Institute of Software Technology

University of Stuttgart
UniversitatsstraBe 38
D-70569 Stuttgart

Process Analysis Nr. 6

Automated GUI Style Guide Testing

Marcus Eisele, Christan Endres, Matthias Fetzer

Course of Study: Softwaretechnik
Examiner: Prof. Dr. Stefan Wagner
Supervisor: Dipl.-Inf. lvan Bogicevic
Commenced: April 15, 2014
Completed: October 15, 2014

CR-Classification: D.2.5

Abstract

This process analysis evaluates the existing GUI development and testing process of a multina-
tional IT company and tries to find rooms for improvements. This company develops a program
which provides a web front end for users. At the moment there are no programmatically usable
style guide and no automated test cases for the GUI used.

Thus to enhance the current processes we describe a set of characteristics and principles to aid
in the creation of a pattern library. Additionally we evaluate several tools to support automated
testing of the created components and the implementation of the product in question. Finally
we show how the results can be integrated into the existing development process.

Contents

1 Introduction
1.1 Module Process Analysis i i i e e e e
1.2 IndustryPartner. o i i i i e e e e e e e e e e e e e e e
1.3 Desired IMprovements o v v vt it e e e e e e e
1.4 Project Planning And Schedule,

2 Current Condition
2.1 Teams e e e e e e e e e e e e e e e e
2.2 Artifacts e
2.3 Used Applications o o v v i i e e e e e e e
2.4 Development Processes o ittt it e e e e e e e e e e

3 Analysis For Potential Improvements
3.1 Issues With The StyleGuide
3.2 Issues With Testing Against The Style Guide

4 Nominal Condition
4.1 DOCUMENTS v i e i e
4.2 Degree Of Test Automation
4.3 Communication And Processes 0 i i e e

5 Pattern Libraries
5.1 Characteristics Of APattern Library
5.2 Pattern Library Examples e
5.3 Related Work

6 Test Applications And Frameworks
6.1 Features And Requirementst i v it
6.2 Selenium e e e e e
6.3 HuUxley e e e e
6.4 Wraith e e
6.5 Depicted -Dpxdt e e e e e e

7 Proposals For Modifications
7.1 Pattern Libraries e e e e e e

7.2 TestingTools
7.3 Process e e e e e e e e e e e
7.4 Result e e e e e

8 Reflection
9 Summary

Bibliography

39

41

43

List of Figures

1.1 Gantt-Diagram e e e e e e e e e e e e e e e 10
2.1 Scrum SprintCycle 17
7.1 Developer Team Develops The Pattern Library 36
7.2 UX-Team Develops The Pattern Library 37
List of Tables
1.1 Work Packages Of The Project i 11
1.2 Responsibilities Of Each Group Member 12
2.1 Section Types Of The Style Guide 15

1 Introduction

The following sections describe the goals and the underlying conditions of this process analy-
sis.

1.1 Module Process Analysis

The goal of a process analysis is to study and evaluate a company’s processes (or exerpts of its
processes) and find rooms for improvement. The students analyze the current condition and
present their suggestions. The suggested improvements do not necessarily assume that the
suggestions describe the ideal solution but rather illustrate the most feasible solution.

1.2 Industry Partner

The industry partner involved in this process analysis is a multinational technology and
consulting company. The headquarters of the company are located in the United States. Due to
the multinational organization and structure as well as the size of the company, the industry
partner can be described with the following criteria:

e Industry: The company operates in the fields of computer hardware, computer software,
IT services and IT consulting. The department which we worked with has its main focus
on computer software and software development.

e General Structure: The company has numerous locations across the globe and therefore
has a strict/clear seperation among its business fields.

e Organization: Due to the size of the company, its organization contains very deep
hierarchies and long official channels. This results in very limited and dense interaction
between the departments.

We collaborated with a development team whose principal activity is to develop a web based
business application. Therefore the focus of this process analysis lies on the development teams
tools and processes.

1 Introduction

1.3 Desired Improvements

The mentioned industry partner already uses tools to test the functionality of a specific web
application against the requirement specification. However the visual appearance defined in
the style guide is not covered by these tests. The goal of this process analysis is to evaluate
how the visual appearance can be automatically tested. Furthermore it is of interest how the
visual testing steps can be embedded into the existing processes.

1.4 Project Planning And Schedule

The following sections describe the planning and schedule of the process analysis.

1.4.1 Work Packages And Gantt Diagram

This section gives insight into the planning of the process analysis. The Table 1.1 describes the
work packages and tasks and the Figure 1.1 visualizes the distribution over the time.

[=
N P O W N O U BWw N

13

15-Apr 5-May 25-May 14-Jun 4-Jul 24-Jul 13-Aug 2-Sep 22-Sep 12-Oct

M Duration

Figure 1.1: Gantt-Diagram

1.4.2 Responsibilities

Table 1.2 describes which team member mainly worked on which taks.

10

1.4 Project Planning And Schedule

Package Tasks Start End Term
1 Project Whole project 2014/04/15 2014/10/14 182
Data Collection Planning the project, Kickoff, 2014/04/15 2014/05/05 20
Interviews
3 Framework Research Research of possible Frame- 2014/04/15 2014/06/02 48
works
4 Process Analysis Collect data 2014/05/05 2014/05/16 11
5 Data Analysis Analyse data 2014/05/05 2014/05/31 26
6 Presentation Prepa- Prepare the presentation 2014/06/02 2014/07/06 5
ration
7 Pentecost 2014/06/09 2014/06/14 5
8 Presentation Give the presentation 2014/06/16 2014/06/20 4
9 Documentation Write document 2014/05/16 2014/08/29 105
10 Framework Test Test frameworks and define 2014/05/30 2014/08/22 84
criteria
11 Framework Compar- Prepare release candidate 2014/06/27 2014/09/12 77
ison
12 Finalizing Finalize the print version of 2014/09/08 2014/10/15 37
the document
13 Presentation Prepare and give the final 2014/09/08 2014/10/15 37
presentation
Time buffer planned not to use 2014/10/01 2014/10/15 14

Table 1.1: Work packages of the project

11

1 Introduction

Tasks

Christian Marcus

Matthias

Planning the project

Define first questions

Research Test Frameworks

Research pattern library Frameworks
Collect data due questioning

Analyse data

Prepare first presentation

Give the first presentation

Prepare BIEX templates

Prepare graphics

Prepare collaboration platform and tooling
Define framework criteria

Test frameworks

Write document chapters accordingly
Prepare final presentation

Give final presentation

Table 1.2: Responsibilities of each group member

12

2 Current Condition

In addition to the characteristics described in section 1.2 the following sections describe further
parameters and constraints of the examined development process. The current condition has
been ascertained through interviews with the industry partner.

2.1 Teams

There are four teams involved in the web application development process. Each team is
working at a different location. In this section we point out their responsibilities in the context
of this process analysis.

2.1.1 User Experience Team

The User Experience Team (hereinafter referred to as the UX-Team) consists mainly of one
graphic designer who creates the style guide according to the requirement specification. The
designer is responsible for testing the web application against the style guide. Therefore the
UX-Team reports violations against the style guide to the Developer Team.

2.1.2 Developer Team

The Developer Team develops the web application and corrects defects in the web application.
They receive the requirement specification and style guide and use them as the nominal
condition. They also create user stories which are used by the Testing Team to test the
functionality of the web application.

There are no dedicated developers for the graphical user interface. The whole team is involved
in all aspects of the development process.

13

2 Current Condition

2.1.3 Testing Team
The Testing Team tests the functionality of the web application according to the previously

defined user stories. The tests verify the functionality according to the requirement specification.
Occurring conflicts or defects get reported to the Developer Team.

2.1.4 Product Management

The Product Management mainly develops the requirement specification document. During
the development phase they report defects to either the UX-Team or the Developer Team.

2.2 Artifacts

This section describes the artifacts which are produced or used during the development
process.

2.2.1 Requirement Specification

The requirement specification describes the nominal condition of the web application. The doc-
ument itself is of little interest for this process analysis because the focus is on the automation
of the GUI testing process.

2.2.2 Style Guide

The style guide consists of multiple documents, each describing one or multiple parts of the
web application appearance. The style guide is provided as a PDF document, containing textual
and graphical descriptions of the web application. The style guide is provided via the intranet.
Each style guide document has five section types described in table 2.1.

2.2.3 User Stories

The user stories serve the Testing Team to test the functionality of the web application. Because
the user stories are not involved in the process of testing the graphical user interface, they are
of little interest for this process analysis.

14

2.2 Artifacts

Type

Description

Identification

This section identifies the part of web application which is referenced by the
document. It contains information about the product name, application part
name and the date of the last update. This section appears exactly once in
each document.

Changelog

The changelog provides information about each change inside the document.
Each change is described by a change description, the page(s) on which the
change appears and the date of the change. This section appears exactly once
in each document.

Colors and fonts

This section describes global values for colors and fonts in the document. The
colors have a name, are shown as a square and are described by its hex and
rgb values. The fonts are named and described by its appearance, size and
color. Also the sizes are defined by point-, EM-, pixel- and percentage-values.
This section appears exactly once in each document.

Overview

This section shows an overview of a component described in detail by the
following section type “Detail View”. There is at least one big picture of the
component and maybe multiple pictures in different screen resolutions. One
example would be the “Title Page”. This section appears at least once in each
document.

Detail view

This section describes one component of the overview section in detail. Part of
the detailed descriptions are mostly multiple small pictures of the component
and hints for the implementation like sizes, gaps, colors and fonts. One
example would be the “Footer” of the “Title Page”. This section appears at
least once for an overview section in each document.

Table 2.1: Section types of the style guide

2.2.4 Defects

Defects are violations inside or against the requirement specification or style guide. Defects are
assigned to either the UX-Team or the Developer Team depending on the specific issue.

2.2.5 Web Application

The developed web application is a cloud-based integrated software suite for human ressource
management. Technically it consists of a web based java application with a java backend.
The features and requirements are specified in the requirement specification. The appearance

15

2 Current Condition

is defined in the style guide. The Developer Team uses these documents to create this
application.

2.3 Used Applications

The style guide is created with Adobe InDesign and Adobe Photoshop. The Developer Team
works with Eclipse IDE, Rational Team Concert and IBM Mantis.

2.4 Development Processes

This section describes the development of the web application, the interaction between the
teams and their responsibilities.

2.4.1 Modified Scrum Process

The Developer Team is developing with an adapted Scrum process. Figure 2.1 shows an
overview of the development process itself. The task responsibilities of the teams are shown on
the y-axis. The x-axis represents a sprint duration of six weeks.

Note that the the planning of the next sprint is before the start of the next cycle. The testing
phase of the Testing Team starts two weeks after the start of the development phase. The
creation of the style guide and the testing against it by the UX-Team does not comply with the
scrum phases.

Integration Day

One feature of the modified scrum process is the integration day. During the four weeks of
development there is one integration day each week. The current code is deployed on a test
environment where the whole Developer Team test their code by hand.

Promotion Day

At the end of the last development week there is a promotion day. All code without known
issues gets promoted to the next higher code stream.

16

2.4 Development Processes

Legend Integration Day Promotion Day

Figure 2.1: Scrum Sprint Cycle

Code Streams

General Development Process / Sprint
1 Week 2 Weeks 2 Weeks 1 Week
£
1
w oL
22
£
23
(2=}
]
» Plan ——
£ Development ’_, PD
©
[
Ly ID » ID » ID » ID
: | | Rl
Q
o
[
3 Testin —
a J B Testing
£
©
QJ
Ly . .
o Testing — | Testing
£
Q
&
Testing
£
©
o I
0
<
> Creating the Styleguide
Sprint Start

There are three code streams to manage the maturity of developed code. Each of the lower
code streams can be promoted at the promotion day. There are three code streams:

e Development Stream (SW10): This code stream is the first and lowest in which the code

of the current sprint is stored.

e Staging Stream (SW20): The second code stream contains the code which runs on the

staging servers.

e Production Stream (SW30): The third and highest code stream which contains the code

running on the production servers.

17

2 Current Condition

2.4.2 Roles And Responsibilities

There are five roles involved in the scrum process. They can be described as follows:

Product Management

The Product Management is responsible for creating the requirement specification.

Scrum Master

The Scrum Master takes care of the sprint planning. He creates the user stories and work items
in Rational Team Concert based on the requirement specification. Further he estimates the
effort and priorizes the work items together with the Developer Team. Prior to each sprint he
assigns work items to developers.

Developer

The main task of each developer is to complete their work items. This is done by the following
procedure:

1. Develop code using Eclipse IDE and Rational Team Concert.
Compile and pack the code using IBM Mantis.

Deploy the code to a local virtual machine for smoke testing.
Do smoke tests.

Review the code.

AN T

If there are no problems deliver the code to the stream.

The testing and reviewing by the Developer Team is not the testing shown in figure 2.1, but
rather part of the web application development.

Tester

The tester is responsible for testing the functionality of the web application. To ensure that
the current user stories have been implemented successfully, the tester launches Accessability
Verification Tests, Build Verification Tests and Globalization Verification Tests. They do not test
whether the web application is in compliance with the style guide or not.

18

2.4 Development Processes

UX-Team

The responsibility of the UX-Team covers the creation and maintenance of the style guide.
Furthermore the UX-Team verifies the compliance of the web application’s visual appearance

with the style guide.

19

3 Analysis For Potential Improvements
This section describes the issues which have potential to be improved.

3.1 Issues With The Style Guide

The following section unveils the issues with the style guide, regarding the communication,
the format and its technical implementation.

3.1.1 Communication

The UX-Team creates or rather regularly updates the style guide. The style guide is published
on the intranet. There are no update notifications for the Developer Team.

Another issue is the conflicting terminology. The UX-Team is mainly used to graphic designer
terms, while the Developer Team is used to web design and development terms. Thus the
language of the UX-Team and the style guide is influenced by Photoshop and has to be translated
to the web development terminology.

3.1.2 Style Guide Format

The style guide consists of multiple pdf files. There is no version control to handle the
changes. Thus there is no comfortable way of showing the differences between several
versions. Furthermore the overall size of the style guide is huge compared to the functionality
it provides.

Another issue is the gap between the static representation with screenshots of the style guide
and the dynamic behavior of the graphical frontend of the web application. The style guide
does not always cover each state of appearance of the frontend with screenshots and sometimes
tries to describe it with text.

21

3 Analysis For Potential Improvements

3.1.3 Change History
The change history of the style guide is often ambiguous. Changes are not necessarily reflected

in all documents or even not in all sections of a style guide document. Therefore inconsistencies
are going to occur across documents.

3.1.4 Duplicates
Due to the format of the style guide and the information provided in each pdf document there
are several duplicated information in many different places. These information may or may

not be consistent. There is no utilization of reusable components. This not only makes the
maintenance of the style guide harder, but it also complicates the development as well.

3.2 Issues With Testing Against The Style Guide

This section enumerates the current issues with the testing against the style guide.

3.2.1 Testing By The Developer Team

The Developer Team manually tests the visual appearance of the web application. This is very
time consuming and error-prone.

Another issue is the non-formal format of the style guide which prevents automated testing
against the style guide.

3.2.2 Testing By The UX-Team

The UX-Team also tests the visual appearance web application against the style guide. These
tests do not happen on a regular basis and the feedback gets reported at any time.

22

4 Nominal Condition

This chapter describes the nominal condition regarding the documents, the processes and the
degree of automation.

4.1 Documents

According to the findings in section 3.1 an improved format for the style guide is needed.
Ideally the new style guide format has to fulfil the following criteria:

e Technical Format: The new format should be more technically oriented, in a way
that the style guide can be easier maintained and updated. Ideally the new format
allows version control and automatically creation of a changelog, as well as a better
documentation in general.

e Unambiguousness: The new format should be very clear and unambiguous. Therefore
the new version of the style guide should include concrete code samples on how to use
the components. This allows the developers to reuse code snippets and therefore avoids
multiple interpretations of the style guide.

e Avoidance of duplicates: The new format should try to avoid duplicates of any kind
inside the style guide. Thus there is a need of reusable components which can be refer-
enced inside the style guide. This ensures that updates to the style guide are distributed
to all sections. Besides the avoidance of duplicates (and therefore inconsistencies) inside
the style guide itself, it will also help to avoid duplicates and inconsistencies in the
resulting product.

4.2 Degree Of Test Automation

In the current condition there is no automated testing of GUI components. If a developer wants
to ensure that his changes have no side effects on existing pages or components, he has to
check every page before committing his changes. This is not impossible, but has a very low
benefit-cost ratio and is therefore just not viable for every change. A developer spends a lot of
time to test the impact of even small changes because the impact could occur almost anywhere.

23

4 Nominal Condition

Therefore it would be beneficial to test regressions of the GUI or other side effects affecting the
GUI automatically.

A general conflict is that the tests done by the Developer Team have not to be time consuming
but large tests are usually long running. Thus a Developer will lose a lot of time or may just
skip the tests altogether. But to use the whole potential of screenshot based testing a lot of
tests may be necessary.

In addition to the smoke tests of a developer which are done relatively fast, there is a need of a
full test which automatically detects impact of changes over the whole project.

4.3 Communication And Processes

The communication between the Developer Team and the UX-Team happens mainly through
the exchange of the documents. Thus the requirements described in section 4.1 have to be
implementable into the processes of both departments. The same counts for a proposal of
introducing an automated test as described in section 4.2.

The main focus has to be on finding a solution which can be introduced almost exclusively by
the Developer Team because the possibility of proposing changes to the UX-Team seems to be
very limited.

24

5 Pattern Libraries

To address the criteria mentioned in section 4.1 a new style guide has to be created. The best
solution would be the UX-Team delivering such a style guide. As this most likely will not be the
case, an intermediate form of a style guide has to be created. The intermediate format can be
some sort of component library. To distinguish between those documents we introduce the
term pattern library as it has been established in research and industry. [MLWO5]

5.1

Characteristics Of A Pattern Library

A good pattern library can be characterized by the following criteria:

Searchable / browsable: A good pattern library includes a proper navigation to ensure
that developers and designers easily find what they are searching for.

Component based: A good pattern library supports the creation of reusable components.
These components can be used across several projects and within the pattern library
itself. In the best case a pattern library supports cross referencing between components
as well as creating component groups.

Samples: A good pattern library directly shows samples of the components in question.
The developer and the designers directly see how the described component looks like
in production. In the best case a pattern library supplies several presentations of the
component in question. For example the pattern library presents how the component
looks in desktop and mobile web clients.

Code samples: A good pattern library allows the developer to directly copy code snippets
of the selected component including markup code such as HTML and CSS as well as the
backend code in question. This ensures that the component will exactly look like it has
been defined in the pattern library. In the best case several code samples are provided,
e.g. in different programming languages or for different clients.

Supplemental commentary: A good pattern library includes a reasonable amount of
supplemental commentary. Examples for this kind of commentary are: When to use the
component, when not to use the component, similar components or related components.

25

5 Pattern Libraries

5.2 Pattern Library Examples

Many Pattern Libraries are created without or with not published tools. Thus we cannot provide
a list of good tools which support the creation of a pattern library. Therefore we supply a list of
good implementations of Pattern Libraries as a reference. All of these Pattern Libraries include
the characteristics mentioned in section 5.1.

e Mailchimp UX Library [mai]
e Yahoo pattern library [yah]

Patterntap [pat]

Ul-Patterns.com [uip]

Smiley Cat [smi]

5.3 Related Work

There is not much related work regarding the creation or evaluation of Pattern Libraries. The
few works we have found are:

e Implementing a Pattern Library in the Real World: A Yahoo! Case Study [MLWO05]
e Bauanleitung fiir eine Pattern Library (German) [Brii]
e Creating Style Guides [Rob]

The Yahoo! Case Study comes to the conclusion that there is no currently known tool which
eases the creation of a pattern library without huge modification needed. We therefore evaluate
on what a pattern library has to include and how to build it. The other two works evaluate the
creation of a pattern library. All these works may be used as a guideline towards the creation
of an own pattern library.

26

6 Test Applications And Frameworks

In the context of this process analysis we are searching a tool which improves the testing
process. Currently there are already tests in place which test the functional behavior of the
web application. These functional tests do not cover whether the site complies to the style
guide or not. The visual testing is manually done at the moment.

This section describes different frameworks which can be used to automate the visual testing of
web pages. All of the mentioned frameworks are based on the same principle.: They compare
screenshots of different revisions of the web pages under test and try to detect any visible
differences. The occurring differences have to be checked by a user.

6.1 Features And Requirements

The tools used during the visual testing of the web pages need to fulfil the following criteria:

e License: The tool in question should be licensed under an open source license such as the
BSD-License or Apache License. Our industry partner mentioned that the openness of the
code is very important, because it allows customization and improvement. Furthermore
it ensures that there are ways to gain further support in case the original maintainer of
the software decides to stop developing it.

e Integration into the build process: For some use cases it is required that the tool in
question is integrable into the existing build process. This step is essential for the visual
tests during the automated build.

e Representation of the results: The tool in question needs to show the results of the
analysis in a way that the UX-Team and the Developer Team are able to inspect them and
comprehend their impact. In addition to a side-to-side comparison, an image representing
the differences in both screenshots would be a desirable feature.

e Collaboration: It would be a great addition if the tool in question supports and en-
courages collaboration between the Developer Team and the the UX-Team. Both parties
should be able to communicate via this system directly.

27

6 Test Applications And Frameworks

6.2 Selenium

Selenium [sel] is a set of tools for automating web browsers. It can be used to test web pages
and web applications. Its tests are written against the WebDriver-API. There are many different
implementations of the WebDriver API offering support for many popular browsers.

There are two different approaches using Selenium. Selenium offers the Selenium IDE which is
a very basic tool to record and playback testcases using the WebDriver. Selenium allows devel-
opers to write their tests against the WebDriver-API using different programming languages.

Testing with Selenium is done in two steps. At first the browser input needs to be automated.
After that the state of the web page under test is verified. This verification is done by selecting
components and then using verifications and assertions on them. Selenium supports different
mechanics e.g. using Identifiers, IDs, CSS, XPath and DOM for selecting components.

Selenium by itself is able to create screenshots of a web page under test. For the calculation of
the differences between the created screenshots another tool will be needed. ImageMagick
[ima] is a tool which can deliver such functionality. Selenium is an appropriate tool because it
can be directly called from the commandline or can be invoked by one of the many available
programming interfaces in different languages.

6.3 Huxley

Huxley[hux] is an open source tool created by Pete Hunt, a developer at Instagram (Facebook).
It offers two different modes to automate GUI tests and detect GUI regressions.

In the record mode Huxley uses the Selenium WebDriver to open a web page and to record
all user actions. The user can take screenshots by pressing enter in the Huxley terminal.
The combination of user input and generated screenshots is later used to test the GUI for
regression.

The testing is done with the playback mode. It reruns the recorded tests with Selenium and
takes screenshots to compare them with the existing ones. Differing screenshots have then
to be checked by the developer. Afterwards the developer has the possibility to fix his code
to prevent the GUI from being changed or approve the screenshots and commit them to the
revision control. A designer has the chance to review the changes to the GUI directly in the
revision control system by looking at the changes of the screenshots.

28

6.4 Wraith

6.4 Wraith

Wraith[wra] is a screenshot-based testing tool created by developers at BBC News. It uses
either PhantomJS or SlimerJS to create screenshots of different web page environments. After
that, it marks differences in the images.

Wraith wants to satisfy the need to test dynamic content. The approach of Wraith is based
on the assumption that the local development system is accessing the same data source (e.g.
database) as the baseline system. With this approach each of the systems will display the same
dynamic content.

Screenshots created by Wraith need to be kept and managed by hand - Wraith doesn’t provide
any support for this. Wraith can be extended by wraith-donk[don] which offers the possibility
to wrap Wraith inside a web browser and even allows to send emails containing the results of
a test run.

6.5 Depicted - Dpxdt

Depicted-dpxdt [dep] (hereinafter referred to as Depicted) uses a similar approach to Huxley.
It establishes a baseline release with an initial set of screenshots of the web page which are
later used to do regression tests.

Depicted defines a process which allows external stakeholders (from the developers point of
view) like an UX-Team to participate in the review process of changed user interfaces.

The following steps describe an usual approach:
1. Use a baseline release to create an initial set of screenshots.

2. Run Depicted on your current release to create a new set of screenshots and automatically
mark the differences of baseline and current release screenshots.

3. Use the Depicted web interface to manually approve or reject each difference found by
the tool.

4. Finally mark the release as good or bad.
5. The approved release will become the baseline for future runs.

Dpdxt comes with some handy tools to automate the generation of the screenshots. They offer
functionality such as:

e Crawl a website from an URL by a given depth and create screenshots for each of the
pages visited.

e Compare two URLs side-to-side.

29

6 Test Applications And Frameworks

e Create screenshots for a set of URLSs specified in a config file. This also allows the injection
of Cascading Style Sheets (CSS) and JavaScript (JS).

¢ Find differences in already existing screenshots and integrate them into the web interface.

30

7 Proposals For Modifications

In this section we describe the possible enhancements and modifications. First we describe
how it is important to build an own pattern library. The we show the possibilities for au-
tomated testing and propose two approaches. Afterwards we propose how to integrate the
former approaches into the current process. Last but not least we describe describe the
recommendation.

7.1 Pattern Libraries

As the papers and guidelines in section 5.3 showed, there are no known tools for the creation
of a pattern library. During our research we did not find an out-of-the-box solution either and
therefore recommend the build of an own pattern library which fulfils the criteria mentioned
in section 5.1.

7.1.1 Domain Specific Requirements

Besides the characteristics of a good pattern library described in section 5.1 the tools in question
need to support the following features:

e Collaboration: The tool in question should support collaboration among the Developer
Team as well as for the UX-Team. It should support the creation of different user roles
and user groups and should include a at least basic permission control system. The
support of further features, such as comments, notifications, tags, etc. is desirable, but
not mandatory.

e License: The license requirements are identical to the ones described in section 6.1.
Briefly speaking this means that the source of the pattern library needs to be available to
ensure its future-proofness.

e Language and Library Support: The pattern library should be able to support several
programming languages and libraries such as:

— Textual descriptions

- HyperText Markup Language (HTML)

31

7 Proposals For Modifications

Cascading Style Sheets (CSS)

JavaScript (JS)

Support for pictures / screenshots

Support for displaying code snippets

Support for LESS

e Version Control: The pattern library should support any kind of version control, to be
able to track as well as revert changes. The changes done to the pattern library should be
relatable to single users and single commits. If the pattern library itself does not support
any kind of version control, it should be usable inside an own version control system.
Therefore the stored files have to be in an open, human readable format, such as XML,
JSON, etc.

¢ In-house Hosting: As the pattern library contains sensitive data, it is mandatory that
the tool in question will be deployed and maintained in-house. Therefore a cloud-hosted
solution is not applicable.

7.1.2 Conclusion
To fulfil all the criteria mentioned earlier (general characteristics as well as domain specific
requirements) it is inevitable to create an own pattern library. This ensures that all requirements

will be met. The section 7.3 describes how the development of a pattern library can be done
and included in the current development process.

7.2 Testing Tools

After evaluating the different testing tools we came to the conclusion that the preferred tool
depends on the desired usage and the time commitment to the tool.

7.2.1 Selenium
Selenium can be used to test almost everything on a web page, but the test cases need to be

tailored for every specific site. Using Selenium can be compared to creating a unit test. Tests
need to be updated for every (maybe even small) change in the GUI.

32

7.2 Testing Tools

7.2.2 Huxley

Huxley is based on Selenium but uses a quite different approach. The effort needed to create a
working test case is quite minimal. The user does the required actions once and defines when
a screenshot is necessary. For running the test Huxley just replays those actions and redoes the
screenshots for comparison.

Unfortunately Huxley is not that polished and robust, therefore we do not advice to install it on
a build server or use it for some high level of automated testing. It may even not be appropriate
to use it on a smaller scale, like a developer testing his local system against a baseline system,
because it has some major issues (e.g. stopping after the first occurring difference). With a
little tinkering it may reap great benefit to use it locally as a developer because of its painless
creation and recreation of test cases.

7.2.3 Wraith

Wraith uses, unlike Selenium and Huxley, a headless browser. If extended by Wraith-Donk
Wraith offers, additional to the already mentioned features, web access to the results. This is a
mandatory feature for the automated testing of the build.

A thing to consider is that Wraith needs two different URLs at the same time to create its
screenshots and detect differences. This may be a problem depending on the use of this tool.

7.2.4 Depicted

Depicted has almost the same features as Wraith but uses the WebDriver API instead of a
headless browser. It is also very comfortable to manage the screenshots, because a passed test
is automatically the new baseline. Contrary to Wraith, Depicted generates its screenshots on
the same resource. This means it does not detect changes between two builds but also changes
on the same resource and can therefore be used to automatically detect changes in the GUI.

7.2.5 Conclusion

Selenium may be used but the time investment may be huge for the outcome. This is not about
the initial setup of the tests but also about keeping them synchronized with changes in the GUI
of the application.

For automated testing there are two approaches which could even be combined:

33

7 Proposals For Modifications

Developers Running Smoke Tests On Their Local Machines

A web-developer often opens up his browser to check his changes before committing his code.
In this manual test he often fails to spot some (even quite obvious) erroneous behaviour. These
unnoticed changes could be spotted by screenshot comparison.

The tests described in this section should only be seen as an addition to the developer manually
checking the impact of the changes before committing them.

An important factor for those tests is that they have to run fast if the developer has to invoke
them manually. Long running tests may tend to hinder developers from committing and
continuing their work or mislead them into not executing the tests at all.

For this use case it would be feasible to use Huxley working on a local Selenium Standalone
Server to compare the screenshots before and after applying changes. There won’t be a need
to keep the screenshots under revision control because they will and have to be generated
after each checkout and before every commit. The only thing worth keeping under revision
control is the configuration file which defines the test steps. The main benefit of this is that the
screenshots do not become outdated because they will be generated after each checkout.

Alternatively Wraith could be used for this purpose. The only restriction is that, instead of
running the tool before and after applying changes to the code, the developer needs a baseline
web page running on some server. For this use case a really simple web server will be sufficient
(e.g. SimpleHTTPServer included in Python, which can be run directly from the command
line). This may even be the better solution than Huxley because during our tests it seemed to
be more stable.

This testing approach requires the developers to deal responsibly with changes to the GUI
because they decide which changes make it into the code. This situation is quite similar to
the situation without this kind of test, but the changes do not get unrecognized into the code
anymore.

Automated Testing Of The Build

During an automated build the current state of the application is built and therefore verified in
regular periodic cycles. During this process it would be very easy to, additional to other tests,
test the GUI for regressions.

The results of the test will show all changes done to the GUI since the last build. For every
change a developer has to decide if a specific change is a desired one. In many cases changes
will be intended modifications, in this context we could speak of false-positives.

These false-positives represent a great expense but can not be eliminated automatically. After
each build the new baseline for the next test needs to be defined by accepting or declining
occuring differences between the builds.

34

7.3 Process

These tests don’t affect developers directly because they only depend on the generation of the
build. The generation of a build usually takes a longer time or even runs over night, therefore
the tests executed after the build generation may take a longer time in comparison to the tests
done by each developer.

Among the introduced test-applications, Depicted is the most fitting tool for this approach. Even
if Wraith with the additon of Wraith-Honk may fit too, but Depicted looks better at supporting
the developers sticking to the screenshot validation process. Depicted delivers many reasons to
use it in an automated build environment:

e All operations are triggered from a command line, and therefore are perfect for being
executed after a finished build.

e Depicted offers a web application for easy and clear access to the results and their
evaluation.

e Depicted supports the developers in using a clear defined process to check the occuring
changes.

e The approved new screenshots will automatically be used as the new baseline for future
tests.

7.3 Process

The following sections discuss proposals for integrating the development process of a pattern
library and an automated test cylce into the current development process.

7.3.1 Not Working Proposal

In the beginning of the process analysis we asked why the UX-Team does not provide a
programmatically usable style guide. The answer was that the UX-Team is just dedicated to
graphics design and is not capable of writing CSS, HTML and JavaScript. Thus the proposal of
moving the competences of writing the code to the UX-Team is no suggestion which would be
practical at the moment.

However this thought is picked up in the subsection 7.3.2 in which one possible way is to send
one of the Developer Team to the UX-Team. This would provide the knowledge needed for
writing the code.

35

7 Proposals For Modifications

7.3.2 Development Of A Pattern Library

The needed improvement of the style guide, to a version which is more convenient for the
Developer Team, is claimed in section 4.1. In this subsection we show two ways of integrating
the development of the pattern library into the process.

We identified two possible ways of creating a pattern library which focuses on components
and the implementation. Both need at least one capable developer who develops the pattern
library and may be part of the Developer Team. Also there is the possibility to declare someone
to be responsible for the creation and maintenance of the pattern library.

Developer Team Develops The Pattern Library

In Figure 7.1 the developer or developers of the pattern library are and remain part of the
Developer Team. They interpret the style guide to create the pattern library. This can be done
parallel to the development phase of a sprint.

Styleguide

creates :
reads O
UX-Team Developers
creates
approves
uses
Pattern
Library

Figure 7.1: Developer Team Develops The Pattern Library

After the development phase or parallel to the testing phase of a Sprint there has to be the
validation and the approvement of the pattern library by the UX-Team. Advantage of waiting
with the validation after the development phase is to not interfere with components under
development. Advantage of the overlapping validation is the possibility to react to defects
during the same development phase and more time for the UX-Team.

36

7.3 Process

UX-Team Develops The Pattern Library

Another possibility of creating the style guide according to the subsection 7.3.1 is to delegate
one or more developers of the Developer Team to the UX-Team. As shown in Figure 7.2 this
would bridge the location gap between both teams.

creates Styleguide

reads:

UX Designer reads O
< , Developers
UX Developer

~

=

‘4~ — — delegates

createsx

uses
approves

Pattern
Library

Figure 7.2: UX-Team Develops The Pattern Library

Advantage of this possibility compared to the suggestion above is to decouple the creation and
approvement of the pattern library from the development phase of the web application. On
the other hand this would mean that at least one of the Developer Team has to be assigned to
another department. This would likely result in moving abroad.

Style Guide References The Pattern Library

Both solutions do not alter the need for interpreting the style guide by the Developer Team, nor
the problematic format of the style guide and the duplicated information in it. On the other
hand the development of the pattern library shows the duplicated information in the style
guide and supports the possibility of using the pattern library by the UX-Team. In the best case
the style guide is replaced by the pattern library which is unlikely to happen in the near future.
But to use the component structure of the pattern library and referencing the components
of the pattern library inside the style guide would solve the information duplication and its
negative consequences.

37

7 Proposals For Modifications

7.3.3 Integration Of An Automated Test Cycle

Section 7.2.5 presented a solution to technically integrate an automated GUI Test in an existing
build server driven developing process. Besides the raw technical integration, the integration
in the existing process needs to be kept in mind too.

There are quite some differences regarding those two aspects of integration. For example,
technically it would be perfectly fine and possible to include an GUI Test in every generated
build. Regarding the process this would not be very beneficial to the workflow of the develop-
ers. The developers would have to check and approve all GUI differences after every build.
Checking those GUI differences has quite some overhead work attached, e.g., opening the
image comparison tool and setting up a comparison view. Considering that many found errors
are false-positives (wanted changes), inspecting all changes during a week at once would
prevent an immense amount of additional work.

7.4 Result

As the UX-Team is not able to provide a pattern library and delegating a developer most likely
will be too expensive, we recommend that the Developer Team creates their own pattern
library. The development of the pattern library should be integrated into the existing Scrum
process.

For the automated testing of the GUI we recommend two different tools for the two possible
applications. For the smoke tests on the developer machines we recommend either using
Wraith or Huxley. For the automated testing we recommend using Depicted. The automated
testing should be done after the integration day to react on the testing results during the next
development week.

38

8 Reflection

During the project we gained experience in working with a big industry partner. This unveiled
several challenges due to the number of people involved at different locations. This included the
scheduling of appointments and communication mainly over distance. Futhermore, due to the
companies policy, we experienced bureaucracy concerning access and sharing of information.
This resulted in a delay in the process analysis’ project schedule. However this did not affect
the project’s deadline, as we included a big enough time buffer in our project schedule.

Due to the grown structures of the industry partner as well as its enormous experience in the
field of software development, the inspected processes were well matured and therefore did
not leave much room for improvement. Also the industry partner already did a fair amount
of research in order to find appropriate solutions to the issues regarding the style guide, the
automated GUI-Tests and the corresponding processes. Due to these circumstances we did not
have to completely overhaul the processes in question, but rather than find small enhancements
to already well defined processes.

We also faced the problem of working concurrently for different projects and commitments
like this process analysis as well as modules of our curriculum. This enforces to elaborate
a project plan, dealing with a large communication overhead as well as dealing with other
people having simply no time.

To put in a nutshell, the process analysis was a great experience to us. It was interesting to
see how a big company develops software compared to our education in managing software
projects. Also it was pleasant for us that our mainly theoretical knowledge was applicable to
the industry partners processes and enabled us to contribute to the enhancement of these.

39

9 Summary

During the process analysis we investigated the existing processes of the industry partner
through interviews and email conversations. We found starting points for enhancing the
current development process. On the one hand the non-technical format and context of the
existing style guide is an issue, because it is neither unambiguous nor consistent in itself. On
the other hand testing of the GUI appearance is done very sporadically and by hand.

After analyzing these issues we discussed multiple approaches and searched for possible tools
to support the Developer Team in solving these issues. Hence a new and developer oriented
style guide format has to be created which is commonly referred to as a pattern library.
Unfortunately there do not seem to exist any tools to assist in the creation of a pattern library.
Therefore we evaluated the manual creation of an own pattern library with investigating
existing Pattern Libraries as well as publications regarding the creation of Pattern Libraries.

To introduce the automated testing of the visual appearance we searched for several possible
web testing solutions. We analyzed four tools in depth to see wether they fit the requirements.
Finally we came to the conclusion that, depending on the concrete task, either Wraith, Huxley
or Depicted should be used. Wraith or Huxley can be used for smoke tests, while Depicted can
be applied to the existing test process.

After evaluating the creation of a pattern library as well as the available tool support, we tried
to adapt the previously mentioned possibilities to the existing process. We found out that our
approaches do well fit into the currently running Scrum process.

41

Bibliography

[Brii]

[dep]

[don]

[hux]

[ima]

[mai]

[MLWO5]

[pat]
[Rob]

[sel]

[smi]

[uip]

[wra]

[yah]

Briining. Bauanleitung fiir eine Pattern Library. http://www.produktbezogen.de/
bauanleitung-pattern-library-1/. 08/27/2014. (Cited on page 26)

Depicted—dpxdt. https://github.com/bslatkin/dpxdt. 08/27/2014. (Cited on
page 29)

wraith-donk. https://github.com/guardian/wraith-donk. 08/27/2014. (Cited
on page 29)

Huxley. https://github.com/facebook/huxley. 08/27/2014. (Cited on page 28)

ImageMagick. http://www.imagemagick.org/script/index.php. 08/27/2014.
(Cited on page 28)

MailChimp Pattern Library. http://ux.mailchimp.com/patterns. 08/27/2014.
(Cited on page 26)

E. Malone, M. Leacock, C. Wheeler. Implementing a Pattern Library in the Real
World: A Yahoo! Case Study. ASIS&T IA Summit, 2005. (Cited on pages 25 and 26)

Pattern Tap. http://patterntap.com/. 08/27/2014. (Cited on page 26)

Robertson. Creating Style Guides. http://alistapart.com/article/
creating-style-guides. 08/27/2014. (Cited on page 26)

Selenium. http://docs.seleniumhg.org/. 08/27/2014. (Cited on page 28)

Smiley Cat. http://www.smileycat.com/design_elements/. 08/27/2014. (Cited
on page 26)

Ul-Patterns.com. http://ui-patterns.com/. 08/27/2014. (Cited on page 26)
Wraith. https://github.com/BBC-News/wraith. 08/27/2014. (Cited on page 29)

Yahoo Design Pattern Library. https://developer.yahoo.com/ypatterns/about/.
08/27/2014. (Cited on page 26)

43

http://www.produktbezogen.de/bauanleitung-pattern-library-1/
http://www.produktbezogen.de/bauanleitung-pattern-library-1/
https://github.com/bslatkin/dpxdt
https://github.com/guardian/wraith-donk
https://github.com/facebook/huxley
http://www.imagemagick.org/script/index.php
http://ux.mailchimp.com/patterns
http://patterntap.com/
http://alistapart.com/article/creating-style-guides
http://alistapart.com/article/creating-style-guides
http://docs.seleniumhq.org/
http://www.smileycat.com/design_elements/
http://ui-patterns.com/
https://github.com/BBC-News/wraith
https://developer.yahoo.com/ypatterns/about/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

place, date, signature

place, date, signature

	1 Introduction
	1.1 Module Process Analysis
	1.2 Industry Partner
	1.3 Desired Improvements
	1.4 Project Planning And Schedule
	1.4.1 Work Packages And Gantt Diagram
	1.4.2 Responsibilities

	2 Current Condition
	2.1 Teams
	2.1.1 User Experience Team
	2.1.2 Developer Team
	2.1.3 Testing Team
	2.1.4 Product Management

	2.2 Artifacts
	2.2.1 Requirement Specification
	2.2.2 Style Guide
	2.2.3 User Stories
	2.2.4 Defects
	2.2.5 Web Application

	2.3 Used Applications
	2.4 Development Processes
	2.4.1 Modified Scrum Process
	Integration Day
	Promotion Day
	Code Streams

	2.4.2 Roles And Responsibilities
	Product Management
	Scrum Master
	Developer
	Tester
	UX-Team

	3 Analysis For Potential Improvements
	3.1 Issues with the Style Guide
	3.1.1 Communication
	3.1.2 Style Guide Format
	3.1.3 Change History
	3.1.4 Duplicates

	3.2 Issues With Testing Against The Style Guide
	3.2.1 Testing By The Developer Team
	3.2.2 Testing By The UX-Team

	4 Nominal Condition
	4.1 Documents
	4.2 Degree Of Test Automation
	4.3 Communication And Processes

	5 Pattern Libraries
	5.1 Characteristics Of A Pattern Library
	5.2 Pattern Library Examples
	5.3 Related Work

	6 Test Applications And Frameworks
	6.1 Features and Requirements
	6.2 Selenium
	6.3 Huxley
	6.4 Wraith
	6.5 Depicted - dpxdt

	7 Proposals For Modifications
	7.1 Pattern Libraries
	7.1.1 Domain Specific Requirements
	7.1.2 Conclusion

	7.2 Testing Tools
	7.2.1 Selenium
	7.2.2 Huxley
	7.2.3 Wraith
	7.2.4 Depicted
	7.2.5 Conclusion
	Developers Running Smoke Tests On Their Local Machines
	Automated Testing Of The Build

	7.3 Process
	7.3.1 Not Working Proposal
	7.3.2 Development Of A Pattern Library
	Developer Team Develops The Pattern Library
	UX-Team Develops The Pattern Library
	Style Guide References The Pattern Library

	7.3.3 Integration Of An Automated Test Cycle

	7.4 Result

	8 Reflection
	9 Summary
	Bibliography

