Institute of Architecture of Application Systems
University of Stuttgart
UniversitatsstraBBe 38

D-70569 Stuttgart

Master Thesis No. 3506

Extending an Open Source Enterprise
Service Bus for SQL Statement
Transformation to Enable Cloud Data

Access

Simin Xia

Course of Study: Communication Engineering and Media Technology (INFOTECH)
Examiner: Prof. Dr. Frank Leymann

Supervisor: Steve Strauch

Commenced: May 29, 2013

Completed: November 26, 2013

CR-Classification:

D.2.8,D.3.3,H2.3,H.2.4

Abstract

Cloud computing has gained tremendous popularity in the past decade in the IT industry for
its resource-sharing and cost-reducing nature. To move existing applications to the Cloud,
they can be redesigned to fit into the Cloud paradigm, or migrate its existing components
partially or totally to the Cloud. In application design, a three-tier architecture is often used,
consisting of a presentation layer, a business logic layer, and a data layer. The presentation
layer describes the interaction between application and user; the business layer provides the
business logic; and the data layer deals with data storage. The data layer is further divided
into the Data Access Layer which abstracts the data access functionality, and the Database
Layer for data persistence and data manipulation.

In various occasions, corporations decide to move the their application’s database layer to
the Cloud, due to the high resource consumption and maintenance cost. However, currently
there is little support and guidance on how to enable appropriate data access to the Cloud.
Moreover, the diversity and heterogeneity of database systems increase the difficulty of
adaption for the existing presentation layer and business layer with the migrated database
layer. In this thesis, we focus on the heterogeneity of SQL language across different database
systems. We extend an existing open source Enterprise Service Bus with Cloud data access
capability for the transformation of SQL statements used in the presentation and business
layer, to the SQL dialect used in the Cloud database system backend. With the prototype we
develop, we validate it against real world scenario with Cloud services, such as FlexiScale
and Amazon RDS. Besides, we analyze the complexity of the algorithm we realized for
parsing and transforming the SQL statements and prove the complexity through performance
measurements.

Contents

1.

Introduction

1.1. Problem Statement
1.2. Motivating Scenario. L oo
1.3. Definitions and Conventions
1.4. Outline e

Fundamentals
2.1. Relational Database
2.2. Structured Query Language L.
22.1. SQLStatement
222, SQLDataType
23. SQLParsing
2.4. Java Database Connectivity
25. CloudComputing
2.6. Enterprise ServiceBus o oL oo
2.7. JavaBusinessIntegration. oo o oL
2.8. OSGiFramework
29. ApacheServiceMix
2.10. Cloud Data Access Support in Multi-Tenant ServiceMix

Related Work

3.1. Multi-database System L o L oo
3.2. Application Migration o o
3.3. SQL Transformation e

Analysis and Specification

4.1. SystemOverview
4.1.1. Cloud Data Migration Application
41.2. Database Server Proxy
4.1.3. Normalized Message Format
41.4. CDASMix]JDBC Component

42. SQLDialects e e e
42.1. SourceDialect
422 TargetDialect

4.3. SQL Statement Transformation
43.1. SQL Statement Parsing (FR1)
43.2. SQL Statement Transforming (FR2)

4.4. SQL Response Transformation

91 W N — =

O O 3 N

10
10
12
12
14
15
16
17
18

iii

Contents

45. UseCases v v v v it i e
4.6. Non-Functional Requirements

4.6.1.
4.6.2.
4.6.3.
4.64.
4.6.5.

Design
System Architecture. L Lo L

5.1.

5.2.

5.1.1.
5.1.2.

Extensibility (NFR1)
Integratability (NFR2)
Performance (NFR3)
Scalability (NFR4)
Maintainability and Documentation (NFR5)

First Approach
Second Approach L Lo

SQL Transformation Service e

Implementation

6.1. SQL Parser and Transformation
6.2. Transformation Service Implementation
6.3. Transformation Service Lookup and Consumption

Validation and Evaluation
Validation of SQL Parser and Transformation
Validation with CDASMix and Cloud Database Services

7.1.
7.2.

7.3.

7.2.1.
7.2.2.

Deployment and Initialization
Validation

Performance Evaluation

Conclusion and Future Work
8.1. Conclusion
8.2. Future Work

Data Types

SQL Statement Comparison

SelectStatement e
Delete Statement
Update Statement
InsertStatement
Drop Table Statement L
Truncate Table Statement,
Create Table Statement

B.1.
B.2.
B.3.
B4.
B.5.
B.6.
B.7.

Bibliography

iv

39
39
39
40
42

45
45
48
49

51
51
52
52
53
57

65
65
66

69

75
76
78
79
80
81
81
82

85

List of Figures

1.1.

2.1.
2.2.
2.3.

3.1.

4.1.
4.2.
4.3.
44.

5.1.
5.2.

5.3.

7.1.
7.2.
7.3.

Motivating Scenario. 3
Cloud Computing Service Model 13
The Layered Model of OSGi Framework 16
Architectural Overview of CDASMix 19
ComponentsofanMDBS L 0L 21
Component Overview of CDASMix 25
Design of the Normalized Message Format Used in the System 27
Parsing of a SELECT Statement Into a Parse Tree 30
Transforming a Parse Tree Into SQL Statements of Different Dialects. 31
First Approach - Transformer as Separate OSGi Bundle 40
Second Approach - Direct Transformation From Proxy Bundle With Trans-

former Services L 41
The Life Cycle of Declarative Serviceof OSGi 43
SELECT Statement’s Parse Tree in Class Diagram 57
Plot of Time Consumption Over Number of Nodes 62
Plot of Throughput Over Number of Nodes 62

List of Figures

vi

List of Tables

4.1.
4.2.
4.3.

44.

7.1.
7.2.
7.3.
74.

Al

B.1.
B.2.
B.3.
B4.
B.5.
B.6.
B.7.

Description of Use Case: Parse SQL Statement 33
Description of Use Case: Transform SQL Statement 34
Description of Use Case: Add Transformation to New Target Dialect to an

Existing Transformer 35
Description of Use Case: Add New SQL Parser and Transformer for New

Source Dialect 36
Tenant Data Source Registration. 53
SQL Transformation Validation with Cloud Databases 55
Throughput Evaluation of Various Statements 60
Throughput Evaluation of SELECT Statements 61
SQLDataTypes e 72
Comparison of SQL Select Statements of Various Vendors 77
Comparison of SQL Delete Statements of Various Vendors 78
Comparison of SQL Update Statements of Various Vendors 79
Comparison of SQL Insert Statements of Various Vendors 80
Comparison of SQL Drop Statements of Various Vendors 81
Comparison of SQL Truncate Statements of Various Vendors 81
Comparison of SQL Create Table Statements of Various Vendors 84

vii

List of Tables

viii

List of Listings

2.1.
2.2.
2.3.

5.1.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

7.1.

SQL Statement Examples o L L 9
JavaCC Grammar File Snippet 11
JDBC Statement Execution Examples 12
SQL Transformer Service Definition 42
Pseudo Code of MySQL Parser 45
Select Class and its Transform Method 46
Limit Class and its Transform Method 47
OSGi Declarative Service Descriptor 48
OSGi Declarative Service Implementation 49
OSGi Service Lookup With Filter 50
JUnit Test Case Example 51

ix

1. Introduction

Cloud computing is the buzz word circulating around for the past decade. Even though it
doesn’t conform a technical definition, it has gained in the IT industry a large amount of
attention for the marketing idea behind it. Providing and consuming computing capacity
as daily utility like water or electricity, such concept of converged infrastructure and shared
resources has been proved to be economically efficient. The computing capacity we just
referred, doesn’t restrict to the processing power, but extends to almost every component of a
computing system. One particular component we will be focusing on is database. “Database as
a Service” paradigm challenges the traditional model of data management with its intriguing
Cloud features, such as seamless software upgrade, automatic data backup and restore,
flexible scaling of resources, etc.

However, when switching to the Cloud environment, certain efforts have to be made to ensure
the adaption of the existing applications. Minimize the modification of existing applications is
the way to achieve a seamless transition. Our solution is to introduce a middle layer between
the Cloud and the applications. Its functionality is to eliminate all incompatibilities of the
applications in a Cloud environment. And in this thesis, we tackle one specific incompatibility,
the query language between database client and Cloud database server.

1.1. Problem Statement

There are various choices of Cloud database services in the market, and different services are
often backed with different flavors of database system. In order to take advantage of the Cloud
and choose the best fitting alternative, Bachmann proposed a method to migrate database
into the Cloud [Bac12], in which he specified specific questionnaires for the decision making
of choosing the proper Cloud database based on the user’s operational and economical
requirements. Due to the diverse requirements, the existing database currently in use, referred
as source database, may not coincide with the Cloud database been chosen, referred as target
database. This will introduce compatibility issues between source and target databases, which
Bachmann addressed before and during the migration process, but not after the migration
with data access and data modification.

Furthermore, in order to minimize the impact made on the applications during the migration
to the Cloud, Goméz Séez, in the work Extending an Open Source ESB for Cloud Data Access
Support [Sael3a], provided us a prototype ESB with Cloud data access support, which acts as
an intermediate layer between the application and the on and off-premise databases. It was

1. Introduction

extended with multi-tenancy support, and importantly solved the communication inconsis-
tency problem with different Cloud services. Moreover, it maintained the transparency that
the Data Layer provided to the upper layers of the application architecture.

However, the compatibility issue still remains unsolved, due to the differentiation of the SQL
language used in various relational database systems. To further ensure the transparency of
the Data Layer, and minimize the adaption effort of the applications, transformation between
different SQL syntax has to be implemented into the intermediate layer Goméz Sdez has
provided, as mentioned above.

An SQL statement represents a certain action made onto the database. And to ensure the
consistency of the applications, transforming SQL statement from one dialect to another, has
to maintain its original intention. Thus, understanding the intention of an SQL statement
is essential before transformation. An SQL statement follows a strict grammar, and can be
broken down into clauses, each of which identifies a constituent objective of the statement.
The syntax can be then further resolved to expressions, key words, schema objects, constants,
etc. Therefore a parser is needed in place to manage the analysis of the SQL statement. In this
thesis, we introduce an SQL parser which parses a statement with its source dialect grammar,
and translates it into a hierarchy of Java classes, which is then in turn reconstructed into a
new statement according to the target dialect.

Parsing statements into Java classes can be memory and time consuming, which may have
significant performance impact on the existing system. On that account, we analyze the query
throughput against the complexity of the statements in order to evaluate the drawback of the
transformation and provide suggestions for future improvement.

1.2. Motivating Scenario

To adapt to the Cloud environment, one must choose a Cloud service provider according to
their functional and non-function requirements, such as whether is there an automatic backup
and restore service, how is the service metered, how is the availability, which deployment
model to choose. Various factors affect the final decision of service provider and service
product. And the chosen product may not always be fully compatible with the existing
system.

Take the database application as an example. Applications are initially built based on a
certain database system, e.g. MySQL or PostgreSQL as shown in Figure 1.1. And each
database system from different vendors has their own sets of SQL syntax and functions
which distinguish from the standard. This phenomenon is a result of the drastic competition
between database developers, where each developer introduces new features into their
product to accustom user’s demand way before they become standard. Thus, migration
tools and guidance across different databases are developed to help the transition between
competitors. For example, Oracle offers a developer toolkit which identifies SQL statements
in an application and makes appropriate changes to adapt the Oracle database system [LN12].

1.3. Definitions and Conventions

However, such migration will have significant impact on the existing applications, and will
lead to more legacy issues.

On the other hand, the Cloud service providers offer even more alternatives, each with
their own backend database systems and additional service limitation and enhancement.
For example, Google Cloud SQL is actually a MySQL database that lives in the Cloud.
However due to the Cloud environment, it has its own restrictions. For example, statement
“SELECT ...INTO OUTFILE/DUMPFILE” is notsupported in Google Cloud SQL [goo], contrary
to MySQL.

In order to provide an unified access interface for the existing applications to Cloud and local
databases, while preserving the transparency to minimize the changes that have to made
for the applications, an intermediate layer is to be introduced where transforming the SQL
statements between different dialects from different database vendors takes place, as shown
in Figure 1.1.

Application
PostgreSQL
Application Application
MS SQL Server DB2
Application Application
MySQL Oracle DB
\ v /

Unified Cloud Data Access Interface

Amazon RDS %

> B
Cloud GO \ ‘Slﬁ SOL

Figure 1.1.: Motivating Scenario

1.3. Definitions and Conventions

In the following section we list the definitions and the abbreviations used in this thesis for
understanding the description of the work.

1. Introduction

List of Abbreviations

The following list contains abbreviations which are used in this document.

ANSI
API
B2B
BC
BLOB
CaaS
CDASMix
CLOB
DBaaS
DDL
DML
DBMS
DBS
EAI
ESB
FDBS
laaS
ISO
JBI
JDBC
LDAP
MDBS
MEP
NM
NMF
NMR
OSGi
ORDBMS

American National Standards Institute
Application Programming Interface
Business-to-Business Integration

Binding Component

Binary Large Object

Context as a Service

Cloud Data Access Support in Multi-Tenant ServiceMix
Character Large Object

Database as a Service

Data Definition Language

Data Manipulation Language

Database Management System

Database System

Enterprise Application Integration

Enterprise Service Bus

Federated Database System

Infrastructure as a Service

International Organization of Standardization
Java Business Integration

Java Database Connectivity

Lightweight Directory Access Protocol
Multi-database System

Message Exchange Patterns

Normalized Message

Normalized Message Format

Normalized Message Router

Open Services Gateway initiative (deprecated)

Object-Relational Database Management System

1.4. Outline

PaaS Platform as a Service

RDBMS Relational Database Management System
RDBS Relational Database System

SaaS Software as a Service

SCR Service Component Runtime

SE Service Engine

SOA Service-Oriented Architecture

SQL Structured Query Language

STaaS Storage as a Service

TCP Transmission Control Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

WSDL Web Services Description Language
XML eXtensible Markup Language

1.4. Outline

The rest of this document is organized as follows,

Chapter 2. Fundamentals offers a broad illustrations of background knowledge that
we used in our work, and are necessary for understanding this thesis, regarding Cloud
Computing, Enterprise Service Bus, database system and SQL language.

Chapter 3. Related Work enlightens the state of the art of existing technologies that
coincide with our work of cooperating multiple database systems, and SQL transforma-
tion.

Chapter 4. Analysis and Specification provides a full analysis of the system overview,
functional and non-functional requirements that our design will meet, based on the
system we are extending upon, that is the Multi-tenant ServiceMix with Cloud Data
Access Support. It also explains the details of comparison of SQL statements between
different dialects, in order to perform the transformation.

Chapter 5. Design clarifies the system component structure, and the changes and
extensions we need to make to enable SQL transformation between different dialects
as OSGi Bundles in the ServiceMix. Moreover, the extensibility of the transformation
components will be explained.

1. Introduction

¢ Chapter 6. Implementation illustrates our implementation of the SQL Transformation
components, most importantly, the implementation of SQL parser using JavaCC, as
well as the effort of integrating the components into the existing system.

¢ Chapter 7. Validation and Evaluation demonstrates the methodology we used to vali-
date and evaluate our implementation, as well as the resulting outcome. In addition, we
provide an analysis of the algorithm complexity based on the performance evaluation.

¢ Chapter 8. Conclusion and Future Work concludes this thesis, and provides some
perspectives on future development of the SQL transformation.

2. Fundamentals

In the former chapter, we explained that we are building a middleware solution to enable
transparent Cloud database access with SQL transformation capability. In the following
sections, we will introduce some basic concepts that are fundamental to our work.

First, we define several basic terms of database technology. The purpose of our work is
allowing client’s database applications to interact with databases on-premise and off-premise
without modifying the applications. In order to do so, we need to understand the database
system, and the communication between application and database system, more importantly
the query language they use.

Furthermore, we need to have the knowledge of Cloud computing, especially about database
in the Cloud. Moreover, we have to understand the original purpose of moving the database
to the Cloud, and the subsequent limitations.

In addition, we’ll explore the software architecture we extend in order to provide such a
transparent access layer between applications and on-premise and off-premise databases.
This solution, namely Enterprise Service Bus (ESB) serves beyond a role as middleware,
also as business integration. We choose an open source implementation of ESB, the Apache
ServiceMix to serve our purpose. It is in compliance with Java Business Integration (JBI) and
OSGi specifications.

Last but not least, we’ll introduce the Cloud Data Access Support in Multi-Tenant ServiceMix
(CDASMix), the actual system we are extending. We'll briefly identify the system structure,
and the area we work upon.

2.1. Relational Database

Edgar Codd, an employee from IBM, published a paper in June 1970, named A Relational
Model of Data for Large Shared Data Banks in the Communications of the ACM. He utilized
mathematical set theory to organize data into relation (table), which is composed of tuple
(row) and attribute (column) [Cod70]. This led to the birth of the first ever relational database
system, System R [CAB"81].

Later in 1985, Codd proposed the following 12 rules to govern the concept of relational, in
order to fight against the misuse of the term. Since then, Codd’s 12 rules have become the
guideline of validating the “relational” characteristics of a database system [KKH08] [GW02].
Codd’s 12 rules state:

1. All information in the database is organized logically into tables.

2. Fundamentals

N o ke » DN

10.
11.

12.

Stored data must be accessible using table, column and primary key.

NULL is generally defined as “missing information”, not otherwise a string or a number
Information about the database is also stored in the database as regular data.

A single language must be able to define, manipulate, administrate the database.
Views and their base tables reflect each other’s update.

Retrieve data, insert data, update data, or delete data must be done with a single
operation.

Batch and end-user operations are logically independent from physical storage and
access methods.

Batch and end-user operations can change the database schema without having to
recreate it or the applications built upon it.

Integrity constraints must be also stored as regular data in the database.

Physical storage of the data does not affect the data manipulation language of the
relational system.

Any row or set processing in the system, must obey the same integrity rules and
constraints.

One or more databases often come with a piece of software that manages and interfaces with
them, called Database Management System (DBMS). They then form together the so-called
Database System (DBS). When the databases are all relational databases, the management
system is then called a Relational Database Management System (RDBMS) and the whole
system a Relational Database System (RDBS). Here we list the major RDBMS vendors in the
world:

o MySQLl, one of the most popular open source relational database management sys-

tems, is developed, distributed, and supported by Oracle Corporation. It offers both
proprietary and community version of MySQL.

PostgreSQL? is a powerful, feature-rich open source Object-Relational Database Man-
agement System (ORDBMS) best known for its excellent support for ANSI standard.
Along with MySQL and SQLite, it is one of the three leading open source implementa-
tions of RDBMS.

Oracle Database?®, being often cited as the first commercially available RDBMS, was
developed in 1979 by the company Relational Software, Inc. (later changed to Oracle
Corporation). It is the most popular database management system in the world and the
leading relational database vendor by revenue [dbe] at the time of writing.

1MySQL: http://www.mysql.com
2PostgreSQL: http://www.postgresql.org
30racle Database: http://www.oracle.com/us/products/database/overview/index.html

http://www.mysql.com
http://www.postgresql.org
http://www.oracle.com/us/products/database/overview/index.html

1

2

2.2. Structured Query Language

e Microsoft SQL Server?, developed by Microsoft Inc., was first released in 1998. It runs
exclusively on the Windows platform. And it is one of the biggest commercial DBMS,
besides Oracle and DB2.

¢ IBM DB2° traces its root back to System R, in 1974, the first relational DBMS based on
the original concept of relational database by Edgar Codd from IBM.

2.2. Structured Query Language

Structured Query Language (SQL), was first developed along with the System R at IBM in
the 1970s [CAB*81], as a result of the emergence of the Relational Data Model (see Section
2.1). It is a computer language specially designed for accessing and manipulating relational
databases [KKHO08].

SQL is a declarative language®, which allows the user to work on the higher level of data
structure. It complies with Codd’s rules about the relational database and doesn’t require
users to specify or know about the physical storage of data. The same SQL statement can
work on different database systems and databases no matter how their underlying structures
are. SQL is simple, intuitive, and resembles the English language 7, which makes it easy to use
and understand. Along with the success of relational data model, SQL proved to be the most
popular language for it. In 1986, SQL was standardized first by American National Standards
Institute (ANSI), and then followed by International Organization of Standardization (ISO)
in 1987. Since then, it has been undergoing 7 revisions until the latest version SQL:2011 [iso]
at the time of writing.

2.2.1. SQL Statement

The main part of SQL language is statement. Each SQL statement performs a specific ac-
tion (command) on the database, such as data definition, data modification, query, access
control, etc. People often categorize SQL statements that modify and query database as
Data Manipulation Language (DML), and those that define data structure as Data Definition
Language (DDL) [BEDO1].

SELECT order_id FROM orders WHERE custKey = '123';
UPDATE customer SET payment = payment + 123 WHERE custName = 'John_Smith';

Listing 2.1: SQL Statement Examples

4Microsoft SQL Server: http://www.microsoft.com/en-us/sqlserver/default.aspx

51BM DB2: http://www-01.ibm.com/software/data/db2/

6Though, there are extensions to standard SQL which add procedural programming functionality. That is
however out of the scope of this thesis.

’SQL was initially named Structured English Query Language (SEQUEL), and was later changed to SQL due to
a trademark issue.

http://www.microsoft.com/en-us/sqlserver/default.aspx
http://www-01.ibm.com/software/data/db2/

2. Fundamentals

The first few tokens of a statement generally identify the action of the statement. In the
example above in Listing 2.1, first line is a SELECT statement, and the second is an UPDATE
statement, which respectively query and update the database. Such tokens are identified as
keywords, same as FROM, WHERE and SET®, which are a set of words that have special meanings
in the SQL language and can be fairly easy to understand with their English implication. And
reserved words are words that are reserved by the database system, which can not be used
as identifiers, unless quoted. SQL distinguishes between the keyword and reserved word by
specifying reserved keyword and non-reserved keyword.

The other tokens, namely order_id, orders, customer, are examples of identifiers. They are
specified by database design or database system to identify names of tables, columns or other
database objects, depending on the statement they are in, and their position in the statement.
Since they have the exact same lexical structure as a reserved word, during design they must
avoid conflict with the list of reserved words, or use quotation (e.g. “select”). However,
quoted reserved word as identifier is generally not recommended.

Furthermore, there are expressions, like “custKey = '123'” and “payment = payment +
100”. Besides identifiers, they are composed of operators and literals. Operators can be symbols
or keywords depending on the systems, such as =, +, >, &, |, AND, OR, etc. Literals are con-
stant values of various types. Depending on the database system, literals are implicitly-typed,
such as string ('123"), numeric (123) and boolean (TRUE). They can also be explicitly-typed
using standard SQL syntax type ‘string’, such as date (DATE '2013-11-28"'). The string literal
specified will be converted to the corresponding type.

In Appendix B, we list several important SQL statements, and the comparison between
different SQL dialects from different database vendors.

2.2.2. SQL Data Type

Each column of a relational table is declared with a data type [GW02]. SQL standard and each
database vendor have their own set of data types they support. Generally speaking, there
are the basics such as number, boolean, character, date and time, etc. And new data types
are included as the technical demand grows, such as XML, JSON, Network Address, and so
on. In addition, PostgreSQL also supports user defined data types, using command CREATE
TYPE [pos]. Data types are mainly used in a CREATE TABLE statement, or the returning result
set of a SELECT statement. A list of available data types in various DBMS and their comparison
is presented in Appendix A.

2.3. SQL Parsing

In order to transform an SQL statement, an SQL parser is required to semantically understand
the statement. An SQL statement is said to be transformable to another dialect, only if it can

8SQL statement is in general case-insensitive. Here the keywords are capitalized for easy reading.

10

© ® N o U ke W N e

2.3. SQOL Parsing

replaced by another statement with the same semantics, that is to result the exact same action
upon the database as the original statement.

We came upon an open source project JSqlParser” who parses an SQL statement and translates
it into a hierarchy of Java classes, which is exactly what we can make use of. It is built mainly
using JavaCC ™ 10, a Java parser generator. The]SqlParser project can be divided into two
main parts. The first part compromises of a collection of Java classes representing the lexical
components of an SQL statement, such as a table, a column or an expression. The second part
is the JavaCC grammar file (JSqlParserCC.jj) which is used by JavaCC to generate the parser.
The interesting part is you can inject Java code into the grammar file, which will be written
to the generated parser as it is. The parser will then execute these code during the parsing
process. [SqlParser utilized such feature to produce the hierarchy of Java classes during the
parsing process, rather than generate the hierarchy afterwards. An example is shown in
Listing 2.2.

Truncate Truncate():

{
Truncate truncate = new Truncate();
Table table;
}
{
<R_TRUNCATE> <R_TABLE>
table = Table()
{
truncate.setTable(table);
}
{
return truncate;
}
}

Listing 2.2: JavaCC Grammar File Snippet

This code snippet parses a Truncate statement, and returns an instance of Truncate class. At
line 1, the first word “Truncate” is the class name of the return value. And “Truncate()”
represents a definition of a lexical structure which direct follows. Line 2-5 are Java code for
initialization which are executed whenever such lexical structure is parsed. At line 7, token
<R_TRUNCATE> (“TRUNCATE") and <R_TABLE> (“TABLE”) have to be matched, followed by a
Table() structure which returns an instance of Table class. The curly-bracketed code at line
8 is the injected Java code which invokes the method “setTable” of the instance “truncate”
with the “table” we just received. Finally at line 10, the resulted “truncate” instance is
returned. Such grammar file is quite intuitive. It cooperates with Java to parse a statement
and at the same time produce instances of Java classes we can directly refer to.

The downside with JSglParser is that it uses an unknown dialect of SQL Language. Therefore

9JSqlParser Project: http://jsqlparser.sourceforge.net/
OJava Compiler Compiler ™ (JavaCC ™): http://javacc.java.net/

11

http://jsqlparser.sourceforge.net/
http://javacc.java.net/

® N Ul R W N =

2. Fundamentals

we have to adapt the grammar for different SQL dialects, and extend it with SQL transforma-
tion functionality.

2.4. Java Database Connectivity

Java Database Connectivity (JDBC), is a standard Java-based database access technology,
which provides a standardized client-side Java Application Programming Interface (API)
for interacting with a backend database system [jdb]. To take advantage of JDBC, a vendor-
specific JDBC driver has to be installed prior to the connection, which implements the actual
communication to the backend database system.

The important interfaces of JDBC APIinclude java.sql.Statement and java.sql.ResultSet.
The Statement interface is used to execute a static SQL statement and returning the results it
produces, as in Listing 2.3

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT_»_FROM_tablel WHERE_id_=_1");
ResultSetMetaData metaData = rs.getMetaData();
if(metaData.getColumnType(1l) == Types.INTEGER){
if(rs.next()){
int i = rs.getInt(1);
}

Listing 2.3: JDBC Statement Execution Examples

As we can see, the statement is executed in plain text form. This allows the acceptance of
any SQL statements supported in different database systems without restriction. This means
the application is free to use as much SQL functionality as desired, though it runs the risk of
incompatibility between SQL dialects, which is the problem we will solve in this thesis.

The ResultSet interface is the returning result of an SQL query (a SELECT statement or
similar). It resembles a relational table containing rows of data in different data types. In
contrast to the statement execution, the result set retrieved via JDBC is standardized. JDBC
defines a set of generic SQL type identifiers in the class java.sql.Types, which correspond to
the most commonly used SQL data types. And for each type, there is a method in ResultSet
to retrieve the data as a Java object (an instance of a primitive type or a Java class) [jdb], as
shown in Listing 2.3, Line 4-8.

2.5. Cloud Computing

Internet or a network, conventionally, is illustrated as an image of Cloud just like in Figure 2.1,
representing a connected cluster with unknown underlying structure. This metaphor is then
used to describe a computing model highly based on the computer network (typically the

12

2.5. Cloud Computing

Internet), that is Cloud computing. Cloud computing is not strictly a scientific or technical
term, rather than a marketing concept. It comes close to the term Distributed Computing.
It is, according to National Institute of Standards and Technology (NIST), “a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service provider
interaction” [MF11].

As described in the article The NIST Definition of Cloud Computing [MF11], the consumer of
Cloud computing can utilize the computing capabilities as needed without directly interacting
with each service provider. The computing capabilities are accessible through the network
with standard protocols. The computing resources of the provider are pooled together to
serve multiple consumers using virtualization and multi-tenant model. Depending on the
consumer’s demand, resources can be allocated and released accordingly. The measurement,
monitor and control of resource usage is transparent to both consumer and provider. An
infrastructure, including software and hardware, that fulfills the descriptions above can be
qualified as a Cloud infrastructure.

The services that the Cloud provider offers are categorized into 3 models: Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [MF11], as
shown in Figure 2.1. This is a hierarchical categorization where the higher level service
is somewhat an abstraction of the lower level. PaaS abstracted the underlying physical
infrastructure, as in processing power, storage and network, which are all hidden from the
consumers of PaaS. And SaaS offers user a pure software experience without caring about
the platform it is running on.

Games, Communication, Virtual Desktop, ...
Software as a Service

Runtime, Database, Web Server, ...
Platform as a Service

Virtual Machines, Servers, Storage, Network, ...

Infrastructure as a Service

Figure 2.1.: Cloud Computing Service Model

Such abstraction also determines how much a consumer has control over the Cloud resources.
IaaS consumers have control over what is built upon the provided infrastructure. They have
very limited control over the underlying hardware resources. PaaS consumers have the
capability to deploy applications onto the Cloud infrastructure, but little control over the

13

2. Fundamentals

application-hosting platform. With SaaS, Cloud providers offer applications running on a
Cloud infrastructure. Consumers can use the applications to their own need, but cannot
modify or even control individual application capabilities. The benefit behind this is that,
the consumer can focus on what they need, while the service providers take care of the
underlying structure (e.g., hardware and software upgrade, data backup and restore, and
network maintenance). This also decreases the cost for consumers, since the entailed cost of
building the Cloud infrastructure is divided among tenants at the provider side.

Following this logic, more of the “XaaS” models appeared on the market, providing a certain
computing capability over the Cloud, such as Storage as a Service (STaaS), Database as a
Service (DBaa$S), Context as a Service (CaaS), etc. In our thesis, we focus on the DBaaS, where
Cloud provider offers the capabilities of a DBS over the Cloud, and consumers can access the
databases through network using standard protocols. Most popular Cloud providers and
database vendors offer DBaaS, like Amazon RDS'!, Google Cloud SQL'2, Oracle Cloud?3,
Windows Azure SQL Database!?. And likewise, we can make use of the database systems they
provided, but have limited control over the management and configuration of the systems.
On the other hand, system upgrade, data backup and restore, security and system scaling are
all seamlessly taken care of by the provider.

Another way of achieving database on the Cloud is to deploy our own database system onto
a Cloud infrastructure. There are plenty of IaaS providers who offer a wide range of virtual
or dedicated machine instances, with different processing powers, storage sizes, and network
performances. Upon them, we can install any or a selective type of operating system, and
database system. This approach gives us almost full control over the DBS and its running
environment.

NIST also defined 4 models how the Cloud Infrastructure can be deployed. Private Cloud is
provisioned exclusively for a single organization; Community Cloud is for a specific group of
consumers from different organizations; Public Cloud opens to general public; and Hybrid
Cloud is a combination of any two or more of different models (private, community and
public) that remain unique entities.

2.6. Enterprise Service Bus

Chappell defines ESB as a standards-based integration platform that combines messaging,
Web services, data transformation and intelligent routing to reliably connect and coordinate
the interaction of significant numbers of diverse applications across extended enterprises
with transactional integrity [Cha04].

ESB plays a central role in the Service-Oriented Architecture (SOA), where collections of
discrete services collectively compose complete functionality. It provides the implementation

1 Amazon RDS: http://aws.amazon. com/rds/

12Google Cloud SQL: https://developers.google.com/cloud-sql/

BQOracle Cloud: https://cloud.oracle.com/mycloud/f?p=service:database:0

4Windows Azure SQL Database: http://www.windowsazure.com/en-us/services/dat a-management/

14

http://aws.amazon.com/rds/
https://developers.google.com/cloud-sql/
https://cloud.oracle.com/mycloud/f?p=service:database:0
http://www.windowsazure.com/en-us/services/data-management/

2.7. Java Business Integration

backbone for a loosely coupled, event-driven SOA, with a highly distributed universe of
named routing destinations across a multi-protocol message bus [Cha04]. In the integration
area, the ESB concept distinguishes itself with its highly distributed bus model and open
standards from other solutions, such as Enterprise Application Integration (EAI), which is
based on a centralized hub-and-spoke model [RD09].

In order to better understand what an ESB is, it is easier to learn from what it does. ESB hides
location information of services by providing a central platform where communication can
be achieved without directly coupling service consumers and service providers. While each
application utilizes different transport protocols, an ESB should be able to seamlessly integrate
these applications with protocol conversion [RD09]. As message exchange is the key part
of an integration solution, an ESB should provide functionality to transform messages with
different formats, route messages between endpoints, and enhance based on the incoming
message. Authentication, authorization, and encryption functionality should be provided by
an ESB for securing message exchange to prevent malicious use of the ESB as well as satisfy
the security requirements of the service provider [RD09].

2.7. Java Business Integration

To implement an integration solution for enterprise applications, tradition solutions such as
EAI and Business-to-Business Integration (B2B) sought non-standard technologies to create
functional systems [RD09]. This led end users locked in with specific vendors, and a hard
time switching between products.

JBl is a specification developed under Java Community Process as an open-standard approach
for integration solutions. It defines an architecture that allows the construction of integration
systems from plug-in components, that interoperate through the method of mediated message
exchange. The message exchange model is based on the Web Services Description Language
(WSDL) 2.0 or 1.1 [THWO05].

JBI plug-in components are responsible to provide and consume services, which are respec-
tively named Service Consumer and Service Provider. Similarly to Web service model, a Service
Provider describes and publishes its services using WSDL, while Service Consumer consumes
services using WSDL operations, by exchange messages via a set of four WSDL-defined
Message Exchange Patterns (MEP).

Based on architectural principles, JBI components are divided into two types: Service En-
gine (SE) and Binding Component (BC). SEs provide business logic and transformation services
to other components within JBI as well as consume such services, while BCs provide connec-
tivity to services external to a JBI environment. Such separation of business logic and commu-
nication logic reduces implementation complexity, and increases flexibility [THWO5].

The communication between components is realized by exchanging Normalized Message
(NM)s through the Normalized Message Router (NMR). A NM consists of two parts: an
abstract eXtensible Markup Language (XML) message and message metadata. The XML
message is also referred to as “payload” which conforms to an abstract WSDL message

15

2. Fundamentals

type, describing the abstract message type, abstract operations, etc. Another portion of the
payload can be made up of attachment, referenced by the payload, and is contained within a
data handler that is used to manipulate that contents of the attachment itself [THWO05]. The
message metadata, or message properties, hold extra data associate with the message, which
can be used by developer to store identity information, context information, etc. NMR is a
key operational component in a JBI environment who acts as a communication mediator. Its
main functionality is routing NMs between Service Consumers and Service Providers. Such
mediated message-exchange processing model also allows the NMR to perform additional
processing during the lifetime of the message exchange [THWO05].

2.8. OSGi Framework

OSGi Framework is a general-purpose and managed Java framework that supports the
deployment of extensible and downloadable applications known as bundles [OSG11]. Its
functionality is defined as the layered model shown in Figure 2.2.

Bundles Services
w
[0]
Life Cycle e
3
Modules
Execution Environment
Java VM
Native Operating System

Figure 2.2.: The Layered Model of OSGi Framework [OSG]

The Security Layer is an optional layer that provides a well-controlled environment for
deploying and managing applications. It is based on the Java 2 security architecture [OSG11]
which defines a secure packaging format as well as the runtime interaction.

The Module Layer specifies the packaging, deploying and validating of the modularization
unit, the bundle. A bundle is a special-formatted Java Archive (JAR) file, with additional
resources and manifest specifications. It also regulates the Java package sharing between
bundles, as well as resolves dependency relationships.

The Life Cycle Layer defines how bundles are started and stopped, as well as how they are
installed, updated, and uninstalled. The lifecycle management requires no system reboot
to install or uninstall bundles. It exposes API to bundles, which allows lifecycle managing
operations during runtime [OSG11].

16

2.9. Apache ServiceMix

The Service Layer provides a programming model for developers, which decouples the
service’s specification and implementation, thus allows service binding with interface spec-
ification while the selection of service implementation can be deferred to runtime. The
framework provides a service registry where bundles can register new services and look up
existing services to adapt to the current capabilities. This makes an OGSi bundle extensible
even after deployment. We'll take advantage of this feature, to make our implementation
flexible to adapt to the incoming request according to its requirement, as well as extensible.

Apache Karaf is a lightweight OSGi based runtime, which is used by Apache ServiceMix 4.3.0
as the underlying OSGi server runtime. The following section will give a further in detail
introduction on Apache ServiceMix.

2.9. Apache ServiceMix

Apache ServiceMix is an open-source ESB, which provides an integration container that
coordinate various Apache projects into an integration platform. This thesis is based on a
modified and extended version of Apache ServiceMix 4.3.0 by Goméz Séez [Sdel3a], which
we refer as CDASMix (see Section 2.10).

The significance of using Apache ServiceMix version 4, compared to the predecessors, is its
compliance of OSGi framework through Apache Karaf. Initially, Apache ServiceMix is based
on the JBI specification, upon which various components are developed, and inherited to the
newer version, such as servicemix-camel, servicemix-bean, servicemix-jms, etc.

As introduced in Section 2.8, Apache Karaf provides a light-weight OSGi container into which
various bundles can be installed. In Apache ServiceMix, there is a folder “/deploy” shipped
under the installation location, acting as a hot deployment folder. OSGi bundles and JBI
components can be directly deployed by putting them into the “/deploy” folder, or deleting
them to uninstall. Karaf also provides a user friendly command line console to manage the
life cycle of components.

Aside from the flexible lifecycle management, the service layer of OSGi is also realized
via Blueprint Service, Declarative Service [OSG12], etc. Blueprint Service is enabled in Karaf
by default. It injects proxy object as service reference, while the backing service it defers
can be dynamically and independently registered or replaced, which makes the service’s
availability much more flexible. Declarative Service, on the other hand is an add-on feature
to Karaf, realized by Apache Felix Service Component Runtime (SCR) bundle!®. Declarative
Service registers first its service component via SCR with the service registry, and the service
implementation is later “lazily” loaded or instantiated until the service is actually requested
by a client.

Even though documented as deprecated, Apache ServiceMix 4.3.0 is still in full support of JBI
1.0 specification, with a set of legacy JBI components deployed as OSGi bundles, which are

15 Apache Felix Service Component Runtime (SCR): http://felix.apache.org/documentation/subprojects/
apache-felix-service-component-runtime.html

17

http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html
http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html

2. Fundamentals

still of great importance. For example, Apache Camel is leveraged as a routing and mediation
engine, especially with the Camel NMR Component. NMR as introduced before, is a central
message bus defined in JBI specification, and it’s remodeled in Apache SerivceMix as an OSGi
bundle with NMR API, which enables the inter-communication between JBI components and
OSGi bundles [Theb].

2.10. Cloud Data Access Support in Multi-Tenant ServiceMix

To achieve a seamless adoption of Cloud database services, Goméz Sdez presented us an ESB
with Cloud data access support, and the support of multi-tenancy. It acts as a data access
layer of the applications, and access multiple Cloud database services, to provide transparent
Cloud data access. We refer to it as CDASMix.

Its system architecture is shown as in Figure 2.3, that provides MySQL communication
protocol to the applications, and routing to the backend Cloud or local databases.

CDASMix is based on a multi-tenant ServiceMix prototype which Muhler and Goméz S4ez
provided in their work [Muh12] and [S4e12], named ServiceMix-mt, which provides multi-
tenant awareness to the ServiceMix by injecting tenant context in the JBI endpoint’s Uniform
Resource Locator (URL)s [Muh12], and by providing a Normalized Message Format (NMF)
with tenant context information in its properties for routing in the NMR [Sae12].

As shown in Figure 2.3, the Proxy Bundle communicate with the application according to
MySQL communication protocol via Transmission Control Protocol (TCP), which eventually
receives the SQL queries. It then acquires the according tenant and data source information
from the service registry, where the information needs to be registered before hand. It’s
notable that a registry cache is in use to improve the performance.

A NM is then created and sent to the corresponding tenant-aware JBI endpoint in Apache
Camel via NMR, where it’s further routed to the JBItoCamel]dbc endpoint deployed in the
OSGi container. At last the NM is forwarded to the Cdasmix]JDBC component, which selects
the appropriate JDBC driver, creates a connection, demarshals the request, and sends the
request to the backend Cloud database service [Sdel3a].

As indicated in Figure 2.3, a query and data transformation might exist between the Proxy
bundle, and Camel JBI endpoints, through NMR. This is where we will insert our work, to
achieve the SQL transformation between source and target dialects.

18

2.10. Cloud Data Access Support in Multi-Tenant ServiceMix

External Application
S Legend
(@) Tenant-aware Endpoint

o

(@] T1..TN Tenanti ... TenantN

(@]

" Query and data transformation
Data Access Layer) might exist
(MySQL Connectorl)

— — — Multi-tenant context & messaging
------- Multi-tenant messaging

SELECT * FROM myTable /
INSERT * INTO * VALUES *

OSGi
JBI Environment
<<O0SGi service>>
Registry-Cache | »> SQL Server (port 3306) |
SQL Cache
instance <<O0SGi service>>
» MySQL Proxy Bundle
\
Standardised Interfaces for Binding <<gifrins:|?;::>>
Components Message API
s
q |
Normalized Message Router ,///(*)\
..................................... s pdpanade
. : 7 g
: Qe a4 |
Standardised Interfaces for Servgice'/li/r@iﬁes \:
0 0 /87 % :
o = —
JBItoCamelJdbc T1 T2 T3 === TN
Camel JBI
<<SOSG|_s((:erV|ceI>> <<JBI Component>>
LR Smx-Camel-mt
<<O0SGi service>>
: <+—» | IJNDI
--» CdasmixJDBC 1
A M
\4
PostgreSQL JV

Amazon RDS Local VM

—
Service S — ———

Figure 2.3.: Architectural Overview of CDASMix for providing support of relational
database access [Sdel3a]

2. Fundamentals

20

3. Related Work

In this chapter, we’ll discuss other’s work related to the situation of proper integration
regarding migration of Database Layer to the Cloud, especially focusing on query language
integration of relational databases. As an integration solution, our system provide a reliable,
secure and transparent communication between on-premise applications and off-premise
Cloud databases with multi-tenant, multi-protocol and multi-database support.

3.1. Multi-database System

As pointed out, we provide access to multiple backend database systems, which may cat-
egorize us as a Multi-database System (MDBS). A popular implementation architecture of
MDBS is the mediator /wrapper approach, as shown in Figure 3.1, which our system structure
complies to as well.

USER
System & User
responses requests
\ 4
Multi-DBMS
Layer
DBMS DBMS

Figure 3.1.: Components of an MDBS [OV11]

A MDBS can be characterized along three orthogonal dimensions: autonomy, distribution,
and heterogeneity [SL90]. Autonomy defines the decentralization of control within an MDBS,
indicating that the individual DBS participating in an MDBS retains its independent control
of the operation. Such system is also identified as a Federated Database System (FDBS). Our
system presents no such characteristic, as all component DBSs are centrally controlled and
accessed solely through our system.

21

3. Related Work

Distribution refers to the physical distribution of data over multiple locations, while the user
sees the data as one logical pool. Regarding our system, as according to [Sdel3a], a source
data source (physically accessed by tenant) can be connected to one or more target data
sources (logically accessed by tenant, but physically accessed by the system), thus the data
in a source data source can be distributed among multiple target data sources in various
database services (locations). However, such distribution is only limited to physical storage
of data, since we provide no support for logical access of the distributed data, in the sense
that join of data cross different target data sources is not supported in our system. In other
words, one SQL statement can only refer to schema objects (tables) stored in the same backend
database. Such limitation would identify our system as a remote DBMS interface, rather than
an MDBS, since it only provides access to multiple DBMSs one at a time (e.g., no joins across
two databases) [SL90].

Heterogeneity is due to the technological differences, in our case the differences in RDBMS. As
we mentioned in Section 2.1, there is a variety of database vendors with different designs
of database system. Fortunately, the Codd’s rules had governed the relational databases
to separate its end-user operations with the underlying physical structures and access of
the databases. And the wide adaption of SQL language as the end-users’ tool for accessing
and manipulating relational databases also eases the process of unifying different database
systems. Even so, the different dialects of SQL supported by different RDBMS still contribute
to the heterogeneity. In addition, the representation of the data stored within a RDBMS also
depends on the implementation of the database. Such difference must also be addressed
in our integration solution. A second type of Heterogeneity is the Semantic Heterogeneity,
which occurs when there is a disagreement about the meaning, interpretation, or intended
use of the same or related data [SL90]. This is however not our concern, as [Bacl2] and
[Sdel3a] guaranteed the semantic consistency throughout the database migration and access
process, which in turn minimized the impact we made on the application layer and above.
As acknowledged above in distribution, we are dealing with one target database at a time,
thus the heterogeneity that we handle is between the source and target database. Heterogeneity
across multiple target databases is out of the scope of this thesis.

3.2. Application Migration

Holding SQL language as the rule of thumb, the heterogeneity of the query language across
different DBSs require the integration solution to offer a unified view of different dialects. In
addition, vendor-specific data representation also constrain the process of integration.

In order to address the incompatibility issue across different database systems, lots of vendors
actually provide tools, or compatibility features built in the DBS to help clients migrate
from one database to another. Cloud Data Migration Application from [Bacl2] took care of
the database object migration scenario in our case, however one step is missing, namely
Application Migration [LN12]. As of a database application, it means to adapt the application
for the newly deployed database system, mainly the embedded SQL statements. Oracle SQL

22

3.3. SQL Transformation

Developer! is a toolkit developed by Oracle to help migrate third-party databases to Oracle
Database. It includes an automated tool, named SQL Migration Scanning Tool, which identifies
SQL in the applications and makes the appropriate changes [LN12]. The essence of such
tool is similar to what we’ve implemented, which fundamentally requires an SQL parser
and specific rules to translate SQL statements into another dialect. Microsoft offers a similar
tool called SQL Server Migration Assistant (SSMA)?, which provides application migration
support as well. The essential purpose of these migration tools, is to change the applications
to accommodate with new database system. While this disobeys the original goal of our
system, which requires minimum impact over applications and the layers above, it may also
introduce further problems when the backend database changes again. Another problem
with such tools, is that they often deal only with static statements written in the applications.
However, many applications build SQL statements dynamically based on user input in the
form of variables that may contain table names, a list of column names and the predicate
clause to be used in the statements, and then execute them. These statements are difficult to
be identified, as they are not presented as a fully-formed SQL statement.

On the other hand, our implementation won't require the Application Migration, as we utilized
a mediator/wrapper approach to provide a transparent migration process for the applica-
tions. Applications will send their SQL statements as before, via our proxy; the proxy will
intercept the statements, and send them to a transformation service, where the statements are
transformed on-the-go and eventually forwarded to the backend database. Since we provide
multi-protocol and multi-database support, changing backend database won’t require any
further alteration of the applications. Furthermore, the statements that are executed by the
applications are all processed by the transformation bundle when necessary, whether they
are static or dynamic. Since the transformation happens after the application sends out the
queries, it means that they are all fully complete SQL statements.

In addition to the request transformation, our system needs to handle the additional trans-
formation of the response. In contrast to the migration approach, the response from the
backend database is inconsistent to the client applications, mainly on the account of the
data representation returned from the database. A mapping has to be presented to correlate
the data representations (data types) in the target database and the ones used in the source
database.

3.3. SQL Transformation

As pointed out in Section 3.2, there are two types of transformation tools. The static trans-
former, like SQL Migration Scanning Tool, transforms only static SQL statements embedded
in an application. Such transformation often incorporates with a total migration and adap-
tion to new database system, meaning the application will adapt to new database system

1Oracle SQL Developer: http://www.oracle.com/technetwork/developer-tools/sql-developer/
overview/index.html

2Microsoft SQL Server Migration Assistant: http://msdn.microsoft.com/en-us/library/hh302873(v=sql.
105) .aspx

23

http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
http://msdn.microsoft.com/en-us/library/hh302873(v=sql.105).aspx
http://msdn.microsoft.com/en-us/library/hh302873(v=sql.105).aspx

3. Related Work

permanently. The dynamic transformer, like our implementation, transforms SQL statements
on-the-go. It usually resembles a middle layer, which acts as a proxy and intercepts SQL
statements that are sent out by the applications, then transforms them before forwarding to
the destination. There are several commercial tools on the market offering such feature as a
dynamic transformer, such as General SQL Parser®, and SwisSQL API*.

Despite which kind the transformer is, in order to transform an SQL statement from one
dialect to another, it often involves a language parser to parse a text representation of a
statement into a tree structure, which will then be reorganized into a new text representation
according to a set of predefined transformation rules. Writing a parser from scratch can be
a cumbersome job, hence several tools are developed as a parser generator, which generate
language parser code in different programming language based a on predesigned context-free
grammar.

SQL Migration Scanning Tool utilizes ANother Tool for Language Recognition (ANTLR)® as a
parser generator. ANTLR is an LL parser, meaning it parses the input from Left to right, and
constructs a Leftmost derivation of the sentence. It’s a free software under the BSD License,
however the reference tutorial is published as a commercial book, The Definitive ANTLR 4
Reference [Par13]. We chose another similar tool named JavaCC, as mentioned in Section 2.3.
There is no available quality and performance comparison between these tools. The choice is
barely made as the result of the open source project [SqlParser we based on.

General SQL Parser and SwisSQL API are commercial tools that offer the functionality of SQL
transformation. General SQL Parser supports major programming language like Java, C#,
VB.NET, etc. It's mainly an SQL parser product, with additional SQL processing features,
such as statement refactoring, SQL objects identification and SQL transformation. SwisSQL
APl is a Java library for on-the-fly query conversion. It can be deployed as a library in the
application to be directly invoked from inside a Java application. In addition, it offers a JDBC
Wrapper mode, where it can be used as a bridge between the application and the database
specific JDBC driver, so the application can leverage seamless integration by loading the
SwisSQL JDBC driver.

3General SQL Parser: http://www.sqlparser.com/
4SwisSQL APL http://www.swissql.com/products/sqlone-apijava/sqlone-apijava.html
5 ANother Tool for Language Recognition (ANTLR): http://www.antlr.org

24

http://www.sqlparser.com/
http://www.swissql.com/products/sqlone-apijava/sqlone-apijava.html
http://www.antlr.org

4. Analysis and Specification

In this chapter, we will provide a detailed analysis of the system components that our work is
based on and we extend in order to integrate SQL Transformation solution into the system.
Furthermore, we analyze the SQL dialects that are relative to our system based on the system
and resource limitation. Last but not least, we will enlist the functional and non-functional
requirements the system need to fulfill.

4.1. System Overview

To extend the CDASMix system with SQL transformation functionality, we need to first
identify the current system structure, and its components that are related to our extension,
as shown in Figure 4.1. As pointed out in Section 2.10, a database server proxy is presented
in CDASMix to handle the communication with external applications. And a normalized
message router is used as a centralized message bus for internal message exchange. In
addition, a service registry stores data source information of tenants regarding source and
target data sources. At the end, a JDBC component is responsible for the communication with
the target data sources.

CloudDataMigrationApp [~ Web Service API Web UI
y Business Logic
Y A
3
b8 \d A
D Data Access Bus |
TenantRegistry v <7
Legend L J JMS Management MySQL Proxy Cache
— Service (port 3311) SQL
«—> Internal Bidirectional
Communication Config.Registry T
- B <
O External Application ——— A
I Normalized Message Router
{3 External Cloud data store ServiceRegistry
— <
External Bidirectional ¢
< -%» Communication Cache c it SE
amel-m
Ti Tenant i NoSQL
Ci t S—
- omponen On-premise t \ 4 ¢
|f| Database Data Source T1
HTTP-mt BC CDASMix JDBC
‘;\‘ A A
! 1
v 1 1
(@) v v

- -

Figure 4.1.: Component Overview of CDASMix [Sdel3a]

25

4. Analysis and Specification

4.1.1. Cloud Data Migration Application

Before a user can access the Cloud databases through CDASMix, it must first migrate its
existing data to the destined Cloud database. Cloud Data Migration Application provided by
Bachmann [Bac12] provides the support for migrating data from a traditional database and
a Cloud one, or between Cloud databases. Before migration, the user has to provide the
source and target data source information, based on which the application will identify the
possible incompatibilities and present them to the tenant. After solving the incompatibilities,
the application can then migrate user’s data with provided access credentials.

Since we are focusing on RDBS, migrating data from one RDBS to another is our only concern.
Cloud Data Migration Application provides support of migrating schema data, views and
indexes. An important aspect of the migration process, is that the migration should minimize
the impact it has over the database clients (applications). Therefore, before and during
migration, the migration application preserves the names and structures of the database as
much as possible. When there is conflict, for example when one table has a name that is
reserved in the target database, the migration application will notify the tenant prior the
migration [Bac12].

4.1.2. Database Server Proxy

A database server proxy is an application that sits between one or more database clients and
servers, which communicates over the network using database specific network protocol. It’s
normally used for load balancing, failover, query analysis, query filtering and modification,
etc. [mys]. In CDASMix, a Java implementation of MySQL Proxy developed by Continuent
Inc. named Tungsten Connector [Con], is used to fit in our system as the server proxy for
MySQL applications, as shown in Figure 4.1. A PostgreSQL Proxy is deployed as well for
PostgreSQL applications. For convenience, we’ll explain further with MySQL proxy as an
example.

In MySQL communication protocol, there are 4 phases: Connection Phase, Authentication
Phase, Command Phase, and Disconnect Phase. In Authentication Phase, the database client
will send a packet with its user name (compromised of tenant ID and user ID [Sdel3a]),
connecting database name, and password. The authentication information will be unpacked
in the proxy bundle, and used to verify against the entry in the service registry. In addition,
these information will be kept across the connection for future use in the Command Phase.

In the Command Phase, the database client sends command packets, importantly the query
commands, to the proxy. The queries will be analyzed against its query type, and the related
database objects (tables). As introduced in Section 2.10, target data source information is
precedently registered in the service registry, in accordance with the source data source and
tenant information. Therefore, the proxy bundle can look up the service registry, with the
tenant ID, user ID, the database name, and the table name, for its actual physical storage
location, namely the target data source. Up till this point, the proxy can then decide whether
a transformation is needed based on the target and source data source types, i.e. the value of

26

4.1. System Overview

dsType attribute. The format of this value follows the structure: family-mainInfoStructure-
secInfoStructure-version, e.g. mysql-database-table-5.1.2 for a MySQL 5.1.2 database [S4el3a].
As we are dealing solely with relational databases, the attribute we need to check is the family
and version, e.g. mysql 5.1.2. All the information mentioned above, including source and
target data source information and queries, is then marshaled into a normalized message
with a predefined format and handed over to NMR, which we will introduce in the following
section.

In correspondence with the request, a response is received containing the results of the
queries when applicable. The result data and its metadata are in conformance with the
JDBC specification (see Section 4.1.4), meaning the data are all converted to Java types (int,
float, java.sql.Timestamp, etc.), and the data types in the metadata are specified using
class java.sql.Types.

4.1.3. Normalized Message Format

The functionality of a NMR is introduced in Section 2.7. Another important aspect of the
NMR for us is the format of the NM we use in our system, as shown in Figure 4.2.

Normalized Message

Message Properties

[TenantID

UserlD

Backend config. queries
Backend datasource properties
Queries number

Normalized Message

Message Properties

[TenantID

UserlD

Backend datasource properties
Backend datasources number
Backend operation status

Message Payload

KMIL

Message Payload

XML

Message Attachments

Queries

o
o
o

Message Attachments

Queries results OR Error
Queries results meta-data Message
(@]
(@]
(@}

Request Message

Response Message

Figure 4.2.: Design of the Normalized Message Format Used in the System [Sde13a]
There are two types of message, the request message and the response message. They

are distinguished by their message properties and more importantly the content of their
attachments. As we can see in the figure, backend data source properties, including source

27

4. Analysis and Specification

and target data source, are stored in the message properties. The response message has a
property of backend operation status, indicating whether the queries in the request are executed
successfully. When success, the attachment of the response message will contain the results
of the request, or the error message when otherwise. On the other hand, the attachment of
the request message contains the queries. As we can see, multiple queries in one request
is supported in our system, though for each query, only one pair of source and target data
source can be specified [Sdel3a].

4.1.4. CDASMix JDBC Component

The connection to the target data sources from CDASMix is established in the CDASMix
JDBC Component, as shown in Figure 4.1. As its name indicates, it uses the corresponding
JDBC API to interact with backend databases. Based on the target data source, the bundle
selects dynamically the corresponding JDBC driver to connect to the target database. JDBC
technology provides an unified interface for accessing and modifying different databases,
as well as an unified response from different database systems [jdb]. Most importantly
the java.sql.ResultSet interface helps retrieving the returning result of an SQL query
converted into JDBC types. The returning result set, along with its metadata is retrieved by
the component according to the JDBC specification, and marshaled into a response NM as
shown in Figure 4.2. This message is then sent back to the database server proxy within
CDASMix.

4.2. SQL Dialects

As mentioned is Section 2.2, each relational database vendor offers their own version of
SQL language, we refer to as SQL dialect. And we name them after the name and version of
the database they belong to, such as MySQL 5.6 or PostgreSQL 9.2. When transforming (or
translating) an SQL statement from one dialect to another, we name the dialect the statement
already complies the source dialect, and the dialect the transformed statement will comply the
target dialect.

4.2.1. Source Dialect

In Section 4.1.2, we specified that the SQL Transformation component is tightly followed
after the database server proxy. The availability of the proxy component determines the
SQL dialect we will transform as the source dialect. So far, we have the implementation of
MySQL Proxy, and PostgreSQL proxy in place, which we will adapt to take advantage of the
transformation component.

An important step of SQL transformation is parsing (see Section 2.3). A parser will parse
the statement according to the SQL grammar of the source dialect. Due to this reason,
the transformation process is grouped according to the source dialect. In other words, a

28

4.2. SQL Dialects

transformation service will transform a statement from one specific source dialect to various
target dialects.

For MySQL database, we use the latest General Available (GA) Release of MySQL Community
Server 5.6, as MySQL Community Server 5.7 is still in development at the time of writing. The
documentation of the SQL syntax can be found in [mys], and a MySQL parser is developed
according to the description in that document.

PostgreSQL released version 9.3 on 9th September 2013!, therefore we developed the Post-
greSQL parser based on the document [pos]. According to [KKHO08], PostgreSQL is best
known for its excellent support for the ANSI SQL standard.

4.2.2. Target Dialect

The target dialect depends on the target data source our system support, which include both
on-premise and off-premise databases. On-premise or local databases, are the ones that reside
on the same location as the applications. They specify their own SQL dialects and keep them
well documented as those we used in the source dialect. However, for off-premise or Cloud
database, it can get a little bit complicated.

There are two types of Cloud database service: Database as a Service (DBaaS) and Database in a
Cloud Infrastructure.

Database as a Service, is a service model of Cloud computing that abstracts everything below
a database system (including operation system, hardware, etc.) from the service consumer,
and offers solely a database system as a service on the Cloud (see Section 2.5). Even though
they are Cloud services, most of them are still backed with the same database systems as
a local one, which means they use the same SQL dialect as the local database system does.
However, since service consumer has no or little control over the underlying system of the
database, that restriction may limit the functionality of the database system, which in turn
limit the SQL syntax that we can use. Or simply the service provider poses limitation for
some other reasons, such as security or availability. For example, Google Cloud SQL restricts
the use of user defined functions or statement “SELECT ...INTO OUTFILE/DUMPFILE” [goo].
Therefore, it should be treated as a new SQL dialect, distinguished from its local counterpart.
However, for those that have no documented limitation or differences, such as Amazon RDS,
we’ll treat them as the same dialect as a local database system.

Database in a Cloud infrastructure is an IaaS approach, where we deploy our own database
system, as well as the underlying operation system, etc., on a Cloud infrastructure. Since
Taa$S abstracts only the underlying infrastructure, we have almost full control over the system
built upon it, including the operating system, file system, and the database system. This
also allows us to install any type of database system on the Cloud. Such setup simulates a
local database system, which means we can use the same SQL dialect as we used on a local
system.

1 PostgreSQL Release Announcement: http://www.postgresql.org/about/news/1481/

29

http://www.postgresql.org/about/news/1481/

4. Analysis and Specification

4.3. SQL Statement Transformation

In this section, we will detail the system specification regarding the transformation function-
ality of SQL statements. In order to transform SQL statements across multiple dialects used
by different database vendors, the transformation process is grouped according to the source
dialect, each with a corresponding parser. The parsing result should be a dialect-independent
representation of the SQL statement containing all its semantic context, which can later be
transformed back into the text-form statement based on the target dialect. Thus, the following
two functionalities must be offered by our components: SQL Statement Parsing and SQL
Statement Transforming.

4.3.1. SQL Statement Parsing (FR1)

SQL is a structured language, as indicated by its name. And the main body of SQL language
consists of SQL statements, each of which requests a specific action from the DBMS, such as
retrieving data or creating new table [GWO02]. The construction of an SQL statement follows a
strict grammar specified by its standard, and various database vendors. Therefore a parser
can be created according to the grammar, to decompose the statement and construct it into a
parse tree, as shown in Figure 4.3. With the tree, the system can then easily identify every
aspects of a statement, unlike the plain text formed sentence. Importantly, the tree can then be
used to form statement in any dialects, with all the information of the original statement.

Select

— List<Selectltem> selectltems
Column : department
SelectExpressionltem : AVG(salary) AS average

Function : AVG(salary)
Alias : average

SELECT department, AVG(salary) AS average List<Fromltems fromltems
FROM employee, salaries Parse Table : emplovee
WHERE age > 30 (MySQL) Tab : Ip ¢ Y/
LIMIT 0, 100 able : salaries

— Expression where
LargerThanExpression : age > 30
Expression left : age
Expression right : 30

——Limit limit
l:int offset : 0
int row_count : 100

Figure 4.3.: Parsing of a SELECT Statement Into a Parse Tree

4.3.2. SQL Statement Transforming (FR2)
With the parse tree we acquired from the parser, we can identify every intention of the

statement in its source dialect. With that in mind, we can then find the corresponding
representation in another dialect, that has the exact same meaning of the original statement.

30

4.4. SQL Response Transformation

For example as shown in Figure 4.4, the node Limit of the tree indicates that the original
statements has an intention to constraint the number of rows returned by the statement (the
returned result should start from the beginning with an offset of 0, and has maximum 100
rows). In different dialect, this clause is presented differently, though with the same meaning.
For example, in PostgreSQL 9.2, it’s written as “LIMIT 100 OFFSET 0”. And in Oracle 12¢, it’s
“OFFSET O ROW FETCH NEXT 100 ROWS ONLY”. And these texts can be easily formed with the
two parameters we have in the tree: offset and row_count.

Select
— List<Selectltem> selectltems
Column : department
SelectExpressionltem : AVG(salary) AS average
Function : AVG(salary) SELECT department, AVG(salary) AS average
Alias - Transform FROM employee, salaries
) las - average (PostgreSQL) WHERE age > 30
— List<Fromltem> fromltems LIMIT 100 OFFSET 0
Table : employee
Table : salaries
—— Expression where
LargerThanExpression : age > 30
E ion left - SELECT department, AVG(salary) AS average
xpression left : age Transform FROM employee, salaries
Expression right : 30 (Oracle) WHERE age > 30
—Limit limit OFFSET 0 ROW FETCH NEXT 100 ROWS ONLY

i:int offset : 0
int row_count : 100

Figure 4.4.: Transforming a Parse Tree Into SQL Statements of Different Dialects

4.4. SQL Response Transformation

Same as the SQL statement, each database system may have their own syntax of the response.
Fortunately, as stated in Section 4.1.4, CDASMix uses JDBC driver to connect to the target
database. It provides us an unified API to deal with the response from the database.

Generally, there are two types of response from executing an SQL statement. When the
statement is a data query, e.g. a SELECT statement, the response will be a table of values
satisfying the query. And when the statement is a data modification or definition statement,
e.g. an INSERT statement, JDBC will return the number of affected rows for the statement.
In addition, JDBC can retrieve the generated keys of the executed statement when available
with a specific flag. As we can see, the response we receive will have the same structure
independent from the database system. Thus, when considering the compatibility of the
response with the source database, we need only to take care of the data and their data types
stored in the response, which can be accessed with the JDBC API: java.sql.ResultSet.

Camel JDBC Component is responsible for retrieving the result set and marshal it into a
NM. At this point, data type is irrelevant. Thus, the dynamic data access method of
java.sql.ResultSet is used: ResultSet.getObject. We know that the data retrieved from
database are mapped to JDBC types expressed with class java.sql.Types; and for each type

31

4. Analysis and Specification

there is a corresponding Java class? to store the data, which are all subclasses of the Object
class.

In the proxy bundle, the result set data is sent back to the client via TCP connection with
the database native communication protocol. For different data types the protocol requires
different data formats, therefore the data need to be converted back to their original form in
Java classes. The type information of the data is kept in the ResultSetMetadata specified
with java.sql.Types class. JDBC defined a map between the JDBC type and Java type [jdb],
which the proxy bundle used to convert the objects retrieved from the Camel J[DBC component,
to their corresponding Java classes.

As we can see, JDBC already takes care of the data conversion from native database format to
Java class, and proxy bundle took care of the conversion from Java class to native database
format. The only dilemma left is that whether the data received from the target database
is mapped to the same Java class as the source database would expect. This is however
guaranteed by the migration process which dealt with the compatibility of the data between
source and target database [Bac12]. Since the data in the source database is migratable to
target database, we can assume that they can be mapped to the same Java classes. The
same applies to the DDL statements executed through CDASMix, which will be transformed
to manage the data type compatibility. However such assumption requires an extensive
validation, which we will provide in Chapter 7. In conclusion, SQL response transformation
is not necessary in CDASMix, with the limitation that the source and target data should be
mapped to the same Java class.

4.5. Use Cases

In this section, we provide four use cases regarding SQL transformation in CDASMix. The
tirst two are related to the functionality of SQL transformation, whose actor is the system
itself (more specifically the Proxy Component). In addition, we detail two more use cases for
extending the existing SQL transformation functionality, to provide support for additional
SQL dialects as both source and target dialect.

2For primitive types, such as int, double, their wrapper class is used, namely java.lang.Integer and
java.lang.Double

32

4.5. Use Cases

Name Parse SQL Statement
Goal To parse an SQL statement in plain text form into a parse tree
Actor Proxy Component

Pre-Condition

An SQL statement in text form and its dialect is presented, as well as a correspond-
ing SQL parser.

Post-Condition

The SQL statement is parsed into a parse tree

Post-Condition
in Special Case

The SQL statement is not successfully parsed into a parse tree

Normal Case

1. The proxy component looks up the transformer service associated with the
dialect of the SQL statement.

2. The proxy component uses the service’s parser to parse the statement into a
parse tree.

Special Cases

1. There is no transformer service associated with the dialect of the SQL statement.

a) The system informs the application with an error message.

2a. There is a syntax error in the statement.

a) The system informs the application with an error message.

2b. The statement’s syntax is not supported by the parser.

a) The system informs the application with an error message.

Table 4.1.: Description of Use Case Parse SQL Statement.

33

4. Analysis and Specification

Name Transform SQL Statement

Goal To transform a statement’s parse tree into a statement with the specified target
dialect

Actor Proxy Component

Pre-Condition

The SQL statement in source dialect is successfully parsed into a parse tree; source
and target dialect are different; and the transformation for the target dialect is
supported in the transformer service.

Post-Condition

An SQL statement in the specified target dialect is returned.

Post-Condition
in Special Case

The SQL statement is not transformed into the specified target dialect.

Normal Case

The proxy component uses the previously acquired parse tree to transform the
statement to the target dialect.

Special Cases

la. The syntax of the original statement in source dialect cannot be transformed
into the target dialect.

a) The system informs the application with an error message.

1b. The transformation is not implemented for the target dialect.

a) The system informs the application with an error message.

34

Table 4.2.: Description of Use Case Transform SQL Statement.

4.5. Use Cases

Name Add Transformation to New Target Dialect to an Existing Transformer
Goal To add transformation support for new target dialect in the existing transformer
Actor System Administrator

Pre-Condition

The system administrator has access to the source code of the existing transformer,
and the access permission to the OSGi container

Post-Condition

The transformer service is updated to support the new target dialect

Post-Condition
in Special Case

The new target dialect stays unsupported in the transformer service

Normal Case

1. Update the source code of the transformer service to add support for the new
target dialect, and package it into an OSGi bundle with an increased version
number.

2. Perform an update with the newly created bundle using the OSGi console.

Special Cases

The bundle fails to be updated.

a) OSGi console prompts an error message and aborts the update.

Table 4.3.: Description of Use Case Add Transformation to New Target Dialect to an Existing

Transformer.

35

4. Analysis and Specification

Name Add New SQL Parser and Transformer for New Source Dialect
Goal To add new SQL parser and transformer for new source dialect
Actor System Administrator

Pre-Condition

The system administrator has access permission to the OSGi container

Post-Condition

The new transformer service is added to the OSGi container to support new source
dialect

Post-Condition
in Special Case

The new transformer service is not deployed to support the new source dialect

Normal Case

1. Develop the SQL parser and transformation for the new source dialect.
2. Declare it as a transformer OSGi service and package it in an OSGi bundle.
3. Deploy the bundle into the OSGi container.

Special Cases

The bundle fails to be deployed.

a) OSGi console prompts an error message and aborts the deployment.

Table 4.4.: Description of Use Case Add New SQL Parser and Transformer for New Source

36

Dialect.

4.6. Non-Functional Requirements

4.6. Non-Functional Requirements

In this section, we will specify a list of non-functional requirements that we take into consider-
ation during the design and implementation of our system. It spreads over the development,
deployment, and adoption of the components we develop.

4.6.1. Extensibility (NFR1)

Since there exists a wide range of SQL dialects, both as source and target dialect, we need
to make the components we develop easily extensible for adding additional support. As
for source dialect, additional parser and transformation bundles can be added to the system
without extra alteration of existing components or restarting the whole system. And when
adding support for new target dialects, changes applied to the existing components should
be minimum, and independent from the already running system.

4.6.2. Integratability (NFR2)

SQL transformation is developed as an additional functionality. Thus it should be able to
smoothly integrate into the existing system (CDASMix), without affecting its basic functions
and requirements. In addition, plugging out or failure of the transformation should be as
undisturbed as the integration.

4.6.3. Performance (NFR3)

The additional processing of SQL statement can be time and memory consuming, especially
when parsing statements. This will have a definite impact on the system performance, in terms
of request throughput, and system resource consumption. We can increase the effectiveness
of the parser to speed up the process. The position we place the transformation functionality
also affects the performance due to different internal communication methods.

4.6.4. Scalability (NFR4)

In order to provide support for various source dialects, a separate bundle for each source
dialect needs to be deployed. Such deployment model will restrict the scalability of the
system due to the limit system resource in an OSGi container. Therefore we should consider
to limit the service instantiation and components loading based on the service we actually
use to avoid unnecessary resource consumption.

37

4. Analysis and Specification

4.6.5. Maintainability and Documentation (NFR5)

Due to the extensibility (NFR1), a continuous development of transformation bundles will
take place to add further support. Therefore, a detailed description of developing and
extending the bundles should be documented to ease the process. This also means fully
commented source code, and extensive logging in order to support the debugging.

38

5. Design

In this chapter, we present the architectural designs we took into consideration to integrate
transformation functionality, and the final decision we made between two variants. Fur-
thermore we'll discuss how the transformation process is realized as an OSGi service, and
how the realization fulfills the functional and non-functional requirements we proposed in
Chapter 4.

5.1. System Architecture

As we discussed in Section 4.1.2, the database server proxy bundle provided by CDASMix
gathered all the information we need to perform an SQL transformation: the statements, and
their source and target dialects; then wrap them into a normalized message before passing it
to the NMR.

Before further discussion, we need to first take a look at the inter-bundle communication in
CDASMix. We know CDASMix is based on Apache ServiceMix 4.3, which complies with
both OSGi and JBI specification (see Section 2.9). There are multiple ways to communicate
between the bundles. Communication through NMR is a message-based communication
where bundles can exchange messages, both synchronously and asynchronously. In our case,
synchronous message exchange is used by the proxy to ensure the the correspondence of
request and response, as well as message order [Sdel3a]. The reason NMR is used, is that it
spans both the OSGi container and the JBI container, thus enables communication between
OSGi bundle and JBI bundle.

On the other hand, OSGi service is the natural way to communicate within an OSGi container.
It is a publish, find and bind model, which provide normal Java objects as services registered
with a registry [OSG11]. Therefore the the message exchange with OSGi service is achieved
by invoking a Java method with parameters and receiving a returned value. It’s a straight
forward synchronous communication, however only available in the OSGi container.

Therefore we proposed two approaches based on different prospective on modularization
and performance, using the above mentioned communication methods.

5.1.1. First Approach
In the earlier development, we considered the design presented in Figure 5.1. It modularizes

the transformation functionality into a separate OSGi bundle, the SQLTransformer, which
exposes itself as an endpoint on the NMR. Database server proxies will relay their NMs to

39

5. Design

the SQLTransformer endpoint when the source and target data source are different. As a side
note, the Uniform Resource Identifier (URI) of the tenant-aware Camel endpoint where the
NM should be sent to (see Figure 2.3) is stored in the property of the NM.

In the SQLTransformer bundle, the received NM will be unmarshaled, to examine the source
and target dialects of the queries stored in its attachment. Based on the source dialect, it
will look up the corresponding transformation service registered in the OSGi service registry,
which we will introduce later. With the acquired service, it can then transform the queries to
their target dialect. With all queries transformed, they will be again marshaled into the NM
and forwarded to the tenant-aware Camel endpoint via NMR.

Legend
o T N BEERREEEE OSGii service invocation
External Application A External Application B
—— Normalized Message
* * ——— TCP stream
| |
0SGi : :
| |
\ \ MySQL Transformer
<Y
MySQL Proxy PostgreSQL Proxy SQLTransformer
-
» PostgreSQL
Transformer

Normalized Message Router

Figure 5.1.: First Approach - Transformer as Separate OSGi Bundle

5.1.2. Second Approach

In the second approach, we will transform the SQL statements with the transformation service
directly in the proxy bundle. When the proxy detects that the source and the target dialect of
the statement disagree, it will then look up a corresponding transformation service, and use it
to transform the statement before marshaling it into the NM. Otherwise the statement will
proceed without transformation.

As we specified in Section 4.1.2, for each type of database client, a server proxy bundle is de-
ployed to handle the communication (MySQL Proxy for MySQL applications and PostgreSQL
Proxy for PostgreSQL applications), hence one proxy corresponds to one type of database
system. Therefore the statements received at a proxy always belong to the dialect of that

40

5.1. System Architecture

particular database system. Depending on the version of source dialect, a proxy bundle will
require only a particular set of transformer services. Thus, a different architecture is then
designed and chosen to use for our final prototype, as shown in Figure 5.2.

Legend
------- OSGi service invocation
External Application A External Application B
Normalized Message
* % ——— TCP stream
I \
- A}
OSGi | \
| \
\
v .
PostgreSQL
MySQL Proxy |«----- »| MySQL Transformer PostgreSQL Proxy |« ---- 9| Transformer

7

Normalized Message Router

Figure 5.2.: Second Approach - Direct Transformation From Proxy Bundle With Trans-
former Services

Another advantage of this architecture over the previous one, is that the proxy will transform
the SQL statements it received prior to the marshaling of NM. As stated previously, the
SQLTransformer bundle needs to unmarshal and then again marshal the NM in order to
transform the statements stored in the attachment. Such process is then eliminated using the
second design, which will benefit the overall performance (request throughput) we required
as stated in NFR3.

Furthermore, in this design, the proxy bundle is directly responsible to look up the transfor-
mation service. Therefore it knows beforehand the availability of the services and can act
accordingly. In the first approach, the proxy bundle will send the request to the SQLTrans-
former when transformation is needed, without knowing if there is actually a service available
to transform the statements.

In addition, for future consideration, the parser used in the transformation service could
potentially further improve the effectiveness and stability of the proxy. As pointed out in
Section 4.1.2, the statements are analyzed in the proxy bundle to retrieve its query type and
related schema objects. In current implementation of CDASMix by Goméz Saez [Sael3a],
direct string matching is used to examine the statements. However, the transformation
service can be easily extended to use the parse tree we acquired (see Figure 4.3) to identify
the information in an SQL statement with a much higher robustness and effectiveness.

41

5. Design

5.2. SQL Transformation Service

The actual SQL transformation functionality we introduced in Section 4.3 (FR1 and FR2),
is designed as an OSGi service, to take advantage of the OSGi container in CDASMix. The
nature of OSGi framework fulfills our requirement NFR1, as the OSGi service packaged in an
OSGi bundle can be easily installed, upgraded, and uninstalled as specified in the Life Cycle
Layer of OSGi specification (see Section 2.8).

OSGi service as defined in the Service Layer of OSGi specification [OSG11], follows a publish,
find and bind service model, which register normal Java objects under one or more Java
interfaces with the service registry. The Java interfaces which the service objects implement,
contribute as service description that identifies the input parameters and their types, as well
as the return values and exceptions. A service object may specify additional service properties
when registered.

There are various ways to define an OSGi service as specified in the OSGi Service Com-
pendium [OSG12]. According to NFR4 we require minimum resource consumption, as
well as a simplified programming model to satisfy NFR1. Based on these requirements,
we narrowed our choices to the service component model specified in the Declarative Services
Specification [OSG12].

This model simplifies the task of authoring OSGi services by performing the work of register-
ing the service and handling service dependencies. It minimizes the amount of code we have
to write, which eases the extensibility (NFR1) of our system to develop additional bundles.
It also allows components to be loaded only when they are needed, as shown in Figure 5.3.
The service bundle is only loaded when the service it provides is requested, as well as the
instantiation of service object. As a result, the system start up time is reduced, as well as the
memory footprint, which fulfills the requirement NFR4.

As we concluded in Section 4.3, the transformation process is grouped according to the source
dialect. That is to say, for each source dialect we will deploy a corresponding OSGi service
component. Each service component implements the same service as defined in Listing 5.1. It
has only one method which transforms a statement from the source dialect to the specified
target dialect, and defines a set of exceptions that can occur.

public interface SQLTransformer {
String transform(String original, Dialect target) throws NotImplementedException,
UntransformableException, SQLParseException;

Listing 5.1: SQL Transformer Service Definition

In order to distinguish the deployed service components which support different source
dialects, we need to define an extra service property for the service component to identify the
source dialect it supports. The service property is registered along with service component
in the OSGi service registry when the bundle is deployed. More importantly, a particular

42

5.2. SQL Transformation Service

Service Service Service Service
Consumer Registry Component Runtime Provider
| =OnsSumer | 9ISt romponent huntime

Declare Service Component

T
I I I
I I I
I I I
| X
i Register Service Factory i E
i || i i
I I I I
I I I I
| | | |
! Find Services — ' |
I I I
I I I
' Service Refs [0..n] ' '
€€ mm e e e e e e e - - o 1 1
| — | |
I I I I
I I I I
I I I I
' Get Service] ' '
! Activate] !
! Load Bundle]
l L
| |
| Create Service Object —
I
|
| Setrvice Object
0t e T T
! Service Object T
! Service Object | |~ T T T T T '
€ —mmmm T |
| L | 1 1
| | | |
' ' Call Methods ' L
| | |
1 I I
e Fommmmmmmmmmoeeo-
| | |
} I I I
I I I I
[} . I I I
' Unget Services ' '
: | |
I I |
<o | |
I I I

Figure 5.3.: The Life Cycle of Declarative Service of OSGi [Bar]

service can then be looked up by specifying a filter which includes the source dialect property
and the desired value.

43

5. Design

44

1
2
3
4
5
6
7
8
9

6. Implementation

In this chapter, we will detail the implementation of the SQL transformation functionality, as
well as its integration with CDASMix. The transformation functionality is realized as OSGi
services, packaged in individual OSGi bundles. The integration requires extension to the
existing proxy bundles in CDASMix. The majority of the implementation is realized with
Java language, while certain parts are written in XML in cope with the OSGi specification.

6.1. SQL Parser and Transformation

In Section 2.3, we introduced JavaCC, the parser generator, and the fact that it can generate a
parser from the grammar file (Listing 2.2) to parse SQL statement into a parse tree. Listing 6.1
shows us with pseudo code how the generated parser parse a statement.

public class MySQLParser {

final public Statement Statement() {
Statement stmt;
switch(first_word){
case R_SELECT:
stmt = Select();

}

return stmt;

}

final public Select Select() {
consume_token(R_SELECT) ;
Select select = new Select();
List selectItems = null;
FromItem fromItem = null;

selectItems = SelectItemsList();

if (R_FROM){
consume_token(R_FROM) ;
fromItem = FromItem();

}

return select;

3

final public FromItem FromItem(){
if(match_Table){

45

30
31
32
33
34

6. Implementation

return Table();

Listing 6.1: Pseudo Code of MySQL Parser

As we can see, what the parser does is building a parse tree based on the token it reads from
the input. It will build from the root node (Select) and then to the left-most leaf node until it
reaches the terminal node before it moves on to the next leaf node. Such order is referred as
depth-first pre-order.

In addition to the JavaCC grammar file, we need to implement the parse tree as Java classes, as
well as the transformation functionality. An example is shown in Listing 6.2, which illustrates
the Select class in MySQL dialect. For demonstration reason, the class is simplified from the

actual implementation to fit the example we used in Figure 4.3.

public class Select implements Statement {
private List<SelectItem> selectItems;
private List<FromItem> fromItems;
private Expression where;
private Limit limit;

@Override

public String toString() {

String sql = "SELECT_";
sql += StringUtil.listToString(selectItems);
sql += "_FROM_" + StringUtil.listToString(fromItems);
sgql += (where != null) ? " _WHERE_ " + where : "";
sql += (limit != null) ? limit : "";
return sql + ";";
3
@Override

public String transform(Dialect target) throws UntransformableException,
NotImplementedException {
switch (target) {
case PostgreSQL:

String sql = "SELECT.";

sql += StringUtil.transformListToString(selectItems, target);

sql += "_FROM_" + StringUtil.transformListToString(fromItems, target);
sql += (where != null) ? " _WHERE_" + where.transform(target) -

sql += (limit != null) ? limit.transform(target) : "";

return sql + ";";

46

Listing 6.2: Select Class and its Transform Method

6.1. SQL Parser and Transformation

Worthy of note, in Line 2-4, SelectItem, FromItem, and Expression are Java interfaces
we use as types to reference specific SQL context. Since different SQL syntax can appear
at various position of an SQL statement in different context, Java interface provides an
alternative to avoid multiple inheritance which is not supported in Java. For example,
SubSelect implements FromItem, since SubSelect can appear after FROM indicating the place
from which to retrieve data. SubSelect also implements Expression, as it can appear in an
SQL expression, such as an InExpression.

The toString method!, that every Java class inherits, is used to reconstruct the class into a
statement in its original dialect. It may differ from the statement that is passed as input of
the parser, but only on the insignificant parts, such as case of keywords, meaningless empty
spaces or brackets, etc. This method is useful to output an SQL statement into a standard
format.

The important method for us is the transform method which will be implemented by every
class of the parse tree as well. It takes only one parameter, the target dialect, to which
the statement will be transformed. In Listing 6.2, Line 20-25, we can see that there are no
additional changes required on the Select statement level; only the components in the
statement need to be transformed individually. And Listing 6.3 shows us how the Limit class
is transformed. The Statement interface in Listing 6.2 is a subclass of the Transformable
interface. In such way, when the transform method (as well as the toString method) is
called on the Statement, a recursive method calling will carry out along the tree which
finally complete a depth-first pre-order tree traversal and return a complete transformed
SQL statement. It’s in the exact same order as how the tree is build which we introduced
previously.

public class Limit implements Transformable{

@Override
public String toString(){

return " _LIMIT_ " + offset + ",_" + row_count;
}
@Override
public String transform(Dialect target){

switch(target){

case PostgreSQL:
return "_LIMIT_" + row_count + "_OFFSET_ " + offset;

Listing 6.3: Limit Class and its Transform Method

In Listing 6.2, Line 12-13, where and 1limit are implicitly cast to String, where their toString method will be
implicitly called. See Listing 6.3, Line 3-6.

47

O ® N o U ke W N =

6. Implementation

6.2. Transformation Service Implementation

As the next step, we need to expose the transformation functionality as an OSGi declarative
service, as discussed in previous sections. Fortunately, the SCR as defined in OSGi specifi-
cation [OSG12] will take care of the service registration, bundle loading, and service object
instantiation of a service component (see Figure 5.3). All we need to do is declare a service
component. This is achieved with the SCR descriptor, as shown in Listing 6.4. Such an XML
file may be placed anywhere within the bundle, as long as its path is listed in the bundle’s
manifest header Service-Component [Thea].

—-- OSGI-INF/MySQLTransformer.xml --

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns:scr="http://www.osgi.org/xmlns/scr/v1.0.0">
<component immediate="false" name="MySQLTransformer'">
<implementation class="iaas.unistuttgart.de.sqltransformer.MySQLTransformer"/>
<service>
<provide interface="iaas.unistuttgart.de.sqgltransformer.api.SQLTransformer"/>
</service>
<property name="source_dialect" value="MySQL"/>
<property name="service.pid" value="MySQLTransformer"/>
</component>
</components>

-- META-INF/MANIFEST.MF --

Service-Component: OSGI-INF/MySQLTransformer.xml

Listing 6.4: OSGi Declarative Service Component Descriptor

It has several noteworthy settings regarding the service component. The component ele-
ment defines one service component with an unique name. The immediate attribute defines
whether the component is to be instantiated immediately (true) or on-demand (false). The
implementation element specifies the full qualified name of the class that implements the ser-
vice(s), while the service(s) is defined under the service element. A service component can
implement multiple services. Furthermore, we can characterize the service component with
additional properties. The property is essential for us, as we depend on them to distinguish
different transformation service components based on their source dialect.

In addition to the straightforward declaration with component descriptor, Apache Felix
provides a Maven SCR plugin? to help generating the SCR descriptor and adding the Service-
Component header to the bundle manifest automatically. Since we are already building our
components with Maven, such plugin can help ease the process, as it can keep the descriptor
and the code in sync during the development.

zf\pache Felix Maven SCR plugin: http://felix.apache.org/documentation/subprojects/
apache-felix-maven-scr-plugin.html

48

http://felix.apache.org/documentation/subprojects/apache-felix-maven-scr-plugin.html
http://felix.apache.org/documentation/subprojects/apache-felix-maven-scr-plugin.html

6.3. Transformation Service Lookup and Consumption

Apache Felix Maven SCR plugin uses Java annotations to define the service component, as
shown in Listing 6.5. It can be quite easy to see the resemblance with what we defined in
Listing 6.4. Actually, the descriptor in Listing 6.4 is generated by the Maven SCR plugin with
our definition in Listing 6.5.

@Component (name = "MySQLTransformer", immediate = false)
@Service(value = SQLTransformer.class)
@Property(name = SQLTransformer.SOURCE_DIALECT_PROP, value = "MySQL")
public class MySQL implements SQLTransformer {
@Override
public String transform(String original, Dialect target) throws NotImplementedException,
UntransformableException, SQLParseException
{
if(target.equals(getSourceDialect())){
return original;
}
MySQLParser parser = new MySQLParser(new StringReader(original));
String transformed = null;
try {
Statement stmt = parser.Statement();
transformed = stmt.transform(target);
} catch (ParseException e) {
throw new SQLParseException(e.getMessage());
b
return transformed;
}
}

Listing 6.5: OSGi Declarative Service Implementation with Felix SCR annotations

The actual service implementation is quite simple, as the transformation functionality is
handle by the parser and the parse tree which we introduced in Section 6.1. We only need to
pass the original statement to the parser (MySQLParser in Line 12) that we generated with
JavaCC, and parse the statement into a parse tree (Line 15) as seen in Listing 6.2. This will
fulfill our functional requirement FR1. Then we can transform the parse tree into a statement
of the target dialect (Line 16), to fulfil requirement FR2.

6.3. Transformation Service Lookup and Consumption

In order to use a service object and call its methods, a bundle must first obtain a ServiceRef-
erence object, which references to a registered service. It encapsulates the properties and
other meta-information about the service object it represents, but not the service object itself.
This is to avoid complex service dependencies between bundles when a bundle needs to
know about a service but does not require the service object itself [OSG11].

49

6. Implementation

The BundleContext interface of the OSGi bundle provides several methods to locate the
ServiceReference object. In Listing 6.6, we use getServiceReferences(String clazz,
String filter) method, which returns an array of ServiceReference objects whose ser-
vices implemented and were registered under the clazz service interface, and satisfy the
search filter.

BundleContext context;

public String transform(String statement, Dialect source, Dialect target) throws
NotImplementedException, UntransformableException, SQLParseException,
TransformerNotFoundException {
ServiceReference[] refs = null;
SQLTransformer transformer = null;
String filter = "(" + SQLTransformer.SOURCE_DIALECT_PROP + "=" + source.name() + ")";
refs = context.getServiceReferences(SQLTransformer.class.getName(), filter);
if (refs != null && refs.length > 0) {
transformer = (SQLTransformer) context.getService(refs[0]);
} else {
throw new TransformerNotFoundException(target);
}
String transformed = transformer.transform(statement, target);
return transformed;

Listing 6.6: OSGi Service Lookup With Filter

It’s obvious that we are looking for service objects that implement the service (interface)
shown in Listing 5.1. And we can specify the source dialect in the filter (Line 6) to match the
service property we defined in Section 6.2. The filter syntax used by the OSGi service registry
is based upon the string representation of Lightweight Directory Access Protocol (LDAP)
search filters [OSG11].

As we can see, there could be more than one ServiceReference objects returned, since
multiple services can be registered with the same interface and properties. We will always
choose the first element, which has the highest ranking order [OSG11]. With the acquired
ServiceReference object, we can then retrieve the service object (Line 9), on which the
service method can be invoked (Line 13).

Since OSGi is a highly dynamic environment, service objects can be registered and unreg-
istered at any given time, therefore it’s useless to store the service object as it may become
unavailable. A flexible strategy is that we look up the service object every time when we need
it.

50

© ® N o U ke W N e

7. Validation and Evaluation

In this chapter, we will validate the prototype we provided in Chapter 5 and Chapter 6, and
evaluate its performance, to ensure that the system fulfills the requirements we proposed
in Section 4.6. For the validation, we provide a two step validation to separately verify
the correctness of the standalone transformer, and its integrity when the system operates
with Cloud database services. The performance evaluation of transformation is done as an
individual module to isolate the performance variables, so that we can have a clearer view
how the transformation works.

7.1. Validation of SQL Parser and Transformation

The SQL parser and transformer work in a static way that we can precisely predict the result
for a provided SQL statement. Therefore, to validate the correctness of the SQL parser and
transformer, we use an extensive collection of test cases based on JUnit test framework!.

public SelectTest extends TestCase{
public void test() throws JSQLParserException {
String statement = "SELECT_x_FROM_mytable WHERE_col_=_9 LIMIT _3,_10;";
String transformed = "SELECT_+_FROM_mytable WHERE_col_=_9_LIMIT_10_OFFSET_3";
Select select = (Select) parser.parse(new StringReader(statement));
assertEquals(3, ((PlainSelect) select.getSelectBody()).getLimit().getOffset());
assertEqauls(statement, select.toString());
assertEquals(transformed, select.transform(Dialect.PostgreSQL));
}
}

Listing 7.1: JUnit Test Case Example

As shown in Listing 7.1, we used a test statement on Line 4, from which we can easily
recognize its structure and predict the outcome parse tree. Hereafter, we can then verify
each part of the parse tree with our expected value as in Line 8, using the assertEquals
method from class junit.framework.TestCase, which asserts that the expected value and
the actual value are equal. Another compact way to verify the parser is to check the toString
method as in Line 9. We introduced in Chapter 6 that the toString method reconstructs the

1JUit Test Framework: http://www.junit.org

51

http://www.junit.org

7. Validation and Evaluation

parse tree into a standard SQL statement. When we provide the statement (Line 4) in the
standard format, we can expect that the statement will equal to the reconstructed one. In
this way, every aspect of the parse tree is verified in one single line of code. Validating the
transformation is similar as in Line 10, where we verify the transformed result against our
expected value specified at Line 5.

To run the unit tests, we take advantage of the Maven Surefile Pluginz, which runs the unit
tests and generates reports when we build our bundle. This guarantees the integrity of the
bundle of the corresponding transformer service.

7.2. Validation with CDASMix and Cloud Database Services

In this section, we verify the integration of SQL transformation service with CDASMix, and
our final goal of achieving to access various Cloud database services with transformed SQL
statements. As the proper functionality of Cloud data access is provided in [Sdel3a], we only
focus on validating the correctness of transformed SQL statements and the results we get
from the Cloud database.

7.2.1. Deployment and Initialization

We follow the same setup of CDASMix as provided in [Sde13a]. There is an additional docu-
ment, Manual for the CDASMix Initialization [Sde13b], which helps us to setup CDASMix. Refer
to those documents for detailed information on setup and initialization of CDASMix, which
we won't discuss here. In addition, we need to deploy our own bundle to the ServiceMix-mt
(see Section 2.9), to integrate the transformation service. That includes:

* CDASMix MySQL Proxy 2.0: an upgraded CDASMix proxy bundle with the service
look up functionality we introduced in Section 6.3.

¢ MySQL Transformer 1.0: the transformation service implementation for MySQL source
dialect which is defined as an declarative service.

¢ Apache Felix SCR Bundle 1.8: an implementation of the Declarative Service specification,
which handles the service registration, bundle loading and service instantiation of
declarative services (see Figure 5.3).

¢ SQL Transformation API 1.0: the API bundle which includes the service interface (see
Listing 5.1), SQL dialect definitions, and exception classes shared between the proxy
bundle and transformer bundle.

Furthermore, we have several Cloud databases set up for test:

2Maven Surefire Plugin: http://maven.apache.org/surefire/maven-surefire-plugin/

52

http://maven.apache.org/surefire/maven-surefire-plugin/

7.2. Validation with CDASMix and Cloud Database Services

¢ Amazon RDS db.tl.micro DB instance with MySQL 5.5 database system. This is used
as a comparison to ensure when target and source databases are of the same type, no
SQL transformation will take place. It can also verify that the syntax of the original
statement is correct, as well as the result set of queries.

* PostgreSQL 9.2 on an Ubuntu 10.04.4 VM image in the FlexiScale Cloud infrastructure>.

¢ Amazon RDS db.tl.micro DB instance with Oracle 11.2 database system.

7.2.2. Validation

To stimulate the scenario where database application is built upon one database system,
while it actually access through CDASMix with a target database of another type, we need to
register a pair of source and target data source with the CDASMix. We can register existing
Cloud data source with a source data source through a Web service interface [Sde13a]. For the
detail information about registering data sources, please refer to document [Sdel3a]. In our
case, we registered three pairs of data sources as in Table 7.1. Since we have only the MySQL
proxy for testing, we use only MySQL database as source data source. And MySQL 5.1.3 and
MySQL 5.5 use the same SQL syntax due to its backward compatibility.

Data Source Name | Location ID | Data Source Type

source mysql-database-table-5.1.3
mysqldb

target mysql-database-table-5.5

source mysql-database-table-5.1.3
postgresqldb

target postgresql-database-table-9.2

source mysql-database-table-5.1.3
oracledb

target oraclesql-database-table-11.2

Table 7.1.: Tenant Data Source Registration

In order to thoroughly validate the transformer, we need to build test cases which cover every
SQL statements that are supported in the transformation service, and such statements should
be transformable to all target dialects we provided. Therefore, we make up our own database
schema and statements rather than using standard benchmark tools like TPC-H [Tral3],
though we still used as a reference. Since we use only MySQL as source data source, the
source dialect we use will also be MySQL. In Table 7.2, the input row is the test statement we
write using MySQL dialect syntax. The following rows (MySQL, Oracle, PostgreSQL) are the
statements that are actually executed on the corresponding target database. The tick mark
indicates the correctness of the execution of that statement, that includes successful execution

3FlexiScale Cloud Computing Platform: http://www.flexiscale.com

53

http://www.flexiscale.com

7. Validation and Evaluation

of the statements, as well as the correct result set of the queries. An X indicates otherwise.
This can be easily judged with basic database knowledge; also we can compare the results
from other target databases with MySQL target database. In addition, we verify the statement
execution by connecting directly to the target databases with vendor-specific database clients.
Detailed explanations of the table follow directly after with the numbers.

Input CREATE TABLE items (id MEDIUMINT NOT NULL PRIMARY KEY, name VARCHAR(128), quantity
DOUBLE, comments MEDIUMTEXT, image BLOB) ;1

hdyS()L CREATE TABLE items (id MEDIUMINT NOT NULL PRIMARY KEY, name VARCHAR(128), V2
quantity DOUBLE, comments MEDIUMTEXT, image BLOB);

Oracle CREATE TABLE items (id NUMBER(7, 0) NOT NULL PRIMARY KEY, name VARCHAR2(128), v?
quantity FLOAT(24), comments CLOB, image BLOB)

PoﬁgreSCH4 CREATE TABLE items (id NUMERIC(7, 0) NOT NULL PRIMARY KEY, name VARCHAR(128), V2
quantity DOUBLE PRECISION, comments TEXT, image BYTEA);

Input CREATE TABLE orders (order_id BIGINT NOT NULL PRIMARY KEY, item_id MEDIUMINT, status
BOOLEAN DEFAULT FALSE, shiptime DATETIME, CONSTRAINT fk_item FOREIGN KEY (item_id)
REFERENCES items (id) ON DELETE CASCADE);!

MySQL CREATE TABLE orders (order_id BIGINT NOT NULL PRIMARY KEY, item_id MEDIUMINT, v?
status BOOLEAN DEFAULT FALSE, shiptime DATETIME, CONSTRAINT fk_item FOREIGN KEY
(item_id) REFERENCES items (id) ON DELETE CASCADE);

Oracle CREATE TABLE orders (order_id NUMBER(19, 0) NOT NULL PRIMARY KEY, item_id v?
NUMBER(7, 0), status NUMBER(1) DEFAULT O, shiptime TIMESTAMP, CONSTRAINT fk_item
FOREIGN KEY (item_id) REFERENCES items (id) ON DELETE CASCADE)

PostgreSQL CREATE TABLE orders (order_id BIGINT NOT NULL PRIMARY KEY, item_id NUMERIC(7, 0), v?
status BOOLEAN DEFAULT FALSE, shiptime TIMESTAMP, CONSTRAINT fk_item FOREIGN KEY
(item_id) REFERENCES item (id) ON DELETE CASCADE);

Input INSERT INTO items (id, name, quantity, comments, image) VALUES (1, 'namel', 100,
'commentsl long text', IMG1_BINARY®), (2, 'name2', 101.1, 'comments2 long text', IMG2_-
BINARY), (3, 'name3', 123, 'comments3 long text', 0x53696d696e0d0a);

MySQL INSERT INTO items (id, name, quantity, comments, image) VALUES (1, 'namel', 100, x*
'commentsl long text', IMG1_BINARY), (2, 'name2', 101.1, 'comments2 long text',
IMG2_BINARY), (3, 'name3', 123, 'comments3 long text', 0x53696d696e0d0a);

Oracle INSERT ALL INTO items (id, name, quantity, comments, image) VALUES (1, 'namel’, x5
100, 'commentsl long text', IMG1_BINARY) INTO items (id, name, quantity,
comments, image) VALUES (2, 'name2', 101.1, 'comments2 long text', IMG2_-
BINARY) INTO items (id, name, quantity, comments, image) VALUES (3, 'name3', 123,
'comments3 long text', '53696d696e0d0Oa') SELECT 1 FROM DUAL

PostgreSQL INSERT INTO items (id, name, quantity, comments, image) VALUES (1, 'namel', 100, x*
'commentsl long text', IMG1_BINARY), (2, 'name2', 101.1, 'comments2 long text',
IMG2_BINARY), (3, 'name3', 123, 'comments3 long text', E'\\x53696d696e0d0Oa');

Input INSERT INTO orders (order_id, item_id, status, shiptime) VALUES (100, 1, DEFAULT, NULL),
(101, 2, DEFAULT, {ts '2013-11-11 11:11:11'});*

MySQL INSERT INTO orders (order_id, item_id, status, shiptime) VALUES (100, 1, DEFAULT, v7
NULL), (101, 2, DEFAULT, {ts '2013-11-11 11:11:11'});

54

7.2. Validation with CDASMix and Cloud Database Services

Oracle INSERT ALL INTO orders (order_id, item_id, status, shiptime) VALUES (100, 1, x5
DEFAULT, NULL) INTO orders (order_id, item_id, status, shiptime) VALUES (101,
2, DEFAULT, TIMESTAMP '2013-11-11 11:11:11.0') SELECT 1 FROM DUAL

PostgreSQL INSERT INTO orders (order_id, item_id, status, shiptime) VALUES (100, 1, DEFAULT, V7
NULL), (101, 2, DEFAULT, TIMESTAMP '2013-11-11 11:11:11.0');

Input UPDATE orders SET status = true, shiptime = NOW() WHERE item_id IN (SELECT id FROM items
WHERE quantity > 100);

MySQL UPDATE orders SET status = true, shiptime = NOW() WHERE item_id IN (SELECT id v7
FROM items WHERE quantity > 100);

Oracle UPDATE orders SET status = 1, shiptime = CURRENT_TIME() WHERE item_id IN (SELECT V7
id FROM items WHERE quantity > 100)°

PostgreSQL UPDATE orders SET status = true, shiptime = NOW() WHERE item_id IN (SELECT id v7
FROM items WHERE quantity > 100);

Input SELECT DISTINCT orders.order_id, orders.item_id, orders.status, orders.shiptime,
items.name, items.comments, items.image FROM orders JOIN items WHERE name LIKE 'name%'
AND quantity > 100 GROUP BY orders.order_id ORDER BY items.id LIMIT 1, 5;

MySQL SELECT DISTINCT orders.order_id, orders.item_id, orders.status, orders.shiptime, V8
items.name, items.comments, items.image FROM orders JOIN items WHERE name LIKE
'name%' AND quantity > 100 GROUP BY orders.order_id ORDER BY items.id LIMIT 1, 5;

Oracle SELECT DISTINCT orders.order_id, orders.item_id, orders.status, orders.shiptime, V'8
items.name, items.comments, items.image FROM orders JOIN items WHERE name LIKE
'name%' AND quantity > 100 GROUP BY orders.order_id ORDER BY items.id OFFSET 1
ROWS FETCH NEXT 5 ROWS ONLY

PostgreSQL SELECT DISTINCT orders.order_id, orders.item_id, orders.status, orders.shiptime, V8
items.name, items.comments, items.image FROM orders JOIN items WHERE name LIKE
'name%' AND quantity > 100 GROUP BY orders.order_id ORDER BY items.id LIMIT 5
OFFSET 1;

Input DELETE FROM items WHERE id = 1;

MySQL DELETE FROM items WHERE id = 1; NG

Oracle DELETE FROM items WHERE id = 1 V&

PostgreSQL DELETE FROM items WHERE id = 1; Vo

Input DROP TABLE orders CASCADE;

MySQL DROP TABLE orders CASCADE; 10

Oracle DROP TABLE orders CASCADE CONSTRAINTS 10

PostgreSQL DROP TABLE orders CASCADE; v10

Table 7.2.: SQL Transformation Validation with Cloud Databases

1. The majority of transforming the CREATE TABLE statement is the data type transforma-
tion. We introduced in Section 2.2.2 and Appendix A, that different database vendors

55

7. Validation and Evaluation

56

have their own set of data types. For most of them, we can find a similar data type in
the target database to substitute them with the closest context meaning.

. To validate the correctness of the CREATE TABLE statement, we check at each target

database if the table is created using LIST TABLE command (or similar). Besides we use
DESCRIBE TABLE command (or similar) to verify the table’s schema and constraint. Of
course it can be also verified when we execute the following DML statements.

. For the INSERT statement, we will use the PreparedStatement from JDBC to help

insert binary data (an image file) for the statement. IMG1_BINARY and IMG2_BINARY here
are just placeholders for the binary data we will insert.

. Animportant aspect of transforming INSERT statement is the literal data transformation.

Here for example, we can see the different expressions of hexadecimal data. However,
as a limitation of CDASMix, MySQL Proxy Component will encode binary literal with
the syntax (_binary'data') into Base64 format and pass it onto the database. And for
all binary query result it received, it will decode the data [Sae13a]. This raises a problem
when we insert binary data with other format such as hexadecimal data. It will not be
encoded when inserted, however it will get decoded when we select them. A solution
for this will be to encode all binary data types.

. For Oracle SQL, inserting multiple values is not naturally supported as other databases

system do. But it can be achieved in a tricky way, using the multi-table insert syntax
with a dummy SELECT statement “SELECT 1 fROM DUAL”. DUAL is a default table in all
Oracle database containing one column DUMMY defined as VARCHAR2 (1) [ora]. However
with such syntax, we lose the ability to retrieve the generated keys by the statement and
will raise exception in CDASMix. This can be solved when we support transforming
one statement to multiple statements.

. As boolean value is not supported in Oracle database, we use a single digit number for

substitution (see 1). Since we transformed the data type, the data literal also has to be
transformed (true to 1, false to 0). To be noted, JDBC can still retrieve boolean value
when we query the data as JDBC naturally support casting other data types to boolean
value (1 to false, 0 to true) [jdb].

. To validate INSERT and UPDATE statements, first we check the result set for auto-

generated keys produced by this statement. Then we use SELECT statement to check
the data in the target database. Especially for the binary data, we will write the selected
data into a file so that we can see if it matches the image file we inserted before.

. For SELECT statement, we can see the transformation of the LIMIT clause for different

target database. Moreover, we verify the integrity of the data we inserted and updated
before. We inserted more data as shown here to check the ordering and row limiting
clause. As we can see, for some data we use different but compatible data types in
different databases. And we can still retrieve them from different databases with JDBC
as they are the same data. This proves the assumption we made in Section 4.4 that the
result set transformation is unnecessary, however with a limitation that the data should
be presentable with the same Java class. Boolean value is an exception (see 6).

7.3. Performance Evaluation

9. To validate DELETE statement, we use SELECT statement to check whether the data is
deleted. This also verifies the foreign key constraint (fk_item) we created before, which
will lead to a cascade deletion in orders table as well.

10. We use LIST TABLES command (or similar command) or SELECT statement to check
whether the table is successfully dropped.

7.3. Performance Evaluation

An important aspect of performance of our system is the statement throughput, which
measures how many statements can be executed in one unit of time. Since transformation
functionality is an add-on feature to the existing CDASMix system using OSGi service, its
performance drawback can be evaluated as a standalone module.

As we can see in Chapter 6, the transformation of a statement is made up of two parts: parsing
and transforming. Both follow a depth-first pre-order tree traversal as we introduced earlier.
And the tree we are referring to is the parse tree as presented in Figure 7.1. In graph theory,
such tree structure is named k-ary tree which is a rooted ordered tree in which each node has
no more than k children. And the time complexity of the traversal for such tree would be
O(n) where n is the number of nodes.

<<Java Interface>>
Statement

A

SELECT * FROM items WHERE item_id = 1;

h
<<Java Class>>
Select

-selectbody | 0..1

<<Java Interface>>

SelectBody
A
1
<<Java Class>>
PlainSelect
-selectltems -where
0.x -fromitem |0..1 0.1
<<Java Interface>> <<Java Interface>> <<Java Interface>>
Selectltem Fromltem Expression
A A A
1 1 1
<<Java Class>> <<Java Class>> <<Java Class>>
AllTableColumn Table BinaryExpression

i

<<Java Class>>
EqualsTo

-rightExpression

-leftExpression o 01

<<Java Interface>> <<Java Interface>>
Expression Expression
A A
I 1
! 1
1 1
<<Java Class>> <<Java Class>>
Column LongValue

Figure 7.1.: SELECT Statement’s Parse Tree in Class Diagram

57

7. Validation and Evaluation

With this assumption, we then proceed by categorizing SQL statements based on their result-
ing parse tree’s total number of nodes, and evaluate the time consumption and the throughput
of parsing and transforming the statements. To fairly measure the throughput, we monitor
the time it takes to parse and transform a statement for 10000 times, and measure this value
for 100 times. We then take the average of these 100 values for the time consumption (sec-
ond /statement). With the time consumption we can then calculate the throughput (number
of statement/second) by inverting it. We performed a load testing with one representative
load containing a mixture of various statements, and another load with only select statements.
Table 7.3 and Table 7.4 show us the evaluation for statements with different number of nodes.
And Figure 7.2 and Figure 7.3 visualizes the relationship between the number of nodes and
the time consumption, as well as the throughput.

Statement Number of Time (s) Throughput (1/s)
Nodes

drop table t; 3 0.000028497 35091.4131312068
drop table if exists t, tl1; 5 0.000029394 34020.5484112404
select * from items; 8 0.000033343 29991.3025222685
create table t (a int, b varchar); 10 0.000038029 26295.7216860817
update items set item_id = 1 where item_id = 1; 13 0.000042708 23414.8168961319
select a from items where item_id = 1; 17 0.00004689 21326.5088505012
insert into items (a, b, c) values(l, 2, c + 2); 18 0.000043151 23174.4339644504
select sum(price) from inventory where name = 25 0.000059162 16902.7416246915
'banana' order by id limit 10, 20;
select id from item where producer in (select name 31 0.000086838 11515.6958935028
from production where nation = 'germany');
select name, address from contact where birthday = 41 0.000077677 12873.8236543636

TODAY() union select employ from company where name
= "IBM' order by id Limit 0, 100;

select inventory.id, orders.id, sum(orders.price) as 51 0.000108058 9254.28936311981
sum from (select * from inventory cross join orders
where orders.status = false and inventory.quantity >
1000 order by inventory.id limit 0, 100);

CREATE TABLE employees_demo (employee_id NUMBER(6), 63 0.000122866 8138.94812234467
first_name VARCHAR2(20), last_name VARCHAR2(25) NOT
NULL, email VARCHAR2(25) NOT NULL, phone_number
VARCHAR2(20), hire_date DATE NOT NULL DEFAULT
SYSDATE, job_id VARCHAR2(10) NOT NULL, salary
NUMBER(8, 2) NOT NULL, commission_pct NUMBER(2,

2), manager_id NUMBER(6), department_id NUMBER(4),
dn VARCHAR2(300), CONSTRAINT emp_email_uk UNIQUE
(email));

select firstname, lastname from (select * from 71 0.000114584 8727.22195070865
contact) join (select * from employ where
company="IBM') join (select * from employer) join
(select * from uni) where birthday=TODAY() AND
birthplace="stuttgart' limit 0,10;

58

7.3. Performance Evaluation

(select firstname, lastname from contact where age >
25) union (select salary, workingage from employee
where company ='IBM' and location='stuttgart')

union (select spouse, parent from registry where
region="bw' or region='bayern') order by firstname
limit 0, 100;

80

0.000124342

8042.33485065384

UPDATE employees a SET salary = (SELECT
1.1%AVG(salary) FROM employees b WHERE
a.department_id = b.department_id) WHERE
department_id IN (SELECT department_id FROM
departments WHERE location_id = 2900 OR location_id
= 2700);

89

0.000196803

5081.22335533503

select firstname, lastname, address, birthday from
contact join (select » from employee, schedule where
age>20 and workday=TODAY()) join (select * from
employer where name='steve') where birthday=TODAY()
or age=24 group by age having max(age)<60 order by
firstname, lastname limit 1,1000;

100

0.000163986

6098.0815435464

select 1_returnflag, 1_linestatus, sum(l_quantity)
as sum_qgty, sum(l_extendedprice) as sum_base_price,
sum(1l_extendedprice=(1-1_discount)) as sum_disc_-
price, sum(l_extendedpricex(1-1_discount)=*(1+1_tax))
as sum_charge, avg(l_quantity) as avg_qty, avg(l_-
extendedprice) as avg_price, avg(l_discount) as
avg_disc, count(x*) as count_order from lineitem
where 1_shipdate < date '1998-12-01' and 1_shipdate
> date '1998-11-01' group by 1_returnflag, 1_-
linestatus order by 1_returnflag, 1_linestatus limit
0, 100;

125

0.000207711

4814.38152047797

select n_name, sum(l_extendedprice * (1 - 1_-
discount)) as revenue, avg(l_extendedpricex(1-1_-
discount)=*(1+1_tax)) as avg_revenue from customer,
orders, lineitem, supplier, nation, region where
c_custkey = o_custkey and 1_orderkey = o_orderkey
and 1_suppkey = s_suppkey and c_nationkey = s_-
nationkey and s_nationkey = n_nationkey and n_-
regionkey = r_regionkey and r_name = 'germany' and
o_orderdate >= date '2011-11-11' and o_orderdate <
date '2012-11-11" group by n_name order by revenue
desc;

150

0.000218036

4586.39857638188

select s_acctbal, s_name, n_name, p_partkey, p_-
mfgr, s_address, s_phone, s_comment from part,
supplier, partsupp, nation, region where p_partkey
= ps_partkey and s_suppkey = ps_suppkey and p_-
size = 100 and p_type like '%type' and s_nationkey
= n_nationkey and n_regionkey = r_regionkey and
ps_supplycost = (select min(ps_supplycost) from
partsupp, supplier, nation, region where p_partkey
= ps_partkey and s_suppkey = ps_suppkey and s_-
nationkey = n_nationkey and n_regionkey = r_-
regionkey and r_name = 'germany') order by s_acctbal
desc;

174

0.000286147

3494.70726584588

59

7. Validation and Evaluation

select s_acctbal, s_name, n_name, p_partkey, p_- 197 0.000302252 3308.49754509482
mfgr, s_address, s_phone, s_comment from part,
supplier, partsupp, nation, region where p_partkey

= ps_partkey and s_suppkey = ps_suppkey and p_-

size = 10 and p_type like 'typel' and s_nationkey

= n_nationkey and n_regionkey = r_regionkey and
r_name = 'region' and ps_supplycost = (select
min(ps_supplycost) from partsupp, supplier, nation,
region where p_partkey = ps_partkey and s_suppkey

= ps_suppkey and s_nationkey = n_nationkey and n_-
regionkey = r_regionkey and r_name = 'region') order
by s_acctbal desc, n_name, s_name, p_partkey;

Table 7.3.: Throughput Evaluation of Various Statements

Statement Number of Time (s) Throughput (1/s)
Nodes

select * from items; 8 0.000033343 29991.3025222685
select * from items where item_id = 1; 15 0.000045239 22104.8210614735
select a from items where item_id = 1; 17 0.00004689 21326.5088505012
select avg(abcdefg) from items where item_id = 1; 20 0.000051509 19414.0829757906
select sum(price) from inventory where name = 25 0.000059162 16902.7416246915
'banana'’ order by id limit 10, 20;
select id from item where producer in (select name 31 0.000086838 11515.6958935028
from production where nation = 'germany');
select name, address from contact where birthday = 41 0.000077677 12873.8236543636

TODAY() union select employ from company where name
= "IBM' order by id Limit 0, 100;

select inventory.id, orders.id, sum(orders.price) as 51 0.000108058 9254.28936311981
sum from (select * from inventory cross join orders
where orders.status = false and inventory.quantity >
1000 order by inventory.id limit 0, 100);

select address, concat(firstname, lastname) as name 64 0.000109287 9150.21914774859
from contact join (select salary, employer from
company where name = 'IBM' and location = 'germany')

where age>40 and age<60;

select firstname, lastname from (select * from 71 0.000114584 8727.22195070865
contact) join (select * from employ where
company="IBM') join (select * from employer) join
(select * from uni) where birthday=TODAY() AND
birthplace="stuttgart' limit 0,10;

(select firstname, lastname from contact where age > 80 0.000124342 8042.33485065384
25) union (select salary, workingage from employee
where company ='IBM' and location='stuttgart')
union (select spouse, parent from registry where
region="bw' or region='bayern') order by firstname
limit 0, 100;

60

7.3. Performance Evaluation

select s_acctbal from part, supplier, partsupp,
nation where p_partkey=ps_partkey and s_suppkey=ps_-
suppkey and p_size=10 and p_type like 'typel' and
s_nationkey=n_nationkey and n_regionkey=r_regionkey
and r_name='region' order by s_acctbal desc, n_name;

90

0.00011454

8730.57447180024

select firstname, lastname, address, birthday from
contact join (select » from employee, schedule where
age>20 and workday=TODAY()) join (select * from
employer where name='steve') where birthday=TODAY()
or age=24 group by age having max(age)<60 order by
firstname, lastname limit 1,1000;

100

0.000163986

6098.0815435464

select 1_returnflag, 1_linestatus, sum(l_quantity)
as sum_qgty, sum(l_extendedprice) as sum_base_price,
sum(1l_extendedprice=(1-1_discount)) as sum_disc_-
price, sum(l_extendedprice*(1-1_discount)=(1+1_tax))
as sum_charge, avg(l_quantity) as avg_qty, avg(l_-
extendedprice) as avg price, avg(l_discount) as
avg_disc, count(x) as count_order from lineitem
where 1_shipdate < date '1998-12-01' and 1_shipdate
> date '1998-11-01' group by 1_returnflag, 1_-
linestatus order by 1_returnflag, 1_linestatus limit
0, 100;

125

0.000207711

4814.38152047797

select n_name,sum(l_extendedprice*(1-1_discount)) as
revenue, avg(l_extendedpricex(1-1_discount)(1+1_-
tax)) as avg_revenue from customer, orders,
lineitem, supplier, nation, region where c_custkey
= o_custkeyand and 1_orderkey = o_orderkey and 1_-
suppkey = s_suppkey and c_nationkey = s_nationkey
and s_nationkey = n_nationkey and n_regionkey = r_-
regionkey and r_name = 'germany' and o_orderdate >=
date'2011-11-11" and o_orderdate < date'2012-11-11"
group by n_name order by revenue desc;

150

0.000218036

4586.39857638188

select s_acctbal,s_name,n_name,p_partkey,p_mfgr,
s_address, s_phone, s_comment from part,supplier,
partsupp,nation,region where p_partkey = ps_partkey
and s_suppkey = ps_suppkey and p_size = 100 and
p_type like '%type' and s_nationkey = n_nationkey
and n_regionkey = r_regionkey and ps_supplycost =
(select min(ps_supplycost) from partsupp, supplier,
nation, region where p_partkey = ps_partkey and
s_suppkey = ps_suppkey and s_nationkey = n_-
nationkey and n_regionkey = r_regionkey and r_name =
'germany') order by s_acctbal desc;

174

0.000286147

3494.70726584588

select s_acctbal, s_name, n_name, p_partkey, p_-
mfgr, s_address, s_phone, s_comment from part,
supplier, partsupp, nation, region where p_partkey
= ps_partkey and s_suppkey = ps_suppkey and p_-
size = 10 and p_type like 'typel' and s_nationkey
= n_nationkey and n_regionkey = r_regionkey and
r_name = 'region' and ps_supplycost = (select
min(ps_supplycost) from partsupp, supplier, nation,
region where p_partkey = ps_partkey and s_suppkey
= ps_suppkey and s_nationkey = n_nationkey and n_-
regionkey = r_regionkey and r_name = 'region') order
by s_acctbal desc, n_name, s_name, p_partkey;

197

0.000302252

3308.49754509482

Table 7.4.: Throughput Evaluation of SELECT Statements

61

7. Validation and Evaluation

4E-04

3E-04

2E-04

Time Consumption (s)

1E-04

0E+00

5E+04

5E+04

4E+04

4E+04

3E+04

3E+04

Throughput (1/s)

2E+04
2E+04
1E+04
5E+03

0E+00

62

X SELECT O Mixture

ly = 1.403E-6x + 2.237E-5 SELECT

=1.445E-6x + 2.512E-5 = = = = Mixture
o P & R S

Number of Nodes
Figure 7.2.: Plot of Time Consumption Over Number of Nodes
X SELECT O Mixture
= 151438x°06957 SELECT
£89519x05914 = m = = Mixture

& & &

%

Number of Nodes

Figure 7.3.: Plot of Throughput Over Number of Nodes

7.3. Performance Evaluation

For the first load testing, we used a mixture of statements of various types, to represent
the normal usage of the parser. And a second load use only SELECT statements. From
Figure 7.2 and Figure 7.3, we can see as a trend that the time consumption increases along
with the number of nodes with an interpolation function of y = 1.403E-6x + 2.237E-5 and
y = 1.445E-6x + 2512E-5 for the two loads respectively. Whereas throughput presents an
interpolation function of y = 151438x~%%7 and y = 89519x %14, This coincides with the
O(n) notion we proposed previously for the complexity of our SQL parser and transformer.

63

7. Validation and Evaluation

64

8. Conclusion and Future Work

8.1. Conclusion

To migrate existing application’s database layer to the Cloud and take advantage of Cloud
computing, there are various issues to address to adapt both the migrated and non-migrated
layers. Different Cloud database requires different communication protocols. They have dif-
ferent data structures, and various access languages. Multi-Tenant ServiceMix with Cloud Data
Access Support (CDASMix) by Gémez Sdez provided us a transparent Cloud data access layer
with multi-protocol and multi-tenant support. Applications can access the migrated database
without knowing its actual location or system type. However, for relational databases, their
access languages (SQL) as introduced in Chapter 2 still differ from each other which poses
difficulty for the exiting database application to use legacy queries with the migrated database
system when they are of different types. In this thesis, we focus on such issue, to provide a
transparent way to transform the SQL statements in CDASMix so that they can be executed
upon the migrated Cloud database.

In Chapter 2, we offered a broad illustration of the necessary background information to
support this thesis. Especially, we detailed the relationship between relational database
and SQL language, and how SQL is used to access and manipulate relational database
independently from the physical storage of the database system. Also, we analyzed the
syntax of SQL statement and how it can be parsed into a parse tree. Furthermore, we talked
about our system environment regarding Apache ServiceMix with its OSGi and JBI container,
as well as a brief introduction of CDASMix.

In Chapter 3, we discussed the research we did on other’s work that is related to our topic.
There is Multi-database system which resembles our system structure that provides an
intermediate layer for multiple autonomous, distributed, and/or heterogeneous database
systems. However, our system is limited to access one database at a time, which differs
from the definition of a Multi-database system. Then there is another method to adapt to
migrated database, which is called Application Migration. It requires changes to be made with
the database applications that alters the SQL statements resided within the applications in
order to adapt to the migrated database system. However, such method disobeys our original
goal to minimize the impact on the applications. In addition, we researched some existing
commercial products that provide similar functionality of SQL transformation as ours.

After analyzing the system structure of CDASMix and various dialects of SQL language,
we proposed several functional and non-functional requirements our components need to
fulfill. Most importantly, we specified that the SQL transformation needs to be realized with
a two-step functions, SQL statement parsing (FR1) and SQL statement transforming (FR2).

65

8. Conclusion and Future Work

Based on these requirements, we then went on proposing two different approaches to integrate
SQL transformation into CDASMix. The first approach is to modularize the transformation
functionality and isolate it from other parts of the system. The communication between
the system and transformation component is realized with NM through NMR. However,
the actual transformation functionality is modeled as OSGi service. The transformation
component needs to look up the the corresponding transformation service to transform the
SQL statements it received from the proxy component and relay them to the tenant-aware
Camel endpoint via NMR. This design becomes redundant when we realize that for each
proxy component which communicates with one type of database system, it requires only
the transformation service(s) which deals that particular SQL dialect used by the database
system. Thus, we proposed and decided on a second approach where the proxy component
communicate directly with the transformation service. This design removed the intermediate
transformation component, and let the proxy bundle directly look up transformation services
and transform the SQL statements before they are marshaled into a NM. Subsequently, we de-
tailed the SQL transformation service design, which is defined as OSGi declarative service. It
fulfills our functional requirements FR1 and FR2, as well as takes advantage of the dynamism
and flexibility of OSGi container which satisfies our non-functional requirements.

In Chapter 6 and Chapter 7, we illustrated the implementation, validation and evaluation of
our system prototype, which complies with the system requirements and design we proposed
in previous chapters. We clarified with code how the SQL transformation works, how the
transformation service is declared, and how the service lookup is done. For validation, we
separately verified the correctness of SQL transformation, and its integration with CDASMix
and Cloud databases. The performance of the transformation is evaluated by its throughput,
meaning how many statements can be parsed and transformed in one unit of time. We
concluded that the throughput is inversely proportion to the complexity of the SQL statement,
that is the number of nodes of its parse tree.

8.2. Future Work

For future consideration, there are several aspects of work need to be further carried on.

In our prototype, we support only a limited types of SQL statements to be parsed. The
existing parser should be extended to support more SQL statement types. Parser for more
SQL dialect should also be developed to support more source dialects. More target dialects
should also be added as well to broaden the transformation support.

Regarding SQL transformation, in the current implementation, we support only one to one
transformation. That is one SQL transformation can be only transformed to another statement.
In some cases, the effect of one SQL statement in one database system, can be realized in
another database system with two or more statements, such as when inserting multiple values
into a table in Oracle database (see Section 7.2.2).

Also as pointed out in Section 7.2.2, we have a problem when inserting and retrieving
binary data. In CDASMix binary data with prefix “_binary” in an SQL statement is encoded

66

8.2. Future Work

into Base64 string representation to avoid character set problem for the SQL parser in the
transformation [Sdel3a]. And all binary data retrieved from the backend database is then
decoded back to the original data. However, there is more than one expression for binary
data, such as hexadecimal data (X'val' or Oxval in MySQL). And these data will not be
encoded when inserted, but will be decoded when retrieved. A possible solution for this
would be to encode all types of binary data. Or we can substitute the binary data with a
placeholder before passing the statement to the parser and place it back after transformation.
This way it could speed up the transformation process when the binary data get significantly
large, which normally is the case.

As the transformation service includes an SQL parser, the service interface can be extended to
include more functionalities, such as deciding SQL statement type, retrieving the affected
database schema object (table), etc. Since they are realized with a full edge parser, the
effectiveness and robustness can be guaranteed even when the input statement is malformed.
These functionalities can then become useful to the proxy bundle besides transforming SQL
statement.

67

8. Conclusion and Future Work

68

Appendix A.

Data Types

The following table lists a collection of data types that are respectively supported by different
database systems [mys] [pos] [ora] [KKHO08]. Letter Y indicates that the data type listed is
supported as it is in the corresponding database system. And the others that listed under
the database systems are of equivalence to that data type, used by the database system. The
empty entry indicates that the corresponding data type is not supported in this database

Data Type | MySQL 5.6 | PostgreSQL 9.3 | Oracle 12c Release 1 (12.1)

Numeric!

SMALLINT? Y; INT2 Y; INT2 Y

INTEGER, INT? Y; INT4 Y; INT4 Y

REAL Y: REAL(M, D) Y; FLOAT4 FLOAT(n)

DOUBLE PRECISION Y; DOUBLE PRECISION(M, | Y; FLOATS FLOAT(n)

|

DECIMAL[(p [,s])] Y, DEC[(p [,s])], FIXED[(p[| Y NUMBER((p, s)]
E)))|

NUMBER((p [s])] NUMERIC[(p [s])] NUMERIC[(p [s])] Y

BINARY_DOUBLE

SERIAL®

69

Appendix A. Data Types

Data Type MySQL 5.6 PostgreSQL 9.3 Oracle 12c Release 1 (12.1)

BOOL, BOOLEAN Y, TINYINT(1) Y

Characters

CHARACTER VARING(n), Y, CHARACTER VARING, | Y, VARCHAR2(n)
CHAR VARING(n), CHAR VARING,
VARCHAR(n) VARCHAR

NATIONAL CHARACTER | Y, NATIONAL Y, NATIONAL Y, NCHAR VARING(n),
VARING(n), NATIONAL VARCHAR(n), CHARACTER VARING, NVARCHAR2(n)
CHAR VARYING(n) NVARCHAR(n) NATIONAL CHAR

VARYING

LONGTEXT

Date and Time

DATETIME[(p)] Y TIMESTAMP[(p)]

TIMESTAMP[(p)] WITH Y, TIMESTAMPTZ](p)] Y
TIME ZONE

TIME](p)] WITH TIME
ZONE

INTERVAL YEAR [(yp)] INTERVAL YEAR TO Y
TO MONTH MONTH

INTERVAL [field] [(p)I° Y INTERVAL YEAR
[(year_precision)] TO
MONTH, INTERVAL DAY
[(day_precision)] TO
SECOND [(fractional_-
seconds_precision)]

Raw data

Data Type MySQL 5.6 PostgreSQL 9.3 Oracle 12c Release 1 (12.1)
BIT VARYINGI(n)], Y

VARBIT[(n)]

VARBINARY/[(n)] Y

RAW LONG

LONGBLOB

Enumeration

SET(value, ...) Y

Spatial Type

wmonr v

SDO_GEOMETRY Y

71

Appendix A. Data Types

Data Type MySQL 5.6 PostgreSQL 9.3 Oracle 12c Release 1 (12.1)
SDO_TOPO_GEOMETRY Y
SDO_GEORASTER Y
Misc

CIDR Y

INET Y

MACADDR Y

MONEY Y

OID Y

ROWID Y
UROWID[(n)] Y
XML Y

XMLTYPE Y
JSON Y

72

Table A.1.: Comparison of SQL Data Types of Various Vendors.

1. In MySQL, there are several nonstandard attributes for numeric types [mys]. ZEROFILL

attribute is used in conjunction with the display width value to specify the display
representation of the numeric value. For example, if a column is declared as INT(4)
ZEROFILL, value 5 is then retrieved as 0005. This does not constraint the range of values
that can be stored in the column. All numeric types can have another optional attribute
UNSIGNED, indicating the column only accept non-negative numbers. If you specify
ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to
the column. Integer or floating-point data types can have an additional AUTO_INCREMENT
attribute which makes the column AUTO_INCREMENT indexed, meaning when you insert
a value of NULL or 0 into such column, the inserted value will be set to the next sequence
value (value + 1), where value is the largest value for the column currently in the table.
AUTO_INCREMENT sequence begins with 1.

. TINYINT, SMALLINT, MEDIUMINT, INT and BIGINT are integers with 1, 2, 3, 4 and 8 byte(s)

respectively [mys], and they may be substituted with NUMERIC(p, 0) or NUMBER(p, 0),
which will have a larger range. For example, TINYINT has a range of (-128, 127), while
NUMERIC(3, 0) has a range of (-999, 999).

. SMALLSERIAL, SERIAL and BIGSERIAL are auto-incrementing integers. For MySQL, the

keyword “AUTO_INCREMENT” can be used to enable such feature, such as “SMALLINT
UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE” can replace SMALLSERIAL in MySQL.
And in Oracle DB, we can use sequence instead.

. In MySQL, data type SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCRE-

MENT UNIQUE [mys].

5. The field can take value: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, YEAR TO MONTH, DAY
TO HOUR,DAY TO MINUTE,DAY TO SECOND, HOUR TO MINUTE,HOUR TO SECOND, and MINUTE
TO SECOND. And precision p applies only to SECOND [pos].

6. In PostgreSQL, ENUM type has to be created first using CREATE TYPE type_name AS
ENUM(valuel, value2, ...),which then canbe used with “type_name” in the CREATE
TABLE statement [pos].

73

Appendix A. Data Types

74

Appendix B.

SQL Statement Comparison

In this section, we compare several important DML and DDL statements between MySQL
5.6 [mys], PostgreSQL 9.3 [pos], and Oracle SQL 12.1 [ora]. The clauses that are aligned
in the same row indicates that they are of the same meaning, which means they might be
transformable to each other, unless specified otherwise. When then entry is empty, the cor-
responding database doesn’t have an equivalent clause to that row. Uppercase words such
as SELECT, WHERE are keywords, while lowercase words are expressions (where_condition),
identifiers (table_name), or external definition of syntaxes (from_list) which are not pre-
sented here. When bold italic font is used, such as create_definition in Section B.7, the syntax
structure is then presented later in the table.

75

Appendix B. SQL Statement Comparison

[{SAIL HIIM | XINO} { SMO¥ | MO¥ } [{ INED
“4dd yueorad | umoomor } | { IXAN | LS } HOLAA]

[[1[1SVISTINN | ISI1d STINN1[Dsad | DSV
] { sere™> | uonisod | 1dxs } xg [SONTIAIS 1 YAAWUO]

[XINO
{SMOY | MOY } [3mod [{ IXAN | ISV } HOIAA]

[[T0{1svT | ISdId}STINN] [
1oyeredo HNISN | DSAA | DSV] uorssaxrdxe xg YAAUO |

[
‘[osda | Osv]{uomsod | 1dxe | sureu 00} xg YHAAO]

[esnep ppow THAON]

— —”. e L _
(uonIUYIP~MOPUIM) SV dureu mopuIm MOANIM]

— _” _ CO«mw@.HQXw Ad dNOYUD _

[{ (s1) SLHS ONIINOYD
| s adxe { 39ND | dNT10Y } | 1dxe} xd dNOWUD |

[wonTpuod TYHHM |

381 woxy INOYA

[“1[sere[sv]]1dxe | ['serey]

[11V | HNOINN | ILDNILSIA]

[esnep ynm HIIM]

[uonrpuod FYFHM]

[[] woyrwoxy INOYA]

[“] [owreu ndino [gy]] uorssardxe | .

[[([“]uorssazdxe) NO] IDNIISIA | T1V]

[[] Aonb™ym [FAISINDTI 1 HLIM |

[[dNTI0T H1IM]
‘[osda | Dsv] fuontsod | 1dxe | swreu [0} xg JNOYD]

[uontpuod~aeYm TATHMI]

soouRIayaI 9[qe) INOA]

[xdxa™309]0s ‘] 1dxa~309[0s

[MOYLDNILSIA | LONILSIA | 11V]

w1y ZOOOT S1UBWSIBIS /602, T
/121" 19AT3S/TO~SS99TA/PO/Ww0d *9deI0" $d0p// :d33y

(1°21) 1 9sea[ay o7 dpeIQ

Tway - soTaanb
/9AT1DBIDIUL/E " 6/S00p/810" Tbsaadisod mmm//:d1a1y

£'6 1052131504

Tway
*109[3s/ua/9" §/ueugai/dop/uod ThsAw:asp//:d11y

9'S TOSAN

juswalels 1v9|8s ‘L9

http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://www.postgresql.org/docs/9.3/interactive/queries.html
http://www.postgresql.org/docs/9.3/interactive/queries.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10002.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10002.htm

B.1. Select Statement

SIOPU3A SNOLIEA JO SJUaW)E)G 309795 TS Jo uostredwo)) *1°q d[qel,

[{a@IDO1dDIs | e8emr ITVM | LIVMON } 1
[[+Juumod] 30] HIvVAdIN YO

[[~T[LIVMON] [[‘] awreu™a1qes JO | { TAVHS
AT | RAVHS | HIvAdN AT ON | HIvadn } ¥od |

[[HAOW TIVHS NI D01 | H1vAdN JOd]
[[Pureu1ea ‘] swreu™ 1eA OINI

| Sureu 9y, HTHJNNA OLNI
| suonndojr0dxs [awreu jasreyd

1S VALDVIAVHD] ,Pweu oy, HIALNO OLNI

w1y ZOOOT SIUBWIILIS/F0ZLTD
/T¢I I9ATI8S/TOTSS99TA/PO/WOd " 9T I0 " s0p/ /A3y

(1°21) 1 9seay 9z ddeIQ

Tway - satIanb
/9AT1OBIDIUL/E " 6/S00p/810" Tbsaadisod mmm//:d11y

€'6 1052181504

vy
*109[9S/u9/9" G /uewFa,/d0p/wod TbsAuw-asp//:dily

9'S TOSAN

77

http://dev.mysql.com/doc/refman/5.6/en/select.html
http://dev.mysql.com/doc/refman/5.6/en/select.html
http://www.postgresql.org/docs/9.3/interactive/queries.html
http://www.postgresql.org/docs/9.3/interactive/queries.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10002.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10002.htm

Appendix B. SQL Statement Comparison

*919[9p d[qel-ordurs

0} Adde ATuo puey 1ay30 a3 uo sasnep IIIATT PUe A9 VIO 919[OP S[qe-BNA 03 ATuo sarjdde asnep HNISN “TOSAN UT °T

SIOPUSA SNOLIEA JO Sjuawdlelg 919[3(10S Jo uostredwo) g q a[qeL

[[QILIATINA | T LIAIT
LOA(FY] [(2dxe~orduns)] [31qe3 OLNI] SIOIH DOT |

H M...\H—
wa)rejep OINI [] 1dxe ONINYNLAY | NINLAY]

[vontpuod FYTHM |

[serre] xdxe™opqey wp [XINO 1 [INO¥]

— _”... \H _”wam:
-ndno [gy]] uossardxe indino |, ONINMNLAY |

[ewreu—r0smd JO INHMAND TITHM
| UOLIPUOd TIHHM]

[3s8ursn HNISN |
[serre [Sv [][+] auwreuayqes [XINO | INO¥A

1 Bunod™mox TN [A9 ¥EQYO]

[uonpuod aroYyM FYTHM]
[(-*owreu”uonnred) NOLLILYVd]
meuzmgﬁw.ﬁlwzﬁ ONISN]

[] owreu gy NOIA

[rury] [1IONDI] IDIND] [ALIMORd MOT]
214740 A1479a 214740
[[] A&zonb™ynm [HAISINDHN] HLIM]
WY 008 SIUBUDILIS/BOZLTD Tuy - 219Tap-Tbs Tuay

/121" I9AI9S/TOTSS99TH/PO/W0od *9TdeI0 " $d0p//1d31Y
(1°21) 1 9seafay o[dPeIO

/9AT1DBIDIUL/E " 6/S00p/810" Tbsaadisod mmm//:d1a1y
€6 1059181804

*9319T9p/u9/9" §/uemFaa/dop/uod TbsAw- asp//:d1y

96 TOSAN

juswalels dvjeg ¢'9

http://dev.mysql.com/doc/refman/5.6/en/delete.html
http://dev.mysql.com/doc/refman/5.6/en/delete.html
http://www.postgresql.org/docs/9.3/interactive/sql-delete.html
http://www.postgresql.org/docs/9.3/interactive/sql-delete.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_8005.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_8005.htm

B.3. Update Statement

‘suorssardxa ayepdn oy pue

uonIpuod MYTHM 9y ur readde 03 sayqe) IoU30 WOy Sun[od urmorre ‘suorssazdxa a[qe) Jo IsI] e SI 751 wokf 9y} “1OS131s0J Ul T

SIOpPUSA SNOLIEA JO sjuawdielg arepdn TOS jo uostredwo)) »°¢'g d[qeL

[[4IIATINA | 3T LIATT
LOA[FY] [(xdxe™ardums) | [o19e3 OLNI] SYOMI DO]

_” —”...\H—
wa)rejep OINI [] 1dxe ONINYALAY | NINLAY]

[wonrpuod IAHM]

{ Aronbgns | 1dxa = (sere™1) ANTVA

N
([“] r1nv4da | uorssaxdxa)= ([‘] swreu uwniood)
| I1NV49a | uorssardxa = awreu uwnjod }} 195

[serre | 1dxea1qes Twp [XINO]

— _”... \H_ _HQENHH
- ndno [gy]] uossardxe™indino |, ONINMNLAY |

[sureu—z0s:m> JO INHIAND HITHM
| uonIpU0d MIAHM]
1 [3sH w0y INO¥A |

[11«
[1{r1nv4dq | uorssaxdxa }) = ([‘] swreu uwmjoo)
| { I1NV49Q | uorssaxrdxa } = swreu uwnjod } 199

[sere[Sv]][«]oweuaiqe; [XINO]

[runoo™mor TTAIT] [A ¥AAUO]

[uonrpuod a1oym TITHM]

“ [{I1nVvdaa | gidxa}=gaweu 10> ‘]
I1NV4dd | Trdxe=1aweu 10> 19S5

ERIVEICICh) (o]

[rumy] [IONDI] [XINIORd MOT]
HIVAdN HIVAJN HIVAdN
[[‘] £&ronb™ymm [HAISINDAY] HLIM]
w1y 8000 SIUsWS1L1S /60T Tway-a1epdn-1bs Twiy

/12T I9AI9S/T0~ SS99TA/Pd/wod " dTdeI0"sdop//:d1ly
(1°21) 1 @seafay o¢T dPeIO

/9AT10BISIUL/E 6/Sd0p/3a0" [bsoadisod -mmm//:d11y
€6 TOSPI180g

*9jepdn/us/9-° §/uemFaa/d0p/uwod TbsAw- asp//:d11y

9's TOSAN

Juawalels alepdn "¢'g

79

http://dev.mysql.com/doc/refman/5.6/en/update.html
http://dev.mysql.com/doc/refman/5.6/en/update.html
http://www.postgresql.org/docs/9.3/interactive/sql-update.html
http://www.postgresql.org/docs/9.3/interactive/sql-update.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10008.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10008.htm

Appendix B. SQL Statement Comparison

-asnepP SN TVA 3ulsn aqe) a[3urs e ojur sanjea Jo mox auo 3unprasur 3roddns Auo juswaeys TIHSNI ‘OeIO Ul T

SIOPU3A SNOLIEA JO SJUaWa)e)g 31asu] TOS Jo uostredwo)) g d[qel,

[[{ QHIDATINA | 3ut} LIATT
LDA[AY] [(xdxa~srdums) | [o1qey OLNI] SYOMIE DO]

{ £xonb

[L1
waeyep OLNI [] 1dxe { ONININIAY | NINLAN} |

([T{ I1Nv4dq | uorssardxe }) SHNTVA }

[([] owreu uwmn(od) |

[sereT | 1dxea1qes Twp OLNI

— _”.‘. \H _”waﬂz
--mdino [gy]] uorssazdxemdino | , ONINMNLIAY]

{ Lxonb

| [([1{ r1nvada | uorssardxa }) SHNTVA

| SANTVA I1Nv44aa }
[([] owreu uwmnod) |

aureu”aqe} OLNI

[- [1dxe=aureu [0 ‘] rdxa=aureu (0>
HIVAdN AT HIVOI'1dNd NO]

{~'1I1nv4aaq | 1dxe=suwreu 0> 145
| £ronb

| C)C{r1nvaad | 1dxe}) {HNTVA | SENTVAY

[([“]oureu uwnjod) |
[(~“oureu”uonnred) NOILLLLIVd]
aureu [} [OLNI]

[IONDI]
[yuny] [ALRIONId HOIH | dFAVTd | ALRONd MOT]
LIISNI LMISNI LIASNI
[[] A&zonb™ynm [HAISINDHN] HLIM]
Wiy FTO6 SIUBWRIBIS /602, T Tw3y - 3I9suT-Ths Tuay

/121" I9AI9S/TOTSS99TH/PO/W0od *9TdeI0 " $d0p//1d31Y
(1°21) 1 9seafay o[dPeIO

/9AT1DBIDIUL/E " 6/S00p/810" Tbsaadisod mmm//:d1a1y
€6 1059181804

*1JI9SUT/U9/9" §/uemFaa/dop/uod TbsAw- asp//:d1y

96 TOSAN

Juswialels 1esu| v'g

http://dev.mysql.com/doc/refman/5.6/en/insert.html
http://dev.mysql.com/doc/refman/5.6/en/insert.html
http://www.postgresql.org/docs/9.3/interactive/sql-insert.html
http://www.postgresql.org/docs/9.3/interactive/sql-insert.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_9014.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_9014.htm

B.6. Truncate Table Statement

SIOPU3A SNOLIEA JO SJUaWa)e)g areduniy, T0OS jo uostredwo) 9 g a[qeL,

[gavosvD 1 [aoviao1s asnay | [11v] dodal
[DOT MHIA QIZITVIIALVIN HD¥UNd | HAYASHA |
awreu 9[qe}

HT1dVL HIVONMIL

[1orM1saY | HavVOSVO]

[ALLLNHAI ANNILLNOD | ALLLNHAI IIV.ISHY]
[][«] owreua1qe; [XINO |

[A719V1] ALVONNIL

[/] swreu a1qes

[A719V1] ALVONNIAL

TW1Y " /000 T SIUSUDILIS /602 LT
/T¢I I2AIBS/TOTSS99TA/PO/W0d dTdRI0 $20p//:d31Y

(1°21) 1 @seafay o[dPeIO

Twly-o31edunal-1bs
/9AT1OBIDIUL/E " 6/S00p/810" Tbsaadisod -mmm//:d1a1y

€6 T0SPI8150

TW1y-oTqe1-91edUnIl
/ua/9" G /ueujaa/oop/wod ThsAu-asp//:di1y

9'S TOSAN

juswajels 9jge] ajeduni] ‘9'g

SIOPUBA SnoLIeA Jo sjuswielg doxq T10S jo uostredwo) :°g g d[qeL

[A39¥Nd] [SINIVILSNOD HAVISVO |
awreu 9[qe;}
H19VL

dO¥d

[LOnILsa | 3avOosvO]
[+/] awreu a1qes
H14VL

dodd

[4avDosvD | 1DnI1sad]
[/] swreu a1qes
414VL

[RIVIOdNAL]
doda

wly- €006 SIUSWD1BLS/602.TD
/TZT " I9AI9S/TOSS99THA/PO/WOd “dTdeI0 " Sd0p/ /1 diy

(1°21) 1 @seafay o¢T dPeIO

Twly-arqeidoap-1bs
/9AT10BISIUL/E 6/Sd0p/3a0" [bsoadisod -mmm//:d11y

€6 10S2131504

Tway-a1qei-doap
/ua/9*g/ueujaa/oop/wod ThsAw-asp//:di1y

9's TOSAN

Juswalels ajqe) doig “s'g

81

http://dev.mysql.com/doc/refman/5.6/en/drop-table.html
http://dev.mysql.com/doc/refman/5.6/en/drop-table.html
http://www.postgresql.org/docs/9.3/interactive/sql-droptable.html
http://www.postgresql.org/docs/9.3/interactive/sql-droptable.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_9003.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_9003.htm
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
http://www.postgresql.org/docs/9.3/interactive/sql-truncate.html
http://www.postgresql.org/docs/9.3/interactive/sql-truncate.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10007.htm1
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_10007.htm1

Appendix B. SQL Statement Comparison

[SMOY { AAYASANd | H14T4A }
ITNINOD NO |

[{d0¥a | SMOY 31A7dA | SMOY HAYASHAJ }
IINNOD NO |

[+ wommuyop™aywaso)]

[([T{uonpugfop~awaso | [-]
Fu3p4351U09” Umn]03 | SNOILIO HLIM dweu uwmjod }) |

[AIVIOdNAL TVEOTD] H1VAID

[(" ‘uorruzfap=a3vaso) |

[AIVIOINAL TVEOTD 1 H1VHID

[@@O501INN | dANFL | AIVIOJNAL
[1vD0O1 | Tv4OT1D]] 4IVAND

[swreu—adedsaiqey gOVISATAVL]

[SA10 LNOHLIM | SAIO HIIM |
([“] [onea =] 1o3owrered a3e103s) HHIIM |

([‘uorgrurfop~agwaio |)

[@@O501INN | dNFL | AIVIOJNAL
[1vDO1 | Tv4OT1D]] 4IVAND

[suondo uonnred |

(*** ‘uorgturfap~a3vald)

[AIVIOdNAL] A1VAID

WY " 200/ SIUBWDILIS /60T LT
/121" 19AI3S /T SS99TA/P2/W0d *9TdI0" $d0p// 1 A3y

L(T°21) T 9seaay g1 dpeIn

Twiy-sTqeiaieaid-Tbs
/9AT1OBIDIUL/E " 6/Sd0p/810" Tbsaadisod -mmm//:d11y

€6 10S131504

TuW1y-oTqe1-91eaId
/ua/9* g /ueujaa/oop/wod ThsAuw-asp//:di1y

9's TOSAN

juswalels a|qe| 9jeald °"L'g

http://dev.mysql.com/doc/refman/5.6/en/create-table.html
http://dev.mysql.com/doc/refman/5.6/en/create-table.html
http://www.postgresql.org/docs/9.3/interactive/sql-createtable.html
http://www.postgresql.org/docs/9.3/interactive/sql-createtable.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm

B.7. Create Table Statement

[{ T1INN L3S | HavOsvD
} H14THA NOJ [(“aumiodyar)] o[qeiyar SHONHALIAA
(oureu100) XHM NOIHYOA [dwreu INIVILISNOD] |

(~*oureu” uwN[ood)
AT AIVINLI [dwreu INTVIISNOD] |

[{ 11V | SLNANINOD |

IOVIOILS | SAXAANI | SINIVIISNOD | SI1NVAId }
{ ONIANTOXE | DONIANTONI }]

9[qey 221no0s gNI7T |

[(syeorpaxd) TUALIM] sto3owrered xopur
([“] 107e19dO HHITM IUSWS[e aPNOX3) [poowr
-xepur ONISN] FANTOXA [Pweu INIVIISNOD] |

[uonoe HIrvadn NOJ [;uonde 1A TAA NOJ [1d

-INIS HOLVIAN | TVIIIVd HOLVIN | T1Nd HOLVIA]
[(uwmiodgar)] aqelzar SEONTMHAITA

(roureu0d) AFM NOIHMOA [Pureu INIVILSNOD] |

s1ojowrered Xopur (*/SUIRU UUWIN[OD)
RS AIVIATA [Pwreu INTVIISNOD] |

U0 IULYIP IV ILD

awreu™ g1 PO AT |

** [uondo xepur] (" “oureu [0dXapuT)
[ad &y xopur] [aureu xoput] { X4 | XHANI } |

[uonde FIvAdN NOJ [uonde F1474d NOJ [A1d

IS HOIVIN | TVLINVd HOIVIN | T10d HOLVINI
(+‘oureu 105" Xap

-ur) swreu” [qi SEONHAAAH (~oureu [03”xopur) [suwreu
-xopur] AEM NOIENOA [[1oquds] INIVILISNOD] |

- [uondo—xapur] (-~oureu oo xapur) [od£y xopur]
AT AIVIARI [[1oquiAs] INTVILISNOD] |

w1y Z00.L SIUSWRIRIS /60T
/TZT" I9AIDS/TO SS99TH/PO/W0d *dTdeI0 " Sd0p//:1d11y

1(1°CT) 1 9sea[ay d¢1 dpPeIO

Twiy-sTqeiaiead-1bs
/9AT1OBIDIUL/E " 6/S00p/810" Tbsaadisod -mmm//:d11y

€6 10S131504

Tu1y-9Tqe1-91eaId
/ua/9" G /ueujaa/oop/wod ThsAu-asp//:di1y

9'S TOSAN

83

http://dev.mysql.com/doc/refman/5.6/en/create-table.html
http://dev.mysql.com/doc/refman/5.6/en/create-table.html
http://www.postgresql.org/docs/9.3/interactive/sql-createtable.html
http://www.postgresql.org/docs/9.3/interactive/sql-createtable.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm

Appendix B. SQL Statement Comparison

(T1OS213380 103

A[uo) TN VAAA LAS “TTINN 1S ‘HAVISYD LORILSHY ‘NOILDV ON JO IN0 du0 aq tred uonde F AT NO PUe HIVAAN NO YL T
‘19 pajuasaid are

1052181504 pue TOSAIA 03 spred ajqeredwod oy A[uQ yuswaieis T1gV.L LIVIID S,210eI10 Jo uondrosap ajodwodur ue st sy ‘|

SIOpPUSA SNOLIEA JO S)UaWd}LIG d[qe], 91ea1)) TOS jo uostredwo)) /g d[qel

{ [guonde H1vddN NO] [;uonde F1379d NO | [uonde FIvAdN NO] [;uonoe H13T9d NOJ
[[a1d

{[{TINN 138S | HavOSVD } A1ATHANO | | HT1dNISHOIVIA | TVIINVd HOLVIN | TINd HOLVIA] | -INIS HOLVIAL | TVIIVd HOLVIA | T10d HOLVINI
:_.:gqséo&a:mzmtemmuZmMmmmm_ M?&58@:osﬁammuzmmmmmm_ a.i_mam:._o%x%émaglzammuzmammmm_

[LIAHNI ON] (uorssaxdxa) SDOHHD | [LIAHNI ON | (uorssaxdxa) MDHHD | [Bumns, INHININOD] |

ANOINA | sroourered xapur gNOINA | [FNOINN |

1dxaymeyep [1NVAAA | anjeaT3meep IINVAAA |

[sureuTjurensuod INTVILSNODI] [swreuTjurensuod [NIVILSNOD]

SJUIPAISUOD UMIN] 0D

u1y-z00/. S1uswe1e1S/602.LTD Twiy-sTqeiaiead-1bs Tu1y-9Tqe1-91eaId
/T2T I9AI9S/TO SS99TH/pPO/wWod " dTdeI0"sdop//:d11y | /OAT1dBIDIUL/E"6/Sd0p/810° Tbsaadisod -mmm//:d1a1y /ua/9" G /ueujaa/oop/wod ThsAu-asp//:di1y
(T°T1) 1 9sesy d¢T 9peI0 £'6 10521381504 9'6 TOSAN

84

http://dev.mysql.com/doc/refman/5.6/en/create-table.html
http://dev.mysql.com/doc/refman/5.6/en/create-table.html
http://www.postgresql.org/docs/9.3/interactive/sql-createtable.html
http://www.postgresql.org/docs/9.3/interactive/sql-createtable.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/statements_7002.htm

Bibliography

[Bac12] T. Bachmann. Entwicklung einer Methodik fiir die Migration der Datenbankschicht
in die Cloud. Diploma Thesis No0.3360, Institute of Architecture of Application
Systems, University of Stuttgart, 2012.

[Bar] N. Bartlett. A Comparison of Eclipse Extensions and OSGi Services. http://www.
eclipsezone.com/articles/extensions-vs-services/.

[BEDO1] J. Bowman, S. Emerson, and M. Darnovsky. The Practical SQL Handbook: Using SQL
Variants. Addison-Wesley, 4th edition, 2001.

[CAB'81] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. E. King, B. G.
Lindsay, R. Lorie,]. W. Mehl, T. G. Price, E. Putzolu, P. G. Selinger, M. Schkolnick,
D. R. Slutz, I. L. Traiger, B. W. Wade, and R. A. Yost. A History and Evaluation of
System R. Commun. ACM, 24(10):632-646, October 1981.

[Cha04] D. A. Chappell. Enterprise Service Bus. O’Reilly Media, 2004.

[Cod70] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun.
ACM, 13(6):377-387, June 1970.

[Con] Continuent, Inc. Continuent Tungsten Connector. http://sourceforge.
net/apps/mediawiki/tungsten/index.php?title=Introduction_to_the_
Tungsten_Connector.

[dbe] DB-Engines Ranking. http://db-engines.com/en/ranking.
[goo] Google Cloud SQL. https://developers.google.com/cloud-sql/.

[GWO02]].R. Groff and P. N. Weinberg. SQL: The Complete Reference. McGraw-Hill/Osborne,
second edition, 2002.

[iso] ISO/IEC 9075-1:2011 - Information technology — Database languages — SQL —
Part 1: Framework (SQL/Framework). http://www.iso.org/iso/home/store/
catalogue_tc/catalogue_detail.htm?csnumber=53681.

[jdb] JDK 6 Java Database Connectivity (JDBC)-related APIs & Developer Guides. http:
//docs.oracle.com/javase/6/docs/technotes/guides/jdbc/.

[KKHO08] K. E. Kline, D. Kline, and B. Hunt. SQL in a Nutshell. O'Reilly, third edition, 2008.

[LN12] T. Laszewski and P. Nauduri. Migrating to the Cloud : Oracle Client/Server Moderniza-
tion. Syngress, 2012.

85

http://www.eclipsezone.com/articles/extensions-vs-services/
http://www.eclipsezone.com/articles/extensions-vs-services/
http://sourceforge.net/apps/mediawiki/tungsten/index.php?title=Introduction_to_the_Tungsten_Connector
http://sourceforge.net/apps/mediawiki/tungsten/index.php?title=Introduction_to_the_Tungsten_Connector
http://sourceforge.net/apps/mediawiki/tungsten/index.php?title=Introduction_to_the_Tungsten_Connector
http://db-engines.com/en/ranking
https://developers.google.com/cloud-sql/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/

Bibliography

[MF11]

[Muh12]

[mys]

[ora]

[OSG]

[0SG11]

[0SG12]

[OV11]

[Par13]

[pos]

[RD09]

[Sael2]

[Sdel3a]

[Séel3b]
[SL90]

[Thea]

[Theb]

86

P. Mell and T. France. The NIST Definition of Cloud Computing. National Institute
of Standards and Technology, 2011.

D. Muhler. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support Focusing on Administration and Management. Diploma Thesis No.3226,
Institute of Architecture of Application Systems, University of Stuttgart, 2012.

MySQL Documentation: MySQL 5.6 Reference Manuals. http://dev.mysql.com/
doc/refman/5.6/en/index.html.

Oracle Database SQL Language Reference 12c Release 1. http://docs.oracle.
com/cd/E16655_01/server.121/e17209/toc.htm.

OSGi Alliance. The OSGi Architecture. http://www.osgi.org/Technology/
WhatIsOSGi.

OSGi Alliance. OSGi Service Platform Core Specification. Release 4, Version 4.3,
2011.

OSGi Alliance. OSGi Service Platform Service Compendium. Release 4, Version 4.3,
2012.

M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Springer,
third edition, 2011.

T. Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013.

PostgreSQL 9.3.0 Documentation. http://www.postgresql.org/docs/9.3/
interactive/index.html.

T. Rademakers and J. Dirksen. Open Source ESBs in Action. Manning Publications
Co., 2009.

S. G. Sdez. Integration of Different Aspects of Multi-tenancy in an Open Source En-
terprise Servis Bus. Student Thesis No0.2394, Institute of Architecture of Application
Systems, University of Stuttgart, 2012.

S. G. Sédez. Extending an Open Source Enterprise Service Bus for Cloud Data Access
Support. Diploma Thesis No0.3419, Institute of Architecture of Application Systems,
University of Stuttgart, 2013.

S. G. Sdez. Manual for the CDASMix Initialization, 2013.

A.P. Sethand J. A. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3), 1990.

The Apache Software Foundation. Apache Felix Service Component
Runtime (SCR). http://felix.apache.org/documentation/subprojects/
apache-felix-service-component-runtime.html.

The Apache Software Foundation. Apache ServiceMix Documentation. http:
//servicemix.apache.org/docs/4.5.x/index.html.

http://dev.mysql.com/doc/refman/5.6/en/index.html
http://dev.mysql.com/doc/refman/5.6/en/index.html
http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm
http://www.osgi.org/Technology/WhatIsOSGi
http://www.osgi.org/Technology/WhatIsOSGi
http://www.postgresql.org/docs/9.3/interactive/index.html
http://www.postgresql.org/docs/9.3/interactive/index.html
http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html
http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html
http://servicemix.apache.org/docs/4.5.x/index.html
http://servicemix.apache.org/docs/4.5.x/index.html

Bibliography

[THWO5] R. Ten-Hove and P. Walker. JSR 208, Java Business Integration (JBI) 1.0. Technical
report, Sun Microsystems, Inc, 2005.

[Tral3] Transaction Processing Performance Concil. TPC BenchMark H Standard Specifica-
tion Revision 2.16.0, 2013.

All links were last followed on November 25, 2013

87

Acknowledgement

I am heartily thankful to my supervisor Steve Strauch from the
University of Stuttgart for his encouragement, guidance and
support in all the phases of this thesis. I'm also grateful to my
college Santiago Gémez Saez for his helpful advices.

Simin Xia

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any sources and references other than those
listed. I have marked all direct or indirect statements from other
sources contained therein as quotations. Neither this work nor
significant parts of it were part of another examination procedure.
I have not published this work in whole or in part before. The
electronic copy is consistent with all submitted copies.

Stuttgart, 26 November 2013
(Simin Xia)

	Introduction
	Problem Statement
	Motivating Scenario
	Definitions and Conventions
	Outline

	Fundamentals
	Relational Database
	Structured Query Language
	SQL Statement
	SQL Data Type

	SQL Parsing
	Java Database Connectivity
	Cloud Computing
	Enterprise Service Bus
	Java Business Integration
	OSGi Framework
	Apache ServiceMix
	Cloud Data Access Support in Multi-Tenant ServiceMix

	Related Work
	Multi-database System
	Application Migration
	SQL Transformation

	Analysis and Specification
	System Overview
	Cloud Data Migration Application
	Database Server Proxy
	Normalized Message Format
	CDASMix JDBC Component

	SQL Dialects
	Source Dialect
	Target Dialect

	SQL Statement Transformation
	SQL Statement Parsing (FR1)
	SQL Statement Transforming (FR2)

	SQL Response Transformation
	Use Cases
	Non-Functional Requirements
	Extensibility (NFR1)
	Integratability (NFR2)
	Performance (NFR3)
	Scalability (NFR4)
	Maintainability and Documentation (NFR5)

	Design
	System Architecture
	First Approach
	Second Approach

	SQL Transformation Service

	Implementation
	SQL Parser and Transformation
	Transformation Service Implementation
	Transformation Service Lookup and Consumption

	Validation and Evaluation
	Validation of SQL Parser and Transformation
	Validation with CDASMix and Cloud Database Services
	Deployment and Initialization
	Validation

	Performance Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	Data Types
	SQL Statement Comparison
	Select Statement
	Delete Statement
	Update Statement
	Insert Statement
	Drop Table Statement
	Truncate Table Statement
	Create Table Statement

	Bibliography

