1% better decorrelation

efficiency in terms of the first order entropy.
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2.4 Laplacian and Gaussian Pyramids algorithm

The Gaussian-Laplacian image pyramid is a simple multi-resolution pyramid scheme, used for
image processing and in particular for image compression. It stores successive low-pass
filtered and down-sampled versions of an image to allow a simple access to specific image
features of certain frequencies. Suppose that the original image as shown in Figure 6 is
represented by g0. This image becomes the bottom of the Gaussian pyramid (level 0). Level
has the reduced or low-pass filtered image gL as shown in Figure 6. The pixel values of level
1 are computed using a weighted 5x5 averaging window in level 0. Similarly, each pixel in
level 2 is computed using a weighted 5x5 averaging window in level 1, and so forth until
reaching the lowest resolution needed (the top of the Gaussian pyramid). On the other hand,
the Laplacian image pyramid is an extension to the Gaussian pyramid. It was suggested by
(Burt and Adelson 1983). The reduced image gL may serve as prediction for pixels value in
the original image g0 by expanding it using an interpolation method, e.g., bilinear. To obtain a
compressed representation of the image, the difference, i.e., error between the original image

g0 and the expanded image is encoded.
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Figure 6 a graphical representation of the process which generates the Gaussian Pyramid [17].

Hence, the Laplacian pyramid is a sequence of error images between two successive levels of
the Gaussian. In practice, the pyramid algorithm is based on two complementary functions:
EXPAND and REDUCE. As shown in Figure 6, REDUCE generates the lower resolution
level of Gaussian pyramid while EXPAND interpolates the lower resolution image up-sample

it to its original size.
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Figure 7 the generation and reconstruction of Laplacian Pyramid [30].

The Laplacian-Gaussian pyramid encompasses a low, band-pass filter respectively, in other
words, the Gaussian pyramid can be viewed as a set of low-passed filter copies of the original
image, while the Laplacian pyramid can be viewed as a set of band-pass filtered copies of the
image. The computational complexity of this scheme is simple because it performs the
computations locally and may be performed in parallel. Furthermore, the same computation is

iterated to build each level from the predecessor level.

2.5 Progressive FELICS: Fast, Efficient, Lossless Image Compression
System

This Algorithm retains the same hierarchical pixel sequence of MLP (refer to Section 2.3) to
obtain a progressive coding. The difference is in the image prediction model. The prediction is
based on just four nearby pixels. Two of the four nearest known pixels are selected. Coding of
the pixels is then realized using single bits, adjusted binary codes, and simple prefix code,
e.g., Rice.
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Selecting the two pixels is done using any of three ways: 1) maximum and minimum values 2)
the two middle values 3) a selected pair of spatially adjacent pixels. Practically, it has been
shown in [14] that using the middle values give the best compression results in general.

The context model in progressive FELICS uses the absolute difference between the selected
two predicting pixel values. One bit is used to indicate whether the predicted pixel is in the
range. Accordingly, an adjusted binary code for the exact value within the range is used. The
coding parameter is separate for each context. As the difference between the nearby pixels is
correlated with the variance of the image, it has been found that the context that is based on
such small differences leads to more sharply-peaked distribution. Progressive FELICS coding

is based on the original FELICS algorithm as shown if Figure 8.

AANE In range, 0 + binary code

Above range,
11 + prefix code

Below range,
PPy 10 + prefix code

min( P, Py)  max(F, )
A

pixel intensity values

B|P

Figure 8 the coding process of FELICS [14].

The left depict of the above Figure shows the context coding is consisting of two nearest
neighbors P1, P2. The right depict shows the coding for different intensity ranges relative to
the maximum and the minimum of the two context values .The probability of an in-range
event equals to that of an out-range event. The same is with the above, below range, they are
equally probable.

The progressive FELICS has shown a better compression performance about 1% better than
the normal FELICS (refer to [13], [14] for more details).
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3 LOCMIC hierarchical interpolation

3.1 Overview

The conventional Hierarchical Interpolation (HINT) is a multi-resolution image compression
algorithm that has been found to be very efficient to compress images especially the medical,
e.g. X-Ray [12, 18]. The LOCMIC algorithm uses different pixel order selection. Typically it
starts by reducing the original image to its half size by choosing every odd pixel (circles in
Figure 9 and 10) these pixels is then encoded using JPEG-LS algorithm. JPEG-LS has been
used in this work because of its high compression performance and low complexity [1]. In the
second pass, the encoded (circle) image is enlarged to its original value. The circle pixels are
then used to interpolate the intermediate pixels (stars) by averaging the four corner pixels or
taking the median value. Subsequently, the (pyramids) pixels can be interpolated from the
available (circle) and (stars) pixels which exist as four direct neighbors. Finally, the available
(circles, stars, pyramids) pixels contribute to interpolating the remaining pixels (rectangles) as
shown in Figure 10. To ensure the reversibility, the interpolation results are rounded to the

nearest integer.

Original size/ First level

@1 @] ® |
Half sized
> JPEG LS
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by the encoder
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1 4 1 4 1
® m| e m e Original size

Figure 9. A general depict of the HINT algorithm used in this work

At the decoder side, the reconstruction process proceeds in the same manner. Upon
reconstructing the (circle) pixels, the same interpolation algorithm is used to interpolate the
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(stars) pixels and adding the received residual. Subsequently, all other pixels are reconstructed
in the same fashion.

Figure 10 shows a detailed view of the pixels available at each level. A different coding order
is of course possible, e.g., encoding the (pyramids) pixels in the 2" step, the (stars) pixels in
the 3 step and the (stars) pixels in the 4™ step. It has been found by our extensive
simulations, however, that the encoding order as shown in Figure 10 leads to good

compression performance in general.
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Figure 10. The hierarchical depict of the LOCMIC

As discussed in Chapter 2, the conventional HINT algorithm uses in practice, an 8x8 window
size to interpolate the midpoint pixels. In this work, only a 3x3 window size has been used in
the proposed schemes. Empirically, the proposed schemes have shown better decorrelation
results in about 4.5% than the conventional HINT in terms of the first order entropy. The

experiments have been on different known grayscale natural images (see chapter 7).

3.2 Proposed prediction schemes for levels 1, 2 and 3

The first level (circles) is entirely encoded using JPEG-LS [1] algorithm because of its high
compression performance and low complexity. The prediction scheme at the second level
(stars) proceeds as follows:

The average of the four nearby pixels (circles), as shown in Figure 11, is calculated.
The median value of these pixels is calculated.

In step (2), two median values are resulted, thus their average is calculated.

Ll

Taking the average of step (1) and (2) as the final predicted value.
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Figure 11 The second level prediction map

Calculating the median value has an advantage of excluding the noise pixel, if it is
encountered in the four nearby pixels. Moreover, the calculation of median is computationally
simple.

The third (pyramids) level applies the same prediction scheme used in level 2 (stars). But
thanks to the direct close nearby pixels available at this level, as shown in Figure 12, the

pixels average has also been found to deliver precise prediction values in general.

0! 0! 0!
A X, A X A,
0, 0, 0,
A |, A Xk A
0. 0. [ B

Figure 12 the third level prediction map

Of course, other schemes and interpolation formulas have been investigated as well, but the
best among them which give the best compression results, have been illustrated here.

3.3 Proposed novel prediction schemes for level 4

A wide spectrum of prediction formulas and schemes has been proposed and applied on the
last level (rectangles) level, thanks to the availability of % pixels of the original image. The

following sections discuss the proposed schemes briefly.
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3.3.1 “K” tuned average LOCMIC (KLOCMIC)

The idea of this method is inspired from removing the grain from images [19]. Removing
grain was primarily used as denoiser' and over time it has evolved into a general plug-in
which manipulates the pixels in terms of their nearby pixels. In this method, the first step is to

calculate the average of the four neighboring pixels as shown in Equation (2).

o H o B 0
A K2 A N | A3
o N | | W \p
A 52 AN [ A
o, H o H o

Figure 13. The last level neighborhood pixels map

Average=0.25XN(1)4+0.25XN(2)4+0.25XN(3)+0.25XN(4) (2)
P=max(min (Average (N(1)-N(4)), N(5-k)), N(K)), k=1, 2, 3,4 3

Where P is: the predicted value, average is: average of the pixels N(1), N(2)...N(4), K: is the
equation parameter and takes the values from 1-4. The condition here is: N(1) < N(2) <N(3)
<N(4), i.c., they are in an ascending order.

The calculated average is then clipped by two values, namely N(5-k) and N(K), as shown in
Equation (3) and Figure 13, using the minimum and the maximum function. An empirical
value of K that leads to good compression results has been found to be 2. In other words, the
four pixels average is clipped by their median value.

To see the effectiveness of this method, consider the following example: Suppose that the real
value of the pixel to be interpolated is 163, as shown in Figure 14, and suppose that the right

most pixels is a noise value and equals to 244.

! Denoiser is the process of removing noise from pictures (e.g., Median filter)
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Figure 14 . A noise value case

If the average is considered only, the interpolation result will be 183.25; the value is rounded
to nearest integer to become 183. Accordingly, the error value is equal to -20. However, if
Equation (3) is applied, the result should be like this:

P=max (min (183, 164), 163), where the min(183, 164) is 164 and the max(164, 163) is 164.
The resulted prediction value P is 164, and the error value is -1 which is nearer to zero than
the -20 and hence better prediction is achieved. This process resembles the functionality of a

filter, but fortunately without needing two passes of manipulation.

3.3.2 The Two Median Edge Detectors (MED) LOCMIC (TMLOMIC)

JPEG-LS [1] encodes the pixels in raster scan, thereby the MED predictor can only use the
pixels al, bl, cl as shown in Figure 15 to predict the next value to be encoded. However, the
proposed TMLOCMIC applies the MED algorithm two times. The first time, it performs as if
it encodes in raster scan using only the pixels al, b1, c1 (the light gray shaded area in Figure
15). The second time, the pixels a2, b2, c2 (the dark grey shaded area in Figure 15) are

exploited to predict the same pixel value as shown in Equations (4) and (5).

max(al,bl)if c1 < min (al,b1)
F’1={min(a1,b1) if c1 = max (al,b1) 4)
al + bl — c1 otherwise

max(a2,b2)if c2 < min (a2,b2)
P2={min(a2,b2) if c2 > max (a2,b2) )
a2 + b2 — c2 otherwise

Finally, the average of p1 and p2 is calculated and rounded to the nearest integer.
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Figure 15. The Two Median Edge Detector HINT (TMHINT)

This method takes the advantage of the original MED [13] in performing a primitive test for
both the horizontal and the vertical edges existed in the image. For example, if a vertical edge
exists, P1 will pick bl, and P2 will pick b2 using Equations (4) and (5) respectively.
Similarly, in case a horizontal edge exists, P1 will pick al and p2 will pick a2 using Equations

(4) and (5) respectively. If no edge is detected P1 chooses al+bl-cl, p2 chooses a2+b2-c2.

3.3.3 Median value LOCMIC (MLOCMIC)

As discussed in section 3.2, calculating the median value has been found to be a good choice
because it is computationally simple and in some cases, as shown in Figure 16, has an
advantage of omitting the noise value from the prediction. To illustrate that, consider the

following example:

155 | X 151

X 160 | x

266 | X 159

Figure 16 the second level (stars) pixel values

If the original value of the pixel to be predicted is 160. The two median values are 155, 159.
Taking the average and rounding the result to the nearest integer, the predicted value is 157.
Accordingly the error value will be (160-157) =3. If only the average of the nearby pixels was
considered in this example, the error value would be -23 which is for sure worse. However,
this method may encounter two or more noise pixel values. In such case, it would not perform

well and give the expected precise prediction.
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3.3.4 The Comprehensive LOCMIC (CLOCMIC)

Each of the above schemes has performed well on some kind of images while better on others.

Therefore, a comprehensive method has been introduced. The idea is to encompass the

advantages of the proposed methods and assign certain scores to each of which. In addition,

gradients in four directions, as shown in Figure 17, are calculated to capture the activity of the

pixels, e.g., edginess, smoothness. The realization of this scheme is as follows:

1.

3.
4.
S.

The gradients in four directions are calculated (two diagonals and two perpendicular
gradients) as illustrated in Equations (6-9).

Calculate the minimum gradient value among the four gradients as given by Equation
(10).

The components of the minimum gradient are averaged as shown in Equation (11).
Use Equation (3) which is the “K” tuned average to determine PK in Equation (12).

Assign weighted scores and average the used values as shown in Equation (12).

The notation here expresses the pixel value by I located at (X, y).

Grad1l=I(x-1,y-1)-I(x+1,y+1) (6)
Grad2=I(x-1, y+1)-1(x+1,y-1) (7
Grad3=I(x, y-1)-1(x, y+1) (8)
Grad4=I(x-1,y)-1(x+1,y) 9
GradMinimum=Min(|Grad1|,|Grad2]|,|Grad3|,|Grad4|, |Grad4|) (10)
GradAverage= average (GradMinimum) an
P=w1xMedian+w2XAverage+w3x GradAverage +w4xPK (12)

Where P is the predicted pixel value, Median is the median of the four neighbors;

GradMinimum calculates the minimum absolute value of the gradients. GradAverage takes the
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result of Equation (10) and calculates the average of the gradient components, i.e., the

gradient pixels. Finally, a weighted sum is used to combine the computed values.

o H: 0 IB: 0
SESTILES
.L 4_).1 -4 .l
‘/3 *2 3 *2‘3
.1 -4 .1 -4 .l

Figure 17 the gradients directions

Experimentally, the appropriate values of scores have been empirically found to be W4=0.85,
W1, W2, W3=0.05.
This method has been among the best formulas presented in terms of compression

performance. However, it lacks of the simplicity found in pervious proposed methods.

3.4 Summary

The Hierarchical Interpolation (HINT) is a multi-resolution image compression scheme which
supports the progressive transmission scheme. Based on its framework, the proposed
LOCMIC has been proposed.

Different and new interpolation methods have been proposed such as, “K” tuned average
HINT (KGHINT), The two Median Edge Detectors (MED) HINT (TMHINT), Median value
HINT (MHINT), and the Comprehensive HINT (CHINT) among which the KGHINT and the
CHINT have been found to give good compression results in general.

As reported in Chapter 7, the experimental results have shown an advance in compression
performance in terms of the first order entropy over the conventional and the known

prediction schemes such as: MED, bilinear interpolation, MLP.
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4 Context based prediction correction

The prior knowledge of the image structure such as texture pattern, edginess and smoothness
can be exploited by fitting such patterns to the parametric distributions, e.g. Laplacian [3].
That in turn allows a large number of contexts to capture the activity of the image. The basic
idea behind context modeling is that the currently processed pixel may depend on previously
processed pixels taken as parameters. Hence, the selection of symbols to estimate the
conditional probability such that the code length is minimized is of vital importance [2].
However, if the number of these parameters is too large with respect to the coded image, the
count statistics may not mange to have good samples to estimate the conditional probability.
This problem is called “sparse of context” or “context dilution” [4]. The statistical modeling
of the source has revealed [3] that the prediction error i.e., the residual, of the continuous-tone
images can be described by a Two Sided Geometric Distribution (TSGD) centered at zero, as
shown in Figure 18.
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Figure 18 the Two Sided Geometrical Distribution (TSGD) [5]

The context Q that conditions the encoding of a pixel in JPEG-LS [1] is determined by the
gradients or the differences of the neighboring pixels. The context is supposed to capture the
image activity surrounding the current pixel. The bias of “Q” is estimated, to be added or
subtracted from error modeler from the initial prediction [5]. The bias is totally specified from
the accumulated magnitudes of prediction error “A”, and the count “N” of encoded pixels
belong to a specific context “Q”. The context variables (A, B, N) are then updated. Finally,

the residual is mapped to non negative integers to be encoded.
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Because the model cost is very important and needed, the gradient values are further
quantized. In principle, the number of regions into which the context difference is quantized
has been adaptively selected and optimized. The regions are: -T,...0,1,...T. where T has been
selected by JPEG-LS [1] to be 4. Thus, the number of contexts is in total of (2T+1)*=729. A
further reduction could be introduced to the number of contexts due to the symmetry in the
regions to be in total of ((2T+1)%+1)/2=365. In practice, the context is falling into the
following default quantization regions: {0}, +{1, 2}, +{3, 4, 5, 6}, + {7, 8...20} +{ele>20}.

4.1 LOCMIC context formulation

In practice, it has been observed [1, 19], that the fixed prediction does not fully omit the
statistical redundancy in the image. Therefore, a prediction correction module based on the
image context has been presented in the proposed LOCMIC. The framework, i.e. HINT
allows to use the nearby pixels in different directions as discussed in Chapter 2, 3, and hence,
that should capture the statistical image proprieties in a better way. As discussed in Chapter 3,
the first level (circles) is entirely encoded by JPEG-LS, thus, the same context formulation at
this level will apply. The second level (starts) has no sufficient correlation between pixels.
Thereby, this level has not shown great performance after introducing the context model. For
the remaining levels, however, the efficiency after applying the context based prediction
correction has been about 2.2%. The next sections illustrate the presented context formulation
which is mainly based on the JPEG-LS context model [1], but with different components

formulations.

4.1.1 Second level context formulation

Thanks to the relatively low correlation of the available pixels at this level, the formulation of
a context that could capture higher dependencies between these pixels has been a bit

challenging. Figure 19 shows the gradient directions used to form the context.
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Figure 19 the context formulation of the second level

The model cost is paid an attention here; thus, at the first and the second levels, uses only
three context components. Based on the default quantization regions used by JPEG-LS [1],
each component will fall within an index of range -T, ..., -1, 0, 1, ... T, where T=4. An
overall contexts will be of (2T+1)3=729. Further minimization could be achieved by merging
the contexts which have opposite sign. The number of contexts the is of ((2T+1)>+1)/2=365

contexts. Equations 13-15 show the proposed context formulation at the second level (starts):

C2=I(x-1,y+1) - I(x-1,y-1) (13)
C3=I(x-1,y-1) - I(x+1,y-1) (14)
C3=I(x+1,y-1) - I(x+1,y+1) (15)

Where Ci: the context component number. i=1, 2, 3. I(X, y) is the grayscale value of the pixel

located at (X, ).

4.1.2 Third level context modeling

At this level, both the circles, stars symbols are available. The idea is to make a two-pass
context formulation, where in the first pass; the average of the nearby pixels is calculated and
preserved for the second pass. In the second pass, the calculated average is included in
forming the context components. The used components are illustrated in Figure 20 and
Equations (16-19).
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Figure 20 the context formulation of the third level

C1=I(x-1,y) (16)
C2=[0.5 x Errval(x — 1,y) + 0.5 x Errval(x + 1,y)] (17)
C3=I(x,y-1) - P(x, y) (18)
C4=P(x,y) - I(x, y+1) (19)

Where X, y are the indices of the current pixel, I(x y) is the grayscale value of the pixel located
at (x, y), Errval is the error value, i.e., residual, P(x, y) is the predicted value from the first
pass.

Using the predicted value is expected to help in gathering much statistics on the available
pixels to form a good context. Empirically, at this level the efficiency of applying the
prediction correction is about 1.7%. However, the number of contexts in this level is higher
than the first and the second level that is of Tx(1+T)%*+(2xT+1) */2= 865. Where T=4 which

represents the number of regions used in the quantization.

4.1.3 Fourth level context modeling

Likewise, this level follows a similar fashion as the third level, but with very minor changes.

Particularly, in gradients directions. Figure 21 and Equations (20-23) illustrate the approach.

35



o H o H|o
A x| A x| A
ov/i‘sﬁ o m o
Ve *x | A K| A

Figure 21 the context formulation of the fourth level

As shown in Figure 21, the two pass approach has been used here as well. To better

understand the formulations, Equations (20-23) illustrate the approach.

Cl=I(x-1,y) (20)
C2=[0.5 x Errval(x — 1,y) + 0.5 x Errval(x + 1,y)] (21)
C4=P(x,y) - I(x+1,y-1) (22)
C3=I(x-1,y+1) - P(x,y) (23)

Where, (X, y) are the spatial coordinates of a specific pixel, 1(x y) is the grayscale value of the
pixel located at (x, y), Errval is the error value, i.e., residual, P(x, y) is the predicted value
from the first pass.

Similarly, the number of contexts in this level, however, is higher than the first and the second
level that is of Tx(1+T)3+(2xT+1) %/2= 865. Where T=4 which represents the number of

regions used in the quantization.

4.2 Prediction correction

As discussed in this Chapter, the fixed prediction formulas cannot adequately capture the
complex relationship between the predicted pixel value and its surrounding activity. In other
words, it cannot fully omit the redundant statistics in the image. Therefore, the context formed

in the previous section has been used to adaptively refine the prediction considering the
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higher-order structures, such as the texture patterns for further compression gain. In practice,
the mechanism for the correction depends on the SIGN variable and the cumulative correction
values stored in C(Q) [6] as shown in Listing 1. The SIGN follows the context sign after

quantization.

If (SIGN==-1)

P(x, y) = P(x, y) - C(Qlx, y));
Else

P(x, y) = P(x, y) + C(Q(x, y));

Listing 1. Prediction correction from the distribution bias

Thereafter, the corrected prediction value shall be clamped to the range [0, maximum] as

shown in Listing 2; in this case, the maximum value is equal to 255.

If P(x, y)>255
P(x, y) = 255;
Else if P(x, y) <O
P(x, y) =0;

Listing 2. Prediction clamping

Finally, the prediction error is recomputed using the corrected prediction value and the sign

flipping process takes place as demonstrated in Listing 3.

Errval(x, y) = I(x, y) = P(x, y);
If SIGN(x, y) <0
Errval(x, y) = -Errval(x, y);

Listing 3. Residual computation and flipping the sign

To better understand the prediction correction effect, Figure 22 shows a histogram of the third level

(pyramids) residual without and with the correction applied on the known Barb image.
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Figure 22 a) The histogram of the barb residual at the third level without correction (Entropy 4.82 bpp). b)
The histogram of barb residual at the third level with correction (Entropy 4.53 bpp)

As shown in Figure 22, the residual pixel values have fallen inside a narrower range after the
correction, thus the residual has become more peaked around zero with less variance value. This level

has empirically achieved about 2.7% better decorrelation after the adaptive refinement.

4.3 Summary

The context modeling has been a crucial part in any image encoding system. It can adaptively
correct the fixed interpolation value based on image activity and depending on higher order
collected statistics.

JPEG-LS [1] uses the three differences between the nearby pixels i.e., gradients and quantize
their values. In HINT scheme, the same approach applies, but with some changes to adapt
with the multi-resolution framework.

The first level is entirely modeled and encoded using JPEG-LS, whereas the second level uses
three gradient components also but in different directions, to exploit the 360 degree
neighborhood availability.

The third and the last level uses four components, they are in general: 1) Real pixel value 2)
Prediction Error 3) Two gradients.

The context variables are updated and manipulated as similar as JPEG-LS [1] algorithm does.
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5 LOCMIC perceptual coding

5.1 Perceptual coding

Perceptual coding reduces the image file size by analyzing certain parts and activities in the
image such as: brightness, texture, fixation point and so on, to which the Human Visual
System (HVS) is sensitive. The HVS is a description of the eye, receptors, and psychological
processing of images in the human brain. Based on this definition, different models have been
proposed to characterize the HVS. An example of such model is the Just Noticeable Distortion
(JND) which is superiorly applied on the Hierarchal Interpolation scheme in this work.

In general, lossy or near lossless image compression allows a certain error or loss in the
reconstructed image quality, and accordingly, achieves higher compression ratios. In
particular, the visual lossless or the perceptual-based coding attempts to distinguish between
signal components in terms of their visibility and non visibility to the human receiver [7]. In
other words, perceptual coding allows further removal of perceptual redundant information by
adapting the coding scheme to the human perception [8]. The target is minimizing the bit rate
for a desired perceptual goal distortion. To achieve that, the masking proprieties of the HVS
shall be exploited by establishing a dynamic threshold of JND and Minimally Noticeable
Distortion (MND), based on psychophysical proprieties. That means, the Quantization Step
Size (QSS) is not fixed here as the conventional near lossless schemes, e.g., near-lossless
JPEG-LS. In JPEG-LS near lossless algorithm [1] the non adaptive QSS is given by Equation
(24).

QSS=2x NEAR + 1 (24)

In Equation (24), NEAR is the parameter that decides the maximum allowed deviation
between the original image and the reconstructed image.

In JND, the QSS calculation replaces the NEAR in Equation (24) by the calculated JND
values for each pixel, i.e., QSS=2xJIND(X, y).

The JND computation will be illustrated with equations in the next section.

In this work, a novel attempt has been presented to apply the visual lossless JND profile on

the HINT framework to achieve a perceptual coding version of LOCMIC.
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5.2 JIND profile

The JND profile provides a dynamic visibility threshold of distortion for images being studied
[8]. JIND profile has two main factors that affect the error visibility threshold. 1) The
background luminance 2) The texture masking effect. According to Weber’s law [7, 20], the
HVS is more sensitive to luminance contrast than absolute luminance value. More precisely,
“If the luminance of an eye stimulus is just noticeable from the surrounding luminance, the
ratio of just noticeable luminance difference is approximately constant”, said Weber [20].
Based on that, the high spatial heterogeneity in the image background makes the error less
visible, i.e., spatial masking. The calculation of the spatial masking is performed by weighting
each pixel as the sum of the horizontal, vertical and diagonal slopes at the neighboring pixels.
Because of the different HINT framework, some modifications have been introduced to the
original JND profile. The mathematical description of the JND profile is discussed in the next
subsections: For the first level (circles) the conventional JPEG-LS near lossless algorithm is
applied with different NEAR values, (e.g., 1, 2, and 3). The other levels have been
individually handled as follows.

5.2.1 Second level (stars) JIND

As discussed in Chapter 3, for each pixel to be predicted, four nearby pixels contribute to the
prediction. The modified JND profile starts by calculating the average gray level bg(x, y) of
these four neighbors using a 3x3 window as given by Equation (25). Then the maximum
weighted gradient (mg) is calculated using four operators G1, G4, G11, and G44 as shown in
Figure 23. The gradient operators are different from the original JIND profile to fit with the
HINT framework used in this work. Where G1, G11 detect the horizontal edges. G4, G44
detect the vertical edges. Then the JND calculation proceeds, f1 and f2 are calculated, where
1, f2 represents the spatial masking effects and the visibility threshold due to the background
luminance respectively. To realize that, the following Equations and operators are computed:

bg(x,y)=0.25%x1(x-1,y-1)+0.25%1(x-1,y+1)+0.25xI(x+1,y-1)+0.25xI(x+1,y+1) (25)

Gk =1/fxXiZ, ¥I1 I(x — i,y —j) x Gk, k=1,2, 11,22 (26)

* fis the summation of the positive operator weights
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mg=Max{|(GD)|, |(G2)I, |(G1D)], [(G22)[} (27)

f1(bg(xy), mg(xy))= mg(x,y) X a (bg(x,y)) + B (bg(x,y)) (28)
1/2
2(bg(x, y)=d T0 (1 - (%"7”)) +3 ifbg(x,y) < 127 29)
y X (bg(x,y) —127) + 3 ifbg(x,y) > 127
a(bg(x,y)) = bg(x,y) x 0.0001 + 0.115 (30)
B (bg(x, y)=A-bg(x,y) x 0.01 (31)

Where TO in f2 masks the visibility threshold when background gray level equals to zero, and
the slope A of the linear function relating the background luminance to the visibility threshold
when bg(x, y) is greater than 127. A represents the effect of the average amplitude of visibility
threshold due to the spatial masking effects. The initial values of these parameters are as

follows: T0O=17,y = %8, A= %

3 8 [ 3 3 [ ]
* * * *
3 8 ® 8 8 ®
* * * *
[ ® °® [ o [
Gl G4
3 8 ® 3 3 ®
* * * *
3 8 ® 8 8 ®
+* > Y >
® ® ® ® ® [
Gll1 G44

Figure 23 the gradient operators-Level2 (stars)
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G1 calculates the average luminance changes giving the priority to the upper horizontal
direction. G4 calculates the average luminance giving the priority to the left vertical
direction. While G11 calculates the average luminance changes giving the priority to
the lower horizontal direction. G44 calculates the average luminance giving the priority to the
right vertical direction. Empirically, we could claim that using the 3x3 window used in
detecting the edges has delivered good compression results with a perceptually
accepted image quality (see chapter 7). This claim is based on extensive experiments.
The experiments have shown, particularly in the HINT framework that the active area from

which the image texture is to be detected could be within the 3x3 window in natural images.

5.2.2 Third level (pyramids) JND

Likewise, the algorithm at this level starts also by calculating the background gray
average bg(x, y) as given by Equation (32).

Bg(x,y)=0.25%I(x, y-1)+0.25xI(x, y+1)+0.25xI(x+1, y)+0.25x1(x-1, y)

The operators here G2, G3 are also different from the original JND as shown in Figure
24.

[ 3 o [ ] 3 [

A |3 A 3| A A |3 A 3 |A

o 3 ([ o 3 (]

A X A | x A A | X A X A

o 0 0 [ o 0
G2 G3

Figure 24 . The gradient operators-Level3 (pyramids)

The rest of the formulations follow a similar fashion as in the second level and as

illustrated again here:
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Gk =1/fxXiZl, B2 I(x — i,y — ) x Gk, k=2, k=3

* f is the summation of the positive operator weights
mg=Max{|(G2)|, [(G3)[}

f1(bg(xy), mg(xy))= mg(x,y) X a (bg(x, y)) + B (bg(x y))

1/2
T0 x (1 - (bf‘i(;‘;”)) +3 ifbg(x,y) < 127

f2(bg(x, y)=
y X (bg(x,y) —127) + 3 ifbg(x,y) > 127

a(bg(x,y)) = bg(x,y) x 0.0001 + 0.115

B (bg(x, y)=A-bg(x,y) x 0.01

5.2.3 Fourth level (rectangles) JND

Similarly, the algorithm at this level starts by calculating the average gray level using

Equation (39).

Bg(x,y)=0.25%I(x, y-1)+0.25%I(x, y+1)+0.25%1(x+1, y)+0.25%1(x-1,y)

Four gradient operators, namely G1, G2, G3, and G4, have been used to capture the

spatial activity directions as shown in Figure 25.
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Figure 25 the gradient operators-Level4 (rectangles)

The mathematical formulations are the same with considering different gradient

operators directions:

Gk=1/fxXit, ¥I21 1(x — i,y — j) X Gk, k=1,2,3, 4

* fis the summation of the positive weights
mg=Max{|(G1)|, [(G2)],[(G3)[,|(G4)I}
f1(bg(xy), mg(xy))=mg(x,y) X a (bg(x, y)) + B (bg(x,y))

TO X (1 - (M))l/z +3 ifbg(x,y) < 127
f2(bg(x,y)= 127 ifbg(x,y) <

y X (bg(x,y) —127) + 3 ifbg(x,y) > 127
a(bg(x,y)) = bg(x,y) x 0.0001 + 0.115

B (bg(x, y)=A-bg(x y) x 0.01
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5.3 Summary

The JND is one of the known perceptual or visually near lossless compression models.
The aim is to have an adaptive quantization step size based on HSV and user perception
of the noise. In JND, there are two factors that affect the visibility error threshold: 1)
The spatial texture mask 2) The average background luminance.

Considering the framework used in this work, i.e., HINT, slight modifications have
been introduced to the JND original profile to fit with the structure of the algorithm at
each level. In particular, the medications should fit with the availability of symbols, i.e.,
pixels at each level and accordingly the gradient operators have been changed as shown
in the Chapter. The first level used the JPEG-LS [1] near lossless algorithm with
varying the NEAR parameter. In the second and the third level the original JND has
been applied with using only two modified gradient operators. Finally, the last level
(rectangles) has used the four gradients operators but with modifications already
justified.
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6 Multi-level Golomb coding schemes

6.1 Golomb coder

The high construction cost of Huffman code and the large computation resources
needed if adaptive coding algorithm is used have made Golomb coder an interesting
alternative. Golomb coder was originally proposed in [22]. It is a powerful realization
of the run-length coding and considered nearly optimal for coding of geometrically

distributed non-negative integers. The integer n is represented in terms of quotient
q:[%J, i.e., prefix and reminder (r) r=n-gqxm, i.e., suffix. For simplicity the divisor (m)

is chosen to be a power of two 2k and hence the Golomb coder is parameterized by (k).
The quotient is unary represented (e.g. an integer 3 is represented by 1110) and the
remainder is given by a binary representation using |logm]| bits. Consider the

following example when m=5, the code word of Golomb will be as shown in Table 2.

Table 2 Golomb code for m=5 [12]

n q r Codeword n g r Codeword
0 0 0 000 8 I 3 10110

1 0 ] 001 9 I 4 10111

2 0 2 010 10 2 0 11000

3 0 3 0110 11 2 1 11001

4 0 - 0111 12 2 2 11010

5 I 0 1000 13 2 3 110110
6 I 1 1001 14 2 < 110111
7 I 2 1010 15 3 0 111000

In general, when the image is being encoded, the input symbol is the mapped residual

e- and accordingly the code length is:
Length=|%;|+k+1 (46)
The effectiveness of using Golomb-Rice codes is the calculation of the parameter k for

a given sample or a block of samples. In JPEG-LS [1], the parameter k is estimated on

the fly for each error value using techniques discussed in the following sections.
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In this work, three Golomb-coding schemes have been used: 1) JPEG-LS based
method. 2) Multi-dimensional scheme using previous prediction error values. 3) Hybrid

scheme between the previous two approaches.

6.2 JPEG-LS based coding scheme (Scheme A)

The first approach for encoding prediction error values in this work is based on the
original JPGEG-LS Golomb coding approach [1]. In JPEG-LS, before encoding the

residual value, a mapping procedure is applied as illustrated in Equations (47), (48).

M(e) = 2|e| — u(e) (47)

life<0

“(e)z{o ife>0 (48)
Where 47 and 48 map the residual to its index as a sorted sequence in non-decreasing
order of probability as shown in Table 3.
Table 3. Mapping the residual values
Prediction residual Mapped residual
0 0
-1 1
1 2
-2 3
2 4
For each context in JPEG-LS (refer to Chapter 4), the accumulated sum of magnitudes
of the residual is stored in a register, A. While the accumulation of the corrected
prediction residual is stored in a register B. To cancel the bias, a context counter for
each occurrence of a context is kept in a register, N. The following procedure illustrates
how to select a code for the prediction residual et+1.:
Compute the parameter k as shown in Equation (49)
k = min{k’|2¥ N(Q) > A(Q)} (49)
a) If k>0, the code Ik is chosen. If k=0 and 2B>-N, code I’y is chosen. Else, code I""’g is
chosen.
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b) Referring to [1], and using the C code to compute k empirically, Equation (50) shows
that:

for( k=0; (N(Q)<<k)<A; k++) (50)

6.3 Multi-level/dimensional Golomb coding (Scheme B)

In this approach, the Golomb parameter k is adapted based on a context which collected the
image statistics from the previously encoded error values, i.e., from upper levels of the
hierarchy. Because of the availability of the nearby pixels in all directions, the context is
expected to have good prior knowledge about the currently processed pixel, hence higher
probability will be assigned during the coding process, i.e., a shorter code length is achieved.
Each level has its own adaption method. The first level (circles) -as discussed in Chapter 3- is
entirely encoded using JPEG-LS, thus, the same JPEG-LS adaption rules apply. The rest of

the levels adaption rules are illustrated in the following sections.

6.3.1 Second level (stars) adaption

As shown in Figure 25, this level could use the error values of the four nearby pixels to adapt
the Golomb parameter by that context. However, the error values, at this level, my not collect
sufficient statistics due to the low correlation between the pixel and its neighbors. Thus, an
attempt has been done to exploit all of the available four pixels to achieve a 4D adaption rule.
Equation (51) which is considered appropriate to geometric sources and works perfectly under
the assumption of a Laplacian-like residual. This Equation is based on the statistical mean of
the source to determine the parameter k. The mapping of residuals to non-negative integers
obeys Equations (47, 48). Because the natural images are considered locally stationary in
these four dimensions, i.e., corner pixels, the k value resulted from each of the four pixels

would give the same compression performance [15].
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Figure 26 the second level (stars) adaption map

As a result, the average of the four (k) values is computed as shown in Equation (51)

ki = max {0, [@H (51)

Where E(e) is the expectation value of the mapped error prediction value. From Figure 26, the
resulted K’s are: Ka, Kb, Kc, Kd. Using Equation (52), the average value is computed to
determine K.

K = [Ka+Kb+Kc+Kd]

4

(52)

6.3.2 Third level (pyramids) adaption

At this level, also four nearby error values could be used (i.e., left, right, upper, lower) of the
two last level (circles and stars). Figure 26 illustrates the used pixels.

o Ke o
A |Ka | A Kb | A
o Kd o
A | X A X A
° [ o

D Previously encoded error value
Figure 27 the third level (pyramids) adaption map
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Apparently, the collected statistics from these nearby error values should capture higher
dependency thanks to the higher correlation. The same k computation approach has been

applied at this level as shown in Equation (53).

ki = max {0, [2£E)) (53)

Where E(e) again is the expectation value of the mapped error prediction value. From Figure
27, the resulted ki values are: ka, kb, kc, kd. Using Equation (54), the average value is
computed to determine k.

(54)

Kk = [Ka+Kb+Kc+Kd]

4

6.3.3 Fourth level (rectangles) adaption

As discussed in Chapter 3, this level contains % of the original image pixel values. Thus, the
parameter k adaption could exploit the available nearby error values from all previous levels
(i.e., circles, stars and pyramids). The higher order statistics is typically more achieved at this
level. Therefore, the eight nearby error values have been used to form an 8D adaption method.

Figure 28 shows the used error values in the adaption process.

¢ B o6 =m o
Ka Kb Ke Y | A
Kd B Ke B [ ]
Kf |[ke |Kn * | A

o

Ij Previously encoded error value

Figure 28 the fourth level (rectangles) adaption map
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Likewise, the same k computation approach has been applied at this level as shown in
Equation (55).

ki = max {0, [2££E)) (55)

Where E(e) again is the expectation value of the mapped error prediction value. From Figure
27, the resulted k’s are: ka, kb, kc, kd, ke, kf and kh. Using Equation (52), the average value is
computed to determine k.

Kk = [Ka+Kb+Kc+Kd+Kb+Kc+Kd+Ke+Kf+Kg+ Kh]

8

(56)
6.4 The hybrid scheme

Scheme A has achieved a gain about 1.5% in compression performance over scheme B, in
general. While in some pictures (e.g., Cameraman, Mandrill), the scheme B has shown better
compression performance. Unfortunately, the used error values from previous levels have not
collected sufficient statistics to achieve much gain in compression in comparison with scheme
A in general. However, the good compression performance of scheme B on some images
(e.g., cameraman) has led to another adaption approach, namely the hybrid approach. The
hybrid approach aims to encompasses the advantages of both approaches by assigning scores
to each k determined from the above two schemes, (i.e., scheme A, scheme B) as given by
Equation (57).

Kavg = [0.75 X schemeA + 0.25 X schemeB]| (57)
The scores assigned have been empirically found to give the best compression results.
This approach has shown relatively similar compression performance with (scheme A)

but suffers from higher execution time in comparison with (scheme A) and (scheme B).

The performance and the time analysis will be discussed in Chapter 7.
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6.5 Summary

The last step in LOCMIC algorithm is coding the residuals, i.e., assigning a codeword.
Golomb coder has been chosen because it can achieve an optimal variable length
coding for the geometric-like sources [24]. Moreover, it is well suited to the adaptive
coding since only one parameter, i.e., k, needs to be adapted. The higher complexity of
the Arithmetic and Huffman coding has made Golomb an interesting alternative.

In this work, three different coding approaches based on Golomb coder have been
presented: 1) JPEG-LS based method. 2) Multi-dimensional scheme using previous
prediction error values. 3) Hybrid scheme between the previous two approaches.

The first approach has been found to give the best compression performance among the

three schemes.
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7 Experimental results

7.1 Lossless LOCMIC comparative evaluation

To evaluate the proposed algorithm compression performance in terms of bit rate, a

comparison with other representative lossless image compression algorithms in the

literature has been made. The evaluation is based on a known 8-bit gray-scale image

set. Table 4 shows this compression results in bits per pixel (bpp). The selected

algorithms are: 1) LOCO-I: A low complexity, context-based, lossless image

compression algorithm. 2) JPEG2000. 3) JPEG-LS. 4) SPIHT: A fast and efficient

image codec based on Set Partitioning In Hierarchical Trees. 5) CALIC: Context-

based, adaptive, lossless image coding. 6) KLOCMIC: “K” tuned average LOCMIC. 7)

CLOCMIC: Comprehensive LOCMIC. The proposed algorithms results have been

achieved using Scheme A in coding the images (refer to chapter 5). The compression

performance results of schemes 1-5 are from [24, 25].

Table 4. Comparative compression performance evaluation (bpp)

Image LOCO-1 | JPEG2000 | JPEG-LS | SPIHT | CALIC | KLOCMIC | CLOCMIC
Lena 4.25 4.30 4.24 4.17 4,05 4.27 4.26
Goldhill 4.73 4.60 4.47 4.75 4.67 4.60 4.60
Balloon 2.90 3.0 2.90 2.98 2.78 3.00 2.98
Airplane 4.59 4.01 3.80 4.50 4.85 3.98 3.97
Peppers 4.50 4.62 4.51 4.54 4.47 4.56 4.56
Mean 4.194 4.106 3.984 4.188 4.164 4.083 4.073

As shown in Table 3, the two proposed algorithms KLOCMIC and CLOCMIC have

achieved gain about 3% in compression performance over LOCO-I, about 1% over

JPEG2000, 3% over SPIHT, and 2% over CALIC.
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7.2 Decorrelation evaluation

To evaluate the prediction efficiency of the listed proposed prediction schemes in
Chapter 3, the first order entropy is used as a measurement. Table 5 shows the
comparison of three different proposed algorithms with the Median Edge Detector
(MED) fixed predictor. The proposed algorithms are: 1) MLOCMIC: Median value
LOCMIC. 2) KLOCMIC: “K” tuned average LOCMIC. 3) CLOCMIC: the

Comprehensive LOCMIC.

Table 5 First order entropy comparison (bpp) on known image set

Image MED MLOCMIC KLOCMIC CLOCMIC
Proposed Proposed Proposed
Lena 4.90 4.75 4.75 4.75
Lennagrey 4.56 4.41 4.41 4.40
Balloon 3.12 3.06 3.08 3.06
Mandrill 6.28 6.30 6.30 6.30
Peppers 4.95 4.64 4.65 4.64
Noisesequare 5.73 5.56 5.55 5.55
Mean 4.92 4.79 4.79 4.78

The comparison has also been with the conventional HINT [18] on another known
image set. To see the decorrelation efficiency of the proposed prediction model over the

original HINT, look at Table 6.

Table 6 First order entropy comparison (bpp) with multi-resolution schemes

Image Conventional CLOCMIC
HINT [31] Proposed
Barb 5.41 5.26
Barb2 5.47 5.26
Balloon 3.29 3.06
Gold 4.90 4.74
Hotel 5.04 4.74
Mean 4.82 4.61
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As shown in Table 5, 6, the compression performance gain of the proposed algorithms

over MED is about 2.8% and about 4.5% over the conventional HINT.

7.3 The context model effectiveness

To see the effectiveness of the context model (discussed in chapter 4) which has been
used to correct the prediction, the following approach has been applied: two levels are
individually taken to measure the prediction correction effect on some kwon image set.
The third level (pyramids) and the last level (rectangles) residuals, before and after the
correction, have been measured by the first order entropy. Figure 29 illustrates the third

level correction efficiency.
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Figure 29 the third level (pyramids) context based correction effect

The algorithm that has been used in this experiment is the KLOCMIC. Figure 30

illustrates the fourth level (rectangles) correction effect based on the first order entropy

in (bpp).
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Figure 30 . The fourth level (rectangles) context based correction effect

The enhancement achieved after the prediction correction is about 1.66% in terms of
the first order entropy (bpp) at the third level (pyramids) and 2.73% at the fourth level

(rectangles). The overall efficiency is about 2.2%.

7.4 The coding schemes evaluation

As discussed in Chapter 6, three different coding schemes have been presented in this
work. They are: 1) JPEG-LS based method (scheme A). 2) Multi-dimensional scheme
(scheme B) using previous prediction error values. 3) Hybrid scheme between the
previous two approaches. Table 7 shows a comparison between these three different

schemes on the same image set and based on the bit rate (bpp)

Table 7 the coding schemes comparison (bpp)

Image KLOCMIC KLOCMIC KLOCMIC
Scheme A Scheme B Hybrid
Lena 4.27 4.29 4.26
Goldhill 4.60 4.66 4.60
Balloon 3.00 3.06 3.01
Airplane 3.98 4.04 3.99
Peppers 4.56 4.64 4.54
Mean 4.082 4.138 4.08
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As shown in Table 7, the compression performance of both Scheme A and the hybrid
scheme is similar. However, the hybrid scheme suffers from higher execution time

among the three coding schemes presented in this work.

7.5 The perceptual LOCMIC evaluation

The simple and the widely used quality metrics are the Mean Squared Error (MSE) and
the Peak Signal to Noise Ratio (PSNR) because they are appealing and easy to
compute. But they are not very well matched to assess the perceived visual quality.
Thus, an interesting alternative has been proposed in [27] which is the Structural
SIMilarity (SSIM). The SSIM can be viewed as a quality measure of one of the images
being reconstructed, provided the other image is regarded as the original. The SSIM
consists of three functions, each of which approximates a certain aspect of the pixels.
More details about the implementation point of view can be found in [28]. Table 8
shows the compression performance of the perceptual LOCMIC with the SSIM metric
to evaluate the reconstructed image quality.

Table 8. The compression, quality performance of the perceptual LOCMIC

Image | Perceptual LOCMIC SSIM index
Lena 2.04 0.993
Airplane 1.91 0.996
Goldhill 2.19 0.992
couple 1.73 0.973
Camera 2.30 0.981
Barb 2.41 0.993
Peppers 2.17 0.992

The perfect value of the SSIM is 1 and achieved when the reconstructed image does not
differ from the original image.
To evaluate the compression performance with the near lossless JPEG-LS, the NEAR

value is set to 2. Table 9 shows the comparison based on bit rates (bpp)
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SSIM

Table 9. A compression, near lossless JPEG-LS and the perceptual LOCMIC

Image JPEG-LS, NEAR=2 Perceptual LOCMIC
Lena 2.38 2.04
Airplane 1.84 1.91
Goldhill 2.33 2.19
couple 1.83 1.73
Camera 2.28 2.30
Barb 2.53 241
Peppers 2.29 2.17
Mean 2.21 2.11

As shown in Table 9. The perceptual LOCMIC has gained about 4.7% in compression
performance in comparison with the near-lossless JPEG-LS at NEAR value of 2.
However, to have a fair comparison in terms of reconstructed image quality based on
the SSIM metric, Figure 31 shows that comparison between the perceptual LOCMIC
and JPEG-LS at nearly the same bit rate.
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Figure 31 Comparative (quality-compression) performance between near lossless JPEG-LS and perceptual LOCMIC

To have a look on the reconstructed picures, Figure 32 and Figure 33 show the orignal and the
reconstructed mandrill and peppers respecicvely after applying the perceputal LOCMIC.
Apperantly, the reconstricted pictures have the same percepual quality as the orignal,

especially at this resolution shown in Figure 32. 33.
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(@) (b)

Figure 32 a) Original mandrill. b) Reconstructed mandrill with SSIM=0.9955 and bit rate of 3.46 bpp

(@) (b)

Figure 33 a) Original peppers. b) Reconstructed peppers with SSIM=0.9923 and bit rate of 2.18 bpp

7.6 Prediction time analysis

In recent years, the algorithm complexity has been a main concern in many embedded
systems (e.g. digital cameras). With the rapid growth in photography and imaging
techniques, the need for storing higher resolution images with huge file sizes has

immerged. Hence, developing high performance image compression schemes with low
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complexity, e.g., short execution time, has become a challenge. To measure the
execution time, the MATLAB offers special command for that which is “tic, toc”.

The experiments have been conducted on a core 2 duo, 2.00 GHz DELL personal
computer, with 2 GB installed RAM and 32 bit window vista. The experiments
followed some rules: 1) the prediction phase is the target of the evaluation. 2) The
algorithm is executed six successive times on the same picture. 3) The average of the
six-time executions on one image is calculated. Figure 32 shows an execution time

comparison between the MED predictor and the KLOCMIC predictor in seconds.

Prediction phase execution time
15
13
12
11 // \\
9
] 7 r o= PN
3 6
5
3
1
0
Lena Balloon goldhill peppers Airplane
=—MED 7.24165 |12.0998008(12.11180875|7.25525775|7.13526225
=li=KLOCMIC|2.19418175| 2.820339 2.838491 1.628797 1.581966

Figure 34 Prediction execution time comparative evaluation (seconds)

The Figure above shows that KLOCMIC predictor has achieved an excellent gain over
MED predictor in about 75%.

The KLOCMIC predictor is based on very simple computations (i.e., multiplication,
addition, shifting) and does not have a switching formula to detect edges in different

directions which in turn may add to the computation time.
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8 Conclusions and future work

8.1 General remarks and conclusions

In this work, the multi-resolution image compression scheme has been found to be an
interesting alternative of the conventional image compression schemes in some applications

where the low complexity and the high compression performance are needed.

8.1.1 Remarks on the LOCMIC prediction model

In this work, different prediction schemes have been presented. The KLOCMIC,
MLOCMIC and CLOCMIC have shown the best compression performance among
other implemented methods. Moreover, the execution time of the proposed schemes has
been minimized thanks to the simple formulas used in predicting the pixel values.
KLOCMIC and MLOCMIC have not used any edge detection formula like MED.
However, the powerful technique of clamping the average by the median value has
shown a good prediction accuracy over known prediction algorithms, e.g., MED, MLP.
Furthermore, The HINT framework has been found to be a flexible framework with
which one can use non-causal pixel values in the prediction to achieve better inspection
on the predicted value. The CLOCMIC has encompassed the advantage of detecting the
edge direction like MED and the elegant formulas used in KLOCMIC and MLOCMIC.

8.1.2 Remarks on the perceptual LOCMIC

In chapter 5, a superior integration of the HINT framework with the JND scheme to
achieve a perceptual, i.e., visual coding has been proposed. Empirically, the use of a
3x 3 window size instead of a 5x 5 window size as implemented in the original JND
and applied in [15, 20] to calculate the gradient operators, has approximately given the
same picture quality using SSIM metric, but with better compression performance in
about 2.5%. The interpretation is that on the HINT framework, the area of active pixels
has been empirically analyzed to be within the 3x 3 window centered at the middle

pixel, in almost of the nature images.
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8.1.3 Remarks on the coding schemes

In this work, three different approaches to the Golomb parameter K adaption have been
presented. Experimentally, using (scheme A) which is the JPEG-LS based method has
been found to give the best compression performance among the three approaches
(about 1.2% better than scheme B). On the other hand, (scheme B) which is based on
multi-dimensional adaption rules, performed well in terms of execution time (about 2%
faster than (scheme A). Finally, the hybrid scheme has achieved similar compression
performance as (scheme A), but suffered from slower execution time among the three
approaches. The reason is that the hybrid scheme uses vast of computation operations

(e.g. Expectation value calculation, more than ten averaging operations).

8.2 Future work

The future work will be investigating the potential of a parallel LOCMIC version. The
idea is as shown in Figure 35 and Figure 36. At the second level (stars) the interpolation
could be done in parallel with the third level (pyramids) using two different threads.
This may lead to potentially minimized throughput. However, the main drawback of
this approach is that fewer pixels can be exploited in the interpolation at one of the
threads. In Figure 35, particularly in Thread 1, the second level will be forced to use
only two nearby pixels, namely the directly above and below pixels. Hence, the
prediction accuracy might become worse in some images. In Thread 2, the normal
interpolation as discussed in chapter 3 takes place, i.e., the stars pixels are interpolated
using the four corner (circle) pixels. The total number of levels will become three.
Specifically: 1) The circles 2) The stars and pyramids as one level. 3) The rectangles
level. Figure 35 illustrates the parallelization model at the second level and the

interpolation order in each thread.
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Figure 35 Parallelization model at the second level

The other possibility is to apply the parallelization at the third level where pyramid
pixels and rectangle pixels are interpolated simultaneously in Thread 1, 2 respectively.
The drawback of less nearby pixels availability is not presented well at this level
because there would be four nearby pixels in each thread, as shown in Figure 36, to be
exploited in interpolating the remaining pixels.
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Figure 36 Parallelization model at the third level

The increasing availability of parallel computing architectures and the massive volume
of scientific data being produced make the parallel data compression a good subject of

research. Thus, the next research will be directed to a parallel version of LOCMIC.
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