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Abstract

Many embedded systems, especially real-time systems, are used in safety-critical applications
such as cars and aircraft. The consequences of different scheduling algorithms for such systems
have to be properly understood. Software which simulates scheduling processes supports
the research and development of new scheduling policies. It may be used for educational
purposes, as simulation and visualization enhance the understanding of the consequences of
scheduling decisions. This thesis introduces new, flexible, and extensible discrete event-driven
simulation software. The software focuses on but is not limited to scheduling policies primarily
used in real-time and embedded systems. Contrary to most existing scheduling simulators,
it synchronously simulates and visualizes the current simulation result. In order to inspect
the current scheduling situation in closer detail, the software is designed to allow pausing the
simulation automatically on the occurrence of specific points of interest or manually at an
arbitrary time. The simulation model is specified by a human-readable file which is loaded by
the software. During the simulation, elements are added to the simulation model and each
element is visualized. The simulation meta-model is designed to support a variety of system
configurations. It supports shared resources with several units as well as multiple processing
units. A set of scheduling policies and resource access protocols for single-core systems as
well as a basic multi-core protocol were implemented and demonstrate the functionality of the
software.
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1 Introduction

1.1 Motivation

In 2010, more than 98% of all produced processors were used in an embedded context [BBB+10].
These embedded computers are not visible to the user at first glance; however, their correct
function is essential for the whole system to work properly. Many embedded systems are used
in critical applications, where a failure would lead to severe consequences.

Apart from computational correctness, it is often required that the result is available within
strict time constraints [BW01]. Such systems are referred to as real-time systems [BW01].
The verification of their correct function is of paramount importance if they are used in
safety-critical environments. To guarantee compliance with timing requirements in systems
with a limited number of processing units and resources shared by tasks, special scheduling
policies are necessary.

In recent years, the number of processing units, or cores, per processor has increased not only
in conventional, but also in the embedded environment [DB11]. Many restrictions which hold
for systems with only a single core do no longer apply for multi-core systems. Thus a new set
of problems arises, especially in the field of real-time scheduling.

To ease the research and development of new scheduling policies solving such problems, software
tools which simulate the scheduling process and are not specific to only one policy have been
created since the end of the 1990s [GBA+97]. Such tools can also be used for educational
purposes, where a simulation and graphical representation enhances the understanding of
otherwise abstract consequences.

Some of the existing simulation tools already support system models containing shared resources
and multiple cores or allow new scheduling policies to be added. However, almost all existing
simulation tools are decoupled from a visual representation of their results. They either do
not provide a visualization at all and assign this job to other software products, or they
generate a visualization after the simulation result has been calculated. However, presenting
a visualization synchronously to the simulation relieves the user of the need to specify the
time and duration of the part of interest as long as the simulation can be paused for closer
examination at any time. Additionally, a “live” representation showing the scheduling decisions
at original speed or in slow motion is more demonstrative than a static visualization.
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1 Introduction

1.2 Objective

The aim of this work is to develop a software to simulate and visualize arbitrary scheduling
processes, especially in real-time embedded systems. The input elements of the simulation and
their properties have to be file-oriented in a format that is easily maintained by humans.

The software has to support periodic and sporadic tasks, shared resources, and the following
scheduling policies:

• cyclic executive

• fixed-priority preemptive with

– simple priority inheritance

– transitive priority inheritance

– Original Ceiling Priority Protocol (OCPP)

– Immediate Ceiling Priority Protocol (ICPP)

• Eclipse Modeling Framework (EMF)

Apart from an appealing and informative graphical representation, the simulation and the
visualization of the simulation results have to be in synchronization. It must always be possible
to pause the simulation, inspect or discuss a certain event like a scheduling decision in detail,
and continue afterwards. In addition, the simulator has to recognize such events itself and
notify the user of them. Such points of interest could be a deadline miss or a priority inversion
while accessing a shared resource. Of course, the user has to be able to disable any of these
automatic pause conditions at any time in order to concentrate on a specific detail.

A very important requirement is the extensibility of the software to be built. It must be
possible to define an arbitrary number of cores, tasks, and shared resources. Furthermore, it
has to be possible to add new scheduling algorithm implementations to the simulation software.
To support such extensions, a software architecture of high quality is imperative.

In order to support multiple platforms, the chosen programming language is Java.

1.3 Structure

The remainder of this thesis is structured as follows. In order to establish a common notation,
the required terms are defined in chapter 2. The project management and software engineering
methods applied in this thesis are introduced in chapter 3. An overview of existing simulation
and visualization software of scheduling in real-time systems is given in chapter 4. Before
designing the program in chapter 6, existing frameworks and libraries from which the software
could benefit are evaluated in chapter 5. Chapter 7 deals with implementation details of the
software. Some key aspects and the functionality of scheduling policies implemented during
the development of this project are presented in chapter 8. Before concluding the work and

14



1.3 Structure

discussing topics of future research in chapter 10, the validation and test of the program are
described in chapter 9.
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2 Definitions

This section introduces and defines terms in order to establish a common notation. These
elements include embedded systems, real-time systems, tasks, cores, resources, and schedulers.

2.1 An Embedded System

An embedded system is an information processing system encapsulated in a fixed context,
dedicated towards a predefined functionality, and mostly not directly visible to the user [Mar06].
Typical contexts where embedded systems find application in are transportation systems like
cars, trains, or aircraft as well as production and process control systems. Telecommunication
equipment like Internet routers as well as consumer electronics like smart phones, dish washers,
or TVs often contain embedded systems, too.

2.2 A Real-Time System

Many embedded systems must meet real-time constraints. Such systems are called real-time
systems. According to Burns and Wellings, a real-time system is defined as “any information
processing activity or system which has to respond to externally generated input stimuli within
a finite and specified delay” [BW01, p. 2].

In consequence, the correctness of a real-time system depends not only on the logical correctness
of the computation, but also on the time at which these results are calculated [BW01].

For example, if the air bag electronic control unit (ECU) of a car does not respond to crash-
indicating sensor signals within a given time span, i. e. the deadline, it might have fatal
consequences for the passengers. If the signal decoder in a digital TV does not decode the
input stream within a certain time, the output might be disruptive and unpleasant to watch.

The former is a typical example of a hard real-time system. If such a system misses deadlines,
the consequences are serious and hazardous. The latter is an example of a soft real-time
system, where occasionally missing a deadline can be accepted [BW01].
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2 Definitions

2.3 Task

The functionality of a real-time system is provided by the software controlling the system’s
hardware and peripherals. Typically, several jobs are handled by a single embedded system,
e. g. controlling the mechanical parts of a washing machine and displaying the left-over time of
the washing program. In order to encapsulate the different jobs and enhance reuseability and
maintainability, the jobs are modularized and each module is called a task.

In other words, “a task is a software entity or program intended to process some specific input
or to respond in a specific manner to events conveyed to it” [Nis97, p. 180].

A task typically consists of a sequence of commands, which include executions and resource
interactions. An execution command consists of an arbitrary sequence of instructions, whereas
each instruction must be part of the processor’s instruction set. A resource interaction takes
place if a sequence of instructions is nested between a previous resource request command and
a succeeding release resource command.

Tasks occur either periodically or sporadically [Liu00, p. 40]. Whilst periodic tasks repeat at
fixed times like multiples of a timer interrupt, sporadic tasks arise at random times, like an
interrupt from an external sensor [BW01, p. 433]. As mentioned in the previous section, a
real-time environment imposes strict timing requirements which have to be met for a successful
execution. These requirements are taken account for by assigning a deadline to a task [Liu00,
p. 41]. Sporadic tasks are called aperiodic, if they have a soft or no deadline instead of a hard
deadline [Liu00, p. 42].

During each periodic or sporadic instance of a task, different states are traversed. The states
and transitions used in this thesis are an adaption of the basic state diagram for Ada tasks
presented by Burns and Wellings in [BW07, p. 181]. The state diagram is depicted in
figure 2.1 on the facing page.

The default state of a task is non-existing, which means that the scheduler is totally unaware
of its existence. A task comes into existence at a predefined time if it is periodic, or as soon
as an external event or interrupt occurs if it is sporadic. The creation of a task is usually
performed by the operating system (OS), which allocates memory space to the task and loads
its code. Subsequently, the task is in the state created. The scheduler is now responsible to set
the state of the task to ready when the task is prepared to be executed. Depending on the
scheduling policy, one of the ready tasks is selected to be executed. The state of this task is
set to running. If there is a higher priority task to execute while the task is currently running,
the scheduler might preempt the task and set its state to ready again. If the task requests
access to a shared resource which is currently locked by another task, it cannot continue with
its execution and is set to the blocked state by the scheduler. Once the shared resource is
unlocked, the task is set to the ready state again. As soon as the task finishes its execution,
its state is set to terminated. The scheduler has to decide when to delete the task totally, i. e.
set its state to non-existing.

The transition from the state blocked to the state ready is required if a blocked task is waiting
on a lower priority task which itself is preempted by an even higher priority task. According to
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the definition of direct blocking, the state of the blocked task is changed to ready, too. More
information about direct blocking is given in section 8.8 on page 80.

Created

Ready Running

Blocked

Terminated

Non-Existing

Figure 2.1: The state diagram of a task. Solid lines represent normal state changes, dashed
lines represent state change in case of an exception.

In case an exception occurs or the task is “killed” from the outside, the task state has to
be changed to terminated, independent of the state it was in before. In the figure 2.1, these
transitions are indicated with dashed lines in contrast to the previously discussed, regular
transitions.

2.4 Core

Since the invention of multi-core processors, it seems to be reasonable to use the term core for
the processing unit of a system instead of the term processor.

When a task is in the state running, its commands are executed by the core it is scheduled on.
If there are multiple tasks, at any given time only one task can physically be executed on one
core. The functionality of the system might, however, require multiple tasks to be executed
at the same time, e. g. a modern control unit of a combustion engine has to control the fuel
injection and at the same time it has to provide diagnostic data. Given only one core, the
only way to execute both tasks concurrently is to switch between the executions of both tasks.
Therefore, “the term concurrent indicates potential parallelism” [BW07, p. 180]. Since the
tasks might have deadlines, the scheduler has to take care that the switching is performed at
reasonable times.

If more than one core is available in the embedded system, tasks can run truly in parallel.
Such systems are referred to as multi-core systems. In general, as many tasks as there are
available cores in a multi-core system can execute in parallel.
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2.5 Resource

In contrast to a core, a resource does not execute the instructions of a task; however, it is
necessary for the task to make progress [Liu00, p. 35]. Typical examples of resources are
memory, semaphores, sensors, and actuators. When two or more tasks access one resource, the
resource is called a shared resource and special attention is required. Suppose a task writes a
calculation result to a memory location and is preempted by another task, which overwrites
this memory location. Once the first task is running again, the further calculation is incorrect
due to the overwritten value read from the memory. Such situations are called race conditions.
Depending on the memory model of the programming language or platform, the consequences
of a race condition might be completely undefined, which is why it has to be avoided under
any circumstances in most cases.

That is why shared resources are guarded with constructs like semaphores and have impact
on the scheduling policy, too [BW01]. In the example above, if the scheduler would not have
preempted the first task because it had locked the memory or there had been a semaphore
protecting the memory location, the race condition could have been avoided.

A shared resource can also contain multiple units, e. g. a printer pool with multiple printers
[Liu00, p. 36]. In case there are fewer tasks than units, the access to the shared resource still
has to be managed in order to ensure that two tasks never use the same unit simultaneously.

2.6 Scheduler

The term scheduling policy or scheduler was frequently used in the previous sections. In general,
the scheduler is part of the OS and its main purpose is to determine which task is executed on
which core at which time [Tan09]. Even if there is no OS at all, e. g. in very simple systems
like a washing machine, a scheduling policy is still required to allow the system to contain
more than one task.
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This project includes the development and implementation of a new software product of
significant size. In order to guarantee a successful and in-time delivery, the project has to be
thoroughly managed. This chapter presents the project management and software engineering
methods which were applied for that reason.

3.1 Project Management

Since the software is developed by only one person, heavy-weight project management methods
like the classical plan-driven approach seem inappropriate, as they require too many resources.

Agile project management methods try to avoid time-consuming processes and can be combined
with agile software development [Som10]. A well-known agile project management method
is called Scrum. It establishes three phases: the planning phase, the sprint cycles, and the
project closure phase.

During the planning phase, general objectives are assessed, and the software architecture
design is created. Arbitrarily many sprint cycles follow this first phase, each of which has a
typical duration of about two to four weeks. Within each cycle, the features to be developed
are selected in cooperation with the customer and based on the results of the planning phase.
These functionalities are then implemented and afterwards presented to the customer. If
the customer is not satisfied with the result, the relevant work items are newly prioritized
and become part of the next cycle. As soon as all features are implemented, the project
closure phase is entered and the project is completed by writing the documentation and user
manuals and by assessing the lessons learned of the project. More information about project
management methods and Scrum is given in [Som10].

This project was managed by methods derived from Scrum. At the beginning, the general
objectives, described in section 1.2 on page 14, were discussed. Regular meetings with the
customer, i. e. the supervisor, were arranged, which included a presentation of the current
results and a discussion of the requirements and features to be implemented next.

3.2 Software Engineering Methods

The initial requirements were formulated by just a few bullet points. Experience shows that
some of these points might be subject to change during the development of the software, e. g.
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because the formulation is ambiguous, or new requirements have to be added. To cope with
these changes, special software engineering methods were applied.

3.2.1 Prototyping

One of the employed techniques is prototyping. A prototype is an initial version of a software
used to demonstrate concepts and test design options [Som10]. The rapid, iterative development
is used to discuss the requirements with the customer and to show the current progress.
With the help of the prototype, the customer might get new ideas for requirements and
recognize shortcomings in the product. Prototyping goes hand in hand with Scrum, the
project management method applied for this project, which requires regular presentations and
discussion of intermediate results.

3.2.2 Incremental Delivery

Incremental delivery is closely related to rapid prototyping. When a subset of the system
functionality is ready, the current version of the software is delivered to the customer who will
examine it. This way, the customer can decide about the importance of the different features.
During the development of an increment, requirement change requests may arise but are saved
for the next increment and not implemented directly. [Som10]

The incremental delivery approach has difficulties if the software replaces an existing system
or is dependent on special facilities like data bases or special hardware [Som10]. Fortunately,
that is not the case for the given project.

3.2.3 Continuous Integration

As a part of agile software engineering methods, continuous integration was carried out during
the development. Continuous integration involves building the whole software frequently even
after small code changes. The build process typically includes software tests and documentation
generation. [Som10]

There exist different software tools to automate the build process, like Apache Maven, Hudson,
CruiseControl or Apache Ant. Hudson and CruiseControl are both rather complex web-based
services. Apache Maven’s principle of convention over configuration imposes constraints on the
folder hierarchy. This is why by using Apache Ant, which is also used internally by Eclipse, a
very flexible solution has been chosen to automate the software building process.
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There already exist several projects to simulate or visualize a schedule of tasks. Among these,
some concentrate on business projects or production schedules and therefore are not considered
relevant. This chapter gives an overview of existing software for simulation and visualization
of scheduling on OS level and presents an evaluation of its features.

4.1 Schedule Visualization Projects

Among the projects which focus on task schedules as they are typically generated by an
OS, some only provide visualizations. The schedule itself has to be created by other means
beforehand, e. g. by augmenting a scheduler to generate a trace or by simulation. Since the
visualization is an important aspect of this work, some of these projects shall be discussed in
the following.

4.1.1 Jedule

A program which presents an existing schedule graphically is called Jedule. It provides a
visualization of given results in a custom Extensible Markup Language (XML) format. The
XML file has to be created beforehand as explained above. Jedule aims to generate an overview
of the whole schedule of a parallel program. It is written in Java and published under the
GNU’s Not Unix (GNU) General Public License (GPL).[HHS10]

4.1.2 Pajé

Pajé is a visualization tool for parallel applications running on distributed systems. Its software
architecture consists of components connected in a data flow graph to facilitate the extension
of Pajé. In order to visualize the schedule, an external tool is needed to generate a trace of
the investigated application. This trace is then imported and passed to a simulator, which
will produce thread states, simulate communications and generate concurrent primitives like
semaphores which are finally displayed. The visualization can be inspected in detail, as it
shows additional information about each event. Pajé is written in Objective C and is published
under the GPL.[Ker00]
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4.1.3 Summary

Other projects like the Visual Trace Explorer (ViTE) [CFJ+12] or gltracevis [Lef09] have
similar functions to the previously discussed programs.

Among the presented projects, some have interesting features as well as appealing and interactive
graphical representations. However, none of them focuses specifically on a real-time and
embedded environment.

4.2 Schedule Simulation Projects

None of the projects discussed in the previous section is able to generate the data to be
visualized itself. Nevertheless, there are projects which mainly focus on simulation. In the
following, some of these which concentrate on real-time scheduling shall be presented in the
chronological order of their first publication.

4.2.1 STRESS

STRESS is one of the first notable real-time simulation projects for arbitrary task sets. It focuses
on analyzing and simulating the behavior of hard real-time safety-critical applications. STRESS
consists of a closed simulation environment and provides its own programming language, also
called STRESS. With this language, the system configuration including processors, networks
to connect the processors, tasks, and even the behavior of the tasks as well as semaphores
can be defined. The simulation environment allows tasks to control other tasks and thus it is
possible to define one’s own schedulers with STRESS. Nevertheless, it is not possible to define
tasks with soft deadlines.[ABRW94]

Although written in 1994, it already provides a graphical user interface (GUI) and a graphical
representation of a previously simulated schedule as visible in figure 4.1 on the facing page.
However, compared to the visualization projects discussed in section 4.1 on the previous page,
the GUI does not represent the state of the art anymore. Unfortunately, no newer publication
nor any sources of the project are available.

4.2.2 GHOST

The General Hard real-time Oriented Simulator Tool (GHOST) is a real-time scheduling
simulator. As one of the first of its kind, it supports hard, soft and no deadlines as well
as resource allocation protocols. Tasks can be grouped to classes and each class can be
handled by its own task scheduler. The superior class scheduler selects the class and invokes
the respective task scheduler. Apart from a number of existing scheduling policies, new
scheduling algorithms can be added by specifying them in C. GHOST also provides a graphical
representation of the simulated schedule. The simulator can run in a time- or event-driven
manner. However, GHOST only supports single-core systems and the schedule visualization
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Figure 4.1: An overview of the STRESS GUI, taken from [ABRW94].

lacks detailed information compared to other projects. It is implemented in C and not publicly
available.[GBA+97]

4.2.3 RTSIM

RTSIM is a framework to perform discrete event simulations of real-time control systems.
These systems consist of one or more nodes connected by a network. RTSIM supports shared
resources and comes with a GUI to specify the system to be simulated and to view the results.
As a framework, the users can implement their own scheduler, too. Before the simulation
starts, three description files, which were generated from the GUI or manually, are translated
into C++ code and compiled and linked to the library. RTSIM is written in C++ and the GUI
is implemented in Java. It is published under the GPL. [CBLL98] On the project’s website,
the Java GUI is no longer available but instead a C++ implementation of the GUI.[BL11]

4.2.4 FORTISSIMO

FORTISSIMO is an open real-time scheduling simulation framework implemented in C++. It
offers a predefined software architecture for work load generation and task dispatching. In
order to use the framework, a scheduling class has to be implemented and integrated into
the framework. The result of the simulation is processed by so-called secretaries, which are
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informed whenever an event occurs and which generate statistical data as well as a graphical
visualization. Although it supports task dispatching for multiple processors, it does not offer a
possibility to define shared resources nor does it provide a GUI.[KAK00]

4.2.5 MAST

A comprehensive software to analyze different real-time schedulers is called MAST. It uses
theoretical approaches to test the schedulability of a given task set, using appropriate heuristics
for multi-core systems. The system model can be created within the software or via MAST-
UML, a Unified Modeling Language (UML) meta-model which allows the usage of external
UML modeling tools. Models are saved in a special-purpose text format or in an XML-based
format.[HGGM01]

Figure 4.2: The results of an example simulation by SIM-MAST.

SIM-MAST, depicted in 4.2, is an additional tool for simulating the behavior of existing models.
However, this tool does not provide a graphical representation of the simulated results. MAST
and SIM-MAST are written in Ada and use GTKAda for their GUIs. Both are published
under the GPL.[Gon12]
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4.2.6 RTsim

RTsim is a simulator for real-time task scheduling. Its main purpose is to support teaching.
RTsim includes a variety of scheduling algorithms including priority ceiling protocols, and it
supports single as well as multi-processor systems. The results are visualized by a Gantt chart
and statistical values.[MMN01] Unfortunately, the source code is not available nor does the
project’s website provide any further documents or the program itself.[Man06]

4.2.7 VizzScheduler

Another scheduling visualization project is called VizzScheduler. It is part of a framework
to develop and evaluate scheduling algorithms for the LogP cost model. The VizzScheduler
provides a task graph diagram and Gantt chart of a given task set scheduled by an arbitrary
scheduler. The scheduler is connected via the Java Debug Interface to update the visualizations
whenever a breakpoint is passed. This allows a “live” view and a detailed controllability of a
running scheduler.[LL01] The project is written in Java but unfortunately not open source
and no longer maintained since 2002.

4.2.8 ARTISST

ARTISST is a Real-Time System Simulation Tool. It uses an event-driven simulation framework
and allows to model the inner control flow of a task. To increase the simulation quality, the
operating system costs such as context switching times are taken into account. The result
of the simulation is presented as a chronogram or by statistical values. However, it neither
supports multiple cores nor the handling of shared resources. ARTISST is implemented in
C++ and open-source without a specific license yet.[DP02]

4.2.9 Cheddar

Similar to MAST, Cheddar can theoretically analyze real-time schedulers but is also capable
to simulate and visualize them directly.

It comes with its own domain specific language (DSL) to model the system properties such as
processors, tasks, and shared resources. However, it also supports the Society of Automotive
Engineers (SAE) Architecture Analysis & Design Language (AADL), which has an Ada-like
representation. Cheddar’s own DSL is based on XML. Although AADL supports an interchange
format based on XML, Cheddar imports and exports AADL directly. It also supports the
definition of several processors, however, Cheddar currently supports only multi-core Rate
Monotonic Schedulers (RMSs) with rather simple partitioning strategies.[Sin12]

For single-core processors, Cheddar’s library offers a variety of fixed and dynamic priority
schedulers like the RMS, the Deadline Monotonic Scheduler (DMS) and the Earliest Deadline
First (EDF) scheduler. Other scheduling algorithms can be defined in its own, Ada-like DSL
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Figure 4.3: The Cheddar software displaying a simulation of a RMS with three tasks.

which is interpreted by Cheddar at runtime. Like MAST, Cheddar is written in Ada and uses
GTKAda for its GUI, as displayed in figure 4.3. It is published under the GPL.[SLNM04,
SPD08, MSH11]

4.2.10 Realtss

Realtss is an open-source real-time scheduling simulator, which focuses on teaching and research.
The application is written in the Tool Command Language (TCL) and new schedulers can
be added by implementing them in TCL or C. It offers a GUI to configure the simulation
and display statistical results. With the help of an external tool called Kiwi, the schedule can
also be displayed graphically. Realtss supports soft and hard deadlines and shared resources
accessed by mutexes. It is released under the GPL.[DBC07]

4.2.11 RTSSim

RTSSim is a simulation framework for embedded systems, which focuses on timing and resource
usage. The simulation model is expressed in C code, such that each task is a C program executed
within a sandbox environment. The model has to be compiled and linked to the framework.
However, multiple cores are not supported and the only scheduling policy is preemptive
fixed-priority which allows to change the task priorities at runtime. The simulated schedule
can be visualized with the help of an external software called Percepio Tracealyzer.[Kra09]
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4.2.12 Alea 2

Alea 2 is a simulation and visualization tool based on GridSim. GridSim itself is an event-
based modular Grid simulation toolkit based on an event simulation library called SimJava.
It allows to simulate distributed applications and generate various visualizations. The jobs
to be scheduled, however, are read from a previously recorded trace. Alea 2 is written in
Java and published under the Lesser GPL (LGPL).[KR10, Klu12] The visualization of the
recorded trace can be played back in real-time, which offers a kind of “live” visualization.
Unfortunately, the software focuses on distributed applications in large clusters and not on
real-time systems.

4.2.13 STORM

STORM is a Simulation Tool for Real-time Multiprocessor scheduling, which supports multiple
cores and shared resources. All entities like cores, resources, tasks, and schedulers are
represented as Java classes, thus new elements can be added to STORM by adding new classes
to the classpath. A simulation has to be specified by an XML file which contains the Java
class names of the utilized entities. The simulator generates a list of events internally, which is
used to derive statistical data as well as graphical visualizations of the schedule afterwards.

Figure 4.4: The STORM GUI consisting of a command line and several information windows.
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As shown in figure 4.4 on the preceding page, STORM provides a GUI which includes a
command line to control the program. It is written in Java and is currently published under
the Creative Commons License BY-NC-ND 2.0, which neither allows commercial use nor
derived works.[UDT10, Uru12]

4.2.14 Schesim

Schesim is a scheduling simulator for real-time applications. In order to generate a more
accurate result than other projects, the simulator allows to describe the control flow of the
tasks as well as inter-task relationships such as shared variables. It includes a number of
predefined single- and multi-core scheduling algorithms. Since its source code is available, it is
generally possible to implement own schedulers, too, but Schesim’s whole architecture must be
understood.

The output of a simulation is a log file. It can be displayed graphically with the help
of an external program called Trace Log Visualizer (TLV), an open-source application for
Microsoft Windows. Schesim is written in Ruby and published under the Apache License
2.[MSHT12, MS12]

4.2.15 Summary

An overview of the presented projects is given in table 4.1 on page 32. Most of the programs
first perform the simulation and generate the visualization afterwards or rely entirely on
external software to display the schedule graphically.

Some of them, such as Ghost, FORTISSIMO, ARTIST, and RTSSim, do not support either
shared resources or multiple cores, which both are necessary features as stated in section 1.2 on
page 14. Alea 2 and RTSIM support these features, but focus mainly on distributed systems,
not on embedded systems with real-time constraints. Schesim, Realtss, MAST, and STRESS
do not offer an internal visualization, or in case of STRESS, only a rather basic one. Cheddar
and STORM support nearly all requirements, however, they do not visualize the schedule
while the simulation is running, nor do they offer the possibility to pause the simulation at
arbitrary points and show intermediate situations, a required feature according to section 1.2
on page 14.

It is generally possible to execute the simulation first and afterwards visualize its result in an
animated way, allowing the user to pause the animation in order to concentrate on a specific
detail. However, this would require to run a full simulation or to trace the whole execution
of an application, save the results and hand them over to the visualization part. This is not
an optimal solution, as it needs an expensive preparation of what otherwise could be shown
immediately. Additionally, the user has to specify the time and duration of the part of interest
to be simulated in advance.
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Only VizzScheduler and Alea 2 update the visualization while the simulation is running, but
they are either not maintained anymore or focus on a different environment, namely distributed
systems.

Furthermore, projects which are published under licenses such as the GPL require all software
built upon or using parts of these projects to be again published under the GPL. As it is
currently not intended to publish the source code of this project, such software is avoided. In
contrast to the GPL, licenses such as the Eclipse license, the Apache license, the Massachusetts
Institute of Technology (MIT) license, and the LGPL allow a commercial use of software
containing parts under these licenses without publishing the source code.

Considering these problems, we decided to develop a new application which targets specifically
on a controllable simulation of scheduling in a real-time environment with a simultaneous
visualization of the current result.
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Alea2 —1 √ √ — √ √ √ Java

ARTISST √ √ — — — √ √ C++

Cheddar √ √ — √ √ √ √ Ada

FORTISSIMO √ — — — √ √ √ C++

gltraceviz — √ — √ √ √ √ C++

GHOST √ √ — — — √ — C

Jedule — √ — — √ √ √ Java

MAST √ — — √ √ √ √ Ada

Pajé —1 √ — √ √ √ √ Objective C

Realtss √ √2 — √ — — √ TCL

RTsim √ √ — √ √ —3 —4 Unknown4

RTSIM √ √ — √ √ √ √ C++

RTSSim √ √2 — √ — √ — C

Schesim √ √2 — √ √ √ √ Ruby

STORM √ √ — √ √ √ √ Java

STRESS √ √ — √ √ √ — C

ViTE — √ — √ √ √ √ C++

VizzScheduler √ √ √ — √ — — Java
1 Simulation from a previously recorded trace
2 With the help of external tools
3 Only sporadic server available as scheduler
4 Website does not contain any information

Table 4.1: An overview of existing real-time scheduling simulation projects and their proper-
ties.
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It is nearly impossible to write software for a modern desktop OS without using libraries and
frameworks. They provide all interfaces necessary e. g. to display a GUI or to read and write
files. In this chapter, different frameworks for the GUI and the serialization are presented and
evaluated. Although there also exist several simulation frameworks for different programming
languages, we decided to write the simulation part without the help of a library in order to
have full control and to save the time required to understand the library itself.

5.1 Graphical Frameworks

A graphical toolkit which provides visual components and handles the communication with
the OS eases the implementation of a visualization and provides essential routines to create a
GUI. Two well-known frameworks for Java will be discussed in the following.

5.1.1 Swing

Swing is a common GUI toolkit for Java. In contrast to the Abstract Window Toolkit (AWT)
and the Standard Widget Toolkit (SWT), Swing is a lightweight toolkit. This means that all
visible components are not drawn by OS functions, but by the library itself. On the one hand,
as a lightweight toolkit Swing is independent of the underlying OS, on the other hand the look
does not fit into the rest of the user’s desktop. Swing alleviates this by providing packages
which imitate the look and feel of Microsoft Windows platforms and Linux with GIMP Toolkit
(GTK+).[Ull12]

AWT is historically the first GUI toolkit for Java, and Swing still depends on AWT to some
extent. Although AWT is thread-safe, Swing in general is not.[Ull12]

Swing is included in the Java Foundation Classes (JFC) together with other components, one
of them being Java2D. Java2D provides methods to paint various two-dimensional graphics
on the screen. The JFC are contained in the standard edition of the Java platform, which
results in small file sizes of applications using Swing, as they do not need to contain the
library.[Ull12]
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5.1.2 Visualization Libraries for Swing

Although it is possible to create all components of the visualization directly with Swing and
Java2D, there exist several frameworks which already provide useful graphical elements and
convenient classes.

Prefuse

Prefuse is an information visualization toolkit built upon the Java2D framework and integrable
into Swing. It strongly emphasizes interactiveness and is published under the Berkeley Software
Distribution (BSD) license. [HCL05]

However, the interactive animations only apply to static data and do not support an evolving
data model like a schedule.

Piccolo

Piccolo is a toolkit for structured 2D graphics which makes use of a scenegraph abstraction. A
scenegraph maintains visual objects in a hierarchical structure and propagates manipulations
throughout this structure. Piccolo has a rather long history: The project started in 1993 as
Pad and was later rewritten under the name Jazz out of which Piccolo finally evolved. It
makes use of the Java2D framework, but is also available as a .NET version. It focus on the
zooming interface, which allows the user to scale the visible area. It is published under the
BSD license.[BGM04]

However, apart form the zooming facility the Java2D toolkit already provides similar func-
tions.

JUNG

The Java Universal Network/Graph Framework (JUNG) is a graph processing and visualization
library. As the name already suggests, it concentrates on networks and graphs while pertaining
relationships and links within them. It is published under the BSD license.[OFWB03]

Although a schedule can be represented as a graph, it is commonly visualized in a tabular
manner, which is not supported by JUNG.
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InfoVis

The InfoVis toolkit supports nine different visualization techniques, including scatter plots and
time series. It is written in Java and uses an internal table structure, in which each column
contains only objects of the same type. It runs on top of the Java 2D framework as well as the
Agile 2D framework, whereas the latter makes use of the OpenGL Application Programming
Interface (API) for hardware acceleration and therefore is faster in many situations. InfoVis is
published under the MIT license.[Fek04]

However, none of the provided nine visualizations could be used directly to visualize a sequence
of scheduled tasks, i. e. a schedule. Hence, the framework would have to be extended, which
can cause comparability issues if the framework is updated and its API changes.

Timebars

Timebars is a framework to display a Gantt chart. It is available as a Swing and as an SWT
library and published under the GPL or under a commercial license. [Kli09]

Although Gantt charts would be very useful for the project at hand, timebars focus only on
business project schedules and calendars.

Summary

Other libraries like the Visualization Toolkit (VTK), which is implemented in C++ and
concentrates on three-dimensional visualizations [SML96], or the Graphviz, which is a graph
visualization software with its own description language [GN00], offer huge functionality but
focus on far too distant topics. Applications like Processing, which is a full-grown integrated
development environment (IDE) to create interactive images and animations with its own
programming language [RF07], or Improvise, which provides functions to create different
interactive visualizations with a shared coordinate system [Wea04], are both open-source
and implemented in Java. Yet, being self-contained programs with a different focus, their
application to simulate and visualize a scheduling process seems inappropriate.

Among the discussed frameworks, none of them seems to add benefit compared to the costs of
getting familiar with the framework. Therefore, a prototype is implemented using only Swing
and Java2D in order to test the possibilities and for comparison against other GUI toolkits.

5.1.3 A Swing prototype

With the Swing and Java2D APIs the first visualization prototype was created as depicted in
figure 5.1 on the following page.

The program uses a predefined task set with five tasks which are scheduled by a cyclic executive
scheduler on a single core. The cyclic executive scheduler is a basic scheduling approach which
executes tasks in a predefined way. In section 8.1 on page 71, the cyclic executive scheduler is
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Figure 5.1: A prototype using the Swing and the Java2D API showing a cyclic executive
with altogether five tasks.

explained in more detail. Implementing a more sophisticated scheduler within the prototype
would not add any advantages for the comparison of visualization frameworks.

The application allows the user to start, pause and stop the scheduler. It provides a rather
primitive visualization of the generated schedule which is updated continuously while the
scheduler is running. To fit a longer time period on the screen, the schedule is displayed within
a scrollable container which also provides zooming in and out by the mouse wheel as well as by
GUI elements. Additionally, it supports the export of the generated schedule to an image file
of the formats Portable Network Graphics (PNG), Joint Photographic Experts Group (JPEG)
File Interchange Format (JFIF), Windows Bitmap (BMP) and Graphics Interchange Format
(GIF).

5.1.4 Eclipse RCP and SWT

Rich Client Platform

The term rich client became popular in the early 1990s, when applications started to move
from terminal clients to full-fledged solutions with GUIs. As the name suggests, these programs
provided a “rich” and high-quality user experience by making use of the native user interface
(UI) of the OS and supporting desktop metaphors like drag & drop and the system clipboard.
[MLA10]

A Rich Client Platform (RCP) provides the middleware, upon which the business logic can be
added. The contained frameworks and libraries to build the UI or to connect to databases
accelerate the implementation of a new application. [MLA10]
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Eclipse

Eclipse is a well-known software IDE for Java, which is maintained by the Eclipse Foundation,
a non-profit open-source community. The IDE originates from IBM’s visual age. Apart from
Java, Eclipse supports many different programming languages. Each language is supported
by a set of different tools. All tools are integrated into a generic platform, which happens to
be the Eclipse RCP. So the Eclipse IDE is just another rich client application based on the
Eclipse RCP. With version 3.0, interdependencies between tools and IDE were eliminated by
introducing an OGSi-based runtime. More information about Eclipse is given in [MLA10].

OGSi

Open Services Gateway initiative (OGSi) is a standard which defines a module and service
platform for Java. It also allows dynamic loading and unloading of these modules, so-called
hot-plugging. The OGSi modules are called bundles, however, the Eclipse term for them is
plug-ins. Both terms can be used interchangeably. A plug-in is self-describing, which means it
contains a manifest file including information such as the plug-in’s version and all dependencies
on other plug-ins.

The implementation of the OGSi specification used by Eclipse is called Equinox, which also
happens to be the reference implementation. With the help of Equinox, it is possible to
start and stop software components without having to restart the whole application. This is
achieved by assigning each plug-in a dynamic class loader. The OGSi framework collects the
dependencies of each plug-in to allow the different plug-ins to collaborate.

A plug-in can declaratively define extension points, allowing other plug-ins to contribute the
required information in form of basic values but also in form of complete classes. This feature
facilitates future extensions of a product. In fact, all components of the Eclipse platform are
implemented as plug-ins, even some parts of Equinox itself.

More information about the OGSi and Equinox is given in [MVA10, MLA10, Dau08].

SWT

The GUI of Eclipse is not based on Swing, but on the Standard Widget Toolkit (SWT). In
contrast to Swing, described in section 5.1.1 on page 33, the SWT is a heavyweight GUI toolkit
which means that it makes use of the widgets provided by the OS. This, of course, affects the
portability of an application using the SWT. Fortunately, the toolkit is available on a variety
of platforms including Linux and Microsoft Windows [MLA10]. The benefit of this method is
a native look and feel for the user.

There exist a variety of plug-ins which build upon the SWT and provide higher abstraction
layers to facilitate the programming.
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JFace

The JFace plug-in is a GUI toolkit based on the SWT and provides more complex widgets,
including different viewers, dialogs and Wizards. It also adds the Model–View–Controller
(MVC) pattern to the SWT. [MLA10]

Graphical Editing Framework

The Graphical Editing Framework (GEF) provides all the functionality necessary to create
visualizations of all kinds of models. It is intended to work with models generated by the
EMF. However, it can also be used without the EMF if the model is specified with Plain Old
Java Objects (POJOs). The GEF is built upon Draw2D, which is a standard 2D drawing
framework based on the SWT [MDG+04, p. 88].

The GEF allows the user to edit the graphical visualization and changes the underlying model
accordingly. Although the editing part is not needed for the sole visualization, the usage
of the GEF is still advantageous compared to a direct use of Draw2D or even the SWT,
because it provides some handy features such as scrollable views and automatic updating of
the visualization on model changes [RWC11].

Zest

The Zest plug-in is a visualization toolkit which is built upon the GEF. It provides a set of
Eclipse visualization components and ready-made viewers for different purposes. However,
Zest focuses only on graphs and is therefore of no use for this project.

5.1.5 An Eclipse prototype

The plug-in features of Eclipse explained in sections 5.1.4 on the previous page and the different
graphical abstraction layers present a strong foundation for the given project. For example,
each scheduler could be written as a dedicated plug-in and then be inserted into the existing
RCP without having to compile the whole application again.

In order to compare the Swing and the Eclipse framework, another prototype is built as
an Eclipse RCP using the GEF. Its GUI is displayed in figure 5.2 on the facing page. The
prototype executes the same task set as the Swing prototype described in section 5.1.3 on
page 35. It supports the same features like scrolling, zooming and exporting to an image file,
in order to provide a high compatibility.

38



5.1 Graphical Frameworks

Figure 5.2: A prototype using the Eclipse RCP and the GEF showing a cyclic executive with
altogether five tasks.

5.1.6 Comparison of Swing and Eclipse

Based on both prototypes, the Swing prototype described in section 5.1.3 on page 35 and
the Eclipse prototype described in section 5.1.5 on the preceding page, a comparison of the
different frameworks is performed in this section.

The implementation based on Swing compressed into a Java Archive (JAR) file is only 42.3 kB
big. This is due to the fact that Swing and Java2D belong to the JFC which are already included
in the standard edition of the Java platform; therefore, no other libraries are necessary. The
Eclipse implementation exported as a stand-alone product is 18.9 MB big, that is around 500
times bigger than the Swing application. However, the four plug-ins containing all functionality
are only 64.5 kB big, the rest is caused by the fact that the Eclipse core libraries as well as the
GEF framework have to be included.

Although not all features of GEF are used by the prototype and the file size is unnecessarily
extended, the bigger size comes with some advantages, too. For example, GEF already includes
an MVC implementation and a zooming functionality. All these features have also been
implemented in the Swing prototype, but required additional classes to be written. Functions
like saving the generated presentation of the schedule as an image file require about the same
amount of code in both implementations. Saving the schedule in scalable format like Scalable
Vector Graphics (SVG) requires additional libraries in both solutions. In total, the Swing
prototype is implemented in 1633 lines of code. This number is very similar for the Eclipse
prototype, which is programmed in 1635 lines of code. These values were derived with the
help of the metrics2 plug-in for the Eclipse IDE [SB12].

Swing, however, does not offer any way to load additional components at runtime the way it
is possible with Eclipse and its plug-in-driven structure. This feature is essential to extend
the simulator with new schedulers and therefore supports the decision to use the Eclipse
framework.
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5.2 Serialization Frameworks

As stated in section 1.2, one objective of the software is the file-oriented simulation input.
The input of the simulator is a model defining all necessary entities such as tasks, cores, and
resources.

Since this model has to be loaded by the simulator, the data interchange format must be
readable by humans as well as by machines. There exist a variety of file types, including the
XML, the JavaScript Object Notation (JSON), the YAML Ain’t Markup Language (YAML),
or even a simple comma-separated values (CSV) file, which are readable by both parties.
However, since XML is likely to be known by most users and is supported by a large number
of libraries, it seems to be the most appropriate file type to use.

Although Java provides libraries to parse XML and other document formats, the more elegant
way to read a file and load a model into the program is to make use of serialization. Serialization
is the process of saving an internal object hierarchy to an external data structure. This external
data structure can be preserved beyond the end of the program execution and later remapped
or deserialized to a new internal object hierarchy. In the end, the model can be saved and
loaded without bothering how to generate or parse a file.

The Java language supports serialization natively. It facilitates saving all objects implementing
the Serializable interface into a binary stream. This is also called marshalling or deflating.
The binary stream can be saved into a file and later deserialized or unmarshalled to recreate
the previously saved objects. More information about serialization is given in [Ull12].

However, this binary format is not directly readable for humans. Fortunately, there exist
various options to serialize objects into the well-known XML format [Dau08]. In the following,
different possibilities will be analyzed.

5.2.1 Java Bean Persistence

Java beans were originally invented to encapsulate many objects and therefore enhance the
reusability. They are originally supposed to be manipulated visually with a special software
tool.

Generally, a Java bean is a normal Java class which complies with some specific conventions,
e. g. having a public constructor without any arguments and providing getter and setter
methods for all internal properties following the default naming convention. Additionally, a
Java bean has to implement the Serializable interface. Java beans should not be confused
with Enterprise Java Beans (EJBs), the latter are part of Java Enterprise Edition. More
information about Java beans is given in [Ull12].

If a class follows the conventions mentioned above, it is called a Java bean and can collaborate
with the Java bean API. The Java bean API provides the classes PropertyChangeSupport and
PropertyChangeListener, which allow to generate and to react to events. Other useful classes
provided by the Java bean API are XmlEncoder and XmlDecoder. The usage of these classes in
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order to serialize a Java bean is presented in the listing 5.1. Exception handling and comments
are omitted in all following code snippets to enhance readability.

Listing 5.1 Java code for XML serialization of a Java bean.
XMLEncoder enc = new XMLEncoder(new FileOutputStream(fileName));

2 enc.writeObject(objectToSerialize);

Listing 5.2 presents the generated XML file of the task set already used in sections 5.1.3 on
page 35 and 5.1.5 on page 38. The listing reveals the rather simple way of the Java bean
serialization. The XML structure is predefined, all data structures are broken up down to
primitive types. It is not possible to exclude any reference or variable from the serialization.

Listing 5.2 Excerpt of the XML serialization of a Java bean.
<?xml version="1.0" encoding="UTF-8"?>

2 <java version="1.6.0_24" class="java.beans.XMLDecoder">
<object class="de.unistuttgart.iste.ps.schedulinganalyzer.core.model.TaskSet">

4 <void property="cores">
<void method="add">

6 <object class="de.unistuttgart.iste.ps.schedulinganalyzer.core.model.Core">
<void property="id">

8 <string>Core-1340194971174-2</string>
</void>

10 <void property="name">
<string>Core A</string>

12 </void>
</object>

14 </void>
</void>

16 <void property="tasks">
<void method="add">

18 <object class="de.unistuttgart.iste.ps.schedulinganalyzer.core.model.Task">
<void property="deadline">

20 <long>250</long>
</void>

22 <void property="id">
<string>Task-1340194971174-3</string>

24 </void>
<void property="name">

26 <string>A</string>
</void>

28 <void property="period">
<long>250</long>

30 </void>
<void property="wcet">

32 <long>95</long>
</void>

34 </object>
...
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5.2.2 Java Architecture for XML Binding

Together with the sixth version of the Java Development Kit (JDK), the Java Architecture
for XML Binding (JAXB) was released. It contains a compiler called xjc which is capable
of generating Java classes from an existing XML Schema Definition (XSD) file. XSD is a
format proposed by the World Wide Web Consortium (W3C) to define a set of rules a XML
document has to follow in order to be considered valid. JAXB also contains a compiler for the
inverse direction, i.e. to generate an XSD document from annotated Java classes, which is
called schemagen.

The generated Java classes contain annotations to provide meta-information, e.g. the order of
properties inside the XML document. Using these annotations, it is possible to augment the
generated classes with references and variables which will not be serialized. However, since
a new compilation of the XSD file would overwrite manually added annotations, this is not
recommended.

The JAXB API provides functions to serialize and deserialize the generated Java classes. The
generated XML document will be a valid instance of the XSD file. The source code to serialize
previously generated Java classes is presented in listing 5.3.

Listing 5.3 Java code for XML serialization with JAXB.
1 JAXBContext context = JAXBContext.newInstance(ObjectToSerialize.class);

Marshaller marshaller = context.createMarshaller();
3 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE );

marshaller.setProperty(Marshaller.JAXB_ENCODING, new String("UTF-8"));
5 marshaller.setProperty(Marshaller.JAXB_SCHEMA_LOCATION, new String("TaskSet.xsd"));

marshaller.marshal(objectToSerialize, new File(fileName));

Listing 5.4 on the next page shows the generated XML file of the same sample set of tasks used
in section 5.2.1 on page 40. The XML namespace can be set in the header of the XML schema,
which is then transformed by the xjc compiler into a Java package. For example the namespace
http://example.org/test will be transformed into the Java package org.example.test.

The generation and reaction to events, which are necessary to update the GUI when the
scheduler runs and creates the schedule, is problematic. While it works flawlessly with Java
beans, JAXB tries to include any referenced PropertyChangeSupport object. These objects are
not serializable and therefore an exception is thrown. There is the possibility to create
classes from an XSD file with integrated event support using an xjc plug-in, but this plug-in
requires the whole project to be built with Maven. Another solution is to implement the event
handling manually and exclude it from serialization by an annotation, but as stated before,
this modification will be overwritten on each recompilitation of the XSD. More information
about the JAXB is given in [Dau08, SN09, ME07].
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Listing 5.4 XML serialization with JAXB.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <TaskSet xmlns="http://www.iste.uni-stuttgart.de/ps/schedulinganalyzer/core/
generatedModel" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id=""
xsi:schemaLocation="TaskSet.xsd">

<core name="Core 1" contextSwitchingTime="" active="false" id=""/>
4 <task deadlineType="HARD" wcet="100" period="250" deadline="250" name="A"/>

<task deadlineType="HARD" wcet="80" period="250" deadline="250" name="B"/>
6 <task deadlineType="HARD" wcet="50" period="500" deadline="500" name="C"/>

<task deadlineType="HARD" wcet="40" period="500" deadline="500" name="D"/>
8 <task deadlineType="HARD" wcet="20" period="1000" deadline="1000" name="E"/>

</TaskSet>

5.2.3 Eclipse Modeling Framework

EMF is a modeling framework and code generation facility [SBPM11], intended to be used
together with GEF. A model can be created with the help of a graphical editor based on GEF.
Moreover, EMF can extract a model from annotated Java classes, from UML diagrams, as
long as they export the diagram to XML Metadata Interchange (XMI), or from XMI directly,
which is also used to save the model internally.

XMI is a data interchange format based on XML and specified by the Object Management
Group (OMG) [Obj11]. It focuses on sharing models and although it is mainly used in software
development, it is a very useful format to describe a simulation model, as it allows links
between objects in the same or in different files.

The meta model used by EMF to specify the model structure is called ecore. Since ecore is
itself modeled with EMF, it is actually a meta-meta model. A EMF model can be exported
as XSD file, as UML model via XMI, or as annotated Java code. Some information required
to export a model, like the namespace and the folder where the output files shall be located,
are not saved in the ecore model but in another model called generator model. This generator
model is structured in a very similar way to an EMF model.

As explained above, EMF is able to convert an ecore model to Java source code. Therefore,
EMF’s Java code generator creates an Eclipse plug-in containing an interface and a class
implementing the interface for each class of the model. The interface is inherited from EOBject,
an ecore equivalent of java.lang.Object. The class EOBject itself inherits from Notifier and thus
provides a notification mechanism based on the observer design pattern. Objects that want to
be notified of changes, i. e. the observers or listeners, are called adapters in EMF. In contrast
to the standard observer design pattern specified in [GHJV95], the observed class has no
notion of being observed. To observe changes within a hierarchy of objects, there also exists a
convenient adapter class EContentAdapter, which can be subclassed in order to be notified of
any change within that hierarchy.

Similar to JAXB, the generated Java classes are annotated. However, in contrast to JAXB,
they are expected to be merged with user-written code. Any variable without the @generated

annotation is neither serialized nor overwritten on regeneration of the source code.
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With the help of the Resource class provided by EMF, generated classes can easily be serialized
into and restored from XMI documents. This feature is the main reason why EMF is used.
The code generation itself is just a handy feature during the development of the specification
of the simulation model, but unessential once the specification is stable.

The source code to serialize the objects of previously generated Java classes is presented in
listing 5.5. As different objects can be serialized in different XMI files references each other
across documents, a ResourceSet can contain more than one Resource.

Listing 5.5 Java code for XML serialization with EMF.
ResourceSet resourceSet = new ResourceSetImpl();

2 resourceSet.getResourceFactoryRegistry().getExtensionToFactoryMap().put("xmi", new
XMIResourceFactoryImpl());

Resource resource = resourceSet.createResource(URI.createFileURI(fileName));
4 resource.getContents().add(objectToSerialize);

resource.save(null);

The XMI formatted output of a simulation model containing one core, once resource and once
task requesting and releasing resource is shown in in listing 5.6. More information about EMF
is given in [Dau08, SBPM11].

Listing 5.6 XML serialization with EMF.
1 <?xml version="1.0" encoding="ASCII"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:model="http://model/1.0">
5 <model:SystemModel name="Test" description="" >

<task name="a" deadlineType="NONE" deadline="170" priority="1" offset="0"
repetitions="1">

7 <command xsi:type="model:Execution" duration="10"/>
<command xsi:type="model:RequestResource" resource="/0/@resource.0" />

9 <command xsi:type="model:Execution" duration="40"/>
<command xsi:type="model:ReleaseResource" resource="/0/@resource.0" />

11 <command xsi:type="model:Execution" duration="10"/>
</task>

13 <core name="Core"/>
<resource name="V" priority="4"/>

15 </model:SystemModel>
</xmi:XMI>

5.2.4 Summary

Apart from the discussed, there exist various third-party XML serialization libraries like Simple,
XStream, Castor, or Zeus [Ull12, ME07]. However, since the Java code generated from an
EMF model is perfectly integrated into Eclipse, supports serialization to and deserialization
from XMI as well as contains a notification mechanism to update the visualization, there is no
more benefit these libraries could add.
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An evaluation of frameworks and libraries was conducted in chapter 5. The selected frameworks
determine the interfaces of the software architecture. This chapter presents the conceived
software design.

TimeAxis

<<singelton>>
Simulator

SimulationThread

<<singelton>>
TaskManager

TaskMonitor

<<singelton>>
ResourceManager

<<generated>>
SystemModel

<<interface>>
ISchedulerResourceMonitor

Job

EventAnalyzerEditPart

Figure 6.1: An overview of software design; boxes represent classes, solid arrows represent
references and dotted arrows represent notifications.

An overview of the simulation architecture is given in figure 6.1. The image only provides a
coarse overview and therefore does not follow the UML standard. In the following, all parts of
the architecture will be discussed in closer detail, starting with the design of the system model.

45



6 Design

Afterwards, the architecture of the simulator itself is described, before the visualization design
as well as exception handling aspects are finally discussed.

6.1 System Model

Besides the visualization, one of the main aims of this work is the development of a simulator.
According to Shannon, simulation is “the process of designing a model of a real system and
conducting experiments with this model for the purpose of understanding the behavior of the
system and / or evaluating various strategies for the operation of the system.” [Sha98, p. 7]
Therefore, the model is an essential part of a simulation. It is an abstraction of a system
and has to contain all information necessary to deduce the simulation result. It must not
oversimplify the system nor be too detailed, as the calculation complexity as well as the quality
of the results depend on the abstraction level of the model. [Sha98]

One objective introduced in section 1.2 on page 14 is the simulation of arbitrary scheduling
processes. Each scheduling process is simulated based on its own simulation model, defining
a specific set of entities such as tasks, resources, cores, and scheduling policies. All these
elements have to be defined in an unambiguous and precise way to be handled by a common
simulation kernel.

For this reason, a meta-model was developed. It specifies the way a simulation model and all
its elements have to be described. In order to provide a maximum of extensibility and to allow
the definition of features like multiple cores and different scheduling policies, the meta-model
must be very flexible and foresee future requirements. Therefore, it has to be designed very
carefully. The meta-model is called system model.

The topmost element of the system model is the class SystemModel. It has two properties, a
name and a description, both of type String, which are useful to provide additional, textual
information about the model to the user. Additionally, the system model contains multiple
Tasks, Resources and Cores. All of these elements are derived from the interface IElement and
add further, element-specific attributes. A UML representation of the model is depicted in
figure 6.2 on the next page. The system model is defined with EMF and its source code
generated by this framework. This way, the resulting classes are serializable and contain a
notification mechanism as explained in section 5.2.3 on page 43.

Besides tasks, resources and cores, the scheduling policy is an essential component of the
simulation model. However, different scheduling policies should be applicable to the same
simulation model. Therefore, the scheduling policy is not contained in the system model, but
referenced by the simulator at runtime.

An instance of the system model is called simulation model. It specifies the exact number
of tasks, cores and resources as well as their detailed properties. The simulation model also
serves as interface between the simulation and the visualization part. During the simulation,
elements of the model are changed and new elements are added. The visualization is generated
based on the simulation model and its elements. This will be discussed in detail in section 6.4
on page 58.
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Figure 6.2: The UML class diagram of the system model.

6.1.1 Tasks

Each task is specified by a variety of parameters, which are explained in table 6.1 on the
following page. With the help of these parameters, a simple, infinitely repeating periodic task
with a hard deadline equaling its period of 100 ms and a priority value of 5 would be defined
by deadlineType=HARD, deadline=100, period=100, priority=5. In contrast, a sporadic task with a
soft deadline of 20 ms, a minimum inter-arrival time of 1000 ms, a priority of 10, an initial offset
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of 100 ms which requires a context switch time of 2 ms and repeats exactly 2 times with random
delays added to the minimum inter-arrival time distributed according to a Poisson distribution
with lambda equaling 50 ms would be defined by deadlineType=SOFT, deadline=20, period=1000,

priority=10, offset=100, repetitions=2, lambda=50, contextSwitchingTime=2. As mentioned in
section 2.3 on page 18, sporadic tasks are called aperiodic if they have a soft or no deadline
instead of a hard deadline. Since the parameter set allows to specify the type of the deadline
of a sporadic task to be hard, soft, or not existing, we do not differentiate between between
aperiodic and sporadic tasks in the following.

Property Default value Description

deadlineType NONE NONE, SOFT or HARD deadlines are supported
deadline 0 The time of the relative deadline
priority 0 The task’s basic priority
offset 0 Time offset of the first creation
periodity PERIODIC SPORADIC or PERIODIC tasks
period 0 Time of the task’s period or minimum inter-arrival

time if sporadic
jitter 0 The maximum variation of a process release time in

both directions (earlier and later)
completion 0 Duration of the completion phase, for future use
initialization 0 Duration of the initialization phase, for future use
repetitions -1 The number of repetitions of the task’s creation, −1

represents infinity
lambda 1 The lambda parameter of the Poisson distribution

used for sporadic task
contextSwitchingTime 0 The time necessary for a context switch before the

task starts executing

Table 6.1: An overview of the task parameters.

Commands

As mentioned in section 2.3 on page 18, a Task contains arbitrarily many Commands, whereas
a Command is an abstract class which is inherited by the classes Execution, RequestResource, and
ReleaseResource.

An execution command has a duration value which equals the worst case execution time
(WCET) of a sequence of instructions, containing conditional branches and loops. The
sequence has to be split at every resource interaction instruction, as these are modeled by
RequestResource and ReleaseResource commands.

By means of an ordered sequence of these commands, the total execution of a task can be
modeled. The abstraction level is low enough to support resource operations and high enough
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not to include all instructions a real task might contain. This helps to speed up the simulation
and is sufficient to create a scheduling visualization. However, it is not possible for a task to
finish earlier than its WCET, to self-suspend or to interact with other tasks other than via
shared resources. Future versions might extend the system model at this point.

6.1.2 Cores

A core is a part of a processor. The notion of a processor is not transferred into the system
model, since processors are typically interconnected by a network, which adds timing complexity
and is out of scope of this thesis. However, the system model might contain an arbitrary
number of cores. Note that a physical network interface can be modeled by a shared resource,
which has to be locked by a task from time to time to check whether new messages have
arrived or to send messages.

The model parameters of a core are presented in table 6.2. The parameter active is specified,
because each core of modern multi-core processors can be totally deactivated to save energy
[JG04]. Future scheduler implementations might want to simulate this behavior.

Property Default value Description

active false Option to deactivate a core, for future use
contextSwitchCorrectionFactor 0 A correction factor of task context switch

timings

Table 6.2: An overview of the core parameters.

The parameter contextSwitchCorrectionFactor is added to the task’s contextSwitchingTime. It is
allowed to be negative, but the result of the addition will be set to 0 if it is negative.

Modern multi-core processors contain several layers of caches. In most cases, the lowest cache
is linked to exactly one core, whereas higher level caches are shared between different cores.
More information about caches is given in [Tan09]. When a task is switched from one core
to another, depending on the level of the cache containing its data, the context switching
time differs. With the help of the contextSwitchCorrectionFactor parameter, this fact can be
accounted for.

6.1.3 Resources

A resource or each of its units can only be accessed exclusively by one task at a time, as
defined in section 2.5 on page 20. An overview of the parameters describing a shared resource
is given in table 6.3 on the next page.

Since some resource access protocols require a resource to specify a ceiling priority, a resource
contains the field priority. For resources with multiple units, depending on the number of
tasks locking the resource and the available number of units left, the ceiling priority of a
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Property Default value Description

priority empty list A list of priority ceiling values in the order of available units
units 1 The number of units

Table 6.3: An overview of the resource parameters.

resource has to be adapted and is therefore called dynamic ceiling priority. This is modeled
by an array of ceiling priority values ordered by the number of available units, such that if
one unit of the resource is locked, the first array element is the actual ceiling priority. If the
resource is not locked by any task and all units are available, a priority lower than the priority
of the lowest priority task is defined to be the actual ceiling priority. In general, as many
ceiling priority values as units are necessary. More information about resources with multiple
units is given in [Liu00].

6.1.4 Events

Tasks, resources, and cores all reference arbitrarily many Events, which are generated during
the simulation. An event could be the creation of a task, the running or blocked state of a
task, the task being scheduled on a core, or a resource being locked by a task. A graphical
representation of each event is displayed on a time axis. Thus events serve as an interface
between the simulation and the visualization. For each model element, there exists a special
subclass of the general event class to allow a different visualization depending on the type.

An event is of a specific type defined by the field type. Different types allow a different
representation of e. g. a deadline or a running event. The type field is of type String, so new
types can be added by future extensions without changing the model. Apart from time and
duration, each event contains a map values, which assigns textual keys to textual values. With
the help of this map, it is possible to add arbitrary payload to an event, e. g. the number
of units locked in case of a resource locking event. This additional information can also be
visualized. In contrast to predefined fields, a map has the advantage that new information can
easily be added without changing the model.

6.2 Simulation Parameters

Some information such as the proposed scheduling policy, which will should used to schedule
the simulation model, and other simulation and visualization parameters are not a direct
part of the system model. However, they should also be contained within the same file to be
available when the simulation model is loaded.

For that reason, the class SimulationParameters is modeled with EMF. If contains a field to
indicate the name of the scheduler which shall be preselected when the user opens the simulation
model file. During the simulation, the parameter schedulingSpeed is multiplied by the timing
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values contained in the simulation model and thus allows to speed the simulation up or to
slow it down. The user is allowed to edit this value after the simulation model is loaded. The
same holds for the parameter timeScale, which is multiplied by the graphical representation
of the simulation time and the duration of events and thus allows to stretch or shrink the
visualization on the time axis.

Additionally, the simulation parameters contain a map assigning each implementation of the
IElement interface a Color value. The color is defined by RGB values. This map allows to define
the color of each task, resource, and core. If no color is defined for an element, the color is
chosen from a predefined set of colors. In case more elements than predefined colors exist, the
color is chosen randomly depending on the type of the element; tasks are typically represented
by bright colors, resources by dark colors, and cores by shades of gray.

6.3 Simulator

The simulator is the central element of the software, as it drives the simulation by causing
the simulation model to be modified. As such, the simulation kernel needs to be accessible
from different classes, e. g. from a scheduler or from visualization parts. Therefore, the class
Simulator is designed according to the singleton design pattern defined in [GHJV95]. This
restricts the number of instances of the class to exactly one and allows other classes to access
this object without holding a reference to it.

Other classes might need to be notified about changes of the simulation model, e. g. in
order to update the visualization. Therefore, the Simulator is designed as the observable
class of the observer design pattern [GHJV95]. All observing classes have to implement the
SimulatorListener interface and register as a listener of the Simulator. From then on, the class
will be notified of changes of the simulation model.

6.3.1 Discrete Event Simulation

In general, simulation can be either static or dynamic [BG07]. Since time plays an essential role
in the scheduling process, the simulation of this work has to be dynamic. Dynamic systems can
be simulated continuously or discretely [BG07]. Note that the simulation time is independent
of the real-world time for both types of dynamic simulation.

Continuous simulations typically make use of differential equations to calculate the system
state at any time [BG07]. For the simulation of a scheduling process, it is also possible to
define a minimum time frame, e. g. 1 ms, and simulate step by step. One advantage of such a
simulation would be a very smooth visualization, as a column of constant width is added to
the time axis after each simulation step. However, this type of simulation has the disadvantage
that the minimum time interval is fixed, which is why events with a shorter duration cannot
be simulated. Additionally, the visualization has to be updated after each step, which is
computationally inefficient especially for models with a large number of elements. It is sufficient
to update the visualization only as soon as the simulation model is changed.
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This idea is the basis of the discrete, event-driven simulation. A discrete event simulation
(DES) is comprised of a model, events, a calendar, and the current simulation time. The DES
operates as follows: Events are located at specific times in a calendar, i. e. the time axis. Since
it is possible that more than one event is located at the same time on the time axis, real
parallelism can be simulated. Simulation events are not to be confused with Events, the former
are part of the simulation whereas the latter are part of the system model. As soon as the
simulation time reaches the time of an event, the event is triggered. It changes the simulation
model and optionally adds new, future events to the time axis. After the event has finished
executing, it is deleted from the time axis. The simulation time proceeds from one event on the
time axis to the next. In contrast to a continuous simulation, all moments in simulation time
in between are omitted. The simulation time “jumps” along the time axis and it is sufficient to
update the visualization only at these moments, since it is impossible for the simulation model
to be changed in the meanwhile. Therefore, the discrete, event-driven simulation is in general
faster than the continuous simulation. More information about DES is provided in [BG07].

The simulation kernel of this project is designed in a dynamic, discrete event-driven manner.

6.3.2 Simulation Thread

In order to decouple visualization and simulation and to allow the simulation to wait if
necessary, both parts have to run in separate threads. This is why the class Simulator contains
a private inner class SimulationThread, which extends the class java.lang.Thread, as indicated by
a cog and the nested boxes in the overview figure 6.1 on page 45. The private inner class cannot
be accessed from outside except from the class it is contained in, which provides methods like
start(), play(), pause(), and stop() to control the state of the SimulationThread. This design
improves the encapsulation and safety, as the thread cannot be accessed from outside in an
unintended way. It also represents the logical grouping of both classes.

As explained in the previous section, the simulation time is independent of the real-world time.
However, since the visualization is synchronous to the simulation, running the simulation as
fast as possible is not intended. Instead the simulation shall run in real-world time if possible.
This “live” representation is more demonstrative for the user. For that reason, as soon as all
events at the current simulation time are triggered and the simulation is about to “jump” to the
next time step, the simulation thread shall wait for the same amount of real-world time that
is passed in simulation time. With the help of the parameter schedulingsSpeed, introduced in
section 6.2 on page 50, the waiting times can be adjusted and the simulation itself accelerated
or decelerated. Linking the real-world time to the simulation time does not only result in a
“live” view of the schedule, but is also necessary for the visualization thread to process and
display the changes.

The simulation thread is also responsible for the creation of the initial events on the time
axis to allow the simulation to start. For that reason, the function setup() is called before the
thread starts. It generates an event for each task at the time the task is created for the first
time.
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6.3.3 Time Axis and Jobs

In section 6.3.1 on page 51 the components of a dynamic, discrete event-driven simulation are
enumerated. All of them are part of the Simulator class, which also contains the simulation time
represented by a simple data field. The calendar and the events which cause the simulation
time to increase are explained in this section.

The calendar is represented by the class TimeAxis. It contains a map, linking a point in time to
a list of events, represented by the abstract class Job. Note that Events are usually generated
by Jobs and are part of the system model. Typically, jobs change the state of a task, create a
deadline event for a task, or call the scheduler when a tasks wants to interact with a resource.
Each implementation of the Job interface can specify whether a dispatch call is necessary after
it has been executed or not. This way a job which just adds a deadline event does not cause
the scheduler to interrupt the running task unnecessarily.

Jobs can be added to the time axis with the function addJob(long time, Job job). This function
ensures that no job is added at a simulation time lying in the past. Additionally, it directly
executes jobs, which are added at the current simulation time. The simulation thread calls
the function executeJobs(long now) to trigger all jobs at the current simulation time. Once a
job was triggered, it is deleted from the time axis. Thereupon, the simulation thread calls
getNextTimeStep() to determine the next simulation time and to calculate the real-world time
the simulation will wait. If no more jobs are contained in the time axis, getNextTimeStep() will
return the maximum value of long, and the simulation ends. The class TimeAxis additionally
offers some methods to manipulate jobs, e. g. it is also possible to delete future jobs from the
time axis. This is necessary if a task is preempted and thus the job ending the execution of
the task is no longer at the correct time.

Job

Job

Job Job

Job

Time [ms]now +50 +175

(a) At the current simulation time.

Job

Job

Job

Job

Time [ms]now +150+125

Job Job

-50

(b) After the job was executed, generated a new job and the simulation time proceeded.

Figure 6.3: An example of a time axis at two successive time instants.

An example of the time axis at two consecutive simulation times is shown in figure 6.3. The job
at the current simulation time in figure 6.3a is triggered by the simulation thread and creates
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a new job 200 ms later. After all jobs at the current simulation time have been triggered, it
is deleted from the time axis and the next simulation time is determined to be 50 ms later.
Therefore, the simulation thread will wait for 50 ms before it triggers the two jobs at the new
simulation time.

6.3.4 Scheduler Interface

A UML class diagram of the scheduler interface IScheduler is presented in figure 6.4. Each
combination of a scheduling policy and resource access protocol has to implement this interface.
However, with the help of object orientation and inheritance, different resource access protocols
can be added to the same scheduling policy by overriding the resource interaction methods. A
scheduler implementation is added via Eclipse’s extension point mechanism, facilitating the
addition of new policies without having to recompile the whole software.

<<interface>>
IScheduler

+ checkSystemModel()
+ dispatch()
+ getSchedulerName(): String
+ getResourceAccessProtocolName(): String
+ initialize()
+ releaseResource()
+ requestResource()
+ stateChangeRequest()

Figure 6.4: The UML class diagram of the scheduler interface.

The simulation thread assures that the function initialize() is called before the actual
simulation starts. Once the state of a task needs to be changed, e. g. because it was created, the
scheduler is informed via the function stateChangeRequest(long time, Task task, State newState).
It is up to the scheduler implementation to drive the tasks, i. e. it has to fulfill the request
and change the task’s state to created. It is also the scheduler’s duty to change the state from
created to ready over the course of time.

The simulator calls the function dispatch(long time) whenever a new scheduling decision is
necessary. Again, it is the scheduler’s job not only to select the task to be executed, but also
to preempt the running task if necessary and to trigger the execution of the selected task. The
class TaskMonitor provides useful methods for these jobs; it will be discussed in the following.

The both functions requestResource(long time, Task task, Resource resource, int units) and
releaseResource(long time, Task task, Resource resource, int units) are called whenever a task
requests or releases a resource, respectively. In the former case, the scheduler has to decide
whether access is granted and the task locks the resource or the task is blocked. In the latter
case, the scheduler has to unlock the resource and change the state of waiting tasks if necessary.
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Similar to the class TaskMonitor, the class ResourceMonitor provides the required functions for
these jobs, it will also be discussed in the following.

An alternative design of the scheduler interface would just inform the scheduler about a task
having changed its state. The dispatch routine could just select and return the task to execute,
relying on the simulator to preempt the currently running task as well as to start the execution
of the selected task. Furthermore, a resource request could just be granted or denied by
the scheduler, leaving the lock or unlock operation to the simulator. Although these design
alternatives would require less work from the point of view of the scheduler implementation,
they are also less flexible. A scheduler might have to postpone the creation of a task or perform
additional steps when dispatching. This is why these alternatives were rejected in order to
provide a maximum of flexibility for future scheduling protocols.

System Model Check

There is no guarantee for a system model instance, i. e. a simulation model to be valid. It
might contain tasks without any execution command or tasks which lock more units of a
resource than the resource contains. The validity might also depend on the scheduling policy
or the resource access protocol.

For this reason, after a simulation model has been loaded from a file and the scheduling
policy is selected, the function checkSystemModel(SystemModelCheckReporter reporter, SystemModel

systemModel) is called. It is the job of the scheduler to inspect the given simulation model
and report all findings via the function addFinding(Severity severity, String message) of the
SystemModelCheckReporter instance. The enumeration Severity contains INFO, WARNING, ERROR, and
FATAL. If a fatal error is reported, the user is not allowed to start the simulation.

6.3.5 Task Monitor

As explained previously, the dispatch(long time) routine of the scheduler interface not only
has to select the task to run, but also has to start its execution and preempt the currently
running task if necessary. Changing the state of a task is a basic functionality, which is why
the simulation kernel provides adequate methods.

Such methods are defined in the TaskMonitor class. Each Task is linked to a TaskMonitor object
via the TaskManager, which is a singleton class maintaining a map of tasks and their monitors.
A task as part of the system model merely contains a set of parameters and its source code is
generated. To calculate the remaining execution time in case of a preemption or to keep track
of the current state of the task, additional fields are necessary, which do not belong to the
system model and should not be serialized. Therefore, providing methods to control the state
of the task by a separate monitor object and not by the task object itself helps to separate
between the model element and other implementation details and leads to a sound design.

The TaskMonitor offers functions to change the state of a task and ensures that transitions
between states are allowed according to the state diagram presented in figure 2.1 on page 19.
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In case the state of a task is changed from running to ready, the TaskMonitor object stores
the elapsed execution time and reloads it when the task continues to run. It also delays the
start of the execution of a task according to the context switching time parameters. Most
importantly, the TaskMonitor generates events introduced in section 6.1.4 on page 50.

6.3.6 Resource Monitor

Similar to a TaskMonitor, a ResourceMonitor object is linked to a Resource object via the
ResourceManager. The ResourceMonitor provides methods to lock and unlock a resource, it
keeps track of the usage of the resource, and monitors the number of free and occupied units. It
also maintains a list of tasks which are waiting for the resource. Most importantly, it generates
all necessary events.

6.3.7 Event Analyzer

The system model source code generated by EMF includes a notification mechanism as
explained in section 5.2.3 on page 43. This notification mechanism can be used to detect
interesting events in the simulation model and notify the user or pause the simulation if such
an event occurs, as requested by an objective presented in section 1.2 on page 14.

The abstract class AbstractEventAnalyzer is notified whenever elements of the simulation model
are changed or new elements are added. Each subclass of AbstractEventAnalyzer implements
the abstract method modelChanged(Notification notification) and thus is able to detect events
like priority changes, system ceiling changes, and deadline misses.

The user has the option to select each AbstractEventAnalyzer subclass as well as to change its
notification state with the help of a GUI. If a subclass of AbstractEventAnalyzer is selected, it is
notified of simulation model changes. Once it detects an event it searches for, depending on
the notification state, the finding is only logged or the simulation is paused and the user is
immediately informed.

AbstractEventAnalyzer subclasses are added by Eclipse’s extension point mechanism similar to
scheduler implementations. The type field of an Event is of type String, which enables future
scheduler implementations to create new types of events without changing the model. Future
AbstractEventAnalyzer subclasses might trigger these new events.

6.3.8 Operation of the simulator

The cooperation of the presented classes is explained by a UML sequence diagram. The
diagram in figure 6.5 on the facing page shows the start of a simulation and all involved classes
with a simulation model containing only one task with one execution command.

The Simulator offers a start() function which is called when the user clicks on correspondent
GUI elements. This function initializes local variables like the simulation time, instantiates
the TimeAxis and the SimulationThread, and initializes the scheduler by calling initialize(). To
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start() new

initialize()

addJob()

setup()

executeJobs()

:TimeAxis

new :TaskCreateJob

:Scheduler

:SimulatorThread

:Simulator

execute()

stateChangeRequest()
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:TaskManager

new
:TaskMonitor

create()

makeReady()
dispatch()

stateChangeRequest()

run()

new :TerminateTaskJob

addJob()
getNextTimeStep()

wait()
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executeJobs()
execute()

stateChangeRequest()

terminate()

delete()
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...

...

...

dispatch()

start()

Figure 6.5: A UML sequence diagram of the start of a simulation with only one task. Answers
of synchronous calls are omitted on grounds of of clarity and readability.

start a simulation, input stimuli are necessary. For the given system, these are the initial
creations of the tasks. Therefore, as soon as the SimulationThread is started, it calls its own
setup() routine and generates a TaskCreateJob for each task. All TaskCreateJobs are added to
the TimeAxis at the time when they should be triggered.

The SimulationThread now enters its main loop and calls the executeJobs() function of the
TimeAxis. In case no task is created at simulation time 0, this function does nothing. The
SimulationThread will be informed of the time of the first job via getNextTimeStep(), wait for this
time, and call executeJobs() again. However, under the assumption that one task is created
at the current simulation time 0, the TimeAxis executes the TaskCreateJob, which informs the
scheduler about this state change request via stateChangeRequest() and optionally adds a new
TaskCreateJob to the TimeAxis if the task is repeating.

It is now up to the scheduler to decide what happens with the task. In most cases, it will
change the task’s state to created immediately. This can be achieved by making use of the
TaskMonitor, which the scheduler will get from the TaskManager. The TaskManager maintains a
map linking Tasks to TaskMonitors. In case the TaskMonitor does not exist already, it is created
by the TaskManager and returned to the scheduler, which calls create() to change the state of
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the task to created. Depending on the scheduling policy, the scheduler changes the state from
created to ready by calling TaskMonitor’s makeReady() function subsequently.

After all calls have been returned, the SimulationThread continues by calling the dispatch()

method of the scheduler, because the TaskCreateJob changed the task’s state and thus dispatching
is required. The scheduler selects the task to run and starts its execution by calling its own
stateChangeRequest() method, requesting the running state. In case another task was currently
running, the scheduler would have to set its state to ready by the same means. Calling
stateChangeRequest() effectively calls the run() function of the TaskMonitor, which calculates the
duration the task was in state ready. For the time the task was in ready, a new Event is added
to the Task. Assuming the Task has only one Execution command, the TaskMonitor creates a
new TerminateTaskJob, which is added to the TimeAxis at the time the task will have finished its
execution.

The SimulationThread determines the next simulation time step by calling the getNextTimeStep()

function of the TimeAxis. To allow the visualization to update and to generate the feeling of a
“live” system, the thread will wait in real-world time for the time skipped by the simulation time
multiplied by the schedulingSpeed parameter of the SimulationParameters. In case the simulation
was paused in between, the simulation thread will wait here until the simulation is continued.

After the waiting time is over, the simulation time is updated and the main loop starts from
the beginning by calling the executeJobs() function of the TimeAxis. As there were no other
Jobs added to the TimeAxis, the TerminateTaskJob is located at the current simulation time and
is executed. It calls the stateChangeRequest() method of the scheduler, which makes use of the
TaskMonitor’s terminate() function to change the tasks state to terminated. The TaskMonitor

calculates the duration the task was in running state and adds a respective Event to the Task.
Depending on the scheduling policy, the scheduler subsequently changes the task’s state from
terminated to non-existing by a similar call.

Since there are no more Jobs to be executed, the SimulationThread continues by calling the
schedulers dispatch() function. Assuming that there are no more tasks, the scheduler simply
returns the call. The SimulationThread determines the next simulation time step by calling the
getNextTimeStep() and waits until the task is created again. The main loop ends as soon as the
Simulator’s stop() function is called or getNextTimeStep() returns the maximum value of long,
which indicates that there are no more Jobs on the TimeAxis.

6.4 Visualization

Different visualization frameworks were compared and GEF was chosen to be the most
appropriate in section 5.1 on page 33. GEF already provides helpful classes such as a scrollable
visualization pane. It also imposes the MVC design pattern.

58



6.5 Exception Handling

6.4.1 Edit Parts

According to the MVC design pattern, a model element is linked to its view, i. e. its graphical
representation via a controller class. These controller classes are called edit parts in GEF. There-
fore, for each element of the system model an edit part class extending AbstractGraphicalEditPart

exists. The model hierarchy is translated to edit parts by overriding the getModelChildren()

method of this class.

The abstract function createFigure() has to return an object implementing the IFigure interface,
which is a general interface for a visual element in Draw2D. The Draw2D framework provides
different geometrical primitives like polygons, rectangles, textual labels, and so on. All these
elements implement the IFigure interface, which itself can contain arbitrarily many IFigure

objects as children. Therefore, complex graphics are realizable by creating hierarchies of these
basic elements.

6.4.2 Main View

The default window of an Eclipse RCP application is subdivided in so-called views. In order
to be notified of changes of the simulation model, the main view containing the visualization
implements the SimulatorListener interface and registers as an observer of the Simulator. This
way, it gets notified whenever the simulation time increases and is able to update the visual-
ization. The transfer of the simulation model to its visualization is performed by routines of
the GEF and the edit parts explained in the previous section.

6.5 Exception Handling

An advantage using Java and the Eclipse RCP is that it exception handling features are already
included. One of them is another view, called “Error Log”, which contains a list of status
messages. With the help of the class StatusManager new messages can be added to this list. Is
also supports different severity levels such as information, warning, and error. All exceptions
which arise during the simulation, i. e. in the main loop of the SimulationThread, are caught and
reported by the StatusManager.

In order to differentiate between general Java exceptions and errors of the scheduler implemen-
tation, e. g. incorrect changing the state of a task, the class SimulationException is introduced. In
order to serve as a Java exception, it inherits from java.lang.Exception. A SimulationException

is potentially thrown by methods of the TaskMonitor or the ResourceMonitor classes, since they
are intended to be used by the scheduler to change the state of a task or a resource. The
SimulationException contains a field to save a message providing detailed information about the
exception. This message and the stack trace, which contains the list of methods that were
called when the exception occurred, provide a detailed picture of what happened.
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In the previous chapters, different software libraries and frameworks were evaluated and the
design of the simulation and visualization software was introduced. Based on these results,
this chapter will present different aspects of the implementation of the application, which is
named Simulation And Visualization Of Real-time Scheduling (SAVORS).

As shown in section 6.3.4 on page 54 of the previous chapter, implementations of scheduling
policies and resource access protocols are merely plugged into the existing software and interact
with the software, especially with the simulation kernel, via a predefined interface. For this
reason, the details of implementing different schedulers are presented in the following chapter.

7.1 Eclipse RCP Specifics

This section introduces specific aspects that are attended by the Eclipse RCP, upon which the
simulation and visualization software is built. These include UI elements, their connection to
the internal functions, and the deployment of the software.

7.1.1 Plug-in Hierarchy

As an Eclipse RCP application, the software is composed of different plug-ins. An overview of
the plug-ins developed for this work and their interdependencies is given in figure 7.1.

de.unistuttgart.iste.ps.savors.model.edit

de.unistuttgart.iste.ps.savors.model

de.unistuttgart.iste.ps.savors

de.unistuttgart.iste.ps.savors.runtime

de.unistuttgart.iste.ps.savors.view

de.unistuttgart.iste.ps.savors.eventAnalyzer

de.unistuttgart.iste.ps.savors.scheduler

Figure 7.1: An overview of the developed plug-ins and their dependencies. The source code
of the shaded plug-ins is automatically generated.
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The de.unistuttgart.iste.ps.savors plug-in contains some classes defining the Eclipse RCP ap-
plication and the product definition which will be explained in the following. The eventAnalyzer

and scheduler plug-ins contain the initial set of schedulers and event analyzers. The shaded
plug-ins are automatically generated by the EMF from the system model. The view and runtime

plug-ins will be described in section 7.2 and 7.3, respectively.

7.1.2 Commands and Handlers

In section 5.1.4 on page 37, the Eclipse extension point mechanism is introduced as part of the
OGSi specification, allowing plug-ins to add further information and functionalities to other
plug-ins.

The plug-in org.eclipse.ui defines the extension point org.eclipse.ui.commands. Commands are
associated with UI elements such as menus, tool bar items, or key bindings. All these UI
elements are declaratively defined with the help of extension points like org.eclipse.menus and
org.eclipse.ui.bindings.

In order to link a command to a class containing the function to be executed when the
associated UI is used, a handler is required. A handler is again defined with an extension
point, namely org.eclipse.ui.handlers, and links a handler class to the command. Additionally,
it is possible to activate a handler depending on the state of a variable. This allows one UI
element to be sufficient to start, pause, and continue the simulation. This element is linked to
the de.unistuttgart.iste.ps.savors.commands.SimulationControlCommand, which again is referenced
by three different handlers, each of which is exclusively enabled depending on the state of
a simulation. The state is determined by three Boolean variables, which are defined by the
runtime plug-in and updated by the class Simulator.

7.1.3 Preferences

Eclipse provides a preference dialogue which is subdivided in pages. Fortunately, it can be ex-
tended and own preference pages can be added by extending the org.eclipse.ui.preferencePages

extension point. Each page is defined by a name and a class extending the abstract class
FieldEditorPreferencePage, which provides useful methods to create GUI elements, as presented
by listing 7.1. The first parameter of the constructor of the BooleanFieldEditor is the preference
node identifier, the second parameter is the text displayed to the user with the ampersand
indicating the next character to be the mnemonic character, and the last parameter is the
parent SWT element.

Listing 7.1 Creating and adding a Boolean preference node.
addField(new BooleanFieldEditor("ID", "&Preference", getFieldEditorParent()));

Preferences are saved by a PreferenceStore internally. Each plug-in can specify an Activator

class, which is called as soon as the plug-in is loaded. The Activator class of each plug-in
provides a method returning an instance of the PreferenceStore, as long as the Activator
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inherits from AbstractUIPlugin. Each preference node needs a unique identifier. In order to
define the initial value of the preference nodes, a class extending AbstractPreferenceInitializer

has to be added to the org.eclipse.core.runtime.preferences extension point. Its method
initializeDefaultPreferences() is called whenever the preferences need to be initialized. More
information about Eclipse preference features is contained in [Dau08].

7.1.4 Scheduler and Event Analyzer Extension Points

New scheduler and event analyzer implementations should be added as separate plug-ins. To
be informed about the existence of new plug-ins, the Eclipse extension point mechanism is
used. The de.unistuttgart.iste.ps.savors.runtime plug-in defines two extension points in its
plugin.xml file as shown in listing 7.2.

Listing 7.2 Extension point definition for scheduler and event analyzer implementations.
<extension-point id="de.unistuttgart.iste.ps.savors.scheduler" name="Scheduler" schema="

schema/de.unistuttgart.iste.ps.savors.scheduler.exsd"/>
2 <extension-point id="de.unistuttgart.iste.ps.savors.eventAnalyzer" name="EventAnalyzer"

schema="schema/de.unistuttgart.iste.ps.savors.eventAnalyzer.exsd"/>

The linked XSD documents were generated with the help of a user dialogue provided by the
Eclipse Plug-in Development Environment (PDE). They define what information is required by
the extension point. The scheduler extension point requires exactly one Java class implementing
the IScheduler interface. The event analyzer extension point requires one Java class extending
the AbstractEventAnalyzer class and two Boolean variables, specifying whether the event analyzer
should be selected initially and if it should notify the user in case of a detected event by
default.

In the Activator class of the same plug-in defining the two extension points, the source code
of listing 7.3 will collect all elements of the scheduler extension point and add an instance of
the specified class to the SchedulerManager. In the same way the elements of the event analyzer
extension point are loaded and added to the EventAnalyzerManager.

Listing 7.3 Loading elements of the scheduler extension point.
for (IConfigurationElement element : extensionRegistry.getConfigurationElementsFor(

SCHEDULER_EXTENSION_POINT_ID)) {
2 Object o = element.createExecutableExtension("class");

if (o instanceof IScheduler) {
4 SchedulerManager.addScheduler((IScheduler) o);

}
6 }

7.1.5 Deployment

The set of plug-ins an Eclipse application consists of is defined in a product definition file.
This file is an XML document which also allows to define the product’s branding details like
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the launcher icon and the splash screen to be displayed while the application is started. It is
contained in the plug-in de.unistuttgart.iste.ps.savors.

Adding every single plug-in to the product definition might become cumbersome, as all
dependencies have to be taken care of. So-called feature definitions at an intermediate level
between the product definition and the plug-ins provide relief. A feature is again defined by
an XML document, specifying a set of plug-ins. In contrast to product definitions, it may also
depend on other features. Therefore, instead of a long list of plug-ins, the product definition
can also contain merely a few features. In order to use the Eclipse update mechanism Equinox
Provisioning Platform (P2), a feature-based product definition is mandatory [Dau08].

With the help of the Product Configuration Editor, a special dialogue which is part of the
PDE, the product definition file can easily be edited. This dialogue provides a reference to the
Eclipse Product Export Wizard, another dialogue helping to generate the application. If the
so-called delta-pack is installed within Eclipse, it is possible to export the product for various
platforms, including Microsoft Windows, GNU Linux and Apple Mac OS X.

The building process internally relies on Apache Ant scripts. It is possible to create an own
automated software building process with Apache Ant scripts by calling these internal scripts.
An own building process can automatically create a JavaDoc documentation and invoke a
coding style checking tool before building the software itself.

7.2 Visualization

The plug-in de.unistuttgart.iste.ps.savors.view contains all UI related classes like the handler
classes described in section 7.1.2, the edit parts introduced in section 6.4.1, and the views which
are added to the main window of the Eclipse RCP application. The main view displays the
simulation result synchronously to its generation. It is implemented in the class ScheduleView,
which extends the abstract class org.eclipse.ui.part.ViewPart and is added to the org.eclipse.

ui.views extension point.

7.2.1 Element Overview

The ScheduleView contains a ScrollingGraphicalViewer, which is a part of the GEF and displays
the graphical representation of the simulation model. After each update of the visualization,
the horizontal scrollbar of the ScrollingGraphicalViewer is set to the rightmost position in order
to show the current simulation time. However, an overview of the model elements like tasks,
cores, and resources should stay at the left side to show which row of events belongs to which
element.

This can be achieved by two different approaches. First, the ScheduleView inserts a layer which
is separated in two parts. The left part contains the element overview and the right part
contains the ScrollingGraphicalViewer. The splitting is achieved by making use of SWT’s layout
options.
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The element overview has to be horizontally scrollable to contain all model elements independent
of the size of the window. As the right part containing the events is scrollable, too, both
scrollbars are linked in a way that if one is moved, the other one follows immediately.

As explained in section 6.4.1 on page 59, there exists a subclass of the class AbstractGraphical-

EditPart for each model element, which generates the graphical representation of the element
with the help of Draw2D. Although it is generally possible to make use of these edit parts for
the element overview on the left side, it is not intended by the GEF that a model element is
linked to more than one edit part. However, this would be necessary in order to show two
different representations of the same model. Therefore, the overview on the left side is entirely
modeled with SWT and updated only when a new model is loaded.

The second approach relies entirely on the GEF. In this solution, the edit part for the SystemModel

displays the element overview on the left side by means of Draw2D functions. The same class
also creates a scrollable container for the events next to the overview and sets the scrollbar to
the rightmost position each time the simulation model is updated.

Although Draw2D is based on SWT, and SWT makes use of the UI functions provided by the
OS as mentioned in section 5.1.4 on page 38, Draw2D provides its own scrollbar independent
of the OS. Unfortunately, this also means that if the image in the ScrollingGraphicalViewer is
zoomed in or out, the Draw2D scrollbar also grows or shrinks. Additionally, when exported
as a raster image file, only the currently visible part inside the Draw2D scrollbar is depicted,
whereas in the first solution, the whole time axis is saved. For this reason, the first approach
is implemented.

7.2.2 Raster Graphics Export

Exporting the visualization of the resulting schedule as an image file is advantageous for adding
comments or for including it into other documents. Therefore, a class SaveImageCommandHandler

is set as a handler for the respective command. It opens a dialogue allowing the user to select
the path and file name for the image file.

Since saving the image might take some time, the SaveImageCommandHandler contains an inner
class of type org.eclipse.core.runtime.jobs.Job. A job runs in a separate thread and the progress
is reported to the user in a special window provided by Eclipse.

Saving the image to a file makes use of SWT classes like Image, GC, Graphics, and ImageLoader.
Basically, the topmost edit part containing all other edit parts of the visualization paints into
an image buffer, which is saved to the image file. The following raster image file types are
supported:

• PNG

• JPEG

• BMP

• Tagged Image File Format (TIFF)
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• GIF

As explained in the previous section, the element overview is separated from the rest of
the visualization. In order to add the element overview to the image, the class SidebarUtil

returns an IFigure object which is constructed in a similar way as the element overview of the
ScheduleView. This way is less complex than combining the element overview, implemented
as a combination of SWT Control objects, with the image of the simulation result based on
IFigure objects. Both IFigure objects are drawn side by side into the same image buffer.

7.2.3 Vector Image Export

In contrast to raster image formats, a vector image is described by geometrical primitives like
polygons, rectangles, and textual labels and not pixel by pixel. This has the advantage that
even at high magnification levels, the vector image does not lose quality and stays sharp. A
common document format for vector images is SVG, which is standardized by the W3C. For
more information about SVG please refer to [DDG+11].

Since the visualization of the simulation result is built of basic graphical elements, a vector
image export seems obvious. The GEF internally supports exporting to the SVG format. It
uses the Apache Batik library, which transforms Java2D graphics to SVG documents and is
published under the Apache license. Since Java2D is based on AWT and thus is not compatible
with Draw2D and SWT, the Draw2D graphics have to be converted. However, classes that
transform Draw2D to Java2D images like the org.eclipse.gmf.runtime.draw2d.ui.render.awt.

internal.svg.export.GraphicsSVG are not accessible from outside the framework. A bug report
already describes this problem and requests making these internal classes public [Dut10].
Unfortunately, this has not happened up to the present date, thus the only way apart from
rewriting all code or modifying the framework itself is to copy the respective internal classes.

Since this solution is far from ideal, the SVG export functionality is contained in an additional
plug-in and therefore can easily be detached from the software.

7.2.4 Tool Bar Contribution

The user should be able to quickly change the speed of the simulation and the scale of the
time axis. Both parameters are controlled by fields inside the SimulationParameters class, as
explained in section 6.2 on page 50.

Therefore, the main tool bar containing control elements to control the simulation, to change
the scheduling policy, and to activate event analyzers is extended by a combo box for each
parameter. A combo box is a UI element which provides a predefined set of values and lets
the user specify an own value.

A class implementing the abstract class WorkbenchWindowControlContribution has to implement
methods returning an SWT control element like a combo box and can be added to the org

.eclipse.ui.menus extension point. Implementing the SimulatorListener interface, the class is
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informed of changes of the parameter in case a new simulation model file is loaded. Since the
Simulator is designed according to the singleton design pattern, changes made by the user via
the combo box can easily be forwarded to the simulation kernel.

7.2.5 Property View

If the user clicks on a graphical element, detailed information like the priority and period of a
task or the start time of an event as well as its duration should be presented. Eclipse provides
the class org.eclipse.ui.views.PropertySheet, which is a view containing a table of the name
and the value of each property of an element.

Fortunately, as the model is generated with the EMF as explained in section 5.2.3 on page 43,
not only Java code implementing the model but also an “edit” plug-in containing classes
to describe the model, so-called item providers, can be generated. Furthermore, the EMF
can generate another plug-in, the “editor” plug-in, which provides an entire Eclipse RCP
application with a UI allowing the user to edit the model. The item providers are used by the
editor plug-in to determine the name and the representation of each model element and its
properties.

The generated code of the editor plug-in served as a reference for adding a property view
for the simulation model elements to the software. The data of the PropertySheet view has to
be provided by a IPropertySheetPage. The EMF provides an ExtendedPropertySheetPage, which
implements this interface and determines the name of each property with the generated item
provider classes of the edit plug-in. This is why the plug-in containing the views depends on
the generated edit plug-in as shown in figure 7.1 on page 61.

The class ScheduleView contains the ScrollingGraphicalViewer, which finally displays the simu-
lation model. In order to update the property view when the user selects a visual element,
the ScheduleView has to implement the ISelectionProvider interface and listen to selection
changes of the viewer object. When the user clicks on an element in the visualization, the
ScrollingGraphicalViewer returns an object of type IStructuredSelection, which contains a list
of the selected edit parts. Since the ExtendedPropertySheetPage only handles elements of the
SystemModel, the selection has to be transformed to contain the respective model elements.

In order to link the property view to the IPropertySheetPage, Eclipse makes use of the adapter
design pattern introduced in [GHJV95]. An adapter class helps to provide a common interface
for two classes, which otherwise would be incompatible. The ScheduleView contains the method
getAdapter(Class type), which returns the ExtendedPropertySheetPage object as an implementation
of the IPropertySheetPage interface. When the property view is visible to the user, it is notified
when the selection changes. Thereupon, the selection provider, in this case the ScheduleView, is
queried for an object implementing the IPropertySheetPage interface via the adapter pattern.
The returned ExtendedPropertySheetPage is then used to determine how the properties of the
selected object should be displayed. More information about showing properties of model
elements is given by [MDG+04].
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7.3 Simulation Kernel

The de.unistuttgart.iste.ps.savors.runtime plug-in contains all classes necessary to run the
simulation. Apart from the Simulator, all classes extending the abstract Job class, the TimeAxis,
the TaskMonitor, and the ResourceMonitor as well as the AbstractEventAnalyzer and the IScheduler

interface are part of this plug-in. Additionally, the SimulationException is defined in runtime
plug-in.

7.3.1 Simulator

The class Simulator provides methods to start, pause, continue, and stop the simulation, which
is driven by the inner class SimulationThread. These methods also update the state of the
variables enabling the different handlers for the simulation control command, as explained in
section 7.1.2 on page 62.

The inner class SimulationThread contains the main loop and thus drives the whole simulation.
The code of the main loop is presented in listing 7.4 on the facing page. Whenever the
simulation time increases, all registered observers of the Simulator are notified.

7.3.2 Time Axis and Jobs

The TimeAxis class contains a map linking a simulation time to a list of Job objects. If a Job

object is added to the TimeAxis, it first checks whether the simulation time is not in the past
or equals the current simulation time. In the former case, a SimulationException is thrown, in
the latter case the job is executed immediately. Otherwise the job is added to the map at the
given time.

New Job objects might be added during the execution of another Job object. This also means
that the TimeAxis is currently iterating over the list of Job objects and modifying this list leads
to a ConcurrentModificationException. Therefore, these new Job objects are saved in another list
and added afterwards.

Each Job has to implement the function isDispatchNecessary() returning a Boolean value. All
return values of the Job objects with a common simulation time are combined with the OR
operator after their execution. Hence only one Job object requesting the call of the dispatch
routine is sufficient for the simulation kernel to call the scheduler.

7.3.3 Task Monitor

As stated in section 6.3.5 on page 55, each TaskMonitor object is linked to exactly one task via
the singleton class TaskManager.

The TaskMonitor is implemented as a state machine and provides methods to change the state
of the task. In case the state transition is not allowed according to the state transition diagram

68



7.3 Simulation Kernel

Listing 7.4 The main loop of the simulation thread, exception handling is omitted to enhance
readability.

setup(); // create the initial task creation jobs
2 while (!stopped) {

// execute the generated jobs
4 dispatchNecessary = timeAxis.executeJobs(globalTime);

6 if (dispatchNecessary) {
scheduler.dispatch(globalTime);

8 }

10 long nextTime = timeAxis.getNextTimeStep();

12 // test if there is anything to do at all
if (nextTime == Long.MAX_VALUE) {

14 // Stop simulation, as there are no further events.
} else

16

// update our listeners
18 for (final SimulatorListener listener : listeners) {

listener.simulationTimeUpdated();
20 }

22 try {
if (paused) {

24 synchronized (this) {
while (paused)

26 wait();
}

28 }

30 // "live" feature: wait in real-world time for the simulation time span.
synchronized (this) {

32 final long timeToWait = (long) ((nextTime - globalTime) / getSpeedFactor());
if (timeToWait > 0) {

34 wait(timeToWait);
}

36 }
} catch (final InterruptedException e) {

38 // nothing, we’ve been woken up from being paused
}

40

globalTime = nextTime;
42 }

depicted in figure 2.1 on page 19, a SimulationException is thrown. Otherwise the respective
Event objects are created and added to the simulation model.

Once a task is in state running, all Commands of the task are executed in the order of their
definition in the system model. The TaskMonitor saves the current command number and the
executed time in case a running task is preempted. Once the task is resumed, it continues
with the same command and the remaining execution time. If the current command requests
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or releases a resource, the respective methods of the IScheduler interface are called. If the
scheduler implementation allows the task to lock the resource, it has to set the state of the
task to running again, in order to execute its next command. Additionally, a list of locked
resources and a list of resources blocking the task are maintained. The current implementation
does not allow two consecutive execution commands, as this would add a superfluous call of
the dispatch method of the IScheduler interface and the two execution commands can easily
be combined to one.

7.3.4 Resource Monitor

Similar to the TaskMonitor, each ResourceMonitor is linked to exactly one resource via the singleton
class ResourceManager as explained in section 6.3.6 on page 56.

The ResourceMonitor offers methods to lock and unlock a resource. The function lock(long time,

Task lockingTask, int units) returns true if enough free units are available. The ResourceMonitor

also provides a method returning the dynamic ceiling priority, which depends on the number
of available units as described in section 6.1.3 on page 49. Note that the lock function does
not check the task’s priority, as this is the duty of the scheduler implementation and differs
between the resource access protocols. The ResourceMonitor creates all necessary Event objects
and adds them to the simulation model. Additionally, a list of tasks locking the resource and
a list of tasks waiting on the resource are maintained.

7.3.5 Event Analyzer

The runtime plug-in contains the EventAnalyzerManager and the AbstractEventAnalyzer classes.
The former saves the selection and notification state of each event analyzer with the help
of Eclipse preference nodes. The latter has to be inherited by every event analyzer. Each
subclass has to implement the modelChanged(Notification notification) method, which will be
called whenever the simulation model is changed. The Notification object is part of the EMF
and contains the new or changed object of the simulation model. By checking whether the
new object is of type Event and by comparing the type of the Event, e. g. a deadline event can
be triggered for. If such a deadline event occurs and the same task is not in terminated state
yet, a deadline was missed and the user can be informed, using the reportIncident(Severity

severity, String message, boolean show) method of the Simulator class.

In some cases, it might be necessary to request additional parameters from the user once the
event analyzer is activated. Therefore, each subclass of AbstractEventAnalyzer has to implement
the configure(Shell parentShell) method, which is called when the event analyzer is selected.
The Shell class is part of the SWT and necessary to create and display UI elements. Note that
in case the event analyzer is selected initially, the same method is called with the parameter
set to null, as the user should not be bothered with event analyzer configuration details before
the application is fully loaded.

70



8 Scheduling Policies

This chapter presents different scheduling policies and resource access protocols and how they
are implemented as part of the set of initially available schedulers. Except for the last section,
all described scheduling policies are defined for a single-core environment and their properties
only hold within such systems.

The last but one section explains the procedure of adding further scheduling policies to an
existing installation of the software. A partitioned multi-core scheduling policy serves as
example and is implemented this way. Therefore, it is not available by default. Each scheduler
has to implement the IScheduler interface and has to be added to the de.unistuttgart.iste.ps.

savors.scheduler extension point as described in section 7.1.4 on page 63.

8.1 Cyclic Executive

Under the Cyclic Executive scheduling policy, the order of execution of the periodic tasks is
determined once before the execution. As the resulting schedule is precomputed, it belongs to
the class of off-line scheduling policies [Liu00, p. 77]. A time window of constant length, the
major cycle, is subdivided into minor cycles. Each minor cycle contains a set of tasks in such
way that all tasks are executed within their period. The major cycle is repeated infinitely.

The implementation of a Cyclic Executive is rather straightforward. The dispatch routine
selects and executes the task in the sequence of the fixed schedule or simply waits for the next
minor cycle to begin. Once the end of the predefined sequence, i. e. the major cycle is reached,
it is started again from the beginning.

The disadvantage of the Cyclic Executive is that the construction of the schedule is a bin-
packing problem, which is known to be NP-hard [BW01]. This problem needs to be solved for
each set of tasks, and it is not possible to add tasks or modify the parameters of existing tasks
without having to compute a new solution. Additionally, sporadic tasks are hard to incorporate
into this schedule. More information about the Cyclic Executive is given in [BW01, Liu00].

The Cyclic Executive scheduler implementation is written for a set of tasks defined by a specific
simulation model, thus it has to exclude all other simulation models. The implementation
makes use of the checkSystemModel(SystemModelCheckReporter reporter, SystemModel systemModel)

method of the IScheduler interface, which is called after a new simulation model is loaded but
prior to the simulation. If the name of a simulation model and the contained tasks are not
as expected, the reporter is notified about a finding of fatal severity. Hence, the user is not
allowed to start the simulation and has to select another scheduling policy for the simulation
model.
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8.2 Fixed-Priority Preemptive Scheduler

The fixed-priority preemptive scheduling policy belongs to the class on-line scheduling policies
[Liu00, p. 78]. This means that, in contrast to the Cyclic Executive, it makes its scheduling
decisions at run-time. Only the priority value, which is assigned to each task, is static and
determined before the execution. It will later be extended by a dynamic priority value, which
is required by some resource access protocols.

The dispatch routine selects and executes the task with the highest priority among all tasks
in ready state. A higher priority is represented by a higher integer value of the priority field,
which is according to [BW01, p. 470] but in contrast to [Liu00, p. 166]. If a task with a higher
priority than the currently running task becomes ready, the running task is preempted, i. e. set
in ready state, and the higher-priority task starts running. In case there are no tasks in ready
state or the currently running task has a higher priority, it continues execution. If there are
no tasks in ready state and no task is currently executing, the dispatch routine simply does
nothing. Additional information about the fixed-priority preemptive scheduling policy is given
in [BW01, Liu00].

The fixed-priority preemptive scheduler implements a default resource access protocol. If a
task requests a shared resource but fails to lock it, its state is set to blocked. As soon as the
resource is unlocked again, the state of the blocked task is set to ready again. After each
resource interaction the dispatch routine is called, since the state of a task might have been
changed and a scheduling decision is necessary.

8.2.1 Task Creation Delay

The previously introduced fixed-priority preemptive scheduling policy is designed for single-core
systems. The system model does not restrict a task from having a longer WCET than its
period. Thus, it is generally possible for the same task to create a new instance while a
previous instance of the same task is currently running. As explained in section 2.4 on page 19,
on systems with only one processing unit, tasks can only be executed concurrently, not really
in parallel. Hence, for a task to start executing while another instance of the same task is
running, and “the release of a process will be delayed until any previous releases of the same
process have completed” [BW01, p. 498]. For this reason, the stateChangeRequest(long time,

Task task, State newState) method checks whether a task which requests its state to be set
to created is currently in the non-existing state. If that is not the case, the state change is
deferred until the current instance of the task is terminated. Since more than one creation
request could arise while the same instance of the task is still not in terminated state, the
number of deferred requests is monitored.

If a periodic, infinitely repeating task with a period shorter than the sum of the durations
of its execution commands is defined in a single-core system, the core utilization is greater
than one and a schedule is infeasible. However, if the number of repetitions is limited or if a
sporadic task with a minimum inter-arrival time shorter than the duration of its execution is
defined, it might still be possible to derive a schedule using the described mechanism.
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8.2.2 Rate-Monotonic and Deadline-Monotonic Scheduler

The fixed-priority preemptive scheduling policy is implemented as an abstract class and serves
as super class for the RMS and DMS implementations. The difference between these two
protocols is the assignment of the task priorities. The RMS requires a task with a shorter
period to be assigned a higher priority. Additionally, the deadline of a task has to equal its
period. In contrast, the DMS requests a task with a shorter deadline to be assigned a higher
priority and allows arbitrary periods.

Since the priority values are defined by the user in the simulation model, the only dif-
ference in the implementation of the two scheduling policies is in the checkSystemModel(

SystemModelCheckReporter reporter, SystemModel systemModel) function, where a correct priority
assignment is verified. If the assignment is found to be incorrect, the priority values are
overwritten by correct values and the user is notified.

8.2.3 Priority Queues

The tasks in ready state are maintained by the class PriorityQueues. As soon as two tasks have
the same priority, some kind of resolution mechanism is required. As will be explained in
section 8.7.3 on page 78, some resource access protocols demand a First In First Out (FIFO)
regime for such cases. For this reason, the class PriorityQueues contains a queue under FIFO
regime for each priority level and provides methods to access the highest priority task and to
add tasks at the beginning or at the end of these queues.

8.3 Fixed-Priority Non-Preemptive Scheduler

The implementation of a non-preemptive fixed-priority scheduler is very similar to the preemp-
tive fixed-priority scheduler described in the previous section. In contrast to the preemptive
version, the currently running task is not allowed to be preempted by any other task, even if
the other task has a higher priority. The preemptive fixed-priority scheduler is in general more
reactive, thus it usually is preferred to the non-preemptive version [BW01, p. 470].

The non-preemptive fixed-priority scheduler contains the same basic resource access protocol as
was implemented by the preemptive scheduler. However, assuming that no task self-suspends,
all shared resources a task requests are free since a task cannot be preempted once it has
started running.

8.4 Simple Priority Inheritance

Under the fixed-priority preemptive scheduling policy, a high-priority task c might be blocked
because it requests a resource currently locked by a low-priority task a. This behavior is called
priority inversion. Moreover, tasks with a priority between the priority of tasks c and a can
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preempt task a and thus increase the time task c is blocked. As the highest-priority task has
the shortest deadline under DMS and under RMS regime, the priority inversion effect needs to
be minimized to schedule all tasks within their deadlines. More information about priority
inversion is given in [BW01, Liu00].

One method of limiting the described effect is the use of the simple priority inheritance
protocol. Under priority inheritance regime, the priority of a low-priority task b is promoted
and becomes equal to the priority of the high-priority task c for the duration while task b
blocks task c [BW01, Liu00, SRL90]. The simple priority inheritance protocol limits this
inheritance to one step, i. e. if task b is blocked itself by lower-priority task a, the priority of
task a is not promoted. The transitivity is limited only for educational reasons. Transitive
priority inheritance prevents priority inversion in a larger number of cases.

For this protocol, the priority of a task has to be dynamic [BW01]. In order to maintain the
original priority value, which is part of the simulation model, the active priority is saved by
the TaskMonitor object.

The simple priority inheritance protocol is implemented as an abstract class inheriting from the
fixed-priority preemptive scheduler and overwriting the requestResource() and releaseResource()

methods. If locking a resource fails, the task which currently holds the lock of the resource
inherits the priority of the requesting task. In case the resource contains multiple units and is
locked by more than one task, the task with the highest priority among the locking tasks is
promoted [Liu00, p. 315]. Once the promoted task releases the resource, its priority value is
reset to its previous value. Note that if the priority of a task is raised, the task is added to the
tail of the FIFO queue of its new priority value, whereas if the priority is reset from a higher
priority, the task is added to the head of its new FIFO queue [Liu00].

Similar to the fixed-priority preemptive scheduler, this protocol is implemented as an abstract
class, in order to be inherited by an RMS and a DMS version.

8.5 Transitive Priority Inheritance

As the name suggests, the transitive inheritance protocol extends the simple priority inheritance
protocol by transitivity. The priority inheritance routine is implemented recursively. If a task
is blocked by a lower-priority task, the lower-priority task inherits the blocked task’s priority.
If the lower-priority task is blocked itself, the task which blocks the lower-priority task also
inherits the new priority value. This is continued until a task blocking a higher-priority task is
able to execute. In the end, the whole chain of tasks blocked on each other including the last,
executable task inherit the first task’s priority.

Neither the simple nor the transitive priority inheritance protocol prevents deadlocks [BW01].
In case task b requests a resource, it will be blocked by task a if task a currently holds the
lock of the same resource. However, if task a requests another resource currently locked by
task b, task a is blocked itself by task b. According to the protocol, the priority of task a is
promoted and set equal to the priority of task b. Due to transitivity, as task a is blocked, too,
the priority of task b has to be promoted as well. Without further measures, this would lead
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to an infinite recursion in the scheduler. By saving a list of tasks which have already been
promoted at the current simulation time, the scheduler implementation is able to prevent the
infinite recursion. In this case, the user is notified about the detection of a deadlock and the
simulation is stopped.

The class implementing the transitive inheritance protocol is an abstract subclass of the
fixed-priority preemptive scheduling policy implementation. It is extended by an RMS and a
DMS version.

8.6 Original Ceiling Priority Protocol

The Original Ceiling Priority Protocol (OCPP) was presented by Sha, Rajkumar, and
Lehoczky in 1990 under the name Priority Ceiling Protocol [SRL90]. Burns and Wellings
define it by the following set of rules:

1. “Each process has a static default priority assigned (perhaps by the deadline monotonic
scheme).” [BW01]

2. “Each resource has a static ceiling value defined, this is the maximum priority of the
processes that use it.” [BW01]

3. “A process has a dynamic priority that is the maximum of its own static priority and
any it inherits due to it blocking higher-priority processes.” [BW01]

4. “A process can only lock a resource if its dynamic priority is higher than the ceiling of
any currently locked resource (excluding any that is has already locked itself).” [BW01]

The OCPP ensures that if a shared resource is locked by task a and blocks a higher-priority
task b, no other resource that could block b is allowed to be locked by any task other than a
[BW01]. Hence, transitive blocking cannot occur and a task is blocked not more than once on
a lower-priority task. Additionally, this protocol prevents deadlocks. More information about
OCPP is given in [BW01], in [Liu00] under the name Basic Priority-Ceiling Protocol and in
[But11, SRL90] under the name Priority Ceiling Protocol.

The OCPP is implemented as a subclass of the simple priority inheritance protocol, as it needs
to access the method calculating the new, promoted priority for the task currently blocking
one or more higher priority tasks.

The requestResource() method is overridden in such a way that as soon as a task requests
a resource R, it is checked whether resource R has enough units available. If not, the task
is blocked and the task with the highest priority among the tasks locking resource R is
promoted.

If there are enough free units available, the task’s active priority needs to be higher than the
current system priority ceiling in addition. According to rule 4, this means that the task’s
priority has to be higher than the priority ceiling of any resource currently locked, except the
resources locked by the task itself. If task’s active priority is higher than the current system
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priority ceiling, the task locks the requested resource R and the system priority ceiling value is
updated.

If the task fails the second test and its active priority is lower than or equal to the current
system priority ceiling, the task is blocked by the highest priority ceiling resource Q. According
to the priority inheritance rule, the priority of the task with the highest priority among the
tasks locking Q is promoted. Note that resource Q could, but does not have to equal resource
R, which was actually requested by the task. Finally, the dispatch routine is called.

Somewhat less complex is the overridden releaseResource() method. Once a resource is released
by a task, the state of all tasks waiting on the released resource is set to ready. As mentioned
above, tasks which are blocked because of failing the second condition are waiting on the
highest priority ceiling resource. Therefore, the tasks which are set to ready state again did
not necessarily request the released resource. In case the task’s priority was promoted while it
locked the resource, it’s priority value is reset. After the system priority ceiling is updated,
the dispatch routine is called.

Similar to the previous protocols, the OCPP implementation is sub-classed to derive a DMS
and an RMS version.

8.7 Immediate Ceiling Priority Protocol

The Immediate Ceiling Priority Protocol (ICPP) is a modification of the OCPP. It has the
same worst case behavior, but is generally more easy to implement [BW01]. It is also known
as Priority Protect Protocol in POSIX, Priority Ceiling Emulation in Real-Time Java [BW01],
Ceiling Priority Protocol in Ada [Liu00] and Highest Locker Protocol [COF12].

8.7.1 ICPP definition

The ICPP is defined by Burns and Wellings by the following set of rules:

1. “Each process has a static default priority assigned (perhaps by the deadline monotonic
scheme).” [BW01]

2. “Each resource has a static ceiling value defined, this is the maximum priority of the
processes that use it.” [BW01]

3. “A process has a dynamic priority that is the maximum of its own static priority and
the ceiling values of any resources it has locked.” [BW01]

Another very similar specification, given by McCormick, Singhoff and Hugues, is based
on the following rules:

1. “Each task has a static and a dynamic priority. The static priority is assigned according
to rules such as Rate Monotonic or Deadline Monotonic.” [MSH11]
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2. “Each shared resource has a priority. This priority is called a priority ceiling and its value
is equal to the maximum static priority of all the tasks which use the shared resource.”
[MSH11]

3. “The scheduler always selects the ready task with the highest dynamic priority. The
dynamic priority is equal to the maximum of the task’s static priority and the ceiling
priorities of any resources the task has locked.” [MSH11]

In contrast to the OCPP described in the previous section, the priority of a task locking a
resource is immediately promoted to the resource’s priority ceiling, not only in case the task
blocks a higher priority task by a locked resource.

8.7.2 Unspecified Behavior

The property of OCPP that a task can be blocked only once is reinforced for the ICPP, as “a
process will only suffer a block at the very beginning of its execution. Once the process starts
actually executing, all the resources it needs must be free.” [BW01]

However, applying the rules presented above with a sample set of tasks and resources, it can
be shown that this statement does not hold in general as described in the following.

Consider a situation with one resource R and three tasks a, b, and c, in which task a has the
lowest priority, task b has a higher priority than task a, and task c has the highest priority.
Task a and task b both request the resource R during their execution. According to rule 2 of
both definitions, the priority ceiling of resource R equals the priority of task b, since task b is
the task with the highest priority accessing R. Furthermore, task a will start its execution
before task b, and task b starts before task c.
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Figure 8.1: Simulation result under an underspecified version of ICPP, as task b is blocked
after its execution started.
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The result of the simulation of the described task set is depicted in figure 8.1 on the preceding
page. Task b is blocked at time 40. This clearly violates the property that a task will only
suffer a blockage at the very beginning of its execution. So what happened? At the beginning,
task a is the only task in ready state, hence it starts executing and locks resource R. According
to rule 3, its active priority is immediately promoted to the priority ceiling of resource R, i. e.
2. At the time the state of task b is set to created, it has the same active priority as task a
and therefore is not allowed to preempt task a. As soon as task c is set to ready, it preempts
task a, as its active priority is higher. As the highest-priority task, task c finishes without
being interrupted anymore. At the time task c terminates, there are two ready tasks, a and
b, with the same active priority of 2. The rule set of Burns and Wellings as well as the
rule set of McCormick, Singhoff and Hugues provide no rule for such a case, thus the
task to be scheduled is unspecified. If task b is chosen arbitrarily as shown in figure 8.1 on the
previous page, it will be blocked by task a as soon as it requests resource R. If task a was
chosen, all properties of the ICPP would hold since task a would be preempted by task b after
it has released resource R. Task b would execute without being blocked or preempted and
task a would finally finish its execution.

Note that for the OCPP, it is generally possible for two tasks to have the same priority, too.
However, according to rule 3 in the definition of OCPP presented in section 8.6 on page 75,
a task only inherits another task’s priority if it blocks that task. Therefore, it is impossible
for two tasks to be ready and have the same priority at the same time, as one of the tasks is
blocked by the other one.

8.7.3 Extended ICPP Definition

With the Ceiling-Priority Protocol and the Stack-Sharing Priority-Ceiling Protocol, Liu
describes two different specifications of the ICPP [Liu00]. The former is implemented by Ada
2005 [Liu00, TDB+07], whereas the latter is derived from Baker’s protocol [Liu00].

The Stack-Sharing Priority-Ceiling Protocol is defined by a set of rules rather different from the
ones presented in section 8.7.1 on page 76, because it is developed from a different approach and
out of a different motivation. Nevertheless, the Ceiling-Priority Protocol and the Stack-Sharing
Priority-Ceiling Protocol produce the same schedule for all tasks as long as a task never
self-suspends. [Liu00]

The Ceiling-Priority Protocol is described similarly to the definitions of section 8.7.1 on page 76,
namely as follows:

1. “Scheduling Rule:” [Liu00]

a) “Every job executes at its assigned priority when it does not hold any resource.
Jobs of the same priority are scheduled on the FIFO basis.” [Liu00]

b) “The priority of each job holding any resource is equal to the highest of the priority
ceilings of all resources held by the job.” [Liu00]
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2. “Allocation Rule: Whenever a job requests a resource, it is allocated the resource.”
[Liu00]

Rule 1.a) of the Ceiling-Priority Protocol defines the order of tasks with the same priority,
which was unspecified by the previous definitions. “Jobs of the same priority are scheduled
on the FIFO basis.” [Liu00, p. 303] It is very important to note that if a task is preempted
by a higher priority task, “it is added at the head of the ready queue for its active priority.”
[TDB+07, p. 521].

For the sample task set presented in the previous section this means that at the very beginning
task a is added to the tail of the queue of priority 1. As soon as it locks resource R and
inherits its priority ceiling, it is removed from the queue of priority 1 and added to the tail of
the queue of priority 2. At the time task b is set to ready, it is added to the tail of the queue
of priority 2. When task c starts running and preempts task a, it is added to the head of the
queue of priority 2 again, which will cause task a to be continued after task c has terminated.
Therefore, the simulation of the same task set as described in section 8.7.2 on page 77 with a
FIFO regime for tasks of same priority leads to the correct result, as presented in figure 8.2.
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Figure 8.2: Simulation result under a sufficiently specified version of the ICPP.

Comparison of Tasks and Jobs

The reader may have noticed that the definition of the Ceiling-Priority Protocol is based on
jobs, not on tasks. These jobs must not be confused with the simulator jobs on the time axis
mentioned in section 6.3.3 on page 53. According to [Liu00, p. 26], “each unit of work that is
scheduled and executed by the system [is called] a job” and “a set of related jobs which jointly
provide some system function [is called] a task”.

Similar to the definition of a task given in section 2.3 on page 18, jobs are executed on
processing units [Liu00, p. 26]. Furthermore, jobs can periodically or sporadically become
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available for execution, are assigned relative deadlines, and might require shared resources for
specific time intervals [Liu00, p. 27, 38, 56]. These points indicate a great similarity between
Liu’s definition of a job and the definition of a task given in section 2.3.

The definitions are different for the period parameter. Liu’s jobs only contain release times
and the period is defined by the task the job is contained in. However, this means that the
period parameter of a task can be expressed by multiple release times of a job.

Furthermore, jobs can have dependencies on each other, which “constrain the order in which
they can execute” [Liu00, p. 42]. Fortunately, if there is only one processing unit, an effective
release time and an effective deadline can be derived, which incorporates these precedence
constraints [Liu00, p. 65-67]. Hence interdependencies between jobs can be neglected for single-
core scheduling protocols like the ICPP by deriving effective release times and deadlines.

As long as interdependencies can be neglected and the period parameter can be replaced by
multiple release times, the rules based on jobs are valid for tasks as defined in section 2.3 as
well. More information about the different concepts of tasks is given in [Liu00, p. 40, 57].

8.7.4 ICPP Implementation

The ICPP is implemented as an abstract subclass of the fixed-priority preemptive protocol
implementation.

The requestResource() method is overridden to realize the rules presented above. Once a task
locks a requested resource, its priority is immediately promoted to the maximum priority
ceiling of all resources it currently locks. Since the ICPP guarantees that all resources a task
requests are free once it starts executing, an exception is thrown if a resource could not have
been locked successfully.

As no task is ever blocked under the ICPP, the overridden releaseResource() method does not
need to change the state of any task to ready. Instead, it merely unlocks the resource and
updates the active priority of the releasing task.

The ICPP class is inherited by a DMS and an RMS version.

8.8 Differentiation of Blocking States

The section will provide information about a differentiation of blocking types like direct,
inheritance and ceiling blocking. Although the application of the different blocking states does
not affect the resulting sequence of scheduled tasks, i. e. the schedule, in most cases, there are
certain differences especially in the visualization which have to be considered.
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8.8.1 Direct blocking

The general definition of blocking according to Liu is:

“When the scheduler does not grant ηi units of resource Ri to the job requesting
them, the lock request L(Ri, ηi) of the job fails (or is denied). When its lock request
fails, the job is blocked and loses the processor. A blocked job is removed from the
ready job queue. It stays blocked until the scheduler grants it ηi units of Ri for
which the job is waiting for. At that time, the job becomes unblocked, is moved
backed to the ready job queue, and executes when it is scheduled.” [Liu00, p. 279]

In contrast to this definition, according to which a task is only blocked if it is denied to lock a
resource, a different definition for direct blocking is given by several authors: “A higher-priority
job Jh is said to be directly blocked by a lower-priority job Jl when Jl hold some resource which
Jh requests and is not allocated.” [Liu00, p. 282] “A job J is said to be blocked by the critical
section zi,j of job Ji if Ji has a lower-priority than J but J has to wait for Ji to exit zi,j in order
to continue execution.” [SRL90, p. 1176] “If a process is waiting for a lower-priority process,
it is said to be blocked.” [BW01, p. 486] So, according to the direct blocking definition it is
sufficient to have to wait on another task for a task to be directly blocked.

The direct blocking definition does not explicitly include what happens when a low-priority
task blocking a middle-priority task is preempted by a high-priority task. However, example
2 of [SRL90, p. 1179] and figure 13.8 of [BW01, p. 492] clearly indicate that since the low-
priority task is preempted itself, the middle-priority, blocked task is no longer blocked, but
also preempted. For this reason, a transition from blocked to ready in the task state diagram
depicted in figure 2.1 on page 19 is required. Preempting the blocked task results in a different
duration of the blocked state in contrast to the general definition, which defines that the
blocked task “stays blocked until the scheduler grants it ηi units of Ri for which the job is
waiting for” [Liu00, p. 279] as illustrated in figure 8.3 on the following page.

Liu’s theorem 8.2 for OCPP states that “when resource accesses of preemptive, priority-driven
jobs on one processor are controlled by the priority ceiling protocol, a job can be blocked for
at most the duration of one critical section.” [Liu00, p. 295] The theorem was proven by Sha
et al. in [SRL90]. This property does not hold in the schedule generated under the general
blocking definition presented in figure 8.3a on the next page. The low-priority task a locks the
resource Q for 30 time units, but the higher-priority task b is blocked by a for 40 time units.
Therefore, the theorem only holds if the definition of direct blocking including the preemption
of directly blocked tasks is applied.

To provide a maximum compatibility, the user has the option to select the blocking definition
for schedulers based on the fixed-priority preemptive policy in the preference dialogue.

Simple Priority Inheritance With Direct Blocking

As stated in section 8.4 on page 73, the simple priority inheritance protocol is not transitive.
If a task is blocked by a lower priority task, the lower-priority task inherits the priority of that
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(b) Direct blocking.

Figure 8.3: A simple set of three tasks and one resource scheduled with DMS and OCPP for
the comparison of the different blocking definitions.

task. If the lower-priority task is blocked itself, it will not promote its blocking task. Therefore,
compared to the transitive priority inheritance protocol, the implementation is less complex.
As explained above, the definition of direct blocking implies that if a medium-priority task b is
blocked by a low-priority task a while a high-priority task d preempts a, not only the state of
task a, but also the state of task b is set to ready. If task d continues to run and eventually
gets blocked by task b, according to the simple priority inheritance protocol, only the priority
of task b shall be promoted. Since task b is in state ready and now has the same active priority
as d, the dispatch routine will select and execute task b, which tries to access a resource still
blocked by a. Even without a recursive priority inheritance routine, task a now inherits the
priority of b and d, respectively.

This shows how the simple priority inheritance protocol unintentionally got transitive due to a
different blocking definition. It also implies that the resulting schedule of the simple priority
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inheritance protocol is not independent of the blocking definition. The discussed effects are
visualized in figure 8.4 on page 88.

However, it can be shown that the simple priority inheritance protocol under the direct blocking
definition does not equal the transitive priority inheritance protocol in general. In case task d
of the previous example starts directly with the resource request command, it is immediately
blocked. This time, task b is not in ready state when it inherits the priority of d. Therefore,
task b is unavailable for the dispatch routine. So it does not try to lock the resource again,
which is why the priority of task a is not promoted. The transitive priority inheritance protocol
would promote the priority of task a independent of the state of task b.

In a nutshell, the simple priority inheritance protocol is defined on top of the general blocking
definition and thus does not work correctly with the direct blocking definition. In order to
verify that the simple priority inheritance protocol is only simulated under the general blocking
definition, a notification will be presented if the user selected this protocol and the direct
blocking definition.

8.8.2 Inheritance blocking

Apart from direct blocking, Sha et al. define another blocking type called push-through blocking
for the priority inheritance protocols. This blocking type is also known as inheritance blocking
[Liu00]. A medium priority task b is push-through or inheritance blocked if it is not allowed to
execute because a low-priority task a locks a resource and inherits the priority of a high-priority
job c waiting on this resource. This way, task b cannot block the high-priority task c indirectly.
[SRL90]

Since task b has a lower active priority than task a after the latter inherited task c’s priority, it
will not be selected by the dispatch routine even if it stays in the ready state. For that reason,
changing the state of the inheritance blocked task from ready to blocked does not affect the
resulting sequence of scheduled tasks. Similar to direct blocking, the user has the option to
choose whether the state shall be changed to blocked if a task is inheritance blocked or not.

8.8.3 Ceiling blocking

For the OCPP, a third blocking type called ceiling blocking is introduced by Sha et al.. A
high-priority task c is ceiling blocked by a low-priority task a if task a currently locks a resource
with a priority ceiling higher than the priority of task c, and task c requests another resource
[SRL90]. Ceiling blocking is also called avoidance blocking, since it is necessary to avoid
deadlocks [Liu00].

Ceiling blocking is similar to inheritance blocking as a task is not allowed to execute because
its priority is not high enough. Again, if the state of a ceiling blocked task is not changed
to blocked but stays ready, the resulting schedule is the same. For that reason, the user has
the option to choose whether the state shall be changed to blocked or not if a task is ceiling
blocked.
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As discussed in section 8.7, a task can only be blocked once under the ICPP. According to
rule 3 of the ICPP definition given by Liu, “whenever a job requests a resource, it is allocated
the resource” [Liu00, p. 301]. Therefore, it is impossible for a task to be directly blocked under
the ICPP. Since a task locking a resource immediately inherits the resource’s priority ceiling,
the only possible blocking type is inheritance blocking.

Note that, although Burns and Wellings do not mention any of the additional blocking
states explicitly, the examples 13.7, 13.8 and 13.9 for the discussed resource access protocols
given in [BW01] show inheritance and ceiling blocked tasks in state blocked.

8.9 Earliest Deadline First

Apart from the fixed-priority scheduling policies presented in the previous sections, there exist
dynamic-priority protocols like the Earliest Deadline First (EDF) scheduling policy. Under
EDF regime, the order of the execution of the runnable tasks is determined by their absolute
deadlines. In contrast to the relative deadline, which is saved as a parameter of a task in the
simulation model, the absolute deadline is computed at runtime when an instance of a task is
created. The task with the closest absolute deadline is selected and executed. According to
the EDF scheduling policy, the priority of a periodic task might change between two instances.
However, the priority of an instance of a task is fixed from its creation until its termination,
since the absolute deadline of this instance is constant. The EDF scheduling policy is optimal
on preemptive uniprocessors, because it successfully schedules any set of periodic, independent
tasks with a processor utilization U up to 100%. More information about EDF is given in
[LL73, BW01, Liu00].

The implementations of the EDF policy and the fixed-priority preemptive scheduler are similar.
The priority queues presented in section 8.2.3 on page 73 are used with the shortest absolute
deadline instead of the task’s priority. The highest-priority task, i. e. the task with the shortest
absolute deadline of the set of tasks in ready state, is compared to the currently running task.
If the absolute deadline of the highest-priority task is closer, the currently running task is
preempted.

In the definition of the EDF scheduling policy in [LL73, p. 55], the case that the currently
running task and the task with the shortest absolute deadline among the set of ready tasks
have exactly the same deadline is not mentioned. According to [SRS98, p. 17], if two tasks
have the same deadline, the task to be executed can be chosen arbitrarily. Figure 6.4 of [Liu00,
p. 118] contains such a case and shows that the currently running task is preempted. For the
sake of compatibility, the EDF implementation also preempts the running task in case of equal
deadlines.

The EDF scheduler implementation contains a default resource access protocol. If a task
requests a resource but fails to lock it, the task is set to blocked state. Its state is set to ready
as soon as the resource is released again. After each resource interaction, the dispatch routine
is called, since the state of a task might have been changed.
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8.10 Stack Resource Protocol

The EDF scheduling policy suffers an analogy to priority inheritance considering shared
resources and blocking. If a resource is currently locked by a task, another task requesting
the same resource is not able to execute, even if it has a closer deadline. This effect is called
deadline inversion [BW01].

In 1991, Baker presented the Stack Resource Protocol (SRP), a resource access protocol for
the dynamic-priority EDF scheduler [Bak90]. The SRP influenced the development of the
ICPP [BW01], although the SRP uses so-called preemption levels instead of priority values to
support dynamic scheduling protocols. Preemption levels capture the possibility that one task
preempts another task. A valid preemption level assignment for periodic tasks is based on the
relative deadline: the closer the deadline, the higher the preemption level. Similar to static
priorities, the preemption level assignment is fixed and needs to be derived only once before
execution. Each resource is assigned a preemption ceiling value, i. e. the highest preemption
level of all tasks requesting the resource. Additionally, the system preemption ceiling always
equals the highest preemption ceiling of all resources currently locked. If all resources are
unlocked, the system preemption level is defined to be lower than the lowest preemption level
of all tasks. Further details about the SRP are given in [Bak90, Liu00].

According to Liu, there exist a basic and a stack-based version of the SRP, similar to the two
versions of the ICPP described in section 8.7.3 on page 78. The SRP is implemented according
to the rules of the stack-based version and as a subclass of the EDF scheduler implementation.
The priority field of the task and resource specification in the simulation model is used to save
the preemption level.

The dispatch() function is overridden, since under the SRP, a task is blocked from starting
execution until its preemption level is higher than the current system ceiling. Once a task
started running, it is added to the shared runtime stack. As soon as the task terminates, it is
deleted from this stack again. The task added last to the shared runtime stack is compared to
the task with the closest absolute deadline. If the task in ready state has a closer absolute
deadline than the task on the shared runtime stack, it is only allowed to start execution in
case its preemption level is higher than the current system preemption ceiling. Otherwise, the
currently running task continues its execution.

The requestResource() method is overridden, since the SRP guarantees that “whenever a
task requests a resource, it is allocated the resource” [Liu00, p. 311]. The releaseResource()

method is also overridden, as each resource interaction requires the system preemption ceiling
to be updated. In contrast to the ICPP implementation, the system preemption ceiling is
not calculated each time but added to and removed from a stack according to Baker’s
implementation considerations [Bak90].

The SRP definition contains a priority inheritance rule. Fortunately, “the preemption test
has the effect of imposing priority inheritance; that is, an executing job that holds a resource
modifies the system ceiling and resists preemption as though it inherits the priority of any
jobs that might need that resource. Note that this effect is accomplished without modifying
the priority of the job.” [But11]
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8.11 Adding a Scheduler

New scheduling policies and resource access protocols can be added to an existing installation of
the software as additional plug-ins. The class containing the new scheduler has to implement the
IScheduler interface and needs to modify the simulation model. Therefore, the new plug-in will
depend on the de.unistuttgart.iste.ps.savors.runtime and the de.unistuttgart.iste.ps.savors.

model plug-ins, which have to be present in Eclipse. Additionally, the class has to be added to
the de.unistuttgart.iste.ps.savors.scheduler extension point, as explained in section 7.1.4 on
page 63. Eclipse offers comfortable methods to create and export a new plug-in as well as to
add an entry to an extension point.

With the Equinox Provisioning Platform (P2), Eclipse includes a full-fledged update mechanism.
However, P2 requires the maintenance of a repository of plug-ins and increases the size of
the software [Dau08]. Therefore, the decision was made against this framework and in favor
of updating the software manually. Adding the newly developed plug-in into an existing
installation of the application requires two steps.

1. The JAR file containing the plug-in has to be copied into the “plugins” subdirectory of
the installation location.

2. The configuration file “bundles.info” of the SimpleConfigurator, which is located in the
“configuration/org.eclipse.equinox.simpleconfigurator” subdirectory of the installation
location has to be edited. A new line needs to be added, specifying the ID and version
of the new plug-in, its location as well as its start level and whether it should start
automatically. The start level should be the same as for the other plug-ins, i. e. 4, and
autostart should be set to false.

8.12 Multi-Core Scheduling Policies

All scheduling policies introduced in the previous section are defined only for a single-core
environment. However, as indicated in section 1.2 on page 14, the software should support
multi-core environments and respective scheduling policies.

The simulation supports only homogeneous multi-core systems, in which the rate of execution
of all tasks is the same on all processing units [DB11]. This is due to the duration of an
execution command being specified by its WCET as mentioned in section 6.1.1 on page 48. If
the cores have different rates of execution, the duration will also depend on the core the task
is running on.

Furthermore, intra-task parallelism is not supported, which means that at any given time, a
task can execute on one core at most [DB11, p. 4].

Even with these restrictions, there exist various approaches to solve the two main problems
[DB11]:

1. Find a core to execute every task [DB11].
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2. Find a priority for each task to determine the order of execution [DB11].

The solution to the first problem, the allocation problem, can be subdivided into three possible
classes [DB11]:

1. Tasks are allocated to a core and no migration is permitted. [DB11].

2. Each instance of a task may execute on different cores, however, a single instance is fix
allocated to a core [DB11].

3. A single instance of a task can migrate on different cores, e. g. after a preemption [DB11].

For the second problem, the priority assignment can be static or dynamic similar to single-core
scheduling policies.

More information about how these problems can be solved is given in [Liu00, DB11].

8.12.1 Partitioned Multi-Core Scheduler

Scheduling policies which allocate tasks to a core without allowing migration are referred
to as partitioned [DB11]. The problem of finding an optimal task assignment is NP-hard
[Liu00, p. 339]. In most case, heuristics like first fit (FF), next fit (NF), and best fit (BF) are
used, which find suboptimal solutions in reasonable amount of time [DB11, Liu00]. Once the
allocation problem is solved, the set of tasks per core can be scheduled under the well-known
scheduling policies introduced in the first sections of this chapter [DB11, p. 14]

A partitioned fixed-priority preemptive multi-core scheduler was created as a plug-in to be
added to an existing installation of the software using the mechanism described in section 8.11
on the preceding page. The assignment of tasks to cores has to be solved by the user in
beforehand and is included in the simulation model. Each set of tasks per core is scheduled
under the DMS with the default resource access protocol.

The scheduler makes use of the DMS implementation, which is part of the de.unistuttgart.iste

.ps.savors.scheduler plug-in. For each core an instance of this scheduler is created. Depending
on the task’s name, the core to execute on as well as the respective DMS implementation
are selected. All state change and resource requests are forwarded to the respective DMS
implementation. The dispatch call is forwarded to all DMS implementations, as the event
responsible for the dispatch call is unknown.
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(c) The simple priority inheritance protocol under direct blocking regime is transitive.

Figure 8.4: An example schedule presenting the effects of different blocking definitions on
the simple priority inheritance protocol.
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Validation and tests are important aspects in software engineering. The former is concerned
with showing that the program works as expected and the latter is necessary to discover defects
and undesired system behavior [Som10]. Therefore, both are mandatory for a system to fulfill
all requirements and to be reliable and stable. This chapter presents how the entire software
is validated and tested.

Software is usually tested at different layers, starting from unit tests and ending with compre-
hensive system tests. An overview about software testing is given in [FLS07, Som10].

9.1 Unit Testing

Unit testing is the process of testing each program component and its functions separately.
Functions can be tested by calling them with different sets of parameters, especially with
parameters representing corner cases, and comparing the returned result with the expected
value. An object is tested by testing all its methods, by modifying and checking all its
attributes, and by putting the object in all possible states by simulating events that cause state
changes [Som10, p. 211]. Unit tests are typically performed as so-called white-box tests. This
type of test methods have access to the source code and the internal structures of the program.
Detailed information about unit testing and white-box test methods is given in [Som10].

With JUnit, there exists a comfortable environment for conducting unit tests in the Java
programming language [Som10]. Each class is tested in a separate environment, while the
framework logs the test results [Som10].

For Eclipse RCP applications, which are based on the Eclipse platform, ordinary JUnit tests
might not be runnable since the component to be tested may require services of the Eclipse
platform. For this reason, the Eclipse PDE provides a special version of JUnit, which starts a
complete instance of the Eclipse RCP application in a separate Java Virtual Machine (JVM)
and executes all test cases inside this environment. For more information about this PDE
version of JUnit, please refer to [SJB08].

As explained in section 6.1 on page 46, the EMF generates the source code of the system
model. Furthermore, it is able to generate a test plug-in for the generated classes. However,
this test plug-in contains only a stub test case for each model element with no actual tests
inside. Since the system model elements merely contain attributes and no methods, the tests
themselves are rather simple.
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A test suite based on the PDE version of JUnit was developed. It contains tests for the most
important classes of the simulation kernel and for each event analyzer. The TimeAxis is tested
by checking whether Jobs added at specific time instances are later returned properly and their
deletion is performed correctly. Various methods of the Simulator are tested, e. g. it should not
be possible to start the simulation without a simulation model to be present. It is checked
whether the TaskMonitor prevents nonexistent state transitions. Additionally, the TaskMonitor

has to create various Events and Jobs whenever a task successfully changed its state, which is
also tested. Furthermore, the correct support of multi-unit resources by the ResourceMonitor is
tested.

Each subclass of the AbstractEventAnalyzer is tested by adding respective events to the simulation
model and checking for the event analyzer to trigger.

9.2 System Testing

In contrast to unit tests, system tests are usually performed as so-called black-box tests.
Such tests do not consider the internal structure of the program. The main aim of system
tests is to validate that all requirements are met. For this reason, the completely integrated
system with all subcomponents is tested. More information about this topic is contained in
[FLS07, Som10].

By making use of software engineering methods like prototyping and incremental delivery as
described in section 3.1 on page 21, discrepancies between the requirements and the software
were checked regularly in meetings with the customer, i. e. the supervisor.

In order to check the correctness of the software, especially the simulation, various simulation
models were extracted and translated from examples given in [BW01], [Liu00], [SRL90], and
[Bak90]. The simulation results of these models were compared to the sample schedules given
in these references. Defects and shortcomings in the implementation of the scheduling policies
and resource access protocols could be detected and fixed this way. Some important insights
gained by these tests are covered in the sections 8.7.2 and 8.8 of the previous chapter.

In case the resulting schedule was determined to be correct, the simulation model as well as
the simulation result serve as reference for new versions of the program. A new version should
produce the same results as the previous versions if no functional parts of the program have
been changed. This test is referred to as regression test [FLS07]. To decrease the costs of
testing, the regression tests are automated with the help of the JUnit framework.

Furthermore, test cases for the activation and deactivation of GUI elements, the differentiation
of the different blocking types, the manual and automatic pausing of the simulation, the effects
of different visualization preferences, and the recognition of faulty simulation models were
defined. Faulty simulation models either contain malformed XMI syntax, specify generally
unsupported situations like consecutive execution commands, or are incompatible to the
selected scheduling policy. An example for the latter case is an incorrect priority assignment
for the RMS.
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All mentioned test cases are described in a tabular manner, specifying each step to be performed
and the expected behavior. The tests are executed by following these steps and comparing the
result to the expectation, as described in [FLS07].

As mentioned in section 1.2 on page 14, an advantage of using Java is its support of multiple
platforms without recompilation. Using Eclipse and SWT slightly restricts the number of
platforms, as explained in section 5.1.4 on page 37. The software was tested on different
platforms, as shown in figure 9.1 on the following page.

9.3 Code Conventions Check

Making use of coding style conventions enhances the readability and improves software
maintenance [KND+99], which is an important objective as mentioned in section 1.2 on
page 14. For this reason, the source code is written under the Code Conventions for the Java
Programming Language given in [KND+99].

In order to automate the checking of the coding style conventions and to enforce their correct
application, the code convention checking software tool checkstyle is employed. It supports the
Code Conventions for the Java Programming Language and can be added to the Eclipse IDE or
be invoked by an Apache Ant task [Bur12]. The automated software building process described
in section 7.1.5 on page 63 makes use of this software tool to generate a documentation of
coding style violations in the source code.
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(a) Microsoft Windows 8 Professional N 32-bit.

(b) Apple OS X Lion 10.7.5 (11G63) 64-bit.

(c) Ubuntu 12.10 with Linux 3.5.0-17 64-bit.

Figure 9.1: Testing the software on different platforms.
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10.1 Conclusion

In the presented work, task scheduling simulation and visualization software was designed,
implemented and tested. The software focuses on but is not limited to scheduling policies
primarily used in real-time and embedded systems.

First of all, the functionalities and current state of existing projects were researched and
summarized. It could be shown that none of these projects is available under an appropriate
license, focuses on real-time and embedded systems, and at the same time is able to generate
a graphical representation of the current simulation result while the simulation is running.
The synchronous visualization of the simulation result relieves the user of the need to specify
the time and duration of the part of interest. The software offers the possibility to pause
the simulation at arbitrary points of interest in order to inspect intermediate scheduling
situations.

Different visualization frameworks for Java were compared with the help of prototypes. Based
on this comparison, Eclipse and the GEF were selected to generate the graphical representation
of the simulation result. Apart from the visualization, loading the file-based simulation model
can be facilitated with the help of another framework. A comparison amongst different
approaches led to the EMF, which is not only able to serialize and deserialize objects, but
additionally capable of generating the source code of these objects from a UML model.

The software architecture design is based on the previously selected frameworks. Special effort
was put into the design of the simulation meta-model, which needs to provide a high degree
of flexibility to allow modeling a variety of system configurations. The simulation supports
multiple processing units, periodic and sporadic tasks with soft, hard, and no deadlines as well
as shared resources with multiple units. Each of these elements can contain so-called events,
which are created in the course of the simulation. With the help of the EMF, the simulation
model is loaded from an XMI formatted file. This format is based on the well-known XML, and
is therefore likely to be easily edited by humans. Furthermore, it extends the XML to allow
links between elements. Such references are useful to handle cases such as a task requesting a
specific resource.

The simulation kernel of this project is designed in a dynamic, discrete event-driven manner.
The simulation time is increased stepwise whenever the simulation model and its elements are
modified. In order to create a more realistic impression of the running scheduling process, the
simulator waits in real-world time for the elapsed simulation time. Together with the pausing
function, this feature is helpful for understanding the scheduling algorithm.
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The simulation kernel executes the simulation in a separate thread. A special type of exception
is introduced, which allows the scheduler implementation and the simulation kernel to provide
additional information in case a problem occurs. All exceptions that occur while the simulation
is running are logged and depending on their severity, the user is additionally notified directly.

The scheduler implementation has to trigger all necessary actions to drive the simulation. The
software supports the scheduler by providing functions which monitor the state of tasks and
resources and add respective events to the simulation model. In order to support various
scheduling policies and resource access protocols, the simulator does not restrict a direct
modification of the simulation model.

In addition to the initially required scheduling policies, a cyclic executive scheduler, a non-
preemptive fixed-priority scheduler, an EDF scheduler with the SRP, and a partitioned
multi-core DMS were implemented. The last-mentioned multi-core scheduler demonstrates
that the software potentially supports scheduling protocols for multi-core environments.

The simulation model does not only contain the configuration of the system to be simulated.
All results generated during the simulation are added to the simulation model in the form of
events. With the help of the GEF, a graphical representation for each element of the simulation
model is generated. The resulting visualization of the simulation result is updated whenever
the simulation time increases and thus always shows the current state. All visual elements
provide insight into their properties with the help of an additional window.

The user is allowed to pause the simulation at any time in order to inspect a specific scheduling
decision in closer detail. Furthermore, the simulation model is automatically scanned for
specific events, on the occurrence of which the simulation pauses itself and optionally notifies
the user.

Eclipse provides an extension mechanism which is used by the software to allow the addition
of further scheduler implementations. The same mechanism is also used to offer the addition
of new event analyzing functions, which pause the simulation in case a specific event has
occurred. The extension mechanism allows to upgrade an existing installation of the software
with additional functionality.

The result of the simulation can be saved as an XMI file, as a bitmap, and as a vector image.
If the XMI file is reopened with the software, all previously calculated information is visualized
immediately.

The software is tested with unit and system tests. The correct function of the scheduling policy
implementations is checked by comparing text book examples with the simulation result. In
order to enhance the readability and improve the maintenance of the source code, it is written
under coding style conventions. The compliance with these conventions is checked as part of
the automatic software building process. A documentation of the source code is generated
with the JavaDoc software as part of the automated software building process.
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10.2 Further Research

The current version of the simulation and visualization software already allows simulating a
multitude of scheduling policies and resource access protocols for single-core systems. Apart
from adding further scheduling policies like round robin and least slack time first, there still
exist different interesting opportunities and possibilities to extend and enhance the software.

It was shown that the current version of the software supports basic scheduling protocols for
multi-core environments. However, more complex multi-core protocols require clusters of cores
or tasks. An extension of the simulation meta-model could include such clusters. With the
help of the EMF, the source code of these new elements could be automatically generated.
Unfortunately, in order for the new elements to have a graphical representation, a visualization
based on the GEF would have to be implemented manually. The existing scheduling protocols
would have to be adapted, too.

The current version of the simulator does not support intra-task parallelism, since it is
impossible in a single-core environment. However, as soon as there exist several processing
units, multiple instances of the same task could be executed in parallel on different cores.
One possible solution to this problem is to change the simulation meta-model. Currently,
the meta-model is based on tasks according to the definition given in [BW07]. Switching
to the definition of tasks and jobs according to [Liu00] would allow the same task to have
two jobs which could both execute on a different core in parallel. Furthermore, it would
increase the compatibility to a variety of scheduling policy definitions which are based on
jobs. Unfortunately, all existing scheduling policies would have to be adapted and as jobs are
defined to have interdependencies, the implementation would be rather complex.

The current simulation meta-model does not allow tasks to self-suspend. This could be changed
by defining a self-suspend command. Unfortunately, the implemented scheduling policies would
have to be adapted as well in order to support the new command.

By adding an initialization and completion phase to the task state model, system configurations
with start-up and finalization phases could be simulated. Similar to the previous extension
possibilities, the changes in the simulation meta-model would be rather simple, however the
changes in the scheduler implementations would be complex.

In order to relieve the user from editing the simulation model externally via XMI formatted
files, a GUI could be added, offering functions to add and remove elements of the simulation
model and to change their properties.

A theoretical response time analysis could be performed by the software. Thus, the user could
be informed about the general schedulability of the simulation model prior to the simulation.
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Glossary

AADL
The AADL was designed by the SAE and provides a textual and graphical modeling
notation for embedded real-time systems. It provides constructs for software as well as for
hardware elements of such system. Additionally, it includes a standardized interchange
format based on the XML.

Ant
Apache Ant is a Java-based automated software building tool, which uses XML documents
to save the configuration.

Draw2D
Draw2D is a lightweight toolkit for displaying graphical components. It is built on top
of SWT.

Gantt chart
Gantt charts were developed by Henry Gantt. They display tasks and their chronological
order in an horizontal bar graph.

GTK+
GTK+ is an open-source graphical toolkit written in C. It serves as framework for the
creation of GUI elements on multiple platforms.

GTKAda
GtkAda is an graphical toolkit for the Ada programming language based on GTK+.

Java2D
The Java2D API is a set of classes providing functions for the creation of advanced 2D
graphics. It supports basic elements like polygons, textual labels, and raster images.

JavaDoc
JavaDoc is a software tool which generates a HyperText Markup Language (HTML)
documentation of Java source code based on comments in the code.

JUnit
JUnit is a unit testing framework for Java.
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Glossary

LogP
LogP is a model for parallel computation. Each letter of the word LogP represents one
parameter describing the machine. L is the latency of communication, o is the message
overhead, g is the gap required between message operations and P is the number of
processing units.

mnemonic
On most platforms, the mnemonic character of a UI element appears underlined. If the
user presses a key sequence that matches the mnemonic, the UI element is activated.

.NET
Microsoft’s .NET framework provides a class library and an application virtual machine.
It enhances the interoperability of different programming languages.

OpenGL
OpenGL is a software framework for developing portable, interactive 2D and 3D graphics
applications.

RGB
A color model in which red, green, and blue light are added together to define a color.

Wizard
A wizard consists of several GUI elements to guide the user on a specific task.

XML Schema
An XML schema definition is used to express a set of rules an XML has to obey in order
to be considered valid. It is developed by the W3C.
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Acronyms

AADL Architecture Analysis & Design Language
API Application Programming Interface
ARTISST ARTISST is a Real-Time System Simulation Tool
AWT Abstract Window Toolkit

BF best fit
BMP Windows Bitmap
BSD Berkeley Software Distribution

CSV comma-separated values

DES discrete event simulation
DMS Deadline Monotonic Scheduler
DSL domain specific language

ECU electronic control unit
EDF Earliest Deadline First
EJB Enterprise Java Bean
EMF Eclipse Modeling Framework

FF first fit
FIFO First In First Out

GEF Graphical Editing Framework
GHOST General Hard real-time Oriented Simulator Tool
GIF Graphics Interchange Format
GNU GNU’s Not Unix
GPL GNU General Public License
GTK+ GIMP Toolkit
GUI graphical user interace

HTML HyperText Markup Language

ICPP Immediate Ceiling Priority Protocol
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Acronyms

IDE integrated development environment

JAR Java Archive
JAXB Java Architecture for XML Binding
JDK Java Development Kit
JFC Java Foundation Classes
JFIF JPEG File Interchange Format
JPEG Joint Photographic Experts Group
JSON JavaScript Object Notation
JUNG Java Universal Network/Graph Framework
JVM Java Virtual Machine

LGPL Lesser GPL

MIT Massachusetts Institute of Technology
MVC Model–View–Controller

NF next fit

OCPP Original Ceiling Priority Protocol
OGSi Open Services Gateway initiative
OMG Object Management Group
OS operating system

P2 Equinox Provisioning Platform
PDE Plug-in Development Environment
PNG Portable Network Graphics
POJO Plain Old Java Object

RCP Rich Client Platform
RMS Rate Monotonic Scheduler

SAE Society of Automotive Engineers
SAVORS Simulation And Visualization Of Real-time Scheduling
SRP Stack Resource Protocol
STORM Simulation Tool for Real-time Multiprocessor scheduling
SVG Scalable Vector Graphics
SWT Standard Widget Toolkit

TCL Tool Command Language
TIFF Tagged Image File Format
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Acronyms

TLV Trace Log Visualizer

UI user interface
UML Unified Modeling Language

ViTE Visual Trace Explorer
VTK Visualization Toolkit

W3C World Wide Web Consortium
WCET worst case execution time

XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema Definition

YAML YAML Ain’t Markup Language
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