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Abstract

Choreographies are generally used to model the interaction behaviour between the processes of
different organizations and their suppliers. At times organizations make some business decisions like
gaining more control over their suppliers and minimizing the transactional costs leading to the
insourcing of these companies. This in turn causes the organization to merge the partner’s processes
with its own. In previous work an approach has been proposed to consolidate i.e. integrate interacting
BPEL process models of different partners into a single BPEL process model by deriving control flow links
between the process models from their interaction specification. The resulting merged BPEL process
model may contain errors related to the derived control flow links in case of the BPEL constructs such as
Fault Handler, Compensation Handler, Termination Handler and Event Handler (FCTE- Handler).

The focus of this thesis is to identify any control flow links violations in case of Compensation Handlers
(CH) and resolve them. To achieve that, different scenarios have been identified wherein control flow
link violations might occur for CH interacting with partner processes and a solution for each has been
provided. The solution proposes an approach to emulate the behaviour of CH where any control link
violation occurs thus resulting into a final merged BPEL process model containing no violations
associated with CH but having the exact same behaviour.
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1 Introduction

At the heart of any business lies its business process. It is the most vital part for any business since it
drives the business towards achieving its vision and generating profit at the same time. In the past, the
businesses were having their own workflows which have evolved over time to the more structured and
transparent existing business processes but the motive behind them remains the same. A business
process is, “a set of one or more linked procedures or activities which collectively realize a business
objective or policy goal, normally within the context of an organizational structure defining functional
goals and relationships” [1]. Business process execution language (BPEL) is “an XML-based language that
enables task sharing in a distributed computing or grid computing environment.” It is used to define
executable business processes [2]. All the business processes referred in this document are BPEL
processes.

It is a common practice among organizations to outsource some task or use an existing service from a
third party to reach the final product or service. There are various benefits of outsourcing such as cost
advantages, increased efficiency, concentration on core processes rather than supporting ones, etc. and
on the other hand there could be other factors such as risk of exposing confidential data, hidden costs,
synchronizing the deliverables, etc. which might be disadvantageous [3]. Hence the organization has to
make a decision on which parts of the process can be outsourced.

The interaction specifications for the processes of the collaborating organizations are modeled by
choreographies via message links interconnecting their communication activities. Considering some of
the disadvantages of outsourcing, an organization may decide to insource the partner’s business process
to save transactional costs or to gain more control over the complete process. This decision results into
the consolidation or integration of two communicating BPEL processes into one merged BPEL process
model. This conversion process is explained below in brief.

The process consolidation methodology for one-to-one interactions (one instance of a process is
communicating with one instance of another process) is divided into four major steps. The utmost
important thing to be ensured is; the original control flow relations between all atomic activities that
were specified in the choreography must be preserved in the consolidated process. This in turn also
ensures that the data flow implied by the control flow is kept as in the BPEL processes. The four steps
are listed below [4]:

e Analyzing the control flow relations
e Creation of the container process

e Control flow materialization

e Resolving control link violations

Each of the above mentioned steps is elaborated with the help of an example given below.

Consider an example where an organization manufactures a product but outsources the ordering of
parts to a third party supplier organization. The interaction behaviour between the business processes
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of the manufacturer and supplier is modeled by choreography as shown in Fig 1.1. The consolidation of
such one-to-one interaction is carried out in four major steps as shown below [4]:

1. Analyzing the control flow relations: As one of the most important aspects of the consolidation

Manufacturer

process is to maintain the original control flow between the activities and thus the first step is to
analyze the control flows in the choreography. In this step, the control flow relations between
the non-communicating (opaque) activities are identified. The example choreography is
depicted in Fig 1.1.

Plan Receive
Manufacturing Im:,:'s BN \otification """"" o
Opagque Receive ™

Supplier

- \
- ~
- N e
.~

Confirmation Produce Part Notification
Reply Opeoe Invoke

Receive

12

Fig 1.1: Choreography of two interacting BPEL processes between a manufacturer and supplier [4]

Creation of container process: Once the control flow relations have been analyzed, to create a
consolidated process a container process is created which holds both the processes in an
isolated manner. To achieve that a new process is created containing the activities of both the
processes in different scopes thus isolating the activities of different processes within the
container. For the example considered in Fig 1.1, a new container process named
‘Manufacturer’ is created and the processes of the manufacturer and the supplier are isolated in

two different scopes ‘Swanufacturer @aNd ‘Ssuppiier’ respectively marked with red boundaries as shown
in the Fig 1.2.



rer

Ord Receive fact
Invopkaerts I Notification Magpa erer
Receive a2
mi2 4

mi3

Receive Parts Determine Delivery
Order Delivery Dates Produce Part Notification
Receive Opaque RIS Invoke

Fig 1.2: Creation of container process [4]

Control flow materialization: After analyzing the control flow relations and creating the
container process, the analyzed control flow relations are materialized by replacing the message
flows between the processes by control links since message flows become obsolete in the single
merged business process. The control flow is materialized from the message flow based on the
interaction style. The interaction style could be asynchronous or synchronous (refer to section
2.4) but for the example in consideration it is synchronous .The outcome of this materialization
is shown in the Fig 1.3.

Manufacturer

Determine
Delivery Dates

Opaque

Scope

Fig 1.3: Control flow link materialization in the container process [4]
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4. Resolving control link violations: To complete the consolidation process this step is very
important since the outcome of step three might create a process containing cross boundary
link violations which must be resolved. All the cross boundary link violations are identified and a
solution must be provided for each to fix them. For the considered example, in Fig 1.3 the cross
boundary constraint for loop is violated and hence it must be resolved. Since in this context it
does not affect the control flow between non communicating (opaque) activities, the loop Order
Parts containing the Syn3gc activity is simply omitted as shown in the Fig 1.4. The consolidated
process does not contain any control link violation as all the control links comply with the BPEL
specifications and thus is the final merged process for this particular example.

Manufacturer

Fig 1.4: Consolidated BPEL process model with resolved control link violations [4]

The above described process consolidation methodology serves as the base for the problem statement
at hand explained in the following section 1.1.

1.1 Problem statement

It is very common in the business world to coordinate with each other to achieve a certain goal and in
terms of business process it means that the business processes of two different organizations
communicating with each other. Choreographies are used to realize such interaction behaviour between
the business processes of different organizations and their suppliers. Such kind of interaction can be
seen between a manufacturer and supplier business process as shown in Fig 1.1. But there could be
various reasons when one organization decides to in source the partner’s business process such as to
gain more control, reduce the overall transactional costs and sometimes maybe even for data privacy
reasons. This kind of scenario occurs during a merger or an acquisition of one company by another. This
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leads to the integration of not only the organizational structure but also the processes within the
companies. The focus of this work is on the integration at process level specifically on consolidating
complementing BPEL process models whose interaction behaviour is described by choreography [5].
Also, the overall performance of the consolidated BPEL process is better as compared to that of
choreography [6].

The consolidated BPEL process model must abide to the BPEL specifications. BPEL specifications impose
constraints on control flow links such as no inbound or outbound control flow links are allowed for
compensation handlers whereas for fault handlers outbound links are permitted but no inbound links.
This study focuses on identifying and removing any kind of control link violations for compensation
handlers in the consolidated BPEL process model. The scope of this study thesis is described in the
following section 1.2.

1.2  Scope of work

In previous work, a technique has been designed and implemented to consolidate two interacting BPEL
process models. The resulting BPEL process model contains a merged process wherein all the message
flow links have been replaced by control flow links as per the interaction behaviour specification to
maintain the control flow. This resulting merged process model might contain some control link
violations such as cross boundary link violations and these violations must be identified and fixed. As
shown in the Fig 1.3, a scenario has been identified wherein control links are not allowed to cross the
loop boundaries as per the BPEL specifications. The solution for that is quite trivial since the example
process model is not that complicated and is shown in Fig 1.4. Similarly, there could be different
scenarios where control link violations might occur in case of other BPEL constructs such as fault
handlers, compensation handlers, termination handlers and event handlers (FCTE handlers).

A solution has been devised to resolve the control link violations occurring in case of fault handlers and
termination handlers in [7]. The above approach does not work in case of the compensation handlers
due to the additional constraints imposed by the BPEL specifications on the control links. Neither
inbound nor outbound control links are allowed in case of compensation handlers. Thus an extension to
the solution proposed in [7] is needed to fix the problem associated with compensation handler (CH).
The scope of this thesis is to identify all the scenarios associated with compensation handlers where any
control link violation occurs after the consolidation of the process models and then emulate the
behaviour of compensation handlers where any such violation occurs. The final outcome would be the
merged BPEL process model with no control link violations related to compensation handlers.
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1.3 Outline

The outline of the thesis document is described in the following manner:

Chapter 2: Fundamentals - In this chapter, the basics of WSDL, BPEL and BPEL4Chor are discussed. All
the relevant BPEL activities along with the concepts of fault handler, compensation handler and
termination handler are also described.

Chapter 3: Concept and Design — During consolidation the problems associated with compensation
handler have been identified and various base case scenarios are described with a solution for each
case. An algorithmic solution has been proposed with a working example.

Chapter 4: Implementation — This chapter provides the implementation details of the conceptual
solutions proposed in the previous chapter with the help of component and sequence diagrams.

Chapter 5: Conclusion and Future work - A brief summary of the objective of the thesis and how it was
achieved is described in this chapter along with the related future work.

1.4 List of abbreviations

BPEL — Business Process Execution Language
BPEL4Chor — BPEL for Choreography

CH — Compensation Handler

COG - Compensation Order Graph

COL — Compensation Order Link

EH — Event Handler

FCT — Fault, Compensation and Termination
FCTE - Fault, Compensation, Termination and Event
FH — Fault Handler

SOA — Service Oriented Architecture

TH — Termination Handler

WSDL — Web Service Definition Language
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2 Fundamentals

In this chapter, some basic concepts that are needed for understanding the topic in a better manner
have been discussed. The following sections include introduction to WSDL, BPEL, BPEL4Chor,
asynchronous and synchronous interaction and the state of the existing system.

2.1 Web Services Description Language (WSDL)

Service oriented architecture (SOA) is an architectural style of developing software that is based on
services and there are three basic principles of SOA namely, Publish, Find and Bind [8]. First a service to
be provided is defined in an abstract manner and published to a central repository. Next, when
someone needs to use a particular service, they query this central repository as per their search criteria
and obtain services that closely match these criteria. And finally, the returned information also contains
the information about how to access a particular service i.e. how to bind to a service.

Web services are a technical implementation of SOA style. Web Services Description Language (WSDL) is
an XML format for describing web services and it also enables to separate the description of the abstract
functionality of a service from its concrete detailed description [9].

<definitions>

<types>

</types>

<message name="...">

</message>

<portType name="...">

</portType>

<binding name"...">

</binding>

<service name="...">

</service>

</definitions>

Fig 2.1: Building blocks of WSDL 1.1 [8]

The Fig 2.1 shows a rough structure of WSDL 1.1 which is used in the BPEL 2.0 specifications and its
components are described below:
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e Types: Contains the definitions of all the data types needed.

o Message: It is an abstract definition of the data exchanged.

e PortType: All the abstract actions supported by the service are called as operations and a set of
operations supported by the service is defined by the port type. The below mentioned four
communication patterns are available [10]:

= One-way: Here, simply the web-service receives a message.

= Request-Response: Web-service receives a message and sends a response.
= Solicit-Response: Web-service sends a message and receives a response.

= Notification: Here, simply the web-service sends a message.

e Binding: It defines a concrete protocol and data format used to implement a port type i.e. it
answers the question of ‘how’ to invoke a service.

e Service: A port is an individual ‘end point’ identified by a network address supporting a
particular binding and service is a collection of such related ‘end points’. Thus, it answers the
guestion of ‘where’ to find a service.

The Fig 2.2 summarizes the ingredients of a WSDL and how they interact with each other.

Supports
Port Type
Transports:
Formats & Inp:t',:OU'ttput
Protocols aults
Binding »| Message
How to encode
(serialization)
Implements
Provides

Fig 2.2: Ingredients of a WSDL [9]
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2.2 Business Process Execution Language (BPEL)

The Business Process Execution Language (BPEL) is an XML-based language which specifies the business
process and its behavior based on web services (refer to section 2.1). Thus BPEL and web services are
closely related. To define it abstractly, BPEL is simply a recursive aggregation model for web services.
This definition has two important keywords namely, aggregation and recursive. A business process
model can tie together a set of web services into one or more new web services i.e. aggregation. These
newly created web services can again be tied together into other new web services i.e. recursive [11].

For describing a BPEL process the below listed concepts should be considered:

e Data dependent behaviour is included in the business processes (for example number of items
in an order). Such behavior is dealt with by using conditional and time out constructs.

e There has to be a way to specify exceptional conditions and their consequences along with the
recovery sequences.

e  Multiple nested units of work with its own data requirements are included in long running
interactions and business processes frequently require cross partner coordination at various
level of granularity.

The above concepts can be applied in one of two ways, abstract process or executable process. An
abstract process is not intended to be executed and it is a partially specified process. A process must be
explicitly declared as ‘abstract’ to make it abstract. On the other hand, an executable process is fully
specified and thus can be executed. Abstract process serves more of a descriptive role (for example can
be used to define a process template). There are different tags and constructs of BPEL which are
relevant to this study thesis and are briefly described in the below sections. The whole business process
is defined within a <process> tag containing other multiple tags which specify the business logic.

In BPEL, activities are responsible for performing the process logic and are divided into two categories;
basic and structured. The elemental steps of the process behavior are described by basic activities. The
control-flow logic is encoded by the structured activities and thus they can recursively contain other
basic and/or structured activities [12]. The following sub-sections describe few of the basic and
structured activities relevant to this study thesis.

2.2.1 Invoke

The main purpose of <invoke> activity is to call web services offered by service providers i.e. to invoke
an operation on a service and it is considered as a basic activity. The invocation could either be one-way
or request-response (refer to section 2.1). To correlate the business process instance with a stateful
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service at the partner’s side, zero or more correlationSets (refer to section 2.2.5) can be specified.
Although being a basic activity it can enclose other activities inlined in the CH or FH associated with it.

During the invocation of a web service call, a fault might occur and thus the <invoke> activity can have
<catch> or <catchAll> blocks to deal with such situations. It can also be associated with another activity
that acts as its compensation handler (refer to section 2.2.9). Because of such possibility, it is
semantically equivalent to the presence of an implicit <scope> (refer to section 2.2.6) activity
immediately enclosing the <invoke> activity providing these handlers.

2.2.2 Receive and Reply

The <receive> activity is used to receive the service requests from the partners of a business process.
The <receive> activity plays a vital role in the lifecycle of a business process. It is used to instantiate a
business process. A <receive> is a blocking activity in the sense that it is not completed until a matching
message is received by the process instance.

The <reply> activity is used to send a response to a previously accepted request such as through a
<receive> activity. Only for request-response interactions (i.e. synchronous interactions) these
responses are meaningful whereas for one-way interactions a one-way ‘response’ can be sent by
invoking a corresponding one-way operation on the partnerLink.

2.2.3 Assign

The <assign> activity is used to copy the data from one variable to another. It can also be used to
construct and insert new data using expressions. Expressions are used to produce a new value by
operating on variables, properties and literal constants. One more use of <assign> activity is to copy
endpoint references to and from partnerLinks.

2.2.4 Empty

The <empty >activity is used when no action has to be taken i.e. doing nothing, for example in case of a
fault that needs to be caught and suppressed. One more use of this activity is to provide a
synchronization point in a <flow>.
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2.2.5 Correlation Sets

As the name suggests, correlation sets are used to correlate a set of message exchanges by defining
correlation identifiers. These are the fields in messages with a business meaning. For example, multiple
instances of a process could be running in the BPEL engine communicating with its partners. Thus to be
able to identify which response corresponds to which request these correlation identifiers are used in
the correlation sets. The properties used in a <correlationSet> must be defined using XML schema
simple types.

2.2.6 Scopes and Isolated Scopes

A context is provided by the <scope> activity for the execution of its enclosed activities which impacts
their execution behavior. Variables, partner links, message exchanges, correlation sets, event handlers,
fault handlers, a compensation handler and a termination handler are included in this behavioral
context as shown in the syntax for scope in the listing 2.1:

Listing 2.1: BPEL-Element Scope syntax [12]

<scope isolated="yes|no"? exitOnStandardFault="yes|no"?
standard-attributes>
standard-elements
<variables>?

</variables>
<partnerLinks>?

</partnerLinks>
<messageExchanges>?

</messageExchanges>
<correlationSets>?

</correlationSets>
<eventHandlers>?

</eventHandlers>
<faultHandlers>?

</faultHandlers>
<compensationHandler>?

</compensationHandler>
<terminationHandler>?

</terminationHandler>
activity
</scope>
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The context provided by <scope> activity can be nested hierarchically by having a complex structured
activity with many nested activities to arbitrary depth as its primary activity. The above structure is very
much similar to a <process> construct except the differences being, <process> construct is not an
activity, it cannot have a compensation handler or a termination handler and the isolated attribute
cannot be attached to a <process> construct.

Scope States
A scope can be in one of the below listed states [13], [14]:

e Active: A scope reaches an active state as soon as the scope’s inner activity is activated and it
remains in that state as long as positive control flows in a scope.

o Completed: A scope reaches a completed state after the successful faultless execution of its
inner activity and all of its event handlers have also finished.

e Compensated: When the compensation handler associated with a scope is activated for the first
time then a scope changes its state to compensated.

o Faulted: The scope attains a faulted state when the scope execution is stopped by the
occurrence of a fault which is handled by its corresponding fault handler.

e Terminated: A scope reaches a terminated state when an error occurs outside of its context i.e.
as soon as the first termination activity is reached.

Error handling in scopes

During the execution of a process errors can occur and to deal with such situations it is very important
to have some error handling mechanism. BPEL provides some constructs such as fault handler (refer to
section 2.2.8), compensation handler (refer to section 2.2.9) and termination handler (refer to section
2.2.10) for the same. All of these BPEL constructs are associated with the <scope> activity either
explicitly or implicitly.

Isolated scopes

A scope providing control of concurrent access to shared resources such as variables, partner links and
control dependency links is called as an isolated scope. A scope can be made an isolated scope by
setting the attribute isolated="yes”. By default a scope is not isolated. For example when two
concurrent isolated scopes S1 and S2, access these common set of variables or partners links and are
carrying out some read write operations, then these read/write operations are conceptually reordered
in such a way as if all such activities of one scope were executed before the other. It is very much
analogous to the standard isolation level “serializable” used in database transactions.

Isolated scopes must not contain any other isolated scopes whereas it may contain scopes that are not
marked as isolated. Also, for an isolated scope the compensation handler does not share the isolation
domain of the associated scope whereas the fault handler and the termination handler share the
isolation domain of the associated scope.
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2.2.7 Flow

Concurrency and synchronization are the two important aspects provided by the <flow> activity. The
general syntax is shown in the listing 2.2:

Listing 2.2: BPEL-Element Flow syntax [12]

<flow standard-attributes>
standard-elements
<links>?
<link name="NCName">+
</links>
activity+
</flow>

The fundamental semantic effect of a <flow> activity is to enable concurrency among all of its enclosed
activities. A <flow> completes only after all of its enclosed activities are completed. An activity is also
considered completed when its enabling condition evaluates to false. The <link> construct is used to
define the synchronization dependencies for the enclosed activities. A <link> is associated with the
<source> and <target> element which are nested within <sources> and <targets> construct. These are
used to establish synchronization relationships through a <link>. The <source> element can specify an
optional <transitionCondition> which acts as a guard for following the specified link and when it is not
specified then the default value is true. A link can have true, false and undefined status. The <targets> as
a whole can specify an optional <joinCondition> which is responsible for the evaluation of all the
incoming links and when it is not specified then it is considered as disjunction i.e. logical OR operation by
default. Consider an activity ‘X’ is the target of a link whose source is activity ‘y’, then the activity X’ is
said to have synchronization dependency on activity ‘y’. A link is said to cross the boundary of a
construct when it either enters or leaves a construct. The control flow restrictions on links are listed
below (see Fig 2.3):

e A link must not cross the boundary of a repeatable construct (<while>, <repeatUntil>,
<forEach>, <eventHandlers>) or the <compensationHandler> element.

e For elements like <catch>, <catchAll> or <terminationHandler>, if a link crosses the boundary
then it must be an outbound link.

e A<link> declared within a <flow> must not create a control cycle.
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Dead-Path Elimination

Dead-Path elimination is used to get rid of all the dead paths [12], [15]. In cases where the control flow
is defined by the links and the attribute suppressJoinFailure is set to ‘yes’, then it means when the join
condition for an activity is evaluated to false then it must not be executed i.e. the fault bpel:joinFailure
must not be generated. When an activity is not executed because of the <joinCondition> being
evaluated to false, then all of outgoing links from such an activity must be assigned a false status. And
this in effect propagates the false link status in a transitive manner to all the successive links until some
join condition is reached that evaluates to true. This approach is known as Dead-Path Elimination (DPE).
By default, for a <process> element the value of the suppressloinFailure is set to ‘no’ which avoids
suppressing a well-defined fault. This attribute value is inherited by all the nested activities else except
when this attribute value is overridden by some other nested activity [12].

2.2.8 Fault handler

When an error occurs during the execution of a scope or process then the execution goes to the fault
handler associated with that particular scope or process. In case of scopes, the scope state is changed to
faulted (refer to section 2.2.6). The aim of a fault handler is to undo the partial and unsuccessful work of
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a scope where a fault occurs. The compensation handler associated with a scope which has faulted is
not enabled since it did not complete its execution successfully. A general syntax of a fault handler is
shown in the listing 2.3:

Listing 2.3: BPEL-Element faultHandlers syntax [12]

<faultHandlers>
<catch faultName="QName"?
faultVariable="BPELVariableName"?
( faultMessageType="QName" | faultElement="QName" )? >%*
activity
</catch>
<catchAll>?
activity
</catchAll>
</faultHandlers>

When an explicit fault handler is defined for a scope, it provides a way to use custom fault handling
activities defined by <catch> and <catchAll> constructs. Such a fault handler must have at least one
<catch> or <catchAll> element and this requirement must be statically enforced. When faults occur in a
scope and the execution goes to its corresponding fault handler, then usually preference is given to a
matching <catch> corresponding to that fault to deal with it. If there is no matching <catch> element
then the fault will be dealt by <catchAll> element if present. Otherwise, the fault will be handled by the
default fault handler. The default fault handler i.e. the implicit fault handler contains a <catchAll>
element which has a <sequence> element containing a <compensate> (refer to section 2.2.9)followed
by a <rethrow> construct thus making sure, that either a fault will be dealt with properly or it will be re-
thrown to its immediately enclosing parent. A <rethrow> activity can only be used within a fault handler.
Also, only one explicit or default FCT handler can run for the same scope under any circumstances.

2.2.9 Compensation handler

The ability to undo the work done by successfully executed business logic is one of the key aspects of
WS-BPEL. It is achieved by providing a compensation handler for scopes containing the work which can
be reversed. The <compensationHandler> construct acts as a wrapper for the activity containing the
compensation logic as shown in the listing 2.4:

Listing 2.4: BPEL-Element compensationHandler syntax [12]

<compensationHandler>
activity
</compensationHandler>

A compensation handler can either be associated with a scope or an invoke activity (refer to section
2.2.1). For scopes the associated compensation handler is only installed after the scope is successfully
executed i.e. the scope state has changed to completed (refer to section 2.2.6). Once a scope completes
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successfully, the data context of the scope at the time of its completion is preserved by creating a scope
snapshot. This scope snapshot is used by the compensation handler to undo the work done by the
scope.

Invoking a Compensation handler

Compensation activities (<compensateScope> and <compensate>) are used to invoke a compensation
handler. These compensation activities can only be wused within <catch>, <catchAll>,
<compensationHandler> and <terminationHandler>.Thus, the compensation activities can only be used
within FCT handlers associated with a particular scope. The <compensateScope> activity is used to
compensate a specific successfully completed nested scope which can be specified by setting the target
attribute (containing the name of the scope to be compensated). The <compensate> activity is used to
compensate all the successfully completed nested scopes in default order.

Default Compensation Order

Scenarios wherein multiple compensation handlers must be executed (for example a parent scope fails
which contains multiple nested successfully completed child scopes), the BPEL process engine
determines a default compensation order in which the compensation handlers must be called. Thus the
understanding of how this order is determined is very important. According to BPEL specifications, there
are two rules that address the different aspects of order relation. The two rules are mentioned below.

Definition (Control Dependency): When one activity must complete before the execution of another
activity starts then those activities are said to be control dependent. For example, when activity A must
complete before activity B begins then, activity B has a control dependency on activity A. Control
dependencies might occur due to constructs like <sequence> and control links in <flow>. In case an
explicit <throw> is used then it is not considered as a control dependency (see Fig 2.4).

Rule 1: Informally, Rule 1 states that the forward order of execution for the scopes being compensated
must be respected by the default compensation and thus the compensation order would be the reverse
of order of completion. As per BPEL specs to state it exactly, “Consider scopes A and B such that B has a
control dependency on A. Assuming both A and B completed successfully and both must be compensated
as part of a single default compensation behavior, the compensation handler of B MUST run to
completion before the compensation handler of A is started” [12]. This rule allows for scopes that were
executed concurrently on the forward path to be compensated concurrently on the reverse path.

Definition (Peer-Scopes): When two scopes are enclosed within the same parent scope (including
process scope) then such scopes are called as peer scopes (see Fig 2.4).

Definition (Scope-Controlled Set): An activity A is considered to be in the scope-controlled set of a
scope S if either it is the scope S itself or is nested within the scope S at any depth (see Fig 2.4).

Definition (Peer-Scope Dependency): When two peer scopes have nested activities which have control
dependency among each other then such scopes are said to have a direct peer-scope dependency. For
example, scope S1 and S2 are peer-scopes containing activities A and B respectively in their scope-
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controlled sets such that B has a control dependency on A. then scope S2 has a direct peer-scope
dependency on scope S1. The transitive closure of the direct peer-scope dependency relation is defined
as peer-scope dependency relation (see Fig 2.4).

Rule 2: Informally, Rule 2 states that peer scopes must not have cyclic dependencies to be able to be
compensated successfully when needed. As per BPEL specs to state it exactly, “The peer-scope
dependency relation MUST NOT include cycles. In other words, WS-BPEL forbids a process in which there
are peer scopes S1 and S2 such that S1 has a peer-scope dependency on S2 and S2 has a peer-scope
dependency on S1. A process definition containing a cyclic peer-scope dependency relation MUST be
rejected.” This rule is enforced by static analysis [12].

The default compensation order derived by following the above mentioned two rules is consistent with
the strict reverse order of completion.

S1
A1l A2 s3
A2 has Control Dependency on A1 51={S2,53}
Peer Scopes
S1 S1
s2 S3
A1l
A2 A3
S1={S1,A1}
Scope Controlled Set S3 has Peer Scope Dependency on S2

Fig 2.4: Graphical representation of definitions

2.2.10 Termination Handler

When a termination is forced, it disables the event handlers associated with that scope and terminates
its primary activity and all the running event handler instances. After this, the custom
<terminationHandler> for the scope is run if it is present or the default termination handler is run. The
syntax of a termination handler is shown in the listing 2.5:
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Listing 2.5: BPEL-Element terminationHandler syntax [12]

<terminationHandler>
activity
</terminationHandler>

The termination handler of a scope applies only when the scope is in a normal processing mode. Once a
scope has faulted, then the termination handler is uninstalled and the forced termination has no effect.
When applying the forced termination, different activities in the scope are treated differently as
mentioned below,

e The <assign> activities may be allowed to complete since they are sufficiently short-lived.

o Activities like <wait>, <receive>, <reply> and <invoke> must be interrupted and terminated
prematurely.

e The <empty>, <throw> and <rethrow> activities may be allowed to complete but once an <exit>
activity starts, it must not be terminated.

e All the structured activity behavior is interrupted.

A termination handler in itself can use the same range of activities as a fault handler including
<compensate> and <compensateScope> activity. When a fault occurs in the termination handler, the
execution of all the running contained activities must be terminated as a termination handler cannot
throw any fault.

2.2.11 Event Handler

Event handlers can be associated with each scope or even with the process scope. As the name
suggests, event handlers are invoked when an event occurs and they have the capability to run in a
concurrent manner. There are two types of events, first it could be inbound messages corresponding to
a WSDL operation and second, alarms that are triggered after user-set times. The child activity within an
event handler must be a <scope> activity. Unlike FCT handlers, event handlers are considered a part of
normal behavior of the scope.

2.3 BPEL4Chor

An architectural style for building the software system based on services is called Service oriented
architecture (SOA). In such an environment, Business Process Execution Language (BPEL) is an
established standard for describing long-running business processes. The orchestration of web services
into a single business process is done using BPEL [16].
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BPEL being an orchestration language specifies the order of execution of activities within an individual
process. It also specifies the sequence and conditions for message exchanges in a process. Thus it
provides the overview of an individual process and how it communicates with its partners.
Choreography on the other hand provides the complete overview of all the processes and how they
communicate with each other. It also provides the order and conditions for message exchanges
between the processes. BPEL4AChor is a choreography language created to get the global view of all the
process by extending the orchestration language BPEL.

BPEL4Chor has three main artifacts [16], [17] as shown in the Fig 2.5:

Participant
Topology Participant Declaration Message Links
List of Participants Connecting PBDs
Structural Aspects
: »
[ ¥ :
Participant Behavior Descriptions Participant Grounding
(PBDs)
Observable behaviour Technical Configuration

Fig 2.5: BPEL4Chor artifacts [17]

2.3.1 Participant Topology

The structural aspects of choreography are defined by a participant topology. It acts as ‘glue’ between
the participant behavior descriptions and it has introduced the following three notions:

participant type: Each participant behavior description corresponds to one participant type implying
that the same participant behavior description is applied to all the participants of the same type.

participant reference: As the name suggests it is simply a pointer to a participant i.e. participant
reference points to a participant.
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message link: Which participant can potentially communicate with which other participants is defined
by message links.

2.3.2 Participant Behavior Descriptions (PBD’s)

At the heart of choreographies lies their communication activities (message send and receive) along
with their control and data flow dependencies. BPEL provides a rich set of constructs for the same and
they are used unchanged in BPEL4Chor. Based on the abstract process profile for observable behavior
specified by BPEL, the abstract process profile for participant behavior descriptions is derived stating the
requirements for defining the behavior of each participant. To be able to uniquely reference activities
from abstract process models an identifier is needed for each activity in a process. Not all the activities
in BPEL have a name attribute (for example onMessage branches) and thus a new attribute wsu:id of
type xsd:id is introduced as a new attribute for communication activities and onMessage branches. This
new attribute is used to reference any activities in the participant topology by message links for any
message exchange.

2.3.3 Participant Grounding

Participant topologies and PBD’s contain no technical configuration stuff and thus the mapping to the
web service specific configurations is introduced in participant groundings. A grounding is only
considered valid when all the message links are grounded. Each and every PBD can be transformed by
following the abstract process profile for observable behavior to an executable BPEL process only after
choreography is completely grounded.

2.4 Asynchronous and Synchronous Interaction

As discussed in Chapter 1, the consolidation process consists of four steps. In the third step, ‘Control
flow materializations’ where control links are derived from the message links and also the
communicating activities are transformed depending on the type of interaction. There are two kinds of
interactions described below.

First, asynchronous interaction wherein the activity that sends the message (sender) does not wait for a
reply and it continues with its execution. The receiving activity (receiver) waits for a message to be
received before continuing its execution thus imposing control flow relations between the activities of
the sender and the receiver (for example, activity B2 must be executed after activity A1 completes). For
such interaction, the <invoke> activity is replaced by an <assign> activity and the <receive> activity is
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replaced by an <empty> activity which acts as a synchronization point for the control flow at the
receiver side. Then the original link is materialized as a control flow link as shown in the left side of the
Fig 2.6 thus maintaining the control flow relations imposed by asynchronous interactions.

A1 | [ B1 | A1 B1
A1 B1 A1 B1 Invoke [ -p{Receive Assign Empty
[
\
\
\
Invoke ->|Rooolvo E> Assign Empty A2 | B2 E> Empty B2
\
\
\
\
\
A2 B2 A2 B2 Reply A2 Assign
B3 B3
Transformed Asynchronous interaction Transformed Synchronous interaction

Fig 2.6: Asynchronous and Synchronous interactions transformations

Second type, synchronous interaction wherein the activity that sends the message (sender) waits for a
reply and it halts its execution. Once a reply is received then the sender resumes with its execution. This
kind of interaction imposes control flow relations between the activities of the sender and the receiver
(for example, activity A2 must be executed after activity B2 completes which in turn can only be
executed after activity A1 completes). For such interaction, the <invoke> and <receive> activities are
replaced by <assign> and <empty> activities respectively. In addition to that, an <empty> activity is
added to the sender’s side as a synchronization point. As in the asynchronous interaction case, the two
message flows are materialized as control flows. In spite of this, a new control link is created between
the <assign> activity and newly added <empty> activity at the sender’s side to ensure the original
control flow relation. This transformation is shown on the right hand side of the Fig 2.6.

2.5 Existing System

The current state of the system is based on the previous works of [18], [7] and [19]. The existing system
takes a zip file as input containing the choreography in BPEL4Chor and its associated WSDL’s as shown in
the Fig 2.7. The consolidation process takes place in the merge module.
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It contains three parts, first a Pre-Merge Processor which converts all the <invoke> activities which are
not in a scope into a scope. It is just an alternative representation of the <invoke> activity. Second, the
actual merge module where the choreography is converted to an abstract BPEL process and the
consolidation takes place. Here, the process containing a <flow> activity is created. This <flow> activity
in turn contains the scopes enclosing the logic of the individual PBD’s. All the message links (refer to
section 2.3.1) are examined to match with a consolidation pattern and the transformation takes place
on that basis. In the end, all the technical information from Participant Grounding (refer to section 2.3.3)
is added to the process. Third, a Post-Merge Processor in which all the control link violations associated
with fault handler are identified and fixed. The final output of the merge module is a zip file containing
the consolidated process and its associated WSDL’s as shown in the Fig 2.7.

(” Choreography.zip \ (" Merge Module (” MergedProcess.zip |\
Pre-Merge
Input Processor Output
BPELA4Chor Abstract BPEL
D W e ||
A:ngogl:'t:d Post-Merge WSDL's
\s &/ Bl BN \- 5o/

Fig 2.7: Consolidation — Existing system
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3 Concept and Design

This chapter elaborates the problem at hand and answers questions like how the problem arises along
with identifying the various scenarios in which the problem might arise and provides a solution for the
same. As described in Chapter 1, the third step of the consolidation process is ‘Control flow
materialization’ after which the consolidated BPEL process model may contain control link violations
such as cross boundary link violations. The final step aims at resolving all such control link violations.
Briefly, this study thesis aims at providing a solution for cross boundary link violations occurring in
consolidation of process models that interact via compensation handlers.

All the analysis in this study thesis is done based on the following pre-conditions:

e The choreography is based on one-to-one (i.e. one instance of a process communicating with
one instance of another process) interactions [20].

e All the given processes are correct and without any deadlock.

e Repeatable constructs do not contain any communication links with other activities through
message links (a possible solution is mentioned briefly in the section 3.7).

3.1 Consolidation of Process Models that interact via Fault handler

In this section, a brief description of the solution where consolidation of the process models interacting
via FH is provided. As per the BPEL specifications, no inbound control links are allowed for FH’s whereas
outbound links are permitted.

Consider a scenario as shown in the Fig 3.1, where a message link is pointing into a FH due to the
synchronous interaction behaviour between two processes; process A and process B and the
consolidated process Pmerged cONtaining materialized control flows.

As seen in the Fig 3.1 the control flow link |, crosses the boundary of FH, in order to realize that activity
A5 is executed after activities B1 and B2 respectively. This violates the cross-boundary link constraint on
the FH. The developed solution for such violations proposes that all the activities containing any
inbound control flow links be taken out of the fault handler. They are replaced by an empty activity
(which does nothing) within a fault handler and this empty activity has a control link to the out-factored
activities of the FH containing the FH logic (see Fig 3.2).

As shown in the Fig 3.2, an empty activity A7 is created which has an outbound control flow link to the
activity A3 containing the FH logic, thus making sure that whenever this FH is called its FH logic is
executed and all of this is enclosed in the new scope Sy ensuring access to all the required variables.
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Fig 3.1: Message link pointing into Fault handler [5]

The control flow relation between the non-communicating activities (for example activity A5 must be
executed after activity B1 and B2 respectively) as defined in the choreography is maintained in the
proposed solution [5].

Process Prerged def: Vot

def: v

SFH el def: vip
def: v,
(N
Sa

Fig 3.2: Merged process model with out-factored FH logic [5]
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3.2 Problem appearing in Process Models interacting via Compensation
handler

In this section, various scenarios have been identified where control link violations might or might not
occur in case of consolidation of process models interacting via CH. One of the most important steps in
the consolidation of process models is ‘Control flow materializations” wherein all the message links in
the choreography are replaced by control links. This serves as the basis to identify scenarios where this
step might result in the control link violations for CH’s. Thus it is necessary to segregate scenarios based
on the basis of message links i.e. if compensation handlers contain any message links and if so what kind
of message links. Each identified scenario is listed below and elaborated in the following subsections,

e Compensation handler with no communication links
e Compensation handler with synchronous communication link(s).
e Compensation handler with asynchronous communication link(s).

3.2.1 Compensation handler with no communication links

This subsection describes the trivial scenario wherein the CH contains no communication links at all. The
Fig 3.3 illustrates this case.

Process P1 Process P2 Process Pmerged
) @R
s1 e s2 s1 CH1 =
CcL1 CL1
L )| |= =
_____ L |- Assign
message control
link / link
-/ — N ~—

Fig 3.3: CH with no communication link

The diagram on the left side in the Fig 3.3 shows a simple choreography between two processes P1 and
P2 where they interact via a message link originating from scope S1 of process P1 pointing into scope S2
of process P2. The scope S1 in process P1 contains a compensation handler CH1 associated with it. There
are no communication links going in or out of the compensation handler CH1. The right side of the Fig
3.3 shows the consolidated process Pmerges Wherein the message link is replaced by a control link. The
enclosing scopes for scope S1 and S2 have been omitted for the sake of simplicity. There is no change in
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the compensation handler CH1 associated with scope S1. Thus, after transformation there is no control
link violation associated with the CH.

3.2.2 Compensation handler with synchronous communication link

This subsection elaborates a scenario where the CH initiates a synchronous communication call as
shown in the Fig 3.4. The left side depicts choreography between two processes P1 and P2. The process
P1 has a scope S1 and its associated compensation handler CH1. The invoke activity within this CH1
sends a synchronous message m to the receive activity within the scope S2 of process P2. Since the
message m is a synchronous message the control flow of the compensation handler CH1 is blocked until
it receives the message m’ from the reply activity within the scope S2 of process P2. Once this reply
message is received the compensation handler CH1 can resume the execution with the further activities
and also the process P2 executes normally.

Process P1 Process P2 Process Pmerged

]

s1

S1 oH1 s2

CH1

i
i

Empty

Invoke L‘

EL

Assign

[H

Fig 3.4: Synchronous communication initiating from a CH

On the right side of Fig 3.4 is the consolidated process Pmegeds Wherein the invoke activity in the
compensation handler CH1 of scope S1 is replaced by an assign activity and an empty activity and the
receive activity in scope S2 is replaced by an rmpty activity and the reply activity is replaced by an assign
activity in scope S2. Also, the message flow links have been replaced by the control flow links CL1 and
CL2.

The Fig 3.4 illustrates a scenario wherein the synchronous call is initiated from within the compensation
handler CH1 associated with scope S1 of process P1. A similar situation might arise when the call is
initiated from outside the compensation handler but still resulting in synchronous inbound as well as
outbound message links as shown in the below Fig 3.5,

38



Process P1 Process P2 Process Pmerged

s1 s2

B

Invoke

CJ

E

Fig 3.5: Synchronous communication with CH from outside CH

As seen clearly on the right in both the Fig 3.4 and Fig 3.5, the control flow links CL1 and CL2 are
violating the cross boundary link constraints of the CH as per the BPEL specifications.

3.2.3 Compensation handler with asynchronous communication link

Process P1 Process P2 Process Pmerged

S1 S2

CH1

BaliBil0
[HIHEHOE

Fig 3.6: CH with asynchronous communication link
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This subsection elaborates a scenario where the CH contains both asynchronous inbound and outbound
communication links as shown in the Fig 3.6. The left side in figure depicts choreography between two
processes P1 and P2. The process P1 has a scope S1 and its associated compensation handler CH1. This
compensation handler CH1 has an outbound asynchronous message link from an invoke activity to the
receive activity within the scope S2 of process P2 and similarly it has an inbound asynchronous
communication message link as well. Point to note here is none of the execution waits to receive any
kind of reply here since the communication is asynchronous.

On the right side of the Fig 3.6 is the process Pnergeds Wherein all the invoke activities have been replaced
by assign activities and the receive activities have been replaced by empty activities. Also, message links
have been replaced by the control links CL1 and CL2. As seen clearly these control flow links are violating
the cross boundary link constraints on the CH as per the BPEL specifications.

3.3 Algorithm to determine Compensation Order Graph

When a business process is being executed and for some unforeseen reason a fault occurs,
compensation handlers for all the successfully completed scopes are invoked by the execution engine
and they are executed in a particular order known as default compensation order as described in
Chapter 2. This section elaborates an algorithm that has been devised to determine this default
compensation order and construct Compensation Order Graph (COG) for any given business process
containing multiple compensation handlers. The following section 3.3.1 provides the pseudocode for the
devised algorithm along with the detailed explanation.

3.3.1 Pseudocode for the algorithm

The general structure of any business process consists of a main process containing a set of other
activities such as flow, sequence, invoke, etc. nested within it. The activities such as flow, scope,
sequence can further have more nested activities and so on. The closest data structure that can
represent such a structure efficiently is tree data structure since it also has a root node that may contain
other nodes as its nested children and so on. Thus the main idea behind this algorithm is to first convert
the input BPEL process into a tree structure and then process this tree to determine the correct COG.
The most important activity into consideration is a scope since a CH can only be associated with a scope
and it can only be called from immediately enclosing parents FH or CH or TH which are also associated
with scopes. Also a scope can be nested within a flow activity or a sequence activity and thus the nodes
in the tree structure created are differentiated or categorized into 3 types; sequence, flow and scope.
Based on the type of the node the corresponding processing is carried out.
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For sequence and flow nodes the processing is trivial because Compensation Order Link (COL) is added
to its parent and the algorithm continues processing the next element. But the processing gets complex
if the node type is scope. In this case also a COL is added to its parent along with a check to see if this
node has child nodes and if so COL’s are added from each of them to itself. The processing logic also
checks if it has any control dependent nodes. In that case COL’s are added from the control dependent
nodes to each of its children if it has any else to itself.

Before diving deep into the pseudocode of the algorithm, a Data Dictionary (DD) has been defined
explaining all the terms and functions that are used in the pseudocode.

Data Dictionary

Term Description

TreeNode(TN) A node structure for a tree containing links to its
children, parent and other control dependent TN’s.
Also it contains the information about the node
typei.e. ifitis a scope, flow or sequence.

rootNode It is the root of the tree structure for the given
process.

createTree(P) It is a function that takes any process P as the

[Algorithm 1.2] input and generates the complete tree structure
for that process.

createTreelterator(TN) A function that returns an iterator for the input

tree node TN containing a list of all of its
immediate children along with immediately
control dependent nodes(if any).

createlmmediateChildlterator(TN) This function returns an iterator for the input tree
node TN containing a list of all of its immediate
children.

createlmmediateControlDeplterator(TN) This function returns an iterator for the input tree

node TN containing a list of all of its immediate
control dependent tree nodes.

hasMoreElements(Ti) A function to check if the input tree iterator Ti has
more elements in the list.

getNextlteratorElement(Ti) This function returns the next element to be
processed from the input tree iterator Ti.

getType(TN) Returns the type of the input tree node TN i.e. if it
is a sequence or flow or scope.

Compensation Order Link(COL) It is a link from one TN to another imposing a
compensation order between them.

Control Link (CL) It is a link indicating the control dependency from
one node to another.

Nested Link (NL) It is link indicating parent-child relation between
two nodes.

addCOL(fromTN, toTN) This function adds a COL from source tree node

fromTN to target tree node toTN.
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isProcessed(TN)

Checks if the input tree node TN has already been
processed i.e. visited.

setProcessed(TN)

Sets the processed flag of the input tree node TN
to true.

createCompensationOrderForProcess(P)
[Algorithm 1.1]

This function creates the tree structure for input
process P and calls another function to create the
compensation order.

createCompensationOrder(rootNode)
[Algorithm 1.3]

The actual logic to determine the compensation
order for the given input tree resides in this
function and the output of this method is the
compensation order graph.

addToQueue(TreeNode tn)

Adds a new tree node tn to the queue.

getNextQueueElement(Queue q)

Returns the next element in the input queue q.

getNestedElementlterator(TreeNode tn)

This function returns an iterator for the nested
children list of the input tree node tn.

getDependentElementlterator(TreeNode tn)

This function returns an iterator for the dependent
tree nodes list of the input tree node tn.

addNL(fromTN, toTN) This function adds a nested link from source tree
node fromTN to target tree node toTN.
addCL(fromTN, toTN) This function adds a control link from source tree

node fromTN to target tree node toTN.

inQueue(TreeNode tn)

This function returns a true or false depending on
whether the tree node tn is present in the queue.

The approach that this algorithm follows is a ‘Depth First Search’ wherein the tree is traversed one

branch at a time till the leaf nodes are reached while processing each node on the way, thus it takes

care of the nested scopes as well as control dependent nodes while determining the correct

compensation order for the input process. To better understand the pseudocode a sample business

process is taken from [7] as shown in the Fig 3.7.
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main-Sequence
Receive

Assign

Invoke

Fig 3.7: Example business process model [7]

The complete algorithm is divided into three parts listed below,

Algorithm 3.1 pseudocode for the starting function

1. procedure createCompensationOrderForProcess(Process P)
2. rootNode = NULL

3. rootNode = createTree(P)

4. createCompensationOrder(rootNode)

5. end procedure
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The above pseudocode acts as the entry level function from where the call to create the COG starts. The
pseudocode for the delegated function calls are given below.

Algorithm 3.2: pseudocode for the function to create tree

1. procedure createTree(Process P)

2 processTN = new TN

3 elementQueue = NULL

4 addToQueue(processTN)

5. while hasMoreElements(elementQueue) do

6 nextElement = getNextQueueElement(elementQueue)

7 setProcessed(nextElement)

8 nestedElementliterator = getNestedElementliterator(nextElement)

9 while hasMoreElements(nestedElementiterator) do

10. nestedElement = getNextlteratorElement(nestedElementiterator)

11. addNL(nextElement,nestedElement)

12. if isProcessed(nestedElement) OR inQueue(nestedElement) then

13. Continue

14. else

15. addToQueue(nestedElement)

16. end if

17. end while

18. dependentElementiterator = getDependentElementiterator(nextElement)
19. while hasMoreElements(dependentElementlterator) do

20. dependentElement = getNextlteratorElement(dependentElementiterator)
21. addCL(nextElement,dependentElement)

22. if isProcessed(dependentElement) OR inQueue(dependentElement) then
23. Continue

24, else

25. addToQueue(dependentElement)

26. end if

27. end while

28. end while
29. end procedure

The algorithm 3.2 uses a ‘Breadth First Search’ approach while constructing the tree from the given
input process thus maintaining the parent-child relations in case of the nested scopes. Also the control
dependent nodes are taken into consideration while constructing the tree.

The input to the function is the complete process. To realize the breadth first search approach, queue is
used as a data structure. This queue holds all the tree nodes to be processed. The processing continues
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till the queue is empty i.e. there are no more nodes to be processed. Each tree node has a
corresponding processed flag indicating if that node has already been processed and if so that node
must not be added to the queue again. The flow of the pseudocode is briefly elaborated below.

Lines 4-7: The very first step is to get all the immediate nested children and add them to the queue. For
the sample business process shown in Fig 3.7, if the activity in consideration is ‘Flow2’ then all of its
immediate nested children i.e. ‘Scope6’, ‘Scope?’, ‘Scope9’ and ‘Scopel0’ are added to the queue.

Lines 8-17: Process one element at a time from the queue, extract one element from the queue and get
all of its immediate children. While iterating through the list of children add a nested link from the child
to the parent and check if the child node is already processed or is present in the queue then continue
with the children list otherwise add it to the queue. In the sample business process shown in Fig 3.7, if
‘Scope?7’ was extracted from the queue, it is marked processed, a nested link is added from ‘Scope7’ to
‘Scope8’ and ‘Scope8’ is added to the queue if it is not processed or it is not in the queue.

Lines 18-27: Now for the extracted element from the queue, get all the immediate control dependent
nodes. While iterating through that list add a control link from parent to that node and again add it to
the queue if that not has not been processed yet or is not in the queue. For the example in Fig 3.7,
consider ‘Scope7’ was the extracted element, a control link is added from ‘Scope7’ to ‘Scope9’ and
‘Scope9’ is added to the queue if it is not in the queue or has not been processed yet.

The algorithm 3.3 generates a COG as an output and using that graph the compensation order is
determined for the whole input process. In case only a specific part needs to be compensated then
simply pass that as the input root node instead of the whole process thus making it work for specific
cases as well as the whole process.

The input to the function is the root node of the tree structure created by algorithm 3.2 for the input
business process. To realize the depth first approach, this algorithm is designed in a recursive manner
thus implementing the stack data structure on internal memory. The flow of the pseudocode is briefly
elaborated below.

Lines 2-4: Checks if the input node is already processed then the procedure ends. It is very important
part of this pseudocode since it indicates the exit condition of the recursive call.

Lines 5-6: Creates an iterator for the input tree node that iterates over the immediate children of that
node.

Lines 7-11: Gets the first iterator element and checks for the type of the node. If it is a SEQUENCE or
FLOW then it sets the parent node to processed, adds a COL from this node to its parent node and calls
this function recursively by passing this node as an argument. For the sample process shown in Fig 3.7, if
the extracted node is ‘Flow2’ then it adds a COL from ‘Flow2’ to ‘Scopel’ (its parent) and sets ‘Scopel’
to processed. Recursively call the same function to passing ‘Flow2’ node as the argument.
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Algorithm 3.3 pseudocode for the function to determine the COG

1.
2
3
4,
5.
6
7
8
9

10.
11.
12,
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

procedure createCompensationOrder(rootNode)

if isProcessed(rootNode) then
return
end if
treelterator = createTreelterator(rootNode)
while hasMoreElements(treelterator) do
nextTN = getNextlteratorElement(treelterator)
if getType(nextTN) is SEQ[FLOW then
addCOL(nextTN, rootNode)
setProcessed(rootNode)
createCompensationOrder(nextTN) // Recursive call
elseif getType(nextTN) is SCOPE then
addCOL(nextTN, rootNode)
setProcessed(rootNode)
childiterator = createlmmediateChilditerator(nextTN)
while hasMoreElements(childlterator) do
childTN = getNextlteratorElement(childlterator)
addCOL(childTN, nextTN)
end while
ctrlDeplterator = createlmmediateControlDeplterator(nextTN)
while hasMoreElements(ctriDeplterator) do
ctrlDepTN = getNextlteratorElement(ctriDeplterator)
if childiterator != NULL then
while hasMoreElements(childiterator) do
childTN = getNextiteratorElement(childlterator)
addCOL(ctrIDepTN, childTN)
end while
else
addCOL(ctrIDepTN, nextTN)
end if
end while
createCompensationOrder(nextTN) // Recursive call
end if
end while

35. end procedure

Lines 12-19: If the type of the node is SCOPE then mark its parent node as processed and for all of its

immediate children add a COL from each of them to itself. So for the sample shown in Fig 3.7, if the
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node is ‘Scope7’, then it marks node ‘Flow2’ (its parent) as processed and creates a COL from ‘Scope8’
(its child) to itself i.e. ‘Scope7’.

Lines 20-32: Now get all the immediate control dependent nodes for that node and add a COL from each
of the control dependent nodes to itself only if it does not have any immediate children. If it has children
then add COL from each control dependent nodes to each of its children. Recursively call the same
function with next node to be processed as the argument. So for the example in Fig 3.7, if the node is
‘Scope?’, then ‘Scope9’ is its immediate control dependent node and since ‘Scope7’ has immediate child
‘Scope8’ a COL is added from ‘Scope9’ to ‘Scope8’ and ‘Scope8’ is passed as the argument to recursively
call the same function.

3.3.2 Application of the algorithm on an example

In this section, the algorithms mentioned in section 3.3.1 are applied on an example shown in the Fig 3.7
to determine the COG for that business process. The combined output containing the tree structure
along with the COG is shown in the Fig 3.8.

When the algorithm 3.2 mentioned in the section 3.3.1 is applied, a tree structure corresponding to the
input business process is created. The algorithm distinguishes between child nodes and control
dependent nodes and thus the tree structure contains two different link types, a nested link and a
control link. The Fig 3.8 shows the complete tree structure (i.e. the area without the green links and the
numbers) for the example process shown in Fig 3.7.

This created tree structure is passed to the algorithm 3.3 listed in the previous section and a
corresponding compensation order graph is created. The added compensation order links are shown in
green color and the numbers in the Fig 3.8 indicate the sequence in which the COL’s are added by the
recursive algorithm. Using this COG, the compensation order for the whole business process can be
determined. For example, ‘Scope7’ can only be compensated after ‘Scope8’, which in turn can only be
compensated after ‘Scope9’.
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Notations:

——  Control link

===z COL

Scope3 Scope5
:

Fig 3.8: The tree structure containing the COG

3.4 Consolidation of Process models that interact via Compensation
handlers

In section 3.2 different scenarios were identified where any violation of control flow link might occur
when consolidating two processes interacting via CH. And in section 3.3, an algorithm to determine the
correct COG has been proposed. In this section, different elemental base case scenarios have been
identified that might occur in the merged process model to transform the behaviour of CH in case any

cross boundary link violation occurs.

48



The proposed approach is inspired by the solution for consolidation of process models that interact via
fault handlers [7] which has been described briefly in the section 3.1. But the same solution would not
fit in case of the compensation handlers since even an outbound control link violates the cross boundary
link constraint. Thus, the important points that describe the devised solution have been mentioned
below in a brief manner:

o Identify all the compensation handlers that violate the cross boundary link constraint. For each
of such CH, the compensation logic associated with it is propagated to the immediately
enclosing callers FCT handlers (since a CH can be invoked only from the FCT handlers of its
immediately enclosing parent).

e The compensation logic in each of the above identified CH’s is replaced by an empty activity
since it does nothing and a compensation handler must have an enclosed activity (refer to
section 2.2.9).

e The compensation order is of utmost importance and it is derived by using the algorithm
described in the section 3.3. This order must be known when multiple compensation logics need
to be integrated in immediately enclosing parents FCT handlers. These compensation logics are
arranged by using the proper combination of <flow> and <sequence> activities to maintain the
derived compensation order.

e The FCT handlers associated with a particular scope have access to the data context of that
scope along with the data context of its ancestors. The data context consists of the following
four things:

=  Variables

= Partner links

= Message exchanges and
= Correlation sets

e The compensation logic in the CH has access to the data context of that scope which might be
used for compensation and thus, the complete data context associated with that scope must
also be propagated to the immediately enclosing parent scope i.e. integrated with the parent
scopes data context.

e Compensation handlers that do not contain any cross boundary link violations are kept as they
are without any changes.

The general solution has been briefly described above and the further sub-sections provide a detailed
solution for all the base cases that have been identified based on the way a compensation handler is
invoked. These base cases are not mutually exclusive i.e. the proposed solutions could be applied in
combination depending on the way a CH has been invoked (from FH or CH or TH or a combination of
these). For the sake of simplicity, the data context is not shown in any of the diagrams but as discussed
above it is also propagated to the immediately enclosing parent scope. Also, all the derived base cases
assume that the scope completes its execution successfully so that the CH associated with that scope is
installed. The scenario when scopes do not complete successfully or are unreachable has been handled
separately in the section 3.6.
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3.4.1

Transformation of <compensateScope> activity in Fault handler

To elaborate the usage of <compensateScope> activity from within a fault handler a simple scenario has

been shown wherein, a compensation handler for a scope is called from its immediately enclosing fault

handler using a <compensateScope target="52"> as shown in the Fig 3.9.
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Fig 3.9: Transformation of <compensateScope> activity in FH

Considering that the child scope S2 completes successfully, its corresponding compensation handler is

installed, now if a fault occurs in its parent scope S1 then its associated fault handler FH1 is called which

in turn calls the compensation handler CH2 of scope S2. Regular flow of activities in the fault handler is

mentioned below:

4.

All the statements/activities before the <compensateScope> activity are executed.

The statement <compensateScope target="S2”> makes the BPEL engine to invoke the
compensation handler CH2 associated with scope S2.

The compensation logic CL2 within the compensation handler is executed and the flow returns
back to the fault handler.

The activities/statements after the <compensateScope> activity are executed.

To emulate this behavior the process is transformed to the process as shown in the right side of Fig 3.9

and the

1.
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following changes are made:

Replace the <compensateScope target="S2"> in the fault handler with the actual compensation
logic CL2 from the compensation handler CH2 of scope S2.

Replace the compensation logic CL2 in the compensation handler CH2 of scope S2 with an
<empty> activity.



After the above mentioned transformation the flow of the activities in case the fault handler is called
takes place in the following order:

1. All the activities/statements before the compensation logic CL2 are executed.
2. The compensation logic CL2 is executed.
3. All the activities/statements after the compensation logic CL2 are executed.

As seen from the flows before and after transformation, the major difference is that the invocation of
the compensation handler is removed while maintaining the control flow between the basic activities in
the process. Thus the behaviour of the compensation handler is emulated for this scenario with the
prerequisite that the scope S1 completes successfully.

3.4.2 Transformation of <compensateScope> activity in Termination handler

The scenario mentioned in section 3.4.1 is slightly varied i.e. in this case the compensation handler is
being invoked from a termination handler instead of a fault handler by using the same activity
<compensateScope> as shown in the Fig 3.10.
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Fig 3.10: Transformation of <compensateScope> activity in TH

The flow in case of termination handler while calling the nested compensation handler and even after
transformation is similar to the flow for fault handler described in section 3.4.1, so only the
transformation steps are briefly described below:

1. Replace the <compensateScope target="S2”> in the termination handler with the actual
compensation logic CL2 from the compensation handler CH2 of scope S2.
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2. Replace the compensation logic CL2 in the compensation handler CH2 of scope S2 with an
<empty> activity.

In this way the behaviour of the compensation handler being called from a termination handler is

emulated.

3.4.3 Transformation of <compensateScope> activity in Compensation handler

Similar to the scenario in section 3.4.1 and 3.4.2, <compensateScope> activity can also be called from
within a compensation handler and the transformation process is also the same. So the behaviour of the

nested compensation handler can be emulated as shown in the Fig 3.11.
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Fig 3.11: Transformation of <compensateScope> activity in CH

3.4.4 Transformation of <compensate> activity in Fault handler

The only other option that can be used to call a compensation handler is a <compensate> activity and it
is used mostly in case of default FCT handlers but it can also be used explicitly by the user. A scenario is
described when <compensate> activity is used from within a fault handler to call the compensation

handlers associated with all the directly nested scopes.

As described in section 3.4.1, the regular flow of activities in case of fault handlers is elaborated and

then the flow in case of the transformed scenario is explained with the help of the Fig 3.12.
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Fig 3.12: Transformation of <compensate> activity in FH

As seen in the Fig 3.12, scope S1 has a fault handler FH1 associated with it containing the activity

<compensate> and also scope S1 has five directly nested scopes which have control dependencies

among each other. Mentioned below is the regular flow without transformation assuming all the nested

scopes completed successfully and thus their corresponding compensation handlers are installed and a

fault occurs in scope S1 and thus the fault handler FH1 is invoked:

1.

4.
5.

All the activities/statements before the <compensate> activity are executed.

The <compensate> activity is invoked and thus the BPEL engine must first determine the
compensation order since there are many nested scopes. It does so by using the two
compensation rules already discussed in the section 2.2.9 of Chapter 2.

The compensation handlers associated with the nested scopes are called as per the
compensation order determined in step 2 and the compensation logic within each of them is
executed.

The execution returns back to the fault handler.

All the activities/statements after the <compensate> activity are executed.

Now to get rid of the compensation handlers of all the nested scopes we transform the process as

mentioned below:

Pass the scope S1 to the algorithm described in the section 3.3.1 to determine the
compensation order graph for scope S1 and all of its nested scopes.

Using the COG obtained from step 1, the exact order in which the compensation handlers must
be invoked is known. The compensation logic of CH’s that can be executed in parallel are added
within <flow> activities and when an order has to be imposed then within <sequence> activities.
The arranged compensation logic associated with each nested compensation handler of scope
S1is shown in the right side of Fig 3.12.

Replace the <compensate> activity in the fault handler with the flow generated in step 2.

53



4. Replace the compensation logic of all the nested compensation handlers with <empty>
activities.

After following the above transformation, the transformed process is obtained as shown in the right side
of the Fig 3.12. The flow of the transformed process is briefly described below:

All the activities/statements before the <flow> are executed.
The <flow> contains the correct determined order of execution of the compensation logic of the
nested scopes and is thus executed.

3. All the activities/statements after the <flow/> are executed.

Thus as seen from the flow, it can be concluded that the behaviour of the nested compensation
handlers is emulated correctly by getting rid of them and transforming the compensation logic to the
fault handler.

3.4.5 Transformation of <compensate> activity in Termination handler

The scenario mentioned in section 3.4.4 is tweaked with a minor change i.e. in this case the
compensation handler is being invoked from a termination handler instead of a fault handler by using
the same activity <compensate> as shown in the Fig 3.13.
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Fig 3.13: Transformation of <compensate> activity in TH

The regular flow in case of termination handler while calling the nested compensation handlers and
even after transformation is similar to the flow for fault handler described in section 3.4.4, so only the
transformation steps are briefly described below,
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1. Pass the scope S to the algorithm described in the section 3.3.2 to determine the Compensation
order graph for scope S and all of its nested scopes.

2. Using the COG obtained from step 1, the exact order in which the compensation handlers must
be invoked is known. The compensation logic of CH’s that can be executed in parallel are added
within <flow> activities and when an order has to be imposed then within <sequence> activities.
The arranged compensation logic associated with each nested compensation handler of scope
S1is shown in the right side of Fig 3.13.

3. Replace the <compensate> activity in the termination handler with the flow generated in step 2.

4. Replace the compensation logic of all the nested compensation handlers with <empty>
activities.

In this way, the behaviour of the nested compensation handlers is emulated by transforming the
compensation logic to the termination handler.

3.4.6 Transformation of <compensate> activity in Compensation handler

Similar to the scenario in section 3.4.4 and 3.4.5, <compensate> activity can also be called from within a
compensation handler and the transformation process is also the same. So the behaviour of the nested
compensation handlers can be emulated as shown in the Fig 3.14.
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Fig 3.14: Transformation of <compensate> activity in CH.
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3.5 Transformation in case of Nested Scopes

In the previous section, different base cases related to the way CH’s can be called were discussed along
with a solution for each case. But all those cases were elemental in the sense considering the complexity
of the scenarios. The transformations were trivial in nature since they only consider the relationship
between parent and directly nested child scopes. In practice a process consists of scopes that are nested
arbitrarily deep. Thus in most of cases, the six elemental cases described in section 3.4 are not
encountered but they definitely act as the fundamental elements in the transformation of the whole
process.

To transform a real world process, think of it as tree, the root of the tree being the process itself and its
immediately nested scopes as its immediate child nodes. Each of these scopes can have further nested
scopes which in the tree are represented by further child nodes at the next level. Thus the deepest
nested scopes in the process are represented by leaf nodes in such a tree structure. The elemental
transformation is applied to these leaf nodes i.e. to the deepest nested scopes in a recursive manner
climbing up the tree thus finishing the transformation of the whole tree i.e. the process itself. An
example scenario for such a transformation is shown in the Fig 3.15.
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/ = \ FH1
FH2
S5 CH5 e s3
cL5 <compensate/> CH3 <compensate/>
1 as CL3
CH2
S4 CH4 <compensate/>
cL4 e

S /

Fig 3.15: Example process containing nested scopes

As shown in the Fig 3.15, the scope S1 can be considered as the root here and it has two immediately
nested scopes S2 and S3. The scope S2 has further nested scopes S4 and S5. This is the deepest level for
this example. These scopes S4 and S5 have associated CH’s containing compensation logic CL4 and CL5
respectively. Since the CH associated with any scope can only be invoked by its immediately enclosing
parents FCT handlers the area impacted during the transformation is colored in yellow as shown in the
Fig 3.15. The elemental transformations that apply in this scenario fall under the base cases mentioned
in section 3.4.4 and 3.4.6. After transformation the impacted areas are shown in red in the Fig 3.16.
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Fig 3.16: Process after applying first transformation

Now the elemental transformations are applied recursively one level up till we reach the parent process.
Now the scopes under consideration are S2 and S3 and the areas into consideration are colored in
yellow in the Fig 3.17.

CH2

<seguence>
CcL4
CLS
<sequence/>

Fig 3.17: Area to be considered while applying second transformation

For the scenario in the Fig 3.17, the elemental transformations that can be applied fall under the base

case described in the section 3.4.6. After the transformation is applied the changes are shown in red in

the Fig 3.18.
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Fig 3.18: The final transformed process

Thus the behaviour of the CH’s is emulated in case of nested scopes by applying the elemental
transformation recursively starting at the deepest level up to the root level i.e. the whole process.

3.6 Transformation when Scopes do no complete successfully

During regular execution, when a scope does not complete successfully, then the execution flow goes to
the FH or TH associated with that scope, and its CH is never installed. It indicates that the CH of a scope
which does not complete successfully is not reachable and hence it is never invoked. To emulate this
behaviour, once the compensation logic within the CH associated with a scope is propagated to the
immediately enclosing parents FCT handlers, a check must be added to decide if that compensation logic
should be executed and that check indicates if the scope with which the compensation logic is
associated, completed successfully.

For this purpose, a new variable ‘hasScopeCompletedSuccessfully’ is created and is kept in the process
scope itself thus making it accessible anywhere within the process. If by default this value is set to ‘false’
and is changed to ‘true’ only at the end of the scope, then there might arise a situation when the
execution of the scope logic completes but before assigning ‘true’ to this variable some fault occurs in
the parent scope and thus this assignment operation is not executed. This leads to a false scenario
wherein the variable associated with that scope remains ‘false’ whereas the scope completed
successfully and must be compensated. Thus by default, it is assumed that each and every scope will
complete its execution successfully and hence this variable is initialized with a value ‘true’. There is one
variable for each scope thus segregating all the scopes within the process. As discussed in the above
section, when a fault occurs or if for some reason a scope terminates without completing, then the
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execution is transferred to the FH/TH associated with that scope. This is the place where the variable
associated with that scope will be set to ‘false’.

Now that a variable has been added indicating whether a scope completed successfully or not, the
compensation logic associated with any scope is only executed if the value of the variable associated
with that scope is ‘true’. This way, the scenario when a scope does not complete successfully is
emulated by adding a check before executing any compensation logic.

BPEL also has a special feature of ‘Dead Path Elimination’ (DPE) (refer to section 2.2.7) which is activated
when the property ‘suppressloinFault=yes’ is set. The behavior when this property is set to true and a
scope fails, then the Boolean value associated with all the outgoing links from that scope is set to ‘false’.
Whether a scope will be activated is determined by the join condition of all the incoming links and hence
it is statically not possible to determine if a scope will be activated in the lifetime of the process. By
default the join condition for all the incoming links is ‘OR’ [12].

To cope up with such situation, a new variable is introduced indicating if a scope was ever reached,
‘isScopeReached’ and the assumption here is none of the scopes in the process are ever reached and
thus this variable (one variable per scope) associated with each scope is initialized to ‘false’. As soon as a
scope is activated or reached, before starting the activity associated with that scope this variable
associated with that scope is set to ‘true’ thus indicating that the particular scope was reached. The final
condition which is added before executing any compensation logic is that both these variables
‘hasScopeCompletedSuccessfully’ and ‘isScopeReached’ must be set to ‘true’. These two variables make
it possible to emulate the behavior when a scope does not complete successfully or is never activated.

To understand it better consider a sample process shown in the Fig 3.19.

Process
S1
f s2
FH2 FH1
85 FH5
<compensate/>
CH5
CL4 CH2 <compensate/>
S3
<compensate/> FH3
S4 | Fma CH3
CL3
CH4

\—— /

Fig 3.19: Example process when scopes do not complete successfully
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For the sake of simplicity, the TH’s associated with the scopes are not shown in the figure. This example
shows scopes nested within each other as well as having control dependencies. The transformations
that are applied have already been discussed in the section 3.5 and thus the transformed process along
with the variables described above is shown in the Fig 3.20.

Process
def: S1C=true def: SlR=false
def: S2C=true def: S2R=false
def: S3C=true def: S3R=false
def: S4C=true def: S4R=false
def: S5C=true def: S5R=false
FH1
S2C=false
$1 S1R=true ==
K S2 <£low>
S2R=true <sequence>
S5 FH2 if (S2C=true
FH5 S2C=false && S2R=true)
S5R=true |S5C=false <seguence>
nat if (S4C=true Seequence.>
&6 S4R=t if (S4C=true
I_l"cus cL4 zus) && S4R=true)
SRY if (S5C=true 3 CL4
&6 S5R=true) S3 FH3 if(S5C=true
cLs && S5R=true)
S3R=true |S3C=false| cLS
<seguence/> wee
a1 e <sequence/>
FH4 — lﬂl i
S4R=true Empty sequence
S4C=false if(S3C=true
CH4 Bt && cign-tzuo)
& |5mp=y| / <flow/>

Fig 3.20: Transformed process when scopes do not complete successfully

The
discussed variable ‘hasScopeCompletedSuccessfully’ is represented by the scope name followed by 'C’

In the Fig 3.20, the declarations of the variables associated with the scopes have been shown.

and has been initialized with value ‘true’ (For example, S2C implies hasScope2CompletedSuccessfully).
Similarly the variable ‘isScopeReached’ is represented by the scope name followed by ‘R’ and has been
initialized with value ‘false’ (For example, S4R implies isScope3Reached).

As discussed, all the variables associated with the completion of a scope are set to ‘false’ in the FH’s
associated with that scope. Also, all the variables that check whether a scope was reached have been set
to ‘true’ as soon as the flow enters the scope. Before executing compensation logic associated with any
scope, a condition has been added to verify if both these variables are set to ‘true’ (indicating the scope
was reachable and it completed successfully) and only then the compensation logic is executed.
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3.7 Transformation when Scope is within a Repeatable Construct

For all the cases considered in the above section, it was assumed that the scopes are not within a
repeatable construct. In this section, a possible conceptual solution is proposed for the case when a CH
associated with a scope within a repeatable construct violates the cross boundary link constraint.

In regular flow, when a scope is within a repeatable construct and it needs to be compensated, for each
successful iteration of the loop the BPEL engine creates a scope instance (also known as scope
snapshot)and along with that it also creates CH instance for that particular scope instance. This CH
instances are known as compensation handler instance group and the BPEL engine uses this CH instance
group to compensate the scope in the default compensation order. Repeatable construct could be loop
or an event handler and are further categorized as non-parallel loops (containing <while>, <repeatUntil>
and non-parallel <forEach>) and parallel loops (containing parallel <forEach> and event handlers). In
case of non-parallel loops the invocation of the installed CH instances in successive iterations must be in
reverse order whereas for parallel loops no ordering is imposed for the compensation of associated
scope [12].

To emulate such behavior and to impose the reverse order of execution for such CH instances the best
suitable data structure is a stack. The entries in this stack could be the scope instances containing only
the data context. The proposed solution is briefly described below,

e (Create one stack associated with one scope within a repeatable construct in its immediately
enclosing parent scope. This stack stores the scope instances.

e For each successful iteration of the scope, take the snapshot of its data context (this can be
emulated by copying the data context of this scope in a new scope with its primary activity as an
empty activity) and push it (i.e. the newly created scope) on the stack associated with that
scope.

e The compensation logic associated with this scope will be propagated to the FCT handlers of the
immediately enclosing parent scope and thus it will have access to this stack.

e Execute the compensation logic in a loop on each element (i.e. the scope containing the data
context) of the stack, till the stack is empty thus emulating the behaviour similar to the regular
execution.

To get a better idea of the proposed approach, a sample transformed process is shown in the Fig 3.21.
As seen the scope S2 is within a repeatable construct i.e. loop and assuming the compensation handler
CH2 associated with it contains a control link violation the transformation is carried out. A stack
representing scope S2 is declared in its parent scope i.e. in scope S1. After each successful iteration of
scope S2, a snapshot of the data context is taken by creating a new scope containing this data context of
scope S2 and an empty activity as its primary activity. This newly created scope is pushed on the
declared stack S2_stack.
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The propagated compensation logic CL2 in the fault handler FH1 has access to this declared stack
variable S2_stack. This compensation logic is executed in a loop while popping out the elements in the
stack one at a time. Thus, the compensation logic is executed for all the scope instances pushed on the
S2_stack in the reverse order of execution. This loop runs till the stack is empty thus emulating the
behaviour of a compensation handler instance group.

S1
def: S2 stack

(O s2 =N

CH2 0O

)

mpty

Take snapshot

\Km to 82 stack ) /

Fig 3.21: Transformed process when scopes do not complete successfully

3.8 Summary of Cases addressed

The main focus of this study is to identify and correct any control link violations that occur during the
consolidation of the process models that interact via compensation handlers. To describe the solution
briefly, the compensation logic of the CH’s is propagated to the FCT handlers of the immediately
enclosing parent scope.

There are two types of compensation handlers, explicit and implicit and the way both these scenarios
are covered in this study are described below,

1. Explicit compensation handler: The way to invoke an explicitly defined CH is by using the

<compensateScope> and <compensate> activities and these in turn can be called from the
<catch>, <catchAll>, <compensationHandler> and <terminationHandler> constructs. Of these,
the <catch> and <catchAll> can only be used in the FH. Considering these ways the following
permutation and combinations occur,
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<compensateScope> in FH — solution covered in section 3.4.1
<compensateScope> in TH — solution covered in section 3.4.2
<compensateScope> in CH — solution covered in section 3.4.3
<compensate> in FH — solution covered in section 3.4.4
<compensate> in TH — solution covered in section 3.4.5
<compensate> in CH — solution covered in section 3.4.6

0o o0 T o

Also, the nested scope scenario is covered in the section 3.5, wherein the transformation is
carried out from the deepest level, one level at a time reaching to the parent using the above
mentioned elemental transformations.

2. Implicit compensation handler: Implicit CH is nothing but a default CH. According to the BPEL
specifications, the way it determines the compensation order is “reverse order of execution”.
When no CH is provided for a scope, the BPEL engine associates it with a default CH. The
assumption is that it does not violate any control link violations imposed by the BPEL
specifications since it is defined by the BPEL engine itself.

Thus, each scenario has been taken into consideration and solution is provided for all the cases where
control link violations occur. Hence, we can safely argue that this approach is able to get rid of CH’s for
all type of scenarios.
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4 Implementation

This chapter provides the details of the implementation of the proposed solution discussed in the
previous chapter. The implementation is based on the existing state of the system described in section
2.5. As a development environment, the IDE Eclipse Kepler Service Release One (SR1) along with Java 7
was used. Initially, the BPEL engine Apache ODE v.1.3.6 (Orchestration Director Engine) was used to
develop sample business processes.

The implementation details and the flow of the existing system are briefly described as shown in the Fig
4.1.

Existing System
Choreography from MergePreProcessor M
input zip file for preprocessing Create and initialize M“:::h sync E:Jlnk P'oor rorg::’l mor
containing PBD's, the input files merged BPEL .,,.,! merge utpu': files (Exangmple'
Topology, (Example: process with info patterns and merge to fix control link
Grounding and processing Invoke- from the PBD's. accordingly violations)
WSDL. Scope) s
1 2 3 4 5
Changes added

Implemented class CompensationHandlerUtil invoked from FCTEUtil during post processing

Creates compensation order graph
mnammmm“mylmm
« Applies transformations to resolve all such cases

Fig 4.1: Consolidation process for choreography

As seen in Fig 4.1, the implementation of the consolidation process (refer chapter 1) consists of five
steps. First the choreography files i.e. the PBD’s, WSDL, topology and grounding are read from the
provided input zip file. In the second step, the class MergePreProcessor is invoked wherein any
preprocessing related to the input files can be done. In the current implementation [7], the invoke
activities are transformed to have a surrounding enclosing scope activity. Then, a merged process Pmerged
is created containing the activities from the processes in the input PBD’s each enclosed within a
separate scope. In the fourth step, the consolidation is done using the predefined consolidation
patterns. After consolidation the last step deals with all the post processing that needs to be done and
for this purpose the class MergePostProcessor is used. The current implementation [7] deals with fixing
all the control link violations related to the fault handler, termination handler and event handler.
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4.1 Relationship between various Components

The current implementation has a lot of projects which are used in conjuncture to obtain the final
consolidated process. The relationship between these various projects is shown in the component
diagram in the Fig 4.2.

<<component>> <<component>> <<component>>
org.eclipse.emt & | FO—  org.eclipse.bpel.model & | FO—  de.uni_stuttgart.iaas.bpel.model.util
<<component>>
org.bpeldchor.mergeChoreography @
<<component>> <<use>> <<component>> <<component>>
ChoreographyMerger & | f--------- »  Choreographypackage @ 0)— org.bpeldchor.model $:I
<<use>> \‘\.\«use»
¥ BN
<<component>> <<component>>
MergePreProcessor {I MergePostProcessor
y Consolidated Choreography
| <<use>>
¥
= —= Choreography.zip
FCTEUtil {]
<<use>> _.-°° _,"' iy
<<component>> sl \
FaultHandlerUtil - |, <<use>>
LT <<use>> K
-
e <<component>>
<<component>> CompensationHandlerUtil
TerminationHandlerUtil

Fig 4.2: Component diagram for choreography consolidation [7]

The project org.bpeldchor.mergeChoreography is the most important project which contains the main
class ChoreographyMerger which drives the complete consolidation process. It uses the classes
MergePreProcessor, MergerPostProcessor and ChoreographyPackage to obtain the final merged
process. The class ChoreographyPackage is responsible for reading the input BPEL4Chor files, initializing
the merged process Pmerged and storing it. With the help of the project org.bpel4chor.model which was
developed by [19], the BPEL4Chor files are stored in BPELAChor objects which are used to read the input
files. There are a lot of utility classes containing useful reusable functionalities (for example to zip and
unzip files) which are bundled together in the project de.uni_stuttgart.iaas.bpel.model.utilities. These
classes are used by the ChoreographyPackage to traverse through the BPEL and BPEL4Chor objects
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during the consolidation process. In addition to that, the eclipse EMF projects org.eclipse.bpel.model
and org.eclipse.bpel.common.model are used for the representation and the processing of the BPEL
objects. Another component diagram related to the testing of the merged process (refer to section 4.3)
is shown in the Fig 4.3.

<<component>>
org.eclipse.emf
<<component>> (L
org.bpeldchor.mergeChoreography.test @ Y
<<component>> )_ <<component>>
—Q .eclipse.! .model
CheckMergeResult {] org.eclipse.bpel
Consolidated
choreography
—c <<component>>
org.bpeldchor.mergeChoreography E
O
Choreography.zip

Fig 4.3: Component diagram for testing the consolidated process [7]

As seen, the project org.bpeldchor.mergeChoreography.test contains the component CheckMergeResult
which is used to validate the merged process against the expected output process. To obtain the
merged process it uses the interfaces provided by the org.bpeld4chor.mergeChreography project.

4.2 Consolidation Flow

The sequence diagram showing the consolidation process in the current implementation is shown in the
Fig 4.4. The method merge(fileName) from the class ChoreographyMerger is invoked which acts as the
main method to drive the overall consolidation flow. First the input choreography files are read using
the readInZip(fileName) method of the class ChoreographyPackage. This is the part of the step one
shown in the Fig 4.1. Next, the method startPreProcessing(choreographyPackage) from the class
MergePreProcessor is invoked where in all the preprocessing needed prior to the actual consolidation
logic is carried out. This is the second step shown in Fig 4.1. The third and the fourth step shown in the
Fig 4.1 are executed by calling the method mergeChoreography() of the class ChoreographyMerger. This
method in turn invokes the initMergedProcess() method of the class ChoreographyPackage which is
responsible for creating and initializing the merged process Pmerged. Then an instance of the class
CommunicationMatcher is created which is used to loop over all the message links to find a matching
merge pattern for that message link and then the corresponding merge takes place. Once the loop
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execution is complete the fifth step shown in the Fig 4.1 starts. The method
startPostProcessing(choreographyPackage) of the class MergePostProcessor is invoked which is
responsible for dealing with the control link violations in the merged process Pnergeq associated with the
FCTE handlers. This is shown in more details with the help of Fig 4.5. In the end, before the
merge(fileName) method finishes its execution, the method saveMergedChoreography(fileName) from
the class ChoreographyPackage is invoked which contains the logic to save the consolidated process
Pmerged @long with its associated WSDL files to a configurable output location.

sd: Choreography consolidation)

‘ChoreographyMerger | | :ChoreographyPackage | | :MergePreProcessor | | :MergePostProcessor

merge(fileName) N

>

readinZip(fileName)

A I

slanPreProoessing(m‘oreogtaphyPackage) -

SCEUETETTEPEETEPPETRETETEE T L L P T EPETR J—I

P mergeChoreography()
initMergedProcess() -~ : ; ;
AR J—I :
create() H . H 1
#| :CommunicationMatcher | : :
loop for all message links )
maldn{messagelin‘k) _ : : §
v v create() '
: »> Pattern '

< saveMergedChoreography : ' ' .
(fileName) ' '

Fig 4.4: Sequence diagram for choreography consolidation [7]
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The sequence diagram in the Fig 4.5 shows the post processing flow after the actual consolidation
process finishes. The class FCTEUtil contains utility methods required for the processing of the FCTE
handlers. Some of the existing utility methods were modified and new methods were added to
accommodate the changes corresponding to the compensation handler (for example to check if an
activity has any incoming link). The class CompensationHandlerUtil was modified to contain the actual
logic to deal with the compensation handlers containing any control link violations. The algorithms
described in section 3.3.1 to determine the compensation order graph have been implemented in this
class. New class to define the node structure of the tree has also been created for the same purpose.
Also, the transformations needed to fix the control link violations associated with compensation
handlers (refer to sections 3.4, 3.5 and 3.6) are carried out in this class. The classes FaultHandlerUtil and
TerminationHandlerUtil are responsible for fixing the control link violations associated with fault and
termination  handlers respectively [7]. When the execution invokes the method
startPostProcessing(choreographyPackage) of the class MergePostProcessor, then it in turn invokes the
methods processCompensationHandler(mergedProcess) and processScopesFT(mergedProcess) of the
class FCTEUtil. The method processCompensationHandler(mergedProcess) creates an instance of the
class CompensationHandlerUtil and then invokes the method processCompensation(activity) for all the
scopes in the merged process Prerged (this method is modified to implement the algorithms described in
the section 3.3.1). Similarly, the method processScopesFT(mergedProcess) creates instances of the
classes FaultHandlerUtil and TerminationHandlerUtil and invokes the corresponding methods
processFaultHanlder(activity) and processTerminationHandler(activity) respectively for all the scopes in
the merged process.

4.3 Review of the Merged Process

An implementation to verify the correctness of the merged process was developed in [7] which is reused
for verifying the correctness of the merged process after applying the transformations to fix the control
link violations associated with compensation handlers during the consolidation process. The class
CheckMergeResult requires the file paths for two files, first the file path to the merged process Pmerged
and second the file path to the expected process Pexpected- The process Pexpectes (developed for the
scenarios described in the sections 3.4, 3.5 and 3.6) contains the structural design which corresponds to
the expected merged process. Thus the obtained process Pmergeq after consolidation is checked against
the process Pexpected t0 Verify if the process Preges cONforms to the structural design of the process
Pexpected- Also, regular expressions are used to check if the activity names match. It is very important to
note that the process Peyected CANNOL contain any structure that violates any BPEL specification and thus
it must be developed carefully. For example, a scope can have only one activity directly enclosed within
itself (refer section 2.2.6). Therefore scopes containing more than one activity must not be defined in
the process Pexpected-
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Fig 4.5: Sequence diagram for MergePostProcessor dealing with FCT handlers







5 Conclusion and Future Work

The main objective behind this study thesis was to identify and resolve scenarios when consolidation of
process models that interact via compensation handlers results in merged processes containing control
link violations related to compensation handlers. This objective was achieved by identifying and
grouping the scenarios (refer to section 3.2) into logical units and a solution for each unit was proposed.
An implementation of the proposed solution was integrated with the existing system (refer to section
2.5) by creating choreographies for each scenario, applying the consolidation process and checking the
merged process with the expected correct consolidated process.

Chapter 1 discussed the various reasons that can lead to the decision of insourcing a partner’s business
process into its own and the advantages behind this consolidation. The consolidation process was
described briefly with an example. In chapter 2, all the fundamental concepts that are needed to
understand the basics of BPEL and BPELAChor were described.

In chapter 3, the solution for control link violations in case of fault handlers [7] was described briefly and
it was used as the basis of the approach for compensation handlers. Based on the ways a compensation
handler can be invoked, base scenarios were identified, analyzed and a solution was proposed for all the
identified cases. An algorithm (refer to section 3.3) was proposed which is used to derive the
compensation order graph complying with the default compensation order rules (refer to section
2.9).The compensation logic from the compensation handlers violating the control link constraints was
propagated to the immediately enclosing parents FCT handlers and it was arranged in a way that follows
the default compensation order derived by applying the proposed algorithm. Boolean variables
indicating if a scope was reached and completed successfully were created which in turn were used as a
check before executing the compensation logic for any scope. A conceptual solution was also proposed
for a scenario wherein a scope is nested within a repeatable construct. The control flow relations among
the basic activities from the choreography were maintained after applying the transformations to obtain
the final merged process.

Chapter 4 elaborated the implementation details of the algorithms (refer to section 3.3) and the
transformations (refer to sections 3.4, 3.5 and 3.6) needed to fix the control link violations associated
with the compensation handler. Also, an overview of the integration of this implementation with the
existing components and their correlation was described with the help of component and sequence
diagrams.
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Future Work

The concept of the isolated scopes has been briefly described in the section 2.2.6. The proposed solution
assumes that the compensation handler associated with any scope is not an isolated scope. Thus the
current solution needs an extension to provide an approach for compensation handler associated with
an isolated scope.

In section 3.7, a conceptual approach has been proposed for the case when a scope is enclosed within a
repeatable construct. The current implementation does not cover the implementation of this solution
and thus it has to be extended accordingly.

The most important aspect of the consolidation process is to retain the control flow relations between
the basic activities in the choreography and these must not be altered by the transformations described
in the sections 3.4, 3.5 and 3.6. Thus, there is a need to devise a formal verification method which can
verify that the control flow relations between the basic activities are maintained.
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