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Abstract 

Heutige Unternehmen stehen einer immer größer werdenden Menge an internen und externen 
Regelwerken, den Compliance-Regeln, gegenüber. Ihre Konsistenz muss bei der Entwicklung von 
organisationsübergreifenden Geschäftsprozessen sichergestellt werden. Die vorliegende Arbeit 
beschäftigt sich mit der automatischen Durchsetzung von Compliance in 
Geschäftsprozessmodellen. 

In einer vorhergehenden Arbeit wurde der webbasierte BPMN-Editor Oryx um die Überprüfung der 
Einhaltung von Compliance-Regeln in Prozessmodellen mittels Model-Checking erweitert. Die 
Prozessmodelle werden in sogenannte Compliance-Scopes aufgeteilt, die mit Compliance-Regeln 
in der linearen temporalen Logik (LTL) annotiert sind und die selbst weitere Compliance-Scopes 
enthalten können. In dieser Arbeit wird der Prototyp so weiterentwickelt, dass die verschachtelten 
Compliance-Regeln automatisch auf Konsistenz geprüft werden.  

Dabei basiert die Lösung auf einem vorhandenen Konzept der Konsistenzprüfung verschachtelter 
Compliance-Regeln, in dem die Compliance-Regeln als aussagenlogische Formeln formuliert 
werden. Diese Regeln werden an die enthaltenen Prozessbereiche rekursiv weitergegeben und mit 
ihren Compliance-Regeln auf Erfüllbarkeit geprüft. Neben der Übertragung dieses Konzeptes auf 
die LTL und den Prototyp wird die Gültigkeitsprüfung von Compliance-Regeln integriert. Es wird ein 
Ansatz zur Erkennung von den zur Weitergabe relevanten Teilregeln entwickelt. Dieser Ansatz 
basiert auf der Analyse der den LTL-Regeln entsprechenden Büchi-Automaten. Des Weiteren baut 
die Entscheidung zur Weitergabe auf den Teilergebnissen des Model-Checking auf. Daher werden 
das Model-Checking und die Konsistenzprüfung zu einer gemeinsamen Compliance-Prüfung 
kombiniert. Im Ausblick wird auf die Weiterentwicklungsmöglichkeiten der Lösung eingegangen. 
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1 Einleitung 

Aufgrund des technologischen Fortschritts und der globalen Tätigkeit heutiger Unternehmen 
können neue Marktchancen in neuen Geschäftsfeldern entdeckt werden [Bur04]. Doch gleichzeitig 
werden auch die Wettbewerbsregeln immer komplexer. Die Unternehmen stehen einer immer 
größer werdenden Menge an externen und internen Regelwerken, wie z. B. den internationalen 
Rechnungslegungsvorschriften IFRS oder der Qualitätsmanagement-Normenreihe ISO 9000, 
gegenüber. Dabei sind die Regularien einem ständigem Wandel unterzogen. So wurde z. B. 
Anfang 2012 im Zuge des technischen Fortschritts eine neue EU-Datenschutzrichtlinie [www12c] 
vorgeschlagen und ab 2013 werden aufgrund der Finanzkrise die neuen Eigenkapitalregeln für 
Banken nach Basel III in Kraft treten [www12b]. Insbesondere im Finanzsektor ist die stetige 
Zunahme an Regularien deutlich erkennbar [PR10]. Zudem wird z. B. in [www12d] eine „erhebliche 
Überregulierung“, die zu schlechteren Kundenbeziehungen und höheren Personalkosten führt, 
diskutiert.  

Die Einhaltung von Regeln und Gesetzen wird als Compliance bezeichnet. Die Nichterfüllung von 
Compliance-Regeln kann von wirtschaftlichen Einbußen über Imageverluste bis hin zu Geld- und 
Freiheitsstrafen führen [MMW07]. Daher wird im Rahmen des Compliance Managements die 
sichere und effiziente Erfüllung der internen und externen Regeln angestrebt. 

Erschwerend kommt hinzu, dass sich verschiedene Regeln oft auf gleiche Geschäftsprozesse 
beziehen und dabei nicht frei von Widersprüchen sind [KSMP07]. Die Entdeckung und Beseitigung 
solcher Widersprüche ist einer der Hauptaspekte bei der Umsetzung von Compliance [JR10]. 
Beispielsweise können die Inkonsistenzen länderspezifisch sein. So müssen die 
Unternehmensniederlassungen in verschiedenen Ländern bei der Speicherung 
personenbezogener Daten unterschiedliche Datenschutzbestimmungen befolgen [JR10].  

Aufgrund ständiger Veränderungen in den Regularien sind manuelle Compliance-Prüfungen, z. B. 
durch Audits, sowie die automatisierte Erkennung von Compliance-Verletzungen, z. B. anhand von 
Log-Dateien, oft unzureichend [Sac08]. Denn zum Zeitpunkt der Fehlerentdeckung ist oft bereits 
ein Schaden verursacht worden. Dagegen lassen sich mit dem Compliance „by design“-Ansatz 
[SGN07] viele Regelverletzungen bereits während der Entwicklung von Geschäftsprozessmodellen 
automatisch vermeiden. Dazu können die Regeln in einer logischen Sprache spezifiziert und den 
Prozessmodellen zugewiesen werden. Die Verifikation der Modelle gegen ihre Spezifikationen 
kann anschließend mittels des seit den 1980-er Jahren in der Hard- und Softwareentwicklung 
erforschten Model-Checking [CES86] vollautomatisch erfolgen. 

Dieses Verfahren wird erst seit einigen Jahren in der Welt der Geschäftsprozesse eingesetzt 
[FPR06, RMLD08]. Bei der Entwicklung von Geschäftsprozessen sind oft mehrere Unternehmen 
beteiligt [SALS10], die weltweit verteilt sein können. Beispielsweise entstehen durch das 
Outsourcing unternehmensübergreifende Geschäftsprozesse. Die Unternehmens-bereiche und 
Abteilungen der beteiligten Unternehmen müssen dabei sowohl die Vorgaben ihrer übergeordneten 
Bereiche als auch ihre internen Geschäftsregeln sowie branchenspezifische und 
standortabhängige Regelungen beachten. Insgesamt ergibt sich dadurch ein hoher 
Kommunikationsaufwand [KFB04], der aufgrund der Entfernung sowie der zeitlichen und 
sprachlichen Unterschiede zu Missverständnissen und damit zu Inkonsistenzen zwischen Teil- und 
Hauptprozessen führen kann.  
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Eine Inkonsistenz liegt dabei z. B. vor, wenn in einem Teilprozess eine Aktivität spezifiziert wird, 
die laut der Regel des übergeordneten Prozessmodells nicht erlaubt ist. Diesem Problem wird in 
[SALS10] mit dem Konzept des inkrementellen Entwicklungsprozesses von Geschäftsprozessen 
begegnet. Das Konzept ermöglicht es Prozessdesignern aus verschiedenen Organisationen einen 
Gesamtprozess mit konsistenten Compliance-Regeln zu entwickeln. Die Modellierung wird durch 
eine Aufteilung des Prozessmodells so unterstützt, dass die zu beachtenden Regeln automatisch 
auf Widerspruchsfreiheit geprüft werden. Der inkrementelle Entwicklungsprozess stellt sicher, dass 
die Compliance-Regeln der Unterprozesse nicht die Regeln der Prozesse verletzen, in die sie 
eingebettet sind.  

In dieser Arbeit wird das oben genannte Konzept des inkrementellen Entwicklungsprozesses 
umgesetzt. Im Gegensatz zu der in [SALS10] verwendeten Aussagenlogik erfolgt die Spezifikation 
der Compliance-Regeln in der linearen temporalen Logik (LTL). Die LTL ermöglicht zeitliche 
Aspekte, wie z. B. Reihenfolgen oder wiederkehrende Aktivitäten auszudrücken. Daher werden in 
dieser Arbeit erweiterte Problemstellungen diskutiert sowie ein entsprechender Lösungsansatz 
entwickelt und implementiert. 

1.1 Aufgabenstellung 

Das Ziel dieser Arbeit ist die Umsetzung des inkrementellen Entwicklungsprozesses aus [SALS10], 
wobei statt der dort betrachteten Aussagenlogik als Spezifikationssprache für Compliance-Regeln 
die lineare temporale Logik verwendet wird. Dazu soll auf einem Prototyp aufgebaut werden, der in 
[Gro10] um sogenannte Compliance-Scopes und das Model-Checking erweitert wurde. Die 
Compliance-Scopes stellen dabei abgegrenzte Prozessbereiche mit zugewiesen Compliance-
Regeln dar. 

Die bestehende prototypische Implementierung soll dahingehend erweitert werden, dass die 
Compliance-Regeln von verschachtelten Compliance-Scopes (siehe Abbildung 1.1) automatisch 
auf Konsistenz geprüft werden können. Dazu sollen die Compliance-Regeln von verschachtelten 
Compliance-Scopes in geeigneter Art verknüpft und auf Erfüllbarkeit geprüft werden. Zu diesem 
Zweck ist ein geeigneter SAT-Solver einzubinden. Der Prozessdesigner soll informiert werden, falls 
die Compliance-Regeln im Widerspruch zu den Compliance-Regeln der äußeren Compliance-
Scopes stehen und es damit nicht möglich wird, einen regelkonformen Prozess zu modellieren. 
Des Weiteren sollen Optimierungsmöglichkeiten untersucht und ggf. implementiert werden. 

 

Abbildung 1.1: Verschachtelte Compliance-Scopes 

Compliance-Scope 2 

Compliance-Scope 1 
Weitergabe der Regel A 

Weitergabe der Regel A ˄ B 

Compliance-Scope 3 

Erfüllbarkeitsprüfung von A ˄ B 
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1.2 Aufbau der Arbeit 

Kapitel 1 enthält die Beschreibung der Aufgabenstellung und des Aufbaus der Arbeit sowie eine 
Einführung in die Problemstellung.  

Im Kapitel 2 erfolgt die Einordnung dieser Arbeit im Geschäftsprozessmanagement (GPM). Dazu 
wird die Notwendigkeit der frühzeitigen Durchsetzung von Compliance-konformen 
Geschäftsprozessmodellen erläutert und im GPM-Lebenszyklus eingeordnet. Des Weiteren 
werden der webbasierten Editor Oryx und die verwendete Modellierungssprache BPMN vorgestellt. 
In nachfolgenden Unterkapiteln werden notwenige Grundlagen behandelt, auf die im weiteren 
Verlauf der Arbeit zurückgegriffen wird. Dies sind die lineare temporale Logik, das Model-Checking 
und die Erfüllbarkeitsprüfung. 

Im Kapitel 3 werden die Konzepte und Vorarbeiten vorgestellt, auf denen diese Arbeit aufbaut. 
Dazu gehören die Plausibilitätsprüfungen für Prozessspezifikationen, der inkrementelle 
Entwicklungsprozess sowie der Oryx-Prototyp, der in der vorhergehenden Arbeit um Compliance-
Scopes und das Model-Checking erweitert wurde.  

Im Kapitel 4 wird das Konzept der inkrementellen Entwicklung von Compliance-konformen 
Geschäftsprozessen auf die LTL übertragen. Dazu wird eine Definition von positiven und negativen 
Teilregeln im Rahmen der LTL eingeführt und die temporalen Gültigkeitsbereiche  von LTL-
Formeln diskutiert. Anschließend wird die zu implementierte Konsistenzprüfung von 
verschachtelten Compliance-Regeln beschrieben. 

Im Kapitel 5 wird die Umsetzung des Konzeptes beschrieben. Dabei wird zunächst ein 
architektonischer Überblick über die veränderten und hinzugefügten Komponenten des Prototyps 
gegeben. Anschließend werden die Details der Implementierung im Front- und Backend erläutert. 
Des Weiteren wird die Erweiterung des Model-Checking beschrieben, die das Model-Checking mit 
LTL-Formeln mit den Operatoren Globally und Until ermöglicht.  

Im Kapitel 6 ist eine Zusammenfassung dieser Arbeit zu finden. Das Kapitel 7 bietet einen Ausblick 
zur Erweiterung des Konzeptes und des Prototyps. 





 

2 Grundlagen 

In diesem Kapitel wird das Thema der vorliegenden Arbeit im Geschäftsprozessmanagement 
eingeordnet  sowie notwenige Grundlagen behandelt, auf die im weiteren Verlauf der Arbeit 
zurückgegriffen wird. Dies sind die lineare temporale Logik, das Model-Checking und die 
Erfüllbarkeitsprüfung. 

2.1 Geschäftsprozessmanagement 

Unter Geschäftsprozessmanagement (GPM) wird ein Führungskonzept zur zielgerichteten 
Steuerung der Geschäftsprozesse eines Unternehmens [SS08] verstanden. Ein Geschäftsprozess 
ist eine Verknüpfung wertschöpfender Aktivitäten, die zusammen zur Erfüllung eines 
wirtschaftlichen Ziels führen. Ein solches Ziel ist in der Regel die Erfüllung eines 
Kundenbedürfnisses. Es können primäre und sekundäre Geschäftsprozesse unterschieden 
werden. Die primären Geschäftsprozesse, wie z. B. Produktions- und Marketingprozesse, haben 
einen direkten Einfluss auf die Wertschöpfung und die Wettbewerbsfähigkeit. Die sekundären 
Geschäftsprozesse, wie z. B. Personalbeschaffung und IT-Support haben eine unterstützende 
Funktion [SS08]. 

Die primären Aufgaben des GPM haben einen strategischen Charakter. Auf der strategischen 
Ebene werden die wettbewerbsrelevanten Geschäftsprozesse auf die strategischen 
Unternehmensziele ausgerichtet und durch Kennzahlensysteme kontrolliert. Das GPM hat dabei 
einen maßgeblichen Einfluss auf die Organisationsstruktur eines Unternehmens [SS08]. Auf der 
operativen Ebene werden die Geschäftsprozesse strukturiert, ausgeführt und laufend optimiert. Zur 
Automatisierung von Geschäftsprozessen werden Workflow Management Systeme (WMS) 
eingesetzt. Mit Workflow wird ein „vollständig oder teilweise automatisierter Geschäftsprozess“ 
bezeichnet [HN09]. 

Der GPM-Lebenszyklus 

Die mit einem Geschäftsprozess oder Workflow verbunden Tätigkeiten können im sogenannten 
GPM-Lebenszyklus zusammengefasst werden [Joc10] (siehe Abbildung 2.1). Ausgehend von den 
aus der Geschäftsstrategie abgeleiteten Geschäftsanforderungen wird ein neues Prozessmodell, z. 
B. in der Sprache Business Process Model and Notation (BPMN), erstellt. Dabei stellen die 
sogenannten Key Performance Indicators (KPIs) nicht-funktionale Leistungsparameter bezüglich 
Zeit, Kosten, Qualität und Flexibilität dar. In der Implementierungs-Phase wird das Modell in eine 
ausführbare Sprache, wie die Business Process Execution Language (BPEL), übersetzt. Danach 
erfolgt die Bereitstellung in der Produktivumgebung und anschließend die Ausführung, wobei in der 
Regel mehrere Instanzen des Prozesses entstehen. Während der Ausführung werden die KPIs 
laufend gemessen und protokolliert. Auf Grundlage der im nächsten Schritt erfolgenden Analyse 
der Messdaten und des Abgleichs mit den strategischen Zielen wird das Prozessmodell verbessert. 
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Abbildung 2.1: GPM-Lebenszyklus, in Anlehnung an [Joc10] 

2.1.1 Compliance 

Der englische Begriff „compliance“ bedeutet so viel wie Erfüllung oder Einhaltung. Unter 
Compliance wurde ursprünglich die Einhaltung gesetzlicher Regelungen zum Anlegerschutz auf 
dem Kapitalmarkt verstanden. Heute umfasst dieser Begriff die Konformität zu allen für ein 
Unternehmen relevanten internen und externen Regularien, die im Folgenden Compliance-Regeln 
oder Regeln bezeichnet werden. Externe Compliance-Regeln sind beispielsweise Gesetzte zur 
Rechnungslegung und zum Datenschutz. Intern handelt es sich neben Unternehmensrichtlinien 
auch um die Einhaltung gesellschaftlicher Werte [Que11]. Insbesondere die Compliance zu 
aktuellen Nachhaltigkeitstrends, die ökonomische, ökologische und soziale Aspekte umfassen, 
wird zunehmend auf freiwilliger Basis integriert [www10a]. Dadurch gewinnen Unternehmen 
Vertrauen von Seiten der Kunden, Geschäftspartner und Mitarbeiter [Kal12]. 

Inkonsistenzen zwischen Compliance-Regeln 

Damit Gesetze und Normen von unterschiedlichen Unternehmen angewendet werden können, 
werden sie nicht genau formalisiert, sondern abstrakt gehalten [KSMP07]. Wenn verschiedene 
Regelwerke sich auf gleiche Geschäftsprozesse beziehen, entstehen oft Widersprüche die 
entdeckt und gelöst werden müssen [KSMP07, JR10]. Das Spannungsfeld zwischen internen und 
externen Regeln ist in Abbildung 2.2 dargestellt. Beispielsweise gilt nach dem Datenschutzgesetz 
das Selbstbestimmungsrecht über das persönliche E-Mail-Postfach. Andererseits schreiben andere 
Gesetzte die Archivierungs- und Aufbewahrungspflicht steuerrelevanter Daten vor. Das heißt, der 
Zugriff zu den Postfächern muss in bestimmten Situationen auch für andere Personen 
gewährleistet werden [Rös09]. 

 

Abbildung 2.2: Interne und externe Compliance-Regeln [JR10] 
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Des Weiteren müssen eventuelle Abhängigkeiten zwischen den Regelwerken beachtet werden. So 
können Inkonsistenzen aufgrund von Änderungen in den Regelwerken entstehen. Bei Änderung 
der internen Regeln müssen die externen Regeln überprüft werden und umgekehrt [JR10]. 

Bedeutung und Umsetzung der Compliance 

Die Bedeutung der Compliance ist in den letzten Jahren stark gestiegen [PR10] und wird 
zunehmend als fester Bestandteil in der Organisationsstruktur großer Unternehmen integriert 
[EKA11]. Die Einhaltung interner und externer Regeln kann erfolgskritisch für ein Unternehmen 
sein, da ihre Missachtung von Imageverlusten bis hin zu Geld- und Freiheitsstrafen für die 
verantwortlichen Geschäftsführer und Vorstände zur Folge haben [MMW07]. 

Die Umsetzung der Compliance wird im Wesentlichen von der Informationstechnik (IT) unterstützt. 
Beispielsweise helfen sogenannte Compliance Management-Systeme (CMS) „Compliance in allen 
relevanten Geschäftsprozessen des Unternehmens sicherzustellen“ [HE10]. Da sich die internen 
und externen Anforderungen auf Geschäftsprozesse beziehen, besteht ein enger Zusammenhang 
mit dem Geschäftsprozessmanagement [WK06]. Dabei ist eine hohe Flexibilität der IT-Infrastruktur 
eine Voraussetzung um die Geschäftsprozesse an Umfeldveränderungen anpassen zu können. 

 Compliance „by detection“ 2.1.1.1

Grundsätzlich können zwei Ansätze zur Umsetzung von Compliance unterschieden werden: 
Compliance „by detection“ und Compliance „by design“. Bei dem Compliance „by detection“-Ansatz 
[Sac08] werden die Regel-Verletzungen durch eine ex-post Analyse aufgedeckt. Das können z. B. 
Audits oder die Analyse von Log-Dateien ausgeführter Workflows (siehe Abschnitt 2.1 und Phase 
des Monitoring und der Analyse in Abbildung 2.4) sein. Bei diesem Ansatz besteht das Problem, 
dass die Regel-Verletzungen erst entdeckt werden, nachdem sie Schaden verursacht haben. 
Außerdem wird eine vollständige konsistente Aufzeichnung aller tatsächlichen Aktivitäten 
vorausgesetzt, was nicht immer möglich ist. 

 Compliance „by design“ 2.1.1.2

Aus dem Software Engineering ist bekannt, dass Fehler aus einer der Entwicklungs-Phasen (links 
in Abbildung 2.3]) typischerweise auf derselben Ebene in einer Umsetzungs-Phase (rechts) 
entdeckt werden. Das bedeutet, dass die Fehlerbehebungskosten, umso höher sind, je früher die 
Fehler begangen werden. Dabei steigt der Schaden durch unentdeckte Fehler mit der Zeit 
exponentiell an. Daher sollten Fehler möglichst früh entdeckt werden [LL10].  

 

Abbildung 2.3: Ebenen der Fehlerentdeckung [LL10] 

Der Compliance „by design“-Ansatz [SGN07] vermeidet Fehler indem die Prozessmodelle während 
der Modellierung auf Einhaltung der Compliance-Regeln verifiziert werden. Der Nachteil dieses 
Ansatzes ist jedoch, dass nicht mit Sicherheit entschieden werden kann, dass das verifizierte 
Geschäftsprozessmodell den Regeln entspricht. Der Grund dafür ist, dass nicht immer alle 
möglichen speziellen Geschäftsvorfälle ex-ante bekannt sind. Im Gegensatz zum „by detection“-
Ansatz ist jedoch eine Durchsetzung von gewünschtem und eine Verhinderung von 
ungewünschtem Verhalten möglich. Allerdings ist eine flexible Anpassung an 
Umfeldveränderungen unmöglich. Daher wird in [Sac08] eine Kombination aus beiden Ansätzen 
vorgeschlagen. 
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2.1.2 Einordnung dieser Arbeit im GPM-Lebenszyklus 

In dieser Arbeit liegt der Fokus auf dem Compliance „by design“-Ansatz. Die relevanten Phasen 
des GPM-Lebenszyklus sind in der Abbildung 2.4 hervorgehoben. Bei der Modellierung werden 
nun zusätzlich die Compliance-Regeln (siehe Abschnitt 2.1.1) berücksichtigt. Während beim „by 
detection“-Ansatz die Regel-Verletzungen nach der Prozessausführung analysiert werden, wird 
hier das Prozessmodell vor seiner Implementierung auf mögliche Compliance-Verletzungen 
untersucht. 

 

Abbildung 2.4: Einordnung dieser Arbeit im GPM-Lebenszyklus, in Anlehnung an [Joc10] 

2.1.3 Business Process Model and Notation 

Die Business Process Model and Notation (BPMN) ist eine standardisierte grafische Notation zur 
Beschreibung von Geschäftsprozessen [wwwf]. Die einheitliche Darstellung von 
Geschäftsprozessmodellen ermöglicht insbesondere die Zusammenarbeit von Geschäfts-
prozessentwicklern. Ursprünglich wurde die Sprache aus der Sicht der Fachverantwortlichen 
entwickelt. Seit der Version BPMN 2.0 hat die Sprache eine definierte Ausführungssemantik, die es 
ermöglicht die Prozessmodelle in den Business Prozess Management Systemen (BPMS) 
auszuführen oder auf andere ausführbare Sprachen wie Business Process Execution Language 
(BPEL) abzubilden [www11b].  

Die grundlegenden grafischen Elemente der BPMN sind Ereignisse, Aktivitäten und Gateways. 
Einige ihrer Variationen werden anhand des Beispielprozesses in Abbildung 2.5 erläutert. Die 
Ereignisse werden als Kreise dargestellt. Dies können Start-, Zwischen- oder Endereignisse sein. 
Ein Zwischenereignis (doppelt umrandet) kann z. B. den Eingang oder Ausgang einer Nachricht 
bedeuten. Die abgerundeten Rechtecke stellen Aktivitäten dar. Sie können Aufgaben, die auch 
Tasks genannt werden, oder mit einem Klick auf ein Pluszeichen aufklappbare Teilprozesse 
darstellen. Rauten mit einem Pluszeichen sind parallele Gateways, die bei Verzweigungen alle 
ausgehenden Kanten aktivieren. Bei Zusammenführungen warten sie auf alle eingehenden 
Kanten, bevor sie den ausgehenden Sequenzfluss aktivieren. Rauten mit einem X-Zeichen sind 
exklusive Gateways. Bei Verzweigungen aktivieren sie genau eine ausgehende Kante. Bei 
Zusammenführungen warten sie nur auf eine eingehende Kante. Ein Überblick über weitere 
grafische Elemente der BPMN kann z. B. in [www11a] in Form eines Posters heruntergeladen 
werden. 

Modellierung 

Implementierung 

Bereitstellung 

Ausführung 

Monitoring 

Analyse 

Geschäftliche 
Anforderungen 

  

Compliance-
Regeln 

  



2 Grundlagen 

9 

 

Abbildung 2.5: Beispiel für einen BPMN-Prozess  

2.1.4 Der Editor Oryx 

Oryx ist ein am Hasso-Plattner-Institut der Universität Potsdam entwickelter webbasierter BPMN-
Editor [wwwl]. Der Editor steht unter einer Open-Source-Lizenz zur Verfügung [wwwg] und wurde 
ursprünglich vor allem für Forschungszwecke entwickelt [DOW08]. Eine kommerzielle Version von 
Oryx wird von dem Unternehmen Signavio vertreiben [wwwj].  

Der Editor ist in einen client- und serverseitigen Bereich aufgeteilt. Die Clientseite wird auch als 
das Frontend bezeichnet und enthält die in JavaScript programmierte Benutzeroberfläche (siehe 
Abbildung 2.6). Die Benutzeroberfläche wird im Webbrowser aufgerufen und ist in vier 
Hauptbereiche unterteilt. Im linken Bereich befinden sich grafische Elemente, die per Drag&Drop in 
die Zeichenfläche im mittleren Bereich gezogen werden können. Nach dem Markieren eines 
grafischen Elements können nachfolgende Elemente ausgewählt werden oder im rechten Bereich 
die Eigenschaften bearbeitet werden. Im oberen Bereich befindet sich die horizontale Toolbar, in 
der Zusatzfunktionen aufrufbar und durch in Plugin-Konzept integrierbar sind [www10b, Tsc07]. 
Neben JavaScript werden externe JavaScript-Bibliotheken eingesetzt, wie z.B. Prototype [wwwi], 
welche die objektorientierte Programmierung und den Datenaustausch zwischen Client und Server 
erleichtert. Der Datenaustausch erfolgt dabei unter der Nutzung des textbasierten JSON-Formats 
[wwwb] mittels AJAX [wwwa]. 

 

Abbildung 2.6: Benutzeroberfläche des Editors Oryx 
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Die Serverseite ist das sogenannte Backend, welches unter anderem die Datenhaltung und 
Anbindung zu anderen Systemen übernimmt [DOW08]. Das Backend ist in Java programmiert. 
Dabei werden die Anfragen des Frontends mittels der speziellen Java-Klassen, den sogenannten 
Java Servlets [wwwc], entgegengenommen. 

2.2 Temporale Logik 

Als Vater der modernen temporalen Logik gilt Arthur Norman Prior, der in den 1950-er Jahren die 
Grundlagen gelegt hat [www12g, www12h].  Amir Pnueli führte die temporale Logik in den späten 
1970-er Jahren in die Informatik ein und erhielt dafür in 1996 den Turing Award [www12f]. Die 
temporale Logik ermöglicht zeitliche Zusammenhänge zwischen Ereignissen in reaktiven, das heißt 
mit ihrer Umwelt interagierenden, Systemen wie Kommunikationsprotokollen und 
Betriebssystemen zu beschreiben [Pnu77, Pnu86]. Heute werden verschiedene Arten temporaler 
Logik zur Spezifikation funktionaler Eigenschaften von Hardware- und Softwaresystemen, in denen 
zeitliche Aspekte eine Rolle spielen, eingesetzt [HT10]. Ein neueres Einsatzgebiet, wie in dieser 
und ähnlichen Arbeiten [FPR06, RMLD08, Gro11] beschrieben, ist die Spezifikation von 
Geschäftsprozessen. 

Im Gegensatz zu aussagenlogischen Formeln, die konstante Werte repräsentieren, beschreiben 
temporallogische Formeln Sequenzen von Werten. In [DAC98] werden neben einem Muster-
System für ausdrückbare Systemeigenschaften auch die in Abbildung 2.7 dargestellten zeitlichen 
Gültigkeitsbereiche einer temporallogischen Formel analysiert. 

 

Abbildung 2.7: Gültigkeitsbereiche temporallogischer Formeln, nach [DAC98] 

Ein Modell für eine temporallogische Formel ist eine temporale Struktur [HT10], die auch Kripke-
Struktur [Kri71] genannt wird. Eine Kripke-Struktur kann als ein gerichteter Graf visualisiert werden. 
Die Knoten dieses Grafen repräsentieren Systemzustände, in denen bestimmte aussagenlogische 
Variablen gelten [HT10]. Die Kanten des Grafen bilden die möglichen Zustandsübergänge.  
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Abbildung 2.8: Kripke-Struktur, Berechnungsbaum, Berechnungspfad, nach [HT10] 

Im linken Teil der Abbildung 2.8 ist eine Kripke-Struktur mit drei Zuständen dargestellt, in denen 
jeweils eine Menge boolescher Variablen angegeben ist, die wahr sind. Von dem Startzustand z1 
aus können alle möglichen Zustandssequenzen verfolgt werden, wodurch der im rechten Teil der 
Abbildung dargestellte Berechnungsbaum [HT10] aufgezeichnet werden kann. Die unendlichen 
Pfade des Berechnungsbaums stellen die möglichen Berechnungspfade, das heißt Sequenzen 
aktivierter Zustände in einem ausgeführten System, dar. Die Eigenschaften dieser Pfade können 
durch temporallogische Formeln beschrieben werden. Statt temporalen oder Kripke-Strukturen 
beschreiben manche Autoren die modellierten Systeme auch als sogenannte Transitionssysteme 
[HR04], die ebenfalls als gerichtete Grafen visualisiert werden können. 

2.2.1 Lineare temporale Logik 

Im Rahmen dieser Arbeit wird die lineare temporale Logik (LTL) verwendet. In der Literatur wird 
diese Art der temporalen Logik auch als PLTL (propositional linear temporal logic) [Eme95] oder 
PTL (propositional temporal logic) [CPP93] bezeichnet. Die LTL ist eine Erweiterung der 
Aussagenlogik um temporale Operatoren. Mit ihnen ist es möglich die Veränderung der 
Variablenbelegung im zeitlichen Verlauf zu beschreiben. Diese Logik wird linear bezeichnet, weil 
sie Sequenzen von Systemzuständen beschreibt. Die Zeit ist dabei diskret, was bedeutet, dass 
jeder Zustandsübergang dem Fortschritt der Zeit um eine Zeiteinheit entspricht [Fis11]. Die 
formalen Grundlagen der LTL wurden aus der Modallogik übernommen [Fis11]. In der Modallogik 

ist es ausdrückbar, dass etwas möglicherweise (◇-Operator) oder notwendigerweise (□-Operator) 

stattfindet. In der temporalen Logik werden diese Operatoren zeitlich interpretiert. 
 
Definition 2.1 (LTL-Syntax): Wenn a eine atomare Aussage ist, können LTL-Formeln mit Hilfe der 
Metasprache Backus-Naur-Form (BNF) wie folgt induktiv definiert werden [HRT05, HR04]: 
 

φ ::=  true | false | a | ¬φ | (φ → φ) | (φ ↔ φ) | (φ  φ) | (φ  φ) | ○ φ | ◇ φ | □ φ | (φ U φ) |          

(φ W φ) | (φ R φ) 
 
Aus der obigen Definition ist erkennbar, dass eine LTL-Formel wie eine aussagenlogische Formel 
entweder zu true (wahr) oder false (falsch) ausgewertet werden kann und im einfachsten Fall nur 

aus einem Literal (a) besteht. Die Operatoren ¬, →, ↔,  und  entsprechen den 

aussagenlogischen Operatoren Negation, Implikation, Äquivalenz, Konjunktion und Disjunktion. In 
der folgenden Tabelle wird die Bedeutung der Zeitoperatoren erklärt sowie ihre textuelle und 
symbolische Schreibweise angegeben [HT10, HR04, Hol03]. 
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Textuell Symbolisch Interpretation 

X φ      („Next φ“) ○φ Im nächsten Zustand gilt φ (φ=true). 

F φ      („Finally φ“) ◇φ 
Im Betrachteten oder mindestens in einem der 
folgenden Zustände gilt φ (Garantie). 

G φ     („Globally φ“) □φ In allen Zuständen inklusive dem Betrachteten gilt 
φ (Invarianz). 

φ U ψ    („φ Until ψ“)  
Entweder  im betrachteten Zustand gilt ψ oder in 
mindestens einem der folgenden Zustände gilt ψ 
und davor gilt φ ab dem betrachteten Zustand. 

φ W ψ   („φ Weak Until ψ“)  Es gilt entweder φ U ψ oder □φ. 

φ R ψ   („φ Release ψ“)  
Entweder gilt □ψ oder es gibt einen Zustand, in 

dem φ und ψ gelten und davor gilt ψ ab dem 
betrachteten Zustand. 

Tabelle 2.1: Die Zeitoperatoren von LTL  

Eine LTL-Formel wird auf einem unendlichen Berechnungspfad   ausgewertet. Im rechten Teil der 
Abbildung 2.8 ist ein Berechnungspfad markiert, auf dem es beispielsweise einen Zustand gibt, ab 

dem b=true immer erfüllt ist. Das heißt, die LTL-Formel ◇□b ist auf diesem Pfad erfüllt. 

Die Berechnungsbäume von Systemmodellen, die mit temporaler Logik spezifiziert werden, 
enthalten typischerweise mehrere Berechnungspfade. Eine LTL-Formel wird von einem 
Systemmodell genau dann erfüllt, wenn sie auf allen Berechnungspfaden erfüllt wird [RV01]. In der 

Kripke-Struktur in Abbildung 2.8 ist die LTL-Formel ◇□b nicht erfüllt, weil es einen 

Berechnungspfad gibt (z1, z2, z1, z2, ...), auf dem es keinen Zustand gibt, ab dem b=true immer 

erfüllt ist. Dagegen ist die Formel ◇b auf dieser Kripke-Struktur erfüllt. Auch ◇a ist erfüllt, jedoch 

ist ○a nicht erfüllt, weil im Zeitpunkt t1 der Zustand z3 möglich ist, in dem a nicht erfüllt ist. 

Definition 2.2 (Modell einer LTL-Formel): Es seien   eine temporale Struktur,   ein unendlicher 

Pfad von   und   eine LTL-Formel.  Wenn   die Formel   erfüllt, dann bedeutet die Schreibweise 

    , dass   ein Modell für   ist.      bedeutet, dass die Struktur ein Modell für   ist (vgl. 
[HR04]). 
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Definition 2.3 (Semantik der LTL-Zeitoperatoren): Es sei   eine temporale Struktur,    ein Pfad 

des Berechnungsbaums von   beginnend mit dem Initialzustand   ,  
  ein Suffix eines Pfades 

beginnend mit dem Zustand    und   eine LTL-Formel. Dann gilt (vgl. [HR04]): 

     a    a     , a   {atomare Aussagen} 

     ○           

     ◇         ,       

     □         ,       

                 ,      und                  

                    oder  □  

                 ,      und                   oder  □  

 
Beispiele: 

Eine andere Darstellung für Berechnungspfade, wie z. B. in [Fis11] verwendet, ist in Abbildung 2.9 
zu sehen. Auf dem abgebildeten Berechnungspfad gelten folgende LTL-Formeln:   

□a,  ◇y, ◊□z, ◊(a  y  c),  □(z→a),  □(y→○○□z),  v U y,  y R c,  a W x,  a  v 

 

Abbildung 2.9: Zustandssequenz für Beispiele von LTL-Formeln 

Es ist wichtig zu beachten, dass eine LTL-Formel, die keine Zeitoperatoren enthält nur dann auf 
einem Pfad erfüllt ist, wenn sie im Initialzustand erfüllt ist. Beispielsweise gilt auf dem Pfad in 
Abbildung 2.9 die Formel a→v, wohingegen a→z nicht gilt. Auch die Vorbedingung p in einer 

Formel der Art p→◇q oder die Nachbedingung q in ◇p→q müssen im Initialzustand erfüllt sein. 

 Büchi-Automaten als Modelle von LTL-Formeln 2.2.1.1

In der Informatik werden unter Automaten mathematische Konstrukte verstanden, die unter 
anderem aus Zuständen und Zustandsübergängen bestehen. Sie werden dazu genutzt ein 
Systemverhalten, das heißt die Transformation einer Eingabe in eine Ausgabe, zu beschreiben 
oder eine bestimmte Art von Eingaben zu erkennen [SS11], Sch08]. Dabei werden die Eingaben 
als Wörter einer formal definierten Sprache bezeichnet.  

Büchi-Automaten sind eine spezielle Art von Automaten, die aus endlich vielen Zuständen, einem 
Startzustand, einer Menge von Endzuständen und einer Transitionsfunktion bestehen und als 
Eingabe unendliche Wörter erkennen, das heißt akzeptieren [HL11]. Ein Büchi-Automat akzeptiert 
ein Wort, wenn ein akzeptierender Zustand unendlich oft besucht wird. 

In [VW94] wurde gezeigt, dass zu jeder LTL-Formel ein Büchi-Automat konstruierbar ist, sodass 
seine Sprache genau den Modellen (siehe Definition 2.2) der LTL-Formel entspricht. Die Wörter 
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der Sprache entsprechen dabei den Berechnungspfaden (siehe Abbildung 2.8) des Modells. Das 
heißt, ein Büchi-Automat, welcher das Modell einer LTL-Formel darstellt, akzeptiert genau die 
Eingaben, die den Berechnungspfaden des  Systemmodells entsprechen. In Abbildung 2.10 sind 
zu drei LTL-Formeln beispielhaft die möglichen Berechnungspfade sowie die entsprechenden 
Büchi-Automaten abgebildet. 

 

Abbildung 2.10: Beispiele für Büchi-Automaten (generiert mit GOAL [YKTH12]) 

In der grafischen Darstellung eines Büchi-Automaten werden die akzeptierenden Zustände doppelt 
umkreist. Die Pfeile symbolisieren Zustandsübergänge. Ein Zustandsübergang im Büchi-Automat 
findet nach einer Auswertung eines Zustands im Berechnungspfad statt, wenn alle nacheinander 
stehenden Variablen auf dem Pfeil im nächsten Zustand des Berechnungspfades erfüllt sind. Von 
den untereinander stehenden Variablen ist für einen Zustandsübergang die Erfüllung einer der 
Variablen ausreichend. Ein Pfeil mit True bedeutet dass jede Variablenbelegung zu einem 
Zustandsübergang führt. Beispielsweise erreicht der mittlere Automat den akzeptierenden Zustand 
s1 und verbleibt dort unabhängig vom weiteren Verlauf, sobald im Berechnungspfad der Zustand 
erreicht wird, in dem p=false und q=true gilt.  

Es gibt zahlreiche Tools zur Generierung von Büchi-Automaten. Beispielsweise kann auf der 
Webseite [Gas] durch Eingabe der LTL-Formel in ein Formular ein Büchi-Automat generiert 
werden. Des Weiteren sind im Programm GOAL [YKTH12] neben anderen Tools zu temporalen 
Logiken auch Generatoren für Büchi-Automaten enthalten. Und schließlich bietet der Model-
Checker SPIN (siehe Abschnitt 2.3.2) diese Möglichkeit mit dem Befehl „spin -f <Formel>“. 

 Äquivalenzen 2.2.1.2

Im Folgenden werden einige der für die Arbeit mit LTL wichtigen Äquivalenzen aufgeführt [HR04]. 
Zwei LTL-Formeln ψ und φ sind semantisch äquivalent, symbolisch als φ ψ bezeichnet, wenn alle 

Modelle für φ auch Modelle für ψ sind und umgekehrt [HR04]. Die Operatoren □ und ◇ sowie U 

und R sind dual zueinander. Beispielsweise lässt sich □ mit ◇ ausdrücken und umgekehrt. Der ○-

Operator ist dual zu sich selbst.  

□(p  q) □p  □q ◇(¬p  q) 

p   p    q    p  q 
a   b               c 

q    x    x   q   q 
p    p         a   p 

q    q   q   q   q  

p    p   p   p   p  
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¬□φ  ◇¬φ    ¬◇φ   □¬φ   ¬○φ ○¬φ 

¬(φ U ψ)  ¬φ R ¬ψ  ¬(φ R ψ)  ¬φ U ¬ψ  φ U ψ  φ W ψ ˄ ◇ψ 

◇φ   true U φ   □φ   false R φ  

Es gelten folgende Distributiv-Gesetze bezüglich □ und ◇: 

□(φ  ψ)   □φ  □ψ  □(φ  ψ)   □φ  □ψ 

Die nicht äquivalenten Formeln □(φ  ψ) und □φ  □ψ könnten intuitiv so interpretiert werden, 

dass zu jedem Zustand entweder φ oder ψ gelten muss. □(φ  ψ) bedeutet aber, dass auf einem 

erfüllenden Pfad in jedem Zeitpunkt entweder φ oder ψ gelten kann. Dagegen drückt □φ  □ψ 

aus, dass es zwei Möglichkeiten für einen erfüllenden Pfad gibt, sodass entweder zu jedem 
Zeitpunkt φ  oder zu jedem Zeitpunkt ψ gilt. 

◇(φ  ψ)   ◇φ  ◇ψ  ◇(φ  ψ)   ◇φ  ◇ψ 

Die Formel ◇(φ  ψ) bedeutet, dass es einen Zustand gibt, in dem φ und ψ gleichzeitig erfüllt sind. 

Die Formel ◇φ  ◇ψ drückt dagegen aus, dass φ und ψ auch zu unterschiedlichen Zeitpunkten 

erfüllt sein können. 

Weiterhin gelten die aus der Aussagenlogik bekannten Äquivalenzen, wie z. B. die De 
Morgan‘schen Regeln und die Implikation [Sch00]: 

¬(φ  ψ)   ¬φ  ¬ψ  ¬(φ  ψ)   ¬φ  ¬ψ  φ → ψ   ¬φ  ψ 

 Beispiele für ausdrückbare Systemeigenschaften in LTL 2.2.1.3

Die durch temporallogische Formeln ausdrückbaren Systemeigenschaften können unterschiedlich 

klassifiziert werden [MP92], wie z. B. in Lebendigkeits-, Sicherheits- und Fairnesseigenschaften. 

Einige LTL-Formeln haben eigene Namen, weil sie oft verwendet werden [Hol03]. In der Tabelle 

2.2 werden einige einfache oft verwendete LTL-Formeln aufgeführt. 

Formel Typ Interpretation 

□(p→(p U q))  Jeder Zustand in dem p gilt, führt zu einem Zustand in 
dem q gilt und dazwischen bleibt p gültig. 

p→◇q Antwort Wenn p gilt, dann wird irgendwann q garantiert gelten. 

□◇p Wiederholung 
(„immer wieder“) 

Falls p in einem Zustand nicht gilt, wird garantiert, 
dass p im weiteren Verlauf wieder gelten wird.  

◇□z Stabilität Ab einem garantierten Zustand gilt für immer z.  

◇p→◇q Korrelation Fall p auftritt, wird garantiert q auftreten. 

Tabelle 2.2: Beispiele für häufig verwendete LTL-Formeln nach [Hol03] 

Obwohl LTL im Vergleich zu anderen temporalen Logiken als eine intuitive Spezifikationssprache 
gilt [RV01], entstehen für scheinbar einfache Sachverhalte oft komplexe Ausdrücke, die schwer 
herzuleiten oder zu merken sind. Daher wurde in [www12e] eine Sammlung von Vorlagen sowohl 
für LTL als auch für andere temporale Logiken veröffentlicht. Mit diesen Vorlagen können solche 
Sachverhalte wie Abwesenheit, Existenz, Vorrang und Antwort für jeden der in Abbildung 2.7 
dargestellten Gültigkeitsbereiche ausgedrückt werden. In der folgenden Tabelle 2.3 werden einige 
Beispiele aus dieser Vorlagen-Sammlung vorgestellt. 
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Formel Typ Interpretation 

□(¬q  ◇(q  ◇p)) Existenz p tritt nach q auf. 

◇q → (¬p U q) Abwesenheit p tritt vor q nicht auf. 

□(q → □¬p) Abwesenheit p tritt nach q nicht auf. 

Tabelle 2.3: LTL-Vorlagen nach [www12e] 

2.2.1.3.1 Sicherheitseigenschaften 

Informell ausgedrückt, garantiert eine Sicherheitseigenschaft, dass ein unerwünschter Zustand 
niemals eintritt [MP92] Im Allgemeinen sind Sicherheitseigenschaften von der Form: 

□a. 

Dabei ist a eine aussagenlogische Formel. Eine Sicherheitseigenschaft muss auf allen 
Berechnungspfaden erfüllt sein [Pnu86]. Die zu der informellen Beschreibung passende Form     

□¬(a ˄ b ˄ … ˄ z) drückt den gegenseitigen Ausschluss von Variablen aus [Pnu86]. 

Beispielsweise kann damit ausgedrückt werden, dass die Netzwerkteilnehmer a-z niemals eine 
Ressource gleichzeitig nutzen sollen. 

Weitere Beispiele [SSL10]: □(a  □b) , ◇a  □b 

Für Sicherheitseigenschaften ist charakteristisch, dass ihre Gegenbeispiele endliche Pfade sind 

[HT10, Kin94, KYV01]. Wenn beispielsweise die Eigenschaft □¬(a ˄ b) verifiziert werden soll, wird 

nach einem Zustand gesucht, der das Gegenteil, das heißt ¬□¬(a ˄ b) ≡ ◇(a ˄ b), erfüllt. Sobald 

ein solcher Zustand gefunden wird, wird der Pfad vom Startzustand bis zu diesem Zustand als 
Gegenbeispiel ausgegeben.  

2.2.1.3.2 Lebendigkeitseigenschaften 

Informell ausgedrückt, garantiert eine Lebendigkeitseigenschaft, dass ein erwünschter Zustand 
eintritt [MP92]. Die grundlegenden Lebendigkeitseigenschaften sind von der Form [Pnu86]: 

◇a,   ◇□a   oder   □◇a. 

Dabei ist a eine aussagenlogische Formel. Ein weiteres Beispiel ist □(p→◇q) welches die 

Erreichbarkeit ausdrückt. Beispielsweise kann damit ausgedrückt werden, dass immer wenn eine 
Anfrage (p) gestellt wird, erfolgt garantiert eine Antwort (q) [Pnu86]. 

Weitere Beispiele [SSL10]: □a  ◇b  

Gegenbeispiele für Lebendigkeitseigenschaften sind unendliche Pfade [HT10, Kin94, KYV01]. Das 
heißt, zum Nachweis der Nichterfüllung einer Lebendigkeitseigenschaft muss im Modell eine 
endlose Schleife gefunden werden, in der die Lebendigkeitseigenschaft nie erfüllt wird. Wenn das 
Modell keine Endlosschleifen enthält, ist ein Gegenbeispiel ein Pfad von Anfangs- bis zum 
Endzustand.  

2.2.1.3.3 Co-Safety Eigenschaften 

Eine Lebendigkeitseigenschaft deren Negation eine Sicherheitseigenschaft ist und umgekehrt, wird 

Co-Safety bezeichnet, z. B. ◇a oder □a◇b [SSL10]. Nicht Co-Safety (siehe auch. Anhang A.3). 

sind z. B. ¬a U b, □(a◇b, ◇□a  
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2.2.1.3.4 Fairness-Eigenschaften 

Fairness-Eigenschaften drücken aus, dass etwas kontinuierlich passiert [Fis11]. Beispielsweise ist 
ein Planungsprozess fair, wenn er andere um eine Ressource konkurrierenden Prozesse derart 
verzahnt, dass sie gleich oft die Ressource nutzen können [Eme95]. Mit dem “unendlich oft”-

Konstrukt □◇a können unterschiedlich starke Fairness-Eigenschaften ausgedrückt werden. Die 

folgenden vier Fairness-Eigenschaften [Fis11] sind von stark zu schwach sortiert: 

□◇Anfrage → □◇Antwort „Unendlich viele Anfragen → Unendlich viele Antworten“ 

□◇Anfrage → ◇Antwort „Unendlich viele Anfragen → Mindestens eine Antwort“ 

□Anfrage → □◇Antwort „Ununterbrochene Anfragen → Unendlich viele Antworten“ 

□Anfrage → ◇Antwort  „Ununterbrochene Anfragen → Mindestens eine Antwort 

 Normalformen 2.2.1.4

Komplexe logische Formeln können sowohl für den Benutzer schwer verständlich als auch 
algorithmisch schwer bearbeitbar sein. Daher werden komplexe Formeln oft in einfachere, aber zur 
den ursprünglichen Formeln semantisch äquivalente, Formeln umgeformt [Fis11].  Beispielsweise 
benötigen viele Algorithmen zur Erfüllbarkeitsprüfung aussagenlogischer Formeln eine Eingabe in 
konjunktiver Normalform [GNTV01, HR04]. 

Definition 2.4 (Konjunktive Normalform, KNF): Eine aussagenlogische Formel ist in konjunktiver 
Normalform, falls sie eine Konjunktion von Disjunktionen von Literalen ist und die 
Negationszeichen nur vor den Literalen stehen [Sch00]. 

Beispiel für eine KNF: (a ˅ b) ˄ (¬c) ˄ (¬a ˅ d ˅ e) 

Hier sind a, b, c, d und e Literale, das heißt atomare Aussagen. Die Ausdrücke in den Klammern 
werden Klauseln bezeichnet. Laut Definition dürfen in den Klauseln einer KNF nur durch den 
ODER-Operator verbundene positive oder negative Literale vorkommen. Dabei kann jede 
aussagenlogische Formel in eine äquivalente KNF umgeformt werden [Sch00]. 

Definition 2.5 (Separated Normal Form, SNF): Sei Start eine Variable, die nur im Startzustand 

erfüllt ist und       und   positive oder negative Literale. Dann ist eine LTL-Formel ihrer Separated 

Normal Form, wenn sie von der Form □(⋀    ) ist, mit Klauseln  , die nur die Operatoren , ○ 

und ◇ enthalten und von der folgenden Form sind (vgl. [Fis97, Fis11]): 

start    ⋁    (Startzustand) 

⋀     ○ ⋁    (Nächster Zustand) 

⋀     ◇   (Zukunft) 

Beliebige LTL-Formeln können durch eine Reihe von Transformationsregeln [Fis11] in eine SNF 
umgeformt werden. Für das folgende Beispiel werden in Abbildung 2.11 zwei Modelle angegeben. 

Beispiel für eine SNF:  □((starta ) ˄ (startb) ˄ ( (a ˄ b)○(c ˅ d) ) ˄ (c  ◇c) ˄ (d ◇e)) 

 

Abbildung 2.11: Modelle für das SNF-Beispiel 

a 
b 

c  

 

c c a 
b 

d e 
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2.2.2 Weitere Arten temporaler Logik 

Neben der LTL gibt es auch andere Arten temporaler Logik, die sich in der Wahl der Operatoren 
unterscheiden und dementsprechend unterschiedliche Ausdrucksmächtigkeit und Komplexität 
aufweisen. So können z. B. Vergangenheitsoperatoren eingeführt [LPZ85] oder der Bezug zur 
Realzeit [AH92] integriert werden.  

Insgesamt können drei Arten temporaler Logiken unterschieden werden. Neben LTL ist die zweite 
Art die verzweigende temporale Logik CTL (engl. computational tree logic oder branching-time 
logic), der ein verzweigendes Zeitmodell zugrunde liegt. In CTL gibt es die gleichen 

Temporaloperatoren (◇, □, U, ○) wie in der LTL. Jedoch muss jedem Temporaloperator 

unmittelbar ein Pfadquantor (E, A) vorangestellt werden [RV01]. Während eine LTL-Formel auf 
allen Berechnungspfaden eines Systems erfüllt sein muss, kann in CTL mit dem Pfadquantor E 
ausgedrückt werden, dass ein Ausführungspad existiert, auf dem eine bestimmte 
Systemeigenschaft erfüllt ist. Beispielsweise könnte dies die in einem Hardwaresystem wichtige 
Reset-Eigenschaft sein, die sicherstellt, dass das System in den Ausgangszustand zurück versetzt 
werden kann [Hol03]. Der Pfadquantor A drückt aus, dass die geforderte Systemeigenschaft auf 
allen Berechnungspfaden erfüllt ist. In den LTL-Formeln ist zwar implizit auch der Pfadquantor A 

enthalten, jedoch vor der gesamten Formel. Umgekehrt gibt es LTL-Formeln, wie z. B. ◇□a, die in 

der CTL nicht ausdrückbar sind. Insbesondere Fairness-Eigenschaften sind in CTL nicht 
ausdrückbar. Beide Logikarten sind Spezialfälle der CTL*, in der die Beschränkung, dass jedem 
Temporaloperator ein Pfadquantor vorangestellt werden muss, entfällt [RV01]. 

Weitere Details zu CTL* sowie den Unterschieden von LTL und CTL können in [EH84, EL87, 
Eme95, RV01, Hol03] gefunden werden. Die Tabelle 2.4 fasst die wichtigsten Unterschiede 
zusammen. 

LTL CTL 

Auswertung über linearen 
Zustandsstrukturen 

Keine Pfadquantoren 
 
 
Intuitiv 

Model-Checking in exponentieller Zeit in 
Abhängigkeit von der Größe der 
Spezifikation 

 

Auswertung über baumartigen 
Zustandsstrukturen 

Pfadquantoren E und A vor jedem 
Temporaloperator 

Nicht intuitiv  

Model-Checking in linearer Zeit in 
Abhängigkeit von der Größe der 
Spezifikation 

Fairness-Eigenschaften nicht direkt 
ausdrückbar (nur im Verifikations-
algorithmus) 

Tabelle 2.4: Unterschiede zwischen LTL und CTL, nach [RV01] 

Aufgrund effizienterer Verifikationsmöglichkeiten wurde die CTL in der Industrie bevorzugt [RV01] 
verwendet. Heutzutage existieren sowohl für CTL als auch für LTL effiziente Model-Checking-
Verfahren und beide Logikarten haben sich in bestimmten Einsatzgebieten etabliert. Die CTL wird 
beispielsweise bevorzugt in Hardware- und die LTL in Softwareverifikation eingesetzt [Hol03]. 
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2.3 Model-Checking 

Model-Checking ist eine Methode zur frühzeitigen Entdeckung von Fehlern in Systemen zur 
Entwurfszeit. Genauer gesagt, werden unter Model-Checking Verfahren zur vollautomatischen 
Verifikation von Modellen reaktiver, das heißt mit ihrer Umwelt interagierender, Systeme mit einer 
endlichen Zahl von Zuständen verstanden [CGL96]. Dieses Verfahren wurde in den 1980-er 
Jahren formal eingeführt  [CES86, EL87]. Die Spezifikation des zu überprüfenden Systems muss in 
einer formalen Sprache wie z. B. der LTL oder CTL (siehe Abschnitt 2.2) vorliegen. Durch eine 
systematische Verfolgung aller Ausführungsmöglichkeiten des Modells, wird es dahingehend 
überprüft, ob es die in seiner Spezifikation geforderten Eigenschaften erfüllt.  

Das Model-Checking wird in vielen Bereichen industriell eingesetzt, insbesondere in der 
Entwicklung von Hardware- und Softwaresystemen [HT10]. Somit können systematische Fehler z. 
B. in der Chip-Herstellung schon vor der kostspieligen Produktion ausgeschlossen werden. Wie für 
die temporale Logik, ist auch für das Model-Checking der Einsatz in der  
Geschäftsprozessmodellierung ein relativ neues Einsatzgebiet [FPR06, RMLD08]. 

Die Model-Checking-Verfahren können im Allgemeinen in Explizite und Symbolische klassifiziert 
werden. Im Gegensatz zum expliziten Model-Checking wird bei symbolischem Model-Checking die 
Berechnung des vollen Zustandsraums vermieden, indem die Zustände und ihre Beziehungen 
durch Formeln und binäre Entscheidungsbäume beschrieben werden [CGL96]. Dies ist vorteilhaft 
bei sehr großen Zustandsräumen, da eine Formel viele Zustände gleichzeitig beschreiben kann 
[HT10]. In dem in dieser Arbeit verwendeten Prototyp wird der explizite Model-Checker SPIN 
verwendet. Daher wird im Folgenden auf das explizite Model-Checking und SPIN näher 
eingegangen. 

2.3.1 Explizites Model-Checking 

Die expliziten Model-Checker bauen den Berechnungsbaum des zu verifizierenden Systems 
explizit im Speicher auf [RV07]. Sie wenden Tiefen- und Breitensuche an um einen 
Berechnungspfad zu finden, welcher der Spezifikation widerspricht [Hol03]. Falls ein solcher Pfad 
gefunden wird, wird dieser dem Benutzer als sogenanntes Gegenbeispiel ausgegeben. Ein 
Gegenbeispiel ist eine Zustandssequenz vom Startzustand bis zu dem Zustand, in dem die 
geforderte Eigenschaft nicht gilt. 

Dieser Ansatz wird auch automatentheoretischer Ansatz bezeichnet. Sowohl das Modell als auch 
die Spezifikation sind Beschreibungen von Ausführungsmöglichkeiten, die als akzeptierte Wörter 
von Büchi-Automaten (siehe Abschnitt 2.2.1.1) betrachtet werden können. Daher wird die 
Beziehung zwischen Modellen und Spezifikationen auf die Beziehung zwischen Sprachen und 
Automaten zurückgeführt [Var99]. Dabei wird aus den Büchi-Automaten des zu verifizierenden 
Modells und seiner negierten Spezifikation ein Kreuzprodukt erstellt und die Sprache L dieses 
dritten Automaten auf Leerheit geprüft [DLP04, Deh04]. Wenn L nicht leer ist, bedeutet das, dass 
die negierte Spezifikation im modellierten System erfüllt und die Spezifikation damit verletzt wird. 
Als Beweis wird als Gegenbeispiel das akzeptierte Wort des Automaten, das heißt die 
Zustandssequenz, die im verifizierten Modell die Spezifikation verletzt, ausgegeben. Die Abbildung 
2.12 gibt einen schematischen Überblick zum expliziten Model-Checking. 
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Abbildung 2.12: Explizites Model-Checking schematisch, nach [DLP04] 

2.3.2 Model-Checker SPIN 

SPIN ist ein in den 1980-er Jahren in den Bell Laboratories entwickelter und seit 1991 frei 
verfügbarer expliziter Model-Checker. Seinem Entwickler, Gerard Holzmann, wurde im Jahr 2002 
der „Software System Award“ verliehen [www12a]. Das Akronym SPIN steht für „Simple Promela 
Interpreter“ [Hol03]. Die in SPIN zu verifizierenden Modelle müssen in der Sprache Promela 
vorliegen und die Spezifikationen in der LTL. SPIN enthält einen eigenen LTL-Übersetzer, mit dem 
Büchi-Automaten aus LTL-Formeln generiert werden können. 

 PROMELA  2.3.2.1

Das Akronym PROMELA steht für „Process Meta Language“ und bezeichnet eine 
Beschreibungssprache für Systeme, die mit anderen Systemen interagieren. Ihr Schwerpunkt liegt 
daher in der Beschreibung von Synchronisation und Koordination von asynchronen Prozessen. Der 
Promela-Code ist zwar für Simulations- und Verifikationszwecke ausführbar, stellt jedoch ein 
Systemmodell auf hoher Abstraktionsebene dar. Der ausführbare Promela -Code wird Promela-
Programm oder Promela-Modell bezeichnet. Die Sprachkonstrukte von Promela sind auf 
Prozessinteraktion spezialisiert und ermöglichen insbesondere die Unterscheidung zwischen 
deterministischen und nichtdeterministischen Abläufen [Hol03]. Beispielsweise ist es in realen, auf 
unterschiedliche Standorte verteilten Systemen zu einem Zeitpunkt unbekannt, welcher der 
parallelen Prozesse den nächsten Schritt ausführen wird. Solche Prozesse können dadurch 
simuliert werden, dass der weitere Verlauf in einem Modell nicht-deterministisch ausgewählt wird, 
falls es dafür mehrere Möglichkeiten gibt [Hol03]. 

 Never Claims 2.3.2.2

Ein Never Claim ist ein in Promela beschriebenes Systemverhalten welches niemals eintreten soll. 
Genau genommen, handelt es sich dabei um einen Büchi-Automaten (siehe Abschnitt 2.2.1.1), der 
aus der negierten Form der Spezifikation erstellt wird. Mit Never Claims ermöglicht es SPIN zu 
prüfen, ob und in welchem Schritt in einem Prozessmodell ein unerwünschter Zustand eintritt (vgl. 
Abschnitt 2.3.1). Da die mit Spin generierten Büchi-Automaten zur Lösung der Aufgabenstellung in  
dieser Arbeit (siehe Abschnitt 4.2.3.3) verwendet werden und einige Erweiterungen der Prototyps 
(siehe Abschnitt 5.4) auch die Never Claims betreffen, werden nachfolgend zwei Beispiele 
erläutert. Die Ausrufezeichen stehen dabei für Negation und jeder Zustand, dessen Bezeichnung 
mit „accept“ beginnt, ist ein möglicher Endzustand [Hol03] des Automaten. 

Model-Checker 

L (AM ⨂ A¬φ)=∅? 

A 

Spezifikation φ 

Büchi-Automat  

A¬φ 
 

Büchi-Automat 
 AM  

M   φ Gegenbeispiel 
ja nein 
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2.3.2.2.1 Never Claim für die Lebendigkeitseigenschaft ◇a 

Der Never Claim im Listing 2.1 stellt einen Büchi-Automaten für die negierte 

Lebendigkeitseigenschaft ◇a dar, oder anders ausgedrückt, einen Büchi-Automaten für die 

Sicherheitseigenschaft ¬◇a ( □¬a). Der Büchi-Automat wird schrittweise abwechselnd zu dem 

Büchi-Automat des zu verifizierenden Modells ausgeführt. Ein Gegenbeispiel für ◇a wird 

gefunden, wenn alle Zustände des Modells durchlaufen werden und dabei kein Zustand mit a=true 
gefunden wird. Das heißt, es muss eine Ausführungsschleife gefunden werden, in der ¬a gilt. Eine 
solche Schleife wird in  

Listing 2.1 durch die if-Schleife im „accept_init“-Zustand repräsentiert. 

never  {    /* !(<>a) */ 
accept_init: 
T0_init: 
 if 
 :: (! ((a))) -> goto T0_init 
 fi; 
} 

Listing 2.1: Never Claim für ◇a oder Büchi-Automat für □¬a 

Dieser Büchi-Automat terminiert, falls die if-Abfrage unendlich oft durchlaufen wird. Das passiert 

nur, wenn a=false nach jedem Ausführungsschritt im Modell gilt und somit die Spezifikation ◇a 

verletzt wird. In diesem Fall ist das Gegenbeispiel ein unendlicher Pfad oder, wenn das verifizierte 
Modell keine Endlosschleifen enthält, ein Pfad vom Start- bis zum Endzustand. Solche 
Gegenbeispiele sind typisch für Lebendigkeitseigenschaften (sieh Abschnitt 2.2.1.3.2). 

Anderenfalls, wenn in einem Zustand des Modells a=true gilt, wird der Never Claim blockiert, weil 
es in der if-Schleife keine Alternative zu a=false gibt. Damit wird kein Gegenbeispiel gefunden und 
die Spezifikation ist in diesem Fall erfüllt. 

2.3.2.2.2 Never Claim für die Sicherheitseigenschaft □a 

Das  

Listing 2.2 zeigt den Never Claim für die Sicherheitseigenschaft □a. Anders ausgedrückt, ist dies 

ein Büchi-Automat für ¬□a oder die äquivalente Formel ◇¬a (siehe Abbildung 2.13). Er wird 

schrittweise abwechselnd mit dem Modell ausgeführt, welches □a erfüllen soll. Dadurch wird nach 

einem Gegenbeispiel gesucht, welches zu einem Zustand führt, in dem a=false gilt. 
never  {    /* !([]a) */ 
T0_init: 
 if 
 :: (! ((a))) -> goto accept_all 
 :: (1) -> goto T0_init 
 fi; 
accept_all: 
 skip 
} 

Listing 2.2: Never Claim für □a oder Büchi-Automat für ◇¬a 

Im Gegensatz zum vorherigen Beispiel gibt es hier zwei Alternativen in der if-Schleife. Falls immer 
a=true gilt, verleibt der Automat in der if-Schleife und terminiert nicht. In diesem Fall haben die 
Sprachen der Büchi-Automaten des Modells und der negierten Spezifikation keine gemeinsamen 
Wörter (vgl. Abbildung 2.12), das heißt die Spezifikation ist erfüllt.  



2.4 LTL-Erfüllbarkeitsprüfung 

22 

2.3.2.2.3 Der „accept_all“-Zustand 

Falls ein Zustand mit a=false gefunden wird, springt der Automat zu dem Zustand „accept_all“ und 
akzeptiert alle weiteren zustände. Der akzeptierende Zustand „accept_all“ in Listing 2.2 entspricht 
dem Zustand s1 in der unteren Abbildung 2.13. Im Gegensatz zum vorherigen Beispiel wird nach 
dem Halten des Never Claims ein Gegenbeispiel mit endlicher Länge ausgegeben, was typisch für 
Sicherheitseigenschaften (siehe Abschnitt 2.2.1.3.1) ist.  

 

Abbildung 2.13: Der „accept_all“-Zustand im Büchi-Automat für ◇¬a  

 Zusammenfassung 2.3.2.3

Beim Model-Checking mit SPIN wird aus einer in LTL vorliegenden Spezifikation ein Never Claim 
generiert und mit dem in Promela beschriebenen Modell zu einem ausführbaren Programm 
verknüpft [Hol03]. Dabei greifen das Modell und der Never Claim auf dieselben globalen Variablen 
zu und nur das Modell kann die Variablen verändern.  

Der Zustandsraum des Modells wird schrittweise nach einer Verletzung der Spezifikation 
durchsucht. Dazu werden das zu prüfende Modell und der Never Claim schrittweise abwechselnd 
ausgeführt. Nach jedem Schritt im Modell wird abhängig von dem neuen Zustand ein Schritt im 
Never Claim ausgeführt. Falls der Never Claim terminiert, bedeutet das, dass die Spezifikation 
verletzt wurde, weil ein zu ihr widersprüchlicher Zustand gefunden wurde. In diesem Fall wird als 
Gegenbeispiel ein endlicher oder unendlicher Pfad ausgegeben (vgl. Abschnitte 2.3.2.2.1 und 
2.3.2.2.2). 

2.4 LTL-Erfüllbarkeitsprüfung 

2.4.1 Grundlagen der Erfüllbarkeitsprüfung 

Im Folgenden werden die zum Verständnis von Erfüllbarkeits- und Gültigkeitsprüfungen 
notwendigen Grundlagen der Aussagelogik vorgestellt.  

Definition 2.6 (Modell): Ein Modell für eine aussagenlogische Formel ist eine Belegung atomarer 
Formeln mit wahr oder falsch, sodass die Formel wahr wird [Sch00].  

Die Belegungen wahr und falsch werden oft auch mit 1 und 0 oder mit true und false bezeichnet. 
Beispielsweise ist die Formel φ = a ˄ b unter der Belegung (a=1, b=1) wahr. Das heißt, diese 
Belegung ist ein Modell für φ. 

Definition 2.7 (erfüllbar, unerfüllbar): Eine Formel φ ist erfüllbar, falls für sie mindestens ein 
Modell existiert, anderenfalls ist sie unerfüllbar [Sch00]. 

Definition 2.8 (gültig): Eine Formel φ ist gültig, falls jede Belegung ein Modell für φ ist [Sch00]. 

Anhand der Wahrheitstafel in Tabelle 2.5 werden einige Beispiele erläutert. Da in der zu φ 
gehörenden Spalte sowohl Nullen als auch Einsen vorkommen, ist φ erfüllbar. Da für jede 
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Belegung von a und b in der zu ψ gehörenden Spalte nur Einsen stehen, ist ψ gültig. Dagegen ist  
ungültig. 

a b φ=a→b ¬φ ψ=a(a→b) =(a ˄ ¬a) 

0 0 1 0 1 0 

0 1 1 0 1 0 

1 0 0 1 1 0 

1 1 1 0 1 0 

Tabelle 2.5: Wahrheitstafel für erfüllbare (φ, ¬φ), gültige (ψ) und unerfüllbare () Formel 

Eine logische Formel kann entweder gültig, unerfüllbar oder erfüllbar aber nicht gültig sein. 
Insbesondere ist eine gültige Formel auch eine erfüllbare Formel. Die  Abbildung 2.14 
veranschaulicht, dass eine gültige Formel durch Negation zu einer unerfüllbaren Formel wird. 
Dagegen bleiben erfüllbare aber ungültige Formeln nach Negation erfüllbar und ungültig [Sch00], 
wie beispielsweise φ in Tabelle 2.5. 

 

Abbildung 2.14: Zusammenhang zwischen Gültigkeit und Erfüllbarkeit [Sch00]  

Satz 2.1 (gültig): Eine Formel φ ist gültig genau dann, wenn ¬φ unerfüllbar ist [Sch00]. 

Aus dem Satz 2.1 folgt, dass φ ungültig ist, wenn  ¬φ erfüllbar ist. Z. B. sind φ und  in der Tabelle 

2.5 ungültig, weil ihre Negationen erfüllbar sind. 

Satz 2.2 (gültige Teilformeln): In einer erfüllbaren aber ungültigen Formel, die eine Konjunktion 
von Teilformeln darstellt, können gültige Teilformeln vorkommen. 

Der Satz 2.2 lässt sich anhand eines einfachen Beispiels beweisen: Seien die Teilformeln A und B 

gültig und C erfüllbar. Dann ist die Formel F = A  B  C aufgrund der möglichen Belegung (A=1, 
B=1, C=1) erfüllbar aber aufgrund der möglichen Belegung (A=1, B=1, C=0) ungültig.  

Satz 2.3 (erfüllbare Konjunktion): Eine Konjunktion von Teilformeln ist erfüllbar genau dann, 
wenn alle Teilformeln erfüllbar sind [Sch00]. 

Satz 2.4 (gültige Konjunktion): Eine Konjunktion von Teilformeln ist gültig genau dann, wenn alle 
Teilformeln gültig sind. 

Der Satz 2.4 folgt aus der Tautologieregel: F  G ≡ G, falls F gültig ist [Sch00].  

Denn falls F die Konjunktion aller gültigen Teilformeln repräsentiert und G die einzige ungültige 
Teilformel ist, dann ist die gesamte Formel ungültig. Nur wenn G auch gültig ist, ist die 
Gesamtformel gültig. 
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2.4.2 SAT-Solver 

Mit SAT (engl. satisfiability) wird das Erfüllbarkeitsproblem für logische Formeln bezeichnet. SAT-
Solver sind entsprechende Systeme zur Erfüllbarkeitsprüfung logischer Formeln. Das SAT-
Problem gehört zu der Komplexitätsklasse der nicht in polynomialer Zeit bezüglich der 
Eingabelänge lösbaren Probleme [Sch08]. Die Beziehung zwischen der Laufzeit und der Anzahl 
der Variablen in einer logischen Formel ist exponentiell. Es ist ein bedeutendes Forschungsthema 
in der Informatik, weil viele Probleme aus derselben Komplexitätsklasse sich auf das SAT-Problem 
zurückführen lassen [FM09]. Damit würde ein effizienter Algorithmus für das SAT-Problem auch 
eine effiziente Lösung für viele andere Probleme bedeuten.  

Die LTL-Erfüllbarkeitsprüfung kann wie das Model-Checking in explizite und symbolische 
Verfahren klassifiziert werden [RV07]. Das heißt, die Übersetzung der Modelle und der LTL-
Formeln erfolgt jeweils explizit oder symbolisch. Des Weiteren wurde in [RV07] experimentell 
festgestellt, dass symbolische Methoden zur LTL-Erfüllbarkeitsprüfung schneller als explizite 
Methoden sind. Im Folgenden werden einige Möglichkeiten zu Erfüllbarkeitsprüfung von LTL-
Formeln kurz vorgestellt. sowie beispielhaft entsprechende SAT-Solver vorgestellt. 

 LTL-Erfüllbarkeitsprüfung durch Zurückführung auf Model-Checking 2.4.2.1

In [RV07] wird ein Ansatz zur LTL-Erfüllbarkeitsprüfung durch Zurückführung auf Model-Checking 
vorgestellt. Der Unterschied zum normalen Model-Checking besteht darin, dass das zu prüfende 
Modell anhand der LTL-Formel generiert wird. Es wird ein universelles Modell M generiert, welches 
alle möglichen Berechnungspfade des mit der LTL-Formel spezifizierten Systems enthält. Eine 
Formel φ ist genau dann erfüllbar, wenn das universelle Modell M die Negation ¬φ nicht erfüllt. In 
diesem Fall wird der Model-Checker ein Gegenbeispiel ausgeben, welches bedeutet, dass das 
unerwünschte Verhalten ¬φ im universellen Modell nicht möglich ist. 

 LTL-Erfüllbarkeitsprüfung durch alternierende Automaten 2.4.2.2

In [WDMR08] wird ein weiterer automaten-theoretischer Ansatz beschrieben, bei dem sowohl der 
explizite Aufbau eines nichtdeterministischen Büchi-Automaten vermieden als auch nicht auf reine 
boolesche Ableitung zurückgegriffen wird. Dabei werden LTL-Formeln in sogenannte alternierende 
Büchi-Automaten übersetzt, die kompakter als Büchi-Automaten sind. Während Büchi-Automaten 
im schlimmsten Fall exponentiell viele Zustände enthalten, enthalten alternierende Automaten nur 
linear viele Zustände. Anschließend wird der sogenannte Antichain-Algorithmus verwendet, der in 
[WDHR06] vorgestellt wird.  

Die Autoren von [WDMR08] haben ein Tool namens ALASKA [Wul12] veröffentlicht, welches 
sowohl als Model-Checker als auch als SAT-Solver benutzt werden kann.  Die Software wird über 
die Konsole bedient. Dabei wird die zu prüfende LTL-Formel in Textform als Parameter übergeben 
und als Ergebnis „formula is SATISFIABLE“, „formula is NONSATISFIABLE“, „formula is 
NONVALID“ oder „formula is VALID“ ausgegeben. Die Ausgaben sind einfach zu parsen und das 
Tool ist damit in Verifikationssoftware einfach integrierbar.  

 Maude 2.4.2.3

Als ein Beispiel für einen symbolischen SAT-Solver wird das unter der GNU-Lizenz frei verfügbare 
Logik-Rahmenwerk Maude vorgestellt. Maude ist eine am Forschungsinstitut SRI International 
(Stanford Research Institute) entwickelte ausführbare Spezifikationssprache für Gleichungs- und 
Termersetzungssysteme. Dabei kann Maude als Ausführungsumgebung für verschiedene logische 
Sprachen dienen [wwwe]. Ein Termersetzungssystem stellt in der theoretischen Informatik ein 
Berechnungsmodell dar, welches aus Mengen von Ersetzungsregeln besteht. Eine 
Ersetzungsregel liegt in der Form Linker_Term  Rechter_Term vor und bedeutet, dass der linke 
Term durch den rechten Term substituiert werden kann [wwwk].  
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In Maude ist ein Modul für Model-Checking und Erfüllbarkeitsprüfung integriert [wwwd]. Im 
Folgenden wird ein Einblick in das System an einem praktischen Beispiel für LTL-
Erfüllbarkeitsprüfung gegeben. 

Die Literale der zu prüfenden Formel werden in einem neuen Modul, welches die Module SAT-
SOLVER und LTL erweitert, in der Datei “SAT-SOLVER-TEST“ gespeichert. 

fmod SAT-SOLVER-TEST is   
    extending SAT-SOLVER .   
    extending LTL .   
    ops a b c  : -> Formula .   
endfm 

Listing 2.3: LTL-Erfüllbarkeitsprüfung in Maude (Modul) 

Anschließend wird Maude auf der Kommandozeile mit “maude.linux64“ gestartet, wobei sich die 
Maude-Konsole öffnet. In der Maude-Konsole werden zunächst die Module model-checker.maude 
und SAT-SOLVER-TEST geladen und mit dem Befehl “red satSolve(<formel>) .“ die 
Erfüllbarkeitsprüfung einer LTL-Formel aufgerufen (Siehe Listing 2.4).  

Die Ausgabe “result SatSolveResult: model(a ; b, (~ c) ; c)“ bedeutet, dass es zu der angegebenen 
Formel das in Abbildung 2.15 angegebene Modell existiert. Im Falle einer unerfüllbaren Formel 
wird „result Bool: false“ ausgegeben. 

Maude> load model-checker.maude  
Maude> load SAT-SOLVER-TEST  
Maude> red satSolve(a /\ (O b) /\ (O O ((~ c) /\ [](c \/ (O c))))) .  
reduce in SAT-SOLVER-TEST : satSolve(O O (~ c /\ [](c \/ O c)) /\ (a /\ O b)) . 
rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second) 
result SatSolveResult: model(a ; b, (~ c) ; c) 

Listing 2.4: LTL-Erfüllbarkeitsprüfung in Maude (Konsole) 

 

 

Abbildung 2.15: LTL-Erfüllbarkeitsprüfung in Maude (gefundenes Modells) [wwwd] 





 

3 Verwandte Arbeiten 

In diesem Kapitel werden die auf Compliance „by design“ (siehe Abschnitt 2.1.1) ausgerichteten 
Konzepte und Vorarbeiten vorgestellt, auf denen diese Arbeit aufbaut. Dazu gehören die 
Plausibilitätsprüfungen für Systemspezifikationen, der inkrementelle Entwicklungsprozess sowie 
der Oryx-Prototyp, der in der vorhergehenden Arbeit um Compliance-Scopes und das Model-
Checking erweitert wurde.   

3.1 Plausibilitätsprüfungen von Spezifikationen 

Wie im Abschnitt 2.1.1.2 gezeigt, ist es aufgrund des exponentiellen Anstiegs der 
Fehlerbehebungskosten wichtig, Fehler möglichst früh zu erkennen. Dazu werden z. B. 
Plausibilitätsprüfungen sowohl am Systemmodell als auch an seiner Spezifikation vorgenommen 
[Kup06]. Im letzteren Fall ist es das Ziel zu erkennen, ob das System die Spezifikation auf eine 
triviale ungewollte Art erfüllt. Eine häufige Fehlerquelle dieser Art ist eine immer unerfüllte 
Vorbedingung einer Implikation [BB94]. Das folgende Beispiel demonstriert die Notwendigkeit von 
Plausibilitätsprüfungen.  

□(Anfrage  ◇Antwort) 

„Auf jede Anfrage folgt schließlich eine Antwort.“ 

Diese Lebendigkeits-Eigenschaft (siehe Abschnitt 2.2.1.3.2) ist in jedem Modell erfüllt, in dem es 
keine Anfragen gibt, was nicht der Absicht des Autors dieser Spezifikation entsprechen sollte. Viele 
industrielle Verifikationsprogramme berücksichtigen bereits diese Fehlerquelle, indem sie nach 
Teilformeln suchen, welche die Erfüllung der Spezifikation nicht beeinflussen. Im obigen Beispiel 
beeinflusst die Teilformel „Antwort“ das Ergebnis nicht, wenn im Modell keine „Anfrage“ vorkommt. 
Die Spezifikation wird erst dann verletzt, wenn es eine „Anfrage“ gibt und dann niemals eine 
„Antwort“ folgt. Um solche Teilformeln zu finden, wird das Model-Checking typischerweise mit 
modifizierten Teilformeln in der Spezifikation wiederholt [BBDER01, Kup06].  

Eine weitere typische Fehlerquelle sind fehlende Lebendigkeits-Eigenschaften im Zusammenhang 
mit Sicherheits-Eigenschaften in ihrer typischen Form:  

□¬ (Client1_druckt ˄ Client2_druckt) 

„Zu keinem Zeitpunkt können Client1 und Client2 gleichzeitig drucken.“ 

In einem Modell, in dem weder Client1 noch Client2 jemals drucken, ist diese Spezifikation zwar 
erfüllt, jedoch entspricht dieses Modell nicht der Absicht der Spezifikation. Es ist daher ratsam die 
Sicherheits-Eigenschaften mit entsprechenden Lebendigkeits-Eigenschaften zu kombinieren 
[Pnu86].  
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3.2 Notwendigkeit von Erfüllbarkeits- und 
Gültigkeitsprüfungen 

Ein positives Ergebnis des Model-Checking garantiert keine Fehlerfreiheit des modellierten 
Systems. Ein Grund dafür können mögliche Fehler in der Spezifikation sein, wie im Abschnitt 3.1 
gezeigt. Als weitere Plausibilitätsprüfungen muss ein Verifikationssystem laut [Var97, RV07] neben 
der Erfüllbarkeit auch die Ungültigkeit einer Spezifikation überprüfen können. Denn in den 
folgenden drei Fällen sind die gewöhnlichen Plausibilitätsprüfungen nicht ausreichend [RV07]:  

Fall 1: Die Spezifikation ist unerfüllbar. Es ist unmöglich zu einer unerfüllbaren Spezifikation ein 
Modell zu entwickeln und der Model-Checker wird immer ein negatives Resultat 
ausgeben. Es liegt also ein Fehler in der Spezifikation vor. 

Beispiel:  (a U b) ˄ ¬(◇b)  

 Per Definition verlangt der Until-Operator, dass b schließlich auftreten muss. Daher liegt 
ein Widerspruch vor. 

Fall 2: Die Spezifikation ist gültig, das heißt erfüllbar in allen Modellen (vgl. Definition 2.8). Hier 
liegt ebenfalls ein Fehler in der Spezifikation vor, da es keinen Sinn ergibt absichtlich eine 
Spezifikation zu erstellen, die von beliebigen Modellen erfüllt wird.  

Beispiel:  □(a  ◇b)  

 Diese Formel ist gültig, falls a und b äquivalent sind. Falls statt a und b komplexere 
Formeln verwendet werden, ist die Gültigkeit nicht so offensichtlich, wie in diesem 
Beispiel. 

Fall 3: Auch wenn die Teilspezifikationen erfüllbar sind, kann die Gesamtspezifikation aufgrund 
widersprüchlicher Teilspezifikation unerfüllbar sein. 

Beispiel: Teilspezifikation 1:  ◇b ˄ … 

Teilspezifikation 2: □¬b ˄ … 

Insbesondere ist der dritte Fall für diese Arbeit von Interesse. Er kann in Situationen auftreten, in 
denen für ein Prozessmodell mehrere Spezifikationen gelten müssen, z. B. wenn es sich dabei um 
eine Spezifikation eines Teilprozesses handelt, der die übergeordnete Spezifikation des 
Gesamtprozesses ebenfalls erfüllen muss [SALS10]. 

3.3 Inkrementelle Entwicklung Compliance-konformer 
Geschäftsprozessmodelle 

In [SALS10] wurde das Konzept der Compliance-Templates [SALM09] um den inkrementellen 
Entwicklungsprozess erweitert. Dieser stellt sicher, dass die Compliance-Regeln der 
Unterprozesse nicht die Regeln der Prozesse verletzen, in die sie eingebettet sind. Dazu werden 
Füllbereiche definiert, denen Compliance-Regeln als aussagenlogische Formeln zugeordnet 
werden können. Die Compliance-Regeln werden dabei an Unterprozesse, die diese Füllbereiche 
verfeinern, weitergegeben. In Abbildung 3.1 sind drei Schichten des inkrementellen 
Entwicklungsprozesses beispielhaft dargestellt. Im Prozess-Template auf der untersten Schicht ist 
im Füllbereich A spezifiziert, dass die Aktivität A ausgeführt werden muss. Dieser Füllberiech wird 
durch einen Designer des Unterprozesses 1 auf der höheren Schicht verfeinert. Dieser enthält die 
Compliance-Regel B im Füllbereich B. Die Compliance-Regeln A und B werden durch den 
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logischen UND-Operator „˄“ zu einer Compliance-Regel verknüpft, so dass der Unterprozess 1 sie 
beide erfüllen muss. Die verknüpften Compliance-Regeln werden dabei auf Erfüllbarkeit geprüft. 
Der Füllberiech B wird von dem Unterprozess 2 verfeinert und erbt die verknüpften Compliance-
Regeln vom Unterprozess 1. Somit werden die Compliance-Regeln der ersten zwei Schichten 
erfüllt, wenn die Aktivitäten A und B im Unterprozess 2 modelliert werden. Die Compliance-Regeln 
werden in der Normalform KNF (siehe Abschnitt 2.2.1.4) angegeben. Somit stellen die Klauseln der 
KNF die Teilregeln dar, die an Unterprozesse weitergegeben werden können.  

 

Abbildung 3.1: Weitergabe von Compliance-Regeln, nach [SALS10] 

3.3.1 Konflikte 

Bei der Verknüpfung von Compliance-Regeln können Konflikte zwischen geerbten und 
vorhandenen Compliance-Regeln entstehen, so dass die verknüpften Compliance-Regeln 
unerfüllbar sind. In [SALS10] wurden die folgenden direkten und indirekten Konflikte eingeführt: 

Definition 3.1 (Indirekter Konflikt): Ein indirekter Konflikt tritt bei der Verknüpfung zweier 
Compliance-Regeln auf, wenn ein positives Literal auf der tieferen Schicht mit der negativen 
Form des gleichen Literals auf der höheren Schicht verknüpft wird. 

Beispielsweise entsteht ein indirekter Konflikt, wenn in der Abbildung 3.1 im Unterprozess 1 statt B 
die Regel ¬A spezifiziert wird.  

Definition 3.2 (Direkter Konflikt): Ein direkter Konflikt tritt bei der Verknüpfung zweier 
Compliance-Regeln auf, wenn ein negatives Literal auf der tieferen Schicht mit der positiven 
Form des gleichen Literals auf der höheren Schicht verknüpft wird. 

So bedeutet beispielsweise die Entdeckung eines direkten Konflikts, dass die Spezifikation eines 
Unterprozesses korrigiert werden muss, weil sie die übergeordnete Compliance-Regel verletzt. Die 
Abbildung 3.2 zeigt ein Beispiel für einen direkten Konflikt.  

Unterprozess 1 

Compliance-Template 

Weitergabe der 
Regel A 

Weitergabe der 
Regel A ˄ B 

Unterprozess 2 
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Abbildung 3.2: Direkter Konflikt, nach [SALS10] 

3.3.2 Positive erfüllte Literale 

Die Regeln dürfen im Falle positiver erfüllter Literale nicht weitergegeben werden. Wie in Abbildung 
3.3 zu erkennen, sind dem Unterprozess 1 die Regeln X und Y zugeordnet. Da die Regel X erfüllt 
ist, wird sie nicht an den Unterprozess 2 weitergegeben. 

 

Abbildung 3.3: Positive erfüllte Literale, nach [SALS10] 

3.4 Der Prototyp 

In [SWLS10] wurden sogenannte Compliance-Scopes als eine Erweiterung der BPMN 2.0 
eingeführt. Sie stellen Bereiche von Geschäftsprozessmodellen dar, in denen Compliance-Regeln 
(siehe Abschnitt 2.1.1) erfüllt sein müssen. Diese Bereiche werden in existierenden Modellen oder 
Prozess-Templates definiert und können selbst beliebig viele Compliance-Scopes enthalten. Durch 
die Zuordnung von Compliance-Regeln zu Compliance-Scopes wird die Erkennung von 
Compliance-Verletzungen während der Modellierung von Geschäftsprozessen ermöglicht. 

Direkter Konflikt 

Unterprozess 2 

Unterprozess 1 

Compliance-Template 

Unterprozess 2 

Unterprozess 1 

Template 
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Die Compliance-Scopes (siehe Abbildung 3.5) und ihre automatische Verifikation durch Model-
Checking (siehe Abschnitt 2.3) wurden in der Diplomarbeit [Gro11] in dem webbasierten Editor 
Oryx (siehe Abschnitt 2.1.4) prototypisch umgesetzt. Die Compliance-Regeln werden dabei als 
LTL-Formeln (siehe Abschnitt 2.2.1) grafisch modelliert und den Compliance-Scopes zugeordnet. 
Als Model-Checker wird SPIN (siehe Abschnitt 2.3.2) verwendet. Dazu wird das in einem 
Compliance-Scope enthaltene BPMN-Modell in der Systembeschreibungssprache Promela (siehe 
Abschnitt 2.3.2.1) zusammen mit der assoziierten LTL-Formel in Form eines Never Claims (siehe 
Abschnitt 2.3.2.2) an SPIN übergeben. Die Compliance-Scopes, in denen die Compliance-Regeln 
verletzt werden, werden farbig hervorgehoben und als Gegenbeispiel wird eine Abfolge von 
Aktivitäten ausgegeben, die zu der Regel-Verletzung führt. Im Folgenden wird der für diese Arbeit 
relevante Ablauf der Modellierung und des Model-Checking im Prototyp beschrieben. Für weitere 
Details sei auf [Gro11] verwiesen.  

3.4.1 LTL-Editor 

  

Abbildung 3.4: Grafischer LTL-Editor 

Eine Compliance-Regel wird aus einzelnen LTL-Formeln zusammengesetzt, die in einem 
grafischen Editor modelliert werden. In der Abbildung 3.4 sind alle per Drag&Drop ins Diagramm 

einfügbaren Operatoren (¬,˅,˄,,◇,□,U) sichtbar.
1
 In der horizontalen Toolbar befindet sich der 

LTL-Button, mit dem sich eine modellierte Formel in ihre Textdarstellung, in diesem Fall „<>(a U 
b)“, umwandeln lässt. 

3.4.2 Compliance-Regel-Editor 

Nachdem ein BPMN-Diagramm mit mindestens einem Compliance-Scope modelliert wurde, kann 
für einen markierten Compliance-Scope eine Compliance-Regel erstellt werden. Dazu wird ein 
Compliance-Scope mit der Maus ausgewählt und über ein Drop-Down-Menü in der Oryx-Toolbar 
der Compliance Wizard aufgerufen (siehe in Abbildung 3.5). 

                                                      

1
 Der Next-Operator wird im Prototyp nicht unterstützt, weil das Model-Checking mit SPIN aus Performancegründen 

standardmäßig unter sogenannter partial order reduction ausgeführt wird [Gro11]. Dadurch ist der Berechnungsbaum für 
LTL-Formeln ohne den Next-Operator mit einer geringeren Anzahl von Verzweigungen möglich. Somit sind relative 
Ausführungsreihenfolgen in parallelen Prozesspfaden nicht ausdrückbar [Hol03]. Diese sind jedoch auch in realen 
Geschäftsprozessen in der Regel unbestimmt [For02]. Für das Model-Checking unter Berücksichtigung des Next-Operators 
muss SPIN mit einem speziellen Parameter aufgerufen werden [Hol03]. 
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Abbildung 3.5: Aufruf der Compliance-Prüfung 

In dem in Abbildung 3.6 dargestellten Compliance Wizard erfolgt die Zusammensetzung der 
Compliance-Regel aus einzelnen LTL-Formeln mit Hilfe der logischen Operatoren NOT, AND und 
OR. Die Operatoren können als Operanden entweder weitere Operatoren oder LTL-Regeln 
enthalten. Außerdem können Datentransfer-Regeln eingefügt werden, die in dieser Arbeit jedoch 
nicht betrachtet werden. Somit wird die Compliance-Regel als ein Regelbaum, auch 
Operatorenbaum genannt, dargestellt. Der Regelbaum enthält die logischen Operatoren in den 
Knoten und die Namen und IDs der LTL- oder Datentransfer-Regeln in den Blättern (vgl. [Gro11].  

 

Abbildung 3.6: Der Regelbaum im Compliance Wizard 

3.4.3 Compliance-Prüfung 

Nachdem die Modellierung des BPMN-Prozesses und die Erstellung der Compliance-Regel 
abgeschlossen sind, kann die Compliance-Prüfung, das heißt Model-Checking aller Compliance-
Scopes oder nur der Ausgewählten, über das in Abbildung 3.5 dargestellte Dropdown-Menü 
aufgerufen werden („Check Compliance“). 

Auswertung des Regelbaums 

Statt für die lange Compliance-Regel wird das Model-Checking nur für die einzelnen LTL-Regeln 
von den Blättern des Regelbaums ausgeführt. An jedem Knoten wird der boolesche Wert 
entsprechend der logischen Semantik des jeweiligen Operators berechnet. Das Gesamtergebnis in 
der Wurzel gibt an, ob die Compliance-Regel im Modell erfüllt wird (vgl. [Gro11]). Während für den 
UND-Operator alle Operanden das Model-Checking erfolgreich bestehen müssen, reicht es für den 
OR-Operator, wenn nur ein Operand vom Modell erfüllt wird. Auch im Falle des UND-Operators 
werden nicht immer alle LTL-Regeln geprüft, denn sobald ein nicht erfüllter Operand festgestellt 
wird, werden alle anderen übersprungen. Andererseits ist es beim ODER-Operator möglich, dass 
alle Operanden geprüft werden müssen, bis ein erfüllender Operand gefunden wird. 
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Ergebnis 

Nach dem erfolgten Model-Checking werden die Compliance-Scopes entsprechend ihren 
Ergebnissen farblich gekennzeichnet. Beispielsweise bedeutet die grüne Färbung in Abbildung 3.7, 
dass die Compliance-Regel im Compliance-Scope erfüllt wird, während rot das Gegenteil bedeutet. 

 

Abbildung 3.7: Farbliche Kennzeichnung der Compliance-Scopes 

Gleichzeitig wird das Ergebnisfenster eingeblendet. Im ersten Reiter wird die Zusammenfassung 
(siehe Abbildung 3.8) aller Ergebnisse und in den weiteren Reitern die Ergebnisse und Logs 
einzelner Compliance-Scopes angezeigt. Falls das Modell seine Spezifikation nicht erfüllt, wird ein 
Gegenbeispiel angegeben. Beispielsweise wird in Abbildung 3.9 ein Ausführungspfad angegeben, 

der die Compliance-Regel ◇c verletzt. 

 

Abbildung 3.8: Ergebnisfenster einer Compliance-Prüfung (Gesamtergebnis) 

grün=erfüllt 
(valid) 

pink=unerfüllt 
(invalid) 
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Abbildung 3.9: Ein Gegenbeispiel nach dem Model-Checking 

3.4.4 Variable Regionen 

In [SALM09] wurden sogenannte Compliance-Templates eingeführt und in diesem Prototyp durch 
[Köt10] implementiert. Dabei enthalten die Compliance-Templates sogenannte variable Regionen, 
die mit  Aktivitäten gefüllt werden müssen, damit ein ausführbarer Prozess entsteht. Wie die 
nachfolgende Abbildung zeigt, werden variable Regionen mit einem Puzzle-Symbol in der rechten 
unteren Ecke einer Aktivität kenntlich gemacht. Diese Art von Aktivitäten wird in einigen 
Abbildungen der folgenden Kapitel verwendet um noch nicht vollständig modellierte 
Prozessmodelle darzustellen.  

 

Abbildung 3.10: Variable Region  



 

4 Konzept 

Aufbauend auf den beschriebenen Grundlagen und Vorarbeiten wird in diesem Kapitel ein Konzept 
zur Konsistenzprüfung der Compliance-Regeln verschachtelter Compliance-Scopes erarbeitet. In 
erster Linie geht es um die Übertragung des in Abschnitt 3.3 beschriebenen inkrementellen 
Entwicklungsprozesses aus [SALS10] auf die Compliance-Scopes und die LTL (siehe Abschnitt 
2.2.1). Es  wird eine Definition für positive und negative Regeln eingeführt, welche die Weitergabe 
von Regeln an Compliance-Scopes bestimmt. Des Weiteren wird die Integration des Konzeptes in 
den Oryx-Prototyp (siehe Abschnitt 3.4) erläutert. 

4.1 Allgemein 

In diesem Kapitel werden wichtige Begriffe definiert sowie einige Beispiele für Compliance-Regeln 
in LTL angegeben. Das Anführen von Beispielen dient dabei zum einen dazu, die praktische 
Relevanz des Themas zu verdeutlichen und zum anderen dazu, in den darauf folgenden 
Abschnitten aus technischen Gründen auf praxisnahe Prozessdiagramme weitgehend verzichten 
zu können. 

4.1.1 Konventionen 

Um begriffliche Verwechselungen zu vermeiden wird im Folgenden die Bedeutung wichtiger 
Begriffe definiert. In Abbildung 4.1 werden die wichtigsten Begriffe aus Sicht des mittleren 
Compliance-Scopes zusammengefasst.  

 

Abbildung 4.1: Schematischer Begriffsüberblick 

Äußerer Compliance-Scope 

Compliance-Scope 

Äußere Regel:  □(a◇d) ˄ □¬c 

Innerer Compliance-Scope 

Compliance-Regel: ◇b  

Teilregel 

◇b ˄ □¬c 

Innere Regel: ◇c  
Verknüpfte 
Compliance-
Regeln 

 ◇c ˄ ◇b ˄ □¬c 
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Compliance-Scope oder Scope: Ein Compliance-Scope ist ein abgegrenzter Prozessbereich in 
einem BPMN-Diagramm, dem eine Compliance-Regel zugeordnet ist. Eine formale 
Definition, die im Rahmen des Prototyps gilt, kann in [SWLS10] gefunden werden. 

Teilregel: Eine Teilregel ist eine der durch den logischen UND-Operator auf der höchsten 
Hierarchieebene des Regelbaums (siehe Abbildung 3.6) verbundenen Teilformeln einer 
Compliance-Regel.  

Compliance-Regel oder Regel: Eine Compliance-Regel ist eine Beschreibung der Eigenschaften 
eines Prozessmodells in der LTL. Eine Compliance-Regel kann aus mehreren durch den 
logischen UND-Operator verknüpften Teilregeln bestehen. 

Innerer Compliance-Scope: Die in einem Compliance-Scope - auf derselben Ebene wie die 
Aktivitäten - enthaltenen Compliance-Scopes werden innere Compliance-Scopes oder 
innere Scopes bezeichnet. Die Regeln eines inneren Compliance-Scopes müssen mit den 
Regeln seiner äußeren Compliance-Scopes konsistent sein. 

Äußerer Compliance-Scope: Der Compliance-Scope, in dem sich der betrachtete Compliance-
Scope befindet, wird als äußerer Compliance-Scope oder äußerer Scope bezeichnet. 

Innere Compliance-Regel: Die Compliance-Regel des betrachteten Compliance-Scopes wird 
innere Compliance-Regel oder innere Regel bezeichnet. 

Äußere Compliance-Regel: Die Compliance-Regel des äußeren Compliance-Scopes wird äußere 
Compliance-Regel oder äußere Regel bezeichnet. 

Verknüpfte Compliance-Regel: Eine verknüpfte Compliance-Regel enthält neben der 
Compliance-Regel des geprüften Compliance-Scopes alle relevanten Teilregeln der 
äußeren Compliance-Regeln, die durch den logischen UND-Operator verknüpft sind. 

Konsistenz: Unter Konsistenz wird die logische Erfüllbarkeit einer verknüpften Compliance-Regel 
verstanden. 

Compliance-Prüfung: Unter Compliance-Prüfung wird in dieser Arbeit das Model-Checking in 
Kombination mit der Weitergabe relevanter Teilregeln an innere Compliance-Scopes und 
der Konsistenzprüfung verstanden. 

4.1.2 Anwendungsbeispiele 

Als Anwendungsbeispiel wird ein Konzern mit mehreren Geschäftsfeldern betrachtet. Während auf 
der Konzernebene strategische Vorgaben für alle Geschäftsfelder gelten, haben die 
Geschäftsfelder und die Abteilungen ihre eigenen branchenspezifischen oder internen Regelungen 
sowie gesetzliche Bestimmungen zu erfüllen. 

Beispielsweise führt der Konzern in Abbildung 4.2 im Zuge der Restrukturierung die folgende 
konzernweite Compliance-Regel für den Mitarbeitereinstellungs-Prozess ein um Verstößen gegen 
das Bundesdatenschutzgesetz und Know-How-Verlusten an Mitbewerber vorzubeugen: „Jeder 
neue Mitarbeiter muss nach seiner Einstellung über Informations- und Datenschutz im 
Unternehmen unterwiesen werden“.  
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Abbildung 4.2: Anwendungsbeispiel Compliance-Regeln 

Wenn keine der Abteilungen diese Regel selbst spezifiziert, kann ihre Verletzung zwar durch 
Model-Checking aller Geschäftsprozessesse erkannt werden. Die Modellierung des 
Geschäftsprozesses einer Abteilung kann jedoch zum Zeitpunkt der Fehlerentdeckung weit 
fortgeschritten sein. Daher ist eine frühe Fehlervermeidung wünschenswert (vgl. Abschnitt 2.1.1.2). 
Es kann ein Prozess-Template vorgestellt werden, welches wiederum Prozess-Templates für 
geschäftsfeldspezifische Mitarbeitereinstellungs-Prozesse enthält. Diese sind zwar unabhängig 
voneinander, müssen jedoch alle die oben genannte Regel erfüllen. Dazu wird die Regel 
automatisch an sie weitergegen. 

Des Weiteren ist es möglich, dass eine Abteilung etwas Gegensätzliches zur konzernweiten Regel 
spezifiziert. Beispielsweise kann eine weitere konzernweite Compliance Regel aus dem Bereich 
Datenschutz lauten [Rös09]: „Wenn ein Mitarbeiter ausritt, dann muss sein E-Mail-Postfach 
gelöscht werden.“ In LTL: 

□(Mitarbeiter tritt aus  ◇E-Mail-Postfach löschen) 

Eine dazu widersprüchliche Compliance-Regel könnte sein: „Wenn ein Mitarbeiter ausritt, dann 
muss sein  E-Mail-Postfach archiviert werden.“ In LTL: 

□(Mitarbeiter tritt aus  ¬◇E-Mails-Postfach archivieren) 

Durch die automatische Weitergabe der Geschäftsfeldregel an die Abteilungen und anschließende 
Erfüllbarkeitsprüfung mit den jeweiligen Abteilungsregeln können frühzeitig Inkonsistenzen 
entdeckt werden. 

Eine interne Compliance-Regel in einem Dienstleistungsunternehmen, welches für seine Kunden 
große Projekte organisiert, könnte wie folgt formuliert sein: „In allen Projektabwicklungsprozessen 
muss gelten, dass, wenn eine Angebotsanfrage empfangen wird, kein Angebot verschickt wird 
bevor es nicht von allen Verantwortlichen geprüft wurde.“ In LTL: 

□(Angebotsanfrage empfangen  (¬Angebot schicken U Angebot prüfen)) 

4.2 Weitergabe von Compliance-Regeln 

Die Weitergabe von Compliance-Regeln an Unterprozesse im Rahmen des inkrementellen 
Entwicklungsprozesses in [SALS10] wurde auf der Grundlage von Aussagenlogik eingeführt. Um 
die dort definierten direkten und indirekten Konflikte (siehe Definition 3.2 und Definition 3.1) auf die 
LTL (siehe Abschnitt 2.2.1) übertragen zu können, müssen zunächst für die positiven und 
negativen Literale Entsprechungen in der  LTL gefunden werden. Statt Literalen werden Teilregeln 
von Compliance-Regeln betrachtet.  

□(Mitarbeitereinstellung  ◇(Informations- und Datenschutzunterweisung)  
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4.2.1 Teilregeln 

In [SALS10] liegen die Compliance-Regeln in der KNF (siehe Abschnitt 2.2.1.4) vor, so dass die 
Klauseln die Teilregeln darstellen, die an Unterprozesse weitergegeben werden können. Die 
Klauseln der Normalform SNF (siehe Definition 2.5) können auch als solche Teilregeln in der LTL 
aufgefasst werden. In diesem Fall müssen alle Compliance-Regeln vom Benutzer entweder bereits 
in der SNF eingegeben werden oder automatisch in SNF umgeformt werden. Die Umformung hat 
jedoch den Nachteil, dass im Falle eines Konflikts (siehe Abschnitt 3.3) zwischen Compliance-
Regeln in SNF die zu korrigierende Teilregel in ihrer ursprünglich vom Benutzer eingegebenen 
Form schwer erkennbar sein kann. Beispielsweise besteht die einfache Formel □a in SNF aus drei 

Klauseln: □((Startx) ˄ (xa) ˄ (x○a)). Außerdem müssen in diesem Fall die entstehenden 

Klauseln als eine Einheit betrachtet werden. Obwohl das obige Beispiel als □(Startx) ˄ □(xa) 

˄ □(x○a) geschrieben werden kann, dürfen die Klauseln nicht getrennt an innere Compliance-

Scopes weitergegeben werden, weil sie nur zusammen äquivalent zu der ursprünglichen Formel 

□a sind. Außerdem scheidet die Verwendung der SNF aus, weil der verwendete Prototyp den ○-

Operator (Next-Operator, siehe Abschnitt 2.2.1) nicht unterstützt. 

Alternativ kann eine Art KNF auch für die LTL verwendet werden, in der Teilregeln durch den 
logischen UND-Operator verknüpft sind. Der zu erweiternde Prototyp bietet bereits die Möglichkeit 
eine solche Regel im Compliance Wizard (siehe Abbildung 3.6) zu erstellen, indem auf der 
obersten Ebene des Regelbaums (siehe Abbildung 3.6) ein UND-Operator verwendet wird. Die 
Operanden dieses UND-Operators bilden somit die Teilregeln, die einzeln an innere Compliance-
Scopes weitergegeben werden können. Es ist jedoch zu beachten, dass im Gegensatz zu einer 
echten KNF in den „Klauseln“ weitere UND-Operatoren und in den Blättern beliebig komplexe LTL-
Formeln verwendet werden können. Damit können sehr komplexe Teilregeln entstehen. 

4.2.2 Erfüllte Teilregeln 

Die erfüllten Teilregeln können durch das im verwendeten Prototyp bereits implementierte Model-
Checking erkannt werden. Das Model-Checking im Prototyp erfolgt nur für die LTL-Formeln an den 
Blättern des Regelbaums (siehe Abbildung 3.6) und das Gesamtergebnis wird entsprechend der 
logischen Semantik der Operatoren an den Knoten in der Wurzel berechnet (siehe Abschnitt 3.4.3). 
Daher kann die vorhandene Routine des Model-Checking genutzt werden und die Model-
Checking-Ergebnisse für einzelne Teilregeln abgegriffen werden. 

4.2.3 Positive und negative Teilregeln 

Es stellt sich die Frage, wie positive und negative Literale aus [SALS10] (siehe Abschnitt 3.3) auf 

die LTL übertragen werden können. Sind beispielsweise (a U b) und □(a→◇b) positive und ihre 

Negationen entsprechend negative Eigenschaften? Die Unterscheidung in positive und negative 
Eigenschaften ist notwendig, weil positive erfüllte Eigenschaften nicht an Unterprozesse 
weitergegeben werden müssen (siehe Abbildung 3.3). Im Folgenden wird zunächst die 
grundlegende Problematik diskutiert und anschließend die in dieser Arbeit geltenden Definitionen 
für positive und negative Teilregeln angegeben. 

Das positive Literal A in der Compliance-Regel in Abbildung 3.1 bedeutet, dass irgendwann 
garantiert A vorkommen muss. Dies entspricht in LTL der Lebendigkeitseigenschaft (siehe 

Abschnitt 2.2.1.3.2) ◇a. Entsprechend kann das negative Literal ¬B in LTL als die 

Sicherheitseigenschaft (siehe Abschnitt 2.2.1.3.1) ¬◇b verstanden werden, was äquivalent zu 

□¬b ist. Beispielsweise gelten diese einfachen Beispielformeln in dem Prozess in Abbildung 4.3. 
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Abbildung 4.3: Einfache positive und negative Eigenschaften  

 Scope-übergreifende Erfüllung 4.2.3.1

Der grundlegende Unterschied der LTL zur Aussagenlogik besteht darin, dass sich eine LTL-
Formel aufgrund der Zeitoperatoren nicht nur auf einen Zustand sondern auf eine Folge von 
Zuständen oder Zeitpunkten beziehen kann (siehe Abbildung 2.7), wie z. B. das obige Beispiel 

□¬b. Im Folgenden werden weitere Beispiele erläutert.  

So bedeutet die Lebendigkeitseigenschaft ◇□c, dass ab einem zukünftigen Zustand bis zum 

Endzustand c=true gelten muss. Das bedeutet, dass sich ein Teil der Zustandssequenz mit c=true 
in einem inneren Compliance-Scope befinden kann, sodass die Regel Scope-übergreifend erfüllt 

wird.  Die Formel ◇(d U c) bedeutet, dass in einem der zukünftigen Zustände c=true gilt und es 

unmittelbar davor eine Zustandssequenz mit d=true gibt. Beispielsweise kann ◇(d U c) in 

Abbildung 4.3 dadurch erfüllt werden, dass sich die Zustandssequenz mit a=true im inneren 
Compliance-Scope befindet. Ähnliches gilt für die Formel a U d, die sich auf eine Zustandsfolge 
vom Startzustand bis zu einem Zustand mit d=true bezieht. Beispielsweise muss in Abbildung 4.3 
im inneren Compliance-Scope die Aktivität d als erste Aktivität vorkommen damit a U d erfüllt wird.  

 Grundlegende Gültigkeitsbereiche 4.2.3.2

Ausgehend von eigenen Beobachtungen und den temporalen Gültigkeitsbereichen aus [DAC98] 
(siehe Abbildung 2.7) werden folgende grundlegende Gültigkeitsbereiche von Formeln 
unterscheiden: (1) Formeln, die sich auf alle Zeitpunkte beziehen, insbesondere 
Sicherheitseigenschaften; (2) Formeln die sich auf diskrete Zeitpunkte beziehen. Das können z. B. 
Lebendigkeitseigenschaften sein; Und Formeln, die sich auf Zustandsfolgen (3) inklusive des 
Startzustands oder (4) inklusive des Endzustands oder (5) exklusive des Start- und Endzustands 

beziehen. Diese Gültigkeitsbereiche sind in Abbildung 4.4 mit Beispielen dargestellt. 

 

Abbildung 4.4: Grundlegende Gültigkeitsbereiche von LTL-Formeln, in Anlehnung an [DAC98] 

Bei den letzten drei Gültigkeitsbereichen stellt sich die Frage, wie Beginn und Ende ihrer 
Gültigkeitsbereiche erkannt werden können. Beispielsweise kann es bei dem vierten 
Gültigkeitsbereich am Anfang des Prozesses einen Compliance-Scope geben, an den die 

Compliance-Regel ◇□a nicht weitergegeben werden darf. Denn ◇□a bezieht sich nur auf ihren 

Compliance-Scope und soll nicht am Ende von jedem inneren Compliance-Scope gelten. Es sei 

denn, es wird explizit gewünscht, dass ◇□a in jedem inneren Compliance-Scope gelten soll. 

◇a ˄□¬b  

 

a 

 

c 

1) Alle Zustände 

2) Zeitpunkte 

3) Inkl. Startzustand 

4) Inkl. Endzustand 

5) Exkl. Start- und Endzustand 

□a, □◇a  

◇a, ◇a◇b, ◇(¬a˄b) 

a U b, a◇b 

◇□a  

◇(a U b) 
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Beispielsweise ist die Regel ◇□a in Abbildung 4.3 bereits erfüllt und es ist unklar, ob sie auch in 

dem inneren Compliance-Scope erfüllt sein muss. 

 Ansatz zur Erkennung positiver und negativer Compliance-Regeln 4.2.3.3

Für ein positives Literal in [SALS10] ist charakteristisch, dass es an die Unterprozesse nicht mehr 
weitergegeben werden muss, wenn es einmal erfüllt ist, da es in den Unterprozessen nicht mehr 

verletzt werden kann. Dies gilt beispielsweise auch für ◇a in Abbildung 4.3. Ein negatives Literal 

muss dagegen immer weitergegeben werden, weil es überall im Prozess verletzt werden kann. 

Dies gilt auch für die Regel □¬b in Abbildung 4.3. Um solche Eigenschaften zu unterscheiden 

können die ihnen entsprechenden Büchi-Automaten (siehe Abschnitt 2.2.1.1) untersucht werden. 
Dabei lässt sich feststellen, dass die Büchi-Automaten für Lebendigkeitseigenschaften (siehe 

Abschnitt 2.2.1.3.2) wie ◇¬a den „accept_all“-Zustand enthalten (siehe 

Listing 2.2). Die Sicherheitseigenschaften enthalten diesen Zustand dagegen nicht (siehe  
Listing 2.1). Der „accept_all“-Zustand (vgl. 2.3.2.2.2) bedeutet, dass es einen Zustand gibt, ab dem 
die Eigenschaft unabhängig vom weiteren Verlauf erfüllt ist. Das Fehlen des „accept_all“-Zustands 
bedeutet, dass die geforderte Eigenschaft in allen Zuständen erfüllt sein muss. Dies entspricht dem 
Verständnis von positiven und negativen Literalen. Daher basiert die Erkennung positiver und 
negativer Teilregeln in dieser Arbeit auf den folgenden Definitionen: 

Definition 4.1 (Positive Teilregel): Eine positive Teilregel ist eine LTL-Formel deren mit SPIN 
generierter Büchi-Automat einen „accept_all“-Zustand enthält. 

Definition 4.2 (Negative Teilregel): Eine negative Teilregel ist eine LTL-Formel deren mit SPIN 
generierter Büchi-Automat keinen „accept_all“-Zustand enthält. 

Im Allgemeinen sind diese Definitionen nicht an SPIN gebunden, weil die Büchi-Automaten auch 
mit anderen Tools generiert werden können (siehe Abschnitt 2.2.1.1). Beispiele für Büchi-
Automaten mit und ohne des „accept_all“-Zustands sind in Tabelle A. 1 und Tabelle A. 2 zu finden. 

Beispiel (Negative Teilregel, Gültigkeitsbereich 1): Sicherheitseigenschaft □¬(a ˄ b). Es gibt 

keinen „accept_all“-Zustand im Büchi-Automat, weil in allen Zuständen ¬(a ˄ b) erfüllt sein muss. 

Beispiel (Negative Teilregel, Gültigkeitsbereich 1): Die Lebendigkeitseigenschaft □◇a. Es gibt 

keinen „accept_all“-Zustand im Büchi-Automat, weil in allen Zuständen ◇a erfüllt sein muss. 

Beispiel (Negative Teilregel, Gültigkeitsbereich 4): Zum Erkennen der Lebendigkeits-

eigenschaft ◇□a muss der Büchi-Automat alle Zustände vom Start- bis zum Endzustand prüfen. 

Daher gibt es keinen „accept_all“-Zustand im Büchi-Automat. 

Beispiel (Positive Teilregel, Gültigkeitsbereich 2): Lebendigkeitseigenschaft ◇¬(a ˄ b). 

Ab einem Zustand im Modell, in dem a und b nicht gleichzeitig erfüllt sind, werden alle weiteren 
Modellzustände durch den „accept_all“-Zustand des Büchi-Automaten akzeptiert.  

Beispiel (Positive Teilregel, Gültigkeitsbereich 2): Lebendigkeitseigenschaft ◇(a →◇b) gibt an, 

dass, falls irgendwann a eintritt, muss in demselben oder einem der darauffolgenden Zustände b 
eintreten. Hier sind es ein oder zwei Zustände, die zur Erfüllung beitragen. Nachdem b erfüllt ist, 
werden alle weiteren Modellzustände durch den „accept_all“-Zustand im Büchi-Automat akzeptiert.  

Beispiel (Positive Teilregel, Gültigkeitsbereich 3): a U b. Wenn in dem Startzustand a=true gilt, 
akzeptiert der „accept_all“-Zustand des Büchi-Automaten, alle weiteren Modellzustände, wenn in 
allen vorhergehenden Zuständen a erfüllt ist. 



4 Konzept 

41 

Beispiel (Positive Teilregel, Gültigkeitsbereich 5): ◇(a U b) ist in einer Zustandssequenz erfüllt, 

in der a U b gilt. Nach Erkennung dieser Zustandssequenz akzeptiert der „accept_all“-Zustand des 
Büchi-Automaten alle weiteren Modellzustände. 

 Beobachtungen 4.2.3.4

Anhand obiger Beispiele lässt sich feststellen, dass die Teilregel in Einklang mit den 
vorangegangenen Definitionen genau dann positiv ist, wenn es nach dem Gültigkeitsbereich der 
Teilregel weitere Zustände gibt. Anderenfalls ist sie negativ. Dies wird in Abbildung 4.5 
zusammengefasst. 

 

Abbildung 4.5: Positive und negative Teilregeln nach Gültigkeitsbereichen, nach [DAC98] 

Eine weitere Beobachtung ist, dass es für LTL-Formeln mit den Gültigkeitsbereichen 2-5 sinnvoll 
sein kann anzugeben, ob sie nur in ihrem Compliance-Scope, in allen Compliance-Scopes oder 
nur in ausgewählten Compliance-Scopes gelten sollen. 

Die Weitergabe von Compliance-Regeln wird im Folgenden anhand von Beispielen erläutert.  

4.2.4 Direkte Konflikte 

Gemäß [SALS10] liegt ein direkter Konflikt liegt vor, wenn eine negative Teilregel (siehe Definition 
4.2) eines Compliance-Scopes zu ihrer negierten Form aus einem inneren Compliance-Scope im 
Widerspruch steht. Eine negative Teilregel wird dabei immer an die inneren Compliance-Scopes 
weitergegeben, weil sie in jedem Zustand innerhalb des Compliance-Scope erfüllt sein muss. 

Beispielsweise steht in der Abbildung 4.6 die Lebendigkeitseigenschaft ◇b des inneren 

Compliance-Scopes zu der Sicherheitseigenschaft □¬b (äquivalent zu ¬◇b) des äußeren 

Compliance-Scopes im Widerspruch. In diesem Fall wird durch die  Erfüllbarkeitsprüfung von □¬b 

˄ ◇b die Inkonsistenz festgestellt. 

 

Abbildung 4.6: Direkter Konflikt 

1) Alle Zustände 

2) Zeitpunkte 

3) Inkl. Startzustand 

4) Inkl. Endzustand 

5) Exkl. Start- und Endzustand 

Negativ 

Positiv 

Positiv 

Negativ 

Positiv 

(a U b) 

□¬b ˄ □◇c ˄.. 

◇b ˄ .. 

a c 
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Die Compliance-Regel □◇c wird nach der Definition 4.2 als eine negative Teilregel erkannt und 

daher an den inneren Compliance-Scope weitergegeben. Jedoch bleibt sie auch dann erfüllt, wenn 
keine Aktivität c im inneren Compliance-Scope vorkommt. 

4.2.5 Indirekte Konflikte 

Entsprechend [SALS10] liegt ein indirekter Konflikt vor, wenn eine positive Teilregel eines 
Compliance-Scope zu ihrer negierten Form aus einem inneren Compliance-Scope im Widerspruch 
steht. Dabei werden positive Eigenschaften nicht weitergegeben, wenn sie bereits erfüllt ist.  

 Erfüllte positive Teilregeln 4.2.5.1

Das Beispiel in Abbildung 4.7 zeigt drei Teilregeln (a U b), ◇c und ◇(d U e) aus allen drei 

Gültigkeitsbereichen für positive Eigenschaften (siehe Abbildung 4.5). Die innere Compliance-

Regel (¬◇c ˄¬◇b ˄¬◇e) steht dabei zu allen Teilregeln im Widerspruch. Da jedoch alle drei 

Regeln erfüllt und aufgrund des „accept_all“-Zustand in ihren Büchi-Automaten als positiv erkannt 
werden, werden sie nicht an den inneren Compliance-Scope weitergegeben. Somit sind 
abweichende Regeln in dem inneren Compliance-Scope erlaubt. 

 

Abbildung 4.7: Indirekte Konflikte (erfüllte positive Teilregeln) 

 Nicht erfüllte positive Teilregeln 4.2.5.2

Der äußere Compliance-Scope in Abbildung 4.8 enthält drei unerfüllte Teilregeln mit den drei 
möglichen Gültigkeitsbereichen für positive Eigenschaften (siehe Abbildung 4.5). Beispielsweise 

wird die Teilregel ◇c an die inneren Compliance-Scopes weitergegeben. Die Erfüllbarkeitsprüfung 

der inneren Compliance-Regel (¬◇c ˄¬◇b ˄¬◇e) in Verknüpfung mit ◇c ergibt eine 

Inkonsistenz, sodass die innere Regel unter Umständen korrigiert werden muss. Ein indirekter 
Konflikt bedeutet jedoch nicht immer, dass eine innere Compliance-Regel korrigiert werden muss. 
Denn es ist möglich, dass in dem inneren Compliance-Scope die zu den äußeren Regeln 
widersprüchliche Teilregel tatsächlich gelten muss. In diesem Fall kann auch der zweite innere 

Compliance-Scope ◇c erfüllen. 

¬◇c ˄¬◇b ˄¬◇e 

 

(a U b) ˄ ◇c ˄  ◇(d U e) 
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d b d e f 
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Abbildung 4.8: Indirekte Konflikte (unerfüllte positive Teilregeln) 

Die Teilregel ◇(d U e) ist nicht erfüllt, weil vor dem Task e noch keine Zustandssequenz mit d=true 

existiert. Auch diese Teilformel kann an alle inneren Compliance-Scopes weitergegeben werden 
und im weiteren inkrementellen Entwicklungsverlauf in einem von ihnen erfüllt werden.  

Die Teilregel (a U b) ist nicht erfüllt, weil der untere parallele Pfad weder mit a noch mit b beginnt 
(vgl. Definition 2.3). Diese Regel hat den Gültigkeitsbereich, der sich auf den Startzustand bezieht 
(siehe Abbildung 4.4). Der Startzustand wird in diesem Fall von einer der ersten Aktivitäten von 
den beiden parallelen Pfaden bestimmt. Da die relative Ausführungsreihenfolge paralleler 
Aktivitäten in realen Geschäftsprozessen in der Regel unbestimmt [For02] ist, muss der untere 
Pfad diese Teilregel auch erfüllen. Das heißt, sie muss an den unteren Compliance-Scope 
weitergegeben werden. Es ist jedoch fragwürdig, ob sie auch in dem oberen und in allen anderen 
möglichen Compliance-Scopes berücksichtigt werden muss, die den Startzustand nicht 
einbeziehen. 

4.2.6 Potentielle Konflikte 

Aufgrund von ODER-Operatoren in inneren oder äußeren Compliance-Scopes können einige 
Konflikte durch Erfüllbarkeitsprüfung von verknüpften Compliance-Regeln nicht entdeckt werden.  

 Disjunktion in einer inneren Compliance-Regel 4.2.6.1

Beispielsweise bleibt in Abbildung 4.9 der Konflikt zwischen ¬◇e und ◇e durch 

Erfüllbarkeitsprüfung unentdeckt, weil ¬◇e ˄ (◇b ˅ ◇e) erfüllbar ist. Jedoch wird das Model-

Checking den Berechnungspfad über die Aktivität e entdecken und als Gegenbeispiel ausgeben. 

 

Abbildung 4.9: Disjunktion in einer inneren Compliance-Regel 

Die Inkonsistenz im oberen Beispiel kann in der realen Prozessmodellierung unter Umständen sehr 
spät erkannt werden. Wenn der Modellierer des inneren Compliance-Scopes von der Konsistenz 
seiner Compliance-Regel mit der äußeren Regel überzeugt ist, wird er seinen Prozess 
entsprechend seiner Compliance-Regel weiter modellieren. Es kommt hinzu, dass zwischen den 

¬◇c ˄¬◇b ˄¬◇e 

 

(a U b) ˄ ◇c ˄  ◇(d U e) 
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dargestellten Compliance-Scopes weitere Schichten von Compliance-Scopes möglich sind, sodass 
der Fehler umso später entdeckt wird, je mehr zwischenliegende Compliance-Scopes existieren. 
Denn während die Compliance-Regeln in realen Entwicklungsprozessen den Designern z. B. 
zugeschickt werden können, müssen für das Model-Checking erst alle Modelle fertig werden.  

 Unerfüllte Disjunktion von positiven Teilformeln 4.2.6.2

Der äußere Compliance-Scope in Abbildung 4.10 enthält die positive Teilregel (◇e ˅ ◇b) als 

Disjunktion zweier positiver Teilformeln. Da diese Teilregel nicht erfüllt ist, wird sie an den inneren 

Scope weitergegeben. Die Inkonsistenz von ◇e und ¬◇e wird durch die Erfüllbarkeitsprüfung von 

(◇e ˅ ◇b) ˄ ◇e nicht entdeckt, weil diese Formel erfüllbar ist. Daher wird der Modellierer des 

inneren Scopes ein aus Sicht des äußeren Scopes nicht Compliance-konformes Modell erstellen. 
Durch das Model-Checking wird die Nichterfüllung der äußeren Teilregel zwar erkannt. Bei vielen 
verschachtelten Scopes kann es jedoch nicht direkt ersichtlich sein, in welcher Compliance-Regel 
der Fehler liegt. Der Model-Checker wird zwar einen Pfad als Gegenbeispiel ausgeben, doch dies 
ist ein Schleife oder ein Pfad vom Startereignis bis zum Endereignis, weil es sich hier um eine 
Lebendigkeitseigenschaft handelt (siehe Abschnitte 2.2.1.3.2 und 2.3.2.2.1). Des Weiteren kann es 
mehrere solcher Pfade geben, auf denen die Teilregel nicht erfüllt ist. 

 

Abbildung 4.10: Unerfüllte Disjunktion von positiven Teilformeln 

 Unerfüllte Disjunktion von negativen Teilformeln 4.2.6.3

Da die Teilregel (¬◇e ˅ ¬◇b) in Abbildung 4.11 negativ ist (siehe Büchi-Automat in Listing A. 1), 

wird sie an den inneren Compliance-Scope weitergegeben. Der Konflikt zwischen ¬◇e und ◇e 

wird durch Erfüllbarkeitsprüfung von (¬◇e ˅ ¬b)  ˄ ◇e nicht entdeckt. Diese Teilregel ist 

äquivalent zu ¬(◇e ˄ ◇b). Das heißt, sie wird verletzt, wenn im Prozess sowohl e also auch b 

vorkommen.  

 

Abbildung 4.11: Unerfüllte Disjunktion von negativen Teilformeln 

Da in dem Prozess die Aktivität b vorkommt und e nicht vorkommt, ist die Compliance-Regel zwar 

erfüllt, aber aufgrund der inneren Regeln ◇e wird der Modellierer die Aktivität e einfügen. Daher 

wird erst beim nächsten Durchlauf des Model-Checking dieser Fehler entdeckt. Da es sich in 
diesem Fall um eine Sicherheitseigenschaft handelt, ist das Gegenbeispiel ein endlicher Pfad 
(siehe Abschnitte 2.2.1.3.1 und 2.3.2.2.2), der genau zu der verletzenden Aktivität führt. Es kann 
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jedoch mehrere innere Compliance-Scopes geben, in denen jeweils die Aktivität e oder b 
vorkommt. Um solche Schwierigkeiten zu vermeiden, ist es denkbar, die Operanden einer 
Disjunktion in einer Teilregel einzeln auf Erfüllbarkeit mit den inneren Compliance-Regeln zu 
prüfen.  

 Unerfüllte Disjunktion von negativen und positiven Teilformeln 4.2.6.4

Im dem Modell in Abbildung 4.12 wird der Konflikt zwischen ¬◇e und ◇e durch die 

Erfüllbarkeitsprüfung von (¬◇e ˅ ◇b) ˄ ◇e nicht entdeckt, weil diese Formel erfüllbar ist. Dadurch 

können ähnliche Schwierigkeiten wie in den Abschnitten 4.2.6.2 und 4.2.6.3 entstehen. 

 

Abbildung 4.12: Unerfüllte Disjunktion von negativen und positiven Teilformeln  

Aufgrund der positiven Teilformel ◇b enthält der Büchi-Automat der Teilregel (¬◇e ˅ ◇b) einen 

„accept_all“-Zustand (siehe Büchi-Automat in Listing A. 2). Daher ist diese Teilregel laut Definition 
4.1 positiv. In Abbildung 4.12 ist erkennbar, dass diese Teilregel erfüllt ist, weil keine Aktivität e im 
Prozessmodell vorkommt. Damit die Teilregel im gesamten Prozess erfüllt wird, muss die 

Teilformel ¬◇e ( □¬e) in allen Compliance-Scopes erfüllt sein. Die Teilregel (¬◇e ˅ ◇b) muss 

daher weitergegeben werden, obwohl sie insgesamt positiv und erfüllt ist. Dies kann dadurch 
gelöst werden, dass aus Disjunktionen bestehende Teilregeln nicht weitergegeben werden, wenn 
sie eine positive erfüllte Teilformel enthalten.  

 Umgang mit unerfüllten Disjunktionen 4.2.6.5

Aus den obigen Beispielen folgt: Wenn die Erkennung positiver und negativer Teilformeln, die 
Disjunktionen sind, nur anhand des Gesamtergebnisses erfolgt, können falsche Entscheidungen 
getroffen werden. Vielmehr muss jeder Operand untersucht werden. Nur wenn eine positive erfüllte 
Teilformel entdeckt wird, muss die gesamte Teilregel nicht weitergegeben werden. Das heißt, 
aufgrund eine einzigen positiven Teilformel sollte die gesamte Disjunktion als eine positive 
Teilformel behandelt werden.  

4.2.7 Grenzen der Methode und Lösungsansätze 

Mit der oben beschriebenen Methode zur Erkennung von Regeln und Teilregeln, die an innere 
Compliance-Scopes nicht weitergegen werden dürfen, kann nicht immer die richtige Entscheidung 
getroffen werden. Genauer formuliert, liegt die Schwierigkeit in der Erkennung von Formeln die 
nicht weitergegeben werden müssen, wenn sie bereits erfüllt sind. 

 Global erfüllte negative Regeln und lokale Inkonsistenz 4.2.7.1

Eine innere Compliance-Regel muss nicht immer mit der des äußeren konsistent sein. 

Beispielsweise bedeutet die Fairnesseigenschaft (siehe Abschnitt 2.2.1.3.4) □◇a  □◇b in 

Abbildung 4.13, dass unendlich oft a und unendlich oft b vorkommen müssen, wenn unendlich oft a 
vorkommt. Nach der Definition 4.2 wird diese Compliance-Regel als eine negative Regel erkannt 

(¬◇e ˅ ◇b) ˄ ... 

◇e ˄ … 
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und daher an den inneren Compliance-Scope in Abbildung 4.13 weitergegeben. Im inneren 

Compliance-Scope muss □◇a ˄ □¬b gelten, was im Widerspruch zu der Fairnesseigenschaft 

steht. Trotz der lokalen Inkonsistenz bleibt die äußere Compliance-Regel durch die Aktivitäten a 
und b erfüllt. 

Das bedeutet, dass es Compliance-Regel mit einem globalen Charakter gibt, die nicht von den 
Aktivitäten innerer Compliance-Scopes verletzt werden können. Im Vergleich dazu kann die Regel 

□(cd) in jedem Compliance-Scope verletzt werden. 

 

Abbildung 4.13: Global erfüllte Compliance-Regel und lokale Inkonsistenz 

 Gültigkeitsbereich inklusive des Endzustands 4.2.7.2

Die äußere Regel in Abbildung 4.14 wird als negativ erkannt (Definition 4.2), weil der Büchi-

Automat für ◇□a keinen „accept_all“-Zustand enthält (siehe Tabelle A. 1). Daher wird sie an den 

inneren Compliance-Scope weitergegeben, in dem die zu ihr widersprüchliche Spezifikation ¬◊a 

angegeben ist. Damit wird durch die Erfüllbarkeitsprüfung die Inkonsistenz der inneren Regel zur 
Äußeren bemängelt. Dabei kann es sein, dass in dem dargestellten inneren Compliance-Scope 
tatsächlich keine Aktivität a vorkommen darf.  

 

Abbildung 4.14: Scope-übergreifende Erfüllung 

Falls die beiden letzten Aktivitäten in Abbildung 4.14 in einem inneren Compliance-Scope 

eingeschlossen wären, müsste die Regel ◇□a in jedem Fall an diesen Compliance-Scope 

weitergegeben werden. Solche Formeln die unmittelbar am Ende oder am Anfang eines Prozesses 
gelten müssen, können z. B. durch Mustererkennung mittels regulärer Ausdrücke erkannt werden 
und automatisch nur an die entsprechenden Compliance-Scopes weitergegeben werden.  

 Lösungsansätze 4.2.7.3

Markierung lokal geltender Teilregeln 

Eine mögliche Lösung für global erfüllte negative Regeln (Abschnitt 4.2.7.1) ist die Markierung von 
Teilregeln, die niemals an innere Compliance-Scopes weitergegeben werden müssen, was mit 
manuellem Aufwand verbunden ist. Wenn jedoch eine Teilregel nicht automatisch weitergegeben 
wird, wird ihre Erfüllung in den relevanten Compliance-Scopes nicht gefördert. Daher können 

□◇a  □◇b 
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solche Regeln zusätzlich in Teilregeln aufgeteilt und an die relevanten inneren Compliance-Scopes 
verteilt werden. Beispielsweise können in Abbildung 4.13 statt der Aktivitäten a und b zwei 

Compliance-Scopes modelliert und ihnen jeweils die Regeln ◊a und ◊b zugeordnet werden. 

Eingrenzung des Gültigkeitsbereichs 

Es bietet sich an die Scope-übergreifend erfüllbaren Compliance-Regeln nur solchen Compliance-
Scopes zuzuordnen, die genau ihrem Gültigkeitsbereich entsprechen. Dies betrifft Formeln mit den 
letzten drei Gültigkeitsbereichen in Abbildung 4.4. Dazu kann eine LTL-Formel dieser 
Gültigkeitsbereiche in eine LTL-Formel mit dem ersten Gültigkeitsbereich umgeformt werden. Aus 

◇□a wird beispielsweise □a. 

4.3 Erweiterung der Compliance-Prüfung 

Die bisher aus dem unabhängigen Model-Checking einzelner Compliance-Scopes bestehende 
Compliance-Prüfung (siehe Abschnitt 3.4.3), wird laut dem im Abschnitt 3.3 vorgestellten 
inkrementellen Entwicklungsprozess um die Konsistenzprüfung von Compliance-Regeln erweitert. 
Dabei wird die Erfüllbarkeit von Compliance-Regeln in Verknüpfung mit ihren äußeren Compliance-
Regeln sichergestellt. Wie im Abschnitt 3.2 beschrieben, muss auch für einzelne Compliance-
Regeln sichergestellt werden, dass sie nicht gültig sind. Dazu muss nach Satz 2.1 die Erfüllbarkeit 
der negierten Compliance-Regel gezeigt werden. 

Alle nötigen Erfüllbarkeits- und Gültigkeitsprüfung können zwar während einem Durchlauf der 
Compliance-Prüfung erfolgen. Im Folgenden wird in Bezug auf den vorhandenen Prototyp erläutert, 
wann und welche Erfüllbarkeits- und Gültigkeitsprüfungen im Hinblick auf eine möglichst effiziente 
Compliance-Prüfung stattfinden sollen. 

4.3.1 Erfüllbarkeits- und Gültigkeitsprüfung von LTL-Formeln 

Im Falle einer unerfüllbaren Compliance-Regel ist der Grund dafür nicht direkt ersichtlich. Ein 
Grund könnte z. B. eine unerfüllbare Teilregel oder Teilformel sein. Um die Fehlersuche im Falle 
einer unerfüllbaren Compliance-Regel zu erleichtern, soll die Erfüllbarkeits- und Gültigkeitsprüfung 
(siehe Abschnitt 2.4) einzelner LTL-Formeln während ihrer Erstellung im grafischen LTL-Editor 
erfolgen. Damit wird sichergestellt, dass die Unerfüllbarkeit einer Compliance-Regel nur auf die 
Kombination verwendeter LTL-Formeln und logischer Operatoren in den Knoten des Regelbaums 
zurückzuführen ist. 

4.3.2 Erfüllbarkeits- und Gültigkeitsprüfung von Compliance-
Regeln 

Um die Fehlersuche bei unerfüllbaren verknüpften Compliance-Regeln zu erleichtern, soll die 
Erfüllbarkeits- und Gültigkeitsprüfung von Compliance-Regeln während oder nach ihrer Erstellung 
im Compliance Wizard stattfinden. Es soll nicht möglich sein unerfüllbare oder gültige Compliance-
Regeln zu speichern. Damit wird sichergestellt, dass die Unerfüllbarkeit einer verknüpften 
Compliance-Regel nur auf die Und-Verknüpfung der Compliance-Regeln zurückzuführen ist. 

4.3.3 Gültigkeitsprüfung von Teilregeln 

Im Falle von positiven erfüllten Teilregeln werden die restlichen Teilregeln an innere Compliance-
Scopes weitergegeben (siehe Abschnitt 4.2.5.1). Obwohl die Ungültigkeit der Compliance-Regeln 
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sichergestellt ist (siehe Abschnitt 4.3.2), können ihre Teilregeln laut Satz 2.2 gültig sein. Daher 
muss auch die Ungültigkeit einzelner Teilregeln geprüft werden. Die Abbildung 4.15 zeigt den 

Regelbaum für die erfüllbare und ungültige Compliance-Regel ◇b ˄ (◇a ˅ ¬◇a). Dabei ist die 

Teilregel (◇a ˅ ¬◇a) das einfachste Beispiel für eine gültige Formel.  

 

Abbildung 4.15: Gültigkeit von Teilformeln (Beispiel) 

Da die Erfüllbarkeit von Compliance-Regeln sichergestellt ist (siehe Abschnitt 4.3.2), ist die 
Erfüllbarkeitsprüfung von Teilregeln laut Satz 2.3 nicht erforderlich. 

4.3.4 Konsistenzprüfung verknüpfter Compliance-Regeln 

Wenn die Erfüllbarkeit einzelner Compliance-Regeln sichergestellt ist, sind auch ihre an innere 
Compliance-Scopes weitergegebenen Teilformeln erfüllbar. Die Unerfüllbarkeit von verknüpften 
Compliance-Regeln kann daher nur aus ihrem gegenseitigen Ausschluss oder dem gegenseitigen 
Ausschluss von Teilformeln aus verschiedenen Compliance-Regeln resultieren. 

Nichtnotwendigkeit der Gültigkeitsprüfung  

Da die Ungültigkeit einzelner Compliance-Regeln sichergestellt ist (siehe Abschnitt 4.3.2), ist eine 
Gültigkeitsprüfung verknüpfter Compliance-Regeln nach Satz 2.4 nicht notwendig. Denn die 
verknüpften Compliance-Regeln können nur dann gültig sein, wenn alle durch den logischen UND-
Operator (symbolisch: „˄“) verknüpften Compliance-Regeln gültig sind. Die Abbildung 4.16 
veranschaulicht, dass die verknüpfte Compliance-Regel aufgrund der Ungültigkeit der inneren 
Compliance-Regel ungültig ist.  

 

Abbildung 4.16: Ungültigkeit verknüpfter Compliance-Regeln 

Vorhandene rekursive Routine des Model-Checking 

Aufgrund des Top-Down-Ansatzes des inkrementellen Entwicklungsprozesses muss die 
Konsistenzprüfung bei dem äußersten Compliance-Scopes beginnen und rekursiv alle inneren 
Compliance-Scopes einschließen. Dazu kann auf der vorhandenen rekursiven Routine des Model-
Checking (siehe Abschnitt 3.4.3) aller Compliance-Scopes aufgebaut werden. In der vorhandenen 
Routine werden die Compliance-Scopes unabhängig voneinander betrachtet.  
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Konsistenzprüfung vor Model-Checking und Abbruch der Compliance-Prüfung 

Wenn das Model-Checking (siehe Abschnitt 2.3) eines Compliance-Scopes ergibt, dass das 
BPMN-Modell seine Compliance-Regel erfüllt, ist es immer noch möglich, dass diese Compliance-
Regel mit den äußeren Compliance-Regeln inkonsistent oder gültig (siehe Abschnitt 3.2) ist. Bei 
einem negativen Ergebnis des Model-Checking kann nicht davon ausgegangen werden, dass das 
BPMN-Modell nach einer entsprechenden Korrektur die Compliance-Regel erfüllen wird, weil die 
Compliance-Regel unerfüllbar sein kann.  

Im Falle einer Inkonsistenz mit den äußeren Compliance-Regeln oder der Ungültigkeit einer  
verknüpften Compliance-Regel wird das Model-Checking eines Compliance-Scopes überflüssig. 
Denn seine Compliance-Regel muss in diesem Fall korrigiert werden. Es liegt also nahe, die 
Konsistenzprüfung jeweils vor dem Model-Checking eines Compliance-Scopes durchzuführen und 
bei einer Inkonsistenz die Compliance-Prüfung aller weiteren inneren Compliance-Scopes 
abzubrechen. 

Weitergabe von Compliance-Regeln 

Zur Konsistenzprüfung einer Compliance-Regel mit ihren äußeren Compliance-Regeln müssen die 
Compliance-Regeln aller äußeren Compliance-Scopes zur Verfügung stehen. Dies kann dadurch 
erreicht werden, dass während des rekursiven Durchlaufs aller Compliance-Scopes die 
Compliance-Regel eines bereits geprüften Compliance-Scopes als Parameter an die Überprüfung 
der inneren Compliance-Scopes weitergegeben wird (vgl. Abschnitt 3.3). Eine Compliance-Regel 
des aktuell geprüften Compliance-Scopes wird dabei mit den äußeren Compliance-Regeln durch 
den logischen UND-Operator verknüpft und auf Erfüllbarkeit (siehe Abschnitt 2.4) geprüft. Die 
verknüpfte Compliance-Regel wird wiederum an weitere innere Compliance-Scopes solange 
weitergegeben, verknüpft und auf Erfüllbarkeit geprüft; bis es keine inneren Compliance-Scopes 
mehr gibt oder eine Inkonsistenz festgestellt wird. Wie in [SALS10]  gezeigt, dürfen im Falle von 
indirekten Konflikten (siehe Abschnitt 3.3) nicht immer die vollständigen Compliance-Regeln, 
sondern nur die positiven erfüllten Teilregeln weitergegeben werden.  

Die Abbildung 4.17 fasst die Abfolge der wichtigsten Schritte der Compliance-Prüfung zusammen. 
Da es im äußeren Compliance-Scope keine weitergegebenen äußeren Regeln gibt, wird keine 
Konsistenzprüfung durchgeführt und mit dem Model-Checking begonnen. Während des Model-
Checking werden die weiterzugebenden Teilformeln bestimmt, das heißt Teilformeln, die nicht 

positiv und erfüllt sind. In diesem Beispiel wird ◇c weitergegeben weil a U b positiv und erfüllt ist. 

Es wird eine Inkonsistenz der inneren Compliance-Regeln mit der weitergegebenen Teilregel 
festgestellt und das Model-Checking sowie weitere Prüfung innerer Compliance-Scopes 
abgebrochen. 

 

Abbildung 4.17: Schematischer Überblick zur Weitergabe von Compliance-Regeln  

 
 

 

 

      1. Model-Checking und Bestimmung  
       der  weiterzugebenden Teilformeln 
       (Auswertung des Regelbaums) 

¬◇c 

2. Weitergabe von  

nur ◇c,  wenn  

a U b erfüllt ist. 

       4. Kein Model-Checking … 
3. Konsistenzprüfung der 

verknüpften Regel (¬◇c˄◇c) 
(a U b) ˄◇c 
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4.4 Wahl des SAT-Solvers 

Ein SAT-Solver ist ein notwendiges Hilfsmittel zur Lösung der Aufgabenstellung im Rahmen dieser 
Arbeit. Es wurde früh begonnen nach einem passenden Tool zu suchen. Die Software sollte als 
Eingabe eine LTL-Formel akzeptieren und als Ergebnis erfüllbar oder unerfüllbar ausgeben. 

So wurde z. B. das Tool ALASKA (siehe Abschnitt 2.4.2.2) getestet. Dieses ist zwar einfach zu 
bedienen und zu integrieren. Jedoch gab es nur eine 32-bit Version, die  auf dem 64-bit 
Webserver, auf dem der Prototyp installiert ist, nicht lauffähig ist. 

Als nächstes wurde das in [RV07] beschriebene Verfahren der Erfüllbarkeitsprüfung durch 
Zurückführung auf Model-Checking untersucht (siehe Abschnitt 2.4.2.1). Durch diesen Ansatz kann 
ein eigener SAT-Solver mit Hilfe des vorhandenen Model-Checkers gebaut werden. Dazu müsste 
ein universelles Modell generiert und gegen die negierte Formel mit SPIN verifiziert werden. Doch 
in Anbetracht der Zeit wurde darauf verzichtet einen eigenen SAT-Solver zu implementieren. 

Die nächste untersuchte Möglichkeit war das Termersetzungssystem Maude (siehe Abschnitt 
2.4.2.3) welches unter anderem auch zur LTL-Erfüllbarkeitsprüfung eingesetzt werden kann und in 
der 64-bit Version zur Verfügung steht. Da es erfolgreich getestet und eingebunden werden 
konnte, wurden keine weiteren SAT-Solver untersucht. 

4.5 Erweiterung des Model-Checking 

Im Rahmen der Arbeit mit dem Prototyp wurde festgestellt, dass beim Model-Checking nur der 

LTL-Operator Finally (◇) unterstützt wird. Mit dem Finally-Operator sind jedoch nur solche Regeln 

ausdrückbar, die bereits in [SALS10] im Rahmen der Aussagenlogik betrachtetet wurden (vgl. 
Abschnitte 3.2 und 4.2.3). Um Compliance-Regeln aus allen temporalen Gültigkeitsbereichen nach 
Abbildung 4.4 verifizieren und auf Konsistenz prüfen zu können, müssen die LTL-Operatoren 

(siehe Abschnitt 2.2.1) Globally (□) und Until (U) unterstützt werden. Die dafür vorgenommenen 

Anpassungen werden im Kapitel 5.4 beschrieben. 

 



 

5 Implementierung 

Im diesem Kapitel wird die prototypische Umsetzung des Konzepts aus dem vorhergehenden 
Kapitel beschrieben. Als Grundlage wird der in Abschnitt 2.1.4 vorgestellte Editor Oryx verwendet. 
Dabei wird im Wesentlichen auf den Erweiterungen des Editors in [Gro11] aufgebaut. Ausgehend 
von einem architektonischen Überblick über geänderte und hinzugefügte Komponenten werden die 
Details der Erweiterungen im Front- und im Backend beschrieben. Anschließend wird eine 
Erweiterung des Model-Checking beschrieben, die das Model-Checking mit LTL-Formeln mit den 
Operatoren Globally und Until ermöglicht. 

5.1 Architektur 

In Abbildung 5.1 wird die Architektur der Oryx-Erweiterung als vereinfachtes UML-
Komponentendiagramm dargestellt. In der auf [Gro11] und [Köt10] basierenden Darstellung sind 
nur die zum Verständnis der Erweiterungen relevanten Komponenten berücksichtigt. Auf der linken 
Seite wird das Frontend bestehend aus den Hauptkomponenten Editor, der in dieser Arbeit nicht 
geändert wurde, und den Plugins dargestellt. Auf der rechten Seite werden die wichtigsten 
Komponenten des Backends und die eingebundenen Kommandozeilenprogramme dargestellt.  

Im Frontend wurde durch das LTLSat-Plugin in der Oryx-Toolbar ein neuer Button hinzugefügt. Mit 
diesem lassen sich die im Editor modellierten LTL-Formeln auf Erfüllbarkeit und Gültigkeit prüfen. 
Der Compliance Wizard wurde um die automatische Erfüllbarkeits- und Gültigkeitsprüfung von 
Compliance-Regeln erweitert. 

Zur Ausführung der Erfüllbarkeits- und Gültigkeitsprüfung wurde das Kommandozeilenprogramm 
Maude (siehe Abschnitt 2.4.2.3) mit Hilfe der Komponente MaudeAdapter integriert. Da Maude die 
Eingabe in einer anderen Syntax erwartet, wurde der LTLTranslator entsprechend erweitert. Der 
LTLTranslator übersetzt ein im LTL-Editor erstelltes LTL-Modell in eine LTL-Formel in textueller 
Darstellung. 

Wie im Abschnitt 4.2 beschrieben, erfolgt der Aufruf des SAT-Solvers in drei Fällen. Im ersten Fall 
wird eine LTL-Formel von dem LTLSat-Plugin über das LTL-Servlet an Maude übermittelt. Beim 
zweiten Fall wird von dem Compliance Wizard (siehe Abbildung 3.6) eine Compliance-Regel über 
das ComplianceServlet übermittelt. In diesem Fall liest der Compliance Wizard auch die im 
Regelbaum enthalten LTL-Formeln aus dem Repository und übermittelt sie ebenfalls an das 
ComplianceServlet. Im letzten Fall wird Maude zur Konsistenzprüfung, das heißt 
Erfüllbarkeitsprüfung, von verknüpften Compliance-Regeln genutzt. 

Die Komponente LTLOperator ist eine der geänderten Klassen aus dem Packet operators, die den 
im Compliance Wizard erstellen Regelbaum auswerten. Diese Klassen wurden aus zwei Gründen 
angepasst. Zum einen werden sie verwendet um aus dem Regelbaum die LTL-Formel zur 
Erfüllbarkeits- und Gültigkeitsprüfung zu extrahieren (zweiter Fall im vorherigen Absatz). Zum 
anderen erfolgt dort die Erkennung der positiven und negativen Teilformeln während der 
Compliance-Prüfung. 
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In der Komponente PromelaExport wird die interne Petri-Netz-Darstellung des BPMN-Diagramms 
in die Sprache Promela (siehe Abschnitt 2.3.2.1) transformiert. Durch den Spin-Adapter erfolgt der 
Aufruf des Model-Checkers SPIN (siehe Abschnitt 2.3.2). Diese beiden Komponenten wurden für 
die Unterstützung der temporalen Operatoren Until und Globally (siehe Abschnitt 2.2.1) erweitert. 
Des Weiteren wurde der Spin-Adapter erweitert, um zu einer LTL-Formel einen Büchi-Automaten 
zu generieren und somit die positiven und negativen Teilformeln während der Compliance-Prüfung 
zu erkennen. 

 

Abbildung 5.1: Architektur der Oryx-Erweiterung, nach [Gro11] und [Köt10] 

5.2 Frontend 

Im Vergleich zum Backend gab es im Frontend nur wenige Änderungen. Mittels JavaScript wurde 
ein neues Plugin implementiert und ein Bestehendes erweitert.  

5.2.1 LTLSat-Plugin 

Mit dem LTLSat-Plugin wurde die Prüfung modellierter LTL-Formeln laut Abschnitt 4.3.1 
umgesetzt. Dazu wurde im LTL-Editor die Toolbar um den in Abbildung 5.2 hervorgehobenen SAT-
Button zur manuellen Erfüllbarkeits- und Gültigkeitsprüfung erweitert. Das Plugin greift mittels einer 
AJAX-Anfrage auf ein Java Servlet im Backend zu. Das erstellte Diagramm wird im JSON-Format 
als ein Parameter an den Server geschickt. In einem weiteren Parameter wird der Typ der Anfrage 
angegeben, damit das aufgerufene Java Servlet die Anfrage von den anderen möglichen Anfragen 
unterscheiden kann. Nachdem das Plugin von dem Java Servlet ein Ergebnis erhalten hat, wird 
dem Benutzer das Ergebnis in einer Meldung ausgegeben, die entweder die Erfüllbarkeit, 
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Gültigkeit oder Unerfüllbarkeit der modellierten Formel angezeigt. Im abgebildeten Beispiel sind 
eine unerfüllbare Formel und die entsprechende Meldung zu sehen. 

 

Abbildung 5.2: Erweiterung des LTL-Editors 

5.2.2 Erweiterung des Compliance Wizard-Plugins 

Im Compliance Wizard wurde die automatische Erfüllbarkeits- und Gültigkeitsprüfung von 
Compliance-Regeln entsprechend Abschnitt 4.3.2 implementiert. Die neue Funktionalität wurde 
dem vorhandenen Ok-Button hinzugefügt, der die erstellte Compliance-Regel dem vorher 
ausgewählten Compliance-Scope zuweist (siehe Abbildung 5.3). Die Überprüfung erfolgt vor dieser 
Zuweisung. Auch hier wird mittels einer AJAX-Anfrage ein Java Servlet angesprochen. Dieses 
erhält als Parameter den Regelbaum in Form eines Operatorenbaums, an dessen Blättern die 
Modell-IDs der verwendeten LTL-Regeln eingetragen sind. Des Weiteren werden alle enthaltenen 
LTL-Modelle im Repository anhand ihrer Modell-ID nachgeschlagen und ebenfalls als Parameter 
im JSON-Format an den Server geschickt. 

 

Abbildung 5.3: Erweiterung des Compliance Wizard 

Wenn die erstellte Compliance-Regel erfüllbar ist, wird sie dem vorher ausgewählten Compliance-
Scope zugewiesen und der Editor geschlossen. Im Falle der Unerfüllbarkeit oder Gültigkeit wird 
eine entsprechende Warnung ausgegeben. Nach dem Bestätigen der Warnung hat der Benutzer in 
dem noch geöffneten Editor die Möglichkeit die Compliance-Regel zu überarbeiten. Dadurch ist es 
nicht möglich eine unerfüllbare oder gültige Compliance-Regel einem Compliance-Scope 
zuzuweisen. 
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5.2.3 Ergebnisse einer Compliance-Prüfung 

Die im Backend implementierte Konsistenzprüfung von Compliance-Regeln (siehe Abschnitt 4.3.4) 
erzeugt neue Ausgaben in den Ergebnissen der Compliance-Prüfung (siehe Abschnitt 3.4.3). 
Daher wird hier anhand eines einfachen Beispiels die Compliance-Prüfung aus der 

Benutzerperspektive erläutert. Dabei wird die unerfüllte positive Teilregel ◇d an den inneren 

Compliance-Scope weitergegeben. Der innere Compliance-Scope enthält eine noch nicht 
ausgefüllte variable Region, in der diese Teilregel im weiteren Verlauf der inkrementellen 
Entwicklung noch erfüllt werden kann. 

 Ergebnisübersicht 5.2.3.1

Zusätzlich zu den in Abbildung 3.8 dargestellten möglichen Ausgängen einer Compliance-Prüfung 
wurde das Ergebnis „Unsatisfiable“ definiert. Das Ergebnis Unsatisfiable gibt an, dass die 
Compliance-Regel eines Compliance-Scopes in Verknüpfung mit den weitergegebenen äußeren 
Compliance-Regeln oder Teilregeln unerfüllbar ist (vgl. Abschnitt 4.3.4). In der Ergebnisübersicht 
nach „Unsatisfiable“ wird die Anzahl der mit äußeren Compliance-Regeln inkonsistenten 
Compliance-Scopes angegeben. Diese Compliance-Scopes werden mit einem roten Hintergrund 
(„Scope2“ in Abbildung 5.4) hervorgehoben. 

 

 

Abbildung 5.4: Das neue Ergebnis „Unsatisfiable“ bei der Compliance-Prüfung 

pink=unerfüllt 
(invalid) 

rot=unerfüllbar 
(unsatisfiable) 
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 Ergebnisse einzelner Compliance-Scopes 5.2.3.2

Die Abbildung 5.5 zeigt die Details zu dem Compliance-Scope mit dem Ergebnis „Invalid“, das 
heißt mit nicht erfüllter Compliance-Regel, dar. Im dem oberen, unsichtbaren Teil des abgebildeten 

Protokolls wird die aus dem Regelbaum ausgelesene Compliance-Regel in Textdarstellung (◇d ˄ (

◇a ˅ ◇b)) ausgegeben. Da die Teilregel (◇a ˅ ◇b) durch die Aktivität b erfüllt (siehe Abbildung 

5.4, oben) ist und als positiv (siehe Definition 4.1) erkannt wurde, wird sie nicht weitergegeben. Die 

positive Teilregel ◇d ist dagegen nicht erfüllt, und wird daher an den inneren Compliance-Scope 

weitergegeben. 

 

Abbildung 5.5: Weitergabe von Teilformeln an innere Compliance-Scopes (1) 

In Abbildung 5.6 sind die Details des Ergebnisses des inneren Compliance-Scopes sichtbar. Es 
wird zunächst die innere Compliance-Regel ausgelesen und mit der Äußeren durch den UND-
Operator verknüpft. Die verknüpfte Compliance-Regel wird anschließend auf Erfüllbarkeit geprüft 
(vgl. Abschnitt 4.3.4). In diesem Fall ist das Ergebnis „Unsatisfiable“. 

 

Abbildung 5.6: Weitergabe von Teilformeln an innere Compliance-Scopes (2) 

(◇a ˅ ◇b) 

wird nicht 
weitergege
ben, weil 

◇b positiv 

und erfüllt 
ist. 
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Verknüpfte Compliance-Regel 
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5.3 Backend 

Der Großteil der Programmierung fand im Backend statt, wo die Erfüllbarkeits- und 
Gültigkeitsprüfung sowie die Compliance-Prüfung stattfinden. In diesem Abschnitt werden die 
neuen und geänderten Komponenten im Backend beschrieben. Die größten Änderungen betreffen 
die Klassen ComplianceChecker, in der sich die Hauptprozedur der Compliance-Prüfung befindet, 
und die Klassen aus dem Packet operators, die den Regelbaum verarbeiten. 

5.3.1 Erfüllbarkeitsprüfung 

LTLTranslator 

Der LTLTranslator übersetzt das LTL-Modell aus dem JSON-Format in die Textdarstellung [Gro11]. 
Zur Erfüllbarkeits- und Gültigkeitsprüfung wurde das Kommandozeilenprogramm Maude über die  
Schnittstelle MaudeAdapter integriert. Der SAT-Solver Maude erwartet als Eingabe eine LTL-
Formel in einer anderen Syntax als SPIN. Beispielsweise muss die Konjunktion statt „&&“ mit „˄“ 
und die Negation statt „!“ mit „~“ kodiert werden. Daher wurde der LTLTranslator so erweitert, dass 
die Maude-Syntax wählbar ist. Außerdem werden während der Übersetzung alle Literale in 
Klammern eingeschlossen, damit sie im MaudeAdapter durch einen regulären Ausdruck erkannt 
werden können. Dies ist notwendig, weil in dem Quelltext, welchen Maude ausführt (siehe 
Abschnitt 2.4.2.3), die atomaren Formeln angegeben werden müssen. 

MaudeAdapter 

Der MaudeAdapter liest die Literale aus der empfangenen LTL-Formel mit Hilfe eines regulären 
Ausdrucks aus. Die Literale und die LTL-Formel werden in eine Vorlage zum Aufruf des Maude-
SAT-Solvers (siehe Abschnitt 2.4.2.3) eingefügt (siehe Listing 5.1). Diese Vorlage wird in einer 
temporären Datei gespeichert. Anschließend wird Maude auf der Kommandozeile mit dem Pfad zu 
dieser Datei als Parameter aufgerufen. Die Ausgabe der Kommandozeile wird ausgewertet und als 
Ergebnis ein boolescher Wert ausgegeben. 

String maudeSourceFileContent =  
    "load model-checker.maude \n" + 
    "fmod SAT-SOLVER-TEST is \n" + 
     "extending SAT-SOLVER .\n" + 
     "extending LTL .\n" +    
     "ops " + atomicPredicates(formula) + ": -> Formula .\n"+ 
    "endfm \n" + 
    "red satSolve("+ formula +") .\n" + 
    "quit"; 

Listing 5.1: Vorlage zur LTL-Erfüllbarkeitsprüfung mit Maude 

5.3.2 Das LTLServlet  

Das LTLServlet wurde so erweitert, dass es Anfragen von dem LTLSat-Plugin (siehe Abschnitt 
5.2.1) verarbeiten kann. In Abbildung 5.7 ist die grundlegende Interaktion der relevanten 
Komponenten für die Erfüllbarkeits- und Gültigkeitsprüfung einer im LTL-Editor modellierten LTL-
Formel dargestellt.  

Das LTLServlet erhält von dem LTLSat-Plugin mittels einer AJAX-Anfrage das LTL-Modell im 
JSON-Format sowie den Anfragetyp. Mittels des Anfragetyps erkennt das Servlet, dass die Formel 
auf Erfüllbarkeit und Gültigkeit geprüft werden muss. Dazu wird die Java-Klasse LTLTranslator mit 
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der Maude-Syntax instanziiert und seine Methode translate() aufgerufen. Anschließend wird der 
MaudeAdapter mir der Methode isSatisfiable() aufgerufen, die das Ergebnis der 
Erfüllbarkeitsprüfung als einen booleschen Wert zurückliefert (siehe Abschnitt 5.3.1). 

Wenn die LTL-Formel erfüllbar ist, negiert das LTLServlet die Formel und schickt sie erneut an den 
MaudeAdapter zur Erfüllbarkeitsprüfung, anderenfalls wird „Unerfüllbar“ ausgegeben. Wenn auch 
die Negation erfüllbar ist, wird als Ergebnis „Erfüllbar und ungültig“, anderenfalls „Gültig“ 
ausgegeben. 

 

Abbildung 5.7: Sequenzdiagramm zur Erfüllbarkeitsprüfung einer LTL-Formel  
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5.3.3 Automatische Prüfung von Compliance-Regeln 

Das ComplianceServlet wurde so erweitert, dass es Anfragen von dem Compliance Wizard-Plugin 
(siehe Abschnitt 5.2.2) zur Erfüllbarkeits- und Gültigkeitsprüfung von Compliance-Regeln 
verarbeiten kann. Im Gegensatz zum LTLServlet erhält das ComplianceServlet kein LTL-Modell, 
welches vom LTLTranslator unmittelbar in eine Textdarstellung übersetzbar ist. Stattdessen erhält 
es den Operatorenbaum im JSON-Format, an dessen Blättern die IDs der verwendeten LTL-
Modelle (siehe Abbildung 3.4) eingetragen sind. Zusätzlich erhält das ComplianceServlet die 
verwendeten LTL-Modelle im JSON-Format als einzelne Parameter. Zur Verdeutlichung zeigt das 
Listing 5.2 den JSON-Code des Operatorenbaums aus Abbildung 3.6. Die entsprechende 

Compliance-Regel im Textdarstellung lautet: ◇d ˄ (◇a ˅ ◇b). 

 {  "type": "andOperator",  
 "operands":   
  [{"type": "ltlOperator",  
  "modelId": "29",  
  "modelName": "Finally d"},  
   
  {"type": "orOperator",  
  "operands":  
   [{"type": "ltlOperator",  
   "modelId": "28",  
   "modelName": "F(a)"},  
    
   {"type": "ltlOperator",  
   "modelId": "45",  
   "modelName": "Finally b"}] }] }  

Listing 5.2: Beispiel für eine Compliance-Regel im JSON-Format 

Um eine Textdarstellung der Compliance-Regel zu erhalten, wurden die in Abbildung 5.8 
dargestellten Klassen aus dem Packet operators erweitert, weil sie den Operatorenbaum 
auswerten können (siehe Abschnitt 3.4.3). Die enthaltenen LTL-Regeln werden anhand logischer 
Operatoren in den Knoten des Baums zu einer Gesamtformel rekursiv zusammengefügt. 

 

Abbildung 5.8: UML-Klassendiagramm der Operatoren zur Verarbeitung der Regelbaums 

Funktionsweise der Operatoren-Klassen zum Auslesen der Gesamtformel 

Die Methode actualCheck() wird mit dem boolesche Parameter modelcheck=false aufgerufen. 
Anhand dieses Parameters erfolgt die Unterscheidung zwischen dem Auslesen der Gesamtformel 
und dem Model-Checking inklusive der Regelweitergabe (siehe Abschnitt 5.3.4). In diesem Fall 
wird jeder Operator des Regelbaums auf seine Operanden angewendet und als Ergebnis die 
Gesamtformel in Textdarstellung ausgegeben.  



5 Implementierung 

59 

Zunächst wird der Typ des Operators an der Wurzel des Operatorenbaums bestimmt und die 
entsprechende Operator-Klasse (And-, Or-, Not- oder LTLOperator) instanziiert. Die Klassen And- 
und OrOperator enthalten in der Methode actualCheck() eine Schleife, welche die Operanden 
durchläuft. Falls ein Operand ein LTLOperator ist, das heißt ein LTL-Modell enthält, wird das LTL-
Modell mit Hilfe des LTLTranslators in die Textdarstellung übersetzt. Anderenfalls wird ein neuer 
Operator instanziiert. Beispielsweise erstellt der AndOperator im Beispiel aus Listing 5.2 für seinen 
zweiten Operanden eine Instanz des OrOperators und ruft seine Methode actualCheck() auf. 
Sobald alle Operanden in der Textdarstellung vorliegen, werden sie von dem OrOperator mit „˅“ 
und von dem AndOperator mit „˄“ verknüpft. Der NotOperator enthält keine Schleife, sondern stellt 
einem in Textdarstellung vorliegenden Operanden das Negationszeichen „~“ voran. 

Der Gesamtablauf 

Der Gesamtablauf der automatischen Erfüllbarkeits- und Gültigkeitsprüfung von Compliance-
Regeln ist als UML-Sequenzdiagramm in Abbildung 5.9 dargestellt. Der wesentliche Unterschied 
zum Sequenzdiagramm zur Erfüllbarkeits- und Gültigkeitsprüfung einer LTL-Formel (siehe 
Abbildung 5.7) liegt in der Verwendung der Operatoren-Klassen zur Auswertung des Regelbaums. 
Daher wird der LTLTranslator mehrmals aufgerufen. Zur Vereinfachung der Darstellung 
repräsentiert der AbstactOperator alle vier Operatoren-Klassen. Außerdem wurde die 
Hauptprozedur nicht im ComplianceServlet sondern in der Klasse ComplianceChecker 
implementiert, weil dort ähnliche Funktionalitäten gekapselt sind. Die Gültigkeitsprüfung einer 
Compliance-Regel erfolgt analog zur Gültigkeitsprüfung einer LTL-Formel (siehe Abschnitt 5.3.2). 

 

Abbildung 5.9: Sequenzdiagramm zur Erfüllbarkeitsprüfung einer Compliance-Regel 

5.3.4 Konsistenzprüfung von Compliance-Regeln 

Wie bei der Erfüllbarkeits- und Gültigkeitsprüfung von Compliance-Regeln empfängt das 
ComplianceServlet eine AJAX-Anfrage vom Compliance Wizard-Plugin und leitet diese an den 
ComplianceChecker weiter (siehe Abbildung 5.9). Zusätzlich zum Regelbaum und den 



5.3 Backend 

60 

verwendeten LTL-Modellen enthält die AJAX-Anfrage das BPMN-Modell sowie die ausgewählten 
Compliance-Scopes. Zur Konsistenzprüfung von Compliance-Regeln wurde die rekursive 
Hauptprozedur des Model-Checking in der Klasse ComplianceChecker überarbeitet. Des Weiteren 
wurden die Operatoren-Klassen (siehe Abbildung 5.8) so erweitert, dass während des Model-
Checking die positiven erfüllten Teilregeln (siehe Abschnitt 4.2) erkannt werden. Das Model-
Checking der inneren Compliance-Scopes erfolgt erst nachdem die Konsistenz einer Compliance-
Regel mit ihren äußeren Compliance-Regeln gewährleistet ist (vgl. Abschnitt 4.3.4). Der neue 
Ablauf der Compliance-Prüfung wird anhand des Aktivitätsdiagramms in Abbildung 5.10 erläutert. 
Das Diagramm enthält nur die zum Verständnis wichtigsten Details der Implementierung. 

 Hauptprozedur der Compliance-Prüfung 5.3.4.1

Wie in der vorherigen Version werden alle grafischen Elemente des BPMN-Diagramms rekursiv 
durchlaufen. Wenn es sich bei einem Element um keinen Compliance-Scope handelt, kann es 
auch ein Teilprozess sein, der Compliance-Scopes enthält. Daher werden seine Kind-Elemente 
durch eine for-Schleife und einen rekursiven Aufruf der gleichen Funktion abgearbeitet. Wenn nur 
selektierte Compliance-Scopes geprüft werden sollen und der aktuelle Scope nicht in der Auswahl 
ist, endet die Prüfung dieses Compliance-Scopes mit dem Ergebnis „Ignored“ (vgl. Abbildung 5.4). 
Dabei werden seine inneren Compliance-Scopes weiterhin geprüft.  

 

Abbildung 5.10: Aktivitätsdiagramm der Compliance-Prüfung 
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Vererbung verknüpfter Compliance-Regeln 

Bei jedem rekursiven Aufruf der Prozedur in Abbildung 5.10 wird die verknüpfte Compliance-Regel 
(siehe Abschnitt 4.1.1) als Parameter weitergegeben. Nach jeder abgeschlossenen Prüfung eines 
Compliance-Scopes wird daher eine neue verknüpfte Compliance-Regel zur Weitergabe bestimmt. 
In der vorherigen Version wurden im Falle einer Selektion genau die selektierten Compliance-
Scopes unabhängig voneinander geprüft. In dieser Version werden automatisch neben dem 
selektierten Compliance-Scope auch seine inneren Compliance-Scopes geprüft. Die äußeren 
Compliance-Scopes werden dagegen nicht geprüft. Daher ist im Falle eines ignorierten 
Compliance-Scopes die verknüpfte Compliance-Regel leer. 

Konsistenzprüfung 

Da beim Model-Checking nur die LTL-Formeln an den Blättern des Regelbaums benötigt werden, 
wurde in der vorherigen Version der Regelbaum nicht in eine Textdarstellung übersetzt. Im 
Gegensatz dazu wird die Textdarstellung nun zur Konsistenzprüfung benötig und analog zu der 
Beschreibung im Abschnitt 5.3.3 bestimmt. Wenn keine Compliance-Regel gefunden wird und der 
aktuelle Compliance-Scope eine äußere Compliance-Regel geerbt hat, wird die äußere 
Compliance-Regel an die inneren Compliance-Scopes vererbt und das Ergebnis auf „No rules 
defined“ gesetzt. 

Die aus dem Regelbaum ausgelesene Compliance-Regel in Textdarstellung wird mit den geerbten 
äußeren Compliance-Regeln oder Teilregeln durch „˄“ verknüpft und auf Erfüllbarkeit geprüft. Dies 
erfolgt analog zur automatischen Erfüllbarkeitsprüfung von Compliance-Regeln (siehe Abschnitt 
5.3.3), jedoch mit dem Unterschied, dass entsprechend Abschnitt 4.3.4 keine Gültigkeitsprüfung 
erfolgt. Im Falle der Unerfüllbarkeit, wird die Prüfung des Compliance-Scopes abgebrochen und 
das Ergebnis „Unsatisfiable“ ausgegeben.  

Verknüpfung und Weitergabe von Compliance-Regeln 

Zur Entscheidung, welche Teilformeln an innere Compliance-Scopes weitergegeben werden, muss 
der Regelbaum durch die Operatoren-Klassen (siehe Abbildung 5.8) erneut ausgewertet. Im 
Gegensatz zum Auslesen der Gesamtformel des Regelbaums (siehe Abschnitt 5.3.3) wird der 
Parameter modelcheck auf true gesetzt. Somit erfolgt das Model-Checking der LTL-Formeln an 
den Blättern des Regelbaums und das boolesche Gesamtergebnis des Model-Checking wird durch 
Weitergabe der Teilergebnisse zur Wurzel hin berechnet [Gro11] (siehe Abschnitt 3.4.3). Dadurch 
kann für jede Teilregel (siehe Abschnitt 4.1.1) festgestellt werden, ob sie erfüllt oder unerfüllt ist. 

Wie in den Abschnitten 3.3 und 4.2.5 beschrieben, dürfen erfüllte positive Teilregeln nicht an innere 
Compliance-Scopes weitergegeben werden. Zur Unterscheidung positiver und negativer 
Teilregeln (siehe Definition 4.1 und Definition 4.2) werden die LTL-Formeln an den Blättern des 
Regelbaums in Büchi-Automaten umgewandelt und auf Vorkommen des „accept_all“-Zustands 
untersucht (siehe Abschnitt 2.3.2.2.3). Wie beim Model-Checking wird das Gesamtergebnis für 
eine Teilregel durch Weitergabe der Teilergebnisse zur Wurzel hin berechnet.  
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 Funktionsweise der Operatoren-Klassen 5.3.4.2

Im Folgenden wird anhand des Regelbaums in Abbildung 5.11 die Funktionsweise der Operatoren-
Klassen zur Verknüpfung und Weitergabe von Compliance-Regeln erläutert. Die dem Regelbaum 

entsprechende Compliance-Regel ◇b ˄ (◇a ˅ ¬◇□b) ist beispielsweise in dem Compliance-

Scope „Scope1“ in Abbildung 5.4 erfüllt.  

 

Abbildung 5.11: Regelbaum für ◇d ˄ (◇a ˅ ◇□b) 

Im Anhang A.4 sind die Pseudoodes zu den vier Operatoren-Klassen zu finden. Diese enthalten 
nur den Fall der Compliance-Prüfung und nicht den in Abschnitt 5.3.3 beschrieben Fall mit dem 
Parameter modelcheck=false. Die folgende Beschreibung der Operatoren kann anhand der 
Pseudocodes verfolgt werden. In alle Operatoren wird ein Objekt Ergebnis vom Typ 
ComplianceOperatorResult [Gro11]  instanziiert, welches bearbeitet und ausgegeben wird.  

5.3.4.2.1 LTLOperator 

Durch das Model-Checking im LTLOperator (siehe Listing A. 8) wird die Nichterfüllung von ◇□b 

festgestellt und im Objekts Ergebnis gespeichert. Anschließend wird der Büchi-Automat von der 
LTL-Formel bestimmt und anhand des Fehlens des „accept_all“-Zustand als negativ (nach 
Definition 4.2) erkannt. Da der LTLOperator in diesem Fall nicht auf dem obersten Level im 
Operatorenbaum ist, wird die Formel im Ergebnis-Objekt gespeichert und das Ergebnis 
ausgegeben. 

5.3.4.2.2 NotOperator 

Der NotOperator hat zuvor den LTLOperator aufgerufen (TeilOperator.actualCheck() in Listing A. 
7) und negiert die im Objekt TeilErgebnis gespeicherte Formel. Die Negation wird in dem Ergebnis-
objekt des NotOperators gespeichert. Auch das Model-Checking-Ergebnis wird negiert und 

gespeichert. Das heißt, die Teilformel ¬◇□b ist erfüllt. 

Da es Co-Safety LTL-Formeln (siehe Abschnitt 2.2.1.3.3) gibt, darf eine als negativ erkannte 
Teilformel durch den logischen NOT-Operator im Regelbaum nicht als eine positive Teilformel 
interpretiert werden. Vielmehr muss ein neuer Büchi-Automat erstellt und in ihm nach dem 
„accept_all“-Zustand gesucht werden.  

Daher wird der Büchi-Automat für ¬◇□b erzeugt und geprüft. Es handelt sich um eine Co-Safety 

Formel, weil ihre Negation ebenfalls negativ ist. Da der LTLOperator in diesem Fall nicht auf dem 
obersten Level im Operatorenbaum ist, wird nur das Ergebnis ausgegeben. 

5.3.4.2.3 OrOperator 

Der OrOperator verarbeitet in einer Schleife alle Operanden, den LTLOperator und den 
NotOperator. Von dem LTLOperator erhält er TeilErgebnis.Erfuellt=false. Daher bleibt 

Ergebnis.Erfuellt des OrOperators auf false. Da das TeilErgebnis zu ◇a positiv ist, wird 

◇a 

◇b 

nicht erfüllt / negativ 

erfüllt / negativ 

nicht erfüllt / positiv 

erfüllt / positiv 

erfüllt / positiv 

◇□b 
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Ergebnis.Positiv des OrOperators auf true gesetzt. Das heißt, analog zum Model-Checking 
[Gro11], wird und bleibt das Ergebnis des OrOperators positiv, sobald ein positiver Operand 
entdeckt wird. Dies entspricht den Überlegungen im Abschnitt 4.2.6.5. Da der OrOperator in 
diesem Fall nicht auf dem obersten Level im Operatorenbaum ist, wird nur das Ergebnis 
ausgegeben. 

Wenn ◇a erfüllt und der OrOperator auf der obersten Regelbaumebene wäre (z. B. Compliance-

Regel ◇a ˅ □b), dann würde die for-Schleife verlassen (exit for) und im Ergebnis eine leere 

Formel ausgegeben werden.  

Im nächsten Durchlauf der for-Schleife wird das TeilErgebnis des NotOperators ausgewertet. Da 
der NotOperator erfüllt ist, wird Ergebnis.Erfuellt auf true gesetzt. Ergebnis.Positiv=true kann sich 

aufgrund ◇a nicht mehr ändern. Das heißt, der OrOperator ist erfüllt und positiv (vgl. Abbildung 

5.11). 

5.3.4.2.4 AndOperator 

Das Ergebnis des AndOperators wird mit erfüllt und positiv auf true initialisiert. Falls ein negativer 
Operand gefunden wird, wird Ergebnis.Positiv des AndOperators auf false gesetzt. Bei einem nicht 
erfüllten Operanden, wird Ergebnis.Erfuellt auf false gesetzt. 

Da der AndOperator in diesem Fall auf der obersten Regelbaumebene ist, wird entschieden, ob die 

Teilregeln weitergegeben werden. Da ◇a erfüllt und positiv ist, wird diese Teilformel nicht in 

Ergebnis.Formel  gespeichert. Dasgleiche gilt für (◇a ˅ ◇□b). Damit werden beide Formeln nicht 

an den inneren Compliance-Scopes weitergegeben. 

5.4 Erweiterung des Model-Checking 

In diesem Abschnitt werden einige Erweiterungen des Model-Checking zur Unterstützung der LTL-

Operatoren Globally (□) und Until (U) beschrieben. Es wurden Anpassungen zur Generierung des 

ausführbaren Kreuzproduktes (vgl. Abbildung 2.12) des Modells und der negierten LTL-Regel 
(siehe Abbildung 2.10) vorgenommen. Das heißt, es wurden die generierten Never Claims und die 
Transformation der Petrinetze in Promela-Modelle angepasst. 

5.4.1 Never Claims 

Das Promela-Modell und der Never Claim (siehe Abschnitt 2.3.2.2) werden schrittweise 
nacheinander ausgeführt. Dabei wird der Definitionsteil (sogenannte Macros) als ein 
zusammenhängender Schritt behandelt. In den Macros werden die im Never Claim verwendeten 
Variablen auf die Plätze des Petrinetzes abgebildet sowie die Transitionen definiert [Gro11]. Nach 
den Macros wird ein erster Schritt in dem Never Claim ausgeführt. Das Listing 5.3 zeigt den 
ursprünglichen Code des Kreuzproduktes eines Modells, welches nur aus einem Task Test besteht 

(siehe Abbildung 5.12),  und seiner negierten Spezifikation □Test. 

 

Abbildung 5.12: Compliance-Scope mit einem Task 
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byte p[5]; 
 
#define Test p[3] 
#define rd_6_transition0 p[1] && !p[2] 
#define fire_6_transition0 p[1] = 0; p[2] = 1;  
#define rd_7_transition1 p[2] && !p[3] 
#define fire_7_transition1 p[2] = 0; p[3] = 1;  
#define rd_8_transition2 p[3] && !p[4] 
#define fire_8_transition2 p[3] = 0; p[4] = 1;     /* Ende erster Schritt (Macros) */ 
active proctype test() 
{ 
  d_step { p[0] = 0; p[1] = 1; p[2] = 0; p[3] = 0; p[4] = 0; }    /* Ende zweiter Schritt */ 
  do 
    :: rd_6_transition0 -> d_step{printf("PROCESSED_6_transition0"); fire_6_transition0} 
    :: rd_7_transition1 -> d_step{printf("PROCESSED_7_transition1"); fire_7_transition1} 
    :: rd_8_transition2 -> d_step{printf("PROCESSED_8_transition2"); fire_8_transition2} 
    :: p[4] -> goto accept 
  od; 
  accept: printf("Accepted"); 
} 
 
never  {    /*  !([](Test))  */ 
T0_init: 
 if      
 :: (! ((Test))) -> goto accept_all    /* akzeptierender Zustand erreicht */ 
 :: (1) -> goto T0_init 
 fi; 
accept_all: 
 skip      
} 

Listing 5.3: Never Claim mit vorzeitigem Abbruch 

Die boolesche Variable Test entspricht dem Task Test. Diese wird auf den Wert des Arrays p an 
der Stelle 3 abgebildet. In diesem Fall akzeptiert („goto accept_all“) der Never Claim den ersten 
Zustand, der sich nach dem Ausführen der Macros ergibt, weil nach dem ersten Programmschritt 
p[3]=0 gilt. Das Ergebnis des Model-Checking ist somit negativ, obwohl das Modell seiner 
Spezifikation entspricht. Der erste Schritt im Promela-Modell muss daher vom Never Claim 
übersprungen werden. Außerdem muss auch der zweite Schritt übersprungen werden, in dem die 
Plätze des Petrinetzes vorbelegt werden (siehe Kommentar in Listing 5.3). 

Dies kann mit dem Befehlt true erreicht werden. Im Büchi-Automaten  entspricht dies einem 
Zustandsübergang, der unabhängig von der Eingabe stattfindet. Das Listing 5.4 zeigt den 
entsprechenden Never Claim und die Abbildung 5.13 die entsprechende visuelle Darstellung (vgl. 
Abbildung 2.13).  

never  {    /*  !([](Test))  */ 
true;      /* nach den Makros */ 
true;      /* nach der Initialisierung der Plätze */ 
T0_init: 
 if     /* nach der ersten Transition im Petrinetz */ 
 :: (! ((Test))) -> goto accept_all   
 :: (1) -> goto T0_init 
 fi; 
accept_all: 
 skip 

Listing 5.4: Erweiterter Never Claim für □Test 
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Abbildung 5.13: Erweiterter Never Claim für □Test 

5.4.2 Promela-Modell 

Im Folgenden werden die Anpassungen der Abbildung des Mapping des internen Petrinetzes auf 
Promela.  

 Vorbedingungen der Transitionen  5.4.2.1

In der do-Schleife [wwwh] im Listing 5.3 werden Transitionen nichtdeterministisch auswählt. Durch 
das Konstrukt d_step{…} werden alle Programmschritte innerhalb der Klammern {…} wie ein 
atomarer Schritt ausgeführt [wwwh]. Das heißt, der nächste Schritt im Never Claim erfolgt erst 
nach der vollständigen Ausführung von d_step{…}.   

Durch die oben beschriebene Anpassung des Never Claims ergibt das Model-Checking von 

□Testen immer noch einen Fehler. Der Grund dafür ist, dass der erste Verifikationsschritt im 

Never Claim bereits nach dem Auswählen und Prüfen der Vorbedingungen einer Transition erfolgt. 
Daher wurden die Prüfungen der Vorbedingungen mit dem Schalten der Transitionen zu atomaren 
Schritten vereint (siehe Listing 5.5). 

  do 
    :: d_step{rd_6_transition0 -> printf("PROCESSED_6_transition0"); fire_6_transition0} 
    :: d_step{rd_7_transition1 -> printf("PROCESSED_7_transition1"); fire_7_transition1} 
    :: d_step{rd_8_transition2 -> printf("PROCESSED_8_transition2"); fire_8_transition2} 
    :: d_step{p[4] -> goto accept} 
  od; 

Listing 5.5: Vorbedingungen der Transitionen 

 Die letzte Transition 5.4.2.2

Bei der letzten Transition durch fire_8_transition2 in Listing 5.3 wird der boolesche Wert der 
Variable Testen durch p[3] = 0; auf false gesetzt. Die Verifikation dieses letzten Zustands gegen 

die Spezifikation □Testen ergibt wieder einen Fehler. Das heißt der Never Claim terminiert. Aus 

diesem Grund wird die letzte Transition des Petrinetzes im Promela-Modell nicht mehr 
berücksichtigt. Dadurch wird die do-Schleife geblockt, weil es keine ausführbaren Anweisungen 
gibt. Dies wird jedoch in Promela nicht als ein Fehler interpretiert [wwwh]. Alternativ kann die letzte 
Transition so gestaltet werden, dass die im vorletzten Zustand gültigen Variablen nicht verändert 
werden. 
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 Definition der Tasks 5.4.2.3

Ein Task, der in einem BPMN-Diagramm mehrmals vorkommt, wird  auf verschiedene Plätze des 
Petrinetzes abgebildet (siehe Listing 5.3). Dabei wird jedoch mit jeder neuen Definition des Tasks 
die vorhergehende Definition überschrieben, so dass es im Promela-Modell nur einen Platz gibt, 
der diesem Task entspricht.  

byte p[8];  
… 
#define Testen p[4] 
#define Testen p[6] 
… 

Listing 5.6: Beispiel für eine überschriebene Task-Definition 

Während dies das Model-Checking eines Modells ohne Verzweigungen mit der LTL-Regel ◇

Testen nicht beeinträchtigt, können gleich benannte Tasks auf verzweigten Pfaden nicht gefunden 

werden. Auch in Modellen ohne Verzweigungen können LTL-Regeln wie □Testen, ◇□Testen, □

◇Testen oder (Anfrage U Antwort), in denen ein Task mehrmals vorkommen kann, das Model-

Checking nicht bestehen. Denn nach der Aktivierung eines Platzes des Petrinetzes, dem kein Task 
zugeordnet ist, akzeptiert der Never Claim den neuen Zustand. Die Erweiterung der Abbildung des 
Petrinetzes auf Promela wird anhand des Diagramms in  Abbildung 5.14 und des entsprechenden 
Promela-Modells in Listing 5.7 erläutert. 

 

Abbildung 5.14: BPMN-Modell zum erweiterten Promela-Modell 

Zustands-Array mit Task-IDs 

Für n verschiedene Tasknamen wird das n-stellige Zustands-Array state[n] definiert. Das 
Zustandsarray gibt an, welche Tasks aktiv sind, wobei seine Indizes die Task-IDs sind. Jeder 
Taskname wird dabei mit einer Task-ID aus diesem Array assoziiert, beispielsweise: 

#define Testen state[1] 

Dabei bedeutet beispielsweise state[1]=2, dass es zwei aktive Tasks mit der Task-ID=0 gibt. Der 
Name des Tasks mit der Task-ID=0 ist Testen, wie oben definiert.  

Task-IDs auf Plätze verteilen 

Durch ein weiteres Array wird jedem Platz, welches einen ausgeführten Task repräsentieren soll, 
eine Task-ID und damit indirekt ein Taskname zugeordnet. Beispielsweise werden der zwei Mal 
vorkommende Task Testen (Task-ID=1) den Plätzen vier und sechs mit taskID_p[4]=1 und 
taskID_p[6]= 1 zugeordnet. 

Schalten des Petrinetzes 

Für m Plätze wird weiterhin das Array p[m] definiert. Das Schalten des Petrinetzes und die 
Vorbedingungen sind unverändert. Beim Schalten wird jedoch zusätzlich das Zustands-Array 
bearbeitet. Durch state[taskID_p[4]]++; wird der Token des Petrinetzes auf Platz p[4] verschoben. 
Da taskID_p[4] = 1 gilt, wird state[1] erhöht. Das heißt, der Task Testen wird aktiviert. Das 
Zustands-Array an der Stelle, die dem vorherigen Task entspricht, wird dabei erniedrigt.  
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byte p[8]; 
byte taskID_p[8]; 
byte state[3]; 
 
#define Spezifizieren state[0] 
#define Testen  state[1] 
#define Modellieren  state[2] 
 
#define rd_197_transition0 p[1] && !p[2] 
#define fire_197_transition0 p[1] = 0; p[2] = 1;  
 
#define rd_198_transition1 p[2] && !p[3] 
#define fire_198_transition1 p[2] = 0; p[3] = 1; state[taskID_p[3]]++;  
 
#define rd_199_transition2 p[3] && !p[4]  /* Task Testen wird aktiviert */ 
#define fire_199_transition2 p[3] = 0; state[taskID_p[3]]--; p[4] = 1; state[taskID_p[4]]++;  
 
#define rd_200_transition3 p[4] && !p[5] 
#define fire_200_transition3 p[4] = 0; state[taskID_p[4]]--; p[5] = 1; state[taskID_p[5]]++;  
 
#define rd_201_transition4 p[5] && !p[6] 
#define fire_201_transition4 p[5] = 0; state[taskID_p[5]]--; p[6] = 1; state[taskID_p[6]]++;  
 
#define rd_202_transition5 p[6] && !p[7] 
#define fire_202_transition5 p[6] = 0; state[taskID_p[6]]--; p[7] = 1;  
 
#define start p[2] 
active proctype test() { 
  d_step   { 
 
 taskID_p[3] = 0;   

taskID_p[4] = 1;  /* TaskID des Platzes 4 ist 1 */ 
taskID_p[5] = 2;   
taskID_p[6] = 1; /* Dem Platz 6 ist ein Task mit der Task-ID=1 zugeordnet. */ 
 

p[0] = 0; p[1] = 0; p[2] = 1; p[3] = 0; p[4] = 0; p[5] = 0; p[6] = 0; p[7] = 0;   } 
  do 
    :: d_step{ rd_197_transition0 -> {printf("PROCESSED_197_transition0"); fire_197_transition0}} 
    :: d_step{ rd_198_transition1 -> {printf("PROCESSED_198_transition1"); fire_198_transition1}} 
    :: d_step{ rd_199_transition2 -> {printf("PROCESSED_199_transition2"); fire_199_transition2}} 
    :: d_step{ rd_200_transition3 -> {printf("PROCESSED_200_transition3"); fire_200_transition3}} 
    :: d_step{ rd_201_transition4 -> {printf("PROCESSED_201_transition4"); fire_201_transition4}} 
    :: p[7] -> goto accept 
  od; 
  accept: printf("Accepted");  
} 

Listing 5.7: Erweitertes Promela-Modell  
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 Aktive Startereignisse in inneren Compliance-Scopes 5.4.2.4

Da die den Startereignissen entsprechenden Plätze der Petrinetze von inneren Compliance-
Scopes markiert sind, werden die Tasks entlang eines Pfades nicht in der erwarteten Reihenfolge 
aktiviert. Dadurch wird beim Model-Checking beispielsweise bemängelt, dass die Compliance-

Regel ◇(¬b U a) im Diagramm in Abbildung 5.15 nicht erfüllt ist. In dem weiter unten in der 

Abbildung angegebenen Gegenbeispiel ist erkennbar, dass Task b vor dem Task a ausgeführt 
wird. 

 

Abbildung 5.15: Aktive Startplätze bei inneren Compliance-Scopes 

Alle Plätze des Petrinetzes besitzen einen Index beginnend bei null, wobei ein Startplatz abhängig 
von dem BPMN-Modell auf einem Platz mit Index kleiner vier liegen kann. Der Startplatz eines 
inneren Compliance-Scopes hat jedoch relativ zu seinem äußeren Compliance-Scope den 
Startplatz-Index größer drei. Daher wurde in der Java-Klasse PromelaExport die Schleife, die alle 
Plätze des Petri-Netzes abarbeitet so geändert, dass die Plätze mit einem Index größer drei nicht 
markiert werden (vgl. „Ende zweiter Schritt“ in Listing 5.3). 
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6 Zusammenfassung 

In dieser Arbeit wird das Konzept der automatischen Konsistenzprüfung [SALS10] von 
verschachtelten Geschäftsprozessmodellen umgesetzt. Die Konsistenzprüfung erfolgt dabei mittels 
logischer Erfüllbarkeitsprüfung von verknüpften Compliance-Regeln. Das auf der Aussagenlogik 
basierende Konzept wird auf die lineare temporale Logik (LTL) übertragen. Die Umsetzung erfolgt 
in einem Prototyp [Gro10], dem webbasierten BPMN-Editor Oryx, der in einer vorhergehenden 
Arbeit um die Compliance-Prüfung von Geschäftsprozessmodellen mittels Model-Checking 
erweitert wurde. 

Nach einer Einleitung wird im zweiten Kapitel diese Arbeit im Geschäftsprozessmanagement 
eingeordnet und die Relevanz des Ansatzes zur Compliance-Durchsetzung verdeutlicht. 
Anschließend werden die notwendigen Grundlagen der LTL, des Model-Checking und der 
Erfüllbarkeitsprüfung vorgestellt. Im nächsten Kapitel werden die verwandten Arbeiten 
beschrieben. Dabei werden sowohl das oben genannte Konzept der Konsistenzprüfung als auch 
der Prototyp genauer erläutert. 

Ausgehend von begrifflichen Konventionen werden im Kapitel 4 praktische Beispiele für den 
Einsatz der automatischen Konsistenzprüfung von Compliance-Regeln gegeben. Um die in 
[SALS10] definierten direkten und indirekten Konflikte zwischen Compliance-Regeln in LTL 
anzuwenden, wird untersucht, was unter positiven und negativen Literalen im Rahmen der LTL zu 
verstehen ist. Die Unterschiede zur Aussagenlogik werden beleuchtet und dabei die temporalen 
Gültigkeitsbereiche von LTL-Formeln diskutiert. Anschließend wird die Definition der positiven und 
negativen Regeln eingeführt, die auf der Untersuchung der, den LTL-Formeln entsprechenden, 
Büchi-Automaten basiert. Anhand dieser Definition werden einige direkte und indirekte Konflikte 
zwischen Compliance-Regeln beispielhaft diskutiert und Schlussfolgerungen für die praktische 
Umsetzung gezogen. Außerdem werden sogenannte potentielle Konflikte aufgrund von 
Disjunktionen eingeführt. Des Weiteren wird auf die Erweiterung der Compliance-Prüfung in Bezug 
auf den Prototyp eingegangen. Um die Fehlersuche bei inkonsistenten Compliance-Regeln zu 
erleichtern, werden dabei einzelne LTL-Formeln und die aus ihnen zusammengesetzten 
Compliance-Regeln vor der Compliance-Prüfung auf Erfüllbarkeit und Gültigkeit geprüft. Darüber 
hinaus wird ein Überblick über die zu implementierende Erweiterung der Compliance-Prüfung 
gegeben. Dabei erfolgt die Konsistenzprüfung verknüpfter Compliance-Regeln vor dem Model-
Checking. Im Falle einer Inkonsistenz wird die Prüfung aller inneren Compliance-Scopes des 
aktuellen Scopes abgebrochen. Anderenfalls erfolgt mit dem Model-Checking die 
Zusammensetzung der an die inneren Compliance-Scopes weiterzugebenden Teilregeln. Diese 
werden anschließend an innere Compliance-Scopes weitergegeben und mit ihren Compliance-
Regeln verknüpft. 

Im Kapitel 5 werden die bearbeiteten Komponenten des Prototyps anhand eines 
Komponentendiagramms erläutert und anschließend die Details der Implementierung im Front- und 
Backend beschrieben. Während zu Erfüllbarkeits- und Gültigkeitsprüfungen die  entsprechenden 
Sequenzdiagramme erläutert werden, erfolgt die Beschreibung der Weitergabe von Compliance-
Regeln anhand von Pseudocodes, die im Anhang zu finden sind. Des Weiteren wird die 
Erweiterung des Model-Checking beschrieben, die das Model-Checking mit den LTL-Operatoren 
Globally und Until ermöglicht. 
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Während der Umsetzung wurde Konzept um neue Erkenntnisse erweitert. Im Folgenden wird auf 
die Bestandteile des Konzeptes, die aus Zeitgründen nicht implementiert werden konnten, sowie 
weiterführende Ideen eingegangen. Des Weiteren wird ein Hinweis bezüglich der 
Weiterentwicklung der Abbildung des BPMN-Modells auf Promela gegeben. 

Automatische Erfüllbarkeits- und Gültigkeitsprüfung im LTL-Editor 

In der aktuellen Version erfolgt die Erfüllbarkeits- und Gültigkeitsprüfung modellierter LTL-Formeln 
manuell über einen Toolbar-Button im LTL-Editor. Wenn der Benutzer vergisst eine LTL-Formel zu 
prüfen, können unerfüllbare oder gültige Compliance-Regeln im Compliance-Wizard 
zusammengesetzt werden. Wie im Abschnitt 4.3.1 des Konzeptes erwähnt, könnten die LTL-
Formeln bereits beim Speichern geprüft werden. Dabei sollte es nicht möglich sein eine 
unerfüllbare oder gültige LTL-Formel abzuspeichern. In dieser Arbeit wurde zunächst nur die 
manuelle Überprüfung von LTL-Formeln implementiert, weil für einige Tests unerfüllbare und 
gültige LTL-Formeln benötigt wurden. 

Die manuelle Prüfung der LTL-Formeln hat jedoch keine negativen Folgen auf die Compliance-
Prüfung, weil Compliance-Regeln im Compliance-Wizard, dem Compliance-Regel-Editor, beim 
Speichern automatisch auf Erfüllbarkeit und Ungültigkeit geprüft werden. Es ist somit nicht möglich 
eine unerfüllbare oder ungültige Regel einem Compliance-Scope zuzuweisen. Jedoch kann im 
Falle einer unerfüllbaren Compliance-Regel nicht sofort auf die dazu führenden LTL-Formeln 
geschlossen werden. 

Automatische Erkennung von Formeln mit bestimmten Gültigkeitsbereichen 

Die Beispiele in Abschnitt 4.2.7 zeigen, dass es mit dem aktuellen Ansatz zur Erkennung positiver 
Teilregeln (siehe Definition 4.1) nicht für alle Formeln sicher entschieden werden kann, ob sie 
weitergegeben werden sollen. Beispielsweise sollte (a U b) nur an die Compliance-Scopes 
weitergegeben werden, die sich auf den Startzustand beziehen (siehe Abbildung 4.8). Die Formel 

◇□a wird als negativ erkannt und wird an alle Compliance-Scopes weitergegeben, obwohl sie in 

dem Compliance-Scopes gelten muss, der den Endzustand des ursprünglichen Compliance-
Scopes enthält. Daher müssen solche Formeln anders erkannt werden, beispielsweise mit Hilfe 
von regulären Ausdrücken, das heißt der Suche nach Textmustern in den textuellen Darstellungen 
der Formeln. Auch eine Weiterentwicklung der Untersuchung von entsprechenden Büchi-
Automaten ist denkbar. Um die Compliance-Prüfung dadurch nicht zu belasten, kann die 
Erkennung bei der Speicherung der LTL-Modelle stattfinden. Dabei kann zu jedem LTL-Modell in 
einem Eigenschaftsfeld seine Zugehörigkeit zu einem Gültigkeitsbereich gespeichert werden. 

Disjunktionen in LTL-Formeln 

Im Abschnitt 4.2.6 werden potentielle Konflikte aufgrund von Disjunktionen in den Teilregeln 
diskutiert. Dabei beschränkt sich die Implementierung des Lösungsansatzes (siehe Abschnitt 
4.2.6.5.) nur auf Teilregeln, die nicht LTL-Modelle sind. Das heißt, es werden nur die Oder-
Operatoren verarbeitet, die als Knoten des Regelbaums im Compliance-Wizard erstellt wurden. 
Während der Auswertung des Regelbaums (siehe Abschnitt 5.3.4.2.3) sollten daher auch die Oder-
Operatoren innerhalb von LTL-Modellen verarbeitet werden. 
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Gültigkeitsprüfungsprüfung von Teilregeln 

In dieser Arbeit wurde der Compliance-Regel-Editor (Compliance-Wizard) um die automatische 
Erfüllbarkeits- und Gültigkeitsprüfung von zusammengestellten Compliance-Regeln erweitert (siehe 
Abschnitt 5.2.2). In einem späten Entwicklungsstadium wurde jedoch die Notwendigkeit der 
Gültigkeitsprüfung einzelner Teilregeln festgestellt und im Konzept aufgenommen (siehe Beispiel in 
Abschnitt 4.3.3). Wenn die automatische Erfüllbarkeits- und Gültigkeitsprüfung im LTL-Editor 
implementiert wird, ist nur die Gültigkeitsprüfung von den Teilformeln erforderlich, die nicht nur aus 
einem LTL-Modell bestehen. 

Markierung lokaler Teilregeln 

Durch das Nichtweitergeben von positiven erfüllten Teilregeln (siehe Abschnitt 4.2.5.1) werden in 
den inneren Compliance-Scopes implizit Inkonsistenzen zu ihren äußeren Compliance-Regeln 
zugelassen. Diese Zulassung könnte auch explizit durch Markierung der Teilregeln erfolgen, die 
niemals an innere Compliance-Scopes weitergegeben werden sollen. Das heißt, es könnten 
analog zu einer Programmiersprache lokale und globale Variablen in Form von Teilregeln definiert 
werden (vgl. Abschnitt 4.2.7.3). Zwei Anwendungsbeispiele sind dazu im Abschnitt 4.2.7 zu finden. 
Es handelt sich bei diesen Beispielen um negative Compliance-Regeln, die nicht weitergegeben 
werden sollen. 

Weitergabe von Regeln auch an variable Regionen 

In der aktuellen Implementierung der Compliance-Prüfung (siehe Abbildung 5.10) werden die 
Compliance-Regeln nur an Compliance-Scopes weitergegeben. Der Prototyp wurde in einer 
parallel laufenden Arbeit unter anderem so weiterentwickelt, dass auch den variablen Regionen 
(siehe Abbildung 3.10) Compliance-Regeln zugewiesen werden können. Die Compliance-Prüfung 
kann daher um die Weitergabe von Compliance-Regeln an variablen Regionen erweitert werden. 
Dabei muss das Model-Checking nach der Erfüllbarkeitsprüfung unterbunden werden, weil es 
keine Aktivitäten in der variablen Region gibt. 

Regel-Vorlagen 

Für die fehlerfreie Eingabe von LTL-Formeln sind umfangreiche Kenntnisse dieser 
Spezifikationssprache erforderlich. Es ist nicht einfach LTL-Formeln richtig zu interpretieren und ist 
fehleranfällig gewünschte Systemeigenschaften in LTL auszudrücken (siehe Abschnitt 3.1). Die 
syntaktischen Fehler werden in dem Prototyp bereits dadurch eliminiert, dass die Formeln grafisch 
in einem LTL-Editor erstellt werden [Gro11]. Die semantischen Fehler können beispielsweise durch 
Regel-Vorlagen und Regel-Assistenten reduziert werden. Eine Sammlung von Vorlagen für LTL-
Formeln kann zum Beispiel in [www12e] gefunden werden. 

Verbesserung der Abbildung der BPMN-Modelle auf Promela 

Trotz der in dieser Arbeit durchgeführten Erweiterung der Abbildung des Petrinetzes auf Promela 
um das Model-Checking für LTL-Formeln mit den Operatoren Globally und Until zu ermöglichen 
(siehe Abschnitt 5.4), werden noch nicht alle BPMN-Modelle korrekt auf Promela abgebildet. Zur 
Korrektur kann eine Anpassung der BPMN-zu-Petrinetz-Abbildung notwendig sein, weil in der 
aktuellen Version nur einmal in einem BPMN-Diagramm vorkommende Tasks mehrmals im 
Petrinetz gespeichert sind. Dies wird anhand eines Beispiels im Anhang A.5 verdeutlicht. 

 





 

X 

A.  Anhang 

A.1. Beispiele für Büchi-Automaten 

Folgende Tabellen enthält Büchi-Automaten mit und ohne den „accept_all“-Zustand. Die 
Textdarstellung wurde mit dem Kommandozeilenbefehl von SPIN „spin -f “<Formel>“ und die 
grafische Darstellung mit dem Programm GOAL [YKTH12] generiert. 

Textdarstellung Grafische Darstellung 

never  {    /* []!(a && b) */ 

accept_init: 

T0_init: 

 if 

 :: (! ((a && b))) -> goto T0_init 

 fi; 

} 

 

(Sicherheitseigenschaft) 

never  {    /* []<>a */ 

T0_init: 

 if 

 :: ((a)) -> goto accept_S9 

 :: (1) -> goto T0_init 

 fi; 

accept_S9: 

 if 

 :: (1) -> goto T0_init 

 fi; 

} 

 

 

(Wiederholung) 

never  {    /* <>[]a */ 

T0_init: 

 if 

 :: ((a)) -> goto accept_S4 

 :: (1) -> goto T0_init 

 fi; 

accept_S4: 

 if 

 :: ((a)) -> goto accept_S4 

 fi; 

} 

 

 

(Stabilität) 

Tabelle A. 1: Beispiele für Büchi-Automaten ohne des „accept_all“-Zustands 
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Beispiele für positive Eigenschaften im Sinne der Definition 4.1: 

Textdarstellung Grafische Darstellung 

never  {    /* <>a */ 

T0_init: 

 if 

 :: ((a)) -> goto accept_all 

 :: (1) -> goto T0_init 

 fi; 

accept_all: 

 skip 

} 

 

 

never  {    /* a U b */ 

T0_init: 

 if 

 :: ((b)) -> goto accept_all 

 :: ((a)) -> goto T0_init 

 fi; 

accept_all: 

 skip 

} 

 

 

never  {    /* <>(a U b) */ 

T0_init: 

 if 

 :: ((b)) -> goto accept_all 

 :: (1) -> goto T0_init 

 fi; 

accept_all: 

 skip 

} 

 

 

never  {    /* []a -> <>b */ 

T0_init: 

 if 

 :: (((! ((a))) || ((b)))) -> goto accept_all 

 :: (1) -> goto T0_init 

 fi; 

accept_all: 

 skip 

} 

 

 

(Schwache Fairness) 

Tabelle A. 2: Beispiele für Büchi-Automaten mit dem „accept_all“-Zustand 
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A.2. Disjunktionen 

never  {    /* (!(<>e) || !(<>b)) */ 
accept_init: 
T0_init: 
 if 
 :: (! ((e))) -> goto accept_S2 
 :: (! ((b))) -> goto accept_S5 
 fi; 
accept_S2: 
T0_S2: 
 if 
 :: (! ((e))) -> goto accept_S2 
 fi; 
accept_S5: 
T0_S5: 
 if 
 :: (! ((b))) -> goto accept_S5 
 fi; 
} 

Listing A. 1: Negative Disjunktion (¬◇e ˅ ¬◇b) 

 

 
never  {    /* (!(<>e) || (<>b)) */ 
T0_init: 
 if 
 :: (! ((e))) -> goto accept_S2 
 :: ((b)) -> goto accept_all 
 :: (1) -> goto T0_S5 
 fi; 
accept_S2: 
 if 
 :: (! ((e))) -> goto accept_S2 
 fi; 
T0_S5: 
 if 
 :: ((b)) -> goto accept_all 
 :: (1) -> goto T0_S5 
 fi; 
accept_all: 
 skip 
} 

Listing A. 2: Positive Disjunktion (¬◇e ˅ ◇b)   
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A.3. Nicht Co-Safety Eigenschaften 

Die Formel (¬a U b) ist positiv im Sinne der Definition 4.1. Ihre Negation ist ebenfalls positiv, weil 
auch sie den „accept_all“-Zustand enthält. Das heißt, sie ist nicht Co-Safety (siehe Abschnitt 
2.2.1.3.3). 

never  {    /* !(a) U b */ 
T0_init: 
 if 
 :: ((b)) -> goto accept_all 
 :: (! ((a))) -> goto T0_init 
 fi; 
accept_all: 
 skip 
} 
 
never  {    /* !(!(a) U b) */ 
accept_init: 
T0_init: 
 If 
 :: (! ((b))) -> goto T0_init 
 :: (! ((b)) && (a)) -> goto accept_all 
 fi; 
accept_all: 
 skip 
} 

Listing A. 3: Nicht Co-Safety Eigenschaft (positiv) 

Sowohl die Eigenschaft □(a◇b) als auch ihre Negation sind negativ im Sinne der Definition 4.2. 

Ein weiteres Beispiel ist ◇□b:  

       
never  {    /* <>[]b */ 
T0_init: 
 if 
 :: ((b)) -> goto accept_S4 
 :: (1) -> goto T0_init 
 fi; 
accept_S4: 
 if 
 :: ((b)) -> goto accept_S4 
 fi; 
} 
 
never  {    /* !(<>[]b) */ 
T0_init: 
 if 
 :: (! ((b))) -> goto accept_S9 
 :: (1) -> goto T0_init 
 fi; 
accept_S9: 
 if 
 :: (1) -> goto T0_init 
 fi; 
} 

Listing A. 4: Nicht Co-Safety Eigenschaft (negativ) 
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A.4. Pseudocodes der Operatoren-Klassen 

Die folgenden Pseudocodes stellen Ausschnitte aus den Methoden actualCheck() der Operatoren-
Klassen (siehe Abbildung 5.8) dar. Sie enthalten nur den Fall ihres Aufrufs mit dem Parameter 
modelcheck=true. Das heißt, die im Java-Code enthaltene Fallunterscheidung zwischen dem 
Auslesen der LTL-Formel (siehe Abschnitt 5.3.3) und dem Model-Checking mit Bestimmung der 
weiterzugebenden Teilregeln (siehe Abschnitt 5.3.4.2) ist in den Pseudocodes nicht enthalten. Das 
Auslesens und Weitergeben der LTL-Formeln zur Wurzel hin ist jedoch auch hier erkennbar. 

 
function AndOperator.actualCheck 
  input:  BpmnModel (JSON) 
   ComplianceScope (JSON) 
   Operator (JSON) 
   OperatorLevel (Integer) 
   modelcheck(Boolean)     
  output: Ergebnis (ComplianceOperatorResult) 
begin   

Ergebnis.Erfuellt = true 
 Ergebnis.Positiv = true 
 Ergebnis.Formel  = "" 
 TeilErgebnis: ComplianceOperatorResult 
    
 for all Operand in Operator.Operanden do  
   
  // Typ des Operands bestimmen und auswerten 

TeilOperator = bestimmeTyp(Operand)  
TeilErgebnis = TeilOperator.actualCheck(…, OperatorLevel+1)   

 
  // Anhand des Ergebnisses eines Operanden wird das Gesamtergebnis bestimmt 
  if  not TeilErgebnis.Erfuellt then 
   Ergebnis.Erfuellt = false 
  fi 
    
  if not TeilErgebnis.Positiv then 
   Ergebnis.Positiv = false; 
  fi 
   
  if OperatorLevel = 1 then 
 
   if Ergebnis.Positiv and Ergebnis.Erfuellt then 
            Ausgabe = "Operand OMITTED, will not be passed to inner scopes.” 
   else  
    Ergebnis.Formel = verknuepfe(Formel, Teilergebnis.Formel) 
   fi 
     
  else 
   Ergebnis.Formel = verknuepfe(Formel, Teilergebnis.Formel) 
  fi 

od 
    
 return Ergebnis 
end 

Listing A. 5: Pseudocode der Auswertungsmethode des AndOperators (modelcheck=true)  
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function OrOperator.actualCheck 
  input:  BpmnModel (JSON) 
   ComplianceScope (JSON) 
   Operator (JSON) 

OperatorLevel (Integer)  
modelcheck(Boolean)  

  output: Ergebnis (ComplianceOperatorResult) 
begin   

Ergebnis.Erfuellt = false 
 Ergebnis.Positiv = false 
 Ergebnis.Formel  = "" 
 TeilErgebnis: ComplianceOperatorResult 
    
 for all Operand in Operator.Operanden do  
   
  // Typ des Operands bestimmen und auswerten 

TeilOperator = bestimmeTyp(Operand)  
TeilErgebnis = TeilOperator.actualCheck(…, OperatorLevel+1) 

 
  // Anhand des Ergebnisses eines Operanden wird das Gesamtergebnis bestimmt 
  if  TeilErgebnis.Erfuellt then 
   Ergebnis.Erfuellt = true 
  fi 
    
  if TeilErgebnis.Positiv then 
   Ergebnis.Positiv = true 
  fi 
   
  if OperatorLevel = 1 then 
 
   if Ergebnis.Positiv and Ergebnis.Erfuellt then 
    Ausgabe = "… All operands OMITTED." 

Ergebnis.Formel = ““ 
// Beendigung der Auswertung 
exit for 

   else  
    Ergebnis.Formel = verknuepfe(Formel, Teilergebnis.Formel) 
   fi 
     
  else 
   Ergebnis.Formel = verknuepfe(Formel, Teilergebnis.Formel) 
  fi 

od 
   
return Ergebnis 

end 

Listing A. 6: Pseudocode der Auswertungsmethode des OrOperators (modelcheck=true) 

  



A.4 Pseudocodes der Operatoren-Klassen 

XVI 

 

 
function NotOperator.actualCheck 
  input:  BpmnModel (JSON) 
   ComplianceScope (JSON) 
   Operator (JSON) 
   OperatorLevel (Integer)  
   modelcheck(Boolean) 
  output: Ergebnis (ComplianceOperatorResult) 
begin    
 

Ergebnis.Erfuellt = false 
 Ergebnis.Positiv = false 

Ergebnis.Formel  = "" 
 

// Typ des Operands bestimmen und auswerten 
TeilOperator = bestimmeTyp(Operand)  
TeilErgebnis = TeilOperator.actualCheck(…, OperatorLevel+1) 

 
 // Negation der Formel 

NegierteFormel  = negieren(TeilErgebnis.Formel) 
Ergebnis.Formel  = NegierteFormel   

 
// Negation des Model-Checking-Ergebnisses 
if not Teilergebnis.Erfuellt then  

Ergebnis.Erfuellt = true 
 fi 
 

BuechiAutomat erzeugen(NegierteFormel  )  
 
If BuechiAutomat.enthaelt(„accept_all“) then 
 Ergebnis.Positiv = true 
else 
 Ergebnis.Positiv = false 
fi 

   
 if OperatorLevel = 1 then 
  if Ergebnis.Positiv and Ergebnis.Erfuellt then 
   Ausgabe = "Operand OMITTED, will not be passed to inner scopes.” 
   Ergebnis.Formel  = ““    
  fi      
 fi   
 
 return  Ergebnis 
end 

Listing A. 7: Pseudocode der Auswertungsmethode des NotOperators (modelcheck=true) 
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function LTLOperator.actualCheck 
  input:  BpmnModel (JSON) 
   ComplianceScope (JSON) 
   Operator (JSON) 
   OperatorLevel (Integer)  
   modelcheck(Boolean) 
  output: Ergebnis (ComplianceOperatorResult) 
begin    
 

Ergebnis.Erfuellt = false 
 Ergebnis.Positiv = false 
 Ergebnis.Formel  = "" 
 

Formel = LTLTranslator.translate(LTLModell) 
 
 Transformation von BPMN nach Petrinetz 
 Transformation von Petrinetz nach Promela-Modell 
 Model-Checking(Promela-Modell, Formel) 
 if Model erfuellt Formel then 

Ergebnis.Erfuellt = true 
 else 
  Ergebnis.Erfuellt = false 
 fi 
 

BuechiAutomat erzeugen(Formel)  
 
If BuechiAutomat.enthaelt(„accept_all“) then 
 Ergebnis.Positiv = true 
fi 

   
 if OperatorLevel = 1 then 
 
  if Ergebnis.Positiv and Ergebnis.Erfuellt then 
   Ausgabe = "Operand OMITTED, will not be passed to inner scopes.” 
   Ergebnis.Formel  = ““ 
  else  
   Ergebnis.Formel  = Formel 
  fi 
     
 else 

Ergebnis.Formel  = Formel 
 fi   
 
 return  Ergebnis 
end 

Listing A. 8: Pseudocode der Auswertungsmethode des LTLOperators (modelcheck=true) 
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A.5. Das UND-Gateway 

Ein Task zu viel 

Im Allgemeinen ist es in echten Prozessen nicht vorhersehbar, ob bestimmte Aktivitäten zur 
gleichen Zeit ausgeführt werden [Hol03, For02]. Im Diagramm in der Abbildung A. 1 sollte daher 

die Formel und ◇(a ˄ ¬b) verletzt sein. Denn ◇(a ˄ ¬b) drückt aus, dass es garantiert einen 

Zustand gibt, in dem a=true und b=false gilt. Dies ist nur möglich, wenn immer zuerst a ausgeführt 
wird.  

 

Abbildung A. 1: BPMN-Diagramm für ◇(a ˄ b)  

Das Model-Checking des Modells in Abbildung A. 1. ergibt jedoch ein positives Ergebnis, das heißt 

◇(a ˄ ¬b) wird fälschlicherweise erfüllt. Das passiert zum einen aufgrund der Erweiterung der 

Petrinetz-zu-Promela-Abbildung (siehe Abschnitt 5.4.2.3) und zum anderen auf der in dieser Arbeit 
nicht veränderten BPMN-zu-Petrinetz-Abbildung.  

Obwohl es in Abbildung A. 1. nur einen Task a gibt, wird dieser im Promela-Modell zwei Mal 
definiert (siehe Listing A. 9), jedoch beim zweiten Mal überschrieben. Die oben genannte 
Erweiterung führt dazu, dass die in Promela definierten Tasks nicht überschrieben werden. Daher 
bleibt die erste Zuordnung des Tasks a zum Platz p[3] in der neuen Version bestehen (siehe 

Abbildung A. 2). Die Formel ◇(a ˄ ¬b) wird erfüllt, weil der Task a neben Platz [9] auch dem Platz 

p[3] zugewiesen ist. Somit gilt nach dem Schalten des UND-Gateways immer a=true. 

  

Abbildung A. 2: Petri-Netz für ◇(a ˄ b) 

 

a 

b 
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byte p[10]; 
 
#define a false 
#define b p[5] 
#define a p[3] 
#define b p[5] 
#define a p[9] 
#define rd_79_transition0 p[1] && !p[3] && !p[4] 
#define fire_79_transition0 p[1] = 0; p[3] = 1; p[4] = 1;  
#define rd_80_transition1 p[4] && !p[5] 
#define fire_80_transition1 p[4] = 0; p[5] = 1;  
#define rd_81_transition2 p[5] && p[9] && !p[7] 
#define fire_81_transition2 p[5] = 0; p[9] = 0; p[7] = 1;  
#define rd_82_transition3 p[7] && !p[8] 
#define fire_82_transition3 p[7] = 0; p[8] = 1;  
#define rd_83_transition4 p[3] && !p[9] 
#define fire_83_transition4 p[3] = 0; p[9] = 1;  
active proctype test() 
{ 
  d_step { p[0] = 0; p[1] = 1; p[2] = 0; p[3] = 0; p[4] = 0; p[5] = 0; p[6] = 0; p[7] = 0; p[8] = 0; p[9] = 0; 
} 
  do 
    :: rd_79_transition0 -> d_step{printf("PROCESSED_79_transition0"); fire_79_transition0} 
    :: rd_80_transition1 -> d_step{printf("PROCESSED_80_transition1"); fire_80_transition1} 
    :: rd_81_transition2 -> d_step{printf("PROCESSED_81_transition2"); fire_81_transition2} 
    :: rd_82_transition3 -> d_step{printf("PROCESSED_82_transition3"); fire_82_transition3} 
    :: rd_83_transition4 -> d_step{printf("PROCESSED_83_transition4"); fire_83_transition4} 
    :: p[8] -> goto accept 
  od; 
  accept: printf("Accepted"); 
} 
 
 
never  {    /*  !(<>(a))  */ 
accept_init: 
T0_init: 
 if 
 :: (! ((a))) -> goto T0_init 
 fi; 
} 

Listing A. 9: Promela-Modell für zwei parallele Tasks (vor der Erweiterung) 
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