
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 3498

Distributed Control Algorithms
for Adapting Publish/Subscribe
in Software Defined Networks

Sukanya Bhowmik

Course of Study: Information Technology/InfoTECH

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Dr. Boris Koldehofe

Commenced: 2013-5-15

Completed: 2013-11-14

CR-Classification: C.2.1,C.2.4

Abstract
Content-based routing has emerged as a popular paradigm in publish/subscribe systems for
interactions between its system components (publishers and subscribers). Content-based rout-
ing of published information is extremely bandwidth efficient as a publication is forwarded
only to subscribers which have expressed their interest in this published content. Rules or
filters are applied on the content at one or more routers/brokers to determine its path through
the network.

Most of the state of the art solutions consist of a distributed set of brokers scaling wide-area
networks. However, in each of these solutions, filtering of events takes place at the application
layer at dedicated brokers. This expensive filtering phase renders the advantages of content-
based pub/sub with regards to bandwidth efficiency less significant as it results in higher
end-to-end latency and lower throughput rates. To overcome this problem, software-defined
networking may be used to build publish/subscribe systems where filtering of events can
happen directly in the Ternary Content-Addressable Memory (TCAM) of network routers.
Initial work has shown that it is possible to map effectively a content-routing topology to
network routers controlled by a single broker, resulting in line-rate forwarding of data packets.
However, a single broker limits the performance of the system with regards to scalability and
is not feasible in large networks consisting of numerous network elements.

To incorporate the best of both worlds, this thesis proposes distributed control algorithms
using software-defined networking that allow to build a publish/subscribe system spanning
over multiple sub-networks of controllers where the controllers divide the network spatially
into disjoint partitions. With respect to such an architecture, this thesis discusses the manner
in which connectivity is established between sub-networks along with the costs incurred in
the process. A detailed analysis of the average controller overhead and total control traffic
generated in the proposed system is presented which is further supported by simulation results.
It also includes an analysis on the effect of distributing control on certain performance metrics
such as false positive rate of published events.

i

Acknowledgements
It gives me great pleasure in acknowledging the contributions of all those without whom this
thesis would not be possible. First and foremost, I wish to thank Prof. Dr. Kurt Rothermel
for giving me an opportunity to do my thesis in the Department of Distributed Systems and
in a topic that truly interests me.

I owe my deepest gratitude to my supervisor, Dr. Boris Koldehofe for his patience, constant
involvement and immense support throughout the duration of this project. This thesis would
never have been possible without his enthusiasm and invaluable guidance. I consider myself
extremely fortunate to have had the opportunity to be mentored by him.

I express my sincerest gratitude to Dr. Frank Dürr, Dipl.-Ing. Ben Carabelli and Dipl.-Inf.
Florian Berg for helping me with various SDN-related issues. I wish to thank Dr. Muhammad
Adnan Tariq for the insightful discussions on the subject of publish/subscribe. I am also
grateful to Dipl.-Inf. Martin Brodbeck for providing me with the necessary equipment for
this project.

A special thanks to M.Sc. Gagan Behari Mishra for always attending to all my doubts related
to his works which have been an integral part of my research. I really appreciate his help
and value his advices. Many thanks to my friends Darsana Das, Sreedhar Mahadevan, Arturo
Francato and Naresh Nayak for motivating and supporting me and for creating an enjoyable
work environment throughout the duration of this thesis.

Finally, I wish to thank my family for always being there for me. I consider myself very
fortunate to have been blessed with their immense love and support.

iii

Contents
Abstract i

1 Introduction 1
1.1 Thesis Organization . 3

2 Background 5
2.1 Principles of Publish/Subscribe Paradigm . 5

2.1.1 Types of Pub/Sub based on Subscription Models 8
2.2 Software-Defined Networking . 10
2.3 Pub/Sub using Controller/s in SDN . 12

3 Line-rate Performance at Large Scale 15
3.1 State-of-the-Art . 16

3.1.1 Elvin . 16
3.1.2 Gryphon . 17
3.1.3 SIENA . 17
3.1.4 JEDI . 19
3.1.5 Prefix Forwarding for Publish/Subscribe 19
3.1.6 LIPSIN . 21
3.1.7 Event-based Systems Meet SDN . 21

3.2 Problem Statement . 23

4 Centralized Control Algorithms 25
4.1 Content Representation and Event Matching 25
4.2 Content-Based Filtering and Routing . 26

4.2.1 Advertisement Handling . 26
4.2.2 Subscription Handling . 28
4.2.3 Un-subscription Handling . 31
4.2.4 Un-advertisement Handling . 32

5 Distributed Control Algorithms 35
5.1 Problems . 36
5.2 General Design Concepts . 36

5.2.1 Pub/Sub Traffic . 36
5.2.2 Communication between Controllers . 37
5.2.3 Incorporating Centralized Control Algorithms 39
5.2.4 State Information at a Controller . 41
5.2.5 Interconnection Topology . 41

v

Contents

5.3 Advertisement Handling . 43
5.3.1 Local Advertisements . 44
5.3.2 Remote Advertisements . 47

5.4 Subscription Handling . 49
5.4.1 Local Subscriptions . 50
5.4.2 Remote Subscriptions . 53

5.5 Un-Advertisement Handling . 55
5.5.1 Local Un-advertisements . 55
5.5.2 Remote Un-advertisements . 59

5.6 Un-Subscription Handling . 60
5.6.1 Local Un-subscriptions . 60
5.6.2 Remote Un-subscriptions . 61

6 Analysis and Results 65
6.1 Test environment . 65
6.2 Control Overhead . 66

6.2.1 Average Controller Overhead . 67
6.2.2 Total Control Traffic . 76

6.3 Other Performance Metrics . 82

7 Conclusion and Future Work 87

Bibliography 89

vi

List of Figures
2.1 A publish/subscribe system . 5
2.2 Spatial Indexing . 7
2.3 A publish/subscribe system with multiple brokers 9
2.4 SDN Architecture . 11
2.5 SDN Architecture with Multiple Controllers . 12

3.1 Creation of Routing Tree . 20

4.1 dz translation . 26
4.2 Spanning Tree Creation . 27
4.3 Flow establishment . 29
4.4 Flow upgrade . 30
4.5 Un-subscription . 32
4.6 Un-advertisement . 33

5.1 Distributed control logic . 35
5.2 Communication between Controllers . 37
5.3 Border Switch-Port Tuples . 38
5.4 Virtual hosts . 39
5.5 Route calculations across sub-networks . 40
5.6 Pub/Sub trees . 40
5.7 General Peer-to-Peer Architecture . 42
5.8 Acyclic Peer-to-Peer Architecture . 43
5.9 Example of local advertisements within the same sub-network 45
5.10 Example of local advertisement with existing remote request 46
5.11 Example of local advertisement with existing remote requests 46
5.12 Example of local subscriptions within the same sub-network 50
5.13 Example of local subscription with existing remote request 51
5.14 Example of local subscription with existing remote requests 53
5.15 Example of local un-advertisement with other existing publishers 56
5.16 Example of controller advertisement on local publisher un-advertisement 56
5.17 Example of local un-advertisement with an existing relevant remote publisher . 57
5.18 Example of un-subscription handling . 63

6.1 Comparison between centralized and distributed control 67
6.2 Average Controller Overhead (Advertisement) 68
6.3 Average Controller Overhead (Un-advertisement) 70
6.4 Average Controller Overhead (Subscription) . 71
6.5 Average Controller Overhead (Un-subscription) 72

vii

List of Figures

6.6 Average Controller Overhead (uniform distribution) 74
6.7 Average Controller Overhead (zipfian distribution) 75
6.8 Total Control Traffic (Advertisement) . 77
6.9 Total Control Traffic (Un-advertisement) . 77
6.10 Total Control Traffic (Subscription) . 78
6.11 Total Control Traffic (Un-subscription) . 79
6.12 Total Control Traffic (uniform distribution) . 80
6.13 Total Control Traffic (zipfian distribution) . 81
6.14 Example flows on switches when network has 2 controllers 83
6.15 Example flows on switches when network has 4 controllers 84

viii

List of Tables
3.1 Matching Operation . 18
3.2 Covering Relationship . 18

4.1 Example flows at R0 during subscription handling 30
4.2 Example flows at R0 after flow upgrade during subscription handling 31
4.3 Example flows at R0 during un-subscription handling 32
4.4 Example flows at R0 during un-advertisement handling 33

ix

List of Algorithms
1 Local Advertisement Handling . 47
2 Remote Advertisement Handling . 48
3 Local Subscription Handling . 52
4 Remote Subscription Handling . 54
5 Local Un-Advertisement Handling . 58
6 Remote Un-Advertisement Handling . 59
7 Local Un-Subscription Handling . 61
8 Remote Un-Subscription Handling . 62

xi

Chapter 1

Introduction
The growing amount of information exchanged every day over wide area networks has made
concepts such as event-notification system [1], also known as publish/subscribe system [2], ex-
tremely significant in today’s world. Applications in distributed systems are characterized by
properties such as asynchrony and referential decoupling and this is where an event-notification
system plays a major role. Content delivery in a distributed system is often associated with
the propagation of events and event propagation has been generally associated with the well
known communication paradigm of publish/subscribe.

A publish/subscribe system, also commonly known as a pub/sub system, finds its appli-
cation in instant news delivery, stock quote dissemination, RSS feeds, electronic auctions
etc. The main idea behind all these systems is to gather information from a set of data
sources and deliver them to interested users. It is easily understood that the aforementioned
systems are extremely dynamic in nature and deal with multiple concurrent users. These
applications have highly demanding requirements and this is where some of the well known
classical abstractions of distributed applications display significant limitations. Most of the
well established distributed system paradigms are based on end-to-end, synchronous commu-
nication. Considering the wide range of dynamically changing set of senders and receivers
in the aforementioned applications, it is infeasible for each of the components to maintain
information about every other component in the network in order to establish point-to-point
communication. As a result, there was a requirement for dedicated middle-ware that would
enable many-to-many communication while maintaining loose-coupling among the compo-
nents comprising the network. This led to the advent of publish/subscribe system, which is
the subject of study of this thesis. The strength of the publish/subscribe paradigm lies in
the fact that it provides an efficient platform for many-to-many, asynchronous communication
between publishers and subscribers that remain decoupled in time and space.

A publish/subscribe system comprises of mainly publishers and subscribers where informa-
tion flows from publishers to subscribers in such a manner that both parties remain completely
oblivious of each other’s existence. This anonymity is maintained by introducing a logical
intermediary, often known as, Notification Service [1]. Both publishers and subscribers com-
municate with the Notification Service which indirectly establishes communication between
them. Quite evidently, one can deduce that the scalability of the system depends on the
efficiency of the logical intermediary to handle multiple concurrent users and it is the logical

1

1 Introduction

intermediary that defines the limits of the system. This has led to the idea of having multiple
logical intermediaries, spanning a wide area network. These logical intermediaries need to
communicate among themselves, exchange state information and work towards the common
goal of delivering information to interested subscribers throughout the entire network.

A pub/sub system can be broadly classified into topic-based and content-based systems.
The main difference between the two variants is the degree of expressiveness of the subscribers
where content-based pub/sub has a significant advantage. Content-based pub/sub provides
content-based routing which uses the information disseminated in the system to take routing
decisions. So, effectively, the path between the publishers and the subscribers are set based on
filtering techniques. These content filters determine various parameters of the system, such as,
bandwidth efficiency and accuracy. For any information published, an early identification of
the set of subscribers and delivery to only interested users is of primary importance. Unneces-
sary information flow in the network affects bandwidth efficiency and delivery to uninterested
subscribers affects accuracy.

There has been a lot of research work dedicated to middle-ware implementations of content-
based pub/sub systems in the past few years. [1, 3, 4, 5, 6] are a few examples, some of
which are discussed further in the following chapters. However, as these are implemented
in the application layer, they cannot achieve the same performance in terms of latency and
bandwidth efficiency as compared to an implementation in the network layer. The application
layer takes the overlay topology into consideration which almost always differs greatly from the
underlying topology. The same physical link is often mapped to multiple logical links resulting
in the same content being sent over a physical link multiple times, thus affecting bandwidth
efficiency. Also, the matching of events with subscriptions in the content-based pub/sub
implemented in the application layer is highly computation intensive and results in increased
end-to-end delay and low throughput rates. As a result, the advantages of the content-based
pub/sub appear less significant as compared to paradigms such as LIPSIN[7] which provides
a topic-based approach for line-rate forwarding using IP multicast. Even though LIPSIN
benefits from line-rate forwarding, it lacks flexibility in terms of expressiveness due to its topic-
based approach and has its own limitations. Thus, an application implemented on the network
layer, based on content-based routing and supporting line-rate message forwarding seems to
be an ideal approach to an efficient pub/sub system. However, conducting experiments with
new networking protocols in a real world setting is quite unrealistic. This is mainly due to the
already installed huge base of equipment and networking protocols that are used extensively.
This has created a barrier to the entry of new ideas and reluctance for experimentation on the
network layer. However, this scenario has changed significantly with the advent of Software-
Defined Networking (SDN)[8].

Software-Defined Networking is an important step taken towards programmable and active
networking evolution. It provides ways to abstract the lower level functionalities and presents
them as network services. Traditional switches are responsible for both route calculations (con-
trol logic) as well as forwarding of data. The SDN technology separates the control logic from

2

1.1 Thesis Organization

switches and hosts it on servers, also known as controllers. A controller has an integrated view
of the whole system and can access the switches of the network through special interfaces. So,
with software defining the network, a great deal of flexibility can be achieved. Naturally, a lot
of work is currently going on related to the design and implementation of various distributed
applications using software-defined networking and the content-based publish/subscribe sys-
tem is no exception to this. SDN allows to execute matching of events in a content-based
pub/sub directly on the Ternary Content-Addressable Memory (TCAM) of switches, thus
enabling line-rate forwarding of events resulting in much better performance with regards to
throughput and end-to-end latency as compared to an application layer pub/sub implemen-
tation. This thesis focuses on such an approach which takes advantage of the features of SDN
to implement content-based routing.

Koldehofe et al. in [9] propose ways to build an efficient pub/sub system by utilizing the
power of software-defined networking. Furthermore, Mishra in [10] presents an implementation
proposed in [9] based on in-network content-based routing. However, [10] defines a system with
a single controller that is responsible for handling concurrent requests from both publishers
and subscribers, maintaining state information and establishing routes for efficient information
diffusion from publishers to subscribers. The use of such a single controller instance may
have its limitations with regards to scalability leading to enhanced processing latency. For
example, the growing number of events generated in the network may saturate the CPU of a
single controller. Also, the growing number of network elements may exhaust system memory.
As a result, this thesis focuses on dividing the load of the pub/sub system among multiple
controller instances. Increased scalability is achieved by partitioning the network among the
controllers in such a way that each controller keeps only a disjoint subset of network elements
up-to-date in memory. Also, since each controller is aware of only a subset of the network
elements, it is directly responsible for establishing routes in its own sub-network. Considering
these advantages, this thesis presents a design and implementation of a pub/sub system using
distributed controllers in SDN for improved performance in terms of scalability. It goes on to
analyze the benefits/drawbacks of distributed control as compared to centralized control with
respect to average controller overhead, total generated control traffic, false positive rate etc.
The analysis is further supported with simulation results.

1.1 Thesis Organization

The remaining part of the thesis is organized as follows :

Chapter 2 provides a background that is necessary to understand the notion of publish/sub-
scribe systems. It introduces the components and explains the behavior of a typical pub/sub
system. It further gives a brief overview of software-defined networking and discusses the role
of SDN in a pub/sub system.

Chapter 3 provides a formal specification of the problem statement. It also presents some of
the existing research work relevant to the subject of study of this thesis. It particularly gives

3

1 Introduction

a brief overview of current content-based publish/subscribe systems. This includes a brief
survey of SIENA, Gryphon, JEDI etc.

Chapter 4 gives a detailed description of a pub/sub system implemented using a single con-
troller in SDN[10]. It describes the various algorithms used to achieve in-network content-
based routing. This includes algorithms for handling advertisements, subscriptions, un-
advertisements and un-subscriptions. This thesis is an extended work of [10] and utilizes
all the aforementioned algorithms.

In chapter 5, the algorithms that have been realized in this thesis have been described in
details. This chapter discusses the various message types introduced, state management at
each of the controllers, the interaction between the distributed controllers and basically every
concept introduced to implement pub/sub with distributed controllers.

Chapter 6 provides an analysis of the design and prototype implementation of the built sys-
tem. It introduces the test environment used in this thesis. Also, it discusses the various
experiments that were conducted and the evaluation results that were obtained from them.

Finally, Chapter 7 concludes this thesis with a brief summary of the work done. It also
proposes an outline for possible future works.

4

Chapter 2

Background
The main objective of this chapter is to provide a good understanding of the key concepts that
form the basis of this thesis. In the following sections we discuss the basic principles of the
publish/subscribe paradigm and then focus on the technology provided by Software-Defined
Networking.

2.1 Principles of Publish/Subscribe Paradigm

The main purpose of a publish/subscribe system is the propagation of information between
participants of the system in an asynchronous and decoupled manner. A few key elements
define and form the building blocks of a publish/subscribe system and are explained in details
in this section. These include the participants, notification service implementation, supported
client interactions, types of notifications and subscription model of a basic pub/sub system.

Figure 2.1: A publish/subscribe system

Participants A pub/sub system mainly comprises of two types of participants, namely, pub-
lisher and subscriber. A publisher sends out notifications and plays the role of a data source.
A subscriber, on the other hand, behaves like a sink and consumes information produced by

5

2 Background

a publisher. A subscriber expresses its interest in a particular event by sending a subscription
request and listens for events that match this request. Each subscriber can produce mul-
tiple subscription requests and any published information that matches its subscription set
is delivered to it. A publisher may send out advertisements, prior to sending notifications,
which determine the type of information it intends to publish. This is referred to as the
advertisement model in the following sections.

Notification Service As previously mentioned, a publisher and a subscriber do not com-
municate with each other directly and remain decoupled in space. This introduces an entity
called the notification service, also commonly known as broker/s. Figure 2.1 depicts such
a publish/subscribe system with i publishers (P0, ..., Pi) and k subscribers (S0, ..., Sk) which
communicate with the notification service. The notification service itself can consist of a sin-
gle broker or a set of j brokers (B0, ..., Bj) as shown in the figure. In the case where a single
broker exists, all publishers and all subscribers are connected to the same broker whereas in
the latter case they may be connected to any broker in the complete set.

Supported Operations and Notification Types The notification service defines the client
interactions supported by the system. The publishers and subscribers communicate with the
notification service using operations provided by it. As depicted in Fig. 2.1, a publisher is
mainly associated with three operations. One of these is the publish operation which allows in-
formation to be published by the publisher. Considering an advertisement model, a publisher
can advertise, i.e., declare the nature of information it intends to publish and can also perform
a reverse operation depicted in the figure as un-advertise. The notification service supports
the notify operation which allows it to deliver published information to interested subscribers.
A subscriber is associated with two more operations. These are subscribe which defines the
interest of the subscriber and its reverse operation un-subscribe. The supported operations di-
rectly lead to the various types of notification generated in the system. The publish operation
is associated with publications or more generally events. When these events are delivered to
the subscribers, they are generally termed notifications. In general terms, a notification can
be described as attribute-value pairs, e = < attr0, value0; attr1, value1; attr2, value2; >.
A subscribe operation deals with subscription and an un-subscribe deals with un-subscription.
A subscription is again a pair, s = <f, sub> where f represents a subscription filter and sub
identifies the subscriber. However, the filter expression cannot be expressed in general terms
as it differs based on subscription models and is discussed further in the next section. In an
advertisement model, advertise operation is associated with advertisement and un-advertise
with un-advertisement. The structure of an advertisement is very similar to that of a sub-
scription and also consists of a pair, adv = <a, pub> where a denotes an advertisement filter
and pub identifies the publisher. So a notification e matches a subscription s if e satisfies filter
f in s, i.e. e < f . Also, a publication e matches an advertisement adv if e satisfies filter a in
adv, i.e. e < a.

Previously, we have defined events and subscriptions/advertisements in very general terms.
However, this thesis is based on a specific content space representation model which should

6

2.1 Principles of Publish/Subscribe Paradigm

Figure 2.2: Spatial Indexing

be discussed in further details for future reference. This model has been proposed by Tariq
et al. in [5] and is based on spatial indexing. In this model, the content space is repre-
sented as a d-dimensional space where each of the dimensions refers to an attribute. Any
subscription/advertisement(s/adv) is represented by a regular sub-space in the event space
and any event e is represented by a point in the content space. Recursive binary decomposi-
tion of the event space generates these regular sub-spaces which are represented with binary
strings called dz-expressions. The dz-expressions are created by the binary partitioning of
the content space along each dimension. With more and more partitioning, the granularity
of sub-spaces increases as does the length of the dz-expressions. So, a smaller sub-space is
represented by a longer dz-expression whereas a larger subspace is represented by a smaller
dz-expression. This can be further explained with an example taken from [5] which consid-
ers a 2-dimensional content space represented by ε. Considering these two dimensions/at-
tributes to be A and B, Figure 2.2 depicts A along X axis and B along Y axis. So, in this
2-dimensional plane, a subscription/advertisement is a rectangle. Let there be two subscrip-
tions s0 = {A = [0, 50], B = [50, 100]} and s1 = {A = [25, 50], B = [0, 100]}. So, according to
Figure 2.2, s0 is represented by the sub-space {01} and s1 by the sub-spaces {001, 011}. The
manner in which this thesis utilizes the spatial indexing scheme will be discussed further in
the following chapters.

A publish/subscribe system is defined by a number of performance factors. Bandwidth
efficiency is always an important performance measure in a distributed system and publish/-
subscribe is no exception to this. As a result, most of the pub/sub systems pay a great deal of
attention to minimizing the bandwidth consumption making content-based pub/sub a popular
paradigm. Maximum tolerable latency also contributes to defining a pub/sub system. This is
basically the amount of time needed by a published event to reach the subscriber. [5] focuses
on QoS in a broker-less network where bandwidth efficiency and allowed delay are defined
by subscribers. Besides these, it is important to introduce two more performance metrics,
namely, false positives and false negatives. False positives are events which are delivered to
a subscriber which was not interested in receiving them. Whereas, false negatives are events
that were not delivered to a subscriber which had expressed its interest in receiving them.
Quite naturally, the aim of any pub/sub system is to keep both of these to a minimum.

7

2 Background

2.1.1 Types of Pub/Sub based on Subscription Models

The expressiveness of subscriptions broadly classifies pub/sub systems into two categories.
The degree of expressiveness must be chosen very carefully as various factors depend on it.
On one hand, a very low degree of expressiveness can cause unnecessary information flow in the
network affecting bandwidth efficiency and resulting in delivery to uninterested subscribers. In
certain cases filtering of notifications may need to be done at the subscriber end. On the other
hand, realization of a scalable system with a highly expressive subscription model demands
very complex implementations. Thus, scalability and expressiveness are two major challenges
intrinsic to the pub/sub system which must be dealt with extreme care [11]. In this section
two notification selection schemes are described, namely, topic-based and content-based.

Topic-based Publish/Subscribe In a topic-based system, publishers publish information to
named logical channels, more commonly known as topics. The subscribers subscribe to these
topics and all subscribers interested in the same topic receive the same messages published
under that topic. So, in the previously established notations, a filter f in a subscription s
simply specifies a particular topic/channel. There is a lot of work done in literature based
on topic-based systems which include LIPSIN [7],CORBA [12], iBus [13] and SCRIBE [4]. A
topic-based system can be very efficiently implemented by simply mapping the channels to
multicast groups. However, the main disadvantage of this mechanism is that it lacks flexibility
with respect to expressiveness of a subscriber. A subscriber may not be interested in every
information published under a topic and may be interested in only a subset. To improve
this situation, various solutions have been proposed among which features the subject-based
approach [14]. This approach organizes topics in a hierarchical manner such that any topic Y
can be declared as a sub-topic/sub-channel of another topic X. Even though this attempts to
better the expressiveness of the subscribers, it cannot avoid the very idea of topics and the
grouping of subscribers according to them.

Content-based Publish/Subscribe A content-based pub/sub allows subscribers much more
flexibility with regards to expressiveness. Subscribers can define very fine-grained filters such
that only the desired content is delivered to them. In this mechanism, filtering is done
based on the content of the notification and the subscribers can specify their interests by
imposing constraints on the content. So, now, we have a filter f which does not simply
refer to a topic but instead is a query comprising of a set of constraints over values of the
attributes. The filter f has the following structure , f = <attr0, (constraint0, constraint1, ...);
attr1, (constraint0, constraint1, ...);...>. The set of constraints that are supported depends
on the subscription language used. [15] provides a comprehensive specification of subscription
models. The more powerful a subscription language, the more expressive is the subscription
model. However, as discussed previously, there exists a trade-off between expressiveness and
scalability. In a typical content-based system, the set of subscribers to which a notification
has to be delivered is determined dynamically on arrival of the notification. Needless to say,
this mechanism involves a great deal of computational overhead and as a result there has

8

2.1 Principles of Publish/Subscribe Paradigm

been a lot of research on efficient and scalable filtering techniques for content-based pub/sub
[16, 6, 5, 17] which include SIENA [1], Gryphon [18] and SPINE [3].

Clustering and Filtering in Content-based Pub/Sub Content-based pub/sub focuses on
avoiding unnecessary forwarding of events through paths in the network that lead to unin-
terested subscribers. In this context, the method of channelization displays significant per-
formance gains. Channelization is based on clustering of subscriptions/advertisements, map-
ping these clusters to a set of channels and then disseminating events within these channels.
This results in reduction of unnecessary event forwarding. There exist various approaches to
clustering and channel creation. Many of these deal with the absolute structural similarity
between subscriptions, i.e., the intersection area of two subscriptions [19, 20, 21]. The dis-
advantages of this technique are that it limits the expressiveness of the content-based model
to predefined numeric attributes and also does not consider the similarities between subscrip-
tions as per event traffic. So, there are approaches which take into account the event traffic
in the recent past for channelization [22, 23, 24]. Clearly, in this approach along with control
messages for subscription/advertisements, the routing overlay optimization algorithm needs
to continuously collect information on the recently published events and recalculate channels.
Various clustering methods have been used in literature such as grid-based clustering and
spectral clustering. Riabov et al. [25] propose grid-based algorithms using classical clustering
techniques of computer science related to data mining. In this approach, the event-space is
divided into cells and similar cells are placed in the same cluster. Even though this clustering
mechanism efficiently clusters subscribers, with increasing number of subscribers or clusters
the computation overhead increases significantly. As the clusters need to be periodically up-
dated, this poses as a major drawback. An improvement to this approach has been presented
in [22]. In [22], Tariq et al. propose clustering based on spectral methods in a distributed
broker-less pub/sub system that utilizes concepts of graph theory to identify good quality
clusters and reduces the cost of event dissemination. [9] proposes a way of implementing a
pub/sub system based on channelization using software-defined networking where channels
can be directly mapped to flows in the network. However, this thesis does not deal with
clustering methods and rather focuses on an in-network filtering technique also presented in
[9].

Figure 2.3: A publish/subscribe system with multiple brokers

9

2 Background

A filter-based publish/subscribe system differs significantly from the previously discussed
channelization method. In general, it consists of one or more brokers that process control
messages dealing with advertisements and subscriptions and are responsible for the matching
and forwarding of events. A single broker constituting the notification service would ideally
be the easiest and most efficient way to realize a content-based pub/sub. However, this is
not a feasible solution with respect to scalability. As a result, most implementations have a
distributed set of brokers serving different clients and events are propagated along a chain of
brokers. Figure 2.3 depicts a scenario where a system consists of four brokers. A publisher
P0 is connected to broker B0 and a subscriber S2 is connected to broker B2. The subscriber
subscribes for events that satisfy the filter f. P0 publishes an event e where e < f . In order to
propagate the event from P0 to S2, each of the brokers in the path should have information
about the subscription from S2. Clearly, subscription information needs to be shared among
brokers which need to maintain their routing tables according to these subscriptions. In an
advertisement model, advertisements of publishers also need to be shared among brokers.
This brings us to the discussion on the two types of content-based routing, namely, simple
routing and covering-based routing.

In simple routing, every subscription/advertisement from any subscriber/publisher in the
network is flooded to every broker. So each broker has a global knowledge of subscription-
s/advertisements. However, this results in unnecessary and redundant storage of information
and large routing tables. This scheme is therefore not feasible in very large systems with a
large, dynamic set of users. On the other hand, the covering-based scheme provides a mecha-
nism to restrict the amount of subscription/advertisement information shared among brokers.
A broker forwards a subscription/advertisement to its neighbors only if it has not formerly
forwarded a subscription/advertisement which covers this one. We say that a filter f1 covers
a filter f2 if f1 defines a superset of the notifications defined by f2, i.e. f1 � f2 [1]. So, if
an event e satisfies f2 then it always satisfies f1 but the reverse is not true. In the adver-
tisement model, a broker can further restrict the flooding of a subscription by only sharing
it with neighboring brokers from which an overlapping advertisement has previously arrived.
Thus, this routing mechanism avoids unnecessary sharing of information between brokers and
saves network resources. Taking advantage of this feature, this thesis presents a content-based
pub/sub system which executes covering-based routing of advertisements and subscriptions
between distributed logical intermediaries known as controllers in software-defined network-
ing. As a result, software-defined networking is discussed in further details in the following
section.

2.2 Software-Defined Networking

The advent of the network architecture, Software-Defined Networking has changed the existing
approach to design, management and operation of the network. Changing a network is now a
practical and feasible option. These changes are made possible in SDN through the separation
of the control plane from the data plane, i.e., the control logic is removed from network
devices such as switches and is hosted on a server called controller. In the classic approach,

10

2.2 Software-Defined Networking

each network device is responsible for maintaining information about its neighboring devices
and forwarding traffic based on this information. SDN provides a way to have a centralized
intelligence that captures a global image of the entire network and takes efficient and smart
decisions when making network changes. In this way, classical distributed algorithms are now
merely reduced to graph algorithms on the controller, providing easy means to experiment
with the network. Something that was quite impractical even in the recent past.

Figure 2.4: SDN Architecture

Figure 2.4 presents a brief overview of the SDN architecture with a single centralized con-
troller which deals with the control plane and switches which are responsible for the data plane.
To achieve this separation of planes, the controller provides two interfaces, namely, northbound
interface and southbound interface. The southbound interface is between the controller and
the switches and is commonly associated with the Openflow protocol. This interface allows
various operations such as modification of flow tables, querying of traffic statistics etc. The
northbound interface on the other hand is between the controller and application-specific con-
trol logic. This serves as an API to program the network for a programmer who does not need
to know the details of the Openflow protocol. Through this interface, network information
such as traffic statistics, topology etc. can be exposed to the application. This interface is
instrumental in the translation of application events to Openflow events and vice versa.

Clearly, SDN provides limitless possibilities and immense flexibility to dynamically control
the network. As a result, there are many real-world SDN use cases. These include load
balancing, service chaining in data centers and dynamic enterprise WAN, traffic engineering
for network operators etc. [26]. This thesis also deals with one such use case, i.e. publish/-
subscribe middleware. [9] presents ways to realize content-based publish/subscribe using the
capabilities of SDN and [10] provides a concrete implementation of one of these proposed

11

2 Background

methods. So, this thesis is not the first attempt to realize pub/sub using SDN. However, [10]
uses a single controller in the SDN architecture that serves every user request whereas this
thesis attempts to distribute the load between multiple controllers while keeping the correct-
ness of the system intact. The realization of pub/sub using distributed controllers in SDN is
further discussed in the next section.

2.3 Pub/Sub using Controller/s in SDN

As discussed formerly, there has been a lot of work done previously on content-based publish/-
subscribe. However, most of these have been restricted to application layer implementations
where the application is responsible for serving the users, filtering and matching of events etc.
Such an implementation limits the performance of the system significantly and the benefits
of content-based routing become negligible as compared to simpler communication paradigms
relying on line-rate processing of data packets at switches. Until the recent past, a practical
implementation of content-based pub/sub on the network layer seemed like a far-fetched idea
as it demanded special hardware and changes to existing network protocols. However, with
SDN this has been made possible. Now, with a global view of a programmable network, the
controller can locate the publishers and the subscribers and directly establish flows between
them for the propagation of events to interested subscribers. In [9], Koldehofe et al. propose
ways to push the expensive matching operation of events with subscriptions on to the hard-
ware by mapping content-based routing to header-based routing. This facilitates the matching
operation considerably as a hardware switch can execute matching of header information to
its flow table entries very fast using Ternary Content-Addressable Memory (TCAM).

Figure 2.5: SDN Architecture with Multiple Controllers

12

2.3 Pub/Sub using Controller/s in SDN

This thesis utilizes the former and builds upon content-based pub/sub implementation
presented by Mishra in [10]. We argue that a single SDN controller will be rendered less useful
in a very large and dynamically changing environment. This is because, the controller alone is
responsible for handling all advertisement and subscription requests, maintaining knowledge
on the topology of the entire network and establishing flows over the entire network. Thus, to
improve the scalability of the system, we present a solution with multiple controllers. Figure
2.5 depicts such a system with two controllers. Each of these controllers is connected to a
disjoint set of switches, effectively partitioning the network into two halves. Each controller
now needs to be aware of only a subset of the entire network topology, i.e., 3 switches and
4 hosts/controller in this figure. It also needs to add/delete/modify flows of only a subset
of all the switches in the network, i.e., 3 switches/controller in this figure. This enhances
the scalability of the system significantly but also raises questions about coordination and
exchange of state information between the controllers in order to maintain correctness in
the system. These questions and problems related to the distributed implementation of the
control logic are discussed further in the following chapter.

13

Chapter 3

Line-rate Performance at Large Scale
This chapter is dedicated to the various challenges and problems encountered while designing
a content-based pub/sub and the manner in which they are handled in existing pub/sub
systems found in literature. Clearly, the main activities of a pub/sub implementation are
event matching and notification delivery which emphasize the importance of the notification
service and it is the design of this notification service that separates one system from the other.
The simplest approach to implementing a notification service is to have a single broker serving
every request in the system. So, every publisher and subscriber is connected to the same broker
and every subscription/advertisement and event notification is targeted to it. The broker keeps
track of all participating publishers and subscribers and active subscriptions/advertisements.
So, when a notification arrives it can easily identify the subscribers to which the notification
has to be delivered. Alternatively, in a distributed implementation, each broker is connected
to a subset of all the participants of the system. Any publisher/subscriber sends requests to its
local broker which acts as the access point to the entire network for it. So, effectively, the event
matching and notification forwarding activities are distributed among multiple brokers in the
system. Such a distributed setting raises questions with regards to the design of the system.
One such design issue is the manner in which the brokers are interconnected in the network.
One way of realizing the interconnection topology is to have a hierarchical structure. Another
approach to designing the system is to organize the brokers in a peer-to-peer relationship.
There can also be a third approach which is a hybrid of the first two approaches, i.e., peers of
hierarchies or a hierarchy of peers. However, this approach requires a priori knowledge about
the structure of the notification service’s applications. Each of these approaches has their own
complexities, advantages and disadvantages which have surfaced in the various works found
in literature.

Another very important design issue is the selection of the routing algorithm used between
the brokers. The main question that needs to be addressed here is what information needs
to be communicated between brokers in order to maintain correctness in the system? Again,
this problem can be approached in more than one way. A very naive solution would be to
maintain subscriptions/advertisements at only local brokers and broadcast the notifications
to all brokers in the network. So, each broker receives every notification, matches each of
these notifications to its local active subscription set and delivers accordingly to interested
subscribers. Another alternative is to broadcast all subscriptions to every broker. In this
way only brokers with interested subscribers receive matching notifications. Yet, another

15

3 Line-rate Performance at Large Scale

approach applies to the advertisement model where all advertisements are broadcast to all
brokers. Then subscriptions are forwarded to local brokers having matching advertisements
so that paths can be created between publishers and subscribers for the forwarding of no-
tifications to only local brokers having interested subscribers. In the last two approaches,
each broker stores information of either all subscriptions or all advertisements in the net-
work. The last two approaches can be further improved by addressing the processing strategy
design issue. The aforementioned approaches targeted broadcast and storage of every sub-
scription/advertisement at every local broker. However, there may be similarities between the
subscriptions/advertisements submitted to a local broker. So, a local broker broadcasts sub-
scription/advertisement only if it has not previously broadcast a subscription/advertisement
that covers this one. The concept of covering-based routing has already been introduced in
the previous chapter and needs no further explanation here.

While designing a pub/sub system with distributed brokers, a few other factors should be
considered. Any notification should be delivered exactly once to a subscriber and it should
be propagated through the network only once. This can be achieved by avoiding cycles
in the network by establishing acyclic paths between the publishers and subscribers. Also
the coordination between the controllers should be done in an acyclic manner such that
any subscription/advertisement request is processed and forwarded to relevant neighboring
brokers only once by a broker. Such a design not only preserves correctness of the system
but also reduces unnecessary usage of network resources. Another major design issue that
emerges to be one of the most important in a content-based pub/sub system is the expensive
matching operation of events against subscriptions. With a more efficient matching phase,
better performance can be achieved with regards to latency and throughput.

3.1 State-of-the-Art

The past few decades has seen a lot of solutions addressing some of these aforementioned
problems. Various approaches to the many aspects of a pub/sub have been presented in lit-
erature. The remaining part of this chapter discusses a few of the popular pub/sub systems
that display distinct characteristic features. Chapter 2 gave a background of general pub-
lish/subscribe systems whereas this chapter discusses some concrete implementations of the
same.

3.1.1 Elvin

Elvin[27, 28] is among the very first realizations of the pub/sub paradigm. The earliest
version of Elvin had a centralized architecture that provided very simple and efficient event
filtering mechanisms. However, as discussed earlier, a centralized event dispatcher is a major
drawback with regards to scalability and as a result Elvin was extended to allow a federation
of event brokers. In Elvin, events are represented as attribute/value pairs and the subscription
language is based on predicates. The subscription language resembles C boolean expressions

16

3.1 State-of-the-Art

and is supported by a wide range of operations for matching numeric as well as string values.
Elvin also introduces a concept called source quenching where publishers gather information
about the active subscribers interested in their events from the event brokers. If there are no
active subscribers interested in a particular event that a publisher plans to publish, the event
is no longer unnecessarily sent. Even though this mechanism reduces bandwidth usage and
computation overhead related to events, it has proven to be very expensive due to the periodic
collection of subscriber information by the publishers. The latter versions of Elvin have refined
the source quenching mechanism considerably. However, a more effective approach to limiting
subscription diffusion in the network is provided by SIENA which has been discussed later in
this chapter in more details.

3.1.2 Gryphon

Another notable contribution to the field of pub/sub is Gryphon developed at IBM Watson
research center[18]. Gryphon presents a content-based pub/sub framework which uses an
algorithm presented by Aguilera et al. in [29] for its matching algorithm. [29] is further
extended using another approach proposed by Banavar et al. in [30] to obtain an efficient
multicast algorithm with partial matching at each broker in a distributed setting. The main
idea of the matching algorithm in [29] is the traversal of parallel search trees where the non-leaf
nodes correspond to constraints on attributes and the leaf nodes mark the end of a matched
subscription. [30] extends it in a distributed setting where a tree data structure is built over
the network with the brokers as the nodes of the tree and a single constraint is matched per
routing step. Such an approach leads to flooding of all subscriptions throughout the network
as every broker needs to maintain global knowledge of all subscriptions. This is the case of
simple routing without advertisements. Gryphon produces impressive performance results
through its matching algorithm but suffers from the inherent problems of simple routing
as subscription flooding incurs significant network costs. Also, the matching algorithm has
limited usability as it supports only a few types of attribute filters.

3.1.3 SIENA

One of the pioneers in the field of publish/subscribe is the Scalable Internet Event Notification
Architecture (SIENA)[1] system. Maintaining a balance between scalability and expressive-
ness has always been a challenge in publish/subscribe and SIENA has been designed with both
these factors in mind. It provides an efficient and scalable routing mechanism enabled by a
network of brokers over a wide-area network. SIENA also represents events as attribute/value
pairs where attributes are typed and filters are predicates over them. Subscriptions are noth-
ing but conjunctions of these filters. A notification e satisfies a subscription s, i.e., e < s if
and only if e satisfies every filter in the conjunction comprising s. Table 3.1 provides examples
of the matching relationship as defined by SIENA.

17

3 Line-rate Performance at Large Scale

Notification Subscription

string sport = football < string sport = football
string team = Germany

string sport = football 6< string sport = football
string team = Spain string team = Germany

Table 3.1: Matching Operation

Subscription/Advertisement Subscription/Advertisement
integer items > 50 ≺ integer items > 0
integer price < 100 integer price < 150
integer items > 50 6≺ integer items > 75
integer price < 100 integer price < 150

Table 3.2: Covering Relationship

The main focus of SIENA is to avoid the flooding of notifications in the network by es-
tablishing logical paths between publishers and subscribers using two possible alternatives.
In the first approach, there is no concept of advertisements. Subscriptions are flooded to
every broker for event matching. So, each subscription triggers the creation of a diffusion
tree spanning every broker so that each broker knows the exact direction in which it needs
to forward a notification to reach an interested subscriber. The other alternative considers
the advertisement model where advertisements are flooded to all brokers. Subscriptions are
forwarded to brokers with publishers having matching advertisements only. Such a model
further reduces the set of involved brokers. Both these mechanisms ensure the forwarding
of notifications only to those parts of the network which have interested subscribers, reduc-
ing network costs significantly. SIENA uses covering-based routing that has been already
discussed in Chapter 2. So, a subscription is forwarded by a local broker only if it has not
already forwarded a subscription which covers this one. The same applies for advertisements.
Table 3.2 depicts the covering relationship between subscriptions/advertisements as defined
in SIENA. Covering-based routing further prunes spanning trees along which new subscrip-
tions are routed, reducing the control message traffic significantly. This thesis uses a similar
processing strategy where covering-based routing of dz-expressions is carried out.

As discussed in the previous chapter, the interconnection topology of brokers is an important
design issue. SIENA presents mainly two topologies, namely, hierarchical and acyclic peer-
to-peer interconnection topology. In peer-to-peer architecture, all brokers play the same role
and are treated equally. In hierarchical architecture, each subscription is always forwarded
to a parent broker. Also, each notification is forwarded by a broker to its parent broker and
then selectively routed to subordinate brokers. Results show that a hierarchical setting is
suitable when the subscriber density is low whereas a peer-to-peer setting is better when the
notification traffic dominates the total cost of communication. A hierarchical architecture,

18

3.1 State-of-the-Art

however, has some drawbacks. A broker higher up in the hierarchy may be overloaded as it
has to process most of the requests and notifications. Also, it acts as a single point of failure
in the design of the system. On the other hand, an acyclic peer-to-peer topology is much
more general purpose and can be easily mapped to a realistic setting.

SIENA is a reference solution that addresses many of the problems of content-based pub-
/sub but it has its own limitations. It only supports a fixed set of predefined types and
predicates which limits the power of the subscription language. Additionally, it also suffers
from the inherent problem of designing a pub/sub system on the application layer. The sub-
scription/advertisement requests, coordination messages, notifications are all forwarded along
paths established in the overlay network which may result in redundant forwarding of messages
along the same physical link. Also, the expensive matching of notifications against subscrip-
tions is carried out by the brokers on the application layer. Such a design not only results
in wastage of network resources but also results in end-to-end delay and lower throughput
rates.

3.1.4 JEDI

Java Event-Based Distributed Infrastructure (JEDI)[31] is a distributed content-based pub-
/sub system with multiple brokers and a Java-based implementation. The publishers and
subscribers in JEDI are referred to as active objects and brokers as event dispatchers. The
event dispatchers are organized in a hierarchical architecture and follow a similar routing
approach as the hierarchical topology in SIENA. As in the hierarchical setting of SIENA, sub-
scriptions are forwarded upwards in the hierarchy whereas matching notifications are routed
upwards and then downwards in the tree to be delivered to interested subscribers. JEDI
does not present an advertisement model to further prune the propagation of subscriptions.
JEDI focuses on the concept of selecting a group leader to create a dissemination tree called
core-based tree. Any event dispatcher that wishes to be a part of the tree communicates
directly with the group leader which incorporates the event dispatcher into the tree as a node.
However, this approach requires every event dispatcher to be aware of all group leaders in the
system. Also, the main drawback of JEDI is its hierarchical architecture that imposes heavy
load on the root dispatchers and the failure of one such dispatcher might disconnect the entire
sub-tree, resulting in loss of events.

3.1.5 Prefix Forwarding for Publish/Subscribe

Prefix Forwarding for Publish/Subscribe[32] is also based on the popular SIENA system. It
attempts to improve the matching phase of SIENA by introducing the concept of prefix match-
ing where instead of matching a notification at multiple brokers, it is done at a single broker.
The other brokers in the path simply forward the notification towards the destination. With
SIENA as the base, this system presents two additional approaches. Firstly, it introduces a
normalization phase performed by the subscriber at the publish/subscribe layer. The normal-
ized filters are further propagated to the brokers. SIENA does not restrict the constraints on

19

3 Line-rate Performance at Large Scale

Figure 3.1: Creation of Routing Tree

attributes in a filter. This might result in redundancy in the filters. For example, (x > 5 ∧ x
> 7) is allowed in SIENA, whereas in this approach it is normalized to (x > 7) which is more
meaningful. These normalized filters are broadcast throughout the network of brokers. The
next phase is the creation of a Routing Tree(RT) at an edge broker which is also maintained
by all the other brokers in the system. The RT creation and modification is triggered by the
arrival of a subscription. Each attribute constraint forms a node in the RT. So a subscription
with multiple attribute constraints would result in multiple nodes at various levels of the
hierarchy. For example a filter (x > 5 ∧ z < 5) would result in two nodes where one is the
child node of the other. Again two separate filters (x > 5) and (z < 5) might be placed in
the same level of hierarchy in the tree. In the RT, the outgoing interface is stored at each
node where an entire subscription is matched which is used to route a notification if it satisfies
the subscription. Fig. 3.1 illustrates the routing tree creation process where two subscription
requests sub0 and sub1 from interfaces i0 and i1 are handled. Once a notification matching is
done at an edge broker it is not repeated for the other brokers. Instead, a copy of the matched
portion of RT known as Forwarding Prefix Tree(FPT) is attached to the notification before
forwarding it to the next broker. The remaining brokers in the path simply parse the FPT to
identify the outgoing interfaces.

Even though this method is an improvement over SIENA with regards to event matching, it
has a few disadvantages. Firstly, the tree management operation is very complex and results
in a lot of overhead due to the dynamic nature of subscription requests. Secondly, with
increasing number of subscriptions, the tree size increases. This directly results in very large
FPTs being attached to notifications and the forwarding of them in the network. This incurs
enormous network costs and might not be feasible after a certain size of FPT. This problem
may be addressed by limiting the size of FPT. However, this would result in increased false
positives in the system which again might not be desirable. This indicates that an attempt
to improve the expensive event matching phase at the application layer prompts the necessity
of additional costs and has its own limitations.

20

3.1 State-of-the-Art

3.1.6 LIPSIN

Line Speed Publish/Subscribe Inter-networking (LIPSIN)[7] is a topic-based pub/sub system
which presents a novel multicast forwarding fabric on the network layer. Even though this
thesis deals with content-based pub/sub, LIPSIN is worth mentioning in this context as it pro-
vides an idea about the performance of the current implementation. The structure of LIPSIN
consists of the control plane and the data plane. The control plane deals with the topology
system which identifies the underlying topology and the rendezvous system responsible for
the matching of publishers and subscribers. LIPSIN introduces mainly two phases. The first
phase is known as recursive bootstrapping where the control plane at the routers discover the
underlying topology and communicate with each other in order to have a unified global view
of the entire network. A global network graph is created at each of the routers and is used
further in the forwarding process. The second phase is the forwarding phase where each link
in the network is represented with link IDs which are bit-strings. LIPSIN uses the concept
of Bloom Filters[33] also known as zFilters in this approach to encode these link IDs. The
topology manager identifies the delivery tree for each topic, creates a zFilter for it and sends it
to the concerned publishers to maintain a mapping between topics and zFilters. The zFilters
are then attached to packet headers such that any node can easily identify the outgoing links
along which the packets need to be routed by performing an AND operation of the zFilters
and the outgoing link IDs.

Through this novel approach, LIPSIN is successful in achieving very good performance
with respect to end-to-end delay and throughput. This approach uses bloom filters which
completely avoid false negatives in the system. However, a bloom filter suffers from the inher-
ent problem of false positives that lead to unnecessary delivery of information to uninterested
subscribers. Also, the main down-side of this approach is that it is topic-based and bears
the same problems in terms of expressiveness of subscribers as does any other topic-based
pub/sub system. In spite of these disadvantages, this simple and efficient approach performs
better than most of the aforementioned systems by performing line-rate processing of packets
directly at the switches of the network. A design combining the best of both worlds, i.e., en-
hanced expressiveness of subscribers and line-rate processing of packets would prove to be an
ideal solution addressing the problems of the aforementioned pub/sub systems. An attempt
to build such a system has been made in [9] and is further discussed in the next section.

3.1.7 Event-based Systems Meet SDN

In [9, 34], Koldehofe et al. present two methods to realize content-based pub/sub using the
capabilities of software-defined networking. The main idea is to have a controller provided by
SDN which has a globally unified view of the entire network and is capable of establishing flows
from the publishers to the subscribers directly on the switches through the Openflow protocol.
The first proposed method is channelization where channels can be very conveniently mapped
to flows in the setting of a flow-based approach. Each subscriber and publisher sends a list
of the received events at regular intervals to an IP address that is reserved in the system for

21

3 Line-rate Performance at Large Scale

communicating with the controller. Such an address, IPfix must be chosen in such a way
that no flows in the system match it. When no match is detected at an Openflow switch,
the packet is automatically forwarded to the controller. The controller hosts the routing
optimization algorithm and performs spectral clustering of publishers and subscribers. Each
cluster corresponds to a flow/channel and is designated a unique IP multicast address from the
range of addresses available to the system. A minimum spanning tree is created corresponding
to each channel and the flow tables of the switches are directly modified by the controller.
Also, each publisher is made aware of all the unique IP addresses representing channels to
which it wishes to forward its events along with their aggregated subscription information.
This is to make sure that publications are not sent to the controller for flow determination
every time and forwarding of events is restricted to the data plane. This results in an efficient
mechanism to forward events at line-rate.

The second proposed approach is in-network filtering of events. This approach follows
an advertisement model where every publisher announces the type of information it intends
to publish before publishing it. It uses spatial indexing discussed in Chapter 2 for content
space representation and represents advertisements, subscription and events as dz-expressions.
Again, the controller is responsible for establishing flows between the publishers and interested
subscribers. Each flow is represented by a dz-expression which corresponds to a sub-space
in the content space. With the advent of a new advertisement/subscription, new flows are
added/updated at the Openflow switches based on whether it covers an existing flow or it is
covered by an existing flow or it has no relationship with any existing flow. This is further
explained in the following chapter where an implementation of this approach by Mishra[10]
is discussed in details. The main idea of this approach is to map dz-expressions representing
advertisements and subscriptions to multicast IP addresses which serve as matching criteria in
flows and install these flows on switches. In this way paths are established on the underlying
network from publishers to interested subscribers. Events, also represented as dz-expressions,
are mapped similarly to destination IP addresses in the header of packets to be published.
In this way header-based matching of event packets is done at the TCAM memory of the
Openflow switches resulting in line-rate forwarding of events. This approach overcomes some
of the most concerning problems related to performance of the aforementioned content-based
approaches and truly utilizes the benefits of content-based routing in publish/subscribe. How-
ever, this system considers a single controller which is responsible for the entire control logic of
the system and can potentially act as a bottleneck and single point of failure. This point has
been already highlighted in this thesis and is one of the main motivations towards designing
a system with multiple controllers to improve scalability issues.

The survey presented above discusses pub/sub systems which are all relevant to this research
work. In this thesis, on one hand, SIENA like systems provide the foundation of a content-
based approach with multiple brokers and on the other hand systems like LIPSIN facilitate the
idea of in-network filtering on the network layer. Also, systems such as [10] form the base on
which the present implementation is designed and realized. A study of each of these systems
unfolds the various advantages and drawbacks associated with them and helps identify factors

22

3.2 Problem Statement

which need more attention and approaches that can be benefited from to achieve the desired
goals and improve the selected performance factors for the present implementation.

3.2 Problem Statement

The survey above indicates that the works in literature concerning distributed network of
brokers have been implemented in the application layer. Again, the content-based pub/sub
implemented in the network layer providing line-rate forwarding considers a centralized con-
troller in its design. So, to bridge the gap between both these approaches, the main objective
of this thesis is the design and implementation of a content-based pub/sub system on the
network layer using distributed controllers provided by software-defined networking. It at-
tempts to maintain correctness, reduce false negatives and false positives, avoid cycles in the
network and avoid duplicate delivery to subscribers while focusing on performance factors
such as bandwidth efficiency, reduced latency, increased throughput and enhanced scalability.
The thesis further studies and analyzes the effects on the scalability of the system when the
number of controllers is varied.

23

Chapter 4

Centralized Control Algorithms
This thesis builds upon the works of Mishra[10] which implements in-network content-based
routing presented by Koldehofe et al.[9] using software-defined networking. The implementa-
tion uses a single Floodlight controller which has been extended in the present implementation
to a set of distributed controllers. This thesis provides a design where the network is spatially
divided among multiple controllers such that each controller serves as an access point for a
disjoint subset of publishers and subscribers from the complete set of participants. Internally,
within a local network associated with a controller, algorithms presented in the centralized
approach have been used. As a result, it is necessary to first understand the centralized control
algorithms before proceeding to the distributed approach. The main goals of the centralized
algorithms are :

1. exactly-once delivery of events to interested subscribers

2. avoidance of false positives

3. keeping a check on flow table size by installing only required flows at the switches

4.1 Content Representation and Event Matching

Mishra[10] uses spatial indexing discussed in Chapter 2 for content representation. So, sub-
scriptions, advertisements, un-subscriptions, un-advertisements and events are all represented
as binary strings called dz-expressions. Such a representation is ideal for this approach and
easily supports containment relation among subscriptions and event matching. Let us con-
sider an example from [10] to explain containment relation representation in this design. A
subscription s1 with dz {00} is a sub-space in the content space which covers both subscription
sub-spaces s2 with dz {000} and s3 with dz {001} . So, in previously introduced notations,
s1 � s2 and s1 � s3 and it can be seen that the dz of s1 is the prefix of both s2 and s3.
Also, s2 and s3 are completely disjoint in space and neither s2 forms the prefix of s3 nor s3
forms the prefix of s2. So, the containment relation among subscribers can easily be mapped
to prefix matching of dz-expressions. The same concept can also be applied to matching of
events with subscriptions. So, an event e matches a subscription s if and only if the dz of s
is the prefix of the dz corresponding to e. Basically, this means that the event e lies in the
sub-space corresponding to s.

25

4 Centralized Control Algorithms

Figure 4.1: dz translation

This approach makes use of IP address matching for header-based matching of packets
with the flows (representing subscriptions) installed on switches. dz-expressions representing
subscriptions, advertisements and events are mapped to IP addresses. In [9], Koldehofe et al.
propose the use of IPv6 addresses to accommodate fairly long dz-expressions. However, the
centralized implementation uses IPv4 addresses due to the limitations of Openflow 1.0. An
IPv4 address range (225.128.0.0 - 255.255.255.255) available for pub/sub traffic is used. So, a
dz-expression {0101} can be converted to an IPv4 address as depicted in Fig. 4.1 by simple
concatenation of it after the first 9 fixed bits in the address. After conversion, the dz {0101}
becomes 225.168.0.0. Again, a dz-expression {01011} is converted to 225.172.0.0. The former
dz covers the latter and there should be a way to represent the containment relation in the
flows as well. This is achieved through CIDR[35] style masks in the flows installed at the
switches such that 225.168.0.0/13 contains 225.172.0.0/14.

4.2 Content-Based Filtering and Routing

The main purpose of a pub/sub system is the dissemination of notifications from publishers to
relevant subscribers. To achieve this, routing trees are created over the network of switches.
This approach defines routing trees as spanning trees which span the entire network such
that every switch is covered only once. This ensures removal of duplicate message delivery at
the subscribers and guarantees requirement 1. This phase can be compared to protocols like
OSPF[36] which are commonly executed in a distributed network topology. However, with the
controller having a complete view of the network topology, this phase is reduced to a simple
graph problem. Spanning tree creation takes place at the controller and is publisher-driven
with a publisher as the root and each spanning tree associated with a dz family. A dz family
is simply a set of dzs with a common prefix. For example, dzs {00}, {000}, {0000} and {001}
belong to the same family covered by {00} in this context as each of them have the same
prefix {00}. The following sub-section explains the tree creation phase in further details.

4.2.1 Advertisement Handling

The tree creation process starts with the arrival of an advertisement at the controller. Ad-
vertisement and subscription requests are sent to a controller from publishers and subscribers
by sending them to a fixed reserved multicast address IPfix. No flows installed on switches
can have this IP address for event matching so that every control message can be sent to
the controller for further processing. On arrival of an advertisement request, the controller
duly notes the dz-expression associated with the advertisement along with the identity of the

26

4.2 Content-Based Filtering and Routing

Figure 4.2: Spanning Tree Creation

publisher (switch-port tuple connected to it) that sent it. There can now be three situations
depending on the value of the dz-expression.

• The dz expression does not have any containment relationship with any other existing
dz family associated with one or more existing spanning trees.

• The dz-expression is equal to or covered by the dz family of one or more existing spanning
trees.

• The dz-expression covers the dz family of one or more existing spanning trees.

These three cases are explained further with an example from [10] depicted in Figure 4.2.
Figure 4.2 assumes the arrival of an advertisement {000} from P0 at time t0. Considering
that there are no existing spanning trees associated to this family of dzs, the controller creates
a spanning tree associated with the dz {000} and with P0 as the root of this tree. The tree
is created simply by using the Breadth First Search algorithm[37] on the network graph. The
spanning tree thus created is depicted in the figure with red arrows and portrays the first case.
At time t1, another advertisement {0000} is sent by P1 and this corresponds to the second case
mentioned above where a tree with dz {000} already exists. In this scenario, since the former
request covers this one, the publisher P1 simply joins the existing tree. The final scenario
can be explained with the arrival of the advertisement {00} at time t2 from P2. In such a
situation, the dz is further split into {000} and {001}. So, on one hand, P2 joins the existing
tree for {000} and on the other hand, a new tree is created corresponding to {001} with P2
as the root. The newly created tree is shown in the figure with green arrows. Now, if another
advertisement {100} arrives at the controller, a completely disjoint tree would be created as

27

4 Centralized Control Algorithms

the concerned dz does not belong to the existing dz family and this again corresponds to the
first case.

Another aspect that needs to be looked into while handling an advertisement is to identify
existing subscriptions that match the current advertisement and establish paths between the
publisher and relevant set of subscribers along the spanning trees relevant to this advertise-
ment. This can be further understood later while discussing route calculations.

4.2.2 Subscription Handling

There can effectively be two cases associated with the arrival of a subscription request at the
controller.

• No spanning tree associated with the subscription dz exists because no advertisement
corresponding to this dz family has arrived previously from any publisher.

• One or more spanning trees relevant to the subscription dz exist. Here, a publisher of a
tree is relevant to a subscriber if

– advertised(adv) dz is equal to subscription(sub) dz, i.e., dzadv = dzsub

– advertised(adv) dz is covered by subscription(sub) dz, i.e., dzadv ≺ dzsub

– advertised(adv) dz covers subscription(sub) dz, i.e., dzadv � dzsub

In the first scenario, the subscription details are simply stored at the controller for possible
future actions because of the absence of a current relevant spanning tree. The second case
is when a spanning tree relevant to the subscription dz exists. In such a scenario, paths are
constructed from a publisher to a subscriber by establishing flows on the switches. Route
calculation between a publisher and a subscriber is done using the very popular tree parsing
procedure called lowest common ancestor algorithm while traversing towards the root of the
spanning tree from both end nodes. This process returns a list of switch-port tuples which
determine the switches on which flows need to be established along with the port through
which a matching event should be routed so that connectivity is achieved between a publisher
and an interested subscriber. In order to understand the process of establishing paths along
the switches of the network, it is necessary to understand the flow addition/modification
procedure on the switches.

Flow Structure

In Openflow, flows have specific structures of which the match fields, priority field and the
action rules are utilized in this approach. Among the match fields, the incoming-port and
destination IP fields are used. As explained earlier, advertisements, subscriptions and events
are all represented by dz-expressions which can be mapped to corresponding IP addresses. So,
effectively, the destination IP of a flow corresponds to a subscription space. The destination
IP corresponding to a subscription dz is set with a mask such that all events which lie in the

28

4.2 Content-Based Filtering and Routing

subscription space defined by it are matched to the flow. For example, a subscription space
{000} would be represented in a flow as the destination IP 225.128.0.0/12 and an event with
dz {0001} would match the flow. The route calculation process from the publisher to the
subscriber produces a list of switch-port tuples. Each tuple indicates the output port for that
switch in the route and a packet matching the flow gets forwarded along this output port set
in the actions field. Other than the output port, another action considered is set-destination-
IP. This field is used to set the destination IP address of the packet to the IP at which a
subscriber is listening at a terminal switch.

Flow Addition

Figure 4.3: Flow establishment

The flow establishment process may be further explained with the arrival of subscriptions in
different scenarios. The first case is when there is no existing flow. Figure 4.3 depicts such a
scenario with an example from [10]. In the figure, there already exists a publisher P0 with an
advertisement request for dz {000} which triggers the creation of the depicted spanning tree
for that dz. At time t1, a subscriber S0 subscribes for the subscription space of {00}. The
algorithm uses the minimum dz between that of the publisher and the subscriber for its flow
and so the IP corresponding to the dz {000} is used as a matching field in the flow. Choosing
the minimum dz ensures requirement 2 which avoids false positives. In this example, flows
are installed at switches R0 and R1 with output ports set to 2 and 2 respectively. Now, we
consider another case where flows relevant to an incoming subscription already exist. So, at
time t2, another subscriber S1 subscribes for the space associated with the dz {0000}. Now,
flows corresponding to dz {0000} need to be installed on R0 and R2. The addition to R2
is simple but the addition to R0 is slightly more complicated. Firstly, a flow needs to be

29

4 Centralized Control Algorithms

Match fields Priority Action Rules
input-port = 1 1 output = 2,3
dest-ip = 225.128.0.0/13
input-port = 1 0 output = 2
dest-ip = 225.128.0.0/12

Table 4.1: Example flows at R0 during subscription handling

installed at R0 with match field corresponding to {0000} and output ports set to both 2 and
3. This is because any event matching {0000} must be forwarded to both S0 and S1. Also,
this matching should be done before matching an event with the flow corresponding to {000}
where the event is forwarded only to S0. The matching process at the switch is stopped as soon
as the first match is found and that is why matching with the flow corresponding to {0000}
must occur first every time. This is ensured by setting the field called priority. Matching at
a flow with higher priority gets preference over one with lower priority. So, in this way, all
packets matching {0000} are forwarded to both subscribers but all packets matching {000}
and not {0000} are forwarded to only S0. Table 4.1 gives an idea about the flows at R0 at
this point of time.

Flow Upgrade

Figure 4.4: Flow upgrade

30

4.2 Content-Based Filtering and Routing

Match fields Priority Action Rules
input-port = 1 1 output = 2,3
dest-ip = 225.128.0.0/12

Table 4.2: Example flows at R0 after flow upgrade during subscription handling

There may be yet another situation portrayed in Fig. 4.4 where another subscriber S2 joins
the same tree with a subscription {000} at time t3. This results in flow addition at R2 similar
to the process discussed above. However, again, the process is more complex at R0. It is clear
from the figure that there is already an existing path from R0 to R2 corresponding to the
previous request {0000}. Since the new dz {000} covers the existing dz {0000}, flow upgrade
at R0 needs to be done. As a result, the existing flow corresponding to {0000} is deleted and
output port 3 is added to the flow corresponding to {000} along with previously set output
port 2. Table 4.2 shows the flow table at R0 at this point of time. The replacement of the
existing flow which is now redundant in a flow upgrade operation contributes towards goal 3
which ensures the removal of redundant flows. Yet another scenario would have surfaced if
the new subscriber S2 subscribed for {0000} instead of {000}. Then, no changes would be
required at R0 and at R2 an additional output port 3 would be added to the already existing
output port 2 in the flow corresponding to {0000}.

4.2.3 Un-subscription Handling

An un-subscription request should be handled by a controller to make sure that false posi-
tives are kept at a minimum and no uninterested subscriber is delivered information as per
requirement 2. So, on arrival of an un-subscription request, a recursive traversal of the tree is
done from the terminal switch towards the publisher using the depth first search algorithm.
Flows in each switch may be deleted/updated in this traversal. The traversal stops when an
alternate subscriber is available or when the switch is a terminal switch. Again, with respect
to flow modifications, mainly three cases are considered as depicted in Fig. 4.5.

Flow Deletion/Downgrade

The same example introduced above is extended considering the existing flows established in
the subscription handling section. In the first scenario, at time t4, S0 un-subscribes, resulting
in the deletion of the flow corresponding to this subscription at R1. Since no other subscriber
related to this subscription connected to the current switch exists, a traversal to the next
switch connected to the input port of the deleted flow is carried out. In this case, as the
input port of the deleted flow is 1, a traversal to switch R0 is done. At R0, a second case is
encountered where there is an existence of another subscriber which has similar subscription
space. As a result, the tree traversal is stopped and at R0 the output port 2 is removed from
the action field of the flow corresponding to {000}. The third scenario can be explained with
an un-subscription by S2. This is the case of flow downgrade complementary to flow upgrade.

31

4 Centralized Control Algorithms

Figure 4.5: Un-subscription

Match fields Priority Action Rules
input-port = 1 1 output = 3
dest-ip = 225.128.0.0/13

Table 4.3: Example flows at R0 during un-subscription handling

Here, at R2, a simple flow deletion takes place. However, at R0, the flow corresponding
to this subscription is downgraded to a flow representing subscription space {0000} as the
subscription of S1 which was earlier covered by {000} is still active. Table 4.3 depicts the flow
table at R0 at this point of time.

4.2.4 Un-advertisement Handling

An un-advertisement should be processed by the controller by removing existing paths relevant
to the corresponding advertisement so that no unnecessary flows remain installed on the
switches as per requirement 3. An un-advertisement request from a publisher is handled in
the same manner as an un-subscription request. On arrival of an un-advertisement request,
for all the associated trees, a depth first search traversal is carried out with deletion or down-
grade of relevant flows from the switches as they are encountered. The traversal stops when an
alternate publisher is available or when the switch is a terminal switch. Figure 4.6 illustrates
a case where the previous example introduced in the subscription handling section is extended

32

4.2 Content-Based Filtering and Routing

Figure 4.6: Un-advertisement

Match fields Priority Action Rules
input-port = 2 1 output = 3
dest-ip = 225.128.0.0/13

Table 4.4: Example flows at R0 during un-advertisement handling

by including a second publisher P1 with an advertisement space of {0000} at time t4. This
results in more flow adding/updating actions in the tree due to already existing interested
subscribers S0, S1 and S2 . With respect to such a setting, an un-advertisement by P0 at
time t5 is illustrated which results again in deletion and downgrade of relevant flows in the
network similar to the un-subscription process as depicted in the figure. Also, the flow table
at R0 at this point of time is shown in Table 4.4.

This chapter discusses the main characteristics of the prototype implementation of [10]. The
algorithms for advertisement, subscription, un-advertisement and un-subscription handling
are extremely important for this thesis as they are used within the local network of each
controller which locally maintains spanning trees and associated flows. [10] also presents
pseudo-codes for each of these algorithms which can be referred to for more details. With an
understanding of the centralized pub/sub system, the next chapter presents an extension of
the same to distribute the control logic between multiple controllers having disjoint views of
the system.

33

Chapter 5

Distributed Control Algorithms
This chapter is dedicated to the distributed control algorithms used in the proposed design and
implementation. The first step towards the realization of such an approach is to have multiple
controller instances where each controller, instead of having a global view of the topology, has
a local view of a dedicated part of the network. The identity of a particular network element
(switch/host) is known only by a single controller from the total set of controllers. So, each
network participant communicates with its own dedicated controller which acts as its access
point to the system. Fig. 5.1 illustrates a pub/sub with 2 controllers, 6 switches and 4 hosts
where the network is divided between the two controllers. The purple section depicts the part
of the network assigned to controller C0 and the blue section to controller C1. Here, hosts P0
and S0 communicate directly with only controller C0. Similarly, hosts P1 and S1 communicate
directly with only controller C1.

Figure 5.1: Distributed control logic

The controllers also have means to communicate among themselves in order to share in-
formation about their own local network. The system is designed in such a way that it can

35

5 Distributed Control Algorithms

support any number of controller instances depending upon the spatial partitioning of the
network into disjoint sub-networks.

5.1 Problems

Before discussing the manner in which publisher/subscriber requests are handled, the main
problems to be solved through the algorithms should be identified as follows :

1. A subscriber, irrespective of its relative position in the network, should eventually receive
every event satisfying its subscription published at most after a time period δ from the
time it issues the request, i.e., paths should be established between every publisher
and all its relevant subscribers across sub-networks irrespective of the partitions in the
network. So, connectivity should be ensured.

2. Exactly once delivery to each subscriber must be guaranteed.

3. Sharing redundant information between controllers must be avoided as this results in
increased control traffic and unnecessary bandwidth usage.

4. Controller overhead should be minimized.

The design of the system and the proposed control algorithms work together to fulfil the above
requirements in the system.

5.2 General Design Concepts

Before going into the details of the algorithms, a few important aspects related to the system
design must be discussed. Firstly, it is important to classify the types of requests that need
to be handled by a controller. Then, the manner in which controllers communicate among
themselves is discussed followed by the way in which the centralized algorithms are incor-
porated in the distributed framework. This is followed by a discussion on the type of state
information stored at each controller. Finally, the interconnection topology of the controllers
and the reason behind its use are stated.

5.2.1 Pub/Sub Traffic

The publish/subscribe network traffic mainly consists of five types of messages. These are
generated events and 4 types of control messages, namely, advertisement, subscription, un-
advertisement and un-subscription request messages. The control messages can be further
categorized into local and remote. For example, there can be a separate message type for
local advertisement request sent by a local host and a separate one for remote advertisement
request sent by a remote controller. If message types are used to distinguish local control traffic
from remote control traffic, then, nine types of messages exist. The control messages have
the same structure with three fields, namely, type of message, dz length and dz-expression.

36

5.2 General Design Concepts

So, eight types of control messages are directed towards controllers. A controller parses the
control messages to identify the type and associated dz for further processing. The published
events, however, are not directed towards the controller and simply follow routes established
on the switches through event matching.

5.2.2 Communication between Controllers

Figure 5.2: Communication between Controllers

The design of the present implementation ensures that each controller is only aware of the
part of the network assigned to it and is completely unaware of the remaining topology of
the system. Also, a controller does not know the identity of any of the other controllers
in the network. The system has been designed in such a way so that controller overhead
can be minimized as per requirement 4. However, in the process of saving overhead costs,
questions are raised on connectivity between sub-networks in the system which can only be
achieved if the controllers share the received local requests with one another. Since a controller
does not have any idea about the total number of controllers and their identities, it cannot
directly contact each of the other controllers for information sharing. However, since each
subnet is connected by physical links to its neighboring subnet, the idea is to only contact
the neighbors if any information has to be shared throughout the network. The neighbors
in turn share the message with their neighbors and in this way the same message is shared
among all controllers without each one having a global view of the others. The idea central to
communication between controllers is that just like the hosts, a controller communicates with
another controller by sending the packet to be shared to an address IPfix. However, the main
difference to the host requests is that the controller finds means to introduce this packet into
the remote subnet of the neighboring controller with whom communication is desired. Once
the packet is injected into the neighboring subnet, it is redirected to the controller assigned to
that subnet by the very first switch it encounters as IPfix cannot have a match throughout the
network. So, the packet finally reaches the desired destination and is processed accordingly

37

5 Distributed Control Algorithms

by the remote controller. In this fashion, state information is shared between controllers.
Fig. 5.2 illustrates this idea. Here, C1 simply introduces the message msg to its neighboring
subnet. On receiving it, C2 forwards the same to its neighboring subnet. In the process, C1
manages to share information with both C2 and C3 in spite of not knowing their identities.
Which request message should be sent/forwarded to which neighboring controller depends on
various conditions and is explained later in the control algorithms.

Figure 5.3: Border Switch-Port Tuples

However, an important problem still needs to be addressed. How does a controller which is
only aware of its local subnet introduce the packet to be shared into a neighboring subnet? The
solution to this problem is obtained by ensuring that each controller is aware of the switches
and the ports of its local network which form the gateways to the outside network topology.
So, a controller identifies the switch-port tuples of its local network which have links to the
adjoining sub-networks and uses them to directly contact the neighboring controller/s. Any
information that needs to be sent to a neighboring controller is sent through the respective
switch-port tuple. Fig. 5.3 depicts a system with three controllers dividing the network into
three parts where the scenario is explained with respect to Controller 2. In the figure, sub-
network 2 controlled by Controller 2 has a switch R which serves as a border switch with its
ports 2 and 3 linked to adjoining sub-networks. So, in the figure, if Controller 2 wishes to
send a control message ((un)advertisement/ (un)subscription) to Controller 3, it does so by
sending it through switch-port tuple (R, 3) with the destination IP set to IPfix. On the other
hand, Controller 3 receives the packet through its corresponding gateway to Controller 2 and
information sharing is accomplished.

38

5.2 General Design Concepts

5.2.3 Incorporating Centralized Control Algorithms

Figure 5.4: Virtual hosts

Every controller optimizes its own control network, i.e., the centralized control algorithms
discussed in chapter 4 are applied independently by each controller. However, in spite of this
autonomous behavior, connectivity is achieved between publishers and subscribers spread
across different partitions of the network by the sharing of state information among con-
trollers. Also, when remote controller requests arrive, a controller perceives its neighboring
sub-network/s as virtual host/s (publisher/subscriber). So, when a neighboring controller
sends a request, the controller considers this request to have arrived from a virtual host con-
nected to its border gateway. This can be further explained in Fig. 5.4 where the network
is again partitioned between Controller 1, Controller 2 and Controller 3. Here, Controller
2 views the parts of the network assigned to Controller 1 as a host named Host 1 and that
assigned to Controller 3 as another host named Host 2 connected to its border gateways. For
example, all requests sent by Controller 3 appear as requests from Host 2. Similarly, Con-
troller 1 views the sub-networks 1 and 2 as a single host connected to its only border gateway
and the same is true for Controller 3. Requests from virtual hosts are treated the same way as
those from actual local hosts. The centralized control algorithms can then be applied locally
considering the virtual hosts as part of the local network. This ensures connectivity as per
requirement 1 and is explained in more details below.

Example of pub/sub tree management and route calculations across subnets

Fig. 5.5 illustrates two sub-networks controlled by C0 and C1 respectively. The publisher
P0 sends an advertisement {00} at time t0 to C0 and the subscriber S1 sends a subscription
request {00} at time t1 to C1. The requests are shared between the controllers to establish a
route across the two sub-networks. This is achieved by considering the publisher/subscriber
of the adjoining sub-network as a local host. So, C0 views S1 as a host V S1 connected to its

39

5 Distributed Control Algorithms

Figure 5.5: Route calculations across sub-networks

Figure 5.6: Pub/Sub trees

40

5.2 General Design Concepts

border port at switch R00 and establishes flows between P0 and V S1 using the same methods
as in the centralized approach using the local pub/sub tree where P0 features as a publisher
node and V S1 features as a subscriber. Similarly, C1 views P0 as a host V P0 connected to
switch R10 and establishes relevant flows in its own sub-network. The corresponding local
spanning trees created at C0 and C1 are depicted in Fig. 5.6 and are similar to the spanning
tree examples discussed in chapter 4. The spanning tree at C0 is rooted at P0 and that at C1
has V P0 as the root. The final result is a path from P0 to S1 as desired and displayed by the
arrows in Fig. 5.5. The example can be extended to support many sub-networks. This is how
the centralized advertisement and subscription algorithms fit into the distributed setting. The
centralized algorithms for un-advertisements and un-subscriptions also fit into the framework
in the same way.

5.2.4 State Information at a Controller

It is very clear from the discussion above that a controller needs to identify its border gateways
to be able to share state information with other controllers. So, a list of all border switch-
port tuples of the local network must be stored at the controller. This list has been referred
to as borderGateways later in the algorithms. It is important to note that every host, i.e.,
a publisher or a subscriber is identified by the switch and the port to which it is attached
and each request is represented by a dz-expression as in the centralized approach. So, local
pub/sub trees are maintained by each controller as per the centralized control algorithms.
Along with this a pair of lists for keeping counts of local publishers called localPublisherCounts
and local subscribers called localSubscriberCounts corresponding to arrived dz-expressions is
maintained. Each element in these lists has the structure <dz, count>. Another pair of
lists later referred to as remotePublishers and remoteSubscribers are kept. Each element
in this list consists of a pair of values which are the dz-expression representing the request
and the switch-port tuple(nodePortTuple) representing the location of the virtual remote
publisher/subscriber, i.e., <dz, nodePortTuple>. These lists maintained at each controller
are instrumental in deciding the amount of state information to be shared and the adjoining
controllers with which to share them.

5.2.5 Interconnection Topology

An important requirement associated with correctness of the system deals with exactly-once
delivery of events to interested subscribers as mentioned in requirement 2. In order to ensure
this property, an acyclic peer-to-peer interconnection topology for multiple controllers has
been designed in this thesis. This means that each sub-network has a single path to any
other sub-network in the system. So, each controller communicates with another controller
through only a single path. In the centralized approach, exactly-once delivery is guaranteed
as spanning trees are created covering every switch exactly once. Since, in the distributed
framework, spanning trees are used in the same way to establish routes between local/virtual
publishers and local/virtual subscribers, there is always exactly one path connecting two

41

5 Distributed Control Algorithms

Figure 5.7: General Peer-to-Peer Architecture

hosts within a sub-network. However, there may be multiple paths between controllers (sub-
networks) and a spanning tree must be created covering every controller (sub-network) exactly
once. Such a configuration was necessary because of the following problems, illustrated in Fig.
5.7, encountered while designing a general peer-to-peer system. The figure depicts two sub-
networks in the green and orange sections assigned to controllers C0 and C1 respectively. Let
us assume that P0 and P1 advertise for the sub-space corresponding to {00} and S0 and S1
subscribe for the same. So, ideally, paths should be created from P0 to S0, S1 and from P1
to S0, S1. The figure shows two links L0 and L1 connecting the two sub-networks. The path
from P0 is established across L1 and is depicted with green arrows. Again, the path from P1
is established across L0 and is depicted with red arrows. It should be noted that as both the
paths correspond to dz {00}, the destination IP match field in all the flows is 255.128.0.0/11.
Now, let us assume that one of the publishers, say P0, publishes an event satisfying the sub-
space {00}, i.e., the event matches destination IP 255.128.0.0/11 of the flows. This packet is
first sent to R00 which forwards it to R01. R01 forwards it to S0 as well as R11 which again
forwards the packet to R10 according to the matching flow. However, at R10 where on one
hand the packet is delivered correctly to S1, on the other hand it is again forwarded to R00 as
it also matches the path established for P1. So, the packet now following the red arrow gets
forwarded by R00 and the cycle continues. This results in the same packet being continuously
delivered to the subscribers and moving around the network in cycles leading to unnecessary
bandwidth usage.

Quite naturally, cycles in a network are not desirable and must be avoided. This can be
done by having special algorithms for cycle detection and avoidance. However, this thesis
creates acyclic paths between the sub-networks by using a very simple mechanism based on
typical distributed algorithms. The spanning tree creation process is briefly explained with a
simple example depicted in Fig. 5.8. A particular controller may be chosen as the root which

42

5.3 Advertisement Handling

Figure 5.8: Acyclic Peer-to-Peer Architecture

initiates the process of creating the tree. The idea is that except for the root node, each node
should have exactly one link connected to exactly one parent node. The root, in this case C0,
sends messages depicted in the figure as createTree through all its border switch-port tuples.
Let us assume that C1 receives the message sent across link L0 at time t0. As C1 does not
have a parent node yet, it immediately recognizes this link as its parent link and replies back
with an ACK message along the reverse path. It also forwards the same message through
its remaining border switch-port tuples which ensures that the process is repeated at every
controller. On receiving the ACK message C0 notes the switch-port tuple connected to L0 as
a valid gateway and remembers it as a child link. When the second createTree message arrives
at C1 at time t1 along link L1, C1 simply ignores it as it has already identified its parent link.
Also, as no acknowledgement for L1 arrives at C0, it is never added as a child link. The parent
and child links added at each controller provide the final list of switch-port tuples to be used
as gateways to the outside network in the acyclic setting. So, in this example, R00 is the only
gateway for C0 and R01 is the only gateway for C1 which results in an acyclic architecture.

The concepts discussed above provide a general idea about the design of the system. How-
ever, the detailed algorithms for handling advertisement, subscription, un-advertisement and
un-subscription requests are presented in the following sections.

5.3 Advertisement Handling

The advertisement handling logic aims to tackle problem 1 which deals with connectivity. In
order to do so, a controller in a subnet needs to be aware of a publisher in another subnet and
view it as a virtual publisher connected to its border gateway as explained before. Each con-
troller can then establish paths from the publisher to all its interested subscribers resulting in

43

5 Distributed Control Algorithms

connectivity between the publisher and all its relevant subscribers. So, the present design and
implementation is based on advertisement flooding across all controllers. This implies that a
local advertisement request received by a controller has to be flooded across all sub-networks
such that at any point of time active advertisements from all publishers in the system are
known by every controller. So, each advertisement request should be propagated along the
chain of controllers. However, this approach does not seem to be bandwidth efficient. So, in
order to tackle problem 3, instead of flooding every advertisement request, this thesis follows
a covering-based routing approach where an advertisement is flooded to the neighboring con-
trollers only if it is not covered by an advertisement sent previously by the same controller. In
order to implement covering-based routing, a controller maintains a local publisher count (lo-
calPublisherCounts) corresponding to each locally advertised dz and a list of remote publisher
requests (remotePublishers) from neighboring controllers as mentioned before. Depending on
the values of both of these, local/remote publisher requests are shared with other controllers.
For every type of request sent by a host (publisher/subscriber), the controller first identifies
the host as local or remote (virtual) and accordingly handles the request. So, with the arrival
of an advertisement request, the controller first categorizes its sender as local or remote from
the type of received packet. Depending on the type of request, the controller performs a set of
actions. However, in both types of request, a decision about sharing the advertisement with
remote controllers has to be taken. Four scenarios may arise in this context as follows:

1. The new advertisement is not equal to or covered by a previously sent local or remote
advertisement.

2. The new advertisement is equal to or covered by one or more previously sent local
advertisement/s.

3. The new advertisement is equal to or covered by a previously received advertisement
from a(another) remote neighboring controller.

4. The new advertisement is equal to or covered by more than one previously received
advertisements from more than one (other) neighboring remote controllers.

Both request types handle the above situations similarly. The exact operations performed for
handling both types of requests are explained below.

5.3.1 Local Advertisements

If the request is local, the local publisher access point (node-port tuple to which it is connected)
and advertised dz are duly noted and processed as per the centralized advertisement handling
algorithm. This means that one or more local pub/sub trees are updated and flows are
established between this publisher and already existing relevant local and virtual subscribers
in the local subnet. Following this, a decision to share the advertisement request is taken
based on the above four scenarios so that paths can be established between sub-networks.
Each of these scenarios can be explained with examples.

44

5.3 Advertisement Handling

Figure 5.9: Example of local advertisements within the same sub-network

Scenarios 1 and 2 Fig. 5.9 depicts a system with four sub-networks represented by the
controllers they are assigned to. Every case is explained with respect to controller C1. At time
t0, a publisher P10 sends a local advertisement request for dz {00}. This corresponds to the
first scenario where no other advertisement request has been previously received by the local
controller C1. Under such circumstances, the controller creates a controller advertisement
packet with appropriate type and received dz which is sent through all border switch-port
(node-port) tuples of the sub-network. The second scenario is depicted at time t1 when P11
sends an advertisement request for dz {001}. Since dz {00} has already been advertised and
{00} � {001}, therefore, the new request is not forwarded to the neighboring controllers.
The idea behind this approach is that if there is a subscriber, say S2 in this figure interested
in the event sub-space {001}, it is adequate for controller C2 to be aware of the previously
advertised higher dz from the virtual publisher representing sub-network 1. Since from C2’s
perspective both the advertisement requests come from the same virtual publisher, only the
highest dz covering all others should anyhow be considered for establishment of flows in the
switches. So, the request {001} is redundant information for C2 and does not affect any flows
in sub-network 2. As a result, information sharing between controllers can safely be filtered
using the covering-based approach without compromising correctness in terms of increasing
false negatives and false positives in the system.

Scenario 3 The third scenario is portrayed in Fig. 5.10 where again a similar network is
considered with focus on controller C1. This case deals with the arrival of an advertisement
{001} from a local publisher P1 at time t1 after the arrival of a remote advertisement request
from controller C0 at t0. Under these circumstances, where a single remote publisher with the
same or higher dz exists, C1 again creates a controller advertisement for the recent request
and sends it to only the remote controller from which the previous request had arrived, i.e.
C0 in this example. This is done because the remote request from C0 was already forwarded

45

5 Distributed Control Algorithms

Figure 5.10: Example of local advertisement with existing remote request

by C1 earlier making it a virtual publisher to all except C1 which was the one to have sent
the request in the first place. But on arrival of the current request, it is necessary for C1 to
also view this subnet as a virtual publisher. The remotePublishers list is used to monitor all
previous remote controller requests.

Figure 5.11: Example of local advertisement with existing remote requests

Scenario 4 The final scenario is portrayed in Fig. 5.11 where at time t0 and t1 two remote
controller advertisement requests arrive at C1. Following these, P0 sends an advertisement
{001} at t2 which is equal to or covered by the previous advertisements. Under these cir-
cumstances, no further messages are sent to the neighboring controllers. So, C1 simply adds
the local publisher to its local spanning tree using the centralized advertisement handling

46

5.3 Advertisement Handling

Algorithm 1 Local Advertisement Handling
1: procedure addLocalPublisher(dzExp, pub, receivedPacket)
2: addPublisher(dzExp, pub) {⇒ add this publisher to the corresponding local pub/sub tree

for flow addition}
3: localPubCount ← getLocalPublisherCount(localPublisherCounts, dzExp) {⇒ gets lo-

cal publisher count for all dzs where dz � dzExp}
4: rmPubs← {remotePublishers : dzremoteP ublishers � dzExp}
5: if localPubCount = 0 ∧ | rmPubs | = 0 then
6: adPacketData← createControllerPacket(receivedPacket)
7: for each npTuple ∈ borderGateways do
8: createAndSendPacket(adPacketData, npTuple) {⇒if no local/remote publisher ex-

ists, send controller ad packet through all switch port tuples in borderGateways}
9: end for

10: else if localPubCount = 0 ∧ | rmPubs | = 1 then
11: rmPub← {rmPubs : | rmPubs | = 1}
12: adPacketData← createControllerPacket(receivedPacket)
13: createAndSendPacket(adPacketData, rmPubnodeP ortT uple) {if only one remote pub-

lisher exists, send advertisement packet to it}
14: end if
15: incrementPublisherCount(localPublisherCounts, dzExp)
16: end procedure

algorithm. This decision follows the same logic described above where the remote publisher
requests were already forwarded by C1 to concerned neighboring controllers and so there is
no need to send redundant information on arrival of the local request.

In all four scenarios, however, along with adding the publisher to the local pub/sub tree,
localPublisherCounts is incremented for the received advertisement dz. The algorithm for
handling advertisements from local publishers is more formally presented in Algo. 1 as a
pseudo-code where the arguments to the procedure are the dz-expression, denoted by dzExp,
the switch-port tuple of the local network to which the local publisher is attached, denoted
by pub and finally the packet received from the local publisher, denoted by receivedPacket.

5.3.2 Remote Advertisements

A remote publisher request is handled in a way similar to the local advertisement handling
process and is formally presented in Algo. 2. As mentioned earlier, an advertisement re-
quest from a remote controller is perceived as a request from a virtual publisher connected
to the border switch-port tuple connecting the two concerned sub-networks. So, on receiving
a request from a neighboring controller, the virtual publisher access point (node-port tuple
to which it is connected) and advertised dz are noted. At first, the remotePublishers list is

47

5 Distributed Control Algorithms

Algorithm 2 Remote Advertisement Handling
1: procedure addRemotePublisher(dzExp, pub, receivedPacket)
2: coveredDzs← {dzremoteP ublishers : dzExp � dzremoteP ublishers ∧

nodePortTupleremoteP ublishers = pub}
3: for each dz ∈ coveredDzs do
4: removePublisher(dz, pub) {⇒ remove this publisher for the corresponding dz from pub-

/sub tree/s}
5: removeRemotePublisher(remotePublishers, dz, pub)
6: end for
7: addPublisher(dzExp, pub) {⇒ add this publisher to the corresponding pub/sub tree for

flow addition}
8: localPubCount ← getLocalPublisherCount(localPublisherCounts, dzExp) {⇒ gets lo-

cal publisher count for all dzs where dz � dzExp}
9: rmPubs← {remotePublishers : dzremoteP ublishers � dzExp}

10: if localPubCount = 0 ∧ | rmPubs | = 0 then
11: for each npTuple ∈ borderGateways do
12: if npTuple 6= pub then
13: forwardPacket(receivedPacket, npTuple) {⇒if no local or remote publisher exists,

forward received packet}
14: end if
15: end for
16: else if localPubCount = 0 ∧ | rmPubs | = 1 then
17: rmPub← {rmPubs : | rmPubs | = 1}
18: if rmPubnodeP ortT uple 6= pub then
19: forwardPacket(receivedPacket, rmPubnodeP ortT uple) {⇒ if only one other remote

publisher exists forward the packet to it}
20: end if
21: end if
22: addRemotePublisher(remotePublishers, dzExp, pub)
23: if | coveredDzs | = 0 then
24: subscriberList← {subscribers : dzsubscribers � dzExp ∨ dzExp � dzsubscribers}
25: subs←getSubsWithMaxDzs(subscriberList) {get the highest subscription dz(s) which

cover all others}
26: for each subscriber ∈ subs do
27: subPacketData← createControllerPacket(dzsubscriber)
28: createAndSendPacket(subPacketData, pub) {⇒ send the created sub packet through

the switch port from which ad packet came}
29: end for
30: end if
31: end procedure

48

5.4 Subscription Handling

checked for any advertisements received previously from the same virtual publisher that has
a dz which is covered by the current dz. If such dzs exist, then a local un-advertisement
procedure for each of them is done as per the centralized approach along with the removal of
the advertisements from the remotePublishers list. This is done to maintain only the highest
covering advertisement dzs from a particular virtual publisher (remote sub-network). Then,
the newly advertised dz from the virtual publisher is processed as per the centralized adver-
tisement handling algorithm by creating/updating relevant spanning trees. Then, as before, a
decision about sharing the advertisement request with remote controllers is taken depending
on the same four criteria discussed above. Again, as in Scenario 2, if a local advertised dz
higher than or same as the current dz exists, then the remote controller advertisement is not
forwarded any further by the current controller. Scenario 4 is handled in the same way if the
newly advertised dz is equal to or covered by more than one previously received advertised
dzs from two or more other neighboring remote controllers. However, if only another remote
controller exists which has sent a relevant dz previously as stated in Scenario 3, then the newly
received advertisement request is forwarded to it. Finally, if Scenario 1 occurs and none of
the previous three cases are satisfied, then it is forwarded to all neighboring controllers except
for the controller which has sent the current remote request.

Also, the remotePublishers list is updated with the current virtual publisher advertisement.
Finally, the list of local subscriptions in the local network relevant to the arrived advertisement
is identified and subscription requests with the highest dzs which cover all others are sent by
the controller along the switch-port tuple through which the remote advertisement request
arrived. This is portrayed in line 28 of Algo. 2. This further results in subscription handling by
the adjoining controller to which the subscription request is sent which is discussed in details in
the next section. It is necessary to send the subscription back to the remote controller so that
a path can be established between the original publisher and this subnet. It should be noted
that these new subscriptions are sent to the remote controller from which the advertisement
request arrived if and only if they have not already been sent to the same controller with
respect to a previously sent relevant advertisement. This check is carried out in line 23 of
Algo. 2.

5.4 Subscription Handling

In order to achieve connectivity, subscriptions should also be shared between controllers.
However, finding a solution which is bandwidth efficient is also a requirement mentioned in
3. So, subscriptions are not flooded throughout the network. Instead, a subscription is sent
to a neighboring controller if and only if an advertisement relevant to the subscription has
previously arrived from it. So, a subscription follows a reverse path previously taken by a
relevant advertisement. Since the design follows a covering-based routing approach, a sub-
scription is sent to the neighboring controllers with relevant publishers only if it is not covered
by a previously sent subscription which further improves bandwidth efficiency. In order to
implement covering-based routing, a controller maintains a local subscriber count (localSub-
scriberCounts) corresponding to each locally subscribed dz and a list of remote subscriber

49

5 Distributed Control Algorithms

requests (remoteSubscribers) from neighboring controllers as stated before. Depending on the
values of both of these and the existence of relevant publishers in adjoining sub-networks,
local subscriber requests are shared with other controllers. Again, four scenarios may arise in
this context as follows :

1. The new subscription is not equal to or covered by a previously received local or remote
subscription.

2. The new subscription is equal to or covered by one or more previously sent local sub-
scription/s.

3. The new subscription is equal to or covered by a previously received subscription from
a(another) remote neighboring controller.

4. The new subscription is equal to or covered by more than one previously received sub-
scriptions from more than one (other) neighboring remote controllers.

With the arrival of a subscription request, the controller first categorizes its sender as local
or remote from the type of received packet and based on the type, a set of actions are taken
as explained below.

5.4.1 Local Subscriptions

If the request is local, the local subscriber access point (node-port tuple to which it is con-
nected) and subscribed dz are duly noted and processed as per the centralized subscription
handling algorithm to establish routes between the subscriber and relevant local publishers
which include virtual publishers. Following this, a decision about sharing the subscription
request with remote controllers is taken.

Figure 5.12: Example of local subscriptions within the same sub-network

50

5.4 Subscription Handling

Scenarios 1 and 2 Fig. 5.12 depicts a system with four sub-networks represented by the
controllers they are assigned to. Every case is explained with respect to controller C1. At
time t0, a publisher P0 sends an advertisement request for dz {00} which is shared among all
controllers using the algorithms discussed above. Then, at time t1 a subscriber S10 subscribes
for the dz space {00} which corresponds to the first scenario where no other subscription
request has been received by the local controller C1. Under such circumstances, first, all
the remote publishers are identified which are relevant to this subscription as subscriptions
are not flooded to every controller in the network. Next, a controller subscription packet
is created with appropriate type and received dz and is sent along the border switch-port
tuples connecting the identified remote controllers with relevant publishers only. So, in the
figure, C1 sends the subscription request to C0 alone as it had previously received a relevant
advertisement from it. The second scenario is depicted at time t2 when S11 sends a subscription
request for dz {001}. Since dz {00} has already been sent and {00} � {001}, therefore the
new request is not forwarded to C0. Again, the logic behind this is that the arrival of the
former subscription at C0 resulted in a path being established between P0 and the border
switch-port tuple connecting sub-network 0 to sub-network 1. Now, the arrival of {001} at C0
would not make any difference to the flows on the switches of sub-network 0 and is redundant
information.

Figure 5.13: Example of local subscription with existing remote request

Scenario 3 The third scenario is portrayed in Fig. 5.13 where again a similar network is
considered with focus on controller C1. It is assumed that P0 and P3 have advertised for
dz {00} at time t0 and t1 respectively. So, C1 is aware of both of these advertisements. At
time t2, S2 subscribes for sub-space {00} which arrives as a remote subscriber request at C1.
The handling of this remote request is explained later. This case deals with the arrival of
subscription {001} from a local subscriber S1 at time t3. Under these circumstances, where
a single remote subscriber with the same or a higher dz exists, the controller C1 checks
if the remote sub-network that is perceived as a virtual subscriber also acts as a virtual
publisher relevant to the subscription. In this figure, C1 views sub-network 2 as both a

51

5 Distributed Control Algorithms

virtual publisher and a virtual subscriber as both types of requests have arrived from the
border switch-port tuple connecting the two sub-networks. In such a scenario, where the
same virtual host poses as both a publisher and a subscriber for relevant sub-spaces, the
controller creates a subscription for the recent request and sends it to that remote controller,
i.e. C2 in this example. The remoteSubscribers list is used to monitor all previous remote
controller subscription requests.

Algorithm 3 Local Subscription Handling
1: procedure addLocalSubscriber(dzExp, sub, receivedPacket)
2: addSubscriber(dzExp, sub) {⇒ add this subscriber to the corresponding pub/sub tree for

flow addition}
3: localSubCount← getLocalSubscriberCount(localSubscriberCounts, dzExp) {⇒ gets lo-

cal subscriber count for all dzs where dz � dzExp}
4: rmSubs← {remoteSubscribers : dzremoteSubscribers � dzExp}
5: if localSubCount = 0 ∧ | rmSubs | = 0 then
6: pubs← {remotePublishers : dzremoteP ublishers � dzExp ∨ dzExp � dzremoteP ublishers}

7: subPacketData← createControllerPacket(receivedPacket)
8: for each remotePublisher ∈ pubs do
9: createAndSend(subPacketData, nodePortTupleremoteP ublisher) {⇒ if no local/re-

mote subscribers exist send controller packet to all controllers with relevant pub-
lishers}

10: end for
11: else if localSubCount = 0 ∧ | rmSubs | = 1 then
12: rmSub← {rmSubs : | rmSubs | = 1}
13: pubs← {remotePublishers : dzremoteP ublishers � dzExp ∨ dzExp � dzremoteP ublishers}

14: if rmSub ∈ pubs then
15: subPacketData← createControllerPacket(receivedPacket)
16: createAndSend(subPacketData, nodePortTuplermSub) {if only one remote subscriber

exists and it is also a remote publisher create and send controller packet}
17: end if
18: end if
19: incrementSubscriberCount(localSubscriberCounts, dzExp)
20: end procedure

Scenario 4 The final scenario is portrayed in Fig. 5.14 where at time t0 and t1 two remote
controller advertisement requests arrive at C1. Following these, two remote controller sub-
scription requests arrive at t2 and t3 with dzs {00} and {001} respectively. Finally at time
t4, a local subscription with dz {001} arrives at C1 from S1. Under these circumstances, no
further subscription messages are sent to the neighboring controllers because any relevant
remote controller already views this controller as a virtual subscriber because of the remote
subscriptions forwarded earlier. The figure clearly explains this fact. So, C1 simply adds

52

5.4 Subscription Handling

Figure 5.14: Example of local subscription with existing remote requests

the local subscriber to its local pub/sub tree/s using the centralized subscription handling
algorithm.

Again, in all four scenarios localSubscriberCounts is incremented for the received subscrip-
tion dz. The algorithm for handling subscriptions from local subscribers is more formally
presented in Algo. 3 as a pseudo-code where the arguments to the procedure are the dz-
expression, denoted by dzExp, the switch-port tuple of the local network to which the local
subscriber is attached, denoted by sub and finally the packet received from the subscriber,
denoted by receivedPacket.

5.4.2 Remote Subscriptions

A remote subscriber request is handled in a way similar to the local subscription handling
procedure and is formally presented in Algo. 4. As mentioned earlier, a subscription request
from a remote controller is perceived as a request from a virtual subscriber connected to
the border switch-port tuple connecting the two concerned sub-networks. So, on receiving a
request from a neighboring controller, the virtual subscriber access point (node-port tuple to
which it is connected) and subscribed dz are noted.

At first, the remoteSubscribers list is checked for any subscriptions received previously from
the same virtual subscriber that has a dz which is covered by the current dz. If such dzs exist,
then a local un-subscription process for each of them is done as per the centralized approach
along with the removal of these subscriptions from the remoteSubscribers list. This is done
to maintain only the highest covering subscription dzs from a particular virtual subscriber
(remote sub-network). Then, the newly subscribed dz from the virtual subscriber (remote
sub-network) is processed as per the centralized advertisement handling algorithm by adding

53

5 Distributed Control Algorithms

it to relevant spanning trees and updating flows. Then, as before, a decision about sharing
the subscription request with remote controllers is taken depending on the same four criteria
discussed above.

Algorithm 4 Remote Subscription Handling
1: procedure addRemoteSubscriber(dzExp, sub, receivedPacket)
2: coveredDzs← {dzremoteSubscribers : dzExp � dzremoteSubscribers ∧

nodePortTupleremoteSubscribers = nodePortTuple}
3: for each dz ∈ coveredDzs do
4: removeSubscriber(dz, sub) {⇒ remove subscriber for corresponding dz from the pub/sub

tree/s}
5: removeRemoteSubscriber(remoteSubscribers, dz, sub)
6: end for
7: addSubscriber(dzExp, sub) {⇒ add this subscriber to the corresponding pub/sub tree for

flow addition}
8: localSubCount← getLocalSubscriberCount(localSubscriberCounts, dzExp) {⇒ gets lo-

cal subscriber count for all dzs where dz � dzExp}
9: rmSubs← {remoteSublishers : dzremoteSublishers � dzExp}

10: if localSubCount = 0 ∧ | rmSubs | = 0 then
11: pubs← {remotePublishers : dzremoteP ublishers � dzExp ∨ dzExp � dzremoteP ublishers}

12: for each remotePublisher ∈ pubs do
13: if nodePortTupleremoteP ublisher 6= sub then
14: forward(receivedPacket, nodePortTupleremoteP ublisher)
15: end if
16: end for
17: else if localSubCount = 0 ∧ | rmSubs | = 1 then
18: rmSub← {rmSubs : | rmSubs | = 1}
19: pubs← {remotePublishers : dzremoteP ublishers � dzExp ∨ dzExp � dzremoteP ublishers}

20: if rmSub ∈ pubs ∧ nodePortTuplermSubs 6= sub then
21: forward(subPacketData, nodePortTuplermSub)
22: end if
23: end if
24: addRemoteSubscriber(remoteSubscribers, dzExp, sub)
25: end procedure

Again, if scenario 2 occurs, the new subscription is not forwarded any further by the current
controller. Scenario 4 is handled in the same way. However, if only another remote controller
exists which has sent a relevant subscription previously, i.e., scenario 3, then, the newly
received subscription request is forwarded to it if it has a relevant publisher in its local
network. Finally, if scenario 1 occurs where no relevant local or remote subscriptions have
been previously received, then the request is forwarded to every neighboring controller with

54

5.5 Un-Advertisement Handling

relevant publishers except for the controller from which this request arrived. Also, in each
case, the remoteSubscribers list is updated with the current virtual subscriber subscription.

5.5 Un-Advertisement Handling

An un-advertisement request submitted by a publisher should be communicated to every
controller that has been sent the corresponding advertisement so that the effect of the ad-
vertisement can be nullified completely throughout the entire network. So, ideally, each
un-advertisement request should be routed along the same paths as its corresponding adver-
tisement message which seems quite simple. However, the procedure gets slightly complicated
due to the use of covering-based routing for control messages. As all submitted advertisements
are not handled in the same way, similarly, all un-advertisements cannot be handled in the
same way. Similar to the previous algorithms, here too, first the type of un-advertisement
request is identified as local or remote. Yet again, four scenarios are encountered during the
phase deciding on the sharing of the un-advertisement request as follows:

1. The un-advertisement dz is not equal to or covered by a previously sent local or remote
advertisement dz from another publisher.

2. The un-advertisement dz is equal to or covered by one or more previously sent adver-
tisement dzs from other local publisher/s.

3. The un-advertisement dz is equal to or covered by a previously received advertisement
dz from a(another) remote neighboring controller.

4. The un-advertisement dz is equal to or covered by more than one previously received
advertisement dzs from more than one (other) neighboring remote controllers.

These cases are similar to the ones explored during advertisement handling and follow similar
course.

5.5.1 Local Un-advertisements

If the request is local, the local publisher access point and dz are noted by the local con-
troller. These are then used in the centralized un-advertisement handling algorithm in the
local network to remove/downgrade flows in the local switches. After this, a decision to share
the un-advertisement information with the neighboring controllers is taken as per the four
scenarios.

55

5 Distributed Control Algorithms

Figure 5.15: Example of local un-advertisement with other existing publishers

Figure 5.16: Example of controller advertisement on local publisher un-advertisement

56

5.5 Un-Advertisement Handling

Scenarios 2 and 4 So, as in advertisement handling, the second and the last cases are handled
in the same way where no un-advertisement requests are sent to the remote controllers. The
reason behind this is that another local publisher or atleast 2 remote publishers still exist
with an equal or higher advertisement sub-space for which the neighboring controllers should
continue viewing the current sub-network as a publisher of the equivalent or a higher dz. Fig.
5.15 depicts a very simple example which extends an example portrayed in advertisement
handling by introducing an un-advertisement request by P11 at time t2. Due to the existing
active advertisement of P10, this un-advertisement request is not forwarded to the other
controllers. However, at C1, the local pub/sub trees relevant to this request are modified
in order to cancel the advertisement from P11.

Figure 5.17: Example of local un-advertisement with an existing relevant remote publisher

Scenario 1 The first case deals with the existence of no other publisher with the same or
higher advertisement sub-space. Under such circumstances, an un-advertisement controller
request is sent to all other controllers to cancel out the effect of the corresponding adver-
tisement that was previously sent to every controller. However, just un-advertising is not
enough because advertisements were shared according to the covering-based approach. So,
to inform all controllers about the advertisements that were not sent earlier due to covering
by the advertisement that is now cancelled, new advertisement requests are sent by the local
controller. In order to identify the existing advertisement requests, the local controller uses
the localPublisherCounts and remotePublishers lists. Once the highest dzs are selected, the
new advertisements are distributed to remote controllers using the same logic used during ad-
vertisement handling for deciding on which advertisement to send to which remote controller.
Algo. 5 presents the pseudo-code for local un-advertisement handling where the function
sendAdvertisementRequest() in line 10 takes care of this. This situation is further explained
in Fig. 5.16 where two advertisements are sent to C1 at t0 and t1 as depicted in the figure.
Then at time t2, P10 un-advertises resulting in the flooding of the un-advertisement message to

57

5 Distributed Control Algorithms

all neighboring controllers followed by an advertisement message representing {001} to inform
the remote controllers of the advertisement sent by P11 which was earlier filtered out due to
covering-based routing. Even in Algo. 5, three arguments are provided to the procedure re-
moveLocalPublisher(), namely, dzExp, pub (switch-port tuple representing the publisher that
sent the request) and receivedPacket.

Algorithm 5 Local Un-Advertisement Handling
1: procedure removeLocalPublisher(dzExp, pub, receivedPacket)
2: removePublisher(dzExp, pub) {⇒ remove this publisher from the corresponding pub/sub

tree for flow modification}
3: localPubCount← getLocalPublisherCount(localPublisherCounts, dzExp) {⇒ gets local

publisher count for all dzs where dz � dzExp}
4: rmPubs← {remotePublishers : dzremoteP ublishers � dzExp}
5: if localPubCount = 1 ∧ | rmPubs | = 0 then
6: unadPacketData← createControllerPacket(receivedPacket)
7: maxDzPubs← getNextMaxDzPubs(dzExp) {⇒ get pubs with next highest dzs}
8: for each npTuple ∈ borderGateways do
9: createAndSendPacket(unadPacketData, npTuple)

10: sendAdvertisementRequest(maxDzPubs, npTuple)
11: end for
12: else if localPubCount = 1 ∧ | rmPubs | = 1 then
13: rmPub← {rmPubs : | rmPubs | = 1}
14: unadPacketData← createControllerPacket(receivedPacket)
15: createAndSendPacket(unadPacketData, rmPubnodeP ortT uple)
16: maxDzPubs← getNextMaxDzPubs(dzExp) {⇒ get pubs with next highest dzs}
17: sendAdvertisementRequest(maxDzPubs, rmPubnodeP ortT uple)
18: end if
19: decrementLocalPublisherCount(localPublisherCounts, dzExp)
20: end procedure

Scenario 3 The third scenario deals with the existence of just one other remote publisher
with same or higher dz. Under these circumstances, the rest of the neighboring controllers
need to still view the current controller as a publisher due to this other remote publisher. But
this other remote controller must be informed about the current un-advertisement request so
that it does not continue viewing the local controller as a publisher. A simple example of this
case is illustrated in Fig. 5.17 where the un-advertisement from P1 is sent only to controller
C0 with an existing advertisement {00}. Also, new advertisements may need to be sent to
this remote controller as represented in line 17 of Algo. 5.

In all four scenarios, along with the modifications to the local pub/sub tree, the localPublish-
erCounts is also decremented for the un-advertised dz.

58

5.5 Un-Advertisement Handling

5.5.2 Remote Un-advertisements

The remote un-advertisement handling is not much different from the local one. As mentioned
earlier, an advertisement request from a remote controller is perceived as a request from a
virtual publisher connected to the border switch-port tuple connecting the two concerned sub-
networks. So, on receiving an un-advertisement request from such a neighboring controller,
the virtual publisher access point (node-port tuple to which it is connected) and advertised
dz are noted. This is followed by centralized un-advertisement handling of the request from
the virtual publisher resulting in pub/sub tree and flow modifications in the local network.
Then the same decisions regarding spreading of the un-advertisement request are taken as
in the local cases and can be understood from the pseudo-code presented in Algo. 6. Here,
lines 10 and 17 take care of sending the new advertisements to relevant remote controllers in
the function sendAdvertisementRequest(). However, care is taken to ensure that the controller
from which the un-advertisement request has arrived (denoted by the switch-port tuple pub) is
never in the recipients list for the new advertisements. Finally, the entry in remotePublishers
corresponding to the un-advertised dz-expression and virtual publisher (remote controller) is
removed.

Algorithm 6 Remote Un-Advertisement Handling
1: procedure removeRemotePublisher(dzExp, pub, receivedPacket)
2: removePublisher(dzExp, pub) {⇒ remove this publisher from the corresponding pub/sub

tree for flow modification}
3: localPubCount← getLocalPublisherCount(localPublisherCounts, dzExp) {⇒ gets local

publisher count for all dzs where dz � dzExp }
4: rmPubs← {remotePublishers : dzremoteP ublishers � dzExp}
5: if localPubCount = 0 ∧ | rmPubs | = 1 then
6: maxDzPubs ← getNextMaxDzPubs(dzExp) {⇒ get publishers with next highest dzs

for advertisement}
7: for each npTuple ∈ borderGateways do
8: if npTuple 6= pub then
9: forward(receivedPacket, npTuple) {⇒ forward received packet through all other

switch-port tuples in borderGateways}
10: sendAdvertisementRequest(maxDzPubs, npTuple)
11: end if
12: end for
13: else if localPubCount = 0 ∧ | rmPubs | = 2 then
14: rmPub← {rmPubs : nodePortTuplermP ubs 6= pub}
15: forward(unadPacketData, rmPubnodeP ortT uple)
16: maxDzPubs ← getNextMaxDzPubs(dzExp) {⇒ get publishers with next highest dzs

for advertisement}
17: sendAdvertisementRequest(maxDzPubs, rmPubnodeP ortT uple)
18: end if
19: removeRemotePublisher(remotePublishers, dzExp, pub)
20: end procedure

59

5 Distributed Control Algorithms

5.6 Un-Subscription Handling

Just like an un-advertisement, an un-subscription request submitted by a subscriber should
also be communicated to every controller that has been sent the corresponding subscription
previously so that the effect of the subscription can be cancelled throughout the entire net-
work. So, ideally, each un-subscription request should be routed along the same paths as its
corresponding subscription. Again, due to the use of covering-based routing for subscription
messages, the process is not straightforward and all un-subscriptions cannot be handled in
the same way. Again, the first step is to identify the type of un-subscription request as local
or remote and take appropriate actions. Yet again, the decision to share the un-subscription
with other controllers depends on four scenarios as follows:

1. The un-subscription dz is not equal to or covered by a previously sent local or remote
subscription dz from another subscriber.

2. The un-subscription dz is equal to or covered by one or more previously sent subscription
dzs from other local subscriber/s.

3. The un-subscription dz is equal to or covered by a previously received subscription dz
from only one (other) remote neighboring controller.

4. The un-subscription dz is equal to or covered by more than one previously received
subscription dzs from more than one (other) neighboring remote controllers.

5.6.1 Local Un-subscriptions

If the request is local, the local subscriber access point and dz are used in the centralized un-
subscription handling algorithm in the local network to remove/downgrade flows in the local
switches. Next, a decision to share the un-subscription information with the neighboring
controllers is taken depending on the above scenarios. The local un-subscription sharing
decision is very similar to the one encountered in the local un-advertisement algorithm and
can be understood from the pseudo-code presented in Algo. 7. Decisions are taken based on
the localSubscriberCounts and remoteSubscribers lists.

Again, cases 2 and 4 result in no information sharing. Scenario 1 is taken care of by
sending the un-subscription request to all remote controllers having publishers with adver-
tisements relevant to the previously sent subscription request. This extra filtering is done
because subscription flooding was avoided. Also, just as covered highest advertisements are
sent in un-advertisement handling, similarly covered highest subscriptions are sent by the
controller to the remote controllers which received the un-subscription request. The function
sendSubscriptionRequest() in line 11 of Algo. 7 takes care of this.

60

5.6 Un-Subscription Handling

Finally, scenario 3 deals with an existing remote controller which had earlier sent a relevant
subscription. Under these circumstances, the rest of the neighboring controllers need to still
view the current controller as a subscriber due to this other remote subscriber. But this
other remote controller must be informed about the current un-subscription request so that
it does not continue viewing the local controller as a subscriber provided it had been sent the
corresponding subscription request previously, i.e., it has a relevant publisher in its subnet.
After addressing the information sharing issue, localSubscriberCounts is decremented for the
received un-subscription dz.

Algorithm 7 Local Un-Subscription Handling
1: procedure removeLocalSubscriber(dzExp, sub, receivedPacket)
2: removeSubscriber(dzExp, sub) {⇒ remove this subscriber from the corresponding pub/-

sub tree for flow modification}
3: localSubCount ← getLocalSubscriberCount(localSubscriberCounts, dzExp) {⇒ gets lo-

cal subscriber count for all dzs where dz � dzExp}
4: rmSubs← {remoteSubscribers : dzremoteSubscribers � dzExp}
5: if localSubCount = 1 ∧ | rmSubs | = 0 then
6: pubs← {remotePublishers : dzremoteP ublishers � dzExp ∨dzExp � dzremoteP ublishers}
7: maxDzSubs← getNextMaxDzSubs(dzExp) {⇒ get subscribers with next highest dzs}

8: unsubPacketData← createControllerPacket(receivedPacket)
9: for each remotePublisher ∈ pubs do

10: createAndSend(unsubPacketData, nodePortTupleremoteP ublisher)
11: sendSubscriptionRequest(maxDzSubs, nodePortTupleremoteP ublisher)
12: end for
13: else if localSubCount = 1 ∧ | rmSubs | = 1 then
14: rmSub← {rmSubs : | rmSubs | = 1}
15: maxDzSubs← getNextMaxDzSubs(dzExp) {⇒ get subscribers with next highest dzs}

16: pubs← {remotePublishers : dzremoteP ublishers � dzExp ∨ dzExp � dzremoteP ublishers}
17: unsubPacketData← createControllerPacket(receivedPacket)
18: if rmSub ∈ pubs then
19: createAndSend(unsubPacketData, nodePortTuplermSub)
20: sendSubscriptionRequest(maxDzSubs, nodePortTuplermSub)
21: end if
22: end if
23: decrementSubscriberCount(dzExp, sub)
24: end procedure

5.6.2 Remote Un-subscriptions

The remote un-subscription handling is very similar to the local one. As discussed earlier, a
subscription request from a remote controller is perceived as a request from a virtual subscriber

61

5 Distributed Control Algorithms

connected to the border switch-port tuple connecting the two concerned sub-networks. So,
on receiving an un-subscription request from a neighboring controller, the virtual subscriber
access point (node-port tuple to which it is connected) and dz-expression are identified. This
is followed by centralized un-subscription handling of the request from the virtual subscriber
resulting in pub/sub tree and flow modifications in the local network.

Algorithm 8 Remote Un-Subscription Handling
1: procedure removeRemoteSubscriber(dzExp, sub, receivedPacket)
2: removeSubscriber(dzExp, sub) {⇒ remove this subscriber from the corresponding pub/-

sub tree for flow modification}
3: localSubCount ← getLocalSubscriberCount(localSubscriberCounts, dzExp) {⇒ gets lo-

cal subscriber count for all dzs where dz � dzExp}
4: rmSubs← {remoteSubscribers : dzremoteSubscribers � dzExp}
5: if localSubCount = 0 ∧ | rmSubs | = 1 then
6: pubs← {remotePublishers : dzremoteP ublishers � dzExp ∨ dzExp � dzremoteP ublishers}

7: maxDzSubs← getNextMaxDzSubs(dzExp) {⇒ get subscribers with next highest dzs}

8: for each remotePublisher ∈ pubs do
9: if nodePortTupleremoteP ublisher 6= sub then

10: forward(receivedPacket, nodePortTupleremoteP ublisher)
11: sendSubscriptionRequest(maxDzSubs, nodePortTupleremoteP ublisher)
12: end if
13: end for
14: else if localSubCount = 0 ∧ | rmSubs | = 2 then
15: pubs← {remotePublishers : dzremoteP ublishers � dzExp ∨ dzExp � dzremoteP ublishers}
16: maxDzSubs← getNextMaxDzSubs(dzExp) {⇒ get subscribers with next highest dzs}

17: rmSub← {rmSubs : nodePortTuplermSub 6= sub}
18: if rmSub ∈ pubs then
19: forward(receivedPacket, nodePortTuplermSub)
20: sendSubscriptionRequest(maxDzSubs, nodePortTuplermSub)
21: end if
22: end if
23: removeRemoteSubscriber(dzExp, sub)
24: end procedure

Then, the same decisions regarding spreading of the un-subscription request are taken as
in the local cases and can be understood from the pseudo-code presented in Algo. 8. Here,
lines 11 and 20 take care of sending the new subscriptions to relevant remote controllers in
the function sendSubscriptionRequest(). However, care is taken to ensure that the controller
from which the un-subscription request has arrived (denoted by the switch-port tuple sub) is
never in the recipients list for the new subscriptions. Finally, the entry in remoteSubscribers

62

5.6 Un-Subscription Handling

Figure 5.18: Example of un-subscription handling

corresponding to the un-subscribed dz-expression and virtual subscriber (remote controller)
is removed.

In both algorithms, the arguments to the procedures are dzExp, denoting the un-subscribed
dz-expression, sub, denoting the switch-port tuple connecting the local/virtual subscriber
and receivedPacket, denoting the un-subscription message. An example of un-subscription
handling is illustrated in Fig. 5.18 where the order of respective requests are depicted. Finally
at time t4, S2 un-subscribes. As C2 views sub-network 1 as a relevant virtual publisher, the
request is sent to C1. C1 in turn forwards it to C0 as it views C0 as a relevant virtual
publisher. However, C1 identifies an existing subscription request from C3 which was covered
by the deleted subscription dz and was not sent to C0 earlier. As a result, the subscription
request is now sent to C0 to make sure that there is a path between publisher P0 and subscriber
S3 with respect to sub-space {001}.

All the algorithms discussed above contribute to establishing paths across sub-networks with
publishers as the sources and interested subscribers as the end nodes. There is no particular
controller with a global view of all complete paths but each controller may contribute to
establishing parts of a path related to its local network. The concept of treating the rest
of the network simply as a virtual publisher/subscriber makes it easier to establish/delete
flows on local switches. Complete paths are established/deleted by the collective effort of
the participating controllers of the network. All the algorithms presented in this chapter and
those discussed in the previous chapter contribute to a working prototype implementation of
a content-based pub/sub system using multiple controllers in software-defined networking.

63

Chapter 6

Analysis and Results
This chapter is dedicated to analyzing the design and implementation of the proposed system.
The study is done to understand the effects of the design on parameters such as controller
overhead, total control traffic, false positive rate etc. The analysis of the system with regards
to controller overhead and generated control traffic for varying number of controllers is further
supported by results obtained from performing experiments in a simulated network.

6.1 Test environment

The evaluations have been carried out in a Mininet[38, 39] environment on an i686 ma-
chine running Ubuntu 12.04 on a 2.00 GHz processor. Mininet uses the concept of OS-level
lightweight virtualization for network emulation. It provides a platform that allows users to
experiment with various topologies and application traffic. The same code can then be de-
ployed in a real-world setting. By leveraging Linux features, Mininet offers an extensible CLI
and API with the help of which an interactive and customizable software-defined network can
be created. So, the tests have been conducted on such a Mininet environment with different
number of instances of Floodlight controllers running on the same machine.

A ring-like topology created with 20 switches has been considered for the tests. Each switch
has a host connected to it which may play the role of a publisher or a subscriber. Two types of
data sets have been considered for advertisement and subscription requests. These data sets
have been generated using uniform and zipfian distributions and are three-dimensional. Two
different data sets have been used to understand the behavior of the system under different
scenarios. The advertisements and subscriptions have been randomly distributed between the
hosts of the network and the number of requests received per controller for different number
of controller instances leading to different network configurations has been measured and the
established flows have been recorded. For example, measurements were first taken in a single
network controlled by a single controller with 20 switches for a particular sequence of host
requests. This was followed by taking measurements for the same sequence of requests but with
the network divided into 2, 4 and so on partitions. The results obtained from the experiments
along with their relevance to various system performance metrics have been discussed in the
following sections.

65

6 Analysis and Results

6.2 Control Overhead

The main motivation towards extending centralized pub/sub using SDN is to achieve better
performance in terms of scalability. A centralized controller can potentially act as a bottleneck
and a single point of failure. With increasing network elements, the CPU of the controller
may be overloaded and/or system memory may be exhausted resulting in increased processing
latency. So, the entire idea is to distribute the load of a single controller between multiple
controllers.

This analysis is expected to address the following questions :

• How much knowledge about the full content-based routing topology is needed by a
controller?

• How much coordination is needed between controllers?

• How many controllers/sub-networks will yield the best performance depending on a
given event load and number of publishers and subscribers?

The design of the system ensures that a controller does not need to be aware of any details
about the rest of the network. It only needs to know about the elements of the local sub-
network assigned to it. Additionally, it needs to identify the border switch-port tuples in
its local sub-network that form gateways to the remote network. Such a design reduces the
overhead of a controller significantly as it does not need to take additional efforts to discover
the topology of the remaining part of the network. Also, a controller creates spanning trees
with incoming advertisement requests. In the case of centralized control, a single controller
needs to store in memory every spanning tree covering every switch in the network. Also, it
alone needs to establish all flows in every switch and store all these established flows so that
it can delete/modify them when necessary. It needs to store in memory the identity of every
publisher and subscriber along with their advertisement and subscription requests. With
increasing network size and increasing number of requests from hosts, storing and processing
such a lot of data may be overwhelming for a single controller resulting in increased processing
latency. Partitioning the network implies that spanning trees created at each controller are
smaller as they span across only the switches of the local network. Also, each controller is
responsible for all flows installed in only the switches of its local network. This allows each
controller to work autonomously within its local network and use different algorithms for
flow establishment/deletion. Even though the current implementation uses the centralized
algorithms of chapter 4 in every controller, nevertheless, the proposed distributed framework
supports autonomous behavior within the sub-networks. Covering-based routing also provides
an opportunity for each controller to be aware of only a subset of all host requests.

So, the design of the system addresses the first question regarding the amount of knowledge
about the whole topology that a controller needs to be aware of. The remaining two questions
have been addressed in the following discussions on average controller overhead and total

66

6.2 Control Overhead

control traffic which clearly indicate the amount of coordination required between controllers
along with the effect of partitioning on system performance.

6.2.1 Average Controller Overhead

Figure 6.1: Comparison between centralized and distributed control

In the centralized approach, the control messages consist of all request messages sent by
the hosts. In the distributed setting, there are mainly two categories of generated control
messages. These are messages generated by hosts and those generated by controllers to
share control information with other controllers. Even though this implies that the generated
traffic increases in the distributed approach, analysis shows that the average overhead at each
controller may reduce significantly on distributing the load. Earlier, every host request would
be sent to the only controller available in the system. But now, the host requests are primarily
sent only to the local controller which then takes a decision on sharing it with other controllers.
This becomes apparent from Fig. 6.1 where an advertisement request from P0 is handled by
C0 which then takes a decision to share it with C1. Similarly, a request from P1 is processed
by C1 and is also sent to C0. Now, a subscription from S0 is handled by C0 but not forwarded
to C1 as its corresponding sub-network does not have a publisher relevant to this subscription.
Similarly, a request from S1 is handled by C1 alone. So, the average number of control events
handled by each controller in this simple example is 3. In contrast, the centralized controller
has to handle 4 control messages. In this comparison, the average overhead at a controller
is marginally less in the distributed case. This difference is more meaningful and apparent
with increasing number of network elements and requests. However, determining the average
controller overhead in terms of average number of requests processed per controller is not
straightforward. There are a number of factors that influence this metric.

67

6 Analysis and Results

Figure 6.2: Average Controller Overhead (Advertisement)

Advertisement Overhead

Let us first consider the overhead generated by advertisements. Considering a simple adver-
tisement flooding approach in a network divided into n partitions by n controllers, the average
controller overhead(ACO) on arrival of an advertisement request is as follows :

ACO = Total number of generated messages (n)
number of controllers (n)

= 1 (6.1)

(6.1) implies that in case of general flooding of advertisements, every controller receives and
processes a request and the number of controllers in the system does not affect ACO. However,
the proposed design is based on a covering-based approach. As a result, the equation needs
to be extended to allow a parameter defining the covering relationship. Let event C represent
the situation where the newly generated advertisement is equivalent to or covered by one
or more already existing remote/local advertisements at the controller. Here, we generally
consider that the advertisement is no longer shared with every controller even if a single match
is obtained. Assuming the probability of occurrence of C to be P (C), the previous equation
can be extended as follows :

ACO = P (C) ∗ 1
n

+ (1− P (C)) ∗ n
n

= 1− P (C)(1− 1
n

) (6.2)

(6.2) indicates that the average controller overhead changes with the number of controllers in
the system for certain probability of occurrences of C. Here, the best case and the worst case
scenarios for ACO are as follows :

68

6.2 Control Overhead

The best case happens when there is a match at the controller for the received advertisement
which can be represented as P(A) = 1. Under such circumstances, the advertisement is not
shared with any other controller and the average controller overhead is :

ACO = 1− 1 ∗ (1− 1
n

) = 1
n

The worst case occurs when there is no match, i.e., P(C) = 0 :

ACO = 1− 0 ∗ (1− 1
n

) = 1

Fig. 6.2 plots ACO when P(C) is varied between 0 and 1 for networks controlled by 1, 2 and
4 controllers. The plots clearly indicate that the average controller overhead decreases with
increased partitioning. The best case and worst case scenarios can be easily identified in the
graphs as well.

Un-advertisement Overhead

One may expect that an un-advertisement contributes to the overhead as much as its cor-
responding advertisement as an un-advertisement needs to be sent exactly along the paths
followed by the corresponding advertisement in order to cancel its existence throughout the
network. So, intuitively, the ACO equation for un-advertisement should be identical to (6.2).
However, the existence of previously covered requests at a controller also contributes to the
average controller overhead during un-advertisements. This is because an un-advertisement
may trigger the generation of one or more advertisement requests. Let D denote the event
representing the existence of one or more advertisements that were previously covered by an
advertisement which currently needs to be cancelled. Let E(D) be the expected value of D.
Again, C denotes the event representing a match. So, if another matching advertisement
exists, then the un-advertisement is not shared with its neighbors. Otherwise, not only is the
un-advertisement request shared with all other controllers, but also all covered advertisements
are shared with the same. So, the previous equation can be extended as follows :

ACO = P (C) ∗ 1
n

+ (1− P (C))[n
n

+ E(D) ∗ n− 1
n

]

= 1 + (1− 1
n

)[E(D)(1− P (C))− P (C)] (6.3)

Again, the best case scenario is when P(C) = 1. Under these circumstances, the number of
covered advertisements makes no difference to the average controller overhead.

ACO = 1 + (1− 1
n

)[E(D) ∗ (1− 1)− 1] = 1
n

When there is no match for the received request, i.e., P(C) = 0, the number of covered
advertisements at a controller determines ACO. If no covered dzs are present, then the ACO

69

6 Analysis and Results

value is independent of the number of partitions. On the other hand, every advertisement
stored at the controller may have to be shared. So, the worst case scenario depends on E(D).

ACO = 1 + (1− 1
n

)[E(D) ∗ (1− 0)− 0] = 1 + E(D)(1− 1
n

)

Fig. 6.3 depicts ACO for a constant value of E(D) (E(D) = 1) when P(C) is varied between

Figure 6.3: Average Controller Overhead (Un-advertisement)

0 and 1 for networks controlled by 1, 2 and 4 controllers. This portrays the various values
that ACO can have between the best and worst cases for E(D)=1. For un-advertisements, it
is clear from the plots that for P(C) < 0.5, increased partitioning increases average controller
overhead if E(D)=1 and for P(C) > 0.5, increased partitioning decreases average controller
overhead. However, it must be noted that these values are strictly applicable for the considered
value of E(D). For, example, if E(D) = 0, then the worst case value for a network with any
number of controllers is always 1.

Subscription Overhead

Controller overhead caused by subscription requests are very similar to that caused by adver-
tisements. However, another parameter needs to be considered before forwarding subscrip-
tion requests. This thesis does not follow subscription flooding and subscriptions are only
forwarded to remote controllers that are viewed as relevant virtual publishers by the local
controller. So, let A be an event representing the existence of one or more relevant publishers
in the remote network. Let P(A) be the probability of occurrence of A. Again, on the event
of a match, the subscription is no longer shared but if no match is found, then the request
is shared depending on the existence of relevant publishers represented by P(A). Then, (6.2)

70

6.2 Control Overhead

can be extended for subscriptions as follows :

ACO = P (C) ∗ 1
n

+ (1− P (C))[P (A) ∗ n
n

+ (1− P (A)) ∗ 1
n

]

= 1
n

+ P (A)(1− P (C))(1− 1
n

) (6.4)

Clearly, even in (6.4), the average controller overhead changes with the number of controllers
for certain probability of occurrences of C and A. The best case and the worst case scenarios
depend on whether or not there is a match. If a match is not found, the worst case scenario
occurs when a relevant publisher exists in the system for which the subscription has to be
sent to every other controller.

Best case : P(C) = 1, P(A) = {x : x ∈ [0 to 1]}

ACO = 1
n
− x ∗ (1− 1)(1− 1

n
) = 1

n

Worst case : P(C) = 0 , P(A) = 1

ACO = 1
n
− 1(1− 0)(1− 1

n
) = 1

The above equation indicates that there are three factors affecting ACO due to a subscription.

Figure 6.4: Average Controller Overhead (Subscription)

So, Fig. 6.4 keeps the value of P(A) constant at 1 and plots ACO along P(C) for networks
controlled by 1, 2 and 4 controllers. With P(A) = 1, these graphs become similar to the
ones representing advertisement overhead. Here too, the overhead decreases with increased
partitioning. However, with decreasing value of P(A), the overhead decreases further till the
value 1/n, beyond which it cannot decrease.

71

6 Analysis and Results

Un-subscription Overhead

Figure 6.5: Average Controller Overhead (Un-subscription)

Again, intuitively, the ACO equation for un-subscription should be identical to (6.4). How-
ever, as in the case with un-advertisement, the existence of previously covered requests at a
controller once again contributes to the average controller overhead during un-subscription.
Let D denote the event representing the existence of one or more subscriptions that were
previously covered by a subscription which currently needs to be cancelled. So, let E(D) be
the expected value of D. Here, on the event of a match, the request is not shared with any
neighboring controller. However, if no match occurs, then the existence of a relevant publisher
is considered. If such publishers exist then not only is the un-subscription message propagated
to relevant controllers, but also all covered subscriptions are forwarded to the same remote
controllers. So, the previous equation can be extended as follows :

ACO = P (C) ∗ 1
n

+ (1− P (C))[P (A)(n
n

+ E(D) ∗ n− 1
n

) + (1− P (A)) ∗ 1
n

]

= 1
n

+ (1− P (C))(1− 1
n

)[P (A)(1 + E(D))] (6.5)

Using (6.5), the best and worst case scenarios are as follows :

As before, the best case scenario is when a match occurs. In this case, the number of covered
subscriptions and the existence of relevant remote publishers make no difference to the average
controller overhead. So, when P(C) = 1, P(A) = {x : x ∈ [0 to 1]}, then

ACO = 1
n

+ (1− 1)(1− 1
n

)[x ∗ (1 + E(D))] = 1
n

However, when there is no match for the received request, i.e., P(C) = 0 and there exist rele-
vant publishers, i.e., P(A) = 1, the number of covered subscriptions at a controller determines

72

6.2 Control Overhead

ACO. In the worst case, all subscriptions at the controller may need to be forwarded to every
other controller. So, the worst case scenario depends on E(D).

ACO = 1
n

+ (1− 0)(1− 1
n

)[1 ∗ (1 + E(D))] = 1 + E(D) ∗ (1− 1
n

)

In an un-subscription, ACO depends on four parameters. So, Fig. 6.5 considers the value of
P(A) to be 1, the value of E(D) to be 1 and plots ACO along P(C) for networks controlled
by 1, 2 and 4 controllers. The best case and worst case scenarios can be determined from
the graphs. Again, before a particular value of P(C), the overhead increases with increased
partitioning and beyond this value it decreases with increasing number of controllers. It should
be noted that the graphs change significantly with varying values of P(A) and E(D).

Influencing Factors

It is quite clear from the above equations that various factors influence the number of requests
received by each controller in a distributed setting. All these factors are listed below.

• The existence of a match for the received advertisement/subscription request denoted
by C in the equations above is one of the most important parameters to be considered.
Here, a match represents equivalence or covering relation. C includes a match with one
or more existing local or remote requests at a controller. However, it should be noted
that a particular match has been approximated and treated in the same way as the
others in the equations above for the sake of simplicity. This is the case where only
one other remote controller request exists which matches the current request. Under
such circumstances, other than the host request received at the controller, an additional
controller generated request may also be sent to the aforementioned remote controller.

• The existence of one or more remote publisher relevant to an unmatched subscription
request plays an important role during subscription/un-subscription handling. Such an
occurrence has been represented by event A in (6.4) and (6.5).

• Not only the existence of relevant remote publishers, but also their locations in the
network are important while dealing with subscriptions/un-subscriptions. This deter-
mines the remote controllers to which a subscription/un-subscription request needs to
be forwarded.

• The existence of previously covered requests at a controller also contributes to the
average controller overhead during un-subscriptions and un-advertisements. This is
because an un-subscription/un-advertisement may trigger the generation of one or more
subscription/advertisement requests. Such an event is represented with D in (6.3) and
(6.5).

• Lastly, the formulated equations clearly indicate that the value of ACO depends on the
number of partitions/controllers(n) in the network and the positions of publishers and
subscribers in the different partitions.

73

6 Analysis and Results

It should be noted that the aforementioned equations do not portray all complex scenarios
for the sake of simplicity.

The equations relevant to advertisement and subscription clearly point out that increased
partitioning improves the average controller overhead except for the worst case when parti-
tioning has no effect. However, the best case and worst case values for un-advertisements
and un-subscriptions determine that they may in certain scenarios reduce average controller
overhead or may increase it in certain others. So, the aforementioned equations indicate that
different types of events contribute differently to the average controller overhead depending
on the listed factors. Different sequences of events would lead to different scenarios resulting
in different ACO values. So, determining the number of controllers to be used in a particular
system in order to reap maximum benefits with respect to controller overhead is not definite
and would vary based on request sources and event sequences. However, to get an idea of the
effect of the number of controllers on the average controller overhead in a particular setting,
experiments have been conducted in a simulated network.

Experimental Results

Figure 6.6: Average Controller Overhead (uniform distribution)

The environment setup, topology and data sets used have already been discussed before in
section 6.1. In such a setting, the average controller overhead is measured when the selected
network is divided into increased number of partitions. The same tests have been repeated on
a network controlled by varying number of controllers. Fig. 6.6 presents normalized graphs

74

6.2 Control Overhead

depicting average controller overhead for 100, 200 and 400 subscriptions generated using
uniform distribution when the number of controller instances is gradually increased. So, the
x-axis depicts the number of controllers and the y-axis stands for the normalized average
controller overhead. For each subscription set depicted in blue, red and green, the average
controller overhead reduces with increasing number of controllers. For example, the figure
demonstrates that by distributing the control between two controllers, a benefit of around
45% as compared to the centralized control was achieved when the system was tested with
400 subscriptions. This benefit increases further by around 25% when 4 controllers are used
as shown in the graph and so on. The normalization has been done to compare the benefits of
partitioning when different number of subscriptions is used. It is visible from the figure that
if the number of subscriptions is significantly increased, the benefit of partitioning increases
as well. This further supports the above equations as with more number of subscriptions,
the probability of a match at the local controller also increases. This means that gradually
lesser number of subscriptions needs to be shared with remote controllers because of covering-
based routing. As a result, the depicted graph for 400 subscriptions shows higher benefits
with increased partitioning than the graph for 200 subscriptions which again displays higher
benefits as compared to the graph for 100 subscriptions.

Figure 6.7: Average Controller Overhead (zipfian distribution)

Fig. 6.7 presents normalized graphs depicting average controller overhead for 100, 200
and 400 subscriptions generated using zipfian distribution when the number of controller
instances is gradually increased. The x-axis and y-axis bear the same meaning as before. Even
for this distribution, for each subscription set depicted in blue, red and green, the average
controller overhead reduces with increasing number of controllers. In fact, this time, the figure

75

6 Analysis and Results

demonstrates that by distributing the control between two controllers, a benefit of around
47% as compared to centralized control was achieved when the system was tested with 400
subscriptions. This benefit increases further with more and more partitioning of the network.
For the same reasons mentioned above, the depicted graph for 400 subscriptions reduces more
rapidly with increased partitioning than the graph for 200 subscriptions which again reduces
more rapidly as compared to the graph for 100 subscriptions for zipfian distribution as well.

It should be noted that the graphs presented above are simply examples of the behavior of a
particular system to a particular sequence of events. The results obtained from the conducted
experiments largely support the presented analysis.

6.2.2 Total Control Traffic

In the distributed setting, messages generated by hosts and those generated by controllers
contribute to the total control traffic as compared to those generated only by hosts in the
centralized approach. So, even though the distributed pub/sub may perform better in terms
of scalability, it clearly generates more control traffic due to the additional controller requests
used for communication between controllers. So, with increased partitioning, the total control
traffic would also increase. The total generated control traffic(TCT) can be represented with
equations simply by using the above equations for average controller overhead. The best case
and worst case values for each request type have also been presented.

Advertisement Overhead

Using the same argument as in average controller overhead analysis (6.2), TCT generated by
an advertisement request can be represented as follows :

TCT = P (C) ∗ 1 + (1− P (C)) ∗ n
= n− P (C)(n− 1) (6.6)

Here, event C bears the same meaning as above.

Best case : P(C) = 1

ACO = n− 1 ∗ (n− 1) = 1

Worst case : P(C) = 0

ACO = n− 0 ∗ (n− 1) = n

Fig. 6.8 depicts generated traffic with varying values of P(C) when 1, 2 and 4 controllers
control the network. The best case and worst case values are clear from the figure. The figure
also indicates that increased partitioning increases control traffic.

76

6.2 Control Overhead

Figure 6.8: Total Control Traffic (Advertisement)

Figure 6.9: Total Control Traffic (Un-advertisement)

77

6 Analysis and Results

Un-advertisement Overhead

The equation relevant to an un-advertisement can be derived from equation (6.3) and can be
presented as follows :

TCT = P (C) ∗ 1 + (1− P (C))[n+ E(D) ∗ (n− 1)]
= n+ (n− 1)[E(D)(1− P (C))− P (C)] (6.7)

Here, along with event C, event D also bears the same meaning as above.

Best case : P(C) = 1

TCT = n+ (n− 1)[E(D) ∗ (1− 1)− 1] = 1

Worst case : P(C) = 0

TCT = n+ (n− 1)[E(D)(1− 0)− 0] = n+ E(D) ∗ (n− 1)

Fig. 6.9 portrays TCT with varying values of P(C) when 1, 2 and 4 controllers control the
network and E(D) has a constant value of 1. The best case and worst case values for the
3 scenarios and the selected constant value of E(D) are clear from the graphs. The plots
show that for E(D) = 1 un-advertisement increases control traffic further as compared to
the control traffic generated for an advertisement. Also, the worst case is unbounded as it
depends on the value of E(D).

Subscription Overhead

Figure 6.10: Total Control Traffic (Subscription)

78

6.2 Control Overhead

The following equation formulates the total control traffic generated by a subscription request
and can be derived from (6.4).

TCT = P (C) ∗ 1 + (1− P (C))[P (A) ∗ n+ (1− P (A)) ∗ 1]
= 1 + P (A)(1− P (C))(n− 1) (6.8)

Again, events C and A mean the same as above.

Best case : P(C) = 1, P(A) = {x : x ∈ [0 to 1]}

TCT = 1 + x ∗ (1− 1)(n− 1) = 1

Worst case : P(C) = 0 , P(A) = 1

TCT = 1 + 1 ∗ (1− 0)(n− 1) = n

Fig. 6.10 plots TCT along P(C) when the network is divided into 1, 2 and 4 partitions and a
constant value of P(A) = 1. The best and worst case scenarios can be determined from the
figure as well. It is visible from the graphs that increased partitioning increases control traffic
except for the best case.

Un-Subscription Overhead

Figure 6.11: Total Control Traffic (Un-subscription)

Finally, the equation relevant to un-subscription may be derived from (6.5) as follows :

TCT = P (C) ∗ 1 + (1− P (C))[P (A)(n+ E(D) ∗ (n− 1)) + (1− P (A)) ∗ 1]
= 1 + (n− 1)(1− P (C))[P (A)(1 + E(D))] (6.9)

79

6 Analysis and Results

Events C, A and D have the same meaning as before.

Best case : P(C) = 1, P(A) = {x : x ∈ [0 to 1]}

TCT = 1 + (n− 1)(1− 1)[x ∗ (1 + E(D))] = 1

Worst case : P(C) = 0 , P(A) = 1

TCT = 1 + (n− 1)(1− 0)[1 ∗ (1 +m ∗ 1)] = n+ E(D) ∗ (n− 1)

In an un-subscription, even TCT depends on four parameters. So, Fig. 6.11 keeps the value
of P(A) constant at 1, the value of E(D) constant at 1 and plots TCT along P(C) when the
network is divided into 1, 2 and 4 partitions. Again, the best case and worst case scenarios
for such a setting are clear from the figure as is the fact that except for the best case, in
all other scenarios increased partitioning increases control traffic. Also, un-subscription may
contribute to the total control traffic more than a subscription does.

Experimental Results

Figure 6.12: Total Control Traffic (uniform distribution)

It is quite clear from the equations above that except for the best case, in each type of request,
control traffic increases with increasing number of controllers. The experiments performed
confirm this fact where again the same test environment is used. In the following graphs the
total control traffic is plotted on the y axis with the number of controllers along x-axis.

80

6.2 Control Overhead

Figure 6.13: Total Control Traffic (zipfian distribution)

Fig. 6.12 plots the total control traffic for 100, 200 and 400 subscriptions generated using
uniform distribution. In each case, the traffic increases with increasing number of controllers.
The graphs are again normalized to compare the behavior of the system in all three cases. As
expected, the comparative increase in control traffic for 400 subscriptions is lesser than 200
subscriptions which in turn is lesser than 100 subscriptions. The reason behind this is that
with more number of subscriptions, the probability of a match is also more. This results in
less number of controller messages being shared between remote controllers.

The graphs for zipfian distribution are depicted in Fig. 6.13. Even for this distribution,
for each subscription set depicted in blue, red and green, the total control traffic increases
with increasing number of controllers. For the same reasons discussed in uniform distribution,
here too the graph for 100 subscriptions grows more rapidly, followed by the graph for 200
subscriptions and finally the one for 400 subscriptions.

So, the results indicate that partitioning of the network should be done according to band-
width constraints and performance requirements of the system in question. Increased number
of controllers may result in a lower average controller overhead, but it may result in very high
control traffic. So, both these parameters should be considered before taking a decision on
the total number of controllers to be used in the system. Finally, it can be concluded that
addressing the question on the number of controllers to be used in the system is not straight-
forward. It cannot be generalized and depends on all the factors influencing it as pointed out
in this chapter.

81

6 Analysis and Results

6.3 Other Performance Metrics

All discussions carried out in this chapter up till now have been related to the control messages.
However, this section deals with system performance with respect to events/notifications/pub-
lications.

False positives are notifications which are delivered to a subscriber which is not interested
in receiving them. Moreover, false positive rate(FPR) may be defined as follows :

FPR = Number of false positives

Total number of notifications received
∗ 100

The performance of the present system with respect to false positive rate is similar to that
of the system with a single controller implemented by Mishra. The reason behind this is
that both approaches represent the content-space in the same way as presented by Tariq et
al.[5]. Also, both carry out header-based mapping using remaining 23 bits of an IPv4 address
for representing the dz expression. Clearly, distributing the control logic between multiple
controllers has no effect on the false positive rate due to data representation. So, the behavior
of the system with respect to false positives is similar to the centralized implementation
and can be referred to in [10]. Experimental results in [10] indicate that false positive rate
decreases with increasing dz-length. Mishra argues that with increasing dz-expression length,
the granularity of event sub-spaces also increase which results in decreased false positives.
However, in this scheme, only 23 bits are available for dz-expression representation. So, dz-
expressions that differ after 23 bits cannot be differentiated. For example, if a subscription is
represented as {<23 bits>0}, then its subscriber may receive events corresponding to the sub-
space {<23 bits>1} where the first 23 bits of the event are identical to that of the subscription.
The restriction imposed on the dz size is the root cause of this problem. However, it is
important to note that as was the case in the centralized algorithms, here too no false positives
are additionally introduced by the system implementation with respect to dz-expressions, i.e.,
if a subscription is assigned dz say dzExp, it will never receive an event which does not belong
to the sub-space dzExp. Finally, it can be concluded that partitioning the network has no
effect on false positive rate.

False negatives are events that are not delivered to a subscriber which has expressed its
interest in receiving them. Needless to say, the aim of any pub/sub system is to keep this
performance metric to a minimum. So, ideally, a subscriber should eventually receive any
event e published after at most time period δ from the time the subscriber generates a sub-
scription s where e < s. The design of the present system ensures that paths are established
between every publisher and all its relevant subscribers across sub-networks irrespective of
the partitions in the network. Flow establishment operations within each local network and
exchange of control information between controllers maintains connectivity between publish-
ers and relevant subscribers. So, one can argue that partitioning has no effect on connectivity
in the network.

82

6.3 Other Performance Metrics

The current system enables line-rate forwarding of published events. However, an anal-
ysis of the effect of partitioning on end-to-end delay and bandwidth usage of events is not
straightforward as this depends on many factors such as complexity of the network topology,
the manner in which network has been partitioned, the optimization algorithms used locally
etc. However, one can argue that in a strictly acyclic topology, partitioning does not have
any effect on the bandwidth usage of events as due to the acyclic nature of the network, there
always exists a single path between two hosts. As a result, the established paths are identical
irrespective of the number of partitions in the system.

Figure 6.14: Example flows on switches when network has 2 controllers

The aforementioned arguments can be further supported by experiments conducted in the
same environment as stated above. Here, a strictly acyclic topology of 20 switches each con-
nected to a host was considered and 200 subscriptions generated from zipfian distribution were
divided randomly among hosts. Then, the network was gradually partitioned among different
number of controllers and the same experiment was repeated with the same requests with each
network configuration. Results showed that for such an acyclic topology, partitioning has no
effect on the flows and the same flows were installed in every scenario. For example, Fig.
6.14 illustrates an overview of the flows installed at the switches of each sub-network when
the network was divided into 2 partitions of 10 switches each. Again, Fig. 6.15 illustrates

83

6 Analysis and Results

Figure 6.15: Example flows on switches when network has 4 controllers

84

6.3 Other Performance Metrics

the same when the network was divided into 4 partitions of 5 switches each. In both cases,
each switch has the exact same flows irrespective of the partition it belongs to. This indicates
that the published events would follow the same paths in both scenarios. The identical flows
in this simple set of experiments further confirm the earlier arguments that partitioning does
not have any effect on connectivity and false positive rates.

85

Chapter 7

Conclusion and Future Work
This thesis presented a content-based pub/sub system implemented at the network layer
that uses the power of software-defined networking for scalable event dissemination. The
design enables spatial partitioning of the network between multiple controllers where each
controller does not need to maintain information regarding the remaining part of the topology,
reducing overhead significantly. The proposed distributed framework incorporates existing
centralized algorithms providing in-network filtering by using the capabilities of SDN. The
framework provides each controller with the flexibility of using independent optimization
algorithms within their local sub-networks. However, establishing routes between hosts of each
local subnet is not enough as state information must be shared among controllers to ensure
connectivity between publishers and subscribers spread across sub-networks. So, the system
provides simple means for coordination between controllers and tries to reduce unnecessary
bandwidth usage required for the same. This is achieved by employing a covering-based
routing strategy and avoiding subscription flooding. The presented solution takes advantage
of all the performance benefits of an implementation on the network layer through line-rate
forwarding of events as well as the benefits of distributed control in terms of scalability.

The distributed control algorithms were discussed in details along with an analysis of the
same. Experiments were conducted on a simulated network which confirmed the intuitions
regarding the average controller overhead and total traffic generated on distributing control.
The evaluations were mainly done to identify the behavior of the system with increased par-
titioning. The experiments showed that average controller overhead may be greatly reduced
with increased partitioning, but it comes with a price. With increasing number of controllers,
the generated control traffic also increases which affects bandwidth efficiency. So, it can be
concluded that deciding on the number of partitions which yields maximum performance ben-
efits cannot be generalized as it depends on various factors and also system requirements.
Besides these, the performance of a system with distributed controllers with respect to false
positive rate and connectivity were analyzed and it was concluded that partitioning has no
significant effect on them. It was also inferred that for a strictly acyclic network topology,
the bandwidth usage of a set of published events does not differ with increased network par-
titioning.

As is true in most cases, there is always room for improvements and enhancements in any
design and the proposed design is no exception to this. One such enhancement would be to get

87

7 Conclusion and Future Work

rid of the acyclic peer-to-peer topology constraint and extend the system to support general
peer-to-peer topology. Also, along with general peer-to-peer, other interconnection topologies
like hierarchical and hybrid may be implemented using SDN and their performances can be
compared with the proposed system. Also, load balancing features can be introduced in the
system by monitoring the traffic across each link. This may result in reconfiguration of paths.
However, the feasibility of such an extension should be determined along with the incurred
costs associated with traffic monitoring and reconfiguration.

The presented design spatially partitions the network in order to distribute control. How-
ever, control distribution can be done in various other ways. One such method would be to
identify the tasks and divide them between a distributed set of controllers. Also, the proposed
design assumes a fault-free system. However, all network elements run the risk of failure. So,
fault tolerance may be incorporated to add robustness to the system. Additionally, identifying
quality of service attributes relevant to the system and evaluating them in realistic settings
may prove to be useful.

Moreover, the current system uses Openflow 1.0 which only supports IPv4 addresses. This
imposes a constraint on the system as only 23 bits are available for the dz-expressions which
in turn impose a restriction on the maximum allowable dz-expression size. This results in
increase in false positives. So, in future, the same system can be extended to use IPv6 addresses
with versions of Openflow supporting IPv6. The proposed distributed algorithms also provide
means to use more optimized algorithms for route calculations within local sub-networks which
can further improve the performance of the proposed design. So, the distributed framework
can incorporate other centralized algorithms providing in-network filtering.

Finally, it should be noted that all tests have been conducted in a simulated network using
Mininet. So, in future, experiments can be conducted using real infrastructure with real
network elements. The evaluations done in this thesis were limited by the simulated network.
In a realistic setting, many other performance metrics can be successfully analyzed. Also,
synthetic data was used for the experiments which can be replaced with more meaningful real
world data.

88

Bibliography
[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-area

event notification service,” ACM Trans. Comput. Syst., vol. 19, pp. 332–383, Aug. 2001.

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of
publish/subscribe,” ACM Comput. Surv., vol. 35, pp. 114–131, June 2003.

[3] J. A. Briones, B. Koldehofe, and K. Rothermel, “Adaptive Publish/Subscribe for Wireless
Mesh Networks,” Studia Informatika Universalis, vol. 7, no. 3, pp. 320–353, 2009.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A large-scale
and decentralized application-level multicast infrastructure,” IEEE Journal on Selected
Areas in Communications (JSAC), vol. 20, no. 8, pp. 1489–1499, 2002.

[5] M. A. Tariq, B. Koldehofe, G. G. Koch, I. Khan, and K. Rothermel, “Meeting subscriber-
defined QoS constraints in publish/subscribe systems,” Concurrency and Computation:
Practice and Experience, vol. 23, pp. 2140–2153, Dec. 2011.

[6] M. A. Tariq, B. Koldehofe, G. G. Koch, and K. Rothermel, “Providing Probabilistic
Latency Bounds for Dynamic Publish/Subscribe systems,” in KiVS, pp. 155–166, 2009.

[7] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander, “LIPSIN:
line speed publish/subscribe inter-networking,” in Proceedings of the ACM SIGCOMM
2009 conference on Data communication, SIGCOMM ’09, (New York, NY, USA),
pp. 195–206, ACM, 2009.

[8] Wikipedia, “Software-defined networking – wikipedia..” http://en.wikipedia.org/
wiki/Software-defined_networking, [Accessed : October, 2013].

[9] B. Koldehofe, F. Dürr, M. A. Tariq, and K. Rothermel, “The power of software-defined
networking: line-rate content-based routing using Openflow,” in Proceedings of the 7th
Workshop on Middleware for Next Generation Internet Computing, MW4NG ’12, (New
York, NY, USA), pp. 3:1–3:6, ACM, 2012.

[10] G. B. Mishra, “Providing in-network content-based routing using OpenFlow,” Master’s
thesis, Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstech-
nik, Germany, June 2013.

[11] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Challenges for distributed event ser-
vices: Scalability vs. expressiveness,” in Engineering Distributed Objects ’99, May 1999.

89

 http://en.wikipedia.org/wiki/Software-defined_networking
 http://en.wikipedia.org/wiki/Software-defined_networking

Bibliography

[12] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The design and performance of a real-
time CORBA event service,” in Proceedings of the 12th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, OOPSLA ’97, (New
York, NY, USA), pp. 184–200, ACM, 1997.

[13] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen, “The Information Bus: an architecture
for extensible distributed systems,” in Proceedings of the fourteenth ACM symposium on
Operating systems principles, SOSP ’93, (New York, NY, USA), pp. 58–68, ACM, 1993.

[14] TIBCO Inc., “TIB/rendezvous. White Paper.” http://www.rv.tibco.com/, 1999.

[15] G. Mühl, “Generic Constraints for Content-Based Publish/Subscribe,” in Proceedings
of the 9th International Conference on Cooperative Information Systems, CooplS ’01,
(London, UK), pp. 211–225, Springer-Verlag, 2001.

[16] G. Mühl, Large-Scale Content-Based Publish-Subscribe Systems. PhD thesis, TU Darm-
stadt, November 2002.

[17] P. R. Pietzuch, A scalable event-based middleware. PhD thesis, University of Cambridge,
June 2004.

[18] IBM TJ Watson Research Center, “Gryphon : Publish/Subscribe over Public Networks.”
http://researchweb.watson.ibm.com/gryphon/Gryphon, 2001.

[19] A. K. Y. Cheung and H.-A. Jacobsen, “Load Balancing Content-Based
Publish/Subscribe Systems,” ACM Trans. Comput. Syst., vol. 28, pp. 9:1–9:55,
Dec. 2010.

[20] M. A. Tariq, G. G. Koch, B. Koldehofe, I. Khan, and K. Rothermel, “Dynamic publish/-
subscribe to meet subscriber-defined delay and bandwidth constraints,” in Proceedings of
the 16th international Euro-Par conference on Parallel processing: Part I, EuroPar’10,
(Berlin, Heidelberg), pp. 458–470, Springer-Verlag, 2010.

[21] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. V. Steen, “Sub-2-Sub: Self-Organizing
Content-Based Publish Subscribe for Dynamic Large Scale Collaborative Networks,” in
IPTPS’06: the fifth International Workshop on Peer-to-Peer Systems, 2006.

[22] M. A. Tariq, B. Koldehofe, G. G. Koch, and K. Rothermel, “Distributed spectral cluster
management: a method for building dynamic publish/subscribe systems,” in Proceedings
of the 6th ACM International Conference on Distributed Event-Based Systems, DEBS
’12, (New York, NY, USA), pp. 213–224, ACM, 2012.

[23] A. Majumder, N. Shrivastava, R. Rastogi, and A. Srinivasan, “Scalable Content-Based
Routing in Pub/Sub Systems,” in INFOCOM, 2009.

[24] O. Papaemmanouil, “SemCast: Semantic multicast for content-based data dissemina-
tion,” in ICDE, pp. 242–253, 2005.

90

 http://www.rv.tibco.com/
 http://researchweb.watson.ibm.com/gryphon/Gryphon

Bibliography

[25] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang, “Clustering Algorithms for Content-
Based Publication-Subscription Systems,” in Proceedings of the 22 nd International Con-
ference on Distributed Computing Systems (ICDCS’02), ICDCS ’02, (Washington, DC,
USA), pp. 133–142, IEEE Computer Society, 2002.

[26] SDNCentral, “SDN Use Cases.” http://www.sdncentral.com/sdn-use-cases/, [Ac-
cessed : October, 2013].

[27] W. Segall and D. Arnold, “Elvin Has Left the Building: A Publish/Subscribe
Notification Service with Quenching,” in Proceedings of the 1997 Australian UNIX Users
Group, Brisbane, Australia, 1997.

[28] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, “Content Based Routing
with Elvin4,” in Proceedings of AUUG2K, 2000.

[29] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra, “Matching
events in a content-based subscription system,” in Proceedings of the eighteenth annual
ACM symposium on Principles of distributed computing, PODC ’99, (New York, NY,
USA), pp. 53–61, ACM, 1999.

[30] G. Banavar, T. Ch, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman, “An
efficient multicast protocol for content-based publish-subscribe systems,” pp. 262–272,
1999.

[31] G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI Event-Based Infrastructure and
Its Application to the Development of the OPSS WFMS,” IEEE Trans. Softw. Eng.,
vol. 27, pp. 827–850, Sept. 2001.

[32] Z. Jerzak and C. Fetzer, “Prefix forwarding for publish/subscribe,” in Proceedings of the
2007 inaugural international conference on Distributed event-based systems, DEBS ’07,
(New York, NY, USA), pp. 238–249, ACM, 2007.

[33] Wikipedia, “Bloom filter - wikipedia.” http://en.wikipedia.org/wiki/Bloom_filter,
[Accessed : October, 2013].

[34] B. Koldehofe, F. Dürr, and M. A. Tariq, “Event-based Systems Meet Software-defined
Networking,” in Proceedings of the 7th ACM International Conference on Distributed
Event-Based Systems (DEBS), pp. 649–671, John Wiley & Sons, Ltd., June 2013.

[35] Wikipedia, “Classless Inter-Domain Routing – wikipedia..” http://en.wikipedia.org/
wiki/Classless_Inter-Domain_Routing, [Accessed : October, 2013].

[36] Wikipedia, “Open Shortest Path First – wikipedia..” http://en.wikipedia.org/wiki/
Open_Shortest_Path_First, [Accessed : October, 2013].

[37] Wikipedia, “Breadth-first search - wikipedia..” http://en.wikipedia.org/wiki/
Breadth-first_search, [Accessed : October, 2013].

[38] Mininet, “Mininet Network Simulator.” http://mininet.org/, [Accessed : October,
2013].

91

 http://www.sdncentral.com/sdn-use-cases/
http://en.wikipedia.org/wiki/Bloom_filter
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://en.wikipedia.org/wiki/Open_Shortest_Path_First
http://en.wikipedia.org/wiki/Open_Shortest_Path_First
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
 http://mininet.org/

Bibliography

[39] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, Hotnets-IX, (New York, NY, USA), pp. 19:1–19:6, ACM, 2010.

92

	Abstract
	Introduction
	Thesis Organization

	Background
	Principles of Publish/Subscribe Paradigm
	Types of Pub/Sub based on Subscription Models

	Software-Defined Networking
	Pub/Sub using Controller/s in SDN

	Line-rate Performance at Large Scale
	State-of-the-Art
	Elvin
	Gryphon
	SIENA
	JEDI
	Prefix Forwarding for Publish/Subscribe
	LIPSIN
	Event-based Systems Meet SDN

	Problem Statement

	Centralized Control Algorithms
	Content Representation and Event Matching
	Content-Based Filtering and Routing
	Advertisement Handling
	Subscription Handling
	Un-subscription Handling
	Un-advertisement Handling

	Distributed Control Algorithms
	Problems
	General Design Concepts
	Pub/Sub Traffic
	Communication between Controllers
	Incorporating Centralized Control Algorithms
	State Information at a Controller
	Interconnection Topology

	Advertisement Handling
	Local Advertisements
	Remote Advertisements

	Subscription Handling
	Local Subscriptions
	Remote Subscriptions

	Un-Advertisement Handling
	Local Un-advertisements
	Remote Un-advertisements

	Un-Subscription Handling
	Local Un-subscriptions
	Remote Un-subscriptions

	Analysis and Results
	Test environment
	Control Overhead
	Average Controller Overhead
	Total Control Traffic

	Other Performance Metrics

	Conclusion and Future Work
	Bibliography

