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1 Einleitung

Das Untersuchen von Stromungen spielt schon seit mehdatezehnten eine wichtige Rolle bei der
Konstruktion von Fahrzeugen. Im Windkanal werden malgktbsue Modelle oder ganze Fahrzeu-
ge von Luft umstromt, die vorher von Geblasen beschldunigrde. Gemessen werden aerodynami-
sche Eigenschaften der Modelle, wie zum Beispiel der Laitnstand oder die Auftriebskrafte, die
auf die Tragflachen von Flugzeugen wirken. Unerwiinsdbta| auftretende Verwirbelungen sind nur
schwer zu erkennen, da die Luftstromung an sich unsichsitaFir Abhilfe sorgt Rauch, der durch
Schlitze oder Sonden in den Versuchsaufbau injiziert wirek Rauch wird mit der Luft fortbewegt,
und macht so die Stromung indirekt sichtbar. Die aus derefxgnten gewonnen Daten werden fir
weitere Optimierung bei der Entwicklung der Modelle verdeen Auch in der Medizin, der Klimafor-
schung und in vielen anderen Bereichen haben Stromungergeil3e Bedeutung. Es werden nicht nur
Gase, sondern es wird auch das Stromungsverhalten verig#@éiten erforscht. Mit der rasanten Ent-
wicklung leistungsfahiger Computer verdrangen phyiskhe Simulationen zunehmend die klassischen
Versuchsaufbauten. Simulationen bieten sich insbeserdtmn an, wenn das Modell nur im Compu-
ter existiert (CAD), die Effekte sich nicht direkt beobaamitlassen (z.B. bei Molekularbewegungen)
oder reale Versuche zu teuer oder riskant sind (etwa beh@&sts). Basierend auf den Navier-Stokes-
Gleichungen berechnet die numerischen Stromungssimwlé@EFD, Computational Fluid Dynamics)
beliebige Stromungsprobleme unter den vorgegebenenkbRdimjungen. Einzig die Rechendauer be-
schrankt die Komplexitat des zu losenden Systems. Déigh&ine langere zeitliche Entwicklung von
raumlichen Systemen von Interesse ist, erhalt man alslRéesiesige Datenmengen, die ohne weiter
Verarbeitung durch einen Computer kaum interpretierlyat. die Computervisualisierung ist hier von
entscheidender Bedeutung. Sie ermoglicht eine grafiseémst&lung der Simulationsdaten. Es wurde
eine Vielzahl von Methoden entwickelt, die lokale und gleb&tromungseigenschaften grafisch abbil-
den. Einige haben reale Experimente als Vorbild, anderstBlamgen sind nur am Computer moglich.
Haufig wird die physikalisch motivierte Bewegung von Théa oder anderen Objekten visualisiert, die
im Feld freigelassen werden. In dieser Studienarbeit wird reuartiggseometrieadvektions-Methode
vorgestellt, die auf dieser Grundidee basiert und aus Rediocegrinden zum grofR3en Teil auf der GPU
(Graphics Processing Unit) implementiert wurde. Die Tedlt werden reprasentiert durch deformierba-
re, geometrische Objekte wie Kugeln oder Schlauche, ditrddat sind, ihre urspringliche Form beizu-
behalten. Sowohl durch die Objektbewegung als auch dueheliformungen kdnnen Informationen
Uber die Stromung vermittelt werden. Die dreidimensieraarstellung erfolgt interaktiv, wobei der
Benutzer mit einer grolRen Anzahl von Versuchsobjekterragieren kann.

In Kapitel 2: Strdomungsvisualisierungwerden die Grundlagen, die Problemstellungen und die wich-
tigsten Methoden der Visualisierung von Stromungen beédinDies fuhrt am Ende des Kapitels zu
einer Beschreibung der Geometrieadvektion.

Kapitel 3: Physik und Numerik behandelt die physikalischen Grundlagen, die der Bewegong
Objekten in Stromungen zugrunde liegen. Fir eine efftgiedimulation wird ein einfaches Modell
fur deformierbare Objekte eingefuhrt und die numeriscierfahren zur Losung der Systemdynamik
besprochen.

Kapitel 4: Numerische Simulation mit der GPU stellt die Architektur von GPUs und die Vorteile
gegeniiber handelsiiblichen CPUs bei der numerischenl&iaruvor. Die eigentliche Aufgabe von
GPUs ist das Rendern von dreidimensionalen Modellen. Eseitir Ansatz beschrieben, der es erlaubt,
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ihre grofRe Rechenleistung auch fur nichtgrafische Anwege zu nutzen. Am Ende des Kapitels wird
die Implementation des Simulationskerns behandelt.

Kapitel 5 - Implementation fihrt zuerst in die Benutzung des implementierten Visiedungspro-
gramms ein. AuBerdem geht es auf wichtige Implementatatagd ein, wie die Interaktion mit den
Versuchsobjekten, die Objektgenerierung oder das Rendern

Kapitel 6 - Resultate stellt die Resultate, wie die Programmperformance und erelBeispielvisuali-
sierungen vor. Ungeltste Probleme werden mitsamt Vegbasgsvorschlagen aufgefihrt.

Kapitel 7 - Zusammenfassungschliel3t die Arbeit ab.



2 Stromungsvisualisierung

2.1 Einfihrung

Die numerische Stromungssimulation arbeitet auf einegskrdien Berechnungsraum. Oft wird ein kar-
tesisches Gitter verwendet. Es gibt aber auch allgemelridte, bei denen gekrimmte oder sogar un-
strukturierte Gitter von Vorteil sind. Je nach raumlicBemension wird die Stromung an jedem Gitter-
punkt durch einen n-dimensionalen Vektor aus reelen Zadbdschrieben. Dieser kann als Geschwin-
digkeitvektor des Stromungsfeldes interpretiert werded legt somit die Richtung und die Starke des
Feldes fest. Dazu kommen weitere, zugeordnete physikali&colen, wie das Druckfeld der Stromung,
das bei der Simulation benétigt wird. Im Folgenden werdegidimensionale Stromungen betrachtet,
die auf gleichfoérmigen, kartesischen Gittern gegebed.dst die zeitliche Entwicklung instationarer
Stromungen von Interesse, dann muss das Feld zusatlidiskrete Zeitschritte zerlegt werden. Fur
alle gewiinschten Zeitpunkte t wird der Zustand des Faldegspeichert,

Vi eR? i=1.X, j=1.Y, k=1.Z (2.1)
t=tg, tg+ AL, tog+2-At, ... (2.2)

Kleine und schnell veranderliche Effekte werden von denation nur bei der Wahl einer entspre-
chend feinen Diskretisierung erfasst. Es konnen so séimeficriesige Datenmengen anfallen, die mit
Hilfe einer geeigneten Visualisierung am Computer intetiprt werden missen. Dabei interessieren so-
wohl globale Feldstrukturen als auch lokale Feldeigerfsehavie Divergenzen und Turbulenzen oder
die Richtung und Starke des Feldes. Divergenz und Rotatimh mathematische Funktionen, die auf
ein kontinuierliches Vektorfeld angewandt werden konrigei diskreten Feldern, die nur an Gitter-
punkten vorliegen, approximiert man die dabei vorkommanéibleitungen tblicherweise Uber Finite
Differenzen.

Die Divergenzd- V (r) beschreibt die lokale Quelldichte eines Stromungsfetaedunktr,

D-V:O%VX+%W+§ZVZ (2.3)
Betrachtet man ein infinitesimales Volumen an der Stellelann kann die Divergenz als die Summe
der FluRe verstanden werden, die zu einem festen Zeitglumkh dessen Oberflache flieRen. Wird von
der Stromung Masse transportiert, dann weisst eine Davergleiner Null darauf hin, dass mehr Masse
in das Gebiet hineinfliel3t als herauskommt (Senke), ein Weéfer Null deutet auf eine Quelle hin, an
der Masse entsteht.

Uber die lokalen Verwirbelungen eines Vektorfeldes tudift Rotation x V' (r) eine Aussage,

]
| %
OxV=1 g5 | x| W (2.4)
0
0z
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Abbildung 2.1: Rotation und Divergenz eines Vektorfelds

Bei einem Stromungsfeld gibt der Resultatvektor die Rotstachse und Starke an, mit der im Feld
mitschwimmende Teilchen tendenziell um den Punkbtieren.

Globale Feldeigenschaften erfordern eine aufwandigdy&rales Gesamtfeldes und seiner Topologie.
Uber fiir das Feld charakteristiscHajtische Punktgdie untereinander verbunden werden, kann das
Feld partitioniert und seine globale Struktur erarbeitetden. Kritische Punkte sind Stellen im Feld, an
denen der Feldvektor verschwindet. Sie lassen sich UbdEigenwerte der Jakobimatrix klassifizieren
[1]. Im Fall eines dreidimensionalen Feldes ist die Jakatbim ein Tensor, der komponentenweise die
Anderung der Feldgeschwindigkeit an einem Raumpuriiéschreibt.

aVy V0V

ox oy 0z
(L P 25)
IR A A

x oy azd,

Es gibt keine natirliche Reprasentation von Vektorfeldeie vom menschlichen Wahrnehmungssys-
tem intuitiv interpretiert werden kann und dabei gleickigealle relevanten Eigenschaften des Feldes
enthalt. Das Problem dabei ist, eine einfache Abbildurgvdktoriellen Daten auf Visualisierungspri-
mitive zu finden. Zusatzlich fuhrt der dreidimensionalat&®hraum schnell zu uniuibersichtlichen Bildern,
da sich die Primitive gegenseitig verdecken und die genasii®h im Raum bei einem zweidimensio-
nalen Bild nur schwer erkennbar ist. Diesuelle Komplexit ist generell ein grof3es Problem, das von
den verschiedenen Visualisierungsmethoden untersattiegiit gelost wird. Folgende Vorgehenswei-
sen werden auch von grundsatzlich verschiedenen Verfatutgegriffen:

Reduzierung der Stromungsdaten im Wertebereich.

Visualisierung abgeleiteter oder zugeordneter skalaatedurch eine Abbildung auf Farben. In
Frage kommen z.B. Druck, Temperatur, Feldstarke oderrBére.

Beschrankung der Visualisierung auf Schnittflachen ldalas Stromungsvolumen.

3D Visualisierung mit stereoskopen Verfahren.

Direkte Methoderfihren nur wenige Berechnungen auf den Stromungsdatech.di&s werden nur
die lokalen Eigenschaften zu einem festen Zeitpunkt uncb@irachtet. Beispielsweise kann man die
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Feldstarke und Richtung direkt visualisieren, indem mamlen Gitterpunkten gerichtete Pfeile unter-
schiedlicher Lange zeichnet. Diese Darstellung kann abkr schnell uniibersichtlich werden. Alter-
nativ kann man nur gleichlange Pfeile zeichnen, und diedtétlle farblich kodieren. Vor allem aber
verbietet sich bei dreidimensionalen Darstellungendifiekte Pfeilrepésentationaufgrund gegenseiti-
ger Verdeckungen. Neben der Pfeildarstellung und der Kodgevon Merkmalen durch Farben konnen
auRerdem dem Feld zugeordnete skalare Daten durch Isaflaater Volumenrendering veranschau-
licht werden.

Stromungsprobererfassen lokal eingeschrankte Bereiche des Feldes. InerSaty zu Pfeilen kann
die Probe neben der Geschwindigkeit auch Alielerung derselben anzeigen. Analog zu wirklichen
Mel3geraten wird die Probe interaktiv im Feld platziedr Bie Darstellung stehen verschiedene Glyph-
Objekte zur Verfugung [2].

Die Indirekten Methodebasieren auf komplizierteren Vorberechnungen und konebeen lokalen auch
weitreichende Feldeffekte veranschaulichen. Grob lasigesich in drei Klassen einteilen:

¢ Die Visualisierung abgeleiteter Dateaxtrahiert aus dem Felddatensatz charakteristische Merk-
male, die dann grafisch dargestellt werden. Beispielsweasa dem Betrachter durch eine Vi-
sualisierung der globalen Topologie oder von Feldklustaiunterschiedlichen Eigenschaften
Interpretationsarbeit abgenommen werden. Aufgrund diegaudigen Vorverarbeitungschritts ist
eine interaktive Berechnung und Visualisierung meistdres aicht moglich [1, 3].

¢ Dichte Visualisierungsverfahremie Texturadvektion Ubdrine Integral Convolutiorerfassen das
Feld vollstandig. Hierzu werden an den Pixelpositonen Vexturen, die zu Beginn nur weil3es
Rauschen enthalten, kurze Stromungslinien berechnetMidelwert aus den Intensitaten dieser
Linien bestimmt die Pixelwerte des Resultats. Bei eineméiten Darstellung fallt es dem Be-
trachter besonders leicht, die dominierenden Flussstreskizu erkennen. Allerdings beschranken
Verdeckungsprobleme die Darstellung auf zweidimens@&ahnitte durch das Volumen [4].

e Der dritte Ansatz besteht darin, diskrete Objekte im Feadizfrlassen und ihre Dynamik oder die
durchlaufenen Trajektorien zu visualisieren. Die Objditel dabei direkt an das Stromungsfeld
gekoppelt und ihre Positionen zu unterschiedlichen Zekpen werden durcihhumerische Inte-
gration berechnet. Je mehr Objekte verwendet werden, umso stitnkeit das Resultat dem der
dichten Methoden, wobei deren Verdeckungsprobleme daahn eerstarkt in den Vordergrund
treten.

Nachfolgend werden verschiedene grundlegende Objedgpiationsmethoden und insbesondere die
darauf basierend@eometrieadvektiomorgestellt.

2.2 Integrationsmethoden

Die analytische Berechnung der Teilchenwege ist im allgeemeFall viel zu aufwandig. In Abbildung
2.2 ist die Advektion eines masselosen Teilchens durch risae Integration im Stomungsfeld dar-
gestellt. Die neue Teilchenposition ist durch das GesctigieitsfeldV an der Position des Teilchens
und durch die Grol3e des Integrationsschittéestgelegt. Da die Feldvektoren nur an diskreten Punkten
vorliegen, mussen sie interpoliert werden.
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Quelle Resultat visualisierbare Felder und Eigenschaften
Punkt (kont.) Stromlinie, Streichlinie, laminare Stromungen, Teilchentrajektorie, lokale
Strompfad Feldrichtung
Punkt (diskret) Stromteilchen Feldrichtung und Starke aus der Bewegung, auch ge-
eignet fur instationare, turbulente Felder
Linie (kont.) Stromungsflachen, stationare Felder, Feldstrukturen wie Divergenzen
Stromungsrohren durch Verformungen
Objekte (diskret) | Stromobjekte siehe Stromteilchen. Zusatzlich: Divergenzen, Ex-
pansion und Kompression durch Deformationen

Tabelle 2.1: Integrationsmethoden

An Saatpunkter(Partikelquellen) werden die Teilchen im Feld freigelass&bhangig von der Posi-
tionierung der Saatpunkte werden nur bestimmte Teilgekder Stromung und deren Eigenschaften
erfasst. Im Gegensatz zu dichten Verfahren konnen deshelitige Feldstrukturen Ubersehen werden,
wenn sie nicht im visualisierten Bild vorhanden sind. Ddslist es sinnvoll, ein interaktives Erstellen
und Verschieben der Saatquellen zu ermdglichen. Alterkann das Feld automatisch analysiert und
geeignete Positionen berechnet werden.

Je nach Verteilung und Verbindung der Saatpunkte erhaituméerschiedliche Resultate (Tabelle 2.2).
Visualisiert werden entweder die kontinuierlichen Wege wn den Teilchen durchlaufen werden oder
die Bewegung diskreter Teilchen, die mit Teilchen benatkb&aatpunkte verbunden sein konnen. In
der Praxis werden auch im kontinuierlichen Fall gepulstchein vom Saatpunkt generiert und fur die
Darstellung miteinander verbunden. Instationare Fekdanen nur Uber die flichtige Animation der

sich bewegenden Teilchen dargestellt werden.

Abbildung 2.2: Integration eines Punktes entlang desn3irigsfeldes

2.2.1 Linien

Stromliniensind Kurven im Raum, die an jedem Punkt tangential zum Vésimverlaufen. Sie ent-
sprechen der Trajektorie eines masselosen Teilchens émeatationaren Vektorfeld. In der Realitat
verandern sich Felder aber Uber die ZBfadlinienveranschaulichen die Teilchenwege in instationaren
Feldern. Beide Konzepte erfassen hauptsachlich dieddRathtung des Feldes, wobei die Starke des
Feldes in der Farbe der Stromungslinien kodiert werdemk&ie Wahl des Saatpunktes ist fir die
Form der Linie von entscheidender Bedeutung. Mehrere Sittiam, deren Saatpunkte an unterschied-
lichen Positionen liegen, ermoglichen das Erfassen vigemleineren Feldstrukturen. Dazu gehoren
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Abbildung 2.3: Stromlinien in der Nahe eines Sattelpunkts

Sattelpunkte, an denen die Linien auseinanderlaufen aarAttraktoren, an denen die Linien zusam-
menlaufen (Abb. 2.3). Der dreidimensionale Eindruck demén kann durch die Variation der Inten-
sitaten, durch Stereodarstellungen oder Beleuchtungslieungen verbessert werden. Das Erzeugen
gleichformig verteilter Linien ist eine schwierige Autga Aulerdem geht mit der Zahl der dargestell-
ten Linien dieUbersichtlichkeit verloren.

Es gibt noch weitere charakteristische Lini&treichlinienwerden bei instationaren Stromungen ver-
wendet. Sie verbinden mehrere Teilchen, die zeitlich naaneler an einem festen Ort losgelassen
werden.Zeitlinienveranschaulichen Divergenzen in der Stromung und sindGmitmungsflachen ver-
wandt. Sie bestehen aus einer Vielzahl von Teilchen, dreaicunterschiedlichen Orten befinden, und
gleichzeitig im Feld freigelassen werden. In der Regel werdeitlinien beim Start orthogonal an der
Stréomung ausgerichtet.

2.2.2 Stomungsfichen

Strtomungstichensind die natirliche Erweiterung von Stromlinien in die #e@imension. Statt eines
punktférmigen Saatpunktes wird eine Saatlinie aus vatbnan Startpunkten gewahlt. Aus dieser Linie
heraus entsteht die Flache, indem die Teilchenpositiamegriert werden. Ist die Linie geschlossen,
dann erhalt mastromungsohren Gegeniber Stromlinien und Zeitlinien kann der 3D-Eirérdurch
das Rendern einer beleuchteten und transparenten Fladbesgert werden. Effekte wie Turbulenzen
oder lokale Deformationen durch divergente Feldbereichnken eine glatte Flachenstruktur schnell
zerstoren. Aufgrund der numerischen Berechnung der Regilgositionen, erhalt man im Extremfall
unbrauchbare Objekte, die bizarr verformt sind und siclassglbst durchdringen konnen. Deshalb ist
sinnvoll, adaptiv zusatzliche Punkte in das Flacheneatzufiigen. Trotzdem sind Stromungsflachen
hauptsachlich fur stationare und moglichst laminarér8ungen geeignet.

2.2.3 Stromteilchen und Stromobjekte

Die Dynamik einzelner, diskreter Teilchen und Objekte imb8tungsfeld wird animiert. Durch die
Bewegung kann die Starke und Richtung des Feldes auchrbeig¢aten Feldern gut veranschaulicht
werden.

Oberfichenpartikekombinieren die Vorteile von Stromteilchen mit der Darsted) von Feldstrukturen
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bei Stromflachen. Ein Normalenvektor wird als zusatdgAttribut zu der Teilchenposition gespeichert
und bei der Berechnung der Teilchenintensitat wahresdR#mderns verwendet. Der Vektor ist von den
lokalen Feldvektoren abhangig und wird bei der Advekti&tualisiert. Wahlt man die Startpositionen
auf einer geschloRenen Kurve und lal3t nacheinander egfiegtahl von Teilchen im Feld frei, dann
konnen beleuchtete Stomungsflachen nachgebildet wébdle

Streambubblefinden eine physikalische Entsprechung in Luftblasen,diEner Flussigkeitsstromung
ausgesetzt sind. Modelliert werden die Streambubbleshdine geschlossene Nurbsflache, deren Kon-
trollpunkte sich frei im Feld bewegen. Durch die BewegundenBlasen und die Verformung ihrere
Oberflachen, lassen sich verschiedene Feldeigenschadigaisieren. GroRe Blasen veranschaulichen
grob die Struktur des Gesamtfeldes, kleine Blasen hingegagen lokale Eigenschaften an. Um die
Feldeigenschaften auch in turbulenten Gebieten der Smgrgut erfassen zu kdnnen, werden die Bla-
sen dort automatisch durch zwei kleinere ersetzt [6].

2.2.4 Geometrieadvektion

Die Geometrieadvektioermoglicht die Visualisierung stationarer und instaéicer Stromungen. Sie
greift die Idee der Teilchenadvektion auf, wobei die putiktfigen Teilchen durcgeometrische Strom-
objekteersetzt werden. Aufgebaut sind die Versuchsobjekte auzgleien Punktteilchen, die unterein-
ander verbunden sind. Die Objekte bewegen sich im Gesciywgitsfeld der Stromung, wobei sie
sich in divergenten Bereichen verformen. In homogenen &ebides Feldes, in denen die Strémung
gleichformig verlauft, bilden sich die Deformationenrizck. Diese Eigenschaft wird durch ein spezi-
elles Korpermodell realisiert, das im nachsten Kapitethdndelt wird. Grof3e, raumlich ausgedehnte
Objekte konnen durch Dehnungen, Verkrimmungen oderrNerthen globale Feldstrukturen heraus-
stellen. Lokale Eigenschaften des Feldes werden durchei®bjekte oder durch lokal beschrankte
Deformationen der Geometrie erfasst. Gleichzeitig ist églith, die Feldstarke und die Richtung, wie
bei den Stromteilchen, durch die Animation der Objektbewnegn zu veranschaulichen. Die Dynamik
der Objekte wird mit Hilfe einer physikalisch motiviertein&ilation numerisch berechnéiber das zu-
grunde liegende physikalische Modell ist den Objekten &asse zugeordnet. So kdnnen Effekte wie
Tragheit und Reibung realisiert werden, die bei realerebj in Stromungen auftreten. Das Resultat
der Visualisierung hangt von der Form, der Anzahl und détialen Positionen der Versuchsobjekte
ab. Die Objekte konnen interaktiv von Hand platziert werdeer sie werden an Saatpunkten generiert.
Stromlinien, Strompfade und Stromflachen lassen sichihdeiree grol3e Menge von Objekten imitieren,
die an festen Saatpunkten in kurzen Zeitabstanden fesigeh werden. Auch Stromungsproben konnen
realisiert werden, indem den Objekten zusatzliche Zwaadigungen aufgepragt werden. Die Positio-
nen eines oder mehrer Objektpunkte werden hierbei im Rauertfibas Objekt als Ganzes kann sich
deshalb nicht mehr fortbewegen, die freien Punkte allgglimewegen sich weiterhin in der Stromung
und zeigen so die lokalen Feldeigenschaften an.

2.3 Zusammenfassung

Das Kapitel hat die grundlegenden Verfahren der Stromuisgalisierung vorgestellt. Einen umfassen-
denUberblick Uber dieses Teilgebiet der wissenschaftlickisualisierung findet sich zum Beispiel in
[7]. Abschlie3end bleibt zu bemerken, dass es kein Verfalibt, das in allen Situationen optimale
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Ergebnisse liefert. Vielmehr erlaubt es die Kombinatios ainer Vielzahl von Untersuchungsmetho-
den, die Eigenschaften des Feldes besser zu verstehereifmehe, intuitive und moglichst interaktive
Darstellung kann dabei sehr hilfreich sein.
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3 Physik und Numerik

3.1 Einleitung

Die physikalisch motivierte Visualisierung von ObjektteEyungen in Stromungsfeldern erfordert die
Berechnung von Positionen und Geschwindigkeiten der diggten Versuchsobjekte. Zuerst werden
am Beispiel des Punktmassenmodells die physikalischemdBrgen besprochen. Die Physik defor-
mierbarer Korper ist ausgesprochen komplex. Eine Sinomater Dynamik in Echtzeit ist deshalb nur
mit vereinfachten Modellen realisierbar. Aufbauend auakei Modell fir starre Korper wird das hier
verwendete Feder-Masse-Modell erklart. Der letzte Ahdthehandelt numerische Losungsverfahren.

3.2 Physik

3.2.1 Grundlagen der klassischen Mechanik

In der klassischen Mechanik werden Teilchen haufig als Puaésen ohne raumliche Ausdehnung
approximiert. In einem kartesischen Koordinatensysteandieszeitabhangige Position eines Teilchens

durch einen Vektor-(t) gegeben,
X(t)
r(t) = ( y(t) ) 3.1
Z(t)

X(t)
o(t) =r(t) = ( y(t) ) 3.2)

Die Geschwindigkeiw (t),

und die Beschleunigung(t),

a(t) = o(t) = #(t) (3.3)

erhalt man als erste beziehungsweise zweite Zeitabgeitom »(t). Ist die Konfiguationr(t),v(t)

zu einem gegebenen Zeitpunkt bekannt, dann bestimmt si@astand des Systems vollstandig und
zukinftige Positionen und Geschwindigkeiten kdnnerhgagesagt werden. Gleichungen, die die Dy-
namik eines Systems bestimmen, werden Bewegungsgleiehigenpannt. Es handelt sich um Differen-
tialgleichungen zweiter Ordnung irf(t). Sie verknupfen die Koordinaten, die Geschwindigkeited u
Beschleunigungen sowie die aul3eren Krdf(g,t), die auf die Teilchen wirken.

d?r F(r,t)
W(t) =af(t) = m

(3.4)
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y

e

m v(0)

r(0) 0

—

z

Abbildung 3.1: Teilchentrajektorie unter dem Einfluss dea&ation

Im allgemeinen Fall eines freien Teilchens ohne aul3eréddnavirkung, d.h.F'(r,t) = 0, erhalt man
die Losung durch zweimaliges Integrieren und der AngabeStirtbedingungemy = r(to). In Abbil-
dung 3.1 ist der freie Wurf eines Teilchens in Richtung deésckise skizziert. Unter dem Einfluss der
zeitunabhangigen Gewichtskraft G durchlauft das Teitchine parabelformige Trajektorie.

Analytisches Losen der Bewegungsgleichung ist nur in defaehsten Fallen moglich. Schon die
Losung eines einfachen N-Teilchen Systems kann in derlRegenit numerischen Methoden erreicht
werden, da sich durch die Wechselwirkungen jedes Teilchhden Ubrigen N-1 Teilchen sehr kom-
plexe Beziehungen ergeben.

Die Korrektheit des Punktmassenmodells hangt von devseniden Aufgabenstellung ab. Beispielswei-
se konnte man einen Ful3ball als Punktmasse betrachtedig-Dynamik des Balls relevante Effekte
wie Verformungen oder Rotationen werden dabei allerdirgygaachlassigt.

3.2.2 Starre Korper

Sollen raumlich ausgedehnte Korper und deren Rotationliereigene Achse oder ihren Schwerpunkt
betrachtet werden, dann bietet sich das Modell des startgpeks an [8]. Dieser laf3t sich als eine

Menge von Punktmassen definieren, deren Abstand untedeindonstant ist. Realistischer ist aller-

dings eine Beschreibung durch eine kontinuierliche Mamselungen. Da diese tUiber die Massendichte
p(r) festliegt und sich nicht andern darf, werden plastischéoDeationen von diesem physikalischen

Modell nicht erfasst.

Dem starren Korper wird ein eigenes, lokales Koordinatstesn zugeordnet, dessen Ursprung sich in
seinem Schwerpunkt befindet. Die Gesamtmasse M und diddPositles Schwerpunktes kann durch
eine Integration Uber das Volumen des Korpers bestimmdere

M — / p(r)dV (3.5)

5= /r-p(F)dV/M (3.6)
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Das System eines einzelnen starren Korpers besitzt imliéhen Fall sechs Freiheitsgrade. Die Trans-
lationsbewegung legt die Dynamik des Schwerpunkts festlddPunktteilchen der Masse M betrachtet
wird. Zusatzlich kann der Korper eine Rotationshewegumgden Schwerpunkt ausfuhren. Der Korper
in Abbildung 3.2 bewegt sich aufgrund der drei wirkenderafie'in Richtung der x-Achse und dreht
sich dabei gleichzeitig urd'.

Fy

[ /,/'/:S’ F3

Abbildung 3.2: Ein starrer Korper mit einer kontinuieHen Masseverteilung. Die drei angreifenden
Kraft bewirken eine Translation des Schwerpunkts und Biogtion des Korpers um den Schwerpunkt.

3.2.3 Feder-Masse-Modell

Eine Vereinfachung von realen Objekten findet beim FedesddaModell Anwendung. Auf atomarer
Ebene bestehen Festkorper aus Atomen und Molekulenufliaren Gitterplatzen beschrankt schwin-
gen konnen. Die verschiedenartigen Bindungen der Atontereinander und die dabei auftretenden
Krafte werden durch Federn modelliert. In der Realitathselwirken alle atomaren Teilchen mitein-
ander, wobei die Starke mit zunehmender Entfernung ralstiilta Im Feder-Masse-Modell dagegen
beschranken sich die Wechselwirkungen auf direkt berathiMassepunkte. Unterschiedliche Mate-
rialeigenschaften konnen durch eine geeignete Wahl des&faund Federeigenschaften realisiert wer-
den. Inhomogene Korper kdnnen so vergleichsweise legdiisiert werden. Eine geschickte Wahl der
Massepunkte und der Federn ermoglicht dabei deformieriarper, die ihre charakteristische Grund-
form im kraftefreien Fall zurickerlangen.

Federgleichung

Im Ruhezustand wirken keine Krafte und die Feder hat eingegebene Lange. Diese wird im Fol-
genden als Ruhelange bezeichnet. Wird die Feder unteritdaloéwvand komprimiert oder gestreckt,
so resultiert an beiden Enden eine Ruckstellkraft. Bi@kesche-Federgleichur(§.7) besagt, dass bei
einer idealen Feder die Ruckstellkraft proportional zuskenkung ist.

Lange— Ruhelange

Ruhelange (3.7)

Frueck= D *

Die Federharte oder auch Federsteifigkeit D geht als zlitddr Faktor in die Gleichung ein und be-
stimmt dadurch das Verhalten der Feder. Federn mit ein@rdde-ederharte lassen sich leichter kom-
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Federruhelangkyne

Federlangé

Fr[]ck _FI’UCk
-«—

Abbildung 3.3: Feder im Ruhezustand (oben), komprimiedddfr mit auftretenden Rickstellkraften

(unten)

t=1t+ At t=t+2-At

Abbildung 3.4: Verhalten eines Feder-Masse-Systemsuf&@r Krafteinwirkung

primieren. Hohe Federharten erfordern fir die gleichelénkung eine entsprechend grofRere Arbeit.
Die dabei aufgewendete Energie steckt als potentiellediar der Feder. Beim Zurlickformen in den
Ursprungszustand wandelt sie sich in kinetische Energiamigekoppelten Teilchen um.

Systemdynamik

Physikalische Systeme sind immer bestrebt einen Zustaglichst niedriger potentieller Energie zu
erreichen. Im Fall des Feder-Masse-Systems setzt sichebar@®energie des Systems aus der kineti-
schen Energie der Teilchen sowie der gespeicherten peltentFederenergie zusamm@émRere Krafte
bringen das System aus dem Gleichgewicht. Die dabei agrfilen Federkrafte wirken den externen
Kraften entgegen und versuchen diese zu kompensierenEDaishen eines Gleichgewichtzustandes
erfolgt dabei immer dynamisch.

Eine auliere Kraft oder ein Impuls werden zunachst nur i@uFedern am Rand des Objektes wirken.
Der Randbereich propagiert dann die in den Federn gesptidbeergie ins Innere (Abb. 3.4). Ware der
Korper in Abbildung 3.2 durch Punktteilchen modellierie dber Federn verbunden sind, dann wirde
er sich zusatzlich ausdehnen.
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Bewegungsgleichungen

Im Allgemeinen besteht ein Feder-Masse-System aus N Malesen, welchen eine Positiaf und
eine Massen; zugeordnet isti(c 1..N). Das i-te Teilchen ist Ube¥l; Federn der Langglij |=| r; — i |

mit seinen nachsten Nachbarn verbundes {..M;), wobei die Anzahl der Nachbarn variieren kann. Im
Ruhezustand entspricht die Lange der RuheldiigeDie gesamte auf ein Teilchen wirkende Federkraft
F; setzt sich aus der Summe der Federkr#iezusammen.

L (3.8)

Bei der folgenden Formulierung der BewegungsgleichungsnGksamtsystems wird die Zeitabhangig-
keit nicht explizit angegeben. In das System geht ausseexkennen KraftenF,,: und den entgegen-

wirkenden Federkraften ein zusatzlicher dampfendemTain. Der Faktor ¢ bestimmt dabei die Starke
der Dampfung und unterbindet ein unkontrolliertes Sclogwimder Federn. Fir die einzelnen Teilchen

gilt:

M;
M-+ 7 =FM-% F ic1.N (3.9)
Dampfung =1

Insgesamt erhalt man ein gekoppeltes, nichtlinearesciBlegssystem fir die Teilchenpositionen
Das System besteht aus N gewohnlichen Differentialglgigen zweiter Ordnung. Da die einzelnen
Gleichungen uber die Federkrdil; gekoppelt sind, ist das System schon bei kleinen N sehr kempl

3.2.4 Kopplung an das Stomungsfeld

Bei der Geometrieadvektion sollen sich die Objekte, dieckias Feder-Masse-Modell beschrieben
werden, in der Stromung fortbewegen. Deshalb ist eine Kimgpan die Geschwindigkeitsvektoren des
Stromungsfelde¥ notig. DagGesetz von Stokéegt die Starke der Reibungskraft fest, die kugelformige
Korper mit der Geschwindigkeit v und dem Radius r in einelrenden Fluid (Flissigkeiten oder Gase)
erfahren. Die Zahflussigkeit des Fluids wird dabei durieh\dskositatn beschrieben.

F = 6mrov (3.10)

In unserem Fall befindet sich das Medium nicht in Ruhe, sendeine Geschwindigkeit ist an jedem
Punktr und zu jedem Zeitpunkt t durch das Stromungs¥i@-,t) gegeben. Wird die relative Geschwin-
digkeit der Masseteilchen zur Stromung verwendet, daglit stch der gewiinschte Effekt ein. Ist das
Teilchen schneller, als das Feld, dann wird es abgebrestgs langsamer, dann wird es beschleunigt.
Die Kopplungsgleichung lautet somit:

F(r,t)=6mr-[V(r,t)—v(t)] (3.11)
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3.3 Numerische Verfahren fir gewbhnliche Differentialgleichungen

Besonders die zeitlichen Anforderungen an Echtzeitsitimmlan schliessen analytisches Losen der Dif-
ferentialgleichung von vornherein aus. Erst numerischdatfeen ermoglichen es, komplexe Feder-
Masse-Syteme aus mehreren hunderttausend Federn samadl zu losen [9].

3.3.1 Gewhnliche Differentialgleichungen

Gewohnliche Differentialgleichungen n-ter Ordnung é&assich durch Variablensubstitution immer in
ein gekoppeltes System von Differentialgleichungen e@tdnung umformen. Als Resultat erhalt man
n Gleichungen:

dyr dyn1 dyn
dt =Y .. at =Vn , - f(t,y1,--,¥n) (3.12)

Beispielsweise fuhrt man fir die N Bewegungsgleichundes Feder-Masse-Systems eine neue Varia-
ble v ein und erhalt somit 2N neue Gleichungen:

i = vj (3.13)

Mi
o = (B>~ Y Fj—cv)/m (3.14)
=1

Allein durch die Differentialgleichung ist das Problem mtizollstandig spezifiziert. Bei Anfangswert-
problemen werden zu einem festgelegten Startzeitpyrdsatzlich Startwerte fur alle angegeben.
Randwertprobleme hingegen verteilen die n vorgegebenete\def mehrere Zeitpunkte. Statt die Wer-
te explizit anzugeben, kann das System auch durch zud#zigebraische Gleichungen vervollstandigt
werden. Bei unserem Feder-Masse-Systems handelt es siemuknfangswertpoblem:

ri(to) = (3.15)
vi(to) = v° i=1.N (3.16)

3.3.2 Numerische lbsung

Fur die Simulation physikalischer Systeme missen dieat eine geeignete diskrete Form gebracht
werden. In unserem Fall ist dies in der raumlichen Dimansitht notig, da das zugrundeliegende
Objektmodell schon diskret vorliegen. Neben der Raumdsioenmuss auch die zeitliche Dimension
diskretisiert werden. Im einfachsten Fall wird eine kongaSchrittweiteAt vorgegeben. Raffiniertere
Verfahren passen ihigchrittweitedem aktuellen Systemzustand an und kdnnen so numerisob&ePr
me vermeiden oder an besonders einfachen Stellen durcle @dfditte Zeit einsparen. Die adaptive
Wahl ist vor allem bei hochdimensionalen System eher pmatisch. Auf solche Optimierungen wird
deshalb nicht weiter eingegangen.
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Numerische Verfahren werden nach in@anauigkeiim Vergleich zur korrekten Losung beurteilt. Aus-
serdem verdient ihraumerische Stabilitt besondere Aufmerksamkeit. Numerisch instabile Algorith-
men konnen dazu fuhren, dass das untersuchte System eiine ¥n extremen, nichtvorhersagbaren
und chaotischen Zustandsanderungen durchlauft. Dielteigse einer solchen Berechnung sind in der
Regel unbrauchbar.

3.3.2.1 Explizite Verfahren

Explizite Verfahren sind nicht unter allen Konfigurationstabil. Der Benutzer muss deshalb bei der
Simulation aufpassen und dafur sorgen, dasdigrant-Bedingundiir die maximal mogliche Schritt-
weite eingehalten wird, welche von der Diskretisierung Raames abhangt. Explizit angeben lalt sich
eine solche Bedingung allerdings nur bei einfachen Modgdfiielen.

Die einfachsten expliziten Verfahren basieren auf der drayltwicklung um den Funktionswertzur
Zeit t:

r(t+8t) = r(t) £r(t)- 8t + (#(t) - 8t?) /2+ i (r® . 3tk (£1)%) /Kt (3.17)
k=3

DasExplizite Euler-Verfahrermpproximiert den Zustand des neuen Zeitpunkts, indem esdégkrete
SchrittweiteAt einfihrt und Terme der Entwicklung ab einer Ordnung vonigreoriert.

Ti+nt — Tt +At- ’l.“t (318)

Gelost wird das Anfangswertproblem, indem die Werte ddsedlen Zeitschritts t zum neuen Zeit-
punktt + At 'integriert’ werden. Um ein groReres Zeitintervall zu daschreiten, wird die Gleichung
iterativ auf den jeweils aktuellen Zustamg angewandt. Soll ein gekoppeltes Gleichungssystem aus
mehrern Differntialgleichungen erster Ordnung geldstdea, dann ist es notig, jede einzelne dieser
Gleichungen zu integrieren. Beispielsweise sind es beidei®lasse-System pro Schritt und Teilchen
zwei Gleichungen (siehe 3.13 und 3.14). Addiert man die 2édierungen zweiter Ordnung, so erhalt
man das etwas besseverlet-Verfahren Der Vorteil dieser Methode ist, dass die Geschwindigkeite
nicht explizit integriert werden mussen. Allerdings wemndei der Integration die Positionen der beiden
letzten Zeitschritte benotigt:

T = 21— Poag + Ty A2 (3.19)

Methoden hoherer Ordnung, wie daange-Kutta-Verfahrewierter Ordnung (RK4) bieten eine grofere
Genauigkeit. Pro Zeitschritt werden die rechten SeitenSyessems an mehreren Stellen mit Hilfe von
Eulerschritten ausgewertet. Der neue Systemzustand sigibaus einem gewichteten Mittel der Zwi-
schenergebnisse. Bei RK4 gehen in die Integration zusitzivei Auswertungen zur Zett+ At/2
sowie eine Auswertung zur Zdit- At ein (Abb 3.5). In der Praxis gilt RK4 als geeigneter Komprssni
aus Aufwand und Genauigkeit und wird deshalb oft im Zusamapieh mit einer adaptiven Schrittwei-
tenanpassung eingesetzt.
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r Euler-Integration r Runge-Kutta-Methode (RK4)
A A
d ) @
)
° ° /
T T T > T T T |
t t
to to+At  to+2-At fo to+ At  to+2-At

Abbildung 3.5: Die kleinen Punkte verdeutlichen die zmkéten Stellen, an denen die rechten Sei-
ten der Entwicklungsgleichungen ausgewertet werden. @iBan Punkte entsprechen den integrierten
Werten des jeweiligen Zeitschritts.

3.3.2.2 Implizite Verfahren

In der Gleichung desmpliziten-Euler-Verfahrengrscheinen sowohl auf der linken, als auch auf der
rechten Seite die gesuchten Werte des neuen Zeitpunkts.

Tt4At = Tt +At- f(TH_At, r) (320)

Da die Werter o: noch nicht bekannt sind, kann die Gleichnung nicht einfatégriert werden. Ist eine
grolRere Menge solcher Differentialgleichungen gekdppleinn muss pro Zeitschritt ein kompliziertes,
nichtlineares Gleichungssystem gelost werden. Diess#tzlich Aufwand kann sich aber lohnen, da die
impliziten Methoden numerisch stabil sind und deshalb giiféere SchrittweitAt als bei den expliziten
Methoden gewahlt werden kann. Aufgrund der Komplexitaser Losungsverfahren werden hier keine
weiteren Details angegeben.

3.4 Zusammenfassung

Es wurden die physikalischen Grundlagen und das numeriRibeug fur die Simulation eines Feder-
Masse-Systems vorgestellt. Die Entscheidung das einféethet-\Verfahrereu implementieren wird im
nachsten Kapitel Ub&ePGPU-Anwendungen naher begriindet.
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4 Numerische Simulation mit der GPU

4.1 Einfuhrung

In den letzten Jahren hat sich eine neue Art von Hochleispagessoren fur Grafikanwendungen eta-
bliert. Angetrieben durch den mittlerweile milliardensa@ren Markt fir Computerspiele wurde und
wird die Technik deiGPUs(Graphics Processing Units) in relativ kurzen Produktegkimmer wei-
ter verbessert. Aus einfachen 2D-Grafikkarten haben sich nad nach Grafikchips entwickelt, die
komplexe 3D-Szenen flissig darstellen kdnnen. Neben gielegntwicklung profitiert insbesondere
auch die Visualisierung von wissenschaftlichen Daten uadathnische Konstruktion (CAD) von den
neuen Mdoglichkeiten. Aufgrund der groBen Nachfrage umdrilveiten Verbreitung werden die 3D-
Grafikkarten zu erschwinglichen Preisen angeboten. Ihohifaktur wurde speziell auf die Anforde-
rungen deGrafikpipeline[10] zugeschnitten, wobei die Leistungsfahigkeit auéihrSpezialgebiet die
Ublicher CPUs um ein Vielfaches Uibersteigt. Mittleneeiind die GPUs teilweise programmierbar. Dies
ermoglicht den Programmierern, immer realistischereedalien nachzubilden und raffiniertere Effekte
in ihre neuesten Spiele zu integrieren. Durch die hinzugekene Flexibiliat und Aufgrund des guten
Preis-Leistungsverhaltnisses sind 3D-Grafikkarten iselen auch fur Nichtgrafikanwendungen von
InteresseGeneral Purpose Computing, GPGRU

Zunachst wird im AbschnitStream Computingtlas der GPU zugrundeliegende Rechenparadigma vor-
gestellt. In dem folgenden Unterkapitel wird dann die Ggifikne und ihre Implementation in der
Hardware besprochen. Auch einige interessante GPU-fesatverden erlautert. Das Kapit&bPU
Programmierung’beschaftigt sich mit den zur Verfigung stehenden Progri@nmsprachen.General
Purpose Computing mit der GPWpezifiziert eine Klasse von Algorithmen, die sich fir eimgple-
mentation auf der GPU besonders eignen und erortert diei daiftretenden Problemstellungen. Zu-
letzt wird insbesondere die numerische Simulation auf d@d@m Beispiel des Feder-Masse-Modells
ausfuhrlich beschrieben.

4.2 Stream Computing

Heutige Prozessoren, die in Uiblichen Arbeitsplatzreanheegesetzt werden, basieren auf der seriellen
Von-Neumann-ArchitektuEs handelt sich meist um SISD-CPUs (Single InstructiorgiBibata), die
keine starke Parallelverarbeitung von Daten vorsieht. Prezessorkern besteht aus Steuereinheiten
und ALUSs, die Uber einen Speicherbus mit Daten und Anwejenrversorgt werden. Der Transport der
Daten aus dem Hauptspeicher zur CPU ist relativ langsanhdltes/erden Daten in einer mehrstufigen
Cachearchitektur direkt im CPU-Kern verwaltet. Dies kaiAligriffszeit bei mehrmaliger Benutzung
ein und desselben Datenelements drastisch reduzierenllgemeiner Aufbau macht die CPUs sehr
flexibel und fur eine Vielzahl von Problemen einsetzbaei@izeitig bedeutet es aber auch, dass ein
groRRer Teil der Transistoren fur Caches und Steuerscig#tu statt fur Recheneinheiten verwendet
wird.

Berechnungen, bei denen auf den gleichartigen Dateneterf@tiaufender Datenstrom8tfeam¥im-
mer wieder die selben Operationen angewandt werden, kdroreden grof3en Caches nicht profitieren.
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Hier kommt es vielmehr auf einen moglichst hohen Durchaatsind die Berechnungen auf den einzel-
nen Stromelementen zusatzlich voneinander unabhasgikpnnten sie theoretisch parallel ausgefuhrt
werden.Stream Computingst ein Rechenkonzept, welches speziell fur solche Pnogtiellungen opti-
miert ist. RechenkernglAbb. 4.1) fuhren vordefinierte Operationen auf den Eimgatdmen durch und
produzieren neue Ausgabestrome. Durch das Replizienes &ernels steigt der Datendurchsatz beina-
he linear mit der Anzahl der Kopien an (Parallelitat auféatbene). Komplexere Aufgaben lassen sich
durch das Hintereinanderschalten mehrerer Kernels iex&lis (FliessbandprinzipRipelining erlaubt
dabei das gleichzeitige Verarbeiten aufeinanderfolge@&d®melemente in den hintereinandergeschal-
teten Kernels (Parallelitat auf Task-Ebene). Um Wartere{Pipeline Stalls) zwischen den Stufen zu
vermeiden, sollten diese besonders gut aufeinander abgastverden. Zusatzlich kbnnen elementare
Operationen, wie zum Beispiel Vektoraddition auf niedrigbene parallelisiert werden (Parallelitat auf
Anweisungsebene).

1 » —_—>» 1
Kernel
N—/——>» —  » M

Abbildung 4.1: Stream Computing Kernel

Aufgrund der festgelegten Aufgaben der einzelnen Rechieak&ann die Steuerhardware relativ ein-
fach ausfallen. Statt grof3er Caches werden nur kleine Bpiéécher zwischen den verschiedenen Stu-
fen der Berechnung bendtigitream Computingrlaubt deshalb eine hochgradig effiziente und parallele
Verarbeitung von Daten. Der Performancegewinn gegendllgggmeinen Prozessoren ist dementspre-
chend hoch.

4.3 GPUs

Die Architektur des GPU-Kerns ist am Stream-Computing-®lbdrientiert und implementiert die Gra-
fikpipeline fur dreidimensionale Szenen in Hardware. DiafiBpipeline beschreibt den Weg einer Sze-
ne vom virtuellen 3D-Modell bis zur zweidimensionalen Aakg auf dem Bildschirm bzw. im Fra-
mebuffer. Die verschiedenen Kernels und Streams sind irlddoig 4.2 skizziert. Zunachst werden
die einzelnen Objektverticed/rtexstrony, die in Modellkoordinaten vorliegen, transformiert und i
den Bildraum projiziert. Bei programmierbaren GPUs wirdsdi Funktionalitat, neben anderen, in den
Vertexeinheiten realisiert. Aus dem Strom der transfortaieVertices und deren Nachbarschaftsbezie-
hungen wird nun eine Folge von Dreiecksprimitiven ers{@leiecksstrorn Die Dreiecke durchlaufen
daraufhin eine Reihe von Tests, wobei sie verworfen werdenn sie komplett auRerhalb des Darstel-
lungsvolumens liegerQulling), oder wenn sie von anderen Primitiven verdeckt werdgarly Z-Tes}.
Primitve, die den Test Uiberstanden haben werden ansehtiafasterisiert. Die programmierbaren Frag-
menteinheiten fihren auf den Elementen des resultiereRigmentstroms eine Reihe von Operationen
aus. Als Ergebnis der Berechnung erhalt man die Farbe @ggrfents. Diese hangt in der Regel von
den Materialeigenschaften der zugrundeliegenden Oljekfiidche und den Lichtern der Szene ab. Die
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bearbeiteten Fragmente werden daraufhin in das Rendgesehrieben. Dies kann der Framebuffer,
aber auch eine Textur sein. Dedending-Hardwareerlaubt es dabei, die vorherigen Pixelinhalte mit
den neuen Fragmentfarben tber verschiedene Operationgrkniipfen. In der Regel ist die Zahl der
Fragmente nach dem Rasterisieren sehr viel grof3er alsatliedér Eingabevertices. Deshalb sind nor-
malerweise mehr Fragmenteinheiten als Rastereinheitdranden. Die einzelnen Einheiten arbeiten
parallel und verfugen Uber eigene Register und kleineh€sic

l Vertices

programmierbare | Textur- | Textur-
Vertexeinheit [~ interpolation speicher
7§

transformierte Vertices

v
primitive
assembly Framebuffer

Dreiecke v

A 4

. |Rastereinheit,| Fragmente | programmierbare [Peabeitete | 7_Tagt,
"| Early Z-Test " | Fragmenteinheit [Fragmente | Stenciltest

4

Culling Blending

Abbildung 4.2: Die 3D Grafikpipeline in der GPU Implemendati

4.3.1 GPU Hardware

GPUs enthalten zwei unterschiedliche Typen von programuaien Einheiten und eine Reihe von fest-
eingebauten Funktionen. Dieser Abschnitt geht auf diedfar GPGPU-Programmierung relevanten
Merkmale und Restriktionen der Grafikhardware ein. Die dalden Angaben beziehen sich auf die
NVidia Geforce 6800.

Texturierung

Texturmapping war einer der ersten Aufgaben, die Grafikkaiifoernommen haben. Mittlerweile wer-
den neben 2D-Texturen und Cube-Maps auch 3D-Texturendtigter. Pro Texel stehen bis zu vier
Komponenten zur Verfigung, die in einem Floating-Poiotrat gespeichert werden konnen. Im fp16-
Format ist es moglich, verschiedene Texturfiltermethddefardware auszufuhren. Schnelle Filterung
von fp32-Texturen beherrscht die Hardware allerdings mocht.

(early) Z-Test

Beim Rastern grof3erer Mengen von Primitiven kommt es baudi, dass sich Fragmente gegenseitig
verdecken, da sie in der Bildausgabe auf das gleiche PikehfdDeshalb werden im Tiefenpuffer die
relativen Tiefenwerte der gerenderten Pixel gespeiclBasierend auf dem Tiefenpuffereintrag kann
der Z-Testentscheiden, ob das aktuelle Fragment Uberhaupt sicisthamd ob es verworfen werden
soll. Jedoch wird die Entscheidung erst nach der Ausfighdes Fragmentprogramms getroffen. Um
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unnotige Aufrufe des Programms zu vermeiden, versuchEddy Z-Testschon vorher die Fragmente
zu verwerfen. Allerdings ist das Testen jedes einzelnegrreats in dieser frihen Stufe der Pipeline zu
zeitaufwendig, deshalb werden grol3ere, zusammenhdadaagmentblocke auf einmal getestet.

Occlusion Query

Uber Occlusion Querykann die Anzahl der Fragmente abgefragt werden, die densE«red den
Stenciltesbestanden haben. Der Stenciltest wird in dieser Arbeittnvietwendet.

Blending

Am Ende der Rendering-Pipeline werden die Fragmente mit sldmon vorhandenen Framebufferin-
halt Uber verschiedene Operationen verkniipft. Fragenentfp32-Format werden von der Blending-
Hardware nicht unterstiizt.

Programmierbare Einheiten

Aktuelle Hardware erlaubt den Zugriff auf Texturdaten sbhiion Vertex- als auch im Fragmentpro-
gramm. Jedoch ist eine Texturfilterung bei Vertexprogrammight in Hardware moglich. Generell
sind Texturlookupsverhaltnismaliig zeitaufwendige Operationen und solitéglichst durch gleich-
zeitig laufende Berechnungen kaschiert werden. Es giltrstigfig abhangige Texturabfragen sowohl
im Vertex- als auch im Fragmentprogramm zu vermeiden. Aughabische Flusskontrolle, wie Ver-
zweigungen und Schleifen, werden von der Hardware untetstDabei wird der Programmzweig je-
des Vertex unabhangig von den anderen Vertices ausgeftihFragmentprogramm hingegen missen
Operationen immer auf einer groReren Menge von Fragmemisgefiihrt werden. Deshalb kann es
passieren, dass beide Zweige einer if-Anweisung ausgetwedrden und danach entschieden wird,
welches Ergebnis verwendet wird. Vor allem Schleifen, dekazahl von Durchlaufen von Fragment
zu Fragment stark variiert, sollten deshalb vermieden ererDie Resultate der Berechnungen des Frag-
mentprogramms konnen in bis zu vier Rendertargets gedmhriwerden.

4.3.2 GPU Programmierung

Anfangs konnten die Fragment- und Vertexeinheiten der G&Umit einer maschinennahen Assemb-
lersprache programmiert werden. Mittlerweile gibt es é¢he von hoheren Programmiersprachen wie
Cg, HLSL und GLSL. Die C-nahe Shadersprache GLSL (OpenGldighd_anguage) ist seit Version
2.0 in OpenGL integriert und wurde fur die Imlementatiors désualiserungstools verwendet [11, 12].
Bei OpenGL werden die Shaderquelltexte zur Laufzeit vonberekompiliert und auf die GPU gela-
den. Vor dem eigentlichen Aufruf der GLSL-Programme miisdie Renderziele der Berechnung und
die Programmparameter festgelegt werden. Soll in Textgezandert werden, dann geschieht dies mit
Hilfe einesOpenGL Framebuffer Objek{&B0O), an das die entsprechenden Ziel-Texturen gebunden
sind. Uber Uniforme Parameterdie den Vertex-und Fragmentprogrammen {ibergeben wekdem
den Programmen zum Beispiel mitgeteilt werden, welcheurektheiten sie bei Lookups verwenden
sollen. Zusatzlich ist es moglich, zu jedem EingabewenehrereVertexattributeanzugeben, die im
Vertexprogramm abgefragt werden konnen.
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4.4 General Purpose Computing mit der GPU

Die hohe Leistungsfahigheit der GPUs bietet sich dank iRregrammierbarkeit auch fur grafikfrem-
de Probleme an [13, 14, 15]. Viele wissenschaftliche odemnggrische Algorithmen lassen sich so
umformulieren, dass sie auf dem Grafikprozessor ausgefigrden konnen. In den letzten Jahren wur-
den verschiedene klassische Algorithmen auf der GPU ingahgiert. Zu ihnen gehodren zum Beispiel
die FFT, Matrix Multiplikation oder auch Stromungssimtidamen [16, 17]. Besonders geeignet sind
Probleme mit einer hohearithmetischen Intensit, bei denen der Quotient aus der Anzahl der Re-
chenoperationen und der dabei Uibertragenen Datenmeng@risty Deshalb sollten die Berechnungen
auf den einzelnen Stromdatenelementen moglichst umgiiin&oneinander sein. Je hoher der Grad der
Abhangigkeit ist, umso mehr Daten miussen Ubertragenleverwas letztendlich eine schlechtere Per-
formance zur Folge hat. Die Kommunikation zwischen denrBélementen untereinander kann nicht
immer umgangen werden, wobei es zwei Moglichkeit gibt,ddaduszutauschefather-Operationen
rufen die Daten anderer StromelementeS&datter-Operationedagegen teilen das Ergebnis einer Ker-
nelberechnung anderen Stromelementen mit. Normalens&idé&ather-Operationewvorzuziehen, da
sie nur lesende RAM-Speicherzugriffe erfordern. Diese siaf der GPU durch Texturlookups reali-
sierbar.Scatter-Operationehingegen konnen nur Uber umstandliche Tricks auf der @emdhgefihrt
werden. Die Eingabedaten eines CPU-Algorithmus sind danfiHauptspeicher in einer Array- oder
Zeigerdatenstruktur gespeichert. Um bei einer GPU-Benauty als Eingabe dienen zu kdnnen, missen
die Daten vorher in Texturform gespeichert werden, westigitamische Zeigerstrukturen nur schwer
realisierbar sindUblicherweise wird auch das Resultat der Berechnung in &neur geschrieben.
Da die programmierbaren Einheiten intern mit floating-p@ahlen rechnen, ist es sinnvoll, die Tex-
turdaten in diesem Format bereitzustellen. Im Folgended wine grundlegende Vorgehensweise bei
der Implementation von GPGPU-Algorithmen am Beispiel vque@GL erklart. Fur die eigentlichen
Berechnungen sind die Fragmenteinheiten den Vertexégrhaufgrund ihrer groferen Gesamtrechen-
leistung vorzuziehen.

Die Daten auf denen der Algorithmus ausgefiihrt werden st in Texturen gespeichert, wobei in
jedem Texel ein Datenelement mit maximal vier Werten etghaist. Werden mehr als vier Werte pro
Element benotigt, dann missen mehrere Eingabetextusteilewerden. Das Fragmentprogramm soll
auf jedem Datenelement der Eingabe einmal ausgefuhrtemezlinachst wird die GroRe des geren-
derten Bildes Viewpor) auf die Texturauflosung eingestellt (Listing 4.1, Zei)e Rie Projektions und
Modelview-Matrix werden so angepasst (Zeilen 2-6), dassreiden Bildraum projiziertes Rechteck
exakt den Viewport ausfullt (Abb. 4.3, Vertex Transforioa). Zeile 7 stellt sicher, dass die inneren
Bereiche des Rechtecks rasterisiert werden. In den folgeZdilen werden die Eingabe- und Ausgabe-
texturen festgelegt (Zeilen 9-14) und das gewiinschterfeagprogramm initialisiert (Zeile 17, 18). Die
eigentliche Berechnung st63t man durch das Zeichnen ddgdis an. Die Texturkoordinaten, die da-
bei angegeben werden, legen den Berechnungsraum fest.dahteBk wird genau iexreg - Texres
Fragmente rasterisiert. Somit wird das Fragmentprograiimpeties Viewportpixel exakt einmal aus-
gefiihrt.Uber die bilinear interpolierten Texturkoordinaten destRecks kénnen die zugehérigen Ein-
gabedaten aus den Datentexturen gelesen werden (Abb.ekiByrldokups). Die Texturfilterung aller
Datentexturen muss alfearest Neighboueingestellt sein, sonst kann es passieren, dass intarpolie
te Datenwerte zuriickgeben werden. Das Fragmentprograamm ehrere Resultate pro Fragment in
die vom FBO spezifizierten Texturen schreiben. Ein freiénr8ibzugriff auf die Ausgabetexturen ist
allerdings nicht moglich, da die Position des verarbeitefragments der Position des Texels in der
Ergebnistextur entspricht. Iterative Algorithmen verden die Ergebnistexturen in weiteren Render-
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durchlaufen als neue Eingabe, ohne dass die Daten vorldenifdauptspeicher zuriickgelesen werden
missen.
3D Szene: Rechteck Bildraum: 2D Viewport
A B , )
oY @y A B
010 O (1,1)
¢1-10) Vertex Transformation
(0,0) (1,0) >
C (u,v) 2D Texturkoordinaten D V':P*MV*V
(x,y,z) 3D Vertexpositionen
Datentexturen
0,1) (1,1) F
u .. Texturlookups 0.0 O O (1,0)
o w im Fragmentprogramm c J D’

(s,}) = (0.3125, 0.1875)

Abbildung 4.3: Durch das Zeichnen eines speziellen Rekhtd@nn im Fragmentprogramm auf die
einzelnen Texel der Datentexturen zugegriffen werden.

Listing 4.1: Initialisierung und Starten einer GPGPU-RBémeung mit OpenGL

glViewport(0, 0, TEXRESX, TEXRESY);

glMatrixMode (GLPROJECTION); I/l ProjektionsMatrix setzen
glLoadldentity ();

gluOrtho2D(-1.0,1.0,-1.0,1.0);

glMatrixMode (GLMODELVIEW) ; /!l Modelview—Matrix setzen
glLoadldentity ();

glPolygonMode (GLFRONTAND_BACK, GL_FILL);

/!l Eingabe: N Datentexturen
glActiveTexture (GLTEXTURE(i —1));glBindTexture (GLTEXTURE 2D, DATATEX.i);

/!l Ausgabe: zb. in (mehrere) Texturen uUber FBOs
glBindFramebufferEXT (GLFRAMEBUFFEREXT, FBO);
glDrawBuffer (DRAWBUFFERS) ;

I/l Kernel: FragmentshadefProgramm initialisieren
glUseProgram (FRAGMENTPROGRAMM) ;
glUniform(variableid , ...Werte...);

/!l Berechnung starten

glBegin (GLQUADS);
glTexCoord2f(0.0, 0.0); glVertex2f£1.0,-1.0);
glTexCoord2f(1.0, 0.0); glvVertex2f( 1.051.0);
glTexCoord2f(1.0, 1.0); glvVertex2f( 1.0, 1.0);
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glTexCoord2f(0.0, 1.0); glVertex2f£1.0, 1.0);
glEnd ();

45 Feder-Masse-Modell auf der GPU

Die Grundlagen des Feder-Masse-Modells wurden in Kapigls3uhrlich besprochen. Aufgrund ihrer
Einfachheit wurde die explizite Verlet-Integration alsmerisches Integrationssverfahren implementiert
[18, 19]. Methoden hoherer Ordnung, wie RK4, bieten zwae dessere Genauigkeit, allerdings er-
fordert die groRere Zahl von Funktionsauswertungen tzlishe Texturlookups, welche Stalls in der
GPU-Pipeline verursachen konnen und so die Berechnungggingsamen. Implizite Veerfahren erfor-
dern das Losen komplizierter Gleichungssysteme [20, 21].

Die explizite Verlet-Gleichung fur die Teilchenintegrat lautet:

Fiota - At?
{4 80) = 2t) it ) T B @

In die Gleichung geht die Gesamtkrdi,:4 ein, die auf ein Teilchen wirkt. Sie setzt sich aus der Feder-
kraft und der Stokes’schen Reibungskraft zusammen (Glg.) 3wobei der Vorfaktor fiir die Reibung,

in den die Viskositat und der Teilchenradius eingehen,edng gesetzt wird. Zusatzlich kann das dy-
namische Verhalten der Geometrie Uiber zwei skalare Fexktfimr die Starke des Felddg. und die
Dampfungds,c eingestellt werden. Die Gesamtkraft ergibt sich zu

frac- V (r(t),t) —v(t)
At

Fiota = — Feder— dfac'U(t) (4-2)

mit

w(t) = W 4.3)

Es gibt zwei grundsatzlich verschiedene Vorgehensweisrrdie gesamte Federkrafeger ZU be-
stimmen. Der vertexorientierte Gather-Ansatz berechigefldstande eines Vertex zu jedem einzelnen
seiner Nachbarn und akkumuliert die resultierenden Taii&r

for (alle Teilchen i)
for (alle Nachbarn j von i)
Federkraft_Gesanmt i += Teilkraft _ij

Die Federkraft wird hierbei pro Feder zweimal berechnetntzil fir das linke Teilchen und einmal fur
das rechte. Ein kantenorientierter Scatter-Ansatz wdrelee unnotigen Berechnungen vermeiden. Die
Krafte, die von einer Feder ausgehen, werden berechnedufrdie zwei verbundenen Vertices verteilt.
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for (alle Federn i)

{
Federkraft |inker_Nachbar += Teilkraft i

Federkraft rechter Nachbar += Teil kraft i
}

Wie wir gesehen haben, werd&aatter-Operationewon der GPU nur unzureichend unterstitzt. Des-
halb wird trotz des hoheren Aufwands die erste Methode erdst.

Texellayout
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Abbildung 4.4: Die Vertex-Texturen speichern die Teilghesitionen. Die Nachbarschafts- und die FB-
Textur enthalten die Informationen Uber die Federvenivgegn zwischen den Teilchen.

Fur die Berechnung eines neuen Zeitschritts sind jewéddPdsitionen des aktuellen und des letzten
Zeitschritts notig. Die Positionsinformationen werdeerku in den RGB-Komponenten dreieertex-
Texturergleicher Auflosung gespeichert (Abb. 4.4). Eine expliB&gechnung und Speicherung der Ge-
schwindigkeiten ist nicht notig. In einer weiteren Texdar selben AuflosungNachbarschafts-Textur
sind jeweils die zugehdorigen Massen m der Teilchen, dieahh& der Uber Federn verbundenen Nach-
barn und eine zweidimensionale Texturkoordinate (s,Hatdn. Diese Texturkoordinate ermoglicht den
Zugriff auf die Nachbarschaftsdaten eines Teilchens (Fkeden und Backlinks), die in einem N-Texel
breitem Nachbarblock in der FB-Textur gespeichert sindeseesinzelne Texel dieses Blocks enthalt
einen Backlink (s,t) zu den Positionsdaten eines Nachtdmss, sowie die zugehorige Federruhelange
(rl) und Federsteifigkeit (st) der Feder, tUiber die die Tailt verbunden sind. Ein Texturzeilenumbruch
innerhalb eines solchen Blocks ist nicht erlaubt, da soin&t aufwendige Berechnung der Texturko-
ordinaten vor dem Zugriff auf die Nachbardaten notig ise Nachbarblocke verschiedener Vertices
werden aufeinanderfolgend in den Zeilen der FB-Textur giebert, wobei die maximal erlaubte Tex-
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turbreite von 4096 Texeln ausgenutzt wird. Alle vier Tegtuspeichern pro Texel vier Komponenten
im fp32-Format.

Das Stromungsfeld ist als Vektorfeld gegeben und wird imeeBD-Textur gespeichert. Da die aktu-
elle Generation von GPUs keine hardwareseitige Untenstigt fur Interpolation in fp32 3D-Texturen
anbietet, miissen die Komponenten des Feldes vor dem Tegtunload auf die GPU in das 16bit
Half-Float-Formatder GPU konvertiert werden.

Der numerische Algorithmus ist als Fragmentprogramm implatiert (Listing 4.2). Zunachst werden
die Positionen der letzten beiden Zeitschritte in den Wefexturen nachgeschlagen (Zeile 3 und 4).
Darauf folgen ein oder zwei weitere, von den ermitteltenittwsen abhangige, Lookups in den Vektor-
feldtexturen. Bei instationaren Feldern resultiert deld#ektor zur Simulationszeit t aus einer linearen
Interpolation der zwei angrenzenden Feldsamples (Zelletd). Zeile 19 holt die nétigen Teilchenattri-
bute und die Texturkoordinaten fur den Zugriff auf die Nlaatschaftsinformation. Die darauf folgende
Schleife ermittelt die gesamte Federkraft, die auf dasedletureilchen einwirkt (Zeilen 25-34). Am
Ende werden die Feder-, Reibungs- und DampfungskratteddZeilen 37-39) und anschliel3end wird
die Integrationsgleichungen angewandt. Das Resultat#thdas Programm als Fragmentfarbe in die
Ausgabetextur.

Listing 4.2: Auszige aus dem GLSL Quelltext des Verleegmation-Shaders

// aktuelle und letzte Vertexposition holen
vec4 post texture2D(vTexturt , gl_-TexCoord[0]. st);
vec4 post_alt texture2D(vTexturt_alt, gl-TexCoord[0]. st);

/Il Vektorfeldsample
# im Fall von stationaren Feldern
vecd V = texture3D(vectorField0, pas.xyz/vfAuflosung);

# im Fall von instationaren Feldern

vec4 fvO texture3D(vectorField0, pas.xyz/vfAuflosung);
vecsd fvl texture3D(vectorFieldl, pas.xyz/vfAuflosung);
vecd V = t.relativ«fvO0 + (1.0—t_relativ)«xfvl;

/! Nachbarschaftsund Teilchenattribute

/1 np.st = Texturkoordinate fur NBlrextur
/1 np.z = Nachbaranzahl
/1 np.w = Teilchenmasse

vecd np = texture2D(npTex, gTexCoord[0].st);

I/l intialisiere Federkraft
vec3 F.feder = {0.0 ,0.0, 0.G;

/!l einzelne Federkrafte aufsummieren
for (float i=0.0; i<np.z; i++)
{
vecd ns
vec4 neigh

= texture2D(nsTex, np.st#vec2(texelds ,0.0));
= texture2D(vTex, ns.st);

vec3 spring = post.xyz — neigh.xyz;

float | = length(spring);
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float factor = facsteifigkeitxns.w«((l — ns.z)/1);
F_feder += factor* spring;

}

/I Gesamtkraft

vec3 F_total = (f_-fac«V — (pos.t.xyz—pos_.t_alt.xyz)/dt)/dt
— F_feder
— d_facx(pos.t.xyz—pos_t_alt.xyz)/dt;

/I Verlet—Integration
gl_FragColor.xyz = Zpos.t.xyz — pos_t_alt.xyz
+ F_totalxdtxdt/np.w;
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5 Implementation

5.1 Einleitung

Dieses Kapitel geht naher auf das implementierte Visigalisgsprogramm ein. Zuerst wird eifber-
blick Uiber das Systemdesign gegeben. Danach werden djeteetEnen Teilprobleme einschlie3lich
Losungsvorschlagen in separaten Abschnitten behanfleft Implementationsdetails wird an inter-
essanten Stellen eingegangen. Ferner wird die grafischetBsaberflache (GUI) und die Bedienung
des Programms erlautert.

Systemuiberlick

Das komplette Visualisierungstool wurde unter Windows XiPVisual Studio .Net 2003 in C++ und
OpenGL programmiert. Es setzt auf ein schon vorhandes Baaimework auf und verwendet wie die-
ses GLUT [20]. In Abbildung 5.1 ist eine vereinfacHtibersicht tiber die Programmklassen und de-
ren Zusammenhange dargestellt. Die Hauptfunkionadigtkt in deiGeometrieadvektions-Klass8ie
tbernimmt alle Simulationsaufgaben, die Interaktionaeit Objekten, das automatische Platzieren der
Versuchsobjekte, die Geometrierandbehandlung sowie eladdRn. DidJmgebungs-Klassdient dage-
gen hauptsachlich der Initialisierung und Verwaltung 8gstems. Sie enthalt di¢auptschleifedie fur
jedes gerenderte Bild einmal aufgerufen wird und die Vd&tdrStreaming-Komponente. Aul3erdem
implementiert sie die Schnittstelle zum Benutzer. Dieligtgtn Klassen realisieren Teilaufgaben, die
fur die Geometrieadvektion relevant sind. Die geomehgsc\Versuchsobjekte, deren Bewegungen im
Stromungsfeld visualisiert werden, werden v@RU-Daten-Generatowvervielfaltigt und in Texturen
gespeichert. AuRerdem werden fur die Simulation geetgRetrameter benotigt. Diese berechnet der
Feldanalysatorin Abhangigkeit verschiedener Eigenschaften des zugliegknden Stromungsfeldes.
Der GLSL-Laderverwaltet die Vertex- und Fragmentprogramme, die das Bystrwendet.

Hauptumgebung

* Initialisierung
* Interaktion

GPU-Daten-Generator * Hauptschleife GLSL Lader
*GUI

* Daten-Texturen * Streaming * Shader-Programme

| Geometrie |\ Geometrie Advektion
* Randbehandlung Vektorfeldanalysator
* Num. Integration
Geometrie::Kugel | | Geometrie::Schlauch * Objekt Interaktion * Simulationsparameter

* Objekt Platzierung

* Picking & Selektion
* Rendern

Abbildung 5.1: Systemaufbau des Visualisierungtools
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Im UnterkapitelBedienung und Interaktioist eine kurze Einfihrung in die Benutzung des Programms
gegeben. In den darauf folgenden Abschnitten werden digtflmktionen in der Reihenfolge behan-
delt, in der sie von der Hauptschleife ausgefihrt werdemb(A.2):

Geometrieprobemehandelt die Generierung und die Interaktion mit den Rrcmsvie die Problema-
tik einer geeigneten Platzierung im Stromungsf@anulationgeht nochmals auf die Integration der
Geometrie und auf die Wahl von SimulationsparameternRémdbehandlungeigt die besondere Be-
handlung von Geometrieproben auf, die am Rand des Simuosagbietes angekommen sind. Ren-
dern der Geometrie und daStreaming der Vektorfelddatemird in den letzten beiden Unterkapiteln

behandelt.
| Objekt Plazierung | 5.3 Geometrieproben
\4
’ Geometrie integrieren ‘ 5.4 Simulation
\ 4
’ Geometrie Randbehandlung ‘ 5.5 Randbehandlung
’ Rendering ‘ 5.6 Rendering
4 _
’ VF-Streaming ‘ 5.7 Vektorfeld-Streaming

N

Abbildung 5.2: Die Hauptschleife wird fir jedes gerendeBild einmal ausgefihrt.

5.2 Bedienung und Interaktion

Das Programm muss mit dem Dateinamen einer Konfiguratiogisdpar) als einzigem Parameter ge-
startet werden. In dieser Textdatei werden das Stromattyshd die Probenobjekte spezifiziert. Au-
Berdem konnen die meisten Simulations- und Visualisgsparameter festgelegt werden (Tabelle 5.1).
Jeder Eintrag muss in einer eigenen Zeile stehen. Komnzeilew, die mit dem Raute Zeichen begin-
nen, werden ignoriert. Fehlende Parameter werden vom &rogrdurch Standardwerte ersetzt. Wahlt
man den Wert fiir die Simulationsschrittweite kleiner Ndkhnn werden die Schrittweite und der Fak-
tor fur die Federsteifigkeit basierend auf einer autornhéa Analyse des Stromungsfeldes bestimmt.
Als Versuchsobjekte stehen Kugeln und Schlauche zuugerig, die aber nicht gleichzeitig verwendet
werden kdnnen. Mehrere Parameter fir die Geometrieggnrg legen das Aussehen und die Eigen-
schaften des jeweiligen Typs fest. Wobei der Objektversasammen mit der Startposition die eigent-
lichen Positionen der n Objekte bestimnpio§, = obj_pos+ nxobjof fse). Soll das Feld mit Hilfe
von Saatobjekten untersucht weden, muss der Objektveaghtien Standardwert eingestellt sein.

Nach dem Start des Programms ist der Begrenzungsrahmereliesfeldes zu sehen. Der Ursprung
0 = (0.0,0.0,0.0) des Koordinatensystems ist durch ein farbiges Dreibeirkierarund die Versuchs-
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| Beschreibung | Schliisselwort | erlaubte Werte | Standardwert |
Vektorfelddatensatz vfield Dateiname default.dat
Feldstreaming (an/aus) streamon 0,1 0 (aus)
Feldstreaming Pufferanzahl streambuf >0 5
Feldstreaming Puffer vorladen | streampre (1..streambuf) 4
Feldstreaming Startzeitschritt | streamoffset | (0..#Zeitschritte-1) | O
Objekttyp obj_type 0=Schlauch, 1=Kugel 1
Objekt Stutzvertices (an/aus) obj_v_in 0,1 0 (aus)
Kugel Subdivision-Schritte obj_spheresub | 1..5 1
Schlauch Segmentanzahl obj_tube seg >=1 10
Schlauch Querschnittvertices obj tubev >=3 3
Objektlange obj_length >0.0 30.0
Objektradius obj_radius > 0.0 2.0
Objektanzahl obj_num 0..4096 1024
Objektposition obj_pos (x,y,z) € R® (0.0, 0.0,0.0)
Objektversatz obj_offset (O, Ay, A7) € R® (0.0, 0.0, 0.0)
Simulationsparameteit sim._dt >0.0 0.1 sek
SimulationsparameteXT sim.dts >0.5 2.0 sek
Simulationsfaktor Dampfung sim fac d > 0.0 0.0 (aus)
Simulationsfaktor Feldstarke sim fac f > 0.0 10.0
Simulationsfaktor Federsteifigkejtsim_fac_s > 0.0 1.0
Randbehandlungsparameter boundarynum | 1..objnum 50
Saat-Periode seedperiod >1 50
Render Transferfunktion Max rendert-max | > 0.0 10.0

Tabelle 5.1: Format der Parameterdateien (.par)

objekte werden an den spezifizierten Orten angezeigt (AB. Bie Bedienung des Programms erfolgt
mit der Tastatur und der Maus. In Tabelle 5.2 sind die Tastergt der Hauptfunktionen aufgelistet.
Die Sicht auf das Feld kann, wie bei anderen 3D-Programmeh, amit der Maus geandert werden.
Der Rendermodusegt das Aussehen der Versuchsobjekte fest. Gewahlt wekaen zwischen einer
Darstellung der Dreieckskanten (Wireframemodus) und dgekdoberflachen (Fillmodus). Zusatzlich
laRt sich eine auf den Objektnormalen basierende Belenghberechnung aktiviereAnderungen des
Programmzustands werden tber eine Meldung auf der Komozaiid angezeigt. Ddnteraktionsmo-
duslegt fest, welche Objekte verschoben werden konnenAlno-Modusist dies davon abhangig, ob
ein Saatpunkt ausgezeichnet ist oder Objekte selektistt Biber einen Tastendruck ist es auRerdem
moglich, die aktuellen Simulationstexturen und Parameié der Festplatte zu sichern.

Auch die Selektion und Interaktion mit den Versuchsobjekist tber eine Kombination aus Tastatur-

und Maussteuerung moglich (Tab. 5.3). Die meisten Objektationen beschranken sich auf die aktu-
elle Selektion, die blau eingefarbt ist. Es ist moglichiriplette Objekte oder festgelegte Vertexmengen
zu verschieben. Hierfur gibt es fur jeden Objekityp zwasgezeichnete Vertexbereiche A und B. Bei
Schlauchobjekten sind das jeweils die Vertices der beidete. Bei Kugeln ist dagegen nur der Mit-

telpunkt markiert. Werden die Objektvertices der Mengeifixdann werden sie weiss eingefarbt und
Ihre Position andert sich auch bei laufender SimulatiaminiBeide Mengen sind entweder aktiv oder
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[ Funktion | Taste
Simulation starten/stoppen Leertaste
Schrittweise Simulation (1, 25 Schritte) (-, +)
Programm beenden q

Feld Rotieren

Ctrl + linke Maustaste

Feld Zoom

Ctrl + rechte Maustaste

Feld Verschieben

Ctrl + mittlere Maustaste

Interaktionsmodus andern (Auto, Selection, Fixe

fm

Rendermodus tUberblenden (Flat...Normal)

b,B

Rendermodus andern (Fill, Wireframe)

r

Pseudotransparenz (an, aus)

t

Randbehandlungsparameter (-,+)

()

Transferfunktion Schwellwert (-,+)

(c, C)

Simulationsdaten in Texturen sichern

Aktuelle Parameter in default.par schreiben

Allgemeine Parameter anzeigen

Saatmodus Parameter anzeigen

Simulationsparameter anzeigen

w NP g s

Tabelle 5.2: Die Hauptfunktionen

des Programms

Funktion

Taste

Auswahl neu

linke Maustaste

Auswahl verkleinern

mittlere Maustaste

Auswahl vergoRRern

rechte Maustaste

Auswahlkonfiguration sichern S
Auswahlkonfiguration wiederherstellen S
Auswahl abbrechen ESC

Auswahl bewegen (x,y)

Shift + linke Maustaste

Auswahl bewegen (z)

Shift + rechte Maustaste

Auswahl bewegen (aktive fixierte Vertices) (x,y)

Shift + linke Maustaste

Auswahl bewegen (aktive fixierte Vertices) (z)

Shift + rechte Maustaste

Auswahl Fixierung Bereich A (ein/aus)

@, 1

Auswahl Fixierung Bereich B (ein/aus)

(0,0)

Auswahl Fixierung Bereich A aktivieren (ein/aus)

P

Auswahl Fixierung Bereich B aktivieren (ein/aus)

P

Saatpunkt auswahlen

Rechtsklick auf Saatpunkt

Saatpunkte deselektieren

Rechtsklick neben Objekte

Tabelle 5.3: Interaktion mit den Versuchsobjekten
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(a) Saatpunkte (b) Simulationsparameter
Funktion Taste Funktion Taste
Saatmodus initialisiern | ZeitschrittweiteAt (-,+) (g9, G)
Saatmodus beednen | L Dampfungsfaktor (-,+) (d, D)
Saatpunkt hinzufugen| k Federsteifigkeitsfaktor (-,+) (h, H)
Saatperiode +1, +10 | X, X Feldstarkefaktor (-,+) (f, F)
Saatperiode -1,-10 | vy, Y Massefaktor (-,+) (a, A)

Tabelle 5.4: Tastenkurzel fur den Saatmodus und fur daipllation der Simulationsparameter

inaktiv, wobei nuraktivierte Vertexmengererschoben werden konnen. Dies ermoglicht beispielsvei
das separate Fixieren und Bewegen der beiden Schlauchenden

Geraten Objekte bei laufender Stromungsvisualisierungem Rand oder auRerhalb des Feldes, werden
sie automatisch an ihre urspringlichen Positionen gé&metzt. Zusatzlich lassen sich die Objekte auch
von Hand zuriicksetzemAgswahlkonfiguration wiederherstellennd die Ricksetzpositionen kdnnen
durch die aktuellen Vertexpositionen ersetzen werdersyahlkonfiguration sicheyn

Subdivsion

fixierte Enden

fe—sy
PP L L L L P P 2

»
\‘ X

selektiertes Objekt Objektversatz
;

Startposition \
Koordinatenursprung

Schlauch

Abbildung 5.3: Programm nach dem Starten (links), geos@tg Versuchsobjekte (rechts)

Wechselt man in den Saatmodus (Tab.5.3(a)), dann erschaiithst ein einzelner Saatpunkt, an dem
periodisch Objekte freigesetzt werden. Daraufhin ist eglioh, weitere Saatpunkte zu generieren und
die Periodendauer einzustellen. Aul3erdem erlaubt es dgsadPnm, verschiedene Simulationsparame-
ter interaktiv zu manipulieren (Tab. 5.3(b)).

5.3 Geometrieproben

Die Grundidee bei der Geometrieadvektions-Methode isg groRe Menge gleichartiger, relativ ein-
fach aufgebauter Versuchsobjekte in einem Stromung$feizllassen. Aus der Bewegung und Verfor-
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mungen der Objekte kdnnen Informationen tber das zugtiegende Feld gewonnen werden. Befin-
den sich zu viele Objekte in einem kleinen Raumbereich, dgtriie Wahrscheinlichkeit fir gegenseit-
ge Verdeckungen undberschneidungen groR. Die Platzierung und VerteilungQisgekte ist deshalb
entscheidend fir eine gelungene Visualisierung. Eindisfmhsbehandlung der Objekte untereinander
bringt hier keinen weiteren Nutzen, da die Eigenschaftenfaddes dargestellt werden sollen und nicht
die Kaollision von Teilchen. Ein anderes Problem betrifiigeh die einzelnen Versuchsobjekte selber.
Durch die Einwirkung des aul3eren Stromungsfeldes kid@wbstdurchschneidungen auftreten, was zu
unerwiinschten Artefakten filhrt. Eine seperater Testtadrschneidungen von Geometrieprimitiven
und deren Behandlung erscheint zu aufwandig und den Aefondien unangemessen. Ein alternativer
Ansatz ist, die Objektgeometrie und somit die MassepunikteRedern so zu wahlen, dass allein durch
das physikalische Feder-Masse-Modell Artefakte verhinderden. Beispielsweise konnen Dreiecke
nicht zu einer Linie degenerieren und im dreidimension&ath erfillen Tetraeder die selben Anforde-
rungen. Allerdings ist die korrekte Tetraedrisierung vaometrischen Objekten im allgemeinen Fall
eine sehr komplizierte Aufgabenstellung. Eine optimaldefgn der Objektvolumen in Tetraeder wurde
deshalb nicht angestrebt.

In den folgenden Unterkapiteln werden, ausgehend von dem@giegenerierung, die GPU-Daten-
strukturen fur die Objektspeicherung und die Interaktigihden Proben behandelt. Am Ende wird die
Implementation der Saatpunkte und die automatische Btatrj von Versuchsobjekten besprochen.

5.3.1 Objektgenerierung

Implementiert wurden parametrische Geometriegenematiineschlauchférmige Objekte und fur Ku-
geln. Andere Geometrien kdnnen durch das Ableiten einéerem Geometrie-Kindklasse in das Pro-
gramm integriert werden. Im Hinblick auf den Integratidgsgsithmus sollte darauf geachtet werden,
dass die Anzahl der von den Vertices ausgehenden Kanterhailbesines Objektes moglichst kon-
stant ist. Aufgrund der GPU-Architektur kann ein einzelkertex mit groRerer Nachbarzahl zu einer
Engstelle werden und die Performance driicken.

Schlauche

Schlauche koénnen sich durch ihre langliche Form an dign8ing anpassen. Durénderungen in der
Lange werden Divergenzen im Stromungsfeld aufgezeid, durch lokale Deformationen im Durch-
messer werden raumlich begrenzte Feldeigenschaftetbaickin Schlauch (Abb. 5.4) ist aus mindes-
tens einem Segment aufgebaut und besteht an den Segndentramindesten aus drei Vertices, die auf
einem Kreis liegen. Die Anzahl der Segmente und Vertices umr€chnitt sowie der Schlauchdurch-
messer und seine Lange kdnnen als Parameter angegelamw®ei Schlauchen mit mehr als drei Ver-
tices im Querschnitt kann das Problem der Geometrie-Zusafattung auftreten. Ist dies unerwiinscht,
missen zusatzliche Stitzvertices im Inneren des Gigedingefiihrt werden. Das Deformationsverhal-
ten im Querschnitt und langs des Schlauchs kann voneinam@dhangig Uber die Wahl verschiedener
Federsteifigkeiten der Querschnittskanten und Langskagingestellt werden.
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ST N Langskanten Querschnittskanten
v Segment

l i i Segmentgrenze im
! Querschnitt

Abbildung 5.4: Geometrischer Aufbau der Schlauchobjekte

Kugeln

Die isotrope Kugelgeometrie eignet sich gut fur die Visiatung des Stromungsfeldes. Lokale Eigen-
schaften des Feldes werden durch Verformung der Oberfl3uiieech dargestellt. Gleichzeitig laft sich
die Starke des Feldes an der Geschwindigkeit der Kugekneadn.

Die Kugelgeometrie wird mit Hilfe eines Subdivisionsaligiemus generiert. Gestartet wird mit einem
Oktaeder, dessen sechs Vertices auf der Einheitskugehlidgin Subdivisionsschritt flgt in der Mit-
te der Kanten des aktuellen Netzes neue Vertices ein, die dber neue Kanten verbunden werden
(Abb. 5.5). Die Vertices werden anschliessend auf den EsHtreis projiziert. Die Zahl der Dreiecke
nimmt dabei mit jedem Unterteilungsschritt um den Fakt@r vdu. Nach wenigen Schritten ist eine
ausreichende Approximation der Kugelform erreicht. Obivelda wenigen Vertices des urspringlichen
Oktaeders einen Grad von vier haben und die neu eingefiggten Grad von sechs, sind die Dreiecke
ausreichend gleichformig verteilt. Wirde man eine lleaka als Startobjekt wahlen, dann waren alle
Dreiecke gleich grof3.

Abbildung 5.5: Tesselierung einer Kugel mittels SubdiisiA(A,B,C) wird ersetzt durchA(A, a,c),
A(a,C,b), A(a,b,c) undA(c,b,B)
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Aufgrund des Selbstdurchschneidungsproblems ist es &b Binterteilung von mehr als 2 Schritten
sinnvoll in der Mitte des Netzes einen zusatzlichen Vediezufiigen, der Uber Kanten mit den auf3eren
Vertices verbunden ist. Ein zu grofRer Kantengrad bedihtigt aber die Performance der Vertexintegra-
tion. Deshalb kann es von Vorteil sein, den Mittelpunkt nutremer Teilmenge der Oberflachenvertices
zu verbinden. Ein alternativer Ansatz schachtelt mehrergefhaherungen mit zunehmender Untertei-
lungsstufe ineinander, wobei der Kugeldurchmesser mit Gead der Unterteilung zunimmt. Danach
werden nahe beieinander liegende Vertices benachbahete®cmiteinander verbunden.

5.3.2 Texturlayout

Die elementaren Grundobjekte und deren Topologie werdaninwGPU-Kapitel besprochen, in drei
verschiedenen Texturobjekten gespeichert. In den Vargexdren sind die Vertexpositionen jedes ein-
zelne Objektduplikates in einem eigenen Rechteck abgesgei Die Breite der Textur in x-Richtung
entspricht dabei der Anzahl der Vertices pro Objekt und stk die maximale Texturbreite von 4096
Pixeln beschrankt. GroRere Objekte werden auf mehreilerZaufgeteilt. Da die Texturhthe ebenso
eingeschrankt ist, kbnnen maximal 4096 Kopien des Grhojettts generiert werden. Fir jede Objekt-
kopie und all seine Vertices miissen Nachbarschaftsirgtomen gespeichert werden. Die Struktur der
Nachbarschafts-Textur entspricht der der Vertex-Textuder FB-Textur werden die Nachbarblocke
zeilenweise eingetragen, wobei die maximale Breite vor642eln ausgenutzt wird. Da nur die RGB-
Komponenten der Vertex-Texturen verwendet werden, kadeimnAlpha-Komponenten ein zusatzliches
Teilchenattribut gespeichert werden.

5.3.3 Interaktion mit den Proben

Die Geometrieadvektionsmethode visualisiert die Fekelesghaften nur an den Stellen im Raum, an
denen sich ein Objekt befindet. Es ist deshalb wichtig, das8dnutzer die Positionen der virtuellen
Versuchsobjekte manipulieren kann. Dank der Echtzeitsitiom auf der GPU sind dabei die Auswir-
kungen, die das Verschieben und Manipulieren hat, sofontisar. Problematisch dabei ist allerdings,
dass der GPU-Ansatz den Simulationzustand komplett au@ ddikkarte speichert und ein Zuriicklesen
der Daten in den Hauptspeicher aus Performancegriindgficmét vermieden werden soll. Diese Ein-
schrankung erschwert Modifikationen an der Objektgedmetie vom Benutzer ausgehen und erfordert
deshalb spezielle GPU-basierte Methoden fur das Selektider Geometrieobjekte, die Speicherung
der Selektion und fur die restlichen Modifikationsoperaén.

Das Programm realisiert das Selektieren der Geometrie itfét ¥bn OpenGL Occlusion Querieblier-

bei wird bei einem auf den Mauscursor oder den selektieriemreiBh eingeschrankten Viewport jedes
Objekt einzeln ohne Bildschirmausgabe gerendert und daslf@eder Occlusion-Query abgefragt. Da
die Anzahl der gerenderten Fragmente zuriickgegeben kérah ein Ergebnis groRer Null als Treffer
fur das entsprechende Objekt gewertet werden. Die CPUtrsatk die gefundenen Objekte, indem
sie die jeweilige Identifikationsnummer in einer Liste gpeirt. Wirde man die Selektionsinformatio-
nen jedoch nur auf der CPU bzw. im Hauptspeicher verwaltenn dvaren separate und zeitaufwandige
Render-, Interaktions- und Simulationsaufrufe fir jeei@zelne Objekt erforderlich, sobald eine auf die
selektierten Objekte beschrankte Operation durchgefiiind. Die volle Leistung der GPU kann aber
erst genutzt werden, wenn ein einziger OpenGL-Aufruf figr dodifikation aller selektierten Objekte
ausreicht.
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Hierzu wird die Tiefentest-Funktionalitat der GPU ausgizh Gespeichert wird die Selektion auf der
GPU in Tiefentexturen, die im Folgenden als Vertexmaskereiobnet werden, und in der Grof3e und
dem Aufbau genau den Vertex-Texturen entsprechen. DiedBfea ist, jedem selektierten Objektvertex
einen speziellen Tiefenwert zuzuweisen, der sich von demd¥e nichtselektierten Vertices unterschei-
det. Da die Objekte in rechteckigen Blocken gespeiched isit es moglich, die Tiefenwerte kompletter
Objekte mit einem einzigen Aufruf zu setzen. Bei folgendesreBhnungen und Operationen auf den
Vertex-Texturen muss dann nur noch der Tiefentest aktivied entsprechend initialisiert werden, um
die Auswirkungen der Operation auf die selektierten odehntselektierten Objekte einzuschranken:

1. Es wird festgelegt, welche Vertices von der Operatiomaffeh sind. Entweder sind dies alle
Objektevertices, nur die maskierten Vertices oder nur dietmaskierten Vertices (Zeilen 2-14).

2. Eine Vertexmaske wird geladen, indem die entsprecheiederifextur an ein Framebuffer-Objekt
gebunden wird (Zeilen 16-21).

3. Am Ende kann eine beliebige Operation auf den Vertexurexrtdurchgefuihrt werden. Der Tie-
fentest stellt dabei sicher, dass in der AusgabetexturiBugeviinschten Vertexpositionen aktua-
lisiert werden.

Listing 5.1: Operationen auf maskierten Vertex-Texturen

I/l 1. aktiviere und initialisiere den Tiefentest
switch (opmode)

{
case OPALL: // alle Objekte
glDisable (GLDEPTHTEST);
break;
case ORMASKED: I/l maskierte Objektvertices

glEnable (GLDEPTHTEST);
glDepthFunc (GLGEQUAL);
case ORJNMASKED: I/l unmaskierte Objektvertices
glEnable (GLDEPTHTEST);
glDepthFunc (GLLESS);

}

/I 2. aktiviere FBO und binde die gewiunschte Maske daran
glBindFramebufferEXT (GLFRAMEBUFFEREXT, _fbo_id);

glFramebufferTexture2DEXT (GERAMEBUFFEREXT,
GL_DEPTHATTACHMENT _EXT,
GL_TEXTURE2D, maske, 0);

/I 3. aktiviere das Shaderprogramm,
/!l binde Vertex-Texturen fur die Eingabe und die Ausgabe
/!l und zeichne das Rechteck, dass die Operation anstof3t.

Neben einer Tiefenmaske fir die aktuelle Selekt®eléktions-MasRererwaltet das Programm zusatzlich
eine Maske fur fixierte Verticed/ertex-Fix-Maskeund mehrere Masken fiir den Saatpunktmodus.
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Beispiel: Translationsoperation

Die selektierten Geometrieproben kdnnen vom Benutzeraktiv im Raum verschoben werden. Ein

simples Fragmentprogramm addiert auf die Positionen dsekierden Vertices (Selektions-Maske) einen
Translationsoffset, der sich aus der Mausbewegung bezeddie neuen Positionen missen sowohl in
der aktuellen als auch in der Vertex-Textur des letztensghiitts gespeichert werden. Wird nur die ak-
tuelle Textur aktualisiert, dann treten Artefakte auf, @aalten Positionen beim nachsten Integrations-
schritt verwendet werden. Alternativ konnen mit der \Vierfiéx-Maske die fixierten Vertices verschoben

werden.

5.3.4 Saatpunkte

Particle-Trace-Methoden gehoren zu den elementareraMent der Stromungsvisualisierung. Dabei
werden Teilchen im Feld freigelassen und die durchlauf@majektorien grafisch dargestellt. Die physi-
kalische Kopplung der Geometrieobjekte an das Feld bietefir die Implementation dieses Konzepts
geradezu an. Hierzu wird eine Vielzahl von Objekten gleictigps an einem oder mehreren vorgege-
benen Saatpunkten in zeitlich konstanten Abstandenediasgen. Je kirzer diese Abstande sind, umso
starker bilden sich Linenstrukturen im Feld heraus, daQlgekte eines Saatpunkts bei stationaren
Stromung immer wieder die gleichen Wege durchlaufen. Deendltung der einzelnen Objekte auf
der GPU ist allerdings nicht trivial, weil die verwendeteefikexturdatenstruktur eine Generierung von
neuen Objekte praktisch unmdoglich macht. Deshalb werdgekie, die das Randgebiet der Simulati-
on erreichen wiederverwendet, indem sie an die Positi@siBaatpunktes zuriickgesetzt werden. Die
Identifikation und Behandlung solcher Objekte wird im AbsithRandbehandlung besprochen.

Zu Beginn gibt es nur einen Saatpunkt. Der Benutzer kann iabenaktiv weitere Punkte erzeugen.
Werden k Saatpunkte benotigt, so wird die Menge der GedsobijekteO = (01,0z,...,0,) in K dis-
junkte Saatmengef gleicher Machtigkeit partitionier{i = 1...k). Wegen der zyklisch arbeitenden
Routine zur Randbehandlung sollten die rechteckigen @lige&iche der Vertex-Texturen moglichst
gleichmaRig auf die Saatpunkte aufgeteilt sein (siehe Alf).

Ein Objekto; kann sich in zwei Zustanden befinden:

1. frei - das Objekb; wurde freigelassen und bewegt sich durch das Stromurlgsfel

2. wartend- das Objekip; wartet auf den Zeitpunkt des Freilassens

Die wartenden Objekte werden in k Wartelistéhvon der CPU verwaltet. Sobald ein Objekt von der
Randbehandlungsroutine zuriickgesetzt wird, wird inréfabelle seine Saatmenge nachgeschlagen und
die Objektnummer an das Ende der zugehdorigen Warteligiehéimgt. Aulierdem werden die wartenden
Objekte in der Vertex-Fix-Maske markiert, um dadurch zihirdtern, dass sich ihre Positionen bei den
folgenden Simulationsschritten andern. Zusatzlicheu\Wartelisten im Hauptspeicher gibt es fiir jeden
Saatpunkt eine Tiefenmask® im Grafikspeicher. Die MaskeD; markieren die zu den Saatpunkten
gehorigen Objekte und werden beim Verschieben einzelaatpBnkte benotigt.

Das Freilassen der Objekte wird in der Hauptschleife degrBnoms angestofRen. Unabhangig von-
einander ist fir jeden Saatpunkt die Periodenddieon gerenderten Bilder festgelegt, nach der ein
Objekt am Saatpunkt freigelassen wird. Beim Freilassessaril die Wartelisten und die Vertex-Fix-
Maske aktualisiert werden. Sind gentigend Objekte in dertdligten vorhanden, ist ein gleichformiger
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Abbildung 5.6: Beispiel fir eine Anordnung mit drei Saatkten und insgesamt acht Objekten. Die
GleichmaRige Aufteilung der Objekte auf die Saatpunktarsien Objektindices und den Markierungen
in den Tiefenmasken erkennbar.

Objektstrom garantiert. Da der Fullgrad der Listen diraktdie Verweildauer im Feld gekoppelt ist

kann er abhangig von der Position des Saatpunktes staikrear Ist die Menge der wartenden Ob-

jekte eines Saatpunkts erschopft, dann wird automatisitte Saatperiode erhoht, bis sich wieder ein
Gleichgewicht eingestellt hat.

5.3.5 Automatische Platzierung der Versuchsobjekte

In der Regel sind die interessanten Gebiete innerhalb Simémungsfeldes nicht im Voraus bekannt. Im
Gegensatz zu dichten Visualisierungsverfahren, wird merHitie der Geometrieadvektion erst nach
einigem Experimentieren einen Eindruck vom Feld gewinigne automatische Platzierung der Ver-
suchsobjekte kann diesen Vorgang beschleunigen. Angedacte eine Positionierung an zufallsge-
nerierten Orten, die durch eine dreidimensionale Wahistibiekeitsverteilungen festgelegt sind. Dies
ermoglicht die gleichmaRige Verteilung der Proben imegeten Feld oder in raumlich eingeschrankten
Unterbereichen des Stromungsvolumens. In der Progransione die dieser Arbeit zugrunde liegt, ist
diese Methode nicht implementiert.

5.4 Simulation

5.4.1 |Integration

Der Simulationszustand ist in drei Vertex-Texturen gespait. Zwei davon enthalten die Vertexpositio-

nen der letzten beiden Zeitschritte und in die dritte Textarden die Positionen des neuen Zeitschritts
geschrieben. Die Funktion der drei Texturobjekte als Bwegaind Ausgabetextur wechselt dabei zy-
klisch mit jedem Integrationsschritt. Der Ablauf und diesAmmmenhange sind in Abbildung 5.7 darge-
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stellt. Ein einziger Renderpass behandelt die kompletiuTeind damit alle Objekte. Die Positionen
der fixierten Vertices, die in der Vertex-Fix-Maske markisind, werden in der Ausgabetextur nicht
aktualisiert. Im Integrationsshader wird zusatzlich Zeilchenintegration die Farbcodierung fur die
Vertices in der ungenutzten w-Komponente aktualisiert.

Vertex-Fix-Maske

N

Positionen t+dt

” Integration
Positionen t-dt >
Shader

O |B|J |E |K (T N

Nachbarschafts-Textur
M &
FB-Textur

H |:| Pixel bleibt unverandert

1 . Pixel maskiert
O|B|J|E|K]|T 1

Positionen t

Abbildung 5.7: Bei der Integration der Teilchenpositiorstallt die Vertex-Fix-Maske sicher, dass die
fixierten Vertices nicht aktualisiert werden.

5.4.2 Simulationsparameter

Stromungsfelder kdnnen sehr unterschiedliche Eigexfsah besitzen, was eine angepasste Wahl der
Simulationsparameter erfordert. Eine ungunstige Wahitfschnell zu unbrauchbaren Resultaten bei
der numerischen Integration und der daraus folgenden Nsgeraing. Allein schon die grofl3e Zahl der
frei wahlbaren Parameter macht die Auswahl und Abstimnaringiner schwierigen Aufgabe:

o GroRRe des Zeitschritit

Dauer des Interpolationsschritd zwischen zwei Vektorfeldsampldg und Vi at

Faktor fioc fur die Starke des Stromungsfeldes

Faktord, fur die geschwindigkeitsabhangige Dampfung

Faktorsi,c fir die Federkonstanten
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Wird der Zeitschritt At zu grof3 gewahlt, dann treten numerische Instabilitatdroder es werden bei
der Integration der Teilchenpositionen interessante iBleeedes Feldes Ubersprungen. Bei der Visuali-
sierung instationarer Felder kommt erschwerend hinzss dasatzlich zur inharenten Zeiteigenschatft
des Vektorfeldes, eine weitere Zeitkomponente durchAdiderung des Feldes hinzukommt. Die Ab-
stimmung der beiden Paramtéit (AT) aufeinander kann problematisch sein.

Die Dampfungverhindert das Aufschwingen und unerwiinschte Beschlennder Geometrievertices.
Da die Objekte auch durch die Reibung des Feldes abgebreendemw (Stokes’sche Kopplung), sollte
ein zu groRRer Wert vermieden werden, weil sonst jegliche é&gmg schon im Anfangsstadium unter-
bunden wird. Wird der Faktor fir dieederkonstanteu grof3 gewabhlt, so kann dies negative Auswir-
kungen auf die Stabiltitat des Algorithmus haben, wohgiggeein zu kleiner Wert die Zerstorung der
geometrischen Form der Probe durch die Stromung begfinsti

Feldanalyse

Um eine erste Naherung fur die Simulationsparameter karbmen, werden die Sampl&§ der Vek-
torfeldzeitschritte nach dem Programmestart statistis@lyaiert und dabei charakteristische Werte W
wie die Divergenz und die Starke des Feldes extrahiert.eNetem Minimum, dem Maximum und
dem Durchschnitt wird jeweils auch die Standardabweichexgiimmt. Die gewonnenen Daten werden
automatisch in einer Textdatei gespeichert, weshalb msiutem Laden des selben Feldes der zeit-
aufwandige Analyseschritt entfallt. Aus den Teilwerter StatistikiW werden die Startparameter be-
rechnet.

W = (Whnin, Winax, W, dW) (5.1)
Whin = vme{/rsl f(v) (5.2)
Whax = rvr1€<\';/1$><f (V) (5.3)
W= (v;s F(V)/ Vsl (5.4)
W = (V;S(f(v) ~W)?)/ |V (5.5)

Der mittlere Wert deiektornorm Nentspricht der mittleren Starke des Fel@@6= N, f = norm(v)).
Zusammen mit dem Zeitschrifit ergibt sich die Beziehung 5.5, die daflir sorgt, dass im Bachnitt
keine Feldsamples Ubersprungen werden. Um dies im ges@ir@mungsgebiet sicherzustellen, kann
auch der maximale WeNax Statt des Durchschnitts verwendet werden.

In die Divergenz-StatistilV geht der Betrag der Divergenz am @rtler Feldsamples ein:

f(v) = 0V (2(V)| = [Vxk+ Wy + Vi, (5.7)

An Stellen groRRer inergenz besteht bei zu kleinem Fedtnfad,. oder Dampfungsfaktods,: die
Gefahr einer starkedberdehnung der Versuchsobjekte (angedeutet in Abb. BiShin zum totalen
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Verlust der urspriinglichen Form. Diese Faktoren solleshalb mit steigendeim auch groRer gewahlt
werden. Im Folgenden sind beispielhaft die implementreermeln fir die automatische Wahl in
Abhangigkeit der Divergenz- und der Normstatistik andpege Zusatzlich wird darauf geachtet, dafl
Gleichung 5.5 eingehalten wird.

Stac = (0.1 (Omax— Omin) +0.9% 0) % 70.0 (5.8)
At = 0.01/(0.2 % Nax+ 0.8+ 0) (5.9)

Die Formeln wurden empirisch durch Versuche mit verschiede~eldern gewonnen. Eine besondere
Bedeutung kommt ihnen nicht zu. Fir die meisten Versudthsfdiefern sie einigermaf3en brauchbare
Resultate. Allerdings sind stark inhomogene Felder waittekritisch, was eine sorgfaltige Parameter-
abstimmung durch den Benutzer notwendig macht.

Abbildung 5.8: Extreme Expansion eines Versuchsobjek&rniam divergenten Stromungsgebiet

5.5 Randbehandlung

Ausserhalb des eigentlichen Simulationsgebietes wirdMg&sorfeld kinstlich auf Null gesetzt. Ver-
suchobjekte, die an den Rande des Gebietes gelangen, waodgnin der Regel dort als unschone
Artefakte verweilen (Abb. 5.9). Da die GPU darauf ausgeisgtgrol3e Menge von Daten auf einmal
zu verarbeiten und die Geometriepositionen gesammelhir diextur vorliegen entsteht ein Problem,
sobald Entscheidungen auf Grund der Positionen einzelbgk@ getroffen werden sollen. Die Rand-
behandlung kann daher nicht mit der Integration kombinientden. Dort werden Massepunkte einzeln,
aber keine Objekte als Ganzes betrachtet. Ein eigeng&mdligorithmus, der zu einem grofRen Teil auf
der GPU implementiert ist und kein Ricklesen der Positioeordert, identifiziert Randobjekte und
leitet entsprechende Malinamen ein.

Soll ein Objekt darauf getest werden, ob es sich am Rand efiddnn wird auf seinen Vertexpositio-
nen (Abb. 5.9, links) ein Fragmentprogramm ausgefuhresBs verwirft die einzelnen Fragmente, falls
die zugeordnete Teilchenposition aulerhalb des Strosyatietes liegerUber eine Occlusion-Query
laf3t sich daraufhin die Anzahl der gerenderten Fragmésftagen. Wird ein vorgegebener Schwellen-
wert unterschritten, dann setzt das Programm das ObjekieaRasitionen zuriick, die in einer Reset-
Textur gespeichert sind. Diese Textur wird bei Programnmremit den Startpositionen der Geometrie
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initialisiert, kann aber auch vom Benutzer manipuliert degr. Da das Testen aller Objekte relativ zeit-
aufwandig ist, wird pro gerendertem Bild nur eine bespkt& Anzahl k von Objekten getestet. Die
Liste der Objekte wird dabei zyklisch durchlaufen. Je nacdthMdes Parameters k kann es deshalb
mehrere Durchlaufe der Hauptschleife dauern, bis ein Raje#t identifiziert und zuriickgesetzt ist.

(s2,t2)

(s1,t1)

Abbildung 5.9: Der Bereich eines einzelnen Objekts in deteveTextur (links), Artefakte (rechts)

Eine Behandlung innerhalb des Feldes, an Stellen groRardeEnz, wurde nicht implementiert. Das

Funktionsprinzip eines solchen Algorithmus ist aber dasseie bei der Randbehandlung. Allerdings

reduziert eine Berechnung der Divergenz wahrend der @itiounl die Performance zu stark, weshalb
sich ein Vorverarbeitungsschritt anbietet, der die beretdn Werte in der w-Komponente der Vektorfeld-
Textur speichern konnte.

5.6 Rendering

Die grafische Darstellung der sich bewegenden VersucHgdeligt die Schnittstelle zwischen den Simu-
lationsdaten und dem Benutzer, der diese interpretieressnlem Rendern kommt deshalb eine wich-
tige Bedeutung zu. Bei einem moglichst hohen Informatiehalt soll die Darstellung tbersichtlich
und interpretierbar bleiben. Das Programm rendert die &brdnd Rickseiten der Objektoberflachen,
die sich aus Dreiecksnetzen zusammensetzen. Dreieck8fidevertices enthalten, werden aber nicht
dargestellt. Es sind drei Rendermodi implementiert. Nedieam einfachenflat-Shading gibt es eine
Wireframe-Darstellungind eine auf den Vertexnormalen basiereBeéeuchtungsberechnung

Die Liste der Oberflachendreiecke aller Objekte istadex-Arrayin einem statischeXertex Buffer Ob-
jectabgelegt. Pro Dreieck werden drei Indices angegeben. Dieda verweisen in eixertex-Array in
welchem statt der Vertexposition die Texturkoordinatew)(abgespeichert sind. Die wirkliche Vertex-
position erhalt das Rendering-Vertexprogramm durchreirexturlookup in der aktuellen Vertex-Textur.
Da sich die beiden Arrays wahrend des Programmlaufs niet&ndern, konnen sie beim Programm-
start durch einen einmalige Kopieroperation auf der Grafitkgespeichert werden. Das Rendern aller
Objekte kann deshalb durch einen einzigen effizienten Opel@ruf angesto3en werden.

Die Vertex-Farbe berechnet sich aus der w-Komponente dgwgyeachlagenen Texels:
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e W =-2 Vertex ist selektiert (blau)
e W = -1 Vertex ist fixiert (weiss)

e W >= 0 Farbkodierung eines physikalischen Parameters am Okefigex

Liegt die Kodierung eines physikalischen Parameters \ammndwird, basierend auf seinem Wert zwi-
schen roter und griiner Farbe linear interpoliert. Rotdides kdnnen so zum Beispiel starke Krafte
oder hohe Geschwindigkeiten visualisieren. Wenn sich@ioBe Anzahl von Objekten im Versuchsge-
biet befinden, dann kommt es unumgehbar zu gegenseitigelelemgen untiberschneidungen. Eine
transparente Darstellung, basierend Alpha Blending kann in diesem Fall fir metwbersichtlichkeit
sorgen.Ublicherweise mussen die transparenten Objekte vor demdé®e in aufsteigender Entfernung
zum Betrachter sortiert werden. Fir die groBe Menge deekdbjist dies allerdings nicht praktika-
bel. Aufgrund der variierenden Form der Probegeometrieatein sogar alle Dreiecke sortiert werden.
Implementiert wurde deshalb eine APseudotransparenzei der die einzelnen Objektfragmente un-
abhangig von der Reihenfolge additiv geblendet werdem.dPeidimensionale Eindruck leidet dabei
allerdings etwas.

Bei der Wireframe-Darstellung werden nur die Kanten deridiee dargestellt. Verwendet wird hierfur
der eingebaute OpenGL-Mechanismus. Im Flatshading-Mailgeben sich die Farben der inneren
Dreiecksfragmente aus der linearen Interpolation derewerarben des Dreiecks. Erst eine zusatzliche
Beleuchtungsberechnung, die die Normalen der Objektabeef verwendet, ermoglicht einen wirkli-
chen 3D-Effekt. Die Normale eines Vertex entspricht demdfitert der Normalen aller angrenzenden
Dreiecke. Aufgrund der Formveranderung der Geometrissmii die Normalen fur jeden Zeitschritt
neu bestimmt werden. Es bietet sich an, die Berechnungentagrationsshader durchzufuhren. Dort
werden die bengtigten Positionen der benachbarten ¥erichon fur die Integration nachgeschlagen.
Wahlt man die Reihenfolge der Nachbarvertices in der Furekorrekt, dann kann die Berechnung
der Normalen (siehe Abb. 5.10) in der selben Schleife dwfiligt werden, in der auch die Federkrafte
aufsummiert werden. Dadurch spart man sich erneute Terkups fur die Vertexpositionen. Die Posi-
tionsintegration findet erst nach der Schleife statt, desliarden die Normalen des letzten Zeitschritts
berechnet. Aufgrund der hohen Bildraten und der winzigesitlosanderungen kann dieser Effekt
aber vernachlassigt werden. Problematischer ist diea@hés dass fur die Normalenberechnung an den
Schlauchenden und bei Objekten mit inneren Vertices gestmdusnahmebehandlungen notig sind.
Die endgiiltige Fragmentfarbe wird im FragmentprogramsiRlenderers berechnet:

frags ,rpe = blendac * farbe+- (1 — blendyc) + farbex (INy - (0,0,1) ) (5.10)
~——
Lichtvektor

Die Normalen werden dazu vorher in das KoordinatensystesyBeérachters transformiettlber einen
Blendfaktor kann der Benutzer fliessend zwischen einfachitshading und dem beschriebenen Be-
leuchtungsmodell wahlen.

5.7 Vektorfeld-Streaming

Instationare VektorfeldeV (x,t) sind als eine Reihe von N Vektorfelddatensatdérgespeichert, die
das veranderliche Feld bei einer konstanten Abtastrgieogjmieren. Bei den Geometrieadvektions-
Berechnungen auf der GPU werden zwei aufeinanderfolgeritechritte des Feldes benttigt, da die
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NGZ(’I’L()—U) ><(n5—’v)

N, = (N1+...+N6)/6

Abbildung 5.10: Normalenberechnung im Integrations-Rragtprogramm. Die Reihenfolge ist durch
die for-Schleife festgelegt.

Feldsamples linear Uiber die Zeit interpoliert werden. bbAdung 5.11 ist die Integrationsschrittweite
At und die Interpolationsdau&T zu erkennen, nach der spatestens ein neuer Vektorfeidsairtie-
gen muss, damit die Berechnung nicht ins Stocken gerati®aldichen Texturupload-Methoden von
OpenGL den Aufrufer blockieren, muss der Datensatz in kleiBlocken in die Textur geladen werden.
Wirde man die komplette Textur in einem Schritt aktualesie dann wirde das komplette System kurz
stocken. Dies ist bei einer interaktiven Visualisierung moglichst konstanter Bildrate unerwinscht.
Weil das Nachladen der Daten von der Festplatte in den Haeiptger auch synchron ablauft, wurde ein
zweigeteiltes Producer-Consumer-System entworfen eSibesteht aus deBtreameyder direkt in der
Hauptschleife des Programms aufgerufen wird und dader, der davon unabhangig in einem sepera-
ten Thread verwaltet wird. Die beiden Komponenten teileh sine festgelegt Anzahl von Feldpuffern,
die sie beide zyklisch verwenden. Fir die ndtige Syndsaiion sorgt dabei ein Zahlsemaphore. Als
Thread-API wurde die plattformunabhangige pThreadiBibek ausgewahlt [22]. Im Folgenden wird
die Funktionsweise des Streamers und des Laders anhandrzil@aufdiagramme erlautert, die in
Abbildung 5.12 zu sehen sind.

Lader

Der Lader kopiert die Felddaten von der Festplatte in dehstan freien Feldpuffer im Arbeitsspeicher
und fuhrt dabei eine Konvertierung in das fpl16-Format dutst eine ZeitschritV; vollstandig geladen
und das Semaphore blockiert nicht, so wird sofort mit demebades nachsten Zeitschritt, ; begon-
nen. Sollte das zeitliche Ende des Datensatzes erreicbhewedann wird wieder beim ersten Zeitschritt
V1 angefangen.
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Vektorfelddatensatz / G P U\

Teilchen-
integration
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Abbildung 5.11: Zusammenhange beim Streaming der VeXtinthten instationarer Stromungsfelder.
Zu erkennen sind auch die zeitlichen Zusammenhange b&idedation.

Streamer

Auf der GPU stehen drei 3D-Texturen im fpl6-Format zur Mgtifig, von denen zu jeder Zeit eine
vom Streamer mit den Daten des neuen Zeitschritts befirtit Wlit jedem Durchlauf der Hauptschleife

kann genau eine Zustandsanderung des Streamers heofergeterden. Dabei wird jeweils die Aktion

ausgefuhrt, die in den abgerundeten Kastchen 5.12 abgedst:

Der Streamer befindet sich zunachst im Zustand 'gestoppr’. Textur-Upload kann gestartet werden,
sobald ein neuer Zeitschritt im Hauptspeicher vorliegt eindreies Texturobjekt auf der Grafikkarte zur
Verfugung steht. Die Grof3e der Datenbldcke, die pro Aifiochgeladen werden, ist abhangig von der
aktuellen Bildrate, der Gro3e des Datensatzes einehHsttes und betragt immer ein Vielfaches der x-
Aufldsung des Feldes. Durch die geschickte Wahl einer geg GroRRe (1) versucht der Streamer, den
Upload moglichst gleichmalR3ig tiber die Interpolaticmser AT der zwei letzten Vektorfeldzeitschritte
aufzuteilen. Dies sorgt fur eine moglichst konstantelBite und garantiert eine flussige Animation.

Befindet sich das System im Zustand 'gestartet’, dann wiedQuirchlauf der Hauptschleife ein Da-
tenblock auf die Grafikkarte geladen (2). Dies wird duf@penGL Pixel Buffer Objekteesalisiert,
die das Kopieren einzelner Texturblocke in einen vom Gkafitentreiber verwalteten Speicherbereich
ermoglichen. Der C-Code eines solchen Kopiervorgangmigisting 5.2 in den Zeilen 3-5 angegeben.
Da die Texturdaten durch normale Speicheroperationen ringgbundenen Speicherbereich geschrie-
ben werden, mussen die Vektorfelddaten im fpl16-FormaBBefexturen vorliegen. Durch den Aufruf
von glTexSublmage3bn Zeile 8 werden die Daten im Grafikkartenspeicher aktieatisSobald ein
Zeitschritt vollstandig hochgeladen wurde, geht derétrer wieder in den Zustand 'gestoppt’ tber (3).

Ursprunglich wurde der Aufruf der Zeilen 7 und 8 statt fadén Datenblock, einmal am Ende eines
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Produzent: Lader
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Abbildung 5.12: Ablaufgraph des Streamers und des Laders

Zeitschritts fur den vollstandigen Datensatz aufgaerufeBOs versprechen bei einem glTexSublmage-
Aufruf Zeitvorteile gegeniiber einem direkten Texturwgaaler Daten ohne gebundenen Grafikspeicher.
Trotzdem dauerte die Ausfuhrdauer exakt gleich lange.dailgei auftretende Latenz hat sich jeweils
am Ende eines Zeitabschrittes durch Stocken bemerkbaropenizeshalb wurde der Aufruf auf die
einzelnen Datenblocke verteilt. Leider funktioniert @seaming auch so nicht perfekt. Ist es aktiviert,
dann stockt das System in langeren, aber nicht vorhersamglzeitabstanden. Zeitmessungen haben
ergeben, dass der Simulationsteil wahrend der problsotegth Bilder bis zu einhundert mal langer
braucht. Moglicherweise stehen die Texturdaten trotzAl#fsufs von glTexSublmage3D nicht sofort

auf der Grafikkarte zur Verfiigung.

Listing 5.2: Upload eines Datenblocks im Streamer

glBindBuffer (GLPIXEL.UNPACK_BUFFEREXT,

_vf_pbo[_streamerbuffer]);

glMapBuffer(GLPIXEL.UNPACK_BUFFEREXT, GLWRITE.ONLY),

memcpy(kopiere einen Datenblock);
glUnmapBuffer (GLPIXEL_.UNPACK_BUFFEREXT) ,

glBindTexture (GLTEXTURE3D, _vf_textures[streamertbuffer]);
glTexSublmage3D (GITEXTURE.3D, Auswahl des kopierten Texelbereichs,
GL.RGB, GLHALF FLOATARB, Offset in der 3D Textur);

glBindBuffer (GLPIXEL.UNPACK_BUFFEREXT,
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6 Auswertung

6.1 Einleitung

In diesem Kapitel werden die Ergebnisse der GeometriedidvskMethode besprochen. Im Abschnitt
Performancemessung wird die Geschwindigkeit des Progeammtersucht, worauf eine Analyse der
Visualisierungsresultate anhand mehrerer Beispieldgtrfo

6.2 Performancemessung

Die Messungen der Performance wurden auf einem PC dundmgedfier mit 1024 MB Arbeitsspeicher,
einem Intel Core 2 Duo E6300 Prozessor und einer Nvidia @ef@é®00 GS mit 256 MB Grafikspei-
cher ausgestattet ist. Beide Kerne dieser CPU sind mit 1867 détaktet. Der verwendete Grafikchip
verfugt ber 20 Renderingpipelines, die sich die 20 Fragiginheiten und 7 Vertexeinheiten teilen.
Seine Leistung entspricht etwa der einer Geforce 7900 GiTd&s Messungen wurde ein stationares
Vektorfeld mit einer Auflosung von 128128x 128 Samples verwendet und die Streamingkomponente
ausgeschaltet. Es wurden vier Versuchskonfigurationen, &, Bhd D mit einer variierenden Zahl von
Kugelobjekten und Subdivision-Schritten ausgewahlt.

Konfiguration A B C D
Anzahl der Kugeln 128 | 1024| 2048 1024
Subdivision Schritte 1 1 1 4
Vertices pro Objekt 18 18 18 258
Vertices Gesamt 2304 | 18432 | 36864 | 264192
Anzahl der Federn 6144 | 49152 | 98304 | 786432

Tabelle 6.1: Es wurden vier Versuchskonfigurationen untdrs Jede Federverbindung zwischen den
Vertices wurde nur einmal gezahlt. Die FB-Textur entlki@dtdoppelte Zahl an Eintragen.

Fur Konfiguration D bendtigen die Vertex-Texturen, diecRlar-Textur und die Reset-Textur zusam-
men 20 MB Grafikspeicher. Dazu kommen 24 MB Speicherbedarf-BeTextur und 16 MB fur die
Vektorfelddaten. Zusatzlich missen noch die Vertexapsrund die Tiefentexturen gespeichert werden.
Dies bedeutet, dass das Programm in dem betrachtetenWwalb8tMB Grafikspeicher verwendet. Bei
der Visualisierung instationarer Stromungen muss keagberden, dass zwei zusatzliche 3D-Texturen
fur die Vektorfelddaten benotigt werden.

Fur die Zeitanalyse wurden die Objekte gleichmafig inbi@tmgsgebiet verteilt und die Randbehand-
lung der Objekte zunachst ausgeschaltet. Gemessen wiar@edamtzeit eines Durchlaufs der Haupt-
schleifetyes sowie die dabei bendtigte Zeit fur das Renderipggder und den Integrationsschritiy.
AuBerdem wurden fur jede Konfiguration drei zusatzliche@dngen bei aktivierter Randbehandlung
durchgefuihrt, wobei die Anzahl der dabei getesteten Qbjpio Simulationsschritt zwischen 1, 10 und
50 Objekten variierte. In der folgenden Tabelle sind dieeBriisse aufgelistet, wobei die Zeiten der
Randtestmessungéirangesiadditiv zur Gesamtzeit zu sehen sind.
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| Konfiguration \ A | B | C | D |
| tges | 0.38ms| 1.53ms| 2.85ms| 2426 ms)|
tint 0.23ms| 0.82ms| 1.50ms| 14.57 ms
trender 0.15ms| 0.71ms| 1.35ms| 9.69ms
Atrandtest1) +0.14 ms| +0.12ms| +0.14 ms| +0.25 ms
Atrandtest10) +0.17 ms| +0.15ms| +0.18 ms| +0.27 ms
Atrandtest50) +0.18 ms| +0.26ms| +0.30 ms| +0.40 ms

Tabelle 6.2: Resultate der Zeitmessung

Bei den kleineren Systemen werden bei eingeschaltetegratien mehrere hundert Bilder pro Sekunde
berechnet. Dies garantiert eine schnelle und flissige Atidm der Objektbewegungen. Auch im Fall
des groRten Systems berechnet und visualisiert das Pmograoch 40 Zeitschritte pro Sekunde. Al-
lerdings muss die Schrittweite der Integration mit zunehdee Vertexzahl erhoht werden, da sonst die
Positionsanderungen pro Zeitschritt zu klein sind und@igekte sich dementsprechend langsam bewe-
gen. Tragt man die benotigte Gesamtzgidund die fur den Randtest zusatzlich benotigte Agihndtest
Uber der Anzahl der Vertices auf, dann sieht man, dass detsr8yinear skaliert, wobei die Zeit fur die
Randbehandlung nur schwach von der Objektzahl abhangt.

100 T

10 |

Zeit tin ms pro Bild

AtRandtes(50>

0.1 L L
10000 100000

Anzahl der Vertices

le+006

Abbildung 6.1: Die Dauer eines Zeitschritts skaliert lingdt der Grof3e des simulierten Systems.

Abgesehen von gelegentlichem Stocken funktioniert aveVdiualisierung inhomogener Felder, wobei
die Bildrate gegenuber stationarer Felder etwas sinkérdings ist das Programm hierbei auf einen
Prozessor mit mehreren Kernen angewiesen, da sich sonstadataden der Vektorfeldzeitschritte im

Lader-Thread durch eine stark reduzierte Performance tidaremacht.
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6.3 Resultate der Visualisierung

Im Folgenden werden die Resultate der Visualierung voefjesDiese hangen stark von den initialen
Positionen, des Typs und der raumlichen GrolRe der Obgdkt®en Visualisierungen liegt das stationare
Stromungsfeld eines Tornados zugrunde, das in einefl&&nsatz gespeichert ist. Neben einem stark
divergenten Bereich mit einer hohen Geschwindigkeit inNi&ne des Wirbels, der in Richtung der z-
Achse (blau) ausgerichtet ist, ist das Feld am Rand velgaieise schwach und weniger divergent.
Dies stellt die Visualisierung der Objekte durch Deforroagin vor eine grof3e Herausforderung. Einen
wirklichen Eindruck tiber die Starke und die Richtung ded®ung erhalt man nur bei einer animierten
Darstellung am Computer. Auf den gedruckten Bildern kamnBBwegungsrichtung anhand der Aus-
richtung und Verformung der Objekte nur erahnt werden. Ad€® muss beachtet werden, dass die
Objekte auch zu unterschiedlichen Zeiten im Feld freigedasvorden sein konnen. Zusatzlich zu der
geometrischen Form der Objekte ist die Stromungsstankaea Farbe der Objekte zu erkennen. Alter-
nativ kann man andere Grof3en, wie die Beschleunigundstaaf die Federkrafte farblich kodieren.

Kugeln

Im ersten Versuch wird eine grol3e, hochaufgeloste KugidirMitte des Feldes platziert und die Simu-
lation gestartet. In Abbildung 6.8 ist der Ablauf der Anifoatin einer Serie von Bildern festgehalten.
Bei einer transparenten Darstellung lassen sich auch @dereier Kugeloberflache erkennen, die dem
Benutzer nicht zugewandt sind. Man sieht, wie sich die Gewenauf der Achse des Tornados zu ver-
formen und zu verwirbeln beginnt. Nach und nach wird das RettepObjekt in den Wirbel gezogen.
Uber die Verdrillung und die farbliche Kodierung ist der ¥ét und die Starke des Feldes gut erkennbar.
Auf einen stabilisierenden Vertex im Inneren der Kugel veuinier bewusst verzichtet, da sich die Ober-
flache sonst kaum verformt. AuRerdem bewegt sich ein ssl€igekt nur sehr langsam, da aufgrund
seiner Grol3e verschiedene, entgegengesetzte Krafterabherflache angreifen, die sich gegenseitig
aufheben.

In Abbildung 6.2 (links) sind die Resultate eines Versualhsehen, bei dem die Feldeigenschaften durch
die Deformationen mehrer mittelgroRer Kugeln visualisieerden. An der Verformung der Kugeln ist
die Divergenz des Feldes zu erkennen. In den aulReren, leoran Bereichen ahnelt die Darstellung
der von Streambubbles. Wie an den inneren Objekten zu sehétoinmt es aber auch vor, dass die
Kugelform zerstort wird.

Alternativ zu wenigen grof3en Objekten kann man auch einBegdnzahl von kleineren Objekten im
Feld freilassen. Entweder werden die Objekte vom Strudabstr oder sie treiben in schwachere Aus-
senbereich des Feldes, wo sie dann am Rand des Stromuiagegednkommen und zuriickgesetzt
werden. Bei einem solchen Versuchsaufbau laf3t sich didstektur vor allem aus der Bewegung
der Objekte ablesen. Wird aber das Feld Uiber die Konstiapteerstarkt und die Federkonstargg.
relativ klein gewahlt, dann ergeben sich Resultate wie lobillung 6.2 (rechts). Hier ist die starke
Uberdehnung der Kugelobjekte durch die hohe Divergenz irerien Feldbereich sowie der grobe Ver-
lauf der Stromungslinien gut zu erkennen.
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Abbildung 6.2: Die Visualisierung hangt sehr von der Arizaid Grof3e der Versuchsobjekte ab. Im
linken Bild sind 15 Kugelobjekte mittlerer Grof3e und rechtehrere hundert kleine Kugeln zu sehen.

Im letzten Versuch mit Kugeln werden diese an mehreren Saktpn freigesetzt. Die GrolRe der Saat-
periode unterscheidet sich dabei in den beiden Bildern ddsildung 6.3. Da die Objekte in einem
stationaren Feld immer wieder die gleichen Bahnen dunébig ergeben sich Strukturen, die mit zu-
nehmender Zahl freier Objekte verstarkt hervortreten $tndmlinien ahneln. Beim Betrachten der ani-
mierten Darstellung verschmelzen die benachbarten Ezileines Saatpunktes zu einem sich bewegen-
den Gesamtobjekt. Wird dagegen die Saatfrequenz verkigtlenn verkleinert sich auch die Zahl der
freien Objekte im Stromungsfeld, wobei die einzelnencfeth und ihre Deformationen besser sichtbar
werden. Im Versuchsaufbau wurden zehn Saatpunkte in dee Nés Wirbelzentrums platziert, die als
weisse Kugeln zu erkennen sind. Die Kugeln zweier Saatpunktrden dabei in den Wirbel hineinge-
zogen, wobei die Objekte eines dieser Saatpunkte selewtizden und blau eingefarbt sind. Dabei ist
zu sehen, dass die Kugelform der Objekte im Inneren des@sradfgrund der extremen Krafte, die auf
das zugrundeliegende Feder-Masse-System wirken, sesstd. Dieser Effekt ist in der Abbildung 6.4
einer Nahansicht in Wireframe-Darstellung gut zu erkenienin diesem Fall die kollabierten Objekte
relativ schnell am Rand ankommen und zurlickgesetzt wesdeltt dies kein grol3es Problem dar und
kann sogar durch die extreme Verformung die Turbulenz déeBeerdeutlichen. Von den restlichen
acht Saatpunkten, deren Objekte nicht so stark deformiertilen, gehen Linien aus, die hach mehre-
ren kreisformigen Bewegungen um die Achse des Tornado®ietlich am Rand des Gebietes enden.
Erhoht man interaktiv die Masse der Objekte, und damit Tmégheit, dann fihren die Versuchsobjekte
weniger Umdrehungen durch, da sie sich nicht so schnell arGéischwindigkeitsanderung des Fel-
des anpassen konnen. Bei einem Massefaktor von 1 erhéllema Visualisierung, die einer einfachen
Advektion masseloser Teilchen nahe kommt. Fur die Visigling in Abbildungen 6.5 wurde ein ne-
gativer Feldfaktor gewahlt und die Anordnung der Saatpeigkandert. Aufgrund der unterschiedlichen
Position der Saatpunkte werden dabei die Form und die Ausmie® Tornado-RUssels besser sichtbar.
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Abbildung 6.3: Kleine Kugelobjekte, die an zehn SaatpumKteigelassen wurden. Die Bilder unter-
scheiden sich durch eine unterschiedliche Wahl der Pardaieer. Im linken Bild sind 194 freie Kugeln
und im rechten 1500 freie Kugeln zu sehen.

Schlauche

Dank ihrer langlichen Form konnen sich die Schlaucheéreals Kugeln am Feld ausrichten. Trotzdem

durfen sie nicht als Stromlinien missverstanden werdenad jedem Punkt tangential zu den Feldlinien

verlaufen. Der Vergleich mit Zeitlinien trifft es eher. Vidier sind die Resultate stark vom Versuchsaufbau
abhangig.

In Abbildung 6.6 sind die Resultate eines Versuchs zu sdbeindem ein langer Saatschlauch in der
Nahe des Tornadotrichters platziert wurde. Wegen deragrdBenge der Objekte ist es schwer, die
Form und die Ausmalde einzelner Schlauche zu erkennerkti®elenan aber eines der Objekte, dann
wird dieses blau eingefarbt und seine Verformungen unddgengen konnen leicht verfolgt werden. In

der transparenten Darstellung ist der 3D-Eindruck nictguo er kann aber verbessert werden, indem
die Sicht auf die Visualisierung wahrend der Simulatioarggert wird.

Positioniert man eine grof3e Zahl diinner Schlauche néatemer, dann approximieren diese beim Start
eine Flache. Das Resultat nach einigen Zeitschrittem iébibildungen 6.7 zu sehen. Da bei der geren-
derten Darstellung der Schlauche Sampling-Artefaktéretiegin und die Flachenstruktur in einem diver-
genten Feld relativ schnell verloren geht, ware die Verhumg eines flachenformigen Versuchsobjekts
bei solchen Visualisierungen sinnvoller.

In Abbildung 6.9 ist die zeitliche Entwicklung eines Syseemehrerer Schlauchobjekte dargestellt, die
an einem Ende fixiert sind. Dabei geraten die mittleren &difié in den Sog des Tornadotrichters.
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Abbildung 6.4: Die Deformation der Kugeln im stark diverggm Innenbereich des Tornadofeldes ist
zu erkennen. Die blauen Objekte wurden vom Strudel einggsdbre geometrische Kugelform ging
dabei verloren. Die Objekte, die es aus dem Strudel heraafsn, formen sich in ihre urspringliche
Kugelform zuriick.

Bestehende Probleme und tsungsvorschhge

Wird die Federharte zu klein gewahlt, dann wird die Olgekimetrie in den stark divergenten Berei-
chen des Tornadofeldes schnell zerstort. Wird sie zu gefablt, dann verformen sich die Objekte
im Randbereich wenig. Das Problem dabei ist, dass die velsten Geometrieobjekte hauptsachlich
durch die Feder-Verbindungen ihrer Oberflachen stabitisverden. Eine gleichférmige Tetraedrisie-
rung des vollstandigen Objektvolumens konnte hier resResultate liefern. Streambubbles hingegen
teilen sich in divergenten Stromungsgebieten. Ein solé&mesatz ist prinzipiell auch fir die Geome-
trieadvektion geeignet, er lalt sich aber aufgrund desdiirankungen der GPU und der verwendeten
Datenstrukturen nicht umsetzen. Bei einigen der vordesteVisualisierung werden durch die zerstorte
Oberflachenstruktur die starken Verwirbelungen in debr&tmg sogar besser sichtbar. Die Erweiterung
des Programms um eine Komponente, die geometrische Hiadelin Stromungsdaten berriicksichtigt,
ware interessant.
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Abbildung 6.5: Bei der Wahl eines negativen Feldfaktfs und der Positionierung der Saatpunkte am
Rand des Gebietes, ergeben sich Bilder, die die Form deadosrgut veranschaulichen. Im linken Bild

istim oberen inneren Bereich des Tornados ein schwacBé@mungsbereich durch die griine Farbung
erkennbar.

Abbildung 6.6: Platziert man einen Schlauch-Saatpunkgdades Tornadotrichters, dann ergibt sich
bei einer hohen Saatfrequenz eine flachenartige Strukiisich im Inneren des Wirbels auflost. Die
Schlauche werden dabei extrem verdrillt und von der Raahdllningsroutine zuriickgesetzt.
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(b)

(©

Abbildung 6.7: Je nach Positionierung der Schlauche emsich ganz unterschiedliche Darstellungen:
In (a) approximiert eine Vielzahl von Schlauchen einecht die sich aber wenige Zeitschritte spater
auflost. In (b) sind einfache Schlauche aus drei Segmeniesehen und in (c) eine grolRere Menge
langer Schlauche, die an einem Ende fixiert sind.
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(@) t=0 (b) t=1

(c) t=2 (d) t=3

(e) t=4 (f) =0

Abbildung 6.8: Zeitliche Abfolge der Verformung einer gesf3Kugel im Tornadowirbel (a)-(e). In (f)
ist eine transparente Visualisierung der Kugel beim St#pankty zu sehen.
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(@) t=0 (b) t=2

(c) =3 (d) t=4

Abbildung 6.9: Dargestellt ist eine groBere Anzahl von|&athen, die an einem Ende fixiert sind.
Uber die Farbung laf3t sich die Starke des Feldes erker$wiauche im Inneren Bereich werden vom
Tornado langezogen.
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/ Zusammenfassung

Es wurde eine neuartige Methode fur die Visualisierungditreensionaler Stromungsfelder vorgestellt.
Verschiedene Geometrieobjekte konnen vom Benutzer dgleimentierten Visualisierungstools inter-
aktiv platziert und manipuliert werden. Dabei sind die etssobjekte Uber eine physikalische Kopp-
lung an das Feld gebunden und ihre Bewegungen und Verforamuingder Stromung werden animiert
dargestellt, wobei sich die Verformungen in gleichforarigBereichen des Feldes zuriickbilden kdnnen.
Anhand der Objektdynamik konnen Informationen tUber dagundeliegende Stromungsfeld abgelesen
werden. Dazu gehoren die Richtung und die Starke, sowverBénzen und Turbulenzen des Feldes.
Ermaglicht wird das Verhalten bei Oberflachenverformemglurch das verwendete Objektmodell, das
die Vertices der Geometrie als Massepunkte, und die Kantelche die Vertices verbinden, als Federn
betrachtet. Die Speicherung des Zustand und die zeitlicheiEklung des simulierten Objektsystems
sowie seine graphische Darstellung, werden dabei votiggavon der GPU realisiert. Dies ermoglicht
eine flussige Simulation und Animation grof3er Objektsystedie aus vielen tausenden Einzelobjekten
bestehen konnen.
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