
Institute of Parallel and Distributed Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Studienarbeit Nr. 2305

Energy-efficient Distribution of
Workflow-based Mobile

Applications

Jörg Belz

Course of Study: Computer Science

Examiner: Prof. Dr. K. Rothermel

Supervisor: Dipl.-Inf. Stefan Föll

Commenced: November 1, 2010

Completed: May 3, 2011

CR-Classification: C.2.4, H.4.1

Contents

1 Introduction 7

1.1 Workflows . 7

1.2 Problem Description . 8

1.2.1 Power Consumption . 8

1.2.2 Activity Distribution . 9

2 System Model 11

2.1 Workflow Model . 11

2.1.1 Activities . 11

2.1.2 Control Flow Links . 11

2.1.3 Data Flow Links . 12

2.1.4 Services . 13

2.1.5 Conditions . 13

2.2 Workflow Instance . 13

2.2.1 Execution of Workflows . 14

3 Distribution Algorithms 17

3.1 Workflow Based Distribution . 17

3.1.1 Creation of the Cost Graph . 17

3.1.2 Computation of the Minimum Cut . 18

3.2 Instance Based Distribution . 18

Example . 20

4 Prediction 23

4.1 Prediction Model . 23

Example . 25

4.2 Control Flow Predictors . 27

4.2.1 Conditional Probability Predictor (CPP) 27

4.2.2 Condition Evaluation Predictor (CEP) . 27

4.2.3 Binary-CPP, Binary-CEP and ALL . 28

4.3 Data Flow Predictors . 28

4.3.1 Average Volume Predictor . 28

4.3.2 Linear Regression Predictor . 29

5 Evaluation 31

5.1 Workflow Generation . 31

5.1.1 Control Flow . 31

3

5.1.2 Services . 31

5.1.3 Data Flow . 32

5.1.4 Conditions . 33

5.2 Evaluation Parameters . 33

5.3 Evaluation Results . 35

5.3.1 Absolute Optimal Energy Costs . 35

5.3.2 Evaluation of Data Flow Predictors . 35

5.3.3 Evaluation of Control Flow Predictors . 35

Effect of Prediction Interval on CPP and CEP 35

Performance of Binary Variants . 36

Performance Compared to Centralized Distribution 36

6 Summary and Conclusion 47

Bibliography 49

4

List of Figures

1.1 Workflow Example . 8

2.1 Inductive definition of control flow . 13

3.1 Conditional split example . 18

3.2 A1 branch chosen in figure 3.1 . 19

3.3 A2 branch chosen in figure 3.1 . 19

3.4 Instance based distribution - workflow model 21

3.5 Example - Step 1 . 21

3.6 Example - Step 2 . 22

3.7 Example - Step 3 . 22

3.8 Example - Step 4 . 22

4.1 Prediction of an instance . 23

4.2 Prediction model . 24

4.3 Path before purging . 26

4.4 Path after purging . 26

5.1 Function to generate control flow . 32

5.2 Evaluation of condition in A5 depends on A2 . 33

5.3 CPP/CEP performance for average and linear data prediction 38

5.4 CPP performance for different prediction intervals 39

5.5 CEP performance for different prediction intervals 40

5.6 Performance of binary variants and the ALL predictor 41

5.7 Performance of BCEP and ALL at different intervals 42

5.8 Performance of BCEP and BCPP at different intervals 43

5.9 Performance of BCEP compared to centralized distribution 44

5.10 Performance of BCEP compared to centralized distribution with modified
parameters . 45

5

1 Introduction

1.1 Workflows

Traditionally, most organizations have been organized by function, such as purchasing, sales,
shipping and accounting. Generally, these functions are not stand-alone units, but are part
of a larger process, for example selling an item to a customer. These processes can be
automated by workflow management systems [Deh03] [SM01]. The field of understanding
and streamlining workflow models models originated from business organization [BGW09],
but the very same concepts can be applied to any distributed system. In this paper, we focus
on distributed systems found in pervasive computing scenarios where human users interact
with infrastructure services within a workflow environment. With mobile devices in place,
power consumption is a crucial matter and we present methods to optimize the workflow
execution with respect to the power consumed. For example, a workflow in pervasive
computing may consist of the following steps:

1. The infrastructure determines a suitable worker for the task

2. The worker is notified by the infrastructure

3. The worker takes a picture

4. The pictures need to be diagnosed.

5. Based on the diagnose, the user gets different instructions and the next steps are
determined

Figure 1.1 displays these steps in a graph. We call the steps activities. Each activity represents
a task that is part of a high level process, in this case examining an object. The activities call
services that carry out the task. The services are executed on a host, in our scenario this
could be the device or the infrastructure. The order in which they are executed during the
process is not arbitrary because activities may depend on each other, e.g. a picture cannot
be diagnosed before it was taken. We call this order control flow, and the information they
exchange data flow. Together, the control and data flow form a workflow model (or simply
workflow).

7

1 Introduction

Figure 1.1: Workflow Example

1.2 Problem Description

1.2.1 Power Consumption

Power consumption is a crucial matter in scenarios involving mobile devices because ap-
plications that cause a substantial drain of the mobile device’s power source induce costs
in form of time necessary to recharge the battery or of carrying an additional battery. Ac-
cordingly, our goal is to make the workflow process as energy efficient as possible. For our
model, we assume that the energy necessary for managing the control flow is neglectible to
the optimization, and focus on the energy consumed by the workflow entities themselves.
Execution of services on the infrastructure does not induce power drain on the mobile device.
This leaves two possible actions that have an impact on consumption during the workflow
execution:

• Transferring data over the wifi network between the device and the infrastructure

• Executing services on the mobile device

The energy required for transferring data depends on the type of network used. Transfering
data using a GSM/3G-based network for example is considerably more energy draining
than a transfer on an IEEE 802.11 network. Several energy models have been proposed
[SSM][BBV09][RZ07]. However, the properties of an energy model highly depend on the
device used [ZTQ+

10]. This applies in particular to cellular networks [RZ07], which makes
the models difficult to compare.

8

1.2 Problem Description

1.2.2 Activity Distribution

We assume there exist three type of services, which differ on which host Ψ = {IS, H} they
can be executed.

1. Infrastructure-only services that can be executed only on the infrastructure host IS (for
example queries that require access to a database on a server in the infrastructure)

2. Device-only services that can be executed only on the device H (for example user input
or geo location services). We also call these services human services.

3. Services that may be executed on either IS or H (such as route planning). We call them
IS/H services.

The latter type of services generate either transfer or execution costs, depending on where
they are eventually executed. The energy necessary to transfer the data and the energy
required for executing the service on the device are generally different. Furthermore,
activities only need to transfer data between each other if they are executed on different
hosts. Therefore, the selection of the host where the activity is executed affects the total
energy cost of executing the workflow that we would like to minimize. We define a
distribution as a function µ : A→ Ψ that maps each activity to a host. The problem we face
is finding a distribution µopt with the lowest possible energy cost for executing the workflow.

The next chapter provides a more formal description of the system model that we will use.
In chapter 3 we introduce an algorithm for distributing activities in a static workflow and
extend it so it can be applied to partly finished workflow executions. This makes it necessary
to predict part of the instance, therefore we propose prediction methods for the control and
data flows in chapter 4. Finally, we compare the performance of the distribution gained by
prediction to the actual optimal energy cost in an evaluation (chapter 5).

9

2 System Model

2.1 Workflow Model

In the definition we use, a workflow model Wmod consists of the following elements:

• Activities

• Control flow links

• Data flow links

• Services

• Conditions

We will now describe these elements and how they work together in the workflow:

2.1.1 Activities

Activities are nodes representing tasks to be carried out in the workflow process. We denote
the set of activities as A. The activities themselves do not actually execute the tasks they
represent themselves, instead they call services. Therefore, each activity a ∈ A has exactly
one service S(a) assigned that it can communicate with using the data flow.

2.1.2 Control Flow Links

The control flow defines the other in which activities are executed. It is modelled by directed
control flow links l = (a, b) a, b ∈ A between activities. The start activity designates the start
of the workflow execution, and the end activity is the last activity to be executed. To be
able to form a wider array of control flows, we allow for conditional split and parallel splits
in the workflow. They are initiated by split activities which have two successors and end
in join activities with two predecessors. In conditional splits, the successors exclude each
other, thus only one of the two branches will be executed. Parallel splits on the other hand
imply a parallel execution of the branches. Parallel execution means that both branches can
be executed independently according to their individual control flow, but the activity in
which they join again can only be executed after both branches finished execution. We use
a function type : a ∈ A → {Anormal , Acsplit, Acjoin, Apsplit, Apjoin, Astart, Aend} to distinguish
different kinds of activities. The control flow can be defined as a set LC of control flow links

11

2 System Model

and a set A of activities, with a function type. We use an inductive definition starting with a
basic control flow with one activity between the start and end activities:

LC = {(a, b), (b, c), (c, d)}
A = {a, b, c}

type(a) = Astart, type(b) = Anormal , type(c) = Aend

is a valid control flow.
Then we allow replacing an activity by two activities, increasing the length of the control
flow. Figure 2.1 illustrates this replacement of an activity A: Let LC, A, type be a valid control
flow with (x, y), (y, z) ∈ LC, type(y) = Anormal . Then

L′C = (LC \ (y, z)) ∪ {(y, u), (u, z)}
A′ = A ∪ u

type = type ∪ u 7→ Anormal

is also a valid control flow. Finally, we can also replace an activity in LC, A, type with a
conditional split or parallel split structure:

L′C = (LC \ (x, y), (y, z)) ∪ {(x, t), (t, u), (u, w), (t, v), (v, w), (w, z)}
A′ = (A \ y) ∪ {t, u, v, w}

type = type ∪ {t 7→ Acsplit, u 7→ Anormal , v 7→ Anormal , w 7→ Acjoin}

or

L′C = (LC \ (x, y), (y, z)) ∪ {(x, t), (t, u), (u, w), (t, v), (v, w), (w, z)}
A′ = (A \ y) ∪ {t, u, v, w}

type = type ∪ {t 7→ Apsplit, u 7→ Anormal , v 7→ Anormal , w 7→ Apjoin}

also form valid control flows.

2.1.3 Data Flow Links

The set data flow links LD describes the data dependencies between activities. If the execution
of activity ai requires data generated during execution of activity ak, we create a data link
from ak to ai. Furthermore, we need to add data links from S(ak) to ak and from ai to S(ai)
to model the communication between the activities and their services. Thus, data links
always get added in triplets of data links that belong to the same data flow. To distinguish
the different data flows an activity can be part of, we assign the same data flow identifier
id ∈ IDD to each of the three data links belonging to the same data flow.

12

2.2 Workflow Instance

Figure 2.1: Inductive definition of control flow

2.1.4 Services

Services are called by activities to perform an action. The action may require data input
and may produce data output, modelled by the data flow. The data output may or may not
depend on the input. All services are executed on a host in Ψ = {IS, H}. In our model,
we assume that there exists only one device host H. If there are several different mobile
devices in use during the workflow, more than one device node would be required. We do
not account for that possibility, however the same principles we present can still be applied.
Note that we do not restrict the number of services on each host, thus there may be several
different services available on the infrastructure and the device host.

2.1.5 Conditions

Conditions are necessary for conditional splits to determine the successor activity. Conditions
can depend only on the data transferred by incoming data edges of the activity.

2.2 Workflow Instance

The workflow model describes the structure of a workflow process. A workflow instance
Winst describes a concrete instantiation of this structure. It consists of

• A set of activities Ahistory ⊆ A that represent the activities that have been executed.

13

2 System Model

• A function content : l ∈ LD →N that assigns a numeric value depicting the content of
the data flow on edge l.

• A function size : l ∈ LD →N that allocates a size in kb to each data edge l.

We assume the service’s output is non deterministic. This assumption is reasonable in many
cases, for example the user can enter a different input or the database result can differ each
time a workflow is executed. Accordingly, for a single workflow model there can exist many
different such workflow instances. The following section describes how these instances are
generated.

2.2.1 Execution of Workflows

A workflow is executed by executing a set Ahist ∈ A and at the same time building the
functions that determine the content and size of data flows. Ahist can easily be build by
gradually adding the activities on the the control flow path. For each content/value pair
of a data edge, we store an object that holds these values. In our execution model, we
assume that data is only transferred if both activities participating in the data flow have
been executed. Hence, if there is a data link from a servicefunction on H to a servicefunction
on IS over activities a, S(a) = SH and b, S(b) = SIS, the data between any nodes (H and a,
a and b and b and IS) is transferred at the moment when b is executed, and only if a is in
Ahist. Therefore, it is necessary to store the data generated by the first service until both
activities have been executed. We store the content/value pair of each ’unfinished’ data flow
in the set dataedgesopen, and the pairs for which both activities have been executed in the set
dataedgescomplete.

The activities in Ahist and the order they are executed in are determined by the control flow
which is managed by a set Anext of activities to be executed next. Algorithm 1 outlines how
the control flow is processed.

Initially, the set Anext only contains the start activity. After an activity has been executed
it will be moved to the history and its successor(s) are added to the set Anext. Parallel and
conditional splits have two successors. In case of parallel splits, both are added to Anext. For
conditional splits, we determine the successor by evaluating the condition of the conditional
split activity. All other activities have exactly one successor, except for the end activity. In
line 6 we perform a check if the activity is ready to execute. This is important in the case
of parallel joins, because they may only be executed after both predecessors have finished
execution.

14

2.2 Workflow Instance

Algorithm 1: Workflow Execution

1 dataedgescomplete = ∅
2 dataedgesopen = ∅
3 Anext = {astart}
4 while Anext ⊃ ∅ do
5 foreach a ∈ Anext do
6 if a is ready to execute then
7 foreach incoming data link l from other activity to a do
8 if there is value/content pair p for l in datao pen then
9 move p to datacomplete

10 end
11 end
12 execute the service S(a) with the incoming data links as input
13 store the resulting content/value pair(s) in datao pen
14 if a is conditional split then
15 evaluate condition and at successor to Anext
16 end
17 else if a is parallel split then
18 add both successors to Anext
19 else
20 add successor of a (if any) to Ahist
21 remove a from Anext

22 end
23 end
24 end

15

3 Distribution Algorithms

In general, a distribution algorithm calculates an activity distribution µ for a workflow
instance so that the energy cost minimized. In this chapter we describe the distribution
algorithm introduced in [FFH] and propose an extension of it which adopts an instance
based approach. For the sake of clarity, we call the original distribution algorithm workflow
based distribution algorithm and our extended algorithm instance based distribution algorithm.

3.1 Workflow Based Distribution

As the distribution depends on the data flow edges, it must be given a workflow instance to
base the calculation on. For this purpose, the authors of the original distribution algorithm
assume a workflow instance Winst based on average data flows of a set of past instances.
Therefore, for each workflow model, the algorithm suggests exactly one activity distribution
which is applied for all instances.
The distribution algorithm consists of two steps, creating a cost graph and finding a minimum
cut in this graph. We will now outline these steps briefly, a more thorough description
including an optimality proof can be found in [FFH].

3.1.1 Creation of the Cost Graph

The goal is to find a distribution with minimum costs. To this end, a cost graph is con-
structed. The cost graph resembles the workflow graph, but with weighted, undirected
edges representing energy costs that replace the data edges. Furthermore, it does not have
any control edges since these do not represent costs. Let Θ(x, y) be the total data amount to
transfer between two nodes x, y inA ∪Ψ. Θ(x, y) can be easily computed by adding the data
transfer volumes all data edges between x and y given by the size function. Now, to construct
the cost graph all parallel data edges of the workflow model need to be transformed into
a single, undirected cost edge. This single edge is then weighted with energy necessary to
transfer the data between the nodes, given by ET(Θ(x, y)). Additionally, for all cost edges
between an activity a and an infrastructure service that can also be executed on the device
with execution cost EX(S(a)), we compare EX(S(a)) to ET(Θ(x, y)). If the execution cost is
lower, the weight is set to the execution cost instead of the transfer cost.

17

3 Distribution Algorithms

3.1.2 Computation of the Minimum Cut

The actual activity distribution is acquired by computing a minimum cut for each device
node. The cuts are calculated between each node h ∈ H and an artifical node created by
merging the the infrastructure node IS and the remaining device nodes g ∈ H, g 6= h. Each
of these cut partitions the set of activities into two subsets, the set of activities that is part of
the device partition is then the set of activities to be executed on the corresponding device.

3.2 Instance Based Distribution

For the workflow based distribution algorithm it is necessary to predict the instance. The
prediction methods generally become more accurate the more information they have about
the workflow instance. Therefore, being able to run the distribution algorithm several times
during a workflow’s execution is likely to improve the distribution with respect to energy
costs.

The possible benefit of an instance based prediction is illustrated in figure 3.1. It shows part
of a workflow where two conditional split branches meet in the join activity A3. The numbers
on the data edges denote energy costs. The infrastructure service of A3 can be executed on
the device with execution cost 30, the other edges represent energy costs for transferring
data. Depending on which branch was chosen, the actual instance may look like either figure
3.2 or 3.3. If we had distributed the workflow prior to the execution, the distribution would
assign either H or IS to A3. Let us assume that A3 was assigned to the human service. Then,
in case A1 is executed before A3, a transfer cost of 20 would be necessary to transfer the data
from the infrastructure to the device. However, assigning A3 to the infrastructure in this
case would result in 0 cost of the cut between H and IS. But a fixed assignment of A3 → IS
is also not always preferable, since if the A2 branch is chosen, distributing both A2 and A3
to the device would be more optimal (cost of 20) than distributing A3 on the infrastructure
(cost of 80).

Figure 3.1: Conditional split example

18

3.2 Instance Based Distribution

Figure 3.2: A1 branch chosen in figure 3.1

Figure 3.3: A2 branch chosen in figure 3.1

A static distribution is not always optimal in this example. However, during the workflow
execution, using a suitable prediction method it can be determined which branch is chosen
before the host that activity A3 should be executed on needs to be fixed. Therefore, we could
always choose the optimal distribution. The distribution algorithm presented in chapter
3 however can only be applied to instances that have not begun execution. If we applied
it to a partly finished (and distributed) workflow instance, it would assume that it can
freely distribute all activities, whereas the distribution of the activities already executed
(Ahist) cannot be changed. Hence, the algorithm has to work under the constraint that there
already exists a partly defined distribution function µ : A→ Ψ and it cannot change these
distributions. We account for these distributions by removing the distributed activities from
the complete cost graph C (algorithm 2).

However, we cannot simply remove the activities Ahist and the attached cost edges. This
is because there may be cost edges between activities in Ahist and activities that are still to
be executed in the instance. Removing these edges would affect the distribution of these
activities. Therefore, if an activity a has been distributed to µ(a), we can only remove those
edges that are connected to activities which are also in Ahist. The remaining cost edges

19

3 Distribution Algorithms

Algorithm 2: Distribution of executed activities

1 Let C be a cost graph
2 Let Ahist be a set of executed activities and µ an activity distribution
3 foreach a ∈ Ahist do
4 foreach edge e connected to a in C do
5 let v be the node that e connects with a
6 if v is an activity b ∈ Ahist then
7 remove e
8 else if v = µ(a) then
9 remove e

10 else
11 rewire e to connect v and µ(a)
12 end
13 end
14 remove a from C
15 end

represent energy costs between the host to which a was distributed and a future activity.
Consequently we ’rewire’ this edges’ endpoint from a to µ(a).

Example

We assume the workflow given in figure 3.4 where A1 to A3 have already been executed,
and distributed according to µ : µ(A1) = H, µ(A2) = H, µ(A3) = IS.

To find the resulting graph, we proccess the activities in the order they were executed:

1. A1 was executed on H. We merge A1 with H (figure 3.5): The data edges between A1
and H (colored red) can be removed because A1 is executed on H and thus no energy
cost is induced. The edges between A1 and other activities (colored green) are changed
so that the endpoint A1 is replaced by H. The resulting graph is shown in figure 3.6.

2. After executing A2 on H, the edge IS → A1 is changed to IS → H. This represents
the energy costs of the data A2 which is executed on H needs from the infrastructure
service. The edge from A2 to A3 is also rewired by replacing its origin A2 with H,
resulting in the graph in figure 3.7.

3. Finally, we execute A3 on the infrastructure, which creates two additional edges
between the infrastructure and the service node. The energy cost of all edges connecting
the hosts H and IS directly equals the energy consumed so far in the workflow
execution. They can be removed for the distribution algorithm since they don’t affect
the distribution itself, but only the total cut cost.

4. Now, the resulting graph (figure 3.8) can serve as input for the mincut calculation of
the distribution algorithm that distributes the remaining activity A4.

20

3.2 Instance Based Distribution

Figure 3.4: Instance based distribution - workflow model

Figure 3.5: Example - Step 1

21

3 Distribution Algorithms

Figure 3.6: Example - Step 2

Figure 3.7: Example - Step 3

Figure 3.8: Example - Step 4

22

4 Prediction

If the workflow instance is not known, it needs to be estimated. A workflow instance was
defined as a set of activities Ahistory that have been executed in the control flow and as
functions content and size that allocates content and a size to each data flow. Both the control
and data flow need to be predicted. A predictor basically transforms a partly finished
workflow instance into a finished workflow instance, usually based on the control and data
flow of the input instance (figure 4.1). Additionally, the predictor has access to a set T of
finished workflow instances. We call this set training set. The predictor can use the control
and data flow information of these instances to predict the new instance.

4.1 Prediction Model

We propose a model where the control and data flow is first predicted separately, and then
merged (figure 4.2). This makes it possible to combine various methods of prediction.

A control flow predictor is a function that, given a partly finished workflow instance, assigns
a probability value to every activity:

preC : (a ∈ A, winst ∈Winst)→ [0, 1]

Figure 4.1: Prediction of an instance

23

4 Prediction

Figure 4.2: Prediction model

A data flow predictor predicts the size of data edges, under the condition that the activities
using the edge are executed.

preD : (e ∈ LD, winst ∈Winst)→N

Based on these, we generate a predictor

pre : (e ∈ LD, winst ∈Winst)→N

that is based on the values given by preD and takes the probabilities preC into account. This
is necessary because if one activity connected to a data edge is not executed, the data edge
will not transfer any data. A straightforward way to achieve this is to weight the data edge
by the probability that both activities are executed:

pre(e) = preD ∗ P(aiak) e = (ai, ak) ∈ LD, ai, ak ∈ A

We cannot simply multiply preC(ai) ∗ preC(ak) to get P(aiak) because the probabilities of
executing the activities ai and ak are not independent. For example, if ak is the only successor
of ai, in all workflow instances where ak is executed, ai will be executed as well, and the
probability that ai and ak will both be executed is simply preC(ai). Instead, we need to
calculate P(akai) using conditional probabilities:

Let e be a data edge from ai to ak. Note that this implies that ai is preceding ak in the control
flow, because ak has a dependency on ai. The probability P(akai) that both are executed is
then given by

P(akai) = P(ak|ai) preC(ai)

This follows from conditional probability. We need to calculate P(ak|ai), which is the
probability that ak is executed given ai has already been executed. This equals the probability

24

4.1 Prediction Model

Ppath(ai, ak) that there will be a path from ai to ak in the workflow instance assuming that ai
is part of the instance. A path from ai to ak is a sequence of activities (ai, ai+1, ...ak) on the
control flow path . It can be found e.g. by breadth first search of the control flow graph.

Due to conditional and parallel splits in the workflow graph, there may be several possible
paths (ai, ..., ak) from ai to ak. However, we can show that it is sufficient to find only one such
path: It is clear that paths may be different only if they contain different branches of parallel
or conditional splits. Paths that differ only by a different branch of a parallel split actually
represent the same control flow since in a workflow instance, both branches are executed.
Therefore, we must not consider them being different paths. That leaves us with paths
varying due to conditional splits. These actually represent different workflow executions
and therefore, the total probability equals the sum of the individual path probilities. We
can simplify the calculation of the sum. Let X and Y be two different paths from ai to ak
with probabilities px and py. Let pxy the probability of the sequence of activities that is in
both X and Y, and pcx and pcy the probability of the branch exclusive the X respectively
exklusive in the Y path. Then px = pcx ∗ pxy and py = pcy ∗ pxy. The sum px + py then
equals pcx ∗ pxy + pcx ∗ pxy = pxy ∗ (px + py). However, conditional on execution of a, it must
hold that px + py = 1 because there are two branches of which one has to be chosen. Thus,
Ppath(ai, ak) = pxy with pxy being the probability of the common part of all parts between ai
and ak.

In order to calculate Ppath(ai, ak), we first purge the distinct elements of any path from ai to
ak. This is done by removing all branches of conditional splits, for which there exist both
a split and a join activity in the path. Afterwards, we calculate Ppath(ai, ak) as follows by
dividing the probability of each activity through the probability of its predecessor in the
purged path of length n:

Ppath(ai, ak) =
n

∏
2

preC(aj)

preC(aj−1)

Example

Figure 4.3 shows part of a workflow, with the numbers denoting the absolute probability
preC for each activity to be executed. We assume execution is at activity A1 and we want to
calculate P(A3 A9) = P(A9|A3) ∗ preC(A3). preC(A3) is already given (0.8). The probability
P(A9|A3) equals the probability of any path from A3 to A9. It is sufficient to find one path,
e.g. (A3, A5, A6, A8, A9) and purge this path. The result is shown in figure 4.4.

We can now calculate the probability of this path, which equals the probability that there is
any path from A3 to A9:

P((A3, A5, A8, A9)) =
0.3
0.8

0.8
0.8

0.8
0.8

= 0.375

The probability that both A3 and A9 are executed conditioned on the knowledge available at
A1 is then 0.8 ∗ 0.375 = 0.3.

25

4 Prediction

Figure 4.3: Path before purging

Figure 4.4: Path after purging

26

4.2 Control Flow Predictors

4.2 Control Flow Predictors

4.2.1 Conditional Probability Predictor (CPP)

The conditional probability predictor Preap uses a training set T = (t1, t2, ..., tn)ti ∈ Winst
of workflow instances to estimate each activity’s execution probability. The unconditioned
probability that an activity a is executed is given by

p(a) =
number of ti with a in history

n

If there is nothing known about the instance winst that is executed, Preap(a, winst) = p(a).
However, if the history Ahist of the instance is non-empty, the execution probability of these
activities equals 1. Furthermore, this affects the probabilities of other activities as well since
some control flow paths can now be eliminated. The probabilities of an activity a given by
the probability that there is a path from the execution state of winst to a. This probability can
be calculated by finding any such path, purging it and calculating the path probability like
in the previous section.

Precpp(a, winst) =

{
1 if a has been executed in winst

p(a) path probability from winst to a

4.2.2 Condition Evaluation Predictor (CEP)

The condition evaluation predictor CEP is based on the conditional probability predictor
CPP, but tries to refine its estimations by prematurely evaluating conditional splits, thus
determining the successor activity. This is possible when the split’s condition depends only
on data edges that are already known.

In the following, we develop the condition evaluation predictor which tries to determine the
successors of conditionals splits by prematurely evaluating conditions.

Without loss of generality, let b be the actual successor of a conditional split activity a, and c
be the successor not chosen by the condition. Based on this knowledge, p(b) and p(c) can
be refined: p(b) = p(a), p(c) = 0. Additionally, all activities following b and c also have to
be updated with the new probabilities: Let B be the set of all activities between (but not
including) a and the corresponding join d in the ’b-branch’, and C those activities in the
’c-branch’. The new probabilities p of these activities are calculated as follows:

p′(x) =


p(x)
p(a)

x ∈ B

0 x ∈ C

27

4 Prediction

We do not need to update the join activity or any of its successors. The decision which
branch to take does not influence the execution probability of these activities because the
execution probability of the join activity always equals the execution probability of the split
activity.

4.2.3 Binary-CPP, Binary-CEP and ALL

Since we do not know if weighting the edges’ costs actually improves prediction, we introduce
variations which weight the costs only by 0 or 1:

Prebcpp(a, winst) =

{
1 if Precpp(a, winst) > 0

0 otherwise

Prebcep(a, winst) =

{
1 if Precep(a, winst) > 0

0 otherwise

Furthermore, to verify that predicting probabilities provides an improvement at all, we
define the predictor ALL that assigns the probability 1 to all activities:

Preall(a, winst) = 1

4.3 Data Flow Predictors

4.3.1 Average Volume Predictor

The average volume predictor Pavp predicts an unknown data flow’s size simply by taking
the average value of this data flow from the history, unless the value is already known to the
running workflow instance. Let n(l ∈ LD) be the number of workflow instances in T in that
the data edge l was generated. Then the predictor is defined as

Pavp(l ∈ LD, winst ∈Winst) =


1

n(l) ∑
t∈T

sizet(l) if l is unknown in winst

sizewinst(l) if l is known in winst

28

4.3 Data Flow Predictors

4.3.2 Linear Regression Predictor

The average volume predictor treats a service function as a black box and merely examines
its output. The predictor introduced in this section takes another approach by actually trying
to infere the service function’s output volume from given input. Hence, this model requires
that the output volume somehow depends service function’s incoming data volume:

Assumption 1 Let Vk be the size of the k-th input data flow of a service function s. The output size
of s depends linearly on the input volumes:

outs(V1, ..., Vm) = β0 +
m

∑
k=1

βkVk

The unknown βk describe the effect of a one unit increase in Vi on outs. The estimators β̂k
for βk can be found using e.g. the ordinary least square method or a maximum likelihood
estimation [Woo08]. If not all Vk are known, the model cannot be applied and falls back to
the average data volume predictor:

Preg(l ∈ LD, winst ∈Winst) =


sizewinst(l) if l is known in winst

β̂0 +
m
∑

k=1
β̂kVk if all Vk are known in winst

Pavp(l, winst) otherwise

The restriction to linear relationship between the input and output makes it comparably
easy to solve calculate the coefficients β̂k[VHMK97]. On the other hand it does not allow to
accurately predict service functions that depend on the input values in a strong non-linear
manner. However, we merely introduce this predictor as an example of estimating the
service function. In real-world applications, knowledge about the specific service function’s
behaviour can be used. For instance, the service function’s output might also depend on the
content of the incoming data like the conditions in our system model do.

29

5 Evaluation

5.1 Workflow Generation

Since we do not have authentic workflow models available for the evaluation, it is necessary
to generate them. The workflow generation can be separated into three steps:

1. Generation of the control flow

2. Generation and assignment of services

3. Generation of the data flow

5.1.1 Control Flow

The control flow generation is using a mechanism based on the inductive definition of the
control flow (section 2.1.2). It first creates a basic control flow chain with Linitial activities
and then randomly chooses an activity to replace it with a linear extension, conditional split
or parallel split structure. The number of insertions of each structure is given by Rlinear,
Rparallel and Rconditional . We first insert conditional and parallel splits, and afterwards extend
the control flow by randomly inserting new activities (figure 5.1). For the conditional split
structure, we introduce an additional parameter Lcsplit which defines the initial length of
each branch. This is necessary to ensure the conditional splits have a significant effect on the
workflow execution.

5.1.2 Services

After adding activities to the workflow, we need to assign them services they communicate
with. We assume there exist three kinds of services: a human service that can only be
executed on the device, infrastructure services that can only be executed on the infrastructure
and an IS/H service that can be executed on both, with additional execution costs for
execution on the device. Each activity is assigned one of these three services with probabilities
PIS, PH, PIS/H.

The size of the data flow generated by a service depends on the service type and incoming
data flow(s):

sizeout = γservice ∗ sizein + (1− γservice)X X ∼ N(µservice, σ2
service)

31

5 Evaluation

Input: Integer iterations
Output: Workflow

1 Create empty workflow w f
2 add linear control flow structure of length Linitial to w f
3 iterations=Max(Rlinear, Rparallel and Rconditional)
4 for i = 1..iterations do
5 if i < Rparallel then
6 Replace random activity of w f with a parallel split structure
7 end
8 if i < Rconditional then
9 Replace random activity of w f with a conditional split structure

10 end
11 end
12 for i = 1..Rlinear do
13 Replace random activity of w f with a linear extension structure
14 end
15 return wf;

Figure 5.1: Function to generate control flow

The parameter 0 ≤ γservice ≤ 1 determines to what extend the size of an outgoing data flow
depends on the incoming data flow(s). For γservice = 0, the input and output of a service
function is completely independent. The parameter may vary for infrastructure, human and
is/h services. The mean µ and variance σ2 of the normally distributed X can differ as well
depending on the service. The content of the data flow that the service creates is a number
generated randomly between 0 and 100 for all services.

5.1.3 Data Flow

The data flow models the data dependencies between activities. A data dependency is
created by connecting two activities a and b with a data flow, that is, an edge from S(a) to a,
an edge between a and b and an edge from b to its service node S(b). Data dependencies
can only be created for activities a and b if a is a (possibly non-direct) predecessor of b. We
generate them by iterating through all activities and generating one data flow for each. By
choosing either a predecessor or a successor with probability 0.5, we avoid a bias of data
links to the end or the start of the workflow:

The activity b is not chosen among all activities A, but within a range defined by dlinkmin and
dlinkmax: The path from a to b (or b to a) should contain at least dlinkmin and must contain at
most dlinkmax activities. The minimum path length requirement can not always be met, e.g.
when the start or the end of the workflow has been reached. If that is the case, the start / end
activity is chosen as b. Conditional split activities are treated slightly differently: Because
their condition requires an input, it has to be made sure that the activity b is a predecessor of

32

5.2 Evaluation Parameters

Figure 5.2: Evaluation of condition in A5 depends on A2

the conditional split activity a, and furthermore, that b is always executed when a is executed.
Otherwise, a would not have an input to evaluate the condition with. This might be the case
if b is part of a conditional split branch. Figure 5.2 shows such a case, where the conditional
split A5 depends on A2. If however A2 was not executed before A5, the condition can not be
evaluated due to missing data. So, instead of choosing any predecessor b of a within the
range given, the path from b to a must not contain any conditional joins.

5.1.4 Conditions

The conditions of conditional splits depend on exactly one incoming data flow’s value and
compare this value to a value y that was chosen randomly between 0 and 100 during the
generation of the workflow model. Let the incoming value be x, and b and c the possible
successor activities of a. Then the successor of a is determined as follows:

succ(a) =

{
b if x < y

c otherwise

5.2 Evaluation Parameters

The following table summarizes the parameters used for evaluation:

33

5 Evaluation

linitial length of the control flow chain before
replacements

Rlinear, Rconditional , Rparallel number of replacements for each struc-
ture

Lcsplit initial length of each conditional split
branch

PH, PIS probabilities for assigning a human
service and an infrastructure service.
PIS/H = 1− PH − PIS ≥ 0

γIS, µIS, σ2
IS, maxIS parameters for the size of data generated

by infrastructure services
γH, µH, σ2

H, maxH parameters for the size of data generated
by human services

γIS/H, µIS/H, σ2
IS/H, maxIS/H parameters for the size of data generated

by IS/H services
costex execution cost for IS/H services
dlinkmin, dlinkmax minimum / maximum path length of

data links

For the evaluation, we created 300 workflow models with parameters randomly chosen in a
parameter space defined as follows:

parameter minimum values maximum values
linitial 15 20

Rlinear, Rconditional , Rparallel 5 / 1 / 0 10 / 2 / 1

Lcsplit 8 12

PH, PIS 0.3 / 0.3 0.5 / 0.5
γIS, µIS, σ2

IS, maxIS 0/200kb/200kb/5000kb 1/3000kb/2000kb/5000kb
γH, µH, σ2

H, maxH 0/200kb/200kb/5000kb 1/3000kb/2000kb/5000kb
γIS/H, µIS/H, σ2

IS/H, maxIS/H 0/200kb/200kb/5000kb 1/3000kb/2000kb/5000kb
costex equiv. to transfer of 2000 kb equiv. 20000 kb
dlinkmin, dlinkmax 2 / 10 7 / 20

For each of these models, we executed 20 instances. Before running each model’s instances,
the predictors were trained with a training set of 100 simulated workflow runs of the
corresponding model. 20 instances proved sufficiently large, considering that there are at
most 2 conditional splits in the model. Unless stated otherwise, the predictors are executed
every 4 steps during the workflow execution.
In our evaluation we will use a simplified variant of the energy model for EDGE introduced
in [RZ07]. The simplification is necessary because in our simulations, we do not simulate
time between transfers which would be necessary to model the different power states of the
protocol.

34

5.3 Evaluation Results

5.3 Evaluation Results

5.3.1 Absolute Optimal Energy Costs

We will focus our evaluation on energy costs relative to the optimal cost. To get a rough idea
about the quantity of the costs, we also computed the average value of the optimal energy
costs for all instances. The average optimal cost of all instances that were run was around
3000 J. For comparison, a rechargeable lithium-ion battery of a current smartphone such as
the HTC Desire has a nominal energy supply of around 5 Wh which equals 18.000 J.

5.3.2 Evaluation of Data Flow Predictors

We introduced two models for the data flow prediction, the average model which predicts
the data flow by calculating the mean value of past data flows and the linear regression
predictor, which tries to predict future flows on basis of current data flows. To compare
the two approaches, we modified the model parameters so that γH = γIS = γIS/H = 1.
Thus, the service output size exactly equals the summed input sizes, unless there is no
input in which case the output is calculated randomly normally distributed according to
the parameters. This setup provides optimal conditions for the linear regression. Figure
5.3 (page 38) compares the CPP and CEP with both data flow predictors. Despite the setup
favors the linear regression predictor, the improvement over the average predictor is marginal.
A possible reason is that the regression predictor only can provide an advantage over the
average predictor for the prediction of an edge e if all edges that the service generating e
depends on are known. Otherwise, it falls back to the average predictor resulting in equal
predictions of both. An improvement might be achieved if the regression would base its
prediction not only on known edges, but also on edges it predicted itself and that are not
known yet. However, that way, errors in predictions would be amplified throughout the
workflow unless the workflow’s services perfectly followed the assumed linear model. Since
the data flow predictors score almost equally well, we conduct the following control flow
predictor evaluation using only the average data flow predictor.

5.3.3 Evaluation of Control Flow Predictors

Effect of Prediction Interval on CPP and CEP

The prediction interval defines how often the optimal distribution is recalculated during
the execution of an instance. We expect that the less accurate the prediction is, the more its
accuracy improves when decreasing the interval. This is because between the prediction steps,
the predictor is ’blind’ and cannot react on deviations in the control or data flow compared
to its prediction. The accuracy of the predictor affects the performance of the distribution
algorithm. We evaluated the conditional probability predictor and the condition evaluation
predictor combined with the average data flow predictor. The same set of instances was

35

5 Evaluation

used for both predictors and all intervals. The results are displayed in figures 5.4 and
5.5 (pages 39 and 40) respectively. The ordinate indicates the accumulated percentage of
workflow instances and the x-axis represents the cost increase compared to the optimal cost
in percent. As expected, both the distribution calculated using CPP and the distribution
using CEP significantly improve when using smaller prediction intervals. However, even if
the distribution is calculated just once for all instances (i = ∞), in 30% of the instances the
energy cost is equal to the optimal cost. In this case, CEP=CPP since lacking any data, CEP
cannot evaluate any conditions and falls back to CPP. It is interesting to note that there is
barely a difference between the CEP’s performance for intervals 1 and 4. In both cases, it
performs respectably, with less than 10% of the instances having an energy cost exceeding
the optimal cost by more than 10%. On the other hand, if i = 1, the difference between
CPP and CEP is neglectibly small. Thus, ’looking ahead’ by evaluating the conditions only
provides a considerable benefit if the prediction and distribution is not executed in every
step.

Performance of Binary Variants

Figure 5.6 (page 41) displays a comparison between the CPP and CEP, the corresponding
binary variants and the ALL predictor which assigns a probability of 1 to all activities.
The CPP performs poor compared to the other predictors, and even the CEP’s result is
slightly worse than the simple ALL predictor. This provides strong evidence that weighting
the predicted energy cost according to their probability is not advisable in workflow
models generated in accordance with our system model. Only the binary CPP and binary
CEP provide a (slight) advantage over the ALL predictor. In figure 5.7 (page 42), we
examined how the performance of BCEP and ALL changes as the intervall is increased.
Note the adjusted scale on the x-axis. The ALL predictor basically performs like the
BCEP predictor with interval = ∞. This is reasonable since when predicting only once,
BCEP = BCPP, and BCPP = ALL if all activities were executed at some point in the
training instances. The BCEP predictors perform better than the ALL predictors at intervalls
1 and 4 because it can rule out some data edges before the distribution. We also compared
the binary predictors regarding the prediction intervals (figure 5.8, page 43). The difference
here is much smaller than for the predictors weighting the costs with continous values
between 0 and 1. The binary CEP performance is better than, but very close to the binary CPP.

Performance Compared to Centralized Distribution

If the execution is centralized, all non-human activities are distributed to the infrastructure.
Figure 5.9 (page 44) exemplary shows much energy can be saved with the BCEP predicted
distribution compared to the centralized approach. In around 50% of the instances, we can
save around 30% or more with the distribution algorithm. Only for very few instances the
centralized result is comparable to the optimized distribution.

36

5.3 Evaluation Results

Of course the result highly depends on the parameters chosen. If the probability for human
services PH is low and/or human services transfer much less data than the infrastructure
services, the optimal distribution shows a tendency to the infrastructure, and accordingly,
the centralized approach performs better. Figure 5.10 (page 45) shows the result of a second
evaluation that has been conducted with decreased parameters for PH and µH. Here, in
around 20% of the instances, the centralized distribution’s cost does not exceed the optimal
energy cost.

37

5 Evaluation

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% additional energy cost compared to optimum

%
o
f
w
o
rk
fl
ow

m
o
d
el
s

uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
uu
u u
u u
u u
u u
u u
u u
u u
u u
u u
u u
u u
u u
u u

u u

utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut

ut ut

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
bb
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b b

b b b

bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC bC

bC bC bC

ut CEP AVG
u CEP REG
bC CPP AVG
b CPP REG

Figure 5.3: CPP/CEP performance for average and linear data prediction

38

5.3 Evaluation Results

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

% additional energy cost compared to optimum

%
o
f
w
o
rk
fl
ow

in
st
a
n
ce
s

++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++

+ +

XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X X

kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k

k k
k k

bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC

bC bC
bC bC bC bC bC bC

+CPP i = 1
X CPP i = 4
k CPP i = 10
bC CPP i = ∞

Figure 5.4: CPP performance for different prediction intervals

39

5 Evaluation

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

% additional energy cost compared to optimum

%
o
f
w
o
rk
fl
ow

in
st
a
n
ce
s

++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++

XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
kk
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k

k k

bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC

bC bC
bC bC bC bC bC bC

+CEP i = 1
X CEP i = 4
k CEP i = 10
bC CEP i = ∞

Figure 5.5: CEP performance for different prediction intervals

40

5.3 Evaluation Results

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

% additional energy cost compared to optimum

%
o
f
w
o
rk
fl
ow

in
st
a
n
ce
s

utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
utut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut
ut ut

ut ut

rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rsrs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs
rs rs

rs rs

bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bCbC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC
bC bC

bC bC bC bC

ldld
ldld
ldld
ldld
ldld
ldld
ldld
ldld
ldld
ldld
ldld
ldld
ldld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld
ld ld

ld ld

**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

**
* *

ut CEP
rs BCEP
bC CPP
ld BCPP

*ALL

Figure 5.6: Performance of binary variants and the ALL predictor

41

5 Evaluation

0

10

20

30

40

50

60

70

80

90

100

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

% additional energy cost compared to optimum

%
o
f
w
o
rk
fl
ow

in
st
a
n
ce
s

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+

+
+

+
+

+
+

+

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X

X
X

X

bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC

bC
bC

bC
bC

bC

ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut

ut
ut

ut
ut

ut

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u

u
u

u

ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld

ld
ld

ld
ld

ld

+BCEP i = 1
X BCEP i = 4
bC BCEP i = ∞
ut ALL i = 1
u ALL i = 4
ld ALL i = ∞

Figure 5.7: Performance of BCEP and ALL at different intervals

42

5.3 Evaluation Results

0

10

20

30

40

50

60

70

80

90

100

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

% additional energy cost compared to optimum

%
o
f
w
o
rk
fl
ow

in
st
a
n
ce
s

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+

+
+

+
+

+
+

+

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X

X
X

X

bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC
bC

bC
bC

bC
bC

bC

ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut
ut

ut
ut

ut
ut

ut

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u

u
u

u

ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld
ld

ld
ld

ld
ld

ld

+BCEP i = 1
X BCEP i = 4
bC BCEP i = ∞
ut BCPP i = 1
u BCPP i = 4
ld BCPP i = ∞

Figure 5.8: Performance of BCEP and BCPP at different intervals

43

5 Evaluation

0

10

20

30

40

50

60

70

80

90

100

0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100

% saved energy cost compared to centralized approach

%
o
f
w
o
rk
fl
ow

in
st
a
n
ce
s

XXXX
XX

XX
XX

XX
XX

XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX

XX
XX

XX

X BCEP

Figure 5.9: Performance of BCEP compared to centralized distribution

44

5.3 Evaluation Results

0

10

20

30

40

50

60

70

80

90

100

0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100

% saved energy cost compared to centralized approach

%
o
f
w
o
rk
fl
ow

in
st
a
n
ce
s

XXXXXXX
XX

XX
XX

XX
XX

XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
X

X BCEP

Figure 5.10: Performance of BCEP compared to centralized distribution with modified pa-
rameters

45

6 Summary and Conclusion

We introduced a method to apply the distribution algorithm repeatedly on a workflow
instance. This allowed us to propose prediction methods which can take advantage of new
information gathered during the workflow execution. From our evaluation results we can
conclude the following:

• The workflow based distribution algorithm generally produces distributions with
significantly lower costs than the centralized approach.

• Running the distribution algorithm repeatedly during the workflow execution improves
the distribution with respect to energy costs.

• An average based data flow prediction provides a good basis for the predictor. Pre-
dicting the service’s output according to its input (if known) results only in a minimal
improvement even under optimal conditions.

• Weighting the predicted costs by probabilities does not improve the result. On the con-
trary, weighting all predicted costs unconditionally by 1 provides a better prediction as
input for the distribution algorithm than weighting them by the activities’ probabilities.

• However, the optimality of the distribution can slightly be improved by using prediction
methods that predict the control flow, e.g. by checking for reachability of activities or
evaluating conditional splits prior to their execution.

In around 40% of all instances we achieved a distribution already equivalent to the optimal
distribution simply by distributing the activities once using unweighted average data flows
as input to the predictor. Using more advanced control flow prediction methods and
instance based distribution, this result can be improved. However, this improvement is rather
small and we did not take into account the energy cost for predicting and calculating the
distribution in our calculations. If these calculations are done on the infrastructure exlusively,
an instance based approach with an appropriate prediction method reduces the energy costs
compared to the workflow based distribution. We see potential for further improvement
particulary in the prediction of the data flow where we used very basic methods. Improved
control flow prediction seems to have only a marginal effect.

47

Bibliography

[BBV09] N. Balasubramanian, A. Balasubramanian, A. Venkataramani. Energy consump-
tion in mobile phones: a measurement study and implications for network
applications. In A. Feldmann, L. Mathy, editors, Proceedings of the 9th ACM SIG-
COMM Conference on Internet Measurement 2009, Chicago, Illinois, USA, November
4-6, 2009, pp. 280–293. ACM, 2009. (Cited on page 8)

[BGW09] M. Bozkaya, J. Gabriels, J. M. E. M. van der Werf. Process Diagnostics: A Method
Based on Process Mining. In EKNOW’09, pp. 22–27. 2009. (Cited on page 7)

[Deh03] J. Dehnert. A Methodology for Workflow Modeling. Master’s thesis, TU Berlin,
Fakultät IV Elektrotechnik und Informatik, 2003. (Cited on page 7)

[FFH] D. Fischer, S. Foell, K. Herrmann. Energy-efficient Workflow Distribution. (Cited
on page 17)

[RZ07] A. Rahmati, L. Zhong. Context for Wireless: Context-sensitive energy-efficient
wireless data transfer. In Proceedings of the Fifth International Conference on Mobile
Systems, Applications, and Services (MobiSys), MobiSys ’07, pp. 165–178. USENIX
Association, San Juan, Puerto Rico, 2007. doi:10.1145/1247660.1247681. (Cited
on pages 8 and 34)

[SM01] A. Sharp, P. Mcdermott. Workflow Modeling: Tools for Process Improvement and
Application Development. Artech House Publishers, 2001. (Cited on page 7)

[SSM] A. Shye, B. Scholbrock, G. Memik. Into the Wild: Studying Real User Activity
Patterns to Guide Power Optimizations for Mobile Architectures. (Cited on
page 8)

[VHMK97] P. Van Hentenryck, D. McAllester, D. Kapur. Solving Polynomial Systems
Using a Branch and Prune Approach. SIAM J. Numer. Anal., 34:797–827, 1997.
doi:http://dx.doi.org/10.1137/S0036142995281504. (Cited on page 29)

[Woo08] J. Wooldridge. Introductory Econometrics: A Modern Approach (with Economic
Applications, Data Sets, Student Solutions Manual Printed Access Card). South-
Western College Pub, 4 edition, 2008. (Cited on page 29)

[ZTQ+
10] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, L. Yang. Ac-

curate online power estimation and automatic battery behavior based power

49

Bibliography

model generation for smartphones. In Proceedings of the eighth IEEE/ACM/I-
FIP international conference on Hardware/software codesign and system synthe-
sis, CODES/ISSS ’10, pp. 105–114. ACM, New York, NY, USA, 2010. doi:
http://doi.acm.org/10.1145/1878961.1878982. (Cited on page 8)

50

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Jörg Belz)

	1 Introduction
	1.1 Workflows
	1.2 Problem Description
	1.2.1 Power Consumption
	1.2.2 Activity Distribution

	2 System Model
	2.1 Workflow Model
	2.1.1 Activities
	2.1.2 Control Flow Links
	2.1.3 Data Flow Links
	2.1.4 Services
	2.1.5 Conditions

	2.2 Workflow Instance
	2.2.1 Execution of Workflows

	3 Distribution Algorithms
	3.1 Workflow Based Distribution
	3.1.1 Creation of the Cost Graph
	3.1.2 Computation of the Minimum Cut

	3.2 Instance Based Distribution
	Example

	4 Prediction
	4.1 Prediction Model
	Example

	4.2 Control Flow Predictors
	4.2.1 Conditional Probability Predictor (CPP)
	4.2.2 Condition Evaluation Predictor (CEP)
	4.2.3 Binary-CPP, Binary-CEP and ALL

	4.3 Data Flow Predictors
	4.3.1 Average Volume Predictor
	4.3.2 Linear Regression Predictor

	5 Evaluation
	5.1 Workflow Generation
	5.1.1 Control Flow
	5.1.2 Services
	5.1.3 Data Flow
	5.1.4 Conditions

	5.2 Evaluation Parameters
	5.3 Evaluation Results
	5.3.1 Absolute Optimal Energy Costs
	5.3.2 Evaluation of Data Flow Predictors
	5.3.3 Evaluation of Control Flow Predictors
	Effect of Prediction Interval on CPP and CEP
	Performance of Binary Variants
	Performance Compared to Centralized Distribution

	6 Summary and Conclusion
	Bibliography

