Institut fiir Softwaretechnologie
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Prozessanalyse Nr. 3

Analyse des

Entwicklungsprozesses bei
Softwareentwicklern

Verena Kafer, Florian GanBlen, Burak Incearap

Studiengang:

Prifer:

Betreuer:

begonnen am:

beendet am:

CR-Klassifikation:

Softwaretechnik

Prof. Dr. Stefan Wagner

Dipl.-Ing. Jan-Peter Ostberg

04.12.2013
04.06.2014

K.6.3

Kurzfassung

Im Rahmen unserer Prozessanalyse an der Universitit Stuttgart haben wir den Arbeitsablauf
eines Softwarehauses in Ludwigsburg analysiert und verbessert. Der Entwicklungsprozess
basiert auf dem Vorgehensmodell Scrum. Um die eigentliche Situation besser zu verstehen,
haben wir uns die vorliegenden Ablédufe erkldren lassen. Dabei sind uns an verschiedenen
Stellen Probleme und Unregelméfigkeiten aufgefallen.

Im Rahmen der Analyse haben wir deshalb fiir den Unterprozess des Testens Verbesse-
rungsvorschldge erstellt. Neben der Erklarung von verschiedenen Testabldufen, die in die
bestehende Struktur integriert werden konnen, stellen wir auch ein Werkzeug fiir automati-
sche Systemtests vor.

Inhaltsverzeichnis

1 Einleitung
1.1 Aufgabenstellung
1.2 Vorgehen

2 Ist-Analyse

2.1 Beschreibung des Projektpartners.,,

2.2 Grundlagen des Prozesses
2.3 Ablauf

2.3.1 Kundenbefragung und weitere Schritte
23.2 Sprint-Planung o o
2.3.3 Implementierung L o Lo
23.4 Test o
2.3.5 Kundendemonstration 0 0o L.
2.3.6 Kundenabnahme
237 Wartung
238 Fazit

3 Unser Verbesserungsvorschlag
3.1 Erweiterter Scrum-Prozess

3.2 Erklarung der verschiedenen Testarten

3.2.1 Entwicklertest . . .
3.2.2 Inkrementtest . . .
3.2.3 Releasetest
3.3 Ergédnzende Anpassungen

3.4 Tool-Unterstiitzung fiir den Systemtest

3.4.1 Selenium
3.4.2 Unsere Empfehlung

4 Fazit

Literaturverzeichnis

Abbildungsverzeichnis

2.1
2.2

3.1
3.2

Allgemeiner Ablauf eines Projekts 10
Festgestellter Problemkreislauf im Bereich der Implementierung 12
Die einzelnen Abldufe und Phasen in Scrum 15
Eine mogliche Erweiterung des Scrum-Prozesses 16

1 Einleitung

1.1 Aufgabenstellung

Unter einer Prozessanalyse versteht man die Untersuchung und Uberpriifung von einem
oder mehreren Prozessen bzw. Abldufen sowie die Zerlegung dieser in ihre Einzelteile.
Anhand dieser Analyse des ,Ist-Zustands” konnen dann konkrete Verbesserungen fiir einen
,Soll-Zustand” vorgeschlagen werden.

Im Master-Studiengang Softwaretechnik der Universitdt Stuttgart wird solch eine Pro-
zessanalyse in einer Gruppe bestehend aus drei Personen durchgefiihrt. Als Partner fiir
diese Aufgabe hatte sich ein kleines und noch relativ junges Softwareunternehmen aus
Ludwigsburg zur Verfiigung gestellt. Es wurde der allgemeine Softwareentwicklungsprozess
analysiert und dann festgelegt, dass der Teilprozess des Testens ndher untersucht und
verbessert werden sollte.

1.2 Vorgehen

Um den Gesamtprozess zu verstehen, haben wir uns mehrere Male mit den Mitarbeitern
unseres Prozesspartners getroffen. Dabei haben wir sowohl mit dem Geschéftsfiihrer als
auch mit den Teammitgliedern iiber die derzeitige Situation gesprochen. Uns wurde der
Gesamtprozess erkldrt und wir konnten bei mehreren Meetings und Kundenbesuchen
anwesend sein. Um ein besseres Verstindnis fiir die vorliegende Situation zu bekommen,
haben wir verschiedene Fakten zusammengetragen und diese mit den Verantwortlichen noch
einmal besprochen. Dabei sind uns verschiedene Probleme aus unterschiedlichen Bereichen
und Abldufen aufgefallen, die wir daraufhin visualisiert und in einer Prédsentation vorge-
stellt haben. Die meisten Probleme konnten wir im Bereich des Testens feststellen, wofiir
wir mogliche Verbesserungen erarbeitet haben und in dieser Ausarbeitung vorstellen werden.

2 Ist-Analyse

Um vorhandene Probleme im Prozess unseres Partners zu finden, ist es wichtig gewe-
sen, zundchst den Gesamtprozess zu verstehen. Dafiir wurde insbesondere die spezielle
Entwicklungssituation miteinbezogen.

2.1 Beschreibung des Projektpartners

Bei unserem Projektpartner handelt es sich um ein kleines Team von jungen Softwareentwick-
lern. Alle Mitarbeiter sind an der Entwicklung von Software beteiligt. Dies fiihrt dazu, dass
alle Entwickler in einem Raum sitzen und eine sofortige Kommunikation somit jederzeit
moglich ist.

2.2 Grundlagen des Prozesses

Der Gesamtprozess ist Scrum-basiert’ und sehr agil. Es wird viel Wert auf die Zusammen-
arbeit mit dem Kunden gelegt. Aufgrund der kleinen Mitarbeiterzahl werden nicht alle
Scrum-Rollen vollstandig tibernommen. Somit werden mehrere Rollen in einer Person vereint.
Neben einem grofien Projekt, das die Hauptarbeit darstellt, gibt es auch noch verschiedene
kleinere, die parallel dazu durchgefiihrt werden.

2.3 Ablauf

Im folgenden Abschnitt wird der Gesamtprozess in einzelnen Schritten vorgestellt. Abbil-
dung 2.1 stellt diese grafisch in ihrer Reihenfolge dar. Zu jedem Teilschritt erfolgt eine genaue
Erkldarung sowie die von uns festgestellten Probleme.

Thttp:/ /de.wikipedia.org/wiki/Scrum

http://de.wikipedia.org/wiki/Scrum

2 Ist-Analyse

Abbildung 2.1: Allgemeiner Ablauf eines Projekts

2.3.1 Kundenbefragung und weitere Schritte

Die Kundenbefragung findet zu Beginn jedes Projekts statt. Der Kunde erklart dabei, wie
er sich die fertige Software vorstellt und es werden die Anforderungen besprochen und
aufgenommen. Die genannten Anforderungen werden dabei jeweils in einer User-Story
festgehalten. Daraufhin folgt die Planung des ersten Sprints. Dieser wird implementiert und
getestet. Die erzielten Ergebnisse werden dem Kunden in einer Demonstration vorgestellt
und von diesem abgenommen. Die Software wird dabei nach jedem Sprint ausgeliefert.
Dadurch kann es wihrend des weiteren Projektablaufs bereits zu Wartungsarbeiten kommen.
Der vorhandene Kreislauf wird mit dem Beginn des ndchsten Sprints geschlossen. Da bisher
noch kein grofieres Projekt beendet wurde, konnen noch keine Angaben beziiglich der
letzten Abnahme und der spateren Wartung gemacht werden.

Festgestellte Probleme

Bei dieser ersten Befragung werden nur die offensichtlichen Anforderungen erhoben. Sel-
tene Anforderungen werden nicht angesprochen oder erst spater erkannt. Dadurch ist das
Anforderungsdokument unvollstandig.

10

2.3 Ablauf

Zudem gibt es keinen Projektplan. Geplant wird von Sprint zu Sprint. Auch eine ausfor-
mulierte Spezifikation ist nicht vorhanden. Alle Anforderungen werden nur als User-Story
festgehalten.

2.3.2 Sprint-Planung

Jeder Sprint beginnt mit einer Sprint-Planung. In dieser wird mit dem Kunden diskutiert,
welche User-Stories im Sprint bearbeitet werden sollen. Der Kunden priorisiert dabei die
User-Stories. Die User-Stories werden daraufhin vom Team in Unteraufgaben aufgeteilt.
Dabei wird auch iiber die grobe technische Umsetzung diskutiert. Welche Komponenten
miissen gedndert werden? Wo konnte es Schwierigkeiten geben? Jede Aufgabe wird mit
einem Akzeptanzkriterium versehen.

Anschliefiend wir mit Hilfe eines Planungs-Poker der Aufwand jeder Aufgabe geschitzt.
Einmal im Monat geht ein Dokument mit allen bisher erhobenen Anforderungen zum
Kunden, welcher dieses handschriftlich ergdnzt und dann zuriickschickt.

Festgestellte Probleme

Die Aufteilung der User-Stories in einzelne Aufgaben geschieht {iber ein separates Programm,
in welches die Stories manuell kopiert und dann aufgeteilt werden. Dabei kommt es hin
und wieder zu Ubertragungsfehlern in Form von falschen oder doppelten Zuweisungen zu
Arbeitspaketen. Aufgrund der fehlenden bzw. unvollstindigen Dokumente kommt es in
seltenen Fillen zu Unklarheiten beziiglich des Umfangs einer User-Story, dann muss zuerst
eine Riicksprache mit dem Kunden fiir Klarheit sorgen.

2.3.3 Implementierung

Bei der Implementierung werden nacheinander die Aufgaben des jeweiligen Sprints abgear-
beitet. Dabei stellen die Kommentare im Quellcode die Dokumentation dar. Kleinere Projekte,
die nur von einer Person durchgefiihrt werden, finden ohne Diskussion und Kontrolle statt.

Festgestellte Probleme

Es gibt Entwurfs- und Spezifikationsdokumente, welch die Kernmodule oder wichtige Algo-
rithmen zeigen. Ein Grofsteil der Dokumentation findet jedoch im Quell-Code statt. So ist
es schwierig, manche Dinge direkt nachzulesen. Es gibt keine weiteren Dokumente, welche
einen Ablauf und somit die ndchsten Schritte vorgeben konnten. Auch ein allgemeiner
Zielpunkt ist nicht wirklich definiert. Diese Missstdnde sorgen dafiir, dass die Implemen-
tierungsphase innerhalb eines Sprints ohne richtigen Plan verfolgt wird. Sollte das Projekt
einmal zur Seite gelegt und zu einem spédteren Zeitpunkt wieder aufgenommen werden,
so wird eine Weiterfithrung schwerfallen, da die erkldarenden Dokumente fehlen und evtl.

11

2 Ist-Analyse

Personen mit Wissen dariiber nicht mehr vorhanden sind. In Abbildung 2.2 ist dieser Kreis-
lauf einmal dargestellt. Erschwerend kommt hinzu, dass dieser Ablauf durch immer neue
Kunden-Anforderungen standig verschérft wird. Somit wird die bereits unvollstindige Do-
kumentation noch weniger gepflegt, bis sie irgendwann gar nicht mehr beachtet wird. Sollten
diese Umstdnde eines Tages trotzdem ein funktionierendes Produkt hervorgebracht haben,
so wird auch die Wartung nach Beendigung des Projekts nur schwer und unzureichend
moglich sein.

fehlende Dokumente
4

Abbildung 2.2: Festgestellter Problemkreislauf im Bereich der Implementierung

2.3.4 Test

Nach jedem Commit in ein Versionsverwaltungssystem werden Unit-Tests durchgefiihrt. Es
findet eine kontinuierliche Integration in das bereits vorhandene System statt. Hier wurde
auch der Wunsch automatischer Systemtests geduflert. Nach Abschluss einer User-Story
wird diese nach ihrer Beschreibung getestet. Es gibt keinen Testplan, der auch eventuelle
Sonderfille tiberpriifen wiirde.

12

2.3 Ablauf

Festgestellte Probleme

Es kommt gerade bei kleinen Projekten vor, dass ein Entwickler seinen eigenen Code testet.
Dies sollte eigentlich nur im dufiersten Notfall durchgefiihrt werden, wird hier aber als Regel
betrachtet. Des Weiteren gibt es keine spezifizierten Testfédlle und es werden keine Reviews
durchgefiihrt. Der Tester muss bei seiner Arbeit an etwaige Sonderfélle denken und diese
tiberpriifen.

Wie bereits erwidhnt, gibt es keinen vollstindigen Systemtest. Jede User-Story wird einmal
nach ihrer Fertigstellung getestet. Nach dem Hinzufiigen neuer Klassen und Komponenten
werden nur noch die User-Stories tiberpriift, die nach der Meinung und Erfahrung des
Entwicklers nun einen neuen Fehler enthalten konnten. Die Hauptquelle fiir aufgetretene
Fehler ist der Kunde. Er wird hier also unbeabsichtigt als Tester herangezogen und muss
vorhandene Fehler melden, damit diese behoben werden konnen.

2.3.5 Kundendemonstration

Nach jedem Sprint erfolgt die Prasentation der neuen Funktionen beim Kunden. Anschlie-
end werden die Inhalte des nichstens Sprints besprochen und diskutiert. Hierbei ist es
moglich, dass neue Anforderungen aufgenommen werden, die dem Kunden bei der De-
monstration eingefallen sind.

Festgestellte Probleme

Es werden immer wieder neue Anforderungen aufgenommen. Dadurch lasst sich der Ge-
samtaufwand fiir ein Projekt schlecht abschidtzen und ein méglicher Ziel-und Endpunkt wird
damit immer weiter nach hinten geschoben.

2.3.6 Kundenabnahme

Bei der Kundenabnahme handelt es sich um die finale Prasentation vor dem Kunden. Der
Ablauf fiir kleine Projekte war bisher dhnlich zu einer Sprint-Demonstration. Es wurde alle
Bestandteile der entwickelten Software vorgestellt und vorgefiihrt. Fiir ein grofses Projekt
gab es bisher keine endgiiltige Kundenabnahme.

2.3.7 Wartung

Bei bisherigen Projekten erfolgte die Wartung durch Besuche beim Kunden, um zu sehen,
ob die Software wie gewtiinscht funktioniert. Da bisher kein grofieres Projekt abgeschlossen
wurde, kdnnen hier keine weiteren Angaben gemacht werden.

13

2 Ist-Analyse

Festgestellte Probleme

Da es nur wenig Dokumentation aufSerhalb des Codes gibt, stellen wir uns die Wartung
eines grofleren Projekts unter diesen Umstdnden als schwierig vor. Die dafiir zustandige
Person muss den Code sehr gut kennen, um die passende Stelle fiir Verdnderungen und
Fehlerbehebungen zu finden. Bei neuen und mit der Materie nicht vertrauten Personen kann
es deshalb zu Problemen und einer langen Einarbeitungszeit kommen. Sollte einmal ein
Mitarbeiter das Unternehmen verlassen, so geht auch gleichzeitig Wissen tiber verschiedene
Bereiche verloren.

2.3.8 Fazit

Im Grofien und Ganzen funktioniert der allgemeine Entwicklungsprozess, an verschiedenen
Stellen sind aber Anpassungen und Verdanderungen noétig. Durch die rdumliche Néhe und
die kleine Teamgrofie funktioniert vieles, was bei einem grofseren Team nicht funktionieren
wiirde. Die Hauptprobleme sehen wir bei der unvollstindigen Dokumentation und dem
vorhandenen Testablauf.

Nach Absprache mit unserem Projektpartner haben wir uns deshalb dazu entschlossen, den
Unterprozess des Testens mit Vorschlagen und Anmerkungen zu verbessern. Die entstandene
Losung wird in Kapitel 3 vorgestellt.

14

3 Unser Verbesserungsvorschlag

In diesem Kapitel stellen wir unsere Verbesserungsvorschldge vor. Es wird zuerst ein ver-
besserter Scrum-Prozess nach [GG12] vorgestellt und beschrieben, wie er von unserem
Prozesspartner umgesetzt werden kann. Zuséatzlich wird ein Werkzeug fiir automatische
Systemtests vorgeschlagen.

3.1 Erweiterter Scrum-Prozess

In Abbildung 3.1 ist der Ablauf des bekannten Scrum-Prozesses zu sehen. Dieser wird bis
auf einige Ausnahmen auch so von unserem Projektpartner verwendet.

Am Anfang eines jeden Projekts werden die Anforderungen an das Produkt besprochen
und in einem Backlog verwaltet. Fiir jeden Sprint findet eine eigene Sitzung statt, in welcher
die zu erledigenden Aufgaben in ein kleineres Sprint-Backlog iibertragen werden. Téaglich
findet ein Scrum-Meeting statt, um tiber den aktuellen Stand zu sprechen. Das Ergebnis
eines Sprints ist ein Inkrement, dass direkt vom Kunden verwendet werden kann. Nach dem
letzten Sprint wird die eigentliche Auslieferung fiir das fertige Produkt geplant.

Sprint

/_&

24h

Release-
Planung

Anforderungen

Abbildung 3.1: Die einzelnen Abldufe und Phasen in Scrum

15

3 Unser Verbesserungsvorschlag

Um den Testprozess zu verbessern, schlagen wir nach [GG12] einige Verdnderungen vor.
Diese sind in Abbildung 3.2 grafisch dargestellt und erweitern den bestehenden Scrum-
Prozess. Eine ndhere Erlduterung der verschiedenen Testarten befindet sich in Kapitel 3.2.

Der neue Ablauf sieht drei verschiedene Testaktivitdten zu jeweils unterschiedlichen Zeit-
punkten wahrend eines Scrum-Projekts vor. Als Erstes der Entwicklertest, der schon frith
bestimmte Probleme vorbeugt, da er parallel zur tdglichen Arbeit eines jeden Entwicklers
durchgefiihrt wird. Mit dem Inkrementtest wird die monatliche Arbeit eines Sprints mit
automatischen Testmethoden tiberpriift. Zum Abschluss des gesamten Projekts wird mit
einem Releasetest das vollstandige Produkt tiberpriift und vorhandene Fehler fiir eine
anschliefende Kundenabnahme beseitigt.

Sprint

2-4 Release-
Wochen Planung

Anforderungen

Abbildung 3.2: Eine mogliche Erweiterung des Scrum-Prozesses

3.2 Erklarung der verschiedenen Testarten

Im Folgenden sollen nun die verschiedenen Testarten, die den Scrum-Prozess erweitern
konnen, ndher vorgestellt und erkldrt werden.

3.2.1 Entwicklertest

Die Arbeit jedes einzelnen Entwicklers wahrend des Sprints wird durch einen tdglichen
Entwickler-Test tiberpriift und abgeschlossen. Dabei werden die erzielten Ergebnisse be-
ziiglich ihrer Konformitdt mit den eigentlichen Sprint-Tasks tiberpriift. Jeder Entwickler ist
fiir seine eigenen Testfdlle verantwortlich, kann diese aber aus seinen Sprint-Tasks erstellen.

16

3.2 Erklarung der verschiedenen Testarten

Durch (automatische) Unit-Tests und Continuous Integration werden die neu entstandenen
Klassen und Methoden, sowie ihre Integration in bestehende Strukturen getestet.

Im Gegensatz zu [GG12] halten wir ein stiindliches Durchlaufen der verschiedenen Tests fiir
iiberfliissig, da ein Entwickler in den meisten Féllen in einer Stunde wohl kaum so viele neue
Klassen entwickeln kann, dass diese gleich wieder getestet werden miissen. Ein taglicher
Test sollte ausreichend sein.

3.2.2 Inkrementtest

Der Inkrementtest wird erst am Ende jedes Sprints durchgefiihrt und schliefst somit die
Entwicklung des neuen Inkrements ab. Da im Abschnitt zuvor bereits der tdgliche Ent-
wicklertest vorgestellt wurde, konnte man nun meinen, dass ein abschlieSender Sprint-Test
eigentlich unnétig ist, da saimtliche Bestandteile schon im Vorfeld tdglich tiberpriift wurden.
Bei diesem Test soll der Schwerpunkt aber auch noch auf anderen Aspekten als die der
konkreten Funktionsweise der einzelnen Module gelegt werden.

Es soll hauptsédchlich das Zusammenspiel mit frither entwickelten Inkrementen getestet
werden, also die Integration in das bisherige Produkt (Integrationstest). Gleichzeitig ldsst sich
auch sicherstellen, ob friihere Inkremente noch funktionieren oder in irgendeiner Art und
Weise verandert wurden (Regressionstest). Als weitere Testarten konnen noch ein System-,
ein Performanz- und ein Usabilitytest benutzt werden, mit welchen tiberpriift wird, ob das
Inkrement als ein Ganzes funktioniert und vom Benutzer auch akzeptiert wird.

Im Wesentlichen werden im Inkrementtest also verschiedene Testarten miteinander vereint,
die nicht die einzelnen Sprint-Tasks jedes Entwicklers verwenden, sondern das gesamte
Sprint-Backlog.

Die Dauer und Intensitdt dieser Tests hdngt davon ab, ob die zuvor in der Sprintpla-
nung festgelegte ,Definition of Done” erfiillt wurde oder nicht. Diese Definition besagt,
wann eine Aufgabe tatsdchlich abgeschlossen ist und benétigt zur vollstandigen Erfiillung
auch alle notigen Testaktivititen. Am Ende eines Sprints liefert eine Auswertung Klarheit
iiber den erreichten Stand.

3.2.3 Releasetest

Jedes Entwicklungsprojekt stellt mit einem abschlieffenden Test sicher, dass das entstan-
dene Produkt fehlerfrei ist und vom Kunden auch akzeptiert wird. In Paper [GG12] wird
vorgeschlagen, dass der Ablauf des Releasetests einem Scrum-Sprint dhnelt und sich somit
tiber einen ldngeren Zeitraum erstreckt. Es finden tdglich verschiedene Tests statt, welche
zuvor in der Sprint-Planung festgelegt wurden. Auch hier findet sich wieder eine , Definition
of Done”, die gegen Ende des Sprints bzw. des Releasetests ausgewertet wird. Nachdem
diese letzte Testaktivitat durchgefiihrt ist, kann die Abnahme durch den Kunden eingeleitet
werden.

17

3 Unser Verbesserungsvorschlag

Da bei einem Scrum-Projekt verschiedene Teilprodukte bzw. Inkremente entstehen, macht
es Sinn diese nun zusammen in einer fertigen Einheit zu tiberpriifen. Als Testbasis wird
dafiir nun gesamte Produkt-Backlog verwendet, das alle Anforderungen und Aufgaben
enthilt. Wie bereits erwahnt, ist der eigentliche Ablauf als Sprint organisiert. Somit wird
auch wieder ein eigenes Sprint-Backlog benétigt wird. Dieses kann dann wiederum in
tagliche Arbeitspakete aufgeteilt werden.

Mit Systemintegrationstests werden die einzelnen Bestandteile beziiglich ihrer Zusammenar-
beit tiberpriift. Wichtig sind auch Akzeptanztests, mit denen verschiedene , Verhaltensweisen”
der Software in bestimmten Situationen ausgewertet werden. Da hier Ergebnisse aus den
einzelnen Sprints noch einmal begutachtet werden, konnen die bereits festgelegten Testfal-
le aus den Inkrementtests wieder verwendet werden, so dass kein zuséatzlicher Aufwand
entsteht.

Parallel zu den verschiedenen Tests findet das Debugging statt, um die gefundenen Fehler
zu beseitigen. Ein am Ende des Tages erstellter Test-Report liefert eine Zusammenfassung
und einen Uberblick {iber die bis dahin erreichten Ziele.

3.3 Erganzende Anpassungen

Damit der erweiterte Prozess von unserem Projektpartner umgesetzt werden kann, sind
einige kleine Veranderungen notwendig. Diese betreffen einerseits die Einfithrung der neuen
Tests, andererseits die bisherige Dokumentenstruktur. Um das Erstellen von Testfdllen und
die Uberpriifung von diesen so zeitsparend wie moglich zu gestalten, sollten auflerdem das
Produkt-Backlog und das Sprint-Backlog erweitert werden.

Testziele Fiir jeden Sprint miissen Testziele formuliert werden. Was wird getestet? Wie
lange? Wer ist dafiir verantwortlich? Ein Sprint ist nur erfolgreich, wenn diese Ziele
erreicht wurden. Die Planung hierfiir kann in den Sprintmeetings stattfinden.

Produkt-Backlog Bereits bei der Formulierung der User-Stories muss auf testbare Formulie-
rungen geachtet werden. Hier konnen Formulierungen aus jeweils unterschiedlichen
Perspektiven hilfreich sein.

Sprint-Backlog Fiir das Sprint-Backlog werden wie bisher die User-Stories in Aufgaben
aufgeteilt. Auch hier gilt, dass alle Formulierungen und Aussagen testbar sein miissen.
Um eine Ubersicht der Testaktivititen zu erhalten, empfiehlt es sich, das Backlog um
neue Spalten wie zum Beispiel , Getestet” oder , Testfdlle” zu erweitern. Tabelle 3.1
zeigt hierfiir ein mogliches Beispiel-Backlog.

ID | Name | Status | Beschreibung | Testfille | Getestet | Gefundene Fehler | Prioritat

Tabelle 3.1: Mogliche Erweiterung des Sprint-Backlogs fiir die Testplanung

18

3.4 Tool-Unterstiitzung flr den Systemtest

3.4 Tool-Unterstiitzung fiir den Systemtest

Von unserem Projektpartner wurde gewiinscht, den Systemtest automatisieren zu konnen.
Eine Automatisierung sorgt dafiir, dass wiederkehrende und auch teilweise zeitintensive
Arbeiten vereinfacht werden und sich somit im Laufe der Zeit keine Nachléssigkeiten ein-
schleichen. Die frei gewordenen Ressourcen konnen somit an anderen Stellen sinnvoller
eingesetzt werden, ohne eine Verschlechterung der Qualitét befiirchten zu miissen.

Fiir diesen Arbeitsvorgang gibt es verschiedene Werkzeuge und Programme, die sich im
Umfang und den vorhandenen Moglichkeiten sehr dhneln. Als Beispiele seien hier Canoo
WebTest, FitNesse oder Selenium genannt. Wir haben uns fiir letzteres Tool entschieden, da es
eine Vielzahl an Programmiersprachen unterstiitzt und als open-source Projekt verfiigbar ist.

Selenium ist eine Open-Source-Zusammenstellung von Werkzeugen, die zum Testen von We-
bapplikationen verwendet werden konnen. Dabei steuert Selenium einen Webbrowser tiber
JavaScript um Testfélle ausfithren zu konnen. Es werden verschiedene Browser auf unter-
schiedlichen Plattformen unterstiitzt. Mit der integrierten Sprache ,Selenese” ist es moglich,
Interaktionen mit einer Webanwendung aufnehmen zu lassen und diese Tests automatisiert
beliebig oft zu wiederholen. Selenium eignet sich vor allem fiir Browser-Kompatibilitats-Tests
und funktionale Systemtests.

3.4.1 Selenium

Selenium setzt sich aus mehreren Komponenten zusammen. Je nach Anwendungsgebiet
sind dabei eine oder mehrere Komponenten niitzlich.

Selenium IDE

Mit der Selenium IDE ist es moglich, Testfédlle direkt im Browser aufzuzeichnen. Die IDE
ist dabei bisher allerdings nur als Firefox-Plugin verfiigbar. Einmal installiert, ist es ohne
weitere Vorkenntnisse moglich, Testfélle zu erstellen und diese wiederzugeben. Dabei erfolgt
das Speichern in einem Testscript, das bearbeitet werden kann. Bei der Testfallerstellung
werden nicht nur Aktionen des Testers aufgezeichnet, sondern es ist auch moglich, Elemente
der Oberfldche zu {iberpriifen und zu validieren.

Die Befehle in Selenium werden als ,Selenese” bezeichnet. Ein Testscript setzt sich aus
mehreren Selenese-Befehlen zusammen, welche auch manuell eingegeben werden kénnen.

Uber User-Extensions kann Selenium IDE erweitert werden. Eine bereits verfiigbare Erweite-
rung ist die Moglichkeit Schleifen verwenden zu kénnen.

19

3 Unser Verbesserungsvorschlag

Selenium Remote Control

Selenium RC oder Selenium 1 ist umfangreicher als Selenium IDE. Zuerst werden die
Testscripte von Selenese in eine andere Programmiersprache iibersetzt, beispielsweise Java.
Dabei konnen die Tests aus der IDE weiterverwendet werden. Die Ausfiihrung kann in
verschiedenen Browsern erfolgen. Fiir den Testreport gibt es verschiedene Moglichkeiten:
von der simplen Ausgabe auf der Konsole bis zur Integration in Werkzeugen wie JUnit ist
alles moglich.

Ein grofler Vorteil von Selenium RC besteht darin, dass Testfdlle mit verschiedenen Eingabe-
werten ausgefiihrt werden konnen. Dafiir sind aber einige Entwicklungskenntnisse in der
jeweiligen Programmiersprache notig. Fiir die eigentliche Verwendung ist dann nur noch
separater RC-Server notig.

Selenium WebDriver

Selenium WebDriver oder auch Selenium 2 ist die neueste Entwicklung dieses Toolkits. Es
basiert auf Selenium RC, fiigt aber einige neue Erweiterungen hinzu, verbessert das Interface
und den Umgang mit dynamischen Seiten. Da sich WebDriver immer noch in Entwicklung
befindet, ist die Sprachunterstiitzung noch nicht auf dem Stand von Selenium RC. Es ist aber
moglich, Projekte aus Selenium RC weiter zu verwenden. Auch ein separater Server ist nun
nicht mehr zwingend notwendig.

Selenium Grid

Mit Selenium Grid ist es moglich, die Tests parallel auf verschiedenen Maschinen durch-
zufiihren. Zusitzlich unterstiitzt Selenium Grid die Testdurchfiithrung in verschiedenen
Browsern.

Fiir was kann Selenium verwendet werden?

Hauptsdchlich ldsst sich Selenium fiir Systemtests einsetzen. Die dabei testbaren Priifkri-
terien sind funktionale und temporale Tests. Operationale Tests sind nicht moglich. Es ist
nicht entscheidend, nach welchem Verfahren (Black-, White-, Grey-Box) die Testfélle erstellt
wurden. Allerdings miissen sich sowohl Tester als auch Programmierer an die Schnittstel-
lenbeschreibungen halten, da Selenium ansonsten die korrekten Elemente nicht ansprechen
kann.

20

3.4 Tool-Unterstiitzung flr den Systemtest

In welchen Browsern kann getestet werden?

Im Moment unterstiitzt Selenium WebDriver die nachfolgend aufgelisteten Browser. Dabei
ist zu beachten, dass die Aufzeichnung und Wiedergabe der Testfdlle weiterhin nur in
Firefox moglich ist. Die Testausfithrung in den anderen Browsern erfolgt iiber Selenium
WebDriver.

e Google Chrome
e Internet Explorer 6, 7, 8, 9, 10 (32- und 64-Bit)

Firefox

Safari

Opera

Welche Programmiersprachen werden unterstiitzt?
Selenium RC kann eine Vielzahl an Programmiersprachen und Frameworks {iber eigene
Treiber einbinden und verarbeiten.

o C# (verfligbare Frameworks: NUnit)

e Haskell

e Java (verfiigbare Frameworks: JUnit, TestNG)

JavaScript
Objective-C
o Perl

e PHP

Python (verfiigbare Frameworks: unittest, pyunit, robot framework)

e R

Ruby (verfiigbare Frameworks: RSpec, Test::Unit)

21

3 Unser Verbesserungsvorschlag

3.4.2 Unsere Empfehlung

Um sich am Anfang an Selenium zu gewdhnen und einzuarbeiten, bietet sich der Einstieg
tiber die IDE an. Damit lassen sich schnell erste Testfille erstellen. Diese konnen dann nach
und nach erweitert werden.

Fiir den professionellen Umgang wiirden wir Selenium WebDriver empfehlen. Es vereint die
Starken aus einem gleichnamigen, von Google-Mitarbeitern gegriindeten Projekt zusammen
mit Selenium RC. Durch die Einbindung des Betriebssystems, um auf den Browser zugreifen
zu konnen, stehen weitere Testmoglichkeiten zur Verfiigung.

Wenn die Testfédlle in verschiedenen Browsern getestet werden sollen, bietet sich die Verwen-
dung von Selenium Grid an, da dadurch viel Zeit gespart werden kann.

Die Unterstiitzung von mobilen Betriebssystemen wie Android und iOS erlauben auch in der
Zukunft eine Qualitdtssicherung der eigenen Produkte auf den passenden Endgeriten.

22

4 Fazit

Die bisherigen Abldufe bei unserem Partner fiir diese Prozessanalyse haben zwar funktioniert,
an verschiedenen Stellen waren aber deutliche Verbesserungen nétig. Die Hauptprobleme
bei der Dokumentation und beim Testen wurden von uns erkannt und von unserem Partner
angenommen. Danach stand der eigentlichen Ausarbeitung in Form von Verbesserungsvor-
schldgen nichts mehr im Wege.

Wir haben eine Moglichkeit gefunden, wie ein regelméfiiges Testen, vor allem ein wieder-
holbarer Systemtest, moglich ist. Es sollte in Zukunft Entwicklertests, Inkrementtests und
Systemtests geben, die zu unterschiedlichen Zeitpunkten auf Fehler hinweisen und ein frii-
hes Eingreifen ermoglichen. Durch das vorgestellte Testtool werden die einzelnen Testarten
unterstiitzt und vereinfacht.

Wir hoffen, dass unser Partner die Verbesserungsvorschldge langfristig einsetzen kann und
sein Prozess dadurch nachhaltig verbessert wird.

23

Literaturverzeichnis

[GG12] S. Geisen, B. Giildali. Agiles Testen in Scrum — Testtypen und Abldufe. OBJEKTspek-
trum (Online Themenspecials), (Agility /2012):1—4, 2012. (Zitiert auf den Seiten 15, 16
und 17)

[RWN] C. Rukes, W. Weich, D. Neuhaus. Analyse und Bewertung des Tools Seleni-
um. URL http://winfwiki.wi-fom.de/index.php/Analyse_und_Bewertung_des_
Tools_Selenium.

[sela] Selenium Blog mit Beispielen und Anwendungen. URL http://it-kosmopolit.de/
Selenium/blog/selenium-blogs/selenium_blogs.php.

[selb] Selenium Documentation. URL http://docs.seleniumhq.org/docs/.

Alle URLs wurden zuletzt am 02.06.2014 gepriift.

25

http://winfwiki.wi-fom.de/index.php/Analyse_und_Bewertung_des_Tools_Selenium
http://winfwiki.wi-fom.de/index.php/Analyse_und_Bewertung_des_Tools_Selenium
http://it-kosmopolit.de/Selenium/blog/selenium-blogs/selenium_blogs.php
http://it-kosmopolit.de/Selenium/blog/selenium-blogs/selenium_blogs.php
http://docs.seleniumhq.org/docs/

Erkldarung

Ich versichere, diese Arbeit selbststandig
verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle
wortlich oder sinngemafd aus anderen Werken
iibernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher
Gegenstand eines anderen Priifungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise
noch vollstandig verdffentlicht. Das
elektronische Exemplar stimmt mit allen
eingereichten Exemplaren tiberein.

(Verena Kifer, Florian Ganfslen, Burak Incearap)

	1 Einleitung
	1.1 Aufgabenstellung
	1.2 Vorgehen

	2 Ist-Analyse
	2.1 Beschreibung des Projektpartners
	2.2 Grundlagen des Prozesses
	2.3 Ablauf
	2.3.1 Kundenbefragung und weitere Schritte
	2.3.2 Sprint-Planung
	2.3.3 Implementierung
	2.3.4 Test
	2.3.5 Kundendemonstration
	2.3.6 Kundenabnahme
	2.3.7 Wartung
	2.3.8 Fazit

	3 Unser Verbesserungsvorschlag
	3.1 Erweiterter Scrum-Prozess
	3.2 Erklärung der verschiedenen Testarten
	3.2.1 Entwicklertest
	3.2.2 Inkrementtest
	3.2.3 Releasetest

	3.3 Ergänzende Anpassungen
	3.4 Tool-Unterstützung für den Systemtest
	3.4.1 Selenium
	3.4.2 Unsere Empfehlung

	4 Fazit
	Literaturverzeichnis

