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Abstract

Heutige Unternehmen stehen einer immer gréRer werdenden Menge an internen und externen
Regelwerken, den Compliance-Regeln, gegeniber. Ihre Konsistenz muss bei der Entwicklung von
organisationsiibergreifenden Geschaftsprozessen sichergestellt werden. Die vorliegende Arbeit
beschaftigt  sich mit der  automatischen Durchsetzung von Compliance in
Geschaftsprozessmodellen.

In einer vorhergehenden Arbeit wurde der webbasierte BPMN-Editor Oryx um die Uberpriifung der
Einhaltung von Compliance-Regeln in Prozessmodellen mittels Model-Checking erweitert. Die
Prozessmodelle werden in sogenannte Compliance-Scopes aufgeteilt, die mit Compliance-Regeln
in der linearen temporalen Logik (LTL) annotiert sind und die selbst weitere Compliance-Scopes
enthalten kdnnen. In dieser Arbeit wird der Prototyp so weiterentwickelt, dass die verschachtelten
Compliance-Regeln automatisch auf Konsistenz gepriift werden.

Dabei basiert die Losung auf einem vorhandenen Konzept der Konsistenzpriifung verschachtelter
Compliance-Regeln, in dem die Compliance-Regeln als aussagenlogische Formeln formuliert
werden. Diese Regeln werden an die enthaltenen Prozessbereiche rekursiv weitergegeben und mit
ihren Compliance-Regeln auf Erfiillbarkeit gepriift. Neben der Ubertragung dieses Konzeptes auf
die LTL und den Prototyp wird die Glltigkeitsprifung von Compliance-Regeln integriert. Es wird ein
Ansatz zur Erkennung von den zur Weitergabe relevanten Teilregeln entwickelt. Dieser Ansatz
basiert auf der Analyse der den LTL-Regeln entsprechenden Bichi-Automaten. Des Weiteren baut
die Entscheidung zur Weitergabe auf den Teilergebnissen des Model-Checking auf. Daher werden
das Model-Checking und die Konsistenzpriifung zu einer gemeinsamen Compliance-Prifung
kombiniert. Im Ausblick wird auf die Weiterentwicklungsmdglichkeiten der Losung eingegangen.
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1 Einleitung

Aufgrund des technologischen Fortschritts und der globalen Tatigkeit heutiger Unternehmen
kénnen neue Marktchancen in neuen Geschaftsfeldern entdeckt werden [Bur04]. Doch gleichzeitig
werden auch die Wettbewerbsregeln immer komplexer. Die Unternehmen stehen einer immer
grolRer werdenden Menge an externen und internen Regelwerken, wie z. B. den internationalen
Rechnungslegungsvorschriften IFRS oder der Qualitatsmanagement-Normenreihe 1SO 9000,
gegeniber. Dabei sind die Regularien einem stidndigem Wandel unterzogen. So wurde z. B.
Anfang 2012 im Zuge des technischen Fortschritts eine neue EU-Datenschutzrichtlinie [www12c]
vorgeschlagen und ab 2013 werden aufgrund der Finanzkrise die neuen Eigenkapitalregeln fir
Banken nach Basel Il in Kraft treten [www12b]. Insbesondere im Finanzsektor ist die stetige
Zunahme an Regularien deutlich erkennbar [PR10]. Zudem wird z. B. in [www12d] eine ,erhebliche
Uberregulierung®, die zu schlechteren Kundenbeziehungen und héheren Personalkosten fiihrt,
diskutiert.

Die Einhaltung von Regeln und Gesetzen wird als Compliance bezeichnet. Die Nichterfillung von
Compliance-Regeln kann von wirtschaftlichen Einbuf3en Uber Imageverluste bis hin zu Geld- und
Freiheitsstrafen fihren [MMWOQ7]. Daher wird im Rahmen des Compliance Managements die
sichere und effiziente Erfullung der internen und externen Regeln angestrebt.

Erschwerend kommt hinzu, dass sich verschiedene Regeln oft auf gleiche Geschaftsprozesse
beziehen und dabei nicht frei von Widerspriichen sind [KSMPQ7]. Die Entdeckung und Beseitigung
solcher Widerspriiche ist einer der Hauptaspekte bei der Umsetzung von Compliance [JR10].
Beispielsweise koénnen die Inkonsistenzen landerspezifisch sein. So missen die
Unternehmensniederlassungen in verschiedenen Landern bei der Speicherung
personenbezogener Daten unterschiedliche Datenschutzbestimmungen befolgen [JR10].

Aufgrund standiger Veranderungen in den Regularien sind manuelle Compliance-Prifungen, z. B.
durch Audits, sowie die automatisierte Erkennung von Compliance-Verletzungen, z. B. anhand von
Log-Dateien, oft unzureichend [Sac08]. Denn zum Zeitpunkt der Fehlerentdeckung ist oft bereits
ein Schaden verursacht worden. Dagegen lassen sich mit dem Compliance ,by design“-Ansatz
[SGNO7] viele Regelverletzungen bereits wahrend der Entwicklung von Geschéaftsprozessmodellen
automatisch vermeiden. Dazu kénnen die Regeln in einer logischen Sprache spezifiziert und den
Prozessmodellen zugewiesen werden. Die Verifikation der Modelle gegen ihre Spezifikationen
kann anschlieend mittels des seit den 1980-er Jahren in der Hard- und Softwareentwicklung
erforschten Model-Checking [CES86] vollautomatisch erfolgen.

Dieses Verfahren wird erst seit einigen Jahren in der Welt der Geschéaftsprozesse eingesetzt
[FPRO6, RMLDO08]. Bei der Entwicklung von Geschéaftsprozessen sind oft mehrere Unternehmen
beteiligt [SALS10], die weltweit verteilt sein kdénnen. Beispielsweise entstehen durch das
Outsourcing unternehmenstibergreifende Geschaftsprozesse. Die Unternehmens-bereiche und
Abteilungen der beteiligten Unternehmen mussen dabei sowohl die Vorgaben ihrer Ubergeordneten
Bereiche als auch ihre internen Geschaftsregeln sowie branchenspezifische und
standortabhangige Regelungen beachten. Insgesamt ergibt sich dadurch ein hoher
Kommunikationsaufwand [KFBO4], der aufgrund der Entfernung sowie der zeitlichen und
sprachlichen Unterschiede zu Missverstandnissen und damit zu Inkonsistenzen zwischen Teil- und
Hauptprozessen flhren kann.



1.1 Aufgabenstellung

Eine Inkonsistenz liegt dabei z. B. vor, wenn in einem Teilprozess eine Aktivitat spezifiziert wird,
die laut der Regel des Ubergeordneten Prozessmodells nicht erlaubt ist. Diesem Problem wird in
[SALS10] mit dem Konzept des inkrementellen Entwicklungsprozesses von Geschaftsprozessen
begegnet. Das Konzept ermoglicht es Prozessdesignern aus verschiedenen Organisationen einen
Gesamtprozess mit konsistenten Compliance-Regeln zu entwickeln. Die Modellierung wird durch
eine Aufteilung des Prozessmodells so unterstiitzt, dass die zu beachtenden Regeln automatisch
auf Widerspruchsfreiheit geprift werden. Der inkrementelle Entwicklungsprozess stellt sicher, dass
die Compliance-Regeln der Unterprozesse nicht die Regeln der Prozesse verletzen, in die sie
eingebettet sind.

In dieser Arbeit wird das oben genannte Konzept des inkrementellen Entwicklungsprozesses
umgesetzt. Im Gegensatz zu der in [SALS10] verwendeten Aussagenlogik erfolgt die Spezifikation
der Compliance-Regeln in der linearen temporalen Logik (LTL). Die LTL ermdglicht zeitliche
Aspekte, wie z. B. Reihenfolgen oder wiederkehrende Aktivitaten auszudriicken. Daher werden in
dieser Arbeit erweiterte Problemstellungen diskutiert sowie ein entsprechender Lésungsansatz
entwickelt und implementiert.

1.1 Aufgabenstellung

Das Ziel dieser Arbeit ist die Umsetzung des inkrementellen Entwicklungsprozesses aus [SALS10],
wobei statt der dort betrachteten Aussagenlogik als Spezifikationssprache fur Compliance-Regeln
die lineare temporale Logik verwendet wird. Dazu soll auf einem Prototyp aufgebaut werden, der in
[Gro10] um sogenannte Compliance-Scopes und das Model-Checking erweitert wurde. Die
Compliance-Scopes stellen dabei abgegrenzte Prozessbereiche mit zugewiesen Compliance-
Regeln dar.

Die bestehende prototypische Implementierung soll dahingehend erweitert werden, dass die
Compliance-Regeln von verschachtelten Compliance-Scopes (siehe Abbildung 1.1) automatisch
auf Konsistenz geprift werden kdnnen. Dazu sollen die Compliance-Regeln von verschachtelten
Compliance-Scopes in geeigneter Art verknupft und auf Erfillbarkeit geprift werden. Zu diesem
Zweck ist ein geeigneter SAT-Solver einzubinden. Der Prozessdesigner soll informiert werden, falls
die Compliance-Regeln im Widerspruch zu den Compliance-Regeln der duReren Compliance-
Scopes stehen und es damit nicht mdglich wird, einen regelkonformen Prozess zu modellieren.
Des Weiteren sollen Optimierungsmdglichkeiten untersucht und ggf. implementiert werden.

Compliance-Scope 3

Compliance-Scope 2 O/

Weitergabe der Regel AA B

Erflllbarkeitsprifung von A A B

Weitergabe der Regel A

Abbildung 1.1: Verschachtelte Compliance-Scopes



1 Einleitung

1.2 Aufbau der Arbeit

Kapitel 1 enthalt die Beschreibung der Aufgabenstellung und des Aufbaus der Arbeit sowie eine
Einfihrung in die Problemstellung.

Im Kapitel 2 erfolgt die Einordnung dieser Arbeit im Geschéaftsprozessmanagement (GPM). Dazu
wird die Notwendigkeit der frihzeitigen Durchsetzung von Compliance-konformen
Geschaftsprozessmodellen erldutert und im GPM-Lebenszyklus eingeordnet. Des Weiteren
werden der webbasierten Editor Oryx und die verwendete Modellierungssprache BPMN vorgestellt.
In nachfolgenden Unterkapiteln werden notwenige Grundlagen behandelt, auf die im weiteren
Verlauf der Arbeit zuriickgegriffen wird. Dies sind die lineare temporale Logik, das Model-Checking
und die Erfiullbarkeitspriifung.

Im Kapitel 3 werden die Konzepte und Vorarbeiten vorgestellt, auf denen diese Arbeit aufbaut.
Dazu gehdren die Plausibilitatsprifungen flir Prozessspezifikationen, der inkrementelle
Entwicklungsprozess sowie der Oryx-Prototyp, der in der vorhergehenden Arbeit um Compliance-
Scopes und das Model-Checking erweitert wurde.

Im Kapitel 4 wird das Konzept der inkrementellen Entwicklung von Compliance-konformen
Geschaftsprozessen auf die LTL lbertragen. Dazu wird eine Definition von positiven und negativen
Teilregeln im Rahmen der LTL eingefiihrt und die temporalen Giiltigkeitsbereiche von LTL-
Formeln diskutiert. AnschlieBend wird die zu implementierte Konsistenzprifung von
verschachtelten Compliance-Regeln beschrieben.

Im Kapitel 5 wird die Umsetzung des Konzeptes beschrieben. Dabei wird zunachst ein
architektonischer Uberblick Uber die veranderten und hinzugefiigten Komponenten des Prototyps
gegeben. AnschlieRend werden die Details der Implementierung im Front- und Backend erlautert.
Des Weiteren wird die Erweiterung des Model-Checking beschrieben, die das Model-Checking mit
LTL-Formeln mit den Operatoren Globally und Until ermdglicht.

Im Kapitel 6 ist eine Zusammenfassung dieser Arbeit zu finden. Das Kapitel 7 bietet einen Ausblick
zur Erweiterung des Konzeptes und des Prototyps.






2 Grundlagen

In diesem Kapitel wird das Thema der vorliegenden Arbeit im Geschaftsprozessmanagement
eingeordnet sowie notwenige Grundlagen behandelt, auf die im weiteren Verlauf der Arbeit
zurlickgegriffen wird. Dies sind die lineare temporale Logik, das Model-Checking und die
Erflllbarkeitsprifung.

2.1 Geschaftsprozessmanagement

Unter Geschaftsprozessmanagement (GPM) wird ein Flhrungskonzept zur zielgerichteten
Steuerung der Geschéftsprozesse eines Unternehmens [SS08] verstanden. Ein Geschéaftsprozess
ist eine VerknlUpfung wertschopfender Aktivitaten, die zusammen zur Erflllung eines
wirtschaftlichen Ziels fihren. Ein solches Ziel ist in der Regel die Erfiillung eines
Kundenbedirfnisses. Es koénnen primare und sekundare Geschaftsprozesse unterschieden
werden. Die primaren Geschéaftsprozesse, wie z. B. Produktions- und Marketingprozesse, haben
einen direkten Einfluss auf die Wertschdpfung und die Wettbewerbsfahigkeit. Die sekundaren
Geschéftsprozesse, wie z. B. Personalbeschaffung und IT-Support haben eine unterstitzende
Funktion [SS08].

Die primaren Aufgaben des GPM haben einen strategischen Charakter. Auf der strategischen
Ebene werden die wettbewerbsrelevanten Geschaftsprozesse auf die strategischen
Unternehmensziele ausgerichtet und durch Kennzahlensysteme kontrolliert. Das GPM hat dabei
einen mafgeblichen Einfluss auf die Organisationsstruktur eines Unternehmens [SSO08]. Auf der
operativen Ebene werden die Geschaftsprozesse strukturiert, ausgefuhrt und laufend optimiert. Zur
Automatisierung von Geschaftsprozessen werden Workflow Management Systeme (WMS)
eingesetzt. Mit Workflow wird ein ,vollstandig oder teilweise automatisierter Geschaftsprozess*
bezeichnet [HNO9].

Der GPM-Lebenszyklus

Die mit einem Geschéaftsprozess oder Workflow verbunden Tatigkeiten kénnen im sogenannten
GPM-Lebenszyklus zusammengefasst werden [Joc10] (siehe Abbildung 2.1). Ausgehend von den
aus der Geschéftsstrategie abgeleiteten Geschéaftsanforderungen wird ein neues Prozessmodell, z.
B. in der Sprache Business Process Model and Notation (BPMN), erstellt. Dabei stellen die
sogenannten Key Performance Indicators (KPIs) nicht-funktionale Leistungsparameter bezlglich
Zeit, Kosten, Qualitat und Flexibilitdt dar. In der Implementierungs-Phase wird das Modell in eine
ausfuhrbare Sprache, wie die Business Process Execution Language (BPEL), Ubersetzt. Danach
erfolgt die Bereitstellung in der Produktivumgebung und anschlieRend die Ausfihrung, wobei in der
Regel mehrere Instanzen des Prozesses entstehen. Wahrend der Ausfiihrung werden die KPIs
laufend gemessen und protokolliert. Auf Grundlage der im nachsten Schritt erfolgenden Analyse
der Messdaten und des Abgleichs mit den strategischen Zielen wird das Prozessmodell verbessert.
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Abbildung 2.1: GPM-Lebenszyklus, in Anlehnung an [Joc10]

2.1.1 Compliance

Der englische Begriff ,compliance” bedeutet so viel wie Erfillung oder Einhaltung. Unter
Compliance wurde ursprunglich die Einhaltung gesetzlicher Regelungen zum Anlegerschutz auf
dem Kapitalmarkt verstanden. Heute umfasst dieser Begriff die Konformitat zu allen fur ein
Unternehmen relevanten internen und externen Regularien, die im Folgenden Compliance-Regeln
oder Regeln bezeichnet werden. Externe Compliance-Regeln sind beispielsweise Gesetzte zur
Rechnungslegung und zum Datenschutz. Intern handelt es sich neben Unternehmensrichtlinien
auch um die Einhaltung gesellschaftlicher Werte [Quell]. Insbesondere die Compliance zu
aktuellen Nachhaltigkeitstrends, die 6konomische, Okologische und soziale Aspekte umfassen,
wird zunehmend auf freiwilliger Basis integriert [www10a]. Dadurch gewinnen Unternehmen
Vertrauen von Seiten der Kunden, Geschéaftspartner und Mitarbeiter [Kal12].

Inkonsistenzen zwischen Compliance-Regeln

Damit Gesetze und Normen von unterschiedlichen Unternehmen angewendet werden kdnnen,
werden sie nicht genau formalisiert, sondern abstrakt gehalten [KSMPO7]. Wenn verschiedene
Regelwerke sich auf gleiche Geschéaftsprozesse beziehen, entstehen oft Widerspriche die
entdeckt und geldst werden missen [KSMPO07, JR10]. Das Spannungsfeld zwischen internen und
externen Regeln ist in Abbildung 2.2 dargestellt. Beispielsweise gilt nach dem Datenschutzgesetz
das Selbstbestimmungsrecht tGber das persdnliche E-Mail-Postfach. Andererseits schreiben andere
Gesetzte die Archivierungs- und Aufbewahrungspflicht steuerrelevanter Daten vor. Das heil3t, der
Zugriff zu den Postfachern muss in bestimmten Situationen auch fiir andere Personen
gewabhrleistet werden [R6s09].

Gesetze

eigene

Regelwerke
' Region

=

Werte /

Abbildung 2.2: Interne und externe Compliance-Regeln [JR10]
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2 Grundlagen

Des Weiteren missen eventuelle Abhangigkeiten zwischen den Regelwerken beachtet werden. So
kdnnen Inkonsistenzen aufgrund von Anderungen in den Regelwerken entstehen. Bei Anderung
der internen Regeln mussen die externen Regeln Uberprift werden und umgekehrt [JR10].

Bedeutung und Umsetzung der Compliance

Die Bedeutung der Compliance ist in den letzten Jahren stark gestiegen [PR10] und wird
zunehmend als fester Bestandteil in der Organisationsstruktur grofler Unternehmen integriert
[EKA11]. Die Einhaltung interner und externer Regeln kann erfolgskritisch fir ein Unternehmen
sein, da ihre Missachtung von Imageverlusten bis hin zu Geld- und Freiheitsstrafen fur die
verantwortlichen Geschéftsfihrer und Vorstande zur Folge haben [MMWO7].

Die Umsetzung der Compliance wird im Wesentlichen von der Informationstechnik (IT) unterstitzt.
Beispielsweise helfen sogenannte Compliance Management-Systeme (CMS) ,,Compliance in allen
relevanten Geschéftsprozessen des Unternehmens sicherzustellen® [HE10]. Da sich die internen
und externen Anforderungen auf Geschéaftsprozesse beziehen, besteht ein enger Zusammenhang
mit dem Geschaftsprozessmanagement [WKO06]. Dabei ist eine hohe Flexibilitat der IT-Infrastruktur
eine Voraussetzung um die Geschéaftsprozesse an Umfeldveranderungen anpassen zu kénnen.

2.1.1.1 Compliance ,,by detection*

Grundsatzlich kénnen zwei Ansatze zur Umsetzung von Compliance unterschieden werden:
Compliance ,by detection“ und Compliance ,by design®. Bei dem Compliance ,by detection*-Ansatz
[Sac08] werden die Regel-Verletzungen durch eine ex-post Analyse aufgedeckt. Das kénnen z. B.
Audits oder die Analyse von Log-Dateien ausgefiihrter Workflows (siehe Abschnitt 2.1 und Phase
des Monitoring und der Analyse in Abbildung 2.4) sein. Bei diesem Ansatz besteht das Problem,
dass die Regel-Verletzungen erst entdeckt werden, nachdem sie Schaden verursacht haben.
AuRBerdem wird eine vollstindige konsistente Aufzeichnung aller tatsachlichen Aktivitaten
vorausgesetzt, was nicht immer mdglich ist.

2.1.1.2 Compliance ,,by design“

Aus dem Software Engineering ist bekannt, dass Fehler aus einer der Entwicklungs-Phasen (links
in Abbildung 2.3]) typischerweise auf derselben Ebene in einer Umsetzungs-Phase (rechts)
entdeckt werden. Das bedeutet, dass die Fehlerbehebungskosten, umso hoéher sind, je friher die
Fehler begangen werden. Dabei steigt der Schaden durch unentdeckte Fehler mit der Zeit
exponentiell an. Daher sollten Fehler méglichst frih entdeckt werden [LL10].

t
Analyse \ / Betrieb
Spezilikatk}\ Installation

Entwurf Integration

Codierung Modultest

Eingabe Ubersetzung

Abbildung 2.3: Ebenen der Fehlerentdeckung [LL10]

Der Compliance ,by design“Ansatz [SGNO7] vermeidet Fehler indem die Prozessmodelle wahrend
der Modellierung auf Einhaltung der Compliance-Regeln verifiziert werden. Der Nachteil dieses
Ansatzes ist jedoch, dass nicht mit Sicherheit entschieden werden kann, dass das verifizierte
Geschaftsprozessmodell den Regeln entspricht. Der Grund dafiir ist, dass nicht immer alle
mdglichen speziellen Geschéaftsvorfalle ex-ante bekannt sind. Im Gegensatz zum ,by detection®-
Ansatz ist jedoch eine Durchsetzung von gewlinschtem und eine Verhinderung von
ungewunschtem  Verhalten moglich. Allerdings ist eine flexible Anpassung an
Umfeldveranderungen unmaoglich. Daher wird in [Sac08] eine Kombination aus beiden Ansatzen
vorgeschlagen.
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2.1.2 Einordnung dieser Arbeit im GPM-Lebenszyklus

In dieser Arbeit liegt der Fokus auf dem Compliance ,by design“-Ansatz. Die relevanten Phasen
des GPM-Lebenszyklus sind in der Abbildung 2.4 hervorgehoben. Bei der Modellierung werden
nun zusatzlich die Compliance-Regeln (siehe Abschnitt 2.1.1) berlcksichtigt. Wahrend beim ,by
detection“-Ansatz die Regel-Verletzungen nach der Prozessausflihrung analysiert werden, wird
hier das Prozessmodell vor seiner Implementierung auf modgliche Compliance-Verletzungen

untersucht.
Geschéftliche Compliance-
Anforderungen , Regeln
Modellierung

m Implementierung

Monitoring Bereitstellung

Ausflhrung

Abbildung 2.4: Einordnung dieser Arbeit im GPM-Lebenszyklus, in Anlehnung an [Joc10]

2.1.3 Business Process Model and Notation

Die Business Process Model and Notation (BPMN) ist eine standardisierte grafische Notation zur
Beschreibung von  Geschéaftsprozessen [wwwf]. Die einheitliche Darstellung von
Geschéftsprozessmodellen ermoglicht insbesondere die Zusammenarbeit von Geschéfts-
prozessentwicklern. Urspringlich wurde die Sprache aus der Sicht der Fachverantwortlichen
entwickelt. Seit der Version BPMN 2.0 hat die Sprache eine definierte Ausfuhrungssemantik, die es
ermoglicht die Prozessmodelle in den Business Prozess Management Systemen (BPMS)
auszufuihren oder auf andere ausfiihrbare Sprachen wie Business Process Execution Language
(BPEL) abzubilden [www11b].

Die grundlegenden grafischen Elemente der BPMN sind Ereignisse, Aktivitdten und Gateways.
Einige ihrer Variationen werden anhand des Beispielprozesses in Abbildung 2.5 erlautert. Die
Ereignisse werden als Kreise dargestellt. Dies kdnnen Start-, Zwischen- oder Endereignisse sein.
Ein Zwischenereignis (doppelt umrandet) kann z. B. den Eingang oder Ausgang einer Nachricht
bedeuten. Die abgerundeten Rechtecke stellen Aktivitdten dar. Sie kénnen Aufgaben, die auch
Tasks genannt werden, oder mit einem Klick auf ein Pluszeichen aufklappbare Teilprozesse
darstellen. Rauten mit einem Pluszeichen sind parallele Gateways, die bei Verzweigungen alle
ausgehenden Kanten aktivieren. Bei Zusammenfihrungen warten sie auf alle eingehenden
Kanten, bevor sie den ausgehenden Sequenzfluss aktivieren. Rauten mit einem X-Zeichen sind
exklusive Gateways. Bei Verzweigungen aktivieren sie genau eine ausgehende Kante. Bei
Zusammenfihrungen warten sie nur auf eine eingehende Kante. Ein Uberblick Uber weitere
grafische Elemente der BPMN kann z. B. in [www1l1la] in Form eines Posters heruntergeladen
werden.
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Abbildung 2.5: Beispiel fiir einen BPMN-Prozess

2.1.4 Der Editor Oryx

Oryx ist ein am Hasso-Plattner-Institut der Universitat Potsdam entwickelter webbasierter BPMN-
Editor [wwwil]. Der Editor steht unter einer Open-Source-Lizenz zur Verfigung [wwwg] und wurde
urspringlich vor allem fir Forschungszwecke entwickelt [DOWO08]. Eine kommerzielle Version von
Oryx wird von dem Unternehmen Signavio vertreiben [wwwj].

Der Editor ist in einen client- und serverseitigen Bereich aufgeteilt. Die Clientseite wird auch als
das Frontend bezeichnet und enthalt die in JavaScript programmierte Benutzeroberflache (siehe
Abbildung 2.6). Die Benutzeroberflache wird im Webbrowser aufgerufen und ist in vier
Hauptbereiche unterteilt. Im linken Bereich befinden sich grafische Elemente, die per Drag&Drop in
die Zeichenflache im mittleren Bereich gezogen werden kénnen. Nach dem Markieren eines
grafischen Elements kénnen nachfolgende Elemente ausgewahlt werden oder im rechten Bereich
die Eigenschaften bearbeitet werden. Im oberen Bereich befindet sich die horizontale Toolbar, in
der Zusatzfunktionen aufrufbar und durch in Plugin-Konzept integrierbar sind [www10b, Tsc07].
Neben JavaScript werden externe JavaScript-Bibliotheken eingesetzt, wie z.B. Prototype [wwwi],
welche die objektorientierte Programmierung und den Datenaustausch zwischen Client und Server
erleichtert. Der Datenaustausch erfolgt dabei unter der Nutzung des textbasierten JSON-Formats
[wwwhb] mittels AJAX [wwwa].
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Abbildung 2.6: Benutzeroberflache des Editors Oryx

m

Properties (Task}
Propetties

Mame » Value

2 Often used
Background...
Documeritat...
|= for Comg...

LoopType Mone
Name Task3
TazkType MNone

izaCall Achi...
= More Properties
Assignments

Awaditing

Behaviar all

Categories
CompletionC

Camaletinn 1

Mot fogged on

>

m



2.2 Temporale Logik

Die Serverseite ist das sogenannte Backend, welches unter anderem die Datenhaltung und
Anbindung zu anderen Systemen Ubernimmt [DOWO08]. Das Backend ist in Java programmiert.
Dabei werden die Anfragen des Frontends mittels der speziellen Java-Klassen, den sogenannten
Java Servlets [wwwc], entgegengenommen.

2.2 Temporale Logik

Als Vater der modernen temporalen Logik gilt Arthur Norman Prior, der in den 1950-er Jahren die
Grundlagen gelegt hat [www12g, www12h]. Amir Pnueli fihrte die temporale Logik in den spaten
1970-er Jahren in die Informatik ein und erhielt dafir in 1996 den Turing Award [www12f]. Die
temporale Logik ermdglicht zeitliche Zusammenhange zwischen Ereignissen in reaktiven, das heif3t
mit  ihrer Umwelt interagierenden, Systemen wie Kommunikationsprotokollen und
Betriebssystemen zu beschreiben [Pnu77, Pnu86]. Heute werden verschiedene Arten temporaler
Logik zur Spezifikation funktionaler Eigenschaften von Hardware- und Softwaresystemen, in denen
zeitliche Aspekte eine Rolle spielen, eingesetzt [HT10]. Ein neueres Einsatzgebiet, wie in dieser
und ahnlichen Arbeiten [FPR06, RMLDO08, Groll] beschrieben, ist die Spezifikation von
Geschéaftsprozessen.

Im Gegensatz zu aussagenlogischen Formeln, die konstante Werte reprasentieren, beschreiben
temporallogische Formeln Sequenzen von Werten. In [DAC98] werden neben einem Muster-
System fir ausdriickbare Systemeigenschaften auch die in Abbildung 2.7 dargestellten zeitlichen
Gultigkeitsbereiche einer temporallogischen Formel analysiert.

Uberall R |

Vor R = I

Nach R ETTNTTTTT

Zwischen Q und R _~——_—,——
Nach Q bis R e

Abbildung 2.7: Giltigkeitsbereiche temporallogischer Formeln, nach [DAC98]

Ein Modell fur eine temporallogische Formel ist eine temporale Struktur [HT10], die auch Kripke-
Struktur [Kri71] genannt wird. Eine Kripke-Struktur kann als ein gerichteter Graf visualisiert werden.
Die Knoten dieses Grafen reprasentieren Systemzustande, in denen bestimmte aussagenlogische
Variablen gelten [HT10]. Die Kanten des Grafen bilden die mdglichen Zustandsiibergange.
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Kripke-Struktur Berechnungsbaum

Z1-Z3. Zustande
{...}: Menge erfiillter
boolescher Variablen

Abbildung 2.8: Kripke-Struktur, Berechnungsbaum, Berechnungspfad, nach [HT10]

Im linken Teil der Abbildung 2.8 ist eine Kripke-Struktur mit drei Zustanden dargestellt, in denen
jeweils eine Menge boolescher Variablen angegeben ist, die wahr sind. Von dem Startzustand z,
aus koénnen alle moglichen Zustandssequenzen verfolgt werden, wodurch der im rechten Teil der
Abbildung dargestellte Berechnungsbaum [HT10] aufgezeichnet werden kann. Die unendlichen
Pfade des Berechnungsbaums stellen die méglichen Berechnungspfade, das heilt Sequenzen
aktivierter Zustande in einem ausgeflihrten System, dar. Die Eigenschaften dieser Pfade kénnen
durch temporallogische Formeln beschrieben werden. Statt temporalen oder Kripke-Strukturen
beschreiben manche Autoren die modellierten Systeme auch als sogenannte Transitionssysteme
[HRO4], die ebenfalls als gerichtete Grafen visualisiert werden kdnnen.

2.2.1 Lineare temporale Logik

Im Rahmen dieser Arbeit wird die lineare temporale Logik (LTL) verwendet. In der Literatur wird
diese Art der temporalen Logik auch als PLTL (propositional linear temporal logic) [Eme95] oder
PTL (propositional temporal logic) [CPP93] bezeichnet. Die LTL ist eine Erweiterung der
Aussagenlogik um temporale Operatoren. Mit ihnen ist es mdglich die Veradnderung der
Variablenbelegung im zeitlichen Verlauf zu beschreiben. Diese Logik wird linear bezeichnet, weil
sie Sequenzen von Systemzustéanden beschreibt. Die Zeit ist dabei diskret, was bedeutet, dass
jeder Zustandsubergang dem Fortschritt der Zeit um eine Zeiteinheit entspricht [Fisl1]. Die
formalen Grundlagen der LTL wurden aus der Modallogik Gbernommen [Fis11]. In der Modallogik
ist es ausdriickbar, dass etwas mdéglicherweise ({-Operator) oder notwendigerweise ([]-Operator)
stattfindet. In der temporalen Logik werden diese Operatoren zeitlich interpretiert.

Definition 2.1 (LTL-Syntax): Wenn a eine atomare Aussage ist, kbnnen LTL-Formeln mit Hilfe der
Metasprache Backus-Naur-Form (BNF) wie folgt induktiv definiert werden [HRT05, HRO04]:

¢:= true|false[a| Q@ [(@—->@) @) |@r®) (v O[T o|le]|(eU9)|
(PWo)|(eR @)

Aus der obigen Definition ist erkennbar, dass eine LTL-Formel wie eine aussagenlogische Formel
entweder zu true (wahr) oder false (falsch) ausgewertet werden kann und im einfachsten Fall nur
aus einem Literal (a) besteht. Die Operatoren -, —, <, A und v entsprechen den
aussagenlogischen Operatoren Negation, Implikation, Aquivalenz, Konjunktion und Disjunktion. In
der folgenden Tabelle wird die Bedeutung der Zeitoperatoren erklart sowie ihre textuelle und
symbolische Schreibweise angegeben [HT10, HR04, Hol03].
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Textuell Symbolisch | Interpretation
X  (,Next @) Oo Im nachsten Zustand gilt @ (p=true).
. “ Im Betrachteten oder mindestens in einem der
Fo  (Enally ¢7) o folgenden Zustande gilt ¢ (Garantie).
Go (GClobally ¢ Do In allen Zustanden inklusive dem Betrachteten gilt

¢ (Invarianz).

Entweder im betrachteten Zustand gilt w oder in
oUy (,0 Until y*) mindestens einem der folgenden Zustande gilt g
und davor gilt ¢ ab dem betrachteten Zustand.

oWy (,Weak Until y*) Es gilt entweder @ U y oder Lg.

Entweder gilt [y oder es gibt einen Zustand, in
¢ Ry (,0 Release y") dem ¢ und g gelten und davor gilt ¢ ab dem
betrachteten Zustand.

Tabelle 2.1: Die Zeitoperatoren von LTL

Eine LTL-Formel wird auf einem unendlichen Berechnungspfad m ausgewertet. Im rechten Teil der
Abbildung 2.8 ist ein Berechnungspfad markiert, auf dem es beispielsweise einen Zustand gibt, ab
dem b=true immer erfiillt ist. Das heiflt, die LTL-Formel <Cb ist auf diesem Pfad erfiillt.

Die Berechnungsbdaume von Systemmodellen, die mit temporaler Logik spezifiziert werden,
enthalten typischerweise mehrere Berechnungspfade. Eine LTL-Formel wird von einem
Systemmodell genau dann erfillt, wenn sie auf allen Berechnungspfaden erfillt wird [RV01]. In der
Kripke-Struktur in Abbildung 2.8 ist die LTL-Formel <[Jb nicht erfillt, weil es einen
Berechnungspfad gibt (z1, 25, 23, 25, ...), auf dem es keinen Zustand gibt, ab dem b=true immer
erfillt ist. Dagegen ist die Formel <b auf dieser Kripke-Struktur erfiillt. Auch <a ist erfilllt, jedoch
ist Oa nicht erflllt, weil im Zeitpunkt t; der Zustand z; moglich ist, in dem a nicht erfillt ist.

Definition 2.2 (Modell einer LTL-Formel): Es seien M eine temporale Struktur, = ein unendlicher
Pfad von M und ¢ eine LTL-Formel. Wenn r die Formel ¢ erfillt, dann bedeutet die Schreibweise
m E ¢, dass w ein Modell fur ¢ ist. M = ¢ bedeutet, dass die Struktur ein Modell fur ¢ ist (vgl.
[HRO4]).
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Definition 2.3 (Semantik der LTL-Zeitoperatoren): Es sei M eine temporale Struktur, 7° ein Pfad
des Berechnungsbaums von M beginnend mit dem Initialzustand z,, =’ ein Suffix eines Pfades
beginnend mit dem Zustand z; und ¢ eine LTL-Formel. Dann gilt (vgl. [HR04]):

m’ Ea = a € z,, a € {atomare Aussagen}
AN O = ! E@

0= Og o 3i>0,ntEg

% E e = Vi>0,nl kg

" E@eUy o 3i>0,ntEyYundVk,k=0 <k<i nfEg
nEeWy o @ Uy oder e

" E@RY o 3i>0,r'E@undVk,k=0 <k <i, n* =1y oder [l

Beispiele:

Eine andere Darstellung fiir Berechnungspfade, wie z. B. in [Fis11] verwendet, ist in Abbildung 2.9
zu sehen. Auf dem abgebildeten Berechnungspfad gelten folgende LTL-Formeln:
(a, <y, ¢z, O(aayac), (z—a), ly-=OO00z), vUy, yRc, aWXx, aav

to tl t2 t3 t4 t5 t6

o o o o o o o --—---—--
a a a a a a a

\' \' Yy z 4 4

C C C

Abbildung 2.9: Zustandssequ&nz fur Beispiele von LTL-Formeln

Es ist wichtig zu beachten, dass eine LTL-Formel, die keine Zeitoperatoren enthalt nur dann auf
einem Pfad erflllt ist, wenn sie im Initialzustand erflllt ist. Beispielsweise gilt auf dem Pfad in
Abbildung 2.9 die Formel a—v, wohingegen a—z nicht gilt. Auch die Vorbedingung p in einer
Formel der Art p—<>q oder die Nachbedingung g in &p—q missen im Initialzustand erfiillt sein.

2.2.1.1 Bichi-Automaten als Modelle von LTL-Formeln

In der Informatik werden unter Automaten mathematische Konstrukte verstanden, die unter
anderem aus Zustanden und Zustandslibergadngen bestehen. Sie werden dazu genutzt ein
Systemverhalten, das heillt die Transformation einer Eingabe in eine Ausgabe, zu beschreiben
oder eine bestimmte Art von Eingaben zu erkennen [SS11], Sch08]. Dabei werden die Eingaben
als Worter einer formal definierten Sprache bezeichnet.

Biichi-Automaten sind eine spezielle Art von Automaten, die aus endlich vielen Zustadnden, einem
Startzustand, einer Menge von Endzustédnden und einer Transitionsfunktion bestehen und als
Eingabe unendliche Waérter erkennen, das heil3t akzeptieren [HL11]. Ein Blchi-Automat akzeptiert
ein Wort, wenn ein akzeptierender Zustand unendlich oft besucht wird.

In [VW94] wurde gezeigt, dass zu jeder LTL-Formel ein Blchi-Automat konstruierbar ist, sodass
seine Sprache genau den Modellen (siehe Definition 2.2) der LTL-Formel entspricht. Die Worter
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2.2 Temporale Logik

der Sprache entsprechen dabei den Berechnungspfaden (siehe Abbildung 2.8) des Modells. Das
heil3t, ein Buchi-Automat, welcher das Modell einer LTL-Formel darstellt, akzeptiert genau die
Eingaben, die den Berechnungspfaden des Systemmodells entsprechen. In Abbildung 2.10 sind
zu drei LTL-Formeln beispielhaft die mdglichen Berechnungspfade sowie die entsprechenden
Bichi-Automaten abgebildet.

Opva) Op Aa) Op v q
—0—0090-- o—0—0—0—0- - - - 0—0—0—0—0 -
PP dq pqdg qg X X qgqq da 99 gaQq
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, § A
p P True -ﬁ'.—_._.""
A \ L./ -
| 3 S LI ad
D"\[\f;nxl Si",f kﬂ I H\E‘fﬁi-hh_ o
e -
a2
.\\5._;_

Abbildung 2.10: Beispiele fir Blchi-Automaten (generiert mit GOAL [YKTH12])

In der grafischen Darstellung eines Buichi-Automaten werden die akzeptierenden Zustande doppelt
umkreist. Die Pfeile symbolisieren Zustandsiibergénge. Ein Zustandsiibergang im Biichi-Automat
findet nach einer Auswertung eines Zustands im Berechnungspfad statt, wenn alle nacheinander
stehenden Variablen auf dem Pfeil im ndchsten Zustand des Berechnungspfades erflllt sind. Von
den untereinander stehenden Variablen ist fir einen Zustandsubergang die Erfullung einer der
Variablen ausreichend. Ein Pfeil mit True bedeutet dass jede Variablenbelegung zu einem
Zustandsiibergang flihrt. Beispielsweise erreicht der mittlere Automat den akzeptierenden Zustand
s1 und verbleibt dort unabhangig vom weiteren Verlauf, sobald im Berechnungspfad der Zustand
erreicht wird, in dem p=false und g=true gilt.

Es gibt zahlreiche Tools zur Generierung von Blchi-Automaten. Beispielsweise kann auf der
Webseite [Gas] durch Eingabe der LTL-Formel in ein Formular ein Buchi-Automat generiert
werden. Des Weiteren sind im Programm GOAL [YKTH12] neben anderen Tools zu temporalen
Logiken auch Generatoren fur Blchi-Automaten enthalten. Und schlieBlich bietet der Model-
Checker SPIN (siehe Abschnitt 2.3.2) diese Mdglichkeit mit dem Befehl ,spin -f <Formel>*.

2.2.1.2 Aquivalenzen

Im Folgenden werden einige der fir die Arbeit mit LTL wichtigen Aquivalenzen aufgefiihrt [HROA4].
Zwei LTL-Formeln g und ¢ sind semantisch aquivalent, symbolisch als o=y bezeichnet, wenn alle
Modelle firr ¢ auch Modelle fur w sind und umgekehrt [HR04]. Die Operatoren [J und <> sowie U
und R sind dual zueinander. Beispielsweise lasst sich [] mit < ausdriicken und umgekehrt. Der O-
Operator ist dual zu sich selbst.
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_'D(PE <>—|(P —|<>(p = \:‘—|(p ﬂO(PEOﬂ(p
(eUyY) =9 Ry PRy =" Uy PUY=eWyAr Oy
Op=true U @ O = false R @

Es gelten folgende Distributiv-Gesetze beziiglich [J und <:
e Ayw) =0e Ay (e v ) = Oe v Oy

Die nicht aquivalenten Formeln Cl(¢ v y) und L v Oy konnten intuitiv so interpretiert werden,
dass zu jedem Zustand entweder ¢ oder g gelten muss. LI(¢ v y) bedeutet aber, dass auf einem
erfillenden Pfad in jedem Zeitpunkt entweder ¢ oder y gelten kann. Dagegen drickt [l v [y

aus, dass es zwei Moglichkeiten fir einen erfillenden Pfad gibt, sodass entweder zu jedem
Zeitpunkt @ oder zu jedem Zeitpunkt y gilt.

Olepvy)=0p v oy Ol ay) oAy
Die Formel < (@ A w) bedeutet, dass es einen Zustand gibt, in dem ¢ und y gleichzeitig erfillt sind.
Die Formel &g A Oy driickt dagegen aus, dass ¢ und y auch zu unterschiedlichen Zeitpunkten

erfillt sein kbnnen.

Weiterhin gelten die aus der Aussagenlogik bekannten Aquivalenzen, wie z. B. die De
Morgan‘schen Regeln und die Implikation [Sch0O]:

(AW ="V Ty (V) =Te ATy PoY="ovy

2.2.1.3 Beispiele fiir ausdrickbare Systemeigenschaften in LTL

Die durch temporallogische Formeln ausdriickbaren Systemeigenschaften kénnen unterschiedlich
klassifiziert werden [MP92], wie z. B. in Lebendigkeits-, Sicherheits- und Fairnesseigenschaften.

Einige LTL-Formeln haben eigene Namen, weil sie oft verwendet werden [Hol03]. In der Tabelle
2.2 werden einige einfache oft verwendete LTL-Formeln aufgefinhrt.

Formel Typ Interpretation
L(p—(p U a) Jeder Zustand in dem p gilt, fihrt zu einem Zustand in
dem q gilt und dazwischen bleibt p gultig.

p—<q Antwort Wenn p gilt, dann wird irgendwann g garantiert gelten.

OCp Wiederholung Falls p in einem Zustand nicht gilt, wird garantiert,
(,immer wieder“) | dass p im weiteren Verlauf wieder gelten wird.

Oz Stabilitat Ab einem garantierten Zustand gilt fir immer z.

Op—<q Korrelation Fall p auftritt, wird garantiert q auftreten.

Tabelle 2.2: Beispiele fur haufig verwendete LTL-Formeln nach [Hol03]

Obwohl LTL im Vergleich zu anderen temporalen Logiken als eine intuitive Spezifikationssprache
gilt [RVO01], entstehen flr scheinbar einfache Sachverhalte oft komplexe Ausdriicke, die schwer
herzuleiten oder zu merken sind. Daher wurde in [www12e] eine Sammlung von Vorlagen sowohl
fur LTL als auch fiir andere temporale Logiken verdffentlicht. Mit diesen Vorlagen kénnen solche
Sachverhalte wie Abwesenheit, Existenz, Vorrang und Antwort fir jeden der in Abbildung 2.7
dargestellten Gultigkeitsbereiche ausgedriickt werden. In der folgenden Tabelle 2.3 werden einige
Beispiele aus dieser Vorlagen-Sammlung vorgestellt.
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2.2 Temporale Logik

Formel Typ Interpretation

O(~q v O(g A $Op)) | Existenz p tritt nach g auf.
>qg— (pUQ) Abwesenheit p tritt vor g nicht auf.
(I(g — [I7p) Abwesenheit p tritt nach g nicht auf.

Tabelle 2.3: LTL-Vorlagen nach [www12e]
2.2.1.3.1 Sicherheitseigenschaften

Informell ausgedriickt, garantiert eine Sicherheitseigenschaft, dass ein unerwiinschter Zustand
niemals eintritt [MP92] Im Allgemeinen sind Sicherheitseigenschaften von der Form:

[la.

Dabei ist a eine aussagenlogische Formel. Eine Sicherheitseigenschaft muss auf allen
Berechnungspfaden erfiillt sein [Pnu86]. Die zu der informellen Beschreibung passende Form
O—(a A b A ... A z) drickt den gegenseitigen Ausschluss von Variablen aus [Pnu86].
Beispielsweise kann damit ausgedrickt werden, dass die Netzwerkteilnehmer a-z niemals eine
Ressource gleichzeitig nutzen sollen.

Weitere Beispiele [SSL10]: ()(a = Ohb) , Ca=> Ob

Fir Sicherheitseigenschaften ist charakteristisch, dass ihre Gegenbeispiele endliche Pfade sind
[HT10, Kin94, KYV01]. Wenn beispielsweise die Eigenschaft []=(a A b) verifiziert werden soll, wird
nach einem Zustand gesucht, der das Gegenteil, das heitt =[J=(a A b) = $(a A b), erfillt. Sobald
ein solcher Zustand gefunden wird, wird der Pfad vom Startzustand bis zu diesem Zustand als
Gegenbeispiel ausgegeben.

2.2.1.3.2 Lebendigkeitseigenschaften

Informell ausgedruckt, garantiert eine Lebendigkeitseigenschaft, dass ein erwinschter Zustand
eintritt [MP92]. Die grundlegenden Lebendigkeitseigenschaften sind von der Form [Pnu86]:

Oa, Ola oder [O<a.

Dabei ist a eine aussagenlogische Formel. Ein weiteres Beispiel ist CJ(p—<>q) welches die
Erreichbarkeit ausdrickt. Beispielsweise kann damit ausgedriickt werden, dass immer wenn eine
Anfrage (p) gestellt wird, erfolgt garantiert eine Antwort (q) [Pnu86].

Weitere Beispiele [SSL10]: [Ja > <b

Gegenbeispiele fur Lebendigkeitseigenschaften sind unendliche Pfade [HT10, Kin94, KYV01]. Das
heilt, zum Nachweis der Nichterflllung einer Lebendigkeitseigenschaft muss im Modell eine
endlose Schleife gefunden werden, in der die Lebendigkeitseigenschaft nie erflllt wird. Wenn das
Modell keine Endlosschleifen enthalt, ist ein Gegenbeispiel ein Pfad von Anfangs- bis zum
Endzustand.

2.2.1.3.3 Co-Safety Eigenschaften
Eine Lebendigkeitseigenschaft deren Negation eine Sicherheitseigenschaft ist und umgekehrt, wird

Co-Safety bezeichnet, z. B. {a oder [(Ja-><b [SSL10]. Nicht Co-Safety (siehe auch. Anhang A.3).
sind z. B. m/a U b, J@=><hb, &Oa
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2 Grundlagen

2.2.1.3.4 Fairness-Eigenschaften

Fairness-Eigenschaften driicken aus, dass etwas kontinuierlich passiert [Fis11]. Beispielsweise ist
ein Planungsprozess fair, wenn er andere um eine Ressource konkurrierenden Prozesse derart
verzahnt, dass sie gleich oft die Ressource nutzen kénnen [Eme95]. Mit dem “unendlich oft’-
Konstrukt [J>a konnen unterschiedlich starke Fairness-Eigenschaften ausgedriickt werden. Die
folgenden vier Fairness-Eigenschaften [Fis11] sind von stark zu schwach sortiert:

[1<>Anfrage — <O Antwort ,Unendlich viele Anfragen — Unendlich viele Antworten®

[J<&Anfrage — <OAntwort ,Jnendlich viele Anfragen — Mindestens eine Antwort®
ClAnfrage — (IO ANntwort ,Jnunterbrochene Anfragen — Unendlich viele Antworten®
[JAnfrage — <>Antwort ,Jnunterbrochene Anfragen — Mindestens eine Antwort

2.2.1.4 Normalformen

Komplexe logische Formeln kdnnen sowohl fiir den Benutzer schwer verstandlich als auch
algorithmisch schwer bearbeitbar sein. Daher werden komplexe Formeln oft in einfachere, aber zur
den urspriinglichen Formeln semantisch aquivalente, Formeln umgeformt [Fis11l]. Beispielsweise
bendtigen viele Algorithmen zur Erfillbarkeitsprifung aussagenlogischer Formeln eine Eingabe in
konjunktiver Normalform [GNTVO01, HRO04].

Definition 2.4 (Konjunktive Normalform, KNF): Eine aussagenlogische Formel ist in konjunktiver
Normalform, falls sie eine Konjunktion von Disjunktionen von Literalen ist und die
Negationszeichen nur vor den Literalen stehen [Sch00].

Beispiel fur eine KNF: (avb)A(7c)A(mravdVe)

Hier sind a, b, c, d und e Literale, das heil3t atomare Aussagen. Die Ausdriicke in den Klammern
werden Klauseln bezeichnet. Laut Definition durfen in den Klauseln einer KNF nur durch den
ODER-Operator verbundene positive oder negative Literale vorkommen. Dabei kann jede
aussagenlogische Formel in eine dquivalente KNF umgeformt werden [Sch00].

Definition 2.5 (Separated Normal Form, SNF): Sei Start eine Variable, die nur im Startzustand
erfllit ist und k4, [, und [ positive oder negative Literale. Dann ist eine LTL-Formel ihrer Separated
Normal Form, wenn sie von der Form [J(A\; K;) ist, mit KlauselnK;, die nur die Operatoren >, O
und < enthalten und von der folgenden Form sind (vgl. [Fis97, Fis11]):

start > VI (Startzustand)
Nkg,> OVl (Nachster Zustand)
Nkg > Ol (Zukunft)

Beliebige LTL-Formeln kdnnen durch eine Reihe von Transformationsregeln [Fis11] in eine SNF
umgeformt werden. Fir das folgende Beispiel werden in Abbildung 2.11 zwei Modelle angegeben.

Beispiel fur eine SNF: [J((start->a) A (start=>b) A ((@Ab)=>O(cvd))A(c > Cc) A (d>Ce)

[ O O o---- . o . o ---
a c c c a d e
b b

Abbildung 2.11: Modelle fir das SNF-Beispiel
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2.2 Temporale Logik

2.2.2 Weitere Arten temporaler Logik

Neben der LTL gibt es auch andere Arten temporaler Logik, die sich in der Wahl der Operatoren
unterscheiden und dementsprechend unterschiedliche Ausdrucksmachtigkeit und Komplexitat
aufweisen. So konnen z. B. Vergangenheitsoperatoren eingefiihrt [LPZ85] oder der Bezug zur
Realzeit [AH92] integriert werden.

Insgesamt kdnnen drei Arten temporaler Logiken unterschieden werden. Neben LTL ist die zweite
Art die verzweigende temporale Logik CTL (engl. computational tree logic oder branching-time
logic), der ein verzweigendes Zeitmodell zugrunde liegt. In CTL gibt es die gleichen
Temporaloperatoren (<, [, U, O) wie in der LTL. Jedoch muss jedem Temporaloperator
unmittelbar ein Pfadquantor (E, A) vorangestellt werden [RVO01]. Wahrend eine LTL-Formel auf
allen Berechnungspfaden eines Systems erfullt sein muss, kann in CTL mit dem Pfadquantor E
ausgedrickt werden, dass ein Ausfllhrungspad existiert, auf dem eine bestimmte
Systemeigenschaft erfillt ist. Beispielsweise kénnte dies die in einem Hardwaresystem wichtige
Reset-Eigenschaft sein, die sicherstellt, dass das System in den Ausgangszustand zurlick versetzt
werden kann [Hol03]. Der Pfadquantor A driickt aus, dass die geforderte Systemeigenschaft auf
allen Berechnungspfaden erfillt ist. In den LTL-Formeln ist zwar implizit auch der Pfadquantor A
enthalten, jedoch vor der gesamten Formel. Umgekehrt gibt es LTL-Formeln, wie z. B. $a, die in
der CTL nicht ausdriickbar sind. Insbesondere Fairness-Eigenschaften sind in CTL nicht
ausdrickbar. Beide Logikarten sind Spezialfalle der CTL*, in der die Beschrankung, dass jedem
Temporaloperator ein Pfadquantor vorangestellt werden muss, entfallt [RVO1].

Weitere Details zu CTL* sowie den Unterschieden von LTL und CTL kénnen in [EH84, EL87,
Eme95, RVO01, Hol03] gefunden werden. Die Tabelle 2.4 fasst die wichtigsten Unterschiede
zusammen.

LTL CTL

Auswertung Uber linearen Auswertung Uber baumartigen

Zustandsstrukturen Zustandsstrukturen

Keine Pfadquantoren Pfadquantoren E und A vor jedem
Temporaloperator

Intuitiv Nicht intuitiv

Model-Checking in exponentieller Zeit in Model-Checking in linearer Zeit in

Abhangigkeit von der Grole der Abhangigkeit von der GroRe der

Spezifikation Spezifikation
Fairness-Eigenschaften nicht direkt
ausdriickbar (nur im Verifikations-
algorithmus)

Tabelle 2.4: Unterschiede zwischen LTL und CTL, nach [RV01]

Aufgrund effizienterer Verifikationsmdéglichkeiten wurde die CTL in der Industrie bevorzugt [RV01]
verwendet. Heutzutage existieren sowohl fir CTL als auch fir LTL effiziente Model-Checking-
Verfahren und beide Logikarten haben sich in bestimmten Einsatzgebieten etabliert. Die CTL wird
beispielsweise bevorzugt in Hardware- und die LTL in Softwareverifikation eingesetzt [Hol03].
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2.3 Model-Checking

Model-Checking ist eine Methode zur friihzeitigen Entdeckung von Fehlern in Systemen zur
Entwurfszeit. Genauer gesagt, werden unter Model-Checking Verfahren zur vollautomatischen
Verifikation von Modellen reaktiver, das heit mit ihnrer Umwelt interagierender, Systeme mit einer
endlichen Zahl von Zustédnden verstanden [CGL96]. Dieses Verfahren wurde in den 1980-er
Jahren formal eingeflihrt [CES86, EL87]. Die Spezifikation des zu Uberprifenden Systems muss in
einer formalen Sprache wie z. B. der LTL oder CTL (siehe Abschnitt 2.2) vorliegen. Durch eine
systematische Verfolgung aller Ausfiihrungsmdglichkeiten des Modells, wird es dahingehend
Uberprift, ob es die in seiner Spezifikation geforderten Eigenschaften erflllt.

Das Model-Checking wird in vielen Bereichen industriell eingesetzt, insbesondere in der
Entwicklung von Hardware- und Softwaresystemen [HT10]. Somit kdnnen systematische Fehler z.
B. in der Chip-Herstellung schon vor der kostspieligen Produktion ausgeschlossen werden. Wie fur
die temporale Logik, ist auch fir das Model-Checking der Einsatz in der
Geschaftsprozessmodellierung ein relativ neues Einsatzgebiet [FPR06, RMLDO8].

Die Model-Checking-Verfahren kdnnen im Allgemeinen in Explizite und Symbolische klassifiziert
werden. Im Gegensatz zum expliziten Model-Checking wird bei symbolischem Model-Checking die
Berechnung des vollen Zustandsraums vermieden, indem die Zustdnde und ihre Beziehungen
durch Formeln und binare Entscheidungsbaume beschrieben werden [CGL96]. Dies ist vorteilhaft
bei sehr groflen Zustandsrdumen, da eine Formel viele Zustédnde gleichzeitig beschreiben kann
[HT10]. In dem in dieser Arbeit verwendeten Prototyp wird der explizite Model-Checker SPIN
verwendet. Daher wird im Folgenden auf das explizite Model-Checking und SPIN naher
eingegangen.

2.3.1 Explizites Model-Checking

Die expliziten Model-Checker bauen den Berechnungsbaum des zu verifizierenden Systems
explizit im Speicher auf [RVO07]. Sie wenden Tiefen- und Breitensuche an um einen
Berechnungspfad zu finden, welcher der Spezifikation widerspricht [Hol03]. Falls ein solcher Pfad
gefunden wird, wird dieser dem Benutzer als sogenanntes Gegenbeispiel ausgegeben. Ein
Gegenbeispiel ist eine Zustandssequenz vom Startzustand bis zu dem Zustand, in dem die
geforderte Eigenschaft nicht gilt.

Dieser Ansatz wird auch automatentheoretischer Ansatz bezeichnet. Sowohl das Modell als auch
die Spezifikation sind Beschreibungen von Ausfiihrungsmdglichkeiten, die als akzeptierte Worter
von Buchi-Automaten (siehe Abschnitt 2.2.1.1) betrachtet werden kénnen. Daher wird die
Beziehung zwischen Modellen und Spezifikationen auf die Beziehung zwischen Sprachen und
Automaten zurlckgefuhrt [Var99]. Dabei wird aus den Blchi-Automaten des zu verifizierenden
Modells und seiner negierten Spezifikation ein Kreuzprodukt erstellt und die Sprache L dieses
dritten Automaten auf Leerheit gepruft [DLP04, Deh04]. Wenn L nicht leer ist, bedeutet das, dass
die negierte Spezifikation im modellierten System erfullt und die Spezifikation damit verletzt wird.
Als Beweis wird als Gegenbeispiel das akzeptierte Wort des Automaten, das heil3t die
Zustandssequenz, die im verifizierten Modell die Spezifikation verletzt, ausgegeben. Die Abbildung
2.12 gibt einen schematischen Uberblick zum expliziten Model-Checking.
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&

: Spezifikation ¢

4 l

Biichi-Automat ————> | Model-Checker |<{——= Buchi-Automat
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%a neiN

ME @ Gegenbeispiel

Abbildung 2.12: Explizites Model-Checking schematisch, nach [DLP04]

2.3.2 Model-Checker SPIN

SPIN ist ein in den 1980-er Jahren in den Bell Laboratories entwickelter und seit 1991 frei
verfligbarer expliziter Model-Checker. Seinem Entwickler, Gerard Holzmann, wurde im Jahr 2002
der ,Software System Award® verliehen [www12a]. Das Akronym SPIN steht fur ,Simple Promela
Interpreter” [Hol03]. Die in SPIN zu verifizierenden Modelle mussen in der Sprache Promela
vorliegen und die Spezifikationen in der LTL. SPIN enthélt einen eigenen LTL-Ubersetzer, mit dem
Bichi-Automaten aus LTL-Formeln generiert werden kénnen.

2.3.2.1 PROMELA

Das Akronym PROMELA steht fir ,Process Meta Language“ und bezeichnet eine
Beschreibungssprache fir Systeme, die mit anderen Systemen interagieren. lhr Schwerpunkt liegt
daher in der Beschreibung von Synchronisation und Koordination von asynchronen Prozessen. Der
Promela-Code ist zwar fir Simulations- und Verifikationszwecke ausfilihrbar, stellt jedoch ein
Systemmodell auf hoher Abstraktionsebene dar. Der ausfiihrbare Promela -Code wird Promela-
Programm oder Promela-Modell bezeichnet. Die Sprachkonstrukte von Promela sind auf
Prozessinteraktion spezialisiert und ermdglichen insbesondere die Unterscheidung zwischen
deterministischen und nichtdeterministischen Ablaufen [Hol03]. Beispielsweise ist es in realen, auf
unterschiedliche Standorte verteilten Systemen zu einem Zeitpunkt unbekannt, welcher der
parallelen Prozesse den nachsten Schritt ausfliihren wird. Solche Prozesse kénnen dadurch
simuliert werden, dass der weitere Verlauf in einem Modell nicht-deterministisch ausgewahlt wird,
falls es daflir mehrere Mdglichkeiten gibt [Hol03].

2.3.2.2 Never Claims

Ein Never Claim ist ein in Promela beschriebenes Systemverhalten welches niemals eintreten soll.
Genau genommen, handelt es sich dabei um einen Blchi-Automaten (siehe Abschnitt 2.2.1.1), der
aus der negierten Form der Spezifikation erstellt wird. Mit Never Claims ermdglicht es SPIN zu
prufen, ob und in welchem Schritt in einem Prozessmodell ein unerwlinschter Zustand eintritt (vgl.
Abschnitt 2.3.1). Da die mit Spin generierten Blchi-Automaten zur Lésung der Aufgabenstellung in
dieser Arbeit (siehe Abschnitt 4.2.3.3) verwendet werden und einige Erweiterungen der Prototyps
(siehe Abschnitt 5.4) auch die Never Claims betreffen, werden nachfolgend zwei Beispiele
erlautert. Die Ausrufezeichen stehen dabei fur Negation und jeder Zustand, dessen Bezeichnung
mit ,accept® beginnt, ist ein mdglicher Endzustand [Hol03] des Automaten.
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2.3.2.2.1 Never Claim fiir die Lebendigkeitseigenschaft a

Der Never Claim im Listing 2.1 stellt einen Bichi-Automaten fir die negierte
Lebendigkeitseigenschaft <>a dar, oder anders ausgedriickt, einen Blichi-Automaten fiir die
Sicherheitseigenschaft ~a (=[]-a). Der Biichi-Automat wird schrittweise abwechselnd zu dem
Blichi-Automat des zu verifizierenden Modells ausgefiihrt. Ein Gegenbeispiel fir <a wird
gefunden, wenn alle Zustande des Modells durchlaufen werden und dabei kein Zustand mit a=true
gefunden wird. Das heif3t, es muss eine Ausfuhrungsschleife gefunden werden, in der -a gilt. Eine
solche Schleife wird in

Listing 2.1 durch die if-Schleife im ,accept_init“-Zustand reprasentiert.

never { /[*1(<>a)*/
accept_init:
TO_init:

if
(M ((@))) -> goto TO_init
fi;
}

Listing 2.1: Never Claim fir <a oder Biichi-Automat fiir [J-a

Dieser Buchi-Automat terminiert, falls die if-Abfrage unendlich oft durchlaufen wird. Das passiert
nur, wenn a=false nach jedem Ausfiihrungsschritt im Modell gilt und somit die Spezifikation $a
verletzt wird. In diesem Fall ist das Gegenbeispiel ein unendlicher Pfad oder, wenn das verifizierte
Modell keine Endlosschleifen enthélt, ein Pfad vom Start- bis zum Endzustand. Solche
Gegenbeispiele sind typisch fir Lebendigkeitseigenschaften (sieh Abschnitt 2.2.1.3.2).

Anderenfalls, wenn in einem Zustand des Modells a=true gilt, wird der Never Claim blockiert, weil
es in der if-Schleife keine Alternative zu a=false gibt. Damit wird kein Gegenbeispiel gefunden und
die Spezifikation ist in diesem Fall erfllt.

2.3.2.2.2 Never Claim fiir die Sicherheitseigenschaft [la

Das
Listing 2.2 zeigt den Never Claim fir die Sicherheitseigenschaft [Ja. Anders ausgedriickt, ist dies
ein Bichi-Automat fiir -(Ja oder die aquivalente Formel <>-a (siehe Abbildung 2.13). Er wird
schrittweise abwechselnd mit dem Modell ausgefihrt, welches [a erfiillen soll. Dadurch wird nach
einem Gegenbeispiel gesucht, welches zu einem Zustand fihrt, in dem a=false qilt.
never { /*I([]a) */
TO_init:

if

2 (Y ((a))) -> goto accept_all

2 (1) -> goto TO_init

fi;
accept_all:

skip
}

Listing 2.2: Never Claim fur [Ja oder Blchi-Automat fur <-a

Im Gegensatz zum vorherigen Beispiel gibt es hier zwei Alternativen in der if-Schleife. Falls immer
a=true gilt, verleibt der Automat in der if-Schleife und terminiert nicht. In diesem Fall haben die
Sprachen der Buchi-Automaten des Modells und der negierten Spezifikation keine gemeinsamen
Woérter (vgl. Abbildung 2.12), das heif3t die Spezifikation ist erfillt.
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2.4 LTL-Erfullbarkeitsprifung

2.3.2.2.3 Der ,accept_all“-Zustand

Falls ein Zustand mit a=false gefunden wird, springt der Automat zu dem Zustand ,.accept_all“ und
akzeptiert alle weiteren zustande. Der akzeptierende Zustand ,accept_all* in Listing 2.2 entspricht
dem Zustand sl in der unteren Abbildung 2.13. Im Gegensatz zum vorherigen Beispiel wird nach
dem Halten des Never Claims ein Gegenbeispiel mit endlicher Lange ausgegeben, was typisch fur
Sicherheitseigenschaften (siehe Abschnitt 2.2.1.3.1) ist.

a True

Abbildung 2.13: Der ,accept_all“-Zustand im Buchi-Automat fir <-a

2.3.2.3 Zusammenfassung

Beim Model-Checking mit SPIN wird aus einer in LTL vorliegenden Spezifikation ein Never Claim
generiert und mit dem in Promela beschriebenen Modell zu einem ausfuhrbaren Programm
verknupft [Hol03]. Dabei greifen das Modell und der Never Claim auf dieselben globalen Variablen
zu und nur das Modell kann die Variablen verandern.

Der Zustandsraum des Modells wird schrittweise nach einer Verletzung der Spezifikation
durchsucht. Dazu werden das zu prifende Modell und der Never Claim schrittweise abwechselnd
ausgefuhrt. Nach jedem Schritt im Modell wird abhangig von dem neuen Zustand ein Schritt im
Never Claim ausgefiihrt. Falls der Never Claim terminiert, bedeutet das, dass die Spezifikation
verletzt wurde, weil ein zu ihr widersprichlicher Zustand gefunden wurde. In diesem Fall wird als
Gegenbeispiel ein endlicher oder unendlicher Pfad ausgegeben (vgl. Abschnitte 2.3.2.2.1 und
2.3.2.2.2).

2.4 LTL-Erfullbarkeitsprufung

2.4.1 Grundlagen der Erfullbarkeitsprufung

Im Folgenden werden die zum Verstandnis von Erfullbarkeits- und Giltigkeitsprifungen
notwendigen Grundlagen der Aussagelogik vorgestellt.

Definition 2.6 (Modell): Ein Modell fir eine aussagenlogische Formel ist eine Belegung atomarer
Formeln mit wahr oder falsch, sodass die Formel wahr wird [Sch0Q].

Die Belegungen wahr und falsch werden oft auch mit 1 und 0 oder mit true und false bezeichnet.
Beispielsweise ist die Formel @ = a A b unter der Belegung (a=1, b=1) wahr. Das heif}t, diese
Belegung ist ein Modell fur ¢.

Definition 2.7 (erfiillbar, unerfiillbar): Eine Formel ¢ ist erfiillbar, falls flir sie mindestens ein
Modell existiert, anderenfalls ist sie unerfiillbar [Sch00].

Definition 2.8 (gultig): Eine Formel ¢ ist gdltig, falls jede Belegung ein Modell fur ¢ ist [SchO0Q].
Anhand der Wahrheitstafel in Tabelle 2.5 werden einige Beispiele erlautert. Da in der zu ¢

gehdrenden Spalte sowohl Nullen als auch Einsen vorkommen, ist ¢ erfillbar. Da fur jede
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2 Grundlagen

Belegung von a und b in der zu y gehdrenden Spalte nur Einsen stehen, ist y giiltig. Dagegen ist &
ungliltig.

a | b | g=amb | —¢ | y=av(a—b) | &=(an-a)
o | o 1 0 1 0
0 1 1 0 1 0
1 0 0 1 1 0
1 1 1 0 1 0

Tabelle 2.5: Wahrheitstafel fir erfullbare (¢, —¢), glltige (¢) und unerfillbare (§) Formel

Eine logische Formel kann entweder gliltig, unerfiillbar oder erfiillbar aber nicht giltig sein.
Insbesondere ist eine gultige Formel auch eine erflillbare Formel. Die  Abbildung 2.14
veranschaulicht, dass eine gultige Formel durch Negation zu einer unerfillbaren Formel wird.
Dagegen bleiben erfiillbare aber ungiiltige Formeln nach Negation erfiillbar und ungiiltig [Sch00],
wie beispielsweise ¢ in Tabelle 2.5.

alle aussagenlog. Formeln

[ giiltige | erfiillbare, aber | unerfiill- ’
Formeln | nicht giiltige | bare
Formeln Formeln
|

-G J ’ G

Abbildung 2.14: Zusammenhang zwischen Giltigkeit und Erflllbarkeit [Sch00]
Satz 2.1 (giiltig): Eine Formel @ ist gultig genau dann, wenn —¢ unerflllbar ist [Sch00].

Aus dem Satz 2.1 folgt, dass ¢ ungliltig ist, wenn —¢ erflllbar ist. Z. B. sind ¢ und & in der Tabelle
2.5 ungultig, weil ihre Negationen erfullbar sind.

Satz 2.2 (giiltige Teilformeln): In einer erfillbaren aber ungiltigen Formel, die eine Konjunktion
von Teilformeln darstellt, kénnen gliltige Teilformeln vorkommen.

Der Satz 2.2 lasst sich anhand eines einfachen Beispiels beweisen: Seien die Teilformeln A und B
gultig und C erfullbar. Dann ist die Formel F = A A B A C aufgrund der moglichen Belegung (A=1,
B=1, C=1) erfillbar aber aufgrund der moglichen Belegung (A=1, B=1, C=0) unguiltig.

Satz 2.3 (erfiillbare Konjunktion): Eine Konjunktion von Teilformeln ist erfiillbar genau dann,
wenn alle Teilformeln erflllbar sind [Sch00].

Satz 2.4 (giiltige Konjunktion): Eine Konjunktion von Teilformeln ist gliltig genau dann, wenn alle
Teilformeln glltig sind.

Der Satz 2.4 folgt aus der Tautologieregel: F A G = G, falls F gultig ist [SchOQ0].

Denn falls F die Konjunktion aller giiltigen Teilformeln reprasentiert und G die einzige unglltige
Teilformel ist, dann ist die gesamte Formel ungiltig. Nur wenn G auch gultig ist, ist die
Gesamtformel giltig.
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2.4 LTL-Erfullbarkeitsprifung

2.4.2 SAT-Solver

Mit SAT (engl. satisfiability) wird das Erfullbarkeitsproblem fiir logische Formeln bezeichnet. SAT-
Solver sind entsprechende Systeme zur Erfillbarkeitsprifung logischer Formeln. Das SAT-
Problem gehért zu der Komplexitatsklasse der nicht in polynomialer Zeit bezilglich der
Eingabelange losbaren Probleme [Sch08]. Die Beziehung zwischen der Laufzeit und der Anzahl
der Variablen in einer logischen Formel ist exponentiell. Es ist ein bedeutendes Forschungsthema
in der Informatik, weil viele Probleme aus derselben Komplexitatsklasse sich auf das SAT-Problem
zurlckfihren lassen [FM09]. Damit wirde ein effizienter Algorithmus fiir das SAT-Problem auch
eine effiziente Losung fur viele andere Probleme bedeuten.

Die LTL-Erfillbarkeitsprifung kann wie das Model-Checking in explizite und symbolische
Verfahren klassifiziert werden [RV07]. Das heilt, die Ubersetzung der Modelle und der LTL-
Formeln erfolgt jeweils explizit oder symbolisch. Des Weiteren wurde in [RV07] experimentell
festgestellt, dass symbolische Methoden zur LTL-Erfullbarkeitsprifung schneller als explizite
Methoden sind. Im Folgenden werden einige Maoglichkeiten zu Erfullbarkeitsprufung von LTL-
Formeln kurz vorgestellt. sowie beispielhaft entsprechende SAT-Solver vorgestellt.

2.4.2.1 LTL-Erfillbarkeitsprifung durch Zuriickfilhrung auf Model-Checking

In [RVO7] wird ein Ansatz zur LTL-Erflllbarkeitsprifung durch Zurickfuhrung auf Model-Checking
vorgestellt. Der Unterschied zum normalen Model-Checking besteht darin, dass das zu prifende
Modell anhand der LTL-Formel generiert wird. Es wird ein universelles Modell M generiert, welches
alle mdglichen Berechnungspfade des mit der LTL-Formel spezifizierten Systems enthalt. Eine
Formel @ ist genau dann erfillbar, wenn das universelle Modell M die Negation =@ nicht erfillt. In
diesem Fall wird der Model-Checker ein Gegenbeispiel ausgeben, welches bedeutet, dass das
unerwiinschte Verhalten —¢ im universellen Modell nicht méglich ist.

2.4.2.2 LTL-Erfillbarkeitspriifung durch alternierende Automaten

In [WDMRO08] wird ein weiterer automaten-theoretischer Ansatz beschrieben, bei dem sowohl der
explizite Aufbau eines nichtdeterministischen Blchi-Automaten vermieden als auch nicht auf reine
boolesche Ableitung zurlickgegriffen wird. Dabei werden LTL-Formeln in sogenannte alternierende
Blchi-Automaten Ubersetzt, die kompakter als Blchi-Automaten sind. Wahrend Buchi-Automaten
im schlimmsten Fall exponentiell viele Zustande enthalten, enthalten alternierende Automaten nur
linear viele Zustande. AnschlieRend wird der sogenannte Antichain-Algorithmus verwendet, der in
[WDHRO06] vorgestellt wird.

Die Autoren von [WDMRO08] haben ein Tool namens ALASKA [Wull2] veréffentlicht, welches
sowohl als Model-Checker als auch als SAT-Solver benutzt werden kann. Die Software wird Uiber
die Konsole bedient. Dabei wird die zu prifende LTL-Formel in Textform als Parameter tibergeben
und als Ergebnis ,formula is SATISFIABLE®, ,formula is NONSATISFIABLE®, ,formula is
NONVALID* oder ,formula is VALID* ausgegeben. Die Ausgaben sind einfach zu parsen und das
Tool ist damit in Verifikationssoftware einfach integrierbar.

2.4.2.3 Maude

Als ein Beispiel fir einen symbolischen SAT-Solver wird das unter der GNU-Lizenz frei verfigbare
Logik-Rahmenwerk Maude vorgestellt. Maude ist eine am Forschungsinstitut SRI International
(Stanford Research Institute) entwickelte ausfiihrbare Spezifikationssprache fur Gleichungs- und
Termersetzungssysteme. Dabei kann Maude als Ausfiihrungsumgebung fur verschiedene logische
Sprachen dienen [wwwe]. Ein Termersetzungssystem stellt in der theoretischen Informatik ein
Berechnungsmodell dar, welches aus Mengen von Ersetzungsregeln besteht. Eine
Ersetzungsregel liegt in der Form Linker_Term - Rechter_Term vor und bedeutet, dass der linke
Term durch den rechten Term substituiert werden kann [wwwk].
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2 Grundlagen

In Maude ist ein Modul fir Model-Checking und Erfullbarkeitsprifung integriert [wwwd]. Im
Folgenden wird ein Einblick in das System an einem praktischen Beispiel fur LTL-
Erfullbarkeitsprifung gegeben.

Die Literale der zu prifenden Formel werden in einem neuen Modul, welches die Module SAT-
SOLVER und LTL erweitert, in der Datei “SAT-SOLVER-TEST" gespeichert.

fmod SAT-SOLVER-TEST is
extending SAT-SOLVER .
extending LTL .
opsabc :->Formula.
endfm

Listing 2.3: LTL-Erfullbarkeitsprifung in Maude (Modul)

AnschlieRend wird Maude auf der Kommandozeile mit “maude.linux64“ gestartet, wobei sich die
Maude-Konsole 6ffnet. In der Maude-Konsole werden zunachst die Module model-checker.maude
und SAT-SOLVER-TEST geladen und mit dem Befehl “red satSolve(<formel>) .“ die
Erflllbarkeitsprifung einer LTL-Formel aufgerufen (Siehe Listing 2.4).

Die Ausgabe “result SatSolveResult: model(a ; b, (~ ¢) ; ¢)” bedeutet, dass es zu der angegebenen
Formel das in Abbildung 2.15 angegebene Modell existiert. Im Falle einer unerfiillbaren Formel
wird ,result Bool: false* ausgegeben.

Maude> load model-checker.maude

Maude> load SAT-SOLVER-TEST

Maude> red satSolve(@a A (O b) A (O O ((~c) A[l(c V (O c))))) .

reduce in SAT-SOLVER-TEST : satSolve(O O (~c/\[[(cVOc)A(aNOb)).
rewrites: 2 in Oms cpu (Oms real) (~ rewrites/second)

result SatSolveResult: model(a ; b, (~¢) ; c)

Listing 2.4: LTL-Erfullbarkeitsprifung in Maude (Konsole)

Abbildung 2.15: LTL-Erflllbarkeitsprifung in Maude (gefundenes Modells) [wwwd]
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3 Verwandte Arbeiten

In diesem Kapitel werden die auf Compliance ,by design“ (siehe Abschnitt 2.1.1) ausgerichteten
Konzepte und Vorarbeiten vorgestellt, auf denen diese Arbeit aufbaut. Dazu gehoéren die
Plausibilitatsprifungen flir Systemspezifikationen, der inkrementelle Entwicklungsprozess sowie
der Oryx-Prototyp, der in der vorhergehenden Arbeit um Compliance-Scopes und das Model-
Checking erweitert wurde.

3.1 Plausibilitatsprufungen von Spezifikationen

Wie im Abschnitt 2.1.1.2 gezeigt, ist es aufgrund des exponentiellen Anstiegs der
Fehlerbehebungskosten wichtig, Fehler moglichst friih zu erkennen. Dazu werden z. B.
Plausibilitatsprifungen sowohl am Systemmodell als auch an seiner Spezifikation vorgenommen
[Kup06]. Im letzteren Fall ist es das Ziel zu erkennen, ob das System die Spezifikation auf eine
triviale ungewollte Art erfillt. Eine haufige Fehlerquelle dieser Art ist eine immer unerfillte
Vorbedingung einer Implikation [BB94]. Das folgende Beispiel demonstriert die Notwendigkeit von
Plausibilitatsprifungen.

C(Anfrage > <Antwort)
LAUF jede Anfrage folgt schliellich eine Antwort.

Diese Lebendigkeits-Eigenschaft (siehe Abschnitt 2.2.1.3.2) ist in jedem Modell erfillt, in dem es
keine Anfragen gibt, was nicht der Absicht des Autors dieser Spezifikation entsprechen sollte. Viele
industrielle Verifikationsprogramme bericksichtigen bereits diese Fehlerquelle, indem sie nach
Teilformeln suchen, welche die Erfillung der Spezifikation nicht beeinflussen. Im obigen Beispiel
beeinflusst die Teilformel ,Antwort* das Ergebnis nicht, wenn im Modell keine ,Anfrage“ vorkommt.
Die Spezifikation wird erst dann verletzt, wenn es eine ,Anfrage“ gibt und dann niemals eine
»<Antwort® folgt. Um solche Teilformeln zu finden, wird das Model-Checking typischerweise mit
modifizierten Teilformeln in der Spezifikation wiederholt [BBDERO01, Kup06].

Eine weitere typische Fehlerquelle sind fehlende Lebendigkeits-Eigenschaften im Zusammenhang
mit Sicherheits-Eigenschaften in ihrer typischen Form:

(I~ (Client1_druckt A Client2_druckt)
»Zu keinem Zeitpunkt kénnen Client1 und Client2 gleichzeitig drucken.”

In einem Modell, in dem weder Clientl noch Client2 jemals drucken, ist diese Spezifikation zwar
erfillt, jedoch entspricht dieses Modell nicht der Absicht der Spezifikation. Es ist daher ratsam die
Sicherheits-Eigenschaften mit entsprechenden Lebendigkeits-Eigenschaften zu kombinieren
[Pnu86].



3.3 Inkrementelle Entwicklung Compliance-konformer Geschaftsprozessmodelle

3.2 Notwendigkeit von Erfullbarkeits- und
Gultigkeitsprufungen

Ein positives Ergebnis des Model-Checking garantiert keine Fehlerfreiheit des modellierten
Systems. Ein Grund daflir kbnnen mogliche Fehler in der Spezifikation sein, wie im Abschnitt 3.1
gezeigt. Als weitere Plausibilitdtsprifungen muss ein Verifikationssystem laut [Var97, RV07] neben
der Erflullbarkeit auch die Unglltigkeit einer Spezifikation Uberprifen kénnen. Denn in den
folgenden drei Féllen sind die gewohnlichen Plausibilitatsprifungen nicht ausreichend [RVO07]:

Fall 1: Die Spezifikation ist unerfiillbar. Es ist unmdglich zu einer unerfillbaren Spezifikation ein
Modell zu entwickeln und der Model-Checker wird immer ein negatives Resultat
ausgeben. Es liegt also ein Fehler in der Spezifikation vor.

Beispiel: (a U b) A 7(h)

Per Definition verlangt der Until-Operator, dass b schlieRlich auftreten muss. Daher liegt
ein Widerspruch vor.

Fall 2: Die Spezifikation ist gliltig, das heilt erflllbar in allen Modellen (vgl. Definition 2.8). Hier
liegt ebenfalls ein Fehler in der Spezifikation vor, da es keinen Sinn ergibt absichtlich eine
Spezifikation zu erstellen, die von beliebigen Modellen erfillt wird.

Beispiel: [J(a 2> <b)

Diese Formel ist gliltig, falls a und b aquivalent sind. Falls statt a und b komplexere
Formeln verwendet werden, ist die Giiltigkeit nicht so offensichtlich, wie in diesem
Beispiel.

Fall 3:  Auch wenn die Teilspezifikationen erfiillbar sind, kann die Gesamtspezifikation aufgrund
widersprichlicher Teilspezifikation unerfiillbar sein.

Beispiel: Teilspezifikation1: b A ...
Teilspezifikation 2:  [I7b A ...

Insbesondere ist der dritte Fall flr diese Arbeit von Interesse. Er kann in Situationen auftreten, in
denen fUr ein Prozessmodell mehrere Spezifikationen gelten missen, z. B. wenn es sich dabei um
eine Spezifikation eines Teilprozesses handelt, der die Ubergeordnete Spezifikation des
Gesamtprozesses ebenfalls erflllen muss [SALS10].

3.3 Inkrementelle Entwicklung Compliance-konformer
Geschaftsprozessmodelle

In [SALS10] wurde das Konzept der Compliance-Templates [SALM09] um den inkrementellen
Entwicklungsprozess erweitert. Dieser stellt sicher, dass die Compliance-Regeln der
Unterprozesse nicht die Regeln der Prozesse verletzen, in die sie eingebettet sind. Dazu werden
Fullbereiche definiert, denen Compliance-Regeln als aussagenlogische Formeln zugeordnet
werden kdénnen. Die Compliance-Regeln werden dabei an Unterprozesse, die diese Fullbereiche
verfeinern, weitergegeben. In Abbildung 3.1 sind drei Schichten des inkrementellen
Entwicklungsprozesses beispielhaft dargestellt. Im Prozess-Template auf der untersten Schicht ist
im Fullbereich A spezifiziert, dass die Aktivitdt A ausgefuihrt werden muss. Dieser Fullberiech wird
durch einen Designer des Unterprozesses 1 auf der hdheren Schicht verfeinert. Dieser enthalt die
Compliance-Regel B im Fullbereich B. Die Compliance-Regeln A und B werden durch den
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3 Verwandte Arbeiten

logischen UND-Operator ,A“ zu einer Compliance-Regel verknlpft, so dass der Unterprozess 1 sie
beide erflllen muss. Die verknipften Compliance-Regeln werden dabei auf Erflllbarkeit gepruft.
Der Fillberiech B wird von dem Unterprozess 2 verfeinert und erbt die verknlpften Compliance-
Regeln vom Unterprozess 1. Somit werden die Compliance-Regeln der ersten zwei Schichten
erfillt, wenn die Aktivitdten A und B im Unterprozess 2 modelliert werden. Die Compliance-Regeln
werden in der Normalform KNF (siehe Abschnitt 2.2.1.4) angegeben. Somit stellen die Klauseln der
KNF die Teilregeln dar, die an Unterprozesse weitergegeben werden kdénnen.

Unterprozess 2

Weitergabe der
Regel AAB

Unterprozess 1

Weitergabe der

. Regel A
Compliance-Template

Abbildung 3.1: Weitergabe von Compliance-Regeln, nach [SALS10]

3.3.1 Konflikte

Bei der Verknlipfung von Compliance-Regeln koénnen Konflikte zwischen geerbten und
vorhandenen Compliance-Regeln entstehen, so dass die verknupften Compliance-Regeln
unerflllbar sind. In [SALS10] wurden die folgenden direkten und indirekten Konflikte eingefihrt:

Definition 3.1 (Indirekter Konflikt): Ein indirekter Konflikt tritt bei der Verknupfung zweier
Compliance-Regeln auf, wenn ein positives Literal auf der tieferen Schicht mit der negativen
Form des gleichen Literals auf der h6heren Schicht verknUpft wird.

Beispielsweise entsteht ein indirekter Konflikt, wenn in der Abbildung 3.1 im Unterprozess 1 statt B
die Regel —A spezifiziert wird.

Definition 3.2 (Direkter Konflikt): Ein direkter Konflikt tritt bei der Verknupfung zweier
Compliance-Regeln auf, wenn ein negatives Literal auf der tieferen Schicht mit der positiven
Form des gleichen Literals auf der h6heren Schicht verknupft wird.

So bedeutet beispielsweise die Entdeckung eines direkten Konflikts, dass die Spezifikation eines
Unterprozesses korrigiert werden muss, weil sie die Ubergeordnete Compliance-Regel verletzt. Die
Abbildung 3.2 zeigt ein Beispiel fir einen direkten Konflikt.
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Unterprozess 2

Unterprozess 1

Direkter Konflikt

Compliance-Template

Abbildung 3.2: Direkter Konflikt, nach [SALS10]

3.3.2 Positive erfillte Literale

Die Regeln dirfen im Falle positiver erfiillter Literale nicht weitergegeben werden. Wie in Abbildung
3.3 zu erkennen, sind dem Unterprozess 1 die Regeln X und Y zugeordnet. Da die Regel X erfillt
ist, wird sie nicht an den Unterprozess 2 weitergegeben.

Unterprozess 2

Unterprozess 1

Template

Abbildung 3.3: Positive erfillte Literale, nach [SALS10]

3.4 Der Prototyp

In [SWLS10] wurden sogenannte Compliance-Scopes als eine Erweiterung der BPMN 2.0
eingeflhrt. Sie stellen Bereiche von Geschéaftsprozessmodellen dar, in denen Compliance-Regeln
(siehe Abschnitt 2.1.1) erfilllt sein missen. Diese Bereiche werden in existierenden Modellen oder
Prozess-Templates definiert und kénnen selbst beliebig viele Compliance-Scopes enthalten. Durch
die Zuordnung von Compliance-Regeln zu Compliance-Scopes wird die Erkennung von
Compliance-Verletzungen wahrend der Modellierung von Geschaftsprozessen ermdglicht.
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3 Verwandte Arbeiten

Die Compliance-Scopes (siehe Abbildung 3.5) und ihre automatische Verifikation durch Model-
Checking (siehe Abschnitt 2.3) wurden in der Diplomarbeit [Groll] in dem webbasierten Editor
Oryx (siehe Abschnitt 2.1.4) prototypisch umgesetzt. Die Compliance-Regeln werden dabei als
LTL-Formeln (siehe Abschnitt 2.2.1) grafisch modelliert und den Compliance-Scopes zugeordnet.
Als Model-Checker wird SPIN (siehe Abschnitt 2.3.2) verwendet. Dazu wird das in einem
Compliance-Scope enthaltene BPMN-Modell in der Systembeschreibungssprache Promela (siehe
Abschnitt 2.3.2.1) zusammen mit der assoziierten LTL-Formel in Form eines Never Claims (siehe
Abschnitt 2.3.2.2) an SPIN Ubergeben. Die Compliance-Scopes, in denen die Compliance-Regeln
verletzt werden, werden farbig hervorgehoben und als Gegenbeispiel wird eine Abfolge von
Aktivitaten ausgegeben, die zu der Regel-Verletzung fihrt. Im Folgenden wird der fir diese Arbeit
relevante Ablauf der Modellierung und des Model-Checking im Prototyp beschrieben. Fur weitere
Details sei auf [Grol1] verwiesen.

3.4.1 LTL-Editor

OR”X

HE &S0 4 DD X 9 odal & &~ L E J Lo : =

Shape Repository

= LTL Diagram | FINALLY

[F] Property LIMTIL )|
a b
[} Perenthesiz

N Not-Operator

G Globally-Operstor

[] Property
F  Finaly-Operalor
{) Parenthesis
&8 And.Cperator N Nok-Operatar Translate LTI X
| Or-Operstor G Ghobaly-Oparator .;l."_n;l ‘!]) LTL-Farmula: <=(a U b)

U Unbil-Csoerator
(o] 4

<+ implication-Operator

Abbildung 3.4: Grafischer LTL-Editor

Eine Compliance-Regel wird aus einzelnen LTL-Formeln zusammengesetzt, die in einem
grafischen Editor modelliert werden. In der Abbildung 3.4 sind alle per Drag&Drop ins Diagramm
einfligbaren Operatoren (,v,A,=>,<>,0,U) sichtbar.” In der horizontalen Toolbar befindet sich der
LTL-Button, mit dem sich eine modellierte Formel in ihre Textdarstellung, in diesem Fall ,<>(a U
b)*, umwandeln I&sst.

3.4.2 Compliance-Regel-Editor

Nachdem ein BPMN-Diagramm mit mindestens einem Compliance-Scope modelliert wurde, kann
fur einen markierten Compliance-Scope eine Compliance-Regel erstellt werden. Dazu wird ein
Compliance-Scope mit der Maus ausgewahlt und lber ein Drop-Down-Meni in der Oryx-Toolbar
der Compliance Wizard aufgerufen (siehe in Abbildung 3.5).

! Der Next-Operator wird im Prototyp nicht unterstiitzt, weil das Model-Checking mit SPIN aus Performancegriinden
standardmaRig unter sogenannter partial order reduction ausgefiihrt wird [Gro11]. Dadurch ist der Berechnungsbaum fiir
LTL-Formeln ohne den Next-Operator mit einer geringeren Anzahl von Verzweigungen moglich. Somit sind relative
Ausfiihrungsreihenfolgen in parallelen Prozesspfaden nicht ausdriickbar [Hol03]. Diese sind jedoch auch in realen
Geschaftsprozessen in der Regel unbestimmt [For02]. Fir das Model-Checking unter Berlicksichtigung des Next-Operators
muss SPIN mit einem speziellen Parameter aufgerufen werden [Hol03].
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Abbildung 3.5: Aufruf der Compliance-Prifung

In dem in Abbildung 3.6 dargestellten Compliance Wizard erfolgt die Zusammensetzung der
Compliance-Regel aus einzelnen LTL-Formeln mit Hilfe der logischen Operatoren NOT, AND und
OR. Die Operatoren kdnnen als Operanden entweder weitere Operatoren oder LTL-Regeln
enthalten. Auflerdem koénnen Datentransfer-Regeln eingefligt werden, die in dieser Arbeit jedoch
nicht betrachtet werden. Somit wird die Compliance-Regel als ein Regelbaum, auch
Operatorenbaum genannt, dargestellt. Der Regelbaum enthalt die logischen Operatoren in den
Knoten und die Namen und IDs der LTL- oder Datentransfer-Regeln in den Blattern (vgl. [Gro11].

Compliance Wizard p-;
Edi Remove | NOT AND OR LTL DATATRAMNSFER

Tree -
|5 COMPLIANCE ASSURANCE RULE
=5 AND
= LTL{Finally d, 29)
s-j0R
= LTL{F(a). 28)
] LTL(Finally by, 45)

Ok Cancel
Abbildung 3.6: Der Regelbaum im Compliance Wizard

3.4.3 Compliance-Prufung

Nachdem die Modellierung des BPMN-Prozesses und die Erstellung der Compliance-Regel
abgeschlossen sind, kann die Compliance-Prifung, das heif3t Model-Checking aller Compliance-
Scopes oder nur der Ausgewahlten, Uber das in Abbildung 3.5 dargestellte Dropdown-Menu
aufgerufen werden (,Check Compliance®).

Auswertung des Regelbaums

Statt fiur die lange Compliance-Regel wird das Model-Checking nur fur die einzelnen LTL-Regeln
von den Blattern des Regelbaums ausgefihrt. An jedem Knoten wird der boolesche Wert
entsprechend der logischen Semantik des jeweiligen Operators berechnet. Das Gesamtergebnis in
der Wurzel gibt an, ob die Compliance-Regel im Modell erfullt wird (vgl. [Grol1]). Wahrend fir den
UND-Operator alle Operanden das Model-Checking erfolgreich bestehen mussen, reicht es fir den
OR-Operator, wenn nur ein Operand vom Modell erfillt wird. Auch im Falle des UND-Operators
werden nicht immer alle LTL-Regeln gepriift, denn sobald ein nicht erfillter Operand festgestellt
wird, werden alle anderen Ubersprungen. Andererseits ist es beim ODER-Operator mdglich, dass
alle Operanden geprift werden missen, bis ein erflllender Operand gefunden wird.
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3 Verwandte Arbeiten

Ergebnis

Nach dem erfolgten Model-Checking werden die Compliance-Scopes entsprechend ihren
Ergebnissen farblich gekennzeichnet. Beispielsweise bedeutet die griine Farbung in Abbildung 3.7,
dass die Compliance-Regel im Compliance-Scope erfiillt wird, wahrend rot das Gegenteil bedeutet.

.':IIH-Z-;.I.-'«L"‘ IC = foda i~ B~ 05 O L2 .‘E*‘E;Eaﬁ'
Shape Repositony “ | f'Ecopel

Emnﬂhnuf

= BPMN 2.0 § Warlabdlity
= wariahility
{2} vareile Regon

pink=unerfullt
(invalid)

ﬁ Complance Scoge

3 Activites
2 matewaye

grun=erfillt
:x_":' - (valid)

= Data Objects .
Abbildung 3.7: Farbliche Kennzeichnung der Compliance-Scopes

Gleichzeitig wird das Ergebnisfenster eingeblendet. Im ersten Reiter wird die Zusammenfassung
(siehe Abbildung 3.8) aller Ergebnisse und in den weiteren Reitern die Ergebnisse und Logs
einzelner Compliance-Scopes angezeigt. Falls das Modell seine Spezifikation nicht erfillt, wird ein
Gegenbeispiel angegeben. Beispielsweise wird in Abbildung 3.9 ein Ausfiihrungspfad angegeben,
der die Compliance-Regel <c verletzt.

Compliance Check Result X

Result Scope? (Imvalid) Scopel (Vakd)

Performing compliance check for all compliance scopes...
Found compliance scope Scope2, checkimg. ..
Finished checking., result: Invalid
Found complisnce scope Scopel, checking. ..
Finished checking, result: Valid

Finished compliance check for all compliance scopes

o T - e
valid: 1
Invalid: 1
Failed: ©
Mo rules defined: ©
Ignaored: O

Time elapsed: 3647ms

Ciosa

Abbildung 3.8: Ergebnisfenster einer Compliance-Prifung (Gesamtergebnis)
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Compliance Check Result ®

Result Scopez (Invalid) Scopel (Valid)

Message
false, Model did not match specification ‘==(c}', counterexample as follows:
Performing Start ewvent
Performing XOR-Gateway, taking way to Task <x=
Intermediate step
Performing Task <x>
Performing XOR-Gateway, taking way to End event
End event

Log
Checking compliance scope Scope2
Evaluating LTL-Operator
Evaluating <=(c)
Finished evaluating LTL-Operator, passed: false
Finished checking, result: Invalid

Close
Abbildung 3.9: Ein Gegenbeispiel nach dem Model-Checking

3.4.4 Variable Regionen

In [SALMO09] wurden sogenannte Compliance-Templates eingefiihrt und in diesem Prototyp durch
[K6t10] implementiert. Dabei enthalten die Compliance-Templates sogenannte variable Regionen,
die mit Aktivitaten gefillt werden missen, damit ein ausfiihrbarer Prozess entsteht. Wie die
nachfolgende Abbildung zeigt, werden variable Regionen mit einem Puzzle-Symbol in der rechten
unteren Ecke einer Aktivitat kenntlich gemacht. Diese Art von Aktivitdten wird in einigen
Abbildungen der folgenden Kapitel verwendet um noch nicht vollstdndig modellierte
Prozessmodelle darzustellen.

Wariable

Fegion

Abbildung 3.10: Variable Region
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4 Konzept

Aufbauend auf den beschriebenen Grundlagen und Vorarbeiten wird in diesem Kapitel ein Konzept
zur Konsistenzprifung der Compliance-Regeln verschachtelter Compliance-Scopes erarbeitet. In
erster Linie geht es um die Ubertragung des in Abschnitt 3.3 beschriebenen inkrementellen
Entwicklungsprozesses aus [SALS10] auf die Compliance-Scopes und die LTL (siehe Abschnitt
2.2.1). Es wird eine Definition fiir positive und negative Regeln eingefiihrt, welche die Weitergabe
von Regeln an Compliance-Scopes bestimmt. Des Weiteren wird die Integration des Konzeptes in
den Oryx-Prototyp (siehe Abschnitt 3.4) erlautert.

4.1 Allgemein

In diesem Kapitel werden wichtige Begriffe definiert sowie einige Beispiele flir Compliance-Regeln
in LTL angegeben. Das Anfiihren von Beispielen dient dabei zum einen dazu, die praktische
Relevanz des Themas zu verdeutlichen und zum anderen dazu, in den darauf folgenden
Abschnitten aus technischen Grinden auf praxisnahe Prozessdiagramme weitgehend verzichten
zu kénnen.

4.1.1 Konventionen

Um begriffliche Verwechselungen zu vermeiden wird im Folgenden die Bedeutung wichtiger
Begriffe definiert. In Abbildung 4.1 werden die wichtigsten Begriffe aus Sicht des mittleren
Compliance-Scopes zusammengefasst.

Teilregel AuBerer Compliance-Scope

AuRere Regel: [J(a><d) A Oc

/

Compliance-Regel: $b \\/ Compliance-Scope

/ <>b ALme
Verknupfte ==

Compliance- Innere Regel: $c /
Regeln = ~
Oe A b alde

Innerer Compliance-Scope

|

Abbildung 4.1: Schematischer Begriffsiberblick



4.1 Allgemein

Compliance-Scope oder Scope: Ein Compliance-Scope ist ein abgegrenzter Prozessbereich in
einem BPMN-Diagramm, dem eine Compliance-Regel zugeordnet ist. Eine formale
Definition, die im Rahmen des Prototyps gilt, kann in [SWLS10] gefunden werden.

Teilregel: Eine Teilregel ist eine der durch den logischen UND-Operator auf der hdchsten
Hierarchieebene des Regelbaums (siehe Abbildung 3.6) verbundenen Teilformeln einer
Compliance-Regel.

Compliance-Regel oder Regel: Eine Compliance-Regel ist eine Beschreibung der Eigenschaften
eines Prozessmodells in der LTL. Eine Compliance-Regel kann aus mehreren durch den
logischen UND-Operator verknipften Teilregeln bestehen.

Innerer Compliance-Scope: Die in einem Compliance-Scope - auf derselben Ebene wie die
Aktivitaten - enthaltenen Compliance-Scopes werden innere Compliance-Scopes oder
innere Scopes bezeichnet. Die Regeln eines inneren Compliance-Scopes missen mit den
Regeln seiner auleren Compliance-Scopes konsistent sein.

AuBerer Compliance-Scope: Der Compliance-Scope, in dem sich der betrachtete Compliance-
Scope befindet, wird als duBerer Compliance-Scope oder duferer Scope bezeichnet.

Innere Compliance-Regel: Die Compliance-Regel des betrachteten Compliance-Scopes wird
innere Compliance-Regel oder innere Regel bezeichnet.

AuBere Compliance-Regel: Die Compliance-Regel des duReren Compliance-Scopes wird ullere
Compliance-Regel oder dulBere Regel bezeichnet.

Verkniipfte Compliance-Regel: Eine verkniipfte Compliance-Regel enthalt neben der
Compliance-Regel des gepriften Compliance-Scopes alle relevanten Teilregeln der
auleren Compliance-Regeln, die durch den logischen UND-Operator verkn(pft sind.

Konsistenz: Unter Konsistenz wird die logische Erfullbarkeit einer verknipften Compliance-Regel
verstanden.

Compliance-Priifung: Unter Compliance-Prifung wird in dieser Arbeit das Model-Checking in
Kombination mit der Weitergabe relevanter Teilregeln an innere Compliance-Scopes und
der Konsistenzprifung verstanden.

4.1.2 Anwendungsbeispiele

Als Anwendungsbeispiel wird ein Konzern mit mehreren Geschéaftsfeldern betrachtet. Wahrend auf
der Konzernebene strategische Vorgaben fir alle Geschéftsfelder gelten, haben die
Geschaftsfelder und die Abteilungen ihre eigenen branchenspezifischen oder internen Regelungen
sowie gesetzliche Bestimmungen zu erflllen.

Beispielsweise fuhrt der Konzern in Abbildung 4.2 im Zuge der Restrukturierung die folgende
konzernweite Compliance-Regel fir den Mitarbeitereinstellungs-Prozess ein um Versté3en gegen
das Bundesdatenschutzgesetz und Know-How-Verlusten an Mitbewerber vorzubeugen: ,Jeder
neue Mitarbeiter muss nach seiner Einstellung Uber Informations- und Datenschutz im
Unternehmen unterwiesen werden®.
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Konzem Compliance
O(Mitarbeitereinstellung = < (Informations- und Datenschutzunterweisung)
Gaschaftsfeld A Compliance (Geschaftsfeld B cumn“a“ce'\

‘ Eirik auf Cumpliam:EJ < [EI'ILEILIT Cumpliance]

Qruduktian Cumpliﬂn:e} Produktion Cumplianoej
.-r Q
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Abbildung 4.2: Anwendungsbeispiel Compliance-Regeln

Wenn keine der Abteilungen diese Regel selbst spezifiziert, kann ihre Verletzung zwar durch
Model-Checking aller Geschaftsprozessesse erkannt werden. Die Modellierung des
Geschaftsprozesses einer Abteilung kann jedoch zum Zeitpunkt der Fehlerentdeckung weit
fortgeschritten sein. Daher ist eine friihe Fehlervermeidung wiinschenswert (vgl. Abschnitt 2.1.1.2).
Es kann ein Prozess-Template vorgestellt werden, welches wiederum Prozess-Templates fir
geschéaftsfeldspezifische Mitarbeitereinstellungs-Prozesse enthalt. Diese sind zwar unabhangig
voneinander, mussen jedoch alle die oben genannte Regel erfillen. Dazu wird die Regel
automatisch an sie weitergegen.

Des Weiteren ist es moglich, dass eine Abteilung etwas Gegensatzliches zur konzernweiten Regel
spezifiziert. Beispielsweise kann eine weitere konzernweite Compliance Regel aus dem Bereich
Datenschutz lauten [R6s09]: ,Wenn ein Mitarbeiter ausritt, dann muss sein E-Mail-Postfach
geléscht werden. In LTL:

Cl(Mitarbeiter tritt aus > <>E-Mail-Postfach I6schen)

Eine dazu widersprichliche Compliance-Regel konnte sein: ,Wenn ein Mitarbeiter ausritt, dann
muss sein E-Mail-Postfach archiviert werden.” In LTL:

C(Mitarbeiter tritt aus = ~<>E-Mails-Postfach archivieren)

Durch die automatische Weitergabe der Geschéaftsfeldregel an die Abteilungen und anschlieRende
Erfullbarkeitsprifung mit den jeweiligen Abteilungsregeln kénnen frihzeitig Inkonsistenzen
entdeckt werden.

Eine interne Compliance-Regel in einem Dienstleistungsunternehmen, welches flir seine Kunden
grolRe Projekte organisiert, kdnnte wie folgt formuliert sein: ,In allen Projektabwicklungsprozessen
muss gelten, dass, wenn eine Angebotsanfrage empfangen wird, kein Angebot verschickt wird
bevor es nicht von allen Verantwortlichen geprift wurde.“ In LTL:

[I(Angebotsanfrage empfangen - (7Angebot schicken U Angebot prifen))

4.2 Weitergabe von Compliance-Regeln

Die Weitergabe von Compliance-Regeln an Unterprozesse im Rahmen des inkrementellen
Entwicklungsprozesses in [SALS10] wurde auf der Grundlage von Aussagenlogik eingefihrt. Um
die dort definierten direkten und indirekten Konflikte (siehe Definition 3.2 und Definition 3.1) auf die
LTL (siehe Abschnitt 2.2.1) Ubertragen zu kénnen, missen zunachst fur die positiven und
negativen Literale Entsprechungen in der LTL gefunden werden. Statt Literalen werden Teilregeln
von Compliance-Regeln betrachtet.
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4.2 Weitergabe von Compliance-Regeln

4.2.1 Teilregeln

In [SALS10] liegen die Compliance-Regeln in der KNF (siehe Abschnitt 2.2.1.4) vor, so dass die
Klauseln die Teilregeln darstellen, die an Unterprozesse weitergegeben werden konnen. Die
Klauseln der Normalform SNF (siehe Definition 2.5) kénnen auch als solche Teilregeln in der LTL
aufgefasst werden. In diesem Fall missen alle Compliance-Regeln vom Benutzer entweder bereits
in der SNF eingegeben werden oder automatisch in SNF umgeformt werden. Die Umformung hat
jedoch den Nachteil, dass im Falle eines Konflikts (siehe Abschnitt 3.3) zwischen Compliance-
Regeln in SNF die zu korrigierende Teilregel in ihrer urspriinglich vom Benutzer eingegebenen
Form schwer erkennbar sein kann. Beispielsweise besteht die einfache Formel oa in SNF aus drei
Klauseln: [CJ((Start>x) A (x>a) A (x>Oa)). Aullerdem missen in diesem Fall die entstehenden
Klauseln als eine Einheit betrachtet werden. Obwohl das obige Beispiel als [I(Start>x) A [1(x>a)
A (x> Oa) geschrieben werden kann, diirfen die Klauseln nicht getrennt an innere Compliance-
Scopes weitergegeben werden, weil sie nur zusammen aquivalent zu der urspriinglichen Formel
[Ja sind. AuBerdem scheidet die Verwendung der SNF aus, weil der verwendete Prototyp den O-
Operator (Next-Operator, siehe Abschnitt 2.2.1) nicht unterstitzt.

Alternativ kann eine Art KNF auch fir die LTL verwendet werden, in der Teilregeln durch den
logischen UND-Operator verknipft sind. Der zu erweiternde Prototyp bietet bereits die Mdglichkeit
eine solche Regel im Compliance Wizard (siehe Abbildung 3.6) zu erstellen, indem auf der
obersten Ebene des Regelbaums (siehe Abbildung 3.6) ein UND-Operator verwendet wird. Die
Operanden dieses UND-Operators bilden somit die Teilregeln, die einzeln an innere Compliance-
Scopes weitergegeben werden kénnen. Es ist jedoch zu beachten, dass im Gegensatz zu einer
echten KNF in den ,Klauseln® weitere UND-Operatoren und in den Blattern beliebig komplexe LTL-
Formeln verwendet werden kénnen. Damit kdnnen sehr komplexe Teilregeln entstehen.

4.2.2 Erfullte Teilregeln

Die erfillten Teilregeln kdnnen durch das im verwendeten Prototyp bereits implementierte Model-
Checking erkannt werden. Das Model-Checking im Prototyp erfolgt nur fir die LTL-Formeln an den
Blattern des Regelbaums (siehe Abbildung 3.6) und das Gesamtergebnis wird entsprechend der
logischen Semantik der Operatoren an den Knoten in der Wurzel berechnet (siehe Abschnitt 3.4.3).
Daher kann die vorhandene Routine des Model-Checking genutzt werden und die Model-
Checking-Ergebnisse fir einzelne Teilregeln abgegriffen werden.

4.2.3 Positive und negative Teilregeln

Es stellt sich die Frage, wie positive und negative Literale aus [SALS10] (siehe Abschnitt 3.3) auf
die LTL Ubertragen werden kénnen. Sind beispielsweise (a U b) und [J(a—<b) positive und ihre
Negationen entsprechend negative Eigenschaften? Die Unterscheidung in positive und negative
Eigenschaften ist notwendig, weil positive erfillte Eigenschaften nicht an Unterprozesse
weitergegeben werden missen (siehe Abbildung 3.3). Im Folgenden wird zunachst die
grundlegende Problematik diskutiert und anschliefend die in dieser Arbeit geltenden Definitionen
fur positive und negative Teilregeln angegeben.

Das positive Literal A in der Compliance-Regel in Abbildung 3.1 bedeutet, dass irgendwann
garantiert A vorkommen muss. Dies entspricht in LTL der Lebendigkeitseigenschaft (siehe
Abschnitt 2.2.1.3.2) <>a. Entsprechend kann das negative Literal =B in LTL als die
Sicherheitseigenschaft (siehe Abschnitt 2.2.1.3.1) ={b verstanden werden, was aquivalent zu
[1-b ist. Beispielsweise gelten diese einfachen Beispielformeln in dem Prozess in Abbildung 4.3.
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Abbildung 4.3: Einfache positive und negative Eigenschaften
4.2.3.1 Scope-ubergreifende Erfiillung

Der grundlegende Unterschied der LTL zur Aussagenlogik besteht darin, dass sich eine LTL-
Formel aufgrund der Zeitoperatoren nicht nur auf einen Zustand sondern auf eine Folge von
Zustanden oder Zeitpunkten beziehen kann (siehe Abbildung 2.7), wie z. B. das obige Beispiel
[J=b. Im Folgenden werden weitere Beispiele erlautert.

So bedeutet die Lebendigkeitseigenschaft <>[Jc, dass ab einem zuklinftigen Zustand bis zum
Endzustand c=true gelten muss. Das bedeutet, dass sich ein Teil der Zustandssequenz mit c=true
in einem inneren Compliance-Scope befinden kann, sodass die Regel Scope-libergreifend erfilllt
wird. Die Formel &(d U c¢) bedeutet, dass in einem der zuklnftigen Zusténde c=true gilt und es
unmittelbar davor eine Zustandssequenz mit d=true gibt. Beispielsweise kann <(d U c¢) in
Abbildung 4.3 dadurch erfiillt werden, dass sich die Zustandssequenz mit a=true im inneren
Compliance-Scope befindet. Ahnliches gilt fir die Formel a U d, die sich auf eine Zustandsfolge
vom Startzustand bis zu einem Zustand mit d=true bezieht. Beispielsweise muss in Abbildung 4.3
im inneren Compliance-Scope die Aktivitat d als erste Aktivitat vorkommen damit a U d erfullt wird.

4.2.3.2 Grundlegende Giiltigkeitsbereiche

Ausgehend von eigenen Beobachtungen und den temporalen Glltigkeitsbereichen aus [DAC98]
(siehe Abbildung 2.7) werden folgende grundlegende Giltigkeitsbereiche von Formeln
unterscheiden: (1) Formeln, die sich auf alle Zeitpunkte beziehen, insbesondere
Sicherheitseigenschaften; (2) Formeln die sich auf diskrete Zeitpunkte beziehen. Das kénnen z. B.
Lebendigkeitseigenschaften sein; Und Formeln, die sich auf Zustandsfolgen (3) inklusive des
Startzustands oder (4) inklusive des Endzustands oder (5) exklusive des Start- und Endzustands
beziehen. Diese Gultigkeitsbereiche sind in Abbildung 4.4 mit Beispielen dargestellt.

1) Alle Zustande I (e, (1<Ca

2) Zeitpunkte [ — [ OCa, Ca>Ob, O(nanb)
3) Inkl. Startzustand [ | aUb,a><Cb

4) Inkl. Endzustand I S O

5) Exkl. Start- und Endzustand |—— s O(a U b)

Abbildung 4.4: Grundlegende Giiltigkeitsbereiche von LTL-Formeln, in Anlehnung an [DAC98]

Bei den letzten drei Gultigkeitsbereichen stellt sich die Frage, wie Beginn und Ende ihrer
Giltigkeitsbereiche erkannt werden koénnen. Beispielsweise kann es bei dem vierten
Giltigkeitsbereich am Anfang des Prozesses einen Compliance-Scope geben, an den die
Compliance-Regel <Ca nicht weitergegeben werden darf. Denn <Ca bezieht sich nur auf ihren
Compliance-Scope und soll nicht am Ende von jedem inneren Compliance-Scope gelten. Es sei
denn, es wird explizit gewiinscht, dass <>[Ja in jedem inneren Compliance-Scope gelten soll.
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4.2 Weitergabe von Compliance-Regeln

Beispielsweise ist die Regel <>[Ja in Abbildung 4.3 bereits erfillt und es ist unklar, ob sie auch in
dem inneren Compliance-Scope erflllt sein muss.

4.2.3.3 Ansatz zur Erkennung positiver und negativer Compliance-Regeln

Fir ein positives Literal in [SALS10] ist charakteristisch, dass es an die Unterprozesse nicht mehr
weitergegeben werden muss, wenn es einmal erfiillt ist, da es in den Unterprozessen nicht mehr
verletzt werden kann. Dies gilt beispielsweise auch fir <a in Abbildung 4.3. Ein negatives Literal
muss dagegen immer weitergegeben werden, weil es Uberall im Prozess verletzt werden kann.
Dies gilt auch fur die Regel [J7b in Abbildung 4.3. Um solche Eigenschaften zu unterscheiden
kénnen die ihnen entsprechenden Biichi-Automaten (siehe Abschnitt 2.2.1.1) untersucht werden.
Dabei lasst sich feststellen, dass die Biichi-Automaten fiir Lebendigkeitseigenschaften (siehe
Abschnitt 2.2.1.3.2) wie <>—a den ,accept_all“-Zustand enthalten (siehe

Listing 2.2). Die Sicherheitseigenschaften enthalten diesen Zustand dagegen nicht (siehe

Listing 2.1). Der ,accept_all“-Zustand (vgl. 2.3.2.2.2) bedeutet, dass es einen Zustand gibt, ab dem
die Eigenschaft unabhangig vom weiteren Verlauf erfillt ist. Das Fehlen des ,accept_all“-Zustands
bedeutet, dass die geforderte Eigenschaft in allen Zustéanden erflillt sein muss. Dies entspricht dem
Verstandnis von positiven und negativen Literalen. Daher basiert die Erkennung positiver und
negativer Teilregeln in dieser Arbeit auf den folgenden Definitionen:

Definition 4.1 (Positive Teilregel): Eine positive Teilregel ist eine LTL-Formel deren mit SPIN
generierter Buchi-Automat einen ,accept_all“-Zustand enthalt.

Definition 4.2 (Negative Teilregel): Eine negative Teilregel ist eine LTL-Formel deren mit SPIN
generierter Blchi-Automat keinen ,accept_all“-Zustand enthalt.

Im Allgemeinen sind diese Definitionen nicht an SPIN gebunden, weil die Blchi-Automaten auch
mit anderen Tools generiert werden konnen (siehe Abschnitt 2.2.1.1). Beispiele fir Buchi-
Automaten mit und ohne des ,accept_all*-Zustands sind in Tabelle A. 1 und Tabelle A. 2 zu finden.

Beispiel (Negative Teilregel, Giiltigkeitsbereich 1): Sicherheitseigenschaft []7(a A b). Es gibt
keinen ,accept_all‘-Zustand im Blchi-Automat, weil in allen Zustdnden —(a A b) erfillt sein muss.

Beispiel (Negative Teilregel, Giiltigkeitsbereich 1): Die Lebendigkeitseigenschaft (J<a. Es gibt
keinen ,accept_all“-Zustand im Blichi-Automat, weil in allen Zustanden <>a erfiillt sein muss.

Beispiel (Negative Teilregel, Giiltigkeitsbereich 4): Zum Erkennen der Lebendigkeits-
eigenschaft <&[Ca muss der Biichi-Automat alle Zustéande vom Start- bis zum Endzustand prifen.
Daher gibt es keinen ,accept_all“-Zustand im Blchi-Automat.

Beispiel (Positive Teilregel, Giiltigkeitsbereich 2): Lebendigkeitseigenschaft <-(a A b).
Ab einem Zustand im Modell, in dem a und b nicht gleichzeitig erfullt sind, werden alle weiteren
Modellzustande durch den ,accept_all“-Zustand des Blchi-Automaten akzeptiert.

Beispiel (Positive Teilregel, Giiltigkeitsbereich 2): Lebendigkeitseigenschaft <(a —<b) gibt an,
dass, falls irgendwann a eintritt, muss in demselben oder einem der darauffolgenden Zustande b
eintreten. Hier sind es ein oder zwei Zustande, die zur Erflllung beitragen. Nachdem b erfilllt ist,
werden alle weiteren Modellzustande durch den ,accept_all“-Zustand im Buchi-Automat akzeptiert.

Beispiel (Positive Teilregel, Giiltigkeitsbereich 3): a U b. Wenn in dem Startzustand a=true gilt,
akzeptiert der ,accept_all“-Zustand des Buchi-Automaten, alle weiteren Modellzustande, wenn in
allen vorhergehenden Zustanden a erfullt ist.
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Beispiel (Positive Teilregel, Giiltigkeitsbereich 5): <(a U b) ist in einer Zustandssequenz erfillt,
in der a U b gilt. Nach Erkennung dieser Zustandssequenz akzeptiert der ,accept_all“-Zustand des
Buchi-Automaten alle weiteren Modellzustande.

4.2.3.4 Beobachtungen

Anhand obiger Beispiele lasst sich feststellen, dass die Teilregel in Einklang mit den
vorangegangenen Definitionen genau dann positiv ist, wenn es nach dem Gultigkeitsbereich der
Teilregel weitere Zustédnde gibt. Anderenfalls ist sie negativ. Dies wird in Abbildung 4.5
zusammengefasst.

1) Alle Zustinde I Negativ
2) Zeitpunkte I — | Positiv
3) Inkl. Startzustand — | Positiv
4) Inkl. Endzustand I s Negativ

5) Exkl. Start- und Endzustand | s |  Positiv

Abbildung 4.5: Positive und negative Teilregeln nach Giiltigkeitsbereichen, nach [DAC98]

Eine weitere Beobachtung ist, dass es fir LTL-Formeln mit den Giiltigkeitsbereichen 2-5 sinnvoll
sein kann anzugeben, ob sie nur in ihrem Compliance-Scope, in allen Compliance-Scopes oder
nur in ausgewahlten Compliance-Scopes gelten sollen.

Die Weitergabe von Compliance-Regeln wird im Folgenden anhand von Beispielen erlautert.

4.2.4 Direkte Konflikte

Gemal [SALS10] liegt ein direkter Konflikt liegt vor, wenn eine negative Teilregel (siehe Definition
4.2) eines Compliance-Scopes zu ihrer negierten Form aus einem inneren Compliance-Scope im
Widerspruch steht. Eine negative Teilregel wird dabei immer an die inneren Compliance-Scopes
weitergegeben, weil sie in jedem Zustand innerhalb des Compliance-Scope erfillt sein muss.

Beispielsweise steht in der Abbildung 4.6 die Lebendigkeitseigenschaft <b des inneren
Compliance-Scopes zu der Sicherheitseigenschaft [J-b (dquivalent zu —-<b) des &auferen
Compliance-Scopes im Widerspruch. In diesem Fall wird durch die Erfiillbarkeitsprifung von [J-b
A b die Inkonsistenz festgestellt.

(" ccumnliam::gtl
O=b A OOc AL

Compliance
Ob A,
[: ] - ariable .{ )
a C
& —

Abbildung 4.6: Direkter Konflikt
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4.2 Weitergabe von Compliance-Regeln

Die Compliance-Regel [Jc wird nach der Definition 4.2 als eine negative Teilregel erkannt und
daher an den inneren Compliance-Scope weitergegeben. Jedoch bleibt sie auch dann erfillt, wenn
keine Aktivitat ¢ im inneren Compliance-Scope vorkommt.

4.2.5 Indirekte Konflikte

Entsprechend [SALS10] liegt ein indirekter Konflikt vor, wenn eine positive Teilregel eines
Compliance-Scope zu ihrer negierten Form aus einem inneren Compliance-Scope im Widerspruch
steht. Dabei werden positive Eigenschaften nicht weitergegeben, wenn sie bereits erflllt ist.

4.2.5.1 Erfiillte positive Teilregeln

Das Beispiel in Abbildung 4.7 zeigt drei Teilregeln (a U b), &c und <&(d U e) aus allen drei
Glltigkeitsbereichen fur positive Eigenschaften (siehe Abbildung 4.5). Die innere Compliance-
Regel (-<Oc A=Ob A=e) steht dabei zu allen Teilregeln im Widerspruch. Da jedoch alle drei
Regeln erfillt und aufgrund des ,accept_all“-Zustand in ihren Blchi-Automaten als positiv erkannt
werden, werden sie nicht an den inneren Compliance-Scope weitergegeben. Somit sind
abweichende Regeln in dem inneren Compliance-Scope erlaubt.

llance)
(a U b) A OcA 0(d U e) 2O 6 AObh A e Compliance Compliance
—
s
- | b = ¢ )
~ ~
N g
I'\._.-f" a
— i R 'S " -~ .
b = d —um—{ e H f
LY g \ ) J )

Abbildung 4.7: Indirekte Konflikte (erfullte positive Teilregeln)
4.2.5.2 Nicht erfiillte positive Teilregeln

Der auflere Compliance-Scope in Abbildung 4.8 enthalt drei unerfillte Teilregeln mit den drei
moglichen Glltigkeitsbereichen fir positive Eigenschaften (siehe Abbildung 4.5). Beispielsweise
wird die Teilregel <c an die inneren Compliance-Scopes weitergegeben. Die Erfiillbarkeitspriifung
der inneren Compliance-Regel (=Oc A=Ob A=Oe) in Verknipfung mit Oc  ergibt eine
Inkonsistenz, sodass die innere Regel unter Umstanden korrigiert werden muss. Ein indirekter
Konflikt bedeutet jedoch nicht immer, dass eine innere Compliance-Regel korrigiert werden muss.
Denn es ist moglich, dass in dem inneren Compliance-Scope die zu den &uReren Regeln
widerspruchliche Teilregel tatsachlich gelten muss. In diesem Fall kann auch der zweite innere
Compliance-Scope <c erflllen.
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Abbildung 4.8: Indirekte Konflikte (unerfillte positive Teilregeln)

Die Teilregel <(d U e) ist nicht erfillt, weil vor dem Task e noch keine Zustandssequenz mit d=true
existiert. Auch diese Teilformel kann an alle inneren Compliance-Scopes weitergegeben werden
und im weiteren inkrementellen Entwicklungsverlauf in einem von ihnen erfillt werden.

Die Teilregel (a U b) ist nicht erfillt, weil der untere parallele Pfad weder mit a noch mit b beginnt
(vgl. Definition 2.3). Diese Regel hat den Giiltigkeitsbereich, der sich auf den Startzustand bezieht
(siehe Abbildung 4.4). Der Startzustand wird in diesem Fall von einer der ersten Aktivitaten von
den beiden parallelen Pfaden bestimmt. Da die relative Ausfiuhrungsreihenfolge paralleler
Aktivitdten in realen Geschaftsprozessen in der Regel unbestimmt [For02] ist, muss der untere
Pfad diese Teilregel auch erfullen. Das heil3t, sie muss an den unteren Compliance-Scope
weitergegeben werden. Es ist jedoch fragwirdig, ob sie auch in dem oberen und in allen anderen
moglichen Compliance-Scopes berucksichtigt werden muss, die den Startzustand nicht
einbeziehen.

4.2.6 Potentielle Konflikte

Aufgrund von ODER-Operatoren in inneren oder aufieren Compliance-Scopes kdnnen einige
Konflikte durch Erfillbarkeitsprifung von verknupften Compliance-Regeln nicht entdeckt werden.

4.2.6.1 Disjunktion in einer inneren Compliance-Regel
Beispielsweise bleibt in Abbildung 4.9 der Konflikt zwischen -e und <e durch

Erflillbarkeitsprifung unentdeckt, weil =Ce A (Ob v Oe) erfilllbar ist. Jedoch wird das Model-
Checking den Berechnungspfad Uber die Aktivitat e entdecken und als Gegenbeispiel ausgeben.

( Py
"Oen.. Compliance
r<>b v Ce —_— Compliance

b
O~} %—-O ~{_- O
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e
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Abbildung 4.9: Disjunktion in einer inneren Compliance-Regel

Die Inkonsistenz im oberen Beispiel kann in der realen Prozessmodellierung unter Umstanden sehr
spat erkannt werden. Wenn der Modellierer des inneren Compliance-Scopes von der Konsistenz
seiner Compliance-Regel mit der &uReren Regel Uberzeugt ist, wird er seinen Prozess
entsprechend seiner Compliance-Regel weiter modellieren. Es kommt hinzu, dass zwischen den
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4.2 Weitergabe von Compliance-Regeln

dargestellten Compliance-Scopes weitere Schichten von Compliance-Scopes moglich sind, sodass
der Fehler umso spater entdeckt wird, je mehr zwischenliegende Compliance-Scopes existieren.
Denn wahrend die Compliance-Regeln in realen Entwicklungsprozessen den Designern z. B.
zugeschickt werden kdénnen, mussen fur das Model-Checking erst alle Modelle fertig werden.

4.2.6.2 Unerfiillte Disjunktion von positiven Teilformeln

Der duRere Compliance-Scope in Abbildung 4.10 enthalt die positive Teilregel (Ce v <b) als
Disjunktion zweier positiver Teilformeln. Da diese Teilregel nicht erfullt ist, wird sie an den inneren
Scope weitergegeben. Die Inkonsistenz von <e und =<>e wird durch die Erfullbarkeitspriifung von
(e v Ob) A Oe nicht entdeckt, weil diese Formel erflllbar ist. Daher wird der Modellierer des
inneren Scopes ein aus Sicht des aufieren Scopes nicht Compliance-konformes Modell erstellen.
Durch das Model-Checking wird die Nichterfiillung der duf3eren Teilregel zwar erkannt. Bei vielen
verschachtelten Scopes kann es jedoch nicht direkt ersichtlich sein, in welcher Compliance-Regel
der Fehler liegt. Der Model-Checker wird zwar einen Pfad als Gegenbeispiel ausgeben, doch dies
ist ein Schleife oder ein Pfad vom Startereignis bis zum Endereignis, weil es sich hier um eine
Lebendigkeitseigenschaft handelt (siehe Abschnitte 2.2.1.3.2 und 2.3.2.2.1). Des Weiteren kann es
mehrere solcher Pfade geben, auf denen die Teilregel nicht erfullt ist.

" Compliance]
(CevObya.. P
_|<>e A Compliance
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b A a S crlé:nn c

Abbildung 4.10: Unerflillte Disjunktion von positiven Teilformeln
4.2.6.3 Unerfiillte Disjunktion von negativen Teilformeln

Da die Teilregel (=<e v =<{b) in Abbildung 4.11 negativ ist (siehe Blichi-Automat in Listing A. 1),
wird sie an den inneren Compliance-Scope weitergegeben. Der Konflikt zwischen =~Ce und $e
wird durch Erfillbarkeitspriifung von (-{e v =b) A e nicht entdeckt. Diese Teilregel ist
aquivalent zu 7(Ce A D). Das heil’t, sie wird verletzt, wenn im Prozess sowohl e also auch b
vorkommen.

-
(_,<>e v “<>b ) Compliance
Compliance

L{ o

Abbildung 4.11: Unerfillte Disjunktion von negativen Teilformeln

Da in dem Prozess die Aktivitat b vorkommt und e nicht vorkommt, ist die Compliance-Regel zwar
erfillt, aber aufgrund der inneren Regeln <>e wird der Modellierer die Aktivitat e einfliigen. Daher
wird erst beim nachsten Durchlauf des Model-Checking dieser Fehler entdeckt. Da es sich in
diesem Fall um eine Sicherheitseigenschaft handelt, ist das Gegenbeispiel ein endlicher Pfad
(siehe Abschnitte 2.2.1.3.1 und 2.3.2.2.2), der genau zu der verletzenden Aktivitat fihrt. Es kann
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jedoch mehrere innere Compliance-Scopes geben, in denen jeweils die Aktivitit e oder b
vorkommt. Um solche Schwierigkeiten zu vermeiden, ist es denkbar, die Operanden einer
Disjunktion in einer Teilregel einzeln auf Erfullbarkeit mit den inneren Compliance-Regeln zu
prufen.

4.2.6.4 Unerfillte Disjunktion von negativen und positiven Teilformeln

Im dem Modell in Abbildung 4.12 wird der Konflikt zwischen -<e und <e durch die

Erflllbarkeitspriifung von (-Ce v $b) A Oe nicht entdeckt, weil diese Formel erfiillbar ist. Dadurch
kdnnen ahnliche Schwierigkeiten wie in den Abschnitten 4.2.6.2 und 4.2.6.3 entstehen.

" !
(~OevOb)AL. . Compliance
e A Compliance

_ ra T
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Abbildung 4.12: Unerfillte Disjunktion von negativen und positiven Teilformeln

Aufgrund der positiven Teilformel <b enthalt der Bichi-Automat der Teilregel (-e v b) einen
»accept_all“-Zustand (siehe Blchi-Automat in Listing A. 2). Daher ist diese Teilregel laut Definition
4.1 positiv. In Abbildung 4.12 ist erkennbar, dass diese Teilregel erflllt ist, weil keine Aktivitat e im
Prozessmodell vorkommt. Damit die Teilregel im gesamten Prozess erfullt wird, muss die
Teilformel ~e (=[0-e) in allen Compliance-Scopes erfiillt sein. Die Teilregel (-Ce v Ob) muss
daher weitergegeben werden, obwohl sie insgesamt positiv und erfiillt ist. Dies kann dadurch
geldst werden, dass aus Disjunktionen bestehende Teilregeln nicht weitergegeben werden, wenn
sie eine positive erflllte Teilformel enthalten.

4.2.6.5 Umgang mit unerfiillten Disjunktionen

Aus den obigen Beispielen folgt: Wenn die Erkennung positiver und negativer Teilformeln, die
Disjunktionen sind, nur anhand des Gesamtergebnisses erfolgt, kdbnnen falsche Entscheidungen
getroffen werden. Vielmehr muss jeder Operand untersucht werden. Nur wenn eine positive erflllte
Teilformel entdeckt wird, muss die gesamte Teilregel nicht weitergegeben werden. Das heildt,
aufgrund eine einzigen positiven Teilformel sollte die gesamte Disjunktion als eine positive
Teilformel behandelt werden.

4.2.7 Grenzen der Methode und Losungsansatze

Mit der oben beschriebenen Methode zur Erkennung von Regeln und Teilregeln, die an innere
Compliance-Scopes nicht weitergegen werden durfen, kann nicht immer die richtige Entscheidung
getroffen werden. Genauer formuliert, liegt die Schwierigkeit in der Erkennung von Formeln die
nicht weitergegeben werden muissen, wenn sie bereits erflllt sind.

4.2.7.1 Global erfiillte negative Regeln und lokale Inkonsistenz

Eine innere Compliance-Regel muss nicht immer mit der des auleren konsistent sein.
Beispielsweise bedeutet die Fairnesseigenschaft (siehe Abschnitt 2.2.1.3.4) O0Ca = OCb in
Abbildung 4.13, dass unendlich oft a und unendlich oft b vorkommen miissen, wenn unendlich oft a
vorkommt. Nach der Definition 4.2 wird diese Compliance-Regel als eine negative Regel erkannt
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4.2 Weitergabe von Compliance-Regeln

und daher an den inneren Compliance-Scope in Abbildung 4.13 weitergegeben. Im inneren
Compliance-Scope muss [1a A [Jb gelten, was im Widerspruch zu der Fairnesseigenschaft
steht. Trotz der lokalen Inkonsistenz bleibt die duflere Compliance-Regel durch die Aktivitadten a
und b erfullt.

Das bedeutet, dass es Compliance-Regel mit einem globalen Charakter gibt, die nicht von den
Aktivitaten innerer Compliance-Scopes verletzt werden kénnen. Im Vergleich dazu kann die Regel
[I(c~>d) in jedem Compliance-Scope verletzt werden.

D<>a > ’:]<>b CDmpliancE?'
: B

Comnllance
DOa A D-b 6 .

Abbildung 4.13: Global erfiillte Compliance-Regel und lokale Inkonsistenz
4.2.7.2 Giiltigkeitsbereich inklusive des Endzustands

Die duflere Regel in Abbildung 4.14 wird als negativ erkannt (Definition 4.2), weil der Buchi-
Automat fur OCa keinen ,accept_all“-Zustand enthalt (siehe Tabelle A. 1). Daher wird sie an den
inneren Compliance-Scope weitergegeben, in dem die zu ihr widerspriichliche Spezifikation =Ca
angegeben ist. Damit wird durch die Erfillbarkeitsprifung die Inkonsistenz der inneren Regel zur
AuReren bemangelt. Dabei kann es sein, dass in dem dargestellten inneren Compliance-Scope
tatsachlich keine Aktivitat a vorkommen darf.

-<>Da A L. Compliance)

C I; !
_|<>a/\ . nmpliance
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Abbildung 4.14: Scope-Ubergreifende Erfillung

Falls die beiden letzten Aktivitaten in Abbildung 4.14 in einem inneren Compliance-Scope
eingeschlossen waren, musste die Regel <>[Ja in jedem Fall an diesen Compliance-Scope
weitergegeben werden. Solche Formeln die unmittelbar am Ende oder am Anfang eines Prozesses
gelten massen, kénnen z. B. durch Mustererkennung mittels regularer Ausdricke erkannt werden
und automatisch nur an die entsprechenden Compliance-Scopes weitergegeben werden.

4.2.7.3 Losungsansatze
Markierung lokal geltender Teilregeln

Eine mdgliche Ldsung fur global erflllte negative Regeln (Abschnitt 4.2.7.1) ist die Markierung von
Teilregeln, die niemals an innere Compliance-Scopes weitergegeben werden mussen, was mit
manuellem Aufwand verbunden ist. Wenn jedoch eine Teilregel nicht automatisch weitergegeben
wird, wird ihre Erfillung in den relevanten Compliance-Scopes nicht geférdert. Daher kénnen
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solche Regeln zusatzlich in Teilregeln aufgeteilt und an die relevanten inneren Compliance-Scopes
verteilt werden. Beispielsweise kdénnen in Abbildung 4.13 statt der Aktivitdten a und b zwei
Compliance-Scopes modelliert und ihnen jeweils die Regeln $a und ¢b zugeordnet werden.

Eingrenzung des Giiltigkeitsbereichs

Es bietet sich an die Scope-ubergreifend erfiillbaren Compliance-Regeln nur solchen Compliance-
Scopes zuzuordnen, die genau ihrem Giltigkeitsbereich entsprechen. Dies betrifft Formeln mit den
letzten drei Glltigkeitsbereichen in Abbildung 4.4. Dazu kann eine LTL-Formel dieser
Gultigkeitsbereiche in eine LTL-Formel mit dem ersten Giiltigkeitsbereich umgeformt werden. Aus
<Oa wird beispielsweise [a.

4.3 Erweiterung der Compliance-Prufung

Die bisher aus dem unabhangigen Model-Checking einzelner Compliance-Scopes bestehende
Compliance-Prifung (siehe Abschnitt 3.4.3), wird laut dem im Abschnitt 3.3 vorgestellten
inkrementellen Entwicklungsprozess um die Konsistenzpriifung von Compliance-Regeln erweitert.
Dabei wird die Erflllbarkeit von Compliance-Regeln in Verkniipfung mit ihren auReren Compliance-
Regeln sichergestellt. Wie im Abschnitt 3.2 beschrieben, muss auch fir einzelne Compliance-
Regeln sichergestellt werden, dass sie nicht gultig sind. Dazu muss nach Satz 2.1 die Erfillbarkeit
der negierten Compliance-Regel gezeigt werden.

Alle noétigen Erfillbarkeits- und Giltigkeitsprifung kénnen zwar wahrend einem Durchlauf der
Compliance-Prifung erfolgen. Im Folgenden wird in Bezug auf den vorhandenen Prototyp erlautert,
wann und welche Erfillbarkeits- und Giltigkeitsprifungen im Hinblick auf eine mdglichst effiziente
Compliance-Prifung stattfinden sollen.

4.3.1 Erfullbarkeits- und Gultigkeitsprufung von LTL-Formeln

Im Falle einer unerfiillbaren Compliance-Regel ist der Grund dafiir nicht direkt ersichtlich. Ein
Grund koénnte z. B. eine unerflillbare Teilregel oder Teilformel sein. Um die Fehlersuche im Falle
einer unerfullbaren Compliance-Regel zu erleichtern, soll die Erfillbarkeits- und Giltigkeitsprifung
(siehe Abschnitt 2.4) einzelner LTL-Formeln wahrend ihrer Erstellung im grafischen LTL-Editor
erfolgen. Damit wird sichergestellt, dass die Unerflllbarkeit einer Compliance-Regel nur auf die
Kombination verwendeter LTL-Formeln und logischer Operatoren in den Knoten des Regelbaums
zurlckzufihren ist.

4.3.2 Erfullbarkeits- und Gultigkeitspriufung von Compliance-
Regeln

Um die Fehlersuche bei unerfillbaren verknipften Compliance-Regeln zu erleichtern, soll die
Erfillbarkeits- und Gultigkeitsprifung von Compliance-Regeln wahrend oder nach ihrer Erstellung
im Compliance Wizard stattfinden. Es soll nicht moéglich sein unerfillbare oder giiltige Compliance-
Regeln zu speichern. Damit wird sichergestellt, dass die Unerfillbarkeit einer verknipften
Compliance-Regel nur auf die Und-Verknipfung der Compliance-Regeln zuriickzufiihren ist.

4.3.3 Giiltigkeitsprifung von Teilregeln

Im Falle von positiven erflllten Teilregeln werden die restlichen Teilregeln an innere Compliance-
Scopes weitergegeben (siehe Abschnitt 4.2.5.1). Obwohl die Unguiltigkeit der Compliance-Regeln

47



4.3 Erweiterung der Compliance-Priifung

sichergestellt ist (siehe Abschnitt 4.3.2), kénnen ihre Teilregeln laut Satz 2.2 glltig sein. Daher
muss auch die Unglltigkeit einzelner Teilregeln geprift werden. Die Abbildung 4.15 zeigt den
Regelbaum fiir die erfillbare und ungiltige Compliance-Regel b A (Oa v ~<{a). Dabei ist die
Teilregel (Ca v =< a) das einfachste Beispiel fiir eine gliltige Formel.

=) COMPLIANCE ASSURANCE RULE
=~ AND
<Ob
=i OR
Oa
J9NOT
Oa

gultige Teilregel

Abbildung 4.15: Gultigkeit von Teilformeln (Beispiel)

Da die Erfillbarkeit von Compliance-Regeln sichergestellt ist (siehe Abschnitt 4.3.2), ist die
Erfullbarkeitsprifung von Teilregeln laut Satz 2.3 nicht erforderlich.

4.3.4 Konsistenzprufung verknuipfter Compliance-Regeln

Wenn die Erflllbarkeit einzelner Compliance-Regeln sichergestellt ist, sind auch ihre an innere
Compliance-Scopes weitergegebenen Teilformeln erfillbar. Die Unerfillbarkeit von verknipften
Compliance-Regeln kann daher nur aus ihrem gegenseitigen Ausschluss oder dem gegenseitigen
Ausschluss von Teilformeln aus verschiedenen Compliance-Regeln resultieren.

Nichtnotwendigkeit der Giiltigkeitspriifung

Da die Ungultigkeit einzelner Compliance-Regeln sichergestellt ist (siehe Abschnitt 4.3.2), ist eine
Gultigkeitsprifung verknipfter Compliance-Regeln nach Satz 2.4 nicht notwendig. Denn die
verknupften Compliance-Regeln kénnen nur dann gultig sein, wenn alle durch den logischen UND-
Operator (symbolisch: ,A“) verknlipften Compliance-Regeln gultig sind. Die Abbildung 4.16
veranschaulicht, dass die verknipfte Compliance-Regel aufgrund der Unglltigkeit der inneren
Compliance-Regel ungiiltig ist.

Erfullbgre ungiltige Erfiillbar
Compliance-Regel

Unerfullbar
Erfillbare ungiiltige Compliance-Regel oder M
Erfullbare ungiiltige Teilregel oder gultige
Teilregel

Abbildung 4.16: Ungultigkeit verknupfter Compliance-Regeln
Vorhandene rekursive Routine des Model-Checking

Aufgrund des Top-Down-Ansatzes des inkrementellen Entwicklungsprozesses muss die
Konsistenzprifung bei dem &uflersten Compliance-Scopes beginnen und rekursiv alle inneren
Compliance-Scopes einschliefen. Dazu kann auf der vorhandenen rekursiven Routine des Model-
Checking (siehe Abschnitt 3.4.3) aller Compliance-Scopes aufgebaut werden. In der vorhandenen
Routine werden die Compliance-Scopes unabhangig voneinander betrachtet.
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Konsistenzpriifung vor Model-Checking und Abbruch der Compliance-Priifung

Wenn das Model-Checking (siehe Abschnitt 2.3) eines Compliance-Scopes ergibt, dass das
BPMN-Modell seine Compliance-Regel erflllt, ist es immer noch mdéglich, dass diese Compliance-
Regel mit den duBeren Compliance-Regeln inkonsistent oder gliltig (siehe Abschnitt 3.2) ist. Bei
einem negativen Ergebnis des Model-Checking kann nicht davon ausgegangen werden, dass das
BPMN-Modell nach einer entsprechenden Korrektur die Compliance-Regel erfiillen wird, weil die
Compliance-Regel unerfiillbar sein kann.

Im Falle einer Inkonsistenz mit den auleren Compliance-Regeln oder der Unglltigkeit einer
verknipften Compliance-Regel wird das Model-Checking eines Compliance-Scopes Uberflissig.
Denn seine Compliance-Regel muss in diesem Fall korrigiert werden. Es liegt also nahe, die
Konsistenzprifung jeweils vor dem Model-Checking eines Compliance-Scopes durchzufiihren und
bei einer Inkonsistenz die Compliance-Priifung aller weiteren inneren Compliance-Scopes
abzubrechen.

Weitergabe von Compliance-Regeln

Zur Konsistenzprifung einer Compliance-Regel mit ihren dufleren Compliance-Regeln missen die
Compliance-Regeln aller aulteren Compliance-Scopes zur Verfiigung stehen. Dies kann dadurch
erreicht werden, dass wahrend des rekursiven Durchlaufs aller Compliance-Scopes die
Compliance-Regel eines bereits gepriiften Compliance-Scopes als Parameter an die Uberpriifung
der inneren Compliance-Scopes weitergegeben wird (vgl. Abschnitt 3.3). Eine Compliance-Regel
des aktuell gepriften Compliance-Scopes wird dabei mit den duReren Compliance-Regeln durch
den logischen UND-Operator verknipft und auf Erfillbarkeit (sieche Abschnitt 2.4) geprift. Die
verkniipfte Compliance-Regel wird wiederum an weitere innere Compliance-Scopes solange
weitergegeben, verknipft und auf Erfillbarkeit geprift; bis es keine inneren Compliance-Scopes
mehr gibt oder eine Inkonsistenz festgestellt wird. Wie in [SALS10] gezeigt, dirfen im Falle von
indirekten Konflikten (siehe Abschnitt 3.3) nicht immer die vollstdndigen Compliance-Regeln,
sondern nur die positiven erfillten Teilregeln weitergegeben werden.

Die Abbildung 4.17 fasst die Abfolge der wichtigsten Schritte der Compliance-Prufung zusammen.
Da es im aufReren Compliance-Scope keine weitergegebenen aulleren Regeln gibt, wird keine
Konsistenzprifung durchgefiuhrt und mit dem Model-Checking begonnen. Wahrend des Model-
Checking werden die weiterzugebenden Teilformeln bestimmt, das heifl3t Teilformeln, die nicht
positiv und erfillt sind. In diesem Beispiel wird <c¢ weitergegeben weil a U b positiv und erfiillt ist.
Es wird eine Inkonsistenz der inneren Compliance-Regeln mit der weitergegebenen Teilregel
festgestellt und das Model-Checking sowie weitere Prifung innerer Compliance-Scopes
abgebrochen.

-Oc 4. Kein Model-Checking ...
3. Konsistenzprifung der .
verkniipften Regel (-<cAd>c) ﬁ.u\rNg(t:er\gI]vaet;]envon
(aUb) Ale ,

a U b erfullt ist.
1. Model-Checking und Bestimmung
der weiterzugebenden Teilformeln
(Auswertung des Regelbaums)

Abbildung 4.17: Schematischer Uberblick zur Weitergabe von Compliance-Regeln
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4.4 Wahl des SAT-Solvers

Ein SAT-Solver ist ein notwendiges Hilfsmittel zur Losung der Aufgabenstellung im Rahmen dieser
Arbeit. Es wurde friih begonnen nach einem passenden Tool zu suchen. Die Software sollte als
Eingabe eine LTL-Formel akzeptieren und als Ergebnis erfiillbar oder unerfiillbar ausgeben.

So wurde z. B. das Tool ALASKA (siehe Abschnitt 2.4.2.2) getestet. Dieses ist zwar einfach zu
bedienen und zu integrieren. Jedoch gab es nur eine 32-bit Version, die auf dem 64-bit
Webserver, auf dem der Prototyp installiert ist, nicht lauffahig ist.

Als nachstes wurde das in [RVO07] beschriebene Verfahren der Erfullbarkeitsprifung durch
ZurlUckfuhrung auf Model-Checking untersucht (siehe Abschnitt 2.4.2.1). Durch diesen Ansatz kann
ein eigener SAT-Solver mit Hilfe des vorhandenen Model-Checkers gebaut werden. Dazu misste
ein universelles Modell generiert und gegen die negierte Formel mit SPIN verifiziert werden. Doch
in Anbetracht der Zeit wurde darauf verzichtet einen eigenen SAT-Solver zu implementieren.

Die nachste untersuchte Mdglichkeit war das Termersetzungssystem Maude (siehe Abschnitt
2.4.2.3) welches unter anderem auch zur LTL-Erfillbarkeitsprifung eingesetzt werden kann und in
der 64-bit Version zur Verfligung steht. Da es erfolgreich getestet und eingebunden werden
konnte, wurden keine weiteren SAT-Solver untersucht.

4.5 Erweiterung des Model-Checking

Im Rahmen der Arbeit mit dem Prototyp wurde festgestellt, dass beim Model-Checking nur der
LTL-Operator Finally (<) unterstiitzt wird. Mit dem Finally-Operator sind jedoch nur solche Regeln
ausdrickbar, die bereits in [SALS10] im Rahmen der Aussagenlogik betrachtetet wurden (vgl.
Abschnitte 3.2 und 4.2.3). Um Compliance-Regeln aus allen temporalen Giiltigkeitsbereichen nach
Abbildung 4.4 verifizieren und auf Konsistenz prifen zu konnen, missen die LTL-Operatoren
(siehe Abschnitt 2.2.1) Globally ([J) und Until (U) unterstiitzt werden. Die dafiir vorgenommenen
Anpassungen werden im Kapitel 5.4 beschrieben.
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Im diesem Kapitel wird die prototypische Umsetzung des Konzepts aus dem vorhergehenden
Kapitel beschrieben. Als Grundlage wird der in Abschnitt 2.1.4 vorgestellte Editor Oryx verwendet.
Dabei wird im Wesentlichen auf den Erweiterungen des Editors in [Groll] aufgebaut. Ausgehend
von einem architektonischen Uberblick (iber geénderte und hinzugefiigte Komponenten werden die
Details der Erweiterungen im Front- und im Backend beschrieben. AnschlielRend wird eine
Erweiterung des Model-Checking beschrieben, die das Model-Checking mit LTL-Formeln mit den
Operatoren Globally und Until erméglicht.

5.1 Architektur

In Abbildung 5.1 wird die Architektur der Oryx-Erweiterung als vereinfachtes UML-
Komponentendiagramm dargestellt. In der auf [Grol1] und [K6t10] basierenden Darstellung sind
nur die zum Verstandnis der Erweiterungen relevanten Komponenten bertlcksichtigt. Auf der linken
Seite wird das Frontend bestehend aus den Hauptkomponenten Editor, der in dieser Arbeit nicht
geandert wurde, und den Plugins dargestellt. Auf der rechten Seite werden die wichtigsten
Komponenten des Backends und die eingebundenen Kommandozeilenprogramme dargestellt.

Im Frontend wurde durch das LTLSat-Plugin in der Oryx-Toolbar ein neuer Button hinzugefigt. Mit
diesem lassen sich die im Editor modellierten LTL-Formeln auf Erflllbarkeit und Giiltigkeit prifen.
Der Compliance Wizard wurde um die automatische Erflllbarkeits- und Gliltigkeitspriifung von
Compliance-Regeln erweitert.

Zur Ausfuhrung der Erflllbarkeits- und Gultigkeitsprifung wurde das Kommandozeilenprogramm
Maude (siehe Abschnitt 2.4.2.3) mit Hilfe der Komponente MaudeAdapter integriert. Da Maude die
Eingabe in einer anderen Syntax erwartet, wurde der LTLTranslator entsprechend erweitert. Der
LTLTranslator tbersetzt ein im LTL-Editor erstelltes LTL-Modell in eine LTL-Formel in textueller
Darstellung.

Wie im Abschnitt 4.2 beschrieben, erfolgt der Aufruf des SAT-Solvers in drei Fallen. Im ersten Fall
wird eine LTL-Formel von dem LTLSat-Plugin Gber das LTL-Servlet an Maude Ubermittelt. Beim
zweiten Fall wird von dem Compliance Wizard (siehe Abbildung 3.6) eine Compliance-Regel Uber
das ComplianceServilet Ubermittelt. In diesem Fall liest der Compliance Wizard auch die im
Regelbaum enthalten LTL-Formeln aus dem Repository und Ubermittelt sie ebenfalls an das
ComplianceServlet. Im letzten Fall wird Maude zur Konsistenzprifung, das heifdt
Erfullbarkeitsprifung, von verknupften Compliance-Regeln genutzt.

Die Komponente LTLOperator ist eine der gednderten Klassen aus dem Packet operators, die den
im Compliance Wizard erstellen Regelbaum auswerten. Diese Klassen wurden aus zwei Griinden
angepasst. Zum einen werden sie verwendet um aus dem Regelbaum die LTL-Formel zur
Erfullbarkeits- und Glltigkeitsprifung zu extrahieren (zweiter Fall im vorherigen Absatz). Zum
anderen erfolgt dort die Erkennung der positiven und negativen Teilformeln wahrend der
Compliance-Prifung.



5.2 Frontend

In der Komponente PromelaExport wird die interne Petri-Netz-Darstellung des BPMN-Diagramms
in die Sprache Promela (siehe Abschnitt 2.3.2.1) transformiert. Durch den Spin-Adapter erfolgt der
Aufruf des Model-Checkers SPIN (siehe Abschnitt 2.3.2). Diese beiden Komponenten wurden flr
die Unterstitzung der temporalen Operatoren Until und Globally (siehe Abschnitt 2.2.1) erweitert.
Des Weiteren wurde der Spin-Adapter erweitert, um zu einer LTL-Formel einen Blchi-Automaten
zu generieren und somit die positiven und negativen Teilformeln wahrend der Compliance-Prifung
zu erkennen.

Frontend Backend Kommando-
~ zeilen-

Plugins LTL interpreter
Erfillbarkeits- und Giltigkeitspriifung einer LTL-Formel Translator
Erfiillb.- und Giiltigkeitsprifung einer Compliance-Regel
_©-

o

Compliance
Serviet

Compliance
Checker

LTLOperator

Maude
Adapter

Compliance-Priifung
(Medel-Checking und
Erfiillbarkeitspriifung)

Qo

Spin .
ef |
PromelaE
xport

Compliance W
g:’f;l: Wr’zur.d- @—— Repository
Plugin
L _

Y@/ \_ J | S
p
[ Editar ] [ Neu J Modyme-rf]
\

Abbildung 5.1: Architektur der Oryx-Erweiterung, nach [Gro11] und [K6t10]

5.2 Frontend

Im Vergleich zum Backend gab es im Frontend nur wenige Anderungen. Mittels JavaScript wurde
ein neues Plugin implementiert und ein Bestehendes erweitert.

5.2.1 LTLSat-Plugin

Mit dem LTLSat-Plugin wurde die Prufung modellierter LTL-Formeln laut Abschnitt 4.3.1
umgesetzt. Dazu wurde im LTL-Editor die Toolbar um den in Abbildung 5.2 hervorgehobenen SAT-
Button zur manuellen Erfullbarkeits- und Gultigkeitsprifung erweitert. Das Plugin greift mittels einer
AJAX-Anfrage auf ein Java Servlet im Backend zu. Das erstellte Diagramm wird im JSON-Format
als ein Parameter an den Server geschickt. In einem weiteren Parameter wird der Typ der Anfrage
angegeben, damit das aufgerufene Java Servlet die Anfrage von den anderen méglichen Anfragen
unterscheiden kann. Nachdem das Plugin von dem Java Servlet ein Ergebnis erhalten hat, wird
dem Benutzer das Ergebnis in einer Meldung ausgegeben, die entweder die Erflllbarkeit,
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Glltigkeit oder Unerflllbarkeit der modellierten Formel angezeigt. Im abgebildeten Beispiel sind
eine unerfullbare Formel und die entsprechende Meldung zu sehen.

HE &k~ e Dl Wiz =it B &% ]
Shape Repository “ o ___
= LTL Diagram : UNTIL AND FIN!J\LL‘rr
() Parenthesis L _____________
N Not-Operator SAT Check
G Globally-Operator ﬂ Unsatisfiable!
.

F  Finaly-Operator

OK

&8 And-Cperator

Abbildung 5.2: Erweiterung des LTL-Editors

5.2.2 Erweiterung des Compliance Wizard-Plugins

Im Compliance Wizard wurde die automatische Erfillbarkeits- und Glltigkeitsprifung von
Compliance-Regeln entsprechend Abschnitt 4.3.2 implementiert. Die neue Funktionalitdt wurde
dem vorhandenen Ok-Button hinzugefugt, der die erstellte Compliance-Regel dem vorher
ausgewahlten Compliance-Scope zuweist (siehe Abbildung 5.3). Die Uberpriifung erfolgt vor dieser
Zuweisung. Auch hier wird mittels einer AJAX-Anfrage ein Java Servlet angesprochen. Dieses
erhalt als Parameter den Regelbaum in Form eines Operatorenbaums, an dessen Blattern die
Modell-IDs der verwendeten LTL-Regeln eingetragen sind. Des Weiteren werden alle enthaltenen
LTL-Modelle im Repository anhand ihrer Modell-ID nachgeschlagen und ebenfalls als Parameter
im JSON-Format an den Server geschickt.

Compliance Wizard #
Edit Remove | NOT AND OR LTL DATATRAMNSFER

Tree -

= COMPLIANGE ASSURANCE RULE

== AMD
=] LTL(F {a UNTIL b ), 28)
= i3INOT
=] LTL(F(bj, 62)
SAT Check *®
' This compliance rule is unsatisfiable!
L
oK

Ok ‘ Cancel

Abbildung 5.3: Erweiterung des Compliance Wizard

Wenn die erstellte Compliance-Regel erfullbar ist, wird sie dem vorher ausgewahlten Compliance-
Scope zugewiesen und der Editor geschlossen. Im Falle der Unerfullbarkeit oder Gultigkeit wird
eine entsprechende Warnung ausgegeben. Nach dem Bestéatigen der Warnung hat der Benutzer in
dem noch gedffneten Editor die Mdglichkeit die Compliance-Regel zu tUberarbeiten. Dadurch ist es
nicht moglich eine unerfillbare oder glltige Compliance-Regel einem Compliance-Scope
zuzuweisen.
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5.2.3 Ergebnisse einer Compliance-Priifung

Die im Backend implementierte Konsistenzprifung von Compliance-Regeln (siehe Abschnitt 4.3.4)
erzeugt neue Ausgaben in den Ergebnissen der Compliance-Prifung (siehe Abschnitt 3.4.3).
Daher wird hier anhand eines einfachen Beispiels die Compliance-Prifung aus der
Benutzerperspektive erlautert. Dabei wird die unerfiillte positive Teilregel <>d an den inneren
Compliance-Scope weitergegeben. Der innere Compliance-Scope enthalt eine noch nicht
ausgefillte variable Region, in der diese Teilregel im weiteren Verlauf der inkrementellen
Entwicklung noch erfiillt werden kann.

5.2.3.1 Ergebnisiibersicht

Zusatzlich zu den in Abbildung 3.8 dargestellten moglichen Ausgéngen einer Compliance-Prifung
wurde das Ergebnis ,Unsatisfiable“ definiert. Das Ergebnis Unsatisfiable gibt an, dass die
Compliance-Regel eines Compliance-Scopes in Verknlpfung mit den weitergegebenen aufieren
Compliance-Regeln oder Teilregeln unerfillbar ist (vgl. Abschnitt 4.3.4). In der Ergebnisiibersicht
nach ,Unsatisfiable® wird die Anzahl der mit auRBeren Compliance-Regeln inkonsistenten
Compliance-Scopes angegeben. Diese Compliance-Scopes werden mit einem roten Hintergrund
(,Scope2“ in Abbildung 5.4) hervorgehoben.

(Scopel Campliance)

rot=unerfillbar
(unsatisfiable)

pink=unerfillt
—— (invalid)

Compliance Check Result ®

Result Scope2 (UnSatisfiable) Scope1 (Invalid)

Performing compliance check for all compliance scopes...
Found compliance scope Scopel
Finished checking, result: Invalid
Found compliance scope Scope2
Finished checking, result: UnSatisfiable
Finished compliance check for all compliance scopes

[ =3 S T T o=y My
Valid: O
Invalid: 1
Unsatisfiable: 1
Failed: @
Mo rules defined: O
Ignored: @

Time elapsed: 1889ms

Close

Abbildung 5.4: Das neue Ergebnis ,Unsatisfiable” bei der Compliance-Priifung
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5.2.3.2 Ergebnisse einzelner Compliance-Scopes

Die Abbildung 5.5 zeigt die Details zu dem Compliance-Scope mit dem Ergebnis ,Invalid®, das
heil3t mit nicht erfillter Compliance-Regel, dar. Im dem oberen, unsichtbaren Teil des abgebildeten
Protokolls wird die aus dem Regelbaum ausgelesene Compliance-Regel in Textdarstellung (<d A (
{a v Ob)) ausgegeben. Da die Teilregel (Ca v <b) durch die Aktivitat b erfillt (siehe Abbildung
5.4, oben) ist und als positiv (siehe Definition 4.1) erkannt wurde, wird sie nicht weitergegeben. Die
positive Teilregel <d ist dagegen nicht erfiillt, und wird daher an den inneren Compliance-Scope
weitergegeben.

Compliance Check Result e

Result Scope2 (UnSatisfiable) Scopel (Invalid)
current rule: (<> d)/\((<> al\/(<> b)) Qe Compliance-Regel A

Mo outer rules. Consistency check skipped.

Model checking and elimination of indirect conflicts by omitting
positive fulfilled properties for passing to inner scopes:
Evaluating AND-Operator
| Evaluating LTL-Operator
| Evaluating =<=(id))
| Finished evaluating LTL-Operator, fulfilled: false, positive: true
| Evaluating OR-Operator
| | Evaluating LTL-Operator
| | Evaluating =<=i{a))
| | Finished evaluating LTL-Operator, fulfilled: false, positive: true
|
|
|
|

(<>a \" <>b) | Evaluating LTL-Operator
. . | Evaluating ==((h))

wird nicht | Finished evaluating LTL-Operat : :

i Finished evaluating OR-Operator,ffulfilled: true, positive: true
Welterge,ge ﬁ Operand OMITTED, will not be passed to inner scopes.
ben, weil Finished evaluating AND-Operator, fulfilled: false, positive: true
<>b pOS.-|t|V Concatenated rules passed to inner scopes: == d @ Weiterzugebende
und erfllt - . : i
ist Finished checking, result: Invalid Te||r898|

Close

Abbildung 5.5: Weitergabe von Teilformeln an innere Compliance-Scopes (1)

In Abbildung 5.6 sind die Details des Ergebnisses des inneren Compliance-Scopes sichtbar. Es
wird zunachst die innere Compliance-Regel ausgelesen und mit der AuReren durch den UND-
Operator verknupft. Die verknipfte Compliance-Regel wird anschlieRend auf Erfullbarkeit gepruft
(vgl. Abschnitt 4.3.4). In diesem Fall ist das Ergebnis ,Unsatisfiable®.

Compliance Check Result *

Result Scope (UnSatisfiable) Scopel (Invalid)

Message
The concatenated rules are not satisfiable.
Leog
Retrieving 1t1l rule from compliance scope "Scope2" ...
Evaluating MNOT-Operator
| Evaluating LTL-Operator
| Evaluating == d
| Finished evaluating LTL-Operator
H _ Finished evaluating MOT-Operator
Welter Current rule: I{== d)

gegebene é Outer rules: == d
Teilregel Concatenated rules: (== d) /% [1{== d]]é Veranpfte Compliance-RegeI

Consistency checking of this scope's rule WwITH &Lt GULED [ 413 Fites,

Finished checking, result: UnsSatisfiable

Close

Abbildung 5.6: Weitergabe von Teilformeln an innere Compliance-Scopes (2)

55



5.3 Backend

5.3 Backend

Der Grolteil der Programmierung fand im Backend statt, wo die Erfillbarkeits- und
Gultigkeitsprifung sowie die Compliance-Priifung stattfinden. In diesem Abschnitt werden die
neuen und geanderten Komponenten im Backend beschrieben. Die gréRten Anderungen betreffen
die Klassen ComplianceChecker, in der sich die Hauptprozedur der Compliance-Priifung befindet,
und die Klassen aus dem Packet operators, die den Regelbaum verarbeiten.

5.3.1 Erfullbarkeitsprufung

LTLTranslator

Der LTLTranslator Gibersetzt das LTL-Modell aus dem JSON-Format in die Textdarstellung [Grol1].
Zur Erfillbarkeits- und Glltigkeitsprifung wurde das Kommandozeilenprogramm Maude Uber die
Schnittstelle MaudeAdapter integriert. Der SAT-Solver Maude erwartet als Eingabe eine LTL-
Formel in einer anderen Syntax als SPIN. Beispielsweise muss die Konjunktion statt ,&&" mit ,A*
und die Negation statt ,!“ mit ,~“ kodiert werden. Daher wurde der LTLTranslator so erweitert, dass
die Maude-Syntax wéhlbar ist. AuBerdem werden wahrend der Ubersetzung alle Literale in
Klammern eingeschlossen, damit sie im MaudeAdapter durch einen regularen Ausdruck erkannt
werden konnen. Dies ist notwendig, weil in dem Quelltext, welchen Maude ausfiihrt (siehe
Abschnitt 2.4.2.3), die atomaren Formeln angegeben werden mussen.

MaudeAdapter

Der MaudeAdapter liest die Literale aus der empfangenen LTL-Formel mit Hilfe eines regularen
Ausdrucks aus. Die Literale und die LTL-Formel werden in eine Vorlage zum Aufruf des Maude-
SAT-Solvers (siehe Abschnitt 2.4.2.3) eingefiigt (siehe Listing 5.1). Diese Vorlage wird in einer
temporaren Datei gespeichert. AnschlieRend wird Maude auf der Kommandozeile mit dem Pfad zu
dieser Datei als Parameter aufgerufen. Die Ausgabe der Kommandozeile wird ausgewertet und als
Ergebnis ein boolescher Wert ausgegeben.

String maudeSourceFileContent =
"load model-checker.maude \n" +
"fmod SAT-SOLVER-TEST is \n" +
"extending SAT-SOLVER .\n" +
"extending LTL .\n" +
"ops " + atomicPredicates(formula) + ": -> Formula .\n"+
"endfm \n" +
"red satSolve("+ formula +") \n" +
"quit";

Listing 5.1: Vorlage zur LTL-Erfullbarkeitsprifung mit Maude

5.3.2 Das LTLServlet

Das LTLServlet wurde so erweitert, dass es Anfragen von dem LTLSat-Plugin (siehe Abschnitt
5.2.1) verarbeiten kann. In Abbildung 5.7 ist die grundlegende Interaktion der relevanten
Komponenten fiir die Erfillbarkeits- und Gultigkeitsprifung einer im LTL-Editor modellierten LTL-
Formel dargestellt.

Das LTLServlet erhalt von dem LTLSat-Plugin mittels einer AJAX-Anfrage das LTL-Modell im
JSON-Format sowie den Anfragetyp. Mittels des Anfragetyps erkennt das Servlet, dass die Formel
auf Erflllbarkeit und Gultigkeit geprift werden muss. Dazu wird die Java-Klasse LTLTranslator mit
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der Maude-Syntax instanziiert und seine Methode translate() aufgerufen. AnschlieRend wird der
MaudeAdapter mir der Methode isSatisfiable() aufgerufen, die das Ergebnis der
Erflllbarkeitsprifung als einen booleschen Wert zurtickliefert (siehe Abschnitt 5.3.1).

Wenn die LTL-Formel erfillbar ist, negiert das LTLServlet die Formel und schickt sie erneut an den
MaudeAdapter zur Erfiullbarkeitsprifung, anderenfalls wird ,Unerflllbar ausgegeben. Wenn auch
die Negation erfullbar ist, wird als Ergebnis ,Erfillbar und ungiltig, anderenfalls ,Giltig"
ausgegeben.

sd SAT(LTL-Formel)  /
LTLS at- LTL LTL Maude
Plugin Servlet Translator Adapter Maude

| - - L] -
[ ] L] L] L] L]
" [ ] [ ] [ ] [ ]
= [ ] ] [ ] n [ ]
L] [ L] [ ] [ ] L]
: : : : : :
SAT-Button . . ' H
H klicken s AlAX-Anfrage H H - :
a  (LTL-Model, H . .
arfragetyp) o ' ' .
—... [ ] [ ] [ ]
translate{LTL-Maodell) . ' H
- H H
] L
L ] | |
L ] | |
LTL-Formel E E
ffeeccsssssssanssnasnnsnnnn < ' .
isSatisfiable(LTL-Fofnel) : Hommando- 2
[ n  zZeillenbefehl o
L n

L]

true oder false g T
L . RS

issatisfiable(negierte LTIgFormel) y Zeilenbefenl g

| |
true oder I'alsei | Ausgabe I | |

Ergebnis csssssssssssssssssssnnssnsdhossnsnnnnns

Ergebnis- g < H . =
anzeige =y . - H
L] L] Ll L]
e eeeeeee : : : :
L] [ ] L] [ ] [ ] [ ]
L] [ ] [ ] [ ] L]
[ ] [ ] L] L] L] L]
[ ] ] | ] [ ] [ ] | ]
L] [ ] L] [ ] [ ] | ]
L] - - L] - -

Abbildung 5.7: Sequenzdiagramm zur Erflllbarkeitsprifung einer LTL-Formel
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5.3.3 Automatische Priifung von Compliance-Regeln

Das ComplianceServlet wurde so erweitert, dass es Anfragen von dem Compliance Wizard-Plugin
(siehe Abschnitt 5.2.2) zur Erflllbarkeits- und Giiltigkeitsprifung von Compliance-Regeln
verarbeiten kann. Im Gegensatz zum LTLServlet erhalt das ComplianceServlet kein LTL-Modell,
welches vom LTLTranslator unmittelbar in eine Textdarstellung Ubersetzbar ist. Stattdessen erhalt
es den Operatorenbaum im JSON-Format, an dessen Blattern die IDs der verwendeten LTL-
Modelle (siehe Abbildung 3.4) eingetragen sind. Zusatzlich erhalt das ComplianceServiet die
verwendeten LTL-Modelle im JSON-Format als einzelne Parameter. Zur Verdeutlichung zeigt das
Listing 5.2 den JSON-Code des Operatorenbaums aus Abbildung 3.6. Die entsprechende
Compliance-Regel im Textdarstellung lautet: <d A (Ca v Ob).

{ "type": "andOperator",
"operands":
[{"type": "ItiOperator",
"modelld"; "29",
"modelName™: "Finally d"},

{"type": "orOperator",
"operands":
[{"type": "ltiOperator",
"modelld": "28",

"modelName”: "Finally b'}] }] }
Listing 5.2: Beispiel fir eine Compliance-Regel im JSON-Format

Um eine Textdarstellung der Compliance-Regel zu erhalten, wurden die in Abbildung 5.8
dargestellten Klassen aus dem Packet operators erweitert, weil sie den Operatorenbaum
auswerten koénnen (siehe Abschnitt 3.4.3). Die enthaltenen LTL-Regeln werden anhand logischer
Operatoren in den Knoten des Baums zu einer Gesamtformel rekursiv zusammengefugt.

AbstractOperator| yextendsy | AndOperator

#actuaiCheck() #actualCheck()
Z\r‘ﬁE‘xtEndsn OrOperator

#actualCheck()

wextendss NotOperator

HactualCheck()

pxtendss LTLOperator

=

#actualCheck()

Abbildung 5.8: UML-Klassendiagramm der Operatoren zur Verarbeitung der Regelbaums
Funktionsweise der Operatoren-Klassen zum Auslesen der Gesamtformel

Die Methode actualCheck() wird mit dem boolesche Parameter modelcheck=false aufgerufen.
Anhand dieses Parameters erfolgt die Unterscheidung zwischen dem Auslesen der Gesamtformel
und dem Model-Checking inklusive der Regelweitergabe (siehe Abschnitt 5.3.4). In diesem Fall
wird jeder Operator des Regelbaums auf seine Operanden angewendet und als Ergebnis die
Gesamtformel in Textdarstellung ausgegeben.
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Zunachst wird der Typ des Operators an der Wurzel des Operatorenbaums bestimmt und die
entsprechende Operator-Klasse (And-, Or-, Not- oder LTLOperator) instanziiert. Die Klassen And-
und OrOperator enthalten in der Methode actualCheck() eine Schleife, welche die Operanden
durchlauft. Falls ein Operand ein LTLOperator ist, das heif3t ein LTL-Modell enthalt, wird das LTL-
Modell mit Hilfe des LTLTranslators in die Textdarstellung lbersetzt. Anderenfalls wird ein neuer
Operator instanziiert. Beispielsweise erstellt der AndOperator im Beispiel aus Listing 5.2 fir seinen
zweiten Operanden eine Instanz des OrOperators und ruft seine Methode actualCheck() auf.
Sobald alle Operanden in der Textdarstellung vorliegen, werden sie von dem OrOperator mit ,v*
und von dem AndOperator mit ,A“ verknipft. Der NotOperator enthalt keine Schleife, sondern stellt
einem in Textdarstellung vorliegenden Operanden das Negationszeichen ,~* voran.

Der Gesamtablauf

Der Gesamtablauf der automatischen Erfillbarkeits- und Giltigkeitsprifung von Compliance-
Regeln ist als UML-Sequenzdiagramm in Abbildung 5.9 dargestellt. Der wesentliche Unterschied
zum Sequenzdiagramm zur Erfillbarkeits- und Giltigkeitsprifung einer LTL-Formel (siehe
Abbildung 5.7) liegt in der Verwendung der Operatoren-Klassen zur Auswertung des Regelbaums.
Daher wird der LTLTranslator mehrmals aufgerufen. Zur Vereinfachung der Darstellung
reprasentiert der AbstactOperator alle vier Operatoren-Klassen. Auflerdem wurde die
Hauptprozedur nicht im ComplianceServlet sondern in der Klasse ComplianceChecker
implementiert, weil dort ahnliche Funktionalitdten gekapselt sind. Die Gultigkeitsprifung einer
Compliance-Regel erfolgt analog zur Glltigkeitsprifung einer LTL-Formel (siehe Abschnitt 5.3.2).
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Abbildung 5.9: Sequenzdiagramm zur Erflllbarkeitsprifung einer Compliance-Regel

5.3.4 Konsistenzprufung von Compliance-Regeln

Wie bei der Erflllbarkeits- und Glltigkeitsprifung von Compliance-Regeln empfangt das
ComplianceServlet eine AJAX-Anfrage vom Compliance Wizard-Plugin und leitet diese an den
ComplianceChecker weiter (siehe Abbildung 5.9). Zusatzlich zum Regelbaum und den
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verwendeten LTL-Modellen enthalt die AJAX-Anfrage das BPMN-Modell sowie die ausgewahlten
Compliance-Scopes. Zur Konsistenzprifung von Compliance-Regeln wurde die rekursive
Hauptprozedur des Model-Checking in der Klasse ComplianceChecker Uberarbeitet. Des Weiteren
wurden die Operatoren-Klassen (siehe Abbildung 5.8) so erweitert, dass wahrend des Model-
Checking die positiven erflillten Teilregeln (siehe Abschnitt 4.2) erkannt werden. Das Model-
Checking der inneren Compliance-Scopes erfolgt erst nachdem die Konsistenz einer Compliance-
Regel mit ihren auleren Compliance-Regeln gewahrleistet ist (vgl. Abschnitt 4.3.4). Der neue
Ablauf der Compliance-Prifung wird anhand des Aktivitdtsdiagramms in Abbildung 5.10 erlautert.
Das Diagramm enthalt nur die zum Verstandnis wichtigsten Details der Implementierung.

5.3.4.1 Hauptprozedur der Compliance-Priufung

Wie in der vorherigen Version werden alle grafischen Elemente des BPMN-Diagramms rekursiv
durchlaufen. Wenn es sich bei einem Element um keinen Compliance-Scope handelt, kann es
auch ein Teilprozess sein, der Compliance-Scopes enthalt. Daher werden seine Kind-Elemente
durch eine for-Schleife und einen rekursiven Aufruf der gleichen Funktion abgearbeitet. Wenn nur
selektierte Compliance-Scopes geprift werden sollen und der aktuelle Scope nicht in der Auswabhl
ist, endet die Prifung dieses Compliance-Scopes mit dem Ergebnis ,Ignored” (vgl. Abbildung 5.4).
Dabei werden seine inneren Compliance-Scopes weiterhin gepruft.

Start Compliance-Priifung

[Grafisches Element ist kein Scope]

[Scopes wurden selektiert und

[sonst] aktueller Scope ist nicht

in der Auswahl] Verkniipfte Regel Ergebnis
=Leer =lgnored

[sonst]

[ Regelbaum auslesen ]
[keine Regel varhanden] Verkniipfte Regel Ergebnis
e = =Norules
=Aulere Regel .
defined
[sonst]

Regel mit dulterer
Regel verknlpfen

Bei Inkonsistenz mit
duBeren Regeln erfolgt
kein Model-Checking
und keine Bearbeitung
] innerer Scopes.

Erflllbarkeit
prifen

[unerfiillbar] Verkniipfte Regel
=AuRere Regel

Ergebnis
=Unsatisfiable

[sonst]

[sonst] (BPMMN-Modell
erflllt die Regel] Ergebnis
=Valid
Model-Checking Verkniipfte Regel . .
und Erkennung =huRere Regel /\ [Es gibt weitere innere Elemente]
positiver erfillter Regel ohne pos. ':: <
Teilregeln erf. Teilregeln
Ergebnis Compliance-Priifung
l =lnvalid eines inneren Elements

[sonst]

Abbildung 5.10: Aktivitdtsdiagramm der Compliance-Prifung
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Vererbung verkniipfter Compliance-Regeln

Bei jedem rekursiven Aufruf der Prozedur in Abbildung 5.10 wird die verknlpfte Compliance-Regel
(siehe Abschnitt 4.1.1) als Parameter weitergegeben. Nach jeder abgeschlossenen Prifung eines
Compliance-Scopes wird daher eine neue verknupfte Compliance-Regel zur Weitergabe bestimmt.
In der vorherigen Version wurden im Falle einer Selektion genau die selektierten Compliance-
Scopes unabhangig voneinander gepruft. In dieser Version werden automatisch neben dem
selektierten Compliance-Scope auch seine inneren Compliance-Scopes gepruft. Die &ulleren
Compliance-Scopes werden dagegen nicht gepruft. Daher ist im Falle eines ignorierten
Compliance-Scopes die verkniipfte Compliance-Regel leer.

Konsistenzpriifung

Da beim Model-Checking nur die LTL-Formeln an den Blattern des Regelbaums bendétigt werden,
wurde in der vorherigen Version der Regelbaum nicht in eine Textdarstellung Ubersetzt. Im
Gegensatz dazu wird die Textdarstellung nun zur Konsistenzprufung benétig und analog zu der
Beschreibung im Abschnitt 5.3.3 bestimmt. Wenn keine Compliance-Regel gefunden wird und der
aktuelle Compliance-Scope eine aufere Compliance-Regel geerbt hat, wird die aulere
Compliance-Regel an die inneren Compliance-Scopes vererbt und das Ergebnis auf ,No rules
defined” gesetzt.

Die aus dem Regelbaum ausgelesene Compliance-Regel in Textdarstellung wird mit den geerbten
auleren Compliance-Regeln oder Teilregeln durch ,A“ verknlpft und auf Erfullbarkeit geprift. Dies
erfolgt analog zur automatischen Erfiillbarkeitsprifung von Compliance-Regeln (siehe Abschnitt
5.3.3), jedoch mit dem Unterschied, dass entsprechend Abschnitt 4.3.4 keine Giiltigkeitspriifung
erfolgt. Im Falle der Unerflllbarkeit, wird die Prifung des Compliance-Scopes abgebrochen und
das Ergebnis ,Unsatisfiable” ausgegeben.

Verkniipfung und Weitergabe von Compliance-Regeln

Zur Entscheidung, welche Teilformeln an innere Compliance-Scopes weitergegeben werden, muss
der Regelbaum durch die Operatoren-Klassen (siehe Abbildung 5.8) erneut ausgewertet. Im
Gegensatz zum Auslesen der Gesamtformel des Regelbaums (siehe Abschnitt 5.3.3) wird der
Parameter modelcheck auf true gesetzt. Somit erfolgt das Model-Checking der LTL-Formeln an
den Blattern des Regelbaums und das boolesche Gesamtergebnis des Model-Checking wird durch
Weitergabe der Teilergebnisse zur Wurzel hin berechnet [Grol1] (siehe Abschnitt 3.4.3). Dadurch
kann flr jede Teilregel (siehe Abschnitt 4.1.1) festgestellt werden, ob sie erfillt oder unerfillt ist.

Wie in den Abschnitten 3.3 und 4.2.5 beschrieben, dirfen erflllte positive Teilregeln nicht an innere
Compliance-Scopes weitergegeben werden. Zur Unterscheidung positiver und negativer
Teilregeln (siehe Definition 4.1 und Definition 4.2) werden die LTL-Formeln an den Blattern des
Regelbaums in Blchi-Automaten umgewandelt und auf Vorkommen des ,accept_all“-Zustands
untersucht (siehe Abschnitt 2.3.2.2.3). Wie beim Model-Checking wird das Gesamtergebnis flr
eine Teilregel durch Weitergabe der Teilergebnisse zur Wurzel hin berechnet.
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5.3.4.2 Funktionsweise der Operatoren-Klassen

Im Folgenden wird anhand des Regelbaums in Abbildung 5.11 die Funktionsweise der Operatoren-
Klassen zur Verknlipfung und Weitergabe von Compliance-Regeln erlautert. Die dem Regelbaum
entsprechende Compliance-Regel b A (Oa v =<Ob) ist beispielsweise in dem Compliance-
Scope ,Scope1“ in Abbildung 5.4 erfullt.

=] COMPLIANCE ASSURANCE RULE
=l AND
Ob o erfullt / positiv
=] OR erfiillt / positiv
Oa nicht erfllt / positiv
= —JNOT erfillt / negativ
Sb nicht erflllt / negativ

Abbildung 5.11: Regelbaum fir &d A (Oa v Olb)

Im Anhang A.4 sind die Pseudoodes zu den vier Operatoren-Klassen zu finden. Diese enthalten
nur den Fall der Compliance-Prifung und nicht den in Abschnitt 5.3.3 beschrieben Fall mit dem
Parameter modelcheck=false. Die folgende Beschreibung der Operatoren kann anhand der
Pseudocodes verfolgt werden. In alle Operatoren wird ein Objekt Ergebnis vom Typ
ComplianceOperatorResult [Groll] instanziiert, welches bearbeitet und ausgegeben wird.

5.3.4.2.1 LTLOperator

Durch das Model-Checking im LTLOperator (siehe Listing A. 8) wird die Nichterfillung von <[lb
festgestellt und im Objekts Ergebnis gespeichert. AnschlieRend wird der Blchi-Automat von der
LTL-Formel bestimmt und anhand des Fehlens des ,accept all‘-Zustand als negativ (nach
Definition 4.2) erkannt. Da der LTLOperator in diesem Fall nicht auf dem obersten Level im
Operatorenbaum ist, wird die Formel im Ergebnis-Objekt gespeichert und das Ergebnis
ausgegeben.

5.3.4.2.2 NotOperator

Der NotOperator hat zuvor den LTLOperator aufgerufen (TeilOperator.actualCheck() in Listing A.
7) und negiert die im Objekt TeilErgebnis gespeicherte Formel. Die Negation wird in dem Ergebnis-
objekt des NotOperators gespeichert. Auch das Model-Checking-Ergebnis wird negiert und
gespeichert. Das heilt, die Teilformel =<>[b ist erfillt.

Da es Co-Safety LTL-Formeln (siehe Abschnitt 2.2.1.3.3) gibt, darf eine als negativ erkannte
Teilformel durch den logischen NOT-Operator im Regelbaum nicht als eine positive Teilformel
interpretiert werden. Vielmehr muss ein neuer Buchi-Automat erstellt und in ihm nach dem
»accept_all“-Zustand gesucht werden.

Daher wird der Bichi-Automat fur ~>Cb erzeugt und geprift. Es handelt sich um eine Co-Safety
Formel, weil ihre Negation ebenfalls negativ ist. Da der LTLOperator in diesem Fall nicht auf dem
obersten Level im Operatorenbaum ist, wird nur das Ergebnis ausgegeben.

5.3.4.2.3 OrOperator

Der OrOperator verarbeitet in einer Schleife alle Operanden, den LTLOperator und den
NotOperator. Von dem LTLOperator erhalt er TeilErgebnis.Erfuellt=false. Daher bleibt
Ergebnis.Erfuellt des OrOperators auf false. Da das TeilErgebnis zu <>a positiv ist, wird
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Ergebnis.Positiv des OrOperators auf true gesetzt. Das heildt, analog zum Model-Checking
[Grol1], wird und bleibt das Ergebnis des OrOperators positiv, sobald ein positiver Operand
entdeckt wird. Dies entspricht den Uberlegungen im Abschnitt 4.2.6.5. Da der OrOperator in
diesem Fall nicht auf dem obersten Level im Operatorenbaum ist, wird nur das Ergebnis
ausgegeben.

Wenn <a erfiillt und der OrOperator auf der obersten Regelbaumebene wére (z. B. Compliance-
Regel <a v [b), dann wirde die for-Schleife verlassen (exit for) und im Ergebnis eine leere
Formel ausgegeben werden.

Im nachsten Durchlauf der for-Schleife wird das TeilErgebnis des NotOperators ausgewertet. Da
der NotOperator erfullt ist, wird Ergebnis.Erfuellt auf true gesetzt. Ergebnis.Positiv=true kann sich
aufgrund <>a nicht mehr andern. Das heilt, der OrOperator ist erfillt und positiv (vgl. Abbildung
5.11).

5.3.4.2.4 AndOperator

Das Ergebnis des AndOperators wird mit erfiillt und positiv auf true initialisiert. Falls ein negativer
Operand gefunden wird, wird Ergebnis.Positiv des AndOperators auf false gesetzt. Bei einem nicht
erfillten Operanden, wird Ergebnis.Erfuellt auf false gesetzt.

Da der AndOperator in diesem Fall auf der obersten Regelbaumebene ist, wird entschieden, ob die
Teilregeln weitergegeben werden. Da <a erfillt und positiv ist, wird diese Teilformel nicht in
Ergebnis.Formel gespeichert. Dasgleiche gilt fir (Ga v <OCb). Damit werden beide Formeln nicht
an den inneren Compliance-Scopes weitergegeben.

5.4 Erweiterung des Model-Checking

In diesem Abschnitt werden einige Erweiterungen des Model-Checking zur Unterstutzung der LTL-
Operatoren Globally ((J) und Until (U) beschrieben. Es wurden Anpassungen zur Generierung des
ausfuhrbaren Kreuzproduktes (vgl. Abbildung 2.12) des Modells und der negierten LTL-Regel
(siehe Abbildung 2.10) vorgenommen. Das heifdt, es wurden die generierten Never Claims und die
Transformation der Petrinetze in Promela-Modelle angepasst.

5.4.1 Never Claims

Das Promela-Modell und der Never Claim (siehe Abschnitt 2.3.2.2) werden schrittweise
nacheinander ausgefuhrt. Dabei wird der Definitionsteil (sogenannte Macros) als ein
zusammenhangender Schritt behandelt. In den Macros werden die im Never Claim verwendeten
Variablen auf die Platze des Petrinetzes abgebildet sowie die Transitionen definiert [Gro11]. Nach
den Macros wird ein erster Schritt in dem Never Claim ausgefuhrt. Das Listing 5.3 zeigt den
urspringlichen Code des Kreuzproduktes eines Modells, welches nur aus einem Task Test besteht
(siehe Abbildung 5.12), und seiner negierten Spezifikation [JTest.

Compliance

..

Abbildung 5.12: Compliance-Scope mit einem Task
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byte p[S];

#define Test p[3]

#define rd_6_transition0 p[1] && !p[2]
#define fire_6_transition0 p[1] = 0; p[2] = 1;
#define rd_7_transitionl p[2] && !p[3]
#define fire_7_transitionl p[2] = 0; p[3] = 1;
#define rd_8_transition2 p[3] && !p[4]
#define fire_8_transition2 p[3] = 0; p[4] = 1;
active proctype test()

d_step { p[0] = O; p[1] = 1; p[2] = 0; p[3] = O; p[4] = O; }

do

[* Ende erster Schritt (Macros) */

/* Ende zweiter Schritt */

::rd_6_transition0 -> d_step{printf("PROCESSED_6_transition0"); fire_6_transition0}
o rd_7_transitionl -> d_step{printf("PROCESSED_7_transition1"); fire_7_transition1}
. rd_8_transition2 -> d_step{printf("PROCESSED_8 transition2"); fire_8_transition2}

.. p[4] -> goto accept
od;
accept: printf("Accepted");
}

never { /* I([|(Test)) */
TO_init:
if
= (! ((Test))) -> goto accept_all
(1) -> goto TO_init
fi;
accept_all:
skip
}

Listing 5.3: Never Claim mit vorzeitigem Abbruch

[* akzeptierender Zustand erreicht */

Die boolesche Variable Test entspricht dem Task Test. Diese wird auf den Wert des Arrays p an
der Stelle 3 abgebildet. In diesem Fall akzeptiert (,goto accept_all“) der Never Claim den ersten
Zustand, der sich nach dem Ausflihren der Macros ergibt, weil nach dem ersten Programmschritt
p[3]=0 gilt. Das Ergebnis des Model-Checking ist somit negativ, obwohl das Modell seiner
Spezifikation entspricht. Der erste Schritt im Promela-Modell muss daher vom Never Claim
Ubersprungen werden. AuRerdem muss auch der zweite Schritt Ubersprungen werden, in dem die
Platze des Petrinetzes vorbelegt werden (siehe Kommentar in Listing 5.3).

Dies kann mit dem Befehlt true erreicht werden. Im Biichi-Automaten

entspricht dies einem

ZustandsUbergang, der unabhangig von der Eingabe stattfindet. Das Listing 5.4 zeigt den
entsprechenden Never Claim und die Abbildung 5.13 die entsprechende visuelle Darstellung (vgl.

Abbildung 2.13).

never { /* I([J(Test)) */

true; /* nach den Makros */
true; /* nach der Initialisierung der Platze */
TO_init:

if /* nach der ersten Transition im Petrinetz */

o (! ((Test))) -> goto accept_all

2 (1) -> goto TO_init

fi;

accept_all:
skip

Listing 5.4: Erweiterter Never Claim fur []Test
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Test True

Tr r AJT
@) )

Abbildung 5.13: Erweiterter Never Claim fur LITest

5.4.2 Promela-Modell

Im Folgenden werden die Anpassungen der Abbildung des Mapping des internen Petrinetzes auf
Promela.

5.4.2.1 Vorbedingungen der Transitionen

In der do-Schleife [wwwh] im Listing 5.3 werden Transitionen nichtdeterministisch auswahlt. Durch
das Konstrukt d_step{...} werden alle Programmschritte innerhalb der Klammern {...} wie ein
atomarer Schritt ausgefiihrt [wwwh]. Das heil’t, der nachste Schritt im Never Claim erfolgt erst
nach der vollstandigen Ausfiihrung von d_step{...}.

Durch die oben beschriebene Anpassung des Never Claims ergibt das Model-Checking von
[ITesten immer noch einen Fehler. Der Grund dafiir ist, dass der erste Verifikationsschritt im
Never Claim bereits nach dem Auswahlen und Prifen der Vorbedingungen einer Transition erfolgt.
Daher wurden die Prufungen der Vorbedingungen mit dem Schalten der Transitionen zu atomaren
Schritten vereint (siehe Listing 5.5).

do
.. d_step{rd_6_transition0 -> printf("PROCESSED _6 _transition0"); fire_6_transition0}
o d_step{rd_7_transitionl -> printf("PROCESSED_7_transition1"); fire_7_transition1}
:: d_step{rd_8_transition2 -> printf("PROCESSED_8_transition2"); fire_8_transition2}

;. d_step{p[4] -> goto accept}

od;

Listing 5.5: Vorbedingungen der Transitionen

5.4.2.2 Die letzte Transition

Bei der letzten Transition durch fire_8 transition2 in Listing 5.3 wird der boolesche Wert der
Variable Testen durch p[3] = 0; auf false gesetzt. Die Verifikation dieses letzten Zustands gegen
die Spezifikation [Testen ergibt wieder einen Fehler. Das heifl3t der Never Claim terminiert. Aus
diesem Grund wird die letzte Transition des Petrinetzes im Promela-Modell nicht mehr
berlcksichtigt. Dadurch wird die do-Schleife geblockt, weil es keine ausflihrbaren Anweisungen
gibt. Dies wird jedoch in Promela nicht als ein Fehler interpretiert [wwwh]. Alternativ kann die letzte
Transition so gestaltet werden, dass die im vorletzten Zustand gultigen Variablen nicht verandert
werden.
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5.4.2.3 Definition der Tasks

Ein Task, der in einem BPMN-Diagramm mehrmals vorkommt, wird auf verschiedene Platze des
Petrinetzes abgebildet (siehe Listing 5.3). Dabei wird jedoch mit jeder neuen Definition des Tasks
die vorhergehende Definition Uberschrieben, so dass es im Promela-Modell nur einen Platz gibt,
der diesem Task entspricht.

byte p[8];

#.(Ijefine Testen p[4]
#define Testen p[6]

Listing 5.6: Beispiel fir eine Gberschriebene Task-Definition

Wahrend dies das Model-Checking eines Modells ohne Verzweigungen mit der LTL-Regel <
Testen nicht beeintrachtigt, kénnen gleich benannte Tasks auf verzweigten Pfaden nicht gefunden
werden. Auch in Modellen ohne Verzweigungen kénnen LTL-Regeln wie (ITesten, OCTesten, O
{Testen oder (Anfrage U Antwort), in denen ein Task mehrmals vorkommen kann, das Model-
Checking nicht bestehen. Denn nach der Aktivierung eines Platzes des Petrinetzes, dem kein Task
zugeordnet ist, akzeptiert der Never Claim den neuen Zustand. Die Erweiterung der Abbildung des
Petrinetzes auf Promela wird anhand des Diagramms in Abbildung 5.14 und des entsprechenden
Promela-Modells in Listing 5.7 erlautert.

Compliance

‘O—.{SpezifizierenH Testen HMDdellierenH Testen }—.O

Abbildung 5.14: BPMN-Modell zum erweiterten Promela-Modell

Zustands-Array mit Task-IDs

Fir n verschiedene Tasknamen wird das n-stellige Zustands-Array state[n] definiert. Das
Zustandsarray gibt an, welche Tasks aktiv sind, wobei seine Indizes die Task-IDs sind. Jeder
Taskname wird dabei mit einer Task-ID aus diesem Array assoziiert, beispielsweise:

#define Testen state[1]

Dabei bedeutet beispielsweise state[1]=2, dass es zwei aktive Tasks mit der Task-ID=0 gibt. Der
Name des Tasks mit der Task-ID=0 ist Testen, wie oben definiert.

Task-IDs auf Platze verteilen

Durch ein weiteres Array wird jedem Platz, welches einen ausgeflihrten Task reprasentieren soll,
eine Task-ID und damit indirekt ein Taskname zugeordnet. Beispielsweise werden der zwei Mal
vorkommende Task Testen (Task-ID=1) den Platzen vier und sechs mit taskiD_p[4]=1 und
tasklD_p[6]= 1 zugeordnet.

Schalten des Petrinetzes

Fir m Platze wird weiterhin das Array p[m] definiert. Das Schalten des Petrinetzes und die
Vorbedingungen sind unverandert. Beim Schalten wird jedoch zusatzlich das Zustands-Array
bearbeitet. Durch state[taskID_p[4]]++; wird der Token des Petrinetzes auf Platz p[4] verschoben.
Da taskiD_p[4] = 1 gilt, wird state[1] erhéht. Das heilt, der Task Testen wird aktiviert. Das
Zustands-Array an der Stelle, die dem vorherigen Task entspricht, wird dabei erniedrigt.
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byte p[8];
byte taskID_p[8];
byte state[3];

#define Spezifizieren state[0]
#define Testen state[1]
#define Modellieren state[2]

#define rd_197_transition0 p[1] && 'p[2]
#define fire_197_transition0 p[1] = 0; p[2] = 1;

#define rd_198_transitionl p[2] && !p[3]
#define fire_198_transition1 p[2] = O; p[3] = 1, state[taskID_p[3]]++;

#define rd_199 transition2 p[3] && 'p[4] /* Task Testen wird aktiviert */
#define fire_199 transition2 p[3] = O; state[taskIiD_p[3]]--; p[4] = 1; state[taskID_p[4]]++;

#define rd_200_transition3 p[4] && !p[5]
#define fire_200_transition3 p[4] = 0; state[taskID_p[4]]--; p[5] = 1, state[taskID_p[5]]++;

#define rd_201_transition4 p[5] && !p[6]
#define fire_201_transition4 p[5] = O; state[taskID_p[5]]--; p[6] = 1; state[taskID_p[6]]++;

#define rd_202_transition5 p[6] && !p[7]
#define fire_202_transition5 p[6] = O; state[taskID_p[6]]--; p[7] = 1;

#define start p[2]
active proctype test() {

d_step {
taskiD_p[3] = 0;
tasklD_p[4] = 1; /* TaskID des Platzes 4 ist 1 */
taskID_p[5] = 2;
tasklD_p[6] = 1; /* Dem Platz 6 ist ein Task mit der Task-ID=1 zugeordnet. */

ng] =0; p[1] = 0; p[2] = 1; p[3] = O; p[4] = O; p[5] = O; p[6] = O; p[7] =0O; }
0
o d_step{rd_197_transition0 -> {printf("PROCESSED_197_transition0"); fire_197_transition0}}
- d_step{rd_198_transitionl -> {printf("PROCESSED_198_transition1"); fire_198_transition1}}
o d_step{rd_199 transition2 -> {printf("PROCESSED_199_transition2"); fire_199 transition2}}
. d_step{ rd_200_transition3 -> {printf("PROCESSED_200 _transition3"); fire_200_transition3}}
. d_step{rd_201_transition4 -> {printf("PROCESSED_201_transition4"); fire_201_transition4}}
.. p[7] -> goto accept
od;
accept: printf("Accepted");
}

Listing 5.7: Erweitertes Promela-Modell
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5.4.2.4 Aktive Startereignisse in inneren Compliance-Scopes

Da die den Startereignissen entsprechenden Platze der Petrinetze von inneren Compliance-
Scopes markiert sind, werden die Tasks entlang eines Pfades nicht in der erwarteten Reihenfolge
aktiviert. Dadurch wird beim Model-Checking beispielsweise bemangelt, dass die Compliance-
Regel &(7b U a) im Diagramm in Abbildung 5.15 nicht erfillt ist. In dem weiter unten in der

Abbildung angegebenen Gegenbeispiel ist erkennbar, dass Task b vor dem Task a ausgefiihrt
wird.

Compllanca
Compllance

Compllanca

Compliance Check Result

Rl=sull Lirmamed miphance Scops 81 (NoRukes Delined 827 ules | NoRules Defired 81, NOT(b) U a {Invalid
Mletsnge
Model did mot match specification 'Miibl) U (a counterexample as follows

Performing Task <=

Parforming Start &vent

Performing Start event

Performing Task =d=

End event

Leawing subprocess

Goimg te next task after subprocess
End event

Entering subprocess

Leawing subprocess

= " &ker subprocess

Abbildung 5.15: Aktive Startplatze bei inneren Compliance-Scopes

Alle Platze des Petrinetzes besitzen einen Index beginnend bei null, wobei ein Startplatz abhangig
von dem BPMN-Modell auf einem Platz mit Index kleiner vier liegen kann. Der Startplatz eines
inneren Compliance-Scopes hat jedoch relativ zu seinem &uReren Compliance-Scope den
Startplatz-Index gréRer drei. Daher wurde in der Java-Klasse PromelaExport die Schleife, die alle
Platze des Petri-Netzes abarbeitet so geandert, dass die Platze mit einem Index gréRer drei nicht
markiert werden (vgl. ,Ende zweiter Schritt* in Listing 5.3).
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6 Zusammenfassung

6 Zusammenfassung

In dieser Arbeit wird das Konzept der automatischen Konsistenzprifung [SALS10] von
verschachtelten Geschaftsprozessmodellen umgesetzt. Die Konsistenzprifung erfolgt dabei mittels
logischer Erfullbarkeitsprifung von verknipften Compliance-Regeln. Das auf der Aussagenlogik
basierende Konzept wird auf die lineare temporale Logik (LTL) Ubertragen. Die Umsetzung erfolgt
in einem Prototyp [Grol0], dem webbasierten BPMN-Editor Oryx, der in einer vorhergehenden
Arbeit um die Compliance-Prifung von Geschéaftsprozessmodellen mittels Model-Checking
erweitert wurde.

Nach einer Einleitung wird im zweiten Kapitel diese Arbeit im Geschéftsprozessmanagement
eingeordnet und die Relevanz des Ansatzes zur Compliance-Durchsetzung verdeutlicht.
Anschlielend werden die notwendigen Grundlagen der LTL, des Model-Checking und der
Erfullbarkeitsprifung vorgestellt. Im nachsten Kapitel werden die verwandten Arbeiten
beschrieben. Dabei werden sowohl das oben genannte Konzept der Konsistenzpriifung als auch
der Prototyp genauer erlautert.

Ausgehend von begriffichen Konventionen werden im Kapitel 4 praktische Beispiele fiir den
Einsatz der automatischen Konsistenzprifung von Compliance-Regeln gegeben. Um die in
[SALS10] definierten direkten und indirekten Konflikte zwischen Compliance-Regeln in LTL
anzuwenden, wird untersucht, was unter positiven und negativen Literalen im Rahmen der LTL zu
verstehen ist. Die Unterschiede zur Aussagenlogik werden beleuchtet und dabei die temporalen
Giltigkeitsbereiche von LTL-Formeln diskutiert. Anschlieffend wird die Definition der positiven und
negativen Regeln eingefiihrt, die auf der Untersuchung der, den LTL-Formeln entsprechenden,
Buchi-Automaten basiert. Anhand dieser Definition werden einige direkte und indirekte Konflikte
zwischen Compliance-Regeln beispielhaft diskutiert und Schlussfolgerungen fur die praktische
Umsetzung gezogen. Aulerdem werden sogenannte potentielle Konflikte aufgrund von
Disjunktionen eingefiuihrt. Des Weiteren wird auf die Erweiterung der Compliance-Prifung in Bezug
auf den Prototyp eingegangen. Um die Fehlersuche bei inkonsistenten Compliance-Regeln zu
erleichtern, werden dabei einzelne LTL-Formeln und die aus ihnen zusammengesetzten
Compliance-Regeln vor der Compliance-Prifung auf Erfullbarkeit und Gultigkeit gepruft. Dariber
hinaus wird ein Uberblick tber die zu implementierende Erweiterung der Compliance-Priifung
gegeben. Dabei erfolgt die Konsistenzprifung verknipfter Compliance-Regeln vor dem Model-
Checking. Im Falle einer Inkonsistenz wird die Prufung aller inneren Compliance-Scopes des
aktuellen Scopes abgebrochen. Anderenfalls erfolgt mit dem Model-Checking die
Zusammensetzung der an die inneren Compliance-Scopes weiterzugebenden Teilregeln. Diese
werden anschlieBend an innere Compliance-Scopes weitergegeben und mit ihren Compliance-
Regeln verknupft.

Im Kapitel 5 werden die bearbeiteten Komponenten des Prototyps anhand eines
Komponentendiagramms erlautert und anschlieRend die Details der Implementierung im Front- und
Backend beschrieben. Wahrend zu Erflllbarkeits- und Gultigkeitsprifungen die entsprechenden
Sequenzdiagramme erlautert werden, erfolgt die Beschreibung der Weitergabe von Compliance-
Regeln anhand von Pseudocodes, die im Anhang zu finden sind. Des Weiteren wird die
Erweiterung des Model-Checking beschrieben, die das Model-Checking mit den LTL-Operatoren
Globally und Until erméglicht.
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7 Ausblick

Wahrend der Umsetzung wurde Konzept um neue Erkenntnisse erweitert. Im Folgenden wird auf
die Bestandteile des Konzeptes, die aus Zeitgriinden nicht implementiert werden konnten, sowie
weiterfihrende Ideen eingegangen. Des Weiteren wird ein Hinweis bezlglich der
Weiterentwicklung der Abbildung des BPMN-Modells auf Promela gegeben.

Automatische Erfiillbarkeits- und Giiltigkeitsprifung im LTL-Editor

In der aktuellen Version erfolgt die Erfullbarkeits- und Gultigkeitsprifung modellierter LTL-Formeln
manuell Uber einen Toolbar-Button im LTL-Editor. Wenn der Benutzer vergisst eine LTL-Formel zu
prifen, koénnen unerfillbare oder giltige Compliance-Regeln im Compliance-Wizard
zusammengesetzt werden. Wie im Abschnitt 4.3.1 des Konzeptes erwahnt, konnten die LTL-
Formeln bereits beim Speichern geprift werden. Dabei sollte es nicht moglich sein eine
unerfillbare oder glltige LTL-Formel abzuspeichern. In dieser Arbeit wurde zunachst nur die
manuelle Uberpriifung von LTL-Formeln implementiert, weil fiir einige Tests unerfiillbare und
gultige LTL-Formeln bendtigt wurden.

Die manuelle Prifung der LTL-Formeln hat jedoch keine negativen Folgen auf die Compliance-
Prifung, weil Compliance-Regeln im Compliance-Wizard, dem Compliance-Regel-Editor, beim
Speichern automatisch auf Erfillbarkeit und Unglltigkeit geprift werden. Es ist somit nicht moglich
eine unerfillbare oder ungiiltige Regel einem Compliance-Scope zuzuweisen. Jedoch kann im
Falle einer unerfillbaren Compliance-Regel nicht sofort auf die dazu flhrenden LTL-Formeln
geschlossen werden.

Automatische Erkennung von Formeln mit bestimmten Giiltigkeitsbereichen

Die Beispiele in Abschnitt 4.2.7 zeigen, dass es mit dem aktuellen Ansatz zur Erkennung positiver
Teilregeln (siehe Definition 4.1) nicht fir alle Formeln sicher entschieden werden kann, ob sie
weitergegeben werden sollen. Beispielsweise sollte (a U b) nur an die Compliance-Scopes
weitergegeben werden, die sich auf den Startzustand beziehen (siehe Abbildung 4.8). Die Formel
{a wird als negativ erkannt und wird an alle Compliance-Scopes weitergegeben, obwohl sie in
dem Compliance-Scopes gelten muss, der den Endzustand des urspringlichen Compliance-
Scopes enthalt. Daher missen solche Formeln anders erkannt werden, beispielsweise mit Hilfe
von reguladren Ausdriicken, das heif3t der Suche nach Textmustern in den textuellen Darstellungen
der Formeln. Auch eine Weiterentwicklung der Untersuchung von entsprechenden Buchi-
Automaten ist denkbar. Um die Compliance-Prifung dadurch nicht zu belasten, kann die
Erkennung bei der Speicherung der LTL-Modelle stattfinden. Dabei kann zu jedem LTL-Modell in
einem Eigenschaftsfeld seine Zugehorigkeit zu einem Glltigkeitsbereich gespeichert werden.

Disjunktionen in LTL-Formeln

Im Abschnitt 4.2.6 werden potentielle Konflikte aufgrund von Disjunktionen in den Teilregeln
diskutiert. Dabei beschrankt sich die Implementierung des Ldsungsansatzes (siehe Abschnitt
4.2.6.5.) nur auf Teilregeln, die nicht LTL-Modelle sind. Das heifl3t, es werden nur die Oder-
Operatoren verarbeitet, die als Knoten des Regelbaums im Compliance-Wizard erstellt wurden.
Wahrend der Auswertung des Regelbaums (siehe Abschnitt 5.3.4.2.3) sollten daher auch die Oder-
Operatoren innerhalb von LTL-Modellen verarbeitet werden.
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7 Ausblick

Giiltigkeitsprifungsprifung von Teilregeln

In dieser Arbeit wurde der Compliance-Regel-Editor (Compliance-Wizard) um die automatische
Erflllbarkeits- und Giiltigkeitsprifung von zusammengestellten Compliance-Regeln erweitert (siehe
Abschnitt 5.2.2). In einem spaten Entwicklungsstadium wurde jedoch die Notwendigkeit der
Glltigkeitsprufung einzelner Teilregeln festgestellt und im Konzept aufgenommen (siehe Beispiel in
Abschnitt 4.3.3). Wenn die automatische Erflllbarkeits- und Giiltigkeitsprifung im LTL-Editor
implementiert wird, ist nur die Giiltigkeitsprifung von den Teilformeln erforderlich, die nicht nur aus
einem LTL-Modell bestehen.

Markierung lokaler Teilregeln

Durch das Nichtweitergeben von positiven erfiillten Teilregeln (siehe Abschnitt 4.2.5.1) werden in
den inneren Compliance-Scopes implizit Inkonsistenzen zu ihren duReren Compliance-Regeln
zugelassen. Diese Zulassung kdnnte auch explizit durch Markierung der Teilregeln erfolgen, die
niemals an innere Compliance-Scopes weitergegeben werden sollen. Das heifl’t, es kdnnten
analog zu einer Programmiersprache lokale und globale Variablen in Form von Teilregeln definiert
werden (vgl. Abschnitt 4.2.7.3). Zwei Anwendungsbeispiele sind dazu im Abschnitt 4.2.7 zu finden.
Es handelt sich bei diesen Beispielen um negative Compliance-Regeln, die nicht weitergegeben
werden sollen.

Weitergabe von Regeln auch an variable Regionen

In der aktuellen Implementierung der Compliance-Prifung (siehe Abbildung 5.10) werden die
Compliance-Regeln nur an Compliance-Scopes weitergegeben. Der Prototyp wurde in einer
parallel laufenden Arbeit unter anderem so weiterentwickelt, dass auch den variablen Regionen
(siehe Abbildung 3.10) Compliance-Regeln zugewiesen werden kénnen. Die Compliance-Prifung
kann daher um die Weitergabe von Compliance-Regeln an variablen Regionen erweitert werden.
Dabei muss das Model-Checking nach der Erflllbarkeitspriifung unterbunden werden, weil es
keine Aktivitaten in der variablen Region gibt.

Regel-Vorlagen

Fir die fehlerfreie Eingabe von LTL-Formeln sind umfangreiche Kenntnisse dieser
Spezifikationssprache erforderlich. Es ist nicht einfach LTL-Formeln richtig zu interpretieren und ist
fehleranfallig gewtuinschte Systemeigenschaften in LTL auszudriicken (siehe Abschnitt 3.1). Die
syntaktischen Fehler werden in dem Prototyp bereits dadurch eliminiert, dass die Formeln grafisch
in einem LTL-Editor erstellt werden [Grol1]. Die semantischen Fehler kbnnen beispielsweise durch
Regel-Vorlagen und Regel-Assistenten reduziert werden. Eine Sammlung von Vorlagen fur LTL-
Formeln kann zum Beispiel in [www12e] gefunden werden.

Verbesserung der Abbildung der BPMN-Modelle auf Promela

Trotz der in dieser Arbeit durchgefiihrten Erweiterung der Abbildung des Petrinetzes auf Promela
um das Model-Checking fur LTL-Formeln mit den Operatoren Globally und Until zu ermdglichen
(siehe Abschnitt 5.4), werden noch nicht alle BPMN-Modelle korrekt auf Promela abgebildet. Zur
Korrektur kann eine Anpassung der BPMN-zu-Petrinetz-Abbildung notwendig sein, weil in der
aktuellen Version nur einmal in einem BPMN-Diagramm vorkommende Tasks mehrmals im
Petrinetz gespeichert sind. Dies wird anhand eines Beispiels im Anhang A.5 verdeutlicht.
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A. Anhang

A.l. Beispiele fur Buchi-Automaten

Folgende Tabellen enthadlt Bichi-Automaten mit und ohne den ,accept all“-Zustand. Die
Textdarstellung wurde mit dem Kommandozeilenbefehl von SPIN ,spin -f “<Formel>“ und die

grafische Darstellung mit dem Programm GOAL [YKTH12] generiert.

Textdarstellung Grafische Darstellung
never { /*[]!(a && b) */ ~b
accept_init: ~a
TO_init: A

if
2 (! ((a && b))) -> goto TO_init F
fi;
} (Sicherheitseigenschaft)
never { [*[]<>a*/
TO_init:
if
2 ((a)) -> goto accept_S9
2 (1) -> goto TO_init
fi;
accept_S9:
if (Wiederholung)
2 (1) -> goto TO_init
fi;
}
never { [*<>[la*/
TO_init:
if
 ((a)) -> goto accept_S4
2 (1) -> goto TO_init
fi;
accept_S4:
if
2 ((@)) -> goto accept_S4
fi: (Stabilitat)
}

Tabelle A. 1: Beispiele fur Buchi-Automaten ohne des ,accept_all“-Zustands




A. Anhang

Beispiele fur positive Eigenschaften im Sinne der Definition 4.1:

Textdarstellung

Grafische Darstellung

never { /*<>a*
TO init:
if
i ((@)) -> goto accept_all
2 (1) -> goto TO_init
fi;
accept_all:
skip
}

N

~3 True

never { /*aUb?*
TO_init:
if
i ((b)) -> goto accept_all
:2 ((a)) -> goto TO_init
fi;
accept_all:
skip
}

never { /*<>(@Uhb)*
TO_init:
if
.2 (b)) -> goto accept_all
2 (1) -> goto TO_init
fi;
accept_all:
skip
}

never { /[*[la-><>b*/
TO_init:
if
2 ((C (@) 11 ((0)))) -> goto accept_all
2 (1) -> goto TO_init
fi;
accept_all:
skip
}

(Schwache Fairness)

Tabelle A. 2: Beispiele fir Buchi-Automaten mit dem ,accept_all*-Zustand
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A.2 Disjunktionen

A.2. Disjunktionen

never { /*(1(<>e) || (<>b)) */
accept_init:
TO_init;
if
2 (! ((e))) -> goto accept_S2
2 (M ((b))) -> goto accept_S5
fi;
accept_S2:
TO_S2:
if
2 (! ((e))) -> goto accept_S2
fi;
accept_S5:
TO_S5:
if
2 (! (b)) -> goto accept_S5
fi;
}

Listing A. 1: Negative Disjunktion (- e v ~b)

never { /*(I(<>e) || (<>b)) */

TO_init:
if
2 (! ((e))) -> goto accept_S2
:: ((b)) -> goto accept_all
(1) -> goto TO_S5
fi;
accept_S2:
if
= (! ((e))) -> goto accept_S2
fi;
TO_S5:
if
:: ((b)) -> goto accept_all
2 (1) -> goto TO_S5
fi;
accept_all:
skip
}

Listing A. 2: Positive Disjunktion (e v Ob)
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A. Anhang

A.3. Nicht Co-Safety Eigenschaften

Die Formel (ma U b) ist positiv im Sinne der Definition 4.1. lhre Negation ist ebenfalls positiv, weil
auch sie den ,accept_all“-Zustand enthalt. Das heif’t, sie ist nicht Co-Safety (siehe Abschnitt
2.2.1.3.3).

never { /*!(a)Ub *
TO init:

if

;2 ((b)) -> goto accept_all
i (! ((@))) -> goto TO_init
fi;
accept_all:

skip
}

never { /*!(!(@) Ub)*
accept_init:
TO_init:
If
2 (Y (b)) -> goto TO_init
2 (Y (b)) && (a)) -> goto accept_all
fi;
accept_all:
skip
}

Listing A. 3: Nicht Co-Safety Eigenschaft (positiv)

Sowohl die Eigenschaft [J(a-><>b) als auch ihre Negation sind negativ im Sinne der Definition 4.2.
Ein weiteres Beispiel ist OLb:

never { /[*<>[]b */
TO_init:
if
2 ((b)) -> goto accept_S4
2 (1) -> goto TO_init
fi;
accept_S4:
if
i1 ((b)) -> goto accept_S4
fi;
}

never { /*1(<>[]b) */
TO_init:
if
= (! ((b))) -> goto accept_S9
2 (1) -> goto TO_init
fi;
accept_S9:
if
2 (1) -> goto TO_init
fi;
}

Listing A. 4: Nicht Co-Safety Eigenschaft (negativ)
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A.4 Pseudocodes der Operatoren-Klassen

A.4. Pseudocodes der Operatoren-Klassen

Die folgenden Pseudocodes stellen Ausschnitte aus den Methoden actualCheck() der Operatoren-
Klassen (siehe Abbildung 5.8) dar. Sie enthalten nur den Fall ihres Aufrufs mit dem Parameter
modelcheck=true. Das heif3t, die im Java-Code enthaltene Fallunterscheidung zwischen dem
Auslesen der LTL-Formel (siehe Abschnitt 5.3.3) und dem Model-Checking mit Bestimmung der
weiterzugebenden Teilregeln (siehe Abschnitt 5.3.4.2) ist in den Pseudocodes nicht enthalten. Das
Auslesens und Weitergeben der LTL-Formeln zur Wurzel hin ist jedoch auch hier erkennbar.

function AndOperator.actualCheck
input: BpmnModel (JSON)
ComplianceScope (JSON)
Operator (JSON)
OperatorLevel (Integer)
modelcheck(Boolean)
output: Ergebnis (ComplianceOperatorResult)

begin
Ergebnis.Erfuellt = true
Ergebnis.Positiv = true
Ergebnis.Formel ="
TeilErgebnis: ComplianceOperatorResult
for all Operand in Operator.Operanden do
/I Typ des Operands bestimmen und auswerten
TeilOperator = bestimmeTyp(Operand)
TeilErgebnis = TeilOperator.actualCheck(..., OperatorLevel+1)
/I Anhand des Ergebnisses eines Operanden wird das Gesamtergebnis bestimmt
if not TeilErgebnis.Erfuellt then
Ergebnis.Erfuellt = false
fi
if not TeilErgebnis.Positiv then
Ergebnis.Positiv = false;
fi
if OperatorLevel = 1 then
if Ergebnis.Positiv and Ergebnis.Erfuellt then
Ausgabe = "Operand OMITTED, will not be passed to inner scopes.”
else
Ergebnis.Formel = verknuepfe(Formel, Teilergebnis.Formel)
fi
else
Ergebnis.Formel = verknuepfe(Formel, Teilergebnis.Formel)
fi
od
return Ergebnis
end

Listing A. 5: Pseudocode der Auswertungsmethode des AndOperators (modelcheck=true)
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function OrOperator.actualCheck
input: BpmnModel (JSON)
ComplianceScope (JSON)
Operator (JSON)
OperatorLevel (Integer)
modelcheck(Boolean)
output: Ergebnis (ComplianceOperatorResult)
begin
Ergebnis.Erfuellt = false
Ergebnis.Positiv = false
Ergebnis.Formel =""
TeilErgebnis: ComplianceOperatorResult

for all Operand in Operator.Operanden do

/I Typ des Operands bestimmen und auswerten
TeilOperator = bestimmeTyp(Operand)
TeilErgebnis = TeilOperator.actualCheck(..., OperatorLevel+1)

/I Anhand des Ergebnisses eines Operanden wird das Gesamtergebnis bestimmt
if TeilErgebnis.Erfuellt then

Ergebnis.Erfuellt = true
fi

if TeilErgebnis.Positiv then
Ergebnis.Positiv = true
fi

if OperatorLevel = 1 then

if Ergebnis.Positivand Ergebnis.Erfuellt then
Ausgabe ="... All operands OMITTED."
Ergebnis.Formel = “
/I Beendigung der Auswertung
exit for
else
Ergebnis.Formel = verknuepfe(Formel, Teilergebnis.Formel)
fi
else
Ergebnis.Formel = verknuepfe(Formel, Teilergebnis.Formel)
fi
od

return Ergebnis
end

Listing A. 6: Pseudocode der Auswertungsmethode des OrOperators (modelcheck=true)
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function NotOperator.actualCheck

begin

end

input: BpmnModel (JSON)
ComplianceScope (JSON)
Operator (JSON)
OperatorLevel (Integer)
modelcheck(Boolean)

output: Ergebnis (ComplianceOperatorResult)

Ergebnis.Erfuellt = false
Ergebnis.Positiv = false
Ergebnis.Formel =""

/I Typ des Operands bestimmen und auswerten
TeilOperator = bestimmeTyp(Operand)
TeilErgebnis = TeilOperator.actualCheck(..., OperatorLevel+1)

/I Negation der Formel
NegierteFormel = negieren(TeilErgebnis.Formel)
Ergebnis.Formel = NegierteFormel

/I Negation des Model-Checking-Ergebnisses

if not Teilergebnis.Erfuellt then
Ergebnis.Erfuellt = true

fi

BuechiAutomat erzeugen(NegierteFormel )

If BuechiAutomat.enthaelt(,accept_all“) then
Ergebnis.Positiv = true

else
Ergebnis.Positiv = false

fi

if OperatorLevel = 1 then
if Ergebnis.Positiv and Ergebnis.Erfuellt then
Ausgabe = "Operand OMITTED, will not be passed to inner scopes.’
Ergebnis.Formel =“

fi
fi

return Ergebnis

Listing A. 7: Pseudocode der Auswertungsmethode des NotOperators (modelcheck=true)
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function LTLOperator.actualCheck

begin

end

input: BpmnModel (JSON)
ComplianceScope (JSON)
Operator (JSON)
OperatorLevel (Integer)
modelcheck(Boolean)

output: Ergebnis (ComplianceOperatorResult)

Ergebnis.Erfuellt = false
Ergebnis.Positiv = false
Ergebnis.Formel ="

Formel = LTLTranslator.translate(LTLModell)

Transformation von BPMN nach Petrinetz
Transformation von Petrinetz nach Promela-Modell
Model-Checking(Promela-Modell, Formel)
if Model erfuellt Formel then

Ergebnis.Erfuellt = true
else

Ergebnis.Erfuellt = false
fi

BuechiAutomat erzeugen(Formel)

If BuechiAutomat.enthaelt(,accept_all*) then
Ergebnis.Positiv = true

fi

if OperatorLevel = 1 then

if Ergebnis.Positiv and Ergebnis.Erfuellt then

Ausgabe = "Operand OMITTED, will not be passed to inner scopes.”

Ergebnis.Formel =
else
Ergebnis.Formel = Formel
fi
else
Ergebnis.Formel = Formel
fi

return Ergebnis

Listing A. 8: Pseudocode der Auswertungsmethode des LTLOperators (modelcheck=true)
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A.5 Das UND-Gateway

A.5. Das UND-Gateway

Ein Task zu viel

Im Allgemeinen ist es in echten Prozessen nicht vorhersehbar, ob bestimmte Aktivitdten zur
gleichen Zeit ausgefihrt werden [Hol03, For02]. Im Diagramm in der Abbildung A. 1 sollte daher
die Formel und {(a A —b) verletzt sein. Denn <>(a A -b) driickt aus, dass es garantiert einen
Zustand gibt, in dem a=true und b=false gilt. Dies ist nur mdglich, wenn immer zuerst a ausgefuhrt
wird.

Compliance

U
— |

Abbildung A. 1: BPMN-Diagramm fir <(a A b)

Das Model-Checking des Modells in Abbildung A. 1. ergibt jedoch ein positives Ergebnis, das heif3t
{(a A —b) wird falschlicherweise erflllt. Das passiert zum einen aufgrund der Erweiterung der
Petrinetz-zu-Promela-Abbildung (siehe Abschnitt 5.4.2.3) und zum anderen auf der in dieser Arbeit
nicht veranderten BPMN-zu-Petrinetz-Abbildung.

Obwonhl es in Abbildung A. 1. nur einen Task a gibt, wird dieser im Promela-Modell zwei Mal
definiert (siehe Listing A. 9), jedoch beim zweiten Mal Uberschrieben. Die oben genannte
Erweiterung fihrt dazu, dass die in Promela definierten Tasks nicht Gberschrieben werden. Daher
bleibt die erste Zuordnung des Tasks a zum Platz p[3] in der neuen Version bestehen (siehe
Abbildung A. 2). Die Formel <(a A —b) wird erfillt, weil der Task a neben Platz [9] auch dem Platz
p[3] zugewiesen ist. Somit gilt nach dem Schalten des UND-Gateways immer a=true.

[3] (Task a} p[g] (Task a)
-{.I

u[ ] :D[?] I D[t'l]

£[4] p[S] (Task b)

Abbildung A. 2: Petri-Netz fur (a A b)
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byte p[10];

#define a false

#define b p[5]

#define a p[3]

#define b p[5]

#define a p[9]

#define rd_79_transition0 p[1] && 'p[3] && 'p[4]

#define fire_79_transition0 p[1] = 0; p[3] = 1; p[4] = 1;

#define rd_80_transitionl p[4] && !p[5]
#define fire_80_transition1 p[4] = 0; p[5] = 1;
#define rd_81_transition2 p[5] && p[9] && !p[7]

#define fire_81_transition2 p[5] = 0; p[9] = O; p[7] = 1,

#define rd_82_transition3 p[7] && 'p[8]
#define fire_82_transition3 p[7] = 0; p[8] = 1;
#define rd_83_transition4 p[3] && !p[9]
#define fire_83_transition4 p[3] = 0; p[9] = 1,
active proctype test()

{

d_step { p[0] = O; p[1] = 1; p[2] = 0; p[3] = 0; p[4] = O; p[5] = O; p[6] = 0; p[7] = O; p[8] = 0; p[9] = O;

}
do

rd_79_transition0 -> d_step{printf("PROCESSED_79_transition0"); fire_79_transition0}
::rd_80_transitionl -> d_step{printf("PROCESSED_80_transition1"); fire_80_transition1}
2 rd_81_transition2 -> d_step{printf("PROCESSED_81_transition2"); fire_81_transition2}
::rd_82_transition3 -> d_step{printf("PROCESSED_82_transition3"); fire_82_transition3}
:: rd_83_transition4 -> d_step{printf("PROCESSED_83_transition4"); fire_83_transition4}

.. p[8] -> goto accept
od;
accept: printf("Accepted");
}

never { /* I(<>(a)) */
accept_init:
TO_init:

if
(M ((@))) -> goto TO_init
fi;
}

Listing A. 9: Promela-Modell fir zwei parallele Tasks (vor der Erweiterung)

XIX






Literaturverzeichnis

[AH92]

[BB94]

[BBDERO1]

[Bur04]

[CESS6]

[CGLY6]

[CPP93]

[DAC98]

[Deh04]

[DLPO4]

[DOWO0S]

[EH84]

Rajeev Alur and Thomas Henzinger. Logics and models of real time: A survey. In
J. de Bakker, C. Huizing, W.de Roever, and G. Rozenberg, editors, Real-Time:
Theory in Practice, volume 600 of Lecture Notes in Computer Science, pages 74-106.
Springer Berlin / Heidelberg, 1992. 10.1007/BFb0031988.

Derek L. Beatty and Randal E. Bryant. Formally verifying a microprocessor using a
simulation methodology. In Proceedings of the 31st annual Design Automation
Conference, DAC '94, pages 596—602, New York, NY, USA, 1994. ACM.

llan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detection of
vacuity in temporal model checking. Form. Methods Syst. Des., 18(2):141-163, March
2001.

W. Burr. Innovationen in Organisationen. Organisation und Fihrung. Kohlhammer,
2004.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8:244—-263, 1986.

E. Clarke, O. Grumberg, and D. Long. Model checking. In Proceedings of the NATO
Advanced Study Institute on Deductive program design, pages 305-349, Secaucus,
NJ, USA, 1996. Springer-Verlag New York, Inc.

Joelle Cohen, Dominique Perrin, and Jean-Eric Pin. On the expressive power of
temporal logic. J. COMPUT. SYSTEM SCI, 46:271-294, 1993.

Matthew Dwyer, George S. Avrunin, and James C. Corbett. Property specification
patterns for finite-state verification. In Proceedings of the Second Workshop on Formal
Methods in Software Practice, pages 7-15. ACM Press, 1998.

Deharbe, David. Techniques for Temporal Logic Model Checking. In Ana Cavalcanti,
Augusto Sampaio, and Jim Woodcock, editors, Refinement Techniques in Software
Engineering, volume 3167 of Lecture Notes in Computer Science, pages 315-367.
Springer, 2004.

Alexandre Duret-Lutz and Denis Poitrenaud. SPOT: an Extensible Model Checking
Library Using Transition-Based Generalized Buchi Automata. In IN PROC. OF
MASCOTS’04, pages 76-83. IEEE Computer Society, 2004.

Gero Decker, Hagen Overdick, and Mathias Weske. Oryx — an open modeling
platform for the bpm community. In BPM, volume 5240 of LNCS. Springer, 2008.

E. A Emerson and Joseph Y. Halpern. "sometimes"” and "not never" revisited: on
branching versus linear time. Technical report, Austin, TX, USA, 1984.

XXI



Literaturverzeichnis

[EKAL1]

[EL87]

[Eme9s]

[Fis97]

[Fis11]

[FMO9]

[For02]

[FPRO6]

[Gas]

[GNTVO1]

[Groll]

[HE10]

[HL11]

[HNO9]

[Hol03]

[HROA4]

[HRTO5]

[HT10]

XXl

O. Engels, J. Kunz, and Bretschneider A. Compliance - Modeerscheinung oder
Chefsache? http://www.kpmg.de/Presse/26678.htm, 2011.

E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: Branching time
logic strikes back. Sci. Comput. Program., 8(3):275-306, 1987.

E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, pages 995-1072. Elsevier, 1995.

Michael Fisher. A normal form for temporal logic and its application in theorem-proving
and execution. Journal of Logic and Computation, 7:429-456, 1997.

M. Fisher. An Introduction to Practical Formal Methods Using Temporal Logic. John
Wiley & Sons, 2011.

John Franco and John Martin. A history of satisfiability. In Handbook of Satisfiability,
pages 3-74. 2009.

M. Forte. Unschérfen in Geschéftsprozessen. Weillensee-Verl., 2002.

Daniel Foétsch, Elke Pulvermiller, and Wilhelm Rossak. Modeling and verifying
workflow-based regulations. In ReMo2V, 2006.

Paul Gastin. Ltl 2 ba : fast translation from It formulae to bbchi automata.
http://www.Isv.ens-cachan.fr/ gastin/Iti2ba/index.php. Zulentzt abgerufen am
04.08.2012.

Enrico Giunchiglia, Massimo Narizzano, Armando Tacchella, and Moshe Y. Vardi.
Towards an efficient library for sat: a manifesto. Electronic Notes in Discrete
Mathematics, 9:290-310, 2001.

Stefan Grohe. Visualisierung und Implementierung von Compliance Scopes.
Diplomarbeit, Universitat Stuttgart, Fakultdt Informatik, Elektrotechnik und
Informationstechnik, Germany, 2011.

F. Hilsberg and O. Engels. Compliance Management-Systeme.
http://www.kpmg.de/Themen/21705.htm, 2010.

M. Hofmann and M. Lange. Automatentheorie und Logik. Springer, 2011.

H.R. Hansen and G.Neumann. Wirtschaftsinformatik 1: Grundlagen und
Anwendungen. Uni-Taschenbicher M. Lucius & Lucius, 2009.

Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-
Wesley Professional, first edition, 2003.

M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2004.

M.S. Hacid, Z.W. Ras, and S. Tsumoto. Foundations of Intelligent Systems: 15th
International Symposium ISMIS 2005, Saratoga Springs, NY, USA, May 25-28, 2005,
Proceedings. Lecture Notes in Computer Science. Springer, 2005.

Christian Haubelt and Jirgen Teich. Digitale Hardware/Software-Systeme:
Spezifikation und Verifikation. eXamen.press. Springer, 2010.



Literaturverzeichnis

[Joc10]

[JR10]

[Kal12]

[KFBO4]

[Kin94]

[K&t10]

[Kri71]

[KSMP07]

[Kup06]

[KYVO01]

[LL10]

[LPZ85]

[MMWO07]

[MP92]

[Pnu77]

[Pnusé]

R. Jochem. Prozessmanagement: Strategien, Methoden, Umsetzung. Symposion
Publishing GmbH, 2010.

L.Jansen and P.Roesch. Grundsatze ganzheitlicher Compliance: (GgC).
http://www.ganzheitliche-compliance.de/compliance.pdf, 2010.

Patrick Kalbhenn. Kontrolle schafft vertrauen.
http://www.handelsblatt.com/unternehmen/buero-special/compliance-kontrolle-schafft-
vertrauen/6640652.html, Mai 2012. Zuletzt abgerufen am 20.07.2012.

W. Kéhler-Frost and  U. Bergweiler.  Outsourcing.  Schliisselfaktoren  der
Kundenzufriedenheit. Erich Schmidt Verlag, 2004.

Ekkart Kindler. Safety and Liveness Properties: A Survey. In EATCS Bulletin,
number 53, pages 268—-272. June 1994.

Falko Kotter. Prozessvarianten in unternehmensibergreifenden Servicenetzwerken.
Diplomarbeit, Universitat Stuttgart, Fakultdt Informatik, Elektrotechnik und
Informationstechnik, Germany, 2010. http://www2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engI=0.

S.A. Kripke. Semantical Considerations on Modal Logic ; Naming and Necessity.
Oxford University Press, 1971.

Marwane El Kharbili, Sebastian Stein, Ivan Markovic, and Elke Pulvermdiller. Towards
a Framework for Semantic Business Process Compliance Management, 2007.

Orna Kupferman. Sanity checks in formal verification. In Proc. of CONCUR’06, LNCS,
pages 37-51. Springer, 2006.

Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Form.
Methods Syst. Des., 19(3):291-314, October 2001.

J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken. Dpunkt.Verlag GmbH, 2010.

Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In Rohit
Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in Computer Science,
pages 196-218. Springer Berlin / Heidelberg, 1985. 10.1007/3-540-15648-8 16.

K. Metzlaff, = A. Moéhlenkamp, and K. Westermann. Leitfaden Kartellrecht.
http://www.vilf.de/BDI_Leitfaden-Kartellrecht.pdf, 2007. Zuletzt abgerufen am
03.08.2012.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. The Temporal Logic of Reactive and Concurrent Systems. Springer,
1992.

Amir Pnueli. The temporal logic of programs. Foundations of Computer Science, IEEE
Annual Symposium on, 0:46-57, 1977.

A. Pnueli. Applications of temporal logic to the specification and verification of reactive
systems: A survey of current trends. In J.de Bakker, W. de Roever, and
G. Rozenberg, editors, Current Trends in Concurrency, volume 224 of Lecture Notes
in Computer Science, pages 510-584. Springer Berlin / Heidelberg, 1986.

XXl



Literaturverzeichnis

[PR10]

[Quell]

[RMLDOS]

[R6s09]

[RVO1]

[RVO7]

[Sac08]

[SALMO9]

[SALS10]

[Sch00]

[Scho8]

[SGNO7]

[SS08]

[SS11]

[SSL10]

XXIV

T. Peek and M. Rode. Compliance im Wandel. http://www.deloitte.com/assets/Dcom-
Germany/Local%20Assets/Documents/09_Finanzdienstleister/2010/de_FS_R_Compli
ance_im_Wandel_150410.pdf, 2010. Zuletzt abgerufen am 30. April 2012.

H. Quentmeier. Praxishandbuch Compliance: Grundlagen, Ziele und Praxistipps fiir
Nicht-Juristen. SpringerLink : Blicher. Gabler Verlag, 2011.

Stefanie Rinderle-Ma, Linh Thao Ly, and Peter Dadam. Business process compliance
(aktuelles schlagwort). EMISA Forum, pages 24-29, August 2008.

P. Résch. Compliance - oder sagen Sie einfach Regelkonformitga. http://www.roesch-
unternehmensberatung.de/compliance.htm, 2009. Zuletzt abgerufen am 15.07.2012.

Moshe Vardi Rice and Moshe Y. Vardi. Branching vs. linear time: Final showdown. In
Proceedings of the 2001 Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2001 (LNCS Volume 2031, pages 1-22. Springer-
Verlag, 2001.

K.Y. Rozier and M.Y. Vardi. LTL satisfiability checking. In 14th Workshop on Model
Checking Software (SPIN °07), volume 4595 of Lecture Notes in Computer Science
(LNCS), pages 149-167. Springer-Verlag, 2007.

Stefan Sackmann. Automatisierung von Compliance. HMD - Praxis Wirtschaftsinform.,
263, 2008.

Daniel Schleicher, Tobias Anstett, Frank Leymann, and Ralph Mietzner. Maintaining
Compliance in Customizable Process Models. In Robert Meersman, Tharam Dillon,
and Pilar Herrero, editors, On the Move to Meaningful Internet Systems: OTM 2009,
volume 5870 of Lecture Notes in Computer Science, pages 60-75. Springer Berlin /
Heidelberg, 2009.

Daniel Schleicher, Tobias Anstett, Frank Leymann, and David Schumm. Compliant
business process design using refinement layers. In Proceedings of the 2010
international conference on On the move to meaningful internet systems - Volume
Part I, OTM’10, pages 114-131, Berlin, Heidelberg, 2010. Springer Verlag.

U. Schoéning. Logik fiir Informatiker. Spektrum Akademischer Verlag, 2000.

U. Schoéning. Theoretische Informatik - kurz gefasst. Spektrum Akademischer Verlag,
2008.

Shazia Wasim Sadiq, Guido Governatori, and Kioumars Namiri. Modeling control
objectives for business process compliance. In Gustavo Alonso, Peter Dadam, and
Michael Rosemann, editors, BPM 2007, volume 4714 of Lecture Notes in Computer
Science, pages 149-164, Berlin, 2007. Springer.

Hermann J. Schmelzer and W. Sesselmann. Geschéftsprozessmanagement in der
Praxis. Hanser, 2008.

Sigrid Schubert and Andreas Schwill. Sprachen, Automaten und Netze. In Didaktik der
Informatik, pages 253-274. Spektrum Akademischer Verlag, 2011. 10.1007/978-3-
8274-2653-6_11.

Jun Sun, Songzheng Song, and Yang Liu. Model checking hierarchical probabilistic
systems. In ICFEM, pages 388-403, 2010.



Literaturverzeichnis

[SWLS10]

[TscO7]

[Var97]

[Var99]

[VW94]

[WDHRO6]

[WDMRO8]

[WKO06]

Wul12]

[wwwa]

[wwwhb]

[wwwec]

[wwwd]

[wwwe]

[wwwi]

[wwwg]

Daniel Schleicher, Monika Weidmann, Frank Leymann, and David Schumm.
Compliance Scopes: Extending the BPMN 2.0 Meta Model to Specify Compliance
Requirements. In Service-Oriented Computing and Applications (SOCA), 2010 IEEE
International Conference on, Dezember 2010.

Willi Tscheschner. Oryx Dokumentation. Bachelorarbeit, Universitat Potsdam, 2007.

Moshe Y. Vardi. Alternating automata: Unifying truth and validity checking for temporal
logics. In William McCune, editor, CADE, volume 1249 of Lecture Notes in Computer
Science, pages 191-206. Springer, 1997.

Moshe Y. Vardi. Automata-Theoretic Approach to Automated Verification.
http://www.cs.rice.edu/\textasciitiidevardi/av.html, 1999. Zuletzt abgerufen am
06.07.2012.

Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Information
and Computation, 115:1-37, 1994.

M. De Wulf, L. Doyen, T. A. Henzinger, and J. F. Raskin. Antichains: A new algorithm
for checking universality of finite automata. In In Proc. of CAV 2006, LNCS 4144,
pages 17-30. Springer-Verlag, 2006.

M. De Wulf, L. Doyen, N. Maquet, and J. F. Raskin. Antichains: alternative algorithms
for LTL satisfiability and model-checking. In Proceedings of the Theory and practice of
software, 14th international conference on Tools and algorithms for the construction
and analysis of systems, TACAS'08/ETAPS’08, pages 63-77, Berlin, Heidelberg,
2008. Springer-Verlag.

Karl Wagner and Jorg Klickmann. Prozessdesign als Grundlage von Compliance
Management, Enterprise Architecture und Business Rules. In August-Wilhelm Scheer,
Helmut Kruppke, Wolfram Jost, and Herbert Kindermann, editors, AGILITAT durch
ARIS Geschftsprozessmanagement, pages 125-136. Springer Berlin Heidelberg,
2006.

M. De Wulf. ALASKA. http:/lit2.ulb.ac.be/alaska, 2012. Zuletzt abgerufen am
10.05.2012.

AJAX Tutorial. http://www.w3schools.com/ajax/default.asp. Zuletzt abgerufen am
12.03.2012.

Introducing JSON. http://www.json.org/. Zuletzt abgerufen am 19.07.2012.

Java Servlet Technology Overview.
http://www.oracle.com/technetwork/java/javaee/serviet/index.html. Zuletzt aufgerufen
am 12.03.2012.

Ltl model checking. http://maude.cs.uiuc.edu/maude2-manual/html/maude-
manualch10.html. Zuletzt abgerufen am 30.07.2012.

Maude overview. http://maude.cs.uiuc.edu/overview.html. Zuletzt aufgerufen am
30.07.2012.

Object management group business process model and notation.
http://www.bpmn.org/. Zuletzt abgerufen am 11.03.2012.

Oryx Editor. http://code.google.com/p/oryx-editor. Zuletzt abgerufen am 19.07.2012.

XXV



Literaturverzeichnis

[wwwh]

[wwwi]

[wwwj]

[wwwK]

[wwwil]

[www10a]

[www10b]

[wwwlla]

[www11b]

[www12a]

[www12b]

[www12c]

[www12d]

[www12e]

[www12f]

XXVI

Promela Manual Pages. http://spinroot.com/spin/Man/promela.html. Zuletzt abgerufen
am 26.07.2012.

Prototype JavaScript Framework. http://www.prototypejs.org/. Zuletzt abgerufen am
12.03.2012.

Signavio Process Editor - Software as a Service.
http://www.signavio.com/de/produkte/process-editor-as-a-service.html. Zuletzt
abgerufen am 19.07.2012.

Termersetzungssystem. http://www.de.wikipedia.org/wiki/Termersetzungssystem.
Zuletzt abgerufen am 30.07.2012.

The Oryx Project. http://bpt.hpi.uni-potsdam.de/Oryx. Zuletzt abgerufen am
19.07.2012.

Compliance und Nachhaltigkeit.
http://nachhaltigkeit.daimler.com/reports/daimler/annual/2010/nb/German/20202030/c
ompliance-und-nachhaltigkeit.html, 2010. Zuletzt abgerufen am 20.07.2012.

How to develop an editor plugin. http://code.google.com/p/oryx-
editor/wiki/fHowToDevelopAnEditorPlugin, Februar 2010. Zuletzt aufgerufen am
12.03.2012.

BPMN 2.0 - Business Process Model and Notation.
http://www.bpmb.de/images/BPMN2_0_Poster DE.pdf, 2011. Zuletzt abgerufen am
10.03.2012.

Business Process Model and Notation (BPMN).
http://www.omg.org/spec/BPMN/2.0/PDF, Januar 2011. Zuletzt abgerufen am
10.03.2012.

Awards. 2001 - Gerard Holzmann.
http://awards.acm.org/citation.cfm?id=0750084&srt=alpha&alpha=H&aw=149&a0=SO
FTWSYS&yr=2001, 2012. Zuletzt abgerufen am 05.07.2012.

Basel Ill. Aufseher wollen Umsetzung von Banken-Regeln uUberwachen.
http://www.spiegel.de/wirtschaft/soziales/basel-iii-aufseher-wollen-umsetzung-von-
banken-regeln-ueberwachen-a-807884.html, 2012. Zuletzt abgerufen am 20.07.2012.

Commission proposes a comprehensive reform of data protection rules to increase
users’ control of their data and to cut costs for businesses.
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/12/46&format=HTML&ag
ed=1&language=DE&guiLanguage=en, Januar 2012. Zuletzt abgerufen am
20.07.2012.

Uberregulierung im Finanzsektor abbauen.
http://www.fpmi.de/de/themen/Ueberregulierung.html, 2012. Zuletzt aufgerufen am
29.07.2012.

Property Pattern Mappings for LTL.
http://patterns.projects.cis.ksu.edu/documentation/patterns/Itl.shtml, Zuletzt abgerufen
am 04.07.2012.

Amir Pnueli. http://amturing.acm.org/award_winners/pnueli_4725172.cfm, Zuletzt
aufgerufen am 03.07.2012.



Literaturverzeichnis

[www12g]

[www12h]

[YKTH12]

Temporal logic. http://fen.wikipedia.org/wiki/Temporal_logic, Zuletzt aufgerufen am
03.07.2012.

The Founding Father of Temporal Logic. http://www.prior.aau.dk, Zuletzt aufgerufen
am 03.07.2012.

Chi-Shiang Liu Yih-Kuen Tsay, Ming-Hsien Tsai and Yu-Shiang Hwang. What Is
GOAL. http://goal.im.ntu.edu.tw/wiki/doku.php, April 2012. Zuletzt abgerufen am
06.07.2012.

XXVII






Erklarung gemaR § 14 Abs. 5 und Abs. 6 der Priifungsordnung der
Universitaten Hohenheim und Stuttgart fiir den Masterstudiengang
Wirtschaftsinformatik

Hiermit erklare ich, dass ich die Masterarbeit selbstandig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen der Arbeit, die
wortlich oder sinngeman aus Veréffentlichungen oder aus anderweitigen fremden
AuRerungen entnommen wurden, sind als solche einzeln kenntlich gemacht.

Die Masterarbeit habe ich noch nicht in einem anderen Studiengang als
Prifungsleistung verwendet.

Des Weiteren erklare ich, dass mir weder an den Universitdten Hohenheim und
Stuttgart noch an einer anderen wissenschaftlichen Hochschule bereits ein Thema
zur Bearbeitung als Masterarbeit oder als vergleichbare Arbeit in einem
gleichwertigen Studiengang vergeben worden ist.

Stuttgart-Hohenheim, den

Unterschrift:
(als Originalunterschrift in beiden Exemplaren der Masterarbeit; nicht als Kopig)

XXIX



