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Abstract 

Choreographies are generally used to model the interaction behaviour between the processes of 

different organizations and their suppliers. At times organizations make some business decisions like 

gaining more control over their suppliers and minimizing the transactional costs leading to the 

insourcing of these companies. This in turn causes the organization to merge the partner’s processes 

with its own. In previous work an approach has been proposed to consolidate i.e. integrate interacting 

BPEL process models of different partners into a single BPEL process model by deriving control flow links 

between the process models from their interaction specification. The resulting merged BPEL process 

model may contain errors related to the derived control flow links in case of the BPEL constructs such as 

Fault Handler, Compensation Handler, Termination Handler and Event Handler (FCTE- Handler). 

The focus of this thesis is to identify any control flow links violations in case of Compensation Handlers 

(CH) and resolve them. To achieve that, different scenarios have been identified wherein control flow 

link violations might occur for CH interacting with partner processes and a solution for each has been 

provided. The solution proposes an approach to emulate the behaviour of CH where any control link 

violation occurs thus resulting into a final merged BPEL process model containing no violations 

associated with CH but having the exact same behaviour. 
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1 Introduction 
 

At the heart of any business lies its business process. It is the most vital part for any business since it 

drives the business towards achieving its vision and generating profit at the same time. In the past, the 

businesses were having their own workflows which have evolved over time to the more structured and 

transparent existing business processes but the motive behind them remains the same. A business 

process is, “a set of one or more linked procedures or activities which collectively realize a business 

objective or policy goal, normally within the context of an organizational structure defining functional 

goals and relationships” [1]. Business process execution language (BPEL) is “an XML-based language that 

enables task sharing in a distributed computing or grid computing environment.” It is used to define 

executable business processes [2].  All the business processes referred in this document are BPEL 

processes. 

It is a common practice among organizations to outsource some task or use an existing service from a 

third party to reach the final product or service. There are various benefits of outsourcing such as cost 

advantages, increased efficiency, concentration on core processes rather than supporting ones, etc. and 

on the other hand there could be other factors such as risk of exposing confidential data, hidden costs, 

synchronizing the deliverables, etc. which might be disadvantageous [3]. Hence the organization has to 

make a decision on which parts of the process can be outsourced.  

The interaction specifications for the processes of the collaborating organizations are modeled by 

choreographies via message links interconnecting their communication activities. Considering some of 

the disadvantages of outsourcing, an organization may decide to insource the partner’s business process 

to save transactional costs or to gain more control over the complete process. This decision results into 

the consolidation or integration of two communicating BPEL processes into one merged BPEL process 

model. This conversion process is explained below in brief. 

The process consolidation methodology for one-to-one interactions (one instance of a process is 

communicating with one instance of another process) is divided into four major steps. The utmost 

important thing to be ensured is; the original control flow relations between all atomic activities that 

were specified in the choreography must be preserved in the consolidated process. This in turn also 

ensures that the data flow implied by the control flow is kept as in the BPEL processes. The four steps 

are listed below [4]: 

 Analyzing the control flow relations 

 Creation of the container process 

 Control flow materialization 

 Resolving control link violations 

Each of the above mentioned steps is elaborated with the help of an example given below. 

Consider an example where an organization manufactures a product but outsources the ordering of 

parts to a third party supplier organization. The interaction behaviour between the business processes 
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of the manufacturer and supplier is modeled by choreography as shown in Fig 1.1. The consolidation of 

such one-to-one interaction is carried out in four major steps as shown below [4]: 

1. Analyzing the control flow relations: As one of the most important aspects of the consolidation 

process is to maintain the original control flow between the activities and thus the first step is to 

analyze the control flows in the choreography. In this step, the control flow relations between 

the non-communicating (opaque) activities are identified. The example choreography is 

depicted in Fig 1.1. 

 

Fig 1.1: Choreography of two interacting BPEL processes between a manufacturer and supplier [4] 

 

2. Creation of container process: Once the control flow relations have been analyzed, to create a 

consolidated process a container process is created which holds both the processes in an 

isolated manner. To achieve that a new process is created containing the activities of both the 

processes in different scopes thus isolating the activities of different processes within the 

container. For the example considered in Fig 1.1, a new container process named 

‘Manufacturer’ is created and the processes of the manufacturer and the supplier are isolated in 

two different scopes ‘SManufacturer’ and ‘SSupplier’ respectively marked with red boundaries as shown 

in the Fig 1.2. 
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Fig 1.2: Creation of container process [4] 

 

3. Control flow materialization: After analyzing the control flow relations and creating the 

container process, the analyzed control flow relations are materialized by replacing the message 

flows between the processes by control links since message flows become obsolete in the single 

merged business process. The control flow is materialized from the message flow based on the 

interaction style. The interaction style could be asynchronous or synchronous (refer to section 

2.4) but for the example in consideration it is synchronous .The outcome of this materialization 

is shown in the Fig 1.3. 

 

Fig 1.3: Control flow link materialization in the container process [4] 
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4. Resolving control link violations: To complete the consolidation process this step is very 

important since the outcome of step three might create a process containing cross boundary 

link violations which must be resolved. All the cross boundary link violations are identified and a 

solution must be provided for each to fix them. For the considered example, in Fig 1.3 the cross 

boundary constraint for loop is violated and hence it must be resolved. Since in this context it 

does not affect the control flow between non communicating (opaque) activities, the loop Order 

Parts containing the Syn3RC activity is simply omitted as shown in the Fig 1.4. The consolidated 

process does not contain any control link violation as all the control links comply with the BPEL 

specifications and thus is the final merged process for this particular example. 

 

Fig 1.4: Consolidated BPEL process model with resolved control link violations [4] 

 

The above described process consolidation methodology serves as the base for the problem statement 

at hand explained in the following section 1.1. 

 

1.1 Problem statement 
 

It is very common in the business world to coordinate with each other to achieve a certain goal and in 

terms of business process it means that the business processes of two different organizations 

communicating with each other. Choreographies are used to realize such interaction behaviour between 

the business processes of different organizations and their suppliers. Such kind of interaction can be 

seen between a manufacturer and supplier business process as shown in Fig 1.1. But there could be 

various reasons when one organization decides to in source the partner’s business process such as to 

gain more control, reduce the overall transactional costs and sometimes maybe even for data privacy 

reasons. This kind of scenario occurs during a merger or an acquisition of one company by another. This 
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leads to the integration of not only the organizational structure but also the processes within the 

companies. The focus of this work is on the integration at process level specifically on consolidating 

complementing BPEL process models whose interaction behaviour is described by choreography [5]. 

Also, the overall performance of the consolidated BPEL process is better as compared to that of 

choreography [6]. 

The consolidated BPEL process model must abide to the BPEL specifications. BPEL specifications impose 

constraints on control flow links such as no inbound or outbound control flow links are allowed for 

compensation handlers whereas for fault handlers outbound links are permitted but no inbound links. 

This study focuses on identifying and removing any kind of control link violations for compensation 

handlers in the consolidated BPEL process model. The scope of this study thesis is described in the 

following section 1.2. 

 

1.2 Scope of work 
 

In previous work, a technique has been designed and implemented to consolidate two interacting BPEL 

process models. The resulting BPEL process model contains a merged process wherein all the message 

flow links have been replaced by control flow links as per the interaction behaviour specification to 

maintain the control flow. This resulting merged process model might contain some control link 

violations such as cross boundary link violations and these violations must be identified and fixed. As 

shown in the Fig 1.3, a scenario has been identified wherein control links are not allowed to cross the 

loop boundaries as per the BPEL specifications. The solution for that is quite trivial since the example 

process model is not that complicated and is shown in Fig 1.4. Similarly, there could be different 

scenarios where control link violations might occur in case of other BPEL constructs such as fault 

handlers, compensation handlers, termination handlers and event handlers (FCTE handlers). 

A solution has been devised to resolve the control link violations occurring in case of fault handlers and 

termination handlers in [7]. The above approach does not work in case of the compensation handlers 

due to the additional constraints imposed by the BPEL specifications on the control links. Neither 

inbound nor outbound control links are allowed in case of compensation handlers. Thus an extension to 

the solution proposed in [7] is needed to fix the problem associated with compensation handler (CH). 

The scope of this thesis is to identify all the scenarios associated with compensation handlers where any 

control link violation occurs after the consolidation of the process models and then emulate the 

behaviour of compensation handlers where any such violation occurs. The final outcome would be the 

merged BPEL process model with no control link violations related to compensation handlers.  
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1.3 Outline 
 

The outline of the thesis document is described in the following manner: 

Chapter 2: Fundamentals - In this chapter, the basics of WSDL, BPEL and BPEL4Chor are discussed. All 

the relevant BPEL activities along with the concepts of fault handler, compensation handler and 

termination handler are also described. 

Chapter 3: Concept and Design – During consolidation the problems associated with compensation 

handler have been identified and various base case scenarios are described with a solution for each 

case. An algorithmic solution has been proposed with a working example. 

Chapter 4: Implementation – This chapter provides the implementation details of the conceptual 

solutions proposed in the previous chapter with the help of component and sequence diagrams. 

Chapter 5: Conclusion and Future work - A brief summary of the objective of the thesis and how it was 

achieved is described in this chapter along with the related future work. 

  

1.4 List of abbreviations 
 

BPEL – Business Process Execution Language 

BPEL4Chor – BPEL for Choreography 

CH – Compensation Handler 

COG – Compensation Order Graph 

COL – Compensation Order Link 

EH – Event Handler 

FCT – Fault, Compensation and Termination 

FCTE – Fault, Compensation, Termination and Event 

FH – Fault Handler 

SOA – Service Oriented Architecture 

TH – Termination Handler 

WSDL – Web Service Definition Language 
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2 Fundamentals 
 

In this chapter, some basic concepts that are needed for understanding the topic in a better manner 

have been discussed. The following sections include introduction to WSDL, BPEL, BPEL4Chor, 

asynchronous and synchronous interaction and the state of the existing system.  

 

2.1 Web Services Description Language (WSDL) 
 

Service oriented architecture (SOA) is an architectural style of developing software that is based on 

services and there are three basic principles of SOA namely, Publish, Find and Bind [8]. First a service to 

be provided is defined in an abstract manner and published to a central repository. Next, when 

someone needs to use a particular service, they query this central repository as per their search criteria 

and obtain services that closely match these criteria. And finally, the returned information also contains 

the information about how to access a particular service i.e. how to bind to a service.  

Web services are a technical implementation of SOA style. Web Services Description Language (WSDL) is 

an XML format for describing web services and it also enables to separate the description of the abstract 

functionality of a service from its concrete detailed description [9]. 

 

Fig 2.1: Building blocks of WSDL 1.1 [8] 

The Fig 2.1 shows a rough structure of WSDL 1.1 which is used in the BPEL 2.0 specifications and its 

components are described below: 
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 Types: Contains the definitions of all the data types needed. 

 Message: It is an abstract definition of the data exchanged. 

 PortType:  All the abstract actions supported by the service are called as operations and a set of 

operations supported by the service is defined by the port type. The below mentioned four 

communication patterns are available [10]: 

 One-way: Here, simply the web-service receives a message. 

 Request-Response: Web-service receives a message and sends a response. 

 Solicit-Response: Web-service sends a message and receives a response. 

 Notification: Here, simply the web-service sends a message. 

 Binding: It defines a concrete protocol and data format used to implement a port type i.e. it 

answers the question of ‘how’ to invoke a service. 

 Service: A port is an individual ‘end point’ identified by a network address supporting a 

particular binding and service is a collection of such related ‘end points’. Thus, it answers the 

question of ‘where’ to find a service. 

The Fig 2.2 summarizes the ingredients of a WSDL and how they interact with each other. 

 

Fig 2.2: Ingredients of a WSDL [9] 
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2.2 Business Process Execution Language (BPEL) 
 

The Business Process Execution Language (BPEL) is an XML-based language which specifies the business 

process and its behavior based on web services (refer to section 2.1). Thus BPEL and web services are 

closely related. To define it abstractly, BPEL is simply a recursive aggregation model for web services. 

This definition has two important keywords namely, aggregation and recursive. A business process 

model can tie together a set of web services into one or more new web services i.e. aggregation. These 

newly created web services can again be tied together into other new web services i.e. recursive [11]. 

For describing a BPEL process the below listed concepts should be considered: 

 Data dependent behaviour is included in the business processes (for example number of items 

in an order). Such behavior is dealt with by using conditional and time out constructs. 

 There has to be a way to specify exceptional conditions and their consequences along with the 

recovery sequences. 

 Multiple nested units of work with its own data requirements are included in long running 

interactions and business processes frequently require cross partner coordination at various 

level of granularity. 

The above concepts can be applied in one of two ways, abstract process or executable process. An 

abstract process is not intended to be executed and it is a partially specified process. A process must be 

explicitly declared as ‘abstract’ to make it abstract. On the other hand, an executable process is fully 

specified and thus can be executed. Abstract process serves more of a descriptive role (for example can 

be used to define a process template). There are different tags and constructs of BPEL which are 

relevant to this study thesis and are briefly described in the below sections. The whole business process 

is defined within a <process> tag containing other multiple tags which specify the business logic. 

In BPEL, activities are responsible for performing the process logic and are divided into two categories; 

basic and structured. The elemental steps of the process behavior are described by basic activities. The 

control-flow logic is encoded by the structured activities and thus they can recursively contain other 

basic and/or structured activities [12]. The following sub-sections describe few of the basic and 

structured activities relevant to this study thesis. 

 

2.2.1 Invoke 

 

The main purpose of <invoke> activity is to call web services offered by service providers i.e. to invoke 

an operation on a service and it is considered as a basic activity. The invocation could either be one-way 

or request-response (refer to section 2.1). To correlate the business process instance with a stateful 
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service at the partner’s side, zero or more correlationSets (refer to section 2.2.5) can be specified. 

Although being a basic activity it can enclose other activities inlined in the CH or FH associated with it. 

During the invocation of a web service call, a fault might occur and thus the <invoke> activity can have 

<catch> or <catchAll> blocks to deal with such situations. It can also be associated with another activity 

that acts as its compensation handler (refer to section 2.2.9). Because of such possibility, it is 

semantically equivalent to the presence of an implicit <scope> (refer to section 2.2.6) activity 

immediately enclosing the <invoke> activity providing these handlers. 

 

2.2.2 Receive and Reply 

 

The <receive> activity is used to receive the service requests from the partners of a business process.  

The <receive> activity plays a vital role in the lifecycle of a business process. It is used to instantiate a 

business process. A <receive> is a blocking activity in the sense that it is not completed until a matching 

message is received by the process instance. 

The <reply> activity is used to send a response to a previously accepted request such as through a 

<receive> activity. Only for request-response interactions (i.e. synchronous interactions) these 

responses are meaningful whereas for one-way interactions a one-way ‘response’ can be sent by 

invoking a corresponding one-way operation on the partnerLink. 

 

2.2.3 Assign 

 

The <assign> activity is used to copy the data from one variable to another. It can also be used to 

construct and insert new data using expressions. Expressions are used to produce a new value by 

operating on variables, properties and literal constants. One more use of <assign> activity is to copy 

endpoint references to and from partnerLinks. 

 

2.2.4 Empty 

 

The <empty >activity is used when no action has to be taken i.e. doing nothing, for example in case of a 

fault that needs to be caught and suppressed. One more use of this activity is to provide a 

synchronization point in a <flow>. 
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2.2.5 Correlation Sets 

 

As the name suggests, correlation sets are used to correlate a set of message exchanges by defining 

correlation identifiers. These are the fields in messages with a business meaning. For example, multiple 

instances of a process could be running in the BPEL engine communicating with its partners. Thus to be 

able to identify which response corresponds to which request these correlation identifiers are used in 

the correlation sets. The properties used in a <correlationSet> must be defined using XML schema 

simple types. 

 

2.2.6 Scopes and Isolated Scopes 

 

A context is provided by the <scope> activity for the execution of its enclosed activities which impacts 

their execution behavior. Variables, partner links, message exchanges, correlation sets, event handlers, 

fault handlers, a compensation handler and a termination handler are included in this behavioral 

context as shown in the syntax for scope in the listing 2.1: 

Listing 2.1: BPEL-Element Scope syntax [12] 
<scope isolated="yes|no"? exitOnStandardFault="yes|no"?  

  standard-attributes>  

  standard-elements  

  <variables>?  

    ...  

  </variables>  

  <partnerLinks>?  

    ...  

  </partnerLinks>  

  <messageExchanges>?  

    ...  

  </messageExchanges>  

  <correlationSets>?  

    ...  

  </correlationSets>  

  <eventHandlers>?  

    ...  

  </eventHandlers>  

  <faultHandlers>?  

    ...  

  </faultHandlers>  

  <compensationHandler>?  

    ...  

  </compensationHandler>  

  <terminationHandler>? 

    ...  

  </terminationHandler>  

  activity  

</scope> 
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The context provided by <scope> activity can be nested hierarchically by having a complex structured 

activity with many nested activities to arbitrary depth as its primary activity. The above structure is very 

much similar to a <process> construct except the differences being, <process> construct is not an 

activity, it cannot have a compensation handler or a termination handler and the isolated attribute 

cannot be attached to a <process> construct. 

Scope States 

A scope can be in one of the below listed states [13], [14]: 

 Active: A scope reaches an active state as soon as the scope’s inner activity is activated and it 

remains in that state as long as positive control flows in a scope. 

 Completed: A scope reaches a completed state after the successful faultless execution of its 

inner activity and all of its event handlers have also finished. 

 Compensated: When the compensation handler associated with a scope is activated for the first 

time then a scope changes its state to compensated. 

 Faulted: The scope attains a faulted state when the scope execution is stopped by the 

occurrence of a fault which is handled by its corresponding fault handler. 

 Terminated: A scope reaches a terminated state when an error occurs outside of its context i.e. 

as soon as the first termination activity is reached. 

Error handling in scopes 

During the execution of a process errors can occur and to deal with such situations it is very important 

to have some error handling mechanism. BPEL provides some constructs such as fault handler (refer to 

section 2.2.8), compensation handler (refer to section 2.2.9) and termination handler (refer to section 

2.2.10) for the same. All of these BPEL constructs are associated with the <scope> activity either 

explicitly or implicitly. 

Isolated scopes 

A scope providing control of concurrent access to shared resources such as variables, partner links and 

control dependency links is called as an isolated scope. A scope can be made an isolated scope by 

setting the attribute isolated=”yes”. By default a scope is not isolated. For example when two 

concurrent isolated scopes S1 and S2, access these common set of variables or partners links and are 

carrying out some read write operations, then these read/write operations are conceptually reordered 

in such a way as if all such activities of one scope were executed before the other. It is very much 

analogous to the standard isolation level “serializable” used in database transactions.  

Isolated scopes must not contain any other isolated scopes whereas it may contain scopes that are not 

marked as isolated. Also, for an isolated scope the compensation handler does not share the isolation 

domain of the associated scope whereas the fault handler and the termination handler share the 

isolation domain of the associated scope. 
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2.2.7 Flow 

 

Concurrency and synchronization are the two important aspects provided by the <flow> activity. The 

general syntax is shown in the listing 2.2: 

Listing 2.2: BPEL-Element Flow syntax [12] 
<flow standard-attributes>  

  standard-elements  

  <links>?  

    <link name="NCName">+  

  </links>  

  activity+  

</flow> 

 

The fundamental semantic effect of a <flow> activity is to enable concurrency among all of its enclosed 

activities. A <flow> completes only after all of its enclosed activities are completed. An activity is also 

considered completed when its enabling condition evaluates to false. The <link> construct is used to 

define the synchronization dependencies for the enclosed activities. A <link> is associated with the 

<source> and <target> element which are nested within <sources> and <targets> construct. These are 

used to establish synchronization relationships through a <link>. The <source> element can specify an 

optional <transitionCondition> which acts as a guard for following the specified link and when it is not 

specified then the default value is true. A link can have true, false and undefined status. The <targets> as 

a whole can specify an optional <joinCondition> which is responsible for the evaluation of all the 

incoming links and when it is not specified then it is considered as disjunction i.e. logical OR operation by 

default. Consider an activity ‘x’ is the target of a link whose source is activity ‘y’, then the activity ‘x’ is 

said to have synchronization dependency on activity ‘y’. A link is said to cross the boundary of a 

construct when it either enters or leaves a construct. The control flow restrictions on links are listed 

below (see Fig 2.3): 

 A link must not cross the boundary of a repeatable construct (<while>, <repeatUntil>, 

<forEach>, <eventHandlers>) or the <compensationHandler> element. 

 For elements like <catch>, <catchAll> or <terminationHandler>, if a link crosses the boundary 

then it must be an outbound link. 

 A <link> declared within a <flow> must not create a control cycle. 



25 
 

 

Fig 2.3: Graphical representation of control flow restrictions [7] 

Dead-Path Elimination 

Dead-Path elimination is used to get rid of all the dead paths [12], [15]. In cases where the control flow 

is defined by the links and the attribute suppressJoinFailure is set to ‘yes’, then it means when the join 

condition for an activity is evaluated to false then it must not be executed i.e. the fault bpel:joinFailure 

must not be generated. When an activity is not executed because of the <joinCondition> being 

evaluated to false, then all of outgoing links from such an activity must be assigned a false status. And 

this in effect propagates the false link status in a transitive manner to all the successive links until some 

join condition is reached that evaluates to true. This approach is known as Dead-Path Elimination (DPE). 

By default, for a <process> element the value of the suppressJoinFailure is set to ‘no’ which avoids 

suppressing a well-defined fault. This attribute value is inherited by all the nested activities else except 

when this attribute value is overridden by some other nested activity [12]. 

 

2.2.8 Fault handler 

 

When an error occurs during the execution of a scope or process then the execution goes to the fault 

handler associated with that particular scope or process. In case of scopes, the scope state is changed to 

faulted (refer to section 2.2.6). The aim of a fault handler is to undo the partial and unsuccessful work of 
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a scope where a fault occurs. The compensation handler associated with a scope which has faulted is 

not enabled since it did not complete its execution successfully. A general syntax of a fault handler is 

shown in the listing 2.3: 

Listing 2.3: BPEL-Element faultHandlers syntax [12] 
<faultHandlers>  

  <catch faultName="QName"?  

    faultVariable="BPELVariableName"?  

    ( faultMessageType="QName" | faultElement="QName" )? >*  

    activity  

  </catch>  

  <catchAll>?  

    activity  

  </catchAll>  

</faultHandlers> 

 

When an explicit fault handler is defined for a scope, it provides a way to use custom fault handling 

activities defined by <catch> and <catchAll> constructs. Such a fault handler must have at least one 

<catch> or <catchAll> element and this requirement must be statically enforced. When faults occur in a 

scope and the execution goes to its corresponding fault handler, then usually preference is given to a 

matching <catch> corresponding to that fault to deal with it. If there is no matching <catch> element 

then the fault will be dealt by <catchAll> element if present. Otherwise, the fault will be handled by the 

default fault handler. The default fault handler i.e. the implicit fault handler contains a <catchAll> 

element which has a <sequence> element containing a <compensate> (refer to section 2.2.9)followed 

by a <rethrow> construct thus making sure, that either a fault will be dealt with properly or it will be re-

thrown to its immediately enclosing parent. A <rethrow> activity can only be used within a fault handler. 

Also, only one explicit or default FCT handler can run for the same scope under any circumstances. 

 

2.2.9 Compensation handler 

 

The ability to undo the work done by successfully executed business logic is one of the key aspects of 

WS-BPEL. It is achieved by providing a compensation handler for scopes containing the work which can 

be reversed. The <compensationHandler> construct acts as a wrapper for the activity containing the 

compensation logic as shown in the listing 2.4: 

Listing 2.4: BPEL-Element compensationHandler syntax [12] 
<compensationHandler>  

  activity  

</compensationHandler> 

 

A compensation handler can either be associated with a scope or an invoke activity (refer to section 

2.2.1). For scopes the associated compensation handler is only installed after the scope is successfully 

executed i.e. the scope state has changed to completed (refer to section 2.2.6). Once a scope completes 
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successfully, the data context of the scope at the time of its completion is preserved by creating a scope 

snapshot. This scope snapshot is used by the compensation handler to undo the work done by the 

scope. 

Invoking a Compensation handler 

Compensation activities (<compensateScope> and <compensate>) are used to invoke a compensation 

handler. These compensation activities can only be used within <catch>, <catchAll>, 

<compensationHandler> and <terminationHandler>.Thus, the compensation activities can only be used 

within FCT handlers associated with a particular scope. The <compensateScope> activity is used to 

compensate a specific successfully completed nested scope which can be specified by setting the target 

attribute (containing the name of the scope to be compensated). The <compensate> activity is used to 

compensate all the successfully completed nested scopes in default order. 

Default Compensation Order 

Scenarios wherein multiple compensation handlers must be executed (for example a parent scope fails 

which contains multiple nested successfully completed child scopes), the BPEL process engine 

determines a default compensation order in which the compensation handlers must be called. Thus the 

understanding of how this order is determined is very important. According to BPEL specifications, there 

are two rules that address the different aspects of order relation. The two rules are mentioned below.  

Definition (Control Dependency): When one activity must complete before the execution of another 

activity starts then those activities are said to be control dependent. For example, when activity A must 

complete before activity B begins then, activity B has a control dependency on activity A. Control 

dependencies might occur due to constructs like <sequence> and control links in <flow>. In case an 

explicit <throw> is used then it is not considered as a control dependency (see Fig 2.4). 

Rule 1: Informally, Rule 1 states that the forward order of execution for the scopes being compensated 

must be respected by the default compensation and thus the compensation order would be the reverse 

of order of completion.  As per BPEL specs to state it exactly, “Consider scopes A and B such that B has a 

control dependency on A. Assuming both A and B completed successfully and both must be compensated 

as part of a single default compensation behavior, the compensation handler of B MUST run to 

completion before the compensation handler of A is started” [12]. This rule allows for scopes that were 

executed concurrently on the forward path to be compensated concurrently on the reverse path. 

Definition (Peer-Scopes): When two scopes are enclosed within the same parent scope (including 

process scope) then such scopes are called as peer scopes (see Fig 2.4). 

Definition (Scope-Controlled Set): An activity A is considered to be in the scope-controlled set of a 

scope S if either it is the scope S itself or is nested within the scope S at any depth (see Fig 2.4). 

Definition (Peer-Scope Dependency): When two peer scopes have nested activities which have control 

dependency among each other then such scopes are said to have a direct peer-scope dependency. For 

example, scope S1 and S2 are peer-scopes containing activities A and B respectively in their scope-
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controlled sets such that B has a control dependency on A. then scope S2 has a direct peer-scope 

dependency on scope S1. The transitive closure of the direct peer-scope dependency relation is defined 

as peer-scope dependency relation (see Fig 2.4). 

Rule 2: Informally, Rule 2 states that peer scopes must not have cyclic dependencies to be able to be 

compensated successfully when needed. As per BPEL specs to state it exactly, “The peer-scope 

dependency relation MUST NOT include cycles. In other words, WS-BPEL forbids a process in which there 

are peer scopes S1 and S2 such that S1 has a peer-scope dependency on S2 and S2 has a peer-scope 

dependency on S1. A process definition containing a cyclic peer-scope dependency relation MUST be 

rejected.” This rule is enforced by static analysis [12]. 

The default compensation order derived by following the above mentioned two rules is consistent with 

the strict reverse order of completion. 

 

Fig 2.4: Graphical representation of definitions 

 

2.2.10 Termination Handler 

 

When a termination is forced, it disables the event handlers associated with that scope and terminates 

its primary activity and all the running event handler instances. After this, the custom 

<terminationHandler> for the scope is run if it is present or the default termination handler is run. The 

syntax of a termination handler is shown in the listing 2.5: 
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Listing 2.5: BPEL-Element terminationHandler syntax [12] 
<terminationHandler>  

  activity  

</terminationHandler> 

 

The termination handler of a scope applies only when the scope is in a normal processing mode. Once a 

scope has faulted, then the termination handler is uninstalled and the forced termination has no effect. 

When applying the forced termination, different activities in the scope are treated differently as 

mentioned below, 

 The <assign> activities may be allowed to complete since they are sufficiently short-lived. 

 Activities like <wait>, <receive>, <reply> and <invoke> must be interrupted and terminated 

prematurely. 

 The <empty>, <throw> and <rethrow> activities may be allowed to complete but once an <exit> 

activity starts, it must not be terminated. 

 All the structured activity behavior is interrupted.  

A termination handler in itself can use the same range of activities as a fault handler including 

<compensate> and <compensateScope> activity. When a fault occurs in the termination handler, the 

execution of all the running contained activities must be terminated as a termination handler cannot 

throw any fault. 

 

2.2.11 Event Handler 

 

Event handlers can be associated with each scope or even with the process scope. As the name 

suggests, event handlers are invoked when an event occurs and they have the capability to run in a 

concurrent manner. There are two types of events, first it could be inbound messages corresponding to 

a WSDL operation and second, alarms that are triggered after user-set times. The child activity within an 

event handler must be a <scope> activity. Unlike FCT handlers, event handlers are considered a part of 

normal behavior of the scope. 

 

2.3 BPEL4Chor 
 

An architectural style for building the software system based on services is called Service oriented 

architecture (SOA). In such an environment, Business Process Execution Language (BPEL) is an 

established standard for describing long-running business processes. The orchestration of web services 

into a single business process is done using BPEL [16]. 
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BPEL being an orchestration language specifies the order of execution of activities within an individual 

process. It also specifies the sequence and conditions for message exchanges in a process. Thus it 

provides the overview of an individual process and how it communicates with its partners. 

Choreography on the other hand provides the complete overview of all the processes and how they 

communicate with each other. It also provides the order and conditions for message exchanges 

between the processes. BPEL4Chor is a choreography language created to get the global view of all the 

process by extending the orchestration language BPEL. 

BPEL4Chor has three main artifacts [16], [17] as shown in the Fig 2.5: 

 

Fig 2.5: BPEL4Chor artifacts [17] 

 

2.3.1 Participant Topology 

 

The structural aspects of choreography are defined by a participant topology. It acts as ’glue’ between 

the participant behavior descriptions and it has introduced the following three notions: 

participant type: Each participant behavior description corresponds to one participant type implying 

that the same participant behavior description is applied to all the participants of the same type. 

participant reference: As the name suggests it is simply a pointer to a participant i.e. participant 

reference points to a participant. 
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message link: Which participant can potentially communicate with which other participants is defined 

by message links. 

 

2.3.2 Participant Behavior Descriptions (PBD’s) 

 

At the heart of choreographies lies their communication activities (message send and receive) along 

with their control and data flow dependencies. BPEL provides a rich set of constructs for the same and 

they are used unchanged in BPEL4Chor. Based on the abstract process profile for observable behavior 

specified by BPEL, the abstract process profile for participant behavior descriptions is derived stating the 

requirements for defining the behavior of each participant. To be able to uniquely reference activities 

from abstract process models an identifier is needed for each activity in a process. Not all the activities 

in BPEL have a name attribute (for example onMessage branches) and thus a new attribute wsu:id of 

type xsd:id is introduced  as a new attribute for communication activities and onMessage branches. This 

new attribute is used to reference any activities in the participant topology by message links for any 

message exchange. 

 

2.3.3 Participant Grounding 

 

Participant topologies and PBD’s contain no technical configuration stuff and thus the mapping to the 

web service specific configurations is introduced in participant groundings. A grounding is only 

considered valid when all the message links are grounded. Each and every PBD can be transformed by 

following the abstract process profile for observable behavior to an executable BPEL process only after 

choreography is completely grounded. 

 

2.4 Asynchronous and Synchronous Interaction 
 

As discussed in Chapter 1, the consolidation process consists of four steps. In the third step,  ‘Control 

flow materializations’ where control links are derived from the message links and also the 

communicating activities are transformed depending on the type of interaction. There are two kinds of 

interactions described below. 

First, asynchronous interaction wherein the activity that sends the message (sender) does not wait for a 

reply and it continues with its execution. The receiving activity (receiver) waits for a message to be 

received before continuing its execution thus imposing control flow relations between the activities of 

the sender and the receiver (for example, activity B2 must be executed after activity A1 completes). For 

such interaction, the <invoke> activity is replaced by an <assign> activity and the <receive> activity is 
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replaced by an <empty> activity which acts as a synchronization point for the control flow at the 

receiver side. Then the original link is materialized as a control flow link as shown in the left side of the 

Fig 2.6 thus maintaining the control flow relations imposed by asynchronous interactions. 

 

 

Fig 2.6: Asynchronous and Synchronous interactions transformations 

Second type, synchronous interaction wherein the activity that sends the message (sender) waits for a 

reply and it halts its execution. Once a reply is received then the sender resumes with its execution. This 

kind of interaction imposes control flow relations between the activities of the sender and the receiver 

(for example, activity A2 must be executed after activity B2 completes which in turn can only be 

executed after activity A1 completes). For such interaction, the <invoke> and <receive> activities are 

replaced by <assign> and <empty> activities respectively. In addition to that, an <empty> activity is 

added to the sender’s side as a synchronization point. As in the asynchronous interaction case, the two 

message flows are materialized as control flows. In spite of this, a new control link is created between 

the <assign> activity and newly added <empty> activity at the sender’s side to ensure the original 

control flow relation. This transformation is shown on the right hand side of the Fig 2.6. 

 

2.5 Existing System 
 

The current state of the system is based on the previous works of [18], [7] and [19]. The existing system 

takes a zip file as input containing the choreography in BPEL4Chor and its associated WSDL’s as shown in 

the Fig 2.7. The consolidation process takes place in the merge module.  
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It contains three parts, first a Pre-Merge Processor which converts all the <invoke> activities which are 

not in a scope into a scope. It is just an alternative representation of the <invoke> activity. Second, the 

actual merge module where the choreography is converted to an abstract BPEL process and the 

consolidation takes place. Here, the process containing a <flow> activity is created. This <flow> activity 

in turn contains the scopes enclosing the logic of the individual PBD’s. All the message links (refer to 

section 2.3.1) are examined to match with a consolidation pattern and the transformation takes place 

on that basis. In the end, all the technical information from Participant Grounding (refer to section 2.3.3) 

is added to the process. Third, a Post-Merge Processor in which all the control link violations associated 

with fault handler are identified and fixed. The final output of the merge module is a zip file containing 

the consolidated process and its associated WSDL’s as shown in the Fig 2.7. 

 

Fig 2.7: Consolidation – Existing system 
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3 Concept and Design 
 

This chapter elaborates the problem at hand and answers questions like how the problem arises along 

with identifying the various scenarios in which the problem might arise and provides a solution for the 

same. As described in Chapter 1, the third step of the consolidation process is ‘Control flow 

materialization’ after which the consolidated BPEL process model may contain control link violations 

such as cross boundary link violations. The final step aims at resolving all such control link violations. 

Briefly, this study thesis aims at providing a solution for cross boundary link violations occurring in 

consolidation of process models that interact via compensation handlers. 

All the analysis in this study thesis is done based on the following pre-conditions: 

 The choreography is based on one-to-one (i.e. one instance of a process communicating with 

one instance of another process) interactions [20]. 

 All the given processes are correct and without any deadlock. 

 Repeatable constructs do not contain any communication links with other activities through 

message links (a possible solution is mentioned briefly in the section 3.7). 

 

3.1 Consolidation of Process Models that interact via Fault handler 

 
In this section, a brief description of the solution where consolidation of the process models interacting 

via FH is provided. As per the BPEL specifications, no inbound control links are allowed for FH’s whereas 

outbound links are permitted. 

Consider a scenario as shown in the Fig 3.1, where a message link is pointing into a FH due to the 

synchronous interaction behaviour between two processes; process A and process B and the 

consolidated process Pmerged containing materialized control flows. 

As seen in the Fig 3.1 the control flow link l2 crosses the boundary of FHA in order to realize that activity 

A5 is executed after activities B1 and B2 respectively. This violates the cross-boundary link constraint on 

the FH. The developed solution for such violations proposes that all the activities containing any 

inbound control flow links be taken out of the fault handler. They are replaced by an empty activity 

(which does nothing) within a fault handler and this empty activity has a control link to the out-factored 

activities of the FH containing the FH logic (see Fig 3.2).  

As shown in the Fig 3.2, an empty activity A7 is created which has an outbound control flow link to the 

activity A3 containing the FH logic, thus making sure that whenever this FH is called its FH logic is 

executed and all of this is enclosed in the new scope SFH ensuring access to all the required variables. 
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Fig 3.1: Message link pointing into Fault handler [5] 

 

The control flow relation between the non-communicating activities (for example activity A5 must be 

executed after activity B1 and B2 respectively) as defined in the choreography is maintained in the 

proposed solution [5]. 

 

Fig 3.2: Merged process model with out-factored FH logic [5] 
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3.2 Problem appearing in Process Models interacting via Compensation 

handler 
 

In this section, various scenarios have been identified where control link violations might or might not 

occur in case of consolidation of process models interacting via CH. One of the most important steps in 

the consolidation of process models is ‘Control flow materializations’ wherein all the message links in 

the choreography are replaced by control links. This serves as the basis to identify scenarios where this 

step might result in the control link violations for CH’s. Thus it is necessary to segregate scenarios based 

on the basis of message links i.e. if compensation handlers contain any message links and if so what kind 

of message links. Each identified scenario is listed below and elaborated in the following subsections, 

 Compensation handler with no communication links 

 Compensation handler with synchronous communication link(s). 

 Compensation handler with asynchronous communication link(s). 

 

3.2.1 Compensation handler with no communication links 

 

This subsection describes the trivial scenario wherein the CH contains no communication links at all. The 

Fig 3.3 illustrates this case. 

 

Fig 3.3: CH with no communication link 

The diagram on the left side in the Fig 3.3 shows a simple choreography between two processes P1 and 

P2 where they interact via a message link originating from scope S1 of process P1 pointing into scope S2 

of process P2. The scope S1 in process P1 contains a compensation handler CH1 associated with it. There 

are no communication links going in or out of the compensation handler CH1. The right side of the Fig 

3.3 shows the consolidated process Pmerged wherein the message link is replaced by a control link. The 

enclosing scopes for scope S1 and S2 have been omitted for the sake of simplicity. There is no change in 
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the compensation handler CH1 associated with scope S1. Thus, after transformation there is no control 

link violation associated with the CH. 

 

3.2.2 Compensation handler with synchronous communication link 

 

This subsection elaborates a scenario where the CH initiates a synchronous communication call as 

shown in the Fig 3.4. The left side depicts choreography between two processes P1 and P2. The process 

P1 has a scope S1 and its associated compensation handler CH1. The invoke activity within this CH1 

sends a synchronous message m to the receive activity within the scope S2 of process P2. Since the 

message m is a synchronous message the control flow of the compensation handler CH1 is blocked until 

it receives the message m’ from the reply activity within the scope S2 of process P2. Once this reply 

message is received the compensation handler CH1 can resume the execution with the further activities 

and also the process P2 executes normally. 

 

Fig 3.4: Synchronous communication initiating from a CH 

On the right side of Fig 3.4 is the consolidated process Pmerged wherein the invoke activity in the 

compensation handler CH1 of scope S1 is replaced by an assign activity and an empty activity and the 

receive activity in scope S2 is replaced by an rmpty activity and the reply activity is replaced by an assign 

activity in scope S2. Also, the message flow links have been replaced by the control flow links CL1 and 

CL2. 

The Fig 3.4 illustrates a scenario wherein the synchronous call is initiated from within the compensation 

handler CH1 associated with scope S1 of process P1. A similar situation might arise when the call is 

initiated from outside the compensation handler but still resulting in synchronous inbound as well as 

outbound message links as shown in the below Fig 3.5, 
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Fig 3.5: Synchronous communication with CH from outside CH 

As seen clearly on the right in both the Fig 3.4 and Fig 3.5, the control flow links CL1 and CL2 are 

violating the cross boundary link constraints of the CH as per the BPEL specifications.  

 

3.2.3 Compensation handler with asynchronous communication link 

 

 

Fig 3.6: CH with asynchronous communication link 
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This subsection elaborates a scenario where the CH contains both asynchronous inbound and outbound 

communication links as shown in the Fig 3.6. The left side in figure depicts choreography between two 

processes P1 and P2. The process P1 has a scope S1 and its associated compensation handler CH1. This 

compensation handler CH1 has an outbound asynchronous message link from an invoke activity to the 

receive activity within the scope S2 of process P2 and similarly it has an inbound asynchronous 

communication message link as well. Point to note here is none of the execution waits to receive any 

kind of reply here since the communication is asynchronous. 

On the right side of the Fig 3.6 is the process Pmerged wherein all the invoke activities have been replaced 

by assign activities and the receive activities have been replaced by empty activities. Also, message links 

have been replaced by the control links CL1 and CL2. As seen clearly these control flow links are violating 

the cross boundary link constraints on the CH as per the BPEL specifications. 

 

3.3 Algorithm to determine Compensation Order Graph 
 

When a business process is being executed and for some unforeseen reason a fault occurs, 

compensation handlers for all the successfully completed scopes are invoked by the execution engine 

and they are executed in a particular order known as default compensation order as described in 

Chapter 2. This section elaborates an algorithm that has been devised to determine this default 

compensation order and construct Compensation Order Graph (COG) for any given business process 

containing multiple compensation handlers. The following section 3.3.1 provides the pseudocode for the 

devised algorithm along with the detailed explanation. 

 

3.3.1 Pseudocode for the algorithm 

 

The general structure of any business process consists of a main process containing a set of other 

activities such as flow, sequence, invoke, etc. nested within it. The activities such as flow, scope, 

sequence can further have more nested activities and so on. The closest data structure that can 

represent such a structure efficiently is tree data structure since it also has a root node that may contain 

other nodes as its nested children and so on. Thus the main idea behind this algorithm is to first convert 

the input BPEL process into a tree structure and then process this tree to determine the correct COG. 

The most important activity into consideration is a scope since a CH can only be associated with a scope 

and it can only be called from immediately enclosing parents FH or CH or TH which are also associated 

with scopes. Also a scope can be nested within a flow activity or a sequence activity and thus the nodes 

in the tree structure created are differentiated or categorized into 3 types; sequence, flow and scope. 

Based on the type of the node the corresponding processing is carried out.  
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For sequence and flow nodes the processing is trivial because Compensation Order Link (COL) is added 

to its parent and the algorithm continues processing the next element. But the processing gets complex 

if the node type is scope. In this case also a COL is added to its parent along with a check to see if this 

node has child nodes and if so COL’s are added from each of them to itself. The processing logic also 

checks if it has any control dependent nodes. In that case COL’s are added from the control dependent 

nodes to each of its children if it has any else to itself.  

Before diving deep into the pseudocode of the algorithm, a Data Dictionary (DD) has been defined 

explaining all the terms and functions that are used in the pseudocode. 

Data Dictionary 

Term Description 

  

TreeNode(TN) A node structure for a tree containing links to its 
children, parent and other control dependent TN’s. 
Also it contains the information about the node 
type i.e. if it is a scope, flow or sequence. 

rootNode It is the root of the tree structure for the given 
process. 

createTree(P) 
[Algorithm 1.2] 

It is a function that takes any process P as the 
input and generates the complete tree structure 
for that process. 

createTreeIterator(TN) A function that returns an iterator for the input 
tree node TN containing a list of all of its 
immediate children along with immediately 
control dependent nodes(if any). 

createImmediateChildIterator(TN) This function returns an iterator for the input tree 
node TN containing a list of all of its immediate 
children. 

createImmediateControlDepIterator(TN) This function returns an iterator for the input tree 
node TN containing a list of all of its immediate 
control dependent tree nodes.  

hasMoreElements(Ti) A function to check if the input tree iterator Ti has 
more elements in the list. 

getNextIteratorElement(Ti) This function returns the next element to be 
processed from the input tree iterator Ti. 

getType(TN) Returns the type of the input tree node TN i.e. if it 
is a sequence or flow or scope. 

Compensation Order Link(COL) It is a link from one TN to another imposing a 
compensation order between them. 

Control Link (CL) It is a link indicating the control dependency from 
one node to another. 

Nested Link (NL) It is link indicating parent-child relation between 
two nodes. 

addCOL(fromTN, toTN) This function adds a COL from source tree node 
fromTN to target tree node toTN. 
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isProcessed(TN) Checks if the input tree node TN has already been 
processed i.e. visited. 

setProcessed(TN) Sets the processed flag of the input tree node TN 
to true. 

createCompensationOrderForProcess(P) 
[Algorithm 1.1] 

This function creates the tree structure for input 
process P and calls another function to create the 
compensation order. 

createCompensationOrder(rootNode) 
[Algorithm 1.3] 

The actual logic to determine the compensation 
order for the given input tree resides in this 
function and the output of this method is the 
compensation order graph. 

addToQueue(TreeNode tn) Adds a new tree node tn to the queue. 

getNextQueueElement(Queue q) Returns the next element in the input queue q. 

getNestedElementIterator(TreeNode tn) This function returns an iterator for the nested 
children list of the input tree node tn. 

getDependentElementIterator(TreeNode tn) This function returns an iterator for the dependent 
tree nodes list of the input tree node tn. 

addNL(fromTN, toTN) This function adds a nested link from source tree 
node fromTN to target tree node toTN. 

addCL(fromTN, toTN) This function adds a control link from source tree 
node fromTN to target tree node toTN. 

inQueue(TreeNode tn) This function returns a true or false depending on 
whether the tree node tn is present in the queue. 

  

 

The approach that this algorithm follows is a ‘Depth First Search’ wherein the tree is traversed one 

branch at a time till the leaf nodes are reached while processing each node on the way, thus it takes 

care of the nested scopes as well as control dependent nodes while determining the correct 

compensation order for the input process. To better understand the pseudocode a sample business 

process is taken from [7] as shown in the Fig 3.7. 
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Fig 3.7: Example business process model [7] 

 

The complete algorithm is divided into three parts listed below, 

 

Algorithm 3.1 pseudocode for the starting function 

1. procedure createCompensationOrderForProcess(Process P) 

2.         rootNode = NULL 

3.         rootNode = createTree(P) 

4.         createCompensationOrder(rootNode) 

5. end procedure 
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The above pseudocode acts as the entry level function from where the call to create the COG starts. The 

pseudocode for the delegated function calls are given below. 

 

Algorithm 3.2: pseudocode for the function to create tree 

1. procedure createTree(Process P) 

2.         processTN = new TN 

3.         elementQueue = NULL 

4.         addToQueue(processTN) 

5.         while hasMoreElements(elementQueue) do 

6.             nextElement = getNextQueueElement(elementQueue) 

7.             setProcessed(nextElement) 

8.             nestedElementIterator = getNestedElementIterator(nextElement) 

9.             while hasMoreElements(nestedElementIterator) do 

10.                 nestedElement = getNextIteratorElement(nestedElementIterator) 

11.                 addNL(nextElement,nestedElement) 

12.                 if isProcessed(nestedElement) OR inQueue(nestedElement) then 

13.                     Continue 

14.                 else 

15.                     addToQueue(nestedElement) 

16.                 end if 

17.             end while 

18.             dependentElementIterator = getDependentElementIterator(nextElement) 

19.             while hasMoreElements(dependentElementIterator) do 

20.                 dependentElement = getNextIteratorElement(dependentElementIterator) 

21.                 addCL(nextElement,dependentElement) 

22.                 if isProcessed(dependentElement) OR inQueue(dependentElement) then 

23.                     Continue 

24.                 else 

25.                     addToQueue(dependentElement) 

26.                 end if 

27.             end while 

28.     end while 

29. end procedure 

The algorithm 3.2 uses a ‘Breadth First Search’ approach while constructing the tree from the given 

input process thus maintaining the parent-child relations in case of the nested scopes. Also the control 

dependent nodes are taken into consideration while constructing the tree.  

The input to the function is the complete process. To realize the breadth first search approach, queue is 

used as a data structure. This queue holds all the tree nodes to be processed. The processing continues 
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till the queue is empty i.e. there are no more nodes to be processed. Each tree node has a 

corresponding processed flag indicating if that node has already been processed and if so that node 

must not be added to the queue again. The flow of the pseudocode is briefly elaborated below. 

Lines 4-7: The very first step is to get all the immediate nested children and add them to the queue. For 

the sample business process shown in Fig 3.7, if the activity in consideration is ‘Flow2’ then all of its 

immediate nested children i.e. ‘Scope6’, ‘Scope7’, ‘Scope9’ and ‘Scope10’ are added to the queue. 

Lines 8-17: Process one element at a time from the queue, extract one element from the queue and get 

all of its immediate children. While iterating through the list of children add a nested link from the child 

to the parent and check if the child node is already processed or is present in the queue then continue 

with the children list otherwise add it to the queue. In the sample business process shown in Fig 3.7, if 

‘Scope7’ was extracted from the queue, it is marked processed, a nested link is added from ‘Scope7’ to 

‘Scope8’ and ‘Scope8’ is added to the queue if it is not processed or it is not in the queue. 

Lines 18-27: Now for the extracted element from the queue, get all the immediate control dependent 

nodes. While iterating through that list add a control link from parent to that node and again add it to 

the queue if that not has not been processed yet or is not in the queue. For the example in Fig 3.7, 

consider ‘Scope7’ was the extracted element, a control link is added from ‘Scope7’ to ‘Scope9’ and 

‘Scope9’ is added to the queue if it is not in the queue or has not been processed yet. 

The algorithm 3.3 generates a COG as an output and using that graph the compensation order is 

determined for the whole input process. In case only a specific part needs to be compensated then 

simply pass that as the input root node instead of the whole process thus making it work for specific 

cases as well as the whole process. 

The input to the function is the root node of the tree structure created by algorithm 3.2 for the input 

business process. To realize the depth first approach, this algorithm is designed in a recursive manner 

thus implementing the stack data structure on internal memory. The flow of the pseudocode is briefly 

elaborated below. 

Lines 2-4: Checks if the input node is already processed then the procedure ends. It is very important 

part of this pseudocode since it indicates the exit condition of the recursive call. 

Lines 5-6: Creates an iterator for the input tree node that iterates over the immediate children of that 

node. 

Lines 7-11: Gets the first iterator element and checks for the type of the node. If it is a SEQUENCE or 

FLOW then it sets the parent node to processed, adds a COL from this node to its parent node and calls 

this function recursively by passing this node as an argument. For the sample process shown in Fig 3.7, if 

the extracted node is ‘Flow2’ then it adds a COL from ‘Flow2’ to ‘Scope1’ (its parent) and sets ‘Scope1’ 

to processed. Recursively call the same function to passing ‘Flow2’ node as the argument. 
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Algorithm 3.3 pseudocode for the function to determine the COG 

1. procedure createCompensationOrder(rootNode) 

2.         if isProcessed(rootNode) then 

3.                 return 

4.         end if 

5.         treeIterator = createTreeIterator(rootNode) 

6.         while hasMoreElements(treeIterator) do 

7.                 nextTN = getNextIteratorElement(treeIterator) 

8.                 if getType(nextTN) is SEQ|FLOW then 

9.                         addCOL(nextTN, rootNode) 

10.                         setProcessed(rootNode) 

11.                         createCompensationOrder(nextTN)    // Recursive call 

12.                 elseif getType(nextTN) is SCOPE then 

13.                         addCOL(nextTN, rootNode) 

14.                         setProcessed(rootNode) 

15.                         childIterator = createImmediateChildIterator(nextTN) 

16.                         while hasMoreElements(childIterator) do 

17.                                 childTN = getNextIteratorElement(childIterator) 

18.                                 addCOL(childTN, nextTN) 

19.                         end while 

20.                         ctrlDepIterator = createImmediateControlDepIterator(nextTN) 

21.                         while hasMoreElements(ctrlDepIterator) do 

22.                                 ctrlDepTN = getNextIteratorElement(ctrlDepIterator) 

23.                                 if childIterator != NULL then 

24.                                         while hasMoreElements(childIterator) do 

25.                                                 childTN = getNextIteratorElement(childIterator) 

26.                                                 addCOL(ctrlDepTN, childTN) 

27.                                         end while 

28.                                 else 

29.                                         addCOL(ctrlDepTN, nextTN) 

30.                                 end if 

31.                         end while 

32.                         createCompensationOrder(nextTN)    // Recursive call 

33.                 end if 

34.         end while 

35. end procedure 

 

Lines 12-19: If the type of the node is SCOPE then mark its parent node as processed and for all of its 

immediate children add a COL from each of them to itself. So for the sample shown in Fig 3.7, if the 
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node is ‘Scope7’, then it marks node ‘Flow2’ (its parent) as processed and creates a COL from ‘Scope8’ 

(its child) to itself i.e. ‘Scope7’. 

Lines 20-32: Now get all the immediate control dependent nodes for that node and add a COL from each 

of the control dependent nodes to itself only if it does not have any immediate children. If it has children 

then add COL from each control dependent nodes to each of its children. Recursively call the same 

function with next node to be processed as the argument. So for the example in Fig 3.7, if the node is 

‘Scope7’, then ‘Scope9’ is its immediate control dependent node and since ‘Scope7’ has immediate child 

‘Scope8’ a COL is added from ‘Scope9’ to ‘Scope8’ and ‘Scope8’ is passed as the argument to recursively 

call the same function.  

 

3.3.2 Application of the algorithm on an example 

 

In this section, the algorithms mentioned in section 3.3.1 are applied on an example shown in the Fig 3.7 

to determine the COG for that business process. The combined output containing the tree structure 

along with the COG is shown in the Fig 3.8. 

When the algorithm 3.2 mentioned in the section 3.3.1 is applied, a tree structure corresponding to the 

input business process is created. The algorithm distinguishes between child nodes and control 

dependent nodes and thus the tree structure contains two different link types, a nested link and a 

control link. The Fig 3.8 shows the complete tree structure (i.e. the area without the green links and the 

numbers) for the example process shown in Fig 3.7. 

 This created tree structure is passed to the algorithm 3.3 listed in the previous section and a 

corresponding compensation order graph is created. The added compensation order links are shown in 

green color and the numbers in the Fig 3.8 indicate the sequence in which the COL’s are added by the 

recursive algorithm. Using this COG, the compensation order for the whole business process can be 

determined. For example, ‘Scope7’ can only be compensated after ‘Scope8’, which in turn can only be 

compensated after ‘Scope9’. 
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Fig 3.8: The tree structure containing the COG 

 

 

3.4 Consolidation of Process models that interact via Compensation 

handlers 
 

In section 3.2 different scenarios were identified where any violation of control flow link might occur 

when consolidating two processes interacting via CH. And in section 3.3, an algorithm to determine the 

correct COG has been proposed. In this section, different elemental base case scenarios have been 

identified that might occur in the merged process model to transform the behaviour of CH in case any 

cross boundary link violation occurs.  
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The proposed approach is inspired by the solution for consolidation of process models that interact via 

fault handlers [7] which has been described briefly in the section 3.1. But the same solution would not 

fit in case of the compensation handlers since even an outbound control link violates the cross boundary 

link constraint. Thus, the important points that describe the devised solution have been mentioned 

below in a brief manner: 

 Identify all the compensation handlers that violate the cross boundary link constraint. For each 

of such CH, the compensation logic associated with it is propagated to the immediately 

enclosing callers FCT handlers (since a CH can be invoked only from the FCT handlers of its 

immediately enclosing parent). 

 The compensation logic in each of the above identified CH’s is replaced by an empty activity 

since it does nothing and a compensation handler must have an enclosed activity (refer to 

section 2.2.9). 

 The compensation order is of utmost importance and it is derived by using the algorithm 

described in the section 3.3. This order must be known when multiple compensation logics need 

to be integrated in immediately enclosing parents FCT handlers. These compensation logics are 

arranged by using the proper combination of <flow> and <sequence> activities to maintain the 

derived compensation order. 

 The FCT handlers associated with a particular scope have access to the data context of that 

scope along with the data context of its ancestors. The data context consists of the following 

four things: 

 Variables 

 Partner links 

 Message exchanges and 

 Correlation sets 

 The compensation logic in the CH has access to the data context of that scope which might be 

used for compensation and thus, the complete data context associated with that scope must 

also be propagated to the immediately enclosing parent scope i.e. integrated with the parent 

scopes data context. 

 Compensation handlers that do not contain any cross boundary link violations are kept as they 

are without any changes. 

The general solution has been briefly described above and the further sub-sections provide a detailed 

solution for all the base cases that have been identified based on the way a compensation handler is 

invoked. These base cases are not mutually exclusive i.e. the proposed solutions could be applied in 

combination depending on the way a CH has been invoked (from FH or CH or TH or a combination of 

these). For the sake of simplicity, the data context is not shown in any of the diagrams but as discussed 

above it is also propagated to the immediately enclosing parent scope. Also, all the derived base cases 

assume that the scope completes its execution successfully so that the CH associated with that scope is 

installed. The scenario when scopes do not complete successfully or are unreachable has been handled 

separately in the section 3.6. 
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3.4.1 Transformation of <compensateScope> activity in Fault handler 

 

To elaborate the usage of <compensateScope> activity from within a fault handler a simple scenario has 

been shown wherein, a compensation handler for a scope is called from its immediately enclosing fault 

handler using a <compensateScope target=”S2”> as shown in the Fig 3.9. 

 

Fig 3.9: Transformation of <compensateScope> activity in FH 

Considering that the child scope S2 completes successfully, its corresponding compensation handler is 

installed, now if a fault occurs in its parent scope S1 then its associated fault handler FH1 is called which 

in turn calls the compensation handler CH2 of scope S2. Regular flow of activities in the fault handler is 

mentioned below: 

1. All the statements/activities before the <compensateScope> activity are executed. 

2. The statement <compensateScope target=”S2”> makes the BPEL engine to invoke the 

compensation handler CH2 associated with scope S2. 

3. The compensation logic CL2 within the compensation handler is executed and the flow returns 

back to the fault handler. 

4. The activities/statements after the <compensateScope> activity are executed. 

To emulate this behavior the process is transformed to the process as shown in the right side of Fig 3.9 

and the following changes are made: 

1. Replace the <compensateScope target=”S2”> in the fault handler with the actual compensation 

logic CL2 from the compensation handler CH2 of scope S2. 

2. Replace the compensation logic CL2 in the compensation handler CH2 of scope S2 with an 

<empty> activity. 
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After the above mentioned transformation the flow of the activities in case the fault handler is called 

takes place in the following order: 

1. All the activities/statements before the compensation logic CL2 are executed. 

2. The compensation logic CL2 is executed. 

3. All the activities/statements after the compensation logic CL2 are executed. 

As seen from the flows before and after transformation, the major difference is that the invocation of 

the compensation handler is removed while maintaining the control flow between the basic activities in 

the process. Thus the behaviour of the compensation handler is emulated for this scenario with the 

prerequisite that the scope S1 completes successfully. 

 

3.4.2 Transformation of <compensateScope> activity in Termination handler 

 

The scenario mentioned in section 3.4.1 is slightly varied i.e. in this case the compensation handler is 

being invoked from a termination handler instead of a fault handler by using the same activity 

<compensateScope> as shown in the Fig 3.10. 

 

Fig 3.10: Transformation of <compensateScope> activity in TH 

The flow in case of termination handler while calling the nested compensation handler and even after 

transformation is similar to the flow for fault handler described in section 3.4.1, so only the 

transformation steps are briefly described below: 

1. Replace the <compensateScope target=”S2”> in the termination handler with the actual 

compensation logic CL2 from the compensation handler CH2 of scope S2. 
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2. Replace the compensation logic CL2 in the compensation handler CH2 of scope S2 with an 

<empty> activity. 

In this way the behaviour of the compensation handler being called from a termination handler is 

emulated. 

 

3.4.3 Transformation of <compensateScope> activity in Compensation handler 

 

Similar to the scenario in section 3.4.1 and 3.4.2, <compensateScope> activity can also be called from 

within a compensation handler and the transformation process is also the same. So the behaviour of the 

nested compensation handler can be emulated as shown in the Fig 3.11. 

 

Fig 3.11: Transformation of <compensateScope> activity in CH 

 

3.4.4 Transformation of <compensate> activity in Fault handler 

 

The only other option that can be used to call a compensation handler is a <compensate> activity and it 

is used mostly in case of default FCT handlers but it can also be used explicitly by the user. A scenario is 

described when <compensate> activity is used from within a fault handler to call the compensation 

handlers associated with all the directly nested scopes. 

As described in section 3.4.1, the regular flow of activities in case of fault handlers is elaborated and 

then the flow in case of the transformed scenario is explained with the help of the Fig 3.12. 
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Fig 3.12: Transformation of <compensate> activity in FH 

As seen in the Fig 3.12, scope S1 has a fault handler FH1 associated with it containing the activity 

<compensate> and also scope S1 has five directly nested scopes which have control dependencies 

among each other. Mentioned below is the regular flow without transformation assuming all the nested 

scopes completed successfully and thus their corresponding compensation handlers are installed and a 

fault occurs in scope S1 and thus the fault handler FH1 is invoked: 

1. All the activities/statements before the <compensate> activity are executed. 

2. The <compensate> activity is invoked and thus the BPEL engine must first determine the 

compensation order since there are many nested scopes. It does so by using the two 

compensation rules already discussed in the section 2.2.9 of Chapter 2. 

3. The compensation handlers associated with the nested scopes are called as per the 

compensation order determined in step 2 and the compensation logic within each of them is 

executed. 

4. The execution returns back to the fault handler. 

5. All the activities/statements after the <compensate> activity are executed. 

Now to get rid of the compensation handlers of all the nested scopes we transform the process as 

mentioned below: 

1. Pass the scope S1 to the algorithm described in the section 3.3.1 to determine the 

compensation order graph for scope S1 and all of its nested scopes. 

2. Using the COG obtained from step 1, the exact order in which the compensation handlers must 

be invoked is known. The compensation logic of CH’s that can be executed in parallel are added 

within <flow> activities and when an order has to be imposed then within <sequence> activities. 

The arranged compensation logic associated with each nested compensation handler of scope 

S1 is shown in the right side of Fig 3.12. 

3. Replace the <compensate> activity in the fault handler with the flow generated in step 2. 
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4. Replace the compensation logic of all the nested compensation handlers with <empty> 

activities. 

After following the above transformation, the transformed process is obtained as shown in the right side 

of the Fig 3.12. The flow of the transformed process is briefly described below: 

1. All the activities/statements before the <flow> are executed. 

2. The <flow> contains the correct determined order of execution of the compensation logic of the 

nested scopes and is thus executed. 

3. All the activities/statements after the <flow/> are executed. 

Thus as seen from the flow, it can be concluded that the behaviour of the nested compensation 

handlers is emulated correctly by getting rid of them and transforming the compensation logic to the 

fault handler. 

 

3.4.5 Transformation of <compensate> activity in Termination handler 

 

The scenario mentioned in section 3.4.4 is tweaked with a minor change i.e. in this case the 

compensation handler is being invoked from a termination handler instead of a fault handler by using 

the same activity <compensate> as shown in the Fig 3.13. 

 

Fig 3.13: Transformation of <compensate> activity in TH 

The regular flow in case of termination handler while calling the nested compensation handlers and 

even after transformation is similar to the flow for fault handler described in section 3.4.4, so only the 

transformation steps are briefly described below, 
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1. Pass the scope S to the algorithm described in the section 3.3.2 to determine the Compensation 

order graph for scope S and all of its nested scopes. 

2. Using the COG obtained from step 1, the exact order in which the compensation handlers must 

be invoked is known. The compensation logic of CH’s that can be executed in parallel are added 

within <flow> activities and when an order has to be imposed then within <sequence> activities. 

The arranged compensation logic associated with each nested compensation handler of scope 

S1 is shown in the right side of Fig 3.13. 

3. Replace the <compensate> activity in the termination handler with the flow generated in step 2. 

4. Replace the compensation logic of all the nested compensation handlers with <empty> 

activities. 

In this way, the behaviour of the nested compensation handlers is emulated by transforming the 

compensation logic to the termination handler. 

 

3.4.6 Transformation of <compensate> activity in Compensation handler 

 

Similar to the scenario in section 3.4.4 and 3.4.5, <compensate> activity can also be called from within a 

compensation handler and the transformation process is also the same. So the behaviour of the nested 

compensation handlers can be emulated as shown in the Fig 3.14. 

 

Fig 3.14: Transformation of <compensate> activity in CH. 
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3.5 Transformation in case of Nested Scopes 
 

In the previous section, different base cases related to the way CH’s can be called were discussed along 

with a solution for each case. But all those cases were elemental in the sense considering the complexity 

of the scenarios. The transformations were trivial in nature since they only consider the relationship 

between parent and directly nested child scopes. In practice a process consists of scopes that are nested 

arbitrarily deep. Thus in most of cases, the six elemental cases described in section 3.4 are not 

encountered but they definitely act as the fundamental elements in the transformation of the whole 

process. 

To transform a real world process, think of it as tree, the root of the tree being the process itself and its 

immediately nested scopes as its immediate child nodes. Each of these scopes can have further nested 

scopes which in the tree are represented by further child nodes at the next level. Thus the deepest 

nested scopes in the process are represented by leaf nodes in such a tree structure. The elemental 

transformation is applied to these leaf nodes i.e. to the deepest nested scopes in a recursive manner 

climbing up the tree thus finishing the transformation of the whole tree i.e. the process itself. An 

example scenario for such a transformation is shown in the Fig 3.15. 

 

Fig 3.15: Example process containing nested scopes 

As shown in the Fig 3.15, the scope S1 can be considered as the root here and it has two immediately 

nested scopes S2 and S3. The scope S2 has further nested scopes S4 and S5. This is the deepest level for 

this example. These scopes S4 and S5 have associated CH’s containing compensation logic CL4 and CL5 

respectively. Since the CH associated with any scope can only be invoked by its immediately enclosing 

parents FCT handlers the area impacted during the transformation is colored in yellow as shown in the 

Fig 3.15. The elemental transformations that apply in this scenario fall under the base cases mentioned 

in section 3.4.4 and 3.4.6. After transformation the impacted areas are shown in red in the Fig 3.16. 
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Fig 3.16: Process after applying first transformation 

Now the elemental transformations are applied recursively one level up till we reach the parent process. 

Now the scopes under consideration are S2 and S3 and the areas into consideration are colored in 

yellow in the Fig 3.17. 

 

Fig 3.17: Area to be considered while applying second transformation 

For the scenario in the Fig 3.17, the elemental transformations that can be applied fall under the base 

case described in the section 3.4.6. After the transformation is applied the changes are shown in red in 

the Fig 3.18. 
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Fig 3.18: The final transformed process 

Thus the behaviour of the CH’s is emulated in case of nested scopes by applying the elemental 

transformation recursively starting at the deepest level up to the root level i.e. the whole process. 

 

3.6 Transformation when Scopes do no complete successfully 
 

During regular execution, when a scope does not complete successfully, then the execution flow goes to 

the FH or TH associated with that scope, and its CH is never installed. It indicates that the CH of a scope 

which does not complete successfully is not reachable and hence it is never invoked. To emulate this 

behaviour, once the compensation logic within the CH associated with a scope is propagated to the 

immediately enclosing parents FCT handlers, a check must be added to decide if that compensation logic 

should be executed and that check indicates if the scope with which the compensation logic is 

associated, completed successfully. 

For this purpose, a new variable ‘hasScopeCompletedSuccessfully’ is created and is kept in the process 

scope itself thus making it accessible anywhere within the process. If by default this value is set to ‘false’ 

and is changed to ‘true’ only at the end of the scope, then there might arise a situation when the 

execution of the scope logic completes but before assigning ‘true’ to this variable some fault occurs  in 

the parent scope and thus this assignment operation is not executed. This leads to a false scenario 

wherein the variable associated with that scope remains ‘false’ whereas the scope completed 

successfully and must be compensated. Thus by default, it is assumed that each and every scope will 

complete its execution successfully and hence this variable is initialized with a value ‘true’. There is one 

variable for each scope thus segregating all the scopes within the process. As discussed in the above 

section, when a fault occurs or if for some reason a scope terminates without completing, then the 
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execution is transferred to the FH/TH associated with that scope. This is the place where the variable 

associated with that scope will be set to ‘false’. 

Now that a variable has been added indicating whether a scope completed successfully or not, the 

compensation logic associated with any scope is only executed if the value of the variable associated 

with that scope is ‘true’. This way, the scenario when a scope does not complete successfully is 

emulated by adding a check before executing any compensation logic. 

BPEL also has a special feature of ‘Dead Path Elimination’ (DPE) (refer to section 2.2.7) which is activated 

when the property ‘suppressJoinFault=yes’ is set. The behavior when this property is set to true and a 

scope fails, then the Boolean value associated with all the outgoing links from that scope is set to ‘false’. 

Whether a scope will be activated is determined by the join condition of all the incoming links and hence 

it is statically not possible to determine if a scope will be activated in the lifetime of the process. By 

default the join condition for all the incoming links is ‘OR’ [12]. 

To cope up with such situation, a new variable is introduced indicating if a scope was ever reached, 

‘isScopeReached’ and the assumption here is none of the scopes in the process are ever reached and 

thus this variable (one variable per scope) associated with each scope is initialized to ‘false’. As soon as a 

scope is activated or reached, before starting the activity associated with that scope this variable 

associated with that scope is set to ‘true’ thus indicating that the particular scope was reached. The final 

condition which is added before executing any compensation logic is that both these variables 

‘hasScopeCompletedSuccessfully’ and ‘isScopeReached’ must be set to ‘true’. These two variables make 

it possible to emulate the behavior when a scope does not complete successfully or is never activated. 

To understand it better consider a sample process shown in the Fig 3.19. 

 

Fig 3.19: Example process when scopes do not complete successfully 
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For the sake of simplicity, the TH’s associated with the scopes are not shown in the figure. This example 

shows scopes nested within each other as well as having control dependencies. The transformations 

that are applied have already been discussed in the section 3.5 and thus the transformed process along 

with the variables described above is shown in the Fig 3.20. 

 

Fig 3.20: Transformed process when scopes do not complete successfully 

In the Fig 3.20, the declarations of the variables associated with the scopes have been shown. The 

discussed variable ‘hasScopeCompletedSuccessfully’ is represented by the scope name followed by ’C’ 

and has been initialized with value ‘true’ (For example, S2C implies hasScope2CompletedSuccessfully). 

Similarly the variable ‘isScopeReached’ is represented by the scope name followed by ‘R’ and has been 

initialized with value ‘false’ (For example, S4R implies isScope3Reached). 

As discussed, all the variables associated with the completion of a scope are set to ‘false’ in the FH’s 

associated with that scope. Also, all the variables that check whether a scope was reached have been set 

to ‘true’ as soon as the flow enters the scope. Before executing compensation logic associated with any 

scope, a condition has been added to verify if both these variables are set to ‘true’ (indicating the scope 

was reachable and it completed successfully) and only then the compensation logic is executed. 
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3.7 Transformation when Scope is within a Repeatable Construct 
 

For all the cases considered in the above section, it was assumed that the scopes are not within a 

repeatable construct. In this section, a possible conceptual solution is proposed for the case when a CH 

associated with a scope within a repeatable construct violates the cross boundary link constraint. 

In regular flow, when a scope is within a repeatable construct and it needs to be compensated, for each 

successful iteration of the loop the BPEL engine creates a scope instance (also known as scope 

snapshot)and along with that it also creates CH instance for that particular scope instance. This CH 

instances are known as compensation handler instance group and the BPEL engine uses this CH instance 

group to compensate the scope in the default compensation order. Repeatable construct could be loop 

or an event handler and are further categorized as non-parallel loops (containing <while>, <repeatUntil> 

and non-parallel <forEach>) and parallel loops (containing parallel <forEach> and event handlers). In 

case of non-parallel loops the invocation of the installed CH instances in successive iterations must be in 

reverse order whereas for parallel loops no ordering is imposed for the compensation of associated 

scope [12]. 

To emulate such behavior and to impose the reverse order of execution for such CH instances the best 

suitable data structure is a stack. The entries in this stack could be the scope instances containing only 

the data context. The proposed solution is briefly described below, 

 Create one stack associated with one scope within a repeatable construct in its immediately 

enclosing parent scope. This stack stores the scope instances. 

 For each successful iteration of the scope, take the snapshot of its data context (this can be 

emulated by copying the data context of this scope in a new scope with its primary activity as an 

empty activity) and push it (i.e. the newly created scope) on the stack associated with that 

scope. 

 The compensation logic associated with this scope will be propagated to the FCT handlers of the 

immediately enclosing parent scope and thus it will have access to this stack. 

 Execute the compensation logic in a loop on each element (i.e. the scope containing the data 

context) of the stack, till the stack is empty thus emulating the behaviour similar to the regular 

execution. 

To get a better idea of the proposed approach, a sample transformed process is shown in the Fig 3.21. 

As seen the scope S2 is within a repeatable construct i.e. loop and assuming the compensation handler 

CH2 associated with it contains a control link violation the transformation is carried out. A stack 

representing scope S2 is declared in its parent scope i.e. in scope S1. After each successful iteration of 

scope S2, a snapshot of the data context is taken by creating a new scope containing this data context of 

scope S2 and an empty activity as its primary activity. This newly created scope is pushed on the 

declared stack S2_stack.  
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The propagated compensation logic CL2 in the fault handler FH1 has access to this declared stack 

variable S2_stack. This compensation logic is executed in a loop while popping out the elements in the 

stack one at a time. Thus, the compensation logic is executed for all the scope instances pushed on the 

S2_stack in the reverse order of execution. This loop runs till the stack is empty thus emulating the 

behaviour of a compensation handler instance group. 

 

Fig 3.21: Transformed process when scopes do not complete successfully 

 

3.8 Summary of Cases addressed 
 

The main focus of this study is to identify and correct any control link violations that occur during the 

consolidation of the process models that interact via compensation handlers. To describe the solution 

briefly, the compensation logic of the CH’s is propagated to the FCT handlers of the immediately 

enclosing parent scope. 

There are two types of compensation handlers, explicit and implicit and the way both these scenarios 

are covered in this study are described below, 

1. Explicit compensation handler: The way to invoke an explicitly defined CH is by using the 

<compensateScope> and <compensate> activities and these in turn can be called from the 

<catch>, <catchAll>, <compensationHandler> and <terminationHandler> constructs. Of these, 

the <catch> and <catchAll> can only be used in the FH. Considering these ways the following 

permutation and combinations occur, 
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a. <compensateScope> in FH – solution covered in section 3.4.1 

b. <compensateScope> in TH – solution covered in section 3.4.2 

c. <compensateScope> in CH – solution covered in section 3.4.3 

d. <compensate> in FH – solution covered in section 3.4.4 

e. <compensate> in TH – solution covered in section 3.4.5 

f. <compensate> in CH – solution covered in section 3.4.6 

Also, the nested scope scenario is covered in the section 3.5, wherein the transformation is 

carried out from the deepest level, one level at a time reaching to the parent using the above 

mentioned elemental transformations. 

2. Implicit compensation handler: Implicit CH is nothing but a default CH. According to the BPEL 

specifications, the way it determines the compensation order is “reverse order of execution”. 

When no CH is provided for a scope, the BPEL engine associates it with a default CH. The 

assumption is that it does not violate any control link violations imposed by the BPEL 

specifications since it is defined by the BPEL engine itself. 

Thus, each scenario has been taken into consideration and solution is provided for all the cases where 

control link violations occur. Hence, we can safely argue that this approach is able to get rid of CH’s for 

all type of scenarios. 
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4 Implementation 
 

This chapter provides the details of the implementation of the proposed solution discussed in the 

previous chapter. The implementation is based on the existing state of the system described in section 

2.5. As a development environment, the IDE Eclipse Kepler Service Release One (SR1) along with Java 7 

was used. Initially, the BPEL engine Apache ODE v.1.3.6 (Orchestration Director Engine) was used to 

develop sample business processes. 

The implementation details and the flow of the existing system are briefly described as shown in the Fig 

4.1. 

 

Fig 4.1: Consolidation process for choreography 

As seen in Fig 4.1, the implementation of the consolidation process (refer chapter 1) consists of five 

steps. First the choreography files i.e. the PBD’s, WSDL, topology and grounding are read from the 

provided input zip file. In the second step, the class MergePreProcessor is invoked wherein any 

preprocessing related to the input files can be done. In the current implementation [7], the invoke 

activities are transformed to have a surrounding enclosing scope activity. Then, a merged process Pmerged 

is created containing the activities from the processes in the input PBD’s each enclosed within a 

separate scope. In the fourth step, the consolidation is done using the predefined consolidation 

patterns. After consolidation the last step deals with all the post processing that needs to be done and 

for this purpose the class MergePostProcessor is used. The current implementation [7] deals with fixing 

all the control link violations related to the fault handler, termination handler and event handler. 
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4.1 Relationship between various Components 
 

The current implementation has a lot of projects which are used in conjuncture to obtain the final 

consolidated process. The relationship between these various projects is shown in the component 

diagram in the Fig 4.2. 

 

Fig 4.2: Component diagram for choreography consolidation [7] 

 

The project org.bpel4chor.mergeChoreography is the most important project which contains the main 

class ChoreographyMerger which drives the complete consolidation process. It uses the classes 

MergePreProcessor, MergerPostProcessor and ChoreographyPackage to obtain the final merged 

process. The class ChoreographyPackage is responsible for reading the input BPEL4Chor files, initializing 

the merged process Pmerged and storing it. With the help of the project org.bpel4chor.model which was 

developed by [19], the BPEL4Chor files are stored in BPEL4Chor objects which are used to read the input 

files. There are a lot of utility classes containing useful reusable functionalities (for example to zip and 

unzip files) which are bundled together in the project de.uni_stuttgart.iaas.bpel.model.utilities. These 

classes are used by the ChoreographyPackage to traverse through the BPEL and BPEL4Chor objects 
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during the consolidation process. In addition to that, the eclipse EMF projects org.eclipse.bpel.model 

and org.eclipse.bpel.common.model are used for the representation and the processing of the BPEL 

objects. Another component diagram related to the testing of the merged process (refer to section 4.3) 

is shown in the Fig 4.3. 

 

Fig 4.3: Component diagram for testing the consolidated process [7] 

As seen, the project org.bpel4chor.mergeChoreography.test contains the component CheckMergeResult 

which is used to validate the merged process against the expected output process. To obtain the 

merged process it uses the interfaces provided by the org.bpel4chor.mergeChreography project. 

 

4.2 Consolidation Flow 
 

The sequence diagram showing the consolidation process in the current implementation is shown in the 

Fig 4.4. The method merge(fileName) from the class ChoreographyMerger is invoked which acts as the 

main method to drive the overall consolidation flow. First the input choreography files are read using 

the readInZip(fileName) method of the class ChoreographyPackage. This is the part of the step one 

shown in the Fig 4.1. Next, the method startPreProcessing(choreographyPackage) from the class 

MergePreProcessor is invoked where in all the preprocessing needed prior to the actual consolidation 

logic is carried out. This is the second step shown in Fig 4.1. The third and the fourth step shown in the 

Fig 4.1 are executed by calling the method mergeChoreography() of the class ChoreographyMerger. This 

method in turn invokes the initMergedProcess() method of the class ChoreographyPackage which is 

responsible for creating and initializing the merged process Pmerged. Then an instance of the class 

CommunicationMatcher is created which is used to loop over all the message links to find a matching 

merge pattern for that message link and then the corresponding merge takes place. Once the loop 



68 
 

execution is complete the fifth step shown in the Fig 4.1 starts. The method 

startPostProcessing(choreographyPackage) of the class MergePostProcessor is invoked which is 

responsible for dealing with the control link violations in the merged process Pmerged associated with the 

FCTE handlers. This is shown in more details with the help of Fig 4.5. In the end, before the 

merge(fileName) method finishes its execution, the method saveMergedChoreography(fileName) from 

the class ChoreographyPackage is invoked which contains the logic to save the consolidated process 

Pmerged along with its associated WSDL files to a configurable output location. 

 

Fig 4.4: Sequence diagram for choreography consolidation [7] 
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The sequence diagram in the Fig 4.5 shows the post processing flow after the actual consolidation 

process finishes. The class FCTEUtil contains utility methods required for the processing of the FCTE 

handlers. Some of the existing utility methods were modified and new methods were added to 

accommodate the changes corresponding to the compensation handler (for example to check if an 

activity has any incoming link). The class CompensationHandlerUtil was modified to contain the actual 

logic to deal with the compensation handlers containing any control link violations. The algorithms 

described in section 3.3.1 to determine the compensation order graph have been implemented in this 

class. New class to define the node structure of the tree has also been created for the same purpose. 

Also, the transformations needed to fix the control link violations associated with compensation 

handlers (refer to sections 3.4, 3.5 and 3.6) are carried out in this class. The classes FaultHandlerUtil and 

TerminationHandlerUtil are responsible for fixing the control link violations associated with fault and 

termination handlers respectively [7]. When the execution invokes the method 

startPostProcessing(choreographyPackage) of the class MergePostProcessor, then it in turn invokes the 

methods processCompensationHandler(mergedProcess) and processScopesFT(mergedProcess) of the 

class FCTEUtil. The method processCompensationHandler(mergedProcess) creates an instance of the 

class CompensationHandlerUtil and then invokes the method processCompensation(activity) for all the 

scopes in the merged process Pmerged (this method is modified to implement the algorithms described in 

the section 3.3.1). Similarly, the method processScopesFT(mergedProcess) creates instances of the 

classes FaultHandlerUtil and TerminationHandlerUtil and invokes the corresponding methods 

processFaultHanlder(activity) and processTerminationHandler(activity) respectively for all the scopes in 

the merged process. 

 

4.3 Review of the Merged Process 
 

An implementation to verify the correctness of the merged process was developed in [7] which is reused 

for verifying the correctness of the merged process after applying the transformations to fix the control 

link violations associated with compensation handlers during the consolidation process. The class 

CheckMergeResult requires the file paths for two files, first the file path to the merged process Pmerged 

and second the file path to the expected process Pexpected. The process Pexpected (developed for the 

scenarios described in the sections 3.4, 3.5 and 3.6) contains the structural design which corresponds to 

the expected merged process. Thus the obtained process Pmerged after consolidation is checked against 

the process Pexpected to verify if the process Pmerged conforms to the structural design of the process 

Pexpected. Also, regular expressions are used to check if the activity names match. It is very important to 

note that the process Pexpected cannot contain any structure that violates any BPEL specification and thus 

it must be developed carefully. For example, a scope can have only one activity directly enclosed within 

itself (refer section 2.2.6).  Therefore scopes containing more than one activity must not be defined in 

the process Pexpected. 



70 
 

 

Fig 4.5: Sequence diagram for MergePostProcessor dealing with FCT handlers 
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5 Conclusion and Future Work 
 

The main objective behind this study thesis was to identify and resolve scenarios when consolidation of 

process models that interact via compensation handlers results in merged processes containing control 

link violations related to compensation handlers. This objective was achieved by identifying and 

grouping the scenarios (refer to section 3.2) into logical units and a solution for each unit was proposed. 

An implementation of the proposed solution was integrated with the existing system (refer to section 

2.5) by creating choreographies for each scenario, applying the consolidation process and checking the 

merged process with the expected correct consolidated process. 

Chapter 1 discussed the various reasons that can lead to the decision of insourcing a partner’s business 

process into its own and the advantages behind this consolidation. The consolidation process was 

described briefly with an example. In chapter 2, all the fundamental concepts that are needed to 

understand the basics of BPEL and BPEL4Chor were described.  

In chapter 3, the solution for control link violations in case of fault handlers [7] was described briefly and 

it was used as the basis of the approach for compensation handlers. Based on the ways a compensation 

handler can be invoked, base scenarios were identified, analyzed and a solution was proposed for all the 

identified cases. An algorithm (refer to section 3.3) was proposed which is used to derive the 

compensation order graph complying with the default compensation order rules (refer to section 

2.9).The compensation logic from the compensation handlers violating the control link constraints was 

propagated to the immediately enclosing parents FCT handlers and it was arranged in a way that follows 

the default compensation order derived by applying the proposed algorithm. Boolean variables 

indicating if a scope was reached and completed successfully were created which in turn were used as a 

check before executing the compensation logic for any scope. A conceptual solution was also proposed 

for a scenario wherein a scope is nested within a repeatable construct. The control flow relations among 

the basic activities from the choreography were maintained after applying the transformations to obtain 

the final merged process. 

Chapter 4 elaborated the implementation details of the algorithms (refer to section 3.3) and the 

transformations (refer to sections 3.4, 3.5 and 3.6) needed to fix the control link violations associated 

with the compensation handler. Also, an overview of the integration of this implementation with the 

existing components and their correlation was described with the help of component and sequence 

diagrams. 
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Future Work 

The concept of the isolated scopes has been briefly described in the section 2.2.6. The proposed solution 

assumes that the compensation handler associated with any scope is not an isolated scope. Thus the 

current solution needs an extension to provide an approach for compensation handler associated with 

an isolated scope. 

In section 3.7, a conceptual approach has been proposed for the case when a scope is enclosed within a 

repeatable construct. The current implementation does not cover the implementation of this solution 

and thus it has to be extended accordingly. 

The most important aspect of the consolidation process is to retain the control flow relations between 

the basic activities in the choreography and these must not be altered by the transformations described 

in the sections 3.4, 3.5 and 3.6. Thus, there is a need to devise a formal verification method which can 

verify that the control flow relations between the basic activities are maintained. 
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