Universitat Stuttgart

Institut fur Parallele und Verteilte Systeme
Anwendersoftware

Code-Qualitat: Must Reads

Seminararbeit

Studien Projekt (WS 2015/16)

Betreuer: Christoph Stach

Tobias Boceck

Stuttgart, 03.03.2016

Code-Qualitat: Must Reads

Tobias Boceck

boceckts@gmail.com

Zusammenfassung. Code-Qualitdt ist wichtig da durch sie die Lesbarkeit,
Wartbarkeit und Performance des Programmcodes verbessert werden kann. In
dieser Arbeit wird auf die wichtigsten Techniken des guten Programmierens
eingegangen und gezeigt, auf welche Art diese die Code-Qualitdt verbessern. Es
werden Muster zum effektiven objektorientierten Programmieren vorgestellt
und Methoden zur Optimierung bestehenden Codes beschrieben. Dabei spiclen
besonders der Code-Style und die Code-Dokumentation eine wichtige Rolle. Es
werden zudem einige Methoden des Code-Refactorings beschrieben.

1 Einleitung

Der Computer ist heutzutage allgegenwirtig und damit auch die Software, die auf
diesem lduft. Die Kosten fiir diese Software und Programme werden im Gegensatz zu
den Hardwarekosten immer gréfer. Daher ist es wirtschaftlich lohnenswert, die Kos-
ten im Bereich der Software zu reduzieren. Nach Kostenanalysen im Bereich der
Software-Entwicklung wurde gezeigt, dass die meisten Kosten durch die Wartung der
Software entstehen. Dies ist ein Zeichen mangelnder Softwarequalitit. Ein erster
Schritt, die Wartungskosten zu reduzieren, ist die Code-Qualitét zu verbessern. Durch
erhéhen der Code-Qualitdt kann sichergestellt werden, dass einfache Fehler vermieden
werden, die Wiederverwendbarkeit von Code-Fragmenten erhoht und die Einarbei-
tungszeit verkiirzt wird [1].

Da nicht jeder Software Entwickler ein System von Grund auf neu erstellt, sondern
oft bestehende Systeme warten und erweitern muss, ist es wichtig, wie man Code-
Qualitdt auch bei schon bestehenden Systemen verbessern kann. Daher liefert diese
Arbeit nicht nur Methoden zum Erhdhen der Code-Qualitdt wahrend des Programmie-
rens, sondern auch die wichtigsten Techniken zur Code-Optimierung und Verbesse-
rung der Code-Qualitit bei bestehenden Programmen.

Zum Lesen dieser Arbeit wird ein gewisses Grundverstdndnis von (objektorientier-
ten) Programmiersprachen und der Programmentwicklung vorausgesetzt.

Diese Arbeit soll nur einen kurzen Uberblick gegeben, welche Bereiche der Code-
Qualitét es gibt und wie man diese verbessern kann. Zum weiteren Nachschlagen iiber
gutes Programmieren in Java empfiehlt sich das Buch Effective Java von Joshua
Bloch. In diesem werden unter anderem die Entwurfsmuster und das generische Pro-
grammieren ausfiihrlicher erklért, die auch hier vorgestellt werden.

Wer mehr tiber das Thema Code-Qualitdt lernen mochte, ohne sich dabei auf eine
Programmiersprache festzulegen, dem empfehle ich das Buch Code Complete von

Steve McConnell zu lesen. In diesem wird detailliert auf alle Bereiche der Code-
Qualitdt eingegangen. Aullerdem werden in diesem Buch auch Code-Qualitdt Merk-
male, wie Dokumentation und Formatierung sehr umfangreich behandelt.

In Abschnitt 2 werden die wichtigsten Entwurfsmuster fiir objektorientierte Pro-
grammiersprachen vorgestellt und ihre Vorteile hinsichtlich der Code-Qualitdt erldu-
tert. In Abschnitt 3 folgen Techniken zum Optimieren von bestehendem Code und in
Abschnitt 4 geht es um MaBnahmen zur Verbesserung der Code-Qualitét bei bereits
bestehendem Code. Dabei spielt die Dokumentation, der Code-Style und das Code-
Refactoring eine groBe Rolle. Zum Abschluss der Arbeit wird in Abschnitt 5 das
Wichtigste zusammengefasst.

2 Richtlinien zum Erstellen guten Codes

Die Richtlinien zum Erstellen guten Codes sollen Softwareentwicklern helfen, ihren
Code so zu gestalten, dass er eine groftmogliche Erweiterbarkeit, Lesbarkeit und
Wartbarkeit aufweist. Die Unterabschnitte beschreiben, welche Gedanken man sich
bereits vor dem Beginn des Programmierens machen sollte, um die zuvor beschriebe-
nen Qualitdtsmerkmale halten zu konnen.

2.1 Entwurfsmuster beim objektorientierten Programmieren

Dieser Abschnitt dreht sich um die grundlegenden Entwurfsfragen bei objektorientier-
ten Programmiersprachen. Bevor man eine Klasse erstellt, muss man sich fragen wel-
che Strategie man damit verfolgen will. Soll die Klasse eine Datenklasse mit vielen
Variablen sein, die hauptsdchlich zur Speicherung von Daten dient, ist sie nur eine
Generalisierung anderer Klassen oder darf von ihr mdglicherweise nur eine einzige
Instanz existieren? Im folgenden Abschnitt werden einige Entwurfsmuster vorgestellt,
welche eine Hilfestellung bei der Beantwortung dieser Fragen bieten.

Statische Fabrik-Methoden. Statische Fabrik-Methoden konnen als gute Alternative
bzw. Erweiterung zu einem herkdmmlichen Konstruktor angesehen werden. Anstatt
ein Objekt einer Klasse direkt durch den Aufruf ihres Konstruktors zu instanziieren
wird in diesem Entwurfsmuster zundchst eine statische Fabrik-Methode aufgerufen.
Diese kann flexibel eine neue Instanz oder eine schon bestehende Instanz der Klasse
zuriickliefern. AuBerdem koénnen in der statischen Fabrik-Methode zunédchst
Parameter auf ihre Giiltigkeit gepriift werden oder in Abhéngigkeit von
Ubergabeparametern spezielle Vorbereitungen getroffen werden.

Im Folgenden ist ein Beispiel einer Klasse mit statischer Fabrik-Methode zu sehen,
welche fiir jeden Thread eine unterschiedliche Instanz zuriickgibt. Aufrufe der stati-
schen Fabrik-Methode aus dem gleichen Thread geben jedoch die gleiche Instanz
zurlick.

public class MyClass {

private static HashMap<Long, MyClass> instancesPerThreads = new
HashMap<Long, MyClass>();
public static MyClass getInstanceForCurrentThread() {
MyClass instance = instancesPerThreads.get (
Thread.currentThread () .getId());
if (instance == null) {
instance = new MyClass () ;
instancesPerThreads.put (
Thread.currentThread () .getId(), instance);

}

return instance;

}

private MyClass () {

}

Auflistung 1. Statische Fabrik-Methode die fiir jeden Thread eine andere Instanz liefert

Die HashMap hidlt zu jedem laufenden Thread eine Instanz. Die statische Fabrik-
Methode garantiert dabei, dass immer nur eine Instanz erzeugt wird, falls noch keine
fir den aktuellen Thread existiert. Der private Konstruktor verhindert, dass die Klasse
versehentlich direkt instanziiert wird. Wiirde man anstelle dieser Methode einen Kon-
struktor verwenden, wire dieses Szenario nur sehr umstindlich moglich. Jedes Objekt
das eine Instanz dieser Klasse erzeugen will, miisste selbst iiberpriifen, ob es schon
eine Instanz dieser Klasse in diesem Thread gibt, oder ob eine neue Instanz erstellt
werden muss. Bei objektorientierten Programmiersprachen sollte jede Klasse selbst
kontrollieren, welche und wie viele Instanzen es geben darf.

Ein Vorteil, der aus dem Entwurfsmuster aus dem Beispiel direkt sichtbar wird, ist,
dass statische Fabrik-Methoden im Gegensatz zu klassischen Konstruktoren einen
aussagekriftigen Namen haben. Damit der Programmierer weil3, welche Funktion eine
statische Fabrik-Methode hat, sollte neben einem aussagekréftigen Namen auch eine
Bemerkung in der Dokumentation stehen, dass diese Klasse durch eine statische Fab-
rik-Methode instanziiert wird. Dabei sollte man dennoch darauf achten, dass einige
Namensgebungen unter Softwareentwicklern bereits bekannt sind. Zu diesen gehoren:
valueOf, getlnstance, newlnstance, getType und newType.

Ein weiterer Vorteil solcher Methoden kann der Performance Gewinn gegentiber
herkdmmlichen Konstruktoren sein. Je nachdem, wie die statische Fabrik-Methode
aufgebaut ist, kann es niitzlich sein, immer das gleiche Objekt bei gleichen Ubergabe-

parametern zuriick zu liefern. Dadurch kann die Anzahl an existierenden Objekten
stark reduziert werden.

Klassen die zu jedem Zeitpunkt wissen welche bzw. wie viele Instanzen existieren,
werden auch instance-controlled genannt. Zudem muss eine statische Fabrik-Methode
nicht ein Objekt des Typs der umschlieBenden Klasse zuriickliefern, sondern kann
auch ein Objekt einer Unterklasse erstellen und zuriickgeben. Dadurch ist man bei
Programmen, die Superklassen mit vielen spezialisierten Klassen haben, besonders
flexibel in der Erstellung der spezialisierten Objekte. Das Collection Framework von
Java nutzt diesen Vorteil stark aus und stellt fast nur statische Fabrik-Methoden in der
Klasse Collections bereit. Diese Klasse kann nicht instanziiert werden und liefert nur
Objekte von Klassen, die die Collection Schnittstelle implementieren.

Allerdings gibt es auch Nachteile der statischen Fabrik-Methoden. Um von einer
Klasse zu erben, muss der Konstruktor dieser Klasse zwangsweise die Sichtbarkeits-
stufe protected oder public haben. Hat er diese und zusitzlich noch eine statische
Fabrik-Methode, so ist jedoch nicht gewdhrleistet, dass jeder Entwickler, der diese
Klasse benutzt, auch die statische Fabrik-Methode aufruft, um eine neue Instanz der
Klasse zu bekommen.

Dies fiihrt auch schon zu dem zweiten Nachteil der statischen Fabrik-Methoden,
dass sich diese Methoden bis zu dem heutigen Zeitpunkt in keiner IDE von anderen
statischen Methoden abheben. Das erschwert es dem Anwender zu sehen, wie man
solch eine Klasse instanziieren kann, oder noch schlimmer, er denkt die Klasse kann
nicht instanziiert werden.

Alles in allem sollte jeder Softwareentwickler von dem Entwurfsmuster der stati-
schen Fabrik-Methode gehort haben. Ob man dieses dann auch verwendet, muss situa-
tionsabhingig entschieden werden. Besonders bei groen Projekten, in denen sich die
Anforderungen stindig dndern konnen, gibt dieses Entwurfsmuster einen sehr grofen
Grad an Flexibilitét [2].

Singleton Klassen. Das Entwurfsmuster der Singleton Klassen baut zum Teil auf die
soeben vorgestellten statischen Fabrik-Methoden auf. Zundchst ist eine Singleton
Klasse eine Klasse, von der genau eine Instanz existieren darf. Dies ist sinnvoll, falls
Objekte aus der realen Welt nur einmal existieren und in der Welt der
objektorientierten Programmierung modelliert werden sollen. Eine Anwendung des
Singleton Entwurfsmusters ist z. B. das Betriebssystem auf dem eine Anwendung
lauft.

Die einfachste Implementierung einer Singleton Klasse wird realisiert durch eine
konstante statische Variable, der direkt ein Objekt zugewiesen wird. Zudem muss man
die Sichtbarkeit des Konstruktors auf private einschrianken, sodass die Klasse nicht
zuféllig von einem Programmierer instanziiert werden kann.

public class MyClass {
public static final MyClass INSTANCE = new MyClass();
private MyClass () {

}

Auflistung 2. Singleton Entwurfsmuster implementiert mit konstanter Klassenvariable

Implementiert man eine Singleton Klasse auf diese Weise, so wissen auch andere
Programmierer, die an der derselben Klasse arbeiten sofort, dass es sich um eine Sin-
gleton Klasse handelt. Denn konstante Variablen sowie die Instanz Variable, sollten
immer an oberster Stelle einer Klasse stehen.

In der ndchsten Implementierung wird das Entwurfsmuster der statischen Fabrik-
Methode benutzt. Das heifit, man benutzt eine statische Methode, um immer auf die-
selbe Instanz der Klasse zuzugreifen.

public class MyClass {
private static final MyClass INSTANCE = new MyClass();
public static MyClass getInstance() {
return INSTANCE;

}

private MyClass () {

}

Auflistung 3. Singleton Entwurfsmuster implementiert mit statischer Fabrik-Methode

Der grofite Vorteil an dieser Implementierung gegeniiber der Vorigen ist die erweiter-
te Flexibilitdt. Andern sich nach der Implementierung die Anforderungen an die Klas-
se und man mochte nun mehrere Instanzen zulassen, so miisste man in der ersten Im-
plementierung die Sichtbarkeit des Konstruktors dndern und die Singleton Instanz
Variable entfernen. Damit missen alle Klassen gedndert werden, die direkt auf die
Instanz Variable zugegriffen haben, denn diese existiert nicht mehr. In der gerade
vorgestellten Implementierung muss jedoch nur der Inhalt der statischen Methode
gedndert werden, die Methodensignatur bleibt allerdings gleich. Somit muss keine
andere Klasse ihre Zugriffsmethode dndern.

Beide Implementierungen haben aber einen groBen Nachteil, ndmlich die Seriali-
sierung. Bei beiden Implementierungen ist es nicht ausreichend die Schnittstelle Seria-
lizable zu implementieren, denn werden mehrere Objekte wieder eingelesen, so exis-
tieren mehr als ein einziges Objekt dieser Singleton Klasse. Um dies zu verhindern,
muss man die Methode readResolve zusétzlich implementieren und dort die Eine,

echte Klasseninstanz zuriickgeben. Diese Methode ersetzt ndmlich das importierte
Objekt durch die Singleton Instanz Variable.

Die dritte Art der Singleton Implementierung ist iiber ein Enum Konstrukt. Dabei
wird ein Enum mit nur einem Element, wie im folgenden Programmcode, erstellt.

public enum MyClass {

INSTANCE;

Auflistung 4. Singleton Entwurfsmuster implementiert mit einem Enum

Um nun die Singleton Instanz der Klasse zu bekommen greift man auf das INSTANCE
Element des Enums, wie bei einem Objekt einer Klasse zu.

MyClass singleton = MyClass.INSTANCE;
Auflistung 5. Enum Singleton Objektzugriff

Die Nachteile der reflektierten Instanziierung und der Serialisierung sind hier nicht
gegeben. Des Weiteren ist diese Art der Implementierung die wohl einfachste, denn es
wird nur ein Enum mit einem Element erstellt. Diese Art der Instanziierung einer
Singleton Klasse ist die am wenigsten verbreitete, jedoch sollte man eine Singleton
Klasse immer auf diese Weise implementieren [2].

Builder Klassen. Man hat eine Klasse mit vielen Attributen, denen aber nicht allen,
bei der Objektinstanziierung, zwangsweise ein Wert zugewiesen werden muss.
Deshalb mochte man eine moglichst groBle Flexibilitdt fiir die Instanziierung dieser
Klasse. Dafiir bendtigt man fiir jede Kombination der Ubergabeparameter einen
Konstruktor, um so die Attribute zu initialisieren. Dadurch wird die Klasse nicht nur
unnotig groB, sondern auch uniibersichtlich und man kann die Reihenfolge der
Parameter schnell verwechseln. Hat man zudem Attribute desselben Datentyps, so
kann man den Konstruktor nicht auf die Weise Uberladen, dass man unterscheiden
kann, welchem Attribut der iibergebene Parameter zugeordnet werden soll.

Die bereits vorgestellten statischen Fabrik-Methoden sind bei vielen Ubergabepa-
rametern auch keine groBe Hilfe, denn man briauchte genau so viele statische Fabrik-
Methoden, wie Konstruktoren.

Der Oracle Standard des JavaBeans' Entwurfsmusters 16st dieses Problem indem
es einen parameterlosen Konstruktor zur Verfiigung stellt und eine Zugriffsmethode
fiir jedes Attribut bereitstellt. Das heifit, es wird erst das Objekt erstellt und dann die
Attribute initialisiert, die man gerne mochte [3]. Der grofite Nachteil dieses Ent-
wurfsmusters ist, dass das erzeugte Objekt in einem unvollstindigen Zustand sein
kann und es keine Konstanten haben darf. Diese konnen ndmlich nicht durch Zu-
griffsmethoden veréndert werden. Weil3 der Programmierer auBerdem nicht welche

! http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Parameter zwingend notwendig sind, konnte er Methoden aufrufen, die zu einem
Fehlverhalten aufgrund der nicht initialisierten Attribute fiihren [2].

Ein Entwurfsmuster, das keine dieser Nachteile hat, ist das Entwurfsmuster der
Builder Klasse. Anstatt direkt ein Objekt durch den Konstruktor zu erzeugen wird in
diesem Entwurfsmuster zunichst ein Builder Objekt erzeugt, das auch als eine Art
Prototyp der eigentlich zu erstellenden Klasse angesehen werden kann. Die Builder
Klasse wird dabei als statische innere Klasse mit der Sichtbarkeit public implementiert
und besitzt meist genau die gleichen Attribute wie die duflere Klasse.

Im Folgenden wird ein Kontakt als Klasse mittels dem Builder Klassen Entwurfs-
muster modelliert. Dabei sind die Attribute name und adress notwendig, alle anderen
sind optional.

public class Contact {
private final String name;
private final Adress adress;
private final String secondName;
private final Adress adress2;
private final String notes;
private final String title;

private final int phoneNumber;

protected Contact (Builder builder) {
this.name = builder.name;
this.adress = builder.adress;
this.secondName = builder.secondName;
this.adress2 = builder.adress2;
this.notes = builder.notes;
this.title = builder.title;

this.phoneNumber = builder.phoneNumber;

public static class Builder {
private final String name;
private final Adress adress;

private String secondName = “7;

private Adress adress2 = new Adress (“”);

private String notes = “7;

private

private

public
this

this

public

this

String title = “7;

int phoneNumber = -1;

Builder (String name, Adress adress) {

.name = name;
.adress = adress;
Builder secondName (String secondName)

.secondName = secondName;

return this;

public

Builder adress2 (Adress adress2) {

this.adress2 = adress2;

return this;

public

Builder notes(String notes) {

this.notes = notes;

return this;

public Builder setTitle(String title) {

this.title = title;

return this;

public Builder phoneNumber (int phoneNumber) {
this.phoneNumber = phoneNumber;

return this;

public Contact build() {

return new Contact (this);

Auflistung 6. Kontakt Klasse implementiert mit einer Builder Klasse

Wie schon erwihnt, wird zunéchst ein Builder Objekt mit einem Konstruktor erzeugt,
der nur die wirklich notwendigen Parameter verlangt. In diesem Beispiel heilen die
Parameter name und adress. Nun hat das Builder Objekt Zugriffsmethoden fiir jede
der optionalen Attribute, &hnlich dem JavaBeans Entwurfsmuster.

Der wesentliche Unterschied besteht jedoch darin, dass jede der Zugriffsmethoden
das Objekt selbst wieder zuriickliefert. Somit kann auf jeder Zugriffsmethode eine
weitere Zugriffsmethode und am Ende die build Methode aufgerufen werden, welche
dann das Objekt der dulleren Klasse erzeugt. Im Konstruktor der dufleren Klasse wer-
den dann alle Werte der Attribute des Builder Objektes kopiert. Alle optionalen Para-
meter, die man nicht setzt, werden dann mit einem Standardwert initialisiert. Auf diese
Weise erzeugte Objekte sind in einem giiltigen Zustand.

Eine mogliche Objekterzeugung der gerade gezeigten Klasse kann dann folgen-
dermafen aussehen.

Contact me = new Contact.Builder ("Tobias", new
Adress ("Stuttgart")) .notes ("Student") .build() ;

Auflistung 7. Objekterzeugung mit Builder Klasse

Anhand dieses Entwurfsmusters siecht man sofort, welche optionalen Parameter bei der
Objekterzeugung iibergeben wurde. Durch das Builder Klassen Entwurfsmuster hat
man auBlerdem dieselbe Flexibilitit wie bei Klassen mit herkdmmlichen Settern, mit
dem Vorteil, dass konstante Variablen in solch einer Klasse existieren konnen.

Der wohl grofite Vorteil dieses Entwurfsmusters ist allerdings, dass man, dhnlich
wie bei den statischen Fabrik-Methoden, auch Unterklassen der zu instanziierenden
Klasse zuriickgeben kann. Eine Builder Klasse kann somit auch genutzt werden, um
Objekte von verschiedenen Klassen, die voneinander erben, dynamisch zu instanziie-
ren.

Einen Nachteil muss man vor allem bei performancekritischen Anwendungen be-
denken, ndmlich, dass vor jeder Instanziierung einer solchen Klasse zunédchst auch ein

Builder Objekt erzeugt wird. In alltiglichen Programmierszenarien sollte dies jedoch
kein Grund sein, um das Entwurfsmuster nicht benutzten zu konnen. Als Faustregel
kann man sagen, dass dieses Entwurfsmuster fiir Klassen, deren Konstruktoren oder
statische Fabrik-Methoden mehr als fiinf Ubergabeparameter haben, eine gute Ent-
wurfsentscheidung ist [2].

Sichtbarkeit von Variablen und Methoden. Das Prinzip des Information Hiding
sagt, dass die Implementierung einer Klasse von der Aullenwelt nicht sichtbar sein
soll. Kommunizieren sollte man nur iiber das Klassen- bzw. Objektinterface. Je mehr
man sich diesem Prinzip unterordnet, desto einfacher ist es fiir verschiedene Teams an
einem Projekt zu arbeiten. Man sichert einer Methode eine gewisse Funktion zu und
kann durch das Wissen ihrer Funktionsweise, die Methode liber ihre Schnittstelle
bereits in neuen Code einbinden. Wie die Methode ihre Funktion erfiillt ist fiir andere
Entwickler nicht wichtig [4].

Selbiges gilt auch fiir Klassen und ihre Implementierungen. Das Abkapseln der Da-
ten erleichtert auerdem eine Uménderung der internen Struktur, ohne dass andere
Objekte ihre Methodenaufrufe anpassen miissen. Bei Klassen sollten auBerdem, so
weit moglich, auf Klassenvariablen verzichtet werden. Diese statischen Variablen
werden in einem globalen Speicherbereich angelegt und existieren daher iiber die
gesamte Dauer der Programmausfiihrung [5]. Damit nehmen sie unnétig lang Spei-
cherplatz in Anspruch. Dasselbe Prinzip sollte auch bei Methoden angewandt werden.
Statische Methoden sollten durch lokale Methoden ersetzt werden, falls sie nicht un-
bedingt nétig sind. Sind sie aulerdem nur zum Berechnen interner Prozesse, sollte
ihre Sichtbarkeit auf private gesetzt werden.

Allgemein gilt bei Variablen und Methoden die Sichtbarkeit und den Giiltigkeits-
raum so gering wie mdglich zu halten. Dadurch wird nicht nur die Lesbarkeit des
Codes und damit auch dessen Wartbarkeit verbessert, sondern es erschwert es auch
anderen Benutzern falsche Methoden und Variablen aufzurufen. Objekte und Klassen,
bei denen nur die Methoden Schnittstellen sichtbar sind, sind zwar gut designt, aller-
dings muss dies nicht heiflen, dass sie eine gute Performance haben. Durch das Ein-
schrianken der Sichtbarkeit der Variablen wird nur die Lesbarkeit, Wiederverwendbar-
keit und Wartbarkeit einer Programmklasse verbessert [2].

2.2 Generisches Programmieren

Unter dem Begriff des generischen Programmierens versteht man die Féahigkeit einer
Klasse oder einer Methode, mit Parameter beliebigen Typs zu parametrisieren und die
Klasse oder die Methode somit mit mehr Flexibilitit auszustatten. Fiir generische
Klassen eignen sich Datenstrukturen, die mit moglichst vielen verschiedenen Datenty-
pen funktionieren sollen.

Dies zeigt sich auch an der von Java gegebenen Klasse ArrayList, die generische
Typ Parameter verwendet. Auf diese Weise miissen wir schon beim Erstellen der Liste
den gewtiinschten Typ angeben, wie das folgende Beispiel verdeutlicht.

ArrayList<String> names = new ArrayList<String>();

10

Auflistung 8. Objekterzeugung mit Typ Parameter

In diesem Beispiel wurde eine Array Liste fiir String Objekte erstellt. Der Compiler
weil}, dass diese Liste nur auf String Objekten arbeitet und gibt eine Fehlermeldung
falls man dennoch versucht ein anderes Objekt hinzufiigt. Dies macht diese Art der
Implementierung typsicher.

Wire diese Klasse nicht mit Java Generics umgesetzt worden, so hitte man die Me-
thoden der Listen Klasse mit dem Ubergabe- bzw. Riickgabetyp Object versehen miis-
sen. Es wire somit auch mdglich Parameter jeden Types zu iibergeben. Beim Zuriick-
geben der Objekte miisste nun jedoch gecastet werden. Dabei kann der Compiler kei-
ne Uberpriifung hinsichtlich der Typsicherheit ausfiihren und mégliche Fehler werden
deshalb erst zur Laufzeit entdeckt.

Allgemein sind generische Typen und Methoden einfacher und sicherer zu benut-
zen als der Object Typ mit anschlieBendem Cast und sollten deshalb immer bevorzugt
werden [2].

3 Optimierung bestehenden Codes

Bei der Optimierung bestehenden Codes muss man sich immer im Klaren sein, dass
eine Optimierung eines Aspektes zum Teil negative Auswirkungen auf andere Teile
haben kann. So kann zum Beispiel eine Optimierung hinsichtlich der Ausfiihrungsge-
schwindigkeit Nachteile gegeniiber dem zu verwendenden Speicherverbrauch haben.
Das heilit, dass man sich gut {iberlegen muss, ob eine Optimierung seitens der Soft-
ware {iberhaupt notwendig ist, oder man diese Zeit nicht fiir etwas Anderes investieren
kann. Man sollte jedoch immer die Kosten gegen den eigentlichen Nutzen abgleichen
und darauf basierend eine Entscheidung treffen.

Im Rahmen der Code-Qualitdt zeigen die folgenden Unterabschnitt, wie man ver-
meidet, dass unnétig viele Objekte und damit unnétig viel Speicher verbraucht wird.
Auch zu erwéhnen ist, dass bei Sprachen, die zu kompilieren sind, der Compiler einen
groB3en Teil selbst effizient optimieren kann, ohne dass der Entwickler seinen eigenen
Code anpassen muss. Oft ist es daher ratsam einen effizienten Compiler zu erwerben
und zu benutzen anstelle von Hand zu optimieren. Wird das Endprodukt keine An-
wendersoftware die an viele Privatpersonen geht, kann es aulerdem sinnvoller sein,
die ausfithrende Hardware aufzuriisten und somit auch bei zukiinftigen Programmen
keine Performanzprobleme zu haben. Man sollte aber in jedem Fall erst mit dem Op-
timieren von bestehendem Code anfangen, wenn die Funktionalitét bereits gegeben ist.
Denn eine Software die nicht funktioniert, aber optimiert ist, bringt keinem etwas [6].

3.1 Datentypoptimierung

Die Datentypoptimierung ist wohl die wichtigste Optimierung bei bestehendem Code
und sollte bei jedem objektorientierten Programm angewandt werden. Die wichtigste

11

Optimierung besteht darin, dass man primitive Datentypen den Objekten von Wrapper
Klassen vorzieht. Diese einfache Optimierung verhindert das Erstellen von zahlrei-
chen unnétigen Objekten, die durch primitive Datentypen dargestellt werden konnten.
Der andere groBe Vorteil ist, dass sich dadurch einfache Fehler, wie ein Vergleich der
Objektreferenzen durch == anstelle des Wertes des Objektes durch den Methodenauf-
ruf equals(), vermeiden lassen. Das nachfolgende Beispiel verdeutlicht diese Fehler
nochmals.

Integer a = new Integer (500);
Integer b = new Integer (500);
System.out.println(a == Db); // Ausgabe: false

System.out.println (a.equals(b)); // Ausgabe: true

Auflistung 9. Vergleich von Objekten von Wrapperklassen

Wie im Beispiel zu sehen ist, erstellen wir zwei Integer Objekte und initialisieren
diese mit dem Wert 500. Nun geben wir aus, ob der Vergleichsoperator == die beiden
Objekte als gleich ansicht. Die Ausgabe ist false und sagt damit aus, dass die Objekte
a und b nicht gleich sind obwohl sie beide den gleichen Wert haben. Die Ausgabe des
Vergleiches basierend auf der equals() Methode eines der Objekte, ist true. Anhand
dieses Beispiels sieht man, dass man beim Arbeiten mit Objekten von Wrapper Klas-
sen immer mit der equals() Methode vergleichen sollte. Dies kann jedoch schnell
vergessen werden.

Benutzt man stattdessen primitive Datentypen kann dieser Fehler nicht passieren.
Im folgenden Beispiel nehmen wir zwei Variablen vom primitiven Typ inf und initia-
lisieren diese mit denselben Werten wie oben, ndmlich 500.

int ¢ = 500;
int d = 500;

System.out.println(c == d); // Ausgabe: true

Auflistung 10. Vergleich von primitiven Datentypen

Benutzt man den primitiven Typ int, kann man die Methode equals()nicht ausfiihren,
da primitive Typen keine Objekte sind. Deshalb hat man so die Gewissheit dass ==
die richtige Wabhl ist. Die Ausgabe des Vergleichs der zwei Variablen ist natiirlich
true, das heifit die Werte sind gleich.

Ein weiterer Nachteil von Objekten von Wrapper Klassen ist, dass eine null Initia-
lisierung und damit auch entsprechende Fehler méglich sind.

Integer a = null;
Integer b = null;

System.out.println(a.equals (b)) ; // Jjava.lang.NullPointerException

12

Auflistung 11. Vergleich von Nullobjekten von Wrapperklassen

Der obige Programmcode ist korrekt und kann mit Java ohne Fehlermeldung kompi-
liert werden. Bei der Ausfiihrung jedoch wird eine NullPointerException geworfen.
Dieser Fehler kann bei primitiven Datentypen nicht passieren, denn diese sind nicht
mit null initialisierbar [2].

3.2 Ausfiithrungsgeschwindigkeit optimieren

Das Programm ist fertig geschrieben und funktioniert, jedoch nur sehr trige. Dies
kann ein Hinweis auf schlechte Programmierung sein, muss es aber nicht. Grundsétz-
lich sollte man bei Bedenken hinsichtlich der Ausfiihrungsgeschwindigkeit immer erst
ein klares Bild davon verschaffen, was die langsamsten Operationen sind und an wel-
chen Stellen das Programm viel Zeit bendtigt. Dabei reicht es nicht ungefahr zu schat-
zen, an welchen Operationen es liegt, sondern man muss dies genau messen, denn
Optimierung an der falschen Stelle kann auch kontraproduktiv sein. Auflerdem muss
man wissen, ob das trige Verhalten der Software tatsdchlich durch umschreiben des
Codes gedndert werden kann, oder ob die langsamen Prozesse moglicherweise externe
Dienste, wie z. B. des Betriebssystems sind, auf die man als Softwareentwickler gar
keinen Einfluss nehmen kann.

Allgemein gilt flir Programmiersprachen, je weniger oft ein Code-Fragment ausge-
fithrt wird, desto schneller ist das Programm. Deshalb sollten if-Abfragen, wenn mog-
lich, immer auflerhalb von Schleifen stehen. Auflerdem sollten Schleifen mit einem
break unterbrochen werden falls nur eine Ausfithrung bis zu einer bestimmten Ab-
bruchbedingung vorgesehen ist. Allerdings sollte man mit dieser Art der Optimierung
vorsichtig sein, denn dadurch kann die Lesbarkeit des Programmcodes leiden.

Die zeitaufwindigsten Operationen bei den meisten Programmen sind Ein- und
Ausgabeoperationen. Lesen und Schreiben von Daten auf eine Festplatte dauert im
Gegensatz zu einfachen Rechenoperationen oder Programmspeicherzugriffen bis zu
1000-mal ldnger. Mochte man also ein moglichst schnelles Programm und hat die
Wahl zwischen externen Daten auf der Festplatte oder die Daten direkt im Arbeits-
speicher zu lagern, sollte man sich immer fiir letzteres entscheiden. Natiirlich wird bei
dieser Art der Optimierung der Speicherverbrauch in den Hintergrund gestellt [6].

4 Code-Qualit:it

Programmcode mit guter Code-Qualitdt hat bestimmte Merkmale wie aussagekriftige
Methoden- und Variablennamen, gute Dokumentation und gute Formatierung. Be-
riicksichtigt man dies in seinem geschriebenen Programmcode sieht man, dass er
leichter zu lesen, zu portieren und zu warten ist. All dies sind Merkmale die einen
Programmcode mit guter Code-Qualitét ausmacht.

In den folgenden Unterabschnitten wird gezeigt, was man unter guter Dokumenta-
tion und Formatierung versteht. Aulerdem wird gezeigt, wie man bestehenden Code
durch Refactoring so uméndern kann, dass die Code-Qualitit verbessert wird.

13

4.1 (Selbst-) Dokumentation

Dokumentation ist ein Begriff der im Prozess der Softwareentwicklung sehr facetten-
reich sein kann. Zundchst muss man unterscheiden zwischen externer und interner
Dokumentation. Externe Dokumentation umfasst alle Dokumente, die widhrend der
Softwareentwicklung angefertigt wurden, wéhrend interne Dokumentation Kommenta-
re im Code wiederspiegelt. Man kann allerdings auch den Code-Style als eine Form
der Dokumentation ansehen. Je konsistenter man Code-Zeilen einriickt, desto leichter
ist es spiter fiir andere Programmierer den Zusammenhang der Code-Zeilen zu verste-
hen.

Es gibt einzeilige und mehrzeilige Kommentare, flir kurze bzw. lange und ausfiihr-
liche Erklarungen. Mehrzeilige Kommentare sollten iiber Methoden oder Klassen
stehen. Innerhalb von Methoden sollten nur kurze einzeilige Kommentare stehen, da
sonst die Methode zu uniibersichtlich wird. Aulerdem sollte man Kommentare iiber
die zu dokumentierenden Code-Zeile schreiben und nicht dahinter, da sonst der Code-
Style darunter leiden kann.

Jeder Softwareentwickler der guten Code schreiben mdchte sollte auerdem wis-
sen, wie man effektive Kommentare schreibt. Kommentare sollten auf keinen Fall den
Code einfach nur in einer anderen Form wiedergeben. Die einzigen Ausnahmen sind
JavaDoc Kommentare, welche vor allem bei 6ffentlichen Bibliotheken hilfreich sind
um die Verwendung einer Methode bzw. Klasse zu erldutern. Der Kommentar im
folgenden Programmcode ist zwar ein JavaDoc, dennoch ist er nutzlos, da die Metho-
de ihre Funktionalitit durch ihren Namen verrdt und des weiteren keine Seiteneffekte
bei ihrer Verwendung auftreten. Er sollte daher weggelassen werden.

/**
* Return the name of this import format.
*/

@Override

public String getFormatName () {

return "Ovid";

Auflistung 12. Redundantes Kommentar

Meist werden Kommentare verwendet, um die Funktionalitdt von Methoden und ihren
Seiteneffekten anderen Entwicklern zu offenbaren. Jedoch sollten Namen fiir Variab-
len, Methoden und Klassen immer so gewéhlt werden, dass sich deren Sinn auch ohne
Kommentare erschlieft. All zu oft jedoch werden Methoden mit mehreren Funktiona-
litdten implementiert, entweder weil der Programmierer sich Schreibarbeit ersparen
mochte oder weil zusétzliche Bedingungen im Nachhinein hinzugekommen sind und
diese entfernt zur Kernfunktionalitét gehoren.

Natiirlich ist es dann sinnvoll Kommentare fiir die Methode zu schreiben, noch
sinnvoller wire es natiirlich die komplette Methode zu iiberarbeiten und im Endeffekt

14

eine Methode mit einer Funktionalitit, ohne Seiteneffekte und Dokumentation durch
aussagekréftige Bezeichner und Methodennamen zu haben. Schlecht hingegen ist,
wenn die Bezeichner bereits die Funktionalitit verraten und es dennoch Kommentare
gibt, die dies einfach wiederholen. Das folgende Code-Beispiel verdeutlicht die Re-
dundanz.

/xx
* If an autocompleter exists for the "journal" field, add all
* journal names in the journal abbreviation list to this
* autocompleter.

*/
public void addJournallistToAutoCompleter () {
AutoCompleter<String> autoCompleter = get ("journal");
if (autoCompleter != null) {
for (Abbreviation abbreviation
Abbreviations.journalAbbrev.getAbbreviations()) {

autoCompleter.addItemToIndex (abbreviation.getName ()) ;

Auflistung 13. Kommentar wiederholt Methodennamen in einem Satz

Der Kommentar in diesem Code-Beispiel wiederholt nur den Namen der Methode und
macht daraus einen Satz, dieser Kommentar ist somit {iberfliissig [6].

4.2 Code-Style

Neben der Dokumentation gehort auch der Style des Codes zu einem Qualitatsmerk-
mal beim Programmieren. Der Code-Style hilft Programmcode einfacher zu verstehen
und die Zusammenhénge deutlich zu machen. Jeder Programmierer hat seinen eigenen
Style und seine eigenen Vorstellungen, wie Programmcode formatiert werden soll.
Arbeitet man aber in einem Team sollte man sich immer auf einen gemeinsamen Style
festlegen, dadurch findet sich jeder im Code zurecht. Das folgende Beispiel zeigt
welche Verwirrung bei nicht formatiertem Code entstehen kann.

15

public boolean isRecognizedFormat (InputStream stream) throws IOException

{BufferedReader in = new BufferedReadr (
ImportFormatReader.getReaderDefaultEncoding(stream)); String str; int i =
0; while (((str = in.readLine()) != null) && (i < 50)) { if
(str.toLowerCase () .contains ("<pubmedarticle>")) {return true; } i++; }

return false; }

Auflistung 14. Code komplett ohne Formatierung

Im obigen Beispiel kann man zunéchst nur durch die Bezeichner erraten was die Me-
thode machen soll. Um genau zu verstehen was passiert muss man jedoch einiges an
Zeit investieren. Diese Zeit kann man sich sparen, wenn man die Methode besser
formatieren wiirde, wie im folgenden Code-Beispiel.

public boolean isRecognizedFormat (InputStream stream)

{

throws IOException

BufferedReader in = new BufferedReader (

ImportFormatReader.getReaderDefaultEncoding (stream)) ;

String str;

int 1 = 0;
while (((str = in.readLine()) != null) && (i < 50)) {
if (str.toLowerCase () .contains ("<pubmedarticle>")) {

return true;

i++;
}

return false;

Auflistung 15. Code mit logisch formatierten Abschnitten

Im Gegensatz zu dem Beispiel davor kann man nun mit Leichtigkeit erkennen, wie die
Methode arbeitet und spart sich eine Menge Zeit.

Doch nicht nur Zeit ldsst sich einsparen, man kann durch Code-Style auch Leicht-
sinnsfehlern vorbeugen. Menschen tendieren dazu Objekte, die ndher zusammen sind,
als Einheit anzusehen [7]. Der auszufithrende Computer hat dieses Problem nicht und
fiihrt deshalb Programmzeilen anders aus als wir sie interpretieren wiirden. Das fol-

gende Beispiel zeigt eine Implementierung einer einfachen Rechnung, allerdings mit
schlechter Formatierung.

16

double ergebnis = 3+9 / 3;

Auflistung 16. Schlecht formatierter Code

Auf den ersten Blick kdnnte man meinen es wird (3+9) / 3 berechnet und das Ergebnis
wire somit 4. Doch der Computer wird beim Ausfiihren dieser Code-Zeile 6 als Er-
gebnis berechnen. Hier ist der gleiche Code nochmals, allerdings mit einer etwas an-
deren Formatierung.

double ergebnis = 3 + 9/3;

Auflistung 17. Besser formatierter Code

Durch eine einfache Modifizierung des Code-Styles kann man nun mit einem Blick
erkennen, dass durch die Punkt-vor-Strich Regel zunéchst geteilt und dann erst addiert
wird. Hierbei muss man allerdings anmerken, dass diese Formatierung nicht dem
allgemeinen Java Style Guide® entspricht. Dieser sieht ndmlich vor, jede Operation
gleich, ndmlich mit einem Leerzeichen zu trennen.

Das Code-Beispiel zeigt, wie die Formatierung uns denken ldsst, dass der Code die
Zahlen von 1 bis 10 in der Konsole ausgibt.

int 1 = 1;
while (i <= 10)
System.out.println (i) ;
i--;
Auflistung 18. Formatierung des Codes, die zu Fehlinterpretation neigt
In Wirklichkeit wird nur die Zahl 1 auf der Konsole ausgegeben und das Programm
wird sich nicht beenden, denn die Anweisung i-- wird nie ausgefithrt werden. Durch
die gleichen Einziige der Anweisungen System.out.printin(i) und i-- werden wir aller-
dings dazu verleitet, dass wir annehmen beide Anweisungen gehoren zu der While-

Schleife. Mit der richtigen Formatierung jedoch sieht man direkt was wohin gehort
und wie oft ausgefiihrt wird.

int i = 1;

while (i <= 10)
System.out.println(i);

i--;

Auflistung 19. Formatierung des Codes, die den Programmablauf wiederspiegelt

2 http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

17

Man sieht also, dass gute Formatierung des Programmcodes nicht nur die Lesbarkeit
erhdht, sondern auch Fehler verhindert werden kdnnen. Man sollte seinen Programm-
code deshalb immer schon wéhrend des Programmierens auch gleich formatieren [6].

4.3 Code-Refactoring

Unter dem Begriff des Refactorings versteht man das Uberarbeiten bestehenden Codes
ohne dabei dessen Funktionsweise zu verdndern [8]. Es ist ein wichtiges Konzept
beim Programmieren, das von jedem Softwareentwickler wahrend bzw. nach dem
Schreiben von Code angewandt werden sollte.

Das Code-Refactoring soll unter anderem die Lesbarkeit, Wartbarkeit, Erweiter-
barkeit und Wiederverwendbarkeit des geschriebenen Codes erhohen [9]. Wie bereits
erwéahnt verdndert sich die Funktionsweise des Codes allerdings nicht und somit kann
Code-Refactoring keine Fehler beheben [10].

Allerdings kann durch gutes Refactoring der Aufwand den man benétigt, um etwai-
ge Fehler zu finden, beschleunigt werden. Auflerdem kann der Programmcode eines
zu Programmes so umgeschrieben werden, dass neue Funktionen integriert werden
konnen, welche davor, aufgrund des Designs, nicht umsetzbar waren [8].

Im Folgenden werden die wichtigsten Techniken des Code-Refactorings vorge-
stellt.

Umbenennen. Umbenannt werden kann so ziemlich alles von Variablen-, iiber
Methoden- bis hin zu Klassennamen [6]. Oft bekommen Variablen Bezeichner, die
moglichst kurz sind um Schreibarbeit zu sparen und daher meist schwer zu lesen sind.
Auch deshalb ist das Umbenennen wohl die am haufigsten angewandte Art des
Refactorings und ist bei vielen Entwicklungsumgebungen iiber einen Schnellzugriff
aufrufbar. Das Umbenennen der Variablen-, Methoden und Klassennamen wird dann
auf Wunsch, auf alle Vorkommnisse dieses Namens angewandt und diese durch den
neu eingegebenen Namen ersetzt [8].

Als Beispiel verwenden Schleifen oft einfache Buchstaben wie i, j oder # als Zihl-
variable, besser ist jedoch, wenn man der Zahlvariablen einen treffenderen Namen
gibt, der angibt, was gezéhlt wird. Im folgenden Beispiel wird ein zweidimensionales
Integer-Array erstellt und in jedes Feld 0, oder falls i gleich j ist, eine 1 geschrieben.

int matrix[][] = new int[10][10];
for (int i = 0; i < matrix.length; i++) {

for (int j = 0; j < matrix[i].length; j++) {

18

matrix[i][j] = (i == 3) 2 1 : 0O;

Auflistung 20. Generalisierte Namen verwendet

Doch was stellt das Array matrix dar, wie sind 7 und j zu interpretieren? Nach einem
,Umbenennen* Refactoring der Variablen, sieht der gleiche Code schon aussagekraf-
tiger aus.

int einheitsMatrix[][] = new int[10][10];
for (int reihe = 0; reihe < einheitsMatrix.length; reihe++) {

for (int spalte = 0; spalte < einheitsMatrix[reihe].length; spalte++)

einheitsMatrix[reihe] [spalte] = (reihe == spalte) 2 1 : 0;

Auflistung 21. Spezialisierte Namen verwendet

Nach dem Refactoring wird klar, dass hier die Einheitsmatrix erstellt und initialisiert
wird, denn diese hat genau in ihrer Diagonalen Einsen (also genau dann, wenn Rei-
hennummer gleich der Spaltennummer ist) und sonst nur Nullen. Verwendet man
diese Matrix nun in einem anderen Teil des Programms muss man nicht extra Kom-
mentare lesen oder im Programmcode nachschauen, welche Daten die Variable matrix
denn genau hat, sondern kann dies auch direkt am Namen einheitsMatrix erkennen.
Zwar sollte man bereits wihrend des Programmierens alle Namen sorgfdltig wihlen
(Abschnitt 4.1), allzu oft jedoch will man erst ausprobieren, ob eine neue Idee auch
wirklich funktioniert und ist darauf fixiert moglichst schnell, viel Code zu schreiben.
Dabei wird oft wenig Riicksicht auf die Namen von z. B. tempordren Variablen oder
Methoden genommen. Dies ist sehr schlecht, denn aussagekriftige Namen helfen nicht
nur beim Einarbeiten funktionierenden Codes, gerade auch beim Debuggen von defek-
tem Code helfen treffende Namen um den Prozess logisch nachvollziehen zu kénnen.

Extrahiere Methode. Diese Art des Refactorings sollte immer dann angewandt
werden, wenn eines dieser drei Probleme auftritt:
1. Eine Methode ist zu lang, in objektorientierten Sprachen sollten Methoden
nicht ldnger als ein Bildschirm hoch ist, sein.
2. Eine Methode erfiillt mehr als eine Aufgabe.
3. Es gibt Code-Duplikate

Oft gehen mehrere der oben aufgefiihrten Probleme einher. So sind Methoden oft
sehr lang, die mehr als eine Aufgabe erfiillen oder sogar Code-Duplikate enthalten.

19

Durch das ,,Extrahiere Methode“ Refactoring wird ein Teil des Programmcodes in
eine neue Methode ausgelagert. Diese neue Methode sollte dann auch nur eine Funk-
tionalitdt haben. Hat sie dies nicht, so wird das gleiche Refactoring so lange wieder
angewandt, bis die urspriingliche und jede neue Methode, jeweils nur eine Funktiona-
litét haben [6][8].

Das folgende Code-Beispiel zeigt eine Methode fiir das Abheben von Geld von ei-
nem Konto.

public boolean geldAbheben (double betrag) {
if (betrag > maxGeldAbhebeBetrag) {
return false;
} else if (betrag < 0) {
return false;
} else {
kontostand -= betrag;

return true;

Auflistung 22. Methode mit mehreren Funktionalitéten

Auch wenn die eigentliche Aufgabe der Methode das Abheben des Geldes ist, so muss
sie auch verifizieren, dass der Geldbetrag iiberhaupt abgehoben werden kann. Dies ist
eine andere Zustindigkeit und sollte daher mit dem ,,Extrahiere Methode* Refactoring
zu dem Folgenden umgeschriebenen werden.

public boolean geldAbheben (double betrag) {
if (verifiziereBetrag(betrag)) {
kontostand -= betrag;
return true;
} else {

return false;

}
public boolean verifiziereBetrag(double betrag) {
if (betrag > maxGeldAbhebeBetrag) {

return false;

20

} else if (betrag < 0) {
return false;
} else {

return true;

Auflistung 23. Methoden mit jeweils einer Funktionalitét

Durch das Refactoring werden alle Code-Zeilen, die nicht zu der Funktionalitit der
eigentlichen Methode gehoren in eine neue Methode ausgelagert, die in unserem Bei-
spiel den abzuhebenden Betrag zunéchst verifiziert. Diese neue Methode wird nun in
der geldAbheben Methode aufgerufen. Dadurch hat sich nichts an der Ausfiihrungs-
reihenfolge der Code-Zeilen geédndert, aber jede Methode erfiillt nun nur eine Aufga-
be.

Man sieht, dass man durch ein einfaches Refactoring die Lesbarkeit und Wieder-
verwendbarkeit von Methoden erhdhen kann, ohne ihre eigentliche Arbeitsweise zu
verdndern.

Extrahiere lokale Variable. Bei diesem Refactoring werden Zahlen oder
Zeichenketten, die direkt im Programmcode verwendet werden, durch eine lokale, nur
in der Methode sichtbare Variable ersetzt. Die Variable wird mit demselben Wert wie
die zuvor verwendete Zahl bzw. Zeichenkette hatte, initialisiert.

Der Vorteil hierbei ist, dass man anstelle der reinen Zahlen oder Zeichenketten ei-
nen aussagekréftigen Namen fiir die Variable wéhlen kann. Falls sich die Anforderun-
gen dndern kann man aullerdem direkt am Anfang der Methode die gewiinschten Va-
riablen dndern [6][8].

Das folgende Beispiel berechnet den Umfang eines Kreises.

float umfang = 2 * Math.PI * 5f;

Auflistung 24. Radius direkt als Zahl geschrieben

Die Implementierung ist korrekt, jedoch konnte man die Zahl 5f durch den Bezeichner
r ersetzen und somit eine ,,Extrahiere lokale Variable “ Refactoring durchfiihrt.
Dadurch wiirde die implementierte Formel so aussehen, wie sie auch formal geschrie-
ben wird, ndmlich als 2 * Pi * r.

float r = 5f;

float umfang = 2 * Math.PI * r;

Auflistung 25. Radius in lokaler Variable gespeichert

21

Nach dem Refactoring steht die Formel in dem Programm, wie man sie auch sagt.
Dies macht die Aussage der Formel verstdndlicher und gibt zusétzlich die Flexibilitét,
den Wert der Variable zentral anpassen zu konnen.

Extrahiere Feld. Dieses Refactoring kann bei objektorientierten Sprachen angewandt
werden, falls Zahlen oder Zeichensequenzen direkt im Programmcode verwendet
werden. Beim Refactoring ersetzt man das Vorkommen der Zahlen oder der
Zeichenkette durch eine in der kompletten Klasse sichtbaren Variable, einem Feld, mit
demselben Wert. Diese Variable, auch Feld genannt, wird an den selben Stellen wie
vorher, in den Programmcode eingebunden.

Bendtigt man den Wert nur innerhalb einer Methode, also als lokale Variable, so
sollte man eher das ,,Extrahiere lokale Variable® Refactoring anwenden.

Der Vorteil hierbei ist, dass man konstante Zahlen oder mehrmals verwendete Zei-
chenketten an einem Ort hat und diese im Zweifelsfall auch nur einmal dndern muss.
AuBlerdem hat so jedes Feld und damit jede genutzte Zahl bzw. Zeichenkette einen
wiahlbaren Namen, der den Sinn widerspiegelt [6][8].

Im folgenden Beispiel wird eine DateiZuGrossException geworfen, falls die Grofie
eines Byte-Arrays grofer als die konstante Zahl 1024 ist. Doch weshalb ausgerechnet
dieser Wert?

public class MyServer extends Server {
public void checkSize (byte[] daten) throws DateiZuGrossException {
if (byte.length > 1024) {

throw new DateiZuGrossException();

}

public void upload(byte[] daten) {...};

Auflistung 26. Zahl ohne Erléuterung verwendet

Offensichtlich stellt der Wert 1024 eine GroBenbeschriankung fiir Daten dar. Doch der
Sinn ist nicht direkt ersichtlich.

Das ,,Extrahiere Feld* Refactoring zeigt den Sinn des Wertes und bringt gleichzei-
tig die Flexibilitdt, den Wert des Feldes dynamisch bei der Objekterzeugung einmal
einzulesen und zu behalten oder auf Grund von anderen Code-Fragmenten weiter
anzupassen.

public class MyServer extends Server {
private int maxUploadGroesselInBytes = 1024;
public void checkSize (byte[] daten) throws DateiZuGrossException {

if (byte.length > maxUploadGroesseInBytes) {

22

throw new DateiZuGrossException();

}

public void upload(byte[] daten) {...};

Auflistung 27. Zahl in Feld gespeichert

Nach dem Refactoring sicht man nun, dass die Dateibegrenzung eine Upload Begren-
zung ist. Benutzt man nun immer diese Variable flir Programmfragmente, die mit
Dateiupload zu tun haben, so kann der Wert im spiteren Verlauf der Entwicklung
einfach an einer zentralen Stelle in der Klasse angepasst werden. AuBlerdem wird der
Sinn der Zahl durch den Namen der Variable verdeutlicht.

Extrahiere Superklasse. Ein weiteres wichtiges Refactoring bei objektorientierten
Programmiersprachen ist, Felder und Methoden in eine Superklasse zu extrahieren,
falls diese in mehreren Klassen vorhanden sind und auch gebraucht werden. Meist ist
dies bei spezialisierten Klassen der gleichen Gruppierung der Fall. Dann erstellt man
eine neue generalisierte Superklasse und zieht gleiche Felder und Methoden von den
spezialisierten Klassen in die Superklasse [6].

Falls die Implementierungen der Methoden der spezialisierten Klassen sich unter-
einander unterscheiden, kann man entweder eine Standardimplementierung der Me-
thoden in der Superklasse implementieren oder aber die Methoden als abstrakt dekla-
rieren. Bei abstrakten Methoden wird nur die Methodensignatur festgelegt und die
Implementierung muss spezifisch fiir jede abgeleitete Klasse implementiert werden.

Im folgenden Beispiel sehen wir die zwei Klassen Student und Dozent mit den
gleichen Methoden, schlafen und lernen.

public class Student {
public void lernen() {
readBooks () ;
}
public void schlafen(int millis) throws InterruptedException {

Thread.sleep (millis * 2);

}
public class Dozent {
public void lernen() {

readBooks () ;

23

}
public void schlafen(int millis) throws InterruptedException {

Thread.sleep (millis);

Auflistung 28. Zwei nicht verwandte Klassen mit gleichen Methoden

Die Gruppierung der beiden Klassen ist unserem Fall der Mensch. Beim Refactoring
wird nun zunéchst die Klasse Mensch erstellt und die Methode lernen von den Klas-
sen Lehrer und Schiiler mitsamt ihrer Implementierung in die Superklasse verschoben.
Nun wird noch die Methode schlafen in die Superklasse verschoben, da aber die Im-
plementierung dieser Methode unterschiedlich in den beiden spezialisierten Klassen
ist, wird dies eine abstrakte Methode. Damit muss nun auch die Superklasse selbst
abstrakt sein.

Nach dem Refactoring siecht der Code mit derselben Funktionalitit wie oben, fol-
gendermalf3en aus.

public abstract class Mensch {

public void lernen() {

readBooks () ;
}
public abstract void schlafen(int millis)
throws InterruptedException();

}
public class Student extends Mensch {

@Override

public void schlafen(int millis) throws InterruptedException {

Thread.sleep (millis * 2);

}
public class Dozent extends Mensch {
@Override
public void schlafen(int millis) throws InterruptedException {

Thread.sleep (millis);

24

Auflistung 29. Zwei verwandte Klassen mit gemeinsamer Superklasse

Nach dem Refactoring werden die Struktur und die Beziehung der spezialisierten
Klassen deutlich.

Ubersicht. Die nachfolgende Tabelle zeigt eine Ubersicht der vorgestellten
Refactoring Methoden. In der ersten Zeile steht das jeweilige Refactoring. In der
ersten Spalte stehen Problemfille in denen es sich empfiehlt, ein Code-Refactoring
durchzufiihren. Die Haken zeigen, welches Refactoring bei welcher Probleminstanz
angewandt werden sollte.

Tabelle 1. Ubersicht der Refactoring Methoden

Probleminstanz Umbenennen Extrahiere Extrahiere Extrahiere Extrahiere

Methode lokale Feld Superklasse
Variable
Unversténdlicher v v v 4 W)
Code
Code-Duplikate 4 v
Werte und Zei- v v
chen-ketten hart
codiert
Gleiche Metho- (4

den-signatur

S Zusammenfassung

Es wird deutlich, dass sich Code-Qualitét aus verschiedenen Faktoren zusammensetzt
und sich anhand dieser auch verbessern lasst. Wer Code mit guter Qualitét schreiben
mochte, der sollte sich bereits vor dem eigentlichen Programmieren iiberlegen, wie er
sein Programm logisch aufbaut und dennoch Platz fiir mdgliche spitere Anderungen
hat. Wiahrend des Programmierens sollte immer auf eine sinnvolle Formatierung,
sowie aussagekriftige Bezeichner geachtet werden. Dies erleichtert es nicht nur fiir
andere Entwickler den Code einfacher verstehen zu konnen, sondern es hilft auch
einem selbst, einfache Fehler zu vermeiden.

25

Mochte man stattdessen schnell einen funktionierenden Code schreiben, so kann
man durch Refactoring die Qualitdt des bereits geschriebenen Codes auch noch nach-
triglich verbessern. Auch wenn man besonders performante Programme bendtigt,
sollte man immer zunichst die Funktionalitdt bereitstellen und erst anschlieBend durch
konkrete Messungen die Performance Probleme analysieren. Auf diese Weise kann
man am effektivsten die Probleme aufdecken und im Anschluss beheben.

Literatur

1. Liggesmeyer P (2009) Software-Qualitdt: Testen, Analysieren und Verifizieren von
Software, 2nd ed. Springer Spektrum

2. Joshua B (2008) Effective Java, 2nd ed. Prentice Hall PTR, Upper Saddle River, NJ,
USA

3. Englander R (1997) Developing Java Beans. O’Reilly Media, Inc.

4. Information Hiding. http://www.itwissen.info/definition/lexikon/Information-
Hiding.html. Accessed 3 Mar 2016

5. Kiichlin W, Weber A (2013) Einfiihrung in die Informatik: Objektorientiert mit Java.
Springer-Verlag

6. McConnell S (2004) Code Complete, 2nd ed. Microsoft Press, Redmond, WA, USA

7. The Gestalt Principles.

http://graphicdesign.spokanefalls.edu/tutorials/process/gestaltprinciples/gestaltprinc.ht
m. Accessed 3 Mar 2016

8. Enns R (2004) Refactoring in eclipse. Dep. Comput. Sci. Univ. Manitoba, Winnipeg,
Manitoba, Canada, Tech. Rep

9. Mens T, Tourwé T (2004) A survey of software refactoring. Softw Eng IEEE Trans
30:126-139.

10. Opdyke WF (1992) Refactoring object-oriented frameworks. University of Illinois at
Urbana-Champaign

Alle Links wurden zuletzt am 3. Mérz 2016 gepriift.

26

