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Abstract

The large scale availability of sophisticated devices such as the mobile phones has
opened a new paradigm of possibilities in terms of the services that can be provided to
common masses. Most mobile phones nowadays come with integrated GPS receiver
which can provide the user with their accurate location information. This has resulted in
many common mobile applications which use this location data to provide services to
users such as the point of interest finder, friend finder and navigation services etc. The
location data from the GPS receiver is uploaded to Location Servers (LSs) by the user’s
device. Location Based Services, LBSs, running on client device communicate with
remote LSs to download a user’s location data and process it appropriately to offer
client the desired service. If a malicious third party can get access to the location
information on LSs, a user’s privacy can significantly be violated. This can result in
serious concerns being raised over the security of the user.

Many approaches have been proposed to sufficiently protect user privacy in location
services. Most of them rely on the availability of a trusted third party (TTP) [1] at the
LS’s end. However, the assumption of a TTP is justifiably unrealistic [2] as events have
been recorded where trusted parties have given up private user information to
unauthorized clients. To overcome this problem, a novel approach was proposed in [3]
which assumes partially trusted LBSs and LSs. This approach breaks down the position
information into a number of shares and distributes each share to a separate LS
managed by a different operator. The location information in any one share is equal and
can be incrementally compiled by a LBS based on the number of shares it can access.
The user grants access rights to different LBSs according to their trust on them. The
overall effect is to have a possibility of graceful degradation of privacy if some of the
location shares are compromised. There is however a price paid in the form of higher
communication load. When the mobile object sends an update, it has to send a share to
each LS. Similarly, when a client needs a particular user’s location, it has to query a
number of LSs according to its access rights. Consequently, a higher communication cost
is incurred which is undesirable for implementation of these privacy schemes.

This thesis studies the possibility of applying traditional as well as subjective
approaches for reduction of communication overhead in Position Sharing (PS)
algorithm. From among traditional approaches, we have focused on Dead Reckoning
(DR) where LSs predict the user location based on last location update and additional
information about user movement. This results in less location updates with the
compromise of incurring a known amount of bounded inaccuracy in the predicted
position calculated by the LSs. A subjective approach of Selective Update is chosen for
analysis according to the structure of PS algorithm. In this approach, reduction in
communication is achieved by updating only the minimum necessary shares for short
movements made by the user. From the observed behavior, a third technique as a
merger of the mentioned techniques is also inferred. Finally, the viability of these
approaches as possible solutions for reducing communication overhead in PS algorithm
is studied and their results are evaluated on a set of real world GPS traces.



Acknowledgements

First of all, I am very thankful to Dr. Frank Diirr for his valuable time and suggestions
during supervision of my thesis. | would also like to thank Prof. Kurt Rothermel for
giving me an opportunity of working in his department.

Finally, I would like to recognize the continuous support of my family members which
has always been there throughout my studies.

I1



Table of Contents

ADSEIACE cooveereerereessseseesssnesesssssesessssessesssseseees I
AcCKNOWIEdZEMENLS ....cooorreeremererrsreseesssresessssesesssssesesssaees 11
Table of CONENLS .cccuurererreersrrererssresessssessesssseesesssees I11
LiSt Of FIGUIES covevvereererereenrresennseseessseseesssesesssses VI
LiSt Of TabIeS ..veerereerrreseerseseessssesesssseseessssessessanns VIII
PN 0) 117 44 OO IX
1. INtroduCtion ..ceeeeeesseserssseseesssseseessssesessanns 1
1.1 Mobile Technology and Location Data 1
1.2 Location Based Services and their implications on User Privacy ... 1
1.3  Position Sharing: User’s approach to Privacy Control 2
1.4  Overview and Contributions 3

2. Background and Related Work.......coeermercennnn. 4
2.1  Aims of Privacy protection [1] 4
2.2 Privacy Protection Approaches involving TTPs 4
2.2.1 K-ANONymity...coemmersmeersssessnnes 4
2.2.2 MiX ZONES ...ermrermreerrrereraenens 6

2.3 Privacy Protection Approaches without a TTP 6
2.31 Location Obfuscation ... 6
2.3.2 Dummy POSItions .....ccoemeneeeneesnens 7
2.3.3 Coordinate Transformation [17] 8
2.3.4 Encryption of Location Data 8
2.3.5 Position Sharing (PS) [3] 8

2.4  Attacks on Location Privacy [1] 9
241 Attacks without contextual knowledge 10

2.5  Attacks with contextual knowledge 11
2.6 Other attacks ....eeesmeeenne 12

3. System Model and Problem Statement 13
3.1  System Model.....rrrrennnne. 13
311 Formal Definition [3] ...cccmrnmeeernneeens 13
3.1.2 Modifications of System Model for Overhead optimization .........ccoeeesneeen. 14

3.2 Problem Statement.......ccoomeernreeernnne. 15
321 Communication Overhead optimiztion metrics 15
3.2.2 Privacy Security Metrics 16

4. Position Sharing Approach.......ene. 17



4.1  PS Algorithm...eeeereeeene.
41.1 Share Fusion .....eeeessnesnens
4.1.2 Share Generation........en.

4.2  Extensions of Position Sharing

42.1 Fixed Share Order.......mn.
422 Map Based CSPS-FSO ...erereernrren
Optimization of Communication Overhead
5.1  Dead Reckoning (DR)..cceemmreermreeeenns
511 OVEIrVIEW ..oeereeereerreerseenns
5.1.2 Motivation......eeeeseeenne:
513 Background........coeeeeeennnn.
514 Formal Definition......oenne.
5.1.5 Pseudo code....mreronnnens
5.2 Selective Update (SU)..coeeormereersreeeenns
521 OVEIVIEW .eeerrrereressesssannens
5.2.2 Motivation.....eeeeenne:
5.2.3 Formal definition .......oeeerne.
5.2.4 Pseudo code....enercennnn.
5.3 SUADR. e eersrsreerseseessssssesssssesessssesseses
53.1 Motivation.....eese.
5.3.2 Formal Definition......oecernee.
533 Pseudo Code ....oreerrrmereenenn.
Implementation and Evaluation
6.1  Implementation......n.
6.1.1 PS et sesras
6.1.2 DRutreereessesssesessssessssssssssesssssesssssss
6.1.3 ] O
6.1.4 SUADR ctreetrseeressssesssesessssesssssssesesssses
6.2  Security Analysis of PS approach
6.2.1 Analyzing a-posteriori Share Generation
6.2.2 Analyzing a-priori Share Generation
6.3 Selection of GPS Traces .....merernneeens
6.4  Individual Evaluation ...
6.4.1 DRusrcetissessssesessssessssssssssessssesssssses
6.4.2 SU e trrreeerssesssssssssessssssssssssssssssssssssssssanes
6.4.3 SUADR crttrscetessssessssseesssssssssssesessssens
6.5  Comparative Evaluation ...
6.5.1 Communication Overhead Optimization
6.5.2 Security Analysis.....eeneeeenns

17
17
18
19
19
21
22
22
22
22
23
24
26
28
28
28
29
31
32
32
33
34
36
36
36
37
38
38
38
39
40
43
43
44
45
47
48
48
51



7.
8.

Summary and Future Work ...

Bibliography....cceeneeneerseeesseessesesssesesess

57
58



List of Figures

Figure 2.1. Privacy protecting LBS querying using Anonimizing Server [6]. .......cccccevvvieieiniieeeinieeeene, 5
Figure 2.2. Means of acheiving Obfuscation in [14]. ......cooviiiiiiiiiiiie e 7
Figure 2.3. Use of Dummy Positions for Securing USer Privacy. ...........eeeeeeeeeeeeeeeeeemeeeeeemrerereermrererme. 8
Figure 2.4. Dimensions of attacker's knowledge [1]..........uueveiiiiiiiiiiiiiiiiee e 10
Figure 2.5. Maximum movement boundary attack [1] ........ccceoeuiiiiiieiiiiniiiiiieee e 11
Figure 2.6. Map Knowledge attack: Reduction of obfuscation area............eueevvevvveveveeiveveriveeeeeiennnnnnnn. 12
Figure 3.1. Position Sharing: System Model [3]....uuuiiiiiiiiiiiiiiiiiiieeeeeereeerereeeeeeeeeeerrereeeeeeerereerererererrannne 13
Figure 3.2 Modification in PS’s system MOdEl...........uvviviiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneenene 15
Figure 4.1. Geometric Representation of generated sharesfor n=4. ..........ovvvvviiviiiviiirieieeeeennennnnnnnn, 17
Figure 4.2. OSPS-FSO: Example of shares with unrestricted length [21]..........ovvvimiiiiiiiiiiiiiiiieiiiiiininens 20
Figure 4.3. ci resized to ¢;. Overlap area now equals area of ci [21]c i 20
Figure 4.4. Left: Radius of C£ increased to ¢;. Right: p;shifted randomly ..., 20
Figure 4.5. Inclusion of Map KNOWIEAZE .........eeviiiiiiiiiiiiiiiieieeieeeeeeeeeseeeeeeeeeeeeseeeessessessssesesesessssssessnnnnes 21
Figure 5.1. Dead Reckoning: Mobile device sends location update ............eeeeveeeveivveeeeeereeeeeeeeeneneennnn. 23
Figure 5.2. Unchanged refinement Shares...........uueeieviiiiiiiiiiiiiiiiiiiieseeieeeeeeeeeeeeeeeeeeeeesseeeeeaeeeeeeeseneenene 25
Figure 5.3. Error € in fuSe@d POSItION......cuiiiiiiiiiiiiiiiiiieeeeeieeeeteeeseeeeseeeeeeeeeeessesessssseseessssssssesasssssssssssnnenes 25
Figure 5.4. Trajectory Prediction considering angular and linear velocities..............uuvvvevieeveeeeeeeeeennnnns 27
Figure 5.5. Selective Update EXaMPIE L........eevviiiiiiiiieiiiiieiiieeeeiieeeseesesssesessesssssssssererserrererarrerrrr. 28
Figure 5.6. Selective Update EXAMPIE 2........eeviieiiiiiiiiiieieieeeeeeeeesessessesesseessessssressserereereerrrarr.. 29
Figure 5.7. Selective Update with re-ordered shares. ............uuueiiiiiiiiiiieiiiiiiiiiiiiieereeeeeeerereererereeeeeaea. 29
Figure 5.8. lllustration of 71 Share UPdate. ........ceviiiiiiiiiiiiiiiiiiieeiiieeeeeeeeeeeee e ee e e eeeeereeeerasreersaeeesaaaee 30
Figure 5.9. Share Update EXAMPIE ......eeeiiiiiiiiiiiiiiiiieeeeeeieeiteeeeseeseseessessssssssssssssssssssssssssssssssrssssrsrrsrarnes 30
Figure 5.10. Share Update: detailed HUStration.............uveiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeseeeseeeeersssssssssssereanee.. 31
Figure 5.11. Dead Reckoning applied on a test GPS trace (Sreen).........uueeeveveereeeeeereeeeeeereeeerereeeeerennnn. 33
Figure 5.12. SUWith 71 = 5, 75= 300 ..ot 34
Figure 6.1. a-priori share generation with n = 5: region for selecting refinement share..................... 37
Figure 6.2. Reduced share generations by application of dead-reckoning.........ccccccvvvviviviivivieveinennnns 38
Figure 6.3. Share average attack on Selective Update...........uuviiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeseeseseseseesreerenn. 38
Figure 6.4. User position’s distribution in a-posteriori share generation [3] ...........cevvivivivvvveveevveeennnnn, 39
Figure 6.5. Probability of p,, lying with 10% area of ¢ around Py, [3]..ccoiiiiiiiiiiiiiiii 39
Figure 6.6. a-posteriori share generation for n = 5. @) Py, a0 ()- B) Poa_arrack (@) +vevveremeneieniininiinias 40
Figure 6.7. P pined actack (@) fOr a-posteriori share generation..........cccocovviiiviiiiiiicniiiccc 40
Figure 6.8. User position’s distribution in a-priori share generation [3]..........cevvviiiiiiiiiivirieeeviiiieeennan, 41

VI



Figure 6.9. Privacy security of a-priori implementation............ooueiiiiiiiiiiiiiiee e 41

Figure 6.10.
Figure 6.11.
Figure 6.12.
Figure 6.13.
Figure 6.14.
Figure 6.15.
Figure 6.16.
Figure 6.17.
Figure 6.18.
Figure 6.19.
Figure 6.20.
Figure 6.21.
Figure 6.22.
Figure 6.23.

Figure 6.24.
Figure 6.25.
Figure 6.26.
Figure 6.27.
Figure 6.28.
Figure 6.29.
Figure 6.30.

Figure 6.31.
Figure 6.32.

Figure 6.33.
Figure 6.34.

Figure 6.35.
Figure 6.36.
Figure 6.37.

a-priori share generation for n=5. a) P, () B) Poy_geracie (@)-eeveeeiemenieniiiiiiiiiine 42
Peombined attack (@) for a-priori share generation ..., 42
Impact of DR_Th on 359 position fixes of a urban car trace.........cccceeveveieincieeeinieeeenne, 44
DR results for 359 GPS fixes of a urban car trace. a) P, (@) b) Pos_giraci (@)eeveeverrenen 44
DR results: P pined attack (@) 8enerated from Figure 6.13 (a) and (b)........cccovvvieiennnnn. 45
SU run on 318 position fixes. a-priori Share generation withn = 5,75 = 1000m......... 45
P irack (@) for the SU applied GPS trace of 318 position fixes .......cccceevviiiiii, 46
P a—areack (@) for the SU applied GPS trace of 318 position fixes...........ccoccoeiiiinnn. 46
Poombined ateack (@) for SU applied GPS trace of 318 position fixes..........cccocoeviiiininii 46
SUaDR applied to GPS trace with 318 position fiXes..........cccccceiiiiiiii, 47
Poombined attack (@) for SUaDR applied on GPS trace of Figure 6.19,............cccocovieiinnnins 47
SUaDR applied to a GPS trace using a-priori share generation. .............cceeeeeevveenneenen. 48
Poombined attack (@) for SUaDR applied on GPS trace of Figure 6.21..........cccccevviviinninnnens 48
SUaDR averages for long route car traces: a) Py, (@)- b) Peombined astack (@), wveveeeererenne 51
SU averages for long route car traces: a) Py, g0 (6)- b) Peombined attack (@), +overerrerereereen. 51
DR averages for long route car traces: a) P,,c ()- B) Poompined attack (@) <vereerererveveruans 52
SUaDR averages for urban area car traces: a) P,,0 (9)- b) Poombined attack (@), wveeeererenne 52
SU averages for urban area car traces: a) Py, ()- b) Poombined attack (@) +overerrerereereen. 52
DR averages for urban area car traces: a) P,,cr (@)- B) Poompined attack (@) +eeereerveierenns 53
SUaDR averages in unstructured area walk traces : a) Py, (¢)- 0) Peombined attack (@) .--53

SU averages in unstructured area walk traces : a) Py, (9)- b) Peombined actack (@) -vevere- 53
DR averages in unstructured area walk traces : a) P,.;ci () b) Poombined actack (@)+everenr 54
SUaDR averages in urban area walk traces : @) P, (0)- 0) Poombined actack (@) +overeervens 54
SU averages in urban area walk traces : a) Py o (@) 0) Poombined attack (@) +ervereeerieriene 54
DR averages in urban area walk traces : @) Py, () b) Poompined actack (@) +rverveerieniennn 55
SU effect on a-posteriori share generation: P, 1:0a attack (@)-eereeresemvemsieniiiiieinniee, 55
DR effect on g-posteriori share generation: Py, pincd attack (D) +eereereeremiemvmniniiieieniene, 56
SUaDR effect on a-posteriori share generation: P,y pined attack () <eeveereevemmemeneeiieninnne. 56

VII



List of Tables

Table 6.1.
Table 6.2.
Table 6.3.
Table 6.4.
Table 6.5.
Table 6.6.
Table 6.7.

Average speeds of the fOur GPS trace SEtS. .......ciiieiiiciiiiiieee e e 43
Parameter values for testing with different GPS trace Sets. .......ccccovcvvveeiieeiiiiciiiieeee e, 43
a-priori share generation: Average PMR of the GPS trace sets.........cccccvvvvviviiiiiiiiiinenenn, 49
a-priori share generation: Average MPPF of the GPS trace sets.........ccccccvvvvviiiiiiiiincnnnnn, 49
a-posteriori share generation: Average PMR of the GPS trace sets..........cccccevvvvvviininnnn, 49
a-posteriori share generation: Average MPPF of the GPS trace sets ........cccccevvviveennnnnn. 49
Characteristics Of GPS Trace SEtS ......vviiiiiiiiiiiie e 50

VIII



Acronyms

GPS Global Positioning System

LS Location Server

LBS Location Based Service

TTP Trusted Third Party

PS Position Sharing

DR Dead Reckoning

QoS Quality of Service

SU Selective Update

SUaDR Selective Update and Dead Reckoning

NN Nearest Neighbor

kNN k Nearest Neighbor

AS Anonymizing Server

SA Share Average

OSPS-ASO Open Space Position Sharing with Any Share Order
CSPS-FSO Constrained Space Position Sharing with Fixed Share Order
PMR Percentage Message Reduction

MPPF Messages Per Position Fix

IX



Chapter 1: Introduction

1. Introduction

1.1 Mobile Technology and Location Data

In the last decade, mobile phones have found large acceptance in consumer
market. The nature of mobile communication systems inherently requires coarse
knowledge of the position of the user in order for providing the communication
services. A cell phone reports its position to the cellular network periodically in
order to be reachable by the network. There are already concerns raised about
the amount of data collected and kept by the mobile phone companies about
their subscribers [4]. The potential uses of this location data range from analysis
of people’s interests, designing of better marketing strategies etc. to helping in
criminal activity tracking.

The sophisticated technology and the abundant computing power of smart-
phones have re-defined user experience. The idea of installable software
applications for mobile devices has caught a big share of attention from the
software industry. For smart-phone applications, the knowledge of user location
gives an important insight into user context. A main source of this location
context is an integrated GPS receiver in smart phones. Although its accuracy is
affected by the number of available satellites and signal strength, a sufficiently
precise position can be estimated by study of consecutive position updates.

A range of applications have spawned which provide very intelligent services
such as searching nearest restaurants, gas stations etc, based on user location.
The precision of location data provided to an application directly affects its
Quality of Service (QoS) [3]. For example, an application providing navigation
service will require highly precise user location in order to correctly determine
appropriate route to user destination, especially in urban scenarios with a dense
network of roads. Similarly, consider an application that searches nearest gas
station. In this case, the nearness of reported results, which determines the QoS,
will depend upon the precision of the user location used by the LBS.

1.2 Location Based Services and their implications on User Privacy

Mobile applications also allow users to upload location data to Location Servers
(LSs). These applications usually use Location Based Service (LBS) on the World
Wide Web. Some commonly known examples of LBSs, in social networking, are
Google’s Latitude and Yahoo’ Fire Eagle. These LBSs host the location updates
from their users. When a client with sufficient access rights queries this location
data, they are allowed to download the location information by the LSs.

There are a number of reasons for the existence of a third party Location Server
(LS) over a direct broadcast or multicast of position updates. The server acts as a
buffer to give users a freedom of sending an update at any time. Similarly, it also
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allows a client to query location of a user at any particular time. This existence of
a LS removes a lot of communication overhead and synchronization complexity
that would arise if users are performing a broadcast or multicast to share their
locations. On top of that, an LS, while centrally having the knowledge of locations
of all users and additional landmarks can run server side software to process
complex queries, such as range queries, nearest restaurant search etc., for which
the user’s device does not have enough information. Apart from a clear
reduction in communication bandwidth, this also saves a lot of computation
power which is an important factor considering most clients use battery
powered mobile devices with limited computational resources. To keep
unwanted clients from accessing user data, access control is implemented
centrally by the LS [3]. Therefore, access to a user’s location data is only allowed
to those clients who have the requisite permissions of access granted by the
user.

Social networking services allow users to set automatic location updates to keep
their circle of friends informed over their location. However, location data can
potentially reveal a lot of information about a person to an attacker. For
example, an attacker might infer the location of a person’s home and office by
analyzing their location with respect to time of day [5]. Similarly, information
like what time a person leaves their homes for office, how much time they spend
there, when they are present at their homes etc can easily be termed as sensitive
when it comes to privacy, and consequently, security.

Many approaches have been proposed to meaningfully quantify and increase
user privacy in use of LBSs. A number of these approaches depend on a Trusted
Third Party (TTP)[1] added on the server side. A TTP can intentionally add
confusion in the user’s identity, thereby protecting the privacy of the user [6].
However, it is of utmost importance that the location data stored at the LS is
handled discretely and protected appropriately from possible snooping or
stealing. As there are doubts about data security on the LS [7], it implies that the
user should have some amount of control over how much they want to reveal
about their location to the LS. These doubts are further corroborated by popular
ideas in technologies which are based on mass information analysis such as user
profile based advertizing and surveillance by law enforcement agencies etc.

1.3 Position Sharing: User’s approach to Privacy Control

By assuming a partially trusted system, there is a requirement for initial
processing of location information on user’s mobile device before it can be
uploaded to the LS or processed by a LBS. In this respect, a novel technique
called, Position Sharing (PS) was presented in [3]. This technique breaks down
the user position into parts which can be combined to reconstruct accurately the
original position. The idea is to spread the pieces of position information among
more than one LSs where each piece contributes equally in reducing the
uncertainty when the original position is being reconstructed. In this way, a non-
trusted LS can only deliver limited information to a malicious agent if it is
compromised. Also, due to the breakdown of position information, different
levels of privacy can be maintained by the user with LBSs of different
trustworthiness. In case of a few shares are compromised by a LS or a LBS, the
result is a graceful degradation of user’s privacy as only a part of location
information is given up.
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The type of position obfuscation that results from PS has been theoretically
analyzed as a possible solution to sufficiently securing privacy [3]. There is
however a clear communication overhead generated for the implementation of
this algorithm. Where in a non-privacy aware system we have a single message
sent to the LS, now, by incorporating PS, we have a message for each LS for every
position update. Therefore, if n shares are generated by the user’s device, then
the overhead due to PS multiplies total messages by n. Consequently, the high
cost of communication poses a serious barrier in feasibility of Position Sharing
as a practical approach for securing location privacy in mobile systems.

1.4 Overview and Contributions

Even in non-privacy aware systems, it is considered of utmost importance to
reduce the communication overhead as much as possible to reduce overall
communication cost [8]. This thesis will focus on achieving optimization of
communication overhead for PS algorithm. In this regard, we will consider Dead
Reckoning (DR), Selective Update (SU) and a merger of these two called Selective
Update and Dead Reckoning (SUaDR).

DR is a famous approach for reducing the communication overhead in non-
privacy aware location based systems [8, 9]. This implies that the LS is able to
predict, with bounded error, the location of a user based on their last position
update and additional data provided to help in position prediction. The result is
areduction in the number of required location updates to the LS with increase in
computational cost and addition of imprecision in the calculation of user
position.

The idea of SU dictates that all shares should not necessarily be generated anew
for each location update; rather old shares should be reused as much as possible.
The change in location from the last position fix to the new fix is represented by
re-generation of minimum number of old shares such that they account for the
change in position. Therefore, a considerable reduction in the number of
messages to the LSs is achieved compared to a naive implementation of PS.

We will also propose a third technique by merging the above two calling it
SUaDR. It will be shown that this merger performs better then the individual DR
and SU algorithms by exploiting good attributes of both with regards to
communication overhead reduction and privacy protection. All evaluations are
done on a set of real world GPS traces. It will be shown that an average reduction
in messages of 75% is consistently achieved on different sets of GPS traces while
considerably maintaining the privacy security provided by the basic PS
algorithm.

In the Chapter 2, we will discuss the previous research work done in the area of
privacy protection. The system model of PS with our optimizations and the
problem statement will be elaborated in Chapters 3. In Chapter 4, we will explain
Position Sharing algorithm. Our formalization of overhead optimization
techniques will be done in Chapter 5. Finally, the implementation and evaluation
of these techniques will be discussed in detail in Chapter6.
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2. Background and
Related Work

This chapter is intended to give a broad overview of the previous work done in
the area of privacy protection as researched in [1]. First, we will give a brief
overview of the aspects of location privacy that are meant to be protected. Then,
some of the popular privacy securing approaches will be discussed. Finally, the
common attacks on location privacy against which protection is aimed by
privacy protection approaches will be elaborated.

2.1 Aims of Privacy protection [1]

The fact that privacy is a very abstract social concept requires the need of a clear
definition. In context of location data, a person can be assumed to have control
over their privacy if they can decide when and when not, do they want to reveal
their identity, their location and the time of being at that particular location to
another person. These three aspects of a person’s location information, namely
identity, spatial and temporal, and their combinations can result in different
standards of privacy suited for a variety of situations. Each of these can
significantly affect the amount of information kept from or conveyed to the
attacker.

2.2 Privacy Protection Approaches involving TTPs

A TTP is trusted with accurate user location data and therefore, it is a potential
single point of failure in the system. However, considering the complexity of the
problem, many approaches for protecting user privacy have been developed
with the assumption that a TTP does exist in the overall scenario. Some of these
approaches will now be discussed.

2.2.1 K-Anonymity

A LBS running on a web server requires client location as part of the query sent
to it. This is a pre-requisite for range queries or Nearest Neighbor (NN) search.
However, revealing actual user position to the LBS is not desired as it is not
trusted. So an Anonymizing Server, (AS), which is assumed to be a TTP, is
introduced in the system [6] as shown in Figure 2.1.
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Web-based Location
Anonymizing Server (AS) Based Service (LBS)

Query(Cloaked Region)
—
—
—
—
—
| — |

—_— >
Candidate Results
TLocatian Data
Query(Client Position , K) Actual

Results

Anonymous
Client Device

Figure 2.1. Privacy protecting LBS querying using Anonimizing Server [6].

Location Server (LS)

The AS directly receives the request from the clients through a secure
connection. It removes the identity of the user and sends the modified query to
the LBS on behalf of the client. But because the query is with respect to the
actual user location, the location is still revealed to the LBS. To avoid this, the K-
Anonymity approach defines a cloaking region, instead of the user location, to
query the LBS. This region includes the locations of at least K-1 other users who
are also querying the LBS. The LBS now processes the query for a region instead
of a precise user location and hence more than desired results are produced and
communicated to the AS. The AS then filters out the irrelevant results based on
its knowledge of client’s actual position and returns the accurate results to the
client.

K-Anonymity has be used to achieve protect user’s identity and their spatial and
temporal information. A few of its extensions described in [1] are breifly
discussed below.

2.2.1.1 I-diversity

To protect the user’s semantic location e.g. a hospital, the extension of I-diversity
was proposed in [10]. This approach ensures that the other K-1 users are at a
uniquely different and considerable distant semantic location before forming a
k-cluster. In this way, sufficient confusion is produced for each semantic location
of the user inorder to protect from an attacker who already has or attempts to
gain knowledge of users contextual whereabouts. However, the k-cluster formed
by this approach might be unrealistic. For example, in a locality where the
distribution of one type of semantic location e.g. a bar, is high as compared to
others, the attacker can ignore the possiblity of the user being at places of low
distribution e.g. church, hospital, cinema etc. The assumption of the attacker in
ignoring the low distribution locations as possible user locations is reasonable,
because the distribution of locations in the k-cluster doesnot reflect the actual
distribution of locations in the locality. Therefore presence of too many low
distribution places in the k-cluster will not be affective for protecting user
privacy.
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2.2.1.2 t-closeness

As an extension on I-diversity, another approach by the name t-closeness was
presented in [11], which improves the distribution of semantic locations in the
k-cluster. This approach defines a measure to quantify the distance in
distribution of a particular attribute in members of the k-cluster and the
distribution of the same attribute in the overall population of users. This
distance is kept under the desired value t for the sensitive attribute being
protected. If t is small, then an attacker should not be able to converge to the
actual user location by ignoring improbable locations in the k-cluster.

2.2.1.3 p-sensitivity

If any particular attribute of the members of the k-cluster does not have enough
distinct values, then instead of increasing user privacy, this can result in helping
an attacker in increasing their knowledge about the member under attack. For
example, if each member of the k-cluster is moving at low average speed, then
the attacker will be sure that his victim is also moving at low speed. To avoid
this, the concept of p-sensitivity was used in [12]. p-sensitivity ensures that each
attribute of the members of k-cluster have at least p distinct values.

2.2.2 Mix Zones

The concept of Mix Zones is explained in [13]. All user locations are sent to a
middleware. The middleware divides the map into regions which are called
zones. Any application that requires user location has to get it through the
middleware. The user can permit applications to access their location in some
zones, called application zones, and declare other zones as Mix zones. In Mix
zones, the user’s identity is confused with other users present in the zone. The
middleware represents each user’s identity as a pseudonym which changes
when the user moves between an application and a mix zone. An attacker in the
form of a malicious application can use their knowledge of user position in
application zone to estimate their exit from the mix zone. But the mapping of
user pseudonyms before entering a mix zone to their new pseudonyms after
leaving the mix zone is computationally expensive. The tradeoff of privacy
protection in mix zones comes as low QoS by applications because of poor
position accuracy. Another disadvantage is the reliance on a TTP in the form of
the middleware.

2.3 Privacy Protection Approaches without a TTP

Data mishandling incidents in the past [2] have led to development of mistrust
on TTPs. Therefore, avoiding a TTP in a privacy protection scheme is considered
a plus. Among the many approaches developed in this direction, we will consider
a few popular ones for a brief discussion.

2.3.1 Location Obfuscation

This approach, used in [14], aims to protect the spatial aspect of user’s privacy.
The idea is to allow the user to control the accuracy of their published location. If
the user desires a less accurate position to be published, the necessary
inaccuracy is converted to a relative measure of position degradation. This
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degradation is then realized by using a set of possible location obfuscation
techniques; uncertainty radius increase, location shift and even a decrease in
uncertainty radius as shown in Figure 2.2. Position degradation by increase in
uncertainty radius is obvious. However, for the cases of position shift and
uncertainty radius decrease, the degradation is possible due the decrease in the
probability of finding the user in the new obfuscation area. Therefore, the
possibility of the user being located outside the obfuscation region exists.

Although location obfuscation achieves the user-desired privacy requirement,
the QoS provided by the LBS is directly affected. Also, the user-defined
inaccuracy is present in all user locations sent to the server. Apart from
deterioration of QoS from the LBS, location obfuscation is also inflexible due to
its rigid definition of location privacy level.

b) c)

Figure 2.2. Means of acheiving Obfuscation in [14]. a) Enlarging uncertainty radius in
original user position. b) Shifting user position. c) Decreasing uncertainty radius.

2.3.2 Dummy Positions

As the name suggests, this approach is based on generation of many false
positions by the user for each actual position fix. These locations along with the
actual user location are sent to the LBS for querying [15]. In this way, the user’s
original location is kept private as the LBS is not able to distinguish actual user
location from dummy ones. The user’s device can, however, filter out the exact
results because it knows its position. This process is illustrated in Figure 2.3.

For preserving user identity in a sequence of set of generated positions, the
dummy positions produced in each step appear in the neighborhood of the
positions in the last step. However it is difficult to avoid learning of the
distribution of dummy generation scheme over time by the attacker. To
overcome this problem, a dummy generation scheme based on historic traffic
data was presented in the SybilQuery approach [16]. The infeasibility of access to
traffic history data, especially for mobile users, is a major obstacle in application
of this approach.
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Figure 2.3. Use of Dummy Positions for securing user privacy.

Overall, the cost of communication is high with dummies approach. This is
mainly due to sending of dummy positions by the user and their associated
results returned by the LBS.

2.3.3 Coordinate Transformation [17]

This approach is very similar to position obfuscation although it maintains an
overall high QoS at the expense of extra communication cost. The original user
position is transformed using primitive operations such as rotations and shifts
and sent to the LBS. If a client downloads this position, they must know the
transformation that should be inversely applied on this data to achieve the
original user position. So the user should relay the original transformation to the
clients causing high communication overhead.

In a technique specialized for k-Nearest Neighbor (kNN) queries, called
SpaceTwist [18], an anchor location is generated near the original user location.
The server processes the query according to the anchor location, assuming it to
be original user location, and returns results in ascending order of their distance
from this location. The user can then process the returned results to rearrange
them in ascending order from their actual location.

2.3.4 Encryption of Location Data

By encrypting the location data, the user can successfully disable the LS from
inferring the original user location and thereby using it for any malicious
prospect. For sharing location data with clients, the user can distribute access
rights to the users along with the appropriate keys to decrypt the data. In this
way, the client can download the desired user’s accurate location from the
server without the server inferring anything about the downloaded location. The
drawback of using encryption based techniques is that the LS cannot perform
any operations on the encrypted location data [1]. Therefore, queries such as
range queries etc. cannot be performed by the LS.

2.3.5 Position Sharing (PS) [3]

As already discussed, PS is motivated by presence of non-trustable parties in the
system. The original user location is broken down into a set of shares each of
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which carries equal but limited information about user’s original position. These
shares can be fused back to recreate the original location with an accuracy
depending upon the number of fused shares. The mobile device generates these
shares for each position fix and uploads them to a set of LSs; one share per LS.
This distribution of shares eliminates single points of failure from the system.
From the point of view of any single LS, it holds a degraded user location which
makes PS similar to Location obfuscation.

When a client LBS wants to query a particular user’s location, they can request
shares from the LSs for which they have access credentials. These individual
credentials are provided to the LBSs by the user. A user can therefore control the
level of privacy that they want to maintain with any particular LBS. On fusing
these shares, the client can improve the location accuracy to more than that of
any one LS. In this respect, PS is similar to Coordinate Transformation as the
downloaded location can be improved by fusion of further shares.

If a particular LS is compromised as a result of an attack, then the information
gain of the attacker is limited to the share of user location hosted by the
particular LS. Therefore, this approach provides the graceful degradation of user
privacy. With the presence of several LSs in the system, the load of location
queries per LS is also decreased. However, communication cost per location
update is increased because each LS in the system needs an updated share which
corresponds to the current user location.

As optimization of communication in PS is the main focus of this thesis, we will
discuss this approach in detail in the next two chapters.

2.4 Attacks on Location Privacy [1]

To better understand the considerations in the design of privacy protection
approaches, it is of utmost importance to understand the perspective of an
attacker. Many proposed realistic forms of attack on user privacy based on
location data have been improvised during the research on privacy protection.
These attacks help in the evaluation of a privacy approach by quantifying its
robustness against them.

Looking from the bird’s eye view, these attacks have been categorized into some
major categories in [1]. In this work, the knowledge of attacker has been
assumed to vary in two dimensions, i.e. Contextual and Temporal as shown in
Figure 2.4. In the temporal dimension, the attacker can either perform a Single
Position based attack (Snapshot) or a Multiple Position based attack (History)
depending upon the number of user positions they can access. In the contextual
dimension, the attacker can attack either with no context knowledge by
analyzing the available user position(s) or with contextual information, about
the user or privacy protection algorithm etc., to reduce or undo the protection
implemented by privacy protection scheme.
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Figure 2.4. Dimensions of attacker's knowledge [1]

Considering this categorization of attacker’s knowledge, we will briefly discuss
attacks with and without contextual knowledge.

2.4.1 Attacks without contextual knowledge
2.4.1.1 Single Position Attacks

It is possible that the attacker can infer more knowledge, then intended, about
exact user location from a single location query. This is possible on the basis of
their knowledge of the algorithm. In the case of k-anonymity, two such attacks
are mentioned in [1]. First is the Location Homogeneity attack where lack of
diversity in positions of members of a k-cluster results in reducing the size of
cloaking region for the attacker. The size of cloaking region is also reduced by
apply map matching and excluding that area which cannot possibly be occupied
by the members of k-cluster. The second kind of attack is the Location
Distribution attack. This attack is effective when one of the k-cluster members is
located significantly away from the other members and near the boundaries of
the cloaking region. The attacker can assume that the isolated member was the
one which initiated the formation of the cloak. If one of the other members had
initiated cloaking, they would not have gone out of the way to include the
isolated member in the cloak as they are already in a densely populated area.
The extension of I-diversity, if appropriately applied to ensure homogeneous
coverage of cloaking region by k-cluster members, can be effective against these
attacks.

As another example, consider the case of an obfuscation technique that
generates obfuscated position with a non-uniform distribution [3]. The attacker
can, therefore, reduce the size of obfuscation region by removing areas where
probability of finding the user is very low. Here again, obfuscation with
homogeneous distribution for degraded position could help to avoid this attack.

2.4.1.2 Multiple Position Attacks
In this case, an attacker uses their knowledge from previous location queries to

converge to actual user location. These attacks also use the knowledge of the
privacy protection algorithm.

10
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For k-anonymity, an intersection between cloaking regions of several queries
can help the attacker to associate all requests to a particular user [19]. In the
case of location obfuscation, multiple queries for same user location, e.g. user is
not moving, will each generate a different obfuscation region [19]. The attacker
can use the intersection these regions to narrow down to original user location.

T2

Max.
movement

Figure 2.5. Maximum movement boundary attack [1]

Another important means for attacker’s help can be the Maximum Movement
Boundary attack [20]. In this case, the attacker uses the current obfuscation
region defining user position, an estimate of user’s maximum velocity and the
time of the next position update to estimate maximum distance travelled outside
the current obfuscation region. The attacker then overlaps this region with the
obfuscation region of the next user position. The obfuscation region apart from
the intersection can be safely ignored as the user could not have travelled to that
region in the given time between the two user positions. This has been
illustrated in Figure 2.5.

It has been shown in [5] that location tracks of a person can reveal a lot of
personal information about them. In this work, the chances of inferring a
person’s home location from location tracks have been studied. The coordinates
of home location can then be input to look up a name and address using a free
Web Service.

2.5 Attacks with contextual knowledge

If the attacker has additional knowledge apart from the location data, they can
use this information against the protection provided by the privacy algorithm.
Consider for an example that the attacker knows the home address of the user.
Now whenever there is the case that on querying the LS, the obfuscation area
returned is overlapping the house of the user, the attacker can safely assume
that the person is at their home.

Map knowledge is another advanced form of attack for privacy approaches that
do not take map into consideration [1]. Suppose here that the attacker has
inferred from previous user movements that their victim is driving a car. The
natural assumption that the attacker can now take is that the victim is travelling
on road networks. Therefore, if k-anonymity was being used, the cloaking region
can easily be narrowed down to the people travelling on road networks. Same
goes for position obfuscation. The obfuscation area returned by the LS can be cut
down to leave only the part overlapping with road networks [1]. This is
illustrated in Figure 2.6.

11
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Figure 2.6. Map Knowledge attack: Reduction of obfuscation area to road network [1]
2.6 Other attacks

The attacker can also target the LS directly [1]. If the security measures taken on
the LS for protecting location data are not enough, such an attack may be
successful. It is also possible that the operator of the LS is corroborating with the
attacker e.g. the operator is interested in selling the user data to a third party. All
these arguments support the notion of a TTP independent system. On the other
hand, a trusted client can also be a single point of failure in the system. If a
trusted client gives up exact user location to the attacker or the attacker access
the improperly secured user location, the privacy of the user can be lost.

12
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3.System Model and
Problem Statement

In this chapter, we will first discuss the system model for PS algorithm and its
modifications done to accommodate overhead optimization techniques. In the
second part of this chapter, we will define the problem statement in the form of
the overhead optimization metrics.

3.1 System Model

In PS approach described in [3], it is assumed that the user’s mobile device
generates shares for each position fix and uploads them to a set of LSs. As seen in
Figure 3.1, this is performed by a trusted share generation service running on the
device which directly accesses the position generated by the GPS receiver. Each
LS receives one share of the current user position.

rights to access localion senvers—

Share location servery Share
genearalion fuskon LBS., =
- N . L] ACCRES
User sy & SllS, LS
0 \ location senvers . «@
(@ ';-.- LBSz [ |access
\ J . o [] LS, LSs
= - —c
locafion senvers d LBS,
=~ \I access
—_— 3| Ls;
1 " -

Figure 3.1. Position Sharing: System Model [3]

The querying of shares on a client device is done by a LBS which is a third party
software and therefore not trusted. An access control policy is also implemented
by every LS whereby a share query is only answered when the client LBS
possesses the access rights to the particular share. All LBSs have a share fusion
component which aggregates the shares to generate a user position of a certain
precision.

3.1.1 Formal Definition [3]

As no map knowledge is taken into account, the shape of the obfuscation region
in PS is circular. The precision of user location is governed by the radius of the
obfuscation region. The larger the radius of the obfuscation region, the lower is
the precision of the associated user position. The share generation occurs in
such a manner that any share, when fused, is capable of increasing the precision

13
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of calculated position by equal amount. In other words, the fusion of any one
share on an imprecise user position will decrease the radius of the obfuscation
region of the position by the same amount.

Apart from the original user position, denoted by =, the share generation service
takes two parameters for its functionality. The first one is the minimum
precision, ¢,,;n, which defines the radius of the obfuscation region for the least
precise user position. The second one is the number of shares to be generated,
denoted by n. Given ¢,,;, and n, the share generation component’s interface is
summarized as follows.

(smaster: S = generate (m, Pmin, n) Eq.3.1
where S = {5;,5, ... 5, }

The output returned by the share generation component is the requisite shares
of limited precision. The part of the output representing the least precise user
location is the master share, S;,45ter- The other output S is the set of, so called,
refinement shares. All LSs receive Sy, qster as well as a single refinement share per
location update. For share fusion, the availability of s,,,5ter iS @ necessary
requirement. However, the available number of refinement shares may vary. On
fusion of a set S'of refinement shares, a position 7’ results whose precision
depends upon the number of refinement shares in §’.

' = fuse(Smaster»S') Eq.3.2

If §'= S, then the precise user location is recreated i.e., 7’ = ™ with precision,
prec(m") = 0.1If a subset of S is fused, then prec(n") > prec(m).

The refinement shares in § are geometric vectors which are added on top of
Smaster t0 yield the precise user location. Depending upon the method employed
for generation of these vectors, it is possible that the intermediate imprecise
user positions generated by fusion of some of the share vectors have a
predictable distribution in the associated obfuscation areas. To quantify the
effect of this predictability, a privacy metric in the form of the following
probability distribution is defined.

Pattack (d)) = Pr (prec(nattack) <) Eq.3.3

In order to explain this probability distribution, consider that the attacker has
access to a certain k number of shares and they can fuse them to get the position
1. By knowledge of the share generation algorithm, the attacker may generate
the remaining (n — k) shares and fuse them on top of m; to get mgiack- If Tattack
has precision smaller that a user defined distance ¢, then P ;4.1 (¢) defines the
probability for happening of such a case. It is important to note here that the
precision of g¢tqcr IS measured as its distance from the precise user location.
The generation of (n — k) shares may be done several times by the attacker to
get a probability distribution of precise user location. The privacy metric can
therefore quantify for a user that given k shares, what is the probability that an
attacker can locate them within a specified distance.

3.1.2 Maodifications of System Model for Overhead optimization

We saw in Figure 3.1 that the share generation service was responsible for
generating and distributing the shares among LSs for each position fix. To

14
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implement a communication overhead optimization policy, we replace this
service with optimized share generation service as illustrated in Figure 3.2. This
new service has an overhead optimization policy component and a share
generation component. The overhead optimization policy component has direct
access to the position fixes coming from the GPS receiver and controls whether
or not to generate new shares using share generation component. The overhead
optimization policy component also handles the distribution of shares among the
LSs. The role of this service in terms of user privacy is critical therefore it is
assumed to be trusted part of the system.

LSs perform prediction
for DR and SUaDR
/ share messages E
itii fo LSs —
GPS Position fix
—
—
Optimized =
Share overhead optimization - =
generation policy component [—
. Serivce |=|I=I
User's Device -
: | — |
share generation —_
\ component —
—
—
—

Figure 3.2 Modification in PS’s system model for communication overhead optimization.

On the other hand, the LSs are now able to perform prediction of user position in
case of DR or SUaDR being the employed overhead optimization policies.

3.2 Problem Statement

A basic implementation of PS incurs considerable overhead. However, this
results in a quantifiable protection of user’s privacy, measured by Pg;iqck (9),
which is desirable. Stated simply, our objective is to reduce the overall
communication while maintaining the privacy protection provided by the
original PS algorithm. Taking into account the primary communication
optimization techniques that we are exploring, i.e. DR and SU, we need to
consider their characteristic effects on user privacy along with their ability to
reduce communication overhead. To this end, metrics of evaluation will now be
defined.

3.2.1 Communication Overhead optimiztion metrics

For comparing the optimization of performance for a GPS trace, we have defined
the Percentage Message Reduction (PMR) metric as follows.

PMR = (1—

X
— M) * 100 Eq.3.4
where x is the total number of messages sent to the LSs during the M GPS fixes
of the trace and n defines the number of shares generated per position fix. Here
n * M gives the total messages that should be sent to the LSs in non-optimized
implementation of PS. We will use PMR values for comparison of the different
communication optimization schemes with each other.
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To compare the optimization with non-privacy aware systems where there is
only one message per position fix, we will also use Message Per Position Fix
(MPPF) metric defined as:

MPPF = x/M Eq.3.5

This metric will also give us a general idea of how the amount of communication
optimization is effected by a change in number of shares n.

3.2.2 Privacy Security Metrics

As a straight forward way of measuring the effect on the privacy provided by the
original PS algorithm, we will use Pgiqcr(¢) to compare the different
optimization techniques. However, because SU and SUaDR involve modification
of existing shares, it was considered important that another attack based on the
average of the k known shares to the attacker should be defined. This will be
referred to as Psy_gerack (@). Where in P,irqck (¢), the attacker predicts a precise
user position by generating the unknown (n — k) shares by knowledge of the
share generation algorithm, in Pss_g¢tack () these shares are generated as the
average of the k known shares.

As the two probabilities represent independent sources of information
regarding precise user position, an attacker can combine both of them to get an
even more informative distribution. This will be called P.ompined attack (@)- The
desired objective in terms of privacy security will be to at least maintain or
improve the privacy security provided by original PS algorithms under all three
attacks.
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4. Position Sharing
Approach

This chapter will discuss in detail the PS approach as described in [3]. Then a
brief overview of its further extensions from [21] will be given in section 4.2.

4.1 PS Algorithm
4.1.1 Share Fusion

Figure 4.1 shows an example scenario where shares are fused to lead from p, to
precise user location 4, . Here ¢y = {pg, 79} is master share which has a center
position p, having absolute location coordinates. Refinement share vectors are
added on p, to achieve a position of higher precision.

S4
Sz

rg

Figure 4.1. Geometric Representation of generated shares for n = 4. Original user
Position is p4.

On addition of i share vectors to cy, its center p, will shift to a new more precise
position p; which is the center of obfuscation circle c; . There is a also a defined
decrease in radius of obfuscation circle, denoted by Ay, on addition of each

share. It is defined as A, = To/..

When all shares are fused, p. is obtained which is the precise user location.
Hence no obfuscation circle is associated with p.. Note here that the order in
which the shares vectors are added is not important as addition is a
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commutative operation. Therefore, for a given k shares that are fused, there can
be k! number of permutations defining the possible orders of share additions.
The algorithm of share fusion is summarized in Algorithm 1.

Algorithm 1. Share Fusion Algorithm as given in [3]

Function fuse_k_shares(n, ¢y, s1 ... 5y )

1:

2: | Bp= ro/n

3: | P=Dpo

4: | T =Ty

5. |fori=1tok

6: p=p+s;

7: r=r— Ay

8: | end

9: | return ¢, = {p,1}

4.1.2 Share Generation

Given n and ry , the problem of share generation involves calculation of a set of
vectors § and ¢, for a precise position 7 such that any permutation of vectors in
S can be fused together on top of ¢, to recreate the original position &. For this to
be possible, there are certain guarantees that the share generation process
should give. These are:

Pn € ¢; Eq. 4.1
¢ €ECci_1 Eq. 4.2

Eg. 4.1 necessitates that each obfuscation circle should contain the precise user
location. This means that the probability of finding user location within the
obfuscation area must always be nonzero. Eq. 4.2 implies that each obfuscation
circle should lie completely with the obfuscation circle of the next imprecise
position. From the point of view of share generation, this means that the
increase in radius of the obfuscation circle when moving from one position, say
p;, to a more imprecise position, p;_4, should always be greater than the shift
vector, s;, between the two positions. As increase in imprecision between one
position to the next imprecise position is desired to be fixed to Ay, so we

conclude that:

5| < Ap Vi€ [1,n] Eq.4.3
Considering these constraints, two share generation approaches have been
devised in [3]. We will now discuss these approaches.

4.1.2.1 a-posteriori Share Generation

In this appraoch, the most obfuscated user position pyis generated as a last step
of the algorithm. The direction of each share is taken arbitrarily in the 360
degrees. Length of each vector is selected randomly in the range defined by Eq.
4.3. The pseudo code of the algorithm is given in Algorithm 2.

Algorithm 2. a-posteriori Share Generation Algorithm as given in [3]

1: | Function gen_n_shares_posteriori(ry, n, p,,)
Ap=T1o/1
3: [fori=1ton

N
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select 5; randomly where [5;| < Ay
end

n
> -
Po = DPn — § Si
i=1

return (P, S; ... Sy)

N an

4.1.2.2 a-priori Share Generation

This approach first selects py randomly within ¢y and then tries to compute a set
of share vectors which lead from p, to the precise position p,. To increase the
chance of finding the right set of shares, n — 1 shares are chosen randomly as in
a-posteriori share generation and the last share is calculated by taking the
difference between p,, and the concatenated position of the remaining shares on
top of py. If this last share does not satisfy the condition in Eq. 4.3, then the
process is repeated until such a case happens. Otherwise the share generation is
complete. This is represented as the pseudo code in Algorithm 3.

Algorithm 3. a-priori Share Generation Algorithm as given in [3]

Function gen_n_shares_priori(ry, n, p,,)
Ap=T1o/n
select porandomly such that dist(py, pn) < 1o
while dist((po + X111 50),pn) > Ap)
fori=1ton—-1
select §; randomly where |5;| < A,
end
end

R n-—1
Sn = Pn — (Do + z 151')
i=

return (py,S; ... 5,)

O PO N R W

[N
e

4.2 Extensions of Position Sharing

In another work of the authors of PS [21], they have referred to the above
described approach as Open Space Position Sharing with Any Share Order
(OSPS-ASO). This is to highlight the fact that the order of share fusion did not
matter in this approach. However, in a next two approaches, share order is
important. These will be discussed as presented in [21].

4.2.1 Fixed Share Order

This approach is called Open Space Position Sharing with Fixed Share Order
(OSPS-FSO). In OSPS-ASO, we saw that the shares length is restricted by Ay,
therefore the precise user position becomes predictable with the increased
number of shares the attacker can access. With this as motivation, OSPS-FSO
allows share vector lengths to exceed Ay violating the condition defined in Eq.
4.3. The result of this is that obfuscation area of every next precise position may
not necessarily be completely contained within obfuscation area of an imprecise
position. Therefore, from the two conditions of Eq. 4.1and Eq. 4.2 which were
met by OSPS-ASO, only Eq. 4.1 is fulfilled i.e. p,, should lie within all obfuscation
regions. This can be seen more clearly in
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Figure 4.2. OSPS-FSO: Example of shares with unrestricted length [21].

However, the real obfuscation region achieved in this manner is by the overlap
of individual obfuscation circles. This might substantially reduce the obfuscation
area. The increase in precision of the obtained imprecise position per share is
now unequal. On adding a share, the increase in precision of the obtained
position will be inversely proportional to overlap of obtained obfuscation area
and previous obfuscation region. In order to make the precision increase per
share equal, the size of overlapping area has to be increased to become equal to
the area of original obfuscation circle, c;, with radius (d)min - i.A¢).This is
achieved by increase in size of the ¢; as shown in Figure 4.3.

Figure 4.3. Ci resized to ¢;. Overlap area now equals area of Ci [21].

This increase in radius can be easily undone by the attacker. To make it
ineffective, the new obfuscation circle should also be shifted as demonstrated in
Figure 4.4. It is important to note here that the shift operation may cause the
overlapping area of c¢; with ¢;_; ... ¢y to change. Therefore, if the overlapping
area is reduced, then an increase in radius is re-performed until the area
condition is satisfied.

Figure 4.4. Left: Radius of C£ increased to c;. Right: p;shifted randomly while maintaining
¢; within ¢; [21].
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The results show a significant increase in security, compared to OSPS-ASO,
especially when the attacker has access to greater number of shares. A
compromise, however, is seen in the decrease in the robustness of the share
fusion due to fixed share order. If a LS with one of the intermediate shares is
dysfunctional, then positions of higher precision cannot be created.

4.2.2 Map Based CSPS-FSO

If the attacker uses map knowledge, they can significantly reduce the
obfuscation area of an imprecise user position as discussed in section 2.5. To this
end, the authors in [21] proposed a modified version of OSPS-FSO, called
Constrained Space Position Sharing with Fixed Share Order (CSPS-FSO), which
takes map knowledge into account. Instead of assuming that the user can move
around freely as in OSPS-FSO, CSPS-FSO considers only those areas where the
user can be located. For this purpose, the mobile device is assumed to have a
binary map which relates whether the user can be present at a particular
location or not.

During the process of share generation, the radius increase step from OSPS-FSO
as described in Figure 4.3 is modified. The increase of radius of c; is not stopped
when overlapping region’s area equals ¢;’s area. Instead, it is stopped when the
area resulting from the intersection of the overlapped region with the binary
map, equals ¢;’s area. This is illustrated in Figure 4.5.

Figure 4.5. Inclusion of Map Knowledge: Black area inside overlapped region equals area
of ¢y [21].

To summarize, CSPS-FSO does increase the security of user by avoiding map
knowledge based attack. Compared to OSPS-FSO, a price is, however, paid in the
form of additional computational overhead for computing intersection area of
¢;s and the binary map.

In the next chapter, we will discuss the techniques employed for the purpose of
reducing communication overhead in the PS approach [3].
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5. Optimization of
Communication
Overhead

As already mentioned, we have taken DR, SU and SUaDR as approaches to
optimize location updates from the mobile device to the LSs. In this chapter, we
will briefly discuss these techniques and the formulation for their integration
with PS.

5.1 Dead Reckoning (DR)
5.1.1 Overview

DR approaches take advantage of predictability of mobile object movement to
avoid the need of regular position updates. If the route of a mobile object can be
predicted with sufficient accuracy, then the LS can perform the necessary
calculations to determine the updated object position for serving any position
queries.

In other words, DR is the process of approximation of an object’s state based on
its last known value and additional information about its rate of change over
time. In context of position estimation, the rate of state change can be the
velocity of the object or its higher derivatives. To avoid continuous update of
object position, an estimate of the object’s relative movement can be made by
integrating the last known value of its velocity over time and adding it to the last
known position to estimate current position.

The detail of application of DR techniques varies with the scenario. For example,
consider the case of predicting user position indoors where GPS signals and WiFi
positioning are not available [22]. As soon as the user enters an indoor
environment, their last known position reported by GPS is kept as an absolute
reference. Thereafter, user movements are predicted using mobile device’s
sensors such as accelerometer, gyroscope and magnetometer etc. These
movements are integrated on the principle of DR to estimate the indoor position
of the mobile device.

5.1.2 Motivation

DR approaches are famous for minimizing location updates in mobile objects [9].
For the specific scenario of updating a LS (non-privacy aware system) from the
mobile device, the LS is the less informed party and the mobile device is
assumed to receive a new position fix every few seconds. The mobile device
sends updates to the LS so that it can be kept in sync with respect to user
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position. Consider for example that the last update packet sent to the LS at time
tiast Was updatey, . as given in Eq. 5.1.

update,,, = (priast, ptiast jtiast) Eq.5.1

ﬁ’; = CalcPosition(update; s, t) Eq.5.2
Lt

D =|prn—p",l Eq.5.3

The update packet included the user position ﬁfj“”, their speed vtst and their
direction of motion ut'lest, The LS can now predict the user movement by
performing some calculation CalcPosition at a certain time t > t;,, to get
estimated user position, as shown in Eq. 5.2. If the user’s device also performs
CalcPosition after receiving a new position fix, say p2 at time 2, they can
determine the discrepancy D, between the actual reported position and the
position being estimated by the LS from Eq. 5.3.

Now the user can set an upper bound on the error in user position reported by
the LS by sending a new update to the LS whenever D exceeds a certain desired
threshold DR_Th. In this way, a reduction in the number of position updates is be
achieved by compromising accuracy of user location returned by the LS to
clients. The overall effect of the algorithm is depicted in

third update

second update

o «— first update

Figure 5.1. Dead Reckoning: Mobile device sends location update whenever predicted
position (Green dots) differs from Real Trajectory (Black dots) by more than th.

5.1.3 Background

During the course of research, various implementations of DR have been
developed [8, 9]. Here is an overview of some common difference in these
approaches.

5.1.3.1 Prediction functions

The prediction function CalcPosition can vary depending upon the user
movement being modeled. For a route that has smooth turns, modeling angular
movement along with linear motion can help reduce more location updates
rather than considering only the direction of motion during the last position
update. As mentioned in [8], higher order prediction functions rather than only
linear and angular speeds can result in better modeling of user motion.
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Simpler methods of updating the LS also include distance-based or time-based
DR whereby the mobile device resends an update to the LS after a certain fixed
distance has passed or a certain time has elapsed [8].

5.1.3.2 Threshold variants

Two policies of implementation stem by fixing a constant threshold or
adaptively varying it during the course of the trip. In policies with constant
threshold, the value of threshold is decided on the basis of available information
about the trip such as knowledge of route, average trip speed, affordable
inaccuracy in position and desired amount of reduction in communication cost.
For example on a jerky trajectory, setting a small value of DR_Th may result in
too many location updates. On the other hand, an advantage gained is to have a
more accurate reported trajectory as small value of DR_Th is translated to less
inaccuracy in user position.

Approaches have been proposed which keep changing DR_Th during the course
of a trip. In [9] for example, the value of DR_Th is decided to be a value which
minimizes overall information cost predicted to incurred till the next update.
The authors also extend the variable threshold approach to address the
advanced problem of disconnection detection by the LS.

5.1.3.3 Variants with Map knowledge

By have knowledge of the route followed by the user, the need of predicting
movement direction is considerably diminished as implemented in [8].
Therefore, DR is reduced to a problem of predicting user position along a
straight line. The variation in linear speed and acceleration etc then determine
the number of updates sent by the mobile device. However, additional
computational cost is incurred during map matching to locate which route is
being taken by the user.

As further explained in [8], an advanced problem in map based protocols is the
correct prediction of turns taken by the user at road junctions. It is solved by
building a user-specific or general probability distribution over the turns taken
at each road junction based on the history of traffic.

5.1.4 Formal Definition

To consider integrating DR for PS, we need to first consider the differences that
have arisen in the non-privacy aware system due to PS. Where in a non-privacy
aware system, there is a single LS handling user location data, there are n LSs
holding position information in PS based systems. Therefore, if dead-reckoning
is to be applied, each LS has to predict user position. As already explained, each
LS only has s,,,45ter and one refinement share instead of having an accurate user
position. Due to the reason that refinement shares are relative vectors, we have
not considered them as part of the prediction function. However, s;,,ster defines
an absolute, though obfuscated, user position in the form of py on which
prediction can be applied.

To optimize communication overhead, we want to reuse a set of refinement
shares for as many position fixes as possible. For a single share generation, the
resultant vector formed by summation of refinement shares connects p3 and p}
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in a rigid fashion. While the refinement shares remain unchanged, a new
position fix pZ is fully represented by p3 if p3 is the result of the same shift as
was present between p} and p2. This is illustrated in Figure 5.2.

1

Pn

Figure 5.2. Unchanged refinement shares (black arrows): Shift D in p,; s is equal to shift

inpgs.

This implies that a new position for py should be predicted by the LS, fusing
shares on top of which should lead to the new p,. To make the prediction
possible using dead-reckoning, update messages sent to each LS are defined as
given in Eq. 5.4.

— Liast Liast t t It
updatey,, . = (Spmasterr S, V'last, @tlast, ytlast) Eq.5.4

Apart from the s;,45rer and s, which are part of the update message as per PS
protocol, we also send linear and angular velocities, v'iest and w'last respectively,
and the direction of motion u'lest, The server then uses this additional
information to calculate new position of p, when a query is made by a client. Any
error that appears in the calculation of p, is directly reflected in all positions of
greater precision calculated as a result of share fusion algorithm. This is because
the error in py represents a shift of the rigid connection formed by refinement
shares between p, and p, when k shares are fused. In Figure 5.3, p’z is the
predicted position of p3 calculated by the LS using Eq. 5.5 with t,,,, = 2 and

tiast = 1. The error e in predication ofp’i has resulted in same error in the fused

e )
user position p’, .

t P t -
plonow = CalcPosition(p,, vhiast, gyliast yliast ¢ Eq.5.5

pY’

Figure 5.3. Error e in fused position p’fl is same as error in p’z predicted by the LS.
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5.1.5 Pseudo code

Algorithm 4 gives the pseudo code of the optimized share generation service.
This algorithm runs on the device of the user and is considered to be trusted.

Algorithm 4. DR based Optimized Share Generation service
1: while 1
2: pirov = wait_for_next_position_fix
3: If exists(updatey,, )
4: p’g""w = CalcPosition(pél““,vtlast, wtiast, ytiast ¢, )
> Slfrlllflsstter = (P'é"owlro)
6: P = fuse(s ey ,510)
7 If dist(p,"",p' ") > DR_Th
8: (sinow  Stnow) = generate(pi®, pmin, 1)
9: fori=1:n
10: updateq,,,, = (SyaserSi"" VoY, wrow, Ulnow)
11: end
12: end
13: else
14: (smaseers Stmov) = generate(py"”, $min, 1)
15: fori=1:n
16: updatey,,,, = (SyaeierSi"" VoY, wrow, Ulnow)
17: end
18: end
19: | end

The algorithm starts by waiting for a fresh position fix from the GPS sensor. New
shares are generated only for the first position fix (line 13-18) or when

predicted user position p’;“"w differs from actual user position pfl""w by more

than DR_Th units of distance (line 7-12). For each new position fix at time t,,,,,,
the user’s device performs CalcPosition function to determine the current

position of master share p’g“"w as predicted by the LSs (line 4). This predicted
master share p’g’“’w is then used to determine the predicted value of precise user

position p’;’w‘” (line 6). In line 7, it is checked whether the error in the server’s

estimate is big enough to exceed DR_Th. If such a case happens, the LSs are re-
updated with a set of new shares (line 8 - 11).
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Figure 5.4. Trajectory Prediction considering angular and linear velocities

The LSs answer location queries by estimating a fresh value of py using the
CalcPostion function as done by user’s mobile device. As mentioned earlier,
our implementation of the prediction algorithm uses angular and linear speeds
of the user to predict the future trajectory (see Figure 5.4 and Algorithm 5). If
the angular velocity is significant e.g. greater than 1 deg/sec (line2), only then a
trajectory with certain radius of curvature is predicted. Otherwise, a straight line
trajectory is predicted using only linear speed of the mobile user (line 9-12).
When considering angular velocity, radius of curvature of the trajectory is
calculated as a first step (line 3). Next, the center of rotation of the mobile user’s
path is calculated according to radius of curvature, the last known master share
position and the direction of motion (line 4). According to the elapsed time
between query time and last update’s time, angular displacement along the
curvature of trajectory is computed and used to estimate p’g""‘” in lines 5-8.

Algorithm 5. Prediction function
1: | Function CalcPosition(péla“, vhiast, gtiast ylast ¢, )
2: Ifw>1deg/sec
3: trajectory_radius = vtast [gtiast
4. cor = calculate_cor(trajectory_radius ,pél““,ﬁtlasf )
5: angular_displacement = wbast * (tuo — tiast)
6: old_py_angle = angle(pél““ — cor)
7: p’g’“’w = cor + trajectory_radius * (angular_displacement +
8: old_py_angle)
9: else
10: linear_displacement = vtast x (t,on — tigst)
11: p’g’w‘” = pél““ + linear_displacement. uttast
12: end
13: return p’g”"w
14: | end
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5.2 Selective Update (SU)
5.2.1 Overview

This approach also tries to reuse refinement shares in successive position
updates. However, in contrast to DR, SU does not generate a complete set of new
shares every time it needs to update the LSs. Instead, on arrival of a new position
fix, only minimum number of shares are re-generated and their corresponding
LSs are updated so that the user position hosted by the LSs remains consistent
with the actual user position. Hence, the last py sent to the LSs is used as long as
the SU of some shares keeps successfully representing the new user position.
Reduction is communication overhead is helped in two ways. Firstly, spaster iS
reused and therefore not sent to the LSs thus reducing message size. Secondly,
the number of shares that are sent to the server vary from 1 to n depending upon
the course of trajectory resulting from user movements. The details of the
algorithm will now be elaborated. The geometric representations of shares used
in the following illustrations are on the lines of Figure 4.1 but withn = 5.

5.2.2 Motivation

Consider as an example scenario shown in Figure 5.5. Part (a) of the figure
shows p,tf in red and one possible fusion of its shares along with the obfuscation
circles. In part (b), the next position fix, pff shown in green, arrives close to pff.
Using the principle of SU, it can be seen that this small movement from pfll to pflz
can be accommodated by a single update of share s5 as shown in part (c) of the
figure. This is because the new position pff lies within the obfuscation circle cs

inside which s; can be defined freely. Therefore, only one message to the LS
which is storing the older version of s; will suffice in order to keep the user

position with LSs consistent with the new position fix p,tf.

(@) (b) (c)
Figure 5.5. Selective Update Example 1: a) Position fix pfll and its shares,n = 5.b)
Second Position fix, p,tf (Green), appears close to pfll. c) s, updated to represent pff.

Next we consider another example, Figure 5.6(a), where p,tf is a bit further away
as compared to the last example. Here, pflz is not reachable even if we re-define
s5 because it lies inside c; instead of c,. A modification and update of two shares
vectors s, and s; make the rest of the shares consistant. A possible redefinition
of these shares is shown in Figure 5.6(b).

By these examples, we note for n shares, if the new position fix p,iz lies in ¢, for
k < n, then atmost (n — k + 1) shares are required to be redefined and updated
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to make pff consistent. It is also noticeable that at least one share update is
required per each new position fix that is different from the previous one.

(b)
Figure 5.6. Selective Update Example 2. a) pfll (Red) and its shares, pff shown in green.
b) s, and s5 redefined to represent p,iz

In Figure 5.7, the same example is reconsidered. This time however, we change
the order of share combination before performing the update of shares. By doing
so, it can be seen in Figure 5.7(b) and (c) that it is now possible to reach p,tf by
changing s5 only. In comparison to the example of Figure 5.6, a change in share
order has allowed us to avoid update of an additional share for the same
scenario.

e

(b) (c)
Figure 5.7. Selective Update with re-ordered shares. a) pfll (Red) and its shares, pff
shown in green. b) Re-ordering of shares of pfll. c) s re-defined to represent pff

5.2.3 Formal definition
5.2.3.1 Condition for Applicability

Now we will consider the details involved in the application of SU. First of all, the
limits of application of this approach are to be defined between consecutive
position fixes. This is primarily determined by the fact that whether the new
position fix, pff, is reachable from the pél using n share vectors. It should be
noted here that the share vectors s; ...s,, are modifiable with length of at most
A¢ and an arbitrary direction. Therefore, we can summarize this condition for
determining the possibility of application of SU as:

distance(pgl,pflz) <1 Eq.5.6
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The above condition covers even the case where all n shares need to be updated
because the distance(pgl, pflz) is almost equal to 1. An example of such a case is
presented in Figure 5.8.

(a) (b)
Figure 5.8. lllustration of n share update. a) First position fix pfll shown in red and its
shares starting from pgl (black). Second Position fix pff shown in green. b) All five shares
have been changed in order to represent the new position fix while keeping p(‘;l same.

5.2.3.2 Share Update

Having decided when to apply SU, we need to decide which refinement shares
should be updated so that the overall share updates are kept to a minimum. For
this purpose, the shares are sorted in descending order of their potential of
changeability. As an example, we could consider the length of the shares as a
way of determining potential. The share with the least length would have the
highest potential because it had the least contribution in leading from p, to p, in
terms of distance.

(a) (b)
Figure 5.9. Share Update Example: a) Smallest share s; cannot be changed to reach the
new position fix (Green). b) Instead, s, is changed.

However, this might not be the optimal way of minimizing shares updates as
illustrated in Figure 5.9. In part (a) of the figure, we notice that ss is the smallest
share but it cannot be extended to the new position fix as the new position fix
lies outside c5. However, by modifying s, not only in length but also in its
direction, consistency for new position fix is achieved as shown in part (b) of the
figure. Therefore, it is important that both the length and direction of the shares
be taken into account for determining the shares whose re-definition will result
in optimally reduced update messages to the LSs.
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a)

Figure 5.10. Share Update: detailed Illustration: New shares are shown in red, reused are

blue. a) Shares generated for pfll. b) One share updated because of its least contribution
along u*tz,

To formulate a systematic way of finding a share’s potential, the unit vector in
the direction of movement trajectory is considered. As shown in Figure 5.10 b),

iit%2 denotes the unit vector. Considering that the shares are pointing from p'
towards pfll, S5 is opposing the direction of u'*2 with the largest value of dot
product as compared to other shares. Therefore, when the new position fix pff

arrives, S5 is the first share to be updated as shown by the dotted arrow in part
(b) of the figure.

5.2.4 Pseudo code

The complete pseudo code for the concept is presented in Algorithm 6. After
getting a new position fix, complete set of new shares is generated in lines 3-8 if
required. Either the shares are created for the first position fix or when the
distance between current position fix and last p, exceeds a certain threshold
SU_Th. The upper limit of SU_Th is defined by Eq. 5.6.

If a complete set of new shares are not required, old shares are sorted in
ascending order of their contribution against the direction of user motion (lines
10-11). After this, the number of shares required to be wupdated,
shares_to_update, in order to reach the new position pfl""w are determined in
lines 12-24 starting from the least contributing share. The reasoning behind this
is that each share can travel a maximum length of A¢. For example, if two share

was being updated for n = 5, than distance from pél““ to pé""w should be less

than 2* A¢. Therefore if distance dist (p(t;f_sﬁ),pfl""w) is less than i * A¢, then i

shares are required to be updated. The shares are then updated to have same
length and direction as given in lines 25-29 of the pseudo code.

Algorithm 6. SU based Optimized Share Generation service

while 1
pfl’w‘” = wait_for_next_position_fix
If isempty(last_shares) || dist(p"*", last_shares.s "% . .po) > SU_Th
(Szrg:;fer' StnDW) = generate (p‘flnow’ d)min' n)

— tnow t
last_shares = (s, o% , Stnow)

gk W N e
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6 fori=1:n

7 update,, = (SpasterSi"")

8: end

9 else

10: ultasvtnow = ynit_vector( proY — polest )

11: sort_by_contribution(last_shares. S, utlasttnow)

12: fori=1:n

13: ifi==n

14- p(trlla_sﬁ) = last_shares. Spmaster-Po

15: else

16: p(trlla_sﬁ) = fuse(last_shares. Spaster, last_shares.S((i + 1):n))

17: end

18: distance_to_be_covered = dist (p(tfl“_sﬁ),pfl”"w)

19: if distance_to_be_covered < A¢p * i

20: start_point = p(tfla_sﬁ)

21: shares_to_update = i

22: break;

23: end

24: end

25: average_update_vector_length = distance.to_be.covered
shares_to_update

26: share_angle = angle(p;”"w — start_point)

27: Uspare = unit_vector(share_angle)

28: for i = 1:shares_to_update

29: last_shares.S(i) = average_update_vector_length. Ugpare

26: end

27: end

28: p‘ftllaSt — prtlnow

29: | end

5.3 SUaDR

5.3.1 Motivation

The motivation for SUaDR came from observing the behavior of SU and DR
algorithms after their implementation. Although the detailed results of these
algorithms will be discussed in Chapter 6, it is important to show a few results
here to establish the reasoning behind SUaDR.
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Figure 5.11. Dead Reckoning applied on a test GPS trace (green). The Red circle marks a
turn where, clearly, share generations (n = 5) become dense compared to straight
patches of trajectory.

Figure 5.11 shows that DR is not effective in parts of trajectory where prediction
function performs poorly such as turns. The generated shares are shown as
connected straight lines joining some of the trajectory points. During sharp
turns, DR predicts user position less accurately and thus generates new sets of
shares more often resulting in a sharp increase in number of messages results.
On the other hand, during straight portions of the trajectory, DR reduces the
updates very efficiently. On the other hand, it is also noticeable in Figure 5.12 for
example, that SU has the potential of performing consistently during turns as
well as straight patches of the trajectory. A plausible idea that can be inferred
from this discussion is the merging of the two techniques, i.e. DR and SU, such
that strengths of both are reflected in the merger. This merger is called Selective
Update and Dead Reckoning (SUaDR).

5.3.2 Formal Definition

We have already seen in section 5.1.4 that DR does not modify the refinement
shares for reducing communication overhead. Therefore, it does not significantly
affect the privacy security provided by the original share generation algorithm
as will be verified later. If optimization of communication overhead achieved by
DR can be improved by addition of SU while maintaining the security
performance, then it would be an added advantage. To this end, SUaDR tries to
achieve this by running DR as the default algorithm and activating SU in parts of
trajectory where DR may incur more communication cost.
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Figure 5.12. SU withn = 5, ;= 300: new shares are red, re-used shares are black. 9
share generations for 400 position fixes (green).

We know that SU sends at least a single update message per position fix. If a new
set of shares is sent to the LSs using SU at t,, then the next n position fixes
coming at t; ... t, will cost the following number of messages.

SU_messages;, ¢, =N Eq.5.7

Similarly, we also know that DR generates a complete set of shares each time it
updates the LSs. If DR updates the LSs k times in n position fixes, then number of
total messages sent to the servers will be:

DR_messages;, . =k *nwherek =[0..n] Eq.5.8

The two equations, Eq. 5.7 and Eq. 5.8, show that DR may incur more update
messages if multiple updates are performed in n position fixes. This is because
the message increase for DR is in multiples of n per update while SU may
perform an update with 1..n messages. We will use this observation as a
criterion for activating SU in SUaDR.

5.3.3 Pseudo Code
The pseudo code for SUaDR is almost the same as Algorithm 4 except for

inclusion of SU as described above. It is given in Algorithm 7 with the added
statements highlighted in gray.
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Algorithm 7. SUaDR pseudo code
1: while 1
2: pirov = wait_for_next_position_fix
3: total_position_fixes = total_position_fixes + 1
4. If exists(updatey,, )
5: p'iov = CalcPosition(p, 1, vtiast, whiast, yhiast, ¢,
6: Slfrllltllsstter = (p’f,”o‘”,ro)
7: P = fuse(s ey ,510)
8: If dist(p,"",p':*") > DR_Th
0 TG Ik TS e A P
10: perform_SU
11: else
12: (sinow  Stnow) = generate(py™®, Pmin, 1)
13: fori=1:n
14; updater,,, = (SpasiersS;"", VoW, winow, tifnow)
15: end
16: end
17: end
18: else
19: (sinow , Stnow) = generate(pi®, min, 1)
20: fori=1:n
21: updater,,, = (SpasiersS;"", Vo, winow, iitnow)
22: end
2% lastupdate_fix = total_posttion. fixes
24: end
25: | end

After a brief description of implementation in the next chapter, the detailed
evaluation of the SU, DR and SUaDR will be done with respect to the achieved
optimization of communication overhead as well as their effects on the security
provided by the share generation algorithms.
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6. Implementation and
Evaluation

In order to evaluate our overhead optimization algorithms on real world GPS
traces, we needed an implementation of the original PS algorithm on top of
which these techniques could be tested. In the first part of this chapter, I will
briefly explain my implementation of the PS, DR, SU and SUaDR. For later
comparison, the security analysis of the PS algorithms will be presented as
discussed in [3] with addition of our further evaluations with SA attack. Then
after a brief description about the GPS traces, we will present the evaluation of
each overhead optimization algorithms, first individually and then
comparatively.

6.1 Implementation

All algorithms were implemented in MATLAB [23]. Throughout this chapter, the
probability distributions shown are a result of Monte Carlo simulations.

6.1.1 PS

The share generation and the share fusion algorithms from [3], as described in
section 4.1 were implemented accordingly. However, for the case of a-priori
share generation (see Algorithm 3), it was observed that share generation was
taking unreasonable amount of time. This was due to the fact that a lot of
attempts were required before a set of refinement shares could be found that
connected p, and p, (lines 4-8). To overcome this problem, I modified line 6 of
the algorithm such that the generation of a refinement share was no more fully
random in a circle of radius A¢. Instead, only a small region of this full circle was
considered which limited the range and angle for random selection of share.

Starting from pg, shares were generated to traverse the distance towards p,,. The
range of angle and length for generation of a kth share depended upon the
distance Dist. This distance defined a minimum displacement from the p;_; in
the direction of p, that must be travelled by this kth share in order to keep
possibility of connecting the preselected p, to p, alive. The computation of Dist;,
is defined by the following equations.

DiStremaining = distance(py—1,Pn) Eq. 6.1
Distcoverapie = (N — k) x Ag Eq.6.2
Disty, = DiStremaining — Disteoperable Eq, 6.3

Eqg. 6.1 defines the remaining distance that is to be covered collectively by the
current share, i.e. kth share, and the rest of (n — k) shares yet to be generated in
the direction leading from p,_4 to p,. If all of the (n — k) shares are aligned
along this direction with a maximum possible length of A¢, this gave the
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maximum distance that was coverable by the rest of the shares as given in Eq.
6.2. Therefore, the kth must at least travel Dist, (Eq, 6.3) of displacement from
Pr—1 towards p,. This distance determined the range of angle and length of kth
refinement share vector by defining a region of the circle of radius A¢ centered
at pr—1. The region is such that a vector originating from p,_4 to any point in the
region was would have at least a displacement of Dist; in the direction of p,.
This is illustrated in the cases shown in Figure 6.1.
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Figure 6.1. a-priori share generation with n = 5: region for selecting refinement share s,.

Top) Dist,, is positive, small region (grey) left for choice of s,(dotted arrow). Bottom)
Dist,, is negative, more than half of the circle (grey region) available for choosing s,.

6.1.2 DR

The implementation was based on Algorithm 4. When tested with a randomly
chosen GPS trace, the dead-reckoning approach gives promising results. As
shown in Figure 6.2, the number of share generations are considerably less as
compared to the number of trajectory points p}s. This improvement is despite
the fact that the threshold DR_Th has been kept small i.e. almost equal to the
distance between two consecutive pis. A complete new set of shares is
generated whenever the predicted value of user position, i.e. p,’lt, differs from
corresponding actual user position, p5, by more than DR_Th.
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/ Pn
circle with radius th

Figure 6.2. Reduced share generations by application of dead-reckoning
6.1.3 SU

Algorithm 6 was implemented as stated in sub-section 5.2.4. We have seen
earlier that SU modifies some of the shares to represent the new position fix
where possible. Over a set of position fixes, this causes the refinement shares to
become stretched in the direction of original user position which motivates the
Psa_attack (). This effect is illustrated in Figure 6.3 where a single share
generation is being reused over several position fixes. As p,, starts moving away
from the p,, share vectors become more and more aligned in the direction of the
vector leading from p, to p,,.

New shares
generated
for this p,,

Figure 6.3. Share average attack on Selective Update: reused shares are in black, new
shares in Red. Moving from right to left, share vectors are stretched in the direction of
the incoming p,,s (green).

6.1.4 SUaDR

The pseudo code of SUaDR as given in Algorithm 7 was implemented. The results
of the implementation will be discussed later in this chapter.

6.2 Security Analysis of PS approach

In PS algorithm, the different levels of privacy are provided by the varying size of
obfuscation region. If a client has less shares, they should only be able to create a
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position with a large obfuscation region compared to another client who has
access to more shares. In the obfuscation region defined by the imprecise
position py, created by fusion of k shares, a client should be unsure about user
location with the region ¢, i.e. they would assume the precise user position p,, to
be uniformly distributed.

However, it was shown in [3] that, an attacker could develop a distribution of
user position. This was achieved by generating the unknown shares by
knowledge of the algorithm. Using Monte-Carlo simulation, it was verified that
such an attack could help the attacker with k shares to find the distribution
Puttack (@) i.e. a non-uniform distribution for p,, in c.

6.2.1 Analyzing a-posteriori Share Generation

As already seen in a-posteriori share generation, p, is the resultant position due
to summation of pre-generated refinement shares. Therefore the distribution of
Pn in cg is dependent on the distributions of the summed up refinement share
vectors. This distribution was verified by performing a Monte Carlo simulation
to be a normal distribution in [3] as shown in Figure 6.4.

In-efficient usage of
obfuscation region

ro

Figure 6.4. User position’s distribution in a-posteriori share generation [3]: p,(Red) in r,
radius around p, using Monte Carlo simulation with n =5 and 1000 runs.
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Figure 6.5. Probability of p,,lying with 10% area of ¢} around p;, [3].

Similarly, for an attacker having k shares can generate the remaining (n — k)
shares randomly and perform this procedure a number of times to obtain a
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distribution of p,, around py. P,:tqck (¢) quantifies this threat to user privacy by
measuring the probability of an obtained p,, being the actual user position. For ¢
being the radius of 10% of the obfuscation region, the result of Monte-Carlo
simulation from [3] are visualized in Figure 6.5 for k fused shares. The graph
shows that the efficient usage of obfuscation region increases as the number of

fused shares increase, reaching 10% for 4 shares which is equivalent to uniform
distribution.

Our implementation also gave the same results (see Figure 6.6(a) for P = 10%).
The Psa_qttack (@) is plotted in part (b) of the figure. The overall effect is seen in
Figure 6.7 in the form of Pcombined attack (¢) As Pcombined attack (¢) is not very

different from Pg;¢qcr (@), this demonstrates that he Psy_gerack (9) was not
effective against a-posteriori share generation.
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—S—P=70% i —e—p =70%
| —e—pP=50% ﬁl | —e—pP=50%
—&—P = 90% a —&— P =190%

Number of fused shares (k) Number of fused shares (k]
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Figure 6.6. a-posteriori share generation for n = 5. a) P, (#)- b) Psy_areack (@)-
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Figure 6.7. P,y pined attack (@) fOr a-posteriori share generation

6.2.2 Analyzing a-priori Share Generation

In a-priori share generation, selection of p, inside ¢ is done before calculation of
refinement share vectors. Therefore the distribution of p,, in ¢y, or conversely pg
in ¢y, is uniform [3] as shown in Figure 6.8.
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Figure 6.8. User position’s distribution in a-priori share generation [3]: p,(Red) in 7y
radius around p, using Monte Carlo simulation with n =5 and 1000 runs.

However, the refinement shares now have limited choice of direction and length
to connect p, and p,. This results in inter-dependence of share vectors which
implies that the more shares an attacker has, the more predictable p,, becomes
through P;¢qcr (@) [3]- This is illustrated in Figure 6.5.

aPriori Share Generation: r, = 3000, n =&

Spatial distribution of u ition aft fu-' 2 sh aPriori Share Generation:
= I:UUI[]S L) 7T [FESLED S LGRS G S i Prabability Distribution of locating user in P % of Obfuscation Area
around user position against number of fused shares.
3000 : : : :
2000 —6—P=10%
g - _ —e—P=20%|.
g 1000 I UA ) g —6—P=30%
c 0 =——=c, Area=A, E 6—P=40% |
2 Area =10% of A, g —6—P=50%
& 1000 s P=60%
= = |—e—P=T0%|
2000 = —6—P=80%
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Distance in meters. Number of fused shares (k]
(@ (b)

Figure 6.9. Privacy security of a-priori implementation using 1000 runs of Monte Carlo
simulation. a) Close to uniform distribution of p,, around p, in 10% area around p,. b)
P, ttack (@) for fusion of k shares.

Our implementation of a-priori share generation was different from the original
algorithm of [3] as explained in sub-section 6.1.1. The Pyiqcr(¢p) for our
implementation with n =5 is shown in Figure 6.9. Part (a) of the figure
illustrates the distribution of p,, in the obfuscation region c,. It can be seen that
the distribution throughout the obfuscation region is quite uniform as confirmed
by part (b) of the figure for k = 2. When k is increased, distribution of user
position becomes more and more non-uniform, especially if higher percentages
of obfuscation area are considered. The decrease in probability of attack with
increase of k means that the p, start getting concentrated around the
boundaries of the obfuscation region. Generally however, this implementation
gives much closer results to uniform distribution than results from [3] shown in
Figure 6.5.
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Once again however, we need to see the effect of Psy_gitack(@) and
Pombined attack (¢) before judging the privacy protection of this approach. For
the purpose of comparison, both, Pgstack(g) and Psa—attack(g), are plotted side

by side in Figure 6.10.
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Number of fused shares (k) Mumber of fused shares (k)
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Figure 6.10. a-priori share generation for n=5. a) P, (#)-b) Psa_areack (@)

By taking the best result from both of these attacks, the attacker can establish an
even better estimate of precise user position. Best result here means selection of
the probability value from the two probabilities, which represents a more non-
uniform distribution than the other one. For example, the attacker can infer that
the probability of finding the user in 10% of the obfuscation region after fusing 3
shares is 40%, from Figure 6.10 (b), rather than 10% (uniform) given by part (a)
of the figure. Similarly, after fusing 4 shares, the attacker may also infer that in
10% of the obfuscation area, the chances of finding precise user location are
approximately 2.5% from part (a) of the figure instead of approximately 37%
from part (b). In this case, the fractional distance of 37% from the uniform
distribution value 10% in the range [10 — 100]% is less compared to the
fractional distance of 2.5% from 10% in the range [0 — 10]%.
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Figure 6.11. P, 1ined attack (@) fOr a-priori share generation
By applying this principle to the results of both attacks, the attacker obtains a

new and more informative distribution, P.ompined attack (¢), about user position
given in Figure 6.11.
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6.3 Selection of GPS Traces

Real world GPS traces are ideal as test inputs for quantifying the performance
achieved by DR, SU and SUaDR algorithms. For this purpose, we have
downloaded traces from [24] & [25]. Other than separation of the traces into
four main categories, no particular considerations were made during their
search. These categories are:

1. Car traces on along route

2. Car traces in urban area

3. Walk traces in unstructured environment
4. Walk traces in urban area.

These categorizations are important to see the viability of the algorithms in real
life usage. These categories offer different ranges of speeds (see Table 6.1) and
different turning angles. For example, turns in (ii) and (iv) are dominantly at
right angles whereas in (i) and (iii), turn angles are less sharp.

Number of GPS Average
Trace Set Traces Speeds(km/h)
Car traces on a long route 4 85.17
Car traces in urban area 4 24.77
Walk traces in unstructured
environment 3 5.14
Walk traces in urban area 7 6.36

Table 6.1. Average speeds of the four GPS trace sets.

Due to the differences in trace sets, the values of parameters, as given in Table
6.2, were selected for the evaluation of SU, DR and SUaDR. The value of n is kept
constant for all trace sets for easy comparison of their performance. However, 7,
was changed so that a reasonable amount of share generations are performed
during the course of distance covered by a particular trace. As the distances
travelled in traces, apart from car traces on long routes, were not very long, a
comparatively smaller value of 1, were chosen.

Trace Set n ro(m) | DR Th(m) | SU_Th(m)
Car traces on a long route 5 3000 40 3000
Car traces in urban area 5 1000 30 1000
Walk traces in unstructured
environment 5 500 15 500
Walk traces in urban area 5 500 15 500

Table 6.2. Parameter values for testing with different GPS trace sets.
6.4 Individual Evaluation

At first, we will consider DR, SU and SUaDR in detail with regards to the achieved
reduction in communication cost and their effect on the security of share
generation algorithm i.e. Pysrack (@), Psa—attack (9) and Peompined attack (@)- Then
we will compare the results of application of all algorithms on the defined GPS
trace sets. For individual evaluations, only a-priori share generation is
considered. In comparative evaluations, both types of share generations will be
tested.
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6.41 DR

As mentioned earlier, the number of messages sent to the LSs using DR are
directly dependent on the value of DR_Th. This is illustrated in Figure 6.12 in
which DR is applied using a-priori share generation on a GPS trace. A clear
difference is seen in run (a) and (b) in the number of complete share
generations. Part (b) of the figure clearly shows less dense share generations
(red lines) compared to part (a) due to doubling of the value of DR_Th.
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Figure 6.12. Impact of DR_Th on 359 position fixes of a urban car trace: n = 5, 1, = 1000.
a) DR_Th = 20, 161 share generations, PMR = 55%.b) DR_Th = 40, 107 share
generations, PMR = 70%.

With regards to the influence of DR on privacy security, the results are quite
similar to the original results for a-priori algorithm given in Figure 6.10 and
Figure 6.11. They are presented in Figure 6.13 and Figure 6.14.

Probability Distribution of locating user in P % of Obfuscation Area Probability Distribution of locating user in P % of Obfuscation Area
around user position against number of fused shares. around user position against number of fused shares.
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Figure 6.13. DR results for 359 GPS fixes of a urban car trace. a) P, (¢)- b)
PSA—attack (d))

Generally, it was observed that DR does not affect the original security provided
by the share generation algorithm. This is because the refinement shares
generated by the share generation algorithm are not altered in any way. The re-
usage of same shares, especially over straight patches of the trace, causes some
difference to appear in the distribution of user position measured by
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Pattack(d)):PSA—attack(d)) and Pcombined attack ((P) HOWEVEF, these differences
are not very significant.
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Figure 6.14. DR results: P,y pinea artack (@) generated from Figure 6.13 (a) and (b).

For the test categories of GPS traces, the selected values of DR_Th are given in
Table 6.2. The choice of these values was determined by experimentation in
order to get good communication overhead reduction. The values are
appropriate considering the speed of the user in each scenario.

6.4.2 SU

Similar to DR, performance of SU is also effected by SU_Th. Smaller value of
SU_Th means that more share generations are needed as shown in Figure 6.15.
The overall reduction in messages is seen to increase when SU_Th is doubled. It
is important to note that the doubled SU_Th did not significantly increase the
PMR i.e. only 8%.

9000
8000 | 8000
7000
_ gooof| @ Mew Shares = 6000} @  New Shares
%, @ Selective Update - O Selective Update
2 5000 2
£ 000} £ 4000}
3000
2000 2000
1000
0 N L . . . U 1 1 1 1 1
6000 -4000  -2000 2000 4000 -6000 4000 -2000 2000 4000
meters(m) meters(m)
a) b)

Figure 6.15. SU run on 318 position fixes. a-priori Share generation with n = 5,7y
= 1000m. a) SU_Th= 500m: 64 new sets of shares generated, PMR = 64%. b)
SU_Th = 1000m: 15 new sets of shares generated, PMR = 72%.

For quantifying the effect on security, Figure 6.16 shows that P a0 (@)
becomes more close to uniform when higher value of SU_Th is used. However,
Psa_attack (P) is adversely affected by increase in SU_Th (see Figure 6.17). The
precise position of user becomes more and more focused near the center of the
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obfuscation region because the shares become stretched to their full length,
thereby helping the SA attack. An overall decrease in uniformity of user’s
position distribution by the combination of the two attacks is seen as shown in
Figure 6.18.

—&—P=10% —o—P=10%
J—e—P=2%|  _ J—e—P=20% |
—6—P=30% g —6— P =30%
| —e—P=a0%| Ry —6—P=40% |
—e—P=50% T —&— P =50%
P =60% e P=60%
—6—P=70%| = —o—P=70% [
—8—pP=80% —B—P=30%
18— P=9%0% | 16— P=90%
0 | | | |
0 1 2 3 4
Mumber of fused shares Mumber of fused shares
a) b)
Figure 6.16. Py, (¢) for the SU applied GPS trace of 318 position fixes, a-priori share
generation, n = 5,79 = 1000m.a) SU_Th = 500m.b) SU_Th = 1000m.
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Figure 6.17. Pg;_ 1 qcx (@) for the SU applied GPS trace of 318 position fixes, a-priori share
generation, n = 5,7, = 1000m.a) SU_Th = 500m.b) SU_Th = 1000m.
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Figure 6.18. P, pined artack (¢) for SU applied GPS trace of 318 position fixes, 1, =
1000m. a) SU_Th = 500m. b) SU_Th = 1000m.
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6.4.3 SUaDR

In our evaluations, we have kept the value SU_Th used in SUaDR equal to ry in
order to clearly see its effect. Figure 6.19 shows the application of SUaDR on a
GPS trace using a-priori share generation. The resulting PMR of 79% is better
than 75% achieved through DR and 72% by SU.
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Figure 6.19. SUaDR applied to GPS trace with 318 position fixes. Acheived PMR = 79%.
Total 50 new share sets generated.
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Figure 6.20. P, pinea attack (¢) for SUaDR applied on GPS trace of Figure 6.19,.

Due to the reason that a considerable number i.e. 50, sets of new share were

generated, the privacy security plot in Figure 6.20 is similar to that of a-priori
share generation.

It is not always the case that SUaDR performs better compared to SU and DR
with regards to the attained PMR. Another run, see Figure 6.21, on a different
GPS trace yields a PMR of 57% which is higher than PMR of DR i.e. 38%,
whereas less than that of SU (66%) for the same GPS trace. With poor
performance of DR, SUaDR incorporates selective updates to reduce the effect of
jerky trajectory and therefore attain high PMR compared to DR. Again, a

47



Chapter 6: Implementation and Evaluation

Pcomibned_attack (@) similar to that of the previous trace is observed in Figure
6.22.
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Figure 6.21. SUaDR applied to a GPS trace using a-priori share generation. Attained
PMR = 57%. New sets of shares generated = 46.
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Figure 6.22. P, pined attack (¢) for SUaDR applied on GPS trace of Figure 6.21.
6.5 Comparative Evaluation
6.5.1 Communication Overhead Optimization

The summary of attained average PMR and MPPF after application of the
algorithms on the trace sets using algorithm parameter values from Table 6.2
are given in tables Table 6.3 and Table 6.4 for a-priori and in Table 6.5 and Table
6.6 for a-posteriori share generation. These results show that the SUaDR
algorithm performs best with highest average value of PMR and lowest average
value for MPPF on all trace sets for both share generation algorithms.
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Trace Set SuU DR SUaDR
Car traces on a long route 77.3 94.3 94.3
Car traces in urban area 72.0 61.8 69.6
Walk traces in unstructured environment 69.8 67.1 72.7
Walk traces in urban area 72.7 71.4 76.2
Average PMRs 72.95 73.64 78.21

Table 6.3. a-priori share generation: Average PMR of the GPS trace sets for

communication optimization algorithms.

Trace Set SU DR SUaDR
Car traces on a long route 1.13 0.29 0.28
Car traces in urban area 1.40 1.90 1.52
Walk traces in unstructured environment 1.50 1.64 1.37
Walk traces in urban area 1.37 1.43 1.19
Average MPPFs 1.35 1.32 1.09
Table 6.4. a-priori share generation: Average MPPF of the GPS trace sets for
communication optimization algorithms. Note that here n = 5.
Trace Set SuU DR SUaDR
Car traces on a long route 77.5 94.3 94.4
Car traces in urban area 71.3 61.8 72.0
Walk traces in unstructured environment 70.7 67.1 74.6
Walk traces in urban area 72.9 71.4 77.9
Average PMRs 73.1 73.64 79.71

Table 6.5. a-posteriori share generation: Average PMR

communication optimization algorithms.

of the GPS trace sets for

Trace Set SuU DR SUaDR
Car traces on a long route 1.13 0.29 0.28
Car traces in urban area 1.43 1.90 1.40
Walk traces in unstructured environment 1.47 1.64 1.27
Walk traces in urban area 1.35 1.43 1.10
Average MPPFs 1.34 1.32 1.01

Table 6.6. a-posteriori share generation: Average MPPF of the GPS trace sets for
communication optimization algorithms. Note that here n = 5.
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Avg. Std of
Avg. Distance Avg. Angle Angle
between between between
position fixes position fixes position fixes
Trace Set (m) (degrees) (degrees)
Car traces on a long route 33.3 1.42 5.7
Car traces in urban area 55.8 12.4 21.4
Walk traces in unstructured
environment 30.7 14.6 17.8
Walk traces in urban area 24.7 22.5 29.8

Table 6.7. Characteristics of GPS trace sets

The performance of DR is not effected by the share generation algorithm
because the production of a new set of shares is independent of the share
generation policy. DR performs better with long route car traces because high
speeds make sharp turns difficult, thus increasing the predictability of user
position. To quantify this effect, Table 6.7 shows that average angle between
consecutive position fixes for long route car traces was 1.42 degrees which was
the least of all trace sets. Also the position fix density represented by average
distance between position fixes for long route car traces was less considering the
average speed of the user on the track. On urban area car traces, the less density
of position fixes (55.8m) along with high average change of direction(12.4
degrees) can be a reason for low attained value of PMR(61.8%). For the walk
trace sets, DR shows reasonable performance considering the trace
characteristics.

The performance of SU is consistent in all sets of GPS traces with an average
PMR of around 73%. This is mainly because the length of a single share in each
scenario was big enough to accommodate the average distance between traces
and variations in movement direction of the user. If this was not the case, then
more share updates than one would be needed, on average, to make the LSs
current for each new position fix. The overall performance was again not
effected significantly by a change in share generation algorithm.

SUaDR performs considerably well with PMR above 78% for both share
generation algorithms. It exploits the consistent performance of SU in traces
where DR does not work. Therefore, it improves the best of the individual SU
and DR algorithms to attain an overall highest average PMR for all trace sets and
both types of share generations.

With regards to MPPF, we should note that it is a relative term as a comparison
with non-privacy aware non-optimized systems where there is one location
update message sent per position fix. By increasing the value of n, we can get an
understanding about the practical feasibility of our algorithms. With n =5,
Table 6.4 gives an average MPPF of 1.1 for SUaDR. However, when retested
with n = 8, SUaDR gave an MPPF of 1.53 . This sharp rise in its value dictates
that the value of n should be carefully chosen considering the cost of
communication in spite of overhead optimization.
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6.5.2 Security Analysis

To summarize the effect of the algorithms on privacy security, we have only
considered Pattack(¢) and Pcombined attack(()b) because Pcombined attack(¢)
already includes the effect of Ps4_gtrack (¢). The following results are for a-priori
share generation. In the end of sub-section 6.5.2, we will also present the
average results on all tracks for a-posteriori share generation.

6.5.2.1 Car traces on long route

The results for SUaDR, SU and DR can be seen in Figure 6.23, Figure 6.24 and
Figure 6.25. For SUaDR and DR, both Pg;;qck (@) and Peompined artack (P) are very
similar to that of the original a-priori algorithms. However, SUaDR reveals less
information about precise user location when considering only 10% of the
obfuscation area. For SU, the uniformity of Pg:qck(¢p) does increase but
P.ombined attack (@) shows introduction of considerable non-uniformity due to SA
attack when 30% or more of the obfuscation area are considered.
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6.5.2.2 Car traces in urban area

Again, SU is outperformed by SUaDR and DR when P.ompined attack (@) is

considered. DR performs slightly better than SUaDR when 10% of the
obfuscation area is considered.
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6.5.2.3 Walk traces in unstructured environment

Here again we see the same type of results. DR provides the best security by
improving the security provided by the a-priori share generation.
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Figure 6.33. SU averages in urban area walk traces : a) P, (). b) Peompined attack (9).
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6.5.2.4 Walk traces in urban area
SUaDR and DR again maintain the privacy security of the original a-priori share
generation. SU again suffers due to the SA attack.
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Figure 6.34. DR averages in urban area walk traces : a) P, (#)- D) Peompined attack (@),
6.5.2.5 Results with a-posteriori share generation

For a-posteriori share generation, we have taken the average of
P ombined attack (@) on all trace sets. The general behavior of each algorithm is
captured well by the figures below. It is noticeable that SU again changes the
behavior of the original algorithm (see Figure 6.35). Generally, with fusion of
increasing number of shares, the uniformity of user position in the obfuscation
area decreases until the fourth share is fused. This behavior is different from the

behavior of original a-posteriori share generation algorithm depicted in Figure
6.7.

On the other hand, DR and SUaDR almost maintain the security characteristics of
the original algorithm as shown in Figure 6.35 and Figure 6.36 respectively.
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Considering the communication overhead reduction and the provided privacy
security, SUaDR can be called the best algorithm with highest value of PMR and
almost no effect on the privacy security provided by the share generation
algorithm. By utilizing the good security traits of DR and adaptability of SU,

SUaDR provides an efficient and consistent communication optimization
solution for PS.
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7.Summary and
Future Work

The problem of discretely sharing location data presents a challenging problem,
especially in non-trusted system. Position Sharing (PS) [3] presents a solution to
this issue with generation of significant communication overhead. In this thesis,
an attempt was made to reduce this communication overhead while maintaining
the privacy guarantees of the PS algorithm. To this end, different overhead
optimization schemes including those employed in non-privacy aware systems
were formulated for PS and tested as possible solutions. These included the
Dead Reckoning (DR) and the Selective Update (SU). From observation of their
behavior, a third technique called SUaDR, which merged the two, was also
proposed. The result of evaluations of the techniques on categorized sets of real
world GPS traces has shown that significant optimization can be achieved by DR,
SU and SUaDR in long route and urban car traces as well as walk traces. It was
also shown that the privacy guarantees of the original PS algorithm were also
maintained by the DR and SUaDR schemes.

During the evaluation part, it was discovered that a Share Average (SA) attack
can reveal further information about user position. This attack has also
adversely affected the privacy guarantees of original share generation
algorithms. As part of future work, research into reducing the effectiveness of SA
attack can be attempted. This work mainly focused on reducing the
communication overhead of the original PS algorithm by reduction of messages
instead of message size. Therefore, an attacker could possibly judge the span of
user movements by the number of message sent to the LSs, especially in the case
of SU. For protection against these and multiple position attacks, such as
maximum movement boundary attack, further improvement and testing of the
overhead optimization techniques may be explored.
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