Institute of Software Technology

University of Stuttgart
UniversitatsstralRe 38
D-70569 Stuttgart

Process Analysis No. 9

Analysis of the Software
Development Process of inspectiT
and Changes Required for Joining

the Eclipse Foundation

Thomas Dullmann, Tobias Rudolph, Anton Scherer

Course of Study: Softwaretechnik
Examiner: Prof. Dr. Lars Grunske
Supervisors: Dr.-Ing. André van Hoorn,

lvan Senic (NovaTec GmbH)

Commenced: 2014/11/03

Completed: 2015/05/05

CR-Classification: D.2.7,D.2.9

Abstract

In todays world there are many arguments for companies to use open source software. On
the one hand they profit in terms of guaranteed future from the possibility that the software
is supported by the open source community after the developing company decides to stop
the support for its product. On the other hand companies can economically profit from the
fact that they do not have to pay for using the software.

A good practice to get in touch with these customers that use or plan to use open source
software could be developing open source software oneself and publishing these software
under a well-known open source license.

One leading player in open source is the Eclipse Foundation. Since their establishment in
2004, more and more software products join the Eclipse Foundation , often using its open
source license Eclipse Public License (EPL). A product that could benefit from becoming an
Eclipse project is NovaTec’s Application Performance Management (APM) tool inspectIT. In
this process analysis, we give a summary about the steps a project team needs to make to
join the Eclipse Foundation and publish software under the EPL.

1ii

Contents

1 Introduction 1
1.1 Motivation e 1
1.2 Goals 1
1.3 Document Structure L L o 2
2 Research procedure 3
21 Company Background L 3
22 Process Analysis. L 3
23 ProjectPlan 4
3 Fundamentals of the Eclipse Foundation 7
31 CorePrinciples 7
32 Communities 8
3.3 Basic Project Structureso Lo L Lo 8
3.4 Eclipse Public License 9
3.5 Intellectual Property Policy 10
4 Consolidation of Requirements of the Eclipse Foundation 13
41 ProjectLifecycle 13
42 Development Process L o o 17
5 Case Study: inspectIT going Open Source 21
5.1 Software Engineering Processes of inspectIT 21
5.2 Application of the Eclipse Foundation’s Requirements on inspectIT 25
6 Conclusion 29
Bibliography 31

Chapter 1

Introduction

1.1 Motivation

A rising number of companies tends to change the way of developing and publishing their
software to profit from the growing open source software market [Martin Horst, 2011].
One way for a company to participate in that market is publishing its own software under
a well-known open source software license. The NovaTec Consulting GmbH intends to
take the step from a free license model with closed source to an open source license for
its APM tool inspectIT. The option which is analyzed in this study to accomplish that goal
is to publish inspectIT as an Eclipse project. One main point, why NovaTec Consulting
GmbH considers the option to publish its APM tool as an Eclipse project is that with this
step, inspectIT could get a higher popularity compared to the status quo. Currently there
is no APM tool which is comparable with inspectIT in the Eclipse cosmos. So they would
be a trend setter and could profit from that role. With that higher population NovaTec
Consulting GmbH could offer consulting for their APM tool, give courses and offer to
develop enhancements for inspectIT. Another argument for joining Eclipse is that inspectIT
is already based on the Eclipse Integrated Development Environment (IDE). Becoming an
Eclipse project would be a consequent next step. Last but not least, customers have the
possibility to contribute to the project. On the customers’ side, they can assure that there is
the possibility to support the tool on their own, even if NovaTlec Consulting GmbH would
decide to stop supporting inspectIT. With that advantage, more customers could consider
using inspectIT. On the developers’ side, there is the possibility that some customers start
contributing to inspectIT. So NovaTlec Consulting GmbH could get help for the development
of inspectIT for free. In order to do so, NovaTec Consulting GmbH has to analyze its current
software development process and compare it with the requirements defined by the Eclipse
Foundation . During this assessment, possible problems in the general process should be
detected and changes that are required to comply with the Eclipse Foundation requirements
should be identified.

1.2 Goals

Originally, NovaTec Consulting GmbH wants to use the results of this process analysis to
see if it is possible to migrate inspectIT to the Eclipse Foundation . So the NovaTec Consulting

1. Introduction

GmbH expected knowledge about what parts of the development process has to change to
be able to join the Eclipse Foundation .

During our process analysis NovaTec Consulting GmbH decided not to join the Eclipse
Foundation .

As a consequence, the focus of the analysis shifted towards a more general inspection
on how a project could become part of the Eclipse Foundation . Furthermore, advantages
and disadvantages of a software which joins the Eclipse Foundation should be mentioned in
this documentation. As a second result we will present a short case study to show what
NovaTec Consulting GmbH would have had to do if they decided to become part of the
Eclipse Foundation in the future. With that knowledge they can do that step easier if it might
become relevant to them at some point of time.

Another goal of this study is to analyze and document the software development
process and environment of inspectIT such as the development-, build-, and release process.
During this analysis some suggestions of improvements can be made, although that is not
the main focus of our work.

1.3 Document Structure
The remainder of this document is structured as follows:

> In Chapter 2 we give an overview about NovaTec GmbH and a quick introduction into a
process analysis in general. Furthermore we will discuss our project plan in that section.

> Chapter 3 gives an overview of the requirements regarding the joining process and the
processes within the Eclipse Foundation .

> In Chapter 4 we document the software engineering process of inspectIT and compare
two projects which planed to become part of the Eclipse Foundation .

> Finally, in Chapter 5, we summarize our process analysis and give a personal feedback
about the EPL and the consequences becoming part of the Eclipse Foundation as well.

Chapter 2

Research procedure

This chapter contains a short description of the NovaTec GmbH. Furthermore an overview
of the process analysis is given.

2.1 Company Background

NovaTec GmbH is an IT consulting company with its headquarters based in Leinfelden-
Echterdingen, Germany. Besides the headquarter, NovaTec is also located in Frankfurt,
Berlin, Munich and Jeddah (Saudi Arabia). The company was founded in 1996 and has
grown since. Different services are provided by NovaTec. This includes consulting with
focus on application performance management, agile methods, agile quality engineering,
data center automation, enterprise application integration, business process management
and enterprise application development. Since its foundation, NovaTec GmbH accom-
plished projects with many partners in different sectors like financial services, health
care, logistics, defense and security, automotive and industry and public sector. NovaTec
GmbH is divided into three independent operation units: The NovaTec Solution GmbH,
the NovaTec Products GmbH and the NovaTec Consulting GmbH.

As an independent consulting company, NovaTec Consulting GmbH is a licensed partner
of many popular IT companies. Besides these partnerships, NovaTec is also developing
some own IT tools. One example of a software developed by NovaTec Consulting GmbH
is the APM tool inspectIT. At this time, the APM tool is closed source but freely available.
The business model of inspectIT is mainly focused on consulting services. So NovaTec
Consulting GmbH would not lose any license fees if inspectIT would become an Eclipse
project. The main benefit for NovaTec Consulting GmbH for publishing their tool as an
Eclipse project would be a larger distribution inspectIT as the APM tool can profit form the
popularity of the Eclipse Foundation .

2.2 Process Analysis

Based on [Behr and Tyll, 2003], the goal of a process analysis is to analyze a current process
and look for improvements to perform this process in a more efficient or better way. An
overview is provided in Figure 2.1.

2. Research procedure

Recording of
Recording of Business
company process
structure (current
state)

Analysis of
the Improve

Business current state
process

Figure 2.1. representation of the concept of process analysis following.

To achieve this goal, first of all, the status quo has to be analyzed and documented if
not done before. Based on these information improvements are suggested to get an better
process. There are three different methods described in [Behr and Tyll, 2003] how to gather
information about the status quo during a process analysis:

> Survey: If a process analysis is using the survey technique to get information, questions
which could show weaknesses of a process have to be collected. As a next step these
questions should be asked persons who are involved in the process which is being
analyzed. That could be done either in an oral or written form. At the end the results of
the survey have to be interpreted.

= Observation: For this method the processes which are analyzed are observed either in a
passive or an active way. During a passive observation the observer does not interact
with the process, he just observes the process. While an active observer is part of the
process. After a specific period of time the experiences which are collected with this
method are analyzed.

= Analysis of existent data: If a process analysis works with existent data, mainly available
documentation is used for the analysis to suggest improvements of processes.

In this project mainly the third method is used. Therefore the documentation of the
inspectIT development process and the documentation about the Eclipse Foundation are
analyzed.

2.3 Project Plan

In this section we describe the individual tasks we defined for this process analysis. To
give a overview about these tasks, we provide a Gantt chart in Figure 2.2 to show our time
plan as well. The project plan was created as a first step in our project. Not everything has
worked out as planned for different reasons. In the following we give a short overview of
these task and discuss why some of them did not worked our as planned.

2.3. Project Plan

2.3.1 Analysis of inspectIT’s current Software Development Process

Analyze the current software development and maintenance processes of inspectIT. The
result is shown in this document. We achieved this by reading documentation and inter-
viewing a developer of NovaTech Consulting GmbH who is involved in the development
of inspectIT.

2.3.2 Analysis of the Eclipse Foundation

For publishing a project as an Eclipse project there are requirements and rules designed
by the Eclipse Foundation . We summarize the requirements to give a rough overview.
One result of this step is a checklist which can be applied if initially joining the Eclipse
Foundation with a project. We also recap the steps needed for publishing a new release for
a software project within the Eclipse Foundation .

2.3.3 Case Study: inspectIT going Open Source

After the collection of the current software process of inspectIT and the requirements of
joining the Eclipse Foundation we document the challenges which would have occured if
NovaTech Consulting GmbH had decided to publish inspectIT as an Eclipse project. At the
point of time we started with that task NovaTec Consulting GmbH decided not to publish
inspectIT as Eclipse project. As a result of that decision we agreed to give only an overview
about what had to be done before publishing inspectIT as an Eclipse project.

2.3.4 Interviewing

We looked for potential interview partners. With the help of NovaTec we intended to get in
contact with an expert who is the CEO of a company whose software joined the Eclipse
Foundation in the past. After the decision not to join the Eclipse Foundation we lost contact
with that person before he could answer our questions about his experience with the Eclipse
Foundation . But fortunately his company published a case study within some articles in
the Eclipse Magazine so we can get information about their experience by reading these
articles.

2.3.5 Documentation

The task documentation contains the documentation of the results of the different tasks.
This task is done beside the tasks mentioned before. At the end, there is time reserved for
the review process.

7

"- T
AMNT:T: L d
project: -

Vargang

start

requirements for joining EF
licencing for EF

analysis ofthe eclipse foundation process
interview

analysis ofthe current soflware process
information aquisition completed

impact of going open source for inspectT
information transfer completed
documentation

review

end

VergroBern | Verkleinern

Heute ~ | Ruckwarts | Vorwarts

Kritischen Pfad anzeigen | Basisplane...

2015
start | |informati0n anquisition completedl |inf0rmati0n transfetcompletedland
: |
= Movember Dezember Januar Februar Mérz Al Ma

i *

| —

[——

[—
s ———

1

*

Figure 2.2. Gantt chart

G.II’IPGDO.ICI UdIeoasay ‘¢

Chapter 3

Fundamentals of the Eclipse Foundation

The Eclipse Foundation states in its bylaws [Eclipse Foundation, 2003]: "The Eclipse technol-
ogy is a vendor-neutral, open development platform supplying frameworks and exemplary,
extensible tools (the "Eclipse Platform"). [..] The purpose of Eclipse Foundation Inc., (the
"Eclipse Foundation) is to advance the creation, evolution, promotion, and support of the
Eclipse Platform and to cultivate both an open source community and an ecosystem of
complementary products, capabilities, and services."

This chapter is intended to give a short overview of the requirements regarding the
joining process for new open source projects and the expected processes while the project
is part of the Eclipse Foundation .

The following resources have been used:

> Committers Bootcamp Presentation Slides (05/2014) [Beaton et al., 2014]

> Eclipse Development Process 2014 Documentation [Eclipse Foundation, 2014a]
> Eclipse Wiki - Development Resources [Eclipse Foundation Wiki]

> Bylaws of Eclipse Foundation [Eclipse Foundation, 2003]

> Eclipse Intellectual Property Policy [Eclipse Foundation, 2011]

> Eclipse Public License Agreement [Eclipse Foundation]

> Eclipse Foundation Contributor License Agreement [Eclipse Foundation, 2013]

3.1 Core Principles

The Eclipse Foundation defines three main Rules of Engagement which state the core
principles of the Eclipse Foundation :

Transparency All information should be accessible without restrictions. This means, that
discussions, plans and minutes should be open, public and easily accessible.

Openness Everybody should have the same opportunities to contribute and everybody
should participate with the same rules. Nobody is excluded in any way (not even competi-
tors).

3. Fundamentals of the Eclipse Foundation

Meritocracy The more one participates and contributes the more responsibilities are
given to him. Leadership roles are also merit-based (earned by peer acclaim).

3.2 Communities

All people having to do with an Eclipse Foundation project can be divided into three groups
(non-exclusive):

Users People only using the software from a project.

Adopters Individuals, groups or organizations that use the software from a project to
either build their own products or extensions.

Developers Consisting of contributors and committers participating in the project itself.

3.3 Basic Project Structures

To understand the processes and requirements of the Eclipse Foundation it is important to
have a basic understanding of the structures the Eclipse Foundation postulates.

3.3.1 Project Structure and Organization

Eclipse projects are structured in a hierarchical order. Every project, independent from
the fact whether it is a Top Level Project or a sub-project, has its own resources (especially
repositories and issue tracking) and committers. It is possible that projects join existing
projects as sub-projects. Some resources can be shared between a parent and a sub-
project (e.g, website, downloads, website). Every Top Level Project is lead by a Project
Management Committee (PMC) who is assigned to keep oversight of the whole underlying
project structure and its processes. For each project there is at least one Project Lead who
is responsible for the specific project and ensures that the Eclipse Development Process is
implemented correctly and the activities follow the core principles of the Eclipse Foundation .
In addition to the Project Lead(s) there are two groups of people working on a project:
Contributors and Committers.

Contributors "Contributors are individuals who contribute code, fixes, tests, documenta-
tion, or other work that is part of the project.” [Eclipse Foundation, 2014a]

Everybody can contribute to projects after registering an account and signing the Eclipse
Contribution License Agreement (CLA) (Eclipse Foundation [2013]). Signing the CLA is
required to make sure that all contributors know and follow the Intellectual Property (IP)
terms of the Eclipse Foundation .

3.4. Eclipse Public License

Committers "Committers have write access to the project’s resources [..] and are expected
to influence the project’s development." [Eclipse Foundation, 2014a]

The committers’ responsibility is to actively take part in the forthcoming of a project.
Committers can nominate Committers-to-be and participate in votings whether they are
accepted as a Committer. If they become inactive for at least six months, the Committer
state can be revoked.

3.4 Eclipse Public License

The EPL is an open source license, published in 2004. Basically, all current and future
members of the Eclipse Foundation must conform to this license. Originally, EPL was derived
from the Common Public License (CPL). That is why both licenses are very similar. However,
EPL is at some points less restrictive regarding patent litigation terms. Although the details
of the license model are out of scope, a broad overview of the major aspects will be provided
in the following. In general, there are two types of parties defined by the EPL: Persons (or
entities) are named Contributors if they develop and/or distribute code for the project. This
could be either the initial starting code as well as subsequent contributions. Also persons
who just redistribute the program are regarded to be contributors. Redistribution means
distributing the unmodified or changed software through different channels. In contrast,
Recipients include anyone receiving the program under the EPL. Contributors must identify
themselves as originators of their code, which is why they cannot remain anonymous
after code commitment. In general, code may be adapted and distributed under EPL freely
without any warranty or conditions. It is even allowed to compile a program licensed
under the EPL without modification and commercially license the result in accordance with
the terms of the EPL. Moreover, if a person modifies the program but does not distribute
it (e.g. only for his/her own purpose), the changes must not be made available to others.
Though, if someone does distribute a modified program which originally was under EPL,
regardless if it is a free or commercial distribution of the object code, changes must be made
open source. But, if something is built on top of the program (existing code is not changed
but extended) then it is not required to distribute the added source code. However, there
is a fundamental problem when building and distributing software that contains source
code under EPL and code under another license. Then, it must be checked carefully if the
licenses comply to each other. For example, popular licenses such as GNU General Public
License or Berkeley Software Distribution License are not compatible with EPL. In contrast,
other licenses such as Apache Software License 2.0, W3C Software License, Common Public
License 1.0 are approved for use by third-party code redistributed by Eclipse projects which
run under EPL anyway. However, one must be aware that when developing a software
product including copies of code licensed under EPL, redistribution is only permitted under
the EPL license. Read our own opinion about the EPL in Chapter 6.

3. Fundamentals of the Eclipse Foundation

3.5 Intellectual Property Policy

The Intellectual Property Policy (IP Policy) defines rules that apply to all content that
the Eclipse Foundation accepts, redistributes or hosts and to all other aspects regarding
intellectual property. This section is based on the Eclipse IP Policy document [Eclipse
Foundation, 2011].

3.5.1 Contribution Acceptance (inbound Licensing)

The Eclipse Foundation preferably accepts content which is licensed under the EPL. Content
(standing for any code/media that is submitted to an either new or existing project) that is
not licensed under the EPL has to meet multiple requirements to be able to be accepted:

First, the copyright holder of the content to contribute has to be unwilling to make it
available under EPL or the project license is not the EPL. Furthermore, Eclipse Management
Organization (EMO), the PMC Leader and the committer have to state that the content in
question is important for achieving the project plan. Eventually the Eclipse Foundation
Board and the PMC have to review and approve the proposed alternative terms and
conditions.

In order to gain the rights to redistribute the submitted content, the Eclipse Founda-
tion uses the following mechanisms:

> Committer Agreement
> Explicit license grants
> Eclipse.org Terms of Use
> Other agreements between the submitter and the EMO
The EMO is responsible for the correct processing of submissions in terms of licensing
and redistribution and hosting.
3.5.2 Contribution Licensing (outbound Licensing)

In general, Eclipse projects shall be licensed under the EPL. Also material other than
software and documentation that is copyrightable (e.g., images) shall be licensed under
the terms of the EPL. Exceptions can be made by approval by the Board of Directors (see
Eclipse Foundation [2003], Section 3.9).

3.5.3 Due Diligence and Record Keeping

Apart from exceptions, the EMO is held to ensure the compliance with the IP Policy. In doubt
of the ability to redistribute content, the committer should contact the PMC and the EMO for
assistance with her case. If disputes between PMC and EMO should arise, the PMC has the

10

3.5. Intellectual Property Policy

possibility to appeal to the Eclipse Foundation Board for resolution of the dispute. Both,
PMC and EMO are responsible for keeping the information collected by the committers for
future reference.

11

Chapter 4

Consolidation of Requirements of the
Eclipse Foundation

4.1 Project Lifecycle

4.1.1 Joining Process

Project Proposal

Creation
Review

X

Community
Review

A 4

A projects’ lifecycle ranges from its creation to its termination. The steps from the beginning
to the end are presented in this chapter.

In order to become an Eclipse project, there is a predefined process that has to be followed.
This section gives a short overview over these steps.

y

Provisioning

Plan, Develop,
“| Review, Release

Trademark
Review

v

Initial
Contribution

Figure 4.1. The Eclipse project creation process according to Beaton et al. [2014].

4.1.2 Prerequisites

Every project intending to join is expected to have (useful) code already. Eclipse projects
are responsible for developing a community of users, adopters and contributors. Having
these aspects in mind, people interested in starting an Eclipse project can contact the Eclipse
Foundation .

13

4. Consolidation of Requirements of the Eclipse Foundation

Before actively starting to create a new Eclipse project, one should check whether
there are similar projects which can be extended in any way to achieve the intended
aim. If this is not the case, a project name has to be chosen (according to the HowTo
https://wiki.eclipse.org/Development_Resources/HOWTO/Pre-Proposal_Phase). Afterwards, the creation
of a project proposal can begin.The EMO will assist with the preparation of a project
proposal.

Project Proposal

The project proposal is the first public presentation of the project. It should contain
information about what the aim of the project is, how it is intended to be reached and
what plans currently exist to bring the project on its way. Furthermore, it is often used to
attract potential contributors or third parties that might be interested in supporting the
project. The proposal is published on the website of the Eclipse Foundation . During this
phase two mentors from the Architecture Council have to be identified and listed in the
project proposal. If no mentors could be identified during this phase, the project lead can
file a bug against the Architecture Council to actively request mentors. According to the
HowTo (nhttps://wiki.eclipse.org/Development_Resources/HOWTO/Pre-Proposal_Phase) some information
about the project-to-be are required to be filled in (e.g., background, scope, licenses,
committers, mentors). Those mentors assist a project with all questions regarding the
creation and the development of the Eclipse Foundation processes. Further information
about the Architecture Council can be found in the Eclipse Foundation Wiki (https://wiki.

eclipse.org/Architecture,Council)

Community Review

After the publication of the first version ot the project proposal, the community has at least
two weeks to review the proposal. During this phase the creators are held to respond to
questions from the community, identify additional committers and refine the proposal.

Trademark Review

The aim of the trademark review is to make sure, that the codebase is reviewed, does not
contain inappropriately copied code, that license terms are respected and that third party
libraries used in the project are approved by the Eclipse Foundation . Eventually, the IP log is
submitted (http://wiki.eclipse.org/Development_Resources/IP_Log). This process is an offer by the
Eclipse Foundation to make sure the code base is clean from a jurisdictional point of view.
This is a big advantage for a project and would be a very complex and expensive task in
case it had to be done by external experts in that field.

14

https://wiki.eclipse.org/Development_Resources/HOWTO/Pre-Proposal_Phase
https://wiki.eclipse.org/Development_Resources/HOWTO/Pre-Proposal_Phase
https://wiki.eclipse.org/Architecture_Council
https://wiki.eclipse.org/Architecture_Council
http://wiki.eclipse.org/Development_Resources/IP_Log

4.1. Project Lifecycle

Creation Review

The intent of the Eclipse Foundation is not to be a "code dump". To prevent this, the creation
review makes sure, that the project has sufficient resources to keep it alive and to achieve
its aims. Therefore, the project has to nominate its initial committers and justify its choice
by stating the relationship of the committers to the project and their history with the project
(e.g., previous contributions, technical experience in the field of the project). The aim is to
keep experienced contributors in the project and justify the initial committership in the
meritocracy-based ecosystem of the Eclipse Foundation . Additionally, the creation review
phase gives the opportunity to the community for a final project review and pose further
questions regarding the project.

Provisioning

The provisioning phase begins with the project lead submitting a provisioning request
(https://www.eclipse.org/projects/project,provisioning, request. php) to the EMO. After the pI‘OCQSSil’Ig
of the provisioning request and after the IP team has handled the committer paperwork,
the requested resources are provisioned by the webmaster team. The main resources that
are provisioned are:

> Version Control System: git/gerrit
> Issue tracker: bugzilla
> Forums

> Mailing lists

Initial Contribution

The following list shows the steps the initial contribution consists of.
Source: Eclipse Foundation Wiki (http://wiki.eclipse.org/Development_Resources/Initial_Contribution)

1. Wait for provisioning notice

2. Ensure namespace aligns with naming conventions (org.eclipse.<subproject>.<component>[.x]).
See Eclipse Foundation Wiki (http://wiki.eclipse.org/Naming_Conventions) for further details.

3. Ensure copyright and license notices have been applied to source. The default copyright
and license notice can be found under: https://www.eclipse.org/legal/copyrightandlicensenotice.
php

4. Ensure availability of the notices (about.html, license files, ..)

5. Pack source code and attach to Bugzilla record as "initial contribution”

15

https://www.eclipse.org/projects/project_provisioning_request.php
http://wiki.eclipse.org/Development_Resources/Initial_Contribution
http://wiki.eclipse.org/Naming_Conventions
https://www.eclipse.org/legal/copyrightandlicensenotice.php
https://www.eclipse.org/legal/copyrightandlicensenotice.php

4. Consolidation of Requirements of the Eclipse Foundation

6. Use foundation portal to open Contribution Questionnaire (CQ) referencing the record
(bug), which leads to the initial review by the 1P Team.

7. On request add the source code archive file to CQ, too

If there are any third party references, there is an alternative procedure to be followed:

http://www.eclipse.org/org/documents/Eclipse_Policy_and_Procedure_for_3rd_Party_Dependencies_Final.pdf

Plan, Develop, Review, Release

The aspects of Plan, Develop, Review and Release are covered in Chapter 4.2 in detail.

4.1.3 Project Phases

A project can be in several phases. Those phases are presented in the paragraphs below.
This section is based on Eclipse Foundation [2014a].

Incubation If a project is created, it is in the incubation phase. This phase aims to give a
project time to establish its processes, community and technology to become a functional
open source project. While the project is in the incubation phase it is allowed to publish
releases; the phase ends either with a graduation review (= Mature) or a termination
review (= Archived).

Mature The mature phase begins, when the project could demonstrate in the graduation
review, that it has adopted the Eclipse Foundation processes and that it is a functional and
working open source project. This phase ends with a termination review (= Archived).

Archived If a project becomes inactive it reaches the archived phase after a termination
review. This can happen either if the projects aims are reached or the project does not
have enough resources (e.g., contributors) to stay active. When in archived phase, all project
information (e.g, mailing lists, website, repository content) are archived and all active
services are disabled (e.g., repository, mailing lists). The project gets a website with a short
description, the last release and the archived resources. Finally, the project is removed from
the active projects list and added to the archived projects list.

4.1.4 Best Practices

Apart from the adoption of the processes of the Eclipse Foundation , the Eclipse Founda-
tion recommends to adhere to the following best practices to actively improve and support
a project:

> Careful tracking of all project contributions

16

http://www.eclipse.org/org/documents/Eclipse_Policy_and_Procedure_for_3rd_Party_Dependencies_Final.pdf

4.2. Development Process

> Anticipate spending a significant amount of time for responding to questions in forums
and mailing-lists, stackoverflow.

> Attend conferences (especially eclipse summit europe, eclipsecon)
> Presenting webinars

> Writing papers

4.2 Development Process

The next paragraphs describe the actual process of developing new code after the joining
process to Eclipse Foundation finished successfully. First of all, each project has one or more
project leaders who are responsible that the project’s committers follow the defined rules
and guidelines. The development team consists of comitters and contributors who together
follow the general process illustrated in Figure 4.2.

v

Capture Plan Implement

Produce
Milestone

Py

Figure 4.2. General Development Process Beaton et al. [2014].

421 Capture Plan

The process starts with capturing the project plan for each major and minor project release
which should be made public. Doing so encourages the community to get involved into
the project. That is why the project plan should be started at the beginning of the release
cycle. Ideally, the release is directly linked to the project plan using the "Plan URL" in the
project metadata. Project metadata are relatively static structural information such as the
project description, the names of the project’s mailing lists, historical information such as
previous release downloads, IP logs and finally current status and future milestone plans,
release dates, etc. In general, the project plan can be specified in two ways: Either as a
release record or as an XML-based project plan which can be implemented easily using
some XML-Templates where a neat HTML page can be generated from.

17

4. Consolidation of Requirements of the Eclipse Foundation

4.2.2 Implement

Ideally, a project encourages a group of people to implement new features, fix bugs, etc.
Therefore, the project needs to have a contribution guide, especially for those who want to
get started. Generally, building a development community is a major requirement for a
successful project in the long run. In addition, it must be ensured that all committers are
aware of IP issues when using third-party libraries which have to be tracked. However,
during development there are some restrictions regarding the use of software for devel-
opment support. For example, all Eclipse projects have to use Bugzilla to track bugs and
features. As a version control system, SVN or Git should be used. Although Maven is
recommended as build tool, others can be used as well. Though, projects have to move
to the Eclipse provided Hudson build servers. However, we will not go into detail at this
point since tooling must be clarified for each project separately.

4.2.3 Produce Milestone

Projects are encouraged to use an agile development process including regular milestones.
According to Eclipse, former projects following the waterfall model had been less successful.
Although the time period between the milestones can vary, major projects (e.g. the Luna
project: Free IDE version of Eclipse) have shown that a six week milestone schedule is
reasonable. With each milestone, a complete software development lifecycle is conducted:
Design, code test, review, integrate and distribute. It is also recommended to establish a
predictable, reliable milestone schedule without changing major points during the process.
The advantage of short-termed milestone builds are that developers get a fast feedback and
the community is kept alive because of regular new features.

4.2.4 Release

In fact, Eclipse Foundation is geared to the release process of the Apache Software Foundation
where detailed information can be found. A release is a version of the project which is
distributed to the outside. If users are directed on a website to download a build, this
version must have been released. Any links to nightly or integration builds should not be
made public in wikis, blogs, etc. However, milestones and release candidates are exceptions
as they can be made available to the community including the mandatory caveat that these
versions are not official. Official releases are the only downloads allowed to be labeled
with x.y, e.g. 0.5, 1.0, 2.3, etc. The time period during releases is not fixed.

All official releases must undergo a prior review process which has the following four
main purposes:
(i) Summarizing the accomplishments of the release (e.g. major features, controversial
extensions, etc.),
(ii) checking that no IP Policies have been violated,

18

4.2. Development Process

(iii) highlighting any remaining issues of quality, security, usability architectural etc. and
(iv) finally to verify that the principles and purposes of Eclipse are satisfied.

The process starts with assembling review documentation and the IP Log. For the latter,
it is useful to use tools such as Project Downloads Scanner to confirm that only approved
third-party code is in the project or the Bugzilla Contribution Review Tool. After that,
the IP Log should be submitted to the IP Team and the review documentation must be
approved by the PMC. Finally, the release can be finalized.

4.2.5 Release Checklist

The following list, based on [Eclipse Foundation, 2014b], gives an overview of important
tasks which have to be checked prior to releasing.

> Project Website up-to-date (including Contribution Guide)?
> Project meta-data is up-to-date (e.g. description, release metadata, project plan)?

> Check if code and builds are properly managed
- project source code available in Eclipse repository
- contributing files
- at least one milestone build
- builds hosted on eclipse.org
- naming conventions and version numbering rules followed
- bundle manifests correct

- bundles contain an about.html file for legal issues
> Naming conventions and version numbering followed?
> Review security-related bugs
> Download files include the required legal documentation?
> IP Logs submitted for review by the Eclipse IP Team?
> PMC approval obtained?

> Review documentation (correct copyright, EPL notice, URLs of the project, etc.)

19

Chapter 5

Case Study: inspectIT going Open Source

This Chapter is devoted to document the most important software engineering processes
of inspectIT. Since the development of inspectIT does not follow a common software process
model such as SCRUM, a higher level perspective is needed to define the software processes.
For this purpose, the following sections are organized according to the reference model of
the Unified Process for Education (UPEDU) according to Robillard et al. [2002]. The main
disciplines share a common structure as illustrated in Figure 5.1.

5.1 Software Engineering Processes of inspectIT

Requirements

/ Analysis & Design
Flanning Canfig. & Change Implementation
I'\-'lanag-':mf:r‘rt

; i Test
14N

O Deployment

-
T
___v/f

Evaluation

Figure 5.1. The set of disciplines in a typical software engineering process Robillard et al. [2002].

The model reflects the iterative lifecycle processes of inspectIT quite appropriately as
it is done in practice. However, the model also covers the development of a completely
new software, which is why the following sections do not include all phases of the model.
For example, the planning phase is essential when beginning a new software project but
it is not part of the iteration and therefore left out. The first process to analyze is the
requirements analysis of inspectIT, in terms of new features. Thereafter, the development
phase will be reflected before the testing processes are presented. In the context of inspectIT,
the evaluation is done in a special way by integration managers. That is why we renamed

21

5. Case Study: inspectIT going Open Source

this phase into integration and build processes. The deployment phase will be considered
as the new version releases. It should be noted that currently only a few persons are
actively involved in the development processes of inspectIT. The following paragraphs are
mainly based on the internal documentation provided by NovaTlec Consulting GmbH.

51.1 Requirements

The current inspectIT development is requirement-driven as this is the first point of each
activity. The management of requirements is handled via the internal Jira ticketing system.
A "new Feature" ticket contains information about what should be done and the reasons
why to do so. Usually, requirements are refined into several more concrete tasks. Of
course, not only new features constitute to requirements but also a bug/defects or other
(internal) tasks are treated as new requirements. Each ticket is assigned to a developer
and an estimation for realizing, testing and documenting must be given. The owner of the
requirement should act as a customer and should be available if any questions arise. Often,
new requirements arise due to practical experience with the tool.

Possible improvement: Currently, it is not obvious which requirements should be real-
ized and which not. Especially, it would be helpful for further planning, if something like
a long-term road map for inspectIT was created. It contains all planned features, described
very roughly, on a timeline. Then, implementing new features would be transparent to all
participants.

5.1.2 Development

In order to correctly set up the development environment for new inspectIT developers, a
guideline was created to install and configure all the tools necessary for implementing new
code (e.g., Ivy, PMD, TestNG, Findbugs, Checkstyle, etc.). In general, all developers get
several tickets assigned by the Jira system. There are multiple ticket statuses in Jira such
as open, in progress, integration needed, resolved, closed to just name a few. Each ticket,
which can also be a reported bug, needs to be classified based on a specific classification
(blocker, critical, minor, trivial). At least two developers must agree on the severity of the
bug. After developers think they accomplished a ticket, they can request the integration
into the master branch (See Chapter 5.1.4).

5.1.3 Testing

inspectIT undergoes several types of tests which are described in the following.

Unit tests are designed to test the functionality of implemented methods and core classes.
Relevant incoming and outgoing data, that are needed for a unit test, are usually
mocked. Developers must write appropriate unit tests for their code in order to request
a successful merge into the master branch (See Chapter 5.1.4).

22

5.1. Software Engineering Processes of inspectIT

Component/Integration tests are written for components (Agent, CMR, GUI) using the
Spring framework. These tests are more abstract than unit tests as the interaction with
multiple modules are very important to test. It is necessary since some functionality (e.g.
bytecode instrumentation of an application) must be tested according to its outcome.

Explorative Testing is conducted typically one complete day before each release. There are
defined steps which are actually some kind of use cases, executed manually. The use
cases cover major capabilities of each of the components. Explorative testing should
ensure that no critical bugs were found in the release version. However, minor bugs
which were detecting during testing are reported and documented on Jira for the next
release version.

All automated tests are integrated into the build process. However, there is a load
test which is executed every weekend. Therefore, a sample application (DVD store)
is monitored by inspectIT in order to analyze how inspectIT behaves if the application
experiences heavy load.

Possible improvement: For now, there are no fully automated performance benchmarks
to asses the performance overhead of inspectIT itself. At some critical points, some
rudimentary performance experiments are built, e.g., the performance overhead of the
exception sensor which revealed that tracing the stack trace does reduce performance
significantly. Though, these tests are just to get a feeling about the magnitude. A generic
way to measure performance overhead of inspectIT in a fully automated way would be
interesting. Furthermore, an accurately measured performance overhead (which should
be low) are hard facts for customers in order to increase their confidence in this tool.

5.1.4 Integration

The integration process of inspectIT has the goal to only integrate high quality code into the
master branch. First, the inspectIT developer starts the process by creating a new branch
and cloning the current version of inspectIT into the new repository (Gitorious is used
here). In order to fulfill one specific task, represented by a Jira ticket, the developer writes
some code. After he/she finished, the code has to be pushed into his/her remote branch,
eventually. Next the processed Jira ticket has to be set to "integration needed" which is
essentially a merge request into the master branch. Jira notifies the role called "integration
manager" who is permitted to merge the change into the master branch. Currently, only
three inspectIT members have this permission. The integration manager reviews the merge
request, focusing on code quality (static code analysis), sufficient testing, etc. In practice, is
an interaction between the developer and the integration manager on how to accomplish
this task the best way and in high quality. After all, if both think that the change is mature
enough, the new code is pushed into the master branch. If the Jenkins build was successful
(e.g., no test failures), the integration manager closes the merge request and the ticket.

23

5. Case Study: inspectIT going Open Source

5.1.5 Build Process

Each of the three inspectIT components has its own build process. Ivy is used for resolving
external dependencies. Continuous integration is done with Jenkins. Code quality tools
such as FindBugs, Checkstyle and PMD are executed when running a build/release job
and reports are generated.

Essentially, the two important jobs are the integration job and the release job. On the
one hand the integration job is executed automatically after a commit into the master
branch of inspectIT (only permitted for integration managers) and verifies that no problems
occur during the build process. On the other hand, there is a release job started manually
when necessary. The complete build will be issued and the release artifacts are uploaded
to the FTP server.

5.1.6 Configuration and Change Management

Changes to requirements are created by the project lead. An original ticket can be enriched
with an additional ticket e.g., as an enhancement or providing additional information
regarding the ticket. Therefore, the initial Jira ticket has a history list of all changes to
it. However, proposed changes can also be rejected if they are not compatible with the
desired goal. The primary goal of configuration management is to ensure the control of
changes made to hardware, software, firmware, documentation, test, test fixtures, and
test documentation throughout the life cycle of the software engineering process. For this
purpose, the inspectIT team uses three systems:
(i) Jira for traceable requirements, tasks, bugs and change requests,
(ii) Confluence for the internal and user documentation and
(iii) Git for the source code version control.

These system ensure that all software artifacts can be traced at various points in time.

5.1.7 Release Process

For the inspectIT team, a fully automated release process is very important. All software
bundles are created automatically whereas some organizational tasks (e.g., changing the
download link on the inspectIT homepage or generating release notes to confluence) are
done with manual interference. Furthermore, the time periods between the public releases
is not defined: As the development is ongoing, small improvements or new features are
integrated regularly. First, beta versions are released when major bugs are fixed or the last
release was four months ago. However, if the team thinks that some major changes are
done justifying a main release, a new version with an incremented number (e.g. from 1.6
to 1.7) is released. A major release has some requirements: sufficient testing, critical or
blocking bugs have been fixed and all planned features for this version were realized. All
releases are started from the Jenkins server. Depending on the release type, specific tasks
have to be executed. The following list gives a rough overview of the tasks:

24

5.2. Application of the Eclipse Foundation’s Requirements on inspectIT

> Build and test

> Upload artifacts to FTP

> Update homepage links

> Add link to release notes on homepage

> Create release notes

> Move confluence spaces (only if major release)
> Integrate news about new release on homepage

> Finalize Jira version

5.2 Application of the Eclipse Foundation’s Requirements
on inspectIT

In this section we give some examples what had to be changed or adapted if NovaTec
Consulting GmbH had decided to become an Eclipse project. Since NovaTec is not
publishing inspectIT within the Eclipse cosmos, we are not going too much into detail. With
the short case study we provide an opportunity for other projects to see what impact the
decision to publish as Eclipse project might have. This section is based on Chapter 3 where
the requirements becoming part of the Eclipse Foundation are discussed in general and on
Chapter 5 with the description of the current processes of inspectIT.

One task which is necessary to accomplish before starting the joining process is to use
Bugzilla as issue tracking platform. Right now Jira is used in the inspectIT processes for
that purpose. As a result, already tracked information have to be transferred into Bugzilla
as well as developers and other users of that system need to get trained in using Bugzilla.

Another point NovaTec Consulting GmbH had to change before their product is able
to become an Eclipse project is their building process. Right now inspectIT is build with
Jenkins. The Eclipse Foundation requested that all products with are an Eclipse project have
to be build with the Eclipse infrastructure with includes a Hudson server. Fortunately, a
transformation could be done with a low amount of working hours.

One main restriction for a project which is becoming an Eclipse project is that no code,
or libraries can be used if they are published under license which does not conform with
the EPL like for example (L)GPL. Meeting this requirement might cost the most time. To
accomplish that task, every library or code that is not development within the project has
to be listed in the tool IPZilla. If some code is published under a license which is not
conform with EPL it has to replaced with some code which is conform. That could cause
some trouble because some parts of the project might have to be changed. The IP team
of Eclipse checks the whole code itself so it is not possible to hide not conforming license

25

5. Case Study: inspectIT going Open Source

from them. NovaTec Consulting GmbH would have checked their code, if they would have
agreed to publish their APM tool inspectIT as an Eclipse project.

Also the developers NovaTec Consulting GmbH which are mainly developing for
inspectIT would have some new tasks in their daily work. They would have to do some
additional work for the open source community which is shown in Figure 5.2. Besides the
development of the tool, they also should do some Eclipse related work like administrating
forums of the project or presenting the project on some Eclipse Conferences.

W Development

H Triage
Outreach

M Conferences

W Forums

Figure 5.2. Tasks of a developer of NovaTec Consulting GmbH after inspectIT become an Eclipse
project. Beaton et al. [2014]

Beside the technical challenges NovaTec Consulting GmbH would have to transfer the
copyrights of inspectIT to the Eclipse Foundation . Even if the expert knowledge about
inspectIT stays within NovaTec Consulting GmbH other companies could take inspectIT,
make some changes and could not publishing this changes under the open source license
again. NovaTec Consulting GmbH could lose control about the future development of
inspectIT. The restriction of the Eclipse Foundation to give up the rights about the project
and the name of inspectIT with no possibility to undo the decision to publish inspectIT as
Eclipse project was one of the argument for NovaTec Consulting GmbH not to publish
inspectIT as an Eclipse project.

5.2.1 Case Study: Jubula becoming an Eclipse project

Another case study which describes how the test tool Jubula migrated to the Eclipse
Foundation is published in the Eclipse Magazine divided into four parts. Jubula consists
of main features provided in the commercial version of the testing tool GUldancer. So
Bredex GmbH on the one hand owned the Eclipse project Jubula and on the other hand
the commercial tool GUldancer with some extended features compared to Jubula. After the
positive feedback and success of the open source tool all functionality of GUldancer were
integrated into Jubula. Similar to the inspectIT project, a huge amount of code existed at
the beginning of publishing Jubula as an Eclipse project. Learning from the experience of

26

5.2. Application of the Eclipse Foundation’s Requirements on inspectIT

Jubula would be certainly helpful if inspectIT or a similar projects should start becoming an
Eclipse project.

The first part [Loerke, 2011a] summarizes Bredex’s experience about the starting process
of publishing Jubula as an Eclipse project. The main reason why Jubula became an Eclipse
project is that Bredex wanted to concentrate their businesses case on giving consulting,
enhancement development and offering training courses. During the time they were in the
process of publishing Jubula as an Eclipse project, they received great help from the mentor
program of the Eclipse Foundation .

In the second section [Loerke, 2011b] their experiences with the IP regulations of the
Eclipse Foundation are documented. The whole IP checking by the Eclipse Foundation is
documented as well as the changes needed to be done to publishing Jubula as an Eclipse
project. They used ParallelIP for that purpose. After a review by the Eclipse Foundation they
had about 20 minor change request which were manly focused on legal issues like the
request to change some comments, missing EPL headers or methods- and class names
which are similar to other open source software projects.

The third part [Ford-Reitz, 2011] shows that Bredex had to change a component of
their software project before they were allowed to publish Jubula as an Eclipse project.
In GUlIdancer the basis of Jabula Hibernate was used as an Object-relational-Mapping-
(ORM-)framework. Since Hibernate is published under the LGPL, the framework is not
allowed to be used within an Eclipse project. As a consequence Bredex had to replace that
framework. In order to solve this problem the ORM-framework EclipseLink was found in
the Eclipse Cosmos. After some migration steps they were able to replace Hibernate with
EclipseLink.

In the final part [Tiede, 2012] the tasks of a developer occurring if his/her project
becomes an Eclipse project are described. The refactoring process was mentioned since
they took code of their commercial tool GUldancer for Jubula. Furthermore, the author
gives a feedback about the revision control tool git. At Bredex Subversion was used before,
so they had to convert according to Eclipse Foundation restriction to git. The converting
process was not a problem since they did not transfer old entries from Subversion to git.
But according to the author understanding the whole functionality of git is a long process.
Another point they had to adapt according to the regulation of the Eclipse Foundation is the
development process. The development process they used before was focused on company
internal development and was not adaptable to an open source development process. They
also had to outsource the entire building infrastructure to the Eclipse Foundation . After
some experiments Jubula builds every day under a combination of Maven3 and Tycho in a
Hudson-Cl-Infrastructure.

As a conclusion they mentioned that the whole process was not always easy to go or
straight forward but they were successful and a high amount of requests and users of

27

5. Case Study: inspectIT going Open Source

Jubula showed them that they did the right thing. One important task after becoming an
Eclipse project is to update the project continuously with new features and updates.

28

Chapter 6

Conclusion

In this process analysis, the conditions for a software joining the Eclipse Foundation and
therefore the Eclipse community are analyzed. For this purpose, the documentation of the
EPL and of the Eclipse Foundation was studied and a step by step guidance was created to
give an overview about which aspects in joining the Eclipse Foundation have to be considered.
As a case study the development process of inspect]T was analyzed in order to prepare
inspectIT for joining the Eclipse Foundation .

One goal of this process analysis was to evaluate theoretically which aspects of the
APM tool inspectIT need to be changed to join the Eclipse Foundation . For that purpose the
software planning, development and maintenance process of inspect]T was documented. By
comparing the current status of inspectIT’s processes with the requirements of the Eclipse
Foundation we identify which steps would have been required to join the Eclipse Foundation .
To have experience of a project which successfully became an Eclipse project we analyzed a
case study of the project Jubula and its way to an become part of the Eclipse Cosmos.

In summary, it would have been possible for NovaTec Consulting GmbH to publish
inspectIT under EPL. Although some tools and process steps in development software had
to be changed before. The decision of NovaTec not to publish inspectIT under the EPL is
mainly based on legal issues. One main problem was that after publishing a project as
Eclipse project, the project owner has to transfer rights of the project towards the Eclipse
Foundation . In future inspectIT will probably be published under an other open source
license.

The technical requirements and issues in joining the Eclipse Foundation were analyzed
in this process analysis. The legal aspect, which is as important as the technical aspect, is
covered on a high level point of view. For further work this could be focused at legal issues
in analyzing the EPL and Eclipse Foundation .

At the end of our documentation we want to give a personal feedback about the EPL. In
our own opinion, the license is a weak copy-left license meaning that one is not required to
use the same license for a derived work. So one can take EPL licensed code, include it in his
own work, and distribute the result under a non-free, commercial license. Therefore, it is
theoretically possible that another company could take the source code, add closed-source
features and sell the product. We found this a downside of this license model. The benefits

29

6. Conclusion

are that EPL is non-restrictive and developer-friendly. Except of the combination of different
license models, a developer has a lot of freedom what to do with the code although they
can’t make claims because they have no copyright of their own code they contributed if the
project become an Eclipse project.

Our personal experience regarding the research towards Eclipse Foundation and its
processes was, that although there is a lot of documentation material that probably covers
all aspects in detail, the biggest problem was to get a proper overview over all this material.
The biggest hindrance was the huge amount of cross-linked resources. This lead to partially
overlapping sources towards one topic.

During our project our team received great assistance from the side of our industry
partner NovaTec Consulting GmbH especially by Ivan Senic who assisted us even after the
decision not to converting inspectIT into an Eclipse project was made and on the other side
by André van Hoorn from the University of Stuttgart.

30

Bibliography

[Beaton et al. 2014] W. Beaton, J. Campbell, and D. Roy. Eclipse Committer Bootcamp.

Online, 05 2014. URL http://wiki.eclipse.org/images/b/be/EclipseCommitterBootcampOpenMay2014.pdf.
Last accessed: 02.12.2014.

[Behr and Tyll 2003] T. Behr and T. Tyll. Prozessanalyse. Geschiiftsprozesse—Organisatorische
Gestaltung. Online-Lehrbuch, Universitit Erlangen, 2003.

[Eclipse Foundation] Eclipse Foundation. Eclipse Public License - v 1.0. URL nttp:
//www.eclipse.org/org/documents/epl-v10.php. Last accessed: 14.12.2014.

[Eclipse Foundation 2003] Eclipse Foundation. Bylaws of Eclipse Foundation, INC., 2003.

URL http://www.eclipse.org/org/documents/Eclipse%20BYLAWS%202003_11_10%20Final.pdf. Last accessed:
08.12.2014.

[Eclipse Foundation 2011] Eclipse Foundation. Eclipse Intellectual Property Policy, 2011.
URL http://www.eclipse.org/org/documents/Eclipse_IP_Policy.pdf. Last accessed: 08.12.2014.

[Eclipse Foundation 2013] Eclipse Foundation. Eclipse Foundation Contributor License
Agreement, 06 2013. URL http://www.eclipse.org/legal/CLA.php. Last accessed: 14.12.2014.

[Eclipse Foundation 2014a] Eclipse Foundation. Eclipse Development Process 2014. On-
line, 2014a. URL http://www.eclipse.org/projects/dev_process/development_process_2014/development_
process_2014.pdf. Last accessed: 02.12.2014.

[Eclipse Foundation 2014b] Eclipse Foundation. Eclipse Development Process Release
Management 2014. Online, 2014b. URL https://wiki.eclipse.org/Development_Resources/HOWTO/
Release_Reviews#Checklist. Last accessed: 02.12.2014.

[Eclipse Foundation Wiki | Eclipse Foundation Wiki. Eclipse Wiki - Development Process.
Online. URL http://wiki.eclipse.org/Development_Resources. Last accessed: 02.12.2014.

[Ford-Reitz 2011] Z. Ford-Reitz. Waking up to EclipseLink. Eclipse Magazin, (6), 2011.

[Loerke 2011a] A. Loerke. Aufzucht und Pflege eines Eclipse Projekts. Eclipse Magazin, (4),
2011a.

[Loerke 2011b] A. Loerke. Intellectual Property: Wozu der Aufwand? Eclipse Magazin, (5),
2011b.

[Martin Horst 2011] A. O.-A. Martin Horst. A systematic review of research on open
source software in commercial software product development. Information and Software
Technology, 53(6):616—624, June 2011.

31

http://wiki.eclipse.org/images/b/be/EclipseCommitterBootcampOpenMay2014.pdf
http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/Eclipse%20BYLAWS%202003_11_10%20Final.pdf
http://www.eclipse.org/org/documents/Eclipse_IP_Policy.pdf
http://www.eclipse.org/legal/CLA.php
http://www.eclipse.org/projects/dev_process/development_process_2014/development_process_2014.pdf
http://www.eclipse.org/projects/dev_process/development_process_2014/development_process_2014.pdf
https://wiki.eclipse.org/Development_Resources/HOWTO/Release_Reviews#Checklist
https://wiki.eclipse.org/Development_Resources/HOWTO/Release_Reviews#Checklist
http://wiki.eclipse.org/Development_Resources

Bibliography

[Robillard et al. 2002] P. N. Robillard, P. Kruchten, and P. d’Astous. Software Engineering
Using the Upedu. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[Tiede 2012] M. Tiede. Open Sourcing and Release Engineering @ Eclipse.org. Eclipse
Magazin, (1), 2012.

32

Declaration

We hereby declare that the work presented in this thesis is entirely our own. We did not
use any other sources and references than the listed ones. We have marked all direct
or indirect statements from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination procedure. We have not
published this work in whole or in part before. The electronic copy is consistent with all
submitted copies.

Place, Date Thomas Diillmann
Place, Date Tobias Rudolph
Place, Date Anton Scherer

33

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Document Structure

	2 Research procedure
	2.1 Company Background
	2.2 Process Analysis
	2.3 Project Plan
	2.3.1 Analysis of inspectIT's current Software Development Process
	2.3.2 Analysis of the Eclipse Foundation
	2.3.3 Case Study: inspectIT going Open Source
	2.3.4 Interviewing
	2.3.5 Documentation

	3 Fundamentals of the Eclipse Foundation
	3.1 Core Principles
	3.2 Communities
	3.3 Basic Project Structures
	3.3.1 Project Structure and Organization

	3.4 Eclipse Public License
	3.5 Intellectual Property Policy
	3.5.1 Contribution Acceptance (inbound Licensing)
	3.5.2 Contribution Licensing (outbound Licensing)
	3.5.3 Due Diligence and Record Keeping

	4 Consolidation of Requirements of the Eclipse Foundation
	4.1 Project Lifecycle
	4.1.1 Joining Process
	4.1.2 Prerequisites
	Project Proposal
	Community Review
	Trademark Review
	Creation Review
	Provisioning
	Initial Contribution
	Plan, Develop, Review, Release

	4.1.3 Project Phases
	4.1.4 Best Practices

	4.2 Development Process
	4.2.1 Capture Plan
	4.2.2 Implement
	4.2.3 Produce Milestone
	4.2.4 Release
	4.2.5 Release Checklist

	5 Case Study: inspectIT going Open Source
	5.1 Software Engineering Processes of inspectIT
	5.1.1 Requirements
	5.1.2 Development
	5.1.3 Testing
	5.1.4 Integration
	5.1.5 Build Process
	5.1.6 Configuration and Change Management
	5.1.7 Release Process

	5.2 Application of the Eclipse Foundation's Requirements on inspectIT
	5.2.1 Case Study: Jubula becoming an Eclipse project

	6 Conclusion
	Bibliography

