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Universitätsstraße 38
D–70569 Stuttgart

Studienarbeit Nr. 2063

Geometrieadvektion zur
Visualisierung von instationären
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1 Einleitung

Das Untersuchen von Strömungen spielt schon seit mehrerenJahrzehnten eine wichtige Rolle bei der
Konstruktion von Fahrzeugen. Im Windkanal werden maßstabsgetreue Modelle oder ganze Fahrzeu-
ge von Luft umströmt, die vorher von Gebläsen beschleunigt wurde. Gemessen werden aerodynami-
sche Eigenschaften der Modelle, wie zum Beispiel der Luftwiderstand oder die Auftriebskräfte, die
auf die Tragflächen von Flugzeugen wirken. Unerwünschte,lokal auftretende Verwirbelungen sind nur
schwer zu erkennen, da die Luftströmung an sich unsichtbarist. Für Abhilfe sorgt Rauch, der durch
Schlitze oder Sonden in den Versuchsaufbau injiziert wird.Der Rauch wird mit der Luft fortbewegt,
und macht so die Strömung indirekt sichtbar. Die aus den Experimenten gewonnen Daten werden für
weitere Optimierung bei der Entwicklung der Modelle verwendet. Auch in der Medizin, der Klimafor-
schung und in vielen anderen Bereichen haben Strömungen eine große Bedeutung. Es werden nicht nur
Gase, sondern es wird auch das Strömungsverhalten von Flüssigkeiten erforscht. Mit der rasanten Ent-
wicklung leistungsfähiger Computer verdrängen physikalische Simulationen zunehmend die klassischen
Versuchsaufbauten. Simulationen bieten sich insbesondere dann an, wenn das Modell nur im Compu-
ter existiert (CAD), die Effekte sich nicht direkt beobachten lassen (z.B. bei Molekularbewegungen)
oder reale Versuche zu teuer oder riskant sind (etwa bei Crashtests). Basierend auf den Navier-Stokes-
Gleichungen berechnet die numerischen Strömungssimulation (CFD, Computational Fluid Dynamics)
beliebige Strömungsprobleme unter den vorgegebenen Randbedingungen. Einzig die Rechendauer be-
schränkt die Komplexität des zu lösenden Systems. Da häufig eine längere zeitliche Entwicklung von
räumlichen Systemen von Interesse ist, erhält man als Resultat riesige Datenmengen, die ohne weiter
Verarbeitung durch einen Computer kaum interpretierbar sind. Die Computervisualisierung ist hier von
entscheidender Bedeutung. Sie ermöglicht eine grafische Darstellung der Simulationsdaten. Es wurde
eine Vielzahl von Methoden entwickelt, die lokale und globale Strömungseigenschaften grafisch abbil-
den. Einige haben reale Experimente als Vorbild, andere Darstellungen sind nur am Computer möglich.
Häufig wird die physikalisch motivierte Bewegung von Teilchen oder anderen Objekten visualisiert, die
im Feld freigelassen werden. In dieser Studienarbeit wird eine neuartigeGeometrieadvektions-Methode
vorgestellt, die auf dieser Grundidee basiert und aus Performancegründen zum großen Teil auf der GPU
(Graphics Processing Unit) implementiert wurde. Die Teilchen werden repräsentiert durch deformierba-
re, geometrische Objekte wie Kugeln oder Schläuche, die bestrebt sind, ihre ursprüngliche Form beizu-
behalten. Sowohl durch die Objektbewegung als auch durch die Verformungen können Informationen
über die Strömung vermittelt werden. Die dreidimensionale Darstellung erfolgt interaktiv, wobei der
Benutzer mit einer großen Anzahl von Versuchsobjekten interagieren kann.

In Kapitel 2: Str ömungsvisualisierungwerden die Grundlagen, die Problemstellungen und die wich-
tigsten Methoden der Visualisierung von Strömungen behandelt. Dies führt am Ende des Kapitels zu
einer Beschreibung der Geometrieadvektion.

Kapitel 3: Physik und Numerik behandelt die physikalischen Grundlagen, die der Bewegungvon
Objekten in Strömungen zugrunde liegen. Für eine effiziente Simulation wird ein einfaches Modell
für deformierbare Objekte eingeführt und die numerischen Verfahren zur Lösung der Systemdynamik
besprochen.

Kapitel 4: Numerische Simulation mit der GPU stellt die Architektur von GPUs und die Vorteile
gegenüber handelsüblichen CPUs bei der numerischen Simulation vor. Die eigentliche Aufgabe von
GPUs ist das Rendern von dreidimensionalen Modellen. Es wird ein Ansatz beschrieben, der es erlaubt,
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ihre große Rechenleistung auch für nichtgrafische Anwendungen zu nutzen. Am Ende des Kapitels wird
die Implementation des Simulationskerns behandelt.

Kapitel 5 - Implementation führt zuerst in die Benutzung des implementierten Visualisierungspro-
gramms ein. Außerdem geht es auf wichtige Implementationsdetails ein, wie die Interaktion mit den
Versuchsobjekten, die Objektgenerierung oder das Rendern.

Kapitel 6 - Resultatestellt die Resultate, wie die Programmperformance und mehrere Beispielvisuali-
sierungen vor. Ungelöste Probleme werden mitsamt Verbesserungsvorschlägen aufgeführt.

Kapitel 7 - Zusammenfassungschließt die Arbeit ab.
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2 Strömungsvisualisierung

2.1 Einführung

Die numerische Strömungssimulation arbeitet auf einem diskreten Berechnungsraum. Oft wird ein kar-
tesisches Gitter verwendet. Es gibt aber auch allgemeinereFälle, bei denen gekrümmte oder sogar un-
strukturierte Gitter von Vorteil sind. Je nach räumlicherDimension wird die Strömung an jedem Gitter-
punkt durch einen n-dimensionalen Vektor aus reelen Zahlenbeschrieben. Dieser kann als Geschwin-
digkeitvektor des Strömungsfeldes interpretiert werdenund legt somit die Richtung und die Stärke des
Feldes fest. Dazu kommen weitere, zugeordnete physikalische Größen, wie das Druckfeld der Strömung,
das bei der Simulation benötigt wird. Im Folgenden werden dreidimensionale Strömungen betrachtet,
die auf gleichförmigen, kartesischen Gittern gegeben sind. Ist die zeitliche Entwicklung instationärer
Strömungen von Interesse, dann muss das Feld zusätzlich in diskrete Zeitschritte zerlegt werden. Für
alle gewünschten Zeitpunkte t wird der Zustand des FeldesVt gespeichert,

V
t

i, j,k ∈ R
3 i = 1...X, j = 1...Y, k = 1...Z (2.1)

t = t0, t0 + ∆t, t0 +2·∆t, ... (2.2)

Kleine und schnell veränderliche Effekte werden von der Simulation nur bei der Wahl einer entspre-
chend feinen Diskretisierung erfasst. Es können so sehr schnell riesige Datenmengen anfallen, die mit
Hilfe einer geeigneten Visualisierung am Computer interpretiert werden müssen. Dabei interessieren so-
wohl globale Feldstrukturen als auch lokale Feldeigenschaften wie Divergenzen und Turbulenzen oder
die Richtung und Stärke des Feldes. Divergenz und Rotationsind mathematische Funktionen, die auf
ein kontinuierliches Vektorfeld angewandt werden können. Bei diskreten Feldern, die nur an Gitter-
punkten vorliegen, approximiert man die dabei vorkommenden Ableitungen üblicherweise über Finite
Differenzen.

Die Divergenz∇ ·V (r) beschreibt die lokale Quelldichte eines Strömungsfeldesam Punktr,

∇ ·V =
∂
∂x

Vx +
∂
∂y

Vy+
∂
∂z

Vz (2.3)

Betrachtet man ein infinitesimales Volumen an der Stellex, dann kann die Divergenz als die Summe
der Flüße verstanden werden, die zu einem festen Zeitpunktdurch dessen Oberfläche fließen. Wird von
der Strömung Masse transportiert, dann weisst eine Divergenz kleiner Null darauf hin, dass mehr Masse
in das Gebiet hineinfließt als herauskommt (Senke), ein Wertgrößer Null deutet auf eine Quelle hin, an
der Masse entsteht.

Über die lokalen Verwirbelungen eines Vektorfeldes trifftdie Rotation∇×V (r) eine Aussage,

∇×V =






∂
∂x
∂
∂y
∂
∂z




×





Vx

Vy

Vz



 (2.4)
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∇ ·V < 0
Senke

∇ ·V > 0
Quelle

∇ ·V = 0 ∇×V 6= 0

quellfrei Wirbel

Abbildung 2.1: Rotation und Divergenz eines Vektorfelds

Bei einem Strömungsfeld gibt der Resultatvektor die Rotationsachse und Stärke an, mit der im Feld
mitschwimmende Teilchen tendenziell um den Punktr rotieren.

Globale Feldeigenschaften erfordern eine aufwändige Analyse des Gesamtfeldes und seiner Topologie.
Über für das Feld charakteristische,kritische Punkte, die untereinander verbunden werden, kann das
Feld partitioniert und seine globale Struktur erarbeitet werden. Kritische Punkte sind Stellen im Feld, an
denen der Feldvektor verschwindet. Sie lassen sich über die Eigenwerte der Jakobimatrix klassifizieren
[1]. Im Fall eines dreidimensionalen Feldes ist die Jakobimatrix ein Tensor, der komponentenweise die
Änderung der Feldgeschwindigkeit an einem Raumpunktr beschreibt.

[ ∂V

∂(x,y,z)

]

r

=






∂Vx
∂x

∂Vx
∂y

∂Vx
∂z

∂Vy

∂x
∂Vy

∂y
∂Vy

∂z
∂Vz
∂x

∂Vz
∂y

∂Vz
∂z






r

(2.5)

Es gibt keine natürliche Repräsentation von Vektorfeldern, die vom menschlichen Wahrnehmungssys-
tem intuitiv interpretiert werden kann und dabei gleichzeitig alle relevanten Eigenschaften des Feldes
enthält. Das Problem dabei ist, eine einfache Abbildung der vektoriellen Daten auf Visualisierungspri-
mitive zu finden. Zusätzlich führt der dreidimensionale Datenraum schnell zu unübersichtlichen Bildern,
da sich die Primitive gegenseitig verdecken und die genaue Position im Raum bei einem zweidimensio-
nalen Bild nur schwer erkennbar ist. Dievisuelle Komplexiẗat ist generell ein großes Problem, das von
den verschiedenen Visualisierungsmethoden unterschiedlich gut gelöst wird. Folgende Vorgehenswei-
sen werden auch von grundsätzlich verschiedenen Verfahren aufgegriffen:

• Reduzierung der Strömungsdaten im Wertebereich.

• Visualisierung abgeleiteter oder zugeordneter skalarer Daten durch eine Abbildung auf Farben. In
Frage kommen z.B. Druck, Temperatur, Feldstärke oder Divergenz.

• Beschränkung der Visualisierung auf Schnittflächen durch das Strömungsvolumen.

• 3D Visualisierung mit stereoskopen Verfahren.

Direkte Methodenführen nur wenige Berechnungen auf den Strömungsdaten durch. Es werden nur
die lokalen Eigenschaften zu einem festen Zeitpunkt und Ortbetrachtet. Beispielsweise kann man die
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Feldstärke und Richtung direkt visualisieren, indem man an den Gitterpunkten gerichtete Pfeile unter-
schiedlicher Länge zeichnet. Diese Darstellung kann abersehr schnell unübersichtlich werden. Alter-
nativ kann man nur gleichlange Pfeile zeichnen, und die Feldstärke farblich kodieren. Vor allem aber
verbietet sich bei dreidimensionalen Darstellungen diedirekte Pfeilrepr̈asentationaufgrund gegenseiti-
ger Verdeckungen. Neben der Pfeildarstellung und der Kodierung von Merkmalen durch Farben können
außerdem dem Feld zugeordnete skalare Daten durch Isoflächen oder Volumenrendering veranschau-
licht werden.

Strömungsprobenerfassen lokal eingeschränkte Bereiche des Feldes. Im Gegensatz zu Pfeilen kann
die Probe neben der Geschwindigkeit auch dieÄnderung derselben anzeigen. Analog zu wirklichen
Meßgeräten wird die Probe interaktiv im Feld platziert. F¨ur die Darstellung stehen verschiedene Glyph-
Objekte zur Verfügung [2].

Die Indirekten Methodenbasieren auf komplizierteren Vorberechnungen und könnenneben lokalen auch
weitreichende Feldeffekte veranschaulichen. Grob lassensie sich in drei Klassen einteilen:

• Die Visualisierung abgeleiteter Datenextrahiert aus dem Felddatensatz charakteristische Merk-
male, die dann grafisch dargestellt werden. Beispielsweisekann dem Betrachter durch eine Vi-
sualisierung der globalen Topologie oder von Feldklusternmit unterschiedlichen Eigenschaften
Interpretationsarbeit abgenommen werden. Aufgrund des aufwändigen Vorverarbeitungschritts ist
eine interaktive Berechnung und Visualisierung meistens aber nicht möglich [1, 3].

• Dichte Visualisierungsverfahrenwie Texturadvektion überLine Integral Convolutionerfassen das
Feld vollständig. Hierzu werden an den Pixelpositonen vonTexturen, die zu Beginn nur weißes
Rauschen enthalten, kurze Strömungslinien berechnet. Der Mittelwert aus den Intensitäten dieser
Linien bestimmt die Pixelwerte des Resultats. Bei einer animierten Darstellung fällt es dem Be-
trachter besonders leicht, die dominierenden Flussstrukturen zu erkennen. Allerdings beschränken
Verdeckungsprobleme die Darstellung auf zweidimensionale Schnitte durch das Volumen [4].

• Der dritte Ansatz besteht darin, diskrete Objekte im Feld freizulassen und ihre Dynamik oder die
durchlaufenen Trajektorien zu visualisieren. Die Objektesind dabei direkt an das Strömungsfeld
gekoppelt und ihre Positionen zu unterschiedlichen Zeitpunkten werden durchnumerische Inte-
gration berechnet. Je mehr Objekte verwendet werden, umso stärkerähnelt das Resultat dem der
dichten Methoden, wobei deren Verdeckungsprobleme dann auch verstärkt in den Vordergrund
treten.

Nachfolgend werden verschiedene grundlegende Objekt-Integrationsmethoden und insbesondere die
darauf basierendeGeometrieadvektionvorgestellt.

2.2 Integrationsmethoden

Die analytische Berechnung der Teilchenwege ist im allgemeinen Fall viel zu aufwändig. In Abbildung
2.2 ist die Advektion eines masselosen Teilchens durch numerische Integration im Stömungsfeld dar-
gestellt. Die neue Teilchenposition ist durch das GeschwindigkeitsfeldV an der Position des Teilchens
und durch die Größe des Integrationsschritts∆t festgelegt. Da die Feldvektoren nur an diskreten Punkten
vorliegen, müssen sie interpoliert werden.
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Quelle Resultat visualisierbare Felder und Eigenschaften
Punkt (kont.) Stromlinie, Streichlinie,

Strompfad
laminare Strömungen, Teilchentrajektorie, lokale
Feldrichtung

Punkt (diskret) Stromteilchen Feldrichtung und Stärke aus der Bewegung, auch ge-
eignet für instationäre, turbulente Felder

Linie (kont.) Strömungsflächen,
Strömungsröhren

stationäre Felder, Feldstrukturen wie Divergenzen
durch Verformungen

Objekte (diskret) Stromobjekte siehe Stromteilchen. Zusätzlich: Divergenzen, Ex-
pansion und Kompression durch Deformationen

Tabelle 2.1: Integrationsmethoden

An Saatpunkten(Partikelquellen) werden die Teilchen im Feld freigelassen. Abhängig von der Posi-
tionierung der Saatpunkte werden nur bestimmte Teilgebiete der Strömung und deren Eigenschaften
erfasst. Im Gegensatz zu dichten Verfahren können deshalbwichtige Feldstrukturen übersehen werden,
wenn sie nicht im visualisierten Bild vorhanden sind. Deshalb ist es sinnvoll, ein interaktives Erstellen
und Verschieben der Saatquellen zu ermöglichen. Alternativ kann das Feld automatisch analysiert und
geeignete Positionen berechnet werden.

Je nach Verteilung und Verbindung der Saatpunkte erhält man unterschiedliche Resultate (Tabelle 2.2).
Visualisiert werden entweder die kontinuierlichen Wege, die von den Teilchen durchlaufen werden oder
die Bewegung diskreter Teilchen, die mit Teilchen benachbarter Saatpunkte verbunden sein können. In
der Praxis werden auch im kontinuierlichen Fall gepulst Teilchen vom Saatpunkt generiert und für die
Darstellung miteinander verbunden. Instationäre Felderkönnen nur über die flüchtige Animation der
sich bewegenden Teilchen dargestellt werden.

r(t)

V (r(t))

r(t + ∆t) = r + ∆t ·V (r(t))

Abbildung 2.2: Integration eines Punktes entlang des Strömungsfeldes

2.2.1 Linien

Stromliniensind Kurven im Raum, die an jedem Punkt tangential zum Vektorfeld verlaufen. Sie ent-
sprechen der Trajektorie eines masselosen Teilchens in einem stationären Vektorfeld. In der Realität
verändern sich Felder aber über die Zeit.Pfadlinienveranschaulichen die Teilchenwege in instationären
Feldern. Beide Konzepte erfassen hauptsächlich die lokale Richtung des Feldes, wobei die Stärke des
Feldes in der Farbe der Strömungslinien kodiert werden kann. Die Wahl des Saatpunktes ist für die
Form der Linie von entscheidender Bedeutung. Mehrere Stromlinien, deren Saatpunkte an unterschied-
lichen Positionen liegen, ermöglichen das Erfassen von allgemeineren Feldstrukturen. Dazu gehören
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Saatpunkte r

V (r)

Abbildung 2.3: Stromlinien in der Nähe eines Sattelpunkts

Sattelpunkte, an denen die Linien auseinanderlaufen oder auch Attraktoren, an denen die Linien zusam-
menlaufen (Abb. 2.3). Der dreidimensionale Eindruck der Linien kann durch die Variation der Inten-
sitäten, durch Stereodarstellungen oder Beleuchtungsberechnungen verbessert werden. Das Erzeugen
gleichförmig verteilter Linien ist eine schwierige Aufgabe. Außerdem geht mit der Zahl der dargestell-
ten Linien dieÜbersichtlichkeit verloren.

Es gibt noch weitere charakteristische Linien:Streichlinienwerden bei instationären Strömungen ver-
wendet. Sie verbinden mehrere Teilchen, die zeitlich nacheinander an einem festen Ort losgelassen
werden.Zeitlinienveranschaulichen Divergenzen in der Strömung und sind mitStrömungsflächen ver-
wandt. Sie bestehen aus einer Vielzahl von Teilchen, die sich an unterschiedlichen Orten befinden, und
gleichzeitig im Feld freigelassen werden. In der Regel werden Zeitlinien beim Start orthogonal an der
Strömung ausgerichtet.

2.2.2 Str̈omungsfl̈achen

Strömungsfl̈achensind die natürliche Erweiterung von Stromlinien in die zweite Dimension. Statt eines
punktförmigen Saatpunktes wird eine Saatlinie aus verbundenen Startpunkten gewählt. Aus dieser Linie
heraus entsteht die Fläche, indem die Teilchenpositionenintegriert werden. Ist die Linie geschlossen,
dann erhält manStrömungsr̈ohren. Gegenüber Stromlinien und Zeitlinien kann der 3D-Eindruck durch
das Rendern einer beleuchteten und transparenten Fläche verbessert werden. Effekte wie Turbulenzen
oder lokale Deformationen durch divergente Feldbereich k¨onnen eine glatte Flächenstruktur schnell
zerstören. Aufgrund der numerischen Berechnung der Teilchenpositionen, erhält man im Extremfall
unbrauchbare Objekte, die bizarr verformt sind und sich sogar selbst durchdringen können. Deshalb ist
sinnvoll, adaptiv zusätzliche Punkte in das Flächennetzeinzufügen. Trotzdem sind Strömungsflächen
hauptsächlich für stationäre und möglichst laminare Strömungen geeignet.

2.2.3 Stromteilchen und Stromobjekte

Die Dynamik einzelner, diskreter Teilchen und Objekte im Strömungsfeld wird animiert. Durch die
Bewegung kann die Stärke und Richtung des Feldes auch bei turbulenten Feldern gut veranschaulicht
werden.

Oberfl̈achenpartikelkombinieren die Vorteile von Stromteilchen mit der Darstellung von Feldstrukturen
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bei Stromflächen. Ein Normalenvektor wird als zusätzliches Attribut zu der Teilchenposition gespeichert
und bei der Berechnung der Teilchenintensität während des Renderns verwendet. Der Vektor ist von den
lokalen Feldvektoren abhängig und wird bei der Advektion aktualisiert. Wählt man die Startpositionen
auf einer geschloßenen Kurve und läßt nacheinander eine große Zahl von Teilchen im Feld frei, dann
können beleuchtete Stömungsflächen nachgebildet werden [5].

Streambubblesfinden eine physikalische Entsprechung in Luftblasen, die in einer Flüssigkeitsströmung
ausgesetzt sind. Modelliert werden die Streambubbles durch eine geschlossene Nurbsfläche, deren Kon-
trollpunkte sich frei im Feld bewegen. Durch die Bewegungender Blasen und die Verformung ihrere
Oberflächen, lassen sich verschiedene Feldeigenschaftenvisualisieren. Große Blasen veranschaulichen
grob die Struktur des Gesamtfeldes, kleine Blasen hingegenzeigen lokale Eigenschaften an. Um die
Feldeigenschaften auch in turbulenten Gebieten der Strömung gut erfassen zu können, werden die Bla-
sen dort automatisch durch zwei kleinere ersetzt [6].

2.2.4 Geometrieadvektion

Die Geometrieadvektionermöglicht die Visualisierung stationärer und instationärer Strömungen. Sie
greift die Idee der Teilchenadvektion auf, wobei die punktförmigen Teilchen durchgeometrische Strom-
objekteersetzt werden. Aufgebaut sind die Versuchsobjekte aus einzelnen Punktteilchen, die unterein-
ander verbunden sind. Die Objekte bewegen sich im Geschwindigkeitsfeld der Strömung, wobei sie
sich in divergenten Bereichen verformen. In homogenen Gebieten des Feldes, in denen die Strömung
gleichförmig verläuft, bilden sich die Deformationen zurück. Diese Eigenschaft wird durch ein spezi-
elles Körpermodell realisiert, das im nächsten Kapitel behandelt wird. Große, räumlich ausgedehnte
Objekte können durch Dehnungen, Verkrümmungen oder Verdrillungen globale Feldstrukturen heraus-
stellen. Lokale Eigenschaften des Feldes werden durch kleine Objekte oder durch lokal beschränkte
Deformationen der Geometrie erfasst. Gleichzeitig ist es möglich, die Feldstärke und die Richtung, wie
bei den Stromteilchen, durch die Animation der Objektbewegungen zu veranschaulichen. Die Dynamik
der Objekte wird mit Hilfe einer physikalisch motivierten Simulation numerisch berechnet.Über das zu-
grunde liegende physikalische Modell ist den Objekten eineMasse zugeordnet. So können Effekte wie
Trägheit und Reibung realisiert werden, die bei realen Objekten in Strömungen auftreten. Das Resultat
der Visualisierung hängt von der Form, der Anzahl und den initialen Positionen der Versuchsobjekte
ab. Die Objekte können interaktiv von Hand platziert werden oder sie werden an Saatpunkten generiert.
Stromlinien, Strompfade und Stromflächen lassen sich durch eine große Menge von Objekten imitieren,
die an festen Saatpunkten in kurzen Zeitabständen freigelassen werden. Auch Strömungsproben können
realisiert werden, indem den Objekten zusätzliche Zwangsbedingungen aufgeprägt werden. Die Positio-
nen eines oder mehrer Objektpunkte werden hierbei im Raum fixiert. Das Objekt als Ganzes kann sich
deshalb nicht mehr fortbewegen, die freien Punkte allerdings bewegen sich weiterhin in der Strömung
und zeigen so die lokalen Feldeigenschaften an.

2.3 Zusammenfassung

Das Kapitel hat die grundlegenden Verfahren der Strömungsvisualisierung vorgestellt. Einen umfassen-
denÜberblick über dieses Teilgebiet der wissenschaftlichenVisualisierung findet sich zum Beispiel in
[7]. Abschließend bleibt zu bemerken, dass es kein Verfahren gibt, das in allen Situationen optimale
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Ergebnisse liefert. Vielmehr erlaubt es die Kombination aus einer Vielzahl von Untersuchungsmetho-
den, die Eigenschaften des Feldes besser zu verstehen. Eineeinfache, intuitive und möglichst interaktive
Darstellung kann dabei sehr hilfreich sein.
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3 Physik und Numerik

3.1 Einleitung

Die physikalisch motivierte Visualisierung von Objektbewegungen in Strömungsfeldern erfordert die
Berechnung von Positionen und Geschwindigkeiten der betrachteten Versuchsobjekte. Zuerst werden
am Beispiel des Punktmassenmodells die physikalischen Grundlagen besprochen. Die Physik defor-
mierbarer Körper ist ausgesprochen komplex. Eine Simulation der Dynamik in Echtzeit ist deshalb nur
mit vereinfachten Modellen realisierbar. Aufbauend auf einem Modell für starre Körper wird das hier
verwendete Feder-Masse-Modell erklärt. Der letzte Abschnitt behandelt numerische Lösungsverfahren.

3.2 Physik

3.2.1 Grundlagen der klassischen Mechanik

In der klassischen Mechanik werden Teilchen häufig als Punktmassen ohne räumliche Ausdehnung
approximiert. In einem kartesischen Koordinatensystem ist die zeitabhängige Position eines Teilchens
durch einen Vektorr(t) gegeben,

r(t) =





x(t)
y(t)
z(t)



 (3.1)

Die Geschwindigkeitv(t),

v(t) = ṙ(t) =





ẋ(t)
ẏ(t)
ż(t)



 (3.2)

und die Beschleunigunga(t),

a(t) = v̇(t) = r̈(t) (3.3)

erhält man als erste beziehungsweise zweite Zeitableitung von r(t). Ist die Konfiguationr(t),v(t)
zu einem gegebenen Zeitpunkt bekannt, dann bestimmt sie denZustand des Systems vollständig und
zukünftige Positionen und Geschwindigkeiten können vorhergesagt werden. Gleichungen, die die Dy-
namik eines Systems bestimmen, werden Bewegungsgleichungen genannt. Es handelt sich um Differen-
tialgleichungen zweiter Ordnung inr(t). Sie verknüpfen die Koordinaten, die Geschwindigkeiten und
Beschleunigungen sowie die äußeren KräfteF (r,t), die auf die Teilchen wirken.

d2
r

dt2
(t) = a(t) =

F (r, t)
m

(3.4)
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x

y

z

r(0)

v(0)m

g = G/m

r(t)

Abbildung 3.1: Teilchentrajektorie unter dem Einfluss der Gravitation

Im allgemeinen Fall eines freien Teilchens ohne äußere Krafteinwirkung, d.h.F (r, t) = 0, erhält man
die Lösung durch zweimaliges Integrieren und der Angabe der Startbedingungenr0 = r(t0). In Abbil-
dung 3.1 ist der freie Wurf eines Teilchens in Richtung der x-Achse skizziert. Unter dem Einfluss der
zeitunabhängigen Gewichtskraft G durchläuft das Teilchen eine parabelförmige Trajektorie.

Analytisches Lösen der Bewegungsgleichung ist nur in den einfachsten Fällen möglich. Schon die
Lösung eines einfachen N-Teilchen Systems kann in der Regel nur mit numerischen Methoden erreicht
werden, da sich durch die Wechselwirkungen jedes Teilchensmit den übrigen N-1 Teilchen sehr kom-
plexe Beziehungen ergeben.

Die Korrektheit des Punktmassenmodells hängt von der zu l¨osenden Aufgabenstellung ab. Beispielswei-
se könnte man einen Fußball als Punktmasse betrachten. Für die Dynamik des Balls relevante Effekte
wie Verformungen oder Rotationen werden dabei allerdings vernachlässigt.

3.2.2 Starre Körper

Sollen räumlich ausgedehnte Körper und deren Rotation umdie eigene Achse oder ihren Schwerpunkt
betrachtet werden, dann bietet sich das Modell des starren Körpers an [8]. Dieser läßt sich als eine
Menge von Punktmassen definieren, deren Abstand untereinander konstant ist. Realistischer ist aller-
dings eine Beschreibung durch eine kontinuierliche Masseverteilungen. Da diese über die Massendichte
ρ(r) festliegt und sich nicht ändern darf, werden plastische Deformationen von diesem physikalischen
Modell nicht erfasst.

Dem starren Körper wird ein eigenes, lokales Koordinatensystem zugeordnet, dessen Ursprung sich in
seinem Schwerpunkt befindet. Die Gesamtmasse M und die Position s des Schwerpunktes kann durch
eine Integration über das Volumen des Körpers bestimmt werden.

M =
Z

ρ(r)dV (3.5)

s =
Z

r ·ρ(r)dV/M (3.6)
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Das System eines einzelnen starren Körpers besitzt im räumlichen Fall sechs Freiheitsgrade. Die Trans-
lationsbewegung legt die Dynamik des Schwerpunkts fest, der als Punktteilchen der Masse M betrachtet
wird. Zusätzlich kann der Körper eine Rotationsbewegungum den Schwerpunkt ausführen. Der Körper
in Abbildung 3.2 bewegt sich aufgrund der drei wirkenden Kr¨afte in Richtung der x-Achse und dreht
sich dabei gleichzeitig umS.

r
V

S

s

F1

F2

F3

Abbildung 3.2: Ein starrer Körper mit einer kontinuierlichen Masseverteilung. Die drei angreifenden
Kräft bewirken eine Translation des Schwerpunkts und eineRotation des Körpers um den Schwerpunkt.

3.2.3 Feder-Masse-Modell

Eine Vereinfachung von realen Objekten findet beim Feder-Masse-Modell Anwendung. Auf atomarer
Ebene bestehen Festkörper aus Atomen und Molekülen, die auf ihren Gitterplätzen beschränkt schwin-
gen können. Die verschiedenartigen Bindungen der Atome untereinander und die dabei auftretenden
Kräfte werden durch Federn modelliert. In der Realität wechselwirken alle atomaren Teilchen mitein-
ander, wobei die Stärke mit zunehmender Entfernung rasch abfällt. Im Feder-Masse-Modell dagegen
beschränken sich die Wechselwirkungen auf direkt benachbarte Massepunkte. Unterschiedliche Mate-
rialeigenschaften können durch eine geeignete Wahl der Massen und Federeigenschaften realisiert wer-
den. Inhomogene Körper können so vergleichsweise leichtrealisiert werden. Eine geschickte Wahl der
Massepunkte und der Federn ermöglicht dabei deformierbare Körper, die ihre charakteristische Grund-
form im kräftefreien Fall zurückerlangen.

Federgleichung

Im Ruhezustand wirken keine Kräfte und die Feder hat eine vorgegebene Länge. Diese wird im Fol-
genden als Ruhelänge bezeichnet. Wird die Feder unter Arbeitsaufwand komprimiert oder gestreckt,
so resultiert an beiden Enden eine Rückstellkraft. DieHookesche-Federgleichung(3.7) besagt, dass bei
einer idealen Feder die Rückstellkraft proportional zur Auslenkung ist.

Frueck= D∗
Länge−Ruhelänge

Ruhelänge
(3.7)

Die Federhärte oder auch Federsteifigkeit D geht als zusätzlicher Faktor in die Gleichung ein und be-
stimmt dadurch das Verhalten der Feder. Federn mit einer kleinen Federhärte lassen sich leichter kom-
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Federruhelängelruhe

Federlängel

Frück −Frück

Abbildung 3.3: Feder im Ruhezustand (oben), komprimierte Feder mit auftretenden Rückstellkräften
(unten)

Fext

t = t0 t = t0 + ∆t t = t0 +2·∆t

Abbildung 3.4: Verhalten eines Feder-Masse-Systems bei äußerer Krafteinwirkung

primieren. Hohe Federhärten erfordern für die gleiche Auslenkung eine entsprechend größere Arbeit.
Die dabei aufgewendete Energie steckt als potentielle Energie in der Feder. Beim Zurückformen in den
Ursprungszustand wandelt sie sich in kinetische Energie der angekoppelten Teilchen um.

Systemdynamik

Physikalische Systeme sind immer bestrebt einen Zustand m¨oglichst niedriger potentieller Energie zu
erreichen. Im Fall des Feder-Masse-Systems setzt sich die Gesamtenergie des Systems aus der kineti-
schen Energie der Teilchen sowie der gespeicherten potentiellen Federenergie zusammen.Äußere Kräfte
bringen das System aus dem Gleichgewicht. Die dabei auftretenden Federkräfte wirken den externen
Kräften entgegen und versuchen diese zu kompensieren. DasErreichen eines Gleichgewichtzustandes
erfolgt dabei immer dynamisch.

Eine äußere Kraft oder ein Impuls werden zunächst nur auf die Federn am Rand des Objektes wirken.
Der Randbereich propagiert dann die in den Federn gespeicherte Energie ins Innere (Abb. 3.4). Wäre der
Körper in Abbildung 3.2 durch Punktteilchen modelliert, die über Federn verbunden sind, dann würde
er sich zusätzlich ausdehnen.
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Bewegungsgleichungen

Im Allgemeinen besteht ein Feder-Masse-System aus N Masseteilchen, welchen eine Positionri und
eine Massemi zugeordnet ist (i ∈ 1..N). Das i-te Teilchen ist überMi Federn der Länge| li j |=| r j −ri |
mit seinen nächsten Nachbarn verbunden (j ∈ 1..Mi), wobei die Anzahl der Nachbarn variieren kann. Im
Ruhezustand entspricht die Länge der RuhelängeLi j . Die gesamte auf ein Teilchen wirkende Federkraft
Fi setzt sich aus der Summe der FederkräfteFi j zusammen.

Fi j = Di j
| li j | − | Li j |

| Li j |
·Li j (3.8)

Bei der folgenden Formulierung der Bewegungsgleichungen des Gesamtsystems wird die Zeitabhängig-
keit nicht explizit angegeben. In das System geht ausser denexternen KräftenFext und den entgegen-
wirkenden Federkräften ein zusätzlicher dämpfender Term ein. Der Faktor c bestimmt dabei die Stärke
der Dämpfung und unterbindet ein unkontrolliertes Schwingen der Federn. Für die einzelnen Teilchen
gilt:

mi · r̈i + c· ṙi
︸︷︷︸

Dämpfung

= F
ext
i −

Mi

∑
j=1

Fi j i ∈ 1..N (3.9)

Insgesamt erhält man ein gekoppeltes, nichtlineares Gleichungssystem für die Teilchenpositionenri .
Das System besteht aus N gewöhnlichen Differentialgleichungen zweiter Ordnung. Da die einzelnen
Gleichungen über die FederkräftFi j gekoppelt sind, ist das System schon bei kleinen N sehr komplex.

3.2.4 Kopplung an das Str̈omungsfeld

Bei der Geometrieadvektion sollen sich die Objekte, die durch das Feder-Masse-Modell beschrieben
werden, in der Strömung fortbewegen. Deshalb ist eine Kopplung an die Geschwindigkeitsvektoren des
StrömungsfeldesV nötig. DasGesetz von Stokeslegt die Stärke der Reibungskraft fest, die kugelförmige
Körper mit der Geschwindigkeit v und dem Radius r in einem ruhenden Fluid (Flüssigkeiten oder Gase)
erfahren. Die Zähflüssigkeit des Fluids wird dabei durch die Viskositätη beschrieben.

F = 6πηrv (3.10)

In unserem Fall befindet sich das Medium nicht in Ruhe, sondern seine Geschwindigkeit ist an jedem
Punktr und zu jedem Zeitpunkt t durch das StrömungsfeldV (r,t) gegeben. Wird die relative Geschwin-
digkeit der Masseteilchen zur Strömung verwendet, dann stellt sich der gewünschte Effekt ein. Ist das
Teilchen schneller, als das Feld, dann wird es abgebremst. Ist es langsamer, dann wird es beschleunigt.
Die Kopplungsgleichung lautet somit:

F (r, t) = 6πηr · [V (r, t)−v(t)] (3.11)
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3.3 Numerische Verfahren für geẅohnliche Differentialgleichungen

Besonders die zeitlichen Anforderungen an Echtzeitsimulationen schliessen analytisches Lösen der Dif-
ferentialgleichung von vornherein aus. Erst numerische Verfahren ermöglichen es, komplexe Feder-
Masse-Syteme aus mehreren hunderttausend Federn schnell genug zu lösen [9].

3.3.1 Geẅohnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen n-ter Ordnung lassen sich durch Variablensubstitution immer in
ein gekoppeltes System von Differentialgleichungen erster Ordnung umformen. Als Resultat erhält man
n Gleichungen:

dy1

dt
= y2 ...

dyn−1

dt
= yn ,

dyn

dt
= f (t,y1, ...,yn) (3.12)

Beispielsweise führt man für die N Bewegungsgleichungendes Feder-Masse-Systems eine neue Varia-
blev ein und erhält somit 2N neue Gleichungen:

ṙi = vi (3.13)

v̇i = (F ext
i −

Mi

∑
j=1

Fi j −cvi)/mi (3.14)

Allein durch die Differentialgleichung ist das Problem nicht vollständig spezifiziert. Bei Anfangswert-
problemen werden zu einem festgelegten Startzeitpunktt0 zusätzlich Startwerte für alleri angegeben.
Randwertprobleme hingegen verteilen die n vorgegebenen Werte auf mehrere Zeitpunkte. Statt die Wer-
te explizit anzugeben, kann das System auch durch zusätzliche algebraische Gleichungen vervollständigt
werden. Bei unserem Feder-Masse-Systems handelt es sich umein Anfangswertpoblem:

ri(t0) = r
0
i (3.15)

vi(t0) = v
0
i i = 1..N (3.16)

3.3.2 Numerische L̈osung

Für die Simulation physikalischer Systeme müssen die Daten in eine geeignete diskrete Form gebracht
werden. In unserem Fall ist dies in der räumlichen Dimension nicht nötig, da das zugrundeliegende
Objektmodell schon diskret vorliegen. Neben der Raumdimension muss auch die zeitliche Dimension
diskretisiert werden. Im einfachsten Fall wird eine konstante Schrittweite∆t vorgegeben. Raffiniertere
Verfahren passen ihreSchrittweitedem aktuellen Systemzustand an und können so numerische Proble-
me vermeiden oder an besonders einfachen Stellen durch große Schritte Zeit einsparen. Die adaptive
Wahl ist vor allem bei hochdimensionalen System eher problematisch. Auf solche Optimierungen wird
deshalb nicht weiter eingegangen.
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Numerische Verfahren werden nach ihrerGenauigkeitim Vergleich zur korrekten Lösung beurteilt. Aus-
serdem verdient ihrenumerische Stabilität besondere Aufmerksamkeit. Numerisch instabile Algorith-
men können dazu führen, dass das untersuchte System eine Reihe von extremen, nichtvorhersagbaren
und chaotischen Zustandsänderungen durchläuft. Die Ergebnisse einer solchen Berechnung sind in der
Regel unbrauchbar.

3.3.2.1 Explizite Verfahren

Explizite Verfahren sind nicht unter allen Konfigurationenstabil. Der Benutzer muss deshalb bei der
Simulation aufpassen und dafür sorgen, dass dieCourant-Bedingungfür die maximal mögliche Schritt-
weite eingehalten wird, welche von der Diskretisierung desRaumes abhängt. Explizit angeben läßt sich
eine solche Bedingung allerdings nur bei einfachen Modellbeispielen.

Die einfachsten expliziten Verfahren basieren auf der Taylorentwicklung um den Funktionswertr zur
Zeit t:

r(t ±δt) = r(t)± ṙ(t) ·δt +(r̈(t) ·δt2)/2+
∞

∑
k=3

(r(k) ·δtk · (±1)k)/k! (3.17)

DasExplizite Euler-Verfahrenapproximiert den Zustand des neuen Zeitpunkts, indem es eine diskrete
Schrittweite∆t einführt und Terme der Entwicklung ab einer Ordnung von zwei ignoriert.

rt±∆t = rt ±∆t · ṙt (3.18)

Gelöst wird das Anfangswertproblem, indem die Werte des aktuellen Zeitschritts t zum neuen Zeit-
punkt t + ∆t ’integriert’ werden. Um ein größeres Zeitintervall zu durchschreiten, wird die Gleichung
iterativ auf den jeweils aktuellen Zustandrt angewandt. Soll ein gekoppeltes Gleichungssystem aus
mehrern Differntialgleichungen erster Ordnung gelöst werden, dann ist es nötig, jede einzelne dieser
Gleichungen zu integrieren. Beispielsweise sind es beim Feder-Masse-System pro Schritt und Teilchen
zwei Gleichungen (siehe 3.13 und 3.14). Addiert man die zweiNäherungen zweiter Ordnung, so erhält
man das etwas bessereVerlet-Verfahren. Der Vorteil dieser Methode ist, dass die Geschwindigkeiten
nicht explizit integriert werden müssen. Allerdings werden bei der Integration die Positionen der beiden
letzten Zeitschritte benötigt:

rt+∆t = 2·rt −rt−∆t + r̈t ·∆t2 (3.19)

Methoden höherer Ordnung, wie dasRunge-Kutta-Verfahrenvierter Ordnung (RK4) bieten eine größere
Genauigkeit. Pro Zeitschritt werden die rechten Seiten desSystems an mehreren Stellen mit Hilfe von
Eulerschritten ausgewertet. Der neue Systemzustand ergibt sich aus einem gewichteten Mittel der Zwi-
schenergebnisse. Bei RK4 gehen in die Integration zusätzlich zwei Auswertungen zur Zeitt + ∆t/2
sowie eine Auswertung zur Zeitt +∆t ein (Abb 3.5). In der Praxis gilt RK4 als geeigneter Kompromiss
aus Aufwand und Genauigkeit und wird deshalb oft im Zusammenspiel mit einer adaptiven Schrittwei-
tenanpassung eingesetzt.
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t0t0 t0 + ∆tt0 + ∆t t0 +2·∆tt0 +2·∆t

rr

tt

Euler-Integration Runge-Kutta-Methode (RK4)

Abbildung 3.5: Die kleinen Punkte verdeutlichen die zusätzlichen Stellen, an denen die rechten Sei-
ten der Entwicklungsgleichungen ausgewertet werden. Die großen Punkte entsprechen den integrierten
Werten des jeweiligen Zeitschritts.

3.3.2.2 Implizite Verfahren

In der Gleichung desImpliziten-Euler-Verfahrenserscheinen sowohl auf der linken, als auch auf der
rechten Seite die gesuchten Werte des neuen Zeitpunkts.

rt+∆t = rt + ∆t · f (rt+∆t , r) (3.20)

Da die Wertert+∆t noch nicht bekannt sind, kann die Gleichnung nicht einfach integriert werden. Ist eine
größere Menge solcher Differentialgleichungen gekoppelt, dann muss pro Zeitschritt ein kompliziertes,
nichtlineares Gleichungssystem gelöst werden. Dieser zusätzlich Aufwand kann sich aber lohnen, da die
impliziten Methoden numerisch stabil sind und deshalb einegößere Schrittweite∆t als bei den expliziten
Methoden gewählt werden kann. Aufgrund der Komplexität dieser Lösungsverfahren werden hier keine
weiteren Details angegeben.

3.4 Zusammenfassung

Es wurden die physikalischen Grundlagen und das numerischeRüstzeug für die Simulation eines Feder-
Masse-Systems vorgestellt. Die Entscheidung das einfacheVerlet-Verfahrenzu implementieren wird im
nächsten Kapitel überGPGPU-Anwendungen näher begründet.



19

4 Numerische Simulation mit der GPU

4.1 Einführung

In den letzten Jahren hat sich eine neue Art von Hochleistungsprozessoren für Grafikanwendungen eta-
bliert. Angetrieben durch den mittlerweile milliardenschweren Markt für Computerspiele wurde und
wird die Technik derGPUs (Graphics Processing Units) in relativ kurzen Produktzyklen immer wei-
ter verbessert. Aus einfachen 2D-Grafikkarten haben sich nach und nach Grafikchips entwickelt, die
komplexe 3D-Szenen flüssig darstellen können. Neben der Spieleentwicklung profitiert insbesondere
auch die Visualisierung von wissenschaftlichen Daten und die technische Konstruktion (CAD) von den
neuen Möglichkeiten. Aufgrund der großen Nachfrage und ihrer weiten Verbreitung werden die 3D-
Grafikkarten zu erschwinglichen Preisen angeboten. Ihre Architektur wurde speziell auf die Anforde-
rungen derGrafikpipeline[10] zugeschnitten, wobei die Leistungsfähigkeit auf ihrem Spezialgebiet die
üblicher CPUs um ein Vielfaches übersteigt. Mittlerweile sind die GPUs teilweise programmierbar. Dies
ermöglicht den Programmierern, immer realistischere Materialien nachzubilden und raffiniertere Effekte
in ihre neuesten Spiele zu integrieren. Durch die hinzugekommene Flexibiliät und Aufgrund des guten
Preis-Leistungsverhältnisses sind 3D-Grafikkarten inzwischen auch für Nichtgrafikanwendungen von
Interesse (General Purpose Computing, GPGPU).

Zunächst wird im Abschnitt’Stream Computing’das der GPU zugrundeliegende Rechenparadigma vor-
gestellt. In dem folgenden Unterkapitel wird dann die Grafikpipline und ihre Implementation in der
Hardware besprochen. Auch einige interessante GPU-Features werden erläutert. Das Kapitel’GPU
Programmierung’beschäftigt sich mit den zur Verfügung stehenden Programmiersprachen.’General
Purpose Computing mit der GPU’spezifiziert eine Klasse von Algorithmen, die sich für eineImple-
mentation auf der GPU besonders eignen und erörtert die dabei auftretenden Problemstellungen. Zu-
letzt wird insbesondere die numerische Simulation auf der GPU am Beispiel des Feder-Masse-Modells
ausführlich beschrieben.

4.2 Stream Computing

Heutige Prozessoren, die in üblichen Arbeitsplatzrechnern eingesetzt werden, basieren auf der seriellen
Von-Neumann-Architektur. Es handelt sich meist um SISD-CPUs (Single Instruction Single Data), die
keine starke Parallelverarbeitung von Daten vorsieht. DerProzessorkern besteht aus Steuereinheiten
und ALUs, die über einen Speicherbus mit Daten und Anweisungen versorgt werden. Der Transport der
Daten aus dem Hauptspeicher zur CPU ist relativ langsam. Deshalb werden Daten in einer mehrstufigen
Cachearchitektur direkt im CPU-Kern verwaltet. Dies kann die Zugriffszeit bei mehrmaliger Benutzung
ein und desselben Datenelements drastisch reduzieren. Ihrallgemeiner Aufbau macht die CPUs sehr
flexibel und für eine Vielzahl von Problemen einsetzbar. Gleichzeitig bedeutet es aber auch, dass ein
großer Teil der Transistoren für Caches und Steuerschaltungen statt für Recheneinheiten verwendet
wird.

Berechnungen, bei denen auf den gleichartigen Datenelemente fortlaufender Datenströme (Streams) im-
mer wieder die selben Operationen angewandt werden, können von den großen Caches nicht profitieren.
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Hier kommt es vielmehr auf einen möglichst hohen Durchsatzan. Sind die Berechnungen auf den einzel-
nen Stromelementen zusätzlich voneinander unabhängig,so könnten sie theoretisch parallel ausgeführt
werden.Stream Computingist ein Rechenkonzept, welches speziell für solche Problemstellungen opti-
miert ist.Rechenkernel(Abb. 4.1) führen vordefinierte Operationen auf den Eingabeströmen durch und
produzieren neue Ausgabeströme. Durch das Replizieren eines Kernels steigt der Datendurchsatz beina-
he linear mit der Anzahl der Kopien an (Parallelität auf Datenebene). Komplexere Aufgaben lassen sich
durch das Hintereinanderschalten mehrerer Kernels realisieren (Fliessbandprinzip).Pipelining erlaubt
dabei das gleichzeitige Verarbeiten aufeinanderfolgender Stromelemente in den hintereinandergeschal-
teten Kernels (Parallelität auf Task-Ebene). Um Wartezeiten (Pipeline Stalls) zwischen den Stufen zu
vermeiden, sollten diese besonders gut aufeinander abgestimmt werden. Zusätzlich können elementare
Operationen, wie zum Beispiel Vektoraddition auf niedriger Ebene parallelisiert werden (Parallelität auf
Anweisungsebene).

... Kernel
1

N

1

M
...

Abbildung 4.1: Stream Computing Kernel

Aufgrund der festgelegten Aufgaben der einzelnen Rechenkernel kann die Steuerhardware relativ ein-
fach ausfallen. Statt großer Caches werden nur kleine Bufferspeicher zwischen den verschiedenen Stu-
fen der Berechnung benötigt.Stream Computingerlaubt deshalb eine hochgradig effiziente und parallele
Verarbeitung von Daten. Der Performancegewinn gegenüberallgemeinen Prozessoren ist dementspre-
chend hoch.

4.3 GPUs

Die Architektur des GPU-Kerns ist am Stream-Computing-Modell orientiert und implementiert die Gra-
fikpipeline für dreidimensionale Szenen in Hardware. Die Grafikpipeline beschreibt den Weg einer Sze-
ne vom virtuellen 3D-Modell bis zur zweidimensionalen Ausgabe auf dem Bildschirm bzw. im Fra-
mebuffer. Die verschiedenen Kernels und Streams sind in Abbildung 4.2 skizziert. Zunächst werden
die einzelnen Objektvertices (Vertexstrom), die in Modellkoordinaten vorliegen, transformiert und in
den Bildraum projiziert. Bei programmierbaren GPUs wird diese Funktionalität, neben anderen, in den
Vertexeinheiten realisiert. Aus dem Strom der transformierten Vertices und deren Nachbarschaftsbezie-
hungen wird nun eine Folge von Dreiecksprimitiven erstellt(Dreiecksstrom). Die Dreiecke durchlaufen
daraufhin eine Reihe von Tests, wobei sie verworfen werden,wenn sie komplett außerhalb des Darstel-
lungsvolumens liegen (Culling), oder wenn sie von anderen Primitiven verdeckt werden (Early Z-Test).
Primitve, die den Test überstanden haben werden anschließend rasterisiert. Die programmierbaren Frag-
menteinheiten führen auf den Elementen des resultierenden Fragmentstroms eine Reihe von Operationen
aus. Als Ergebnis der Berechnung erhält man die Farbe des Fragments. Diese hängt in der Regel von
den Materialeigenschaften der zugrundeliegenden Objektoberfläche und den Lichtern der Szene ab. Die



4.3. GPUS 21

bearbeiteten Fragmente werden daraufhin in das Renderzielgeschrieben. Dies kann der Framebuffer,
aber auch eine Textur sein. DieBlending-Hardwareerlaubt es dabei, die vorherigen Pixelinhalte mit
den neuen Fragmentfarben über verschiedene Operationen zu verknüpfen. In der Regel ist die Zahl der
Fragmente nach dem Rasterisieren sehr viel größer als die Zahl der Eingabevertices. Deshalb sind nor-
malerweise mehr Fragmenteinheiten als Rastereinheiten vorhanden. Die einzelnen Einheiten arbeiten
parallel und verfügen über eigene Register und kleine Caches.

programmierbare
Vertexeinheit

programmierbare
Fragmenteinheit

transformierte Vertices

Vertices

primitive
assembly

Culling 
Rastereinheit,
Early Z-Test

Dreiecke

Fragmente
Blending

Framebuffer

bearbeitete

Fragmente

Textur-
speicher

Textur-
interpolation

Pixel

Z-Test, 
Stenciltest

Abbildung 4.2: Die 3D Grafikpipeline in der GPU Implementation

4.3.1 GPU Hardware

GPUs enthalten zwei unterschiedliche Typen von programmierbaren Einheiten und eine Reihe von fest-
eingebauten Funktionen. Dieser Abschnitt geht auf die fürdie GPGPU-Programmierung relevanten
Merkmale und Restriktionen der Grafikhardware ein. Die folgenden Angaben beziehen sich auf die
NVidia Geforce 6800.

Texturierung

Texturmapping war einer der ersten Aufgaben, die Grafikkarten übernommen haben. Mittlerweile wer-
den neben 2D-Texturen und Cube-Maps auch 3D-Texturen unterstützt. Pro Texel stehen bis zu vier
Komponenten zur Verfügung, die in einem Floating-Point-Format gespeichert werden können. Im fp16-
Format ist es möglich, verschiedene Texturfiltermethodenin Hardware auszuführen. Schnelle Filterung
von fp32-Texturen beherrscht die Hardware allerdings nochnicht.

(early) Z-Test

Beim Rastern größerer Mengen von Primitiven kommt es häufig vor, dass sich Fragmente gegenseitig
verdecken, da sie in der Bildausgabe auf das gleiche Pixel fallen. Deshalb werden im Tiefenpuffer die
relativen Tiefenwerte der gerenderten Pixel gespeichert.Basierend auf dem Tiefenpuffereintrag kann
der Z-Testentscheiden, ob das aktuelle Fragment überhaupt sichtbarist, und ob es verworfen werden
soll. Jedoch wird die Entscheidung erst nach der Ausführung des Fragmentprogramms getroffen. Um
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unnötige Aufrufe des Programms zu vermeiden, versucht derEarly Z-Testschon vorher die Fragmente
zu verwerfen. Allerdings ist das Testen jedes einzelnen Fragments in dieser frühen Stufe der Pipeline zu
zeitaufwendig, deshalb werden größere, zusammenhängende Fragmentblöcke auf einmal getestet.

Occlusion Query

Über Occlusion Queryskann die Anzahl der Fragmente abgefragt werden, die den Z-Test und den
Stenciltestbestanden haben. Der Stenciltest wird in dieser Arbeit nicht verwendet.

Blending

Am Ende der Rendering-Pipeline werden die Fragmente mit demschon vorhandenen Framebufferin-
halt über verschiedene Operationen verknüpft. Fragmente im fp32-Format werden von der Blending-
Hardware nicht unterstüzt.

Programmierbare Einheiten

Aktuelle Hardware erlaubt den Zugriff auf Texturdaten sowohl im Vertex- als auch im Fragmentpro-
gramm. Jedoch ist eine Texturfilterung bei Vertexprogrammen nicht in Hardware möglich. Generell
sind Texturlookupsverhältnismäßig zeitaufwendige Operationen und sollten möglichst durch gleich-
zeitig laufende Berechnungen kaschiert werden. Es gilt mehrstufig abhängige Texturabfragen sowohl
im Vertex- als auch im Fragmentprogramm zu vermeiden. Auch Dynamische Flusskontrolle, wie Ver-
zweigungen und Schleifen, werden von der Hardware unterst¨utzt. Dabei wird der Programmzweig je-
des Vertex unabhängig von den anderen Vertices ausgeführt. Im Fragmentprogramm hingegen müssen
Operationen immer auf einer größeren Menge von Fragmentenausgeführt werden. Deshalb kann es
passieren, dass beide Zweige einer if-Anweisung ausgewertet werden und danach entschieden wird,
welches Ergebnis verwendet wird. Vor allem Schleifen, deren Anzahl von Durchläufen von Fragment
zu Fragment stark variiert, sollten deshalb vermieden werden. Die Resultate der Berechnungen des Frag-
mentprogramms können in bis zu vier Rendertargets geschrieben werden.

4.3.2 GPU Programmierung

Anfangs konnten die Fragment- und Vertexeinheiten der GPU nur mit einer maschinennahen Assemb-
lersprache programmiert werden. Mittlerweile gibt es eineReihe von höheren Programmiersprachen wie
Cg, HLSL und GLSL. Die C-nahe Shadersprache GLSL (OpenGL Shading Language) ist seit Version
2.0 in OpenGL integriert und wurde für die Imlementation des Visualiserungstools verwendet [11, 12].
Bei OpenGL werden die Shaderquelltexte zur Laufzeit vom Treiber kompiliert und auf die GPU gela-
den. Vor dem eigentlichen Aufruf der GLSL-Programme müssen die Renderziele der Berechnung und
die Programmparameter festgelegt werden. Soll in Texturengerendert werden, dann geschieht dies mit
Hilfe einesOpenGL Framebuffer Objekts(FBO), an das die entsprechenden Ziel-Texturen gebunden
sind. Über Uniforme Parameter, die den Vertex-und Fragmentprogrammen übergeben werden, kann
den Programmen zum Beispiel mitgeteilt werden, welche Textureinheiten sie bei Lookups verwenden
sollen. Zusätzlich ist es möglich, zu jedem Eingabevertex mehrereVertexattributeanzugeben, die im
Vertexprogramm abgefragt werden können.
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4.4 General Purpose Computing mit der GPU

Die hohe Leistungsfähigheit der GPUs bietet sich dank ihrer Programmierbarkeit auch für grafikfrem-
de Probleme an [13, 14, 15]. Viele wissenschaftliche oder geometrische Algorithmen lassen sich so
umformulieren, dass sie auf dem Grafikprozessor ausgeführt werden können. In den letzten Jahren wur-
den verschiedene klassische Algorithmen auf der GPU implementiert. Zu ihnen gehören zum Beispiel
die FFT, Matrix Multiplikation oder auch Strömungssimulationen [16, 17]. Besonders geeignet sind
Probleme mit einer hohenarithmetischen Intensität, bei denen der Quotient aus der Anzahl der Re-
chenoperationen und der dabei übertragenen Datenmengen groß ist. Deshalb sollten die Berechnungen
auf den einzelnen Stromdatenelementen möglichst unabhängig voneinander sein. Je höher der Grad der
Abhängigkeit ist, umso mehr Daten müssen übertragen werden, was letztendlich eine schlechtere Per-
formance zur Folge hat. Die Kommunikation zwischen den Stromelementen untereinander kann nicht
immer umgangen werden, wobei es zwei Möglichkeit gibt, Daten auszutauschen.Gather-Operationen
rufen die Daten anderer Stromelemente ab.Scatter-Operationendagegen teilen das Ergebnis einer Ker-
nelberechnung anderen Stromelementen mit. NormalerweisesindGather-Operationenvorzuziehen, da
sie nur lesende RAM-Speicherzugriffe erfordern. Diese sind auf der GPU durch Texturlookups reali-
sierbar.Scatter-Operationenhingegen können nur über umständliche Tricks auf der GPUdurchgeführt
werden. Die Eingabedaten eines CPU-Algorithmus sind häufig im Hauptspeicher in einer Array- oder
Zeigerdatenstruktur gespeichert. Um bei einer GPU-Berechnung als Eingabe dienen zu können, müssen
die Daten vorher in Texturform gespeichert werden, weshalbdynamische Zeigerstrukturen nur schwer
realisierbar sind.̈Ublicherweise wird auch das Resultat der Berechnung in eineTextur geschrieben.
Da die programmierbaren Einheiten intern mit floating-point Zahlen rechnen, ist es sinnvoll, die Tex-
turdaten in diesem Format bereitzustellen. Im Folgenden wird eine grundlegende Vorgehensweise bei
der Implementation von GPGPU-Algorithmen am Beispiel von OpenGL erklärt. Für die eigentlichen
Berechnungen sind die Fragmenteinheiten den Vertexeinheiten aufgrund ihrer größeren Gesamtrechen-
leistung vorzuziehen.

Die Daten auf denen der Algorithmus ausgeführt werden soll, sind in Texturen gespeichert, wobei in
jedem Texel ein Datenelement mit maximal vier Werten enthalten ist. Werden mehr als vier Werte pro
Element benötigt, dann müssen mehrere Eingabetexturen erstellt werden. Das Fragmentprogramm soll
auf jedem Datenelement der Eingabe einmal ausgeführt werden. Zunächst wird die Größe des geren-
derten Bildes (Viewport) auf die Texturauflösung eingestellt (Listing 4.1, Zeile 1). Die Projektions und
Modelview-Matrix werden so angepasst (Zeilen 2-6), dass ein in den Bildraum projiziertes Rechteck
exakt den Viewport ausfüllt (Abb. 4.3, Vertex Transformation). Zeile 7 stellt sicher, dass die inneren
Bereiche des Rechtecks rasterisiert werden. In den folgenden Zeilen werden die Eingabe- und Ausgabe-
texturen festgelegt (Zeilen 9-14) und das gewünschte Fragmentprogramm initialisiert (Zeile 17, 18). Die
eigentliche Berechnung stößt man durch das Zeichnen des Rechtecks an. Die Texturkoordinaten, die da-
bei angegeben werden, legen den Berechnungsraum fest. Das Rechteck wird genau inTexresX ·TexresY
Fragmente rasterisiert. Somit wird das Fragmentprogramm für jedes Viewportpixel exakt einmal aus-
geführt.Über die bilinear interpolierten Texturkoordinaten des Rechtecks können die zugehörigen Ein-
gabedaten aus den Datentexturen gelesen werden (Abb. 4.3, Texturlookups). Die Texturfilterung aller
Datentexturen muss aufNearest Neighboureingestellt sein, sonst kann es passieren, dass interpolier-
te Datenwerte zurückgeben werden. Das Fragmentprogramm kann mehrere Resultate pro Fragment in
die vom FBO spezifizierten Texturen schreiben. Ein freier Schreibzugriff auf die Ausgabetexturen ist
allerdings nicht möglich, da die Position des verarbeiteten Fragments der Position des Texels in der
Ergebnistextur entspricht. Iterative Algorithmen verwenden die Ergebnistexturen in weiteren Render-
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durchläufen als neue Eingabe, ohne dass die Daten vorher inden Hauptspeicher zurückgelesen werden
müssen.
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Abbildung 4.3: Durch das Zeichnen eines speziellen Rechtecks, kann im Fragmentprogramm auf die
einzelnen Texel der Datentexturen zugegriffen werden.

Listing 4.1: Initialisierung und Starten einer GPGPU-Berechnung mit OpenGL

1 g lV iewpo r t ( 0 , 0 , TEXRESX , TEXRES Y ) ;
2 glMatr ixMode (GL PROJECTION ) ; / / P r o j e k t i o n s−Matr ix s e t z e n
3 g l L o a d I d e n t i t y ( ) ;
4 gluOrtho2D (−1 . 0 , 1 . 0 ,−1 . 0 , 1 . 0 ) ;
5 glMatr ixMode (GLMODELVIEW) ; / / Modelview−Matr ix s e t z e n
6 g l L o a d I d e n t i t y ( ) ;
7 glPolygonMode (GLFRONT AND BACK , GL FILL ) ;
8

9 / / E ingabe : N D a t e n t e x t u r e n
10 g l A c t i v e T e x t u r e (GLTEXTURE( i −1 ) ) ; g l B i n d T e x t u re (GLTEXTURE 2D , DATATEX i ) ;
11

12 / / Ausgabe : zb . i n ( mehrere ) Tex tu ren über FBOs
13 glBindFramebuf ferEXT (GLFRAMEBUFFEREXT, FBO ) ;
14 g lDrawBuf fe r (DRAWBUFFERS) ;
15

16 / / Kerne l : Fragmentshader−Programm i n i t i a l i s i e r e n
17 glUseProgram (FRAGMENTPROGRAMM) ;
18 g lUn i fo rm ( v a r i a b l e i d , . . . Werte . . . ) ;
19

20 / / Berechnung s t a r t e n
21 g lBeg in (GLQUADS ) ;
22 g lTexCoord2 f ( 0 . 0 , 0 . 0 ) ; g l V e r t e x 2 f (−1 .0 ,−1 .0 ) ;
23 g lTexCoord2 f ( 1 . 0 , 0 . 0 ) ; g l V e r t e x 2 f ( 1 . 0 ,−1 . 0 ) ;
24 g lTexCoord2 f ( 1 . 0 , 1 . 0 ) ; g l V e r t e x 2 f ( 1 . 0 , 1 . 0 ) ;
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25 g lTexCoord2 f ( 0 . 0 , 1 . 0 ) ; g l V e r t e x 2 f (−1.0 , 1 . 0 ) ;
26 glEnd ( ) ;

4.5 Feder-Masse-Modell auf der GPU

Die Grundlagen des Feder-Masse-Modells wurden in Kapitel 3ausführlich besprochen. Aufgrund ihrer
Einfachheit wurde die explizite Verlet-Integration als numerisches Integrationssverfahren implementiert
[18, 19]. Methoden höherer Ordnung, wie RK4, bieten zwar eine bessere Genauigkeit, allerdings er-
fordert die größere Zahl von Funktionsauswertungen zusätzliche Texturlookups, welche Stalls in der
GPU-Pipeline verursachen können und so die Berechnungen verlangsamen. Implizite Verfahren erfor-
dern das Lösen komplizierter Gleichungssysteme [20, 21].

Die explizite Verlet-Gleichung für die Teilchenintegration lautet:

r(t + ∆t) = 2·r(t)−r(t −∆t)+
Ftotal ·∆t2

m
(4.1)

In die Gleichung geht die GesamtkraftFtotal ein, die auf ein Teilchen wirkt. Sie setzt sich aus der Feder-
kraft und der Stokes’schen Reibungskraft zusammen (Glg. 3.11), wobei der Vorfaktor für die Reibung,
in den die Viskosität und der Teilchenradius eingehen, aufeins gesetzt wird. Zusätzlich kann das dy-
namische Verhalten der Geometrie über zwei skalare Faktoren für die Stärke des Feldesffac und die
Dämpfungdfac eingestellt werden. Die Gesamtkraft ergibt sich zu

Ftotal =
ffac ·V (r(t), t)−v(t)

∆t
−F f eder−dfac ·v(t) (4.2)

mit

v(t) =
r(t)−r(t −∆t)

∆t
(4.3)

Es gibt zwei grundsätzlich verschiedene Vorgehensweisenum die gesamte FederkraftF f eder zu be-
stimmen. Der vertexorientierte Gather-Ansatz berechnet die Abstände eines Vertex zu jedem einzelnen
seiner Nachbarn und akkumuliert die resultierenden Teilkräfte:

for (alle Teilchen i)
for (alle Nachbarn j von i)
Federkraft_Gesamt_i += Teilkraft_ij

Die Federkraft wird hierbei pro Feder zweimal berechnet. Einmal für das linke Teilchen und einmal für
das rechte. Ein kantenorientierter Scatter-Ansatz würdediese unnötigen Berechnungen vermeiden. Die
Kräfte, die von einer Feder ausgehen, werden berechnet undauf die zwei verbundenen Vertices verteilt.
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for (alle Federn i)
{

Federkraft_linker_Nachbar += Teilkraft_i
Federkraft_rechter_Nachbar += Teilkraft_i

}

Wie wir gesehen haben, werdenScatter-Operationenvon der GPU nur unzureichend unterstützt. Des-
halb wird trotz des höheren Aufwands die erste Methode verwendet.
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Abbildung 4.4: Die Vertex-Texturen speichern die Teilchenpositionen. Die Nachbarschafts- und die FB-
Textur enthalten die Informationen über die Federverbindungen zwischen den Teilchen.

Für die Berechnung eines neuen Zeitschritts sind jeweils die Positionen des aktuellen und des letzten
Zeitschritts nötig. Die Positionsinformationen werden hierzu in den RGB-Komponenten dreierVertex-
Texturengleicher Auflösung gespeichert (Abb. 4.4). Eine expliziteBerechnung und Speicherung der Ge-
schwindigkeiten ist nicht nötig. In einer weiteren Texturder selben Auflösung (Nachbarschafts-Textur)
sind jeweils die zugehörigen Massen m der Teilchen, die Anzahl N der über Federn verbundenen Nach-
barn und eine zweidimensionale Texturkoordinate (s,t) enthalten. Diese Texturkoordinate ermöglicht den
Zugriff auf die Nachbarschaftsdaten eines Teilchens (Federdaten und Backlinks), die in einem N-Texel
breitem Nachbarblock in der FB-Textur gespeichert sind. Jedes einzelne Texel dieses Blocks enthält
einen Backlink (s,t) zu den Positionsdaten eines Nachbarteilchens, sowie die zugehörige Federruhelänge
(rl) und Federsteifigkeit (st) der Feder, über die die Teilchen verbunden sind. Ein Texturzeilenumbruch
innerhalb eines solchen Blocks ist nicht erlaubt, da sonst eine aufwendige Berechnung der Texturko-
ordinaten vor dem Zugriff auf die Nachbardaten nötig ist. Die Nachbarblöcke verschiedener Vertices
werden aufeinanderfolgend in den Zeilen der FB-Textur gespeichert, wobei die maximal erlaubte Tex-
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turbreite von 4096 Texeln ausgenutzt wird. Alle vier Texturen speichern pro Texel vier Komponenten
im fp32-Format.

Das Strömungsfeld ist als Vektorfeld gegeben und wird in einer 3D-Textur gespeichert. Da die aktu-
elle Generation von GPUs keine hardwareseitige Unterstützung für Interpolation in fp32 3D-Texturen
anbietet, müssen die Komponenten des Feldes vor dem Textur-Download auf die GPU in das 16bit
Half-Float-Formatder GPU konvertiert werden.

Der numerische Algorithmus ist als Fragmentprogramm implementiert (Listing 4.2). Zunächst werden
die Positionen der letzten beiden Zeitschritte in den Vertex-Texturen nachgeschlagen (Zeile 3 und 4).
Darauf folgen ein oder zwei weitere, von den ermittelten Positionen abhängige, Lookups in den Vektor-
feldtexturen. Bei instationären Feldern resultiert der Feldvektor zur Simulationszeit t aus einer linearen
Interpolation der zwei angrenzenden Feldsamples (Zeilen 11-13). Zeile 19 holt die nötigen Teilchenattri-
bute und die Texturkoordinaten für den Zugriff auf die Nachbarschaftsinformation. Die darauf folgende
Schleife ermittelt die gesamte Federkraft, die auf das aktuelle Teilchen einwirkt (Zeilen 25-34). Am
Ende werden die Feder-, Reibungs- und Dämpfungskräfte addiert (Zeilen 37-39) und anschließend wird
die Integrationsgleichungen angewandt. Das Resultat schreibt das Programm als Fragmentfarbe in die
Ausgabetextur.

Listing 4.2: Auszüge aus dem GLSL Quelltext des Verlet-Integration-Shaders
1

2 / / a k t u e l l e und l e t z t e V e r t e x p o s i t i o n ho len
3 vec4 p o s t = t e x t u r e 2 D ( v T e x t u r t , g l TexCoord [ 0 ] . s t ) ;
4 vec4 p o s t a l t = t e x t u r e 2 D ( v T e x t u r t a l t , g l TexCoord [ 0 ] . s t ) ;
5

6 / / V e k t o r f e l d s a m p l e
7 # im F a l l von s t a t i o n ä r e n F e l d e r n
8 vec4 V = t e x t u r e 3 D ( v e c t o r F i e l d 0 , p o st . xyz / v fAu f l ö sung ) ;
9

10 # im F a l l von i n s t a t i o n ä r e n F e l d e r n
11 vec4 fv0 = t e x t u r e 3 D ( v e c t o r F i e l d 0 , p o st . xyz / v fAu f l ö sung ) ;
12 vec4 fv1 = t e x t u r e 3 D ( v e c t o r F i e l d 1 , p o st . xyz / v fAu f l ö sung ) ;
13 vec4 V = t r e l a t i v ∗ f v0 + (1.0− t r e l a t i v )∗ f v1 ;
14

15 / / N a c h b a r s c h a f t s−und T e i l c h e n a t t r i b u t e
16 / / np . s t = T e x t u r k o o r d i n a t e f ü r NB−Tex tu r
17 / / np . z = Nachba ranzah l
18 / / np .w = Te i l chenmasse
19 vec4 np = t e x t u r e 2 D ( npTex , g lTexCoord [ 0 ] . s t ) ;
20

21 / / i n t i a l i s i e r e F e d e r k r a f t
22 vec3 F f e d e r = {0 .0 , 0 . 0 , 0 . 0} ;
23

24 / / e i n z e l n e F e d e r k r ä f t e aufsummieren
25 f o r ( f l o a t i = 0 . 0 ; i<np . z ; i ++)
26 {
27 vec4 ns = t e x t u r e 2 D ( nsTex , np . s t + i∗ vec2 ( t e x e l d s , 0 . 0 ) ) ;
28 vec4 ne igh = t e x t u r e 2 D ( vTex , ns . s t ) ;
29

30 vec3 s p r i n g = p o st . xyz − ne igh . xyz ;
31 f l o a t l = l e n g t h ( s p r i n g ) ;
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32 f l o a t f a c t o r = f a c s t e i f i g k e i t∗ns .w∗ ( ( l − ns . z ) / l ) ;
33 F f e d e r += f a c t o r ∗ s p r i n g ;
34 }
35

36 / / Gesamtk ra f t
37 vec3 F t o t a l = ( f f a c∗V − ( p o s t . xyz−p o s t a l t . xyz ) / d t ) / d t
38 − F f e d e r
39 − d f a c ∗ ( p o s t . xyz−p o s t a l t . xyz ) / d t ;
40

41 / / Ve r le t− I n t e g r a t i o n
42 g l F r a g C o l o r . xyz = 2∗ p o s t . xyz − p o s t a l t . xyz
43 + F t o t a l∗ d t∗ d t / np .w;
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5 Implementation

5.1 Einleitung

Dieses Kapitel geht näher auf das implementierte Visualisierungsprogramm ein. Zuerst wird ein̈Uber-
blick über das Systemdesign gegeben. Danach werden die aufgetretenen Teilprobleme einschließlich
Lösungsvorschlägen in separaten Abschnitten behandelt. Auf Implementationsdetails wird an inter-
essanten Stellen eingegangen. Ferner wird die grafische Benutzeroberfläche (GUI) und die Bedienung
des Programms erläutert.

Systemüberlick

Das komplette Visualisierungstool wurde unter Windows XP mit Visual Studio .Net 2003 in C++ und
OpenGL programmiert. Es setzt auf ein schon vorhandes Basis-Framework auf und verwendet wie die-
ses GLUT [20]. In Abbildung 5.1 ist eine vereinfachteÜbersicht über die Programmklassen und de-
ren Zusammenhänge dargestellt. Die Hauptfunkionalitätsteckt in derGeometrieadvektions-Klasse. Sie
übernimmt alle Simulationsaufgaben, die Interaktion mitden Objekten, das automatische Platzieren der
Versuchsobjekte, die Geometrierandbehandlung sowie das Rendern. DieUmgebungs-Klassedient dage-
gen hauptsächlich der Initialisierung und Verwaltung desSystems. Sie enthält dieHauptschleife, die für
jedes gerenderte Bild einmal aufgerufen wird und die Vektorfeld-Streaming-Komponente. Außerdem
implementiert sie die Schnittstelle zum Benutzer. Die restlichen Klassen realisieren Teilaufgaben, die
für die Geometrieadvektion relevant sind. Die geometrischen Versuchsobjekte, deren Bewegungen im
Strömungsfeld visualisiert werden, werden vomGPU-Daten-Generatorvervielfältigt und in Texturen
gespeichert. Außerdem werden für die Simulation geeignete Parameter benötigt. Diese berechnet der
Feldanalysatorin Abhängigkeit verschiedener Eigenschaften des zugrundeliegenden Strömungsfeldes.
DerGLSL-Laderverwaltet die Vertex- und Fragmentprogramme, die das System verwendet.

Hauptumgebung

* Initialisierung
* Interaktion
* Hauptschleife
* GUI
* Streaming

Geometrie Advektion

* Randbehandlung
* Num. Integration
* Objekt Interaktion
* Objekt Platzierung
* Picking & Selektion
* Rendern

GLSL Lader

* Shader-Programme

GPU-Daten-Generator

* Daten-Texturen

Geometrie

Geometrie::Kugel Geometrie::Schlauch

Vektorfeldanalysator

* Simulationsparameter

Abbildung 5.1: Systemaufbau des Visualisierungtools
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Im UnterkapitelBedienung und Interaktionist eine kurze Einführung in die Benutzung des Programms
gegeben. In den darauf folgenden Abschnitten werden die Hauptfunktionen in der Reihenfolge behan-
delt, in der sie von der Hauptschleife ausgeführt werden (Abb. 5.2):

Geometrieprobenbehandelt die Generierung und die Interaktion mit den Proben sowie die Problema-
tik einer geeigneten Platzierung im Strömungsfeld.Simulationgeht nochmals auf die Integration der
Geometrie und auf die Wahl von Simulationsparametern ein.Randbehandlungzeigt die besondere Be-
handlung von Geometrieproben auf, die am Rand des Simulationsgebietes angekommen sind. DasRen-
dern der Geometrie und dasStreaming der Vektorfelddatenwird in den letzten beiden Unterkapiteln
behandelt.

Objekt Platzierung 

Geometrie integrieren

Geometrie Randbehandlung

Rendering

VF-Streaming 

5.3 Geometrieproben

5.4 Simulation

5.5 Randbehandlung

5.6 Rendering

5.7 Vektorfeld-Streaming

Abbildung 5.2: Die Hauptschleife wird für jedes gerenderte Bild einmal ausgeführt.

5.2 Bedienung und Interaktion

Das Programm muss mit dem Dateinamen einer Konfigurationsdatei (.par) als einzigem Parameter ge-
startet werden. In dieser Textdatei werden das Strömungsfeld und die Probenobjekte spezifiziert. Au-
ßerdem können die meisten Simulations- und Visualisierungsparameter festgelegt werden (Tabelle 5.1).
Jeder Eintrag muss in einer eigenen Zeile stehen. Kommentarzeilen, die mit dem Raute Zeichen begin-
nen, werden ignoriert. Fehlende Parameter werden vom Programm durch Standardwerte ersetzt. Wählt
man den Wert für die Simulationsschrittweite kleiner Null, dann werden die Schrittweite und der Fak-
tor für die Federsteifigkeit basierend auf einer automatischen Analyse des Strömungsfeldes bestimmt.
Als Versuchsobjekte stehen Kugeln und Schläuche zur Verf¨ugung, die aber nicht gleichzeitig verwendet
werden können. Mehrere Parameter für die Geometriegenerierung legen das Aussehen und die Eigen-
schaften des jeweiligen Typs fest. Wobei der Objektversatzzusammen mit der Startposition die eigent-
lichen Positionen der n Objekte bestimmt (posn = ob j pos+ n∗ob j o f f set). Soll das Feld mit Hilfe
von Saatobjekten untersucht weden, muss der Objektversatzauf den Standardwert eingestellt sein.

Nach dem Start des Programms ist der Begrenzungsrahmen des Vektorfeldes zu sehen. Der Ursprung
0 = (0.0,0.0,0.0) des Koordinatensystems ist durch ein farbiges Dreibein markiert und die Versuchs-
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Beschreibung Schlüsselwort erlaubte Werte Standardwert

Vektorfelddatensatz vfield Dateiname default.dat
Feldstreaming (an/aus) streamon 0, 1 0 (aus)
Feldstreaming Pufferanzahl streambuf > 0 5
Feldstreaming Puffer vorladen streampre (1..streambuf) 4
Feldstreaming Startzeitschritt streamoffset (0..#Zeitschritte-1) 0

Objekttyp obj type 0=Schlauch, 1=Kugel 1
Objekt Stützvertices (an/aus) obj v in 0,1 0 (aus)
Kugel Subdivision-Schritte obj spheresub 1..5 1
Schlauch Segmentanzahl obj tube seg >= 1 10
Schlauch Querschnittvertices obj tube v >= 3 3
Objektlänge obj length > 0.0 30.0
Objektradius obj radius > 0.0 2.0
Objektanzahl obj num 0..4096 1024
Objektposition obj pos (x,y,z)∈ R

3 (0.0, 0.0, 0.0)
Objektversatz obj offset (∆x,∆y,∆z) ∈ R

3 (0.0, 0.0, 0.0)

Simulationsparameter∆t sim dt > 0.0 0.1 sek
Simulationsparameter∆T sim dts > 0.5 2.0 sek
Simulationsfaktor Dämpfung sim fac d > 0.0 0.0 (aus)
Simulationsfaktor Feldstärke sim fac f > 0.0 10.0
Simulationsfaktor Federsteifigkeitsim fac s > 0.0 1.0

Randbehandlungsparameter boundarynum 1..obj num 50
Saat-Periode seedperiod > 1 50
Render Transferfunktion Max rendert max > 0.0 10.0

Tabelle 5.1: Format der Parameterdateien (.par)

objekte werden an den spezifizierten Orten angezeigt (Abb. 5.3). Die Bedienung des Programms erfolgt
mit der Tastatur und der Maus. In Tabelle 5.2 sind die Tastenkürzel der Hauptfunktionen aufgelistet.
Die Sicht auf das Feld kann, wie bei anderen 3D-Programmen auch, mit der Maus geändert werden.
Der Rendermoduslegt das Aussehen der Versuchsobjekte fest. Gewählt werden kann zwischen einer
Darstellung der Dreieckskanten (Wireframemodus) und der Objektoberflächen (Fillmodus). Zusätzlich
läßt sich eine auf den Objektnormalen basierende Beleuchtungsberechnung aktivieren.Änderungen des
Programmzustands werden über eine Meldung auf der Kommandozeile angezeigt. DerInteraktionsmo-
dus legt fest, welche Objekte verschoben werden können. ImAuto-Modusist dies davon abhängig, ob
ein Saatpunkt ausgezeichnet ist oder Objekte selektiert sind. Über einen Tastendruck ist es außerdem
möglich, die aktuellen Simulationstexturen und Parameter auf der Festplatte zu sichern.

Auch die Selektion und Interaktion mit den Versuchsobjekten ist über eine Kombination aus Tastatur-
und Maussteuerung möglich (Tab. 5.3). Die meisten Objektoperationen beschränken sich auf die aktu-
elle Selektion, die blau eingefärbt ist. Es ist möglich, komplette Objekte oder festgelegte Vertexmengen
zu verschieben. Hierfür gibt es für jeden Objekttyp zwei ausgezeichnete Vertexbereiche A und B. Bei
Schlauchobjekten sind das jeweils die Vertices der beiden Enden. Bei Kugeln ist dagegen nur der Mit-
telpunkt markiert. Werden die Objektvertices der Mengen fixiert, dann werden sie weiss eingefärbt und
Ihre Position ändert sich auch bei laufender Simulation nicht. Beide Mengen sind entweder aktiv oder
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Funktion Taste

Simulation starten/stoppen Leertaste
Schrittweise Simulation (1, 25 Schritte) (-, +)
Programm beenden q

Feld Rotieren Ctrl + linke Maustaste
Feld Zoom Ctrl + rechte Maustaste
Feld Verschieben Ctrl + mittlere Maustaste
Interaktionsmodus ändern (Auto, Selection, Fixed)m

Rendermodus überblenden (Flat...Normal) b,B
Rendermodus ändern (Fill, Wireframe) r
Pseudotransparenz (an, aus) t
Randbehandlungsparameter (-,+) (j, J)
Transferfunktion Schwellwert (-,+) (c, C)

Simulationsdaten in Texturen sichern w
Aktuelle Parameter in default.par schreiben W
Allgemeine Parameter anzeigen 1
Saatmodus Parameter anzeigen 2
Simulationsparameter anzeigen 3

Tabelle 5.2: Die Hauptfunktionen des Programms

Funktion Taste
Auswahl neu linke Maustaste
Auswahl verkleinern mittlere Maustaste
Auswahl vergößern rechte Maustaste
Auswahlkonfiguration sichern s
Auswahlkonfiguration wiederherstellen S
Auswahl abbrechen ESC
Auswahl bewegen (x,y) Shift + linke Maustaste
Auswahl bewegen (z) Shift + rechte Maustaste
Auswahl bewegen (aktive fixierte Vertices) (x,y) Shift + linke Maustaste
Auswahl bewegen (aktive fixierte Vertices) (z) Shift + rechte Maustaste
Auswahl Fixierung Bereich A (ein/aus) (i, I)
Auswahl Fixierung Bereich B (ein/aus) (o, O)
Auswahl Fixierung Bereich A aktivieren (ein/aus) p
Auswahl Fixierung Bereich B aktivieren (ein/aus) P
Saatpunkt auswählen Rechtsklick auf Saatpunkt
Saatpunkte deselektieren Rechtsklick neben Objekte

Tabelle 5.3: Interaktion mit den Versuchsobjekten
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(a) Saatpunkte

Funktion Taste
Saatmodus initialisiern l
Saatmodus beednen L
Saatpunkt hinzufügen k
Saatperiode +1, +10 x, X
Saatperiode -1, -10 y, Y

(b) Simulationsparameter

Funktion Taste
Zeitschrittweite∆t (-,+) (g, G)
Dämpfungsfaktor (-,+) (d, D)
Federsteifigkeitsfaktor (-,+) (h, H)
Feldstärkefaktor (-,+) (f, F)
Massefaktor (-,+) (a, A)

Tabelle 5.4: Tastenkürzel für den Saatmodus und für die Manipulation der Simulationsparameter

inaktiv, wobei nuraktivierte Vertexmengenverschoben werden können. Dies ermöglicht beispielsweise
das separate Fixieren und Bewegen der beiden Schlauchenden.

Geraten Objekte bei laufender Strömungsvisualisierung an den Rand oder außerhalb des Feldes, werden
sie automatisch an ihre ursprünglichen Positionen zurückgesetzt. Zusätzlich lassen sich die Objekte auch
von Hand zurücksetzen (Auswahlkonfiguration wiederherstellen) und die Rücksetzpositionen können
durch die aktuellen Vertexpositionen ersetzen werden (Auswahlkonfiguration sichern).

Abbildung 5.3: Programm nach dem Starten (links), geometrische Versuchsobjekte (rechts)

Wechselt man in den Saatmodus (Tab.5.3(a)), dann erscheintzunächst ein einzelner Saatpunkt, an dem
periodisch Objekte freigesetzt werden. Daraufhin ist es m¨oglich, weitere Saatpunkte zu generieren und
die Periodendauer einzustellen. Außerdem erlaubt es das Programm, verschiedene Simulationsparame-
ter interaktiv zu manipulieren (Tab. 5.3(b)).

5.3 Geometrieproben

Die Grundidee bei der Geometrieadvektions-Methode ist, eine große Menge gleichartiger, relativ ein-
fach aufgebauter Versuchsobjekte in einem Strömungsfeldfreizulassen. Aus der Bewegung und Verfor-
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mungen der Objekte können Informationen über das zugrundeliegende Feld gewonnen werden. Befin-
den sich zu viele Objekte in einem kleinen Raumbereich, dannist die Wahrscheinlichkeit für gegenseit-
ge Verdeckungen und̈Uberschneidungen groß. Die Platzierung und Verteilung derObjekte ist deshalb
entscheidend für eine gelungene Visualisierung. Eine Kollisionsbehandlung der Objekte untereinander
bringt hier keinen weiteren Nutzen, da die Eigenschaften des Feldes dargestellt werden sollen und nicht
die Kollision von Teilchen. Ein anderes Problem betrifft jedoch die einzelnen Versuchsobjekte selber.
Durch die Einwirkung des äußeren Strömungsfeldes können Selbstdurchschneidungen auftreten, was zu
unerwünschten Artefakten führt. Eine seperater Test aufÜberschneidungen von Geometrieprimitiven
und deren Behandlung erscheint zu aufwändig und den Anforderungen unangemessen. Ein alternativer
Ansatz ist, die Objektgeometrie und somit die Massepunkte und Federn so zu wählen, dass allein durch
das physikalische Feder-Masse-Modell Artefakte verhindert werden. Beispielsweise können Dreiecke
nicht zu einer Linie degenerieren und im dreidimensionalenFall erfüllen Tetraeder die selben Anforde-
rungen. Allerdings ist die korrekte Tetraedrisierung von geometrischen Objekten im allgemeinen Fall
eine sehr komplizierte Aufgabenstellung. Eine optimale Zerlegen der Objektvolumen in Tetraeder wurde
deshalb nicht angestrebt.

In den folgenden Unterkapiteln werden, ausgehend von der Geometriegenerierung, die GPU-Daten-
strukturen für die Objektspeicherung und die Interaktionmit den Proben behandelt. Am Ende wird die
Implementation der Saatpunkte und die automatische Platzierung von Versuchsobjekten besprochen.

5.3.1 Objektgenerierung

Implementiert wurden parametrische Geometriegeneratoren für schlauchförmige Objekte und für Ku-
geln. Andere Geometrien können durch das Ableiten einer weiteren Geometrie-Kindklasse in das Pro-
gramm integriert werden. Im Hinblick auf den Integrationsalgorithmus sollte darauf geachtet werden,
dass die Anzahl der von den Vertices ausgehenden Kanten innerhalb eines Objektes möglichst kon-
stant ist. Aufgrund der GPU-Architektur kann ein einzelnerVertex mit größerer Nachbarzahl zu einer
Engstelle werden und die Performance drücken.

Schläuche

Schläuche können sich durch ihre längliche Form an die Strömung anpassen. DurcḧAnderungen in der
Länge werden Divergenzen im Strömungsfeld aufgezeigt, und durch lokale Deformationen im Durch-
messer werden räumlich begrenzte Feldeigenschaften sichtbar. Ein Schlauch (Abb. 5.4) ist aus mindes-
tens einem Segment aufgebaut und besteht an den Segmenträndern mindesten aus drei Vertices, die auf
einem Kreis liegen. Die Anzahl der Segmente und Vertices im Querschnitt sowie der Schlauchdurch-
messer und seine Länge können als Parameter angegeben werden. Bei Schläuchen mit mehr als drei Ver-
tices im Querschnitt kann das Problem der Geometrie-Zusammenfaltung auftreten. Ist dies unerwünscht,
müssen zusätzliche Stützvertices im Inneren des Objektes eingeführt werden. Das Deformationsverhal-
ten im Querschnitt und längs des Schlauchs kann voneinander unabhängig über die Wahl verschiedener
Federsteifigkeiten der Querschnittskanten und Längskanten eingestellt werden.
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... ... ...

...

...

...

Segment

...

Segmentgrenze im
Querschnitt

QuerschnittskantenLangskanten

Abbildung 5.4: Geometrischer Aufbau der Schlauchobjekte

Kugeln

Die isotrope Kugelgeometrie eignet sich gut für die Visualisierung des Strömungsfeldes. Lokale Eigen-
schaften des Feldes werden durch Verformung der Oberflächeoptisch dargestellt. Gleichzeitig läßt sich
die Stärke des Feldes an der Geschwindigkeit der Kugeln erkennen.

Die Kugelgeometrie wird mit Hilfe eines Subdivisionsalgorithmus generiert. Gestartet wird mit einem
Oktaeder, dessen sechs Vertices auf der Einheitskugel liegen. Ein Subdivisionsschritt fügt in der Mit-
te der Kanten des aktuellen Netzes neue Vertices ein, die dann über neue Kanten verbunden werden
(Abb. 5.5). Die Vertices werden anschliessend auf den Einheitskreis projiziert. Die Zahl der Dreiecke
nimmt dabei mit jedem Unterteilungsschritt um den Faktor vier zu. Nach wenigen Schritten ist eine
ausreichende Approximation der Kugelform erreicht. Obwohl die wenigen Vertices des ursprünglichen
Oktaeders einen Grad von vier haben und die neu eingefügteneinen Grad von sechs, sind die Dreiecke
ausreichend gleichförmig verteilt. Würde man eine Ikosaeder als Startobjekt wählen, dann wären alle
Dreiecke gleich groß.

A B

C

C

A

B
a b

c

Abbildung 5.5: Tesselierung einer Kugel mittels Subdivision. ∆(A,B,C) wird ersetzt durch∆(A,a,c),
∆(a,C,b), ∆(a,b,c) und∆(c,b,B)



36 KAPITEL 5. IMPLEMENTATION

Aufgrund des Selbstdurchschneidungsproblems ist es ab einer Unterteilung von mehr als 2 Schritten
sinnvoll in der Mitte des Netzes einen zusätzlichen Vertexeinzufügen, der über Kanten mit den äußeren
Vertices verbunden ist. Ein zu großer Kantengrad beeinträchtigt aber die Performance der Vertexintegra-
tion. Deshalb kann es von Vorteil sein, den Mittelpunkt nur mit einer Teilmenge der Oberflächenvertices
zu verbinden. Ein alternativer Ansatz schachtelt mehrere Kugelnäherungen mit zunehmender Untertei-
lungsstufe ineinander, wobei der Kugeldurchmesser mit demGrad der Unterteilung zunimmt. Danach
werden nahe beieinander liegende Vertices benachbarter Schalen miteinander verbunden.

5.3.2 Texturlayout

Die elementaren Grundobjekte und deren Topologie werden, wie im GPU-Kapitel besprochen, in drei
verschiedenen Texturobjekten gespeichert. In den Vertex-Texturen sind die Vertexpositionen jedes ein-
zelne Objektduplikates in einem eigenen Rechteck abgespeichert. Die Breite der Textur in x-Richtung
entspricht dabei der Anzahl der Vertices pro Objekt und ist durch die maximale Texturbreite von 4096
Pixeln beschränkt. Größere Objekte werden auf mehrere Zeilen aufgeteilt. Da die Texturhöhe ebenso
eingeschränkt ist, können maximal 4096 Kopien des Grundobjekts generiert werden. Für jede Objekt-
kopie und all seine Vertices müssen Nachbarschaftsinformationen gespeichert werden. Die Struktur der
Nachbarschafts-Textur entspricht der der Vertex-Textur.In der FB-Textur werden die Nachbarblöcke
zeilenweise eingetragen, wobei die maximale Breite von 4096 Pixeln ausgenutzt wird. Da nur die RGB-
Komponenten der Vertex-Texturen verwendet werden, kann inden Alpha-Komponenten ein zusätzliches
Teilchenattribut gespeichert werden.

5.3.3 Interaktion mit den Proben

Die Geometrieadvektionsmethode visualisiert die Feldeigenschaften nur an den Stellen im Raum, an
denen sich ein Objekt befindet. Es ist deshalb wichtig, dass der Benutzer die Positionen der virtuellen
Versuchsobjekte manipulieren kann. Dank der Echtzeitsimulation auf der GPU sind dabei die Auswir-
kungen, die das Verschieben und Manipulieren hat, sofort sichtbar. Problematisch dabei ist allerdings,
dass der GPU-Ansatz den Simulationzustand komplett auf derGrafikkarte speichert und ein Zurücklesen
der Daten in den Hauptspeicher aus Performancegründen möglichst vermieden werden soll. Diese Ein-
schränkung erschwert Modifikationen an der Objektgeometrie, die vom Benutzer ausgehen und erfordert
deshalb spezielle GPU-basierte Methoden für das Selektieren der Geometrieobjekte, die Speicherung
der Selektion und für die restlichen Modifikationsoperationen.

Das Programm realisiert das Selektieren der Geometrie mit Hilfe von OpenGL Occlusion Queries. Hier-
bei wird bei einem auf den Mauscursor oder den selektierten Bereich eingeschränkten Viewport jedes
Objekt einzeln ohne Bildschirmausgabe gerendert und das Resultat der Occlusion-Query abgefragt. Da
die Anzahl der gerenderten Fragmente zurückgegeben wird,kann ein Ergebnis größer Null als Treffer
für das entsprechende Objekt gewertet werden. Die CPU merkt sich die gefundenen Objekte, indem
sie die jeweilige Identifikationsnummer in einer Liste speichert. Würde man die Selektionsinformatio-
nen jedoch nur auf der CPU bzw. im Hauptspeicher verwalten, dann wären separate und zeitaufwändige
Render-, Interaktions- und Simulationsaufrufe für jedeseinzelne Objekt erforderlich, sobald eine auf die
selektierten Objekte beschränkte Operation durchgeführt wird. Die volle Leistung der GPU kann aber
erst genutzt werden, wenn ein einziger OpenGL-Aufruf für die Modifikation aller selektierten Objekte
ausreicht.
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Hierzu wird die Tiefentest-Funktionalität der GPU ausgenutzt. Gespeichert wird die Selektion auf der
GPU in Tiefentexturen, die im Folgenden als Vertexmasken bezeichnet werden, und in der Größe und
dem Aufbau genau den Vertex-Texturen entsprechen. Die Grundidee ist, jedem selektierten Objektvertex
einen speziellen Tiefenwert zuzuweisen, der sich von dem Wert der nichtselektierten Vertices unterschei-
det. Da die Objekte in rechteckigen Blöcken gespeichert sind ist es möglich, die Tiefenwerte kompletter
Objekte mit einem einzigen Aufruf zu setzen. Bei folgenden Berechnungen und Operationen auf den
Vertex-Texturen muss dann nur noch der Tiefentest aktiviert und entsprechend initialisiert werden, um
die Auswirkungen der Operation auf die selektierten oder nichtselektierten Objekte einzuschränken:

1. Es wird festgelegt, welche Vertices von der Operation betroffen sind. Entweder sind dies alle
Objektevertices, nur die maskierten Vertices oder nur die nichtmaskierten Vertices (Zeilen 2-14).

2. Eine Vertexmaske wird geladen, indem die entsprechende Tiefentextur an ein Framebuffer-Objekt
gebunden wird (Zeilen 16-21).

3. Am Ende kann eine beliebige Operation auf den Vertex-Texturen durchgeführt werden. Der Tie-
fentest stellt dabei sicher, dass in der Ausgabetextur nur die gewünschten Vertexpositionen aktua-
lisiert werden.

Listing 5.1: Operationen auf maskierten Vertex-Texturen

1

2 / / 1 . a k t i v i e r e und i n i t i a l i s i e r e den T i e f e n t e s t
3 s w i t c h ( op mode )
4 {
5 case OPALL : / / a l l e Ob jek te
6 g l D i s a b l e ( GLDEPTH TEST ) ;
7 b reak ;
8 case OPMASKED: / / m a s k i e r t e O b j e k t v e r t i c e s
9 g lEnab le ( GLDEPTH TEST ) ;

10 g lDep thFunc (GLGEQUAL) ;
11 case OPUNMASKED: / / u n m a s k i e r t e O b j e k t v e r t i c e s
12 g lEnab le ( GLDEPTH TEST ) ;
13 g lDep thFunc ( GLLESS ) ;
14 }
15

16 / / 2 . a k t i v i e r e FBO und b inde d i e gewünsch te Maske da ran
17 glBindFramebuf ferEXT (GLFRAMEBUFFEREXT, f b o i d ) ;
18

19 glFramebuf ferTexture2DEXT (GLFRAMEBUFFEREXT,
20 GL DEPTHATTACHMENT EXT,
21 GL TEXTURE 2D , maske , 0 ) ;
22

23 / / 3 . a k t i v i e r e das Shaderprogramm ,
24 / / b i nde Ver tex−Tex tu ren f ü r d i e E ingabe und d i e Ausgabe
25 / / und z e i c h n e das Rechteck , dass d i e O p e r a t i o n a n s t ö ß t .

Neben einer Tiefenmaske für die aktuelle Selektion (Selektions-Maske) verwaltet das Programm zusätzlich
eine Maske für fixierte Vertices (Vertex-Fix-Maske) und mehrere Masken für den Saatpunktmodus.
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Beispiel: Translationsoperation

Die selektierten Geometrieproben können vom Benutzer interaktiv im Raum verschoben werden. Ein
simples Fragmentprogramm addiert auf die Positionen der maskierten Vertices (Selektions-Maske) einen
Translationsoffset, der sich aus der Mausbewegung berechnet. Die neuen Positionen müssen sowohl in
der aktuellen als auch in der Vertex-Textur des letzten Zeitschritts gespeichert werden. Wird nur die ak-
tuelle Textur aktualisiert, dann treten Artefakte auf, da die alten Positionen beim nächsten Integrations-
schritt verwendet werden. Alternativ können mit der Vertex-Fix-Maske die fixierten Vertices verschoben
werden.

5.3.4 Saatpunkte

Particle-Trace-Methoden gehören zu den elementaren Verfahren der Strömungsvisualisierung. Dabei
werden Teilchen im Feld freigelassen und die durchlaufenenTrajektorien grafisch dargestellt. Die physi-
kalische Kopplung der Geometrieobjekte an das Feld bietet sich für die Implementation dieses Konzepts
geradezu an. Hierzu wird eine Vielzahl von Objekten gleichen Typs an einem oder mehreren vorgege-
benen Saatpunkten in zeitlich konstanten Abständen freigelassen. Je kürzer diese Abstände sind, umso
stärker bilden sich Linenstrukturen im Feld heraus, da dieObjekte eines Saatpunkts bei stationären
Strömung immer wieder die gleichen Wege durchlaufen. Die Verwaltung der einzelnen Objekte auf
der GPU ist allerdings nicht trivial, weil die verwendete fixe Texturdatenstruktur eine Generierung von
neuen Objekte praktisch unmöglich macht. Deshalb werden Objekte, die das Randgebiet der Simulati-
on erreichen wiederverwendet, indem sie an die Position ihres Saatpunktes zurückgesetzt werden. Die
Identifikation und Behandlung solcher Objekte wird im Abschnitt Randbehandlung besprochen.

Zu Beginn gibt es nur einen Saatpunkt. Der Benutzer kann aberinteraktiv weitere Punkte erzeugen.
Werden k Saatpunkte benötigt, so wird die Menge der GeometrieobjekteO = (o1,o2, ...,on) in k dis-
junkte SaatmengenSi gleicher Mächtigkeit partitioniert(i = 1...k). Wegen der zyklisch arbeitenden
Routine zur Randbehandlung sollten die rechteckigen Objektbereiche der Vertex-Texturen möglichst
gleichmäßig auf die Saatpunkte aufgeteilt sein (siehe Abb. 5.6).

Ein Objektoi kann sich in zwei Zuständen befinden:

1. frei - das Objektoi wurde freigelassen und bewegt sich durch das Strömungsfeld

2. wartend- das Objektoi wartet auf den Zeitpunkt des Freilassens

Die wartenden Objekte werden in k WartelistenWi von der CPU verwaltet. Sobald ein Objekt von der
Randbehandlungsroutine zurückgesetzt wird, wird in einer Tabelle seine Saatmenge nachgeschlagen und
die Objektnummer an das Ende der zugehörigen Warteliste angehängt. Außerdem werden die wartenden
Objekte in der Vertex-Fix-Maske markiert, um dadurch zu verhindern, dass sich ihre Positionen bei den
folgenden Simulationsschritten ändern. Zusätzlich zu den Wartelisten im Hauptspeicher gibt es für jeden
Saatpunkt eine TiefenmaskeDi im Grafikspeicher. Die MaskenDi markieren die zu den Saatpunkten
gehörigen Objekte und werden beim Verschieben einzelner Saatpunkte benötigt.

Das Freilassen der Objekte wird in der Hauptschleife des Programms angestoßen. Unabhängig von-
einander ist für jeden Saatpunkt die PeriodendauerPi von gerenderten Bilder festgelegt, nach der ein
Objekt am Saatpunkt freigelassen wird. Beim Freilassen müssen die Wartelisten und die Vertex-Fix-
Maske aktualisiert werden. Sind genügend Objekte in den Wartelisten vorhanden, ist ein gleichförmiger
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Wartelisten W i
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Abbildung 5.6: Beispiel für eine Anordnung mit drei Saatpunkten und insgesamt acht Objekten. Die
Gleichmäßige Aufteilung der Objekte auf die Saatpunkte ist an den Objektindices und den Markierungen
in den Tiefenmasken erkennbar.

Objektstrom garantiert. Da der Füllgrad der Listen direktan die Verweildauer im Feld gekoppelt ist
kann er abhängig von der Position des Saatpunktes stark variieren. Ist die Menge der wartenden Ob-
jekte eines Saatpunkts erschöpft, dann wird automatisch seine Saatperiode erhöht, bis sich wieder ein
Gleichgewicht eingestellt hat.

5.3.5 Automatische Platzierung der Versuchsobjekte

In der Regel sind die interessanten Gebiete innerhalb einesStrömungsfeldes nicht im Voraus bekannt. Im
Gegensatz zu dichten Visualisierungsverfahren, wird man mit Hilfe der Geometrieadvektion erst nach
einigem Experimentieren einen Eindruck vom Feld gewinnen.Eine automatische Platzierung der Ver-
suchsobjekte kann diesen Vorgang beschleunigen. Angedacht wurde eine Positionierung an zufallsge-
nerierten Orten, die durch eine dreidimensionale Wahrscheinlichkeitsverteilungen festgelegt sind. Dies
ermöglicht die gleichmäßige Verteilung der Proben im gesamten Feld oder in räumlich eingeschränkten
Unterbereichen des Strömungsvolumens. In der Programmversion, die dieser Arbeit zugrunde liegt, ist
diese Methode nicht implementiert.

5.4 Simulation

5.4.1 Integration

Der Simulationszustand ist in drei Vertex-Texturen gespeichert. Zwei davon enthalten die Vertexpositio-
nen der letzten beiden Zeitschritte und in die dritte Texturwerden die Positionen des neuen Zeitschritts
geschrieben. Die Funktion der drei Texturobjekte als Eingabe- und Ausgabetextur wechselt dabei zy-
klisch mit jedem Integrationsschritt. Der Ablauf und die Zusammenhänge sind in Abbildung 5.7 darge-
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stellt. Ein einziger Renderpass behandelt die komplette Textur und damit alle Objekte. Die Positionen
der fixierten Vertices, die in der Vertex-Fix-Maske markiert sind, werden in der Ausgabetextur nicht
aktualisiert. Im Integrationsshader wird zusätzlich zurTeilchenintegration die Farbcodierung für die
Vertices in der ungenutzten w-Komponente aktualisiert.

Integration
Shader

O     B     J     E     K     T             1

O     B     J     E     K     T             N

Positionen t-dt

Positionen t+dt

Vertex-Fix-Maske

Positionen t

Pixel bleibt unverandert

Pixel maskiert

Nachbarschafts-Textur
&

FB-Textur

Abbildung 5.7: Bei der Integration der Teilchenpositionenstellt die Vertex-Fix-Maske sicher, dass die
fixierten Vertices nicht aktualisiert werden.

5.4.2 Simulationsparameter

Strömungsfelder können sehr unterschiedliche Eigenschaften besitzen, was eine angepasste Wahl der
Simulationsparameter erfordert. Eine ungünstige Wahl f¨uhrt schnell zu unbrauchbaren Resultaten bei
der numerischen Integration und der daraus folgenden Visualisierung. Allein schon die große Zahl der
frei wählbaren Parameter macht die Auswahl und Abstimmungzu einer schwierigen Aufgabe:

• Größe des Zeitschritts∆t

• Dauer des Interpolationsschritts∆T zwischen zwei VektorfeldsamplesVt undVt+∆t

• Faktor ffac für die Stärke des Strömungsfeldes

• Faktordfac für die geschwindigkeitsabhängige Dämpfung

• Faktorsfac für die Federkonstanten
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Wird der Zeitschritt∆t zu groß gewählt, dann treten numerische Instabilitäten auf oder es werden bei
der Integration der Teilchenpositionen interessante Bereiche des Feldes übersprungen. Bei der Visuali-
sierung instationärer Felder kommt erschwerend hinzu, dass zusätzlich zur inhärenten Zeiteigenschaft
des Vektorfeldes, eine weitere Zeitkomponente durch dieÄnderung des Feldes hinzukommt. Die Ab-
stimmung der beiden Paramter (∆t,∆T) aufeinander kann problematisch sein.

Die Dämpfungverhindert das Aufschwingen und unerwünschte Beschleunigen der Geometrievertices.
Da die Objekte auch durch die Reibung des Feldes abgebremst werden (Stokes’sche Kopplung), sollte
ein zu großer Wert vermieden werden, weil sonst jegliche Bewegung schon im Anfangsstadium unter-
bunden wird. Wird der Faktor für dieFederkonstantezu groß gewählt, so kann dies negative Auswir-
kungen auf die Stabiltität des Algorithmus haben, wohingegen ein zu kleiner Wert die Zerstörung der
geometrischen Form der Probe durch die Strömung begünstigt.

Feldanalyse

Um eine erste Näherung für die Simulationsparameter zu bekommen, werden die SamplesVs der Vek-
torfeldzeitschritte nach dem Programmstart statistisch analysiert und dabei charakteristische Werte W
wie die Divergenz und die Stärke des Feldes extrahiert. Neben dem Minimum, dem Maximum und
dem Durchschnitt wird jeweils auch die Standardabweichungbestimmt. Die gewonnenen Daten werden
automatisch in einer Textdatei gespeichert, weshalb bei erneutem Laden des selben Feldes der zeit-
aufwändige Analyseschritt entfällt. Aus den Teilwertender StatistikW werden die Startparameter be-
rechnet.

W = (Wmin,Wmax,W,δW) (5.1)

Wmin = min
v∈Vs

f (v) (5.2)

Wmax = max
v∈Vs

f (v) (5.3)

W = ( ∑
v∈Vs

f (v))/ |Vs| (5.4)

δW = ( ∑
v∈Vs

( f (v)−W)2)/ |Vs| (5.5)

Der mittlere Wert derVektornorm Nentspricht der mittleren Stärke des Feldes(W = N, f = norm(v)).
Zusammen mit dem Zeitschritt∆t ergibt sich die Beziehung 5.5, die dafür sorgt, dass im Durchschnitt
keine Feldsamples übersprungen werden. Um dies im gesamten Strömungsgebiet sicherzustellen, kann
auch der maximale WertNmax statt des Durchschnitts verwendet werden.

∆t ·N · ffac < 2 (5.6)

In die Divergenz-Statistik∇ geht der Betrag der Divergenz am Ortx der Feldsamples ein:

f (v) = |∇V (x(v))| = |Vx +Vy +Vz|x (5.7)

An Stellen großer Divergenz besteht bei zu kleinem Federfaktor sfac oder Dämpfungsfaktordfac die
Gefahr einer starker̈Uberdehnung der Versuchsobjekte (angedeutet in Abb. 5.8),bis hin zum totalen
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Verlust der ursprünglichen Form. Diese Faktoren sollten deshalb mit steigendem∇ auch größer gewählt
werden. Im Folgenden sind beispielhaft die implementierten Formeln für die automatische Wahl in
Abhängigkeit der Divergenz- und der Normstatistik angegeben. Zusätzlich wird darauf geachtet, daß
Gleichung 5.5 eingehalten wird.

sfac = (0.1∗ (∇max−∇min)+0.9∗∇)∗70.0 (5.8)

∆t = 0.01/(0.2∗Nmax+0.8∗∇) (5.9)

Die Formeln wurden empirisch durch Versuche mit verschiedenen Feldern gewonnen. Eine besondere
Bedeutung kommt ihnen nicht zu. Für die meisten Versuchsfelder liefern sie einigermaßen brauchbare
Resultate. Allerdings sind stark inhomogene Felder weiterhin kritisch, was eine sorgfältige Parameter-
abstimmung durch den Benutzer notwendig macht.

Abbildung 5.8: Extreme Expansion eines Versuchsobjekts ineinem divergenten Strömungsgebiet

5.5 Randbehandlung

Ausserhalb des eigentlichen Simulationsgebietes wird dasVektorfeld künstlich auf Null gesetzt. Ver-
suchobjekte, die an den Rande des Gebietes gelangen, werdensomit in der Regel dort als unschöne
Artefakte verweilen (Abb. 5.9). Da die GPU darauf ausgelegtist, große Menge von Daten auf einmal
zu verarbeiten und die Geometriepositionen gesammelt in einer Textur vorliegen entsteht ein Problem,
sobald Entscheidungen auf Grund der Positionen einzelner Objekte getroffen werden sollen. Die Rand-
behandlung kann daher nicht mit der Integration kombiniertwerden. Dort werden Massepunkte einzeln,
aber keine Objekte als Ganzes betrachtet. Ein eigenständiger Algorithmus, der zu einem großen Teil auf
der GPU implementiert ist und kein Rücklesen der Positionen erfordert, identifiziert Randobjekte und
leitet entsprechende Maßnamen ein.

Soll ein Objekt darauf getest werden, ob es sich am Rand befindet, dann wird auf seinen Vertexpositio-
nen (Abb. 5.9, links) ein Fragmentprogramm ausgeführt. Dieses verwirft die einzelnen Fragmente, falls
die zugeordnete Teilchenposition außerhalb des Strömungsgebietes liegen.̈Uber eine Occlusion-Query
läßt sich daraufhin die Anzahl der gerenderten Fragmente abfragen. Wird ein vorgegebener Schwellen-
wert unterschritten, dann setzt das Programm das Objekt an die Positionen zurück, die in einer Reset-
Textur gespeichert sind. Diese Textur wird bei Programmbeginn mit den Startpositionen der Geometrie
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initialisiert, kann aber auch vom Benutzer manipuliert werden. Da das Testen aller Objekte relativ zeit-
aufwändig ist, wird pro gerendertem Bild nur eine beschränkte Anzahl k von Objekten getestet. Die
Liste der Objekte wird dabei zyklisch durchlaufen. Je nach Wahl des Parameters k kann es deshalb
mehrere Durchläufe der Hauptschleife dauern, bis ein Randobjekt identifiziert und zurückgesetzt ist.

(s1,t1)

(s2,t2)

Abbildung 5.9: Der Bereich eines einzelnen Objekts in der Vertex-Textur (links), Artefakte (rechts)

Eine Behandlung innerhalb des Feldes, an Stellen großer Divergenz, wurde nicht implementiert. Das
Funktionsprinzip eines solchen Algorithmus ist aber dasselbe wie bei der Randbehandlung. Allerdings
reduziert eine Berechnung der Divergenz während der Simulation die Performance zu stark, weshalb
sich ein Vorverarbeitungsschritt anbietet, der die berechneten Werte in der w-Komponente der Vektorfeld-
Textur speichern könnte.

5.6 Rendering

Die grafische Darstellung der sich bewegenden Versuchsobjekte ist die Schnittstelle zwischen den Simu-
lationsdaten und dem Benutzer, der diese interpretieren muss. Dem Rendern kommt deshalb eine wich-
tige Bedeutung zu. Bei einem möglichst hohen Informationsgehalt soll die Darstellung übersichtlich
und interpretierbar bleiben. Das Programm rendert die Vorder- und Rückseiten der Objektoberflächen,
die sich aus Dreiecksnetzen zusammensetzen. Dreiecke, dieStützvertices enthalten, werden aber nicht
dargestellt. Es sind drei Rendermodi implementiert. Nebeneinem einfachemFlat-Shading, gibt es eine
Wireframe-Darstellungund eine auf den Vertexnormalen basierendeBeleuchtungsberechnung.

Die Liste der Oberflächendreiecke aller Objekte ist alsIndex-Arrayin einem statischenVertex Buffer Ob-
ject abgelegt. Pro Dreieck werden drei Indices angegeben. Die Indices verweisen in einVertex-Array, in
welchem statt der Vertexposition die Texturkoordinaten (u,v) abgespeichert sind. Die wirkliche Vertex-
position erhält das Rendering-Vertexprogramm durch einen Texturlookup in der aktuellen Vertex-Textur.
Da sich die beiden Arrays während des Programmlaufs nicht verändern, können sie beim Programm-
start durch einen einmalige Kopieroperation auf der Grafikkarte gespeichert werden. Das Rendern aller
Objekte kann deshalb durch einen einzigen effizienten OpenGL-Aufruf angestoßen werden.

Die Vertex-Farbe berechnet sich aus der w-Komponente des nachgeschlagenen Texels:
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• w = -2 Vertex ist selektiert (blau)

• w = -1 Vertex ist fixiert (weiss)

• w >= 0 Farbkodierung eines physikalischen Parameters am Ort desVertex

Liegt die Kodierung eines physikalischen Parameters vor, dann wird, basierend auf seinem Wert zwi-
schen roter und grüner Farbe linear interpoliert. Rote Vertices können so zum Beispiel starke Kräfte
oder hohe Geschwindigkeiten visualisieren. Wenn sich einegroße Anzahl von Objekten im Versuchsge-
biet befinden, dann kommt es unumgehbar zu gegenseitigen Verdeckungen und̈Uberschneidungen. Eine
transparente Darstellung, basierend aufAlpha Blending, kann in diesem Fall für mehr̈Ubersichtlichkeit
sorgen.Üblicherweise müssen die transparenten Objekte vor dem Rendern in aufsteigender Entfernung
zum Betrachter sortiert werden. Für die große Menge der Objekte ist dies allerdings nicht praktika-
bel. Aufgrund der variierenden Form der Probegeometrie müssten sogar alle Dreiecke sortiert werden.
Implementiert wurde deshalb eine ArtPseudotransparenz, bei der die einzelnen Objektfragmente un-
abhängig von der Reihenfolge additiv geblendet werden. Der dreidimensionale Eindruck leidet dabei
allerdings etwas.

Bei der Wireframe-Darstellung werden nur die Kanten der Dreiecke dargestellt. Verwendet wird hierfür
der eingebaute OpenGL-Mechanismus. Im Flatshading-Modusergeben sich die Farben der inneren
Dreiecksfragmente aus der linearen Interpolation der Vertex-Farben des Dreiecks. Erst eine zusätzliche
Beleuchtungsberechnung, die die Normalen der Objektoberfäche verwendet, ermöglicht einen wirkli-
chen 3D-Effekt. Die Normale eines Vertex entspricht dem Mittelwert der Normalen aller angrenzenden
Dreiecke. Aufgrund der Formveränderung der Geometrie müssen die Normalen für jeden Zeitschritt
neu bestimmt werden. Es bietet sich an, die Berechnungen im Integrationsshader durchzuführen. Dort
werden die benötigten Positionen der benachbarten Vertices schon für die Integration nachgeschlagen.
Wählt man die Reihenfolge der Nachbarvertices in der FB-Textur korrekt, dann kann die Berechnung
der Normalen (siehe Abb. 5.10) in der selben Schleife durchgeführt werden, in der auch die Federkräfte
aufsummiert werden. Dadurch spart man sich erneute Texturlookups für die Vertexpositionen. Die Posi-
tionsintegration findet erst nach der Schleife statt, deshalb werden die Normalen des letzten Zeitschritts
berechnet. Aufgrund der hohen Bildraten und der winzigen Positionsänderungen kann dieser Effekt
aber vernachlässigt werden. Problematischer ist die Tatsache, dass für die Normalenberechnung an den
Schlauchenden und bei Objekten mit inneren Vertices gesonderte Ausnahmebehandlungen nötig sind.
Die endgültige Fragmentfarbe wird im Fragmentprogramm des Renderers berechnet:

fragf arbe = blendfac∗ farbe+(1−blendfac)∗ farbe∗ (Nv · (0,0,1)
︸ ︷︷ ︸

Lichtvektor

) (5.10)

Die Normalen werden dazu vorher in das Koordinatensystem des Betrachters transformiert.Über einen
Blendfaktor kann der Benutzer fliessend zwischen einfachemFlatshading und dem beschriebenen Be-
leuchtungsmodell wählen.

5.7 Vektorfeld-Streaming

Instationäre VektorfelderV (x, t) sind als eine Reihe von N VektorfelddatensätzenVi gespeichert, die
das veränderliche Feld bei einer konstanten Abtastrate approximieren. Bei den Geometrieadvektions-
Berechnungen auf der GPU werden zwei aufeinanderfolgende Zeitschritte des Feldes benötigt, da die
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Abbildung 5.10: Normalenberechnung im Integrations-Fragmentprogramm. Die Reihenfolge ist durch
die for-Schleife festgelegt.

Feldsamples linear über die Zeit interpoliert werden. In Abbildung 5.11 ist die Integrationsschrittweite
∆t und die Interpolationsdauer∆T zu erkennen, nach der spätestens ein neuer Vektorfeldschritt vorlie-
gen muss, damit die Berechnung nicht ins Stocken gerät. Da die üblichen Texturupload-Methoden von
OpenGL den Aufrufer blockieren, muss der Datensatz in kleinen Blöcken in die Textur geladen werden.
Würde man die komplette Textur in einem Schritt aktualisieren, dann würde das komplette System kurz
stocken. Dies ist bei einer interaktiven Visualisierung mit möglichst konstanter Bildrate unerwünscht.
Weil das Nachladen der Daten von der Festplatte in den Hauptspeicher auch synchron abläuft, wurde ein
zweigeteiltes Producer-Consumer-System entworfen. Dieses besteht aus demStreamer, der direkt in der
Hauptschleife des Programms aufgerufen wird und demLader, der davon unabhängig in einem sepera-
ten Thread verwaltet wird. Die beiden Komponenten teilen sich eine festgelegt Anzahl von Feldpuffern,
die sie beide zyklisch verwenden. Für die nötige Synchronisation sorgt dabei ein Zählsemaphore. Als
Thread-API wurde die plattformunabhängige pThread-Bibliothek ausgewählt [22]. Im Folgenden wird
die Funktionsweise des Streamers und des Laders anhand zweier Ablaufdiagramme erläutert, die in
Abbildung 5.12 zu sehen sind.

Lader

Der Lader kopiert die Felddaten von der Festplatte in den nächsten freien Feldpuffer im Arbeitsspeicher
und führt dabei eine Konvertierung in das fp16-Format durch. Ist eine ZeitschrittVi vollständig geladen
und das Semaphore blockiert nicht, so wird sofort mit dem Laden des nächsten ZeitschrittVi+1 begon-
nen. Sollte das zeitliche Ende des Datensatzes erreicht werden, dann wird wieder beim ersten Zeitschritt
V1 angefangen.
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Abbildung 5.11: Zusammenhänge beim Streaming der Vektorfelddaten instationärer Strömungsfelder.
Zu erkennen sind auch die zeitlichen Zusammenhänge bei derSimulation.

Streamer

Auf der GPU stehen drei 3D-Texturen im fp16-Format zur Verf¨ugung, von denen zu jeder Zeit eine
vom Streamer mit den Daten des neuen Zeitschritts befüllt wird. Mit jedem Durchlauf der Hauptschleife
kann genau eine Zustandsänderung des Streamers hervorgerufen werden. Dabei wird jeweils die Aktion
ausgeführt, die in den abgerundeten Kästchen 5.12 angegeben ist:

Der Streamer befindet sich zunächst im Zustand ’gestoppt’.Der Textur-Upload kann gestartet werden,
sobald ein neuer Zeitschritt im Hauptspeicher vorliegt undein freies Texturobjekt auf der Grafikkarte zur
Verfügung steht. Die Größe der Datenblöcke, die pro Aufruf hochgeladen werden, ist abhängig von der
aktuellen Bildrate, der Größe des Datensatzes eines Zeitschrittes und beträgt immer ein Vielfaches der x-
Auflösung des Feldes. Durch die geschickte Wahl einer geeigneten Größe (1) versucht der Streamer, den
Upload möglichst gleichmäßig über die Interpolationsdauer∆T der zwei letzten Vektorfeldzeitschritte
aufzuteilen. Dies sorgt für eine möglichst konstante Bildrate und garantiert eine flüssige Animation.

Befindet sich das System im Zustand ’gestartet’, dann wird pro Durchlauf der Hauptschleife ein Da-
tenblock auf die Grafikkarte geladen (2). Dies wird durchOpenGL Pixel Buffer Objekterealisiert,
die das Kopieren einzelner Texturblöcke in einen vom Grafikkartentreiber verwalteten Speicherbereich
ermöglichen. Der C-Code eines solchen Kopiervorgangs istim Listing 5.2 in den Zeilen 3-5 angegeben.
Da die Texturdaten durch normale Speicheroperationen in den gebundenen Speicherbereich geschrie-
ben werden, müssen die Vektorfelddaten im fp16-Format der3D-Texturen vorliegen. Durch den Aufruf
von glTexSubImage3Din Zeile 8 werden die Daten im Grafikkartenspeicher aktualisiert. Sobald ein
Zeitschritt vollständig hochgeladen wurde, geht der Streamer wieder in den Zustand ’gestoppt’ über (3).

Ursprünglich wurde der Aufruf der Zeilen 7 und 8 statt für jeden Datenblock, einmal am Ende eines
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Abbildung 5.12: Ablaufgraph des Streamers und des Laders

Zeitschritts für den vollständigen Datensatz aufgerufen. PBOs versprechen bei einem glTexSubImage-
Aufruf Zeitvorteile gegenüber einem direkten Texturupload der Daten ohne gebundenen Grafikspeicher.
Trotzdem dauerte die Ausführdauer exakt gleich lange. Diedabei auftretende Latenz hat sich jeweils
am Ende eines Zeitabschrittes durch Stocken bemerkbar gemacht. Deshalb wurde der Aufruf auf die
einzelnen Datenblöcke verteilt. Leider funktioniert dasStreaming auch so nicht perfekt. Ist es aktiviert,
dann stockt das System in längeren, aber nicht vorhersagbaren Zeitabständen. Zeitmessungen haben
ergeben, dass der Simulationsteil während der problematischen Bilder bis zu einhundert mal länger
braucht. Möglicherweise stehen die Texturdaten trotz desAufrufs von glTexSubImage3D nicht sofort
auf der Grafikkarte zur Verfügung.

Listing 5.2: Upload eines Datenblocks im Streamer

1 g l B i n d B u f f e r (GL PIXEL UNPACK BUFFER EXT , v f p b o [ s t r e a m e r b u f f e r ] ) ;
2

3 g lMapBuf fe r (GL PIXEL UNPACK BUFFER EXT , GL WRITE ONLY) ,
4 memcpy( k o p i e r e e i n e n Datenb lock ) ;
5 glUnmapBuf fer (GLPIXEL UNPACK BUFFER EXT ) ,
6

7 g l B i n d T e x t u re (GLTEXTURE 3D , v f t e x t u r e s [ s t r e a m e r b u f f e r ] ) ;
8 glTexSubImage3D (GLTEXTURE 3D , Auswahl des k o p i e r t e n T e x e l b e r e i c h s ,
9 GL RGB , GL HALF FLOAT ARB , O f f s e t i n de r 3D Tex tu r ) ;

10

11 g l B i n d B u f f e r (GL PIXEL UNPACK BUFFER EXT , 0 ) ;
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6 Auswertung

6.1 Einleitung

In diesem Kapitel werden die Ergebnisse der Geometrieadvektions-Methode besprochen. Im Abschnitt
Performancemessung wird die Geschwindigkeit des Programms untersucht, worauf eine Analyse der
Visualisierungsresultate anhand mehrerer Beispiele erfolgt.

6.2 Performancemessung

Die Messungen der Performance wurden auf einem PC durchgef¨uhrt, der mit 1024 MB Arbeitsspeicher,
einem Intel Core 2 Duo E6300 Prozessor und einer Nvidia Geforce 7900 GS mit 256 MB Grafikspei-
cher ausgestattet ist. Beide Kerne dieser CPU sind mit 1867 Mhz getaktet. Der verwendete Grafikchip
verfügt über 20 Renderingpipelines, die sich die 20 Fragmenteinheiten und 7 Vertexeinheiten teilen.
Seine Leistung entspricht etwa der einer Geforce 7900 GT. Bei den Messungen wurde ein stationäres
Vektorfeld mit einer Auflösung von 128×128×128 Samples verwendet und die Streamingkomponente
ausgeschaltet. Es wurden vier Versuchskonfigurationen A, B, C und D mit einer variierenden Zahl von
Kugelobjekten und Subdivision-Schritten ausgewählt.

Konfiguration A B C D
Anzahl der Kugeln 128 1024 2048 1024
Subdivision Schritte 1 1 1 4
Vertices pro Objekt 18 18 18 258
Vertices Gesamt 2304 18432 36864 264192
Anzahl der Federn 6144 49152 98304 786432

Tabelle 6.1: Es wurden vier Versuchskonfigurationen untersucht. Jede Federverbindung zwischen den
Vertices wurde nur einmal gezählt. Die FB-Textur enthältdie doppelte Zahl an Einträgen.

Für Konfiguration D benötigen die Vertex-Texturen, die Nachbar-Textur und die Reset-Textur zusam-
men 20 MB Grafikspeicher. Dazu kommen 24 MB Speicherbedarf der FB-Textur und 16 MB für die
Vektorfelddaten. Zusätzlich müssen noch die Vertex-Arrays und die Tiefentexturen gespeichert werden.
Dies bedeutet, dass das Programm in dem betrachteten Fall etwa 65 MB Grafikspeicher verwendet. Bei
der Visualisierung instationärer Strömungen muss beachtet werden, dass zwei zusätzliche 3D-Texturen
für die Vektorfelddaten benötigt werden.

Für die Zeitanalyse wurden die Objekte gleichmäßig im Strömungsgebiet verteilt und die Randbehand-
lung der Objekte zunächst ausgeschaltet. Gemessen wurde die Gesamtzeit eines Durchlaufs der Haupt-
schleife tges sowie die dabei benötigte Zeit für das Renderingtrender und den Integrationsschritttint.
Außerdem wurden für jede Konfiguration drei zusätzliche Meßungen bei aktivierter Randbehandlung
durchgeführt, wobei die Anzahl der dabei getesteten Objekte pro Simulationsschritt zwischen 1, 10 und
50 Objekten variierte. In der folgenden Tabelle sind die Ergebnisse aufgelistet, wobei die Zeiten der
Randtestmessungen∆tRandtestadditiv zur Gesamtzeit zu sehen sind.
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Konfiguration A B C D

tges 0.38 ms 1.53 ms 2.85 ms 24.26 ms

tint 0.23 ms 0.82 ms 1.50 ms 14.57 ms
trender 0.15 ms 0.71 ms 1.35 ms 9.69 ms

∆tRandtest(1) +0.14 ms +0.12ms +0.14 ms +0.25 ms
∆tRandtest(10) +0.17 ms +0.15ms +0.18 ms +0.27 ms
∆tRandtest(50) +0.18 ms +0.26ms +0.30 ms +0.40 ms

Tabelle 6.2: Resultate der Zeitmessung

Bei den kleineren Systemen werden bei eingeschalteter Integration mehrere hundert Bilder pro Sekunde
berechnet. Dies garantiert eine schnelle und flüssige Animation der Objektbewegungen. Auch im Fall
des größten Systems berechnet und visualisiert das Programm noch 40 Zeitschritte pro Sekunde. Al-
lerdings muss die Schrittweite der Integration mit zunehmender Vertexzahl erhöht werden, da sonst die
Positionsänderungen pro Zeitschritt zu klein sind und dieObjekte sich dementsprechend langsam bewe-
gen. Trägt man die benötigte Gesamtzeittgesund die für den Randtest zusätzlich benötigte Zeit∆tRandtest

über der Anzahl der Vertices auf, dann sieht man, dass das System linear skaliert, wobei die Zeit für die
Randbehandlung nur schwach von der Objektzahl abhängt.
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Abbildung 6.1: Die Dauer eines Zeitschritts skaliert linear mit der Größe des simulierten Systems.

Abgesehen von gelegentlichem Stocken funktioniert auch die Visualisierung inhomogener Felder, wobei
die Bildrate gegenüber stationärer Felder etwas sinkt. Allerdings ist das Programm hierbei auf einen
Prozessor mit mehreren Kernen angewiesen, da sich sonst dasNachladen der Vektorfeldzeitschritte im
Lader-Thread durch eine stark reduzierte Performance bemerkbar macht.
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6.3 Resultate der Visualisierung

Im Folgenden werden die Resultate der Visualierung vorgestellt. Diese hängen stark von den initialen
Positionen, des Typs und der räumlichen Größe der Objekteab. Den Visualisierungen liegt das stationäre
Strömungsfeld eines Tornados zugrunde, das in einem 1283 Datensatz gespeichert ist. Neben einem stark
divergenten Bereich mit einer hohen Geschwindigkeit in derNähe des Wirbels, der in Richtung der z-
Achse (blau) ausgerichtet ist, ist das Feld am Rand vergleichsweise schwach und weniger divergent.
Dies stellt die Visualisierung der Objekte durch Deformationen vor eine große Herausforderung. Einen
wirklichen Eindruck über die Stärke und die Richtung der Strömung erhält man nur bei einer animierten
Darstellung am Computer. Auf den gedruckten Bildern kann die Bewegungsrichtung anhand der Aus-
richtung und Verformung der Objekte nur erahnt werden. Außerdem muss beachtet werden, dass die
Objekte auch zu unterschiedlichen Zeiten im Feld freigelassen worden sein können. Zusätzlich zu der
geometrischen Form der Objekte ist die Strömungsstärke an der Farbe der Objekte zu erkennen. Alter-
nativ kann man andere Größen, wie die Beschleunigungskraft oder die Federkräfte farblich kodieren.

Kugeln

Im ersten Versuch wird eine große, hochaufgelöste Kugel inder Mitte des Feldes platziert und die Simu-
lation gestartet. In Abbildung 6.8 ist der Ablauf der Animation in einer Serie von Bildern festgehalten.
Bei einer transparenten Darstellung lassen sich auch Bereiche der Kugeloberfläche erkennen, die dem
Benutzer nicht zugewandt sind. Man sieht, wie sich die Geometrie auf der Achse des Tornados zu ver-
formen und zu verwirbeln beginnt. Nach und nach wird das komplette Objekt in den Wirbel gezogen.
Über die Verdrillung und die farbliche Kodierung ist der Wirbel und die Stärke des Feldes gut erkennbar.
Auf einen stabilisierenden Vertex im Inneren der Kugel wurde hier bewusst verzichtet, da sich die Ober-
fläche sonst kaum verformt. Außerdem bewegt sich ein solches Objekt nur sehr langsam, da aufgrund
seiner Größe verschiedene, entgegengesetzte Kräfte an der Oberfläche angreifen, die sich gegenseitig
aufheben.

In Abbildung 6.2 (links) sind die Resultate eines Versuchs zu sehen, bei dem die Feldeigenschaften durch
die Deformationen mehrer mittelgroßer Kugeln visualisiert werden. An der Verformung der Kugeln ist
die Divergenz des Feldes zu erkennen. In den äußeren, homogeneren Bereichen ähnelt die Darstellung
der von Streambubbles. Wie an den inneren Objekten zu sehen ist, kommt es aber auch vor, dass die
Kugelform zerstört wird.

Alternativ zu wenigen großen Objekten kann man auch eine große Anzahl von kleineren Objekten im
Feld freilassen. Entweder werden die Objekte vom Strudel erfasst oder sie treiben in schwächere Aus-
senbereich des Feldes, wo sie dann am Rand des Strömungsgebietes ankommen und zurückgesetzt
werden. Bei einem solchen Versuchsaufbau läßt sich die Feldstruktur vor allem aus der Bewegung
der Objekte ablesen. Wird aber das Feld über die Konstanteffac verstärkt und die Federkonstantesfac

relativ klein gewählt, dann ergeben sich Resultate wie in Abbildung 6.2 (rechts). Hier ist die starke
Überdehnung der Kugelobjekte durch die hohe Divergenz im inneren Feldbereich sowie der grobe Ver-
lauf der Strömungslinien gut zu erkennen.
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Abbildung 6.2: Die Visualisierung hängt sehr von der Anzahl und Größe der Versuchsobjekte ab. Im
linken Bild sind 15 Kugelobjekte mittlerer Größe und rechts mehrere hundert kleine Kugeln zu sehen.

Im letzten Versuch mit Kugeln werden diese an mehreren Saatpunkten freigesetzt. Die Größe der Saat-
periode unterscheidet sich dabei in den beiden Bildern der Abbildung 6.3. Da die Objekte in einem
stationären Feld immer wieder die gleichen Bahnen durchlaufen, ergeben sich Strukturen, die mit zu-
nehmender Zahl freier Objekte verstärkt hervortreten undStromlinien ähneln. Beim Betrachten der ani-
mierten Darstellung verschmelzen die benachbarten Teilchen eines Saatpunktes zu einem sich bewegen-
den Gesamtobjekt. Wird dagegen die Saatfrequenz verkleinert, dann verkleinert sich auch die Zahl der
freien Objekte im Strömungsfeld, wobei die einzelnen Teilchen und ihre Deformationen besser sichtbar
werden. Im Versuchsaufbau wurden zehn Saatpunkte in der Nähe des Wirbelzentrums platziert, die als
weisse Kugeln zu erkennen sind. Die Kugeln zweier Saatpunkte werden dabei in den Wirbel hineinge-
zogen, wobei die Objekte eines dieser Saatpunkte selektiert wurden und blau eingefärbt sind. Dabei ist
zu sehen, dass die Kugelform der Objekte im Inneren des Strudels aufgrund der extremen Kräfte, die auf
das zugrundeliegende Feder-Masse-System wirken, zerstört wird. Dieser Effekt ist in der Abbildung 6.4
einer Nahansicht in Wireframe-Darstellung gut zu erkennen. Da in diesem Fall die kollabierten Objekte
relativ schnell am Rand ankommen und zurückgesetzt werden, stellt dies kein großes Problem dar und
kann sogar durch die extreme Verformung die Turbulenz des Feldes verdeutlichen. Von den restlichen
acht Saatpunkten, deren Objekte nicht so stark deformiert werden, gehen Linien aus, die nach mehre-
ren kreisförmigen Bewegungen um die Achse des Tornados letztendlich am Rand des Gebietes enden.
Erhöht man interaktiv die Masse der Objekte, und damit ihreTrägheit, dann führen die Versuchsobjekte
weniger Umdrehungen durch, da sie sich nicht so schnell an die Geschwindigkeitsänderung des Fel-
des anpassen können. Bei einem Massefaktor von 1 erhält man eine Visualisierung, die einer einfachen
Advektion masseloser Teilchen nahe kommt. Für die Visualisierung in Abbildungen 6.5 wurde ein ne-
gativer Feldfaktor gewählt und die Anordnung der Saatpunkte geändert. Aufgrund der unterschiedlichen
Position der Saatpunkte werden dabei die Form und die Ausmaße des Tornado-Rüssels besser sichtbar.
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Abbildung 6.3: Kleine Kugelobjekte, die an zehn Saatpunkten freigelassen wurden. Die Bilder unter-
scheiden sich durch eine unterschiedliche Wahl der Periodendauer. Im linken Bild sind 194 freie Kugeln
und im rechten 1500 freie Kugeln zu sehen.

Schläuche

Dank ihrer länglichen Form können sich die Schläuche besser als Kugeln am Feld ausrichten. Trotzdem
dürfen sie nicht als Stromlinien missverstanden werden, die an jedem Punkt tangential zu den Feldlinien
verlaufen. Der Vergleich mit Zeitlinien trifft es eher. Wieder sind die Resultate stark vom Versuchsaufbau
abhängig.

In Abbildung 6.6 sind die Resultate eines Versuchs zu sehen,bei dem ein langer Saatschlauch in der
Nähe des Tornadotrichters platziert wurde. Wegen der großen Menge der Objekte ist es schwer, die
Form und die Ausmaße einzelner Schläuche zu erkennen. Selektiert man aber eines der Objekte, dann
wird dieses blau eingefärbt und seine Verformungen und Bewegungen können leicht verfolgt werden. In
der transparenten Darstellung ist der 3D-Eindruck nicht sogut, er kann aber verbessert werden, indem
die Sicht auf die Visualisierung während der Simulation geändert wird.

Positioniert man eine große Zahl dünner Schläuche nebeneinander, dann approximieren diese beim Start
eine Fläche. Das Resultat nach einigen Zeitschritten ist in Abbildungen 6.7 zu sehen. Da bei der geren-
derten Darstellung der Schläuche Sampling-Artefakte auftreten und die Flächenstruktur in einem diver-
genten Feld relativ schnell verloren geht, wäre die Verwendung eines flächenförmigen Versuchsobjekts
bei solchen Visualisierungen sinnvoller.

In Abbildung 6.9 ist die zeitliche Entwicklung eines Systems mehrerer Schlauchobjekte dargestellt, die
an einem Ende fixiert sind. Dabei geraten die mittleren Schl¨auche in den Sog des Tornadotrichters.
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Abbildung 6.4: Die Deformation der Kugeln im stark divergenten Innenbereich des Tornadofeldes ist
zu erkennen. Die blauen Objekte wurden vom Strudel eingesogen, ihre geometrische Kugelform ging
dabei verloren. Die Objekte, die es aus dem Strudel herausschaffen, formen sich in ihre ursprüngliche
Kugelform zurück.

Bestehende Probleme und L̈osungsvorschl̈age

Wird die Federhärte zu klein gewählt, dann wird die Objektgeometrie in den stark divergenten Berei-
chen des Tornadofeldes schnell zerstört. Wird sie zu groß gewählt, dann verformen sich die Objekte
im Randbereich wenig. Das Problem dabei ist, dass die verwendeten Geometrieobjekte hauptsächlich
durch die Feder-Verbindungen ihrer Oberflächen stabilisiert werden. Eine gleichförmige Tetraedrisie-
rung des vollständigen Objektvolumens könnte hier bessere Resultate liefern. Streambubbles hingegen
teilen sich in divergenten Strömungsgebieten. Ein solcher Ansatz ist prinzipiell auch für die Geome-
trieadvektion geeignet, er läßt sich aber aufgrund der Einschränkungen der GPU und der verwendeten
Datenstrukturen nicht umsetzen. Bei einigen der vorgestellten Visualisierung werden durch die zerstörte
Oberflächenstruktur die starken Verwirbelungen in der Strömung sogar besser sichtbar. Die Erweiterung
des Programms um eine Komponente, die geometrische Hindernisse in Strömungsdaten berrücksichtigt,
wäre interessant.
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Abbildung 6.5: Bei der Wahl eines negativen Feldfaktorsffak und der Positionierung der Saatpunkte am
Rand des Gebietes, ergeben sich Bilder, die die Form des Tornados gut veranschaulichen. Im linken Bild
ist im oberen inneren Bereich des Tornados ein schwächererStrömungsbereich durch die grüne Färbung
erkennbar.

Abbildung 6.6: Platziert man einen Schlauch-Saatpunkt längs des Tornadotrichters, dann ergibt sich
bei einer hohen Saatfrequenz eine flächenartige Struktur,die sich im Inneren des Wirbels auflöst. Die
Schläuche werden dabei extrem verdrillt und von der Ranbehandlungsroutine zurückgesetzt.
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(a) (b)

(c)

Abbildung 6.7: Je nach Positionierung der Schläuche ergeben sich ganz unterschiedliche Darstellungen:
In (a) approximiert eine Vielzahl von Schläuchen eine Fläche, die sich aber wenige Zeitschritte später
auflöst. In (b) sind einfache Schläuche aus drei Segmentenzu sehen und in (c) eine größere Menge
langer Schläuche, die an einem Ende fixiert sind.
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(a) t=0 (b) t=1

(c) t=2 (d) t=3

(e) t=4 (f) t=0

Abbildung 6.8: Zeitliche Abfolge der Verformung einer großen Kugel im Tornadowirbel (a)-(e). In (f)
ist eine transparente Visualisierung der Kugel beim Startzeitpunkt0 zu sehen.
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(a) t=0 (b) t=2

(c) t=3 (d) t=4

Abbildung 6.9: Dargestellt ist eine größere Anzahl von Schläuchen, die an einem Ende fixiert sind.
Über die Färbung läßt sich die Stärke des Feldes erkennen. Schläuche im Inneren Bereich werden vom
Tornado langezogen.
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7 Zusammenfassung
Es wurde eine neuartige Methode für die Visualisierung dreidimensionaler Strömungsfelder vorgestellt.
Verschiedene Geometrieobjekte können vom Benutzer des implementierten Visualisierungstools inter-
aktiv platziert und manipuliert werden. Dabei sind die Versuchsobjekte über eine physikalische Kopp-
lung an das Feld gebunden und ihre Bewegungen und Verformungen in der Strömung werden animiert
dargestellt, wobei sich die Verformungen in gleichförmigen Bereichen des Feldes zurückbilden können.
Anhand der Objektdynamik können Informationen über das zugrundeliegende Strömungsfeld abgelesen
werden. Dazu gehören die Richtung und die Stärke, sowie Divergenzen und Turbulenzen des Feldes.
Ermöglicht wird das Verhalten bei Oberflächenverformungen durch das verwendete Objektmodell, das
die Vertices der Geometrie als Massepunkte, und die Kanten,welche die Vertices verbinden, als Federn
betrachtet. Die Speicherung des Zustand und die zeitliche Entwicklung des simulierten Objektsystems
sowie seine graphische Darstellung, werden dabei vollständig von der GPU realisiert. Dies ermöglicht
eine flüssige Simulation und Animation großer Objektsysteme, die aus vielen tausenden Einzelobjekten
bestehen können.
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2.3 Stromlinien in der Nähe eines Sattelpunkts . . . . . . . . . .. . . . . . . . . . . . . . . 7

3.1 Freier Wurf eines Teilchens unter der Einfluß der Gravitation . . . . . . . . . . . . . . . 12

3.2 Ein starrer Körper mit einer kontinuierlichen Masseverteilung. . . . . . . . . . . . . . . 13

3.3 Ideale Feder im Ruhezustand und im komprimierten Zustand . . . . . . . . . . . . . . . 14
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