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Abstract

Graphic Processing Units (GPUs), wtih their highly parallel structure, is a powerful tool to
manipulate computer graphics and process large amounts of data in parallel. GPUs are
becoming increasingly popular in today’s embedded system world. One typical example is the
modern vehicle. Nowadays, modern vehicles are often required to run graphic applications
such as instrumentation cluster, navigation system, media player or games with higher graphic
quality concurrently on multiple displays. Compared to the CPU, GPU is more suitable to fulfil
these requirements. In order to reduce the hardware cost and the power consumption at the
same time, a good solution is to share a single GPU for multiple applications. Thus emerges the
need of GPU real time scheduling. Since current GPUs do not support preemption, accurate
prediction of the GPU command execution time becomes an indispensable precondition for
scheduling.

In this work, the driver model and hardware features of a typical 3D embedded GPU is analysed.
Concepts to measure GPU execution time and other statistics is present and implemented. The
measured execution time and the relevant statistics of the GPU command group allow us to
explore the factors and metrics that affect the execution time of GPU rendering commands,
more specifically, OpenGL ES 2.0 commands/APIs. Different models are developed to predict
the important time-consuming rendering commands: Flush, Swap, Clear, Draw and Texture
Loading. As for the Draw command, a recent-history-based approach is proposed to estimate the
number of fragments. Finally, the accuracy of the measurement and prediction is evaluated.
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1 Introduction

1.1 Motivation

The parallel architecture gives GPU a big advantage to process graphic-related applications,
especially applications with high resolution 3D animation, compared to the central processing
unit (CPU). The efficiency in manipulating computer graphics makes GPU widely used in many
areas including the embedded system domain. A particular compelling application for GPUs is
that of automobiles[17].

In a modern vehicle system, the capabilities of the GPU are required and exploited by more
and more automotive electronic subsystems. For instance, the GPU can be used by the
instrument cluster. The instrument clusters are moving from traditional analog dials and
gauges to digital dashboards rendered on instrument cluster screens. New specifications from
leading automotive OEMs require advanced graphics rendering to be at the heart of the digital
automotive experience[6]. As another example, the infotainment system, equipped with one
or more screens, uses GPU to support higher resolution 3D navigation, latest multimedia
and games. Figure 1.1 demonstrates the instrument cluster and the infotainment system of
the Tesla Model S, as the winner of Motor Trend 2013’s car of the year[3], Tesla Model S,
equipped with a 17-inch touch screen infotainment system and a 12.3-inch instrument cluster
LCD, benefits a lot from embedded GPU’s properties of graphic acceleration and low power
consumption[9].

Despite that, a GPU has great functionality and potential in the automotive domain, GPU can
also leads to the growth of the cost, space requirement and energy consumption when multiple
GPUs are integrated into the system. Therefore, the trend in new automotive designs toward
consolidating(see Figure 1.2) multiple graphic applications into a single GPU to increase the
GPU utilization, save power consumption and reduce the cost. There emerges a need of GPU
scheduling.

1.2 Challenges

Generally, the operating system is responsible for scheduling applications. Graphic applications
are also scheduled by the operating system. However, this does not mean the scheduling for
the GPU is performed. For instance, in an OpenGL application, when a graphic API is called,
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1 Introduction

Figure 1.1: The Tesla Motors Model S [4]

Figure 1.2: GPU Consolidation

normally the API only writes some GPU hardware commands into a temporary buffer. Nothing
is actually executed on the GPU. Only under certain situations, the commands will be submitted
to the GPU and executed on it. Hence a separate scheduler is required for GPU scheduling
which is normally implemented by the GPU driver.

FIFO is often the scheduling policy for current GPUs, which means that the task submitted first
will be served first. However, it is not sufficient for GPU applications such as the applications
in the automotive domain that require real time performance. Scheduling real time graphic
applications faces the following challenges:
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1.3 Contribution

1. Different GPU applications require different level of real-time performance. For instance, in
a vehicle system, the instrument cluster is safety-critical and belong to real-time applications.
3D navigation can be grouped into soft real-time category while application like media player
is sufficient with a lower real-time performance. Hence the scheduling policy should guarantee
the execution of safety-critical applications while maximizing the utilization of the GPU.

2. GPU generally does not support preemption. That means during processing, the GPU cannot
interrupt the low priority tasks and switch to high priority tasks. Without preemption, the GPU
scheduler has to "know the future" before dispatching tasks with lower priority in order to
guarantee that the safety-critical applications won’t miss the deadline.

A possible solution for scheduling real-time GPU applications is to use non-preemptive deadline-
driven scheduling. This requires the knowledge of the execution time of every dispatched GPU
tasks. In [10] Bautin et al designed a priority based GPU scheduler with runtime prediction. In
their work, the execution time of the GPU command group, which is a batch of GPU commands
that form a certain task to be executed by the GPU, is predicted based on dynamically collected
statistics. However, the method they proposed to estimate the GPU command execution time is
in general inaccurate. Kato et al[24] proposed a history-based prediction approach which use
history statistics to estimate the command group execution time, their approach only works
for applications whose command groups are highly repetitive. Schnitzer et al[33] presented
a fine-grained rendering command-based prediction approach that estimate the command
group execution time based on every separated time-consuming rendering commands. In their
prediction, the number of vertex number and fragment number are used for estimating the
Draw command. However, the fragment number prediction model they used often leads to
fragment number overestimation. Moreover, all of the works and concepts mentioned above
are developed and evaluated only with desktop-GPUs which have many different features
compared to embedded GPUs. All these problems mentioned above motivate us to conduct
this work.

1.3 Contribution

In this thesis, concepts for measurement and prediction of the execution time of GPU rendering
(OpenGL ES 2.0) commands are developed, implemented and evaluated on a typical embedded
3D GPU platform. The major contributions of this thesis are:

1. The hardware features and the driver model of typical embedded GPUs are explored and
described.

2. The concept of an accurate measurement system is developed and implemented. The
measurement system not only measures the GPU command group execution time, but also
collects GPU statistics such as the size of each command group, the input vertices number,
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1 Introduction

fragments number etc. to help analyse the GPU rendering commands and improve the
prediction accuracy.

3. Prediction models are built for estimating OpenGL ES 2.0/EGL commands including Flush,
Swap, Clear, Draw and Texture Loading. As for the Draw command, a recent-history-based
approach is proposed to estimate the fragment number generated by every GPU command
group.

4. Evaluations using OpenGL ES 2.0 graphics benchmarks demonstrate that the recent-history-
based approach can effectively predict the fragments number of the GPU command group
(for the evaluated benchmark, the mean absolute error is less than 0.1%). Our commands
prediction models also achieve good accuracy in estimating the execution time of different
rendering commands. For the most critical rendering command, the Draw command, the mean
absolute prediction error is limited from 1.77% to 2.6%.

5. For the Draw command, the affect of the texture size and the affect of a GPU optimization
technique MASS(Multisample anti-aliasing) are evaluated.

1.4 Organization

Chapter 2 – Related Work: The previous publications in the field of GPU time measurement
and prediction will be summarised here.

Chapter 3 – Background: The chapter describes the technical background of the thesis.

Chatper 4 – System Model: This chapter explores and describes the system model of the GPU
driver.

Chapter 5 – Concept: This chapter gives a deep insight into the concept and metrics of the
GPU rendering commands, prediction model for important GPU rendering commands as well
as the framework of measurement and the prediction system.

Chapter 6 – Implementation: The implementation of our measurement and prediction
system including run-time calibration is explained in detail in this chapter. Additionally, the
modification in the original GPU kernel driver is mentioned.

Chapter 7 – Evaluation: The result of our measurement and prediction is evaluated in this
chapter.

Chapter 8 – Summary and Future Work: The last chapter concludes the thesis and points
out the possible future work originating from this thesis.
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2 Related Work

It can be seen from the last chapter that the fundamental for scheduling real time GPU
applications is to accurately predict the execution time of each GPU command group. In
order to validate the precision of the prediction, an accurate measurement system is required.
In this chapter, more details about GPU real time scheduling are presented. Then several
previous works that measure and predict the execution time of GPU command groups for
graphic (OpenGL/OpenGL ES) applications will be briefly described.

2.1 Real Time GPU Scheduling

Traditional real-time CPU schedulers often focus more on scheduling preemptable tasks [12].
However, GPU generally does not support preemption. Although windows system starts
to support an advanced scheduling since DirectX 10 class WDDM(Windows Display Driver
Model) drivers where the GPU can be interrupted within an individual primitive and within an
individual shader program[32]. However, it is not a requirement for the hardware vendors to
support the preemption. Moreover, to interrupt a shader code without introducing substantial
overheads will be very challenging.

In [10] a fair-share GPU scheduler using weighted round robin policy is proposed. However,
the purpose of the scheduler is to improve the utilization of the GPU resources. A real-time
scheduler is not required. In [24], Kato et al proposed a scheduler using predictable-response-
time (PRT) scheduling policy and apriori enforcement (AE) reservation policy. With PRT policy,
GPU command groups are queued before dispatching to the GPU if the executions of the
preceding command groups are not finished. After the preceding command groups are finished,
the queued command groups are dispatched in a sequence based on their fixed priorities. AE
policy assigns different values of budgets to different GPU applications and predicts the cost of
each command group of these GPU applications. Then the scheduler compares the budget with
the predicted cost. If the budget is smaller than the cost, the command group will go to sleep
until the budget is replenished. With PRT and AE, prioritization and isolation (requirements of
real time applications) are supported. However, the precondition for such a scheduler is to
accurately estimate the execution time of each GPU command group.
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2 Related Work

2.2 GPU Execution Time Measurment

A very simple way to measure the GPU command group execution time is to insert an additional
glFinish command after a command group is dispatched to the GPU [23]. Because glFinish
will block the current rendering thread until all hardware commands in the GPU pipeline
are finished. The time that glFinish returns can be used as the finishing time of the previous
dispatched command group. However, because the measurement is done in the user space,
high accuracy can hardly be achieved due to process scheduling and context switch. Moreover,
this approach will unnecessarily block the GPU and introduce additional synchronization
between user space and kernel space, which affect the accuracy of the measurement.

Based on the way to detect the command group finishing time, exemplary approaches of
GPU execution time measurement can be divided into two categories: polling-based time
measurement and interrupt-based time measurement. These two approaches are explained as
follows:

Polling-based time measurement: Polling-based time measurement is often applied to GPUs
that can not generate interrupts after the GPU completes a command group. Polling-based
time measurement reads a specified GPU register frequently to detect the finishing time of the
command group. [10, 16] explain the implementation of this approach in detail: at the end of
every dispatched command group, a GPU command that increments the value of a particular
register in the GPU is inserted. The register is often called "timing register". The inserted
command will be executed when the dispatched command group is finished.

During the measurement, the value of the timing register is polled periodically to detect the
change since the last polling. For instance, if the value is increased by one, then one command
group is finished since the last polling. If more than one command groups have finished in one
polling period, average execution time will be assigned to each command group. The accuracy
of polling-based time measurement depends highly on the polling frequency and the latency of
the polling thread (the polling thread might be blocked by other processes/threads and the
interrupts in the operating system).

Interrupt-based time measurement: Many state of the art GPUs can use a special GPU
command (such as NOTIFY) for generating interrupts. For these kinds of GPUs, interrupt-based
time measurement can be a better option. This approach lets the GPU generate an interrupt
when a command group is finished. The time when the interrupt comes is used as the finishing
time of the command group. In [24, 33], the interrupt-based time measurement system is
implemented on the NVIDIA GPU architecture. In their implementation, a SERIALIZE command
and a NOTIFY command are appended to the end of each command group in sequence. The
NOTIFY command lets the GPU generate an interrupt while the SERIALIZE command ensures
that the NOTIFY command will be stalled until all the dispatched command group/groups are
finished. Upon receipt of an interrupt, the operating system immediately halts the execution
of other tasks and switches to execute the interrupt handler. This quick reaction significantly
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2.3 GPU Execution Time Prediction

increases the measurement accuracy. However, neither of their measurements are performed
on embedded GPU platforms.

2.3 GPU Execution Time Prediction

Bautin[10] et al. introduced a method based on the number of vertices (or command group
size when the number of vertices is zero) and the statistics of the already executed command
groups to predict the command group execution time. To be more specifically, they used the
elapsed time of the previous GPU command groups and the total number of vertices of these
command groups to calculate the average per-vertex-process time. Then they use average
per-vertex-processing time and the vertex number if the current command group to predict
the command group execution time. If a command group contains no vertex number, they
use the command size instead. In [16], a similar method is used, but except the number of
vertices and the command group size, the author also takes texture size and swap buffer size
into account and chooses one of these factors based on the predefined order to predict the
command group execution time.

Both methods may work well in some situations but are in general inaccurate. The reasons are
as follows:

1. It is hard to tell which stage in the GPU pipeline takes more time to execute. The author of
[16] always assumes loading textures takes more time than other GPU operations, however,
it is obviously not correct when the texture size is very small. In that case, loading textures
might be much faster than other operations.

2. Even a single time consuming API inside the command group can dramatically affect
the total execution time. For example, if glClear is contained in the command group, the
GPU may need quite a long time to clear the frame buffer. The total GPU execution time is
therefore dramatically increased. However, neither texture size nor the number of vertices are
changed.

Kato et al proposed a history-based prediction approach to estimate the command group exe-
cution time[24]. In their approach, they assume that: 1. GPU applications tend to repeatedly
create GPU command groups with the same methods (APIs) and data size. 2.GPU execution
time depends highly on the methods and the data size. Based on these two assumptions, they
created a time table to record the execution time for previous command groups with either
different methods or data size. For an incoming command group, if the methods and the
data size are both same as an existing record in the time table, then the recorded execution
time will be assigned as the prediction value. Otherwise, a maximum execution time will be
assigned. History-based prediction may achieve a good result when the command group is
highly repeated. However, for applications with random inputs or dynamically generated data
such as a 3D game, the size and methods inside the command group are often dynamic. In this
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2 Related Work

case, the history-based approach may never be able to find a predicted value in the recorded
time table.

In [22], Raravi et al proposed an method to calculate the upper bound of the execution time
by analysing every individual instruction in GPU thread. In their method, they analysed the
instructions in the GPU thread conjectured the maximum clock cycles needed to execute every
instruction. The method is however not suitable for graphic applications. First, unlike GPGPU
applications, graphic applications comprise many APIs instead of using instructions directly in
the program. APIs are converted to hardware instructions by the GPU driver. The process of
the conversion and detailed information about the hardware instruction are often not available
to users. Second, graphic applications are running on a GPU pipeline which involves the
cooperation of many hardware modules. Instructions are executed concurrently in different
hardware modules and only the module which is the bottleneck (depends on the workload
in every modules) in the pipeline will affect the execution time. The instruction executed by
other hardware modules may have no influence to the total execution time at all.

In [33], Schnitzer et al presented a fine-grained rendering command-based prediction approach.
This approach interprets the semantics of the command group by intercepting the OpenGL
and EGL API calls. Among all the APIs, the execution time of time-consuming rendering
commands(APIs) are analysed, modelled and predicted individually and then summed up to
predict the total execution time of a command group. This approach can predict command
groups accurately as long as the prediction models of the time-related rendering commands
are built correctly. It has been evaluated with the Nvidia GPU with less prediction error in
many applications compared to Kato’s approach.

However, hardware architectures and driver properties may differ from vendor to vendor
and GPU to GPU. In other words, the implementations and properties of the same rendering
commands for different GPUs can be very different. For instance, many embedded GPUs choose
to use a tiled-based architecture, where the rendering is operated on the cache memory. Hence
the prediction models need to be adjusted based on different GPUs.

Moreover, when predicting the Draw command (the most critical rendering command), the
number of fragments generated by the command group is required. In order to predict the
number of fragments, a bounding box model is proposed. However, the accuracy of the
bounding box model depends highly on the shape of the rendering object.
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3 Background

Because the goal our work is to develop concepts and metrics for measurement and prediction
of the execution Time of GPU rendering(OpenGL ES 2.0) commands. we give some background
knowledge about OpenGL ES 2.0 and embedded GPUs. In Section 3.1, We give an overview
over OpenGL ES 2.0. The OpenGL ES 2.0 pipeline is described, emphasizing on the vertex
shader and fragment shader. Section 3.2 illustrates the features and the architecture of general
embedded GPUs. Section 3.3 describes more details about our target GPU, the Vivante 3D
GPU.

3.1 OpenGL ES 2.0

OpenGL ES is a low-level, lightweight API for advanced embedded graphics using well-defined
subset profiles of OpenGL for embedded platforms[8]. OpenGL ES 2.0 consists of two spec-
ifications including OpneGL ES 2.0 API specification and the OpenGL ES shading Language
Specification. It implements a programmable 3D graphic pipeline with the ability to create
shader and program objects and the ability to write vertex and fragment shaders in OpenGL
ES Shading Language[8].

3.1.1 OpenGL ES 2.0 Pipeline

Figure 3.1 indicates the main stages of the OpenGL ES pipeline. As can be seen from the figure,
stages of an OpenGL ES 2.0 pipeline includes vertex shader, primitive assembly, rasterization,
fragment shader, per-fragment operations and storing the results into the framebuffer. Next we
give a general overview of each pipeline stage.

3.1.2 Vertex Shader

In OpenGL ES, Objects on the display are composed of primitives including triangles, lines and
points. The primitives are converted from vertices. Vertices specify the vertex attributes such
as the position, color and texture coordinates[28]. The first stage in the GPU pipeline is to
process the vertex-related data in the vertex shader. Before we discuss about the vertex shader,
we first explain the data types used by the vertex shader[28]:
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Figure 3.1: OpenGL ES 2.0 Pipeline [28]

• Attributes—Per-vertex data supplied using vertex arrays.

• Uniforms—Per-program variables that are constant during program execution.

• Samplers—A special form of uniform used for texturing.

• Shader program—Vertex shader program source code or executable that describes the
operations that will be performed on the vertex.

The vertex shader takes vertices’ attributes, uniforms, sometimes also samplers as the input. It
is responsible for processing user-specified operations such as rotation, translation, projection
and calculating the light equation on every vertex by using the shader programme. After all
these operations, it outputs the result as varyings. The main calculation in the vertex shader is
matrix multiplication. Equation 3.1 shows the way to convert the coordinates from the original
object coordinates to the eye coordinates (with translation, transformation and rotation) by
using a model view matrix. In the equation, x, y, z define the 3D location of the vertex, w is
the homogeneous coordinate. The model view matrix is displayed in figure 3.2.
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Figure 3.2: Four columns of the model view matrix


xeye

yeye

zeye

weye

 = MmodeV iew ×


xobj

yobj

zobj

wobj

 (3.1)

3.1.3 Primitive assembly

After the vertex shader, the processed vertices form into a set of primitives. Primitives are
the basic elements that constitute a graphic. In OpenGL ES 2.0, the basic primitive types are:
point, line and triangle. The primitives then go through the primitive assembly stage including
clipping, perspective division and viewport transformation. With these operations, the eye
coordinates are converted to screen coordinates in order to display the rendering content on the
screen(monitor). Figure 3.3 illustrates the process to convert the eye coordinates to the screen
coordinates. Next, we explain clipping, perspective division and viewport transformation in
more detail.

Clipping: Sometimes, our rendering target is too big to be displayed on the screen. It is a waste
of resources to render the object outside the range. That’s why we need clipping. Clipping will
drop the vertices that are out of the view volume. Before the clipping operation, eye coordinates
need to be transformed to the clip coordinates with the help of the projection matrix (Equation
3.1). This is the process to place the object in our view volume. The projection matrix depends
on the type of the viewing volume. For instance, if the viewing volume is a general frustum
(Figure 3.4), which is normally used by prospective projection. The corresponding projection
matrix is shown in equation 3.1 where (l,t,n), (r,t,n), (l,b,n), (r,b,n) are the coordinates of
the top left corner, top right corner, bottom left corner and bottom right corner of the near
plane in eye coordinates (see Figure 3.4), while f is the z-coordinate of the far plane. After the
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Screen 
Coordinates

Eye 
Coordinates

Eye(Origin)

Figure 3.3: From Eye Coordinates to Screen Coordinates

coordinates transformations, the primitives get clipped based on Equation 3.1 and the type
of the primitives. What need to be noted is that when primitives lie partially in the viewing
volume, new vertices will be generated by the clipping operation.


xclip

yclip

zclip

wclip

 = Mprojection ×


xeye

yeye

zeye

weye

 (3.2)

Mproject =


2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0

 (3.3)

−wclip <= xclip <= wclip

−wclip <= yclip <= wclip

−wclip <= zclip <= wclip

(3.4)
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Eye(Origin)

(l, t, n)

(r, t, n)

(l, b, n)

(r, b, n)

(f*l/n, f*t/n, f)

(f*r/n, f*t/n, f)

(f*r/n, f*b/n, f)

(f*l/n, f*b/n, f)

y

x

z

Figure 3.4: Viewing Volume

Perspective Division: The next stage is perspective division, where the clip coordinates are
converted to normalized device coordinates:xndc

yndc

zndc

 =

xclip/wclip

yclip/wclip

zclip/wclip

 (3.5)

Viewport Transformation: The last stage of primitive assembly is the viewport transformation.
This stage converts the normalized coordinates to the window coordinates which are the
coordinates used by the display screen. The conversion is shown in equation 3.1. Parameters x,
y, w, h are specified in function glViewport. Parameters x and y specify the screen coordinates
of the viewport’s lower left corner in pixels; Parameter w and h define the width and height of
viewport in pixels. Parameters n and f are specified by function glDepthRange standing for the
depth range of the screen.

xwind

ywind

zwind

 =


w
2 xndc + (x + w

2 )
h
2 yndc + (y + h

2 )
(f−n

2 )zndc + (n+f
2 )

 (3.6)
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Figure 3.5: Rasterization[5]

3.1.4 Rasterization

After the primitive assembly stage, the primitives that pass the clipping test come to the
rasterization stage. Rasterization takes the geometry information (the window coordinates)
and the type (triangle, line, point) of each primitives as input, and outputs a set of fragments.
Each fragment contains its pixel coordinates in the window and other optional interpolated
data such as the color, depth value and texture coordinates of the pixel.

3.1.5 Fragment Shader

After primitives were rasterized, fragments are fed into the fragment shader. Similar to the
vertex shader, the fragment shader is also programmable. The user can operate on every
fragment, such as assigning a specified color or mapping a specified texture color by using the
fragment shader program.

Texture Mapping Texture Mapping maps an image (the texture) onto the surface of the object
in a scene. It is a powerful technique to add realism to a computer-generated scene[35]. In
order to use textures in OpenGL ES applications, first, texture coordinates are used to specify
which area in the image should be fetched. These texture coordinates are bound to vertices
so each vertex has a correlated coordinate in the texture image. After the image warping
(e.g. projection) and rasterization. The rasterizer will calculate the texture coordinates for
every fragment. The texture coordinates are then fed into the fragment shader. When the
fragment shader starts to work, it requires the texture colors for fragments based on the texture
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Figure 3.6: Aliasing [7]

coordinates. The texture colors are often offered by another hardware module in the GPU. For
example, Vivante GPU has a module called texture engine which is used to fetch the texture
from the main memory and calculates the texture color for every fragment. Normally the
texture coordinates are not directly at the pixels in the texture, they are between the pixels.
Hence texture sampling is required. The simplest texture sampling method is point sampling
where the value of the nearest pixel is selected. However, this will often lead to aliasing
problems when a small number of samplers are taken from a large texture area (minification).
A better and more complicated sampling method that can be used in OpenGL ES 2.0 is bilinear
sampling. Bilinear sampling uses the four corner pixel values around the texture coordinate to
calculate the texture color. This helps reducing the aliasing problems and improving the image
quality.

OpenGL ES also supports a filtering technique called mip mapping to improve the aliasing
problem[36][28]. Mip mapping generates a chain of duplications of the original texture. The
size of the duplication is always reduced to one-fourth of the previous one, until the size is
only a single pixel. For instance, if an original texture size is 128x128 pixels, the size of the
duplications will be 64x64, 32x32, 16x16, 8x8, 4x4, 2x2, 1x1. Texture sampling is performed
using different levels of texture according to different levels of minification. Because anti-
aliasing techniques are already applied during the process of texture compression (mipmap
generation), the effect of aliasing is greatly reduced.
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Figure 3.7: OpenGL ES 2.0 Per-Fragment Operations [28]

3.1.6 Per-Fragment Operations

Per-fragment operations are the operations after the execution of the fragment shader. It can
affect the visibility and the final result of a pixel. Per-fragment operations include scissor box
testing, stencil buffer testing, depth buffer testing, multisampling, blending and dithering[28].
They are all fixed functions.

• Scissor box test, Stencil buffer test and Depth buffer test: Scissor test specifies a rectangle
region, pixels outside the region are not writeable. Stencil buffer test and depth buffer
test are similar to each other. Stencil buffer test checks the stencil masks in stencil buffer
to see if a pixel should be updated or not. Depth buffer test compares the depth value
of the current fragment with the depth value stored in the depth buffer. If the depth
value of the current fragment is smaller, then the color of the current fragment is written
into the color buffer. If the depth value of the current fragment is larger than the depth
value in the depth buffer, the fragment will be discarded. What we need to note is that
both stencil buffer testing and depth buffer testing require additional memory for the
application.

• Multisampling: Antialiasing is an important techniques for improving the graphic qual-
ity by trying to reduce the visual artefacts of rendering into discrete pixels[28].Good
sampling algorithms and techniques, such as mipmap can reduce the texture aliasing
problem. However, the problem still exists when the number of samples is not high
enough. Moreover, rasterization can also lead to aliasing problems when the graphic
resolution is not large enough. Many methods and algorithms were developed for
anti-aliasing. Some common methods include super-sampling anti-aliasing (SSAA) and
multi-sampling anti-aliasing (MSAA), the principle of these two methods are more or less
the same: increasing the number of sampling to reduce the discrete. The algorithm of
SSAA is quite straightforward: rendering is done on a scene whose resolution is higher
than the resolution of the original screen. Then the rendering target is re-sampled (down-
sampled) to the screen size using a reconstruction filter. Good results can be achieved
but the disadvantage is also quite obvious: much more resource is consumed when SSAA
is enabled. For example, when 2x2 SSAA is enabled, four times of the computation is
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Figure 3.8: Graphic with No MSAA (Left) and with MSAA (Right)[1]

required for the fragment shader. Memory consumption is also increased a lot for storing
the additional data (i.e. color,depth buffer of the sub-samples). MSAA, as an alternative,
uses a similar algorithm, but for each pixel, the fragment shader is executed only once
(that means only geometry is over-sampled, the color (texture) is sampled in the same
way as the application without MSAA). The computational complexity is reduced. A
similar performance is often achieved by using MSAA compared to using SSAA because
pixel shading mostly consists of textures and thus doesn’t suffer from aliasing problems
(due to mip mapping)[27]. MSAA is widely used by common GPUs and is supported by
OpenGL ES2.0.

• Blending and Dithering:

Blending is a technique that combines the source color and destination color.The source
color is the color value which is currently stored in the color buffer. Destination color
means the output color of the fragment shader. Blending has effect only when the depth
testing is disabled, otherwise, the source color will simply overwrite the destination color
(if the new object is in front ) or will be discarded (if the new object is in back).

Dithering, which is also know as color quantization. Pixels with different colors are
diffused so the diffused area seems to have a new color to the eyes of human beings.
With dithering, more colors can be simulated to enrich the rendering scene. There’s no
standard dithering algorithm specified by OpenGL ES 2.0, thus the technique is very
implementation dependent[28].
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3.2 Embedded GPUs

Nowadays, the market of embedded devices such as smart phones and tablets is growing
rapidly. Most of the devices integrate 2D and 3D GPUs for graphic acceleration. An estimated
over 800 million mobile GPUs were shipped in 2012[34]. However, not a lot of information
about the embedded GPUs is revealed to the public compared to desktop GPUs. For example,
the Vivante corporation, as a GPU-IP vendor focused on design and licensing embedded GPUs,
according to Jon Peddie Research, ranks second in GPU-IP business[30]. However, information
about their GPUs are rarely known to the public. Because embedded GPUs are often the choise
for embedded systems in order to save power consumption and reduce the cost. it is important
for us to have some background knowledge of embedded GPUs. In this section, first, a general
introduction to the embedded GPUs is given. Then we discuss more about the architectures of
some typical embedded GPUs from different GPU vendors.

3.2.1 Features of embedded GPUs

Similar to the relationship between x86-architecture CPU and ARM-architecture, embedded
GPUs also have some unique features compared to desktop GPUs. These features are listed
below.

1). OpenGL ES2 is the standard graphic rendering API for embedded system GPUs:

Similar to the position of DirectX for desktop GPUs. OpenGL ES2 is the most popular graphic
rendering API supported by embedded GPUs. Over 90 percent of the android devices and all
the IOS devices since the iPhone 3GS support OpenGL ES2[39].

2). Power consumption:

Since embedded devices often run on battery, reducing the power consumption directly means
a longer time of usage. For 3D GPU computing, large amounts of data are processed in parallel.
The power consumption is quite considerable. Besides, the communication between the GPU
and external memory consumes also a lot of power when the memory bandwidth is high.
Hence increasing the power efficiency is one of the most important task for embedded GPUs.

3). Limited resources and chip size:

When a GPU is integrated into a single chip, the available system resources are very limited.
Unlike desktop GPUs who have a large amount of internal GPU memory, embedded GPUs often
have only a small amount of cache and have no internal GPU memory. Instead, embedded
GPUs often reserve a part of system memory to store all the data they need. The silicon area
the GPU consumes has a great influence on the cost since the whole system is integrated on a
single die. The GPU designers also have to invest a lot of efforts to balance between the GPU
computing performance and the silicon area.
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3.2.2 Architecture of The Embedded GPU

In the previous subsection, we have already described some important features of embedded
GPUs. These features lead to a hardware implementation which is different from the implemen-
tation of traditional desktop GPUs. Here we discuss two main differences in the architecture of
embedded GPUs: the rendering mode and the shader.

Rendering Mode

The rendering mode used by embedded GPUs can be mainly divided into two types: immediate-
mode rendering and tiled-based rendering. Tiled-based rendering can be again divided into two
groups: tiled-based immediate mode rendering (TBIMR) and tiled-based deferred rendering
(TBDR). Table 3.1 lists the products of the top embedded GPU vendors and their rendering
mode. As can be seen from the table, tiled-based rendering is quite popular and is applied
by many vendors such as ARM, Imagination, NVIDIA. However, the traditional architecture,
immediate-mode rendering, also accounts for a large portion of the market. It is chosen by
Vivante, Intel and AMD.

Immediate-mode rendering:

Traditionally, desktop GPUs trend to render as many frames per second as possible. Immediate-
mode rendering, which renders the full scene in one pass, fits the goal. Although this rendering
mode can achieve a high frame rate, it also has some drawbacks for embedded GPUs:

1). High memory bandwidth:

Because the full scene is rendered in one pass, the amount of data that needs to be transferred
is very big. Besides, frequent memory access is needed, e.g. to read and write the depth/stencil
buffer before and after the rendering. These lead to high memory bandwidth and as a result
consumes a lot of power. Although complex compression algorithms are introduced to reduce
the bandwidth, but the effect is still significant[14]. High bandwidth is a big challenge
for embedded system devices since power consumption is a bottleneck as we have already
mentioned in the last subsection.

2). Unnecessary work during rendering:

For immediate-mode rendering, overdraw is sometimes unavoidable. As an example, figure
3.9 illustrates a very simple rendering scene: two overlapped triangles. We assume the green
triangle is rendered first, then the red triangle is rendered on top of the green one. Under this
situation, the overlapped area must be rendered twice. This is a lot of unnecessary work for a
complicated rendering scene.

Tiled-based rendering:

Tiled-based rendering GPUs, as an alternative, have good solutions for the drawbacks men-
tioned above. For tiled-based rendering, the full scene is divided into tiles. Every time, only
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Overdraw
Area

Figure 3.9: Overdraw for Traditional Rendering

one tile of the whole scene is rendered into the tile buffer. The tile buffer resides in the GPU
cache which is a small amount of fast memory with very high bandwidth and very low latency.
Operations like the depth/stencil testing and blending are directly executed in the cache which
avoids a lot of communication with the external memory. Only the final result of the tile is
resolved to the external memory which significantly reduces the bandwidth and the power
consumption.

Of course it is possible to draw the full scene and let the vertices get clipped when rendering a
single tile, but it will cost too much vertex shader performance and introduce a lot of overheads.
Hence after the operations in the vertex shader, the GPU will sort triangles into bins for each tile.
This is implemented differently by different hardware vendors[31]. Then only the triangles
(primitives) that affect the tile will be rasterized. Until here, the unnecessary work during
rendering (overdraw) is still not solved. We call this kind of rendering mode: Tiled-based
immediate mode rendering (TBIMR). To solved the overdraw problem, tiled-based deferred
rendering (TBDR) was developed. TBDR uses one of the hidden surface removal (HSR)
algorithms[11] such as the z-buffer algorithm to check the depth value of each tile before the
rendering and avoid the overdraw in the front-to-back case but not the back-to-front case[40].
PowerVR, as a unique, sorted the depth of each pixel before the rendering so only the visible
pixel is rendered even for the back-to-front case. Again we take the two overlapped triangles as
an example (Figure 3.10). For tile D, both the green triangle and the red triangle are involved
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Figure 3.10: Less Overdraw for Tiled-based Rendering

in rendering. Before the rendering, the GPU sorts the depth value of each pixel that belongs to
the green and red triangle in that tile. Then it discards all the green pixels that are covered by
the red one. The overdraw problem is perfectly avoided. PowerVR’s architecture works fine
in low-poly-count case. However, it is possible that the performance drops dramatically for
complex rendering scene where a large amount of primitives is involved[40].

Unified Shader Conventional GPU architectures often separate the vertex shader and fragment
shader and implement them with different hardware. A different hardware implementation is
to use a unified shader for computing both vertex shading and fragment shading on the same
hardware. This is feasible because vertex shader and fragment shader have similar instruction
set architecture (except for special instructions such as texture sampling)[38]. Because the chip
size of the embedded GPUs is very limited and is critical to the cost, unified shader becomes
a good solution for embedded GPUs since it can simplify the hardware complexity and thus
reduce the size of the chip. Another benefit of unified shader is that it can balance the work
between the vertex shader and fragment shader dynamically. For instance, in [38], the author
points out that, during the fragment operations, if cache miss occurs when the fragment shader
tries to fetch the texture, the unified shader can switch to vertex shader and do some vertex
computation. Once the texture is available, the shader switches back and finishes the rest of
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Company Product Pipeline Notes
ARM Mali TBIMR Unified shader, 2-4 math pipes per core
Imaginination PowerVR TBDR/HSR Latest is Rogue (S6). Unified shader. DX11

support
Qualcomm Adreno FlexRender Unified shader. “FlexRender” = automatic

switching between direct render (IMR) and
tile-based deferred rendering (TBDR).

NVIDIA Tegra TBDR
TBIMR

Evolution
1. Tegra 1/2/3/4: non-unified TBDR architec-
ture
2. Logan: Kepler-based GPU, TBIMR
3. Parker: Maxwell-based GPU, TBIMR

Vivante ScalarMorphic IMR Unified Shader.
Intel Gen/Atom IMR Market leader in integrated graphics. Atom-

based devices using Imagination PowerVR
AMD Radeon IMR Hondo/Temash pipes.

Table 3.1: Rendering Mode of different embedded GPUs [34]

the work on the fragment shader. The optimization of the scheduling saves a large amount of
execution time.

3.3 The Vivante GPU

In the end we have a look into the some hardware features of the Vivante GPU, which is used
as the evaluation platform of this work.

Although Vivante GPUs use immediate-mode rendering, we notice that the rendering is actually
operated on small tiles which reside in the cache memory. Vivante GPUs use fully set associative
cache for the rendering target buffer(rendering scene)[20]. During the rendering, if no cache
miss happens, the data always resides in the cache. Once a cache miss happens, the GPU
replaces a cache line and writes back the data to the external memory.

Vivante has invented an efficient rasterization technique called tile-based rasterization[15].
This also explains how the GPU does benefit from rendering on the cached tiles. Traditionally,
scanline rasterization is one of the most commonly used rasterization techniques. Where a
primitive is converted to pixels one horizontal row by the rasterizer at a time. The drawback of
scanline rasterization is that it introduces a lot of redundant computation, since each edge is
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checked for intersection with each successive scanline. For tiled-based rasterization, if the edge
is in the tile, then it only needs to be checked for once. Hence tiled-based rasterization technique
avoids these redundant computation. Further more, sophisticated pre-fetch algorithms were
also developed to fetch the tiles in an optimized sequence to reduce the total fetch number
and increase the cache utilization situations.

During preliminary test, we found out that Vivante GPUs also support early Z-test(similar to
depth test) in the stage of rasterization. Normally, the depth test is done after the process
of fragment shader. However, since most of the fragment shader does not change the pixel
depth value. It would be a waste of GPU processing power to process the fragment which is
overlapped by other fragments. Thus emerges the need of early Z-test. Early Z-test is performed
in the stage of rasterization. It determines whether a fragment is visible based on the depth
value. If the fragment is not visible, it is immediately dropped before it is sent to the fragment
shader. In this way, unnecessary fragment processing is avoided.
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In this chapter we discuss the system model of the GPU driver. Despite that the GPUs are
designed and manufactured by different vendors, the system models of GPU drivers share many
similarities. Since our work is implemented and evaluated on the Vivante GPU platform, we use
the Vivante GPU as an example to explain the behaviour of the GPUs driver. We describe the
system model of the GPU driver focus on the knowledge of GPU command execution flow.

As we have mentioned in the last chapter, almost no literature of the Vivante GPU is available.
Although Vivante has opened their kernel space driver to the public, the user space driver is
closed source. The knowledge of the user space driver and the hardware is derived from the
related kernel space driver code, many tests, debugging and the reverse engineering project
Etnaviv[26].

4.1 System Model Overview

Figure 4.1 illustrates the general system model of an OpenGL ES application. The system can
be divided into four layers, they are: OpenGL ES API layer, user space driver, kernel space
driver and GPU hardware.

In order to render some objects, OpenGL ES applications use OpenGL APIs to send rendering
commands to the GPU. The rendering commands are converted into GPU hardware commands
by the user space driver and passed to the kernel space driver. The kernel space driver is
response for dispatching the commands to the GPU. Finally, the rendering commands are
executed by the GPU.

4.2 User Space and Kernel Space Communication

The Vivante GPU driver, like many other drivers, can be divided into two parts: user space and
kernel space. The communication between user space and kernel space is established only with
the system call ioctl(). Specifically, when the user space wants to send a specified operation
to the kernel space driver, the user space first builds a structure called DRIVER_ARGS, stores
all the related data into the input buffer and passes the structure via ioctl() to the kernel.
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Figure 4.1: System Model

The kernel will then execute the operation, store the result in the output buffer (for some
operations) which can be accessed in user space. The struct is declared in gc_hal_kernel_os.h:

DRIVER_ARGS
typedef struct _DRIVER_ARGS

{

gctUINT64 InputBuffer;

gctUINT64 InputBufferSize;

gctUINT64 OutputBuffer;

gctUINT64 OutputBufferSize;

}

DRIVER_ARGS;

InputBuffer The starting address of the input buffer. The buffer is filled in user space;

InputBufferSize Size of the input buffer;

OutputBuffer The starting address of the output buffer. The buffer is filled in kernel space;

OutputBufferSize Size of the output buffer;

The input buffer and output buffer use the same interface called gcsHAL_INTERFACE to pass
parameters and the pointers of the data. gcsHAL_INTERFACE is declared in gc_hal_driver.h:

gcsHAL_INTERFACE
typedef struct _gcsHAL_INTERFACE

{

/* Command code. */

gceHAL_COMMAND_CODES command;

/* Hardware type. */

gceHARDWARE_TYPE hardwareType;

/* Status value. */
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gceSTATUS status;

/* Handle to this interface channel. */

gctUINT64 handle;

/* Pid of the client. */

gctUINT32 pid;

union _u{

.....

}u;

}gcsHAL_INTERFACE;

command Command code, it decides which operation the kernel space driver should execute.
More command codes are listed in appendix A.2.

hardwareType The driver is compatible with different models of Vivante GPUs. This parameter
specifies the hardware that you want to use.

union u The elements inside the union are based on the command codes you choose. For some
command code, e.g. GET_BASE_ADDRESS, the union contains only parameters. For some
other command codes, e.g. COMMIT, the union contains the parameters and pointers to the
data.

The most relevant command code of our work is the command code "COMMIT". "COMMIT"
is used to submit a specified task (a group of GPU commands) to the GPU. More details and
concepts about GPU commands are described in the next section.

4.3 Command, Command Group, Command Buffer, Command Queue
and Fetch Engine

In order to understand how GPU commands are generated, submitted to the GPU and how
GPU fetches and executes the commands, we need to first understand some important concepts.
They are GPU commands, command group, command buffer, command queue and the fetch
engine. GPU commands are stored in command buffers and are submitted to the GPU in the
form of groups. The submitted command groups are scheduled by the command queue and
are fetched by GPU using the fetch engine. More details are explained below.

4.3.1 Command

GPU Command is binary code that is executable by the GPU. Graphic APIs such as OpenGL
ES 2.0 APIs reside in an abstract layer and are independent to the GPU hardware. In order
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to make the graphic API executable by the GPU, they have to be converted into specific
hardware-executable GPU commands. The conversion is done in the user space driver.

The format of Vivante GPU command comprises two parts: the operation code and the
parameters. Each operation code stands for a "basic" GPU operation. The operation code
is followed by the corresponded parameters. The length of the parameters varies from
command to command. Thanks to the effort by the Etnaviv project, the operation code has
been interpreted and can be found in [25]. Among all the operation codes, "LOAD" is most
frequently used. "LOAD" loads parameters into different GPU registers to configure and control
the GPU hardware.

4.3.2 Command Group:

A command group is a batch of GPU commands that form a certain task to be executed by
the GPU. Like most of the GPUs, Vivante GPU do not support preemption, command groups
are non-interruptible. That means the next command group can be executed only when the
previous dispatched command group is finished.

Vivante integrates different GPU cores (2D, 3D, Vector) into the same hardware and let the
cores share the same memory control system. All the command groups submitted by the kernel
space driver will first be fetched by a GPU hardware module: the command fetch engine (more
details see 4.3.5). The fetch engine then decides the destination of the command group by
checking the first 32-bytes of each command group, a "PIPE" command. The "PIPE" command
specifies the pipe that should be used to transfer the data to the right destination. The last
64-bytes in every command group are a "LINK" command appended by the kernel space driver
before the command group is submitted to the GPU. The "LINK" is used to let the execution be
scheduled back to the kernel command queue (we will mention that soon).

Normally, the size of a command group is relatively small since the main data of the application,
such as the vertex coordinates, texture data, have their separated memory space (section 4.7),
only the pointers of the data are passed by the command group.

4.3.3 Command Buffer:

Command buffer is a block of contiguous memory that holds GPU command groups. In order
to allocate memory for the command buffer, The user space driver sends a request to the
kernel space driver asking for contiguous memory through ioctl() with the command code
ALLOCATE_CONTIGUOUS_MEMORY.

It should be noted that, before a GPU command is pushed into the command buffer, the user
space driver always checks if there’s enough space left in the command buffer to fill the GPU
command. Once the command buffer detects that there’s not enough space left to fill the next
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GPU command, the user space driver will instantly commit the current commands in the buffer
as a command group to the kernel space. While normally, the commitment occurs only after
special a API such as glFlush or gFinish is called. After committing the command group, a new
command buffer is in use. An EVENT command is attached to the last command group in the
command buffer. Once the command group finishes execution on the GPU, because of the
EVENT command, the GPU will send an interrupt to the kernel space driver to let the kernel
space driver know that the command buffer is completely executed and there’s no need to hold
the memory any more. The kernel space driver then notifies the user space via signals that
the command buffer can be reused. Base on our experience, the command buffers are always
associated with certain fixed signal numbers respectively (in our case signal number from 14
to 17).

4.3.4 Command Queue:

After the command group is committed by the user space, the kernel space driver takes over
control. Command queue is used by the kernel to schedule the committed command groups. A
command queue is also a block of contiguous memory similar to the command buffer. Struct
_gcskCOMMAND_QUEUE keeps the related information of a command queue. The command
queue contains the pointers to the physical addresses of all command groups, it also contains
short commands such as EVENT, WAIT, LINK for synchronization and for scheduling. Once a
command queue is created, a mutex will be set to indicate that the queue is in use. An EVENT
command will be pushed into the head of the command queue. Once the EVENT arrives at the
GPU, the GPU will inform the kernel that the last command queue has been fully executed.
The kernel will then release the mutex of the last command queue hence it could be reused.
The maximum number of command queues can be defined in file gc_hal_options.h. GPUs like
NVIDIA’s Fermi and Tesla support multiple channels for different applications. For Vivante
GPUs, the same command queue is shared by different applications. For different GPU cores
(like GPU 2D and 3D cores), the command queues are separated.

Figure 4.2 shows the relationship between the command group, command buffer and command
queue as described above.

4.3.5 Fetch Engine

Before we explains the command execution flow, There’s still one more concept needs to be
discussed: the fetch engine.

Figure 4.3 shows the basic architecture of the Vivante 3D GPU. As we can see from the
figure, FE (Graphics Pipeline Front End, also called Fetch Engine) has direct access to the
memory controller. It takes care of loading state values into individual modules of the
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GPU, kicking off primitives rendering, synchronization, and also supports basic flow control
(branch,call,return)[26].

Since one of our goals is to measure the execution time of GPU command groups, we focus
on the basic flow control of the FE. More specifically, we focus on how and when to fetch
command group by the FE. For that, we need to understand some important GPU commands,
these are WAIT,LINK and EVENT (LOAD).

Command WAIT: when command WAIT (beginning with operation code 0x38) is fetched by
the FE, the fetch engine waits for a certain number of clock cycles. No further GPU commands
are fetched during this time.

Command LINK: the LINK command (beginning with operation code 0x18) informs the FE to
fetch a certain length of commands. It contains two parameters, one is the starting address of
the target GPU commands, the other is the length of the target GPU commands. Normally, a
LINK is always appended at the end of every command group, to ask the FE to fetch a new
group of commands.

Command EVENT: the EVENT command belongs to the LOAD command. As we have men-
tioned in subsection 4.3.1, LOAD is the most frequently used command. It loads a certain value
into a specified GPU state register. EVENT command is a LOAD command that loads value into
the event register. When the event register is loaded, an interrupt will be triggered by a certain
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part of the GPU hardware. The part to generate the interrupt is also specified by the EVENT
command. More details about EVENT and interrupt will be discussed in section 4.5.

Here are some example of the these commands:

Example WAIT: [380000C8 189FA038] Wait for 0xc8 clock cycles
Example LINK: [40000002 189FA028] Fetch the address starting from 0x189FA028. Fetch
length is two words
Example EVENT (LOAD): [08010E01 00000044] Load value 1 into event register with offset
0x0E01»2, triggers an interrupt by the pixel engine
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4.4 Commands Execution Flow

In the last section, all the required concepts for the commands execution flow are presented,
next we put the pieces together and explain the whole execution flow of the GPU commands.

1. Fetch Engine Startup When the GPU kernel driver is installed by the system, function
gckCOMMAND_Start will be called to power up the fetch engine. In order to do that, the
function will first start a new command queue, then insert a WAIT/LINK pair which forms
a loop in the new command queue. After that, the driver writes the starting address of this
WAIT/LINK pair into the fetch address register through io-mapped memory to start the Fetch
Engine. The Fetch Engine will then stay in the WAIT/LINK loop (see Figure 4.4) until a
command group is committed from the user space.

2. Command Buffer Allocation: At the beginning of each application, four command
buffers are allocated. To do that, the user space driver will send requests to the ker-
nel driver asking for contiguous memory through ioctl() with the command code ALLO-
CATE_CONTIGUOUS_MEMORY. Based on our observation, the user space driver always re-
quests four blocks of contiguous memory, each with a size of 128 KB, regardless of the content
of the application.

3. Command Group Submitting: When a command group is committed by the user space
driver, the kernel space driver first appends a new WAIT/LINK pair at the end of the command
queue (step 1 in Figure 4.5 ) so once this command group has been executed, the FE can
stay in the new loop. After that, the driver will append a LINK to the end of the command
group to jump to the new WAIT/LINK pair (step 2 in Figure 4.5). Once the preparations are
finished, the WAIT in the old WAIT/LINK pair will be replaced by a LINK (step 3 in Figure
4.6) pointing to the starting address of the command group and let the Fetch engine fetches
the entire command group. The size and the starting address of each command group are
calculated in user space and passed to the kernel space. At this time, the FE can jump out
of the loop and start to fetch the command group. This is also the time that GPU takes over
control of the task. After the execution, the GPU will stay in the new loop as long as no more
command is submitted, because of the LINK we added in step 1.

Now we have explained how and when the command group fetched is by the FE, In order to
know when the execution of the command group is finished, we need to understand more
about the EVENT and interrupt mechanism. This will be discussed in the next section.

4.5 EVENT, EVENT Queue and Interrupt Mechanism

This section describes the concept of EVENT command, EVENT queue and presents the
implementation of the GPU interrupt mechanism.
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Figure 4.4: GPU idle

Figure 4.5: Submit Command Buffer 1
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Figure 4.6: Submit Command Buffer 2

Figure 4.7: GPU idle after Command Execution
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As we mentioned in section 4.3.5, Vivante provides an "EVENT" command to set a bit in a
specified register (the event register) and to generate an interrupt from the GPU to the CPU
(see Figure 4.8). The part of the GPU component that generates the interrupt can also be
specified. For instance, when pixel engine is set as the place to generate the interrupt, if we
append a "EVENT" command after the command group, the CPU will receive the interrupt
generated by the "EVENT" when the previous command group finishes its execution on the
pixel engine.

We need to remark that the execution of the EVENT command is very fast. If the GPU executes
two EVENT commands within a short period of time, the GPU may write the event register
during the interrupt service routine. We did some tests and did find out that once the event
register is read, the value inside the register will be cleared automatically by the GPU hardware.
That means, if the event register is written before the read operation of the interrupt service
routine, we will find two or more bits set in the event register. If the event register is written
after the read operation, we will only find one bit set but we will immediately get a second
interrupt.

In the event register, bit 31 and bit 30 are reserved for special purposes. Bit 31 is reserved
for AXI bus error, bit 30 is for dumping the MMU debug information on a MMU exception.
These two bits in the event register are marked automatically by the GPU without sending the
"EVENT" command. The other bits are associated with event queues.

An event queue, defined by structure gcsEVENT_QUEUE, contains an event list. Before an
EVENT command is submitted to the GPU, the driver will try to obtain a free event queue and
add all current events (tasks) to the event list inside the event queue. In the kernel space driver,
there are in total of 30 queues available which are assigned with number 0 to 29. Each queue
is associated to an unique bit in the event register. After the EVENT command is executed, the
bit associated to the event queue number in the event register will be set. A separated event
handling thread was started at driver initialization time. The thread is always running in a
loop and waiting for the event notification. At the end of the interrupt service routine (ISR),
after the ISR reads out the marked bit in the EVENT register, the ISR will notify the event
handling thread, the thread will then process the task/tasks based on the bit/bits set in event
register with function gckEVENT_Notify.

The "EVENT" command is applied in many situations which is demonstrated in the following
list.

(1) When the AXI bus error occurs, bit 31 is set.

(2) Notify the CPU to dump the MMU debug information on a MMU exception. Bit 30 is set.

(3) Notify the CPU to free memory, to unlock memory and to unmap user memory.

(4) Notify the CPU that a command buffer has been executed.

(5) Notify the CPU that a new command queue is in use.
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Figure 4.8: GPU receives Event and Send Interrupt

(6) Notify the CPU to signal the user space.

Now let us go back to our user command group execution flow: after a command buffer is
submitted to the GPU, the kernel will automatically submit a small buffer which contains
only an EVENT command to the GPU with event content: gcHAL_COMMIT_DONE. Once the
associated interrupt is triggered, we know that the command group was fully executed by the
GPU.

4.6 Signals and Synchronization

Figure 4.9 shows how the synchronization is realized between different layers. While the
synchronization between kernel space and the GPU is realised by the EVENT command, the
synchronization between user space and kernel space is implemented with signals. Every
signal contains signal number so that when the user space is signalled, it can executed the
corresponded tasks based on the signal number. The association between the signal and EVENT
is established in kernel space with the event queue. That means signals are registered to an
event queue and will be processed by the event handling thread.
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4.7 Linear Video Memory

From section 4.3, we know that each OpenGL ES 2.0 application uses command groups for
passing commands to the GPU. What we need to note is that, most of the related data for
rendering is not passed by command groups but by blocks of linear video memories in different
memory spaces. For instance, when an OpenGL ES 2.0 application wants to pass the vertex
attributes to the GPU, the user space driver will allocate a block of video memory through
system call. Then the vertex attributes will be pushed into the allocated video memory. The
starting address of the video memory is stored in the command group to inform the GPU the
location of the video memory.

Video memories are allocated through ioclt() with the command code gcvHAL_LINEAR_VIDEO_MEMORY
and are accessible by both the user space driver and the GPU. They are used for storing all
kinds of data as rendering input or rendering output. According to different usages of the
linear video memories, they are divided into different types (such as vertex buffer, depth buffer,
color buffer) and named as different surfaces. That means every block of linear video memory
is a surface. For simplicity and better memory management, the driver will allocate a default
size of memory for some surfaces (such as the the vertex buffer) and use signals to change the
states of these surfaces and informs the user space when these surfaces can be reused. This is
similar to the signal used by the command buffer. For some other surfaces such as the texture
buffer, image buffer, the size of the surface is adjusted by the data size. Normally, the surface
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size is a little bit more than the data size. All available types of surfaces are enumerated in
gceSURF_TYPE in file gc_hal_enum.h. Here we discuss some of the most important surfaces.

Render Target: The back framebuffer which is used during the rendering. It contains the pixel
value (red, green, blue and alpha) of the object to be rendered. Before displaying the final
image, the data in the render target will be resolved to the front color buffer. A few tiles of the
render target are cached in the GPU. The render target is defined as gcvSURF_RENDER_TARGET
in the driver.

Depth Buffer: For depth buffer, the memory is allocated only if the depth buffer is enabled by
the program. A small portion of depth buffer is cached in the GPU depth cache. Depth surface
is defined as gcvSURF_DEPTH in the driver.

Tile Status Buffer It is allocated along with the render target or the depth buffer. Tile status
surface stores the tile information of the render target and the depth buffer. It is defined as
gcvSURF_TILE_STATUS.

Vertex Buffer: The vertex buffer contains the attributes of the vertices. As default, five vertex
buffers, each with size of 1 MB, are allocated at the beginning of each OpenGL ES application.
Vertex Surface is defined as gcvSURF_VERTEX.

Texture Buffer: The buffer for the texture data. The memory is allocated only if texture is
used in the program. The size of the texture buffer depends on the size of the texture. A small
portion of texture is cached in the GPU texture cache to improve the speed of texture fetching.
It is defined as gcvSURF_TEXTURE in the driver.

Image Buffer: Image Buffer, the front color buffer that stores the final image. Defined as
gcvSURF_BITMAP in the driver.

4.8 Alignment of The Render Target

As we have mentioned in the previous section, render target is a block of video memory that
contains pixel values (red, green, blue and alpha) of the rendering object. The render target
is shown on the top of figure 4.10 in the form of a pixel array, where each of A1, A2... B1,
B2.. stores the color of a pixel. The memory addresses of the pixels in the pixel array are
contiguous. For instance, assume each pixel takes four bytes memory, if the memory address of
A1 starts from 0x00, then the memory address of A2 starts from 0x04.

For efficiency and optimization, the render target is managed in different levels of tiles. The
alignment of the tiles is demonstrated in figure 4.10. The top left corner of the figure shows an
example of a 4x4 pixel tile, this is the smallest tile in the render target. The index on the tile
grid indicates the sequence of the pixel in the pixel array. As can be seen from the figure, the
memory addresses of the pixels in 4x4 tiles are contiguous. If tile size is larger than 4x4 pixels,
the memory addresses of pixels are not all contiguous. The memory addresses of pixels are
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divided into two parts. Half of the pixels are stored in the first half of the pixel array, the other
half pixels are stored in the second half of the pixel array. These two parts of pixel data are
always interleaved. We take the 16x16 pixel tile in the figure as an example. In the tile, we
can see that pixel A1, A2, B1, B2 are contiguous in the image. However, their memory address
are not all contiguous. The memory addresses of A1 and A2 are contiguous. The memory
addresses of B1 and B2 are contiguous. The memory addresses of A2 and B1 have a big offset
which is half size of the whole render target.

The size of the largest tile is 128x128. The alignment for the 128x128 tiles is always from left
to right, from bottom to top. In the lower half part of the figure, a complete render buffer with
resolution 640x512 is demonstrated.

4.9 Fast Clear Technology

From the last section, we know that render target is organised in tiles for efficiency and
optimization. Fast clear technology is exactly an example that benefits from using tiles in the
render target. Vivante exploits a fast-clear technique which does not actually operate on the
render target when Clear command is called. The tile in the render target that should be
cleared will be marked in the tile status buffer, the render target is not touched. The real clear
is performed only when the tiles of the render target are going to be rendered or when the
render target is going to be displayed on the screen (in this case the tile in the color buffer are
cleared). Marking the tiles is much faster compared to real clearing since only a very small
portion of memories need to be accessed. The execution time of Clear is greatly reduced.

4.10 GPU Context Switch

When a new process (OpenGL ES 2.0 application) is created, it will first send a notification to
the kernel space driver through ioclt() with the command code gcvHAL_ATTACH to let the
kernel driver knows that a new process is attached. The kernel space driver will then initialize
a context buffer for that process. When multiples processes are running concurrently on the
GPU, before the GPU switch from the command group of one process to another process, many
GPU states need to be changed. The states changes are done by the submitting the context
buffer. The context buffer keeps all GPU states that should be preserved when a process is
switched.

Every time when an process submits a command group to the GPU, the changes of the GPU
states caused by the submitted command group will be maintained by the user space driver with
the structure gcsSTATE_DELTA. This structure contains an array which is called recordArray
to store the states changes. Each process attached to the GPU driver has its own recordArray.
Once the driver switch from one process to a next process, the kernel space driver will update
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the context buffer of the next process by merging the context buffer of that process and the
changed GPU states in recordArray. Then the updated context buffer is dispatched to the GPU
to load the GPU states required by the next process.

4.11 Profiling Registers

Vivante GPUs are equipped with a hardware profiler. GPU statistics such as the number of
primitives after primitive assembly and the fragment number generated by the rasterizor, are
collected by the profiler. The profiler is a valuable resource for analysing the GPU performance
since this is almost the only way to directly extract GPU statistics from the GPU hardware. The
profiling results are stored in some special registers which are accessible by the kernel space
driver. By polling the value inside the profiling register, the data in the register is updated
gradually during execution.

4.12 Summary

In this chapter, the system model of the GPU driver is presented. In general, the GPU driver
can be divided into two parts: user space driver and kernel space driver, the communication
between the user space driver and kernel space driver is established with an interface with
system call ioctl(). The GPU command execution flow and the related concepts are explained
in section 4.3 and 4.4, including how the command groups are committed to the kernel space,
how they are submitted to the GPU and they are fetched by the GPU. The synchronization of
the GPU including signals and interrupts are presented in section 4.5 and section 4.6. Besides,
another features of the GPU drivers are discussed from section 4.7 to section 4.10.
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From chapter 1 we know that a possible solution for scheduling real-time GPU applications
is to use non-preemptive deadline-driven scheduling. This requires to predict the execution
time of every dispatched GPU command group. In order to accurately predict the command
group execution time, a precise measurement system is required. In this chapter, we explain
our concepts of the measurement and prediction system. In the first section, the framework of
the measurement and prediction system is presented. Then we explain how and when we take
the timestamps and the profiler data in the measurement system in section 5.2. After that, we
describe how to map the OpenGL ES 2.0 commands to the GPU command groups correctly
in section 5.3. In section 5.4, how to find the correct interrupts generated by submitting
command groups is discussed. In section 5.5, important OpenGL ES 2.0 rendering commands
are analysed, modelled and predicted.

5.1 Measurement and Prediction Framework

In this section, we introduce the framework of our measurement and prediction system.
Figure 5.1 demonstrates the system model for an OpenGL ES 2.0 application including our
measurement and prediction system (the green modules). Compared to the system model
illustrated in section 4.1, we added four components. They are OpenGL ES command monitor,
execution time monitor, profiler and command predictor. The command monitor and command
predictor are above the user space driver. The execution time monitor and the profiler reside
in the same layer of the kernel driver.

The command monitor intercepts every OpenGL ES command that is called by the application
and maps the OpenGL ES Commands to the correlated GPU command group/groups. That
means the command monitor is aware of every OpenGL ES command inside every GPU
command group. Mapping is needed because our prediction predicts the execution time of
every time-consuming OpenGL ES commands instead of directly predicting the execution time
of each GPU command group. Additionally, The command monitor also intercepts the ioctl
function that commits the command group from the user space to the kernel space to collect
statistics from the intercepted command group, such as the length, the hex content, the signal
number(can be more than one signal number) attached to the command group. The statistics
is used to analyse the driver model and improve the prediction model.
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The execution time monitor and the profiler are integrated in the kernel space driver. The
execution time monitor measures the execution time of each command group for different
applications separately based on the process ID. The profiler works together with the execution
monitor to collect statistics and information of each command group such as the number of
fragments and the number of primitives.

The predictor predicts the execution time of every GPU command group before the command
group is dispatched to the GPU using statistics collected by the command monitor, the execution
time monitor, the profiler and some calibrated parameters.

5.2 Taking Starting and Finishing timestamps and Profiler Data

An accurate measurement system is fundamental for prediction. Because without an accurate
measurement system, we cannot measure the error in our prediction model and improve the
prediction model. Besides, the measurement system is also required to calibrate the parameters
in the prediction model. The most critical component of the measurement system is the
execution time monitor. In order to measure the command group execution time accurately
by the execution time monitor, timestamps must be taken as close as possible to the real GPU
starting execution time and finishing execution time. Here we explain how we chose the place
to take the timestamps in order to optimize our measurement result.

Starting Timestamps: From section 4.3.5 we know that before the command group is fetched
by the GPU, the fetch engine is waiting in a WAIT/LINK loop. Once the WAIT in the WAIT/LINK
loop is modified to a LINK pointing to a new command group, the fetch engine will jump out
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of the loop and start to fetch the new command group. This moment is the time when the
command group is submitted to the GPU.

If the GPU is idle, the command group submitting time is the most suitable time to take the
starting timestamps because at that moment, the GPU takes over the control of the task and
can immediately start the execution. However, if the GPU is busy, after WAIT is converted to
LINK, the command group has to wait in the command queue until other command groups are
finished to start the execution. If we still take the timestamps in the same way, the time we
take will be obviously too early. In that case, we use the same solution as described in [33], we
compare the command submitting time of the current command group to the finishing time of
the previous command group. If the submitting time of the current command group is earlier
than the finishing time of the previous command group. We assume the command group starts
to execute once the previous command group is finished and uses the finishing time of the
previous command group as the starting execution time.

Finishing Timestamps: After submitting the command group, the kernel itself will push an
EVENT command into the command queue, when the EVENT command is executed by the
GPU, the GPU will mark a bit in the event register and trigger an interrupt (section 4.5). Once
the interrupt arrives at the CPU, we immediately take a timestamp at the beginning of the
interrupt service routine as the command finishing time since we know the EVENT command
is executed only when all the previous command groups are finished. What needs to be noted
is that some command groups are extremely short and consume almost no execution time. The
GPU is possible to finish these command groups during the time of the interrupt service routine
before the event register is read. Hence we also check the value inside the event register after
we take the finishing timestamps. If more than one bit is set inside the event register, we assign
the same finishing timestamp to all related command groups. For instance, if three bits are
set in the event register, we then know three command groups are finished and we assign the
same finishing time to these three command groups. In this case, during the measurement,
it is possible to get command groups with zero execution time when the current command
group’s starting time and finishing time both equal to the finishing time of the last command
group. However it is reasonable since we know the execution time for these command groups
is extremely fast.

Profiler Data: From section 4.11, we know that Vivante GPU collects GPU statistics such as the
valid fragment number, the primitives number after culling, and stores the statistics in certain
profiling registers. Since the statistics are accumulated, in our profiler, we read the profiling
registers in every GPU interrupt service routine and calculate the difference between every two
interrupts. The difference is used as the profiling data for the current command group. We
notice that the statistics we take might not be perfectly correct because the profiling data is
always updating even during the interrupt service routine since the GPU is working in parallel
with the CPU. But based on our observation, the statistics are updated gradually and will not
change dramatically in short time. Hence the statistics we get are still quite close to the correct
value in most of the cases.
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5.3 Mapping OpenGL ES Commands to Command Groups

Based on the method described in last section, we can already measure the execution time of
each command group in the kernel space driver. However, it is very difficult to predict the
execution time of the command groups directly in kernel space. On one hand, the commands
inside the command group are hardware-specific, detailed information of many GPU hardware
commands are not available. On the other hand, GPU commands are binary codes. They
have to be interpreted in order to be predicted. This obviously introduces much additional
overheads.

A better solution to predict the execution time of the command group is to estimate the
execution time of each individual OpenGL ES command inside the command group and then
summed up the execution time as the command group execution time. This is feasible because
all the OpenGL ES commands are known to the public and can be derived from intercepting
the OpenGL ES API calls.

One obstacle of the solution is that due to different kinds of reasons(we will mention that in
this section), a single OpenGL ES command can be split into two parts and committed by two
command groups. In this situation we need to map the execution time of the split OpenGL ES
command correctly to these two command groups. In order to do that, we need to first find
our when a split occurs. We did many experiments and analysed the test results in order to
find out all the split situations. The situations are enumerated below:

Situation 1. When the command buffer is full. During the test, we found out that, periodically,
some command groups will be split into two parts in the user space and committed to the
kernel space via two separate system calls. The split happens when a new block of command
buffer is in use (More details regarding the split have already been mentioned in section 4.3).
We notice that OpenGL ES command is possible to be split into two part. This is a critical
problem for prediction because commands such as Draw, Clear(when fast clear is not applied)
have a significant effect on the execution time of the total command group. We looked into
the hex content of Draw and Clear commands and found that most contents of the these
commands are doing settings and configurations. The real execution is in the last few bytes
of the command. Based on our experience, they never split. Hence, we always map these
commands to the second command group when a split occurs and assume these commands do
not increase the execution time of the first command group.

Situation 2. When the vertex buffer is full and Draw(glDrawArrays, glDrawElements) is called.
For each OpenGL ES application, besides the contiguous memory allocated at initialization
time, Vivante GPU driver also allocates some vertex buffer (video memory) for storing the
attributes of the vertex such as the vertex coordinates and the texture coordinates. As we
have already mentioned in section 4.7, in the beginning of each application, five vertex buffers
each with a size of 1 MB will be allocated. These vertex buffers are never freed till the end of
the application. Once Draw is called and the vertex buffer object (VBO) is not applied, the
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vertex attributes related to the Draw will be pushed into the vertex buffer. Before that, the user
space driver will check if the current vertex buffer has enough space to fill the vertex attributes.
Once the user space driver detects that there’s not enough space left, the driver will load the
vertex attributes into a new vertex buffer and immediately commit the current content in the
command group to the kernel space and inform the GPU about the address of the new vertex
buffer. The Draw command is therefore split into two parts. However, since we know that
the real execution of the Draw is not contained in the first command group, we always map
the Draw command to the second command group. Because the default size of each vertex
buffer is only 1 MB, if the size of the vertex attributes is larger than 1 MB, the data cannot be
filled into the vertex buffer anyway. In this case, a new vertex buffer with suitable size will
be allocated before every Draw to fill all the vertex data. In this case, the command group
will not split. This vertex buffer is instantly reclaimed by the driver after the Draw to save
system memory. Additional, for Draw with VBO, split never occurs, because for VBO, the data
of the vertex attributes are loaded only once and then stored persistently in the same memory
space.

5.4 EVENT Submission

From section 4.5, we know that an EVENT command will always be submitted to the GPU
after a command group is submitted. Beside that, EVENT command will also be submitted
in some other situations and will also trigger interrupts. These interrupts are mixed with the
interrupts caused by the submission of the command group. In order to calculate the execution
time of a command group, we have to map the correct finishing timestamps (interrupts) to
our command groups. That means, we need to distinguish the interrupts caused by command
group submission from the other interrupts. Therefore, we have to find out all the situations
where an EVENT command is submitted to the GPU to avoid interrupt mismapping. These
situations are enumerated below:

Situation 1. The EVENT command is submitted after a command group is submitted. The
interrupt generated by this EVENT is used to take the finishing timestamp of the command
group.

Situation 2. System call with command code "gcvHAL_EVENT_COMMIT". Another approach
to submit an EVENT to the GPU is to call ioctl with command code "gcvHAL_EVENT_COMMIT"
in user space. This command code is normally used for synchronization. When the command
code is passed to the kernel, the kernel will submit a command group with only an EVENT
command to the GPU. Because the EVENT can be used for any purposes and only occurs rarely,
it is difficult for us to cover all the situations where an EVENT is committed without the source
code of the user space driver. However, since the EVENT from user space is always submitted
with command code "gcvHAL_EVENT_COMMIT", we are aware of the submission and have no
problem to distinguish them from the normal command group submission.
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Since the execution time of EVENT command is extremely fast and is always constant for
different applications, there’s no need to take the execution time of EVENT command into con-
sideration. We trace these kind of submissions only in kernel space and make the submissions
transparent to the user space

Situation 3. When new command queue is in use. When a new command queue is in use, the
kernel itself will submit an EVENT. This EVENT will finally trigger an interrupt to notify the
kernel to release the lock on the last command queue. Hence, when a new command queue is
in use during the submission a command group, two interrupts will be generated. If the new
queue is in use before submitting the command group, then the second interrupt we get is
the interrupt for the command group. If the new queue is in use after the submission of the
command group, then we use the first interrupt as the interrupt for the command group. The
execution time of the new queue EVENT is transparent to the user space just like the second
situation.

5.5 Anatomy and Prediction of Important OpenGL ES Commands

After mapping OpenGL ES commands to the corresponding command groups, the next step is
to analyse and predict the execution time of the OpenGL ES 2.0 commands. Although there
are quite a large number of OpenGL ES 2.0 commands defined in the specification, most of
the commands are either executed on the CPU or used only for configuration (like loading
some values into some GPU state registers) which consumes almost no GPU time. Hence we
only need to analyse and predict the commands that have measurable influence on the GPU
execution time.

To the best of our current knowledge and experience, in general, the following commands are
time-consuming on the GPU execution time during rendering: Flush, Finish, Clear and Swap.
However, since OpenGL ES 2.0 is only a standard specification, the implementation varies from
GPU to GPU. Even for the same rendering command, the effect can be distinct on different
GPUs. For vivante GPU GC 2000,the command load the texture(glFramebufferTexture2D) will
also significantly increase the GPU execution time. This command will also explained below.
Commands only appear at the initialization time such as loading the shader code or generating
the mipmaps are not taken into account since they are not used during rendering.

In order to predict the execution time of all time related OpenGL ES commands, we have to
understand how they are implemented and which factors will actually affect the execution
of these commands. Next, we describe our analysis of these time-consuming commands and
explain our prediction models for them. As a reminder, all the discussions below are based on
the tests on the Vivante GPU, for other GPUs, the results can be different.
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Figure 5.2: Execution Flow of glFlush

According to the way of prediction, we divide the rendering commands into three groups: 1.
constant execution time; 2. buffer size based execution time. 3. vertex number and fragment
number based execution time.

1.Command with Constant Execution Time: the commands in this group have constant
execution time regardless of program’s content and context.

Flush(glFlush): The first OpenGL ES command we want to discuss is Flush (used by methods
such as glFlush,glFinish and eglMakeCurrent). Flush, as its name indicates, flushes the current
commands inside the command buffer to the GPU. Figure 5.2 shows a simple application doing
nothing except calling glFlush command. As can be seen from the figure, glFlush commits a
short command group to the kernel from the user space. The content of the command group is
a 16 bytes long GPU command to flush the GPU cache which is very fast compared to other
rendering commands. After the kernel submits the command group and the EVENT command
to the GPU, it will immediately return to the user space to continue the application.

Prediction of Flush: Since the time to execute Flush is always the same, all we need to do is to
measure the average execution time of Flush.

Finish(glFinish): As is depicted in figure 5.3, glFinish commits two command groups to the
kernel. The first command group submits all current buffered GPU commands to the GPU
similar to glFlush. If the application does nothing except calls the glFinish command, then
the content of the first command group is exactly the same as glFlush, submitting a 16 bytes
long command to flush the GPU cache, an EVENT command is submitted separated after the
submission of the first command group in user space. The second command group is always
the same, independent to the content of the applications, it again flushes the cache of the GPU.
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Figure 5.3: Execution Flow of glFinish

Hence the execution time of the second command group is always constant. After committing
the second command group, one more EVENT is committed by the user space. The application
is then blocked and waits for a specified signal from the kernel space. The application will be
released by the kernel when it detects that the GPU has finished all the submitted commands.
As for prediction, the execution time of each command group in glFinish is exactly the same as
glFlush since the same content is committed.

Prediction of Finish: Similar as the prediction of Flush.

Clear(glClear): Clear is used to set portions of every pixel in a particular buffer to the same
value[29]. For many GPUs, the Clear command will directly set every pixel in the render target
to a specified color which involves a large amount of memory write operations[33].
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For the Vivante GPU, the implementation of Clear is quite different. As we have mentioned
in section 4.9, Vivante exploits a fast-clear technique, which does not actually operate on the
render target when Clear is called. The execution of Clear can be divided into three steps:

Step 1. When glClear is called, the tile of the render target that should be cleared are marked
in the tile status buffer. The rendering target is not touched.

Step 2. When the Draw command is called, tiles in the render target will be loaded into the
GPU cache. The GPU will then check if the tile needs to be cleared based on the status inside
the tile status buffer. If clear is marked, the tile in the cache will then be cleared. The rest
of the tiles which are not touched by the rasterizer will still not be cleared. This approach
works well since the render target is only a back buffer and will not be displayed on the screen
directly.

Step 3. When Swap is called, the tiles in the render target that are rendered will be copied to
the color buffer. The color buffer will clear the rest of the tiles which are not touched before
the whole image is displayed on the screen.

What needs to be noted is that the fast clear technology is only used by the default render
target. OpenGL ES 2.0 also supports framebuffer object to render on a specified non-default
render target(or we can called it off-screen framebuffer) such as a texture buffer. In this case,
the fast clear technology is not applied, the whole render target will be cleared immediately
when Clear is executed by the GPU.

Prediction of Clear: The Prediction of the Clear command needs to be divided into two parts:

Situation 1: For the Clear of the default render target, the execution time is short and constant.
Experiments show that it even has no impact on the execution time of Draw and Swap. This
is reasonable, for Draw, if a tile is not cleared first, the GPU has to load the data from the
rendering target to the cache which might take even longer time. For Swap, the color buffer
will be cleared to black when Clear is not called which takes exactly the same amount of
execution time.

Situation 2: For the Clear of the non-default rendering target, the execution time depends on
the size of the non-default render target. This kind of Clear can be put into the next group:
commands with buffer size based execution time.

2.Command with Buffer Size based Execution Time

Swap(eglSwapBuffers): Command eglSwapBuffers commits two command groups to the
kernel. The first command group is same as glFlush which flushes the current commands in
the command buffer to the GPU. The second command group copies the data from the render
target to the front color buffer. To avoid unnecessary memory access, only the 4x4 pixel tiles
that are updated (rendered) will be copied. The rest of the tiles in the color buffer are simply
cleared.
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Prediction of Swap: The prediction of the Swap command can be divided into two parts:
memory reading time and memory writing time. Memory reading is involved in the copy
operation, the execution time depends on the updated tile number. Memory writing is required
by both Copy and Clear operations, therefore the execution time is always proportional to the
size of the render target.

The prediction model of the Swap command can be presented by the following formula, where
Nw stands for the total tile number in the default render target and Nr stands for the rendered
tile number. cwritebyte and creadbyte are the time to write a byte into the memory and the time
to read a byte from the memory. They can be calculated through calibration. cbytespertile is the
size of a tile. The rendered tile number can is estimated as one sixteenth of the total valid
fragment number generated in each frame.

Tswap = cwritebyte × cbytespertile ×Nw + creadbyte × cbytespertile ×Nr (5.1)

Clear: To clear the non-default render target, the execution time depends on the size of the
rendering target buffer. Generally, the size of the non-default render target is larger than the
size we specified in the application. Experiments show that the Clear command will clear
the whole render target even the part that is not used by the application. Hence the size of
the real render target should be used for prediction instead of the size we specified in the
application to predict the Clear command. The total execution time can be presented by the
following formula. Parameter N in the formula stands for the total bytes of the non-default
render target.

Prediction of Clear:

Tclear = cwritebyte ×N (5.2)

Texture Loading(glFrameBufferTexture2D): Beside the commands above we noticed during
the test that if an application switches from the default render target to some non-default
render target(off-screen framebuffer), the execution time is significantly increased. This is
due to the copy between the off-screen render target and the color/depth buffer which is
done by the resolver(a GPU component). For instance, if an application wants to render
on the texture(none-default render target), it will request the GPU driver to allocate some
memory for the texture. The memory is only temporarily owned by the application and will
be reclaimed after the rendering. This leads to a result: every time before the rendering,
the data of the color/depth buffer needs to be loaded into the texture buffer(when API
glFramebufferTexture2D is called). Such read operations consume a lot of GPU execution
time.

Prediction of Texture Loading: The prediction of Texture-Loading (glFrameBufferTexture2D) is
similar to the prediction of Clear since the principle is more or less the same. The execution
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Figure 5.4: Vivante 3D GPU architecuture [20]

time depends on the size of the non-default render target and the memory read, write speed.
However, during the experiments, we found out that memory read/write speed is faster when
the size of the render target is below a threshold. Hence we use a piecewise linear formula to
predict the execution time. In the following formula, c1 and c2 stand for the speed to load a
byte into the render target when the size of the render target is below or above a certain range
(Ns).

TglF rameBufferT exture2D =
{

c1 ×N, if N <= Ns

c1 ×Ns + c2 × (N −Ns), if N > Ns (5.3)

3.Command with Vertex Number and Fragment Number based Execution Time

Draw(glDrawArrays, glDrawElements): Draw is the most sophisticated and time consuming
command. The execution of Draw needs the cooperation of different GPU modules and goes
through every stage in the GPU pipeline. Now we explain the Draw commamnd is executed by
the vivante 3D GPU (figure 5.4).
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1. The command, uniforms, vertices’ attributes and other related data needed by the vertex
shader are fetched by the graphic pipeline front end(fetch engine). The execution time of this
step depends on the vertex number and the size of the attributes.

2. Vertex shader (the unified shader threads) performs geometry transformation and lighting
computation on each vertex. The execution time is related to the number of vertices and the
complexity of the shader code.

3. The result of the vertex shader is sent to the rasterizer(3D rendering engine) where
primitives are converted into fragments. The color and texture coordinates of each pixel are
also calculated by the rasterizer. The execution time depends on the number of fragments.

4. After rasterization, the data of the fragments is sent back to the fragment shader (the unified
shader threads). The fragment shader computes the color for every pixel. The texture engine
retrieves texture information from memory when texture is requested by the fragment shader.
The execution time depends on the number of fragments, the shader code and the size of the
texture.

5. After the execution of the fragment shader, the pixel engine does further alpha blending
and visible surface determination and writes the result into the memory. The execution time
depends on the fragment number.

Prediction of Draw: In an optimized pipeline, the steps mentioned above should be able to
execute concurrently in the GPU pipeline. However, this does not mean that the execution time
of the Draw command is only defined by a single bottleneck. The reasons are as follows:

1.The execution time may depend on a single bottleneck at a moment. However, the bottleneck
can change several times even during the rendering of a single object[37].

2. Nowadays, in order to support general computation and reduce the hardware complexity,
vertex shader and fragment shader are often implemented on the same hardware as a unified
shader. The unified shader comprise two stages of the OpenGL ES 2.0 pipelines. If more GPU
threads in the unified shader are occupied by the vertex shader, then the processing speed of
the fragment shader will be reduced and vice versa.

From the analysis of the Draw command, it can see that, if considering a single application with
the same shader code and texture quality, the rendering time mainly depends on the number
of vertices and the number of fragments. Hence the execution time of Draw may depend
on 1. only the vertex number, 2. only the fragment number and 3. a combination of both
vertex number and fragment number. Experiments show that a prediction model considering
both vertex number and fragment number achieves the best accuracy. As a result we use the
following formula to present the prediction of the Draw command.
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Tdraw = Tvs + Tfs

= cv ×Nv + cf ×Nf (5.4)

In the equation, the execution time of Draw consists of two parts: Tvs and Tfs. Tvs stands for
the time the unified shader spends on vertex processing which linearly depends on the number
of vertices Nv. Tfs stands for the time the unified shader takes for fragment processing, it is
proportional to the valid fragments number Nf . A valid fragment is a fragment that passed the
early-z test(see section 3.3). Fragments which are discarded by the rasterizer are not taken into
account since they are not executed by the fragment shader. cv and cf are the per-vertex and
per-fragment processing speed for specified shader and texture which are calculated through
calibration. Next we explain how we calibrate cv and cf and how we get Nv and Nf .

Because the Draw command is intercepted by the OpenGL ES command monitor, Nv can be
get by summing up the "count" parameter in every Draw command. To calibrate cv for every
different application, the glViewport function in the OpenGL ES application is also intercepted.
Parameter height and width in glViewport (see subsection 3.1.3) are set to minimum so that
no fragment will be generated after rasterization. This introduces no difference to the vertex
shader since what we have changed is only the width and height value in the equation of the
viewport transformation. The modified application is kept running for several frames. The
total Draw execution time and number of vertices (this is known by intercepting the Draw
commands) are then used to calculate the average per-vertex execution time cv.

To calibrate cf , we run the original OpenGL ES application without any modification for several
frames. Since per-vertex processing speed is already calibrated, the total vertex-processing
can be calculated. Then the total execution time for processing fragments can be calculated
by subtracting the total vertex-processing time from the total execution time. By using the
profiler(section 5.2), the fragment number of every command group can be measured. Hence
we also have the total fragments number by summing up the fragments number in every
command group. The per-fragment processing speed can then be calibrated at run time.

To get the number of fragments Nf of the current command group is more challenging. Unlike
the vertex number that can be directly extracted from the Draw command, the fragment
number depends the output of the rasterizer and needs to be predicted. We notice that in
order to present fluent animation, certain amount of frame rate is required by the graphic
applications. The difference of the image between the adjacent frames is often quite small, so
does the number of the fragments. Based on this assumption, a recent-history based approach
is developed to predict the fragment number of in a single frame.

In our approach, the fragment number in the last frame(or the most recent available frame,
same for the following sentences) is used as the fragments number in the next frame. The
fragments number in the last frame can be obtained by using the profiler. In order to get
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the fragments number of each command group in a single frame, the recent-history based
approach can be further divided into two types.

1. Fragments Number Prediction with Rencent-Vertex-Fragment Ratio

In the above paragraph, we assume the fragment number between two frames are similar to
each other. in this approach, we further assume that the vertex-fragment ratios between two
frames are similar to each other and predict the fragments number of the next command group
by multiplying the vertex-fragment ratio of the recent available frame and the vertex number
in the next command group.

2. Fragment Number Prediction with Same Command Group Sequence Number

We are aware that, for the approach we mentioned above, the success of the fragment number
prediction requires a similar vertex-fragment ratio in every Draw command. Hence we also
proposed an additional method to predict the fragment number when the vertex-fragment
ratio in every Draw command is very different. In this approach, after each frame is finished,
the fragments number of the executed Draw-contained command groups will be sequentially
stored in an array which is called the recent fragments number array(the original data in
the array will be cleared). A counter is used in the predictor to count the number of the
Draw-contained command groups in a single frame. When the Nth Draw-contained command
group comes, the predictor finds the Nth element in the recent fragments number array and
uses it as the fragment number of the Nth Draw-contained command group. This approach is
suitable for applications that use the same program repetitively and generate the same amount
of command groups in every frame.

5.6 Summary

In this chapter, the framework of our measurement and prediction system is demonstrated.
Then how to correctly mapping the OpenGL ES commands to the GPU command groups is
explained. After that, the rendering commands are analysed and divided into three types. For
each type of commands, prediction models are proposed.
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In this chapter, the implementation of the concepts of measurement and prediction is described.
In the first section, the components in the measurement and prediction system are explained.
In section 6.2, the algorithms we used to take timestamps and to calculate the command group
execution time are present. In section 6.3 the algorithm to predict fragments number of the
command group is presented. Finally, the modifications in the kernel drivers are enumerated
in section 6.4.

The software requirements to implement our system are as follows:

• Linux Kernel version 3.035-r37.14

• Vivante GPU Graphic driver imported from Freescale BSP release 4.1.0.

6.1 Components of the Measurement and Prediction System

Figure 6.1 illustrates the components in of our measurement and prediction system. The
components are marked in red and green. As we have already mentioned in chapter 5, our
system is mainly comprised of three parts: the OpenGL command monitor, the command
predictor and the execution time monitor(including the profiler). The command monitor and
the command predictor reside in the interception & predicton layer between the OpenGL ES
layer and the userspace driver. The execution time monitor is integrated in the kernel space
driver. The user space driver is not touched. All the important data structure that is used by
these components are stored in file gc_hal_kernel_ shared_mem.h and the file predict_data.h.
The explaination of these data structures can be found in appendix A.1.

6.1.1 Interception & Prediction Layer:

The OpenGL command monitor and the predictor monitor reside in the interception & pre-
diction layer. The command monitor intercepts every OpenGL ES APIs, EGL APIs and all also
the ioctl system calls before they are executed. Every time when an OpenGL ES API or an EGL
API is called by the application, related information is collected (such as the name of the API).
When the ioctl system call comes, the command monitor checks the purpose of the system call.
If the system call is used by the GPU user space driver to commit the current command group to
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the kernel space driver, then the command monitor will push all the information of the current
command group into the application shared memory and then continue the real execution of
the ioctl. Every time when a new OpenGL ES application(with the interception & prediction
layer) is created. The interception & prediction layer will request the kernel space driver to
allocate a block of application shared memory by using ioctl() system call. The application
shared memory is then mapped to the user space using MMAP so that it is accessible by both
kernel space driver and the interception & prediction layer. Once the application finishes, the
exit handler of the main function will make a system call to inform the kernel driver to free the
application shared memory. If the application is aborted, the kernel space itself will instantly
free the memory to avoid the memory leaks.

The predictor traces all the time-consuming commands that have been discussed in section
5.5 and the parameters of the commands by intercepting related APIs. Every time a time-
consuming command is called, the predictor will calculate the execution time of that command
and add that to the total execution time of the current command group. As an exception,
the execution time of Draw command (glDrawArrays or glDrawElements) is immediately
predicted when Draw is called. This is because the prediction of Draw uses the total number
of vertices and fragments, hence there’s no need to predict every Draw command separately.
Since our prediction method also exploits the data of the recent history, the command predictor
updates the history data after every frame is finished. Finally, before the command group is
committed, the predictor predicts the execution time of the Draw command and calculate the
total predicted execution time of the current command group.
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6.1.2 Execution Time Monitor:

The execution time monitor is integrated in the kernel space driver. It takes timestamps,
profiles data and calculates the execution time of every GPU command group. After that, it
writes the result to different application (process) shared memories based on the process ID.
Besides, it allocates a large block of memory, the global shared memory, when the GPU driver
module is loaded into the kernel. The global shared memory records the information of every
command group that goes to the GPU regardless of the owner (application) of the command
group, so that a prospective GPU scheduler can have a general view of what is happening on
the GPU. The recorded information in the global shared memory can be queried in user space
with an external application which has also been developed. This external application also
supports other operations such as querying the current index of the command group, clearing
the global shared memory and so on to make the measurement system more flexible. The
global shared memory is implemented as a ring buffer to avoid the memory overflow.

6.2 Taking Timestamps and Calculating Execution Time

The submitting timestamps and the receiving timestamps are taken from different threads.
They are mapped to each other via two array index numbers. Algorithm 6.1 shows the flow
to take the starting timestamp of each command group. An index number is used to keep
the order of the submitting timestamps. It increases every time when an EVENT command is
submitted to the GPU. The timestamp of the EVENT submitting time will also be taken after the
EVENT is submitted. The number of submitted EVENT commands after each command group
depends on the number of the current event queues. An Event is submitted for each event
queue (see the while loop). If no command group is submitted before the EVENT command,
the command group submitting time is set to zero(default value).

The other index is used to keep the sequence of the receiving timestamps. It increases every
time when an interrupt comes in order to map the finishing timestamps to the correct starting
timestamps. Algorithm 6.2 shows the flow to take the finishing timestamps. After taking the
finishing timestamps and calculating the command group execution time. The program will
check whether the application uses application shared memory (only the applications start
along with the interception & prediction layer use application shared memory). If it is true,
then the data of the command group will be copied from the global shared memory to the
application shared memory. Command groups contain only EVENT command will not be
copied.
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Algorithmus 6.1 Taking the starting timestamps

Command group/event from user space:
lock_the_command_queue()
if command_group_is_committed then

cmd_submitting_time[i]← current_cpu_time

end if
change_the_scheduler_policy_to_fifo()

submit_the_command_group()

while event_queue ̸= null do
get_event_number()
cmd_submitting_pid[i]← current_process_id

submit_the_event_command()”
event_submitting_time[i]← current_cpu_time

i← i + 1
end while
change_the_scheduler_policy_to_normal()
release_the_command_queue()
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Algorithmus 6.2 Taking the finishing timestamps and calculating the execution time

When GPU interrupt comes:
finishing_time← current_cpu_time

event_number ← getEventNumber()
first_index← j

n← 0
for n 6 event_number − 1 do

cmd_finishing_time[j]← current_cpu_time

j ← j + 1
n + 1

end for

n← first_index

for n 6 first_index + event_number − 1 do
if cmd_finishing_time[n] > cmd_finishing_time[n− 1] then

cmd_execution_time[n]← cmd_finishing_time[n]− cmd_submitting_time[n]
else

cmd_execution_time[n]← cmd_finishing_time[n]− cmd_finishing_time[n− 1]
end if
check_process_shared_memory_list()
if in_process_list then

if cmd_submitting_time[n] ̸= 0 then
copy_data_from_global_shared_memory_to_process_shared_memory()

end if
end if

end for

6.3 Fragment Number Prediction

The concept of predicting the fragments number of a command group was described in Section
5.5. Two approaches are proposed: they are prediction based on rencent-vertex-fragment
ratio and prediction based on the same command group sequence number. Algorithm 6.3
depicts the implementation of the first approach: fragment number prediction based on the
recent-fragment-vertex ratio. Every time when eglSwapBuffers is called, the program checks if
the measurement of the last frame is finished by reading the the finishing timestamp of the last
command group in the last frame. If value of the finishing timestamp is not zero, that means
the last frame is finished and the measurement is done. Then the fragment-vertex ratio of the
last frame can be calculated. If last frame is not finished yet, the vertex-fragment ratio of the
frame before last frame will be used for the prediction. When a command group is submitted,
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the fragments number of the command group is predicted by multiplying the fragment-vertex
ratio and the vertex number of the current command group. After many tests, we find that
it is always possible to get the fragment number of the frame before the last frame. The
implementation of fragment prediction based on the same command group sequence number
is similar to the first approach, the difference is already discussed in Section 5.5.

Algorithmus 6.3 Fragment Number Prediction

When eglSwapBuffers is called:
if last_frame_is_finished then

while command_group_in_last_frame ̸= null do
totoal_fragment_number ←
fragment_number_command_group + totoal_fragment_number

end while
else

if frame_before_last_frame_is_finished then
while command_group_in_last_frame ̸= null do

totoal_fragment_number ←
fragment_number_command_group + totoal_fragment_number

end while
else

totoal_fragment_number ← most_recent_available_total_fragment_number

end if
end if
fragment_vertex_ratio← totoal_fragment_number/totoal_vertex_number

Before dispatching the command group:
fragment_number ← fragment_vertex_ratio× vertex_number

6.4 Measurement Optimization and Kernel Driver Modification For
Time Measurement

The original driver is not intended for time measurement, a couple of original designs in the
GPU kernel driver occur to have interference on the performance of the time measurement.
Aside from the influences of the driver, non-real-time linux and multi-core system also affect the
measurement stability. Therefore, in order to optimize our measurement framework, several
adaptations with minimal influences on the original GPU driver are made in the kernel space.
In this section, we present the measurement problems and the related adaptations.
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6.4 Measurement Optimization and Kernel Driver Modification For Time Measurement

Problem 1: Interference between CPU interrupts and GPU command submission. When an
interrupt arrives at a CPU core, the processes on that core will be blocked. If the interrupt
happens right after the GPU kernel driver submits the command buffer and before we take the
starting timestamps, the starting time we take is delayed compared to the real one. The total
execution is therefore shorter than the real execution time. On the other hand, if the interrupt
arrives before the kernel driver submits the EVENT command(an EVENT is always submitted
after the command group in order to get an interrupt4.5), the time we get the correlated
interrupt generated by this EVENT is delayed. The total execution time is longer than the real
one. For a single-core system it is difficult to avoid the problem, because the interrupts comes
at any time and they should never be blocked. For multi-cores system, we introduced CPU
affinity and ensure that the interrupts and our measurement process are located on different
cores to avoid the concurrence.

Problem 2: Process Switching during command submitting. This is similar to the first problem,
due to the fact that the command buffer and EVENT command are submitted at different time,
when process switch happens, the measured execution time can be either longer or shorter
than the real one. This problem can be fixed with a real-time linux kernel. However, because
at moment real-time linux system is not yet available for our test platform, we bypass the
problem by changing the linux scheduler policy from Normal to SCHED_FIFO before the kernel
submits the command to the GPU and we change it back to Normal after submitting the EVENT
command. The SCHED_FIFO scheduling class is a long-standing, POSIX-specified real-time
feature. Processes in this class are given the CPU for as long as they want to fulfil the needs of
higher-priority real-time processes. If more than two SCHED_FIFO processes with the same
priority are attempting to gain the CPU resource, the one which is currently running on the
CPU will continue until it gives back the CPU itself[13], which exactly fits our requirement.

Problem 3: Concurrent OpenGL ES applications and multi cores. Even though the scheduler
policy is changed to SCHED_FIFO, in a multi-cores system, multiple OpenGL ES applications
can still run simultaneously. This could lead to a wrong command group submission order. For
instance, if we have two applications and each submits a command buffer and an EVENT, a
possible submission sequence could be: command buffer, command buffer, EVENT, EVENT. In
this case, we won’t get any interrupt until both command buffers are executed. To avoid this
problem, we add an extra Mutex for the command buffer and the EVENT submission to ensure
that the submission sequence is always correct.

Problem 4: Mutex and Power Consumption. In 4.5, we mentioned all the tasks attached to a
certain interrupt will finally be processed on a separated thread in function gckEVENT_Notify.
After processing all the attached tasks this function will walk through all event queues to check
if every event queue is empty. If it is true, the function then enquiries the GPU status to check
if the GPU is idle. If the GPU is not idle, the function notifies the system to turn down the GPU
frequency and make it run in idle mode in order to reduce power consumption.

The problem is that, before the function enquiries the GPU status, it acquires a mutex called
powerMutex, this mutex is also acquired in the function that submits the command buffer to

63



6 Implementation

the GPU. If the competition occurs, the GPU execution time we measured will be much longer
than in the normal situation because a large amount time is spend on trying to acquire the
powerMutex.

To fix the problem, one solution is to remove the function of hardware status enquiry and power
consumption reduction, since the power consumption is not that critical to us at moment. This
greatly increases the stability of the command execution time which is better for us to do the
prediction. Because the chance of the mutex competition is not very high in the measurement,
we could also choose to simply ignore some measurement values out of a reasonable range.

Problem 5: EVENT command is submitted to the GPU when a new command queue is in
use, this EVENT will trigger the interrupt immediately when it comes to the GPU before the
previous command group has been finished. This will disrupt the sequence of the receiving
timestamps. Hence we modify this EVENT command and make it trigger the interrupt only
after the previous command group is finished.
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7 Evaluation

In the chapter, we evaluate the performance of our concepts. In section 7.1, the hardware
feature of our evaluation platform is described. The measurement accuracy is evaluated in
section 7.2. After that, a special evaluation is performed to verify the correctness our commands
mapping concept. The accuracy of our prediction models of rendering commands is evaluated
in section 7.4. Besides, the affect of texture size and MSAA on the Draw command is also
evaluated in Section 7.5.

7.1 Hardware Setup

The board i.MX6Quad manufactured by Freescale was chosen for our evaluation. The
I.MX6Quad application processor is a System-on-Chip focused on multimedia with high
processing performance and low power consumption. It is an embedded platform which
is suitable for automotive and industrial multimedia applications[19]. Since the future work is
to introduce GPU scheduling to real time applications such as speedometer display, navigation
system or medium players. The I.MX6Quad developing board is a suitable platform to satisfy
the purpose.

The processor is integrated with 4 ARM Cortex A9 cores up to 0.996 GHz per core, 765416KB
DDR3 memory, and a 3D OpenGL ES compatible GPU Vivante GC2000 which has the following
features[18, 20]:

• 200Mtri/s triangle rate, 1000Mpxl/s fill rate.

• Ultra-threaded, unified vertex and fragment shaders.

• 8k x 8k texture size and 8k x 8k render target.

• 2 KB depth cache, 2KB render target cache, 2KB texture cache.
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7.2 Measurement Accuracy

We first evaluated the accuracy of our measurement system in chapter 5 since measuring the
execution time of each command group accurately is the precondition for us to do further
analysis and to evaluate the prediction models for different rendering commands. For the
evaluation of measurement accuracy, we did the following two tests. The Flush test is aimed
to evaluate the fluctuation of the measurement system while the Cyclictest is focused on
evaluating the max delay during rendering.

7.2.1 Flush test

In this test, we used an application that repetitively dispatches command groups which contain
only a single Flush command and measured the execution time for 100000 groups . We chose
Flush command because it is very simple and fast, hence the execution time is more sensitive
to the fluctuation compared to the command group with a longer execution time.

Figure 7.1 depicts the distribution frequency of the execution time. The interval of every
vertical bar is 600 ns. The execution time of Flush ranges from 6 µs to 13.2 µs. Around 92 %
of the execution time lies in the interval between 8 µs to 12 µs. Based on the test result, we
can say that the fluctuation is quite small. the accuracy of the measurement is sufficient.

7.2.2 Cyclictest

During rendering, large amounts of memory operations are involved. Factors such as hardware
interrupts or DMA delay can introduce some latencies into our time measurement system. This
test is aimed to find the max latency during rendering.

Cyclictest[21] is a benchmark for testing the latency of an operating system. The general idea
of Cyclictest is to take two timestamps between a specified time interval and compare the
difference between the specified time interval and the real time interval derived from two
timestamps. The difference is used as the latency of the system. The latency can be increased
by many factors such as the interrupts and the scheduler overheads.

In this test, we ran the cyclictest and an OpenGL ES application at the same time and gave
Cyclictest the highest real-time priority 99 so that the latency we measured in the Cyclictest
should be similar to the latency we get in the OpenGL ES application. After running the
Cyclictest for 10000 loops with an interval of 10000 micro seconds, the maximum delay we
get is 477 µs, this is quite a long time for our time measurement system. However, such a long
time delay rarely occurs (in our case, it occurs only once). Such a long delay can introduce
some error into our measurement, however, the influence is trivial. The average delay of the

66



7.3 Draw Command Mapping Test

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  3750  7500  11250  15000  18750  22500  26250  30000

S
a
m

p
le

s

Execution time [ns]

Figure 7.1: glflush Execution Time Distribution

Cyclictest is approximately 23 µs, this is fine since Cyclictest uses the nanosleep function which
will introduce some overheads in the time measurement.

7.3 Draw Command Mapping Test

from section 5.3, we know that command groups are submitted in three situations:

• When a Flush command is called.

• When the command buffer is full.

• When the vertex buffer is full and Draw is called.

The Draw command might be split into two parts in the second or in the third situation where
the first part of the Draw command is submitted along with the first command group and the
second part of the Draw command is submitted with the next command group. In section 5.3,
we have explained why we always map the Draw command to the second command group. In
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this draw command mapping test, we verify that assumption. We measured the execution time
of all scenes and all models of Glmark2-es2 (a benchmark for OpenGL ES 2.0 applications).

First, a python script is used to extract all the command groups that contain a Draw command.
These command groups are sorted based on the amount of execution time. Then the average
execution time and maximum execution time of the command groups are calculated. After
these procedures, we manually analysed the results and make the conclusions whether the
Draw command is mapped correctly in two steps:

• Check if the maximum execution time of the Draw command is reasonable. Normally, a
command group with Draw in Glmark2-es2 takes a few microseconds or a few hundreds
milliseconds to execute, if the maximum execution time of the command groups is very
short, we may map all Draw commands incorrectly(considering split may occur in every
command group). In this case, we have to look into the application and do further
analysis.

• Compare the difference between the maximum execution time and the minimum exe-
cution time. Normally, maximum, average and minimum execution time of the Draw
command for a same Glmark2-es2 application should have a similar magnitude. If the
minimum execution time is far shorter than the maximum execution time and the average
execution time, we might map some command groups incorrectly. Again, we have to
look into the application and do further analysis.

If both the maximum execution time and the difference between maximun execution time
and minimum execution time are reasonable, we conclude that the mapping is correct. After
the test, we found out that our mapping is correct for all the applications in Glmark2-es2.
Occasionally, we found some command groups with zero-execution time. However, this is due
to the max latency in our operating system as we have already evaluated in 7.2.2. When the
latency is very long, the GPU interrupt cannot be not processed in time, e.g. when the driver
starts to process the first GPU interrupt, the second GPU interrupt also arrives. That’s why
zero-execution time command group is found. When the long latency occurs, the measured
execution time of the command group submitted before the latency is much longer than the
real execution time. While the measured execution time of the command group submitted
after the latency is much shorter than the real execution time. We found that this is exactly the
result that is observed from the experiment.

7.4 Prediction Accuracy

In this section, we evaluated the prediction accuracy of our prediction models for Clear, Swap,
Loading Texture and Draw. For the Draw command, the prediction accuracy for the fragment
number, the affect of texture size and MSAA optimization are also evaluated.
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7.4.1 Prediction Accuracy for the Clear Command

From section 5.5, we know that the default render target and the non-default render target are
cleared in a different way, since fast clear technology is only applied for clearing the default
render target. Therefore, evaluations for these two types of Clear were also separated.

Evaluation for fast Clear:

To evaluate the execution time of fast Clear, we created an OpenGL ES application that calls
glClear to clear the color of the default render target and then draws a big rectangle to fill
the whole screen in every frame(the rectangle is rendered to force the execution of the Clear
command). A glFlush is inserted after the the Clear command to make Clear a separated
command group. We measured the execution time of Clear command with different window
resolution (1x1, 320x216, 640x432). We found out that because Clear is very fast, in most of
cases, we get no execution time(because two interrupts come together). Only occasionally, we
get some measured execution time between 6 to 8 µs which might be raised by the fluctuation in
the measurement system. Therefore, we predict the execution time of the fast Clear command
as zero. Besides, we also evaluated the influence of Clear command on the Draw and Swap
commands. We used the same program (rendering a rectangle on the whole screen) and
compared the execution time of Draw and Swap with and without calling glClear before the
rendering. We notice that Clear has actually no measurable influence on the execution time of
both commands.

Evaluation for Clear of non-default render target:

To evaluate the prediction model of the Clear command for non-default render targets, we
created a program which uses glClear to clear non-default render targets with different
sizes. glFlush is called after each Clear command to separate the Clear command from other
commands. For each size of the rendering target, 5000 groups of Clear commands were
executed and measured. In Figure 7.2, the crosses depict the average execution times of the
Clear command for the different sizes of the render targets, the line is our prediction value. In
the test, the average execution time to clear one byte memory varies from 0.48 nano seconds to
0.53 nano seconds based on the size of the rendering target. An easily visible linear relationship
between the size of the rendering target and the execution time can be observed.
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Figure 7.2: Prediction of Clear Command

7.4.2 Prediction Accuracy of the Swap Command

The Swap command posts the content of the back buffer to the front buffer. In section 5.5, we
have given our prediction formula. In this test, we evaluated our prediction accuracy of the
Swap command. In the test, we created a 640x432 pixel render target. In the first frame, we
drew a rectangle covers 160 tiles, the size of every tile is 64 bytes( 16 pixels x 4 bytes-per-pixel).
Then we increased the size of the rectangle gradually every frame by 160 tiles until the whole
rendering target is covered. After that, the rectangle size is again set to 160 tiles and the whole
procedure is repeated. In total, 1000 frames are tested and the average execution time for
different sizes of rectangle is calculated.

The result of the experiment is depicted in figure 7.3. It shows a strong linear relationship
between the tile number and the execution time. The deviation between the prediction and
the real execution time is always within 40 µs. Because the CPU and GPU share the same data
bus, when a large number of memory is accessed, we found out that even for the command
group with exactly the same content, the execution time can also have a deviation around 30
µs. Considering that, our prediction is already quite accurate.
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Figure 7.3: Prediction of Swap Command

7.4.3 Prediction Accuracy of Texture Loading(glFrameBufferTexture2D)

In this subsection, we evaluated the prediction accuracy of command glFrameBufferTexture2D
to verify and calibrate our prediction model. In the experiment, we defined different size of
non-default render target for texture rendering using glTexImage2D and called glFrameBuffer-
Texture2D to load the color buffer into the render target. During the experiment, we found
that the maximum resolution of the non-default render target is equal to the resolution of the
front color buffer. Hence when the resolution of the non-default render target is larger than
the resolution of the front color buffer. The execution time is always the same. The result of
the evaluation is demonstrated in 7.4. The crosses stand for the real execution time while the
lines are our prediction values. For this experiment, the prediction errors are always within 17
µs. Compared to the command execution time, the error is quite small.

7.4.4 Prediction Accuracy of the Draw Command

Prediction Accuracy of Fragments Number: Since our perdition model for the Draw com-
mand requires the fragment number of the command group, before we evaluate the prediction

71



7 Evaluation

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  50000  100000  150000  200000

E
xe

cu
ti

o
n
 T

im
e
 [

n
s]

Texture Size [Byte]

Figure 7.4: Prediction of Texture Loading

accuracy of Draw command, we first evaluate the accuracy of our concept for predicting the
fragment number in a command group.

We evaluated the horse model with the scene build in Glmark2-es2 using a frame size of
640x432. In figure 7.5, the dashed curve shows the measured fragment number of each
command group. The blue curve depicts the predicted fragments number using the bounding
box model while the red curve illustrates the predicted fragments number using our recent-
history approach. Figure 7.6 shows the prediction errors which are calculated by using the
fragments number depicted in Figure 7.5. The blue curve shows the prediction error using
the bounding box model while the red curve illustrates the prediction error using our recent-
history approach. As can be seen from the figure, the prediction error of bounding box model
is between 30.3% to 160%. This is due to the fact that the percentage of area covered by the
horse model in the bounding box varies a lot during the rotation. Hence the prediction error
for the bounding box model is quite apparent. The fragment number prediction error using our
recent history approach is always within 1.28% while the mean absolute error is only 0.096%
of the execution time. The result shows our estimation of the fragments number can achieve a
high accuracy in a scenario without abrupt scene changes.

Prediction Accuracy of the Draw Command: We evaluated the predition accuracy of the most
critical GPU command, the Draw command. Figure 7.7, 7.8 and 7.9 show the cumulative error
distribution of the predicted execution time of the Draw command in different applications.
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Figure 7.5: Fragment Number Prediction
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Figure 7.6: Fragment Number Prediction Error
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Figure 7.7: Glmark2-es "scene build, model horse"

The window resolution of all applications is set to 640x432. In our evaluations, the first three
frames are not evaluated because the GPU pipeline is not stable in the beginning and we also
need some initial data before we can predict the fragment number.

In figure 7.7, we evaluated the scene "build" in Glmark-es2 by rendering a rotating horse
sculpture on the screen. This program contains only one Draw command in every frame. Every
draw contains 21516 vertices. The result shows that an average, a draw command here takes
600.5 µs to execute. The mean absolute error in our prediction is 10.61 µs, which is only
1.77% of the total execution time. Besides, more than 99.4% of the predicted execution time
has an absolute error within 25 µs seconds.

In figure 7.8, we evaluated the scene "shading" in Glmark-es2, where a rotating cat sculpture
with shading effect is rendered. This program also contains only one Draw command in every
frame. The cat model, comprised of 43044 vertices, is more complex than the horse model. On
average it takes 1138 µs to execute a Draw command. This time, the mean absolute error is
30.5 µs, 2.6% of the real execution time. 99.87% of the samples has a prediction error within
80 µs. The result shows that our prediction is still quite accurate.

Next, we evaluated a different OpenGL ES benchmark application, es2gears[2], which is a
popular OpenGL ES demo. Es2gears renders three rotating gears on the screen. Unlike the
horse model and cat model, es2gears uses 280 Draw commands to compose a single frame.
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Figure 7.8: Glmark2-es "scene shading, model cat"

The size of a command group without split is 33.1 Kbytes. Since the size of the command
buffer is only 128 Kbytes, there’s a high chance that a command group can not be filled into
a single command buffer and is split up into two command groups. When a split occurs, the
number of Draw commands contained in the command group can be an arbitrary number
between 0 to 280. Figure 7.9 illustrates that our approach can predict all command groups
within an error of 54 µs. Additionally, 97.67% of the command groups have an error less than
15 µs. The result shows our prediction is still valid for command groups with random number
of Draw commands.

7.5 Effects of Texture Size and MSAA on Execution of the Draw
command

Until now, we have evaluated three different applications for the Draw command. The result
shows the Draw prediction model described in section 5.5 can achieve good accuracy for
different applications. It also shows that the number of vertices and fragments in a Draw can
effectively be used to predict the execution time. Next, we evaluated some other factors that
can also influence the execution of Draw.
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Figure 7.9: Prediction of Draw command: es2gears

Texture Size and Draw Command: In our prediction concept, we have pointed out that even
for the same applications, when a different quality of texture is applied, the per-fragment
processing speed needs to be re-calibrated. Here we demonstrate the influence of the texture
quality (size) on the execution of the Draw command. In order to do that, we created a
test program where a rectangle with 320x216 pixels is rendered. Then we map different
resolutions of texture image on the rectangle using point sampling. Figure 7.10 demonstrates
the relationship between texture size and the execution time for rendering the rectangle. In
the figure, the crosses stand for the average execution time of the Draw commands using
different size of textures. We can clearly see that different sizes of texture lead to different
GPU execution time. There is a high probability that the difference in the execution time is the
result of different texture cache prefetch hit rates. With the increase of the texture size, the
prefetch hit rate is reduced and a fragment takes much longer to process when the texture is
not in the cache memory.

MSAA and Draw Command: Finally, we evaluated the effect of MSAA on the Draw command.
we evaluated an application which renders a single triangle on half of the whole screen(screen
size: 640x432) by measuring the average execution time of the Draw in 2000 frames. Figure
7.11 shows that the draw without MSAA takes on average 224.7 µs to execute. When 4x
MSAA is applied, a Draw takes 913.3 µs to execute, which is approximately 4.06 times of the
Draw without MSAA. Since the Draw only contains 3 vertices, the execution time for vertex
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Figure 7.10: Texture Size and Execution Time

processing can be almost ignored. That means when 4x MSAA is applied, the per-fragment
processing speed can be reduced to only one-fourth of the speed without MSAA.
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8 Summary and Future Work

8.1 Summary

This work is motivated by the GPU real time scheduling for 3D rendering applications. Because
current GPUs do not support preemption, a possible solution for scheduling real-time GPU
applications is to use non-preemptive deadline-driven scheduling. Thus emerges the need of
predicting the GPU execution time.

In this work, we explained the driver model of a typical embedded GPU in details. Many
hardware features of embedded GPUs are also revealed. Based on the knowledge of the GPU
driver and hardware, we designed and implemented a measurement and prediction system
on the top of the existed system framework. In the prediction system, prediction models for
time consuming rendering commands (Flush, Swap, Clear, Draw, Texture Loading) are built.
Besides, a recent-history-based approach is proposed to estimate the fragments number of the
GPU command groups which is required by predicting the execution time of Draw command.

Evaluations using OpenGL ES 2.0 graphics benchmarks demonstrate that our prediction system
achieves good accuracy in estimating the execution time of different rendering commands. The
recent-history-based approach is also effective for estimating the number of fragments in GPU
command groups.

8.2 Future Work

One direction of the future work is to develop and implement a GPU real-time scheduler on
the top of our measurement and prediction system. As another part of the future work, we will
move our current work to a linux system with realtime-preempt kernel so that the latency in
the measurement system can be reduced.

Moreover, because our prediction uses the data of previous frames, the prediction can be
inaccurate at the time when the rendering scene is changed. Hence another extension of this
work is to detect the scene changes and improve the prediction model during scene changes.

In the evaluation, we have revealed that GPU optimization techniques, such as MSAA, can
significantly affect the execution time of the Draw command. Therefore another aspect that
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can be explored is to improve the prediction models and make it adaptable to applications
with GPU optimization techniques.
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A Appendices

A.1 Important Data Structures of the Measurement and Prediction
System

In this section, we explain the important data structure that is used in our system. These
structures can be found in file gc_hal_kernel_ shared_mem.h and the file predict_data.h

gckProcessSharedCmdBuf: This structure is used by the application(process) shared memory.

typedef struct Process_Shared_Command_Buffer{

gctUINT seq_no; // The sequence number of the command group in the application.

gctUINT global_seq_no; // The sequence number of the command group in all applications.

gctUINT buf_size; // The size of the command name list

gctINT8* buf_content; // The content of the command name list

gctUINT data_size; // Size of the command group

gctINT8* data; // Hex content of the comnand group

gctUINT64 time_submitted; // Command group submitting time

gctUINT64 time_finished; // Command group finishing time

gctUINT64 time_execution; // Command group execution time

gctUINT64 signal_no; // The signals attached to the command groups

gctUINT32 vertex_number; // Total vertex number of the command group

gctUINT32 fragment_number; // Total fragment number of the command group

gctUINT32 predict_frag_number; // Predicted fragment number of the command group

gctUINT64 time_prediction; // Predicted command group execution time

}gckProcessSharedCmdBuf;

gckGLobalSharedCmdBuf: This structure is used by the global shared memory. The infor-
mation it contains is similar to information in the structure gckProcessSharedCmdBuf. The
difference is that it also records the execution time of single EVENT command and the owner
of the command group(Process ID).

gckProcessSharedMem: Each application has its own shared memory for storing the informa-
tion of its command groups. The memory is managed by this structure.

typedef struct __gckProcessSharedMem{

gctINT pid; // The owner(process id) of the process-dependent shared memory.

gctINT index; // The current command group index of the process-dependent shared

memory.
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gckProcessSharedCmdBuf *pt_mem; // Points to the address of the process-dependent shared

memory.

gckProcessSharedMem_PTR next; // Points to the next gckProcessSharedMem struct.

gctBOOL mem_is_allocated;

}gckProcessSharedMem;

gckProcessSharedMemManager: The measurement system uses this structure to access the
shared memory of each application. It is also used to free the memory when the memory is no
longer needed.

typedef struct __gckProcessSharedMemManager{

gctUINT32 process_cnt;

gckProcessSharedMem_PTR head;

gckProcessSharedMem_PTR tail;

}gckProcessSharedMemManager;
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A.2 Driver Interface Command Code

Command Code Description
gcvHAL_QUERY_VIDEO_MEMORY Query video memory size
gcvHAL_QUERY_CHIP_IDENTITY Query chip identity
gcvHAL_ALLOCATE_NON_PAGED_MEMORY Allocate non-paged memory
gcvHAL_FREE_NON_PAGED_MEMORY Free non-paged memory
gcvHAL_ALLOCATE_CONTIGUOUS_MEMORY Allocate contiguous memory for command

groups
gcvHAL_FREE_CONTIGUOUS_MEMORY Free contiguous memory for command

groups
gcvHAL_ALLOCATE_VIDEO_MEMORY Allocate video memory
gcvHAL_ALLOCATE_LINEAR_VIDEO_MEMORY Allocate linear video memory
gcvHAL_FREE_VIDEO_MEMORY Free video memory
gcvHAL_MAP_MEMORY Physical-to-logical memory mapping
gcvHAL_UNMAP_MEMORY Physical-to-logical memory unmapping
gcvHAL_MAP_USER_MEMORY Logical-to-physical memory mapping
gcvHAL_UNMAP_USER_MEMORY Logical-to-physical memory unmapping
gcvHAL_LOCK_VIDEO_MEMORY Lock the video memory so they can be ac-

cessed
gcvHAL_UNLOCK_VIDEO_MEMORY Unlock the video memory
gcvHAL_EVENT_COMMIT Commit an event queue
gcvHAL_USER_SIGNAL Dispatch depends on the user signal sub-

commands
gcvHAL_SIGNAL Kernel Signal
gcvHAL_WRITE_DATA Write data into specified address
gcvHAL_COMMIT Commit a command and context buffer(if

exists)
gcvHAL_READ_REGISTER Read a GPU register
gcvHAL_WRITE_REGISTER Write a GPU register
gcvHAL_ATTACH Attach user process to the kernel driver
gcvHAL_DETACH Detach user process from the kernel driver

Table A.1: Command Code
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